
Jonathan Katz (Ed.)

 123

LN
CS

 9
02

0

18th IACR International Conference
on Practice and Theory in Public-Key Cryptography
Gaithersburg, MD, USA, March 30 – April 1, 2015, Proceedings

Public-Key
Cryptography –
PKC 2015

Lecture Notes in Computer Science 9020

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Jonathan Katz (Ed.)

Public-Key
Cryptography –
PKC 2015
18th IACR International Conference
on Practice and Theory in Public-Key Cryptography
Gaithersburg, MD, USA, March 30 – April 1, 2015
Proceedings

ABC

Editor
Jonathan Katz
University of Maryland
College Park
Maryland
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-46446-5 ISBN 978-3-662-46447-2 (eBook)
DOI 10.1007/978-3-662-46447-2

Library of Congress Control Number: 2015933270

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Heidelberg New York Dordrecht London
c© International Association for Cryptologic Research

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

The 18th IACR International Conference on Practice and Theory of Public-Key Cryp-
tography (PKC 2015) was held from March 30 to April 1, 2015 in Gaithersburg, MD
(USA), on the campus of the National Institute of Standards and Technology (NIST).
The conference, sponsored by the International Association for Cryptologic Research
(IACR), focuses on all technical aspects of public-key cryptography.

These proceedings contain 36 papers selected by the Program Committee from
118 submissions. Each submission was reviewed by at least three experts. Submis-
sions by Program Committee members received at least four reviews and were held
to stricter standards by the program chair when decisions were made. Following the
initial reviews, the committee discussed the papers and solicited further reviews over a
6-week period. This was a challenging task, and I thank the members of the Program
Committee—along with the External Reviewers—for all their hard work.

The conference program also featured two invited talks: one by Antoine Joux on
recent progress in computing discrete logarithms, and the other by Sanjam Garg on
cryptographic program obfuscation. I thank the speakers for accepting the invitation to
speak at the conference.

I would like to close by thanking Rene Peralta, the General Chair, for his help
throughout this process. I would also like to thank Sara Caswell of NIST for helping
both Rene and me with several administrative challenges that arose during the planning.
It is now my second chance to thank Shai Halevi for his web submission and review
software, which was used for the review process of this conference. Shai was also al-
ways available for questions as they came up. Finally, I would like to thank IACR for
hosting the submission server, and Christian Cachin, Greg Rose, and Abhi Shelat (all
acting on behalf of IACR) who helped at many points along the way.

January 2015 Jonathan Katz

Organization

PKC 2015

18th IACR International Conference on Practice
and Theory of Public-Key Cryptography

Gaithersburg, MD, USA

March 30–April 1, 2015

Sponsored by the
International Association for Cryptologic Research

General Chair

Rene Peralta NIST, USA

Program Chair

Jonathan Katz University of Maryland, USA

Program Committee

Michel Abdalla ENS and CNRS, France
Shweta Agrawal IIT Delhi, India
Melissa Chase Microsoft Research, USA
Sherman S.M. Chow Chinese University of Hong Kong, Hong Kong
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Jean-Charles Faugère Inria, France
Sebastian Faust EPFL, Switzerland
Dario Fiore IIMDEA Software Institute, Spain
Georg Fuchsbauer IST Austria, Austria
Steven D. Galbraith University of Auckland, New Zealand
Pierrick Gaudry LORIA, France
Matthew D. Green Johns Hopkins University, USA
Goichiro Hanaoka AIST, Japan
Carmit Hazay Bar-Ilan University, Israel
Eike Kiltz Ruhr-Universität Bochum, Germany
Benoît Libert ENS Lyon, France
Shengli Liu Shanghai Jiao Tong University, China
Anna Lysyanskaya Brown University, USA
Mark Manulis University of Surrey, UK

VIII Organization

Sarah Meiklejohn University College London, UK
Dustin Moody NIST, USA
Michael Naehrig Microsoft Research, USA
Adam O’Neill Georgetown University, USA
Chris Peikert Georgia Institute of Technology, USA
Dominique Schröder Saarland University, Germany
Peter Schwabe Radboud University Nijmegen, The Netherlands
Jae Hong Seo Myongji University, Korea
Damien Stehlé ENS Lyon, France
Rainer Steinwandt Florida Atlantic University, USA

External Reviewers

Scott Aaronson
Shashank Agrawal
Shweta Agrawal
Jacob Alperin-Sheriff
Nuttapong Attrapadung
Saikrishna Badrinarayanan
Shi Bai
Marco Baldi
Foteini Baldimtsi
Abhishek Banerjee
Lejla Batina
Aurelie Bauer
Fabrice Benhamouda
Sasha Berkoff
David Bernhard
Olivier Blazy
Florian Boehl
Joppe Bos
Angelo De Caro
Dario Catalano
Nishanth Chandran
Jie Chen
Paul Christiano
Carlos Cid
Craig Costello
Dana Dachman-Soled
Gareth T. Davies
Apoorvaa Deshpande
Julien Devigne
Leo Ducas
Sylvain Duquesne
Ratna Dutta

Stefan Dziembowski
Edvard Fagerholm
Pooya Farshim
Serge Fehr
Rob Fitzpatrick
Nils Fleischhacker
Ryo Fujita
David Galindo
Essam Ghadafi
Sergey Gorbunov
Divya Gupta
Francisco Rodriguez-Henriquez
Zhengan Huang
Andreas Hülsing
Laurent Imbert
Chen Jie
Bhavana Kanukurthi
Sriram Keelveedhi
Dakshita Khurana
Franziskus Kiefer
Elena Kirshanova
Anna Krasnova
Ranjit Kumaresan
Fabien Laguillaumie
Russell W.F. Lai
Adeline Langlois
Hyung Tae Lee
Kwangsu Lee
Tancrede Lepoint
Feng-Hao Liu
Patrick Longa
Adriana Lopez-Alt

Organization IX

Vadim Lyubashevsky
Giulio Malavolta
Alex Malozemoff
Joana Marim
Daniel Masny
Maike Massierer
Takahiro Matsuda
Alexander May
Andrew Miller
Pratyay Mukherjee
Khoa Nguyen
Phong Nguyen
Ryo Nishimaki
Luca Nizzardo
Jiaxin Pan
Anat Paskin-Cherniavsky
Alain Passelègue
Arpita Patra
Geovandro C.C.F. Pereira
Ray Perlner
Ludovic Perret
Thomas Peters
Duong Hieu Phan
Krzysztof Pietrzak
David Pointcheval
Antigoni Polychroniadou
Frederic de Portzamparc
Bertram Poettering
Baodong Qin
Carla Ràfols
Bobba Rakesh
Guenael Renault

Yusuke Sakai
Palash Sarkar
Jacob Schuldt
Nicolas Sendrier
Barak Shani
Dan Shumow
Mark Simkin
Benjamin Smith
Daniel Smith-Tone
Pierre-Jean Spaenlehauer
Ron Steinfeld
Mario Strefler
Henry Tan
Susan Thomson
Mehdi Tibouchi
Berkant Ustaoglu
Serge Vaudenay
Muthu Venkitasubramaniam
Daniele Venturi
Vanessa Vitse
Alexandre Wallet
Brent Waters
Shota Yamada
Bo-Yin Yang
Aaram Yun
Greg Zaverucha
Tao Zhang
Ye Zhang
Zongyang Zhang
Yongjun Zhao
Hong-Sheng Zhou

Contents

Public-Key Encryption

Simulation-Based Selective Opening CCA Security for PKE from Key
Encapsulation Mechanisms . 3

Shengli Liu and Kenneth G. Paterson

On the Selective Opening Security of Practical Public-Key Encryption
Schemes . 27

Felix Heuer, Tibor Jager, Eike Kiltz, and Sven Schäge

How Secure is Deterministic Encryption? . 52
Mihir Bellare, Rafael Dowsley, and Sriram Keelveedhi

E-Cash

Divisible E-Cash Made Practical . 77
Sébastien Canard, David Pointcheval, Olivier Sanders, and Jacques Traoré

Anonymous Transferable E-Cash . 101
Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer,
and Markulf Kohlweiss

Cryptanalysis

Collision of Random Walks and a Refined Analysis of Attacks
on the Discrete Logarithm Problem. 127

Shuji Kijima and Ravi Montenegro

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 150
Jean-Charles Faugère, Danilo Gligoroski, Ludovic Perret,
Simona Samardjiska, and Enrico Thomae

A Polynomial-Time Attack on the BBCRS Scheme 175
Alain Couvreur, Ayoub Otmani, Jean-Pierre Tillich,
and Valérie Gauthier–Umaña

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case. . . 194
Marta Conde Pena, Jean-Charles Faugère, and Ludovic Perret

Digital Signatures I

Digital Signatures from Strong RSA without Prime Generation 217
David Cash, Rafael Dowsley, and Eike Kiltz

Short Signatures with Short Public Keys from Homomorphic Trapdoor
Functions . 236

Jacob Alperin-Sheriff

Tightly-Secure Signatures from Chameleon Hash Functions. 256
Olivier Blazy, Saqib A. Kakvi, Eike Kiltz, and Jiaxin Pan

Password-Based Authentication

Two-Server Password-Authenticated Secret Sharing UC-Secure Against
Transient Corruptions . 283

Jan Camenisch, Robert R. Enderlein, and Gregory Neven

Adaptive Witness Encryption and Asymmetric Password-Based
Cryptography . 308

Mihir Bellare and Viet Tung Hoang

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks . . . 332
Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Pairing-Based Cryptography

Strongly-Optimal Structure Preserving Signatures from Type II Pairings:
Synthesis and Lower Bounds . 355

Gilles Barthe, Edvard Fagerholm, Dario Fiore, Andre Scedrov,
Benedikt Schmidt, and Mehdi Tibouchi

A Profitable Sub-prime Loan: Obtaining the Advantages of Composite Order
in Prime-Order Bilinear Groups . 377

Allison Lewko and Sarah Meiklejohn

Digital Signatures II

Simpler Efficient Group Signatures from Lattices . 401
Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based. 427
San Ling, Khoa Nguyen, and Huaxiong Wang

Secure Efficient History-Hiding Append-Only Signatures
in the Standard Model . 450

Benoît Libert, Marc Joye, Moti Yung, and Thomas Peters

XII Contents

Efficient Constructions

One-Round Key Exchange with Strong Security: An Efficient
and Generic Construction in the Standard Model . 477

Florian Bergsma, Tibor Jager, and Jörg Schwenk

Additively Homomorphic UC Commitments with Optimal
Amortized Overhead . 495

Ignacio Cascudo, Ivan Damgård, Bernardo David, Irene Giacomelli,
Jesper Buus Nielsen, and Roberto Trifiletti

Interactive Message-Locked Encryption and Secure Deduplication 516
Mihir Bellare and Sriram Keelveedhi

Faster ECC over F2521�1. 539
Robert Granger and Michael Scott

Cryptography with Imperfect Keys

Continuous Non-malleable Key Derivation and Its Application
to Related-Key Security. 557

Baodong Qin, Shengli Liu, Tsz Hon Yuen, Robert H. Deng, and Kefei Chen

A Tamper and Leakage Resilient von Neumann Architecture. 579
Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen,
and Daniele Venturi

Low Noise LPN: KDM Secure Public Key Encryption
and Sample Amplification . 604

Nico Döttling

Interactive Proofs

Adaptive Proofs of Knowledge in the Random Oracle Model 629
David Bernhard, Marc Fischlin, and Bogdan Warinschi

Making Sigma-Protocols Non-interactive Without Random Oracles 650
Pyrros Chaidos and Jens Groth

Lattice-Based Cryptography

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 673
Emmanuela Orsini, Joop van de Pol, and Nigel P. Smart

Packing Messages and Optimizing Bootstrapping in GSW-FHE 699
Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto

Contents XIII

Simple Lattice Trapdoor Sampling from a Broad Class of Distributions 716
Vadim Lyubashevsky and Daniel Wichs

Identity-Based, Predicate, and Functional Encryption

Simple Functional Encryption Schemes for Inner Products 733
Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval

Predicate Encryption for Multi-Dimensional Range Queries from Lattices . . . 752
Romain Gay, Pierrick Méaux, and Hoeteck Wee

On the Practical Security of Inner Product Functional Encryption. 777
Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan,
Abishek Kumarasubramanian, Manoj Prabhakaran, and Amit Sahai

Identity-Based Encryption with (almost) Tight Security in the Multi-instance,
Multi-ciphertext Setting . 799

Dennis Hofheinz, Jessica Koch, and Christoph Striecks

Author Index . 823

XIV Contents

Public-Key Encryption

Simulation-Based Selective Opening
CCA Security for PKE from Key

Encapsulation Mechanisms

Shengli Liu1(B) and Kenneth G. Paterson2

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

slliu@sjtu.edu.cn
2 Information Security Group, Royal Holloway,

University of London, Egham, London
kenny.paterson@rhul.ac.uk

Abstract. We study simulation-based, selective opening security
against chosen-ciphertext attacks (SIM-SO-CCA security) for public key
encryption (PKE). In a selective opening, chosen-ciphertext attack (SO-
CCA), an adversary has access to a decryption oracle, sees a vector of
ciphertexts, adaptively chooses to open some of them, and obtains the
corresponding plaintexts and random coins used in the creation of the
ciphertexts. The SIM-SO-CCA notion captures the security of unopened
ciphertexts with respect to probabilistic polynomial-time (ppt) SO-CCA
adversaries in a semantic way: what a ppt SO-CCA adversary can com-
pute can also be simulated by a ppt simulator with access only to the
opened messages. Building on techniques used to achieve weak deni-
able encryption and non-committing encryption, Fehr et al. (Eurocrypt
2010) presented an approach to constructing SIM-SO-CCA secure PKE
from extended hash proof systems (EHPSs), collision-resistant hash func-
tions and an information-theoretic primitive called Cross Authentication
Codes (XACs). We generalize their approach by introducing a special
type of Key Encapsulation Mechanism (KEM) and using it to build SIM-
SO-CCA secure PKE. We investigate what properties are needed from
the KEM to achieve SIM-SO-CCA security. We also give three instanti-
ations of our construction. The first uses hash proof systems, the second
relies on the n-Linear assumption, and the third uses indistinguishability
obfuscation (iO) in combination with extracting, puncturable Pseudo-
Random Functions in a similar way to Sahai and Waters (STOC 2014).
Our results establish the existence of SIM-SO-CCA secure PKE assum-
ing only the existence of one-way functions and iO. This result further
highlights the simplicity and power of iO in constructing different cryp-
tographic primitives.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 3–26, 2015.
DOI: 10.1007/978-3-662-46447-2 1

4 S. Liu and K.G. Paterson

1 Introduction

Selective Opening Attacks (SOAs) concern a multi-user scenario, where an
adversary adaptively corrupts a set of users to get their secret state infor-
mation. In the case of public key encryption (PKE), we assume that several
senders send ciphertexts encrypting possibly correlated messages to a receiver.
The SOA adversary is able to (adaptively) corrupt some senders, exposing their
messages and also the random coins used to generate their ciphertexts. Security
against selective opening attacks (SOA security) considers whether the uncor-
rupted ciphertexts remain secure.

There are two ways of formalizing SOA security: indistinguishability-based
(IND-SO) and simulation-based (SIM-SO). According to whether the adver-
sary is able to access to a decryption oracle during its attack, SOA security
is further classified into IND-SO-CPA, IND-SO-CCA, SIM-SO-CPA and SIM-
SO-CCA. In the formalization of SOAs, we allow a probabilistic polynomial-
time (ppt) adversary to get the public key, a vector of challenge ciphertexts,
and to adaptively corrupt (open) some ciphertexts to obtain opened plaintexts
and random coins (and also access to a decryption oracle in the case of SO-
CCA). The IND-SO security notions require that the real messages (used to
generate the challenge ciphertexts) and re-sampled messages conditioned on the
opened messages are computationally indistinguishable to an SOA adversary.
Here we have to assume that the joint message distributions are efficiently con-
ditionally re-samplable after the opened messages are exposed. On the other
hand, the SIM-SO security notions have no such limitations. They require that
what a probabilistic polynomial-time (ppt) SOA adversary can compute from
the information it has learned can be simulated by a ppt simulator only know-
ing the opened plaintexts. SIM-SO security seems to be stronger than IND-
SO security and significantly harder to achieve. We note the existence of a
stronger IND-SO security notion, namely full IND-SO security, which imposes
no limitation on the joint message distributions. However, there is no PKE
achieving full IND-SO-CPA security yet. The relations among SIM-SO secu-
rity, IND-SO security, and traditional IND-CPA/CCA security were explored
in [5,17].

Lossy encryption [3] has shown itself to be a very useful tool in achieving
IND-SO-CPA security. Different approaches to achieving IND-SO-CCA security
include the use of lossy trapdoor functions [23], All-But-N [14], and All-But-
Many lossy trapdoor functions [15]. The basic idea is to make sure that only
challenge ciphertexts are lossy encryptions, while ciphertexts queried by the
adversary are normal encryptions. If there exists an efficient opener which can
open a lossy encryption to an encryption of an arbitrary message, then an IND-
SO-CCA secure PKE can also been shown to be SIM-SO-CCA secure. However,
it seems that, to date, only a single, DCR-based PKE scheme [15] is known to
have this property.

In [12], Fehr et al. proposed a black-box PKE construction to achieve SIM-
SO-CCA security based on an Extended Hash Proof System (EHPS) associated

Simulation-Based Selective Opening CCA Security for PKE 5

with a subset membership problem, a collision-resistant hash function and a
new information-theoretic primitive called Cross-Authentication Code (XAC).
As pointed in [18,19], a stronger property of XACs is needed to make the security
proof rigorous.

1.1 Our Contributions

We generalize the black-box PKE construction of Fehr et al. [12] by using a spe-
cial kind of key encapsulation mechanism (KEM) in combination with a strength-
ened XAC. Essentially, the KEM replaces the EHPS component in [12], opening
up a new set of construction possibilities. In more detail:

– We characterise the properties needed of a KEM for our PKE construction to
be SIM-SO-CCA secure. At a high level, these properties are that the KEM
should have efficiently samplable and explainable (ESE) ciphertext and key
spaces; tailored decapsulation; and tailored, constrained chosen-ciphertext
(tCCCA) security. Here tailored decapsulation roughly means that the valid
ciphertexts output by the KEM are sparse in the ciphertext space, while
tCCCA security is an extension of the CCCA security notion of [16]. If a
KEM has all three properties, then we say that it is a tailored KEM.

– We show three constructions for tailored KEMs, including one based on hash
proof systems (HPS) [8], a specific KEM from the n-Linear assumption [16]
(but different from the HPS-based one) and one constructed from indistin-
guishability Obfuscation (iO) in combination with an extracting puncturable
Pseudo-Random Function (PRF) [24]. Consequently, we obtain PKEs of
three different types, all enjoying SIM-SO-CCA security. Thus, by adopt-
ing the KEM viewpoint, we significantly enlarge the scope of Fehr et al.’s
construction.

– Since our PKE construction does not rely on collision-resistant hash func-
tions, we immediately obtain the following results:

• PKE with SIM-SO-CCA security from HPS and strengthened XACs (as
compared to the PKE construction of [12] using EPHS, a strong XAC,
and a collision-resistant hash function).

• PKE with SIM-SO-CCA security from the n-Linear assumption in a way
that differs from our HPS-based construction.

• PKE with SIM-SO-CCA security assuming only the existence of iO and
one-way functions.

1.2 Ingredients of Our Main Construction

We follow the outline provided by the black-box PKE construction of Fehr et al.
[12]. Observing that the EHPS used in [12] can actually be viewed as a KEM, our
construction can be considered as a generalization of their result. We first outline
the properties of KEMs and XACs needed for our result, before describing the
construction and its security analysis at a high level.

6 S. Liu and K.G. Paterson

The KEM component in our construction needs to be “tailored” with the
following properties:

(1) Efficiently samplable and explainable (ESE) domains. The key
space K and ciphertext space C of the KEM should both be ESE domains.
(Meaning that, given a randomised sampling algorithm SampleD for D,
there exists an efficient algorithm, SampleD−1(D, ·), with the property that,
given element d from a domain D as input, SampleD−1(D, ·) outputs value
R such that d can be “explained” as having been sampled using R, i.e.,
d = SampleD(D;R).)

(2) Tailored decapsulation. The valid ciphertexts output by the encapsula-
tion algorithm constitute only a (small) subset of ciphertext space C. When
the input is a ciphertext randomly chosen from C, the decapsulation will
either output ⊥ with overwhelming probability or output a key that is almost
uniformly distributed over K.

(3) Tailored, constrained CCA (tCCCA) security. The output of the
encapsulation algorithm is computationally indistinguishable from (KR, ψR),
a pair of key and ciphertext randomly chosen from K×C, for any ppt adver-
sary, even if the adversary has access to a constrained decryption oracle. The
adversary is allowed to make queries of the form (ψ,P (·)) to the constrained
decryption oracle, where ψ is an element of C and P (·) is a ppt predicate,
such that P (·) : K → {0, 1} evaluates to 1 only for a negligible fraction of
keys. The constrained decryption oracle will provide the decapsulated K to
the adversary if only if P (K) = 1.

We will also need a strengthened XAC definition. A strengthened �-XAC
is a collection of algorithms XAC = (XGen,XAuth,XVer) having the following
properties:

Authentication and Verification. Algorithm XAuth computes a tag T ←
XAuth(K1, . . . , K�) from � inputs (which will be random keys in our con-
struction). Any Ki used in generating the tag T almost always satisfies
XVer(Ki, T) = 1.

Security against Impersonation/Substitution Attacks. Security against
impersonation attacks means that, given a tag T , a randomly chosen key K
will almost always fail verification with this specific tag, i.e., XVer(K,T) = 0.
A substitution attack considers an (all-powerful) adversary who obtains a
tag T = XAuth(K1, . . . , K�) and tries to forge a tag T ′ �= T such that
XVer(Ki, T

′) = 1, where Ki is one of the keys used in computing T . Security
against substitution attacks requires that, if Ki is randomly chosen, then
any adversary succeeds in outputting T ′ with T ′ �= T and XVer(Ki, T

′) = 1
with negligible probability, even if it is given T and all keys except Ki as
input.

Strongness and Semi-Uniqueness. Strongness says that when Ki is ran-
domly chosen, then Ki, given (Kj)j∈[�],j �=i and the tag T = XAuth
(K1, . . . , K�), is re-samplable with the correct probability distribution.

Simulation-Based Selective Opening CCA Security for PKE 7

That is to say, there exists a ppt algorithm ReSample((Kj)j∈[�],j �=i, T) such
that ReSample outputs a key K̂i that is statistically indistinguishable from
Ki, even given (Kj)j∈[�],j �=i and T = XAuth(K1, . . . , K�). Semi-uniqueness
says that it is possible to parse a key K as (Kx,Ky) ∈ Kx ×Ky for some sets
Kx,Ky, and for every Kx ∈ Kx and a tag T , there is at most one Ky ∈ Ky

such that (Kx,Ky) satisfies XVer((Kx,Ky), T) = 1.

1.3 Overview of Our Main Construction

Given a tailored KEM KEM and a strengthened (�+s)-XAC XAC, our construc-
tion of a PKE scheme PKE is as follows. (See Figure 4 for full details.)

– The public key of PKE is the public key pkkem of KEM, an injective function
F with domain C� and range (Ky)s, and a vector of values (Kx1 , . . . , Kxs

) ∈
(Kx)s. The secret key of PKE is skkem, the secret key of KEM.

– The encryption operates in a bitwise mode. Let the �-bit message be
m1|| . . . ||m�.

• When mi = 1, we set (Ki, ψi) ← KEM.Encap(pkkem).
• When mi = 0, we choose (Ki, ψi) randomly from K × C.
• After encrypting � bits, we compute F (ψ1, . . . , ψ�) to get (Ky1 , . . . , Kys

),
and construct s extra keys K�+j = (Kxj

,Kyj
) for j = 1, . . . , s. All � + s

keys are then used to compute a tag T = XAuth(K1, . . . , K�+s).
• Finally, the PKE ciphertext is C = (ψ1, . . . , ψ�, T).

– The decryption also operates in a bitwise fashion. Omitting some crucial
details, we first recompute (Ky1 , . . . , Kys

) using F and (ψ1, . . . , ψ�), recon-
struct K�+j for j = 1, . . . , s, and then verify the correctness of T using
each K�+j in turn. Assuming this step passes, for each i, we compute Ki ←
KEM.Decap(skkem, ψi), and set the recovered message bit as the output of
XVer(Ki, T). (When Ki = ⊥, we set XVer(Ki, T) = 0).

Now, in the above decryption procedure, a KEM decapsulation error occurs
whenever mi = 0. However, ψi is random in this case, and the tailored decap-
sulation makes sure that the output of KEM.Decap(skkem, ψi) is either ⊥ or a
random key K; in either case, XVer(Ki, T) is 0 except with negligible probability
because of the security of XAC against impersonation attacks.

1.4 SIM-SO-CCA Security of Our Main Construction

We follow the techniques of non-committing and deniable encryption [6,7,10,20]
and try to create equivocable ciphertexts that not only can be opened arbitrarily
but that are also computationally indistinguishable from real ciphertexts. In our
construction, the equivocable ciphertexts are in fact encryptions of ones. Note
that tCCCA security of KEM ensures that (K,ψ) ≈c (KR, ψR), where (K,ψ) is
the output of KEM.Encap(pkkem) and (KR, ψR) is randomly chosen from K ×C.
On the other hand, both K and C are ESE. Therefore, (K,ψ) encrypting 1 can
always be explained as a random pair (KR, ψR) encrypting 0 by exposing the
randomness output from SampleK−1(K,K) and SampleC−1(C, ψ).

8 S. Liu and K.G. Paterson

However, this is not sufficient in the SO-CCA setting since the adversary is
able to query its decryption oracle and perform corruptions, and it might then
be easy for the adversary to distinguish an encryption of ones and an encryption
of a real message. For example, consider an adversary that is given a ciphertext
C = (ψ1, ψ2, . . . , ψ�, T), where C is either an encryption of ones but opened
as zeros with re-explained randomness, or an encryption of zeros being opened
honestly. In fact, opened randomness exposes all Ki’s to the adversary. Then the
adversary can generate a different ciphertext C ′ = (ψ1, ψ2, . . . , ψ�, T

′) as follows.
A new tag T ′ (T ′ �= T) is computed as T ′ := XAuth(K ′

1,K2, . . . , K�+s), where K ′
1

is randomly chosen and all other Ki’s (2 ≤ i ≤ � + s) are the same as in T . The
decryption of C ′ will be (0, 1, . . . , 1) if C is an encryption of ones but (0, 0, . . . , 0)
if C is an encryption of zeros! The problem is that the opened randomness
discloses Ki and that gives too much information to the adversary, especially
when (Ki, ψi) encodes 0. To solve this problem, we have to use a different method
to open Ki so that the adversary obtains no extra information about Ki when
(Ki, ψi) encodes 0: first, we use algorithm ReSample of XAC to resample Ki to
obtain a statistically indistinguishable K̂i; then we call SampleK−1(K, K̂i) and
SampleC−1(C, ψi) to open (K̂i, ψi) to an encryption of 0. Now an encryption
of ones, say C = (ψ1, ψ2, . . . , ψ�, T), is able to play the role of an equivocable
ciphertext, due to the tCCCA security of KEM and the security of XAC.

Consequently, we can build a simulator S with respect to an adversary A to
prove SIM-SO-CCA security: S simulates the real environment for A by gener-
ating public and private keys, and uses the private key to answer A’s decryption
queries; S creates n challenge ciphertexts all of which are encryptions of ones;
when A makes a corruption query concerning a challenge ciphertext C, S can
open C bit-by-bit according to the real message. If the bit mi is 1, it opens
(Ki, ψi) honestly, otherwise it opens (Ki, ψi) to 0 by using ReSample, SampleC−1

and SampleK−1.

1.5 Related Work

The SOA security notion was first formally proposed by Dwork et al. [11]. SIM-
SO-CPA and IND-SO-CPA notions were given by Bellare et al. [3]. The relations
among SOA security notions and traditional IND-CPA security were investigated
in [5,17]. Bellare et al. [4] proposed the first SIM-SO-CPA secure Identity-Based
Encryption (IBE), while also adopting the non-committing technique and weak
deniable encryption. Lai et al. [21] proposed the first construction for SIM-SO-
CCA secure IBE from a so-called extractable IBE, a collision-resistant hash
function, and a strengthened XAC. Recently, Sahai and Waters [24] introduced
the puncturable programming technique and employed puncturable PRFs and
Indistinguishability Obfuscation (iO) to obtain a variety of cryptographic primi-
tives including deniable encryption with IND-CPA security, PKE with IND-CPA
and IND-CCA security, KEM with IND-CCA security, injective trapdoor func-
tions, etc. It should be noted that any IND-CPA secure deniable encryption with
ESE ciphertext space implies a PKE with SIM-SO-CPA security. Therefore, the
deniable encryption scheme in [24] that is based on a puncturable PRF and iO

Simulation-Based Selective Opening CCA Security for PKE 9

implicitly already gives us a SIM-SO-CPA secure PKE. Our result establishes
that SIM-SO-CCA security is achievable from puncturable PRFs and iO as well,
albeit via the combination of an IND-CCA secure KEM and a strengthened XAC.

2 Preliminaries

We use s1, . . . , st ← S to denote picking elements s1, . . . , st uniformly from set S.
Let |S| denote the size of set S. Let [n] denote the set {1, . . . , n}. Let s1‖s2‖ . . .
denotes the concatenation of strings. For a probabilistic polynomial-time (ppt)
algorithm A, we denote y ← A(x;R) the process of running A on input x with
randomness R, and assigning y as the result. Let RA denote the randomness
space of A, and y ← A(x) denote y ← A(x;R) with R chosen from RA uniformly
at random. Let Un denote the uniform distribution over {0, 1}n. A function f(κ)
is negligible, denoted by neg(κ), if for every c > 0 there exists a κc such that
f(κ) < 1/κc for all κ > κc. Let ≈c (resp. ≈s) denote computational (resp.
statistical) indistinguishability between two ensembles of random variables.

We use boldface letters for vectors. For a vector m of finite dimension, let
|m| denote the length of the vector. For a set I = {i1, i2, . . . , i|I|} ⊆ [|m|], we
define m[I] := (m[i1],m[i2], . . . ,m[i|I|]).

We refer to the full version of this paper [22] for the definition and an example
of Strengthened Cross Authentication Codes.

2.1 Public Key Encryption

A public key encryption (PKE) scheme is made up of three ppt algorithms:

KeyGen(1κ) takes as input the security parameter κ, and outputs a public key
and a secret key (pk, sk).

Enc(pk,M) takes as input the public key pk and a message M and outputs a
ciphertext C.

Dec(sk, C) takes as input the secret key sk and a ciphertext C and outputs
either a message M or a failure symbol ⊥.

The correctness of a PKE scheme is relaxed to allow a negligible decryption error
ε(κ). That is, Dec(sk,Enc(pk,M)) = M holds with probability at least 1 − ε(κ)
for all (pk, sk) ← KeyGen(1κ), where the probability is taken over the coins used
in encryption.

Let m and r be two vectors of dimension n := n(κ). Define Enc(pk,m; r) :=
(Enc(pk,m[1]; r[1]), . . . , Enc(pk,m[n]; r[n])). Here r[i] is the fresh randomness
used for the encryption of m[i] for i ∈ [n].

2.2 Simulation-Based, Selective Opening CCA Security of PKE

We review the simulation-based definition of security for PKE against selec-
tive opening, chosen-ciphertext adversaries from [12].Let M denote an n-
message sampler, which on input string α ∈ {0, 1}∗ outputs an n-vector
m = (m[1], . . . ,m[n]) of messages. Let R be any ppt algorithm outputting a
single bit.

10 S. Liu and K.G. Paterson

Definition 1 (SIM-SO-CCA Security) . A PKE scheme PKE=(KeyGen,
Enc, Dec) is simulation-based, selective opening, chosen-ciphertext secure (SIM-
SO-CCA secure) if for every ppt n-message sampler M, every ppt relation R,
every restricted, stateful ppt adversary A = (A1,A2,A3), there is a stateful ppt
simulator S = (S1,S2,S3) such that Advso-ccaPKE,A,S,n,M,R(κ) is negligible, where

Advso-ccaPKE,A,S,n,M,R(κ) =
∣
∣
∣Pr

[

Expso-cca-realPKE,A,n,M,R(κ) = 1
]

−Pr
[

Expso-cca-idealPKE,S,n,M,R(κ) = 1
]∣
∣
∣

and experiments Expso-cca-realPKE,A,n,M,R(κ) and Expso-cca-idealPKE,S,n,M,R(κ) are defined in
Figure 1. Here the restriction on A is that A2,A3 are not allowed to query
the decryption oracle Dec(·) with any challenge ciphertext c[i] ∈ c.

Expso-cca-realPKE,A,n,M,R(κ):

(pk, sk) ← KeyGen(1κ)

(α, a1) ← ADec(·)
1 (pk)

m ← M(α), r ← coins
c ← Enc(pk,m; r)

(I, a2) ← ADec/∈c(·)
2 (a1, c)

outA ← ADec/∈c(·)
3 (a2,m[I], r[I])

return R(m, I, outA)

Expso-cca-idealPKE,S,n,M,R(κ):

(α, s1) ← S1(1
κ)

m ← M(α)
(I, s2) ← S2(s1, (1

|m[i]|)i∈[n])
outS ← S3(s2,m[I])
return R(m, I, outS)

Fig. 1. Experiments used in the definition of SIM-SO-CCA security of PKE

2.3 Key Encapsulation Mechanisms

A Key Encapsulation Mechanism (KEM) KEM consists of three ppt algorithms
(KEM.Kg,KEM.Enc,KEM.Dec). Let K be the key space associated with KEM.

KEM.Kg(1κ) takes as input a security parameter κ and outputs public/secret
key pair (pk, sk).

KEM.Encap(pk) takes as input the public key pk and outputs a key K and a
ciphertext (or encapsulation) ψ.

KEM.Decap(sk, ψ) takes as input the secret key sk and a ciphertext ψ, and
outputs either a key K or a failure symbol ⊥.

The correctness condition on a KEM KEM is that KEM.Decap(sk, ψ) = K
holds for all κ ∈ N, all (pk, sk) ← KEM.Kg(1κ), and all (K,ψ) ← KEM.Encap(pk).

2.4 Efficiently Samplable and Explainable (ESE) Domain

A domain D is said to be efficiently samplable and explainable (ESE) [12] if
associated with D are the following two ppt algorithms:

Simulation-Based Selective Opening CCA Security for PKE 11

ExpVCI-b
KEM,A(κ) :

(pk, sk) ← KEM.Kg(1κ)
ψ∗

0 ← C, (K∗, ψ∗
1) ← KEM.Encap(pk)

b′ ← A˜Decap �=ψ∗
b
(·)

(pk, ψ∗
b)

Return(b′)

D̃ecap �=ψ∗(P, ψ)
If ψ = ψ∗ return (⊥)
K ← KEM.Decap(sk, ψ)
If P (K) = 0 return (⊥);
Else return (K)

Fig. 2. Experiment for defining Valid Ciphertext Indistinguishability of KEMs. Here

D̃ecap�=ψ∗(P, ψ) denotes a constrained decryption oracle, taking as input predicate P (·)
and encapsulation ψ.

Sample(D;R) : On input (a description of) domain D and random coins
R ← RSample, this algorithm outputs an element that is uniformly distributed
over D.

Sample−1(D, x) : On input (a description of) domain D and any x ∈ D,
this algorithm outputs R that is uniformly distributed over the set {R ∈
RSample | Sample(D;R) = x}.

Clearly D = {0, 1}κ is ESE with R = Sample(D;R) = Sample−1(D, R). It
was shown by Damg̊ard and Nielsen in [10] that any dense subset of an effi-
ciently samplable domain is ESE as long as the dense subset admits an efficient
membership test. Hence, for example, Z

∗
Ns for a RSA modulus N is ESE.

3 KEM Tailored for Construction of PKE with
SIM-SO-CCA Security

We describe the properties that are required of a KEM to build SIM-SO-CCA
secure PKE; the construction itself is given in the next section.

3.1 Valid Ciphertext Indistinguishability (VCI) of KEMs

Suppose KEM = (KEM.Kg,KEM.Encap,KEM.Decap) is associated with an effi-
ciently recognizable ciphertext space C. For fixed κ, let Ψ ⊂ C denote the
set of possible key encapsulations output by KEM.Encap, so Ψ = {ψ : ψ ←
KEM.Encap(pk; r), (pk, sk) ← KEM.Kg(1κ), r ← Coins}. The set Ψ is called the
valid ciphertext set (for κ).

Definition 2 (Valid Ciphertext Indistinguishability) . Let KEM be a
KEM with valid ciphertext set Ψ and ciphertext space C. Define the advantage
of an adversary A in the experiment depicted in Figure 2 to be

AdvVCI
KEM,A(κ) :=

∣
∣
∣Pr

[

ExpVCI-0
KEM,A(κ) = 1

]

− Pr
[

ExpVCI-1
KEM,A(κ) = 1

]∣
∣
∣ .

Then KEM is said to be Valid Ciphertext Indistinguishable (VCI) if for all ppt
adversaries A, AdvVCI

KEM,A(κ) is negligible.

12 S. Liu and K.G. Paterson

Exptccca−b
KEM,A (κ) :

(pk, sk) ← KEM.Kg(1κ)
K∗

0 ← K, ψ∗
0 ← C

(K∗
1 , ψ∗

1) ← KEM.Encap(pk)

b′ ← A˜Decap�=ψ∗ (·)(pk, K∗
b , ψ∗

b)
Return(b′)

D̃ecap �=ψ∗(P, ψ)
If ψ = ψ∗ return (⊥)
K ← KEM.Decap(sk, ψ)
If P (K) = 0 return (⊥);
Else return (K)

Fig. 3. Experiment for defining IND-tCCCA security of KEMs. Here D̃ecap�=ψ∗(P, ψ)
denotes a constrained decryption oracle, taking as input predicate P (·) and encapsu-
lation ψ. Predicate P (·) may vary in different queries.

3.2 Tailored KEMs

To be of service in our construction of SIM-SO-CCA secure PKE, we need a
KEM that is tailored to have the following three properties, as explained in the
introduction: (1) the key space K and ciphertext space C of the KEM should both
be ESE domains; (2) the valid ciphertexts output by the encapsulation algorithm
constitute only a small subset of ciphertext space C, and the decryption of a
random ciphertext results in failure or a random key; (3) the KEM has tailored,
constrained CCA security. We define the last of these three properties next.

Definition 3 (IND-tCCCA Security for KEMs). Let KEM be a KEM with
ciphertext space C and valid ciphertext set Ψ, let A be a ppt adversary, and
consider the experiment Exptccca−b

KEM,A (κ) defined in Figure 3. Define the advantage
Advtccca

KEM,A(κ) of A by:

Advtccca
KEM,A(κ) :=

∣
∣
∣Pr

[

Exptccca−0
KEM,A (κ) = 1

]

− Pr
[

Exptccca−1
KEM,A (κ) = 1

]∣
∣
∣ .

Then KEM is said to be secure against tailored, constrained chosen ciphertext
attacks (IND-tCCCA secure) if for all ppt adversaries A with negligible uncer-
tainty uncertA(κ) (in κ), the advantage Advtccca

KEM,A(κ) is also negligible in κ.
Here, the uncertainty of A is defined as uncertA(κ) := 1

qd

∑qd

i=1 Pr [Pi(K) = 1] ,
which measures the average fraction of keys for which the evaluation of predicate
Pi(·) is equal to 1 in the tCCCA experiment, where Pi denotes the predicate used
in the i-th query by A, and qd the number of decapsulation queries made by A.

Constrained CCA (CCCA) security for PKE was introduced in [16] as a
strictly weaker notion than IND-CCA security. The main difference between
IND-CCCA security and our newly defined IND-tCCCA security is that, in the
IND-CCCA definition, the adversary is given a pair (K∗

b , ψ∗) where ψ∗ is always
a correct encapsulation of K∗

1 , while in the IND-tCCCA definition, the adversary
is given a pair (K∗

b , ψ∗
b) where, when b = 0, ψ∗

b is just a random element of C and,
when b = 1, ψ∗

b is a correct encapsulation of K∗
b . However, IND-CCCA security

and VCI together imply IND-tCCCA security for KEMs:

Simulation-Based Selective Opening CCA Security for PKE 13

Lemma 1. Suppose that KEM is a KEM having an efficiently recognizable
ciphertext space C. If KEM is both IND-CCCA secure and VCI then it is also
IND-tCCCA secure.

Proof. Recall that the VCI and CCCA experiments are almost the same except
for the construction of the adversary’s challenge. Let (K(R), ψ(R)) be chosen from
C×K uniformly at random. Let (K,ψ) be the output of KEM.Encap in the CCCA
experiment. IND-CCCA security implies (K,ψ) ≈c (K(R), ψ). The VCI property
implies that ψ ≈c ψ(R), hence (K(R), ψ) ≈c (K(R), ψ(R)) when K(R) is chosen
uniformly and independently of everything else. Finally, (K,ψ) ≈c (K(R), ψ(R))
follows from transitivity. �

Tailored Decapsulation. We also tailor the functionality of our KEMs’ decap-
sulation algorithms to suit our PKE construction.

Definition 4 (Tailored Decapsulation) . Suppose KEM = (KEM.Kg,
KEM.Encap, KEM.Decap) is a KEM. Then KEM is said to have tailored decap-
sulation if there exists a negligible function η(κ) such that for all (pk, sk) output
by KEM.Kg(1κ), one or the other of the following two cases pertains:

– KEM.Decap rejects a random ψ′ ∈ C, except with negligible probability, i.e.,

Pr [KEM.Decap(skkem, ψ′) �=⊥ | ψ′ ← C] ≤ η(κ).

– KEM.Decap outputs η(κ)-uniform keys on input a random element from C.
That is, the statistical distance between the output and a uniform distribution
on K is bounded by η(κ):

1
2

∑

k∈K

∣
∣
∣
∣
Pr [KEM.Decap(skkem, ψ′) = k | ψ′ ← C] − 1

|K|

∣
∣
∣
∣
≤ η(κ).

Remark. The former case implies that valid ciphertexts are sparse in the whole
ciphertext space, i.e., |V|/|C| is negligible. In the latter case, VCI (when VCI
holds for all (pk, sk) ← KEM.Kg(1κ)) alone might imply IND-tCCCA security of
KEM, since the decapsulated key is uniquely determined by the secret key and
the ciphertext (be it valid or invalid).

4 Construction of PKE with SIM-SO-CCA Security from
Tailored KEMs

Let KEM = (KEM.Kg,KEM.Encap,KEM.Decap) be a KEM with valid ciphertext
set Ψ, efficiently recognizable ciphertext space C, and key space K = Kx × Ky.
We further assume that:

(1) KEM.Decap has tailored functionality as per Definition 4 (this will be used
for the correctness of our PKE construction);

14 S. Liu and K.G. Paterson

KeyGen(1κ) :
(pkkem, skkem) ←KEM.Kg(1κ)
Kx1 , . . . , Kxs ← Kx

pk = (pkkem, (Kxj)j∈[s], F)
sk = (skkem, pk).
Return(pk, sk)

Enc(pk, m1|| . . . ||m�) :
Parse pk as (pkkem, (Kxj)j∈[s], F)
For i = 1 to �

If mi = 1
(Ki, ψi) ← KEM.Encap(pkkem)

Else ψi ← C; Ki ← K
(Ky1 , . . . , Kys) ← F (ψ1, . . . , ψ�)
For j = 1 to s

K�+j ← (Kxj , Kyj)
T ← XAuth(K1, . . . , K�+s)
Return (ψ1, . . . , ψ�, T)

Dec(sk, C) :
Parse C as (ψ1, . . . , ψ�, T)

For i = 1 to �
m′

i ← 0
(K′

y1 , . . . , K ′
ys

) ← F (ψ1, . . . , ψ�)

For j = 1 to s
K′

�+j ← (Kxj , K′
yj

)
If
∧s

j=1 XVer(K
′
�+j , T) = 1

For i = 1 to �
K′

i ← KEM.Decap(skkem, ψi)
If K′

i =⊥, then m′
i ← 0

Else m′
i ← XVer(K′

i, T)
Return(m′

1||m′
2|| . . . , m′

�)

Fig. 4. Construction of PKE scheme PKE from tailored KEM and (� + s)-XAC

(2) KEM is IND-tCCCA secure (this will be used in the SIM-SO-CCA security
proof of the PKE construction).

(3) Both the key space K and the ciphertext space C of KEM are efficiently
samplable and explainable domains, with algorithms (SampleK,SampleK−1)
and (SampleC,SampleC−1) (these algorithms are also used in the security
analysis).

We refer to a KEM possessing all three properties above as being a tailored
KEM.

Let F : C� → (Ky)s be an injective function (such functions are easily con-
structed using, for example, encodings from C to bit-strings and from bit-strings
to Ky, provided s is sufficiently large). Let XAC = (XGen,XAuth,XVer) be a
δ(κ)-strong and semi-unique (�+s)-XAC with tag space XT and key space XK;
suppose also that XK = K = Kx × Ky. Our main construction of PKE scheme
PKE = (KeyGen,Enc,Dec) with message space {0, 1}� is shown in Figure 4.

Note that in the decryption, if XVer(K ′
�+j , T) = 1 for all j ∈ [s], then the

recovered bit m′
i equals 0 if and only if the decapsulated key K ′

i equals ⊥ or
XVer(K ′

i, T) = 0.

Correctness. Encryption and decryption are performed in bitwise fashion. Sup-
pose mi = 1. Then (Ki, ψi) are the encapsulated key and corresponding valid
encapsulation; by the correctness of KEM and XAC, the decryption algorithm
outputs m′

i = 1, except with negligible probability failXAC. Suppose mi = 0.
Then Ki and ψi are chosen independently and uniformly at random from K and
C, respectively. It follows that the tag T is independent of ψi. Now, during the
decryption of the i-th bit, according to the tailored property of KEM.Decap,

Simulation-Based Selective Opening CCA Security for PKE 15

K ′
i is either ⊥ (and thus m′

i = 0) with probability at least 1 − η(κ), or
K ′

i is η(κ)-close to being uniformly distributed on K. In the latter case, it
holds that m′

i = 0 except with probability η(κ) + Advimp
XAC(κ) due to the η(κ)-

uniformity of the key and the security of XAC against impersonation attack.
Consequently, decryption correctly undoes encryption except with probability
at most � · max{failXAC(κ),Advimp

XAC(κ) + η(κ)}, which is negligible.

Lemma 2. PKE scheme PKE in Figure 4 has the property that, if two distinct
ciphertexts C, Ĉ both pass the verification step

∧s
j=1 XVer(K�+j , T) = 1 during

decryption, then they must have different tags T �= T̂ .

Proof. The proof is by contradiction and relies on the injectivity of F . Let
C = (ψ1, . . . , ψ�, T) and Ĉ = (ψ̂1, . . . , ψ̂�, T̂) be two different ciphertexts. Let
(Ky1 , . . . , Kys

) = F (ψ1, . . . , ψ�) and (K̂y1 , . . . , K̂ys
) = F (ψ̂1, . . . , ψ̂�). Suppose

∧s
j=1 XVer((Kxj

,Kyj
), T) =

∧s
j=1 XVer((K̂xj

, K̂yj
), T̂) = 1. If T = T̂ , then

C �= Ĉ implies (ψ1, . . . , ψ�) �= (ψ̂1, . . . , ψ̂�), which further implies Kyj
�= K̂yj

for some j ∈ [s], by the injectivity of F . On the other hand, we know that
XVer((Kxj

,Kyj
), T) = 1 and XVer((Kxj

, K̂yj
), T̂ = T) = 1; the semi-unique

property of XAC now implies that Kyj
= K̂yj

, a contradiction. �

The SIM-SO-CCA security of PKE will rely on Lemma 2, which in turn relies
on the injectivity of F . The size of F ’s domain is closely related to parameter
s: generally the parameter s will be linear in �. Since we need a (� + s)-XAC
in the construction, the size of public key will be linear in �. The size of tag
T in the ciphertext will also grow linearly in s and therefore in �. To further
decrease the size of public key and tags in our PKE construction, we can employ
a collision-resistant (CR) hash function H = (HGen,HEval) mapping C� to Ky

instead of the injective function F (see the full paper [22] for definitions). Then
an (�+1)-XAC is sufficient for the construction, and this results in more compact
public keys and tags, but requires an additional cryptographic assumption. The
construction using CR hash functions is given in Figure 5.

Theorem 1 . Suppose KEM is a tailored KEM, and the (� + s)-cross-
authentication code XAC is δ(κ)-strong, semi-unique, and secure against imper-
sonation and substitution attacks. Then the PKE scheme PKE constructed
in Figure 4 is SIM-SO-CCA secure. More precisely, for every ppt adversary
A = (A1,A2,A3) against PKE in the SIM-SO-CCA real experiment that makes
at most qd decryption queries, for every ppt n-message sampler M, and every
ppt relation R, we can construct a stateful ppt simulator S = (S1,S2,S3) for
the ideal experiment, and a ppt adversary B against the IND-tCCCA security of
KEM, such that:

Advso-ccaPKE,A,S,n,M,R(κ) ≤ n� · Advtccca
KEM,B(κ)

+n�2qd ·
(

AdvsubXAC(κ) + Advimp
XAC(κ) + η(κ)

)

+ n� · δ(κ).

16 S. Liu and K.G. Paterson

KeyGen’(1κ) :
(pkkem, skkem) ←KEM.Kg(1κ)
Kx ← Kx, H ← HGen(1κ).
pk = (pkkem, Kx, H)
sk = (skkem, pk)
Return(pk, sk)

Enc’(pk, m1|| . . . ||m�) :
For i = 1 to �

If mi = 1
(Ki, ψi) ← KEM.Encap(pkkem)

Else ψi ← C; Ki ← K
Ky ← H(ψ1, . . . , ψ�)
K�+1 ← (Kx, Ky)
T = XAuth(K1, . . . , K�+1)
Return (ψ1, . . . , ψ�, T)

Dec’(sk, C) :
C = (ψ1, . . . , ψ�, T)
For i = 1 to � m′

i ← 0
K′

y ← H(ψ1, . . . , ψ�)
K′

�+1 ← (Kx, K′
y)

If XVer(K′
�+1, T) = 1

For i = 1 to �
K′

i ← KEM.Decap(skkem, ψi)
If K′

i =⊥, then m′
i ← 0

Else m′
i ← XVer(K′

i, T)}
Return(m′

1||m′
2|| . . . , m′

�)

Fig. 5. Construction of PKE scheme PKE’ from tailored KEM, (� + 1)-XAC and CR
hash function

The proof of this theorem, our main result, can be found in the full paper [22].
Here we only give a high level overview. We construct a ppt simulator S as
follows.

– S generates a public/private key pair and provides the public key to A.
– S answers A’s decryption queries using the private key.
– S prepares for A a vector of n challenge ciphertexts, each ciphertext encrypt-

ing � ones.
– When A decides to corrupt a subset of the challenge ciphertexts, S obtains

the messages corresponding to the corrupted ciphertexts and opens the cor-
rupted ciphertexts bit-by-bit according to the messages. If bit mi should be
opened to 1, S reveals to A the original randomness used by KEM.Encap
to generate (Ki, ψi). If bit mi should be opened to 0, S first explains ψi

with randomness output by SampleC−1(C, ψi) (as if ψi were randomly cho-
sen). Then S uses algorithm ReSample of XAC to resample Ki to get K̂i,
and explains K̂i with randomness output by SampleC−1(K, K̂i) (as if K̂i was
randomly chosen).

– S finally outputs whatever A outputs.

The essence of the SIM-SO-CCA security proof is then to show that encryp-
tions of 1’s are computationally indistinguishable from encryptions of real mes-
sages, even if the adversary can see the opened (real) messages and the randomness
of a corrupted subset of the challenge ciphertexts of his/her choice, and have access
to the decryption oracle. This is done with a hybrid argument running from Game
0 to Game n�. In Game k the first k bits of messages are 1’s and are opened as S
does while the last n�−k bits come from the real messages and are opened honestly.
The proof shows that Games k and k − 1 are indistinguishable using the tCCCA
security of the tailored KEM and the security properties of the strengthened XAC.

Simulation-Based Selective Opening CCA Security for PKE 17

If the k-th bit of the messages is 1, Games k and k−1 are identical. Otherwise,
a tailored KEM adversary B can be constructed to simulate Game k or k + 1
for adversary A. B is provided with a public key pkkem, a challenge (K∗, ψ∗)
and a constrained decryption oracle, and is going to tell whether (K∗, ψ∗) is an
output of KEM.Encap(pkkem) or a random pair. B can generate a public key for
A. When preparing the vector of challenge ciphertexts, B will encrypt the first
k − 1 bits from the real messages, use (K∗, ψ∗) as the encryption of the k-th
bit, and encrypt n� − k ones for the remaining bits. If (K∗, ψ∗) is an output
of KEM.Encap(pkkem), the challenge vector of ciphertexts is just that in Game
k, otherwise it is just that in Game k − 1. Finally, to answer A’s decryption
query C = (ψ1, . . . , ψ�, T), B can query (ψi,XVer(·, T)) (note that XVer(·, T) is
a predicate) to his own constrained decryption oracle if ψ∗ �= ψi; B then replies
to A with decrypted bit 0 iff B gets ⊥ from its own oracle. The decryption
is correct because B’s oracle outputs ⊥ iff the decapsulated key is Ki = ⊥ or
XVer(Ki, T) = 0. If ψ∗ = ψi, B is not allowed to query his own oracle, but
can instead respond to A with the output of XVer(K∗, T) as the decrypted bit.
This decryption is also correct with overwhelming probability for the following
reasons: (1) If K∗ is the encapsulated key of ψ∗, then XVer(K∗, T) = 1 and
decryption is correct. (2) If (K∗, ψ∗) is a random pair, then all the information
leaked about K∗ is just the very tag T ∗ that is computed by K∗ during the
generation of some challenge ciphertext. The semi-uniqueness of XAC guarantees
that T �= T ∗, and the adversary’s corruption only reveals information about a
re-sampled K̂∗. The security of XAC against substitution attacks shows that
even if A knows T ∗ and all keys other than K∗, then A forges a different tag T
such that XVer(K∗, T) = 1 with negligible probability. Therefore, B will almost
always respond to A with bit 0, which is the correct answer.

The security of our modified construction using CR hash functions is stated
in the following theorem, whose proof is similar to that of Theorem 1.

Theorem 2. Suppose KEM is a tailored KEM, the (� + 1)-cross-authentication
code XAC is δ(κ)-strong, semi-unique, and secure against impersonation and sub-
stitution attacks, and H is collision-resistant. Then the PKE scheme PKE’ con-
structed in Figure 5 is SIM-SO-CCA secure. More precisely, for every ppt adver-
sary A = (A1,A2,A3) against PKE’ in the SIM-SO-CCA real experiment that
makes at most qd decryption queries, for every ppt n-message sampler M, and
every ppt relation R, we can construct a stateful ppt simulator S = (S1,S2,S3)
for the ideal experiment, a ppt adversary B against the IND-tCCCA security of
KEM, and a ppt algorithm F against the collision-resistance of H such that:

Advso-ccaPKE’,A,S,n,M,R(κ) ≤ n� · Advtccca
KEM,B(κ)

+n�2qd ·
(

AdvsubXAC(κ) + Advimp
XAC(κ) + η(κ)

)

+n� · δ(κ) + AdvcrH,F (κ).

18 S. Liu and K.G. Paterson

5 Instantiations

In this section, we explore three different constructions of tailored KEMs, each
suitable for the application of Theorems 1 and 2. The first is based on any
Strongly Universal2 hash proof system, the second is a direct construction relying
on the n-Linear Assumption and a target collision-resistant hash function, while
the third uses indistinguishability obfuscation.

5.1 Strongly Universal2 Hash Proof Systems

We use hash proof systems [8] to build tailored KEMs suitable for application
in our main theorem.

Let Ψ ⊂ C be a language. The hardness of the subset membership problem for
Ψ with respect to C requires that a random element from Ψ is indistinguishable
from a random element from C. Let K be a set and Λsk : C → K be a hash
function indexed with sk ∈ SK. Then Λsk is said to be projective if there exists
a map μ : SK → PK such that μ(sk) ∈ PK defines the action of Λsk on the
subset Ψ; μ is then said to be a projection on subset Ψ.

A hash proof system (HPS) HPS consists of three algorithms (HPS.param,
HPS.pub, HPS.priv). The randomized algorithm HPS.param(1κ) outputs
params = (G, C,Ψ,PK,SK,Λ, μ), where G is a group. The secret key sk is
randomly chosen from SK, and the public key is computed as pk = μ(sk)
where μ is a projection on Ψ. Algorithm HPS.Pub(pk, ψ,w) is given the pub-
lic key pk, an element ψ ∈ Ψ and its witness w, and outputs an encapsulated
key K = HPS.Pub(pk, ψ,w) such that K = Λsk(ψ). Algorithm HPS.Priv(sk, ψ)
recovers K = Λsk(ψ) using sk.

The Strongly Universal2 (SU2) property of an HPS characterizes the unpre-
dictability of Λsk(ψ) for ψ ∈ C \ Ψ.

Definition 5 . Let HPS = (HPS.param,HPS.pub,HPS.priv) be a hash proof sys-
tem. Then HPS is said to be SU2 if

Pr [Λsk(ψ) = K | pk = μ(sk), ψ′,K ′ = Λsk(ψ′)] = 1/|K|,

for all pk ∈ PK, all ψ,ψ′ ∈ C \ Ψ with ψ′ �= ψ and all K,K ′ ∈ K, where the
probability is taken over sk ← SK.

Given that HPS is an SU2 HPS, a KEM KEM can be constructed as shown
in Figure 6. The output params of HPS.param is used as a set of public param-
eters implicitly used as input in the algorithms of KEM. Notice that the valid
ciphertext set for KEM is Ψ.

Theorem 3. Let HPS be an SU2 HPS with params = (G, C,Ψ,PK,SK,Λ, μ).
Suppose the subset membership problem is hard for Ψ with respect to C. Then the
KEM KEM constructed from HPS as shown in Figure 6 is IND-tCCCA secure.
Furthermore, if Ψ is sparse in C, and both C and K are efficiently samplable and
explainable, then KEM is a tailored KEM.

Simulation-Based Selective Opening CCA Security for PKE 19

KEM.Kg(1κ):
sk ← SK
pk = μ(sk).
Return (pk, sk)

KEM.Encap(pk):
ψ ← Ψ with witness w
K ← HPS.Pub(pk, ψ, w)
Return(K, ψ)

KEM.Decap(sk, ψ):

K ← HPS.Priv(sk, ψ)

Return(K)

Fig. 6. Construction of a KEM from an SU2 hash proof system

Proof. It was already proved in [16] that the SU2 property and the hardness of
the subset membership problem for Ψ with respect to C implies the IND-CCCA
security of KEM. On the other hand, public and secret key pairs can be generated
independently from C and Ψ and the subset membership problem holds even if
the secret key is known to the adversary. More precisely, when an adversary B
is given ψ and tries to distinguish whether ψ is randomly chosen from Ψ or C,
it can establish a VCI experiment for a VCI adversary A as follows: first call
(pk, sk) ←KEM.Kg(1κ) and use sk to answer decryption queries. B gives pk to A
and gives ψ as the challenge ciphertext. Finally B outputs whatever A returns. It
is clear that B has the same advantage as A. This implies that the VCI property
holds for KEM under the hardness of the subset membership problem. Then
IND-tCCCA security follows from Lemma 1.

The SU2 property of HPS implies that

Pr [KEM.Decap(sk, ψ) = K] = Pr [HPS.Priv(sk, ψ) = K] =
1

|K|

for all invalid ciphertexts ψ ∈ C \ Ψ, all K ∈ K, and all pk = μ(sk), where the
probability is taken over sk ← SK. Then

Pr [KEM.Decap(sk, ψ) = K | ψ ← C] = Pr [KEM.Decap(sk, ψ)] = K | ψ ∈ Ψ · |Ψ|
|C|

+ Pr [KEM.Decap(sk, ψ) = K | ψ ∈ C \ Ψ] ·
(

1 − |Ψ|
|C|
)

= Pr [KEM.Decap(sk, ψ) = K | ψ ∈ Ψ] · |Ψ|
|C| +

1

|K| ·
(

1 − |Ψ|
|C|
)

≤ |Ψ|
|C| +

1

|K| .

Noting that Pr [KEM.Decap(sk, ψ) = K | ψ ∈ Ψ] lies between 0 and 1, it follows
that the statistical distance between KEM.Decap(sk, ψ) (when ψ is uniformly
selected from C) and the uniform distribution is at most |Ψ|/|C|, which is negli-
gible due to the sparseness of Ψ. This establishes that KEM.Decap has tailored
functionality.

Finally, KEM is a tailored KEM because it has samplable and explainable
domains C and K, it has IND-tCCCA security, and KEM.Decap has tailored
functionality. �

Remark 1. As pointed out in [12], both DDH-based and DCR-based HPS could
have samplable and explainable platform groups. For example, we can choose
the subgroup of order q in Z

∗
p (with p = 2q + 1) as the DDH group, and choose

Z
∗
N2 as the DCR group.

20 S. Liu and K.G. Paterson

KEM.Kg(1κ):

b ← Zp; h ← gb

For i = 1 to n
ai, αi, βi ← Zp

gi ← gai ; ωi = a−1
i b

ui ← gαi
i ; vi ← gβi

i

pk = (h, (gi, ui, vi)i∈[n])
sk ← ((αi, βi, ωi)i∈[n], pk

)

Return (pk, sk)

KEM.Encap(pk):
For i = 1 to n

ri ← Zp; ci ← gri
i

t = TCR(c1, . . . , cn)
π ←∏n

i=1(u
t
ivi)

ri

K ← hr1+...+rn

ψ ← (c1, . . . , cn, π)
Return(K, ψ)

KEM.Decap(sk, ψ):
For i = 1 to n

Check if ci ∈ G

t = TCR(c1, . . . , cm)
If
∏n

i=1 cαit+βi
i �= π

Return (⊥)
K ←∏n

i=1 cωi
i

Return(K)

Fig. 7. KEM from n-Linear Assumption [16]

5.2 Tailored KEM Based on n-Linear Assumption

Let G(1κ) be a group generator, that is, a ppt algorithm which outputs (G, g, p)
where G is a group of prime order p (having κ bits) and g a generator of G.

Definition 6 . The n-Linear Assumption for G(1κ) states that for all ppt adver-
saries B, the advantage of B defined below is negligible.

Advn-lin
B (κ) :=

∣
∣
∣ Pr

[

B(g1, . . . , gn, gr1
1 , . . . , grn

n , h, h
∑n

i=1 ri) = 1
]

− Pr [B(g1, . . . , gn, gr1
1 , . . . , grn

n , h, hz) = 1]
∣
∣
∣,

where (G, g, p) ← G(1κ), (gi)i∈[n], h ← G and (ri)i∈[n], z ← Zp.

In [16], Hofheiz and Kiltz presented a KEM based on the n-Linear Assump-
tion for a group generator G(1κ) and a target collision-resistant hash function,
and proved its IND-CCCA security. We replicate the algorithms of this KEM in
Figure 7. Note that this construction does not fall into the category of HPS-based
KEMs.

Lemma 3. If the n-Linear Assumption holds for G(1κ), and TCR is target
collision-resistant, then the Hofheinz-Kiltz KEM in Figure 7 is IND-tCCCA
secure.

Proof. In view of the results of [16] and Lemma 1, we need only prove that the
KEM in Figure 7 has the VCI property.

Given an adversary A winning the VCI experiment with non-negligible prob-
ability, we can construct a ppt algorithm B solving the n-Linear problem with
help of A with non-negligible probability. Let (g1, . . . , gn, gr1

1 , . . . , grn
n , h,K∗) be

a challenge instance from the n-Linear problem, where K∗ = h
∑n

i=1 ri or K∗ is
a random element from G. Here, B simulates the VCI experiment for A using
its input (gr1

1 , . . . , grn
n , h,K∗).

– B chooses (xi, yi)i∈[n], z, z′ ← Z
∗
p, and computes ui = gxi

i hz and vi = gyi

i hz′

for i ∈ [n]. B sets pk =
(

(gi, ui, vi)i∈[n], h
)

. All the elements in pk is randomly
distributed, as in the real VCI experiment. Here B implicitly sets sk =
(

(αi, βi, ωi)i∈[n], pk
)

with αi = xi + ωiz, βi = yi + ωiz
′ and ωi = loggi

h.

Simulation-Based Selective Opening CCA Security for PKE 21

– B computes the challenge ciphertext ψ∗ = (c∗
1, . . . , c

∗
n, π∗) for A, where c∗

i :=
gri

i for i ∈ [n], t∗ = TCR(c∗
1, . . . , c

∗
n) and π∗ = (K∗)zt∗+z′ ∏n

i=1(c
∗
i)

xit
∗+yi .

• If K∗ = h
∑n

i=1 r∗
i , we have π∗ =

∏n
i=1

(

ut∗
i vi

)ri . Hence ψ∗ is just a valid
ciphertext output by the KEM’s encapsulation algorithm with random-
ness (ri)i∈[n].

• If K∗ is random, then π∗ is also random, so that ψ∗ is uniformly dis-
tributed in C = G

n.
– B uses

(

(xi, yi)i∈[n], z, z′) to answer A’s constrained decryption queries
(P,ψ). Let ψ = (c1, . . . , cn, π). We have that t = TCR(c1, . . . , cn) �= t∗

due to the target-collision resistance of TCR. B computes K =
(

π
∏n

i=1 c
xit+yi
i

)1/(zt+z′)

. If P (K) = 1 then B returns K; otherwise B
returns ⊥.

• If ψ is consistent, i.e., ψ satisfies
∏n

i=1 cαit+βi

i = π, then
π = h(zt+z′)

∑n
i=1 r′

i ·
∏n

i=1 cxit+yi

i , where t = TCR(c1, . . . , cn) and
r′
i = loggi

ci. Then K = h
∑n

i=1 r′
i is exactly the encapsulated key. Thus

the correct K is returned to A when P (K) = 1.
• If ψ is NOT consistent, then π �=

∏n
i=1 cαit+βi

i . Let β = logg π,
ω = logg h, ai = logg gi, and r′

i = loggi
ci. Then γ := β −

∑n
i=1 air

′
i(αit+

βi) �= 0. Consequently, logg K = γ/(zt + z′) + ω
∑n

i=1 r′
i. The following

2n+2 equations in 2n+2 unknowns ((xi, yi)i∈[n], z, z′) are linearly inde-
pendent, as long as t �= t∗, which is guaranteed by the target-collision
resistance of TCR:

logg ui = aixi + ωz i = 1, 2, . . . , n

logg vi = aiyi + ωz′ i = 1, 2, . . . , n

logg π∗ =
n∑

i=1

airi(t∗xi + yi) + (logg K∗) · (t∗z + z′)

γ

(

logg K − ω
n∑

i=1

r′
i

)−1

= zt + z′.

This establishes that zt + z′ is uniformly distributed over Zp. Therefore,
logg K is uniformly distributed over Zp and the predicate P satisfies
P (K) = 0 except with negligible probability. As a result, ψ will be
correctly rejected (due to the failed predicate) except with negligible
probability.

Hence, B provides an almost perfect decryption oracle to A as long as
t �= t∗, for all queried encapsulations ψ �= ψ∗.

– Eventually, B returns what A returns.

Finally, A’s non-negligible advantage in the VCI game is converted into B’s
non-negligible advantage in breaking the n-Linear Assumption. �

22 S. Liu and K.G. Paterson

KEM.Kg(1κ):
k ← PGen(1κ)
pk ← iO(Encap(k, ·))
sk ← k
Return (pk, sk)

KEM.Encap(pk):
r ← {0, 1}κ

(K, ψ) ← iO(Encap(k, r))
Return(K, ψ)

Encap(k, r):
ψ ← PRG(r)
K ← PEval(k, ψ)
Return(K, ψ)

KEM.Decap(sk, ψ):
k ← sk
K ← PEval(k, ψ)
Return(K)

Fig. 8. Sahai-Waters KEM from iO and Puncturable PRF [24]

Theorem 4. Suppose that the n-Linear Assumption holds for G(1κ), and TCR is
target collision-resistant. If groups G output by G(1κ) are samplable and explain-
able, then the KEM in Figure 7 is a tailored KEM.

Proof. We note that the ciphertext space C equals G
n+1 and the encapsulated

key space K equals G. If group G is samplable and explainable, so are C and K.
Next, we have |C| = pn+1. For a valid ciphertext ψ = (c1, . . . , cn, π), we

note that π is uniquely determined by c1, . . . , cn and pk. Therefore, the valid
ciphertext set |Ψ| has size pn. Consequently, a random ciphertext from G

n+1

passes the verification test π =
∏n

i=1 cαit+βi

i in the decapsulation algorithm with
negligible probability 1/p. Therefore, the decapsulation algorithm has tailored
functionality.

Together with Lemma 3, it follows that the KEM in Figure 7 is a tailored,
and therefore suitable for the application of Theorem 1.

5.3 Tailored KEM Based on Indistinguishability Obfuscation and
Puncturable PRF

Background definitions for this construction can be found in [24] and the full
paper [22].

Sahai and Waters [24] gave a KEM construction from an indistinguishability
obfuscator (iO) and a puncturable PRF, as shown in Figure 8. Their construction
makes use of a Pseudo-Random Generator (PRG) PRG : {0, 1}κ → {0, 1}2κ

and a puncturable PRF family PRF = (PGen,PEval,Punc) whose functions map
{0, 1}2κ to {0, 1}κ. We assume that (descriptions of) PRG and PRF are implicitly
part of the inputs to KEM.Kg, Encap, and KEM.Decap in Figure 8.

The ciphertext space of the KEM is C = {0, 1}2κ, the valid ciphertext set
is Ψ = {ψ | ψ = PRG(r); r ∈ {0, 1}κ}, and the key space is K = {0, 1}κ.
Obviously, both of C and K are efficiently samplable and explainable with
SampleC−1(C, ψ) := ψ and SampleK−1(K,K) := K.

Lemma 5. If iO(·) is an indistinguishability obfuscator for P/poly, PRG is a
secure PRG, and PRF is a puncturable PRF, then the Sahai-Waters KEM in
Figure 8 is IND-tCCCA secure.

Simulation-Based Selective Opening CCA Security for PKE 23

Proof. In [24], the Sahai-Waters KEM was proved to be IND-CCA secure, so it
is obviously IND-CCCA secure.

Next we prove the VCI property, based on the security of PRG. If there is a
ppt adversary A that can distinguish a random ciphertext from a random valid
ciphertext with non-negligible probability, then we can construct a ppt algorithm
B that breaks the security of PRG. Suppose B is given an element ψ∗ and tries
to decide whether ψ∗ is the output of PRG or a randomly chosen element from
C. B will simulate a VCI experiment for A. It first chooses a puncturable PRF
PRF and calls KEM.Kg(1κ) to generate (pk, sk). The public key pk is given to
A. Then B gives ψ∗ as the challenge encapsulation to A. Using the secret key
sk and algorithm PEval, B is able to provide a (constrained) decryption oracle
for A. Finally, B outputs whatever A outputs. Then it is easy to see that A’s
non-negligible advantage in the VCI security game results in a non-negligible
advantage for B in breaking the security of PRG.

The IND-CCCA security and VCI property in combination with Lemma 1
establish that the Sahai-Waters KEM in Figure 8 has IND-tCCCA security. �

Extracting puncturable PRFs are a strengthening of puncturable PRFs intro-
duced in [24]; essentially, an extracting puncturable PRF acts as a strong extrac-
tor on its inputs.

Definition 7 (Extracting puncturable PRF) . Let ε(·) and hmin(·) be func-
tions. A puncturable PRF family PRF=(PGen, PEval, Punc) mapping {0, 1}�1(κ)

to {0, 1}�2(κ) is said to be extracting with error ε(κ) for min-entropy function
hmin(κ) if for all κ ∈ N and for all random variables X on {0, 1}�1(κ) with min-
entropy greater than hmin(κ), the statistical distance between (k,PEval(k,X))
and (k, U�2(κ)) is at most ε(κ), where k ← PGen(1κ) and U�2(κ) denotes the
uniform distribution over {0, 1}�2(κ). The family PRF is said to be extracting
puncturable if the error ε(κ) is negligible (for some choice of function hmin).

The existence of extracting puncturable PRFs is implied by the existence of
one-way functions, as was proved in [24]:

Lemma 4. [24] Assume that one-way functions exist. Then for all efficiently
computable functions �1(κ), �2(κ), e(κ) and hmin(κ) such that �1(κ) ≥ hmin(κ) ≥
�2(κ) + 2e(κ) + 2, there exists an extracting puncturable PRF family PRF =
(PGen,PEval,Punc) mapping {0, 1}�1(κ) to {0, 1}�2(κ) with error function ε(κ) =
2−e(κ) and min-entropy function hmin(κ).

Lemma 6. If PRF is an extracting puncturable PRF obtained from Lemma 4,
then the decapsulation algorithm KEM.Decap of the Sahai-Waters KEM in
Figure 8 has tailored functionality.

Proof. We show that the output of PRF(sk, ψ) is statistically close to the uniform
distribution on {0, 1}κ so long as ψ is chosen from C uniformly at random, and
the puncturable PRF satisfies the bounds in Lemma 4.

24 S. Liu and K.G. Paterson

Recall that PRF maps 2κ bits to κ bits. When ψ is randomly chosen from
{0, 1}2κ, the min-entropy of ψ is 2κ. According to Lemma 4, the statistical
distance between (k,PEval(k, ψ)) and (k, Uκ) is upper-bounded by 2−(κ/2−1),
where k ← PGen(1κ) and Uκ is the uniform distribution over {0, 1}κ. Hence,
KEM.Decap has 2−(κ/2−1)-tailored functionality. �

Theorem 7. If iO(·) is an indistinguishability obfuscator for P/poly, PRG is a
secure PRG, and PRF is an extracting puncturable PRF, then the Sahai-Waters
KEM in Figure 8 is a tailored KEM.

Proof. The fact that the KEM in Figure 8 is a tailored KEM follows immediately
from Lemma 5, Lemma 6 and the fact that C = {0, 1}2κ and K = {0, 1}κ are
efficiently samplable and explainable.

The existence of one-way functions implies the existence of PRGs and extract-
ing puncturable PRFs. Hence the existence of one-way functions and iO implies
the existence of a tailored KEM by the above theorem. Such a tailored KEM
can further be used to build a PKE scheme encrypting � bits at a time with the
help of an information-theoretically secure (� + s)-XAC (for suitable parameter
s), by following the construction in Figure 4; the SIM-SO-CCA security of the
PKE scheme follows from Theorem 1. Thus we obtain the following corollary:

Corollary 8 . Suppose one-way functions and indistinguishability obfuscation
for P/poly exist. Then there exists a PKE scheme with SIM-SO-CCA security.

Acknowledgments. This work was done while Shengli Liu visited Prof. Kenneth G.
Paterson’s research group at Royal Holloway, University of London. The first author
was supported by the National Natural Science Foundation of China (NSFC Grant
No. 61170229 and 61373153), the Specialized Research Fund for the Doctoral Pro-
gram of Higher Education (Grant No. 20110073110016), and the Scientific innovation
projects of Shanghai Education Committee (Grant No. 12ZZ021). The second author
was supported by EPSRC Leadership Fellowship EP/H005455/1 and by EPSRC Grant
EP/L018543/1.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).
http://dx.doi.org/10.1007/3-540-44647-8 1

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012).
http://doi.acm.org/10.1145/2160158.2160159

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

4. Bellare, M., Waters, B., Yilek, S.: Identity-Based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-19571-6 15

http://dx.doi.org/10.1007/3-540-44647-8_1
http://doi.acm.org/10.1145/2160158.2160159
http://dx.doi.org/10.1007/978-3-642-19571-6_15

Simulation-Based Selective Opening CCA Security for PKE 25

5. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective
opening security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 522–539. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-30057-8 31

6. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). http://dx.doi.org/10.1007/BFb0052229

7. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, pp. 639–648. ACM, Philadelphia (1996).
http://doi.acm.org/10.1145/237814.238015

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

9. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2004). http://dx.doi.org/10.1137/S0097539702403773

10. Damg̊ard, I.B., Nielsen, J.B.: Improved non-committing encryption
schemes based on a general complexity assumption. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000).
http://dx.doi.org/10.1007/3-540-44598-6 27

11. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J. ACM
50(6), 852–921 (2003). http://doi.acm.org/10.1145/950620.950623

12. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010).
http://dx.doi.org/10.1007/978-3-642-13190-5 20

13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp.
40–49. IEEE Computer Society, Berkeley (2013). http://doi.ieeecomputersociety.
org/10.1109/FOCS.2013.13

14. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011)

15. Hofheinz, D.: All-But-Many lossy trapdoor functions. In: Pointcheval, D., Johans-
son, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer, Hei-
delberg (2012)

16. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

17. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-642-54242-8 25

18. Huang, Z., Liu, S., Qin, B.: Sender-Equivocable encryption schemes secure
against chosen-ciphertext attacks revisited. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 369–385. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-36362-7 23

http://dx.doi.org/10.1007/978-3-642-30057-8_31
http://doi.acm.org/10.1145/237814.238015
http://dx.doi.org/10.1137/S0097539702403773
http://dx.doi.org/10.1007/3-540-44598-6_27
http://doi.acm.org/10.1145/950620.950623
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.13
http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.13
http://dx.doi.org/10.1007/978-3-642-54242-8_25
http://dx.doi.org/10.1007/978-3-642-36362-7_23

26 S. Liu and K.G. Paterson

19. Huang, Z., Liu, S., Qin, B., Chen, K.: Fixing the sender-equivocable encryption
scheme in eurocrypt 2010. In: 2013 5th International Conference on Intelligent Net-
working and Collaborative Systems, pp. 366–372. IEEE, Xi’an city (2013). http://
dx.doi.org/10.1109/INCoS.2013.69

20. Katz, J., Ostrovsky, R.: Round-Optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). http://dx.doi.org/10.1007/978-3-540-28628-8 21

21. Lai, J., Deng, R.H., Liu, S., Weng, J., Zhao, Y.: Identity-Based encryption secure
against selective opening chosen-ciphertext attack. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 77–92. Springer, Heidelberg
(2014). http://dx.doi.org/10.1007/978-3-642-55220-5 5

22. Liu, S., Paterson, K.G.: Simulation-based selective opening cca security for pke
from key encapsulation mechanisms. Cryptology ePrint Archive, Report 2015/010
(2015). http://eprint.iacr.org/

23. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork,
C. (ed.) STOC 2008, pp. 187–196. ACM (2008)

24. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC
2014, pp. 475–484. ACM, New York (2014). http://doi.acm.org/10.1145/2591796.
2591825

http://dx.doi.org/10.1109/INCoS.2013.69
http://dx.doi.org/10.1109/INCoS.2013.69
http://dx.doi.org/10.1007/978-3-540-28628-8_21
http://dx.doi.org/10.1007/978-3-642-55220-5_5
http://eprint.iacr.org/
http://doi.acm.org/10.1145/2591796.2591825
http://doi.acm.org/10.1145/2591796.2591825

On the Selective Opening Security of Practical
Public-Key Encryption Schemes

Felix Heuer(B), Tibor Jager, Eike Kiltz, and Sven Schäge

Horst Görtz Institute for IT-Security, Ruhr University Bochum, Bochum, Germany
{felix.heuer,tibor.jager,eike.kiltz,sven.schaege}@rub.de

Abstract. We show that two well-known and widely employed public-
key encryption schemes – RSA Optimal Asymmetric Encryption
Padding (RSA-OAEP) and Diffie-Hellman Integrated Encryption Stan-
dard (DHIES), the latter one instantiated with a one-time pad, – are
secure under (the strong, simulation-based security notion of) selective
opening security against chosen-ciphertext attacks in the random oracle
model. Both schemes are obtained via known generic transformations
that transform relatively weak primitives (with security in the sense of
one-wayness) to INDCCA secure encryption schemes. We prove that selec-
tive opening security comes for free in these two transformations. Both
DHIES and RSA-OAEP are important building blocks in several standards
for public key encryption and key exchange protocols. They are the first
practical cryptosystems that meet the strong notion of simulation-based
selective opening (SIM-SO-CCA) security.

Keywords: Public key encryption · Selective opening security · OAEP ·
DHIES · SIM-SO-CCA

1 Introduction

Consider a set of clients A1, . . . , An connecting to a server S. To encrypt a
message mi, each client Ai draws fresh randomness ri and transmits ciphertext
ci = EncpkS

(mi; ri) to S. Assume an adversary observes these ciphertexts, and
is then able to “corrupt” a subset of clients {Ai}i∈I , I ⊆ {1, . . . , n}, for instance
by installing a malware on their computers. Then, for all i ∈ I, the adversary
learns not only the message mi, but also the randomness ri that Ai has used
to encrypt mi. Attacks of this type are called selective-opening (SO) attacks
(under sender corruptions) and a central question in cryptography is whether
the unopened ciphertexts remain secure.

At a first glance, one may be tempted to believe that security of the non-
corrupted ciphertexts follows immediately, if the encryption scheme meets some
standard security notion, like indistinguishability under chosen-plaintext
(IND-CPA) or chosen-ciphertext (INDCCA) attacks, due to the fact that each
user Ai samples the randomness ri independently from the other users. However,
it has been observed [3,4,14–16] that this is not true in general, see e.g. [26] for
an overview.
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 27–51, 2015.
DOI: 10.1007/978-3-662-46447-2 2

28 F. Heuer et al.

Results on SO Security. Defining the right notion of security against selec-
tive opening attacks has proven highly non-trivial. There are three notions of
security that are not polynomial-time equivalent to each other, two
indistinguishability-based notions usually denoted as weak IND-SO and (full)
IND-SO security, and a simulation-based notion of selective opening security
referred to as SIM-SO security. Previous results showed that SIM-SO-CCA and
full IND-SO-CCA security are the strongest notions of security [5,11,26]. How-
ever, only SIM-SO-CCA has been realized so far [20,24,25]. Unfortunately, the
existing constructions are very inefficient and rather constitute theoretical contri-
butions. Intuitively, SIM-SO security says that for every adversary in the above
scenario there exists a simulator which can produce the same output as the
adversary without ever seeing any ciphertext, randomness, or the public key.
It is noteworthy that unlike weak IND-SO security, which requires message dis-
tributions that support “efficient conditional re-sampling” (cf. [6]), SIM-SO is
independent of the concrete distribution of the messages.

1.1 Our Contributions

In this paper we show that two important public key encryption systems are
secure under the strong notion of SIM-SO-CCA security. Previous results only
established INDCCAsecurity of the resulting schemes. Most notably, our results
cover the well-known DHIESscheme, instantiated with a one-time pad, and RSA-
OAEP. Our results show that SIM-SO security essentially comes for free in
the random oracle model. This yields the first practical public key encryption
schemes that meet the strong notion of SIM-SO-CCA security.

First Construction: DHIES. The first construction we consider is a gen-
eralization of the well-known “Diffie-Hellman integrated encryption scheme”
(DHIES) [1]. (DHIESor “Hashed ElGamal Encryption” uses a MAC to make
plain ElGamal encryption INDCCA secure.) This generic idea behind DHIESwas
formalized by Steinfeld, Baek, and Zheng [44] who showed how to build an IND-
CCAsecure public key encryption system from a key encapsulation mechanism
(KEM) that is one-way under plaintext checking attacks (OW-PCA). OW-PCA
is a comparatively weak notion of security in which the adversary’s main task is
to decapsulate a given encapsulation of some symmetric key. In addition to the
public key, the adversary has only access to an oracle which checks, given a KEM
key and a ciphertext, whether the ciphertext indeed constitutes an encapsulation
of the KEM key under the public key. This construction is INDCCAsecure in the
random oracle model [44]. We show that it is furthermore SIM-SO-CCA secure
in the random oracle model. We stress that our result generically holds for the
entire construction and therefore for any concrete instantiation that employs
the one-time pad as symmetric encryption. Most importantly, it covers the well-
known DHIESscheme (when instantiated with a one-time pad) that is contained
in several public-key encryption standards like IEEE P1363a, SECG, and ISO
18033-2. DHIESis the de-facto standard for elliptic-curve encryption.

On the Selective Opening Security of Practical PKE Schemes 29

Second Construction: OAEP. The second construction of public key encryp-
tion schemes that we consider is the well-known Optimal Asymmetric Encryp-
tion Padding (OAEP) transformation [8]. OAEPis a generic transformation for
constructing public-key encryption schemes from trapdoor permutations that
was proposed by Bellare and Rogaway. Since then, it has become an important
ingredient in many security protocols and security standards like TLS [19,40],
SSH [23], S/MIME [27,39], EAP [17], and Kerberos [34,38].

We show that OAEPis SIM-SO-CCA secure when instantiated with a partial-
domain trapdoor permutation (cf. Section 4.1). Since it is known [22] that the
RSA permutation is partial-domain one-way under the RSA assumption, this
implies that RSA-OAEPis SIM-SO-CCA secure under the RSA assumption. In
fact, our result holds not only for trapdoor permutations, but for injective trap-
door functions as well.

Since SIM-SO-CCA security implies INDCCAsecurity, our proof also provides
an alternative to the INDCCAsecurity proof of [22]. Interestingly, despite that
we are analyzing security in a stronger security model, our proof seems to be
somewhat simpler than the proof of [22], giving a more direct insight into which
properties of the OAEPconstruction and the underlying trapdoor permutation
make OAEPsecure. This might be due to the fact that our proof is organized as
a sequence of games [9].

Complementing the work of [2,12,22], our result gives new evidence towards
the belief that the OAEPconstruction is sound, and that OAEP-type encryption
schemes can be used securely in various practical scenarios.

1.2 Related Work

The problem of selective-opening attacks is well-known, and has already been
observed twenty years ago [3,4,14–16]. The problem of constructing encryption
schemes that are provably secure against this class of adversaries without ran-
dom oracles has only been solved recently by Bellare, Hofheinz, and Yilek [6].
In [6], the authors show that lossy encryption [36] implies security against selec-
tive openings under chosen-plaintext attacks (SO-CPA). This line of research is
continued in [24] by Hemenway et al., who show that re-randomizable encryp-
tion and statistically hiding two-round oblivious transfer imply lossy encryption.
From a cryptographic point of view, the above works solve the problem of finding
SO-CPA secure encryption schemes, as there are several constructions of efficient
lossy or re-randomizable encryption schemes, e.g. [6,24,36]. When it comes to
selective openings under chosen-ciphertext attacks, the situation is somewhat
different. Hemenway et al. [24], Fehr et al. [20], Hofheinz [25], and Fujisaki [21]
describe SIM-SO-CCA secure encryption schemes which are all too inefficient for
practical applications. More recently, an identity-based encryption scheme with
selective-opening security was proposed [10]. It is noteworthy, that the most effi-
cient public key encryption systems proven to be weak IND-SO secure do not

30 F. Heuer et al.

meet the stronger notion of SIM-SO security. Lately, SIM-SO-CCA security for
IBE has been achieved [32].

State-of-the-Art of the Provable Security of OAEP. The OAEP con-
struction was proved INDCCAsecure if the underlying trapdoor permutation is
partial-domain one-way [8,22,41]. Since the RSA trapdoor permutation is a
partial-domain one-way function, this yields the INDCCAsecurity of RSA-OAEPas
well. Fischlin and Boldyreva [12] studied the security of OAEPwhen only one of
the two hash functions is modelled as a random oracle, and furthermore showed
that OAEPis non-malleable under chosen plaintext attacks for random messages
without random oracles. The latter result was strengthened by Kiltz et al. [30],
who proved the IND-CPA security of OAEPwithout random oracles, when the
underlying trapdoor permutation is lossy [36]. Since lossy encryption implies
IND-SO-CPA security [6], this immediately shows that OAEP is IND-SO-CPA
secure in the standard model. However, we stress that prior to our work it
was not clear if OAEPmeets the stronger notion of SIM-SO security, neither in
the standard model nor in the random oracle. Backes et al. [2] showed that
OAEPis secure under so-called key-dependent message attacks in the random
oracle model.

There also exist a number of negative results [13,31] showing the impossibility
of instantiating OAEPwithout random oracles.

State-of-the-Art of the Provable Security of DHIES. The
INDCCAsecurity of DHIESin the random oracle model has been shown equiv-
alent to the Strong Diffie-Hellman (sDH) assumption [1,44].

2 Preliminaries

For n ∈ N let [n] := {1, . . . , n}. For two strings μ, ν, we denote with μ||ν the
string obtained by concatenating μ with ν. If L is a set, then |L| denotes the
cardinality of L. We assume implicitly that any algorithm described in the sequel
receives the unary representation 1κ of the security parameter as input as its
first argument. We say that an algorithm is a PPT algorithm, if it runs in
probabilistic polynomial time (in κ). For a set A we denote the sampling of a
uniform random element a by a

$← A, while we denote the sampling according
to some distribution D by a ← D.

2.1 Games

We present definitions of security and encryption schemes in terms of games and
make use of sequences of games to proof our results. A game G is a collection of
procedures/oracles {Initialize,P1,P2, . . . ,Pt,Finalize} for t ≥ 0, where P1

to Pt and Finalize might require some input parameters, while Initialize is
run on the security parameter 1κ. We implicitly assume that boolean flags are
initialized to false, numerical types are initialized to 0, sets are initialized to
∅, while strings are initialized to the empty string ε. An adversary A is run in

On the Selective Opening Security of Practical PKE Schemes 31

game G (by challenger C), if A calls Initialize. During the game A may run the
procedures Pi as often as allowed by the game. If a procedure P was called by
A, the output of P is returned to A, except for the Finalize procedure. On A’s
call of Finalize the game ends and outputs whatever Finalize returns. The
output out of a game G that runs A is denoted as GA ⇒ out. If a game’s output
is either 0 or 1, A wins G if GA ⇒ 1. Further, the advantage Adv(GA,HA) of A
in distinguishing games G and H is defined as

∣
∣Pr[GA ⇒ 1] − Pr[HA ⇒ 1]

∣
∣. For

A run in G and S run in game H the advantage of A is defined as |Pr[GA ⇒ 1]−
Pr[HS ⇒ 1]|. Setting a boolean flag “Abort . . .” to true implicitly aborts the
adversary.

2.2 Public Key Encryption Schemes

Let M, R, C be sets. We say that M is the message space, R is the randomness
space, and C is the cipertext space. A public key encryption scheme PKE =
(PKEGen,Enc,Dec) consists of three polynomial-time algorithms.

– Gen generates, given the unary representation of the security parameter 1κ,
a key pair (sk, pk) ← Gen(1κ), where pk defines M, R, and C.

– Given pk, and a message m ∈ M Enc outputs an encryption c ← Encpk (m) ∈
C of m under the public key pk.

– The decryption algorithm Dec takes a secret key sk and a ciphertext c ∈ C
as input, and outputs a message m = Decsk (c) ∈ M, or a special symbol
⊥ 	∈ M indicating that c is not a valid ciphertext.

Notice, that Enc is a probabilistic algorithm; we make the used randomness only
explicit when needed. In that case we write c = Enc(m; r) for r

$← R. We require
the PKE to be correct, that is for all security parameters 1κ, for all (pk , sk) ←
PKEGen(1κ), and for all m ∈ M we have Pr[Decsk (Encpk (m)) = m] = 1

2.3 SIM-SO-CCA Security Definition

Definition 1. Let PKE := (PKEGen,Enc,Dec) be a public-key encryption sch-
eme, let n = n(κ) > 0 be a polynomially bounded function, D a distribution over
a message space, R a randomness space and R a relation. We consider the follow-
ing games, whereby an adversary A is run in the REAL-SIM-SO-CCAPKE game
(Figure 1), while a simulator S := S(A) is run in the IDEAL-SIM-SO-CCAPKE

game (Figure 2) . We demand that A and S call Enc exactly one time before
calling Open or Finalize. Further, A is not allowed to call Dec on any ci. To
an adversary A, a simulator S, a relation R and n we associate the advantage
function

AdvSIM-SO-CCA
PKE (A,S,R, n, κ) :=

|Pr[REAL-SIM-SO-CCAA
PKE ⇒ 1] − Pr[IDEAL-SIM-SO-CCAS

PKE ⇒ 1]|.
PKE is SIM-SO-CCA secure if for every PPT adversary A and every PPT relation
R there exists a PPT simulator S such that AdvSIM-SO-CCA

PKE (A,S,R, n, κ) ≤
negl(κ).

32 F. Heuer et al.

Procedure Initialize

(pk , sk)
$← PKEGen(1κ)

Return pk

Procedure Finalize(out)

Return R((mi)i∈[n],D, I, out)

Procedure Enc(D)

(mi)i∈[n] ← D

(ri)i∈[n]
$← R

(ci)i∈[n] := Encpk(mi; ri)
Return (ci)i∈[n]

Procedure Dec(c)

Return Decsk (c)

Procedure Open(i)

I := I ∪ {i}
Return (mi, ri)

Fig. 1. REAL-SIM-SO-CCAPKE game

Procedure Initialize

Return ε

Procedure Finalize(out)

Return R((mi)i∈[n],D, I, out)

Procedure Enc(D)

(mi)i∈[n] ← D

Return ε

Procedure Open(i)

I := I ∪ {i}
Return mi

Fig. 2. IDEAL-SIM-SO-CCAPKE game

3 Transformation from Any OW-PCA Secure KEM

3.1 Key Encapsulation Mechanisms and Message Authentication
Codes

Definition 2. Let K a key space. R a randomness space, and C a ciphertext
space.

A Key Encapsulation Mechanism (KEM) consists of three PPT algorithms
KEM = (KEMGen,Encap,Decap) defined to have the following syntax.

– KEMGen generates a key pair (pk ,sk) on input 1κ: (pk , sk) ← KEMGen(1κ),
where pk specifies K, R and C.

– Encap is given pk and outputs a key k ∈ K and an encapsulation c ∈ C of k:
(c, k) ← Encappk .

– Given sk , Decap decapsulates c ∈ C: k ← Decapsk (c), where k ∈ K.

We require correctness: for all κ ∈ N, for all (pk , sk) generated by KEMGen(1κ),
and for all (c, k) output by Encappk we have Pr[Decapsk (c) = k] = 1. We make the
randomness used in Encap only explicit when needed. Without loss of generality
we assume Encap to sample k

$← K, and K, C to be exponentially large in the
security parameter: |K| ≥ 2κ, |C| ≥ 2κ.

A KEM has unique encapsulations if for every κ ∈ N and every (pk , sk) output
by KEMGen(1κ) it holds that Decapsk (c) = Decapsk (c′) ⇒ c = c′ for all c, c′ ∈ C.

We introduce a security notion for KEMs that appeared in [35], namely one-way
security in the presence of a plaintext-checking oracle (OW-PCA) amounting an
adversary to test if some c is a valid encapsulation of a key k. That is, on input
(c, k) and given the sk the oracle returns Checksk (c, k) := (Decapsk (c) ?= k) ∈
{0, 1}. Since an indistinguishability based security notion is out of reach, once
A is granted access to Check, we make use of a weaker security notion, given
in the following definition.

On the Selective Opening Security of Practical PKE Schemes 33

Definition 3. Let KEM = (KEMGen,Encap,Decap) be a Key Encapsulation
Mechanism and A an adversary run in the OW-PCAKEM game stated in Figure 3.
We restrict the adversary to call Challenge exactly one time and define A’s
advantage in winning the OW-PCAKEM game as

AdvOW-PCA
KEM (A, κ) := Pr[OW-PCAA

KEM ⇒ 1].

A KEM is OW-PCA secure, if AdvOW-PCA
KEM (A, κ) is negligible for all PPT A.

Procedure Initialize(1κ)

(pk , sk)
$← KEMGen(1κ)

Return pk

Procedure Challenge

(k∗, c∗) $← Encappk
Return c∗

Procedure Check(k, c)

Return (Decap(c)
?
= k)

Procedure Finalize(k)

Return (k
?
= k∗)

Fig. 3. OW-PCAKEM game

Definition 4. Let M be a message space and let T be a set (tag space). A Mes-
sage Authentication Code MAC consists of the following three PPT algorithms
MAC = (MACGen,Tag,Vrfy), whereby

– MACGen generates a key k on input 1κ: k ← MACGen(1κ).
– Tagk computes a tag t ∈ T for a given message m ∈ M: t ← Tagk(m).
– Given a message m ∈ M and a tag t ∈ T , Vrfyk, outputs a bit: {0, 1} ←

Vrfyk(m, t).

We require MAC to be correct: For all κ ∈ N, all keys k generated by MACGen(1κ),
all m ∈ M and all tags computed by Tagk(m) we have Pr[Vrfyk(m,Tagk(m)) =
1] = 1. For a fixed MAC and k, given message m we call a tag t / the tuple (m, t)
valid, if Vrfyk(m, t) = 1.

Definition 5. For an adversary A and a MAC MAC := (MACGen,Tag,Vrfy)
we consider the sUF-OT-CMAMAC (strongly unforgeable under one-time chosen
message attacks) game, where A is allowed to call Tag at most once.

Procedure Initialize(1κ)

k
$← MACGen(1κ)

Return ε

Procedure Finalize(m∗, t∗)
Return (Vrfyk(m∗, t∗) ∧ (m∗, t∗) 	= (m, t))

Procedure Tag(m)
t ← Tagk(m)
Return t

Procedure Vrfy(m̃, t̃)
Return Vrfyk(m̃, t̃)

We define the advantage of A run in the sUF-OT-CMAMAC game as

AdvsUF-OT-CMA
MAC (A, κ) := Pr[sUF-OT-CMAA

MAC ⇒ 1].

MAC is sUF-OT-CMA secure, if AdvsUF-OT-CMA
MAC (A, κ) ≤ negl(κ) holds for all PPT

adversaries A.

34 F. Heuer et al.

Note that we only require one-time security, so a sUF-OT-CMA secure MAC can
be constructed information-theoretically.

3.2 The Transformation

Before we prove our results on the selective-opening security of schemes built
from KEMs, we recall a well known transformation ([44]) to turn a given KEM
into a PKE scheme. Notice, that we instantiated the symmetric encryption with
a one-time-pad.

Let KEM = (KEMGen,Encap,Decap) be a KEM, H a family of hash func-
tions, and let MAC = (MACGen,Tag,Vrfy) be a MAC. The public-key encryption
scheme PKEKEM,MAC obtained by the transformation is given in Figure 4.

Procedure PKEGen(1κ)

(pkKEM, skKEM)
$←KEMGen(1κ)

H
$← H

pk := (pkKEM, H)
sk := skKEM

Return pk

Procedure Enc(m)

(k, c(1))
$←EncappkKEM

(ksym, kmac) := H(k)
c(2) := ksym ⊕ m
c(3) := Tagkmac(c(2))
Return
(c(1), c(2), c(3))

Procedure Dec(c(1), c(2), c(3))

k ← DecapskKEM
(c(1))

(ksym, kmac) := H(k)
if Vrfykmac(c(2), c(3)) = 1

Return c(2) ⊕ ksym

else
Return ⊥

Fig. 4. Transformation PKEKEM,MAC from KEM and MAC to PKE

It is well known, that the given construction turns a OW-PCA KEM into a
INDCCA secure PKE scheme in the random oracle model [44]. Our next theo-
rem strengthens this results by showing that PKEKEM,MAC is even SIM-SO-CCA
secure.

Theorem 6. Let KEM be a OW-PCA secure KEM with unique encapsulations
and let MAC be a sUF-OT-CMA secure MAC. Then PKEKEM,MAC is SIM-SO-CCA
secure in the random oracle model. In particular, for any adversary A run in
the REAL-SIM-SO-CCAPKEKEM,MAC

game, that issues at most qh ≤ 2κ−1 hash and
qd ≤ 2κ−1 decryption queries and obtains n ciphertexts, and every PPT relation
R, there exists a simulator S, a forger F run in the sUF-OT-CMAMAC game, and
an adversary B run in the OW-PCAKEM game with roughly the same running time
as A such that

AdvSIM-SO-CCA
PKEKEM,MAC

(A,S,R, n, κ) ≤

n ·
(

qh + qd

2κ−1
+ AdvsUF-OT-CMA

MAC (F , κ) + AdvOW-PCA
KEM (B, κ)

)

. (1)

Let us have a high-level look at our proof. Up to some small syntactical changes
G0 constitutes of the REAL-SIM-SO-CCAA

PKEKEM,MAC
game.

On the Selective Opening Security of Practical PKE Schemes 35

The later simulator S will provide A with message-independent dummy
encryptions ci. This allows S to claim that ci = Encki

(mi, ri) for some arbitrary
mi after sending ci to A, if A should decide to open ci. Game G2 introduces the
dummy encryptions, while G1 serves as a preparational step.

After calling Enc(D), A is allowed to make Open, Hash and Dec queries
in an arbitrary order. Assume, that A did not1 query Open(i) before calling
Hash(ki) or issuing a valid decryption query (c(1)i , ·, ·). Since the indexset of
opened messages I is part of A’s output S wants to simulate, S may not query
Open(i) if A did not make the same call. Neither can S answer such a query,
since it would fix ksym

i and thereby mi before A made a potential Open(i) query.
Therefore, we need to block Hash(ki) and valid Dec(c(1)i , ·, ·) queries, if A did
not call Open(i) before. Considering valid decryption queries, these two cases
can occur: 1) H(ki) is already defined, or 2) H(ki) not defined. Game G3 takes
care of case 2), while we block A’s hash queries Hash(ki) for unopened ci in
game G4 - that is, ruling out case 1) as well.

Proof: Let qh be the number of hash queries and let qd be the number of
decryption queries issued by A, let n = n(κ) be a polynomial in κ. For i ∈ [n]
let: mi denote the ith message sampled by the challenger, ri the ith randomness
used by Encap: (ki, c

(1)
i) ← Encap(ri), (ksym

i , kmac
i) ← H(ki) the ith key-pair

generated by hashing ki and ci := (c(1)i , c
(2)
i , c

(3)
i) the ith ciphertext. Without

loss of generality, the games samples (ri)i∈[n] as part of Initialize. We proceed
with a sequence of games which is given in pseudocode in Figure 5.

Game 0. We model H as a random oracle. Challenger C0 keeps track of issued
calls (either by the game or A) of Hash(s) by maintaining a list LH . For a query
s, Hash(s) returns hs if there is an entry (s, hs) ∈ LH , otherwise Hash samples
hs at random, adds (s, hs) to LH , and returns hs; we write H(s) := hs only and
implicitly assume an update operation LH := LH ∪ {(s, hs)} to happen in the
background.

We introduce small syntactical changes: Challenger C0 samples (ksym
i , kmac

i)i∈[n]

uniformly random and sets (H(ki))i∈[n] := (ksym
i , kmac

i) while Initialize is run.
Additionally, G0 runs Encappk to generate (ki, c

(1)
i)i∈[n] during Initialize.

Claim 0. Adv(REAL-SIM-SO-CCAA
PKEKEM,MAC

,GA
0) = 0.

Proof: Apparently, it makes no difference if the challenger samples (ri)i∈[n] and
runs Encap(ri) on demand as part of Enc or in advance while Initialize is run.
Since H is modeled as a random oracle, H(s) is sampled uniformly random
for every fresh query Hash(s). Therefore C0 does not change the distribution
by sampling (ksym

i , kmac
i) in the first place and setting H(ki) := (ksym

i , kmac
i)

afterwards.
1 Neither Hash(ki) nor Dec(c

(1)
i , ·, ·) queries are a tripping hazard, once A called

Open(i).

36 F. Heuer et al.

Procedure Initialize G0−1

(pk , sk)
$← KEMGen(1κ)

(ri)i∈[n]
$← R

(ki, c
(1)
i)i∈[n]

$← Encappk (ri)

(ksym
i , kmac

i)i∈[n]

$← Ksym × Kmac

H(ki)i∈[n] := (ksym
i , kmac

i)

Return pk

Procedure Hash(s) G1−4 G2−4
�

�

�

�

G4

if (s, ·) /∈ LH

if s = ki for some i ∈ [n]

if ¬calledEnc
AbortEarly := true

else
�

�

�

	
AbortH := true

H(ki) :=(σsym
i ⊕mi, σ

mac
i)

else
hs

$← Ksym × Kmac

H(s) := hs

Return hs

Procedure Open(i) G2−4

I := I ∪ {i}
H(ki) := (σsym

i ⊕mi, σ
mac
i)

Return (mi, ri)

Procedure Enc(D) G0−1 G2−4

calledEnc := true
(mi)i∈[n] ← D

(ci)i∈[n] :=(c
(1)
i ,mi⊕ksym

i ,Tagkmac
i

(mi⊕ksym
i))

(σsym
i , σmac

i)i∈[n]

$← Ksym × Kmac

(ci)i∈[n] := (c
(1)
i , σsym

i ,Tagσmac
i

(σsym
i))

Return (ci)i∈[n]

Procedure Dec(c(1), c(2), c(3)) G1−4

G3−4

if (c(1) ∈ {c
(1)
i }n

i=1 ∧ ¬calledEnc)
AbortEarly := true

else

k := Decapsk (c
(1))

if

(
c(1) ∈ {c

(1)
i }n

i=1 ∧ (k, ·) /∈ LH

∧Vrfyσmac
i

(c(2), c(3)) = 1

)

AbortDec := true
else

(ksym, kmac) := H(k)
if Vrfykmac(c(2), c(3)) = 1

Return c
(2)
i ⊕ksym

else
Return ⊥

Procedure Finalize(out)

Return R((mi)i∈[n],D, I, out)

Fig. 5. Sequence of games G0 to G4. Boxed code is only executed in the games indicated
by the game names given in the same box style at the top right of every procedure.

Game 1. We add an abort condition. Challenger C1 raises the event
AbortEarly and aborts2 A, if A did not call Enc before calling either
Hash(ki) or Dec(c(1)i , ·, ·) for some i ∈ [n].

Claim 1. Adv(GA
0 ,GA

1) ≤ n · (qh + qd) · 2−(κ−1).

Proof: Since games G0 and G1 are identical until AbortEarly is raised, it
follows that Adv(GA

0 ,GA
1) ≤ Pr[AbortEarly]. Let viaHash and viaDec be

the events that AbortEarly was caused by either a hash or a decryption query

2 Notice, that C1 aborts even if such a decryption query is invalid.

On the Selective Opening Security of Practical PKE Schemes 37

of A. Let si denote the ith hash and di = (d(1)i , d
(2)
i , d

(3)
i) the ith decryption

query of A. It holds that

Pr[AbortEarly] = Pr[viaHash] + Pr[viaDec]

≤ Pr[s1 ∈ {ki}n
i=1] +

qh∑

i=2

Pr[si ∈ {ki}n
i=1|

i−1∧

j=1

sj /∈ {ki}n
i=1]

+ Pr[d(1)i ∈ {c
(1)
i }n

i=1] +
qd∑

i=2

Pr[d(1)i ∈ {c
(1)
i }n

i=1|
i−1∧

j=1

d
(1)
j /∈ {c

(1)
i }n

i=1]

=
qh∑

i=1

n

2κ − (i−1)
+

qd∑

i=1

n

2κ − (i−1)
≤

qh∑

i=1

n

2κ − qh
+

qd∑

i=1

n

2κ − qd
≤ n(qh + qd)

2κ−1
.

Above holds since Encap samples k
$← K and KEM has unique encapsulations.

Game 2. We change the encryption procedure and answer hash queries in a
different way. C2 does not program H(ki) for i ∈ [n] anymore. Enc still samples
mi, and samples σsym

i
$← Ksym, σmac

i
$← Kmac, to compute ci = Encki

(mi) :=
(c(1)i , σsym

i ,Tagσmac
i

(σsym
i)). If A should call Hash(ki) for i ∈ [n] or Open(i),

the challenger programs H(ki) := (σsym
i ⊕mi, σ

mac
i). Keep in mind that as from

now (ki, ·) /∈ LH implies that Open(i) was not called.

Claim 2. Adv(GA
1 ,GA

2) = 0.

Proof: Assuming that AbortEarly does not happen in game G2, the keys ksym
i

and kmac
i are still uniformly random when A calls Enc. Therefore (c(2)i)i∈[n] =

mi ⊕ksym
i is uniform and (c(3)i)i∈[n] is a valid tag of a uniformly random message

under a key from the uniform distribution. Consequently, challenger C2 can
sample (c(2)i)i∈[n] := σsym

i uniformly and can compute the tags using a uniform
key σmac

i without changing the distribution of the encryptions (ci)i∈[n].
C2 does not program H(ki) for i ∈ [n] anymore, but has to keep H consistent.
If A calls Hash(ki) or Open(i), C2 sets H(ki) := (σsym

i ⊕ mi, σ
mac
i).

Game 3. We add another abort condition. If A already called Enc, issues a
decryption query (c(1)i , c(2), c(3)) /∈ {ci}n

i=1, where H(ki) is not defined, and
Vrfyσmac

i
(c(1)i , c(2), c(3)) verifies, challenger C3 raises AbortDec and aborts A.

Claim 3. Adv(GA
2 ,GA

3) ≤ n · AdvsUF-OT-CMA
MAC (F , κ).

Proof: Games G2 and G3 are identical until AbortDec happens, it suffices to
bound Pr[AbortDec].

Let MAC := (MACGen,Tag,Vrfy) be the MAC used by the sUF-OT-CMA chal-
lenger. We construct an adversary F against the sUF-OT-CMA security of MAC

38 F. Heuer et al.

having success probability Pr[AbortDec]/n. The reduction is straight forward:
F runs adversary A as in game G3, but picks i∗ $← [n] during Initialize.
Computing the i∗th ciphertext, F queries its sUF-OT-CMA challenger for t∗ :=
Tag(σsym

i∗) instead of using its own Tag procedure and sends (ci)i∈[n] to A.
If A should call Open(i∗), challenger C3 apparently was unlucky in hiding its
own challenge and aborts the adversary. Querying its Vrfyk(·, ·) oracle, F can
detect when A issues a valid query Dec(c(1)i , c(2), c(3)) for some i ∈ [n], returns
(c(2), c(3)) to its sUF-OT-CMA challenger and aborts A.

Assume that AbortDec happens, i.e. A makes a valid decryption query
(c(1)i , c(2), c(3)) /∈ {ci}i∈[n], while H(ki) is still undetermined. Notice, that we
must not allow H(ki∗) to be fixed since kmac

i∗ is only known to the sUF-OT-CMA

challenger. Let (c(1)i , c̃(2), c̃(3)) ∈ {ci}i∈[n] be the ciphertext ci, whose first compo-
nent matches the first entry of A’s valid decryption query. Hence, c(3) is either
a new valid tag for c̃(2) or c(3) is a valid tag for a “new” message c(2), since
(c(2), c(3)) 	= (c̃(2), c̃(3)). In both cases F wins its sUF-OT-CMA challenge by
returning (c(2), c(3)), if F picks the right challenge ciphertext to embed t∗. The
claim follows by rearranging

AdvsUF-OT-CMA
MAC (F , κ) ≥ Pr[AbortDec]/n.

Game 4. We add one more abort condition. Challenger C4 raises the event
AbortH if A already called Enc, issues a hash query Hash(ki) for i ∈ [n] and
did not call Open(i) before.

Claim 4. Adv(GA
3 ,GA

4) ≤ n · AdvOW-PCA
KEM (B, κ).

Proof: Games G3 and G4 are identical until AbortH happens. Given adversary
A run in the REAL-SIM-SO-CCA game, we construct an adversary B against the
OW-PCA security of KEM having success probability Pr[AbortH]/n as depicted
in Figure 6. Adversary B receives a pk and a challenge encapsulation c∗ ←
Challenge of some key k∗ and aims to output k, given access to an Check(·, ·)
returning Checksk (k, c) := (Decapsk (c) ?= k).

B runs A as A is run in game G3 except for the following differences: After
calling Initialize, B guesses an index i∗ $← [n]. B creates ci as before, but hides
its own challenge in the first component of the i∗th ciphertext. Let’s assume that
AbortH happens. Since B knows {c

(1)
i } for i ∈ [n]\{i∗}, it can detect if A queries

Hash(s) for s ∈ {ki} where i ∈ [n] \ {i∗}, while B can invoke its Check oracle
to detect the query Hash(ki∗) since Check(ki∗ , c

(1)
i∗) = 1. Therefore B does not

have to guess when AbortH happens. If A should call Open(i∗), B apparently
guessed i∗ wrong3 and aborts A. Running the reduction, B has to maintain the
conditions for AbortDec. Therefore it suffices to check if c(1) ∈ {c

(1)
i }n

i=1 and

3 A cannot ask to open every single challenge ciphertext, since AbortH occurs.

On the Selective Opening Security of Practical PKE Schemes 39

Procedure Initialize:

pk
$← InitializeOW-PCA

i∗ $← [n]

(ri)i∈[n]\{i∗}
$← R

(ki, c
(1)
i)i∈[n]\{i∗} ← Encappk (ri)

c
(1)
i∗

$← Challenge

Return pk

Procedure Hash(s)

if (s, ·) /∈ LH

if s = ki for some i ∈ [n] \ {i∗}
if ¬calledEnc

AbortEarly := true
else

AbortH := true
else

if Check(s, c
(1)
i∗) = 1

FinalizeOW-PCA(s)
AbortH := true

else
if(∃(c(1),ksym,kmac)∈Hpatch

s.t. Check(s, c(1)) = 1)

)

H(s) := (ksym, kmac)
else

hs
$← Ksym × Kmac

H(s) := hs

Return H(s)

Procedure Open(i)

if i = i∗

Abort := true
else

I := I ∪ {i}
H(ki) := (σsym

i ⊕mi, σ
mac
i)

Return (mi, ri)

Procedure Enc(D):

calledEnc := true
(mi)i∈[n] ← D

(σsym
i , σmac

i)i∈[n]

$← Ksym × Kmac

(ci)i∈[n] := (c
(1)
i , σsym

i ,Tagσmac
i

(σsym
i))

Return (ci)i∈[n]

Procedure Dec(c(1), c(2), c(3))

if (c(1) ∈ {c
(1)
i }n

i=1 ∧ ¬calledEnc)
AbortEarly := true

else
if c(1) ∈ {c

(1)
i }n

i=1

if Vrfyσmac
i

(c(2), c(3)) = 1
AbortDec := true

else
Return ⊥

else

if

(∃ (s, ·, ·) ∈ LH s.t.

Check(s, c(1)) = 1

)

(ksym, kmac) := H(s)
else

(ksym,kmac)
$←Ksym × Kmac

Add (c(1),ksym,kmac) to
Hpatch

if Vrfykmac(c(2), c(3)) = 1

Return c
(2)
i ⊕ksym

else
Return ⊥

Procedure Finalize(out)

Return R((mi)i∈[n],D, I, out)

Fig. 6. Reduction to KEM’s OW-PCA security given by the game interface for A

Vrfyσmac
i

(c(2), c(3)) hold, because H(k) cannot be defined, since neither AbortH,
nor Abort via Open happened.

It remains to explain how B (unable to compute k = Decapsk (c(1))) answers
decryption queries without knowing sk . To answer these queries we make use of
the nifty “oracle patching technique” from [18]. If A calls Dec(c(1), c(2), c(3)), B
checks if H(k) is already defined by querying Check(s, c(1)) for every (s, ·) ∈ LH .
If there is such a s, B uses (ksym, kmac) := H(s). If not, B picks (ksym, kmac) at

40 F. Heuer et al.

random and has to keep an eye on upcoming hash queries, since B just committed
to H(k).

Therefore B maintains a dedicated list Hpatch where B adds (c(1), (sym, kmac)).
On every hash query Hash(s), B checks if there is an entry (c(1), ksym, kmac) ∈
Hpatch s.t. Check(s, c(1)) = 1 in order to fix the oracle by setting H(s) :=
(ksym, kmac). If A should call Dec(c(1)i∗ , ·, ·), challenger C3 treats it like every
other decryption query. Considering that AbortH happens, B only has to pick
the right ciphertext to hide its own OW-PCA challenge to win its game. Therefore
B succeeds if AbortH happens and B guessed i∗ ∈ [n] correctly:

AdvOW-PCA
KEM (B, κ) ≥ Pr[AbortH]/n.

Claim 5. There exists a simulator S run in the IDEAL-SIM-SO-CCA game such
that Adv(GA

4 , IDEAL-SIM-SO-CCAS
PKEKEM,MAC

) = 0.

Proof: The simulator runs the adversary as it is run in game G4, i.e. S runs
PKEGen on its own and feeds pk to A. On A’s call of Enc(D) the simulator calls
Enc(D) as well and creates dummy encryptions without knowing the sampled
messages (mi)i∈[n]. If A calls Open(i), S forwards the query to its own game,
learns mi, and returns (mi, ri) to A.
Because AbortEarly does not happen, S does not have to commit to Dec(ci)
before Enc is called. Since neither AbortH nor AbortDec happen, A calls
Open(i) before issuing “critical” hash or decryption queries and S is able to
learn mi and can program H accordingly. Due to these changes and the dummy
encryption introduced in game G2, A cannot get information on some mi without
calling Open(i), that is, “avowing” S to call Open(i) as well, allowing S to
answer possibly upcoming hash or decryption queries consistently.

Collecting the advantages of A we get the claim as stated in (1).

3.3 Implications for Practical Encryption Schemes

We now give specific instantiations of SIM-SO-CCA secure scheme via our generic
transformation. We focus on two well known KEMs, namely the DH and RSAkey
encapsulation mechanism.

DHIES. Let G be a group of prime-order p, and let g be a generator. The
Diffie-Hellman KEM DH-KEM = (Gen,Enc,Dec) is defined as follows. The key-
generation algorithm Gen picks x

$← Zp and defines pk = X := gx and sk = x;
the encapsulation algorithm Encappk picks r

$← Zp and returns (c = gr, k = Xr);
the decapsulation algorithm Decapsk (c) returns k = cx. OW-PCA security of the
DH-KEM is equivalent to the strong Diffie-Hellman (sDH) assumption [1]. The
sDH assumption states that there is no PPT adversary A that, given two random
group elements U := gu, V := gv and a restricted DDH oracle Ov(·, ·) where
Ov(a, b) := (av ?= b) computes guv with non-negligible probability.

On the Selective Opening Security of Practical PKE Schemes 41

Procedure PKEGen(1κ)

H
$← H

x
$← Zp

X := gx

pk := (G, g, p, X)
sk := x
Return (pk , sk)

Procedure Enc(m)

r
$← Zp

(ksym, kmac) ← H(Xr)
c1 := gr

c2 := ksym ⊕ m
c3 := Tagkmac(c2)
Return (c1, c2, c3)

Procedure Dec(c1, c2, c3)

(ksym, kmac) ← H(c1
x)

if Vrfykmac(c2, c3) = 1
Return c2 ⊕ ksym

else
Return ⊥

Fig. 7. The Diffie-Hellman Integrated Encryption Scheme DHIESinstantiated with a
one-time pad

Let MAC be a MAC with message-space and key-space {0, 1}� and let H :
G �→ {0, 1}2� be a family of hash functions. The security of DHIES =
PKEDH-KEM,MAC (depicted in Figure 7)(instantiated with a one-time pad) is
stated in the following corollary, whose proof is a direct consequence of
Theorem 6.

Corollary 7. DHIES instantiated with a one-time pad is SIM-SO-CCA secure
in the random oracle model, if MAC is sUF-OT-CMA and the sDH assumption
holds.

RSA-KEM. We obtain another selective-opening secure encryption scheme, if we
plug in the RSA-KEM in the generic transformation given in Figure 4. Thereby,
OW-PCA security of the RSA-KEM holds under the RSA assumption [42]. Under
the RSA assumption, PKERSA-KEM,MAC (as described in ISO18033-2 [42]) is
SIM-SO-CCA secure in the random oracle model.

Both reductions for the OW-PCA security of the DH-KEM, RSA-KEM, respec-
tively, are tight, while both KEMs have unique encapsulations.

4 The OAEP Transformation

In this section we show that OAEPis SIM-SO-CCA secure when instantiated
with a partial-domain one-way trapdoor permutation (see Section 4.1). Since
it is known [22] that the RSApermutation is partial-domain one way under the
RSAassumption, this implies that RSA-OAEPis SIM-SO-CCA secure under the
RSAassumption. In fact, our result works not only for trapdoor permutations,
but for injective trapdoor functions as well. Since SIM-SO-CCA security implies
INDCCAsecurity, our proof also provides an alternative to the INDCCAsecurity
proof of [22].

4.1 Trapdoor Permutations and Partial-Domain Onewayness

Recall that a trapdoor permutation is a triple of algorithms T = (GK,F, F−1),
where GK generates a key pair (ek, td) $← GK(1κ), F (ek, ·) implements a per-
mutation

fek : {0, 1}k → {0, 1}k (2)

42 F. Heuer et al.

specified by ek, and F−1(td, ·) inverts fek using the trapdoor td. Let us write
the function fek from (2) as a function

fek : {0, 1}�+k1 × {0, 1}k0 → {0, 1}k

with k = � + k1 + k0.

Definition 8. Let T be a trapdoor permutation as given above and B an
adversary run in the PD-OWT game given in Figure 8. We restrict B to call
Challenge exactly one time and define B’s advantage in winning the PD-OWT
game as

AdvPD-OW
T (B, κ) := Pr[PD-OWB

T ⇒ 1].

Moreover, if AdvPD-OW
T (B, κ) ≤ negl(κ) for all probabilistic polynomial-time (in

κ) adversaries B, we say that T is a partial-domain secure trapdoor permutation.

Procedure Initialize(1κ)

(ek, td)
$← GK(1κ)

Return ek

Procedure Challenge

(s, t)
$← {0, 1}�+k1 × {0, 1}k0

y := F (ek, (s, t))
Return y

Procedure Finalize(s′)

Return (s
?
= s′)

Fig. 8. PD-OWT game

4.2 Optimal Asymmetric Encryption Padding (OAEP)

Let T = (GK,F, F−1) be a trapdoor permutation. The OAEPencryption scheme
is defined as follows.

– The key generation Gen(1κ) computes a key pair (ek, td) ← GK(1κ) for the
trapdoor permutation. It defines two hash functions

G : {0, 1}k0 → {0, 1}�+k1 and H : {0, 1}�+k1 → {0, 1}k0

and outputs sk = td and pk = (ek,G,H).
– To encrypt a message m ∈ {0, 1}�, the sender draws a random value r

$←
{0, 1}k0 . Then it computes

s = m||0k1 ⊕ G(r) t = r ⊕ H(s).

The ciphertext is C = F (ek, (s, t)) = fek(s, t).
– To decrypt a ciphertext C, the decryption algorithm Decsk (c) uses sk = td

to apply the inverse permutation to c, and obtains (s, t) = F−1(td, c). Then
it computes r = t ⊕ H(s) and μ = s ⊕ G(r), and parses μ ∈ {0, 1}�+k1 as
μ = m||ρ with m ∈ {0, 1}� and ρ ∈ {0, 1}k1 . If ρ = 0k1 , then the decryption
algorithm outputs m. Otherwise ⊥ is returned.

The OAEPpadding process is illustrated in Figure 9.

On the Selective Opening Security of Practical PKE Schemes 43

m||0k1 r

H

G

s t

⊕

⊕

Fig. 9. The OAEPpadding process

4.3 Security of OAEP against SO-CCA Attacks

In this section we will analyze the security of the OAEPscheme. We will prove
that OAEPis SIM-SO-CCA-secure in the random oracle model [7], assuming
the partial-domain onewayness of the trapdoor permutation T . Note that a
proof in the random oracle model is the strongest result we can hope for,
since SIM-SO-CCA-security implies INDCCAsecurity, and it is known [31] that
OAEPcan not be proven INDCCAsecure without random oracles.

Theorem 9. Let OAEP be the scheme described in Section 4.2 and T =
(GK,F, F−1) be a trapdoor permutation. Then OAEP is SIM-SO-CCA secure
in the random oracle model (where both hash functions G and H are modeled
as random oracles). In particular, for every PPT relation R, every adversary A
run in the REAL-SIM-SO-CCAOAEP game that issues at most qh queries to H,
qg queries to G, qd decryption queries, and obtains n ciphertexts, there exists a
simulator S and an adversary B in the PD-OWT experiment such that

AdvSIM-SO-CCA
OAEP (A,S,R, n, κ) ≤ δ

where

δ = qd ·
(

2−k1 + qg · 2−k0
)

+ n(qg + n) · 2−k0 + nqh · AdvT
pd(B, κ) + nqg · 2−�−k1 .

Intuition for the proof of Theorem 9. We prove the theorem in a sequence of
games, starting with the REAL-SIM-SO-CCAOAEP experiment. From game to
game we gradually modify the challenger, until we end up in a game where the
challenger can act as a simulator in the IDEAL-SIM-SO-CCAOAEP experiment.
Our goal is to modify the challenger such that in the final game it does not need
to know message mi before the adversary asks Open(i). To this end, we have
to describe how the challenger is able to create “non-committing” ciphertexts
c1, . . . , cn in the Enc-procedure, which can then be opened to any message mi

when A issues an Open(i)-query.

44 F. Heuer et al.

In a first step, we replace the original decryption procedure that uses the real
trapdoor td with an equivalent (up to a negligible error probability) decryption
procedure, which is able to decrypt ciphertexts by examining the sequence of
random oracle queries made by adversary A. Here we use that A is not able
(except for some non-negligible probability) to create a new valid ciphertext
c = F (ek, (s, t)), unless it asks the random oracle H on input s and G on input
H(s) ⊕ t. However, in this case the challenger is able to decrypt c by exhaustive
search through all queries to H and G made by A.

For i ∈ [n] let ci = F (ek, (si, ti) now denote the ith challenge ciphertext that
A receives in the security experiment. We show how to construct an attacker
against the partial-domain one-wayness of T , which is successful if the adversary
A ever asks H(si) before Open(i) for any i ∈ [n]. Thus, assuming that T is
secure in the sense of partial-domain one-wayness, it will never happen that A
asks H(si) before Open(i), except for some negligible probability.

Finally, we conclude with the observation that from A’s point of view all
values of H(si) remain equally likely until Open(i) is asked, which implies also
that it is very unlikely that A ever asks G(ti ⊕ H(si)) before Open(i). This in
turn means that the challenger does not have to commit to a particular value of
G(ti ⊕H(si)), and thus not to a particular message mi||0k1 = si ⊕G(ti ⊕H(si)),
before Open(i) is asked.

Proof of Theorem 9. The proof proceeds in a sequence of games, following
[9,43], where Game 0 corresponds to the REAL-SIM-SO-CCAA

OAEP-experiment
with adversary A and a challenger, called C0. From game to game, we gradually
modify the challenger, until we obtain a challenger which is able to act as a
simulator in the IDEAL-SIM-SO-CCAS

OAEP experiment.
Let us first fix some notation. We denote with qg the number of queries

issued by A to random oracle G, with qh the number of queries to H, and with
qd the number of decryption queries. For i ∈ [n] we will denote with ci the
ith component of the challenge ciphertext vector (ci)i∈[n], and we write ci as
ci = fek(si, ti).
Game 0. Challenger C0 executes the REAL-SIM-SO-CCA experiment with
attacker A by implementing the procedures described in Figure 10. Note that
C0 also implements procedures to simulate the random oracles G and H. To this
end, it maintains four lists

LG ⊆ {0, 1}k0 × {0, 1}�+k1 LH ⊆ {0, 1}�+k1 × {0, 1}k0

LA
G ⊆ {0, 1}k0 LA

H ⊆ {0, 1}�+k1

which are initialized to the empty set in the Initialize procedure.
To simulate the random oracle G, the challenger uses the internal procedure

Gint, which uses list LG to ensure consistency of random oracle responses. The
adversary does not have direct access to procedure Gint, but only via procedure
G, which stores all values r queried by A in an additional list LA

G. This allows
us to keep track of all values queried by A. Random oracle H is implemented
similarly, with procedures Hint and H, using list s LH and LA

H .

On the Selective Opening Security of Practical PKE Schemes 45

Procedure Initialize

(ek, td)
$← GK(1κ)

Return ek

Procedure Enc(D)

(mi)i∈[n] ← D
for i ∈ [n]:

ri
$← {0, 1}k0

si := m||0k1 ⊕Gint(ri)
ti := ri ⊕Hint(si)
ci := F (ek, (si, ti))

Return (ci)i∈[n]

Procedure Open(i)

I := I ∪ {i}
Return (mi, ri)

Internal procedure Hint(s)

If (s, hs) /∈ LH

hs
$← {0, 1}k0

LH := LH ∪ (s, hs)
Return hs

Procedure H(s)

LA
H := LA

H ∪ {s}
Return Hint(s)

Procedure Dec(c)

(s, t) := F−1(td, c)
r := t⊕Hint(s)
m||ρ := s⊕Gint(r)
if ρ = 0k1

Return m
else

Return ⊥

Internal procedure Gint(r)

if (r, hr) /∈ LG

hr
$← {0, 1}�+k1

LG := LG ∪ (r, hr)
Return hr

Procedure G(r)

LA
G := LA

G ∪ {r}
Return Gint(r)

Procedure Finalize(out)

Return
R((mi)i∈[n],D, I, out)

Fig. 10. Procedures of Game 0

By definition we have

Adv(REAL-SIM-SO-CCAA
OAEP,GA

0) = 0.

In the following games we will replace C0 with challenger Ci in Game i. In the
last game, we replace the challenger with a simulator.

Procedure Dec1(c)

for (r, hr, s, hs) ∈ LG × LH :

if

(
c = F (ek, (s, r ⊕ hs)

∧ s ⊕ hr = m||0k1

)

Return m
Return ⊥

Procedure Enc2(D)

(mi)i∈[n] ← D

for i ∈ [n]:

si
$← {0, 1}�+k1 , ti

$← {0, 1}k0

ci := F (ek, (si, ti))
ri := H(si) ⊕ ti

if ri ∈ LG

AbortG := true
hri := si ⊕ mi||0k1

LG := LG ∪ {(ri, hri)}
Return (ci)i∈[n]

Fig. 11. Replacement procedures Dec1 and Enc2

Game 1. In this game, C1 proceeds exactly as C0, except that instead of imple-
menting procedure Dec, it uses procedure Dec1 from Figure 11 to respond to
decryption-queries. Note that procedure Dec1 does not require the trapdoor td
to perform decryption.
Claim 1. It holds that Adv(GA

0 ,GA
1) ≤ qd ·

(

2−k1 + qg · 2−k0
)

.

46 F. Heuer et al.

Proof. Game 1 is perfectly indistinguishable from Game 0, unless A makes a
decryption query with ciphertext c, such that Dec(c) 	= Dec1(c). Note that this
can only hold if A queries a ciphertext c with (s, t) = F−1(td, c), such that

(s, ·) 	∈ LH or (t ⊕ H(s), ·) 	∈ LG

where · is any value, but it holds that G(t ⊕ H(s)) ⊕ s = m||ρ with ρ = 0k1 .
Consider a single chosen-ciphertext c = F (ek, (s, t)). Suppose that (s, ·) 	∈

LH . In this case H(s) is uniform and independent from A’s view. The probability
that there exists (r, ·) ∈ LG such that r = H(s)⊕ t is therefore at most qg ·2−k0 ,
since we assumed that the adversary issues at most qg queries to G.

If (r, ·) 	∈ LG then G(r) is uniform and independent from A’s view, thus the
probability that G(r) ⊕ s = m||0k1 has the correct syntax is at most 2−k1 .

Since the adversary issues at most qd chosen-ciphertext queries, we have
Adv(GA

0 ,GA
1) ≤ qd ·

(

2−k1 + qg · 2−k0
)

.

Game 2. Challenger C2 proceeds exactly like C1, except that it implements
procedure Enc2 from Figure 11 instead of Enc. Note that this procedure first
samples (si, ti) uniformly random, then computes ci = F (ek, (si, ti)), and finally
programs the random oracle G such that ci decrypts to mi.

Claim 2. It holds that Adv(GA
1 ,GA

2) ≤ n(qg + n) · 2−k0 .

Proof. Note that procedure Enc2 first defines ri := H(si) ⊕ ti for uniformly
random ti

$← {0, 1}k0 . Thus, ri is distributed uniformly over {0, 1}k0 , exactly as
in Game 1. Now suppose that ri 	∈ LG, thus Enc2 does not terminate. In this case
the hash function G is programmed such that G(ri) = hri

= si⊕mi||0k1 . Since si

is uniformly distributed, so is G(ri), exactly as in Game 1. Thus, Enc2 simulates
procedure Enc from Game 1 perfectly, provided that it does not terminate.

Note that the procedure terminates only if ri ∈ LG. Since all values r1, . . . , rn

are distributed uniformly, because the si-values are uniformly random, this hap-
pens with probability at most n(qg + n) · 2−k0 .

Procedure Open(i)

I := I ∪ {i}
if si ∈ LA

H

AbortS := true
Return (mi, ri)

Procedure Open(i)

I := I ∪ {i}
if si ∈ LA

H

AbortS := true
if ri ∈ LA

G

AbortR := true
Return (mi, ri)

Fig. 12. Modified Open-procedures of Games 3 (left) and 4 (right)

On the Selective Opening Security of Practical PKE Schemes 47

Game 3. We add an abort condition to the Open-procedure (see the left-hand
side of Figure 12). Challenger C3 proceeds exactly like C2, except that it raises
event AbortS and terminates, if A ever queried si to H for some i ∈ [n] before
querying Open(i).

Note that in Game 3, the attacker never evaluates H on input si for any
i 	∈ I, or the game is aborted.

Claim 3. It holds that Adv(GA
2 ,GA

3) ≤ n · qh · AdvT
pd(B, κ).

Proof. Game 3 proceeds identically to Game 2, until event AbortS is raised.
Thus we have

Adv(GA
2 ,GA

3) ≤ Pr[AbortS]

We construct an adversary B against the partial-domain onewayness of T . B
receives as input ek and y = fek(s, t) for uniformly random (s, t) $← {0, 1}�+k1 ×
{0, 1}k0 . It proceeds exactly like C3, except for the following. At the beginning of
the game it sets pk := ek and guesses two indices j

$← [n] and q
$← [qh] uniformly

random, and sets cj := y. Note that cj is correctly distributed (cf. the changes
introduced in Game 2). When A makes its qth query s∗ to H, then B returns s∗

and terminates.
Assume that AbortS happens. Then, at some point in the game, A makes

the first query s′ to H such that s′ = si is a partial-domain preimage of some ci.
With probability 1/qh it holds that s∗ = si. Moreover, with probability 1/n we
have i = j. In this case B obtains the partial preimage s = sj of y = cj . Thus, B
succeeds, if AbortS happens and if it has guessed j ∈ [n] and q ∈ [qh] correctly.
This happens with probability Pr[AbortS]/(n · qh), which implies that

Pr[AbortS] ≤ n · qh · AdvT
pd(B, κ).

Game 4. We add another abort condition to the Finalize-procedure (see the
right-hand side of Figure 12). Challenger C4 raises event AbortR and termi-
nates, if A ever queries ri to GA for some i ∈ [n], before querying Open(i).
Otherwise it proceeds like C3.

Claim 4. It holds that Adv(GA
3 ,GA

4) ≤ n · qg · 2−�−k1 .

Proof. Note that A never queries si before querying Open(i) (or the game is
aborted), due to the changes introduced in Game 3. Thus, for all i 	∈ I, H(si)
is uniformly random and independent of A’s view. Therefore, all ri = ti ⊕ H(si)
are uniformly random and independent of A’s view. Since A issues at most qg

queries to G, and we have 1 ≤ i ≤ n, this implies Adv(GA
3 ,GA

4) ≤ n · qg ·
2−�−k1 .
Game 5. Note that the attacker in Game 4 never issues a query G(ri) before
asking Open(i), as otherwise the game is aborted. Thus, the challenger does
not have to define the hash value G(ri) before Open(i) is asked. Therefore
we can move the definition of G(ri) from the Enc2-procedure to the Open-
procedure.

48 F. Heuer et al.

Procedure Enc(D)

(mi)i∈[n] ← D

For i ∈ [n]:

si
$← {0, 1}�+k1 , ti

$← {0, 1}k0

ci := F (ek, (si, ti))
ri := H(si) ⊕ ti

if ri ∈ LG

AbortG := true
Return (ci)i∈[n]

Procedure Open(i)

I := I ∪ {i}
if si ∈ LA

H

AbortS := true
if ri ∈ LA

G

AbortR := true
hri := si ⊕ mi||0k1

LG := LG∪{(ri, hri)}
Return (mi, ri)

Fig. 13. New procedures for Game 5

Procedure Initialize

Initialize()

(ek, td)
$← GK(1κ)

LG :=LH :=LA
G :=LA

H :=∅
Return ek

Procedure Enc(D)

Enc(D)

for i ∈ [n]:
si

$← {0, 1}�+k1

ti
$← {0, 1}k0

ci := F (ek, (si, ti))
ri := H(si)⊕ ti
if ri ∈ LG then

AbortG := true
Return (ci)i∈[n]

Internal procedure Hint(s)

if (s, hs) /∈ LH

hs
$← {0, 1}k0

LH := LH ∪ (s, hs)
Return hs

Procedure H(s)

LA
H := LA

H ∪ {s}
Return Hint(s)

Procedure Open(i)

mi := Open(i)

I := I ∪ {i}
if si ∈ LA

H

AbortS := true
if ri ∈ LA

G

AbortR := true
hri := si ⊕mi||0k1

LG := LG ∪ {(ri, hri)}
Return (mi, ri)

Internal procedure Gint(r)

if (r, hr) /∈ LG

hr
$← {0, 1}�+k1

LG := LG ∪ (r, hr)
Return hr

Procedure G(r)

LA
G := LA

G ∪ {r}
Return Gint(r)

Procedure Dec1(c)

for (r, hr, s, hs) ∈ LG × LH :

if
(
c=F (ek, (s, r ⊕ hs)

∧ s⊕ hr = m||0k1

)

Return m
Return ⊥
Procedure Finalize(out)

Finalize(out)

Fig. 14. Procedures used by the simulator to implement the REAL-SIM-SO-CCAA
OAEP

experiment. Instructions in boxes correspond to calls to the IDEAL-SIM-SO-CCAS
OAEP-

experiment made by the simulator.

Therefore we replace the procedures Enc2 and Open from Game 4 with
procedures Enc and Open described in Figure 13. Note that the only difference
is that for each i ∈ [n] the hash value G(ri) is not defined in the Enc-procedure,
but in the Open procedure. Moreover, this modification is completely oblivious
to A, which implies

Adv(GA
4 ,GA

5) = 0.

Game 6. Note that in Game 5 the encryption procedure samples a message
vector (mi)i∈[n], but the messages are only used in the Open-procedure. This

On the Selective Opening Security of Practical PKE Schemes 49

allows us to construct a simulator, whose procedures are described in Figure 14.
Note that the view of A when interacting with the simulator is identical to its
view when interacting with challenger C5, which implies

Adv(GA
5 ,GA

6) = 0

Acknowledgments. We thank Zhengan Huang and Shengli Liu for their valuable
comments. Felix Heuer and Eike Kiltz were (partially) funded by a Sofja Kovalevskaja
Award of the Alexander von Humboldt Foundation and the German Federal Ministry
for Education and Research. Felix Heuer was also partially funded by the German
Israeli Foundation. Sven Schäge is supported by Ubicrypt, the research training group
1817/1 funded by the German Research Foundation (DFG). Part of this work was done
while he was employed at University College London and supported by EPSRC grant
EP/J009520/1.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache [33], pp. 143–158

2. Backes, M., Dürmuth, M., Unruh, D.: OAEP is secure under key-dependent mes-
sages. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 506–523.
Springer, Heidelberg (2008)

3. Beaver, D.: Plug and play encryption. In: Kaliski Jr., [29], pp. 75–89
4. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic

adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–
323. Springer, Heidelberg (1993)

5. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, Johansson [37], pp. 645–662

6. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux [28], pp. 1–35

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
Fairfax (1993)

8. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

9. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

10. Bellare, M., Waters, B., Yilek, S.: Identity-Based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011)

11. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 522–539. Springer, Heidelberg (2012)

12. Boldyreva, A., Fischlin, M.: On the security of OAEP. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 210–225. Springer, Heidelberg (2006)

13. Brown, D.R.L.: What hashes make RSA-OAEP secure? Cryptology ePrint Archive,
Report 2006/223 (2006). http://eprint.iacr.org/

http://eprint.iacr.org/

50 F. Heuer et al.

14. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr. [29], pp. 90–104

15. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press, Philadephia (1996)

16. Canetti, R., Halevi, S., Katz, J.: Adaptively-Secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005)

17. Clancy, T., Arbaugh, W.: Extensible Authentication Protocol (EAP) Password
Authenticated Exchange. RFC 4746 (Informational) (November 2006)

18. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

19. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard). Updated by RFCs 5746, 5878, 6176 (August
2008)

20. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010)

21. Fujisaki, E.: All-but-many encryptions: A new framework for fully-equipped UC
commitments. Cryptology ePrint Archive, Report 2012/379. http://eprint.iacr.
org/ (2012)

22. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001)

23. Harris, B.: RSA Key Exchange for the Secure Shell (SSH) Transport Layer Proto-
col. RFC 4432 (Proposed Standard) (March 2006)

24. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011)

25. Hofheinz, D.:. All-but-many lossy trapdoor functions. In: Pointcheval, Johansson
[37], pp. 209–227

26. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014)

27. Housley, R.: Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic
Message Syntax (CMS). RFC 3560 (Proposed Standard) (July 2003)

28. Joux, A. (ed.): EUROCRYPT 2009. LNCS, vol. 5479. Springer, Heidelberg (2009)
29. Kaliski Jr., B.S. (ed.): CRYPTO 1997. LNCS, vol. 1294. Springer, Heidelberg

(1997)
30. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-

plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010)

31. Kiltz, E., Pietrzak, K.: On the security of padding-based encryption schemes - or
- why we cannot prove OAEP secure in the standard model. In: Joux [28], pp.
389–406

32. Lai, J., Deng, R.H., Liu, S., Weng, J., Zhao, Y.: Identity-Based encryption secure
against selective opening chosen-ciphertext attack. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 77–92. Springer, Heidelberg
(2014)

http://eprint.iacr.org/
http://eprint.iacr.org/

On the Selective Opening Security of Practical PKE Schemes 51

33. Naccache, D. (ed.): CT-RSA 2001. LNCS, vol. 2020. Springer, Heidelberg (2001)
34. Nadeau, T., Srinivasan, C., Farrel, A.: Multiprotocol Label Switching (MPLS)

Management Overview. RFC 4221 (Informational) (November 2005)
35. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmetric

Cryptosystem Transform. In: Naccache [33], pp. 159–175
36. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,

R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press, Victoria (2008)
37. Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237.

Springer, Heidelberg (2012)
38. Raeburn, K.: Encryption and Checksum Specifications for Kerberos 5. RFC 3961

(Proposed Standard)(February 2005)
39. Ramsdell, B., Turner, S.: Secure/Multipurpose Internet Mail Extensions

(S/MIME) Version 3.2 Message Specification. RFC 5751 (Proposed Standard)
(January 2010)

40. Rescorla, E.: Preventing the Million Message Attack on Cryptographic Message
Syntax. RFC 3218 (Informational) (January 2002)

41. Shoup, V.: OAEP reconsidered. Journal of Cryptology 15(4), 223–249 (2002)
42. Shoup, V.: ISO 18033–2: An emerging standard for public-key encryption. Final

Committee Draft (December 2004). http://shoup.net/iso/std6.pdf
43. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs

13166 received (November 30, 2004). shoup@cs.nyu.edu (last revised January 18,
2006)

44. Steinfeld, R., Baek, J., Zheng, Y.: On the necessity of strong assumptions for the
security of a class of asymmetric encryption schemes. In: Batten, L.M., Seberry, J.
(eds.) ACISP 2002. LNCS, vol. 2384, pp. 241–256. Springer, Heidelberg (2002)

http://shoup.net/iso/std6.pdf

How Secure is Deterministic Encryption?

Mihir Bellare1(B), Rafael Dowsley2, and Sriram Keelveedhi1,2

1 Department of Computer Science and Engineering,
University of California San Diego, San Diego, USA

mihir@eng.ucsd.edu
2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,

Karlsruhe, Germany

Abstract. This paper presents three curious findings about determinis-
tic public-key encryption (D-PKE) that further our understanding of its
security, in particular because of the contrast with standard, randomized
public-key encryption (R-PKE):

• It would appear to be a triviality, for any primitive, that security
in the standard model implies security in the random-oracle model,
and it is certainly true, and easily proven, for R-PKE. For D-PKE
it is not clear and depends on details of the definition. In particular
we can show it in the non-uniform case but not in the uniform case.

• The power of selective-opening attacks (SOA) comes from an adver-
sary’s ability, upon corrupting a sender, to learn not just the mes-
sage but also the coins used for encryption. For R-PKE, security is
achievable. For D-PKE, where there are no coins, one’s first impres-
sion may be that SOAs are vacuous and security should be easily
achievable. We show instead that SOA-security is impossible, mean-
ing no D-PKE scheme can achieve it.

• For R-PKE, single-user security implies multi-user security, but we
show that there are D-PKE schemes secure for a single user and
insecure with two users.

1 Introduction

Public-key encryption (PKE) schemes are usually randomized, in order to
achieve goals like IND-CPA [29]. BBO [5] introduced deterministic PKE (D-
PKE), arguing that it offers practical benefits over randomized PKE (R-PKE)
in certain applications. These include efficient search on encrypted databases [5]
and resilience in the face of the low-quality randomness that pervades sys-
tems [6,41].1

BBO [5] provide a definition PRIV of “best possible” security for D-PKE,
and ROM constructions achieving it. Equivalent, IND-style formulations appear
in [10]. These definitions are unusual, and achieving them in the standard model
1 Weak randomness leads to catastrophic failures in R-PKE including the ability to

recover the plaintext from the ciphertext in schemes including GM, El Gamal and
Rabin-SAEP [36].

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 52–73, 2015.
DOI: 10.1007/978-3-662-46447-2 3

How Secure is Deterministic Encryption? 53

(SM) is challenging. Emerging as a practically-motivated notion of theoreti-
cal depth and interest, D-PKE has attracted significant foundational work as
researchers aim to understand the properties and achievability of the basic defi-
nitions and variants [10,11,19,20,28,33,39]. We continue this line of work.

Our work. This paper shows that determinism impacts security in beyond-
obvious ways. Specifically, we consider three questions. The first is whether secu-
rity in the standard model implies security in the ROM. The second is whether
D-PKE is secure under selective-opening attack. The last is whether single-user
security implies multi-user security. Fig. 1 summarizes our findings, which are
discussed in more depth below. On the practical side, our work indicates that
care must be taken in the use of D-PKE. On the theoretical side it indicates
further foundational subtleties for D-PKE, and, more broadly, for multi-stage
security definitions, in the wake of those already indicated in [40,42].

Background. In R-PKE, the encryption algorithm Enc takes the public (encry-
ption) key pk , message m and coins r to return a ciphertext c = Enc(pk ,m; r).
The basic notion of security is IND-CPA [7,29]. An adversary is a pair (A1, A2)
of PT algorithms. The game picks keys (pk , sk) and a challenge bit b. We run
A1 on input pk to get a pair (m0,m1) of messages and state information st. The
game picks random coins r, computes challenge ciphertext c = Enc(pk ,mb; r)
and runs A2 on c, st to get a bit b′. Security requires that 2Pr[b = b′] − 1 is
negligible.

In D-PKE [5], there are no coins, Enc taking pk ,m to return c = Enc(pk ,m).
Such a scheme cannot achieve IND-CPA. The notion we use is IND [10], an
indistinguishability variant of the PRIV notion of [5]. An adversary is a pair
(A1, A2) of PT algorithms. The game picks keys (pk , sk) and a challenge bit b.
We run A1 (it does not get pk) to get a pair (m0,m1) of vectors of messages
(but no state information). The game computes challenge ciphertext vector c =
Enc(pk ,mb), encryption being component-wise, and runs A2 on c, pk to get a
bit b′. Security requires that 2Pr[b = b′] − 1 is negligible. Important restrictions
are that (1) A1 does not get the public key (2) each individual message in the
vectors m0,m1 has high min-entropy, meaning is statistically unpredictable, and
(3) A1, A2 do not communicate directly, meaning no state information is passed
from A1 to A2. These restrictions are necessary, for without them security is not
achievable.

In the ROM [14], both stages of the adversary have access to the random
oracle RO, whether for R-PKE or D-PKE. In the latter case, the min-entropy
condition is required to hold even given (conditioned on) the RO.

Does SM-security imply ROM-security? That security in the standard
model (SM) implies security in the ROM appears to be a triviality or tautology,
true for any primitive. To be specific, suppose we have a standard-model R-PKE
scheme, meaning the algorithms of the scheme make no calls to RO. Suppose it
is IND-CPA in the SM. Then it is IND-CPA in the ROM. Intuitively this seems
clear because if the scheme does not use the RO, then giving the adversary access
to RO cannot violate security. If we want to prove the claim formally, we could
do so by reduction. Given a ROM adversary (A1, A2), we build SM adversary

54 M. Bellare et al.

(B1, B2) with the same advantage by just having B1 and B2 simulate the RO.
Thus, B1 maintains a table H, and runs A1. When the latter makes a query
RO(x), adversary B1 checks if H[x] is defined, and, if not, picks it at random,
in either case returning H[x] to A1 as the answer. When A1 halts with output
(m0,m1) and state stA, adversary B1 halts with output (m0,m1) and state stB ,
where the latter consists of stA plus the populated (defined) part of table H,
which has polynomial size. Now B2, given c, stB , runs A2(c, stA), continuing to
respond to A2’s oracle queries via table H, suitably augmenting it as necessary
for new queries. Eventually B2 returns whatever A2 returns. It is clear that
SM adversary (B1, B2) simulates ROM adversary (A1, A2) perfectly and has the
same advantage.

The claim that SM security implies ROM security, and the simulation argu-
ment above to establish it, hardly seem specific to R-PKE. It would appear to
be true that SM security trivially implies ROM security for any primitive via
such an argument.

But for D-PKE, the argument fails, and whether SM security implies ROM
security is not clear. To see why, let us try to mimic the above argument for D-
PKE. We can design B1, simulating A1, in the same way. The difficulty is that
B1 cannot pass its partial table H to B2, for no state information is allowed to
flow from B1 to B2. This leaves B2 stuck. It could simulate a new RO for A2,
but in the real ROM game, A1, A2 see the same RO, not different ones. The
question this raises is whether the difficulty is inherent, meaning SM security
does not imply ROM security, or whether some alternative argument can show
the implication.

We find that the answer depends on details of the definition. Let INDu, INDnu

denote, respectively, the uniform and non-uniform renditions of IND. That is,
in the first case, the adversaries are TMs while in the second they are families
of circuits. We show that SM security implies ROM security for INDnu. Our
proof works by starting with ROM adversaries A1,A2, hardwiring a q(·)-wise
independent hash function h into the circuits of B1, B2, and having these circuits
use h to simulate RO for A1, A2, with q(·) depending on the number of oracle
queries of A1 and A2. We show that there exists a “good” choice of h under
which the simulation is correct. However, in the case of INDu, we were not able
to settle the question. That is, we see no way to prove that SM security implies
ROM security (it is not clear how to perform a simulation, and it is not clear
there is any other approach to the proof) but nor can we imagine a counter-
example (it would need to exploit the fact that the scheme is secure for uniform
adversaries but not for non-uniform ones, for otherwise the claim is true).

Intuitively, it is hard for us to imagine how a SM scheme can be insecure in the
ROM, meaning how an adversary can exploit the RO when scheme algorithms
do not even use it.2 We found it curious that it was not obvious how to prove
this and that it is not clear if it is even true in the uniform case.
2 One might imagine the adversary gaining an advantage by having B1 pick messages

that depend on the RO in some clever way. The reason this does not appear to
help the adversary is that each message is required to have high min-entropy even
conditioned on the entire random oracle.

How Secure is Deterministic Encryption? 55

Primitive SM ⇒ ROM SOA SU ⇒ MU
R-PKE Yes Yes Yes
D-PKE Sometimes No No

Fig. 1. Summary of our results: The first column indicates whether or not security
in the standard model (SM) implies security in the ROM, the “sometimes” for D-
PKE reflecting that we can show it in the non-uniform case but not in the uniform
case. The second column indicates whether or not security against selective-opening
attack (SOA) is achievable. The third column indicates whether or not single-user (SU)
security implies multi-user (MU) security.

These findings show further subtleties for multi-stage security definitions
following ones already discovered by [40,42], making D-PKE a central test case
in this subtle and surprising domain.

Is SOA-secure D-PKE achievable? In a selective opening attack (SOA) on
a R-PKE scheme, a vector m of n messages is chosen from some distribution,
a vector r of random and independent coins is chosen, and the adversary A
is given the ciphertext vector c = Enc(pk ,m; r). A responds with a subset I
of {1, . . . , n}. In the message-only version of the attack, it is returned 〈m[i] :
i ∈ I〉; in full SOA, it is returned both 〈m[i] : i ∈ I〉 and 〈r[i] : i ∈ I〉.
In either case, to win, it has to compute some non-trivial information about
〈m[i] : i �∈ I〉. Security for the message-only version is implied by IND-CPA,
as shown in [17], and is thus easily achievable. Security for full SOA is not
implied by IND-CPA [9]. However, using lossy encryption [12,17,32,38], it is
shown in [12,17] that there exist schemes that provide full SOA under standard
assumptions, so full SOA security is achievable, under standard assumptions
in the standard model. Subsequently, further schemes have been provided as
well [27,30].

The question of security of D-PKE under SOA has not been considered
before, and we initiate an investigation. A vector m of n messages is again
chosen from some distribution, and the adversary A is given the ciphertext
vector c = Enc(pk ,m). A responds with a subset I of {1, . . . , n}, is returned
〈m[i] : i ∈ I〉, and, to win, has to compute some non-trivial information about
〈m[i] : i �∈ I〉. We note that what we have defined is the message-only version.
Naturally, there is no “full” SOA here, since there are no coins used, and thus
none to expose.

The difficulty of achieving SOA-secure R-PKE lies in exposure of the coins.
Since D-PKE has no coins, one’s first impression may be that SOA-security for
it would be like message-only SOA-security for R-PKE and thus easy to achieve.
To the contrary, we show that SOA-secure D-PKE is impossible. That is, there
is no D-PKE scheme that is SOA-secure. Given any D-PKE scheme, we give an
attack violating SOA-security.

The contrast with R-PKE is two-fold. For the latter, SOA is easy in the
message-only case, and, with exposure of coins, even if not easy, it is achievable.
But for D-PKE, it is simply not achievable. The key element of our proof is to

56 M. Bellare et al.

show that for any D-PKE scheme there is an algorithm that can impose and
verify an association between a message and ciphertext that is unique with high
probability, even for dishonestly chosen public keys. We combine this with the
technique of BDWY [9] to obtain our impossibility result. We note that for
R-PKE the BDWY technique did not show impossibility of (full) SOA for all
R-PKE schemes, but for a subclass of them, while we are using the technique to
rule out SOA-security for all D-PKE schemes.

The problem of SOA-security has been the subject of many works [2,3,12,16–
18,21–24,26,27,30,31,34,37]. These have looked at R-PKE, commitment and
IBE. We are the first to consider SOA for D-PKE.

Does SU security imply MU security? The basic IND-CPA notion for R-
PKE [29] is a single-user (SU) setting, meaning there is only one public key in
the game. In practice, many users, each with their own key pair, could encrypt
messages, and these messages may be related. Security of R-PKE in the multi-
user (MU) setting was defined in [1,4]. They showed that SU security implied
MU security, meaning any R-PKE scheme that meets the usual SU IND-CPA
notion is also MU secure.

It is natural to ask whether the same is true for D-PKE, namely whether SU
security, in the form of IND, implies MU security. We define MU security for
D-PKE and show that the answer to the question is “no.” That is, we present
a counter-example, namely a D-PKE scheme that we show meets the standard
SU IND definition, but we give an attack showing that it fails to be MU-secure.
Indeed, it is insecure even with just two users, meaning when there are two
public keys in the picture.

BBO [5] had conjectured that indeed SU security did not in general imply
MU security for D-PKE. Our results prove and confirm this conjecture. Brakerski
and Segev [20] define MU security of D-PKE in the auxiliary input setting and
give a scheme that achieves it for messages that are block sources, but they do
not show a separation between the SU and MU settings. Dodis, Lee and Yum [25]
give another example of a setting where SU security does not imply MU security,
namely optimistic fair exchange.

2 Preliminaries

Notation and conventions. We let λ ∈ N denote the security parameter. If
n ∈ N then we let 1n denote the string of n ones and [n] denote the set {1, . . . , n}.
If A is a finite set, then let |A| denote its size, and a

$← A denote sampling a
uniformly at random from A. The empty string is denoted by ε. If a and b are
two bit strings, we denote by a ‖ b their concatenation. We use boldface letters
for vectors. For any vector x, we let |x| denote the number of its components. We
say x is an n-vector if |x| = n. For i ∈ [|x|] we let x[i] denote the i-th component
of x. We let Maps(D,R) denote the set of all functions f : D → R.

Algorithms are randomized, unless otherwise specified as being determin-
istic. “PT” stands for “polynomial-time,” whether for randomized algorithms

How Secure is Deterministic Encryption? 57

or deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r) denote
running A with random coins r on inputs x1, . . . and assigning the output to
y. We let y

$← A(x1, . . .) be the resulting of picking r at random and letting
y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all y that have positive
probability of being output by A(x1, . . .). A function ε: N → R is negligible if for
every polynomial p, there exists λp ∈ N such that ε(λ) ≤ 1/p(λ) for all λ ≥ λp.
An algorithm A is uniform if there exists a Turing machine T which halts with
the output of A on all inputs. An algorithm A is non-uniform if there exists a
sequence of circuits {Cλ}λ∈N such that Cλ computes A(1λ, . . .).

Games. Our definitions and proofs use the code-based game-playing framework
of [15] with some of the syntax of [40]. A game G(λ) (see Fig. 2 for an example)
consists of a Main procedure, and possibly others, and begins by executing
Main, which runs an adversary A after some initialization steps. A is given
oracle access to certain game procedures. After A finishes executing, G performs
steps with A’s output to produce some output itself. We assume that boolean
variables are initialized to false, that sets are initialized to ∅, strings are initialized
to ε, and that integers are initialized to 0. We denote by GA ⇒ y the event that
an execution of G with A outputs y. We abbreviate GA ⇒ true as GA.

Functions families. A family of functions HF is a PT, deterministic algorithm
that defines for each λ ∈ N a map HF(1λ, ·, ·) : {0, 1}HF.kl(λ) × {0, 1}HF.il(λ) →
{0, 1}HF.ol(λ). Here HF.kl,HF.il,HF.ol: N → N are the key, input and output
lengths of HF, respectively. We extend HF to vectors (in a component-wise way)
via

HF(1λ, k,x) = (HF(1λ, k,x[1]), . . . ,HF(1λ, k,x[|x|]))
for all λ ∈ N, all k ∈ {0, 1}HF.kl(λ) and all vectors x over {0, 1}HF.il(λ).

3 Deterministic PKE

We provide definitions for D-PKE following [5,10]. We give a unified treatment
of the ROM and the SM by regarding the latter as a special case of the former.

D-PKE. A deterministic public key encryption (D-PKE) scheme DE specifies
four PT algorithms and related functions as follows. The parameter genera-
tor algorithm DE.Pg takes as input a unary representation 1λ of the security
parameter λ ∈ N and returns the system parameters π ∈ {0, 1}DE.pl(λ) which are
common to all users. The key generation algorithm DE.Kg takes as input π and
outputs a public encryption key pk ∈ {0, 1}DE.pkl(λ) and a secret decryption key
sk . Given inputs 1λ, π, pk , a message m ∈ {0, 1}DE.ml(λ) and access to an ora-
cle R: {0, 1}DE.ROil(λ) → {0, 1}DE.ROol(λ), the deterministic encryption algorithm
DE.Enc outputs a ciphertext c = DE.EncR(1λ, π, pk ,m). Given inputs 1λ, π, sk , a
ciphertext c and oracle R, the deterministic decryption algorithm DE.Dec output
either a message m ∈ {0, 1}DE.ml(λ), or ⊥. Here DE.pl,DE.pkl,DE.ml: N → N are
the parameter, public key and message length functions of DE, respectively, while
DE.ROil,DE.ROol: N → N are the RO input and output length functions, respec-
tively. Correctness requires that for all λ ∈ N, all π ∈ [DE.Pg(1λ)], all [(pk , sk) ∈

58 M. Bellare et al.

Main INDA
DE(λ)

st
$← A.csRO(1λ)

(m0,m1)
$← A.msgRO(1λ, st)

π
$← DE.Pg(1λ)

(pk , sk)
$← DE.Kg(1λ, π)

b
$← {0, 1}

c ← DE.EncRO(1λ, π, pk ,mb)

b′ $← A.gRO(1λ, π, pk , st, c)
Return (b = b′)

RO(x)

If T [x] = ⊥ then T [x]
$← {0, 1}DE.ROol(λ)

Return T [x]

Main PREDP
A(λ)

(st, m, R)
$← P(1λ)

(m0,m1)
$← A.msgR(1λ, st)

Return (∃ i, b : mb[i] = m)

Fig. 2. The IND game used to define security of D-PKE scheme DE and the PRED
game used to define unpredictability of adversary A

[DE.Kg(1λ, π)], all m ∈ {0, 1}DE.ml(λ) and all R ∈ Maps[DE.ROil(λ),DE.ROol(λ)]
we have DE.DecR(1λ, π, sk ,DE.EncR(1λ, π, pk ,m)) = m. We extend DE.Enc to
take input vectors of messages by defining DE.EncR(1λ, π, pk ,m) = (DE.EncR(1λ,
π, pk ,m[1]), . . . ,DE.EncR(1λ, π, pk ,m[|m|])), and similarly we let DE.DecR(1λ,
π, sk , c) = (DE.DecR(1λ, π, sk , c[1]), . . . ,DE.DecR(1λ, π, sk , c[|c|])). We say that
DE is a standard-model (SM) scheme if DE.Enc,DE.Dec make no oracle queries,
and in this case we will omit the superscript R to DE.Enc,DE.Dec.

IND security. We define IND security of a D-PKE scheme DE following
BFOR [10]. An IND adversary A specifies a common-state generation algorithm
A.cs, a message-generation algorithm A.msg and a guessing algorithm A.g, all
PT. On input 1λ, algorithm A.cs generates state information st that will be
passed to both A.msg and A.g. Algorithm A.msg, on input 1λ, st returns a pair
(m0,m1) of vectors of messages with |m0| = |m1| = A.nm(λ) and m0[i],m1[i] ∈
{0, 1}DE.ml(λ), where A.nm: N → N is the number-of-messages function asso-
ciated to A. It is required that the strings (messages) m0[1], . . . ,m0[|m0|] are
distinct and the strings (messages) m1[1], . . . ,m1[|m1|] are distinct. Also asso-
ciated to DE are functions DE.ROil,DE.ROol, the input and output length of the
RO that is used by the scheme. We say that A is a standard-model adversary if
it makes no oracle queries, and in this case we may omit giving it an oracle.

The INDA
DE(λ) game associated with DE and adversary A is described on the

left of Fig. 2. We define the advantage of A via Advind
DE,A(λ) = 2·Pr[INDA

DE(λ)]−1
for all λ ∈ N. If A is a class (set) of adversaries then we say that DE is IND[A]-
secure if Advind

DE,A(·) is negligible for all A ∈ A. It is convenient to view IND[A] as
a set, so that DE ∈ IND[A] iff DE is IND[A]-secure. With this framework, we can
now obtain various variants of the notion by varying and restricting the class A.

First, we must impose the necessary condition that messages being encrypted
have high min-entropy. In game PRED of Fig. 2, the predictor adversary P begins

How Secure is Deterministic Encryption? 59

by specifying st and a guess m as to a message that A.msg will generate. It
also specifies the function R ∈ Maps[DE.ROil(λ),DE.ROol(λ)] that will play the
role of the RO. This captures the requirement that high min-entropy is required
across all choices of the oracle. We let Advpred

A,P (λ) = Pr[PREDP
A(λ)] for all λ ∈ N.

We say that A is unpredictable if Advpred
A,P (·) is negligible for all P. We stress that

here P is not restricted to PT but may be computationally unbounded. If A is a
standard model adversary then we may omit R in the output of P.

Following [10], our adversaries A are three stage. If A.cs always returns ε then
we say that A has trivial initial state and we may refer to A as a two-stage adver-
sary. In BFOR [10], definitions of security are relative to two-stage adversaries,
three-stage ones being introduced in order to facilitate proofs. Accordingly, our
definitions of security will also be in terms of two-stage adversaries.

We are now ready to define adversary classes of interest. We consider two
dimensions: the model (ROM or SM), and the type of computation (non-uniform
or uniform). With two choices in each category, we get 4 classes of adversaries
and 4 corresponding notions of security for D-PKE. Proceeding to the details,
we let A3 be the class of all PT, 3-stage, unpredictable adversaries and A2 ⊆ A3

the class of all PT, 2-stage unpredictable adversaries. We let Arom denote the
class of ROM adversaries, and Asm ⊆ Arom the class of SM adversaries. We
let Anu denote the class of non-uniform adversaries, and Au ⊆ Anu the class
of uniform adversaries. Then our 4 classes are Axm−xu

2 = Axm ∩ Axu ∩ A2 for
xm ∈ {rom, sm} and xu ∈ {nu,u}. The 4 corresponding notions of D-PKE
security are IND[Axm−xu

2] for xm ∈ {rom, sm} and xu ∈ {nu,u}.

4 Does SM Security Imply ROM Security?

We now explore if a D-PKE scheme that is IND-secure in the standard model
(SM) is IND-secure in the ROM.

Problem and approach. It is easy to show that a SM R-PKE scheme retains
its security in the ROM, where the adversary has access to the random oracle,
because a SM adversary can simply simulate the random oracle for a ROM
adversary. Indeed, that SM security implies ROM security seems to have been
viewed as trivial and true for any primitive. We are about to see, however, that
for D-PKE the answer is less clear.

We are given a SM D-PKE scheme DE that is secure in the SM, meaning
its algorithms make no calls to RO and it is secure against adversaries that
make no calls to RO. We ask if DE remains secure in the ROM, meaning when
the adversary is allowed to query RO. The reason an adversary A may be able
now to do more is that A.msg may create messages that depend in some clever
way on RO and then A.g could exploit the fact that it has access to the same
RO to figure out something about the messages from the ciphertexts. Intuitively,
however, it is difficult to see how this could happen because messages are required
to have high min-entropy even given RO. However, it is not clear how to prove
it, which raises the question of whether it is even true. The difficulty is that no

60 M. Bellare et al.

communication is allowed from the message-finding stage of the adversary to the
guessing stage, and so a simulating SM adversary has no obvious way to ensure
that these two stages have a common view of the random oracle it is simulating.

We will first present Lemma 1 showing the claim is true in the 3-stage adver-
sary formulation of the IND games. Namely given a SM D-PKE scheme and
given a 3-stage ROM adversary A, we show how to simulate A with a 3-stage
SM adversary B so that the latter has the same advantage as A. The proof
uses a q(·)-wise independent hash function, with the polynomial q depending
on A, as the common initial state created by B.cs. The lemma is true both in
the uniform and the non-uniform settings. However, recall that IND security is
defined with respect to adversaries that have trivial initial state, meaning are
two stage. And in our reduction, B will have non-trivial initial state even if A
has trivial initial state. So the lemma does not directly show that IND in the
SM implies IND in the ROM. In the non-uniform case, however, we can flatten
the constructed 3-stage adversary B into an equivalent one with trivial initial
state, thereby concluding that if SM D-PKE scheme DE is in IND[Asm−nu

2] then
it is also in IND[Arom−nu

2]. In the uniform setting we have no obvious way to
remove the non-trivial initial state of B, and thus are not able to conclude that
DE being in IND[Asm−u

2] implies it is in IND[Arom−u
2]. This very basic question

(surprisingly) remains open.

q-wise independent function families. We say that a family HF of functions
is q(·)-wise independent if for all λ ∈ N, all q(λ)-vectors x over {0, 1}HF.il(λ) all
of whose entries are distinct, and all q(λ)-vectors y over {0, 1}HF.ol(λ) we have
Pr[HF(1λ, k,x) = y] = 2−q(λ)·HF.ol(λ), where the probability is over k chosen at
random from {0, 1}HF.kl(λ).

From SM security to ROM security with 3 stages. The following lemma
says that for any SM D-PKE scheme (meaning, the scheme algorithms do not
call the RO), a 3-stage ROM adversary A may be simulated by a 3-stage SM
adversary B who achieves the same advantage as A. It does not follow that
a 2-stage ROM adversary can be simulated by a 2-stage SM adversary since
our constructed adversary B will have non-trivial initial state even if the given
adversary A had trivial initial state.

Lemma 1. Let DE be a standard-model D-PKE scheme. Let A ∈ Arom ∩ A3

be a 3-stage, PT ROM adversary. Then there is a 3-stage, PT standard-model
adversary B ∈ Asm ∩ A3 such that

Advind
DE,B(λ) = Advind

DE,A(λ) (1)

for all λ ∈ N. Furthermore, if A is unpredictable then so is B and if A is uniform
then so is B.

Proof (Lemma 1). Without loss of generality, we assume that there exists a
polynomial q : N → N such that for all λ ∈ N, adversary A always makes exactly
q(λ) RO queries in game INDA

DE(λ). Let HF be a q(·)-wise independent family of
functions with HF.il = DE.ROil and HF.ol = DE.ROol. We define SM adversary
B as follows:

How Secure is Deterministic Encryption? 61

B.cs(1λ)

k
$← {0, 1}HF.kl(λ)

stA
$← A.csROSim(1λ)

Return (k, stA)

ROSim(x)

Return HF(1λ, k, x)

B.msg(1λ, stB)
(k, stA) ← stB
(m0,m1)

$← A.msgROSim(1λ, stA)
Return (m0,m1)

ROSim(x)

Return HF(1λ, k, x)

B.g(1λ, π, pk , stB, c)
(k, stA) ← stB
b′ $← A.gROSim(1λ, π, pk , stA, c)
Return b′

ROSim(x)

Return HF(1λ, k, x)

That is, B.cs picks at random a key defining a member of HF and passes
it to B.msg,B.g. The latter use the function HF(1λ, k, ·) to simulate the RO of
A, via the ROSim procedure. Since A makes at most q(λ) queries to RO, the
q(λ)-wise independence of the family should result in a perfect simulation of the
RO. Also, since both B.msg and B.g use the same function, A.msg and A.g will
see a consistent RO across their two stages. As a result we expect that (1) is
true.

Formally proving that (1) is true, however, is not straightforward because the
RO queries are adaptive and q(·)-wise independence is a non-adaptive condition,
so some care must be taken. In [8] we provide an analysis that handles this, and
do not discuss it further here.

It is clear that if A is uniform then so is B. Assuming A is unpredictable
we now have to show that B is unpredictable. Let PB be a predictor adversary
for B. We define a predictor adversary PA for A as follows. On input 1λ it
runs PB(1λ) to get back (stB,m). (Since B is SM, PB returns a pair, not a
triple.) It parses stB as (k, stA) and returns (stA,m,HF(1λ, k, ·)). Then we have
Advpred

A,PA
(·) = Advpred

B,PB
(·). But the LHS is negligible by assumption, so the RHS

is negligible as well. ��

We note that alternatively, in place of a family of q(·)-wise independent functions,
we could have used a PRF, the key being chosen by B.cs and included in the state
so that it is passed to B.msg,B.g. The latter would use the PRF under this key
to simulate the RO for A.msg,A.g, respectively. O’Neill used this technique [35,
Lemma 3.3.2] to partially remove the RO for a restricted class of D-PKE schemes.

SM security implies ROM security in the non-uniform setting. The
following theorem uses Lemma 1 to show that if a D-PKE scheme DE is IND-
secure in the standard model with respect to non-uniform adversaries, then it is
IND-secure in the ROM with respect to non-uniform adversaries. The proof uses
non-uniformity in a crucial way, and hence cannot be adapted to the uniform
setting.

62 M. Bellare et al.

Theorem 1. Let DE be a SM D-PKE scheme such that DE ∈ IND[Asm−nu
2].

Then DE ∈ IND[Arom−nu
2].

Proof. Let A ∈ Arom−nu
2 be an unpredictable, non-uniform PT ROM adversary

with trivial initial state. By Lemma 1, we get an unpredictable, non-uniform
PT SM adversary B ∈ Asm ∩ Anu ∩ A3 such that Advind

DE,B(·) = Advind
DE,A(·).

However, B.cs is not trivial, so the assumption that DE ∈ IND[Asm−nu
2] does not

allow us to conclude that Advind
DE,B(·), and hence Advind

DE,A(·), is negligible. We
modify B to an unpredictable, trivial initial state, non-uniform SM adversary
C ∈ Asm−nu

2 with Advind
DE,C(·) = Advind

DE,B(·). Now the assumption that DE ∈
IND[Asm−nu

2] means that Advind
DE,C(·) is negligible and hence so is Advind

DE,A(·),
showing that DE ∈ IND[Arom−nu

2] as desired. To obtain C from B, we simply use
coin fixing, namely we hardwire a best choice of the key k chosen randomly by
B.cs(1λ) into the circuits C.msg(1λ, · · ·) and C.g(1λ, · · ·) while letting C.cs always
return ε. ��

We note that the issues and difficulties associated with showing that SM security
implies ROM security could also be viewed as arising from definitional short-
comings of existing formulations, and addressed definitionally, for example by
making the three-stage definition the basic one with respect to which security is
measured. Lemma 1 directly implies that if DE is a SM D-PKE scheme, then:
(1) If DE ∈ IND[Asm ∩ Au ∩ A3] then DE ∈ IND[Arom ∩ Au ∩ A3] and (2) If
DE ∈ IND[Asm ∩ Anu ∩ A3] then DE ∈ IND[Arom ∩ Anu ∩ A3]. That is, for 3-
stage adversaries, SM security implies ROM security both in the uniform and
non-uniform settings. However the question of whether the implication holds for
two-stage adversaries and the current definitions would still be interesting.

5 Is SOA Security Achievable?

We initiate an investigation of SOA security for D-PKE. We provide definitions
and then show that the goal is impossible to achieve in the SM, meaning no SM
D-PKE scheme achieves it.

What makes this interesting is that the difficulty of achieving SOA security in
the R-PKE case arises from the fact that an attacker obtains not only messages
but the coins underlying the opened ciphertexts. If it only obtained messages,
security is easy to achieve [17]. Since in D-PKE there are no coins, one might
think security would be also easy to achieve. But in fact this is not true.

Preliminaries. We let ⊥n denote the vector of length n all of whose entries
are ⊥. For a set I ⊆ [|x|] we let x[I] denote the |x|-vector whose i-th component
is x[i] if i ∈ I and ⊥ otherwise.

Collision resistance of a function family HF is defined via game CRX
HF(λ)

associated to HF, adversary X and λ ∈ N. The game starts by picking k
$←

{0, 1}HF.kl(λ). Then X is run with inputs 1λ, k to return x0, x1 ∈ {0, 1}HF.il(λ).
The game returns true if x0 �= x1 and HF(1λ, k, x0) = HF(1λ, k, x1), and false

How Secure is Deterministic Encryption? 63

Main REALA
DE(λ)

k
$← A.cs(1λ)

m
$← A.msg(1λ)

π
$← DE.Pg(1λ)

(pk , sk)
$← DE.Kg(1λ, π)

c
$← DE.Enc(1λ, π, pk ,m)

st
$←

A.corCor(1λ, π, pk , k, c)

w
$← A.g(1λ, k, I, st,m[I])

Return (w = A.f(1λ,m))

Cor(I)

Return m[I]

Main IDEALA,S
DE (λ)

k
$← A.cs(1λ)

m
$← A.msg(1λ)

st
$← SCor(1λ, k)

w
$← A.g(1λ, k, I, st,m[I])

Return (w = A.f(1λ,m))

Cor(I)

Return m[I]

Main PREDP
A(λ)

(I, st)
$← P(1λ)

m
$← A.msg(1λ)

m
$← P(st,m[I])

Return (∃ i �∈ I : m[i] =
m)

Main CCRC
DE,z(λ)

(π, pk)
$← C(1λ)

If (not DE.Vf(1λ, π, pk)) then return false

m0,m1
$← ({0, 1}DE.ml(λ))z(λ)

c0 ← DE.Enc(1λ, π, pk ,m0)
c1 ← DE.Enc(1λ, π, pk ,m1)
For i = 1, . . . , z(λ) do

If ((c0[i] = c1[i]) and (m0[i] �= m1[i]))
then return true

Return false

Fig. 3. The REAL, IDEAL, PRED and CCR games

otherwise. The advantage of X is defined as Advcr
HF,X(λ) = Pr[CRX

HF(λ)] and we
say that HF is collision resistant if Advcr

HF,X(·) is negligible for all PT X.

Defining SOA security. Providing a meaningful definition of SOA-security
for D-PKE takes some care. A definition based on semantic security for relations,
as given for R-PKE in [9,12], is trivially unachievable for D-PKE because a
ciphertext is already partial information about a plaintext. Thus we consider
semantic security for functions, where the adversary, given ciphertexsts, aims to
figure out a function of the message, this function not being given the public
key and thus unable to encrypt. Additionally we must continue to require that
messages do not depend on the public key and are unpredictable. Our definition
is simulation-based and combines ideas from the basic (non-SOA) definitions of
secure D-PKE [5,10] with ideas from the definitions of SOA-security for R-PKE
from [9,12].

In Fig. 3 is the “real” game REALA
DE associated to D-PKE scheme DE and

adversary A. PT common state generation algorithm A.cs is executed on input
1λ to get a common state k that will be passed to the A.cor stage of A. (Other
stages can get it too, but since our results are negative, not giving it only makes
the results stronger.) Then PT message generator A.msg is executed on input

64 M. Bellare et al.

1λ to get a A.nm(λ)-vector of messages over {0, 1}DE.ml(λ), where A.nm is the
number-of-messages function associated to A. Then public parameters and keys
are generated. (It is important that the messages do not depend on the pub-
lic parameters or public key of DE for the same reason as with PRIV [5] and
IND [10], namely that otherwise security is trivially unachievable.) Then the
vector of messages is encrypted, component-wise, to get a vector c of cipher-
texts. The PT corruption algorithm A.cor gets 1λ, π, pk , k, c and an oracle Cor

to which it is allowed exactly one query, this consisting of a subset I of [A.nm(λ)],
indicating positions at which it wants m opened. In response it gets m[I], mean-
ing the values m[i] for i ∈ I, and returns state information st. The PT guessing
algorithm A.g gets 1λ, k, I, st,m[I], where I is the Cor-query previously made
by A.cor and recorded by the game, and outputs a guess w as to the value of
A.f(1λ,m). Here deterministic PT algorithm A.f, called the information function,
represents the information about m that the adversary is trying to compute. The
game returns true iff the guess is correct.

The “ideal” game IDEALA,S
DE of Fig. 3 is associated to DE, adversary A and

a simulator S. Here, the common state and message vector are chosen as before,
but the game neither chooses parameters and public key, nor generates any
ciphertexts. The simulator is given no information about m, but has access to
oracle Cor, to which it is allowed exactly one query, this consisting of a subset
I of [A.nm(λ)]. In response S gets m[I] and must then return state information
st that should resemble the output of A.cor. The rest is as in the real game.

We need to restrict A.msg to reflect the inherent weaknesses of D-PKE,
analogous to the restrictions made in defining PRIV and IND. Namely we
require a message-distinctness condition and a message unpredictability (high
min-entropy) condition. Before detailing definitions, we note that the A.msg in
Theorem 2 simply outputs uniform, independently distributed messages of super-
logarithmic length, so both the conditions will be trivially met, and thus a reader
can skip the rest of this paragraph if they wish. Proceeding, since ciphertext
equality leaks plaintext equality in D-PKE, we require the following message-
distinctness condition: there is a negligible function ν such that Pr[∃ i, j : (i �=
j)∧(m[i] = m[j])] ≤ ν(λ) where the probability is over m $← A.msg(1λ). Second,
we require that A is unpredictable, which we define to mean that Advpred

A,P (λ) =
Pr[PREDP

A(λ)] is negligible for all P (we emphasize that here P is not restricted
to be PT), where game PREDP

A is shown on the middle, bottom of Fig. 3. The
unpredictability condition we define here is very strong, requiring that each com-
ponent message of m has high min-entropy even given the others, but this only
strengthens our results since they are negative. We let Asoa denote the class of
all PT A that satisfy the message distinctness and unpredictability conditions.

We define the soa-advantage of an adversary A with respect to DE and a
simulator S via

Advsoa
DE,A,S(λ) = Pr

[

REALA
DE(λ)

]

− Pr
[

IDEALA,S
DE (λ)

]

for all λ ∈ N. We say that DE is SOA-secure if for all A ∈ Asoa, there exists a
PT simulator S such that Advsoa

DE,A,S(·) is negligible.

How Secure is Deterministic Encryption? 65

The definitions and results here are all in the standard model. Our impossi-
bility result does not rule out achieving an appropriate (programmable) ROM
version of our definition of SOA-security for D-PKE. In [8] we further discuss
the definitional choices made here.

Approach. BDWY [9] show that if CR hash functions exist then any R-PKE
scheme satisfying a certain binding property they define is not SOA-secure.
Roughly, binding says that encryption remains injective even on dishonestly-
chosen public keys. Not all R-PKE schemes satisfy this binding property, but
many common ones do, and the BDWY result shows in particular that IND-CPA
does not imply SOA for R-PKE. In the D-PKE case, rather than ask for schemes
that are binding, we introduce a verification algorithm that, given a dishonestly-
generated public key, tests the extent to which the encryption induced by this
key is an injective function. If it is far from injective, verification will catch it,
and otherwise we have some sort of binding. We then show that such a veri-
fication algorithm exists for every D-PKE scheme. Adapting the technique of
BDWY we can then use this to show that no D-PKE scheme is SOA-secure.

Injectivity verification. Let DE be a D-PKE scheme. A verification algo-
rithm DE.Vf for DE is a PT algorithm that takes as input 1λ, π, pk and returns
a boolean value. Here, π and pk play the role of parameters and a public
key but are to be thought of as adversarially chosen and not necessarily ones
that would actually arise in honest parameter and key generation. Informally,
DE.Vf checks if the provided π, pk induce an almost injective function on valid
DE messages. We impose a requirement we call completeness, which says that
for all λ ∈ N, all π ∈ [DE.Pg(1λ)] and all (pk , sk) ∈ [DE.Kg(1λ, π)] we have
DE.Vf(1λ, π, pk) = true. That is, if the parameters and key are honestly chosen
then the verifier accepts. To formalize the requirement for adversarially chosen
π, pk , consider the game described in Fig. 3, and define the ciphertext collision
resistance advantage of an adversary C via Advccr

DE,z,C(λ) = Pr
[

CCRC
DE,z(λ)

]

.
Here adversary C picks π, pk , so the encryption function induced by them, unlike
that induced by an honestly-generated π, pk , may not be injective. The advan-
tage of the adversary is the probability that it can get some non-injectivity to
surface via collisions. The following lemma says that it is possible to design a
verification algorithm that makes it hard for any adversary to defeat CCR.

Lemma 2. Let DE be a D-PKE scheme and z: N → N. Define the verification
algorithm DE.Vf as follows:

DE.Vf(1λ, π, pk)
If (|π| �= DE.pl(λ) or |pk | �= DE.pkl(λ)) then return false
For t = 1, . . . , z(λ) do

m′
0[t]

$← {0, 1}DE.ml(λ) ; m′
1[t]

$← {0, 1}DE.ml(λ)

If ((DE.Enc(1λ, π, pk ,m′
0[t]) = DE.Enc(1λ, π, pk ,m′

1[t])) ∧ (m′
0[t] �= m′

1[t]))
then return false

Return true

66 M. Bellare et al.

Then DE.Vf is PT and complete. Also for any (not necessarily PT) adversary C
we have Advccr

DE,z,C(λ) ≤ 1
4 for all λ ∈ N.

Proof. Lemma 2] For any λ ∈ N, any π ∈ {0, 1}DE.pl(λ) and any
pk ∈ {0, 1}DE.pkl(λ) let CPDE(1λ, π, pk) equal the probability that there exists
t ∈ [z(λ)] such that

DE.Enc(1λ, π, pk ,m0[t]) = DE.Enc(1λ, π, pk ,m1[t]) and m0[t] �= m1[t]

where the probability is over m0,m1
$← ({0, 1}DE.ml(λ))z(λ). In game CCR the

probability that the test performed using DE.Vf is passed is 1−CPDE(1λ, π, pk).
If such test is passed, the probability that some ciphertext collision appears (thus
making the game CCR return true) is upper bounded by CPDE(1λ, π, pk). Since
passing the verification algorithm’s test and having some ciphertext collision is
the only combination in which game CCR returns true, for any adversary C,
we get

Advccr
DE,z,C(λ)

≤ max
π∈{0,1}DE.pl(λ)

max
pk∈{0,1}DE.pkl(λ)

((

1 − CPDE(1λ, π, pk)
)

CPDE(1λ, π, pk)
)

≤ 1
4

where the last inequality is from the maximum of the quadratic function. ��

Impossibility of SOA security. In order to prove that a given D-PKE scheme
DE is not SOA-secure we need to prove the existence of an adversary A ∈ Asoa

such that for every PT simulator S, the function Advsoa
DE,A,S(·) is not negligible.

We assume a collision-resistant hash function HF in the following.

Theorem 2. Let DE be a D-PKE scheme such that 2−DE.ml(·) is negligible.
Assume the existence of a collision-resistant family of functions. Then, there
exists a PT adversary A ∈ Asoa such that, for all PT simulators S there exists
a function ν that is not negligible and is such that Advsoa

DE,A,S(λ) ≥ ν(λ) for all
λ ∈ N. Furthermore, message sampler A.msg returns a vector of uniformly and
independently distributed messages. ��

The proof follows the template of the proof from [9] but makes crucial use of
Lemma 2. We use a variant of the reset lemma of [13].

Proof (Theorem 2). Let HF be a collision-resistant family of functions. Let
z(·) = HF.ol(·) + DE.pkl(·) + DE.pl(·). Let n(·) = 2z(·). Let A be the adversary
defined in Fig. 4. We should emphasize that the hash function here is not being
applied element-wise, but to the ciphertext vector as a whole. Here, DE.Vf is the
verification algorithm provided by Lemma 2 for DE. We first note that A ∈ Asoa.
Indeed, A is unpredictable due to the assumption that 2−DE.ml(·) is negligible and
the fact that messages in the message vector are independently and uniformly

How Secure is Deterministic Encryption? 67

Algorithm A.cs(1λ)

k
$← {0, 1}HF.kl(λ) ; Return k

Algorithm A.msg(1λ)

m
$← ({0, 1}DE.ml(λ))n(λ) ; Return m

Algorithm A.corCor(1λ, π, pk , k, c)

b[1] . . . b[z(λ)] ← HF(1λ, k, c)‖π‖pk
I ← { 2j − 1 + b[j] : 1 ≤ j ≤ z(λ) }
m ← Cor(I)
st ← (π, pk , c)
Return st

Algorithm A.g(1λ, k, I, st,m)

(π, pk , c) ← st
If (|π| �= DE.pl(λ) or |pk | �= DE.pkl(λ))

then return 0
If |c| �= n(λ) then return 0
If (not DE.Vf(1λ, π, pk)) then return 0
b[1] . . . b[z(λ)] ← HF(1λ, k, c)‖π‖pk
If (I �= { 2j − 1 + b[j] : 1 ≤ j ≤ z(λ) })

then return 0
For all i ∈ I do

If (DE.Enc(1λ, π, pk ,m[i]) �= c[i])
then return 0

Return 1

Algorithm A.f(1λ,m)

Return 1

Fig. 4. Adversary A for the proof of Theorem 2

distributed. It also satisfies the distinctness condition since 2−DE.ml(·) is negligible
and n(·) is a polynomial. Next we note that

Pr
[

REALA
DE(λ)

]

= 1 (2)

for all λ ∈ N. This follows from the description of A and the completeness of the
verifier. We will build adversaries X and C such that

Pr
[

IDEALA,S
DE (λ)

]

≤ 2−DE.ml(λ)z(λ) +
√

Advccr
DE,z,C(λ) + Advcr

HF,X(λ) (3)

for all λ ∈ N. But by the assumption that HF is CR and by Lemma 2, we have
that the above probability is not negligibly close to 1 and hence

Advsoa
DE,A,S(·) = 1 − Pr

[

IDEALA,S
DE (·)

]

(4)

is a function that is not negligible.
It may seem strange that security fails for A.f that always returns 1, because

this function does not leak anything about m. What we are saying is that it is not
possible to prove even this simple, intuitive claim, meaning to give a simulator
for an adversary relative to this simple information function.

We proceed to prove (3). Given any S, we divide it in two parts, S1 and S2.
S1 is the execution until the point at which the subset that will be corrupted is
chosen, and S2 is the rest of the execution. We assume without loss of generality
that S1 forwards the coins to S2, so S2 is deterministic. This means we can view
S as operating as follows:

Simulator SCor(1λ, k)

(st∗, I) $← S1(1λ, k) ; m ← Cor(I) ; st ← S2(1λ, st∗,m) ; Return st

68 M. Bellare et al.

We now provide some intuition about why we expect the simulator to fail.
We consider an experiment where we run A.cs(1λ) to get k, run S1(1λ, k) to
get (st∗, I), pick two, random vectors m0,m1 that are ⊥ on positions not in I,
and then run S2 twice, getting st0 ← S2(1λ, st∗,m0) and st1 ← S2(1λ, st∗,m1).
Parse stb as (πb, pk b, cb) for b = 0, 1. If st0 �= st1 then, because I is the same
in both cases, we have (π0, pk0) = (π1, pk1) and thus c0 �= c1, leading to a
collision for HF(1λ, k, ·). So assume st0 = st1 = (π, pk , c). If both runs make the
game return true then by definition of A.g we have DE.Enc(1λ, π, pk ,m0[I]) =
c[I] and DE.Enc(1λ, π, pk ,m1[I]) = c[I]. This is highly unlikely if the function
DE.Enc(1λ, π, pk , ·) is injective. So the only way the simulator can hope to suc-
ceed is pick π, pk so that this function is highly non-injective. But A.g is running
the verifier so if the simulator tries this, A.g is likely to return 0 by Lemma 2. In
[8] we formalize the above intuition and establish (3) via the reset lemma. ��

Indistinguishability-based SOA. Theorem 2 rules out SOA-secure D-PKE
under a simulation-style definition. A natural question is whether SOA-secure
D-PKE may be achieved under a weaker definition, in particular an indistin-
guishability style one. Indeed, for R-PKE, SOA-security definitions in both styles
have been made and investigated, and the indistinguishability style is easier
to achieve [12,17,18,31]. The difficulty is that for D-PKE it is not clear how
to give a meaningful indistinguishability style definition of SOA-security. For
R-PKE, the indistinguishability definition involves conditional re-sampling of
the un-opened messages. In the D-PKE case we cannot provide the un-opened
messages in the distinguishing test, since the adversary could easily win by re-
encrypting to check versus the ciphertexts. It is not clear to us what could be
done instead. Additionally, even for R-PKE, re-sampling is rarely polynomial
time so either we consider security for a very limited set of distributions or we
have a non-polynomial time game, and both choices have problems. Defining
some achievable notion of SOA-secure D-PKE is an interesting open problem.

6 Does SU Security Imply MU Security?

We now define mIND, the multi-key version of IND security, and show a separa-
tion between the two notions by showing the existence of a D-PKE scheme that
is IND-secure but not mIND-secure.

mIND security. Let DE be a D-PKE scheme. An mIND adversary A speci-
fies a common-state generation algorithm A.cs, a message-generation algorithm
A.msg and a guessing algorithm A.g, all PT. On input 1λ, algorithm A.cs gener-
ates state information st that will be passed to both A.msg and A.g. Algorithm
A.msg, on input 1λ, st returns a pair (m0,m1) of A.nu(λ) by A.nm(λ) matri-
ces over {0, 1}DE.ml(λ), where A.nu is the number-of-users function associated to
A and A.nm is the number-of-messages function associated to A. It is required
that for each b, i the strings mb[i, 1], . . . ,mb[i,A.nm(λ)], which are the messages
encrypted under the public key pk[i] of user i, be distinct. (However, messages

How Secure is Deterministic Encryption? 69

Main mINDA
DE(λ)

st
$← A.cs(1λ) ; (m0,m1)

$← A.msg(1λ, st)

π
$← DE.Pg(1λ) ; b

$← {0, 1}
For i = 1 to A.nu(λ) do

(pk[i], sk[i])
$← DE.Kg(1λ, π)

For j = 1 to A.nm(λ) do
c[i, j] ← DE.Enc(1λ, π,pk[i],mb[i, j])

b′ $← A.g(1λ, π,pk, st, c)
Return (b = b′)

Main PREDP
A(λ)

(st, m)
$← P(1λ)

(m0,m1)
$← A.msg(1λ, st)

Return (∃ i, j, b : mb[i, j] = m)

Fig. 5. The mIND game used to define multi-user security of D-PKE scheme DE and
the PRED game used to define unpredictability of adversary A

DE.Pg(1λ)

π
$← DE.Pg(1λ)

(pk∗, sk∗) $← DE.Kg(1λ, π)
Return (π, pk∗)

DE.Kg(1λ, (π, pk∗))

(pk , sk)
$← DE.Kg(1λ, π)

Return (pk , sk)

DE.Enc(1λ, (π, pk∗), pk , m)

c ← DE.Enc(1λ, π, pk , m)
c∗ ← DE.Enc(1λ, π, pk∗, m)
Return (c, c∗)

DE.Dec(1λ, (π, pk∗), sk , (c, c∗))

m ← DE.Dec(1λ, π, sk , c) ; Return m

Fig. 6. D-PKE scheme DE constructed from D-PKE scheme DE

may repeat across columns, meaning the same message may be encrypted under
different public keys.)

The mINDA
DE(λ) game associated with DE and adversary A is described

on the left of Fig. 5. We define the advantage of A via Advmind
DE,A(λ) = 2 ·

Pr[mINDA
DE(1

λ)] − 1 for all λ ∈ N. We let Advpred
A,P (λ) = Pr[PREDP

A(λ)] for
all λ ∈ N, where game PRED is in the middle in Fig. 5. We say that A is
unpredictable if Advpred

A,P (·) is negligible for all P. If A is a class (set) of adver-
saries then we say that DE is mIND[A]-secure if Advmind

DE,A(·) is negligible for all
A ∈ A. It is convenient to view mIND[A] as a set, so that DE ∈ mIND[A] iff
DE is mIND[A]-secure. If A.cs always returns ε then we say that A has trivial
initial state and we may refer to A as a two-stage adversary. Let Am

2 be the class
of all PT, 2-stage unpredictable uniform adversaries, and for any polynomial
n: N → N let Am

2,n be the class of all A ∈ Am
2 for which A.nu = n. Then security

for n users is captured by mIND[Am
2,n] and security for any number of users is

captured by mIND[Am
2].

In the case of IND we had four variants, depending on whether adversaries
were uniform or non-uniform and whether we were in the SM or the ROM. For
simplicity, we address mIND in the uniform, SM case. The separation extends to
the other three cases. Thus, below, the understanding is that IND,mINDn,mIND
refer, respectively, to IND[Asm−u

2],mIND[Am
2,n] and mIND[Am

2].

70 M. Bellare et al.

Separation result. Our separation is based on the minimal assumption that
some IND-secure D-PKE scheme exists, and is established by a somewhat curious
case analysis. The proof of the following is in [8].

Theorem 3. Assume there exists an IND-secure D-PKE scheme. Then there
exists a D-PKE scheme that is (1) IND-secure but (2) not mIND2-secure.

Proof (Theorem 3). We establish the theorem by considering two cases.

Case 1: There does not exist a D-PKE scheme that is mIND2-secure.

The assumption in the theorem statement says there exists a D-PKE scheme
DE that is IND-secure. But the assumption made for Case 1 says that no D-
PKE scheme is mIND2-secure. So in particular DE is not mIND2-secure. This
establishes the theorem trivially in this case.

Case 2: There exists a D-PKE scheme that is mIND2-secure.

Let DE be a D-PKE scheme that is mIND2-secure. We construct from it a D-PKE
scheme DE that is (1) IND-secure but (2) not mIND2-secure. This establishes
the theorem in Case 2. Since either Case 1 or Case 2 must be true, we have
established the theorem overall.

The D-PKE scheme DE is shown in Fig. 6. The parameters of the new scheme
include a public key pk∗ for the old scheme. The new encryption of a message
m under public key pk consists of two encryptions of m under the old scheme,
one with pk and the other with pk∗. Intuitively, (2) is true because if users 1,
2 encrypt messages m1,m2 then the second components of their ciphertexts are
equal iff m1 = m2, allowing an adversary to detect whether or not m1 = m2.
On the other hand, (1) is true because pk∗ can be viewed as a key of a dummy
second user in the old scheme. Encryption in the new scheme is then tantamount
to encryption of m under two independent keys of the old scheme, which is secure
by the assumed mIND2-security of the old scheme. We now proceed to the details.

We first establish (2), that DE is not mIND2-secure, via the following adver-
sary A ∈ Am

2,2. Let A.cs(1λ) return ε. Let A.msg(1λ, ε) return 2 by 1 matrices
(m0,m1) defined via

m0[1, 1],m0[2, 1],m1[1, 1] $← {0, 1}DE.ml(λ) ; m1[2, 1] ← m1[1, 1] .

Let A.g(1λ, (π, pk∗),pk, ε, c) parse (c[i, 1], c∗[i, 1]) ← c[i, 1] for i = 1, 2. If
c∗[1, 1] = c∗[2, 1] then it returns 1 else it returns 0. Then Advmind

DE,A
(λ) ≥

1 − 2−DE.ml(λ).
To establish (1), that DE is IND-secure, let A ∈ A2. We will provide A ∈ Am

2,2

such that
Advind

DE,A
(λ) ≤ Advmind

DE,A(λ) (5)

for all λ ∈ N. Then (1) follows from the assumption that DE is mIND2-secure.
Let A.cs = A.cs return ε. Let A.nm = A.nm. Let A.nu = 2. Define A.msg and A.g
as follows:

How Secure is Deterministic Encryption? 71

A.msg(1λ, ε)

(m0,m1)
$← A.msg(1λ, ε)

For j = 1, . . . ,A.nm(λ) do
m0[1, j] ← m0[j] ; m0[2, j] ← m0[j]
m1[1, j] ← m1[j] ; m1[2, j] ← m1[j]

Return (m0,m1)

A.g(1λ, π,pk, ε, c)
For j = 1, . . . ,A.nm(λ) do
c[j] ← (c[1, j], c[2, j])

b′ $← A.g(1λ, (π,pk[2]),pk[1], ε, c)
Return b′

Then (5) follows. ��

We remark that the proof of Theorem 3 is non-constructive. It proves the exis-
tence of a scheme that is IND-secure but not mIND2-secure but does not put
in our hands a concrete, specific example of such a scheme. This is because,
although either Case 1 or Case 2 in the proof must be true, we do not know
which. We also remark that our proof makes crucial use of the system parame-
ters. Whether or not single and multi-user security are equivalent for D-PKE in
the absence of system parameters is an interesting open question.

Acknowledgments. We thank Bjorn Tackmann, Peter Gazi and Adam O’Neill for
valuable discussions. We thank the PKC 2015 reviewers for their valuable comments.
Bellare was supported in part by NSF grants CNS-1228890 and CNS-1116800. Work
done while Keelveedhi was at UCSD, supported in part by NSF grants CNS-1228890
and CNS-1116800.

References

1. Baudron, O., Pointcheval, D., Stern, J.: Extended notions of security for multicast
public key cryptosystems. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 499–511. Springer, Heidelberg (2000)

2. Beaver, D.: Plug and play encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 75–89. Springer, Heidelberg (1997)

3. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 307–323. Springer, Heidelberg (1993)

4. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, p. 259. Springer, Heidelberg (2000)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

6. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H.,
Yilek, S.: Hedged public-key encryption: how to protect against bad randomness.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer,
Heidelberg (2009)

7. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998)

72 M. Bellare et al.

8. Bellare, M., Dowsley, R., Keelveedhi, S.: How secure is deterministic encryption?
Cryptology ePrint Archive, Report 2014/376 (2014). http://eprint.iacr.org/2014/
376

9. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not
imply security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012)

10. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

11. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 398–415. Springer, Heidelberg (2013)

12. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

13. Bellare, M., Palacio, A.: GQ and schnorr identification schemes: proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, p. 162. Springer, Heidelberg (2002)

14. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

15. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

16. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011)

17. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
Cryptology ePrint Archive, Report 2009/101 (2009). http://eprint.iacr.org/2009/
101

18. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 522–539. Springer, Heidelberg (2012)

19. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

20. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 543–560. Springer, Heidelberg (2011)

21. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

22. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May 1996

23. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005)

24. Damg̊ard, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, p. 432. Springer, Heidelberg (2000)

http://eprint.iacr.org/2014/376
http://eprint.iacr.org/2014/376
http://eprint.iacr.org/2009/101
http://eprint.iacr.org/2009/101

How Secure is Deterministic Encryption? 73

25. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007)

26. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. Journal of
the ACM 50(6), 852–921 (2003)

27. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010)

28. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

29. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

30. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011)

31. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014)

32. Kol, G., Naor, M.: Cryptography and game theory: designing protocols for exchang-
ing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339.
Springer, Heidelberg (2008)

33. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-
key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012)

34. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, p. 111. Springer, Heidelberg (2002)

35. O’Neill, A.: Stronger security notions for trapdoor functions and applications.
Ph.D. Thesis, Georgia Institute of Technology (2012)

36. Ouafi, K., Vaudenay, S.: Smashing SQUASH-0. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 300–312. Springer, Heidelberg (2009)

37. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg
(2007)

38. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

39. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013)

40. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

41. Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS 2010. The Internet
Society, February / March 2010

42. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.) ITCS 2013, pp. 111–126. ACM, January 2013

E-Cash

Divisible E-Cash Made Practical

Sébastien Canard1(B), David Pointcheval2, Olivier Sanders1,2,
and Jacques Traoré1

1 Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard,olivier.sanders,jacques.traore}@orange.com

2 École normale supérieure, CNRS & INRIA, Paris, France
David.Pointcheval@ens.fr

Abstract. Divisible E-cash systems allow users to withdraw a unique
coin of value 2n from a bank, but then to spend it in several times to
distinct merchants. In such a system, whereas users want anonymity of
their transactions, the bank wants to prevent, or at least detect, double-
spending, and trace the defrauders. While this primitive was introduced
two decades ago, quite a few (really) anonymous constructions have been
introduced. In addition, all but one were just proven secure in the ran-
dom oracle model, but still with either weak security models or quite
complex settings and thus costly constructions. The unique proposal,
secure in the standard model, appeared recently and is unpractical. As
evidence, the authors left the construction of an efficient scheme secure
in this model as an open problem.

In this paper, we answer it with the first efficient divisible E-cash sys-
tem secure in the standard model. It is based on a new way of building
the coins, with a unique and public global tree structure for all the coins.
Actually, we propose two constructions: a very efficient one in the ran-
dom oracle model and a less efficient, but still practical, in the standard
model. They both achieve constant time for withdrawing and spending
coins, while allowing the bank to quickly detect double-spendings by a
simple comparison of the serial numbers of deposited coins to the ones
of previously spent coins.

1 Introduction

Electronic Cash (E-cash), introduced by Chaum [20,21], is the digital analogue
of regular money. It allows users to withdraw coins from a bank and to spend
them to merchants, in an anonymous way, thus perfectly emulating conventional
cash transactions.

Unfortunately, with E-cash, as any digital data, coins can easily be duplicated,
and thus spent several times. It is therefore essential to be able to detect double-
spending and even to identify the defrauders. As for group signatures [4,6], one
solution could be to give to a specific entity the ability of revoking anonymity
for any transaction of his choice. However, such an approach (called fair E-cash
[9,31]) weakens the anonymity of the scheme because, ideally, user’s privacy
should be guaranteed as long as the user is honest. Moreover, such an entity should
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 77–100, 2015.
DOI: 10.1007/978-3-662-46447-2 4

78 S. Canard et al.

be trusted by all the users or distributed among a large group of authorities, which
makes the tracing procedure, in case of fraud, quite costly.

E-cash systems achieve their ultimate goal when the user’s side of the proto-
col is implemented on a mobile device (e.g. a smartphone). However, the limited
power of such devices along with the strong time constraints of electronic trans-
actions require very efficient withdrawal and spending procedures. Moreover,
even if the bank is more powerful than the users, it has to centralize a huge
number of transactions, and thus double-spending detection should be made as
efficient as possible. Reconciling security requirements with efficiency is therefore
the main challenge when designing E-cash systems.

1.1 Related Work

Compact E-Cash. Camenisch, Hohenberger and Lysyanskaya [10] described
the first compact E-cash system (later extended to systems supporting addi-
tional features [12,14,16]), allowing users to withdraw wallets with 2n coins at
once. Each coin is associated with a unique serial number, allowing the bank to
efficiently detect double-spending. Unfortunately, while the withdrawal of many
coins can be done at once, the spending procedure is done coin by coin, which is a
major drawback for concrete use. Indeed, in order to provide a good granularity,
one must use coins of one cent, and thus transactions often involve thousands of
coins. An alternative could be the use of coins with several denominations, but
then one should use several systems in parallel for each value, and in addition
anonymity would be more difficult to achieve since users would withdraw dif-
ferent kinds of coins. Then, the bank could classify the users according to their
withdrawals and then infer where users spend their money from the coins the
merchants deposit.

Divisible E-Cash Systems. The purpose of divisible E-cash systems is to
address this problem of splitting coins of large values. As above, users withdraw
a large coin of value 2n (or withdraw 2n coins at once), but can spend it in
several times by dividing it (or spend several coins at once): more concretely,
one can spend a coin of value 2�, for any 0 ≤ � ≤ n, at once, instead of spending
2� unitary coins, which is clearly much more efficient.

Since their introduction, many schemes have been proposed [19,27–29] but
they only achieved quite weak levels of anonymity. Indeed, transactions involving
the same coin (from the same withdrawal) were all linkable, except with [27],
which however still reveals which part of the coin is spent (which is not compati-
ble with the highest security notion) and in addition requires a trusted authority
to recover spenders’ identities.

Canard and Gouget [13] introduced the first truly anonymous E-cash sys-
tem. Unfortunately, it makes use of complex zero-knowledge proofs of knowledge
(ZKPK) and of groups of different but related orders, whose generation requires
a huge computational power. Despite its inefficiency (pointed out in [2,15]) this
system was a proof of concept: a “truly” anonymous divisible E-cash system is
possible. Au, Susilo, and Mu [2] proposed a more efficient scheme but at the

Divisible E-Cash Made Practical 79

cost of an unconventional security model where the bank is only ensured that
it will not loose money on average (provided that it can legally impose fines on
users, which is not necessarily the case). Canard and Gouget [15] later proposed
another construction, but still with groups of different orders, leading to rather
inefficient ZKPK. All these schemes were proven secure in the random oracle
model (ROM) [5]. More recently, Izabachène and Libert [26] provided the first
construction with security proven in the standard model. However their con-
struction is rather inefficient, especially the deposit phase whose computational
cost for the bank depends on the number of previously deposited coins with a
pairing computation between every new coin and every past coin. Such a down-
side makes the scheme impractical, leading the authors to leave the construction
of an efficient scheme secure in the standard model as an open problem.

1.2 Our Contribution

In this paper, we address this open problem, with the first really efficient divisible
E-cash system. It can be designed either in the ROM or the standard model.
Our main contribution is a new way for building the serial numbers. As noticed
in [26], the use of serial numbers is indeed the best approach for the bank to
quickly detect double-spending.

In previous solutions [2,13,15], every divisible coin is associated with a binary
tree whose nodes correspond to expendable amounts. When a user withdraws
a coin, he selects a random number kε associated with the root of the tree and
then computes, for each internal node s, the corresponding number ks, using
kε and a one-way function. The user then obtains signatures on these numbers
(or on elements accumulating them) from the bank and defines the coin to be
the binary tree along with the signatures. However, to ensure that the user
will not spend more than the amount he has withdrawn, he will have to prove
(either during the spending or the withdrawal protocol) that the tree (and so
the numbers ks) is well-formed. Unfortunately, the construction from [2] is not
compatible with any zero-knowledge proof construction because the numbers ks

are computed using a hash function, modeled as a random oracle. The authors
therefore proposed a cut-and-choose method to detect cheaters which leads to the
problem mentioned above. Canard and Gouget [13,15] used groups of different
orders which are compatible with zero-knowledge proofs in the ROM (although
they are rather inefficient) but not in the standard model since the Groth-Sahai
[25] methodology does no longer work in this setting.

In our construction, we use a totally different approach: instead of using one
tree by coin, we define, in the public parameters, one single tree which will be
common to all the coins. The key point of this solution is obvious: users no longer
have to prove that the tree is well-formed. Moreover, it considerably alleviates
the withdrawal procedure since the bank no longer has to certify each tree.

We will use bilinear groups (i.e. a set of three cyclic groups G1, G2 and GT of
prime order p along with a bilinear map e : G1×G2 → GT), which are compatible
with Groth-Sahai proofs. In a nutshell, our system works as follows: it uses a
unique tree T of depth n (for coins of value 2n), where each leaf f is associated

80 S. Canard et al.

with an element χf ∈ GT and each internal node s is associated with an element
gs ∈ G1. In addition to these group elements, the public parameters also contain,
for each leaf f and any node s on the path to f , an element g̃s �→f ∈ G2 such that
e(gs, g̃s �→f) = χf (a setup algorithm will efficiently generate these parameters).
When a user withdraws a coin, he gets a certificate on some random scalar
x ∈ Zp, which will implicitly define all the serial numbers associated with this
coin as χx

f for each leaf f . To spend a node s of height � in the tree, corresponding
to a value of 2�, the user can compute ts ← gx

s and prove that it is well-formed:
such a proof can easily be done in either the ROM or the standard model.
Informally, the unlinkability property follows from the fact that it is hard, given
gx

s and gx
s′ for two nodes s and s′, to decide whether they were computed using

the same x (and thus belong to the same tree) under the XDH assumption.
However, using the elements g̃s �→f , the bank will be able to recover the 2� serial
numbers by computing e(ts, g̃s �→f) = χx

f for each f in the subtree below s. A
double-spending means that two transactions involve two nodes s and s′ with
non-disjoint subtrees: a common leaf f is in both subtrees issued from s and
s′, and so the bank will detect a collision between the serial numbers since
e(ts, g̃s �→f) = χx

f = e(ts′ , g̃s′ �→f).
Of course, several problems have to be addressed to fulfill all the security

requirements, but the above key idea allows to design a system with constant
cost for both the withdrawal and spending protocols, which can be proven secure
in either the random oracle and the standard models.

1.3 Organization

In Section 2, we review some classical definitions and notations. Section 3 des-
cribes the security model for divisible E-cash. We provide a high level description
of our construction in Section 4, and a more detailed presentation in Section 5.
Eventually, security proofs are given in Section 6.

2 Preliminaries

Bilinear Groups. Bilinear groups are a set of three cyclic groups G1, G2, and
GT of prime order p along with a bilinear map e : G1 × G2 → GT with the
following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
3. e is efficiently computable.

Computational Assumptions. Our construction will rely on several compu-
tational assumptions that have been considered reasonable in well chosen groups:

– the DL assumption holds in the group G if it is hard, given (g, gx) ∈ G
2,

to output x;

Divisible E-Cash Made Practical 81

– the XDH assumption holds in bilinear groups (G1, G2, GT) if it is hard,
given (g, gx, gy, gz) ∈ G

4
1, to decide whether z = x · y or z is random;

– the q − SDH assumption [8] holds in a group G if it is hard, given a tuple
(g, gx, gx2

, . . . , gxq

) ∈ G
q+1, to output a pair (m, g

1
m+x).

Digital Signature Scheme. A digital signature scheme Σ is defined by three
algorithms:

– the key generation algorithm Σ.Keygen which outputs a pair of signing and
verification keys (sk, pk) – we assume that sk always contains pk;

– the signing algorithm Σ.Sign algorithm which, on input the signing key sk
and a message m, outputs a signature σ;

– and the verification algorithm Σ.Verify which, on input m, σ and pk, out-
puts 1 if σ is a valid signature on m under pk and 0 otherwise.

The standard security notion for a signature scheme is existential unforgeabil-
ity under chosen message attacks (EUF-CMA) [24] which means that it is hard,
even given access to a signing oracle, to output a valid pair (m,σ) for a message
m never asked to the oracle. In this paper we will also use two weaker different
security notions for signature schemes. The former is the security against selec-
tive chosen message attacks, which limits the oracle queries to be asked before
having seen the key pk. The latter is a strong one-time security notion where the
adversary can ask only one query to the signing oracle, but strong means that
an output with a new signature on an already signed message is also considered
a forgery. In our instantiation in the full version [17], we use a deterministic
one-time signature, and thus one-time security is equivalent to strong one-time
security.

3 Divisible E-cash System

3.1 Syntax

As in [13,15], a divisible e-cash system is defined by the following algorithms,
that involve at least three entities: the bank B, a user U and a merchant M.
Although not necessary, it is often easier to assume that the Setup algorithm is
run by a trusted entity (we refer to Remark 3 in Section 4 for more discussion).

– Setup(1k, V): On inputs a security parameter k and an integer V , this prob-
abilistic algorithm outputs the public parameters p.p. for divisible coins of
global value V . We assume that p.p. are implicit to the other algorithms, and
that they include k and V . They are also an implicit input to the adversary,
we will then omit them.

– BKeygen(): This probabilistic algorithm executed by the bank B outputs a
key pair (bsk, bpk). It also sets L as an empty list, that will store all deposited
coins. We assume that bsk contains bpk.

82 S. Canard et al.

– Keygen(): This probabilistic algorithm executed by a user U (resp. a mer-
chant M) outputs a key pair (usk, upk) (resp. (msk,mpk)). We assume that
usk (resp. msk) contains upk (resp. mpk).

– Withdraw(B(bsk, upk),U(usk, bpk)): This is an interactive protocol between
the bank B and a user U . At the end of this protocol, the user gets a divisible
coin C of value V or outputs ⊥ (in case of failure) while the bank stores the
transcript Tr of the protocol execution or outputs ⊥.

– Spend(U(usk, C, bpk,mpk, v),M(msk, bpk, v)): This is an interactive protocol
between a user U and a merchant M. At the end of the protocol the merchant
gets a master serial number Z of value v (the amount of the transaction they
previously agreed on) along with a proof of validity Π or outputs ⊥. U either
updates C or outputs ⊥.

– Deposit(M(msk, bpk, (v, Z,Π)),B(bsk, L,mpk)): This is an interactive pro-
tocol between a merchant M and the bank B. B checks that Π is valid on
v and Z and that (v, z,Π) has never been deposited (corresponding to the
case of a cheating merchant). B then recovers the m (for some m ≥ v) serial
numbers z1, . . . , zm corresponding to this transaction and checks whether,
for some 1 ≤ i ≤ m, zi ∈ L. If none of the serial numbers is in L, then the
bank credits M’s account of v, stores (v, Z,Π) and appends {z1, . . . , zm} to
L. Else, there is at least an index i ∈ {1, . . . , m} and a serial number z′ in L
such that z′ = zi. The bank then recovers the tuple (v′, Z ′,Π′) corresponding
to z′ and publishes [(v, Z,Π), (v′, Z ′,Π′)].

– Identify((v1, Z1,Π1), (v2, Z2,Π2), bpk): On inputs two different valid tran-
scripts (v1, Z1,Π1) and (v2, Z2,Π2), this deterministic algorithm outputs a
user’s public key upk if there is a collision between the serial numbers derived
from Z1 and from Z2, and ⊥ otherwise.

It is worthy to note that the Identify algorithm does not require knowledge
of any secret element and can thus be run by anyone. So, there is no need
for a VerifyGuilt algorithm (as provided in [13,15]) since any entity can be
convinced of the culpability of a user by recovering his public key upk from the
transcripts published by the bank.

3.2 Security Model

Besides the usual correctness property (informally meaning that an honest user
running a Withdraw protocol with an honest bank will receive a divisible coin
accepted by any honest merchant), a secure e-cash system must achieve sev-
eral security properties, defined through games between an adversary A and a
challenger C. Our security model makes use of the following oracles.

– OAdd() is an oracle used by A to register a new honest user (resp. merchant).
The challenger runs the Keygen algorithm, stores usk (resp. msk) and returns
upk (resp. mpk) to A. In this case, upk (resp. mpk) is said honest.

– OCorrupt(upk/mpk) is an oracle used by A to corrupt an honest user (resp.
merchant) whose public key is upk (resp. mpk). The challenger then returns

Divisible E-Cash Made Practical 83

Expanon−b
A (1k, V)

1. p.p. ← Setup(1k, V)
2. bpk ← A()
3. (v, upk0, upk1,mpk) ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If upk0 or upk1 is not registered, then return 0
5. If cupki

> mupki
· V − v for i ∈ {0, 1}, then return 0

6. (v, Z,Π) ← Spend(C(uskb, C,mpk, v),A())
7. b∗ ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend∗

()
8. If upk0 or upk1 has been corrupted, then return 0
9. Return (b = b∗)

Fig. 1. Anonymity Security Game

the corresponding secret key usk (resp. msk) to A along with the secret values
of every coin withdrawn by this user. From now on, upk (resp. mpk) is said
corrupted.

– OAddCorrupt(upk/mpk) is an oracle used by A to register a new corrupted
user (resp. merchant) whose public key is upk (resp. mpk). In this case, upk
(resp. mpk) is said corrupted. The adversary could use this oracle on a public
key already registered (during a previous OAdd query) but for simplicity, we
reject such case as it will gain nothing more than using the OCorrupt oracle
on the same public key.

– OWithdrawU (upk) is an oracle that executes the user’s side of the Withdraw
protocol. This oracle will be used by A playing the role of the bank against
the user with public key upk.

– OWithdrawB(upk) is an oracle that executes the bank’s side of the Withdraw
protocol. This oracle will be used by A playing the role of a user whose
public key is upk against the bank.

– OSpend(upk, v) is an oracle that executes the user’s side of the Spend pro-
tocol for a value v. This oracle will be used by A playing the role of the
merchant M.

In our experiments, we denote users by their public keys upk, the value spent
by user upk during OSpend queries by cupk, and the number of divisible coins
withdrawn by this user by mupk. This means that the total amount available by
a user upk is mupk · V .

Anonymity. Informally, anonymity requires that the bank, even helped by
malicious users and merchants, cannot learn anything about a spending other
than what is available from side information from the environment. We define
the anonymity experiments Expanon−b

A (1k, V) as described on Figure 1. After
the challenge phase, the OSpend queries are restricted to avoid A trivially wins:
A then has access to a OSpend∗ oracle that is the same as the OSpend oracle
except that it cannot be asked on upki if cupki

> mupki
· V − v, for i ∈ {0, 1}.

Otherwise one can easily deduce which user has spent v during the challenge
phase.

84 S. Canard et al.

ExptraA (1k, V)

1. p.p. ← Setup(1k, V)
2. (bsk, bpk) ← BKeygen()

3. [(v1, Z1,Π1), . . . , (vu, Zu,Πu)]
$← AOAdd,OCorrupt,OAddCorrupt,OWithdrawB,OSpend(bpk)

4. If
∑u

i=1 vi > m · V and ∀i �= j, Identify((vi, Zi,Πi), (vj , Zj ,Πj)) =⊥,
then return 1

5. Return 0

Fig. 2. Traceability Security Game

We define AdvanonA (1k, V) as Pr[Expanon−1
A (1k, V)] − Pr[Expanon−0

A (1k, V)].
A divisible e-cash system is anonymous if, for any probabilistic polynomial adver-
sary A, this advantage is negligible. Of course, the adversary must choose the
users involved in the challenge phase among the registered users, and never cor-
rupted, and cannot ask them to spend more than withdrawn, hence restrictions
in steps 4, 5, and 8 respectively.

Remark 1. The scheme from [27] achieves an unlinkability property, meaning
that it is hard to link two spendings from the same coin. This protocol makes
use of a tree for the global coin, and each transcript reveals which part of the
tree (i.e. which node) is spent. In some cases, this property can be enough
(we describe informally in Section 4.2 a protocol fulfilling this property) but
we stress that a scheme revealing the spent nodes in a tree structure is not
anonymous (according to our above model) even if it is unlinkable (and our main
scheme given in Section 5 is anonymous in the sense of the above definition).
Indeed, to break the anonymity of such a scheme, the adversary can make one
OWithdrawU (bsk, uski) and then (V − 1) OSpend(upki, 1) queries, for each user
(i ∈ {0, 1}). Therefore, it will only remain one unspent node supki

for each user.
If the nodes are randomly selected among the unspent nodes during a spending
(which is even worse if this is deterministic or chosen by the adversary), with
overwhelming probability, the two unspent nodes will not be the same for the
two users upk0 and upk1: supk0 �= supk1 . The node involved in the challenge phase
will then reveal the user identity.

Traceability. Informally, traceability requires that no coalition of malicious
users can spend more than they have withdrawn, without revealing their identity.
We define the traceability experiment ExptraA (1k, V) as described on Figure 2. We
denote by m the total number of coins withdrawn during the entire experiment.
It is assumed that {(v1, Z1,Π1), . . . , (vu, Zu,Πu)} is a set of different and valid
transcripts (else, we do not consider the invalid or duplicated ones when com-
puting the sum v =

∑
vi). We define Advtra

A (1k, V) as Pr[Exptra
A (1k, V) = 1]. A

divisible e-cash system ensures the traceability property if, for any probabilistic
polynomial adversary A, this advantage is negligible.

Divisible E-Cash Made Practical 85

ExpexcuA (1k, V)

1. p.p. ← Setup(1k, V)
2. bpk ← A()
3. [(v1, Z1,Π1), (v2, Z2,Π2)] ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If Identify((v1, Z1,Π1), (v2, Z2,Π2), bpk) = upk and upk not corrupted,

then return 1
5. Return 0

Fig. 3. Exculpability Security Game

Remark 2. The E-cash systems from [2,13,15,26] considered the balance prop-
erty, requiring that no coalition of users can spend (and then later accepted
for deposit) more than they have withdrawn, and the identification property,
requiring that no coalition of users can double-spend a coin without reveal-
ing their identity. We argue that traceability is enough. Indeed, an adversary
against the balance property must produce [(v1, Z1,Π1), . . . , (vu, Zu,Πu)] (with
∑u

i=1 vi > m ·V) that the bank accepts as valid, not duplicated and not double-
spent. This adversary can therefore be easily converted into an adversary against
our traceability experiment.

Similarly, an adversary against the identification property must produce two
valid transcripts (v1, Z1,Π1) and (v2, Z2,Π2) which are detected as a double-
spending but such that the Identify algorithm does not output one name from
the collusion: either this is a name outside the collusion, we deal with this case
below, with the exculpability, or Identify((v1, Z1,Π1), (v2, Z2,Π2)) =⊥. By
legally spending all the remaining parts of this coin, one breaks the traceability
property too.

Exculpability. Informally, exculpability requires that the bank, even cooperat-
ing with malicious users and merchants, cannot falsely accuse honest users of hav-
ing double-spent a coin. We define the exculpability experiment ExpexcuA (1k, V)
as described on Figure 3. We emphasize that any adversary able to spend a coin
of a honest user can easily break the exculpability property, by simple making
a double-spending in the name of this honest user. We define AdvexcuA (1k, V)
as Pr[ExpexcuA (1k, V) = 1]. A divisible e-cash system is exculpable if, for any
probabilistic polynomial adversary A, this advantage is negligible.

4 Our Construction: Intuition

Our construction makes use of a binary tree, as in most previous works [2,13,15].
The main difference is the way the tree is built. In the previous systems, each user
constructs his own tree by selecting elements ki,j associated with the nodes of the
tree and then has to get certificates on all of them (during the Withdraw protocol)
and more importantly, must prove (either during the Withdraw protocol or the

86 S. Canard et al.

Spend one) that these elements are well-formed. This latter proof led to complex
systems with either unconventional security properties [2] or costly operations
in groups of different orders [13,15].

In our system, there is only one tree, which is part of the public parameters.
It allows us to avoid proving its well-formedness and so to achieve a better
efficiency while working with zero-knowledge proofs compatible with the Groth-
Sahai methodology [25]. In the following we first describe our Setup algorithm
and then give a high level description of our divisible e-cash system.

4.1 Setup

ε

0

00

... ...

0

01

010

0

011

1

1

0

1

... ...

1

Fig. 4. Divisible coin

Notation. Let Sn be the set of
bitstrings of size smaller than or
equal to n and Fn be the set
of bitstrings of size exactly n.
We then define, ∀s ∈ Sn,
the set Fn(s) as {f ∈ Fn :
s is a prefix of f}. For every s ∈
Sn, |s| denotes the length of s.

Intuitively, since we will make
use of a tree of depth n for coins
of value V = 2n, as illustrated on
Figure 4, each node of the tree (or
its path from the root) will refer
to an element s ∈ Sn, the root
to the empty string ε, and each
leaf to an element of Fn. For any
node x ∈ Sn, Fn(s) contains all
the leaves in the subtree below s.

Public Parameters. Let (G1, G2, GT , e) be the description of bilinear groups of
prime order p, g, h, u1, u2, w (resp. g̃) be generators of G1 (resp. G2), G = e(g, g̃)
is thus a generator of GT , and H : {0, 1}∗ → Zp be a collision-resistant hash
function. In addition, a trusted authority generates

– for each s ∈ Sn, rs
$← Zp and (gs, hs) ← (grs , hrs);

– for each f ∈ Fn, lf
$← Zp;

– for each s ∈ Sn, for each f ∈ Fn(s), g̃s �→f ← g̃lf /rs .

The public parameters p.p. are set as the bilinear groups (G1, G2, GT , e),
with the generators g, h, u1, u2, w, g̃, and G, the hash function H, as well as all
the above elements {(gs, hs), s ∈ Sn} and {g̃s �→f , s ∈ Sn, f ∈ Fn(s)}. In addition,
according to the setting, either the random oracle model or the standard model,
we also have

– another hash function H : {0, 1}∗ → Zp, that will be modeled by a random
oracle;

Divisible E-Cash Made Practical 87

– or a CRS for the Groth-Sahai [25] proofs and a one-time signature scheme
Σots (such as the one from [8]).

It is worthy to note that users and merchants need to know the groups and the
generators, but then just {(gs, hs), s ∈ Sn} (along with H, or CRS and Σots).
The set {g̃s �→f , (s, f) ∈ Sn × Fn} is only used by the bank, while {lf , f ∈ Fn} is
not useful anymore in the system.

Remark 3. An entity knowing the random scalars (rs, lf) used to generate the
public parameters will be able to break the anonymity of our scheme. This
problem already appears when generating the CRS from Groth-Sahai proofs
(whose construction is not specified in [26]). To avoid the need of a trusted
entity (although this last one would intervene only during the Setup phase) the
public parameters can be cooperatively generated by the bank and a set of users.
For example,

– one party can first generate as, cf
$← Zp for all s ∈ Sn and f ∈ Fn, compute

As ← gas and Ãs �→f ← g̃cf /as , and prove knowledge of as and cf ;
– the second party will then select random bs, df

$← Zp, compute Bs ← Abs
s

and B̃s �→f ← Ã
df /bs
s , and prove knowledge of bs and df .

If the proofs are valid then gs ← Bs and g̃s �→f ← B̃s �→f .

4.2 High Level Description

The main challenge when designing a divisible e-cash system is to describe an
efficient way for the bank to recover all the serial numbers of the spent coins
without endangering the anonymity of the honest users. For the sake of clarity,
we describe our construction in three stages.

– In the first one, we describe a system fulfilling a weak anonymity property
(called unlinkability, see Remark 1, in Section 3.2) meaning that no one
can decide, given two transcripts of the Spend protocol, whether they were
produce by using the same global coin but where the spent part (i.e. the
node) of the coin can be revealed;

– In the second stage, we show how to increase the level of anonymity, reaching
a stronger version of unlinkability (that we call strong unlinkability) meaning
that it is now impossible to decide which node was spent. However, the level
of the node is inevitably revealed since it corresponds to the amount paid
by the user.

– Eventually, it remains to explain how to recover the identity of a double-
spender without the help of a trusted entity. This is done in our third stage
where we describe the construction of a security tag which, added to the
scheme from the second stage, leads to an anonymous divisible e-cash system
in the sense of the definition given in Section 3.2.

All our three stages use the same idea: each divisible coin is associated with a
secret scalar x

$← Zp, known to the user only, and certified by the bank during
the Withdraw protocol.

88 S. Canard et al.

Unlinkability. To spend a value of v = 2�, the user first selects an unspent
node s at level n − �, computes ts ← gx

s and proves in a zero-knowledge way
that ts is well formed and that x is certified. This can be efficiently performed
in either model: the random oracle model or standard model.

Since we consider here the unlinkability property, the user can reveal the
chosen s so that B can compute, for each f ∈ Fn(s), the 2� elements Sf (x) ←
e(ts, g̃s �→f) = e(gs, g̃s �→f)x = Gx·lf which actually are the 2� serial numbers.
Indeed, these elements only depend on (i) the spent leaves and (ii) the secret of
the coin, which makes the bank able to detect double-spending (i.e. two identical
spent leaves, which equivalently means that two nodes s and s′ are such that
one of them is the prefix of the other): the bank simply checks whether for some
f , there are s and s′ such that e(ts, g̃s �→f) = Gx·lf = e(ts′ , g̃s′ �→f).

For honest users, the unlinkability property follows from the fact that it is
hard, knowing gs, gs′ and gx

s , to decide whether an element of G1 is random or
equal to gx

s′ under the XDH assumption.

Strong Unlinkability. We now want to leak less information about the node
s: actually, just its level can be leaked, since it corresponds to the value of the
transaction. To address this issue, the bank will now certify every element gs,
using a different key for each level of the tree (and so according to the value),
and publish all certificates. To prove that ts is well-formed, the user now has
to prove that he used a certified value gs of the appropriate level, which is still
possible in either the random oracle model or the standard model, with a slight
increase of the size of the proof. Since the bank does not know the exact node
s, but only its level n − �, given ts, it now needs to compute and stores all the
elements e(ts, g̃s′ �→f) for every leaf f and every node s′ of the same level n − �.
Of course, some of these elements (and maybe most of them) do not correspond
to any valid serial number, but the point is that all the 2� valid serial numbers
will be among them, making the bank able to detect double spendings.

Remark 4. One has to take care of additional false positive cases for a leaf f :
for two distinct coins whose associated secrets are x1 and x2 respectively (x1 �=
x2), there exist four nodes rs1 , rs′

1
and rs′

2
, rs′

2
such that e(gx1rs1 , g̃

yf /rs′
1) =

e(gx2rs2 , g̃
yf /rs′

2), and thus x1rs1rs′
2

= x2rs′
1
rs2 . For randomly chosen x’s, this

happens with negligible probability.

Anonymity. Once a double-spending is detected, the procedure for recovering
the user’s identity depends on the kind of opening we want. In the case of fair
e-cash systems, an opening authority uses, as for group signatures schemes, the
knowledge of some trapdoor to recover the identity of the user from any valid
transaction. Such system can be used in association with the above strongly
unlinkable solution to provide identification of the double spender. However, to
reach the true anonymity property we must avoid such a powerful authority and
then allow anyone to recover this identity from any double-spent coins, and only
in case of fraud.

Divisible E-Cash Made Practical 89

Let usk ∈ Zp be the secret key of a user and upk ← gusk his public key.
When spending a node s, each user will also compute and send a security tag
vs ← upkr · hx

s , where r is deterministically obtained by hashing some public
information info related to the transaction (amount, date, public key of the
merchant, etc). Of course, it will also have to prove that this tag is well formed
(x and upk are certified and hs corresponds to the same node as gs).

If the bank detects a double-spending, it means that there are two transcripts
containing (ts, vs) and (ts′ , vs′) such that there exists f ∈ Fn which is a descen-
dant of both s and s′. Therefore, we have both e(ts, g̃s �→f) = e(ts′ , g̃s′ �→f) =
Gx·lf and e(hs, g̃s �→f) = e(hs′ , g̃s′ �→f) = e(h, g̃)lf . Anyone can then compute,
from the involved transcripts and the public parameters, T ← e(vs, g̃s �→f) and
T ′ ← e(vs′ , g̃s′ �→f). Using the bilinearity of the pairing we get:

T · T ′−1 = e(upkr, g̃s �→f) · e(hx
s , g̃s �→f) · e(upk−r′

, g̃s′ �→f) · e(hx
s′ , g̃s′ �→f)−1

= e(upk, g̃r
s �→f · g̃−r′

s′ �→f).

It remains to check, for each registered upki, whether T · T ′−1 = e(upki, g̃
r
s �→f ·

g̃−r′
s′ �→f). We recall that r and r′ are scalar deterministically computed from the

transaction information info, and thus publicly computable.
The Identify algorithm thus has a linear cost in the number of registered

users, but we can argue that this is not a major drawback because it will be run
offline and double-spending should not occur too often: the possibility of tracing
back defrauders is an incentive not to try to cheat. Note that this algorithm does
not make use of any private information, it can thus be run in parallel by many
users, as for the public traceability in broadcast encryption [18].

5 Our Divisible E-Cash System

5.1 The Protocol

In this section, we focus on the anonymous version of our solution. We then
describe all the algorithms in more details, except the Setup one, already fully
described above. Our Spend protocol will make use of non-interactive zero-
knowledge (NIZK) proofs which can be provided either in the random oracle
model (using the Fiat-Shamir heuristic [22]) or in the standard model (using
the Groth-Sahai proof systems [25], since we are in a bilinear setting). Even if
the frameworks are similar, some algorithms differ according to the model. We
provide in the full version [17] some instantiations of our protocol.

– BKeygen(): Upon receiving the public parameters, the bank will select two
different signatures schemes:

• Σ0 = (Keygen, Sign, Verify), whose message space is G
2
1, to sign some

elements of the public parameters. We can use the structure preserving
construction from [1]. But we stress that we do not need the EUF-CMA
security. A signature scheme secure against selective chosen-message
attacks would be enough.

90 S. Canard et al.

• Σ1 = (Keygen, Sign, Verify), whose message space depends on the secu-
rity model.

∗ ROM: The message space is Z
2
p. But we additionally require that Σ1

is compatible with a protocol Σ1.SignCommit which, given (ux
1 , uy

2)
for some (x, y) ∈ Z

2
p (and so a kind of commitment of (x, y)), outputs

a valid signature σ on (x, y) (we can then use the scheme from [11]
or a variant of [8]).

∗ Standard Model: The message space is G
2
1, and we can then use

again the scheme from [1].
The bank will then get (sk1, pk1) ← Σ1.Keygen(p.p.) and (sk(i)0 , pk

(i)
0) ←

Σ0.Keygen(p.p.) for each level of the tree, 0 ≤ i ≤ n, and compute, for every
s ∈ Sn, τs ← Σ0.Sign(sk

(|s|)
0 , (gs, hs)). Eventually, it will set bsk as sk1 and

bpk as ({pk(i)0 }i, pk1, {τs}s∈Sn
).

– Keygen(): Each user (resp. merchant) selects a random usk ← Zp (resp. msk)
and gets upk ← gusk (resp. mpk ← gmsk). In the following we assume that
upk (resp. mpk) is public, meaning that anyone can get an authentic copy of
it.

– Withdraw(B(bsk, upk),U(usk, bpk)): To withdraw a divisible coin, the user
first selects a random x ∈ Zp and computes uusk

1 and ux
2 . He then sends

upk, uusk
1 , ux

2 and proves, using for example the Schnorr’s interactive protocol
[30], knowledge of x and usk. If the proof is valid and if ux

2 was not previously
used, the bank

• ROM: runs the Σ1.SignCommit on (uusk
1 , ux

2) and sends the resulting
signature σ to the user who sets C ← (x, σ).

• Standard Model: computes σ ← Σ1.Sign(sk1, (uusk
1 , ux

2)) and sends it
to the user who sets C ← (x, σ).

– Spend(U(usk, C, bpk,mpk, 2�),M(msk, bpk, 2�)): To spend a value 2�, the user
selects an unspent node s of level n − � and computes r ← H(info) and
(ts, vs) ← (gx

s , upkr ·hx
s). He must then prove that ts and vs are well-formed,

i.e. that he used values certified during a withdrawal, hence a proof of knowl-
edge of σ, and that he used a valid pair (gs, hs), hence a proof of existence
of τs. The protocol in the ROM differs from the one in the standard model.

• ROM: The user provides a zero-knowledge proof of knowledge of usk,
x, gs, hs, τs, and σ such that:

ts = gx
s ∧ vs = (gr)usk · hx

s ∧ Σ1.Verify(pk1, (usk, x), σ) = 1

∧ Σ0.Verify(pk
(n−�)
0 , (gs, hs), τs) = 1.

Using appropriate signature schemes, as shown in the full version [17],
such zero-knowledge proofs of knowledge ‘à la Schnorr’ can be done. The
global proof is then converted into a signature of knowledge Π on the
message r, using the Fiat-Shamir heuristic [22].

• Standard Model: The user first generates a new key pair (skots, pkots)←
Σots.Keygen(1k) and computes μ ← w

1
usk+H(pkots) . He then computes

Divisible E-Cash Made Practical 91

Groth-Sahai commitments to usk, x, gs, hs, τs, σ, μ, U1 = uusk
1 , U2 = ux

2

and provides a NIZK proof π that the committed values satisfy:

ts = gx
s ∧ vs = (gr)usk · hx

s ∧ U2 = ux
2 ∧ U1 = uusk

1 ∧ μ(usk+H(pkots)) = w

along with a NIWI proof π′ that the committed values satisfy:

1 = Σ0.Verify(pk
(n−�)
0 , (gs, hs), τs) ∧ 1 = Σ1.Verify(pk1, (U1, U2), σ)

Again, using appropriate signature schemes, as shown in the full ver-
sion [17], the Groth-Sahai methodology [25] can be used. Finally, the
user computes η ← Σots.Sign(skots,H(ts||vs||π||π′||r)) and sends it to
M along with ts, vs, pkots, π, π′.

In both cases, the merchant checks the validity of the proofs and of the
signatures and accepts the transaction if everything is correct. In such a
case, he stores Z ← (ts, vs) and either the signature of knowledge Π in the
ROM or Π ← (π, π′, pkots, η) in the standard model.

– Deposit(M(msk, bpk, (2�, Z,Π)),B(bsk, L,mpk)): Upon receiving a transcri-
pt, the bank will check that it was not previously deposited and verify its
validity. Then, for each s′ of level n − � and f ∈ Fn(s′) it will compute zi ←
e(ts, g̃s′ �→f) and check whether zi ∈ L. If ∀i, zi /∈ L then the bank will add
these elements to this list (see Remark 5) and store the transcript (2�, Z,Π).
Else, there is an element z′ ∈ L such that zi = z′. The bank will recover the
corresponding transcript (2�′

, Z ′,Π′) and output [(2�, Z,Π), (2�′
, Z ′,Π′)].

– Identify((2�1 , Z1,Π1), (2�2 , Z2,Π2), bpk): To recover the identity of a double-
spender, the entity running this algorithm will first check the validity of both
transcripts and return ⊥ if one of them is not correct. He then computes, for
i ∈ {1, 2} and for every leaf f , the lists Si,f ← {e(tsi

, g̃s �→f), where s ∈
Sn is the prefix of length |si| of f}, and returns ⊥ if there is no collision
between S1,f and S2,f for any leaf f . Else, we can assume (see Remark 4)
that we have e(ts1 , g̃s1 �→f) = e(ts2 , g̃s2 �→f) with ts1 = gx

s1
and ts2 = gx

s2
for

some s1, s2 ∈ Sn. As explained in section 4.2, e(vs1 , g̃s1 �→f)·e(vs2 , g̃s2 �→f)−1 =
e(upk, g̃r

s �→f · g̃−r′
s′ �→f) so it remains to compute e(upki, g̃

r
s �→f · g̃−r′

s′ �→f) for each
public key upki until we get a match, in which case one outputs upki.

Remark 5. Since the node used to spend a coin C is not known, the bank has
to store 2n elements zi each time a transcript is deposited by a merchant, even
if the amount deposited is 2� with � ≤ n: one for each leaf f . In the worst case
scenario (if the user only spends values of 1), a divisible coin of 2n will require
that the bank stores 22n elements. However, the bank does not need to store
the elements zi ∈ GT , it may only store H ′(zi) (for some hash function H ′)
and so compare the (smaller) hash values. If a collision is found, the bank will
first recover and compare the elements zi from the involved transcripts to ensure
that this collision was not due to the function H ′ (which would anyway be quite
unlikely). Hash tables or Bloom filters can be used to improve on the storage
efficiency.

92 S. Canard et al.

Even if the constructions in both models are quite similar, there are some
necessary differences, especially in the Spend protocol. Our results concerning
the security of our scheme will then also differ according to each model. The
security proofs of the following theorems are provided in Section 6.

Theorem 6. In the random oracle model, assuming that the hash function H
is collision-resistant, our divisible e-cash system is anonymous under the XDH
assumption, traceable if Σ0 is secure against selective chosen-message attacks
and Σ1 is an EUF-CMA secure signature scheme, and achieves the exculpability
property under the DL assumption.

Theorem 7. In the standard model, assuming that the hash function H is
collision-resistant, our divisible e-cash system is anonymous under the XDH
assumption, traceable if Σ0 is secure against selective chosen-message attacks
and Σ1 is an EUF-CMA secure signature scheme, and achieves the exculpability
property under the q − SDH assumption if Σots is a strong one-time signature
scheme.

5.2 Efficiency

We compare in Figure 5 the efficiency of our construction with the one of [15],
which is the most efficient protocol in the ROM, and the one of [26], which is
the only construction in the standard model.

The different settings of these constructions make this comparison difficult
but this table can still be useful to compare the asymptotic complexity of the
different algorithms. We refer to the full version [17] for instantiations of our
construction. One may note some differences between our table and the one
provided in [15]. They are due to the fact that the authors of [15] denote the
computations of accumulators by Acc. Since these accumulators can store up to
2n+2 elements their computations actually involve up to 2n+2 exponentiations
(during the creation of these accumulators inside the withdrawal protocol) while
their definitions significantly increase the size of the public parameters (hence
the 2n+3 elements).

The scheme from [15] uses subgroups of Zri
for some primes ri and bilinear

groups of similar orders for their accumulators. Assuming that the parameters of
the accumulators (which are elliptic curve points) are provided in a compressed
way (i.e. only one coordinate by point) and that q is an approximation of the
orders of the different groups, we will consider that each element involved in their
protocol has a |q|-bit representation. The scheme from [26] and the one described
in this paper use bilinear groups of prime order p. For a 128-bits security level, we
have |p| = 256, |G1| = 256 and |G2| = 512 by using Barreto-Naehrig curves [3]
whereas |q| must be greater than 3072 for [15] (see [23]).

Public Parameters. A downside of our protocol is the size of the public param-
eters. However, it is worthy to note that by using the curve parameters from
[3] and the structure preserving signature scheme from [1], the storage space

Divisible E-Cash Made Practical 93

Schemes Canard-Gouget [15] Izabachène-Libert [26] Our work

Standard Model no yes yes

Public
Parameters

2n+3|q| + 1 pk 2 G1 + 1 G2 + 1 pk
(n + 2) pk + 1 G2

+ (2n+2 + 3) G1

+ (2n+1 − 1) |Sign|
Withdraw

Computations
(2n+3 + 2n+2 − 5)exp

+ (n + 2) Sign
1 Sign 1 Sign

Coin Size
(2n+2 + n + 1) |q|
+ (n + 2) |Sign| 3 |p| + |Sign| 2 |p| + |Sign|

Spend

Computations

NIZK{ 3 exp∗

+ 2 Sign + 2 Pair }
+ 1 exp

NIZK{ (n − l) exp

+ (7(n − l) + 6) Pair

+ 1 Sign }
+ (8(n − l) + 4) exp

NIZK{ 2 exp

+ 2 Sign } + 3 exp

+ 1 Sign

Transfer size of
Spend

3 |q| + |NIZK| 3(n − l) G2 +
3(n−l)GT + |NIZK|

3 G1 + 1 |Sign|
+|NIZK|

Deposit

Computations
2l+1exp unbounded 2n Pair

Deposit size 2l |q| + |Spend| |Spend| 2n
GT + |Spend|

Fig. 5. Efficiency comparison between related works and our construction for coins of
value 2n and Spend and Deposit of value 2l. The space and times complexities are
given from the user’s point of view. exp refers to an exponentiation, pair to a pairing
computation, Sign to the cost of the signature issuing protocol, from the user point
of view, whose public key is pk. NIZK{exp} denotes the cost of a NIZK proof of
a multi-exponentiation equation, NIZK{pair} the one of a pairing product equation
and NIZK{Sign} the one of a valid signature. NIZK{exp∗} refers to the cost of a
proof of equality of discrete logarithms in groups of different orders.

required by these parameters for n = 10 (enabling users to divide their coin in
1024 parts) is 330 KBytes which can easily be handled by any smartphone. Our
parameters (see the full version [17]) require then less storage space than the
ones of [15] (since 210+3 · |q| = 3.1 MBytes). For the bank, the additional cost of
storing the elements {g̃s �→f} is only 721 KBytes.

Withdrawal and Spending. The strong time constraints of electronic trans-
actions require very efficient withdrawal and spending protocols. Compared to
any paper in the literature with similar security level (especially [15] and [26]),
our protocol is the only one to achieve constant time for both the Withdraw and
the Spend protocols. Moreover, even if the Spend protocol from [15] can be per-
formed in constant time, it involves zero-knowledge proofs in groups of different
orders which are rather complex, even in the ROM.

Deposit. Unfortunately, our Deposit protocol involves up to 2n pairings and
so is less efficient than the one from [15]. For n = 10 it means that the bank must
compute 1024 pairings. Even if they can be computed in parallel and even if each

94 S. Canard et al.

of them can be performed on a computer in less than 1 ms [7], the computational
cost is significant. However, since this protocol is run offline (without the strong
time constraints of the previous protocols) and since the computational power of
a bank can be assumed to be far more important than the one of a computer, we
argue that the cost for the bank remains reasonable. Regarding the storage size,
the bank must store 2n serial numbers by transaction. As explained in Remark 5,
the bank does not need to store the elements zi but only their hash values H ′(zi)
for some hash function H ′ whose output space can be rather small since, in the
event of a collision, the bank will first recompute the elements zi before running
the Identify algorithm. For example, considering that the output space of H ′

has a 80 bits size, the space required to store the serial numbers of one million
transactions is about 10 GBytes, which is still practical for the bank.

Finally, we stress that our Deposit protocol is the first one in the standard
model with a bounded computational cost, i.e. which does not depend on the
number of previous transactions, as in [26] (excepted for the lookup in tables for
double-spending detection).

6 Security Proofs

The proofs of anonymity and traceability are similar in the ROM and in the
standard model so we only describe one proof for both models. This is no longer
the case for the exculpability property which requires two different proofs.

6.1 Proof of Anonymity

Let A be an adversary against the anonymity with advantage ε. We construct
a reduction R using A against XDH challenges in G1. Let (g, gx, gy, gz) be a
XDH-challenge in G1, R randomly selects f∗ ∈ Fn and generates the public
parameters as follows.

– (h, u1, u2) ← (gc, gd1 , gd2) for some c, d1, d2
$← Zp

– For each f ∈ Fn, lf
$← Zp

– For each s ∈ Sn, rs
$← Zp

– For each s ∈ Sn:
• If s is a prefix of f∗ then gs ← (gy)rs

• Else gs ← grs

• hs ← gc
s

– For each s ∈ Sn, for each f ∈ Fn(s), output g̃s �→f ← g̃
lf
rs .

In this way, only the prefixes of f∗ will involve challenge elements. In the standard
model, R also generates a simulated common reference string. Let qw be a bound
on the number of OWithdraw queries, R randomly selects i∗ from [0,qw] and
answers to the oracle queries as follows:

Divisible E-Cash Made Practical 95

– OAdd() queries: R runs the Keygen algorithm and returns upk (or mpk).
– OWithdrawU (bsk, upk) queries: When the adversary makes the ith query to

the OWithdrawU oracle, the reduction acts normally if i �= i∗ and as if the
secret value of the coin is x otherwise (by sending (gx)d2 and simulating
the proof of knowledge, since x is not known by R). The chosen public key
corresponding to this last case will be denoted upk∗.

– OCorrupt(upk/mpk) queries: R acts normally if the query was not made on
upk∗. Else, it aborts the experiment.

– OAddCorrupt(upk/mpk): R stores the public key which is now considered
as registered.

– OSpend(upk, 2�) queries: R is able to deal with any of these queries if upk �=
upk∗. Else, the reduction is able to answer as long as cupk < mupk · 2n − 2�

(and aborts otherwise) since this condition means that there is at least one
unspent node s which is not the prefix of f∗. The reduction can then compute
a valid pair (ts, vs) ← ((gx)rs , upkr · tcs) where r ← H(info) and simulates
the non-interactive proof (which is possible even in the standard model since
we use a simulated CRS).

During the challenge phase, A outputs {upk0, upk1} along with a value 2�. Of
course, it is assumed that none of these users has spent more than mupkb

·2n −2�.
If upk∗ /∈ {upk0, upk1} then R aborts, else it selects the prefix s∗ of length
n − � of f∗, which cannot have been spent, by the assumption made on the
OSpend queries. R also provides a simulated proof and then answers the oracle
queries as previously. Since gs∗ = (gy)rs∗ , the reduction returns (ts∗ , vs∗) ←
((gz)rs∗ , (upk∗)r · tcs∗), which is valid for upk∗ iff z = x · y. R returns a random
element from G

2
1 if z �= x · y. Then, R uses the bit returned by A to solve the

XDH challenge.
When A selects the users involved in the challenge phase, it actually selects

the two subsets S0 and S1 of the withdrawn coins belonging to these users. The
condition on the challenge phase implies that there is at least one coin in each
subset which has not been totally spent. If the coin withdrawn during the i∗th

query is one of them, R will not abort. Its probability of success in breaking the
XDH-assumption is then greater than 2ε/qw.

6.2 Proof of Traceability

Let A be an adversary against the traceability. We construct a reduction R using
A against the unforgeabiliy of Σ0 or Σ1. R generates the public parameters
as in the Setup algorithm and selects 0 ≤ i∗ ≤ n. It then generates n keys
pairs (sk(i)

0 , pk
(i)
0) ← Σ0.Keygen(1k) for 1 ≤ i �= i∗ ≤ n and uses sk

(i)
0 to sign

(gs, hs) such that |s| = i. Finally, it sends (gs, hs) for every s ∈ Sn such that
|s| = i∗ to the Σ0.Sign oracle which returns the signatures τs along with the
verification key pk

(i∗)
0 . R also receives the public key pk1 from the challenger

of the experiment of the EUF-CMA security of Σ1 and sets its public key as
({pk

(j)
0 }j , pk1, {τs}s∈Sn

). The reduction will proceed as usual when it receives

96 S. Canard et al.

OAdd, OCorrupt, OAddCorrupt and OSpend queries and uses its Σ1.Sign oracle
to answer OWithdrawB queries.

Let qw be the number of withdrawn queries. In order to succeed, A must
output u valid transcripts (2�j , Zj ,Πj) such that

∑
2�j > qw · 2n and such

that Identify((2�i , Zi,Πi), (2�j , Zj ,Πj)) =⊥ for every 1 ≤ i �= j ≤ n. The
perfect soundness of the proof implies that each transcript (2�j , Zj ,Πj) involves
a pair (gj , hj) and a signature τj such that Σ0.Verify((gj , hj), τj , pk

(n−lj)
0) = 1.

We may then assume that (gj , hj) = (gsj
, hsj

) for some sj ∈ Sn such that
|sj | = n− lj . Else, ((gj , hj), τj) is a valid forgery which breaks the security of Σ0

with probability 1
n+1 (i.e. if i∗ = n − lj).

Let x1, ..., xqw
be the qw secret values (one for each withdrawn coin). Since

an amount of
∑

2�j > qw · 2n has been deposited, the bank has computed
∑

2�j

elements zi ← e(tsj
, g̃sj �→f). If {zi}i ⊂ {e(g, g̃)lf ·xi}f∈Fn,1≤i≤qw

then there is at
least one couple (i, j) such that i �= j and zi = zj , because the size of the last
set is qw · 2n. Such a collision implies (see remark 4) that the security tags vsi

and vsj
have been produced with the same secret x and so with the same public

key upk which would have been returned by the Identify algorithm. We can
therefore assume that {zi}i � {e(g, g̃)lf ·xi}f∈Fn,1≤i≤qw

, implying that at least
one of the element tsj

is equal to gx
sj

for some x /∈ {x1, ..., xqw
}. We can then

extract, from the corresponding spending, a valid forgery σ on (usk, x) in the
ROM and on (uusk

1 , ux
2) in the standard model and so breaks the security of Σ1.

6.3 Proof of Exculpability

We distinguish the proof in the ROM from the one in the standard model.

ROM: Let A be an adversary against the exculpability property. We construct
a reduction R using A against the DL challenges in G1. Let (g, gα) be a DL
challenge, R generates the public parameters as in the Setup algorithm and
selects 1 ≤ i∗ ≤ qa where qa is a bound on the number of OAdd queries. R will
answer the oracle queries as follows.

– OAdd() queries: When the adversary makes the i-th OAdd query to register a
user, R will run the Keygen algorithm if i �= i∗ and set upk∗ ← gα otherwise.

– OCorrupt(upk/mpk) queries: R returns the secret key if upk �= upk∗ and
aborts otherwise.

– OAddCorrupt(upk/mpk) queries: R stores the public key which is now con-
sidered as registered.

– OWithdrawU (bsk, upk) queries: R acts normally if upk �= upk∗ and simulates
the interactive proof of knowledge of α otherwise.

– OSpend(upk, 2�) queries: R acts normally if upk �= upk∗ and simulates the
non-interactive proof of knowledge of α otherwise.

The adversary then outputs two valid transcripts (2�1 , Z1,Π1) and (2�2 , Z2,Π2)
which accuse upk of double-spending. If upk �= upk∗ then R aborts. Else, at least
one of this transcript was not produced by R (else it would have double-spent

Divisible E-Cash Made Practical 97

its own coins). The soundness of the signature of knowledge implies then that
we can extract α from this forged transcript. R is then able to solve the discrete
logarithm problem in G1 since it will not abort with probability 1/qa.

Standard Model: An adversary A against the exculpability property outputs
two transcripts accusing an honest user upk of double-spending. As explained
above, at least one of these transcripts was not produced by R. Let pk′

ots be
the one-time signature key used in this forged transcript, there are two kinds of
attacks that can be mounted by A:

– Type-1 Attack: pk′
ots is one of the key used by R to answer a OSpend query.

– Type-2 Attack: pk′
ots was not used by R to answer OSpend queries.

Clearly, an adversary succeeding in a Type-1 attack with non-negligible prob-
ability can be used to break the security of the one-time signature scheme Σots.
We therefore only consider Type-2 attacks in what follows.
Let (g, gα, ..., gαqs) be a SDH-challenge where qs is a bound on the number of
OSpend queries, R generates the public parameters as in the Setup algorithm
(except that it sets u1 as gt for some random t ∈ Zp) and selects 1 ≤ i∗ ≤ qa

where qa is a bound on the number of OAdd queries. R computes qs key pairs
(sk(i)

ots, pk
(i)
ots) ← Σots.Keygen(1k) and sets w as g

∏qs
i=1(α+H(pk

(i)
ots)) (which is pos-

sible using the SDH challenge [8]). The reduction will answer the oracle queries
as follows.

– OAdd() queries: When the adversary makes the i-th OAdd query to register a
user, R will run the Keygen algorithm if i �= i∗ and set upk∗ ← gα otherwise.

– OCorrupt(upk/mpk) queries: R returns the secret key if upk �= upk∗ and
aborts otherwise.

– OAddCorrupt(upk/mpk) queries: R stores the public key which is now con-
sidered as registered.

– OWithdrawU (bsk, upk) queries: R acts normally if upk �= upk∗ and simulates
the interactive proof of knowledge of α otherwise.

– OSpend(upk, 2�) queries: R acts normally if upk �= upk∗. Else, to answer
the j−th query on upk∗, it will recover the pair (sk(j)

ots, pk
(j)
ots) and computes

μ ← g
∏qs

i=1,i�=j(α+H(pk
(i)
ots)) which verifies μ = w

1

α+H(pk
(j)
ots) . It then uses sk

(j)
ots

as in the Spend protocol.

The adversary then outputs two valid transcripts (2�1 , Z1,Π1) and (2�2 , Z2,Π2)
which accuse upk of double-spending. If upk �= upk∗ then R aborts. The sound-
ness of the proof implies that the forged transcript was signed using a key skots

and so that the proof involves an element μ = w
1

α+H(pkots) . Since here we consider
Type-2 attacks, pkots /∈ {pk

(i)
ots}i, so R extracts from the proof the element μ

which can be used to break the qs-SDH assumption in G1 (as in [8]).
R is then able to solve the SDH problem or to break the security of Σots

since it will not abort with probability 1/qa.

98 S. Canard et al.

7 Conclusion

In this work, we have proposed the first practical construction of divisible E-cash
which can be instantiated and proven secure in both the random oracle and
standard models. Our Withdraw and Spend protocols are efficient and can be
performed in constant times. Moreover, the bank can detect double-spendings
by comparing the serial numbers of deposited coins to the ones of previously
spent coins. Our protocol thus answers the problem left open by Izabachène and
Libert. However, the computational cost and the storage space of our Deposit
protocol remains important but we argue that it is reasonable to assume that the
bank has enough storage capacity and computational power. Finally, the way we
build our tree is also compatible with divisible E-cash systems achieving weaker
notions of anonymity (such as unlinkability) leading to very efficient protocols
without these downsides (see the full version [17]).

Acknowledgments. This work was supported in part by the French ANR Project
ANR-12-INSE-0014 SIMPATIC and ANR-11-INS-0013 LYRICS, and in part by the
European Research Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud).

References

1. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

2. Au, M.H., Susilo, W., Mu, Y.: Practical anonymous divisible e-cash from bounded
accumulators. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 287–301.
Springer, Heidelberg (2008)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplifiedrequirements, and a construction based on general assump-
tions. In: Biham, Eli (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

5. Bellare, M., Rogaway, P.; Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
Fairfax (1993)

6. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic
groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer,
Heidelberg (2005)

7. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-Speed software implementation of the optimal ate
pairing over barreto–naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pair-
ing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

8. Boneh,D., Boyen,X.: Short signatureswithout randomoracles and the SDHassump-
tion in bilinear groups. Journal of Cryptology 21(2), 149–177 (2008)

Divisible E-Cash Made Practical 99

9. Brickell, E.F., Gemmell, P., Kravitz, D.W.: Trustee-based tracing extensions to
anonymous cash and the making of anonymous change. In: Clarkson, K.L. (ed.) 6th
SODA, pp. 457–466. ACM-SIAM, San Francisco (1995)

10. Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer,
Heidelberg (2005)

11. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous creden-
tials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 56–72. Springer, Heidelberg (2004)

12. Camenisch, J., Lysyanskaya, A., Meyerovich, M.: Endorsed e-cash. In: 2007 IEEE
Symposium on Security and Privacy, pp. 101–115. IEEE Computer Society Press,
Oakland (2007)

13. Canard, S., Gouget, A.: Divisible E-Cash systems can be truly anonymous. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 482–497. Springer,
Heidelberg (2007)

14. Canard, S., Gouget, A.: Anonymity in transferable E-cash. In: Bellovin, S.M.,
Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037,
pp. 207–223. Springer, Heidelberg (2008)

15. Canard, S., Gouget, A.: Multiple denominations in E-cash with compact transaction
data. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 82–97. Springer, Heidelberg
(2010)

16. Canard, S., Gouget, A., Traoré, J.: Improvement of efficiency in (unconditional)
anonymous transferable E-Cash. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143,
pp. 202–214. Springer, Heidelberg (2008)

17. Canard, S., Pointcheval, D., Sanders, O., Traoré, J.: Divisible e-cash made practical.
Cryptology ePrint Archive, Report 2014/785 (2014). http://eprint.iacr.org/

18. Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing
schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558.
Springer, Heidelberg (2005)

19. Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg
(1998)

20. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D.,
Rivest, R.L., Sherman, A.T. (eds) CRYPTO 1982, pp. 199–203. Plenum Press,
New York (1982)

21. Chaum, D.: Blind signature system. In: Chaum, D. (ed.) CRYPTO 1983, p. 153.
Plenum Press, New York (1983)

22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

23. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

25. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Hei-
delberg (2008)

26. Izabachène, M., Libert, B.: Divisible E-Cash in the standard model. In:
Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 314–332. Springer,
Heidelberg (2013)

http://eprint.iacr.org/

100 S. Canard et al.

27. Nakanishi, T., Sugiyama, Y.: Unlinkable divisible electronic cash. In: Okamoto, E.,
Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp. 121–134. Springer,
Heidelberg (2000)

28. Okamoto, T.: An efficient divisible electronic cash scheme. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 438–451. Springer, Heidelberg (1995)

29. Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992)

30. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
Heidelberg (1990)

31. Stadler, M.A., Piveteau, J.-M., Camenisch, J.L.: Fair blind signatures. In:
Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921,
pp. 209–219. Springer, Heidelberg (1995)

Anonymous Transferable E-Cash

Foteini Baldimtsi1(B), Melissa Chase2,
Georg Fuchsbauer3, and Markulf Kohlweiss2

1 Boston University, Boston, USA
foteini@cs.bu.edu

2 Microsoft Research, Bengaluru, India
melissac@microsoft.com

3 Institute of Science and Technology Austria, Klosterneuburg, Austria
georg.fuchsbauer@ist.ac.at, markulf@microsoft.com

Abstract. Cryptographic e-cash allows off-line electronic transactions
between a bank, users and merchants in a secure and anonymous fashion.
A plethora of e-cash constructions has been proposed in the literature;
however, these traditional e-cash schemes only allow coins to be trans-
ferred once between users and merchants. Ideally, we would like users
to be able to transfer coins between each other multiple times before
deposit, as happens with physical cash.

“Transferable” e-cash schemes are the solution to this problem. Unfor-
tunately, the currently proposed schemes are either completely impracti-
cal or do not achieve the desirable anonymity properties without
compromises, such as assuming the existence of a trusted “judge” who
can trace all coins and users in the system. This paper presents the first
efficient and fully anonymous transferable e-cash scheme without any
trusted third parties. We start by revising the security and anonymity
properties of transferable e-cash to capture issues that were previously
overlooked. For our construction we use the recently proposed malleable
signatures by Chase et al. to allow the secure and anonymous transfer
of coins, combined with a new efficient double-spending detection mech-
anism. Finally, we discuss an instantiation of our construction.

Keywords: Electronic payments · Transferable e-cash · Malleable
signatures · Double-spending detection

1 Introduction

Electronic payment systems are everywhere and average users take their two
main properties, security and privacy, for granted even though they may be built
on shaky foundations. Payments made with debit or credit cards do not provide
any privacy guarantee for users since the corresponding financial institution can

Work done as an intern in Microsoft Research Redmond and as a student at Brown
University, where supported by NSF grant 0964379.
Supported by the European Research Council, ERC Starting Grant (259668-PSPC).

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 101–124, 2015.
DOI: 10.1007/978-3-662-46447-2 5

102 F. Baldimtsi et al.

track all their transactions. Starting with Chaum [Cha83], the cryptographic
community has worked on electronic analogues to physical money (e-cash) that
guarantee secure and private payments [Cha83,CFN88,Bra93,CHL05,BCKL09].
A typical e-cash system consists of three types of entities: the bank, users and
merchants. Users withdraw electronic coins from the bank and spend them to
merchants, who then deposit them at the bank. E-cash systems should satisfy
two main properties (1) unforgeability : an adversarial user cannot spend more
e-coins than he withdrew; and (2) anonymity : nobody (including the bank) can
link spending transactions to each other or to specific withdrawal transactions.

Unlike physical cash, electronic coins are easy to duplicate, so a mechanism is
needed to ensure that a user cannot spend one coin multiple times. Two solutions
were proposed in the literature: the first is online e-cash [Cha83], in which the
merchants are constantly connected to the bank and can therefore check whether
a coin has already been deposited before accepting it. In order to overcome the
strong requirement of a permanent connection to the bank, a second solution is
to use a double-spending mechanism [CFN88]. As long as a user is honest, his
anonymity is guaranteed, but if he tries to cheat the system by spending one
e-coin multiple times then his identity is revealed.

Unfortunately, in traditional e-cash users can only transfer their coins to
merchants, who must then deposit them at the bank. It would be natural to
allow users to transfer coins to other users (or merchants), who should be able
to further transfer the received coins, and so on. Moreover, it would be desirable
if these transfers could be done without being connected to the bank, i.e., offline.
One of the main advantages of such a transferability property is that it would
decrease the communication cost between the bank and the users. Moreover,
it would allow for more real-world scenarios. Consider the example of coins of
different denominations. A store, which is offline, wants to give back change to
a customer, using coins previously received. In order to do so, coins need to be
transferable multiple times. Transferability of e-cash was proposed in the 1990s
and the desired security properties have been analyzed; however, all schemes
proposed so far do not satisfy the proposed security and privacy requirements,
or they are only of theoretical interest, such as [CG08].

Arguably, this was partly because e-cash fell out of fashion as it became
clear that traditional banks were unlikely to support cryptographic currencies
and that credit cards and centralized payment services offering little privacy are
broadly accepted for online payments. Recently, with bitcoin [Nak08] demon-
strating how to bypass the banks, there has been renewed interest in e-cash,
as existing techniques from anonymous e-cash are likely to be applicable to the
bitcoin world as well [MGGR13,BCG+14].

Related Work. Transferable e-cash was originally proposed by Okamoto and
Ohta [OO89,OO91], who gave e-cash schemes that satisfy various properties such
as divisibility and transferability but only provide weak levels of anonymity. While
an adversary cannot link a withdrawal to a payment, he can link two payments
by the same user, a property called weak anonymity (WA). Chaum and Peder-
sen [CP92] proved that (1) transferred coins have to grow in size and (2) an

Anonymous Transferable E-Cash 103

unbounded adversary can always recognize coins he owned when seeing them spent
later. Moreover, they extended the scheme due to van Antwerpen [vAE90] to allow
coin transfer. The resulting scheme satisfies strong anonymity (SA), guaranteeing
that an adversary cannot decide whether two payments were made by the same
user. However, he can recognize coins he observed in previous transactions. Strong
anonymity is also satisfied by the schemes constructed in [Bla08,CGT08].

Anonymity for transferable e-cash has been a pretty subtle notion to define.
In 2008 Canard and Gouget [CG08] gave the first formal treatment of anonymity
properties for transferable e-cash. In addition to weak and strong anonymity,
which do not yield the guarantees one would intuitively expect, they defined full
anonymity (FA): an adversary acting as a malicious bank cannot link a coin pre-
viously (passively) observed to a coin he receives as a legitimate user (Observe-
then-Receive). They also define perfect anonymity (PA): an adversary, acting as
a malicious bank, cannot link a coin previously owned to a coin he receives and
showed that PA⇒ FA⇒ SA⇒ WA. Chaum and Pedersen [CP92] showed that
perfect anonymity cannot be achieved against unbounded adversaries. Canard
and Gouget [CG08] prove that it cannot be achieved against bounded adversaries
either. They therefore introduce two modifications of perfect anonymity, which
are incomparable to FA, namely PA1: an adversary, controlling the bank, cannot
link a coin previously owned to a coin he passively observes being transferred
between two honest users (Spend-then-Observe); and PA2 (Spend-then-Receive):
an adversary cannot link a coin previously owned to a coin he receives, assum-
ing the bank is honest. (If the adversary controls the bank, this notion is not
achievable due to the impossibility results mentioned above.) In the same paper
they present a construction which satisfies all achievable anonymity properties,
but is only of theoretical interest due to its inefficiency as it relies on metaproofs
and thus Cook-Levin reductions.

The first practical scheme that satisfies FA, PA1 and PA2 is the scheme due
to Fuchsbauer et al. [FPV09]; however, it has two main drawbacks: (1) the users
have to store the data of all transactions they were involved in to prove innocence
in case of fraud; and (2) when a double-spending is detected, all users up to the
double-spender lose their anonymity. Blazy et al. [BCF+11] addressed these
problems and propose a new scheme using commuting signatures [Fuc11], which
overcomes the above drawbacks by assuming the existence of a trusted entity
called the judge. This entity is responsible for the tracing of double-spenders,
but can also trace all coins and users in the system at any time. This clearly
contradicts one of the main goals of e-cash: as long as users do not double-
spend, they remain anonymous. (In addition, it is not clear whether their scheme
satisfies PA2; see Section 4.4.)

Our Contributions
We present the first transferable e-cash scheme that satisfies all of the anonymity
properties from the literature (FA, PA1, PA2) and a new anonymity notion that
we introduce. Moreover, it does not assume any trusted party and does not rely
on a Cook-Levin reduction or heuristics like the random-oracle model. Our con-

104 F. Baldimtsi et al.

tributions include new definitions, a construction based on malleable signatures
and a double-spending detection mechanism potentially of independent interest.

Definitions. We provide a formal treatment of the security and anonymity
properties of transferable e-cash in a game-based fashion, since many of the
previous definitions were informal and/or incomplete. Moreover, we define a
new anonymity requirement that was not captured before. Namely, we intro-
duce a strengthening of Spend-then-Receive anonymity (a.k.a. PA2), which offers
anonymity guarantees against a malicious bank. While it is unavoidable that an
adversary impersonating the bank can link a coin he previously owned to one he
receives, we require that he should not learn anything about which honest users
possessed the coin in between. This was not guaranteed in previous definitions.

Construction. In traditional e-cash systems a coin withdrawn from the bank
typically consists of the bank’s signature σ on a unique serial number, SN. When
spending the coin with a merchant, a double-spending tag DS is computed, which
encodes the identity of the spender. The merchant then deposits c = (SN, σ, DS) at
the bank. If two coins c, c′ with the same serial number but with different double-
spending tags DS, DS′ are deposited, these tags together will reveal the identity
of the user who double-spent. For transferable e-cash, the owner of a coin should
be able to transfer the coin/signature she received from the bank to another
user in such a way that the transferred coin is valid, carries all the information
necessary to detect double-spending, and preserves anonymity. Thus, we need a
digital signature scheme that allows a user to compute a “fresh” version of a valid
signature (unlinkable to the original one to ensure anonymity) and to extend the
current signature to include more information (such as a double-spending tag
for the new owner).

A recent proposal of a signature scheme that satisfies the above properties is
due to Chase et al. [CKLM14]. They propose malleable signatures, an extension
of digital signatures, where anyone can transform a signature on a message m into
a signature on m′, as long as T (m) = m′ for some allowed transformation T . They
then use malleable signatures to construct delegatable anonymous credentials.
Our transferable e-cash scheme is inspired by their construction; however, the
security against double-spending required in offline e-cash and the subtleties
of the resulting anonymity guarantees introduce many technical challenges and
make our construction much more involved.

In our construction, a coin withdrawn by the bank is signed using a malleable
signature scheme. When a user wishes to transfer a coin to another user, he com-
putes a mauled signature on a valid transformation of the coin. A valid transfor-
mation guarantees that the transferred coin is indeed owned by the sender (i.e.
the sender’s secret key corresponds to the information encoded in the coin) and
the new coin/signature created will encode the right information of the receiver.
The serial number and the double-spending tags are encrypted under the bank’s
public key, allowing it to check for double-spending on deposit. Moreover, the
encryptions are re-randomized in every transfer, which ensures anonymity. We
propose an instantiation, detailed in the full version [BCFK15], that can be

Anonymous Transferable E-Cash 105

proved secure under standard assumptions: Decision Linear (DLIN) and Sym-
metric External Decision Diffie-Hellman (SXDH).

Double-Spending Detection. Double-spending detection for transferable e-
cash is a complex issue: it needs to ensure that the right user is accused while
preserving the anonymity of honest owners of the coin. We propose an efficient
double-spending detection mechanism, which is independent of our scheme and
could be used by other transferable e-cash schemes, e.g., to provide an offline pay-
ment mechanism for users who have committed a sufficient quantity of bitcoins
as a deposit. Our mechanism allows us to satisfy the new Spend-then-Receive
anonymity property and still use an efficient proof mechanism. Ours is the only
construction that does so apart from [CG08], which is only theoretical.1

2 Definitions for Transferable E-Cash

We adapt the definitions for transferable e-cash given by [CG08,BCF+11] and
strengthen them in several aspects; in particular, we introduce an additional ano-
nymity notion. Following the paradigm of previous work, we present the security
and anonymity properties in a “game-based” fashion. This allows for comparisons
with older definitions and results in modular security proofs for proposed schemes.
We note that a simulation-based security definition for transferable e-cash that
captures all properties considered so far is an interesting open problem.

In a transferable e-cash scheme there are two types of parties: the bank B and
users Ui. Coins are denoted by c and each coin is uniquely identifiable via a serial
number SN, which will be retrieved by the bank during deposit to check if the same
coin was deposited twice. We let DCL denote the list of deposited coins; if multiple
coins with the same serial number were deposited, we keep all of them in DCL.

We modify previous definitions in that we add a protocol for user registration2

and we merge the Deposit and Identify protocols. A transferable e-cash scheme
consists of the following algorithms (probabilistic unless otherwise stated):
ParamGen(1λ) on input the security parameter λ outputs the system parameters

par. (We assume that λ can be deduced from par.) par is a default input to
the remaining algorithms.

BKeyGen() and UKeyGen() are executed by B and a user U respectively and
output (skB, pkB) and (skU , pkU). The bank’s key skB might be divided
into two parts: skW for registrations and withdrawals and skD for deposits.
During BKeyGen the list DCL is initialized to be empty.

Registration(B[skW , pkU],U [skU , pkB]) is a protocol between the bank and a
user. At the end the user receives a certificate certU ; both parties output
either ok or ⊥ in case of error.

1 The construction in [BCF+11] does not satisfy the new Spend-then-Receive property
if the judge is not assumed to be honest. If the judge is honest, it is not clear whether
the notion is satisfied, as is the case for the original Spend-then-Receive notion (a.k.a.
PA2); see Section 4.4.

2 For Identification to be meaningful, we must guarantee not only that we can iden-
tify a doublespender’s public key, but also that that public key corresponds to a
legitimate identity, i.e. that it has been registered with the bank.

106 F. Baldimtsi et al.

Withdraw(B[skW , pkU],U [skU , pkB]) is a protocol between the bank and a user.
The user either outputs a coin c or ⊥. B’s output is ok or ⊥ in case of error.

Spend(U1[c, skU1 , certU1 , pkB],U2[skU2 , pkB]) is a protocol in which U1 spends/
transfers the coin c to U2. At the end, U2 either outputs a coin c′ and ok
or it outputs ⊥; U1 either marks the coin c as spent and outputs ok, or it
outputs ⊥ in case of error.

Deposit(U [c, skU , certU , pkB],B[skD, pkU ,DCL]) is a protocol where a user U
deposits a coin c at the bank. We split the deposit protocol into three sub-
routines. First CheckCoin checks whether the coin c is consistent, and if not
outputs ⊥. Else, B runs CheckDS, which outputs the serial number SN of the
deposited coin. B checks whether DCL already contains an entry for SN. If
not, B adds SN to DCL, credits U ’s account and returns “success” and DCL.
Otherwise, the coin was double-spent: the subroutine DetectDS is run on the
two coins and outputs (pkU ,Π), where pkU is the public key of the accused
user, and Π is a proof that the registered user who owns pkU double-spent
the coin. Note that Π should reveal nothing about the coin itself.

VerifyGuilt(pkU ,Π) is a deterministic algorithm that can be executed by
anyone. It outputs 1 if the proof verifies and 0 otherwise.

Notice that in our definition a transferable e-cash scheme is stateless since there
is no common state information shared between the algorithms. This means
that a coin withdrawn will not be affected by the order in which withdrawals
happen, i.e. whether it was the first or the n-th coin the bank issues to a specific
user. Moreover, when a user U2 receives a coin from a user U1, the transferred
coin will only depend on U1’s original coin (not on other coins received by U2

or transferred by U1). Thus, the bank and the users do not need to remember
anything about past transactions—for transfer the coin itself will be sufficient.

Global Variables. In order to formally define the security properties of trans-
ferable e-cash, we first define some global variables and oracles which will be
used in the security games. In the user list, UL, we store all information about
users, keys and certificates. Its entries are of the form (i, pk , sk , cert , uds), where
uds indicates how many times user Ui double-spent (this counter is used in the
exculpability definition). If user i is corrupted (i.e. the adversary knows the secret
key of this user) then sk = ⊥; if it has not been registered then cert = ⊥. We
keep a counter, n, of the total number of generated/registered users which is
initialized to 0.

In the coin list, CL, we keep information about the coins created in the
system. For each original coin withdrawn we store a tuple (j, owner, c, fc, fd, cds ,
origin), where j is its index in CL, owner stores the index i of the user who
withdrew the coin3 and c is the coin itself. The flag fc indicates whether the
coin has been corrupted4 and the flag fd indicates whether the coin has been
3 We do not store the coins withdrawn by the adversary.
4 A corrupted coin is defined as a coin that was under the adversary’s control at some

point. Once a coin is flagged as corrupted, it cannot be “un-flagged”, even if it is
later under the control of an honest user.

Anonymous Transferable E-Cash 107

deposited. We also keep a counter, cds, of how many times this specific instance
of the coin has been spent, which is initialized as cds = 0. In origin we write
“B” if the coin was issued by the honest bank and “A” if the adversary issued
it when impersonating the bank.

When a coin is transferred to another honest user, we add a new entry to
CL as follows: (j, owner, c, cds , pointer), where j is the position in CL, owner
shows the current owner, c is the new, transferred coin and cds indicates how
many times the coin has been spent. In pointer we store a pointer j′ indicating
which original coin this transferred coin corresponds to. Once a transferred coin
is deposited or corrupted, we mark the original coin’s flags fc, fd appropriately.
The last list is the list of deposited coins, DCL. To make explicit the user or
coin to which a variable belongs, we write, e.g., pk i or pointerj respectively.

We now define oracles used in the security definitions. If during the oracle
execution an algorithm fails (outputs ⊥) then the oracle also stops. Otherwise
the call to the oracle is considered successful (for the deposit oracles a successful
call is one that also didn’t detect any double-spending). We define several oracles
for each operation, depending on which parties are controlled by the adversary.

Oracles for Creation, Registration and Corruption of Users. The adver-
sary can instruct the creation of honest users, corrupt users, and invoke or par-
ticipate in registration:

Create() sets n = n + 1, executes (skn, pkn) ← UKeyGen(), sets UL[n] =
(n, pkn, skn,⊥, 0) and outputs pkn.

BRegister(pk) plays the bank side of the Register protocol and interacts with
A. If pk �∈ UL then set n = n + 1 and UL[n] = (n, pk ,⊥,⊥, 0); else abort.

URegister(i), for i ≤ n, plays the user side of the Register protocol and adds
cert to the corresponding field of UL.

Register(i), for i ≤ n, simulates both sides of the Register protocol. If user
i was not registered then add cert to the corresponding field of UL.

Corrupt(i, S), for i ≤ n, allows the adversary to corrupt user i and a subset,
S, of his coins5. If sk i = ⊥ (i.e. this user is already corrupted) then abort.
The set S must consist of coin indices in CL. For every j ∈ S look up the
j-th entry of CL and if owner �= i then ignore this coin and remove it from
S. The oracle first outputs sk i and then updates UL by setting sk i = ⊥ to
mark this user as corrupted. Then, the coins in the set S are given to the
adversary A and are marked as corrupted i.e. the flag fc of the corresponding
original coin is set fc = 1. Note that if A tries to corrupt unregistered users,
this doesn’t give him any extra power. Also, once a user is corrupted he is
considered to be an adversarial user and thus A will be running in his place.
This means that A cannot run honest-user oracles on corrupted users, i.e.
oracles With, UWith, Rcv, S&R, URegister.

5 S allows us to capture the case, for example, where the honest user has not deleted
all of his spent coins. (Ideally all coins should be deleted immediately after spending,
but we want to define security even in the case where this does not happen.) S would
include the user’s unspent coins and any spent coins that have not been deleted.

108 F. Baldimtsi et al.

Withdrawal Oracles

BWith() plays the bank side of the Withdraw protocol. Note that coins belonging
to A are not added to the coin list CL.

UWith(i) plays user i in a Withdraw protocol, where the bank is controlled by
the adversary. Upon obtaining a coin c, it increases the current size � of CL
by 1 and adds (�, owner = i, c, fc = 0, fd = 0, cds = 0, origin = A) to CL.

With(i) simulates a complete Withdraw protocol execution playing both B and
user i. It increases the current size � of CL by 1, adds (�, owner = i, c, fc =
0, fd = 0, cds = 0, origin = B) to CL, and outputs the transcript.

Spend and Deposit Oracles

Rcv(i) lets A spend a coin to honest user i. It plays the role of U2 with user i’s
secret key in the Spend protocol. A new entry (j, owner = i, c, fc = 1, fd = 0,
cds = 0, origin = A) is added to CL. Coins received from the adversary are
considered as original coins in CL.

Spd(j) enables A to receive coin number j in CL. If the coin belongs to a
corrupted user it aborts. Otherwise, it plays the role of user U1 in the Spend
protocol with the secret key of the owner i of coin j. It increases the coin
spend counter cds of entry j in CL by 1. If cds was already greater than zero
(i.e., this specific user has already spent this coin) then the double-spending
counter, uds, of the owner of coin j is increased by one. Finally, whenever a
coin is received by A, we mark the original instance of this coin as corrupted,
i.e., we set fc = 1.

S&R(i, j) is the Spend-and-Receive oracle that allows A to passively observe
the spending of coin j by its owner to user i (both of whom must not be
corrupted). It increases the current size � of CL by 1 and adds (�, owner =
i, c, cds = 0, pointer) to CL, where pointer = j if j is an original coin and
pointer = pointerj if it is a transferred coin. It also increases the coin spend
counter cdsj in entry j by 1. If cdsj was already greater than zero then the
double-spending counter uds of the spender is also increased by 1.

BDepo() simulates the bank in the Deposit protocol interacting with A playing
the role of a user. It updates DCL accordingly, and in case of a double-
spending, outputs the resulting pk ,Π.

UDepo(j) simulates the role of the owner (who must not be corrupted) of coin
j in the Deposit protocol, interacting with the adversary playing the bank.
It increases the spend counter cdsj in entry j in CL by 1. If cdsj was already
greater than zero then the double-spending counter uds of the owner of coin
j is increased by 1. It also marks fd = 1 for the original coin.

Depo(j) simulates a Deposit of coin j between an honest bank and the owner of
j (who must not be corrupted). It increases cdsj in entry j of CL by 1. If cdsj

was already greater than zero then uds of the owner of coin j is increased
by one. It also marks fd = 1 in the original coin and adds the coin to DCL,
and in case of a double-spending, outputs the resulting pk ,Π.

Anonymous Transferable E-Cash 109

Let size(c) be a function that outputs the size of a coin. A withdrawn coin
has size 1 and after a transfer the size increases by 1. We say that coins c1 and
c2 are compatible, (denoted comp(c1, c2) = 1), if size(c1) = size(c2). We need
this property, since transferred coins necessarily grow in size [CP92] and thus an
adversary may break anonymity by distinguishing coins of different sizes.

2.1 Security Properties

We define the security properties of transferable e-cash by refining previous
definitions by [CG08] and [BCF+11]. In the beginning of security games with an
honest bank the challenger typically runs par ← ParamGen(1λ) and (skB, pkB) ←
BKeyGen(), which we merge into one algorithm AllGen.

Unforgeability. This notion protects the bank in that an adversary should not
be able to spend more coins than the number of coins he withdrew. In [BCF+11]
an adversary can interact with honest users and wins the unforgeability game if
he withdrew fewer coins than he successfully deposited.

We simplify the definition noticing that it is not necessary for the adver-
sary to create or corrupt honest users (or instruct them to withdraw, spend,
receive and deposit), since the adversary could simulate these users itself. An
unforgeability definition without honest user oracles thus implies the definition
with these oracles given in [BCF+11]. This also captures the scenario of coin
theft in which the adversary steals coins of honest users, as he also has access to
these coins in the simulation. Note here that we can only require that the adver-
sary be caught if he spends more coins than he withdrew, and if those coins are
deposited. Without drastically changing the approach of offline ecash, it seems
impossible to catch a double-spending until the coins are finally deposited.

To define unforgeability we consider the following experiment:

Experiment ExptunforgA (λ);

(par, skB, pkB) ← AllGen(1λ);
ABRegister,BWith,BDepo(par, pkB);
Let qW , qD be the number of successful calls to BWith, BDepo respectively;
If qW < qD then return 1;
Return ⊥.

Definition 1 (Unforgeability). A transferable e-cash system is unforgeable if
for any probabilistic polynomial-time (PPT) adversary A, we have Advunforg

A (λ),
defined as Pr[ExptunforgA (λ) = 1], is negligible in λ.

Identification of Double-Spenders. No collection of users should be able to
spend a coin twice (double-spend) without revealing one of their identities along
with a valid proof of guilt. Consider the following experiment where, analogously
to the unforgeability definition, we do not give the adversary access to honest
user oracles since he can simulate them himself.

110 F. Baldimtsi et al.

Experiment ExptidentA (λ)

(par, skB, pkB) ← AllGen(1λ);
ABRegister,BWith,BDepo(par, pkB);
Let (pk i∗ , ΠG) be the output of the last call to BDepo to find a doublespending;
Return 1 if any of the following hold:

– VerifyGuilt(pk i∗ , ΠG) = 0;
– pk i∗ �∈ UL;

Return ⊥.

Definition 2 (Double-spender identification). A transferable e-cash system
is secure against double-spending if for any PPT adversary A we have that
Advident

A (λ) :=Pr[ExptidentA (λ)=1] is negligible in λ.

Exculpability. Exculpability ensures that the bank, even when colluding with
malicious users, cannot wrongly accuse honest users of double-spending. Specif-
ically, it guarantees that an adversarial bank cannot output a double-spending
proof Π∗ that verifies for an honest user’s public key if that user never double-
spent. Our definition follows the one from [BCF+11], but we allow the adversary
to generate the bank keys himself, thus truly modeling a malicious bank. The
adversary must output the index of the user accused of double-spending and a
corresponding proof. The game is formalized as follows.

Experiment ExptexculA (λ)

par ← ParamGen(1λ);
(pkB) ← A(par);
(i∗, Π∗) ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;
If VerifyGuilt(pk i∗ , Π∗) = 1 and sk i∗ �= ⊥ and udsi∗ = 0 then return 1;
Return ⊥.

Definition 3 (Exculpability). A transferable e-cash system is exculpable if
for any stateful PPT adversary A, we have that Advexcul

A (λ) := Pr[ExptexculA
(λ) = 1] is negligible in λ.

In the full version [BCFK15] we also discuss a stronger version of exculpa-
bility that guarantees that a user cannot be accused of double-spending more
coins than he did.

2.2 Anonymity Properties

We first consider the three anonymity notions given in [CG08,BCF+11]:

Observe-then-Receive Full Anonymity (OtR-FA). The adversary, controlling the
bank, cannot link a coin he receives as an adversarial user or as the bank to
a previously (passively) observed transfer between honest users. This covers
both the case where the adversary receives a coin as a user during a transfer
and the case where he receives a coin as the bank during deposit.

Spend-then-Observe Full Anonymity (StO-FA). The adversary, controlling the
bank, cannot link a (passively) observed coin transferred between two honest
users to a coin he has already owned as a “legitimate” user.

Anonymous Transferable E-Cash 111

Spend-then-Receive Full Anonymity (StR-FA). When the bank is honest, the
adversary cannot recognize a coin he previously owned when he receives it
again.

These three notions are incomparable as proved in [CG08]. The games formal-
izing these notions are fairly similar to those in [BCF+11]. A difference is that
we define coin indistinguishability, which implies the user indistinguishability
properties considered in [BCF+11]. We also allow A to pick the secret keys him-
self, in particular that of the adversarial bank (in contrast to [CG08,BCF+11],
where the bank’s keys are created by experiment). We begin by defining the
appropriate experiment for each notion.

In the OtR game the adversary outputs two indices of coins owned by honest
users and receives one of them, either as a Spend (by setting v = 0) or as a
Deposit (setting v = 1). The adversary must not receive the coin a second time
(he could otherwise distinguish them as he controls the bank), which the game
ensures by resetting the flags fc, fd to 0 and checking that they remain that way.

Experiment ExptOtR-faA,b (λ)

par ← ParamGen(1λ); pkB ← A(par);
(j0, j1, v) ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;
If comp(j0, j1) �= 1 or fcj0

= 1 or fcj1
= 1 or fdj0

= 1 or fdj1
= 1

then return ⊥;
If v = 0 then simulate Spd(jb) to A;
Else if v = 1 then simulate UDepo(jb);
Else return ⊥;
Reset the flags to fdj0

= 0, fdj1
= 0, fcj0

= 0, fcj1
= 0;

b∗ ← ACreate,URegister,Corrupt,With,Rcv,Spd,S&R,UDepo;
If fdj0

= 1 or fdj1
= 1 or fcj0

= 1 or fcj1
= 1 then abort;

Return b∗.

For the StO game we use a modified Spend&Receive oracle S&R∗: for the coin
c being transfered, it creates a new entry in CL in the form of an original coin
whose origin is marked to be Challenger while owner = i, fd = 0, and fc = 0. If
the adversary tries to corrupt, receive or deposit this coin (or a transferred coin
whose “original coin” in CL is this coin) then we abort.

Experiment ExptStO-faA,b (λ)

par ← ParamGen(1λ); pkB ← A(par);
(j0, j1, i) ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;
For β = 0, 1, let uβ be index of the owner of coin jβ (i.e., ownerjβ = uβ);
If comp(j0, j1) �= 1 or skUj0

= ⊥ or skUj1
= ⊥ or sk i = ⊥ then return ⊥;

Run out ← S&R∗(jb, i);
b∗ ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo(out);
If the coin with origin Challenger has fd = 1 or fc = 1 then abort;
Return b∗.

In the StR game we assume that the bank is honest, or at least that A does not
know the deposit key skD. The adversary picks two coins of the same size, with
indices j0, j1, whose owners are uncorrupted. We then transfer the coin jb to A
for a randomly selected bit b and his goal is to guess b. When he runs again, we
have to make sure that no one deposits j0 or j1; otherwise he could trivially win

112 F. Baldimtsi et al.

by depositing his coin and checking whether a double-spending occurred. We
therefore use two modified oracles BDepo′ and Depo′, which check whether the
deposited coin collides with coin j0 or j1. If it does, we deposit j0, j1 and his
coin and return cumulative results so that the results will be independent of b.

BDepo′(j), Depo′(j) run the CheckCoin subroutine of Deposit as prescribed by
BDepo(j) and Depo(j) respectively. If OK, initialize DCL′ = ∅ and simulate
Deposit for coins j0, j1 and then CheckDS for the coin A deposits in both
cases using DCL′ instead.
If double-spending is detected then simulate Deposit for the coins j0, j1 and
CheckDS, DetectDS for A’s coin; each time reverting to the original DCL.
Only then add the three coins to DCL. Return the set of public keys returned
DetectDS for all three coins, together with one proof Π for each key. If there
are multiple proofs, use the one from A’s coin.
Else run CheckDS, DetectDS with DCL for A’s coin, add the coin to DCL,
and return the result of DetectDS if there was a double-spending.

Experiment ExptStR-faA,b (λ)

(par, skB = (skW , skD), pkB) ← AllGen(1λ);
(j0, j1) ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,BDepo,Depo(par, skW , pkB);
For β = 0, 1, let uβ be index of the owner of coin jβ (i.e., ownerjβ = uβ);
If comp(j0, j1) �= 1 or sku0 = ⊥ or sku1 = ⊥ then return ⊥;
Simulate Spd(jb) to A;

b∗ ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,BDepo′,Depo′
;

Return b∗.

In addition to these three notions, we introduce a new, strong, user-indistinguish-
ability notion of anonymity that we call Spend-then-Receive* : although the
adversary, when controlling the bank, can tell whenever he receives a coin he
owned before, he should not be able to learn anything about the identities of the
users that owned the coin in between. We define this as an indistinguishability
game in which the adversary picks a pair of users, to one of whom (according to
bit b) the coins are transferred. The goal is to guess this bit b.6

6 Note that it is important that the game below allows for many different values of k,
as it is not clear how security for an experiment where k = 1 would imply security for
higher values of k. To see this, consider the case where the adversary selects k = 2,
and then plays a game where he either gives a coin to U1, who gives it to U2, who
gives it back to A, or he gives a coin to U2, who gives it to U1, who gives it back to
A (i.e. he chooses (i0, i1) = (U1, U2) the first time, and (i0, i1) = (U2, U1) the second
time). Now, it is not at all clear how to reduce this game to a game where k = 1,
because any natural hybrid reduction would require the reduction to have control of
either U1 or U2.

Anonymous Transferable E-Cash 113

Experiment ExptStR*-faA,b (λ)

par ← ParamGen(1λ); pkB ← A(par);

(i0, i1, 1
k) ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;

If sk i0 = ⊥ or sk i1 = ⊥ then return ⊥;
Run Rcv(ib) with A;
Let c1 be the received coin and let j1 be its index in CL;
Repeat the following two steps for α = 1, . . . , k − 1:

(i0, i1) ← A; If sk i0 = ⊥ or sk i1 = ⊥ then return ⊥;
Run S&R(ib, jα);
Let cα+1 be the received coin and let jα+1 be its index in CL;

Run Spd(jk) with A;
b∗ ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;
If for any of the coins c1, . . . , ck we have cds > 1 then output ⊥;
If any of the owners of c1, . . . , ck is corrupted then output ⊥;
Return b∗.

Definition 4. (Anonymity) A transferable e-cash scheme is fully anonymous if
for any stateful PPT adversary A we have that

AdvStR*-fa
A (λ) := Pr[(ExptStR*-faA,1 (λ) = 1] − Pr[(ExptStR*-faA,0 (λ) = 1]

is negligible in λ (and analogously for ExptOtR-faA,b , ExptStO-faA,b , and ExptStR-faA,b).

3 Double-Spending Detection

In our construction every coin in the system contains a serial number SN =
SN1‖ . . . ‖SNk where SN1 was generated by the user who withdrew the coin, SN2
was generated by the second user who received the coin and so on. Moreover,
a coin contains a set of double-spending tags DS = DS1‖ . . . ‖DSk−1 which allows
the bank to identify the user that double-spent whenever a coin is deposited
twice. (To satisfy Spend-then-Receive anonymity, these values will be encrypted
so that only the bank can see them.)

We first describe the properties of serial numbers and double-spending tags
needed for our transferable e-cash construction. We then give concrete instanti-
ations in Section 3.2.

3.1 Properties of Serial Numbers and Double-Spending Tags

As we will see in Section 3.2, for transferable e-cash it seems essential that the
generation of SNi uses both randomness chosen by the i-th receiver and the secret
key of that user. We thus define a serial-number function, fSN, which on input
a random nonce and a secret key (ni, sk i) outputs the serial-number component
SNi of the coin. We require a form of collision-resistance, which guarantees that
different (ni, sk i) generate different SN. Formally:

Definition 5 (Serial Number Function). A serial number function fSN
for parameters GenSN takes as input parameters parSN ← GenSN , a nonce

114 F. Baldimtsi et al.

and a secret key (ni, sk i), and outputs a serial number SNi. (We omit parSN
when it is clear from context.) It is called collision-resistant if given parSN ←
GenSN , it is hard to find (sk i, ni) �= (sk ′

i, n
′
i) such that fSN(parSN , ni, sk i) =

fSN(parSN , n′
i, sk

′
i).

We also define a double-spending tag function, fDS, that takes as input the nonce
ni, that the coin owner Ui had picked when receiving the coin, Ui’s secret key sk i

and SNi+1, which was computed by the receiver of the coin. It might also take as
input some additional user identifying information, ID i. The output is a double-
spending tag that reveals nothing about the owner, Ui, unless she transfers the
same coin to more than one user (i.e. double-spends). In that case, the bank can,
given a database of public keys of all the users (and associated info ID for each
one) identify the user that double-spent and produce a proof accusing her.

Definition 6 (Double-Spending Tag). A double-spending tag function fDS
for parameters GenSN and key-generation algorithm KeyGen takes as input parSN
and (ID i, ni, sk i, SNi+1) and outputs the double-spending tag DSi.

− fDS is 2-show extractable if whenever we compute DSi and DS′
i for the same

(parSN , ID i, ni, sk i) but different SNi+1 �= SN′
i+1, there exists an efficient

function fDetectDS that on input DSi and DS′
i and a list of identifiers I such

that (ID i, pk i) ∈ I for a pk i corresponding to sk i (according to KeyGen),
efficiently extracts (pk i,Π) where Π is an accepting proof for pk i.

− fDS is exculpable if, given a randomly generated public key pk i produced by
KeyGen, and parSN ← GenSN , it is hard to compute an accepting proof,
Π, for pk i. More formally, consider the following game: parSN ← GenSN ;
(pk i, sk i) ← KeyGen; Π ← A(parSN , pk i). The adversary wins if Π is an
accepting proof for pk i. Exculpability means that any PPT adversary wins
this game with at most negligible probability.

Finally, we want to be able to guarantee anonymity notions even against a
malicious bank who gets to see the serial numbers and double-spending tags
for deposited coins. Thus, we require that as long as the nonce ni is fresh and
random, these values reveal nothing about the other values, such as sk and ID ,
used to generate them.7

Definition 7 (Anonymity of Double-Spending Tags). A double-spending
tag function fDS and a serial number function fSN are anonymous if for all
ID i, sk i, SNi+1, ID ′

i, sk
′
i, SN

′
i+1 the following holds: If parSN ← GenSN and ni is

chosen at random then
(

parSN , fSN(parSN , ni, sk i), fDS(parSN , ID i, ni, sk i, SNi+1)
)

and
(

parSN , fSN(parSN , ni, sk ′
i), fDS(parSN , ID ′

i, ni, sk ′
i, SN

′
i+1)

)

are computation-
ally indistinguishable.
7 This means that fSN must be a commitment scheme. However the anonymity property

we require here is stronger than commitment hiding in that indistinguishability is
required to hold even given the additional double-spending value also computed
using the same random string ni.

Anonymous Transferable E-Cash 115

3.2 A Double-Spending Detection Mechanism

Here we propose a concrete instantiation for the functions fSN, fDS used to gener-
ate the serial numbers and double-spending tags. To give some intuition, we first
consider the natural translation of traditional (non-transferable) e-cash double-
spending techniques [CFN88], and show why this is not sufficient in the trans-
ferable setting. Assume that Ui transfers a coin to Ui+1 executing Spend. Let
SNi+1 = ni+1 be the nonce that Ui+1 randomly picks and sends to Ui. Then Ui

would compute the double-spending tag as DSi = pkni+1
i F (ni), where F (ni) is

hard to compute, except for the user that has chosen ni.
Assume that Ui double-spends the coin by transferring it to users Ui+1 and

U ′
i+1 and that both instances of the coin get eventually deposited at the bank.

The bank receives two coins starting with SN1, so it looks for the first difference
in the serial numbers SN and SN′, which is SNi+1 �= SN′

i+1, pointing to Ui as
the double-spender. Using the tags DSi and DS′

i, the bank can now compute
pk i = (DSi(DS′

i)
−1)1/(ni+1−n′

i+1). But what if a coin was double-spent and the
receivers picked the same nonce ni+1? We consider two cases:

Case 1: Ui double-spends the coin to the same user Ui+1 and in both transac-
tions Ui+1 picks the same nonce ni+1. When the coins are deposited the first
difference occurs at position i + 2 and the bank will therefore accuse Ui+1 of
double-spending. However, user Ui+1 can easily avoid being wrongly accused of
double-spending by picking a fresh nonce each time he receives a coin.

Case 2: Ui transfers the same coin to different users with pk i+1 and pk ′
i+1 who

pick the same nonce ni+1 when receiving the coin. As before, the bank’s serial
numbers will diverge at position i + 2. However, in this case computation of a
public key will fail, as DSi+1 and DS′

i+1 contain different public keys.
The second scenario could be exploited by a collusion of Ui, Ui+1 and U ′

i+1 to
commit a double-spending without being traceable for it. We therefore need to
ensure that different users cannot produce the same SNi+1 when receiving a coin.
We ensure this by making SNi+1 dependent on the user’s secret key, as formalized
in Definition 5. We could easily achieve this by using a collision-resistant hash
function, but in e-cash schemes users must prove well-formedness of SN and DS.
We therefore want to keep the algebraic structure of the above example in order
to use efficient proof systems.

Our Construction. The parameters parSN describe an asymmetric pairing
group (q,G1, G2, GT , e) of prime order q and six random generators of G1:
(g1, g2, h1, h2, h̃1, h̃2). We assume that secret keys and the info ID are elements
of Zq. User Ui+1 chooses the nonce ni+1 randomly from Zq and computes SNi+1

as
fSN(ni+1, sk i+1) = {Ni+1 = g

ni+1
1 , Mi+1 = g

ski+1·ni+1
2 } .

When Ui receives SNi+1 = (Ni+1,Mi+1), she forms the double-spending tags as:

fDS
(

ID i, ni, sk i, (Ni+1,Mi+1)
)

=

{

Ai = N IDi
i+1 hni

1 , Bi = M IDi
i+1 hni

2

Ãi = N ski
i+1h̃

ni
1 , B̃i = M ski

i+1h̃
ni
2

}

116 F. Baldimtsi et al.

We show that this construction satisfies the properties defined in Section 3.1.
First, the function fSN function is collision-resistant : in order to have Ni+1 =
N ′

i+1 the adversary must pick ni+1 = n′
i+1, but then Mi+1 = M ′

i+1 can only be
achieved if sk i+1 = sk ′

i+1.
Next we consider double-spending. The bank stores a database of pairs

(pk , ID) for all registered users with pk and ID unique to each user. When
a coin is deposited, the bank retrieves the serial number SN = SN1‖ . . . ‖SNk. If
a coin was deposited before with SN �= SN′ but SN1 = SN′

1, the bank looks for
the first pair such that SNi+1 = (Ni+1,Mi+1) �= SN′

i+1 = (N ′
i+1,M

′
i+1) in order

to detect where the double-spending happened. Depending on whether the N -
values or the M -values are different, the bank checks for which ID ∈ DBB the
following holds:

(Ai(A′
i)

−1) ?= (Ni+1(N ′
i+1)

−1)ID or (Bi(B′
i)

−1) ?= (Mi+1(M ′
i+1)

−1)ID

This is a relatively cheap operation that can be implemented efficiently. (In our
e-cash construction in Section 4, ID will be the user’s position in the registered
user list.) In our scheme KeyGen outputs pk i = ĝski for a fixed generator ĝ of
G2. When the bank finds an ID that satisfies the equation above, it looks up in
its database the associated public key and checks whether the following pairing
is satisfied:

e(Ãi(Ã′
i)

−1, ĝ) = e(Ni+1(N ′
i+1)

−1, pk i) (1)

or similar for B̃i, B̃′
i,Mi+1,M

′
i+1 in case Ni+1 = N ′

i+1 (in which case we must
have Mi+1 �= M ′

i+1). If these checks fail for all pk , ID in the database, the bank
outputs (⊥,⊥), but this should never happen. The function fDetectDS on input
DSi, DS′

i,DBB outputs pk and Π = (DSi, DS′
i). The verification for this proof just

checks equation (1). Thus, our fDS function is 2-show extractable.
It remains to be shown that our system (fSN, fDS) is anonymous and excul-

pable. In the following lemma (whose proof is in the full version [BCFK15]) we
show that both properties follow from SXDH:

Lemma 1. The above constructions of a double-spending tag function fDS and
a serial number function fSN are anonymous as defined in Definition 7 assuming
that DDH holds in G1. Moreover, the double-spending function is exculpable if
DDH holds in G2.

Note that we could just use Equation (1) to detect double-spending (and discard
the values Ai, Bi in fDS). This would however be less efficient, since the bank
would have to compute one pairing for every database entry. On the other hand,
if exculpability is not required, we could discard the values Ãi, B̃i from fDS.

4 Transferable E-Cash Based on Malleable Signatures

We now describe a generic construction of a transferable e-cash scheme using
malleable signatures. Assume the existence of a malleable signature scheme

Anonymous Transferable E-Cash 117

(MSGen, MSKeyGen, MSign, MSVerify, MSigEval) with allowed transformation
class T (as defined below), a signature scheme (SignGen,SKeyGen,Sign,Verify),
a randomizable public-key encryption scheme (EKeyGen,Enc,REnc,Dec), a com-
mitment scheme (ComSetup,Com), a zero knowledge proof system 〈P, V 〉
and a hard8 relation Rpk . We also assume the existence of the functions
fSN, fDS, fDetectDS for GenSN as defined in Section 3.1.

The bank’s withdrawal key consists of (vk (MS)
B , sk (MS)

B) ← MSKeyGen(1λ) and
(vk (S)

B , sk (S)
B) ← SKeyGen(1λ); the deposit key is (pkD, skD) ← EKeyGen(1λ).

Users have key pairs (pkU , skU) ∈ Rpk and when registering they receive a
certificate certU = Sign

sk
(S)
B

(pkU , IU), where IU is their joining order.
We recall the properties of malleable signatures, the central building block

for our construction, and refer to the full version [BCFK15] for the definitions
of commitment schemes and re-randomizable encryption.

4.1 Malleable Signatures

A malleable (or homomorphic) signature scheme [ABC+12,ALP12,CKLM14]
allows anyone to compute a signature on a message m′ from a signature on m
as long as m and m′ satisfy some predicate. Moreover, the resulting signature
on m′ reveals no extra information about the parent message m.

We adapt the definition by Chase et al. [CKLM14], who instead of a pred-
icate consider a set of allowed transformations. A malleable signature scheme
consists of the algorithms KeyGen, Sign, Verify and SigEval, of which the first
three constitute a standard signature scheme. SigEval transforms multiple mes-
sage/signature pairs into a new signed message: on input the verification key vk ,
messages �m = (m1, . . . , mn), signatures �σ = (σ1, . . . , σn), and a transformation
T on messages, it outputs a signature σ′ on the message T (�m).

Definition 8 (Malleability). A signature scheme (KeyGen,Sign, Verify) is
malleable with respect to a set of transformations T if there exists an effi-
cient algorithm SigEval that on input (vk , T, �m,�σ), where (vk , sk) $←− KeyGen(1λ),
Verify(vk , σi,mi) = 1 for all i, and T ∈ T , outputs a signature σ′ for the message
m := T (�m) such that Verify(vk , σ′,m) = 1.

In order to capture strong unforgeability and context-hiding notions, [CKLM14]
provide simulation-based definitions for malleable signatures. Simulatability
requires the existence of a simulator, which without knowing the secret key can
simulate signatures that are indistinguishable from standard ones.9 Moreover, a
simulatable and malleable signature scheme is context-hiding if a transformed
signature is indistinguishable from a simulated signature on the transformed mes-
sage. A malleable signature scheme is unforgeable if an adversary can only derive
signatures of messages that are allowed transformations of signed messages. In
the full version [BCFK15] we present the corresponding formal definitions.
8 Informally, a relation R is said to be hard if for (x, w) ∈ R, a PPT adversary A

given x will output wA s.t. (x, wA) ∈ R with only negligible probability.
9 This requires a trusted setup; for details see the full version [BCFK15].

118 F. Baldimtsi et al.

Chase et al. [CKLM14] describe a construction of malleable signatures based
on controlled-malleable NIZKs [CKLM12] which they instantiate under the Deci-
sion Linear assumption [BBS04].

4.2 Allowed Transformations

In a malleable signature scheme we define a class of allowed transformations,
and then unforgeability must guarantee that all valid signatures are generated
either by the signer or by applying one of the allowed transformations to another
valid signature. We will define two different types of transformations: TCWith is
used when a user withdraws a coin from the bank, and TCSpend is used when a
coin is transferred from one user to another.

Coin Spend Transformation. A coin that has been transferred i times (count-
ing withdrawal as the first transfer) will have the following format:

c = (par, (CSNi
, CDSi−1

), (ni, RSNi
), σ) ,

where par denotes the parameters of the transferable e-cash scheme and CSNi
=

CSN1 ‖ · · · ‖ CSNi
, CDSi−1

= CDS1 ‖ · · · ‖ CDSi−1 , for CSNj
= Enc(SNj) and

CDSj = Enc(DSj) respectively (all encryptions are w.r.t. pkD). By DSi−1 we denote
the double-spending tag that was computed by user Ui−1 when she transferred
the coin to user Ui; ni is a nonce picked by Ui when he received the coin,and
RSNi is the randomness used to compute the encryption of SNi, i.e., CSNi =
Enc(SNi;RSNi

). Finally, σ is a malleable signature on (CSNi
, CDSi−1

).
Assume now that user Ui wants to transfer the coin c to Ui+1. First, Ui+1

picks a nonce ni+1 and sends SNi+1 = fSN(ni+1, sk i+1) to Ui. Then, Ui computes
the new signature as (with T defined below):

σ′ = MSigEval(par, vk (MS)
B , T, (CSNi

, CDSi−1
), σ) .

The transferred coin that Ui+1 eventually obtains has the form:

c′ = (par, (CSNi+1
, CDSi

), (ni+1, RSNi+1), σ
′) .

Note that the value ni+1 is only known to Ui+1 and he will have to use it when he
wants to further transfer the coin, while the randomness RSNi+1 , used to encrypt
SNi+1, was sent by Ui. What is left is to define the transformation T ∈ TCSpend,
which takes as input m = (CSNi

, CDSi−1
) and outputs T (m) = (CSNi+1

, CDSi
).

A transformation of this type is described by the following values: (i.e. this
is the information that one must “know” in order to apply the transformation)

〈T 〉 =
(

(sk i, Ii, cert i), (ni, RSNi
, RSNi+1 , RDSi

, R), SNi+1

)

,

where R is a random string that will be used to randomize (CSNi
, CDSi−1

) as
part of the computation of the new signature. The output of T , as defined by
these values, on input m = (CSNi

, CDSi−1
) is then computed as follows:

Anonymous Transferable E-Cash 119

1. If SNi �= fSN(ni, sk i) or Enc(SNi;RSNi) �= CSNi then output ⊥.
2. The new part of the serial number is encoded using randomness RSNi+1 :

CSNi+1 = Enc(SNi+1;RSNi+1).
3. The new part of the double-spending tag is first computed using fDS and

then encrypted: DSi = fDS(Ii, ni, sk i, SNi+1); CDSi
= Enc(DSi;RDSi

).
4. These encryptions are appended to the re-randomizations of CSNi

and CDSi−1
:

CSNi+1
= REnc(CSN1 ;R1) ‖ . . . ‖ REnc(CSNi

;Ri) ‖ CSNi+1

CDSi
= REnc(DDS1 ;R

′
1) ‖ . . . ‖ REnc(CDSi−1 ;R

′
i−1) ‖ CDSi

where R1, . . . , Ri, R
′
1, . . . , R

′
i−1 are all parts of the randomness R included

in the description of the transformation.

We define TCSpend as the set of all transformations of this form such that:

1. The certificate cert i is valid (verifiable under the bank’s verification key) and
corresponds to the secret key sk i and some additional info Ii.

2. The random values RSNi
,RSNi+1 , RDSi

, R picked by Ui belong to the correct
randomness space as defined by the encryption scheme.

Coin Withdrawal Transformation. A coin that was just withdrawn has a
different format from a coin that has already been transferred, as there is no
need to include double-spending tags for either the bank or the user (we ensure
that each coin withdrawn is a different coin). While a transfer between users
requires that the user spending the coin apply a transformation (as described
above), in a withdrawal the user receiving the coin will be the one to trans-
form the signature. When a user Ui withdraws a coin from the bank, she
picks a nonce n1, computes a commitment com = Com(n1, sk i; open) on n1

and her secret key and sends it to the bank. (For the user to remain anony-
mous it is important that the bank does not learn n1.) The bank computes
σ = MSign(sk (MS)

B , com) and sends it to the user. The latter computes SN1 =
fSN(n1, sk i), chooses randomness RSN1 , sets CSN1 = Enc(SN1;RSN1) and com-
putes a new signature σ′ = MSigEval(par, vk (MS)

B , T, com, σ), which yields the
coin defined as c = (par, CSN1 , (n1, RSN1), σ

′). A transformation T ∈ TCWith,
which takes as input m = com and outputs T (m) = CSN1 is described by
〈T 〉 = ((sk i, Ii, cert i), (n1, open), RSN1 , SN1). We define

T (com) =

⎧

⎨

⎩

CSN1 = Enc(SN1;RSN1) if Com(n1, sk i; open) = com
and SN1 = fSN(sk i, n1)

⊥ otherwise.

We define TCWith to be the set of all transformations of this form such that:

1. The certificate cert i is valid (i.e. it verifies under the bank’s verification key)
and correspond to the secret key sk i and Ii.

2. Randomness RSN1 belongs to the appropriate randomness space.

120 F. Baldimtsi et al.

The class of allowed transformations Ttec: We allow users to apply a transfor-
mation in TCWith followed by any number of transformations in TCSpend. Thus,
we define the allowed class of transformations for the malleable signature scheme
used in our transferable e-cash to be the closure of Ttec = TCWith ∪ TCSpend.

4.3 A Transferable E-Cash Construction

Below we describe a transferable e-cash scheme based on malleable signatures.
For our construction we assume secure channels for all the communications, thus
an adversary cannot overhear or tamper with the transferred messages.

ParamGen(1λ): Compute parMS ← MSGen(1λ), parSN ← GenSN (1λ), parcom ←
ComSetup(1λ). Output par := (1λ, parMS , parcom, parSN).

UKeyGen(par): Output a random pair (pkU , skU) sampled from Rpk .

BKeyGen(par): Run (vk (MS)
B , sk (MS)

B) ← MSKeyGen(1λ) and (vk (S)
B , sk (S)

B) ←
SKeyGen(1λ) and define the bank’s withdrawal keys as pkW = (vk (MS)

B , vk (S)
B)

and skW = (sk (MS)
B , sk (S)

B). Sample a deposit key (pkD, skD) ← EKeyGen(1λ)
and output ((pkW , skW), (pkD, skD)). The bank maintains a list UL of all
registered users and a list DCL of deposited coins.

Registration(B[skW , pkU],U [skU , pkW]): If pkU ∈ UL, the bank outputs ⊥.
Otherwise, it computes certU = Sign

sk
(S)
B

(pkU , IDU), where IDU = |UL|+1,
adds (pkU , cert , IDU) to the user list UL and returns (certU , IDU).

Withdraw(B[skW , pkU],U [skU , pkW]): The user picks a nonce n1 and sends
com = Com(n1, skU ; open). B computes σ ← MSign(parMS , sk (MS)

B , com),
sends it to the user and outputs ok. If MSVerify(parMS , pk (MS)

B , σ, com) = 0,
the user outputs ⊥; otherwise she sets SN1 = fSN(n1, skU), chooses ran-
domness RSN1 and computes CSN1 = Enc(SN1;RSN1). Then she sets 〈T 〉 =
((sk i, cert i), (n1, open), RSN1 , SN1) and computes the new signature σ′ =
MSigEval(parMS , vk (MS)

B , T, com, σ). The output is the coin c =
(

par, CSN1 ,

(n1, RSN1), σ
′).

Spend(U1[c, skU1 , certU1 , pkW],U2[skU2 , pkW]): Parse the coin as

c =
(

par, (CSNi
, CDSi−1

), (ni, RSNi), σ
)

.

U2 picks a nonce ni+1, computes SNi+1 = fSN(ni+1, skU2) and sends it to U1.
U1 computes the double-spending tag DSi = fDS(IDU , ni, skUi

, SNi+1) and
defines the transformation

〈T 〉 =
(

(skU1 , certU1), (ni, RSNi
, RSNi+1 , RDSi

, R), SNi+1

)

.

Next, he computes CSNi+1 = Enc(SNi+1;RSNi+1) and CDSi = Enc(DSi;RDSi),
which he appends to the randomized ciphertext contained in c:

CSNi+1
= REnc(CSN1 ;R1) ‖ . . . ‖ REnc(CSNi ;Ri) ‖ CSNi+1

CDSi
= REnc(DDS1 ;R

′
1) ‖ . . . ‖ REnc(CDSi−1 ;R

′
i−1) ‖ CDSi

Anonymous Transferable E-Cash 121

U1 computes σ′ = MSigEval
(

par, vk (MS)
B , T, (CSNi+1

, CDSi
), σ

)

and then sends
(σ′, Ri+1, (CSNi+1

, CDSi
)) to U2.

If MSVerify
(

parMS , pk (MS)
B , σ′, (CSNi+1

, CDSi
)
)

= 0 then U2 aborts. Otherwise,
U2 outputs c′ =

(

par, (CSNi+1
, CDSi

), (ni+1, RSNi+1), σ
′).

Deposit(U [c, skU , certU , pkB],B[skD, pkU ,DCL]): First, U runs
a Spend protocol with the bank being the receiver:
Spend(U [c, skU , certU1 , pkW],B[⊥, pkW]) (the bank can set the secret
key to ⊥, as it will not transfer this coin). If the protocol did not abort,
B holds a valid coin c =

(

par, (CSNi
, CDSi−1

), (ni, RSNi
), σ

)

. Next, using skD,
B decrypts the serial number SNi = SN1 ‖ · · · ‖ SNi and the double-spending
tags DSi−1 = DS1 ‖ · · · ‖ DSi−1. It checks if in DCL there exists another coin
c′ with SN′

1 = SN1; if not, it adds the coin to DCL.
Otherwise, a double-spending must have happened and the bank looks for the
first position d, where SN′

d �= SNd. (Except with negligible probability such
a position exists, since SNi was chosen by the bank.) It applies the double-
spending detection function fDetectDS on the corresponding double-spending
tags DSd−1 and DS′

d−1. If fDetectDS outputs ⊥ then B aborts. Otherwise, it
outputs (pkU ,Π) = fDetectDS(DSd−1, DS′

d−1,UL).
VerifyGuilt(pkU ,Π): it outputs 1 if the proof Π verifies and 0 otherwise.

The proof of the following can be found in the full version [BCFK15].

Theorem 1. If the malleable signature scheme (MSGen, MSKeyGen, MSign,
MSVerify, MSigEval) is simulatable, simulation-unforgeable and simulation-
hiding w.r.t. T , the signature scheme (SKeyGen,Sign,Verify) is existentially
unforgeable, the randomizable public-key encryption scheme (EKeyGen, Enc,
REnc,Dec) is semantically secure and statistically re-randomizable, and the com-
mitment scheme (ComSetup,Com) is computationally hiding and perfectly bind-
ing, then the construction in Section 4.3 describes a secure and anonymous
transferable e-cash scheme as defined in Section 2.

4.4 Why Malleable Signatures

Let us discuss why our construction requires the use of this powerful primi-
tive. Malleable signatures satisfy a strong notion of unforgeability, called simu-
lation unforgeability (See the full version [BCFK15]). In brief, it requires that
an adversary who can ask for simulated signatures and then outputs a valid
message/signature pair (m∗, σ∗) must have derived the pair from received sig-
natures. This is formalized by requiring that there exists an extractor that from
(m∗, σ∗) extracts messages �m that were all queried to the signing oracle and a
transformation T such that m∗ = T (�m).

Among the anonymity notions considered in the literature, Spend-then-Re-
ceive (StR) anonymity (defined on page 111) is the hardest to achieve. Recall
that it formalizes that an adversary should not be able to recognize a coin
he had already owned before. Intuitively, our scheme satisfies it, since a coin

122 F. Baldimtsi et al.

only consists of ciphertexts, which are re-randomized, and a malleable signature,
which can be simulated. However, when formally proving the notion we have
to provide a Deposit oracle, which we have to simulate when reducing to the
security of the encryptions. Here we make use of the properties of malleable
signatures, which allow us to extract enough information to check for double-
spendings—even after issuing simulated signatures (see the proof of Theorem 1
in the full version [BCFK15]).

The scheme by Blazy et al. [BCF+11] also claims to achieve StR anonymity.
In their scheme a coin contains Groth-Sahai (GS) commitments �c to the serial
number, additional (ElGamal) encryptions �d of it and a GS proof that the val-
ues in �c and �d are equal. The bank detects double-spending by decrypting �d.
In their proof of StR anonymity by game hopping, they first replace the GS
commitments and proofs by perfectly hiding ones and then simulate the proofs.
(Double-spending can still be checked via the values �d.) Finally they argue that
in the “challenge spending via Spd in the experiment, we replace the commit-
ments/encryptions dni

[. . .] by random values.”
It is not clear how this can be done while still simulating the Deposit oracle,

which must check for double-spendings: a simulator breaking security of the
encryptions would not know the decryption key required to extract the serial
number from �d. (One would have to include additional encryptions of the serial
number and use them for extraction—however, for this approach to work, the
proof guaranteeing that the encryptions contain the same values would have to
be simulation-sound (cf. [Sah99]), which contradicts the fact that they must be
randomizable.)

5 Instantiation

In order to instantiate our scheme we need to make concrete choices for a mal-
leable signature scheme which supports the allowable transformations TCSpend

and TCWith, a signature scheme for the signing of certificates, a randomizable
public-key encryption scheme, a commitment scheme (ComSetup,Com) and a
zero-knowledge proof system 〈P, V 〉.

Chase et al. [CKLM14] provide a generic construction of malleable signatures
based on cm-NIZKs [CKLM12], which suits our requirements. There exist two
constructions of cm-NIZKs, both due to Chase et al.: the first [CKLM12] is based
in Groth-Sahai proofs [GS08], the second [CKLM13] is less efficient but simpler
and is based on succinct non-interactive arguments of knowledge (SNARKs) and
fully homomorphic encryption. The SNARK-based construction directly gives a
feasibility result, as long as there is some constant maximum on the number of
times a given coin can be transferred. To achieve an efficient instantiation, one
could instead use the Groth-Sahai instantiation.

In the full version [BCFK15] we present an instantiation of our construc-
tion based on Groth-Sahai. We show that our relation and transformations are
CM-friendly, which means that all of the objects (instances, witnesses and trans-
formations) can be represented as elements of a bilinear group so that the system

Anonymous Transferable E-Cash 123

is compatible with Groth-Sahai proofs. To achieve that we need to slightly mod-
ify our construction, in order to map elements of Zp (like ni, sk i, Ii) into the
pairing group for the transformation. (This can be done fairly simply, with-
out affecting security.) Finally, for the remaining building blocks, we use the
structure-preserving signature [AFG+10] due to Abe et al. [ACD+12] and El
Gamal encryption scheme [ElG85] for both encryption and commitments.

References

[ABC+12] Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters,
B.: Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 1–20. Springer, Heidelberg (2012)

[ACD+12] Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo,
M.: Constant-Size structure-preserving signatures: generic constructions
and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012)

[AFG+10] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.:
Structure-Preserving signatures and commitments to group elements. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer,
Heidelberg (2010)

[ALP12] Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data:
new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg
(2012)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

[BCF+11] Blazy, O., Canard, S., Fuchsbauer, G., Gouget, A., Sibert, H.,
Traoré, J.: Achieving optimal anonymity in transferable E-Cash
with a judge. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT
2011. LNCS, vol. 6737, pp. 206–223. Springer, Heidelberg (2011).
http://crypto.rd.francetelecom.com/publications/p121

[BCFK15] Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous
transferable e-cash. Cryptology ePrint Archive (2015). http://eprint.iacr.
org/

[BCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: Decentralized anonymous payments from bitcoin. In:
IEEE S&P (2014)

[BCKL09] Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-Cash
and simulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing
2009. LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009)

[Bla08] Blanton, M.: Improved conditional E-Payments. In: Bellovin, S.M., Gen-
naro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037,
pp. 188–206. Springer, Heidelberg (2008)

[Bra93] Brands, S.: Untraceable off-line cash in wallets with observers (extended
abstract). In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 302–318. Springer, Heidelberg (1994)

[CFN88] Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer,
Heidelberg (1990)

http://crypto.rd.francetelecom.com/publications/p121
http://eprint.iacr.org/
http://eprint.iacr.org/

124 F. Baldimtsi et al.

[CG08] Canard, S., Gouget, A.: Anonymity in transferable E-cash. In: Bellovin,
S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 207–223. Springer, Heidelberg (2008)

[CGT08] Canard, S., Gouget, A., Traoré, J.: Improvement of efficiency in (uncon-
ditional) anonymous transferable E-Cash. In: Tsudik, G. (ed.) FC 2008.
LNCS, vol. 5143, pp. 202–214. Springer, Heidelberg (2008)

[Cha83] Chaum, D.: Blind signature system. In: CRYPTO (1983)
[CHL05] Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In:

Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321.
Springer, Heidelberg (2005)

[CKLM12] Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof
systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)

[CKLM13] Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Succinct mal-
leable NIZKs and an application to compact shuffles. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 100–119. Springer, Heidelberg (2013)

[CKLM14] Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable sig-
natures: New definitions and delegatable anonymous credentials. In: IEEE
CSF (2014)

[CP92] Chaum, D., Pedersen, T.P.: Transferred cash grows in size. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 390–407. Springer,
Heidelberg (1993)

[ElG85] El Gamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

[FPV09] Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable constant-size
fair E-Cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 226–247. Springer, Heidelberg (2009)

[Fuc11] Fuchsbauer, G.: Commuting signatures and verifiable encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245.
Springer, Heidelberg (2011)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008)

[MGGR13] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous dis-
tributed e-cash from bitcoin. In: IEEE S&P (2013)

[Nak08] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash (2008). http://
bitcoin.org/bitcoin.pdf

[OO89] Okamoto, T., Ohta, K.: Disposable zero-knowledge authentications and
their applications to untraceable electronic cash. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 481–496. Springer, Heidelberg (1990)

[OO91] Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992)

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: FOCS (1999)

[vAE90] van Antwerpen, H.: Off-line Electronic Cash. Eindhoven University of
Technology (1990)

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Cryptanalysis

Collision of Random Walks and a
Refined Analysis of Attacks on the

Discrete Logarithm Problem

Shuji Kijima1 and Ravi Montenegro2(B)

1 Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka 819-0395, Japan

kijima@inf.kyushu-u.ac.jp
2 Department of Mathematical Sciences, University of Massachusetts Lowell,

Lowell, MA 01854, USA
ravi montenegro@uml.edu

Abstract. Some of the most efficient algorithms for finding the discrete
logarithm involve pseudo-random implementations of Markov chains,
with one or more “walks” proceeding until a collision occurs, i.e. some
state is visited a second time. In this paper we develop a method for
determining the expected time until the first collision. We use our tech-
nique to examine three methods for solving discrete-logarithm problems:
Pollard’s Kangaroo, Pollard’s Rho, and a few versions of Gaudry-Schost.
For the Kangaroo method we prove new and fairly precise matching
upper and lower bounds. For the Rho method we prove the first rigorous
non-trivial lower bound, and under a mild assumption show matching
upper and lower bounds. Our Gaudry-Schost results are heuristic, but
improve on the prior limited understanding of this method. We also give
results for parallel versions of these algorithms.

1 Introduction

Given a cyclic group G = 〈g〉 and an element h ∈ G, the discrete-logarithm
problem asks to find a solution x to h = gx. Shoup showed that for a generic
cyclic group this requires Ω(

√

|G|) group operations [17], although this bound
can be beaten for many representations of such groups. The discrete-logarithm
problem over a random group of elliptic curves seems to be as hard as this lower
bound, which has led to its use in cryptosystems.

Several methods have been proposed which use a pseudo-random “walk” to
achieve heuristic run time equal to Shoup’s lower bound. Each step of these walks
will involve a single group operation and so the number of steps (run time) will
equal the number of group operations until discrete logarithm is found, aside
from a small amount of pre-computation. In this paper we give a fairly general
method for understanding the performance of such methods, and in particular

R. Montenegro—Supported by a Japan Society for Promotion of Science (JSPS)
Fellowship while a guest at Kyushu University.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 127–149, 2015.
DOI: 10.1007/978-3-662-46447-2 6

128 S. Kijima and R. Montenegro

for understanding the extent to which they will be slower than predicted by
simple heuristics. We use our method to show very precise estimates on run
time of three such methods: Pollard’s Rho, Pollard’s Kangaroo, and Gaudry-
Schost. These methods have been used for attacks on problems of cryptographic
significance. For instance, a parallelized Pollard’s Rho method was used in an
attack on Certicom’s challenge problem ECC2K-130 [2], while an attack based
on Gaudry-Schost was used to break a proposed EMVco protocol to replace the
chip-and-pin system used in over 1.6 billion payments cards [3].

1.1 Description of Algorithms

Before describing our results we review the algorithms being considered. Methods
of detecting collisions, such as via distinguished points or Floyd’s cycle finding
method, will not be discussed.

For Pollard’s Rho, partition G into 3 roughly equal sized pieces S1, S2, S3,
and define an iterating function

F (X) =

⎧

⎪⎨

⎪⎩

Xg if X ∈ S1,

Xh if X ∈ S2,

X2 if X ∈ S3.

Let X0 = h = gx and repeatedly iterate with Xi+1 = F (Xi). Continue until the
first time that some Xi = Xj , known as a “collision.” If we keep track of the
exponent Xi = gai+bix then gai+bi x = gaj+bj x. The discrete logarithm is then
x ≡ (ai−aj)(bj −bi)−1 mod |G|, except in the rare degenerate case when bi ≡ bj

mod |G|. Teske suggests an “additive” version that is faster in practice. For a
fixed integer r define r step types s1, s2, . . ., sr by choosing αk, βk uniformly at
random from {0, 1, . . . , |G| − 1} and setting sk = gαkhβk = gαk+βkx. Then take
r partitions S1, S2, . . ., Sr, set F (X) = X sk on Sk, and proceed as before. One
way to parallelize is to start M processors at different randomly chosen states:
gαhβ = gα+βx with α, β ∈ [0, |G| − 1]. These may be re-randomized every time
a distinguished point is encountered (see Gaudry-Schost below and [19]).

Pollard’s Kangaroo method applies when it is known that x ∈ [a, a + N) for
some a,N ≤ |G|. Set X0 = h = gx and Y0 = ga+�N/2�. Take d + 1 partitions S0,
S1, . . ., Sd, set F (X) = X g2

k

on Sk, and repeatedly iterate both processes with
Xi+1 = Xi F (Xi) and Yi+1 = Yi F (Yi). Once some Xi = Yj , say at Xi = gx+α

and Yj = ga+�N/2�+β , then x ≡ a + �N/2� + β − α mod |G|, and the discrete
logarithm is found. The processes Xi and Yj are known as the wild and tame
kangaroos respectively.

In the Gaudry-Schost method the discrete logarithm x is known to lie in a
hypercube [a, b]n with volume N = (b − a + 1)n. We discuss only the n = 1
version here, although our technique applies in higher dimensions as well. Let A
be a region centered at the unknown discrete logarithm x, let B be a duplicate
of this region but centered at a predetermined value within the hypercube such
as the centerpoint, and let D be a set of distinguished points covering roughly a θ

A Refined Analysis of Attacks on Discrete Logarithm 129

fraction of group elements. For a pre-specified integer r and average step size m
choose r step types s1, s2, . . . , sr uniformly at random from [1, 2m), and partition
the space into r pieces S1, S2, . . ., Sr. Use iterating function F (X) = X gsi if
X ∈ Si, except for the θ fraction of the time that X is a distinguished point and
F transitions to a point chosen uniformly at random in A or B. Proceed until
some Xi = Yj , say with Xi = gx+α and Yj = gβ , at which point the discrete
logarithm is x ≡ β − α mod |G|. This will usually be in A ∩ B, but could be
slightly outside this region. One way to parallelize is to start M/2 processors at
different randomly chosen states in A, and M/2 in B.

1.2 Heuristic Run Time

The attacks just described involve pseudo-random processes on G which proceed
until a collision: either a single walk proceeds until it visits a state (group ele-
ment) it has previously been to, or two walks proceed until each has visited a
common state (group element). If we treat these as truly random processes then
there are natural heuristic arguments for their run time.

Pollard’s Rho resembles a random walk which proceeds until some state is
visited twice. If each transition were a uniform random sample from G then
the birthday paradox would suggest run time of

√
π
2 |G| ≈ 1.25

√

|G|. However,
because the process only has 3 transition types, consecutive states are highly
dependent and the true run time is about 30% slower. Teske’s additive version is
significantly slower when there are r = 3 transition types, but is nearly as good
as the birthday heuristic when r is large, e.g. r = 16. Several improvements have
been made on this basic heuristic, see Section 2.1. The parallel version with M
processors generates samples M times faster, and so is M times faster.

Pollard’s Kangaroo resembles two random walks which proceed until they
visit some common state. Let d ∼ log2

√
N +log2(log2

√
N)−2 be such that the

average transition size is m = 1
d+1

∑d
k=0 2k ≈ 1

2

√
N . After a warmup of around

ET = E
|X0−Y0|

m = N
4m = 1

2

√
N steps, the walk starting with smaller exponent

of X0 = gx and Y0 = ga+N/2 will have caught up to the initial location of the
other walk. Each walk visits a 1/m fraction of states, so at each subsequent
step there is probability p ≈ 1/m of a “collision,” for expected runtime of about
2(ET + m) ≈ 2

√
N . However, because the process only has (d + 1) transition

types there are dependencies and the probability of a collision varies significantly
from step to step, with probability often 0.

The Gaudry-Schost method resembles two random walks, one in A and one
in B, where each step produces a sample from A ∩ B with probability roughly
|A∩B|

|A| . A generalized birthday problem [14] suggests that each walk should take
1
2

√

π |A ∩ B| samples from A ∩ B until collision, for an expected run time of
2 |A|

|A∩B|
1
2

√

π |A ∩ B| transitions. But again, consecutive states are highly depen-
dent unless a distinguished point was just visited. Once again, the parallel version
generates samples M times faster.

The largest flaw in each heuristic is that consecutive states are highly
dependent. One solution might be if Rho, for instance, used an iterating function

130 S. Kijima and R. Montenegro

F : G → G that outputs a pseudo-random uniform sample from the entirety of
G. However, computing random values of gαhβ is slow. Even if in an average
of only two group operations sufficed, finding the discrete logarithm would take
2 × 1.25

√

|G| group operations, versus 1.6
√

|G| for Pollard’s Rho and under
1.3

√

|G| for Teske’s additive version. So the dependencies in these algorithms
are an important component of their fast run time. An improved method for
understanding the effects of dependencies could thus help to minimize their neg-
ative effects.

1.3 New Results

Each algorithm considered here is entirely deterministic once the partition func-
tion (hash) has been chosen. Indeed, the deterministic nature is necessary for
efficient detection of collisions. However, the hash is usually chosen to “look”
random, and so all attempts to explain these algorithms have treated the itera-
tive process as if it were entirely random until the first collision. Our results will
make this assumption as well, even those we describe as “rigorous.” Since our
concern is with when that collision occurs, not what happens after it, we also
treat these as fully random walks, even after collision. As such we will use the
language of random walks, so that “state” refers to a group element and “run
time” refers to the number of iterations taken. After some precomputation each
iteration requires exactly one group operation, and so run time will be equiva-
lent to counting group operations, except when a distinguished point is hit in
Gaudry-Schost.

The heuristic arguments just described neglect dependencies between con-
secutive states. One way of avoiding this problem is to only consider a subset
of states all of which are τ steps apart, where τ denotes the number of steps
required to lose this dependency, so that Xj is nearly independent of Xi when
|j − i| ≥ τ . However, this would give results which are very weak since a large
fraction of possible collisions are being ignored.

A different approach is to try to measure the extent of the dependency.
Consider how many times two independent random walks can be expected to
collide (visit common states) if they start at the same state and proceed τ steps
until they have lost their initial dependency. We find that this quantity alone is
sufficient to explain the extent to which Pollard’s Kangaroo and Pollard’s Rho
fail to match heuristic bounds. It also explains the vast majority of the slow
down for Gaudry-Schost, although boundary effects along ∂(A ∩ B) also come
into play. The precise quantity we consider is the following:

Definition 1. The collision number Cτ is the expected number of collisions when
two independent copies of a random walk start at the same state, chosen uni-
formly at random, and proceed for τ steps.

Consider the Kangaroo method. This is generally thought to be well under-
stood, in the sense that the heuristic of 2

√
N matches asymptotic behavior.

However, even on groups as large as |G| = 1012 the Kangaroo method runs

A Refined Analysis of Attacks on Discrete Logarithm 131

about 3% slower than predicted by heuristic. We use the collision number to
prove a bound which more-or-less eliminates this error (see Figure 1).

Theorem 2 (Pollard’s Kangaroo). Given a cyclic group G, the Kangaroo
method with power-of-two jumps for computing the discrete logarithm in an inter-
val of size N = o(|G|) has expected run time

2Emin{k : ∃i, j ≤ k, Xi = Yj} =

(

2 +
2

log2 N
+

14

(log2 N)2
+ O((log N)−3)

) √
N .

This extends to transitions other than powers of two if 2 + 2
log2 N + · · · is

replaced by 1 + Cτ .
For Pollard’s Rho method we show the first rigorous non-trivial lower bound

on runtime.

Theorem 3 (Pollard’s Rho). Given a cyclic group G of prime order N , the
Rho method with r step types has expected run time of

Emin{i : ∃j ≤ i − τ), Xi = Xj} ≥ (1 + O(1/N))

√

π

2
N

1 − 1/r

where τ = O(log2 N) for Pollard’s process and τ = O(N2/(r−1)) for Teske’s.

This neglects the o(1) fraction of potential collisions Xi = Xj with i− j < τ ,
except for Teske’s process with r ≤ 5.

Under a fairly mild assumption we can determine the precise run time.

Heuristic 4 (Pollard’s Rho) Given a cyclic group G of prime order N , Pol-
lard’s Rho method has expected run time of

Emin{i : ∃j < i, Xi = Xj} = (1.62555 + O(1/N))
√

N .

Teske’s additive version with r ≥ 6 step types has

Emin{i : ∃j ≤ i, Xi = Xj} = (1 + O(1/N))

√
π

2

N

1 − (1/r + 1/r2 + 2/r3 + O(1/r4))
.

Parallel versions with M threads will take 1/M times as long.

Simulation data matches this to 4 decimals points , so the heuristic is almost
certainly correct.

The final process we consider is the Gaudry-Schost method. This has bound-
ary effects which complicate any attempt at a rigorous proof, and there are too
many variants to analyze them all here. In order to present the ideas without
complicating things excessively we have chosen to analyze one of the simpler
cases [6].

132 S. Kijima and R. Montenegro

Heuristic 5 (Gaudry-Schost) Galbraith and Ruprai’s Gaudry-Schost method
for computing the discrete logarithm on an interval of size N with r step types,
distinguished point probability θ at each state, and average step size m = c θ N
with c small (e.g. c = 0.01), has expected run time

2Emin{k : ∃i, j ≤ k, Xi = Yj}

= (1 + O(1/N))
2

31/2

√

π
N

1 − (1/r + 1/r2 + 2/r3 + O(1/r4))
.

Parallel versions with M threads will take 1/M times as long.

This indicates a slowdown by
√

Cτ = 1/
√

1 − (1/r + 1/r2 + 2/r3 + O(1/r4))
over previous heuristics based on the birthday problem. We test our method
on a more complicated case of Gaudry-Schost, namely Galbraith, Pollard, and
Ruprai’s [5] improved 3 walk Gaudry-Schost method for discrete logarithm on
an interval of width N . Our heuristic predicts the runtime within 0.3% of that
found in simulations.

The paper proceeds as follows. In Section 2 we discuss past results on collision
times and also give an overview of our new method for studying collision times.
We apply this method to Pollard’s Kangaroo in Section 3, to Pollard’s Rho in
Section 4, and to Gaudry-Schost in Section 5. Section 6 includes discussion on
computation of Cτ , while Section 7 consolidates our simulation data confirming
the high degree of accuracy in our results.

2 Methods of Studying Collision Time

The attacks considered in this paper depend on iterative processes which proceed
until some group element has been visited twice, a “collision.” In Section 1.2 we
gave simple heuristics for understanding the time until the first collision. In
Section 1.3 we justified treating the attacks as if they involved random walks.
Under this assumption several improvements have been made on the basic heuris-
tic arguments, and we discuss here both those improvements and our new app-
roach to studying collision time.

We use some notation here that may be unfamiliar: f = o(g) if limx→∞
f(x)
g(x) =

0, while f = O(g) if limx→∞
f(x)
g(x) ≤ C for some constant C, and f = O∗(g)

indicates that logarithmic terms are being ignored, e.g. if f = O(x3 log x) then
f = O∗(x3).

2.1 Past Work

Of the three methods we consider, Pollard’s Rho has been studied most heav-
ily. A heuristic based on the birthday problem suggests that it will take an
average of

√
π
2 N = 1.2533

√

|G| steps until a collision. However, experimen-
tal data finds the run time to be slower than this, and sometimes significantly

A Refined Analysis of Attacks on Discrete Logarithm 133

so. Blackburn and Murphy [4] borrow an idea of Brent and Pollard to give an
improved heuristic, that for a process with r step types the collision time will be
√

π
2

N
1−1/r . Teske gives a heuristic suggesting that her additive version has run

time O(
√

N) when there are r ≥ 5 step types [18]. The first rigorous result for
a Rho method is Miller and Venkatesan’s proof of order O∗(

√
N) for Pollard’s

Rho [12]. Kim, Montenegro, Peres and Tetali [10] improve this to O(
√

N Cτ),
with Pollard’s Rho having expected collision time of ≤ (52.5 + o(1))

√
N . Bailey

et al. [1] extend Blackburn and Murphy’s method to the case where steps do
not all have equal probabilities. Bernstein and Lange [2] take a very different
approach to the problem and yet also arrive at our Heuristic 4 for the special
case of Teske’s additive walks.

Pollard’s Kangaroo method on an interval [a, a + N) is based on a principle
known as the Kruskal Count, which suggests a run time of (2+o(1))

√
N . Pollard

gives a very convincing argument that (2 + o(1))
√

N steps suffice, although it
was not quite rigorous. Montenegro and Tetali give the first rigorous result that
(2 + o(1))

√
N steps suffices [13]. However, their upper and lower bounds do not

agree on the error term, or even whether the run time is greater or less than
2
√

N .
For the Gaudry-Schost method nothing has been shown rigorously, and simu-

lations disagree somewhat with heuristic. This method is complicated by having
several variables: the number of generators, the average step size, and the num-
ber of distinguished points. Our result is thus the first attempt at a bound better
than what can be obtained by a simple generalized birthday problem, and yet it
is quite accurate, predicting runtime within 0.3% of what we find in simulations.

2.2 Our Approach

We take a similar approach to each algorithm. First, choose the appropriate
heuristic from Section 1.2. This would be more-or-less rigorous if the probability
of a collision between every pair of states Xi and Xj were independent, but this
is clearly not the case.

We revise the heuristic by replacing each individual state Xi by a long seg-
ment Si of some L consecutive states, preceded by a short randomization seg-
ment Ri of τ states to ensure that Si is independent of the earlier segments. In
particular, let a0 = 0, b0 = a0 + τ , a� = b�−1 + L, b� = a� + τ .

R� = {Xa�
, . . . , Xb�

}
S� = {Xb�

, . . . , Xa�+1} (1)

By construction segments Si and Sj will be independent when i �= j. If τ � L
almost no collisions will involve randomization segments Ri, while if L is much
less than the expected collision time almost no collisions will involve a segment
Si with itself, leaving almost all collisions to be between distinct segments Si and
Sj . It is generally not hard to modify the heuristic of Section 1.2 to determine
a new and precise estimate of collision time. The hard part is in adding rigor.

134 S. Kijima and R. Montenegro

First, although Cτ is fairly easy to estimate numerically it is very difficult to find
τ and Cτ rigorously. Second, it can be difficult to show that there is indeed a
negligible chance of collisions between a segment Si and itself, or of a collision
involving an Ri segment. Most of the technical work required for rigor is left to
the full version of this paper or cited from prior research, as it is tedious and
not very enlightening.

The simplest approach to parallelization involves starting M threads at M
independent initial points, and recording visits to distinguished points until some
distinguished point is visited a second time. For fixed values of L and τ each
thread will generate a new nearly-independent segment every (τ +L) steps, and
so this form of parallelization produces segments M times faster, and expected
collision time is 1/M times as long.

Our approach is inspired by our past work [10,13], and indeed we borrow
several of the more tedious results from those papers. However, a critical differ-
ence is that we now partition the walk by design, with a conscious goal to rework
prior heuristics. In our past work the walk was partitioned as well, but that was
an artifact of the proof failing to work up to the full collision time. As a result
the partitioning felt unnecessary, the method of proof was harder to follow, and
the results were less precise than obtained in this paper.

3 Pollard’s Kangaroo Method

We begin by studying Pollard’s Kangaroo method, as the argument is somewhat
simpler and sharper than in the Rho or Gaudry-Schost cases.

Collision in the random walk is equivalent to collision in the exponent of g,
i.e. gα = gβ iff α ≡ β mod |G|. This induces an additive form of the process:
let X0 = x, Y0 = a + N/2, and transitions are of the form Xi+1 = Xi + 2k

mod |G| and Yi+1 = Yi + 2� mod |G|, where k, 	 ∈ {0, 1, . . . , d}. Furthermore,
we are most interested in the case when N is much smaller than the group size
|G|, and so wrap-around effects mod |G| can safely be neglected. This lets us
simplify further: assume that |X0 − Y0| ≤ N/2 and take iterations of the form
Xi+1 = Xi + 2k and Yi+1 = Yi + 2�. The Kangaroo process is then a monotone
increasing walk on the integers Z with Xi+1 = Xi + 2k, Yi+1 = Yi + 2�. Due to
this simplification, our upper bound will be valid for all N , but the lower bound
holds only when N = o(|G|).

The goal is to determine the expected time of the first collision between these
processes:

Emin{k : ∃i, j ≤ k, Xi = Yj} .

Because both processes are run simultaneously, the total number of steps taken
is twice this.

The non-rigorous part of the heuristic in Section 1.2 is the claim that colli-
sions occur with probability p ≈ 1/m, and so p−1 ≈ m steps are required until
a collision. We replace this by a claim that there is a p = (1 + o(1))L/m2 prob-
ability of segment Si including a state visited by the tame kangaroo, and so an

A Refined Analysis of Attacks on Discrete Logarithm 135

average of p−1 segments are needed until a collision. The expected run time of
the Kangaroo method is then N

4m + (τ + L)p−1.
This argument neglects potential collisions involving the Ri segments, and

so it is only an upper bound. To show a lower bound we set L = |Si| = 4
√

N
and τ = |Ri| = O((log N)6), so that τ = o(L) and the Ri segments are involved
in only a o(1) fraction of potential collisions. We show in the full version of the
paper that the Ri segments have a negligible probability of being the location
of the first collision.

Why this value for τ? The re-randomization portion Ri is intended to make
the probability of a collision in Si be independent of the outcome of earlier
segments. One approach to this would be to have τ be the mixing time, i.e. the
number of steps required to produce a uniform random sample from G. However,
this is too pessimistic as the Kangaroo method for N ≪ |G| might even solve for
the discrete logarithm in fewer steps than the mixing time. Instead we require
a local mixing property. The follow property, defined by Montenegro and Tetali
[13], suffices:

Definition 6. Consider two independent instances of the same monotone
increasing Markov chain on the infinite state space Z, i.e. walks X0, X1, . . . and
Y0, Y1, . . . such that ∀i : Xi+1 > Xi and ∀j : Yj+1 > Yj. If the Markov chain
has average step size m then the intersection mixing time T (ε) is the smallest
integer with

∀i ≥ T (ε), ∀Y0 ≤ X0 :
1 − ε

m
≤ P (Xi ∈ {Y0, Y1, . . . , Yk, . . .}) ≤ 1 + ε

m
.

In our analysis the walks in Definition 6 will correspond to the wild and
tame kangaroos defined at the beginning of this section. Intersection mixing
time was studied in [13] where Lemma 3.1 shows that the Kangaroo walk with
steps {2k}d

k=0, when treated as a monotone walk on Z, satisfies T (2/(d + 1)) ≤
64(d + 1)5. Mixing type results typically have a dropoff similar to T (ε) =
T (1/e) log(1/ε). Since d ∼ 0.5 log2 N + O(log log N) this suggests that

T (1/N) = O((d + 1)5
log N

log D
) = O((d + 1)6) = O((log N)6) .

Indeed, the proof in [13] can be easily modified to show this.
It remains to determine the probability that a collision occurs in a segment

Sk. The following relation will be used to show this. Given a non-negative random
variable Q:

P (Q > 0) =
EQ

E(Q | Q > 0)
.

Let CSi denote the number of collisions between the tame walk and segment
Si in (1). Each state within Si has probability (1+O(1/N))/m of colliding with
the tame walk. It follows from additivity of expectation that

ECSi = (1 + O(1/N))
L

m
.

136 S. Kijima and R. Montenegro

We next bound the conditional E(CSi | CSi > 0). The first collision is part of
a sequence of Cτ collisions on average, after which each step has probability at
most (1 + 1/N)/m of colliding with the tame walk.

E(CSi | CSi > 0) ≤ (1 + 1/N)
(

Cτ +
L − τ

m

)

To lower bound the expectation, observe that each step of the walk in Si is
equally likely to have a collision, and so the probability that Xi ∈ Si is the
first collision is decreasing in i. As such, with probability at least 1 − τ/L the
collision occurs before the final τ states, in which case it is part of a sequence of
Cτ collisions on average, potentially followed by even more. Then

E(CSi | CSi > 0) ≥ (1 − 1/N)
(

1 − τ

L

)

Cτ .

Combining these various equalities leads to the conclusions:

⇒ E(CSi | CSi > 0) =
(

1 + O

(
L

m
+

τ

L
+

1
N

))

Cτ

⇒ p = P (CSi > 0) =
(

1 + O

(
L

m
+

τ

L
+

1
N

))
L

m Cτ
(2)

The identity for P (CSi > 0) is independent of the outcome on earlier seg-
ments, up to a small error due to the big-O term, and so as was discussed earlier
the number of segments until a collision is p−1. Let L = 4

√
N , and recall that

τ = O(log6 N) and m = Θ(
√

N). The expected collision time of the original
process is

(L + τ)p−1 = (L + τ)
(

1 + O

(
L

m
+

τ

L
+

1
N

))
m Cτ

L
= (1 + O∗(1/

4
√

N))m Cτ .

We leave it to the full version of the paper to prove that the answer does
not change when potential collisions in the re-randomization segments Ri are
considered.

When m = 1
2

√
N the expected number of transitions by the wild kangaroo

is

E
|X0 − Y0|

m
+ (1 + O∗(1/

4
√

N))m Cτ =
1 + Cτ + O∗(1/ 4

√
N)

2

√
N .

The tame kangaroo travels an equal number of steps. Counting both kangaroos
gives Theorem 2.

In Figure 1 we compare our Theorem 2 to the old heuristic of 2
√

N and
simulation data with an (absolute) margin of error of ±0.01

√
N . These show

our bound to be very accurate when N > 1000.

A Refined Analysis of Attacks on Discrete Logarithm 137

4 Pollard’s Rho Method

The analysis for the Rho method is not much different, but a bit more preliminary
work is required, and the result will not be as precise. Our solution focuses on
the case when each step type has equal probability, with a few comments at the
end about generalizing to the non-uniform case. We focus on the non-parallel
case because the parallel case follows immediately from this, as discussed in
Section 2.2.

Pollard’s Rho is equivalent to an additive walk on exponents which starts
at some X0 with 0 ≤ X0 < |G|, and has transitions P (Xi+1 = Xi + 1) =
P (Xi+1 = Xi + x) = P (Xi+1 = 2Xi) = 1/3. Teske’s version has transitions
P (Xi+1 = Xi + sk) = 1/r. Note that Pollard’s Rho is a process with r = 3
transition types. We use the additive walk on exponents in our analysis.

The goal of this section is to determine the expected time of the first collision
between these processes:

Emin{i : ∃j < i, Xi = Xj}
The non-rigorous part of the heuristic in Section 1.2 is in treating every

Xi as if it were an independent uniform random sample from G, and so p =
P (Xi = Xj) = 1/|G| when i �= j, and there are an average

√
π
2 p−1 samples

until collision. We replace this by a claim that every Si and Sj are pairwise
independent, with p = P (Si ∩ Sj �= ∅) ≈ 1/A for some A, and so the expected
number of segments until a collision is around

√
π
2 p−1 =

√
π
2 A. The expected

run time of the Rho method is then (L + τ)
√

π
2 A.

This ignores potential collisions involving an Ri or an Si with itself. However,
if τ = o(L) then collisions involving an Ri segment make up only an o(1) fraction
of potential collisions. Likewise, collisions within an Si are only an o(1) fraction
of potential collisions if L = o(

√
N). For the sake of rigor we show in the full

version of the paper that these in fact have only a negligible probability of being
the location of the first collision.

What is the appropriate value for τ? The re-randomization portion Ri is
intended to make Si independent of earlier segments. It suffices that the first
state in Si be an independent nearly uniform random sample.

∀v, w ∈ V :
1 − 1/N

N
≤ Pτ (v, w) ≤ 1 + 1/N

N
.

The minimum value of τ for which this holds is called “L∞ mixing time.” Mon-
tenegro, Kim, and Tetali [9] showed that for Pollard’s Rho walk τ = O(log3 N),
while Hildebrand [8,18] showed that for Teske’s additive walk τ = O∗(N2/(r−1)).
A slightly weaker notion of mixing should be used for Teske’s process when r < 6,
but we do not consider it here.

We now turn to the proof of Theorem 3. This uses a generalization of the
birthday problem. Consider a family of events E1, E2, . . . such that P (E1) = 0
and P (Ek | ¬Ek−1) = (1 + o(1))k−1

A . Then

Emin{t : Et} = (1 + O(1/A))
√

π

2
A .

138 S. Kijima and R. Montenegro

We prove a more general form of this in the Appendix.
Let CSt denote the number of collisions between the first t segments S1, S2,

. . ., St. We will take Et as the event that CSt > 0, and so we need to determine
P (Et | ¬Et−1).

Consider segment St. It starts at X(t−1)L+tτ , which is a sample within ε =
1/N of uniform, independent of earlier rounds. It proceeds as a random path
containing L states. Assume for now that all transitions are equally likely, so
that all paths are equally likely as well; we discuss the non-uniform case at
the end of the section. There are N × rL−1 possible paths, and each will have
probability between 1±1/N

NrL−1 . In order to have CSt > 0 the path must collide with
one of the ≤ (t − 1)L points appearing in S1, S2, . . . , St−1, denote this as Xj .
There are L positions in the path at which the collision could occur, denote the
chosen location as Xi, and rL−1 possibilities for the remainder of the path, so
at most (t − 1)L2rL−1 potential St segments include collisions. It follows that

P (CSt > 0 | CSt−1 = 0) ≤ (t − 1)L2rL−1(1 + 1/N)
NrL−1(1 − 1/N)

=
(t − 1)(1 + O(1/N))

N/L2

⇒ Emin{t : CSt > 0} ≥ (1 + O(L2/N))

√

π

2
N

L2

Each round introduced τ + L new states, so this suggests run time of

Emin{i : ∃j < i, Xi = Xj} � (τ + L)(1 + O(L2/N))

√

π

2
N

L2

= (1 + O(L2/N) + O(τ/L))
√

π

2
N

This is just the birthday heuristic. We can improve on this by reducing
double-counting of paths. In the construction just given, once Xi and Xj have
been decided on, do not construct paths with Xi−1 = Xj−1, as these paths will
be counted anyway. This reduces the number of segments with Xi = Xj from
rL−1 to (r−1)rL−2, unless Xi or Xj is the first state in their respective segment.
This results in:

P (CSt > 0 | CSt−1 = 0) ≤ (1 − 1/L)2(1 − 1/r)(t − 1)L2 rL−1

N rL−1

1 + 1/N

1 − 1/N

= (1 + O(1/L) + O(1/N))
(t − 1)(1 − 1/r)L2

N

⇒ Emin{t : CSt > 0} ≥ (1 + O(L2/N))

√

π

2
N

L2(1 − 1/r)

⇒ Emin{i : ∃j < i, Xi = Xj} � (1 + O(L2/N) + O(τ/L))

√

π

2
N

1 − 1/r

In the full version of the paper we make the final line rigorous, with the added
condition that j ≤ i − τ , and so � can (almost) be replaced by ≥.

A Refined Analysis of Attacks on Discrete Logarithm 139

The bound can be made more-or-less sharp, but at the cost of rigor. A path
with first collision at Xi = Xj will have an average of Cτ collisions in the next τ
steps, and so we counted colliding paths Cτ times each on average. The number
of colliding paths is only (1 − τ/L)/Cτ of our original rough estimate.

P (CSt > 0 | It = 0) ≈ (t − 1)L2 rL−1/Cτ

N rL−1

1 + O(1/N)
1 − O(1/N)

=
(t − 1)L2

CτN
(1 + O(1/N))

⇒ Emin{t : CSt > 0} ≈ (1 + O(L2/N))

√

π

2
N Cτ

L2

⇒ Emin{i : ∃j < i, Xi = Xj} ≈ (1 + O(L2/N) + O(τ/L))
√

π

2
N Cτ

The non-rigor here is in ignoring the effects of the condition CSt−1 = 0 on
the expected number of collisions after Xi = Xj . However, given that only an
O(1/

√
N) fraction of states will be covered before the expected collision time

this effect should be quite minimal. Indeed, the simulations data discussed in
Section 7 show that our heuristic has 4 or more digits of accuracy.

The approximation Cτ ≥ C1 gives our earlier weaker, but rigorous, result, so
this is an extension of what we know to be true. Pollard’s walk has τ = O(log3 N)
[9] and so when L = 3

√
N we get run time (1 + O∗(1/ 3

√
N))

√
π
2 N Cτ . Teske’s

additive walks have τ = O(N2/(r−1)) [18] and so if r ≥ 6 then L = N0.5−ε for
small ε will suffice to show run time of (1 + o(1))

√
π
2 N Cτ , while if r = 5 then

L =
√

N will show O
(√

π
2 N Cτ

)

. These are consistent with Teske’s observation
that the walk slows considerably when r ≤ 4.

Remark 7. When the transitions have non-uniform probabilities nearly every-
thing just argued still applies, because in our construction of colliding paths we
allow all possible transitions to occur. The sole exception is the 1 − 1/r correc-
tion. In this case it suffices to replace 1/r by the smallest transition probability.
That is of course pessimistic, but is difficult to avoid in a rigorous argument.
The Cτ bound does not suffer this weakness and again seems to be sharp.

5 Gaudry-Schost

There are many variations of the Gaudry-Schost method, with versions to solve
multi-dimensional discrete logarithms, to speed up the algorithm by making the
regions non-hypercubes, to speed up by considering collision of 3 or 4 walks
on differing regions, etc [5–7]. Our technique can be applied in each of these
settings, but for simplicity we will consider only the simplest case, an early one-
dimensional version [7]. We comment on a few other versions at the end of this
section and in Section 7.

The non-rigorous part of the heuristic is in ignoring the dependence between
states such as Xi and Xi+1. We resolve this by breaking the X and Y walks

140 S. Kijima and R. Montenegro

into segments SX
i and SX

j that are independent. The most natural choice for
segments is to let SX

i denote the states visited by walk X between the (i − 1)st

and ith distinguished points, including the ith, and define SY
i and RY

i similarly.
This implicitly sets RX

i = ∅. The length |Si| is a random variable with geometric
distribution P (|Si| =) = (1 − θ)�−1 θ and expectation E|Si| = θ−1.

As before, we consider the probability that two segments collide, this time
segments SX

i and SY
j . To simplify the discussion we ignore boundary effects

and assume that all segments are in A ∩ B, since this is the only area in which
collisions can occur. There are two main types of boundary effects: when walk
X crosses into B it effectively increases the size of A ∩ B, which improves the
runtime, but when it crosses into Ac it effectively increases the size of A which
decreases the runtime. A careful analysis finds that these effects almost exactly
cancel out.

Let Et denote the number of times that one of the first t segments for X
intersects one of the first t segments for Y . As in the analysis of the Kanga-
roo method, we will use the relation that for a non-negative random variable
P (Q > 0) = EQ

E(Q | Q>0) .
First, consider the chance that SX

t intersects with one of the first (t − 1)
segments of the Y walk.

P
(

SX
t ∩

(

∪t−1
j=1S

Y
j

)

�= ∅ | Et−1 = 0
)

≈
θ−1 × (t − 1) θ−1

|A∩B|
Cτ

=
t − 1

θ2Cτ |A ∩ B|

Next, consider the chance that SY
t intersects with one of the first t segments of

the X walk, if it has not collided already:

P
(

SY
t ∩

(

∪t
j=1S

X
j

)

�= ∅ | Et−1 = 0 ∧ SX
t ∩

(

∪t−1
j=1S

Y
j

)

= ∅
)

≈
θ−1 × t θ−1

|A∩B|
Cτ

=
t

θ2Cτ |A ∩ B|

Then

P (Et > 0 | Et−1 = 0) ≈ t − 1
θ2Cτ |A ∩ B| +

(

1 − t − 1
θ2Cτ |A ∩ B|

)
t

θ2Cτ |A ∩ B| (3)

The two-walk birthday problem generalizes to say that if Et is a non-negative
random variable such that

P (Et > 0 | Et−1 = 0) =
t − 1
N +

(

1 − t − 1
N

)
t

N

then
Emin{t : Et > 0} = (1 + O(1/N))

1
2

√
πN .

A Refined Analysis of Attacks on Discrete Logarithm 141

Equation (3) satisfies the condition when N = θ2Cτ |A ∩ B|, and so each
walk requires an average of 1

2

√
πN segments in A ∩ B. If we ignore boundary

effects, then each segment from the X walk has probability |A∩B|
|A| of being in

A∩B, while each segment from Y has probability |A∩B|
|B| of this. So drawing the

required number of samples from A ∩ B requires an average of

|A|
|A ∩ B|

1
2

√

πθ2 Cτ |A ∩ B|

segments from X and a similar number from the Y process. Each segment
involved an average of θ−1 steps of the walk, so the number of steps of the
walks is

|A| + |B|
2|A ∩ B|

√

π Cτ |A ∩ B| .

For instance, Galbraith and Ruprai’s improved version of Gaudry-Schost [6]
uses regions with |A|/|A ∩ B| = |B|/|A ∩ B| = 2 and |A ∩ B| = N/3. This leads
to a runtime estimate of 2

31/2

√
π Cτ N , which is a factor

√
Cτ times slower than

previous predictions. Our simulations find that this is within 0.3% of the correct
runtime. See Section 7 for further details.

6 The Collision Number

Almost all of our bounds consider the collision number Cτ . We remind the reader
of its definition.

Definition 8. The collision number Cτ is the expected number of collisions when
two independent copies of a random walk start at the same state, chosen uni-
formly at random, and proceed for τ steps.

The fact that this is an average case behavior means that we can ignore the
possibility of bad start values, as these are rare. Determining this value exactly
is still generally prohibitive, but upper and lower bounds of arbitrary precision
are possible.

The simplest approximation on the collision number is the lower bound Cτ ≥
C� for 	 ≤ τ . When Cτ ≥ C0 = 1 is used our bounds simply reduce to the
heuristic results of Section 1.2. When Cτ ≥ C1 = 1+1/r is used the Rho heuristic
of Heuristic 4 reduces to Theorem 3; this also gives Blackburn and Murphy’s
heuristic. When Cτ ≥ C2 is used then we start producing new results.

For small terms such as C2 it is typically possible to compute the value exactly
by hand. We give a few examples below.

Another method of estimating Cτ is to observe that most collisions will occur
quickly, and once a collision does occur then it should be followed by roughly
another Cτ collisions. Hence, if p� is the probability of a collision within a small
number of steps 	 then

Cτ ≥ 1 + p� Cτ

⇒ Cτ ≥ 1
1 − p�

(4)

142 S. Kijima and R. Montenegro

For very small 	 this can be computed by hand, but it is usually better to involve
a computer. The values produced by this estimate are quite accurate.

Simulation data shown in Section 7 shows that our heuristics are very precise.
The methods of computing each Cτ will not differ much, so we only give detailed
work for Pollard’s Rho while keeping the work short for Pollard’s Kangaroo and
Gaudry-Schost.

Example 9 (Pollard’s Kangaroo). Consider p1. This requires both walks to make
the same initial transition X1 = X0 + 2k = Y1, so p1 = 1/(d + 1) and

Cτ ≥ 1
1 − p1

= 1 +
1
d

= 1 +
2

log2 N

Consider p2. This requires both to make the same initial transition, or do the
first two steps in reversed order, or one walk does the same step twice making
it add up to the other walk’s value. Then

p2 =
1

d + 1
+

(
d + 1

2

)
1

(d + 1)4
+ 2d

1
(d + 1)3

=
2

log2 N
+

10
(log2 N)2

+ O((log N)−3) .

As N → ∞ this goes to zero, so we can use the relation 1/(1 − p) → 1 + p +
p2 + · · · . This gives the relation

Cτ ≥ 1 +
2

log2 N
+

14
(log2 N)2

+ O((log N)−3) .

This is quite accurate. See Section 7 for a plot using a version of this bound.

Example 10 (Teske’s Additive Walks). For Teske’s additive version of Pollard’s
Rho there are r step types of the form X → X + si. Consider the probability
that two independent walks with X0 = Y0 intersect within 	 = 3 steps:

P (∃i, j ≤ 3, Xi = Yj | X0 = Y0)
= P (X1 = Y1 | X0 = Y0) + P (X2 = Y2, X1 �= Y1 | X0 = Y0)

+P (X3 = Y3, X2 �= Y2, X1 �= Y1 | X0 = Y0)
= P (X1 = X0 + si = Y0 + si = Y1)

+P (X2 = X0 + si + sj = Y0 + sj + si = Y2, i �= j | X0 = Y0)
+P (X3 = X0 + si + sj + sk = Y0 + sj + sk + si, i �= j �= k �= i, | X0 = Y0)

=
1
r

+ rP2
1
r2

1
r2

+
3 rP3 + 2 rP2

r6

=
1
r

+
1
r2

+
2
r3

+ O(1/r4)

It follows that

Cτ ≈ 1
1 − p3

=
1

1 −
(
1
r + 1

r2 + 2
r3 + O(1/r4)

) = 1 +
1
r

+
2
r2

+
4
r3

+ O(1/r4)

See Section 7 for discussion of the accuracy of this.

A Refined Analysis of Attacks on Discrete Logarithm 143

Example 11 (Gaudry-Schost). The step types were chosen uniformly at random
from an interval, and so with high probability a collision will occur in a short
number of steps iff the same steps are taken by both walks, or the same steps are
taken but with the order re-arranged. This is just what happens with Teske’s
additive walks, and so we may borrow the work done when we examined her
methods. Namely,

Cτ ≈ 1
1 − p3

=
1

1 −
(
1
r + 1

r2 + 2
r3 + O(1/r4)

) = 1 +
1
r

+
2
r2

+
4
r3

+ O(1/r4)

7 Sharpness of our Results

We have consolidated our simulation details here. All of these show that our
results are extremely precise.

We note that our simulations are done in a non-standard way. Our goal is to
study performance of various methods for finding the discrete logarithm, not to
study the strengths or weaknesses of specific hash functions or representations
of a cyclic group. As a result we study walks on the exponents, not the group.
For instance, the walk X0 = h = gx, X1 = h g, X2 = (h g)2 is equivalent to
x → x + 1 → 2x + 2 mod |G|. The hash used to do a walk on the exponent was
based on the Mersenne Twister [11], as it is a fast source of pseudo-randomness.
Several variations on this hash were tested, and it was confirmed that run time
was similar in each case.

We first consider Pollard’s Kangaroo with power of two steps.

Example 12 (Pollard’s Kangaroo). When N = |G| = 109 Figure 1 shows that
there is still a significant gap between simulation data and prior heuristics, but
that our new result almost exactly matches the simulation results.

Pollard’s degree 3 process is a useful test cases as its performance deviates
from simple heuristic much more than does Teske’s improved process.

Example 13 (Pollard’s Rho). Very large simulations show that Cτ = 1.68221 ±
0.00001. A computer can be used to enumerate all possible paths of length 	 ≤ 20.
This gives the estimate Cτ ≈ 1

1−p5
= 1.65237, while Cτ ≈ 1

1−p10
= 1.67730, and

Cτ ≈ 1
1−p20

= 1.68203. So even p10 was sufficient to give an estimate of Cτ within
0.3% of the true value.

This can be seen more clearly visually. Figure 2 shows simulation data for
runtime and finds that it is consistently around 1.6254

√
N . Figure 3 shows that

Ct approaches Cτ fairly quickly in t, with C20 ≈ Cτ , and leads to a runtime
prediction of 1.6256

√
N .

We next consider Teske’s r-adding version of the Rho method.

Example 14 (Teske’s additive walks).
Teske estimates average collision time of the 20-adding walk is around

1.292
√

N steps [18]. We did a much larger run of 75 million simulations and

144 S. Kijima and R. Montenegro

Fig. 1. Standard heuristic (flat line), our bound (smooth curve), simulation data with
margin of error ±0.01

√
N (jagged plot)

found a 95% confidence interval of 1.2877
√

N to 1.2880
√

N . This suggests that
collision time is about 3% slower than the 1.2533

√
N steps predicted by the

birthday heuristic.
To apply our heuristic, recall from Section 6 that

Cτ ≈ 1
1 − p3

=
1

1 −
(
1
r + 1

r2 + 2
r3 + O(1/r4)

)

When r = 20 this leads to an estimate on collision time of 1.2877
√

N , which is
already within the 95% confidence interval given by simulation data. An exact
enumeration of walks of length 	 = 5 increases the estimate only negligibly to
1.287765

√
N steps, at 	 = 10 to 1.287770

√
N steps, and the sampling based

estimate at length 	 = 100 gave an estimate of (1.287769 ± 0.000003)
√

N with
95% confidence.

So in this case a mere 3 steps already explains 99.7% of the 20-additive walk’s
deviation from the birthday heuristic, and by 5 steps the estimate is essentially
sharp.

Last of all, we compare simulation data to our heuristic for Gaudry-Schost.

Example 15. Galbraith, Pollard, and Rubrai [5] discuss 3 and 4-walk versions
with even better runtime than Pollard’s Kangaroo method. The same argument
used to give a heuristic bound for Gaudry-Schost shows that this will have a√

Cτ slowdown over their predicted runtime. They consider an interval of side

A Refined Analysis of Attacks on Discrete Logarithm 145

Fig. 2. Run time of Pollard’s Rho: Simulations estimate (1.6254 ± 0.0004)
√

N steps

Fig. 3. Run time of Pollard’s Rho: Heuristic predicts 1.6256
√

N steps

146 S. Kijima and R. Montenegro

N = 240, with θ = 1/500, r = 32 step types, and average step size m = 0.01 θ N ,
and determine that a basic birthday heuristic suggests run time of 1.761

√
N . Our

improved heuristic will be ≈ 1.761/
√

1 − 1/32 − 1/322 − 2/323 = 1.790
√

N . We
did 250, 000 runs without any adjustment for boundary effects and found mean
run time of 1.79501

√
N with 95% CI of (1.791, 1.799)

√
N .

Our heuristic suggests that run time will improve when there are more gen-
erators, whereas past heuristics said nothing about this. We repeated the above
simulations but with d = 128 step types. This time the average run time was
1.77113

√
N with 95% CI of (1.767, 1.775)

√
N . Our heuristic of 1.768

√
N is

within this interval. Using more generators does indeed help, and the improve-
ment is predicted fairly accurately by our heuristic. The error is again about
0.3% from the center of the interval.

This shows that our improved heuristic is fairly good. The error in each case
is near the bottom of the CI, and only 0.3% from the center of the interval.
Presumably any error is due to minor boundary effects.

Example 16. One method that has been proposed for avoiding boundary effects
is to forbid starts in the rightmost 0.01N of an interval, as this is the average
distance traveled before a distinguished point is reached. We tested this in the
case above, with r = 32, and found mean run time of 1.79721

√
N with 95% CI of

(1.793, 1.801)
√

N . This is not a statistically significant difference from the case
that ignores boundary issues.

A Appendix

When looking at the Rho algorithm we required a generalization of the birthday
problem. We prove that here.

Consider a family of events E1 ⊆ E2 ⊆ · · · such that P (Ek | ¬Ek−1) ≤ k−1
A ,

and a second family F1 ⊆ F2 ⊆ · · · . We will modify the birthday result in order
to prove a result about the expected time until some event is true.

Emin{t : Et ∪ Ft} =
∞∑

t=0

P (¬(Et ∪ Ft))

In our case, Et will be the event that a collision has occurred between segments
S1, S2, . . . , St, as was considered earlier in the paper, while Ft will be the event
that a collision occurred elsewhere: within one of the segments S1, S2, . . . , St or
involving one of the randomization segments R1, R2, . . . , Rt. The collision time
will be (L + T)Emin{t : Et ∪ Ft}.

First consider collisions between segments.

P (¬Et) = P (¬E1)
t∏

k=2

P (¬Ek | ¬Ek−1)

≥ 1
t∏

k=2

(1 − k − 1
A

)

A Refined Analysis of Attacks on Discrete Logarithm 147

This is exactly the probability that occurs in the birthday problem when there
are A days in the year, and so

Emin{t : Et} =
∞∑

t=0

P (¬Et) ≥ (1 + O(1/A))
√

π

2
A (5)

It follows that for any value of T

Emin{t : Et ∪ Ft} =
∞∑

t=0

P (¬(Et ∪ Ft))

≥
T−1∑

t=0

P (¬Et) −
T−1∑

t=0

P (Ft)

≥ (1 + O(1/A))
√

π

2
A −

∞∑

t=T

1
t∏

k=2

(1 − k − 1
A

) −
T−1∑

t=0

P (Ft)

The tail probability in the first sum can be estimated as

∞∑

t=T

1
t∏

k=2

(1 − k − 1
A

) ≤
∞∑

t=T

exp

(

−
t∑

k=2

k − 1
A

)

=
∞∑

t=T

exp (−t(t − 1)/2A)

≤
∞∑

t=T

∫ t−1

t−2

e−x2/2A dx

=
∫ ∞

T−2

e−x2/2A dx

≤
∫ ∞

(T−2)/
√

A

u

(T − 2)/
√

A
e−u2/2 (

√
Adu)

=
A

T − 2
e−(T−2)2/2A

The final inequality involved the substitution u = x/
√

A and the relation u ≥
T−2√

A
.. When T ≥ 2 +

√
A log A then this is o(1). Then

Emin{t : Et ∪ Ft} ≥ (1 + O(1/A))
√

π

2
A − A3/2

T − 2
e−(T−2)2/2A −

T−1∑

t=0

P (Ft) .

We found in Section 4 that A = N
L2(1−1/r) can be shown rigorously, while A =

N Cτ

L2 can be shown heuristically.

148 S. Kijima and R. Montenegro

References

1. Bailey, D., Batina, L., Bernstein, D., Birkner, P., Bos, J., Chen, H.-C., Cheng,
C.-M., Van Damme, G., de Meulenaer, G., Perez, L.J.D., Fan, J., Güneysu, T.,
Gürkaynak, F., Kleinjung, T., Lange, T., Mentens, N., Niederhagen, R., Paar, C.,
Regazzoni, F., Schwabe, P., Uhsade, L., Van Herrewege, A., Yang, B-Y.: “Breaking
ECC2K-130,” Cryptology ePrint Archive, Report 2009/541 (2009). https://eprint.
iacr.org/2009/541

2. Bernstein, D.J., Lange, T.: Two grumpy giants and a baby. In: ANTS X:
Proceedings of the 10th International Symposium on Algorithmic Number The-
ory. Mathematical Sciences Publishers (2013)

3. Blackburn, S., Scott, S.: The discrete logarithm problem for exponents of bounded
height. In: ANTS XI: Proceedings of the 11th International Symposium on Algo-
rithmic Number Theory. LMS J. Comput. Math 17, 148–156 (2014)

4. Blackburn, S., Murphy, S.: The number of partitions in Pollard Rho, Unpublished
note : Later made available as Technical report RHUL-MA-2011-11 (Department
of Mathematics, p. 2011. University of London, Royal Holloway (1998)

5. Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Computing discrete logarithms in an
interval. Math. Comp. 82, 1181–1195 (2013)

6. Galbraith, S., Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm for
multidimensional discrete logarithm problems. In: Parker, M.G. (ed.) Cryptogra-
phy and Coding 2009. LNCS, vol. 5921, pp. 368–382. Springer, Heidelberg (2009)

7. Gaudry, P., Schost, É.: A low-memory parallel version of Matsuo, Chao, and Tsu-
jii’s algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222.
Springer, Heidelberg (2004)

8. Hildebrand, M.: On the Chung-Diaconis-Graham random process. Electron.
Comm. Probab. 11, 347–356 (2006)

9. Kim, J-H., Montenegro, R., Tetali, P.: Near Optimal Bounds for Collision in Pol-
lard Rho for Discrete Log. In: IEEE Proc. of the Symposium on Foundations of
Computer Science (FOCS 2007), pp. 215–223 (2007)

10. Kim, J.-H., Montenegro, R., Peres, Y., Tetali, P.: A Birthday Paradox for Markov
chains, with an optimal bound for collision in the Pollard Rho Algorithm for Dis-
crete Logarithm. The Annals of Applied Probability 20(2), 495–521 (2010)

11. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation 8(1), 3–30 (1998)

12. Miller, S.D., Venkatesan, R.: Spectral analysis of Pollard rho collisions. In: Hess,
F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 573–581. Springer,
Heidelberg (2006)

13. Montenegro, R., Tetali, P.: How long does it take to catch a wild kangaroo?.
In: Proc. of 41st ACM Symposium on Theory of Computing (STOC 2009),
pp. 553–559 (2009). Citations refer to an improved version at http://arxiv.org/
pdf/0812.0789v2.pdf

14. Nishimura, K., Shibuya, M.: Probability to meet in the middle. Journal of
Cryptology 2(1), 13–22 (1990)

15. Pollard, J.: Monte Carlo methods for index computation mod p. Mathematics of
Computation 32(143), 918–924 (1978)

16. Pollard, J.: Kangaroos, Monopoly and Discrete Logarithms. Journal of Cryptology
13(4), 437–447 (2000)

https://eprint.iacr.org/2009/541
https://eprint.iacr.org/2009/541
http://arxiv.org/pdf/0812.0789v2.pdf
http://arxiv.org/pdf/0812.0789v2.pdf

A Refined Analysis of Attacks on Discrete Logarithm 149

17. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

18. Teske, E.: Speeding up Pollard’s rho method for computing discrete logarithms. In:
Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 541–554. Springer, Heidelberg
(1998)

19. Rosini, M.D.: Applications. In: Rosini, M.D. (ed.) Macroscopic Models for Vehic-
ular Flows and Crowd Dynamics: Theory and Applications. UCS, vol. 12, pp.
217–226. Springer, Heidelberg (2013)

A Polynomial-Time Key-Recovery Attack
on MQQ Cryptosystems

Jean-Charles Faugère1,2,3(B), Danilo Gligoroski4, Ludovic Perret1,2,3,
Simona Samardjiska4,5, and Enrico Thomae6

1 INRIA, Paris-Rocquencourt Center, Paris, France
jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr
2 Sorbonne Universités, UPMC Univ Paris 06, Équipe PolSys,

LIP6, 75005 Paris, France
3 LIP6, CNRS, UMR 7606, 75005 Paris, France

4 Department of Telematics, NTNU, Trondheim, Norway
{danilog,simonas}@item.ntnu.no
5 FCSE, UKIM, Skopje, Macedonia

6 Operational Services, Frankfurt, Germany
enrico.thomae@rub.de

Abstract. We investigate the security of the family of MQQ public key
cryptosystems using multivariate quadratic quasigroups (MQQ). These
cryptosystems show especially good performance properties. In particu-
lar, the MQQ-SIG signature scheme is the fastest scheme in the ECRYPT
benchmarking of cryptographic systems (eBACS). We show that both
the signature scheme MQQ-SIG and the encryption scheme MQQ-ENC,
although using different types of MQQs, share a common algebraic struc-
ture that introduces a weakness in both schemes. We use this weakness
to mount a successful polynomial time key-recovery attack that finds an
equivalent key using the idea of so-called good keys. In the process we
need to solve a MinRank problem that, because of the structure, can be
solved in polynomial-time assuming some mild algebraic assumptions.
We highlight that our theoretical results work in characteristic 2 which
is known to be the most difficult case to address in theory for MinRank
attacks and also without any restriction on the number of polynomials
removed from the public-key. This was not the case for previous Min-
Rank like-attacks against MQ schemes. From a practical point of view,
we are able to break an MQQ-SIG instance of 80 bits security in less
than 2 days, and one of the more conservative MQQ-ENC instances of
128 bits security in little bit over 9 days. Altogether, our attack shows
that it is very hard to design a secure public key scheme based on an
easily invertible MQQ structure.

Keywords: MQ cryptography · MQQ cryptosystems · Equivalent keys ·
Good keys · MinRank · Gröbner bases

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 150–174, 2015.
DOI: 10.1007/978-3-662-46447-2 7

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 151

1 Introduction

Multivariate quadratic (MQ) public key schemes are cryptosystems based (in
part) on the NP-hard problem of solving polynomial systems of quadra-tic
equations over finite fields, also known as the MQ-problem. Until the mid 2000’s,
MQ cryptography was developing very rapidly, producing many interesting and
versatile design ideas such as C∗ [24], HFE [33], SFLASH [12], UOV [26], TTM
[29], TTS [42]. However, many of them were soon successfully cryptanalysed, and
the biggest surprise was probably the break of SFLASH in 2007 [15], shortly after
it was chosen by the NESSIE European Consortium [31] as one of the three rec-
ommended public key signature schemes. As a consequence, the confidence in
MQ cryptosystems declined, and so did the research in this area as well.

Now, several years later, it seems that there have emerged new important
reasons for renewal of the interest in a new generation of MQ schemes. In the
past two years, the algorithms for solving the Discrete Logarithm (DL) problem
underwent an extraordinary development (for instance, but not limited to [1]).
This clearly illustrates the risk to not consider alternatives to classical assump-
tions based on number theory. In parallel, two of the most important standard-
ization bodies in the world, NIST and ETSI have recently started initiatives for
developing cryptographic standards not based on number theory, with a partic-
ular focus on primitives resistant to quantum algorithms [16,32].

A common characteristic of all MQ schemes is the construction of the public
key as P = T ◦ F ◦ S where F is some easily invertible quadratic mapping,
masked by two bijective affine transformations S and T . A consequence of these
construction is that some specific properties of the secret-key can be recovered
on the public-key. In particular, one of the most important characteristic of
MQ schemes that allows a successful key-recovery is connected to unexpected
high rank defect on the matrices associated to the public-key. The attacks on
TTM [11], STS [37,38], Rainbow [7,14], HFE and MultiHFE [5,6,25,27] are
all in essence based on the problem of finding a low rank linear combination of
matrices, known as MinRank in cryptography [10]. This problem is NP-hard [10]
and was used to design a zero-knowledge authentication scheme [13]. Although
NP-hard, the instances of MinRank arising from MQ schemes are often easy,
thus providing a powerful tool for finding equivalent keys in canonical form.

1.1 Our Contribution

In this paper, we are concerned with the security analysis of a particular family
of MQ (Multivariate Quadratic) cryptosystems, namely the MQQ schemes pro-
posed in 2008 [21]. In these schemes the secret map F is derived from multivariate
quadratic quasigroups (MQQ), which makes the inversion of F especially effi-
cient. A message-recovery attack was proposed in [30], and later in [19], it was
proven that a direct attack [30] can be done in polynomial-time. In [22], the
authors proposed a signature scheme, called MQQ-SIG, based on the same idea
and secure against direct attacks, as well as claimed to be CMA secure. They
made heavy use of the minus modifier, known from HFE-[33], to repair MQQ.

152 J.-C. Faugère et al.

Finally, in [23] the authors proposed an enhanced variant of the MQQ encryp-
tion scheme, called MQQ-ENC. The MQQ-SIG signature scheme is the fastest
scheme in signing in the ECRYPT Benchmarking of Cryptographic Systems
(eBACS) SUPERCOP [4], and is therefore very appealing for practical use.

We show in this paper that this family of designs has a fundamental weakness
which allows us to mount an efficient key-recovery attack on all known con-
structions based on MQQ. More precisely, we can recover a key, equivalent to
the secret-key, by solving simultaneous instances of MinRank (Theorem 3) prob-
lems, which due to the structure of the schemes can be solved in polynomial-time.
To do so, we first assume that the field is not too big. That is to say, we assume
that q = O(n) which is indeed the case for most of the parameters proposed so
far for MQQ cryptosystems. Of independent interest, we show that the simulta-
neous MinRank problem is equivalent to a rectangular MinRank (Corollary 1)
problem. For the complexity of our attack, we summarize the first result below:

Theorem 1. Let ω, 2 � ω < 3 be the linear algebra constant. Let P = T ◦ F ◦ S
be the public mapping of MQQ-SIG or MQQ-ENC consisting of n − r poly-
nomials in n variables over Fq (with Char(Fq) = 2). F is a set of quadratic
polynomials derived from multivariate quadratic quasigroups (MQQ), while S
and T are invertible matrices used to mask the structure of F . Then, the last
columns of S and T (up to equivalence) can be recovered in O(nω). More gen-
erally, a key equivalent to the secret-key in MQQ-SIG or MQQ-ENC can be
found by solving n − r MinRank instances with N − r matrices from F

N×(N−r)
q

where N, r + 2 � N � n − 1. If q = O(n) then each MinRank can be solved
in polynomial-time assuming a mild regularity condition on the public matrices.
Under this condition and assuming q = O(n), we can recover a key equivalent
to the secret-key in

O(nω+3),with probability 1 − 1/q.

The genericity assumption required in the previous result is that the rank defect
in the skew-symmetric matrices derived from the public polynomials is a not
too big constant. We have implemented our attack in practice and verified that
this assumption is reasonable. We highlight that our theoretical results work in
characteristic 2 which is known to be the most difficult case to address in theory
[5,6,25] for MinRank attacks. Also, we emphasize that our attack works without
any restriction on the number of polynomials removed from the public-key (the
minus modifier). This was not the case for previous MinRank like-attacks against
MQ schemes.

If we relax the condition on the size of q, we can still bound the complexity
(although, we require a slightly stronger assumption).

Theorem 2 (informal version of Theorem 5). Let ω, 2 � ω < 3 be the
linear algebra constant. Let P = T ◦ F ◦ S be the public mapping of MQQ-SIG
or MQQ-ENC consisting of n − r polynomials in n variables over Fq (with
Char(Fq) = 2). Assuming that the kernels of the skew-symmetric matrices
derived from the public-key behave as random subspaces and a genericity

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 153

condition on the MinRank modeling, then we can recover a key, equivalent to
the secret-key, in

O
(

n3ω+1
)

,with probability
(

1 − 1
q

)(

1 − 1
qn−3

)

. (1)

The assumption used in Theorem 2 means that we can restrict our attention to
a sub-system of our modeling of the simultaneous MinRank (Theorem 3) such
that the sub-system is bi-linear with a block of variables of constant size. If the
sub-system behaves as a generic affine bi-linear system, this implies that the
maximum degree reached during a Gröbner basis computation is constant [17].
This is what we observed in practice.

Indeed, in order to verify our assumptions and the correctness of the attack,
we implemented the attack in Magma (Ver. 2.19-10 [8]). The results obtained
confirm the computed theoretical complexity. Using the implementation, we
demonstrated that our attack is very efficient by practically breaking instances
with recommended parameters. For example, we recovered an equivalent key for
MQQ-SIG 160, of claimed security of O(280), in 248 operations, i.e. in less than
2 days. Similarly, for MQQ-ENC 128 defined over F4 with claimed security of
O(2128), we recovered an equivalent key in 250.6 operations which took a little
bit over 9 days. We also emphasize that the practical results obtained, almost
perfectly match the theoretical complexity bound (1) derived in Section 7.1.

Altogether, our attack shows that it is very hard to design a secure scheme
based on an easily invertible MQQ structure. It seems that using MQQs success-
fully in future MQ designs may require deep insight from quasigroup theory,
in order to obtain the necessary security while preserving the attractive perfor-
mance level.

1.2 Organization of the Paper

The paper is organized as follows. In Sect. 2 we present the necessary prelimi-
naries about MQ cryptosystems. We also recall the MinRank problem and the
known tools for solving it, as well as the concepts of equivalent keys and good
keys. In Sect. 3 we describe the cryptosystems from the MQQ family, and in
Sect. 4 we uncover the algebraic structure that the two systems, MQQ-SIG and
MQQ-ENC share, and that shows the weaknesses of the cryptosystems. Sect. 5
is devoted to the presentation of the main idea behind our key recovery attack
on both MQQ-ENC and MQQ-SIG. We further point out the difference in the
attack in odd and even characteristic fields, and present the necessary modifica-
tions of the attack for even characteristic fields. As a result of the analysis, in
Sect. 6 we conclude that the problem of finding good keys can be modeled as a
special instance of MinRank for rectangular matrices. The complexity analysis
of our attack is given in Sect. 7. We conclude the paper in Sect. 8.

2 Preliminaries

2.1 Basic Notations

Throughout this paper, Fq will denote the finite field of q elements, Mn×m(Fq)
will denote the set of n×m matrices over Fq and GLn(Fq) will denote the general

154 J.-C. Faugère et al.

linear group of degree n over Fq. First, we briefly recall the general principle of
MQ public key cryptosystems. This will allow to fix some notations. The public
key of an MQ cryptosystem is usually given by a multivariate quadratic map
P : F

n
q → F

m
q , that is

P(x1, . . . , xn) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p1(x1, . . . , xn) =
∑

1�i�j≤n

γ̃
(1)
i,j xixj +

n∑

i=1

β̃
(1)
i xi + α̃(1)

...
pm(x1, . . . , xn) =

∑

1�i�j�n

γ̃
(m)
i,j xixj +

n∑

i=1

β̃
(m)
i xi + α̃(m)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

for some coefficients γ̃
(s)
i,j , β̃

(s)
i , and α̃(s) ∈ Fq.

In our attack, we will see that w.l.o.g. we can restrict our attention to the homo-
geneous components of highest degree, i.e. to the quadratic components. Clas-
sically, a quadratic form can be written as ps(x1, . . . , xn) :=

∑

1≤i≤j≤n

γ̃
(s)
i,j xixj =

xᵀP(s)x, where x := (x1, . . . , xn)ᵀ and P(s) is an n × n matrix describing the
degree-2 homogeneous component of ps. The public key P is obtained by obfus-
cating a structured central map F : x ∈ F

n
q →

(

f1(x), . . . , fm(x)
)

∈ F
m
q . We

denote by F(s) an n×n matrix describing the homogeneous quadratic part of fs.
In order to hide the structured central map, we choose two secret linear1 transfor-
mations S ∈ GLn(Fq), T ∈ GLm(Fq) and define the public key as P := T ◦F ◦S.

Remark 1. It is known that the matrix of a quadratic form is constructed differ-
ently depending on the parity of the field characteristic. In odd characteristic,
P(s) is a symmetric matrix, i.e. P

(s)
i,j := γ̃

(s)
i,j /2 for i �= j and P

(s)
i,i := γ̃

(s)
i,i .

Over fields Fq of characteristic 2, we cannot choose P(s) in this manner, since
(γ̃i,j + γ̃j,i)xixj = 2γ̃i,jxixj = 0 for i �= j. Instead, let P̃(s) be the upper-
triangular representation of ps, i.e. P̃(s)

i,j = γ̃
(s)
i,j for i ≤ j. The symmetric form is

obtained by P(s) := P̃(s)+P̃(s)ᵀ
. In this case only the upper-triangular part rep-

resents the according polynomial, and all elements on the diagonal are zero. This
implies that for x, y ∈ F

n
q the symmetric bilinear form xᵀP(s)y is alternating and

has even rank.

2.2 The MinRank Problem

The problem of finding a low rank linear combination of matrices is a basic linear
algebra problem [10] known as MinRank in cryptography [13]. The MinRank
problem over a finite field Fq is as follows.
MinRank (MR)

1 Note that S and T can actually be chosen to be affine. We restrict ourselves to linear
secrets for the sake of simplicity. However, we mention that the attack can be simply
adapted to work in the affine case (see [27,34]).

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 155

Input: n,m, r, k ∈ N, where n < m and M0,M1, . . . , Mk ∈ Mn×m(Fq).
Question: Find – if any – a k-tuple (λ1, . . . , λk) ∈ F

k
q such that:

Rank

(
k∑

i=1

λi Mi − M0

)

� r.

In Appendix A, we review some known techniques for solving MinRank.

2.3 Good Keys

Our attack relies on so-called equivalent keys introduced by Wolf and Preneel
[40,41]. We briefly recall below the concept of equivalent keys, and then present
good keys which are at the core of our attack.
Let F = {f1, . . . , fm} ⊂ Fq[x1, . . . , xn]m. For k, 1 � k � m, we denote by
I(k) ⊆ {xixj | 1 � i � j � n} a subset of the degree-2 monomials. We define
F∣

∣
I

= {f1
∣
∣
I(1)

, . . . , fm
∣
∣
I(m)

} where fk
∣
∣
I(k)

:=
∑

xixj∈I(k)

γ
(k)
i,j xixj is the projection

of fk to I(k).

Definition 1. Let (F , S, T), (F ′, S′, T ′) ∈ Fq[x1, . . . , xn]m × GLn(Fq) ×
GLm(Fq). We say that (F , S, T) and (F ′, S′, T ′) are equivalent keys, denoted by

(F , S, T) 	 (F ,′ S′, T ′), if and only if (T ◦ F ◦ S = T ′ ◦ F ′ ◦ S′)∧
(

F∣
∣
I

= F ′∣
∣
I

)

,

that is, F and F ′ share the same structure when restricted to a fixed set
I = {I(1), . . . , I(m)}.

Since the relation 	 given by Definition 1 is an equivalence relation [40], the set
of all keys S, T can be partitioned into several equivalence classes. For a large
fraction of all equivalence classes, we can find special representatives S′ and T ′

with fixed entries at certain values.
For ease of notation, let S := S−1 and T := T−1. Obviously P = T ◦ F ◦ S,
implies that F = T ◦ P ◦ S. This leads to the equality below on the quadratic
forms:

F(k) = S
ᵀ

⎛

⎝

m∑

j=1

tk,jP
(j)

⎞

⎠ S, ∀k, 1 � k � m. (2)

The corresponding system of equations is as follows:

F
(k)
i,j =

m∑

x=1

n∑

y=1

n∑

z=1

P(x)
y,ztk,xsy,isz,j . (3)

Due to the structure of the secret mapping F, we know that certain coefficients
in F(i) are systematically zero. This allows then to obtain cubic equations on
the components of S and T . In general, the system of equations has too many
variables for being solved efficiently in this form.

The concept of equivalent keys allows to reduce the number of variables by
introducing two linear maps (Σ,Ω) ∈ GLm(Fq) × GLn(Fq) such that P = T ◦

156 J.-C. Faugère et al.

Σ−1 ◦Σ ◦F ◦Ω ◦Ω−1 ◦S. If F and F ′ := Σ ◦F ◦Ω share the same structure (cf.
Def. 1), then T ′ := TΣ−1 and S′ = Ω−1S will be equivalent keys. Depending
on Σ and Ω we can define a canonical form of the secret-keys and typically fix
large parts of T and S (see [39–41]). We note that it may happen that such
a canonical key does not exist. For example, the Unbalanced Oil and Vinegar
Scheme has such an equivalent key with probability roughly 1 − 1/q [36].

The idea of good keys [37] is to further decrease the number of unknowns
or unfixed coefficients in (S′, T ′). Here, we do not aim to preserve all the zero
coefficients of F , but just some of them. This way, we have more freedom to
choose Σ and Ω and thus further reduce the number of variables. On the other
hand, we can generate less equations. Finding the best trade-off is not obvious
and strongly depends on the underlying structure of F . Formally, we define good
keys through the following definition.

Definition 2 ([37]). Let (F , S, T), (F ′, S′, T ′) be in Fq[x1, . . . , xn]m ×
GLn(Fq) × GLm(Fq). Let I = {I(1), . . . , I(m)} and J = {J (1), . . . , J (m)} such
that J (k)

� I(k) for all k, 1 � k � m with at least one J (k) �= ∅. We shall
say that (F ′, S′, T ′) ∈ Fq[x1, . . . , xn]m × GLn(Fq) × GLm(Fq) is a good key for
(F , S, T) if and only if:

(

T ◦ F ◦S = T ′ ◦ F ′ ◦S′) ∧
(

F∣
∣
J

= F ′∣
∣
J

)

.

3 MQQ Cryptosystems

The Multivariate Quadratic Quasigroup (MQQ) scheme was proposed in 2008
[21]. The underlying idea is to use bijective multivariate quadratic maps obtained
through the existence of left and right inverses in some quasigroup, in order to
build the trapdoor map F .

Definition 3. Let Q be a set and q : Q × Q → Q be a binary operation on Q.
We call (Q, q) a left (resp. right) quasigroup if

∀u, v ∈ Q,∃!x, y ∈ Q : q(u, x) = v (resp. q(y, u) = v).

If (Q, q) is both left and right quasigroup, then we simply call it a quasigroup.

Clearly, q defines a bijective map if we fix some u ∈ Q. Hence, we can define
two inverse operations q\(u, v) = x and q/(v, u) = y, called left and right paras-
trophe, respectively. A multivariate quadratic quasigroup (MQQ) is a special
quasigroup, that can be described through a multivariate quadratic map over
some finite field Fq. In [21], F2 is used to built such MQQs of order 2d, with
parameter d = 5 and bilinear maps q. The central map F is constructed using
a so called quasigroup string transformation of the MQQs, in order to scale the
number of variables.

Definition 4. Let Q := F
d
q and qi : Q × Q → Q be such that (Q, qi) forms a

quasigroup for 1 � i � 	 and some parameter 	 which allows to scale the scheme

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 157

later on. We fix some element u ∈ Q, call it leader and define F : F
�d
q → F

�d
q

through
(f1, . . . , fd) := q1(u, x1),
(fd+1, . . . , f2d) := q2(x1, x2),

...
...

(f(�−1)d+1, . . . , f�d) := q�(x�−1, x�).

In order to find pre-images of F , we use the corresponding left-parastrophe oper-
ations of q1, . . . , q�. In addition, the authors of [21] used the Dobbertin bijection
to deal with the linear part of F that comes from q1(u, x1) for some fixed u ∈ Q
and the fact that they chose bilinear maps qi.

Unfortunately, this trapdoor provided a lot of structure so the MQQ encryption
scheme was broken by a direct attack on the public key [30]. Faugère et al.
showed in [19] that the degree of regularity of the equations generated by the
pubic key can be bounded from above by a small constant. Thus, the complexity
of a direct Gröbner basis attack is polynomial.

3.1 MQQ-SIG Signature Scheme

Recently, in [22] a signature scheme was proposed, called MQQ-SIG, which is
based on the same idea but makes heavy use of the minus modifier, known from
HFE-[33]. MQQ-SIG does not use the Dobbertin bijection and the construction
of the quasigroup is different and given by the map q : F

d
2 × F

d
2 → F

d
2:

q(x, y) := B · (I + A0) · B2 · y + B · B1 · x + c, (4)

where x := (x1, x2, . . . , xd)ᵀ, y := (y1, y2, . . . , yd)ᵀ, c ∈ F
d
2 and B1, B2, B ∈

GLd(F2) are arbitrary. A0 = [0 U1 · B1 · x U2 · B1 · x . . . Ud−1 · B1 · x] ,
is a d × d block matrix where Ui, i ∈ {1, . . . d − 1} are upper triangular matrices
over F2 having all elements 0 except the elements in the rows from {1, . . . , i}
that are strictly above the main diagonal.

A key feature of the MQQ-SIG scheme is the application of the minus modi-
fier. In particular, n/2 of the equations are removed in the public key P, in order
to prevent direct algebraic and MinRank attacks. Therefore, we obtain a signa-
ture expansion of factor two for messages of length n/2. Further the public key
is rather large, since it is defined over F2. In order to reduce the size of the public
key the designers decided to split the message in two and sign it using the same
trapdoor function twice. The proposed parameters are n ∈ {160, 192, 224, 256}
for the trapdoor function for security levels of 280, 296, 2112, 2128 binary opera-
tions respectively, and d = 8 for the order 2d of the quasigroup.

3.2 MQQ-ENC Encryption Scheme

The encryption scheme MQQ-ENC was recently proposed in [23], and it follows
the same line of design as its predecessors. Again, the internal mapping F is

158 J.-C. Faugère et al.

a quasigroups string transformation and the affine secrets S and T are built
from two circulant matrices. The minus modifier is used again, but since it is
an encryption scheme, only a small fixed number r of polynomials is removed.
This destroys the bijectivity of P, so to enable correct decryption a universal
hash function is used, and decryption is performed by going through all possible
pre-images of P. Compared to its predecessors, MQQ-ENC can be defined over
any small field Fpk and instead of bilinear quasigroups, the authors used more
general left quasigroups, i.e. mappings that are bijections only in the second
variable.

Lemma 1 ([35]). Let p be prime and k > 0 be an integer. For all s, 1 � s � d,
we define the component qs ∈ Fpk [x1, . . . , xd, y1, . . . , yd] by:

qs(x1, . . . , xd, y1, . . . , yd) := ps(ys) +
∑

1�i,j�d

α
(s)
i,j xixj +

∑

s<i,j�d

β
(s)
i,j yiyj

+
∑

1�i�d,s<j�d

γ
(s)
i,j xiyj +

∑

1�i�d

δ
(s)
i xi +

∑

s<i�d

ε
(s)
i yi + η(s), (5)

where ps(ys) ∈ {a(s)ys, a
(s)y2

s} for even p, and ps(ys) = a(s)ys for odd p, for
some a(s) �= 0. The function q = (q1, q2, . . . , qd) : F

2d
pk → F

d
pk , as defined in (5),

defines a left multivariate quadratic quasigroup (LMQQ) (Fd
pk , q) of order pkd.

Lemma 2. Let (Fd
pk , q) be an LMQQ as defined by Lemma 1. Let D and Dy

be d × d nonsingular matrices and c, cy vectors of dimension d over Fpk . Then
q̂(x, y) := D · q(x,Dy · y + cy) + c is again an LMQQ of order pkd. We say that
q̂ is linearly isotopic to q.

The recommended values for the parameters n, k, r, d, p for a security level of
2128 are d = 8, p = 2 and (n, k, r) ∈ {(256, 1, 8), (128, 2, 4), (64, 4, 2), (32, 8, 1)}.

4 The Algebraic Structure of MQQ-ENC and MQQ-SIG

We explain the algebraic structure that both MQQ-ENC and MQQ-SIG share.
This is the weaknesses that we are going to exploit to mount our attack.
First of all, we note that the trapdoor of MQQ-SIG can be seen as a very special
case of MQQ-ENC when defined over F2. Indeed, the quasigroup string trans-
formation only makes use of the left translation (the bijection in the second
variable) of a quasigroup q, i.e. the additional bijectivity in the first variable is
unnecessary. Thus, we can regard the MQQs used in MQQ-SIG as left quasi-
groups without loss of generality. Even more, it can be shown (cf. Proposition 1)
that the MQQs used in MQQ-SIG are linearly isotopic to quasigroups that can
be represented in the form given in Lemma 1, with some additional constraints
on the coefficients.

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 159

Proposition 1 ([35]). Let (Fd
2, q̂) be a quasigroup used in MQQ-SIG. Then q̂

can be represented by q̂(x, y) = B ·q(B1 ·x,B2 ·y)+c for some invertible matrices
B,B1, B2, a vector c, and q = (q1, q2, . . . , qd) with

qs(x, y) = xs + ys +
∑

s<i,j�d

γ
(s)
i,j xiyj +

∑

s<i�d

δ
(s)
i xi +

∑

s<i�d

ε
(s)
i yi + η(s),

for all 1 ≤ s ≤ d and coefficients γ
(s)
i,j , δ

(s)
i , ε

(s)
i , η(s) ∈ Fpk .

In the sequel, we will investigate the more general trapdoor of MQQ-ENC, since
all the properties of MQQ-ENC apply to MQQ-SIG as well. In order to avoid
redundancy and to provide a clear and simple algebraic description, we exploit
the following simplification. In the central map F the authors used LMQQs
constructed through Lemma 2, and not directly LMQQs from Lemma 1. This was
done to mask the otherwise triangular structure of the LMQQs from Lemma 1.
However, the linear isotopy, can actually be absorbed by S and T . First of all,
as we are only considering quadratic coefficients later on, we can safely ignore cy

and c. Further, the linear transformation D can be absorbed by T , i.e. instead of
using q̂ and the original T , we work with q and T · (In

d
⊗ D), with ⊗ the matrix

tensor product of the n
d dimensional identity matrix and D. The same holds for

the transformation of variables S. Instead of working with q and the original
transformation S, we work with (In

d
⊗ D−1

y) · S and q̃(x1, x2) := q(D−1
y x1, x2).

As there is no structure hidden in the first component of q, all the systematical
zeros in q̃ and q equal and thus we can assume a central map F with q according
to Lemma 1. Writing the quadratic part of qs = xᵀQ(s)x in its quadratic form
with x = (x1, . . . , xd, y1, . . . , yd)ᵀ, we can illustrate the matrix Q(s) by Figure 1.

Q(s) =

x y
︷ ︸︸ ︷︷ ︸︸ ︷

d d − s

Fig. 1. The quadratic form
Q(s) of qs. Gray parts denote
arbitrary values, white parts
denote systematic zeros.

· · ·

· · ·

· · ·

...
...

...
...

f1 fd+1 f2d+1

f2 fd+2 f2d+2

fd f2d f3d

fn−d+1

fn−d+2

fn

Fig. 2. Matrices of the quadratic forms of the central
map F of MQQ-ENC. Gray parts denote some arbi-
trary values, whereas white parts denote systematic
zeros.

160 J.-C. Faugère et al.

Note that both in odd and even characteristic, the coefficient of y2
s does not occur

in Q(s). In odd characteristic, ps(ys) = a(s)ys, i.e. it is always linear. For char-
acteristic 2, we have either ps(ys) = a(s)ys or ps(ys) = a(s)y2

s , but nevertheless,
it is again always linear, and the representation of Q(s) has systematic zeros on
the main diagonal. The central polynomials fs (Definition 4), with s, 1 � s � m
are illustrated in Figure 2.

Another simplification can be made regarding the secret affine transformations
S and T . First of all, we neglect linear terms, as we do not use them and they
also never interfere with the coefficients of quadratic monomials. Thus we can
assume S and T to be linear transformations. Note that using coefficients of
linear terms could only speed up the attack, as long as they are not all chosen
uniformly at random. Second, in [23] as well as in [22], the authors did not choose
S and T purely at random but as a combination of two circulant matrices. This
structure was meant to reduce the key size and speed up the decryption process.
We note that we do not use this special structure to speed up our attack. As we
are recovering (In

d
⊗D−1

y) ·S instead of S and T ·(In
d

⊗D) instead of T , for some
randomly chosen D and Dy, we lose most of the structure anyway. Therefore we
assume to recover some random matrices in the sequel. Note that this gives a
worst case complexity of our attack.

5 Key-Recovery Attack

In this part, we present an efficient algebraic key-recovery attack on MQQ-ENC
and MQQ-SIG. To do so, we combine a MinRank attack and good keys in order
to recover the columns of S and T .

5.1 High Level Description of the Attack

Remark 2. From now on for better readability, but without loss of generality,
we assume the change of variables: xn−id+j �→ xn−id+d−j+1. (This corresponds
to moving the white bands in Fig. 1 to the lower right corner.)

Our attack is performed in n − r − 1 steps, and in each Step N, where N ∈
{n, . . . r + 2}, we remove the variable xN from all but the first of the public
polynomials P. This is done by finding a good key (S

′
N , T

′
N) of a particular

form. At the end of each step, we remove the first polynomial form P, since, at
this point, that is the only polynomial that contains the variable xN and repeat
the procedure with the rest of the polynomials. Thus, at each Step N, w.l.o.g.
we can assume that the size of all public matrices is N . After n − r − 1 steps,
we obtain the equivalent key S

′
= S

′
n ◦ · · · ◦ S

′
r+2 and T

′
= T

′
r+2 ◦ · · · ◦ T

′
n. We

can summarize the steps of our attack in Alg. 1.

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 161

Algorithm 1 High Level Description of the Key-Recovery Attack

Input: n − r public polynomials P in n variables.

for N := n down to r + 2 do
Consider that all public polynomials involve � N variables.

Step N :
Find a good key (S

′
N , T

′
N).

Transform the public key as P ← T
′
N ◦ P ◦ S

′
N ,

and if N < n remove the first polynomial from P.
end for;

Output: The equivalent key S
′
= S

′
n ◦ · · · ◦ S

′
r+2 and T

′
= T

′
r+2 ◦ · · · ◦ T

′
n.

5.2 Detailed Description of the Attack

We describe in this part the steps performed in Alg. 1. We consider first the case
N = n which is a bit different from the others steps.

Step n = N . How to recover a linear component of the secret-key.
Let P be the n − r public polynomials in n variables of an MQQ scheme. From
now on, we denote by P(1), . . . ,P(n−r) the corresponding public matrices. As
explained, the public-key is constructed as P = T ◦ F ◦ S where F is a set of
quadratic polynomials constructed as in Sect. 3 and S and T are two bijective
linear maps used to mask the structure of P. We denote by F(1), . . . ,F(n) the
quadratic forms of F .

We explain how to recover one column of the secret transformation S using
good keys. This corresponds to the first step performed in Alg. 1 and will allow
to remove the variable xn. Recall from Subsect. 2.3 that we are looking for two
linear maps (Σ,Ω) ∈ GLm(Fq) × GLn(Fq) such that

P = T ◦ Σ−1 ◦ Σ ◦ F ◦ Ω ◦ Ω−1 ◦ S.

and F ′ := Σ ◦ F ◦ Ω preserves some of the structure of F (cf. Def. 2). Then,
T ′ := TΣ−1 and S′ = Ω−1S will be good keys.

A crucial observation for MQQ-ENC is that the central polynomials fi, do not
contain the monomials xnxi for any i, 1 � i < n. This means that we preserve
some structure even if we choose Σ = T and thus a good key T ′ = I. In order
to preserve the corresponding systematic zero coefficients, Ω is allowed to map
every variable to every variable, except xn. We can then choose the good key S′,
or more precisely S

′
:= S′−1 = SΩ, to be of the form given in Figure 3.

Obviously, a good key S
′
– according to Figure 3 – almost always exists. We

can choose the first n − 1 columns of Ω equal to the first n − 1 columns of S.
However, there is a small probability for Ω to not be invertible, in which case, a
good key does not exist.

162 J.-C. Faugère et al.

S · Ω =

n − 1 1

· Ω(1) 0

n − 1 1

=

n − 1 1

= S
′
.

Fig. 3. Unique transformation Ω to obtain the good key S
′

Lemma 3. If Sn,n = 0, then a good key S
′
as given in Figure 3 does not exist.

Proof. Due to the structure of Ω in Figure 3, we have Sn,nΩn,n = S
′
n,n. Thus,

Sn,n = 0 implies that S
′
n,n = 0 and S

′
can not be invertible. ��

Remark 3. To guarantee that a good key as in Figure 3 exists with high probabil-
ity, we can randomize the public quadratic forms P(1), . . . ,P(m) with a random
invertible matrix Srand ∈ GLn(Fq). That is, we construct a new equivalent set
of public polynomials P

(i)
rand:

P
(i)
rand := Sᵀ

randP
(i)Srand = (SSrand)ᵀ

⎛

⎝

n∑

j=1

ti,jF
(j)

⎞

⎠ SSrand.

Since S�,� = 0 holds with probability 1/q, the average number of randomizations
to obtain a nonzero entry at position (,) is q/(q − 1). From now on, we will
always assume that – up to randomization – good keys as in Figure 3 exist.

Using a good key T
′
= I and S

′
as in Figure 3, the algebraic system (3) can be

rewritten as:

F
′(k)
i,j =

n∑

y=1

n∑

z=1

P(k)
y,zs

′
y,is

′
z,j .

We constructed F ′ := Σ ◦ F ◦ Ω such that the monomial xnxi does not appear
for any i, 1 � i < n. This yields F′(k)

n,j = 0, for all k, 1 � k � m, and j, 1 � j < n.
Also, for all j �= n, we have that s′

z,j = 0 for z �= j and s′
j,j = 1 due to the

structure of S
′
. This yields a system of m(n − 1) linear equations in (n − 1)

variables (since s′
n,n = 1), given by

n∑

y=1

P
(k)
y,js

′
y,n = 0, for all k, 1 � k � m, and j, 1 � j < n.

After solving the system, we obtain the good key S′. We can then transform the
public polynomials P with the change of variables S

′
x, i.e.:

P ◦ S
′
= T ◦ Σ−1 ◦ Σ ◦ F ◦ Ω ◦ Ω−1 ◦ S ◦ S

′
= F ′.

From the previous discussion, the transformed public polynomials P ◦ S
′
do not

contain the variable xn in any of the quadratic terms.

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 163

Remark 4. To ease the notation, we continue to denote the obtained transformed
polynomials and their matrix representations as before (we regard P◦S

′
as being

the public P). Since we removed the variable xn, we can consider that now the
dimension of the public matrices P(i) is n − 1. We explain now how to remove
the variables xn−1, xn−2 . . . down to xr+2.

Step N ∈ {n − 1, . . . , r + 2} – Using MinRank to recover the entire
secret key. We assume that the dimension of all public matrices P(i) is N ∈
{n−1, . . . , r+2}. Observe that the variable xN occurs in at most one polynomial
of the central map F , namely fN (cf. Figure 2). This suggests to find a linear
combination of two public polynomials, w.l.o.g. p1 and pk, with k, 1 < k � m
such that xN no longer occurs, so we want to find λ ∈ Fq such that:

P(k) + λP(1) = Sᵀ

⎛

⎝

N−1∑

j=1

(tk,j + λtk,j)F(j)

⎞

⎠ S. (6)

To recover such linear combination, we exploit the fact that the rank is invariant
under a bijective linear transformation of variables, i.e. for all k, Rank(P(k)) =
Rank(SᵀP(k)S). Thus, we can use the rank as distinguisher to recover parts of
T . More precisely, we need to solve the following MinRank instance:

Find λ ∈ Fq such that Rank
(

P(k) + λP(1)
)

< N. (7)

The good key (S
′
N , T

′
N) given in Fig. 4 is a solution of (7). Indeed, using the two

public polynomials P(1),P(k) and thanks to (3), we obtain the following system
of N − 1 quadratic equations in N − 1 variables:

F
′(k)
i,j =

N∑

y=1

N∑

z=1

(

P(k)
y,z + λP(1)

y,z

)

s′
y,is

′
z,j .

By construction, F′(k)
N,j = 0 for all j, 1 � j < N . Also, for all j < N and z �= j we

have that s′
z,j = 0 and s′

j,j = 1. This gives
N∑

y = 1

(

P
(k)
y,j + λP

(1)
y,j

)

s′
y,N = 0, for all j, 1 � j < n. (8)

S
′
N =

N−1 1

, T
′
N =

N−r−11

.

Fig. 4. The good key (S
′
N , T

′
N)

164 J.-C. Faugère et al.

Applying the same reasoning for all of the public matrices P(k), 1 < k � N−r+1
we obtain the good key (S

′
N , T

′
N). The correctness of the procedure follows from

the next theorem.

Theorem 3. Let N be the number of variables in the N − r + 1 public poly-
nomials of MQQ-ENC (or MQQ-SIG) during step N ∈ {n − 1, . . . , r + 2}. Let
s′ = (s′

1,N , s′
2,N , . . . , s′

N−1,N , 1) and t
′ = (1, t

′
2,1, t

′
3,1, . . . , t

′
N−r+1,1) be unknown

vectors. Thus, it holds that (s′
0, t

′
0) is a solution of:

s′
(

P(k) + t
′
k,1P

(1)
)

= 01×N , ∀k, 1 < k � N − r + 1 (9)

if and only if (S
′
N , T

′
N) is a good key for MQQ-ENC (respectively MQQ-SIG),

where S
′
N is obtained from the identity matrix IN by replacing the last column

with s′
0, and T

′
N is obtained from IN by replacing the first column with t

′
0.

Proof. From (2), we have that:

F′(k) = S
′ᵀ
N

(

P(k) + t
′
k,1P

(1)
)

S
′
N , ∀k, 1 < k � N − r + 1, or equivalently :

F
′(k)
i,j =

N∑

y=1

N∑

z=1

(

P(k)
y,z + t

′
k,1P

(1)
y,z

)

s′
y,is

′
z,j ,∀1 < k � N − r + 1.

Thus, if (S
′
N , T

′
N) is a good key, then F

′(k)
i,N = 0 (or equivalently F

′(k)
N,i = 0) for

every 1 � i < N . By construction, for every 1 � i < N , s′
y,i = 0, for all y �= i,

and s′
i,i = 1. Hence, (S

′
N , T

′
N) is a good key if and only if for every i, k, s.t.

1 � i < N and 1 < k � N − r + 1 it holds that:

N∑

z=1

(

P
(k)
i,z + t

′
k,1P

(1)
i,z

)

s′
z,N = 0.

The last system is equivalent to (9), so the claim follows. ��

Remark 5. Note that Theorem 3 can be applied to Step n as well. In this case it
is known that t

′
k,1 = 0, so instead of a system of quadratic equations we obtain

a system of linear equations as explained in the previous part. So, Step n = N
is actually just an easier sub-case of the others steps.

6 Modeling Good Keys as MinRank for Rectangular
Matrices

Theorem 3 shows that the problem of finding a good key is equivalent to finding
the intersection of the kernels of some linear combinations of the public matrices.
This can be nicely modeled as a special instance of the MinRank problem for
rectangular matrices.

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 165

Corollary 1. Let N , s′ and t
′ be as in Theorem 3. Let

P = [P(2)|P(3)| . . . |P(N−r+1)]N×N(N−r), Pi = [0| . . . |0|P(1)|0| . . . |0]N×N(N−r)

be block matrices, where P(1) is the i-th block in Pi. It holds that finding a good
key (S

′
N , T

′
N) of the form given in Theorem 3 for MQQ-ENC (or MQQ-SIG) is

equivalent to solving the MinRank instance defined below:

Find t
′
2,1, . . . , t

′
N−r+1,1 ∈ Fq s.t. Rank

(

P +
N−r+1∑

k=2

t
′
k,1Pk

)

< N. (10)

Proof. Using the Kipnis-Shamir modeling, the MinRank instance (10) can be
expressed exactly as the system (9). The claim follows from Theorem 3. ��

In Alg. 2, we summarize our key-recovery attack on MQQ-ENC and MQQ-SIG
based on the results from Theorem 3, Remark 5 and Corollary 1.

Algorithm 2 Key Recovery

Input: n − r public polynomials P in n variables.

for N := n down to r + 2 do
Consider the dimension of all public matrices P(i) to be N .
If N = n, set b = 0, otherwise set b = 1.

Step Rectangular MinRank(N):
Let s′ = (s′

1,N , s′
2,N , . . . , s′

N−1,N , 1) and t
′
= (t

′
2,1, t

′
3,1, . . . , t

′
N−r+b,1)

be unknown vectors.
Find a good key (S

′
N , T

′
N) by solving the system (9) in (s′, t′

):

s′
(

P +

N−r+b∑

k=2

t
′
k,1Pk

)

= 01×N(N−r), where if b = 0, then t
′
= (0, 0, . . . , 0);

for P = [P(2)|P(3)| . . . |P(N−r+1)]1×N(N−r) and

Pi = [0| . . . |0|P(1)|0| . . . |0]1×N(N−r) with P(1) being the i-th block in Pi.

Transform the public key: P ← T
′
N ◦ P ◦ S

′
N ,

If b = 1 remove the first polynomial from P (P now contains N − r polynomials).
end for;

Output: The equivalent keys S
′
= S

′
n ◦ · · · ◦ S

′
r+2 and T

′
= T

′
r+2 ◦ · · · ◦ T

′
n.

7 Complexity of the Key-Recovery Attack

In this part, we show that the complexity of our attack is polynomial. To do
so, we present a complexity analysis of the Alg. 2. We also present experimental
results which confirm our theoretical results.

166 J.-C. Faugère et al.

7.1 Theoretical Complexity

The goal of this part is to bound the complexity of solving the algebraic equations
(9) arising at each step of Alg. 2. As we will see from the experimental results
(Sect. 7.2), it appears that the system (9) can be solved efficiently in practice. In
particular, the maximum degree reached during the Gröbner basis computation
is bounded by a small constant, 3. We will now theoretically explain this fact.
A strategy for bounding the complexity of solving (9) is to consider a subset of
the equations. In particular, the equations of (9) derived from a given k, 1 < k �
N − r +1 correspond to a Kipnis-Shamir modeling of the MinRank problem (7).
To give intuition, we consider a pair of matrices

(

P(1),P(k)
)

such that P(1) is
invertible. Setting P∗ = P(k)

(

P(1)
)−1, we obtain that (7) is equivalent to:

Find λ ∈ Fq such that Det(P∗ − λIN) = 0. (11)

We can compute the roots of the characteristic polynomial, which are the eigen-
values of P∗−λIN , and the corresponding eigenvectors. All such pairs will vanish
the k-th equation of (9). We can then substitute each possible eigenvector in the
other equations and solve the linear system involving the remaining unknowns.
We have found a part of the secret-key as soon as the linear system is consistent.
However, the complexity of this approach will depend on the multiplicity of the
eigenvalues. If all the roots of (11) are simple, then the approach described,
allows to solve the system (9) in polynomial-time.

Remark 6. In characteristic 2, the previous discussion does not directly apply
since the matrix representation of a public polynomial has always an even rank
(cf. Remark 1). In particular, the situation is as follows:

– When N is even, the rank of the skew-symmetric matrices P(1) and P(k) is
� N . A drop of the rank will likely yield Rank

(

P(k) + λP(1)
)

= N − 2. In
this case, we can expect that the MinRank problem has unique solution λ.
For this λ, the dimension of Ker

(

P(k) + λP(1)
)

is 2 (in this case, (11) would
have a root of multiplicity > 1). Since s′

N,N = 1 in (8), we obtain q solutions
for the good key S

′
N .

– For odd N , the rank of the matrices P(1) and P(k) is � N − 1, which means
that (7) is satisfied for any λ. In this case, since s′

N,N = 1, for each λ ∈ Fq

we get a unique solution for the good key S
′
N if the rank defect is minimum,

just one.

To analyse the complexity of this simple approach, we introduce:

Definition 5. Let Fq be a field of characteristic 2 and (A,B) ∈ F
N×N
q × F

N×N
q

be a pencil [20] of skew-symmetric matrices. We shall say that the pencil is
generic if for all λ0 ∈ Fq,Ker (A + λ0 B) is of dimension � 2 if N is even and
� 1 otherwise.

If N is odd, a generic pencil (A,B) means that the pencil is always of maximal
possible rank. If N is even, the pencil is generic if the rank defect, if any, is
minimal, just one.

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 167

Remark 7. For the parameter sets of the MQQ cryptosystems, we can assume
with high probability that the pencils from the public matrices are generic.

Indeed, let λ(q, n) =
n∏

i=1

(

1 − 1/qi
)

be the probability that a n × n matrix over

Fq is invertible. It is known from [28] (and recalled in [9, Section10]) that the
probability that a skew-symmetric matrix is of maximal rank (n − 1) when
n is odd is Prodd = λ(q,n)

λ(q2,(n−1)/2)
1

1−1/q and the probability that it is of rank

� n − 2 when n is even is: Preven = λ(q,n)
λ(q2,(n−1)/2)

(

1 + qn−1
qn−2(q2−1)(q−1)

)

. Having
this in mind, we get that the probability that the pencils in question are generic
is (Prodd)q or (Preven)q, depending on the parity of n. In either case, for the
parameter sets of MQQ-ENC and MQQ-SIG (as in Section 7.2), it can be checked
that the probability is bigger than 0.7.

We first assume that the field q is not too big, typically q = O(n). This is indeed
the case for most of the parameters proposed so far for MQQ cryptosystems.

Theorem 4. Let N ∈ {n − 1, . . . , r + 2} and let Fq be a field of characteristic
2 such that q = O(n). Let P(1), . . . ,P(N−r+1) ∈ F

N×N
q be the skew-symmetric

matrices occurring in Algorithm 2 at step Rectangular MinRank(N). If there
exists i0, 2 � i0 � (N − r + 1) such that the pencil (P(1),P(i0)) is generic, then,
the system (9) of Theorem 3 can be solved with probability 1 − 1/q in O(nω+2)
operations, where 2 � ω < 3 is the linear algebra constant. In total, and under
the assumptions, there exists an algorithm which recovers a key equivalent to the
secret-key in

O
(

nω+3
)

operations with probability 1 − 1/q.

The proof can be found in Appendix B. Theorem 4 can be extended even if
we assume that there exists a pencil of matrices for which the rank defect is
small, that is, a constant. More generally, for arbitrary q and N , we show that
we can get a complexity which is independent of the field size and polynomial
in the number of variables. More precisely, the following result holds (proof in
Appendix B).

Theorem 5. Let Fq be an arbitrary field of characteristic 2 and let N ∈ {n −
1, . . . , r+2}. We assume that the system (9) of Theorem 3 is not harder to solve
than a generic affine bi-linear system (Theorem 7). Let the matrices P(1), . . . ,
P(N−r+1) ∈ F

N×N
q be as in Algorithm 2. If there exist i0, i1 ∈ {2, . . . , (N −

r + 1)} such that the pencils (P(1),P(i0)), and (P(1),P(i1)) are generic, and
if we assume that the corresponding kernels behave like random, then, for all
N ∈ {n − 1, . . . , r + 2}, the system (9) of Theorem 3 can be solved in O(N3ω),
with 2 � ω < 3 the linear algebra constant. In total, and under the assumptions,
there exists an algorithm which recovers a key equivalent to the secret-key in

O(n3ω+1) field operations with probability
(

1 − 1
q

)(

1 − 1
qn−3

)

.

168 J.-C. Faugère et al.

7.2 Experimental Results

For the parameter sets proposed for MQQ-ENC [23] and MQQ-SIG [22] the
results from Theorem 5 lead to the complexities given in Table 1 and Table 2.
They have been calculated using the more precise formula C(n, r, q) =
∑n−1

N=r+2

(
N+4
3

)ω
.

Table 1. Theoretical complexities, in terms of
field operations, of the key recovery attack on
MQQ-ENC compared to the original decryption
algorithm. All of the parameters are for claimed
security of O(2128).

2k k n r d Decryption Key Recovery

2 1 256 8 8 225 256.3

4 2 128 4 8 223 248.2

16 4 64 2 8 221 240.3

256 8 32 1 8 220 232.5

Table 2. Theoretical complexities,
in terms of field operations, of the
key recovery attack on MQQ-SIG
compared to the claimed security
level

Security n d Key Recovery

280 160 8 250.8

296 192 8 252.9

2112 224 8 254.7

2128 256 8 256.2

We have implemented the attack in Magma (Version 2.19-10 [8]) on a work-
station with 32 cores based on Intel Xeon 2.27GHz, with 1TB of RAM memory.
The results of the practical attack are summarized in Table 3 and Table 4.

Table 3. Results of the practical attack on MQQ-ENC

2k k n r d Key Recovery Key Recovery Practical

Theoretical cycles sec dmax

2 1 64 8 8 240.3 243.4 5421 3

2 1 96 8 8 244.9 247.8 111844 3

4 2 64 4 8 240.3 243.7 6978 3

4 2 96 4 8 244.9 247.8 109258 3

4 2 128 4 8 248.2 250.6 787214 3

16 4 32 2 8 232.5 234.7 14 3

16 4 48 2 8 237.0 238.9 251 3

16 4 64 2 8 240.3 241.6 1783 3

From the tables, we can see that all our experiments, for both MQQ-ENC,
and MQQ-SIG, confirmed that the maximum degree reached during the Gröbner
basis computation (dmax) of the system (9) is 3, consistent with Theorem 4. Fur-
thermore, the results are almost a perfect match with the theoretical calculations
of Theorem 5.

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 169

Table 4. Results of the practical attack on MQQ-SIG

n r d Key Recovery Key Recovery Practical

Theoretical cycles sec dmax

64 32 8 240.3 240.1 560 3

96 48 8 244.9 243.2 4822 3

128 64 8 248.2 246.0 34376 3

160 80 8 250.8 248.0 120882 3

8 Conclusion

Mounting a successful key recovery attack against MQQ-ENC and MQQ-SIG
using good keys, we have yet again shown that MinRank is a fundamental prob-
lem in MQ cryptography. We have, however, also shown that it is necessary to
take into account the parity of the characteristic of the field when using Min-
Rank to reveal the good key. Because of the different representation of quadratic
polynomials over fields of characteristic 2, the attack, otherwise valid over odd
characteristic fields, can not be directly applied. Interestingly, this has often been
overlooked in the literature. By unveiling the pitfalls in the attack of the MQQ
schemes arising from the even characteristic of the field, our analysis shows that
the same modification is necessary when attacking similar MQ schemes over
fields of characteristic 2 using MinRank.

Acknowledgments. We thank the anonymous referees for detailed comments which
greatly improved this work. Jean-Charles Faugère, and Ludovic Perret have been
partially supported by the HPAC grant (ANR-11-BS02-013) of the French National
Research Agency. Simona Samardjiska has been partially supported by FCSE, UKIM,
Macedonia and the COINS Research School of Computer and Information Security,
Norway.

A The MinRank Problem

The MinRank problem over a finite field Fq is defined as follows.
MinRank (MR)
Input: n,m, r, k ∈ N, where n < m and M0,M1, . . . , Mk ∈ Mn×m(Fq).
Question: Find – if any – a k-tuple (λ1, . . . , λk) ∈ F

k
q such that:

Rank

(
k∑

i=1

λi Mi − M0

)

� r.

Kipnis and Shamir [27] proposed to model the MinRank problem as a multi-
variate polynomial system of equations. The basic idea of the modeling is that
the matrix

(
∑k

i=1 λi Mi − M0

)

has rank � r if and only if there exists a set

170 J.-C. Faugère et al.

of n − r independent vectors in its left kernel. Writing this set as a matrix in
echelon form, yields a system of n (n − r) equations in r (n − r) + k variables
given in matrix form:

⎛

⎜
⎝

1 x1,1 . . . x1,r

. . .
...

...
1 xn−r,1 . . . xn−r,r

⎞

⎟
⎠ ·

(
k∑

i=1

λi Mi − M0

)

= 0n×n. (12)

Note that, over a finite field, the set of unknown independent vectors can be
written in such a systematic form with high probability. Initially, relineariza-
tion [27] was used to solve this algebraic system. The authors of [18] proposed
instead to use Gröbner bases tools to solve this system. In addition, [18] noticed
that the system has a specific structure: it is formed by bilinear equations [17].

We recall the complexity of the F5 algorithm for computing a grevlex Gröbner
basis of a polynomial system as given in [2,3].

Theorem 6. The complexity of computing a Gröbner basis of a zero-
dimensional (i.e. with a finite number of solutions in the algebraic closure of
the coefficient field) polynomial system of m equations in n variables with F5 is

O
(

m ·
(

n + dreg
dreg

)ω)

,

where dreg is the degree of regularity of the ideal and 2 � ω � 3 the linear algebra
constant.

Informally, dreg is the maximum degree reached during a Gröbner basis compu-
tation. It has to be noticed that if the degree of regularity does not depend on
the number of variables, the complexity then becomes polynomial in n.

From Theorem 6, we can see that in order to estimate the complexity of
finding the MinRank solution with this modeling, we need a good estimate of
the degree of regularity of the system (12). Using the fact that (12) is an affine
bilinear system, the following tight bound can be appropriately used for the
purpose.

Theorem 7 ([17]). Let X and Y be two blocks of variables of sizes nX and nY

respectively. We shall say f ∈ K[X,Y] is bilinear if f(α X, β Y) = α β f(X,Y)
for all (α, β) ∈ K × K. For the grevlex ordering, the degree of regularity of a
generic affine bilinear zero-dimensional system over K[X,Y] is upper bounded by

dreg � min(nX , nY) + 1.

In particular, this result implies that computing the Gröbner basis of generic
affine bilinear zero-dimensional system with min(nX , nY) ∈ O(1) can be done in
polynomial-time.

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 171

B Complexity Theorems Proofs

B.1 Proof of Theorem 4

Proof. W.L.O.G., we can assume that i0 = 2 (up to re-ordering the equations).
Let λ2 be a root of the degree-N univariate polynomial Det

(

P(2) + X · P(1)
)

.
We denote by K2 = Ker

(

P(2) + λ2P
(1)

)

the corresponding kernel.
We first assume that N is odd. By the genericity assumption, we know that

K2 is of dimension one. Since s′
N,N = 1 in (8), each K2 yields an unique s2

′

(stated differently, s2
′ is the vector generating K2 in a systematic basis). There

is at most q = O(n) distinct values for s2
′. We then plug each s2

′ in (9) which
reduces then to a system of linear equation in the t

′. We know that there is at
least one s2

′ which leads to a consistent system. If N < n is odd, we can then
solve (9) in O(nω+1).

When N is even, the situation is very similar. The only difference is that K2

is of dimension 2. Since s′
N,N = 1 in (8), each K2 yields q = O(n) distinct s2

′.
There is at most N < n distinct values for s2

′. As before, we plug each possible
s2

′ in (9) which yields a system of linear equation in the t
′. Thus, if N is even,

we can then solve (9) in O(nω+2).
Note that because of Lemma 3, the system will give a solution with probability

q−1
q , so we need to randomize the public polynomials on average q

q−1 times.
The whole procedure needs to be repeated for every N starting from n − 1

down to r + 2. Note that in the first iteration, when N = n, we actually solve
only a linear system of equations. ��

B.2 Proof of Theorem 5

Proof. Denote by
(
n
k

)

q
= (qn−1)(qn−q)...(qn−qk−1)

(qk−1)(qk−q)...(qk−qk−1)
the Gaussian binomial coef-

ficient, that gives the number of k-dimensional subspaces of an n-dimensional
vector space.

The main idea of the proof is to show that in (9) it is enough to consider only
two coordinates of t

′ in order to get a unique solution for s′ with overwhelming
probability. Namely, it is enough to consider only the equations corresponding
to i0 = 2, i1 = 3 (w.l.o.g. up to reordering of equations):

s′
(

P(2) + t
′
2,1P

(1)
)

= 01×N , (13)

s′
(

P(3) + t
′
3,1P

(1)
)

= 01×N . (14)

For odd N , for both i ∈ {2, 3} we have that Dim(Ker(P(i) + λP(1))) = 1 for
every λ ∈ Fq. Denote the set {Ker(P(2) + λP(1))|λ ∈ Fq} by R2, and the set
{Ker(P(3)+λP(1))|λ ∈ Fq} by R3. We know that, if there exists a good key, it will
be a vector in the vector space that is the intersection R2 ∩ R3. The probability
that the intersection contains another vector space by chance is |R1|·|R2|/

(
N
1

)

q
≈

q(3−N), which is very small for big enough N . Similarly, for even N , there exist

172 J.-C. Faugère et al.

λ2, λ3 such that for both i ∈ {2, 3}, Dim(Ker(P(i)+λiP
(1))) = 2. Now, if a good

key exists, it will be in the intersection of the kernels and all other elements in
the intersection will be linearly dependent of the good key. Hence, in this case the
probability that we get a solution of the system that is not a good key is the same
as the probability that the two kernels coincide, which equals 1/

(
N
2

)

q
≈ q(4−2N).

This again is very small. Thus, in total, with probability of 1− 1
qN−3 , it is enough

to use only equations (13) and (14).
The task now reduces to solving a bilinear system of equations of bidegree

(1, 1), over Fq[t
′
i0,1, t

′
i1,1, s

′
1,N , . . . , s′

N−1,N]. From Theorem 7, such system can be

solved in O
((

N+4
3

)ω
)

.

Again because of Lemma 3, we need to randomize the public polynomials on
average q

q−1 times. The step of solving the system (9) needs to be repeated for
every N starting from n − 1 down to r + 2. Note that, when N = n, we actually
solve only a linear system of equations, which is of smaller complexity.

In total, asymptotically, since we have O(n) steps of complexity O(
(
n+4
3

)ω
),

we obtain the total complexity of the attack. ��

References

1. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

2. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of Gröbner basis computa-
tion of semi-regular overdetermined algebraic equations. In: Proc. of International
Conference on Polynomial System Solving (ICPSS), pp. 71–75 (2004)

3. Bardet, M., Faugère, J.C., Salvy, B., Yang, B.Y.: Asymptotic behaviour of the
degree of regularity of semi-regular polynomial systems. In: Proc. of MEGA 2005,
Eighth Int. Symposium on Effective Methods in Algebraic Geometry (2005)

4. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of
Cryptographic Systems (2014). http://bench.cr.yp.to

5. Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of multivariate and odd-
characteristic HFE variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)

6. Bettale, L., Faugre, J.C., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants
for odd and even characteristic. Designs, Codes and Cryptography 69(1), 1–52
(2013)

7. Billet, O., Gilbert, H.: Cryptanalysis of rainbow. In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006)

8. Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System. I. The User
Language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra
and number theory (London, 1993)

9. Bouillaguet, C.: Etudes d’hypothèses algorithmiques et attaques de primitives
cryptographiques. Ph.D. thesis, Paris Diderot, France (2011)

10. Buss, W., Frandsen, G., Shallit, J.: The computational complexity of some prob-
lems of linear algebra. Journal of Computer and System Sciences (1999)

http://bench.cr.yp.to

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems 173

11. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM Cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 44. Springer, Heidelberg (2000)

12. Courtois, N., Goubin, L., Patarin, J.: Sflash, a fast asymmetric signature scheme
for low-cost smartcards - primitive specification and supporting documentation.
https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/

13. Courtois, N.T.: Efficient zero-knowledge authentication based on a linear algebra
problem minrank. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 402.
Springer, Heidelberg (2001)

14. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-
algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008)

15. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of
SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12.
Springer, Heidelberg (2007)

16. ETSI: 2nd Quantum-Safe Crypto Workshop in partnership with the IQC. http://
www.etsi.org/news-events/events/770-etsi-crypto-workshop-2014 (Retrieved:
September 2014)

17. Faugère, J.C., Din, M.S.E., Spaenlehauer, P.J.: Gröbner bases of bihomogeneous
ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity. J.
Symb. Comput. 46(4), 406–437 (2011)

18. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of minrank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008)

19. Faugère, J.-C., Ødeg̊ard, R.S., Perret, L., Gligoroski, D.: Analysis of the MQQ
public key cryptosystem. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS
2010. LNCS, vol. 6467, pp. 169–183. Springer, Heidelberg (2010)

20. Gantmacher, F.: The Theory of Matrices, Vol. 1. Chelsea (1959)
21. Gligoroski, D., Markovski, S., Knapskog, S.J.: Multivariate quadratic trapdoor

functions based on multivariate quadratic quasigroups. In: Proc. of the Ameri-
can Conference on Applied Mathematics, MATH, pp. 44–49. World Scientific and
Engineering Academy and Society (WSEAS) (2008)

22. Gligoroski, D., Ødeg̊ard, R.S., Jensen, R.E., Perret, L., Faugère, J.-C., Knapskog,
S.J., Markovski, S.: MQQ-SIG. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST
2011. LNCS, vol. 7222, pp. 184–203. Springer, Heidelberg (2012)

23. Gligoroski, D., Samardjiska, S.: The Multivariate Probabilistic Encryption Scheme
MQQ-ENC. In: SCC (2012)

24. Imai, H., Matsumoto, T.: Algebraic methods for constructing asymmetric
cryptosystems. In: Calmet, J. (ed.) Algebraic Algorithms and Error-Correcting
Codes. LNCS, vol. 229, pp. 108–119. Springer, Heidelberg (1985)

25. Jiang, X., Ding, J., Hu, L.: Kipnis-shamir attack on HFE revisited. In: Pei, D.,
Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 399–411.
Springer, Heidelberg (2008)

26. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 206. Springer, Heidel-
berg (1999)

27. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relin-
earization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 19. Springer,
Heidelberg (1999)

28. MacWilliams, J.: Orthogonal matrices over finite fields. Orthogonal matrices over
finite fields. The American Mathematical Monthly 76(2), 152–164 (1969)

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/
http://www.etsi.org/news-events/events/770-etsi-crypto-workshop-2014
http://www.etsi.org/news-events/events/770-etsi-crypto-workshop-2014

174 J.-C. Faugère et al.

29. Moh, T.T.: A public key system with signature and master key functions.
Communications in Algebra 27(5), 2207–2222 (1999)

30. Mohamed, M.S.E., Ding, J., Buchmann, J., Werner, F.: Algebraic attack on the
MQQ public key cryptosystem. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 392–401. Springer, Heidelberg (2009)

31. NESSIE: New european schemes for signatures, integrity, and encryption (2003).
https://www.cosic.esat.kuleuven.be/nessie/ (Retrieved: September 2014)

32. NIST: Workshop on Cybersecurity in a Post-Quantum World. http://www.
nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm (Retrieved: Septem-
ber 2014)

33. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomi-
als (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

34. Perret, L.: A fast cryptanalysis of the isomorphism of polynomials with one secret
problem. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 354–370.
Springer, Heidelberg (2005)

35. Samardjiska, S., Chen, Y., Gligoroski, D.: Algorithms for construction of Multivari-
ate Quadratic Quasigroups (MQQs) and their parastrophe operations in arbitrary
galois fields. J. Inf. Assurance and Security 7(3), 146–172 (2012)

36. Thomae, E.: About the Security of Multivariate Quadratic Public Key Schemes.
Ph.D. thesis, Ruhr-University Bochum, Germany (2013)

37. Thomae, E., Wolf, C.: Cryptanalysis of enhanced TTS, STS and all its vari-
ants, or: why cross-terms are important. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 188–202. Springer, Heidelberg (2012)

38. Wolf, C., Braeken, A., Preneel, B.: On the security of stepwise triangular systems.
Designs, Codes and Cryptography 40(3), 285–302 (2006)

39. Wolf, C., Preneel, B.: Equivalent keys in HFE, C∗, and variations. In: Dawson,
E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 33–49. Springer,
Heidelberg (2005)

40. Wolf, C., Preneel, B.: Large superfluous keys in multivariate quadratic asymmetric
systems. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 275–287. Springer,
Heidelberg (2005)

41. Wolf, C., Preneel, B.: Equivalent keys in multivariate quadratic public key systems.
Journal of Mathematical Cryptology 4, 375–415 (2011)

42. Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: high-speed signatures on a low-cost
smart card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 371–385. Springer, Heidelberg (2004)

https://www.cosic.esat.kuleuven.be/nessie/
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm

A Polynomial-Time Attack on the BBCRS
Scheme

Alain Couvreur2,3(B), Ayoub Otmani4, Jean-Pierre Tillich1,
and Valérie Gauthier–Umaña5

1 INRIA, Secret Team, 78153 Le Chesnay Cedex, France
jean-pierre.tillich@inria.fr

2 INRIA, Grace Team, 1 rue H. d’Estienne d’Orves, 91120 Palaiseau Cedex, France
3 École Polytechnique, Grace Team and LIX, CNRS UMR 7161,

Allée H. D’Estienne d’Orves, 91120 Palaiseau Cedex, France
alain.couvreur@lix.polytechnique.fr

4 LITIS, University of Rouen, 76821 Mont-Saint-Aignan, France
ayoub.otmani@univ-rouen.fr

5 Faculty of Natural Sciences and Mathematics, Department of Mathematics,
Universidad Del Rosario, Bogotá, Colombia

gauthier.valerie@urosario.edu.co

Abstract. The BBCRS scheme is a variant of the McEliece public-key
encryption scheme where the hiding phase is performed by taking the
inverse of a matrix which is of the form T + R where T is a sparse
matrix with average row/column weight equal to a very small quantity
m, usually m < 2, and R is a matrix of small rank z � 1. The ratio-
nale of this new transformation is the reintroduction of families of codes,
like generalized Reed-Solomon codes, that are famously known for rep-
resentin insecure choices. We present a key-recovery attack when z = 1
and m is chosen between 1 and 1+R+O(1√

n
) where R denotes the code

rate. This attack has complexity O(n6) and breaks all the parameters
suggested in the literature.

Keywords: Code-based cryptography · Distinguisher · Generalized
Reed-Solomon codes · Key-recovery · Component-wise product of codes

Introduction

Post-Quantum Cryptography. All public key cryptographic primitives used
in practice such as RSA, ElGamal scheme, DSA or ECDSA rely either on the
difficulty of factoring or computing the discrete logarithm and would therefore
be broken by Shor’s algorithm [24] if a large enough quantum computer could be
built. Moreover, even if a large enough quantum computer might not be built in
the next five years, it should be mentioned that tremendous progress has been
made for computing the discrete logarithm over finite fields of small characteristic
with the quasi-polynomial time algorithm of [5]. This lack of diversity in public

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 175–193, 2015.
DOI: 10.1007/978-3-662-46447-2 8

176 A. Couvreur et al.

key cryptography has been identified as a major concern in the field of infor-
mation security. For all these reasons, it would be very desirable to be ready to
replace these schemes by others that would rely on other hard problems. How-
ever only few other proposals have emerged which are essentially hash-based
signature schemes, lattice-based, code-based and multivariate quadratic based
schemes. They are either based on the problem of solving multivariate equations
over a finite field, the problem of finding a short vector in a lattice and the prob-
lem of decoding a linear code. Those problems are known for being NP-hard and
are therefore believed to be immune to the quantum computer threat.

The McEliece Cryptosystem. Among those, one of the most promising
scheme is the McEliece public key cryptosystem [20]. It is also one of the old-
est public-key cryptosystem. It uses a family of codes for which there is a fast
decoding algorithm (the binary Goppa code family here) which is used in the
decryption process whereas an attacker has only a random generator matrix
of the Goppa code which reveals nothing about the algebraic structure of the
Goppa code that is used in the decoding process. He has therefore to decode
a generic linear code for which only exponential time decoding algorithms are
known. The main advantage of this system is to have very fast encryption and
decryption functions. Depending on how the parameters are chosen for a fixed
security level, this cryptosystem is about five times faster for encryption and
about 10 to 100 times faster for decryption than RSA [8]. Furthermore, it has
withstood many attacking attempts. After more than thirty five years now, it
still belongs to the very few public key cryptosystems which remain unbroken.

The Use of Reed-Solomon Codes in a McEliece Scheme. Goppa codes
are subfield subcodes of Generalized Reed-Solomon codes (GRS codes in short).
This means that a Goppa code defined over Fq is actually the set of codewords
of a GRS code defined over an extension field Fqµ (we say that μ is the extension
degree of the Goppa code) whose coordinates all belong to the subfield Fq. Actu-
ally the fast decoding process of Goppa codes is the decoder of the underlying
GRS code. Roughly speaking, a Goppa code of length n and dimension n − 2tμ
defined over Fq can correct t errors1 and is a subfield subcode of a GRS code
that can also correct t errors which is of the same length n but has a larger
dimension n − 2t and is defined over Fqµ . In this sense, the underlying GRS
code has a better error correction capacity than the Goppa code. This raises
the issue of using GRS codes instead of Goppa codes in the McEliece system.
The better decoding capacity of GRS codes translates into smaller public key
sizes for the McEliece scheme which is actually one of the main drawback of this
scheme. This approach has been tried in Niederreiter’s scheme (whose security
is equivalent to the McEliece scheme) but has encountered a dreadful fate when
the Sidelnikov-Shestakov attack appeared [25].

Baldi et al. Approach for Reviving GRS Codes. In their Journal of Cryp-
tology article [2], Baldi et al. have suggested a new way of using GRS codes
in this context. Instead of using directly such a code, they multiplied it by the
1 But the dimension can be increased to n − tµ in the binary case.

A Polynomial-Time Attack on the BBCRS Scheme 177

inverse of the sum T +R where T is a sparse matrix and R is a low rank matrix.
By doing this, the attacker sees a code which is radically different from a GRS
code but the legitimate user can still use the underlying GRS decoder. This
thwarts the Sidelnikov-Shestakov attack completely. However the decoding capac-
ity of the resulting code is basically scaled down by a factor of 1

m where m denotes
the average weight of rows of the matrix T . It should be noted that the very
same approach has also been tried for the Low-Density-Parity-Check code fam-
ily, LDPC in short, which is notoriously known for being insecure in a McEliece
scheme [3,4,22]. In this case, they did not even use the low rank matrix and
despite of this fact the resulting public code obtained by this multiplication is
not an LDPC code anymore (it becomes a moderate-density-parity-check code)
and it seems now that if the attacker wants to break this scheme he has to be
able to solve a generic decoding problem [21]. There are therefore good rea-
sons to believe that this approach can be powerful for disguising the secret code
structure.

An Earlier Attempt. Baldi et al. [1] first used this approach with T being a
permutation matrix. In this case m = 1 and nothing is lost in term of decoding
capacity compared to a GRS decoder. In other words, this allows to decrease
the public key size as if we had a GRS code in the McEliece cryptosystem. This
first attempt got broken in [11,12]. Roughly speaking the reason of this attack
in this case can be traced back to two facts (i) it turns out that the resulting
code is still close to the underlying GRS code: the intersection of the public code
with the secret GRS code is of co-dimension one; (ii) there is a very powerful
way of distinguishing a GRS code [12] from a random code by computing the
dimension of its square which can be used to unravel the algebraic structure of
the public code. On the other hand, when the degree of sparseness of T is > 1
the resulting code does not have a large intersection with a GRS code and there
was some hope to obtain a secure scheme.

Our Contribution: an Attack Which Works in the Regime 1 < m < 2.
In the present article we will show that despite the fact that the public code is
far from being a GRS code, a similar trick that has already been used to attack
successfully in [14] some wild Goppa codes proposed in [7] when the degree of
extension is only 2 can also be used in this context. It consists in computing
the dimension of the square of shortenings of the public code. Because of the
hidden structure of the public code, the squares of some of its shortenings have
a smaller dimension than the squares of shortened random codes of the same
dimension. This distinguisher is then used to unravel the structure of the matrix
T . This gives an attack of polynomial time complexity which can be used to
break the examples given in [2]. Several were broken in a few hours, and others
in a few days. As an illustration, Example 1 given in [2] with a claimed 90-
bit security can be broken in 2.75 hours on a computer equipped with Xeon
2.27GHz processor and 72 Gb of RAM. This attack works up to values of m of
order 1 + R + O(1√

n
), where R is the rate of the public code. The attack we

present here can obviously be thwarted by taking values for m greater than 2,

178 A. Couvreur et al.

but in this case, since the price to pay is a decrease of the decoding capacity by
a factor of more than 2, we do not obtain better public key sizes than the ones
we obtain by using Goppa codes, or more generally alternant codes of extension
degree 2, provided we choose non wild Goppa codes in order to avoid the attack
of [14]. The complexity of the present attack is similar to that of [11], namely
O(n6) where n is the code length. More precisely, this attack starts with two
steps of respective complexity O(n3) and O(n5) and then applying the attack of
[11] whose complexity is O(n6) operations in the base field.

Note. Due to space limitation, several proofs are omitted. A longer ver- sion of
the present paper including the missing proofs can be found online.

1 GRS Codes and the Square Code Construction

We recall in this section a few relevant results and definitions from coding theory
and bring in the fundamental notion of square code construction.

Definition 1 (Generalized Reed-Solomon code). Let k and n be integers
such that 1 � k < n � q where q is a prime power. The code GRSk (x,y)
of dimension k is associated to a pair (x,y) where x is an n-tuple of distinct
elements of Fq and y ∈ (F×

q)n, is defined as:

GRSk (x,y)
def
=

{

(y1p(x1), . . . , ynp(xn)) | p ∈ Fq[X],deg p < k
}

.

The first work that suggested to use GRS codes in a public-key encryption
scheme was [23]. But Sidelnikov and Shestakov [25] showed that for any GRS
code it is possible to recover in polynomial time a pair (x,y) defining it, which
is all that is needed to decode efficiently such codes and is therefore enough to
break any McEliece type cryptosystem [20] that uses GRS codes.

Definition 2 (Componentwise products). Given two vectors a = (a1, . . . ,
an) and b = (b1, . . . , bn) ∈ F

n
q , we denote by a � b the componentwise product

a � b
def
= (a1b1, . . . , anbn).

The star product a � b should be distinguished from a more common operation,
namely the canonical inner product:

a · b
def=

n∑

i=1

aibi.

Definition 3 (Product of codes & square code). Let A and B be two
codes of length n. The star product code denoted by A � B of A and B is the
vector space spanned by all products a � b where a and b range over A and B
respectively. When B = A then A � A is called the square code of A and is
rather denoted by A 2.

A Polynomial-Time Attack on the BBCRS Scheme 179

Proposition 1. Let A be a code of length n, then

dim(A 2) � min
{

n,

(
dim(A) + 1

2

)}

.

Proposition 2. Let A ⊂ F
n
q be a code of dimension k. The complexity of the

computation of a basis of A 2 is O(k2n2) operations in Fq.

See for instance [11], for proofs of Propositions 1 and 2.
The importance of the square code construction becomes clear when we com-

pare the dimension of the square of structured codes like GRS codes with the
dimension of the square of a random code. Roughly speaking, given a code of
dimension k, the dimension of its square is linear in k if it is a GRS code and
quadratic if it is a random code as explained in the two following propositions.

Proposition 3. GRSk (x,y)2 = GRS2k−1 (x,y � y) .

Proof. See for instance [18, Proposition 10].

Remark 1. This property can also be used in the case 2k − 1 > n. To see this,
consider the dual of the Reed-Solomon code, which is itself a generalized Reed-
Solomon code [17, Theorem 4, p.304].

Theorem 1. Let A be a random code of length n and dimension k such that
n >

(
k+1
2

)

. Then, for all integer � <
(
k+1
2

)

,

Prob

(

dimA 2 �
(

k + 1
2

)

− �

)

= O
(

q−� · q−(n−(k+1
2))

)

, (k → +∞).

Proof. See [10].

Remark 2. A slightly weaker result was already obtained in the papers [15,16]
(see also [19]).

For this reason, GRSk (x,y) can be distinguished from a random linear code
of the same dimension by computing the dimension of the associated square code.
In [15,16], this phenomenon was already observed for q-ary alternant codes (in
particular Goppa codes) at very high rates whose duals are distinguishable from
random codes by the very same manner. Subsequently, the very same phenom-
enon lead to attacks on GRS based cryptosystems [11,12], to a polynomial time
attack on Wild Goppa codes over quadratic extensions [14] and to a polynomial
time attack on algebraic geometry codes [13].

Historically, the star product of codes has been used for the first time by Wiesche-
brink to cryptanalyze a McEliece-like scheme [6] based on subcodes of Reed-
Solomon codes [26]. The use of the star product here is nevertheless different
from the way it is used in [26]. In Wieschebrink’s paper, the star product is
used to identify, given a certain low codimensional subcode C of a GRS code
GRSk (x,y), a possible pair (x,y). This is achieved by computing C 2 which
turns out to be GRSk (x,y)2 = GRS2k−1 (x,y � y) with a high probability.
The Sidelnikov and Shestakov algorithm is then used on C 2 to recover a pos-
sible (x,y � y) pair to describe C 2 as a GRS code, and hence, a pair (x,y) is
deduced for which C ⊂ GRSk (x,y).

180 A. Couvreur et al.

2 Description of the Scheme

The BBCRS public-key encryption scheme given in [2] can be summarized as
follows:

Secret Key
– Gsec is a generator matrix of a GRS code of length n and dimension k

over Fq.

– Q
def= T +R where T is an n×n non-singular sparse matrix with elements

in Fq and average row weight m � n. Note that m is not necessarily
an integer. For example m = 1.4 means that 40% of the rows of T have
weight equal to 2 and the other 60% have weight equal to 1.

– R is a rank-z matrix over Fq such that Q is invertible. In other words

there exist α
def= (α1, . . . , αn) and β

def= (β1, . . . , βn) such that R
def= αT β

and αi and βi are z × 1 full rank matrices defined over Fq for all i ∈
{1, . . . , n} and z � n.

– S is a k × k random invertible matrix over Fq.
Public Key

Gpub
def= S−1GsecQ

−1. (1)

Encryption. The ciphertext c ∈ F
n
q of a plaintext m ∈ F

k
q is obtained by

drawing at random e in F
n
q of weight less than or equal to n−k

2m (recall that

m denotes the density of the matrix T) and computing c
def= mGpub + e.

Decryption. It consists in performing the three following steps:
1. Guessing the value of eR.
2. Calculating c′ def= cQ−eR = mS−1Gsec+eQ−eR = mS−1Gsec+eT

and using the decoding algorithm of the GRS code to recover mS−1 from
the knowledge of c′.

3. Multiplying the result of the decoding by S to recover m.

Remark 3. In [2], the authors suggest to take m = 1 + n−k−3
n ≈ 2 − R for the

density of T .

Further Details on the Construction of the Matrix T . We deal with the
case m � 2. According to [2] the matrix T is constructed2 as follows.

1. Choose a permutation matrix P . Replace each 1 by a random element of
F

×
q .

2. Set t
def= �n−k

2 	, δt
def= t − � t

m	 and �
def= �(m − 1)n	. Choose a random set C

of δt columns and a random set J2 of � rows of P .
3. For all i ∈ J2, we denote by π(i) the integer such that P i,π(i)
= 0. For each

i ∈ J2, choose a random element j ∈ C \ π(i) and add a random element of
F

×
q at position (i, j).

2 Actually, the authors propose three constructions for T and express a clear preference
for the one described in the present article.

A Polynomial-Time Attack on the BBCRS Scheme 181

We also tested another construction allowing to have row and column weight
upper bounded by 2. The sparse matrix T is constructed as T = T 1+T 2 where:

– T 1 is of the form T 1 = D1P 1, where D1 is diagonal invertible and P 1 is a
permutation matrix;

– T 2 = D2P 2, where D2 is diagonal with (m − 1)n nonzero diagonal coeffi-
cients and P 2 is a permutation matrix;

– The matrices do not overlap, that is, there is no pair (i, j) with 1 � i, j � n
such that both (T 1)ij and (T 2)ij are nonzero.

Our attack works for both choices of the matrix T . The experimental results
in Sec. 6 rely on the first construction for T .

2.1 Previous Attacks and Discussion on the Parameters

The BBCRS scheme has been subject to an attack [11] in the case m = 1, i.e.
the matrix T is a permutation matrix and z = 1, i.e. the matrix R has rank
1. The attack presented here holds for m < 1 + R + O(1√

n
) and z = 1. The

relevance of choosing higher m or z is discussed in Section 7.
The attack of the present article uses in its last step the attack [11] on the

original system [1].

2.2 Notation

It will be convenient to bring the following notation.

– Cpub is the code with generator matrix Gpub;
– Csec is the GRS code with generator matrix Gsec, we assume that it is

specified by its dual (which is itself a GRS code) as C⊥
sec = GRSn−k (x,y);

– J1 is the set of positions which correspond to rows of T of Hamming weight
1. The elements of J1 are called the positions of degree 1. For any row i ∈ J1

of T , we define j(i) as the unique column of T for which Tij(i)
= 0;
– J2 is the set of positions which correspond to rows of T of Hamming weight

2. The positions in J2 are called the positions of degree 2. When i belongs
to J2, let j1 and j2 be the columns of T for which we have Tij1
= 0 and
Tij2
= 0. We define similarly j(i) as the set {j1, j2} in this case.

2.3 Structure of the Public Code

The following result explains how Cpub and Csec and their duals are related.

Lemma 1

Cpub = Csec(T + R)−1 (2)
C⊥
pub = C⊥

sec(T + R)T . (3)

182 A. Couvreur et al.

Proof The first equality follows immediately from (1), whereas the second one
was is observed in [2, p.6, Equation (8)] where a parity-check matrix for the
public code Cpub is expressed in terms of a parity-check matrix of the secret
code. This can be proved as follows. For all c ∈ Csec, c′ ∈ C⊥

sec,

(c(T + R)−1) · (c′(T + R)T) = (c(T + R)−1(T + R)) · c′ = c · c′ = 0.

Moreover, since Q = T +R is invertible, we get dimC⊥
sec(T +R)T +dimCsec(T +

R)−1 = n, hence the codes are dual to each other.

3 The Fundamental Tool: Shortening and Puncturing
the Dual of the Public Code

Puncturing and shortening will play a fundamental role in the attack. Recall
that for a given code C ⊂ F

n
q and a subset I of code positions the punctured

code PI (C) and shortened code SI (C) are defined as:

PI (C) def=
{

(ci)i/∈I | c ∈ C
}

;

SI (C) def=
{

(ci)i/∈I | ∃c = (ci)i ∈ C such that ∀i ∈ I, ci = 0
}

.

Given a subset I of the set of coordinates of a vector u, we denote by PI (u)
the vector u punctured at I, that is to say, indexes that are in I are removed.

First let us recall the influence of these operations on GRS codes.

Lemma 2. Let x,y be two n–tuples of element sof Fq such that x has pairwise
distinct entries and y has only nonzero entries. Let k < n and I ⊆ {1, . . . , n}.
Then

PI (GRSk (x,y)) = GRSk (PI (x) ,PI (y)) (4)
SI (GRSk (x,y)) = GRSk−|I| (PI (x) ,yI) , (5)

for some yI ∈ F
n−|I|
q depends only on y and I.

Next, with these notions at hand, it follows that the dual of the public code
punctured in J2 is very close to a GRS code. We will also need to understand
the structure of versions of this code which are shortened in positions belonging
to J1 and then punctured in J2. It turns out that these codes too are close to
GRS codes. First of all, puncturing C⊥

pub in the positions belonging to J2 gives
“almost” a GRS code, as shown by:

Lemma 3. Let u = (ui)i∈J1 and v = (vi)i∈J1 be vectors in F
n−|J2|
q defined by

ui = xj(i)

vi = Tij(i)yj(i).

Let D
def
= C⊥

secT
T , then

PJ2 (D) ⊆ GRSn−k (u,v) . (6)

A Polynomial-Time Attack on the BBCRS Scheme 183

Lemma 4. Let λ and μ be vectors of Fn
q such that RT = λT μ and let C⊥

sec(λ)
def
=

C⊥
sec ∩ < λ >⊥, C⊥

pub(λ)
def
= C⊥

sec(λ)(T T + RT). Then,

PJ2

(

C⊥
pub(λ)

)

⊆ GRSn−k (u,v) , (7)

Moreover if J1 contains an information set3 of C⊥
secT

T and T T is invertible,
then there exist a and b in F

n−|J2|
q such that for any c in PJ2

(

C⊥
pub

)

, there
exists a vector p in GRSn−k (u,v) for which

c = p + (p · b)a. (8)

In particular, PJ2

(

C⊥
pub

)

⊆ GRSn−k (u,v) + < a >.

If we puncture with respect to J2 shortened versions of C⊥
pub in positions

belonging to J1, then we observe a similar phenomenon, namely

Lemma 5. Let I1 be a subset of code positions which is a subset of J1. Let
s

def
= |I1| and assume that s � n−k. Then there exist vectors a,u,v in F

n−s−|J2|
q

such that:
PJ2

(

SI1

(

C⊥
pub

))

⊆ E+ < a > (9)

and E is a subcode of GRSn−k−s (u,v).

4 Key-Recovery Attack

4.1 Outline

Our key-recovery attack starts with a parity-check matrix Hpub of the (public)
codeCpub. Themain goal is to recovermatricesT andR, whereHpub(T T + RT)

−1

is a parity check matrix of a GRS code, T is a low density square matrix and R a
rank 1 matrix. Recall that in our terminology, rows of T belonging to J1 are posi-
tions of degree 1, and those in J2 are positions of degree 2. It implies, thanks to
(3), that some columns of Hpub belong to J1 and the others are in J2.

Our attack is composed of three mains steps having the following objectives:

1. Detecting columns of Hpub that belong to J2, and then deducing those of
J1.

2. Transforming columns of J2 into degree 1 columns by linear combinations
with columns of J1.

3 In coding theory, an information set of a code C of dimension k is a set of k positions
I such that the knowledge of a codeword c ∈ C on the positions in I determines
entirely the codeword. Equivalently, if G denotes a k × n generator matrix of the
code, then the k × k submatrix of G given by extracting the columns indexed by I
is invertible.

184 A. Couvreur et al.

3. At this stage, the public code has been transformed into another code C
such that there exists a secret GRS code C ′

sec and a matrix Π + R′ where Π
is a permutation matrix and R′ is rank-1 matrix such that:

C = C ′
sec(Π + R′). (10)

The third step consists then in applying the attack developed in [11] which is
purposely devised to recover a pair (Π,R′) from C as outlined in Section 2.1.

The purpose of the next sections is to describe more precisely the first two
steps of the attack.

4.2 A Distinguisher of the Public Code

The attack uses in a crucial way a distinguisher which discriminates the public
code from a random code of the same dimension. It is based on square code con-
siderations. The point is the following: if we shorten the dual C⊥

pub of the public

code in a large enough set of positions I, then the square code
(

SI
(

C⊥
pub

))2

has dimension strictly smaller than that of
(

SI
(

C⊥
rand

))2 where Crand is a ran-
dom code of the same dimension as Cpub. The code

(

SI
(

C⊥
rand

))2 has dimension

which is typically min
{

n − |I|,
(
kI+1

2

)}

where kI stands for the dimension of

SI
(

C⊥
rand

)

. In general, kI is equal to n−k−|I| since dimC⊥
rand = dimC⊥

pub = n−k
whereas we generally have:

dim
(

SI
(

C⊥
pub

))2 � 3(n − k) + |J2| − 3|I| − 1. (11)

In other words, when 3(n−k)+ |J2|−3|I|−1 < min
{

n − |I|,
(
kI+1

2

)}

we expect
to distinguish Cpub from a random code of the same dimension. We write here
“generally” because there are some exceptional cases where such an inequality
does not hold. However in the case when I ⊂ J1, this inequality always holds.

Proposition 4. Let I ⊆ J1, then dim
(

SI
(

C⊥
pub

))2

� 3(n−k)−3|I|−1+|J2|.

Remark 4. It turns out that a similar inequality also generally holds when I
contains degree 2 positions. However in this case, the situation is more com-
plicated and it might happen in rare cases that this upper-bound is not met
but, roughly speaking, when it happens, the actual result remains close to this
upper bound. Experimentally, we observed that (11) was satisfied even when I
contained positions of J2.

Remark 5. The use of shortening is important since in general the (dual) public
code itself is non distinguishable because its square equals the whole ambient
space. However, for a part of the parameters proposed in [2], the dual public code
is distinguishable from a random code without shortening. See §6 for further
details.

A Polynomial-Time Attack on the BBCRS Scheme 185

4.3 Description of the Attack

First Step – Distinguishing Between Positions in J1 and J2. Roughly
speaking the attack builds upon an algorithm which allows to distinguish between
a position of degree 1 and a position of degree 2. It turns out now that once we
are able to distinguish the public code from a random one by shortening it in a
set of positions I such that:

dim
(

SI
(

C⊥
pub

))2
< min

{

n − |I|,
(

n − k − |I| + 1
2

)}

, (12)

we can puncture SI
(

C⊥
pub

)

in a position i that does not belong to I and this
allows to distinguish degree 1 positions from degree 2 positions. The dimension
of the square code of this punctured code will differ drastically when i is a degree
1 position (or a certain type of degree 2 position) or a “usual” degree 2 position.
When i is a degree 1 position it turns out that

dim
(

SI
(

C⊥
pub

))2
= dim

(

Pi

(

SI
(

C⊥
pub

)))2
, (13)

whereas for “usual” degree 2 positions we observe that

dim
(

SI
(

C⊥
pub

))2
= dim

(

Pi

(

SI
(

C⊥
pub

)))2
+ 1. (14)

Sometimes (in the “non usual” cases), we can have positions of degree 2 for
which

dim
(

SI
(

C⊥
pub

))2
= dim

(

Pi

(

SI
(

C⊥
pub

)))2

as for degree 1 positions. This happens for instance if shortening in I “induces”
a degree 1 position in i. This arises mostly when the position i of degree 2 is
such that j(i) = {j1, j2} where either j1 = j(i′) or j2 = j(i′) for a position i′ of
degree 1 that belongs to I. This phenomenon really depends on the choice of I.
However, by choosing several random subsets I we quickly find a shortening set
I for which the degree 2 position we want to test behaves as predicted in (14).

Procedure to Compute J2

– Choose a set of random subsets I1, . . . , Is (in our experimentations we always
chose s ≈ 20) whose cardinals satisfy (12).

– For i = 1, . . . , s compute SIi

(

C⊥
pub

)2

and call J2(i) this set of positions
satisfying

dim SIi

(

C⊥
pub

)2
= dimPj

(

SIi

(

C⊥
pub

)2
)

.

– Set J2 = J2(1) ∪ · · · ∪ J2(s).

186 A. Couvreur et al.

Second Step – Transforming Degree 2 Positions into Degree 1 Ones

Proposition 5. Let i1 ∈ J1 and i2 ∈ J2 be a position associated to i1. Let
D(α, i1, i2) be an n × n matrix which is the identity matrix with an additional

entry in column i2 and row i1 that is equal to α. Define C
def
= C⊥

pubDα,i1,i2 . If

α = −Ti2j1
Ti1j1

, then there exists R′ of rank at most one such that

C = C⊥
sec(T

′T + R′T) (15)

where T ′ differs from T only in row i2 and column j1, the corresponding entry
being now equal to 0.

This proposition is exploited as follows, we first compute for a degree 1
position i1 the set of degree 2 positions i2 such that j(i1) ∈ j(i2). These positions
i2 can be detected by checking if i2 has now become a degree 1 position for
S{i1}

(

C⊥
pub

)

(this is the case if and only if j(i1) ∈ j(i2)). Once such a pair

(i1, i2) has been found we try all possible values for α ∈ F
×
q until we obtain a

code C for which the corresponding T ′ contains a row of index i2 which is now of
Hamming weight 1. That is to say: i2 became a position of degree 1 for C . This
can be easily checked by using the previous technique to distinguish between a
position of degree 1 or 2.

In other words, when we are successful, we obtain a new code C for which
there is one more row of weight 1. We iterate this process by replacing C⊥

pub by
C and J1 by J1 ∪ {i2} until we do not find such pairs (i1, i2). For the values of
m chosen in [2] and with rows of T which were all of weight 1 or 2 we ended up
with T ′ which was a permutation matrix and a code C which was linked to the
secret code by

C = C⊥
sec(Π + R′)

where Π is a permutation matrix and R′ a matrix of rank at most 1. To finish
the attack, we just apply the attack described in [11, Sec.4] to recover Csec.

Case of Remaining Degree-2 Positions

It could happen that the previoulsy decribed method is unsufficient to transform
every degree 2 position into a degree 1. It could for instance happen if there is
a position i of degree 2 such that for all position i′ of degree 1, j(i′) /∈ j(i). In
such a situation, no position of degree 1 can be used to eliminate this position
of degree 2.

This problem can be addressed as soon as the set of positions of degree 1
contains an information set of the code. We describe the strategy to conclude
the attack in such a situation.

Let C be the code obtained after performing the two steps of the attack and
assume that there remains as nonempty set J2 of positions of degree 2, which
are known (since they have been identified during the first step of the attack).
Here is the strategy

A Polynomial-Time Attack on the BBCRS Scheme 187

1. Puncture C at J2. The punctured code is of the form

C ′(I + R′) (16)

where C ′ is a GRS code, I is the identity matrix and R′ a rank 1 matrix.
2. Perform the attack of [11] on PJ2 (C). We get the knowledge of a support

x′ a multiplier y′ and a rank 1 matrix R′ such that

C ′ = GRSk (x′,y′) (I + R′).

Moreover, we are able to identify the polynomials P1, . . . , Pk yielding the
rows of the public matrix Gpub.

3. For all x ∈ Fq which is not in the support x′ of C ′, compute the column
⎛

⎜
⎜
⎜
⎝

P1(x)
P2(x)

...
Pk(x)

⎞

⎟
⎟
⎟
⎠

and join it to the matrix Gpub. By this manner we get new positions of
degree 1 which can be used to eliminate the remaining positions of degree 2.

Remark 6. In our experiments, this situation never happened: we have always
eliminated all the degree 2 positions using Proposition 5.

5 Limits and Complexity of the Attack

5.1 Choosing Appropriately the Cardinality of I
By definition of the density m, the sets J1 and J2 have respective cardinalities
(2 − m)n and (m − 1)n. In what follows, we denote by R the rate of the public
code namely R = k/n. Let us recall that the attack shortens the dual of a public
code which is of dimension n − k. The cardinality of I is denoted by a. We list
the constraints we need to satisfy for the success of the attack.

1. The shortened code should be reduced to the zero space, which implies that
a < n − k.

2. The code punctured at J2 must contain an information set, that is to say:

n − k � |J1|. (17)

It is clear that (17) is equivalent to m � 1 + R.
3. The computed square code in Proposition 4 should also be different from the

full space which implies:

3(n − k − a) + |J2| − 1 < n − a (18)

One can easily check that (18) is equivalent to:

a � 1
2

(

(1 + m)n − 3k
)

. (19)

188 A. Couvreur et al.

4. Finally, to have good chances that the dimension of the square code reaches
the upper bound given by Proposition 4, we also need:

3(n − k − a) + |J2| − 1 <

(
n − k − a + 1

2

)

(20)

which is equivalent to the inequality:

a2 +
(

5 − 2(n − k)
)

a + (n − k)2 − 5(n − k) + 2(1 − m)n � 0 (21)

Considering (21) as an inequality involving a degree-2 polynomial in a, we
can check that its discriminant is equal to Δ def= 8(m − 1)n + 25, so that its
roots are a0 and a1 where:

a0
def= n − k − 5

2
− 1

2

√
Δ and a1

def= n − k − 5
2

+
1
2

√
Δ. (22)

Let us recall that in order to have (21) satisfied, we should have a � a0 or
a � a1. Because of the constraint a < n − k and since a1 > n − k, the only
case to study is a � a0. Combining (19) with a � a0, we obtain:

1
2

(

(1 + m)n − 3k
)

� a0.

which is equivalent to the following inequality involving this time a degree-2
polynomial in m:

n2m2 + 2n(1 − n − k)m + 2kn + k2 − 10k + n2 − 2n � 0. (23)

The discriminant of this polynomial is n2(8k + 1) and the roots are:

m0
def= 1 + R − 1

n
−

√

8
n

R +
1
n2

and m1
def= 1 + R − 1

n
+

√

8
n

R +
1
n2

·

Because of the fact that m � 1 + R from (17), and since m1 > 1 + R, we
conclude that the attack can be applied as long as m � m0, that is to say:

m � 1 + R − 1
n

−
√

8
n

R +
1
n2

· (24)

5. Finally, the last step of the attack consists in performing the attack of [11].

Remark 7. This upper-bound is roughly 1 + R. In [2], the authors suggest to
choose m ≈ 2 − R for rates R > 1

2 , which is well within the reach of the present
attack.

A Polynomial-Time Attack on the BBCRS Scheme 189

5.2 Estimating the Complexity

As explained in Proposition 2, the square of a code of dimension k and length n
can be computed in O(n2k2). Let us study the costs of the steps of the attack.

• Step 1. Finding the positions of degree 2. For a constant number of
subsets I of length a � a0 where a0 is defined in (22), we shorten C⊥

pub and
compute its square. If a is close to a0 then, the shortened code has dimension
n − k − a = O(

√
n). Hence, the computation of its square costs O(n3). Thus

this first step costs O(n3) operations in Fq.
• Step 2. Transforming degree-2 positions into degree 1 positions.

This is the most expensive part of the attack. For a given position i1 ∈
J1, the computation of positions i2 of degree 2 such that4 j(i1) ∈ j(i2)
consists essentially in shortening the dual public code at i1 and applying to
the shortened code the first step. This costs O(n3). Then, the application
of Proposition 5 to transform i2 requires to proceed to at most q linear
combinations and, for each one, to check whether the position became of
degree 1. Each check has mostly the same cost as the first step, that is
O(n3). Thus, the overall cost to reduce one position of degree 2 is O(n4) and
hence the cost of this second step is O(n5).

• Step 3. According to [11], it is in O(n6).

6 Experimental Results

Table 1 gathers experimental results obtained when the attack is programmed
in Magma V2.20-3 [9]. The attacked parameters are taken from [2, Tables 3 & 4]
The timings given are obtained with Intel R© Xeon 2.27GHz and 72 Gb of RAM.
Our programs are far from being optimized and probably improved programs
could provide better timings and memory usage.

The running times for codes of length 346 are below 5 hours and those for
codes of length 546 can be a bit longer than one day. The total memory usage
remains below 100Mb for codes of length 346 and 500Mb for codes of length 546.

Remark 8. Since the algorithms include many random choices, the identification
of pairs (i1, i2), where i1 ∈ J1 and i2 ∈ J2 such that j(i1) ∈ j(i2) might happen
quickly or be rather long. This explains the important gaps between different
running times.

Remark 9. Actually some parameters proposed in [2] were directly distinguish-
able without even shortening. This holds for (q, n, k) = (347, 346, 268), (q, n, k) =
(347, 346, 284) and (q, n, k) = (547, 546, 428) with m respectively equal to 1.217,
1.171 and 1.211. This explains why the first step is quicker for these examples.
4 Equivalently, there exists an integer j such that T i1,j �= 0 and T i2,j �= 0.

190 A. Couvreur et al.

Table 1. Running times

(q, n, k, z) m Step 1 Step 2

(347, 346, 180, 1) 1.471 15s 18513s (≈5 hours)
(347, 346, 188, 1) 1.448 8s 10811s (≈3 hours)
(347, 346, 204, 1) 1.402 10s 8150s (≈2.25 hours)
(347, 346, 228, 1) 1.332 15s 9015s (≈2.5 hours)
(347, 346, 252, 1) 1.263 36s 10049s (≈2.75 hours)
(347, 346, 268, 1) 1.217 3s 14887s (≈4 hours)
(347, 346, 284, 1) 1.171 3s 7165s (≈2 hours)

(547, 546, 324, 1) 1.401 60s 58778s (≈16 hours)
(547, 546, 340, 1) 1.372 83s 72863s (≈20 hours)
(547, 546, 364, 1) 1.328 100s 72343s (≈20 hours)
(547, 546, 388, 1) 1.284 170s 85699s (≈24 hours)
(547, 546, 412, 1) 1.240 15s 157999s (≈43 hours)
(547, 546, 428, 1) 1.211 15s 109970s (≈30,5 hours)

Remark 10. The examples [346, 180]347 and [346, 188]347 do not satisfy (24).
However, they are distinguishable by shortening and squaring and the attack
works on them. Because of some cancellation phenomenon for positions of degree
2 which we do not control, it may happen that the upper bound in Proposition
4 is not sharp and that some shortenings of C⊥

pub turn out to be distinguishable
while our formulas could not anticipate it.

The above remark is of interest since it points out that our attack might
work for values of m above 1 + R.

7 Concluding Remarks

The papers [1–4] can be seen as an attempt of replacing the permutation matrix
in the McEliece scheme by a more complicated transformation. Instead of having
as in the McEliece scheme a relation between the secret code Csec and the public
code Cpub of the form Csec = CpubΠ where Π is a permutation matrix, it was
chosen in [3,4] that

Csec = CpubT

where T is a sparse matrix of density m or as

Csec = Cpub(T + R)

where T is as before and R is of very small rank z (the case of rank 1 being
probably the only practical way of choosing this rank as will be discussed below)
as in [1,2]. It was advocated that this allows to use for the secret code Csec,
codes which are well known to be weak in the usual McEliece cryptosystem
such as LDPC codes [3,4] or GRS codes [1,2]. Interestingly enough, it turns out
that for LDPC codes this basically amounts choosing a McEliece system where
the density of the parity-check matrix is increased by a large amount and the

A Polynomial-Time Attack on the BBCRS Scheme 191

error-correction capacity is decreased by the same multiplicative constant. The
latter approach has been studied in [21], it leads to schemes with slightly larger
decoding complexity but that have at least partial security proofs.

In the case of GRS codes, the first attempt [1] of choosing for T a permutation
matrix was broken in [11, Sec.4]. It was suggested later on [2] that this attack
can be avoided by choosing T of larger density. In order to reduce the public
key size when compared to the McEliece scheme based on Goppa codes, rather
moderate values of m between 1 and 2 (m = 1.4 for instance) were chosen in
[2]. We show here that the parameters proposed in [2] can be broken by a new
attack computing first the dimension of the square code of shortened versions of
the dual of the public code and using this to reduce the problem to the original
problem [1] when T is a permutation matrix. This attack can be avoided by
choosing larger values for m and/or z, but this comes at a certain cost as we
now show.

Increasing z. Increasing z = 1 to larger values of z avoids the attack given
here, though some of the ideas of [11] might be used in this new context to
get rid of the R part in the scheme and might lead to an attack of reasonable
complexity when z = 2 by trying first to guess several codewords which lie in
the code C

def= C⊥
secT

T ∩ C⊥
pub (this code is of codimension at least z in C⊥

pub).
Once C is found, we basically have to recover T and the approach used in this
paper can be applied to it. To avoid such an attack, rather large values of z
have to be chosen, but the decryption cost becomes prohibitive by doing so.
Indeed, decryption time is of order qzC where C is the decoding complexity of
the underlying GRS code. Choosing z = 2 is of questionable practical interest
and z > 2 becomes probably unreasonable.

Increasing m. Choosing values for m close enough to 2 will avoid the attack
presented here. However this also reduces strongly the gain in key size when
compared to the McEliece scheme based on Goppa or alternant codes. Indeed,
assume for simplicity m = 2. We can use in such a case for the secret code a
GRS code over Fq of dimension k = n − 2t and add errors of weight � t

2 in the
BBCRS scheme. The public key size of such a scheme is however not better than
choosing in the McEliece scheme a Goppa code of the same dimension n−2t but
which is the subfield subcode of a GRS code over Fq2 of dimension n − t, and
which can also correct t

2 errors. This Goppa code has the very same parameters
and provides the same security level. For this reason, one loses the advantages
of using GRS codes when choosing m close to 2. Thus, to have interesting key
sizes and to resist to our attack m should be smaller than 2 and larger than
1+R. One should however be careful, since, as explained in §6, it is still unclear
whether the attack fails for m closely above 1 + R.

On the other hand, it might be interesting for theoretical reasons to under-
stand better the security of the BBCRS scheme for larger values of m. There
might be a closer connection than what it looks between the BBCRS scheme

192 A. Couvreur et al.

with density m and the usual McEliece scheme with (possibly non-binary) Goppa
codes of extension degree m. The connection is that the case m = 2 is in both
cases the limiting case where the distinguishing approach of [11,14] might work
(in [14], the attack only works because wild Goppa codes are studied and this
brings an additional power to the distinguishing attack). It should also be added
that it might be interesting to study the choice of Csec being an LDPC code and
Csec = Cpub(T + R) since here adding R of small rank can also change rather
drastically the property of Cpub being an LDPC code (which is at the heart of
the key attacks on McEliece schemes based on LDPC codes).

References

1. Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D.: Enhanced public
key security for the McEliece cryptosystem. preprint (2011). arXiv:1108.2462v2

2. Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D.: Enhanced pub-
lic key security for the McEliece cryptosystem. J. of Cryptology (2014). http://
link.springer.com/article/10.1007/s00145-014-9187-8 and also ArXiv:1108.2462v4
(published online: August 15, 2014)

3. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the McEliece cryptosys-
tem based on QC-LDPC codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 246–262. Springer, Heidelberg (2008)

4. Baldi, M., Chiaraluce, G.F.: Cryptanalysis of a new instance of McEliece cryptosys-
tem based on QC-LDPC codes. In: IEEE International Symposium on Information
Theory, pp. 2591–2595. Nice (March 2007)

5. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

6. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic
use. Des. Codes Cryptogr. 35(1), 63–79 (2005)

7. Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Selected Areas in Cryp-
tography, pp. 143–158 (2010)

8. Biswas, B., Sendrier, N.: McEliece cryptosystem implementation: theory and prac-
tice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62.
Springer, Heidelberg (2008)

9. Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system I: The user
language. J. Symbolic Comput. 24(3/4), 235–265 (1997)

10. Cascudo, I., Cramer, R., Mirandola, D., Zémor, G.: Squares of random linear codes.
arXiv:1407.0848v1

11. Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.P.:
Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon
codes. Des. Codes Cryptogr., pp. 1–26 (2014)

12. Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.P.:
Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon
codes. In: International Workshop on Coding and Cryptography, WCC 2013.
Bergen, Norway (April 15–19, 2013)

13. Couvreur, A., Márquez-Corbella, I., Pellikaan, R.: A polynomial time attack
against algebraic geometry code based public key cryptosystems. In: IEEE Inter-
national Symposium on Information Theory (ISIT 2014). Honolulu, US (2014)

http://arxiv.org/abs/1108.2462v2
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00145-014-9187-8
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00145-014-9187-8
http://arxiv.org/abs/+1108.2462v4
http://arxiv.org/abs/1407.0848v1

A Polynomial-Time Attack on the BBCRS Scheme 193

14. Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece
over quadratic extensions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 17–39. Springer, Heidelberg (2014)

15. Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher
for high rate McEliece cryptosystems. In: Proceedings of the Information Theory
Workshop 2011. ITW 2011, pp. 282–286. Paraty, Brasil (2011)

16. Faugère, J.C., Gauthier-Umaña, V., Otmani, A., Perret, L., Tillich, J.P.: A distin-
guisher for high-rate McEliece cryptosystems. IEEE Trans. Inform. Theory 59(10),
6830–6844 (2013)

17. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 5th
edn. North-Holland, Amsterdam (1986)

18. Márquez-Corbella, I., Mart́ınez-Moro, E., Pellikaan, R.: The non-gap sequence of
a subcode of a generalized Reed-Solomon code. Des. Codes Cryptogr. 66(1–3),
317–333 (2013)

19. Márquez-Corbella, I., Pellikaan, R.: Error-correcting pairs for a public-key cryp-
tosystem. preprint (2012)

20. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory,
pp. 114–116. Jet Propulsion Lab (1978), dSN Progress Report 44

21. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece:
New McEliece variants from moderate density parity-check codes. In: ISIT,
pp. 2069–2073 (2013)

22. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes
in the McEliece cryptosystem. In: IEEE International Symposium on Information
Theory (ISIT 2000), p. 215. Sorrento, Italy (2000)

23. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems Control Inform. Theory 15(2), 159–166 (1986)

24. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: Goldwasser, S. (ed.) Proceedings of the 35th Annual Symposium on
the Foundations of Computer Science, pp. 124–134. IEEE Computer Society, Los
Alamitos (1994)

25. Sidelnikov, V., Shestakov, S.: On the insecurity of cryptosystems based on gener-
alized Reed-Solomon codes. Discrete Math. Appl. 1(4), 439–444 (1992)

26. Wieschebrink, C.: Cryptanalysis of the niederreiter public key scheme based on
GRS subcodes. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 61–72.
Springer, Heidelberg (2010)

Algebraic Cryptanalysis of a Quantum Money
Scheme: The Noise-Free Case

Marta Conde Pena1(B), Jean-Charles Faugère2,3,4, and Ludovic Perret2,3,4

1 Institute of Physical and Information Technologies (ITEFI) – Spanish National
Research Council (CSIC), Madrid, Spain

marta.conde@iec.csic.es
2 Sorbonne Universités, UPMC Univ Paris 06, POLSYS, UMR 7606, LIP6, 75005

Paris, France
3 INRIA, Paris-Rocquencourt Center, POLSYS Project, Paris, France

4 CNRS, UMR 7606, LIP6, 75005 Paris, France
jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr

Abstract. We investigate the Hidden Subspace Problem (HSPq) over
Fq:

Input : p1, . . . , pm, q1, . . . , qm ∈ Fq[x1, . . . , xn] of degree d ≥ 3 (and
n ≤ m ≤ 2n).
Find : a subspace A ⊂ Fq

n of dimension n/2 (n is even) such that

pi(A) = 0 ∀i ∈ {1, . . . ,m} and qj(A
⊥) = 0 ∀j ∈ {1, . . . ,m},

where A⊥ denotes the orthogonal complement of A with respect to the
usual scalar product in Fq.

This problem underlies the security of the first public-key quantum
money scheme that is proved to be cryptographically secure under a non
quantum but classic hardness assumption. This scheme was proposed by
S. Aaronson and P. Christiano [1] at STOC’12. In particular, it depends
upon the hardness of HSP2. More generally, Aaronson and Christiano
left as an open problem to study the security of the scheme for a general
field Fq. We present a randomized polynomial-time algorithm that solves
the HSPq for q > d with success probability ≈ 1 − 1/q. So, the quantum
money scheme extended to Fq is not secure for big q. Finally, based on
experimental results and a structural property of the polynomials that
we prove, we conjecture that there is also a randomized polynomial-
time algorithm solving the HSP2 with high probability. To support our
theoretical results we also present several experimental results confirming
that our algorithms are very efficient in practice. We emphasize that
[1] proposes a non-noisy and a noisy version of the public-key quantum
money scheme. The noisy version of the quantum money scheme remains
secure.

1 Introduction

The no-cloning theorem in quantum mechanics states the impossibility of cre-
ating identical copies of an unknown arbitrary quantum money state. In [20],
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 194–213, 2015.
DOI: 10.1007/978-3-662-46447-2 9

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 195

Wiesner suggested to take advantage of this physical law in order to construct a
scheme for (quantum) money that could not be counterfeited. The initial work of
Wiesner has been then followed by several papers that try to improve the initial
idea of [20], i.e. [5,17,18]. This line of research culminated with the proposal of
Aaronson and Christiano [1] at STOC’12 who proposed a public-key quantum
money scheme.

A public-key quantum money scheme is a scheme in which anyone with a
quantum device can verify if a banknote is valid rather than only the bank that
issued it (in contrast to [20]). A public-key quantum money scheme based on
knot theory was introduced in [12]. However, its security is not well understood.
The scheme proposed by Aaronson and Christiano in [1] is the first that is
public-key and proved to be cryptographically secure under a classical (as in non-
quantum) hardness assumption. The scheme is based on hiding two orthogonal
subspaces by expressing each of them as the common zeros of a set of appropriate
random multivariate non-linear polynomials. In particular, its security relies on
the assumption that the following problem is hard:
Hidden Subspaces Problem (HSPq)
Input : polynomials p1, . . . , pm, q1, . . . , qm ∈ Fq[x1, . . . , xn] of degree d ≥ 3,
n ≤ m ≤ 2n.
Find : a subspace A ⊂ Fq

n of dimension n/2 (n is even) such that

pi(A) = 0 ∀i ∈ {1, . . . , m} and qj(A⊥) = 0 ∀j ∈ {1, . . . , m},

where A⊥ denotes the orthogonal complement of A with respect to the standard
scalar product in Fq.

We emphasize that in [1] the authors propose a non-noisy and a noisy version
of the public-key quantum money scheme. In this paper we only consider the
noise-free version of the quantum money scheme.

In particular, the non-noisy version of the quantum money scheme relies on
the HSP2 and Aaronson and Christiano conjecture that it cannot be solved in
polynomial time. They also state as an open problem the study of the scheme
extended to a general field Fq, which brings up the question of the hardness of
HSPq.

We analyze the hardness of the HSPq. The main idea is to model the problem
as a set of algebraic equations. Expressing elements as the common zeros of a set
of random multivariate non-linear polynomials is the core of algebraic attacks,
e.g. [11,15,16]. However, in this case we can exploit that there are two sets of
public polynomials whose sets of zeros are two subspaces orthogonal to each
other.

Aside from this quantum money scheme, the HSPq has also interest as a
general computer algebra problem closely related to the isomorphism of polyno-
mials [19]. Given p = T ◦ p′ ◦ S, where p = (p1, . . . , pm),p′ = (p′

1, . . . , p
′
m) ∈

Fq[x1, . . . , xn]m and T, S are affine invertible transformations, the Isomorphism
of Polynomials (IP) problem consists on recovering T and S. The HSPq can be
seen as a slight modification of the isomorphism of polynomials problem where
p = 0, T is the identity transformation and S is linear but not invertible.

196 M.C. Pena et al.

1.1 Main Results

Our results mostly rely on Gröbner bases and linear algebra techniques. This
is because we are capable of identifying the solution of the HSPq as the unique
solution of an overdetermined system of multivariate equations in N = n2/4
unknowns (Section 3.1, Proposition 5). The properties of this system are different
for q = 2 and for q > d, so we study separately both cases.

Our first main result (Section 3) solves an open problem presented in [1],
which is the study of the HSPq for q �= 2. From the algebraic equations describing
HSPq we observe that we can extract a set of linear equations (Lemma 3). Due
to the shape of the linear equations, we can prove that sufficiently many linearly
independent ones can be extracted. This gives:

Theorem 1 (Section 3.2). Let N = n2/4. There is a randomized polynomial-
time algorithm solving HSPq, for q > d, with complexity O(Nω) = O(n2ω),
where 2 ≤ ω ≤ 3 is the linear algebra constant, and success probability

γq(n/2)γq(m)
γq(m − n/2)

,

γq(k) being the probability that a random k × k matrix with entries in Fq is
invertible. For n big enough, the success probability is ≈ 1 − 1/q.

In Section 3.3 we report experimental results demonstrating that HSPq, with
q > d, can be solved very efficiently. For n ≤ 20, the algorithm requires less
than 0.1 s. for various q. We have implemented the algorithm using the Magma
software [6]. The code is provided with the submission so that the results can
be reproduced or conducted for bigger values of n.

Our second result is concerned with the HSP2 (Section 4). In this case our
system does not contain, except with a small probability, linear equations and
so the approach needs to be different. Still, in the case of the HSP2 we have an
algebraic system of equations which is very overdetermined.

Proposition 1 (Section 4). Let
(

p = (p1, . . . , pm),q = (q1, . . . , qm)
)

∈
F2[x1,. . ., xn]m×F2[x1, . . . , xn]m be degree-d multivariate polynomials. Let A ⊂
F

n
2 be a vector subspace of dimension n/2. If A is a solution of HSP2 on

(p,q) ∈ F2[x1, . . . , xn]m × F2[x1, . . . , xn]m, then we can construct an alge-
braic system of equations SysHSP2

over F2 in N = n2/4 variables with at most

2m
[(

n/2
1

)

+
(
n/2
2

)

+ . . . +
(
n/2
d

)]

equations such that a systematic basis of A van-
ishes SysHSP2

with probability γ2(n/2), where γ2(n/2) denotes the probability that
a random n/2 × n/2 matrix with entries in F2 is invertible. For n big enough,
this is ≈ 1/2.

So, we can still hope that the computation of a Gröbner basis of the system
will be efficient. In Section 4.1 we run experiments to confirm this intuition. It
appears that SysHSP2

is much easier to solve than a semi-regular system of the
same size. The Magma code of this part is also provided with the submission.
Typically, we can solve in practice SysHSP2

for n ≤ 18 and d = 3 in less than

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 197

3 hours (for smaller n, we can solve in few minutes). For n = 18, we have to
solve a system of degree-3 equations with 81 variables. In practice we observed
that the maximum degree reached during the computation of a Gröbner basis
of SysHSP2

is bounded above by a small constant. Based on this observation we
conjecture then that:
Conjecture 1. The degree of regularity is bounded above by d + 1.
If this conjecture is true the following result is obtained:

Theorem 2. Let N = n2/4. There is a randomized polynomial-time algorithm
solving HSP2 with a complexity of O(Nω(d+1)) = O(n2ω(d+1)), where 2 ≤ ω ≤
3 is the linear algebra constant, and success probability γ2(n/2), where γ2(k)
denotes the probability that a random k×k matrix with entries in F2 is invertible.
For n big enough, the success probability of the algorithm is ≈ 1/2.

To support our assumption we analyze in Section 5 the structure of SysHSP2
. We

prove a structural property (due to the orthogonality of the hidden subspaces)
that allows to obtain equations of degree lower than d from the public poly-
nomials SysHSP2

by performing simple manipulations on the initial system. In
particular:

Proposition 2. We can easily generate O(m2) equations of degree d − 1 which
are linear combinations of the equations from SysHSP2

.

This means that a Gröbner computation on SysHSP2
will generate at the very

first step many equations of lower degree. This is known as a fall of degree and
it is typically a behaviour which is not occurring in a random (i.e. semi-regular)
system of equations. So, it is a first step towards proving our conjecture.

1.2 Organization of the Paper

In Section 2 we introduce some notation that will be used throughout the paper,
we recall the basics of Gröbner bases and we describe the non-noisy version
of the quantum money scheme of [1]. The first part of Section 3 is concerned
with the general modeling of the HSPq as a system of multivariate non-linear
equations, and the second part is dedicated to obtain the algorithm of the first
Theorem. Sections 4 and 5 are dedicated to the HSP2. In Section 4 we explain
precisely why the behaviour of HSPq is different for q = 2 and for q > d, we
report experimental results and we derive our conjecture which, if true, results
in the second Theorem. Section 5 is the most technical one, in which we explain
that equations of degree < d can be obtained due to the orthogonality of the
hidden subspaces.

2 Preliminaries

We first recall some basics of Gröbner bases as the main tool to approach non-
linear systems. Then we describe precisely our target problem and its relation

198 M.C. Pena et al.

with the quantum money scheme proposed in [1]. Before that we fix some general
notation: we denote by Fq the finite field with q elements, we set x = (x1, . . . , xn)
and Fq[x] = Fq[x1, . . . , xn] to be the polynomial ring over Fq in the unknowns
x1, . . . , xn. We denote by M(Fq[x]) the set of monomials in Fq[x], M(F2[x]) refers
to the set of square-free monomials in F2[x] and Ms(Fq[x]) refers to the set of
monomials of degree s in Fq[x]. As usual, Mk,� (Fq) denotes the set of k × �
matrices with entries in Fq, Mk (Fq) denotes the square matrices of order k with
entries in Fq, and GLk (Fq) the set of invertible matrices in Mk(Fq).

2.1 Basics of Computer Algebra

As systems of multivariate non-linear equations are the key component of this
work we recall some aspects of Gröbner bases computations [8–10]. Given a
polynomial ideal over Fq, say I = 〈f1, . . . , fs〉 = {

∑s
i=1 fihi | h1, . . . , hs ∈

Fq [x]}, Gröbner bases provide a way to obtain the variety Vq(I) = {x ∈ Fq |
fi (x) = 0, for all 1 ≤ i ≤ s} by transforming the initial generators of the ideal
into new generators with better properties, in the sense that computing the
variety becomes simpler (this “better” set of generators is precisely the Gröbner
basis).

The classic method to compute Gröbner bases is Buchberger’s algorithm
[8–10], but more efficient methods, such as F4 [13] and F5 [14], have been pro-
posed. F5 is considered to be one of the most efficient algorithms up to date
for computing Gröbner bases. It uses linear algebra techniques and suppresses
useless computations carried out in Buchberger’s algorithm.

For increasing values of d̃, the F5 algorithm successively reduces to row ech-
elon form matrices of the form

Ad̃ =

⎛

⎝

m1fi1
m2fi2
.

⎞

⎠ (1)

where the columns are indexed by the monomials ordered decreasingly with
respect to <, and mj are monomials such that deg(mjfij

) ≤ d̃. At some point,
for some d, the reduced row echelon form of the matrix Ad contains a Gröbner
basis. This maximum degree d reached during a F5 computation is called the
degree of regularity and it is an important parameter when assessing the running
time of a Gröbner basis computation.

Systems verifying certain hypotheses are called semi-regular [3,4], and they
are interesting due to two reasons. Firstly, because if a system is chosen at
random it turns out to be semi-regular with high probability, and secondly
because the degree of regularity is known for this kind of systems. In fact, if
{f1, . . . , fs} ⊂ Fq[x] is a semi-regular system, where each fi has degree di, its
degree of regularity is given by the index of the first non-positive coefficient of
the power series

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 199

∑

k≥0

ckzk =

s∏

i=1

(1 − zdi)

(1 − z)n
. (2)

The time complexity of computing a Gröbner basis [2] is roughly given by the
time spent carrying out the row echelon reduction of Ad, which is O((#Ad)ω),
where 2 ≤ ω ≤ 3 is the linear algebra constant. Since the size of the matrix
Ad can be roughly approximated by O

(

nd
)

, this gives an overall complexity of
O

(

nωd
)

.

2.2 Definition of the Problem

From now on we will always assume that n is even. Recall that we are focusing
on analyzing the hardness of the following problem:

Hidden Subspaces Problem (HSPq)
Input : p1, . . . , pm, q1, . . . , qm ∈ Fq[x] of degree d ≥ 3 (n ≤ m ≤ 2n).
Find : a subspace A ⊂ Fq

n of dimension n/2 such that

pi(A) = 0 ∀i ∈ {1, . . . , m} and qj(A⊥) = 0 ∀j ∈ {1, . . . , m},

where A⊥ denotes the orthogonal complement of A with respect to the standard
scalar product in Fq.

As mentioned in the introduction, HSPq arises in relation to the security of
the non-noisy version of the quantum money scheme proposed in [1]. The private
key of this scheme is a subspace A ⊂ Fq

n, and the polynomials p1, . . . , pm ∈ Fq[x]
(vanishing on A) and q1, . . . , qm ∈ Fq[x] (vanishing on A⊥) are the public key.
To output money, the bank queries an oracle to obtain a basis of A and using
this description of the subspace it generates a quantum state $ which is the
banknote. The verifying process is based on the fact that it is easy to check
whether a given element is a zero of a polynomial or not.

The recovery of A compromises the security of the scheme, so it becomes
crucial that the HSPq cannot be easily solved. It is conjectured in [1] that,
for big enough d, there is no polynomial-time algorithm that solves HSP2 with
success probability Ω

(

2−n/2
)

.
Before proceeding any further we need to detail how the keys are generated.

This is specified in [1]. The generation of a uniformly random subspace is clear
by just choosing a full rank matrix in Mn/2,n(Fq). The generation of a uniformly
random polynomial vanishing on a given subspace can be done in O

(

nd
)

-time:

Lemma 1 ([1]). Denote by Id,A the set of polynomials of degree d that vanish
on A, by ei ∈ Fq

n the vector that has a 1 in its i-th position and 0 elsewhere,
and by E the subspace generated by the vectors e1, . . . , en/2. We have:

1. A polynomial is in Id,E if and only if each of its monomials is divisible by
an element in the set {xn/2+1, . . . , xn}.

200 M.C. Pena et al.

2. If L is an invertible linear transformation on Id,A, the function p (x) →
p (xL) maps Id,A to Id,AL−1 .

Applying this lemma, one can generate polynomials vanishing on the appropriate
subspace in the following way:

Proposition 3. (Vanishing polynomial) The generation of a uniformly ran-
dom polynomial of degree d vanishing on a given subspace A consists of the
following two steps:

1. Generate a polynomial p (x) of degree d vanishing on E: by lemma 1(1), this
is done including each monomial of degree d or lower independently and with
probability 1/2 if it is divisible by an element in the set {xn/2+1, . . . , xn}.

2. Transform the polynomial p(x) into one vanishing on A: considering the
matrix L of change of basis (i.e., E = AL), the polynomial p (xL) vanishes
on A by lemma 1(2).

We have performed all our experiments using Proposition 3.

3 The HSPq, for q > d

We analyze the hardness of the HSPq for q > d. This is an open problem in [1]
that arises when studying the security of the quantum money scheme extended
to a general field Fq. We conclude that the quantum money scheme extended
to Fq is not secure for big q. First we show that, with a certain probability,
the HSPq can be modeled by a suitable set of non-linear equations. Then we
prove that, with very high probability, enough linear equations that are linearly
independent can be extracted from it. This results in a randomized polynomial-
time algorithm for the HSPq (q > d).

3.1 General Modeling of HSPq

In this part we show that the HSPq can be rather naturally modeled as a set
of algebraic equations. The first straightforward modeling presented is however
not optimal as it includes many equivalent solutions. We show how we can use
the structure of our problem to remove the unnecessary solutions.

We abuse notation and denote by A either a subspace of F
n
q of dimension

n/2 or a matrix in Mn/2,n (Fq) whose rows are the elements of a basis of the
subspace A.

Proposition 4. Let
(

p = (p1, . . . , pm),q = (q1, . . . , qm)
)

∈ Fq[x]m × Fq[x]m

be a degree-d instance of HSPq. Let
(

y1, . . . , yn/2

)

be variables and G =
(gi,j)1≤i≤n/2,1≤j≤n, G⊥ = (g⊥

i,j)1≤i≤n/2,1≤j≤n be formal matrices of size n/2×n.
We consider the system:

SysNaiveHSPq
=
{
Coeff(pi, t), Coeff(qj , t) | ∀i, j ∈ {1, . . . , m}, ∀t ∈ M

(
Fq [y1, . . . , yn/2]

)} (3)

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 201

where Coeff(pi, t) denotes the coefficient of t ∈ M(Fq

[

g1,1, . . . , gn/2,n

]

) in
pi

(

(y1, . . . , yn/2) ·G
)

and Coeff(qj , t) the coefficient of t ∈ M(Fq[g⊥
1,1, . . . , g

⊥
n/2,n])

in qj

(

(y1, . . . , yn/2) · G⊥)

. SysNaiveHSPq
is a system of O(nd+1) algebraic equa-

tions over Fq in n2 variables (the entries of G and G⊥).
Let A ⊂ F

n
q be a vector subspace of dimension n/2. If A is a solution of HSPq

on (p,q) ∈ Fq[x]m × Fq[x]m then the components of A and A⊥ vanish all the
equations SysNaiveHSPq

.

Proof. This is an immediate consequence of the fact that every element of the
subspace A (resp. A⊥) can be expressed as (y1, . . . , yn/2)A (resp. (y1, . . . , yn/2)A⊥

). As a consequence, all the coefficients of the polynomials pi

(

(y1, . . . , yn/2) · A
)

(resp. pi

(

(y1, . . . , yn/2) · A⊥)

must be equal to zero.
�
It is easy to see that SysNaiveHSPq

has many solutions which are equivalent.
If a vector subspace A ⊂ F

n
q is a solution of HSPq, then any basis of A will

be a solution SysNaiveHSPq
. It is then natural to define a canonical form of the

solutions of HSPq.

Lemma 2. Let
(

p = (p1, . . . , pm),q = (q1, . . . , qm)
)

∈ Fq[x]m × Fq[x]m be a
degree-d instance of HSPq. Let A ⊂ F

n
q be a vector subspace of dimension n/2.

If A is a solution of HSPq on (p,q) ∈ Fq[x]m × Fq[x]m, then for any S ∈
GLn/2(Fq), S · A is a solution of HSPq on (p,q) ∈ Fq[x]m × Fq[x]m.

Proof. For all i, 1 ≤ i ≤ m, pi

(

(y1, . . . , yn/2)S · A
)

= 0 holds as a consequence
of S being invertible. Also, since (SA)⊥ = A⊥ (as A⊥ (SA)T = A⊥AT ST = 0
considering that A⊥AT = 0), it also holds that qj

(

(y1, . . . , yn/2)(SA)⊥)

= 0 for
all j, 1 ≤ j ≤ m.
�
A direct consequence of Lemma 2 is that we can assume, with high probability,
that a vector space solution A of HSPq is given in systematic form. This is, we
can suppose that A = (I|G), where G ∈ GLn/2(Fq) and I is the n/2 × n/2
identity matrix. If A has such a form then A⊥ = (−GT |I).

Fact 1. We recall that the probability that a random matrix in Mn(Fq) is invert-
ible is given by:

γq(n) =
n∏

i=1

(

1 − 1
qi

)

.

It is well known that:

lim
n→∞ γq(n) = 1 − 1

q
+ O

(
1
q2

)

.

For big values of q, γq(n/2) is close to 1, which justifies the restriction on the
shape of the subspace A.

We can now improve the modeling thanks to a canonical form of the solutions.
We remove all the solutions of SysNaiveHSPq

which correspond to equivalent
bases. To do so, we generate a similar system of equations but with a smaller
number of variables.

202 M.C. Pena et al.

Proposition 5. Let
(

p = (p1, . . . , pm),q = (q1, . . . , qm)
)

∈ Fq[x]m × Fq[x]m

be a degree-d instance of HSPq. Let
(

y1, . . . , yn/2

)

be variables and G =
(gi,j)1≤i≤n/2,1≤j≤n/2 be a formal matrix of size n/2 × n/2 and N = n2/4. We
consider the system:

SysHSPq
=
{
Coeff(pi, t), Coeff(qj , t) | ∀i, j ∈ {1, . . . , m}, ∀t ∈ M

(
Fq [y1, . . . , yn/2]

)} (4)

where Coeff(pi, t) denotes the coefficient of t ∈ M(Fq

[

g1,1, . . . , gn/2,n/2

]

)
in pi

(

(y1, . . . , yn/2) · (I|G)
)

, and Coeff(qj , t) the coefficient of t ∈
M(Fq[g1,1, . . . , gn/2,n/2]) in qj

(

(y1, . . . , yn/2) · (−GT |I)
)

. SysHSPq
is a system of

O(nd+1) algebraic equations over Fq in N variables (the entries of G).
Let A ⊂ F

n
q be a vector subspace of dimension n/2. If A is a solution of HSPq

on (p,q) ∈ Fq[x]m × Fq[x]m, then A admits with probability γq(n/2) a basis in
systematic form whose components vanish all the equations SysHSPq

.

Proof. This follows easily from Lemma 2 and Proposition 4.
�

So, Lemma 2 permitted to divide by 4 the number of variables that we have
to consider.

3.2 Randomized Polynomial-Time Algorithm for HSPq, with q > d

According to Proposition 5, solving HSPq is equivalent with high probability
(w.h.p) to solve the non-linear system SysHSPq

. In this part we show that the
non-linear system can be solved in polynomial-time. This is due to the fact
that we can extract from SysHSPq

sufficiently many linear equations that are
linearly independent. These sufficiently many equations can be obtained with
high probability considering only the polynomials p1, . . . , pm vanishing on A.

Lemma 3. Let
(

p = (p1, . . . , pm),q = (q1, . . . , qm)
)

∈ Fq[x]m × Fq[x]m be a
degree-d instance of HSPq. Let p

(1)
i (resp. q

(1)
i) be the homogeneous component

of degree 1 of pi (resp. qi), that is:

pi
(1) =

n∑

j=1

λp
i,jxj , where λi,1, . . . , λi,n ∈ Fq,

qi
(1) =

n∑

j=1

λq
i,jxj , where λi,1, . . . , λi,n ∈ Fq.

For i ∈ {1, . . . , m} and k ∈ {1, . . . , n/2}, the linear equations:
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

n/2∑

j=1

λp
i,j+n/2gk,j + λp

i,k

n/2∑

j=1

−λq
i,jgj,k + λq

i,k+n/2

are in SysHSPq
.

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 203

Proof. Let G = (gi,j)1≤i,j≤n/2 be a formal matrix. If we expand the prod-
ucts (y1, . . . , yn/2)(I|G) and (y1, . . . , yn/2)(−GT |I), we can see that SysHSPq

is
obtained from the coefficients of:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pi

(

y1, . . . , yn/2,
n/2∑

t=1
gt,1yt, . . . ,

n/2∑

t=1
gt,n/2yt

)

,∀i, 1 ≤ i ≤ m,

qj

(
n/2∑

t=1
−g1,tyt, . . . ,

n/2∑

t=1
−gn/2,tyt, y1, . . . , yn/2

)

,∀j, 1 ≤ j ≤ m.

(5)

Since q > d and so there are no reductions mod-
ulo the field equations, it is clear that the equations
Coeff(pi, y1), . . . ,Coeff(pi, yn/2),Coeff(qi, y1), . . . ,Coeff(qi, yn/2) are linear
for all i ∈ {1, . . . , m}. Taking into account the expressions of p

(1)
i and q

(1)
i as

well as (5), we have that for k = 1, 2, . . . , n/2:

Coeff(pi, yk) = λp
i,k +

n/2
∑

j=1

λp
i,j+n/2gk,j ,

Coeff(qi, yk) = λq
i,k+n/2 −

n/2
∑

j=1

λq
i,jgj,k,

as required.
�
Let N = n2/4. Since m ≥ n, the system of linear equations in Lemma 3 is

already overdetermined with at most 2mn/2 = mn ≥ 4N linear equations versus
N unknowns. We show now that among these (at most) mn linear equations there
are, with high probability, at least N linearly independent ones, enough to solve it.

Lemma 4. Let
(

p = (p1, . . . , pm),q = (q1, . . . , qm)
)

∈ Fq[x]m × Fq[x]m be a
degree-d instance ofHSPq.With probability γq(m)

γq(m−n/2) , we can extract from SysHSPq

at least N = n2/4 linear equations that are linearly independent.

Proof. The mn×N matrix of coefficients associated to the linear system specified
in Lemma 3, whose columns are the unknowns g1, . . . , gn/2, . . . , gN−n/2, . . . , gN , is
the following:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. .
λp

i,n/2+1 . . . λp
i,n 0 . . . 0 . . . 0 . . . 0

0 . . . 0 λp
i,n/2+1 . . . λp

i,n . . . 0 . . . 0
. .
0 . . . 0 0 . . . 0 . . . λp

i,n/2+1 . . . λp
i,n

. .
−λq

j,1 . . . 0 −λq
j,2 . . . 0 . . . −λq

j,n/2 . . . 0
. .
0 . . . −λq

j,1 0 . . . −λq
j,2 . . . 0 . . . −λq

j,n/2

. .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

204 M.C. Pena et al.

We restrict our attention to the following mn/2 × N submatrix containing the
equations Coeff(pi, yj) only, for i ∈ {1, . . . , m} and j ∈ {1, . . . , n/2}:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

. .
λp

i,n/2+1 . . . λp
i,n 0 . . . 0 . . . 0 . . . 0

0 . . . 0 λp
i,n/2+1 . . . λp

i,n . . . 0 . . . 0
. .
0 . . . 0 0 . . . 0 . . . λp

i,n/2+1 . . . λp
i,n

. .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

We see that due to its particular shape it has rank N if there exists an n/2 × n/2
invertible submatrix in the following m × n/2 matrix:

⎛

⎜
⎜
⎝

λp
1,n/2+1 λp

1,n/2+2 . . . λp
1,n

λp
2,n/2+1 λp

2,n/2+2 . . . λp
2,n

.
λp

m,n/2+1 λp
m,n/2+2 . . . λp

m,n

⎞

⎟
⎟
⎠

. (6)

this is, if the matrix (6) is of maximum rank. Since the coefficients of the matrix
are uniformly random, the probability that an m×n/2 matrix has maximum rank
is, according to [7], precisely

(1 − 1
q) . . . (1 − 1

qm)

(1 − 1
q) . . . (1 − 1

qm−n/2)
=

γq(m)
γq(m − n/2)

.

�

Considering that the shape of A is of the restricted form we assumed with prob-
ability γq(n/2) and that the system above can be solved successfully with proba-
bility γq(m)

γq(m−n/2) , the following theorem sums up the results of this section:

Theorem 3. Let q > d. There is a randomized polynomial-time algorithm solving
HSPq in:

O(n2ω),

where 2 ≤ ω ≤ 3 is the linear algebra constant, and with success probability

γq(n/2)γq(m)
γq(m − n/2)

.

The success probability of our algorithm can be asymptotically approximated by 1−
1/q.

Proof. The algorithm to solve HSPq is the following:

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 205

Input: p1, . . . , pm, q1, . . . , qm ∈ Fq[x] of degree d ≥ 3.
Construct the first set of equations of the linear system of Lemma 3.
Solve it.
Return this solution.

Taking into account that γq(n) =
n∏

i=1

(

1 − 1
qi

)

and that lim
n→∞ γq(n) = 1 − 1

q +

O
(

1
q2

)

,

lim
n→∞

γq(n/2)γq(m)
γq(m − n/2)

= 1 − 1
q

+ O
(

1
q2

)

follows, and so the asymptotic success probability of our algorithm increases as we
increase q.
�

3.3 Experimental Results

We report here our experimental results for HSPq, with q > d, obtained with the
algorithm of Theorem 3. We have implemented the algorithm using the Magma
software [6]. In the tables below, NextPrime(k) is the Magma function that outputs
the least prime number greater than k. Also, Timegen is the time needed to generate
the instances, and Time is the time spent solving the linear system. Finally, N =
n2/4 is the number of unknowns in the linear system.

d = 3

n q N Timegen Time Memory

10 5 25 1 s 0.00 s. 13MB

12 5 36 2 s 0.00 s. 12MB

20 5 100 135.1 s 0.02 s 481MB

10 NextPrime(216) 25 1 s 0.00 s 11MB

12 NextPrime(216) 36 4 s 0.00 s 12MB

20 NextPrime(216) 100 244.7 s 0.03 s 77MB

d = 4

n q N Timegen Time Memory

10 5 25 8 s 0.00 s 16MB

12 5 36 40 s 0.00 s 16MB

10 NextPrime(216) 25 18 s 0.0 s 22MB

12 NextPrime(216) 36 107 s 0.0 s 22MB

20 NextPrime(216) 100 5154.050 s 0.02 s 300MB

As expected from Theorem 3 the algorithm is very efficient. Note that even for
small q, all experiments performed succeeded as the probability of obtaining suffi-
ciently many linearly independent linear equations, γq(m)/λq(m−n/2), tends to 1
very quickly even for small values of q. Note that the running time of our algorithm

206 M.C. Pena et al.

is clearly dominated by the time spent in generating the instance. This is done in
polynomial time1 , so we can infer from the experiments that the algorithm runs
in polynomial time, which is coherent with the theoretical results obtained.

4 An Efficient Algorithm for Solving HSP2

We consider in this part the special case of HSP2. As in Proposition 5, we can model
HSP2 by a set of algebraic equations. However, the system for q = 2 will have a
different structure than SysHSPq

due to reductions modulo the field equations that
we now have to consider. In particular, it is no longer possible to extract linear
equations.As a consequence,wehave to adopt adifferent strategy for solvingHSP2.
First we adapt the modeling for HSP2 adding the field equations:

Proposition 6. Let
(

p = (p1, . . . , pm),q = (q1, . . . , qm)
)

∈ F2[x]m ×F2[x]m be a
degree-d instance of HSP2. Let

(

y1, . . . , yn/2

)

be variables and G = (gi,j)1≤i,j≤n/2

be a formal matrix and N = n2/4. We consider the system:

SysHSP2
=
{
Coeff(pi, t), Coeff(qj , t) | ∀i, j ∈ {1, . . . , m}, ∀t ∈ M

(
F2[y1, . . . , yn/2]

)}∪
{g

2
i,j − gi,j | 1 ≤ i, j ≤ n/2}

(7)

where Coeff(pi, t) denotes the coefficient of t ∈ M(F2

[

g1,1, . . . , gn/2,n/2

]

)
in pi

(

(y1, . . . , yn/2) · (I|G)
)

, and Coeff(qj , t) the coefficient of t ∈
M(F2[g1,1, . . . , gn/2,n/2]) in qj

(

(y1, . . . , yn/2) · (GT |I)
)

. SysHSP2
is a system

of at most 2m
[(

n/2
1

)

+
(
n/2
2

)

+ . . . +
(
n/2
d

)]

algebraic equations over F2 in N

variables (the entries of G).
Let A ⊂ F

n
2 be a vector subspace of dimension n/2. If A is a solution of HSP2

on (p,q) ∈ F2[x]m × F2[x]m, then A admits with probability γ2(n/2) a basis in
systematic form whose components vanish all the equations SysHSP2

.

Proof. Direct application of Proposition 5 and the fact that

#(M(F2[y1, . . . , yn/2]) =
(

n/2
1

)

+ . . . +
(

n/2
d

)

.

�
Note that the equations of SysHSP2

are of degree d with high probability for
big enough parameters. Indeed, let G = (gi,j)1≤i,j≤n/2 be a formal matrix of size
n/2 × n/2 and recall that SysHSP2

is obtained from the coefficients of:
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pi

(

y1, . . . , yn/2,
n/2∑

t=1
gt,1yt, . . . ,

n/2∑

t=1
gt,n/2yt

)

,∀i, 1 ≤ i ≤ m,

qj

(
n/2∑

t=1
−g1,tyt, . . . ,

n/2∑

t=1
−gn/2,tyt, y1, . . . , yn/2

)

,∀j, 1 ≤ j ≤ m.

1 Note that the generation of the instance is rather slow in practice, probably due to a
non-optimal implementation of the Evaluate function in Magma for symbolic poly-
nomials.

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 207

Since we reduce modulo the field equations, the coefficient of a linear term is
obtained from the linear terms of pi and qj but also from the coefficients of higher
degree terms reduced modulo the field equations. So, it is expected with a high
probability that SysHSP2

has no linear equations.
However, although SysHSP2

is non-linear it is greatly overdetermined. Thus we
can expect that computing a Gröbner basis of SysHSP2

can still be done efficiently.

4.1 Experimental Results and Interpretation

The goal of this part is to show that SysHSP2
is indeed much easier to solve than

a semi-regular system of the same size. Recall that if a system is semi-regular, its
degree of regularity is given by the first non-positive coefficient of the power series
specified in (2).

We report experiments run on a 2.93 GHz Intel PC with 128 Gb. of RAM with
the Magma software [6] (V2.19-1) for the most disadvantageous choice of param-
eters (this is, m = n). We recall that Magma implements the F4 algorithm ([13])
for computing Gröbner bases.

The notation used in the table is the following: n the number of variables of
the public polynomials, N = n2/4 is the number of unknowns of the system in
proposition 6, Ueqs is the upper bound on the number of equations as specified in
proposition 6, dreg is the degree of regularity observed in practice, and dsg

reg is the
theoretical degree of regularity treating the system as if it was semi-regular. The

d = 3

n N Ueqs dsgreg dreg Time Memory

8 16 224 4 3 1 s 17MB

10 25 500 5 3 1 s 20MB

12 36 984 5 3 2 s 55MB

14 49 1764 5 4 136 s 3Gb

16 64 2944 6 4 2.30 min 8GB

18 81 4725 7 4 2h20 80GB

d = 4

n N Ueqs dsgreg dreg Time Memory

8 16 240 6 4 1 s 20MB

10 25 600 6 4 1 s 50MB

12 36 1344 7 5 38 s 840MB

14 49 2744 8 5 66 min 8GB

first thing we observe is that the number of equations of our system coincides with
the upper bound for the maximum number of possible equations. The experiments
show that solving these systems is easier than if they were random: the degree of
regularity observed in practice is indeed lower than the expected one, which sug-
gests that there is an underlying structure that can be exploited. Furthermore, the
degree of regularity stays bounded, so we conjecture the following:

Conjecture 1. The degree of regularity is bounded above by d + 1.

If our conjecture is true, there is a randomized polynomial-time algorithm forHSP2

as follows:

208 M.C. Pena et al.

Theorem 4. Assuming Conjecture 1, there is a randomized polynomial-time algo-
rithm (the computation of a Gröbner basis) solving degree-d instances of HSP2 with
a complexity of

O(n2ω(d+1)),

where 2 ≤ ω ≤ 3 is the linear algebra constant, and success probability γ2(n/2).

5 Structural Low Degree Equations

The goal of this part is to provide theoretical arguments supporting Conjecture
1. That is, we show that the system of algebraic equations of Proposition 6 has a
very particular structure. We prove that suitable linear combinations of the equa-
tions will lead to equations of a lower degree. This is actually the first computa-
tion performed by a Gröbner basis algorithm on the system of Proposition 6. As a
consequence, solving the system of degree d-equations from Proposition 6 reduces
to solve a system with equations of degree d and degree d − 1. This is typically a
behaviour which is not occurring in a random (i.e. semi-regular) system of equa-
tions and so it is a first step towards proving Conjecture 1.

Let (p, q) ∈ F2[x] × F2[x] be polynomials of degree d such that p vanishes on a
vector subspace A ⊂ F

n
2 of dimension n/2 and q vanishes on the orthogonal space

A⊥. Let Nd =
(
n/2
d

)

. We order lexicographically the monomials of degree d in the
rings

F2

[

y1, . . . , yn/2

]

,F2

[

xn/2+1, . . . , xn

]

, and F2

[

x1, . . . , xn/2

]

.

We then denote by t1 < . . . < tNd
,m1 < . . . < mNd

and m⊥
1 < . . . < m⊥

Nd
the

respective monomials in ascending order. This way we can write
{

p = α1m1 + . . . + αNd
mNd

+ p̃, α1, . . . , αNd
∈ F2, p̃ ∈ F2 [x] \Md(F2[x n

2 +1, . . . , xn]),

q = β1m⊥
1 + . . . + βNd

m⊥
Nd

+ q̃, β1, . . . , βNd
∈ F2, q̃ ∈ F2 [x] \Md(F2[x1, . . . , xn/2]).

(8)

Recall that the notationCoeff(p, t) refers to the coefficient of t ∈ M(F2[g1,1, . . . ,
gn/2,n/2]) occurring in p

(

(y1, . . . , yn/2)(I|G)
)

, and Coeff(q, t) refers to the coeffi-
cient of t ∈ M(F2[g1,1, . . . , gn/2,n/2]) occurring in p

(

(y1, . . . , yn/2)(GT |I)
)

. We will
denote by Coeff(p, t)(d) the homogeneous component of degree d of Coeff(p, t).

Let t ∈ Md(F2[y1, . . . , yn/2]), and we can deduce from (5) that Coeff(p̃, t)(d) =
0 = Coeff(q̃, t)(d). Then, the homogeneous component of degree d of Coeff(p, t)
(resp. Coeff(q, t)) is equal to the sum of the contributions with terms of degree d
that each monomial mi (resp. m⊥

j) present in (8) makes to, respectively,

Coeff(p, t)(d) and Coeff(q, t)(d), this is,

Coeff(p, t)(d) = α1Coeff(m1, t)
(d) + . . . + αNd

Coeff(mNd
, t)(d)

,

Coeff(q, t)(d) = β1Coeff(m⊥
1, t)

(d)
+ . . . + βNd

Coeff(m⊥
Nd

, t)
(d)

.

The fact that G and GT have the same entries (in different positions) and are
involved in the evaluations of pi((y1, . . . , yn/2)(I|G)) and qj((y1, . . . , yn/2)(GT |I))

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 209

produces certain relations between expressions of the form Coeff(mi, t1)
(d) and

expressions of the form Coeff(m⊥
j , t2)

(d) for appropriate t1, t2 ∈ Md(F2[y1, . . . ,
yn/2]). These relations are detailed in the following result:

Proposition 7. Let (p, q) ∈ F2[x] × F2[x] be polynomials of degree d such that
p vanishes on a vector subspace A ⊂ F

n
2 of dimension n/2 and q vanishes on the

orthogonal space A⊥. Let Nd =
(
n/2
d

)

. For all i, j ∈ {1, . . . , Nd}, it holds that:

Coeff
(

mi, tj
)(d) = Coeff

(

m⊥
j , ti

)(d)
,

where t1 < . . . < tNd
,m1 < . . . < mNd

, and m⊥
1 <

. . . < m⊥
Nd

are ordered increasingly in the sets of monomials
Md(F2

[

y1, . . . , yn/2

]

),Md(F2

[

xn/2+1, . . . , xn

]

), and Md(F2

[

x1, . . . , xn/2

]

)
respectively. Also, Coeff(mi, tj) (resp. Coeff(m⊥

j , ti)) denotes the coeffi-
cient of tj ∈ Md(F2

[

y1, . . . , yn/2

]

) (resp. ti ∈ Md(F2

[

y1, . . . , yn/2

]

)) in
mi

(

(y1, . . . , yn/2)(I|G)
)

(resp. m⊥
j

(

(y1, . . . , yn/2)(GT |I)
)

). Finally, the expres-

sion Coeff
(

mi, tj
)(d) (resp. Coeff

(

m⊥
j , ti

)(d)) denotes the homogeneous compo-
nent of degree d of Coeff

(

mi, tj
)

(resp. Coeff
(

m⊥
j , ti

)

).

Proof. Given i, j ∈ {1, . . . , Nd}, we have that ti = yi1yi2 . . . yid
, tj = yj1yj2 . . . yjd

,
for some i1, i2, . . . , id,
j1, j2, . . . , jd ∈ {1, . . . , n/2}. On the one hand:

Coeff(mi, tj)(d) = Coeff
(

d∏

k=1

xik+n/2, yj1yj2 . . . yjd

)(d)
.

Observing the system (5), this is the coefficient of yj1yj2 . . . yjd
in the product

d∏

k=1

n/2−1
∑

�=0

g�+1,ik
y�+1,

which, after expanding it, equals

∑

π permutation over {1,...,d}

d∏

k=1

gjπ(k),ik
. (9)

On the other hand,

Coeff(m⊥
j , ti)

(d)
= Coeff(

d∏

k=1

xjk
, yj1yj2 . . . yjd

)

(d)

.

Again, observing the system (5), this is the coefficient of yi1yi2 . . . yid
in the product

d∏

k=1

n/2
∑

�=1

gjk,�y�

210 M.C. Pena et al.

which, again after expanding it, equals

∑

π permutation over {1,...,d}

d∏

k=1

gjk,iπ(k) . (10)

Now (10) and (9) clearly coincide since

∑

π permutation over {1,...,d}

d∏

k=1

gjk,iπ(k) =
∑

π permutation over {1,...,d}

d∏

k=1

gj
π−1(π(k)),iπ(k) =

∑

π−1 permutation over {1,...,d}

d∏

k=1

gj
π−1(k),ik .

�

We can use this proposition to identify the suitable linear combinations that are of
degree d − 1:

Theorem 5. Let thenotations be as inProposition 7.There exist i, j ∈ {1, . . . , Nd}
such that the equation

Coeff(p, tj) + Coeff(q, ti) +
∑

{k �=i|αk �=0}
Coeff(q, tk) +

∑

{� �=j|β� �=0}
Coeff(p, t�)

is of degree d − 1.

Proof. Denote by i, j the smallest indexes such that αi, βj �= 0. Using
Proposition 7,

Coeff(mi, tj)(d) = Coeff(m⊥
j , ti)(d).

Now, for every k �= i such that αk �= 0 and for all � �= j such that β� �= 0, using
Proposition 7 we get the following equalities:

Coeff(mk, tj)
(d) = Coeff(m⊥

j , tk)
(d)

, Coeff(m⊥
�, ti)

(d)
= Coeff(mi, t�)

(d)
, and

Coeff(m⊥
�, tk)

(d)
= Coeff(mk, t�)

(d)
.

Now adding up both the left-hand side and the right-hand side of all the four equal-
ities, we obtain

Coeff(mi, tj)
(d)

+
∑

{k �=i|αk �=0}
Coeff(mk, tj)

(d)
+

∑

{� �=j|β� �=0}
Coeff(m

⊥
�, ti)

(d)
+

+
∑

{� �=j,k �=i|αk �=0,β� �=0}
Coeff(m

⊥
�, tk)

(d)
+ Coeff(m

⊥
j , ti)

(d)
+

∑

{k �=i|αk �=0}
Coeff(m

⊥
j , tk)

(d)
+

+
∑

{� �=j|βl �=0}
Coeff(mi, t�)

(d)
+

∑

{� �=j,k �=i|αk �=0,β� �=0}
Coeff(mk, t�)

(d)
= 0.

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 211

The left-hand side of this equality is the homogeneous component of degree d of

Coeff(p, tj) + Coeff(q, ti) +
∑

{k �=i|αk �=0}
Coeff(q, tk) +

∑

{� �=j|β� �=0}
Coeff(p, t�)

which means that we cancelled out the terms of degree d and so the required equa-
tion is of degree d − 1.
�

This result can be used to generate low-degree equations:

Corollary 1. Let
(

p = (p1, . . . , pm),q = (q1, . . . , qm)
)

∈ F2[x]m × F2[x]m be a
degree-d instance of HSP2. We can easily generate O(m2) equations of degree d−1.
These equations are linear combinations of the degree-d equations of SysHSP2

.

Proof. We apply simply Theorem 5 to each pair of polynomials (pi, qj) ∈ F2[x] ×
F2[x]. From the proof of Theorem 5, it is clear that these equations are linear com-
binations of the equations from SysHSP2

.
�

To conclude this part, we include below experimental results about the number of
equations of degree d− 1 generated as Corollary 1 which are linearly independent.
In the table, we denote by #eqspr the number of linearly independent equations
obtained in practice and by #eqsth the maximum number of linearly independent
equations that can be obtained, which is m2.

d = 3 d = 4
#eqspr # eqsth #eqspr # eqsth

m = n = 10 99 100 71 100

m = n = 12 144 144 144 144

m = n = 14 196 196 196 196

m = n = 16 256 256 256 256

We observe that the behaviour is unstable for small values of the parameters.
This is partially due to the fact that if a polynomial pi (resp. qj) does not have terms
of degree d in F2[xn/2+1, . . . , xn] (resp. F2[x1, . . . , xn/2]), then we do not get equa-
tions of degree d − 1 applying Theorem 5 to the pair (pi, qk) for all k ∈ {1, . . . , m}
(resp. from the pair (pk, qj) for all k ∈ {1, . . . , m}). This happens with probability

1/2(n/2
d), which is not too small for low parameters. So, for small parameters it is

possible that we obtain a number of equations of degree d−1 lower than m2. How-
ever, if this is the case there still are equations of degree d − 1 (or lower) produced
by the terms of degree d−1 (or lower). We see that the behavior becomes stable for
big enough values of the parameters m,n obtaining as many equations of degree
d − 1 as possible, this is, m2.

212 M.C. Pena et al.

6 Conclusions

In this paper we presented a very efficient attack for HSPq with q > d. The case
q ≤ d is not treated, but as there are reductions modulo the field equations tak-
ing place, the behaviour might be similar to the one over F2 (Section 4). Since the
asymptotic probability of success of this algorithm is 1− 1/q, the quantum money
scheme extended to Fq is not secure for big q. We also provided some experimental
and theoretical arguments that support the conjecture that HSP2 can be solved
in polynomial time. In both cases, we only considered public polynomials chosen
randomly as described in [1]. For other choices of public polynomials with a certain
structure (for instance, homogeneous polynomials of degree d, . . .) the hardness of
HSP remains open. Another interesting open question is the hardness of the noisy
version of the scheme, which is related to the study of the noise-free version when
m = O (1)

(

in this paper, we considered m = O (n)
)

.

Acknowledgments. Wethank ScottAaronson and the anonymous referees for detailed
comments which greatly improved this work. Jean-Charles Faugère and Ludovic Perret
have been partially supported supported the HPAC grant (ANR-11-BS02-013) of the
French National Research Agency.

References

1. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In: Proceed-
ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New
York, NY, USA, May 19–22, pp. 41–60 (2012)

2. Bardet, M., Faugère, J.-C., Salvy, B.: On the Complexity of the F5 Gröbner basis
Algorithm. Journal of Symbolic Computation, 1–24

3. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computa-
tion of semi-regular overdetermined algebraic equations. In: Proc. of International
Conference on Polynomial System Solving (ICPSS), pp. 71–75 (2004)

4. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the
degree of regularity of semi-regular polynomial systems. In: Proc. of MEGA 2005,
Eighth International Symposium on Effective Methods in Algebraic Geometry
(2005)

5. Bennett, C.H., Brassard, G., Breidbard, S., Wiesner, S.: Quantum cryptography, or
unforgeable subway tokens. In: Proceedings of CRYPTO, pp. 267–275 (1982)

6. Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system I: The user lan-
guage. Journal of Symbolic Computation 24(3–4), 235–265 (1997)

7. Brent, R.P., McKay, B.D.: Determinants and rank of random matrices over Zm. Dis-
crete Math. 66, 35–50 (1987)

8. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Inns-
bruck (1965)

9. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. J.
Symb. Comput. 41(3–4), 475–511 (2006)

10. Buchberger, B.: Comments on the translation of my phd thesis. J. Symb. Comput.
41(3–4), 471–474 (2006)

Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case 213

11. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer,
Heidelberg (2003)

12. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.W.: Quantum money
from knots, pp. 276–289 (2012)

13. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

14. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: ACM Press (ed.) International Symposium on Symbolic
and Algebraic Computation, ISAAC 2002, pp. 75–83 (2002)

15. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 44–60. Springer, Heidelberg (2003)

16. Faugère, J.-C., Perret, L.: Polynomial equivalence problems: algorithmic and the-
oretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
30–47. Springer, Heidelberg (2006)

17. Gavinsky, D.: Quantum money with classical verification, pp. 42–52 (2012)
18. Mosca, M., Stebila, D.: Quantum coins. Error-Correcting Codes, Finite Geometry

and Cryptography 523, 35–47 (2010)
19. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):

two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

20. Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)

Digital Signatures I

Digital Signatures from Strong RSA
Without Prime Generation

David Cash1(B), Rafael Dowsley2, and Eike Kiltz3

1 Department of Computer Science, Rutgers University, New Brunswick, NJ, USA
david.cash@cs.rutgers.edu

2 Institute of Theoretical Informatics,
Karlsruhe Institute of Technology, Karlsruhe, Germany

rafael.dowsley@kit.edu
3 Horst Görtz Institute for IT-Security,

Ruhr-Universität Bochum, Bochum, Germany
eike.kiltz@rub.de

Abstract. We construct a signature scheme that is proved secure, with-
out random oracles, under the strong RSA assumption. Unlike other effi-
cient strong-RSA based schemes, the new scheme does not generate large
prime numbers during signing. The public key size and signature size are
competitive with other strong RSA schemes, but verification is less effi-
cient. The new scheme adapts the prefix signing technique of Hohenberger
and Waters (CRYPTO 2009) to work without generating primes.

Keywords: Digital signatures · Strong RSA

1 Introduction

Digital signatures are amongst the most widely deployed cryptographic prim-
itives, with several efficient, standardized schemes that are implemented and
used in common functionalities like HTTPS. Theoretical constructions study
the extent to which digital signatures can be proved secure under mild hardness
assumptions, like the existence of one-way functions, giving us good evidence for
the possibility of constructing secure schemes.

As is often the case with provable security, however, the proved-secure schemes
with the best security guarantees are not nearly as efficient as the (unbroken)
schemes that are used in practice, where applications require fast signing and veri-
fication along with short public-keys and short signatures. The best provable secu-
rity evidence (when it is available) for practical schemes comes from security proofs
that use the random oracle model [3], where one models a hash function as a ran-
dom function. Of course, in practice we use a non-random function like SHA-256,
a reality that leads some theoretical limitations of these results [7,12]. From an
assurance standpoint it is desirable to have security proofs without random ora-
cles in order to lessen the possibility that a proved-secure scheme will be broken
when implemented. From a theoretical standpoint it is interesting to know what
is achievable without the random oracle.
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 217–235, 2015.
DOI: 10.1007/978-3-662-46447-2 10

218 D. Cash et al.

Our contribution. In this paper we continue a line of work on designing
efficient signature schemes that are proved secure, without a random oracle,
under the strong RSA assumption [2]. Unlike other such schemes, ours does
not need to generate large prime numbers during signing and avoids this by
embedding the strong RSA problem into the scheme in a different way.

Recall that the strong RSA problem requires an adversary, on input (N, y)
where N = pq for large random primes p, q, and y ∈ Z

∗
N is random, to compute

(e, x) satisfying xe = y mod N and e > 1. The structure of the problem suggests
a natural approach for embedding it into digital signatures, where the public key
is N and a signature will consist of (e, x), where e is computed at signing time
and x is an e-th root of a value y that depends on the public key and the
message. In order to apply known techniques that prevent an adversary from
assembling several signatures into a new signature, the e that is generated is
typically required to be a large prime or a product of large primes.

Our construction instead works with e set to be a product of several com-
posite numbers so that the likelihood of one of them being divisible by a large
prime factor is large. In order to avoid making e extremely large, we adapt
techniques from prior work, including the “prefix signing” of Hohenberger and
Waters [19] and analysis techniques for dealing with composite numbers in RSA
signatures due to Gennaro, Halevi, and Rabin [14]. A sketch of our approach
and the techniques we use is given below in the next sub-section.

It is desirable to avoid prime generation in signing because it is typically an
expensive operation and is a step which is not intrinsic for the signing algorithm.
While our scheme does this with a relatively simple signing procedure and with
public key and signature sizes competitive with prior schemes, it has a much
slower verification algorithm. Like all other signature schemes that do not use
random oracles in their security proofs, our construction is not competitive with
practical schemes and we do not recommend it for consideration in applications.
Instead, we aim to have a conceptual contribution towards the goal of practical
schemes from conservative hardness assumptions without random oracles.

In order to more precisely describe our contribution, we first need to recall
some prior work.

Standard Model RSA Signatures. We focus on signatures whose security is
based on the (strong) RSA problem without a random oracle. While there exists a
number of different schemes [5,6,8,11,13,14,17–19,21–23], they all have in com-
mon that the signing algorithm has to generate one or more primes (of some large
size). The prime generation can either be deterministic (via some hash function h
from messages to primes) or according to the uniform distribution. In both cases
the prime generation remains an expensive step whose elimination is desirable.

Concretely, the strong-RSA based signature schemes from [6,11,13,18,22,23]
compute a signature on message m as σ(m) = (H(m)1/e mod N, e), where e
is a random prime and H is some (algebraic) hash function that depends on
the specific scheme; the (weakly secure) scheme by Gennaro et al. [14] defines

Digital Signatures from Strong RSA Without Prime Generation 219

σ(m) = g1/h(m) mod N where h is a hash function that hashes into primes.1

The signature scheme by Hohenberger and Waters [19] as well as the one by
Hofheinz et al. [17] are based on the (weaker) RSA assumption and define σ(m) =
g1/

∏n
i=1 hi(m) mod N , where hi are independent hash functions that hash into

primes. Designing a standard-model signature scheme whose signing algorithm
does not rely on the generation of prime numbers is an open problem explicitly
mentioned in [17].

1.1 Our Contributions

Our new scheme is relatively simple, so we describe it right away. Its public key
consists of N = pq where p and q are large safe primes2, a number h ∈ Z

∗
N , and

a key of a pseudorandom function FK(·). For the time being, we assume that
FK(·) takes variable-length inputs, and always outputs odd numbers of some
given length. Signatures on a message m ∈ {0, 1}� are defined via

Sign(m) = h1/e mod N, where e =
�∏

i=1

FK(m[1...i]) ·
d∏

i=1

FK(m ‖ i). (1)

Here m[1..i] is the i-bit prefix of m, d is a parameter that factors into the con-
crete security, and m ‖ i means m with an encoding of the number i appended.
(Signatures can be computed using the secret key, the factorization of N = pq.)
We stress that we are using the outputs of the FK(·), which are random odd
numbers that are likely to be composite. This is the main difficulty in proving
security. Theorem 5 shows that this scheme achieves a type of weak security
under the strong RSA assumption in the standard model. Full security (unforge-
ability against chosen-message attack) can be achieved by adding a chameleon
hash function - see [20] or the full version of [19].

Intuition. Let us sketch how our scheme adapts and differs from prior proof
techniques. The notion of weak security for signature schemes means that the
adversary gets only one parallel signing query on chosen messages before seeing
the public key. Then it is given the public key, along with the requested signa-
tures, and must generate a signature on a new message m̂. See the next section
for a formal definition, via the game wCMA.

We start with a very high level explanation of why all of the prefixes of m
are processed using FK and multiplied together. Consider a rooted full binary
tree of depth �, with all nodes assigned a label from {0, 1}≤� according to the
left/right steps to that node from the root. The prefixes of a message are exactly
the labels on the nodes encountered on the root-to-message path.

Then we can see the requested messages from the adversary’s parallel signing
query as leaves in the tree, and the union of all root-to-message paths is a subtree.
1 For GHR signatures, the weaker condition collision intractability is sufficient for h.

However, the only known way to instantiate h in the standard model is to hash into
primes [10,14,21].

2 A safe prime is an odd prime number p such that p′ = (p− 1)/2 is also prime.

220 D. Cash et al.

Now for any message m̂ not in this subtree, the root-to-m̂ path must have some
first node that is not in the subtree. In fact, we can show that all paths to
messages not in the subtree must pass through one of a small number of “exit
nodes”.

The Hohenberger-Waters signature scheme was designed to take advantage
of this structure by guessing which exit node would be used by the message on
which the adversary forges a message. If the guess is correct, then, using hash
functions that output only primes, they can arrange to program in an instance
of the (non-strong) RSA problem. Since the number of exit nodes is polynomial,
this guess is correct with non-negligible probability, resulting in an acceptable
loss in the success probability during the reduction.

We also exploit this structure, but instead we do not guess which exit node
will be used. Instead, we arrange so that we can solve the strong RSA problem
no matter which exit node is used by the adversary during forging. Examining
the proof reveals that this amounts to hoping that several (composite) numbers
output by FK(·) on different inputs will all have large prime factors (i.e, they
are non-smooth). A naive analysis of this technique in which one hopes that
with overwhelming probability all exit nodes are non-smooth gives very bad
parameters. So instead of hoping that every exit node helps us solve the problem
with overwhelming probability, we show that it is enough for each exit node
to help us (i.e., have a large prime factor) with only constant probability. We
can show that this is in fact enough, because when a node does not help, we
can discard it and look at both its children, recursively repeating this process.
Analyzing this behavior is the main difficulty in our proof.

While the idea of using the fact that a number x is not α-smooth is not new
in cryptography (see below for related work), it is clear that the straightfor-
ward approach of requiring x to be α-smooth with negligible probability would
normally result in very bad protocol parameters since the gap between x and α
would have to be too big. Our scheme derives its advantage because the reduction
can tolerate the random numbers having large prime factors with only constant
probability via the recursive tree searching, allowing us to save in parameters
(i.e. use smaller numbers), at the expense of the d extra evaluations and multi-
plications. Consider the set of message queried by the adversary and the subtree
formed by all their root-to-message paths. The central idea of the security proof
is that for any message m̂ not in this subtree (i.e., all the messages for which
a forgery would be acceptable), there should be at least one random number in
m̂’s root-to-message path which is not in the subtree of queried messages and
has a large prime factor. If all the numbers associated to the exit nodes were
such that they had a large prime factor, the proof would be done. But we only
require the random numbers to have a large prime factor with constant proba-
bility, thus for all exit nodes which do not have a large prime factor, we need
to analyze both of its children, and follow the same procedure recursively for
the children. Our analysis of this recursive tree searching shows that with over-
whelming probability all message m̂ not in the subtree of queried messages will
have at least one random number in m̂’s root-to-message path which is not in the

Digital Signatures from Strong RSA Without Prime Generation 221

subtree and has a large prime factor. The d extra evaluations are due to the exit
nodes close to the bottom of the tree. After establishing this fact, the analysis
proceeds to show that the existence of this large prime factor can be used to
extract solutions to the strong RSA problem from a forged signature. Note that
while the Hohenberger-Waters signature scheme is based on the (weaker) RSA
assumption, we need to base our scheme on the strong RSA assumption because
we cannot simply guess the exit node and program the RSA instance there.

1.2 Efficiency

The public key contains the modulus N , h ∈ Z
∗
N , and a key of a PRF. Recall the

definition of a signature from Equation (1). The cost of computing a signature
σ(m) is dominated by one full exponentiation modulo N to compute h1/e. While
signing is quite efficient, the cost of signature verification is substantially higher.
If the PRF outputs numbers between 1 and 2n−1, the verification has to perform
one modular exponentiation of an exponent e which is of an n(�+d) bit number.
(Note that verification can’t reduce e modulo ϕ(N) since that value is only
contained in the secret key.) Our security analysis of Theorem 5 and Section 4
give an upper bound in the numbers �, d, and n such that our system is secure.
Concretely, for 80 bits security (and assuming that the Dickmann function, ρ(u),
is a good approximation for the probability of a random number between 1 and
x being x1/u-smooth) we can have � = 160, n = 200 and d = 80, in which case
verification has to perform one exponentiation modulo N with an exponent of
size 200(160+80) = 48000 bits. This analysis is for the weakly secure scheme. The
fully secure scheme adds one Chameleon Hash and therefore one exponentiation
during signing and verification.

Overall, our new signature scheme offers fast and simple signing combined
with a small public key, but has relatively slow verification. More importantly, it
is the first scheme that does not need to generate primes or run primality tests
during the signing process. We believe that this departure from prime generation
dependency is a possible direction for future improvements in the quest for more
practical signature schemes which are provable secure in the standard model and
can also be useful in other contexts.

1.3 Related Work

The key idea that large random numbers are somewhat likely to have large prime
factors and that large random numbers can replace large prime numbers are not
new in cryptography. In 1999, Gennaro, Halevi, and Rabin [14], in the process
of proving the security of their signature scheme, analyzed the probability that
a specific random number is smooth and then showed that if such number is
non-smooth then the probability that it divides the product (of a polynomial
number) of random numbers is negligible, thus establishing an essential step of
the security proof of their signature scheme. We adapt their analysis technique
in order to extract solutions to the strong RSA problem in our reduction.

222 D. Cash et al.

Subsequently, in the context of elliptic-curve signatures, Coron, Handschuh
and Naccache [9] avoided point counting (i.e., the need of the participants to
know the number of points on the curve and a big factor of it) by first using curves
over larger underlying fields. As in our case, a naive analysis of the smoothness
property, i.e., requiring the number of curve points to be smooth with negligi-
ble probability, would result in very bad parameters for the protocol. Hence the
authors only increased the size of the underlying field such that the probabil-
ity that the curve is smooth is low. Next, they iterated the protocol over many
independent random curves in order to guarantee that, with overwhelming prob-
ability, at least one curve is non-smooth. Hence their modified signature scheme
for avoiding point counting consists of many parallel instances of the original
signature scheme and therefore had a considerable slowdown around a factor of
500 [9]. If we used the same approach and signed the messages multiple times
with Hohenberger-Waters-style signatures in the hope that for all exit nodes,
in at least one instance its associated number would be non-smooth, then this
would result in a considerable protocol slowdown.

We stress that even though our signatures are syntactically related to the
schemes by Hohenberger and Waters [19] and Gennaro et al. [14], the main
difference is that in our scheme the hash functions hi (instantiated via a PRF
FK) do not output primes.

2 Preliminaries

Notation. When convenient, we identify a vector with the set of its entries, i.e.
a vector m with Q entries will be identified with {m[1], . . . ,m[Q]}. We denote
by x ←$ X the action of selecting a random element of a set X and calling it x.
Most of our security definitions and proofs will use code-based games in the style
of Bellare and Rogaway [4]. These games are algorithms that start by running an
Initialize procedure, if present, and giving the output to the adversary. Then
the adversary queries the oracles provided by the games, and finally halts, with
its output becoming the input to Finalize. The game output is the output of
Finalize. We denote by GA the event that G outputs true when running with
A. In the code, all boolean flags are implicitly initialized to false and all tables
are initially populated with ⊥.

Signature Schemes. A signature scheme Π = (KeyGen,Sign,Verify) consists
of three algorithms that satisfy the following syntax requirements. Algorithm
KeyGen takes the security parameter λ as input and outputs a public/secret key
pair, denoted (pk , sk). Sign takes as input a secret key sk , a message m ∈ {0, 1}�,
and outputs a signature σ or ⊥ (our security definitions will imply that it should
only output ⊥ with very small probability). Verify takes as input a public key
pk , a message m, and a signature σ and outputs accept or reject. We require
that, for all (pk , sk) output by KeyGen(1λ), all messages m ∈ {0, 1}�, and all
σ �= ⊥ output by Sign(sk ,m), Verify(pk ,m, σ) accepts.

Digital Signatures from Strong RSA Without Prime Generation 223

proc Initialize

M ← ∅
(pk , sk)←$ KeyGen(1λ)
Return pk

proc Sign(m)

M ← M ∪ {m}
σ ←$ Sign(sk ,m)
If σ = ⊥ then Win ← true
Return σ

proc Finalize(m̂, σ̂)

If Win then Return true
If m̂ ∈ M then Return false
Return Verify(pk , m̂, σ̂) = 1

proc Initialize

(pk , sk)←$ KeyGen(1λ)
Return 1λ

proc Sign(m)

For i = 1, . . . , |m| do
σ[i]←$ Sign(sk ,m[i])
If σ[i] = ⊥ then Win ← true

Return (pk ,σ)

proc Finalize(m̂, σ̂)

If Win then Return true
If m̂ ∈ m then Return false
Return Verify(pk , m̂, σ̂) = 1

proc Initialize

K ←$ {0, 1}λ
b←$ {0, 1}
Return 1λ

proc Fn(x)

If b = 1
T [x] ← FK(x)

If (b = 0) ∧ (T [x] = ⊥)
T [x]←$ {0, 1}n

Return T [x]

proc Finalize(̂b)

Return (̂b = b)

Fig. 1. Games CMA (left), wCMA (middle), and PRF (right). In wCMA the adversary
is only allowed one query to Sign.

Security notions for signature schemes. We will target existential
unforgeability under chosen message attacks. We define security using the game
CMA in Fig. 1. For a signature scheme Π = (KeyGen,Sign,Verify) and an adver-
sary A, define the CMA advantage of A to be Advcma

Π,A(λ) = Pr[CMAA]. Note
that, in a slight departure from the standard definition, the adversary wins when
the signature scheme outputs ⊥.

While existential unforgeability under chosen message attacks is our ulti-
mate target, we will mostly deal with an intermediate notion called existential
unforgeability under weak chosen message attacks, which is defined via the game
wCMA in Fig. 1. In this game, the adversary is only allowed one Sign query,
which is issued before the adversary sees the public key. We define the wCMA
advantage of A to be Advwcma

Π,A (λ) = Pr[wCMAA].

Chameleon hash functions. A hash function HF = (K,HE) is a tuple of
polynomial-time algorithms. Algorithm K takes the security parameter λ as input
and outputs a key K. The hash evaluation algorithm HE takes a key K and some
input x and computes y ← HE(K,x). A collision-resistance adversary H, given
K ← K(1λ) as input, outputs (x, x′). The adversary advantage, Advcr

HF,H(λ), is
given by the probability that the outputted (x, x′) satisfy (x �= x′)∧(HE(K,x) =
HE(K,x′)). A chameleon hash [20] is a collision-resistant hash function with
additional properties.

– The hash evaluation algorithm HE takes a pair consisting of a message m
and randomness r as input.

– The algorithm K, in addition to K, also generates a secret trapdoor informa-
tion, HT . There should be an efficient algorithm that when given messages
m1,m2, randomness r1 and HT as input, finds r2 such that HE(K, (m1, r1))
= HE(K, (m2, r2)).

224 D. Cash et al.

– All the messages m should induce the same probability distribution on the
hash output for r chosen uniformly at random.

Fact 1: There is a generic way to transform an wCMA secure signature
scheme into an CMA secure signature scheme using a chameleon hash [19,20].

Fact 2: There is a construction of a chameleon hash based on the RSA
assumption [19,20].

Pseudorandom functions. We define pseudorandom function security using
the game PRF in Fig. 1. For a function family F with outputs of length n
and an adversary C, we define the PRF advantage of C to be Advprf

F,C(λ) =
2Pr[PRFC] − 1.

Strong RSA Assumption. An RSA parameter generator is an algorithm that,
outputs two random, equal length safe primes (p, q) (a safe prime is a prime p
such that p′ = (p − 1)/2 is also prime). Let RSAGen(1λ) be an RSA parameter
generator. We define the advantage of an adversary C against the strong RSA
assumption with RSAGen [2,24], Advsrsa

RSAGen,C(λ), as the probability that C given
(N, y), where (p, q) ← RSAGen(1λ) and N = pq and y ←$ Z

∗
N as input, returns

(e, x) such that e > 1 and xe = y mod N .

Facts from number theory. Let α be a positive integer. An integer x is
called α-smooth if all prime factors of x are less than or equal to α. We will
denote by ε(α, n) the probability that a random number between 0 and 2n − 1
is α-smooth. Define the function

Lx[a] = exp
(

(a + o(1))
√

log x log log x
)

.

The probability that a random integer between one and x is Lx[a]-smooth is
Lx

[−1
2a

]

(see [10]). We will also use the following lemma from [16].

Lemma 1. Given x, y ∈ Z
∗
N and a, b ∈ Z such that xa = yb, one can efficiently

compute z ∈ Z
∗
N such that z = y

gcd(a,b)
a .

Strings. We will write {0, 1}≤� for ∪�
i=0{0, 1}i. For a string x ∈ {0, 1}≤� we

write Pref(x) for the set of all prefixes of x, including the empty string and x.
We extend this notation to prefixes of sets in the obvious way.

The following definition formalizes the notion of “exit nodes” from the intro-
duction.

Definition 2. Let M ⊆ {0, 1}� be non-empty. A minimal non-prefix of M is
a string x ∈ {0, 1}≤� such that x /∈ Pref(M) but x′ ∈ Pref(M), where x′ is x
with the last bit deleted. We denote the set of minimal non-prefixes of M by
MNP(M).

Note that the empty string is never in MNP(M) because it is always in Pref(M).
The following lemma is implicit in [19].

Lemma 3. Let M ⊆ {0, 1}� be non-empty. Then we have:

Digital Signatures from Strong RSA Without Prime Generation 225

– For all i = 1, . . . , �, |MNP(M) ∩ {0, 1}i| ≤ |M |, so |MNP(M)| ≤ �|M |.
Moreover, MNP(M) can be computed in time linear in �|M |.

– For any y /∈ M , Pref(y) ∩ MNP(M) consists of exactly one string.

Chernoff bound. We will use the following standard multiplicative Chernoff
bound.

Lemma 4. Let Y1, . . . , Y� be independent Bernoulli random variables such that
Pr[Yi = 1] = ε for all i, and let Y = Y1 + · · · Y�. Then for all δ > 0,

Pr[Y > (1 + δ)ε�] <

(
eδ

(1 + δ)1+δ

)ε�

.

3 Signature Scheme

The signature scheme works as follows. Let λ be the security parameter and let
n = n(λ), � = �(λ) and d = d(λ) be functions of the security parameter. The
scheme signs messages from {0, 1}�, but this can be extended using a collision
resistant hash function.

Fix an RSA parameter generator RSAGen and a function family F that maps
{0, 1}≤�′

to odd numbers between 0 and 2n − 1 (i.e., bitstrings with the last bit
set), where �′ = � + �log d
. We associate with each message m ∈ {0, 1}� a set of
strings S(m) ⊆ {0, 1}≤�′

given by

S(m) = Pref(m) ∪ {m ‖ i : i ∈ [d]}. (2)

That is, S(m) consists of all of the prefixes of m, including the empty string and
m itself, along with d strings that are formed by appending to m (an encoding
of) an integer between 1 and d.

KeyGen(1n): Run (p, q) ←$ RSAGen(1λ), then set N = pq. Select h ←$ Z
∗
N and a

key K ←$ {0, 1}λ for the function family F . The public key is pk = (N,h,K)
and the secret key is sk = (pk , p, q).

Sign(sk,m): Compute the set S(m). For each s ∈ S(m), let es ← FK(s) (recall
that F outputs odd numbers), and set e ←

∏

s∈S(m) es. If e is not coprime
with φ(N), then output ⊥. Otherwise, solve the equation

σ = h1/e mod N,

for σ using the factorization of N . Then output the signature σ. Note that
the probability of outputting ⊥ is negligible in the security parameter.

Verify(pk ,m, σ): Compute the set S(m), and for each s ∈ S(m) let es ← FK(s).
Then let e ←

∏

s∈S(m) es, and finally accept if

σe = h mod N

and otherwise reject.

226 D. Cash et al.

proc Sign(m) // G0, G1

(p, q)←$ RSAGen(1λ) ; N ← pq
p′ ← (p− 1)/2 ; q′ ← (q − 1)/2

h←$
∗
N ; K ←$ {0, 1}λ

pk ← (N,h,K)

If BadSetFK(·)(m) then
bad ← true ; Lose ← true

For each j = 1, . . . , Q do
ej ← ∏

s∈S(m[j]) FK(s)

If gcd(ej , p
′q′) > 1 then

σ[j] ← ⊥
Else σ[j] ← h1/ej mod N

Return (pk ,σ)

proc Finalize(m̂, σ̂) // G0,G1,G2

ê ← ∏
s∈S(m̂) FK(s)

If gcd(ê, p′q′) > 1 then return false
If Lose then return false

Return ⊥ ∈ σ ∨ ((σ̂ê = h) ∧ (m̂ 	∈ m))

proc Sign(m) // G2

(p, q)←$ RSAGen(1λ) ; N ← pq
p′ ← (p− 1)/2 ; q′ ← (q − 1)/2

y ←$
∗
N ; K ←$ {0, 1}λ

If BadSetFK(·)(m) then Lose ← true
For each j = 1, . . . , Q do

ej ← ∏
s∈S(m[j]) FK(s)

e∗ ← ∏Q
j=1 ej

h ← ye∗ mod N ; pk ← (N,h,K)
For each j = 1, . . . , Q do

If gcd(ej , p
′q′) > 1 then

σ[j] ← ⊥
Else

e′j ← e∗/ej ; σ[j] ← ye′j mod N
Return (pk ,σ)

proc Sign(m) // G3

Choose a random function π
If BadSetπ(m) then

bad ← true

proc Finalize(m̂, σ̂) // G3

Return bad

Fig. 2. Games G0,G1,G2,G3 for the proof of Theorem 5. G1 includes the boxed code
and G0 does not. BadSet is described below.

3.1 Security Proof

Theorem 5. Let F be a function family with outputs of length n, RSAGen be a
RSA parameter generator, and Π be the signature scheme associated to F and
RSAGen via the construction above. Let α be such that ε(α, n) ≤ 1/4. Then for
all adversaries A that request Q signatures, there exist efficient adversaries B,C
such that

Advwcma
Π,A (λ) ≤ Advprf

F,C(λ) + Advsrsa
RSAGen,B(λ)

+ Q
(

2−2d+1 + 2�3(� + d)Q/α + �2(e/4)�
)

.
(3)

where e is the base of the natural logarithm.

Recall that ε(α, n) is the probability that a random number between 0 and
2n − 1 is α-smooth. In Section 4, we will provide example instantitations of the
parameters n, �, and d.

Proof: We use the games in Fig. 2. These games use as subroutine an oracle
algorithm BadSet, which we describe now. Algorithm BadSet takes as input a
vector of messages m ⊆ {0, 1}�, expects access to an oracle O mapping {0, 1}∗

to ZN , and outputs true or false. It works as follows.

Digital Signatures from Strong RSA Without Prime Generation 227

BadSetO(m) first computes e∗ ←
∏

m∈m

∏

t∈S(m) O(t), and then computes
the set MNP(m). Then for each x ∈ MNP(m), it runs the recursive subroutine
CheckO(x). If any of these runs returns true, then BadSet returns true, and
otherwise it returns false.

CheckO(x)
If O(x) � e∗ then

Return false
If |x| = � then

If O(x ‖ i) � e∗ for some i = 1, . . . , d then
Return false

Else
Return true

If |x| < � then
Return CheckO(x ‖ 0) ∨ CheckO(x ‖ 1)

We add the rule that, if any call to CheckO(x) results in more than 2�2

recursive calls, then BadSetO(m) halts the computation and returns true.

We now turn to relating the games. Game G0 is just an implementation of the
game wCMA with an extra bad flag that is set when BadSet returns true. The
purpose of this flag will become clear later - it is meant to catch cases where,
after issuing its signing query, the adversary could find a message for which a
forgery is easily created by assembling the given signatures.

Game G1 is the same as G0, except that when the bad flag is set it returns
false to the adversary. We have

Advwcma
Π,A (λ) = Pr[GA

0] (4)

Pr[GA
0] ≤ Pr[GA

1] + Pr[Bad(GA
0)]. (5)

The inequality follows by the fundamental lemma of game playing since G0 and
G1 are identical-until-bad.

We will bound the summands in (5) individually. We first deal with Pr[GA
1].

To this end, we use G2, which employs the now-standard technique of computing
the public key and signatures “backwards” without changing their distribution
- instead, the changes are meant to help the reduction to the SRSA problem.
G2 computes h by choosing a random element of Z

∗
N , y, and raising it to the

product of all of the exponents used during signing. Since the adversary wins
if this product is not relatively prime to p′q′, the resulting h is a uniformly
random element of Z

∗
N (or both games output true). Subsequently, signatures

can be computed using y and the exponents using the identity

h1/ej = y(
∏n

i=1 ei)/ej = y
∏

i�=j ei .

We have

Pr[GA
1] = Pr[GA

2].

228 D. Cash et al.

We claim there exists an efficient adversary B such that

Pr[GA
2] ≤ Advsrsa

RSAGen,B(λ).

Naturally, B is designed to take advantage of the changes made in G2. B takes as
input (N, y) and attempts to compute some x ∈ Z

∗
N and e > 1 such that xe = y

mod N . It gives the adversary the security parameter, and then the adversary
queries Sign with a vector of messages m. B then computes

K ←$ {0, 1}λ

If BadSetFK(·)(m) then halt with output ⊥
For each j = 1, . . . , Q do

ej ←
∏

s∈S(m[j]) FK(s)
e∗ ←

∏Q
j=1 ej

h ← ye∗
mod N ; pk ← (N,h,K)

For each j = 1, . . . , Q do
If N > gcd(2ej + 1, N) > 1 then σ[j] ← ⊥ ; use ej to factor N

Else e′
j ← e∗/ej ; σ[j] ← ye′

j mod N
Return (pk ,σ)

B runs A until it outputs (m̂, σ̂). We claim that whenever A would have won
G2, B will solve its SRSA instance. First, if it occurs that ⊥ ∈ σ in G2, then
B will have factored N in the computation above, thus B can use the factoriza-
tion to solve the SRSA problem. Note that gcd(2ej + 1, N) > 1 if and only if
gcd(ej , p

′q′) > 1.

If instead the output of A satisfies σ̂ê = h mod N and m̂ /∈ m, then B uses the
output of A to solve the SRSA instance. Now the fact that BadSetFK(·)(m) must
have returned false become relevant: We claim it implies that ê =

∏

s∈S(m̂) FK(s)
does not divide e∗. To see this, let x be the unique prefix of m̂ in MNP(m). Then
CheckFK (x) must have returned false, meaning that, for one of the s ∈ S(m̂),
FK(s) did not divide e∗. If one of these did not divide e∗, then certainly product
did not, as desired.

Given that ê does not divide e∗, we can apply Lemma 1. More specifically,
σ̂, ê, y, e∗ satisfy σ̂ê = ye∗

mod N , and we can compute z ∈ Z
∗
N satisfying

zê/ gcd(ê,e∗) = y mod N . We have ê/ gcd(ê, e∗) > 1, so (z, ê/ gcd(ê, e∗)) is a
valid solution to the SRSA instance. This establishes the claim.

Returning to our bound on the advantage of A and now considering Game
G3, substitutions give

Advwcma
Π,A (λ) ≤ Advsrsa

RSAGen,B(λ) + Pr[Bad(GA
0)] (6)

= Advsrsa
RSAGen,B(λ) + Pr[GA

3] + (Pr[Bad(GA
0)] − Pr[GA

3]). (7)

We complete the proof by showing

Pr[Bad(GA
0)] − Pr[GA

3] ≤ Advprf
F,C(λ) (8)

Digital Signatures from Strong RSA Without Prime Generation 229

and

Pr[GA
3] ≤ Q

(

2−2d+1 + 2�3(� + d)Q/α + �2(e/4)�
)

. (9)

We first prove (8). The adversary C works as follows. It has access to an oracle Fn
which returns “real” evaluations of F or random samples. It runs A on input 1λ.
When A queries Sign with a message vector m, C evaluates BadSetO(m), where
all of the calls to O are answered using the Fn oracle provided to C. Finally, C
outputs the value returned by BadSet. It is easy to see that C satisfies (8).

Proving (9) requires more work. It follows from the next lemma, which will
complete the proof of the theorem.

Lemma 6. Let �′ = � + �log d
 and π be a random function from {0, 1}≤�′
to

{0, 1}n. Let BadSetπ be defined as above. For α > 0, let ε = ε(α, n) be the
probability that a random number between 0 and 2n − 1 is α-smooth. Then for
any m ⊆ {0, 1}� and α, n > 0 such that ε(α, n) ≤ 1/4,

Pr[BadSetπ(m)] ≤ Q
(

2−2d+1 + 2�3(� + d)Q/α + �2(e/4)�
)

.

For the proof, we define an alternative, more restrictive version of BadSet,
called SmoothSet. SmoothSet will not be efficiently computable, but we stress
that this is inconsequential for our claims below. SmoothSet takes the same
input and has access to the same oracle. On input m, SmoothSetπ first computes
e∗ ←

∏

m∈m

∏

t∈S(m) π(t), and then computes the set MNP(m). Then it runs
FindPrimesπ(x) for each x ∈ MNP(m), which is the following algorithm that
returns a set of prime numbers.

FindPrimesπ(x)
If ∃ prime p > α s.t. p | π(x) then

Choose one p meeting such criteria and return {p}
If |x| = � then

If ∃ prime p > α, i ∈ [d] s.t. p | π(x ‖ i) then
Choose one p meeting such criteria and return {p}

Else
Return {⊥}

If |x| < � then Return FindPrimesπ(x ‖ 0) ∪ FindPrimesπ(x ‖ 1)

Weadd the rule that, if any call toFindPrimesπ(x) results inmore than 2�2 recursive
calls, thenSmoothSetπ(m)halts thecomputationandreturns true.SmoothSetπ(m)
takes the union of all the sets returned by calls to FindPrimesπ(x). If ⊥ was returned
at any point, or if any of the returned primes divide e∗, then it returns true. Other-
wise, it returns false.

We first argue that whenever BadSetπ(m) returns true due to the halting con-
dition (i.e., if some call Checkπ(x) results in more than 2�2 recursive calls) then
SmoothSetπ(m) also returns true. Note that in such cases either SmoothSetπ(m)

230 D. Cash et al.

also returns true due to the halting condition or for at least one called value x
there were less recursive calls in FindPrimesπ(x) than in Checkπ(x). But then
there exists some value u = x ‖ v such that: (i) FindPrimesπ(u) was called and
did not generate any recursive call but (ii) Checkπ(u) generated recursive calls.
(i) implies that FindPrimesπ(u) outputted some prime p > α such that p | π(u)
and (ii) implies that π(u) | e∗. Therefore these two facts together imply that
p | e∗ and so SmoothSetπ(m) returns true by definition.

The other case in which BadSetπ(m) returns true is if there is an x ∈ MNP(m)
and y ∈ {0, 1}�−|x| such that

∀s ∈ Pref(y), π(x ‖ s) | e∗

and
∀i = 1, . . . , d, π(x ‖ y ‖ i) | e∗.

But then it also holds that ∀s ∈ Pref(y) all prime factors of π(x ‖ s) divide e∗ and
∀i = 1, . . . , d all prime factors of π(x ‖ y ‖ i) divide e∗ and hence SmoothSetπ(m)
also returns true. So we have

Pr[BadSetπ(m)] ≤ Pr[SmoothSetπ(m)].

Thus it suffices to bound the latter probability. We recall that SmoothSetπ(m)
returns true if, and only if, for some x ∈ MNP(m), FindPrimesπ(x) returns ⊥ or
performs more than 2�2 recursions or one of the returned primes divides e∗.

We first bound the probability that ⊥ is in the set returned by a call to
FindPrimesπ(x). This will happen if there is an x ∈ MNP(m) and y ∈ {0, 1}�−|x|

such that
∀s ∈ Pref(y), π(x ‖ s) is α-smooth

and
∀i = 1, . . . , d, π(x ‖ y ‖ i) is α-smooth.

For a particular x and y this happens with probability ε|y|+d = ε�−|x|+d. A union
bound over all x and y show that ⊥ is in a set with probability at most

∑

x∈MNP(m)

∑

y∈{0,1}�−|x|

ε�−|x|+d =
∑

x∈MNP(m)

2�−|x|ε�−|x|+d

≤
�∑

i=1

Q2�−iε�−i+d

= Qεd
�−1∑

i=0

(2ε)i < 2Qεd ≤ Q2−2d+1

For the first inequality we used Lemma 3, and for the second we used the assump-
tion that ε ≤ 1/4 and applied the formula for summing a geometric series.

Next we need the following lemma that gives an upper bound on the num-
ber of recursive calls generated by FindPrimesπ(x) (i.e., this lemma bounds the

Digital Signatures from Strong RSA Without Prime Generation 231

probability that the halting condition makes SmoothSet return true due to this
x). Note that since each call adds at most one element to the returned set, this
will also bound the size of the returned set.

Lemma 7. Let π be a random function from {0, 1}∗ to {0, 1}n, α > 0, and
ε = ε(α, n) ≤ 1/4 be the probability that a random number between 0 and 2n − 1
is α-smooth. Then, for any x ∈ MNP(m), the probability that FindPrimesπ(x)
generates more than 2�2 recursive calls is at most �(e/4)�.

Using Lemma 7, it is possible to complete the proof of Lemma 6. Suppose that
FindPrimesπ(x) returns a set of at most 2�2 primes without ever returning ⊥. The
probability that each of the primes p divides e∗ is at most the probability that p
divides one of the Q(�+ d) random factors used in the product defining e∗. This
probability is 1/p < 1/α, because both numbers are random and independent. A
union bound over the factors shows that a given prime divides e∗ with probability
at most Q(� + d)/α; another union bound over the (at most) 2�2 primes gives a
bound of 2Q�2(� + d)/α.

Finally, we sum the probability that FindPrimesπ(x) returns ⊥ and the prob-
abilities that FindPrimesπ(x) performs more than 2�2 recursions or one of the
returned primes divides e∗ for an x ∈ MNP(m) (there are at most Q� by
Lemma 3) in order to conclude the proof of Lemma 6 and hence of Theorem
5.

Proof of Lemma 7: Fix any x ∈ MNP(m). We bound the number of recursive
calls in the computation of FindPrimesπ(x): Since each call adds at most one
element to the returned set, this will also bound the size of that set. We consider
the number of calls to FindPrimes on inputs of each length. Let Xi the number
of calls on inputs of length i that are generated due to the computation of
FindPrimesπ(x). We will show that with high probability, Xi < 2� for all i,
which gives

∑�
i=1 Xi < 2�2.

Pr[X1, . . . , X� ≤ 2�] = 1 − Pr[∃Xi : Xi > 2�]

= 1 −
�∑

i=1

Pr[Xi > 2�|X1, . . . , Xi−1 ≤ 2�]

We proceed to prove that for all i

Pr[Xi > 2�|X1, . . . , Xi−1 ≤ 2�] < (e/4)�. (10)

Let j be the length of x. Then we have that X1, . . . , Xj ≤ 1 with probability
1. Now consider the other Xi. Since each call results in at most two calls at the
input with one bit appended, we have Xi ≤ 2Xi−1 for all i = j + 1, . . . , �. We
have that

232 D. Cash et al.

Pr[Xi > 2�|X1, . . . , Xi−1 ≤ 2�] = Pr
[

Xi > 2�

∣
∣
∣
∣

X1, . . . , Xi−2 ≤ 2�
∧ Xi−1 < �

]

+ Pr
[

Xi > 2�

∣
∣
∣
∣

X1, . . . , Xi−2 ≤ 2�
∧ � ≤ Xi−1 ≤ 2�

]

.

In the right-hand side the first probability is 0 because Xi ≤ 2Xi−1 < 2�. We
are left to bound the the second term. Now we use the observation that Xi is the
sum of �′ = Xi−1 (with 2� ≥ �′ ≥ �) Bernoulli random variables with expectation
2ε, allowing us to apply the Chernoff bound in Lemma 4 giving

Pr[Xi > 2�|X1, . . . , Xi−1 ≤ 2�] = Pr[Xi > 2�|X1, . . . , Xi−1 ≤ 2� ∧ Xi−1 ≥ �]

= Pr
[

Xi >

(
�

ε�′

)

2ε�′
∣
∣
∣
∣

X1, . . . , Xi−1 ≤ 2�
∧ Xi−1 ≥ �

]

<

⎛

⎝
(e)

�
ε�′ −1

(
�

ε�′
) �

ε�′

⎞

⎠

2ε�′

=
e2�−2ε�′

(
�

ε�′
)2�

=
e2�−2�(ε�′/�)

(
�

ε�′
)2�

where we used the fact that �
ε�′ > 1 for ε ≤ 1/4 in order to apply the Chernoff

bound. Now letting β = ε�′
�

e2�−2�(ε�′/�)

(
�

ε�′
)2�

=
(

e1−ββ
)2�

We note that 0 < β < 1/2 since 2� ≥ �′ ≥ � and 0 < ε ≤ 1/4, and that this is an
increasing function of β for the range 0 < β < 1/2. Therefore the worst case is

Pr[Xi > 2�|X1, . . . , Xi−1 ≤ 2�] <

(√
e

2

)2�

=
(e

4

)�

Note that this bound can be made stronger if the upper bound of ε is decreased.
This proves Inequality 10 and then summing the probabilities over the l different
lengths we conclude the proof of the lemma.

Digital Signatures from Strong RSA Without Prime Generation 233

4 Setting the Parameters

From Theorem 5 we have

Advwcma
Π,A (λ) ≤ Advprf

F,C(λ) + Advsrsa
RSAGen,B(λ)

+ Q
(

2−2d+1 + 2�3(� + d)Q/α + �2(e/4)�
)

.

Now we consider the case in which we want to give concrete upper bounds
on the advantage of any wCMA adversary A. Using the previous equation we
would like to have

2−λ ≥ Advprf
F,C(λ) + Advsrsa

RSAGen,B(λ) + Q
(

2−2d+1 + 2�3(� + d)Q/α + �2(e/4)�
)

= Advprf
F,C(λ) + Advsrsa

RSAGen,B(λ) + Q2−2d+1 + 2Q2�3(� + d)/α + Q�2(e/4)�

for some security parameter λ. To obtain such bound, we will upper bound each
of the five terms by 2−λ/8. For the first two terms, we only need to setup the
function family F and the RSA parameter generator RSAGen in such a way that
for any polynomial-time adversaries C and B we have

Advprf
F,C(λ) < 2−λ/8

and
Advsrsa

RSAGen,B(λ) < 2−λ/8

For bounding
Q2−2d+1 < 2−λ/8

we only need to set

d >
λ + 4 + log (Q)

2
Having fixed the value of d, we can now bound

2Q2�3(� + d)/α < 2−λ/8

by setting
α > 2λ+4Q2�3(� + d).

Now the value of α will determine the value of n, since we need ε(α, n) ≤ 1/4.
To set the value of n we will use the Dickman function. The Dickman function
ρ(u) is an asymptotical approximation for the probability of a random number
between 1 and x being x1/u-smooth. Assuming that the Dickman function gives
a good approximation in the range of interest, we can use the fact that ρ(2.2) <
0.221 [15] and set n = log(α2.2) (i.e., we are choosing numbers up to α2.2) in
order to obtain ε(α, log(α2.2)) < 1/4 as required by Theorem 5.

Soundness of using Dickman approximation. As mentioned by Bach and
Peralta [1] no discrepancy has been observed between the values predicted by
the ρ function and the real smoothness probabilities, in the range of interest

234 D. Cash et al.

to algorithm designers. In addition, for small values of u (the case that we are
interested), counts of smooth number have shown that the error of the approx-
imation is as low as 2% even for values of x as low as 1015 (i.e., for numbers
between 1 and 1015, considering 1015/u-smoothness). Tables available in [1].

Acknowledgments. The third author was supported by a Sofja Kovalevskaja Award
of the Alexander von Humboldt Foundation and the German Federal Ministry for
Education and Research. Part of this work was done while the first two authors were
visiting Ruhr-University Bochum, supported by the Sofja Kovalevskaja Award.

References

1. Bach, E., Peralta, R.: Asymptotic semismoothness probabilities. Math. Comput.
65(216), 1701–1715 (1996)

2. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, pp. 62–73. ACM Press, Nov.
(1993)

4. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

5. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-
tures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)

6. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998

8. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011)

9. Coron, J.-S., Handschuh, H., Naccache, D.: ECC: Do We Need to Count? In: Lam,
K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 122–
134. Springer, Heidelberg (1999)

10. Coron, J.-S., Naccache, D.: Security Analysis of the Gennaro-Halevi-Rabin Signa-
ture Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 91.
Springer, Heidelberg (2000)

11. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
In ACM CCS 99, pp. 46–51. ACM Press, November 1999

12. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

13. Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In:
Desmedt, Y. (ed.) PKC 2003, volume of. LNCS, vol. 2567, pp. 116–129. Springer,
Heidelberg (2003)

Digital Signatures from Strong RSA Without Prime Generation 235

14. Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures without the
Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 123.
Springer, Heidelberg (1999)

15. Granville, A.: Smooth numbers: computational number theory and beyond. Algo-
rithmic Number Theory 44, 267–323 (2008)

16. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing Both Transmission and Memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

17. Hofheinz, D., Jager, T., Kiltz, E.: Short Signatures from Weaker Assumptions.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666.
Springer, Heidelberg (2011)

18. Hofheinz, D., Kiltz, E.: Programmable Hash Functions and Their Applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

19. Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

20. Krawczyk, H., Rabin, T.: Chameleon signatures. In NDSS 2000. The Internet Soci-
ety, February 2000

21. Kurosawa, K., Schmidt-Samoa, K.: New online/offline signature schemes without
random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 330–346. Springer, Heidelberg (2006)

22. Zhu, H.: New digital signature scheme attaining immunity to adaptive chosen-
message attack. Chinese Journal of Electronics 10(4), 484–486 (2001)

23. Zhu, H.: A formal proof of zhus signature scheme. Cryptology ePrint Archive,
Report 2003/155, 2003. http://eprint.iacr.org/

24. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

http://eprint.iacr.org/

Short Signatures with Short Public Keys
from Homomorphic Trapdoor Functions

Jacob Alperin-Sheriff(B)

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
jmas6@cc.gatech.edu

Abstract. We present a lattice-based stateless signature scheme prov-
ably secure in the standard model. Our scheme has a constant number
of matrices in the public key and a single lattice vector (plus a tag) in
the signatures. The best previous lattice-based encryption schemes were
the scheme of Ducas and Micciancio (CRYPTO 2014), which required
a logarithmic number of matrices in the public key and that of Bohl
et. al (J. of Cryptology 2014), which required a logarithmic number of
lattice vectors in the signature. Our main technique involves using fully
homomorphic computation to compute a degree d polynomial over the
tags hidden in the matrices in the public key. In the scheme of Ducas and
Micciancio, only functions linear over the tags in the public key matrices
were used, which necessitated having d matrices in the public key.

As a matter of independent interest, we extend Wichs’ (eprint 2014)
recent construction of homomorphic trapdoor functions into a primitive
we call puncturable homomorphic trapdoor functions (PHTDFs). This
primitive abstracts out most of the properties required in many different
lattice-based cryptographic constructions. We then show how to com-
bine a PHTDF along with a function satisfying certain properties (to be
evaluated homomorphically) to give an eu-scma signature scheme.

1 Introduction

Lattice-based cryptography has made great strides since the original work of
Ajtai [AD97,Ajt96]. In many areas, it holds its own in comparison to cryptog-
raphy based on various quantum-insecure number-theoretic problems such as
RSA and Diffie-Hellman. Variants of the very efficient commercial NTRUEncrypt
scheme have been proved secure under worst-case lattice problems [HPS98,SS11].
Moreover, lattice-based cryptography has led to cryptographic primitives such as
fully homomorphic encryption (FHE) which have not been realized at all under
classical number-theoretic hardness assumptions [Gen09].

J. Alperin-Sheriff—This material is based upon work supported by DARPA under
agreement number FA8750-11-C-0096. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of DARPA or U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 236–255, 2015.
DOI: 10.1007/978-3-662-46447-2 11

Short Signatures with Short Public Keys 237

In the area of digital signatures, lattice-based cryptography is also able to
hold its own–in the random oracle model. The work in this area [Lyu09,Lyu12,
GLP12,DDLL13,BG14] has led to signature schemes which are very efficient.
Signing is about as fast as in state-of-the-art schemes providing comparable
security (in the random oracle model) based on quantum-insecure problems,
and verification is much faster. On the downside, the key and signatures are
quite a bit larger.

The gap in key size is even more pronounced for stateless signatures in the
standard model. In state-of-the-art schemes based on the security of standard
number-theoretic assumptions as RSA and decisional Bilinear Diffie-Hellman
(BDH), [Wat09,HW09] both the public key and signatures contain only a con-
stant number of “basic” elements (elements of Z

∗
N in the RSA scheme, group

elements in the BDH-based scheme). This results in the public key and signa-
tures having size linear (O(λ)) in the security parameter. By contrast, even when
using “compact” algebraic lattices [Mic02], the “basic” elements in lattice-based
cryptography (matrices of a certain size in Zq for the public key, where q can
usually be polynomial in λ, vectors of a certain size in Zq for the signatures)
have size quasilinear (Õ(λ)) in the security parameter. Moreover, the best known
schemes require either a logarithmic number of “basic” elements in the public
key [DM14] or a logarithmic number of “basic” elements in signatures [BHJ+14].

The efficient RSA-based scheme cited above [HW09] uses the well-studied
prefix-guessing technique for achieving static security in signature schemes. In
this technique, the simulator samples from the polynomially-sized set of shortest
prefixes not found in the messages received from the adversary and then sets up
the scheme so that a forgery on a message with that prefix lets the simulator
solve RSA. A short public key is achieved by embedding trapdoors for all pre-
fixes of the messages received by the adversary into the public key. The efficient
BDH-based scheme [Wat09] is a generic transformation from an efficient fully
secure identity-based encryption scheme. The techniques used in the RSA scheme
does not appear to have an easy realization in the lattice setting, and since the
most efficient known lattice-based fully secure identity-based encryption scheme
requires a linear number of “basic” elements in the public key [ABB10], it also
does not appear to be a productive avenue of investigation for improving effi-
ciency in signatures. Instead of attempting to use these techniques, we turn to
an area where lattice-based cryptography has proven to be particularly versatile:
homomorphic computation.

1.1 Our Results

We present the first standard model construction of a lattice-based stateless
signature scheme with short signatures and a constant number of matrices in
the public key. The constant number of matrices does come at a price, as our
scheme requires a significantly larger SIS parameter β (and correspondingly, a
larger modulus q) to achieve similar levels of security to previous schemes. See
Figure 1.1 for a detailed comparison to previous works.

238 J. Alperin-Sheriff

Scheme Pub. Key Secret Key Signature Reduction SIS param β

R1×k
q mat. Rk×k

q mat. Rk
q vec. loss

[LM08] (Trees) 1 1 log n Q Ω̃(n2)

[CHKP10] n n n Q Ω̃(n3/2)

[Boy10,MP12] n n 1 Q Ω̃(n7/2), Ω̃(n5/2)

[BHJ+14] 1 1 d (Q2/ε)c Ω̃(n5/2)

[DM14] d 1 1 (Q2/ε)c Ω̃(n7/2)

This work 1 1 1 (Q2/ε)c Ω̃(d2d · n11/2)

In the above table, we have ignored constant factors to avoid clutter. The comparison is
in the ring setting because as written, [LM08,DM14] have no realization over general
lattices. Here, Rq = Zq[X]/〈f(X)〉 for some cyclotomic polynomial f of degree n,
the modulus q ≥ β

√
nω(

√
log n), and k = O(log q). Q is the number of signatures

queries made by the adversary and ε is its success probability. For those schemes

using the confined guessing technique, d is a value satisfying 2Q2/ε < 2�cd� for an
arbitrary constant c > 1 (which governs a trade-off between public key size and the
reduction loss). The reduction loss is the ratio ε′/ε between the success probability ε′

of the reduction and the success probability ε of the adversary. In order to be secure
against any PPT adversary succeeding with non-negligible probability, we need d =
ω(log log n). For our scheme, we can choose d to be as large as O(log(n)/ log(log(n)))
and still end up with a polynomial-sized SIS parameter β. However, it does have the
downside that, choosing d = log(n), as in previous works using confined guessing,

results in a SIS parameter of size nΩ̃(log log n).

Fig. 1. Comparison to previous standard-model lattice-based signature schemes in the
ring setting

Our starting point is the recent scheme of Ducas and Micciancio [DM14],
which combines the confined guessing technique of Böhl et al. [BHJ+14] with the
“vanishing trapdoors” technique of Boyen [Boy10]. We provide two improvents
to the scheme:

Instantiation Over General Lattices. The Ducas-Micciancio scheme only works in
the ring-based setting. The reason for this is that, as written, the scheme requires
that their tags (represented as matrices) commute with a certain structured
matrix G ∈ Z

n×m
q under multiplication. Over general lattices, the only tags

which commute with G are scalar tags, and there are only a (small) polynomial
number of these tags which are “short”, while a superpolynomial number are
required for the construction. As a result, they were forced to use the ring setting,
where their tag space can be represented as ring elements, which do in fact
commute with G.

To resolve this non-commutativity issue, we recall a technique which appears
to have first been explicitly presented by [Xag13], although it appears earlier
implicitly in an earlier work in the area of fully homomorphic encryption [BV11].
This technique involves a function which we denote (somewhat abusively) as
G−1(U), where the output of the function is a {0, 1}m×m matrix X such that
GX = U. As a result, in order to multiply a tag H “commutatively” with

Short Signatures with Short Public Keys 239

G, we simply compute G ·G−1(HG) = HG. As a further benefit, in the actual
construction, the multiplication causes the size of the trapdoor to grow according
to the norm of the tag, which forced them to use tags from a set with small norm.
As G−1(X) has small norm regardless of the size of X, our scheme is not subject
to this restriction in terms of tag choice.

Homomorphic Computation of Trapdoors. Lattice-based signature schemes using
the “vanishing trapdoors” technique of Boyen ([Boy10,MP12,DM14]) involve
homomorphically evaluating a function g = g(μ,T) over tags t̂i statistically hid-
den in matrices (A0,A1, . . . ,Ad) in the public key, where the function g to
be evaluated is from a function family indexed by the message μ being signed
and (possibly) some additional set of tags T sampled randomly. The output of
this function is a matrix A(μ,T), with an associated trapdoor, the size of which
grows in a manner depending on the function g being evaluated. The trapdoor
can be used by the signer to sample short vectors from some coset of a lattice
constructed using A(μ,T) whenever the tag hidden in A(μ,T) is invertible; these
preimages are combined with the tags T to form the signature. However, when
the tag hidden is 0, we refer to A(μ,T) as punctured, because in this case we
can no longer sample short vectors, and in fact, A(μ,T) can be used to embed a
challenge for the SIS problem.

In order to make the signature scheme secure, the function family g must be
such that we can choose two sets of d + 1 tags T̂1, T̂2 to hide in the matrices
in the public key such that the tags satisfy certain properties. The first set of
tags is used in the actual signature scheme, and they must be such that for
any message μ and tags T , the tag associated with matrix A(μ,T) is invertible.
The second set of tags is used in the security reduction, and they must be such
that we can (with non-negligible probability) produce a signature for each of
the adversary’s queried messages while ensuring that a forgery output by the
adversary will result in a punctured Aμ∗,T ∗ with non-negligible probability.

In these previous schemes, the function g being computed was linear over
the d + 1 tags in the public key. We use a technique from recent works works by
Boneh et al. [BGG+14] and Wichs et al. [GVW14] to allow us to homomorphi-
cally compute a degree d polynomial over these tags. This lets us use just two
tagged matrices in the public key instead of d. Computation in these works was
defined in terms of basic operations of addition, multiplication, addition-with-
constant, and multiplication-by-constant. However, naive evaluation of com-
putation over homomorphic trapdoors results in larger growth in the size of
the trapdoor than is necessary. To reduce the growth of the trapdoor, we use
the “right-associativity” technique for multiplication. This technique was devel-
oped by Brakerski and Vaikuntanathan [BV14] and by Alperin-Sheriff and Peik-
ert [ASP14] in the context of bootstrapping the GSW homomorphic encryption
scheme [GSW13]. Those two papers only used the technique with {0, 1} messages
(tags in our context) which resulted in “quasi-additive” noise growth in the size
of the (implicit) trapdoors. Here, we show that for tags of bounded size at most
d, the technique allows us to homomorphically evaluate a degree d polynomial
while causing the trapdoors to grow by a dd poly(n) factor.

240 J. Alperin-Sheriff

Puncturable Homomorphic Trapdoor Functions. As a side contribution, we
abstract out the properties required to construct “vanishing trapdoor”-based
cryptographic primitives, including signatures, identity-based encryption and
attribute-based encryption, into a primitive we call puncturable homomorphic
trapdoor functions (PHTDFs). These functions are an extension of the Wichs
et al. definition of homomorphic trapdoor functions [GVW14]. A PHTDF con-
sists of a tagged function space ai with corresponding trapdoors ri. One can
homomorphically compute functions g of these ai, ri to get a tagged function a∗

and (if one knows the trapdoors for the original ai) trapdoor r∗. Whenever the
tag associated with a∗ is invertible, one can use the trapdoor r∗ to invert the
function fpk,a∗,x, where x ∈ X are indices.

For security, we require that for a punctured a∗, it should be difficult to
find collisions x �= x′, u, u′ such that fpk,a∗,x(u) = fpk,a∗,x′(u′), even given
oracle access to an inverter for fpk,ai,x for arbitrary ai with invertible tags and
arbitrary x.

We do not expect realizations of PHTDFs under the various classical assump-
tions (just as we do not expect realizations of fully homomorphic cryptography in
general from those assumptions). However, we believe that building our signature
scheme generically using a PHTDF makes the proof of security easier to follow.
Perhaps more importantly, we believe that viewing “vanishing trapdoor”-based
cryptographic primitives under this framework and focusing on the function g to
be computed may lead to realizations of these primitives with smaller public keys.

Organization. The remainder of the paper is organized as follows. In Section 2
we recall some preliminary information about lattice-based cryptography. In
Section 3 we define and construct puncturable homomorphic trapdoor functions
(PHTDFs). In Section 4 we show how to use a PHTDF to construct a secure
signature scheme given that the function g being homomorphically computed
satisfies certain properties. In Section 5 we provide our main result, the explicit
construction and analysis of the function g.

Acknowledgements. I would like to thank Léo Ducas and Daniele Micciancio for
some helpful correspondence regarding their signature scheme in the early stages
of this work. Thanks are also due to the anonymous PKC ’15 reviewers and to
my advisor Chris Peikert for their helpful comments.

2 Preliminaries

We write [d] for a positive integer d to denote the set {1, . . . , d}. We denote
vectors over Z with lower-case bold letters (e.g. x), and matrices by upper-case
bold letters (e.g. A). For an integer q ≥ 2, we let Zq denote the ring of integers
modulo q. We represent the elements of Zq as integers in (−q/2, q/2] and define
|x| ∈ Zq by taking the absolute value of the representative in this range. We say
that a function is negligible, written negl(n), if it vanishes faster than the inverse
of any polynomial in n. For a matrix X ∈ R

n×k, the largest singular value (also
known as the spectral norm) of X is defined as s1(X) = max‖u‖=1‖Xu‖.

Short Signatures with Short Public Keys 241

2.1 Signatures

We briefly recall the standard definitions of digital signature schemes. A sig-
nature scheme SIG is a triple (Gen,Sign,Ver) of PPT (probabilistic polynomial
time) algorithms, together with a message space M = Mλ. It is correct if,
for all messages μ ∈ Mλ, Ver(vk, μ, σ) = 1 holds true, except with negligible
probability in λ over the choice of (sk, vk) ← Gen(1λ) and σ ← Sign(sk, μ).

We now recall the standard security definitions for digital signature schemes.
Existential unforgeability under static chosen-message attack, or eu-scma, is as
follows: the adversary A first outputs a list of message μ1, . . . , μQ to be signed,
for some Q = poly(n). The challenger then generates keys (vk, sk) ← Gen and
signatures σi ← Sign(sk, μi) for each i ∈ [Q], and sends vk and {σi}i∈[Q] to
A. Finally, A outputs an attempted forged signature (μ∗, σ∗). In order to sat-
isfy eu-scma security, the probability that μ∗ �= μi for any i ∈ [Q] and that
Ver(vk, μ∗, σ∗) = 1 accepts should be negligible in the security parameter λ.

Existential unforgeability under adaptive chosen-message attack (eu-acma
security) is defined in a similar manner. The difference is that under this notion,
A receives the verification key vk before making any queries, and is allowed to
make queries one at a time, receiving back a signature before having to make its
next query.

A standard technique for achieving adaptive security from static security is
chameleon hashing [KR00]. An efficient construction (which has an immediate
analog over general lattices) requiring a constant number of matrices was given
by Ducas and Micciancio [DM14]. As a result, we can use it to make our eu-scma
signature scheme adaptively secure without increasing the asymptotic size of our
public key by more than a constant factor.

2.2 Lattices and Gaussians

A (full-rank) m-dimensional integer lattice Λ is an additive subgroup of Zm with
finite index. This work is concerned with the family of integer lattices whose
cryptographic importance was first demonstrated by Ajtai [Ajt96]. For integers
n ≥ 1, modulus q ≥ 2, an m-dimensional lattice from this family is specified by
an “arity check” matrix A ∈ Z

n×m
q :

Λ⊥(A) = {x ∈ Z
m : Ax = 0 ∈ Z

n
q } ⊆ Z

m.

For y in the subgroup of Zn
q generated by the columns of A, we define the coset

Λ⊥
y (A) = {x ∈ Z

m : Ax = y mod q} = Λ⊥(A) + x̄,

where x̄ ∈ Z
m is an arbitrary solution to Ax̄ = y.

We briefly recall Gaussian distributions over lattices (for more details see
[MR04,GPV08]). For s > 0 and dimension m ≥ 1, the Gaussian function ρs :
R

m → (0, 1] is defined as ρs(x) = exp(−π‖x‖2/s2). For a coset Λ + c of a
lattice Λ, the discrete Gaussian distribution DΛ+c,s (centered at zero) assigns

242 J. Alperin-Sheriff

probability proportional to ρs(x) to each vector in the coset, and probability
zero elsewhere.

We will need several standard facts about discrete Gaussians over lattices.
First, for ε > 0 the smoothing parameter [MR04] ηε(Λ) of an n-dimensional
lattice is a positive real value. We will not need its precise definition in this
work. Instead, we recall the few relevant facts that we need; for more details,
see, e.g., [MR04,GPV08,MP12].

Lemma 2.1. Let m ≥ Cn lg q for some constant C > 1.

1. For any ω(
√

log n) function, we have ηε(Zn) ≤ ω(
√

log n) for some negligible
ε(n) = negl(n).

2. With all but negl(n) probability over the uniformly random choice of A ∈
Z

n×m
q , the following holds: For e ← DZm,r where r = ω(

√
log n), the dis-

tribution of y = Ae mod q is within negl(n) statistical distance of uniform,
and the conditional distribution of e given y is DΛ⊥

y (A),r.

3. For any m-dimensional lattice Λ, any c ∈ Z
m, and any r ≥ ηε(Λ) where

ε(n) = negl(n), we have ‖DΛ+c,r‖ ≤ r
√

m with all but negl(n) probability.
In addition, for Λ = Z we have |DZ,r| ≤ r · ω(

√
log n) except with negl(n)

probability.
4. For any r > 0, and for R ← Dn×k

Z,r , we have s1(R) ≤ r · O(
√

n +
√

k) except
with negl(n) probability.

5. Let Λ ⊂ R
m be a lattice and r ≥ 2ηε(Λ) for some ε ∈ (0, 1). Then for any

c ∈ R
n, y ∈ Λ + c, we have Pr[DΛ+c,r = y] ≤ 2−n · 1+ε

1−ε .

The SIS Problem. For β > 0, the short integer solution problem SISn,q,β is
an average-case version of the approximate shortest vector problem on Λ⊥(A).
Given a uniformly random matrix A ∈ Z

n×m
q for any m = poly(n), the prob-

lem is to find a nonzero vector z ∈ Z
m such that Az = 0 mod q and ‖z‖ ≤ β.

For q ≥ β
√

nω(
√

log n), it has been shown that solving this problem with non-
negligible success probability over the random choice of A is at least as hard as
probabilistically approximating the classic Shortest Independent Vectors Prob-
lem (SIVP) on n-dimensional lattices to within Õ(β

√
n) factors in the worst

case. [Ajt96,MR04,GPV08]

2.3 Trapdoors for Lattices

In this section, we recall the efficient trapdoor construction and associated sam-
pling algorithm of Micciancio and Peikert [MP12], which is at the heart of our
signature scheme. This construction uses a universal public “gadget” matrix
G ∈ Z

n×w
q for which there is an efficient discrete Gaussian sampling algorithm

for any parameter r ≥ ω(
√

log n) ≥ ηε(Λ⊥(G)) (for some ε(n) = negl(n)), i.e.,
an algorithm that, given any y ∈ Z

n
q and r, outputs a sample from DΛ⊥

y (G),r.
For concreteness, as in [MP12] we take G = In ⊗ [1, 2, 4, . . . , 2k−1] ∈ Z

n×nk
q

for k =
lg q�. We will somewhat abuse notation by writing G−1(v) to denote

Short Signatures with Short Public Keys 243

computing the lexically first (using 0 < 1) binary vector x ∈ {0, 1}nk such that
Gx = v; the vector will be unique if q = 2�, but for other moduli (including the
ones used in our scheme), there will potentially be more than one such vector.

Following [MP12], we say that an integer matrix R ∈ Z
(m)×nk is a G-

trapdoor with tag H for A ∈ Z
n×(m+nk)
q if A [RI] = HG for some invertible

matrix H ∈ Z
n×n
q . If H = 0, we say that R is a “punctured” trapdoor for A.

We require the following two lemmas regarding these trapdoors.

Lemma 2.2 ([MP12]). There is a probabilistic polynomial time algorithm
GenTrap(Ā,H, r) that on input a matrix Ā ∈ Z

n×m
q , a matrix H ∈ Z

n×n
q

and parameter r ≥ ω(
√

log(n)), outputs a matrix A := [Ā | −ĀR + HG] ∈
Z

n×(m+nk)
q which is statistically close to uniform over the choice of R as well as

a matrix R ∈ Z
m×nk
q such that if H is invertible, R is a G-trapdoor with tag H

for A, while if H = 0, then R is a punctured trapdoor.

Lemma 2.3 ([MP12]). Let R be a G-trapdoor for A ∈ Z
n×m
q . There is an

efficient randomized algorithm SampleD(A,u,R, r) that, given R, any u ∈ Z
n
q ,

and any r ≥ s1(R) · ω(
√

log n) ≥ ηε(Λ⊥(A)) (for some ε(n) = negl(n)), samples
from a distribution within negl(n) distance of DΛ⊥

u (A),r.

3 Puncturable Homomorphic Trapdoor Functions

In this section we define and describe our construction of puncturable homomor-
phic trapdoor functions, a primitive that abstracts out the properties required
for our signature scheme, as well as those for many other lattice-based crypto-
graphic primitives.

3.1 Definition

Our definition is an extension of the Wichs et al. definition of homomorphic
trapdoor functions [GVW14]. A puncturable homomorphic trapdoor function
(PHTDF) scheme consists of six polynomial-time algorithms
(Gen,GenTrap, f, Invert,Evaltdpk,Evalfunc

pk) with the following syntax:

pk ← Gen(1λ) generates the public key. The parameter λ also defines a tag space
T , a trapdoor space R, a tagged function space A,1 an index space X , an
input space U and an output space V. We also need an efficiently sampleable
key distribution DR over R, a parameterized input distribution DU,s over U
and a tag set distribution DT � over T �. We also need to be able to sample
V uniformly at random.

(a, r) ← GenTrap(pk, t) generates a trapdoor r ← DR for (pk, a ∈ A), with t the
tag associated with a. We need the distribution of a to be statistically close
to uniform over A. We define the auxiliary function Tag(pk, a, r) to output
t ∈ T if t is the tag associated with a and r is a trapdoor for a.

1 Technically, the function space is also parameterized by the public key and the index
space.

244 J. Alperin-Sheriff

fpk,a,x : U → V is a deterministic function (not necessarily injective) indexed by
x ∈ X , and pk, a ∈ A.

Invertr,pk,a,x,s : V → U is a puncturable probabilistic inverter indexed by x ∈ X ,
r ∈ R and pk, a ∈ A. The parameter s ∈ R relates to some property
Prop : U → R of the desired inverse when the function space is not injec-
tive. We need to be able to find an inverse u such that Prop(u) ≤ s (with
overwhelming probability) whenever the tag t associated with a is invertible
and whenever the trapdoor r is strong enough to invert with parameter s.
If these conditions are not fulfilled, it outputs ⊥.

r∗ ← Evaltdpk(g, {(ai, ri)}i∈[κ], T), a∗ ← Evalfunc
pk (g, {ai}i∈[κ], T) are deterministic

trapdoor/function homomorphic evaluation algorithms. The algorithms take
as input some function g : T κ × T � → T , a set of tags T = {tj}j∈[�] ∈ T , as
well as values ai ∈ A, ri ∈ R. The outputs are r∗ ∈ R and a∗ ∈ A.

Correctness of Evaluation. Let (pk) ← Gen(1λ), T̂ = {t̂i ∈ T }i∈[κ], T = {tj ∈
T }j∈[�], (ri, ai) ← GenTrap(pk, t̂i). Let g : T κ × T � → T and let t∗ := g(T̂ , T).
We require that for

r∗ ← Evaltdpk(g, {(ai, ri)}i∈[κ], T), a∗ ← Evalfunc
pk (g, {ai}i∈[κ], T)

we have that r∗ is a trapdoor for (pk, a∗), and that t∗ is the tag associated with
a∗.

Leveled relaxation: In a leveled fully homomorphic scheme, each trapdoor
ri ∈ R has an associated level of noise βi ∈ R. The noise level β∗ of the homo-
morphically computed key r∗ is larger than the initial noise levels, and depends
in concrete instantiations on the function g (and the method by which it is com-
puted), the initial trapdoors ri, and the tags t̂i ∈ T . If the noise level β∗ > βmax

for some threshold βmax, the trapdoor will not be strong enough to compute
Invertr,pk,a,x,s, thus limiting the type of functions g that can be computed.

Definition 3.1. We call a function g admissible with parameter s on the set of
tags T̂ := {ti}i∈[κ], if, whenever, the initial trapdoors ri have noise levels βi ≤
βinit = ω(

√
log n), r∗ will have noise level β∗ ≤ s/ω(

√
log n) with overwhelming

probability.

In our concrete construction below, the trapdoors will be matrices Ri, and
we measure the noise level using the spectral norm s1(Ri).

Distribution Equivalence of Inversion. We require the following statistical indis-
tinguishability for pk ← Gen(1λ), trapdoor/function pair (r, a) with an invertible
tag t:

(pk, r, a, x, u, v)
s≈ (pk, r, a, x, u′, v′)

where x ∈ X is arbitrary, u ← DU,s, v := fpk,a,x(u), v′ ← V and u′ ←
Invertr,pk,a,x,s(v′).

Short Signatures with Short Public Keys 245

Security for PHTDFs. Our security definition allows us to use a PHTDF easily
as a building block in our construction of a secure signature scheme. Roughly, we
need it to be difficult, given two punctured trapdoor functions a(1), a(2) computed
using a function g : T κ ×T � → T admissible with parameter s, to find a collision
u, u′, x, x′ ∈ U , with x �= x′ ∈ X such that fpk,a(1),x(u) = fpk,a(2),x′(u′), even
given oracle access to inversion queries for non-punctured functions a′ computed
using that same function g.

The security game between an adversary A and a challenger C is parameter-
ized by a security parameter λ, as well as a function g : T κ ×T � → T and set of
tags T̂ := {ti}i∈[κ] such that g is admissible with some parameter s on the set
of tags T̂ :

1. C runs pk ← Gen(1λ) and then computes (ai, ri) ← GenTrap(pk, t̂i) for each
i ∈ [κ]. A is given pk and {ai}.

2. A may make inversion queries. To query, A sends some v ∈ V, x ∈ X
and some T ′ := {t′j}j∈[�] such that g(T̂ , T ′) is invertible. C computes r′ ←
Evaltdpk(g, {(ai, ri)}, T ′) as well as a′ ← Evalfunc

pk (g, {ai}, T ′), samples u ←
Invertr′,pk,a′,x,s(v) and returns u to A.

3. A(1λ) outputs tag sets T (1) := {t
(1)
j }, T (2) := {t

(2)
j } ∈ T � which satisfy

g(T̂ , T (1)) = g(T̂ , T (2)) = 0, as well as (u(1), u(2) ∈ U , x(1) �= x(2) ∈ X), and
wins if fpk,a(1),x(1)(u(1)) = fpk,a(2),x(2)(u(2)), where Prop(u(1)),Prop(u(2)) ≤ s

and a(b) ← Evalfunc
pk (g, {(ai)}, T (b)) for b ∈ {1, 2}.

We say the PHTDF satisfies (λ, g, {ti})-collision resistance when punctured
(CRP) security if every PPT adversary has a negligible probability of success in
the above game.

3.2 Construction: Basic Algorithms

Our explicit lattice-based construction of PHTDFs is as follows. While our con-
struction is written over general lattices, it may be instantiated easily in the
ring setting. We have a lattice dimension parameter n := λ and a prime modu-
lus q > 2. Other parameters include m̄ = O(n log q), k =
log2 q�, r = ω(

√
log n),

m = m̄ + nk. We let A = Z
n×nk
q , R = Z

m̄×nk
q , DR = Dm̄×nk

Z,r , X = {−1, 0, 1}m̄,
U = Z

m
q , DU,s = Dm

Z,s, V = Z
n
q .

Tags. We first consider the general lattice setting. For a degree-n polynomial f(x),
the ring Rq = Zq[x]/〈f(x)〉 has a standard embedding into Mn(Zq) [ABB10]. The
embedding sets the ith row of the matrix H corresponding to g(x) ∈ Rq to the
coefficients (in increasing order of degree) of xi−1g(x) mod Rq. By choosing f(x)
to be irreducible over Zq, we ensure that Rq is a field, and set T = Rq. In this
setting, there are some operations that can only be done over the subring of scalar
elements {tIn} ⊂ T , because for technical reasons, the tags must be commutative
under multiplication with respect to arbitrary matrices.

When using our construction in the ring setting, some care must be taken in
constructing the embedding; see [DM14] for an instantiation of a tag space that
will work for our scheme as well.

246 J. Alperin-Sheriff

Gen(1λ) : Choose Ā,B ← Z
n×m̄
q , and output pk = (Ā,B).

GenTrap(Ā ∈ Z
n×m̄
q ,H ∈ T) : Output (A = [Ā | C],R) ← GenTrap(Ā,H, r)

using Lemma 2.2.
Tagpk=Ā(C ∈ Z

n×nk
q ,R) : Compute X = [Ā | C] [RI]. If X = HG for some H,

output H.
fA=[Ā|C],x∈X (u ∈ U): Let z = (u,x) ∈ Z

m+m̄
q . Output v := [A | B]z.

InvertA=[Ā|C],R∈R,x∈X ,s∈R(v ∈ V): Compute H = Tag(A,R). If H = 0 or H =
⊥ or if the parameter s < s1(R) · ω(

√
log n), output ⊥. Otherwise, output

u ← SampleD(A,v − Bx,R, s) using Lemma 2.3. We define Prop(u) :=
‖u‖/

√
m̄, so that by Lemma 2.1, with overwhelming probability over the

randomness of SampleD, Prop(u) ≤ s.

As long as s ≥ s1(R) · ω(
√

log n), distributional equivalence of inversion
follows immediately from Lemma 2.1

3.3 Construction: Homomorphic Computation

We define the algorithms Evaltdpk,Evalfunc
pk by showing how to compute basic

operations. Note that in our actual construction in Section 5, instead of naively
composing addition and multiplication, we extend a technique used by Brakerski
and Vaikuntanathan [BV14] and Alperin-Sheriff and Peikert [ASP14] regarding
chaining homomorphic multiplications that was originally developed in the con-
text of bootstrapping the GSW [GSW13] encryption scheme. These techniques
carry over immediately, because the only difference between the form of a GSW
ciphertext and the form of our trapdoor functions is that in the former case, the
matrix A in the public key is an LWE instance A =

[
Ā

bt=stĀ+et

]

, while in our
case it is truly uniform.

In the descriptions of the basic homomorphic operations on tags below, Ci ∈
A is a trapdoor function, Ci := ĀRi + tiG.

Homomorphic addition (C1 C2) of two functions is defined as C∗ ← C1+
C2. The operation induces R∗ ← R1 +R2 on the trapdoors. The tags t1, t2
may be any elements in T .

Homomorphic multiplication (C1 C2) is defined as C∗ ← C1 ·G−1(C2),
and is right associative. The operation induces R∗ ← R1G−1(C2) + t1R2

on the trapdoors. Here the tag t1 must be a scalar (of the form t1In), while
t2 can be any element of T . Unlike in the GSW scheme, we need to compute
G−1(C2) in the deterministic manner described in Section 2.3.

Multiplication by a constant (C H) is defined as C∗ ← C · G−1(HG).
The operation induces R∗ ← RG−1(HG) on the trapdoor. The constant
tag H may be any element in T , but the tag t associated with C must be a
scalar.

Addition of a constant (C H) is defined as C∗ ← C+HG. This operation
does not affect the trapdoor, which remains R. Both the constant tag H and
the tag t associated with C may be any element in T .

Short Signatures with Short Public Keys 247

3.4 Construction: Security

We now prove the security of our PHTDF construction under the SIS assump-
tion.

Theorem 3.1. Let g be admissible with parameter s for T̂ := {ti}i∈[κ]. Assum-
ing the SISn,q,β assumption holds for β := O(s2

√
n log q), the scheme satisfies

CRPn,g,T̂ security.

Proof. Let g be admissible with parameter s for T̂ := {ti}i∈[κ]. Now, assume
there exists an adversary A that wins the PHTDF security game for the above
scheme with non-negligible probability δ with respect to g and T̂ . We consider
an alternate game where we change our PHTDF by setting B = ĀS for S ←
Dm̄×m̄

Z,ω(
√
log n)

instead of choosing it uniformly at random. By Lemma 2.1, this
change is statistically indistinguishable and it does not affect our ability to invert,
so that the adversary A still wins with non-negligible probability.

We now give a reduction to SIS. The reduction uses the challenge matrix Ā as
the public key. It then computes (Ci,Ri) ← GenTrap(Ā, ti, ω(

√
log n)). We can

invert with parameter s on any trapdoor function and trapdoor C′,R′ output by
Evalfunc

pk ,Evaltdpk when computing g homomorphically on T̂ and arbitrary other
tags T ′ := {t′j}j∈[�] as long as g(T̂ , T ′) is invertible, so we can properly answer
all of A’s inversion queries.

With non-negligible probability δ, A eventually outputs tag sets T (1) :=
{t

(1)
j }j∈[�], T (2) := {t

(2)
j }j∈[�] such that g(T̂ , T (1)) = g(T̂ , T (2)) = 0 along with

(u(1) = (u(1)
1 ∈ Z

m̄
q ,u(1)

2 ∈ Z
nk
q),x(1)), (u(2) = (u(2)

1 ∈ Z
m̄
q ,u(2)

2 ∈ Z
nk
q),x(2))

such that Prop(u(1)),Prop(u(2)) ≤ s, x �= x′ and fA(1)=[Ā|C(1)],x(1)(u(1)) =

fA(2)=[Ā|C(2)],x(2)(u(2)), where C(b) := Evalfunc
pk (g, {ti}, {t

(b)
j }). Since g is admis-

sible with parameter s, we have C(b) = ĀR(b), where s1(R(b)) ≤ s/ω(
√

log n).
Let

v := u(1)
1 − u(2)

1 + R(1)u(1)
2 − R(2)u(2)

2 + S(x(1) − x(2))

Recalling the definition of f , we then have that Āv = 0.
Since Prop(u(1)),Prop(u(2)) ≤ s, by Lemma 2.1 with overwhelming proba-

bility ‖R(b)u(b)
2 ‖ ≤ O(s2(

√
m̄ + nk)) ≤ O(s2

√
n log q). The other terms in v can

be bounded at or below O(s2
√

n log q), so

‖v‖ ≤ O(s2(
√

n log q)) ≤ β

Thus, in order to show that we have in fact solved SIS, we need only show
that with non-negligible probability, v �= 0. To do so, we let x∗ = x(1)−x(2) and
choose some entry of x∗ that is nonzero (since x(1) �= x(2), such an entry exists);
without loss of generality we may say it is x∗

1. Now, let s be the first column of
S, let b be the first column of B, and fix the last m̄ − 1 columns of S as well
as u(b), R(b). Then we have v = 0 only if s · x∗

1 = y for some fixed y. Over
the view of the adversary, s is distributed as a discrete Gaussian of parameter
larger than 2ηε(Λ⊥(Ā)) for an ε = negl(n) over the coset Λ⊥

b (Ā). As a result,

248 J. Alperin-Sheriff

by Lemma 2.1 we have s = y/x∗
1 with only negligible probability, so that with

probability δ − negl(n), v �= 0 and we have solved SIS.

4 Signatures from PHTDFs

Here we show how to construct a statically secure (eu-scma) signature scheme
using a PHTDF, in a manner that encompasses both our signature scheme and
that of Ducas and Micciancio. The reduction itself depends directly on the prop-
erties of the admissible function g that is homomorphically computed in the Sign
and Ver algorithms. We recall that one can apply the efficient generic transfor-
mation using chameleon hash functions to achieve full (eu-acma) security.

4.1 Required Properties of the Function g and Tags

In order for our construction to work, we need to be able to choose two different
sets of tags T̂ = {ti ∈ T }, one set for the actual scheme and one set for the
security reduction, to use when calling (ai, ri) ← GenTrap(pk, t̂i). In particular,
when g : T κ × T � → T is homomorphically evaluated Q = poly(n) times on the
fixed set of tags T̂ and on sampled sets of tags T := {tj} ← DT � , we need the
following properties to be fulfilled:

Actual Scheme The tag homomorphically computed by g must always be
invertible.

Security Reduction Here, we need two different properties to be satisfied with
non-negligible probabilities:
1. At most one of the Q sets of tags Ti ← DT � (corresponding to signature

queries by the adversary) may result in g(T̂ , Ti) = 0.
2. A chooses tags T ∗ := {t∗j} for his forgery such that g(T̂ , T ∗) = 0.

4.2 Generic Signature Scheme from PHTDFs

We now present our generic signature scheme constructed from a PHTDF. It
is parameterized by a security parameter λ as well as a family of functions
{g : T κ × T � → T } ∈ G admissible with parameter s and sets of tags T̂ := {t̂i ∈
T }i∈[κ], which allow us to satisfy the properties in Section 4.1 for the actual
scheme, and T̂ ∗ := {t̂∗i ∈ T }i∈[κ], which allow us to satisfy the properties for the
security reduction. The specific choice of function will depend on a parameter
d = ω(log log n) (so that 2	cd
 for some constant c > 1 is superpolynomially
large), which in our concrete construction of g corresponds to the degree of a
polynomial. Below, we assume that d is fixed and so the specific function g in
the family is determined.

We also have some requirements for the index space X . In particular, we
need there to exist a collision-resistant hash function h : {0, 1}∗ → X such that
there is some x∗ ∈ X that is not in the range of h, i.e. no μ exists such that
h(μ) = x∗. In our concrete instantiation, we can satisfy this property by choosing

Short Signatures with Short Public Keys 249

a collision-resistant hash function which maps into {0, 1}m̄ (in which case any
x∗ ∈ X = {−1, 0, 1}m̄ with a negative element is not in the range of h and is
therefore not a valid hash of any message).

Gen(1λ): Compute pkPHTDF ← PHTDF.Gen(1λ), and then let v ← V, {(ai, ri) ←
PHTDF.GenTrap(pkPHTDF, ti)}i∈[κ]. We set vk = (pkPHTDF, {ai}i∈[κ], v),
sk = ({ri}i∈[κ]).

Sign(sk, x = h(μ) ∈ X): Sample T := {t′j} ← DT � , and compute
r∗ ← Evaltdpk(g, {(ai, ri)}i∈[κ], T) and a∗ ← Evalfunc

pk (g, {ai}i∈[κ], T). Let u ←
Invertr∗,pk,a∗,x,s(v), and output σ = (u, T).

Ver(vk, x = h(μ) ∈ X , σ = (u, T ∈ T �): Compute a∗ ← Evalfunc
pk (g, {ai}i∈[κ], T),

and verify that fpk,a∗,x(u) = v and that Prop(u) ≤ s.

Correctness. We immediately have that the scheme is correct, since in the actual
scheme the homomorphically computed tag will always be invertible, and a u
output by Invertr∗,pk,a∗,x,s(v) will always satisfy fpk,a∗,x(u) = v, and will with
overwhelming probability satisfy that Prop(u) ≤ s.

Security Reduction. We prove that this signature scheme satisfies eu-scma secu-
rity assuming the underlying PHTDF satisfies (λ, g, T̂)-CRP security for g admis-
sible with parameter s on a set of tags T̂ := {ti}i∈[κ].

Theorem 4.1. Let g be admissible with parameter s on a set of tags T̂ :=
{t̂i} which allow us to satisfy the properties for the security reduction described
in Section 4.1 with non-negligible probabilities ε1 := ε1(Q, d, δ), ε2 := ε2(Q, δ)
respectively against an eu-scma adversary A making Q signature queries and
succeeding with probability δ. Then there exists an algorithm SA that breaks the
(λ, g, T̂)-CRP security of the underlying PHTDF with probability ε∗ = (δ − (1 −
ε1))ε2, and so the above signature scheme is eu-scma secure.

Proof. We assume we have an adversary A against the eu-scma security game
who makes Q signature queries and succeeds in outputting a successful forgery
with probability δ. The simulator S first receives the Q messages (x(j) = h(μ(j)) ∈
X) from the adversary. Next, it samples Q sets of tags Ti := {tij}j∈[�] ← DT � .
With probability ε1, at most one set of these tags will result in g(T̂ , Ti) = 0. If
there is more than one such set of tags, the simulator aborts (this happens with
probability at most (1 − ε1)). Otherwise, it invokes the (λ, g, {ti})-CRP security
game, receiving back pkPHTDF and A := {ai}i∈[κ].

Now, if there exists a Ti such that g(T̂ , Ti) = 0, we set T � := Ti and x� := x(i).
Otherwise, we choose some tag set2 T̄ ∈ T � ourselves such that g(T̂ , T̄) = 0 and
sample some x̄ from the set of elements in X not in the range of the hash function
h. We then set T � := T̄ , μ� := μ̄. We then compute a ← Evalfunc

pk (g,A, T �),
sample u� ← DU , and set v ← fpk,a,μ�(u�); the signature for message μ� is σ� =

2 Note that such a tag set must exist since g and T̂ allow us to fulfill the second
required property for the security reduction.

250 J. Alperin-Sheriff

(u�, T �). By the distribution equivalence of inversion property of the PHTDF,
this is statistically indistinguishable from having chosen v ← V.

We have thus “programmed” in a signature for the tag/hashed message pair
(T �, x�). For the rest of the messages, g(T̂ , Ti) is invertible, so S is able to com-
pute signatures for hashed messages x(i) = h(μ(i)) by making inversion queries
on v, x(i), Ti, receiving back ui and setting σi = (ui, Ti) to be the signature.
S then sends the verification key (pkPHTDF, {ai}, v) and the signatures σi to
the adversary A, thus successfully simulating the public key and signatures in a
manner indistinguishable from an actual attack.

Now, conditioned on having made it this far, since the second needed prop-
erty for the security reduction is satisfied by g and T̂ , with probability ε2 the
tag T ∗ used by the adversary in a successful forgery (σ∗ = (u∗, T ∗), x∗ =
h(μ∗)) with μ∗ /∈ {μ(i)}i∈[Q] will be such that g(T̂ , T ∗) = 0. Letting ab ←
Evalfunc

pk (g, {ai}, T (b)) for b ∈ {∗, �}, we have that

fpkPHTDF,a∗,x∗(u∗) = fpkPHTDF,a�,x�(u�) = v,

and that Prop(u∗),Prop(u�) ≤ s. If x� = x(i) for some i, then by the collision-
resistance of h, x� �= x∗, while if x� was chosen from outside the range of h, then
we immediately have that x� �= x∗ = h(μ∗). As a result, we have that x� �= x∗,
so that we have broken the (λ, g, T̂)-CRP security of the underlying PHTDF.

5 Lattice-Based Instantiation of the Function g

We now give the main result of our paper, the lattice-based instantiation of a
function g to be homomorphically evaluated in our signature scheme, and the
method of choosing tags for it that allow us to fulfill the properties described in
Section 4.1.

Theorem 5.1. Let g be as defined in Algorithm 1, c > 1 be a constant. Let d =
ω(log log n), and let β ≥ O(d2dn11/2 log13/2 q). Assume there exists an eu-scma
adversary making Q signature queries that succeeds with probability ε against
the signature scheme of Section 4 instantiated with the lattice-based PHTDF of
Section 3, where 2Q2/ε ≤ 2	cd
. Then there exists an algorithm SA that solves
SISn,q,β with probability δ1+c

4Q2c − negl(n).

The remainder of this section is devoted to proving those parts of this theorem
we have not already shown in Theorem 3.1 and Theorem 4.1.

5.1 Tag Instantiations

We define the explicit distribution T ← DT � used as the “tag” part of the
signatures from Section 4.2, following the instantiation of Ducas and Micciancio.
Recall that our tag space is, in the general setting, an embedding of GF(qn)
(represented as Rq := Zq[x]/〈f(x)〉 for f(x) irreducible over Zq) into Z

n×n
q . Each

tag set consists of d elements, where d = ω(log log n). However, these d elements

Short Signatures with Short Public Keys 251

each correspond to specific subsets of coefficients of a degree e := 2d = O(n)
polynomial in Rq (the tag prefixes below), so that in the signatures, we can
represent the entire set of tags with a single polynomial in Rq. As a result, our
signatures remain short.

Concretely, for the constant c > 1 mentioned in the theorem statement above,
we define sets of tag prefixes Ti = {0, 1}ci of lengths c0 = 0, ci = �ci� for i ∈ [d].
For full tags t ∈ T = Td and i ≤ d, we write t≤i ∈ Ti for its prefix of length ci

and t[i] for the difference t≤i(x) − t≤i−1(x) ∈ Rq.
We technically have more freedom than the previous work when it comes to

identifying tag prefixes with ring elements, as we do not need our tag prefixes
to satisfy geometric properties. Instead, the critical requirement is that for any
two distinct tag prefixes t, t′ ∈ Ti, the difference t(X) − t′(X) is invertible over
Rq. However, for simplicity, we may nonetheless use the identification described
therein, where a tag prefix t = [t0, . . . , tci−1] ∈ Ti is mapped to the ring element
t(X) =

∑

j<ci
tjX

j ∈ Rq.
As in the Ducas-Micciancio scheme, to choose how to tag the homomor-

phic trapdoor matrices Ai in the public key, we have a confined guessing stage
[BHJ+14] where we let i∗ ≤ d be the smallest index such that 2Q2/ε ≤ |Ti∗ |,
where Q is the number of signature queries made by the adversary and ε is the
adversary’s probability of success in the eu-scma security game. Note that such
an index exists, since 2Q2/ε ≤ 2	cd
 = |Td|. This choice of i∗ guarantees that for
Q tags {t(j)}j∈Q chosen uniformly at random from T , their prefixes {t

(j)
≤i∗} of

length ci∗ will all be distinct except with probability at most δ/2. For our con-
struction of g, this guarantees that g(T̂ , t(j)) = 0 for at most one tag (the first
security property from Section 4.1). We then choose a prefix t�≤i∗ ∈ Ti∗ uniformly
at random, with the hope that the tag t∗ in the forgery output by the adversary is
such that t�≤i∗ = t∗≤i∗ (so that for our construction, we will have that g(T̂ , t∗) = 0,
satisfying the second security property). By keeping the adversary’s view statisti-
cally independent of our choice of prefix, we will have that t�≤i∗ = t∗≤i∗ with prob-
ability 1/|Ti∗ |. Following the proof of security for the generic signature scheme
in Section 4.2, if one of the tags t(j) is such that t

(j)
≤i∗ = t�≤i∗ , we set t� = t(j),

and if not, we choose the full tag t� uniformly at random from the set of tags
with prefix t�≤i∗ . Our choice of i∗ guarantees that 2ci∗ −1 < 2Q2

δ ≤ 2ci∗ = |Ti∗ |.
We also have that ci∗ ≤ ci∗

= c(ci∗−1) < c(ci∗−1 + 1). As a result, we have that
|Ti∗ | ≤ 2c(ci∗−1+1) ≤ (4Q2

δ)c, so that the second security property is fulfilled with
probability at least (δ

4Q2)c.
In the various previous “vanishing trapdoor”-based signature schemes, the

public key contained d + 1 trapdoor functions ai, and the function g computed
homomorphically was linear over the d + 1 associated tags T̂ = (t̂0, t̂1, . . . , t̂d).
Specifically, letting T = (t1, . . . , td) ← DT d , the function g was

g(T̂ , T) := t0 +
∑

i∈[d] t̂iti.

To achieve the required properties for the actual scheme, they set t̂0 = 1, t̂i = 0
for i ∈ [d], so that the homomorphically computed tag g(T̂ , ·) = 1 was always

252 J. Alperin-Sheriff

invertible. In the security reduction, they let t∗≤i∗ be the prefix of length i∗ on
which they hoped the adversary will forge. Then they set t̂0 = −t∗≤i∗ , t̂i = 1 for
1 ≤ i ≤ i∗ and t̂i = 0 for i∗ < i ≤ d.

In our scheme, we have only two trapdoor functions a0 = A0, ã = Ã in the
public key, and compute degree-(d − 1) polynomials. We set the associated tags
t̂0, t̃ as follows:

Actual Scheme: Let t̂0 = 1, t̃ = 0.
Security Reduction: Let t∗≤i∗ be the prefix of length i∗ on which we hope the

adversary will forge. Then we let t̂0 = −t∗≤i∗ , t̃ = i∗.

5.2 Computation of g

To help compute g, in Gen we add to the public key d the coefficients of degree
d − 1 polynomials p1, . . . , pd ∈ Zq[x] with the following behavior:

pi(x) :=

{

1 1 ≤ x ≤ i

0 i < x ≤ d
=

∑

j∈{0,d−1}
cijx

j

Since Zq is a finite field, these polynomials have a unique realization as degree
d − 1 polynomials over Zq, and their coefficients can easily be computed using
Lagrange interpolation; see, i.e. [Sha79]. The total number of bits required to
store the coefficients is d2 log q = o(n), so they do not increase the asymptotics
of the public key (and technically the coefficients may be computed on the fly
from d and q alone).

We can now give a concrete definition of the function g in terms of input tags
t̂0, t̃ (which will be associated with the trapdoors as discussed in the previous
section) and T = (t1, . . . , td). We have

g(T̂ = (t̂0, t̃), T) := t̂0 +
∑

i∈[d]

(pi(t̃)ti).

To reduce the space required and the noise growth of the trapdoors when
evaluating g homorphically on input (T̂ = (t̂0, t̃), T ← DT d) using the PHTDF
from Section 3, we instead compute g in a slightly different manner. In the
clear, we view g in an alternative (but identical) form (recall that cij is the jth
coefficient of the polynomial pi described above):

g(T̂ = (t̂0, t̃), T) := t̂0 +
d−1∑

j=0

⎛

⎝t̃j
∑

i∈[d]

(cijti)

⎞

⎠ .

Homomorphically, we evaluate g using Algorithm 1. In the algorithm, Si is
the trapdoor for Bi, t̂0 is the tag for A0, t̃ is the tag for Ã.

Correctness of the algorithm follows by inspection.

Short Signatures with Short Public Keys 253

Algorithm 1. Evalfunc
pk (g,A0, Ã, T) and Evaltdpk(g, (A0,R0), (Ã, R̃, T))

B0 ← (
∑

i∈d ci0ti)G S0 ← 0
B1 ← G S1 ← 0
for j ∈ [d − 1] do

B1 ← Ã B1 S1 ← R̃G−1(B1) + t̃S1

B2 ← B1 (
∑

i∈[d] cijti) S2 ← S1G
−1(
∑

i∈[d] cijtiG)
B0 ← B0 B2 S0 ← S0 + S2

end for
B0 ← B0 A0 S0 ← S0 + R0

return B0 return S0

5.3 Noise Growth Analysis

We now proceed to analyze the noise growth of the trapdoor S0 for B0 in Algo-
rithm 1. The following theorem covers the tag settings in both the actual scheme
and the security reduction.

Theorem 5.2. Let Ā ∈ n×m̄
q for m̄ = O(n log q). Let r = ω(

√
log n). Sample

(A0,R0) ← GenTrap(Ā, t̂0I, r) for some t̂0 ∈ q, (Ã, R̃) ← GenTrap(Ā, t̃I, r)
for some t̃ ≤ d ∈ q. Then the noise level in the trapdoor S0 for B0 returned
by Algorithm 1 is at most ddrO(n5/2 log3 q). In particular, the function g as
evaluated by Algorithm 1 is admissible with parameter s = ddO(n5/2 log3 q).

Proof. Let Si denote the trapdoor for Bi in Algorithm 1. We denote by Bi,j ,
Si,j the value of Bi,Si at the end of the jth iteration. We have that at the end
of the jth iteration,

S1,j = R̃(
j−1
∑

�=0

t̃�G−1(B1,j−�−1)),

so that s1(S1,j) ≤ j · dj−1nk · s1(R) ≤ djr · O(n3/2 log2 q). As a result, we
have that s1(S2,j) ≤ djr · O(n5/2 log3 q). Since the final value of S0 is just
∑

j∈[d−1] S2,j + R0, we have that at the end of the algorithm,

s1(S0) ≤ ddrO(n5/2 log3 q).

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the stan-
dard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 553–572. Springer, Heidelberg (2010)

[AD97] Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-
case equivalence. In: STOC, pp. 284–293 (1997)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems. Quaderni di
Matematica 13, 1–32 (2004). Preliminary version in STOC 1996

254 J. Alperin-Sheriff

[ASP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616,
pp. 297–314. Springer, Heidelberg (2014)

[BG14] Bai, S., Galbraith, S.D.: An improved compression technique for signatures
based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS,
vol. 8366, pp. 28–47. Springer, Heidelberg (2014)

[BGG+14] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev,
G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic
encryption, arithmetic circuit ABE and compact garbled circuits. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 533–556. Springer, Heidelberg (2014)

[BHJ+14] Böhl, F., Hofheinz, D., Jager, T., Koch, J., Striecks, C.: Confined guessing:
New signatures from standard assumptions. Journal of Cryptology, 1–33
(2014)

[Boy10] Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully
secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: FOCS, pp. 97–106 (2011)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: Innovations in Theoretical Computer Science, ITCS 2014, Princeton,
January 12–14, 2014, pp. 1–12 (2014)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to del-
egate a Lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and Bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

[DM14] Ducas, L., Micciancio, D.: Improved Short Lattice Signatures in the Stan-
dard Model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GLP12] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical Lattice-based
cryptography: a signature scheme for embedded systems. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer,
Heidelberg (2012)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 75–92. Springer, Heidelberg (2013)

[GVW14] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomor-
phic signatures from standard lattices. Cryptology ePrint Archive, Report
2014/897 (2014) http://eprint.iacr.org/

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public
key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423,
pp. 267–288. Springer, Heidelberg (1998)

http://eprint.iacr.org/

Short Signatures with Short Public Keys 255

[HW09] Hohenberger, S., Waters, B.: Short and stateless signatures from the
RSA assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 654–670. Springer, Heidelberg (2009)

[KR00] Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)
[LM08] Lyubashevsky, V., Micciancio, D.: Asymptotically efficient Lattice-based

digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 37–54. Springer, Heidelberg (2008)

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with aborts: applications to Lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 738–755. Springer, Heidelberg (2012)

[Mic02] Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions. Computational Complexity 16(4), 365–411 (2007). Pre-
liminary version in FOCS 2002

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary
version in FOCS 2004

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems

over ideal Lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

[Wat09] Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 619–636. Springer, Heidelberg (2009)

[Xag13] Xagawa, K.: Improved (hierarchical) inner-product encryption from Lat-
tices. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 235–252. Springer, Heidelberg (2013)

Tightly-Secure Signatures from Chameleon
Hash Functions

Olivier Blazy1(B), Saqib A. Kakvi2, Eike Kiltz2, and Jiaxin Pan2

1 XLim, Université de Limoges, Limoges, France
olivier.blazy@unilim.fr

2 Horst Görtz Institute for IT-Security and Faculty of Mathematics,
Ruhr-University Bochum, Bochum, Germany

{saqib.kakvi,eike.kiltz,jiaxin.pan}@rub.de

Abstract. We give a new framework for obtaining signatures with a
tight security reduction from standard hardness assumptions. Concretely,
we show that any Chameleon Hash function can be transformed into a
(binary) tree-based signature scheme with tight security. The transfor-
mation is in the standard model, i.e., it does not make use of any random
oracle. For specific assumptions (such as RSA, Diffie-Hellman and Short
Integer Solution (SIS)) we further manage to obtain a more efficient flat-
tree construction. Our framework explains and generalizes most of the
existing schemes as well as providing a generic means for constructing
tight signature schemes based on arbitrary assumptions, which improves
the standard Merkle tree transformation. Moreover, we obtain the first
tightly secure signature scheme from the SIS assumption and several
schemes based on Diffie-Hellman in the standard model.

Some of our signature schemes can (using known techniques) be com-
bined with Groth-Sahai proof methodology to yield tightly secure and
efficient simulation-sound NIZK proofs of knowledge and CCA-secure
encryption in the multi-user/-challenge setting under classical assump-
tions.

Keywords: Signature · Standard model · Tight reduction · Chameleon
hash

1 Introduction

Digital Signatures are one of the most fundamental cryptographic primitives.
They are used as a building block in numerous high-level cryptographic proto-
cols. Their security is commonly proven in terms of a security reduction showing
that any successful adversary A attacking the scheme can be transformed into a
successful adversary B breaking the underlying hard intractability assumption.
Naturally, we would desire that B’s success εB is approximately the same as A’s
success εA in attacking the system and also the running times of A and B are
approximately the same. Such a scheme is said to have a tight security reduc-
tion and does not require to compensate reduction’s security loss with increased
parameters.
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 256–279, 2015.
DOI: 10.1007/978-3-662-46447-2 12

Tightly-Secure Signatures from Chameleon Hash Functions 257

Signature schemes with a tight security reduction are known based on stan-
dard intractability assumptions such as the RSA [6] or the (bilinear) Computa-
tional Diffie-Hellman (CDH) assumption [25]. However, their security can only
be proven in the random oracle model [5] with all its limitations (e.g., [14,21]).

Standard Model Signatures. We now discuss signature schemes in the stan-
dard model (i.e., without using random oracles). On the one hand, there exist
signature schemes with a tight security reduction (e.g., [18,44]) but they usu-
ally rely on specific relatively strong “q assumptions,” such as the Strong (or,
Flexible) RSA assumption [20] and the q-Diffie-Hellman Inversion Assumption
(q-CDHI) [10].1 On the other hand, known signature schemes from “standard
assumptions” (i.e., general assumptions such as the one-wayness of trapdoor per-
mutations [22,27,43] or more specific assumptions such as the RSA assumption
[31,32] , the CDH assumption [45], or the Short Integer Solution (SIS) assump-
tion [15,38]) have non-tight security reductions, meaning their security reduction
loses a multiplicative factor of q, which is the maximal number of established
signatures. Since q can be as large as 240, this security loss can have a dramatic
impact on the scheme’s parameters.

To the best of our knowledge, there are only a few exceptions to the above.
The flat d-ary tree-based signature scheme by Cramer and Damg̊ard [19] from
almost two decades ago is based on a standard assumption (the RSA assumption)
and (even though not explicitly mentioned in [19]) the security reduction is tight.
In follow-up papers [16] and [13] extend their methods to an assumption related
to factoring and CDH, respectively. Hofheinz and Jager [30] proposed a binary
tree-based construction from the Linear (LIN) assumption. More recently, works
on identity-based encryption [9,17] imply tight signatures from LIN.

1.1 Our Contributions

Overview. In this work we revisit the question of construction standard-model
signatures with a tight security reduction. Our main result shows that, surpris-
ingly, tightly-secure signatures can be constructed from any Chameleon Hash
function CHF. Our transformation is based on binary trees and hence a signa-
ture contains λ Chameleon Hashes plus λ elements from the randomness space
of CHF, where λ is the security parameter. As tightly secure Chameleon Hash
functions exist from generic primitives such as claw-free permutations (CFP)
[35], Σ protocols [4] and specific assumptions such as the RSA [32], the factoring
(FAC) [35], and the discrete logarithm (DLOG) [35] assumptions, we immediately
obtain a number of new signature schemes with tight security reductions. We
improve the well-known Merkle tree construction [37] and its variant [41] in the
sense that our signature size is the same as the original Merkle tree construction,
but our security loss is independent of the number of signing queries.
1 In q-assumptions an adversary is provided with q (polynomially many) random

“solved instances” and has to compute a new solved instance. Examples are the
strong RSA and the q-Diffie-Hellman Inversion assumptions. Both are considerably
stronger than their “non-q” counterparts.

258 O. Blazy et al.

{DLOG,RSA, . . .} {FAC,CFP}

Σ-protocols CHF 1-time two-tier TTSig binary tree-based Sig

{f -CDHI,RSA, SIS} d-times two-tier TTSig d-ary tree-based Sig

[35]
[4] §3.1 §4.1

§3.2 §4.2
d = 1 d = 2

Fig. 1. Schematic overview of our constructions from the assumption level (left) over
two-tier signatures (middle) to signatures (right). All implications have a tight security
reduction, except the dotted line which loses a factor of d.

In fact, our transformation can be generalized to flat-tree signatures with
improved efficiency. From a general primitive called d-time two-tier signatures
TTSig (a generalization of two-tier signatures [7] to any d ≥ 1), we build flat
d-ary (instead of binary, 2-ary) trees via our second transformation d-Tree, such
that a signature only contains O(λ/ log d) many elements. Whereas Chameleon
Hash functions only imply one-time two-tier signatures, for specific assumptions
such as RSA, CDH and SIS we are able to construct efficient d-time two-tier sig-
natures, hence also d-ary tree signatures. Our reduction loses a factor of d which
is still (almost) tight as d is generally assumed to be small and, in particular,
is independent of the number of signing queries. See Figure 1 for a schematic
overview of our transformations.

We stress that while all our schemes are only secure in a non-adaptive sense
(a.k.a. weak security), they can be transformed into adaptively secure signa-
ture schemes using a Chameleon Hash or a one-time signature, without los-
ing efficiency or tightness (such transformations have been used several times
[11,33,35,40]).

Interestingly, our framework also offers a theoretical explanation of almost
all known tightly secure signature schemes. Our d-ary transformation d-Tree
instantiated with an RSA-based d-times two-tier signature essentially equals the
scheme by Cramer and Damg̊ard [19]. The scheme by Hofheinz and Jager [30]
can be obtained by using a Chameleon Hash function based on the LIN assump-
tion (which is given in the full version [8]), it can in fact be generalized by
building a chameleon hash based on any of the matrix assumptions from [23].
The CDH-based signature scheme from [13] is a less efficient version of our con-
struction from the f -CDHI assumption with the parameters f = 1. Table 1
gives an overview over all known tightly secure signature schemes from stan-
dard assumptions. Some of our schemes are also (almost) structure preserving,
a property with important applications, which we will discuss later.

Details. First, we transform a Chameleon Hash into a two-tier signature and
then, we show how to transform the latter into a binary tree-based signature
scheme.

The concept of d-time two-tier signatures is a natural generalization of (one-
time, d = 1) two-tier signatures introduced by Bellare and Shoup [7]. A two-tier
signature scheme is like a standard signature scheme except that the public

Tightly-Secure Signatures from Chameleon Hash Functions 259

Table 1. Comparison between known tightly-secure signature schemes from standard
(non-q) assumptions, where λ is the security parameter

Scheme Origin Assumption |pk| Signature size Loss Structure
preserving

BinTree+CHFDLOG new DLOG O(1) × G O(λ) × (G + Zp) O(1) almost
BinTree+CHFFAC new FAC O(1) × ZN O(λ) × ZN O(1) −−
BinTree+CHFRSA new RSA O(1) × ZN O(λ) × ZN O(1) −−
BinTree+CHFLIN [30] LIN O(1) × G O(λ) × (G + Zp) O(1)

√
d-Tree+TTSigf-CDHI new f -CDHI O(d/f) × G O(λ/ log(d)) × (G + Zp) O(d) almost
d-Tree+TTSigRSA [19] RSA O(d) × ZN O(λ/ log(d)) × ZN O(d) −−
d-Tree+TTSigSIS new SIS O(d) × Z

(λ×λ log(p))
p O(λ/ log(d)) × Z

λ log(p)
p O(d) −−

BKP14 [9] k-LIN O(λk2) × G O(k) × G O(λ) almost
CW13 [17] k-LIN O(λk2) × G O(k) × G O(λ) almost

(secret) key is split into fixed primary part ppk (psk) and a variable secondary
part spk (ssk). In terms of security we require that an adversary possessing the
primary public key and having access to an oracle generating q independent
secondary public keys, together with d signatures for each of oracle queries,
cannot forge a fresh signature relative to one of the established public keys. The
challenge will be to construct a d-time two-tier signature scheme with a tight
(i.e., independent of q) security reduction from a standard assumption.

– Any Chameleon Hash implies a 1-time two-tier signature scheme. While it
is well-known that a Chameleon Hash implies a (standard) 1-time signature
[40], the novelty of our observation lies in the tight security reduction for
two-tier signatures.

– We give constructions of d-time two-tier signatures for any d ≥ 2 with a tight
security reduction from a number of standard number theoretic assumptions
such as the RSA, the SIS, the CDH and the f -CDHI2 (1 ≤ f ≤ d) assumption.
The important feature of our new constructions is the constant number of
elements in the secondary public key while maintaining the tight reduction.

– We show that d-time two-tier signatures imply d-ary tree-based signatures
with a tight security reduction. In our construction the verification/signing
keys are the primary public/secret key of the d-times two-tier signature
scheme. The signer implicitly maintains a d-ary authenticated tree of height
k = λ/ log(d), where λ is the security parameter. Each internal node is
assigned a secondary public/secret key, the secret key is used to authenti-
cate the key of the d distinct children via a signature. To sign a message,
the signer picks the next unused leaf and outputs the authenticated path to
the leaf plus a signature of the message under the leaf’s secret key.

Applications. We remark that some of our tightly secure signature schemes are
almost structure preserving (cf. Table 1) in the sense that they do not satisfy the
structure preserving definition in [2], but, following a similar method as Hofheinz
and Jager [30], these schemes can be used to build tightly-secure simulation-
sounds NIZK and tightly-secure encryption in the multi-user/multi-challenge

2 The f -CDHI assumption is a generalization of CDH and states that given

g, gx, . . . gxf

, it is hard to compute g1/x. Note that f is small (constant) in our
applications and does not depend on the number of signing queries.

260 O. Blazy et al.

setting. A discussion of this can be found in Appendix B. We also note that our
results can be used to improve the Key Agreement of Bader et al. [3].

Open Problems. Since our signature schemes contain O(λ/ log d) many group
elements, they cannot be considered to be practical. More recently, Blazy, Kiltz
and Pan [9] and Chen and Wee [17] proposed tightly secure identity-based
encryptions from the LIN assumption independently, which imply tightly secure
signature schemes with constant signature size. However, it is not clear how to
extend their methods to constructing tight signatures based on the RSA assump-
tion or any lattice assumption. Thus, obtaining a tightly secure signature scheme
from the standard RSA assumption or any lattice assumption whose signatures
only contain a constant number of group elements remains an open problem.

2 Preliminaries

2.1 Notation

We denote our security parameter as λ. For all n ∈ N, we denote by 1n the n-bit
string of all ones. For any element x in a set S, we use x ∈

R
S to indicate that

we choose x uniformly random in S. All algorithms may be randomized. For any
algorithm A, we define x ←$ A(a1, . . . , an) as the execution of A with inputs
a1, . . . , an and fresh randomness and then assigning the output to x.

A list of classical security definitions and assumptions (CDH, f -CDHI, SIS,
RSA) that we require for our results can be found in Appendix A.

2.2 Signatures

We first recall the definition of a digital signature scheme.

Definition 1 (Signature scheme). A digital signature scheme Sig with mes-
sage space M is defined as a triple of probabilistic polynomial time (PPT) algo-
rithms Sig = (Gen,Sign,Verify):
– Gen takes as an input the unary representation of our security parameter 1λ

and outputs a signing key sk and verification key pk.
– Sign takes as input a signing key sk, message m and outputs a signature σ.
– Verify is a deterministic algorithm, which on input of a public key and a

message-signature pair (m,σ) outputs 1 (accept) or 0 (reject).
Sig is perfectly correct if for any λ ∈ N, all (pk, sk) ←$ Gen(1λ), all m ∈ M, and
all σ ←$ Sign(sk,m) that Verify(pk,m, σ) = 1.

Some of the signature schemes we present are stateful. This means that the signer
maintains a state that is updated after each execution of the signing algorithm.
Fortunately, our stateful schemes can be transformed to be stateless by using
the technique from [26].

Tightly-Secure Signatures from Chameleon Hash Functions 261

Table 2. EUF-NCMA and EUF-CMA experiments for the signature scheme

Experiment ExpEUF-NCMA
Sig,F,q (λ) Experiment ExpEUF-CMA

Sig,F,q (λ)

Q := (m1, . . . , mq) ←$ F(1λ); (pk, sk) ←$ Gen(1λ);

(pk, sk) ←$ Gen(1λ); (m∗, σ∗) ←$ FOSign(·)(pk), where the oracle
σi ←$ Sign(sk, mi) for i = 1, . . . , q; OSign(·) := Sign(sk, ·)
(m∗, σ∗) ←$ F(pk, σ1, . . . , σq); If Verify(pk, m∗, σ∗) = 1 and m∗ /∈ Q := {m1, . . . , mq}
If Verify(pk, m∗, σ∗) = 1 and m∗ /∈ Q where mi is the i-th query, then return 1;
then return 1, else return 0. else return 0.

Definition 2 (Security of signatures). Signature scheme Sig is (t, ε, q)-
existential unforgeable under non-adaptive chosen-message attacks (EUF-NCMA)
iff

Pr[ExpEUF-NCMA
Sig,F,q (λ) = 1] ≤ ε

holds for any PPT adversary F with running time t, where ExpEUF-NCMA
Sig,F,q (λ) is

defined in Table 2. The existential unforgeability under chosen-message attacks
is defined in the similar way.

We also consider a stronger security notion than EUF, namely strong unforge-
ability, SUF. In the strong unforgeability experiment, the adversary is allowed to
forge a new signature on a message for which he has already seen a signature on.
To accommodate this, we adjust our list Q := {(m1, σ1), . . . , (mq, σq)}. Further-
more for the valid forgery, we require (m∗, σ∗) �∈ Q. This stronger notion applies
for both adaptive and non-adaptive definitions, which we refer to as SUF-CMA
and SUF-NCMA respectively.

2.3 Two-Tier Signatures

We now present a generalization of two-tier signature schemes, due to Bellare
and Shoup [7]. In a two-tier signature scheme, the key generation algorithm is
split into two algorithms, the primary and secondary key generation algorithms.
The primary key is static and used for all signatures. The secondary key is
ephemeral and used for only one or many messages. To generate the signature,
we need both a primary and secondary key. In the original definition [7], each
secondary key was allowed to be used to sign exactly once. We generalize to
allow each secondary key to be used to sign at most d messages. We refer to
this generalization as the d-time two-tier signature, the constructions presented
in [7] are 1-time two-tier signatures.

Definition 3 (d-time two-tier signature scheme). A two-tier signature
TTSig is defined as a quadruple of probabilistic algorithms (PriGen,SecGen,
TTSign,TTVerify):
– PriGen(1λ, d) outputs a primary signing key psk and primary verification key

ppk.
– SecGen(ppk, psk) outputs a fresh secondary verification and signing key pair

(spk, ssk).
– TTSign(psk, ssk,m) outputs a signature σ. We denote the stateful variant by

TTSign(psk, ssk,m; j) where j is the state.

262 O. Blazy et al.

– TTVerify(ppk, spk,m, σ) deterministically outputs 1 (accept) or 0 (reject).
We denote the stateful variant by TTVerify(ppk, spk,m, σ; j) where j is the
state.

Correctness is defined in a natural way as in Definition 1.

Definition 4 (Security of two-tier signatures). A two-tier signature TTSig
is (t, q, d, ε)-existential unforgeable under non-adaptively chosen-message attacks
(TT-EUF-NCMA) iff

Pr[ExpTT-EUF-NCMA
Sig,F,q (λ, d) = 1] ≤ ε

holds for any PPT adversary F with running time t, where ExpTT-EUF-NCMA
Sig,F,q (λ, d)

is defined in Table 3. The existential unforgeability under (adaptively) chosen-
message attacks (TT-EUF-CMA) is defined in the similar way.

Table 3. TT-EUF-NCMA and TT-EUF-CMA experiments for the two-tier signature
scheme

Experiment ExpTT-EUF-NCMA
TTSig,F,q (λ, d) Experiment ExpTT-EUF-CMA

Sig,F,q (λ, d)

(ppk, psk) ←$ PriGen(1λ, d); (ppk, psk) ←$ PriGen(1λ, d);

(m∗, σ∗, i∗) ←$ FNTTSign(·)(ppk); (m∗, σ∗, i∗) ←$ FOSKey(),TTSign(·,·)(ppk);
If TTVerify(ppk, spki∗ , m∗, σ∗) = 1 and m∗ /∈ Qi∗ If TTVerify(ppk, spki∗ , m∗, σ∗) = 1 and m∗ /∈ Qi∗

then return 1, else return 0. then return 1, else return 0.

Oracle OSKey()
i = i + 1 and ji = 0;
(spki, sski) ←$ SecGen(ppk, psk);

Oracle NTTSign(m1, . . . , md) Return spki.
i = i + 1 and (spki, sski) ←$ SecGen(ppk, psk); Oracle TTSign(i′, m)
σj ←$ TTSign(psk, sski, mj) for j = 1, . . . , d; ji′ = ji′ + 1; mji′ := m
Store (m1, . . . , md) in the list Qi; If ji′ > d or (spki′ , sski′) is undefined then return ⊥;
Return (spki, σ1, . . . , σd). σ ←$ TTSign(psk, sski′ , mji′) and store mji′ in Qi′ ;

Return σ.

We also define the strong unforgeability of two-tier signatures, in both the
adaptive case, TT-SUF-CMA, and the non-adaptive case, TT-SUF-NCMA, anal-
ogously as to how we defined it for standard signatures.

2.4 Chameleon Hash Functions

A Chameleon Hash Function is defined as CHF = (CHGen,CHash,Coll):
– CHGen(1λ) outputs the hash key chk and the trapdoor td.
– CHash(chk,m, r) outputs the hash value h.
– Coll(td, (m, r), m̂) outputs a randomness r̂ such that CHash(chk,m, r) =

CHash(chk, m̂, r̂).
The standard security notion for Chameleon Hashes is collision resistance (coll).
Formally, CHF is (t, ε)-coll if for the adversary A running in time at most t we
have:

Pr
[

(chk, td) ←$ CHGen(1λ); ((m1, r1), (m2, r2)) ←$ A(chk)
∧CHash(chk,m1, r1) = CHash(chk,m2, r2) ∧ (m1, r1) �= (m2, r2)

]

≤ ε.

Tightly-Secure Signatures from Chameleon Hash Functions 263

However, any user in possession of the trapdoor td is able to find a collision using
Coll. Additionally, Chameleon Hash functions have the uniformity property,
which means the hash value leaks nothing about the message input. Formally,
for all pair of messages m1 and m2 and the randomly chosen r, the probability
distributions of the random variables CHash(chk,m1, r) and CHash(chk,m2, r)
are computationally indistinguishable.

3 Constructions of Two-Tier Signatures

In this section we show different constructions of d-time two-tier signatures for
d = 1 (Section 3.1) and d ≥ 2 (Section 3.2).

3.1 Construction from Any Chameleon Hash Function

We construct a non-adaptively strongly secure one-time two-tier signature
TTSigCHF = (PriGen,SecGen,TTSign,TTVerify) from any Chameleon Hash
CHF = (CHGen,CHash,Coll) with message space M and randomness space R.

– PriGen(1λ): Generate a Chameleon Hash key and the corresponding trapdoor
(chk, td) ←$ CHGen(1λ). Define ppk = chk and psk = td.

– SecGen(ppk, psk): Pick random σ̂ ∈
R

R and compute h = CHash(ppk, m̂, σ̂),
for an arbitrary public m̂ ∈ M (possibly m̂ = 0). Define spk = h and ssk = σ̂.

– TTSign(psk, ssk,m): The signer uses the trapdoor of the chameleon hash to
compute a collision as σ = Coll(psk, m̂, σ̂,m), which means CHash
(ppk,m, σ) = spk. The signature on m is σ ∈ R.

– TTVerify(ppk, spk,m, σ): Check if CHash(ppk,m, σ) = spk.
Correctness of the scheme follows by correctness of the Chameleon Hash function.

Theorem 1. If CHF is a (t, ε)-coll Chameleon Hash function, then for any q ∈
N, TTSigCHF is a (t′, q, 1, ε′)-TT-SUF-NCMA signature where ε′ = ε and t′ =
t − O(q).

Proof. Let F be a ppt adversary that (t′, q, 1, ε′)-breaks the TT-SUF-NCMA
security of TTSigCHF. Then we construct an adversary B that (t, ε)-breaks the
collision resistance of CHF. Formally, B is given the challenge Chameleon Hash
key chk and asked to come up with two distinct inputs (m, r) �= (m′, r′) such
that CHash(chk,m, r) = CHash(chk,m′, r′).
Simulation. B simulates PriGen(1λ) as follows: it sets ppk = chk and returns
ppk to F . Now B does not have the Chameleon Hash trapdoor and psk is empty.

Upon receiving the ith message mi from F , B simulates NTTSign(mi) as
follows: it picks a random σi ∈

R
R and computes hi = CHash(ppk,mi, σi).

Define the secondary public key spki = hi and return spki and the signature σi.
The simulation is identical to the real execution. Firstly, chk is from the

Chameleon Hash challenge and, thus, the simulation of PriGen is identical to
the definition. Secondly, in the original definition spki = CHash(ppk, 0, ri), while
spki = CHash(ppk,mi, σi) in the simulation. These two distributions are identical

264 O. Blazy et al.

based on the uniformity property of CHF. Thirdly, it is easy to see the simulated
signatures are well-formed.
Extracting the collision. Once F outputs a forgery (m∗, σ∗, i∗), B aborts
if spki∗ is undefined. Otherwise, B checks if CHash(ppk,mi∗ , σi∗) = spki∗ =
CHash(ppk,m∗, σ∗). If that is the case, then B returns the collision ((m∗, σ∗),
(mi∗ , σi∗)). By the strong unforgeability of TTSigCHF, (m∗, σ∗) �= (mi∗ , σi∗).
Thus, if F outputs a successful forgery then B finds a collision for the Chameleon
Hash with probability ε = ε′. �	

3.2 Direct Constructions of d-Time Two-Tier Signatures

The construction from Section 3.1 can be extended to yield a d-time two-tier
signature scheme for any d ≥ 1 but the size of the secondary public-key is linear
in d which is not useful for constructing efficient flat-tree signatures. In this
section, we present stateful d-time two-tier signature schemes with constant size
secondary key, from the f -CDHI, and SIS assumptions. Two more constructions
from RSA and factoring are given in the full version [8].

Construction from f-CDHI. The construction from this section has an addi-
tional parameter 1 ≤ f ≤ d which offers a trade-off between the size of ppk
(O(d/f) group elements) and the underlying hardness assumption f -CDHI rel-
ative to a pairing group generator algorithm PGroupGen. (See Appendix A for
a formal definition of f -CDHI.) We now present the stateful d-time two-tier sig-
nature scheme TTSigf-CDHI = (PriGen,SecGen,TTSign,TTVerify) from f -CDHI
with message space Zp. For simplicity we assume there exists an integer c such
that c · f = d.

– PriGen(1λ, d): generates a pairing group PG = (G, g, p,GT , e) ←$

PGroupGen(1λ), picks random scalars x0, . . . , xc ∈
R
Zp and computes hi =

gxi for i = 0 . . . , c and defines psk = (x0, . . . , xc), ppk = (PG, (h0, . . . , hc)).
– SecGen(psk, ppk): picks a random u ∈

R
G, and defines spk = u, the secondary

signing key is empty.
– TTSign(psk, ssk,mj ; j): to sign the j = (α · f + β)-th message mj (j ∈

1, d , α ∈ 0, c , β ∈ 0, f − 1), compute σj = (gmj u)1/(xα+β).
– TTVerify(ppk, spk,mj , σj ; j): parses j = α ·f +β and checks if e(σ, hα ·gβ) =

e(gmj · u, g).
It is easy to verify correctness.

Theorem 2. If the f-CDHI assumption is (t, ε)-hard, then for any q ∈ N,
TTSigd,f-CDHI is a (t′, q, d, ε′)-TT-EUF-NCMA signature scheme where ε′ = dε
and t′ = t − O(dq).

We stress that f is a fixed small parameter of the scheme. In particular, as
1-CDHI is equivalent to CDH, TTSig1-CDHI is secure under the standard CDH
assumption, which is equivalent to the scheme from [13].

Tightly-Secure Signatures from Chameleon Hash Functions 265

Proof. Let F be an adversary that (t′, q, d, ε′)-breaks the TT-EUF-NCMA
security of TTSigf-CDHI. Then we construct an adversary B that (t, ε)-breaks
the f -CDHI Assumption. Adversary B takes as input a pairing group descrip-
tion P̂G = (G,GT , ĝ, p, e) and a f -CDHI-challenge (ĝ, ĝx, . . . , ĝxf

). Its goal is to
compute ĝ

1
x .

– To simulate PriGen, B picks a random j′ ∈
R

1, d , which defines uniquely
α′, β′ as the quotient and modulo in the euclidean division of j′ by f . B
computes g = ĝ

∏
b �=β′ (x+b−β′) (b ∈ 0, f − 1) from f -CDHI-challenge and

chooses c random scalars (x0, . . . , xα′−1, xα′+1, . . . , xc) ∈
R
Z

c
p, where c = d/f

as defined in the scheme, and for all α ∈ 0, c computes:

hα =
{

gx−β′
if α = α′ (Implicitely, xα′ := x − β′)

gxα otherwise

The primary public-key is ppk = (PG = (G, g, p,GT , e, g), (h0, . . . , hc)).
– When receiving the i-th NTTSign query (i ∈ 1, q) on mi = (mi,1, . . . , mi,d):

1. SecGen: B picks a random scalar ri ∈
R

Zp and defines spki = ui =

ĝ
ri

f∏

b=1
(x+b−β′)

h
−mi,j′
α′ .

2. TTSign: B then computes the signature vector σi = (σi,1, . . . , σi,d) on
mi via

σi,j = (ui · hmi,j
α)

1
xα+β

=

⎧

⎪⎨

⎪⎩

gri if j = j′

ĝ
ri

∏

b �=β

(x+b−β′)
ĝ
(mi,j−mi,j′)(x−β′)

∏

b �=β,β′
(x+b−β′)

if α = α′ ∧ β �= β′

u
1/(xα+β)
i h

mi,j/(xα+β)
α otherwise

where j = α · f + β and α ∈ 0, c and β ∈ 0, f − 1 . Since xα (for α �= α′) is
chosen by B, the last equation can be computed. It is easy to see the simulated
distribution is identical to the real scheme, since ĝ from f -CDHI challenge is a
random generator of G.

Eventually, the adversary F outputs a forgery σ∗ on a message m∗ for some
previously established spki∗ (i∗ ∈ 1, q). With probability 1/d the forgery is for
the j′-th index. As σ∗ is valid we have

σ∗ = (ui∗hm∗
α′)1/(xα′+β′) = ĝ

ri∗
∏

b �=β′
(x+b−β′)

(ĝ
(x−β′)·(m∗−mi,j′)· ∏

b �=β′
(x+b−β′)

)1/x

As we know m∗,mi,j′ , ri, and m∗ �= mi,j′ this allows to compute the helper value

(σ∗/gri∗)1/(m∗−mi,j′) = (ĝ
(x−β′)

∏

b �=β′
(x+b−β′)

)1/x.

The helper value can be written as ĝ
poly(x)

x , where poly(x) admits {β′−b : b ∈
1, f ∧ b �= β′} ∪ {β′} as roots. Using partial fraction decomposition, it can be

rewritten as ĝpoly
′(x)ĝ

β′ ∏
b �=β′ (β′−b)

x where poly′ is a polynomial of degree f − 1.
Due to its degree, ĝpoly

′(x) can be efficiently computed from the challenge, so B
can recover g

1
x to solve the f -CDHI challenge with probability ε = ε′/d. �	

266 O. Blazy et al.

Construction from SIS. Useful facts about lattice are recalled in Appendix
A. Our scheme is defined as follows:

Let k = �log p� = O(log λ), m̄ = O(λk) and m = m̄ + λk be the dimension
of the signature. Let D = D

Zm̄×λk,ω(
√
log λ) be the Gaussian distribution over

Z
m̄×λk with parameter ω(

√
log λ) and let s = O(

√
λk) be a Gaussian parameter.

Then the signature scheme TTSigSIS = (PriGen,SecGen,TTSign,TTVerify) with
message space {0, 1}� is defined as follows:

– PriGen(1λ, d): pick a random matrix A0 ∈
R
Z

λ×�
p . For i = 1, . . . , d, sample

(Ai,Ri) ←$ GenTrap
D(1λ, 1m, p). Define ppk = (A0,A1, . . . ,Ad) and psk =

(R1, . . . ,Rd).
– SecGen(psk, ppk, d): choose a random vector u ∈

R
Z

λ
p . Define spk = u and

ssk = {} is empty.
– TTSign(psk, ssk,mj ; j): to sign the j-th message mj ∈ {0, 1}�, compute the

syndrome yj = u − A0mj . Then sample σσσj ∈ Z
m from DΛ⊥

yj
(Aj),s·ω(

√
log λ),

σσσj ←$ SampleD(Rj ,Aj ,yj , s).
– TTVerify(ppk, spk,mj ,σσσj ; j): accept if ‖σσσj‖ ≤ s ·ω(

√
log λ) ·√m and Ajσσσj =

u − A0mj ; otherwise, reject.
Correctness of the scheme follows as explained in Lemmas 2 and 1.

Theorem 3. If SISp,β is (t, ε)-hard for β =
√

	 + s2 · ω(log λ) · m), then for
any q ∈ N, TTSigSIS is a (t′, q, d, ε′)-TT-SUF-NCMA signature scheme where
ε′ = dε + negl(λ) and t′ = t − O(d · q).

Proof. Let F be a ppt adversary that (t′, q, d, ε′)-breaks the TT-SUF-NCMA
security of TTSigSIS. Then we construct an adversary B that (t, ε)-breaks the
SISp,β problem. B is given a SISp,β instance A = [A′|A′′] ∈

R
Z

λ×m′
p where

m′ = 	 + m and A′ ∈
R
Z

λ×�
p and A′′ ∈

R
Z

λ×m
p .

Simulation. B simulates PriGen(1λ, d): it guesses a random i∗ ∈
R

{1, . . . , d}
and defines A0 = A′ and Ai∗ = A′′. For i �= i∗, B generates Ai and Ri as in
the real scheme. Then B sends ppk = (A0, . . . ,Ad) to F .

Upon receiving the d messages (m1, . . . ,md) from F , B simulates the cor-
responding signatures and the secondary verification key: it samples a σσσi∗ from

the Gaussian D
Zm,s·ω(

√
log λ) and computes u = [A0|Ai∗] ·

[
mi∗

σσσi∗

]

and defines

spk = u. B uses Ri to compute σσσi as in the real scheme for i �= i∗. Then B
responds F with the signatures {σσσ1, . . . ,σσσd} and the secondary verification key
spk.

The simulation is statistically close to the real execution. According to
Lemma 1, the simulated Ai∗ is negl(λ)-far from the real distribution. It is easy
to see the signatures σσσi for i �= i∗ are identical to the scheme definition. It
remains to show the simulated joint distribution {spk,σσσi∗} is statistically close
to the real distribution. Firstly, in the real scheme, spk is uniformly random over
Z

λ
p . In the simulation, spk = u = A0mi∗ + Ai∗σσσi∗ , where σσσi∗ ∈ D

Zm,s·ω(
√
log λ)

and s · ω(
√

log λ) = O(
√

λk)ω(
√

log λ) > ω(
√

log m). By Lemma 3, for all but
a 2p−λ fraction of all Ai∗ ∈ Z

λ×m
p , Ai∗σσσi∗ is statistically close to uniform over

Tightly-Secure Signatures from Chameleon Hash Functions 267

Z
λ
p , which implies spk is statistically close to the real distribution. Secondly, in

the real scheme, σσσi∗ is sampled from the Gaussian DΛ⊥
yi∗ (Ai∗),s·ω(

√
log λ) where

yi∗ = u − A0mi∗ . In the simulation, σσσi∗ is sampled from D
Zm,s·ω(

√
log λ) and

it is easy to see σσσi∗ ∈ Λ⊥
yi∗ (Ai∗), since Ai∗σσσi∗ = u − A0mi∗ = yi∗ . Thus, the

simulated σσσi∗ is identical to the real scheme.
Extracting SISp,β solution. Once F outputs a forgery (m∗,σσσ∗), B aborts if
(m∗,σσσ∗) is not valid under Ai∗ . Otherwise, since (m∗,σσσ∗) is valid signature, we
have

[A0|Ai∗] ·
[
m∗

σσσ∗

]

= u = [A0|Ai∗] ·
[
mi∗

σσσi∗

]

.

Define z =
[
m∗

σσσ∗

]

−
[
mi∗

σσσi∗

]

. By the strong unforgeability of TTSigSIS, (m∗,σσσ∗) �=
(mi∗ ,σσσi∗) and thus z �= 0. We claim z is the solution to the SISp,β problem
instance A, since

A · z = A · (
[
m∗

σσσ∗

]

−
[
mi∗

σσσi∗

]

) = [A0|Ai∗] · (
[
m∗

σσσ∗

]

−
[
mi∗

σσσi∗

]

) = 0.

and ‖z‖2 ≤ 	 + s2ω(
√

log λ)2m = β2 by the triangle inequality. The successful
probability of B is ε = ε′

d − negl(λ) and its running time is t = t′ + O(d · q). �	

4 Generic Constructions of Non-adaptive Signatures

In this section, we give two constructions of non-adaptively secure signature
scheme Sig from any non-adaptively secure two-tier signature TTSig. The first
construction is from a one-time two-tier signature scheme and the second con-
struction is from a d-time two-tier signature scheme. Both constructions have
tight security. The basic idea behind our constructions is as follows.

Basic Idea. In our constructions, the signer implicitly holds a tree. Each node
has an out-degree d and the depth of the tree is h. Every node, including the
leaves, v ∈ {1, . . . , d}≤h has a label Lv which is a secondary public key of TTSig.
All nodes can be computed “on the fly.” Each leaf is used to sign a single message.
We have dh = 2λ (or, equivalently, h log d = λ), where the scheme can sign up
to 2λ messages.

When signing message m, the signer takes the leftmost unused leaf vh ∈
{1, . . . , d}h in the tree and generates the label Lvh

←$ SecGen(ppk, psk). Define
Lvh+1 = m. Then the path from the root v0 to vh is computed. For each undefined
node vi on the path, the signer assigns label Lvi

←$ SecGen(ppk, psk). After that,
every node on the path is signed using the label (i.e., the secondary secret key) of
its parent. In this step, we have different signing methods depending on whether
d = 1 or d ≥ 2.

– d = 1: The signer holds a binary Merkle tree. When signing the nodes on the
path, the signer takes the node vi in the top-down manner and signs both
children of vi under Lvi

, σi+1 ←$ Sign(psk, sskvi
,Childl||Childr) where sskvi

268 O. Blazy et al.

is the secondary secret key associated with node vi, and Childl and Childr

are the left and right children of node vi respectively. This construction can
be viewed as a generalization of the tree-based signature by Hofheinz and
Jager [30].

– d ≥ 2: The signer holds a flat-tree with out-degree d. When signing the nodes
on the path, the signer takes the node vi in the top-down manner. Assume
the jth child Childj of vi is on the path. Then the signer uses sskvi

to sign
Childj , σi+1 ←$ Sign(psk, sskvi

,Childj).
The signer outputs the path and the two-tier signatures on the path as the
signature of m. Details are given in the definitions of the schemes.

Note that both of our schemes are stateful. One can use the technique of
Goldreich [26] to make them stateless. Precisely, the randomness used to generate
secondary secret key sskvi

for each node vi will be derived by a pseudo-random
function. Another pseudo-random function will be used to determine the leaf
used to sign a given message. As this technique is quite standard for Merkle-
tree-based signatures, we skip the details here and refer the reader to Section
3.2.3 of [34].

Moreover, it is well-known that a non-adaptively secure signature can be
tightly transferred to be an adaptively secure signature by using a Chameleon
Hash [35]. This is explicitly proven in the full version of [33].

4.1 Construction from any One-Time Two-Tier Signature

Let TTSig = (PriGen,SecGen,TTSign,TTVerify) be a one-time two-tier signature
scheme with message space {0, 1}∗. The stateful signature scheme BinTree[TTSig]
= (Gen,Sign,Verify) is based on a binary tree of height h = λ and is defined as
follows. Figure 2 shows the nodes involved in signing the i-th message m.

– Gen(1λ): Generate a primary key (ppk, psk) ←$ PriGen(1λ, 1). The label of
the root node ε is also generated (spkε, sskε) ←$ SecGen(ppk, psk) and Lε =
spkε. Define the verification key pk = (ppk, spkε) and the signing key sk =
(psk, sskε).

– Sign(sk,m): To sign a message m, the signer proceeds in two steps:
• Node generation step: The signer takes the leftmost unused leaf vh ∈

{0, 1}h and searches the binary path (v0, v1, v2, . . . , vh) from the root
v0 = ε to vh, i.e., vi is the i-th prefix of vh. For each node vi on the path
(including the leaf vh), if vi’s label Lvi

is not defined, then the signer
generates (spkvi

, sskvi
) ←$ SecGen(ppk, psk) and assigns Lvi

= spkvi
. For

the sibling v̄i of vi, the corresponding secondary public key and secret
key are generated in the same way, (spkv̄i

, sskv̄i
) ←$ SecGen(ppk, psk)

and Lv̄i
= spkv̄i

.
• Path authentication step: Define Mh = m. For each node vi (i = h −

1, . . . , 0) on the path, define the message associated with vi by Mi =
Lvi||0||Lvi||1, where Lvi||0 and Lvi||1 are labels of the left and right chil-
dren of vi respectively. Then the signer computes the signatures on the
path as σi = TTSign(psk, sskvi

,Mi) for i = 0, . . . , h.
The signer returns σ = (vh,M0, . . . , Mh−1, σ0, . . . , σh) as the signature of m.

Tightly-Secure Signatures from Chameleon Hash Functions 269

– Verify(pk,m, σ): A signature σ = (vh,M0, . . . , Mh−1, σ0, . . . , σh) on the mes-
sage m is verified in the natural way. Define Mh = m. Note that each Mi−1

(i = 1, . . . , h) contains the secondary public keys of vi−1’s children, Lvi−1||0
and Lvi−1||1. Hence, we check if TTVerify(ppk, Lvi

,Mi, σi) = 1. If that is true
for i = 0, . . . , h, then it outputs 1, otherwise 0.

...
...

...
...

mi

...
...

...
...

...
...

...

...

mi

...
...

...
...

...

· · ·

· · ·

· · ·

· · · · · ·

· · ·

Fig. 2. Nodes in black are used in the i-th Signature with BinTree[TTSig], left and
d-Tree[TTSig], right

The following theorem shows the non-adaptively security of BinTree[TTSig]
is tightly reduced to the security of the one-time two-tier signature TTSig.

Theorem 4. If TTSig is (t, q, 1, ε)-TT-EUF-NCMA secure, then Sig =
BinTree[TTSig] is (t′, ε′, q′)-EUF-NCMA secure, where t′ = t − O(hq′), ε′ =
ε, and q′ = q

h+1 .

Proof. Let F ′ be a ppt adversary that breaks the EUF-NCMA-security of Sig with
success probability ε′ and time complexity t′ and makes q′ times non-adaptive
message queries. Then we construct an adversary F to (t, q, 1, ε)-breaks the
TT-EUF-NCMA security of TTSig with the parameters given above. First, F is
given a challenge TTSig primary public key ppk.
Simulation. Recall that F ′ is an adversary for non-adaptive security, which
means F ′ will output q′ messages m1, . . . , mq′ before seeing the verification key.
In the following we explain how F generates the signatures on each mi and the
verification key of Sig without knowing the real signing key of TTSig.

F generates the binary tree in a bottom-up fashion by using the oracle
NTTSign (note that the number of leaves are the same as the number of the
signing queries q′ and, thus, all the leaves are defined after signing q′ messages).
For each i-th query to NTTSign (1 ≤ i ≤ q′), F does the following:

– For a leaf v
(i)
h , F defines M

(i)
h = mi and queries (spk

v
(i)
h

, σ
(i)
h) ←$

NTTSign(M (i)
h). Define L

v
(i)
h

= spk
v
(i)
h

.

270 O. Blazy et al.

– For an internal node vj (for each 0 ≤ j ≤ h − 1), F defines M
(i)
j =

Lvj−1||0||Lvj−1||1. F queries (spkvj
, σ

(i)
j) ←$ NTTSign(M (i)

j). Define Lvj
=

spkvj
.

– The signature σi on mi is (v(i)
h ,M

(i)
0 , . . . , M

(i)
h−1, σ

(i)
0 , . . . , σ

(i)
h).

Finally, F returns the verification key pk = (ppk, spkε) and the signatures
(σ1, . . . , σq′) to F ′.

Note that the simulation is identical to the real execution. Firstly, ppk is from
the TTSig challenger, which is distributed identically to the real distribution.
Secondly, due to the correctness of NTTSign, the binary tree generated by F is
identical to the real one and the same for the corresponding signatures on the
path. Thus, the simulated verification key and signatures for q′-messages are
identical. Moreover, F makes one NTTSign query per node and makes hence a
total of q = q′(h + 1) queries.

Extracting the forgery for TTSig. Let the set Good contain all the
labels Lvj

assigned by F . Recall that a forgery (m∗, σ∗) consists of σ∗ =
(v∗

h,M∗
0 , . . . , M∗

h−1, σ∗
0 , . . . σ

∗
h) and M∗

j contains the labels of both children of
node v∗

j . Then, after F ′ outputs a forgery (m∗, σ∗) for Sig, F can search
the largest index δ ∈ {0, . . . , h} such that Lv∗

δ
is in set Good. Lv∗

δ
was

previously defined by running (spkv∗
δ
, σδ) ← NTTSign(M ′) for some M ′.

If (m∗, σ∗) is a valid EUF-NCMA forgery, F can find (M∗
δ , σ∗

δ) such that
TTVerify(ppk, spkv∗

δ
,M∗

δ , σ∗
δ) = 1 where M∗

δ �= M ′.
Thus, F can break the TT-EUF-NCMA security of TTSig with probability

ε = ε′. A similar argument can be applied to prove the strong EUF-NCMA
security of Sig when TTSig is strongly TT-EUF-NCMA secure. �	

4.2 Construction from any d-Time Two-Tier Signature

Let TTSig = (PriGen,SecGen,TTSign,TTVerify) be a d-time two-tier signature
with message space {0, 1}∗. The stateful signature scheme d-Tree[TTSig] = (Gen,
Sign,Verify) is defined as follows, once again you can refer to Figure 2 to see the
nodes involved:

– Gen(1λ): It generates a d-time primary key, (ppk, psk) ←$ PriGen(1λ, d). The
label of the root v0 = ε is also generated (spkε, sskε) ←$ SecGen(ppk, psk)
and Lε := spkε. Define the verification key pk := (ppk, spkε) and the signing
key sk := (psk, sskε).

– Sign(sk,m): To sign a message m, the signer proceeds in two steps:
• Nodes generation step: The signer takes the leftmost unused leaf vh ∈

{1, . . . , d}h and searches the path (v0, . . . , vh) from the root v0 = ε
to vh. Define Lvh

:= m and for each internal node vi on the path, if
vi’s label Lvi

is not defined, then the signer generates (spkvi
, sskvi

) ←$

SecGen(ppk, psk) and assigns Lvi
:= spkvi

.
• Path authentication step: Each Lvi

(i = 1, . . . , h) on the path is signed
under Lvi−1 = spkvi−1

, σi ←$ TTSign(psk, sskvi−1 , Lvi
; j) where vi =

vi−1||j and 1 ≤ j ≤ d. The d-time TTSign is a stateful algorithm and j
is the state.

Tightly-Secure Signatures from Chameleon Hash Functions 271

The signer returns σ = (vh, Lv1 , . . . , Lvh−1 , σ1, . . . , σh) as the signature of m.
– Verify(pk,m, σ): Parse σ = (vh, Lv1 , . . . , Lvh

, σ1, . . . , σh). The verifier defines
Lvh

:= m and checks if TTVerify(ppk, Lvi−1 , Lvi
, σi; j) = 1 for all i = 1, . . . , h,

where vi+1 = vi||j (1 ≤ j ≤ d). If that is true, then it outputs 1, otherwise
0. Here the d-time TTVerify is a stateful algorithm and j is the state.
The following theorem tightly reduces the non-adaptively security of

d-Tree[TTSig] to the one of the d-time two-tier signature TTSig.

Theorem 5. If TTSig is (t, q, d, ε)-TT-EUF-NCMA secure, then Sig =
d-Tree[TTSig] is (t′, ε′, q′)-EUF-NCMA secure, where t′ = t − O(hq′), ε′ =
ε, and q′ = q

h .

Proof. The security proof is a generalization of the proof of the Cramer-Damg̊ard
scheme [19], and it is rather similar to the proof of Theorem 4. Therefore we
only sketch it. The major difference between Sig and BinTree[TTSig] is that each
internal node v in Sig uses a d-time signature to sign its d-many children one by
one, while in BinTree[TTSig] each internal node v can only sign its both children
one-time.

Assume F ′ (t′, ε′, q′)-breaks EUF-NCMA-security of Sig. Then we construct
F break TT-EUF-NCMA security of TTSig:
Simulation. Similar to the proof of Theorem 4, given q′ messages, F can simu-
late all the tree nodes and the signature on the path by asking the d-time signing
oracle NTTSign in a bottom-up fashion. By the correctness of NTTSign, it is easy
to see the simulation is identical to the Sig definition. Moreover, F makes one
NTTSign query per node and makes hence a total of q = q′ · h queries.
Extracting the forgery for TTSig. After F ′ outputs a success forgery
(m∗, σ∗), F defines Lv∗

h+1
:= m∗ and finds the forgery for TTSig following the

same step in the proof of Theorem 4. Thus, ε = ε′. �	

A Hardness Assumptions

We now define the hardness assumptions that we have used in our results.

Group generator algorithms. We define an algorithm GroupGen, that on
input of 1λ gives us G = (G, g, p), such that G = 〈g〉 is a multiplicative group of
order p and log p = λ.

Let PGroupGen be an algorithm that on input 1λ outputs a description of a
bilinear group PG = (G,GT , g, p, e) such that G = 〈g〉 and GT are two cyclic
groups of prime-order p and e : G × G → GT is a bilinear pairing satisfying the
following properties:

1. GT = 〈e(g, g)〉 (in particular e(g, g) �= 1).
2. ∀a, b ∈ Zp, e(ga, gb) = e(g, g)ab.

We now discuss the computational assumptions that we use in this setting.
All the assumptions below are defined relative to either GroupGen or PGroupGen.
For compactness, we use the Setup algorithm, which can be in either setting.

272 O. Blazy et al.

Linear Assumption. The linear assumption, denoted by LIN, states that given
three random generators g, h, k of G and a tuple (gu, hv, kc) where u, v ∈

R
Zp

and c = u + v or random in Zp, it is hard for the adversary A to guess c = u + v
or c is random. LIN is said to be (t, ε)-hard if for all adversaries A running in
time at most t, we have

Pr [A(g, h, k, (gu, hv, kc))$ → ‘c = u + v’ or not] ≤ ε.

Computational Diffie-Hellman Assumption. The Computational Diffie-
Hellman Assumption, denoted by CDH, states that given G = (G, g, p) and
elements ga, gb, it is hard to compute gab. CDH is said to be (t, ε)-hard if for all
adversaries A running in time at most t, we have

Pr
[

G ←$ Setup(1λ), a, b ∈
R
Zp : gab ←$ A(G, ga, gb)

]

≤ ε.

f-Computational Diffie-Hellman Inversion Assumption. The f - Com-
putational Diffie-Hellman Inversion Assumption, denoted by f -CDHI, states that
given G = (G, g, p) and elements gx, gx2

, gx3
, . . . gxf

, it is hard to compute (g
1
x).

f -CDHI is said to be (t, ε)-hard if for all adversaries A running in time at most
t, we have

Pr
[

G ←$ Setup(1λ), x ∈
R
Zp : g

1
x ←$ A(G, gx, gx2

, gx3
, . . . gxf

)
]

≤ ε.

We note that 1-CDHI is tightly equivalent to CDH.

RSA Assumption. The RSA Assumptions, denoted by RSA, states that given
(N, e, xe), where N is a random λ-bit RSA modulus generated by an algorithm
RSAGen(1λ) and x ∈

R
Z

∗
N , it is hard to compute x. RSA is said to be (t, ε)-hard,

if for all adversaries A running in time at most t, we have:

Pr
[

(N, e) ←$ RSAGen(1λ), x ∈
R
Z

∗
N : x = A(N, e, xe)

]

≤ ε.

Lattices and SIS Assumption. for integers λ,m and for a prime p, let A ∈
Z

λ×m
p . The m-dimensional integer lattice Λ⊥(A) is defined as

Λ⊥(A) := {z ∈ Z
m : Az = 0 mod p}.

For any u ∈ Z
λ
p , define the coset

Λ⊥
u (A) := {z ∈ Z

m : Az = u mod p}.

The short integer solution problem SISp,β (β > 0) is an average-case version
of the approximate shortest vector problem on Λ⊥(A). It states that, given a
uniformly random A ∈ Z

λ×m
p for m = poly(λ), find a non-zero z ∈ Λ⊥(A) and

‖z‖ ≤ β, where ‖ · ‖ is the Euclidean norm. SISp,β is (t, ε)-hard if all adversaries
with running time t have a success probability of at most ε. It has been shown if
p ≥ β

√
λ ·ω(

√
log λ) then solving SISp,β is at least as hard as approximating the

Tightly-Secure Signatures from Chameleon Hash Functions 273

Shortest Independent Vectors Problem within approximation factor Õ(β
√

λ) in
worst case [24,39].

Let DZm,s be the Gaussian distribution over Zm with center 0 and parameter
s and, similarly, let DΛ⊥(A),s be the Gaussian distribution over Λ⊥(A) with
center 0 and parameter s.

The following lemmas are useful for the definition and the security proof of
our scheme.

Lemma 1 (Theorem 5.1 of [38]). There is an efficient randomized algorithm
GenTrapD(1λ, 1m, p) that, given any integers λ ≥ 1, p ≥ 2, and sufficiently large
m = O(λ log p), outputs a parity-check matrix A ∈ Z

λ×m
p and a trapdoor R such

that the distribution of A is negl(λ)-far from uniform and R is sampled from
the Gaussian D.

Moreover, for any y ∈ Z
λ
p and large enough s = O(

√
λ log p), there is an effi-

cient randomized algorithm SampleD(R,A,y, s) that samples from a distribution
with negl(λ) statistical distance of DΛ⊥

y (A),s·ω(
√
log λ).

Lemma 2 (Lemma 4.4 of [39]). Let x ← DΛ⊥(A),s where A ∈ Z
λ×m
p . Then

the probability that ‖x‖ > s
√

m is negligible in λ.

Lemma 3 (Corollary 5.4 of [24]). Let λ be a positive integer and p be a
prime, and let integer m ≥ 2λ log p. Then for all but a 2p−λ fraction of all
A ∈ Z

λ×m
p and for any s ≥ ω(

√
log m), the distribution of the syndrome y = Ax

mod p is statically close to uniform over Z
λ
p , where x is from DZm,s.

B Applications

In this appendix we show some applications of our almost structure-preserving
signature scheme Sigd,f-CDHI = d-Tree[TTSigf-CDHI] and we get a more efficient
tightly-secure CCA encryption in the multi-user and multi-challenge setting.

A Structure-Preserving signature over a bilinear group [2] considers sig-
natures fully compatible with the Groth-Sahai methodology. Such signatures
assume that messages, signatures and verification keys are in the same space
(G) and that verification can be expressed as simple pairing product equations.

When someone wants to commit to a signature, the naive approach consists in
computing the signature, and then committing individually to each component
of the signature. However, in many signature schemes, like ours, parts of the
signature do not require the knowledge of the secret key and therefore do not
require to be committed.3 In the following, we relax the definition of structure
preserving signatures and consider signatures where the verification equation is
a pairing product equation in the elements that have to be committed. (To be
more specific, we will allow hash values and scalars to appear in the verification
equation as long as they are uncommitted/public values.)
3 A good illustration consists in considering a Waters signature: σ1 = skF (m)s, σ2 =

gs, committing σ1 into C1 is enough to completely hide the signature. (C1, σ2) leaks
no information on the validity of the signature.

274 O. Blazy et al.

In a symmetric bilinear group PG = (p,G, g,GT , e), a Pairing-Product Equa-
tion is an equation of the form:

∏n
i=1 e(Xi, Ai) ·

∏n
i=1

∏n
j=i e(Xi,Xj)γi,j = tT ,

where Ai are public group elements in G, γi,j are public scalars in Zp, tT is
a public element in the target group GT , and Xi are variables in G. In [29],
the authors have shown how to build Non-Interactive Zero-Knowledge Proofs of
Knowledge of solutions of such equations and have proven that their construction
can be improved in the linear case (γ = 0).

B.1 Tight Simulation-Sound NIZK in Pairing Groups

In this subsection, we revisit a technique introduced in [28,36] to obtain
simulation-sound NIZK (also used in [30]) and instantiate it with our new sig-
nature scheme Sigd,f-CDHI.

A Simulation-Sound Non-Interactive Zero-Knowledge (SSNIZK) Proofs of
Knowledge, is a standard NIZK where the soundness holds even if the simulator
is given simulated proofs.

We build SSNIZK Proofs of Knowledge to prove that variables X verify a
set of Pairing-Product Equations S, for which we combine our non-adaptive
signature scheme, a one-time two-tier signature (to make it adaptively secure)
and Groth-Sahai Proofs of Knowledge [29].

The verification of the validity of our signature can be viewed as several linear
Pairing-Product Equations. This will allow us to greatly improve the efficiency
of the SSNIZK Proof of Knowledge.

Roadmap of the Technique. To construct a Simulation-Sound proof that
some variables X verify a set S of equations, one uses the following roadmap
assuming the crs contains crsGS, a verification key pk for the Structure-Preserving
Signature scheme Sig, and the prover already possesses a pair of primary keys
psk, ppk for a one-time two-tier signature scheme S1.

1. Generates a secondary signing/verification key pair (ssk, spk) for the one-
time two-tier signature

2. Commits to a random tuple of elements R corresponding to a signature (the
tuple should be random, but the size and type of elements committed should
be consistent with what is expected from a signature).

3. Generates a Groth-Sahai proof π, that either X verifies this set S, or that
R is a valid signature under pk in the crs of the verification key spk of the
one-time signature scheme.

4. He then sends this Groth-Sahai proof π, the verification key of the one-time
signature, a one-time signature under psk, ssk of everything.

Referring to [30], it can be shown that this scheme is Zero-Knowledge under
the indistinguishability of the two types of Groth-Sahai crs, and that both the
simulation-soundness and the soundness come from the unforgeability of two
kind of signatures. The reductions inherit the tightness of the underlying signa-
ture schemes.

Tightly-Secure Signatures from Chameleon Hash Functions 275

Instantiation from f-CDHI and Efficiency Comparison. We now use our
non-adaptive structure-preserving signature scheme based on f -CDHI (obtained
by combining the d-time two-tier signature presented in Section 3.2, and the
transformation from 4.2), together with the Strong one-time two-tier signa-
ture based on DLOG (see Section 3.1 with a DLOG-based Chameleon Hash),
we obtain:

– ZK.Setup(1λ): generates a crs consisting of a bilinear group (p,G, g,GT , e),
an extra generator g̃ for the ppkS1

of the one-time signature scheme, a colli-
sion resistant Hash Function H, a Groth-Sahai CRS crsGS and the verifica-
tion key pk = gx

i∈ 1,c for a Structure-Preserving Signature Scheme, which is
also strongly unforgeable. The prover possesses a pair (psk = α, ppk = g̃ =
gα).

– ZK.Prove(crs,S,X): where X is a set of variables satisfying the set of equa-
tions S. First this samples a fresh secondary key pair for the strong adaptive
one-time two-tier signature scheme: a pair (sskS1 = (η, μ), spkS1

= g̃ηgμ) for
η, μ ∈

R
Zp.

It then computes a Groth-Sahai proof πGS stating that either X satisfies
S, or that σ is a valid signature on spkS1

, by picking a fresh leaf in the
signature tree, and generating a commitment σ of random values emulating
a signature on the path (random group elements spki ∈

R
G for the nodes

of the tree on the path, reusing those already chosen on the shared path in
previous proofs), a random scalar t for the one-time signature of spkS1

on
the leaf, and h+1 commitments to fictive signature Si of spki+1 valid under
spki. The proof consists of h+1 proofs of linear pairing product equations, so
3h + 3 group elements only where h is the depth of the tree (h = λ/ log(d)).
It then sends π = πGS, spkS1

, σspkS1
(πGS).

– ZK.Verify(crs,S, π), checks the validity of the one-time two-tier signature,
and then the validity of the Groth-Sahai proof.
The principal difference between this approach and the one in [30] resides in

the signature scheme, in particular the sizes thereof. Their signature requires 10
group elements per node; to hide the signature, 6 of them have to be committed,
resulting in 22 elements per node. The verification equation is a quadratic pairing
product-equation, hence the sub-proof requires 9 group elements per node. The
proof on the committed signature requires overall roughly 31λ group elements.

Recently, Abe et al. [1] have presented an optimization on this initial con-
struction. They evaluated the cost of their corresponding part as roughly 21λ +
27. (They presented several construction, but the others are either less efficient
and/or not tight)

On the other hand, our signature based on f -CDHI requires two group ele-
ments per node (the child verification key and the signature itself) and one group
element and a scalar for the last node. We need to hide one of these elements for
each node. This means that we need 4 elements per node, and 3 group elements
and a scalar for the last one. As explained previously, the verification equation
can be viewed in this case as a linear pairing-product equation so on each node
the proof consists of 3 group elements. We end up with a proof on the commit-

276 O. Blazy et al.

ted signature consisting of (7λ)/ log(d) + 7 group elements and 1 scalar. This is
where, the trade-off comes into play, for a fair comparison to previous schemes,
we need a signature relying on an equivalent assumption, as they are based on
LIN, we need to rely on CDH, so f = 1-CDHI, we also want to have a reasonable
sized CRS, so minimize d/f , and take d = 2. In the end, we can show that by
increasing the CRS size by one element, we manage to reduce the size of the
proofs by a factor 3.

B.2 Tight Multi-Challenge (and Multi-User) IND-CCA Scheme

IND-CCA encryption is a very useful primitive, but in some contexts, one may
wish to give even more power to the adversary, he might be allowed to give
q challenge tuples and only answer on one of them, or he might ask the chal-
lenges to be run on μ encryption keys. There is a transformation based on the
Naor-Yung paradigm [42] which allows to create a (μ, q)-CCA-Encryption from a
(μ, q)-Structure-Preserving CPA-Encryption4, and a SSNIZK in pairing groups.

This technique is described in more details in [30], where they show how to
obtain a tight reduction to the CPA-encryption and the SSNIZK.

Roadmap of the Technique. To encrypt a message M , one obeys the fol-
lowing roadmap (assuming a crs containing two encryption keys ek1, ek2 for an
IND-CPA scheme.):

1. Generates two CPA-encryptions of M , one under each two encryption keys
in the CRS.

2. Uses the Simulation-Sound NIZK to generate a proof that those two cipher-
texts C1 and C2 encrypt the same message with respect to the encryption
keys.

3. The CCA ciphertext then consists of the two ciphertexts and this proof.

To decrypt the message, one simply has to check the validity of the proof
and to decrypt one of the CPA encryptions.

Instantiations. The solution presented in [30] uses Linear Encryption [12] for
the CPA-encryption. Our SS-NIZK construction works on bilinear groups, so is
also compatible with this encryption scheme.

The overall size of the CCA-Encryption is 6 group elements for the two
encryptions, 2 for the verification key and the one-time signature, and several
elements for the OR proof. The OR proof needs 4 commitments and 5 lin-
ear multiscalar multiplications proof to handle the equality of ciphertexts, an
extra commitment for the OR, and a commitment and proof of validity of the
signature.
4 A structure-preserving encryption scheme has public keys, messages, and ciphertexts

that consist entirely of group elements, and both the encryption and decryption
algorithms perform only group operations.

Tightly-Secure Signatures from Chameleon Hash Functions 277

The signature and its proof of validity are the larger part of the encryption,
and as explained before our construction for that is at least 3 times more efficient
than the original one. So our CCA-encryption inherits this efficiency and is nearly
3 times more efficient than theirs while our construction is still tight.

Acknowledgments. We thank Mihir Bellare for his valuable comments. Part of this
work was done while Olivier Blazy was employed at Ruhr-University Bochum. All
authors were (partially) funded by a Sofja Kovalevskaja Award of the Alexander von
Humboldt Foundation and the German Federal Ministry for Education and Research.
Jiaxin Pan was also partially funded by the German Israeli Foundation.

References

1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. Cryptology ePrint Archive, Report 2014/797 (2014)

4. Bellare, M., Ristov, T.: A characterization of chameleon hash functions and new,
efficient designs. Journal of Cryptology 27(4), 799–823 (October 2014)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

6. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

7. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
Fiat-Shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

8. Blazy, O., Kakvi, S., Kiltz, E., Pan. J.: Tightly-secure signatures from chameleon
hash functions. Cryptology ePrint Archive, Report 2014/1021 (2014)

9. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) Identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014)

10. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

11. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (April 2008)

12. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

13. Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps.
In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98–110. Springer, Heidelberg
(2003)

14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998

278 O. Blazy et al.

15. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

16. Catalano, D., Gennaro, R.: Cramer-damg̊ard signatures revisited: Efficient flat-tree
signatures based on factoring. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386,
pp. 313–327. Springer, Heidelberg (2005)

17. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

18. Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme
without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp.
339–356. Springer, Heidelberg (2006)

19. Cramer, R., Damg̊ard, I.B.: New generation of secure and practical RSA-based
signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185.
Springer, Heidelberg (1996)

20. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
In: ACM CCS 1999, pp. 46–51. ACM Press, November 1999

21. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

22. Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its
applications. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 234–246.
Springer, Heidelberg (1994)

23. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

25. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. Journal of Cryptology 20(4), 493–514
(October 2007)

26. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987)

27. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(April 1988)

28. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

29. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

30. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

31. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666.
Springer, Heidelberg (2011)

Tightly-Secure Signatures from Chameleon Hash Functions 279

32. Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under stan-
dard assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 333–350. Springer, Heidelberg (2009)

33. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

34. Katz, J.: Digital Signatures. Springer (2010)
35. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet

Society, February 2000
36. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under

general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 241–254. Springer, Heidelberg (2003)

37. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

38. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

39. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October
2004

40. Mohassel, P.: One-time signatures and chameleon hash functions. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer,
Heidelberg (2011)

41. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, pp. 33–43. ACM Press, May 1989

42. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

43. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394. ACM Press, May 1990

44. Schäge, S.: Tight proofs for signature schemes without random oracles. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer,
Heidelberg (2011)

45. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

Password-Based Authentication

Two-Server Password-Authenticated Secret
Sharing UC-Secure Against Transient

Corruptions

Jan Camenisch1(B), Robert R. Enderlein1,2, and Gregory Neven1

1 IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
jca@zurich.ibm.com

2 Department of Computer Science, ETH Zürich, 8092 Zürich, Switzerland

Abstract. Protecting user data entails providing authenticated users
access to their data. The most prevalent and probably also the most fea-
sible approach to the latter is by username and password. With password
breaches through server compromise now reaching billions of affected
passwords, distributing the password files and user data over multiple
servers is not just a good idea, it is a dearly needed solution to a topical
problem. Threshold password-authenticated secret sharing (TPASS) pro-
tocols enable users to share secret data among a set of servers so that they
can later recover that data using a single password. No coalition of servers
up to a certain threshold can learn anything about the data or perform
an offline dictionary attack on the password. Several TPASS protocols
have appeared in the literature and one is even available commercially.
Although designed to tolerate server corruptions, unfortunately none of
these protocols provide details, let alone security proofs, about how to
proceed when a compromise actually occurs. Indeed, they consider static
corruptions only, which for instance does not model real-world adaptive
attacks by hackers. We provide the first TPASS protocol that is provably
secure against adaptive server corruptions. Moreover, our protocol con-
tains an efficient recovery procedure allowing one to re-initialize servers
to recover from corruption. We prove our protocol secure in the universal-
composability model where servers can be corrupted adaptively at any
time; the users’ passwords and secrets remain safe as long as both servers
are not corrupted at the same time. Our protocol does not require ran-
dom oracles but does assume that servers have certified public keys.

Keywords: Universal composability · Threshold cryptography · Pass-
words · Transient corruptions

1 Introduction

Properly protecting our digital assets still is a major challenge today. Because
of their convenience, we protect access to our data almost exclusively by pass-
words, despite their inherent weaknesses. Indeed, not a month goes by without
the announcement of another major password breach in the press. In 2013, hun-
dreds of millions of passwords were stolen through server compromises, includ-
ing massive breaches at Adobe, Evernote, LivingSocial, and Cupid Media. In
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 283–307, 2015.
DOI: 10.1007/978-3-662-46447-2 13

284 J. Camenisch et al.

August 2014, more than one billion passwords from more than 400,000 websites
were reported stolen by a single crime ring. Barring some technical blunders on
the part of Adobe, most of these passwords were properly salted and hashed.
But even the theft of password hashes is detrimental to the security of a sys-
tem. Indeed, the combination of weak human-memorizable passwords (NIST
estimates sixteen-character passwords to contain only 30 bits of entropy [5]) and
the blazing efficiency of brute-force dictionary attacks (currently testing up to
350 billion guesses per second on a rig of 25 GPUs [20]) mean that any password
of which a hash was leaked should be considered cracked.

Stronger password hash functions [32] only give a linear security improve-
ment, in the sense that the required effort from the attacker increases at most
with the same factor as the honest server is willing to spend on password ver-
ification. Since computing password hashes is the attacker’s core business, but
only a marginal activity to a respectable web server, the former probably has
the better hardware and software for the job.

A much better approach to password-based authentication, first suggested
by Ford and Kaliski [19], is to distribute the capability to test passwords over
multiple servers. The idea is that no single server by itself stores enough infor-
mation to allow it to test whether a password is correct and therefore to allow an
attacker to mount an offline dictionary attack after having stolen the informa-
tion. Rather, each server stores an information-theoretic share of the password
and engages in a cryptographic protocol with the user and the other servers to
test password correctness. As long as less than a certain threshold of servers are
compromised, the password and the stored data remain secure.

Building on this approach, several threshold password-authenticated key
exchange (TPAKE) protocols have since appeared in the literature [4,16,19,24–
26,28,34], where, if the password is correct, the user shares a different secret key
with each of the servers after the protocol. Finally addressing the problem of
protecting user data, threshold password-authenticated secret sharing (TPASS)
protocols [1,9,10,25] combine data protection and user authentication into a
single protocol. They enable the password-authenticated user to reconstruct a
strong secret, which can then be used for further cryptographic purposes, e.g.,
decrypting encrypted data stored in the cloud. An implementation of the pro-
tocol by Brainard et al. [4] is commercially available as EMC’s RSA Distributed
Credential Protection (DCP) [17].

Unfortunately, none of the protocols proposed to date provide a satisfying
level of security. Indeed, for protocols that are meant to resist server compromise,
the research papers are surprisingly silent about what needs to be done when a
server actually gets corrupted and how to recover from such an event. The work
by Di Raimondo and Gennaro [16] is the only one to mention the possibility
to extend their protocol to provide proactive security by refreshing the shares
between time periods; unfortunately, no details are provided. The RSA DCP
product description [17] mentions a re-randomization feature that “can happen
proactively on an automatic schedule or reactively, making information taken
from one server useless in the event of a detected breach.” This feature is not

Two-Server Password-Authenticated Secret Sharing 285

described in any of the underlying research papers [4,34], however, and neither is
a security proof known. Taking only protocols with provable security guarantees
into account, the existing ones can protect against servers that are malicious
from the beginning, but do not offer any guarantees against adaptive corruptions.
The latter is a much more realistic setting, modelling for instance servers getting
compromised by malicious hackers. This state of affairs is rather troubling, given
that the main threats to password security today, and arguably, the whole raison
d’être of TPAKE/TPASS schemes, come from the latter type of attacks.

One would hope to be able to strengthen existing protocols with ideas from
proactive secret sharing [21] to obtain security against adaptive corruptions, but
this task is not straightforward and so far neither the resulting protocol details
nor the envisaged security properties have ever been spelled out. Indeed, design-
ing cryptographic protocols secure against adaptive corruptions is much more
difficult than against static corruptions. One difficulty thereby is that in the secu-
rity proof the simulator must generate network traffic for honest parties without
knowing their inputs, but, once the party is corrupted, must be able to produce
realistic state information that is consistent with the now revealed actual inputs
as well as the previously simulated network traffic. Generic multiparty compu-
tation protocols secure against adaptive corruption can be applied, but these
are too inefficient. In fact, evaluating a single multiplication gate in the most
efficient two-party computation protocol secure against adaptive corruptions [7]
is more than three times slower than a full execution of the dedicated protocol
we present here.

Our Contributions. We provide the first threshold password-authenticated
secret sharing protocol that is provably secure against adaptive corruptions,
assuming data can be securely erased, which in this setting is a standard and
also realistic assumption. Our protocol is a two-server protocol in the public-
key setting, meaning that servers have trusted public keys, but users do not.
We do not require random oracles. We also describe a recovery procedure that
servers can execute to recover from corruption and to renew their keys assuming
a trusted backup is available. The security of the password and the stored secret
is preserved as long as both servers are never corrupted simultaneously.

We prove our protocol secure in the universal composability (UC) frame-
work [11,12]. The very relevant advantages of composable security notions for
the particular case of password-based protocols have been argued before [10,13];
we briefly summarize them here. In composable notions, the passwords for honest
users, as well as their password attempts, are provided by the environment. Pass-
words and password attempts can therefore be distributed arbitrarily and even
dependently, reflecting real users who may choose the same or similar passwords
for different accounts. It also correctly models typos made by honest users when
entering their passwords: all property-based notions in the literature limit the
adversary to seeing transcripts of honest users authenticating with their correct
password, so in principle security breaks down as soon as a user mistypes the
password. Finally, composable definitions absorb the inherent polynomial suc-
cess probability of the adversary into the functionality. Thus, security is retained

286 J. Camenisch et al.

when the protocol is composed with other protocols, in particular, protocols that
use the stored secret as a key. In contrast, composition of property-based notions
with non-negligible success probabilities is problematic because the adversary’s
advantage may be inflated. Also, strictly speaking, the security provided by
property-based notions is guaranteed only if a protocol is used in isolation.

Our construction uses the same basic approach as the TPASS protocols of
Brainard et al. [4] and Camenisch et al. [10]. During the setup phase, the user
generates shares of his key and password and sends them to the servers (together
with some commitments that will later be used in the retrieve phase). During
the retrieve phase, the servers run a subprotocol with the user to verify the
latter’s password attempt using the commitments and shares obtained during
setup. If the verification succeeds, the servers send the shares of the key back to
the user, who can then reconstruct the key. Furthermore, the correctness of all
values exchanged is enforced by zero-knowledge proofs. Like the recent work of
Camenisch et al. [9], we do not require the user to share the password during
the retrieve phase but run a dedicated protocol to verify whether the provided
password equals the priorly shared one. This offers additional protection for the
user’s password in case he mistakenly tries to recover his secret from servers
different from the ones he initially shared his secret with. During setup, the
user can be expected to carefully choose his servers, but retrieval happens more
frequently and possibly from different devices, leaving more room for error.

The novelty of our protocol lies in how we transform the basic approach
into an efficient protocol secure against an adaptive adversary. The crux here
is that parties should never be committed to their inputs but at the same time
must prove that they perform their computation correctly. We believe that the
techniques we use in our protocol to achieve this are of independent interest
when building other protocols that are UC-secure against adaptive corruptions.
First, instead of using (binding) encryptions to transmit integers between par-
ties, we use a variant of Beaver and Haber’s non-committing encryption based on
one-time pads (OTP) [3]: the sender first commits to a value with a mixed trap-
door commitment scheme [7] and then encrypts both the value and the opening
with the OTP. This enables the recipient to later prove statements about the
encrypted value. Second, our three-party password-checking protocol achieves
efficiency by transforming commitments with shared opening information into
an Elgamal-like encryption of the same value under a shared secret key. To be
able to simulate the servers’ state if they get corrupted during the protocol exe-
cution, each pair of parties needs to temporarily re-encrypt the ciphertext with
a key shared between them.

Finally, we note that our protocol is well within reach of a practical imple-
mentation: users and servers have to perform a few hundred exponentiations each,
which translates to an overall computation time of less than 0.1 seconds per party.

2 Our Ideal Functionality F2pass

We now describe on a high level our ideal functionality F2pass for two-server
password-authenticated secret sharing, secure against transient corruptions.

Two-Server Password-Authenticated Secret Sharing 287

Fig. 1. High-level definition of F2pass. See the text for explanations, and see the full
version [6] for the full formalization.

288 J. Camenisch et al.

We provide the formal definition of F2pass in the GNUC variant [22] of the UC
framework [11] in the full version [6]. F2pass is reminiscent of similar function-
alities by Camenisch et al. [9,10], the main differences being our modifications
to handle transient corruptions. We compare the ideal functionalities in the full
version [6].

The functionality F2pass involves two servers, P and Q, and a plurality of
users. We chose to define F2pass for a single user account, specified by the ses-
sion id sid . Multiple accounts can be realized by multiple instances of F2pass or
with a multi-session realization of F2pass. The session identifier sid consists of
(pidP , pidQ, (G, q, g), uacc, ssid), i.e., the identity of the two servers, the descrip-
tion of a group of prime order q with generator g, the name of the user account
uacc (any string), and an arbitrary suffix ssid . Only the parties with identities
pidP and pidQ can provide input in the role of P and Q, respectively, to F2pass.
When starting a fresh query, any party can provide input in the role of a user
to F2pass; for subsequent inputs in that query, F2pass ensures it comes from the
same party; additionally, F2pass does not disclose the identity of the user to the
servers.

F2pass[sid] reacts to a set of instructions, each requiring the parties to send
multiple inputs to F2pass in a specific order. The main instructions are Setup,
Retrieve, and Refresh. Additionally F2pass reacts to instructions modelling dis-
honest behavior, namely Corrupt, Recover, and Hijack. F2pass may process mul-
tiple queries (instances of instructions) concurrently. A query identifier qid is
used to distinguish between separate executions of the main instructions. We
now provide a summary of the instructions. We refer to Figure 1 for a high-level
definition of F2pass and to the full version [6] for the full formalization.

With the Setup instruction, a user sets up the user account by submitting
a key k and a password p to F2pass for storage, protected under the password.
This instruction can be run only once, which we enforce by fixing qid to “Setup”.
With the Retrieve instruction, any user can then retrieve that k provided her
submitted password attempt a is correct, i.e., a = p, and the servers are willing to
participate in this query. Giving the server the choice to refuse to participate in a
query is important to counter online password guessing attacks. F2pass allows for
the adaptive corruption of users and servers with the Corrupt instruction, and
for recovery from corruption of servers at any time with the Recover instruction.
Servers should run the Refresh instruction whenever they recover from corrup-
tion or at regular intervals; in the real protocol, the two servers re-randomize
their state in this instruction and thereby clear the residual knowledge A might
have. If both servers are corrupted at the same time or sequentially with no
Refresh in between, the adversary A will learn the current key and password
(k, p) and is allowed to set them to different values. Finally, recall that in our
realization of F2pass, the first message from the user to the servers is not authen-
ticated. A can therefore learn the qid from that message, drop the message, and
send his own message to the servers with that qid . We model this attack in F2pass

with the Hijack instruction. Servers will not notice this attack, but the user will
conclude his query failed.

Two-Server Password-Authenticated Secret Sharing 289

Our F2pass functionality gives the following security guarantees: k and p are
protected from A as long as at least one server is honest and no corrupt user
is able to correctly guess the password. Furthermore, if at least one server is
honest, no offline password guessing attacks are possible. Honest servers can
limit online guessing attacks by limiting Retrieve queries after too many failed
attempts. Finally, an honest user’s password attempt a remains hidden even if
a Retrieve query is directed at two corrupt servers.

3 Preliminaries

In this section, we introduce the notation used throughout this paper, give the
ideal functionalities and cryptographic building blocks we use as subroutines
in our construction, and provide a refresher on corruption models in the UC
framework.

3.1 Notation

Let η ≥ 80 be the security parameter. Let ε denote the empty string. If S is a set,
then s

$← S means we set s to a random element of that set. If A is a probabilistic
polynomial-time (PPT) algorithm, then y

$← A(x) means we assign y to the
output of A(x) when run with fresh random coins on input x. If s is a bitstring,
then by |s| we denote the length of s. If U and P are parties, and Sub is a
two-party protocol, then by (out U ; outP) $← 〈U .Sub(in U),P.Sub(inP)〉(in UP)
we denote the simultaneous execution of the protocol by the two parties, on
common input in UP , with U ’s additional private input in U , with P’s additional
private input inP , and where U ’s output is out U and P’s output is outP . We
use an analogue notation for three-party protocols.

We use the following arrow-notation: publicData to denote the trans-
mission of public data over a channel that the two parties have already estab-
lished between themselves (we discuss how such a channel is established in more
detail later). When we write (: dataToErase) next to such an arrow, we mean
that the value dataToErase is securely erased before the public data is transmit-
ted. When we write

[

secretData
]

on such an arrow, we mean that secretData
is sent in a non-committing encrypted form. All these transmissions must be
secure against adaptive corruptions in the erasure model.

3.2 Ideal Functionalities that we Use as Subroutines

We now describe the ideal functionalities we use as subroutines in our construc-
tion. These are authenticated channels (Fac), one-side-authenticated channels
(Fosac), zero-knowledge proofs of existence (Fgzk), and common reference strings
(FD

crs).

Authenticated Channels. Let Fac[sid] be a single-use authenticated chan-
nel [22]. In our construction, we allow only servers to communicate among them-
selves using Fac[sid]. We recall the formal definition in the full version [6].

290 J. Camenisch et al.

One-Side-Authenticated Channels. Let Fosac[sid] be a multi-use channel
where only one party, the server, authenticates himself towards the other party,
the client. The server has the guarantee that in a given session all messages
come from the same client. Note that the first message from the client to the
server is not authenticated and can be modified (hijacked) by the adversary—the
original client will be excluded from the rest of the interaction. We provide a
formal definition in the full version [6]. We also refer to the work of Barak et al. [2]
for a formal treatment of communication without or with partial authentication.
A realization of Fosac[sid] is out of scope, but not hard to construct.

Zero-Knowledge Proofs of Knowledge and Existence. Let Fgzk[sid] be
the zero-knowledge functionality supporting proofs of existence [8], also called
“gullible” zero-knowledge proofs. These proofs of existence are cheaper than the
corresponding proofs of knowledge, but they impose limitations on the simulator
S in the security proof. In a realization of Fgzk, the prover reveals the statement
to be proven only in the last message. This is crucial for our construction, as
this allows the prover to erase () witnesses and other data before disclosing
the statement to be proven. We recall the formal definition [8] in the full version
[6].
Notation. When specifying the predicate to be proven, we use a combination of
the Camenisch-Stadler notation [15] and the notation introduced by Camenisch,
Krenn, and Shoup [8]; for example: Fgzk[sid]{(α, β ; ∃γ) : y = gγ∧z = gαkβhγ}
is used for proving the existence of the discrete logarithm to the base g, and
of a representation of z to the bases g, k, and h such that the h-part of this
representation is equal to the discrete logarithm of y to the base g. Furthermore,
knowledge of the g-part and the k-part of the representation is proven. Variables
quantified by (knowledge) can be extracted by the simulator S in the security
proof, while variables quantified by ∃ (existence) cannot.

By writing a proof on an arrow:
π0 we denote the performance of such

an interactive zero-knowledge proof protocol secure against adaptive corruptions
with erasures. If additional public or secret data is written on the arrow, or
data to be erased besides the arrow, then this data is transmitted with, or
erased before, respectively, the last message of the proof protocol (cf. §3.1). The
predicate of the proof may depend on that data.
Proofs with two verifiers. Let F2v

gzk[sid] be the three-party ideal functionality
to denote the parallel execution of two independent zero-knowledge proofs with
the same prover and same specification, but two different verifiers. The prover
waits for a reply from both verifiers before sending out the last message of each
proof. This gives the prover the opportunity to erase the same witnesses in both
proofs. We provide a formal definition in the full version [6]. The proof that the
special composition theorem by Camenisch, Krenn, and Shoup [8] holds also for
F2v

gzk is very similar to the proof that it holds for Fgzk and is omitted.

Common Reference String. Let FD
crs[sid] be a common reference string

(CRS) functionality, which provides a CRS distributed according to some dis-
tribution D. We make use of two distributions in this paper: FG

3

crs provides a

Two-Server Password-Authenticated Secret Sharing 291

uniform CRS over G
3 and Fgzk

crs provides a CRS as required by Camenisch et
al.’s protocol π, the intended realization of Fgzk [8]. We provide a formal defini-
tion in the full version [6].

3.3 Cryptographic Building Blocks of Our Construction

Our construction makes use of two cryptographic building blocks: a CCA2-secure
encryption scheme, and a homomorphic mixed trapdoor commitment scheme.

CCA2-Secure Encryption. Wedenote the key generation function (pk , sk , kgr)
$← Gen(1η), where kgr is the randomness thatwas used to generate the key pair.We
denote the encryption function (e, er) $← Enc(pk , pt , l) that takes as input a public
key pk , a plaintext pt ∈ {0, 1}∗, and a label l ∈ {0, 1}∗; and outputs the ciphertext
e and the randomness er used to encrypt. The corresponding decryption function
pt $← Dec(sk , e, l) takes as input the secret key sk , the ciphertext e, and the label
l. We require the scheme to be secure against adaptive chosen ciphertext attacks
[33]. An example of such an encryption scheme is Cramer-Shoup encryption in a
hybrid setting over a groupG of prime order q [15, §5.2]. To accommodate the label
l in the encryption function, it must be added as an additional input to the hash
function used during encryption.

Homomorphic Mixed Trapdoor (HMT) Commitment. An HMT com-
mitment scheme [7] is a computationally binding equivocable homomorphic com-
mitment scheme, constructed from Pedersen commitments [31]. It works well
with proofs of existence using Fgzk, resulting in an efficiency gain in our proto-
col compared to a construction using plain Pedersen commitments, which would
have to use proofs of knowledge. We provide a high-level overview of HMT comm-
timents here and recall the definition of HMT commitments in the full version
[6].

HMT commitments operate in a group G of prime order q (with generator g)
where the decision Diffie-Hellman (DDH) problem is hard. They implicitly use
a CRS (h, y, w) provided by FG

3

crs . By (c, o) $← Com(s) we denote the function
that takes as input a value s ∈ Zq to be committed, and outputs a commitment
c and an opening o ∈ Zq to the commitment. We will also use the notation c ←
Com(s, o), where the opening is chosen outside the function. The commitments
are homomorphic with respect to addition over Zq: i.e., c∗c′ = Com(s+s′, o+o′).
With a trapdoor to the CRS it is possible to efficiently equivocate commitments.
Finally, we note that it is possible to extract a Pedersen commitment pc from a
commitment c, we denote this operation by pc := ysho ← PedC(c).

3.4 Corruption in the UC Model

The UC model defines several types of party corruptions, the most important
being static, adaptive, and transient corruptions. In protocols secure against
static party corruptions, parties are either honest or corrupt from the start of the
protocol and do not change their corruption status. In protocols secure against
adaptive corruptions, parties can become corrupted at any time; once corrupted,
they remain so for the rest of the protocol. Finally, transient corruptions [11]

292 J. Camenisch et al.

are similar to the adaptive corruptions, but parties can recover from corruption
and regain their security.

In the following we discuss the modelling of transient corruptions in the UC
framework, how one can use ideal functionalities designed for adaptive corrup-
tions in a protocol designed for transient corruptions, and finally we discuss a
particular problem that appears in protocols secure against adaptive or transient
corruptions: the selective decommitment problem.

Modelling Transient Corruptions in Real/Hybrid Protocols. We now
recall how corruption and recovery is modelled in real/hybrid protocols.

Corruption of a party. When a party becomes corrupted, all of its internal
state excluding the parts that were explicitly erased () is handed over to the
adversary A. A then controls that party. The ideal functionalities that were
used as subroutines are notified of the corruption, and may provide additional
information or capabilities to A. Note that A can always choose to let a corrupted
party follow the honest protocol, but passively monitor the party’s internal state.

Recovery from corruption. A may cede control from a party. When doing that,
A may specify a new internal state for the party. We then say that the party
formally recovered. In real life, a party might know it recovered if it detected a
breach and has restored from backup.

In most protocols however, formal recovery is not enough: the adversary still
knows parts of the internal state of the formally recovered party. To allow the
party to effectively recover its security, it must take additional steps, e.g., notify
its subroutines (and stop using the subroutines that cannot handle recovery)
and run a protocol-specific Refresh instruction. The party might thereby drop
all currently running queries.

A party initiates a Refresh query to modify its internal state so that firstly
it is synchronized with the other protocol participants, and so that secondly A’s
knowledge of the old state does not interfere with security of the new state. Par-
ties should initiate a Refresh query when they formally recover from corruption.
(If parties cannot detect formal recovery, they should run Refresh periodically.)
The Refresh query might fail if the state of the party is inconsistent with that of
the others. The party might also not necessarily recover its security even after
succesful completion of the query, e.g., because all other participants are cor-
rupted. Note that the security of a party is fully restored (if at all) only after
Refresh completes: in the grey zone bewteen formal recovery and completion of
Refresh, the party must not run any queries other than Refresh.

Using Ideal Functionalities Designed for the Adaptive type in a
Transient-Secure Hybrid Protocol. Protocols secure against transient cor-
ruptions may use ideal functionalities as subroutines that were designed to han-
dle adaptive corruptions, e.g., Fac, Fosac, Fgzk, and F2v

gzk: upon formal recovery,
the party must stop using all instances of these ideal functionalities. Thereby, it
has to abort all currently running queries. Thereafter, it has to use fresh instances
of these ideal functionalities for running the Refresh query, and all subsequent
queries.

Two-Server Password-Authenticated Secret Sharing 293

The Selective Decommitment Problem. Hofheinz demonstrated that it
is impossible to prove any protocol secure against adaptive corruptions (and
thus, against transient corruptions) that uses perfectly binding commitments or
(binding) encryptions to commit to or to encrypt the parties’ input, respectively
[23]. Let us expand on this. For example, assume that in a protocol a user U
with an input i must send out a binding commitment c or an encryption e
depending on i, e.g., (c, o) = Com(i) or (e, er) = Enc(pk , i, l). The simulator S
in the security proof must be able to simulate the honest U without knowing
her input i, i.e., S must send c or e to the adversary A, containing some value
that is most likely different from i. If U then gets corrupted, S must produce an
internal state for U , namely the opening o or the randomness er used to encrypt
and—if applicable—the secret key sk , that is consistent with both her real input
i and the values c or e already sent out to the adversary. However, due to the
binding nature of the commitment and encryption, and unless it could predict i,
S cannot find an internal state for U consistent with these values and therefore
the security proof will not go through.

We explain how we avoid the selective decommitment problem in our protocol
in Section 4.2.

4 Our Construction of TPASS Secure against Transient
Corruptions

In this section we present our realization Π2pass of the F2pass ideal functionality
in the (FG

3

crs , Fosac, Fac, Fgzk, F2v
gzk)-hybrid setting. Our Π2pass protocol further

uses a CCA2-secure cryptosystem and an HMT commitment scheme. As for
F2pass, we describe Π2pass for a single user account only, i.e., each instance of
Π2pass uses a fixed sid .

We start this section by discussing the high-level ideas of our construction.
We then elaborate on the novel core ideas in our construction, before providing
the detailed construction, and we comment on a multi-session version of Π2pass

that uses a constant size CRS. We finish by providing an estimate of the com-
putational and communication complexity of Π2pass in both the standard and
random oracle models, and compare it with the complexity of related work.

4.1 High Level Approach of Our TPASS Protocol

Our protocol Π2pass implements the Setup, Retrieve, and Refresh instructions
of F2pass. An adversary can hijack a Setup or Retrieve query through the Fosac

subroutine. The other instructions of F2pass are purely conceptual for the security
proof. At a high level, the realizations of the Setup and Retrieve instructions of
Π2pass are reminiscent of the schemes by Camenisch et al. [9,10] and Brainard et
al. [4]: during Setup, the user generates shares of his key and password and sends
them to the servers (together with some commitments that will later be used in
Retrieve). During Retrieve, the servers run a subprotocol with the user to verify
the latter’s password attempt using the commitments and shares obtained in
Setup. If the verification succeeds, the servers send the shares of the key back to
the user, who can then reconstruct the key. Furthermore, the correctness of all

294 J. Camenisch et al.

values exchanged is enforced by zero-knowledge proofs. To deal with transient
corruptions, our Π2pass needs to implement the Refresh instruction, which allows
the servers to re-randomize their shares of the key and password and thereby to
re-secure their states when one of them is recovering from corruption. Naturally,
prior schemes do not have a Refresh instruction as they do not provide security
against transient corruptions.

The novelties of our construction arise from how we turn this basic approach
into a scheme that is secure against adaptive and transient corruptions and at
the same time efficient enough to be considered for practical deployment.

4.2 Key Ideas of Our TPASS Protocol

We now present the key ideas that make it possible for our TPASS protocol to be
secure against transient corruptions. These ideas are novel and of independent
interest.

Three-Party Computation for Determining Equality to Zero. The core
subprotocol ChkPwd is depicted in Figure 2. To check if the password attempt
a input by the user during a Retrieve query matches the stored password p =
pP+pQ, the user and the two servers engage in a three-party computation to check
if δ := pP + pQ − a ?= 0, where pP and pQ are the shares stored by the respective
servers. For efficiency reasons, it does not make sense to base that protocol on a
generic multiparty computation protocol. Indeed, running one Retrieve query in
our protocol is more than 3.7 times faster than evaluating a single multiplication
gate in the best generic two-party computation protocol that is secure against
adaptive corruptions [7] (see the full version [6]).

The first observation is that a commitment in the HMT scheme we use essen-
tially consists of a pair of Pedersen commitments. Thus, while all components
need to be considered to prove that a commitment is formed correctly, it is often
sufficient to consider just one component later when doing computations with
them. Now, based on this, a first idea for the desired subprotocol would be as
follows. The servers’ commitments cpP and cpQ to the shares of the password
are distributed to all the parties, who then generate a commitment on the sum
of the two shares using the homomorphic property of HMT commitments, and
extract the first component thereof to obtain a value

C := PedC(cpP ∗ cpQ) = ypP+pQhopP+opQ ,
where y and h are part of the CRS. That value is an equivocable Pedersen com-
mitment to p := pP + pQ with equivocation trapdoor logy h. Given C, the user
subtracts his password attempt a from that commitment:

B := Cy−a = yδhopP+opQ .
We now consider the Elgamal “ciphertext”

(

A := h−1, B
)

, which is an encryp-
tion of yδ under the shared secret key (−opP − opQ) with fixed randomness −1.
This ciphertext is then passed from U to P, from P to Q, and then from Q back
to P, where at each step, the sender exponentiates that ciphertext by a non-zero
random number rU , rP , and rQ, respectively, thereby multiplying the plaintext
by that random number. Also, if possible, the sender will partially decrypt the
ciphertext by removing opP or opQ: U computes

Two-Server Password-Authenticated Secret Sharing 295

(

AU ,DU
)

:=
(

ArU , BrU
)

=
(

h−rU , yδ∗rU h(opP+opQ)rU
)

and sends it to P, P computes
(

AP ,DP

)

:=
(

ArP
U ,DrP

U A
opP
P

)

=
(

h−rU rP , yδ∗rU rP hopQrU rP
)

and sends it to Q, and Q computes
(

AQ, BQ

)

:=
(

ArQ
P ,DrQ

P A
opQ
Q

)

=
(

h−rU rPrQ , yδ∗rU rPrQ
)

and sends it to P. If in the end the result BQ is the neutral element, then δ = 0,
and the password was correct.

Unfortunately, this first idea doesn’t quite work: if δ = 0, DU fixes a value for
(opP + opQ) and DP fixes a value for opQ. Thus cpP and cpQ, together with DU

and DP form unequivocable statistically binding commitments to pP and pQ. This
causes a selective decommitment problem. Our solution is to blind the values DU

and DP with non-committing random shifts sUP , sUQ, and sPQ as follows, thereby
circumventing the problem. U chooses sUP and sUQ, and sends them to P and Q,
respectively, in a non-committing manner. U then generates BU by multiplying
DU with the blinding factor A

sUP+sUQ
U , i.e.,

(

AU , BU
)

:=
(

ArU , BrU A
sUP+sUQ
U

)

=
(

h−rU , yδ∗rU h(opP+opQ−sUP−sUQ)rU
)

and sends BU instead of DU to P. The ciphertext (AU , BU) is now encrypted
under the shared key (sUP +sUQ −opP −opQ). Similarily, P chooses sPQ and sends
it to Q. P generates BP like DP but uses BU instead of DU in the formula and
multiplies the result by A

−sUP+sPQ
P , i.e.,

(

AP , BP

)

:=
(

ArP
U , BrP

U A
opP−sUP+sPQ
P

)

=
(

h−rUrP , yδ∗rU rP h(opQ−sUQ−sPQ)rUrP
)

and sends BP to Q instead of DP , i.e., the ciphertext (AP , BP) is now encrypted
under the shared key (sUQ + sPQ − opQ). Finally Q computes BQ differently by
replacing DP by BP in the formula and multiplying the result by A

−sUQ−sPQ
Q , i.e.,

(

AQ, BQ

)

:=
(

ArQ
P , BrQ

P A
opQ−sUQ−sPQ
Q

)

=
(

h−rU rPrQ , yδ∗rU rPrQ
)

.
At the end of each step, the parties prove to each other in zero-knowledge that
they computed their values correctly; whereby the parties use the trick explained
in the next paragraph to refer to sUP , sUQ, and sPQ in the proofs. These proofs
also allow the simulator to extract a, pP , pQ, opP , opQ, and (sUP + sPQ) in the
security proof.

Transmission of Secrets for Later use in Proofs. In the protocol just
described, U must send the value sUP to P in a non-committing manner and
all parties must be able to prove knowledge of that same value in subsequent
zero-knowledge proofs. Simply having U encrypt sUP is not sufficient, because P
can later not prove knowledge of the encrypted sUP in proofs. A similar situation
also arises in other parts of our protocol, for example in the Setup instruction
when U must send a share pP to the password to P in a non-committing manner.

Ina setting that considers only static corruptions, suchproblemsareoften solved
by requiring U to send aPedersen commitment csUP to sUP to all parties, and to send
sUP and the opening osUP to the commitment to P, encrypted under P’s public key.
Thus, with csUP , P can later prove that it correctly used sUP in its computations.

When dealing with adaptive or transient corruptions, this does not work: the
encryption of sUP causes a selective decommitment problem. Instead, we have
U generate an equivocable commitment csUP to sUP with opening osUP , then

296 J. Camenisch et al.

Fig. 2. Subroutine ChkPwd: the servers check if U ’s password attempt a is equal to
the password pP + pQ. See the next figure for the instantiation of the zero-knowledge
proofs.

Two-Server Password-Authenticated Secret Sharing 297

establish a one-time pad (OTP) with P, and then encrypt both sUP and osUP

with the OTP. U then sends the resulting ciphertext to P in any convenient
manner (in this specific example, U sends it as part of proof protocol π5 in
Figure 2 that actually uses the values sUP , osUP , and csUP in some indirect form;
in the Setup instruction where she needs to send pP to P in a non-committing
manner, U sends the ciphertext to P directly). Afterwards, P can refer to sUP

in zero-knowledge proofs by means of csUP , e.g., Fgzk[sid]{(∃sUP , osUP) : csUP =
Com(sUP , osUP)}. This approach will allow S to equivocate sUP , provided that no
extra dependencies on the opening osUP are introduced in other protocol steps
(the first idea of the three-party protocol above describes the problems when
such an extra dependency is introduced on opP).

Fig. 3. Instantiation of zero-knowledge proofs for ChkPwd

4.3 Detailed Construction of Π 2pass in the Standard Model (with
Erasures)

We now give the full details of the instructions of our protocol and their respec-
tive subprotocols. Let us start with five remarks. First, we implicitly assume that
all parties query FG

3

crs to obtain a CRS (h, y, w) whenever they need it. Second, all
commitments Com must be realized with HMT commitments (see §3.3). Using
Pedersen commitments instead would require expensive zero-knowledge proofs
of knowledge in the protocol, thereby massively increasing the computational
complexity. Third, we assume that for each query the user establishes a single

298 J. Camenisch et al.

instance of a one-side-authenticated channel Fosac[(sid , qid),P] and Fosac[(sid ,
qid),Q] with each respective server; all communication denoted by arrows:

, and all communication inside the zero-knowledge functionalities Fgzk and
F2v

gzk happen through that instance.1 The two servers communicate with each
other through regular authenticated channels Fac[(sid , qid),P,Q, ssid]. Fourth,
parties can send data in a non-committing and confidential manner, i.e., secure
against adaptive corruptions, by using the secureSend subroutine depicted in
Figure 4. We denote such communication by:

[

secretData
]

(cf. §3.1). The par-
ties establish a one-time pad (OTP) with each other, encrypt the data with that
OTP, and erase the OTP before sending the ciphertext [3]. Fifth, we implicitly
assume that a party aborts a query without output if any check fails.

Fig. 4. Subroutine secureSend, the realization of

[
secretData

]

: a party T (user or
server) sends secretData to R (user or server) in a non-committing encrypted form.

The Setup Instruction. Recall that the goal of the Setup instruction is for a
user to set up an account uacc with the two servers P and Q and store a key
k ∈ Zq protected under a password p ∈ Zq therein. The servers will silenty abort
a Setup query if the user account has already been established.

When a user U receives an input 〈Setup, sid = (pidP , pidQ, (G, q, g), uacc,
ssid), qid = “Setup”, p, k〉 from the environment Z, she starts a Setup query.
Each of the servers starts a Setup query when he receives an input 〈ReadySetup,
sid , qid〉 from Z. As the first step of the Setup query, U distributes shares of k
and p to both servers using the Share subprotocol. In that subprotocol, the user
establishes an OTP with each server and encrypts the shares with the respective
OTPs in order to circumvent the selective decommitment problem [23]. Finally,
the servers store their shares as their internal state and send an acknowledgement
back to the user. See Figure 5. At the end of the Setup query, each of the three
parties outputs 〈Done, sid , qid〉 to Z.
1 Refer to Barak et al. [2] for details about modelling communication with partial

authentication in the UC model.

Two-Server Password-Authenticated Secret Sharing 299

Fig. 5. Setup instruction: U distributedly stores a key k protected under a password
p on two servers P and Q.

Fig. 6. Subroutine Share: U generates shares to her password p and key k, and sends
them to the servers.

300 J. Camenisch et al.

The Share subprotocol Setup uses is depicted in Figure 6. In that subprotocol
U splits her inputs p and k into random additive shares pP + pQ := p and
kP + kQ := k, and sends (pP , kP) to P and sends (pQ, kQ) to Q. She commits to
all shares and sends all commitments to both servers; additionally she sends the
openings for a server’s shares to the respective server; thus enabling the servers
to later perform zero-knowledge proofs about their shares and the commitments
to them. The servers then ensure they got the same commitments and prove to
each other that they know their shares. In π2, Q also proves to P that he knows
the opening opQ corresponding to his share of the password: this is needed so
that S can properly simulate BP = (AP)sUQ+sPQ−opQ in ChkPwd (we note that S
does not need to know the value opP from π1 at this point).

Fig. 7. Retrieve instruction: U retrieves the key k if she provides the correct password.

The Retrieve Instruction. Recall that the goal of the Retrieve instruction
is for a user (not necessarily the same as during Setup) to retrieve the key k,
contingent upon her holding a correct password attempt a ∈ Zq.

When a user U receives an input 〈Retrieve, sid , qid , a〉 with the same sid
as during Setup from Z, she starts a Retrieve query. Each of the servers starts
a Retrieve query when he receives an input 〈ReadyRetrieve, sid , qid〉 from Z.
The servers may refuse to service the query if they for instance suspect that an
online password guessing attack is in progress, e.g., if they have processed too
many failed Retrieve queries for that user account already. As many policies for
throttling down can be envisaged, we decided not to include the policy in our
model but rather to let Z decide: if the server should refuse service, Z does
not provide the initial input 〈ReadyRetrieve, sid , qid〉. The Retrieve instruction
runs as follows and is depicted in Figure 7. The servers start a Retrieve query by

Two-Server Password-Authenticated Secret Sharing 301

Fig. 8. Subroutine Reconstr: the servers send their commitments and shares of the key
to U so that she may reconstruct her key k.

retrieving their internal state. The user and the servers then engage in a three-
party computation to determine whether δ := pP + pQ − a ?= 0, i.e., whether
the password attempt is correct, using the ChkPwd subprotocol. If the password
is correct, the servers send their shares of the key back to the user using the
Reconstr subprotocol; if wrong, they send back ε. At the end of the Retrieve
query, U outputs 〈Deliver, sid , qid , k′〉 to Z, and each server outputs 〈Delivered,
sid , qid , b〉 to Z—where k′ = k and b = 1 if the password attempt was correct,
else k′ = ε and b = 0.

We now describe the two subprotocols that the Retrieve instruction uses.
ChkPwd was already explained in §4.2 and was depicted in Figure 2. Reconstr is
depicted in Figure 8. In this subprotocol, each server sends his share of the key
(kP or kQ) and the corresponding opening to U . Both servers also send her the
two commitments to the shares of the key. The user checks that she received the
same commitments from both servers, that the shares and openings are correct,
and reconstructs the key k := kP + kQ. The servers may send ε instead to denote
a failed password attempt; in that case U outputs ε.

In both the ChkPwd and the Reconstr subprotocols, U needs to send data
in a non-committing and confidential manner to P. Instead of generating the
OTPs for each subprotocol separately, the two parties could generate a single
OTP of double the length in one operation and use the first half of the OTP
during ChkPwd and the second half during Reconstr. This optimization would
save one key generation (for the CCA2-secure cryptosystem), one encryption,
and one decryption. The same optimization can be applied between U and Q.

The Refresh Instruction. In the Refresh instruction, the servers re-randomize
their shares and generate new commitments to them. This ensures that A no
longer has any knowledge about the internal state of a party who recovered from
corruption. Servers execute a Refresh query immediately after they formally
recover from corruption (see §3.4). Upon starting a Refresh query, the servers
abort all running Setup and Retrieve queries and stop accepting new ones. Upon

302 J. Camenisch et al.

completion of the Refresh query, they resume acceptance of new Setup and
Retrieve queries.

When a server receives an input 〈Refresh, sid , qid〉 with the same sid as
during Setup from Z, he starts the Refresh instruction. The Refresh protocol
runs as follows and is depicted in Figure 9. The servers start by recovering their
internal state. The servers then re-randomize their shares of the password and
key using the ComRefr subprotocol. Finally both servers store their new internal
state. At the end of the protocol, each server outputs 〈RefreshDone, sid , qid〉 to
Z.

Fig. 9. Refresh instruction: the servers re-randomize their internal state.

The Refresh instruction uses the ComRefr subprotocol, depicted in Figure 10,
the goal of which is for both servers P and Q to re-randomize their respective
shares (pP , kP) and (pQ, kQ). P randomly selects two offsets p̊ and k̊ and subtracts
them from his shares. P then commits to the offsets and his new shares. P proves
to Q that all operations were done correctly. As part of the proof, P sends all the
commitments and a ciphertext that contains the offsets and the corresponding
openings encrypted under an OTP to Q. Q likewise updates his shares and
generates new commitments to them. Q proves to P that all operations were
done honestly and that he knows the opening ôpQ corresponding to his new share
of the password (for the same reason as in Share: S needs ôpQ when simulating
BP in ChkPwd). As part of the proof, Q sends the new commitments to P.

4.4 Constructing a Multi-session Π2pass with Constant-Size CRS

In order to handle multiple user accounts, one can run multiple independent
sessions of Π2pass. With that first approach, security is guaranteed by direct
application of the UC composition theorem. Each session however needs an inde-
pendent copy of FG

3

crs . In the full version [6] we argue that using the same instance
of FG

3

crs for all the otherwise independent sessions is secure as well. Informally,
the second approach works because the CRS is used chiefly by the HMT com-
mitments, which are all bound to sid by the zero-knowledge proofs. Further, the

Two-Server Password-Authenticated Secret Sharing 303

Fig. 10. Subroutine ComRefr: the servers generate new commitments and shares of the
password and key based on the old ones.

JUC theorem [14] guarantees that all instances in the realizations of Fgzk and
F2v

gzk can use the same instance of Fgzk
crs .

4.5 Computational and Communication Complexity in the
Standard Model

The sum of the computation time of all parties for Setup, Retrieve, and Refresh
queries is less than 0.08, 0.16, and 0.09 seconds for 80/1248-bit security2 on
modern computers,3 and the communication complexity is 5, 7, and 3 round
trips (when combining messages wherever possible), respectively. For the Setup
instruction, 43 elements of Zq, 56 elements of G, 12 elements of Zn, and 4 ele-
ments of Zn2 are transmitted over plain/TCP channels in our preferred embod-
iment, corresponding to roughly 5.2 kilobytes for 80/1248-bit security when G

is an elliptic curve. For the Retrieve instruction, 73.5, 99, 16, and 6 elements of
Zq,G,Zn, and Zn2 are transmitted respectively (8 kB). For the Refresh instruc-
tion, 34, 46, 10, and 4 elements of Zq,G,Zn, and Zn2 are transmitted respectively

2 The subgroup size |q| is 2*80 bits and the RSA modulus size |n| is 1248 bits.
3 When using the GNU MP (GMP) bignum library on 64-bit Linux on a computer

with an Intel Core i7 Q720 1.60GHz CPU.

304 J. Camenisch et al.

(4.5 kB). Due to the fact that our protocol is secure against adaptive corruptions,
it is computationally more expensive than a standard-model instantiation of the
CLN protocol [10] (i.e., with interactive zero-knowledge proofs): our Retrieve
queries are about 10 and 2.6 times slower for users and servers, respectively; and
more data is transferred; however the number of round trips is identical. See the
full version [6] for a detailed analysis.

4.6 Construction of Π2pass in the Random-Oracle Model

Our Π2pass can be improved in several ways when security in the random-oracle
model only is sufficient. First, one can transform all interactive zero-knowledge
proofs into non-interactive ones using the Fiat-Shamir transformation [18] in
combination with encryption to a public key in the CRS for online extraction [30].
Second, one can replace our secureSend protocol by Nielsen’s NINCE [29]. Third,
one can use faster encryption and signature algorithms. This improves the com-
putational complexity of our Setup, Retrieve, and Refresh queries by only about
15%, 25%, and 6% but the number of communication rounds is now much
smaller: 3, 3, and 2 round trips, respectively. Compared to CLN [10], the com-
putational complexity of our Retrieve queries are then about 11 and 3.7 times
larger for users and servers, respectively; the number of round trips is the same.
Compared to 1-out-of-2 CLLN [9], the computational complexity of our Retrieve
queries are about 2.6 and 4.1 times larger for users and servers, respectively, but
need 2 round trips less: if the network delay is large then our protocol is faster
than CLLN. See the full version [6] for a detailed analysis.

5 Proof Sketch

For reasons of space, we provide the security proof in the full version [6] and
explain only the main ideas here.

We use the standard approach for proving the security of UC protocols: we
construct a straight-line simulator S such that for all polynomial-time bounded
environments and all polynomial-time bounded adversaries A it holds that the
environment Z cannot distinguish its interaction with A and Π2pass in the (FG

3

crs ,
Fosac,Fac,Fgzk,F2v

gzk)-hybrid real world from its interaction with S and F2pass in
the ideal world. We prove this statement by defining a sequence of intermediate
hybrid worlds (the first one being the real world and the last one the ideal
world) and showing that Z cannot distinguish between any two consecutive
hybrid worlds.

The main difficulties in constructing S (and accordingly in designing our pro-
tocol to allow us to address those difficulties) are as follows: 1) S has to extract
the inputs of all corrupted parties from the interaction with them; 2) S has
to compute and send commitments and ciphertexts to the corrupted parties on
behalf of the honest parties without knowing the latter’s inputs, i.e., S needs to

Two-Server Password-Authenticated Secret Sharing 305

commit and encrypt dummy values; 3) but when an honest party gets corrupted
mid-protocol, S has to provide A with the full non-erased intermediate state of
that party, in particular the opening of commitments that were sent out and the
randomness used to compute encryptions that were sent out (if these value need
to be retained by a party).

To address the first difficulty, recall that parties are required to perform
proofs of knowledge of their shares upon their first use in the protocol. S can
therefore recover the inputs of all corrupted parties with the help of Fgzk and
F2v

gzk. The commitments and proofs of existence with Fgzk and F2v
gzk ensure that

the corrupted parties are unable to alter their inputs mid-protocol.
The second and third difficulty we address as follows. In general, S runs

honest parties with random input and adjusts their internal state as follows
when it learns the correct values. When S is told by F2pass whether the password
attempt was correct in a Retrieve query, it can generate credible values BU , BP ,
and BQ in the ChkPwd subroutine because S can recover the opening values op
from dishonest servers through Fgzk and F2v

gzk. When a user gets corrupted during
Setup, or both servers get corrupted, S can recover the actual password and
key associated with the user account from F2pass and then needs to equivocate
all relevant commitments and encryptions sent earlier to the corrupted parties.
This is also the case when a user gets corrupted during Retrieve, where S is
also allowed to recover the actual password attempt. S can equivocate such
commitments, with the help of the trapdoor, and equivocate the ciphertexts
containing the openings of commitments it sent between two honest parties by
altering the one-time pads. By the time a one-time pad is used, the decryption
keys and randomness used to establish it have been erased and so they can be
changed to equivocate. Additionally, S never needs to reveal the randomness
used inside the ChkPwd subroutine, in particular because Fgzk and F2v

gzk allow
for the erasure of witnesses before delivering the statement to be proven to the
other party. The rest of the security proof is rather straightforward.

6 Conclusion

We presented the first TPASS protocol secure against adaptive corruptions and
where servers can recover from corruptions in a provably secure way. Our pro-
tocol involves two servers, and security for the user is guaranteed as long as at
most one server is corrupted at any time. Our protocol is efficient enough to be
well within reach of a practical implementation. Designing an efficient protocol
in the more general t-out-of-n setting is an interesting open problem.

Acknowledgments. We are grateful to the anonymous reviewers of all earlier ver-
sions of this paper for their comments, and thank Anja Lehmann for many helpful
discussions. This work was supported by the European Community through the Sev-
enth Framework Programme (FP7), under grant agreement n◦321310 for the project
PERCY.

306 J. Camenisch et al.

References

1. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: ACM CCS 2011, pp. 433–444 (2011)

2. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005)

3. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic.
In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–323.
Springer, Heidelberg (1993)

4. Brainard, J., Juels, A., Kaliski, B., Szydlo, M.: A new two-server approach for
authentication with short secrets. In: USENIX SECURITY 2003, pp. 201–214
(2003)

5. Burr, W., Dodson, D., Newton, E., Perlner, R., Polk, W., Gupta, S., Nabbus, E.:
Electronic authentication guideline. NIST Special Publication 800–63-1 (2011)

6. Camenisch, J., Enderlein, R.R., Neven, G.: Two-Server Password-Authenticated
Secret Sharing UC-Secure Against Transient Corruptions. IACR Cryptology ePrint
Archive, 2015:006

7. Camenisch, J., Enderlein, R.R., Shoup, V.: Practical and employable protocols for
UC-secure circuit evaluation over Zn. In: Crampton, J., Jajodia, S., Mayes, K.
(eds.) ESORICS 2013. LNCS, vol. 8134, pp. 19–37. Springer, Heidelberg (2013)

8. Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally com-
posable zero-knowledge protocols. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 449–467. Springer, Heidelberg (2011)

9. Camenisch, J., Lehmann, A., Lysyanskaya, A., Neven, G.: Memento: How to recon-
struct your secrets from a single password in a hostile environment. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 256–275. Springer,
Heidelberg (2014)

10. Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally composable
two-server password-authenticated secret sharing. In: ACM CCS 2012, pp. 525–536
(2012)

11. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. IACR Cryptology ePrint Archive, 2000:67

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145 (2001)

13. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

14. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

15. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

16. Di Raimondo, M., Gennaro, R.: Provably secure threshold password-authenticated
key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 507–
523. Springer, Heidelberg (2003)

17. EMC Corporation. RSA Distributed Credential Protection. http://www.emc.com/
security/rsa-distributed-credential-protection.htm

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

http://www.emc.com/security/rsa-distributed-credential-protection.htm
http://www.emc.com/security/rsa-distributed-credential-protection.htm

Two-Server Password-Authenticated Secret Sharing 307

19. Ford, W., Kaliski, B.: Server-assisted generation of a strong secret from a password.
In: IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2000), pp. 176–180 (2000)

20. Gosney, J.: Password cracking HPC. In: Passwords 12 Conference (2012)
21. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how

to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995)

22. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. IACR
Cryptology ePrint Archive, 2011:303

23. Hofheinz, D.: Possibility and impossibility results for selective decommitments. J.
Cryptology 24(3), 470–516 (2011)

24. Jablon, D.P.: Password authentication using multiple servers. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 344–360. Springer, Heidelberg (2001)

25. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and t-pake in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg
(2014)

26. Katz, J., MacKenzie, P., Taban, G., Gligor, V.: Two-server password-only authen-
ticated key exchange. J. of Computer and System Sciences 78(2), 651–669 (2012)

27. Krenn, S.: Bringing zero-knowledge proofs of knowledge to practice. PhD thesis
(2012)

28. MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-
authenticated key exchange. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 385–400. Springer, Heidelberg (2002)

29. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

31. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

32. Provos, N., Mazières, D.: A future-adaptable password scheme. In: USENIX 1999,
FREENIX Track, pp. 81–91 (1999)

33. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

34. Szydlo, M., Kaliski, B.: Proofs for two-server password authentication. In: Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 227–244. Springer, Heidelberg (2005)

Adaptive Witness Encryption and Asymmetric
Password-Based Cryptography

Mihir Bellare1(B) and Viet Tung Hoang2,3

1 Department of Computer Science and Engineering,
University of California San Diego, San Diego, USA

mihir@eng.ucsd.edu
2 Department of Computer Science, Georgetown University,

Washington DC, USA
3 Department of Computer Science, University of Maryland,

Washington DC, USA

Abstract. We show by counter-example that the soundness security
requirement for witness encryption given by Garg, Gentry, Sahai and
Waters (STOC 2013) does not suffice for the security of their own appli-
cations. We introduce adaptively-sound (AS) witness encryption to fill
the gap. We then introduce asymmetric password-based encryption (A-
PBE). This offers gains over classical, symmetric password-based encryp-
tion in the face of attacks that compromise servers to recover hashed
passwords. We distinguish between invasive A-PBE schemes (they intro-
duce new password-based key-derivation functions) and non-invasive
ones (they can use existing, deployed password-based key-derivation
functions). We give simple and efficient invasive A-PBE schemes and
use AS-secure witness encryption to give non-invasive A-PBE schemes.

1 Introduction

This paper introduces (1) witness encryption with adaptive soundness security
and (2) asymmetric password-based encryption (A-PBE). We show how to use
(1) to achieve (2) as well as other goals.

The Problem. The security of Internet communication remains ubiquitously
based on client passwords. Standards such as the widely implemented PKCS#5
—equivalently, RFC 2898 [33]— specify password-based encryption (PBE). From
the client password pw , one derives a hashed password hpw = PH(sa,pw), where
sa is a random, user-specific public salt, and PH is a deterministic password-
hashing function. (In the standards, PH(sa,pw) = Ht(sa|pw) where t is an
iteration count and Ht denotes the t-fold iteration of cryptographic hash function
H.) The server holds hpw while the client holds (sa,pw). Now the server will
encrypt under hpw using any symmetric encryption scheme, for example CBC-
AES. The client can recompute hpw from (sa,pw) and decrypt using this key.

This classical form of PBE is symmetric: encryption and decryption are both
done under the same key hpw . But this means that anyone who knows hpw can

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 308–331, 2015.
DOI: 10.1007/978-3-662-46447-2 14

Encryption and Asymmetric Password-Based Cryptography 309

decrypt. This is a serious vulnerability in practice because of server compromise
leading to exposure of hashed passwords. The Heartbleed attack of April 2014,
allowing an attacker to read large chunks of server memory that can contain sen-
sitive client information including hashed passwords, is a recent and prominent
instance. Other high-profile attacks that compromised servers to expose client
information include Target (December 2013), Adobe (October 2013), LinkedIn
(June 2012), RSA (March 2011), Sony (2011) and TJ Maxx (2007). According
to CNBC, there were over 600 breaches in 2013 alone.

We emphasize that the problem here is not the possibility of password-
recovery via a dictionary attack based on the hashed password. The problem
is that S-PBE (symmetric PBE) is vulnerable even if the password is well cho-
sen to resist dictionary attack. This is because possession of the hashed password
is already and directly enough to decrypt any prior communications. So under
S-PBE, even well-chosen passwords do not provide security in the face of server
compromise.

A-PBE. We propose asymmetric password-based encryption (A-PBE). Here,
encryption is done under the hashed password hpw , decryption is done under
the password pw , and possession of hpw does not allow decryption. This offers
significantly higher security in the face of the most important attack, namely
server compromise exposing the hashed password hpw .

This paper initiates a foundational treatment of A-PBE including definitions
and both “invasive” and “non-invasive” schemes. At first it may appear that
definitionally A-PBE is just like PKE and brings nothing new, but this is not
true. Not just is security based on passwords, but in practice users pick related
passwords, for example varying a base password by appending the name of the
website, resulting in encryption under related keys. Our definition extends the
S-PBE framework of [10]. Our security model explicitly considers encryption
under multiple passwords, assumed to be individually unpredictable —otherwise
security is not possible— but arbitrarily related to each other.

We give two proven-secure A-PBE schemes that we call APBE1 and APBE2.
Their attributes are summarized in Fig. 1. APBE1 is simple, natural and as effi-
cient as possible, but what we call invasive, is that it specifies its own password-
hashing function PH. APBE2 is non-invasive, meaning able to use any, given
password-hashing function. In particular it can work with in-use, standardized
password hashing functions such as PKCS#5 [33] or bcrypt [34]. If one has the
flexibility of changing PH and the associated password hashes then the first solu-
tion is preferable. The second solution may be easier to deploy in the face of the
legacy constraint of millions of existing, PKCS#5 hashed passwords.

APBE1. We specify and analyze the following simple and natural scheme for
A-PBE that we call APBE1. PH, given sa,pw , applies to them a deterministic
function EX to derive a string r, uses this as coin tosses for a key-generation
algorithm PKE.Kg of some standard PKE scheme to get (pk, sk), and outputs
hpw = pk as the hashed password. Encryption is under the encryption algorithm
PKE.Enc of the PKE scheme keyed with hpw = pk. Since PH is deterministic,

310 M. Bellare and V.T. Hoang

Scheme Invasive Assumptions
APBE1 Yes PKE, RIP-secure hash

APBE2 No

AS-secure WE
RIP-secure password hash with large stretch

XS-secure WE
ROW-secure password hash with arbitrary stretch

Fig. 1. Our A-PBE schemes. Both achieve our notion of security for related, unpre-
dictable passwords. APBE1 has a dedicated password hash (invasive) while APBE2 can
work with an arbitrary, legacy one (non-invasive). The first analysis of APBE2 assumes
the password hash has large stretch, a restriction dropped in the second analysis under
a stronger form of WE.

decryption under (sa,pw) can re-execute PH to get (sk,pk) and then use sk to
decrypt under PKE.

A natural choice for EX is a randomness extractor [32] with seed sa. But recall
that we require A-PBE to be secure even under multiple, related passwords. To
achieve this, outputs of EX must be independent even if the input passwords are
related, and an extractor does not guarantee this. Indeed it is not possible for this
to be true information theoretically, meaning if the “independence” is required
to be statistical. We instead target computational independence of the outputs
of EX. We define an appropriate security goal for EX that we call related-input
pseudorandomness (RIP) [29] and show that this together with security of the
base PKE scheme suffices for the security of the A-PBE scheme. In practice, EX
can be efficiently instantiated via HMAC [5].

Non-invasive A-PBE. APBE1 prescribes its own password-hashing algorithm
under which the hashed password hpw is a public key of some existing PKE
scheme. In current practice, however, the hashed password is derived via the
iterated hashing password-hash function of PKCS#5 [33] or alternatives such
as bcrypt [34]. Right now millions of passwords are in use with these particular
password-hashing functions. In the face of this legacy constraint, deployment
of A-PBE would be eased by a scheme that could encrypt under an existing,
given hashed password, regardless of its form. We ask whether such non-invasive
A-PBE is achievable.

This turns out to be challenging, even in principle, let alone in practice. In all
known PKE schemes, the secret and public keys have very specific structure and
are related in very particular ways. How can we encrypt asymmetrically with
the public key being just an arbitrary hash of the secret key?

The answer is witness encryption (WE), introduced by Garg, Gentry, Sahai
and Waters (GGSW) [20]. We will use WE to achieve non-invasive A-PBE. For
this purpose, however, we will need WE schemes satisfying an extension of the
soundness security notion of GGSW [20] that we introduce and call adaptive
soundness security. We define and achieve WE with adaptive soundness and
apply it to achieve non-invasive A-PBE as we now discuss.

Encryption and Asymmetric Password-Based Cryptography 311

SS-Secure Witness Encryption. In a WE scheme [20] for a language L ∈
NP, the encryption function WE.Enc takes a unary representation 1λ of the
security parameter λ ∈ N, a string x ∈ {0, 1}∗ and a message m to return a
ciphertext c. If x ∈ L then decryption is possible given a witness w for the
membership of x in L. If x �∈ L then the message remains private given the
ciphertext. The soundness security (SS) requirement of GGSW [20] formalized
the latter by asking that for any PT adversary A, any x �∈ L and any equal-length
messages m0,m1, there is a negligible function ν such that

Pr[A(WE.Enc(1λ, x,m1)) = 1] − Pr[A(WE.Enc(1λ, x,m0)) = 1] ≤ ν(λ)

for all λ ∈ N.

AS-Secure Witness Encryption. Our (new) adaptive soundness (AS) require-
ment lets the adversary A, on input 1λ, pick and return x,m0,m1 to the game.
The latter picks a random challenge bit b and returns WE.Enc(1λ, x,mb) to A,
who now responds with a guess b′ as to the value of b. The AS-advantage of A
is defined as the probability that (b = b′) and x �∈ L. We require that any PT A
have negligible advantage. We note that due to the check that x �∈ L, our game
may not be polynomial time but this does not hinder our applications.

It may at first seem that adaptivity does not add strength, since soundness
security already quantifies over all x,m0,m1. But in fact we show that AS is
strictly stronger than SS. Namely we show in Proposition 2 that AS always
implies SS but SS does not necessarily imply AS. That is, any WE scheme that
is AS secure is SS secure, but there exist WE schemes that are SS secure and
not AS secure. Intuitively, the reason AS is strictly stronger is that SS does not
allow x,m0,m1 to depend on λ. Our separation result modifies a SS-secure WE
scheme to misbehave when |x| ≥ f(λ) for a certain poly-logarithmic function f
of the security parameter. SS is preserved because for each x only finitely many
values of λ trigger the anomaly. The proof that AS is violated uses the fact that
NP ⊆ EXP, the constructed adversary nonetheless being polynomial time.

Having strengthened the goal, we must revisit achievability. GGHRSW [18]
give an elegant and conceptually simple construction of SS-secure WE from
indistinguishability obfuscation (iO). In Theorem 3 we show that the same con-
struction achieves the stronger AS goal. Recent work has provided constructions
of iO improved both along the assumptions and efficiency fronts [2,3,16,24],
leading to corresponding improvements for AS-secure WE. Thus AS-secure WE
can be achieved without loss of efficiency or added assumptions compared to
SS-secure WE.

APBE2. Our APBE2 scheme lets L be the language of pairs (sa,PH(sa,pw))
over the choices of sa,pw , the witness being pw . A-PBE encryption of m using
the hashed password as the public key will be AS-secure witness encryption of
m under x = (sa,hpw). Decryption will use the witness pw .

This solution is non-invasive, as it does not prescribe or require any particular
design for PH. Rather, it takes PH as given, and shows how to encrypt with public
key the hashed password obtained from PH. In this way, PH can in particular

312 M. Bellare and V.T. Hoang

be the iterated hash design of the PKCS#5 standard [33] that already underlies
millions of usages of passwords, or any other practical, legacy design. Of course,
for security, we will need to make an assumption about the security of PH, but
that is very different from prescribing its design. Our assumption is the same
RIP security as discussed above. We note that this assumption is already, even
if implicitly, made in practice for the security of in-use S-PBE, where the hashed
passwords are the keys, and is shown by [10] to hold for PKCS#5 in the ROM,
so it is a natural and reasonable assumption.

SS Revisited. GGSW [20,21] present constructions of PKE, IBE and ABE
schemes from witness encryption, claiming that these constructions are secure
assuming soundness security of the WE scheme. The need for adaptive security
of our A-PBE scheme leads to the natural question of why we need a stronger
condition than GGSW [20,21]. The answer is that they need it too. We point
out that the theorems of GGSW [20,21] claiming security of their applications
under SS are incorrect, and that SS does not in fact suffice for the security of
their schemes. We do this by presenting counter-examples (cf. Section 4). Taking
their PRG-based PKE construction as a representative example, we provide a
WE scheme which satisfies SS yet, if used in their construction, the resulting
PKE scheme will provide no security at all. We then show that the gap can
be filled by using AS. Namely, we show that their PKE scheme is secure if the
underlying WE scheme is AS secure and the PRG is secure. Analogous results
hold for GGSW’s applications to IBE and ABE. Intuitively, the weakness of SS
that compromises the applications of GGSW [20,21] is that a WE scheme may
satisfy SS yet behave totally insecurely, for example returning the message in
the clear, when |x| = λ. But in applications, x will have length related to λ, so
SS is not enough. AS does not have this weakness because x can depend on λ.

Better Security for APBE2. Define the stretch of a password-hashing func-
tion as the difference between its output length and input length, and denote it
by s. Our result of Theorem 5 proving the security of APBE2 requires that 2−s is
negligible, meaning the output length is somewhat more than the input length.
This captures situations in which passwords are, say 12-character ASCII strings
(input length is 78-bit) and the password hashing function is iterated SHA1 (out-
put length is 160-bit). However, when passwords are longer, say 24-character,
then passwords should offer more security. To fill this gap we offer a second
analysis of the security of APBE2 that removes the restriction on the stretch,
allowing it now to be arbitrary. For this purpose we strengthen the assumption
on the WE scheme from AS to a notion of adaptive extractability we call XS.
As a side benefit, the prior assumption on the password hashing function (RIP
security, asking that password hashes are pseudorandom) is reduced to ROW
security, asking merely that the password hashing function is one way.

XS is an adaptive variant of the notion of extractability from GKPVZ [26].
XS asks that, given an adversary violating the security of the encryption under
x ∈ {0, 1}∗, one can extract a witness w for the membership of x ∈ L, even
when x depends on the security parameter. We show that XS implies AS and

Encryption and Asymmetric Password-Based Cryptography 313

also that XS-secure WE can be achieved based on extractable (aka. differing-
input) obfuscations [1,4,14].

Some works [15,19] cast doubts on the achievability of extractable witness
encryption or extractable iO with arbitrary auxiliary inputs. Our result however
requires a very particular auxiliary input and the attacks in these works do not
apply.

A-PBE as PKE. The standard model for public-key encryption (PKE) is that
the user (receiver) publishes a public encryption key and stores the correspond-
ing secret key securely. In practice, however, the secret key is often not stored
in computer memory but instead derived from a password stored in human
memory. Reasons this is advantageous include security and mobility. Computer-
stored keys are vulnerable to exfiltration by malware. Meanwhile, users tend
to have numerous devices including cellphones and tablets on which they want
to decrypt. They may also use web-based services such as gmail on untrusted
client machines. Passwords are more flexible and secure than stored keys in such
settings.

A-PBE captures this more real-world PKE model. Our definitions allow us to
evaluate security in the setting of actual use, namely when secret keys are possi-
bly correlated passwords. Our schemes provide solutions with provable guaran-
tees. We note that A-PBE is the model of the recently proposed gmail end-to-end
encryption system, evidencing practical relevance of the goal.

Password-Based Signatures. Beyond A-PBE, we view this paper as initiating
a study of asymmetric password-based cryptography. In this light we also intro-
duce and treat password-based signatures with both invasive and non-invasive
solutions to mirror the case of A-PBE.

Password-based authentication is currently done using a MAC keyed by the
hashed password. It is thus subject to the same weakness as S-PBE, namely
that compromise of the server through Heartbleed or other attacks leads to
compromise of hashed passwords, resulting in compromise of the authentication.
In the password-based signatures we suggest, one signs under the password pw
and verifies under the hashed password hpw = PH(sa,pw). Possession of the
hashed password does not compromise security.

We can give a simple solution analogous to the one for A-PBE, namely apply
a RIP function EX to the password and salt to get coins; run a key-generation
of a standard digital signature scheme on these to get a signing key and ver-
ification key; set the password hash to the verification key; to sign given the
password, re-generate the signing and verifying keys and sign under the former.
This, however is invasive, prescribing its own password-hashing function. It is
a good choice if one has the flexibility of implementing a new password hash-
ing function, but as discussed above, deployment in the face of legacy PKCS#5
password hashes motivates asking whether a non-invasive solution, meaning one
that can utilize any given password hashing function, is possible. As with A-PBE,
this is a much more challenging question. We can show how to obtain a non-
invasive password-based signature scheme by using key-versatile signatures [9].

314 M. Bellare and V.T. Hoang

The latter are effectively witness signatures meeting strong simulatability and
extractability conditions [9,17] and allow us to obtain password-based signatures
analogous to how we obtained A-PBE from WE. The only assumption needed
on the password hashing function PH is that it is one-way.

Discussion and GGSW Updates. A good definition for WE should have two
properties: (1) Usability, meaning it suffices to prove security of applications, and
(2) Achievability, meaning proposed and natural constructions, which in this case
mainly means the iO-based one of GGHRSW [18], can be shown to meet the
definition. Our AS definition has both properties, making it viable. We have
shown that SS lacked the usability property.

Here we have referred to the original GGSW STOC paper [20] and the cor-
responding original full ePrint version [21]. Subsequent to seeing prior versions
of our paper, the GGSW authors updated their paper on ePrint [22,23]. They
acknowledge the gap we found. They also propose their own, modified definitions
in an attempt to fill this gap.

Beyond (and despite) the fact that these updated definitions are subsequent
to ours, they remain problematic. We showed that their first proposed definition,
which we call SS2 [22], is unachievable. (Because the negligible function is not
allowed to depend on the adversary. See Appendix A.) We communicated this to
the authors. They then updated SS2 to SS3 [23]. But we explain in Appendix A
that SS3 has limitations with regard to achievability. While one might of course
propose still further modifications to their definition it is not clear why this is
a productive route for the community in the face of the fact that, with AS, we
have —and had prior to the GGSW updates— a definition that provides both
usability and achievability.

Recently KNY [31] gave a definition, that we call SS5, in the quantifier style
of SS1, SS2 and SS3. We discuss it also in Appendix A where we show that it is
unachievable. (Because, like SS2, the negligible function doesn’t depend on the
adversary.)

These developments are an indication that neither the gap we find, nor the
AS definition we propose to fill it, are trivial, that quantifier-based definitions are
error-prone, and that our counter-examples for SS remain important to under-
stand and guide definitional choices. Demonstrating the last, beyond [22,23], fur-
ther work subsequent to ours, and definitionally influenced by ours, includes [25].

We believe the idea of witness encryption is important and useful and we
view our work as advancing its cause. Precision in definitions, proofs and details
is particularly important in our field because we claim proven security. Reaching
such precision can require iteration and definitional adjustments and increments,
and our work, in this vein, helps towards greater impact and clarity for the area
of witness encryption.

2 Preliminaries

By λ ∈ N we denote the security parameter and by 1λ its unary representation.
We denote the number of coordinates of a vector x by |x|, and the length of

Encryption and Asymmetric Password-Based Cryptography 315

a string x ∈ {0, 1}∗ by |x|. Algorithms are randomized unless otherwise indi-
cated. Running time is worst case. “PT” stands for “polynomial-time,” whether
for randomized algorithms or deterministic ones. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and
assigning the output to y. We let y ←$ A(x1, . . .) be the resulting of picking r at
random and letting y ← A(x1, . . . ; r). We say that f : N → R is negligible if for
every positive polynomial p, there exists np ∈ N such that f(n) < 1/p(n) for all
n > np. An adversary is an algorithm or a tuple of algorithms.

We use the code based game playing framework of [11]. For an example of
a game see Fig. 2. By GA(λ) we denote the event that the execution of game
G with adversary A and security parameter λ results in output true, the game
output being what is returned by Game.

Unpredictability. Let A = (A1, . . .) be a tuple of algorithms where A1, on input
the unary representation 1λ of the security parameter λ ∈ N, returns a vector
pw. Let GuessA(λ) denote the maximum, over all i,pw , of Pr[pw[i] = pw], the
probability over pw ←$ A1(λ). We say that A is unpredictable if the function
GuessA(·) is negligible.

3 Adaptive Witness Encryption

We begin by recalling the notion of witness encryption of GGSW [20] and their
soundness security requirement. We then give a different security notion called
adaptive soundness. We show that it is strictly stronger than the original, which
means we must address achieving it. We show that it is achievable via indistin-
guishability obfuscation.

NP Relations. For R: {0, 1}∗ × {0, 1}∗ → {true, false}, we let R(x) = { w :
R(x,w) } be the witness set of x ∈ {0, 1}∗. We say R is an NP-relation if
it is computable in PT and there is a polynomial R.wl: N → N, called the
witness length of R, such that R(x) ⊆ {0, 1}R.wl(|x|) for all x ∈ {0, 1}∗. We let
L(R) = { x : R(x) �= ∅ } ∈ NP be the language defined by R.

WE Syntax and Correctness. A witness encryption (WE) scheme WE for
L = L(R) defines a pair of PT algorithms WE.Enc,WE.Dec. Algorithm WE.Enc
takes as input the unary representation 1λ of a security parameter λ ∈ N, a
string x ∈ {0, 1}∗, and a message m ∈ {0, 1}∗, and outputs a ciphertext c.
Algorithm WE.Dec takes as input a string w and a ciphertext c, and outputs
m ∈ {0, 1}∗ ∪{⊥}. Correctness requires that WE.Dec(w,WE.Enc(1λ, x,m)) = m
for all λ ∈ N, all x ∈ L, all w ∈ R(x) and all m ∈ {0, 1}∗.

Soundness Security. The soundness security (SS) condition of GGSW [20]
says that for any PT adversary A, any x ∈ {0, 1}∗ \ L and any equal-length
m0,m1 ∈ {0, 1}∗, there is a negligible function ν such that for all λ ∈ N we have

Pr[A(WE.Enc(1λ, x,m1)) = 1] − Pr[A(WE.Enc(1λ, x,m0)) = 1] < ν(λ) . (1)

316 M. Bellare and V.T. Hoang

Game ASA
WE,L(λ)

(x, m0, m1, St) ←$ A(1λ) ; b ←$ {0, 1} ; c ←$ WE(1λ, x, mb) ; b′ ←$ A(St, c)

Return ((b = b′) ∧ (x �∈ L))

Fig. 2. Game AS defining adaptive soundness of witness encryption scheme WE

In the following, it is useful to let AdvssWE,L,x,m0,m1,A(λ) denote the proba-
bility difference in (1). Then the soundness condition can be succinctly and
equivalently stated as follows: WE is SS[L]-secure if for any PT adversary A,
any x ∈ {0, 1}∗ \ L and any equal-length m0,m1 ∈ {0, 1}∗, the function
AdvssWE,L,x,m0,m1,A(·) is negligible. It is convenient, in order to succinctly and
precisely express relations between notions, to let SS[L] denote the set of all
correct witness encryption schemes that are SS[L]-secure.

Adaptive Soundness. Our security definition associates to witness encryption
scheme WE, language L ∈ NP, adversary A and λ ∈ N the game ASA

WE,L(λ) of
Fig. 2. Here the adversary, on input 1λ, produces instance x, messages m0,m1,
and state information St. It is required that |m0| = |m1|. The game picks a
random challenge bit b and computes a ciphertext c via WE.Enc(1λ, x,mb). The
adversary is now given c, along with its state information St, and outputs a
prediction b′ for b. The game returns true if the prediction is correct, meaning
b = b′, and also if x �∈ L. We let AdvasWE,L,A(λ) = 2Pr[ASA

WE,L(λ)] − 1. We say
that WE has adaptive soundness security for L, or is AS[L]-secure, if for every
PT A the function AdvasWE,L,A(·) is negligible. We let AS[L] denote the set of all
correct witness encryption schemes that are AS[L]-secure.

Due to the check that x �∈ L, our game does not necessarily run in PT. This,
however, will not preclude applicability. The difference between AS and SS is
that in the former, x,m0,m1 can depend on the security parameter and on each
other. Given that SS quantifies over all x,m0,m1, this may not at first appear to
make any difference. But we will see that it does and that AS is strictly stronger
than SS.

AS is a game-based definition while SS is phrased in a more “quantifier-
based” style that mimics the soundness condition in interactive proofs [28]. The
game-based AS notion is better suited for applications because the latter are also
underlain by game-based definitions. Indeed we’ll see that SS does not suffice
for applications.

A Useful Transform. In several proofs, we’ll employ the following transform.
Given a WE scheme WE ∈ SS[L] and a PT function f : N → N, our transform
returns another WE scheme WEf . The constructed scheme, formally specified
in Fig. 3, misbehaves, returning the message in the clear, when |x| ≥ f(λ),
and otherwise behaves like WE. The following says that if f is chosen to satisfy
certain conditions then SS[L]-security is preserved, meaning WEf ∈ SS[L]. In
our uses of the transform we will exploit the fact that WEf will fail to have
other security properties or lead to failure of applications that use it.

Encryption and Asymmetric Password-Based Cryptography 317

WEf .Enc(1λ, x, m)

If |x| ≥ f(λ) then return (0, m)

Else return (1,WE.Enc(1λ, x, m))

WEf .Dec(w, c)

(b, t) ← c

If b = 0 then return t else return

WE.Dec(w, t)

Fig. 3. Witness encryption scheme WEf for L ∈ NP, derived from WE ∈ SS[L] and a
PT-computable function f : N → N

Lemma 1. Let L ∈ NP and WE ∈ SS[L]. Let f : N → N be a non-decreasing,
PT-computable function such that limλ→∞ f(λ) = ∞. Consider witness encryp-
tion scheme WEf derived from WE and f as shown in Fig. 3. Then WEf ∈ SS[L].

Proof. Let A be a PT adversary. Let x ∈ {0, 1}∗ \ L and let m0,m1 ∈ {0, 1}∗

have equal length. Let PT adversary B, on input ciphertext c, return b′ ←
A((1, c)). Let S(x) = { λ ∈ N : f(λ) ≤ |x| }. Then for all λ ∈ N \ S(x) we
have AdvssWE,L,x,m0,m1,B(λ) = AdvssWEf ,L,x,m0,m1,A(λ). The assumption that WE ∈
SS[L] means that AdvssWE,L,x,m0,m1,B(·) is negligible. But the assumptions on f
mean that the set S(x) is finite. Consequently, the function AdvssWEf ,L,x,m0,m1,A(·)
is negligible as well.
�

Relations. We show that adaptive soundness implies soundness but not vice
versa, meaning adaptive soundness is a strictly stronger requirement.

Proposition 2. Let L ∈ NP. Then: (1) AS[L] ⊆ SS[L], and (2) If {0, 1}∗ \ L is
infinite and SS[L] �= ∅ then SS[L] �⊆ AS[L].

Claim (1) above says that any witness encryption scheme WE that is AS[L]-
secure is also SS[L]-secure. Claim (2) says that the converse is not true. Namely,
there is a witness encryption scheme WE such that WE is SS[L]-secure but
not AS[L]-secure. This separation assumes some SS[L]-secure witness encryp-
tion scheme exists, for otherwise the claim is moot. It also assumes that the
complement of L is not trivial, meaning is infinite, which is true if L is NP-
complete and P �= NP, hence is not a strong assumption.

Proof (Proposition 2). For part (1), assume we are given WE that is AS[L]-
secure. We want to show that WE is SS[L]-secure. Referring to the defini-
tion of soundness security, let A be a PT adversary, let x ∈ {0, 1}∗ \ L and
let m0,m1 ∈ {0, 1}∗ have equal length. We want to show that the function
AdvssWE,L,x,m0,m1,A(·) is negligible. We define the adversary Bx,m0,m1 as follows:
Let Bx,m0,m1(1

λ) return (x,m0,m1, ε) and let Bx,m0,m1(t, c) return b′ ←$ A(c).
Here, Bx,m0,m1 has x,m0,m1 hardwired in its code, and, in its first stage, it
returns them, along with St = ε as state information. In its second stage, it
simply runs A. Note that even though Bx,m0,m1 has hardwired information,
this information is finite and not dependent on the security parameter, so the
hardwiring does not require non-uniformity. Now it is easy to see that for all
λ ∈ N we have AdvasWE,L,Bx,m0,m1

(λ) = AdvssWE,L,x,m0,m1,A(λ). The assumption

318 M. Bellare and V.T. Hoang

that WE is AS[L]-secure means that AdvasWE,L,Bx,m0,m1
(·) is negligible, hence so

is AdvssWE,L,x,m0,m1,A(·), as desired.
For part (2), the assumption SS[L] �= ∅ means there is some WE ∈ SS[L].

By way of Lemma 1, we can modify it to WEf ∈ SS[L] as specified in Fig. 3,
where f : N → N is some non-decreasing, PT-computable function such that
limλ→∞ f(λ) = ∞. Now we want to present an attacker A violating AS[L]-
security of WEf . The difficulty is that A needs to find x �∈ L of length f(λ), but
L ∈ NP and A must be PT. We will exploit the fact that NP ⊆ EXP and pick
f to be a poly-logarithmic function related to the exponential time to decide L,
so that if there exists an x �∈ L of length f(λ) then A can find it by exhaustive
search in PT. Our assumption that the complement of L is infinite means that
A succeeds on infinitely many values of λ.

Proceeding to the details, since L ∈ NP ⊆ EXP, there is a constant d ≥ 1
and a deterministic algorithm M such that for every x ∈ {0, 1}∗, we have M(x) =
1 if and only if x ∈ L, and M ’s running time is O(2|x|d). Define f by f(λ) =
�lg1/d(λ)� for all λ ∈ N. Let WE ∈ SS[L] and let WEf be the witness encryption
scheme derived from WE and f as specified in Fig. 3. By Lemma 1, WEf ∈ SS[L].
Now we show that WEf �∈ AS[L]. Let m0,m1 ∈ {0, 1}∗ be arbitrary, distinct,
equal-length messages. Consider the following adversary A:

A(1λ)
k ← f(λ) ; x ← 0k

For all s ∈ {0, 1}k do
If (M(s) �= 1) then x ← s

Return (x,m0,m1, ε)

A(t, c)
(b,m) ← c
If ((b = 0) ∧ (m = m1)) then return 1
Return 0

Each execution of M takes time O(2kd

) = O(λ). The For loop goes through
all s ∈ {0, 1}k in lexicographic order and thus M is executed at most 2k ≤ λ
times. So A is PT. For any λ ∈ N, if {0, 1}f(λ) \ L �= ∅ then AdvasWEf ,L,A(λ) = 1.
Since {0, 1}∗ \L is infinite, f is non-decreasing, and limt→∞ f(t) = ∞, there are
infinitely many values λ such that AdvasWEf ,L,A(λ) = 1, and thus WEf �∈ AS[L],
as claimed.
�

Indistinguishability Obfuscation. We say that two circuits C0 and C1 are
functionally equivalent, denoted C0 ≡ C1, if they have the same size, the same
number n of inputs, and C0(x) = C1(x) for every input x ∈ {0, 1}n. An obfus-
cator P defines PT algorithms P.Ob,P.Ev. Algorithm P.Ob takes as input the
unary representation 1λ of a security parameter λ and a circuit C, and outputs a
string c. Algorithm P.Ev takes as input strings c, x and returns y ∈ {0, 1}∗ ∪{⊥}.
We require that for any circuit C, any input x, and any λ ∈ N, it holds
that P.Ev(x,P.Ob(1λ, C)) = C(x). We say that P is iO-secure if AdvioP,A(λ) =
2Pr[IOA

P (λ)]−1 is negligible for every PT adversary A, where game IO is defined
at Fig. 4. This definition is slightly different from the notion in [4,18]—the adver-
sary is non-uniform and must produce functionally equivalent circuits C0 and
C1—but the former definition is implied by the latter.

Encryption and Asymmetric Password-Based Cryptography 319

Game IOA
P (λ)

(C0, C1, St) ←$ A(1λ) ; b ←$ {0, 1} ; c ←$ P.Ob(1λ, Cb)

b′ ←$ A(St, c) ; Return (b = b′) ∧ (C0 ≡ C1)

Fig. 4. Game IO defining security of an indistinguishability obfuscator P

Achieving AS-Security. Our AS security notion is strictly stronger than the
SS one of GGSW [20], but we’ll show that the iO-based WE scheme of [18] is
AS-secure. Proceeding to the details, let R be an NP-relation. For each x,m ∈
{0, 1}∗, let Rx,m be a circuit that, on input w ∈ {0, 1}R.wl(|x|), returns m if R(x,w)
and returns 0|m| otherwise. Let P be an indistinguishability obfuscator, defin-
ing a PT obfuscation algorithm P.Ob and a PT evaluation algorithm P.Ev. We
define WE scheme WER[P] as follows: algorithm WER[P].Enc(1λ, x,m) returns
c ←$ P.Ob(1λ, Rx,m); and algorithm WER[P].Dec(w, c) returns m ←$ P.Ev(w, c).

Theorem 3. Let R be an NP-relation and let L = L(R). Let P be an indis-
tinguishability obfuscator. Construct WER[P] as above. If P is iO-secure then
WER[P] ∈ AS[L].

Proof. Let A be a PT adversary attacking the AS[L]-security of WER[P]. Wlog,
assume that A produces distinct m0 and m1. Note that Rx,m0 ≡ Rx,m1 if and
only if x �∈ L. Consider the following PT adversary B attacking iO-security of P:

B(1λ)
(x,m0,m1,St) ←$ A(1λ)
Return (Rx,m0 , Rx,m1 ,St)

B(St, c)
b′ ←$ A(St, c) ; Return b′

Then Pr[ASA
WER[P],L

(·)] = Pr[IOB
P (·)] and thus AdvasWER[P],L,A(·) = AdvioP,B(·).
�

4 Insufficiency of Soundness Security

GGSW [20] present constructions of several primitives from witness encryp-
tion, including PKE, IBE and ABE for all circuits. They claim security of these
constructions assuming soundness security of the underlying witness-encryption
scheme. We observe here that these claims are wrong. Taking their PRG-based
PKE scheme as a representative example, we present a counter-example, namely
a witness-encryption scheme satisfying soundness security such that the PKE
scheme built from it is insecure. Similar counter-examples can be built for the
other applications in GGSW [20]. Briefly, the problem is that a witness encryp-
tion scheme could fail to provide any security when |x| is equal to, or related in
some specific way to, the security parameter, yet satisfy SS security because the
latter requirement holds x fixed and lets λ go to ∞. We show that the gap can be
filled, and all the applications of GGSW recovered, by using adaptive soundness
in place of soundness security. We’ll begin by recalling the well-known notions
of PRG and PKE.

320 M. Bellare and V.T. Hoang

Game PRGA
G(λ)

s ←$ {0, 1}λ ; x1 ← G(s)

x0 ←$ {0, 1}�(λ) ; b ←$ {0, 1}
b′ ←$ A(1λ, xb) ; Return (b = b′)

Game INDCPAA
PKE(λ)

(pk, sk) ←$ PKE.Kg(1λ) ; b ←$ {0, 1}
b′ ←$ ALR(1λ, pk) ; Return (b = b′)

LR(m0, m1)

c ←$ PKE.Enc(pk, mb) ; Return c

Fig. 5. Left: Game PRG defining security of a pseudorandom generator G. Here
� : N → N is the expansion factor of G. Right: Game INDCPA defining INDCPA
security of a PKE scheme PKE. For each oracle query, the messages m0, m1 ∈ {0, 1}∗

must have the same length.

PKE.Kg(1λ)

sk ←$ {0, 1}λ ; x ← G(sk)

pk ← (λ, x) ; Return (pk, sk)

PKE.Enc(pk, m)

(λ, x) ← pk

Return WE.Enc(1λ, x, m)

PKE.Dec(sk, c)

Return WE.Dec(c, sk)

Fig. 6. GGSW’s PKE scheme PKE[G,WE], where G is a length-doubling PRG and
WE is a witness encryption scheme for LG = { G(s) : s ∈ {0, 1}∗ }

Primitives. A pseudorandom generator (PRG) [12,37] is a PT deterministic
algorithm G that takes any string s ∈ {0, 1}∗ as input and return a string G(s)
of length �(|s|), where the function � : N → N is call the expansion factor of G.
We say that G is secure if AdvprgA,G(λ) = 2Pr[PRGG

A(λ)]−1 is negligible, for every
PT adversary A, where game PRG is defined in Fig. 5.

A public-key encryption (PKE) scheme PKE defines PT algorithms PKE.Kg,
PKE.Enc, PKE.Dec, the last deterministic. Algorithm PKE.Kg takes as input
1λ and outputs a public encryption key pk and a secret decryption key sk.
Algorithm PKE.Enc takes as input pk and a message m ∈ {0, 1}∗, and outputs a
ciphertext c. Algorithm PKE.Dec(sk, c)8 outputs m ∈ {0, 1}∗∪{⊥}. Scheme PKE
is INDCPA-secure [6,27] if Advind-cpaPKE,A (·) = 2Pr[INDCPAA

PKE(·)] − 1 is negligible
for every PT adversary A, where game INDCPA is defined in Fig. 5.

SS does not Suffice for GGSW’s PKE Scheme. Let G be a PRG that is
length doubling, meaning |G(s)| = 2|s| for every s ∈ {0, 1}∗. Let LG = { G(s) :
s ∈ {0, 1}∗ }. This language is in NP. Let WE ∈ SS[LG] be a SS[LG]-secure
WE scheme. The PKE scheme PKE[G,WE] of GGSW is shown in Fig. 6. We
claim that SS[LG]-security of WE is insufficient for PKE to be INDCPA-secure.
We show this by counter-example, meaning we give an example of a particular
WE scheme WE ∈ SS[LG] such that PKE[G,WE] is not INDCPA. We assume
there exists some WE ∈ SS[LG], else the question is moot. Let f(λ) = 2λ for
every λ ∈ N. Now let WE = WEf be the WE scheme of Fig. 3 obtained from WE
and f . Lemma 1 tells us that WEf ∈ SS[LG]. Now we claim that PKE[G,WEf] is
not INDCPA. The reason is that when PKE.Enc(pk,m) runs WEf .Enc(1λ, x,m),
we have |x| = 2λ = f(λ). By definition of WEf .Enc, the latter returns (0,m) as
the ciphertext, effectively sending the message in the clear.

Encryption and Asymmetric Password-Based Cryptography 321

AS Security Suffices for GGSW’s PKE. We now show that the gap can be
filled using AS. That is, we prove that if G is a secure PRG and WE is AS[LG]-
secure, then PKE[G,WE] is INDCPA-secure:

Theorem 4. Let G : {0, 1}∗ → {0, 1}∗ be a length-doubling PRG. Let LG =
{ G(s) : s ∈ {0, 1}∗ }. If G is a secure PRG and WE ∈ AS[LG] then PKE[G,WE]
is INDCPA-secure.

The proof is in [7]. It follows the template of the proof of GGSW [20]. First
one uses the PRG security of G to move to a game where x is random. Since G
is length doubling, such an x is not in LG with high probability. At this point
GGSW [20] (incorrectly) claim that the result follows from the SS[LG]-security
of WE. We instead use the AS[LG]-security of WE, providing a reduction with
an explicit construction of an AS adversary.

To obtain similar counter-examples showing the inadequacy of SS for the
other applications of GGSW (namely IBE and ABE for all circuits), one can
follow the template of our PKE attack, by choosing a lower bound f(λ) for
the length of the string x = X(λ) given to the witness encryption. Since X(λ)
is generated from some cryptographic primitive π (for example, in IBE, π is
a unique signature scheme), the security of π requires that X(λ) have super-
logarithmic length. Hence there is a constant C > 0 such that |X(λ)| ≥ C lg(λ)
for all λ ∈ N, and therefore we can let f(λ) = �C lg(λ)�.

5 Asymmetric Password-Based Encryption

In this Section we introduce the new primitive of asymmetric password-based
encryption (A-PBE). We then provide a non-invasive, WE-based A-PBE scheme
we call APBE2, with two security analyses. First we prove security of APBE2
under AS-security of the WE scheme. Then under XS-security of the WE scheme
we provide another proof that shows the scheme to admit better “stretch,” lead-
ing to better security for some real password distributions. In [7] we provide a
simple and fast, but invasive, A-PBE scheme, called APBE1. Our model and def-
initions are of interest beyond our schemes because they capture PKE in the real-
world setting where secret keys are based on passwords and may thus be related.

A-PBE Syntax and Security. An asymmetric password-based encryption (A-
PBE) scheme F specifies PT algorithms F.Ph,F.Enc, F.Dec, the first and the
last deterministic. It also specifies a password-length function F.pl : N → N,
a salt-length function F.sl : N → N, and a hash-length function F.hl : N → N.
Algorithm F.Ph takes as input the unary representation 1λ of security parameter
λ, a salt sa ∈ {0, 1}F.sl(λ), and a password pw ∈ {0, 1}F.pl(λ), and returns a hashed
password hpw = F.Ph(1λ, sa,pw) ∈ {0, 1}F.hl(λ). Algorithm F.Enc takes as input
1λ,hpw , sa and a message m ∈ {0, 1}∗, and outputs a ciphertext c. Finally, given
(pw , c), algorithm F.Dec returns m ∈ {0, 1}∗ ∪ {⊥}. We require that

F.Dec
(

pw ,F.Enc(1λ,F.Ph(1λ, sa,pw), sa,m)
)

= m

for every m ∈ {0, 1}∗, λ ∈ N, sa ∈ {0, 1}F.sl(λ), and pw ∈ {0, 1}F.pl(λ).

322 M. Bellare and V.T. Hoang

Game APBEA
F (λ)

pw ←$ A1(1
λ) ; b ←$ {0, 1}

For i = 1 to |pw| do

sa[i] ←$ {0, 1}F.sl(λ)

hpw[i] ← F.Ph(1λ, sa[i],pw[i])

b′ ←$ ALR
2 (1λ, sa,hpw)

Return (b = b′)

LR(m0, m1, i)

c ←$ F.Enc(1λ,hpw[i], sa[i], mb)

Return c

Game RIPA
H (λ)

pw ←$ A1(1
λ) ; b ←$ {0, 1}

For i = 1 to |pw| do

sa[i] ←$ {0, 1}H.kl(λ)

hpw[i] ← H(1λ, sa[i],pw[i])

If b = 0 then hpw[i] ←$ {0, 1}H.ol(λ)

b′ ←$ A2(1
λ, sa,hpw) ; Return (b = b′)

Fig. 7. Left: Game APBE defining security of an A-PBE scheme F. Right: Game
RIP defining RIP security for a hash family H.

An adversary A is a pair of PT algorithms (A1, A2). Adversary A1(1λ) gen-
erates a vector of passwords pw, each entry a F.pl(λ)-bit string. It is required
that A is unpredictable as defined in Section 2. Note that passwords —entries
of the vector pw— may be correlated, even though each individually is unpre-
dictable, to capture the fact that individual users often pick related passwords
for their different accounts. We say that A-PBE scheme F is secure if AdvapbeF,A (·) =
2Pr[APBEA

F (·)] − 1 is negligible for every PT unpredictable adversary A, where
game APBEA

F (λ) is defined in Fig. 7. In this game, A1(1λ) first generates its
vector pw of passwords. The game picks a challenge bit b ←$ {0, 1} and a vector
of random salts sa. Adversary A2 is given sa and the vector hpw of hashed
passwords. It can then query its oracle LR with equal-length, distinct messages
m0,m1, and an index i, to get F.Enc(1λ,hpw[i], sa[i],mb). Finally A2 outputs
a prediction b′ for b. The game returns true if the prediction is correct, meaning
b = b′, and false otherwise.

Achieving A-PBE. If we have the luxury of prescribing our own password
hashing function PH then we can provide a fast and simple A-PBE scheme, that
we call APBE1, based on any PKE scheme. See [7]. However, this solution is
invasive, asking for the deployment of a new PH, which may not be possible due
to existing legacy passwords and password-hashing functions. We thus ask if it
is possible to design a secure A-PBE scheme that is non-invasive. This means we
take F.Ph as given and aim to achieve security by making reasonable assumptions
about its security without prescribing its design, assumptions that in particular
are met by the F.Ph function of PKCS#5 or other standards. This turns out to
be more challenging. We now provide the APBE2 scheme that accomplishes this
using WE.

Non-invasive A-PBE. We view ourselves as given a function family H with
key, input and output length functions H.kl,H.il,H.ol. Our goal is to design an A-
PBE scheme F such that F.Ph is H. In particular, we could let H be the password

Encryption and Asymmetric Password-Based Cryptography 323

F[H,WE].Ph(1λ, sa, pw)

hpw ← H(1λ, sa, pw)

Return hpw

F[H,WE].Enc(1λ, hpw , sa, m)

x ← (1λ, sa, hpw)

c ←$ WE(1λ, x, m)

Return c

F[H,WE].Dec(pw , c)

m ← WE.Dec(pw, c)

Return m

Fig. 8. A-PBE scheme F = APBE2[H,WE] associated to hash family H and witness
encryption scheme WE for LH

hashing function family from PKCS#5 [33] or bcrypt [34], thereby obtaining A-
PBE without change in the existing hashed passwords. We begin by reviewing
the security assumption on H.

Related-Input Pseudorandomness. Let H be a function family. This means
that H is a deterministic, PT function taking 1λ, a key k ∈ {0, 1}H.kl(λ)

and an input x ∈ {0, 1}H.il(λ) to return H(1λ, k, x) ∈ {0, 1}H.ol(λ). Here
H.kl,H.il,H.ol: N → N are the key, input and output lengths associated to H,
respectively. We say that H is related-input pseudorandom (RIP) if AdvripH,A(·) =
2Pr[RIPA

H (·)]−1 is negligible for every PT unpredictable adversary A = (A1, A2),
where game RIPA

H is shown in Fig. 7. Informally, this means that the hashed pass-
words should be indistinguishable from random strings, even in the presence of
the salts. We note that this is exactly the property needed for classical S-PBE
(symmetric PBE) to be secure, for it uses the hashed password as the symmetric
key. Thus, the assumption can be viewed as already made and existing, even if
implicitly, in current usage of passwords for S-PBE. We note that RIP secu-
rity of H is implied by UCE security of H relative to statistically unpredictable
sources [8].

The APBE2 Scheme. Let

LH = { (1λ, sa,H(1λ, sa,pw)) : λ ∈ N, sa ∈ {0, 1}H.kl(λ), pw ∈ {0, 1}H.il(λ) } .

This language is in NP. Let WE be a witness encryption scheme for LH. We
associate to H and WE the A-PBE scheme F = APBE2[H,WE] specified in Fig. 8.
We let F.pl = H.il, F.sl = H.kl and F.hl = H.ol. The construction lets the salt play
the role of the key for H, the password being the input and the hashed password
the output.

Security of APBE2 under AS. Theorem 5 below says that if H is RIP and
WE is AS[LH]-secure then APBE2[H,WE] is a secure A-PBE scheme. The proof
is in [7].

Theorem 5. Let H be a function family such that 2H.il(·)−H.ol(·) is a negligible
function. If H is RIP and WE ∈ AS[LH] then F = APBE2[H,WE] is a secure
A-PBE scheme.

The key feature of this result is that it is non-invasive, meaning it puts condi-
tions on the hash family H that suffice for security rather than mandating any

324 M. Bellare and V.T. Hoang

Game XSA,E
WE,R(λ)

(x, m0, m1, St) ←$ A(1λ); b ←$ {0, 1}
c ←$ WE.Enc(1λ, x, mb)

b′ ←$ A(St, c)

w ←$ E(1λ, x, m0, m1, St, c)

Return ((b = b′) ∧ ¬R(x, w))

Game ROWA
H (λ)

pw ←$ A1(1
λ)

For i = 1 to |pw| do

sa[i] ←$ {0, 1}H.kl(λ)

hpw[i] ← H(1λ, sa[i],pw[i])

(w, i) ←$ A2(1
λ, sa,hpw)

Return (hpw[i] = H(1λ, sa[i], w))

Fig. 9. Left: Game XS defining extractable security of witness encryption scheme
WE. Right: Game ROW defining ROW security of H.

particular design of H. Practical and standardized key-derivation functions may
be assumed to satisfy concrete versions of these asymptotic conditions.

Arbitrary Stretch. Define the stretch H.s(·) = H.ol(·) − H.il(·) of password
hashing function H as the difference between its output length and its input
length. Theorem 5 requires that 2−H.s(·) is negligible, meaning the output length
of the hash must be somewhat longer than the input length. This captures
situations in which passwords are, say 12-character ASCII strings (input length
is 78-bit) and H is iterated SHA1 (output length is 160-bit). However, when
passwords are longer, say 24-character, then Theorem 5 doesn’t apply. This is
unsatisfying, because intuitively, longer passwords should offer better security. In
this section, we formalize a stronger security requirement for witness encryption
called XS that allows us to remove the assumption on the stretch of H.

XS-Secure Witness Encryption. The security requirements for SS and AS
are for x �∈ L, no security requirement being made if x ∈ L. Extractable witness
encryption [26] is a requirement for all x ∈ {0, 1}∗, asking that if the adversary
violates privacy of encryption under x then one can extract a witness for the
membership of x ∈ L. Intuitively, the only way to violate privacy is to know a
witness. We provide a formalization of extraction security that we call XS. It
strengthens the formalization of GKPVZ [26] in being adaptive, in the vein of
AS, but weakens it by not involving auxiliary inputs. The formalizations also
differ in other details.

Let R be an NP-relation and let L = L(R). Let WE be a witness encryption
scheme for L. We say that WE is XS[L]-secure if for any PT adversary A there is
a corresponding PT algorithm E such that AdvxsWE,R,A,E(λ) = 2Pr[XSA,E

WE,R(λ)]−1
is negligible, where game XSA,E

WE,R is defined at the leftpanel of Fig. 9. Let XS[L]
denote the set of correct, XS[L]-secure witness encryption schemes for L.

Intuitively, XS[L] security implies AS[L] security for any L ∈ NP, because in
the former notion, if the adversary produces x �∈ L then no witness exists, so no
extractor E (even a computationally unbounded one) can find one. Proposition 6
below formally confirms this. The proof is in [7].

Proposition 6. For any NP-relation R, it holds that XS[L(R)] ⊆ AS[L(R)].

Encryption and Asymmetric Password-Based Cryptography 325

Extractable obfuscation (xO), also known as differing-input obfuscation, was
defined in [1,4,14]. BCP [14] show that it implies extractable witness encryption
meeting the definition of GKPVZ [26]. In [7], we give an alternative definition
of xO and show that it implies XS[L(R)]-secure witness encryption, for any
NP relation R. The construction is the same WER[P] in Section 3, where the
obfuscator P is assumed to be xO-secure, instead of just being iO-secure.

Related-Input One-Wayness. We now formalize another hardness assump-
tion, related-input one-wayness, on hash function family H. Informally we demand
that if the adversary is given the hashed passwords and the salts, it can’t com-
pute a preimage of any hashed password. This is exactly the intuitive require-
ment for password-hashing functions: if passwords are well-chosen to resist dic-
tionary attacks, then no adversary should be able to recover some password
from the hashed ones. It’s a variant of the notion of one-wayness under corre-
lated products of [35]. Formally, we say that H is related-input one-way (ROW)
if AdvrowH,A(λ) = Pr[ROWA

H (λ)] is negligible for all PT unpredictable adversary
A = (A1, A2), where game ROWA

H is shown at the right panel of Fig. 9.

Security of APBE2 under XS. The following establishes the security of F =
APBE2[H,WE] without any restrictions or assumptions on the stretch of H. See
[7] for the proof.

Theorem 7. If H is ROW and WE ∈ XS[LH] then F = APBE2[H,WE] is a secure
A-PBE scheme.

A Further Versions of SS

A good definition for WE security should have two properties: (1) Usability,
meaning it should suffice to prove security of applications, and (2) Achievability,
meaning it should be provably achieved by the natural constructs, which in this
case means the iO-based one of GGHRSW [18]. Our AS definition has both
properties. We have shown that SS [20,21] lacks (1).

After seeing a prior version of our work, GGSW updated the ePrint version
of their paper [22]. Here they acknowledge the gaps we find. They then propose
their own modification of SS, that we call SS2, in an attempt to fill the gaps.
This was unnecessary because AS had already been put forth and shown to fill
the gap, but GGSW appeared to want a definition in their quantifier-based style
rather than our game-based style. They viewed the problem in SS as arising
from the “order of quantification” and attempted to address it by changing this
order. SS2 quantified the negligible function first, making it universal. We explain
below that SS2 is unachievable, meaning no WE scheme can be SS2 secure.
(More precisely our result is that SS2-secure WE is unachievable for any NP-
complete language unless the polynomial-time hierarchy collapses. Our proof
uses the fact that statistically-secure WE is not achievable [20].) We pointed
this out to GGSW in a personal communication. They acknowledged this and
further updated their definition to one we call SS3 [22], which used another

326 M. Bellare and V.T. Hoang

order of quantification. Below we show that SS3 remains limited in terms of
achievability. This is because it does not seem possible to show that the iO-based
WE construction of GGHRSW [18] meets it under the definition of iO-security
that is commonly used in other applications of iO [13,30,36] and that we have
shown suffices for AS-secure WE.

The updated GGSW papers [22,23] characterize the gap we find as having
to do with the “order of quantifiers” in the SS definition, and their fixes attempt
to change quantifier order. However, the issue is not quantifier order but, more
subtly, the relation between x and λ. More broadly, game-based definitions are
a better fit in this domain than quantifier-based ones. This is because applica-
tions one wants to achieve with WE, as well as primitives one wants to use to
achieve WE, are both themselves underlain by game-based definitions. Reduc-
tions are thus facilitated, and less error-prone, with a game-based WE definition.
A quantifier-based one leads to mismatches. In particular, under certain quan-
tifier orders, one gets definitions like SS that do not provide usability, and when
one changes the order, one gets definitions like SS3 that are too strong and
challenge achievability. Intuitively, the latter is because the quantification ends
up demanding security even on inputs that no adversary could ever find. This
does not mean a viable quantifier-based definition is impossible. Indeed, below,
we suggest SS4, a quantifier-based definition of WE that recovers achievability
under weak iO in the non-uniform case. But the game-based AS is simpler and
more user friendly, and does not require non-uniformity to be achieved under
weak iO.

Below we also consider a recent definition of soundness security of KNY [31].
We call it SS5. It is similar to SS2 and consequently also unachievable.

The above indicates that the problems we find with SS, and the fix we deliver
with AS, are not trivial. Certainly it is easy, once the problem has been pointed
out, to propose alternatives, but our work remains important in having pointed
out the need for alternatives and in guiding the choice of, and verifying, these
alternatives.

We believe that WE is an important and useful notion and that our work
helps advance its cause via precise definitions that satisfy the usability and
achievability conditions above. We believe it is important for our field that work
like this is published, and that such work is not damaging for the GGSW authors
but rather advances the primitive they proposed.

SS2. WE scheme WE is SS2[L]-secure according to [22] if there exists a negligible
function ν : N → N such that for any PT adversary A, any x ∈ {0, 1}∗\L, any
equal-length m0,m1 ∈ {0, 1}∗, and any λ ∈ N we have

Advss2WE,L,x,m0,m1,A(λ)

= Pr[A(WE.Enc(1λ, x,m1)) = 1] − Pr[A(WE.Enc(1λ, x,m0)) = 1] < ν(λ) .

We claim this notion is unachievable, meaning, no WE scheme is SS2[L]-secure.
The reason is that ν is universal and in particular not allowed to depend on the
adversary. More formally let L be an NP-complete language. Let WE by any WE

Encryption and Asymmetric Password-Based Cryptography 327

scheme and let ν be any negligible function. We show that if the polynomial-
time hierarchy does not collapse then there is a PT adversary A as well as
x ∈ {0, 1}∗\L, equal-length m0,m1 and λ ∈ N such that Advss2WE,L,x,m0,m1,A(λ) ≥
ν(λ). This shows that WE is not SS2[L]-secure.

For probability distribution functions μ, μ′ : D → [0, 1], let

‖μ − μ′‖ =
1
2

∑

x∈D

|μ(x) − μ′(x)|

be the statistical distance between μ and μ′. For any λ, x,m let μλ,x,m be the
distribution of WE.Enc(1λ, x,m). Results from GGSW [20] imply that, unless the
polynomial hierarchy collapses, there exists a string x′ ∈ {0, 1}∗\L, equal-length
messages m′

0,m
′
1 and a constant λ0 ∈ N such that ‖μλ0,x′,m′

1
−μλ0,x′,m′

0
‖ ≥ ν(λ0).

Consider the following adversary A. On input a ciphertext c, if c is not in the
domain of μλ0,x′,m′

1
then A outputs a random guess. Otherwise, A outputs 1

if μλ0,x′,m′
1
(c) > μλ0,x′,m′

0
(c), and outputs 0 otherwise. Note that the test as

to whether c is in the domain of μλ0,x′,m′
1

only takes polynomial time because
λ0, x

′,m′
1 are fixed, and all computations related to them are constant time, and

similarly for computations of μλ0,x′,m′
0
(·). Thus A runs in polynomial time. But

Advss2WE,L,x′,m′
0,m′

1,A(λ0) = ‖μλ0,x′,m′
1
− μλ0,x′,m′

0
‖ ≥ ν(λ0).

SS3. A WE scheme WE is SS3[L]-secure [23] if for any PT adversary A, there
exists a negligible function ν : N → N such that for any x ∈ {0, 1}∗\L and any
λ ∈ N,

Advss3WE,L,x,A(λ)

= Pr[A(WE.Enc(1λ, x, 1)) = 1] − Pr[A(WE.Enc(1λ, x, 0)) = 1] < ν(λ) .

A first nit is that this considers only encryption of a 1-bit message but for applica-
tions one has to encrypt many bits, and it is not stated how security is defined in
this case. More importantly, however, SS3 has limitations with regard to achiev-
ability. Specifically, it seems unlikely one can show that iO implies SS3[L]-secure
WE via the natural GGHRSW construction that worked for both SS and AS
and under the definition of iO that is used for other applications [13,30,36] and
we have shown suffices for AS-secure WE. We now explain, referring to our for-
mulation of the definition in Section 3. Let L be an NP language. In Section 3
we recalled the GGHRSW construction WE = WER[P] of a WE scheme from
an indistinguishability obfuscator P. Now assume we are given an arbitrary PT
adversary A attacking the SS3[L]-security of WE. To prove security, we need
to build an adversary B attacking the iO-security of P. Adversary B, given 1λ,
needs to efficiently find and output circuits of the form Rx,m that we defined
in Section 3, where x intuitively is an input where the WE security “breaks.”
But how is B to find such an x efficiently? There seems to be no way. Even
if we allow B to be non-uniform, its advice string has length polynomial in λ,
and thus it can’t tell what is the “best” x because the set {0, 1}∗\L is infinite.
In the case of AS, this was not a problem because A handed back an x on

328 M. Bellare and V.T. Hoang

which it succeeded. Also for the original SS, it is not a problem because the
entire claim pertains to only one, fixed x that can be assumed known to B. An
approach we might consider for SS3 is the following. Given any string x �∈ L,
we can build an adversary Bx such that Advss3WE,L,x,A(λ) ≤ AdvioP,Bx

(λ) for all
λ ∈ N. Now the assumed iO security gives us a negligible function νx such that
AdvioP,Bx

(·) < νx(·). But the SS3 notion wants a single negligible function ν that
is independent of x. It’s unclear how to get ν from the set { νx : x �∈ L } since
the latter set is infinite. One natural idea is to set ν(λ) = supx�∈L{νx(λ)}. But
this doesn’t work. For example, consider νx(λ) = 1 if λ < |x|, and νx(λ) = 0
otherwise. For any fixed x, the function νx is negligible, but ν(λ) = 1 for every
λ ∈ N, meaning ν is not negligible. So one appears to need to construct an iO
adversary B independent of x, but it is unclear how to do that.

We note the proof does seem possible under some stronger notions of iO
from [18]. However, iO is a strong assumption no matter what and it is desir-
able that applications use as weak a form of it as possible. Also in further work
subsequent to ours, GLW [25] claim to achieve SS3 via a direct construction.
However, this requires sub-exponential hardness assumptions. (They call it com-
plexity leveraging.) Beyond this, trying to achieve SS3 is an unnecessary route
to follow, since AS already provides the properties we want, namely it suffices
for applications and is achieved even under weak iO.

SS4. As we have seen, the game-based AS definition fulfills the usability and
achievability conditions for a good definition. However, GGSW appear to want
a quantifier-based definition in the style of SS. But their SS2, SS3 attempts
have been inadequate. Here we accordingly suggest a quantifier-based definition
that we call SS4 which does satisfy, usability and is less limited than SS3 with
regard to achievability, namely weak iO does suffice for it, as long as this is
assumed for non-uniform adversaries. In particular it is implied by the non-
uniform generalization of AS and thus can be built from weak, non-uniform iO
by our results. We explain why it suffices for the PKE application of GGSW.

We say that a WE scheme WE is SS4[L]-secure if for any PT adversary A
and any polynomial � : N → N, there exists a negligible function ν : N → N such
that, for any string x ∈ {0, 1}∗\L, and any λ ∈ N, if |x| ≤ �(λ) then

Advss4WE,L,�,x,A(λ)

= Pr[A(1λ, x,WE.Enc(1λ, x, 1)) = 1] − Pr[A(1λ, x,WE.Enc(1λ, x, 0)) = 1]
< ν(λ) .

We now show this notion is implied by non-uniform AS. Given any SS4 adver-
sary A and any polynomial �, one can build another non-uniform AS adversary B
as follows. For each λ ∈ N, let xλ ∈ {0, 1}∗\L be a string such that |xλ| ≤ �(λ)
and Advss4WE,L,�,x,A(λ) ≤ Advss4WE,L,�,xλ,A(λ) for all x ∈ {0, 1}∗\L with |x| ≤ �(λ).
Adversary B(1λ) outputs (xλ, 0, 1, ε), and B(St, c) runs A(1λ, xλ, c). Then for
any string x ∈ {0, 1}∗\L, λ ∈ N, if |x| ≤ �(λ) then

AdvasWE,B(λ) = Advss4WE,L,�,xλ,A(λ) ≥ Advss4WE,L,�,x,A(λ) .

Encryption and Asymmetric Password-Based Cryptography 329

We now briefly explain why SS4 is enough for GGSW’s PKE scheme, but under
message space {0, 1}, because SS4 only allows encrypting a single bit. The IND-
CPA adversary is assumed to make only a single query (0, 1). The proof will fol-
low the template in [7] but with a change in constructing WE adversary D from
an INDCPA adversary A. Let �(λ) = 2λ for every λ ∈ N. Adversary D(1λ, x, c)
runs A(1λ,pk) with pk = (λ, x). When the latter makes its query, the former
returns c. Finally, D outputs the same guess as A.

For both SS3 and SS4, in the PKE application, to encrypt an n-bit message,
one has to make n calls to WE to encrypt n bits individually, exacerbating the
inefficiency of the scheme. If one modifies SS3 and SS4 for encrypting equal-
length m0,m1 of arbitrary length instead of m0 = 0 and m1 = 1, then the PKE
still can only encrypt bit-by-bit. The reason is that, an INDCPA adversary A is
allowed to choose any equal-length m0,m1 but in SS3 and SS4, the WE adversary
D has no control of the messages m0,m1, and thus one can’t construct D from A.
This again shows that AS is superior to SS3 and SS4 in terms of usability.

SS5. In a recent paper, KNY [31] define the following variant of SS, which we
call SS5. A scheme is SS5[L]-secure if for any security parameter λ, any equal-
length messages m0,m1 ∈ {0, 1}poly(λ), any PT adversary A, and any x �∈ L, we
have

Advss5WE,L,x,m0,m1,A(λ)

= Pr[A(WE.Enc(1λ, x,m1) = 1] − Pr[A(WE.Enc(1λ, x,m0)) = 1] < negl(λ) .

This definition doesn’t specify where to place the (existential) quantifier for the
negligible function negl, but the only meaningful position in the context of what
is written is to place it prior to the (universal) quantification of the security
parameter. (We certainly don’t want a different negligible function for every
value of λ.) But if so, the function negl is independent of the adversary A. The
same argument against SS2 can be used to show that SS5 is unachievable.

SS5 again demonstrates that quantifier-based notions for WE are error-prone.
KNY’s definition [31] is problematic, although it is subsequent to our work and
all of GGSW’s revisions.

Acknowledgments. We thank Krysztof Pietrzak and Georg Fuchsbauer for discus-
sions about witness encryption. Bellare is supported in part by NSF grants CNS-
0904380, CCF-0915675, CNS-1116800 and CNS-1228890. Part of the work was done
when Hoang was working at UCSD, and supported in part by NSF grants CNS-0904380,
CCF-0915675, CNS-1116800 and CNS-1228890.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013). http://
eprint.iacr.org/2013/689

2. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
barrington’s theorem. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014,
pp. 646–658. ACM Press, November 2014

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689

330 M. Bellare and V.T. Hoang

3. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

6. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

7. Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric password-
based cryptography. Cryptology ePrint Archive, Report 2013/704 (2013). http://
eprint.iacr.org/2013/704

8. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 398–415. Springer, Heidelberg (2013)

9. Bellare, M., Meiklejohn, S., Thomson, S.: Key-versatile signatures and applications:
RKA, KDM and joint Enc/Sig. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 496–513. Springer, Heidelberg (2014)

10. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012)

11. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

12. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM Journal on Computing 13(4), 850–864 (1984)

13. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)

14. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

15. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxil-
iary input. Cryptology ePrint Archive, Report 2013/703 (2013). http://eprint.iacr.
org/2013/703

16. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 1–25. Springer, Heidelberg (2014)

17. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

19. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

http://eprint.iacr.org/2013/704
http://eprint.iacr.org/2013/704
http://eprint.iacr.org/2013/703
http://eprint.iacr.org/2013/703

Encryption and Asymmetric Password-Based Cryptography 331

20. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applica-
tions. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 467–476. ACM Press, June 2013

21. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
Cryptology ePrint Archive, Report 2013/258, version 20130508:202916, May 8,
2013

22. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
Cryptology ePrint Archive, Report 2013/258, version 20140211:224937, February
11, 2014

23. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
Cryptology ePrint Archive, Report 2013/258, version 20140418:025904, April 18,
2014

24. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014). http://eprint.iacr.org/2014/309

25. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent
assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

26. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

27. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

28. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

29. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)

30. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

31. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 254–273. Springer,
Heidelberg (2014)

32. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer
and System Sciences 52(1), 43–52 (1996)

33. PKCS #5: Password-based cryptography standard (RFC 2898). RSA Data Secu-
rity Inc, Version 2.0, September 2000

34. Provos, N., Mazières, D.: A future-adaptable password scheme. In: USENIX
Annual Technical Conference, FREENIX Track, pp. 81–91 (1999)

35. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009)

36. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

37. Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract).
In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press, November 1982

http://eprint.iacr.org/2014/309

Public-Key Encryption Indistinguishable
Under Plaintext-Checkable Attacks

Michel Abdalla(B), Fabrice Benhamouda, and David Pointcheval

ENS, CNRS, INRIA, and PSL, 45 rue d’Ulm, 75005 Paris, France
{michel.abdalla,fabrice.benhamouda,david.pointcheval}@ens.fr

Abstract. Indistinguishability under adaptive chosen-ciphertext attack
(IND-CCA) is now considered the de facto security notion for public-key
encryption. However, the security guarantee that it offers is sometimes
stronger than what is needed by certain applications. In this paper, we
consider a weaker notion of security for public-key encryption, termed
indistinguishability under plaintext-checking attacks (IND-PCA), in which
the adversary is only given access to an oracle which says whether
or not a given ciphertext encrypts a given message. After formaliz-
ing the IND-PCA notion, we then design a new public-key encryption
scheme satisfying it. The new scheme is a more efficient variant of the
Cramer-Shoup encryption scheme with shorter ciphertexts and its secu-
rity is also based on the plain Decisional Diffie-Hellman (DDH) assump-
tion. Additionally, the algebraic properties of the new scheme also allow
for proving plaintext knowledge using Groth-Sahai non-interactive zero-
knowledge proofs or smooth projective hash functions. Finally, in order
to illustrate the usefulness of the new scheme, we further show that, for
many password-based authenticated key exchange (PAKE) schemes in
the Bellare-Pointcheval-Rogaway security model, one can safely replace
the underlying IND-CCA encryption schemes with our new IND-PCA one.
By doing so, we were able to reduce the overall communication complex-
ity of these protocols and obtain the most efficient PAKE schemes to date
based on the plain DDH assumption.

1 Introduction

Public-key encryption (PKE) is one of the most fundamental primitives in cryp-
tography, allowing users to exchange messages privately without the need for
pre-established secrets. The basic security notion for (probabilistic) public-key
encryption is indistinguishability of encryptions under chosen-plaintext attacks
(IND-CPA) [18], also known as semantic security. Informally speaking, this notion
states that any passive adversary capable of eavesdropping on the communica-
tion between two parties should not be able to obtain any information about the
encrypted messages.

While IND-CPA security may suffice for certain applications, it does not pro-
vide any guarantee against active attacks, in which the adversary may modify
existing ciphertexts or inject new ones into the communication and obtain infor-
mation about the decrypted messages. In fact, as shown by Bleichenbacher [9]
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 332–352, 2015.
DOI: 10.1007/978-3-662-46447-2 15

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 333

in his attack against RSA PKCS #1, one can sometimes break an existing PKE
scheme simply by knowing whether an existing ciphertext is valid or not.

In order to address the problem of active attacks, several notions of security
have been proposed, such as indistinguishability under non-adaptive chosen-
ciphertext attack (IND-CCA1) [28], indistinguishability under adaptive
chosen-ciphertext attack (IND-CCA2 or IND-CCA) [30], non-malleability under
chosen-plaintext attack (NM-CPA) or adaptive chosen-ciphertext attack (NM-CCA)
[13,14]. Among these, as shown by Bellare et al. [5], the IND-CCA notion is
the strongest one and implies all of the other ones. Unlike the IND-CPA notion,
the IND-CCA security notion states that the adversary should not be capable
to learning any information about the underlying message of a given ciphertext
even when given access to the decryption of other ciphertexts of its choice.

Indistinguishabiliy Under Plaintext-Checkable Attacks. Even though
IND-CCA is now considered the de facto security notion for public-key encryption,
the security guarantee that it offers is sometimes stronger than what is needed
by certain applications. Since stronger security guarantees usually result in a loss
of efficiency, different security goals, such as oneway-ness, and different attack
capabilities, such as plaintext-checkable attacks [29], have been considered as
alternatives to the IND-CCA security notion. While in oneway-ness, the goal of the
adversary is to recover the underlying encrypted message, in plaintext-checkable
attacks, the adversary is given access to a plaintext-checking oracle that answers,
on a given pair (m, c), whether c encrypts m or not.

In this paper, we first revisit the notion of oneway-ness under plaintext-
checkable attacks (OW-PCA) by Okamoto and Pointcheval [29] and describe an
indistinguishability-based variant for it. In the new notion, termed indistin-
guishability under plaintext-checkable attacks (IND-PCA), the adversary should
not be able to learn any information about an encrypted message even when
given access to a plaintext-checking oracle. As we show in Section 2, the new
notion is also equivalent to the IND-CCA notion when the message space is small
(polynomial in the security parameter) since it is possible to enumerate all the
possible messages in this case.

A New IND-PCA Encryption Scheme. After defining the IND-PCA notion, our
first main contribution is to design a new public-key encryption scheme which for-
mally meets the new notion. The new scheme is a more efficient variant of the
Cramer-Shoup encryption scheme [11], whose ciphertext consists of only 3 group
elements. Like the Cramer-Shoup encryption scheme, the security of new scheme
is also based on the plain Decisional Diffie-Hellman (DDH) assumption [27].

In addition to being quite efficient, the new scheme can also be used with
Groth-Sahai Non-Interactive Zero-Knowledge Proofs [20] and smooth projective
hash functions (SPHF) [12], for proving plaintext knowledge. To illustrate this
fact, we design two different constructions of SPHFs for the new scheme, each
providing a different security-efficiency trade-off.

334 M. Abdalla et al.

Since IND-PCA implies IND-CCA for short messages, the new scheme can also
replace IND-CCA schemes in applications where the message space is small. This
is the case, for instance, when bits have to be encrypted as in [2].

Applications to PAKE. After proposing the new scheme, our second main con-
tribution is to show that, for many password-based authenticated key exchange
(PAKE) in the Bellare-Pointcheval-Rogaway (BPR) security model [6], one can
safely replace the underlying IND-CCA encryption schemes with an IND-PCA one.
In particular, we revisit the frameworks by Gennaro and Lindell [17], by Groce
and Katz [19], and by Katz and Vaikuntanathan [26], and show that one can
replace the underlying IND-CCA encryption schemes in their constructions with
an IND-PCA encryption scheme. In all of these cases, we were able to reduce the
overall communication complexity of the original protocols by at least one group
element.

More precisely, in the case of the Gennaro-Lindell framework [17], which is
a generalization of the PAKE scheme by Katz, Ostrovsky, and Yung [23], we
were able to obtain a quite clean 2-flow protocol with 7 group elements in total,
instead of 8 group elements in 3 flows [22] or 10 group elements in 3 flows in
[16,24,25]. The security of the new scheme is based on the DDH in the underlying
group and assumes a trusted common reference string (CRS). In addition to
avoiding the use of IND-CCA encryption schemes, our instantiation also avoids
the use of one-time signatures and message authentication codes. Although it
was already known that one of the two ciphertexts could be generated using
an IND-CPA encryption scheme [4,10,22], IND-CCA security was always required
for the generation of the other ciphertext in all concrete instantiations of the
KOY/GL framework.

In the case of the Groce-Katz (GK) framework [19], which is a generalization
of the PAKE scheme by Jiang and Gong [21] that additionally provides mutual
authentication, we were able to obtain a scheme with a total communication
complexity of 7 group elements instead of the original 8 by using an IND-PCA
encryption scheme to generate the second flow. Moreover, in cases where mutual
authentication is not needed, one could further improve the overall efficiency of
these protocols by removing the third flow. The resulting scheme would only
have 2 flows and require the exchange of 6 group elements in total. The security
of the new scheme is based on the plain DDH assumption and on the security of
the underlying pseudorandom number generator and assumes a trusted CRS.

Finally, in the case of Katz-Vaikuntanathan (KV) framework [26], we were
able to obtain a PAKE scheme with a total communication complexity of 10 group
elements instead of the current 12 in [8]. As in [8,26], our new scheme only has
a single round of communication and assumes a trusted CRS. Its security proof
is based on the plain DDH assumption.

Organization. Section 2 recalls standard definitions for public-key encryption
and smooth projective hash proof functions (SPHFs) and describes some of the
most classic instantiations of these primitives. Section 3 introduces our new

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 335

IND-PCA encryption scheme and the associated SPHFs along with its security
proof. The new scheme is a variant of the Cramer-Shoup encryption scheme [11]
with shorter ciphertexts. Section 4 presents the security models for password-
based authenticated key exchange (PAKE) used in our security proofs. Section 5
describes three PAKE constructions based on the frameworks by Gennaro and
Lindell [17], by Groce and Katz [19], and by Katz and Vaikuntanathan [26],
whose security proofs appear in the full version [1].

2 Public-Key Encryption

2.1 Definition

A (labeled) public-key encryption scheme is defined by three algorithms:

– KG(1K) generates a key pair: a public key pk and a secret key sk;
– Enc�(pk,M ; r) encrypts the message M under the key pk with label �, using

the random coins r;
– Dec�(sk, C) decrypts the ciphertext C, using the secret key sk, with label �.

The correctness requires that for all key pairs (pk, sk), all labels �, all random
coins r and all messages M ,

Dec�(sk,Enc�(pk,M ; r)) = M.

The main security notion is the so-called indistinguishability of ciphertexts,
depicted in Fig. 1, in which the adversary chooses two messages M0 and M1

and a label �∗ (FIND phase), and then has to guess which of the two has been
encrypted in the challenge ciphertext C∗ = Enc�∗

(pk,Mb; r) for a random bit b
(GUESS phase). The adversary has access to an oracle ORACLE which may update
some list of forbidden challenges CTXT, and it wins if and only if he guessed
correctly the bit b (i.e., it outputs b′ = b) and (�∗, C∗) is not in CTXT. The
advantages are:

AdvindES (A) = Pr[Expind−1
ES,A (K) = 1] − Pr[Expind−0

ES,A (K) = 1]

AdvindES (t, q) = max
A≤t,q

{AdvindES (A)},

Expind−b
ES,A (K)
CTXT ← empty list
(pk, sk) ← KG(K)
(�∗, M0, M1) ← A(FIND : pk, ORACLE(·))
C∗ ← Enc�∗

(pk, Mb)
b′ ← A(GUESS : C∗, ORACLE(·))
if (�∗, C∗) ∈ CTXT then return 0
else return b′

Fig. 1. Indistinguishability Security Notions for Labeled Public-Key Encryption
(IND-CPA when ORACLE =⊥, IND-PCA when ORACLE = OPCA, and IND-CCA when
ORACLE = OCCA)

336 M. Abdalla et al.

IND-CPA IND-PCA IND-CCA

for small messages
�

counter-example: ElGamal

Fig. 2. Relations between IND-CPA, IND-PCA, and IND-CCA (normal arrows are impli-
cations, strike out arrows are separations)

where A ≤ t, q are adversaries running within time t and asking at most q queries
to ORACLE.

Depending on the definition of ORACLE, one gets three different security
notions:

– if ORACLE =⊥, the adversary just has access to the public key, and one gets
the IND-CPA notion, CPA meaning Chosen-Plaintext Attack ;

– if ORACLE(�, C) outputs the decryption of C under the label � (Dec�(sk, C))
and adds (�, C) to CTXT, one gets the IND-CCA notion, CCA meaning Chosen-
Ciphertext Attack ;

– if ORACLE(�, C,M) just answers whether the decryption of C under the label
� is M and adds (�, C) to CTXT, one gets the IND-PCA notion, PCA meaning
Plaintext-Checking Attack, as proposed in [29].

2.2 Relations with the IND-CPA and IND-CCA Security Notions

It is well known that IND-CCA implies IND-CPA (i.e., an encryption scheme
IND-CCA-secure is IND-CPA-secure), and it is clear that IND-PCA implies IND-CPA.
Let us now show that relations between IND-CPA, IND-PCA, IND-CCA are as
depicted in Fig. 2. In all this paper, when we speak of small messages, we mean
that it is possible to enumerate all the possible messages (i.e., the message space
has a cardinal polynomial in the security parameter).

IND-CCA =⇒ IND-PCA. One just has to remark that the OPCA oracle can
be simulated by the OCCA oracle, and the restrictions are compatible (the same
list CTXT will be generated): given a query (�,M,C) to the OPCA oracle, the
simulator can simply ask for (�, C) to the OCCA oracle. This perfectly simulates
the OPCA oracle.

IND-PCA =⇒ IND-CCA, for Small Messages. In case of small messages for
the encryption scheme, we remark that the OCCA oracle can be simulated by the
OPCA oracle, and the restrictions are compatible too: given a query (�, C) to the
OCCA oracle, the simulator can simply ask for (�,M,C) to the OPCA oracle, for
all the messages M (we insist that by small messages, we mean we can enumer-
ate them in polynomial time).If no message M matches, the simulator outputs
⊥, otherwise it outputs the unique matching message (since the encryption is
perfectly binding, at most one message can match). This perfectly simulates the
OCCA oracle.

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 337

2.3 Classical Schemes

ElGamal Encryption Scheme [15]. The ElGamal (EG) encryption scheme
is defined as follows, in a cyclic group G of prime order p, with a generator g:

– EG.KG(1K) generates the secret key sk = x
$← Zp and the public key pk =

y = gx;
– EG.Enc(pk = y,M ; r), for a group element M ∈ G and a scalar r ∈ Zp,

generates the ciphertext C = (u = gr, e = yrM);
– EG.Dec(sk = x,C = (u, e)) computes M = e/ux.

This encryption scheme is well-known to be IND-CPA under the DDH assumption,
which states that it is hard to distinguish a Diffie-Hellman tuple (ga, gb, gab) from
a random tuple (ga, gb, gc), for random scalars a, b, c

$← Zq:

Advind-cpaEG (t) ≤ Advddh
G

(t).

Cramer-Shoup Encryption Scheme [11]. The labeled Cramer-Shoup (CS)
encryption scheme is defined as follows, in a cyclic group G of prime order p,
with two generators g1, g2, together with a hash function HCS randomly drawn
from a collision-resistant1 hash function family H from the set {0, 1}∗ × G

2 to
the set G\{1}:

– CS.KG(1K) generates the secret key sk = (s, a, b, a′, b′) $← Zp and the public
key pk = (h = gs

1, c = ga
1gb

2, d = ga′
1 gb′

2);
– CS.Enc�(pk = (h, c, d),M ; r), for a label �, a group element M ∈ G and a

scalar r ∈ Zp, generates the ciphertext C = (u1 = gr
1, u2 = gr

2, e = hrM,v =
(cdξ)r), where ξ = HCS(�, u1, u2, e);

– CS.Dec�(sk = (s, a, b, a′, b′), C = (u1, u2, e, v)) first checks whether v =
ua+ξa′
1 · ub+ξb′

2 , for ξ = HCS(�, u1, u2, e). If the equality holds, it outputs
M = e/us

1, otherwise it outputs ⊥.

This encryption scheme is well-known to be IND-CCA under the DDH assumption
and the collision-resistance of the hash function family:

Advind-ccaCS (t, qd) ≤ 2Advddh
G

(t) + SucccollH (t) + 3qd/p,

where qd is the number of queries to the OCCA oracle.

Remark 1. A family H of hash functions from a set X to a set Y is said (t, ε)-
collision-resistant if for any adversary A running within time t, on a random
element H

$← H, its probability to output x �= x′ such that H(x) = H(x′) is
bounded by ε. We denote SucccollH (t) the best success probability any adversary
can get within time t.
1 Second-preimage resistance is actually sufficient.

338 M. Abdalla et al.

2.4 Smooth Projective Hash Functions

Projective hash function families were first introduced by Cramer and Shoup [12].
Here we use the formalization from [8]: Let X be the domain of these functions
and let L be a certain subset of this domain (a language). A key property of
these functions is that, for words C in L, their values can be computed by using
either a secret hashing key hk or a public projection key hp but with a witness
w of the fact that C is indeed in L. More precisely, a smooth projective hash
function (SPHF) over L ⊆ X is defined by four algorithms.

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L, C) derives the projection key hp, possibly depending on the

word C;
– Hash(hk, L, C) outputs the hash value from the hashing key, for any word

C ∈ X;
– ProjHash(hp, L, C,w) outputs the hash value from the projection key hp, and

the witness w, for a word C ∈ L.

On the one hand, the correctness of the SPHF assures that if C ∈ L with w a
witness of this fact, then Hash(hk, L, C) = ProjHash(hp, L, C,w). On the other
hand, the security is defined through the smoothness, which guarantees that, if
C �∈ L, Hash(hk, L, C) is statistically indistinguishable from a random element,
even knowing hp.

Note that HashKG and ProjKG can just depend partially on L (i.e., can only
depend on a superset L̂): we then note HashKG(L̂) and ProjKG(hk, L̂, C). In addi-
tion, if ProjKG does not depend on C, and verify a slightly stronger smoothness
property (called adaptive smoothness, which holds even if C is chosen after hp),
we say the SPHF is a KVSPHF. Otherwise, it is said to be a GLSPHF. A KVSPHF
is stronger than a GLSPHF (in particular, a KVSPHF is a GLSPHF), and some
applications require KVSPHF.

More precisely, if ProjKG does not use C and, if for any function from the
set of projection keys to X \ L, on the probability space hk

$← HashKG(L),
hp ← ProjKG(hk, L,⊥), the distributions {(hp,H) | H ← Hash(hk, L, C)} and
{(hp,H) | H

$← Π} are ε-close, where Π is the output set of the hash function,
then the SPHF is an ε-smooth KVSPHF. If ProjKG uses C (or not) and if, for any
C �∈ L, on the probability space hk

$← HashKG(L), hp ← ProjKG(hk, L, C), the
distributions {(hp,H) | H ← Hash(hk, L, C)} and {(hp,H) | H

$← Π} are ε-close,
then the SPHF is an ε-smooth GLSPHF. See [8] for more details on GLSPHF and
KVSPHF.

Let us now recall SPHFs for the ElGamal and Cramer-Shoup encryption
schemes, proposed in [8,12,17].

ElGamal Encryption Scheme. EG admits an efficient KVSPHF for the lan-
guage LM = {C | ∃r, C = EG.Enc(pk,M ; r)}, with L = G

2 the superset of the
ciphertexts:

hk = HashKG(L) = (α, β) $← Z
2
p hp = ProjKG(hk, L,⊥) = gαyβ

H = Hash(hk, LM , C) = uα(e/M)β H ′ = ProjHash(hp, LM , C, r) = hpr

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 339

Cramer-Shoup Encryption Scheme. CS admits an efficient GLSPHF for the
language L�

M = {C | ∃r, C = CS.Enc�(pk,M ; r)}, with L the superset of the
ciphertexts:

hk = HashKG(L) = (α, β, γ, δ) $← Z
4
p

hp = ProjKG(hk, L, C) = gα
1 gβ

2 hγ(cdξ)δ

H = Hash(hk, L�
M , C) = uα

1 uβ
2 (e/M)γvδ

H ′ = ProjHash(hp, L�
M , C, r) = hpr,

where ξ = HCS(�, u1, u2, e).
CS also admits an efficient KVSPHF for the language L�

M [8]:

hk = HashKG(L) = (α1, α2, β, γ, δ) $← Z
5
p

hp = ProjKG(hk, L, C) = (hp1 = gα1
1 gβ

2 hγcδ, hp2 = gα2
1 dδ)

H = Hash(hk, L�
M , C) = uα1+ξα2

1 uβ
2 (e/M)γvδ

H ′ = ProjHash(hp, L�
M , C, r) = (hp1hp

ξ
2)

r,

where ξ = HCS(�, u1, u2, e).

3 The Short Cramer-Shoup Encryption Scheme

The labeled Short Cramer-Shoup (SCS) encryption scheme is a variant of the
above Cramer-Shoup encryption scheme, but with one less element. It is defined
as follows, in a cyclic group G of prime order p, with a generator g, together with
a hash function HSCS randomly drawn from a collision-resistant2 hash function
family H from the set {0, 1}∗ × G

2 to the set G\{1}:

– SCS.KG(1K) generates the secret key sk = (s, a, b, a′, b′) $← Zp and the public
key pk = (h = gs, c = gahb, d = ga′

hb′
);

– SCS.Enc�(pk = (h, c, d),M ; r), for a label �, a group element M ∈ G and a
scalar r ∈ Zp, generates the ciphertext C = (u = gr, e = hrM,v = (cdξ)r),
where ξ = HSCS(�, u, e);

– SCS.Dec�(sk = (s, a, b, a′, b′), C = (u, e, v)) first computes M = e/us and
checks whether v = ua+ξa′

(e/M)b+ξb′
, for ξ = HSCS(�, u, e). If the equality

holds, it outputs M , otherwise it outputs ⊥.

We show below it is IND-PCA under the DDH and the collision-resistance assump-
tions:

Advind-pcaSCS (t) ≤ Advddh
G

(t) + SucccollH (t) + 2(qp + 1)/p,

where qp is the number of queries to the OPCA oracle. But before that, we build
a GLSPHF and a KVSPHF for the SCS scheme.
2 Second-preimage resistance is actually enough, as for the original Cramer-Shoup

encryption scheme.

340 M. Abdalla et al.

3.1 Smooth Projective Hash Functions

Let us now define smooth projective hash functions. We use the formalization
from [8] to explain where these SPHFs come from. The reader not acquainted
with it may skip the definitions via matrix/vectors and just look at the resulting
GLSPHF and KVSPHF.

GLSPHF. The following matrix and vectors lead to an SPHF for the language
L�

M = {C | ∃r, C = SCS.Enc�(pk,M ; r)}, with L the superset of the ciphertexts:

Γ(C) =
(

g h cdξ
)

λ = (r)
λ · Γ = (gr, hr, (cdξ)r)
Θ(C) = (u, e/M, v)

where ξ = HSCS(�, u, e). The matrix Γ depends on ξ, and thus on the word C.
Hence, this is a GLSPHF:

hk = HashKG(L) = (α, β, γ) $← Z
3
p hp = ProjKG(hk, L, C) = gαhβ(cdξ)γ

H = Hash(hk, L�
M , C) = uα(e/M)βvγ H ′ = ProjHash(hp, L�

M , C, r) = hpr

KVSPHF. We could also use the following matrix and vectors:

Γ(C) =
(

g 1 h c
1 g 1 d

) λ = (r)
λ · Γ = (gr, gξr, hr, (cdξ)r)
Θ(C) = (u, uξ, e/M, v)

where ξ = HSCS(�, u, e). The matrix Γ does not depend anymore on ξ, nor on
the word C in general. Hence, this is a KVSPHF:

hk = HashKG(L) = (α1, α2, β, γ) $← Z
4
p

hp = ProjKG(hk, L, C) = (hp1 = gα1hβcγ , hp1 = gα2dγ)

H = Hash(hk, L�
M , C) = uα1+α2ξ(e/M)βvγ

H ′ = ProjHash(hp, L�
M , C, r) = (hp1hp

ξ
2)

r

3.2 IND-PCA Security Proof

Let us nowprove theIND-CPA security as advertised at the beginning of this section.
We first recall the security game in GameG0, and present a series of indistinguish-
able games to show the advantage of the adversary is negligible [7,31].

Game G0: The adversary A is given a public key pk = (h = gs, c = gahb, d =
ga′

hb′
), generated with the secret key sk = (s, a, b, a′, b′) $← Z

5
p, as well as an

unlimited access to an OPCA oracle with input a tuple (�,M,C) that consists
of a ciphertext C and an alleged plaintext M with the label �. This oracle
answers whether C really encrypts M or not. At some point, the adversary

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 341

outputs a label �∗ and two message M0 and M1, and receives the encryption
C∗ = (u∗, e∗, v∗) of Mδ with the label �∗. After more calls to the OPCA oracle,
the adversary outputs a bit δ′, its guess on the bit δ. Note that the adversary
is not allowed to query the OPCA oracle on any tuple (�∗,M,C∗).
More precisely, C∗ is generated with a random scalar r∗ $← Zp, as C∗ =
(u∗ = gr∗

, e∗ = hr∗
Mδ, v

∗ = (cdξ∗
)r∗

), where ξ∗ = HSCS(�∗, u∗, e∗). The
OPCA oracle, on input (�,M,C = (u, e, v)), unless (�, C) = (�∗, C∗), checks
both equations: e ?= usM and v ?= ua+ξa′ · (e/M)b+ξb′

, for ξ = HSCS(�, u, e).
Then, AdvG0(A) = Advind-pcaSCS (A).

Game G1: In this game, we reject all queries (�,M,C = (u, e, v)) to the OPCA
oracle, where (�, u, e) �= (�∗, u∗, e∗) but ξ∗ = ξ. This game is computation-
ally indistinguishable from the previous one under the collision-resistance of
HSCS: |AdvG1(A) − AdvG0(A)| ≤ SucccollH (t), where t is approximately the
running time of A.

Game G2: We first simplify the simulation of the OPCA oracle: it just checks the
second equation: v ?= ua+ξa′ · (e/M)b+ξb′

, for ξ = HSCS(�, u, e), so that we do
not need to know s in this game anymore. It can only make a difference if this
equation is satisfied while the first was not: this means that e = us′

M and
v = ua+ξa′ ·(e/M)b+ξb′

, for ξ = HSCS(�, u, e), with h = gs and Δs = s′−s �= 0.
However, we can see that the probability for v to satisfy the above equation
while e does not is negligible (actually upper-bounded by 1/p) since a, a′, b, b′

are unknown. See a more complex case in Game G6, where even more infor-
mation is available to the adversary. One thus gets |AdvG2(A)−AdvG1(A)| ≤
qp/p, where qp is the number of queries to the OPCA oracle.

Game G3: We are now given a Diffie-Hellman tuple (g,X = gx, Y = gy, Z =
gz), with z = xy. We set h ← X (which means that s = x), but let the rest
of the setup as before: a, b, a′, b′ $← Zp and δ

$← {0, 1}. This is possible since
we do not know s anymore since Game G2. For the challenge ciphertext, we
set u∗ ← Y (which means that r∗ = y) and e∗ ← ZMδ. For v∗, since we do
not know r∗, we use the verification equation: v∗ ← Y a+ξ∗a′ · Zb+ξ∗b′

, for
ξ∗ = HSCS(�∗, u∗, e∗). Since z = xy, we have a perfect simulation of v∗ as in
the previous game, hence AdvG3(A) = AdvG2(A):

v∗ = gy(a+ξ∗a′)+xy(b+ξ∗b′) = (g(a+xb) · gξ∗(a′+xb′))y

= ((gahb) · (ga′
hb′

)ξ∗
)y = (cdξ∗

)r∗
.

Game G4: We are now given a random tuple (g,X = gx, Y = gy, Z = gz),
with z independently chosen. The simulation is the same as in the previous
game: |AdvG4(A)−AdvG3(A)| ≤ Advddh(t), where t is essentially the running
time of the adversary A.

Game G5: We now choose z uniformly at random in Zp \ {xy} instead of Zp.
This game is statistically indistinguishable from the previous one. Hence we
have: |AdvG5(A) − AdvG4(A)| ≤ 1/p.

Game G6: We now randomly choose g
$← G, and x, y, z

$← Zp (with z �= xy) to
define the random tuple (g,X = gx, Y = gy, Z = gz) as in the previous game,

342 M. Abdalla et al.

but with the knowledge of the exponents. We thus know again s = x. We can
go back with the full simulation of the OPCA oracle: it additionally checks
whether e = usM or not. It can again make a difference if this equation
is not satisfied while the other one was: this means that e = us′

M and
v = ua+ξa′ ·(e/M)b+ξb′

, for ξ = HSCS(�, u, e), with h = gs and Δs = s′−s �= 0.
First, if (�, u, e) = (�∗, u∗, e∗) but v �= v∗, since that implies ξ = ξ∗, we can
safely answer negatively. We thus now have to deal with the cases (�, u, e) �=
(�∗, u∗, e∗), where ξ∗ �= ξ (since we have already dealt with collisions in ξ
and ξ∗ in Game G1).
As in Game G2, we have to show that the probability for v to satisfy the
above equation while e does not is negligible since a, b, a′, b′ are unknown.
This is a bit more subtle than in Game G2, since more relations are available
to the adversary. This proof would thus also apply for the Game G2. Anyway,
with the given relations, any v could be possible: a powerful adversary might
know, where u = gr and Δz = z − xy,

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c = gahb

d = ga′
hb′

v∗ = u∗a+ξ∗a′
· (e∗/Mδ)b+ξ∗b′

= gy(a+ξ∗a′) · gz(b+ξ∗b′)

v = ua+ξa′ · (e/M)b+ξb′

= gr(a+ξa′) · grs′(b+ξb′)

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

logg c = a + s · b
logg d = a′ + s · b′

logg v∗ = y · (a + ξ∗a′) + z(b + ξ∗b′)
= y · (logg c + ξ∗ logg d) + Δz · (b + ξ∗b′)

logg v = r · (a + ξa′) + rs′(b + ξb′)
= r · (logg c + ξ logg d + Δs · (b + ξb′))

This system can be turned into
⎛

⎜
⎜
⎝

logg c
logg d

logg v∗ − y · (logg c + ξ∗ logg d)
logg v − r · (logg c + ξ logg d)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 0 s 0
0 1 0 s
0 0 Δz Δzξ

∗

0 0 rΔs rΔsξ

⎞

⎟
⎟
⎠

·

⎛

⎜
⎜
⎝

a
a′

b
b′

⎞

⎟
⎟
⎠

where the determinant is clearly ΔzΔs(ξ∗ − ξ). Since we assumed z �= xy,
Δz �= 0, and no collision on the hash function HSCS, the determinants are all
non-zero, in which cases the expected values for v are unpredictable, hence
|AdvG6(A) − AdvG5(A)| ≤ qp/p, where qp is the number of queries to the
OPCA oracle.

Game G7: We now choose v∗ at random, independently of Y and Z.
To show this does not change anything, we first show that what A sees does
never depend on the four variables a, b, a′, b′, but only depends on α = a+xb
and β = a′ + xb′, except for v∗: The only information A has from a, b, a′, b′

comes from the answers of the OPCA oracle, where we first check that e ?= uxM

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 343

and then, if that equality holds, that v ?= ua+ξa′ · (e/M)b+ξb′
. But when e =

uxM , ua+ξa′ · (e/M)b+ξb′
= u(a+ξa′)+x(b+ξb′) = u(a+xb)+ξ(a′+xb′) = uα+ξβ ,

therefore the second verification can be replaced by v ?= uα+ξβ , which only
depends on α and β.

If we denote v∗ = gγ , we have γ = y(a + ξ∗a) + z(b + ξ∗b′), which
is linearly independent of α and β (when a, a′, b, b′ are unknowns) since
z �= xy, and so γ looks completely random to the adversary, and so does v∗

too: AdvG7(A) = AdvG6(A).
Game G8: We now choose z uniformly at random in Zp instead of Zp \ {xy}.

This game is statistically indistinguishable from the previous one. Hence we
have: |AdvG8(A) − AdvG7(A)| ≤ 1/p.

Game G9: We now choose e∗ at random, independently of Z and Mδ.
To show this does not change anything either, we review the previous game:

– the simulator chooses random scalars x, y, z to define the random tuple
(g,X = gx, Y = gy, Z = gz), as well as random scalars α, β to define
c = gα, d = gβ , and δ

$← {0, 1};
– for the OPCA oracle on (�,M,C = (u, e, v)), one checks e ?= uxM and

v ?= uα+ξβ , for ξ = HSCS(�, u, e);
– for the challenge ciphertext, one sets u∗ ← Y , e∗ ← ZMδ, and v∗ $← G.

Since Z was used in e∗ only (and nowhere else), a random Z or a random e∗

are indistinguishable: AdvG9(A) = AdvG8(A). In addition, δ does not appear
anywhere, hence AdvG9(A) = 0.

4 PAKE Security Models

In this section, we recall the BPR security model [6] and the extension proposed
by Abdalla, Fouque, and Pointcheval (AFP) [3]. Then, in the next section, we
will present several protocols secure in the basic BPR model, but also in the
AFP model and with forward-secrecy.

4.1 The Bellare-Pointcheval-Rogaway Security Model

Users and Passwords. Each client C ∈ C holds a password πC , while each
server S ∈ S holds passwords πS,C for each client C.

Protocol Execution. The adversary A can create several concurrent instances
U i of each user U ∈ C ∪ S, and can interact with them via the following oracle
queries:

– Execute(Ci, Sj): this query models a passive attack in which the adversary
eavesdrops on honest executions between a client instance Ci and a server
instance Sj . The output of this query consists of the messages that are
exchanged during an honest execution of the protocol between Ci and Sj

(i.e., the transcript of the protocol);

344 M. Abdalla et al.

– Send(U i, U ′j ,M): this query models an active attack, in which the adversary
may intercept a message and modify it, create a new message, or simply replay
or forward an existing message, to the user instance U ′j in the name of the
user instance U i. The output of this query is the message that U ′j would
generate after receiving M . A specific message Start can be sent to a client,
in the name of a server, to initiate a session between this client and this server;

– Reveal(U): this query models the misuse of the session key that has been
established. The output of this query is the session key, if it has been set.

– Corrupt(C): this query models the client corruption. The output of this query
is the password πC .

– Corrupt(S,C, π): this query models the server corruption. The output of this
query is the stored password πS,C . In addition, if π �= ⊥, πS,C is then changed
to π.

This is a slight variant of the so-called weak corruption model in BPR, since the
long term secrets (passwords) only are leaked, and not the internal states, in
case of corruption. But contrarily to BPR, in case of server corruption, we also
leak the password even in case of a password change request. However, this does
not affect the security notion since, in both the original BPR model and in ours,
any corruption query makes the password corrupted, and so the Test-query is
not allowed anymore on instances of these players (see below), since they are no
longer fresh.

Partnering. Before actually defining the secrecy of the session key, and thus
implicit authentication, we need to introduce the notion of partnering: Two
instances are partnered if they have matching transcripts, which means that, for
one user, its view is a part of the view of the other user. One should note that
the last flow can be dropped by the adversary, without letting the sender know.
The sender of this last flow thus thinks that the receiver got the message and
still computes the session key.

Security. To actually define the semantic security of a PAKE scheme, the adver-
sary A has access to a challenge oracle Test(U i), available only once, to evalu-
ate the indistinguishability of a specific session key. A random bit b is chosen and
the Test-query, for some user instance U i is answered as follows: if b = 1, return
the session key of U i, and otherwise, return a random session key. At the end of the
game, the adversary A has to output a bit b′, as a guess for b. The success prob-
ability Succ of A is the probability that b′ = b, while its advantage is defined by
Adv = 2 · Succ − 1.

Note that there are natural restrictions for the Test-query: the tested instance
must be fresh, which means that this is not a trivial case, where trivial cases
are no key or known key. More precisely, there are two definitions of freshness,
whether we consider the forward-secrecy, or not:

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 345

– basic freshness: an instance U i is fresh (fresh) if,
• a session key has been defined;
• no Reveal-query has been asked to U i, or to his partner, if there is one;
• the password of the client C has not been corrupted (either via a query
Corrupt(C) or via a query Corrupt(·, C, ·)), where C = U is U is a client
or U i’s partner is an instance Cj of C

– forward-secure freshness: similar to basic freshness except for the last part,
where only corruptions before U i defined his key can make this instance
unfresh.

In case of Test-query to an unfresh instance, the answer is ⊥, which means that
the adversary cannot have any advantage in these cases. A PAKE is considered
BPR-secure if the advantage of any adversary A, running within time t, in the
previous experiment is bounded by qs × 2−m + negl(K), where qs is the number
of active sessions (handled with Send queries), and m is the min-entropy of the
password distribution. Intuitively this means that to win, the adversary has to
do an on-line dictionary attack, which only enables it to test one password per
session.

4.2 The Abdalla-Fouque-Pointcheval Security Model

It extends the model with multiple Test-queries, which are all answered with
the same bit b. Queries asked to unfresh instances are answered by ⊥.

5 PAKE Constructions

In this section, we present three PAKE constructions: the first one follows the
Gennaro-Lindell (GL) framework [17]. The second one follows the Groce-Katz
(GK) framework [19], and the third one follows the one-round Katz-Vaikunta-
nathan (KV) framework [26]. They all make use of public-key encryption schemes
that admit SPHFs on the languages of the ciphertexts of a given message.

5.1 Public-Key Encryption Schemes

In all our constructions, we will consider a labeled IND-PCA encryption scheme
ES = (KG,Enc,Dec) and an IND-CPA encryption scheme ES′ = (KG′,Enc′,Dec′)
so that SPHFs (either GLSPHFs or KVSPHFs according to the protocol) exist for
the following families of languages:

L�
π = {c | ∃r, c = Enc�(pk, π; r)} L′

π = {c | ∃r, c = Enc′(pk′, π; r)},

with the global parameters and the public keys pk and pk′ in the common ref-
erence string CRS. We also suppose that HashKG and ProjKG, for both L�

π and
L′

π, do not depend on π nor �, and thus, just (respectively) on the supersets

L = {c | ∃�,∃π,∃r, c = Enc�(pk, π; r)} L′ = {c | ∃π,∃r, c = Enc′(pk′, π; r)}.

346 M. Abdalla et al.

5.2 GL-PAKE Construction and GL-SPOKE

GL-PAKE. Our first two-flow construction is depicted in Fig. 3, where × is a
commutative operation between hash values such that if A is a uniform hash
value and B is any hash value, A × B is uniform (often hash values live in a
group and × is just the group law). The session key generated by the client is
denoted KC , while the one generated by the server is denoted KS .

Client C (πC) CRS: (parameters, pk, pk′) Server S (πS,C)

hkC
$← HashKG(L′)

hpC ← ProjKG(hkC , L′, ⊥)
� = (C, S, hpC)

rC
$← ; cC ← Enc�(pk, πC ; rC)

hpC , cC−−−−−−−−−→ � = (C, S, hpC)

rS
$← ; cS ← Enc′(pk′, πS,C ; rS)

hkS
$← HashKG(L�

πS,C
)

hpS , cS←−−−−−−−−− hpS ← ProjKG(hkS , L�
πS,C

, cC)

H ′
C ← ProjHash(hpS , L�

πC
, cC , rC) H ′

S ← ProjHash(hpC , L′
πS,C

, cS , rS)

HS ← Hash(hkC , L′
πC

, cS) HC ← Hash(hkS , L�
πS,C

, cC)

KC ← H ′
C × HS KS ← H ′

S × HC

Fig. 3. Generic GL-PAKE Construction

It requires an IND-CPA encryption scheme ES’ with a KVSPHF, and an
IND-PCA encryption scheme ES with a GLSPHF. In the full version [1], we prove
the following result, with perfectly-smooth SPHFs, which applies for the basic
freshness in the BPR setting, or for the forward-secure freshness in the AFP
setting with static corruptions only:

Adv(A) ≤ qs × 2−m + (qe + qs) × (Advind-cpaES′ (t) + Advind-pcaES (t)) +
qeqs

22n
,

where qe and qs are the number of Execute and Send-queries, n is the entropy
of both the projected keys and the ciphertexts, and m is the entropy of the
passwords.

GL-SPOKE: GL – Simple Password-Only Key Exchange (Fig. 4). Com-
bining our new Short Cramer-Shoup encryption scheme, with the basic ElGamal
encryption scheme,we obtain themost efficientPAKEwith implicit authentication.

It is based on the plain DDH assumption, and consists of 4 group elements
to be sent by the client and 3 group elements by the server. They both have to
compute 10 exponentiations.

Using the above security bounds for the encryption schemes, one gets, for
the basic freshness in the BPR setting, or for the forward-secure freshness in the
AFP setting with static corruptions:

Adv(t) ≤ qs × 2−m + 2Q × (Advddh
G

(t) + SucccollH (t)) +
2Q2

p
,

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 347

Client C (πC) Server S (πS,C)
CRS: (param = (G, p, q), pk = (h, c, d) ∈ G

3, pk′ = y ∈ G)

(α′, β′) $← Z
2
p ; t′ ← gα′

yβ′ ∈ G

r
$← Zp

(u ← gr, e ← hrgπC , v ← (cdξ)r) ∈ G
3,

with ξ ← HSCS(C, S, t′, u, e)
t′, (u, e, v)−−−−−−−−−→ (α, β, γ)

$← Z
3
p

t ← gαhβ(cdξ)γ ∈ G

with ξ ← HSCS(C, S, t′, u, e)
r′ $← Zp

t, (u′, e′)←−−−−−−−−− (u′ ← gr′
, e′ ← yr′

gπS,C) ∈ G
2

H ′
C ← tr ; HS ← u′α′

(e′/gπC)β′
H ′

S ← t′r′
; HC ← uα(e/gπS,C)βvγ

KC ← H ′
C × HS KS ← H ′

S × HC

Fig. 4. GL-SPOKE

where qs is the number of Send-queries, Q is the global number of oracle queries,
and m is the min-entropy of the passwords.

We remark that one encrypted gπ where π is the password, instead of π. This
makes it hard to recover π from the decryption of a ciphertext, but that is not
a problem in the proofs, where one only needs to check whether a ciphertext
contains a given password or not.

Client C (πC) CRS: (parameters, pk, pk′) Server S (πS,C)

rC
$← ; cC ← Enc′(pk′, πC ; rC)

cC−−−−−−−−−→ hk
$← HashKG(L′

πS,C
)

hp ← ProjKG(hk, L′
πS,C

, cC)

H ← Hash(hk, L′
πS,C

, cC)

(KS , rS) ← PRG(H)
� = (C, S, cC , hp)

H ′ ← ProjHash(hp, L′
πC

, cC , rC)
hp, cS←−−−−−−−−− cS ← Enc�(pk, πS,C ; rS)

(KC , r′
S) ← PRG(H ′)

� = (C, S, cC , hp)
c′

S ← Enc�(pk, πC ; r′
S)

If c′
S �= cS , abort

Fig. 5. Generic GK-PAKE Construction

5.3 GK-PAKE Construction and GK-SPOKE

GK-PAKE. Our second two-flow construction is depicted in Fig. 5. It addition-
ally provides explicit server authentication to the client. It requires an IND-CPA
encryption scheme ES’ with a GLSPHF, and an IND-PCA encryption scheme ES
(no need of SPHF for it). It also makes use of a Pseudo-Random Generator PRG,
which on a random input returns a longer output that looks indistinguishable
to random.

348 M. Abdalla et al.

In the full version [1], we prove the following result, with perfectly-smooth
SPHFs, which applies for the basic freshness in the BPR setting, or for the
forward-secure freshness in the AFP setting with static corruptions only:

Adv(A) ≤ qs×2−m+(qe+qs)×(Advind-cpaES′ (t)+Advind-pcaES (t)+AdvprgPRG(t))+
qeqs

22n
,

where qe and qs are the number of Execute and Send-queries, n is the entropy
of both the projected keys and the ciphertexts, and m is the entropy of the
passwords.

GK-SPOKE: GK – Simple Password-Only Key Exchange (Fig. 6). Com-
bining our new Short Cramer-Shoup encryption scheme, with the basic ElGamal
encryption scheme, we obtain the most efficient PAKE known so far: It is based
on the plain DDH assumption, and consists of 2 group elements to be sent by
the client and 4 group elements by the server. They both have to compute less
than 9 exponentiations.

It also uses a PRG from G to {0, 1}k × Zp, where k is the bit-length of the
eventual common session key. In practice, one would just need a randomness
extractor to extract a seed, and then one extends the seed to get the session key
K and the random coins r for the encryption scheme.

Using the above security bounds for the encryption schemes, one gets, for
the basic freshness in the BPR setting, or for the forward-secure freshness in the
AFP setting with static corruptions:

Adv(t) ≤ qs × 2−m + 2Q × (Advddh
G

(t) + SucccollH (t) + SuccprgPRG(t)) +
2Q2

p
,

where qs is the number of Send-queries, Q is the global number of oracle queries,
and m is the min-entropy of the passwords.

Client C (πC) Server S (πS,C)
CRS: (param = (G, p, q), pk = (h, c, d) ∈ G

3, pk′ = y ∈ G)

r′ $← Zp

(u′ ← gr′
, e′ ← yr′

gπC) ∈ G
2 (u′, e′)−−−−−−−−−→ (α′, β′) $← Z

2
p ; t′ ← gα′

yβ′ ∈ G

HC ← u′α′
(e′/gπS,C)β′

(KS , r) ← PRG(HC)

(u ← gr, e ← hrgπS,C , v ← (cdξ)r) ∈ G
3,

H ′
C ← t′r′ t′, (u, e, v)←−−−−−−−−− with ξ ← HSCS(C, S, u′, e′, t′, u, e)

(KC , r′′) ← PRG(H ′
C)

(u′′ ← gr′′
, e′′ ← hr′′

gπC , v′′ ← (cdξ′′
)r′′

) ∈ G
3,

with ξ′′ ← HSCS(C, S, u′, e′, t′, u′′, e′′)
If (u′′, e′′, v′′) �= (u, e, v), abort

Fig. 6. GK-SPOKE

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 349

Client C (πC) CRS: (parameters, pk, pk′) Server S (πS,C)

hkC
$← HashKG(L′) ; hpC ← ProjKG(hkC , L′, ⊥)

�C = (C, S, hpC) ; rC
$← ; cC ← Enc�C (pk, πC ; rC)

hpC , cC−−−−−−−−−→
�S = (S, C, hpS)

hpS , cS←−−−−−−−−−
H ′

C ← ProjHash(hpS , L�C
πC , cC , rC)

HS ← Hash(hkC , L�S
πC , cS)

KC ← H ′
C × HS

Fig. 7. Generic KV-PAKE Construction

5.4 KV-PAKE Construction and KV-SPOKE

KV-PAKE. Our third construction is a one-round PAKE, depicted in Fig. 7,
from the client point of view, but the server does exactly the same thing, since
this is a one-round protocol, where the two flows can be sent independently to
each other.

It requires an IND-PCA encryption scheme ES with a KVSPHF. In the full
version [1], we prove the following result, which applies for the basic freshness
in the BPR setting, or for the forward-secure freshness in the AFP setting with
static corruptions only:

Adv(A) ≤ qs × 2−m + (2qe + qs) × Advind-pcaES (t) +
qeqs

22n
,

where qe and qs are the number of Execute and Send-queries, n is the entropy
of both the projected keys and the ciphertexts, and m is the entropy of the
passwords.

KV-SPOKE: KV – Simple Password-Only Key Exchange (Fig. 8). Using
our new Short Cramer-Shoup encryption scheme and its associated KVSPHF, we
obtain the most efficient one-round PAKE known so far: It is based on the plain
DDH assumption, and consists of 5 group elements to be sent by the each user.
They both have to compute 14 exponentiations.

Client C (πC) Server S (πS,C)
CRS: (param = (G, p, q), pk = (h, c, d) ∈ G

3)

(α′
1, α

′
2, β

′, γ′) $← Z
4
p

(t′
1 ← gα′

1hβ′
cγ′

, t′
2 ← gα′

2dγ′
) ∈ G

2

r
$← Zp ; (u ← gr, e ← hrgπC , v ← (cdξ)r) ∈ G

3,
with ξ ← HSCS(C, S, t′

1, t
′
2, u, e)

t′
1, t

′
2, (u, e, v)−−−−−−−−−→

H ′
C ← (t1t

ξ
2)

r t1, t2, (u
′, e′, v′)←−−−−−−−−−

HS ← u′α′
1+ξ′α′

2(e′/gπC)β′
v′γ′

with ξ′ ← HSCS(S, C, t1, t2, u
′, e′)

KC ← H ′
C × HS

Fig. 8. KV-SPOKE

350 M. Abdalla et al.

Using the above security bounds for the encryption schemes, one gets, for
the basic freshness in the BPR setting, or for the forward-secure freshness in the
AFP setting with static corruptions:

Adv(t) ≤ qs × 2−m + 4Q × (Advddh
G

(t) + SucccollH (t)) +
2Q2

p
,

where qs is the number of Send-queries, Q is the global number of oracle queries,
and m is the min-entropy of the passwords.

Acknowledgments. This work was supported in part by the French ANR-12-INSE-
0014 SIMPATIC Project, the CFM Foundation, and the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007-2013
Grant Agreement no. 339563 – CryptoCloud).

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption scheme
indistinguishable under plaintext-checkable attacks. Cryptology ePrint Archive,
Report 2014/609 (2014). http://eprint.iacr.org/2014/609

2. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for condi-
tionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 671–689. Springer, Heidelberg (2009)

3. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005)

4. Abdalla, M., Pointcheval, D.: A scalable password-based group key exchange pro-
tocol in the standard model. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 332–347. Springer, Heidelberg (2006)

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, p. 139. Springer, Heidelberg (2000)

7. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004). http://eprint.iacr.
org/2004/331

8. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013)

9. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998)

10. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

http://eprint.iacr.org/2014/609
http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 351

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991

14. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

15. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

16. Gennaro, R.: Faster and shorter password-authenticated key exchange. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 589–606. Springer, Heidelberg (2008)

17. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). http://eprint.iacr.org/2003/032.ps.gz

18. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

19. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS
2010, pp. 516–525. ACM Press, October 2010

20. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

21. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004)

22. Katz, J., MacKenzie, P.D., Taban, G., Gligor, V.D.: Two-server password-only
authenticated key exchange. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.)
ACNS 2005. LNCS, vol. 3531, pp. 1–16. Springer, Heidelberg (2005)

23. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

24. Katz, J., Ostrovsky, R., Yung, M.: Forward secrecy in password-only key exchange
protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol.
2576, pp. 29–44. Springer, Heidelberg (2003)

25. Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange
using weak passwords. Journal of the ACM 57(1), 78–116 (2009)

26. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

27. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, October
1997

28. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

29. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 159–175. Springer, Heidelberg (2001)

http://eprint.iacr.org/2003/032.ps.gz

352 M. Abdalla et al.

30. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

31. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/2004/
332

http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

Pairing-Based Cryptography

Strongly-Optimal Structure Preserving
Signatures from Type II Pairings:

Synthesis and Lower Bounds

Gilles Barthe1(B), Edvard Fagerholm1,2, Dario Fiore1,
Andre Scedrov2, Benedikt Schmidt1, and Mehdi Tibouchi3

1 IMDEA Software Institute, Madrid, Spain
{gilles.barthe,dario.fiore,benedikt.schmidt}@imdea.org

2 University of Pennsylvania, Philadelphia, USA
{edvardf,scedrov}@math.upenn.edu

3 NTT Secure Platform Laboratories, Tokyo, Japan
tibouchi.mehdi@lab.ntt.co.jp

Abstract. Recent work on structure-preserving signatures studies opti-
mality of these schemes in terms of the number of group elements needed
in the verification key and the signature, and the number of pairing-
product equations in the verification algorithm. While the size of keys
and signatures is crucial for many applications, another important aspect
to consider for performance is the time it takes to verify a given signature.
By far, the most expensive operation during verification is the computa-
tion of pairings. However, the concrete number of pairings that one needs
to compute is not captured by the number of pairing-product equations
considered in earlier work.

To fill this gap, we consider the question of what is the minimal num-
ber of pairings that one needs to compute in the verification of structure-
preserving signatures. First, we prove lower bounds for schemes in the
Type II setting that are secure under chosen message attacks in the
generic group model, and we show that three pairings are necessary and
that at most one of these pairings can be precomputed. We also extend
our lower bound proof to schemes secure under random message attacks
and show that in this case two pairings are still necessary.

Second, we build an automated tool to search for schemes matching
our lower bounds. The tool can generate automatically and exhaustively
all valid structure-preserving signatures within a user-specified search
space, and analyze their (bounded) security in the generic group model.
Interestingly, using this tool, we find a new randomizable structure-
preserving signature scheme in the Type II setting that is optimal with
respect to the lower bound on the number of pairings, and also minimal
with respect to the number of group operations that have to be computed
during verification.

1 Introduction

Structure-preserving signatures [3] (SPS) are signature schemes defined over
groups with a bilinear map in which messages, public keys and signatures are all
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 355–376, 2015.
DOI: 10.1007/978-3-662-46447-2 16

356 G. Barthe et al.

group elements, and the verification algorithm consists of evaluating so-called
“pairing-product equations” (i.e., products of pairings of the aforementioned
group elements). One of the main motivations of considering such specific sig-
nature schemes is that they are remarkably useful in the modular design of
several cryptographic protocols, notably in combination with non-interactive
zero-knowledge (NIZK) proofs of knowledge about group elements, and more
specifically with the celebrated Groth-Sahai proof system [24]. In a nutshell,
Groth-Sahai proofs allow one to prove knowledge of a set of group elements
satisfying a certain pairing-product equation. For instance, by using SPS with
Groth-Sahai proofs one can create a NIZK proof showing knowledge of a valid
signature on some message (perhaps satisfying certain properties) without dis-
closing the message, the signature or both. This is only a basic example, though.
Indeed, the combination of SPS with Groth-Sahai proofs has been shown to
be a powerful tool for the modular design of several cryptographic protocols,
such as blind signatures [3,20], group signatures [3,20,27], homomorphic sig-
natures [10,26], oblivious transfer [14,22], tightly-secure encryption [1,25], and
more.

Realization of SPS has been considered over the three possible bilinear groups
settings introduced in the classification of Galbraith, Paterson and Smart [21];
the type of a pairing e : G1 × G2 → GT depends on whether the two source
groups are the same, i.e., G1 = G2 (Type I), or there is a one-way, efficiently com-
putable homomorphism ψ : G2 → G1 (Type II), or there is no known efficiently
computable homomorphism in either direction between G2 and G1 (Type III).
However, more recent work has focused on proving lower bounds on the com-
plexity of SPS, and exhibiting optimal constructions that match lower bounds.
The common measures of complexity adopted in all these works are the num-
ber of group elements in the public key, the number of group elements in the
signature, and the number of pairing-product equations in the verification algo-
rithm. Considering these measures, it has been shown in [4,8] that in both the
Type I and the Type III settings SPS require at least 3 group elements in the
signatures and 2 verification equations. However, the Type II setting has been
shown to (surprisingly) deviate from these bounds: SPS in the Type II setting
require at least 2 group elements in the signatures and admit a single verification
equation [7]. Moreover, for SPS in the Type II setting, it has been shown that
the lower bound for the number of group elements in the verification key is 2.
Together with showing such lower bounds, these works [4,7,8] have proposed
SPS schemes matching these (optimal) measures.

1.1 Our Contribution

We continue the study of the efficiency of SPS schemes by focusing on another
important measure that, to the best of our knowledge, has not been considered
in any previous work: the number of pairing computations that need to be per-
formed by the verifier. Previous work [4,7,8] considers verifier efficiency only in
terms of the number of pairing-product equations. Such a number, however, does
not tell much about the number of pairings that the verifier needs to compute,

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 357

and thus about the concrete verification running time. So, considering that pair-
ings are definitely the most expensive operation in this process, here we refine
this question and ask what is the minimal number of pairings necessary in the
verification of SPS, and in particular of schemes with optimal bandwidth (i.e., 2
elements in the signatures and 2 elements in the verification key). Indeed, even
though having fewer elements in the public key and in the signature intuitively
leads to fewer pairings, in practice it is unclear what is the minimal number of
pairings that is needed.

In this paper we initiate this study focusing on the Type II setting, and
our contribution is mainly twofold. First, we show lower bounds on the number
of pairings necessary in the pairing-product verification equation. Second, we
build a synthesis tool that automates the generation and security analysis of
SPS schemes, and we leverage our tool in order to find new SPS schemes that
match our new lower bounds and improve over previous work. In the following
paragraphs, we discuss our contribution in more detail.

New Optimality Measures and Lower Bounds. First, we show lower
bounds for the number of pairings in the pairing-product verification equation
of SPS in the Type II setting. We prove that, when considering schemes that
are already optimal with respect to previously considered measures (i.e., two
group elements in the verification key, two group elements in the signature, and
a single verification equation), three pairings are necessary for achieving security
against chosen-message attacks, whereas two pairings are necessary for achieving
security against random-message attacks.

More specifically, we refine our analysis and distinguish between, what we
call, offline and online pairings. Informally speaking, offline pairings are pairings
that involve only group elements in the public key or in the public parameters,
whereas online pairings involve the message and/or elements of the signature. In
other words, offline pairings are computed in every signature verification (when
using the same verification key) and thus can be precomputed “offline” and be re-
used in an arbitrary number of verifications. In contrast, online pairings involve
elements, such as the message and the signature, that inherently change every
time, and thus must be computed “online”. So, given this notion of online and
offline pairings, we ask how many of the three necessary pairings can be computed
offline. Such question is indeed quite relevant for practical purposes since online
pairings are those that really matter (e.g., think of the case in which one verifies
several signatures with the same verification key). We answer this question by
proving that, for schemes secure against chosen-message attacks, among the
three pairings, at most one can be precomputed, i.e., two online pairings are
necessary. For schemes that are secure against random-message attacks, instead
two online pairings are always necessary. We call schemes matching these bounds
strongly-optimal.

Once established these bounds, we address the question of constructing
strongly-optimal SPS schemes. First, we consider schemes secure against chosen-
message attacks: we look at the previous work (in the Type II setting) and
observe that there already exists a strongly-unforgeable SPS matching our lower

358 G. Barthe et al.

bounds [7]. Yet there is no known SPS scheme that is re-randomizable and allows
for only two online pairings in verification. As discussed in [7], re-randomizable
schemes are useful because one of the group elements in the signature is uniformly
random. This property is convenient in some applications, e.g., anonymization
protocols, as one of the signature elements can be revealed in the clear with-
out leaking information on what was the original signature. So, as an additional
contribution, in this paper we show a new re-randomizable SPS scheme that is
strongly-optimal and improves over the re-randomizable scheme proposed in [7]
by requiring one less online pairing. Then we take into consideration schemes
secure against random-message attacks (RMA) for which there is no strongly-
optimal candidate in the previous work. We fill this gap by showing a sim-
ple, strongly-optimal, RMA-secure SPS. We note that although random-message
security is a weak notion, it has been shown useful in applications such as con-
structing adaptive oblivious transfer [22] and in a transformation for obtaining
chosen-message secure SPS [1]. By using our strongly-optimal RMA-secure SPS
scheme, all these applications can benefit of its improved efficiency.

Automated Synthesis of SPS. As emerges from the previous discussion, opti-
mality results (at least in the single-dimensional form in which they have been
developed so far) are insufficient in rich settings such as structure-preserving sig-
natures where many meaningful measures of efficiency can be considered (e.g.,
verification time, key or signature size). Therefore, an attractive approach for
achieving a broad range of optimality results is to perform an exhaustive search
of valid SPS within user-defined parameters. In the second part of our work, we
develop a synthesis tool that takes as input a user-defined budget, consisting of
the number of pairings, group elements, etc. that can be used by the construc-
tion, and generates all possible expressions within this budget. Broadly speaking,
our tool then uses an extension of the Generic Group Analyzer reported in [12],
to generate, whenever it exists, a verification equation for the signature algo-
rithm. Finally, our tool proves or disproves security of candidate schemes in the
generic group model for the case when the adversary makes a bounded number
of signing queries. Through this approach, we generate an exhaustive database,
by exploring more than 2000 candidate SPS schemes, that can then be mined for
different efficiency criteria. For instance, our database contains our new scheme
with optimal number of online/offline pairings as well as the SPS schemes in the
Type II setting that were previously proposed in [7]. Beyond its intrinsic interest,
the database can also be used to validate or refute empirically new conjectures
on SPS. For example, it is interesting to mention that our work on proving the
new lower bounds was motivated by observing that among the schemes gener-
ated by our tool none of the ones secure against chosen-message attacks can be
verified with only two pairings. More generally, our tool suggests the feasibility
and interest to develop synthesis methods for structure-preserving cryptography.
We believe that our methods can be extended to the Type I and Type III set-
tings (however exhaustive search will be more difficult to attain because secure
schemes must use two verification equations, which results in an exponential

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 359

growth in the search space), and to other forms of structure-preserving cryptog-
raphy, such as structure-preserving commitments [3] and encryption [15].

1.2 Other Related Work

Structure-Preserving Signatures.While the notion of structure-preserving
signature was first given by Abe et al. in [3], the first construction was proposed
earlier by Groth [23], though its efficiency is far from being truly practical (it con-
sists of hundreds of group elements). Green and Hohenberger [22] proposed SPS
that are proved secure only against random-message attacks. Cathalo, Libert and
Yung [16] constructed a scheme that is structure-preserving in a relaxed sense
since it has a verification key which includes elements of the target group.

The study of lower bounds for SPS was put forward by Abe et al. [4] who
showed that SPS in the Type III setting require at least three group elements
in the signature and two pairing-product equations, and also proposed schemes
matching these bounds that are only proven secure in the generic bilinear group
model. Next, Abe et al. [5] refined the result in [4] considering schemes whose
security can be proved under a non-interactive assumption using a black-box
reduction. For this case they show that any scheme with only 3 elements in the
signature cannot be proved secure under a non-interactive assumption. Optimal
schemes in the symmetric (Type I) setting have been explored more recently
by Abe et al. [8] who show that Type I SPS schemes require 3 elements in the
signature and 2 verification equations (i.e., the same bounds as in Type III).
Furthermore, the same work [8] proposes a general scheme that works in all
three bilinear settings, and thus shows a Type II scheme with 3 elements in the
signature and 2 verification equations. Finally, the recent work of Abe et al. [7]
focused on the Type II setting and showed that in this setting the lower bounds
are (surprisingly) different. Namely, Type II SPS schemes require 2 elements in
the signature, a single verification equation, and 2 elements in the verification
key (the latter being the first lower bound for the size of the verification key).

All the optimal schemes in [4,7,8] are proved secure directly in the generic
bilinear group model. Another line of work investigated efficient SPS that can
be proved secure under standard assumptions. Hofheinz and Jager [25] and Abe
et al. [1,2] proposed schemes based on the decision linear assumption. The effi-
ciency of these schemes, however, does not meet that of the schemes secure in
the generic group model.

Finally, Chatterjee and Menezes [18] re-considered the result of Abe et al. [7]
for Type II SPS in light of the current state-of-the-art implementations of Type II
vs. Type III pairings. They start from the observation that implementations of
Type III pairings are currently more efficient than the ones of Type II pairings.
Then they note that Type II SPS, albeit optimal in terms of the number of
signature elements and number of verification equations, are not as efficient as
their Type III counterparts (i.e., the SPS schemes that can be obtained through

360 G. Barthe et al.

a semi-generic transformation from Type II to Type III [17]).1 Although this
is a valid point when considering concrete efficiency, we believe that the explo-
ration of Type II SPS is still quite interesting. For example, they have a simpler
structure that leads to a smaller search space when looking for new schemes.
Yet, given a Type II scheme, one can always translate it to the Type III setting
if concrete efficiency is a concern, e.g., using the approach from [17].

Computer-Aided Cryptography. In contrast to computer-aided tools for
verifying cryptographic proofs, which have existed for some time, computer-
aided tools for synthesizing new constructions are very recent. Barthe et al. [11]
develop an automated tool, called ZooCrypt, for synthesizing padding-based
encryption schemes; their tool uses a dedicated logic with an efficient proof
search procedure to prove chosen-plaintext or chosen-ciphertext security, and
an efficient method for finding attacks on insecure schemes. Because the search
space for reasonably-sized constructions is small (about 106 well-typed schemes),
simple trimming techniques are sufficient to cover the full search space efficiently.
Malozemoff, Katz, and Green [28] develop an automated tool for proving security
of modes of operations; the security of candidate schemes is proved using a type
system, but no attack is exhibited for insecure schemes.

Akinyele, Green, and Hohenberger [9] develop two synthesis tools for pairing-
based cryptography. Their tool AutoGroup converts schemes in the Type I set-
ting into schemes in the Type III setting, whereas their tool AutoStrong trans-
forms an existentially unforgeable signature into a strongly unforgeable one,
using SMT solvers to check whether the original signature satisfies a criterion
allowing an efficient transformation. The idea of automatically transforming con-
structions from the symmetric to the asymmetric setting was further considered
by Abe, Groth, Ohkubo and Tango [6], who develop an automated transforma-
tion of Type I protocols into Type III protocols.

Automating proofs in the generic group model has been recently considered
by Barthe et al. [12] who propose a tool that enables to automatically analyze the
validity of cryptographic assumptions in the generic (multilinear) group model.
The tool developed in this work actually builds on the techniques of [12] in order
to perform the security analysis of SPS in the generic bilinear group model.

Finally, in a concurrent and independent work, De Ruiter [19] recently pro-
posed a tool for analyzing the security of structure-preserving signatures. The
proposed tool provides a security analysis of SPS similar to the one we provide,
even though the security arguments in [19] do not have a full formalization in
the generic group model. Additionally, we note that our tool is not limited to
the security analysis of SPS, but also includes the novel synthesis component
which allows to automatically generate SPS schemes.
1 One main issue that leads to such difference of performance here is that testing group

membership in G2 (which is required in the signature verification) is significantly
more expensive in Type II than in Type III groups.

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 361

2 Preliminaries

2.1 Bilinear Groups

A bilinear group description is a tuple (p,G1,G2,GT , e, ψ,G,H) where p is a
prime number, G1,G2,GT are cylic groups of order p, G,H are generators of G1

and G2 respectively, ψ : G2 → G1 is the homomorphism sending H to G (so that
ψ(Hx) = Gx for all x ∈ Z), and e : G1 × G2 → GT is a nondegenerate bilinear
pairing, meaning that e(G,H) generates GT and e(Gx,Hy) = e(G,H)xy for all
x, y ∈ Z.

A bilinear group generator G is an efficient algorithm which, on input of
a security parameter 1λ, returns a bilinear group description (p,G1,G2,GT , e,
ψ,G,H) with p = 2Ω(λ) and efficient algorithms for computing group operations
and the bilinear map e, and deciding equality of group elements and membership
in the groups.

Furthermore, following Galbraith, Paterson and Smart [21], we say that the
result is a Type I bilinear group if the homomorphism ψ is efficiently computable
and efficiently invertible (in which case we can simplify identify G1 and G2), a
Type II bilinear group if ψ is efficiently computable but not efficiently invertible
(i.e. it is a one-way function) and a Type III bilinear group if ψ is neither
efficiently computable nor invertible. This paper mainly focuses on the Type II
setting.

Generic Algorithms. In a bilinear group (p,G1,G2,GT , e, ψ,G,H) generated
by G we refer to deciding group membership, computing group operations in G1,
G2 or GT , comparing group elements and evaluating the homomorphism or the
bilinear map as the generic bilinear group operations. The signature schemes we
construct only use generic bilinear group operations.

As is customary in the literature, we denote group elements in G1 and G2 by
uppercase letters such as M,R, S, V,W, . . . , and their discrete logarithms with
respect to base G or H using the corresponding lowercase letters m, r, s, v, w, . . .
In particular, for an element X ∈ G2, we have ψ(X) = Gx, and for (Y,Z) ∈ G1×
G2, we have e(Y,Z) = e(G,H)yz. Furthermore, we will often express pairings
equations, such as e(X,Y)a1 = e(W,Z)a2 · e(T,H)a3 , as a quadratic polynomial
involving the corresponding exponents, i.e., a1xy = a2wz + a3t.

2.2 Structure-Preserving Signature Schemes

We study structure-preserving signature schemes (SPS) [3] on bilinear groups
generated by group generator G. We refer to the full version of this paper [13]
for basic definitions about signature schemes. In a structure preserving signature
scheme the verification key, the messages and the signatures consist only of
group elements from G1 and G2 and the verification algorithm evaluates the
signature by deciding group membership of elements in the signature, using

362 G. Barthe et al.

the homomorphism ψ and by evaluating pairing product equations, which are
equations of the form:

∏

i

∏

j

e(Xi, Yj)aij = 1,

where X1,X2, . . . ∈ G1, Y1, Y2, . . . ∈ G2 are group elements appearing in PP,
VK, M and Σ (where in the Type II setting it may hold Yi = Ψ(Xj) for some
i, j) and the elements aij ∈ Zp are constants stored in PP. More precisely:

Definition 1 (Structure-preserving signatures).Asignature scheme (Setup,
KeyGen, Sign, Verify) is said to be structure-preserving with respect to some bilinear
group generator G if

– PP consists of a bilinear group (p,G1,G2,GT , e, ψ,G,H) generated by G and
constants in Zp,

– the verification key consists of group elements in G1 and G2,
– the messages consist of group elements in G1 and G2,
– the signatures consist of group elements in G1 and G2,
– the signing algorithm only uses generic group operations,2 and
– the verification algorithm only needs to decide membership in G1 and G2, use

the homomorphism ψ, and evaluate pairing product equations.

2.3 Known Lower Bounds on Type II SPS

A number of lower bounds on signature size, verification key size and the number
of verification equations have been established for secure structure-preserving
signature schemes and one-time signature schemes. In particular, Abe et al. [7]
establish many such bounds in the Type II setting. As some of our results rely
heavily on those bounds, we recall them below. Note that membership tests are
not counted as “verification equations”, although some of them may require an
amortizable (aka offline) pairing computation in practical instantiations.

First, just as Type I and Type III SPS, Type II SPS for messages in G1

require two verification equations:

Lemma 1 ([7, Theorem 3]). A structure-preserving signature scheme for
messages in G1 must have at least two verification equations. This holds even
for one-time signatures with security against random message attack.

Since this paper will mostly focus on schemes with a single verification equa-
tion, we will therefore consider signatures on messages in G2, which can have
a single verification equation. In that case, Abe et al. obtain a lower bound on
verification key size, and show that all signature elements must be in G2.
2 Technically, this condition was not required in the original definition of Abe et al. [3],

but all known constructions satisfy this property and it is required for the proofs ofmost
lower bounds to go through. Since an SPS scheme with a non-generic signing algorithm
would be very unnatural and surprising, it seems appropriate to include genericity of
the signer in the definition (see also the discussion in [7, §2.3]).

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 363

Lemma 2 ([7, Theorem 4 and Lemma 1]). A structure-preserving signature
scheme with a single verification equation must have at least two group elements
in the verification key, and can have no non-redundant signature element in G1.
This holds even for one-time signatures secure under random message attack.

Finally, signatures in a secure Type II SPS scheme must consist of at least
two elements (although that property does not hold for one-time signatures),
and three elements for messages in G1 (idem).

Lemma 3 ([7, Theorem 5]). An EUF-RMA-secure structure-preserving sig-
nature scheme must have at least 2 group elements for messages in G2 and at
least 3 group elements for messages in G1.

3 Lower Bounds on the Number of Pairings in the
Type II Setting

In this section we show lower bounds for the number of pairings in the pairing-
product verification equations of SPS in the Type II setting. In particular, in our
analysis we consider SPS schemes that already match the lower bounds shown
in [7], i.e., they have 2 group elements in the verification key, 2 group elements
in the signature and the verification consists of a single pairing-product equation
(as well as possible group membership tests).

To have a more refined and practically interesting analysis, we distinguish
between pairings according to whether they can be precomputed from the public
key or not. In the former case we call a pairing offline while in the latter case
online.

3.1 Main Result

Having defined the notion of online and offline pairings, we are now ready to
state our main result. It shows that any optimal-size SPS scheme requires at
least three pairings for verification, and two of these pairings must be online
ones.

Theorem 1 (Main result). Any EUF-CMA-secure structure-preserving signa-
ture scheme in the Type II setting with 1 verification pairing-product equation,
2 group elements in the verification key and 2 elements in the signature requires
at least 3 pairings in the pairing-product equation, and at least 2 of them must
be online pairings.

To prove the theorem, we distinguish between three cases according to which
groups the two elements V,W of the verification key belong to, i.e., (i) V,W ∈ G2,
(ii) V,W ∈ G1, and (iii) V ∈ G1,W ∈ G2.

The first case is rather simple and is addressed in the following lemma which
shows that there exists no such structure-preserving signature scheme.

364 G. Barthe et al.

Lemma 4. There is no secure structure-preserving signature scheme in the
Type II setting with a single verification equation and a verification key con-
sisting entirely of elements of G2.

Proof. We know by Lemma 2 and Lemma 3 that the signatures and messages
all have to be in G2. Since all inputs are in G2 the scheme would also be secure
in the Type I setting and must therefore be insecure since Type I SPS require
two pairing product equations for security [8, Theorem 4]. ��

The second case is somewhat more involved, and mainly addressed by the
following lemma, proved in Section 3.3 below.

Lemma 5. An EUF-CMA-secure structure-preserving signature scheme in the
Type II setting with 1 verification pairing-product equation, 2 group elements
V,W ∈ G1 in the verification key and 2 group elements in the signature requires
at least 3 pairings in the pairing-product equation.

That result establishes that 3 pairings are needed, so all that remains to show
is that 2 of them must be online. This follows immediately from the following
observation.

Lemma 6. In a Type II structure-preserving signature scheme where all verifi-
cation key elements are in G1, it is possible to compute all the offline pairings
in a verification pairing-product equation using a single pairing evaluation. More
generally, � + 1 pairing evaluations are sufficient if the verification key contains
� elements in G2.

Proof. Indeed, if the verification key is (V1, . . . , Vk, U1, . . . , U�) ∈ G
k
1 × G

�
2, then

any product of offline pairings can be expanded into an expression of the form
∏

i,j e(Xi, Yj)cij where Yj runs through H,U1, . . . , U� (since these are the only
elements of G2 in the verification key and the public parameters) and Xi runs
through G,V1, . . . , Vk, ψ(U1), . . . , ψ(U�). By rewriting the product as:

∏

j

e
(∏

i

X
cij
i , Yj

)

we can compute it with at most � + 1 pairing evaluations as required. ��

Finally, to complete the proof of Theorem 1, we only need to prove it when
the verification key consists of one element of G1 and one element of G2. This
case, which is somewhat less interesting as such a scheme is less space efficient
than when all key elements are in G1, but turns out to be more technically
challenging, is dealt with in details in the full version of this paper [13].

3.2 Gaps in Bounds Between EUF-RMA and EUF-CMA-Security

Following Lemma 5, in the setting when (V,W) ∈ G
2
1 the bound of Theorem 1

holds only for EUF-CMA-secure SPS schemes. This however is not the case in the

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 365

setting when the verification key is of the form (V,W) ∈ G1×G2: as discussed in
the full version of this paper [13], the bound of Theorem 1 holds even for EUF-
RMA-secure SPS schemes. In what follows we establish a slightly weaker general
lower bound on the number of pairings in the single pairing-product equation of
minimal EUF-RMA-secure SPS schemes in the setting when (V,W) ∈ G

2
1.

Theorem 2. Any EUF-RMA-secure structure-preserving signature scheme in
the Type II setting with 1 verification pairing-product equation requires at least
2 pairings in the pairing-product equation, and both of them must be online pair-
ings.

Proof. It suffices to show that a Type II SPS scheme with a single verification
equation (and which we can assume without loss of generality signs one-element
messages) cannot be EUF-RMA-secure if the pairing-product equation consists
of only one online pairing (and any number of offline pairings).

To see this, denote by (S1, . . . , Sk) the signature vector (which is in G
k
2 with-

out loss of generality by Lemma 2), and observe that the pairing product equa-
tion must be of the form:

∏

i,j

e(Xi, Yj) = e
(

ψ(M)a0 ·
k∏

i=1

ψ(Si)ai · Z,M b0 ·
k∏

j=1

S
bj
j · T

)

where the pairings on the left-hand side are offline (and hence the Xi’s and Yj ’s
do not depend on the message or the signature), and Z, T are elements which
also do not depend on the message or the signature. But then we can do the
change of variables:

(R′, S′) =
(

ψ(M)a0 ·
k∏

i=1

ψ(Si)ai ,M b0 ·
k∏

j=1

S
bj
j

)

and then (R′, S′) provides a two-element EUF-RMA-secure signature scheme
whose verification equation is just:

∏

i,j

e(Xi, Yj) = e(R′ · Z, S′ · T),

and in particular does not depend on the message: this is a contradiction. ��

We see that the bounds given by Theorem 1 and Theorem 2 show a gap.
Namely, there could exist an EUF-RMA-secure scheme with precisely two online
pairings and no offline pairing. We confirm that both lower bounds are indeed
tight, by providing an EUF-RMA-secure SPS with precisely two online pairings
in Section 5.2.

3.3 Proof of Lemma 5

Proof. The proof proceeds by contradiction showing that having a scheme with
only 2 pairings in the single pairing-product equation is impossible. Let us first

366 G. Barthe et al.

recall that in this setting we have a message M ∈ G2, verification keys V,W ∈ G1

and signature elements R,S ∈ G2. As usual, we denote their discrete logarithms
by the corresponding lower case letters. We may write the general verification
equation in terms of the discrete logarithms of M,R, S, V,W as follows:

(c1m + c2r + c3s + c4v + v5w + c6)(d1m + d2r + d3s + d4) =
(e1m + e2r + e3s + e4v + e5w + e6)(f1m + f2r + f3s + f4),

(1)

where the products represent a pairing, the left factor in each product represent
the element in G1 and the right factor the element in G2 of each pairing.

Now if we define the vectors X1 = (c1, . . . , c6),X2 = (e1, . . . , e6), Y1 =
(d1, . . . , d4), Y2 = (f1, . . . , f4) over Zp and the matrix:

E = Xt
1Y1 − Xt

2Y2,

then the verification equation (1) can be rewritten as

(m, r, s, v, w, 1) · E · (m, r, s, 1)t = 0.

A simple observation shows that if KerE contains a vector (x1, . . . , x4), where
x4 �= 0, then we may scale to x4 = 1 and then

m = x1, r = x2, s = x3

is a valid key-only attack forgery (since the kernel of E can be computed entirely
from the public parameters). It follows that if the scheme is secure, then KerE ⊂
{(x1, . . . , x4) | x4 = 0}. However, this implies that the following system

{
d1m + d2r + d3s = −d4
f1m + f2r + f3s = −f4

lacks a solution. Up to exchanging the roles of Y1 and Y2 without loss of gener-
ality, this implies that Y1 = cY2 + (0, 0, 0, λ) for some constants c, λ, and hence:

E = Xt
1Y1−Xt

2Y2 = Xt
1

(
cY2+(0, 0, 0, λ)

)−Xt
2Y2 = (λX1)

t ·(0, 0, 0, 1)−(X2−cX1)
tY2.

Therefore, after relabeling the coefficients, we may assume that Y1 = (0, 0, 0, 1)
and the verification equation (1) can be rewritten as

c1m + c2r + c3s + c4v + c5w + c6 =
(e1m + e2r + e3s + e4v + e5w + e6)(f1m + f2r + f3s + f4),

(2)

Now if (c4, c5) = λ(e4, e5) or (e4, e5) = λ(c4, c5), then we may replace the verifi-
cation key by a single element t = e4v + e5w or t = c4v + c5w, which is insecure
by Lemma 2. It follows that

det
(

c4 c5
e4 e5

)

�= 0

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 367

and we may do a linear change of variables
(

v′

w′

)

=
(

c4 c5
e4 e5

)(
v
w

)

+
(

c6
e6

)

,

so that the verification equation (2) becomes, after renaming coefficients,

c1m + c2r + c3s + v = (e1m + e2r + e3s + w)(f1m + f2r + f3s + f4). (3)

Note that the vectors (c2, c3), (e2, e3), (f2, f3) cannot all be collinear, because
otherwise we may again compress the signature into one group element, which
we already know is impossible.

Next, we look at the matrix

N =
(

e2 e3
f2 f3

)

and distinguish two cases depending on the determinant.
On one hand, if detN �= 0, then as before, a change of variables let us write

the verification equation (3) in the form

c1m + c2r + c3s + v = (r + w)s.

Since m must be used in the verification equation, we know that c1 �= 0. An
easy calculation then shows that if (m, r, s) is a triple satisfying the verification
equation for the keys v, w, then so does (m − (c2 − s)/c1, r + 1, s). This gives
us a forgery unless c2 = s for a non-negligible set of signatures. However, if this
happens, then s would be a redundant signature element. From Lemma 3 we
know that the scheme must be insecure.

On the other hand, if detN = 0, we have the two cases (e2, e3) = λ(f2, f3)
or (f2, f3) = 0. If (f2, f3) = 0, then

det
(

c2 c3
e2 e3

)

�= 0

or otherwise (c2, c3), (e2, e3), (f2, f3) would be collinear. It follows that the veri-
fication equation (3) reduces to

r + v = (s + w)(f1m + f4).

and since f1 �= 0, as the message must be used, we may query m1 = −f−1
1 f4

getting back a signature (r1, s1), where r1 = −v. Now make another query with
m2 = f−1

1 (1 − f4) to get back a signature (r2, s2). Then

r2 + v = s2 + w ⇒ w = r2 + v − s2 = r2 − r1 − s2,

so with two chosen-message queries the attacker can transfer V,W to G2 and
then we know the scheme cannot be secure (concretely, (R1, R1R

−1
2 S2) =

(V −1,W−1) is a valid signature on any message). Therefore, we must have that

368 G. Barthe et al.

map G1 × G2 → GT . iso G2 → G1.

input [V] in G1. input [W] in G2.

oracle o(M : G2) = sample R; return [R, (1 + W 2 + M ∗ V) ∗ R−1] in G2.

win (M ′ : G2, R
′ : G2, S

′ : G2) = (S′ ∗ R′ = 1 + W 2 + V ∗ M ′ ∧ ∀i : M ′ �= Mi).

Fig. 1. Example of input for analyzing EUF-CMA security of an SPS scheme using our
extended version of the GGA tool

(e2, e3) = λ(f2, f3). Again using the fact that (c2, c3), (e2, e3), (f2, f3) are not
collinear, we must have

det
(

c2 c3
f2 f3

)

�= 0.

It follows that we may do a change of variables s′ = f1m + f2r + f3s + f4 and
r′ = c1m+c2r+c3s and by the collinearity of (e2, e3) and (f2, f3) the verification
equation (3) becomes of the form

r + v = (e1m + e3s + w + e6)s

and now if (m, r, s) is a valid signature, then so is (m + 1/e1, r + s, s), which
is a valid forgery, since m must be used in the verification equation and hence
e1 �= 0. Also, note that in the latter case, the attack can be performed in the
random-message security game. ��

4 Synthesis of Schemes

Our tool3 for the synthesis of SPS schemes consists of two components. The first
component takes the description of a search space and generates all included
SPS schemes. The second component classifies a given scheme by performing a
proof and attack search.

4.1 Generation of Schemes

For our generation algorithm, we consider SPS schemes with generic KeyGen and
Sign algorithms and assume all random values are sampled uniformly.

Our definition of an SPS scheme consists of
– the employed group type and the supported message space G

k
1 × G

l
2,

– the randomly sampled values ui ∈ Zp used in KeyGen,
– the verification keys Vi = Gfi(u) ∈ G1 and Wi = Hgi(u) ∈ G2,
– the randomly sampled values ri ∈ Zp used in Sign,

3 Available at https://www.easycrypt.info/GGA

https://www.easycrypt.info/GGA

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 369

– the signature elements Si = Gsi(u,r,m) ∈ G1 and Ti = Hti(u,r,m) ∈ G2,
and

– the pairing-product equations used by Verify.
Here, fi and gi are arbitrary rational functions in the random variables u. Sim-
ilarly, si and ti are rational functions in the random variables u, r and the
discrete logarithms m of the messages such that there exists a corresponding
generic signing algorithm, i.e., Si and Ti can be computed without knowing the
discrete logarithms of the messages.

A search space description characterizes a finite set of SPS schemes and
consists of (1) the group type, (2) the number of messages, verification key
elements, and signature elements in G1 and G2, (3) the number of random values
sampled in KeyGen and Sign, and (4) a description of the rational expressions
that can be used for fi, gi, si, and ti.

There are two ways to characterize the allowed rational expressions. First, the
tool can take a set of Laurent polynomials with placeholders and allowed values
for these placeholders, and generate all instances. Second, the tool accepts a set
of constraints that specify bounds on the number of additions, the size of coeffi-
cients, and the degree of monomials. Then, it generates all Laurent polynomials
that satisfy these constraints.

Given a search space description and concrete polynomials for the verification
keys and the signature elements, the tool can compute the (strongest) verification
equation as follows. Using distinct variables Z1, Z2, . . . for all group elements in
the verification keys, signature elements, and messages, enumerate all products
over these variables that can be computed by applying the homomorphisms and
the bilinear map. This yields a sequence of monomials M1,M2, . . . over the the
variables Zi denoting products in GT that can be computed from the input of
the verification algorithm using Ψ and e. To characterize the linear relations
between the elements in GT corresponding to the monomials Mi, we associate
a rational expression Fi over u, r,m to Mi by evaluating the monomial for
Zi := hi(u, r,m) where hi is the exponent of the group element associated
with Zi. Finally, we use linear algebra to compute a basis of the linear relations
between the Fi and map them back to verification equations using Mi.

4.2 Proof and Attack Search

We classify generated schemes using a proof and attack search based on an
extension of the generic group analyzer developed by Barthe et al. [12]. The
generic group analyzer (GGA) is a tool that automatically analyzes crypto-
graphic assumptions in generic group models. To analyze SPS schemes, we use
GGA’s support for the generic bilinear group model. Here, the adversary is
given blackbox access (using handles) to elements in the groups G1, G2, and
GT and provided with oracles for performing the group operations and apply-
ing the bilinear map and the efficiently computable homomorphisms. The GGA
tool also supports a restricted class of interactive assumptions that enable the
analysis of signature schemes that sign messages in Zp, but does not support
oracles that take group elements. To analyze such interactive assumptions, the

370 G. Barthe et al.

GGA tool exploits that the signing oracle queries are essentially non-adaptive.
More concretely, since the signing oracle takes elements in Zp and returns han-
dles to group elements, the adversary can only use these returned handles to
compute the forgery, but the arguments to signing oracle queries cannot depend
on the results of earlier oracle queries. This allows the GGA tool to treat oracle
return values like initially known values by using parameters to model the oracle
arguments in Zp. Another reason why the GGA cannot be directly applied to
most SPS schemes is that there is no support for Laurent polynomials, which
are required to model signing algorithms that invert elements of Zp.

To overcome these limitations, we have extended the GGA tool with support
for both features and our extension can now analyze assumptions, such as the
one shown in Figure 1, that were out of scope of the original version. To support
signing oracles that take handles to group elements, the adversary knowledge can
contain polynomials with parameters that are used to model oracle arguments
in Zp and in the groups G∗. The parameters introduced to model known group
elements correspond to coefficients of linear combinations, i.e., we exploit that
every known group element is a linear combination of initially known group
elements, group elements returned by earlier oracle queries, or the result of
applying a pairing or an isomorphism to such group elements. To compute a
basis for all known group elements after q oracle queries, we recursively extend
the knowledge after i queries with the results of an additional query, starting
with the initial knowledge.

The definition in Figure 1 specifies the EUF-CMA security experiment for
an SPS scheme in the Type II setting. The verification keys are specified in the
second line, the signing algorithm is given in the third line, and the winning con-
dition (including the verification equation) is given in the last line. Here, group
elements are specified by giving their exponent polynomials and the variables V
and W are assumed to be randomly sampled. For such an input and a bound on
the number q of performed oracle queries, the tool either returns an attack or
a proof that the scheme is q-EUF-CMA secure in the generic group model. We
note that our tool can be invoked with any specified value of q, though in this
specific setting of SPS it runs efficiently only with small values.

5 Synthesized Schemes

In this section we will present and discuss the SPS schemes that we obtained by
searching using our tool described in Section 4.

5.1 A Summary of Our Search

We have performed an exhaustive search for Type II schemes with keys V,W ∈
G1, message M ∈ G2, and signature T, S ∈ G2 such that: V and W are random;
T = Hr ·U where r is random and U does not involve r; the exponent polynomials
of S, i.e., s(r, v, w,m), have coefficients in {0, 1}. The results of our search are
presented in Table 1. We use “Proof” to denote that our tool could prove at

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 371

Table 1. Synthesis results for Type II with keys V, W ∈ G1, message M ∈ G2, and
signature T, S ∈ G2. The value r in the exponent of T is always chosen as a random
element in Zp.

Search Space Schemes Results (for eq. cl.)

Verification equation First sig. elt. total eq. cl. Noverif Attack Proof

s = f(t, v, w, m) T = Hr 212 57 0 55 1
s t = f(t, v, w, m) T = Hr 224 67 0 55 12
s (t − w) = f(t, v, w, m) T = Hr+w 1344 774 651 103 14
s w = f(t, v, w, m) T = Hr 224 126 0 120 3

2004 1024 651 333 30

least 2-EUF-CMA security. Among the SPS schemes that are found, we identify
equivalent schemes according to the following notion: we say two schemes Σ and
Σ′ are in the same equivalence class if Σ can be obtained from Σ′ by applying
invertible affine transformations to the verification keys, the messages, and the
signature elements. This implies the existence of reductions from the security of
Σ to the security of Σ′ and vice-versa. As a simple example, consider a scheme
that is obtained from another scheme by first multiplying the message M with
G and then applying the original signing algorithm. Overall, except for 10 of
the 1024 analyzed schemes, our tool either finds an attack, proves at least 2-
EUF-CMA security, or proves that there is no verification equation. For the 10
schemes, the tool either returned unknown or timed out4.

5.2 New SPS Schemes

Among the schemes that we found using our tool, we highlight two of them that
are of particular interest, as well as a counterpart of the first one in the Type III
setting.

A Strongly-Optimal Randomizable SPS. The first scheme is an SPS which
is randomizable and matches the lower bound of Theorem 1, i.e., it can be
verified using one offline and two online pairings. This scheme improves over
the previously known randomizable schemes (in particular over the one recently
proposed in [7]) as the latter requires three online pairings. This new scheme
is presented in Fig. 2, and its security, stated as follows, is proved in the full
version of this paper [13].

Theorem 3. The signature scheme in Fig. 2 is EUF-CMA-secure in the generic
bilinear group model.

This scheme can be translated to Type III groups using the transformation
in [17], which essentially consists in “duplicating” R, i.e., to give R = Gr ∈ G1

4 We used a timeout of 30 seconds.

372 G. Barthe et al.

Setup(1k): return PP = (p,G1,G2,GT , e, ψ, G, H) ← G(1k).
KeyGen(PP): choose random v, w ← Zp and return VK = (V, W), SK = (v, w)

where V = Gv and W = Gw.
Sign(PP,SK, M): given M ∈ G2, choose a random r ← Z

∗
p and return (R, S)

where R = Hr and S = (MvHw)1/r.
Rerand(PP,VK, M, (R, S)): pick a random α ← Z

∗
p and compute a randomized

signature (R′, S′) as R′ = Rα and S′ = S1/α.
Verify(PP,VK, M, (R, S)): accept if and only if M, R, S ∈ G2 and

e(ψ(R), S) = e(V, M) · e(W, H).

Fig. 2. Our strongly-optimal re-randomizable SPS

and T = Hr ∈ G2, and adding a pairing-product equation to check that R, T
have the same discrete logarithm, i.e., e(R,H) = e(G,T). Such transformed
scheme however requires one offline and four online pairings in the pairing-
product equations. In what follows we propose a slightly different way to trans-
form our scheme in the Type III setting which yields a solution requiring only
three online pairings. The basic idea is that in the previous transformation T
is not used in the first pairing-product equation, and its utility is to force the
adversary to show that it knows the discrete log of R (or obtained (R, T) by
applying a linear operation on a pair received by the challenger). We obtain
the same functionality by letting the signer compute T = H1/r. This allows us
to test “equality of r between R and T” by checking e(R, T) = e(G,H). The
last pairing, however, involves only the generators and can thus be computed
offline. A precise description of the resulting scheme is provided in Fig. 3, and
the security result, stated below, is proved in the full version of this paper [13].

Theorem 4. The signature scheme in Fig. 3 is EUF-CMA-secure in the generic
bilinear group model.

A Strongly-Optimal RMA-Secure SPS. Our second new SPS scheme, pre-
sented in Fig. 4, is secure against random-message attacks, and achieves the
lower bound of only two pairings in the pairing-product equation (both necessar-
ily online) for EUF-RMA-secure schemes, as stated in Theorem 2. In particular,
it beats the lower bound of Theorem 1 that holds for EUF-CMA-secure schemes.

This scheme is also perfectly randomizable, with the simple randomization
algorithm that sends a signature (R,S) on M to (R · Ht, S · M t) for some
uniformly random t.

As an interesting note, we observe that the verification equation of this
scheme is exactly the only possible one, according to our impossibility proof.
Indeed, while our Lemma 5 holds for SPS schemes that are EUF-CMA-secure,
the actual proof relies on EUF-RMA-security in all cases but one. For that partic-
ular case, in which we show a chosen-message attack, the verification equation is

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 373

Setup(1k): return PP = (p,G1,G2,GT , e, G, H) ← G(1k).
KeyGen(PP): choose random v, w ← Zp and return VK = (V, W), SK = (v, w)

where V = Gv and W = Gw.
Sign(PP,SK, M): given M ∈ G2, choose a random r ← Z

∗
p and return (R, T, S) ∈

G1 × G
2
2 where R = Gr, T = H1/r and S = (MvHw)1/r.

Rerand(PP,VK, M, (R, T, S)): pick a random α ← Z
∗
p and compute a randomized

signature (R′, T ′, S′) as R′ = Rα, T ′ = T 1/α and S′ = S1/α.
Verify(PP,VK, M, (R, T, S)): accept if and only if R ∈ G1, M, T, S ∈ G2 and

e(R, S) = e(V, M) · e(W, H) and e(R, T) = e(G, H).

Fig. 3. A re-randomizable SPS in Type III groups

Setup(1k): return PP = (p,G1,G2,GT , e, ψ, G, H) ← G(1k).
KeyGen(PP): choose random v, w ← Zp and return VK = (V, W), SK = (v, w)

where V = Gv and W = Gw.
Sign(PP,SK, M): given M ∈ G2, choose a random r ← Zp and return (R, S)

where R = Hr and S = Mr+vH−w.
Verify(PP,VK, M, (R, S)): accept if and only if M, R, S ∈ G2 and

e(ψ(S) · W, H) = e(R · V, M).

Fig. 4. Our RMA-secure SPS with two pairings

of the form s + w = (r + v)(f1m + f4) for some constants f1, f4, up to invertible
linear transformations on the verification key and signature elements.

The security of this scheme, stated below, is proved in the full version of this
paper [13].

Theorem 5. The signature scheme in Fig. 4 is EUF-RMA-secure in the generic
bilinear group model.

6 Conclusion

In this work, we considered a new measure for the efficiency of SPS, that is, the
number of pairings required in the verification equation. With respect to this
measure, we proved lower bounds and proposed new schemes matching these
bounds in the Type II setting. In order to find schemes, we built a synthesis
tool that automates the generation and security analysis of SPS. Currently, our
methods only support security proofs with respect to a bounded number of sign-
ing queries. Developing new methods that support security proofs with respect
to an unbounded number of queries for SPS is an interesting open problem that
requires new techniques. Another direction left open by our work is to obtain
similar results for the Type I and Type III setting. In contrast to the Type II

374 G. Barthe et al.

setting, the Type I and Type III settings are more complex since they need
more than one verification equation [4,8]. For synthesis, this causes a significant
blowup of the search space, while for the minimality result, our proofs exploit
that there is exactly one equation.

Acknowledgments. This work is supported in part by ONR grant N00014-12-1-
0914, Madrid regional project S2009TIC-1465 PROMETIDOS, and Spanish projects
TIN2009-14599 DESAFIOS 10 and TIN2012-39391-C04-01 Strongsoft. Additional sup-
port for Scedrov and Fagerholm is from the AFOSR MURI “Science of Cyber Security:
Modeling, Composition, and Measurement” and from NSF Grant CNS-0830949. The
research of Fiore and Schmidt has received funds from the European Commissions
Seventh Framework Programme Marie Curie Cofund Action AMAROUT II (grant no.
291803).

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

2. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

4. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

5. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)

6. Abe, M., Groth, J., Ohkubo, M., Tango, T.: Converting cryptographic schemes
from symmetric to asymmetric bilinear groups. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 241–260. Springer, Heidelberg (2014)

7. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures
from type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014)

8. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

9. Akinyele, J.A., Green, M., Hohenberger, S.: Using SMT solvers to automate design
tasks for encryption and signature schemes. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013: 20th Conference on Computer and Communications
Security, pp. 399–410. ACM Press, November 2013

10. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

Strongly-Optimal Structure Preserving Signatures from Type II Pairings 375

11. Barthe, G., Crespo, J.M., Grégoire, B., Kunz, C., Lakhnech, Y., Schmidt, B.,
Zanella Béguelin, S.: Fully automated analysis of padding-based encryption in the
computational model. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS
2013: 20th Conference on Computer and Communications Security, pp. 1247–1260.
ACM Press, November 2013

12. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Auto-
mated analysis of cryptographic assumptions in generic group models. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 95–112.
Springer, Heidelberg (2014)

13. Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.:
Strongly-optimal structure preserving signatures from type II pairings: synthesis
and lower bounds. Cryptology ePrint Archive (2015). Full version of this paper.
http://eprint.iacr.org/

14. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious trans-
fer with hidden access control from attribute-based encryption. In: Visconti, I.,
De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579. Springer,
Heidelberg (2012)

15. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011)

16. Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive realization
in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 179–196. Springer, Heidelberg (2009)

17. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmet-
ric pairings - the role of Ψ revisited. Discrete Applied Mathematics 159(13),
1311–1322 (2011)

18. Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revis-
ited. Cryptology ePrint Archive, Report 2014/635 (2014). http://eprint.iacr.org/
2014/635

19. de Ruiter, J.: Automated algebraic analysis of structure-preserving signature
schemes. Cryptology ePrint Archive, Report 2014/590 (2014). http://eprint.iacr.
org/2014/590

20. Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles.
In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055,
pp. 16–33. Springer, Heidelberg (2010)

21. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

22. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

23. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

25. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

http://eprint.iacr.org/
http://eprint.iacr.org/2014/635
http://eprint.iacr.org/2014/635
http://eprint.iacr.org/2014/590
http://eprint.iacr.org/2014/590

376 G. Barthe et al.

26. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)

27. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revoca-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 571–589. Springer, Heidelberg (2012)

28. Malozemoff, A.J., Katz, J., Green, M.D.: Automated analysis and synthesis of
block-cipher modes of operation. In: CSF 2014 (2014)

A Profitable Sub-prime Loan: Obtaining
the Advantages of Composite Order
in Prime-Order Bilinear Groups

Allison Lewko1(B) and Sarah Meiklejohn2

1 Columbia University, New York, USA
alewko@cs.columbia.edu

2 University College London, London, UK
s.meiklejohn@ucl.ac.uk

Abstract. Composite-order bilinear groups provide many structural
features that are useful for both constructing cryptographic primitives
and enabling security reductions. Despite these convenient features, how-
ever, composite-order bilinear groups are less desirable than prime-order
bilinear groups for reasons of both efficiency and security. A recent line
of work has therefore focused on translating these structural features
from the composite-order to the prime-order setting; much of this work
focused on two such features, projecting and canceling, in isolation, but
a result due to Seo and Cheon showed that both features can be obtained
simultaneously in the prime-order setting.

In this paper, we reinterpret the construction of Seo and Cheon in
the context of dual pairing vector spaces (which provide canceling as
well as useful parameter hiding features) to obtain a unified framework
that simulates all of these composite-order features in the prime-order
setting. We demonstrate the strength of this framework by providing
two applications: one that adds dual pairing vector spaces to the existing
projection in the Boneh-Goh-Nissim encryption scheme to obtain leakage
resilience, and another that adds the concept of projecting to the existing
dual pairing vector spaces in an IND-CPA-secure IBE scheme to “boost”
its security to IND-CCA1. Our leakage-resilient BGN application is of
independent interest, and it is not clear how to achieve it from pure
composite-order techniques without mixing in additional vector space
tools. Both applications rely solely on the Symmetric External Diffie
Hellman assumption (SXDH).

1 Introduction

Since their introduction in 2005 by Boneh, Goh, and Nissim [9], composite-
order bilinear groups have been used to construct a diverse set of advanced
cryptographic primitives, including (hierarchical) identity-based encryption [30,
32], group signatures [12,13], functional encryption [26,29], and attribute-based
encryption [31]. The main assumptions used to prove the security of such schemes
are variants of the subgroup decision assumption, which (in the simplest case)
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 377–398, 2015.
DOI: 10.1007/978-3-662-46447-2 17

378 A. Lewko and S. Meiklejohn

states that, for a bilinear group G of order N = pq, without an element of order
q it should be hard to distinguish a random element of G from a random element
of order p. Such assumptions crucially rely on the hardness of factoring N .

Beyond this basic assumption and its close variants, many of these schemes
have exploited additional structural properties that are inherent in composite-
order bilinear groups. Two such properties, projecting and canceling, were for-
mally identified by Freeman [18]; projecting requires (roughly) that there exists
a trapdoor projection map from G into its p-order subgroup (and a related
map in the target group GT), and canceling requires that elements in the p-
order and q-order subgroups cancel each other out (i.e., yield the identity when
paired). Additionally, Lewko [27] identified another property, parameter hiding,
that requires (again, roughly) that elements in the p-order subgroup reveal noth-
ing about seemingly correlated elements in the q-order subgroup.

While therefore quite attractive and rich from a structural standpoint, the use
of composite-order bilinear groups comes with a number of drawbacks, both in
terms of efficiency and security. Until a recent construction of Boneh, Rubin, and
Silverberg [11], all known composite-order bilinear groups were on supersingular,
or Type-1 [19], curves. Even in the prime-order setting, supersingular curves are
already less efficient than their ordinary counterparts: speed records for the for-
mer [4,42] are approximately six times slower than speed records for the latter [5].
In the composite-order setting, it is furthermore necessary to increase the size of the
modulus byat least a factor of 10 (from160 to at least 1024bits) in order tomake the
assumption that N is hard to factor plausible. Operations performed in composite-
order bilinear groups are therefore significantly slower; for example, Guillevic [22]
recently observed that computing a pairing was 254 times slower. (This slowdown
also extends to the non-supersingular construction of Boneh et al., and indeed to
any composite-order bilinear group.) Furthermore, from a security standpoint, a
number of recent results [1,2,21,23,25] demonstrate that it is possible to efficiently
compute discrete logarithms in common types of supersingular curves, so that one
must be significantly more careful when working over supersingular curves than
when working over their non-supersingular counterparts.

One natural question to ask is: to what extent is it possible to obtain the
structural advantages of composite-order bilinear groups without the disadvan-
tages? Although the structural properties described above might seem specific to
composite-order groups, both Freeman and Lewko are in fact able to express them
rather abstractly and thendescribe how to construct prime-order bilinear groups in
which each of these individual properties are met; they also show how to translate
the subgroup decision assumption into a generalized version, that in prime-order
groups is implied by either Decision Linear [8] or Symmetric External Diffie Hell-
man (SXDH) [6]. Lewko’s approach is basedon the frameworkof dual pairingvector
spaces, as developed by Okamoto and Takashima [38,39]. This framework has been
particularly useful for enabling translations of cryptosystems employing the dual
system encryption methodology in their security reductions.

In contrast, Meiklejohn, Shacham, and Freeman [36] showed that it was impos-
sible to achieve projecting and canceling simultaneously under a “natural” usage

Obtaining the Advantages of Composite Order in Prime-Order 379

of Decision Linear; as a motivation, they presented a blind signature scheme that
seemingly relied upon both projecting and canceling for its proof of security.
Recently, Seo and Cheon [44] showed that it was actually possible to achieve both
projecting and canceling simultaneously in prime-order groups, and Seo [43]
explored both possibility and impossibility results for projecting. To derive hard-
ness of subgroup decision in their setting, however, Seo and Cheon rely on a non-
standard assumption and show that this implies the hardness of subgroup decision
only in a very limited case. They also provide a prime-order version of the Meik-
lejohn et al. blind signature that is somewhat divorced from their setting: rather
than prove its security directly using projecting and canceling, they instead alter
theblind signature, introduce anewproperty called translating, and then showthat
the modified blind signature is secure not in the projecting and canceling setting,
but rather in a separate projecting and translating setting.

Subsequently, Herold et al. [24] presented a new translation framework called
“polynomial spaces” that achieves projecting in a natural and elegant way, and
can also be augmented to simultaneously achieve canceling. Like the prior result
of Seo and Cheon, they employ a non-standard hardness assumption to obtain
subgroup decision hardness when projecting and canceling are both supported.
Interestingly, their approach does not seem to provide a way of achieving just
canceling with subgroup decision problems relying on standard assumptions like
SXDH or DLIN, as is achieved by dual pairing vector spaces. Integrating the
benefits of dual pairing vector spaces into something like the polynomial spaces
approach remains a worthwhile goal for future work. The framework in [24]
also extends to the setting of multilinear groups, as do approaches based on
eigenspaces, as demonstrated for example in [20].

Our Contributions. In this paper, we present in Section 3 an abstract presen-
tation of the projecting and canceling pairing due to Seo and Cheon [44]. Our
presentation is based on dual pairing vector spaces (DPVS) [38,39], and it can
be parameterized to yield projection properties of varying strength. This per-
spective yields several advantages. First, all the power of DPVS is embedded
inside this construction and can thus be exploited as in prior works. Second, we
observe that many instances of subgroup decision problems in this framework
are implied by the relatively simple SXDH assumption.

The advantages of our perspective are most clear for our BGN applica-
tion, which we present in Section 4. If one starts with the goal of making the
composite-order BGN scheme leakage resilient (i.e., providing provable security
even when some bits of the secret key may have been leaked), the first obstacle
one faces is the uniqueness of secret keys. Since the secret key is a factorization
of the group order, there is only one secret key for each public key, making the
common kind of hash proof argument for leakage resilience (as codified by Naor
and Segev [37], for example) inapplicable. The DPVS techniques baked into our
projecting and canceling prime-order construction remove this barrier quite nat-
urally by allowing secret keys to be vectors that still serve as projection maps
but can now be sampled from subspaces containing exponentially many potential

380 A. Lewko and S. Meiklejohn

keys. This demonstrates the benefits of adding canceling and parameter hiding
to applications that are designed around projection.

As an additional application, in Section 5, we present an IND-CCA1-secure
identity-based encryption (IBE) scheme that uses canceling, parameter hiding,
and weak projecting properties in its proof of security. Although efficient con-
structions of IND-CCA2-secure IBE schemes have been previously obtained by
combining IND-CPA-secure HIBE schemes with signatures [15], we nevertheless
view our IBE construction as a demonstration of the applicability of our unified
framework. Furthermore, our new construction does not aim to amplify secu-
rity by adding new primitives; instead, it explores the existing security of the
IND-CPA-secure IBE due to Boneh and Boyen [7] (which cannot be IND-CCA2
secure, as it has re-randomizable ciphertexts), and observes that, by modifying
the scheme in a rather organic way and exploiting the (weak) projecting and
canceling properties of the setting, we can prove IND-CCA1 security directly.
Hence, we view this as an exploration of the security properties that can be
proved solely from the minimalistic spirit of the Boneh-Boyen scheme.

Our two applications serve as a proof of concept for the usefulness of obtain-
ing projecting and canceling simultaneously in the prime-order setting, and a
demonstration of how to leverage such properties while relying only on relatively
simple assumptions like SXDH. We believe that the usefulness of our framework
extends beyond these specific examples, and we intend our work to facilitate
future applications of these combined properties.

Our Techniques. To obtain a more user-friendly interpretation of the projecting
and canceling pairing construction over prime-order groups, we begin by observ-
ing that it is essentially a concatenation of DPVS. Dual pairing vector spaces
were first used in prime-order bilinear groups by Okamoto and Takashima [38,39]
and have since been employed in many works, in particular to instantiate dual
system technique [45] in the prime-order setting [27,29,40]. These previous uses
of DPVS typically relied on the canceling property, variants of subgroup decision
problems, and certain parameter hiding properties that are present by design in
DPVS. One particularly nice feature of DPVS constructions is that a large fam-
ily of useful subgroup decision variants can be proven to follow from standard
assumptions like SXDH for asymmetric groups and DLIN for symmetric groups;
viewing the construction of a projecting and canceling pairing as a natural exten-
sion of DPVS therefore has the twin benefits that it provides a clear guide on
how to derive certain subgroup decision variants from standard assumptions,
and that it comes with all the built-in tools that DPVS offers.

In particular, DPVS includes a suite of vector-space-based tools for proving
leakage resilience, similar to ones used in previous works [14,16,17,34,35,37].
This enables us to combine the projecting-supported limited homomorphic func-
tionality of the BGN encryption scheme with provable leakage resilience. DPVS
also supports a toolkit developed for dual system proofs (e.g., [29,40,41]), which
is what enables us to boost our IBE to full IND-CCA1 security with just the
addition of projection.

Obtaining the Advantages of Composite Order in Prime-Order 381

2 Definitions and Notation

In this section, we define bilinear groups and the three functional properties we
would like them to satisfy: projecting, canceling, and parameter hiding. For the
first two, we use the definitions of Freeman [18] (albeit in a somewhat modified
form); for parameter hiding, on the other hand, we come up with a new formal
framework. In addition to these functional properties, we consider the notion of
subgroup decision in bilinear groups, in which a random element of a subgroup
should be indistinguishable from a random element of the full group. The variant
we define, called generalized correlated subgroup decision, is very general: in
addition to seeing random elements of subgroups, we allow an attacker to see
elements correlated across subgroups (e.g., elements of different subgroups with
correlated randomness), and require that it is still difficult for him to distinguish
between correlated elements of different subgroups. We then see in Section 3that
many specific instances of this general notion are implied by more standard
notions of subgroup decision in prime-order groups.

2.1 Bilinear Groups

In what follows, we refer to a bilinear group as a tuple G = (N,G,H,GT , e, μ),
where N is either prime or composite, |G| = |H| = kN and |GT | = �N for
some k, � ∈ N, and e : G × H → GT is a bilinear map; i.e., e is an efficient
map that satisfies both bilinearity (e(xa, yb) = e(x, y)ab for all x ∈ G, y ∈ H,
a, b ∈ Z/NZ) and non-degeneracy (if e(x, y) = 1 for all x ∈ G then y = 1
and if e(x, y) = 1 for all y ∈ H then x = 1). In some bilinear groups, we may
additionally include generators g and h of G and H respectively (if G and H are
cyclic), information about meaningful subgroups of G and H, or some auxiliary
information μ that allows for efficient membership testing in G and H (and
possibly more). In what follows, we refer to the algorithm that is used to generate
such a G as BilinearGen. Beyond the security parameter, BilinearGen takes in an
additional parameter n that specifies the number of desired subgroups; i.e., for
(N,G,H,GT , e, μ) $←− BilinearGen(1k, n), we have G = ⊕n

i=1Gi and H = ⊕n
i=1Hi

(where typically Gi and Hi are cyclic).
In terms of functional properties of bilinear groups, we first define both pro-

jecting and canceling ; our definitions are modified versions of the ones originally
given by Freeman [18]. We give three flavors of projecting. The first, weak pro-
jecting, considers projecting into a single subgroup of the source group, without
requiring a corresponding map in the target group. The second, which we call
simply projecting, most closely matches the definition given by Freeman, and con-
siders projecting into a single subgroup in both the source and target groups.
Lastly, we define full projecting, which considers projecting into every subgroup
individually. As we will see in Section 3, we can satisfy all of these flavors by
tweaking appropriate parameters in our prime-order construction.

Definition 2.1 (Weak Projecting). A bilinear group G = (N,G,H,GT , e, μ)
is weakly projecting if there exist decompositions G = G1⊕G2 and H = H1⊕H2,

382 A. Lewko and S. Meiklejohn

and projection maps πG and πH such that πG(x1) = x1 for all x1 ∈ G1 and
πG(x2) = 1 for all x2 ∈ G2, and similarly πH(y1) = y1 for all y1 ∈ H1 and
πH(y2) = 1 for all y2 ∈ H2.

Definition 2.2 (Projecting). A bilinear group G = (N,G,H,GT , e, μ) is pro-
jecting if there exist subgroups G′ ⊂ G, H ′ ⊂ H, and G′

T ⊂ GT such that there
exist non-trivial maps πG : G → G′, πH : H → H ′, and πT : GT → G′

T such
that πT (e(x, y)) = e(πG(x), πH(y)) for all x ∈ G, y ∈ H.

Definition 2.3 (Full projecting). A bilinear group G = (N,G,H,GT , e, μ) is
fully projecting if there exists some n ∈ N and decompositions G = ⊕n

i=1Gi, H =
⊕n

i=1Hi, and GT = ⊕n
i=1GT,i, and non-trivial maps πGi : G → Gi, πHi : H →

Hi, and πTi : GT → GT,i for all i such that πTi(e(x, y)) = e(πGi(x), πHi(y)) for
all x ∈ G, y ∈ H.

Definition 2.4 (Canceling). A bilinear group G = (N,G,H,GT , e, μ) is can-
celing if there exists some n ∈ N and decompositions G = ⊕n

i=1Gi and H =
⊕n

i=1Hi such that e(xi, yj) = 1 for all xi ∈ Gi, yj ∈ Hj, i �= j.

2.2 Parameter Hiding

Beyond projecting and canceling, we aim to define parameter hiding. As men-
tioned in the introduction, this property roughly says that elements in one sub-
group should not reveal anything about related elements in other subgroups, and
was previously used, without a formal definition, by Lewko [27]. In essence, para-
meter hiding in composite-order groups is a simple consequence of the Chinese
Remainder Theorem, which tells us that if we sample a random value modulo
N = pq, its reductions modulo p and q are uncorrelated. In the prime-order
setting, a form of parameter hiding can be instantiated from dual pairing vec-
tor spaces, leveraging the fact that if one commits to only certain parts of dual
orthonormal bases over F

n
p , there is remaining ambiguity in the hidden basis

vectors.
The main difficulty in providing a formal definition for parameter hiding is

that it is not as self-contained a feature as projecting and canceling: elements
within subgroups may be related to elements in other subgroups in a myriad
of ways, and their relation to one another may depend both on the form of the
element (which can involve any function on the exponents) and on the subgroups.
We therefore do not try to consider all types of correlations, but instead focus
on one simple type, defined as follows:

Definition 2.5. For a bilinear group G = (N,G = ⊕n
i=1Gi,H = ⊕n

i=1Hi, GT , e,
{gi}n

i=1, {hi}n
i=1), an element x ∈ Z/NZ, and indices 1 ≤ i1, i2 ≤ n, an x-

correlated sample from the subgroup Gi1 ⊕Gi2 is an element of the form gα
i1

·gαx
i2

for α
$←− Z/NZ.

We also consider correlated samples in H, but for convenience we define a
y-correlated sample from the subgroup Hi1 ⊕ Hi2 to be an element of the form

Obtaining the Advantages of Composite Order in Prime-Order 383

hβy
i1

· hβ
i2

for β
$←− Z/NZ. Although we choose this type of correlation mainly

for ease of exposition (and because we encounter it in Section 5), our discussion
below could be adjusted to accommodate more general types of correlation,
which would remain compatible with our prime-order construction in Section 3.

Intuitively then, parameter hiding says that, under certain restrictions about
which subgroup elements one is allowed access to, the distributions over x-
correlated samples and random samples should in fact be the same, even when
x is known. (We need some restrictions because there may be testable relation-
ships between the images of various generators in the target group.) To con-
sider the distributions we can use — i.e., what additional information we might
give out besides the samples — we consider distributions D parameterized by
sets Sph

G = {Sph
G,gen, S

ph
G,sam, Sph

G,cor}, Sph
H = {Sph

H,gen, S
ph
H,sam, Sph

H,cor}, and C; intu-
itively, Sph

G and Sph
H tell us which elements to include in the distribution, and C

tells us which correlated samples to change to random. Formally, these sets are
defined as follows:

− Sph
G,gen indicates which subgroup generators to include: For all si ∈ Sph

G,gen,
include gsi

in D.
− Sph

G,sam is a multiset that indicates which random samples to include: For all
ti = (t1,i, . . . , tmi,i) ∈ Sph

G,sam, include a random sample from Gt1,i ⊕ . . . ⊕
Gtmi,i

in D.

− Sph
G,cor is a set that indicates which correlated samples to include: For all

ci = (xi, c1,i, c2,i) ∈ Sph
G,cor, include ga

c1,i · gaxi
c2,i in D, where a

$←− Z/NZ.

− Sph
H is defined analogously to Sph

G .
− C indicates which correlated samples to change: For all ci = (bi, c

′
i) ∈ C, if

bi = 0 then c′
i ∈ Sph

G,cor and if bi = 1 then c′
i ∈ Sph

H,cor; i.e., we require that
C ⊆ {0 × Sph

G,cor} ∪ {1 × Sph
H,cor}.

Given all these sets, we now require that they are well-behaved in the fol-
lowing two ways: (1) for any changed x-correlated sample, do not reveal the
corresponding subgroup generators on either side of the pairing, and (2) do not
change correlated samples for the same value x in the same subgroups on oppo-
site sides of the pairing. Formally, we express these requirements as

− Don’t include generators for switched samples: For all (bi, (xi, c1,i, c2,i)) ∈ C,
sj ∈ Sph

G,gen, and s� ∈ Sph
H,gen, sj �= c1,i, c2,i and s� �= c1,i, c2,i.

− Don’t switch x-correlated samples in overlapping subgroups of G and H: For
all (0, (xi, c1,i, c2,i)), (1, (xj , c1,j , c2,j)) ∈ C, either xi �= xj or c1,i �= c1,j , c2,j

and c2,i �= c1,j , c2,j .

To see why these restrictions can be necessary, consider trying to establish
that an x-correlated sample in G1 ⊕ G2 is identical to a random sample in
G1 ⊕ G2, and suppose we are given h1 and h2. If we are given gα

1 gαx
2 (for some

random, unknown α), then — assuming we are using a canceling pairing — we can
compute e(g1, h1)α and e(g2, h2)αx. When working with specific instantiations,

384 A. Lewko and S. Meiklejohn

there may be a known relationship between e(g1, h1) and e(g2, h2). (In fact, for
our IBE construction, e(g1, h1) = e(g2, h2)−1.) In this case, if x is known then
we can test for an x-correlation in the target group, and hence distinguish an x-
correlated sample from a random one. Similarly, if we have x-correlated samples
gα
1 gαx

2 and hβx
1 hβ

2 , then pairing these yields the identity, which distinguishes
them from random.

Definition 2.6 (Parameter Hiding). We say that a group G = (N,G,H,GT ,
e, μ) satisfies parameter hiding with respect to a well-behaved distribution D =
(Sph

G , Sph
H , C) if D is identical to the distribution in which the correlated samples

indicated by C are replaced with random samples.

Example 1. As an example, consider the distribution D defined by Sph
G =

{{1, 2}, ∅, {(x, 1, 2), (x, 3, 4)}}, Sph
H = {{1, 2, 5, 6}, {(3, 4), (3, 4)}, {(y, 1, 2), (y, 3,

4)}}, and C = {(0, (x, 3, 4)), (1, (y, 3, 4)} for any x, y ∈ Z/NZ such that
x �= y; we can easily check that these sets are well-behaved in the sense
defined above. Then parameter hiding holds for G = (N,G,H,GT , e, μ) if for

a, b, c, d, s, t, u, v, w, z
$←− Z/NZ,

(N,G,H,GT , e, μ, g1, g2, h1, h2, h5, h6, h
a
3h

b
4, h

c
3h

d
4, h

ty
1 ht

2, h
zy
3 hz

4, g
s
1g

sx
2 , gw

3 gwx
4)

is identical to

(N,G,H,GT , e, μ, g1, g2, h1, h2, h5, h6, h
a
3h

b
4, h

c
3h

d
4, h

ty
1 ht

2, h
v
3h

z
4, g

s
1g

sx
2 , gw

3 gu
4).

In our uses of parameter hiding in Section 5, we restrict ourselves to this one
example. Again, this is due to the difficulty of providing a fully general definition
of parameter hiding, as certain types of correlated samples require more entropy
than others. We nevertheless do not find it to be overly limiting to consider
this one example, as it keeps our constructions in Section 5 simple and tailored
to the requirements that we need. We also use a variant of parameter hiding
in the proof for our leakage-resilient BGN variant presented in Section 4. Here,
the flexibility in the hidden parameters is leveraged to allow the simulator to
a leak on a secret key before fully committing to a complete basis (i.e., before
determining how to form an appropriate ciphertext).

2.3 Generalized Correlated Subgroup Decision

Beyond functional properties of bilinear groups, we must also consider the types
of security guarantees we can provide. The assumption we define, generalized cor-
related subgroup decision, considers indistinguishability between subgroups in a
very general way: given certain subgroup generators and “correlated” elements
across subgroups (i.e., elements in different subgroups that use the same random-
ness), it should still be hard to distinguish between elements of other subgroups.
Formally, we consider sets Ssgh

G = {Ssgh
G,gen, S

sgh
G,sam}, Ssgh

H = {Ssgh
H,gen, S

sgh
H,sam},

T1 = {(�1, λ1), . . . , (�m, λm)}, and T2 = {(�′
1, λ

′
1), . . . , (�

′
m+1, λ

′
m+1)}, and an

Obtaining the Advantages of Composite Order in Prime-Order 385

indicator bit b. (We assume without loss of generality that T2 is the larger set.)
Intuitively, Ssgh

G and Ssgh
H tell us which group elements an adversary is given,

and (T1, T2, b) tell us what the challenge terms should look like. We have the
following requirements:

− Ssgh
G,gen indicates which subgroup generators to include: Give out gsi

for all
si ∈ Ssgh

G,gen.

− Ssgh
G,sam indicates which samples to include: For each

ti = ((�1,i, λ1,i), . . . , (�mi,i, λmi,i)) ∈ Ssgh
G,sam

, give out ga1
�1,i

· . . . ·gami

�mi,i
and ga1

λ1,i
· . . . ·gami

λmi,i
for a1, . . . , ami

$←− Z/NZ. These
elements are correlated, in that the same randomness is used for both.

− The bit b indicates which group the challenge element comes from: b = 0
indicates G, and b = 1 indicates H.

− The sets T1 and T2 must differ in exactly one pair; i.e., there must exist a
unique pair P such that P /∈ T1 but P ∈ T2. For this pair P = (�, λ), we
cannot give out the subgroup generators on either side of the pairing, so we
require si �= � and si �= λ for any si ∈ Ssgh

G,gen or si ∈ Ssgh
H,gen.

If P ∈ ti for some ti ∈ Ssgh
G,sam ∪ Ssgh

H,sam, then T1 ∩ ti �= ∅; i.e., P can
appear only in random samples that also contain another component in the
challenge term. Then, assuming b = 0 (and replacing g with h if b = 1), our
challenge elements are of the form T := (ga1

�1
· . . . · gam

�m
, ga1

λ1
· . . . · gam

λm
) and

T ′ := (ga1
�1′ · . . . · g

am+1

�′
m+1

, ga1
λ′
1
· . . . · g

am+1

λ′
m+1

) for a1, . . . am+1
$←− Z/NZ.

Assumption 2.1 (Generalized Correlated Subgroup Decision). For all
tuples (Ssgh

G , Ssgh
H , T1, T2, b) satisfying the requirements specified above and for any

n ∈ N, for any PPT adversary A given G $←− BilinearGen(1k, n) and the elements
specified by Ssgh

G and Ssgh
H , it is hard to distinguish between values T defined by

(b, T1) and values T ′ defined by (b, T2).

As an example, consider the case in which n = 6 and Ssgh
G = {{1, 2}, {((1, 2),

(3, 4))}}, Ssgh
H = {{1, 2, 5, 6}, {((1, 2), (3, 4)), ((3, 4), (5, 6))}}, T1 = {(1, 2), (5, 6)},

T2 = {(1, 2), (3, 4), (5, 6)}, and b = 0. In this case, the concrete assumption is:
Given G and generators g1, g2, h1, h2, h5, h6, correlated samples from G1 ⊕ G3

and G2 ⊕ G4, correlated samples from H1 ⊕ H3 and H2 ⊕ H4, and correlated
samples from H3 ⊕ H5 and H4 ⊕ H6, it should be hard to distinguish correlated
samples from G1 ⊕ G5 and G2 ⊕ G6 from correlated samples from G1 ⊕ G3 ⊕ G5

and G2 ⊕ G4 ⊕ G6.

3 A Prime-Order Bilinear Group Satisfying All Features

Our ultimate goal in this section is to define a prime-order bilinear group that
satisfies all three of the properties defined in the previous section: projecting,

386 A. Lewko and S. Meiklejohn

canceling, and parameter hiding; additionally, we want to require that subgroup
decision is hard in this group. Our construction can be viewed as an abstraction
of the construction of Seo and Cheon [44], which they prove satisfies (regular)
projecting, canceling, and a somewhat restrictive notion of subgroup decision.
In contrast, our construction satisfies canceling and parameter hiding, is flexible
enough to achieve any of the three flavors of projecting we defined in the pre-
vious section (depending on the parameter choices), and comes equipped with
reductions for more general instances of subgroup decision.

Notationally, we augment the bilinear groups G discussed in the previous
section: we now focus only on the case when the group order is some prime p,
and consider G = (p,B1, B2, BT , E, μ) built on top of G = (p,G,H,GT , e); this
means B1, B2, and BT may contain multiple copies of G, H, and GT respectively,
and that the map E uses e as a component. Because we are moving to bigger
spaces, we also include a value μ that allows us to test membership in B1 and
B2; as an example, consider B1 ⊂ G × G. Then, while an efficient membership
test for G implies one for G × G, additional information μ may be necessary to
allow one to (efficiently) test for membership in B1.

Our construction crucially uses dual pairing vector spaces, which were intro-
duced by Okamoto and Takashima [38,39] and have been previously used to
provide pairings E : Gn × Hn → GT , built on top of pairings e : G × H → GT ,
that satisfy the canceling property. As we cannot have a cyclic target space if we
want to satisfy projecting, however, we instead need a map whose image is Gd

T

for some d > 1. Intuitively, we achieve this by piecing together d “blocks,” where
each block is an instance of a dual pairing vector space; the construction of Seo
and Cheon is then obtained as the special case in which d = n, and regular dual
pairing vector spaces are obtained with d = 1. We begin with a key definition:

Definition 3.1 (Dual Orthonormal). Two bases B = (b1, . . . , bn) and B
∗ =

(b∗
1, . . . , b

∗
n) of Fn

p are dual orthonormal if bj ·b∗
j ≡ 1 mod p for all j, 1 ≤ j ≤ n,

and bj · b∗
k ≡ 0 mod p for all j �= k.

We note that one can efficiently sample a random pair of dual orthonormal
bases (B,B∗) by sampling first a random basis B and then solving uniquely for

B
∗ using linear algebra over Fp; we denote this sampling process as (B,B∗) $←−

Dual(Fn
p). By repeating this sampling process d times, we can obtain a tuple

((B1,B
∗
1), . . . , (Bd,B

∗
d)) of d pairs of dual orthonormal bases of Fn

p . We denote
the vectors of Bi as (b1,i . . . , bn,i), and the vectors of B∗

i as (b∗
1,i, . . . , b

∗
n,i). We

then give the following definition:

Definition 3.2 (Concatenation). The concatenation of bases (B1, . . . ,Bd) of
F

n
p is a collection of n vectors (v1, . . . ,vn) in F

dn
p , where each vj := bj,1|| . . . ||bj,d.

Alternatively, we can view each vj as a d × n matrix, where the i-th row is bj,i.
We denote the concatenation of (B1, . . . ,Bd) as Concat(B1, . . . ,Bd).

To begin our construction, we build off G = (p,G,H,GT , e, g, h), where g
and h are generators of G and H respectively, and consider groups B1 ⊂ Gdn

and B2 ⊂ Hdn. Notationally, we write an element of B1 as gA, where A =

Obtaining the Advantages of Composite Order in Prime-Order 387

(αi,j)
d,n
i,j=1 is a d×n matrix and gA := (gα1,1 , . . . , gα1,j , . . . , gα1,n , gα2,1 , . . . , gαd,n).

We similarly write elements of B2 as hB for a d × n matrix B = (βij)
d,n
i,j=1, and

furthermore define the bilinear map E : B1 × B2 → Gd
T as

E(gA, hB) :=

(
n∏

k=1

e(gα1,k , hβ1,k), . . . ,
n∏

k=1

e(gαd,k , hβd,k)

)

. (1)

Observe that the i-th coordinate of the image is equal to e(g, h)Ai·Bi mod p, where
Ai and Bi denote the i-th rows of A and B respectively. Then, to begin to see
how our construction will satisfy projecting and canceling, we have the following
lemma:

Lemma 3.1. Let (v1, . . . ,vn) = Concat(B1, . . . ,Bd) and (v∗
1, . . . ,v

∗
n) = Concat(

B
∗
1, . . . ,B

∗
d), where (Bi,B

∗
i) are dual orthonormal bases of Fn

p . Then

E(gvj , hv∗
j) = (e(g, h), . . . , e(g, h)) ∀j and E(gvj , hv∗

k) = (1T , . . . , 1T) ∀j �= k.

Proof. By definition of the pairing,

E(gvj , hv∗
k) =

(

e(g, h)bj,1·b∗
k,1 , . . . , e(g, h)bj,d·b∗

k,d

)

for any j and k. If j = k, then the fact that (Bi,B
∗
i) are dual orthonormal for

all i implies by definition that bj,i · b∗
j,i ≡ 1 mod p for all i and j, and thus

E(gvj , hv∗
j) = (e(g, h), . . . , e(g, h)). For the second property, we again use the

definition of dual orthonormal bases to see that bj,i ·b∗
k,i ≡ 0 mod p for all j �= k,

and thus E(gvj , hv∗
k) = (1T , . . . , 1T). ��

While Lemma 3.1 therefore shows us directly how to obtain canceling, for
projecting we are still mapping into a one-dimensional image. To obtain more
dimensions, it turns out we need only perform some additional scalar multipli-
cation. We give the following definition:

Definition 3.3 (Scaling). Define C = (ci,j)
d,n
i,j=1 to be a n×d matrix of entries

over Fp\{0}. Given bases (B1, . . . ,Bd) of Fn
p , we define the scaling of these bases

by C to be new bases (D1, . . . ,Dd), where Di = (c1,ib1,i, . . . , cn,ibn,i) for all i,
1 ≤ i ≤ d. We denote the scaling of (B1, . . . ,Bd) by C as Scale(C,B1, . . . ,Bd).

Intuitively then, we use the entries in the i-th column of C to scale the vectors
in the basis Bi and obtain the basis Di. As we still have bj,i · b∗

k,i ≡ 0 mod p for
j �= k, multiplication by a scalar will not affect this and we still satisfy canceling.
The scalar values do, however, build in extra dimensions into the image of our
pairing, as demonstrated by the following lemma:

Lemma 3.2. Let (B1, . . . ,Bd) and (B∗
1, . . . ,B

∗
d) be sets of bases for Fn

p such that
(Bi,B

∗
i) are dual orthonormal for all i. Define (v1, . . . ,vn) := Concat(D1, . . . ,Dd)

388 A. Lewko and S. Meiklejohn

and (v∗
1, . . . ,v

∗
n) := Concat(B∗

1, . . . ,B
∗
d), where (D1, . . . ,Dd) = Scale(C,B1, . . . ,

Bd) for some C ∈ Mn×d(Fp). Then

E(gvj , hv∗
j) = (e(g, h)cj,1 , . . . , e(g, h)cj,d) ∀j and

E(gvj , hv∗
k) = (1T , . . . , 1T) ∀j �= k.

Proof. y definition of the pairing,

E(gvj , hv∗
k) =

(

e(g, h)cj,1bj,1·b∗
k,1 , . . . , e(g, h)cj,dbj,d·b∗

k,d

)

for any j and k. If j = k, then the fact that (Bi,B
∗
i) are dual orthonormal for

all i implies by definition that bj,i · b∗
j,i ≡ 1 mod p for all i and j, and thus

cj,ibj,i · b∗
j,i ≡ cj,i mod p and E(gvj , hv∗

j) = (e(g, h)cj,1 , . . . , e(g, h)cj,d). For the
second property, we again use the definition of dual orthonormal bases to see
that bj,i · b∗

k,i ≡ 0 mod p for all j �= k, and thus cj,ibj,i · b∗
k,i ≡ 0 mod p and

E(gvj , hv∗
k) = (1T , . . . , 1T). ��

We are now ready to give our full construction of an algorithm BilinearGen′,
parameterized by integers n and d, and a distribution Dn,d on n×d matrices, to
achieve a setting G = (p,B1, B2, BT , E, μ) such that B1 ⊂ Gdn, B2 ⊂ Hdn, and
BT = Gd

T . We present this construction in Algorithm 1, and demonstrate that
it satisfies projecting, canceling, parameter hiding, and subgroup decision.

The generality of this construction stems from the choices of d, n, and D;
in fact, by choosing different values for these parameters, we can satisfy each of
the different flavors of projecting from Section 2. To satisfy fully projecting, we
choose C from a distribution over matrices of full rank n and use d ≥ n. If we
use a less restrictive distribution, we obtain weaker projection capabilities and
a more efficient construction (as we can have d < n) when projecting onto all
subgroups individually is not needed: to achieve (regular) projecting, we can use
d > 1 and pick C to be of rank > 1, and to achieve weak projecting we can in
fact use d = 1 and pick C to be the vector consisting of all 1 entries. (This last
case is equivalent to working in regular dual pairing vector spaces.)

Theorem 3.1. For all values of n ≥ 2, the bilinear group G
$←− BilinearGen′(1k,

n, d,Dd,n) satisfies canceling, fully projecting as defined in Definition 2.3 for
d ≥ n when Dd,n is defined over full-rank matrices, projecting as defined in
Definition 2.2 for d > 1 when Dd,n is defined over matrices of rank > 1, and
weak projecting as defined in Definition 2.1 for d = 1.

Proof. Given that our construction was specifically designed to satisfy the con-
ditions for Lemma 3.2, we immediately obtain canceling. To satisfy projecting,
we additionally need to construct the projection maps πij and argue that they
satisfy the requirements of Definition 2.3 (in the case that C is full rank). By
the way our subgroups are defined, each projection map π1i within the group B1

must map an arbitrary element ga1v1+···+anvn of B1 to gaivi ∈ B1,i; similarly,
π2i must map ha∗

1v
∗
1+···+a∗

nv
∗
n ∈ B2 to ha∗

i v
∗
i ∈ B2,i. For π1i, we observe that it

Obtaining the Advantages of Composite Order in Prime-Order 389

Algorithm 1. BilinearGen′: generate a bilinear group G that satisfies projecting
and canceling

Input: d, n ∈ N; distribution Dd,n over matrices in Mn×d(Fp); security parameter
1k.

1. (p, G, H, GT , e)
$←− BilinearGen(1k, 1).

2. Pick values g and h such that G = 〈g〉 and H = 〈h〉.
3. Sample d pairs (Bi,B

∗
i)

$←− Dual(Fn
p) to obtain two sets (B1, . . . ,Bd) and

(B∗
1, . . . ,B

∗
d) of bases of Fn

p , where (Bi,B
∗
i) are dual orthonormal.

4. Sample C = (cij)
d,n
i,j=1

$←− D and compute (D1, . . . ,Dd) := Scale(C,B1, . . . ,Bd).

5. For all i, 1 ≤ i ≤ n, define B1,i := 〈gvi〉 and B2,i := 〈hv∗
i 〉, where (v1, . . . , vn) :=

Concat(D1, . . . ,Dd) and (v∗
1, . . . , v

∗
n) := Concat(B∗

1, . . . ,B
∗
d).

6. Define B1 := ⊕n
i=1B1,i ⊂ Gdn, B2 := ⊕n

i=1B2,i ⊂ Hdn, and BT := Gd
T . Define the

pairing E : B1 × B2 → BT as in Equation 1.
7. Finally, to be able to check that an element gM ∈ Gdn for M = (mij)

d,n
i,j=1 is

an element of B1, we observe that the vectors v1, . . . , vn span an n-dimensional
subspace V of Fdn

p . Thus, there must be another subspace, call it W, of dimension
dn − n, that contains all vectors in F

n
p that are orthogonal to vectors in V. Given

μ2 := (hw1 , . . . , hw(d−1)n), where the {wi}(d−1)n
i=1 are a basis of W, one can therefore

efficiently check if gM ∈ B1 by checking if E(gM , hwi) = (1T , . . . , 1T) for all i,
1 ≤ i ≤ (d − 1)n.

Analogously, given μ1 := (gw∗
1 , . . . , g

w∗
(d−1)n), one can check if hA ∈ B2 by checking

if E(gw∗
i , hA) = (1T , . . . , 1T), where {w∗

i }(d−1)n
i=1 are a basis for the subspace W

∗ of
F
n
p consisting of vectors orthogonal to vectors in the span of v∗

1, . . . , v
∗
n.

8. Output G := (p, B1, B2, BT , E, (μ1, μ2)).

can be computed efficiently by anyone knowing vi and another vector in F
dn
p

that is orthogonal to vk for all k �= i. The situation for π2i is analogous.
As for the projection maps πT,i required for the target space, we define πT,i

to map an element e(g, h)a1C1+···+anCn to e(g, h)aiCi , where we recall Ci denotes
the i-th row of the scaling matrix C (Ci is thus a vector in F

d
p for all i).

Finally, we show that the required associativity property holds, namely that
E(π1,i(gM), π2,i(hA)) = πT,i(E(gM , hA)) for all elements gM ∈ B1, hA ∈ B2,
and for all i, 1 ≤ i ≤ d. To see this, observe that gM ∈ B1 implies that gM =
gα1v1+···+αnvn for some α1, . . . , αn ∈ Fp, and similarly that hA = hβ1v

∗
1+···+βnv

∗
n .

We therefore have that

E(π1,i(gM), π2,i(hA)) = E(gαivi , hβiv
∗
i) = e(g, h)αiβiCi ,

where this last equality follows from Lemma 3.2. On the other hand, we have
that

πT,i(E(gM , hA)) = πT,i(
n∏

k=1

e(g, h)αkβkCk) = e(g, h)αiβiCi ,

and the two quantities are therefore equal.
A similar argument applies to obtaining more limited projections when C

has lower rank. ��

390 A. Lewko and S. Meiklejohn

It remains to prove that our construction also satisfies parameter hiding
and subgroup hiding. For the latter property, our definition in Section 2.3 is
highly general and we cannot prove that all instances of generalized correlated
subgroup decision reduce to any one assumption. Instead, we show that certain
“nice” instances of the assumption follow from SXDH.

Before we define a nice instance, we first restrict our attention to the case
where n = 8, d = 1, C is a matrix with all 1 entries. For succinctness here and in
later sections, we use BasicGen(1k) = BilinearGen′(1k, 8, 1,D), where D produces
matrices with all 1 entries; i.e., we use BasicGen to produce the specific setting
in which we are interested in Section 5.

We consider two variants of this setting, which differ only in the auxiliary
information μ. For μ as defined above in Algorithm 1, we show that the required
instances of the correlated subgroup decision assumption are implied by SXDH.
We additionally consider a case where μ is augmented to contain the following
three pieces of information: (1) the vectors v7, v8, v∗

7, and v∗
8; (2) a random basis

for the span of (v1, . . . ,v6) inside F
8
p; and (3) a random basis for the span of

(v∗
1, . . . ,v

∗
6) inside F

8
p. With this μ, one can then perform a membership test for

G1 ⊕ . . .⊕G6 on some element gv by computing a basis for the orthogonal space
of the span of (v1, . . . ,v6), pairing against h raised to these vectors, and taking a
dot product in F

8
p. While this additional information in μ makes some instances

of subgroup decision easy, instances entirely within G1⊕ . . .⊕G6 and H1⊕ . . . H6

are still implied by SXDH. To refer to this instance with augmented μ in what
follows, we call it the augmented construction. Now, by “nice,” we mean that
the instance of the assumption behaves as follows: if the challenge terms are in
H (the situation is analogous if they are in G), then there is a single pair in
S that is common to the challenge sets T1 and T2 that appears in all tuples in
Ssgh

G,sam that also contain the differing pair. In other words, the given correlated
samples from the opposite side of the challenge that include the differing space
must also be attached to a particular space that is guaranteed to be present in
the challenge term. As we will see, this feature turns out to be convenient for
reducing to SXDH, as demonstrated by the following lemmas. For the augmented
construction, we additionally restrict to instances where each correlated sample
ti in Ssgh

G,sam or Ssgh
H,sam is contained within the set S := {(1, 2), (3, 4), (5, 6)} (this

is to avoid the additional information in μ from compromising the hardness).

Lemma 3.3. For the augmented construction, the nice instances of the general-
ized correlated subgroup decision assumption, where additionally each correlated
sample ti in Ssgh

G,sam or Ssgh
H,sam is contained within the set {(1, 2), (3, 4), (5, 6)},

are implied by the SXDH assumption.

Proof. We consider a nice instance of the generalized correlated subgroup deci-
sion assumption parameterized by sets Ssgh

G and Ssgh
H containing singletons and

tuples of the pairs (1, 2), (3, 4), (5, 6) and challenge sets T1 and T2 differing by
one pair. We assume without loss of generality that the differing pair is (3, 4),
that (1, 2) is a common pair to both T1, T2, and the challenge terms are in G.

We assume we are given an SXDH challenge of the form (g, h, ga, gb, T),
where T = gab or is random in G. We will simulate the specified instance of the

Obtaining the Advantages of Composite Order in Prime-Order 391

generalized correlated subgroup decision assumption. We first choose a random
dual orthonormal bases pair F,F∗ for F

8
p. We then implicitly define B,B∗ as

follows:
b1 = af3 + f1, b2 = af4 + f2, b3 = f3, b4 = f4,

b5 = f5, b6 = f6, b7 = f7, b8 = f8

b∗
1 = f∗

1, b∗
2 = f∗

2, b∗
3 = f∗

3 − af∗
1, b∗

4 = f∗
4 − af∗

2,

b∗
5 = f∗

5, b∗
6 = f∗

6, b∗
7 = f∗

7, b∗
8 = f∗

8.

We note that (B,B∗) are properly distributed, since applying a linear transfor-
mation to randomly sampled dual orthonormal bases while preserving orthonor-
mality produces equivalently distributed bases. We observe that v7,v8,v

∗
7,v

∗
8 are

known, as are the spans of {v1, . . . ,v6} and {v∗
1, . . . ,v

∗
6}. Thus we can produce

the specified auxiliary information μ.
Since we have h, g, ga, we can produce all generators except h3, h4. Since (3, 4)

is the differing pair for the challenges, these generators cannot be required. Since
all generators are known on the G side, any correlated samples in G are easy to
produce. To produce correlated samples for tuples containing (1, 2) and (3, 4) in
H, we simply choose random exponents t′, z ∈ Fp and implicitly set t = az + t′.
We can then produce

ht
1h

z
3 = ht′f∗

1+zf∗
3 , ht

2h
z
4 = h−t′f∗

2−zf∗
4 .

To produce the challenge terms, we compute

T f3(gb)f1 , T f4(gb)f2 .

If (5, 6) is also common to T1, T2, we can use the generators g5, g6 to add on
properly distributed terms in these subgroups as well. ��

The same proof can also be applied more generally when μ is not augmented,
resulting in:

Lemma 3.4. For G
$←− BasicGen(1k), all nice instances of the generalized cor-

related subgroup decision assumption are implied by SXDH.

Finally, we prove that parameter hiding holds for the augmented construction
as well.

Lemma 3.5. Parameter hiding, as in Example 1, holds for the augmented con-
struction.

Proof. This is essentially Lemmas 3 and 4 in [27], and is a consequence of the
following observation. We consider sampling a random pair of dual orthonormal
bases F,F∗ of F8

p, and let A be an invertible 2 × 2 matrix over Fp. We consider
the 8 × 2 matrix F whose columns are equal to f3 and f4. Then FA is also
an 8 × 2 matrix, and we form a new basis B from F and A by taking these
columns in place of f3,f4. To form the dual basis B∗, we similarly multiply the

392 A. Lewko and S. Meiklejohn

matrix with columns f∗
3,f

∗
4 by the transpose of A−1. It is noted in [27] that the

resulting distribution of B,B∗ is equivalent to choosing this pair randomly, and
in particular, this distribution is independent of the choice of A. Lemma 4 in [27]
observes that if we take x �= y and define x to be the transpose of (1, x) and y
to be the transpose of (y,−1), then choosing random scalars γ, λ in Fp and a
random matrix A over Fp yields that the joint distribution of λA−1x and γATy
is negligibly close to the uniform distribution over F2

p ×F
2
p. This is precisely our

parameter hiding requirement, where A represents the ambiguity in our precise
choice of the generators b3, b4, b

∗
3, b

∗
4, conditioned on the span of {b3, b4} and

the span of {b∗
3, b

∗
4} being known (in addition to the other individual bi and b∗

i

vectors for i /∈ {3, 4}). ��

Finally, although we do not use any non-nice instances of the generalized cor-
related subgroup decision assumption in this work, it is interesting to ask which
of the more complex instances can be reduced to SXDH or other static assump-
tions. For values of d > 1, the additional structure required to achieve projecting
seems to make directly reducing a large space of assumptions to SXDH difficult.
Nonetheless, we are able to rely only on SXDH for our projecting leakage-resilient
BGN variant through the use of hybrid transitions that incrementally change the
rank of the scaling matrix C. We leave it as an interesting question for future
work to further explore the minimal assumptions for supporting a broader class
of subgroups decision variants.

4 A Leakage-Resilient BGN Variant

A very elegant use of the projecting property in the composite-order setting is
the public key encryption scheme of Boneh, Goh, and Nissim [9], a scheme that is
designed to allow arbitrary additions and one multiplication of ciphertexts. The
basic group operation is used for ciphertext addition, while the bilinear map is
applied during ciphertext multiplication. The secret key is then a projection map
(which equates to a factorization of the group order) that allows the decryptor
to strip off the blinding factors of the underlying ciphertexts, even after their
interaction has migrated to the target group.

While these limited homomorphic properties make the BGN scheme appealing,
the rigid structure of keys can be a source of frustration when one attempts to aug-
ment its functionality or security guarantees. Having the secret key reveal a factor-
ization of the groupordermeans that different usersmust generate different groups,
and it additionally means that the secret key is uniquely determined (information-
theoretically) from the public key. This presents a challenge, for instance, if one
wants to design a variant with provable guarantees of leakage resilience.

Proofs of leakage resilience for public key encryption schemes typically follow
a strategy inspired by the hash proof paradigm of Naor and Segev [37]. This
paradigm starts with a scheme that has many possible secret keys for each public
key. A hybrid argument is used, where the first step changes to a malformed —
or invalid — ciphertext, that decrypts to different messages under the different

Obtaining the Advantages of Composite Order in Prime-Order 393

secret keys associated to a fixed public key. A bound on the total leakage of the
secret key is then used to argue that the adversary cannot tell which of the many
possible secret keys the challenger is holding. Thus, even though the challenger
may be holding a secret key that decrypts the challenge ciphertext correctly, he
may as well be a holding a key that decrypts it to a random message. It is then
possible to argue that the scheme remains secure under leakage.

If we wish to apply this kind of proof strategy to a version of the BGN
scheme, we first need a way of allowing many secret keys for each public key.
The DPVS framework we described in the previous section provides a natural
answer. In this framework, the projection map is no longer a factorization, but
rather a vector that comes from a suitably high-dimensional space to allow for
many possibilities. This makes it rather easy to imagine a BGN variant that
preserves the somewhat-homomorphic properties of ciphertexts, yet allows for
an exponential number of secret keys per public key.

It is already well-known that applying DPVS and similar techniques for
designing vector spaces in the exponent is a useful approach for achieving leakage
resilience. For example, Lewko et al. [35] demonstrated that leakage resilience
can be incorporated quite easily into dual system encryption proofs by com-
bining mechanisms for canceling, parameter hiding, and the fact that the dot
product of sufficiently long vectors over Fp has convenient information-theoretic
properties (roughly, the dot product modulo p is a good two-source extractor).
The same high level of compatibility exists between our framework and the pre-
existing leakage resilience techniques, thus allowing us to repurpose the same
linear algebraic underpinnings that implement projecting and canceling in our
framework to achieve leakage resilience for a BGN-type scheme.

4.1 The Scheme

As in the original BGN scheme, we will assume that the message space is
small to allow efficient decryption. We use our framework from Section 3 with
n = d = 4. For the matrix distribution D, we consider all matrices whose
second and third rows form a rank-1 submatrix. The setting we then work
in is G

$←− BilinearGen′(1k, 4, 4,D). Rather than use this framework gener-
ically, as we do in Section 5, we re-purpose the matrix C and basis vectors
(v1,v2,v3,v4), (v∗

1,v
∗
2,v

∗
3,v

∗
4) ∈ F

16
p — defined inStep4andStep5ofAlgorithm1

respectively — and use them explicitly in our construction and proofs. Below, we
use Ci to denote the i-th row of the scaling matrix C (for i ∈ {1, 2, 3, 4}).

− Setup(G): Pick r, r∗ $←− Fp and define u :=
∑

i vi, u∗ :=
∑

i v
∗
i , w := rv2,

and w∗ := r∗v∗
2. Choose y uniformly at random from the set of vectors in

F
4
p such that y · C2 = 0, noting that y · C3 = 0 then holds automatically as

well. Output pk = (g, gu, gw, hu∗
, hw∗

) and sk =
(

y, skT = e(g, h)y·(∑i Ci)
)

.
Note that, by construction, y · (

∑

i Ci) = y · (C1 + C4) and, by Lemma 3.2,

E(gu, hu∗
) =

(

e(g, h)
∑

j cj,1 , . . . , e(g, h)
∑

j cj,4
)

.

394 A. Lewko and S. Meiklejohn

− Enc(pk ,m): We have two types of ciphertexts: Type A and Type B. If
we want to be able to perform homomorphic operations on any pair of
ciphertexts, a single ciphertext could include both types. To form a Type A
ciphertext, choose s

$←− Fp and compute ctA := gmu+sw. To form a Type

B ciphertext, choose s∗ $←− Fp and compute ctB := hmu∗+s∗w∗
. Output

ct = (ctA, ctB). (Or just ctA or ctB , depending on the desired homomorphic
properties.)

− Eval(pk , ct1, ct2): We describe two evaluation cases: addition of Type A
ciphertexts (the operations are analogous for Type B ciphertexts), and mul-
tiplication of a Type A and Type B ciphertext (which can then be further
added in the target space BT).

First pick a random value t
$←− Fp. If ct1 and ct2 are Type A, then return

ct = ct1 · ct2 · gtw. If ct1 is Type A and ct2 is Type B, then return ct =
E(ct1, ct2) · E(gw, hw∗

)t.
− Dec(sk , ct): To decrypt a ciphertext (ct1, ct2, ct3, ct4) ∈ G4

T , compute

4∏

i=1

ctyi

i = skm
T .

Using knowledge of skT , exhaustively search for m (this is possible since
we have a small message space). If ct is Type A, then compute ct′ =
E(ct,Enc(pk , 1)) and decrypt ct′ (and analogously for a Type B ciphertext).

To see that decryption is correct, observe that
∏

i

ctyi

i =
∏

i

e(g, h)myi

∑
j cj,i = e(g, h)m

∑
i

∑
j yicj,i

= e(g, h)m
∑

j

∑
i yicj,i = e(g, h)m

∑
j y·Cj

= skm
T .

To see that evaluation is correct, observe that if ct1 encrypts m1 and ct2
encrypts m2 then

ct = gm1u+s1w · gm2u+s2w · gtw = g(m1+m2)u+(s1+s2+t)w,

which is a properly distributed Type A encryption of m1+m2. Pairing a Type A
ct1 and a Type B ct2 similarly yields a properly distributed encryption of m1m2

in the target space, just as in BGN.

4.2 Security Analysis

The security model we use is leakage against non-adaptive memory attacks, as
defined by Akavia et al. [3, Definition 3]. Briefly, the attacker first declares a
leakage function f mapping secret keys to {0, 1}� for a suitably small �. The
attacker then receives pk and f(sk), and proceeds as in a standard IND-CPA

Obtaining the Advantages of Composite Order in Prime-Order 395

game; i.e., it outputs two messages m0 and m1, receives an encryption of mb,
and wins if it correctly guesses b. As in the case of the original BGN scheme, it
suffices to argue security for challenge ciphertexts generated in G/H, as security
for the ciphertexts generated via the multiplicative homomorphism follows from
the security of ciphertexts in the base groups. While there are several other
interesting models for leakage-resilient PKE security, we choose to work with this
one, as it is clean and simple and thus allows us to give a concise demonstration
of the use of our framework.

Theorem 4.1. If SXDH holds in G and � ≤ log(p−1)−2k, the above construc-
tion is leakage resilient with respect to non-adaptive memory attacks.

As in the typical hash proof system paradigm, we first define invalid cipher-
texts that have more blinding randomness than honestly generated ciphertexts.
Initially, these are still decrypted consistently by the set of secret keys corre-
sponding to a fixed public key. After having transitioned to a game with an
invalid challenge ciphertext, however, we gradually adjust the respective distrib-
utions of secret keys and ciphertexts to arrive at a game where, in the adversary’s
view, it seems that the secret key decrypts the ciphertext randomly.

In the course of these game transitions, we use SXDH in multiple ways. First
we use it to change from an honest to an invalid ciphertext by bringing in an
additional blinding factor in a new subgroup. This is just a “nice” instance of
subgroup decision. We will also use it to make changes to the rank of particu-
lar submatrices inside the scaling matrix C. This technique is inspired by the
observation in [10] that DDH implies a rank-1 matrix in the exponent is hard
to distinguish from a rank-2 matrix. To make the crucial switch from a secret
key that properly decrypts the challenge ciphertext to a key that decrypts it
incorrectly, we rely on an information-theoretic argument leveraging a form of
parameter hiding, along with the leakage bound. Essentially, the simulator uses
the remaining ambiguity in the underlying parameters (conditioned on the public
key) to help it create an invalid challenge ciphertext after supplying the leakage.
The proof of Theorem 4.1 can be found in the full version of our paper [28].

5 An IBE with IND-CCA1 Security

In this section, we discuss how to obtain an IND-CCA1-secure identity-based
encryption scheme. Although IND-CCA2-secure IBE schemes have already been
constructed, we view this as a demonstration of our techniques rather than an
application of independent interest.

Our technique for proving IND-CCA1 security extends from the observation
due to Lewko and Waters [33] that dual system proofs can be interpreted as a
reduction from a full security game to a weak game in which the attacker does not
have access to the public parameters. Using this technique, we first define such
a weak game for IND-CCA1 security, and then prove that our IBE construction
satisfies it. Next, leveraging a weak form of projection, we reduce the full IND-
CCA1 security to this weaker notion by first expanding the system to have extra

396 A. Lewko and S. Meiklejohn

components in a space that is not reflected in the public parameters, and then
projecting to play the weak game in that space.

In the full version of our paper [28], we formulate our IBE and proof in
a unified framework that can be instantiated in either prime-order groups or
in composite-order groups. In the prime-order setting, we obtain the following
result:

Theorem 5.1. If SXDH holds in G
$←− BilinearGen′(1k, 8, 1,D), where D pro-

duces the vector 1, then the instantiation of our IBE construction is IND-CCA1
secure.

References

1. Adj, G., Menezes, A., Oliveira, T., Rodŕıguez-Henŕıquez, F.: Weakness of F36·509

for discrete logarithm cryptography. In: Cao, Z., Zhang, F. (eds.) Pairing 2013.
LNCS, vol. 8365, pp. 20–44. Springer, Heidelberg (2014)

2. Adj, G., Menezes, A., Oliveira, T., Rodŕıguez-Henŕıquez, F.: Computing discrete
logarithms in f36·137 and f36·163 using magma. Cryptology ePrint Archive, Report
2014/057 (2014). http://eprint.iacr.org/2014/057

3. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

4. Aranha, D.F., Beuchat, J.-L., Detrey, J., Estibals, N.: Optimal eta pairing
on supersingular genus-2 binary hyperelliptic curves. In: Dunkelman, O. (ed.)
CT-RSA 2012. LNCS, vol. 7178, pp. 98–115. Springer, Heidelberg (2012)

5. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

6. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage
via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417
(2005). http://eprint.iacr.org/

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

10. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008)

11. Boneh, D., Rubin, K., Silverberg, A.: Finding ordinary composite order ellip-
tic curves using the Cocks-Pinch method. Journal of Number Theory 131(5),
832–841 (2011)

12. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

http://eprint.iacr.org/2014/057
http://eprint.iacr.org/

Obtaining the Advantages of Composite Order in Prime-Order 397

13. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007)

14. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: public-key cryptography resilient to continual memory leakage. In:
51st FOCS, Las Vegas, Nevada, USA, 23–26 October 2010, pp. 501–510. IEEE
Computer Society Press (2010)

15. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

16. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 51st FOCS, Las Vegas, Nevada, USA, 23–26 October
2010, pp. 511–520. IEEE Computer Society Press (2010)

17. Dodis, Y., Lewko, A.B., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: Ostrovsky, R. (ed.) 52nd FOCS, Palm Springs, California, USA, 22–25
October 2011, pp. 688–697. IEEE Computer Society Press (2011)

18. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

19. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

20. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent
assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

21. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve
and the impact of higher splitting probabilities. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 109–128. Springer, Heidelberg (2013)

22. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013)

23. Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T.: Breaking pairing-based
cryptosystems using ηT pairing over gf (397). In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 43–60. Springer, Heidelberg (2012)

24. Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: a new
framework for composite-to-prime-order transformations. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 261–279. Springer,
Heidelberg (2014)

25. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit
and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)

26. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

27. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

28. Lewko, A., Meiklejohn, S.: A profitable sub-prime loan: obtaining the advantages of
composite order in prime-order bilinear groups. Cryptology ePrint Archive, Report
2013/300 (2013). http://eprint.iacr.org/2013/300

http://eprint.iacr.org/2013/300

398 A. Lewko and S. Meiklejohn

29. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

30. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

31. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

32. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

33. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

34. Lewko, A.B., Lewko, M., Waters, B.: How to leak on key updates. In: Fortnow, L.,
Vadhan, S.P. (eds.) 43rd ACM STOC, San Jose, California, USA, 6–8 June 2011,
pp. 725–734. ACM Press (2011)

35. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

36. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from
composite-order to prime-order groups: the case of round-optimal blind signatures.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer,
Heidelberg (2010)

37. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

38. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol.
5209, pp. 57–74. Springer, Heidelberg (2008)

39. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

40. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

41. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)

42. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen, L.
(ed.) IMACC 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011)

43. Seo, J.H.: On the (im)possibility of projecting property in prime-order setting.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 61–79.
Springer, Heidelberg (2012)

44. Seo, J.H., Cheon, J.H.: Beyond the limitation of prime-order bilinear groups, and
round optimal blind signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 133–150. Springer, Heidelberg (2012)

45. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

Digital Signatures II

Simpler Efficient Group Signatures from Lattices

Phong Q. Nguyen1,2, Jiang Zhang3, and Zhenfeng Zhang3(B)

1 INRIA, Paris, France
pnguyen@di.ens.fr,

http://www.di.ens.fr/~pnguyen
2 Institute for Advanced Study, Tsinghua University, Beijing, China

3 Trusted Computing and Information Assurance Laboratory,
State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China
jiangzhang09@gmail.com, zfzhang@tca.iscas.ac.cn

Abstract. A group signature allows a group member to anonymously
sign messages on behalf of the group. In the past few years, new group
signatures based on lattice problems have appeared: the most efficient
lattice-based constructions are due to Laguillaumie et al. (Asiacrypt ’13)
and Langlois et al. (PKC ’14). Both have at least O(n2 log2 n log N)-
bit group public key and O(n log3 n log N)-bit signature, where n is the
security parameter and N is the maximum number of group members.
In this paper, we present a simpler lattice-based group signature, which
is more efficient by a O(log N) factor in both the group public key and
the signature size. We achieve this by using a new non-interactive zero-
knowledge (NIZK) proof corresponding to a simple identity-encoding
function. The security of our group signature can be reduced to the
hardness of SIS and LWE in the random oracle model.

1 Introduction

In a group signature, each group member has a private key that is certified with
its identity by the group manager. By using its private key, each group member
is able to sign messages on behalf of the group without compromising its identity
to the signature verifier. Group signatures provide users a nice tradeoff between
authenticity and anonymity (i.e., given a signature, the verifier is assured that
someone in the group signed a message, but cannot determine which member of
the group signed). However, such a functionality allows malicious group members
to damage the whole group without being detected, e.g. signing some unautho-
rized/illegal messages. To avoid this, the group manager usually has a secret key
which can be used to break anonymity.

Several real-life applications require properties of group signatures. For exam-
ple, in trusted computing, a trusted platform module (TPM) usually has to attest

The work is supported in part by China’s 973 program (No. 2013CB338003,
2013CB834205) and the National Natural Science Foundation of China (No.
61133013, 61170278, 91118006).

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 401–426, 2015.
DOI: 10.1007/978-3-662-46447-2 18

402 P.Q. Nguyen et al.

certain statements w.r.t. the current configurations of the host device to a remote
party (i.e. the verifier) via a signature on corresponding messages. After the attes-
tation, the verifier is assured that some remote device that contains a TPM autho-
rized themessages. For user privacy, the signature is often required not to reveal the
identity of the TPM. In fact, a variant of group signatures (namely, direct anony-
mous attestation (DAA) [26,33]) has been implemented in TPM 1.2 [40] and TPM
2.0 [41] by the Trusted Computing Group. Another promising application is vehi-
cle safety communications [42], where group signatures can protect the privacy of
users so that a broadcast message does not reveal the current location/speed of the
vehicle. Besides, other applications of group signatures are found in anonymous
communications, e-commerce systems etc.

Since their introduction by Chaum and van Heyst [32], group signatures have
attracted much attention from the research community. Bellare, Micciancio and
Warinschi (BMW) [11] formalized the security of group signatures for static
groups (where the group members are fixed in the system setup phase) in two
main notions, i.e., full anonymity and full traceability. Informally, full anonymity
requires that an adversary without the group manager secret key should not be
able to determine the signer’s identity from a signature, even if it can access
an open oracle that returns the identity of any other (valid) signature. And
full traceability implies that no collusion of group members can create a valid
signature which cannot be traced back to one of them (by the group manager
using the group manager secret key). Bellare et al. [11] also gave a theoretical
construction based on the existence of trapdoor permutations. In a weak variant
of the BMW model where the adversary against anonymity is not given access
to the open oracle (i.e., CPA-anonymity), Boneh et al. [16] constructed a short
group signature scheme based on the Strong Diffie-Hellman (SDH) [15] and Deci-
sion Linear (DLIN) [16] assumptions in the random oracle model [13]. Besides,
many papers focused on designing various group signatures based on different
assumptions [1,9,20,21,28,38,39,45,46].

In recent years, lattice cryptography has attracted significant interest, due
to several potential benefits: asymptotic efficiency, worst-case hardness assump-
tions, and security against quantum computers. A natural goal is to find lattice-
based counterparts of all classical cryptographic schemes. In 2010, Gordon et
al. [37] made the first step in constructing secure group signatures from lat-
tices. They elegantly combined several powerful lattice-based tools [36,54,57]
to build a group signature scheme where the sizes of both the group public
key and signature was linear in the maximum number N of group members.
Later, Camenisch el al. [29] proposed a variant of [37] with improvements both
in efficiency (i.e., shorter group public key) and security (i.e., stronger adversary
against anonymity), but the signature size of their scheme was still linear in N .
Recently, two papers [43,44] have significantly decreased the signature size. By
first representing the identity of group members as a bit-string [19], and then
applying the “encrypt-and-prove” paradigm of [11,37], Laguillaumie et al. [43]
constructed an efficient lattice-based group signature where both the sizes of
the group public key and the signature are proportional to log N (i.e., with

Simpler Efficient Group Signatures from Lattices 403

bit-length slightly greater than O(n2 log2 n log N) and O(n log3 n log N), respec-
tively). Using similar identity representations together with the non-interactive
zero-knowledge (NIZK) proof in [47], Langlois et al. [44] proposed a nice scheme
without encryption, which achieves almost the same asymptotical efficiency as
that of [43], and provides an additional property called verifier-local revoca-
tion [18]. Another interesting group signature is due to Benhamouda et al. [14],
for which privacy holds under a lattice-based assumption but the security is
discrete-logarithm-based, i.e. it is not a pure lattice-based group signature.

A current and independent work of Ling, Nguyen and Wang [48] also try
to design an efficient lattice-based group signature scheme. Specifically, by first
constructing a nice Stern-type [58] NIZK protocol, they propose a scheme which
excels previous ones in [43,44] by a constant factor in terms of efficiency, i.e., all
the sizes are still proportional to log N . Besides, they also show how to transform
their basic scheme into the setting of ideal lattices, which can save a factor of n
in the size of group public key.

1.1 Our Results

In this paper, we present a new lattice-based group signature. Compared to
the best previous lattice-based schemes [37,43,44], it is both simpler and more
efficient, saving a O(log N) factor in both sizes of the group public key and
the signature. As in [43], we first present a simple CPA-anonymous scheme,
which can be easily extended to support CCA-anonymity (please refer to the full
version). The security of both our schemes is provably based on the hardness of
the Small Integer Solutions (SIS) and Learning with Errors (LWE) problems in
the random oracle model, which are both as hard as several worst-case lattice
problems, such as SIVPγ for some polynomial factor γ = poly(n).

In Table 1, we give a rough comparison with related lattice-based group sig-
natures in terms of the size of the group public-key, the group user secret key and
the signature. There, n denotes the security parameter, and N is the maximum
number of group users. The other two parameters m and q are both polyno-
mial in n (and N), and are usually determined by the underlying lattices used
by those schemes. The integer t used in [43,44] and our scheme is a repetition
parameter for obtaining NIZKs with negligible soundness error. For a security
parameter n, one can set t = ω(log n) and m = O(n log n). The choice of q might
be slightly different in those schemes either for security or for functionality. For
example, q is explicitly required to be larger than N in our scheme. We note that
this requirement might also be satisfied in the previous three schemes for most
applications. Besides, even if N < q does not hold in previous schemes, the sizes
of the group public-key and the signature in our scheme are still asymptotically
shorter (since both N and q are polynomials in n, and log N = O(log q) holds).

Since the schemes in [37,43] and ours follow a general “encrypt-and-prove”
paradigm in [11], we also give a comparison of computational costs between the
schemes in [37,43] and ours at a very high level, i.e., in terms of the number of
the underlying encryptions and basic NIZK proofs, in Table 2. We note that such
a comparison is less interesting to the scheme in [44], since it departs from the

404 P.Q. Nguyen et al.

Table 1. Rough Comparison of Overheads

Schemes Group public-key User secret-key Signature Security

GKV10 [37] O(nmN log q) O(nm log q) O(nmN log q) CPA-anonymity

LLLS13 [43] O(nm log N log q) O(nm log q) O(tm log N log q) CCA-anonymity

LLNW14 [44] O(nm log N log q) O(m log N log q) O(tm log N log q log β)� CCA-anonymity

Our scheme O(nm log q) O(nm log q) O(t(m + log N) log q)�� CCA-anonymity

� β = ω(
√

n log q log n) log m is the integer norm bound in [44].
�� Since N is always a polynomial in n (thus in m), this term is actually

bounded by O(tm log q). Besides, we note that group signatures supporting
opening should have a signature in bit-size at least logarithmic in N [11].

general paradigm and does not make use of any encryption. Although all three
schemes use (almost) the same encryption (namely [57]), the NIZKs are very
different. Concretely, Gordon et al. [37] used a N -OR variant of the witness-
indistinguishable (WI) proof system for the gap version of the closest vector
problem in [54], while the NIZKs used in [43] and ours are derived from the
more efficient protocol [50] for the ISIS problem. In Table 2, we simply compare
the complexity of each algorithm of the schemes in [37,43] and ours, with respect
to the number of basic operations in terms of encryptions and basic NIZKs.

Table 2. Rough Comparison of Computational Costs (The encryption and decryption
of Regev’s LWE-based encryption [57] are denoted by enc. and dec., respectively. The
proof and verification of the corresponding basic NIZKs in [50,54] are denoted by pro.
and ver., respectively).

Schemes Sign (enc.,pro.,ver.,dec.) Verify (enc.,pro.,ver.,dec.) Open (enc.,pro.,ver.,dec.)

GKV10 [37] (N, O(N), −, −) (−, −, O(N), −) (−, −, −, N/2)

LLLS13 [43] (1 + log N, O(log N), −, −) (−, −, O(log N), −) (−, −, −, 1 + log N)

Our scheme (1, ≤ 5, −, −) (−, −, ≤ 5, −) (−, −, −, 1)

However, we note that we do not provide a full comparison with all the
schemes in [37,43,44], which would require at least a concrete analysis of the
security reduction (running time, lattice approximation factor, success probabil-
ity, etc.), which is usually not explicitly given in the literature.

1.2 Techniques

At a high level, the two constructions in [37,43] and our scheme use the same
general paradigm as that of [11]. Roughly speaking, the group manager first
generates the group public key gpk and group manager secret key gmsk. For a
user with identity i ∈ {1, . . . , N} (recall that N is the maximum number of group
members, and is fixed at the system setup), the group manager computes the
user’s secret key gski corresponding to an encoded “public key” H(gpk, i), where
H is an encoding function that (uniquely) encodes the group user’s identity i in

Simpler Efficient Group Signatures from Lattices 405

gski. When signing a message m, the group user proves to the verifier that he has
a secret key gski for some i ∈ {1, . . . , N} (i.e., to prove that he is a legal member
of the group). The hardness of this general paradigm usually lies in the choices
of an appropriate encoding function H(gpk, i) and a compatible non-interactive
zero-knowledge (NIZK) for the membership relations determined by H(gpk, i).

Gordon et al. [37] used a simple projective encoding function H(gpk, i) and
a NIZK extended from [54] to construct the first lattice-based group signature.
Informally, the group public key gpk consists of N independent public keys
of the GPV signature [36], i.e., gpk = (pk1, . . . , pkN) where pkj is an integer
matrix over Zq for some positive q ∈ Z, and all j ∈ {1, . . . , N}. The encoding
function simply outputs the i-th element of gpk, i.e., H(gpk, i) := pki. Due to
the particular choice of H(gpk, i), both the group public key and the signature
of [37] have a size linear in N .

At Asiacrypt ’13, by using an efficient encoding function inspired by Boyen’s
lattice-based signature [19] and a NIZK derived from [50], Laguillaumie et al. [43]
proposed a more efficient lattice-based group signature. Roughly speaking, the
group public key gpk consists of � = �log N� + 1 independent matrices over
Zq, i.e., gpk = (A1, . . . ,A�). The encoding function is defined as H(gpk, i) :=
∑�

j=1 ijAj , where (i1, . . . , il) ∈ Z
�
2 is the binary decomposition of i. We also note

that Langlois et al. [44] constructed a lattice-based group signature with verifier-
local revocation by using the same identity encoding function but a different
NIZK from [47]. Both schemes [43,44] decreased the sizes of the group public
key and the signature to proportional to log N .

An Efficient Identity Encoding. We use a more efficient and compact way to
encode the group member’s identity, by building upon the encoding technique
introduced by Agrawal et al. [2] for identity-based encryption (IBE). Let the
group public key gpk consist of three matrices over Z

n×m
q for some positive

integers n,m, q, i.e., gpk = (A1,A2,1,A2,2). We define H(gpk, i) = Âi :=
(A1‖A2,1 + G(i)A2,2) where G(·) is a function from ZN to Z

n×n
q . Then, the

secret key of user i is a short basis of the classical q-ary lattice Λi determined
by H(gpk, i) = Âi, where Λi := {e ∈ Z

m s.t. Âie = 0 mod q}. When signing
a message, user i samples a short vector ei from Λi (by using the short basis
of Λi) and encrypts it using Regev’s encryption [57]. Then, he proves to the
verifier that ei is a short vector in a lattice determined by H(gpk, i) for some
i ∈ {1, . . . , N}. But we do not know an efficient lattice-based NIZK suitable for
the membership relation determined by H(gpk, i).

Fortunately, since the maximum number of group members N is always
bounded by a polynomial in the security parameter n, we actually do not
need an encoding function as powerful as for IBE [2], where there are possi-
bly exponentially many users. We simplify the encoding function by defining
H(gpk, i) := (A1‖A2,1 + iA2,2). (A similar combination of matrices has been
used in a different way in [4,17,35] to construct functional encryption.) Namely,
the identity function G(i) := i is used instead of a function G : ZN → Z

n×n
q . For

collision resistance, we require that N < q. Since N is usually fixed at the system

406 P.Q. Nguyen et al.

setup in group signatures for static groups such as [37,43,44] and ours, one can
simply set q big enough (but still a polynomial in n) to satisfy the requirement.
Hereafter, we assume that N < q always holds.

This encoding function provides two main benefits:

– Only three matrices are needed for the encoding function, which provides a
short group public key. By comparison, there are respectively at least O(N)
and O(log N) matrices needed in [37] and [43].

– It gives a simple membership relation, which allows to construct an efficient
NIZK proof for the relation (please see next paragraph). In [37,43], the
NIZKs for relatively complex membership relations are obtained by involving
many encryptions, which results in schemes with large computational costs
and signature sizes.

A New Non-interactive Zero-Knowledge (NIZK). Recall that the secret key of
user i is a short basis Ti of the q-ary lattice Λi determined by Âi = (A1‖A2,1 +
iA2,2). To sign a message, user i first samples a short vector (x1,x2) by using
Gentry et al.’s Gaussian sampling algorithm [36] such that A1x1 + (A2,1 +
iA2,2)x2 = 0 mod q. Then, he generates an LWE encryption c of x1. The final
signature σ consists of c, x2, a proof π1 that c encrypts x1 correctly, and a proof
π2 that there exists a tuple (x1, i) satisfying A1x1 + iA2,2x2 = −A2,1x2 mod q,
namely, σ = (c,x2, π1, π2).

The nice properties of the sampling algorithm in [31,36] guarantee that the
public x2 is statistically indistinguishable for all user i ∈ {1, . . . , N}, namely,
the verifier cannot determine the signer’s identity i solely from x2, however, he
can efficiently determine it from (x1,x2), that’s why we choose to encrypt x1.
The proof of π1 can be generated by using the duality of LWE and Small Integer
Solutions (SIS) [51], and the NIZK proof for SIS [50] in a standard way. Thanks
to our new identity encoding function H(gpk, i) and the public x2, we manage
to design a NIZK proof (i.e., π2) for the statement A1x1 + iA2,2x2 = −A2,1x2

mod q based on the hardness of SIS.
Formally, we introduce a new problem called split-SIS, which is a variant of

SIS (and might be of independent interest). Given a split-SIS instance A1,A2,2 ∈
Z

n×m
q , the algorithm is asked to output a triple (x1,x2, h) such that x1,x2 ∈

Z
m have small norms, and h < q = poly(n) is a positive integer satisfying

A1x1+hA2,2x2 = 0 mod q. We first show that the split-SIS problem (associated
with an appropriate solution space) is polynomially equivalent to the standard
SIS problem. Then, we derive a family of hash functions

H =

{

fA1,A2,2(x1,x2, h) = (A1x1+hA2,2x2 mod q,x2) :
(x1,x2, h) ∈ Z

m × Z
m × Z

}

A1,A2,2∈Z
n×m
q

from our split-SIS problem, and prove that the hash function family H with
appropriate domain is one-way, collision-resistant, and statistically hiding with
respect to the third input (i.e., h). Combining those useful properties with the
observation that A1x1 + hA2,2x2 = (A1‖A2,2x2)(x1;h) mod q, we manage

Simpler Efficient Group Signatures from Lattices 407

to adapt a Σ-protocol for H from existing protocols for standard ISIS prob-
lems [43,49,50], which can in turn be transformed into a NIZK using the Fiat-
Shamir transformation in the random oracle model. This finally helps us obtain
a lattice-based group signature scheme with O(tm log q)-bit signature, where the
repetition parameter t = ω(log n) is due to our NIZK as in [43,44].

In order to open a signature σ = (c,x2, π1, π2), the group manager only has
to decrypt c to obtain x1, and computes an integer h < q satisfying A1x1 +
hA2,2x2 = −A2,1x2 mod q. Note that such an integer is unique if A2,2x2 �= 0
mod q for prime q. Replacing the CPA-encryption of x1 with a CCA one (i.e.,
by applying the CHK transformation [30] to the IBEs [2,36]), we obtain a CCA-
anonymous group signature at a minimal price of doubling the sizes of the group
public key and the signature.

1.3 On Membership Revocation

A group signature with opening allows the group manager to break the anonymity
of any valid signature, however, it cannot prevent a malicious group member from
using his certificate. In practice, it may be desirable to support membership revo-
cation, e.g., to revoke the certificate of a malicious group member such that he
cannot sign any message in the future. Actually, membership revocation is an
important and complex problem and has been extensively studied in the litera-
ture [10,18,25,27,45,46]. In [44], Langlois et al. constructed a lattice-based group
signature with verifier-local revocation, which was the first lattice-based group
signatures supporting membership revocation and achieved the same asymptotic
efficiency as that of [43]. For now, we do not know how to construct a simpler
and efficient group signature with membership revocation from lattices.

1.4 Roadmap

After some preliminaries, we recall several useful tools and algorithms on lattices
in Section 3. In Section 4, we introduce the split-SIS problems, and construct a
NIZK proof for the split-SIS problems. We finally present our CPA-anonymous
group signature scheme in Section 5. The description of our CCA-anonymous
group signature scheme is deferred to the full version.

2 Preliminaries

2.1 Notation

The set of real numbers (integers) is denoted by R (Z, resp.). By ←R we denote
randomly choosing elements from some distribution (or the uniform distribution
over some finite set). For a variable x following some distribution D, we denote
it by x � D. For any integer N ∈ Z, we denote by [N] the set of integers
{0, 1, . . . , N − 1}. Vectors are in column form and denoted by bold lower-case
letters (e.g., x). We view a matrix simply as the set of its column vectors and

408 P.Q. Nguyen et al.

denoted by bold capital letters (e.g., X). Denote the l2 and l∞ norm by ‖ · ‖ and
‖ · ‖∞, respectively. Define the norm of a matrix X as the norm of its longest
column (i.e., ‖X‖ = maxi ‖xi‖). If the columns of X = (x1, . . . ,xk) are linearly
independent, let X̃ = (x̃1, . . . , x̃k) denote the Gram-Schmidt orthogonalization
of vectors x1, . . . ,xk taken in that order. For X ∈ R

n×m and Y ∈ R
n×m′

,
(X‖Y) ∈ R

n×(m+m′) denotes the concatenation of the columns of X followed by
the columns of Y. Similarly, for X ∈ R

n×m and Y ∈ R
n′×m, (X;Y) ∈ R

(n+n′)×m

is the concatenation of the rows of X followed by the rows of Y.
Throughout this paper, we let n be the natural security parameter, so that

all quantities are implicitly dependent on n. The function log denotes the natural
logarithm. We will frequently use the standard notation of O,ω for classifying
the growth of functions. If f(n) = O(g(n) · logc(n)) for some constant c, we
write f(n) = Õ(g(n)). By poly(n) we denote some arbitrary f(n) = O(nc) for
some c. We say that a function f(n) is negligible if for every positive c, we have
f(n) < n−c for sufficiently large n. We denote an arbitrary such function by
negl(n), and say that a probability is overwhelming if it is 1 − negl(n).

2.2 Group Signatures

We recall the definition and security model of group signatures. A (static)
group signature scheme GS consists of a tuple of four Probabilistic Polynomial
Time (PPT) algorithms (KeyGen,Sign,Verify,Open):

– KeyGen(1n, 1N): Take the security parameter n and the maximum number
of group members N as inputs, output the group public key gpk, the group
manager secret key gmsk and a vector of users’ keys gsk = (gsk1, . . . , gskN),
where gskj is the j-th user’s secret key for j ∈ {1, . . . , N}.

– Sign(gpk, gskj ,M): Take the group public key gpk, the j-th user’s secret key
gskj , and a message M ∈ {0, 1}∗ as inputs, output a signature σ of M .

– Verify(gpk,M, σ): Take the group public key gpk, a message M ∈ {0, 1}∗

and a string σ as inputs, return 1 if σ is a valid signature of M , else return
0.

– Open(gpk, gmsk,M, σ): Take the group public key gpk, the group manager
secret key gmsk, a message M ∈ {0, 1}∗, and a valid signature σ of M as
inputs, output an index j ∈ {1, . . . , N} or a special symbol ⊥ in case of
opening failure.

For correctness, we require that for any (gpk, gmsk,gsk) ← KeyGen(1n, 1N),
any j ∈ {1, . . . , N}, any message M ∈ {0, 1}∗, and any σ ← Sign(gpk, gskj ,M),
the following conditions hold with overwhelming probability:

Verify(gpk,M, σ) = 1 and Open(gpk, gmsk,M, σ) = j

For group signatures, there are two security notions: anonymity and trace-
ability [11]. The first notion, informally, says that anyone without the group
manager secret key cannot determine the owner of a valid signature. The second

Simpler Efficient Group Signatures from Lattices 409

notion says a set C of group members cannot collude to create a valid signature
such that the Open algorithm fails to trace back to one of them. In particular,
this notion implies that any non-group member cannot create a valid signature.

Experiment Expanon
GS, A(n, N)

(gpk, gmsk,gsk) ← KeyGen(1n, 1N)

(st, i0, i1, M
∗) ← AOpen(·,·)(gpk,gsk)

b ←R {0, 1}
σ∗ ← Sign(gpk, gskib , M∗)
b′ ← AOpen(·,·)(st, σ∗)
If b = b′ return 1, else return 0

Experiment Exptrace
GS, A(n, N)

(gpk, gmsk,gsk) ← KeyGen(1n, 1N)

(M∗, σ∗) ← ASign(·,·),Corrupt(·)(gpk, gmsk)
If Verify(gpk, M∗, σ∗) = 0 then return 0
If Open(gmsk, M∗, σ∗) = ⊥ then return 1
If ∃j∗ ∈ {1, . . . , N} such that

Open(gpk, gmsk, M∗, σ∗) = j∗ and j∗ /∈ C,
and (j∗, M∗) was not queried to Sign(·, ·) by A,

then return 1, else return 0

Fig. 1. Security games for group signatures

Definition 1 (Full anonymity). For any (static) group signature scheme GS,
we associate to an adversary A against the full anonymity of GS experiment
Expanon

GS, A(n,N) in the left-side of Fig. 1, where the Open(·, ·) oracle takes a valid
message-signature pair (M,σ) as inputs, outputs the index of the user whose
secret key is used to create σ. In the guess phase, the adversary A is not allowed
to make an Open query with inputs (M∗, σ∗). We define the advantage of A in
the experiment as

Advanon
GS, A(n,N) =

∣
∣
∣
∣
Pr[Expanon

GS, A(n,N) = 1] − 1
2

∣
∣
∣
∣
.

A group signature GS is said to be fully anonymous if the advantage Advanon
GS, A(n,

N) is negligible in n,N for any PPT adversary A.

In a weak definition of anonymity (i.e., CPA-anonymity), the adversary is not
given access to an open oracle. In this paper, we first present a CPA-anonymous
scheme, then we extend it to satisfy full/CCA anonymity.

Definition 2 (Full traceability). For any (static) group signature scheme GS,
we associate to an adversary A against the full traceability of GS experiment
Exptrace

GS, A(n,N) in the right-side of Fig. 1, where the Sign(·, ·) oracle takes a
user index i and a message M as inputs, returns a signature of M by using
gski. The Corrupt(·) oracle takes a user index i as input, returns gski, and C
is a set of user indexes that A submitted to the Corrupt(·) oracle. The advantage
of A in the experiment is defined as

Advtrace
GS, A(n,N) = Pr[Exptrace

GS, A(n,N) = 1].

A group signature GS is said to be fully traceable if the advantage Advtrace
GS, A(n,N)

is negligible in n,N for any PPT adversary A.

410 P.Q. Nguyen et al.

3 Lattices and Discrete Gaussians

An m-rank lattice Λ ⊂ R
n is the set of all integral combinations of m linearly

independent vectors B = (b1, . . . ,bm) ∈ R
n×m, i.e., Λ = L(B) =

{
∑m

i=1 xibi :

xi ∈ Z

}

. The dual lattice of Λ is defined to be Λ∗ =
{

x ∈ span(Λ) : ∀ v ∈

Λ, 〈x,v〉 ∈ Z

}

.
For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆ Z

n centered at
c ∈ R

n with parameter s > 0 as ρs,c(x) = exp
(

− π‖x − c‖2/s2
)

. Letting
ρs,c(Λ) =

∑

x∈Λ ρs,c(x), define the discrete Gaussian distribution over Λ as
DΛ,s,c(y) = ρs,c(y)

ρs,c(Λ) , where y ∈ Λ. The subscripts s and c are taken to be 1 and
0 (respectively) when omitted. For large enough s, almost all the elements from
DΛ,s,c are not far from c.

Lemma 1 ([36,53]). For any n-dimensional lattice Λ with basis B ∈ R
n×n,

vector c ∈ R
n, and reals ε ∈ (0, 1), s ≥ ‖B̃‖·ω(

√
log n), we have Prx←RDΛ,s,c

[‖x−
c‖ > s

√
n] ≤ 1−ε

1+ε · 2−n.

For any α ∈ R
+, integer q ∈ Z, let Ψα be the distribution over T = R/Z of

a normal variable with mean 0 and standard deviation α/
√

2π, reduced modulo
1. The discrete distribution Ψ̄α over Zq is the random variable �q · X� mod q,
where X ←R Ψα. For simplicity, we denote χα := Ψ̄α.

Lemma 2 ([3]). Let e be some vector in Z
m and let y ←R χm

α . Then the quan-
tity |eT y| treated as an integer in [0, q − 1] satisfies |eT y| ≤ ‖e‖qαω(

√
log m) +

‖e‖√
m/2 with all but negligible probability in m. In particular, if x ←R χα is

treated as an integer in [0, q − 1] then |x| ≤ qαω(
√

log m) + 1/2 with all but
negligible probability in m.

We also need the following three useful facts from the literature:

Lemma 3 ([36]). Let n be a positive integer, q be a prime, and m ≥ 2n log q.
Then for all but a 2q−n fraction of all A ∈ Z

n×m
q and for any s ≥ ω(

√
log m), the

distribution of u = Ae mod q is statistically close to uniform over Z
n
q , where

e ←R DZm,s.

3.1 Learning with Errors (LWE) and Small Integer Solutions (SIS)

Let n ∈ Z
+ and q = q(n) be integers, α ∈ R

+, χα be some discrete Gaussian
distribution over Zq, and s ∈ Z

n
q be some vector. Define As,χα

⊆ Z
n
q ×Zq as the

distribution of the variable (a,aT s + x), where a ←R Z
n
q , x ←R χα, and all the

operations are performed in Zq. For m independent samples (a1, y1), . . . , (am, ym)
from As,χα

, we denote it in matrix form (A,y) ∈ Z
n×m
q × Z

m
q , where A =

(a1, . . . ,am) and y = (y1, . . . , ym)T . We say that an algorithm solves LWEq,χα

if, for randomly chosen s ∈ Z
n
q , given polynomial samples from As,χα

it outputs

Simpler Efficient Group Signatures from Lattices 411

s with overwhelming probability. The decisional variant of LWE is that, for a
uniformly chosen s ←R Z

n
q , an algorithm is asked to distinguish As,χα

from the
uniform distribution over Z

n
q × Zq (with only polynomial samples). For certain

modulus q, the average-case decisional LWE problem is polynomially equivalent
to its worst-case search version [8,55,57].

Proposition 1 ([57]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such
that αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that

solves LWEq,χα
, then there exists an efficient quantum algorithm for approxi-

mating SIVP in the l2 norm, in the worst case, to within Õ(n/α) factors.

The Small Integer Solution (SIS) problem was introduced by Ajtai [5], but
its name is due to Micciancio and Regev [53], who improved Ajtai’s connection
between SIS and worst-case lattice problems.

Definition 3 (Small Integer Solution). The Small Integer Solution (SIS)
problem in l2 norm is: Given an integer q, a uniformly random matrix A ∈
Z

n×m
q , and a real β, find a non-zero integer vector e ∈ Z

m such that Ae = 0
(mod q) and ‖e‖ ≤ β.

Definition 4 (Inhomogeneous Small Integer Solution). The Inhomoge-
neous Small Integer Solution (ISIS) problem in l2 norm is: Given an integer q,
a uniformly random matrix A ∈ Z

n×m
q , a random syndrome u ∈ Z

n
q , and real

β ∈ R, find an integer vector e ∈ Z
m such that Ae = u (mod q) and ‖e‖ ≤ β.

The ISIS problem is an inhomogenous variant of SIS. Both problems were
shown to be as hard as certain worst-case lattice problems.

Proposition 2 ([36]). For any polynomially bounded m,β = poly(n) and
prime q ≥ β · ω(

√
n log n), the average-case problems SISq,m,β and ISISq,m,β are

as hard as approximating SIVP in the worst case to within certain γ = β ·Õ(
√

n)
factors.

3.2 q-ary Lattices and Trapdoors

Let A ∈ Z
n×m
q for some positive integers n,m and q. Consider the following two

integer lattices:

Λ⊥
q (A) =

{

e ∈ Z
m s.t. Ae = 0 mod q

}

Λq(A) =
{

y ∈ Z
m s.t. ∃s ∈ Z

n, ATs = y mod q

}

The two q-ary lattices defined above are dual when properly scaled, namely
Λ⊥

q (A) = qΛq(A)∗ and Λq(A) = qΛ⊥
q (A)∗. Moreover, for any h ∈ Z

∗
q , we have:

Λ⊥
q (A) = Λ⊥

q (hA).
In 1999, Ajtai [6] showed how to sample an essentially uniform matrix A

together with a short basis of Λ⊥
q (A). This trapdoor generation algorithm has

been significantly improved in [7,52].

412 P.Q. Nguyen et al.

Proposition 3 ([7]). For any δ0 > 0, there is a PPT algorithm TrapGen that,
on input a security parameter n, an odd prime q = poly(n), and integer m ≥
(5 + 3δ0)n log q, outputs a statistically (mq−δ0n/2)-close to uniform matrix A ∈
Z

n×m
q and a basis TA ⊂ Λ⊥

q (A) such that with overwhelming probability ‖TA‖ ≤
O(n log q) and ‖T̃A‖ ≤ O(

√
n log q) = O(

√
m). In particular, if let δ0 = 1

3 , we
can choose m ≥ �6n log q�.

The following proposition is implied by [31, Lem.3.2andLem.3.3] which shows
that there is an efficient algorithm to extract a random basis for (A‖B) by using
a short basis of A such that the new basis statistically hides the information of
its input basis.

Proposition 4 ([31]). There is a PPT algorithm ExtRndBasis which takes a
matrix A′ = (A‖B) ∈ Z

n×(m+m′)
q , a basis TA ∈ Z

m×m
q of Λ⊥

q (A), an arbitrary
matrix B ∈ Z

n×m′
q , and a real s ≥ ‖T̃A‖·ω(

√
log m) as inputs, outputs a random

basis TA′ of Λ⊥
q (A′) satisfying ‖TA′‖ ≤ s(m + m′) and ‖T̃A′‖ ≤ s

√
m + m′.

Equipped with the above proposition, and the proof technique of [2, Th.4],
we obtain the following useful proposition:

Proposition 5. Let q > 2,m > n, there is a PPT algorithm ExtBasisRight

which takes matrix A′ = (C‖A‖AR + B) ∈ Z
n×(2m+m′)
q , a uniformly and ran-

domly chosen R ∈ {−1, 1}m×m, a basis TB of Λ⊥
q (B), arbitrary C ∈ Z

n×m′
q and

a Gaussian parameter s > ‖T̃B‖ · √
mω(log m), outputs a basis TA′ of Λ⊥

q (A′)
satisfying ‖TA′‖ ≤ s(2m + m′) and ‖T̃A′‖ ≤ s

√
2m + m′.

Proof. As shown in the proof of [2, Th.4], we can use TB to efficiently
sample a basis TÂ for the matrix Â = (A‖AR + B) satisfying ‖T̃Â‖ ≤
‖T̃B‖ · √

mω(
√

log m), then we can apply Proposition 4 to obtain a basis TA′

for A′ = (C‖Â) satisfying ‖T̃A′‖ ≤ s
√

2m + m′. Besides, by the property of
the ExtRndBasis algorithm, the claim still holds no matter how the (columns of)
matrix C appears in A′. �

The following SuperSamp algorithm allows us to sample a random matrix B
together with a short basis such that the columns of B lie in a prescribed affine
subspace of Zn

q .

Proposition 6 ([43]). Let q > 2,m > �6n log q+n�, there is a PPT algorithm
SuperSamp which takes matrices A ∈ Z

n×m
q and C ∈ Z

n×n
q as inputs, and

outputs an almost uniform matrix B ∈ Z
n×m
q such that ABT = C, and a basis

TB of Λ⊥
q (B) satisfying ‖TB‖ ≤ m1.5 · ω(

√
log m) and ‖T̃B‖ ≤ m · ω(

√
log m).

Given a basis of Λ⊥
q (A), there is an efficient algorithm to solve the (I)SIS

problem as follows.

Proposition 7 ([36]). There is a PPT algorithm SamplePre that, given a basis
TA of Λ⊥

q (A), a real s ≥ ‖T̃A‖·ω(
√

log m) and a vector u ∈ Z
n
q , outputs a vector

e � DZm,s satisfying Ae = u.

Simpler Efficient Group Signatures from Lattices 413

3.3 Non-interactive Zero-Knowledge Proofs of Knowledge

In 2013, Laguillaumie et al. [43] adapted the protocol of [49,50] to obtain a
zero-knowledge proof of knowledge for the ISIS problem in the random oracle
model. Concretely, there is a non-interactive zero-knowledge proof of knowledge
(NIZKPoK) for the ISIS relations

RISIS = {(A,y, β;x) ∈ Z
n×m
q × Z

n
q × R × Z

m : Ax = y and ‖x‖ ≤ β}.

In particular, there is a knowledge extractor which, given two valid proofs with
the same commitment message but two different challenges, outputs a witness
x′ satisfying ‖x′‖ ≤ O(βm2) and Ax′ = y. By using the duality between LWE
and ISIS, there exists an NIZKPoK for the LWE relation:

RLWE = {(A,b, α; s) ∈ Z
n×m
q × Z

m
q × R × Z

n
q : ‖b − AT s‖ ≤ αq

√
m}.

Actually, as noted in [51], given a random matrix A ∈ Z
n×m
q such that the

columns of A generate Z
n
q (this holds with overwhelming probability for a uni-

formly random A ∈ Z
n×m
q), one can compute a matrix G ∈ Z

(m−n)×m
q such that

1) the columns of G generate Z
m−n
q ; 2) GAT = 0. Thus, to prove (A,b, α; s) ∈

RLWE, one can instead prove the existence of e such that ‖e‖ ≤ αq
√

m and
Ge = Gb. In particular, in the construction of our group signature we need to
prove that for given (A,b) ∈ Z

n×m
q × Z

m
q , there exist short vectors (e,x) such

that ‖e‖ ≤ αq
√

m, ‖x‖ ≤ β and b = AT s + pe + x for some s ∈ Z
n
q , where

p ≥ (αq
√

m+β)m2. Similarly, this can also be achieved by proving the existence
of short vectors e and x such that pGe+Gx = Gb using the NIZKPoK for ISIS
relations. Formally, denoting γ = max(αq

√
m,β), there exists an NIZKPoK for

the extended-LWE (eLWE) relations

ReLWE = {(A,b, γ; s, e,x) ∈ Z
n×m
q × Z

m
q × R × Z

n
q × Z

2m :
b = AT s + pe + x and ‖e‖ ≤ γ and ‖x‖ ≤ γ}.

4 Split-SIS Problems

Given uniformly random matrices (A1,A2) ∈ Z
n×m
q ×Z

n×m
q , integer N = N(n)

and β = β(n), an algorithm solving the split-SISq,m,β,N problem is asked to
output a tuple (x = (x1;x2), h) ∈ Z

2m × Z such that

– x1 �= 0 or hx2 �= 0
– ‖x‖ ≤ β, h ∈ [N], and A1x1 + hA2x2 = 0.

Recall that the standard SISq,m′,β problem asks an algorithm to find a root
of the hash function fA(x) = Ax = 0 mod q for a uniformly chosen matrix
A and a “narrow” domain D̂m′,β := {x ∈ Z

m′
: ‖x‖ ≤ β}. While for the split-

SISq,m,β,N problem, the algorithm is allowed to “modify” the function by defining
fA′(x′) = A′x′ for A′ = (A1‖A2x2) with arbitrarily x2 ∈ D̂m,β , and outputs
a root x′ = (x1, h) ∈ D̂m,β × [N]. Intuitively, the split-SISq,m,β,N problem is

414 P.Q. Nguyen et al.

not harder than SISq,2m,β problem. Since if x = (x1,x2) is a solution of the
SISq,2m,β instance A = (A1‖A2), (x, 1) is a solution of the split-SISq,m,β,N

instance (A1,A2) with N ≥ 1.
However, for prime q = q(n), and N = N(n) < q of a polynomial in n, we

show in the following theorem that the split-SISq,m,β,N problem is at least as
hard as SISq,2m,β . Thus, the average-case hardness of the split-SIS problem is
based on the worst-case hardness of SIVP by Proposition 2.

Theorem 1 (Hardness of Split-SIS Problems). For any polynomial m =
m(n), β = β(n), N = N(n), and any prime q ≥ β · ω(

√
n log n) > N , the split-

SISq,m,β,N problem is polynomially equivalent to SISq,2m,β problem. In partic-
ular, the average-case split-SISq,m,β,N is as hard as approximating the SIVP
problem in the worst case to within certain γ = β · Õ(

√
n) factors.

Proof. The direction from split-SISq,m,β,N to SISq,2m,β is obvious. We now
prove the other direction. Assume that there is an algorithm A that solves
split-SISq,m,β,N with probability ε, we now construct an algorithm B that solves
SISq,2m,β with probability at least ε/N (recall that N is a polynomial in n). For-
mally, given a SISq,2m,β instance Â = (Â1‖Â2) ∈ Z

n×2m
q , B randomly chooses an

integer h∗ ←R [N]. If h∗ = 0, B sets A = Â. Otherwise, B sets A = (h∗Â1‖Â2).
Since q is a prime and N < q (i.e., h∗ �= 0 is invertible in Zq), we have that
A is uniformly distributed over Z

n×2m
q . Then, B gives A = (A1‖A2) to A, and

obtains a solution (x = (x1;x2), h) ∈ Z
2m × [N] satisfying A1x1 + hA2x2 = 0.

If h∗ �= h, B aborts. (Since h∗ is randomly chosen from [N], the probability
Pr[h∗ = h] is at least 1/N .) Otherwise, B returns y = (x1;0) if h∗ = 0, else
returns y = x. The first claim follows from the fact that y �= 0, ‖y‖ ≤ β and
Ây = 0. Combining this with Proposition 2, the second claim follows. �

4.1 A Family of Hash Functions from Split-SIS Problems

We define a new family of hash functions based on the split-SIS problem, which
plays a key role in reducing the sizes of the group public key and the signature in
our construction. Formally, for integers n,m, prime q, and polynomial β = β(n) ≥
ω(

√
log m), N = N(n) < q, we define Dm,β = {x ←R DZm,β : ‖x‖ ≤ β

√
m},

and a hash function family Hn,m,q,β,N = {fA : Dm,β,N → Z
n
q × Dm,β}A∈Z

n×2m
q

,
where Dm,β,N := Dm,β × Dm,β × [N]. For index A = (A1‖A2) ∈ Z

n×2m
q , and

input (x1,x2, h) ∈ Dm,β,N , the hash value fA(x1,x2, h) := (A1x1+hA2x2,x2) ∈
Z

n
q × Dm,β . In the following, we show three properties of Hn,m,q,β,N , which are

useful to construct zero-knowledge proofs for the function in Hn,m,q,β,N .

Theorem 2 (One-Wayness). For parameters m > 2n log q, β = β(n) > 2 ·
ω(

√
log m), prime q = q(n), and polynomial N = N(n) < q, if the split-

SISq,m,
√

5mβ,N problem is hard, then the family of hash functions Hn,m,q,β,N

is one-way.

Proof. Assume that there is an algorithm A that breaks the one-wayness of
Hn,m,q,β,N , we construct an algorithm B that solves the split-SISq,m,

√
5mβ,N

Simpler Efficient Group Signatures from Lattices 415

problem. Actually, given a split-SISq,m,
√

5mβ,N instance A = (A1‖A2) ∈ Z
n×2m
q ,

B randomly chooses (x1,x2) ∈ DZm,β × DZm,β and h ←R [N], and computes
y = fA(x1,x2, h) = (A1x1 +hA2x2,x2). Then, it gives (A,y) to A, and obtains
(x′

1,x
′
2, h

′) satisfying (A1x′
1 + h′A2x′

2,x
′
2) = y. Finally, if h ≥ h′, B outputs

(x̂1, x̂2, ĥ) = (x1−x′
1,x2, h−h′). Else, B outputs (x̂1, x̂2, ĥ) = (x′

1−x1,x2, h
′−h).

It is easy to check that A1x̂1+ ĥA2x̂2 = 0 mod q, ĥ ∈ [N], and ‖(x̂1; x̂2)‖ ≤√
5mβ with overwhelming probability by the standard tail inequality of the

Gaussian distribution DZm,β . We finish this proof by showing that Pr[x̂1 = 0]
is negligible in n. Note that A can only obtain the information about x1 from
A1x1. By [36, Lem.5.2], this only leaks the distribution t + DΛ⊥

q (A1),β,−t for
any t satisfying A1t = A1x1. Namely, x1 should be uniformly distributed over
t+DΛ⊥

q (A1),β,−t from the view of A. Combining this with [56, Lem.2.16], we have
Pr[x1 = x′

1] is negligible in n. In other words, we have Pr[x̂ �= 0] = 1 − negl(n),
which completes the proof. �

Since fA(x1,0, h) = fA(x1,0, 0) holds for all h ∈ [N], the function Hn,m,q,β,N

with domain Dm,β,N := Dm,β ×Dm,β × [N] are not collision-resistant. However,
if we slightly restrict the domain of Hn,m,q,β,N to exclude the above trivial case,
we can prove that the family of Hn,m,q,β,N is collision-resistant. Formally, we
slightly restrict the domain of Hn,m,q,β,N to be D′

m,β,N = {(x1,x2, h) ∈ Dm,β,N :
x2 �= 0}.

Theorem 3 (Collision-Resistance). For parameter m = m(n), β = β(n),
prime q = q(n), and polynomial N = N(n) < q, if the split-SISq,m,

√
5mβ,N prob-

lem is hard, then the family of hash functions Hn,m,q,β,N with domain D′
m,β,N

is collision-resistant.

Proof. Assume there is a PPT algorithm A that can find collisions of Hn,m,q,β,N

with non-negligible probability ε, we construct an algorithm B solving split-
SISq,m,

√
5mβ,N with the same probability. Concretely, after obtaining a split-

SISq,m,
√

5mβ,N instance A = (A1‖A2), B directly gives A to A, and obtains
a pair of collisions (x1,x2, h) ∈ D′

m,β,N and (x′
1,x

′
2, h

′) ∈ D′
m,β,N satisfying

(x1,x2, h) �= (x′
1,x

′
2, h

′) and fA(x1, x2, h) = fA(x′
1,x

′
2, h

′). Note that in this
case, we must have x2 = x′

2 �= 0. If h ≥ h′, B returns (x̂1, x̂2, ĥ) = (x1 −
x′

1,x2, h−h′), else it returns (x̂1, x̂2, ĥ) = (x′
1−x1,x2, h

′−h). By the assumption
that (x1,x2, h) �= (x′

1,x
′
2, h

′), the inequality (x̂1, ĥ) �= 0 holds in both cases,
i.e., we always have x̂1 �= 0 or ĥx̂2 �= 0. The claim follows from the fact that
‖(x̂1; x̂2)‖ ≤

√
5mβ and ĥ ∈ [N]. �

Finally, we show that the family of hash functions Hn,m,q,β,N statistically
hides its third input.

Theorem 4. Let parameter m > 2n log q, β = β(n) > ω(
√

log m), prime q =
q(n), and polynomial N = N(n). Then, for a randomly chosen A = (A1‖A2) ∈
Z

n×2m
q , and arbitrarily x2 with norm ‖x2‖ ≤ β

√
m, the statistical distance

between the following two distributions:

{(A, fA(x1,x2, h), h) : x1 ←R Dm,β , h ←R [N]}

416 P.Q. Nguyen et al.

and
{(A, (u,x2), h) : u ←R Z

n
q , h ←R [N]}

is negligible in n.

Proof. Since the second output of fA(x1,x2, h) (i.e., x2) is independent from
the choices of h, we only have to show that, for arbitrarily x2 and h, the dis-
tribution {A1x1 + hA2x2 : x1 ←R Dm,β} is statistically close to uniform over
Z

n
q . Actually, using the fact that β ≥ ω(

√
log m) together with Lemma 3, we

have that the distribution of A1x1 is statistically close to uniform over Zn
q when

x1 ←R DZm,β . The claim of this theorem follows from the fact that the statis-
tical distance between DZm,β and Dm,β is negligible, and that the distribution
{u+hA2x2 : u ←R Z

n
q } is exactly the uniform distribution over Zn

q for arbitrary
x2 ∈ Dm,β , h ∈ [N]. �

4.2 Zero-Knowledge Proof of Knowledge for the Hash Functions

In this subsection, we present a proof of knowledge protocol for the family of
hash functions Hn,m,q,β,N . Concretely, given a matrix A = (A1‖A2), a vector
y = (y1,y2) ∈ Z

n
q × Z

m with 0 < ‖y2‖ ≤ β
√

m, the prover can generate a
proof of knowledge of x = (x1,x2, h) ∈ Z

2m+1 satisfying ‖x1‖ ≤ β
√

m, h ∈ [N]
and fA(x1,x2, h) = (Ax1 + hA2x2,x2) = y. Since x2 must be equal to y2, the
protocol is actually a proof of knowledge for the relation

Rsplit-SIS = {(A,y, β, N ;x1, h) ∈ Z
n×2m
q × (Zn

q × Z
m) × R × Z × Z

m × Z :
A1x1 + hA2y2 = y1, ‖x1‖ ≤ β

√
m and h ∈ [N]}.

Intuitively, we can adapt a variant of the protocols for ISIS relations
in [43,49,50] for our purpose, since one can rewrite y1 = A1x1 + hA2y2 =
(A1‖A2y2)(x1;h). However, this may not work when N � β. Since the basic
idea of [43,49,50] is to use randomness from a “large width” distribution (com-
pared to the distribution of the witness) to hide the distribution of the witness,
the width of the randomness distribution should be sufficiently larger than N in
our case, which might lead to a proof without soundness guarantee.

Fortunately, we can borrow the “bit-decomposition” technique from [22–24]
to deal with large N . The idea is to decompose h ∈ [N] into a vector of small
elements, and then prove the existence of such a vector for h. Formally, for
any h ∈ [N], we compute the representation of h in base β̄ = �β�, namely,
a �-dimension vector vh = (v0, . . . , v�−1) ∈ Z

� such that 0 ≤ vi ≤ β − 1
and h =

∑�−1
i=0 viβ̄

i, where � = �logβ̄ N�. Denote b = A2y2, compute D =
(b, β̄b, . . . , β̄�−1b) ∈ Z

n×�
q . It is easy to check that for any vector e ∈ Z

�,
there exists a h′ ∈ Zq such that De = h′b mod q. (h′ ∈ Zq is unique if
b �= 0.) In particular, we have that y1 = Âx̂, where Â = (A1‖D) ∈ Z

n×(m+�)
q ,

x̂ = (x1;vh) ∈ Z
m+� and ‖x̂‖ ≤ β

√
m + �. Since β̄ > 2 and N is a polynomial

in n, we have � � m and ‖x̂‖ < η = β
√

2m.
We first present a Σ-protocol for the function family Hn,m,q,β,N , which repeats

a basic protocol with single-bit challenge t = ω(log n) times in parallel. As

Simpler Efficient Group Signatures from Lattices 417

in [43,50], the basic protocol makes use of the rejection sampling technique
to achieve zero-knowledge. Formally, let γ = η · m1.5, denote ζ(z,y) = 1 −
min(

D
Zm+�,γ

(z)

Ml·DZm+�,y,γ
(z) , 1), where y, z ∈ Z

m+�, and the constant Ml ≤ 1 + O(1
m) is

set according to Lemma 4.5 in [50], the protocol is depicted in Fig 2.

Prover Verifier

CRS: Â ∈ Z
n×(m+�)
q , y1 ∈ Z

n
q

Private input: x̂ ∈ Z
m+�

For i ∈ {0, . . . , t − 1}
ei ←R D

Zm+�,γ
ui = Âei

U = (u0, . . . , ut−1)
c ←R {0, 1}t

c = (c0, . . . , ct−1)
zi = ei + cix̂
Set zi = ⊥ with probability ζ(zi, cix̂)

Z = (z0, . . . , zt−1)
Set di = 1 if ‖zi‖ ≤ 2γ

√
m + �

and Âzi = ui + ciy1
Accept iff

∑
i di ≥ 0.65t

Fig. 2. Σ-protocol for Rsplit-SIS

By [50, Th.4.6], we have Pr[zi �= ⊥] ≈ 1
Ml

= 1−O(1
m) for each i ∈ {0, . . . , t−

1}. In addition, Pr[‖zi‖ ≤ 2γ
√

m + � | zi �= ⊥] = 1−negl(m) by [50, Lem.4.4]. A
simple calculation shows that the completeness error of the protocol is at most
2−Ω(t) (when m is sufficiently large, e.g., m > 100). Besides, the protocol has
the property of special Honest-Verifier Zero Knowledge (HVZK). Namely, given
a challenge ci, there exists a simulator S that outputs a distribution (ui, ci, zi)
statistically close to the real transcript distribution. Concretely, S first chooses
zi ←R DZm+�,γ , and computes ui = Âzi−ciy1 mod q. Then, it sets zi = ⊥ with
probability 1− 1

Ml
, and outputs (ui, ci, zi). By Theorem 4, the term Âzi(mod q)

is statistically close to uniform over Zn
q , thus the distribution of ui is statistically

close to that in the real proof. Moreover, by [50, Th.4.6], the distribution of zi

is also statistically close to that in the real transcripts.
Finally, since the binary challenges (i.e., c) are used, the above protocol

has the property of special soundness. Actually, given two transcripts (U, c,Z)
and (U, c′,Z′) with distinct challenges c �= c′, one can extract a “weak” witness
x′ = zi − z′

i for some i satisfying Âx′ = y1 and ‖x′‖ ≤ 4γ
√

2m.
Applying the “Fiat-Shamir Heuristic” [34] in a standard way, one can obtain

an NIZKPoK by computing c = H(ρ,U), where H : {0, 1}∗ → {0, 1}t is modeled
as a random oracle, and ρ represents all the other auxiliary inputs, e.g., a speci-
fied message M to be signed. Finally, due to the nice property of Σ-protocol, one
can easily combine the protocol to prove EQ-relation, OR-relation, and AND-
relation, we omit the details.

418 P.Q. Nguyen et al.

5 A Simple and Efficient Group Signature from Lattices

In this section, we present our CPA-anonymous lattice-based group signature,
which can be easily extended to support CCA anonymity by replacing the under-
lying encryption with a CCA one. We defer the full-anonymous scheme to the
full version.

5.1 Our Construction

Assume that the security parameter is n, and δ is a real such that n1+δ >
�(n+1) log q+n�, all other parameters m, s, α, β, η, p, q are determined as follows:

m = 6n1+δ

s = m · ω(log m)
β = s

√
2m · ω(

√
log 2m) = m1.5 · ω(log1.5 m)

p = m2.5β = m4 · ω(log1.5 m)
q = m2 · max(pm2.5 · ω(log m), 4N) = m2.5 max(m6 · ω(log2.5 m), 4N)
α = 2

√
m/q

η = max(β, αq)
√

m = m2 · ω(log1.5 m)

(1)

Now, we present our group signature GS = (KeyGen,Sign,Verify, Open):

– KeyGen(1n, 1N): Take the security parameter n and the maximum number
N of group members as inputs, set an integer m ∈ Z, primes p, q ∈ Z, and
s, α, β, η ∈ R as above, and choose a hash function H : {0, 1}∗ → {0, 1}t

(modeled as random oracle) for the NIZKPoK proof, where t = ω(log n).
Then, the algorithm proceeds as follows:
1. Compute (A1,TA1) ← TrapGen(n,m, q), and randomly choose A2,1,

A2,2 ←R Z
n×m
q .

2. Compute (B,TB) ← SuperSamp(n,m, q,A1,0).
3. For j = 1, . . . , N , define Āj = (A1‖A2,1+jA2,2), extract a basis TĀj

←
ExtRndBasis(Āj , TA1 , s) such that ‖T̃Āj

‖ ≤ s
√

2m.
4. Define the group public key gpk = {A1,A2,1,A2,2,B}, the group man-

ager secret key gmsk = TB, and the group member’s secret keys gsk =
{gskj = TĀj

}j∈{1,...,N}
– Sign(gpk, gskj ,M): Take the group public key gpk = {A1,A2,1,A2,2,B},

the j-th user’s secret key gskj = TĀj
, and a message M ∈ {0, 1}∗ as inputs,

proceed as follows:
1. Compute (x1,x2) ← SamplePre(Āj ,TĀj

, β,0), where x1,x2 ∈ DZm,β .
2. Choose s ←R Z

n
q , e ←R χm

α , and compute

c = BT s + pe + x1

3. Generate a NIZKPoK proof π1 of (s, e,x1) such that (B, c, η; s, e,x1) ∈
ReLWE.

Simpler Efficient Group Signatures from Lattices 419

4. Let β̄ := �β� and � = �logβ̄ N�, define b = A2,2x2, and D =
(b, β̄b, . . . , β̄�−1b) ∈ Z

n×�
q . Generate a NIZKPoK π2 of x1, e, and

vj = (v0, . . . , v�−1) ∈ Z
�
β̄

of j ∈ [N] such that,

A1c + A2,1x2 = (pA1)e − Dvj , and
A1c = (pA1)e + A1x1

(2)

where the challenge is computed by H(c,x2, π1,M,Com), and Com
is the commitment message for the NIZKPoK proof of π2. (Note that
the proof, i.e., π2, is actually a standard composition of our protocol
in Section 4.2 and the protocol for RISIS [43,50] according to the nice
property of the underlying Σ-protocol. More discussions are given in the
full version.)

5. Output the signature σ = (c,x2, π1, π2).
– Verify(gpk,M, σ): Parse σ = (c,x2, π1, π2), return 1 if ‖x2‖ ≤ β

√
m,

A2,2x2 �= 0, and the proofs π1, π2 are valid, else return 0.
– Open(gpk, gmsk,M, σ): Parse gpk = {A1,A2,1,A2,2,B} and gmsk = TB,

compute x1 by decrypting c using TB. Then, compute y0 = A2,2x2 and
y1 = −A1x1 − A2,1x2. If y0 �= 0 and there is a j ∈ Z

∗
q such that y1 = j · y0

mod q, output j, else output ⊥.

Remark 1. One can decrypt c by first computing TT
B · c = TT

B(pe+x1) mod q.
If ‖TT

B(pe + x1)‖∞ < q/2, one can expect that TT
B(pe + x1) = (TT

Bc mod q)
holds over Z. Thus, x̂ = (pe + x1) can be solved by using Gaussian elimination
over Z since TB ∈ Z

m×m is full-rank. Finally, x1 = x̂ mod p can be successfully
recovered if ‖x1‖∞ < p/2.

For the correctness of our group signature scheme, we have the following
theorem.

Theorem 5. Assume n is the security parameter, and all other parameters
m, s, α, β, η, p, q are functions of n defined as in (1), where p, q are primes.
Then, the group signature GS is correct, and the group public key and the signa-
ture have bit-length 4nm log q and O(tm log q), respectively, where t = ω(log n).

Proof. Since we set m = 6n1+δ > �6n log q + n�, the two algorithms TrapGen
and SuperSamp can work correctly with overwhelming probability. In particular,
we have ‖T̃A1‖ ≤ O(

√
m), and ‖TB‖ ≤ m1.5 · O(

√
log m) by Proposition 3 and

Proposition 6. By Proposition 4, we have ‖T̃Āj
‖ ≤ s

√
2m for all i ∈ {1, . . . , N}

with overwhelming probability. Since the group public key only contains four
matrices over Z

n×m
q , it has bit-size 4nm log q = O(nm log q).

For the Sign algorithm, since β = s
√

2m ·ω(
√

log 2m) ≥ ‖T̃Āj
‖ ·ω(

√
log 2m),

we have x1,x2 � DZm,β by the correctness of the SamplePre algorithm in [36],
and ‖xi‖ ≤ β

√
m with overwhelming probability. In addition, since e is chosen

from χα, we have ‖e‖ ≤ αq
√

m with overwhelming probability. By the choices
of η = max(β, αq)

√
m, the algorithm can successfully generate the proofs π1

and π2. For the bit-length of the signature σ = (c,x2, π1, π2), we know that

420 P.Q. Nguyen et al.

both the bit-length of c and x2 are at most m log q. In addition, if we set the
repetition parameter t = ω(log n) for the proof π1 and π2, the bit-length of π1

and π2 are at most (3m − n)t log q and (2m + 2n + �)t log q, respectively. Thus,
the total bit-length of the signature σ is less than 2m log q+(5m+n+�)t log q =
O(t(m+log N) log q) = O(tm log q) since � = �logβ̄ N� � n and m = O(n log q).

Note that x2 � DZm,β ,1 therefore Pr[A2,2x2 = 0] ≤ O(q−n) by Lemma
3. Moreover, by the completeness of π1 and π2, the algorithm Verify will work
correctly with overwhelming probability. As for the Open algorithm, we only have
to show that we can correctly decrypt x1 from c by using TB. Since TT

B · c =
TT

B(pe + x1) mod q holds, one can expect that TT
B(pe + x1) = (TT

Bc mod q)
holds over Z if ‖TT

B(pe + x1)‖∞ < q/2. Thus, one can solve x̂ = (pe + x1) by
Gaussian elimination over Z since TB ∈ Z

m×m is full-rank. Moreover, by the
choices of p and β, we have ‖x1‖∞ ≤ ‖x1‖ < p, therefore x1 can be recovered by
computing x̂ mod p. We finish this proof by showing that ‖TT

B(pe + x1)‖∞ <
q/2. Actually, by Lemma 2 and Lemma 1, we have ‖pe+x1‖ ≤ 3m6 ·ω(log3 m).
By Proposition 6, we have ‖TB‖ ≤ m1.5 · ω(

√
log m). It is easy to check that

‖TT
B(pe + x1)‖∞ ≤ 3m8 · ω(log3.5 m) � q, which satisfies the requirement. �

5.2 The Security

For security, namely CPA-anonymity and full traceability, we have the following
two theorems.

Theorem 6. CPA-Anonymity] Under the LWE assumption, our group signa-
ture GS is CPA-anonymous in the random oracle model.

Proof. We prove Theorem 6 via a sequence of games.
In game G0, the challenger honestly generates the group public key gpk =

{A1, A2,1,A2,2,B}, the group manager secret key gmsk = TB, and the group
member’s secret key gsk = {gskj = TĀj

}j∈{1,...,N} by running the KeyGen
algorithm. Then, it gives (gpk,gsk) to the adversary A, and obtains a message
M , and two user indexes i0, i1 ∈ {1, . . . , N}. Finally, the challenger randomly
chooses a bit b ←R {0, 1}, computes σ∗ = (c∗,x∗

2, π
∗
1 , π∗

2) ← Sign(gpk, gskib
,M),

and returns σ∗ to A.
In Game G1, the challenger behaves almost the same as in G0, except that it

uses the NIZKPoK simulators (by appropriately programming the random ora-
cle) to generate π∗

1 , π∗
2 . By the property of the NIZKPoKs, G1 is computationally

indistinguishable from G0.
In Game G2, the challenger behaves almost the same as in G1, except that

it first chooses x∗
2 from DZm,β , and then uses TA1 to extract x∗

1 such that

1 As noted by Cash et al. [31], the output distribution of the SamplePre algorithm
in [36] is statistically close to the distribution (x1,x2) that samples as follows: ran-
domly choose x2 ←R DZm,s, and then compute x1 using TA1 to satisfy the condition
A1x1 + (A2,1 + jA2,2)x2 = 0. We note that this is also the reason why we do not
encrypt x2 as in [43], since it leaks little information about j without x1.

Simpler Efficient Group Signatures from Lattices 421

Āib
(x∗

1;x
∗
2) = 0. By the property of the SamplePre algorithm from [31,36], Game

G2 is statistically close to Game G1

In Game G3, the challenger behaves almost the same as in G2, except that
it computes c∗ = u + x∗

1 with a randomly chosen u ←R Z
m
q .

Lemma 4. Under the LWE assumption, Game G3 is computationally indistin-
guishable from Game G2.

Proof. Assume there is an algorithm A which distinguishes G2 from G3

with non-negligible probability. Then, there is an algorithm B that breaks the
LWE assumption. Formally, given a LWE tuple (B̂, û) ∈ Z

n×m
q × Z

m
q , B sets

B = pB̂, and computes (A1,TA1) ← SuperSamp(n,m, q,B,0). Then, it chooses
A2,1,A2,2 ←R Z

n×m
q . For j = 1, . . . , N , define Āj = (A1‖A2,1 + jA2,2), extract

a random basis TĀj
← ExtRndBasis(Āj ,TA1 , s). Finally, B gives the group

public key gpk = {A1,A2,1, A2,2,B}, and the group members’ secret keys
gsk = {gskj = TĀj

}j∈{1,...,N} to A. Note that the distributions of gpk,gsk
are statistically close to that in Game G2 and G3 by Proposition 4.

When generating the challenge signature, B behaves the same as the chal-
lenger in G2, except that it computes c = pû + x∗

1. We note that if (B̂, û) is a
LWE tuple with respect to the error distribution χα, c is the same as in G2. Oth-
erwise, we have that pû is uniformly distributed over Z

m
q (since p, q are primes,

and p < q), which shows that c has the same distribution as in G3. If A can
distinguish G2 from G3 with advantage ε, then B can break the LWE assumption
with advantage ε − negl(k). �

In Game G4, the challenger behaves almost the same as in G3, except that
it randomly chooses c∗ ←R Z

m
q .

Lemma 5. In Game G4, the probability that b′ = b is exactly 1/2.

Proof. The claim follows from the fact that the signature σ∗ in G4 is independent
from the choice of ib. �

Theorem 7. Traceability] Under the SIS assumption, our group signature GS
is fully traceable in the random oracle model.

Proof. Assume that there is an adversary A that breaks the full traceability
of GS, we construct an algorithm B breaking the SIS assumption. Formally,
B is given a matrix Â ∈ Z

m
q and tries to find a solution x̂ ∈ Z

m
q such that

‖x̂‖ ≤ poly(m) and Âx̂ = 0.

Setup. B randomly chooses R ←R {−1, 1}m×m and j∗ ←R {−4m2.5N +
1, . . . , 4m2.5N − 1}, and computes (A2,2,TA2,2) ← TrapGen(n,m, q).
Then, it sets A1 = Â and A2,1 = A1R − j∗A2,2. Finally, compute
(B,TB) ← SuperSamp(n, m, q,A1,0), and give the group public key gpk =
{A1,A2,1,A2,2,B}, and the group manager secret key gmsk = TB to the
adversary A.

422 P.Q. Nguyen et al.

Secret Key Queries. Upon receiving the secret key query for user j from
A, B aborts if j = j∗ or j /∈ {1, . . . , N}. Otherwise, it defines Āj =
(A1‖A2,1 + j∗A2,2) = (A1‖A1R + (j − j∗)A2,2), extracts a random basis
TĀj

← ExtBasisRight(Āj ,R, TA2,2 , s),
2 and returns it to A.

Sign Queries. Upon receiving a signing query for message M under user j from
A, B returns ⊥ if j /∈ {1, . . . , N}. Else if j = j∗, B generates a signature on
M using the NIZKPoK simulators for π1 and π2 (i.e., by simply choosing
c ←R Z

m
q and x2 ←R DZm,s). Otherwise, it generates the signature by first

extracting the j-th user’s secret key as in answering the secret key queries.
Forge. Upon receiving a forged valid signature σ = (c,x2, π1, π2) with prob-

ability ε, B extracts the knowledge e,x1 and vj with norm at most 4ηm2

by programming the random oracle twice to generate two different “chal-
lenges”. By the forking lemma of [12], B can succeed with probability at
least ε(ε/qh − 2−t), where qh is the maximum number of hash queries of A.
Then, B decrypts c using TB, and obtains (e′,x′

1), and distinguishes the
following cases:

– If (x′
1, e

′) �= (x1, e), we have A1c = pA1e+A1x1 = pA1e′+A1x′
1. Thus,

x̂ = p(e−e′)+(x1 −x′
1) is a solution of the SIS problem, B returns x̂ as

its own solution. Note that in this case, we have ‖x̂‖ ≤ 8(p + 1)ηm2 =
m8 · ω(log3 m).

– Otherwise, if (x′
1, e

′) = (x1, e), we have A1x1 + A2,1x2 + jA2,2x2 = 0
according to equation (2) of π2, where j =

∑�−1
i=0 viβ̄

i and vh =
(v0, . . . , v�−1). A simple calculation indicates that |j| < 4m2.5N < q (we
note that ‖vh‖ ≤ 4ηm2 = 4βm2.5). Since A2,2x2 �= 0 and q is a prime,
the open algorithm will always output j, namely, it will never output ⊥.
In addition, if j �= j∗, B aborts. Otherwise, B returns x̂ = x1 + Rx2 as
its own solution.
Since j∗ is randomly chosen from {−4m2.5N + 1, . . . , 4m2.5N − 1}, the
probability that j∗ = j is at least 1

8m2.5N . Conditioned on j∗ = j, we
have A1x1 +A2,1x2 + jA2,2x2 = A1x1 +A1Rx2 = 0, which shows that
x̂ = x1 + Rx2 is a solution of the SIS problem, in particular, we have
‖x̂‖ ≤ ηm2.5 · ω(

√
log m) = m4.5ω(log2 m) by [2, Lem.5].

In all, the probability that B solves the SIS problem is at least ε(ε/qh−2−t)
8m2.5N ,

which is non-negligible if ε is non-negligible. Moreover, since the norm of x̂ is
at most m8 · ω(log3 m) and q ≥ m8.5 · ω(log2.5 m), we have that the security of
our scheme is based on the hardness of the SIVP problem in the worst case to
within a polynomial approximation factor, by Proposition 2. �

Acknowledgments. We would like to thank Kang Yang for his helpful comments on
the related work of group signatures, and the anonymous reviewers of PKC 2015 for
kind suggestions on our paper. We are also grateful to Sherman Chow for bringing
their work to our attention.

2 Recall that TA2,2 is also a short basis of Λ⊥
q (j · A2,2) for all j 	= 0 mod q.

Simpler Efficient Group Signatures from Lattices 423

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

3. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 98–115. Springer, Heidelberg (2010)

4. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

5. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th Annual ACM Symposium on Theory of Computing (STOC), pp. 99–108.
ACM, New York (1996)

6. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999)

7. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS, pp. 75–86 (2009)

8. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

9. Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and provably
secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

10. Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg
(2002)

11. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

12. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a gen-
eral forking lemma. In: 13th ACM Conference on Computer and Communications
Security (CCS), pp. 390–399. ACM, New York (2006)

13. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: 1st ACM Conference on Computer and Communications
Security (CCS), pp. 62–73. ACM Press (1993)

14. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Bet-
ter zero-knowledge proofs for lattice encryption and their application to group
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873,
pp. 551–572. Springer, Heidelberg (2014)

15. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

16. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

424 P.Q. Nguyen et al.

17. Boneh, D., Nikolaenko, V., Segev, G.: Attribute-based encryption for arithmetic
circuits. Cryptology ePrint Archive, Report 2013/669 (2013)

18. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: 11th
ACM Conference on Computer and Communications Security (CCS), pp. 168–177.
ACM, New York (2004)

19. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

20. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

21. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007)

22. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Innovations in Theoretical Computer Science, ITCS,
pp. 309–325 (2012)

23. Brakerski, Z., Vaikuntanathank, V. : Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 97–106 (2011)

24. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: 5th
Conference on Innovations in Theoretical Computer Science (ITCS), pp. 1–12.
ACM, New York (2014)

25. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)

26. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: 11th ACM
Conference on Computer and Communications Security (CCS), pp. 132–145. ACM
Press (2004)

27. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

28. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

29. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from
lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
57–75. Springer, Heidelberg (2012)

30. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

31. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

32. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

33. Chen, L., Li, J.: Flexible and scalable digital signatures in TPM 2.0. In: 20th ACM
Conference on Computer and Communications Security (CCS), pp. 37–48. ACM
Press (2013)

34. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

Simpler Efficient Group Signatures from Lattices 425

35. Gentry, C., Gorbunov, S., Halevi, S., Vaikuntanathan, V., Vinayagamurthy, D.:
How to compress (reusable) garbled circuits. Cryptology ePrint Archive, Report
2013/687 (2013)

36. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: 40th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 197–206. ACM, New York (2008)

37. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010)

38. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

39. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007)

40. T.C. Group. TCG TPM specification 1.2. (2003).
http://www.trustedcomputinggroup.org

41. T.C. Group. TCG TPM specification 2.0. (2013).
http://www.trustedcomputinggroup.org/resources/tpm library specification

42. I.P.W. Group, VSC Project. Dedicated short range communications (DSRC)
(2003)

43. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part II. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013)

44. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme
with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 345–361. Springer, Heidelberg (2014)

45. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012)

46. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012)

47. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013)

48. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. xx-yy.
Springer, Heidelberg (2015)

49. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008)

50. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

51. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

52. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

426 P.Q. Nguyen et al.

53. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37, 267–302 (2007)

54. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

55. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: 41st Annual ACM Symposium on Theory of Computing
(STOC), pp. 333–342. ACM, New York (2009)

56. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

57. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37 Annual ACM Symposium on Theory of Computing (STOC), pp. 84–93.
ACM, New York (2005)

58. Stern, J.: A new paradigm for public key identification. IEEE Transactions on
Information Theory 42(6), 1757–1768 (1996)

Group Signatures from Lattices:
Simpler, Tighter, Shorter, Ring-Based

San Ling(B), Khoa Nguyen, and Huaxiong Wang

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

{lingsan,khoantt,hxwang}@ntu.edu.sg

Abstract. We introduce a lattice-based group signature scheme that
provides several noticeable improvements over the contemporary ones:
simpler construction, weaker hardness assumptions, and shorter sizes of
keys and signatures. Moreover, our scheme can be transformed into the
ring setting, resulting in a scheme based on ideal lattices, in which the
public key and signature both have bit-size Õ(n · log N), for security
parameter n, and for group of N users. Towards our goal, we construct a
new lattice-based cryptographic tool: a statistical zero-knowledge argu-
ment of knowledge of a valid message-signature pair for Boyen’s signature
scheme (Boyen, PKC’10), which potentially can be used as the building
block to design various privacy-enhancing cryptographic constructions.

1 Introduction

Group signatures [CvH91] have been an active research topic in public-key cryp-
tography. Such schemes allow users of a group to anonymously sign messages
on behalf of the whole group (anonymity). On the other hand, in cases of dis-
putes, there is a tracing mechanism which can link a given signature to the iden-
tity of the misbehaving user (traceability). These two appealing features allow
group signatures to find applications in various real-life scenarios, such as digital
right management, anonymous online communications, e-commerce systems, and
much more. On the theoretical front, designing secure and efficient group signa-
ture schemes is interesting and challenging, since those advanced constructions
usually require a sophisticated combination of carefully chosen cryptographic
ingredients: digital signatures, encryptions, and zero-knowledge protocols. Over
the last two decades, numerous group signature schemes have been proposed
(e.g., [CS97,ACJT00,BMW03,BBS04,BS04,Gro07,LPY12]).

In recent years, lattice-based cryptography, possessing nice features such
as provable security under worst-case hardness assumptions, conjectured resis-
tance against quantum computers and asymptotic efficiency, has become one
of the most trendy research directions, especially after the emergence of fully-
homomorphic encryption schemes from lattices, pioneered by Gentry [Gen09].
Along with other primitives, lattice-based group signatures has received notice-
able attention. Prior to our work, several schemes were proposed, each of

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 427–449, 2015.
DOI: 10.1007/978-3-662-46447-2 19

428 S. Ling et al.

which has its own strengths and weaknesses. The first group signature from
lattices was introduced by Gordon et al. [GKV10]. While their scheme is of
great theoretical interest, its public key and signature have sizes N · Õ(n2),
for security parameter n, and for group of N users. In terms of efficiency,
this is a noticeable disadvantage when the group is large, e.g., group of all
employees of a big company. Camenisch et al. [CNR12] later proposed lattice-
based anonymous attribute tokens system - a generalization of group signa-
ture. Their scheme supports CCA-anonymity, a stronger security requirement
than the relaxed notion CPA-anonymity achieved by [GKV10], but the signa-
ture size is still linear in N . The linear-size barrier was finally overcome by
Laguillaumie et al. [LLLS13], who designed a scheme featuring public key and
signature sizes log N · Õ(n2). Yet, their scheme requires large parameters (e.g.,
q = log N · Õ(n8)), and its anonymity and traceability properties have to rely
on the hardness of SIVPlog N ·Õ(n8) and SIVPlog N ·Õ(n7.5), respectively. Thus, the
scheme produces significant overheads in terms of hardness assumptions, con-
sidering the fact that it is constructed based on Boyen’s signature [Boy10] and
the Dual-Regev encryption [GPV08] which rely on much weaker assumptions.
Recently, Langlois et al. [LLNW14] introduced a lattice-based group signature
scheme with verifier-local revocation, that also achieves logarithmic signature
size. However, their scheme only satisfies a weak security model suggested by
Boneh et al. [BBS04]. As in the schemes from [GKV10,CNR12,LLLS13], we
consider the currently strongest model for static groups provided by Bellare et
al. [BMW03].

The present state of lattice-based group signatures raises several interesting
open questions. One of them is whether it is possible to design a scheme in
the BMW model that simultaneously achieves signature size log N · Õ(n) and
weak hardness assumptions. Another open question, pointed out in [LLLS13],
is to construct group signatures based on the ring variants of the Small Integer
Solutions (SIS) and Learning with Errors (LWE) problems. This would make
a noticeable step towards practice, since in those schemes, the public key size
can be as small as log N · Õ(n). Furthermore, we remark that the design app-
roach of [GKV10,CNR12,LLLS13] are relatively complex. First, in all of these
schemes, the encryption layer (needed for enabling traceability) has to be ini-
tialized in accordance with the signature layer (used for key generation), which,
to some extent, limits the choice of encryption mechanisms. In addition, the
encryption layer requires the costly generation of at least O(log N) matrices in
Z

n×m
q , and the signer has to encrypt at least log N · Õ(n) bits, which leads to

a growth in public key and signature sizes. Moreover, these schemes have to
employ involved zero-knowledge protocols to prove the well-formedness of the
obtained ciphertexts: in [GKV10,CNR12], the main protocols are obtained by
OR-ing N proofs, while in [LLLS13], log N + 2 different proofs are needed. This
somewhat unsatisfactory situation highlights the challenge of simplifying the
design of lattice-based group signatures.

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 429

Our Contributions and Summary of Our Techniques
In this work, we reply positively to all the open questions discussed above. Specif-
ically, we introduce a lattice-based group signature scheme in the random oracle
model (in Section 4), which simultaneously achieves the following features:

– The public key and signature have sizes log N ·Õ(n2) and log N ·Õ(n), respec-
tively 1. In comparison with [LLLS13], the key is around 4 times smaller,
and the signature contains a shorter ciphertext.

– The scheme relies on relatively weak hardness assumptions: it is CCA-
anonymous and traceable if SIVPlog N ·Õ(n2) is hard in the worst-case. In con-
trast to [LLLS13], the scheme produces no overhead in terms of security: its
anonymity and traceability properties rely exactly on the hardness assump-
tions of the underlying encryption scheme and signature scheme, respectively.

Furthermore, our scheme can be transformed into the ring setting, resulting in
a scheme based on ideal lattices (in Section 5), in which the key and signature
both have size Õ(n · log N). In Table 1, we summarize the features of our two
schemes in comparison with the existing ones.

Table 1. Comparison among lattice-based group signature schemes, for security
parameter n, and groups of N users. The [GKV10] scheme and our scheme in Section 5
only satisfy the CPA-anonymity notion, while the schemes from [CNR12] and [LLLS13],
and our scheme in Section 4 support the stronger notion CCA-anonymity.

Scheme [GKV10] [CNR12] [LLLS13] Section 4 Section 5

Signature size N · Õ(n2) N · Õ(n2) log N · Õ(n) log N · Õ(n) log N · Õ(n)

Public key
size

N · Õ(n2) N · Õ(n2) log N · Õ(n2) log N · Õ(n2) log N · Õ(n)

Anonymity
assumption

SIVPÕ(n2) SIVPÕ(n2) SIVPlogN·Õ(n8) SIVPlogN·Õ(n2)
SVP

∞
logN·Õ(n3.5)

Traceability
assumption

SIVPÕ(n1.5) SIVPÕ(n2) SIVPlogN·Õ(n7.5) SIVPlogN·Õ(n2) SVP
∞
logN·Õ(n2)

Another contribution of this work is that our schemes are obtained via a sim-
ple design approach. We rely on Boyen’s signature scheme [Boy10], and consider
group of N = 2� users, where each user is identified by a string d ∈ {0, 1}�, as
in [LLLS13]. Yet, in our scheme, the user’s secret key is simply a Boyen signa-
ture z ∈ Z

2m on d (in [LLLS13], it is a matrix in Z
2m×2m - which is 2m = Õ(n)

times longer). To sign a message on behalf of the group, the user first encrypts
his identity d to obtain a ciphertext c, and then generates a zero-knowledge
argument to prove that he possesses a valid message-signature pair (d, z) for

1 It was noted by Bellare et al. [BMW03], that the dependency of keys and signatures
sizes on log N is unavoidable for group signature schemes in the their model.

430 S. Ling et al.

Boyen’s signature scheme, and that c is a correct encryption of d. The protocol
then is repeated to make the soundness error negligibly small, and then is made
non-interactive using the Fiat-Shamir heuristic. The group signature is simply
the pair (c,Π), where Π is the obtained non-interactive argument. To verify a sig-
nature, one checks Π, and to open it, the group manager decrypts c. We remark
that in our design, the signer has to encrypt only � = log N bits. Furthermore,
the underlying encryption scheme is totally independent of the underlying stan-
dard signature (i.e., Boyen’s signature in this case). This provides us a flexible
choice of encryption schemes.

1. In the scheme in Section 4, to achieve CCA-anonymity, we rely on a CCA-
secure encryption scheme, obtained by the standard technique of combin-
ing a one-time signature scheme and an identity-based encryption (IBE)
scheme [BCHK07]. In particular, we employ the IBE scheme by Gentry et
al. [GPV08] to gain efficiency in the random oracle model.

2. In the ring-based scheme in Section 5, since our main goal is efficiency,
we employ the CPA-secure encryption scheme from [LPR13], for which the
public key and ciphertext consist of only 2 ring elements.

In the process, we introduce a new lattice-based cryptographic tool: a statis-
tical zero-knowledge argument of knowledge of a valid message-signature pair
for Boyen’s signature scheme. We remark that previous protocols in lattice-
based cryptography (e.g., [MV03][Lyu08][LNSW13]) only allow to prove in zero-
knowledge the possession of a signature on a publicly given message. The
challenging part is to hide both the signature and message from the verifier,
which we overcome by a non-trivial technique described in Section 3. We believe
that our new protocol is of independent interest. Indeed, apart from group sig-
natures, such protocols are essential for designing various privacy-enhancing
constructions, such as anonymous credentials [CL01], compact e-cash [CHL05],
policy-based signatures [BF14], and much more.

Comparison to Related Work. In a concurrent and independent work,
Nguyen, Zhang and Zhang [NZZ15], based on a new zero-knowledge protocol cor-
responding to a simple identity-encoding function, also obtain a simpler lattice-
based group signature than [GKV10,LLLS13]. In [NZZ15], the public key and
signature sizes are shorter by a O(log N) factor than in previous works, and are
shorter than ours. On the other hand, the user’s secret key in [NZZ15] is still a
matrix in Z

2m×2m (as in [LLLS13]), and the scheme requires larger parameters,
e.g., q = m2.5 max(m6ω(log2.5 m), 4N), as well as stronger security assumptions
than ours.

2 Preliminaries

Notations. For integer n ≥ 1, we denote by [n] the set {1, . . . , n}. The set of
all permutations of k elements is denoted by Sk. We assume that all vectors are
column vectors. The concatenation of vectors x ∈ R

m and y ∈ R
k is denoted

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 431

by (x‖y). We denote the column concatenation of matrices A ∈ R
n×m and

B ∈ R
n×k by

[

A
∣
∣B

]

. The identity matrix of order k is denoted by Ik. If S is a

finite set, y
$←− S means that y is chosen uniformly at random from S.

2.1 Group Signatures

Definition 1 ([BMW03]). A group signature scheme is a tuple of 4
polynomial-time algorithms:

– KeyGen: This algorithm takes as input 1n, 1N , where n ∈ N is the security
parameter and N ∈ N is the number of group users, and outputs a triple
(gpk, gmsk, gsk), where gpk is the group public key; gmsk is the group man-
ager’s secret key; and gsk = {gsk[i]}i∈{0,...,N−1}, where for i ∈ {0, . . . , N−1},
gsk[i] is the secret key for user of index i.

– Sign: This algorithm takes as input gsk[i] for some i ∈ {0, . . . , N − 1}, and a
message M , and returns a group signature Σ.

– Verify: This algorithm takes as input gpk, a message M , a purported signa-
ture Σ on M , and returns either 1 (Valid) or 0 (Invalid).

– Open: This algorithm takes as input gmsk, a message M , a signature Σ, and
returns an index i ∈ {0, . . . , N − 1}, or ⊥ (to indicate failure).

Correctness. The correctness requirement for a group signature is as follows.
For all n,N ∈ N, all (gpk, gmsk, gsk) produced by KeyGen(1n, 1N), all i ∈
{0, . . . , N − 1}, and all M ∈ {0, 1}∗,

Verify
(

gpk,M,Sign(gsk[i],M)
)

= 1 ∧ Open
(

gmsk,M,Sign(gsk[i],M)
)

= i.

Security. A secure group signature must satisfy two security notions:

– Traceability requires that all signatures, even those produced by a coalition
of group users and the group manager, can be traced back to a member of
the coalition.

– Anonymity requires that, signatures generated by two distinct group users
are computationally indistinguishable to an adversary knowing all the user
secret keys. In Bellare et al.’s model [BMW03], the anonymity adversary is
granted access to an opening oracle (CCA-anonymity). Boneh et al. [BBS04]
later proposed a relaxed notion, where the adversary cannot query the open-
ing oracle (CPA-anonymity).

Formal definitions of the above notions are provided in Appendix A.

2.2 Average-Case Lattices Problems and Their Ring Variants

We first recall the definitions and hardness results for average-case problems SIS,
LWE.

Definition 2 ([Ajt96,GPV08]). The SISp
n,m,q,β problem is as follows: Given

uniformly random matrix A ∈ Z
n×m
q , find a non-zero vector x ∈ Z

m such
that ‖x‖p ≤ β and Ax = 0 mod q.

432 S. Ling et al.

If m,β = poly(n), and q >
√

nβ, then the SIS∞
n,m,q,β problem is at least as hard

as SIVPγ for some γ = β · Õ(
√

nm) (see [GPV08,MP13]).

Definition 3 ([Reg05]). Let n,m ≥ 1, q ≥ 2, and let χ be a probability
distribution on Z. For s ∈ Z

n
q , let As,χ be the distribution obtained by sampling

a $←− Z
n
q and e ←↩ χ, and outputting (a,aT · s + e) ∈ Z

n
q × Zq. The LWEn,q,χ

problem asks to distinguish m samples chosen according to As,χ (for s $←− Z
n
q)

and m samples chosen according to the uniform distribution over Z
n
q × Zq.

If q is a prime power, b ≥ √
nω(log n), γ = Õ(nq/b), then there exists an efficient

sampleable b-bounded distribution χ (i.e., χ outputs samples with norm at most
b with overwhelming probability) such that LWEn,q,χ is as least as hard as SIVPγ

(see [Reg05,Pei09,MM11,MP12]).

We now recall the ring variants of the SIS and LWE, as well as their hardness
results. Let f = xn + 1, where n is a power of 2, and let q > 2 be prime. Let
R = Z[x]/〈f〉 and Rq = R/qR. (As an additive group, Rq is isomorphic to Z

n
q .)

For an element a = c0 + c1x + . . . + cn−1x
n−1 ∈ R, we define ‖a‖∞ = maxi(|ci|).

For a vector a = (a1, . . . , am) ∈ Rm, we define ‖a‖∞ = maxj(‖aj‖∞). To avoid
ambiguity, we will denote the multiplication operation of two ring elements by
the symbol ⊗.

Definition 4 ([LM06,PR06,LMPR08]). The Ring-SISn,m,q,β problem is as
follows: Given a uniformly random a = (a1, . . . , am) ∈ Rm

q , find a non-zero vector
x = (x1, . . . , xm) ∈ Rm

q such that ‖a‖∞ ≤ β and ax = a1 ⊗ x1 + . . . am ⊗ xm =
0 mod q.

For m > log q
log(2β) , γ = 16βmn log2 n, and q ≥ γ

√
n

4 log n , the Ring-SISn,m,q,β problem
is at least as hard as SVP∞

γ in any ideal in the ring R (see [LM06]).

Definition 5 ([LPR10]). Let n,m ≥ 1, q ≥ 2, and let χ be a probability
distribution on R. For s ∈ Rq, let As,χ be the distribution obtained by sampling

a
$←− Rq and e ←↩ χ, and outputting the pair (a, a ⊗ s + e) ∈ Rq × Rq. The

Ring-LWEn,m,q,χ problem asks to distinguish m samples chosen according to

As,χ (for s
$←− Rq) and m samples chosen according to the uniform distribution

over Rq × Rq.

Let q = 1 mod 2n, b ≥ ω(
√

n log n) and γ = n2(q/b)(nm/ log(nm))1/4. Then
there exists an efficient sampleable b-bounded distribution χ such that the
Ring-LWEn,m,q,χ problem is at least as hard as SVP∞

γ in any ideal in the ring R
(see [LPR10]).

Note that the hardness of LWE is not affected if the secret s is sampled
from χ [ACPS09]. The same holds for Ring-LWE (see [LPR13]). This is called
the “Hermite Normal Form” (HNF) of these problems.

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 433

2.3 Boyen’s “Lattice-mixing” Signature Scheme and Its Ring-Based
Variant

Boyen’s signature scheme [Boy10] is a lattice analogue of Water’s pairing-based
signature [Wat05]. Here we consider its improved version provided in [MP12].
The scheme uses the following parameters: n is the security parameter, � is the
message length, q = poly(n) is sufficiently large, m ≥ 2n log q, σ = Ω(

√
�n log q

log n) and β = σω(
√

log m). The public key is a tuple (A,A0, . . . ,A�,u), and
the signing key is a trapdoor TA, where:

– Matrix A is statistically close to uniform over Zn×m
q and its trapdoor TA ∈

Z
m×m is a short basis for the lattice Λ⊥(A) =

{

x ∈ Z
m : A ·x = 0 mod q

}

.
The pair (A,TA) is generated by a PPT algorithm GenTrap(n,m, q) (see
[GPV08,AP11,MP12]).

– Matrices A0, . . . ,A� ∈ Z
n×m
q and vector u ∈ Z

n
q are uniformly random.

To sign a message d = (d1, . . . , d�) ∈ {0, 1}�, the signer forms matrix A(d) =
[

A |A0 +
∑�

i=1 diAi

]

∈ Z
n×2m
q , then runs the deterministic algorithm ExtBasis

(TA,A(d)) from [CHKP10] to obtain a short basis T(d) for the lattice Λ⊥(A(d)).
Finally the signer runs the probabilistic algorithm SamplePre(T(d),A(d),u, σ)
from [GPV08] to output a signature z ∈ Z

2m satisfying ‖z‖∞ ≤ β and A(d)z =
u mod q. It follows from the improved security reduction in [MP12] that scheme
is unforgeable under adaptive chosen-message attack if the SIS∞

n,m,q,β′ problem
is hard for some β′ = �Õ(n). Therefore, for the given parameters, the security
of the scheme can be based on the worst-case hardness of SIVP�·Õ(n2).

The public key in Boyen’s signature has size �O(nm log q) = �Õ(n2), but
can be reduced to �Õ(n) by transforming the scheme into the ring setting,
because the parameter m then can be set as m = Ω(log q). This can be done
rather straightforwardly, thanks to the constructions of the algorithms GenTrap,
SamplePre, and ExtBasis for ideal lattices given by Stehlé et al. [SSTX09]. For
an element a ∈ Rq, define rot(a) ∈ Z

n×n
q as the matrix whose i-th column

is xi ⊗ a, for i = 0, . . . , n − 1. For a vector a = (a1, . . . , am) ∈ Rm
q , define

rot(a) =
[

rot(a1) | . . . | rot(am)
]

∈ Z
n×nm
q .

In the ring variant of Boyen’s signature, the public key is a tuple (a,a0, . . . ,a�,

u) ∈
(

Rm
q

)�+2 × Rq, and the signing key is a trapdoor Ta ∈ Z
nm×nm for

Λ⊥(

rot(a)
)

. Similarly, a signature on message d ∈ {0, 1}� is a small-norm vector
z ∈ R2m such that

[

a |a0 +
∑�

i=1 diai

]

z = u mod q. By adapting the secu-
rity reduction from [MP12] into the ring setting, the security of the scheme
can be based on the average-case hardness of the Ring-SISn,m,q,β′ problem for
some β′ = �Õ(n), which in turn can be based on the worst-case hardness of the
SVP∞

�·Õ(n2)
problem on ideal lattices.

2.4 Zero-Knowledge Argument Systems for Lattices

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the soundness property only holds for computationally

434 S. Ling et al.

bounded cheating provers, while the zero-knowledge property holds against any
cheating verifier. More formally, let the set of statements-witnesses R = {(y, w)}
∈ {0, 1}∗ ×{0, 1}∗ be an NP relation. A two-party game 〈P, V 〉 is called an inter-
active argument system for the relation R with soundness error e if the following
two conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[

〈P (y, w), V (y)〉 = 1
]

= 1.
– Soundness. If (y, w)
∈ R, then ∀ PPT P ∗: Pr[〈P ∗(y, w), V (y)〉 = 1] ≤ e.

An interactive argument system is called statistical zero-knowledge if for anyV ∗(y),
there exists a PPT simulator S(y) producing a simulated transcript that is sta-
tistically close to the one of the real interaction between P (y, w) and V ∗(y). A
related notion is argument of knowledge,which requires thewitness-extended emu-
lation property. For protocols consisting of 3 moves (i.e., commitment-challenge-
response), witness-extended emulation is implied by special soundness [Gro04],
where the latter assumes that there exists a PPT extractor which takes as input a
set of valid transcripts with respect to all possible values of the ‘challenge’ to the
same ‘commitment’, and outputs w′ such that (y, w′) ∈ R.

Statistical zero-knowledge arguments of knowledge (sZKAoK) are usually
constructed using a statistically hiding and computationally binding string com-
mitment scheme. Kawachi et al. [KTX08] designed such commitment scheme
from lattices, where the binding property relies on the hardness of SIVPÕ(n).
Using this primitive, Ling et al. [LNSW13] proposed a Stern-type [Ste96] sZKAoK
for the Inhomogeneous SIS relation:

RISIS =
{(

(A ∈ Z
n×m
q ;u ∈ Z

n
q),x ∈ Z

m
)

: ‖x‖∞ ≤ β ∧ Ax = u mod q
}

.

The core technique in Ling et al.’s work is called Decomposition-Extension. This
technique is as follows. Letting p = �log β�+1, Ling et al. observe that an integer
x ∈ [0, β] if and only if there exist x1, . . . , xp ∈ {0, 1} such that x =

∑p
j=1 βjxj ,

where the sequence of integers β1, . . . , βp is determined as follows:

β1 = �β/2�;β2 = �(β − β1)/2�;β3 = �(β − β1 − β2)/2�; . . . ;βp = 1.2

This observation allows the prover to efficiently decompose x ∈ [−β;β]m into
x̃1, . . . , x̃p ∈ {−1, 0, 1}m such that

∑p
j=1 βjx̃j = x. To argue the possession of

the x̃j ’s in zero-knowledge, the prover extends x̃j to xj ∈ B3m, where B3m is
the set of all vectors in {−1, 0, 1}3m having exactly m coordinates equal 0; m
coordinates equal to 1; and m coordinates equal to −1. This set has a helpful
property: if π is a permutation of 3m elements, then xj ∈ B3m if and only if
π(xj) ∈ B3m. Then in the framework of Stern’s 3-move protocol, the prover is
able to demonstrate that:
2 We note that the same sequence of integers was previously used by Lipmaa et

al. [LAN02] in the context of range proofs, but under a different representation:
βj = �(β + 2j−1)/2j� for each j ∈ [p].

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 435

1. For each j, a random permutation of xj belongs to B3m, which implies that
xj ∈ B3m, and thus, x̃j ∈ {−1, 0, 1}m. This will convinces the verifier that
x ∈ [−β, β]m.

2. A∗ ∑p
j=1 βj(xj + rj) − u = A∗ ∑p

j=1 βjrj mod q, where A∗ ∈ Z
n×3m
q is the

extended matrix obtained by appending 2m “dummy” zero-columns to A,
and r1, . . . , rp ∈ Z

3m
q are uniformly “masking” vectors for the xj ’s. This

equation implies Ax = A∗ ∑p
j=1 βjxj = u mod q.

3 New Zero-Knowledge Protocols for Lattice-Based
Cryptography

In this section, we first present a sZKAoK of a valid message-signature pair (d, z)
for Boyen’s signature scheme ([Boy10], see also Section 2.3). Then we provide
a lattice-based verifiable encryption protocol to show that a given ciphertext
correctly encrypts d. The combined protocol of these two ones, which will serve
as the building block in both constructions of our group signatures, is described
in detail in Section 3.3.

3.1 ZKAoK of a Valid Message-Signature Pair for Boyen’s
Signature Scheme

Suppose that the verification key for Boyen’s signature scheme is a tuple (A,A0,
. . . ,A�,u). Our goal is to design a statistical ZKAoK of a pair (d, z) ∈ {0, 1}� ×
Z
2m satisfying ‖z‖∞ ≤ β and A(d)z = u mod q, where A(d) =

[

A |A0 +
∑�

i=1 diAi

]

∈ Z
n×2m
q . We first observe that obtaining a ZKAoK of a Boyen

signature on a given message d is relatively straightforward: one can just run a
zero-knowledge protocol for an ISIS solution (e.g., [MV03,Lyu08,LNSW13]) on
public input (A(d),u), and prover’s witness z. However, constructing a ZKAoK of
a message-signature pair (d, z) is challenging, because on one hand, the prover
has to convince the verifier that A(d)z = u mod q, while on the other hand,
both z and d should be kept secret from the verifier.

Our first step towards solving the above challenge is making the public veri-
fication matrix independent of d. Let A =

[

A|A0|A1| . . . |A�

]

∈ Z
n×(�+2)m
q , and

let z = (x‖y), where x,y ∈ Z
m, then we have:

u = A(d)z = Ax + A0y +
�∑

j=1

Ai(diy) = Az mod q,

where z ∈ Z
(�+2)m has the form z = (x‖y‖d1y‖ . . . ‖d�y). Now our goal is: Given

(A,u), arguing in zero-knowledge the possession of z ∈ Z
(�+2)m such that:

1. “‖z‖∞ ≤ β and Az = u mod q.” This part can be done using the
Decomposition-Extension technique from [LNSW13] for an ISIS solution.
Specifically, we transform x and y into p = �log β� + 1 vectors x1, . . . ,xp ∈
B3m and y1, . . . ,yp ∈ B3m, respectively.

436 S. Ling et al.

2. “z has the form z = (x‖y‖d1y‖ . . . ‖d�y) for certain secret d ∈ {0, 1}�.” At
a high level, in order to argue that d ∈ {0, 1}�, we first extend d to d∗ =
(d1, . . . , d�, d�+1, . . . , d2�) ∈ B2�, where B2� is the set of all vectors in {0, 1}2�

having Hamming weight �, and then show that a random permutation of d∗

belongs to the set B2�, which implies that the original d ∈ {0, 1}�.

Now, for simplicity of description of our technique, we introduce the following
notations:

– For permutations π, ψ ∈ S3m; τ ∈ S2�, and for t = (t−1‖t0‖t1‖ . . . ‖t2�) ∈
Z
(2�+2)3m
q consisting of (2� + 2) blocks of size 3m, we define:

Fπ,ψ,τ (t) =
(

π(t−1)‖ψ(t0)‖ψ(tτ(1))‖ψ(tτ(2))‖ . . . ‖ψ(tτ(2�))
)

.

Namely, Fπ,ψ,τ (t) is a composition of 3 permutations. It rearranges the order
of the 2� blocks t1, t2, . . . , t2� according to τ , and then permutes block t−1

according to π, and the other (2� + 1) blocks according to ψ.
– Given e = (e1, e2, . . . , e2�) ∈ {0, 1}2�, we say that vector t ∈ VALID(e) if

t ∈ {−1, 0, 1}(2�+2)3m, and there exist certain v,w ∈ B3m such that t =
(v‖w‖e1w‖e2w‖ . . . ‖e2�w).

We now describe our technique. We define the sequence of integers β1, . . . , βp as
in [LNSW13], and let:

A∗=
[

A|0n×2m|A0|0n×2m|A1|0n×2m|. . .|A�|0n×2m|0n×3m�
]

∈Z
n×(2�+2)3m
q , (1)

zj=
(

xj‖yj‖d1yj‖ . . . ‖d�yj‖d�+1yj‖. . .‖d2�yj

)

∈{−1,0,1}(2�+2)3m,∀j∈[p]. (2)

We then have: A∗(
∑p

j=1 βjzj) = u mod q, and zj ∈ VALID(d∗) for all j ∈ [p].
In Stern’s framework, we proceed as follows:

– To argue that A∗(
∑p

j=1 βjzj) = u mod q, we instead show that

A∗
p

∑

j=1

βj(zj + r(j)z) − u = A∗(
p

∑

j=1

βjr(j)z) mod q,

where r(1)z , . . . , r(p)z ∈ Z
n×(2�+2)3m
q are uniformly random “masking” vectors

for the zj ’s.
– We sample a uniformly random permutation τ ∈ S2�, and for each j ∈ [p],

sample uniformly random πj , ψj ∈ S3m, and send td = τ(d∗) together with
t(j)z = Fπj ,ψj ,τ (zj), for all j. Seeing that td ∈ B2�, and t(j)z ∈ VALID(td), the
verifier will be convinced that zj ∈ VALID(d∗) while learning no additional
information about zj or d∗.

Based on the above discussion, we can build a ZKAoK of a valid message-
signature pair for Boyen’s signature scheme. For convenience, we will present
the details in the combined protocol in Section 3.3.

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 437

3.2 A Lattice-Based Verifiable Encryption Protocol

We consider two lattice-based encryption schemes:

1. The GPV-IBE scheme [GPV08] based on LWE, to be employed in the group
signature in Section 4.

2. The LPR encryption scheme [LPR13] based on Ring-LWE, to be employed
in the ring-based group signature in Section 5.

We observe that, in both of these schemes, if one encrypts a plaintext d ∈ {0, 1}�

using the HNF variants of LWE and Ring-LWE, respectively, then the relation
among the related objects can be expressed as:

Pe + (0k1−� ‖ �q/2�d) = c mod q,
where P ∈ Z

k1×k2
q is a matrix obtained from the public key, c ∈ Z

k1
q is a

ciphertext, e ∈ Z
k2 is the encryption randomness satisfying ‖e‖∞ ≤ b. Here

k1, k2, b are certain parameters depending on the underlying scheme.
Our goal is to construct a verifiable encryption protocol for both of the

mentioned above schemes, namely, a protocol such that: given (P, c), the prover,
possessing (e, d), can argue in zero-knowledge that c is a correct encryption of
d. We observe that, this task can be achieved as follows:

– To argue that d ∈ {0, 1}�, we can use the same technique as in the previous
section, i.e., extend d to d∗ ∈ B2�, then use a random permutation.

– To argue that e ∈ Z
k2 and ‖e‖∞ ≤ b, we form vectors e1, . . . , ep̄ ∈ B3k2 ,

where p̄ = �log b� + 1, then use random permutations to show ej ∈ B3k2 .
– Next, we define the matrices P∗ ∈ Z

k1×3k2
q ,Q ∈ {0, �q/2�}k1×2�, where:

P∗ =
[

P |0k1×2k2
]

; Q =

⎛

⎝

0(k1−�)×�
∣
∣ 0(k1−�)×�

− − −− − − −−
�q/2�I�

∣
∣ 0�×�

⎞

⎠ . (3)

We then have that:

P∗(
p̄

∑

j=1

bjej

)

+ Qd∗ = Pe + (0k1−� ‖ �q/2�d) = c mod q. (4)

In Stern’s framework, to argue that (4) is true, we instead show that:

P∗(
p̄

∑

j=1

bj(ej + re(j)) + Q(d∗ + rd) − c = P∗(
p̄

∑

j=1

bjr(j)e) + Qrd mod q,

where r(j)e ∈ Z
3k2
q , for every j ∈ [p̄], and rd ∈ Z

2�
q are masking vectors.

3.3 The Combined Protocol

We now describe in detail the combined protocol that allows the prover to
argue that it knows a valid message-signature pair (d, z) for Boyen’s signature
scheme, and that a given ciphertext correctly encrypts d. The associated relation
Rgs(n, �, q,m, k1, k2, β, b) is defined as follows.

438 S. Ling et al.

Definition 6

Rgs =
{((

A,A0, . . . ,A� ∈Z
n×m
q ;u∈Z

n
q ;P∈Z

k1×k2
q ; c ∈Z

k1
q

)

; d∈{0, 1}�;

z ∈ Z
2m; e ∈ Z

k2

)

:
(

‖z‖∞ ≤ β ∧
[

A
∣
∣A0 +

�∑

i=1

diAi

]

z = u mod q
) ∧

∧ (

‖e‖∞ ≤ b ∧ Pe + (0k1−� ‖ �q/2�d) = c mod q
)

.
}

Let COM be the statistically hiding and computationally binding string commit-
ment scheme from [KTX08]. Let p = �log β� + 1 and p̄ = �log b� + 1 and define
two sequences of integers β1, . . . , βp and b1, . . . , bp̄ as in sections [LNSW13]. The
inputs of two parties are as follows:

– The common input is (A,A0, . . . ,A�,u,P, c). Both parties form matrices
A∗, P∗, Q as described in (1) and (3).

– The prover’s witness is (d, z, e). Using the techniques above, the prover
extends d to some d∗ ∈ B2� and forms vectors z1, . . . , zp ∈ VALID(d∗), and
e1, . . . , ep̄ ∈ B3k2 . The obtained vectors satisfy:

A∗(
p

∑

j=1

βjzj) = u mod q ∧ P∗(
p̄

∑

j=1

bjej

)

+ Qd∗ = c mod q.

The interaction between P and V is described in Figure 1.
The following theorem summarizes the properties of our protocol.

Theorem 1. Let COM be a statistically hiding and computationally binding
string commitment scheme. Then the protocol in Figure 1 is a statistical ZKAoK
for the relation Rgs(n, �, q,m, k1, k2, β, b). Each round of the protocol has per-
fect completeness, soundness error 2/3, and communication cost (O(�m) log β +
O(k2) log b) log q.

The proof of Theorem 1 employs the standard proof technique for Stern-type
protocols. It is given in the full version [LNW15].

4 An Improved Lattice-Based Group Signature Scheme

4.1 Description of Our Scheme

We first specify the parameters of the scheme. Let n be the security parameter,
and let N = 2� = poly(n) be the maximum expected number of group users.
Then we choose other scheme parameters such that Boyen’s signature scheme
and the GPV-IBE scheme function properly, and are secure. Specifically, let
modulus q = O(�·n2) be prime, dimension m ≥ 2n log q, and Gaussian parameter
s = ω(log m). The infinity norm bound for signatures from Boyen’s scheme is
integer β = Õ(

√
�n). The norm bound for LWE noises is integer b such that

q/b = �Õ(n).
Choose hash functions H1 : {0, 1}∗ → Z

n×�
q and H2 : {0, 1}∗ → {1, 2, 3}t, to

be modeled as random oracles, and select a one-time signature scheme OT S =
(OGen,OSign,OVer). Let χ be a b-bounded distribution over Z.

Our group signature scheme is described as follows:

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 439

Fig. 1. A zero-knowledge argument that the prover possesses a valid message-signature
pair (d, z) for Boyen’s signature scheme, and that a given ciphertext correctly encrypts
d.

440 S. Ling et al.

KeyGen(1n, 1N): This algorithm performs the following steps:
1. Generate verification key (A,A0, . . . ,A�,u) and signing key TA for

Boyen’s signature scheme (see Section 2.3 for more details). Then for
each d = (d1, . . . , d�) ∈ {0, 1}�, use TA to generate gsk[d] as a Boyen
signature on message d.

2. Generate encrypting and decrypting keys for the GPV-IBE scheme: Run
algorithm GenTrap(n,m, q) from [GPV08] to output B ∈ Z

n×m
q together

with a trapdoor basis TB for Λ⊥(B).
3. Output

gpk =
(

(A,A0, . . . ,A�,u), B
)

; gmsk = TB; gsk = {gsk[d]}d∈{0,1}� .

Sign(gsk[d],M): Given gpk, to sign a message M ∈ {0, 1}∗ using the secret key
gsk[d] = z, the user generates a key pair (ovk, osk) ← OGen(1n) for OT S,
and then performs the following steps:
1. Encrypt the index d with respect to “identity” ovk as follows. Let G =

H1(ovk) ∈ Z
n×�
q . Sample s ←↩ χn; e1 ←↩ χm; e2 ←↩ χ�, then compute the

ciphertext:
(

c1 = BT s + e1, c2 = GT s + e2 + �q/2�d
)

∈ Z
m
q × Z

�
q.

2. Generate a NIZKAoK Π to show the possession of a valid message-
signature pair (d, z) for Boyen’s signature, and that (c1, c2) is a correct
GPV-IBE encryption of d with respect to “identity” ovk. This is done
as follows:

– Let k1 := m + � and k2 := n + m + �, and form the following:

P=

⎛

⎜
⎝

BT
∣
∣

−−
∣
∣
∣Im+�

GT
∣
∣

⎞

⎟
⎠∈Z

k1×k2
q ; c=

(
c1
c2

)

∈Z
k1 ; e=

⎛

⎝

s
e1
e2

⎞

⎠∈Z
k2 , (8)

Then we have ‖e‖∞ ≤ b, and Pe+(0k1−� ‖ �q/2�d) = c mod q. Now
one can observe that:

(

(A,A0, . . . ,A�,u,P, c), d, z, e
)

∈ Rgs(n, �, q,m, k1, k2, β, b).

– Run the protocol described in Section 3.3 with public parameter
(A,A0, . . . ,A�,u,P, c) and prover’s witness (d, z, e). The protocol
is repeated t = ω(log n) times to make the soundness error negligibly
small, and then made non-interactive using the Fiat-Shamir heuristic
as a triple Π =

(

{CMTj}t
j=1,CH, {RSPj}t

j=1

)

, where

CH = {Chj}t
j=1 = H2

(

M, {CMTj}t
j=1, c1, c2

)

.

3. Compute a one-time signature sig = OSign(osk; c1, c2,Π).
4. Output the group signature Σ =

(

ovk, (c1, c2),Π, sig
)

.

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 441

Verify(gpk,M,Σ) : This algorithm works as follows:
1. Parse Σ as

(

ovk, (c1, c2),Π, sig
)

. If OVer(ovk; sig; (c1, c2),Π) = 0, then
return 0.

2. Parse Π as
(

{CMTj}t
j=1, {Chj}t

j=1, {RSPj}t
j=1

)

.
If

(

Ch1, . . . , Cht

)

= H2

(

M, {CMTj}t
j=1, c1, c2

)

, then return 0.
3. Compute G = H1(ovk) and form P, c as in (8). Then for j = 1 to t, run

the verification step of the protocol from Section 3.3 with public input
(

A,A0, . . . ,A�,u,P, c
)

to check the validity of RSPj with respect to
CMTj and Chj . If any of the conditions does not hold, then return 0.

4. Return 1.
Open(gmsk,M,Σ) On input gmsk = TB and Σ =

(

ovk, (c1, c2),Π, sig
)

, this
algorithm decrypts (c1, c2) as follows:
1. Extract the decryption key for “identity” ovk: Let G = [g1| . . . |g�] =

H1(ovk). Then for i ∈ [�], sample yi ←↩ SamplePre(TB,B,gi, s) (see
[GPV08]), and let Y = [y1| . . . |y�] ∈ Z

m×�.
2. Compute d

′
= (d

′
1, . . . , d

′
�) = c2 − YT c1 ∈ Z

�
q. For each i ∈ [�], if d

′
i is

closer to 0 than to �q/2� modulo q, then let di = 0; otherwise, let di = 1.
3. Return d = (d1, . . . , d�) ∈ {0, 1}�.

4.2 Analysis of the Scheme

Efficiency and Correctness. The given group signature scheme can be imple-
mented in polynomial time. The bit-size of the NIZKAoK Π is roughly t =
ω(log n) times the communication cost of the interactive protocol in Section 3.3,
which is Õ(�n) for the chosen parameters. This is also the asymptotical bound
on the size of the group signature Σ.

The correctness of algorithm Verify follows from the facts that every group
user with a valid secret key is able to compute a satisfying witness for Rgs(n, �, q,
m, k1, k2, β, b)

)

, and that the underlying argument system is perfectly complete.
Moreover, we set the parameters so that the GPV-IBE scheme is correct, which
implies that algorithm Open is also correct.

Theorem 2 (CCA-anonymity). Suppose that OT S is a strongly unforgeable
one-time signature. In the random oracle model, the group signature described
in Section 4.1 is CCA-anonymous if LWEn,q,χ is hard.

As a corollary, the CCA-anonymity of the scheme can be based on the quantum
worst-case hardness of SIVPγ , with γ = Õ(nq/b) = �Õ(n2).

The proof of Theorem 2 uses the strong unforgeability of OT S, the sta-
tistical zero-knowledge property of the underlying argument system, and the
LWEn,q,χ assumption. Due to the lack of space, the proof is provided in the full
version [LNW15].

Theorem 3 (Traceability). In the random oracle model, the group signature
described in Section 4.1 is fully traceable if SIVP�·Õ(n2) is hard.

442 S. Ling et al.

Proof. Without loss of generality, we assume that the string commitment scheme
COM used in the underlying NIZKAoK is computationally binding, because an
adversary breaking its computational binding property can be used to solve
SIVP�·Õ(n2).

Let A be an PPT traceability adversary against our group signature scheme
with advantage ε, we construct a PPT forger F for Boyen’s signature scheme
whose advantage is polynomially related to ε. Since the unforgeability of Boyen’s
signature scheme can be based on the hardness of SIVP�·Õ(n2) [Boy10,MP12],
this completes the proof.

F is given the verification key (A,A0, . . . ,A�,u) for Boyen’s signature scheme.
It generates a key-pair (B,TB) for the GPV IBE scheme, and begins interacting
with A by sending gpk = (A,A0, . . . ,A�,u,B) and gsk = TB, the distribution
of which is statistically close to that in the real game. Then F sets CU = ∅ and
handles the queries from A as follows:

– Queries to H1 and H2 are handled by consistently returning uniformly ran-
dom values in the respective ranges. If A makes QH2 queries to H2, then
∀κ ≤ QH2 , we let rκ denote the answer to the κ-th query.

– Queries for the secret key gsk[d], for any d ∈ {0, 1}�: F queries its own
signing oracle for Boyen’s signature of d, and receives in return z(d) ∈ Z

2m

such that ‖z(d)‖∞ ≤ β and A(d)z(d) = u mod q, where A(d) is computed in
the usual way. Then F sets CU := CU ∪ {d} and sends z(d) to A.

– Queries for group signatures on arbitrary message: F returns with a simu-
lated signature Σ =

(

ovk, (c1, c2),Π′, sig
)

, where (ovk, (c1, c2), sig) are faith-
fully generated, while the NIZKAoK Π′ is simulated without using the valid
secret key (as in experiment G

(b)
3 in the proof of anonymity). The zero-

knowledge property of the underlying argument system guarantees that Σ is
indistinguishable from a legitimate signature.

Eventually A outputs a message M∗ and a forged group signature

Σ∗ =
(

ovk, (c1, c2), ({CMTj}t
j=1, {Chj}t

j=1, {RSPj}t
j=1), sig

)

,

which satisfies the requirements of the traceability game. Then F exploits the
forgery as follows. First, one can argue that A must have queried H2 on input
(

M, {CMTj}t
j=1, c1, c2

)

, since otherwise, the probability that
(

Ch1, . . . , Cht

)

=
H2

(

M, {CMTj}t
j=1, c1, c2

)

is at most 3−t. Therefore, with probability at least
ε − 3−t, there exists certain κ∗ ≤ QH2 such that the κ∗-th oracle query involves
the tuple

(

M, {CMTj}t
j=1, c1, c2

)

. Next, F picks κ∗ as the target forking point
and replays A many times with the same random tape and input as in the
original run. In each rerun, for the first κ∗ − 1 queries, A is given the same
answers r1, . . . , rκ∗−1 as in the initial run, but from the κ∗-th query onwards,

F replies with fresh random values r
′
κ∗ , . . . , r

′
qH2

$←− {1, 2, 3}t. The Improved
Forking Lemma of Pointcheval and Vaudenay [PV97, Lemma 7] implies that,
with probability larger than 1/2, algorithm F can obtain a 3-fork involving the
tuple

(

M, {CMTj}t
j=1, c1, c2

)

after less than 32 ·QH2/(ε− 3−t) executions of A.

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 443

Now, let the answers of F with respect to the 3-fork branches be

r
(1)
κ∗ =(Ch

(1)
1 ,. . ., Ch

(1)
t); r

(2)
κ∗ =(Ch

(2)
1 ,. . ., Ch

(2)
t); r

(3)
κ∗ =(Ch

(3)
1 ,. . ., Ch

(3)
t).

A simple calculation shows that:

Pr
[

∃j ∈ {1, . . . , t} : {Ch
(1)
j , Ch

(2)
j , Ch

(3)
j } = {1, 2, 3}

]

= 1 − (7/9)t.

Conditioned on the existence of such j, one parses the 3 forgeries correspond-
ing to the fork branches to obtain

(

RSP(1)
j ,RSP(2)

j ,RSP(3)
j

)

. They turn out to
be 3 valid responses to 3 different challenges for the same commitment CMTj .
Since COM is assumed to be computationally-binding, we can use the knowl-
edge extractor of the underlying argument system to extract (d∗, z∗, s∗, e∗

1, e
∗
2) ∈

{0, 1}� × Z
2m × Z

n
q × Z

m × Z
� such that ‖z∗‖∞ ≤ β and A(d∗)z∗ = u mod q;

and s∗, e∗
1, e

∗
2 has infinity norm bounded by b, and BT s∗ + e∗

1 = c1 mod q,
GT s∗ + e∗

2 + �q/2�d∗ = c2 mod q, where G = H1(ovk). Now observe that,
(c1, c2) is a correct encryption of d∗, the opening algorithm Open(TB,M∗,Σ∗)
must return d∗. It then follows from the requirements of the traceability game
that d∗
∈ CU . As a result, (z∗, d∗) is a valid forgery for Boyen’s signature with
respect to the verification key (A,A0, . . . ,A�,u). Furthermore, the above analy-
sis shows that, if A has non-negligible success probability and runs in polynomial
time, then so does F . This concludes the proof.

5 A Ring-Based Group Signature Scheme

5.1 Description of the Scheme

Let f = xn + 1, where n = 2k for k ≥ 2, and let N = 2� = poly(n) be the
number of group users. Then we choose other scheme parameters such that the
ring variant of Boyen’s signature scheme and the LPR encryption scheme are
correct and secure. Let q = O(� · n2) be a prime satisfying q = 1 mod 2n. Let
R = Z[x]/〈f〉 and Rq = R/qR. Let m = O(log q). The infinity norm bound for
signatures from Boyen’s scheme is integer β = Õ(

√
�n). The norm bound for

Ring-LWE noises is integer b such that q/b = �Õ(n1.5). Choose a hash function
H : {0, 1}∗ → {1, 2, 3}t to be modeled as random oracles. Let χ be a b-bounded
distribution over R.

KeyGen(1n, 1N): This algorithm performs the following steps:
1. Generate verification key (a,a0, . . . ,a�, u) and signing key Ta for the ring

variant of Boyen’s signature (see Section 2.3 for more details). Then for
each d = (d1, . . . , d�) ∈ {0, 1}�, generate gsk[d] as a ring-based Boyen’s
signature on message d.

2. Generate keys for the LPR encryption scheme: Sample f
$←− Rq and

x, e ←↩ χ. Then compute g = f ⊗ x + e ∈ Rq.
3. Output

gpk =
(

(a,a0, . . . ,a�, u), (f, g)
)

; gmsk = x; gsk = {gsk[d]}d∈{0,1}� .

444 S. Ling et al.

Sign(gsk[d],M): Given gpk, to sign a message M ∈ {0, 1}∗ using the secret key
gsk[d] = z ∈ R2m, the user performs the following steps:
1. Encrypt d: First extend d to d̄ = (0n−�‖d) ∈ {0, 1}n and view d̄ as

an element of R with coefficients 0, 1. Then sample s, e1, e2 ←↩ χ, and
compute the ciphertext:

(c1 = f ⊗ s + e1, c2 = g ⊗ s + e2 + �q/2�d̄) ∈ R2
q. (9)

2. Generate a NIZKAoK Π to show the possession of a valid message-
signature pair (d, z) for the ring variant of Boyen’s signature, and that
(c1, c2) is a correct LPR encryption of d̄. This is done as follows:

– Let A = rot(a) ∈ Z
n×nm
q , and Ai = rot(ai) ∈ Z

n×mn
q for every

i = 0, . . . , �. Next, consider z as a vector in Z
2mn with infinity norm

bounded by β, and consider u as vector u ∈ Z
n
q . Then one has

[

A |A0 +
∑�

i=1 diAi

]

z = u mod q.

Furthermore, let P0 = [rot(b) | rot(g)]T ∈ Z
2n×n
q and form P =

[

P0

∣
∣ I2n

]

∈ Z
2n×3n
q . Next, consider c = (c1‖c2) as a vector in Z

2n
q ,

and e = (s‖e1‖e2) as a vector in Z
3n. Then (9) can be equivalently

written as: c = Pe + (02n−� ‖ �q/2�d) mod q.
The above transformation leads to the following observation:

(

(A,A0, . . . ,A�,u,P, c), d, z, e
)

∈ Rgs(n, �, q,m′, k1, k2, β, b),

where m′ = nm, k1 = 2n, and k2 = 3n.
– Run the protocol for Rgs(n, �, q,m′, k1, k2, β, b) in Section 3.3 with

public input (A,A0, . . . ,A�,u,P, c) and prover’s witness (d, z, e).
The protocol is repeated t = ω(log n) times to make the sound-
ness error negligibly small, and then made non-interactive using
Fiat-Shamir heuristic as Π =

(

{CMTj}t
j=1,CH, {RSPj}t

j=1

)

, where
CH = {Chj}t

j=1 = H
(

M, {CMTj}t
j=1, (c1, c2)

)

.
3. Output the group signature Σ =

(

(c1, c2),Π
)

.
Verify(gpk,M,Σ) This deterministic algorithm works as follows:

1. Parse Σ as
(

(c1, c2), ({CMTj}t
j=1,CH, {RSPj}t

j=1)
)

.
If

(

Ch(1), . . . , Ch(t)
)

= H
(

M, {CMTj}t
j=1, (c1, c2)

)

, then return 0.
2. Then for j = 1 to t, run the verification step of the protocol from

Section 3.3 with public input (A,A0, . . . ,A�,u,P, c) to check the valid-
ity of RSPj with respect to CMTj and Chj . If any of the conditions does
not hold, then return 0.

3. Return 1.
Open(gmsk,M,Σ) Let gmsk=x and Σ=

(

(c1, c2),Π
)

, proceed as follows:
1. Compute d̄ = c2 − x ⊗ c1 ∈ Rq. For each i ∈ [n], if d̄i is closer to 0 than

to �q/2� modulo q, then let d̄i = 0; otherwise, let d̄i = 1.
2. If d̄ is of the form (0n−�‖d), then return d∈{0,1}�. Otherwise, return ⊥.

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 445

5.2 Analysis

Efficiency and Correctness. The ring-based group signature can be imple-
mented in polynomial time. The public key

(

(a,a0, . . . ,a�, u), (f, g)
)

has bit-size
Õ(�n). In comparison with the scheme from Section 4, a factor of O(n) is saved.
The signature size is also bounded by Õ(�n).

The correctness of algorithm Verify follows from the facts that every user with
a valid secret key is able to compute a satisfying witness for Rgs(n, �, q, nm, 2n, 3n,
β, b)

)

, and that the underlying argument system is perfectly complete. We also
set the parameters so that the LPR encryption scheme is correct, which implies
that algorithm Open is also correct.

The anonymity and traceability properties of the scheme are stated in The-
orem 4 and 5, respectively.

Theorem 4. In the random oracle model, the group signature scheme described
in Section 5.1 is CPA-anonymous if SVP∞

�·Õ(n3.5)
on ideal lattices in the ring R

is hard in the worst case.

The proof of Theorem 4 uses the fact that the underlying argument system
is statistical zero-knowledge, and the assumed hardness of the HNF variant of
Ring-LWEn,q,χ. The proof is given in the full version [LNW15].

Theorem 5. In the random oracle model, the group signature scheme described
in Section 5.1 is traceable if SVP∞

�·Õ(n2)
on ideal lattices in the ring R is hard in

the worst case.

The proof of Theorem 5 is similar to that of Theorem 3, and is given in the full
version [LNW15].

A Security Requirements for Group Signatures

The presentation in this section follows the model of Bellare et al. [BMW03],
and the relaxed anonymity notion proposed by Boneh et al. [BBS04].
Anonymity. Consider the anonymity experiment Expt-anon

GS,A (n,N) between a
challenger C and an adversary A, where t ∈ (CPA, CCA).

– C generates (gpk, gmsk, gsk) ← KeyGen(1n, 1N), then gives (gpk, gsk) to A.
– If t = CCA, then A can query the opening oracle. On input a message M and a

signature Σ, the oracle returns Open(gmsk,M,Σ) to A.
– A outputs two distinct identities i0, i1 and a message M∗. Then C picks a coin

b
$←− {0, 1}, and sends Σ∗ ← Sign(gsk[ib],M∗) to A.

– If t = CCA, then A can query the opening oracle. On input (M,Σ), if (M,Σ) =
(M∗,Σ∗), then C outputs 0 and halts; otherwise it returns Open(gmsk,M,Σ) to
A.

– A outputs b
′ ∈ {0, 1}. C outputs 1 if b

′
= b, or 0 otherwise.

446 S. Ling et al.

Define Advt-anon
GS,A (n,N) =

∣
∣
∣Pr

[

Expt-anon
GS,A (n,N) = 1

]

− 1/2
∣
∣
∣. We say that the

scheme is CPA-anonymous (resp., CCA-anonymous) if for all polynomial N , and
all PPT adversary A, the function AdvCPA-anon

GS,A (n,N) (resp., AdvCCA-anon
GS,A (n,N))

is negligible in the security parameter n.

Traceability. Consider the traceability experiment Exptrace
GS,A(n,N) between

a challenger C and an adversary A.

– C runs KeyGen(1n, 1N) to obtain (gpk, gmsk, gsk), then it sets CU ← ∅ and gives
(gpk, gmsk) to A.

– A can make the following queries adaptively, and in any order:
• Key query: On input an index i, C adds i to CU , and returns gsk[i].
• Signing query: On input i,M , C returns Sign(gsk[i],M).

– A outputs a message M , and a signature Σ. Then C proceeds as follows: If
Verify(gpk,M,Σ) = 0 then return 0. If Open(gmsk,M,Σ) = ⊥ then return 1. If
∃i such that the following are true then return 1, else return 0:
1. Open(gmsk,M,Σ) = i
∈ CU ,
2. A has never made a signing query for i,M .

Define Advtrace
GS,A(n,N) = Pr

[

Exptrace
GS,A(n,N) = 1

]

. We say that the scheme is
fully traceable if for all polynomial N and all PPT adversary A, the function
Advtrace

GS,A(n,N) is negligible in the security parameter n.

Acknowledgments. This research is supported by the Singapore Ministry of Educa-
tion under Research Grant MOE2013-T2-1-041. The authors would like to thank the
anonymous reviewers of PKC 2015 for their helpful comments.

References

[ACJT00] Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and prov-
ably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: STOC, pp. 99–108. ACM (1996)

[AP11] Alwen, J., Peikert, C.: Generating Shorter Bases for Hard Random Lat-
tices. Theory Comput. Syst. 48(3), 535–553 (2011)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

[BCHK07] Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext Security
from Identity-based Encryption. SIAM J. C. 36(5), 1301–1328 (2007)

[BF14] Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg
(2014)

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 447

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signa-
tures: formal definitions, simplified requirements, and a construction based
on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

[Boy10] Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully
secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

[BS04] Boneh, D., Shacham, H.: Group signatures with verifier-local revocation.
In: ACM CCS, pp. 168–177. ACM (2004)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

[CHL05] Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321.
Springer, Heidelberg (2005)

[CL01] Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Hei-
delberg (2001)

[CNR12] Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens
from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol.
7485, pp. 57–75. Springer, Heidelberg (2012)

[CS97] Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large
groups (extended abstract). In: Kaliski Jr, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg
(1991)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178. ACM (2009)

[GKV10] Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme
from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 395–412. Springer, Heidelberg (2010)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

[Gro04] Groth, J.: Evaluating security of voting schemes in the universal compos-
ability framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS
2004. LNCS, vol. 3089, pp. 46–60. Springer, Heidelberg (2004)

[Gro07] Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180.
Springer, Heidelberg (2007)

[KTX08] Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification
schemes based on the worst-case hardness of lattice problems. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer,
Heidelberg (2008)

[LAN02] Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without
threshold trust. In: Blaze, Matt (ed.) FC 2002. LNCS, vol. 2357, pp.
87–101. Springer, Heidelberg (2003)

448 S. Ling et al.

[LLLS13] Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based
group signatures with logarithmic signature size. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 41–61. Springer,
Heidelberg (2013)

[LLNW14] Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signa-
ture scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014)

[LM06] Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are col-
lision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

[LMPR08] Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a mod-
est proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol.
5086, pp. 54–72. Springer, Heidelberg (2008)

[LNSW13] Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge
proofs of knowledge for the ISIS problem, and applications. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124.
Springer, Heidelberg (2013)

[LNW15] Ling, S., Nguyen, K., Wang, H.: Group Signatures from Lattices Simpler
Tighter Shorter Ring-based. IACR Cryptology ePrint Archive 2015, 0xx
(2015)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning
with Errors over Rings. J. ACM 60(6), 43 (2013)

[LPY12] Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 609–627. Springer, Heidelberg (2012)

[Lyu08] Lyubashevsky, V.: Lattice-based identification schemes secure under active
attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179.
Springer, Heidelberg (2008)

[MM11] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample com-
plexity of LWE search-to-decision reductions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

[MP13] Micciancio, D., Peikert, C.: Hardness of SIS and LWE with Small Param-
eters. IACR Cryptology ePrint Archive 2013, 69 (2013)

[MV03] Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with effi-
cient provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

[NZZ15] Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures
from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. xx-yy.
Springer, Heidelberg (2015)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: STOC, pp. 333–342. ACM (2009)

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based 449

[PV97] Pointcheval, D., Vaudenay, S.: On Provable Security for Digital Signature
Algorithms. Technical Report LIENS-96-17, Laboratoire d’Informatique
de ENS (1997)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93. ACM (2005)

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)

[Ste96] Stern, J.: A New Paradigm for Public Key Identification. IEEE Transac-
tions on Information Theory 42(6), 1757–1768 (1996)

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005)

Secure Efficient History-Hiding Append-Only
Signatures in the Standard Model

Benôıt Libert1(B), Marc Joye2, Moti Yung3, and Thomas Peters4

1 Laboratoire LIP, Ecole Normale Supérieure de Lyon, Lyon, France
benoit.libert@ens-lyon.fr
2 Technicolor, Los Altos, USA
marc.joye@technicolor.com

3 Columbia University and Google Inc., New York, USA
moti@cs.columbia.edu

4 Ecole Normale Supérieure, Paris, France
thomas.peters@ens.fr

Abstract. As formalized by Kiltz et al. (ICALP ’05), append-only sig-
natures (AOS) are digital signature schemes where anyone can publicly
append extra message blocks to an already signed sequence of messages.
This property is useful, e.g., in secure routing, in collecting response lists,
reputation lists, or petitions. Bethencourt, Boneh and Waters (NDSS ’07)
suggested an interesting variant, called history-hiding append-only sig-
natures (HH-AOS), which handles messages as sets rather than ordered
tuples. This HH-AOS primitive is useful when the exact order of signing
needs to be hidden. When free of subliminal channels (i.e., channels that
can tag elements in an undetectable fashion), it also finds applications
in the storage of ballots on an electronic voting terminals or in other
archival applications (such as the record of petitions, where we want to
hide the influence among messages). However, the only subliminal-free
HH-AOS to date only provides heuristic arguments in terms of security:
Only a proof in the idealized (non-realizable) random oracle model is
given. This paper provides the first HH-AOS construction secure in the
standard model. Like the system of Bethencourt et al., our HH-AOS
features constant-size public keys, no matter how long messages to be
signed are, which is atypical (we note that secure constructions often suf-
fer from a space penalty when compared to their random-oracle-based
counterpart). As a second result, we show that, even if we use it to sign
ordered vectors as in an ordinary AOS (which is always possible with
HH-AOS), our system provides considerable advantages over existing
realizations. As a third result, we show that HH-AOS schemes provide
improved identity-based ring signatures (i.e., in prime order groups and
with a better efficiency than the state-of-the-art schemes).

Keywords: Homomorphic signatures · Provable security · Privacy ·
Unlinkability · Standard model · Superset predicates · Archive
integrity

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 450–473, 2015.
DOI: 10.1007/978-3-662-46447-2 20

Secure Efficient History-Hiding Append-Only Signatures 451

1 Introduction

Append-only signatures (AOS), as introduced by Kiltz, Mityagin, Panjwani and
Raghavan [37], are signature schemes where, given a signature on a multi-block
message (M1, . . . , Mn), anyone can publicly compute a signature on the message
(M1, . . . , Mn,Mn+1), for any Mn+1. Kiltz et al. provided both generic construc-
tions, based on any signature scheme, and concrete constructions based on spe-
cific assumptions. They further proved that AOS are equivalent to hierarchical
identity-based signatures [30,47]. Importantly, the schemes of [37] are inherently
history-preserving in that signed messages are ordered tuples.

In [14], Bethencourt, Boneh and Waters (BBW) noted that certain impor-
tant applications of incremental signature nature require, in fact, a kind of AOS
system that allows authenticating sets (i.e., without divulging any order among
elements) rather than ordered tuples. They suggested a primitive, called History-
Hiding Append-Only Signatures (HH-AOS) that can be seen as a special case
of homomorphic signatures. It allows one to sign a set of messages in such a
way that anyone can subsequently derive a signature on arbitrary supersets of
the initial set. Bethencourt et al. used this primitive to design tamper-evident,
history-hiding and subliminal-free mechanisms (by extending techniques due to
Molnar et al. [42]) for storing ballots on e-voting terminals. To prevent any-
one from injecting subliminal information (e.g., by embedding some information
in derived signatures), it is required that derived signatures be indistinguish-
able from original ones on the resulting superset. Independently, Moran, Naor
and Segev [43] addressed the same problem using write-once memories rather
than digital signatures. They described a deterministic vote-storage mechanism
without relying on cryptographic techniques. Their solution fits within a line
of work, initiated by Micciancio [41], on history-hiding data structures [41,44],
which recently has been extended to applied systems [8]. While secure against
unbounded adversaries, the Moran et al. technique [43] is significantly more
memory-demanding than [14] and this overhead was proved inherent to deter-
ministic techniques [43]. The HH-AOS approach of Bethencourt et al. [14] thus
appears to remain the most promising method to reliably store n elements in
a history-hiding, tamper-evident and scalable manner, namely, using only O(n)
memory.

It is worth noting that HH-AOS are a more powerful primitive than ordinary
AOS: any HH-AOS can immediately be turned —by means of a hash-based
order-embedding transformation— into an equally efficient regular append-only
signature. HH-AOS schemes are thus more versatile as they can also be used in
all the applications which append-only signatures were initially designed for.

Related Work. Homomorphic signatures were first suggested by Desmedt [24]
as a new concept useful in the validation of computer operation. Johnson
et al. [36] provided security definitions and examples of set homomorphic sig-
natures. Several such constructions in [5,6,36] allow for subset derivation (i.e.,
a signature on a set allows deriving a signature on arbitrary subsets of that
set) but none of these works considers the dual superset homomorphism case.

452 B. Libert et al.

The latter was investigated for the first time by Bethencourt et al. [14] who
provided two HH-AOS realizations which both have some limitations pointed
at by the original authors (in essence, demonstrating the associated difficulties
with such a scheme). The first one is a generic construction, based on any sig-
nature, where the public key has linear size in the maximal size of sets to be
signed. As a consequence, this construction requires the signer to determine an
upper bound on the cardinality of sets when generating a key pair. Moreover,
this generic construction is not free of subliminal channels. The reason is that it
allows the party running the signature derivation algorithm to choose certain val-
ues pseudo-randomly (rather than truly randomly), which allows a distinguisher
to infer some information on the derivation history of signatures.

The second construction of [14] is a subliminal-free system built upon the
aggregate signature scheme of Boneh et al. [20]. It eliminates the disadvantages
of the first scheme in that it provides constant-size public keys and removes the
need for an a priori bound on the cardinality of authenticated sets. However,
while practical, this second scheme is only shown secure in the random oracle
model [11]. Recall that it is widely accepted that the random oracle methodology,
while better than providing no proof whatsoever, is an idealization that may have
no standard model instantiation. Indeed, at times, it is provably unrealizable, as
was shown by a number of works (e.g., [21]).

So far, the only apparent way to build a HH-AOS system in the standard
model — let alone with constant-size public keys— is to take advantage of aggre-
gate signatures [34,35] in order to instantiate the BBW system system [14] out-
side the random oracle idealization. (As explained in the full version of the
paper [39], sequential aggregate signatures like [40] do not suffice for this.) This
requires standard model instantiations [25,35] of Full Domain Hash [12]. As of
now, this is only known under the recent “multi-linear maps” [27], which still
have no practical realizations and serve as polynomial plausibility only. Even
the recent results of Hohenberger et al. [35] rely on indistinguishability obfus-
cation [28], known to exist from multi-linear maps only. Thus, such possible
ideas cannot yield practical schemes based on simple standard assumptions (like
Diffie-Hellman or Decision Linear [16]). In addition, multi-linear maps are quite
new, and the state of their secure implementation remains unclear.

Our Contribution. We describe the first efficient history-hiding append-only
signature with constant-size public keys in the standard model (by “constant” we
mean that it only depends on the security parameter, and not on the cardinality
of sets to be signed). This new scheme further provides perfectly re-randomizable
signatures, which guarantees the absence of subliminal channels.

Our scheme also provably satisfies a definition of unlinkability stronger than
that of [14]. We actually re-cast the syntax of HH-AOS schemes in the definitional
framework of Ahn et al. [5] for homomorphic signatures. The privacy notion of [5]
mandates that derived signatures be statistically indistinguishable from original
signatures, even when these are given to the distinguisher. In [6], Attrapadung et
al. further strengthened the latter privacy notion by considering all valid-looking
original signatures and not only those in the range of the signing algorithm.

Secure Efficient History-Hiding Append-Only Signatures 453

Our construction is asymptotically as efficient as the original BBW real-
ization. Even if we ignore its history-hiding property, it favorably compares to
existing append-only signatures [37] in that it appears to be the only known AOS
realization that simultaneously provides the following properties: (i) full security
(i.e., unforgeability in a model where the adversary can adaptively choose its tar-
get message); (ii) constant-size public keys; and (iii) privacy in the sense of the
strongest definition considered in [6]. In comparison, the certificate-based generic
AOS scheme of [37] is easily seen not to reach the latter level of privacy. As for
other fully secure constructions with short public keys, they are all obtained by
applying the Naor transformation [17] to unbounded hierarchical identity-based
encryption systems [38], which build on Waters’ dual system encryption tech-
nique [49]. Since the latter always involves at least two distinct distributions
of valid signatures (or private keys), it seems inherently incompatible with the
information-theoretic privacy notion used in [6].

Our scheme is motivated by ideas that were used in [6] to construct a sub-
set homomorphic signature (namely, a signature on a set authenticates the
entire powerset of that set). These ideas, in turn, are augmented by other novel
techniques and ideas. Like [6], we rely on the randomizability of Groth-Sahai
proofs [32] to render signatures perfectly randomizable. However, superset predi-
cates seem harder to handle than their subset counterpart. Indeed, if we disregard
privacy properties, simple constructions1 readily solve the subset case whereas
no such thing is known to work for superset predicates, even when privacy is
not a concern. Like [6], our approach proceeds by generating a fresh ephemeral
public key X = gx for each set to be signed. The underlying private key is split
into n additive shares {ωi}n

i=1 such that x =
∑n

i=1 ωi, where n is the cardinality
of the set. Each of these is then used to sign a set element mi in the fashion of
Boneh-Lynn-Shacham [19] signatures, by computing HG(mi)ωi using a number
theoretic hash function HG : {0, 1}L → G. Although BLS signatures are only
known to be secure in the random oracle model (at least in their original form),
we, in contrast, can prove the security of the scheme in the standard model as
long as HG is programmable [33] in the same way as the hash function used
in [48]. At the same time, we depart from the security proof of [48] in that the
programmability of HG is used in a different way which is closer to the security
proofs of Hofheinz and Kiltz [33]. Recall that programmable hash functions [33]
are number theoretic hash functions where the hash value HG(m) is linked to its
representation gamhbm for given base elements g, h ∈ G. While security proofs
in the standard model often require logg(HG(m)) to be available in the forgery
message and unavailable in signed messages, we proceed the other way around:
at some crucial signing query Msg = {m1, . . . , mn}, we require HG(m) not to
depend on h for exactly one set element mi ∈ Msg.

Relation to Identity-Based Ring Signatures. Ring signatures, as intro-
duced by Rivest, Shamir and Tauman [45] allow users to anonymously sign

1 For example, as mentioned in [6, Section 5], one can merely sign each set using a
new ephemeral public key that is certified by the long-term key.

454 B. Libert et al.

messages on behalf of any ad hoc set of users that includes them. Their typical
application is to allow a source to anonymously reveal a sensitive information
while providing guarantees of trustworthiness.

While ring signatures are known from 2001, rigorous security definitions
remained lacking until the work of Bender et al. [13] and efficient construc-
tions in the standard model were only given by Shacham and Waters [46] and
by Chandran et al. [22]. In the identity-based setting, constructing ring signa-
tures remains a non-trivial problem as generic constructions from ordinary ring
signatures do not appear to work.

Identity-based ring signatures are extensions of ring signatures [45] to the
identity-based setting [47]. They are signature schemes wherein users can employ
a private key derived from their identity to sign messages on behalf of any
set of identities that includes theirs. The verifier is convinced that a signature
was created by a ring member but does not learn anything else. Recently, Au
et al. [7] described a fully secure identity-based ring signature in the standard
model using composite order groups. Their scheme seems amenable for con-
structing a HH-AOS system. However, due to the use of the dual system tech-
nique [29], it cannot achieve the same level of privacy as our scheme (as we
discuss later on). Interestingly, any HH-AOS scheme, in fact, gives an identity-
based ring signature as the private key of some identity id can consist of a
HH-AOS signature on the singleton {0‖id} which allows the derivation of a
signature on the set {0‖id, 0‖id1, . . . , 0‖idn, 1‖M‖R}, where M is the message
and R = {id, id1, . . . , idn} is the ring. As detailed in Section 4, we obtain
fully secure identity-based ring signatures based on simple assumptions in prime
order groups, which allow for a much better efficiency and a stronger flavor of
anonymity than [7].

2 Background

2.1 Definitions for History-Hiding Append-Only Signatures

We first recall the original syntactic definition of history-hiding append-only
signatures.

Definition 1 ([14]). An History-Hiding Append-Only Signatures (HH-
AOS) is a tuple of algorithms (Keygen,Append,Verify) with the following
specifications.

Keygen(λ): takes as input a security parameter λ ∈ N and outputs a public key
PK and a private key SK = Φ which consists of an initial signature Φ on
the empty set ∅.

Append(PK, Φ, S, m): given a public key PK, a signature Φ for some set S
and a message m ∈ {0, 1}∗, this algorithm outputs ⊥ if Φ is not a valid
signature on the set S or if m ∈ S. Otherwise, it outputs a signature Φ′ on
the augmented set S′ = S ∪ {m}.

Verify(PK, S, Φ): given a public key PK, and a presented signature Φ for a
given set S, this algorithm outputs 1 if Φ is a valid signature for S and 0
otherwise.

Secure Efficient History-Hiding Append-Only Signatures 455

Correctness. For any integers λ ∈ N and n ∈ poly(λ), all key pairs (PK,
SK) ← Keygen(λ) and all sets S = {m1, . . . , mn}, if Φ0 = SK, S0 = ∅ and
Φi ← Append(PK,Φi−1, Si,mi), where Si = Si−1 ∪ {mi}, for i = 1 to n, then
Verify(PK,S,Φn) = 1.

Bethencourt et al. [14] define two security properties of HH-AOS schemes
which are called append-only unforgeability and history-hiding. These properties
can be defined as follows.

Definition 2. A HH-AOS scheme (Keygen,Append,Verify) is append-only
unforgeable if no PPT adversary has non-negligible advantage in the following
game:

1. The challenger generates a key pair (PK,SK) ← Keygen(λ) and hands PK
to the adversary A.

2. On polynomially occasions, the adversary A chooses a set S = {m1, . . . , mn},
for some arbitrary n ∈ poly(λ). We assume w.l.o.g. that m1, . . . , mn are
sorted in lexicographical order. For i = 1 to n, the challenger computes Φi ←
Append(PK,Φi−1, Si−1,mi), where Si = Si−1 ∪{mi} for each i ∈ {1, . . . , n}
and with S0 = ∅, Φ0 = SK. Then, Φn is returned to A.

3. A outputs a pair (S�,Φ�) and wins if: (i) Verify(PK,S�,Φ�) = 1; (ii) If
S1, . . . , Sq denote the sets for which A obtained signatures at Step 2, then
Si 	⊆ S� for each i ∈ {1, . . . , q}. The adversary’s advantage is its probability
of success, taken over all coin tosses.

Definition 3. A HH-AOS scheme (Keygen,Append,Verify) is history-hiding
if no PPT adversary has non-negligible advantage in the following game:

1. The challenger generates a key pair (PK,SK) ← Keygen(λ) and gives PK
to the adversary A.

2. The adversary A chooses a set S = {m1, . . . , mn}, for some n ∈ poly(λ),
and two distinct permutations π0, π1 : {1, . . . , n} → {1, . . . , n}. The chal-
lenger chooses a random bit b

R← {0, 1} and defines m′
i = πb(mi) for each

i ∈ {1, . . . , n}. It computes Φi ← Append(PK,Φi−1, Si−1,m
′
i), where Si =

Si−1 ∪ {m′
i} for each i ∈ {1, . . . , n} and with S0 = ∅, Φ0 = SK. It returns

Φn to A.
3. A outputs a bit b′ ∈ {0, 1} and wins if b′ = b. The adversary’s advantage is

the distance Adv(A) := |Pr[b′ = b] − 1/2|.

While the above definition is sufficient for applications like vote storage [14],
it can be strengthened in a number of ways. For example, the adversary could
be granted access to a signing oracle before and after Step 2. Alternatively, the
adversary could be given the private key SK at Step 1 of the game. Finally, we
may also ask for security in the statistical (rather than computational) sense.

These stronger security properties will be naturally obtained by viewing HH-
AOS schemes as a particular case of homomorphic signatures in the sense of the
definitions of [5,6].

456 B. Libert et al.

2.2 Definitions for Homomorphic Signatures

Definition 4 ([5]) . Let M be a message space and 2M be its powerset. Let
P : 2M × M → {0, 1} be a predicate. A message m′ is said derivable from
M ⊂ M if P (M,m′) = 1. As in [5], P i(M) is defined as the set of messages
derivable from P i−1(M), where P 0(M) := {m′ ∈ M | P (M,m′) = 1}. Finally,
P ∗(M) := ∪∞

i=0P
i(M) denotes the set of messages iteratively derivable from M .

Definition 5 ([5]). A P-homomorphic signature for a predicate P : 2M ×
M → {0, 1} consists of a triple of algorithms (Keygen,SignDerive,Verify) such
that:

Keygen(λ): takes in a security parameter λ ∈ N and outputs a key pair (sk, pk).
As in [5], the private key sk is a signature on the empty tuple ε ∈ M.

SignDerive
(

pk, ({σm}m∈M , M), m′): is a possibly probabilistic algorithm that
inputs a public key pk, a set of messages M ⊂ M, a corresponding set of
signatures {σm}m∈M and a derived message m′ ∈ M. If P (M,m′) = 0, it
outputs ⊥. Otherwise, it outputs a derived signature σ′.

Verify(pk, m, σ): is a deterministic algorithm that takes as input a public key
pk, a signature σ and a message m. It outputs 0 or 1.

The empty tuple ε ∈ M satisfies P (ε,m) = 1 for each message m ∈ M. Sim-
ilarly to Ahn et al. [5], we define Sign(pk, sk,m) as the algorithm that runs2

SignDerive(pk, (sk, ε),m) and outputs the result. For any M = {m1, . . . , mk} ⊂
M, we let Sign(sk,M) := {Sign(sk,m1), . . . ,Sign(sk,mk)} . Finally, we write
Verify(pk,M, {σm}m∈M) = 1 to say that Verify(pk,m, σm) = 1 for each m ∈ M .

Correctness. For all key pairs (pk, sk) ← Keygen(λ), for any message set
M ⊂ M and any single message m′ ∈ M such that P (M,m′) = 1, the follow-
ing conditions have to be satisfied: (i) SignDerive(pk, (Sign(sk,M),M),m′) 	=⊥;
(ii) Verify

(

pk,m′,SignDerive(pk, (Sign(sk,M),M),m′)
)

= 1.

Definition 6 ([5]). A P -homomorphic signature scheme is unforgeable if no
PPT adversary has noticeable advantage in the game below:

1. The challenger generates a key pair (pk, sk) ← Keygen(λ) and gives pk to the
adversary A. It initializes two initially empty tables T and Q.

2. A adaptively interleaves the following queries.
– Signing queries: A chooses a message m ∈ M. The challenger replies by

choosing a handle h, runs σ ← Sign(sk,m) and stores (h,m, σ) in a table
T . The handle h is returned to A.

– Derivation queries: A chooses a vector of handles �h = (h1, . . . , hk) and a
message m′ ∈ M. The challenger first retrieves the tuples {(hi,mi, σi)}k

i=1

from the table T and returns ⊥ if one of them is missing. Otherwise, it
defines M := (m1, . . . , mk) and {σm}m∈M = {σ1, . . . , σk}. If P (M,m′) =
1, the challenger runs σ′ ← SignDerive

(

pk, ({σm}m∈M ,M),m′), chooses
a handle h′, stores (h′,m′, σ′) in T and returns h′ to A.

2 The intuition here is that any message can be derived when the original signature
contains the signing key.

Secure Efficient History-Hiding Append-Only Signatures 457

– Reveal queries: A chooses a handle h. If no entry of the form (h,m′, σ′)
exists in T , the challenger returns ⊥. Otherwise, it returns σ′ to A and
adds (m′, σ′) to the set Q.

3. The adversary A outputs a pair (σ′,m′) and wins if: (i) Verify(pk,m′, σ′) = 1;
(ii) If M ⊂ M is the set of messages in Q, then m′ 	∈ P ∗(M).

Ahn et al. [5] considered a strong notion of unconditional privacy that requires
the inability of distinguishing derived signatures from original ones, even when
these are given along with the private key. In [5], it was showed that, if a scheme
is strongly context hiding, then Definition 6 can be simplified by only providing
the adversary with an ordinary signing oracle.

As noted in [6], specific applications may require an even stronger definition.
The following definition makes sense when homomorphic signatures are random-
izable and/or the verifier accepts several distributions of valid signatures.

Definition 7 ([6]). An homomorphic signature (Keygen,Sign,SignDerive,Verify)
is completely context hiding for the predicate P if, for all key pairs (pk, sk) ←
Keygen(λ), for all message sets M ⊂ M∗ and all messages m′ ∈ M such that
P (M,m′) = 1, for all signatures {σm}m∈M such that Verify(pk,M, {σm}m∈M) =
1, the distribution

{

(sk, {σm}m∈M , Sign(sk,m′))
}

sk,M,m′ is statistically close to
the distribution of

{(

sk, {σm}m∈M ,SignDerive
(

pk, ({σm}m∈M ,M),m′))}
sk,M,m′ .

We will be interested in HH-AOS systems, which can be seen as P -ho-
momorphic signatures for superset predicates: namely, for any two messages
Msg1,Msg2 ∈ M, we have P (Msg1,Msg2) = 1 ⇐⇒ Msg1 ⊆ Msg2. Note that a
completely context-hiding homomorphic signature for superset predicates imme-
diately implies a HH-AOS scheme satisfying a stronger privacy property than
Definition 3.

In particular, our construction immediately implies an ordinary (i.e., non-
history-hiding) AOS scheme that allows signing ordered tuples while enjoy-
ing a stronger form of privacy than in [37]. For example, if we consider the
generic AOS [37], which builds on any digital signature, a signature on a vec-
tor (m1, . . . , mn) is a sequence (σ0, pk1, . . . , σn, pkn, skn) where σi = Sign(ski,
(mi+1‖pki+1)) for each i ∈ {0, . . . , n − 1}, {pki}n

i=1 are fresh public keys gen-
erated by the signing algorithm and (pk0, sk0) is the long term key pair of the
scheme. This construction is clearly not completely context-hiding because aux-
iliary public keys {pki}n

i=1 appear in an original signature and all its derivatives.
Non-generic AOS schemes can be derived from specific HIBE schemes like

the one of Boneh, Boyen and Goh [15] but, in the standard model, the public
parameters have length linear in the maximal length of signed messages. For the
time being, the only known way to construct a fully secure AOS without hav-
ing to fix a pre-determined maximal message length is to apply Naor’s IBE-to-
signature transformation [17] to an unbounded HIBE scheme [38]. Unfortunately,
the security proof will probably rely on the dual system technique [49] (see also
[29]) which is hardly compatible with the privacy notion of Definition 7. The
reason is that this technique involves several computationally indistinguishable

458 B. Libert et al.

classes of signatures satisfying the same equations although they have different
distributions. The difficulty is that there is usually no way to publicly modify
the class that a given signature belongs to, so that a signature and its derivatives
must be of the same class. Hence, for any original signatures {σm}m∈M outside
the range of Sign(sk, .), Definition 7 cannot be satisfied.

In contrast, using any completely context-hiding HH-AOS, we can obtain
—seemingly for the first time— a completely context-hiding AOS scheme in the
sense of Definition 7, which hides all information about the derivation history of
a signature on an ordered tuple. The construction is detailed in the full version
of the paper [39].

2.3 Programmable Hash Functions

A group hash function H = (PHF.Gen,PHF.Eval) is a pair of algorithms such
that, for a security parameter λ ∈ N, a key κ ← PHF.Gen(λ) is generated by
the key generation algorithm. This key is used to evaluate the deterministic
evaluation algorithm that, on input of a string X ∈ {0, 1}L, computes a hash
value Hκ,G(X) = PHF.Eval(κ,X) ∈ G, where G is a cyclic abelian group.

Definition 8 ([33]). A group hash function HG : {0, 1}∗ → G is (m, n, γ, δ)-
programmable if there exist PPT algorithms (PHF.TrapGen,PHF.TrapEval) such
that:

– For generators g, h ∈ G, the trapdoor key generation algorithm (κ′, tk) ←
PHF.TrapGen(λ, g, h) outputs a key κ′ and a trapdoor tk such that, for any
X ∈ {0, 1}L, (aX , bX) ← PHF.TrapEval(tk,X) produces integers aX , bX such
that Hκ′,G(X) = PHF.Eval(κ′,X) = gaX hbX .

– For all g, h ∈ G and for κ ← PHF.Gen(λ), (κ′, tk) ← PHF.TrapGen(λ, g, h),
the distributions of κ and κ′ are statistically γ-close to each other.

– For all generators g, h ∈ G and all keys κ′ produced by PHF.TrapGen, for all
X1, . . . , Xm ∈ {0, 1}L, Z1, . . . , Zn ∈ {0, 1}L such that Xi 	= Zj, the corre-
sponding (aXi

, bXi
) ← PHF.TrapEval(tk,Xi) and (aZi

, bZi
) ← PHF.TrapEval

(tk, Zi) are such that

Pr[bX1 = · · · = bXm
= 0 ∧ bZ1 , . . . , bZn

	= 0] ≥ δ ,

where the probability is taken over the trapdoor tk produced along with κ′.

The hash function of [48] hashes L-bit strings M = m1 · · · mL ∈ {0, 1}L by map-
ping them to Hκ,G(M) = h0 ·

∏L
i=1 hmi

i using public group elements (h0, . . . , hL).
This function is known [48] to be a (1, n, 0, δ)-programmable hash function where
δ = 1/(8n(L + 1)), for any polynomial n. Using a different technique, Hofheinz
and Kiltz [33] increased the probability δ to O(1/(n

√
L)).

2.4 Hardness Assumption

We consider bilinear maps e : G × G → GT over groups of prime order p. In
these groups, we assume the intractability of the following problem.

Secure Efficient History-Hiding Append-Only Signatures 459

Definition 9 ([16]). The Decision Linear Problem (DLIN) in a group G

of prime order p is, given (ga, gb, gac, gbd, η), with a, b, c, d
R← Zp, to decide if

η = gc+d or η ∈R G.

2.5 Structure-Preserving Signatures Secure Against Random
Message Attacks

Structure-preserving signatures [1,2] (SPS) are signature schemes where mes-
sages, signatures and public keys all consist of elements of an abelian group over
which a bilinear map is efficiently computable. In addition, the verification algo-
rithm proceeds by testing the validity of pairing product equations (as defined
in Appendix A).

We use structure-preserving signatures satisfying a relaxed security notion,
where the adversary obtains signatures on messages it has no control on. In
the following syntax, a structure-preserving signature is a tuple of efficient algo-
rithms (Setup,Keygen,Sign,Verify) where, on input of a security parameter, Setup
produces common public parameters gk (which typically specify the chosen bilin-
ear groups) to be used by all other algorithms. As for algorithms Keygen, Sign
and Verify, they operate as in an ordinary digital signatures.

In our construction, we need an SPS scheme that satisfies a notion of extended
random-message security defined by Abe et al. [3]. In the definition hereunder,
M denotes an efficient message sampler that takes as input common public
parameters gk and outputs a message m as well as the random coins τ used
to sample it. In short, the definition requires the scheme to remain unforgeable
even if the adversary obtains the random coins of M.

Definition 10 ([3]). A signature scheme (Setup,Keygen,Sign,Verify) provides
extended random-message security (or XRMA security) with respect to
a message sampler M if, for any PPT adversary A and any polynomial q ∈
poly(λ), the adversary’s advantage is negligible in the following game.

1. The challenger runs gk ← Setup(λ) and (pk, sk) ← Keygen(gk). For j = 1 to
q, the challenger runs (mj , τj) ← M(gk) and computes σj ← Sign(gk, sk,mj).
The adversary is given (gk, pk, {(mj , τj , σj)}q

j=1)
2. The adversary A halts and outputs a pair (m�, σ�). It is declared successful if

Verify(gk, pk,m�, σ�) = 1 and m� /∈ {m1, . . . , mq}. As usual, A’s advantage
is its probability of success taken over all coin tosses.

As in [3], we will need an XRMA-secure SPS scheme where τ contains the
discrete logarithms of the group elements that m is made of.

3 An Efficient HH-AOS Scheme

The scheme’s design is motivated by [6] to construct a homomorphic subset
signature, which is exactly the dual primitive of HH-AOS. Like the ring signa-
ture of [7], the scheme is also inspired by the Lewko-Waters unbounded HIBE

460 B. Libert et al.

system [38] in that the signature derivation algorithm implicitly transforms an
n-out-of-n additive secret sharing into a (n+1)-out-of-(n+1) additive sharing of
the same secret. This transformation actually takes place in the exponent as the
shares themselves are not directly available to the derivation algorithm. Lewko
and Waters [38] used a similar technique in the key delegation algorithm of their
HIBE scheme. However, we depart from [38] in that the construction relies on
the partitioning paradigm (i.e., the reduction is unable to sign certain messages
that are used to solve a hard problem in the reduction) rather than the dual
system approach. The reason is that, as pointed out in [6], the latter makes it
harder to construct completely context-hiding schemes.

The construction relies on the properties of the hash function of [48]. A pro-
grammable hash function [33] maps a message m to a group element so that
the discrete logarithm of HG(m) ∈ G may be available with some probabili-
ties. The hash function of [48] maps a L-bit string m ∈ {0, 1}L to the group
element HG(m) = h0 ·

∏L
i=1 h

m[i]
i , for uniformly distributed public group ele-

ments (h0, . . . , hL) ∈R G
L+1. For any m ∈ {0, 1}L, it is possible to relate

HG(m) to exponents am, bm ∈ Zp such that HG(m) = gamhbm . As defined
in [33], a (m,n)-programmable hash function is a hash function such that, for
all X1, . . . , Xm ∈ {0, 1}L, Z1, . . . , Zn ∈ {0, 1}L with Xi 	= Zj , the probability
that

∧m
i=1 bXi

= 0 and
∧n

j=1 bZj
	= 0 is non-negligible.

It is known [48] that Waters’ hash function is (1, q)-programmable with prob-
ability 1/8q(L + 1). If this hash function is used to instantiate the Boneh et al.
signatures [19] (for which a signature on m consists of HG(m)sk, where sk is
the private key), this allows proving its one-time security (i.e., its security in
a game where the adversary is only allowed one signing query) in the stan-
dard model: the adversary’s unique signing query m is answered by computing
HG(m)sk = (gsk)am from the public key gsk if bm = 0. If the adversary forges a
signature on m� such that bm� 	= 0, the reduction can extract hsk and solve a
Diffie-Hellman instance.

Our idea is to sign a set Msg = {mi}n
i=1 by generating a fresh one-time key

pair (x, gx) ∈ Zp ×G for a BLS-type signature. The one-time public key X = gx

is certified using the long-term key of a structure-preserving signature. Finally,
Msg = {mi}n

i=1 is signed by picking ω1, . . . , ωn
R← Zp such that

∑n
i=1 ωi = x and

generating pairs (σi,1, σi,2) = (HG(mi)ωi , gωi), so that the verifier can check that
∏n

i=1 σi,2 = X and e(σi,1, g) = e(HG(mi), σi,2) for each i. This allows anyone to
publicly add new elements to the set by transforming the sharing {ωi}n

i=1 into
a new sharing {ω′

i}n+1
i=1 of the same value. At the same time, it will be infeasible

to publicly remove elements from the signed set.
To guarantee the full context-hiding security, we refrain from letting (σi,1, σi,2)

appear in clear and replace them by perfectly-hiding Groth-Sahai commitments
to (σi,1, σi,2) along with NIWI randomizable proofs (which are recalled
Appendix A) showing that committed values satisfy the appropriate relations.

In the notations hereunder, for any h ∈ G and any vector of group elements
�g = (g1, g2, g3) ∈ G

3, the vector
(

e(h, g1), e(h, g2), e(h, g3)
)

∈ G
3
T is denoted by

E(h,�g).

Secure Efficient History-Hiding Append-Only Signatures 461

Keygen(λ):
1. Choose a SPS scheme ΠSPS = (Setup,Keygen,Sign,Verify) allowing to

sign messages consisting of a single group element. We denote by
sps and
vsps the number of group elements per signature and the number of verifi-
cation equations, respectively, in this scheme. Generate common parame-
ter gk ← ΠSPS.Setup(λ) and a key pair (sksps, pksps) ← ΠSPS.Keygen(gk)
for this scheme. We assume that gk includes the description of bilinear
groups (G,GT) or prime order p > 2λ with a generator g ∈R G.

2. Generate a Groth-Sahai CRS f = (�f1, �f2, �f3) for the perfect witness indis-
tinguishability setting. Namely, choose �f1 = (f1, 1, g), �f2 = (1, f2, g), and
�f3 = �f1

ξ1 · �f2
ξ2 · (1, 1, g)−1, with f1, f2

R← G, ξ1, ξ2
R← Zp.

3. Choose a vector (h0, h1, . . . , hL) R← G
L+1 which defines the function

HG : {0, 1}L → G that maps any m ∈ {0, 1}L to HG(m) = h0·
∏L

i=1 h
m[i]
i .

The public key is defined to be pk :=
(

gk, f , pksps, {hi}L
i=0

)

and the private

key is sk := sksps. The public key defines Σ = {0, 1}L.

Sign(sk,Msg): On input of a message Msg = {mi}n
i=1, where mi ∈ {0, 1}L for

each i, and the private key sk = sksps, do the following.
1. Generate a one-time public key X = gx, with x

R← Zp, and a Groth-Sahai

commitment �CX = (1, 1,X) · �f1
rX · �f2

sX · �f3
tX

, with rX , sX , tX
R← Zp.

2. Generate a structure-preserving signature (θ1, . . . , θ�sps) ∈ G
�sps on the

group element X ∈ G. Then, for each j ∈ {1, . . . ,
sps}, generate com-

mitments �Cθj
= (1, 1, θj) · �f1

rθj · �f2
sθj · �f3

tθj . Finally, generate NIWI
arguments {�πsps,j}

vsps
j=1 showing that committed variables (X, {θj}

�sps
j=1)

satisfy the verification equations of the structure-preserving signature.
3. Choose ω1, . . . , ωn

R← Zp subject to the constraint
∑n

i=1 ωi = x. Then,
for i = 1 to n, compute (σi,1, σi,2) =

(

HG(mi)ωi , gωi
)

, where the mes-
sages are indexed in some pre-determined lexicographical order.3 Then,
for each i ∈ {1, . . . , n}, compute Groth-Sahai commitments

�Cσi,1 = (1, 1, σi,1) · �f1
ri,1 · �f2

si,1 · �f3
ti,1

,

�Cσi,2 = (1, 1, σi,2) · �f1
ri,2 · �f2

si,2 · �f3
ti,2

to {(σi,1, σi,2)}n
i=1. Next, generate a NIWI argument �πi that e(σi,1, g) =

e(HG(mi), σi,2). This argument is

(πi,1, πi,2, πi,3) =
(

gri,1HG(mi)−ri,2 , gsi,1HG(mi)−si,2 , gti,1HG(mi)−ti,2
)

and satisfies the equation

E
(

g, �Cσi,1

)

= E
(

HG(mi), �Cσi,2

)

·
E

(

πi,1, �f1
)

· E
(

πi,2, �f2
)

· E
(

πi,3, �f3
)

. (1)
3 This follows an observation by Naor and Teague [44] who used lexicographical order-

ing to make sure that the representation does not depend on the order of insertions.

462 B. Libert et al.

4. Finally, generate a NIWI proof �πsum that X =
∏n

i=1 σi,2. This proof is

(πs,1, πs,2, πs,3) =
(

grX−∑n
i=1 ri,2 , gsX−∑n

i=1 si,2 , gtX−∑n
i=1 ti,2

)

(2)

which satisfies E
(

g, �CX ·
∏n

i=1
�C−1

σi,2

)

= E
(

πs,1, �f1
)

· E
(

πs,2, �f2
)

·
E

(

πs,3, �f3
)

.

Return σ =
(
�CX , {�Cθj

}�sps
j=1, {�πsps,j}

vsps
j=1, {(mi, �Cσi,1 ,

�Cσi,2 , �πi)}n
i=1, �πsum

)

.

SignDerive(pk, (σ,Msg),Msg′): Given the original message Msg = {mi}n
i=1,

return ⊥ if Msg′ 	= Msg ∪ {m′} for some m′ ∈ Σ. Otherwise, parse σ as
above and do the following.

1. Choose ω′
1, . . . , ω

′
n+1

R← Zp subject to the constraint
∑n+1

i=1 ω′
i = 0. For

each index i ∈ {1, . . . , n}, compute updated Groth-Sahai commitments
�C ′

σi,1
= (1, 1,H(mi)ω′

i) · �Cσi,1 and �C ′
σi,2

= (1, 1, gω′
i) · �Cσi,2 . Observe that

the argument �πi = (πi,1, πi,2, πi,3) still satisfies the equation E
(

g, �C ′
σi,1

)

=
E

(

HG(mi), �C ′
σi,2

)

·E
(

πi,1, �f1
)

·E
(

πi,2, �f2
)

·E
(

πi,3, �f3
)

as it only depends
on the randomness of commitments.

2. Set σn+1,1 = HG(m′)ω′
n+1 and σn+1,2 = gω′

n+1 . Then, pick random

rn+1,1, sn+1,1, tn+1,1
R← Zp, rn+1,2, sn+1,2, tn+1,2

R← Zp and compute
commitments

�C ′
σn+1,1

= (1, 1, σn+1,1) · �f1
rn+1,1 · �f2

sn+1,1 · �f3
tn+1,1

�C ′
σn+1,2

= (1, 1, σn+1,2) · �f1
rn+1,2 · �f2

sn+1,2 · �f3
tn+1,2

as well as a NIWI argument �πn+1 showing that e(σn+1,1, g) = e(HG(m′),
σn+1,2), which is obtained as

(

grn+1,1 · HG(m′)−rn+1,2 , gsn+1,1 · HG(m′)−sn+1,2 ,

gtn+1,1 · HG(m′)−tn+1,2
)

.

3. Update �πsum = (πs,1, πs,2, πs,3) by computing

�π′
sum = (π′

s,1, π
′
s,2, π

′
s,3)

=
(

πs,1 · g−rn+1,2 , πs,2 · g−sn+1,2 , πs,3 · g−tn+1,2
)

.

Note that �π′
sum is a valid proof that X =

∏n+1
i=1 σi,2 since �πsum only

depends on the randomness of commitments �CX , {�Cσi,2}n
i=1, which have

not been randomized at this point.
4. Re-randomize the commitments �CX , {�C ′

σi,1
, �C ′

σi,2
}n+1

i=1 , {�Cθj
}�sps

j=1 and the
proofs {�πsps,j}

vsps
j=1, {�πi}n+1

i=1 , �π′
sum. Let �C ′′

X , {�C ′′
σi,1

, �C ′′
σi,2

}n+1
i=1 ,

{�C ′′
θj

}�sps
j=1 and the proofs {�π′′

sps,j}
vsps
j=1, {�π′′

i }n+1
i=1 , �π′′

sum be the re-rando-
mized commitment and proofs. Note that, in all of these commitments
and proofs, the underlying exponents have been updated.

Secure Efficient History-Hiding Append-Only Signatures 463

Return σ′ =
(
�C ′′

X , {�C ′′
θj

}�sps
j=1, {�π′′

sps,j}
vsps
j=1, {(mi, �C ′′

σi,1
, �C ′′

σi,2
, �π′′

i)}n+1
i=1 , �π′′

sum

)

after having re-organized the indexation of {(mi, �C ′′
σi,1

, �C ′′
σi,2

, �π′′
i)}n+1

i=1

according to the lexicographical order for {mi}n+1
i=1 .

Verify(pk,Msg, σ): given pk, and a message Msg = {mi}n
i=1, where mi ∈ Σ for

each i, parse σ as above. Return 1 iff the following checks all succeed.

1. Return 0 if {�πsps,j}
vsps
j=1 are not valid proofs that committed group

elements (X, {θj}
�sps
j=1) satisfy the verification equations of the structure-

preserving signature.
2. Return 0 if, there exists i ∈ {1, . . . , n} such that �πi = (πi,1, πi,2, πi,3)

does not satisfy (1).
3. Return 0 if �πsum = (πs,1, πs,2, πs,3) is not a valid proof.

Note that message elements {mi}n
i=1 can be omitted from the signature if

the signature components {(�Cσi,1 ,
�Cσi,2 , �πi)}n

i=1 are organized according to the
lexicographical order of {mi}n

i=1.
As in [14], one can finalize the set and prevent any further insertions by

adding a special message of the form “finalize‖#Msg” to the current message
Msg, where #Msg denotes the cardinality of Msg. In this case, the verifier has to
return 0 if Msg contains an element of the form “finalize‖x”, where x 	= #Msg−1.
We also note that, as in [14], multi-sets can be supported by merely appending
a nonce to each added message in order to ensure uniqueness.

The scheme is unconditionally completely context-hiding because, except
{mi}n

i=1 (which are re-ordered to appear in lexicographical order at each deriva-
tion), signatures only consist of perfectly hiding commitments and NIWI proofs.
Moreover, in the WI setting, these are uniformly distributed in the space of
valid proofs (as stressed in [32][Section 10]). Since these proofs are also perfectly
randomizable at each derivation, the complete context-hiding property follows.

The unforgeability is proved under the DLIN assumption and the assumption
that the underlying SPS scheme is XRMA-secure. In one step, the proof of
Theorem 1 relies on the programmability of the Waters hash function [48].

The security proof assumes a theoretical upper bound nmax on the cardinality
of sets to be signed. However, we emphasize that this bound does not affect
the efficiency of the scheme whatsoever. In particular, the public key size is
independent of nmax and only depends on the security parameter.

Theorem 1. The scheme is unforgeable assuming that the DLIN assumption
holds in G and that the structure-preserving signature is secure against extended
random message attacks.

Proof. Since the scheme is completely context hiding, we can use a simplified
definition where the adversary only interacts with a signing oracle. The proof
uses a sequence of games where, for each i ∈ {0, 1, 2}, Si denotes the event that
the adversary A wins in Gamei.

464 B. Libert et al.

Game0: This game is the real game. We denote by S0 the event that the adver-
sary A manages to output a successful forgery. By definition, A’s advantage
is Pr[S0].

Game1: We change the generation of the public key and choose f = (�f1, �f2, �f3)
as a perfectly sound Groth-Sahai CRS, for which even an unbounded adver-
sary cannot prove false statements. More precisely, the challenger B sets
up �f1 = (f1, 1, g), �f2 = (1, f2, g) and �f3 = �f1

ξ1 · �f2
ξ2

, with f1 = gφ1 and
f2 = gφ2 , for randomly chosen φ1, φ2, ξ1, ξ2

R← Zp. If this modification sig-
nificantly increases the adversary’s probability of success, we can build a
distinguisher for the DLIN assumption (specifically, the DLIN distinguisher
outputs 1 if the adversary is successful and a random bit otherwise). This
implies that, under the DLIN assumption, this modification does not signifi-
cantly affect A’s behavior. We can thus write |Pr[S1]−Pr[S0]|≤AdvDLIN(B).

Game2: In this game, we can explicitly use the discrete logarithms (φ1, φ2) =
(logg(f1), logg(f2)) that were defined in Game1 since we are done with the
DLIN assumption. When A outputs a forgery σ�, the challenger B uses
(φ1, φ2) to extract X� from the Groth-Sahai commitment �C�

X contained
in σ� (recall that, due to the modification introduced in Game1, �C�

X is a
perfectly binding commitment). We raise a failure event, called F2, and let
the challenger B abort if the extracted X� was never involved in any signing
query. Clearly, any occurrence of F2 immediately contradicts the extended
random-message security of the SPS system as the adversary only gets to see
structure-preserving signatures on uniformly distributed group elements X.
The reduction is similar to that of [3, Theorem3] and relies on the XRMA
security of the underlying SPS scheme for the same reason.4 We can thus
write |Pr[S2] − Pr[S1]| ≤ Pr[F2] ≤ AdvXRMA-SPS(B).

In Game2, we will prove that, conditionally on ¬F2, event S2 can only
occur with negligible probability if the Diffie-Hellman assumption holds. Let
(σ�,Msg� = {m�

1, . . . , m
�
n�}) denote A’s forgery. If F2 does not occur, the group

element X�, which is extracted from the commitment �C�
X contained in σ�, was

used by B in some signing query. Letting j ∈ {1, . . . , q} denote the index of that
query Msgj = {mj,1, . . . , mj,nj

}, we know that that Msgj 	⊆ Msg� since A would
not be a successful forger otherwise. Consequently, there exists
 ∈ {1, . . . , nj}
such that mj,� 	∈ Msg�. Assuming that signed messages Msg1, . . . ,Msgq are
sets of cardinality at most nmax, Lemma 1 constructs an algorithm B′ break-
ing the Diffie-Hellman assumption with probability at least Pr[S2|¬F2]/(16 ·
q · nmax · (L + 1)). The probability of event S2|¬F2 can thus be bounded by
Pr[S2|¬F2] ≤ 16 · q · nmax · (L + 1) · AdvCDH(B′).

Since Pr[S2] = Pr[S2 ∧ F2] + Pr[S2 ∧ ¬F2] ≤ Pr[F2] + Pr[S2|¬F2], we find

Pr[S0] ≤ AdvDLIN(B)+2 ·AdvRMA-SPS(B)+16 · q ·nmax · (L+1) ·AdvCDH(B′)

4 In short, for each message X for which the XRMA challenger generates a signature,
the reduction needs x = logg(X) to properly run Step 3 of the signing algorithm.

Secure Efficient History-Hiding Append-Only Signatures 465

which proves the announced result. ��

The programmability properties of the Waters hash function are used in the
proof of Lemma 1. In a nutshell, the reduction will have to guess upfront which
one-time public key Xj� will be recycled in the adversary’s forgery among those
involved in responses to signing queries. When answering this signing query,
the reduction will implicitly use the ga part of its given Diffie-Hellman instance
(g, ga, gb) to form the one-time public key Xj� . In addition, if the input of the
j�-th signing query is Msgj� = {mj�,i}

nj�

i=1, we know that at least one element of
Msgj� will be outside the set Msg� = {m�

i }n�

i=1 chosen by the adversary for its
forgery. If we denote by mj�,� an arbitrary message in Msgj�\Msg�, the reduction
will be successful if HG(mj�,�) = g

amj�,� , for some known amj�,�
∈ Zp, and

HG(m�
i) = g

am�
i · (gb)bm�

i with bm�
i

	= 0 for each i ∈ {1, . . . , n�}. The results
of [33,48] guarantee that these conditions are met with non-negligible probability.

Lemma 1. In Game2, if event S2|¬F2 occurs with noticeable probability then
there exists an algorithm B′ solving the CDH problem with probability at least
AdvCDH(B′) ≥ Pr[S2|¬F2]/(16 · q · nmax · (L + 1)), where nmax is the maximal
cardinality of signed subsets.

Proof. Algorithm B′ takes as input (g, ga, gb) and aims at computing gab using
its interaction with the adversary in Game2.

To this end, B′ begins by choosing (h0, h1, . . . , hL) ∈ G
L+1 as in the security

proof of Waters signatures [48]. Namely, for any string m ∈ {0, 1}L, the hash
value HG(m) = h0 ·

∏L
i=1 h

m[i]
i can be written as HG(m) = (gb)J(m) · gK(m) for

certain integer-valued functions J,K : {0, 1}L → Zp that remain internal to the
simulation. In the terminology of programmable hash functions [33], HG will have
to be (1, 2nmax−1)-programmable with non-negligible probability δ. Concretely,
using the technique of [48], the functions J and K are chosen so that, for any
pairwise distinct inputs m,m1, . . . , m2nmax−1, we have J(m) = 0 mod p and
J(mi) 	= 0 mod p for each i ∈ {1, . . . , 2nmax −1} with non-negligible probability
δ = 1/(16 · nmax · (L + 1)).

Algorithm B′ begins by drawing j� R← {1, . . . , q} and starts interacting with
the forger A.

Signing queries: For j ∈ {1, . . . , q}, we let Msgj = {mj,1, . . . , mj,nj
}, with

nj ≤ nmax, be the j-th signing query made by A. These queries are handled
by considering two cases:
– If j 	= j�, B′ chooses a fresh xj

R← Zp, computes Xj = gxj and answers

the query by generating ω1, . . . , ωnj

R← Zp such that
∑nj

i=1 ωi = xj . This
allows answering the query faithfully, by generating commitments and
proofs according to the specification of the signing algorithm.

– If j = j�, B′ implicitly defines Xj� = ga. At this point, B′ considers each
message mj�,i ∈ Msgj� and evaluates J(mj�,i) for each i ∈ {1, . . . , nj�}.
If J(mj�,i) 	= 0 for all i, B′ halts and declares failure. It also aborts if
Msgj� contains more than one message mj�,i such that J(mj�,i) = 0. (A

466 B. Libert et al.

lower bound on the probability for B′ not to abort will be determined
later on). Otherwise, there exists a unique index
 ∈ {1, . . . , nj�} such
that J(mj�,�) = 0. In this case, we have HG(mj�,�) = gK(mj�,�), so that

B′ can pick ω1, . . . , ω�−1, ω�+1, . . . , ωnj�

R← Zp and set

σi,1 = HG(mi)ωi σi,2 =gωi for i ∈ {1, . . . , nj�}\{
} ,

as well as

σ�,1 =
(

(ga) · g−∑nj�

i=1,i�=� ωi
)K(mj�,�) σ�,2 = (ga) · g−∑nj�

i=1,i�=� ωi .

Note that {(σi,1, σi,2)}
nj�

i=1 have the correct distribution as they implicitly
share a = logg(Xj�) in the exponent. Next, B′ generates commitments
and NIWI proofs as in the real signing algorithm.

Forgery: When A terminates, it outputs a set Msg� = {m�
i }n�

i=1 with a valid
signature

σ� =
(

�C�
X , {�C�

θj
}�sps

j=1, {�π�
sps,j}

vsps
j=1, {(m�

i , �C�
σi,1

, �C�
σi,2

, �π�
i)}n�

i=1, �π�
sum

)

.

At this point, B′ uses the extraction trapdoor (φ1, φ2) = (logg(f1), logg(f2)) of
the commitment to obtain X� and {σ�

i,1, σ
�
i,2}n�

i=1 from �C�
X and {C�

σi,1
, C�

σi,2
}n�

i=1,
respectively. If one of the following events occurs, B′ aborts and declares failure:

E.1 X� 	= ga: This is the event that B′ fails to correctly predict which one-
time public key Xj would be re-used in A’s forgery among those involved
in signing queries.

E.2 mj�,� ∈ Msg�.
E.3 There exists i ∈ {1, . . . , n�} such that J(m�

i) = 0.

If none of these events occurs, the perfect soundness of the proof �π�
sum guarantees

that B′ can compute

gab =
n�
∏

i=1

(σ�
i,1

σ�
i,2

K(m�
i)

) 1
J(m�

i
)

.

We are thus left with assessing the probability for B′ to avoid the failure state
during the game.

Since the choice of j� is independent of A’s view, we do have X� = ga with
probability at least Pr[¬E1] ≥ 1/q. Regarding E2 and E3, since Msgj� 	⊆ Msg�,
we know that there exists k ∈ {1, . . . , nj�} such that mj�,k ∈ Msgj�\Msg�. If
we define the set Msg = (Msgj� ∪ Msg�)\{mj�,k}, a sufficient condition for the
desirable event ¬E2 ∧ ¬E3 to come about is to have

J(mj�,k) = 0 and J(m) 	= 0 ∀m ∈ Msg . (3)

Since the cardinality of Msg is at most 2nmax − 1, the results of [33,48] imply
that condition (3) is satisfied with probability at least 1/(16 · nmax · (L + 1)). A
lower bound on the probability that ¬E2∧¬E3 and that B′ does not abort at the
j�-th signing query is thus given by 1/(16 · nmax · (L + 1)). Taking into account
the probability Pr[¬E1] ≥ 1/q, it comes that B′ never aborts with probability
at least 1/(16 · q · nmax · (L + 1)). ��

Secure Efficient History-Hiding Append-Only Signatures 467

For the time being, the most efficient XRMA-secure structure-preserving
signature based on simple assumptions is the construction of Abe et al. [4],
where signatures consist of 8 group elements and the verifier has to compute one
quadratic equation and three linear equations. Also, each one-time public key
X ∈ G must be encoded as a triple (gx, gx

1 , gx
2), for public elements (g1, g2) ∈ G

2

and where x = logg(X). Hence, the commitment �CX must come along with two
other similar commitments. If the SPS scheme of [4] is plugged into our HH-AOS
construction, a set {mi}n

i=1 of cardinality n can be signed using 9n + 54 group
elements under the DLIN assumption (which implies the CDH assumption).
Then, the bit-size of the signature amounts to 4608 ·n+27648 if each element of
G has a 512-bit representation. In comparison with [14], our scheme only inflates
signatures by a constant factor.

In Section 4 and in the full version of the paper [39], we discuss further
implications of the above result to the setting of ring signatures and ordinary
(i.e., history-preserving) append-only signatures, where it implies constructions
for arbitrarily long rings or sets.

4 Generic Identity-Based Ring Signatures

An identity-based ring signature is a tuple of efficient algorithms (Setup,Keygen,
Sign,Verify) with the following syntax.

Setup is a randomized algorithm that takes as input a security parameter
λ ∈ N and outputs a master key pair (msk,mpk). Keygen is a possibly random-
ized algorithm that takes as input an identity id and returns a private key did.
Algorithm Sign takes as input a list of identities R = {id1, . . . , idr}, a private
key did for an identity such that id ∈ R and a message M to output a signature
σ ← Sign(mpk, did,R,M). Algorithm Verify inputs mpk, a message M , a list of
identities R = {id1, . . . , idr} and a signature σ. It outputs 1 if σ is deemed valid
for the message M and the ring R and 0 otherwise.

Identity-based ring signatures should satisfy two notions called unforgeability
and anonymity, which can be formalized as below.

Bellare, Namprempre, and Neven [10] showed how to construct identity-based
signatures from any signatures. Galindo, Herranz, and Kiltz [26] extended the
generic construction of [10] to several kinds of identity-based signatures with
special properties but their results do not carry over to the ring signature case.
Boneh and Hamburg [18] gave a generic way to build short identity-based ring
signatures from their spatial encryption primitive. However, their instantiations
require to choose a maximal ring size when the system is set up. It thus remains
interesting to provide a generic construction allowing for full security and rings
of arbitrary size.

Unforgeability. This notion is formalized by a game where the challenger
generates a master key pair (mpk,msk), where mpk is given to the adversary.
Throughout the game, the adversary A is allowed to make private key queries:
it chooses an identity id and obtains a private key did ← Keygen(msk, id).

468 B. Libert et al.

The adversary is also granted access to a signing oracle: at each query, it chooses a
triple (id,M,R) and the challenger returns ⊥ if id 	∈ R and σ ← Sign(did,M,R)
otherwise. Eventually, the adversary outputs a triple (σ�,M�, R�) and wins if:
(i) Verify(mpk,M�, R�, σ�) = 1; (ii) A did not invoke the signing oracle on a
tuple (id,M�,R�) for any identity id ∈ R�; (iii) No private key query was made
for any id ∈ R�. Note that this model allows the adversary to adaptively choose
the ring R� of identities involved in the forgery. In the weaker model of selective-
ring security, the adversary would be forced to declare R� at the very beginning
of the game, before seeing mpk.

Full Anonymity. This property is defined via the following game. Initially, the
challenger generates a pair (mpk,msk) and gives mpk and msk to the adversary
A. The adversary chooses a message M , a list of identities R = {id1, . . . , idr},
a pair of identities (id0, id1) and two private keys did0 , did1 . If {id0, id1} 	⊆ R or
if did0 , did1 are not valid private keys for the identities id0 and id1, respectively,
the challenger returns ⊥. Otherwise, it challenger flips a fair coin d

R← {0, 1}
and returns σ ← Sign(mpk, didd

,M,R). The adversary eventually outputs a bit
d′ ∈ {0, 1} and wins if d′ = d. As usual, the adversary’s advantage is measured
by the distance Adv(A) := |Pr[d′ = d] − 1/2|.

The above definition of anonymity could be strengthened (as done in [7])
by allowing the adversary to choose the random coins used by the challenger
to generate (mpk,msk). Although the generic construction hereunder does not
guarantee anonymity in the sense of this stronger definition, the specific instan-
tiations obtained from our HH-AOS schemes can be proved secure in that sense.

We also remark that the above definition allows the adversary to come up
with private keys did0 , did1 of its own in the challenge phase. The anonymity
definition of [7] is different and rather allows the adversary to choose the random
coins used in the generation of did0 and did1 . However, the definition of [7] still
forces the challenger to generate did0 and did1 by running the legal key generation
algorithm. In this aspect, our definition is stronger since it allows the adversary to
choose any identity-based private keys did0 , did1 that satisfy the key sanity check
(we assume w.l.o.g. that valid private keys are recognizable) without necessarily
being in the range of the private key generation algorithm. It is easy to verify
that the scheme of [7] does not provide unconditional anonymity in the sense
of the above definition. The reason is its use of groups G of composite order
N = p1p2p3 and the fact that signatures and private keys live in the subgroup of
order p1: if an unbounded adversary chooses did0 , did1 so that did0 does not have
a component of order p2 but did1 does, this adversary can infer the challenger’s
bit by testing if the signature σ has a component of order p2.

Our generic construction thus provides the first fully secure schemes allowing
for rings of arbitrary size while satisfying our definition of anonymity. Let Π =
(Keygen,Sign,SignDerive,Verify) be a completely context-hiding and unforgeable
HH-AOS scheme. Using Π, we can generically construct an identity-based ring
signature as follows.

Secure Efficient History-Hiding Append-Only Signatures 469

Setup(λ): run (sk, pk) ← Π.Keygen(λ) and output (msk,mpk) = (sk, pk).
Keygen(msk, id): given msk = sk, compute and return did ← Π.Sign(sk, {0‖id}).
Sign(mpk, did, M,R): return ⊥ if id 	∈ R. Otherwise, encode R={id1, . . . , idr}

and the message M as a set L = {0‖id1, . . . , 0‖idr, 1‖M‖R} of cardinality
r + 1. Then, use did to compute σ ← Π.SignDerive(pk, {(did, {0‖id})}, L),
which is possible since L is a superset of the singleton {0‖id} by construc-
tion.

Verify(mpk, M, R, σ): given mpk = pk, the ring of identities R = {id1, . . . , idr}
and the message M , define the set L = {0‖id1, . . . , 0‖idr, 1‖M‖R}. Return
1 if Π.Verify(pk, L, σ) = 1 and 0 otherwise.

Note that, in order to guarantee the unforgeability of the scheme, the ring of
identities R must be appended to the actual message in the last element of L.
Otherwise, the adversary would be able to introduce extra identities in the ring
associated with any given signature.

Theorem 2. The above identity-based ring signature scheme provides unforge-
ability against adaptive-ring attacks assuming that Π is an unforgeable HH-AOS.
Moreover, it provides full anonymity against unbounded adversaries if Π is a
completely context hiding HH-AOS scheme.

Proof. The proof of unforgeability is straightforward as, given a ring signature
forger, one can clearly construct a forger against the underlying HH-AOS. We
thus focus on the anonymity property.

The proof of anonymity is also immediate. We consider a first game, called
Game0, which is the actual attack game. We define Game1 to be identical to
Game0 except that we modify the way to compute the challenge signature in
the challenge phase. Namely, instead of computing the challenge signature as
σ ← Π.SignDerive(pk, {(didd

, idd)}, L), the challenger computes a new signature
σ ← Π.Sign(sk, L) on the set L. The complete context-hiding property guarantees
that A’s view will not be affected by this change since σ has exactly the same
distribution in both games. However, in Game1, the challenge signature σ does
not depend on the adversary’s secret bit d ∈R {0, 1}, which is thus independent
of the adversary’s view. ��

A Groth-Sahai Proof Systems

In [32], Groth and Sahai described efficient non-interactive witness indistinguish-
able (NIWI) proof systems of which one instantiation relies on the DLIN assump-
tion. This instantiation uses prime order groups and a common reference string
containing three vectors �f1, �f2, �f3 ∈ G

3, where �f1 = (f1, 1, g), �f2 = (1, f2, g)
for some f1, f2 ∈ G. To commit to a group element X ∈ G, the prover chooses
r, s, t

R← Z
∗
p and computes �C = (1, 1,X) · �f1

r
· �f2

s
· �f3

t
. On a perfectly sound

common reference string, we have �f3 = �f1
ξ1 · �f2

ξ2
where ξ1, ξ2 ∈ Z

∗
p. Commit-

ments �C = (fr+ξ1t
1 , fs+ξ2t

2 ,X · gr+s+t(ξ1+ξ2)) are extractable as their distribu-
tion coincides with that of Boneh-Boyen-Shacham (BBS) ciphertexts [16] and

470 B. Libert et al.

the committed X can be extracted using β1 = logg(f1), β2 = logg(f2). In the
witness indistinguishability (WI) setting, the vector �f3 is chosen outside the
span of (�f1, �f2), so that �C is a perfectly hiding commitment. Under the DLIN
assumption, the two kinds of CRS can be exchanged for one another without
the adversary noticing.

To convince the verifier that committed variables satisfy a set of relations,
the prover computes one commitment per variable and one proof element per
equation. Such NIWI proofs can be efficiently generated for pairing-product
equations, which are relations of the type

n∏

i=1

e(Ai,Xi) ·
n∏

i=1

·
n∏

j=1

e(Xi,Xj)aij = tT , (4)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}.

In pairing-product equations, proving a quadratic equation requires 9 group
elements. Linear equations (i.e., where aij = 0 for all i, j in Eq. (4)) are slightly
more economical to prove as they only cost 3 group elements each.

In [9], Belenkiy et al. showed that Groth-Sahai proofs are perfectly random-
izable. Given commitments {�CXi

}n
i=1 and a NIWI proof �πPPE that committed

{X}n
i=1 satisfy (4), anyone can publicly compute re-randomized commitments

{�CX ′
i
}n

i=1 and a re-randomized proof �π′
PPE of the same statement. Moreover,

{�CX ′
i
}n

i=1 and �π′
PPE are distributed as freshly generated commitments and proof.

This property was used in, e.g., [23].

Acknowledgments. We thank the anonymous reviewers for useful comments. The
first author’s work was supported in part by the “Programme Avenir Lyon Saint-
Etienne de l’Université de Lyon” in the framework of the programme “Inverstissements
d’Avenir” (ANR-11-IDEX-0007). The last author’s work was supported by the ERC
grant CryptoCloud.

References

1. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. Cryptology ePrint Archive: Report 2010/133 (2010)

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

4. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

Secure Efficient History-Hiding Append-Only Signatures 471

5. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 1–20. Springer, Heidelberg (2012)

6. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

7. Au, M.-H., Liu, J., Susilo, W., Zhou, J.: Realizing fully secure unrestricted ID-
based ring signature in the standard model from HIBE. IEEE Trans. Information
Forensics and Security 8(12) (2013)

8. Bajaj, S., Sion, R.: HIFS: History independence for file systems. In: ACM-CCS
2013. ACM Press (2013)

9. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidel-
berg (2009)

10. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identi-
fication and signature schemes. J. Cryptology 22(1) (2009); Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer,
Heidelberg (2004)

11. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993. ACM Press (1993)

12. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with
RSA and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

13. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. J. Crypotology 22(1) (2009); In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg
(2006)

14. Bethencourt, J., Boneh, D., Waters, D.: Cryptographic methods for storing ballots
on a voting machine. In: NDSS 2007. Internet Society (2007)

15. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

16. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

17. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. J. Com-
put. 32(3) (2001); Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001)

18. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

19. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

20. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

21. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: STOC 1998. ACM Press (1998)

472 B. Libert et al.

22. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

23. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)

24. Desmedt, Y.: Computer security by redefining what a computer is. In: New Security
Paradigms Workshop, NSPW 1993 (1993)

25. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

26. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)

27. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013. IEEE Computer Society (2013)

29. Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: an app-
roach for proving security from static assumptions. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012)

30. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

31. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

32. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

33. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

34. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

35. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

36. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002)

37. Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-only signatures. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005)

38. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

Secure Efficient History-Hiding Append-Only Signatures 473

39. Libert, B., Joye, M., Yung, M., Peters, T.: Secure efficient history-hiding append-
only signatures in the standard model. Cryptology ePrint Archive (2015). http://
eprint.iacr.org/

40. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggre-
gate signatures and multisignatures without random oracles. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer,
Heidelberg (2006)

41. Micciancio, D.: Oblivious data structures: Applications to cryptography. In:
STOC 1997. ACM Press (1997)

42. Molnar, D., Kohno, T., Sastry, N., Wagner, D.: Tamper-evident, history-
independent, subliminal-free data structures on PROM storage -or- How to store
ballots on a voting machine. In: S&P 2006. IEEE Computer Society (2006)

43. Moran, T., Naor, M., Segev, G.: Deterministic history-independent strategies for
storing information on write-once memories. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 303–315. Springer,
Heidelberg (2007)

44. Naor, M., Teague, V.: Anti-persistence: History independent data structures. In:
STOC 2001. ACM Press (2001)

45. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

46. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

47. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

48. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

49. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

http://eprint.iacr.org/
http://eprint.iacr.org/

Efficient Constructions

One-Round Key Exchange with Strong Security:
An Efficient and Generic Construction

in the Standard Model

Florian Bergsma(B), Tibor Jager, and Jörg Schwenk

Horst Görtz Institute for IT Security, Ruhr-University Bochum, Bochum, Germany
{florian.bergsma,tibor.jager,joerg.schwenk}@rub.de

Abstract. One-round authenticated key exchange (ORKE) is an estab-
lished research area, with many prominent protocol constructions like
HMQV (Krawczyk, CRYPTO 2005) and Naxos (La Macchia et al.,
ProvSec 2007), and many slightly different, strong security models.
Most constructions combine ephemeral and static Diffie-Hellman Key
Exchange (DHKE), in a manner often closely tied to the underlying
security model.

We give a generic construction of ORKE protocols from general
assumptions, with security in the standard model, and in a strong secu-
rity model where the attacker is even allowed to learn the randomness
or the long-term secret of either party in the target session. The only
restriction is that the attacker must not learn both the randomness and
the long-term secret of one party of the target session, since this would
allow him to recompute all internal states of this party, including the
session key.

This is the first such construction that does not rely on random ora-
cles. The construction is intuitive, relatively simple, and efficient. It uses
only standard primitives, namely non-interactive key exchange, a digital
signature scheme, and a pseudorandom function, with standard security
properties, as building blocks.

Keywords: One-round key exchange · eCK security · Provable security

1 Introduction

Key Exchange Protocols and Their Security. Interactive key exchange
protocols are fundamental cryptographic building blocks. Two-party protocols,
where two parties A and B exchange messages in order to establish a com-
mon secret kAB , are particularly important in practice. Popular examples are
SSL/TLS [13], SSH [34], and IPSec IKE [22].

Following the seminal works of Bellare and Rogaway (BR) [1] and Canetti
and Krawczyk [8], security for such protocols is usually defined with respect to
active attackers [23,25,32], which may intercept, read, alter, replay, or drop any
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 477–494, 2015.
DOI: 10.1007/978-3-662-46447-2 21

478 F. Bergsma et al.

message transmitted between parties (see Section 3.3 for a precise definition). An
attacker in such a security model interacts with a collection of oracles π1

1 , . . . , π�
d,

where all oracles π1
i , . . . , πd

i share the same long-term public and secret keys
of party Pi. An adversary breaks the security of the protocol, if she is able
to distinguish the session key k shared between two oracles πs

i and πt
j from a

random value from the same distribution. To this end, the attacker may ask a
Test(i, s)-query to oracle πs

i . Oracle πs
i returns either the real key k or a random

value, each with probability 1/2.
Typical security models also allow the attacker to corrupt selected parties,

that is, to learn their long-term secret keys, or to reveal keys, that is, to learn
the shared keys of sessions which are not related to the Test session. Stronger
models [8,23,25,32] allow the attacker furthermore to learn the randomness used
by an oracle (which is easy to define clearly), or even internal computation states
(which are difficult to define precisely).

One-Round Key Exchange. In this paper we consider one-round key exchange
(ORKE) protocols, where two parties are able to establish a key in a single
round. Such protocols are particularly interesting, due to their simplicity and
their efficiency in terms of messages exchanged between parties.

In a (public-key, two-party) ORKE protocol, only two messages are exchanged
between two parties A and B. If (pkA, skA) is the public key pair of A, and
(pkB, skB) that of B, key establishment proceeds as follows. Party A chooses
a random nonce rA, computes a message mA = f(skA, pkB , rA), and sends
mA to B. B chooses a random nonce rB and responds with message mB =
f(skB , pkA, rB) (cf. Section 3.2). Note that mB does not depend on mA, thus,
messages mA and mB may be computed and sent simultaneously in one round.
The key is computed by evaluating a function g with g(skA, pkB , rA,mB) =
g(skB , pkA, rB ,mA).

Security Models. Some combinations of adversarial queries lead to trivial
attacks, these trivial attacks must of course be excluded from the security defi-
nition. For instance, in all models, the attacker is not allowed to simultaneously
reveal the session key of an oracle πs

i , and then ask a Test query to πs
i , as this

would trivially allow the adversary to correctly answer the Test query with prob-
ability 1. Moreover, the attacker must also not learn both the long-lived secret
key (Corrupt) and the randomness (RevealRand) of an oracle involved in the
Test-session, because then the attacker would learn the entire internal state of
this oracle, and thus would be able to re-compute everything the oracle is able
to compute, including the secret session key.

Research Challenges. The strongest form of security that is possible to
achieve in such a model is to allow corruptions and randomness reveals even
against oracles involved in the Test-session, provided that the attacker does not
reveal both the randomness and the long-term secret of one oracle. (Corrup-
tions of parties are of course only allowed after the key has been established, as

One-Round Key Exchange with Strong Security 479

otherwise trivial man-in-the-middle attacks are possible.) Is it possible to con-
struct an ORKE protocol that achieves security in such a strong model?

If a party is corrupted, the adversary can impersonate this party in the future.
In some cases, the adversary can also break the security of session keys that have
been generated in the past (e.g. if RSA key transport is used). The property that
session keys computed before the corruption remain secure is known as perfect
forward secrecy (PFS) [14,16]. In reaction to a conjecture of Krawczyk that
ORKE protocols could only achieve a weaker form of PFS [24], Cremers showed
that full PFS is generally achievable for ORKE protocols [11]. However until
now, none of the proposed ORKE protocols has this property. Can we construct
an ORKE protocol that achieves perfect forward secrecy in such a strong model
as eCK?

Contributions. In this paper, we make the following contributions:

– Novel generic construction. We give an intuitive, relatively simple and effi-
cient construction of an ORKE protocol with provable security in a model
that allows all non-trivial combinations of corrupt- and reveal-queries, even
against the Test-session.

– Non-DH ORKE instantiation. Instantiating our protocol with the factoring
based NIKE protocol by Freire et al. [15], this yields an ORKE protocol based
on the hardness of factoring large integers. This provides an alternative to
known constructions based on (decisional) Diffie-Hellman.

– First ORKE with perfect forward security under standard assumptions. Our
protocol is the first one-round AKE protocol which provides perfect forward
security without random oracles.

– Well-established, general assumptions. The construction is based on general
assumptions, namely the existence of secure non-interactive key exchange
(NIKE) protocols [9,15], (unique) digital signatures, and a pseudorandom
function. For all building blocks we require standard security properties.

– Security in the Standard Model. The security analysis is completely in the
standard model, that is, without resorting to the Random Oracle heuristic [2]
and without relying on non-standard complexity assumptions.

The Advantages of Generic Constructions. From a theoretical point
of view, generic constructions show relations and implications between different
types of cryptographic primitives. From a practical point of view, a generic
protocol construction based on abstract building blocks allows to instantiate
the protocol with arbitrary concrete instantiations of these building blocks —
provided that they meet the required security properties. For instance, in order
to obtain a “post-quantum”-instantiation of our protocol, it suffices to construct
a NIKE scheme, digital signatures, and a PRF with post-quantum security and
plug these primitives into the generic construction.

A common disadvantage of generic constructions is that they tend to be
significantly less efficient than direct constructions. However, when instantiated
with the NIKE schemes from [15], our protocol is already efficient enough to be

480 F. Bergsma et al.

deployed in practice. See Section 5 for an efficiency comparison to other ORKE
protocols.

Practical Motivation of the Model. Most cryptographic protocols inher-
ently require “good” (i.e., independent and uniform) randomness to achieve their
security goals. The availability of “good” random coins is simply assumed in the
theoretical security analysis. However in practice, there are many famous exam-
ples where a flawed (i.e., low-entropy) generation of random numbers has led to
serious security flaws. These include, for instance, the Debian OpenSSL bug,1

the results of Lenstra et al. [28] and Heninger et al. [17] on the distribution of
public keys on the Internet, or the case of certified smart cards considered by
Bernstein et al. [3].

In our security model we allow the attacker to learn the full randomness of
each party. Thus, even if this randomness is completely predictable, the protocol
still provides security — as long as the long-lived secret keys of all parties are
generated with good, “secret” randomness.

2 Related Work

Authenticated Key Exchange. An important line of research on the field
of authenticated key exchange protocols started with Bellare and Rogaway [1]
(the BR model) and Canetti and Krawczyk [8] (the CK model). The CK model
is usually used to analyze one-round protocols, where authentication and key
negotiation is performed very efficiently by two parties, only sending one message
per party. Examples of such one-round protocols are MQV [27], KEA [26,30], or
NAXOS [25]. HMQV [23], SMQV [32] were proposed to meet stronger security
definitions. A comparison of different variants of the CK model can be found
in [10,35]. Most constructions are proven secure in the Random Oracle Model
(ROM) [2], with only a few exceptions [5,31,33].

PFS and KCI attacks. Perfect forward secrecy (PFS) is an important security
goal for key-exchange protocols. Loosely speaking, PFS guarantees the secrecy
of older session keys, even when the parties long-term key is compromised.
Krawczyk [24] conjectured that no one-round protocol with implicit authen-
tication can achieve full PFS in a CK -type model and introduced the notion of
weak PFS (wPFS); this conjecture was refuted by Cremers et al. [11]. A protocol
is wPFS secure, if the session key is indistinguishable from a random key and
the parties long-term key is compromised if the adversary was passive during
the session key negotiation [24, Section 3.2]. Similar to [11], we define rules for
the security game to model and prove (full) PFS. In our security definition, the
party corresponding to the tested oracle is allowed to be corrupted before the
session completes. The only restriction to the corruption of parties in the test
session is that the intended partner of the tested oracle is uncorrupted until the
tested oracle accepts.
1 https://www.debian.org/security/2008/dsa-1571

https://www.debian.org/security/2008/dsa-1571

One-Round Key Exchange with Strong Security 481

Another security goal of AKE protocols is security against key-compromise
impersonation (KCI) attacks [24]. In a KCI attack, an adversary corrupts a party
A and is able to authenticate herself to A as some uncorrupted party B. Since
in the eCK model the adversary is always allowed to corrupt some party and
learn the session randomness of the matching session, security in the eCK model
naturally brings security against KCI attacks.

eCK Models. The term “extended Canetti-Krawczyk model” (eCK) was first
introduced in [25]. The main difference to the CK model is that the RevealState-
query (which has to be specified for each protocol) is replaced with a different
query, namely RevealEphemeralExponent (which is a meaningful definition only
for DH-based protocols, or other protocols where ephemeral exponents appear).
In subsequent publications, the eCK model was often slightly modified, such
that it is difficult to speak of “the” eCK model.

The eCK -PFS Security model. In 2012 Cremers and Feltz introduced a
variant of the extended Canetti-Krawczyk model to capture perfect forward
security [11]. The major difference between the eCK and eCK -PFS security
models is the definition of session identifiers. Cremers et al. introduced the notion
of origin sessions, which solves technical problems with the session identifier
definition from the original eCK -model [12].

We slightly enhanced the eCK -PFS model in order to better model PFS, by
introducing an explicit counter of adversarial interactions as done by Jager et al.
[20] for the BR security model. Thus, we have a clear order of events and we
can formally validate if a party was corrupted before or after a session accepted
another party as a communication partner.

3 Preliminaries

In this paragraph we will define non-interactive key exchange (NIKE) and one-
round key exchange (ORKE) protocols and their security.

3.1 Secure Non-Interactive Key Exchange

Definition 1. A non-interactive key exchange (NIKE) scheme consists of two
deterministic algorithms (NIKEgen,NIKEkey).

NIKEgen(1λ, r) takes a security parameter λ and randomness r ∈ {0, 1}λ. It
outputs a key pair (pk , sk). We write (pk , sk) $← NIKEgen(1λ) to denote that
NIKEgen(1λ, r) is executed with uniformly random r

$← {0, 1}λ.
NIKEkey(sk i, pk j) is a deterministic algorithm which takes as input a secret key

sk i and a public key pk j, and outputs a key ki,j.

We say that a NIKE scheme is correct, if for all (pk i, sk i)
$← NIKEgen(1λ) and

(pk j , sk j)
$← NIKEgen(1λ) holds that NIKEkey(sk i, pk j) = NIKEkey(sk j , pk i).

482 F. Bergsma et al.

A NIKE scheme is used by d parties P1, . . . , Pd as follows. Each party Pi gen-
erates a key pair (pk i, sk i) ← NIKEgen(1λ) and publishes pk i. In order to com-
pute the key shared by Pi and Pj , party Pi computes ki,j = NIKEkey(sk i, pk j).
Similarly, party Pj computes kj,i = NIKEkey(sk j , pk i). Correctness of the NIKE
scheme guarantees that ki,j = kj,i.

CKS-light security. The CKS-light security model for NIKE protocols is
relatively simplistic and compact. We choose this model because other (more
complex) NIKE security models like CKS , CKS-heavy and m-CKS-heavy are
polynomial-time equivalent to CKS-light. See [15] for more details.

Security of a NIKE protocol NIKE is defined by a game NIKE played between
an adversary A and a challenger. The challenger takes a security parameter λ
and a random bit b as input and answers all queries of A until she outputs a bit
b′. The challenger answers the following queries for A:

– RegisterHonest(i). A supplies an index i. The challenger runs NIKEgen(1λ)
to generate a key pair (pki, ski) and records the tuple (honest, pki, ski) for
later and returns pki to A. This query may be asked at most twice by A.

– RegisterCorrupt(pki). With this query A supplies a public key pki. The chal-
lenger records the tuple (corrupt, pki) for later.

– GetCorruptKey(i, j). A supplies two indexes i and j where pki was registered
as corrupt and pkj as honest. The challenger runs k ← NIKEkey(skj , pki)
and returns k to A.

– Test(i, j). The adversary supplies two indexes i and j that were registered
honestly. Now the challenger uses bit b: if b = 0, then the challenger runs
ki,j ← NIKEkey(pki, skj) and returns the key ki,j . If b = 1, then the chal-
lenger samples a random element from the key space, records it for later,
and returns the key to A.

The game NIKE outputs 1, denoted by NIKEA
NIKE(λ) = 1 if b = b′ and 0

otherwise. We say A wins the game if NIKEA
NIKE(λ) = 1.

Definition 2. For any adversary A playing the above NIKE game against a
NIKE scheme NIKE, we define the advantage of winning the game NIKE as

AdvCKS-light
NIKE (A) = Pr

[

NIKEA
NIKE(λ) = 1

]

− 1
2

Let λ be a security parameter, NIKE be a NIKE protocol and A an adver-
sary. We say NIKE is a CKS-light-secure NIKE protocol, if for all probabilis-
tic polynomial-time adversaries A, the function AdvCKS-light

NIKE (A) is a negligible
function in λ.

3.2 One-Round Key Exchange Protocols

Definition 3. A one-round key exchange (ORKE) scheme consists of three
deterministic algorithms (ORKEgen,ORKEmsg,ORKEkey).

One-Round Key Exchange with Strong Security 483

– ORKEgen(1λ, r) takes a security parameter λ and randomness r ∈ {0, 1}λ.
It outputs a key pair (pk , sk). We write (pk , sk) $← ORKEgen(1λ) to denote
that ORKEgen is executed with uniformly random r

$← {0, 1}λ.
– ORKEmsg(ri, sk i, pk j) takes as input randomness ri ∈ {0, 1}λ, secret key sk i

and a public key pk j, and outputs a message mi.
– ORKEkey(sk i, pk j , ri,mj) takes as input a secret key sk i, a public key pk j,

randomness ri, and message mj. It outputs a key k.

We say that a ORKE scheme is correct, if for all (pk i, sk i)
$← ORKEgen(1λ)

and (pk j , sk j)
$← ORKEgen(1λ), and for all ri, rj

$← {0, 1}λ holds that

ORKEkey(sk i, pk j , ri,mj) = ORKEkey(sk j , pk i, rj ,mi),

where mi := ORKEmsg(ri, sk i, pk j) and mj := ORKEmsg(rj , sk j , pk i).

A ORKE scheme is used by d parties P1, . . . , Pd as follows. Each party Pi gen-
erates a key pair (pk i, sk i)

$← ORKEgen(1λ) and publishes pk i. Then, two parties
Pi, Pj can establish a shared key as follows (see Figure 1 for an illustration).

1. Pi chooses ri
$← {0, 1}λ, computes mi := ORKEmsg(ri, sk i, pk j), and sends

mi to Pj .
2. Pj chooses rj

$← {0, 1}λ, computes mj := ORKEmsg(rj , sk j , pk i), and sends
mj to Pi.
(Both messages mi and mj may be sent simultaneously, as this is a one-round
protocol).

3. The shared key is computed by party Pi as ki,j := ORKEkey(sk i, pk j , ri,mj).
Similarly, party Pj computes kj,i = ORKEkey(sk j , pk i, rj ,mi). Correctness
of the ORKE scheme guarantees that ki,j = kj,i.

Pi Pj

(ski, pki)
$← ORKEgen(1λ, i) (skj , pkj)

$← ORKEgen(1λ, j)

πs
i

ri
$← {0, 1}λ

mi := ORKEmsg(ri, sk i, pk j) mi

πt
j

rj
$← {0, 1}λ

mj := ORKEmsg(rj , sk j , pk i)

mj

ki,j := ORKEkey(sk i, pk j , ri,mj) kj,i = ORKEkey(sk j , pk i, rj ,mi)

Fig. 1. Execution of an ORKE protocol

484 F. Bergsma et al.

3.3 Secure One-Round Key Exchange

Security models for one-round key exchange have two major building blocks.
The first defines the execution environment provided to an attacker on the AKE
protocol. The second defines the rules of the game and the winning condition
for an attacker.

Execution Environment. Consider a set of parties {P1, . . . , Pd}, d ∈ N, where
each party Pi ∈ {P1, . . . , Pd} is a (potential) protocol participant and has a long-
term key pair (pki, ski). To formalize several sequential and parallel executions
of the protocol, each party Pi is modeled by a collection of � oracles. Each oracle
represents a process that executes one single instance of the protocol. All oracles
representing party Pi have access to the same long-term key pair (pki, ski) of
Pi and to all public keys pk1, . . . , pkd. Moreover, each oracle πs

i maintains as
internal state the following variables:

– Accepteds
i ∈ N ∪ {reject}. This variable indicates whether and when the

oracle accepted. It is initialized to Accepteds
i = reject.

– Keys
i ∈ K ∪ {∅}, where K is the keyspace of the protocol and ∅ is the empty

string, initialized to Keys
i = ∅.

– Partnersi containing the intended communication partner. We assume that
each party Pi is uniquely identified by its public key pki, and therefore use
public keys as identities.2 The variable is initialized to Partnersi = ∅.

– A variable Mi,s
out storing the message sent by an oracle and a variable Mi,s

in

storing the received protocol message. Both are initialized as Mi,s
in = Mi,s

out =
∅.

– A variable Randomnesssi , which contains a uniformly string from {0, 1}κ. This
string corresponds to the local randomness of an oracle. It is never changed
or modified by an oracle.

– Variables RevealedKeys
i ,Corruptedi ∈ N, which will be used to determine

if and when a RevealKey or Corrupt query was asked to this oracle or the
corresponding party was corrupted (see below for details). These variables
are initialized as RevealedKeys

i = Corruptedi = ∞.

We will assume (for simplicity) that

Keys
i �= ∅ ⇐⇒ Accepteds

i ∈ N.

We assume the adversary controls the network. Thus she is able to generate,
manipulate or delay messages. Furthermore, the adversary can learn session keys,
parties’ secret long term keys and even the session randomness in our model.
Formally the adversary may interact with the execution environment by issuing
the following queries.
2 In practice, several keys may be assigned to one identity. There are other ways to

determine identities, for instance by using certificates. However, this is out of scope
of this paper.

One-Round Key Exchange with Strong Security 485

– Send(i, s,m) → m′: The adversary sends message m to oracle πs
i . Party Pi

processes message m according to the protocol specification and its inter-
nal oracle state πs

i , updates its state3, and optionally outputs an outgoing
message m′.

There is a distinguished initialization message ini which allows the adver-
sary to activate the oracle with certain information. In particular, the ini-
tialization message contains the identity Pj of the intended partner of this
oracle.

– RevealKey(i, s): if this is the τ -th query issued by A, then the challenger sets
RevealedKeys

i := τ and responds with the contents of variable Keys
i . Recall

that Keys
i �= ∅ iff Accepteds

i ∈ N.
– RevealRand(i, s): the challenger responds with the contents of Randomnesssi .
– Corrupt(i, pk∗): if this is the τ -th query issued by A (in total), then the chal-

lenger sets the oracle state Corruptedi := τ and responds with ski. Moreover,
the public key pki is replaced (globally) with the adversarially-chosen key
pk∗.4

– Test(i, s): This query may be asked only once throughout the game, it is
answered as follows. Let k1 := Keys

i and k0
$← K. If Accepteds

i ∈ N, the
oracle flips a fair coin b

$← {0, 1} and returns kb. If Accepteds
i = reject or

if Partnersi = j and Pj is corrupted when Test is issued, terminate the game
and output a random bit.

eCK -PFS Security Definition. In the following we give the security defi-
nition for one-round key-exchange protocols in the extended Canetti-Krawczyk
model with perfect forward security. Firstly we introduce the partnering defini-
tions from Cremers and Feltz. Secondly we define the rules by which an adversary
has to play the AKE game in the eCK -PFS -model. Finally we define the security
for one-round key-exchange protocols in the model.

Definition 4 (Origin session). Consider two parties Pi and Pj with oracles
πs

i and πt
j. We say πs

i has origin session πt
j, if Mi,s

in = Mj,t
out, and denote this by

πs
i

os←− πt
j.

Alternatively we could say πt
j is an origin session of πs

i , if Mi,s
in = Mj,t

out.

Using the concept of origin sessions, we can define matching sessions as a
symmetric relation of origin sessions: two sessions match, if they are origin ses-
sions to each other. We capture this in the following definition.

Definition 5 (Matching session). Consider two parties Pi and Pj with ora-
cles πs

i and πt
j. We say πs

i has a matching session to πt
j (and vice versa), if πs

i

is an origin session of πt
j and πt

j is an origin session of πs
i .

3 In particular, if πs
i accepts after the τ -th query, set Acceptedsi = τ .

4 Note, that the adversary does not ‘take control’ of oracles corresponding to a cor-
rupted party. But he learns the long-term secret key, and can henceforth simulate
these oracles.

486 F. Bergsma et al.

The notions of origin and matching sessions will be used in Definition 6 to
exclude trivial attacks from the security model: If Test(i, s) is asked, restrictions
are imposed on oracle πs

i itself, and on oracles and parties from which the test
oracle has received a message. On the other hand, sessions and parties to which
a message was sent from the test session do not necessary play any role in
Definition 6, for example if the test session has no matching session.

AKE Game. Consider the following security experiment AKEA
Π(λ) played

between a challenger C and an adversary A. The challenger receives the security
parameter λ as an input and sets up all protocol parameters (like long term keys
generation etc.). C simulates the protocol Π and keeps track of all variables of
the execution environment. The adversary interacts by issuing any combination
of the above mentioned queries. At some point of time during the game, she asks
the Testsi query and gets a key kb, which is either the exchanged key or a random
key as described in the previous section. She may continue asking queries and
finally outputs a bit b′. The game AKE outputs 1, denoted by AKEA

Π(λ) = 1
if b = b′ and 0 otherwise.

Definition 6 (eCK -PFS -rules). A plays the AKE game by eCK -PFS -rules,
if the following conditions hold simultaneously when she issues Test(i, s):

– Accepteds
i = τ with τ ∈ N.

– A did not ask both Corrupt(i, pk∗) and RevealRand(i, s).
– If πs

i has an origin session πt
j, then it does not hold that both Corruptedj ≤ τ

and A asked RevealRand(j, t).
– If πs

i has no origin session but intended partner Partnersi = j, then it does
not hold that Corruptedj ≤ τ .

When A terminates and outputs a bit b′, it also holds that A did not ask
RevealKey(i, s) and (if πs

i has a matching session to πt
j) RevealKey(j, t).

We say A wins the AKE game, if AKEA
Π(λ) = 1.

Definition 7 (eCK -PFS -security). We define the advantage of A winning
this game playing by eCK-PFS-rules as

AdveCK-PFS
Π (A) = Pr

[

AKEA
Π(λ) = 1

]

− 1
2
.

Let λ be a security parameter, Π be an AKE protocol and A an adversary.
We say Π is an eCK -secure AKE protocol, if it is correct and for all proba-
bilistic polynomial-time adversaries A playing by eCK-PFS-rules, the function
AdveCK-PFS

Π (A) is a negligible function in λ.

Remark 1. Note that this security definition includes perfect-forward secrecy
and security against KCI attacks.

One-Round Key Exchange with Strong Security 487

3.4 Further Building Blocks

Digital signatures. A digital signature scheme consists of three polynomial-
time algorithms SIG = (SIGgen,SIGsign,SIGvfy). The key generation algorithm
(sk, pk) $← SIGgen(1λ) generates a public verification key pk and a secret signing
key sk on input of security parameter λ. Signing algorithm σ

$← SIGsign(sk,m)
generates a signature for message m. Verification algorithm SIGvfy(pk, σ,m)
returns 1 if σ is a valid signature for m under key pk, and 0 otherwise.

Definition 8. We say that SIG is deterministic, if SIGsign is deterministic.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger generates a public/secret key pair (sk, pk) $← SIGgen(1λ), the
adversary receives pk as input.

2. The adversary may query arbitrary messages mi to the challenger. The chal-
lenger replies to each query with a signature σi = SIGsign(sk,mi). Here i is
an index, ranging between 1 ≤ i ≤ q for some q ∈ N. Queries can be made
adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 9. We define the advantage on an adversary A in this game as

AdvsEUF-CMA
SIG (A) := Pr

[

(m,σ) $← AC(λ)(pk) :
SIGvfy(pk,m, σ) = 1,
(m,σ) �= (mi, σi) ∀i

]

SIG is strongly secure against existential forgeries under adaptive chosen-
message attacks (sEUF-CMA), if AdvsEUF-CMA

SIG (A) is a negligible function in
λ for all probabilistic polynomial-time adversaries A.

Remark 2. Deterministic signatures with sEUF-CMA security can be construc-
ted, for instance, from verifiable unpredictable or verifiable random functions
with large input spaces [4,18,19,29].

Pseudorandom functions. A pseudo-random function is an algorithm PRF.
This algorithm implements a deterministic function z = PRF(k, x), taking as
input a key k ∈ {0, 1}λ and some bit string x, and returning a string z ∈ {0, 1}μ.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger samples k
$← {0, 1}λ uniformly random.

2. The adversary may query arbitrary values xi to the challenger. The chal-
lenger replies to each query with zi = PRF(k, xi). Here i is an index, ranging
between 1 ≤ i ≤ q for some q ∈ N. Queries can be made adaptively.

3. Eventually, the adversary outputs value x and a special symbol
. The
challenger sets z0 = PRF(k, x) and samples z1

$← {0, 1}μ uniformly random.
Then it tosses a coin b

$← {0, 1}, and returns zb to the adversary.

488 F. Bergsma et al.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.

The Adversary wins the game, if she outputs b′ such that b = b′.

Definition 10. We denote the advantage of an adversary A in winning this
game as

AdvprfPRF(A) = Pr
[

b = b′ for b′ $← AC(λ)(1λ)
]

− 1
2

We say that PRF is a secure pseudo-random function, if for all probabilistic
polynomial time adversaries A AdvprfPRF(A) is a negligible function in λ.

4 Generic Construction of eCK-Secure Key Exchange

Let SIG = (SIGgen,SIGsign,SIGvfy) be a deterministic signature scheme, NIKE =
(NIKEgen,NIKEkey) be a NIKE scheme, and let PRF be a pseudo-random func-
tion. Let sort be an arbitrary function which takes as input two strings (mi,mj),
and outputs them according to some order (e.g. lexicographically). That is,

sort(mi,mj) :=

{

(mi,mj), if mi ≤ mj ,

(mj ,mi), if mi > mj ,

where ≤ and > are defined with respect to some (arbitrary) ordering. We con-
struct an ORKE protocol Π = (ORKEgen,ORKEmsg,ORKEkey) as follows (see
also Figure 2).

ORKEgen(1λ) computes key pairs for the NIKE and digital signature scheme,
respectively, as (pknike

i , sknike
i) $← NIKEgen(1λ) and (pk sig

i , sk sig
i) $← SIGgen(1λ),

and outputs
(pk i, sk i) := ((pknike

i , pk sig
i), (sknike

i , sk sig
i))

ORKEmsg(ri, sk i, pk j) parses sk i = (sknike
i , sk sig

i). Then it samples ri
$← {0, 1}λ

and runs the key generation algorithm (pk tmp
i , sk tmp

i) $← NIKEgen(1λ, ri) to
generate a key pair of the NIKE scheme. Then it computes a signature
over pk tmp

i as σi
$← SIGsign(sk sig

i , pk tmp
i) and outputs the message mi :=

(pk tmp
i , σi).

ORKEkey(sk i, (pknike
j , pk sig

j), ri,mj) first parses its input as mj = (pk tmp
j , σj) and

sk i = (sknike
i , sk sig

i). If

SIGvfy(pk sig
j , pk tmp

j , σj) �= 1,

then it outputs ⊥. Otherwise it runs (pk tmp
i , sk tmp

i) $← NIKEgen(1λ, ri) to
re-compute sk tmp

i from ri. Finally it derives the key k as follows.
1. Compute T := sort(pk tmp

i , pk tmp
j).

One-Round Key Exchange with Strong Security 489

2. Compute

knike,nike := PRF(NIKEkey(sknike
i , pknike

j), T), (1)

knike,tmp := PRF(NIKEkey(sknike
i , pk tmp

j), T), (2)

ktmp,nike := PRF(NIKEkey(sk tmp
i , pknike

j), T), (3)

ktmp,tmp := NIKEkey(sk tmp
i , pk tmp

j). (4)

3. Compute k as

k := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp

and output k.

Pi Pj(

(sknike
i , sk sig

i), (pknike
i , pk sig

i)
) (

(sknike
j , sk sig

j), (pknike
j , pk sig

j)
)

πs
i

ri
$← {0, 1}λ

(sk tmp
i , pk tmp

i) ← NIKEgen(1λ, ri)

σi ← SIGsign(sk sig
i , pk tmp

i)

If: SIGvfy(pk sig
j , pk tmp

j , σj) = 1:

(pk tmp
i , σi)

T := sort(pk tmp
i , pk tmp

j)

knike,nike = PRF(NIKEkey(sknike
i , pknike

j), T)

knike,tmp = PRF(NIKEkey(sknike
i , pk tmp

j), T)

ktmp,nike = PRF(NIKEkey(sk tmp
i , pknike

j), T)

ktmp,tmp = PRF(NIKEkey(sk tmp
i , pk tmp

j))

πt
j

rj
$← {0, 1}λ

(sk tmp
i , pk tmp

j) ← NIKEgen(1λ, rj)

σj ← SIGsign(sk sig
j , pk tmp

j)

If: SIGvfy(pk sig
i , pk tmp

i , σj) = 1:

(pk tmp
j , σj)

T := sort(pk tmp
i , pk tmp

j)

knike,nike = PRF(NIKEkey(sknike
j , pknike

i), T)

knike,tmp = PRF(NIKEkey(sknike
j , pk tmp

i), T)

ktmp,nike = PRF(NIKEkey(sk tmp
j , pknike

i), T)

ktmp,tmp = PRF(NIKEkey(sk tmp
j , pk tmp

i))

ki,j := knike,nike ⊕ knike,tmp

⊕ktmp,nike ⊕ ktmp,tmp

kj,i := knike,nike ⊕ knike,tmp

⊕ktmp,nike ⊕ ktmp,tmp

Fig. 2. Execution of protocol Π

Remark 3. In our generic construction Π we use a deterministic, strong existen-
tially-unforgeable (sEUF -CMA) signature scheme. We could use a probabilistic
signature scheme instead, but in this case we require a strong existentially-
unforgeable public coin signature scheme.

The reason why we need strong existential unforgeability is the strictness of
the matching conversation definition, which is also discussed in [7]. When using
a probabilistic signature scheme, then we would need the public coin property
to simulate RevealRand queries.

490 F. Bergsma et al.

Even though such signatures may be easier or more efficiently to construct,
we would not gain a better understanding of the reduction. Only the proofs
would become harder to follow. For this reason we decided to use a deterministic
scheme for simplicity.

Theorem 1. From each attacker A, we can construct attackers Bsig, B(1)
nike, B(0)

nike,
and Bprf such that

AdveCK
Π (A) ≤ 4 · d2�2 ·

(

AdvCKS-light
NIKE (B(1)

nike) + AdvprfPRF(Bprf)
)

+ 4 · d · AdvsEUF-CMA
SIG (Bsig) + 4 · AdvCKS-light

NIKE (B(0)
nike)

The running time of Bsig, B(1)
nike, B(0)

nike, and Bprf is equal to the running time
of A plus a minor overhead for the simulation of the security experiment for A.

In order to prove Theorem 1, we will distinguish between four different types
of attackers. Without loss of generality, we assume that an attacker always asks
a Test(i, s)-query for some (i, s). (Otherwise it is impossible to have a non-zero
advantage, as then all computations are independent of the bit b sampled by the
Test-query.) We distinguish between the following four types of attackers.

1. A Type-RR-attacker never asks RevealRand(i, s). If there exists an oracle πt
j

such that πs
i

os←− πt
j , then it also never asks RevealRand(j, t).

2. A Type-RC-attacker never asks RevealRand(i, s). If there exists an oracle πt
j

such that πs
i

os←− πt
j , then it also never asks Corrupt(j, ·).

3. A Type-CR-attacker never asks Corrupt(i, ·). If there exists an oracle πt
j such

that πs
i

os←− πt
j , then it also never asks RevealRand(j, t).

4. A Type-CC-attacker never asks Corrupt(i, ·). If there exists an oracle πt
j such

that πs
i

os←− πt
j , then it also never asks Corrupt(j, ·).

Note that each valid attacker in the sense of Definition 7 falls into (at least) one
of these four categories. We will consider attackers of each type seperately in the
sequel.

Intuition for the proof of Theorem 1. Let us now give some intuition why this
classification of attackers will be useful for the security proof of Π. Recall that in
protocol Π the key is computed as k := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp,
where the keys knike,nike, knike,tmp, ktmp,nike, ktmp,tmp are computed as described in
Equations 1 to 4. The idea behind this construction is that in the proof we
want to be able to reduce the indistinguishability of the ORKE-key k to the
indistinguishability of a NIKE-key.

Recall that in the NIKE security experiment the attacker receives two chal-
lenge public-keys pknike, pknike′

from the challenger. In the reduction, we want to
embed these keys into the view of the ORKE-attacker, such that we can embed
the NIKE-challenge key into k while at the same time being able to answer all
queries of the ORKE-attacker, in particular all Corrupt and RevealRand queries.

One-Round Key Exchange with Strong Security 491

A Type-RR-attacker never asks RevealRand(i, s) and RevealRand(j, t) (if
applicable). Thus, when considering Type-RR-attackers, then we can embed the
NIKE-keys obtained from the NIKE-challenger as

pk tmp
i := pknike and pk tmp

j := pknike′
,

where pk tmp
i and pk tmp

j are the ephemeral keys generated by oracles πs
i and πt

j ,
respectively. Moreover, we embed the NIKE-challenge key knike as ktmp,tmp :=
knike.

However, this embedding strategy does not work for Type-RC-attackers,
because such an attacker might ask RevealRand(j, t). However, we know that
a Type-RC attacker never asks a Corrupt(j, ·), therefore we are able to embed
the NIKE challenge public keys as

pk tmp
i := pknike and pknike

j := pknike′
,

where pk tmp
i is the ephemeral keys generated by πs

i , and pknike
j is the long-term

secret of party Pj . The NIKE-challenge key knike is in this case embedded as
ktmp,nike := PRF(knike, T). The additional PRF is necessary in this case, because
the embedding involves a long-term secret of one party of the test session. This
long-term secret is used in (potentially) many protocol executions involving party
Pj . Similarly, CR- and CC-type attackers can be handled by embedding the
NIKE challenge public- and session as appropriate for each case.

Thus, the four different types of attackers correspond exactly to all four pos-
sible combinations of Corrupt- and RevealRand-queries against the Test-session
that the attacker is allowed (resp. not allowed) to ask in our security model.

The full proof of Theorem 1 can be found in Appendix A.

5 Efficiency Comparison with Other ORKE Protocols

In Table 1 we compare the efficiency of instantiations of our construction to other
one-round key-exchange protocols. We count the number of exponentiations and
pairing evaluations. We do not distinguish an exponentiation in a DH group
from an exponentiation in an RSA group.

We see that our generic construction ORKE, if instantiated with the most
efficient NIKE primitive from [15], will be almost as efficient as the NAXOS pro-
tocol if the Cremers-Feltz compiler is applied [11]. The efficient NIKE primitive
is secure in the random oracle model, but its security is based on the factoring
problem.

The very high number of pairing evaluations within the standard model
instantiation results from the fact, that the underlying NIKE scheme needs 3
pairing evaluations for key computation and we have to compute 4 NIKE keys
per key-exchange at each party.

492 F. Bergsma et al.

Table 1. Efficiency comparison of popular one-round key-exchange protocols to our
generic construction.
1 A variant of the Bellare-Rogaway model [1] with modified partnering definition. No
ephemeral states can be revealed.
2 The NAXOS protocol after application of the Cremers-Feltz compiler [11].
3 Our construction instantiated with a secure NIKE scheme in the random-oracle
model.
4 Our construction instantiated with a standard-model NIKE scheme

Standard PFS weak KCI exp. pairing Security
Model PFS per party evaluations model

T S1 [21] ✗ ✗ ✗ ✗ 1 - BR1

T S3 [21] ✓ ✓ ✓ ✗ 3 - BR1

MQV ✗ ✗ ✓ ✗ 1 - CK

HMQV ✗ ✗ ✓ ✓ 2 - CK

KEA ✗ ✗ ✓ ✓ 2 - CK

P1 [6] ✓ ✗ ✗ ✓ 8 2 CK

P2 [6] ✓ ✗ ✓ ✓ 10 2 CK

NAXOS ✗ ✗ ✓ ✓ 4 - eCK

Okamoto ✓ +πPRF ✗ ✓ ✓ 8 - eCK

NAXOS2
pfs ✗ ✓ ✓ ✓ 4 - eCK -PFS

ORKE3 ✗ (NIKE) ✓ ✓ ✓ 5 - eCK -PFS

ORKE4 ✓ ✓ ✓ ✓ 16 12 eCK -PFS

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993: 1st Conference on Computer
and Communications Security, pp. 62–73, Fairfax, Virginia, USA, November 3–5.
ACM Press (1993)

3. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,
T., van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 341–360. Springer, Heidelberg (2013)

4. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010: 17th Conference on Com-
puter and Communications Security, pp. 131–140, Chicago, Illinois, USA, October
4–8. ACM Press (2010)

5. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: Efficient one-round key exchange
in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008)

6. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key exchange in the
standard model. IJACT 1(3), 181–199 (2009)

One-Round Key Exchange with Strong Security 493

7. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV
channel establishment protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013: 20th Conference on Computer and Communications Security, pp.
373–386, Berlin, Germany, November 4–8. ACM Press (2013)

8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

9. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

10. Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: The case of CK, CK-HMQV, and eCK. In: Cheung, B.S.N.,
Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASIACCS 2011: 6th Conference on
Computer and Communications Security, pp. 80–91, Hong Kong, China, March
22–24. ACM Press (2011)

11. Cremers, C., Feltz, M.: Beyond eCK: Perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012)

12. Cremers, C.J.F.: Formally and practically relating the CK, CK-HMQV, and eCK
security models for authenticated key exchange. Cryptology ePrint Archive, Report
2009/253 (2009). http://eprint.iacr.org/2009/253

13. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), Updated by RFCs 5746, 5878, 6176, August 2008

14. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2), 107–125 (1992)

15. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013)

16. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990)

17. Heninger, N., Durumeric, Z., Wustrow, E., Alex Halderman, J.: Mining your ps
and qs: Detection of widespread weak keys in network devices. In: Kohno, T.
(ed.) Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA,
August 8–10, pp. 205–220. USENIX Association (2012)

18. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010)

19. Jager, T.: Verifiable random functions from weaker assumptions. Cryptology ePrint
Archive, Report 2014/799 (2014). http://eprint.iacr.org/

20. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

21. Jeong, I.R., Katz, J., Lee, D.-H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220–232. Springer, Heidelberg (2004)

22. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., Kivinen, T.: Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 7296 (INTERNET STANDARD). Updated by
RFC 7427, October 2014

http://eprint.iacr.org/2009/253
http://eprint.iacr.org/

494 F. Bergsma et al.

23. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

24. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. Cryp-
tology ePrint Archive, Report 2005/176 (2005). http://eprint.iacr.org/2005/176

25. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

26. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 378–394. Springer, Heidelberg (2006)

27. Law, L., Menezes, A., Minghua, Q., Solinas, J., Vanstone, S.: An efficient protocol
for authenticated key agreement. Designs, Codes and Cryptography 28(2), 119–134
(2003)

28. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

29. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002)

30. NIST. Skipjack and kea algorithm specifications (1998). http://csrc.nist.gov/
groups/STM/cavp/documents/skipjack/skipjack.pdf

31. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007)

32. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authenti-
cated key agreement. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol.
6280, pp. 219–234. Springer, Heidelberg (2010)

33. Yang, Z.: Efficient eCK-secure authenticated key exchange protocols in the stan-
dard model. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233,
pp. 185–193. Springer, Heidelberg (2013)

34. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol. RFC
4253 (Proposed Standard). Updated by RFC 6668, January 2006

35. Yoneyama, K., Zhao, Y.: Taxonomical security consideration of authenticated key
exchange resilient to intermediate computation leakage. In: Boyen, X., Chen, X.
(eds.) ProvSec 2011. LNCS, vol. 6980, pp. 348–365. Springer, Heidelberg (2011)

http://eprint.iacr.org/2005/176
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf

Additively Homomorphic UC Commitments
with Optimal Amortized Overhead

Ignacio Cascudo(B), Ivan Damg̊ard, Bernardo David, Irene Giacomelli,
Jesper Buus Nielsen, and Roberto Trifiletti

Department of Computer Science, Aarhus University, Aarhus, Denmark
{ignacio,ivan,bernardo,giacomelli,jbn,roberto}@cs.au.dk

Abstract. We propose the first UC secure commitment scheme with
(amortized) computational complexity linear in the size of the string
committed to. After a preprocessing phase based on oblivious transfer,
that only needs to be done once and for all, our scheme only requires a
pseudorandom generator and a linear code with efficient encoding. We
also construct an additively homomorphic version of our basic scheme
using VSS. Furthermore we evaluate the concrete efficiency of our schemes
and show that the amortized computational overhead is significantly
lower than in the previous best constructions. In fact, our basic scheme
has amortised concrete efficiency comparable with previous protocols in
the Random Oracle Model even though it is constructed in the plain
model.

1 Introduction

A commitment scheme is a very basic but nevertheless extremely powerful cryp-
tographic primitive. Intuitively, a commitment scheme is a digital equivalent of
a secure box: it allows a prover P to commit to a secret s by putting it into
a locked box and giving it to a verifier V . Since the box is locked, V does not
learn s at commitment time and we say the commitment is hiding. Nevertheless,
P can later choose to give V the key to the box to let V learn s. Since P gave
away the box, he cannot change his mind about s after commitment time and
we say the commitment is binding.

Commitment schemes with stand-alone security (i.e., they only have the bind-
ing and hiding properties) can be constructed from any one-way function and

R. Trifiletti—The authors acknowledge support from the Danish National Research
Foundation and The National Science Foundation of China (under the grant
61361136003) for the Sino-Danish Center for the Theory of Interactive Computation
and from the Center for Research in Foundations of Electronic Markets (CFEM),
supported by the Danish Strategic Research Council within which part of this work
was performed. Partially supported by Danish Council for Independent Research
via DFF Starting Grant 10-081612. Partially supported by the European Research
Commission Starting Grant 279447.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 495–515, 2015.
DOI: 10.1007/978-3-662-46447-2 22

496 I. Cascudo et al.

already this most basic form of commitments implies zero-knowledge proofs for
all NP languages. Commitments with stand-alone security can be very efficient
as they can be constructed from cheap symmetric cryptography such as pseudo-
random generators [Nao91].

However, in many cases one would like a commitment scheme that composes
well with other primitives, so that it can be used as a secure module that will
work no matter which context it is used in. The strongest form of security we
can ask for here is UC security [Can01]. UC commitments cannot be constructed
without set-up assumptions such as a common reference string [CF01]. On the
other hand, a construction of UC commitment in such models implies public-
key cryptography [DG03] and even multiparty computation [CLOS02] (but see
[DNO10] for a construction based only on one-way functions, under a stronger
set-up assumption).

With this in mind, it is not surprising that constructions of UC commitments
are significantly less efficient than those of stand-alone secure commitments.
Until recently, the most efficient UC commitment schemes were based on the
DDH assumption and required several exponentiations in a large group [Lin11,
BCPV13]. Therefore, even though the communication complexity for committing
to k strings was O(k), the computational complexity was typically Ω(k3).

However, in [DDGN14] and independently in [GIKW14], it was observed that
even though we cannot build UC commitments without using public-key technol-
ogy, we can still hope to confine the use of it to a once-and-for-all set-up phase,
the cost of which can then be amortized over many uses of the commitment
scheme.

While [GIKW14] focused on the rate of the commitment scheme, [DDGN14]
concentrated on the computational complexity. More specifically, a UC commit-
ment scheme was proposed based on the following idea: the committer will secret-
share the string s to commit to using a linear secret sharing scheme (LSSS),
encrypt the shares and send them to the receiver. The encryption is done in
such a way that the receiver will be able to decrypt an unqualified subset (and
hence will not learn s). However, the committer will not know which subset the
receiver has seen. We can achieve this efficiently using a combination of oblivious
transfers (done only in a set-up phase) and a pseudorandom generator. To open
s, the committer will send s and the randomness used for the sharing and the
receiver can then check if the resulting shares match those he already knows.
Intuitively, we can hope this will be binding because any two sets of shares for
different secrets must be different in many positions (they cannot agree on any
qualified subset). Furthermore since the committer does not know which subset
the receiver checks, it is likely that the receiver will see a mismatch for at least
one of the sets of shares.

The most natural way to construct a suitable LSSS is to use the standard
construction from a linear code C, where we choose a random codeword subject
to the condition that the secret s appears in the first k coordinates and the shares
are then the values appearing in the rest of the codeword. This approach requires
that both C and its dual have large minimum distance. But unfortunately, all

Additively Homomorphic UC Commitments 497

known codes with linear time encoding have very bad dual codes. Therefore,
[DDGN14] resorted to using Reed-Solomon codes which gives a complexity of
O(k log k) for both parties.

Our contribution. In this paper, we propose a different way to construct an LSSS
from a linear code C: we encode the secret s in C, and then additively share each
entry in the codeword to form t shares, thus we get nt shares for a code of
length n. We show that already for t ≥ 2, using this LSSS in the above template
construction results in a secure UC commitment scheme. Note that the LSSS
we construct is not of the usual threshold type where any sufficiently large set
can reconstruct, but instead we have a more general access structure where the
qualified sets are those that can get enough entries in the underlying codeword
to be able to decode.

Since we can now choose C without any conditions on the dual code, we
can plug in known constructions of codes with linear time encoding and get
complexity O(k) for both parties. Furthermore we show a particular instantia-
tion of the building blocks of our basic protocol for security parameter τ = 60
and message length k = 256 that achieves an amortized computational com-
plexity which is 5500 times lower than in the most efficient previous construc-
tions [BCPV13,Lin11] (see Section 6 for details on the implementation). In fact,
our basic scheme achieves amortised concrete effieciency comparable to previous
schemes [HM04,DSW08] in the Random Oracle Model [BR93] even though it is
constructed in the plain model. Concretely, it has an amortized computational
cost 41% lower than the one of [HM04].

Commitment schemes can be even more useful if they are homomorphic.
An additively homomorphic commitment scheme, for instance, has the following
property: from commitments to s and s′, the receiver can on his own compute a
commitment to s + s′, such that if the committer opens this new commitment,
s+s′ (and no other information on s, s′) will be revealed. Our basic construction
above is not additively homomorphic. The reason is that a corrupt committer
may submit sets of values in the commit phase that are not consistent sharings
of any value. Nevertheless, when some of these shares are added, we may get
values that do in fact form valid commitments, and this may allow the committer
to cheat. To solve this problem, we start from an idea that was introduced in
[GIKW14]: they construct a very compact linear verifiable secret sharing scheme
(VSS) from any LSSS. The idea is now that the committer will execute the
VSS “in his head” and send to the receiver the resulting views of each VSS-
player, encrypted in the same way as we encrypted shares before: the receiver can
decrypt some subset of the views. The receiver will now be able to execute some of
those consistency checks that honest players would normally do in the VSS, and
will reject if anything is wrong. The hope is that this will force the committer to
submit views from a correctly executed instance of the VSS, which in particular
means that the sets of shares he submits will be consistent, thus implying the
additive homomorphic property.

This idea was shown to work in [DDGN14], but unfortunately the proof works
only if the underlying LSSS is a threshold scheme, and our LSSS is not threshold.

498 I. Cascudo et al.

However, in this paper, we give a different proof showing that we do in fact get
a secure commitment scheme if we choose the parameter t from our LSSS to be
at least 3. This yields a UC secure and additively homomorphic commitment
scheme with linear complexity, albeit with larger hidden constants than our first
scheme. We also instantiate this scheme for concrete parameters, see Section 6.

It is interesting to note that there is strong relation between the way the VSS
is used here and the “MPC-in-the-head” line of work [IPS09]. Roughly speak-
ing, MPC-in-the-head is a general technique for turning a multiparty protocol
into a 2-party protocol for the same purpose. A VSS is essentially a multiparty
commitment scheme, so one can use the so-called IPS compiler on the VSS from
[DDGN14] to get a UC secure commitment scheme. This commitment scheme
is quite similar to (but not the same as) the one from [DDGN14]. Previously,
the IPS compiler was only known to work for protocols with threshold security.
However, our proof technique also applies to IPS, so from this point of view, our
result is the first to show that the IPS compiler can also be used to transform
a non-threshold multiparty protocol into a 2-party protocol. It is an interesting
open problem to characterise the adversary structures for which it will work.

2 Preliminaries

2.1 Notation

We denote uniformly sampling a value r from a set D as r ← D and {r1, . . . , rn} ←
D indicates that we sample from D a uniformly random subset of n elements. We
denote concatenation by ‖ and vectors of elements of some field by bold symbols.
For z ∈ F

k, z[i] denotes the i’th entry of the vector. We use 1-indexing, meaning
that z[1] is the first element of z and we write [n] = {1, 2, . . . , n}. We will use
πk to denote the projection that outputs the first k coordinates of a vector, i.e.
πk(z) = (z[1], . . . ,z[k]). Finally we will denote by ek,i the row vector of k compo-
nents whose i-th entry is 1 while all other entries are 0 and with 0k the row vector
of k components whose all entries are 0.

We say that a function ε is negligible in n if for every polynomial p there
exists a constant c such that ε(n) < 1

p(n) when n > c. Two ensembles X =
{Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are
said to be indistinguishable, denoted by X ≈ Y , if for all z it holds that
| Pr[Xκ,z = 1] − Pr[Yκ,z = 1] | is negligible in κ.

2.2 Universal Composability

The results presented in this paper are proven secure in the Universal Compos-
ability (UC) framework introduced by Canetti in [Can01]. We refer the reader
to [Can01,CDD+14] for further details.

Adversarial Model : In this work we consider security against static adversaries,
i.e. corruption may only take place before the protocols starts execution.
We consider active adversaries who may deviate from the protocol in any
arbitrary way.

Additively Homomorphic UC Commitments 499

Setup Assumption: It is known that UC commitment protocols (as well as
most “interesting” functionalities) cannot be obtained in the plain model
[CF01]. In order to overcome this impossibility, UC protocols require a setup
assumption, that basically models a resource that is made available to all
parties before execution starts. The security of our protocols is proved in the
FOT-hybrid model [Can01,CLOS02], where all parties are assumed to have
access to an ideal 1-out-of-2 OT functionality.

Ideal Functionalities: In Section 4, we construct a simple string commitment
protocol that UC-realizes the functionality FCOM as presented in [CLOS02,
CDD+14] In Section 5, we extend this simple scheme to allow homomor-
phic operations over commitments. The extended protocol UC-realizes the
functionality FHCOM defined in [CDD+14], that basically adds a command
for adding two previously stored commitments and an abort command in
the Commit Phase to FCOM. The abort is necessary to deal with incon-
sistent commitments that could be sent by a corrupted party. In fact, our
additively homomorphic commitment protocol is constructed in the F t−1,t

OT -
hybrid model (i.e. assuming access to (t − 1)-out-of-t OT where t ≥ 2 is
an integer parameter). Notice that F t−1,t

OT is basically a special case of a
k-out-of-n OT where k = n − 1, which can be subsequently reduced to the
FOT-hybrid model via standard techniques [Nao91,BCR86,NP99]. We refer
the reader to [CDD+14] for definitions of FOT and F t−1,t

OT . Notice that FOT

can be efficiently UC-realized by the protocol in [PVW08], which can be
used to instantiate the setup phase of our commitment protocols.

2.3 Linear Secret-Sharing Scheme

We briefly recall here the definition of linear secret-sharing scheme (LSSS) fol-
lowing the approach of [CDP12].

Definition 1. A linear secret sharing scheme for N players P1, . . . , PN over the
finite field F is defined by the pair (k,M), where k is the length of a secret and
M is a N × m matrix with entries in F (and m > k). If k > 1, then the scheme
is called packed. The row number i of M is denoted by mi and, if A is a subset
of players, then MA denotes the matrix consisting of rows mi such that Pi ∈ A.

In order to share a secret s ∈ F
k, the dealer of the LSSS given by (k,M)

takes a random column vector f ∈ F
m such that πk(f) = s� and computes

c = M · f . The column vector c is called the share vector of s, and its i-th
component c[i] is the share sent by the dealer to the player Pi.

Definition 2. A subset of players A is called unqualified if the distribution of
MA · f is independent of s, while a subset of players B is called qualified if s
is uniquely determined from MB · f .

It is the case that A is unqualified if and only if there exists, for each position
j in s, a column vector of m components wA,j (called sweeping vector) such that
wA,j ∈ ker(MA) and πk(wA,j) = e�

k,j . Similarly, B is qualified if and only if

500 I. Cascudo et al.

there exists, for each position j in s, a row vector of |B| components rB,j (called
reconstruction vector) such that rB,j · MB = em,j .

Given two positive integers a and b, if any subset of players A with |A| = a
is unqualified, then we say that the LSSS has a-privacy. If any subset of players
B with |B| = b is qualified, then we say that the LSSS has b-reconstruction.

Example 1. The additive secret-sharing scheme for N players over F is the linear
secret-sharing scheme where in order to share a secret s ∈ F among N players,
the dealer chooses random values s1, . . . , sN in F such that

∑N
i=1 si = s and sends

the value si to player i. It is clear that the set of all the players can reconstruct
the secret from the received values, while any set of at most N −1 players has no
information on the value s held by the dealer. With the previous notation, this
LSSS can be defined by the pair (1,M), where M has the following N rows:
mi = eN,i+1 for i = 1, . . . , N − 1 and mN = eN,1 −

∑N−1
i=1 mi.

3 Linear-Time Secret Sharing and Coding Scheme

In this section we describe the coding scheme Ct that stands in the core of our
commitment protocols. We depart from any error correcting code and apply a
simple transformation that yields a code that can also be seen as a linear secret
sharing scheme for an specific access structure. Intuitively, this makes it possible
to reveal a large fraction of a codeword generated by Ct without revealing any
information on the encoded message.

Standard generic constructions of general linear secret sharing schemes from
error correcting codes, require a code whose dual code has high minimum dis-
tance. On the other hand, our construction does not require any specific prop-
erty from the underlying error correcting code. This conceptual difference is
of fundamental importance for the asymptotic and concrete efficiencies of our
constructions, since it allows a secret sharing scheme to be constructed from
very efficient linear error correcting codes whose dual codes’ minimum dis-
tance are mostly unfit for the standard generic constructions. In particular,
our coding scheme Ct inherits the underlying code C’s complexity. achieving
linear-time encoding and/or decoding when constructed from appropriate codes
[GI01,GI02,GI03,GI05,Spi96,DI14].

Intuitively, the encoding procedure EncC
t of Ct first encodes a message m

under the underlying code C obtaining a codeword v. In the next step, each
element of v is secret shared into t shares under a simple additive secret sharing
scheme (i.e. taking random vectors v1, . . . ,vt such that

∑t
i=1 vi = v). The final

codeword c is defined as c = (v1[1], . . . ,vt[1], . . . ,v1[n], . . . ,vt[n])�, i.e., each t
successive elements of c sum up to the corresponding element of v. The decoding
procedure DecC

t basically reconstructs each element of v from c and then uses
the decoding algorithm of C to decode v into the original message m.

Notice that only the encoding procedure EncC
t is used in the actual com-

mitment schemes, while the decoding procedure DecC
t is used in the simulators.

Moreover, Ct basically applies a linear transformation on codewords generated

Additively Homomorphic UC Commitments 501

by the underlying code C, since EncC
t uses a LSSS to divide each component of

the codeword into t shares. Hence, if C is linear, so is Ct. Finally, we show in
Remark 1 that EncC

t itself can be seen as a LSSS. Intuitively, after a message m
is encoded through EncC

t , an element v[i] of the underlying codeword can only be
recovered if all shares v1[i], . . . ,vt[i] are known. Hence, no information on m is
revealed as at least one share is missing for every underlying codeword element.

Before we formally outline the coding scheme Ct Figure 1, we need to define
the auxiliary functions Σt and Λt:

– Σt : Fn −→ F
tn is a randomized function that takes as input a row vector

v in F
n and does the following: sample v1, . . . ,vt−1 ← F

n and compute
vt = v − (v1 + · · · + vt−1). For j = 1, . . . , n, define wj = ‖t

i=1vi[j] =
(v1[j], . . . ,vt[j]) and set Σt(v) = ‖n

j=1wj = (w1, . . . ,wn). Note that this
means each consecutive t-tuple of Σt(v) sums to the corresponding element
in the vector v.

– Λt : Ftn → F
n takes as input a vector h and adds each consecutive t compo-

nents of h. That is, Λt(h) gives as output the row vector in F
n whose i’th

component is
∑t

j=1 h[(i − 1)t + j]. Note that Λt (Σt(m)) = m.

Coding Scheme Ct

Let C : Fk → F
n be a linear error correcting code over a field F of dimension k,

length n and minimum distance d, and let t ≥ 2 be a fixed integer. Let m be a row
vector in F

kand c be a column vector in F
tn The coding scheme is composed by

the pair of algorithms
(
EncC

t ,DecC
t

)
described as follows:

• EncC
t (m): the encoding procedure EncC

t : Fk → F
tn takes as input a message m

and proceeds as follows:
1. Encode m using C, thus obtaining v = C(m) ∈ F

n.
2. Use the randomized function Σt(v) to additively secret share each compo-

nent of the codeword v into t shares. Output the column vector c = Σt(v)�.
When we need to remember the randomness used in Σt, we will write
EncC

t (m; v1, . . . , vt−1).

Let τ =
⌊

d−1
2

⌋
and let D : Fn → F

n ∪ {⊥} be a τ -bounded decoding algorithm for
the underlying code C. That is, D either decodes a received word r into the unique
codeword c ∈ C at distance not more than τ from r (if such codeword exists) or
indicates that no such codeword exists, declaring a decoder failure.

• DecC
t (c): the decoding procedure DecC

t : F
tn → F

k ∪ {⊥} takes as input a
codeword c and proceeds as follows:
1. Compute Λt(c) to obtain a vector v′ ∈ F

n.
2. Decode v′ using the decoding algorithm D for the underlying code C. If D

fails, output ⊥. Otherwise output m = C−1(D(v′)).

Fig. 1. Coding Scheme Ct

502 I. Cascudo et al.

Remark 1. It is possible to see the entire encoding procedure EncC
t as a LSSS

for N = tn players: let C ∈ Matn×k be the transpose of a generator matrix for
the code C and let cj be its jth row, then the vector EncC

t (m) can be seen as
a share vector of m ∈ F

k in the LSSS defined by the pair (k,MC
t), where m =

k+(t−1)n and MC
t is a N ×m matrix with rows given by mi = em,i+k−�i/t� for

i ∈ [nt] \ {t, 2t, . . . , nt} and mjt =
(

cj ,0(t−1)n

)

−
∑t−1

i=1 m(j−1)t+i for j ∈ [n].
The set of tn players can be divided in n groups of t players each: define

Tj =
{

P(j−1)t+1, . . . , Pjt

}

for all j ∈ [n]. Thus we can rephrase the encoding
procedure EncC

t for a vector m ∈ F
k as: first compute the codeword v = C(m)

and then, for all j ∈ [n], share the component v[j] between the players in Tj using
the additive LSSS for t players (see Example 1). From the (t − 1)-privacy prop-
erty of the additive LSSS, it follows that any subset of players A ⊆ {P1, . . . , Pn}
such that |A ∩ Tj | ≤ t − 1 for all j ∈ [n] is unqualified for the scheme (k,MC

t).
Instead, if B ⊆ {P1, . . . , Pn} satisfies B ∩ Tj = Tj for at least n − (d − 1) indices
j, then it is a qualified set for (k,MC

t). Indeed, the players in B can compute at
least n− (d− 1) components of the codeword v and then they can apply an era-
sure correction algorithm for C and recover m. In particular if |B| ≥ nt−(d−1),
then B is qualified.

4 Basic Construction

In this section we present our basic commitment scheme. We will work in the
F t−1,t

OT -hybrid model (t being a fixed integer greater or equal than 2) and we
will phrase our protocol in terms of a Setup and an Online phase. This decou-
pling is motivated by the fact that the Setup phase can be run at any time and
independently of the inputs of the parties. Once the Setup phase is completed,
polynomially many commitments can be executed in the Online phase, when the
inputs are known. Moreover, the Setup phase is also completely independent of
the number of commitments executed in the Online phase. Finally our scheme
is based on a [n, k, d] linear error correcting code C over F used in the encod-
ing procedure EncC

t defined in Figure 1 (we consider τ =
⌊

d−1
2

⌋

the security
parameter).

A commitment to a message m ∈ F
k will be obtained by sending to the

receiver Pr a subset of components (watch-list) of the vector w = EncC
t (m)

computed by the sender Ps. The watch-list has to be chosen in such a way that
the components of w contained in it give no information on the message m
(hiding property). To open the commitment, the sender Ps has to send to the
receiver both m and the randomness used in the procedure EncC

t , so that the
receiver can compute by itself w and check if it is consistent with the components
it already knows from the watch-list. If we design the protocol in such a way that
the sender doesn’t know which components the receiver will check, then, since
Ps can not change the message it committed to without changing a substantial
amount of entries, Pr will see a mismatch and catch the cheating opening with
high probability (binding property).

Additively Homomorphic UC Commitments 503

The watch-list mechanism is created in the Setup phase. The idea is that the
sender and the receiver run n (t − 1)-out of t OTs on n groups of tn seeds for
a PRG, in such a way that for each group the verifier will know only (t − 1)
of the seeds chosen by the sender. The expanded strings produced by the PRG
are used to form a matrix Y . After that, in the Online phase, for each new
commitment, the sender choses a new column yη in Y and use it as one-time pad
for sending to Pr the encoding EncC

t (m). This will allow the receiver Ps to view
(t− 1)n entries of the encodings without the sender knowing which these entries
are. Furthermore, in this way we can allow many commitments while using the
OT-functionality only once. For every new commitment, the sender and receiver
can obtain new one-time pads for the watch-list by simply expanding the PRG
seeds into a larger pseudorandom string up to a polynomially bounded length.

Statistical binding property: if the sender wants to open two different messages
m and m′ for the same commitment (η, c), then it has to produce randomness
consistent with two vectors w and w′ such that C(m) = Λt(w) and C(m′) =
Λt(w′). Since the code has minimal distance d and d ≥ 2τ +1, at least one of the
two different codewords Λt(w) and Λt(w′) is at distance strictly greater than τ
from Λt(c−yη) (Hamming distance). Assume w. l. o. g. that dHam(Λt(w),Λt(c−
yη)) ≥ τ + 1, then in w − c + yη there are at least τ + 1 groups of consecutive
entries in which at least one entry is not zero. Since the receiver checks t − 1
entries chosen at random in each group, the probability that he doesn’t see any
mismatch is at most

(
1
t

)τ+1.

Computational hiding property: from the security of the PRG G, we can claim
that the receiver knows only t − 1 entries in each group of consecutive entries
of wη = EncC

t (m). That is, Pr knows only t − 1 shares of each component of
the codeword C(m). Thus, the hiding property follows from the (t − 1)-privacy
property of the additive secret-sharing scheme for t players used to share each
component of the codeword C(m).

The protocol ΠCOM UC-realizes the ideal functionality FCOM in the F t−1,t
OT -

hybrid model, as stated in the following two propositions. See the full version
[CDD+14] for the proofs .

Proposition 1 (Statistical Binding Property). Let G : {0, 1}l′ → {0, 1}l

be a pseudorandom generator and C : Fk → F
n be a [n, k, d] error correction code

over F. For every static active adversary A corrupting only Ps in the F t−1,t
OT -

hybrid execution of ΠCOM and for every environment1 Z, there exists a simulator
S such that:

IDEALFCOM,S,Z ≈ HYBRID
Ft−1,t

OT
ΠCOM,A,Z

where the security parameter is τ =
⌊

d−1
2

⌋

.

1 Note that in the proof of Proposition 1 the requirement for the environment to be
polynomial-time is not necessary. Indeed the proof holds for any environment that
interacts with each system only a polynomial number of times.

504 I. Cascudo et al.

Protocol ΠCOM in the F t−1,t
OT -hybrid model

Let G : {0, 1}l′ → {0, 1}l be a pseudorandom generator, C : Fk → F
n be a linear

error correction code over F and t ≥ 2 a fixed integer. The procedure EncC
t is defined

in Figure 1.

A sender Ps and receiver Pr interact between themselves and with F t−1,t
OT as follows:

OT-Setup phase:
For i = 1, t + 1, 2t + 1, . . . , (n − 1)t + 1:

1. Ps samples t strings xi,xi+1, . . . ,xi+t−1 ← {0, 1}l′ and sends
(sender, sid, ssid, (xi, . . . ,xi+t−1)) to F t−1,t

OT .
2. Pr samples {ci

1, . . . , c
i
t−1} ← {0, 1, . . . , t − 1} and sends

(receiver, sid, ssid, ci
1, . . . , c

i
t−1) to F t−1,t

OT .
3. Pr receives (received, sid, ssid,xi+ci1

, . . . ,xi+cit−1
) from F t−1,t

OT .

Let W (watch-list) be the set of indices W ={
i + ci

1, . . . , i + ci
t−1 | i = 1, t + 1, 2t + 1, . . . , (n − 1)t + 1

}
and let

Y ∈ Mattn×l be the tn × l matrix with rows yj ’s consisting of the row
vectors G(xj)’s for j = 1, . . . , tn. Denote by yj the j’th column of Y . Ps

knows the entire matrix Y , Pr knows the watch-list W and only (t − 1)n rows
of Y , but in a structured way: for each groups of t rows yjt+1, . . . ,y(j+1)t it
holds exactly t − 1 of thosea.

Commit phase:
1. Upon input (commit, sid, ssid, Ps, Pr,m) for m ∈ F

k, Ps samples
v1, . . . , vt−1 ← F

n and computes w = EncC
t (m; v1, . . . , vt−1). Then Ps

chooses an unused column yη from the matrix Y defined in the Setup
phase, computes c = w + yη and sends (sid, ssid, η, c) to Pr.

2. Pr stores (sid, ssid, η, c) and outputs (receipt, sid, ssid, Ps, Pr).

Open phase:
1. Upon input (reveal, sid, ssid, Ps, Pr), Ps sends (sid, ssid,m, v1, . . . , vt−1)

to Pr.
2. Pr receives (sid, ssid,m, v1, . . . , vt−1), computes w =

EncC
t (m; v1, . . . , vt−1) and checks if w[i] + yη[i] = c[i] for all i ∈ W . If

this check fails Pr rejects the opening and halts. Otherwise Pr outputs
(reveal, sid, ssid, Ps, Pr,m).

a We remark that the parties do not need to hold the entire matrices at any one
point in time, but can generate it on demand using an appropriate pseudorandom
generator.

Fig. 2. Protocol ΠCOM

Additively Homomorphic UC Commitments 505

Proposition 2 (Computational Hiding Property). Let G : {0, 1}l′ →
{0, 1}l be a pseudorandom generator and C : Fk → F

n be a [n, k, d] error cor-
rection code over F. For every static active adversary A corrupting only Pr in
the F t−1,t

OT -hybrid model execution of ΠCOM and for every environment Z, there
exists a simulator S such that:

IDEALFCOM,S,Z ≈ HYBRID
Ft−1,t

OT
ΠCOM,A,Z

where the security parameter is τ =
⌊

d−1
2

⌋

.

5 Additive Homomorphic Property

Notice that in the protocol ΠCOM a commitment (i, c) may be accepted in the
Open phase by an honest receiver even if Λt(wi) is not a codeword, but it is
near enough to a codeword. More precisely, if a cheating sender computes wi

in such a way that Λt(wi) = C(m) + e for some error vector e with Hamming
weight equal to e, then an honest receiver will accept the commitment (i, c) for
the message m with probability equal to

(
1
t

)e.
Because of this, a cheating sender can setup an attack where with non negli-

gible probability the sum of two commitments can be opened to a message that
is different to the sum of the messages contained in the individual commitments.
Given the vectors m,m′ and m̃ where m̃ �= m+m′, Ps can compute the vectors
e, e′ and ẽ such that e+e′ + ẽ = C(m+m′)−C(m̃) and the Hamming weight of
each of them is less or equal than τ (note that this is possible to achieve as long
as d ≤ 3τ , which is not disallowed by our assumption d ≥ 2τ +1). In the Commit
phase the corrupted Ps defines w = Σt(C(m)−e) and w′ = Σt(C(m′)−e′) and
sends (α, c) and (β, c′), where c = w + yα and c′ = w′ + yβ . Recall that Σt is
the outer additive code in our encoding. From the above argument, in the Open
phase, an honest receiver will accept (α, c) or (β, c′) as commitment for m or
for m′ respectively, with probability strictly greater than

(
1
t

)τ+1 in both cases.
Furthermore with the same probability, Ps can also open the sum c + c′ to m̃
because by construction w + w′ = Σt(C(m̃) + ẽ).

While we could prevent the attack above by imposing the stronger condition
d ≥ 3τ + 1, it is easy to see that the same problem would still apply to the
additions of at least � d

τ
 − 1 commitments.

To deal with this problem, we need to assure that for any vector w com-
puted by the sender in the Commit phase, it holds that Λt(w) is an actual
codeword. Since a correct vector w can be seen as a share-vector in the LSSS
given by (k,MC

t) (Remark 1), a standard way to achieve this guaranty is to
convert (k,MC

t) into a verifiable secret-sharing scheme (VSS). The latter is a
secret-sharing scheme for which, together with the standard privacy property
for unqualified sets of players, a stronger reconstruction property holds for the
qualified sets. Indeed, in a VSS, even when the dealer is corrupted, any qualified
set of honest players can determine a secret that is consistent with the share held

506 I. Cascudo et al.

by any honest player in the scheme. In order to obtain the additive homomorphic
property for our commitment protocol, the basic idea we will use in Section 5.2
consists in forcing the sender to compute the vector w using a verifiable ver-
sion of the encoding procedure EncC

t . In this way the receiver can verify that
w has been properly constructed (i.e. Λt(w) is a codeword) with overwhelming
probability.

5.1 Packed Verifiable Secret-Sharing Scheme

In this section we recall the packed verifiable secret-sharing protocol described
in [DDGN14]. We refer to the latter for the proof of the following lemmas. The
protocol can be based on any linear secret-sharing scheme (k,M) for N players
as defined in Section 2 and it secret-shares k vectors s1, . . . , sk ∈ F

k in each its
execution (the LSSS is over the field F). In the following, F will be a m × m
matrix with entries in F (m is the number of columns in M) and f b will be its the
b-th column. For any index i = 1, . . . , N define the column vector hi = F · m�

i

and the row vector gi = mi ·F (where mi is the i-th row in M). It is then clear
that mj ·hi = gj ·m�

i for all i, j ∈ [N]. The VSS protocol is shown in Figure 3.

Protocol ΠVSS (M)
1. Let s1, . . . , sk ∈ F

k be the secrets to be shared. The dealer chooses a random
m×m matrix F with entries in F, subjecta to πk(f i) = s�

i , for any i = 1, . . . , k.
2. For any i = 1, . . . , N , the dealer computes hi and gi and sends them to Pi

3. Each player Pj sends gj · m�
i to Pi, for i = 1, . . . , N .

4. Each Pi checks, for j = 1, . . . , N , that mj · hi equals the value received from
Pj . He broadcasts (accept, sid, ssid,) if all checks are satisfied, otherwise he
broadcasts (reject, sid, ssid,).

5. If all players said (accept, sid, ssid,), then each Pj stores gj [i] as his share of
si, for i = 1, . . . , k. Otherwise the protocol aborts.

a Recall that we use πk to denote the projection that outputs the first k coordinates
of a vector

Fig. 3. Packed Verifiable Secret-Sharing Scheme

For a column vector v ∈ F
m, we will say that v shares s ∈ F

k, if πk(v) = s
and each honest player Pj holds mj · v. It is clear the the scheme ΠVSS is
complete, i.e. if the dealer is honest, then all honest players accept and the
column vector f i shares si, for any i = 1, . . . , k. Moreover, the scheme has the
following reconstruction property:

Lemma 1. Let B be a qualified subset of b honest players and assume that the
protocol ΠVSS doesn’t abort. Then, for all i = 1, . . . , k, the vector f̃

i
(defined

by f̃
i
=

∑b
j=1 rB,i[j]hj) shares πk(f̃

i
). The vectors rB,i are the reconstruction

vectors defined in Section 2.3.

Additively Homomorphic UC Commitments 507

Lemma 1 assures that if the protocol ΠVSS doesn’t abort, then, even when
the dealer is corrupted, for all i = 1, . . . , k the info held by a qualified set of
honest players at the end of the protocol determine the secret si = πk(f̃

i
)� and

the randomness f̃
i
used by the dealer to share it in such a way that (M ·f̃ i

)[j] =
mj · f̃ i

= gj [i] for any j with Pj honest.
Finally, since ΠVSS shares k secrets in one execution, the privacy property

can be stated in an extended form which also guarantees that making public
any linear combination of the shared secrets doesn’t reveal extra info on the
individual secrets.

Lemma 2. If the dealer in ΠVSS is honest, then for any unqualified set of play-
ers A and for any λ1, . . . , λ� ∈ F, the distribution of {F ·M�

A,MA·F ,
∑�

j=1 λjs
j}

is independent of the secrets held by the dealer.

5.2 Homomorphic Commitment Scheme

In this section we present our additively homomorphic commitment scheme. The
protocol is designed in the F t−1,t

OT -hybrid model using preprocessing and it will
be based on the instantiation of the ΠVSS protocol in which the underlying
LSSS is the one that is equivalent to our encoding procedure EncC

t . The result
is a commitment scheme that can be seen as a concrete exemplification of the
homomorphic commitment scheme described in [DDGN14]. Note that in this
section, for technical reasons, the fixed integer t has to be strictly greater than 2.

Given the [n, k, d] linear error-correcting code C, we have already noted in
Remark 1 that computing the vector w = EncC

t (m;v1, . . . ,vt−1) is equivalent
to computing the share-vector for m in the LSSS defined by (k,MC

t) for N =
tn players. In particular w = MC

t · f where the vector f is given by f =
(m,f1, . . . ,fn)� with f j = (v1[j], . . . ,vt−1[j]) for any j ∈ [n].

The protocol ΠHCOM is presented in Figure 4. In the Setup phase, firstly
the same watch-list mechanism of ΠCOM is created and after the sender runs
ΠVSS on some random messages r1, . . . , rk computing the vectors hi, gi for all
i = 1, . . . , N . In particular Ps computes EncC

t (ri) = (g1[i], . . . , gN [i])�. Thanks
to the watch-list mechanism, the receiver sees all the vectors hi, gi such that i is
in the watch-list set W and therefore it can check the relation mj ·hi = gj ·m�

i

for all i, j in W . If all these checks are satisfied, then it follows from the strong
reconstruction property of the VSS, that the vectors EncC

t (ri) have been properly
constructed (i.e. Λt(EncC

t (ri)) is a codeword) with overwhelming probability.
Nevertheless, since the set of players {Pi | i ∈ W} is unqualified for the LSSS
(k,MC

t), the receiver has no info about the vectors r1, . . . , rk.
In the Online phase, to commit to m ∈ F

k, the sender takes an unused rη

and sends c = m+rη to the sender. The commitment is represented by the pair
(η, c). To open it, the sender reveals m and the randomness used to compute
w = EncC

t (rη), thus the receiver can check if the entries he already knows of the
encoding of rη match the ones of w.

As in the basic protocol, the hiding property follows easily from the privacy
of the VSS scheme and the security of the PRG. The binding property, again,

508 I. Cascudo et al.

follows from the fact that in order to change ri in r′
i the sender has to change a

large amount of entries in EncC
t (ri) without knowing which entries the receiver

checks. Finally, in this protocol we can implement additions: given a commitment
(α, c1) to m1 and a commitment (β, c2) to m2, both the parties can just compute
c3 = c1 + c2 and store ((α, β), c3) as new commitment. To open c3 to m1 +m2

the senders sends to Pr the vector m1 + m2 and the sum of the randomness
used in EncC

t (rα) an in EncC
t (rβ). While the receiver will check the received

randomness as in an usual Open phase but considering the sum of the encodings
of rα and rβ .

Note that now a commitment will be represented by (η, c), where η can
also be a tuple of indices instead of just one index in [k] = {1, . . . , k}. Indeed,
if c is the commitment obtained by the sum of
 standard commitments (i.e.
commitments created in the Commit phase), then η ∈ [k]�. For this reason, in
order to implement the Addition command in the description of the protocol,
we will use the following notation: if α ∈ [k]i and β ∈ [k]j , then γ = α ‖ β =
(α, β) ∈ [k]i+j .

The protocol ΠHCOM UC-realizes the ideal functionality FHCOM in the F t−1,t
OT -

hybrid model, as stated in the following two propositions. See the full version
[CDD+14] for the proofs .

Proposition 3 (Statistical Binding Property). Let G : {0, 1}l′ → {0, 1}2m

be a pseudorandom generator and C : Fk → F
n be a [n, k, d] error correction code

over F. For every static active adversary A corrupting only Ps in the F t−1,t
OT -

hybrid world execution of ΠHCOM and for every environment Z, there exists a
simulator S such that:

IDEALFHCOM,S,Z ≈ HYBRID
Ft−1,t

OT
ΠHCOM,A,Z

where the security parameter is τ =
⌊

d−1
2

⌋

.

Also in the protocol ΠHCOM it is possible to implement polynomial many
commitments, after having run the OT-Setup phase only once. Indeed, after that
the watch-list W has been settled, the sender can always sample new random
vectors r∗

1, . . . , r
∗
k ← F

k and, together with the receiver, repeat the execution
of the Pre-commitment phase on this new input. We have already recalled in
Section 4 that it is possible to expand the PRG output in order to have new
one-time keys to use in the each execution of the Pre-commitment phase. After
that, Ps and Pr can continue the protocol following the instructions in ΠHCOM.
Moreover, this doesn’t create any restriction about the Addition command: we
can allow the sum of commitments that use one-time keys coming from different
Pre-commitment phases.

Proposition 4 (Computational Hiding Property). Let G : {0, 1}l′ →
{0, 1}2m be a pseudorandom generator and C : F

k → F
n be a [n, k, d] error

correction code over F. For every static active adversary A corrupting only Pr

Additively Homomorphic UC Commitments 509

Protocol ΠHCOM in the Ft−1,t
OT -hybrid model

Let G : {0, 1}l′ → {0, 1}2m be a pseudorandom generator, C : Fk → F
n be a [n, k, d] code

over F and t ≥ 3 a fixed integer. We recall that N = tn, m = k + (t − 1)n and the matrix
MC

t , whose i-th row is called mi, is defined in Remark 1.

A sender Ps and receiver Pr interact between themselves and with Ft−1,t
OT as follows:

Setup phase:
OT-Setup:

For i = 1, t + 1, 2t + 1, . . . , (n − 1)t + 1:

1. Ps samples t strings xi,xi+1, . . . ,xi+t−1 ← {0, 1}l′ and sends
(sender, sid, ssid, (xi, . . . ,xi+t−1)) to Ft−1,t

OT .
2. Pr samples {ci

1, . . . , ci
t−1} ← {0, 1, . . . , t − 1} and sends

(receiver, sid, ssid, ci
1, . . . , ci

t−1) to Ft−1,t
OT .

3. Pr receives (received, sid, ssid,xi+ci1
, . . . ,xi+cit−1

) from Ft−1,t
OT .

Let Y ∈ MatN×2m be the N × 2m matrix with rows yj ’s con-
sisting of the row vectors G(xj)’s for j = 1, . . . , N and W ={
i + ci

1, . . . , i + ci
t−1 | i = 1, t + 1, 2t + 1, . . . , (n − 1)t + 1

}
.

Pre-commitment:
1. Upon receiving (received, sid, ssid) from Ft−1,t

OT , Ps samples r1, . . . ,rk ← F
k

and runs ΠVSS (MC
t) using r1, . . . ,rk as input and constructing the row

vectors wi =
(
gi, (h

i)�) ∈ F
2m for i = 1, . . . , N . Let W ∈ MatN×2m be

the matrix consisting of the rows wi.
2. Ps computes A = W +Y and sends (sid, ssid,A) to Pr. Denote with ai the

i-th row of A.
3. Pr computes

(
gi, (h

i)�) = ai − yi for all i ∈ W and checks if mj · hi =
gj · m�

i for all different indices i, j ∈ W . If all the checks are satisfied, then
Pr accepts the Setup phase, otherwise it halts.

Commit phase:

1. Upon input (commit, sid, ssid, Ps, Pr,m) for m ∈ F
k, Ps chooses an unused rη

from the Setup phase, computes c = m+ rη and sends (sid, ssid, η, c) to Pr.
2. Pr stores (sid, ssid, η, c) and outputs (receipt, sid, ssid, Ps, Pr).

Addition:
If the tuples (sid, ssid1, α, c1), (sid, ssid2, β, c2) were previously sent by Ps

and recorded by Pr, then:
1. Upon input (add, sid, ssid1, ssid2, ssid3, Ps, Pr), both the players Ps and Pr define

and store (sid, ssid3, γ, c3) where γ = α ‖ β and c3 = c1 + c2.

Open phase:
If (sid, ssid, δ, c′) was stored and δ = (δ1, . . . , δ�) ∈ [k]�, then:
1. Upon input (reveal, sid, ssid, Ps, Pr) to reveal message m′, Ps sends

(sid, ssid,m′,v1, . . . ,vt−1) to Pr, where vi =
∑�

j=1 v
δj
i for all i = 1, . . . , t − 1

and the vectora EncC
t (rδj ;v

δj
1 , . . . ,v

δj
t−1) is the column number δj in the matrix

W (for all j = 1, . . . , �).
2. Pr receives (sid, ssid,m′,v1, . . . ,vt−1) and computes w = EncC

t (c′ −
m′;v1, . . . ,vt−1). Then, Pr checks if w[j] =

∑�
i=1 gj [δi] for all the entries j ∈ W .

If this check fails Pr rejects the commitment and halts. Otherwise Pr outputs
(reveal, sid, ssid, Ps, Pr,m′).

a Since the LSSS defined by (k,M C
t) is equivalent to the encoding procedure EncC

t ,

Ps already knows the vectors {vδj
i }i used to encode rδj from the Pre-commitment

phase

Fig. 4. Protocol ΠHCOM

510 I. Cascudo et al.

in the F t−1,t
OT -hybrid world execution of ΠHCOM and for every environment Z,

there exists a simulator S such that:

IDEALFHCOM,S,Z ≈ HYBRID
Ft−1,t

OT
ΠHCOM,A,Z

where the security parameter is τ =
⌊

d−1
2

⌋

.

6 Complexity and Concrete Efficiency

In this section we discuss the computational and communication complexities
of the commitment schemes proposed in Sections 4 and 5. We also estimate
concrete parameters and compare the efficiency of our schemes with previous
works.

6.1 Complexity

The commitment scheme presented by Damg̊ard et al. in [DDGN14] suffered
from a quadratic computational overhead in order to achieve optimal commu-
nication overhead. This issue stems from the fact that their scheme requires an
underlying LSSS that operates over constant size fields [CDP12] whose sharing
operations consist in matrix multiplications. Our homomorphic scheme circum-
vents that by constructing the VSS scheme from a linear error correcting code
with linear-time encoding where one can compute shares by computing encod-
ings.

The core component of both commitment schemes is the coding scheme EncC
t .

This construction can be seen both as an error correcting code (ECC) and a
linear secret secret sharing scheme for a specific access structure. EncC

t can be
built from any linear error correcting code, differently from previous results,
which require codes whose dual codes have high minimum distance in order to
construct LSSS. This fundamental difference in construction allows us to obtain
a coding scheme EncC

t (and consequently a LSSS) that runs in linear time on the
input length from any linear-time encodable error correcting code. There exist
constructions of linear-time encodable codes with constant rate and good (i.e.,
linear in the codeword length) minimum distance, see [GI01,GI02,GI03,GI05,
Spi96]. However, these may even be more sophisticated than what we need since
all we require about the minimum distance is that it is at least 2τ + 1, where τ
is the security parameter.

The encoding and decoding procedures of EncC
t inherit the complexity of the

underlying code. Notice that in our constructions we only utilize the encoding
procedure of EncC

t , since sharing and verifying share consistency in the VSS
scheme of Figure 3 can be seen as encoding. Hence, our constructions can even
take advantage of recent advances in linear-time encodable codes [DI14].

Combining a linear-time encoding procedure EncC
t with a PRG where we pay

only a constant number of elementary bit operations per output bit (see, e.g.,

Additively Homomorphic UC Commitments 511

[VZ12]), we obtain UC-secure commitments with optimal computational com-
plexity. Notice that the setup phase (where OTs are needed) is only run once,
allowing for an arbitrary number of posterior commitments. Thus, the cost of
this phase is amortized over the number of commitments. Communication com-
plexity is also linear in the message length if C has constant rate.

6.2 Concrete Parameters and Efficiency

Even though our schemes can achieve optimal asymptotic computational and
communication complexities, we are also interested in obtaining highly efficient
concrete instantiations. As an example, we estimate parameters for a concrete
instantiation of our schemes with message length k = 256 bits and statistical
security parameter τ = 60. We refer the reader to the full version [CDD+14] for
a generic evaluation of the commitment schemes’ performance as a function of
the underlying error correcting code parameters and remarks on their suitability
for efficiently preprocessing commitments.

Bulding Blocks: The basic building blocks of our commitment scheme are
the coding scheme EncC

t , a PRG and a UC-secure OT protocol. We select the
following constructions of these building blocks for our concrete instances:

– OT: The UC-secure protocol presented in [PVW08]. This protocol is round
optimal and requires communicating 6 group elements and computing 11
exponentiations per transfer.

– PRG: AES in counter mode, using the IV as a PRG seed. AES implementa-
tions are readily available in modern hardware (e.g. Intel’s AES-NI) making
the cost of this PRG negligible.

– EncC
t : For the basic scheme of Figure 2 we will need a EncC

2 coding scheme,
while for the additively homomorphic scheme of Figure 4 we need a EncC

3

coding scheme. Both schemes are constructed using a binary [796, 256,≥ 121]
BCH code (see, e.g., [MS78]) 2 as C according to the generic construction of
Section 3. This code has parameters k = 256, n = 796 and d ≥ 121, which
corresponds to τ = 60. We obtain EncC

2 : F256 → F
1592 and EncC

3 : F256 →
F
2388. Even though this code doesn’t have linear encoding complexity, it

was chosen because it is readily available in the Linux Kernel and it achieves
good concrete performance.

Evaluating Efficiency: Previous efficiency comparisons between UC-secure
commitment schemes have been based on the number of exponentiations required
by each scheme. This choice of comparison parameters is justified by the fact
2 More precisely, the [796, 256, ≥ 121] code is actually obtained by shortening a BCH-

code with parameters [1023, 483, ≥ 121]. This code was in turn selected by first
fixing the message size k = 256, the statistical security parameter τ = 60 and the
minimum distance d ≥ 2τ +1 ≥ 121, then using MAGMA to compute concrete code
parameters that fit these constraints.

512 I. Cascudo et al.

that this is usually the most costly operation that dominates the concrete execu-
tion time of such schemes. However, apart from the setup phase involving OTs,
our protocols require no exponentiations at all. After the setup phase of our
protocols, the most expensive operation is the encoding procedure of the EncC

t

coding scheme (the other operation required is addition).
We compare the efficiency of our schemes with the most efficient previous

works [BCPV13,Lin11] by estimating the execution time of the encoding proce-
dure of the BCH code and comparing that to the execution time of exponentia-
tions on the same platform. While the encoding scheme of the ECC and the PRG
are used proportionally to the number of commitments one wishes to make and
open, the OT protocol is only used for a fixed number of times during the setup
phase. Hence, it is interesting to estimate the concrete efficiency of the setup
phase separately from the other steps of the protocols, since the cost of running
the OT protocol is amortized over the number of commitments.

The concrete computational, round and communication complexities for our
schemes when instantiated using the previously described building blocks are
presented in Table 1. In this case we consider message length k = 256 and
statistical security parameter τ = 60, using the [796, 256,≥ 121] BCH code as
the building block for EncC

2 and EncC
3 .

Table 1. Concrete efficiency with message length k = 256 bits, statistical security
parameter τ = 60 and 128-bit computational security (for the schemes of [BCPV13,
Lin11]). Exp. and Enc. stand for exponentiations and encodings, respectively.

Scheme
Communication

Complexity (in bits)
Round

Complexity
Computational

Complexity
Commit Open Total Commit Open Commit Open Total

[BCPV13] (Fig. 6) 1024 2048 3072 1 5 10 Exp. 12 Exp. 22 Exp.

[Lin11] (Protocol 2) 1024 2560 3584 1 3 5 Exp. 18 1
3

Exp. 23 1
3

Exp.

Fig. 4
(homomorphic, t = 3)

34733 1848 36580 1 1 27 Enc. 1 Enc. 28 Enc.

Fig. 2
(basic, t = 2)

1592 1052 2644 1 1 1 Enc. 1 Enc. 2 Enc.

The execution time of an elliptic curve “exponentiations” over a field of
size 256 bits offering 128-bit security is evaluated through an implementation
in SCAPI 2.3 [EFLL12] using an underlying curve implementation provided by
OpenSSL 1.1.0. The execution time of the encoding procedure of the [796, 256,≥
121] BCH code is evaluated using the implementation present in the Linux kernel.
The platform used for estimating the running time of these operations is based
on a Intel(R) Core(TM) i5-2400 CPU at 3.10 GHz with 4 GB of RAM running
a Linux Kernel version 3.13.0.

Our experiments showed that the elliptic curve “exponentiations” take an
average of 375 μs while the encodings take an average of 0.75 μs on the same
platform. Hence, in this scenario, computing one encoding is on average 500 times
faster than computing one exponentiation on the same platform. These data
show that our basic commitment scheme is 5500 times more computationally
efficient than the scheme of [BCPV13], also achieving 14% lower communication

Additively Homomorphic UC Commitments 513

complexity. On the other hand, our additively homomorphic commitment scheme
is 392 times faster than the scheme of [BCPV13], though its communication
complexity is 12 times higher.

The Random Oracle Model [BR93] has historically been used to construct
cryptographic schemes with very high efficiency. Surprisingly, our scheme achieves
amortised concrete efficiency comparable to previous universally composable
schemes based on the ROM [HM04,DSW08] even though it is constructed in
the plain model. The average execution time of a SHA-256 hash function in our
evaluation platform is of 0.63μs for the fastest implementation (BouncyCastle)
available on SCAPI 2.3, while the OpenSSL implementation runs in 0.835μs.
The protocol introduced in [HM04] requires four evaluations of the ROM, which
translates into a total execution time 1.68 times higher than of our basic scheme
if SHA-256 is used to instantiate the ROM.

Implementing the setup phase required by our basic scheme in Figure 2
requires n = 796 executions of a 1-out-of-2 OT, yielding a cost of 8756 exponen-
tiations. With the above timings and considering the OT protocol of [PVW08],
the computational complexity of this scheme is lower when at least 398 com-
mitments are computed, and gets increasingly better as the number of commit-
ments increases. However, 4776 of these exponentiations can be precomputed
independently of the messages since it is enough for the receiver to get random
messages, lowering the online cost to 3980 exponentiations (i.e. the cost of 180
commitments. The additively homomorphic scheme in Figure 4 requires n = 796
executions of a 2-out-of-3 OT, yielding a higher cost in terms of exponentiations
in the setup phase.

References

[BCPV13] Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and
improvement of Lindell’s UC-secure commitment schemes. In: Jacobson,
M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS,
vol. 7954, pp. 534–551. Springer, Heidelberg (2013)

[BCR86] Brassard, G., Crepeau, C., Robert, J.-M.: Information theoretic reductions
among disclosure problems. In: 27th Annual Symposium on Foundations
of Computer Science 1986, pp. 168–173 (October 1986)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: Proceedings of the 1st ACM Conference
on Computer and Communications Security, CCS 1993, pp. 62–73. ACM,
New York (1993)

[Can01] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: FOCS [DBL01], pp. 136–145

[CDD+14] Cascudo, I., Damg̊ard, I., David, B., Giacomelli, I., Buus Nielsen, J.B., Tri-
filetti, R.: Additively homomorphic UC commitments with optimal amor-
tized overhead. Cryptology ePrint Archive, Report 2014/829 (2014), Full
version of PKC 2015 paper

[CDP12] Cramer, R., Damg̊ard, I., Pastro, V.: On the amortized complexity of zero
knowledge protocols for multiplicative relations. In: Smith, A. (ed.) ICITS
2012. LNCS, vol. 7412, pp. 62–79. Springer, Heidelberg (2012)

514 I. Cascudo et al.

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg
(2001)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: STOC, pp. 494–503
(2002)

[DBL01] 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, October 14–17, Las Vegas, Nevada, USA. IEEE Computer Society
(2001)

[DDGN14] Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact VSS and
efficient homomorphic UC commitments. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 213–232. Springer, Hei-
delberg (2014)

[DG03] Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable com-
mitment schemes. In: Larmore and Goemans [LG03], pp. 426–437

[DI14] Druk, E., Ishai, Y.: Linear-time encodable codes meeting the Gilbert-
Varshamov bound and their cryptographic applications. In: Naor, M. (ed.)
Innovations in Theoretical Computer Science, ITCS 2014, Princeton, NJ,
USA, January 12–14, pp. 169–182. ACM (2014)

[DNO10] Damg̊ard, I., Nielsen, J.B., Orlandi, C.: On the necessary and sufficient
assumptions for UC computation. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 109–127. Springer, Heidelberg (2010)

[DSW08] Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable
commitments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 515–535. Springer, Heidelberg (2008)

[EFLL12] Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: Scapi: The secure com-
putation application programming interface. Cryptology ePrint Archive,
Report 2012/629 (2012). http://eprint.iacr.org/

[GI01] Guruswam, V., Indyk, P.: Expander-based constructions of efficiently
decodable codes. In: 42nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2001, Las Vegas, Nevada, USA, October 14–17
[DBL01], pp. 658–667 (2001)

[GI02] Guruswami, V., Indyk, P.: Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets. In: Reif,
J.H. (ed.) Proceedings on 34th Annual ACM Symposium on Theory of
Computing, Montréal, Québec, Canada, May 19–21, pp. 812–821. ACM
(2002)

[GI03] Guruswami, V., Indyk, P.: Linear time encodable and list decodable codes.
In: Larmore and Goemans [LG03], pp. 126–135

[GI05] Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory 51(10),
3393–3400 (2005)

[GIKW14] Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC
commitments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 677–694. Springer, Heidelberg (2014)

[HM04] Hofheinz, D., Müller-Quade, J.: Universally composable commitments
using random oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951,
pp. 58–76. Springer, Heidelberg (2004)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
294–314. Springer, Heidelberg (2009)

http://eprint.iacr.org/

Additively Homomorphic UC Commitments 515

[LG03] Larmore, L.L., Goemans, M.X. (eds.) Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, San Diego, CA, USA, June
9–11. ACM (2003)

[Lin11] Lindell, Y.: Highly-efficient universally-composable commitments based on
the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 446–466. Springer, Heidelberg (2011)

[MS78] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes.
2nd edn. North-Holland Publishing Company (1978)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2),
151–158 (1991)

[NP99] Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidel-
berg (1999)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

[Spi96] Spielman, D.A.: Linear-time encodable and decodable error-correcting
codes. IEEE Transactions on Information Theory 42(6), 1723–1731 (1996)

[VZ12] Vadhan, S., Zheng, C.J.: Characterizing pseudoentropy and simplifying
pseudorandom generator constructions. In: Proceedings of the 44th Sym-
posium on Theory of Computing, pp. 817–836. ACM (2012)

Interactive Message-Locked Encryption
and Secure Deduplication

Mihir Bellare(B) and Sriram Keelveedhi

Department of Computer Science and Engineering,
University of California San Diego, San Diego, USA

mihir@eng.ucsd.edu, sriramkr@cs.ucsd.edu

Abstract. This paper considers the problem of secure storage of out-
sourced data in a way that permits deduplication. We are for the first
time able to provide privacy for messages that are both correlated and
dependent on the public system parameters. The new ingredient that
makes this possible is interaction. We extend the message-locked encryp-
tion (MLE) primitive of prior work to interactive message-locked encryp-
tion (iMLE) where upload and download are protocols. Our scheme,
providing security for messages that are not only correlated but allowed
to depend on the public system parameters, is in the standard model. We
explain that interaction is not an extra assumption in practice because
full, existing deduplication systems are already interactive.

1 Introduction

The secure deduplication problem. Cloud storage providers such as
Google, Dropbox and NetApp [31,41,51] derive significant cost savings from
what is called deduplication. This means that if Alice and Bob upload the same
data m, the service provider stores only one copy that is returned to Alice and
Bob upon download.

Enter security, namely the desire of clients to keep their data private from
the server. Certainly, Alice and Bob can conventionally encrypt their data under
their passwords and upload the ciphertext rather than the plaintext. But then,
even if they start from the same data m, they will end up with different cipher-
texts CA, CB , foiling deduplication. The corresponding cost increase for the
server would ultimately be passed to the clients in higher storage fees. It is
thus in the interest of the parties to cooperate towards storage that is secure but
deduplicatable.

Douceur et al. [30] provided the first solution, called convergent encryp-
tion (CE). The client encrypts its plaintext m with a deterministic symmetric
encryption scheme under a k that is itself derived as a deterministic hash of the
plaintext m. If Alice and Bob start with the same m, they will arrive at the
same ciphertext, and thus deduplication is possible. Despite lacking an analysis
until recently [12], CE has long been used in research and commercial systems
[2,4,5,18,26,27,29,35,39,46,47,52,54], an indication of practitioners’ interest in
secure deduplication.
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 516–538, 2015.
DOI: 10.1007/978-3-662-46447-2 23

Interactive Message-Locked Encryption and Secure Deduplication 517

Scheme(s) Type
Messages

STD/ROMCorrelated Param. dep.
CE, HCE1, HCE2, RCE [12] MLE Yes No ROM
XtDPKE, XtESPKE, ... [12] MLE Yes No STD

BHK [10] MLE Yes No STD
ABMRS [1] MLE No Yes RO
FCHECK iMLE Yes Yes STD

Fig. 1. Features of prior schemes (first four rows) and our scheme (last
row). We achieve security for the first time for messages that are both correlated and
parameter dependent. Our scheme is in the standard model. The advance is made
possible by exploiting interaction.

MLE. Bellare, Keelveedhi and Ristenpart (BKR) [12] initiated a theoretical
treatment of secure deduplication aimed in particular at answering questions
like, what security does CE provide and what can one prove about it? To this
end they defined a primitive they called message-locked encryption (MLE). An
MLE scheme specifies algorithms K,E,D,T. To encrypt m, let k ←$ K(p,m),
where p is a system-wide public parameter, and return ciphertext c ←$ E(k,m).
Decryption m ← D(k′, c) recovers m as long as k′ ←$ K(p,m) is any key derived
from m. Tags, produced via t ← T(c), are a way to test whether the plaintexts
underlying two ciphertexts are the same or not, all encryptions of m having the
same tag but it being hard to find differing plaintexts with matching tags.

Any MLE scheme enables deduplication. Alice, having mA, computes and
retains a key kA ←$ K(p,mA) and uploads cA ←$ E(k,mA). The server stores cA.
Now Bob, having mB, computes and retains a key kB ←$ K(p,mB) and uploads
cB ←$ E(k,mB). If the tags of cA and cB match, which means mA = mB , then
the server deduplicates, storing only cA and returning it to both Alice and Bob
upon a download request. Both can decrypt to recover the common plaintext.
CE is a particular MLE scheme in which key generation is done by hashing the
plaintext.

MLE security. BKR [12] noted that MLE can only provide security for unpre-
dictable data. (In particular, it cannot provide semantic security.) Within this
range, two data dimensions emerge:
1. Correlation: Security holds even when messages being encrypted, although

individually unpredictable, are related to each other.
2. Parameter-dependence: Security holds for messages that depend on the pub-

lic parameters.

These dimensions are orthogonal, and the best would be security for corre-
lated, parameter-dependent messages. This has not been achieved. What we
have is schemes for correlated but parameter-independent messages [10,12] and

518 M. Bellare and S. Keelveedhi

for non-correlated but parameter-dependent messages [1]. This past work is sum-
marized in Fig. 1 and we now discuss it in a little more detail.

Prior schemes. The definition of BKR [12], following [6], was security for corre-
lated but parameter-independent messages. For this notion they proved security
of CE in the ROM, gave new, secure ROM schemes, and made partial progress
towards the challenging task of security without ROs. An efficient scheme in
the standard model, also for correlated but parameter-independent messages,
was provided in [10] assuming UCE-secure hash functions. (Specifically, against
statistically unpredictable sources.)

Abadi, Boneh, Mironov, Raghunathan and Segev (ABMRS) [1] initiated
treatment of security for parameter dependent messages, which they termed
lock-dependent security. Achieving this is challenging. They gave a ROM solu-
tion that uses NIZK proofs to provide proofs of consistency. But to achieve
security for parameter-dependent messages they were forced to sacrifice secu-
rity for correlated messages. Their result assumes messages being encrypted are
independently distributed.

Questions and goals. The question we pose and address in this paper is, is it
possible to achieve the best of both worlds, meaning security for messages that
are both correlated and parameter dependent? This is important in practice.
As indicated above, schemes for secure deduplication are currently deployed and
in use in many systems [2,4,5,18,26,27,29,35,39,46,47,52,54]. In usage, mes-
sages are very likely to be correlated. For example, suppose Alice has uploaded
a ciphertext c encrypting a paper m she is writing. She edits m to m′, and
uploads the new version. The two plaintexts m,m′ could be closely related, dif-
fering only in a few places. Also, even if messages of honest users are unlikely to
depend on system parameters, attackers are not so constrained. Lack of security
for parameter-dependent messages could lead to breaches. This is reflected for
example in the BEAST attack on CBC in SSL/TLS [32]. We note that the ques-
tion of achieving security for messages that are both correlated and parameter
dependent is open both in the ROM and in the standard model.

Contributions in brief. We answer the above questions by providing a dedu-
plication scheme secure for messages that are both correlated and parameter
dependent. Additionally, our scheme is standard-model, not ROM. The key new
ingredient is interaction. In our solutions, upload and download are interactive
protocols between the client and server. To specify and analyze these protocols,
we define a new primitive, interactive MLE or iMLE. We provide a syntax and
definitions of security, then specify and prove correct our protocols.

iMLE turns out to be interesting in its own right and yields some other ben-
efits. We are able to provide the first secure deduplication scheme that permits
incremental updates. This means that if a client’s message changes only a little,
for example due to an edit to a file, then, rather than create and upload an
entirely new ciphertext, she can update the existing one with communication
cost proportional only to the distance between the new and old plaintexts. This
is beneficial because communication is a significant fraction of the operating

Interactive Message-Locked Encryption and Secure Deduplication 519

expenditure in outsourced storage services. For example, transferring one giga-
byte to the server costs as much storing one gigabyte for a month or longer in
popular storage services [3,40,49]. In particular, backup systems, an important
use case for deduplication, are likely to benefit, as the operations here are incre-
mental by nature. Incremental cryptography was introduced in [8,9] and further
studied in [14,22,34,50].

Interaction? One might question the introduction of interaction. Isn’t a non-
interactive solution preferable? Our answer is that we don’t “introduce” interac-
tion. It is already present. Upload and download in real systems is inherently and
currently interactive, even in the absence of security. MLE is a cryptographic
core, not a full deduplication system. If MLE is used for secure deduplication,
the uploads and downloads will be interactive, even though MLE is not, due to
extra flows that the full system requires. Interaction being already present, it
is natural to exploit it for security. In doing so, we are taking advantage of an
existing resource rather than introducing an entirely new one.

MLE considered a single client. But in a full deduplication system, there
are multiple clients concurrently executing uploads and downloads. Our iMLE
model captures this. iMLE is thus going further towards providing security of the
full system rather than just a cryptographic core. We know from experience
that systems can fail in practice even when a “proven-secure” scheme is used if
the security model does not encompass the full range of attacker capabilities or
security goals of the implementation. Modeling that penetrates deeper into the
system, as with iMLE, increases assurance in practice.

We view iMLE as a natural extension of MLE. The latter abstracted out an
elegant primitive at the heart of the secure deduplication problem that could
be studied in isolation. We study the full deduplication system, leveraging MLE
towards full solutions with added security features.

Duplicate faking. In a duplicate faking attack, the adversary concocts and
uploads a perverse ciphertext c∗ with the following property. When honest Alice
uploads an encryption c of her message m, the server’s test (wrongly) indicates
that the plaintexts underling c∗, c are the same, so it discards c, returning c∗ to
Alice upon a download request. But when Alice decrypts c∗, she does not get
back her original plaintext.

Beyond privacy, BKR [12] defined an integrity requirement for MLE called
tag consistency whose presence provides security against duplicate faking attacks.
The important tag consistency property is possessed by the prior MLE schemes
of Fig. 1 and also by our new iMLE schemes.

Deterministic schemes provide tag consistency quite easily and naturally. But
ABMRS [1] indicate that security for parameter-dependent messages requires
randomization. Tag consistency now becomes challenging to achieve. Indeed,
providing it accounts for the use of NIZKs and the corresponding cost and com-
plexity of the ABMRS scheme [1].

In the interactive setting, we capture the requirement underlying tag consis-
tency by a recovery condition that is part of our soundness definition and require-
ment. Soundness in particular precludes duplicate faking attacks in the interactive

520 M. Bellare and S. Keelveedhi

setting. Our scheme provides soundness, in addition to privacy for messages that
are both correlated and parameter dependent. Our FCHECK solution uses com-
posable point function obfuscation [17] and FHE [19–21,28,36,38,55].

Closer look. We look in a little more detail at the main definitional and
scheme contributions of our work.

Public parameters for an iMLE scheme are created by an Init algorithm.
Subsequently, a client can register (Reg), upload (Put) and download (Get).
Incremental schemes have an additional update (Upd). All these are interactive
protocols between client and server. For soundness, we ask that deduplication
happens as expected and that clients can recover their uploaded files even in
the presence of an attacker which knows all the files being uploaded and also
read the server’s storage at any moment. The latter condition protects against
duplicate-faking attacks. Our security condition is modeled on that of BKR [12]
and requires privacy for correlated but individually unpredictable messages that
may depend on the public parameters.

Our FCHECK construction, described and analyzed in Section 4, achieves
soundness as well as privacy for messages that are both correlated and parame-
ter dependent, all in the standard model, meaning without recourse to random
oracles. The construction builds on a new primitive we call MLE-Without-
Comparison (MLEWC). As the name indicates, MLEWC schemes are similar
to MLE schemes in syntax and functionality, except that they do not support
comparison between ciphertexts. We show that MLEWC can be realized in the
standard model, starting from point function obfuscation [17] or, alternatively,
UCE-secure hash function families [10]. However, comparison is essential to
enable deduplication. To enable comparison, FCHECK employs an interactive
protocol using a fully homomorphic encryption (FHE) scheme [19–21,28,36,38,
55], transforming the MLEWC scheme into an iMLE scheme.

We then move on to the problem of incremental updates. Supporting incre-
mental updates over MLE schemes turns out to be challenging: deterministic
MLE schemes cannot support incremental updates, as we show in the full ver-
sion [11], while randomized MLE schemes seem to need complex machinery such
as NIZK proofs of consistency [1] to support incremental updates while retaining
the same level of security as deterministic schemes, which makes them unfit for
practical usage. We show how interaction can be exploited to solve this problem.
We describe an efficient ROM scheme IRCE that supports incremental updates.
The scheme, in its simplest form, works like the randomized convergent encryp-
tion (RCE) scheme [12], where the message is encrypted with a random key
using a blockcipher in counter (CTR) mode, and the random key is encrypted
with a key derived by hashing the message. We show that this indirection enables
incremental updates. However, RCE does not support strong tag consistency and
hence cannot offer strong security against duplicate faking attacks. We overcome
this in IRCE by including a simple response from the server as part of the upload
process. We remark that IRCE is based off a core MLE (non-interactive) scheme
permitting incremental updates, interaction being used only for tag consistency.

Interactive Message-Locked Encryption and Secure Deduplication 521

Run(1λ, P, inp)

n ← 1; i ← 1; M ← ε; a[1, 1] ← inp[1]; a[2, 1] ← inp[2]

While T[n] = False

(a[n, i + 1], M, T[n]) ←$ P[n, i](1λ,a[n, i], M)

If n = 2 then n ← 1; i ← i + 1 else n ← 2

Ret last(a[1]), last(a[2])

Msgs(1λ, P, inp, r)

n ← 1; i ← 1; j ← 1; a[1, 1] ← inp[1]; a[2, 1] ← inp[2]; M ← ε

While T[n] = False

(a[n, i + 1], M, T[n]) ←$ P[n, i](1λ,a[n, i], M; r[n, i]); M[j] ← M; j ← j + 1

If n = 2 then n ← 1; i ← i + 1 else n ← 2

Ret M

Fig. 2. Top: Running a 2-player protocol P. Bottom: The Msgs procedure returns the
messages exchanged during the protocol when invoked with specified inputs and coins.

2 Preliminaries

We let λ ∈ N and 1λ denote the security parameter and its unary representation.
The empty string is denoted by ε. We let |S| denote the size of a finite set S and
let s ←$ S denote sampling an element from S at random and assigning it to s.
If a, b ∈ N and a < b, then [a] denotes the set {1, . . . , a} and [a, b] denotes the set
{a, . . . , b}. For a tuple x, we let |x| denote the number of components in x, and
x[i] denote the i-th component, and last(x) = x[|x|], and x[i, j] = x[i] . . .x[j]
for 1 ≤ i ≤ j ≤ |x|. A binary string s is identified with a tuple over {0, 1}. The
guessing probability of a random variable X, denoted by GP(X), is defined as
GP(X) = maxx Pr[X = x]. The conditional guessing probability GP(X |Y) of
a random variable X given a random variable Y are defined via GP(X |Y) =
∑

y Pr[Y = y] · maxx Pr[X = x|Y = y].
The Hamming distance between s1, s2 ∈ {0, 1}� is given by HAMM(s1, s2) =

∑�
i=1(s1[i]⊕ s2[i]). We let patchHAMM(s1, δ) be the string s such that s[i] = s1[i]

if i �∈ δ and s[i] = ¬s1[i] if i ∈ δ and diffHAMM(s1, s2) = {i : s1[i] �= s2[i]}.
Algorithms are randomized and run in polynomial time (denoted by PT)

unless otherwise indicated. We let y ← A(a1, . . . ; r) denote running algorithm
A on a1, . . . with coins r and assigning the output to y, and let y ←$ A(a1, . . .)
denote the same operation with random coins. We let [A(a1, . . .)] denote the set
of all y that have non-zero probability of being output by A on inputs a1,
Adversaries are either algorithms or tuples of algorithms. A negligible function
f approaches zero faster than the polynomial reciprocal; for every polynomial p,
there exists np ∈ N such that f(n) ≤ 1/p(n) for all n ≥ np.

We use the code-based game playing framework of [16] along with extensions
of [53] and [12] when specifying security notions and proofs.

A two player q-round protocol P is represented through a 2 × q-tuple
(P[i, j])i∈[2],j∈[q] of algorithms where P[i, j] represents the action of the i-th
player invoked for the j-th time. We let P[1] denote the player who initiates the

522 M. Bellare and S. Keelveedhi

protocol, and P[2] denote the other player. Each algorithm is invoked with 1λ,
an input a, and a message M ∈ {0, 1}∗, and returns a 3-tuple consisting of an
output a′, an outgoing message M′ ∈ {0, 1}∗, and a boolean T to indicate ter-
mination. The Run algorithm (Fig. 2) captures the execution of P, and Msgs
(Fig. 2) returns the messages exchanged in an instance of P, when invoked with
specified inputs and coins.

Adversarial model. A secure deduplication system (built from an iMLE
scheme) will operate in a setting with a server and several clients. Some clients
will be controlled by an attacker, while others will be legitimate, belonging to
honest users and following the protocol specifications. A resourceful attacker,
apart from controlling clients, could gain access to server storage, and interfere
with communications. Our adversarial model captures an iMLE scheme running
in the presence of an attacker with such capabilities.

We now walk through an abstract game G, and explain how this is achieved.
The games in the rest of the paper, for soundness, security, and other properties
of iMLE largely follow this structure. The game G sets up and controls a server
instance. The adversary A is invoked with access to a set of procedures. Usually,
the objective of the game involves A violating some property guaranteed to legit-
imate clients like L, such as ability to recover stored files, or privacy of data.

The Msg procedure can send arbitrary messages to the server and can be
used to create multiple clients, and run multiple instances of protocols, which
could deviate from specifications.

The Init and Step procedures control a single legitimate client L. The Init

procedure starts protocol instances on behalf of L, using inputs of A’s choice.
The Step procedure advances a protocol instance by running the next algorithm.
Together, these procedures let A run several legitimate and corrupted protocol
instances concurrently.

The State procedure returns the server’s state, which includes stored cipher-
texts, public parameters, etc.. In some games, it also returns the state and
parameters of L. State provides only read access to the server’s storage. This
restriction is necessary. If A is allowed to modify the storage of the server, then
it can always tamper with the data stored by the clients, making secure dedu-
plication impossible.

We assume that A can read, delay and drop messages between the server and
legitimate clients. However, A cannot tamper with message contents, reorder
messages within a protocol, or redirect messages from one protocol instance to
another. This assumption helps us simplify the protocol descriptions and proofs.
Standard, efficient techniques can be used to transform the protocols from this
setting to be secure in the presence of an attacker that can tamper and reorder
messages [7].

3 Interactive Message-Locked Encryption

Definition. An interactive message-locked encryption scheme iMLE consists of
an initialization algorithm Init and three protocols Reg,Put,Get. Initialization

Interactive Message-Locked Encryption and Secure Deduplication 523

Main(1λ) // RecA
iMLE(1

λ)

win ← False; σS ←$ Init(1λ)

AReg,Init,Step,Msg,State(1λ); Ret win

Reg // Set up the legitimate client L.

(σC , σS)←$ Run(Reg, ε, σS)

Init(P, inp) // Start a protocol with L.

If P �∈ {Put,Get} then ret ⊥
p ← p+ 1; j ← p; PS[j] = P

a[j, 1] ← inp; N[j] ← 1; M[j] ← ε; Ret j

Msg(P, i, M) // Send message to server.

If P �∈ {Reg,Put,Get,Upd} then ret ⊥
(σS , M, N, T)←$ P[2, i](1λ, σS , M); Ret M

Step(j) // Advance by one step.

P ← PS[j]; n ← N[j]; i ← rd[j]

If T[j, n] then return ⊥
If n = 2 then inp ← σS else inp ← a[j, i]

(outp, M[j], T[j, n])←$ P[n, i](1λ, inp, M[j])

If n = 2 then

σS ← outp; N[j] ← 1; rd[j] ← rd[j] + 1

Else a[j, i+ 1] ← outp; N[j] ← 2

If T[j, 1] ∧ T[j, 2] then WinCheck(j)

Ret M[j]

WinCheck(j) // Check if A has won.

If PS[j] = Put then

(σC ,m) ← a[j, 1]

f ← last(a[j]); T [f] ← m

If PS[j] = Get then

(σC , f) ← a[j, 1]; m′ ← last(a[j])

win ← win ∨ (m′ �= T [f])

Fig. 3. The Rec game. The State procedure returns σS , σC .

Init sets up server-side state: σS ←$ Init(1λ). Each protocol P consists of two
players - a client P[1] (meaning that the client always initiates), and a server
P[2]. All server-side algorithms P[2, ·] take server-side state σS as input, and
produce an updated state σ′

S as output. The Reg protocol registers new users;
here, Reg[1] takes no input and returns client parameters σC ∈ {0, 1}∗. The Put
protocol stores files on the server; here, Put[1] takes plaintext m ∈ {0, 1}∗ and
σC as inputs, and outputs an identifier f ∈ {0, 1}∗. The Get protocol retrieves
files from the server; here, Get[1] takes identifier f and σC as inputs, and outputs
plaintext m ∈ {0, 1}∗.

Soundness. We require two conditions. First is deduplication, meaning that
if a client puts a ciphertext of a file already on the server, then the storage
should not grow by the size of the file. A small increase towards book-keeping
information, that is independent of the size of the file, is permissible. More
precisely, there exists a bound � : N → N such that for all server-side states
σS ∈ {0, 1}∗, for all valid client parameters (derived through Reg with fresh
coins) σC , σ′

C , for all m ∈ {0, 1}∗, the expected increase in size of σ′′
S over σ′

S

when (f ′, σ′
S) ←$ Run(Put, (σC ,m), σS) and (f ′, σ′′

S) ←$ Run(Put, (σ′
C ,m), σ′

S) is
bounded by �(λ).

The second condition is correct recovery of files: if a legitimate client puts a
file on the server, it should be able to get the file later. We formalize this require-
ment by the Rec game of Fig. 3, played with an adversary A, which gets access

524 M. Bellare and S. Keelveedhi

to procedures Reg, Init,Step,Msg,State. We provide an overview of these
procedures here.

The Reg procedure sets up a legitimate client L by running
Run(1λ,Reg, (ε, σS)) . The Init procedure lets A run protocols on behalf of L.
It takes input inp and P, where P has to be one of Put,Get, and inp should be
the a valid input for P[1, 1]. A new instance of P is set up, and A is returned
j ∈ N, an index to the instance. The Step procedure takes input j, advances
the instance by one algorithm unless the current instance has terminated. The
outgoing message is returned to A. The inputs and outputs of the protocol steps
are all stored in an array a. The State procedure returns σS , σC .

If an instance j has terminated, then Step runs WinCheck, which maintains
a table T . If j is an instance of Put, then m and identifier f are recovered from
a[j] and T [f] gets m. If j is an instance of Get, then WinCheck obtains f and the
recovered plaintext m′, and checks if T [f] = m′. If this fails, either because T [f]
is some value different from m′, or is undefined, then WinCheck sets the win
flag, which is the condition for A to win the game. We associate advantage
AdvreciMLE,A(λ) = Pr[Rec

A
iMLE(1

λ)] with iMLE and A. For recovery correctness,
we require that the advantage should be negligible for all PT A.

Security. The primary security requirement for iMLE schemes is privacy of
unpredictable data. Unpredictability (plaintexts drawn from a distribution with
negligible guessing probability) is a prerequisite for privacy in MLE schemes [12],
as without unpredictability, a simple brute-force attack can recover the contents
of a ciphertext by generating keys from all candidate plaintexts and checking if
decrypting the ciphertext with the key leads back to the candidate plaintext. A
similar argument extends unpredictability as a requirement to secure deduplica-
tion schemes as well. We formalize unpredictability as follows.

A source S is an algorithm that on input 1λ and a string d ∈ {0, 1}∗ returns
a pair of tuples (m0,m1). There exist m : N → N and � : N × N → N such
that |m0| = |m1| = m(λ), and |m0[i]| = |m1[i]| = �(λ, i) for all i ∈ [m(λ)].
All components of m0 and m1 are unique. The guessing probability GPS(λ) of
S is defined as maxi,b,d(GP(mb[i])) when (m0,m1) ←$ S(1λ, d). We say that S
is unpredictable if GPS(·) is negligible. We say that S is a single source if it
only outputs one tuple, but satisfies the other conditions. We say that S is an
auxiliary source if it outputs a string z ∈ {0, 1}∗ along with m0,m1 and if it
holds that guessing probability conditioned on z is negligible.

The Priv game of Fig. 4, associated with iMLE, a source S and an adversary
A, captures privacy for unpredictable messages independent of the public para-
meters of the system. As with Rec, the game starts by running σS ←$ Init(1λ)
to set up the server-side state. The game then runs S to get (m0,m1), picks
a random bit b, and uses mb as messages to be put on the server. Then, A is
invoked with access to Reg,Put, Step,Msg and State. The Reg,State, and
Msg oracles behave in the same way as in Rec. The Step oracle here is similar
to that of Rec, except that it does not invoke WinCheck. Adversary A can
initialize an instance of Put with a plaintext mb[i] by calling Put(i).

Interactive Message-Locked Encryption and Secure Deduplication 525

Main(1λ) // Priv
S,A(1λ)

b ←$ {0, 1}; p ← 0; σS ←$ Init(1λ)

m0,m1 ←$ S(1λ, ε)

b′ ←$ APut,Upd,Step,Msg,Reg,State(1λ)

Ret (b = b′)

Reg

(σC , σS) ←$ Run(Reg, ε, σS)

Put(i) // Start a Put instance

p ← p + 1; PS[p] = Put

a[p, 1] ← mb[i]

N[p] ← 1; M[p] ← ε; Ret p

State

If cheat = False then

done ← True; ret σS

else ret ⊥

Main(1λ) // PDPriv
S,A(1λ)

b ←$ {0, 1}; p ← 0; σS ←$ Init(1λ)

b′ ←$ APtxt,Put,Upd,Step,Msg,Reg,State(1λ)

Ret (b = b′)

Ptxt(d)

m0,m1 ←$ S(1λ, d)

Msg(P′, M) // Send a message to the server

If P′ �∈ {Reg, Put, Get, Upd} then ret ⊥
(σS , M, T) ←$ P′[2](1λ, σS , M)

Ret (σS , M, N, T)

Step(j) // Advance instance by a step.

P ← PS[j]; n ← N[j]; i ← rd[j]

If T[j, n] or done then return ⊥
If n = 2 then inp ← σS else inp ← a[j, i]

(outp, M[j], T[j, n]) ←$ P[n, i](1λ, inp, M[j])

If n = 2 then

σS ← outp; N[j] ← 1; rd[j] ← rd[j] + 1

else a[j, i + 1] ← outp; N[j] ← 2

If n = 1 and T[j, n] then

Tf [a[j, 1]] ← last(a[j])

Fig. 4. The Priv and PDPriv security games. Apart from Main, the games share the
same code for all procedures. The PDPriv game has an additional Ptxt procedure.

We associate advantage AdvpriviMLE,S,A(λ) = 2Pr[PrivS,A
iMLE(1

λ)]−1 with a iMLE
a source S and an adversary A. We require that the advantage should be negli-
gible for all PT A for all unpredictable PT S.

The PDPriv game of Fig. 4 extends Priv-security to messages depend-
ing on the public parameters of the system, a notion termed lock-dependent
security in [1]. Here, we term this parameter-dependent security. In this game,
the adversary A gets access to a Ptxt procedure, which runs S(1λ, σS) to get
m0,m1. The other procedures follow Priv. A simpler approach is to run S with
σS when the game starts (i.e. in main) as in Priv. However, this leads to triv-
ial constructions where Init is a dummy procedure, and the system parameters
are generated when the first client registers. This is avoided in PDPriv by
letting A decide, through Ptxt, when S is to be run. We associate advantage
AdvldpriviMLE,S,A(λ) = 2Pr[PDPriv

S,A
iMLE(1

λ)] − 1 with a scheme iMLE a source S and
an adversary A. We require that advantage should be negligible for all PT A for
all unpredictable PT S.

526 M. Bellare and S. Keelveedhi

Put[1]((pk, sk), m) Put[2](σS , ε)

cf ←$ Epk(m) pk, cf

−−−−−−−−→ cr ←$ Ef(1
λ, pk, 0κ(λ))

ci ←$ Ef(1
λ, pk, 0); cn ← ci

For (p, c) ∈ fil do

cp ←$ Ef(1
λ, pk, p)

cc ←$ Ef(1
λ, pk, c)

c′ ←$ Evf(1
λ, pk, cmp,

cf , cp, cc, cr, cn, ci)

cr, cn, ci ← c′cr, cn

←−−−−−−−−p ← Df(1
λ, sk, cr)

n ← Df(1
λ, sk, cn) n

−−−−−−−−→ (p, c) ← fil[n]
p, c

←−−−−−−−−If n �= 0 then

c1 ← ε; k ← K(1λ, p, m)

If D(1λ, k, c) �= m then ret ⊥
Else

p ←$ (1λ); k ← K(1λ, p, m)

c1 ←$ E(1λ, k, m)

c2 ← Epk(k) c1, c2, p, u, n
−−−−−−−−→ If c1 �= ε then

nf ← nf + 1; i ← nf

fil[i] ← (p, c1)

c2 ← SiffE(own, (u, i), c2)i
←−−−−−−−−If n �= 0 and i �= n then ret ⊥

else ret i

Reg[1](ε) Reg[2](σS)

(pk, sk) ←$ Kf ε
−−−−−−−−→ u ←$ {0, 1}λ \ U

U ← U ∪ {u}u
←−−−−−−−−Ret (pk, sk, u)

Get[1]((pk, u, sk), f) Get[2](σS , ε)

u, f
−−−−−−−−→ c2 ← own[u, i]; (p, c1) ← fil[i]

If c2 = ⊥ then c1 ← ⊥c1, c2
←−−−−−−−−If c1 = ⊥ then ret ⊥

k ← Df(1
λ, sk, c2)

Ret D(1λ, k, c1)

Fig. 5. The FCHECK scheme over FHE = (Kf , Ef , Df , Evf) and MLEWC = (, E, K, D)

4 The FCHECK Scheme

In this section, we describe the the FCHECK construction, which achieves sound-
ness as well as security for messages that are both correlated and parameter-
dependent, all in the standard model. As we noted in the introduction, prior
to our work, achieving parameter-dependent correlated input security was open

Interactive Message-Locked Encryption and Secure Deduplication 527

Main(1λ) // WPRIV
S,A(1λ)

(m0,m1, z) ←$ S(1λ, ε); b ←$ {0, 1}
For i ∈ [|mb|] do

p[i] ←$ (1λ); k[i] ←$ K(1λ,p[i],mb[i])

c[i] ←$ E(1λ,k[i],mb[i])

b′ ←$ A2(1
λ,p, c, z); Ret (b = b′)

Main(1λ) // CDIPFO
S,A
OS (1λ)

(p, z) ←$ S(1λ); b ←$ {0, 1}
For i ∈ [|p|] do

If b = 1 then

(α, β) ← p[i]; F[i] ←$ Obf(1λ, (α, β))

Else

(α′, β′) ← p[i] ; α ←$ {0, 1}|α′|; β ←$ {0, 1}|β′|

F[i] ←$ Obf(1λ, (α, β))

b′ ←$ A(1λ, F[i], z); Ret (b = b′)

Fig. 6. The WPRIV game on the left, and the and CDIPFO game on the right

even in the random oracle model. We are able to exploit interactivity as a new
ingredient to design a scheme that achieves security for parameter-dependent
correlated messages.

Our approach starts by going after a new, seemingly weak primitive, one
we call MLE-Without-Comparison (MLEWC). As the name indicates, MLEWC
schemes are similar to MLE schemes in syntax and functionality, except that they
do not support comparison between ciphertexts. We show that MLEWC can be
realized in the standard model, starting from point function obfuscation [17]
or, alternatively, UCE-secure hash function families [10]. However, comparison
is essential to enable deduplication. To enable comparison, FCHECK employs
an interactive protocol using a fully homomorphic encryption (FHE) scheme
[19–21,28,36,38,55], transforming the MLEWC scheme into an iMLE scheme.
We view FCHECK as a theoretical construction, and not an immediately practical
iMLE scheme.

MLE Without Comparison (MLEWC). A scheme MLEWC = (,E,K,D)
consists of four algorithms. Parameters are generated via p ←$ (1λ). Keys are
generated via k ←$ K(1λ, p,m), where m ∈ {0, 1}μ(λ) is the plaintext. Encryp-
tion E takes p, k,m and returns a ciphertext c ←$ E(1λ, k,m). Decryption D
takes input k, c and returns m ← D(1λ, k, c), or ⊥. Correctness requires that
D(1λ, k, c) = m for all k ∈ [K(1λ, p,m)], for all c ∈ [E(1λ, k,m)], for all p ∈ [(1λ)],
for all m ∈ {0, 1}κ(λ) for all λ ∈ N.

The WPRIV game with MLEWC, an auxiliary source S and an adversary A
is described in Fig. 6. The game runs S to get two vectors m0,m1, and forms c by
encrypting one of the two vectors, using a fresh parameter for each component,
or by picking random strings. A should guess which the case is. We associate

528 M. Bellare and S. Keelveedhi

advantage AdvwprivMLEWC,S,A(λ) = 2Pr[WPRIV
A,S
MLEWC(1λ)] − 1. For MLEWC to be

WPRIV-secure, advantage should be negligible for all PT adversaries A for all
unpredictable PT auxiliary sources S. Note that unlike PRIV, here, a fresh
parameter is picked for each encryption, and although we will end up using
WPRIV-secure schemes to build parameter-dependent iMLE, in the WPRIV

game, the source S is not provided the parameters.

Fully homomorphic encryption (FHE) [36]. An FHE scheme FHE =
(Kf ,Ef ,Df ,Evf) is a 4-tuple of algorithms. Key generation Kf(1λ) returns (pk, sk),
encryption Ef(1λ,) takes pk, plaintext m ∈ M(λ), and returns ciphertext c,
and decryption returns m′ ← Df(1λ, sk, c) on input sk and ciphertext c, where
m = ⊥ indicates an error. The set of valid ciphertexts is denoted by C(λ) =
{c : Df(1λ, sk, c) �= ⊥, (pk, sk) ∈ [Kf(1λ)]}. Decryption correctness requires that
Df(1λ, sk,Ef(1λ, pk,m)) = m for all (pk, sk) ∈ [Kf(1λ)], for all m ∈ M(λ) for all
λ ∈ N.

Let 〈.〉 denote an encoding which maps boolean circuits f to strings denoted
by 〈f〉 such that there exists PT Eval which satisfies Eval(〈f〉, x) = f(x) for
every valid input x ∈ {0, 1}n, where n is the input length of f . Evaluation Evf
takes input a public key pk, a circuit encoding 〈f〉 and a tuple of ciphertexts
c such that |c| is the input length of f and returns c′ ←$ Evf(1λ, pk, 〈f〉, c).
Evaluation correctness requires that for random keys, on all functions and all
inputs, Evf must compute the correct output when run on random coins, except
with negligible error.

The FCHECK scheme. Let FHE = (Kf ,Ef ,Df ,Evf) be an FHE scheme, and
let MLEWC = (,E,K,D) be a MLEWC scheme where K is deterministic. The
FCHECK[FHE,MLEWC] iMLE scheme is described in Fig. 5. The Init algorithm
is omitted: it lets U ← ∅, and lets fil and own be empty tables.

In FCHECK, clients encrypt their plaintexts with MLEWC to be stored on
the server, but pick a fresh parameter each time. The server’s storage consists of
a list of ciphertext-parameter pairs c[i],p[i]. When a client wants to put m, for
each such c[i],p[i], the server should generate a key k[i] ← K(1λ,p[i],m) and
check if D(1λ,k[i], c[i]) = m.

A match means that a duplicate ciphertext already exists on the server, while
no match means that m is a fresh plaintext. The search for a match should be
carried without the server learning m and is hence done over FHE ciphertexts
of the components. The client sends pk and cf ←$ Ef(1λ, pk,m) and the server
encrypts each c[i],p[i] to get cc and cp and runs Evf on the cmp circuit described
below with these values.

cmp(m, p, c, r, n, i)

If D(1λ,K(1λ, p,m), c) = m and r = 0κ(λ) then return p, i + 1, i + 1
Else return r, n, i + 1

The client is provided the encryptions of r and n in the end. If n = 0, no match
was found, and the client picks p ←$ (1λ), computes c ← E(1λ,K(1λ, p,m),m),
and sends p, c to be stored on the server. Otherwise, n refers to the index of
the match, and serves as the tag, and r refers to the parameter in the match.

Interactive Message-Locked Encryption and Secure Deduplication 529

Now the client computes k ← K(1λ, r,m), encrypts it under its private key, and
stores the result on the server. The Reg and Get protocols proceed in a simple
manner, and are described in Fig. 5. It can be checked that FCHECK performs
deduplication as expected, and we show this formally in the full version.

E(1λ, kH, k, m)

c0 ←$ Obf(1λ, k, 0))

For i ∈ [|m|] do

ci ←$ Obf(1λ, k‖〈i, �〉‖m[i], 0)

Ret c0, . . . c|m|

D(1λ, kH, k, c0, . . . cn)

If Eval(1λ, c0, k) = ⊥ then ret ⊥
For i ∈ [n] do

If Eval(1λ, ci, k‖〈i, �〉‖0) = 1 then

mi ← 0

else mi ← 1

Ret m1‖ . . . ‖mn

Fig. 7. The HtO MLEWC scheme, with a CR hash HF and a point obfuscation
scheme OS. Here, parameters are generated via (1λ) which runs Kh(1

λ) and returns
the output, while message-derived keys are generated by letting K(1λ, kH, m) return
k ← H(1λ, kH, m).

Theorem 1. If MLEWC is a correct MLEWC scheme then
FCHECK[MLEWC,FHE] is Rec-secure.

Proof Sketch. Observe that that whenever a client puts m, and a match is
found in Put[2, 1], the client asks for the p, c pair corresponding to the index
with the match, and checks by itself that this pair is a valid ciphertext for m.
This, combined with the immutability of fil and own leads to perfect recovery
correctness.

Theorem 2. If MLEWC is WPRIV-secure and FHE is CPA-secure, then
FCHECK[MLEWC,FHE] is PDPriv-secure.

Proof Sketch. We replace the c2 components with encryptions of random strings,
and use the CPA security of FHE to justify this. Now, only the p, c pairs of the
plaintexts reside on the server, and hence we can hope to show that if there
exists an adversary A that can guess the challenge bit from only the p, c values,
then such an A can be used to build another adversary B which breaks WPRIV

security of MLEWC.
But this cannot be accomplished right away. When A asks the game to run

Put with some mb[i], then B cannot simulate Put[2, 1] which looks through p, c
for a match for mb[i] without knowing mb[i]. The proof first gets rid of the search
step in Put[2, 1] and then builds B. We argue that the search step can be avoided.
The adversary A, with no knowledge of the messages that the unpredictable
source S produced, would have been able to use Msg to put a ciphertext for a
mb[i] only with negligible probability.

530 M. Bellare and S. Keelveedhi

Constructing MLEWC schemes. To get an iMLE scheme via FCHECK, we
still need to construct a MLEWC scheme. The lack of comparison means that
MLEWC schemes should be easier to construct compared to MLE schemes, but
constructions must still overcome two technical challenges: encrypting messages
with keys derived from the messages themselves, and dealing with correlated
messages. We explore two approaches to overcoming these two challenges. The
first utilizes a special kind of point-function obfuscation scheme, and the second
uses a UCE-secure [10] hash function. This construction, which we describe in
the full version. is straightforward. We start with a hash function family, HF =
(Kh,H). Parameter generation picks a hash key kH. Given m, the key is generated
as k ← H(1λ, kH,m, 1λ), and ciphertext as c ← H(1λ, kH, k, 1|m|)⊕m. Decryption,
on input k, c removes the mask to recover m.

We now elaborate on the first approach, which builds a MLEWC scheme from
a composable distributional indistinguishable point-function obfuscation scheme
(CDIPFO) [17]. To give a high level idea for why CDIPFOs are useful, we note
that point-function obfuscation is connected to encryption secure when keys
and messages are related [25]. Moreover, CDIPFOs, due to their composability,
remain secure even when obfuscations of several correlated points are provided
and thus enable overcoming the two challenges described above.

Let α, β ∈ {0, 1}∗. We let φα,β : {0, 1}∗ → {β,⊥} denote the function that
on input γ ∈ {0, 1}∗ returns β if γ = α, and ⊥ otherwise. We call α the special
input, and β the special output. A point function obfuscator OS = (Obf,Eval) is
a pair of algorithms. Obfuscation takes (α, β) and outputs F ←$ Obf(1λ, (α, β)),
while Eval takes F, and a point γ and returns y ←$ Eval(1λ,F, γ). Correctness
requires that Eval(1λ,Obf(1λ, α, β), α) = β for all α, β ∈ {0, 1}∗, for all λ ∈ N.

A PF source S outputs a tuple of point pairs p, along with auxiliary infor-
mation z. There exist m : N → N and � : N × N → N such that |p| = m(λ), and
|p[i, 0]| = �(λ, 0) and |p[i, 1]| = �(λ, 1) for all i ∈ [m(λ)]. Guessing probability
GPS(λ) is defined as maxi(GP(p[i, 0]|z)) when (p, z) ←$ S(1λ). We say that S
is unpredictable if GPS(·) is negligible.

Distributional indistinguishability for point function obfuscators is captured
by the CDIPFO game (Fig. 6) associated with OS, an PF source S, and an
adversary A. At a high level, the game either provides OS-obfuscations of point
functions from S, or from a uniform distribution, and to win, the adversary
A should guess which the case is. We associate advantage AdvcdipfoOS,S,A(λ) =
2Pr[CDIPFO

A,S
OS (1λ)]−1 with OS,S and A and say that OS is CDIPFO-secure

if advantage is negligible for all PT A for all unpredictable PT S. Bitansky
and Canetti show that CDIPFOs can be built in the standard model, from the
t-Strong Vector Decision Diffie Hellman assumption [17].

Let HF = (Kh,H) denote a family of CR hash functions. The Hash-then-
Obfuscate transform HtO[HF,OS] = (,E,K,D) associates an MLEWC scheme
with HF and OS as in Fig. 7, restricting the message space to �-bit strings. At
a high level, a key is generated by hashing the plaintext m with HF, and m
is obfuscated bit-by-bit, with the hash as the special input. Decryption, given
the hash, can recover m from the obfuscations. Correctness follows from the
correctness of OS, and the following theorem shows WPRIV-security.

Interactive Message-Locked Encryption and Secure Deduplication 531

Theorem 3. If HF is CR-secure, and OS is CDIPFO-secure, then HtO[HF,OS]
is WPRIV-secure.

The proof of the theorem and some remarks on HtO appear in the full version.

5 Incremental Updates

In this section, we define iMLE with incremental updates, and provide a con-
struction which achieves this goal. Building MLE schemes which can support
incremental updates turns out to be challenging. On the one hand, it is easy to
show that deterministic MLE schemes cannot support incremental updates. We
elaborate on this in full version. On the other hand, randomized MLE schemes
seem to need complex machinery such as NIZK proofs of consistency [1] to
support incremental updates while retaining the same level of security as deter-
ministic schemes, which makes them unfit for practical usage. We show how
interaction can be exploited to achieve incremental updates in a practical man-
ner, by building an efficient ROM iMLE scheme IRCE that supports incremental
updates. We fix Hamming distance as the metric. In the full version, we define
incremental updates w.r.t edit distance, and extend IRCE to work in this setting.

An interactive message-locked encryption scheme iMLE with updates sup-
ports an additional protocol Upd along with the usual three protocols Reg,Put,
and Get. The Upd protocol updates a ciphertext of a file m1 stored on the
server to a ciphertext of an updated file m2. Here, Upd[1] (i.e. the client-side
algorithm) takes inputs f , σC , and two plaintexts m1,m2, and outputs a new
identifier f2 ∈ {0, 1}∗.

Now, the Rec game (Fig. 3) which asks for correct recovery of files also
imposes conditions on update, namely that if a legitimate client puts a file on
the server, it should be able to get the file later along with updates made to the
file. This is captured by letting the adversary pick Upd as the protocol in the
Init procedure. The WinCheck procedure, which checks if the adversary has
won, is now invoked at successful runs of Upd additionally. It infers the value
of f used in the update protocol as well as the updated plaintext m2 and sets
T [f] ← m2, thus letting the adversary to win if a get at f does not return m2.

We say that a scheme iMLE has incremental updates if the communication
cost of updating a ciphertext for m1 stored on the server to a ciphertext for m2

is a linear function of HAMM(m1,m2) and log |m2|. More formally, there exists a
linear function u : N×N → N such that for all client parameters σC , for all server-
side states σS ∈ {0, 1}∗, for all plaintexts m1,m2 ∈ {0, 1}∗ such that |m1| = |m2|,
for all coins r1, r2, for all f ∈ {0, 1}∗, if (m1, σ

′
S) ← Run(Get, (σC , f), σS ; r1), and

(f ′, σ′′
S) ← Run(Upd, (σC ,m1,m2), σS ; r2), and f ′ �= ⊥, then

|Msgs(Upd, (σC ,m1,m2), σS ; r2)| ≤ HAMM(m1,m2)u(log |m1|, λ).

Preliminaries. A deterministic symmetric encryption (D-SE) scheme SE =
(E,D) is a pair of algorithms, where encryption returns c ← E(1λ, k,m) on
input plaintext m ∈ {0, 1}∗ and key k ∈ {0, 1}κ(λ), and decryption returns
m ← D(1λ, k, c). Correctness requires D(1λ, k,E(1λ, k,m)) = m for all plaintexts

532 M. Bellare and S. Keelveedhi

Init(1λ)

p ←$ {0, 1}κ(λ); U ← ∅; fil ← ∅; own ← ∅; Ret σS = (p,U,fil,own)

Reg[1](ε) Reg[2](σS)

k ←$ {0, 1}κ(λ) ε
−−−−−−−−→ u ←$ {0, 1}λ \ U; U ← U ∪ {u}

u, p
←−−−−−−−−Ret (k, u, p)

Get[1]((k, u, p), t) Get[2](σS)

u, t
−−−−−−−−→ (c1, c2) ← fil[t]; c3 ← own[u, t]

If c3 = ⊥ then (c′
1, c

′
2) ← (⊥, ⊥)c1, c2, c3

←−−−−−−−−If c1 = ⊥ then ret ⊥
k2 ← D(1λ, k, c3)

Ret D(1λ, k2 ⊕ c2, c1)

Fig. 8. The Init algorithm, and Reg and Get protocols of the IRCE iMLE scheme

m ∈ {0, 1}∗ for all keys k ∈ {0, 1}κ(λ) for all λ ∈ N. We say that SE supports
incremental updates w.r.t Hamming distance if there exists an algorithm U such
that U(1λ,E(1λ, k,m1), diff(m1,m2)) = E(1λ, k,m2) for all plaintexts m1,m2 ∈
{0, 1}∗ for all keys k ∈ {0, 1}κ(λ) for all λ ∈ N.

Key-recovery security is defined through game KR
A
SE(1

λ) which lets adversary
A query an oracle Enc with a plaintext m then picks k ←$ {0, 1}κ(λ) and returns
E(1λ, k,m); A wins if it can guess k.

The CPA security game CPA
A
SE(1

λ), picks b ←$ {0, 1} and k ←$ κ(λ), runs
A with access to Enc, and responds to queries m by returning c ← E(k,m) if
b = 1 and returning a random |c|-bit string if b = 0. To win, the adversary should
guess b. We define advantages AdvkrSE,A(λ) = Pr[KR

A
SE(1

λ)] and AdvcpaSE,A(λ) = 2 ·
Pr[CPA

A
SE(1

λ)]−1 and say that SE is KR-secure (resp. CPA-secure) if AdvkrSE,A(·)
(resp. AdvcpaSE,A(·)) is negligible for all PT A. The CTR mode of operation over a
blockcipher, with a fixed IV is an example of a D-SE scheme with incremental
updates, and KR and CPA security.

A hash function H with κ(λ)-bit keys is a PT algorithm that takes p ∈
{0, 1}κ(λ) and a plaintext m returns hash h ← H(p,m). Collision resistance
is defined through game CRA

H(1λ), which picks p ←$ {0, 1}κ(λ), runs adversary
A(1λ, p) to get m0,m1, and returns True if m0 �= m1 and H(p,m1) = H(p,m2).
We say that H is collision resistant if AdvcrH,A(λ) = Pr[CRA

H(1λ)] is negligible for
all PT A.

A table T is immutable if each entry T [t] can be assigned only one value after
initialization. Immutable tables supports the Set-iff-empty, or SiffE operation,
which takes inputs a table T , an index f , and a value m. If T [f] = ⊥ then
T [f] ← m and m is returned; otherwise T [f] is returned.

Interactive Message-Locked Encryption and Secure Deduplication 533

The IRCE scheme. Let H denote a hash function with κ(λ)-bit keys and κ(λ)-
bit outputs, and let SE = (E,D) denote a D-SE scheme with κ(λ)-bit keys, where
ciphertexts have same lengths as plaintexts and incremental updates are sup-
ported through an algorithm U. The IMLE scheme IRCE[SE,H] is described in
figures 8 and 9. We call the construction IRCE, expanding to interactive ran-
domized convergent encryption. since it resembles the randomized convergent
encryption (RCE) scheme of [12].

To describe how IRCE works, let us consider a IMLE scheme built around
RCE. In RCE, to put m on the server, the client encrypts m with a random
key � to get c1, and then encrypts � with km = H(p,m) to get c2, where p is
a system-wide public parameter. Then, km is hashed once more to get the tag
t = H(p, km). The client sends t, c1, c2 and the server stores c1, c2 in a table fil at
index t. If another client starts with m, it will end up with the same t, although it
will derive a different c′

1, c
′
2, as � is picked at random. However, when this client

sends t, c′
1, c

′
2, the server knows that fil[t] is not empty, meaning a duplicate

exists, and hence will drop c′
1, c

′
2, thereby achieving deduplication. The second

client should be able to recover m by sending t to the server, receiving c1, c2,
recovering � from c2 and decrypting c1. However, the problem with RCE is that,
when the first client sends t, c1, c2, the server has no way of checking whether
c1, c2 is a proper ciphertext of m, or a corrupted one. Thus, the second client,
in spite of storing a ciphertext of m on the server might not be able to recover
m — this violates our soundness requirement. We will now fix this issue with
interaction.

The Put protocol in IRCE differs in that, if the server finds that fil[t] �= ⊥ then
it responds with h, c′

2, where (c′
1, c

′
2) ← fil[t] and h ← H(p, c′

1). Now, the client
can check that H(p,E(1λ, c′

2 ⊕ km,m)) = h which means that whenever dedu-
plication happens, the client can check the validity of the duplicate ciphertext,
which in turn guarantees soundness. The Put protocol is specified in Fig. 9, and
is a bit more involved than our sketch here. Specifically, the clients are assigned
unique identifiers which are provided during Put. The message-derived key km

is also encrypted to get c3 (under per-client keys) and stored on the server, in a
separate table own, which enables checking that a client starting a get protocol
with an identifier did put the file earlier. If the client is the first to put a ciphertext
with tag t, then the server still returns H(p, c1), c2, c3 so that external adversaries
cannot learn if deduplication occurred. We note that in Fig. 9, the fil and own
tables are immutable, and this will help in arguing soundness of the scheme.

The Init algorithm (Fig. 8) sets up the fil and own tables, and additional
server-side state, and picks a key p for H, which becomes the public-parameter of
the system. The Reg protocol (Fig. 9) sets up a new client by creating a unique
client identifier u, and providing the client p. The client also picks a secret key
k without the involvement of the server. The Get protocol (Fig. 9) recovers a
plaintext from the identifier, which in the case of IRCE is the tag.

IRCE supports incremental updates, as described in Fig. 9. If the client wants
to update m to m2, it does not have to resend all of c1, c2, c3. Instead, it can
use the same key � and incrementally update c1, and compute new values for c2

534 M. Bellare and S. Keelveedhi

Put[1]((k, u, p), m) Put[2](σS)

� ←$ {0, 1}κ(λ); c1 ← E(1λ, �, m)

km ← H(p, m); c2 ← km ⊕ �; c3 ←
E(1λ, k, km)

t ← H(p, km) u, c1, c2, c3, t
−−−−−−−−→ (c1, c2) ← SiffE(fil, t, c1, c2)

h ← H(p, c1)

c3 ← SiffE(own, (u, t), c3)h, c′
2, c

′
3←−−−−−−−−If c3 �= c′

3 then ret ⊥
�′ ← c′

2 ⊕ km

c′′
1 ← E(1λ, �′, m)

h′ ← H(p, c′′
1)

If h = h′ then ret t Else ret ⊥
Upd[1]((k, u, p), t, m1, m2) Upd[2](σS)

k1 ← H(p, m1); k2 ← H(p, m2)

δ ← diff(m1, m2); t2 ← H(p, k2)

cd ← k1 ⊕ k2; t1 ← H(p, k1)

c3 ← E(1λ, k, k2) u, t1, t2, c3, cd, δ
−−−−−−−−→ If own[u, t1] �= ⊥ then

c3 ← SiffE(own, (u, t), c3)

c1, c2 ← fil[t1]

c′
1 ← patch(c1, δ)

c′
2 ← c2 ⊕ cd

(c′
1, c

′
2) ← SiffE(fil, t2, c

′
1, c

′
2)

Else (c′
1, c

′
2) ← (⊥, ⊥)

h ← H(p, c′
1)h, c′

2, c
′
3←−−−−−−−−If c3 �= c′

3 then ret ⊥
c′′
1 ← E(1λ, c′

2 ⊕ k2, m2); h′ ← H(p, c′′
1)

If h = h′ then ret t2; Else ret ⊥

Fig. 9. The Put and Upd protocols of the IRCE iMLE scheme. The fil and own tables
are immutable, and support the set-iff-empty operation (SiffE) explained in text.

and c3, along with the new tag t2. If the server finds that fil[t2] is not empty,
the same check as in Put is performed.

It is easy to see that IRCE performs deduplication, and supports incremental
updates. In the full version, we formally state and prove the deduplication and
incremental updates properties. We also provide a proof of the following the-
orem which shows that IRCE is Rec-secure (which, along with deduplication,
establishes soundness).

Theorem 4. If H is collision resistant and SE is a correct D-SE scheme, then
IRCE[H,SE] is Rec-secure.

Interactive Message-Locked Encryption and Secure Deduplication 535

Proof Sketch. To win the Rec game, the adversary A must put a plaintext m
on the server, possibly update it to some m′, complete a Get instance with the
identifier for m or m′ and show that the result is incorrect.

The proof uses the immutability of fil and own to argue that the ciphertext
stored in the server could not have changed between the failed Get instance and
the last time the plaintext was put/updated. However, Put and Upd both ensure
that the hash of the ciphertext stored on the server matches with the hash of a
correctly formed ciphertext for the plaintext being put/updated. Consequently,
whenever A breaks Rec-security, it is in effect finding a pair of colliding inputs,
namely the hash inputs involved in the comparison. A CR adversary B can be
built which has the same advantage as the Rec-advantage of A.

The following theorem (the proof of which appears in the full version) shows
that IRCE is Priv-secure in the ROM, assuming that SE is secure. Let IRCERO

denote the ROM analogue of IRCE, formed by modelling H as a random oracle.

Theorem 5. If SE is CPA-secure and KR-secure, then IRCERO[SE] is
Priv-secure.

Proof Sketch. In Priv, the source S outputs m0,m1, the game picks b ←$ {0, 1}
and adversary A can put and update components of mb, and finally gets to learn
the server-side state. To win, A should guess b.

First, the c3 components are changed to encrypt random strings instead of
message-derived keys km[i]; CPA security of SE makes this change indistinguish-
able by A. The proof then moves to a game where RO responses are no longer
consistent with the keys and tags being generated. For instance, if S or A queries
the RO at p‖mb[i], it gets a response different from km[i]. The remainder of the
proof involves two steps. First, we show that once we stop maintaining RO con-
sistency, the adversary gets no information about the � values used to encrypt
the messages, and hence guessing b means breaking either the CPA security or
key recovery security of SE. Second, we argue that neither S nor A can detect
that RO responses are inconsistent. This is because S does not know p, a prefix
to the key and tag generation queries. An A that detects the inconsistency will
break the CPA security of SE.

Acknowledgments. We thank the PKC 2015 reviewers for their valuable comments.
Bellare was supported in part by NSF grants CNS-1228890 and CNS-1116800. Work
done while Keelveedhi was at UCSD, supported in part by NSF grants CNS-1228890
and CNS-1116800.

References

1. Abadi, M., Boneh, D., Mironov, I., Raghunathan, A., Segev, G.: Message-locked
encryption for lock-dependent messages. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 374–391. Springer, Heidelberg (2013)

2. Adya, A., Bolosky, W., Castro, M., Cermak, G., Chaiken, R., Douceur, J., Howell,
J., Lorch, J., Theimer, M., Wattenhofer, R.: Farsite: Federated, available, and
reliable storage for an incompletely trusted environment. ACM SIGOPS Operating
Systems Review 36(SI), 1–14 (2002)

536 M. Bellare and S. Keelveedhi

3. Amazon: S3. http://aws.amazon.com/s3/pricing/
4. Anderson, P., Zhang, L.: Fast and secure laptop backups with encrypted de-

duplication. In: Proc. of USENIX LISA (2010)
5. Batten, C., Barr, K., Saraf, A., Trepetin, S.: pStore: A secure peer-to-peer backup

system. Unpublished report, MIT Laboratory for Computer Science (2001)
6. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable

encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

7. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In:
30th ACM STOC, pp. 419–428. ACM Press, May 1998

8. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

9. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and applica-
tion to virus protection. In: 27th ACM STOC, pp. 45–56. ACM Press, May June
1995

10. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via uces.
Cryptology ePrint Archive, Report 2013/424 (2013). Preliminary version in Crypto
2013

11. Bellare, M., Keelveedhi, S.: Interactive message-locked encryption and secure dedu-
plication. Cryptology ePrint Archive (2015). Preliminary version in PKC 2015

12. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013)

13. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003)

14. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incremen-
tality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

15. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

16. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

17. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010)

18. Bitcasa: Bitcasa inifinite storage.
http://blog.bitcasa.com/tag/patented-de-duplication/

19. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012)

20. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011

21. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

http://aws.amazon.com/s3/pricing/
http://blog.bitcasa.com/tag/patented-de-duplication/

Interactive Message-Locked Encryption and Secure Deduplication 537

22. Buonanno, E., Katz, J., Yung, M.: Incremental unforgeable encryption. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 109–124. Springer, Heidelberg (2002)

23. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

24. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008)

25. Canetti, R., Kalai, Y.T., Varia, M., Wichs, D.: On symmetric encryption and
point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 52–71.
Springer, Heidelberg (2010)

26. Ciphertite: Ciphertite data backup. https://www.cyphertite.com/faq.php
27. Cooley, J., Taylor, C., Peacock, A.: ABS: the apportioned backup system. MIT

Laboratory for Computer Science (2004)
28. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-

tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

29. Cox, L.P., Murray, C.D., Noble, B.D.: Pastiche: making backup cheap and easy.
SIGOPS Oper. Syst. Rev. 36, 285–298 (2002)

30. Douceur, J., Adya, A., Bolosky, W., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: Proceedings. 22nd
International Conference on Distributed Computing Systems, pp. 617–624. IEEE
(2002)

31. Dropbox: Deduplication in Dropbox. https://forums.dropbox.com/topic.php?
id=36365

32. Duong, T., Rizzo, J.: Here come the ninjas. Unpublished manuscript (2011)
33. Dutch, M.: Understanding data deduplication ratios. In: SNIA Data Management

Forum (2008)
34. Fischlin, M.: Incremental cryptography and memory checkers. In: Fumy, W. (ed.)

EUROCRYPT 1997. LNCS, vol. 1233, pp. 393–408. Springer, Heidelberg (1997)
35. Flud: The Flud backup system. http://flud.org/wiki/Architecture
36. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,

M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May June 2009
37. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption

scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 129–148. Springer, Heidelberg (2011)

38. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

39. GNUnet: GNUnet, a framework for secure peer-to-peer networking. https://
gnunet.org/

40. Google: Blob store. https://developers.google.com/appengine/docs/pricing
41. Google: Google Drive. http://drive.google.com
42. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,

Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)
43. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote

storage systems. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, pp. 491–500. ACM (2011)

44. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side channels in cloud services: Dedu-
plication in cloud storage. IEEE Security & Privacy 8(6), 40–47 (2010)

https://www.cyphertite.com/faq.php
https://forums.dropbox.com/topic.php?id=36365
https://forums.dropbox.com/topic.php?id=36365
http://flud.org/wiki/Architecture
https://gnunet.org/
https://gnunet.org/
https://developers.google.com/appengine/docs/pricing
http://drive.google.com

538 M. Bellare and S. Keelveedhi

45. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

46. Killijian, M., Courtès, L., Powell, D., et al.: A survey of cooperative backup mech-
anisms (2006)

47. Marques, L., Costa, C.: Secure deduplication on mobile devices. In: Proceedings
of the 2011 Workshop on Open Source and Design of Communication, pp. 19–26.
ACM (2011)

48. Meister, D., Brinkmann, A.: Multi-level comparison of data deduplication in a
backup scenario. In: Proceedings of SYSTOR 2009: The Israeli Experimental Sys-
tems Conference, p. 8. ACM (2009)

49. Microsoft: Windows Azure. http://www.windowsazure.com/en-us/pricing/
details/storage/

50. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-
key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012)

51. NetApp: NetApp. http://www.netapp.com/us/products/platform-os/dedupe.aspx
52. Rahumed, A., Chen, H., Tang, Y., Lee, P., Lui, J.: A secure cloud backup system

with assured deletion and version control. In: 2011 40th International Conference
on Parallel Processing Workshops (ICPPW), pp. 160–167. IEEE (2011)

53. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

54. Storer, M., Greenan, K., Long, D., Miller, E.: Secure data deduplication. In: Pro-
ceedings of the 4th ACM International Workshop on Storage Security and Surviv-
ability, pp. 1–10. ACM (2008)

55. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

http://www.windowsazure.com/en-us/pricing/details/storage/
http://www.windowsazure.com/en-us/pricing/details/storage/
http://www.netapp.com/us/products/platform-os/dedupe.aspx

Faster ECC over F2521−1

Robert Granger1(B) and Michael Scott2

1 Laboratory for Cryptologic Algorithms, School of Computer and Communication
Sciences, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland

robbiegranger@gmail.com
2 CertiVox Labs, Dublin, Ireland

mike.scott@certivox.com

Abstract. In this paper we present a new multiplication algorithm for
residues modulo the Mersenne prime 2521 − 1. Using this approach, on
an Intel Haswell Core i7-4770, constant-time variable-base scalar multi-
plication on NIST’s (and SECG’s) curve P-521 requires 1,108,000 cycles,
while on the recently proposed Edwards curve E-521 it requires just
943,000 cycles. As a comparison, on the same architecture openSSL’s
ECDH speed test for curve P-521 requires 1,319,000 cycles. Further-
more, our code was written entirely in C and so is robust across different
platforms. The basic observation behind these speedups is that the form
of the modulus allows one to multiply residues with as few word-by-word
multiplications as is needed for squaring, while incurring very little over-
head from extra additions, in contrast to the usual Karatsuba methods.

Keywords: Elliptic curve cryptography · Performance · P-521 · E-521 ·
Edwards curves · Generalised repunit primes · Crandall numbers ·
Karatsuba

1 Introduction

Nearly all research on elliptic curve cryptography (ECC) focuses on improv-
ing efficiency, the bedrock of which is efficient field arithmetic. Amongst prime
fields the multiply-then-reduce paradigm suggests that arithmetic modulo the
Mersenne primes Mk = 2k − 1 should be optimal, since modular reduction can
be effected by a single modular addition, as is well known. Within this paradigm,
research on fast modular multiplication has naturally tended to focus on reduc-
ing the cost of the reduction step. This rationale led Solinas in 1999 to introduce
Generalised Mersenne Numbers (GMNs), five of which feature in the NIST (FIPS
186-2) [17] and SECG [18] standards for use in ECC, ranging in size from 192
to 521 bits, all with fast modular reduction. Solinas’ reduction method regards
both the output of an integer by integer residue multiplication and the mod-
ulus as polynomials in a base t = 2w, with w the word size of the underlying
architecture. Reducing the former polynomial modulo the latter then gives an
algebraic modular reduction that requires only a few modular additions and/or
subtractions and possibly a few final subtractions of the modulus.
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 539–553, 2015.
DOI: 10.1007/978-3-662-46447-2 24

540 R. Granger and M. Scott

However, more recent approaches to modular multiplication at bitlengths rel-
evant to ECC do not adhere to the multiply-then-reduce paradigm. In particular,
Chung and Hasan [10] proposed a slight modification of Solinas’ method, viewing
it as a two stage process, with residues also regarded as polynomials in base t.
For generic residue coefficients, the product of two residues modulo the modulus
polynomial is precomputed. Then in the first stage these coefficient expressions
are evaluated on the input coefficients; in the second stage the resulting coeffi-
cients are renormalised by expanding them in base t and performing the required
carries. This small shift in perspective somewhat interleaves the multiplication
and reduction steps, and allows one to use a smaller base than before. Using
a smaller base is useful since it firstly allows more primes to be represented,
and secondly it means that the coefficient evaluations need not overflow beyond
double precision on the underlying architecture. The latter property has been
applied numerous times [2,3,6,9,11,12,16,19] and is now standard.

Another example of when it is advantageous to allow the form of the mod-
ulus to influence how one multiplies residues is for the Mersenne numbers Mk,
for k → ∞. In particular, modular multiplication can be carried out using a
cyclic convolution effected by an irrational-base discrete weighted transform
(IBDWT) [16, §6], whereas for integer multiplication a linear convolution is
required, as each multiplicand must be padded with k zeros before a cyclic con-
volution of length 2k can be performed. Hence multiplication modulo a Mersenne
number is asymptotically approximately twice as fast as integer multiplication.

Unfortunately, Fast Fourier Transform techniques are not effective at ECC
bitlengths and hence can not be applied to M521. However, using a more natural
alternative generalisation of the Mersenne numbers than Solinas proposed –
already known in the literature as Generalised Repunit Primes (GRPs) – Granger
and Moss described a modular multiplication algorithm that is surprisingly fast,
being about three times faster than Montgomery multiplication for primes of
around 600 bits, on a 2.2GHz Intel Core 2 Duo [19]. GRPs are those of the form
∑p−1

i=0 ti for prime p and integer t > 1. Although they have many attractive
features, the only example in the standards is M521 with t = 2, but in this case
t is too small to take advantage of these features.

In this paper we show that one can use an analogue of the multiplication
technique of [19] to speed up multiplication modulo M521. For demonstration
purposes this operation – as well as constant-time variable-base scalar multiplica-
tion – has been implemented in C on a 3.4GHz Intel Haswell Core i7-4770, which
has yielded interesting speedups. In particular, on NIST’s (and SECG’s) curve
P-521 this requires 1,108,000 cycles, while on the recently proposed Edwards
curve E-521 it requires just 943,000 cycles. As a comparison, on the same archi-
tecture openSSL’s ECDH speed test for curve P-521 requires 1,319,000 cycles. We
note that the Edwards curve E-521 is a particularly attractive target for imple-
mentors; according to the safecurves website [5] this curve has been proposed
independently three times, by Bernstein-Lange, Hamburg, and Aranha et al. [1].
It addresses all of the recent concerns regarding the security of NIST curves (as
well as others), having been generated in a deterministic pseudorandom manner

Faster ECC over F2521−1 541

while being twist-secure, complete and permitting point representations which
are indistinguishable from uniform random strings [4].

Although not described as such, the technique of [19] which forms the basis
of our multiplication speedup can be viewed as a ‘twisted’ version of Karat-
suba’s trick [21], albeit one in which the form of the modulus lends itself very
favourably. Its effectiveness therefore runs counter to conventional wisdom which
posits that Karatsuba-like techniques are not efficient at bitlengths relevant to
ECC (at least on 64-bit architectures), due to the high number of extra additions
required. A recent proposal by Bernstein, Chuengsatiansup and Lange also uses
a variation of Karatsuba for fast multiplication modulo 2414 − 17 [3], with effi-
ciencies being extracted at a much lower level than we use in the present paper;
indeed two Karatsuba levels are used, as well as a clever method to reduce inputs
to the required multiplications, rather than outputs (cf. [3, Section 4.6]). Their
implementation on the 32-bit ARM Cortex-A8 also exploits vectorisation to great
effect. While not directly comparable to Bernstein et al.’s implementation, one
advantage of our implementation is that it is written entirely in C; it therefore
has robust performance characteristics across a range of 64 bit platforms. Having
said that, we naturally expect that further optimisations are possible, both on
the demonstration and similar architectures, and especially on ARM processors,
due to their higher multiplication-to-addition cost ratio. We therefore encour-
age others to explore these possibilities; our software is freely downloadable, see
Section 4.3.

To a lesser extent, our same basic observation may be applied to so-called
Crandall numbers, i.e., those of the form 2k − c for c usually much smaller than
the word size of the underlying architecture, and we provide two examples of
how this may be done.

The sequel is organised as follows. In Section 2 we explain our basic observa-
tion, while in Section 3 we show how it may be applied to M521, giving squaring
and inversion routines as well. In Section 4 we provide details of the target curves
and our implementation results, while in Section 5 we describe how our basic
observation may be applied to Crandall numbers. We conclude in Section 6.

2 The Basic Observation

The best way to describe our basic observation is via an example. For an integer
t let the modulus be t9 − 1 and let the base t expansion of residues x and y
be

∑8
i=0 xit

i and
∑8

i=0 yit
i respectively. For convenience, we also denote x by

x = [x0, . . . , x8] and y by y = [y0, . . . , y8].
The multiplication of x and y mod t9 − 1 is just their cyclic convolution; in

particular, if z ≡ xy (mod t9 − 1) then z = [z0, . . . , z8] =

[x0y0 + x1y8 + x2y7 + x3y6 + x4y5 + x5y4 + x6y3 + x7y2 + x8y1,

x0y1 + x1y0 + x2y8 + x3y7 + x4y6 + x5y5 + x6y4 + x7y3 + x8y2,

x0y2 + x1y1 + x2y0 + x3y8 + x4y7 + x5y6 + x6y5 + x7y4 + x8y3,

x0y3 + x1y2 + x2y1 + x3y0 + x4y8 + x5y7 + x6y6 + x7y5 + x8y4,

542 R. Granger and M. Scott

x0y4 + x1y3 + x2y2 + x3y1 + x4y0 + x5y8 + x6y7 + x7y6 + x8y5, (2.1)
x0y5 + x1y4 + x2y3 + x3y2 + x4y1 + x5y0 + x6y8 + x7y7 + x8y6,

x0y6 + x1y5 + x2y4 + x3y3 + x4y2 + x5y1 + x6y0 + x7y8 + x8y7,

x0y7 + x1y6 + x2y5 + x3y4 + x4y3 + x5y2 + x6y1 + x7y0 + x8y8,

x0y8 + x1y7 + x2y6 + x3y5 + x4y4 + x5y3 + x6y2 + x7y1 + x8y0].

The coefficients in this expression are about twice the size of t; we assume that t is
selected in such a way that there is no overflow beyond double the initial precision
of the coefficients. The arithmetic cost of a direct evaluation of each coefficient
is then nine coefficient multiplications and eight double length additions, which
we count as (and denote by) 9M + 16A. This gives a total cost of 81M + 144A.

For bitlengths relevant to ECC it is not beneficial to use asymptotically
efficient FFT-based (cyclic) convolutions, as suggested in [14] and as are used
for the Lucas-Lehmer primality test for Mersenne numbers, see [15,16]. However,
one can exploit some of the symmetry of (2.1) as follows. Let s =

∑8
i=0 xiyi.

Then z may also be expressed as

[s − (x1 − x8)(y1 − y8) − (x2 − x7)(y2 − y7) − (x3 − x6)(y3 − y6) − (x4 − x5)(y4 − y5),

s − (x1 − x0)(y1 − y0) − (x2 − x8)(y2 − y8) − (x3 − x7)(y3 − y7) − (x4 − x6)(y4 − y6),

s − (x5 − x6)(y5 − y6) − (x2 − x0)(y2 − y0) − (x3 − x8)(y3 − y8) − (x4 − x7)(y4 − y7),

s − (x5 − x7)(y5 − y7) − (x2 − x1)(y2 − y1) − (x3 − x0)(y3 − y0) − (x4 − x8)(y4 − y8),

s − (x5 − x8)(y5 − y8) − (x6 − x7)(y6 − y7) − (x3 − x1)(y3 − y1) − (x4 − x0)(y4 − y0),

s − (x5 − x0)(y5 − y0) − (x6 − x8)(y6 − y8) − (x3 − x2)(y3 − y2) − (x4 − x1)(y4 − y1),

s − (x5 − x1)(y5 − y1) − (x6 − x0)(y6 − y0) − (x7 − x8)(y7 − y8) − (x4 − x2)(y4 − y2),

s − (x5 − x2)(y5 − y2) − (x6 − x1)(y6 − y1) − (x7 − x0)(y7 − y0) − (x4 − x3)(y4 − y3),

s − (x5 − x3)(y5 − y3) − (x6 − x2)(y6 − y2) − (x7 − x1)(y7 − y1) − (x8 − x0)(y8 − y0)].

(2.2)

The cost of computing s is 9M + 16A. The subsequent cost of each coefficient
evaluation is 4M + 16A, since each term costs two single length additions and
one double length addition, and there are four terms. Hence the total cost is now
45M + 160A, giving a saving of 36M at the cost of 16A. This new expression
for z is of course very reminiscent of Karatsuba’s method [21]. Indeed, it only
(repeatedly) uses the identity xiyj + xjyi = xiyi + xjyj − (xi − xj)(yi − yj),
which is a slight twist of the more common version xiyj + xjyi = (xi + xj)(yi +
yj) − xiyi − xjyj . Using the ‘twisted’ version means that precisely the same s
term appears in each coefficient, thus saving several additions.

In general, for the modulus tn−1, evaluating the cyclic convolution using the
schoolbook method costs n2M +2n(n−1)A, whereas using our basic observation
it costs 1

2n(n + 1)M + 2(n2 − 1)A. This is the same number of multiplications
required for squaring with the schoolbook method; this is because the same sym-
metry is being exploited, however for squaring one can simply express xixj+xjxi

as 2xixj . One thus saves nearly half the number of multiplications while incur-
ring very little overhead from extra additions. Hence even at small bitlengths for
which the schoolbook method for integer multiplication is faster than Karatsuba
techniques, one expects this method to give a speedup for multiplication modulo

Faster ECC over F2521−1 543

tn −1. A related result which applies in the context of integer multiplication can
be found in [23].

Note that if one instead uses the modulus p =
∑n−1

i=0 ti then s need not
even be computed, since the first term of the i-th coefficient contributes sti,
which altogether gives s

∑n−1
i=0 ti ≡ 0 (mod p). This was the rationale behind

the proposal of Granger and Moss to use GRPs for ECC [19].

3 Application to M521 = 2521 − 1

In this section we show how our basic observation may be applied to the Mersenne
prime M521 = 2521−1. For the interested reader, we point out that Crandall and
Pomerance used this prime to demonstrate Crandall’s asymptotically fast algo-
rithm for multiplication modulo Mersenne numbers which uses an IBDWT [13,
Alg. 9.5.19]. This algorithm provides a method to obtain integer coefficients
when mimicking an irrational-base expansion of residues and of course exploits
the cyclic convolution far more cleverly than we do here, but it is not efficient
for such small bitlengths.

In order to use the basic observation, first observe that one should not set
t = 2 and n = 521, as this would involve far too much redundancy and too many
multiplications. On a 64-bit architecture residues mod p require �521/64� = 9
words, so what one would like to do is set n = 9 and use the irrational base
t = 2521/9 while using integer coefficients only, either à la Crandall or à la
Bernstein’s method for performing arithmetic modulo 2255 − 19 [2], which uses
the irrational base 225.5. It turns out that for our prime of interest, the analogue
of Bernstein’s method is nothing but operand scaling [24,25]. Since this is easier
to explain, we do so here.

Observe that 521 ≡ 8 (mod 9). Hence one can work modulo 2p = t9 − 2
instead of p, with t = 258. This representation was used by Langley in OpenSSL
1.0.0e in September 2011, which greatly improved efficiency relative to the base
264 approach1. The multiplication formulae are now slightly different; if z ≡ xy
(mod t9 − 2) then z = [z0, . . . , z8] =

[x0y0+2x1y8+2x2y7+2x3y6+2x4y5+2x5y4+2x6y3+2x7y2+2x8y1,

x0y1+ x1y0+2x2y8+2x3y7+2x4y6+2x5y5+2x6y4+2x7y3+2x8y2,

x0y2+ x1y1+ x2y0+2x3y8+2x4y7+2x5y6+2x6y5+2x7y4+2x8y3,

x0y3+ x1y2+ x2y1+ x3y0+2x4y8+2x5y7+2x6y6+2x7y5+2x8y4,

x0y4+ x1y3+ x2y2+ x3y1+ x4y0+2x5y8+2x6y7+2x7y6+2x8y5, (3.1)
x0y5+ x1y4+ x2y3+ x3y2+ x4y1+ x5y0+2x6y8+2x7y7+2x8y6,

x0y6+ x1y5+ x2y4+ x3y3+ x4y2+ x5y1+ x6y0+2x7y8+2x8y7,

x0y7+ x1y6+ x2y5+ x3y4+ x4y3+ x5y2+ x6y1+ x7y0+2x8y8,

x0y8+ x1y7+ x2y6+ x3y5+ x4y4+ x5y3+ x6y2+ x7y1+ x8y0].
1 We independently implemented our multiplication for curve P-521 using this repre-

sentation in the summer of 2011, but have decided to publish only now due to the
recent interest in alternative elliptic curves over M521.

544 R. Granger and M. Scott

Algorithm 1. MUL

INPUT: x = [x0, . . . , x8],y = [y0, . . . , y8] ∈ [−259, 259 − 1] × [0, 258 − 1]8

OUTPUT: z ∈ [−259, 259 − 1] × [0, 258 − 1]8 where z ≡ x · y (mod t9 − 2)

1. t0 ← x0y0 + x1y1 + x2y2 + x3y3 + x4y4
2. t5 ← x5y5, t6 ← x6y6, t7 ← x7y7, t8 ← x8y8
3. t1 ← t5 + t6 + t7 + t8
4. t2 ← t0 + t1 − (x0 − x8)(y0 − y8) − (x1 − x7)(y1 − y7)

−(x2 − x6)(y2 − y6) − (x3 − x5)(y3 − y5)
5. t0 ← t0 + 4t1
6. t1 ← t2 mod t
7. t3 ← t0 − (x4 − 2x5)(y4 − 2y5) − (x3 − 2x6)(y3 − 2y6)

−(x2 − 2x7)(y2 − 2y7) − (x1 − 2x8)(y1 − 2y8) + 2(t2 >> 58)
8. z0 ← t3 mod t
9. t0 ← t0 − 2t5
10. t2 ← t0 − (x0 − x1)(y0 − y1) − (x4 − 2x6)(y4 − 2y6)

−(x2 − 2x8)(y2 − 2y8) − (x3 − 2x7)(y3 − 2y7) + (t3 >> 58)
11. z1 ← t2 mod t
12. t0 ← t0 − t5
13. t3 ← t0 − (x0 − x2)(y0 − y2) − (x5 − 2x6)(y5 − 2y6)

−(x3 − 2x8)(y3 − 2y8) − (x4 − 2x7)(y4 − 2y7) + (t2 >> 58)
14. z2 ← t3 mod t
15. t0 ← t0 − 2t6
16. t2 ← t0 − (x0 − x3)(y0 − y3) − (x1 − x2)(y1 − y2)

−(x4 − 2x8)(y4 − 2y8) − (x5 − 2x7)(y5 − 2y7) + (t3 >> 58)
17. z3 ← t2 mod t
18. t0 ← t0 − t6
19. t3 ← t0 − (x0 − x4)(y0 − y4) − (x1 − x3)(y1 − y3)

−(x5 − 2x8)(y5 − 2y8) − (x6 − 2x7)(y6 − 2y7) + (t2 >> 58)
20. z4 ← t3 mod t
21. t0 ← t0 − 2t7
22. t2 ← t0 − (x0 − x5)(y0 − y5) − (x1 − x4)(y1 − y4)

−(x2 − x3)(y2 − y3) − (x6 − 2x8)(y6 − 2y8) + (t3 >> 58)
23. z5 ← t2 mod t
24. t0 ← t0 − t7
25. t3 ← t0 − (x0 − x6)(y0 − y6) − (x1 − x5)(y1 − y5)

−(x2 − x4)(y2 − y4) − (x7 − 2x8)(y7 − 2y8) + (t2 >> 58)
26. z6 ← t3 mod t
27. t0 ← t0 − 2t8
28. t2 ← t0 − (x0 − x7)(y0 − y7) − (x1 − x6)(y1 − y6)

−(x2 − x5)(y2 − y5) − (x3 − x4)(y3 − y4) + (t3 >> 58)
29. z7 ← t2 mod t
30. t3 ← t1 + (t2 >> 58)
31. z8 ← t3 mod t
32. z0 ← z0 + 2(t3 >> 58)
33. Return z

Faster ECC over F2521−1 545

Algorithm 2. SQR

INPUT: x = [x0, . . . , x8] ∈ [−259, 259 − 1] × [0, 258 − 1]8

OUTPUT: z ∈ [−259, 259 − 1] × [0, 258 − 1]8 where z ≡ x2 (mod t9 − 2)

1. t1 = 2(x0x8 + x1x7 + x2x6 + x3x5) + x2
4

2. t0 = t1 mod t
3. t2 = 4(x1x8 + x2x7 + x3x6 + x4x5) + x2

0 + 2(t1 >> 58)
4. z0 = t2 mod t
5. t1 = 4(x2x8 + x3x7 + x4x6) + 2(x0x1 + x2

5) + (t2 >> 58)
6. z1 = t1 mod t
7. t2 = 4(x3x8 + x4x7 + x5x6) + 2x0x2 + x2

1 + (t1 >> 58)
8. z2 = t2 mod t
9. t1 = 4(x4x8 + x5x7) + 2(x0x3 + x1x2 + x2

6) + (t2 >> 58)
10. z3 = t1 mod t
11. t2 = 4(x5x8 + x6x7) + 2(x0x4 + x1x3) + x2

2 + (t1 >> 58)
12. z4 = t2 mod t
13. t1 = 4x6x8 + 2(x0x5 + x1x4 + x2x3 + x2

7) + (t2 >> 58)
14. z5 = t1 mod t
15. t2 = 4x7x8 + 2(x0x6 + x1x5 + x2x4) + x2

3 + (t1 >> 58)
16. z6 = t2 mod t
17. t1 = 2(x0x7 + x1x6 + x2x5 + x3x4 + x2

8) + (t2 >> 58)
18. z7 = t1 mod t
19. t2 = t0 + (t1 >> 58)
20. z8 = t2 mod t
21. z0 = z0 + 2(t2 >> 58)
22. Return z

There are several possible approaches to applying the basic observation to (3.1),
all of which incur a slight overhead relative to (2.2) due to the presence of the fac-
tors of 2. For the target architecture, the most efficient one we found is presented
in Algorithm 1, which computes and reduces each component of z sequentially. We
first detail how we represent residues.

Residue Representation: It is a simple matter to represent a mod p residue
x in the form x = [x0, . . . , x8] by taking the base t = 258 expansion. Since we
wish to allow negative coefficients, we use signed integers. Due to our choice
of reduction method, we stipulate that the first component x0 in our reduced
format is in [−259, 259 − 1] while the remaining components are in [0, 258 − 1],
although these bounds are not enforced except for the output coordinates of
point addition and doubling.

Multiplication and Squaring: Algorithms 1 and 2 detail pseudocode for our
multiplication and squaring routines respectively. Observe that in both algo-
rithms the wrap-around from z8 to z0 is computed twice. This is to ensure that
there is at most one bit of overflow beyond 58 bits for z0. One could instead

546 R. Granger and M. Scott

rotate the order in which terms are computed so that the term that is computed
twice is (ti >> 58) rather than 2(ti >> 58), which would save one shift oper-
ation. However, we chose to keep the components z1, . . . , z8 ≥ 0 with only z0
possibly being negative, since this allows one to check whether a given residue
is zero or one without mapping back to the integer residue representation.

Addition, subtraction, inversion and multiplication by small constants:
Addition and subtraction are performed component-wise and need not be reduced
if the result is used as input to a multiplication or squaring. Constant-time inver-
sion is performed by powering by M521 − 2 = 2521 − 3. Let x be the element to
be inverted and denote x2n−1 by αn, so α1 = x. Then the inverse of x can be
computed at a cost of 520S + 13M , as follows:

α2 ← α2
1 · α1

α3 ← α2
2 · α1

α6 ← α23

3 · α3

α7 ← α2
6 · α1

α8 ← α2
7 · α1

α16 ← α28

8 · α8

α32 ← α216

16 · α16

α64 ← α232

32 · α32

α128 ← α264

64 · α64

α256 ← α2128

128 · α128

α512 ← α2256

256 · α256

α519 ← α27

512 · α7

x2521−3 ← α22

519 · α1

This inversion technique is an analogue of the one used by Bernstein for
curve25519 [2]; it may be possible to reduce the number of multiplications
slightly, however this would only have a marginal impact on the efficiency. One
could alternatively use Bos’ technique [7], but since inversion is required only
once during a point multiplication we did not explore this option on the present
architecture.

Multiplication by small constants (such as by d for Edwards curves, see
Section 4.2) are computed per component and are reduced in-place. We also
employ a short coefficient reduction (SCR) routine which takes as input a residue
x = [x0, . . . , x8] ∈ [−263, 263 − 1] × [−262, 262 − 1]8 and outputs one in reduced
form. For both multiplication by small constants and SCR, the wrap-around
from z8 to z0 is computed twice, as with multiplication and squaring.

curve25519

Faster ECC over F2521−1 547

4 Curves and Implementation Results

In this section we detail our target curves and implementation results for constant-
time variable-base scalar multiplication.

4.1 NIST Curve P-521

The Weierstrass form NIST curve P-521 as standardised in [17,18] has the form
y2 = x3 − 3x + b, with

b = 1093849038073734274511112390766805569936207598951683748994586394495953116150735

016013708737573759623248592132296706313309438452531591012912142327488478985984,

and group order
rP = 6864797660130609714981900799081393217269435300143305409394463459185543183397655

394245057746333217197532963996371363321113864768612440380340372808892707005449.

Using Jacobian projective coordinates, for P1 = (X1, Y1, Z1) the point 2P1 =
(X3, Y3, Z3) is computed as follows:

R0 = Z2
1 , R1 = Y 2

1 , R2 = X1 · R1, R3 = 3(X1 + R0)(X1 − R0),
X3 = R2

3 − 8R2, Z3 = (Y1 + Z1)2 − R0 − R1, Y3 = R3 · (4R2 − X3) − 8R2
1.

For a point P2 = (X2, Y2, 1) written in affine form which is not equal to P1, let
P3 = (X3, Y3, Z3) = P1 + P2. Then P3 is computed as follows:

R0 = Z2
1 , R1 = X2 · R0, R2 = Y2 · Z1 · R0, R3 = R1 − X1, R4 = R2

3

R5 = 4R4, R6 = R3 · R5, R7 = 2(R2 − Y1), R8 = X1 · R5

X3 = R2
7 − R6 − 2R8, Y3 = R7(R8 − X3) − 2Y1R6, Z3 = (Z1 + R3)

2 − R0 − R4.

For efficiency we fused several of the required arithmetic operations. As these
are standard techniques we do not detail them here, but they may be found in
our freely downloadable software.

In order to achieve constant-time variable-base point multiplication, we used
Algorithm 1 of [8] with fixed windows of width 5. Cache safety comes at a
significant cost; the whole pre-computed table must be processed in order to
silently (in the side-channel sense) extract the correct entry without indicating
via cache activity which element has been accessed. This militates against larger
tables, and also against point representations with multiple coordinates. The
method we used is closely related to that described by Käsper [22].

Note that since the cost of inversion is about 365M (as may be deduced
from Table 1 and the formula I = 520S + 13M), one should not convert all
the precomputed points to affine coordinates as this only saves 5M per addition,
which is unlikely to outweigh the cost of doing so. One method of precomputation
which uses Chudnovsky coordinates is detailed in Algorithm 4 of [8]; we instead
use Jacobian projective coordinates as above. For a scalar in [0, . . . , 2521 − 1], in
terms of multiplications and squarings only, the cost for a constant-time variable-
base scalar multiplication is: 168M + 80S for precomputation, plus 2704M +
3120S for the windowing plus 16M +521S for the final map to affine coordinates,
giving a total cost of 2888M + 3721S.

548 R. Granger and M. Scott

4.2 Edwards Curve E-521

The Edwards curve E-521 is defined by x2 + y2 = 1− 376014x2y2 and has group
order 4rE where

rE = 1716199415032652428745475199770348304317358825035826352348615864796385795849413

675475876651663657849636693659065234142604319282948702542317993421293670108523.

Point addition, doubling and constant-time point multiplication proceed
using exactly the same coordinate systems and formulae described in [3] for
curve41417, the only differences being that we use fixed windows of width 4
rather than 5 and multipliers of bitlength 519 rather than 414. We therefore do
not reproduce these here and refer the reader to Section 3 and Appendix A of [3]
for the relevant details.

For a scalar in [0, . . . , 2519 − 1], the cost for a constant-time variable-base
scalar multiplication is: 39M +15S for precomputation, plus 2730M +2080S for
the windowing plus 15M + 520S for the final map to affine coordinates, giving
a total cost of 2784M + 2615S.

4.3 Timings

We implemented multiplication and squaring as per Algorithms 1 and 2, as well
as constant-time variable-base scalar multiplication for curves P-521 and E-5212,
as per Sections 4.1 and 4.2. Our results are detailed in Table 1.

Table 1. Cycle counts for openSSL version 1.0.2-beta2, P-521 and E-521 variable-base
scalar multiplication on a 3.4GHz Intel Haswell Core i7-4770 and compiled with gcc
4.7 on Ubuntu 12.04. The counts are given to the nearest thousand and were obtained
by taking the minimum over 103 data points, where each data point was the average of
104 point multiplications. Cycle counts for multiplication and squaring modulo M521

are also included and were the minimum of 106 such operations.

openSSL P-521 E-521 M S

1,319,000 1,108,000 943,000 155 105

Regarding comparisons with previous benchmarks, there are two obvious
candidates. For curve P-521, one can test Langley’s openSSL implementation
(which first featured in version 1.0.0e) using the command openssl speed ecdh.
On the same architecture, version 1.0.2-beta2 reports 2578.1 operations per sec-
ond, which implies a count of approximately 1,319,000 cycles per scalar mul-
tiplication. We timed the actual M,S,DBL and ADD functions using several
different compilers and options, and found the code to be rather fragile, in that
nearly all of them reported a two-fold or more slow down relative to our cycle
2 For our code see indigo.ie/∼mscott/ws521.cpp and indigo.ie/∼mscott/ed521.cpp

respectively.

curve41417
openSSL
openssl
speed
ecdh
indigo.ie/~mscott/ws521.cpp
indigo.ie/~mscott/ed521.cpp

Faster ECC over F2521−1 549

counts of 155, 105, 1175 and 1728 for the above operations respectively. However,
using gcc 4.7 we obtained cycle counts of 173, 112, 1312 and 2010 respectively.
For a scalar multiplication this implies that our code requires about 88% to 90%
of the time required by Langley’s in the worst case and less than 50% in the
best case.

For E-521, the closest benchmark in the literature is due to Bos et al. [8],
which reports a cycle count of 1,552,000 for a constant-time variable-base scalar
multiplication on the twisted Edwards curve ed-521-mers: −x2+y2 = 1+dx2y2

with −1/(d+1) = 550440, on a 3.4GHz Intel Core i7-2600 Sandy Bridge proces-
sor (albeit with Intel’s Turbo Boost and Hyper-threading disabled). This curve
form allows a saving of 1M per point addition relative to ordinary Edwards
curves, but one can not apply an Fp-isomorphism from E-521 to a curve of this
form since −1 is not a square modulo M521. However, one possibility for improv-
ing our cycle count would be to map to the 4-isogenous curve with equation
−x2 + y2 = 1 − 376015x2y2, as proposed by Hamburg [20], which then allows
1M per point addition to be saved. Our implementation therefore requires only
about 60% of the time required by that of Bos et al. Apart from the exploita-
tion of our basic observation, much of this difference in performance can be
explained by the use of base 258 arithmetic, rather than base 264. Of course,
our basic observation would naturally speed up operations on the two curves
ed-521-mers and w-521-mers in [8] as well.

5 Application to Crandall Numbers

Let the modulus be tn − c and let residues x and y be represented in base t
as

∑n−1
i=0 xit

i and
∑n−1

i=0 yit
i respectively. The multiplication of x and y modulo

tn − c is z =
∑n−1

i=0 zit
i where

zi =
n−1∑

j=0

d(i, j)x〈i−j〉 y〈j〉,

where the subscripts of the coefficients of x〈i−j〉 and y〈j〉 are taken modulo n and

d(i, j) =

{

1 if 〈i − j〉 + 〈j〉 < n

c otherwise.
(5.1)

In particular, by symmetry (or by (5.1)) the terms x〈i−j〉 y〈j〉 and x〈j〉 y〈i−j〉
occurring in the expression for zi both have the same d(i, j). If d(i, j) = 1 then
the expression x〈i−j〉 y〈j〉 + x〈j〉 y〈i−j〉 may be rewritten just as before as

x〈i−j〉 y〈i−j〉 + x〈j〉 y〈j〉 − (x〈i−j〉 − x〈j〉) (y〈i−j〉 − y〈j〉).

Similarly, the expression c (x〈i−j〉 y〈j〉 +x〈j〉 y〈i−j〉) may of course be rewritten as

c (x〈i−j〉 y〈i−j〉 + x〈j〉 y〈j〉 − (x〈i−j〉 − x〈j〉) (y〈i−j〉 − y〈j〉)),

or even as

550 R. Granger and M. Scott

x〈i−j〉 y〈i−j〉 + c2 x〈j〉 y〈j〉 − (x〈i−j〉 − c x〈j〉) (y〈i−j〉 − c y〈j〉),

as was used in Algorithm 1 for M521. Therefore, by precomputing the terms
xiyi for i = 0, . . . , n − 1, the paired terms in the expression for each zi may be
computed as the products above, which again nearly halves the total number
of coefficient multiplications required, at the expense of a few additions and
multiplications by c.

5.1 Two Examples

In order to use the above observations, it will often be necessary to first multiply
a given Crandall number p = 2k−c by 2i so that k+i is a multiple of a suitable n,
such that all coefficient arithmetic does not overflow beyond double precision. In
this case the base t = 2(k+i)/n is a power of two and coefficient renormalisation
– which ensures I/O stabilty – can be effected via simple operations (including
shifts) only. This will be clear from the following two examples.

5.2 Application to p = 2221 − 3

This prime was proposed in [1]. For use on a 64-bit architecture we choose
t = 256 and use the scaled modulus 8p = t4 − 24. The multiplication algorithm
is as follows.

Algorithm 3. MUL2213

INPUT: x = [x0, . . . , x3],y = [y0, . . . , y3] ∈ [−257, 257 − 1] × [0, 256 − 1]3

OUTPUT: z ∈ [−257, 257 − 1] × [0, 256 − 1]3 where z ≡ x · y (mod t4 − 24)

1. a0 ← x0y0, a1 ← x1y1, a2 ← x2y2, a3 ← x3y3, b2 ← a3 + a2, b1 ← b2 + a1, b0 ← b1 + a0
2. t0 ← b0 − (x0 − x3)(y0 − y3) − (x1 − x2)(y1 − y2)
3. z3 ← t0 mod t
4. t1 ← a0 + 24(b1 − (x1 − x3)(y1 − y3) + (t0 >> 56))
5. z0 ← t1 mod t
6. a0 ← a0 + a1
7. t0 ← a0 − (x0 − x1)(y0 − y1) + 24(b3 − (x2 − x3)(y2 − y3)) + (t1 >> 56)
8. z1 ← t0 mod t
9. t1 ← a0 + a2 + 24a3 − (x0 − x2)(y0 − y2) + (t0 >> 56)
10. z2 ← t1 mod t
11. t0 ← z3 + (t1 >> 56)
12. z3 ← t0 mod t
13. z0 ← z0 + 24(t0 >> 56)
14. Return z

Note that as with Algorithm 1 we compute the wrap around from the highest
coefficient to the lowest twice, in order to maintain I/O stability for the chosen
reduced format for residues.

5.3 Application to p = 2255 − 19

This prime was proposed in [2] and later developed with base t = 251 arith-
metic [6], which we use here. We hence use the modulus p = t5 − 19. The
multiplication algorithm is as follows.

Faster ECC over F2521−1 551

Algorithm 4. MUL25519

INPUT: x = [x0, . . . , x4],y = [y0, . . . , y4] ∈ [−252, 252 − 1] × [0, 251 − 1]4

OUTPUT: z ∈ [−252, 252 − 1] × [0, 251 − 1]4 where z ≡ x · y (mod t5 − 19)

1. a0 ← x0y0, a1 ← x1y1, a2 ← x2y2, a3 ← x3y3, a4 ← x4y4
b3 ← a4 + a3, b2 ← a3 + a2, b1 ← b2 + a1, b0 ← b1 + a0

2. t0 ← b0 − (x0 − x4)(y0 − y4) − (x1 − x3)(y1 − y3)
3. z4 ← t0 mod t
4. t1 ← a0 + 19(b1 − (x1 − x4)(y1 − y4) − (x2 − x3)(y2 − y3) + (t0 >> 51))
5. z0 ← t1 mod t
6. a0 ← a0 + a1

7. t0 ← a0 − (x0 − x1)(y0 − y1) + 19(b2 − (x2 − x4)(y2 − y4)) + (t1 >> 51)
8. z1 ← t0 mod t
9. a0 ← a0 + a2

10. t1 ← a0 − (x0 − x2)(y0 − y2) + 19(b3 − (x3 − x4)(y3 − y4)) + (t0 >> 51)
11. z2 ← t1 mod t
12. t0 ← a0 + a3 − (x0 − x3)(y0 − y3) − (x1 − x2)(y1 − x2) + 19a4 + (t1 >> 51)
13. z3 ← t0 mod t
14. t1 ← z4 + (t0 >> 51)
15. z4 ← t1 mod t
16. z0 ← z0 + 19(t1 >> 51)
17. Return z

Note that the multiplications by 24 in Algorithm 3 and by 19 in Algorithm 4
are generally on double precision integers, so are sometimes more costly than
the usual evaluation of coefficients in which one can sometimes achieve a saving
by first multiplying one the inputs to a multiplication by c. Since there are also
more additions required than for Algorithm 1’s analogue of the basic observation,
these formulae may only be interesting when optimised, or when implemented
on ARM processors, for instance. As our focus is primarily on M521, P-521 and
E-521, we leave such options as open research.

6 Conclusion

We have proposed a very simple way to improve multiplication efficiency over
the prime field F2521−1, which requires as few word-by-word multiplications as
is needed for squaring, while incurring very little overhead from extra additions.
With optimised code our timings may be reduced even further, with potentially
interesting results on ARM processors, for which the multiplication-to-addition
cost ratio is higher than on the Haswell and for which there are numerous similar
methods to represent and multiply residues using 32 bit words. It remains to be
seen whether the same basic observation improves the efficiency of multiplication
modulo Crandall numbers as well.

Acknowledgments. We thank Dan Bernstein for answering our questions regarding
his irrational base modular multiplication method.

552 R. Granger and M. Scott

References

1. Aranha, D.F., Barreto, P.S.L.M., Pereira, G.C.C.F., Ricardini, J.: A note on high-
security general-purpose elliptic curves (2013). http://eprint.iacr.org/2013/647

2. Bernstein, D.J.: Curve25519: new diffie-hellman speed records. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Heidelberg (2006)

3. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Curve41417: Karatsuba revisited.
Cryptology ePrint Archive, Report 2014/526 (2014). http://eprint.iacr.org/

4. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS2013, pp. 967–980.
Berlin, Germany, 4–8 November 2013

5. Bernstein, D.J., Lange, T.: Safecurves: choosing safe curves for elliptic-curve
cryptography (2014). http://safecurves.cr.yp.to. Accessed 11 September 2014

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012)

7. Bos, J.W.: Constant time modular inversion. Journal of Cryptographic Engineer-
ing, 1–7 (2014)

8. Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for
cryptography: an efficiency and security analysis. Cryptology ePrint Archive,
Report 2014/130 (2014). http://eprint.iacr.org/

9. Bos, J.W., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Efficient simd
arithmetic modulo a mersenne number. In: Proceedings of the 2011 IEEE 20th
Symposium on Computer Arithmetic, ARITH 2011, pp. 213–221. IEEE Computer
Society, Washington, DC, USA (2011)

10. Chung, J., Hasan, A.: More generalized mersenne numbers. In: Matsui, M.,
Zuccherato, R.J. (eds.) SAC. LNCS, vol. 3006, pp. 335–347. Springer, Heidelberg
(2004)

11. Chung, J., Hasan, M.A.: Montgomery reduction algorithm for modular multiplica-
tion using low-weight polynomial form integers. In: ARITH 18, pp. 230–239 (2007)

12. Chung, J., Hasan, M.A.: Low-weight polynomial form integers for efficient modular
multiplication. IEEE Transactions on Computers 56(1), 44–57 (Jan 2007)

13. Crandall, R., Pomerance, C.B.: Prime Numbers: A Computational Perspective.
Lecture notes in statistics. Springer, Heidelberg (2006)

14. Crandall, R.E.: Method and apparatus for public key exchange in a cryptographic
system. US Patent 5,159,632, 27 October 1992

15. Crandall, R.E.: Topics in Advanced Scientific Computation. Electronic Library of
Science. Springer-Telos, Heidelberg (1996)

16. Crandall, R., Fagin, B.: Discrete weighted transforms and large-integer arithmetic.
Math. Comput. 62(205), 305–324 (1994)

17. US Department of Commerce/N.I.S.T. 2000. Federal Information Processing Stan-
dards Publication 186–2. Fips 186–2. digital signature standard

18. Standards for Efficient Cryptography Group. Recommended elliptic curve domain
parameters (2000). www.secg.org/collateral/sec2.pdf

19. Granger, R., Moss, A.: Generalised Mersenne numbers revisited. Math. Comp.
82(284), 2389–2420 (2013)

20. Hamburg, M.: Twisting edwards curves with isogenies. http://eprint.iacr.org/
2014/027

http://eprint.iacr.org/2013/647
http://eprint.iacr.org/
http://safecurves.cr.yp.to
http://eprint.iacr.org/
www.secg.org/collateral/sec2.pdf
http://eprint.iacr.org/2014/027
http://eprint.iacr.org/2014/027

Faster ECC over F2521−1 553

21. Karatsuba, A., Ofman, Y.: Multiplication of Multidigit Numbers on Automata.
Soviet Physics Doklady 7, 595–596 (January 1963)

22. Käsper, E.: Fast elliptic curve cryptography in openSSL. In: Danezis, G., Dietrich,
S., Sako, K. (eds.) FC 2011 Workshops 2011. LNCS, vol. 7126, pp. 27–39. Springer,
Heidelberg (2012)

23. Khachatrian, G.H., Kuregian, M.K., Ispiryan, K.R., Massey, J.L.: Fast multiplica-
tion of integers for public-key applications. In: Vaudenay, S., Youssef, A.M. (eds.)
SAC 2001. LNCS, vol. 2259, p. 245. Springer, Heidelberg (2001)

24. Öztürk, E., Sunar, B., Savaş, E.: Low-power elliptic curve cryptography using
scaled modular arithmetic. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004.
LNCS, vol. 3156, pp. 92–106. Springer, Heidelberg (2004)

25. Walter, C.D.: Faster modular multiplication by operand scaling. In: Feigenbaum,
J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 313–323. Springer, Heidelberg (1992)

Cryptography with Imperfect Keys

Continuous Non-malleable Key Derivation
and Its Application to Related-Key Security

Baodong Qin1,2, Shengli Liu1(B), Tsz Hon Yuen3, Robert H. Deng4,
and Kefei Chen5

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{qinbaodong,slliu}@sjtu.edu.cn
2 Southwest University of Science and Technology, Mianyang 621010, China

3 Huawei, Singapore
Yuen.Tsz.Hon@huawei.com

4 School of Information Systems, Singapore Management University, Singapore
178902, Singapore

robertdeng@smu.edu.sg
5 School of Science, Hangzhou Normal University, Hangzhou 310036, China

kfchen@sjtu.edu.cn

Abstract. Related-Key Attacks (RKAs) allow an adversary to observe
the outcomes of a cryptographic primitive under not only its original
secret key e.g., s, but also a sequence of modified keys φ(s), where φ
is specified by the adversary from a class Φ of so-called Related-Key
Derivation (RKD) functions. This paper extends the notion of non-
malleable Key Derivation Functions (nm-KDFs), introduced by Faust et
al. (EUROCRYPT’14), to continuous nm-KDFs. Continuous nm-KDFs
have the ability to protect against any a-priori unbounded number of
RKA queries, instead of just a single time tampering attack as in the
definition of nm-KDFs. Informally, our continuous non-malleability cap-
tures the scenario where the adversary can tamper with the original
secret key repeatedly and adaptively. We present a novel construction
of continuous nm-KDF for any polynomials of bounded degree over a
finite field. Essentially, our result can be extended to richer RKD func-
tion classes possessing properties of high output entropy and input-output
collision resistance. The technical tool employed in the construction is
the one-time lossy filter (Qin et al. ASIACRYPT’13) which can be effi-
ciently obtained under standard assumptions, e.g., DDH and DCR. We
propose a framework for constructing Φ-RKA-secure IBE, PKE and sig-
nature schemes, using a continuous nm-KDF for the same Φ-class of
RKD functions. Applying our construction of continuous nm-KDF to
this framework, we obtain the first RKA-secure IBE, PKE and signature
schemes for a class of polynomial RKD functions of bounded degree under
standard assumptions. While previous constructions for the same class
of RKD functions all rely on non-standard assumptions, e.g., d-extended
DBDH assumption.

Keywords: Related-key attacks · Non-malleable key derivation ·
One-time lossy filter

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 557–578, 2015.
DOI: 10.1007/978-3-662-46447-2 25

558 B. Qin et al.

1 Introduction

Traditionally, cryptographic security notions assume that an adversary can only
observe the input/output behavior of the system and thus has only “black-box”
access to the system. In a real life, however, it may be far from this case. Recent
research [8] has shown that an adversary may learn some information about the
secret key/internal state through physical side channels (e.g., timing [21] and
power consumption [22]) and/or influence the way that the secret key/internal
state is used via physical access to a hardware device (e.g., heating it or cutting
wires to inject faults [7,8]). These two types of attacks are usually distinguished
as “leakage” and “tampering” attacks respectively. In this paper, we consider
how to design algorithms enabling devices resilient to tampering attacks when
the devices are “leakage-proof” but not “tamper-proof”. Specifically, we focus
on tampering attacks on the key stored in a cryptographic hardware device.
The key might be a signing key of a certificate authority or a decryption key
of an encryption cryptosystem. Such tampering attacks are firstly formalized
by Bellare and Kohno [5], as Related-Key Attacks (RKAs) in the context of
pseudorandom functions/permutations.

Model of RKA Security. Following [4], we view a system as a composition
of algorithms (code), public parameters, public keys (if any) and secret keys.
Among these components, public parameters are system-wide, meaning that they
are generated beforehand and independent of users and hence their public/secret
keys. In an implementation, these parameters are part of the algorithm code and
stored in a tamper-proof hardware device. Hence, only the public and secret keys
are subject to RKAs.

Suppose that CSpp(s, x) is a cryptographic system parameterized by a public
parameter pp. It admits a secret key s and a message x as input. For exam-
ple, if CS has a decryption functionality, then s is a decryption key and x is a
ciphertext. The RKA security model for CS is formalized by a class Φ of admis-
sible key transformations (also named Related-Key Deriving (RKD) functions).
An RKA adversary has the ability to repeatedly and adaptively choose x and
a (tampering) function φ ∈ Φ, and then observe the outcome of CSpp(φ(s), x)
under this modified key φ(s). If the system is still secure, we say CS is Φ-RKA
secure. Unless stated otherwise, in this paper, the RKA-security model allows
an adversary to ask for a-priori unbounded number of RKD queries.

1.1 Motivation

It is not an easy task to design a provably secure scheme under RKAs for
an especially large non-trivial class of RKD functions. To date, there are few
constructions of RKA-secure primitives. The state-of-the-art RKA-security pro-
tects against a-priori unbounded number of queries for polynomials of bounded
degree. However, all of them rely on non-standard assumptions, e.g., the d-
extended DBDH (decisional bilinear Diffie-Hellman) assumption in the RKA-
secure IBE [6] (and the degree of RKD polynomials is limited to d). There are

Continuous Non-malleable Key Derivation and Its Application 559

generic approaches that use non-malleable codes [15,17] and non-malleable key
derivation functions [17] to protect against tampering attacks even for function
class richer than the polynomial one. However, both of them only consider single
time tampering attack, not capturing the scenario of related-key attacks in which
the adversary can continuously tamper with the original secret key. Indeed, as
far as we know, no formal result shows how to achieve RKA security using these
two primitives. Recently, Faust et al. [16] proposed an extension of the stan-
dard non-malleable codes, namely continuous non-malleable codes which cover
the case that allows multiple tampering queries. However, this model relies on
self-destruct mechanism, in which tampering queries must be terminated if an
invalid code is detected (i.e., the decoding returns ⊥). Moreover, their continuous
non-malleable codes are realized in the split-state model [14] where an encoding
is divided into two parts and the tampering must be applied to the two parts
independently.

A natural question is whether we can define a stronger security model (than
that of [16]) for continuous non-malleable codes or KDFs that can be used
to achieve RKA security? Furthermore, can we achieve such continuous non-
malleability for larger class of RKD functions under standard assumptions? In
this paper, we provide affirmative answers to the two questions in the setting of
key derivation functions.

1.2 Continuous Non-malleable KDFs

Usually, a key derivation function KDF is equipped with another two probabilistic
polynomial-time (PPT) algorithms: KDF.Sys and KDF.Sample. The former takes
as input a security parameter 1κ and outputs a system parameter pp; the later
takes as input pp, and outputs a derivation key s and a public key π. The key
derivation function KDF is implicitly indexed by the system parameter pp and
takes as input (s, π) to derive a key r = KDFπ(s) in polynomial-time. At a
high level, we can always view (s, π) together as a derivation key. Since π is
publicly accessible, any efficient adversary can tamper with π at its will. For
this reason, we only explicitly specify the class Φ of tampering functions over
the secret key space in this paper. We omit π if the derivation function does not
take the public key as input, for example in [17]. The standard security notion
for KDFs requires that the derived key r is indistinguishable from a random key
if the adversary only knows the system parameter and the public key. Recently,
Faust et al. [17] introduced the notion of non-malleable KDFs which, roughly
speaking, guarantees that r is still random even if the adversary obtains another
value KDF(s′) as long as s′ �= s.

As shown previously, the standard non-malleability cannot protect against
tampering attacks in some stateless settings where the adversary can continue to
tamper with the original keys. To overcome this drawback, we introduce a new
notion, namely continuous non-malleable KDFs, as a natural extension of the
standard non-malleability. The continuous non-malleability for function class Φ
is defined by the following two experiments: RealKDF(Φ, κ) and SimKDF(Φ, κ), in
which the derivation key function involves the public key π as an auxiliary input.

560 B. Qin et al.

1. The challenger generates pp and samples (s, π). In experiment RealKDF, the
challenger computes r∗ = KDFπ(s), while in experiment SimKDF, the chal-
lenger samples r∗ uniformly at random from its range.

2. The adversary A is given (pp, π) and the challenge key r∗.
3. A can repeatedly and adaptively query the following oracle with (φ, π′) for

any polynomially many times:

If (φ(s), π′) = (s, π), return same�; else, return KDFπ′(φ(s)),

where φ ∈ Φ, and π′ is chosen by A at its will.

The continuous non-malleability requires that any PPT adversary has negligible
advantage in distinguishing the above two experiments.

Though the adversary may tamper with s and π in a different (not necessar-
ily independent) way, we stress that this is not a tampering attack as defined in
the split-state model [14,17]. The reason is that π is a public key, any tampered
result of π is provided by the adversary at its will, instead of being computed
by the challenger. As shown in [18], it is impossible to prevent against continu-
ous tampering attacks without any further assumption. Indeed, the continuous
non-malleability achieved in the work of Faust et al. [16] limits to self-destruct
and split-state model. Our new model above removes these two restrictions,
hence is stronger. We will show in Section 4.1 that key derivation functions are
still achievable in our new stronger security model, as long as we give a proper
restriction (see Definition 1) on the tampering function classes.

Note that in our security model, we consider not only a continuously tam-
pering adversary, but also an adaptive adversary which is allowed to access the
tampering oracle after seeing the challenge derived key r∗. It might be of inde-
pendent interest to consider a non-adaptive tampering adversary, which is only
allowed to access the tampering oracle before receiving r∗.

1.3 Our Contributions

We summarize our contributions in the following and then detail the techniques
that are used in our construction of continuous non-malleable KDF.

– Introduce the notion of continuous non-malleable Key Derivation Function
(cnm-KDF) for an a-priori class of RKD functions Φ. Informally, we say a
key derivation function KDF is continuously non-malleable with respect to Φ,
namely Φ-cnm-KDF, if the output of KDF is still pseudo-random even if a
PPT adversary tampers with its original key repeatedly and adaptively with
function φ ∈ Φ.

– Provide a simple construction of continuous non-malleable KDF for the
Φ
poly(d)
F

-class of polynomial functions of bounded degree d over finite field
F. The construction exploits the functionality of one-time lossy filter (intro-
duced by Qin et al. [24]) and some basic properties of polynomial functions
over finite field.

Continuous Non-malleable Key Derivation and Its Application 561

• We also generalize the polynomial function class Φ
poly(d)
F

to a larger func-
tion class, namely High Output Entropy and Input-Output Collision Resis-
tance (HOE&IOCR), which we denote by Φhoe

iocr. Function class Φhoe
iocr pos-

sesses similar properties as polynomial functions. We show that our result
works well even in such a richer RKD function class Φhoe

iocr (Φhoe
iocr ⊇ Φ

poly(d)
F

).
• The state-of-the-art One-Time Lossy Filters (OT-LFs) [24,25] suggest

that OT-LFs can be instantiated from standard assumptions including the
Decisional Diffie-Hellman (DDH) assumption and the Decisional Compos-
ite Residuosity (DCR) assumption. This leads to instantiations of Φ

poly(d)
F

-
cnm-KDF (w.r.t. Φhoe

iocr-cnm-KDF) based on standard assumptions.
– Propose a simple framework which transforms a traditional (non-RKA secure)

IBE to a Φ-RKA-secure IBE with the help of Φ-cnm-KDF.
• The available standard-assumption-based IBEs and Φ

poly(d)
F

-cnm-KDF
suggests the first instantiations of Φ

poly(d)
F

-RKA-secure IBE from stan-
dard assumption.

• Applying the transformation from Φ-RKA-secure IBE to PKE and sig-
nature schemes [4,6], we immediately obtain Φ

poly(d)
F

-RKA-secure CCA-
PKE and signature schemes under standard assumptions.

A Closer Look at Our Techniques. Our construction of continuous non-
malleable KDF employs three cryptographic primitives: one-time lossy filter [24],
pairwise independent hash function and one-time signature. A one-time lossy fil-
ter LFt(·) is a family of (one-way) functions parameterized by a tag t. The tag
t can be either injective corresponding to an injective function, or lossy corre-
sponding to a lossy function. One-time lossy filter has the following properties:
(1) Injective and lossy tags are computationally indistinguishable; (2) There is a
trapdoor to efficiently sample a lossy tag. However, without this trapdoor, it is
hard to find a non-injective 1 tag even given one lossy tag. Recall that a family
of pairwise independent hash functions H is an average-case strong extractor
as long as its input has sufficiently large average min-entropy [13]. In our con-
struction, we simply use h to derive the key r = h(s), where h ←R H and s is
a random derivation key. Associated with the derivation key s is a public key
computed by π = t||LFt(s), where t is a random LF (injective) 2 tag. At a high
level, π provides a knowledge proof of s so that an adversary who can compute a
correct proof π′ that corresponds to φ(s) must already know φ(s). To guarantee
such property, in the proof, the tag t is moving from injective to lossy making π
reveal only constant amount of information of s. Suppose that s is modified to
φ(s) and π to any value π′ = t′||y′. If t′ �= t, t′ will be an injective tag with over-
whelming probability and hence LFt′(·) is injective. So, if φ(s) has high residual
min-entropy, the adversary should have negligible probability to correctly guess
the value LFt′(φ(s)). A challenging problem is that the adversary may reuse the
lossy tag t, i.e., t′ = t. To solve this problem, we apply a one-time signature
1 In some case, a tag may be neither injective nor lossy.
2 With overwhelming probability, a random tag is injective.

562 B. Qin et al.

scheme to π, guaranteeing that if t is reused, then π′ = π with overwhelming
probability. Recall that a lossy tag is indistinguishable from an injective tag,
and hence with overwhelming probability if π′ = π, then φ(s) = s. So, such case
occurs unless (φ(s), π′) = (s, π). Now, it only leaves us to discuss the entropy of
φ(s) and the probability of φ(s) = s. A simple property (for detail, see Lemma 3)
is that for any non-constant polynomial, φ(s) has nearly the same entropy as s
and if φ is not the identity function, then φ(s) equals s with negligible probabil-
ity, as long as s has sufficiently large entropy. This concludes that except trivial
queries (including the case (φ, π′) = (id, π) and the case φ is constant), it is hard
to generate a valid proof π′ for φ(s).

1.4 Related Work and Remarks

So far, there are not many RKA-secure primitives available and the main con-
structions are limited to PRFs [1,3], symmetric encryption [2,6,19], IBE [6],
signature [6], and public-key encryption [6,23,28]. In particular, Bellare et al. [4]
presented an almost complete understanding of the relations among these RKA-
primitives. For example, RKA-secure PRFs can make any non-RKA secure prim-
itive constructed from PRFs to be secure against RKAs. However, almost all of
the realizations are secure only against simple and claw-free3 RKD functions
e.g., linear functions [2,23,28]. It may become more challenging to immunize
a cryptographic primitive against non-linear and non-claw-free functions, e.g.,
affine and polynomial functions. One inherent reason is that a simulator, with-
out the secret key s, is hard to detect dangerous queries such that φ(s) = s
if φ is non-claw-free. To overcome this issue, all these methods [1,6,19] rely on
non-standard assumptions, e.g., the d-extended DBDH (decisional bilinear Diffie-
Hellman) assumption used in [6], from which the simulator is able to compute
φ(s) (in the exponent) for any polynomial φ of bounded degree d.

Another approach that may be used to achieve RKA-security in a general
way is the tamper-resilient codes, including algebraic manipulation detection
codes [11] and (continuous) non-malleable codes [15–17]. The secret key stored
on the device is now the encoded version of the original key using such a code.
These codes considered very practical tampering functions. However, as we men-
tioned before, their security models have some limitations, e.g., one-time tam-
pering query or split-state model, which are inherent obstacles for capturing the
scenario of RKAs security. Recently, Damg̊ard et al.[12] showed that tamper-
resilience (even combined with leakage-resilience) can be achieved for arbitrary
key relations by restricting the number of adversary’s tampering queries.

Concurrent Work. Jafargholi and Wichs [20] considered the same security
level of continuous non-malleability and showed that continuous non-malleable
codes are achievable if the tampering functions are polynomials or have few
fixed points and high entropy (like the properties of HOE&IOCR functions).
In contrast to ours, their results are constructed in the information-theoretic
3 A class of RKD functions is called claw-free, if for any distinct RKD functions φ �= φ′

and all s ∈ S, φ(s) �= φ′(s).

Continuous Non-malleable Key Derivation and Its Application 563

setting. However, the parameter in their construction [16, Corollary 5.6] depends
on the number of tampering queries and the size of tampering function class. For
efficient codes, the degree of polynomials must be set to some polynomial d =
d(κ). Additionally, they initiated a general study of continuous non-malleable
codes and defined four variants of continuous non-malleability depending on
(1) whether a tampering is persistent or non-persistent, meaning that any suc-
cessive tampering function is applied to the former modified codeword or always
applied to the original codeword, (2) whether we can self-destruct or not, mean-
ing that we can stop the experiment if a codeword is invalid or the adversary
can continue to tamper. Clearly, non-persistent tampering and no self-destruct
require stronger model and is just the model considered in this paper.

Organization. We present our RKD function class in Section 3. We present the
notion of continuous non-malleable KDF and its construction in Section 4. An
application of continuous non-malleable KDF to the RKA-secure IBE is given
in Section 5.

2 Preliminary

Notations. Throughout the paper, N is the set of natural numbers and κ ∈ N

is the security parameter. If S is a finite set, then s ←R S denotes the operation
of picking an element s from S uniformly at random. If X is a random variable
over S, then we write x ← X to denote the process of sampling a value x ∈ S
according to the distribution X. We call a function negl negligible in κ, if for every
positive polynomial poly(·) there exists an N such that for all κ > N , negl(κ) <
1/poly(κ). We say that an event E happens with overwhelming probability, if it
happens with probability 1−negl(κ). “PPT” stands for probabilistic polynomial-
time. An algorithm A is PPT if it, on input x, computes A(x) using randomness
and its running time is bounded by poly(κ).

Average Min-entropy. The statistical distance between two random variables
X and Y over a finite set Ω is Δ(X,Y) = 1

2

∑

ω∈Ω |Pr[X = ω] − Pr[Y = ω]|. We
say that two variables are ε-close if their statistical distance is at most ε. The
min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]). Dodis
et al. [13] formalized the notion of average min-entropy that captures the unpre-
dictability of X conditioned on a random variable Y . Formally, it is defined as
H̃∞(X|Y) = − log(Ey←Y [2−H∞(X|Y =y]).

We recall the following useful properties of average min-entropy from [13].

Lemma 1 ([13]). Let X, Y and Z be random variables. Then

1. If Y has at most 2r possible values and Z is any random variable, then
H̃∞(X|(Y,Z)) ≥ H̃∞(X|Z) − r.

2. For any δ > 0, the conditional entropy H∞(X|Y = y) is at least H̃∞(X|Y)−
log(1/δ) with probability at least 1 − δ over the choice of y.

564 B. Qin et al.

Average-Case Extractors [13]. A function Ext : {0, 1}n × H → {0, 1}m

is an efficient average-case (n, ν,m, ε)-strong extractor, if for all pairs of ran-
dom variables (X,Z) such that X ∈ {0, 1}n and H̃∞(X|Z) ≥ ν, we have
Δ((Z, h,Ext(X,h)), (Z, h, Um)) ≤ ε, where h is uniform over H and Um is uni-
form over {0, 1}m.

Lemma 2 ([13]). Let H be a family of pairwise independent hash functions
from {0, 1}n to {0, 1}m. If X ∈ {0, 1}n, H̃∞(X|Z) ≥ ν and m ≤ ν − 2 log 1/ε,
then Δ((Z, h, h(X)), (Z, h, Um)) ≤ ε, where h ←R H and Um is uniform over
{0, 1}m. In other words, the above family of pairwise independent hash functions
can be used as an efficient average-case (n, ν,m, ε)-strong extractor.

One-Time Lossy Filter. We adopt the notion of one-time lossy filter from [24].
An (X ,
LF)-OT-LF LF consists of three PPT algorithms: (1) LF.Gen(1κ), on
input 1κ, outputs an evaluation key ekLF and a trapdoor tdLF. The evaluation
key defines a tag space T = {0, 1}∗ × Tc that contains two disjoint subsets, the
subset of lossy tags Tloss ⊆ T and that of injective tags Tinj ⊆ T . A tag t ∈ T
consists of an auxiliary tag ta ∈ {0, 1}∗ and a core tag tc ∈ Tc. The trapdoor
tdLF allows to efficiently sample a lossy tag. (2) LF.Eval(ekLF, t,X), on input a
tag t and a preimage X ∈ X , computes LFekLF,t(X) ∈ Y. (3) LF.LTag(tdLF, ta),
on input an auxiliary tag ta, computes a core tag tc such that t = (ta, tc) is lossy.

Besides the above functionalities, LF should satisfy the following properties:

Lossiness. If t is injective, so is the function LFekLF,t(·). If t is lossy, then
LFekLF,t(X) has at most 2�LF possible values.

Indistinguishability. For any PPT adversary A, it is hard to distinguish a
lossy tag from a random tag, i.e., the following advantage is negligible in κ,

Advind
LF,A(κ) := |Pr [A(ekLF, (ta, tc)) = 1] − Pr [A(ekLF, (ta, t′c)) = 1]| ,

where (ekLF, tdLF) ← LF.Gen(1κ), ta ← A(ekLF), tc ← LF.LTag(tdLF, ta) and
t′c ←R Tc.

Evasiveness. For any PPT adversary A, it is hard to generate a non-injective
tag even given a lossy tag, i.e., the following advantage is negligible in κ,

Adveva
LF,A(κ) := Pr

⎡

⎢
⎢
⎣

(t′a, t′c) �= (ta, tc)∧
(t′a, t′c) ∈ T \ Tinj

:

(ekLF, tdLF) ← LF.Gen(1κ)
ta ← A(ekLF)
tc ← LF.LTag(tdLF, ta)
(t′a, t′c) ← A(ekLF, (ta, tc))

⎤

⎥
⎥
⎦

.

One-Time Signature. A one-time signature scheme OTS consists of four (prob-
abilistic) polynomial-time algorithms: (1) OTS.Sys(1κ), on input 1κ, outputs a
public parameter pp; (2)OTS.Gen(pp), on input pp, outputs a verification/signing
key pair (vk, sigk); (3) OTS.Sig(sigk,m), on input a message m, outputs a signa-
ture σ; (4) OTS.Vrf(vk,m, σ), on input a message/signature pair (m,σ), outputs
1 if σ is indeed a signature of m or 0 otherwise. We say that OTS is strongly secure
against chosen-message attacks, if for any stateful PPT adversary A, the following
advantage is negligible in κ,

Continuous Non-malleable Key Derivation and Its Application 565

Advcma
OTS,A(κ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

(m′, σ′) �= (m,σ)∧
OTS.Vrf(vk,m′, σ′) = 1 :

pp ← OTS.Sys(1κ)
(vk, sigk) ← OTS.Gen(pp)
m ← A(pp, vk)
σ ← OTS.Sig(sigk,m)
(m′, σ′) ← A(σ)

⎤

⎥
⎥
⎥
⎥
⎦

.

3 Properties of RKD Functions over Finite Fields

A class Φ of Related-Key Derivation (RKD) functions over S is a set of functions,
all with the same domain and range S. Suppose that F is a finite field such that
|F| ≥ 2n for some positive integer n. Let d ≥ 0 be any fixed integer. Define
Φ
poly(d)
F

to be the set of all polynomial functions over F with degree bounded
by d. Clearly, Φ

poly(d)
F

includes the identity function f = id (i.e., f(x) = x) and
all the constant functions (denoted by cf = {fc : F → c}c∈F). We introduce the
following simple lemma.

Lemma 3. Let F and Φ
poly(d)
F

be defined as above. Let X be any random variable
over F such that H∞(X) ≥ n. For any f ∈ Φ

poly(d)
F

\ cf, then H∞(f(X)) ≥
n − log d and for any f ∈ Φ

poly(d)
F

\ {id} then Pr[f(X) = X] ≤ d
2n .

Proof. For any polynomial f ∈ Φ
poly(d)
F

, let Bf denote the set of all solutions
x over F such that f(x) = 0. Clearly, if f is not identically zero, then |Bf | is
bounded by d. For any fixed value a ∈ F, if f is not a constant function, then
f ′(x) = f(x) − a is not identically zero. This shows that f ′(x) = 0 has at most
d solutions x, i.e., |Bf ′ | ≤ d. Then,

Pr
x←X

[f(x) = a] = Pr
x←X

[x ∈ Bf ′] ≤ d

2H∞(X)
≤ d

2n
.

Hence, H∞(f(X)) = − log(max
a∈F

Pr[f(X) = a]) ≥ n − log d.

Similar to the above analysis, if f is not identity function, then f ′′(x) =
f(x)−x is not identically zero. Hence f ′′(x) = 0 has at most d solutions over F,
i.e., |Bf ′′ | ≤ d. Then

Pr[f(X) = X] =
∑

a∈F

Pr[f(X) = a ∧ X = a]

=
∑

a∈Bf′′
Pr[f(X) = a ∧ X = a] +

∑

a∈F\Bf′′
Pr[f(X) = a ∧ X = a]

= Pr
x←X

[x ∈ Bf ′′] + 0

≤ d
2H∞(X) ≤ d

2n .

This completes the proof of Lemma 3. �

Remark 1. In our main result (see Theorem 1), we restrict the RKD function
class to polynomials as the proof needs the properties stated in Lemma 3. In
fact, we can extend it to any RKD function class that has similar properties as
polynomials. We call such function class High Output Entropy and Input-Output
Collision Resistant (HOE&IOCR) function class, which is formally defined in
Definition 1.

566 B. Qin et al.

Definition 1 (HOE&IOCR RKD function class). Let S be a set with
super-polynomial size in the security parameter κ. The RKD function class Φhoe

iocr :
S → S is called the class of High Output Entropy and Input-Output Collision
Resistance (HOE&IOCR) as long as it satisfies the following properties.

– (High Output Entropy) When S is chosen uniformly at random from S, for
each φ ∈ Φhoe

iocr \cf, the entropy H∞(φ(S)) is sufficiently large, i.e., 2−H∞(φ(S))

is negligible in κ;
– (Input-Output Collision Resistance) For each φ ∈ Φhoe

iocr \ {id}, the probability
Pr[φ(S) = S] is negligible in κ.

Clearly, Φ
poly(d)
F

⊆ Φhoe
iocr, and Φ

poly(d)
F

satisfies S = F, H∞(S) ≥ n, H∞(φ(S)) ≥
n − d and Pr[φ(S) = S] ≤ d

2n .

4 Continuous Non-malleable Key Derivation

A key derivation function consists of three (PPT) algorithms: (1) The public
parameter generation algorithm KDF.Sys(1κ), on input 1κ, outputs a system
parameter pp, which defines the derivation key space S and the derived key
space {0, 1}m. (2) KDF.Sample(pp), on input pp, samples a random derivation
key s ∈ S and computes a public key, denoted by π. (3) The deterministic algo-
rithm KDFπ(s), on input (s, π), outputs a derived key r or the special symbol
⊥, indicating that π is an invalid proof of s. The standard security notion of
KDF guarantees that r is (computationally or information theoretically) indis-
tinguishable from a uniform over {0, 1}m even given the public parameter pp

and the proof π.
The notion of non-malleable key derivation [17] was firstly introduced by

Faust et al. at Eurocrypt 2014. Intuitively, a function KDF is a non-malleable
key derivation function if KDF(s) 4 is statistically close to uniform even given
the output of KDF applied to a related input s′ as long as s′ �= s. The non-
malleability for a key derivation function aims to capture the scenario of one-time
tampering attack for tampering function family with all circuits of bounded size.
In this section, we extend it to the notion of continuous non-malleability (see
Fig. 1) for an a-priori class Φ of RKD functions, making it possible to protect
against multiple-time tampering attacks on a fixed secret key (i.e., RKAs).

Definition 2 (Continuous non-malleable KDFs). Let Φ be a class of
RKD functions over the same domain and range S. We say that (KDF.Sys,
KDF.Sample, KDF) is a (Φ, ε)-continuous non-malleable key derivation function
if for any stateful PPT adversary A,

|Pr[A(RealKDF(Φ, κ)) = 1] − Pr[A(SimKDF(Φ, κ)) = 1]| ≤ ε.

The experiments RealKDF(Φ, κ) and SimKDF(Φ, κ) are defined in Fig. 1 (Sup-
pose that A makes at most Q(κ) queries).
4 In [17], the key derivation is defined in the information theoretic setting, not taking

π as an auxiliary input, i.e., π is empty.

Continuous Non-malleable Key Derivation and Its Application 567

Experiment RealKDF(Φ, κ) : Experiment SimKDF(Φ, κ) :
pp ← KDF.Sys(1κ) pp ← KDF.Sys(1κ)
s||π ← KDF.Sample(pp) // s ∈ S s||π ← KDF.Sample(pp) //s ∈ S
r = KDFπ(s) r ←R {0, 1}m

For i = 1 to Q(κ) For i = 1 to Q(κ)
(φ, π′) ← A(pp, r, π) // φ ∈ Φ (φ, π′) ← A(pp, r, π) // φ ∈ Φ
If φ(s)||π′ = s||π If φ(s)||π′ = s||π

return same�. return same�.
Else Else

return KDFπ′(φ(s)). return KDFπ′(φ(s)).

Fig. 1. Experiments for continuous non-malleable KDFs

4.1 The Construction

In this subsection, we construct a continuous non-malleable key derivation func-
tion with respect to Φ

poly(d)
F

from one-time lossy filter.
Let (LF.Gen, LF.Eval, LF.LTag) be a collection of one-time lossy filters with

domain S (such that S ⊆ F), range Y, residual leakage
LF and tag space
T = {0, 1}∗ × Tc. Let H be a family of pairwise independent hash functions
from domain S to range {0, 1}m. Let (OTS.Sys,OTS.Gen,OTS.Sig,OTS.Vrf) be
a strongly secure one-time signature with verification key space KOTS and sig-
nature space Σ. Define Π := T × Y × Σ. The construction is given in Fig. 2.

Theorem 1. The KDF given in Fig. 2 is (Φpoly(d)
F

, ε)-continuously non-
malleable. Concretely, for any δ > 0 and any PPT adversary A that makes
at most Q(κ) queries and breaks the continuous non-malleability with advantage
ε, there exist adversaries B, B′ and B′′ of roughly the same time complexity as
A, such that

ε ≤ 2
(

Advcma
OTS,B(κ) + Advind

LF,B′(κ) + Q(κ) · Adveva
LF,B′′(κ)+

Q(κ) ·
(

δ + d·2m+�LF+log 1/δ

|S|−Q(κ)+1

)

+ εH
)

,

where S and
LF respectively are the domain and residual leakage of the one-time
lossy filter, m is the output length of the pairwise independent hash, d is the
maximum degree of RKD functions and log |S| ≥ max{
LF+m+2 log 1/εH,
LF+
m + log 1/δ}. Taking into account that ε should be negligible in the security
parameter κ, we may choose negligible δ and εH, and choose a OT-LF with
sufficiently large domain S such that log |S| =
LF + m + ω(log κ). Moreover,
the degree of RKD functions can be made to 2κ as long as log |S| =
LF + m +
ω(log κ) + κ.

Proof. We prove it through a sequence of games played between a simulator Sim
and a fixed PPT adversary A. The initial game (i.e., Game0) is the experiment
RealKDF(Φ

poly(d)
F

, κ) and the final game is the experiment SimKDF(Φ
poly(d)
F

, κ) as
defined in Fig. 1. Denote by Si the output of A in Gamei.

568 B. Qin et al.

– KDF.Sys(1κ): It runs (ekLF, tdLF) ← LF.Gen(1κ) and ppOTS ← OTS.Sys(1κ),
chooses h ←R H, and returns ppKDF := (ekLF, ppOTS, h).

– KDF.Sample(ppKDF): It runs (vk, sigk) ← OTS.Gen(ppOTS), chooses s ←R S
and tc ←R Tc, and computes

y = LFekLF,(vk,tc)(s) and σ = OTS.Sig(sigk, tc||y).

Let π := t||y||σ and t := (vk, tc). Finally, it returns s||π.
– KDFπ(s): It parses π as t||y||σ and t as (vk, tc). If the following two equations

LFekLF,(vk,tc)(s) = y (1)

OTS.Vrf(vk, tc||y, σ) = 1 (2)
hold simultaneously, it returns r = h(s); else it returns ⊥.

Fig. 2. Continuous non-malleable KDF w.r.t. RKD functions Φ
poly(d)
F

Game0 (The real experiment): This is the real experiment RealKDF(Φ
poly(d)
F

,
κ) as defined in Fig. 1. For simplicity, we denote by ppKDF = (ekLF,ppOTS, h)
the challenge public parameters and denote by s||π the challenge sample,
where π = t||y||σ, t = (vk, tc) and vk is the corresponding OTS verification
key (with respect to the signing key sigk). We write (φ, π′) as A’s queries,
where π′ = t′||y′||σ′ and t′ = (vk′, t′c). Then,

Pr[A(RealKDF(Φ
poly(d)
F

, κ)) = 1] = Pr[S0 = 1].

Game1 (Handling trivial queries without the KDF key): This game is
the same as Game0, except that the simulator uses the new rule R1 to answer
some trivial queries as given in Fig. 3. Specifically, for these trivial queries,
the simulator never uses the real derivation key s to compute the value of
KDFπ′(φ(s)). Note that, in both Game0 and Game1, LF works in injective
mode with overwhelming probability. Recall that y = LFekLF,(vk,tc)(s). So,
for a query (φc, π

′), it satisfies φc(s)||π′ = s||π if and only if π′ = π and
LFekLF,(vk,tc)(c) = y. Hence, with overwhelming probability, these modifica-
tions are just conceptual and

Pr[S1 = 1] = Pr[S0 = 1].

Game2 (Eliminating OTS key reuse): This game is the same as Game1,
except for a modification to the verification oracle as stated in Fig. 3. Let
EOTS denote the event that A submits a query (φ, π′ = (vk′, t′c)||y′||σ′) such
that vk′ = vk, (t′c||y′, σ′) �= (tc||y, σ) but OTS.Vrf(vk, t′c||y′, σ′) = 1. Clearly,
Game2 is identical to Game1 unless the event EOTS occurs. We briefly show
that if the adversary makes the event EOTS occur, then an efficient algo-
rithm B can be constructed to break the strong security of OTS using A as
a subroutine.
Given an OTS challenge instance (ppOTS, vk), B runs (ekLF, tdLF) ← LF.Gen
(1κ), chooses h ←R H, and sets ppKDF := (ekLF,ppOTS, h). Then B samples

Continuous Non-malleable Key Derivation and Its Application 569

Games: Key derivation rules : r: tc:

Game0 R0: If φ(s)||π′ = s||π, return same�,
else if Eq. (1) and Eq. (2) hold, return
KDFπ′(φ(s)), else return ⊥.

r = h(s) tc ←R Tc

Game1 R1: If (φ, π′) = (id, π), return same�. If
φ = φc, π′ = π and LFekLF,(vk,tc)(c) =
y, return same�. If φ = φc but π′ �= π or
LFekLF,(vk,tc)(c) �= y, return KDFπ′(c).

r = h(s) tc ←R Tc

R0: As in Game0.

Game2 R1: As in Game1. r = h(s) tc ←R Tc

R2: If vk′ = vk, but (t′
c||y′, σ′) �=

(tc||y, σ), return ⊥.
R0: As in Game1.

Game3 R1: As in Game2. r = h(s) tc ←R Tc

R2: As in Game2.
R3: If π′ = π, but φ(s) �= s, return ⊥.
R0: As in Game2.

Game4 The same as in Game3. r = h(s) tc ← LF.LTag(tdLF, vk)

Game5 R1: As in Game4. r = h(s) tc ← LF.LTag(tdLF, vk)
R2: As in Game4.
R3 : Replaced by R0’.
R0 : Replaced by R0’.
R0’: Return ⊥.

Game6 As in Game5. r ←R {0, 1}m tc ← LF.LTag(tdLF, vk)

Game7 As in Game0. r ←R {0, 1}m tc ←R Tc

Fig. 3. Changes in each game

s, tc and computes y = LFekLF,(vk,tc)(s) by itself. Also, B generates σ by
querying OTS signing oracle once with tc||y. Since B knows s, it can answer
all the decryption queries (φ, π′) from A (recall that decryption does not
need the knowledge of the challenge OTS signing key sigk). So, B perfectly
simulates the real experiment defined in Game1 for A. If A submits a query
(φ, π′) making the event EOTS occur, B returns (t′c||y′, σ′) (Note that, B can
check whether the event EOTS occurs or not). From the above observation,
we have

|Pr[S2 = 1] − Pr[S1 = 1]| ≤ Advcma
OTS,B(κ).

Game3 (Answering a trivial query with the KDF key): If the adversary
submits a query (φ, π′) such that π′ = π (i.e., vk′ = vk and (t′c||y′, σ′) =
(tc||y, σ)), the simulator first checks whether φ(s) = s. If not, it returns ⊥ and
halts immediately. Otherwise, the simulator handles it as in Game2. Recall
that, with overwhelming probability, a randomly chosen LF tag (vk, tc) is
injective. So, if φ(s) �= s, then LFekLF,(vk,tc)(φ(s)) �= y. This implies that
such queries will also be rejected under the rules of Game2. Hence, with
overwhelming probability

Pr[S3 = 1] = Pr[S2 = 1].

570 B. Qin et al.

Game4 (From injective to lossy LF tag): Instead of picking tc ∈ Tc uni-
formly at random, the simulator computes tc := LF.LTag(tdLF, vk).
We show that the difference between Game3 and Game4 can be reduced
to the indistinguishability of the underlying OT-LF. Given a challenge LF
evaluation key ekLF, a PPT algorithm B′ chooses h and ppOTS, samples s
and (vk, sigk) by itself. Then, it queries its injective-lossy tag oracle with
query ta = vk. B′ will receive a challenge core tag part tc. It computes
y = LFekLF,(vk,tc)(s) and σ = OTS.Sig(sigk, tc||y), and sets π = (vk, tc)||y||σ.
It sends ppKDF = (ekLF,ppOTS, h) together with π to A. Since B′ knows the
KDF key s, it can answer all the queries issued by A. Finally, B′ outputs
whatever A outputs. Clearly, if tc is sampled from Tc uniformly at random,
then B′ simulates Game3 perfectly. If tc is computed by LF.LTag(ekLF, ta),
then B′ perfectly simulates Game4. Hence,

|Pr[S4 = 1] − Pr[S3 = 1]| ≤ Advind
LF,B′(κ)

for some adversary B′ attacking on the indistinguishability of OT-LF.
Game5 (Answering all queries without the KDF key): In this game, the

simulator replaces the rules in step R3 and R0 (relying on the KDF key) with
R0’ (without relying on the KDF key) as stated in Fig. 3. Note that, the
new rule directly rejects all queries except those trivial queries which have
already be answered by rule R1. Denote by F the event that A submits a
query (φ, π′) such that the simulator returns the special symbol ⊥ in Game5,
but not in Game4. Also, let Eninj denote the event that among all the queries
(φ, π′), there exists some non-injective LF tag such that (vk′, t′c) �= (vk, tc).
Recall that, for the same query (φ, π′), if the simulator responds to A a result
not being the special symbol ⊥ in Game5, then the simulator must return
the same result as in Game4. So, unless event F occurs, the two games are
identical from the adversary’s point of view. By the difference lemma [26,
Lemma 1], it follows that |Pr[S5 = 1] − Pr[S4 = 1]| ≤ Pr[F].
We show the upper bound of the probability Pr[F] by the following obser-
vation

Pr[F] = Pr[F ∧ Eninj] + Pr[F ∧ Eninj] ≤ Pr[Eninj] + Pr[F |Eninj]

where all probabilities are taken over the randomness used in the experi-
ment in Game4. The following two lemmas show that both the probabilities
Pr[Eninj] and Pr[F |Eninj] are negligible in κ. We postpone to prove them after
the main proof.
Lemma 4. Suppose that A makes at most Q(κ) queries. Then

Pr[Eninj] ≤ Q(κ) · Adveva
LF,B′′(κ)

for some suitable adversary B′′ attacking on the evasiveness of OT-LF.

Lemma 5. Suppose that A makes at most Q(κ) queries. For any δ > 0, we
have

Pr[F |Eninj] ≤ Q(κ) ·
(

δ +
d · 2m+�LF+log 1/δ

|S| − Q(κ) + 1

)

.

Continuous Non-malleable Key Derivation and Its Application 571

Game6 (Replacing h(s) by a random string): This game is the same as
Game5, except that the simulator samples a random string r ←R {0, 1}m

instead of computing r = h(s). Recall that in both Game5 and Game6, except
r, the simulator never uses the KDF derivation key s to answer A’s queries.
So, the adversary does not learn any more information on s through the key
derivation oracle KDFπ′(φ(s)). Observe that from the adversary’s point of
view, only the value y may reveal information on s and all other values are
independent of s (e.g., ppKDF and (vk, tc)) or are just functions of y (e.g.,
σ). It holds by the lossiness property of the OT-LF and by Lemma1 that

H̃∞(s|(ppKDF, π)) ≥ H̃∞(s|ppKDF) −
LF = log |S| −
LF.

Since log |S| −
LF − 2 log(1/εH) ≥ m, by Lemma 2, we have that h(s) is
εH-close to uniform over {0, 1}m from A’s point of view. Hence,

|Pr[S6 = 1] − Pr[S5 = 1]| ≤ εH.

Game7 (Reversing to answer all queries with the KDF key): This game
is the same as in Game 6, except that the simulator samples ppKDF and s||π,
and answers queries (φ, π′) as in Game0. Note that, in this game, r is still
sampled as in Game6. Through defining a sequence of reverse games from
Game6 to Game0, we can prove that

|Pr[S7 = 1] − Pr[S6 = 1]| ≤ |Pr[S6 = 1] − Pr[S0 = 1]|.

Observe that, Game7 is just the simulated experiment SimKDF(Φ
poly(d)
F

, κ) and
hence

Pr[A(SimKDF(Φ
poly(d)
F

, κ)) = 1] = Pr[S7 = 1].

Taking all together, Theorem 1 follows. �

Now, we prove Lemma 4 and Lemma 5.

Proof (Proof of Lemma 4). Given a challenge LF evaluation key ekLF, B′′ simu-
lates A’s environment in Game4 as follows. It first picks ppOTS ← OTS.Sys(1κ),
h ←R H and s ←R S. It then samples a OTS key pair (vk, sigk) ← OTS.Gen
(ppOTS). After that, B′′ queries LF.LTag(ekLF, ·) with vk to obtain the challenge
core tag part i.e., tc = LF.LTag(tdLF, vk). Next, B′′ computes y = LFekLF,(vk,tc)(s)
and σ = OTS.Sig(sigk, tc||y). B′′ sends ppKDF = (ekLF,ppOTS, h) and π =
(vk, tc)||y||σ to the adversary A. Since B′′ knows the KDF key s, he can answer
all the queries as in Game4. Let T = {(vk′, t′c)} be the set of tags extracted
from A’s queries (φ, π′) such that (vk′, t′c) �= (vk, tc). Finally, B′′ chooses a tag
(vk′, t′c) from T uniformly at random as his output. If Eninj occurs, with proba-
bility at least 1/Q(κ), B′′ outputs a fresh non-injective tag. Hence, Pr[Eninj] ≤
Q(κ) · Adveva

LF,B′′(κ). �

Proof (Proof of Lemma 5). Let (φ, π′) be the first query that does not satisfy
the key derivation rules of R1 and R2 in Game4 and event Eninj does not happen.

572 B. Qin et al.

We call such query invalid query. Recall that an invalid query is always rejected
(output ⊥) in Game5. We show that it is not rejected in Game4 with a negligible
probability. Clearly, if (t′c||y′, σ′) is an invalid signature, then (φ, π′) will be
rejected in both Game4 and Game5. We consider three cases:

– Case 0: π′ = π and φ(s) �= s.
– Case 1: π′ = π, φ �= id, but φ(s) = s.
– Case 2: vk′ �= vk and φ /∈ cf.

Note that, for any query (φ, π′), it always satisfies the key derivation rules defined
in either R1 or R2, except for the above three cases. Recall that, in the first case,
both Game4 and Game5 outputs ⊥. Hence, only the Case 1 and Case 2 may cause
the difference between Game4 and Game5. Next, we show that the last two cases
will be rejected in Game4 with overwhelming probability.

Observe that in Game4, only values r and y may contain information on the
KDF derivation key s. The other values are independent of s (e.g., ppKDF and
vk) or just functions of y (e.g., σ). Denote by V the adversary’s view in Game4.
From Lemma 1 and the fact that r and y have at most 2m and 2�LF possible
values respectively, we have

H̃∞(s|V) = H̃∞(s|(ppKDF, r||π)) ≥ H̃∞(s|ppKDF) − m −
LF.

Recall that s is independent of ppKDF. So, the average min-entropy of s
conditioned on the adversary’s point of view is at least log |S|−m−
LF. According
to Lemma 1, for any δ > 0, with probability at least 1 − δ,

H∞(s|V = v) ≥ H̃∞(s|V) − log 1/δ ≥ log |S| − m −
LF − log 1/δ

over the choice of V = v.
According to Lemma 3, for any φ �= id, we have

Pr[φ(s) = s] ≤ d

2H∞(s|V =v)
.

So, in Case 1, with probability at least 1 − δ,

Pr[φ(s) = s] ≤ d · 2m+�LF+log 1/δ

|S| .

Again, according to Lemma 3, for any φ /∈ cf

H∞(φ(s)|V = v) ≥ H∞(s|V = v) − log d ≥ log |S| − m −
LF − log 1/δ − log d

with probability at least 1 − δ.
Recall that event Eninj does not happen, so (vk′, t′c) is an injective tag,

which means that LFekLF,(vk′,t′
c)

(·) is injective. As a result, the adversary can
correctly guess the value LFekLF,(vk′,t′

c)
(φ(s)) with probability at most δ + d ·

2m+�LF+log 1/δ/|S|. Therefore, the first invalid query passes the key derivation
rules in Game4 with probability at most δ + d · 2m+�LF+log 1/δ/|S|.

Continuous Non-malleable Key Derivation and Its Application 573

An almost identical argument holds for all subsequent invalid queries. The
only difference is that the adversary can rule out one more value s from each
rejection of invalid query. So, R3 or R0 accepts the i-th invalid query with
probability at most δ + d · 2m+�LF+log 1/δ/(|S| − i + 1). Since A makes at most
Q(κ) queries, the event F |Eninj occurs with probability at most

Q(κ) ·
(

δ +
d · 2m+�LF+log 1/δ

|S| − Q(κ) + 1

)

.

This finishes the proof of Lemma 5. �

4.2 Instantiations

According to [24,25], OT-LFs can be constructed from standard assumptions
including the DDH assumption and the DCR assumption. This results in instan-
tiations of Φ

poly(d)
F

-cnm-KDF (w.r.t. Φhoe
iocr-cnm-KDF) based on these standard

assumptions.

5 Application to RKA-secure IBE

An identity-based encryption scheme IBE consists of five (PPT) algorithms: (1)
IBE.Sys(1κ), on input 1κ, outputs a system parameter pp, which defines an iden-
tity space ID. (2) IBE.Gen(pp), on input pp, outputs a master public key mpk
and a master secret key msk. (3) IBE.Ext(msk, id), on input msk and an iden-
tity id ∈ ID, outputs a decryption key dkid. (4) IBE.Enc(mpk, id,M), on input
a message M , outputs a ciphertext C encrypted under mpk and identity id.
(5) The deterministic algorithm IBE.Dec(dkid, C), on input decryption key dkid

and ciphertext C, outputs a message M . Correctness requires that for all pub-
lic parameter pp ← IBE.Sys(1κ), all master public/secret key pair (mpk,msk) ←
IBE.Gen(pp), all identity id and message M , it always has IBE.Dec(dkid,
IBE.Enc(mpk, id,M)) = M .

RKA-secure IBE. We recall the Φ-RKA security of IBE schemes from [4]. In
the context of IBE, an RKA adversary is allowed to access a decryption key gen-
eration oracle: OΦ

msk(·, ·), on input (φ, id) ∈ Φ × ID, it returns IBE.Ext(φ(msk),
id). Besides this, the oracle initializes an empty set I := ∅ and id∗ = ⊥. For an
RKA query (φ, id), if φ(msk) = msk 5, it adds id to the set I := I ∪ {id}, and
if id equals the challenge identity id∗, it returns ⊥ directly. An IBE scheme is
Φ-RKA secure, if for any PPT adversary A, the following advantage

Advrka
IBE,A(κ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b′ = b :

pp ← IBE.Sys(1κ)
(mpk,msk) ← IBE.Gen(pp)
(M0,M1, id

∗, St) ← AOΦ
msk(·,·)(pp,mpk)

b ←R {0, 1}, C ← IBE.Enc(mpk, id∗,Mb)
b′ ← AOΦ

msk(·,·)(St, C)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

5 If msk contains some public information, for example in our construction msk =
(s, π) where π is completely given to an adversary, we define φ(msk) = (φ(s), π′)
and π′ is implicitly defined in the adversary’s query (φ, id).

574 B. Qin et al.

is negligible in κ, where M0 and M1 are two equal length messages. Clearly, if
Φ only contains the identity function id, then the above definition is just the
traditional CPA-security of IBE schemes [9].

Suppose that IBE.Gen(pp) utilizes an m-bit random string as the internal
coin for generating mpk and msk. We write r explicitly in the key generation
algorithm, i.e., IBE.Gen(pp; r) = (mpk,msk) (a deterministic algorithm w.r.t.
input (pp, r)).

The IBE Construction. Starting from a (Φ, εKDF)-continuous non-malleable
KDF (KDF.Sys, KDF.Sample, KDF) and a CPA-secure IBE scheme (IBE.Sys,
IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec), we construct a new IBE scheme (IBE.Sys,
IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec) as follows:

– IBE.Sys(1κ): It runs ppKDF ← KDF.Sys(1κ) and ppIBE ← IBE.Sys(1κ), and
returns ppIBE = (ppKDF,ppIBE).

– IBE.Gen(ppIBE): It samples s||π ← KDF.Sample(ppKDF) and computes r =
KDFπ(s). Then, it computes (mpk,msk) = IBE.Gen(ppIBE; r) and returns
master public key mpk = (mpk, π) and secret key msk = (s, π).

– IBE.Ext(msk, id): For msk = (s, π), it computes r = KDFπ(s). If r is the spe-
cial symbol ⊥, it returns ⊥ and halts. Otherwise, it computes (mpk,msk) =
IBE.Gen(ppIBE; r) and returns dkid = IBE.Ext(msk, id).

– IBE.Enc(mpk, id,M): It first parses mpk as (mpk, π) and then returns C =
IBE.Enc(mpk, id,M).

– IBE.Dec(dkid, C): It returns IBE.Dec(dkid, C).

Theorem 2. If KDF is (Φ, εKDF)-continuously non-malleable and IBE is CPA-
secure, then the above construction is a Φ-RKA secure IBE scheme. Concretely,
for any PPT adversary A, there exist KDF distinguisher D and adversary B of
roughly the same complexity as A such that

Advrka
IBE,A(κ) ≤ εKDF + Advcpa

IBE,B(κ).

Proof. We prove it through two games: Game0 and Game1. The former is just the
original experiment of RKA-security and the later is slightly different from the
former in which the internal coin r is replaced by a uniform random string. We
depict the difference between these two games in Fig. 4. In addition, we define an
auxiliary game Game′

0, which is the same as Game0 except that the key extraction
oracle works as in Game1. Observe that, in the case of φ(s)||π′ = s||π, the random
coin r′ computed via KDFπ′(φ(s)) is always equal to r, the random coin involved
in the challenge master key generation algorithm. Hence, this modification is just
conceptional and we can view Game0 as Game′

0 in the following proof.
Denote by S0 and S1 the event that A successfully guesses the random coin

b in Game0 and Game1 respectively. We show shortly that

|Pr[S0] − Pr[S1]| ≤ εKDF (3)
|Pr[S1] − 1/2| ≤ Advcpa

IBE,B(κ). (4)

Clearly,
Advrka

IBE,A(κ) = |Pr[S0] − 1/2|.

Continuous Non-malleable Key Derivation and Its Application 575

In Game0: In Game1:

Master s||π ← KDF.Sample(ppKDF) s||π ← KDF.Sample(ppKDF)

public r = KDFπ(s) r ←R {0, 1}m

key (mpk, msk) = IBE.Gen(ppIBE; r) (mpk, msk) = IBE.Gen(ppIBE; r)

Return mpk = (mpk, π). Return mpk = (mpk, π).

Dec. If φ(s)||π′ = s||π, set I := I ∪ {id}. If φ(s)||π′ = s||π, set I := I ∪ {id} and

key return IBE.Ext(msk, id) .

oracle Else compute
r′ = KDFπ′(φ(s)) r′ = KDFπ′(φ(s))

Input: If r′ =⊥, return ⊥. Else, compute If r′ =⊥, return ⊥. Else, compute
(φ, id) (mpk′, msk′) = IBE.Gen(ppIBE; r

′) (mpk′, msk′) = IBE.Gen(ppIBE; r
′)

Return dkid ← IBE.Ext(msk′, id). Return dkid ← IBE.Ext(msk′, id).

Fig. 4. Differences between Game0 and Game1

This completes the proof of Theorem 2. �

Proof (Proof of Eq. (3)). Given (ppKDF, r, π) where r either equals KDFπ(s) or a
uniform random string, the simulator chooses ppIBE and computes (mpk,msk) =
IBE.Gen(ppIBE; r). It sends mpk = (mpk, π) to the adversary and keeps the secret
key msk. The simulator answers A’s decryption key queries (φ, id) as follows:
It sends (φ, π′) to the KDF oracle and obtains the value r′. If r′ = same�, the
simulator returns IBE.Ext(msk, id) to A and updates I := I ∪ {id}. If r′ =⊥,
the simulator returns ⊥. Otherwise, the simulator computes (mpk′,msk′) =
IBE.Gen(ppIBE; r′) and returns IBE.Ext(msk′, id) to A. After the phase of decryp-
tion key queries, A submits two equal-length messages (M0,M1) and a challenge
identity id∗. The simulator picks b ←R {0, 1} and returns C = IBE.Enc(mpk, id∗,
Mb) to A. Finally, the simulator outputs what A outputs. Recall that, the sym-
bol same� implies φ(s)||π′ = s||π. So, if r = KDFπ(s), the simulator perfectly
simulates Game0. While if r is a uniform string, the simulator simulates Game1.
This completes the proof of Eq. (3). �

Proof (Proof of Eq. (4)). Given an IBE challenge instance (ppIBE,mpk), the
simulator samples ppKDF ← KDF.Sys(1κ) and sets ppIBE = (ppKDF,ppIBE). It
also samples s||π ← KDF.Sample(ppKDF) and sets mpk = (mpk, π). Then it sends
(ppIBE,mpk) to A. To answer A’s decryption key queries (φ, id), the simulator
first checks whether φ(s)||π′ = s||π. If so, it submits id to its own decryption key
generation oracle and forwards the result to A. Since the simulator knows s and
it can handle the case φ(s)||π′ �= s||π as in Game1. When A queries the challenge
ciphertext, the simulator forwards (M0,M1, id

∗) to its own encryption oracle to
obtain a challenge ciphertext C. The simulator forwards C to the adversary.
Finally, the simulator outputs what A outputs. Clearly, the simulator perfectly
simulates A’s environment in Game1. If A succeeds, so does the simulator. This
completes the proof of Eq. (4). �

From [27], we have a CPA-secure IBE scheme under the standard DBDH
assumption. Subsection 4.2 suggests that Φ

poly(d)
F

-continuously non-malleable

576 B. Qin et al.

KDFs can be constructed from the DDH and DCR assumptions. Consequently,
our IBE construction above immediately results in the first IBE that is RKA-
secure for class Φ

poly(d)
F

, i.e., the sets of all polynomial functions of bounded
degree, under the standard DBDH assumption, and the security follows from
Theorem 1 and Theorem 2. We stress that the degree of our RKD polynomial
functions is not limited to polynomial size in κ and we can always enlarge the
polynomial function class Φ

poly(d)
F

to class Φhoe
iocr whose functions has high out-

put entropy and input-output collision resistance, as defined in Definition 1.
As a result, the Φ

poly(d)
F

-RKA security of IBE can be extended to Φhoe
iocr, with

Φhoe
iocr ⊇ Φ

poly(d)
F

.

Extensions to PKE and Signature. Bellare et al. [6] showed that the
CHK [10] IBE-to-CCA-PKE transform and the Naor IBE-to-Sig transform both
preserve Φ-RKA security. Thus, we readily obtain Φ

poly(d)
F

(also extended to Φhoe
iocr)-

RKA-secure CCA-PKE and signature schemes under standard assumptions.
On the other hand, the continuous non-malleable KDFs can also be directly

used to transform a cryptographic primitive to a RKA secure version in a mod-
ular way, as long as the key generation algorithm of the primitive takes uniform
random coins r to generate (secret/public) keys. The transformation with the
help of cnm-KDF is as follows. First, sample a random derivation key s together
with the public key π such that KDFπ(s) = r; Then, store s in the cryptographic
hardware device. In addition, we append the proof π of s to the public key of the
system. When using r, we retrieve it via computing KDFπ(s). By the property
of continuous non-malleability, if s is modified to φ(s) �= s and π to π′, then
r′ = KDFπ′(φ(s)) is either the rejection symbol ⊥ or a value independent of r.
Finally, the Φ-RKA security is reduced to the original security of the primitive.

Acknowledgments. Baodong Qin and Shengli Liu were supported by the National
Natural Science Foundation of China (Grant No. 61170229 and 61373
153), the Specialized Research Fund for the Doctoral Program of Higher Education
(Grant No. 20110073110016), and the Scientific innovation projects of Shanghai Edu-
cation Committee (Grant No. 12ZZ021). Kefei Chen was supported by the National
Natural Science Foundation of China (Grant No. 61133014). The authors would also
like to thank anonymous reviewers for very useful comments and suggestions on a pre-
liminary version of this paper. Special thanks go to the reviewer who pointed out that
our result holds for the extended RKD function class defined in Definition 1.

References

1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key secu-
rity for pseudorandom functions beyond the linear barrier. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 77–94. Springer,
Heidelberg (2014)

2. Rosini, M.D.: Applications. In: Rosini, M.D. (ed.) Macroscopic Models for Vehic-
ular Flows and Crowd Dynamics: Theory and Applications. UCS, vol. 12, pp.
217–226. Springer, Heidelberg (2013)

Continuous Non-malleable Key Derivation and Its Application 577

3. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) Crypto 2010. LNCS, vol. 6223, pp.
666–684. Springer, Heidelberg (2010)

4. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011)

5. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003)

6. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier:
IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012)

7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

10. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

11. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008)

12. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how
to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part II. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013)

13. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

14. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008, pp.
293–302. IEEE Computer Society (2008)

15. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C. (ed.)
Innovations in Computer Science - ICS 2010, pp. 434–452. Tsinghua University
Press (2010)

16. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

17. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014)

18. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004)

19. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)

578 B. Qin et al.

20. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
Cryptology ePrint Archive, Report 2014/956 (2014)

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

22. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

23. Lu, X., Li, B., Jia, D.: Related-key security for hybrid encryption. In: Chow, S.S.M.,
Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 19–32.
Springer, Heidelberg (2014)

24. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg
(2013)

25. Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: simple con-
struction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 19–36. Springer, Heidelberg (2014)

26. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive 2004, 332 (2004). http://eprint.iacr.org/2004/
332

27. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

28. Wee, H.: Public key encryption against related key attacks. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279.
Springer, Heidelberg (2012)

http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

A Tamper and Leakage Resilient
von Neumann Architecture

Sebastian Faust1(B), Pratyay Mukherjee2,
Jesper Buus Nielsen2, and Daniele Venturi3

1 Security and Cryptography Laboratory, EPFL, Lausanne, Switzerland
sebastian.faust@gmail.com

2 Department of Computer Science, Aarhus University, Aarhus, Denmark
3 Department of Computer Science, Sapienza University of Rome, Rome, Italy

Abstract. We present a universal framework for tamper and leakage
resilient computation on a random access machine (RAM). The RAM
has one CPU that accesses a storage, which we call the disk. The disk is
subject to leakage and tampering. So is the bus connecting the CPU to
the disk. We assume that the CPU is leakage and tamper-free. For a fixed
value of the security parameter, the CPU has constant size. Therefore the
code of the program to be executed is stored on the disk, i.e., we consider
a von Neumann architecture. The most prominent consequence of this is
that the code of the program executed will be subject to tampering.

We construct a compiler for this architecture which transforms any
keyed primitive into a RAM program where the key is encoded and stored
on the disk along with the program to evaluate the primitive on that
key. Our compiler only assumes the existence of a so-called continuous
non-malleable code, and it only needs black-box access to such a code.
No further (cryptographic) assumptions are needed. This in particular
means that given an information theoretic code, the overall construction
is information theoretic secure.

Although it is required that the CPU is tamper and leakage proof,
its design is independent of the actual primitive being computed and
its internal storage is non-persistent, i.e., all secret registers are reset
between invocations. Hence, our result can be interpreted as reducing
the problem of shielding arbitrary complex computations to protecting
a single, simple yet universal component.

1 Introduction

Can cryptographic schemes achieve their security goals when run on non-trusted
machines? This fascinating question has recently resulted in a large body of work

S. Faust and P. Mukherjee—Received funding from the Marie Curie IEF/FP7 project
GAPS, grant number: 626467.
J.B. Nielsen—Partially supported by Danish Council for Independent Research via
DFF Starting Grant 10-081612. Partially supported by the European Research Com-
mission Starting Grant 279447.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 579–603, 2015.
DOI: 10.1007/978-3-662-46447-2 26

580 S. Faust et al.

that weakens the traditional assumption of fully trusted computation and gives
the adversary partial control over the implementation. Such partial control can
either be passive where the adversary obtains information about the internal
computation, or active where the adversary is allowed to change the secret state
and/or the computation of the scheme.

One general solution to the above question is given by the appealing notion
of leakage and tamper resilient compilers introduced in the pioneering works
of Ishai, Prabhakaran, Sahai and Wagner [23,24]. A compiler takes as input
a description of some arbitrary cryptographic functionality GK and outputs a
transformed functionality G′

K′ which has the same input/output behavior as GK

but additionally remains secure in a non-trusted environment. For instance, G′
K′

may be secure when the adversary is able to obtain a bounded amount of leakage
from the execution of G′

K′ , or when he can change the secret state K′ in some
adversarial way. Formally, security is typically modeled by a simulation-based
notion. That is, whatever the adversary can learn by interacting with G′

K′ in the
non-trusted environment, he can also achieve by interacting with the original GK

when implemented on a fully trusted device.

Tamper resilient compilers. Two different lines of work investigate methods for
tamper resilient compilers. The first approach designs so-called tamper resilient
circuits [10,11,20,23,26]. That is, given a functionality GK that, e.g., computes
the AES with key K, the compiler outputs a transformed functionality G′

K′ that
achieves simulation-based security even if the adversary can tamper with up
to a constant fraction of the wires independently. While these works allow the
adversary to tamper with the entire circuitry, they typically make very strong
assumptions on the type of tampering. In particular, it is assumed that each
bit of the computation is tampered with independently (so-called set/reset and
toggle attacks). Also, it is not allowed to re-wire the circuit.

The second approach is based on the notion of non-malleable codes [16].
Informally, a code is non-malleable w.r.t. a set of tampering functions if the
message contained in a codeword modified via a function in the family is either
the original message, or a completely “unrelated” value. A compiler based on
non-malleable codes stores the secret key in an encoded form and the compiled
functionality decodes the state each time the functionality wants to access the
key. As long as the adversary can only apply tampering functions from the
family supported by the code, the non-malleability property guarantees that
the (possibly tampered) decoded value is not related to the original key. While
non-malleable codes exist for rich families that go far beyond the bit-tampering
adversary discussed above (see, e.g., [1,2,6–9,15–17,19,27]), the existing compil-
ers based on non-malleable codes only protect the secret key against tampering
attacks. In particular, the assumption is that the entire circuitry that evaluates
the functionality is implemented on a fully trusted environment and cannot be
tampered with.

In this work we show how to significantly weaken the assumption of tamper-
proof computation. Our solution is also based on non-malleable codes and hence
can achieve strong protection against rich families of tampering functions, but

A Tamper and Leakage Resilient von Neumann Architecture 581

simultaneously significantly reduces the assumption on tamper proof circuitry
used by the traditional approach described above. In particular, the tamper-
proof circuitry we use (the so-called CPU) is a small and universal component,
whose size and functionality is independent of the functionality that we want to
protect. Notice that this is in contrast to the approach described above, which
requires a specifically tailored tamper-proof hardware for each functionality that
we intend to protect. Our solution is hence in spirit of earlier works (e.g., [20])
and reduces the problem of protecting arbitrary complicated computation to
shielding a single, simple component.

One important feature of our construction is to allow tampering with the
program code. In our model the program consists of code built from several
instructions such that each instruction is executed by the tamper-proof CPU
sequentially. Notice that tampering with the program (and hence with the func-
tionality) is allowed as the code is written on the tamperable disk. Hence, the
adversary may attempt to overwrite the code with a malicious program that, e.g.,
just outputs the secret key. In our construction we prevent this type of attack
by again making sure that any change of the code will enforce in tampering with
the secret key, which itself is protected by a non-malleable code.

We notice that while our construction works generically for any non-malleable
code that satisfies certain composability properties (as explained in more detail
below), we will focus in the following exposition mainly on non-malleable codes
in the split-state setting. In this well-known setting (c.f. [1,7,15,17,27]) the code-
word consists of two parts and the adversary is allowed to tamper independently
with them in an arbitrary way.

1.1 Our Model

We put forward a generic model of a tamper and leakage resilient von Neu-
mann random access architecture (alternatively called RAM architecture). To
use the established terminology of leakage and tamper resilient compilers, we
phrase the model in terms of computing keyed functionalities GK(·). However,
the model capture arbitrary poly-time computation which keeps a secret state
that is initially K.

RAM schemes. We will use a RAM scheme to denote a RAM architecture R
and a compiler C for R. The RAM R has a disk D and a tamper/leakage-proof
CPU that is connected with the disk through buses. The RAM compiler C takes
as input the description of a functionality G and a key K and outputs an initial
encoding of the disk. Inputs to the program are given by writing it on the disk,
and outputs are received by reading a special section of the disk. The program
runs in activations. An activation denotes the time period of evaluating GK(·) on
some input x. An activation involves several steps of the CPU. In each step, the
CPU loads a constant number of words from the disk (this might include reading
part of the input), executes one computation on the loaded data, and writes the
result back to the disk (this might include writing part of the output). We stress
that our CPU has no persistent internal (secret) storages, i.e., all secret registers

582 S. Faust et al.

are reset between steps. The CPU contains the following public untamperable
components (i) a program counter pc, (ii) an activation counter ac and (iii) a
self-destruct bit B. The activation counter ac is incremented after each activation,
and the program counter pc specifies, during each activation, at which position
of the public disk the CPU shall read the next instruction. The value B is a
special self-destruct bit that is initially set to 0, and can once be flipped by the
CPU. Whenever B is set to 1, the RAM goes into a special “self-destruct” mode
where it is assumed to forever output the all-zero string.

Security. We define security of a RAM scheme via the real-ideal simulation
paradigm. In the real world the compiler C is run in order to produce the initial
contents of the disk. As in previous works on tamper and leakage resilient com-
pilers the pre-processing in the setup is assumed to be tamper and leakage proof
and is executed once at the initialization of the system. Think of it as the setup
running on a separate, possibly more secure machine. In the online phase, the
adversary can specify between steps of the CPU a tampering function Tamper(·)
that modifies the disk: D ← Tamper(D). It can also specify a leakage function
Leak and will then be given Leak(D). Furthermore, the adversary can ask the
RAM to perform the next step in the computation (for the current activation),
by running the CPU on the (possibly modified) disk. When requesting the next
step it also specifies a leakage function LeakBs and is given back LeakBs(Bs),
where Bs contains the values that were loaded or stored by the CPU.

Clearly, no computation is secure in the presence of arbitrary leakage and
tampering. We therefore introduce a notion of adversary class to restrict the
tampering and leakage queries that the adversary can submit. We compare the
real execution to a mental experiment featuring a simulator having only black-
box access to the original functionality GK(·). We call this an ideal execution. A
RAM scheme is A-secure if for all efficient adversaries from A there exists an
efficient simulator such that for all functionalities G the output distributions of
a real and an ideal execution are computationally close.

We also introduce a notion of secure emulation. An emulator takes as input a
RAM scheme (think of a RAM scheme for an idealised highly secure RAM) and
outputs another RAM scheme (think of a RAM scheme for more real-world-like
highly insecure RAM). We define the notion of security of an emulator such that
if one is given a secure RAM scheme for the idealised RAM and applies a secure
emulator, then one gets a secure RAM scheme for the less secure architecture.
This allows to do modular proofs.

1.2 Motivation and Challenges of our Model

On RAM computation vs. circuits. The reasons why we want to lift the study
of leakage and tamper resilience to the RAM setting are motivated by practice.
It is well known that computing a function using a circuit instead of a RAM
can yield a quadratic blow-up in complexity. Even worse, in a setting as ours,
where the data (the encoding of K) is already laid out, the complexity can suffer
an exponential blow-up, if a given activation only reads a small part of the key.

A Tamper and Leakage Resilient von Neumann Architecture 583

Furthermore, it seems a simpler task in practice to produce a lot of tamper proof
copies of a small universal piece of hardware than to produce different tamper
proof circuits for different desired functionalities.

On the trusted CPU assumption. As non-malleable codes typically do not have
any homomorphic properties that enable computation,1 we assume a tamper and
leakage-proof CPU that carries out decoding. The CPU is the only part of the
computation that is completely trusted. Notice that while its inputs and outputs
may be subject to leakage and tampering attacks, its computation does not leak
and its execution is carried out un-tampered. Our CPU is small and independent
of the functionality to protect: it merely reads a constant number of encodings
from disk, decodes them, executes some instruction (that can be as simple as a
NAND operation) and writes the encoded result back to the disk. Notice that
in contrast to earlier work on tamper resilient compilers based on non-malleable
codes [16,17,27], we allow tampering with intermediate values produced by the
program code, and in fact even with the program code itself. Our result hence can
be interpreted as a much more granular model of computation than [16,17,27].

One may object that given such a powerful tamper-proof component a solu-
tion for tamper and leakage resilience is simple. Let us take a look at an adversary
that can apply powerful tampering functions to the state of the disk between
executions of the CPU. To this end, observe that the notion of non-malleable
codes only guarantees that one cannot change the encoded value to some related
value. Nothing, however hinders the adversary to just overwrite an encoding with
a valid encoding of some fixed (known) value. Notice that such an attack may
not only make it impossible to achieve simulation-based security, but moreover
can completely break the scheme.2 The adversary can also copy valid encodings
from some place of the computation to different portions. For instance, he may
attempt to copy the encoding of the secret key directly to the output of the
program. Our transformation prevents these and other attacks by tying together
all encodings with the secret key and the description of the compiled function-
ality. Hence, any attempt to change any intermediate encoding will destroy the
functionality, including the key.

In summary, we show how to reduce the problem of protecting arbitrary
computation against continuous leakage and tampering attacks in the split-state
model, to shielding a simple and universal component. We notice that while our
work minimizes the trusted hardware assumption made in non-malleable code
based compilers, our trusted CPU is significantly more complex than tamper-
proof hardware that has been used in works on tamper resilient circuits (cf.
Section 1.4 for more details on this).

On the counters. In our model the CPU has public untamperable counters. The
reason is that in order to tolerate leakage from the buses (connecting the CPU
1 In fact, a homomorphism would in many cases contradict the non-malleability prop-

erty of the code.
2 Consider a contrived program that outputs the secret key if a certain status bit is

set to 0, but otherwise behaves normally.

584 S. Faust et al.

and the disk), we must make sure that the state of the CPU changes after each
step. Otherwise, one may execute the following “reset-and-leak attack”. The
tampering functions can reset the disk to previous states an unbounded number
of times, and without the counters, the CPU is also always in the same state at
the start of an execution, so it would read the same values repeatedly. Notice
that, as we allow leakage from the buses, each time the CPU loads a value it
leaks through the bus. So, loading any value repeatedly an unbounded number
of times implies that all the values on the disk could eventually be leaked at
some point. We also stress that we pick a public value for this purpose and not a
secret register as we want to minimize the assumption on the hardware—and of
course secret un-tamperable memory is a much stronger assumption than public
un-tamperable memory.

Moreover, assuming only counters makes our model a strict generalization
of the circuit model: we can make an equivalent circuit where each gate can be
thought of as one invocation of the CPU. Each gate will be identical to the CPU,
except that it has the appropriate counters hard-coded into it. Assuming secret
registers would not make such a transformation to circuitry possible.

On the self-destruct bit. In addition to the counter we use a tamper-proof “self-
destruct” bit in our construction. Firstly, such bit is used to serve the same
purpose as in the tamper-resilient compiler of [17]: it acts as a flag indicating
that tampering has been detected for the first time and, if the execution does
not stop at this point, the adversary can continue to learn information on the
codeword (eventually recovering the whole codeword) which should, of course,
be prevented.3 Moreover, one may notice that without having a self-destruct
bit, it is impossible to tolerate leakage from the buses. Consider, again, the
“reset-and-leak attack” described above. The untamperable program counter
enables the CPU to detect that a “reset” has taken place (i.e., values read from
the disk do not match its internal state). However, at this point it is too late: the
values were already on the buses, and hence subject to leakage. In this case the
self-destruct bit allows the CPU to stop execution the first time such tampering
is detected.

We also stress that having one bit, which is in fact “one-time writable”, is
optimal. Moreover, this seems as a reasonable hardware assumption: one can
think of the CPU having a fuse that it can blow once (and check if it was ever
blown).

On minimizing hardware assumptions. We emphasize that the main goal of this
work is to study feasibility to securely execute any computation in the presence
of very strong leakage and tampering attacks (in particular we consider arbitrary
continuous leakage from buses and arbitrary tampering in the split-state model).
We show that indeed this can be achieved by a simple, universal, constant-size
3 For example, the tampering function can make the codeword “valid” or “invalid”

depending on the first bit of the codeword, and hence learn the first bit based on
the outcome.

A Tamper and Leakage Resilient von Neumann Architecture 585

CPU that is fully trusted. The CPU does not keep any secret state, and only
has a short public un-tamperable memory that keeps the program counter (of
size logarithmic in the security parameter) and the self-destruct bit. We notice
that one can develop easier solutions if the CPU can keep a large, mutable,
secret state between executions. In this case the CPU could encrypt the disk
and authenticate it using, e.g., a Merkle tree. Of course, keeping a secret state
between executions of the CPU is a much stronger hardware assumption.

1.3 Our Techniques

We construct our RAM scheme in two steps. We first formulate a hybrid model,
which is a wishful RAM architecture where there is no leakage from the disk, no
leakage from the bus and where the only allowed tampering is of the following
types: (i) the adversary might copy a word from one position of the disk to
another position on the disk (without looking at the value), and (ii) he might
overwrite a position on the disk with a word of an arbitrary choice. As a first step
we show how to compile securely to this hybrid platform. We then show how to
use a non-malleable code to emulate this platform. Below we first describe the
compiler, and then the emulator.

The compiler. We construct a RAM scheme for the hybrid architecture described
above. We need to mitigate the fact that the adversary can overwrite values and
copy them around. At setup, a secret label L is sampled uniformly at random
and stored in the first position of the secret disk. Then, each value on the disk
is “augmented” with the following information: (i) The position j at which the
value was meant to be stored; (ii) The secret label L; and (iii) The values (a, p)
of the activation counter ac and the program counter pc when the value was
written on disk. Intuitively, adding the secret label (which is unknown to the
adversary) prevents the adversary from replacing values from different positions
of the secret disk with values that do not have the right label (notice that
this label is long enough such that it cannot be guessed by the adversary). This
ensures that all the values containing the label are either from the pre-processing
or computed and stored by the CPU. Hence, they are in a way “authenticated”
by the computation and not introduced by the adversary. On the other hand,
the position j prevents the adversary from copying the corresponding value to
a location different from j, as the CPU will check that j matches the position
from which the value was read.

Note that the adversary can still replace a value at location j with an older
value that was stored at location j before, essentially with the goal of resetting
the scheme to a previous valid state. By checking the values a and p with the
current values of the activation and program counters of the CPU, the CPU
can detect such resetting attacks and self-destruct if necessary. Our analysis
(see Section 6) shows that the probability that an adversary manages to replace
some value on the secret disk (putting the correct label) without generating a
self-destruct, is exponentially small in the security parameter. The use of the
label to prevent moving and resetting values along with the structure of the

586 S. Faust et al.

compiled program makes our hybrid compiler so-called c-bounded, as required
by the emulator (see below).

Notice that this compiler uses no cryptography, so it is information-theoretic
secure. Hence, if we can emulate the hybrid architecture with information-
theoretic security, the overall security will be information theoretic!

The emulator. The basic idea of the emulator is simple. Given a RAM scheme
for the hybrid model and a non-malleable code, each value of the disk is encoded
using the code. The CPU will then decode the values after loading them, compute
as the CPU of the hybrid scheme and then encode the results and put them back
on disk. Intuitively, a non-malleable code has the property that if a codeword is
changed it either becomes invalid or an encoding of an unrelated value (known
by the adversary). Since codewords can of course be copied around without
modifying them, it seems intuitive that the above emulator should work if the
RAM only allows leakage and tampering that the code is designed to tolerate. We
can in fact take this as an informal definition and say that a given non-malleable
code fits a given RAM architecture (given by the CPU and the adversary class)
if for all hybrid schemes the natural emulator sketched above securely emulates
the hybrid scheme. With this definition, we tautologically get that if there is a
non-malleable code fitting a given RAM architecture, then there is also a secure
RAM scheme for that architecture, namely apply the natural emulator to our
secure compiler from above.

We exemplify our approach by showing that the split-state continuous non-
malleable code (CNMC) from [17] fits a split-state RAM, where the disk is split
into two disks and the adversary is allowed arbitrary independent tampering
of each disk. In contrast to traditional non-malleable codes, continuous non-
malleability guarantees that the code remains secure under continuous attacks
without assuming erasures. The natural emulator uses many encodings, so the
construction requires also some form of composability of non-malleable codes,
where we allow the tampering function to depend on multiple encodings together.
We can show by a generic reduction that composability is preserved for any
continuous non-malleable split-state code.4

We remark that the code construction of [17] is in the common reference
string (CRS) model, meaning that at setup a public string crs is generated and
made available to all parties. Importantly, the security of the code requires that
the adversary is not allowed to modify crs. Similarly, when one uses the code
of [17] within our framework, the CRS is assumed to be un-tamperable and
chosen by a trusted party; for instance, it can be chosen at production time and
be hard-coded into the CPU of the RAM. However, the CRS can be public, and in
particular the tampering and leakage from the disks can fully depend on it. Also
the CRS is generated once and for all, so it perfectly matches our assumption of
4 In [8] Coretti et al. show that the information theoretic construction of [16] in the

bit-wise tampering (and no leakage) model is continuously non-malleable, so in that
setting our compiler would be information theoretic, albeit only protecting against
a weaker adversary class.

A Tamper and Leakage Resilient von Neumann Architecture 587

having a universal component (the CPU) that can be used to protect arbitrary
computation. The assumption of having a public un-tamperable CRS is not new;
see, e.g., [25,27] for further discussion.

Bounding RAM scheme. We show by a reduction to the composable CNMC
that there exists a hybrid simulator, attacking the hybrid scheme and having
limited tamper access (only copy and replace), that produces a distribution that
is indistinguishable from the execution of the emulated RAM scheme in the
real world. For this reduction to work, it is important that the hybrid scheme
being emulated has a property called c-boundedness. Informally, this notion says
that each value on the secret disk is touched at most c times, for a constant c.
Without this property, the emulator would touch the corresponding codeword
an unbounded number of times, and continuous leakage from the buses would
reveal the entire code. Our compiler is constructed to have this property. Notice
that it is in particular difficult to achieve c-bounded schemes in the presence of
tampering, as the hybrid adversary may several times move a given value to the
next position on the secret disk read by the CPU.

1.4 Other Related Work

Many recent works have studied the security of specific cryptographic schemes
(e.g., public key encryption, signatures or pseudorandom functions) against tam-
pering attacks [3–5,13,25,30]). While these works often consider a stronger tam-
pering model and make less assumptions about tamper-proof hardware, they do
not work for arbitrary functionalities.

Leakage and tamper-proof circuits. A large body of work studies the security of
Boolean circuits against leakage attacks [14,21,22,24,28,29]. While most works
on leakage resilient circuit compilers require leakage-proof hardware, the break-
through work of Goldwasser and Rothblum [22] shows how to completely elimi-
nate leak-proof hardware for leakage in the split-state setting. It is an interesting
open question, if one can use the compiler of [22] to implement our CPU and
allow leakage also from its execution. We emphasize that most of the work on
leakage resilient circuit compilers does not consider tampering attacks.

The concept of tamper resilient circuits has been introduced by Ishai, Prab-
hakaran, Sahai and Wagner [23] and further studied in [10,11,20,23,26]. On
the upside such compilers require simpler tamper-proof hardware,5 but study a
weaker tampering model. Concretely, they assume that an adversary can tam-
per with individual wires (or constant size gates [26]) independently. That is,
the adversary can set the bit carried on a wire to 1, set it to 0 or toggle its
value. Moreover, it is assumed that in each execution at least a constant fraction
5 To the best of our knowledge each of these compilers requires a tamper-proof gate

that operates on at least k inputs where k is the security parameter. Asymptotically,
this is also the case for our CPU, while clearly from a practical perspective our
tamper-proof hardware is significantly more complex.

588 S. Faust et al.

of the wires is not tampered at all.6 Our model considers a much richer family
of tampering attacks. In particular, we allow the adversary to arbitrarily tam-
per with the entire content of the two disks, as long as the tampering is done
independently. In fact, our model even allows the adversary to tamper with the
functionality as the program code is read from the disk. Translating this to a
circuit model would essentially allow the adversary to “re-wire” the circuit.

Finally, we notice that our RAM model can be thought of, in fact, as a
generalization of the circuit model where the RAM program can be, e.g., a
Boolean circuit and the CPU evaluates NAND gates on encodings.

Concurrent and independent work. A concurrent and independent paper [12]
gives a related result on protecting RAM schemes against memory leakage and
tampering. The main difference with the setting considered in this paper is
that their model does not cover “reset attacks”, i.e., the tampering functions
are not allowed to keep a backup storage where previous codewords are stored
and continuously tampered. This is enforced in their construction by assuming
perfect erasures.

Technically the solutions are very different. Instead of encoding each element
on the disk via a non-malleable code, the scheme of [12] encodes only the reg-
isters of the CPU to virtually equip it with secret registers, and then uses disk
encryption to secure the disk; this can be phrased as using a non-malleable code
with local properties. Finally, the scheme of [12] incorporates directly an ORAM,
whereas we propose to view this as a separate step. First applying an ORAM
and then our compiler will yield a scheme with the same asymptotic complexity
of the one in [12]. However, as long as non-malleable codes are less efficient in
practice than symmetric encryption, the scheme of [12] appears more practical.
On the other hand, if we base our construction on an information theoretically
secure code, the whole construction has unconditionally security. The solution
in [12] is inherently computational.

2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] := {1, . . . , n}. Given a set X , we write x ← X to denote
that element x is sampled uniformly from X . If A is an algorithm, y ← A(x)
denotes an execution of A with input x and output y; if A is randomized, then
y is a random variable.

Let k ∈ N be a security parameter. We use negl(k) to denote a negligible
function on k. Given two random variables X1 and X2, we write X1 ≈c X2 to
denote that X1 and X2 are computationally indistinguishable meaning that for
all PPT algorithms A we have that Pr[A(X1) = 1] − Pr[A(X2) = 1] ≤ negl(k).

6 In [20,23] it is allowed that faults are persistent so at some point the entire circuitry
may be subject to tampering.

A Tamper and Leakage Resilient von Neumann Architecture 589

2.2 Continuous Non-malleable Codes

In this paper we consider non-malleable codes in the split-state setting and
omit to mention it explicitly for the rest of the paper. A split-state encod-
ing scheme C = (Init,Encode,Decode), is a triple of algorithms specified as
follows: (1) Init, takes as input the security parameter and outputs a public
common reference string crs ← Init(1k); (2) Encode, takes as input a string
x ∈ {0, 1}�, for some fixed integer �, and the public parameters, and outputs
a codeword c = (c0, c1) ← Encode(crs, x) where c ∈ {0, 1}2n; (3) Decode,
takes as input a codeword c ∈ {0, 1}2n and the public parameters, and out-
puts a value x = Decode(crs, c) where x ∈ {0, 1}� ∪ {⊥}. We require that
Decode(crs,Encode(crs, x)) = x for all x ∈ {0, 1}� and for all crs ← Init(1k).
Moreover, for any two inputs x0, x1 (|x0| = |x1|) and any efficient function T0,T1

the probability that the adversary guesses the bit b in the following game is negli-
gible: (i) sample b ← {0, 1} and compute (c0, c1) ← Encode(crs, xb), and (ii) the
adversary obtains Decode∗(T0(c0),T1(c1)), where Decode∗ is as Decode except
that it returns a special symbol same� if (T0(c0),T1(c1)) = (c0, c1).

The above one-shot game has been extended to the continuous setting in [17],
where the adversary may tamper continuously with the encoding. In contrast
to the above game, the adversary here obtains access to a tampering oracle
Oq

cnm((c0, c1), ·), where (c0, c1) is an encoding of either x0 or x1. The oracle
can be queried up to q times with input functions T0,T1 : {0, 1}n → {0, 1}n

and returns either same� (in case (T0(c0),T1(c1)) = (c0, c1)), or ⊥ (in case
Decode(crs, (T0(c0),T1(c1))) = ⊥), or (T0(c0),T1(c1)) in all other cases. The
only additional restriction is that whenever ⊥ is returned the oracle answers all
further queries with ⊥ (a.k.a. “self-destruct”). Furthermore, in the construction
of [17] the adversary has access to leakage oracles Olbcode(c0, ·), Olbcode(c1, ·), that
can be queried to retrieve up to lbcode bits of information on each half of the
target encoding. The access to the leakage oracles will be useful in our setting
to obtain continuous leakage resilience on the buses. We refer the reader to the
full version of this paper [18] for a precise definition of continuous non-malleable
leakage resilient (CNMLR) codes.

Composability. We also introduce a notion of adaptive composability for CNMLR
codes, where the adversary can specify two vectors of messages x0 = (x1

0, . . . , x
m
0)

and x1 = (x1
1, . . . , x

m
1) (such that |xi

0| = |xi
1|) and the oracle Oq

cnm(c, ·) is
parametrized by a vector of encodings c = (c0, c1) = ((c10, . . . , c

m
0), (c11, . . . , c

m
1))

corresponding to either x0 or x1 (depending on the secret bit b above). The tam-
pering functions now have a type T0,T1 : ({0, 1}n)m → {0, 1}n, and the oracle
returns (same�, i) in case c′ = (ci

0, c
i
1) for some i ∈ [m]. The leakage oracles are

also parametrized by c0 and c1 and the adversary can leak up to lbcode bits from
each codeword.

Roughly a CNMLR code is adaptively m-composable if no PPT adversary
can guess the value of b with noticeable advantage, even in case the messages in
the two vectors x0, x1 are not fixed at the beginning of the game, but instead

590 S. Faust et al.

can be chosen adaptively when the game proceeds. A formal definition, together
with a proof of the following theorem can be found in the full version.

Theorem 1. Let C = (Init,Encode,Decode) be a (lbcode, q)-CNMLR code. Then
C is also adaptively m-composable for any polynomial m = poly(k).

3 A Generic Leakage and Tamper Resilient RAM

In this section we describe our model of a generic random access machine (RAM)
architecture with a leakage and tamper resilient CPU and with memory and
buses, which are subject to leakage. Our RAM architecture is meant to imple-
ment some keyed functionality GK, e.g., an AES running with key K taking
as input messages and producing the corresponding ciphertexts, but the model
also applies to more general computations. The RAM has one tamperable and
leaky disk D, and one CPU, which has a size independent of the function to be
computed. We interchangeably denote the memory used by the CPU by “disk”,
“storage” and “memory”; this might physically be any kind of storage that the
CPU can access. We assume there is a leak-free and tamper-free pre-processing
phase, which outputs an encoding of the functionality GK. One can think of this
as a separate phase where a compiler is run, possibly on a different, more secure
machine.

The initial encoding consists of data and instructions, which we store on the
disk. The input and output of the function (that can be chosen by the user
of the RAM) is stored in some specific locations on the disk (say, right after
the program). We allow the exact location of the input and output parameters
to be program specific, but assume that access to the disk allows to efficiently
determine the input and output (in case the disk was not tampered). In the
online phase, the CPU loads an instruction and data from the disk (as specified
by the instruction). Reading from the disk might involve reading part of the
input. Then it computes and stores back the intermediate results on the disk,
and processes the next instruction. The next instruction is found on the disk at
the location given by a program counter pc, which is incremented by one in each
invocation of the CPU and which is reset when the CPU raises a flag T = 1.
Writing to the disk could involve writing part of the output. The adversary is
allowed to tamper and to leak from the disk between each two invocations of
the CPU; furthermore the adversary is allowed to leak from the bus carrying the
information between the CPU and the disk. In the following, we give a formal
presentation of our model.

Specification of RAM. We use parameters w, τ, d, k ∈ N below, where w is the
word length, τ is length of an instruction type, d specifies the number of argu-
ments of an instruction, and k is the security parameter. We require w ≥ τ +2kd.
We let the disk D be of length 2k. This is just a convenient convention to avoid
specifying a fixed polynomial-size disk. A poly-time program will access only
polynomially many positions in the disk and all positions not yet written are

A Tamper and Leakage Resilient von Neumann Architecture 591

by convention 0w, so a disk D can at any time be represented by a poly-sized
data structure. When we pass disks around in the below description, we mean
that we pass such a poly-sized representation. We index a disk with i ∈ [2k].
We also index the disk with bit-strings i ∈ {0, 1}∗, by considering them binary
numbers and then taking the result mod2k. An (τ, d)-bounded instruction I
is defined as a quadruple (Y, I,O,Aux) where, Y ∈ {0, 1}τ , I,O ∈ [2k]d and
Aux ∈ {0, 1}w−(τ+2kd). One may think of Y as the type of operation (e.g., a
NAND operation) that is computed by the instruction. The d-tuples I,O define
the position on the disk where to read the inputs and where to write the outputs
of the instruction. The string Aux is just auxiliary information used to pad to
the right length. When we do not write it explicitly we assume it is all-0.

Formally, a RAM R is specified by R = (w, τ, d, Init,Random,Compute) and
consists of:

1. A disk D ∈ ({0, 1}w)2
k

.
2. Init: An algorithm that takes as input the security parameter 1k, and returns

a public common reference string crs ← Init(1k) (to be hard-coded into the
CPU).

3. CPU: A procedure which is formally written as pseudo-code in Fig. 1. The
CPU is connected to the disk by a bus Bs, which is used to load and store data.
It has 2d+1 internal temporary registers: d+1 input registers (R0, R1, . . . , Rd)
and d output registers (O1, . . . , Od); each register can store w bits. CPU has
the public parameters crs hard-coded, and takes as inputs data sent through
the bus, a strictly increasing activation7 counter ac, and a program counter
pc which is strictly increasing within one activation and reset between acti-
vations. The CPU runs in three steps: (i) d loads, (ii) 1 computation and
(iii) d stores. In the computation step CPU calls Random and Compute to
generate fresh randomness and evaluate the instruction.
(a) Random: This algorithm is used to sample randomness r.
(b) Compute: This algorithm will evaluate one particular instruction. To this

end, it takes data from the temporary registers (R0, . . . , Rd), the counters
ac, pc and the randomness r ← Random as input and outputs the data to
be stored into the output registers (O1, . . . , Od), the self-destruct indicator
bit B which indicates if CPU needs to stop execution, and the completion
indicator bit T which indicates the completion of the current activation.

CPU outputs the possibly updated disk D, the self-destruct indicator (B) and
the completion indicator (T). Notice that the CPU does not need to take B
and T as input as these bits are only written.

Running the RAM involves iteratively executing the CPU. In between exe-
cutions of the CPU we increment pc. When the CPU returns T = 1 we reset
pc = 0 and increment the activation counter ac. When the CPU returns B = 1,
the CPU self-destructs. After this no more execution of the CPU takes place.
7 We call the time in which the RAM computes the output GK(x) for single x one

activation, and the time in which the procedure CPU is run once, one execution.

592 S. Faust et al.

Input: (crs, D, pc, ac, LeakBs)
// Loading...

Parse D[pc] as an instruction (Y, I,O,Aux)
Load R0 ← (Y, I,O,Aux)
Initialize the bus Bs = (pc, R0)
for j = 1 → d do

Let locj = I[j] // Load input from disk at position I[j]
Load Rj ← D[locj]
Set Bs ← (Bs, locj , Rj) // Write data from disk to bus

end for
// Computing...

Sample r ← Random
Compute ((O1, . . . , Od), B, T) ← Compute(crs, (R0, R1, . . . , Rd), r, pc, ac)

// Storing...
for j = 1 → d do

Let locj = O[j]
Store D[locj] ← Oj // Store output on disk at position locj
Set Bs ← (Bs, locj , Oj)

end for
Let λBs = LeakBs(Bs) // Compute leakage from the bus
Output: (D, B, T, λBs)

Fig. 1. Algorithm CPU

Input and output to the program will be specified via the user/adversary
reading and writing the disk. We therefore need a section of the disk that can be
read and written at will. We call this the public section. We will model this by
given the adversary full read/write access to Dpub = D[0, 2k−1 − 1] and limited
access to Dsec = D[2k−1, 2k − 1]. We call Dpub the public disk and we call Dsec

the secret disk. Note that D = Dpub‖Dsec. Also note that the CPU is taking
instructions from the public disk; this means that protecting the access pattern
of the program has to be done explicitly.

RAM schemes. Informally, a RAM compiler C takes as input the description of
a functionality G with secret key K, and outputs an encoding of the functionality
itself, to be executed on a RAM R. Formally, a RAM compiler C for R is a PPT
algorithm which takes a keyed-function description G and a key K ∈ {0, 1}∗ as
input, and outputs an encoding of the form ((�P , I, �I , O, �O,X ,Y), ω), called
the program. Here ω = (ωpub, ωsec) such that ωpub, ωsec ∈ ({0, 1}w)� for � ≤ 2k−1.
When we say that we store ω on the disk we mean that we pad both of ωpub, ωsec

with 0s until they have length 2k−1, giving values ω′
pub, ω

′
sec and then we assign

ω′
pub‖ω′

sec to D. We write �P for the program length, I ≥ �P for the position where
the input will be put on the disk, �I for the length of the input, O ≥ I+�I for the
position where the output is put on the disk, and �O for the length of the output
such that O + �O ≤ 2k−1. We think of the positions 0 to �P − 1 as consisting of
instructions, but make no formal requirement. The mappings X ,Y are used to

A Tamper and Leakage Resilient von Neumann Architecture 593

parse the inputs (resp., the outputs) of the RAM as a certain number of words
of length w (resp., as a value in the range of GK).

We introduce a class G of functionalities G that a compiler is supposed to
be secure for (e.g., all poly-time functionalities) and a class P of programs that
a compiler is supposed to compile to (e.g., all poly-time programs). We use
C : G → P to denote that on input G ∈ G, the compiler C outputs a program
in P.

We define a RAM scheme RS as the ordered pair (C,R) such that R is a RAM
and C a compiler for R. The correctness of a RAM scheme is formalized via a
game where we compare the execution of the RAM with the output of the original
functionality GK, upon an arbitrary sequence of inputs (x1, . . . , xN). Below we
define what it means for a RAM scheme RS = (C,R) to be correct. Informally,
the definition says that for any tuple of inputs (x1, . . . , xN) the execution of the
RAM R and the evaluation of the function GK have identical output distributions
except with negligible probability. This is formalized below.

Definition 1 (Correctness of a RAM Scheme). We say a RAM scheme
RS is correct (for function class G and program class P) if RS.C : G → P,
and for any function G ∈ G, any key K ∈ {0, 1}∗, and any vector of inputs
(x1, . . . , xN) it holds that Pr[Game

Real
hon (x1, . . . , xN) = 0] ≤ negl(k), where the

experiment Game
Real
hon (x1, . . . , xN) is defined as follows:

– Sample crs ← R.Init(1k).
– Run the compiler C on crs, (G,K) to generate the encoding ((I, �I , O, �O,X ,

Y), ω) ← C(crs, (G,K)), and store it into the disk of R as in D ← ω.
– For i = 1 → N proceed as follows. Encode the input (xi,0, . . . , xi,�I−1) ←

X (xi), store it on the disk D[I + j] ← xi,j (for 0 ≤ j < �I) and run the
following activation loop:
1. Let ac ← i and pc ← 0.
2. Run CPU and update the disk (D, B, T) ← CPU(crs,D, pc, ac).8

3. If B = 1 return 0 and halt.
4. If T = 0, then increment the program counter pc ← pc + 1 and go to

Step 2. If T = 1, let yi ← Y(D[O], . . . , D[O + �O − 1]). If yi �= GK(xi),
then return 0 and halt.

– Return 1.

Security. We now proceed to define security of a RAM scheme, using the real-
ideal paradigm. In the following we let k denote the security parameter. Consider
a RAM scheme RS = (C,R). First we run C, which takes the description of G
and a key K as inputs and generates an encoding of the form ((I, �I , O, �O,X ,Y),
ω). Then we store ω on the disk D and we advance to the online phase where
the adversary A can run R on inputs of his choice. Formally, he is allowed to
arbitrarily read from and write to Dpub and therefore also D[I], . . . , D[I + �I −1]
and D[O], . . . , D[O + �O − 1]. Moreover, A can tamper with the secret disk D

8 When we do not specify a leakage function, we assume that it is the constant function
outputting the empty string, and we ignore the leakage in the output vector.

594 S. Faust et al.

1. Initialization: Sample crs ← R.Init(1k). Sample the key K according to the
distribution needed by the primitive. Initialize the activation counter ac ← 0,
the program counter pc ← 0, the self-destruct bit B ← 0, and the activation
indicator T ← 0.

2. Pre-processing: Sample an encoding by running the compiler (P, ωpub, ωsec) ←
C(crs, (G,K)), where P = (I, �I , O, �O, X , Y). Store the encoding ω =
(ωpub, ωsec) into the disk D. Give (crs, P, ωpub) to A.

3. Online: Get command CMD from A and act as follows according to the
command-type.
(a) If CMD = (STOP,Oreal) then return Oreal and halt.
(b) If CMD = (LEAK, Leak), compute λ ← Leak(D) and give λ to A.
(c) If CMD = (TAMPER,Tamper) then modify D using the tampering function:

D ← Tamper(D).
(d) If CMD = (EXEC, Leak, D′) and B = 0 then proceed as follows:

i. Update the public disk Dpub ← D′.
ii. Run CPU and update the disk: (D, B, T, λBs) ← CPU(crs, D, pc, ac,

Leak).
iii. Give (T, λBs, Dpub) to A.
iv. Check the completion of current activation: If T = 1 then start a new

activation by incrementing the activation counter: ac ← ac + 1 and
re-initializing the program counter: pc ← 0.

v. Increment the program counter: pc ← pc + 1 and go to Step 3.

Fig. 2. Real Execution RealRS,A,G(k)

between each execution of the CPU. He specifies a function Tamper and the
effect is that the disk is changes to D ← Tamper(D). The adversary can also
leak from the disk between executions. He specifies a function Leak and he is
given Leak(D). The adversary also decides when the CPU is invoked, and it gets
to specify a leakage function LeakBs for each invocation obtaining λBs as defined
in Fig.1. Besides the leakage from the bus, the procedure CPU is leakage and
tamper proof.

We introduce the notion of an adversary class. This is just a subset A of
all adversaries. As an example, A might be the set of A which leak at most 42
bits in total from the disk and which does the tampering in a split-state manner
(more about this in the following).

We write RealRS,A,G(k) for the output distribution in the real execution and
we let RealRS,A,G = {RealRS,A,G(k)}k∈N. For a formal description see Fig. 2.
A few remarks to the description are in order.

– Adaptivity. We stress that by writing the disk, the adversary is allowed to
query the RAM on adaptively chosen inputs. Also note that the adversary
can always hard-wire known values into a tampering command (e.g., values
that were already leaked from the disk), and specify a tampering function
that changes the content of the disk depending on the hard-wired values.

A Tamper and Leakage Resilient von Neumann Architecture 595

– Tampering within executions. Notice that the adversary is not allowed to
tamper between two executions of the CPU. This is without loss of generality,
as later we will allow the adversary to know the exact sequence of locations
to be read by the CPU and hence, equivalently, the adversary can just load
some location, tamper and then execute before loading the next location.
This is possible because our RAMs do not allow indirection as in loading
e.g. D[D[127]].

– On the CRS. In case no common reference string is required by the RAM
scheme, we simply assume that R.Init outputs the empty string. In such a
case we sometimes avoid to write crs as input of C, CPU and Compute.

In the ideal execution, the ideal functionality for evaluating G interacts with
the ideal adversary called the simulator S as follows. First sample a key K and
repeat the following until a value is returned: Get a command from S and act
differently according to the command-type.

– If CMD = (STOP,Oideal), then return Oideal and halt.
– If CMD = (EVAL, x), give GK(x) to S.

We write IdealS,G(k) for the output distribution in the ideal execution and we
let IdealS,G = {IdealS,G(k)}k∈N.

Definition 2 (Security of a RAM Scheme). We say a RAM scheme RS is
A-secure (for function class G and program class P) if RS.C : G → P and if for
any function G ∈ G and any A ∈ A there exists a PPT simulator S such that
RealRS,A,G ≈c IdealS,G.

We introduce a notion of emulation, which facilitates designing compilers
for less secure RAMs via compilers for more secure RAMs. We call a set S of
RAM schemes a class if there exists G and P such that for all RS ∈ S it holds
that RS.C : G → P. We write S : G → P. An emulator is a poly-time function
E : S1 → S2, where S1 and S2 are RAM scheme classes S1 : G → P1 and
S2 : G → P2. I.e., given a RAM scheme RS1 ∈ S1 for some function class G, the
emulator outputs another RAM scheme RS2 ∈ S2 for the same function class.

Definition 3 (Secure Emulation). Let S1 : G → P1 and S2 : G → P2

be RAM scheme classes and let E : S1 → S2 be an emulator. We say that E
is (A1,A2)-secure if for all RS1 ∈ S1 and RS2 = E(RS1) and G ∈ G and all
A2 ∈ A2 there exists a A1 ∈ A1 such that RealRS1,A1,G ≈c RealRS2,A2,G.

The following theorem is immediate.

Theorem 2. Let E : S1 → S2 be an emulator. If E is (A1,A2)-secure and
RS1 ∈ S1 is A1-secure, then RS2 = E(RS1) is A2-secure.

4 Main Theorem

Our main result is a secure RAM scheme for the so-called split-state model,
which we review below. This particular model can be cast as a special cases of

596 S. Faust et al.

our generic RAM model. We use sp to denote the components of the split-state
model, i.e., RSsp = (Csp,Rsp) and the adversary class is called Asp.

In the split-state model we consider the secret disk Dsec split into two parts
D1 and D2, and we require that leakage and tampering is done independently
on the two parts. I.e., each position Dsec[i] on the secret disk is split into two
parts D1[i] and D2[i] of equal length such that Dsec[i] = D1[i]‖D2[i]. We let
D1 = (D1[2k−1], . . . , D1[2k−1]) and D2 = (D2[2k−1], . . . , D2[2k−1]). The set Asp

consists of all poly-time algorithms which never violate the following restrictions.

Tampering. We require that a tampering function is of the form
Tampersp = (Tampersp1 ,Tampersp2) and we let Tampersp(Dpub‖Dsec) =
Dpub‖(Tampersp1 (D1),Tampersp2 (D2)). Beside being split like this, there is no
restriction on the tampering, i.e., each part of the secret disk can be arbi-
trarily tampered.

Disk Leakage. We also require that a disk leakage function is of the
form Leaksp = (Leaksp1 , Leaksp2) and we let Leaksp(Dpub‖Dsec) =
(Leaksp1 (D1), Leak

sp
2 (D2)). Beside being split like this, we introduce a leak-

age bound lbdisk and we require that the sum of the length of the leakage
returned by all the leakage functions Leakspi is less than lbdisk.

Bus Leakage. We require that a bus leakage function is of the form Leaksp =
(Leaksp1 , Leaksp2). For a bus (i0,D[i0], i1,D[i1], . . . , i1+2d,D[i1+2d]) we let B =
(D[i1], . . . , D[i1+2d]) and we split B into two parts B1 and B2 by splitting
each word, as done for the disk; the returned leakage is then (i0, i1, i2, . . . ,
i1+2d, Leak

sp
1 (B1), Leak

sp
2 (B2)). Beside being split like this, we introduce a

leakage bound lbbus and we require that the length of the leakage returned
by each function Leakspi is less than lbbus.

Note that by definition of the bus leakage, the CPU always leaks the program
counter and the memory positions that are being read. Besides this it gives
independent, bounded leakage on the parts of the words read up from the disk.
Since the leakage and tamper classes for a split-state RAM are fully specified by
lbdisk and lbbus we will denote the adversary class for a split-state RAM simply
by Asp = (lbdisk, lbbus). Let Ssp denote the class of split-state RAM schemes. We
are now ready to state our main theorem.

Theorem 3 (Main Theorem). Let C be a (lbcode, q)-CNMLR code. There
exists an efficient RAM scheme RS ∈ S

sp and a constant c = O(1) such that RS
is (lbdisk, lbbus)-secure whenever lbdisk + (c + 1)lbbus ≤ lbcode.

The proof of the above theorem follows in two steps. We first define an inter-
mediate model, which we call the hybrid model, where the adversary is only
allowed a very limited form of leakage and tampering. For this model, we give
a hybrid-to-split-state emulator (cf. Theorem 4 in Section 5). Then, we exhibit
a RAM scheme that is secure in the hybrid model (cf. Theorem 5 in Section 6).
Putting the above two things together with Theorem 2 concludes the proof of
Theorem 3.

A Tamper and Leakage Resilient von Neumann Architecture 597

5 Hybrid-to-Split-State Emulator

We introduce an intermediate security model where the adversary is given only
limited tampering/leakage capabilities. We call this model the hybrid model, and
a RAM that is secure in this model is called a hybrid RAM; as for the split-
state model, also the hybrid model can be cast as a special case of our generic
RAM model. We use hb to denote the components of the hybrid model, i.e.,
RShb = (Chb,Rhb) and we call the adversary class Ahb.

5.1 The Hybrid Model

In the hybrid model the secret disk is not split. However, the tampering is very
restricted: we only allow the adversary to copy values within the secret disk and
to overwrite a location of the secret disk with a known value. In addition very
little leakage is allowed. The adversary class Ahb consists of all poly-time Turing
machines never violating the following restrictions.

Tampering. We require that each tampering function is a command of one of
the following forms.

– If Tamper = (COPY, (j, j′)) for j, j′ ≥ 2k−1, then update D[j′] ← D[j].
– If Tamper = (REPLACE, (j, val)) for j ≥ 2k−1 then update D[j] ← val.

Disk Leakage. There is no other disk leakage from the secret disk, i.e., the
adversary is not allowed any disk leakage queries.

Bus Leakage. There is only one allowed bus leakage function, say Leakhb = L,
so this is by definition the leakage query used on each execution of the CPU.
On this leakage query the adversary is given (i0, i1, i2, . . . , i1+2d).

Note that by definition of the bus leakage, the CPU always leaks the program
counter and the memory positions that are being read. Besides this it is given no
leakage. Since the leakage and tamper classes for a hybrid RAM are implicitly
specified, we will denote the adversary class for a hybrid RAM simply by Ahb.

Bounded-access schemes. We later want to compile programs for the hybrid
model into more realistic models by encoding the positions in the disk using a
code. Because of leakage from the bus, this only works if each value is not read
up too many times. We therefore need a notion of a program for the hybrid
model being c-bounding, meaning that such a program reads each value at most
c times, even when the program is under attack by A ∈ Ahb. To define this
notion we use two vectors Q,C ∈ N

2k . If the value stored in D[j] is necessarily
known by the adversary, then Q[j] = ⊥. Otherwise, Q[j] will be an identifier for
the possibly secret value stored in D[j], and for an identifier id = Q[j] the value
C[id] counts how many times the secret value with identifier id was accessed by
the CPU. Initially Q[j] = ⊥ for all j and C[j] = 0 for all j. After the initial
encoding ω is stored, we set Q[2k−1 + j] = j for j = 0, . . . , |ωsec| − 1. Then
let ns ← |ωsec|. We use this counter to remember the identifier for the next
secret. During execution, when the adversary executes (COPY, (j, j′)), then let

598 S. Faust et al.

Q[j′] = Q[j]. When the adversary executes (REPLACE, (j, val)), then let Q[j] = ⊥.
When the CPU executes, reading positions i0, i1, . . . , id and writing positions
j1, . . . , jd then proceed as follows. For p = 0, . . . , d, if Q[ip] �= ⊥, let C[Q[ip]] ←
C[Q[ip]]+1. Then proceed as follows. If Q[i0] = Q[i1] = · · · = Q[id] = ⊥, then let
Q[j1] = · · · = Q[jd] = ⊥. Otherwise, let (Q[j1], . . . ,Q[jd]) = (ns, . . . , ns + d − 1)
and let ns ← ns + d. Then for each ji < 2k−1, set Q[ji] ← ⊥.

We say that a hybrid RAM scheme RS is c-bounding if it holds for all G ∈
RS.C.G that if RS.C(G) is executed on RS.R under attack by A ∈ Ahb and
the above vectors are computed during the attack, then it never happens that
C[j] > c for any j. Let G denote the class of poly-time functionalities. We use
S
hb
c : G → P

hb
c to denote the class of hybrid RAM schemes which are c-bounding.

Theorem 4. Let C be a (lbcode, q)-CNMLR code. Let Asp = (lbdisk, lbbus) be a
split-state adversary class such that lbdisk + (c + 1) · lbbus ≤ lbcode. Then there
exists an (Ahb,Asp)-secure emulator E : Shbc → S

sp.

5.2 The Emulator

The proof of Theorem 4 can be found in the full version [18]; here we provide
only a high-level overview. The goal of the emulator E is to transform a hybrid
RAM scheme RShb = (Chb,Rhb) ∈ S

hb
c into a split-state RAM scheme E(RShb) =

RSsp = (Csp,Rsp). In particular, the emulator needs to specify transformations
for the components of RShb. This includes the contents of the disk as well as
the way instructions are stored and processed by the CPU. Below, we give an
overview of the construction of the emulator.

We emulate a program as follows E(�P , I, �I , O, �O,X ,Y, ωhb) = (�P , I, �I , O,
�O,X ,Y, ωsp), where we simply let ωsp

pub be ωhb
pub. Then for each j ∈ [0, |ωhb

sec|],
let ωsp

sec[j] = (ωsp
sec,1[j], ω

sp
sec,2[j]) be an encoding of ωhb

sec[j] (computed using a
CNMLR code, see Section 2). The CPU Computesp runs as follows. It reads up
the same instruction Dhb[pc] that Computehb would. Then for each additional
position Dhb[i] read up, if i < 2k−1 it lets vi = Dhb[i] and if i ≥ 2k−1 it lets
(v1,i, v2,i) = Dhb[i] and decodes (v1,i, v2,i) to vi. If any decoding fails, then
Computesp self-destructs. Otherwise it runs Computehb on the vj values. Finally,
it encodes all values vj to be stored on Dsp

sec and writes them back to disk. Then
values vj to be stored on Dsp

pub are stored in “plaintext” as vj .

Security of emulation. To argue security of emulation, we need to show that
for all adversaries A ∈ Asp there exists a simulator B ∈ Ahb able to fake A’s
view in a real execution with RSsp given only its limited leakage/tampering
capabilities (via REPLACE and COPY commands). The simulator B runs A as a
sub-routine, and works in two phases: the pre-processing and the online phase.
Initially, in the pre-processing B samples crs and creates encodings of 0 for all
the values on the secret disk using the CNMLR code, and puts dummy encodings
(v1, v2) ← Encode(crs, 0) on the corresponding simulated virtual disks. For the
positions on the public disk, the simulator can put the correct values, which is
possible as it can read ωhb

pub from Dhb
pub and ωhb

pub = ωsp
pub. Depending on the queries

A Tamper and Leakage Resilient von Neumann Architecture 599

in the online phase B will update these virtual disks in the following. TAMPER
queries are simulated easily by applying the corresponding tamper functions to
the current state of the virtual disks D1 and D2. Notice that also the leakage
from the disks and the buses will essentially be done using the contents of the
virtual disks. Hence, the main challenge of the simulation is how to keep these
virtual disks consistent with what the adversary expects to see from an EXEC
query. This is done by a rather involved case analysis and we only give the main
idea here.

We distinguish the case when all the values on the disk that are used by the
CPU to evaluate the current instruction are public (corresponding to the case
Q[j1] = · · · = Q[jd] = ⊥ in the definition of c-bounded) and the case where some
are secret. The first case may happen if the adversary A replaces the contents
of the secret disks with some encoding of his choice by tampering. Notice that
in this case the simulation is rather easy as B “knows” all the values and can
simulate the execution of the CPU (including the outputs and the new contents
of the disks). If, on the other hand, some values that are used by the CPU in the
current execution are secret, then B’s only chance to simulate A is to run CPUhb

in the hybrid game. The difficulty is to keep the state of the secret hybrid disk Dhb

consistent with the contents of the virtual disks D1,D2 maintained by A. This
is achieved by careful book-keeping and requires B to make use of his REPLACE
and COPY commands to the single secret disk Dhb. The simulator B manages this
book-keeping by using two records: (i) the vector S that stores dummy encodings
(v1, v2) corresponding to values unknown to B (either generated during the pre-
processing, or resulting from an evaluation of CPUhb on partially secret inputs);
(ii) the backup storage BP that B maintains on the hybrid disk Dhb that stores
a copy of all values that are unknown to the adversary (essentially, the values on
BP correspond to the values that the dummy encodings in S where supposed to
encode). Then the simulator can always copy the corresponding secret value to
the position on Dhb, which corresponds to the value that should have been inside
the encoding on the same position on the two virtual disks. The trick is that
each secret value, i.e., a value that would have an identifier in the definition of
c-boundedness, has an associated dummy encoding generated by the simulator
and a corresponding value on Dhb

pub. The simulator uses the book-keeping to
keep these values “lined up”. All other encodings were not generated by the
simulator, and can therefore be decoded to values independent of the values in
the dummy encodings. These therefore correspond to public values. A reduction
to continuous non-malleability then allows to replace the 0’s in the dummy
encoding by the correct values on Dhb.

6 The Hybrid Scheme

In this section we describe an O(1)-bounding, RAM scheme RShb = (Chb,Rhb)
that is secure in the hybrid model. Recall that a hybrid schemes RShb consists
of a hybrid RAM Rhb and a hybrid compiler Chb which takes a functionality G
with secret key K and outputs an encoding of the form (P, ωhb) to be executed

600 S. Faust et al.

on Rhb. The RAM Rhb consists of a CPU CPUhb, which is specified by two
functions Randomhb and Computehb. Below, we present an outline of our hybrid
RAM scheme RShb and refer the reader to the full version [18] for the details.

Overview. We assume G is described by a “regular program” (i.e., a sequence
of instructions) for computing GK in a “regular” RAM (i.e., a RAM with a disk
and a CPU without any security). This regular program essentially “encodes”
the original functionality in a format that is compatible with the underlying
RAM; for example the key is parsed as a sequence of words that are written in
the corresponding locations of the disk. The RAM needs to be neither tamper
nor leakage resilient, and the “regularity” essentially comes from the fact that
it emulates GK correctly and has no pathological behaviour, like overwriting the
key during an activation. We also need that it reads each value O(1) times. It
is easy to see that one can always translate the functionality into such a regular
program, generically, using, e.g., a bounded fan-out circuit layed out as a RAM
program. We refer the reader to the full version for the complete specifications.

Let G be the class of poly-time keyed functions G· (each described a regular
program as outlined above). We show the following theorem.

Theorem 5. There exists an Ahb-secure RAM scheme RShb = (Chb,Rhb) for
function class G and program class P

hb
c for c = O(1).

The hybrid scheme. Our hybrid compiler Chb takes as input G ∈ G and is
supposed to produce a compiled program (during the pre-processing phase) to be
run by the hybrid RAM Rhb (during the on-line phase). The compiled program
is placed on the disk from which CPUhb reads in sequence. Our CPU CPUhb =
(Computehb,Randomhb) will be deterministic, and hence Randomhb just outputs
the empty string at each invocation. This means that we only have to specify the
compiler Chb and the function Computehb for a complete specification of RShb.

Recall that the adversary in a hybrid execution is only allowed a limited form
of tampering, by which he can copy values within the secret disk and replace
some value with a known one. The main idea will be to store the regular program
(and all intermediary values) in the disk; each value will be stored in a special
“augmented” form. The augmentation includes: (a) A secret label L (sampled
once and for all at setup, and thus unknown to the adversary); (b) The position
j at which the value is stored; (c) The current values (a, p) of the activation and
program counters (ac, pc) when the value was written. Intuitively, the secret
label ensures that the adversary cannot use the “replace” command as that
would require to guess the value of the label. On the other hand the position
j will allow the CPU to check that it loaded a value from the right position,
preventing the adversary to use the “copy” command to move values created by
the CPU (or at setup) to another location. Finally, the pair (a, p) prevents the
adversary from swapping values sharing the same L and the same j (i.e., trying
to reset the CPU by forcing it the CPU to re-use a previously encoded value).

Whenever algorithm Computehb of the CPU loads some instruction, it uses
the above augmented encodings to check that it is loading the right instruction,

A Tamper and Leakage Resilient von Neumann Architecture 601

that the correct location was read, that the label matches, and that the counters
are consistent; if any of the above fails, it self-destructs. Otherwise, it runs the
specific instruction of the emulated regular program, and writes the resulting
value to the disk (in the augmented form). A detailed description can be found
in the full version of this paper.

Analysis. Next, we turn to a high-level overview of the security proof (the actual
proof can be found in the full version). Our goal is to prove that the above
RAM scheme is secure in the hybrid model, namely for all adversaries B ∈ Ahb

attacking the RAM scheme in a real execution, there exists a simulator S faking
the view of B only given black-box access to the original functionality GK.

As a first step, we prove that the probability by which the adversary suc-
ceeds in using a “replace” command to write some value on the disk with the
correct secret label, and having the CPU read this value without provoking a
self-destruct, is essentially equal to the probability of guessing the secret label
(which is exponentially small). This means we can assume that all the values put
on the disk using a “replace” command do not contain the secret label. In each
execution our CPU CPUhb will check that all loaded values contain the same
label, and will write back values where the augmentation contains this label. It
then follows that all values containing the secret label in the augmentation were
written by the pre-processing or by CPUhb, and it also follows that all values not
having the secret label in the augmentation are known by the adversary: they
were put on disk using a REPLACE command or computed by CPUhb on values
known by the adversary. We then argue that CPUhb (by design) will never write
two values V �= V ′ sharing the same augmentation (j, L, a, p). This is because the
augmentation includes the strictly increasing pair (a, p), and we also prove that
CPUhb can predict what (a, p) should be for all loaded values in all executions.
It follows from an inductive argument that all values containing the secret label
in the augmentation are correct. Hence all values on the disk are either correct
secret values or incorrect values known by the adversary. So, when CPUhb writes
a result to the disk, it is either an allowed output or a value already known by
the adversary. From the above intuition, it is straight-forward, although rather
tedious, to derive a simulator.

References

1. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. IACR Cryptology ePrint Archive 2013:201 (2013)

2. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes resistant to permutations and perturbations. IACR Cryptology
ePrint Archive 2014:316 (2014)

3. Bellare, Mihir, Cash, David: Pseudorandom functions and permutations provably
secure against related-key attacks. In: Rabin, Tal (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 666–684. Springer, Heidelberg (2010)

4. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: EUROCRYPT, pp. 491–506 (2003)

602 S. Faust et al.

5. Bellare, Mihir, Paterson, Kenneth G., Thomson, Susan: RKA security beyond the
linear barrier: IBE, encryption and signatures. In: Wang, Xiaoyun, Sako, Kazue
(eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg
(2012)

6. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ICS, pp.
155–168 (2014)

7. Cheraghchi, Mahdi, Guruswami, Venkatesan: Non-malleable coding against bit-
wise and split-state tampering. In: Lindell, Yehuda (ed.) TCC 2014. LNCS, vol.
8349, pp. 440–464. Springer, Heidelberg (2014)

8. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: TCC (2015, To appear)

9. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Self-destruct non-malleability.
IACR Cryptology ePrint Archive 2014:866 (2014)

10. Dachman-Soled, Dana, Kalai, Yael Tauman: Securing circuits against constant-
rate tampering. In: Safavi-Naini, Reihaneh, Canetti, Ran (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 533–551. Springer, Heidelberg (2012)

11. Dachman-Soled, Dana, Kalai, Yael Tauman: Securing circuits and protocols against
1/poly(k) tampering rate. In: Lindell, Yehuda (ed.) TCC 2014. LNCS, vol. 8349,
pp. 540–565. Springer, Heidelberg (2014)

12. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: TCC (2015, To appear)

13. Damg̊ard, Ivan, Faust, Sebastian, Mukherjee, Pratyay, Venturi, Daniele: Bounded
tamper resilience: how to go beyond the algebraic barrier. In: Sako, Kazue, Sarkar,
Palash (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 140–160. Springer,
Heidelberg (2013)

14. Dziembowski, Stefan, Faust, Sebastian: Leakage-resilient circuits without compu-
tational assumptions. In: Cramer, Ronald (ed.) TCC 2012. LNCS, vol. 7194, pp.
230–247. Springer, Heidelberg (2012)

15. Dziembowski, Stefan, Kazana, Tomasz, Obremski, Maciej: Non-malleable codes
from two-source extractors. In: Canetti, Ran, Garay, Juan A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013)

16. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS,
pp. 434–452 (2010)

17. Faust, Sebastian, Mukherjee, Pratyay, Nielsen, Jesper Buus, Venturi, Daniele: Con-
tinuous non-malleable codes. In: Lindell, Yehuda (ed.) TCC 2014. LNCS, vol. 8349,
pp. 465–488. Springer, Heidelberg (2014)

18. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von Neumann architecture. Cryptology ePrint Archive, Report 2014/338 (2014).
http://eprint.iacr.org/

19. Faust, Sebastian, Mukherjee, Pratyay, Venturi, Daniele, Wichs, Daniel: Effi-
cient non-malleable codes and key-derivation for poly-size tampering circuits. In:
Nguyen, Phong Q., Oswald, Elisabeth (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 111–128. Springer, Heidelberg (2014)

20. Faust, Sebastian, Pietrzak, Krzysztof, Venturi, Daniele: Tamper-proof circuits: how
to trade leakage for tamper-resilience. In: Aceto, Luca, Henzinger, Monika, Sgall,
Jǐŕı (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 391–402. Springer, Heidelberg
(2011)

21. Faust, Sebastian, Rabin, Tal, Reyzin, Leonid, Tromer, Eran, Vaikuntanathan,
Vinod: Protecting Circuits from Leakage: the Computationally-Bounded and Noisy
Cases. In: Gilbert, Henri (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156.
Springer, Heidelberg (2010)

http://eprint.iacr.org/

A Tamper and Leakage Resilient von Neumann Architecture 603

22. Goldwasser, S., Rothblum, G.N.:. How to compute in the presence of leakage. In:
FOCS, pp. 31–40 (2012)

23. Ishai, Yuval, Prabhakaran, Manoj, Sahai, Amit, Wagner, David: Private circuits
II: keeping secrets in tamperable circuits. In: Vaudenay, Serge (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

24. Ishai, Yuval, Sahai, Amit, Wagner, David: Private circuits: securing hardware
against probing attacks. In: Boneh, Dan (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 463–481. Springer, Heidelberg (2003)

25. Kalai, Yael Tauman, Kanukurthi, Bhavana, Sahai, Amit: Cryptography with tam-
perable and leaky memory. In: Rogaway, Phillip (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 373–390. Springer, Heidelberg (2011)

26. Kiayias, Aggelos, Tselekounis, Yiannis: Tamper resilient circuits: the adversary
at the gates. In: Sako, Kazue, Sarkar, Palash (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 161–180. Springer, Heidelberg (2013)

27. Liu, Feng-Hao, Lysyanskaya, Anna: Tamper and leakage resilience in the split-state
model. In: Safavi-Naini, Reihaneh, Canetti, Ran (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 517–532. Springer, Heidelberg (2012)

28. Miles, E., Viola, E.: Shielding circuits with groups. In: STOC, pp. 251–260 (2013)
29. Prouff, Emmanuel, Rivain, Matthieu: Masking against side-channel attacks:

a formal security proof. In: Johansson, Thomas, Nguyen, Phong Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)

30. Wee, H.: Public key encryption against related key attacks. In: Public Key
Cryptography, pp. 262–279 (2012)

Low Noise LPN: KDM Secure Public Key
Encryption and Sample Amplification

Nico Döttling(B)

Department of Computer Science, Aarhus University, Aarhus, Denmark
nico.doettling@cs.au.dk

Abstract. Cryptographic schemes based on the Learning Parity with
Noise (LPN) problem have several very desirable aspects: Low computa-
tional overhead, simple implementation and conjectured post-quantum
hardness. Choosing the LPN noise parameter sufficiently low allows for
public key cryptography. In this work, we construct the first standard
model public key encryption scheme with key dependent message security
based solely on the low noise LPN problem. Additionally, we establish
a new connection between LPN with a bounded number of samples and
LPN with an unbounded number of samples. In essence, we show that
if LPN with a small error and a small number of samples is hard, then
LPN with a slightly larger error and an unbounded number of samples
is also hard. The key technical ingredient to establish both results is a
variant of the LPN problem called the extended LPN problem.

Keywords: Low noise LPN · Key dependent message security · LPN
hardness reduction

1 Introduction

The LPN Problem The learning parity with noise (LPN) problem asks to find a
secret binary vector s ∈ F

n
2 given noisy linear samples of the form (a, 〈a, s〉+e) ∈

F
n
2 × F2 where a is chosen uniformly at random and e is an additive noise term

that occurs with probability ρ. Due to its simplicity and binary arithmetic,
the LPN problem has become a central hub in secret key cryptography [13,
27,28,30,33]. These applications use the high noise LPN problem where the
noise rate ρ < 1/2 is a constant. In the low noise LPN problem, the noise
rate ρ tends asymptotically to 0. Alekhnovich [6] provided a construction of
a public key encryption scheme based on LPN for noise rates ρ = O(1/

√
n).

Supported by European Research Commission Starting Grant no. 279447.
N. Döttling—The authors acknowledge support from the Danish National Research
Foundation and The National Science Foundation of China (under the grant
61061130540) for the Sino-Danish Center for the Theory of Interactive Computation,
within which part of this work was performed; and also from the CFEM research
center (supported by the Danish Strategic Research Council) within which part of
this work was performed.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 604–626, 2015.
DOI: 10.1007/978-3-662-46447-2 27

KDM Secure Public Key Encryption and Sample Amplification 605

Recently, more complex cryptographic primitives have been constructed from
low noise LPN such as chosen ciphertext secure public key encryption [22,31]
and composable oblivious transfer [18]. In the original formulation of the LPN
problem, the search algorithm/adversary may demand an unbounded number
of samples whereas the bounded samples version (e.g. used in [6,22,31]) only
provides an a priori bounded number of samples to the search algorithm. So
far, it was unknown whether the hardness of LPN with a bounded number of
samples implies the hardness of LPN with an unbounded number of samples,
even if a modest increase in the noise rate is tolerated.

Key Dependent Message Security. A public key encryption scheme is called
key dependent message (KDM) secure, if encryptions of the secret key, or more
generally encryptions of functions of several secret keys are indistinguishable of
encryptions of (say) the all-zero message. We will exclusively consider KDM-CPA
security in this work, i.e. KDM adversaries do not have access to a decryption
oracle. While for most natural cryptographic tasks standard notions of secu-
rity are sufficient, the notion of KDM security is relevant for contexts such as
computational soundness [2,12] or when hard-disks are encrypted that store the
corresponding secret key (as mentioned in [15]). It has been shown that stan-
dard IND-CPA (or even IND-CCA) security does not imply KDM security [1,16],
i.e. there exist public key encryption schemes with IND-CPA security relative to
some standard assumption which are provably not KDM secure. Standard model
KDM secure public key public key cryptosystems were constructed from a variety
of assumptions, starting with the construction of Boneh et al [15]. Applebaum
et al. [10] provided both a circular secure public key encryption scheme from
the LWE assumption and a circular secure private key encryption scheme from
the (high noise) LPN problem. The latter scheme was later shown to fulfill the
stronger notion of related-key KDM security by Applebaum [9]. In [8], Apple-
baum provided a construction of a KDM secure PKE for arbitrary (bounded
size) circuits from any KDM secure PKE for affine functions. Constructing a
KDM secure public key encryption scheme from low noise LPN has remained an
open problem so far.

1.1 Extended LPN

The central tool we use in our constructions is a version of the LPN problem
called extended decisional LPN problem, or eDLPN in short. The eDLPN prob-
lem can be seen as a special case for q = 2 of the extended LWE problem
introduced O’Neill, Peikert and Waters [35] and proven hard under standard
LWE by Alperin-Sheriff and Peikert [7]. The binary version we use in this work
was first discussed by Kiltz, Masny and Pietrzak [31].

In the eDLPN problem, the adversary’s goal is to distinguish (A,RA, e,Re)
from (A,U, e,Re), where A is a randomly chosen matrix, R is a randomly
chosen low weight matrix, U is a randomly chosen matrix and e follows some
distribution χ. This is similar to the dual formulation of the decisional LPN
problem, where the adversary has to distinguish (A,RA) from (A,U). However,

606 N. Döttling

in the extended decisional LPN problem, the adversary obtains an extra advice
Re about a secret matrix R, where the vector e can have any distribution.
Kiltz, Masny and Pietrzak [31] observed that in the LPN case, this advice can
be extremely useful to enable reductions to simulate faithfully. In particular,
the eDLPN problem can effectively be used as a computational substitute for
the (generalized) leftover hash lemma [19,29] or gaussian regularity lemmata for
lattices [26].

In the full version [21], we provide a generalization of the extended LPN
problem we call leaky LPN (�-LPN), which may be of independent interest. In
the �-LPN problem, the advice given to the adversary can be described by an
arbitrary adversarially chosen leakage function γ from a family L and is not lim-
ited to linear functions as in the extended LPN problem. Clearly, the hardness of
the extended LPN problem follows immediately from the hardness of the leaky
LPN problem when instantiating the leakage functions with linear functions.
If the functions in L output short strings, say strings of at most logarithmic
length, then the hardness of the �-LPN search problem follows immediately from
the standard LPN problem, since all possible leakage values can be efficiently
enumerated (or guessed). The situation is slightly different for decisional prob-
lems. In general, decisional problems become easy if even a single bit of arbitrary
leakage is allowed. However, we only allow the leakage to depend on R and in
particular not on A. We show that a sample preserving search to decision reduc-
tion of Applebaum et al. [11] is in fact leakage preserving. We can thus base
the hardness of the decisional problem �-DLPN on �-LPN, and therefore on LPN
given that the functions in L only provide short advice.

1.2 KDM Secure Public Key Encryption

We will now provide an overview of our construction of a KDM secure pub-
lic key encryption scheme from LPN. The construction is inspired by the public
key encryption scheme of Applebaum et al. [10], which however lives in the LWE
realm. The basic idea, as in [10], is to make encryptions of the secret key syn-
tactically similar to the public key. More specifically, public keys in our scheme
will be of the form (A,y = As + e) where s is the secret key. It follows imme-
diately from the decisional LPN problem that the public key is pseudorandom.
Encryption takes a message m and computes

C1 = RA

c2 = Ry + Gm,

where the matrix R is chosen from a low weight distribution and G is the gen-
erator matrix of a good, efficiently decodable binary linear code. We remark
that while this scheme bears strong resemblances with (and is inspired by) the
LWE based scheme of [10], it is rather incomparable to the (high noise) LPN
based private key encryption schemes of [9,10] or previous low-noise LPN public
key encryption schemes [6,22,31]. Notice that standard IND-CPA security of
this scheme follows directly from the fact that y is pseudorandom and thus also

KDM Secure Public Key Encryption and Sample Amplification 607

(RA,Ry) is pseudorandom given the public key (A,y), by using the dual for-
mulation of the decisional LPN problem (i.e. (A′,RA′) ≈c (A′,U)). To decrypt
a ciphertext c = (C1, c2), we basically compute

z = c2 − C1s

and recover m from z by using the efficient decoding algorithm for the code
generated by G. Correctness of the scheme follows from the fact that

z = c2 − C1s

= Ry + Gm − RAs

= R(As + e) + Gm − RAs

= Gm + Re.

Since we have chosen R and e from low noise distributions, the term Re has
low weight with high probability. Thus it follows that a decoder of the code
generated by G will be able to recover m from z. We will briefly sketch how
to establish 1-circular security of this scheme, where the adversary gets a single
encryption of the secret key (or an encryption of 0). For the full proof of KDM
security for affine functions, refer to Section 3. An encryption of the secret key
has the form (RA,Ry + Gs). Figure 1 provides the game transform for this
security reduction.

Game public key challenge ciphertext remark

1. Real (A,y = As + e) (RA,Ry + Gs)
2. Real (A,As + e) (RA,R(As + e) + Gs) identical
3. Real (A,As + e) (RA, (RA + G)s + Re) identical
4. H1 (A,As + e) (U, (U + G)s + Re) eDLPN
5. H1 (A,As + e) (U′ − G,U′s + Re) identical
6. H2 (A,As + e) (RA − G,RAs + Re) eDLPN
7. H2 (A,As + e) (RA − G,R(As + e)) identical
8. H3 (A,u) (RA − G,Ru) DLPN
9. H3 (A,u) (U − G,u′) DDLPN
10. H3 (A,u) (U,u′) identical

Fig. 1. The Game Transform for KDM-CPA security

The first three steps shown in Figure 1 do not change the real experiment
but basically rewrite the challenge ciphertext. From step 3 to step 4 we replace
the matrix RA by a uniformly random matrix U. Since we also need the addi-
tional term Re to provide the correct distribution to the adversary, we will use
the extended decisional LPN problem to show that these two experiments are
computationally indistinguishable. In particular, we use A and e provided by
the eDLPN problem to construct a public key, while we use RA and the advice
Re to construct the encryption of the secret key. Then, we replace RA by a
random matrix U, which yields an indistinguishable experiment by the hardness

608 N. Döttling

of eDLPN. Step 4 to 5 is another bridging step which does not change the exper-
iment. Since U is distributed uniformly random, so is the matrix U′ = U + G.
Thus, instead of choosing U uniformly at random we can choose U′ uniformly
at random and set U = U′ − G. From step 5 to step 6 we replace the matrix
U′ by RA. Again, we have to use the extended decisional LPN problem as we
need the extra advice Re. It now becomes clear that we have used steps 3 to
6 to pull the matrix G from the second component of the challenge ciphertext
to its first component, i.e. we have transformed (RA, (RA + G)s + Re) into
(RA − G,RAs + Re). Step 6 to step 7 is another basic bridging step. From
step 7 to step 8 we replace the second component As + e of the public key by
a randomly chosen u, indistinguishability follows from the standard decisional
LPN problem. From step 8 to step 9 we replace (A,RA,u,Ru) by (A,U,u,u′)
for uniformly random U and u′, indistinguishability follows from the dual for-
mulation of the decisional LPN problem. Finally, from step 9 to step 10, we
replace U−G by U. We can do this since the uniform distribution U is invari-
ant under an additive shift by a constant matrix G. Thus, in the last experiment
the challenge ciphertext is just uniformly random, which concludes this outline.

1.3 Unbounded Samples LPN from Bounded Samples LPN

In the following we will distinguish between bounded and unbounded samples
LPN. We will denote search LPN with a secret of length n, m samples and
noise rate ρ by LPN(n,m, ρ) and decisional LPN with a secret of length n,
unbounded samples and noise rate ρ′ by DLPN(n, ρ′). Our second contribution
is a hardness reduction which bases the hardness of DLPN(n, ρ′) on LPN(n, 2n, ρ).
More specifically, we show that if LPN(n, 2n, ρ) is hard, then DLPN(n, ρ′) is also
hard, where

ρ′ =
1
2

− 1
2

(1 − 2ρ)�ρ2n� ≤ 2ρ2n.

For the Learning With Errors (LWE) problem, there exists a statistical random
self reduction [10,26]. The idea of this reduction is to use m ≈ n log(q) seed
samples to generate arbitrarily many fresh samples. The noise rate in the new
samples increases only slightly. Specifically, if (A,y = As + z) is such a given
set of seed samples, then one can generate new samples by drawing e ∈ Z

m
q from

a discrete gaussian [5,34] and setting a′ = A�e and y′ = e�y. Now it holds

y′ = e�y = e�As + e�z = a′�s + 〈e, z〉.

The pair (a′, y′ + e′), where e′ is a gaussian smoothing term, is a proper LWE
sample, as a′ = e�A can be shown to be statistically close to uniform and
〈e, z〉 follows an independent discrete gaussian distribution even conditioned on
a′ = e�A 1.
1 This can be established via a Lemma due to Regev [37] or its refinement due to

Peikert [36], which show that the distribution of e remains discrete gaussian even
conditioned on e�A, though the variance of the distribution decreases.

KDM Secure Public Key Encryption and Sample Amplification 609

Such an approach, however, cannot be directly transferred to the LPN set-
ting. For the vector a′ = A�e to be statistically close to uniform, e must have
min-entropy ≈ n, and thus high weight. But this in turn means that 〈e, z〉 will
only have a negligibly small bias. We remark that such a high noise sample ampli-
fication was used Lyubashevsky [32] to cryptanalize LPN in sub-exponential
time, but this technique does not seem to be applicable in the context of an
efficient (i.e. PPT) hardness reduction, especially when the number of samples
is at most polynomial.

Therefore, in our reduction we will replace the statistical tools in the above
reduction by a computational technique based on the eDLPN problem. Again,
we start with a given amount of m = 2n seed samples and generate new samples
from these. While we cannot hope that the samples we generate in this way
have the proper distribution (in the statistical sense), we will be able to show
that the distribution generated in this way is computationally indistinguishable
from the real LPN distribution. More specifically, let (A,y) be the LPN seed
samples. We will compute new samples by choosing a random low weight r and
setting a = A�r and y′ = r�y = 〈r,y〉. Now, assume first that y = As + e.
Then it holds that

y′ = r�As + 〈r, e〉 = 〈a, s〉 + 〈r, e〉.

While (a, y′) syntactically looks like an LPN sample, it is statistically far away
from a correctly distributed sample. There are two issues. First, a = r�A is
not distributed uniformly. Second, the noise term 〈r, e〉 is correlated with a.
The first issue alone could be resolved by assuming the hardness of the DLPN.
To deal with both issues simultaneously, we will resort to the eDLPN problem,
which allows us to present a noise term 〈r, e〉 with the right distribution. More
specifically, the eDLPN problem allows us to replace a = r�A by a uniformly
random a but also provides us with an advice (e, 〈r, e〉) that allows us to simulate
the noise term 〈r, e〉 correctly. On the other hand, if y was chosen uniformly at
random, then the pseudorandomness of (a, y′) = (r�A, r�y) follows easily from
the dual formulation of the LPN problem DLPN. Since we can base the hardness
of all auxiliary problems on LPN(n, 2n, ρ), it follows that DLPN(n, ρ′) is at least
as hard as LPN(n, 2n, ρ). This concludes this outline.

2 Preliminaries

In the following, let λ always denote the security parameter. We call a machine
PPT if it runs in probabilistic (expected) polynomial time. For a search problem
P and an adversary/search algorithm A let AdvP(A) denote the probability of
A finding a solution of a random instance of P. For a decisional problem D
which consists in distinguishing two distributions X and Y and a distinguishing
algorithm D define AdvD(D) = |Pr[D(X) = 1] − Pr[D(Y) = 1]|. When we
don’t write it explicitly, we will implicitly assume that search algorithms and
distinguishers get 1λ as an additional input. We will denote the Hamming weight
of a vector x ∈ F

n
2 by ‖x‖0 = |{i : xi 	= 0}|. For a matrix M ∈ F

m×n
2 , we define

610 N. Döttling

the Hamming weight of M by ‖M‖0 = maxi ‖mi‖0 where the mi are the column
vectors of M. It follows easily for all M ∈ F

m×n
2 and x ∈ F

n
2 that ‖Mx‖0 ≤

‖M‖0 · ‖x‖0. We need asymptotically good, efficiently decodable binary linear
codes for the construction of our KDM secure public key encryption scheme. A
binary linear [k, n] code C is a n dimensional subspace of Fk

2 . We call G ∈ F
k×n
2

a generator matrix of C if every c ∈ C can be written as c = Gx for some x ∈
F

n
2 . We assume codes C come with efficient encoding and decoding procedures

C.Encode and C.Decode, where C.Encode(x) = G · x for some generator matrix
G of C. An error correcting code can efficiently correct an α fraction of errors, if
for every e ∈ F

k
2 with ‖e‖0 ≤ αk, it holds that C.Decode(C.Encode(x) + e) = x.

There exists a large corpus of literature of linear codes that can efficiently correct
a constant fraction of errors, for instance concatenated codes [25] or expander
codes [38,39].

2.1 Learning Parity with Noise

We will denote the Bernoulli distribution with parameter ρ ∈ [0, 1/2] on F
m
2

by Ber(m, ρ). For an e ←$ Ber(m, ρ), each component ei of e independently
takes the value 1 with probability ρ and 0 with probability 1 − ρ. We write
Ber(ρ) := Ber(1, ρ). We will distinguish between LPN with a bounded and an
unbounded number of samples.

Definition 1 (Learning Parity with Noise). Let χ be an error distribution
on F

m
2 and ρ = ρ(λ) ∈ [0, 1/2]. Let A ←$ F

m×n
2 be chosen uniformly at random,

let s ←$ F
n
2 be chosen uniformly at random and let e ←$ χ.

1. In the bounded samples search problem LPN(n,m,χ), the goal is to find s,
given (A,As + e).

2. In the unbounded samples search problem LPN(n, ρ), the goal is to find s,
given an oracle that outputs an arbitrary number of samples of the form
(a, 〈a, s〉 + e), where a ←$ F

n
2 and e ←$ Ber(ρ).

3. In the bounded samples decisional problem DLPN(n,m,χ), the goal is to
distinguish the distributions (A,As + e) and (A,u), where u ←$ F

m
2 is

chosen uniformly at random.
4. In the unbounded samples decisional problem DLPN(n, ρ), the goal is to dis-

tinguish two oracles, namely one that outputs samples of the form (a, 〈a, s〉+
e) (where a ←$ F

n
2 and e ←$ Ber(ρ)) from one that outputs samples of the

form (a, u) (where a ←$ F
n
2 and u ←$ F2).

For bounded samples LPN with errors e from the Bernoulli distribution Ber(m, ρ)
we will write LPN(n,m, ρ) for LPN(n,m,Ber(m, ρ)) and also DLPN(n,m, ρ) for
DLPN(n,m,Ber(m, ρ)). By a standard argument, one can show that if e ∈
F

m
2 is distributed according to Ber(m, ρ) and z ∈ F

m
2 is an arbitrary vector

of weight �ρm�, then 〈z, e〉 is distributed according to Ber(ρ′), where ρ′ =
1
2 − 1

2 (1 − 2ρ)�ρm� ≤ ρ2m. Following Alekhnovich [6], we will choose the noise
parameter ρ of the form O(1/

√
n) and n,m = Ω(λ2) to be able to use low weight

vectors as trapdoors and have 2λ (conjectured) security for LPN(n,m, ρ).

KDM Secure Public Key Encryption and Sample Amplification 611

A series of works have established relations between search and decisional
LPN problems [11,13,30]. The hardness reduction of Applebaum et al. [11]
is sample preserving, i.e. it shows that the hardness of DLPN(n,m,χ) follows
directly from the hardness of LPN(n,m,χ), for any error distribution χ.

Lemma 1 (Applebaum et al. [11]). Let χ be an error distribution on F
m
2 and

assume that LPN(n,m,χ) is hard. Then DLPN(n,m,χ) is also hard. More specif-
ically, assume there exists a PPT adversary A that distinguishes DLPN(n,m,χ)
with advantage ε. Then there exists a PPT adversary A′ that breaks LPN(n,m,χ)
with advantage ε2/8.

Let S(m, ρ) denote the distribution on F
m
2 which outputs uniformly random

vectors in F
m
2 of weight �ρm�, i.e. S(m, ρ) is the uniform distribution on the set

M = {x ∈ F
m
2 | ‖x‖0 = �ρm�}. It is easy to see that if LPN(n,m, ρ) is hard,

then LPN(n,m,S(m, ρ)) is also hard.

Corollary 1. Let A be a PPT adversary that breaks LPN(n,m,S(m, ρ)) with
advantage ε. Then there exists a PPT adversary A′ that breaks LPN(n,m, ρ)
with advantage (1−o(1))ε√

2πmρ(1−ρ)
. Moreover, if there exists a PPT distinguisher D

that distinguishes DLPN(n,m,S(m, ρ)) with advantage ε, then there exists a PPT
adversary A′ that breaks LPN(n,m, ρ) with advantage (1−o(1))ε2

8·
√

2πmρ(1−ρ)
.

For a proof of Corollary 1, refer to the full version [21]. As a convenient
reformulation of the LPN problem, we define the decisional dual LPN problem.

Definition 2. Let A ←$ F
m×n
2 , R ←$ Ber(k × m, ρ), a ←$ F

m
2 , U ←$ F

k×n
2

and u ←$ F
k
2 . The goal of the DDLPN(n,m, k, ρ) problem is to distinguish the

distributions (A,RA,a,Ra) and (A,U,a,u).

The hardness of DDLPN(n,m, k, ρ) follows from DLPN(n,m, ρ) (see e.g. [10]
or [22]) using the fact that for a randomly chosen matrix A we can also sample
a random H such that it holds H ·A = 0 and H is uniformly random (not given
A).

Lemma 2. Let m ≥ 2n. Assume there exists a PPT distinguisher D that dis-
tinguishes the problem DDLPN(n,m, k, ρ) with advantage ε. Then there exists a
PPT adversary A that breaks LPN(n,m, ρ) with advantage ε2

8k2 .

Following Kiltz et al. [31] and Alperin-Sheriff and Peikert [7], we provide
a definition of the extended LPN problem. We only define the extended LPN
problem for Bernoulli error distributions.

Definition 3. Let χ be any distribution on F
m
2 . Let A ←$ F

m×n
2 , R ←$ Ber(k×

m, ρ), U ←$ F
k×n
2 and e ←$ χ. The goal of the eDLPN(n,m, k, ρ,χ) problem is

to distinguish the distributions (A,RA, e,Re) and (A,U, e,Re).

The hardness of eDLPN(n,m, k, ρ,χ) can be established from LPN(n,m, ρ).

612 N. Döttling

Lemma 3. Let m ≥ 2n. Then for any distribution χ on F
m
2 and any k =

poly(λ) it holds that if there exists a PPT distinguisher D that distinguishes
eDLPN(n,m, k, ρ,χ) with advantage ε, then there exists a PPT adversary A
that breaks LPN(n,m, ρ) with advantage ε2

8k2 .

For a proof of Lemma 3 we refer the reader either to [7] or the full version
of this paper [21].

2.2 Key Dependent Message Secure Public Key Encryption

Syntactically, a public key encryption scheme PKE consists of three PPT algo-
rithms PKE.KeyGen, PKE.Enc and PKE.Dec, such that PKE.KeyGen generates
a pair (pk, sk) of public and secret keys, PKE.Enc takes a public key pk and a
plaintext m and outputs a ciphertext c and PKE.Dec takes a secret key sk and a
ciphertext c and outputs a plaintext m. We say that PKE is correct, if it holds for
all plaintexts m (of size corresponding to λ) that if (pk, sk) ← PKE.KeyGen(1λ),
then

PKE.Dec(sk,PKE.Enc(pk,m)) = m,

except with negligible probability over the randomness used by PKE.KeyGen,
PKE.Enc and PKE.Dec. The security notion we consider in this work is key depen-
dent message security under chosen plaintext attacks. In the security experiment
corresponding to this notion, the adversary gets a list of public keys {pki} and
access to an oracle that computes encryptions of functions of the secret keys.
We call such dependencies key cycles, even though the functional relationships
the adversary obtains can be more complex than key cycles.

Definition 4. We say a public key encryption-scheme PKE is ciphertext indis-
tinguishable under key dependent message chosen plaintext attacks (KDM-CPA)
for cycles of length l with respect to a class F of functions mapping l secret keys to
a plaintext, if every PPT-adversary A has success-probability at most negligibly
better than 1/2 in the experiment KDM − CPAF,l, i.e. Pr[KDM − CPAF,l(A) =
1] ≤ 1

2 + negl(λ).

Experiment KDM − CPAF,l

For i = 1, . . . , l

(pki, ski) ← PKE.KeyGen(1λ)
b ←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0

f ← 0
c ← PKE.Enc(pkj , f({ski}))
Return c

Remark 1. We implicitly assume that sanity checks are performed by the oracle,
i.e. it only accepts KDM queries with f ∈ F and j ∈ {1, . . . , l}. Moreover,
we assume that the KDM oracle may have access to all local variables of the
experiment KDM-CPA, in particular the pki and ski and the bit b.

KDM Secure Public Key Encryption and Sample Amplification 613

Applebaum [8] provides a general transfomation which transforms any public
key encryption scheme with KDM security against affine functions into a pub-
lic key encryption scheme with KDM security against arbitrary functions with
circuits of bounded size. Thus, it is sufficient to construct a public key encryp-
tion scheme with KDM security against affine functions to obtain a scheme with
security against the more general class of functions.

3 KDM Secure Public Key Encryption from Low Noise
LPN

In this section we will provide a public key encryption scheme with KDM security
for affine functions based on the hardness of the low noise LPN problem.

Construction 1. Let n,m, k = poly(λ) be positive integers with m > k > n. Let
C be binary linear code of length k and dimension n and efficient encoding and
decoding procedures C.Encode and C.Decode. The public key encrypion scheme
PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) is given by the following algorithms.
The message space of PKE is F

n
2 .

PKE.KeyGen(1λ):
A ←$ F

m×n
2

s ←$ F
n
2

e ←$ Ber(m, ρ)
y ← As + e
pk ← (A,y)
sk ← s
Return (pk, sk)

PKE.Enc(pk,m):
Parse pk = (A,b)
R ←$ Ber(k × m, ρ)
C1 ← R · A
c2 ← R · y + C.Encode(m)
c ← (C1, c2)
Return c

PKE.Dec(sk, c):
Parse c = (C1, c2) and sk = s
z ← c2 − C1s
m ← C.Decode(z)
Return m

3.1 Correctness

We will first show that the scheme PKE is correct.

Lemma 4. Assume that C.Decode can efficiently decode from ρ′ = 4ρ2km
errors. Then the scheme PKE is correct.

The condition of Lemma 4 can be met by choosing m, k = Ω(n) and ρ =
O(1/

√
n). Thus, to obtain conjectured 2λ-hardness for LPN, we can take usual

parameter choices of m,n, k = Θ(λ2) and ρ = Θ(1/λ) (as in [6,22,31]).

614 N. Döttling

Proof. Assume that c = (C1, c2) is a ciphertext generated by PKE.Enc. Consider
the term z computed during decryption. It holds that

z = c2 − C1s

= Ry + C.Encode(m) − RAs

= C.Encode(m) + R(As + e) − RAs

= C.Encode(m) + Re

By a Chernoff bound, it holds that ‖e‖ ≤ 2ρm, except with negligible prob-
ability e− 1

3ρm. Also by a Chernoff bound and a union bound, it holds that
‖R‖0 ≤ 2ρk, except with negligible probability m · e− 1

3ρk. Therefore,

‖Re‖0 ≤ ‖R‖0 · ‖e‖0 ≤ 4ρ2km,

except with negligible probability over the choice of e and R. Consequently,
C.Decode will be able to decode m from z.

3.2 KDM-CPA Security

We will now prove KDM-CPA security of PKE.

Theorem 1. Let λ be a security parameter and n,m, k, l = poly(λ) with m ≥ 2n
and l ≥ 1. Let ρ = ρ(λ) ∈ [0, 1/2]. Let F = {f : (Fn

2)l → F
n
2} be a fam-

ily of affine functions. If eDLPN(n,m, k, ρ,Ber(m, ρ)), DLPN(n, l · m, ρ) and
DDLPN(n,m, k, ρ) are hard, then the scheme PKE is KDM − CPAF,l secure. More
precisely, assume that A is a PPT adversary that breaks the KDM − CPAF,l secu-
rity of PKE with advantage AdvKDM−CPA(A) and queries its KDM oracle at most
q = poly(λ) times. Then there exist PPT distinguishers D1 and D2 against
the problem eDLPN(n,m, k, ρ,Ber(m, ρ)), D3 against DLPN(n, l · m, ρ) and D4

against DDLPN(n,m, k, ρ) such that

AdvKDM−CPA(A) ≤ lq · AdveDLPN(D1) + lq · AdveDLPN(D2)
+ AdvDLPN(D3) + lq · AdvDDLPN(D4).

Corollary 2. Let n,m, k, l, ρ and F be as in Theorem 1. If LPN(n, l · m, ρ) is
hard, then PKE is KDM − CPAF,l secure. More precisely, assume that A is a PPT
adversary that breaks the KDM − CPAF,l of PKE with advantage ε and queries
its KDM oracle at most q = poly(λ) times. Then there exists a PPT adversary
A∗ that solves LPN(n, l · m, ρ) with advantage ε2

128k2l2q2 .

The qualitative statement of Corollary 2 follows directly from Theorem 1
and Lemmas 1, 2 and 3. For the quantitative statement refer to the full version
of this paper [21]. We will now provide a sketch for the proof of Theorem 1. See
the full version [21] for the complete proof.

Proof (Proof Sketch for Theorem 1). Let A be a KDM-CPA adversary against
PKE. Consider the following sequence of hybrid games. For notational conve-
nience we assume that the oracles have access to all local variables of the games
(without explicitly specifying so). We will first provide an overview of game 1 -
8 on the next pages.

KDM Secure Public Key Encryption and Sample Amplification 615

Game 1
For i = 1, . . . , l

Ai ←$ F
m×n
2

si ←$ F
n
2 , ei ←$ Ber(m, ρ)

y ← Aisi + ei

pki ← (Ai,yi), sk ← si

b ←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′

OKDM(f, j)
If b = 0

f ← 0
R ←$ Ber(k × m, ρ)
C1 ← R · Aj

c2 ← R · yj + C.Encode(f({ski}))
c ← (C1, c2)
Return c

Game 2

s ← F
n
2

For i = 1, . . . , l
Ai ←$ F

m×n
2 , ei ←$ Ber(m, ρ)

y′
i ← Ais + ei

s′
i ←$ F

n
2

si ← s + s′
i, yi ← y′

i + Ais
′
i

pki ← (Ai,yi), sk ← si

b ←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′

OKDM(f, j)
If b = 0

f ← 0

Compute Tf , tf s.t. f({ski}) = Tfs + tf ,

using that ski = s + s′
i

R ←$ Ber(k × m, ρ)
C1 ← R · Aj

c2 ← R · yj + G · (Tfs + tf)

c ← (C1, c2)
Return c

Game 3
s ← F

n
2

For i = 1, . . . , l
Ai ←$ F

m×n
2 , ei ←$ Ber(m, ρ)

y′
i ← Ais + ei

s′
i ←$ F

n
2

si ← s + s′
i, yi ← y′

i + Ais
′
i

pki ← (Ai,yi), sk ← si

b ←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0

f ← 0
Compute Tf , tf s.t. f({ski}) = Tfs + tf ,

using that ski = s + s′
i

R ←$ Ber(k × m, ρ)
C1 ← R · Aj

c2 ← (C1 + GTf) · s + Rej + Gtf + C1s
′
j

c ← (C1, c2)
Return c

Game 4
s ← F

n
2

For i = 1, . . . , l
Ai ←$ F

m×n
2 , ei ←$ Ber(m, ρ)

y′
i ← Ais + ei

s′
i ←$ F

n
2

si ← s + s′
i, yi ← y′

i + Ais
′
i

pki ← (Ai,yi), sk ← si

b ←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0

f ← 0
Compute Tf , tf s.t. f({ski}) = Tfs + tf ,

using that ski = s + s′
i

R ←$ Ber(k × m, ρ)

U ←$ F
k×n
2

C1 ← U

c2 ← (C1 + GTf) · s + Rej + Gtf + C1s
′
j

c ← (C1, c2)
Return c

616 N. Döttling

Game 5
s ← F

n
2

For i = 1, . . . , l
Ai ←$ F

m×n
2 , ei ←$ Ber(m, ρ)

y′
i ← Ais + ei

s′
i ←$ F

n
2

si ← s + s′
i, yi ← y′

i + Ais
′
i

pki ← (Ai,yi), sk ← si

b ←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0

f ← 0
Compute Tf , tf s.t. f({ski}) = Tfs + tf ,

using that ski = s + s′
i

R ←$ Ber(k × m, ρ)

U ←$ F
k×n
2

C1 ← U − GTf

c2 ← Us + Rej + Gtf + C1s
′
j

c ← (C1, c2)
Return c

Game 6
s ← F

n
2

For i = 1, . . . , l
Ai ←$ F

m×n
2 , ei ←$ Ber(m, ρ)

y′
i ← Ais + ei

s′
i ←$ F

n
2

si ← s + s′
i, yi ← y′

i + Ais
′
i

pki ← (Ai,yi), sk ← si

b ←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0

f ← 0
Compute Tf , tf s.t. f({ski}) = Tfs + tf ,

using that ski = s + s′
i

R ←$ Ber(k × m, ρ)

C1 ← RAj − GTf

c2 ← RAjs + Rej + Gtf + C1s
′
j

c ← (C1, c2)
Return c

Game 7
For i = 1, . . . , l

Ai ←$ F
m×n
2

y′
i ←$ F

m
2

s′
i ←$ F

n
2

yi ← y′
i + Ais

′
i

pki ← (Ai,yi)
b ←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0

f ← 0
Compute Tf , tf s.t. f({ski}) = Tfs + tf ,

using that ski = s + s′
i

R ←$ Ber(k × m, ρ)
C1 ← RAj − GTf

c2 ← Ry′
j + Gtf + C1s

′
j

c ← (C1, c2)
Return c

Game 8
For i = 1, . . . , l

Ai ←$ F
m×n
2

y′
i ←$ F

m
2

s′
i ←$ F

n
2

yi ← y′
i + Ais

′
i

pki ← (Ai,yi)
b ←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)

U ←$ F
k×n
2

u ←$ F
k
2

C1 ← U

c2 ← u

c ← (C1, c2)
Return c

KDM Secure Public Key Encryption and Sample Amplification 617

– Game 1 is identical to the KDM-CPA experiment, we only replace the
algorithms PKE.KeyGen and PKE.Enc with their instantiations according to
PKE.

– In game 2, we change the experiment in three ways. First, the public and
secret keys are computed from a master secret s. More specifically, we first
choose s ←$ F

n
2 uniformly at random and then compute y′

i ← Ais + ei for
each index i. We obtain the public and secret keys by rerandomizing s and
y′

i correlated way. Specifically, we set si = s + s′
i and yi = y′

i + Ais′
i for

a uniformly random and independent s′
i. Since si is uniformly random and

independent of s and further

yi = y′
i + Ais′

i = Aisi + ei,

we have that the (pki, ski) are identically distributed to game 1. Thus, this
modification to the experiment did not introduce any statistically difference.
Secondly, we write C.Encode(·) using the generator matrix G of C, which is
also merely a syntactical change.

The third modification consists in changing the way the functions f the
encryption oracle is queried with are evaluated. Since each f is restricted to
be an affine function, we can write it as

f({ski}) =
l∑

i=1

Tisi + t.

for T1, , . . . ,Tl ∈ F
n×n
2 and t ∈ F

n
2 . Using that si = s + s′

i we can write

f({ski}) =
l∑

i=1

Ti(s + s′
i) + t

=

(
l∑

i=1

Ti

)

s +
l∑

i=1

Tis′
i + t.

Therefore, setting Tf =
∑l

i=1 Ti and tf =
∑l

i=1 Tis′
i + t we can write

f({ski}) = Tfs + tf . Thus, also the third modification does not introduce
any statistical difference.

– In game 3 we change the way c2 is computed. However, plugging in yj =
Ajsj + ej = Aj(s + s′

j) + ej and rearranging terms yields

c2 = R · yj + G · (Tfs + tf)
= R · (Aj(s + s′

j) + ej) + G · (Tfs + tf)

= (RA + GTf)s + Rej + Gtf + RAs′
j

= (C1 + GTf)s + Rej + Gtf + C1s′
j .

– In game 4, at every call to OKDM the value C1 is chosen uniformly at
random instead of computed by C1 ← RAj . We can show that game 3
and game 4 are computationally indistinguishable, given that the problem
eDLPN(n,m, k, ρ,Ber(m, ρ)) is hard. The reduction loses a factor if lq.

618 N. Döttling

– In game 5 we compute C1 by C1 ← U − GTf . Since U is chosen inde-
pendently and uniformly at random, game 4 and game 5 are identically
distributed from the view of A.

– In game 6 we replace U again by RAj . We can show that game 5 and
game 6 are computationally indistinguishable provided that the problem
eDLPN(n,m, k, ρ,Ber(m, ρ)) is hard. The reduction loses a factor if lq.

– In game 7 we choose the y′
i uniformly at random instead of by y′

i ← Ais+ei.
We can show that game 6 and game 7 are computationally indistinguishable,
given that DLPN(n, l · m, ρ) is hard. This reduction is tight.

– In game 8 the values C1 and c2 are chosen uniformly at random. Therefore
the output of OKDM is independent of the challenge bit b and consequently
A’s advantage in game 8 is 0. We can show that game 7 and game 8 are
computationally indistinguishable given that DDLPN(n,m, k, ρ) is hard. This
reduction loses a factor of lq.

4 LPN Sample Amplification

In this Section, we will show that the hardness of LPN with a bounded number
of samples implies the hardness of LPN with an unbounded number of samples,
if one is willing to accept an increase in the amount of noise. Recall that S(2n, ρ)
is the uniform distribution on vectors of weight �ρ2n� in F

n
2 .

Theorem 2. Let λ be a security parameter, n = poly(λ) be a positive integer
and ρ = ρ(λ) ∈ [0, 1/2]. Let

ρ′ ≥ 1
2
(1 − (1 − 2ρ)�ρ2n�).

If eDLPN(n, 2n, 1, ρ,S(2n, ρ)), DLPN(n, 2n,S(2n, ρ)) and DDLPN(n, 2n, 1, ρ) are
hard, then it holds that DLPN(n, ρ′) is also hard. Precisely, if D is a PPT dis-
tinguisher against DLPN(n, ρ′) that makes at most q queries to its LPN oracle,
then there exist PPT distinguishers D1 against eDLPN(n, 2n, 1, ρ,S(2n, ρ)), D2

against DLPN(n, 2n,S(2n, ρ)) and D3 against DDLPN(n, 2n, 1, ρ) such that

AdvDLPN(D) ≤ q · AdveDLPN(D1) + AdvDLPN(D2) + q · AdvDDLPN(D3).

Corollary 3. Let n, ρ and ρ′ be as in Theorem 2. If LPN(n, 2n, ρ) is hard,
then DLPN(n, ρ′) is also hard. More precisely, if D is a PPT distinguisher which
distinguishes DLPN(n, ρ′) with advantage ε and makes at most q queries to its
LPN oracle, then there exists a PPT adversary A∗ which breaks LPN(n, 2n, ρ)
with advantage

AdvLPN(A∗) ≥ ε2

72q2
.

KDM Secure Public Key Encryption and Sample Amplification 619

The qualitative statement of Corollary 3 follows immediately from Theorem 2
and Lemmas 1, 2 and 3. For the quantitative part we refer to the full version of
this paper [21].

Corollary 3 can be seen as a trade-off between noise and extra samples. We
tolerate that the amount of noise required gets squared, while in turn we get an
arbitrary polynomial amount of samples.

Proof (Proof of Theorem 2). We will prove the theorem for the minimal ρ′, i.e.
ρ′ = 1

2 (1 − (1 − 2ρ)�ρ2n�). Let D be a PPT distinguisher against DLPN(n, ρ′).
We will provide a series of hybrid experiments Exp1,Exp2,Exp3,Exp4 and show
that from the view of D any two of experiments the are indistinguishable. We
will provide the experiments by defining the sample oracles O the distinguisher
D gets access to.

Experiment Exp1
Initialization:

s ←$ F
n
2

Oracle OExp1()
a ←$ F

n
2

e ←$ Ber(ρ′)
y ← 〈a, s〉 + e
Return (a, y)

Experiment Exp2
Initialization:

A ←$ F
2n×n
2

s ←$ F
n
2

z ←$ S(2n, ρ)
r ← As + z

Oracle OExp2()
e ←$ Ber(2n, ρ)

a ← e�A
y ← 〈e, r〉
Return (a, y)

Experiment Exp3
Initialization:

A ←$ F
2n×n
2

r ←$ F
2n
2

Oracle OExp3()
e ←$ Ber(2n, ρ)

a ← e�A
y ← 〈e, r〉
Return (a, y)

Experiment Exp4
Initialization:

-
Oracle OExp4()

a ←$ F
n
2

y ←$ F2

Return (a, y)

Clearly, experiment Exp1 provides samples from the LPN distribution while
experiment Exp4 provides uniformly random samples. Thus, we need to establish
that from the view of D the experiments Exp1 and Exp4 are indistinguishable.
We will start with the indistinguishability of Exp1 and Exp2. Assume that D
distinguishes with advantage ε1 between Exp1 and Exp2, i.e.

|Pr[Exp1(D) = 1] − Pr[Exp2(D) = 1]| = ε1.

Assume further that q = poly(λ) is an upper bound on the number of samples D
queries. We will construct a PPT distinguisher D1 that distinguishes the problem
eDLPN(n, 2n, 1, ρ,S(2n, ρ)) with advantage ≥ ε1/q. The distinguisher D1 is given
on the left side of Figure 2.

Notice that D1 answers the first i∗ − 1 oracle queries of D exactly like Exp1,
while it answers the last q − i∗ queries like Exp2. In the i∗-th query however, D1

embeds its own challenge. Moreover, notice that D1 is efficient as D is efficient.
To analyze the distinguishing advantage of D1, we will define a sequence of
hybrid experiments H0, . . . ,Hq. Hi is crafted to answer the first i queries like
Exp1, while it answers the last q − i queries like Exp2. Experiment Hi is given on
the right side of Figure 2.

620 N. Döttling

Distinguisher D1

Input: (A, c, z, t)
i∗ ←$ {1, . . . , q}
s ←$ F

n
2

r = As + z
cnt = 1

b ← DOD1 ()

return b

Oracle OD1()
If cnt < i∗

a ←$ F
n
2

e ←$ Ber(ρ′)
y ← 〈a, s〉 + e

If cnt = i∗

a ← c�

y ← 〈c, s〉 + t
If cnt > i∗

e ←$ Ber(2n, ρ)

a ← (e�A)�

y ← 〈e, r〉
cnt ← cnt + 1
Return (a, y)

Experiment Hi

Initialization:
A ←$ F

2n×n
2

s ←$ F
n
2

z ←$ S2n(�ρ2n�)
r ← As + z
cnt ← 1

Oracle OHi()
If cnt ≤ i

a ←$ F
n
2

e ←$ Ber(ρ′)
y ← 〈a, s〉 + e

If cnt > i
e ←$ Ber(2n, ρ)

a ← (e�A)�

y ← 〈e, r〉
cnt ← cnt + 1
Return (a, y)

Fig. 2. The distinguisher D1 and the hybrid experiments Hi

We are now ready to analyze the distinguishing advantage of D1. First assume
that D1’s input is of the form (A, e�A, z, e�z = 〈z, e〉). Observe that since z has
weight �ρm� and e is distributed according to Ber(m, ρ) it holds that 〈z, e〉 is
distributed according to Ber(ρ′). Fix the random choice i∗ = i. Then the sample
oracle OD1() implemented by D1 behaves identical to the sample oracle of Hi−1.
Consequently, it holds that

Pr[D1(A, e�A, z, e�z) = 1|i∗ = i] = Pr[Hi−1(D) = 1]

and thus, as i∗ is uniformly chosen from {1, . . . , q}

Pr[D1(A, e�A, z, e�z) = 1] =
q

∑

i=1

1
q

· Pr[D1(A, e�A, z, e�z) = 1|i∗ = i]

=
q

∑

i=1

1
q

· Pr[Hi−1(D) = 1].

Next assume that D1’s input is of the form (A,u, z, e�z). Again, fix the random
choice of i∗ to i∗ = i. Then the sample oracle OD1() implemented by D1 behaves
identical to the sample oracle of Hi, as 〈z, e〉 is distributed according to Ber(ρ′).
Consequently,

Pr[D1(A,u, z, e�z) = 1|i∗ = i] = Pr[Hi(D) = 1]

KDM Secure Public Key Encryption and Sample Amplification 621

and thus

Pr[D1(A,u, z, e�z) = 1] =
q

∑

i=1

1
q

· Pr[D1(A,u, z, e�z) = 1|i∗ = i]

=
q

∑

i=1

1
q

· Pr[Hi(D) = 1].

Together, this yields

AdveDLPN(D1) = |Pr[D1(A, e�A, z, e�z) = 1] − Pr[D1(A,u, z, e�z) = 1]|

=

∣
∣
∣
∣
∣

q
∑

i=1

1
q

· Pr[Hi−1(D) = 1] −
q

∑

i=1

1
q

· Pr[Hi(D) = 1]

∣
∣
∣
∣
∣

=
1
q
|Pr[H0(D) = 1] − Pr[Hk(D) = 1]|

=
1
q
|Pr[Exp2(D) = 1] − Pr[Exp1(D) = 1]|

≥ ε1/q.

Thus, D1 distinguishes eDLPN(n, 2n, 1, ρ,S(2n, ρ)) with advantage ε1/q.
Next, we turn to the indistinguishability of Exp2 and Exp3. Assume towards

contradiction that D distinguishes between Exp2 and Exp3 with advantage ε2,
i.e.

|Pr[Exp2(D) = 1] − Pr[Exp3(D) = 1]| = ε2.

We will construct a PPT distinguisher D2 against DLPN(n, 2n,S(2n, ρ). D2 is
given as follows.

Distinguisher D2

Input: (A, r)

b ← DOD2 ()

return b

Sample Oracle OD2()
e ←$ Ber(2n, ρ)

a ← e�A
y ← 〈e, r〉
Return (a, y)

The distinguisher D2 is efficient, as D is efficient. First, assume that D2’s
input is of the form (A,As + z), where s is chosen uniformly from F

n
2 and z

is chosen from S(2n, ρ). Then clearly the sample oracle OD2 behaves just as
in Exp2. On the other hand, if D2’s input is of the form (A,u) with u chosen
uniformly random from F

2n
2 , then the sample OD2 simulated by D2 behaves like

the sample oracle in Exp3. Consequently, it holds that

AdvDLPN(D2) = |Pr[D2(A,As + z) = 1] − Pr[D2(A,u) = 1]|
= |Pr[Exp2(D) = 1] − Pr[Exp3(D) = 1]|
= ε2.

622 N. Döttling

Thus, the distinguishing advantage of D2 against DLPN(n, 2n,S(2n, ρ)) is ε2.
We will finally turn to showing that from the view of D, Exp3 and Exp4 are

indistinguishable. Assume towards contradiction that D distinguishes between
Exp3 and Exp4 with advantage ε3, i.e.

|Pr[Exp3(D) = 1] − Pr[Exp4(D) = 1]| = ε3.

Assume further D makes at most q = poly(λ) queries to its sample oracle. We
will construct a PPT distinguisher D3 that distinguishes DDLPN(n, 2n, 1, ρ) with
advantage ε3/q. The distinguisher D3 is given on the left side of Figure 3.

Distinguisher D3

Input: (A,a∗, r, y∗)
i∗ ←$ {1, . . . , q}
cnt = 1

b ← DOD3 ()

return b

Oracle OD3()
If cnt < i∗

e ←$ Ber(2n, ρ)

a ← (e�A)�

y ← 〈e, r〉
If cnt = i∗

a ← a∗�

y ← y∗

If cnt > i∗

a ←$ F
n
2

y ←$ F2

cnt ← cnt + 1
Return (a, y)

Experiment H′
i

Initialization:
A ←$ F

2n×n
2

r ←$ F
2n
2

cnt ← 1

Oracle OH′
i
()

If cnt ≤ i
e ←$ Ber(2n, ρ)

a ← (e�A)�

y ← 〈e, r〉
If cnt > i

a ←$ F
n
2

y ←$ F2

cnt ← cnt + 1
Return (a, y)

Fig. 3. The distinguisher D3 and the hybrid experiments H′
i

It is clear that D3 is efficient, once D is efficient. Again, to analyze the
distinguishing advantage of D3, we will define a sequence of hybrid experiments
H′

0, . . . ,H
′
q. H

′
i is crafted to answer the first i queries like Exp3, while it answers

the last q − i queries like Exp4. Hybrid H′
i is given on the right side of Figure 3.

First assume that D3’s input is of the form (A, e�A, r, e�r). Then it holds that

a∗ = (e�A)�

y∗ = e�r = 〈e, r〉

Now fix a random choice i∗ = i. Then OD3() in D3’s simulation behaves identi-
cally to the sample oracle in H′

i. Thus it holds that

Pr[D3(A, e�A, r, e�r) = 1|i∗ = i] = Pr[H′
i(D) = 1],

KDM Secure Public Key Encryption and Sample Amplification 623

and consequently

Pr[D3(A, e�A, r, e�r) = 1] =
q

∑

i=1

1
q

Pr[D3(A, e�A, r, e�r) = 1|i∗ = i]

=
q

∑

i=1

1
q

Pr[H′
i(D) = 1].

Now suppose that D3’s input is of the form (A,u, r, u′), where u� ←$ F
n
2 and

u′ ←$ F2 are chosen uniformly at random. Then it holds that a∗ = u and
y∗ = u′. Again, fix a random choice i∗ = i. Then OD3() in D3’s simulation
behaves identically to the sample oracle in H′

i−1. Thus it holds that

Pr[D3(A,u, r, u′) = 1|i∗ = i] = Pr[H′
i−1(D) = 1],

and consequently

Pr[D3(A,u, r, u′) = 1] =
q

∑

i=1

1
q

Pr[D3(A,u, r, u′) = 1|i∗ = i]

=
q

∑

i=1

1
q

Pr[H′
i−1(D) = 1].

Putting all together, we get

AdvDDLPN(D3) = |Pr[D3(A, e�A, r, e�r) = 1] − Pr[D3(A,u, r, u′) = 1]|

=

∣
∣
∣
∣
∣

q
∑

i=1

1
q

· Pr[H′
i(D) = 1] −

q
∑

i=1

1
q

· Pr[H′
i−1(D) = 1]

∣
∣
∣
∣
∣

=
1
q
|Pr[H′

k(D) = 1] − Pr[H′
0(D) = 1]|

=
1
q
|Pr[Exp3(D) = 1] − Pr[Exp4(D) = 1]|

≥ ε3/q.

Thus, D3 distinguishes DDLPN(n, 2n, 1, ρ) with advantage ε3/q.
We will now turn to the quantitative statement of the theorem. By the tri-

angle inequality it holds that

AdvDLPN(D) ≤ ε1 + ε2 + ε3

≤ q · AdveDLPN(D1) + AdvDLPN(D2) + q · AdvDDLPN(D3).

This concludes the proof.

624 N. Döttling

5 Conclusion

In this work we have constructed the first public key encryption scheme with
KDM-CPA security for affine functions from the low-noise LPN assumption.
Moreover, we have provided a novel connection between LPN with a bounded
number of samples and LPN with an unbounded number of samples. Both results
have analogues in the LWE realm (the KDM-CPA secure scheme of Applebaum
et al. [10] and the LWE random self-reduction of Gentry et al. [26]). Both our
results follow the same blueprint as their LWE counterparts. However, while in
the LWE realm powerful statistical tools such as gaussian regularity [26] and the
leftover-hash lemma [19,29] are available, no comparable statistical techniques
are available in the LPN realm. Instead, our approach, following Kiltz et al.
[31] was to substitute these techniques with computational counterparts based
on LPN. Specifically the extended LPN problem turned out to be very useful
in filling this gap. A natural future direction in this line of work would be to
try to lift further results from the LWE/SIS realm into the LPN realm, such as
identity based encryption [3,4,7,17] or efficient and compact signature schemes
[14,23,24].

Acknowledgments. I would like to thank the anonymous reviewers of PKC 2015 for
their useful feedback. I would further like to thank Daniel Masny for explaining to me
the subtleties in the construction of [31] involving the eDLPN problem. Finally, I would
like to thank Chris Peikert for pointing me to LWE random self-reductions some time
ago. The LPN sample amplification part of this work appeared in my PhD thesis [20],
but has not been published in any other peer reviewed publication.

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 403–422. Springer, Heidelberg (2010)

2. Adão, P., Bana, G., Herzog, J.C., Scedrov, A.: Soundness of formal encryption in
the presence of key-cycles. In: di Vimercati, S.C., Syverson, P.F., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)

3. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

4. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010)

5. Aharonov, D., Regev, O.: A lattice problem in quantum NP. In: Proceedings of
44th Symposium on Foundations of Computer Science (FOCS 2003), pp. 210–219,
Cambridge, MA, USA, 11–14 October 2003

6. Alekhnovich, M.: More on average case vs approximation complexity. In:
Proceedings 44th Symposium on Foundations of Computer Science (FOCS 2003),
pp. 298–307, Cambridge, MA, USA, 11–14 October 2003

KDM Secure Public Key Encryption and Sample Amplification 625

7. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key
Cryptography PKC 2012. LNCS. Springer, Heidelberg (2012)

8. Applebaum, B.: Key-dependent message security: generic amplification and
completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 527–546. Springer, Heidelberg (2011)

9. Applebaum, B.: Garbling XOR gates “For Free” in the standard model. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013)

10. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

11. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 92–110. Springer,
Heidelberg (2007)

12. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the pres-
ence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) Selected Areas in
Cryptography. LNCS. Springer, Heidelberg (2002)

13. Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

14. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical
signatures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)

15. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

16. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key Cryptog-
raphy PKC 2012. LNCS. Springer, Heidelberg (2012)

17. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

18. David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable oblivious
transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A., Askoxylakis,
I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer, Heidelberg (2014)

19. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

20. Döttling, N.: Cryptography based on the hardness of decoding. Ph.D. thesis, Karl-
sruhe Institute of Technology, May 2014. http://nbn-resolving.org/urn:nbn:de:swb:
90-411105

21. Döttling, N.: Low noise lpn: Kdm secure public key encryption and sample ampli-
fication. Cryptology ePrint Archive, Report 2015/013 (2015). http://eprint.iacr.
org/

22. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptog-
raphy based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012)

23. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

http://nbn-resolving.org/urn:nbn:de:swb:90-411105
http://nbn-resolving.org/urn:nbn:de:swb:90-411105
http://eprint.iacr.org/
http://eprint.iacr.org/

626 N. Döttling

24. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp.
335–352. Springer, Heidelberg (2014)

25. Forney, G.D.: Generalized minimum distance decoding. IEEE Transactions on
Information Theory 12(2), 125–131 (1966)

26. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, pp. 197–206, Canada, 17–20
May (2008)

27. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an effi-
cient authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012)

28. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, p. 52. Springer, Heidelberg (2001)

29. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: Proceedings of the 21st Annual ACM Sympo-
sium on Theory of Computing, pp. 12–24, Seattle, Washigton, USA, 14–17 May
(1989)

30. Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and hb+

protocols. J. Cryptology 23(3), 402–421 (2010)
31. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-noise

lpn. In: Public Key Cryptography, pp. 1–18 (2014)
32. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random

linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624,
pp. 378–389. Springer, Heidelberg (2005)

33. Lyubashevsky, V., Masny, D.: Man-in-the-middle secure authentication schemes
from LPN and weak PRFs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 308–325. Springer, Heidelberg (2013)

34. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. In: Proceedings of 45th Symposium on Foundations of Computer Science
(FOCS 2004), pp. 372–381, Rome, Italy, 17–19 October (2004)

35. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg
(2011)

36. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

37. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, pp. 84–93, Baltimore, MD, USA, 22–24 May (2005)

38. Sipser, M., Spielman, D.A.: Expander codes. In: 35th Annual Symposium on Foun-
dations of Computer Science, pp. 566–576, Santa Fe, New Mexico, USA, 20–22
November (1994)

39. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes.
In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, pp. 388–397, Las Vegas, Nevada, USA, 29 May–1 June (1995)

Interactive Proofs

Adaptive Proofs of Knowledge
in the Random Oracle Model

David Bernhard1(B), Marc Fischlin2, and Bogdan Warinschi1

1 University of Bristol, Bristol, UK
{bernhard,bogdan}@compsci.bristol.ac.uk

2 Technische Universität Darmstadt, Darmstadt, Germany
marc.fischlin@cryptoplexity.de

Abstract. We formalise the notion of adaptive proofs of knowledge in
the random oracle model, where the extractor has to recover witnesses
for multiple, possibly adaptively chosen statements and proofs. We also
discuss extensions to simulation soundness, as typically required for the
“encrypt-then-prove” construction of strongly secure encryption from
IND-CPA schemes. Utilizing our model we show three results:

(1) Simulation-sound adaptive proofs exist.
(2) The “encrypt-then-prove” construction with a simulation-sound

adaptive proof yields CCA security. This appears to be a “folk-
lore” result but which has never been proven in the random oracle
model. As a corollary, we obtain a new class of CCA-secure encryp-
tion schemes.

(3) We show that the Fiat-Shamir transformed Schnorr protocol is not
adaptively secure and discuss the implications of this limitation.

Our result not only separates adaptive proofs from proofs of knowledge,
but also gives a strong hint why Signed ElGamal as the most prominent
encrypt-then-prove example has not been proven CCA-secure without
making further assumptions.

1 Introduction

Proofs of knowledge [5,22,31,50] are a generic tool to ensure correct operation in
many cryptographic constructions, including voting protocols, e-cash systems,
or group signatures. More generally, they can turn passively secure multi-party
protocols into actively secure ones. The value of proofs of knowledge in security
arguments is that whenever a participant makes a proof of knowledge on some
statement as part of a protocol, one can “hop” into an alternate, virtual world
in which the participant outputs the witness along with the statement. This
approach of pretending that each proof makes its witness available in a security
argument relies on the extractor that exists by definition of a proof of knowledge:
when a participant outputs a proof, we “freeze” the protocol, and invoke the
extractor to get the witness. This extraction is usually carried out by rewinding
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 629–649, 2015.
DOI: 10.1007/978-3-662-46447-2 28

630 D.Bernhard et al.

the party and branching into another protocol execution. Then we resume the
protocol with the witness now being available.

The problem with the “freeze-extract-resume” approach is that its imple-
mentation can easily become expensive. Each extraction and its rewinding can
double the running time of a reduction such that, if a participant makes a badly
nested “chain” of n proofs, a naive approach ends up with an exponential run-
ning time of 2n to get all the witnesses. This is certainly true for interactive
proofs of knowledge, but also in the case of non-interactive proofs of knowledge
in the random oracle model. Such random-oracle based proofs are paramount
if efficiency is vital, especially in the form of Fiat-Shamir transformed Sigma
protocols a.k.a. “Schnorr-type” proofs. In this context the rewinding problem
was first mentioned explicitly by Shoup and Gennaro [47].

Shoup and Gennaro [47] required nested proofs in the random oracle model
for the construction of CCA secure public-key encryption from IND-CPA secure
encryption via the encrypt-then-prove approach (e.g., for signed ElGamal). The
idea behind this approach, gradually refined in a sequence of works [13,17,36,
38,43,52], is to attach to each ciphertext a proof of knowledge of the message.
Intuitively, if one has to know the message to create a ciphertext, a decryption
oracle should be redundant, so encrypt-then-prove should lift CPA security to
CCA security. Unfortunately, there is no general proof of this intuition which
also covers the setting with random oracles. Currently, the best result for signed
ElGamal, without making additional “knowledge type” assumptions as in [43,
51], is that the scheme is non-malleable (NM-CPA) [12].
Adaptive Proofs of Knowledge. Our notion and formalisation of adaptive
proofs of knowledge allows to capture the case of having to extract from multiple
proofs, possibly chosen adaptively by a malicious prover. We focus on the case
of non-interactive proofs in the random oracle. As a first step, we will cast
the (single-round) proof of knowledge property as a game between a prover (or
attacker) and an extractor. The prover wins the game if it makes a statement and
a valid proof but such that the extractor cannot find a witness. The extractor
wins the game if it can return a witness (or if the prover does not produce a
valid proof). A proof scheme is a proof of knowledge if there is an extractor that
wins against any prover with overwhelming probability.

For extending our simple game to the adaptive case, the prover can now
produce many statement/witness pairs in rounds and the scheme is an adaptive
proof if the extractor can find all witnesses (for a prover who makes a polyno-
mially bounded number of queries). The game is adaptive because the extractor
must return each found witness to the prover before the prover makes her next
query.

In addition to adaptive proofs, we define simulation-sound adaptive proofs
of knowledge. These proofs are obtained by the exact same change that extends
proofs of knowledge to simulation-sound proofs of knowledge: in addition to
producing statements and proofs of her own, the prover can simultaneously
ask the zero-knowledge simulator for proofs on valid statements of her choice.

Adaptive Proofs of Knowledge in the Random Oracle Model 631

Of course, the prover cannot ask the extractor to extract a witness from a sim-
ulated proof.
Our results. After we provide a formalisation of adaptive proofs we can argue
about instantiations and applications. We provide three main results in this
regard:

(1.) Simulation-sound adaptive proofs exist. We discuss that the construction
of straight-line proofs of knowledge by Fischlin [26] satisifies our notion. Fis-
chlin’s transformation is an alternative to the common Fiat-Shamir transforma-
tion and allows any Sigma protocol with unique responses to be turned into a
non-interactive proof.
(2.) Adaptive simulation-sound proofs yield CCA security. We propose that adap-
tive proofs are to proof schemes what CCA security is to encryption schemes.
Only an adaptive proof gives you a formal guarantee that the intuition behind
proofs of knowledge still works when they are used over multiple rounds of a
protocol.

We prove that the encrypt-then-prove construction using an IND-CPA
encryption scheme and a simulation sound adaptive proof yields CCA security.
Our proof is to our knowledge the first proof of CCA security that considers a
potentially rewinding reduction in an adaptive case. While our proof follows the
same high-level direction as proofs of existing CCA schemes (using the reduction
to answer decryption queries), the need to handle rewinding without causing an
exponential blow-up makes for a complicated argument. We develop a new proof
technique called coin splitting to deal with some of the problems that arise.
(3.) Fiat-Shamir-Schnorr is not adaptively secure. We prove that the most com-
mon and efficient construction of proofs of knowledge via the Fiat-Shamir trans-
formation [25] is not adaptively secure. Our proof constructs a prover who makes
a “chain” of n Fiat-Shamir-Schnorr statement/proof pairs, following the ideas
of Shoup and Gennaro [47]. We then show that any extractor that wins the
adaptive proof game against this prover either reduces to breaking the one-more
discrete logarithm problem or launches Ω(2n) copies of the prover. The key tech-
nical tools in the proof are the meta-reduction paradigm and a technique which
we term coin splitting.

Coin splitting allows us to perform a kind of hybrid argument on attackers
which have rewinding black-box access to several copies of the same algorithm.
We can change these copies individually as long as we can argue that the attacker
does not notice the difference. Coin splitting is a technique to show that some
changes which we make to individual copies are indeed indistinguishable to an
attacker who cannot break a more basic security assumption. The idea of this
technique originates in papers on resettable zero-knowledge [14].
Related work. We recall some related work here and discuss that so far no
previous work has given a profound answer to the issue of adaptive simulation-
sound proofs of knowledge in the random oracle model. A longer discussion can
be found in the full version of our paper. The notion of simulation-soundness of
zero-knowledge proofs has been introduced for proofs of membership by Sahai

632 D.Bernhard et al.

[41], showing that the Naor-Yung paradigm [36] yields CCA secure encryptions
in the common reference string model. In the context of proofs of knowledge,
De Santis and Persiano [19] already augmented ciphertexts by proofs in the
common reference string model to aim at CCA security, albeit their argument
seems to miss simulation-soundness as an important ingredient. This property
has been considered in works by Groth [33], Chase and Lysanskaya [15], and by
Dodis et al. [20], but once more in the common reference string model only. The
first formal definitions of simulation-sound proofs of knowledge in the random
oracle model were concurrently given by Bernhard et al. [12] and Faust et al. [21];
both works show that proofs derived via Fiat-Shamir transform meet this notion.
Both formulations, however, consider an extractor that needs only to extract
from non-adaptively chosen proofs, and in case of [21] only once (for security of
their signature construction). In conclusion, our work here fills in a gap allowing
to argue about important properties of adaptivity and simulation-soundness of
proofs of knowledge in the random oracle model.

2 Zero-Knowledge Proofs

In this section we discuss zero-knowledge proofs of knowledge and simulation
soundness in the random oracle model (ROM). Our central idea for zero-
knowledge and its extension of simulation soundness is a game between two
players, a malicious prover P̂ and an extractor K. The prover’s aim is to pro-
duce a statement and a proof that verifies such that the extractor cannot extract
a witness from this proof. The extractor’s goal is to extract a witness from the
proof that the prover provides.

We use a code-based game-playing model à la Bellare and Rogaway [9] to
define adaptive proofs of knowledge. The game mediates between all involved
players, e.g., between the adversarial prover and the extractor and possibly also
the simulator in case of simulation soundness. The game starts by running the
initialisation algorithm which ends by specifying to which player it wishes to
transfer control to first. Executions are token-based: at any time, either the
game or one of the players is running (“holding the token”) and a call from one
participant to another yields control. All game variables are global and persist
between calls so the game may maintain state between calls. The game eventually
declares the winner among the prover and the extractor.

To ensure termination, we assume strict polynomial-time provers and extrac-
tors (in the size of implicit parameters such as the size of the groups over which
the proofs are constructed). Our notions could also be achieved by having the
game “time out” if one player does not reply in a bounded number of time steps,
though this would require a more involved model of concurrency. The important
property is in any case that all players in the game must, on receiving an input,
eventually produce an output. In particular, a prover cannot prevent a “perfect”
extractor from winning a game by entering an infinite loop instead of producing
a proof.

Adaptive Proofs of Knowledge in the Random Oracle Model 633

2.1 Proof Schemes

Below we give the common definition for proof schemes for NP relations R. For
Fiat-Shamir proof schemes we occasionally also need to parametrise over the
underlying number-theoretic group G(λ) in a straightforward way, but we omit
this for sake of representational simplicity.

Definition 1. A non-interactive proof scheme for a relation R over groups con-
sists of two algorithms (P,V) over groups. P may be randomised, V must be
deterministic. For any pair (x,w) ∈ R, if π ← P(x,w) then V(x, π) must output
“true”.

The elements of the relation R are called statement and witness. P is called
the prover and its outputs π are called proofs. V is called the verifier and a
statement/proof pair on which V outputs “true” is called a valid proof. In the
random oracle model, both P and V may call the random oracle but the relation
R′ itself must be independent of any oracles. The last condition in the definition
of proof schemes is called correctness and says that proofs produced by the
genuine prover are valid. In the random oracle model, the prover and verifier in
the definition of the correctness property have access to the same random oracle,
i.e. the oracle answers consistently for both algorithms.

Our definitions of properties for proof schemes are centered around a game
with multiple interfaces to which various parties such as provers, extractors or
simulators may connect. We give our games as collections of algorithms where
each algorithm has both a name and a description of the interface to which
it applies. A return statement in an algorithm terminates the algorithm and
outputs the return value on the same interface that called the algorithm. Where
an algorithm should terminate and send a value on a different interface, we use
the keyword send instead. The keyword halt in the code of a game terminates
not just an algorithm but the entire game — when this occurs, the game will
announce a winner.

2.2 Zero-Knowledge

A proof scheme is called zero-knowledge if there is an algorithm S, called the
simulator, which is able to produce proofs indistinguishable from genuine ones
after seeing only the statement but no witness. Informally, π ← P(x,w) and
π′ ← S(x) should be indistinguishable for any pair (x,w) ∈ R.

In the (programmable) random oracle model we define zero-knowledge in
such a way that the simulator is responsible for the random oracle (if present).
Formally, we treat the prover P as an interactive algorithm that may issue oracle
queries and get responses, and that eventually outputs a proof. A simulator is
a stateful interactive algorithm S that can respond to two kinds of queries: a
prove query which takes a value x as input and should produce a proof π as
output, and a ro query which takes an arbitrary x ∈ Σ∗ as input and returns a
y ∈ Σ∗. A simulator does not have access to a random oracle, but simulates its
own random oracle towards its “clients”. A proof scheme is zero-knowledge in
the random oracle model if the following two games are indistinguishable:

634 D.Bernhard et al.

– The first game internally runs a random oracle RO . On input a pair (x,w),
if R(x,w) does not hold then the game returns ⊥ and halts. If the relation
holds, the game runs π ← P(x,w) and returns π. The prover P uses the
game’s random oracle. The adversary may then query the game’s random
oracle (which P used) directly, as often as she wants.

– The second game does not run a random oracle. On input a pair (x,w), again
if R(x,w) does not hold the game returns ⊥ and halts. Otherwise, the game
runs π ← S(x) and returns π to the adversary. The adversary may then issue
random oracle queries which the game delegates to the simulator’s random
oracle.

We specify this property using pseudocode in Figure 1. We use the following
notation: An oracle is a stateful process which other processes can access via a
well-defined set of queries. If O is an oracle and q is one if its supported queries
then we write O.q(x) to denote the invocation of this query with parameter
x. We write x ←$ S for selecting x uniformly at random from the set S and
y ←$ AO1,...,On(x) for calling the (potentially randomised) algorithm A on input
x to get output y. The superscripts denote the oracles that A can use while
it is running. Sometimes, we will allow these oracles to call each other directly
(for example if several oracles need access to a random oracle) and to issue a
command halt that halts the entire execution.

To maintain random oracle queries in later definitions we write [] for the
empty list and L :: l to concatenate element l to list L. When L is a list of pairs,
we define L(x) to be y such that (x, y) is the first element in L of the form (x, ·).
If no such element exists then L(x) is defined to be ⊥.

In Figure 1 we give the games G1 and G2 and the methods that the adversary
can call. Since it will be helpful later on to give each kind of query a name, we
call the adversary’s initial query with parameters (x,w) a prove query. Similarly,
we call the two operations that a simulator S admits prove and ro queries.

At the moment, our code may seem like an unnecessarily complicated way of
stating a simple property. This level of formalism will become necessary when
we move on to adaptive proofs however.

Definition 2. A proof scheme (P,V) is zero knowledge in the random oracle
model for a relation R if there exists a simulator S satisfying the following con-
dition. For any security parameter λ let δ(λ) be the distinguishing advantage of
any efficient adversary between the games G1 and G2 of Figure 1 and for relation
R and simulator S. Then δ(λ) is negligible as a function of λ.

2.3 Proofs of Knowledge

A proof scheme is a proof of knowledge if there is an extractor K such that for
any prover P̂ which can make a statement/proof pair that verifies, K can deliver
an associated witness. Formalising this statement requires that we not only take
care of random oracles but also the extractor’s ability to “fork” the prover.

We first consider the non-rewinding case as a warm-up. A prover P̂ is a
randomized interactive algorithm that may make random oracle queries and

Adaptive Proofs of Knowledge in the Random Oracle Model 635

Game G1

initialise():

//potentially generate parame-

ters

A issues prove(x, w):

if ¬R(x, w) then return ⊥
π ← PRO(x, w)

return π

A issues ro(x):

return RO(x)

Game G2

initialise():

//potentially generate parame-

ters

A issues prove(x, w):

if ¬R(x, w) then return ⊥
π ← S.prove(x)

return π

A issues ro(x):

return S.ro(x)

Fig. 1. Games for zero-knowledge (ZK) in the random oracle model. A scheme (P, V)
is ZK if the two games G1 and G2 are indistinguishable. The adversary A may issue
prove once and ro any number of times. RO is a random oracle.

eventually outputs a pair (x, π). A non-rewinding extractor K is an algorithm
that takes a pair (x, π) as input, may make random oracle queries and even-
tually outputs a value w. We consider the game G that runs a random oracle
RO internally and connects a prover and an extractor as in Figure 2. A proof
scheme is an R-proof of knowledge if there is an extractor K such that for every
prover P̂, the game mediating between the two algorithms outputs “K wins”
with overwhelming probability.

The game as in Figure 2, in which both the prover P̂ and the extractor K
can access a random oracle and where the extractor is supposed to find a witness
for a valid proof produced by the prover, is actually too demanding to be useful:
It basically says that anyone is able to extract a witness from the proof. To
derive some sensible notion we give the extractor some advantage and allow it
to inspect the random oracle queries made by the prover. That is, the extractor
K can make an extra query list in response to which the game G returns the
list H. This gives us a notion of straight-line proofs in the random oracle model
which is actually sufficient for capturing the approach used by Fischlin [26].

Definition 3. A proof scheme (P,V) is a straight-line proof of knowledge in the
ROM w.r.t. a relation R if there is an extractor K such that for any prover P̂,
the game in Figure 2 augmented with a list query that allows K to see the list H
returns “K wins” with overwhelming probability.

The above definition is less general than the one first proposed by Bellare
and Goldreich [5]. There the authors relate the extractor’s success probability
to that of the prover (in producing a valid proof), whereas our definition lets
the extractor win by default if the prover does not make a proof. However, our
notion generalises more easily to the adaptive setting where the probability of

636 D.Bernhard et al.

initialise:

H ← []

start P̂

P̂ issues ro(x):

y ← RO(x)

H ← H :: (x, y)

return y to P̂

K issues ro(x):

y ← RO(x)

return y to K

P̂ outputs (x, π):

if ¬VRO(x, π) then

halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:

if R(X, w) then

halt with output “K wins”

else

halt with output “P̂ wins”

K issues list :

return H

Fig. 2. The game G defining proofs of knowledge in the random oracle model. Capital-
X is part of the game’s internal state that persists between calls (so that the extractor’s
witness is verified against the same statement that the prover provided earlier).

the prover making a valid proof is no longer well-defined, since it also depends
on the extractor’s response to earlier proofs.

2.4 Rewinding Extractors

The next standard notion that we formalise in our game-based model is that of
a rewinding extractor in the ROM, running the prover multiple times. We model
the extractor’s rewinding ability by giving the extractor access to further copies
of the prover, initialised with the same random string as the main incarnation of
the prover’s algorithm which connects to the proof of knowledge game. We call
these further copies “rewound copies”. Although all copies of the prover share
the same random string, this string is not available to the extractor directly. This
prevents the extractor from just simulating the prover on its own and reading
off any witness used to make a proof.

The rewound copies of the prover connect to the extractor directly as sketched
in Figure 3. In particular, the extractor is responsible for answering the random
oracle queries for the rewound copies and can use this ability to “fork” them at
any point. In order to apply the forking strategy to proofs made by the main
prover, the extractor may make use of the list H that records all random oracle
queries and answers for the main execution.

The game itself is the same as for non-rewound provers. For example, for the
prover in Schnorr’s protocol, one extraction strategy is to start a rewound copy
of the prover and run it up until the point that it asks the oracle query which the
main prover used to make its proof. Then, the extractor gives the rewound copy

Adaptive Proofs of Knowledge in the Random Oracle Model 637

a different answer to the oracle query and hopes to obtain a new proof with the
same commitment, in order to extract via special soundness. If the main prover
made other oracle queries before the “target” one, then the extractor looks these
up in the list H and gives the rewound copy the same answers when it makes
the relevant queries.

genuine RO extractor’s RO

P̂

main prover

G

game

K

extractor

P̂

rewound provers

Fig. 3. Extending the straight-line proof of knowledge game to the rewinding case

Definition 4. A proof scheme is a rewinding proof of knowledge in the ROM if
it satisfies the conditions of Definition 3 (proof of knowledge) for an extractor
K that has black box access to further copies of the main prover with the same
random string.

2.5 Simulation Soundness and Extractability

Simulation soundness is a property of some zero-knowledge proofs, where even
after seeing a simulated proof you cannot construct a new proof of a false state-
ment. Simulation soundness was introduced by Sahai [41] for proofs of state-
ments; unlike proofs of knowledge these do not require an extractor. Sahai used
simulation soundness to show that the Naor-Yung “double encryption” trans-
formation can be used to obtain CCA secure encryption. Naor-Yung is not an
encrypt-then-prove construction. The latter use only a single encryption but
require a proof of knowledge; their security arguments make use of the extrac-
tor.

In fact, encrypt-then-prove requires a proof scheme for which one can apply
both the zero-knowledge simulator and the proof-of-knowledge extractor in
the same security argument. The formal property that models this is called
simulation-sound extractability (SSE) [33]. Specifically, the extractor must still
work even if the simulator has been invoked, as long as one does not try to
extract from a simulated proof. Simulation soundness is often challenging to
achieve outside the random oracle model. The proof scheme of Groth and Sahai
[50] for example, even in the instantiations that are proofs of knowledge, oper-
ates with a setup parameter that can be constructed in two ways: either one can
simulate proofs or one can extract, but not both simultaneously. In the random
oracle model simulation soundness is typically easier to achieve, e.g., it comes

638 D.Bernhard et al.

almost for free with Schnorr-type proofs. However, it takes some care to for-
malise this property as the simulator works under the condition that it controls
the random oracle. Hence, the extractor must now succeed w.r.t. the simulator’s
random oracle in this case.

We model simulation-sound extractability by taking the game for proofs of
knowledge and giving the prover the extra ability to ask prove queries just like
in the zero-knowledge game. These queries are always answered by the zero-
knowledge simulator and their proof replies are banned from being handed over
to the extractor. The SSE game runs the simulator and delegates random oracle
queries to it. The result is the game G in Figure 4. The list Π keeps track of
simulated proofs. If the prover returns a simulated proof (on the same statement
as it used in the related proof query), it loses the game. The state C is required
for a bit of extra bookkeeping since the random oracle is now external to the
game. By VS.ro we mean that the game G runs the verifier V and uses the
simulator’s random oracle to answer any oracle queries made by the verifier.
In other words, in the SSE game even the notion of a valid proof depends on
the simulator. Unlike the prover P̂ which is one of the players in our game, the
simulator S is assumed to always produce valid proofs by the zero-knowledge
property. The extractor’s list query returns both the random oracle queries and
the proof queries made by the main prover so far — this allows the extractor to
make a rewound copy of the prover run in identical executions as in the main
copy.

In addition to the main game G, we define an auxiliary game Ĝ that sits
between the extractor K and its rewound provers (there is one copy of Ĝ for
each rewound prover). The task of Ĝ is to “sanitize” prove queries made by
rewound provers. When a rewound prover makes such a query, the extractor must
play the role of the simulator — after all, the extractor is already simulating the
rewound prover’s random oracle. (The extractor may run a copy of the simulator
S internally.) However, provers make prove queries containing both a statement
x and a witness w whereas the simulator only ever gets to see x. The auxiliary
game Ĝ strips the witness from these proof queries. Otherwise, Ĝ acts as a
channel between K and a rewound copy of P̂. This is slightly tedious to write in
our notation; we make the convention that Ĝ prefixes a string to every message
from P̂ to K to indicate whether the value is meant to be a random oracle,
extraction or proof query. Messages (responses) flowing in the other direction
can always be passed on unchanged — the prover will hopefully remember what
its last query was when it gets a response.

Definition 5. A proof scheme (P,V) is simulation sound in the ROM for a rela-
tion R if it satisfies the following conditions. An s-prover is an algorithm P̂ that
can ask random oracle and proof queries and eventually outputs an extraction
query containing a statement/proof pair.

– The proof scheme is zero-knowledge w.r.t. R for a simulator S and a proof
of knowledge w.r.t. R for an extractor K.

– For every s-prover P̂, if we connect K to P̂ through the game G of Figure
4 and give K access to further rewound copies of the prover (with the same

Adaptive Proofs of Knowledge in the Random Oracle Model 639

initialise:

H ← [] ; Π ← []

start P̂

P̂ issues ro(x):

C ← “prover”; I ← x

send x to S.ro

K issues ro(x):

C ← “extractor”

send x to S.ro

S.ro returns a value y:

if C = “prover” then

H ← H :: (I, y)

send y to P̂
else

send y to K

K calls list:

return (H, Π)

P̂ outputs (x, π):

if ¬VS.ro(x, π) or (x, π) ∈ Π then

halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:

if R(X, w) then

halt with output “K wins”

else

halt with output “P̂ wins”

P̂ issues prove(x, w):

if ¬R(x, w) then

halt with output “K wins”

X ′ ← x

send x to S.prove

S.prove returns π:

Π ← Π :: (X ′, π)

send π to P̂

Fig. 4. The game G defining SSE in the random oracle model.

random string) through the auxiliary game Ĝ of Figure 5 then with over-
whelming probability the game G returns “K wins”.

3 Adaptive Proofs of Knowledge

Given our game-centric view of proofs of knowledge we can extend the approach
to adaptive proofs of knowledge. An adaptive proof is simply a proof scheme
where the extractor can still win if the prover is given multiple turns to make
proofs. The adaptive part is that the game hands the extractor’s witness in each
turn back to the prover before the prover must take her next turn. Should a
prover be able to produce a proof for which she does not know the witness,
she could then use the extractor’s ability to find a witness to help make her
next proof. The intuition is essentially the same for the cases with and without
simulation soundness. We first introduce adaptive proofs formally without simu-
lation soundness using so-called n-proofs, where n is a parameter describing the
number of rounds the prover plays. In a later step we add simulation soundness.

640 D.Bernhard et al.

K calls P̂ for the first time:

start P̂

K sends a value z:

send z to P̂

P̂ calls ro(x):

send (“ro”, x) to K

P̂ outputs (x, π):

send (“extract”, x, π) to K

P̂ calls prove(x, w):

send (“prove”, x) to K

Fig. 5. The auxiliary game Ĝ for SSE. It acts mostly as a channel between K and
a rewound prover P̂ except that it strips witnesses from proof queries. We use the
convention that Ĝ indicates to K whether a value is for a random oracle, extraction or
proof query by prefixing a string.

P̂ G

extract
and ro

K
list

P̂
extract
and ro

Fig. 6. The adaptive proof game and the queries that the various algorithms can
exchange

3.1 Adaptive Proofs and n-Proofs

Let (P,V) be a proof scheme for a relation R. An adaptive prover P̂ in the
ROM is a component that can make two kinds of queries, repeatedly and in
any order. The first are random oracle queries; these are self-explanatory. The
second are extraction queries which take a statement and a proof as parameters.
The response to an extraction query is a witness. (Correctness conditions will
be enforced by the game, not the prover.) Adaptive provers may also halt. For
example, a non-adaptive prover can be seen as an adaptive prover that halts
after its first extraction query.

An adaptive extractor K is a component that can make list and random oracle
queries and receive and process extraction queries from an adaptive prover. In
addition, an extractor may have black-box access to further rewinding copies
of the adaptive prover (with the same random string) and answer all of their
queries.

The n-proof game takes a parameter n as input and connects an adaptive
prover and extractor. It runs up to n rounds in which the prover may make a
statement and proof and the extractor must return a witness. The extractor wins
if it can deliver all n witnesses or if the prover halts earlier than this, or fails to

Adaptive Proofs of Knowledge in the Random Oracle Model 641

make a valid proof. The extractor loses if it does not supply a valid witness to
one of the first n extraction queries.

initialise(n):

H ← []

K ← 0

start P̂
P̂ issues ro(x):

y ← RO(x)

H ← H :: (x, y)

return y to P̂

K issues ro(x):

y ← RO(x)

return y to K

K issues list :

return H to K

P̂ halts: halt with output “K wins”

P̂ issues extract(x, π):

if ¬VRO(x, π) then

halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:

if ¬R(X, w) then

halt with output “P̂ wins”

K ← K + 1

if K = n then

halt with output “K wins”

else

send w to P̂

Fig. 7. The game G for adaptive proofs with parameter n

Definition 6. A proof scheme is an n-proof in the ROM for a relation R if
there exists an extractor K such that for every adaptive prover P̂ the game G
of Figure 7 when connected to P̂ and K returns “K wins” with overwhelming
probability.

If K also has access to further copies of P̂ with the same random string then
we call the proof scheme a rewinding n-proof, otherwise we call it a straight line
n-proof.

If for every polynomial p(x) there is an extractor Kp(x) making a particular
scheme a p(n)-proof, we say that the scheme is an adaptive proof.

3.2 Simulation-Sound Adaptive Proofs

Adding simulation soundness to adaptive proofs works the same way as for
non-adaptive proofs. Adaptive s-provers may make random oracle, proof and
extraction queries (the simulation sound n-proof game only limits the number
of extraction queries, not proof queries). We give the new algorithms in Figure
8. Random oracle calls from the main prover go to the simulator; simulated
proofs are logged and provided on request to the extractor (via a list query)
and are banned from extraction queries. The rewinding copies of the prover are

642 D.Bernhard et al.

connected to the extractor through the same games Ĝ as in the non-adaptive
case: extraction queries and witnesses found by the extractor are simply passed
back and forth. Only the witnesses in prove queries are stripped out.

initialise(n):

H ← [] ; Π ← []

K ← 0

start P̂
P̂ issues ro(x):

C ← “prover”; I ← x

send x to S.ro

K issues ro(x):

C ← “extractor”

send x to S.ro

S.ro returns a value y:

if C = “prover” then

H ← H :: (I, y)

send y to P̂
else

send y to K

K issues list:

return (H, Π)

P̂ halts:

halt with output “K wins”

P̂ issues extract(x, π):

if ¬VS.ro(x, π) or (x, π) ∈ Π then

halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:

if ¬R(X, w) then

halt with output “P̂ wins”

K ← K + 1

if K = n then

halt with output “K wins”

else

send w to P̂
P̂ issues prove(x, w):

if ¬R(x, w) then

halt with output “K wins”

X ′ ← x

send x to S.prove

S.prove returns π:

Π ← Π :: (X ′, π)

send π to P̂

Fig. 8. Simulation sound n-proofs in the random oracle model

Consider a proof scheme (P,V) that is zero-knowledge for a relation R with
simulator S. The simulation sound n-proof experiment for this scheme, an adap-
tive s-prover P̂ and an extractor K is the following experiment. Connect the
prover P̂, the simulator S and the extractor K to the game G of Figure 8. Let
K have black box access to further copies of P̂ mediated by Ĝ as in Figure 5
that forwards all messages in both directions except that it strips witnesses from
proof queries.

Definition 7. Let (P,V) be a proof scheme for a relation R that is zero-
knowledge with simulator S. The scheme is a simulation sound n-proof if there

Adaptive Proofs of Knowledge in the Random Oracle Model 643

is an extractor K such that for any adaptive s-prover P̂, the simulation sound n-
proof experiment returns “K wins” with overwhelming probability. If the extractor
works for all polynomially bounded n, we call the scheme an adaptive simulation
sound proof.

4 Overview of Our Results

In this section we briefly discuss our main results. Since the proofs of our theo-
rems are long and contain many technical/formal details that are not particularly
enlightening, we have chosen to give only an overview of our results here.

4.1 Adaptive Proofs Exist

First, we establish that simulation-sound adaptive proofs in the random ora-
cle model exist. An existing construction due to Fischlin [26] is adaptively
secure. Fischlin gives a transformation of Sigma protocols to non-interactive
proof schemes as an alternative to the more common Fiat-Shamir transforma-
tion.

The following theorem shows that Fischlin proofs are adaptively secure.

Theorem 1. A Fischlin-transformed Sigma protocol with special soundness is
a simulation-sound adaptive proof in the random oracle model.

4.2 Encrypt-Then-Prove

Our main positive result is that the encrypt-then-prove transformation does what
it is intuitively supposed to do — boost IND-CPA to CCA — if the proof scheme
is a simulation-sound adaptive proof. To define the transformation we first clarify
a point about NP languages. In the introduction, we said that encrypt-then-
prove uses a proof of the “randomness and message” used to encrypt. This is
not precise enough for a formal definition. This informal statement would give us
a proof over a relation R1 : {(c, (m, r)) | c = Encrypt(pk,m; r)} where statements
are ciphertexts and witnesses are message/randomness pairs. However, Signed
ElGamal (which we will define soon) uses a Schnorr proof which is a proof
of knowledge of a discrete logarithm, namely the randomness in an ElGamal
ciphertext. This would suggest a relation R2 : {(c, r) | c = Encrypt(pk,m; r)}.
Of course, the point of the proof is that the message can be computed from
a ciphertext and its randomness, but that is not the same thing as the formal
definition of the proof’s NP relation. In addition, since the NP relation and
proof depends on the public key as an extra parameter, when we define the
transformation formally we are actually working with a parametrised family of
relations. Further, the encrypt-then-prove transformation still works if one adds
extra features to the proof. For example, the Helios voting scheme for example
uses encrypt-then-prove ciphertexts that additionally prove that the encrypted
message is a valid vote.

644 D.Bernhard et al.

We address all these problems with an abstract definition of compatibility
between encryption and proof schemes; any schemes that meet this definition
can be used in the encrypt-then-prove transformation. Our definition also means
that we will not have a concrete NP relation to work with in our main theorem.
Instead, compatibility says that the NP relation can be anything that supports
the two features we need: from a witness you can compute a message and from
the list of all inputs used to form a ciphertext, you can derive a witness.

Definition 8. An encryption scheme E = (KeyGen,Encrypt,Decrypt) and a
proof scheme P = (P,V) for relation R are compatible if there are efficient
algorithms M and W such that:

1. For any tuple (pk, c, w) of public key, ciphertext and witness such that R((pk,
c), w) holds, the value m := M(pk, c, w) is the message such that c is an
encryption of m under public key pk.

2. For any tuple (pk, c,m, r) of public key, ciphertext, message and random
string, the value w := W(pk, c,m, r) is a witness for which R((pk, c), w)
holds.

Definition 9. Let E and P be compatible encryption and proof schemes (for a
relation R and algorithms M, W. The encrypt-then-prove transformation of E
and P is the encryption scheme in Figure 9 where RS is the space of random
strings for E.Encrypt.

KeyGen():

(pk, sk) ← E.KeyGen()

return (pk, sk)

Encrypt(pk,m):

r ←$ RS

c ←
E.Encrypt(pk,m; r)

w ← W(pk, c,m, r)

π ← P.P((pk, c), w)

return (c, π)

Decrypt(sk, c):

parse c as (e, π)

if P.V((pk, e), π) = 0

then
return ⊥

m ← E.Decrypt(sk, e)

return m

Fig. 9. The encrypt-then-prove transformation of compatible E and P. RS is the space
of random strings used by the original encryption algorithm.

Signed ElGamal. As an example, we present the Signed ElGamal scheme.
Signed ElGamal is ElGamal encryption with a Fiat-Shamir-Schnorr proof. It
operates over a cyclic group G of prime order q with a generator G. To generate
keys, pick a random sk ←$ Fq and set your public key to pk ← Gsk. To encrypt
a message m ∈ G, pick a random r ←$ Fq and create an ElGamal ciphertext
e ← (Gr, pkr · m). Then pick another random value a ←$ Fq and create the
Schnorr commitment A ← Ga, challenge c ← H(pk, e, A) and response s ←
a + c · r (mod q). The ciphertext is (e,A, s). To decrypt a ciphertext (e,A, s)
with secret key sk, parse e as a pair (u, v) and check that Gs = A+H(pk, e, A) ·u

Adaptive Proofs of Knowledge in the Random Oracle Model 645

(mod q). If this fails, the ciphertext is invalid. If it succeeds, the decryption is
m ← v/usk. The relation R for Signed ElGamal is R((pk, (u, v)), r) :⇔ u = Gr.
Here (u, v) is an ElGamal ciphertext and (pk, (u, v)) is a statement consisting
of a public key/ciphertext pair. The maps to make the encryption scheme and
proof compatible are M(pk, (u, v), w) := v/pkw and W(pk, (u, v),m, r) := r.

4.3 Simulation-Sound Adaptive Proofs Yield CCA

Our main positive result expresses the intuition behind encrypt-then-prove.

Theorem 2. Let E be an IND-CPA secure encryption scheme and let P be a
compatible simulation-sound adaptive proof scheme in the random oracle model.
Then the encrypt-then-prove transformation of these schemes is a CCA secure
encryption scheme in the random oracle model.

As a corollary we immediately obtain a new CCA secure encryption scheme.

Corollary 1. The encrypt-then-prove transformation of ElGamal using Fischlin-
Schnorr proofs is CCA secure.

The final step of the proof follows the basic intuition behind all encrypt-
then-prove constructions. We reduce CCA security to IND-CPA security. Our
reduction sends the two challenge messages to the IND-CPA game for the basic
scheme, gets a ciphertext back and simulates a proof on it to create the chal-
lenge ciphertext of the encrypt-then-prove construction. When the CCA attacker
makes a decryption query with an encrypt-then-prove ciphertext, the reduction
invokes the extractor using the IND-CPA ciphertext component as the state-
ment and the proof component as the proof. The witness contains the encrypted
message which the reduction returns to the attacker. Since we are simulating and
extracting in the same reduction, we require simulation sound extractability.

Unfortunately, this idea does not explain how the reduction is supposed to
deal with the extractor requesting a further copy of the attacker. Worse still, the
“prover” that we are simulating towards the extractor is a combination of the
attacker and the IND-CPA challenger. We definitely cannot clone or rewind our
challenger. To our knowledge, our proof is the first proof of a CCA construction
that involves rewinding.

After an intial step in which we simulate all proofs on challenge ciphertexts,
most of the proof is an argument how and why a single reduction can provide the
extractor with a consistent simulation of multiple copies of the same algorithm.
We call this technique coin splitting. It works on two principles. (1.) Keep track
of which copies are “clones” of other copies. If a copy C is getting the exact
same queries that another copy D has already answered, let C simply replay D’s
answers. (2.) Make sure that all cases not handled by the last point involve fresh,
independent randomness. Then the reduction can simply draw fresh random
values from one source to simulate all copies.

Coin splitting lets us use our one IND-CPA challenge for the extractor’s
main prover and simulate our own challenges for the rewinding provers. To the
extractor, all this will look just like fresh randomness each time.

646 D.Bernhard et al.

4.4 Fiat-Shamir-Schnorr Is Not Adaptively Secure

Our third result is negative. It separates proofs of knowledge from adaptive
proofs and shows that Fiat-Shamir Schnorr is an example that separates the
two notions.

Theorem 3. The Fiat-Shamir-Schnorr (FSS) proof scheme is not adaptively
secure under the one-more discrete logarithm assumption. Specifically, for any n
there is a prover P̂ who makes a sequence of n FSS proofs. For any extractor K
who can win the adaptive proof experiment against P̂, either K calls at least 2n

rewinding copies of P̂ or there is a reduction that solves the one-more discrete
logarithm problem in the underlying group with a comparable success rate to K.

The prover in question follows the same ideas as Shoup and Gennaro’s CCA
attacker [47]. While the cited work gave the attacker as an example why the
“obvious” proof fails, it did not show any inherent limitation of the Fiat-Shamir
technique; it did not show that this limitation cannot be overcome by using a
different proof technique. Our paper is the first to give a proof that Fiat-Shamir
transformed sigma protocols have an unavoidable limitation.

Acknowledgments. We thank the current and earlier reviewers of this paper for
their helpful comments. This work has been supported in part by the European Union
under the Seventh Framework Programme (FP7/2007-2013), grant agreement 609611
(PRACTICE) and the ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO. Marc
Fischlin is supported by the Heisenberg grant Fi 940/3-2 of the German Research
Foundation (DFG).

References

1. Abe, M.: Combining Encryption and Proof of Knowledge in the Random Oracle
Model. The Computer Journal 47(1), 58–70 (2004)

2. Abdalla, M., Bellare, M., Rogaway, P.: The oracle diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, p.
143. Springer, Heidelberg (2001)

3. Adida, B.: Helios: web-based open-audit voting. In: 17th USENIX security sym-
posium, pp. 335–348. Helios website (2008). http://heliosvoting.org paper: http://
www.usenix.org/events/sec08/tech/full papers/adida/adida.pdf

4. Bagherzandi, A., Cheaon, J.H., Jarecki, S.: Multisignatures secure under the dis-
crete logarithm assumption and a generalized forking lemma. In: CCS 2008, pp.
449–458. ACM press (2008)

5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

6. Bellare, M., Goldreich, O.: On probabilistic versus deterministic provers in the
definition of proofs of knowledge. In: Goldreich, O. (ed.) Studies in Complexity
and Cryptography. LNCS, vol. 6650, pp. 114–123. Springer, Heidelberg (2011)

7. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-
Inversion Problems and the Security of Chaum’s Blind Signature Scheme. J. Cryp-
tology 16(3), 185–215 (2003). Springer

http://heliosvoting.org
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf

Adaptive Proofs of Knowledge in the Random Oracle Model 647

8. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of ACM Conference on Computer and Communi-
cations Security, pp. 390–399 (2006)

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73. ACM (1993)

10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006). Full version of 27 November
2008 (Draft 3.0) at eprint.iacr.org/2004/331

11. Bellare, M., Sahai, A.: Non-malleable encryption: equivalence between two notions,
and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

12. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of the
Fiat-Shamir Heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

13. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: Proceedings of the twentieth annual ACM symposium on theory of
computing (STOC 1990), pp. 103–112 (1988)

14. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge.
In: STOC, pp. 235–244. ACM Press (2000)

15. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

16. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, p. 13. Springer, Heidelberg (1998)

17. Damg̊ard, I.B.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992)

18. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust
non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, p. 566. Springer, Heidelberg (2001)

19. De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion (extended abstract). In: FOCS, pp. 427–436 (1992)

20. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

21. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668. Springer, Heidelberg (2012)

22. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryp-
tology 1(2), 77–94 (1988)

23. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS, pp. 308–317 (1990)

24. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg
(1990)

25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

648 D.Bernhard et al.

26. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 152–168. Springer, Heidelberg (2005)

27. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 351.
Springer, Heidelberg (2001)

28. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric
Encryption Schemes. J. Cryptology 26(1), 80–101 (2013)

29. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening Zero-Knowledge Protocols
Using Signatures. J. Cryptology 19(2), 169–209 (2006). Springer

30. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008)

31. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Comput. 18(1), 186–208 (1989)

32. Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on Oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

33. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

34. Kiltz, E., Malone-Lee, J.: A General Construction of IND-CCA2 Secure Public
Key Encryption. IMA Int. Conf. 152–166 (2003)

35. Lindell, Y.: A Simpler Construction of CCA2-Secure Public-KeyEncryption under
General Assumptions. J. Cryptology 19(3), 359–377 (2006). Springer

36. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of the twenty-second annual ACM symposium
on theory of computing (STOC 1990), pp. 42–437 (1990)

37. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptolog 13(3), 361–396 (2000). Springer

38. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

39. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proceedings of the 40th annual symposium on foundations
of computer science (FOCS 1999), pp. 543–553 (1999)

40. Schnorr, C.P.: Efficient signature generation for smart cards. Journal of cryptology
4, 161–174 (1991). Springer

41. Schnorr, C.-P., Jakobsson, M.: Security of signed elgamal encryption. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 73. Springer, Heidelberg (2000)

42. Seurin, Y.: On the exact security of schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012)

43. Seurin, Y., Treger, J.: A robust and plaintext-aware variant of signed elgamal
encryption. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 68–83.
Springer, Heidelberg (2013)

44. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption. Version
2.1 (2001). www.shoup.net

45. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998)

www.shoup.net

Adaptive Proofs of Knowledge in the Random Oracle Model 649

46. Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen
Ciphertext Attack. J. Cryptology 15(2), 75–96 (2002). Springer

47. Tompa, M., Woll, H.: Random self-reducibility and zero knowledge interactive
proofs of possession of information. In: FOCS, pp. 472–482 (1987)

48. Tsiounis, Y., Yung, M.: On the security of elgamal based encryption. In: Imai, H.,
Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, p. 117. Springer, Heidelberg (1998)

49. Wee, H.: Zero knowledge in the random oracle model, revisited. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (2009)

50. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

51. Wikström, D.: Simplified submission of inputs to protocols. In: Ostrovsky, R., De
Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293–308. Springer,
Heidelberg (2008)

52. Zheng, Y., Seberry, J.: Practical approaches to attaining security against adaptively
chosen ciphertext attacks. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740.
Springer, Heidelberg (1992)

Making Sigma-Protocols Non-interactive
Without Random Oracles

Pyrros Chaidos(B) and Jens Groth

University College London, London, UK
{pyrros.chaidos.10,j.groth}@ucl.ac.uk

Abstract. Damg̊ard, Fazio and Nicolosi (TCC 2006) gave a transfor-
mation of Sigma-protocols, 3-move honest verifier zero-knowledge proofs,
into efficient non-interactive zero-knowledge arguments for a designated
verifier. Their transformation uses additively homomorphic encryption
to encrypt the verifier’s challenge, which the prover uses to compute
an encrypted answer. The transformation does not rely on the random
oracle model but proving soundness requires a complexity leveraging
assumption.

We propose an alternative instantiation of their transformation and
show that it achieves culpable soundness without complexity leveraging.
This improves upon an earlier result by Ventre and Visconti (Africacrypt
2009), who used a different construction which achieved weak culpable
soundness.

We demonstrate how our construction can be used to prove validity
of encrypted votes in a referendum. This yields a voting system with
homomorphic tallying that does not rely on the Fiat-Shamir heuristic.

Keywords: Sigma-protocols · Non-interactive zero-knowledge desig-
nated verifier argument · DFN transformation · Culpable soundness ·
Voting

1 Introduction

Cryptographic applications often require a party to demonstrate that a state-
ment is true without revealing any additional details. For example, a voter may
wish to prove that an encrypted message contains a vote for a valid candidate
without disclosing the actual candidate. This can be done using zero-knowledge
proofs [17] that enable a prover to demonstrate to a verifier that a statement x
belongs to a language L in NP defined by a relation R without giving the verifier
any information about the witness w such that (x,w) ∈ R.

Pyrros Chaidos—This author was supported by an EPSRC scholarship
(EP/G037264/1 – Security Science DTC).
Jens Groth—This research was supported by the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement n. 307937.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 650–670, 2015.
DOI: 10.1007/978-3-662-46447-2 29

Making Sigma-Protocols Non-interactive Without Random Oracles 651

Σ-protocols are particular types of 3-move honest verifier zero-knowledge
proofs that can be highly efficient. However, in many applications it is prefer-
able for a protocol to be non-interactive [5] with the prover preparing a proof
with no need for direct input from the verifier. The Fiat-Shamir transforma-
tion [13] produces a non-interactive version of a Σ-protocol by substituting the
verifier’s challenge with the output of a hash function on the prover’s statement
and messages. The transformation can be proven secure in the random oracle
model [3]. However, the random oracle model is regarded with some skepticism
since there exist pathological protocols that can be proven secure in the random
oracle model but fail in any real-world instantiation [6,16].

Damg̊ard, Fazio and Nicolosi (DFN) [11] introduced an alternative transfor-
mation. The DFN transformation works in the Registered Key Model (RKM) [2]
where a verifier registers a public key and transforms a Σ-protocol with linear
answer into a non-interactive zero-knowledge argument that can be verified by
this specific verifier [23]. The transformation works by having the verifier encrypt
his challenge under an additively homomorphic encryption scheme and relies on
the Σ-protocol having an answer that can be computed using linear algebra and
the homomorphic property of the encryption scheme to enable the prover to com-
plete an encrypted version of the answer in the Σ-protocol. Their construction
is secure for a logarithmic number of proofs but soundness rests on a complexity
leveraging assumption.

Ventre and Visconti [28] give an alternative proof of soundness for a con-
struction based on a two ciphertext variation of the DFN transformation in the
style of Naor and Yung [25]. They replace the complexity leveraging assump-
tion by introducing a modification of culpable soundness1 [21] that they call
weak culpable soundness. Standard culpable soundness restricts adversaries to
being “aware” of the falsehood of the statement they are proving. Weak culpa-
ble soundness furthermore requires that the adversary is also aware of the fact
that she has succeeded in producing a convincing proof of a false statement, by
producing a second auxiliary proof to that effect.

In the DFN setting using weak culpable soundness would require the adver-
sary to prove statements containing ciphertexts addressed to the designated ver-
ifier. It would be challenging to provide such an adversary with enough power
to perform the required proofs without having knowledge of the verifier’s secret
decryption key. We instead opt to construct the underlying protocol with the
property that forged proofs reveal the challenge. This is enough to contradict
the semantic security of the encryption scheme used for the designated verifier
proof if a false proof is ever produced.

1.1 Our Contribution

We give an instantiation of the DFN transformation that achieves standard cul-
pable soundness without complexity leveraging. The transformation relies on an
1 Culpable soundness was also called co-soundness in an earlier version of [21].

652 P. Chaidos and J. Groth

IND-CPA secure additively homomorphic encryption scheme and is quite effi-
cient. The tranformation can be applied to Σ-protocols that have linear answers
and unique identifiable challenges (Sect. 2.2).

We can use our resulting non-interactive zero-knowledge designated verifier
arguments to efficiently prove statements about encrypted plaintexts. In partic-
ular, we can prove that a ciphertext contains either 0 or 1 without disclosing the
plaintext. This can in turn be used to prove that a set of ciphertexts encrypt a
witness for the satisfiability of a circuit. For the appropriate Σ-protocols to be in
place, we require the encryption scheme to be additively homomorphic modulo
a prime and satisfy a few other requirements (Sect. 2.1). We use Okamoto-
Uchiyama encryption [26] as an example.

We proceed to give an example application of our non-interactive zero-
knowledge arguments to provide publicly verifiable arguments in the context
of electronic voting. In voting systems such as Helios [1] voters submit their
votes encrypted under a homomorphic encryption scheme accompanied with
non-interactive arguments (typically using the Fiat-Shamir transformation) that
the encrypted votes are in fact valid. Ciphertexts with convincing arguments
are aggregated homomorphically to produce an encrypted tally which is then
decrypted to produce the result. By releasing the designated verifier keys to the
public (similar to [29]), once vote submission has concluded, we can use our non-
interactive designated verifier arguments in place of the usual non-interactive
zero-knowledge arguments with minimal changes to the design.

1.2 Related Work

Since the introduction of non-interactive zero-knowledge proofs by Blum, Feld-
man and Micali [5] much effort has been spent on reducing their size [10,15,
19,24]. The introduction of pairing-based techniques [18,21,22] has led to prac-
tically efficient non-interactive zero-knowledge proofs that can be used in the
context of pairing-based cryptography.

The Fiat-Shamir heuristic can be used to make a Σ-protocol non-interactive.
This can lead to highly efficient non-interactive zero-knowledge proofs but relies
on the random oracle model when proving security. Recently pairing-based suc-
cinct non-interactive zero-knowledge arguments [14,20,27] have become very
compact even for large scale statements, however, they rely on knowledge extrac-
tor assumptions over bilinear groups.

The above research yields non-interactive zero-knowledge proofs that are
publicly verifiable. However, there are many settings where it suffices to have
non-interactive zero-knowledge arguments intended for a designated verifier.
Cramer and Shoup used universal hash proofs to build a highly efficient cho-
sen ciphertext attack secure public-key encryption scheme [8,9]. Non-interactive
proofs for a designated verifier for all languages in NP can be found in [2] in the
key registration model where parties register keys.

The most closely related works are the DFN transformation by Damg̊ard,
Fazio and Nicolosi [11] and the work by Ventre and Visconti [28] that we have
already discussed.

Making Sigma-Protocols Non-interactive Without Random Oracles 653

2 Preliminaries

We write y = A(x; r) when the algorithm A on input x and randomness r,
outputs y. We write y ← A(x) for the process of picking randomness r at random
and setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from the set S.

All algorithms get as input a security parameter n written in unary as 1n.
Sometimes we do not explicitly write this input to the algorithms but we will
always assume it is implicitly available to the algorithms. The intuition is that
the higher the security parameter, the more secure the cryptographic system.

Given two functions f, g : N → [0, 1] we write f(n) ≈ g(n) when |f(n) −
g(n)| = O(n−c) for every constant c > 0. We say that f is negligible if f(n) ≈ 0
and that f is overwhelming if f(n) ≈ 1.

An NP-relation is a binary relation R consisting of pairs (x,w) that can be
decided in polynomial time in the length of x. We call x the statement and w
the witness. The relation R gives rise to a language LR = {x | ∃w : (x,w) ∈ R}
of statements in R. To incorporate the security parameter into the relations, we
will without loss of generality assume all statements are of a form such that n
can be easily derived (all statements in this paper could be reformulated to be
of the form x = (1n, x′) although for notational convenience we will not do this)
and all statements and witnesses are of size polynomial in n. We define Rn as
the relation R restricted to statements corresponding to n.

2.1 Additively Homomorphic Encryption

A public key encryption scheme is a triple of probabilistic polynomial time algo-
rithms (K, E ,D). The key generation function K given a security parameter
returns a public encryption key ek and a private decryption key dk. The encryp-
tion algorithm E given an encryption key ek and a message m returns a ciphertext
c ← Eek(m). The deterministic decryption algorithm D given a decryption key
dk and a ciphertext c returns a message m or a special symbol ⊥ if the ciphertext
is invalid.

The public encryption key ek defines a message space Mek of possible plain-
texts, a randomness space Rek and a ciphertext space Cek. In this paper we will
make use of an encryption scheme where the message space is Zp for some large
integer p, which is explicitly or implicitly defined by the public key, and with size
|p| = �p(n) for a publicly known polynomial �p. We say that (K, E ,D) is addi-
tively homomorphic if the randomness and ciphertext spaces are finite groups
as well (written additively and multiplicatively respectively) and for all possible
keys ek and plaintexts m1,m2 ∈ Mek and r1, r2 ∈ Rek we have

Eek(m1; r1) · Eek(m2; r2) = Eek(m1 + m2; r1 + r2).

We say that an additively homomorphic scheme (K, E ,D) is a strongly addi-
tively homomorphic scheme if it satisfies the four additional properties described
below:

654 P. Chaidos and J. Groth

Prime order message space: The message space is Zp for some prime p.
Decryption homomorphic2: Membership of the ciphertext space can be effi-

ciently tested and the decryption algorithm on all elements in Cek returns a
plaintext in Mek (i.e., decryption does not fail). Furthermore, decryptions
respect the additively homomorphic operation, i.e., for all possible key pairs
(ek, dk) and c1, c2 ∈ Cek we have

Ddk(c1) + Ddk(c2) = Ddk(c1 · c2).

Extended randomness: Rek = ZN for some integer N but the encryption
function accepts randomness in Z and for all m ∈ Mek and r ∈ Z

E(m; r) = E(m; r mod N).

Verifiable keys: There exists an efficient test VerifyKey(1n, ek, dk) that given
a public key ek and decryption key dk (or without loss of generality the
randomness used in the key generation) returns 1 if and only if (ek, dk) is a
valid key pair using security parameter n.

For notational convenience, we let cz be the vector (cz1 , . . . , czn) given a
ciphertext c and a vector of integers z = (z1, . . . , zn). Given a vector w we also
define c ← Eek(w) as the vector of ciphertexts given by (Eek(w1), . . . , Eek(wn)).

Definition 1 (IND-CPA security). We say that (K, E ,D) is indistinguish-
able under chosen plaintext attack (IND-CPA secure) if for all probabilistic poly-
nomial time stateful adversaries A

Pr
[
(ek, dk) ← K(1n); (m0, m1) ← A(ek); b ← {0, 1}; c ← Eek(mb) : A(c) = b

]
≈ 1

2
,

where A outputs m0,m1 ∈ Mek.

Okamoto-Uchiyama Encryption [26]. The Okamoto-Uchiyama [26] cryp-
tosystem is strongly additively homomorphic with a message space Zp for a
prime p that is implicitly defined by the public key.

K(1n): Pick two different �p(n)-bit primes p, q and let N = p2 · q. Then choose
a random g in Z

∗
N such that g mod p2 has order p(p − 1) in Z

∗
p2 . The public

key is ek = (N, g) and the secret decryption key is dk = (ek, p).
Eek(m): Given m ∈ Zp return Eek(m; r) = gm+rN mod N , where r ← ZN .

Ddk(c): Return m = L(cp−1 mod p2)
L(gp−1 mod p2) mod p, where L(x) = x−1

p .

For a given public key ek = (N, g) the randomness space is ZN and the
ciphertext space is Z

∗
N . Even though the message space is defined as Zp, in

practice we cannot disclose p but as long as the encrypting party picks messages
2 This property is trivial for cryptosystems where the entire cipherspace consists of

valid encryptions but in the general case it must be stated explicitly.

Making Sigma-Protocols Non-interactive Without Random Oracles 655

m ∈ {0, 1}�p(n)−1 we are guaranteed that they fall within the message space and
will decrypt correctly.

Direct calculation confirms that Okamoto-Uchiyama encryption is decryption
homomorphic and that it is easy to extend the randomness space to Rek =
Z. The keys are verifiable in the sense that given the decryption key, i.e., the
factorization of N , it is easy to check that the keys are a valid output of the key
generation algorithm and that the encryption scheme satisfies all the required
properties.

2.2 Σ-Protocols with Linear Answers and Unique Identifiable
Challenges

A Σ-protocol for an NP-relation R is a 3-move protocol that enables a prover
to demonstrate to a verifier that a statement x satisfies x ∈ LR, i.e. that there
exists w such that (x,w) ∈ R without disclosing anything else, in particular
not disclosing the value of w that the prover has in mind. A typical run of a
Σ-proocol is illustrated in Fig. 1.

a �

Prover(x, w) e Verifier(x) −→ {accept, reject}�

z �

Fig. 1. Σ-protocol with statement x and witness w

A Σ-protocol is public-coin, which means that the challenge e chosen by the
verifier is picked uniformly at random without the verifier storing any private
information about it. We will consider protocols where e is picked as a random
n-bit string, where n is the security parameter.

We will restrict ourselves to Σ-protocols with a linear answer over the inte-
gers. By this we mean without loss of generality that we can consider a prover
that generates the initial message a and two integer vectors z1 and z2. The
answer to a challenge e ∈ {0, 1}n can then be computed as the integer vector
z = ez1 + z2. We will assume that all the integers in z1,z2,z are non-negative
and that there is a known polynomial upper bound �z(n) on the bit-size of the
integers.

We can now describe a Σ-protocol for an NP-relation R with linear answer
as a pair (PΣ,VΣ), where PΣ,VΣ are probabilistic polynomial time algorithms.
The Σ-protocol runs as follows:

(a,z1,z2) ← PΣ(x,w): The prover given a statement and witness pair (x,w) ∈
Rn generates an initial message a and a state z1,z2.

656 P. Chaidos and J. Groth

e ← {0, 1}n: An n-bit challenge is chosen uniformly at random.
z ← ez1 + z2: An answer to the challenge e can be computed as z = ez1 + z2.
{0, 1} ← VΣ(x, a, e,z): The verifier given a statement x and a protocol transcript

(a, e,z) returns 1 if accepting and 0 if rejecting. The verifier will always reject
if any inputs are malformed, for instance if e /∈ {0, 1}n or z contains an entry
zi /∈ {0, 1}�z(n).

A Σ-protocol is required to operate correctly when used by honest partici-
pants (completeness), to prevent dishonest provers from convincing verifiers that
false statements hold (soundness), and not to leak information about w (zero-
knowledge). Formally, we require that a Σ-protocol (PΣ,VΣ) for an NP-relation R
with linear answer should be complete and special honest verifier zero-knowledge
as defined below. With respect to soundness, we will for our purposes be inter-
ested in a special class of Σ-protocols that have unique identifiable challenges.

Definition 2 (Completeness). We say (PΣ,VΣ) is perfectly complete if for
all n ∈ N and (x,w) ∈ Rn

Pr
[

(a,z1,z2) ← PΣ(x,w); e ← {0, 1}n;z = ez1 + z2 : VΣ(x, a, e,z) = 1
]

= 1.

Definition 3 (Special Honest Verifier Zero-Knowledge (SHVZK)). We
say that (PΣ,VΣ) is computationally special honest verifier zero-knowledge if
there exists a probabilistic polynomial time simulator S such that for all proba-
bilistic polynomial time stateful adversaries A

Pr
[

(x,w) ← A(1n); (a,z1,z2) ← PΣ(x,w); e ← {0, 1}n;z ← ez1 + z2 :
(x,w) ∈ Rn and A(a, e,z) = 1

]

≈Pr
[

(x,w) ← A(1n); e ← {0, 1}n; (a,z) ← S(x, e) :
(x,w) ∈ Rn and A(a, e,z) = 1

]

If this holds also for unbounded adversaries A, we say (PΣ,VΣ) is statistically
special honest verifier zero-knowledge.

Traditionally, Σ-protocols are required to have special soundness, which says
that if the prover, after having created the initial message a, can answer two
different challenges e and e′ then it is possible to compute a witness w for the
statement x being proved such that (x,w) ∈ R.

We do not need the witness to be extractable in this paper and will therefore
relax the soundness definition to just saying that on a false statement there is
at most a single unique challenge the prover can answer after having created the
initial message a.

However, we will require that under certain circumstances this unique answer-
able challenge should be identifiable, i.e., if the prover “knows” the statement
is false in a certain way then she can actually compute the unique challenge
e she will be able to answer if she can answer any challenge at all. We define
this by adapting the notion of culpable soundness from [21]. We say that the

Making Sigma-Protocols Non-interactive Without Random Oracles 657

unique challenge is identifiable using an NP-relation Rguilt, which only contains
false statements, if when the prover produces a statement x and a witness wguilt

of being guilty of cheating such that (x,wguilt) ∈ Rguilt, then it is possible to
efficiently compute a unique challenge where the verifier may possibly accept.
The relation Rguilt will typically include all false statements that have a special
form, depending on the specifics.

Definition 4 (Soundness with unique identifiable challenge). We say
(PΣ,VΣ) has a unique identifiable challenge using NP-relation Rguilt if there
is a polynomial time algorithm E that takes as input the statement, witness
and initial message and returns the unique challenge e that can be answered.
Formally, we require that for all n, x,wguilt, a, e, z where (x,wguilt) ∈ Rguilt,n

and VΣ(x, a, e, z) = 1 that e = E(x,wguilt, a).

A frequently asked question is why would the adversary want to provide
a witness for cheating. The answer is that there are many natural scenarios
where the real adversary is only a part of a larger system that contains the guilt
witness. It may well be that the system would never provide a guilt witness in a
normal execution but even when that is the case the notion can still be useful in
security proofs: by framing a “standard” adversary within such a system we are
able to explicitly use privileged information held by honest parties in security
reductions. In Sect. 4 we give voting as a concrete example of how culpable
soundness can be used to prevent cheating by voters. Voters prove that they
have encrypted valid votes using the election system’s public key. The guilt
witness is the decryption key, which the voting system will never make public
since it would reveal all the votes. However, if a cheating voter exists, it is enough
to point out that the guilt witness will exist in the possession of the electoral
authorities. To satisfy the definition we may consider a new adversary which
consists of the cheating voter’s behaviour, with the decryption key added to the
output in a post-processing step. Culpable soundness then guarantees the voter
cannot cheat and submit an invalid vote.

We note that the extractor E only requires the guilt witness and the initial
message from the prover. This will be critical in the next section where the
protocol is made non-interactive via the DFN transformation and the prover’s
answer will be encrypted. In general, we cannot require that a cheating prover
knows the contents of that ciphertext since it might have been assembled in a
way that differs from the protocol.

Σ-protocol for Additively Homomorphic Encryption of 0 or 1. Consider
a strongly additively homomorphic encryption scheme (G, E ,D) with message
space Zp for a prime p defined by the encryption key. We will now give a Σ-
protocol for proving that a ciphertext encrypts 0 or 1 using randomness r ∈
{0, 1}�r(n) bounded by a polynomial �r(n).

Let

R =
{(

(ek, c), (m, r)
)

: m ∈ {0, 1} and r ∈ {0, 1}�r(n) and c = Eek(m; r)
}

,

658 P. Chaidos and J. Groth

Prover((ek, c), (m, r)) Verifier(ek, c)

ma ← {1}||{0, 1}2n a, b Accept if and only if

ra ← {0, 1}�r(n)+2n; a ← Eek(ma; ra)
�

a, b, c ∈ Cek, f ∈ {0, 1}2n+2

rb ← {0, 1}�r(n)+3n; b ← Eek(−mma; rb) e ← {0, 1}n za ∈ {0, 1}�r(n)+2n+1�
zb ∈ {0, 1}�r(n)+3n+1

f := em + ma, za := er + ra f, za, zb cea = Eek(f ; za)

zb := (f − e)r + rb

�
cf−eb = Eek(0; zb)

Fig. 2. Σ-protocol for encryption of 0 or 1

Rguilt =
{(

(ek, c), dk
)

: c ∈ Cek and Ddk(c) /∈ {0, 1} and VerifyKey(1n, ek, dk) = 1
}

.

Theorem 1. Fig. 2 describes a Σ-protocol for R with linear answer and unique
identifiable challenge using Rguilt assuming (G, E ,D) is a strongly additively
homomorphic encryption scheme with message space Zp of sufficiently large size
such that �p(n) > n.

Proof. The algorithms are probabilistic polynomial time. The protocol has linear
answer with a polynomial upper bound of �z(n) = �r(n) + 3n + 1 on the bit-
lengths of the integers in the answer. Direct verification shows that the protocol
is perfectly complete.

The protocol is statistical SHVZK. The simulator given challenge e ∈ {0, 1}n

picks f ← {1}||{0, 1}2n, za ← {0, 1}�r(n)+2n and zb ← {0, 1}�r(n)+3n. It then
computes a = c−eEek(f ; za) and b = ce−fEek(0; zb) and returns the simulated
proof (a, b, f, za, zb). Observe that the simulated f, za, zb are statistically close to
those of a real proof. To see the simulation is statistically indistinguishable from
a real proof with challenge e all that remains to be seen is that given f, za, zb,
the initial message containing a, b is fixed by the verification equations in both
real and simulated proofs.

Finally, let us show that the protocol has unique identifiable challenges using
Rguilt. A witness in Rguilt gives us the decryption key for the encryption scheme.
We can verify the correctness of the decryption key and decrypt c to get m and
also decrypt a, b to get plaintexts ma and mb. In a succesful argument, the value
f must be f = em + ma mod p since otherwise the first verification equation
would fail. The second verification equation gives us (f − e)m + mb = 0 mod p,
which means e(m − 1)m + mam + mb = 0 mod p. If m /∈ {0, 1} we have that
(m − 1)m �= 0 mod p and therefore the equation uniquely determines e mod p.
With p > 2n this identifies at a unique challenge e ∈ {0, 1}n that the prover may
be able to answer or shows that no answerable challenge exists. �

2.3 Non-interactive Designated Verifier Zero-Knowledge Arguments

It is often desirable to operate in a single step, avoiding the interaction needed
to execute a Σ-protocol. The prover still wishes to demonstrate to the verifier

Making Sigma-Protocols Non-interactive Without Random Oracles 659

the truth of a statement x ∈ LR for an NP-relation R without disclosing any
other information about her witness w.

In a non-interactive designated verifier zero-knowledge argument system, we
imagine the verifier sets up a public key pk for the proof together with a secret
verification key vk that can be used to verify the arguments. The system therefore
consists of three probabilistic polynomial time algorithms (G,P,V).

(pk, vk) ← G(1n): The key generation algorithm, given the security parameter
as input, generates a public key pk and a secret verification key vk.

π ← P(pk, x, w): Given a public key pk and (x,w) ∈ Rn, the prover algorithm
generates an argument π.

{0, 1} ← V(vk, x, π): Given a secret verification key vk, a statement x and an
argument π, the verification algorithm returns 1 if accepting the argument
and 0 for rejection of the argument.

(G,P,V) is said to be a non-interactive designated verifier zero-knowledge argu-
ment system for R with culpable soundness with respect to Rguilt if it is complete,
culpably sound and zero-knowledge as defined below.

Definition 5 (Completeness). (G,P,V) is perfectly complete if for all n ∈ N

and all (x,w) ∈ Rn

Pr
[

(pk, vk) ← G(1n);π ← P(pk, x, w) : V(vk, x, π) = 1
]

= 1.

Intuitively, the argument is zero-knowledge if it does not leak information about
the witness. The arguments we construct will be zero-knowledge assuming the keys
are honestly generated. We define this notion through the existence of a simulator
that can simulate arguments given the verifier’s secret verification key. In our con-
structions we will get zero-knowledge even if the adversary knows the secret veri-
fication key, a strong type of zero-knowledge called composable zero-knowledge in
[18] due to it making composition of zero-knowledge proofs easier.

Definition 6 (Composable zero-knowledge). (G,P,V) is computationally
composable zero-knowledge if for all probabilistic polynomial time stateful adver-
saries A

Pr
[
(pk, vk) ← G(1

n
); (x, w) ← A(pk, vk); π ← P(pk, x, w) : (x, w) ∈ Rn and A(π) = 1

]

≈ Pr
[
(pk, vk) ← G(1

n
); (x, w) ← A(pk, vk); π ← S(vk, x) : (x, w) ∈ Rn and A(π) = 1

]
.

If the above holds also for unbounded stateful adversaries A then we say the
argument is statistically composable zero-knowledge.

Culpable soundness [21] is a relaxation of soundness that restricts the prover
in the following way: First, we only consider false statements in a subset Lguilt

of L̄R characterised by a relation Rguilt. Second, we require a successful cheating
prover to also output a guilt witness wguilt along with his false statement x
such that (x,wguilt) ∈ Rguilt. Intuitively this definition captures the notion of a
malicious prover being aware of the falsehood of the statement for which she is
creating a fake proof.

660 P. Chaidos and J. Groth

Definition 7 (Adaptive culpable soundness). We say (G,P,V) is culpably
sound with respect to the relation Rguilt if for all probabilistic polynomial time A

Pr
[
(pk, vk) ← G(1

n
); (x, π, wguilt) ← A(pk) : (x, wguilt) ∈ Rguilt,n and V(vk, x, π) = 1

]
≈ 0.

The above definition does not directly cover the adversary, A having access to a
verification oracle V(vk, ·, ·). However it is straightforward to handle cases where
the adversary has access to a logarithmic number of queries (as in [11]), since that
can be simulated by guessing the responses with inverse polynomial probability.

3 Transformation

We will now use the DFN transformation on a Σ-protocol with linear answer
over the integers and unique identifiable challenges to get a non-interactive des-
ignated verifier argument. The verifier uses an additively homomorphic encryp-
tion scheme (K, E ,D) to encrypt a random challenge e. Since the Σ-protocol has
linear answer, the prover can now use the homomorphic property of the encryp-
tion scheme to compute an encryption of the answer z in the Σ-protocol, which
is sent together with the initial message a. The verifier decrypts the ciphertext
from the prover to get z and checks whether (a, e,z) is a valid proof. The full
non-interactive designated verifier argument is described in Fig. 3.

G(1n)

(ek, dk) ← K(1n)
e ← {0, 1}n

c ← Eek(e)
pk := (ek, c)
vk := (dk, e)
Return (pk, vk)

P(pk, x, w)

(a, z1, z2) ← PΣ(x, w)
cz ← cz1Eek(z2)
Return π := (a, cz)

V(vk, x, π)

Parse π = (a, cz)
z ← Ddk(cz)
Return VΣ(x, a, e, z)

Fig. 3. Non-interactive designated verifier argument

Theorem 2. (G,P,V) specified in Fig. 3 is a non-interactive designated verifier
argument for R with culpable soundness for Rguilt if (PΣ,VΣ) is a Σ-protocol for
R with linear answer over the integers and soundness with unique identifiable
challenge using Rguilt and if (K, E ,D) is an additively homomorphic, IND-CPA
secure public key encryption scheme where Zp is of sufficiently large size to
include the answers, i.e., �p(n) > �z(n).

Proof. Since (PΣ,VΣ) and (K, E ,D) are probabilistic polynomial time algorithms
so are (G,P,V). Perfect completeness follows from the additive homomorphicity
of the encryption scheme and that 0 ≤ zi < 2�z(n) < p for all entries zi in z
combined with the perfect completeness of (PΣ,VΣ).

Next, we will prove that the construction is zero-knowledge. The simulator
knows the secret verification key vk = (dk, e). It starts by running the SHVZK

Making Sigma-Protocols Non-interactive Without Random Oracles 661

simulator for the Σ-protocol to get a simulated proof (a, e,z) for the statement x.
It then generates cz ← Eek(z) and returns the simulated argument π := (a, cz).

To see a that simulated argument is indistinguishable from a real argument
consider a hybrid simulator that does get the witness as input. This hybrid sim-
ulator proceeds by following the Σ-protocol to get an argument (a, e,z) and
then encrypts z to get cz. Since the encryption scheme is also homomorphic
with respect to the randomness used for encryption, the hybrid arguments gen-
erated this way and real arguments are perfectly indistinguishable. Furthermore,
since the Σ-protocol is SHVZK, hybrid arguments and simulated arguments are
computationally indistinguishable. Furthermore, if the Σ-protocol has statistical
SHVZK then the hybrid arguments and simulated arguments are statistically
indistinguishable.

Finally, we will prove that the construction has adaptive culpable soundness
with respect to Rguilt. Plugging our construction into the probability defining
culpable soundness with a probabilistic polynomial time adversary A we get

Pr
[

(ek, dk) ← G(1n); e ← {0, 1}n; c ← Eek(e)
(x, (a, cz), wguilt) ← A(ek, c);z ← Ddk(cz)

:
(x,wguilt) ∈ Rguilt

VΣ(x, a, e,z) = 1

]

.

By the unique identifiable challenge property of the Σ-protocol this proba-
bility is at most the chance that e is the unique answerable challenge:

Pr
[

(ek, dk) ← G(1n); e ← {0, 1}n; c ← Eek(e)
(x, (a, cz), wguilt) ← A(ek, c);z ← Ddk(cz)

:
(x,wguilt) ∈ Rguilt

e = E(x,wguilt, a)

]

.

By the IND-CPA security of the encryption scheme, this probability is at
most negligibly larger than the same expression with c encrypting a random
challenge e′

Pr
[

(ek, dk) ← G(1n); e, e′ ← {0, 1}n; c ← Eek(e′)
(x, (a, cz), wguilt) ← A(ek, c);z ← Ddk(cz)

:
(x,wguilt) ∈ Rguilt

e = E(x,wguilt, a)

]

.

Since e is chosen uniformly random this latter probability is at most 2−n, which
is negligible. �

3.1 Non-interactive Designated Verifier Arguments for Statements
about Ciphertexts

In Sect. 2.2 we gave a Σ-protocol for proving a ciphertext having either 0 or
1 as plaintext. Using the DFN transformation, this leads to a non-interactive
designated verifier argument with culpable soundness for a ciphertext encrypting
0 or 1, i.e., for the relation

R =
{

((ek, c), (m, r)) : m ∈ {0, 1} and r ∈ {0, 1}�r(n) and c = Eek(m; r)
}

with culpable soundness using

Rguilt =
{

((ek, c), dk) : c ∈ Cek and Ddk(c) /∈ {0, 1} and VerifyKey(1n, ek, dk) = 1
}

.

662 P. Chaidos and J. Groth

This designated verifier argument works for ciphertexts produced by all
strongly additively homomorphic encryption schemes that have message space
Zp for p > 2n such as for instance the Okamoto-Uchiyama [26] encryption scheme
from Sect. 2.1. A second instance of the same strongly additively homomorphic
encryption scheme but with larger message space can also be used for the DFN
transformation. However, in the interest of more efficient implementations, it
might be desirable to use a different encryption scheme for the DFN transforma-
tion. Specifically, DFN does not require the message space to be of prime order
or the scheme to be strongly additively homomorphic, giving us the option of
using an encryption scheme better suited for encrypting long messages such as
Damg̊ard-Jurik [12].

It is fairly simple to adapt standard Σ-protocols for other languages express-
ing properties about ciphertexts. In particular, in addition to the argument for
encryption of 0 or 1 it is possible to construct non-interactive designated verifier
arguments for the following relations:

Plaintext is 0: We can prove that a ciphertext c encrypts 0, i.e., give a non-
interactive designated verifier argument for the relation

R0 =
{

((ek, c), r) : r ∈ {0, 1}�r(n) and c = Eek(0; r)
}

.

Equivalence of plaintexts: Given two ciphertexts c and c′, we can give a non-
interactive designated verifier argument for them having the same plaintext
by proving that c/c′ is an encryption of 0 using the above designated verifier
argument.

Multiplicative relationship: Given a triple of ciphertexts c0, c1 and c2, we
can prove that the plaintexts m0,m1 and m2 satisfy m0 = m1m2 mod p.
More precisely, we can construct a designated verifier argument for the rela-
tion

R
M

=

{
((ek, c0, c1, c2), (m1, m2, r0, r1, r2)) : m1, m2 ∈ Zp, r0, r1, r2 ∈ {0, 1}�r(n)

c0 = Eek(m1m2; r0) and c1 = Eek(m1; r1) and c2 = Eek(m2; r2)

}

.

In all cases, the corresponding guilt witness wguilt consists of the decryption key,
which can be used to decrypt the ciphertexts in the statement.

Circuit Satisfiability. We will now show that given a circuit consisting of
NAND-gates and encryptions of the wires it is possible to prove that the plain-
texts correspond to a satisfying assignment. A circuit C with k + 1 wires and
s gates can be described as {(j1, j2, j3)}s

j=1, which means that the wires should
satisfy wj3 = ¬(wj1 ∧ wj2). We let the output wire be w0 = 1 and the corre-
sponding ciphertext be c0 = Eek(1; 0) encrypted with randomness r0 = 0. We
consider the relations:

R
C

=

{
((C, ek, c1, . . . , ck), (w1, r1, . . . , wk, rk)) | ∀j = 1, . . . , s : wj3 = ¬(wj1 ∧ wj2)

∀i = 1, . . . , k : wi ∈ {0, 1} ∧ ri ∈ {0, 1}�r(n)−2 ∧ ci = Eek(wi; ri)

}

,

R
C
guilt =

{
((C, ek, c1, . . . , ck), dk) | VerifyKey(1n, ek, dk) = 1 and ∀i = 1, . . . k : ci ∈ Cek

∃i ∈ {1, . . . , k} : wi = Ddk(ci) /∈ {0, 1} or ∃j ∈ {1, . . . , s} : wj3 �= ¬(wj1 ∧ wj2)

}

.

Making Sigma-Protocols Non-interactive Without Random Oracles 663

The strategy in the designated verifier argument for RC is to first prove that
each ciphertext contains a wire value wi ∈ {0, 1}. Next, the prover proves for
each NAND-gate (j1, j2, j3) that wj3 = ¬(wj1 ∧ wj2). Following [21] we have for
wj1 , wj2 , wj3 ∈ {0, 1}

wj3 = ¬(wj1 ∧ wj2) if and only if wj1 + wj2 + 2wj3 − 2 ∈ {0, 1}.

Using the homomorphic properties of the encryption scheme, we will therefore for
each NAND-gate show cj1cj2c

2
j3

Eek(−2; 0) contains 0 or 1. The full construction
can be found in Fig. 4

PC(pk, (C, ek, c1, . . . , ck), (w1, r1, . . . , wk, rk))

w0 = 1, r0 = 0, c0 = Eek(w0; r0)
For i = 1, . . . , k

πi ← P(pk, ci, (wi, ri))
Parse C = {(j1, j2, j3)}s

j=1

For j = 1, . . . , s
c′

j = cj1cj2c2
j3Eek(−2; 0)

m′
j = wj1 + wj2 + 2wj3 − 2

r′
j = rj1 + rj2 + 2rj3

π′
j ← P(pk, c′

j , (m
′
j , r

′
j))

Return π = (π1, . . . , πk, π′
1, . . . , π

′
s)

VC(vk, (C, ek, c1, . . . , ck), π)

w0 = 1, r0 = 0, c0 = Eek(w0; r0)
Parse C = {(j1, j2, j3)}s

j=1

For j = 1, . . . , s
c′

j = cj1cj2c2
j3Eek(−2; 0)

Parse π = (π1, . . . , πk, π′
1, . . . , π

′
s)

Accept if and only if
For i = 1, . . . , k

V(vk, ci, πi) = 1
For j = 1, . . . , s

V(vk, c′
j , π

′
j) = 1

Fig. 4. Non-interactive designated verifier argument (GC , PC , VC) for encryption of
satisfying assignment of wires in a circuit using GC = G where (G, P, V) is a designated
verifier argument for encryption of 0 or 1

Theorem 3. (GC ,PC ,VC) given in Fig. 4 is a non-interactive designated veri-
fier argument for RC with culpable soundness using RC

guilt if (G,P,V) is a non-
interactive designated verifier argument for encryption of 0 or 1 using Rguilt

from Sect. 2.2.

Proof. Perfect completeness follows from the homomorphic properties of the
encryption scheme and the perfect completeness of (G,P,V).

We will now prove composable zero-knowledge. The simulator SC(vk,
(C, ek, c1, . . . , ck)) runs like the prover except it simulates the proofs π1, . . . ,
πk, π′

1, . . . , π
′
s as πi ← S(vk, (ek, ci)) and π′

j ← S(vk, c′
j). A straightforward

hybrid argument shows that this is indistinguishable from a real proof.3

Finally, we will prove that the argument is culpably sound. By the culpa-
ble soundness of (G,P,V) when we are given dk by the adversary, the proofs
3 We remark that here the usefulness of composable zero-knowledge comes into play

since the hybrid arguments are indistinguishable even to an adversary with access
to the verification key vk, which allows the hybrid argument to go through.

664 P. Chaidos and J. Groth

π1, . . . , πk guarantee each ciphertext contains 0 or 1. The homomorphic prop-
erty of the encryption scheme combined with the culpable soundness of the
proofs π′

1, . . . , π
′
s then shows that the plaintexts respect the NAND-gates. Since

the output is w0 = 1 this means the circuit is satisfied by the encrypted values.
�

4 Applications in Voting with Homomorphic Tallying

We will use a basic referendum voting scheme as an illustration of how to use non-
interactive zero-knowledge designated verifier arguments with culpable soundness.
We use a modification of the framework by Bernhard et al. [4] which generalises the
Helios voting system. Such schemes operate by having eligible voters post their
votes on a bulletin board encrypted with an additively homomorphic encryption
scheme. The election result can then be produced by a single decryption operation
on the homomorphic sum of the individual votes. Zero-knowledge protocols ensure
that the various participating parties remain honest.

4.1 Voting Schemes

We assume a bulletin board BB holds all messages posted by the various partici-
pants in the election, and that it behaves honestly for the entirety of the election.
During the submission of ballots, it operates in an append-only mode without
disclosing its contents. After voting has concluded, the bulletin board reveals the
ballots it contains and checks their validity. The checks use only public infor-
mation and as such are reproducible by any party; the bulletin board performs
them for convenience. Finally, we assume that the history of the bulletin board
is publicly accessible as well as the current state.

Our use of a delayed bulletin board is a departure from usual practice and is
aimed at preventing attacks based on malleability. The additional trust placed
on the board by this requirement may be mitigated by having the bulletin board
immediately display commitments to ballots or eliminated by augmenting the
ballot encryption to be submission secure [29]. We also note that Cortier et al. [7]
develop techniques to guard against misbehaving boards.

In the interest of simplicity, we restrict the options in the referendum to {0, 1}
without giving the option of casting an abstention ballot. The election is run by
two trustees, TD and TV , tasked with holding the decryption and verification
keys for the election. We will for simplicity consider them to be trusted parties
but they could be implemented using threshold cryptography.

Definition 8 (Voting Scheme). A voting scheme Π consists of five probabilis-
tic polynomial time algorithms: Setup, Vote, SubmitBallot, CheckBoard,
Tally, which operate as follows:

Setup. The setup algorithm takes as input a security parameter 1n. It produces
secret information SEC, public information PUB and verification informa-
tion AUG. It also initialises the bulletin board BB and sets it to be hidden.
PUB is assumed to be public knowledge after Setup has run.

Making Sigma-Protocols Non-interactive Without Random Oracles 665

Vote. Vote accepts a vote m ∈ {0, 1} and outputs a ballot B encoding m.
SubmitBallot. SubmitBallot(B,BB) takes as input a ballot B and the current

state of the bulletin board BB and outputs either (0, BB) if it rejects B or
(1, BB

+←B) if it accepts it.
CheckBoard. CheckBoard(BB,AUG) makes BB visible, and then checks all

ballots on BB, replacing with ⊥ any ballots that do not pass the verifica-
tion tests. After checking, the verification information of valid ballots can be
removed from the board.

Tally. Tally (BB,SEC) takes as input a verified bulletin board BB and the
secret information SEC and outputs the election result.

For correctness we require that the ballots of honest voters are counted cor-
rectly, and that ballots cast by malicious voters cannot influence the election
more than an honest one (i.e casting q malicious ballots can only add q votes
and subtract none).

ExpCOR
Π,A (n)

(PUB, SEC, AUG) ← Setup(1n)
(vsum, q) ← (0, 0)

AVoteOracle(·),BallotOracle(·)(PUB)
BB ← CheckBoard(BB, AUG)
result ← Tally(BB, SEC)
Return (result, vsum, q)

VoteOracle(v)

B ← Vote(v)
(r, BB) ← SubmitBallot(B, BB)
if r = accept : vsum ← (vsum + v)
Return (r, B)

BallotOracle(B)

(r, BB) ← SubmitBallot(B, BB)
q ← q + 1
Return r

Fig. 5. The referendum correctness experiment, and the oracles provided to the adver-
sary

Definition 9 (Correctness). We say that a referendum voting scheme Π is
correct if for all efficient adversaries A:

Pr
[

(result, vsum, q) ← ExpCOR
Π,A (n) : vsum ≤ result ≤ q + vsum

]

≈ 1

Definition 10 (Ballot Privacy). We say that a voting scheme Π satisfies
ballot privacy if for all efficient stateful interactive adversaries A:

Pr
[

ExpBP
Π,A(n) = 1

]

≈ 1
2

666 P. Chaidos and J. Groth

ExpBP
Π,A(n)

(PUB, SEC, AUG) ← Setup(1n)
b ← {0, 1}
AVoteOracle(·),BallotOracle(·)(PUB)
BB ← CheckBoard(BB, AUG)
BB′ ← CheckBoard(BB′, AUG)
result ← Tally(BB′, SEC)

b̂ ← A(result, BB, AUG)

Return b = b̂

VoteOracle(v)

B′ ← Vote(v)
if b = 1 then B ← B′

else B ← Vote(0)
(r, BB) ← SubmitBallot(B, BB)
(r′, BB′) ← SubmitBallot(B′, BB′)
Return (r, B)

BallotOracle(B)

(r, BB) ← SubmitBallot(B, BB)
if r = accept then

(r′, BB′) ← SubmitBallot(B, BB′)
Return r

Fig. 6. The Ballot Privacy experiment, and the oracles provided to the adversary

4.2 A Referendum Voting Scheme

We will now describe a voting scheme ΠREF for a yes-no referendum, based on
an additively homomorphic encryption scheme such as (K, E ,D) and with a non-
interactive designated verifier argument system (G,P,V) for a plaintext being 0
or 1 such as the one given in Fig. 3.

For simplicity, we omit correctness proofs for keys having been generated
correctly but point out that since the setup involves a limited number of par-
ties we could assume the use of online zero-knowledge protocols using standard
techniques. We also assume that the bulletin board behaves honestly. We now
give descriptions of the Voting Protocol Algorithms:

Setup. The setup algorithm takes as input a security parameter 1n. The decryp-
tion trustee TD runs K(1n) to produce (ek, dk) and the verification trustee
then runs G(1n) to obtain (pk, vk). Let, PUB = (ek, pk), AUG = vk and
SEC = dk. The procedure also initialises the bulletin board BB to be hid-
den, and publishes PUB.

Vote(m). Pick r ← {0, 1}�r(n) and return (c, π), where c = Eek(m; r) and
π ← P(pk, (ek, c, r)).

SubmitBallot(B,BB). Return (accept,BB
+←B).

CheckBoard(BB,AUG). The bulletin board BB becomes visible. TV pub-
lishes AUG. For every ballot B = (c, π) in BB we check whether c ∈ Cek

and V(vk, (ek, c), π) = 1. If not, they will be omitted from the tally.

Tally(BB,SEC). The decryption trustee publishes result = Ddk(
∏k

i=1 ci),
where c1, . . . , ck are the encrypted votes that passed the validity check.

Theorem 4. The referendum scheme ΠREF defined above is correct.

Making Sigma-Protocols Non-interactive Without Random Oracles 667

Proof. Let A be an adversary against ExpCOR
Π,A (n) that causes result to be out of

bounds with non-negligible probability. We construct a simulator B that contra-
dicts the adaptive culpable soundness of (G,P,V). B will simulate the correctness
experiment for A while acting as the adversary for the adaptive culpable sound-
ness experiment. B operates by running the correctness experiment normally with
the difference that it does not generate (pk, vk) but instead obtains pk from the
adaptive culpable soundness experiment.

Because (K, E ,D) is correct and additively homomorphic, result being out
of bounds implies one of the submitted ballots B = (c, π) is such that c encrypts
a value other than 0 or 1 while at the same time V(vk, (ek, c), π) = 1. Choosing
one of the q ballots at random, B outputs (x, π, wguilt) to the experiment, where
x = (c, pk) and wguilt = dk. Since q is polynomial in n this gives B a non-
negligible probability of winning the experiment. ��

Theorem 5. The scheme ΠREF satisfies ballot privacy.

Proof. We will prove that A can not do better than guess the value of b in the
ballot privacy experiment via a series of hybrid games. We exploit the fact that
the (G,P,V) argument system achieves statistical zero-knowledge, the fact that
(K, E ,D) is IND-CPA secure as well as the delay on the bulletin board. We also
take advantage of the fact that in a referendum the number of possible results
is linear in the number of votes.

We will focus on the VoteOracle calls that the adversary makes, as that is
where the experiment diverges depending on b. Let qv,qb be upper bounds on the
number of VoteOracle and BallotOracle queries made by A for a particular
security parameter n. Let qΣ = qv + qb be the total number of queries.

We define as Exp2 the experiment ExpBP
ΠREF ,A where all VoteOracle calls

produce a ballot with a simulated proof π instead of a real one. We also define
a series of hybrid games H1

i for i ∈ {0, qv} in which the first i VoteOracle
calls produce a ballot with a simulated proof π instead of a real one. Via a
straightforward hybrid argument, if A can distinguish between Exp2 = H1

qv
and

ExpBP
ΠREF ,A = H1

0 with a non-negligible probability there must be a value of i

such that he can distinguish H1
i and H1

i+1. This contradicts the honest verifier
zero knowledge property of (G,P,V), since for all i, H1

i and H1
i+1 differ (at most)

only in a single proof transcript. Thus A wins Exp2 with probability negligibly
close to ExpBP

ΠREF ,A.
We also define a series of hybrid games H2

i for i ∈ {0, qv} as Exp2 in which
the first i VoteOracle calls operate as if b = 1 and the rest as if b = 0. If A can
win Exp2 with non-negligible probability, he can distinguish between H2

0 and
H2

qv
and thus there must be a value of i such that A can distinguish H2

i and
H2

i+1.
Let the variable RES be the sum of the votes contained in ballots with

correct proofs which appear in the bulletin board BB′ before CheckBoard is
called. We note that RES only takes values in {0, . . . , qΣ}.

Let p(n) be a polynomial such that A can distinguish between H2
i and H2

i+1

with probability at least 1
2 + 1

p(n) for an infinite number of n ∈ N. We will

668 P. Chaidos and J. Groth

construct an adversary B that can obtain non-negligible advantage against the
IND-CPA security of (K, E ,D) by simulating an election against A. Initially B
obtains a public key ek from the IND-CPA experiment and completes the setup
as normal, obtaining (pk, vk) from G. B proceeds by following ΠREF with the
following difference: the first i VoteOracle calls operate as if b = 1. The next
VoteOracle (which we can assume w.l.o.g to be v∗ = 1) is answered as if it
was successful, but B does not update BB. Afterwards, before CheckBoard is
called, the experiment is suspended and the state st of A is saved along with the
bulletin boards and keys as σ = (ek, (pk, vk), st, BB,BB′). B does not know the
value of RES, but knows that it takes values in {0, . . . , qΣ}.

Let Exp3(σ, v, r), where σ = (ek, (pk, vk), st, BB,BB′) be the following
experiment: Produce B∗ as a fresh ballot (with simulated proof) containing
v, add B∗ to BB, restore the adversary’s state to st and resume the voting pro-
tocol starting at CheckBoard. The Tally query is answered with r. The result
of the experiment is v == b̂ where b̂ is A’s reply.

We note when r = RES, Exp3(σ, v, r) produces the same output as H2
i

or H2
i+1 depending only on v. We call a saved state σ “good” if A has a non-

negligible advantage in distinguishing Exp3(σ, 0, RES) from Exp3(σ, 1, RES),
where RES is determined uniquely by BB′. Because A can distinguish between
H2

i and H2
i+1, a state created by B must be “good” with non-negligible proba-

bility.
B repeats the following n · p(n) times: run Exp3(σ, v, r) for all combinations

of v ∈ {0, 1} and r ∈ {0, . . . , qΣ}.
Afterwards, B can determine the value of r for which A has best distinguished

between v = 0 and 1. We note that because the true value of RES is included in
the iterations, if σ is a “good” state, there is a value of r for which A achieves at
least 1

p(n) advantage in distinguishing v, and after n ·p(n) experiments Chernoff-
bounds show that B has a good estimate of A’s advantage for each value of
r.

After determining the optimal value of r, B will send (0, 1) to the IND-CPA
experiment and obtain a challenge ciphertext ĉ. B produces a simulated proof
π̂ for c, adds B̂ to the saved board and resumes the experiment a final time. B
finally forwards the reply of A to the IND-CPA experiment.

Because B will proceed without restarting with non-negligible probability,
it runs in expected polynomial time. Because with overwhelming probability B
proceeds only when σ is a “good” state, the advantage in distinguishing whether
c contains 0 or 1 is non-negligible. ��

References

1. Adida, B.: Helios: web-based open-audit voting. In: Security Symposium, SS 2008,
pp. 335–348. USENIX Association (2008)

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: Foundations of Computer Science, FOCS
2004, pp. 186–195. IEEE (2004)

Making Sigma-Protocols Non-interactive Without Random Oracles 669

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Computer and Communications Security, pp. 62–73. ACM
(1993)

4. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting helios
for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011)

5. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: Theory of Computing, STOC 1988, pp. 103–112. ACM (1988)

6. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Journal of the ACM (JACM) 51(4), 557–594 (2004)

7. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Distributed ElGamal á la
Pedersen: application to Helios. In: Privacy in the Electronic Society, WPES 2013,
pp. 131–142. ACM (2013)

8. Cramer, R., Shoup, V.: A practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO ’98. LNCS,
vol. 1462. Springer, Heidelberg (1998)

9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002)

10. Damg̊ard, I.B.: Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with preprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992.
LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993)

11. Damg̊ard, I.B., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006)

12. Damg̊ard, I., Jurik, M., Nielsen, J.B.: A generalization of Paillier’s public-key sys-
tem with applications to electronic voting. International Journal of Information
Security 9(6), 371–385 (2010)

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

14. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

15. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.: Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
Journal of Cryptology, 1–24 (2014)

16. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
Foundations of Computer Science, FOCS 2003, pp. 102–113. IEEE (2003)

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on computing 18(1), 186–208 (1989)

18. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

19. Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (2010)

20. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

21. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. Journal of the ACM 59(3), 11:1–11:35 (2012)

670 P. Chaidos and J. Groth

22. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM Journal on Computing 41(5), 1193–1232 (2012)

23. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

24. Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for
NP with general assumptions. Journal of Cryptology 11(1), 1–27 (1998)

25. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Theory of Computing, STOC 2013, pp. 427–437. ACM
(1990)

26. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

27. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Security and Privacy, pp. 238–252. IEEE (2013)

28. Ventre, C., Visconti, I.: Co-sound zero-knowledge with public keys. In: Preneel, B.
(ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 287–304. Springer, Heidelberg
(2009)

29. Wikström, D.: Simplified submission of inputs to protocols. In: Ostrovsky, R., De
Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293–308. Springer,
Heidelberg (2008)

Lattice-Based Cryptography

Bootstrapping BGV Ciphertexts with a
Wider Choice of p and q

Emmanuela Orsini(B), Joop van de Pol, and Nigel P. Smart

Department of Computer Science, University of Bristol, Bristol, UK
{Emmanuela.Orsini,Joop.VandePol}@bristol.ac.uk, nigel@cs.bris.ac.uk

Abstract. We describe a method to bootstrap a packed BGV cipher-
text which does not depend (as much) on any special properties of the
plaintext and ciphertext moduli. Prior “efficient” methods such as that
of Gentry et al. (PKC 2012) required a ciphertext modulus q which was
close to a power of the plaintext modulus p. This enables our method to
be applied in a larger number of situations. Also unlike previous meth-
ods our depth grows only as O(log p + log log q) as opposed to the log q
of previous methods. Our basic bootstrapping technique makes use of a
representation of the group Z

+
q over the finite field Fp (either based on

polynomials or elliptic curves), followed by polynomial interpolation of
the reduction mod p map over the coefficients of the algebraic group.

This technique is then extended to the full BGV packed ciphertext
space, using a method whose depth depends only logarithmically on the
number of packed elements. This method may be of interest as an alter-
native to the method of Alperin-Sheriff and Peikert (CRYPTO 2013).
To aid efficiency we utilize the ring/field switching technique of Gentry
et al. (SCN 2012, JCS 2013).

1 Introduction

Since the invention of Fully Homomorphic Encryption (FHE) by Gentry in 2009
[14,15], one of the main open questions in the field has been how to “bootstrap” a
Somewhat Homomorphic Encryption (SHE) scheme into a FHE scheme. Recall
an SHE scheme is one which can evaluate circuits of a limited multiplicative
depth, whereas an FHE scheme is one which can evaluate circuits of arbitrary
depth. Gentry’s bootstrapping technique is the only known way of obtaining
unbounded FHE.

The ciphertexts of all known SHE schemes include some noise to ensure secu-
rity, and unfortunately this noise grows as more and more homomorphic opera-
tions are performed, until it is so large that the ciphertext will no longer decrypt
correctly. In a nutshell, bootstrapping “refreshes” a ciphertext that can not sup-
port any further homomorphic operation by homomorphically decrypting it, and
obtaining in this way a new encryption of the some plaintext, but with smaller
noise. This is possible if the underlying SHE scheme has enough homomorphic
capacity to evaluate its own decryption algorithm. Bootstrapping is computation-
ally very expensive and it represents the main bottleneck in FHE constructions.
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 673–698, 2015.
DOI: 10.1007/978-3-662-46447-2 30

674 E. Orsini et al.

Several SHE schemes, with different bootstrapping procedures, have been
proposed in the past few years [1,2,4,6–8,10,14,15,18,19,32]. The most efficient
are ones which allow SIMD style operations, by packing a number of plaintext
elements into independent “slots” in the plaintext space. The most studied of
such “SIMD friendly” schemes being the BGV scheme [5] based on the Ring-
LWE Problem [25].

Prior Work on Bootstrapping. In almost all the SHE schemes supporting
bootstrapping, decryption is performed by evaluating some linear function D,
dependent on the ciphertext c, on the secret key sk modulo some integer q,
and then reducing the result modulo some prime p, i.e. dec(c, sk) = ((DC(sk)
mod q) mod p). Given an encryption of the secret key, bootstrapping consists
in evaluating the above decryption formula homomorphically. One can divide the
bootstrapping of all efficient currently known SHE schemes into three distinct
sub-problems.

1. The first problem is to homomorphically evaluate the reduction (mod p)-map
on the group Z

+
q (see Fig. 1), where for the domain one takes representatives

centered around zero. To do this the group Z
+
q is first mapped to a set G in

which one can perform operations native to the homomorphic cryptosystem.
In other words we first need to specify a representation, rep : Z

+
q −→ G,

which takes an integer in the range (−q/2, . . . , q/2] and maps it to the set
G. The group operation on Z

+
q needs to induce a group operation on G which

can be evaluated homomorphically by the underlying SHE scheme. Then we
describe the induced map red : G −→ Zp as a algebraic operation, which can
hence be evaluated homomorphically.

2. The second problem is to encode the secret key in a way that one can publicly,
using a function dec-eval (decryption evaluation), create a set of ciphertexts
which encrypt the required input to the function red.

3. And thirdly one needs a method to extend this to packed ciphertexts.

Z
+
q G

Zp

rep

(mod p) red

Fig. 1.

To solidify ideas we now expand on these problems in the context of the BGV
scheme [5]. Recall for BGV we have a set of L + 1 moduli, corresponding to the

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 675

levels of the scheme, q0 < q1 < . . . < qL, and a (global) ring R, which is often
the ring of integers of a cyclotomic number field. We let p denote the (prime)
plaintext modulus, i.e. the plaintexts will be elements in Rp (the localisation
of R at the prime p), and to ease notation we set q = q0. The secret key sk is
a small element in R. A “fresh” ciphertext encrypting μ′ ∈ Rp is an element
ct′ = (c′

0, c
′
1) in R2

qL such that

(c′
0 + sk · c′

1 (mod qL)) (mod p) = μ′.

After the evaluation of L levels of multiplication one obtains a ciphertext ct =
(c0, c1) in R2

q , encrypting a plaintext μ, such that

(c0 + sk · c1 (mod q)) (mod p) = μ.

At this point to perform further calculations one needs to bootstrap, or recrypt,
the ciphertext to one of a higher level.

Assume for the moment that each plaintext only encodes a single element of
Zp, i.e. each plaintext is a constant polynomial in polynomial basis for Rp. To
perform bootstrapping we need to place a “hint” in the public key pk (usually
an encryption of sk at level L), which allows the following operations. Firstly, we
can evaluate homomorphically a function dec-eval which takes ct and the “hint”,
and outputs a representation of the Zq element corresponding to the constant
term of the element c0 + sk · c1 (mod q). This representation is an encryption of
an element in G, i.e. dec-eval also evaluates the rep map as well as the decryption
map. Then we apply, homomorphically, the function red to this representation
to obtain a fresh encryption of the plaintext. Since to homomorphically evaluate
red we need the input to red to be defined over the plaintext space, this means
the representation of Zq must be defined over Fp. One is then left with the task
of extending such a procedure to packed ciphertexts.

In the original bootstrapping technique of Gentry [15], implemented in [16],
the function dec-eval is obtained from a process of bit-decomposition. Thus
the representation G of Zq is the bit-representation of an integer in the range
(−q/2, . . . , q/2], i.e. we use a representation defined over F2. The function to eval-
uate red is then the circuit which performs reduction modulo p. The extension
of this technique to packed ciphertexts, in the context of the Smart–Vercauteren
SIMD optimisations [29] of Gentry’s SHE scheme, was given in [30]. Due to the
use of bit-decomposition techniques this method is mainly suited to the case of
p = 2, although one can extend it to other primes by applying a p-adic decom-
position and then using an arithmetic circuit to evaluate the reduction modulo
p map.

In [18] the authors present a bootstrapping technique, primarily targeted at
the BGV scheme, which does away with the need for evaluating the “standard”
circuit for the reduction modulo p map. This is done by choosing q close to a
power of p, i.e. one selects q = pt ± a for some t and a small value of a, typically
a ∈ {−1, 1}. The paper [18] expands on this idea for the case of p = 2, but the
authors mention it can be clearly extended to arbitrary p. The advantage is that
the mapping red can now be expressed as algebraic formulae; in fact formulae of

676 E. Orsini et al.

multiplicative depth log2 q. The operation dec-eval obtains the required repre-
sentation for Zq by mapping it into Zpt+1 . The resulting technique requires the
extension of the modulus of the plaintext ring to pt+1 (for which all the required
properties of Rp carry over, assuming that p does not ramify). The extension to
packed ciphertexts is performed using an elaborate homomorphic evaluation of
the Fourier Transform.

To enable the faster evaluation of this Fourier Transform step from [18], a
method for ring/field switching is presented in [17]. The technique of ring/field
switching also enables general improvements in efficiency as ciphertext noise
grows. This enables the ring R to be changed to a sub-ring S (both for the
ciphertext and plaintext spaces). In [1] this use of field switching is combined
with the red map from [18] to obtain an asymptotically efficient bootstrapping
method for BGV style SHE schemes; although the resulting technique does not
fully map to our blueprint, as q = pv for some value of v. In [28] this method is
implemented, with surprisingly efficient runtimes, for the case of plaintext space
F2; i.e. p = 2 and no plaintext SIMD-packing is supported.

In another line of work, the authors of [2] and [8] present a bootstrapping
technique for the GSW [21] homomorphic encryption scheme. The GSW scheme
is one based on matrices, and this property is exploited in [2] by taking a matrix
representation of Zq and then expressing the map red via a very simple algebraic
relationship on the associated matrices. In particular the authors represent ele-
ments of Zq by matrices (of some large dimension) over Fp.

Thus we see almost all bootstrapping techniques require us to come up with a
representation G of Zq for which there is an algebraic method over Fp to evaluate
the induced mapping red, from the said representation of Zq, to Zp. Since SHE
schemes usually homomorphically have add and multiply operations as their
basic homomorphic operations, this implies we are looking for representations of
Z
+
q as a subgroup of an algebraic group over Fp.

Our Contribution. We return to consider the Ring-LWE based BGV scheme,
and we present a new bootstrapping technique with small depth growth, com-
pared with previous methods, and which supports a larger choice of p and q.
Instead of concentrating on the case of plaintext moduli p such that a power of p
is close to q, we look at a much larger class of plaintext moduli. Recall the most
efficient prior technique, based on [1] and [18], requires a method whose multi-
plicative depth is O(log q), and for which q is close to a power of p. As p increases
the ability to select a suitable modulus q which is both close to a power of p, is
of the correct size for most efficient implementation (i.e. the smallest needed to
ensure security), and has other properties related to efficiency (i.e. the ring Rq

has a double-CRT representation as in [20]) diminishes.
To allow a wider selection for p we utilize two “new” (for bootstrapping)

representations of the ring Zq, in much the same way as [2] used an Fp-matrix
representation (a.k.a. a linear algebraic group) of Z+

q . The first one, used for much
of this paper for ease of presentation, is based on a polynomial representation for
Z
+
q over Fp, the second one (which is less efficient but allows a greater freedom

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 677

in selecting q) is based on a representation via elliptic curves. The evaluation
of the mapping red using these representations can then be done in expected
multiplicative depth O(log p + log log q), i.e. a much shallower circuit than used
in prior works, using polynomial interpolation of the red map over the coefficients
of the algebraic group.

To ensure this method works, and is efficient, we do not have completely free
reign in selecting q for the first polynomial representation. Whilst [18] required
q = pt ± a, for a small value of a, we instead will require that q divides

lcm
(

pk1 − 1, . . . , pkt − 1
)

,

for some pairwise co-prime values ki. Even with this restriction, the freedom on
selecting q is much greater than for the method in [18], especially for large values
of p. In the second representation, described in Section 7, we simply need to find
elliptic curves over Fpki whose group order is divisible by ei where

∏
ei = q. For

the elliptic curve based version we do not need pairwise co-prime values of ki.
Indeed on setting t = 1 we simply need one curve E(Fpk1) whose group order is
divisible by q, which is highly likely to exist, since p � q, by the near uniform
distribution of elliptic curve group orders in the Hasse interval.

Note also that, in the polynomial representation, one does not have complete
freedom on selecting the ki values. If we let E =

∑
ki and M = 1

2

∑
ki · (ki + 1)

then the depth of the circuit (which is approximately log2 log2 q − log2 log2 E)
to evaluate red will decrease as E grows, but the number of multiplications
required, which is a monotonically increasing function of M , will increase. Note,
we can asymptotically make M = O(

∑
ki · log ki) using FFT techniques, or

M = O(
∑

k1.58
i) using Karatsuba based techniques, but in practice the ki will

be too small to make such optimization fruitful. For the elliptic curve based
version we replace the above E by E + 1 and we replace M by a constant
multiple of M . However, the depth required by our elliptic curve based version
increases.

Our method permits to bootstrap a certain number of packed ciphertexts in
parallel, using a form of p-adic decomposition and a matrix representation of
the ciphertext ring, combined with ring switching. The resulting depth depends
only logarithmically on the number of packed ciphertexts.

Overview and Paper Organization. Here we give a brief overview of the
paper. In Section 2 and 3 we recall the basic algebraic background required for
our construction, and the BGV SHE scheme from [5], respectively. Typically, the
main technical difficult in bootstrapping is to homomorphically evaluate in a effi-
cient way the (mod p)-map on the group Z

+
q . In Section 4 we describe a simple way

to evaluate the (mod p)-map using a polynomial representation of the group G in
Fig. 1. In Section 5 we prepare to bootstrap packed ciphertexts and we show how
to homomorphically evaluate a product of powers of SIMD vectors. In particu-
lar we calculate the depth and the number of multiplications required to compute
this operation. Finally, in Section 6 we show how to bootstrap BGV ciphertexts.
We use a matrix representation of the product of two elements in a ring and a

678 E. Orsini et al.

single ring switching step in such a way that we can bootstrap a number, say C,
of packed ciphertexts in one step. We describe the homomorphic evaluation of the
decryption equation using the SIMD evaluation of the maps red and rep. Using
the calculation of Section 5, we can compute the depth and the number of mul-
tiplications necessary to bootstrap C packed ciphertexts in parallel. In Section 7
we give a different instantiation of our method using elliptic curves.

2 Preliminaries

Throughout this work vectors are written using bold lower-case letters, whereas
bold upper-case letters are used for matrices. We denote by Ma×b(K) the set of
a × b dimensional matrices with entries in K. For an integer modulus q, we let
Zq = Z/qZ denote the quotient ring of integers modulo q, and Z

+
q its additive

group. This notation naturally extends to the localisation Rq of a ring R at q.

2.1 Algebraic Background

Let m be a positive integer we define the mth cyclotomic field to be the field K =
Q[X]/Φm(X), where Φm(X) is the mth cyclotomic polynomial. Φm(X) is a monic
irreducible polynomial over the rational, and K is a field extension of degree N =
φ(m) overQ since Φm(X) has degree N . Let ζm be an abstract primitive mth roots
of unity, we have that K ∼= Q(ζm) by identifying ζm with X. In the same way,
let us denote by R the mth cyclotomic ring Z[ζm] ∼= Z[X]/Φm(X), with “power
basis” {1, ζm, . . . , ζN−1

m }. The complex embeddings of K are σi : K → C, defined
by σi(X) = ζi

m, i ∈ Z
∗
m. In particular K is Galois over Q and Gal(Q(ζm)/Q) ∼=

Z
∗
m. As a consequence we can define the Q-linear (field) trace TrK/Q : K → Q

as the sum of the embeddings σi, i.e. TrK/Q(a) =
∑

i∈Z∗
m

σi(a) ∈ Q. Concretely,
these embeddings map ζm into each of its conjugates, and they are the only field
homomorphisms fromK toC that fix every element ofQ. The canonical embedding
σ : K → C

N is the concatenation of all the complex embeddings, i.e. σ(a) =
(σi(a))i∈Z∗

m
, a ∈ K.

Looking ahead, we will use the ring R and its localisation Rq, for some mod-
ulus q. Given a polynomial a ∈ R, we denote by ‖a‖∞ = max0≤j≤N−1 |aj | the
standard l∞-norm. All estimates of noise are taken with respect to the canonical
embedding norm ‖a‖can∞ = ‖σ(a)‖∞, a ∈ R. When considering short elements in
Rq, we define short in terms of the following quantity:

|a|canq = min{‖a′‖can∞ : a′ ∈ R and a′ ≡ a mod q}.

To map from norms in the canonical embedding to norms on the coefficients of
the polynomial defining the elements of R, we have ‖a‖∞ ≤ cm · ‖a‖can∞ , where
cm is the ring constant . For more details about cm see [13]. Note, if the dual
basis techniques of [26] are used, then one can remove the dependence on cm.
However, for ease of exposition we shall use only polynomial basis in this work.

Let m′ be a positive integer such that m′|m. As before we define K
′ ∼= Q(ζm′)

and S ∼= Z[ζm′], such that K
′ has degree n = φ(m′) over Q and Gal(K′/Q) ∼=

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 679

Z
∗
m′ . It is trivial to show that K and R are a field and a ring extension of K′ and

R′, respectively, both of dimension N/n. In particular we can see S as a subring
of R via the ring embedding that maps ζm′ 	→ ζ

m/m′
m .

It is a standard fact that if Q ⊆ K
′ ⊆ K is a tower of number field, then

TrK/Q(a) = TrK′/Q(TrK/K′(a)), and that all the K
′-linear maps L : K → K

′ are
exactly the maps of the form TrK/K′(r · a), for some r ∈ K.

2.2 Plaintext Slots

Let p be a prime integer, coprime to m, and Rp the localisation of R at p. The
polynomial Φm(X) factors modulo p into �(R) irreducible factors, i.e. Φm(X) ≡
∏�(R)

i=1 Fi(X) (mod p). Each Fi(X) has degree d(R) = φ(m)/�(R), where d(R) is
the multiplicative order of p in Z

∗
m. Looking ahead, each of these �(R) factors

corresponds to a “plaintext slot”, i.e.

Rp
∼= Zp[X]/F1(X) × · · · × Zp[X]/F�(R)(X) ∼= (F

pd(R))�(R)
.

More precisely, we have �(R) isomorphisms ψi : Zp[X]/Fi(X) → F
pd(R) , i =

1, . . . , �(R), that allow to represent �(R) plaintext elements of Fp(d) as a single
element in Rp. By the Chinese Remainder Theorem, addition and multiplication
correspond to SIMD operations on the slots and this allows to process �(R) input
values at once.

2.3 Ring Switching

As mentioned in the introduction, our technique uses a method for ring/field
switching from [17] so as to aid efficiency. We use two different cyclotomic rings
R and S such that S ⊆ R. This procedure permits to transform a ciphertext
ct ∈ (Rq)2 corresponding to a plaintext μ ∈ Rp with respect to a secret key
sk ∈ R, into a ciphertext ct′ ∈ (Sq)2 corresponding to a plaintext μ′ ∈ Sp with
respect to a secret key sk′ ∈ S. The security of this method relies on the hardness
of the ring-LWE problem in S ([25]). At a high level the ring switching consists
of three steps. Given an input ciphertext ct ∈ (Rq)2:

– First, it switches the secret key; it uses the “classical” key-switching ([6],[5]),
getting a ciphertext c̄t ∈ (Rq)2, still encrypting μ ∈ Rp, but with respect to
a secret key sk′ ∈ S.

– Second, it multiplies c̄t by a fixed element r ∈ R, which is determined by
a S-linear function L : Rp → Sp corresponding to the induced projection
function P : (F

pd(R))�(R) → (F
pd(S))�(S)

(see [17] for details).
– Finally, it applies to c̄t the trace function TrR/S : R → S. In such a way the

output of the ring-switching is a ciphertext ct ∈ S with respect to the secret
key sk′ and encrypting the plaintext μ′ = L(μ).

We conclude this section noting that, while big-ring ciphertexts correspond
to �(R) plaintext slots, small-ring ciphertexts only correspond to �(S) ≤ �(R)

680 E. Orsini et al.

plaintext slots. The input ciphertexts to our bootstrapping procedure are defined
over (Sq)2, and so are of degree n and contain �(S) slots. We take �(R)/n of these
ciphertexts and use the dec-eval map to encode the coefficients of the plain-
text polynomials in the slots of a single big-ring ciphertext. Eventually, via ring
switching and polynomial interpolation, we return to �(R)/n ciphertexts which
have been bootstrapped and are at level one (or more). These fresh ciphertexts
may be defined over the big ring or the small ring (depending when ring switch-
ing occurs). However, our parameter estimates imply that ring switching is best
performed at the lowest level possible, and so our bootstrapped ciphertexts will
be in the big ring. We could encode all of the slots of the bootstrapped cipher-
texts in a big-ring single ciphertext, or not, depending on the application, since
slot manipulation is a linear operation.

3 The BGV Somewhat Homomorphic Encryption
Scheme

In this section we outline what we need about the BGV SHE scheme [5]. As antic-
ipated in Section 2, we present the scheme with the option of utilizing two rings,
and hence at some point we will make use of the ring/field switching procedure
from [17]. We first define two rings R = Z[X]/F (X) and S = Z[X]/f(X), where
F (X) (resp. f(x)) is an irreducible polynomial over Z of degree N (resp. n). In
practice both F (X) and f(X) will likely be cyclotomic polynomials. We assume
that n divides N , and so here is an embedding ι : S −→ R which maps elements
in S to their appropriate equivalent in R. The map ι can be expressed as a linear
mapping on the coefficients of the polynomial representation of the elements in
S, to the coefficients of the polynomial representation of the elements in R. In
this way we can consider S to be a subring of R.

Let Rq (resp. Sq) denote the localisation of R (resp S) at q, i.e. Zq[X]/F (X)
(resp. Zq[X]/f(X)), which can be constructed for any positive integer q. Let p
be a prime number, which does not ramify in either R or S. Since the rings are
Galois, the ring Rp (resp. Sp) splits into �(R) (resp. �(S)) “slots”; with each slot
being a finite field extension of Fp of degree d(R) = N/�(R) (resp. d(S) = n/�(S)).
We make the assumption that n divides �(R). This is not strictly necessary but
it ensures that we can perform bootstrapping of a single ciphertext with the
smallest amount of memory. In fact our method will support the bootstrapping
of �(R)/n ciphertexts in parallel.

There will be two secret keys for our scheme; depending on whether the
ciphertexts/plaintexts are associated with the ring R or the ring S. We denote
these secret keys by sk(R) and sk(S), which are “small” elements in the ring R
(resp. S). The modulus q = q0 = p0 will denote the smallest modulus in the set of
BGV levels. Fresh ciphertexts are defined for the modulus Q = qL =

∏L
i=0 pi and

live in the ring R2
Q (thus at some point we not only perform modulus switching

but also ring switching). We assume L1 levels are associated with the big ring R
and L2 levels are associated with the small ring S, hence L1 +L2 = L (level zero
is clearly associated with the small ring S, but we do not count it in the number

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 681

of levels in L2). Thus we encrypt at level L; perform standard homomorphic
operations down to level zero, with a single field switch at level L2 + 1. For ease
of analysis we assume no multiplications are performed at level L2 + 1. This
means that we can evaluate a depth L − 1 circuit.

A ciphertext at level i > L2, encrypting a message μ ∈ Rp, is a pair ct =
(c0, c1) ∈ R2

qi , where qi =
∏i

j=0 pj , such that

(

c0 + sk(R) · c1 (mod qi)
)

(mod p) = μ.

We let Encpk(μ) denote the encryption of a message μ ∈ Rp, this produces a
ciphertext at level L. A similar definition holds for ciphertexts at level i < L2,
for messages in Sp and secret keys/ciphertexts elements in Sqi . When performing
a ring switching operation between levels L2 +1 and L2, the �(R) plaintext slots,
associated with the input ciphertext at level L2 + 1, become associated with
�(R)/�(S) distinct ciphertexts at level L2.

We want to “bootstrap” a set of BGV ciphertexts. Each of these ciphertexts
is a pair ctj = (c(j)0 , c

(j)
1) ∈ S2

q , for j = 1, . . . , �(R)/n, such that
(

c
(j)
0 + sk(S) · c

(j)
1 (mod q)

)

(mod p) = μj , for j = 1, . . . , �(R)/n.

4 Evaluating the Map red ◦ rep : Z
+
q −→ Fp

(Simple Version)

As explained in the introduction at the heart of most bootstrapping procedures
is a method to evaluate the induced mapping red◦rep : Z+

q −→ Fp. In this section
we present our simpler technique for doing this based on polynomials over Fp,
in Section 7 we present a more general (and complicated in terms of depth)
technique based on elliptic curves. The key, in this and in all techniques, is to find
a representation G for Z+

q for which the reduction modulo p map can be evaluated
algebraically over Fp. This means that the representation of Zq must defined over
Fp. Prior work has looked at the bit-representation (when p = 2), the p-adic
representation and a matrix representation; we use a polynomial representation.

We select a coprime factorization q =
∏t

i=1 ei (with the ei not necessarily
prime, but pairwise coprime), such that ei divides pki − 1 for some ki. Since
F

∗
pki

is cyclic we know that F∗
pki

has a subgroup of order ei. We fix a polynomial
representation of Fpki , i.e. an irreducible polynomial fi(x) of degree ki such that
Fpki = Fp[x]/fi(x). Let gi ∈ Fpki denote a fixed element of order ei in Fpki .

By the Chinese Remainder Theorem we therefore have a group embedding

rep :
{
Z
+
q −→ G =

∏t
i=1 F

∗
pki

a 	−→ (ga1
1 , . . . , gat

t)
(1)

where ai = a (mod ei). Without loss of generality we can assume that the ki are
also coprime, by modifying the decomposition of q into coprime eis. Given this

682 E. Orsini et al.

group representation of Z+
q in G, addition in Z

+
q translates into multiplication

in G. With one addition in Z
+
q translating into M = 1

2

∑t
i=1 ki · (ki + 1) multi-

plications in Fp (and a comparable number of additions; assuming school book
multiplication is used). Each element in the image of rep requires E =

∑t
i=1 ki

elements in Fp to represent it.
There will be a map red : G → Fp, such that red◦ rep is the reduction modulo

p map; and red can be defined by algebraically from the coefficient representation
of G to Fp. Here algebraically refers to algebraic operations over Fp. An arbitrary
algebraic expression on E variables of degree d will contain d+ECd terms. Thus,
by interpolating, we expect the degree d of the map red to be the smallest d such
that d+ECd > q, which means we expect we expect d ≈ E · (2log(q)/E − 1). Thus
the larger E is, the smaller d will be. This interpolating function needs to be
created once and for all for any given set of parameters, thus we ignore the cost
in generating it in our analysis.

The algebraic circuit which implements the map red can hence be described
as a circuit of depth
log2 d� which requires D(E, d) = E+dCd − (E + 1) multi-
plications (corresponding to the number of distinct monomials in E variables of
degree between two and d). In particular, by approximating E ≈ log2(q)/ log2(p),
we obtain that the circuit implementing the map red has depth
log2 d� =
log2(p − 1) + log2(log2(q)) − log2(log2(p))).

We pause to note the following. By selecting a large finite field it would appear
at first glance that one can reduce our degree d even further. This however comes
at the cost of having more terms, i.e. a larger value of E. This in turn increases
the overall complexity of the method (i.e. the number of multiplications needed)
but not the depth.

5 A Product of Powers of SIMD Vectors

Before proceeding with our method to turn the above methodology for reduction
modulo p into a bootstrapping method for our set of BGV ciphertexts, we first
examine how to homomorphically compute the following function

v ·
λ∏

k=0

vMk

k ,

where each v and vk, k = 0, . . . , λ, represents a set of E ciphertexts, each of
which encode (in a SIMD manner) �(R) elements in Fp. The multiplication of two
such sets of E ciphertexts is done with respect to the multiplication operation
in G, and thus requires M homomorphic multiplications (this is for our simple
variation of red, for the variant based on elliptic curve the number of ciphertexts
and the complexity of the group operation in G increase a little). The values Mk

are matrices in M�(R)×�(R)(Fp). By the notation u = vM, where M = (mi,j), we
mean the vector with components

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 683

ui =
�(R)
∏

j=1

v
mi,j

j , i ∈ {1, . . . , �(R)}.

Notice that each ui and vj is a vector of E elements in Fp representing a single
element in G. In what follows we divide this operation into three sub-procedures
and compute the number of multiplications, and the depth required, to evaluate
the function.

5.1 SIMD Raising of an Encrypted Vector to the Power
of a Public Vector

The first step is to take a vector v which is the SIMD encryption of E sets of
�(R) elements in Fp, i.e. it represents �(R) elements in G. We then raise v to the
power of some public vector c = (c1, . . . , c�(R)), i.e. we want to compute

x = vc.

In particular v actually consists of E vectors each with �(R) components in their
slots. We write

v = (v1,0, . . . ,v1,k1−1, . . . ,vt,0, . . . ,vt,kt−1).

Note, multiplying such a vector by another vector of the same form requires M
homomorphic multiplications and depth 1. We first write

c = c0 + 2 · c1 + . . . + 2�log2 p	 · c�log2 p	,

where ci ∈ {0, 1}�(R)
. We let c∗

i denote the bitwise complement of ci. Thus to
compute x = vc we use the following three steps:

Step 1: Compute v2i for i = 1, . . . ,
log2 p�, by which we mean every element
in v is raised to the power 2i. This requires
log2 p� · M homomorphic multipli-
cations and depth
log2 p�.

Step 2: For i ∈ {0, . . . ,
log2 p�}, j ∈ {1, . . . , t} and k = {0, . . . , kt−1} compute,

w(i)
j,k =

⎧

⎪⎨

⎪⎩

Encpk(ci) · v2i

j,k k �= 0,

Encpk(ci) · v2i

j,k + Encpk(c∗
i) k = 0.

Where Encpk(ci) means encrypt the vector ci so that the jth component of
ci is mapped to the jth plaintext slot of the ciphertext. The above procedure
selects the values which we want to include in the final product. This involves
a homomorphic multiplication by a constant in {0, 1} and the homomorphic
addition of a constant in {0, 1} for each entry, and so is essentially fast (and
moderately bad on the noise, so we will ignore this and call it depth 1/2).

684 E. Orsini et al.

Step 3: We now compute x as

x =
�log2 p	

∏

i=0

w(i),

where we think of w(i) as a vector of E SIMD encryptions. This step (assuming
a balanced multiplication tree) requires depth
log2
log2 p�� and M ·
log2 p�
multiplications.

Executing all three steps above therefore requires a depth of 1
2 +
log2 p� +

log2
log2 p��, and 2 · M ·
log2 p� multiplications.

5.2 Computing u = vM

Given the previous subsection, we can now evaluate ui =
∏�(R)

j=1 v
mi,j

j , i = 1, . . . ,

�(R), where v is a SIMD vector consisting of E vectors encoding �(R) elements, as
is the output u. For this we use a trick for systolic matrix-vector multiplication
in [22], but converted into multiplicative notation.

We write the matrix M as �(R) SIMD vectors di, for i = 1, . . . , �(R), so
that di,j = mj,(j+i−1) (mod �(R)) for j = 1, . . . , �(R). We let v ≪ i denote the
SIMD vector v rotated left i positions (with wrap around). Since v actually
consists of E SIMD vectors this can be performed using time proportional to E
multiplications, but with no addition to the overall depth (it is an expensive in
terms of time, but cheap in terms of noise. See the operations in Table 1 of [22]).

Step 1: First compute, for i = 1, . . . , �(R),

xi = (v ≪ (i − 1))di

using the method previously described in Subsection 5.1. This requires a depth
of 1

2 +
log2 p� +
log2
log2 p��, and essentially �(R) · (E + 2 · M ·
log2 p�) mul-
tiplications.

Step 2: All we need now do is compute

u =
�(R)
∏

i=1

xi.

This requires (assuming a balanced multiplication tree) a depth of
log2 �(R)�
and �(R) multiplications in G.

Thus far, for the operations in Subsection 5.1 and this subsection we have used
a total depth of 1

2 +
log2 �(R)� +
log2 p� +
log2
log2 p�� and a cost of �(R) ·
(M + E + 2 · M ·
log2 p�) multiplications.

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 685

5.3 Computing v · ∏λ
k=0 v

Mk

k

To evaluate our required output we need to execute the above steps λ times, in
order to obtain the elements which we then multiply together. Thus in total we
have a depth of

1
2

+
log2 �(R)� +
log2 p� +
log2
log2 p�� +
log2 λ�

and a cost of
λ ·

(

M + �(R) · (M + E + 2 · M ·
log2 p�)
)

multiplications.

6 Bootstrapping a Set of Ciphertexts

To perform our bootstrapping operation we introduce another representation,
this time more standard. This is the matrix representation of the ring Sq. Since
Sq can be considered a vector space over Zq by the usual polynomial embedding,
we can associate an element a to its coefficient vector a. We can also associate
an element b to a n × n matrix Mb over Zq such that the vector

c = Mb · a

is the coefficient vector of c where c = a ·b. This representation, which associates
an element in Sq to a matrix, is called the matrix representation.

Recall we want to bootstrap �(R)/n ciphertexts in one go. We also recall the
maps red and rep from Section 4 and define τ = red ◦ rep to be the reduction
modulo p map on Z

+
q . To do this we can first extend rep and τ to the whole

of S+
q by linearity, with images in G

n and F
n
p respectively. Similarly, we can

extend rep and τ to S
�(R)/n
q to obtain maps rep : (S+

q)�(R)/n −→ G
�(R)

and
τ : (S+

q)�(R)/n −→ F
�(R)

p , as in Section 4. Again this induces a map red, which is
just the SIMD evaluation of red on the image of rep in G

�(R)
. We let repj,i denote

the restriction of rep to the (i − 1)th coefficient of the j-th Sq component, for
1 ≤ i ≤ n and 1 ≤ j ≤ �(R)/n.

We can then rewrite the decryption equation of our �(R)/n ciphertexts as
((

c
(j)
0 + sk(S) · c

(j)
1 (mod q)

)

(mod p))�(R)/n
j=1

= red
(

rep
(

c
(1)
0 + sk(S) · c

(1)
1 , . . .

. . . , c
(�(R)/n)
0 + sk(S) · c

(�(R)/n)
1

))

= red (rep (x)) ,

where x is the vector consisting of Sq elements c
(j)
0 + sk(S) · c

(j)
1 , for j = 1, . . . ,

�(R)/n. Thus, if we can compute rep(x), then to perform the bootstrap we need

686 E. Orsini et al.

only evaluate (in �(R)-fold SIMD fashion) the arithmetic circuit of multiplica-
tive depth
log2 d� representing red. Since we have enough slots, �(R), in the
large plain text ring, we are able to do this homomorphically on fully packed
ciphertexts. The total number of monomials in the arithmetic circuit (i.e. the
multiplications we would need to evaluate red) being D(E, d).

6.1 Homomorphically Evaluating rep(x)

We wish to homomorphically evaluate rep(x) such that the output is a set of E
ciphertexts and if we took the i+(j−1)·�(R)/nth slot of each plaintext we would
obtain the E values which represent repj,i(x). Let λ =
log q/ log p�. We add to
the public key of the SHE scheme the encryption of rep(pk · sk(S), . . . , pk · sk(S))
for k = 0, . . . , λ (where each component is copied �(R)/n times). For a given k
this is a set of E ciphertexts, such that if we took the i + (j − 1) · �(R)/nth slot
of each plaintext we would obtain the E values which represent repj,i(pk · sk(S)).
Let the resulting vector of ciphertexts be denoted ctk, for k = 1, . . . , λ, where
ctk is a vector of length E.

Let M
c
(j)
1

be the matrix representation of the second ciphertext component

c
(j)
1 of the j-th ciphertext that we want to bootstrap. We write

M
c
(j)
1

=
λ∑

k=0

pk · M(j,k)
1

where M(j,k)
1 is a matrix with coefficients in {0, . . . , p − 1}. We then have that

c
(j)
0 + sk(S) · c

(j)
1 = c

(j)
0 +

λ∑

k=0

(

pk · M(j,k)
1 · sk(S)

)

= c
(j)
0 +

λ∑

k=0

(

M(j,k)
1 · (pk · sk(S))

)

,

where sk(S) is the vector of coefficients of the secret key sk(S).
We let M(k)

1 =
⊕�(R)/n

j=1 M(j,k)
1 = diag(M(1,k)

1 , . . . ,M(�(R)/n,k)
1). We now

apply rep to both sides, which means we need to compute homomorphically
the ciphertext which represents

rep
(

c
(1)
0 , . . . , c

(�(R)/n)
0

)

·
λ∏

k=0

rep
(

pk · sk(S), . . . , pk · sk(S)
)M

(k)
1

.

We are thus in the situation described in Section 5. Thus the homomorphic
evaluation of rep(x) requires a depth of

1
2

+
log2 �(R)� +
log2 p� +
log2
log2 p�� +
log2 λ�

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 687

and
λ ·

(

M + �(R) · (M + E + 2 · M ·
log2 p�)
)

multiplications.

6.2 Repacking

At this point in the bootstrapping procedure (assuming for simplicity that a ring
switch has not occured) we have a single ciphertext ct whose �(R) slots encode
the coefficients (over the small ring) of the �(R)/n ciphertexts that we are boot-
strapping. Our task is now to extract these coefficients to produce a ciphertext
(or set of ciphertexts) which encode the same data. Effectively this is the task
of performing �(R)/n inverse Fourier transforms (a.k.a interpolations) over S
in parallel, and then encoding the result as elements in R via the embedding
ι : S −→ R.

There are a multitude of ways of doing this step (bar performing directly
an inverse FFT algorithm), for example the general method of Alperin-Sheriff
and Peikert [1] could be applied. This makes the observation that the FFT to
a vector of Fourier coefficients x is essentially applying a linear operation, and
hence we can compute it by taking the trace of a value α · x for some fixed
constant α.

We select a more naive, and simplistic approach. Suppose x is the vector
which is encoded by the input ciphertext. We first homomorphically compute

b1, . . . ,b�(R) = replicate(x).

Where replicate(x) is the Full Replication algorithm from [22]. This produces �(R)

ciphertexts, the ith of which encodes the constant polynomial over Rp equal to
the i slot in x. In [22] this is explained for the case where �(R) = N , but the
method clearly works when �(R) < N . The method requires time O(�(R)) and
depth O(log log �(R)).

Given the output b1, . . . ,b�(R) , which encode the coefficients of the �(R)/n
original plaintext vectors, we can now apply ι (which recall is a linear map) to
obtain any linear function of the underlying plaintexts. For example we could
produce �(R)/n ciphertexts each of which encodes one of the original plaintexts,
or indeed a single ciphertext which encodes all of them.

So putting all of the sub-procedures for bootstrapping together, we find that
we can bootstrap �(R)/n ciphertexts in parallel using a procedure of depth of

log2 d�+
1
2

+
log2 �(R)�+
log2 p�+
log2
log2 p��+
log2 λ�+O(log2 log2 �(R))

and a cost of

D(E, d) + λ ·
(

M + �(R) · (M + E + 2 · M ·
log2 p�)
)

+ O(�(R))

multiplications, where d ≈ (log2 q) · (p − 1)/(log2 p), E =
∑t

i=1 ki and M =
1
2 ·

∑t
i=1 ki · (ki + 1).

688 E. Orsini et al.

7 Elliptic Curves Based Variant

We now extend our algorithm from representations in finite fields to representa-
tions in elliptic curve groups. Recall we need to embed Z

+
q into a group defined

over Fp whose operations can be expressed in terms of the functionality of the
homomorphic encryption scheme. This means that the range of the representa-
tion should be an algebraic group. We have already seen linear algebraic groups
(a.k.a. matrix representations) used in this context in work of Alperin-Sherriff
and Peikert, thus as it is natural (to anyone who has studied algebraic groups)
to consider algebraic varieties. The finite field case discussed in the previous sec-
tions corresponds to the genus zero case, thus the next natural extension would
be to examine the genus one case (a.k.a. elliptic curves).

The reason for doing this is the value of q from Table 2 compared to the
estimated values from Table 1 are far from optimal. This is because we have
few possible group orders of F∗

pki
. The standard trick in this context (used for

example in the ECM factorization method, the ECPP primality prover, or even
indeed in all of elliptic curve cryptography) is to replace the multiplicative group
of a finite field by an elliptic curve group.

Just as before we select a coprime factorization q =
∏t

i=1 ei (with the ei not
necessarily prime, but pairwise coprime). But now we require that ei divides the
order of an elliptic curve Ei defined over pki . Since the group orders of elliptic
curves are distributed roughly uniformly within the Hasse interval it is highly
likely that there are such elliptic curves. Determining such curves may however
be a hard problem for a fixed value of q; a problem which arose previously in
cryptography in [3]. However, since we have some freedom in selecting q in our
scheme we can select q and the Ei simultaneously, and hence finding the elliptic
curves will not be a problem.

Again, we fix a polynomial representation of Fpki , i.e. an irreducible poly-
nomial fi(x) of degree ki such that Fpki = Fp[x]/fi(x), and now we let Gi ∈
Ei(Fpki) denote a fixed point on the elliptic curve of order ei. We now can
translate our method into this new setting. For example (1) translates to

rep :
{

Z
+
q −→ G =

∏t
i=1 Ei(Fpki)

a 	−→ ([a1]G1, . . . , [at]Gt)
(2)

where ai = a (mod ei).
Homomorphic calculations in G are then performed using Jacobian Projec-

tive coordinates. This means that general point addition can be performed with
multiplicative depth five and M ′ = 16 · M homomorphic multiplications. Our
method then proceeds as before, except we replace homomorphic multiplication
in F

∗
pki

with Jacobian projective point addition in Ei(Fpki).
The computation of red is then performed as follows. We first homomorphi-

cally map the projective points in G into an affine point. Each such conversion, in
component i, requires an Fpki -field inversion and three Fpki -field multiplications.
If we let DInvi (resp. MInvi) denote the depth (resp. number of multiplications in
Fp) of the circuit to invert in the field Fpki . This implies that the conversion of a set

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 689

of projective points in G to a set of affine points requires depth 3 + maxt
i=1 DInvi

and 4 · M +
∑t

i=1 MInvi homomorphic multiplications over Fp.
Given this final conversion to affine form, we have effectively E′ = E + t,

as opposed to E, variables defining the elements in G. The extra t variables
coming from the y-coordinate; it is clear we only need to store t such variables
as opposed to E such variables as each x coordinate corresponds to at most two
y-coordinates and hence a naive form of homomorphic point compression can be
applied.

This means the map red (after the conversion to affine coordinates so as
to reduce the multiplicative complexity of the interpolated polynomial) can be
expressed as a degree d′ map; where we expect d′ to be the smallest d′ such
that E′+d′

Cd′ > q, which means we expect d′ ≈ E′ · (2log(q)/ log(E′) − 1). This
means, as before, that the resulting depth will be
log2 d′� and the number of
multiplications will be D(E′, d′).

So putting all of the sub-procedures for bootstrapping together, we find that
we can use the elliptic curve variant of our bootstrapping method to bootstrap
�(R)/n ciphertexts in parallel using a procedure of depth of

log2 d′� + 5 ·
(

1
2

+
log2 �(R)� + ·
log2 p� + ·
log2
log2 p�� +
log2 λ�
)

+ 3 +
t

max
i=1

DInvi + O(log2 log2 �(R))

and

D(E′, d′) + λ ·
(

M ′ + �(R) · (M ′ + 3 · E + 2 · M ′ ·
log2 p�)
)

+ 4 · M +
t∑

i=1

MInvi + O(�(R))

multiplications, where d′ ≈ log q/ log E′, E′ =
∑t

i=1(ki +1), M =
∑t

i=1 ki · (ki +
1)/2 and M ′ = 16 · M . Note the 3 · E term comes from needing to rotate the
three projective coordinates.

However, the ability to use arbitrary q comes at a penalty; the depth required
has dramatically increased due to the elliptic curve group operations. For exam-
ple if we consider a prime p of size roughly 216 and k = 2, then we need about
200 levels, as opposed to 56 with the finite field variant. This then strongly influ-
ences the required value of N , pushing it up from around 85, 000 to 220, 000.
Thus in practice the elliptic curve variant is unlikely to be viable.

A Parameter Calculation

In [20] a concrete set of parameters for the BGV SHE scheme was given for the
case of binary message spaces, and arbitrary L. In [12] this was adapted to the
case of message space Rp for 2-power cyclotomic rings, but only for the schemes
which could support one level of multiplication gates (i.e. for L = 1). In [11]

690 E. Orsini et al.

these two approaches were combined, for arbitrary L and p, and the analysis was
(slightly) modified to remove the need for a modulus switching upon encryption.
In this section we modify again the analysis of [11] to present an analysis which
includes a step of field switching from [17]. We assume in this section that the
reader is familiar with the analysis and algorithms from [11,17,20].

Our analysis will make extensive use of the following fact: If a ∈ R be chosen
from a distribution such that the coefficients are distributed with mean zero and
standard deviation σ, then if ζm is a primitive mth root of unity, we can use
6 · σ to bound a(ζm) and hence the canonical embedding norm of a. If we have
two elements with variances σ2

1 and σ2
2 , then we can bound the canonical norm

of their product with 16 · σ1 · σ2.

Ensuring We Can Evaluate the Required Depth: Recall we have two
rings R and S of degree N and n respectively. The ring S is a subring of R
and hence n divides N . We require a chain of moduli q0 < q1 . . . < qL corre-
sponding to each level of the scheme. We assume (for sake of simplicity) that
qi/qi−1 = pi are primes. Thus qL = q0 ·

∏i=L
i=1 pi. Also note, that as in [11], we

apply a SHE.LowerLevel (a.k.a. modulus switch) algorithm before a multiplication
operation. This often leads to lower noise values in practice (which a practical
instantiation can make use of). In addition it eliminates the need to perform a
modulus switch after encryption, which happened in [20].

We utilize the following constants described in [12], which are worked out for
the case of message space defined modulo p (the constants in [12] make use of an
additional parameter, arising from the key generation procedure. In our case we
can take this constant equal to one). In the following h is the Hamming weight
of the secret keys sk(R) and sk(S).

BClean =N · p/2 + p · σ ·
(

16 · N√
2

+ 6 ·
√

N + 16 ·
√

h · N

)

B
(R)
Scale =p ·

√
3 · N ·

(

1 +
8
3

·
√

h

)

B
(S)
Scale =p ·

√
3 · n ·

(

1 +
8
3

·
√

h

)

B
(R)
Ks =p · σ · N ·

(

1.49 ·
√

h · N + 2.11 · h + 5.54 ·
√

h + 1.96
√

N + 4.62
)

B
(S)
Ks =p · σ · n ·

(

1.49 ·
√

h · n + 2.11 · h + 5.54 ·
√

h + 1.96
√

n + 4.62
)

As in [20] we define a small “wiggle room” ξ which we set to be equal to eight;
this is set to enable a number of additions to be performed without needing
to individually account for them in our analysis. These constants arise in the
following way:

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 691

– A freshly encrypted ciphertext at level L has noise bounded by BClean.
– In the worst case, when applying SHE.LowerLevel to a (big ring) ciphertext

at level l > L2 + 1 with noise bounded by B′ one obtains a new ciphertext
at level l − 1 with noise bounded by

B′

pl
+ B

(R)
Scale.

– In the worst case, when applying SHE.LowerLevel to a (small ring) ciphertext
at level l ≤ L2 + 1 with noise bounded by B′ one obtains a new ciphertext
at level l − 1 with noise bounded by

B′

pl
+ B

(S)
Scale.

– When applying the tensor product multiplication operation to (big ring)
ciphertexts of a given level l > L2 + 1 of noise B1 and B2 one obtains a new
ciphertext with noise given by

B1 · B2 +
B

(R)
Ks · ql
PR

+ B
(R)
Scale,

where PR is a value to be determined later.
– When applying the tensor product multiplication operation to (small ring)

ciphertexts of a given level l ≤ L2 of noise B1 and B2 one obtains a new
ciphertext with noise given by

B1 · B2 +
B

(S)
Ks · ql
PS

+ B
(S)
Scale,

where again PS is a value to be determined later.

A general evaluation procedure begins with a freshly encrypted ciphertext
at level L with noise BClean. When entering the first multiplication operation we
first apply a SHE.LowerLevel operation to reduce the noise to a universal bounds.
B(R), whose value will be determined later. We therefore require

ξ · BClean

pL
+ B

(R)
Scale ≤ B(R),

i.e.
pL ≥ 8 · BClean

B(R) − B
(R)
Scale

. (3)

We now turn to dealing with the SHE.LowerLevel operations which occurs before
a multiplication gate at level l ∈ {1, . . . , L − 1} \ {L2 + 1}. In what follows we
assume l > L2 + 1, to obtain the equations for l ≤ L2 one simply replaces the
R-constants by their equivalent S-constants. We perform a worst case analy-
sis and assume that the input ciphertexts are at level l. We can then assume

692 E. Orsini et al.

that the input to the tensoring operation in the previous multiplication gate
(just after the previous SHE.LowerLevel) was bounded by B(R), and so the
output noise from the previous multiplication gate for each input ciphertext is
bounded by (B(R))2+B

(R)
Ks ·ql/PR +B

(R)
Scale. This means the noise on entering the

SHE.LowerLevel operation is bounded by ξ times this value, and so to maintain
our invariant we require

ξ · (B(R))2 + ξ · B
(R)
Scale

pl
+

ξ · B
(R)
Ks · ql

PR · pl
+ B

(R)
Scale ≤ B(R).

Rearranging this into a quadratic equation in B(R) we have

ξ

pl
· (B(R))2 − B(R) +

(

ξ · B
(R)
Scale

pl
+

ξ · B
(R)
Ks · ql−1

PR
+ B

(R)
Scale

)

≤ 0.

We denote the constant term in this equation by Rl−1. We now assume that all
primes pl are of roughly the same size (for the ring R), and noting the we need
to only satisfy the inequality for the largest modulus l = L − 1 (resp. l = L2

for the ring S). We now fix RL−2 by trying to ensure that RL−2 is close to
B

(R)
Scale · (1 + ξ/pL−1) ≈ B

(R)
Scale, so we set RL−2 = (1 − 2−3) · B(R)

Scale · (1 + ξ/pL−1),
and obtain

PR ≈ 8 · ξ · B
(R)
Ks · qL−2

B
(R)
Scale

, (4)

since B
(R)
Scale · (1 + ξ/pL−1) ≈ B

(R)
Scale. Similarly for the small ring we find

PS ≈ 8 · ξ · B
(S)
Ks · qL2−1

B
(S)
Scale

, (5)

To ensure we have a solution we require 1 − 4 · ξ · RL−2/pL−1 ≥ 0, (resp. 1 − 4 ·
ξ · RL2−1/pL2 ≥ 0) which implies we should take, for i = 2, . . . , L − 1,

pi ≈
{

4 · ξ · RL−2 ≈ 32 · B
(R)
Scale = pR For i = L2 + 2, . . . , L − 1,

4 · ξ · RL2−1 ≈ 32 · B
(S)
Scale = pS For i = 1, . . . , L2.

(6)

We now examine what happens at level L2 + 1 when we perform a ring switch
operation. Following Lemma 3.2 of [17] we know the noise increases by a factor of
(p/2)·

√

N/n. The noise output from the previous multiplication gate is bounded
by (B(R))2 + B

(R)
Ks · qL2+2/PR + B

(R)
Scale. Note that

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 693

B
(R)
Ks · qL2+2

PR
≈ B

(R)
Ks · qL2+2 · B

(R)
Scale

8 · ξ · B
(R)
Ks · qL−2

≈ B
(R)
Scale

8 · ξ · pL1−4
R

Thus the we know that the noise after the ring switch operation is bounded by

BRingSwitch =
p

2
·
√

N/n ·
(

(B(R))2 +
B

(R)
Scale

8 · ξ · pL1−4
R

+ B
(R)
Scale

)

.

We now modulus switch down to level L2, and obtain a ciphertext (over the ring
S) with noise bounded by

BRingSwitch

pL2+1
+ B

(S)
Scale.

We would like this to be less than the universal bound B(S), which implies

pL2+1 ≥ BRingSwitch

B(S) − B
(S)
Scale

. (7)

We now need to estimate the size of p0. Due to the above choices the ciphertext
to which we apply the bootstrapping has norm bound by B(S). This means that
we require

q0 = p0 ≥ 2 · B(S) · cm′ , (8)

to ensure a valid decryption/bootstrapping procedure. Recall cm′ is the ring
constant for the polynomial ring S and it depends only on m′ (see [13] for
details).

Ensuring We Have Security: The works before [23,31], such as Lindner and
Peikert [24], did not include the rank of the lattice into account when estimating
the cost of the attacker. The reason is that the lattice rank appears to be only
a second order term in the cost of the attack. However, for applications such as
FHE, the dimension is usually very big, e.g. 216, and lattice algorithms are often
polynomial in the rank. Therefore, even as a second order term it can contribute
significantly to the cost of the attack. The largest modulus used in our big ring
(resp. small ring) key switching matrices, i.e. the largest modulus used in an
LWE instance, is given by QL−1 = PR · qL−1 (resp. QL2 = PS · qL2).

We recall the approach of [23,31] here. First, fix some security level as mea-
sured in enumeration nodes, e.g. 2128. Now, use estimates by Chen and Nguyen [9]
are used to determine the cost of running BKZ 2.0 for various block sizes β. Com-
bining this with the security level gives an upper bound on the rounds an attacker
can perform, depending on β. Then, for various lattice dimensions r, the BKZ
2.0 simulator by Chen and Nguyen is used to determine the quality of the vector
as measured by the root-Hermite factor δ(β, r) = (‖b‖/vol(L)1/r)1/r. Now, the

694 E. Orsini et al.

best possible root-Hermite factor achievable by the attacker is given by δ(r) =
minβ δ(β, r)

In LWE, the relevant parameters for the security are the ring dimension n
(resp. N), the modulus Q = QL2 (resp. Q = QL−1) and the standard deviation σ.
Note that in most scenarios, an adversary can choose how many LWE samples
he uses in his attack. This number r is equal to the rank of the lattice. The
distinguishing attack against LWE uses a short vector in the dual SIS lattice to
distinguish the LWE distribution from the uniform distribution. More precisely,
an adversary can distinguish between these two distributions with distinguishing
advantage ε if the shortest vector he can obtain (in terms of its root-Hermite
factor) satisfies

δ(r)r · Qn/r−1 · σ <
√

− log(ε)/π.

It follows that in order for our system to be secure against the previously
described adversary, we need that

log2(Q) ≤ min
r>n

r2 · log2(δ(r)) + r · log2(σ/α)
r − n

, (9)

where α =
√

− log(ε)/π. See also[23,24,27] for more information. For every n
we can now compute an upper bound on log2(q) by iterating the right hand side
of (9) over m and selecting the minimum.

Putting it All Together. As in [12,20], we set σ = 3.2, B(R) = 2 · B
(R)
Scale and

B(S) = 2 · B
(S)
Scale. From our equations (3), (4), (5), (6), (7), and (8) we obtain

equations for pi for i = 0, . . . , L, PR and PS in terms of n, N , L, h and the security
level κ.

B Example Parameters

In Appendix 7 we present a calculation of suitable parameters for our scheme,
and the resulting complexity of the polynomial representation of red, here we
work out a concrete set of parameters for various plaintext moduli p.

We target κ = 128-bits of security, and set the Hamming weight h of the secret
key sk to be 64 as in [12,20]. On input N and n the to the formulae in Appendix 7
we obtain an upper bounds on log(QL−1) and log(QL2). We now use equations (3)-
(8) from the Appendix for different values of the plaintext modulus p to obtain a
lower bound on log(QL−1) and log(QL2). Then, we increase N and n until the
lower bound on QL−1 and QL2 from the functionality is below the upper bound
from the security analysis. In this way we obtain lower bounds for N and n.

In Table 1 we consider four different values of p; for simplicity we also set
t = 1 in (1), i.e. G = F

∗
pk , for a suitable choice of k. After finding approximate

values for N , n and q we can then search for exact values of N , n and q. More
precisely, we are looking for cyclotomic rings R and S such that the degree

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 695

Table 1. Lower bounds on N and n

p κ c = �(R)/n n ≈ N ≈ q ≈
2 128 1 860 23100 11637

2 24100

≈ 28 128 1 1040 51800 1635087
2 53100

3, 4, 56000
[5, . . . , 10] 57600

≈ 216 128 1 1300 96000 467989106
2, 3 98500

[4, . . . , 10] 103000

≈ 232 128 1 1750 181000 3.558467651 · 1013

2 183000
[3, . . . , 10] 185000

Table 2. A concrete set of cyclotomic rings with an estimation of the number of
multiplications and the depth required to perform our bootstrapping step

p m N = φ(m) m′ n = φ(m′) cm′ �(R)/n k L # Mults q

2 31775 24000 1271 1200 3.93 1 16 23 ≈ 8.3 · 106 65535
32767 27000 1057 900 2.69 2 15 23 ≈ 1.02 · 107 32767

28 + 1 62419 51840 1687 1440 2.72 1 3 40 ≈ 4.6 · 106 4243648
91149 58080 1321 1320 1.28 1 3 39 ≈ 2.3 · 106 2121824
137384 63360 1321 1320 1.28 4 3 41 ≈ 3.5 · 106 2121824

216 + 1 113993 100800 2651 2400 2.9 1 2 56 ≈ 1.5 · 109 2147549184
160977 102608 2333 2332 1.28 2 2 58 ≈ 6.3 · 108 715849728
272200 108800 1361 1360 1.28 4 2 57 ≈ 4.8 · 108 536887296

232 + 15 198203 183040 2227 2080 3.6 1 2 79 ≈ 1.1 · 1014 414161297767368
202051 199872 2083 2082 1.28 4 2 79 ≈ 3.9 · 1013 50637664608480
352317 190512 2649 1764 1.81 6 2 82 ≈ 5.1 · 1014 50637664608480

N = φ(m) of F (X) = Φm(X) and n = φ(m′) of f(x) = Φm′(X) are larger than
the bounds above and n divides both N and �(R) (the number of plaintext slots
associated with R). In addition we require that q divides pk − 1. See Table 2 for
some values.

Notice that the value of q is strongly influenced by the ring constant cm′ .
In Table 1 we set cm′ = 1.28 (i.e. we assume the best case of m′ being prime),
whereas in Table 2 we compute the actual value of the ring constant for each
cyclotomic ring we consider. For example for p = 2, in Table 1 we obtain an
approximate value q ≈ 11637, but in Table 2 we need a larger value due to the
additional condition that q divides pk −1, and the ring constant, which is bigger
than 1.27 for m′ = 1271 and m′ = 1057.

Acknowledgments. This work has been supported in part by ERC Advanced Grant
ERC-2010-AdG-267188-CRIPTO, by EPSRC via grant EP/I03126X, by the European
Commission under the H2020 project HEAT and by the Defense Advanced Research

696 E. Orsini et al.

Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under
agreement number FA8750-11-2-0079.1

References

1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 1–20.
Springer, Heidelberg (2013)

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014)

3. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to
cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 283–297. Springer, Heidelberg (1996)

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

6. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106. IEEE (2011)

7. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

8. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS,
pp. 1–12 (2014)

9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

10. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer,
Heidelberg (2013)

11. Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and
a hard place: interpolating between MPC and FHE. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 221–240. Springer, Heidelberg
(2013)

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134,
pp. 1–18. Springer, Heidelberg (2013)

1 The US Government is authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of Defense Advanced Research Projects Agency (DARPA) or the U.S. Gov-
ernment.

Bootstrapping BGV Ciphertexts with a Wider Choice of p and q 697

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

14. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity (2009). crypto.stanford.edu/craig

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178. ACM (2009)

16. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

17. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style homo-
morphic encryption. Journal of Computer Security 21(5), 663–684 (2013)

18. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

19. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

20. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

22. Halevi, S., Shoup, V.: Algorithms in HElib. Cryptology ePrint Archive, Report
2014/106 (2014)

23. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS,
vol. 8469, pp. 318–335. Springer, Heidelberg (2014)

24. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

26. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 35–54. Springer, Heidelberg (2013)

27. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Post-Quantum Cryp-
tography, pp. 147–191. Springer (2009)

28. Rohloff, K., Cousins, D.B.: A scalable implementation of fully homomorphic
encryption built on NTRU. In: Böhme, R., Brenner, M., Moore, T., Smith, M.
(eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 221–234. Springer, Heidelberg
(2014)

29. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

https://crypto.stanford.edu/craig

698 E. Orsini et al.

30. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Designs, Codes
and Cryptography 71, 57–81 (2014)

31. van de Pol, J., Smart, N.P.: Estimating key sizes for high dimensional lattice-based
systems. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 290–303. Springer,
Heidelberg (2013)

32. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

Packing Messages and Optimizing Bootstrapping
in GSW-FHE

Ryo Hiromasa1(B), Masayuki Abe2, and Tatsuaki Okamoto2

1 Kyoto University, Kyoto, Japan
hiromasa@ai.soc.i.kyoto-u.ac.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
{abe.masayuki,hiromasa}@lab.ntt.co.jp

Abstract. We construct the first fully homomorphic encryption (FHE)
scheme that encrypts matrices and supports homomorphic matrix addi-
tion and multiplication. This is a natural extension of packed FHE and
thus supports more complicated homomorphic operations. We optimize
the bootstrapping procedure of Alperin-Sheriff and Peikert (CRYPTO
2014) by applying our scheme. Our optimization decreases the lattice
approximation factor from Õ(n3) to Õ(n2.5). By taking a lattice dimen-
sion as a larger polynomial in a security parameter, we can also obtain
the same approximation factor as the best known one of standard lattice-
based public-key encryption without successive dimension-modulus
reduction, which was essential for achieving the best factor in prior works
on bootstrapping of standard lattice-based FHE.

1 Introduction

Fully homomorphic encryption (FHE) allows us to evaluate any function over
encrypted data by only using public information. This can be used, for exam-
ple, to outsource computations to remote servers without compromising privacy.
Since the breakthrough work by Gentry [12,13], many different varieties of FHE
have been proposed[5–8,11,17,18]. To date, the fastest (and simplest) FHE based
on the standard lattice assumption is the one by Gentry, Sahai, and Waters [17].
(hereafter, referred to as GSW-FHE). However, it is required to take heavy cost
for evaluating a large number of ciphertexts. The way to deal with this issue is
to pack multiple messages into one ciphertext.

Packing messages allows us to apply single-instruction-multiple data (SIMD)
homomorphic operations to all encrypted messages. In the case where a remote
server stores encrypted data and we want to retrieve certain data from this server,
we first apply the equality function to every encrypted data. If the stored data have
been packed into one ciphertext, we can do that by only one homomorphic evalua-
tion of the equality function. Smart and Vercautren [25], for the first time, showed
that applying the Chinese reminder theorem (CRT) to number fields partitions
the message space of the Gentry’s FHE [12,13] scheme into a vector of plaintext
slots. On the standard lattice-based FHE schemes, Brakerski, Gentry, and Halevi
[4] used the method of [22], which described a way to construct packed Regev’s
encryption [23], to pack messages in the FHE variants [5–7] of [23]. In this paper,
c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 699–715, 2015.
DOI: 10.1007/978-3-662-46447-2 31

700 R. Hiromasa et al.

we construct a matrix variant of [17] (whose security is also based on the standard
lattice assumption) to implement SIMD homomorphic operations, and describe
how to bring out the potential of our scheme: specifically optimizing bootstrapping.

The bootstrapping technique [12,13] is currently the only way to go from
limited amount of homomorphism to unlimited amount of homomorphism. The
limited nature is caused by noise terms included in ciphertexts of all known FHE,
which are needed to ensure security. Since homomorphic operations increases the
noise level and the noise prevents us from correctly decrypting ciphertexts if the
level increases too high, it is required to consider methods that reduce the noise.
The bootstrapping technique is the one of such a methods, and achieved by
homomorphically evaluating the decryption circuit of FHE.

There have recently been the significant progresses [1,9] in improving the
bootstrapping procedure on standard lattice-based FHE. Their progresses stem
from the observation that noise terms in ciphertexts of GSW-FHE grow asym-
metrically: for a parameter n (the dimension in the underlying lattice assump-
tion), the noise of multiplication between two ciphertexts with noise size e1 and
e2 grows to e1 + poly(n) · e2. For example, if we want to multiply � ciphertexts
with the same noise size in sequence, the noise in the result increases by a factor
of � ·poly(n), which is in contrast to the noise blowup factor for all known FHE,
poly(n)log �. To suppress the growth in noise from the bootstrapping procedure,
the two recent developments [1,9] tried to sequentialize the decryption circuit.

Brakerski and Vaikuntanathan [9] transformed the decryption circuit of [17]
to a branching program by using the Barrington’s theorem [2], and homomor-
phically evaluated the program. Since the Barrington’s theorem can convert the
decryption circuit to a polynomial length branching program, evaluating the
program increases the noise by a factor of poly(n). This procedure, however, has
a significant drawback: the Barrington’s theorem generates a branching program
of large polynomial length. The scheme [9] also used a kind of dimension lever-
aging technique and successive dimension-modulus reduction to obtain the best
approximation factor that is the same as standard lattice-based (plain) PKE.

Unlike most previous works, Alperin-Sheriff and Peikert [1] viewed the decryp-
tion as an arithmetic circuit. The decryption of all known standard lattice-based
FHE consists of the inner product and rounding: for a ciphertext vector c and
secret key vector s, the decryption algorithm computes �〈c, s〉�2 ∈ {0, 1} (where
�·�2 is the rounding function introduced later). The authors observed that the
inner product in the decryption can be expressed as a subset sum of the secret
key elements. The subset sum can be computed only in the additive group, and
the additive group is isomorphic to a group of cyclic permutations. The authors
rewrote the inner product to the sequence of compositions of the cyclic per-
mutations. Since this does not use the Barrington’s theorem, the bootstrapping
procedure of [1] can refresh ciphertexts faster and keep the noise growth in a
smaller polynomial than that of [9], but the underlying security assumption was
slightly stronger than that of [9] 1. In addition, the procedure of [1] was not fully

1 By using successive dimension-modulus reduction, [1] can also obtain the same
approximation factor as that of [9].

Packing Messages and Optimizing Bootstrapping in GSW-FHE 701

sequentialized, that is, there is a little room for sequentializing the decryption:
the rounding.

1.1 Our Results

In this paper, we construct the first FHE scheme that encrypts matrices and sup-
ports homomorphic matrix operations. This is a natural extension of packed FHE
and supports more complicated homomorphic operations. Using this scheme, we
fully sequentialize and thus optimize the bootstrapping procedure of [1]. The
result of the optimization is described in the following:

Theorem 1. Our optimized bootstrapping scheme can be secure assuming the
hardness of approximating the standard lattice problem to within the factor
Õ(n1.5λ) on any n dimensional lattices.

For 2λ hardness, we need to take n = Ω(λ). Asymptotically minimal selec-
tion of n = Õ(λ) leads to the approximation factor Õ(n2.5) for the underlying
worst-case lattice assumption, which is smaller than Õ(n3), the factor of [1].
Using a kind of dimension leveraging technique: selecting a larger dimension
n = λ1/ε for ε ∈ (0, 1), we can also obtain the best known approximation factor,
Õ(n1.5+ε), without successive dimension-modulus reduction, which was essential
for achieving the best factor in the prior works on bootstrapping of standard
lattice-based FHE.

1.2 Our Techniques

Matrix GSW-FHE. The starting point of our scheme is the GSW-FHE scheme.
In that scheme, a ciphertext of a plaintext m ∈ {0, 1} is a matrix C ∈ Z

(n+1)×N
q

such that sC = m · sG + e for a secret key vector s ∈ Z
n+1
q , small noise vector

e ∈ Z
N , and fixed matrix G ∈ Z

(n+1)×N
q . A simple extension of the plaintext

space from bits to binary vectors cannot yield plaintext-slot-wise addition and
multiplication. Instead, we use matrices to store binary vectors in their diago-
nal entries. Actually, our construction even supports homomorphic matrix addi-
tion and multiplication that are richer than homomorphic plaintext-slot-wise
operations.

Let S ∈ Z
r×(n+r)
q be a secret key matrix, B ∈ Z

n×m
q be a Learning with

Errors (LWE) matrix such that SB ≈ 0, and G ∈ Z
(n+r)×N be a fixed matrix.

To encrypt a square integer matrix M ∈ {0, 1}r×r, the ciphertext C ∈ Z
(n+r)×N

must be of the form BR + XG for a matrix X ∈ Z
(n+r)×(n+r) such that

SX = MS, and small random matrix R ∈ Z
m×N . The ciphertext C satisfies

SC = E + MSG for a small noise matrix E ∈ Z
r×N . Homomorphic matrix

addition is just matrix addition. For example, given two ciphertexts C1 and C2,
it holds that

S(C1 + C2) = (E1 + E2) + (M1 + M2)SG.

702 R. Hiromasa et al.

Homomorphic matrix multiplication corresponds to a simple preimage sampling
and matrix multiplication. For a matrix C ∈ Z

(n+r)×N
q , let G−1(C) be the

function that outputs a matrix X ′ ∈ Z
N×N
q such that GX ′ ≡ C (mod q). If we

let X ′
2

R←−G−1(C2), then it holds that

SC1X
′
2 = (E1 + M1SG)X ′

2

= E1X
′
2 + M1E2 + M1M2SG.

Now, the problem is how to construct a matrix X such that SX = MS.
By construction, S includes an identity matrix: S = [I ‖ S′] for a matrix
S′ ∈ Z

r×n
q . The idea is to make X have MS in its top rows and 0 below. This X

clearly satisfies the condition, but cannot publicly be computed without knowing
the secret key. We translate the resulting symmetric scheme to the asymmetric
one by using the method similar to [3,24]. In particular, let M (i,j) ∈ {0, 1}r×r

(i, j = 1, . . . , r) be the matrix with 1 in the (i, j)-th entry and 0 in the others.
We first publish symmetric encryptions of M (i,j) for all i, j ∈ [r]. A ciphertext
for a plaintext matrix M is publicly computed by summing up all encryptions
of M (i,j) such that the (i, j)-th entry of M is equal to 1, and using B to
randomize the sum. Since the public key includes the ciphertexts that encrypt
partial information of the secret key, security of our scheme cannot directly be
proven from the LWE assumption. The way to deal with this problem is to
introduce a circular security assumption.
Optimizing Bootstrapping of [1]. For a dimension d and modulus q, let
c ∈ {0, 1}d be the � − 1-th column of a binary GSW-FHE ciphertext under
the secret key s ∈ Z

d
q . Since the decryption algorithm of GSW-FHE computes

�〈c, s〉�2 (�·�2 is the rounding function that outputs 1 if the input is close to q/4
and 0 otherwise), and 〈c, s〉 =

∑d
i=1 cisi =

∑

i∈[d]:ci=1 si, the decryption can
be viewed as a subset sum of {si}i∈[d]. To bootstrap ciphertexts, we only have
to be able to compute additions in Zq homomorphically. The additive group
Z

+
q is isomorphic to a group of cyclic permutations, where x ∈ Z

+
q corresponds

to a cyclic permutation that can be represented by an indicator vector with 1
in the x-th position. The permutation matrix can be obtained from the cyclic
rotation of the indicator vector. The addition in Z

+
q leads to the composition

of the permutations (i.e., the multiplication of the corresponding permutation
matrices), and the rounding function �·�2 : Zq → {0, 1} can be computed by
summing the entries of the indicator vector corresponding to those values in Zq.

The bootstrapping procedure of [1] consists of two parts that compute an
inner product and a rounding operation. The rounding checks equalities and
computes summation. The matrix GSW-FHE scheme allows us to rewrite the
bootstrapping procedure except for the summation as a sequence of homomor-
phic matrix multiplications, while the procedure of [1] computes only the inner
product part as a sequence. Intuitively, our optimization use the matrix GSW-
FHE scheme to sequentialize the bootstrapping procedure of [1]. The asymmetric
noise growth property is more effective in estimating how much noise the proce-
dure yields.

Packing Messages and Optimizing Bootstrapping in GSW-FHE 703

The inner product can be computed by compositions of cyclic permutations.
The bootstrapping procedure of [1] represents elements in Zq as cyclic permu-
tations, and evaluates their compositions by the naive matrix multiplication
algorithm on the ciphertexts that encrypt every elements in the permutation
matrices. Instead of that, our bootstrapping procedure uses homomorphic matrix
multiplication to directly evaluate the compositions. The rounding part tests for
every value close to q/4 whether the output of the inner product part encrypts
the permutation corresponding to the value, and sums their results (that are 0
or 1). Our procedure also use homomorphic matrix multiplication to realize the
equality test. The result of the inner product is represented as an indicator vec-
tor, and encrypted component-wise in a SIMD encryption. The inner product
equals to x if and only if its indicator vector has 1 in the x-th position. The
homomorphic equality test between the inner product and x is computed by
homomorphically permuting x-th slot to the first slot in the SIMD ciphertext.
The result of the test is encrypted in the first slot. From the above, the boot-
strapping procedure except for the summation can be represented as a sequence
of Õ(λ) homomorphic multiplications for a security parameter λ.

1.3 Related Work

Multilinear maps[10,14,15] are extensions of bilinear maps, and built from vari-
ants of FHE. The new multilinear maps construction of Gentry, Gorbunov, and
Halevi [15] also starts from GSW-FHE. Recall that in GSW-FHE, a ciphertext
of m ∈ {0, 1} is a matrix C ∈ Z

(n+1)×N
q such that sC = m · sG+ e for a secret

key vector s ∈ Z
(n+1)
q and small noise vector e ∈ Z

N . That is, valid cipher-
texts of GSW-FHE have the secret key as the approximate eigenvector and the
message as the eigenvalue. The multilinear maps construction of [15] replaced
the approximate eigenvector with the approximate eigenspace by increasing the
dimension. In the construction, an encoding of M ∈ Z

r×r is a matrix C ∈ Z
N×N
q

such that SC = E + MS for a random matrix S ∈ Z
r×N
q and small noise

matrix E ∈ Z
r×N . The approximate eigenspace is the matrix S. To obtain the

encoding C, the construction samples a preimage of MS + E for the function
fS(x) = Sx mod q. In our scheme, a ciphertext C ∈ Z

N×N
q of M ∈ Z

r×r is a
preimage of

BR +
(
MS
0

)

G

for the function fG. Since the ciphertext C satisfies (SG)C = M(SG)+E for
a small noise matrix E ∈ Z

r×N , the matrix SG can be seen as the approximate
eigenspace.

1.4 Organization

In Section 2, we describe some preliminaries on the LWE assumption and sub-
gaussian random variables. In Section 3, we present how to construct a matrix
variant of [17]. In Section 4, we show that our scheme improves the bootstrapping
procedure of [1].

704 R. Hiromasa et al.

2 Preliminaries

We denote the set of natural numbers by N, the set of integers by Z , the set of
rational numbers by Q, and the set of real numbers by R. Let G be some group
and P be some probability distribution, then we use a

U←−G to denote that a is
chosen from G uniformly at random, and use b

R←−P to denote that b is chosen
along P. We take all logarithms to base 2, unless otherwise noted.

We assume that vectors are in column form and are written by using bold
lower-case letters, e.g., x, and the i-th element of a vector is denoted by xi. We
denote the �∞ norm (the maximum norm) of the vector x by ‖x‖∞, and the �2
norm (the Euclidean norm) of x by ‖x‖2. The inner product between two vectors
is denoted by 〈x,y〉. Matrices are written by using bold capital letters, e.g., X,
and the i-th column vector of a matrix is denoted by xi. For a matrix X ∈
R

m×n, we define the �∞ and �2 norms of X as ‖X‖∞ := maxi∈[n]{‖xi‖∞} and
‖X‖2 := maxi∈[n]{‖xi‖2}, respectively. For a matrix X ∈ R

m×n, the notation
XT ∈ R

n×m denotes the transpose of X. For matrices A ∈ R
m×n1 and B ∈

R
m×n2 , [A ‖ B] ∈ R

m×(n1+n2) denotes the concatenation of A with B. When
we refer to the n × n identity matrix, we denote it by In.

2.1 Learning with Errors

The learning with errors (LWE) assumption was first introduced by Regev [23].

Definition 1 (DLWE). For a security parameter λ, let n := n(λ) be an integer
dimension, let q := q(λ) ≥ 2 be an integer modulus, and let χ := χ(λ) be an error
distribution over Z. DLWEn,q,χ is the problem to distinguish the following two
distributions: In the first distribution, a tuple (ai, bi) is sampled from uniform
over Z

n
q × Zq; In the second distribution, s

U←−Z
n
q and then a tuple (ai, bi) is

sampled by sampling ai
U←−Z

n
q , ei

R←−χ, and setting bi := 〈ai, s〉 + ei mod q. The
DLWEn,q,χ assumption is that DLWEn,q,χ is infeasible.

Recall that GapSVPγ is the promise problem to distinguish between the case
in which the lattice has a vector shorter than r ∈ Q, and the case in which all
the lattice vectors are greater that γ · r. SIVPγ is the problem to find the set
of short linearly independent vectors in a lattice. DLWEn,q,χ has reductions to
the standard lattice assumptions as follows. These reductions take χ to be a dis-
crete Gaussian distribution DZ,αq (that is centered around 0 and has parameter
αq for some α < 1), which is statistically indistinguishable from a B-bounded
distribution (i.e., E[X] = 0 and |X| ≤ B) for an appropriate B.

Corollary 1 ([19–21,23]). Let q := q(n) ∈ N be a power of primes q := pr

or a product of distinct prime numbers q :=
∏

i qi (qi := poly(n) for all i), and
let α ≥ √

n/q. If there exists an efficient algorithm that solves (average-case)
DLWEn,q,DZ,αq

,

– there exists an efficient quantum algorithm that can solve GapSVPÕ(n/α) and
SIVPÕ(n/α) in the worst-case for any n-dimensional lattices.

Packing Messages and Optimizing Bootstrapping in GSW-FHE 705

– if in addition we have q ≥ Õ(2n/2), there exists an efficient classical algo-
rithm that can solve GapSVPÕ(n/α) in the worst-case for any n-dimensional
lattices.

2.2 Subgaussian

A real random variable X is subgaussian with parameter s if for all t ∈ R, its
(scaled) moment generating function holds E[exp(2πtX)] ≤ exp(πs2t2). Any B-
bounded (centered) random variable X is subgaussian with parameter B ·

√
2π.

Subgaussian random variables have the following two properties that can be
easily obtained from the definition of subgaussian random variables:

– Homogeneity: If the subgaussian random variable X has parameter s, then
cX is subgaussian with parameter cs.

– Pythagorean additivity: For two subgaussian random variables X1 and X2

(that is independent from X1) with parameter s1 and s2, respectively, X1 +
X2 is subgaussian with parameter

√

s2
1 + s2

2.

The above can be extended to vectors. A real random vector x is subgaussian
with parameter s if for all real unit vectors u, their marginal 〈u,x〉 is subgaus-
sian with parameter s. It is clear from the definition that the concatenation of
subgaussian variables or vectors, each of which has a parameter s and is inde-
pendent of the prior one, is also subgaussian with parameter s. The homogeneity
and Pythagorean additivity also hold from linearity of vectors. It is known that
the euclidean norm of the subgaussian random vector has the following upper
bound.

Lemma 1 ([26]). Let x ∈ R
n be a random vector that has independent sub-

gaussian coordinates with parameter s. Then there exists a universal constant C
such that Pr[‖x‖2 > C · s

√
n] ≤ 2−Ω(n).

To suppress the growth in noise, Gentry et al. [17] made use of a procedure
that decomposes a vector in binary representation. Alperin-Sheriff and Peikert [1]
observed that instead of the decomposition procedure, using the following algo-
rithm G−1 that samples a subgaussian random vector allows us to re-randomize
errors in ciphertexts and tightly analyze the noise growth in [17]. Lemma 2 can
be extended to matrices in the obvious way. Let gT := (1, 2, 22, . . . , 2�log q�−1)
and G := gT ⊗ In.

Lemma 2 ([1], which is adapted from [20]). There is a randomized, effi-
ciently computable function G−1 : Zn

q → Z
n·�log q� such that for any a ∈ Z

n
q ,

x
R←−G−1(a) is subgaussian with parameter O(1) and a = [Gx]q.

2.3 Homomorphic Encryption, Circular Security, and Bootstrapping

Here we describe the syntax of homomorphic encryption scheme to introduce a
definition of circular security and the Gentry’s bootstrapping theorem. Let M
and C be the message and ciphertext space. A homomorphic encryption scheme
consists of four algorithms, {KeyGen,Enc,Dec,Eval}.

706 R. Hiromasa et al.

– KeyGen(1λ): output a public encryption key pk, a secret decryption key sk,
and a public evaluation key evk.

– Encpk(m): using a public key pk, encrypt a plaintext m ∈ M into a ciphertext
c ∈ C.

– Decsk(c): using a secret key sk, recover the message encrypted in the cipher-
text c.

– Evalevk(f, c1, . . . , c�): using the evaluation key evk, output a ciphertext cf ∈ C
that is obtained by applying the function f : M� → M to c1, . . . , c�.

To prove the security of our construction, we introduce a special kind of
circular security for a homomorphic encryption scheme.

Definition 2 (Circular security). Let K be the key space defined by a secu-
rity parameter λ. Let f be a function from K to C. A homomorphic encryption
scheme HE = {KeyGen,Enc,Dec,Eval} is circular secure with respect to f if for
all probabilistic polynomial-time adversary A, the advantage of A in the following
game is negligible in λ:

1. A challenger computes (pk, sk, evk) R←−KeyGen(1λ), and chooses a bit b
U←−{0, 1}.

2. Let f+ : M × M → M be a function that computes f+(x, y) := x + y ∈ M.
The challenger computes a challenge ciphertext c∗ as follows and sends it to
A.

c∗ :=
{
Evalevk(f+,Encpk(0), f(sk)) if b = 0,
Encpk(0) ∈ C otherwise.

3. A outputs a guess b′ ∈ {0, 1}.

The advantage of A is Pr[b = b′] − 1/2.

In LWE-based FHE schemes, Evalevk(f+,Encpk(0), f(sk)) can be seen as a kind
of ciphertexts that encrypt f(sk). This is why we call the above security notion
circular security.

Gentry’s bootstrapping theorem states the way to go from limited homo-
morphism to unlimited homomorphism. This relates to augmented decryption
circuits.

Definition 3 (Augmented decryption circuit). Let (sk, pk, evk) be a tuple
of keys generated appropriately, and C be the set of decryptable ciphertexts. Then
the set of augmented decryption functions {fc1,c2}c1,c2∈C is defined by

fc1,c2(x) = Decx(c1) ∧ Decx(c1).

That is, the function uses its input as the secret key, decrypts c1 and c2, and
returns the NAND of the results.

Theorem 2 (Bootstrapping theorem [12,13]). A scheme that can evalu-
ate the family of the augmented decryption circuits can be transformed into a
“leveled” FHE scheme (in which KeyGen takes as additional input 1L and we
can only evaluate depth L circuits) with the same decryption circuit, ciphertext
space, and public key.

Packing Messages and Optimizing Bootstrapping in GSW-FHE 707

In addition, if the above scheme is weak circular secure (remains secure
against an adversary that can obtain encryptions of the bits of the secret key), it
can be “pure” FHE scheme (in which the number of homomorphic evaluations
is unlimited).

3 Matrix GSW-FHE

We translate [17] to be able to encrypt a matrix and homomorphically compute
matrix addition and multiplication. This is a natural extension of packed FHE
schemes. In Section 3.1, we present our matrix FHE scheme. In Section 3.2, we
discuss the relationship between our scheme and packed FHE schemes.

3.1 Construction

Let λ be the security parameter. Our scheme is parameterized by an integer
lattice dimension n, an integer modulus q, and a distribution χ over Z that is
assumed to be subgaussian , all of which depends on λ. We let � := �log q�,
m := O((n + r) log q) , and N := (n + r) · �. Let r be the number of bits to be
encrypted, which defines the message space {0, 1}r×r. The ciphertext space is
Z

(n+r)×N
q . Our scheme uses the rounding function �·�2 that for any x ∈ Zq, �x�2

outputs 1 if x is close to q/4, and 0 otherwise. Recall that gT = (1, 2, . . . , 2�−1)
and G = gT ⊗ In+r.

– KeyGen(1λ, r): Set the parameters n, q, m, �, N , and χ as described above.
Sample a uniformly random matrix A

U←−Z
n×m
q , secret key matrix S′ R←−χr×n,

and noise matrix E
R←−χr×m. Let S := [Ir ‖ −S′] ∈ Z

r×(n+r)
q . We denote by

sT
i the i-th row of S. Set

B :=
(
S′A + E

A

)

∈ Z
(n+r)×m
q .

Let M (i,j) ∈ {0, 1}r×r (i, j = 1, . . . , r) be the matrix with 1 in the (i, j)-th
position and 0 in the others. For all i, j = 1, . . . , r, first sample
R(i,j)

U←−{0, 1}m×N , and set

P (i,j) := BR(i,j) +
(
M (i,j)S

0

)

G ∈ Z
(n+r)×N
q .

Output pk := ({P (i,j)}i,j∈[r],B) and sk := S.
– SecEncsk(M ∈ {0, 1}r×r): Sample a random matrices A′ U←−Z

n×N
q and

E
R←−χr×N , parse S = [Ir ‖ −S′], and output the ciphertext

C :=
[(

S′A′ + E
A′

)

+
(
MS
0

)

G

]

q

∈ Z
(n+r)×N
q .

708 R. Hiromasa et al.

– PubEncpk(M ∈ {0, 1}r×r): Sample a random matrix R
U←−{0, 1}m×N , and

output the ciphertext

C := BR +
∑

i,j∈[r]:M [i,j]=1

P (i,j) ∈ Z
(n+r)×N
q ,

where M [i, j] is the (i, j)-th element of M .
– Decsk(C): Output the matrix M = (�〈si, cj�−1〉�2)i,j∈[r] ∈ {0, 1}r×r.
– C1⊕C2: Output Cadd := C1+C2 ∈ Z

(n+r)×N
q as the result of homomorphic

addition between the input ciphertexts.
– C1 � C2: Output Cmult := C1G

−1(C2) ∈ Z
(n+r)×N
q as the result of homo-

morphic multiplication between the input ciphertexts.

Definition 4. We say that a ciphertext C encrypts a plaintext matrix M with
noise matrix E if C is an encryption of M and E = SC − MSG (mod q).

The following lemma states the correctness of our asymmetric encryption.
Similar to this, the correctness of our symmetric encryption can be proven imme-
diately.

Lemma 3. If a ciphertext C encrypts a plaintext matrix M ∈ {0, 1}r×r with
noise matrix E such that ‖E‖∞ < q/8, then Decsk(C) = M .

Proof. We have

SC = S

(

BR +
∑

i,j∈[r]:M [i,j]=1 BR(i,j) +
(
MS
0

)

G

)

= ER +
∑

i,j∈[r]:M [i,j]=1 ER(i,j) + MSG

= ER +
∑

i,j∈[r]:M [i,j]=1 ER(i,j) + [M(gT ⊗ Ir) ‖ −MS′(gT ⊗ In)]

Because of ‖E(R +
∑

i,j∈[r]:M [i,j]=1 R(i,j))‖∞ < q/8 and 2�−2 ∈ [q/4, q/2), for
all i, j = 1, . . . , r, 〈si, cj�−1〉 ≈ q/4 if mi,j = 1, and 〈si, cj�−1〉 ≈ 0 otherwise.

Security of SecEnc directly holds fromDLWEn,q,χ. For a matrixM ∈ {0, 1}r×r,
let fM be a function from Z

r×(n+r)
q to Z

(n+r)×N
q such that for a matrix S ∈

Z
r×(n+r)
q ,

fM (S) =
(
MS
0

)

G ∈ Z
(n+r)×N
q .

The security of PubEnc directly holds by DLWEn,q,χ and assuming our scheme
circular secure with respect to fM (i,j)

.

Lemma 4. Let B,M (i,j),R(i,j),P (i,j) (i, j = 1, . . . , r) be the matrices gener-
ated in KeyGen, and R be the matrix generated in PubEnc. For every i, j =
1, . . . , r, if our scheme is circular secure with respect to fM (i,j)

and DLWEn,q,χ

holds, then the joint distribution (B,BR(i,j),P (i,j),BR) is computationally
indistinguishable from uniform over Z(n+r)×m

q ×Z
(n+r)×N
q ×Z

(n+r)×N
q ×Z

(n+r)×N
q .

Packing Messages and Optimizing Bootstrapping in GSW-FHE 709

We need to estimate the noise growth by the evaluation of homomorphic
matrix addition and multiplication. Similar to [1], we employ the properties of
subgaussian random variables for tight analysis. We collect the results of the
estimation in the following lemma.

Lemma 5. Let S ∈ Z
r×(n+r) be a secret key matrix. Let C1 ∈ Z

(n+r)×N
q

and C2 ∈ Z
(n+r)×N
q be ciphertexts that encrypt M1 ∈ {0, 1}r×r and M2 ∈

{0, 1}r×r with noise matrices E1 ∈ Z
r×N and E2 ∈ Z

r×N , respectively. Let
eT

1,i ∈ Z
1×N (i = 1, . . . , r) be the i-th row vector of E1. Let Cadd := C1 ⊕ C2

and Cmult
R←−C1 � C2. Then, we have

SCadd = Eadd + (M1 + M2)SG ∈ Z
r×N
q ,

SCmult = Emult + (M1M2)SG ∈ Z
r×N
q ,

where Eadd := E1 + E2 and Emult := E + M1E2. In particular, E has in the
i-th row the independent subgaussian entries with parameter O(‖e1,i‖2).

Proof. We can immediately prove the statements for Cadd. For Cmult, we have

SCmult = SC1G
−1(C2)

= (E1 + M1SG)G−1(C2)

= E1G
−1(C2) + M1E2 + M1M2SG.

From the subgaussian properties and Lemma 2, we can see that the i-th row
entries of E := E1G

−1(C2) are independent subgaussian with parameter
O(‖e1,i‖2).

Similar to the original GSW scheme, our scheme also has the asymmetric
noise growth property, and thereby computing a polynomial length chain of
homomorphic multiplications incurs the noise growth by a multiplicative poly-
nomial factor. For ease of analyzing our optimized bootstrapping procedure
described in the next section, we set the following corollary immediately proven
from Lemma 5 and the properties of subgaussian random variables. This corol-
lary includes the fixed ciphertext G ∈ Z

(n+r)×N of the message Ir with noise
0. This makes the noise in the output ciphertext subgaussian and independent
from the noise in the input ciphertexts.

Corollary 2. For i = 1, . . . , k, let Ci ∈ Z(n+r)×N be a ciphertext that encrypts
a message matrix M i ∈ {0, 1}r×r such that for a matrix E ∈ Z

r×N ,
‖(M iE)T ‖2 ≤ ‖ET ‖2 with noise matrix Ei ∈ Z

r×N . Let

C
R←−

k⊙

i=1

Ci � G = C1 � (C2 � (· · · (Ck−1 � (Ck � G))) · · ·).

For i = 1, . . . , k, let eT
i be a row vector of Ei whose norm is equal to ‖ET

i ‖2,
and eT := [eT

1 ‖ eT
2 ‖ · · · ‖ eT

k] ∈ Z
1×kN . Then the noise matrix of C has in

every row the independent subgaussian entries with parameter O(‖e‖2).

710 R. Hiromasa et al.

Proof. The ciphertext C encrypts the message
∏k

i=1 M i with noise E1X1 +
∑k

i=2(
∏i−1

j=1 M j)EiXi, where Xi is the matrix used in the evaluation of each
�. By Lemma 5, the elements of E1X1 in every row are independent and
subgaussian with parameter O(‖e1‖2). Since we have ‖(M iE)T ‖2 ≤ ‖ET ‖2,
(
∏i−1

j=1 M j)EiXi has in its every row the independent subgaussian entries with
parameter O(‖ei‖2). By the Pythagorean additivity of subgaussian random vari-
ables, E1X1+

∑k
i=2(

∏i−1
j=1 M j)EiXi has in every row the independent subgaus-

sian entries with parameter O(‖e‖2).

3.2 Relation to Packed FHE

The matrix GSW-FHE above is a natural extension of packed FHE. Plaintext
slots in packed FHE correspond to diagonal entries of plaintext matrices in
the matrix GSW-FHE scheme. It is easy to see that we can correctly compute
homomorphic slot-wise addition and multiplication. In applications of packed
FHE such as in [16], we may want to permute plaintext slots. This can be
achieved by multiplying the encryptions of a permutation and its inverse from
left and right. Security and correctness of the following algorithms clearly holds
from Lemmas 4 and 5.

– SwitchKeyGen(S, σ): Given a secret key matrix S ∈ Z
r×(n+r)
q and a permu-

tation σ, let Σ ∈ {0, 1}r×r be a matrix corresponding to σ, and generate

W σ
R←−SecEncS(Σ),

W σ−1
R←−SecEncS(ΣT).

Output the switch key sskσ := (W σ,W σ−1).
– SlotSwitchsskσ

(C): Take as input a switch key sskσ and a ciphertext C, output

Cσ
R←−W σ � (C � (W σ−1 � G)),

where G ∈ Z
(n+r)×N is the fixed encryption of Ir with noise zero.

One nice feature of our plaintext-slot switching is that it does not suffer
from the inconvenience of the security as in [4]: we do not have to use a larger
modulus than the matrix GSW-FHE scheme. Brakerski et al. [4] made use of
a larger modulus Q = 2�q to suppress noise growth when switching decryption
keys, so the security of the plaintext-slot switching in [4] must have related to
Q. The larger modulus leads the larger modulus-to-noise ratio. To obtain the
same security level as the SIMD scheme of [4], it was required to select a larger
dimension. As opposed to this, our plaintext-slot switching can use the same
modulus as the matrix GSW-FHE scheme.

4 Optimizing Bootstrapping

We describe how to optimize the bootstrapping procedure of [1] by using our
scheme. In Section4.1, we present the optimized bootstrapping procedure out-
lined in Section 1.2, whose correctness and security are discussed in Section 4.2.

Packing Messages and Optimizing Bootstrapping in GSW-FHE 711

4.1 Optimized Procedure

Let Q be the modulus of the ciphertext to be refreshed. Using the dimension-
modulus reduction technique [7,9], we can publicly switch the modulus and the
dimension to the arbitrary and possibly smaller ones q, d = Õ(λ). Here, q has
the form q :=

∏t
i=1 ri, where ri are small and powers of distinct primes (and

hence pairwise coprime). The following lemma allows us to choose a sufficiently
large q that the correctness of the dimension-modulus reduction holds by letting
it be the product of all maximal prime powers ri bounded by O(log λ), and then
there exists t = O(log λ/ log log λ).

Lemma 6 ([1]). For all x ≥ 7, the product of all maximal prime powers ri ≤ x
is at least exp(3x/4).

By CRT, Z
+
q is isomorphic to the direct product Z

+
r1

× · · · × Z
+
rt

. For all
i ∈ [t], x ∈ Z

+
ri

corresponds to a cyclic permutation that can be represented
by a indicator vector with 1 in the x-th position. Let φi : Zq → {0, 1}r be the
isomorphism of an element in Zq into the cyclic permutation that corresponds
to an element in Zri

, where r := maxi{ri}.
Our optimized bootstrapping procedure consists of two algorithms,

BootKeyGen and Bootstrap. The procedure can be used to refresh ciphertexts of
all known standard LWE-based FHE. We achieve the input ciphertext c ∈ {0, 1}d

for Bootstrap from the dimension-modulus reduction and bit-decomposition of
the ciphertext to be bootstrapped, and let s ∈ Z

d
q be a secret key that corre-

sponds to c. This pre-processing is the same as that in [1], so see for further
details.

– BootKeyGen(sk, s): given a secret key sk for our scheme and the secret key
s ∈ Z

d
q for ciphertexts to be refreshed, output a bootstrapping key. For every

i ∈ [t] and j ∈ [d], let πφi(sj) be the permutation corresponding to φi(sj),
and compute

τi,j
R←−SecEncsk(diag(φi(sj))),

sski,j
R←−SwitchKeyGen(sk, πφi(sj)),

where for a vector x ∈ Z
r, diag(x) ∈ Z

r×r is the square integer matrix that
has x in its diagonal entries and 0 in the others. In addition, we generate
hints to check the equality on packed indicator vectors. For every i ∈ [t], and
x ∈ Zq such that �x�2 = 1 2, generate

sskφi(x)
R←−SwitchKeyGen(sk, πφi(x)),

where πφi(x) is the cyclic permutation that maps the (x mod ri)-th row to
the first row in the matrix. To mask the first plaintext slot, generate an
encryption of (1, 0, . . . , 0):

P (1,0,...,0)
R←−SecEncsk(diag((1, 0, . . . , 0))).

2 Obviously, our procedure can work on not only the rounding function �·�2 but also
some arbitrary functions f : Zq → {0, 1}.

712 R. Hiromasa et al.

Output the bootstrapping key

bk := {(τi,j , sski,j ,P (1,0,...,0), sskφi(x))}i∈[t],j∈[d],x∈Zq:	x�2=1.

– Bootstrapbk(c): Given a bootstrapping key bk and a ciphertext c ∈ Z
d
q , out-

put the refreshed ciphertext C∗. The decryption of all FHE based on the
standard LWE computes �〈c, s〉�2. The algorithm Bootstrap consists of two
phases that evaluate the inner product and rounding.

Inner Product: For every i ∈ [t], homomorphically compute an encryp-
tion of φi(〈c, s〉). Let h := min{j ∈ [d] : cj = 1}. For i = 1, . . . , t, set
C∗

i := τi,h, and iteratively compute

C∗
i

R←−SlotSwitchsski,j
(C∗

i)

for j = h + 1, . . . , d such that cj = 1.
Rounding: For each x ∈ Zq such that �x�2 = 1, homomorphically check
the equality between x and 〈c, s〉, and sum their results. The refreshed
ciphertext is comuted as:

C∗ R←−
⊕

x∈Zq : 	x�2=1

⎛

⎝
⊙

i∈[t]

(

SlotSwitchsskφi(x)(C
∗
i)

)

� P (1,0,...,0)

⎞

⎠ . (1)

The post-processing is almost the same as that in [1] except for the way to
extract a matrix ciphertext. When finishing the bootstrapping procedure, we
have a ciphertext C∗ that encrypts in the first slot the same plaintext as the
ciphertext c. A vector ciphertext like [5,6,8] can be obtained to just take the
� − 1-th column vector of C∗, and a matrix ciphertext like [17] can be obtained
by removing from the second row to the r-th row and from the l+1-th column to
rl-th column, and aggregating the remainders. We can utilize the key-switching
procedure [5,8] for switching from s1 back to the original secret key s. This
requires us to assume circular security.

Our bootstrapping procedure is more time- and space- efficient than that
of [1]. The procedure [1] encrypts every elements of the permutation matrices
corresponding to the secret key elements, and homomorphically evaluates naive
matrix multiplications to obtain encryptions of compositions of permutations. In
our procedure, a permutation is encrypted in one ciphertext, and a composition
is computed by two homomorphic multiplications. This makes our procedure
time-efficient by roughly a O(log2 λ) factor, and space-efficient by a O(log λ)
factor.

4.2 Correctness and Security

From the security of our scheme, it is easy to see that our bootstrapping pro-
cedure can be secure by assuming the circular security and DLWE. Correctness
holds as the following lemma.

Packing Messages and Optimizing Bootstrapping in GSW-FHE 713

Lemma 7. Let sk be the secret key for our scheme. Let c and s be a
ciphertext and secret key described in our bootstrapping procedure. Then, for
bk

R←−BootKeyGen(sk, s), the refreshed ciphertext C∗ R←−Bootstrapbk(c) encrypts
�〈s, c〉�2 ∈ {0, 1} in the first slot.

Proof. From Lemma 5 and group homomorphism of φi, C∗
i encrypts φi([〈s, c〉]q).

Since Zq is isomorphic to Zr1 ×· · ·×Zrt
by CRT,

⊙

i∈[t](SlotSwitchsskφi(x)(C
∗
i))�

P (1,0,...,0) encrypts 1 in the first slot if and only if x = 〈s, c〉 mod q. Finally, C∗

encrypts 1 if and only if �〈s, c〉�2 = 1.

Here, we let s be the Gaussian parameter. Recall that n is the LWE dimen-
sion, r is the number of encrypted bits, � = �log Q�, N = (n + r) · �, t =
O(log λ/ log log λ), d = Õ(λ) and q = Õ(λ). We estimate the noise growth by
our optimized bootstrapping procedure.

Lemma 8. For any ciphertext c ∈ {0, 1}d described in our bootstrapping pro-
cedure, the noise in the refreshed ciphertext C∗ R←−Bootstrapbk(c) has indepen-
dent subgaussian entries with parameter O(s

√
n�dtq), except with probability

2−Ω((n+r)ldt) over the random choice of bk and Bootstrap.

Proof. Since the parenthesized part before the additions in Eq. (1) can be bro-
ken down into a sequence of O(dt) homomorphic multiplications, Corollary 2 and
Lemma 1 tell us that the term has subgaussian noise with parameter O(s

√
Ndt),

except with probability 2−Ω(Ndt). From the Pythagorean additivity of subgaus-
sian random variables and N = (n + r) · �, the noise in C∗ are subgaussian with
parameter O(s

√

(n + r)�dtq), and so O(s
√

n�dtq) by the fact n > r.

From the above lemma, we can see that our procedure refreshes ciphertexts
with error growth by the O(

√
nldtq) factor. Our scheme can evaluate its aug-

mented decryption circuit by choosing a larger modulus than the final noise, and
thus be pure FHE by the Gentry’s bootstrapping theorem (Theorem 2) and the
circular security assumption.

Theorem 3. Our optimized bootstrapping scheme can be correct and secure
assuming

– the quantum worst-case hardness of approximating GapSVPÕ(n1.5λ) and
SIVPÕ(n1.5λ),

– or the classical worst-case hardness of approximating GapSVPÕ(n2λ)

on any n dimensional lattice.

Proof. By Lemma 1, to rely on the quantum worst-case hardness, we choose s =
Θ(

√
n). From Lemma 8, for correctness we only have to select Q = Ω̃(nλ log Q),

which satisfies Q = Õ(nλ). Since the LWE inverse error rate is 1/α = Q/s =
Õ(

√
nλ), the security of our bootstrapping scheme is reduced to GapSVPÕ(n1.5λ)

and SIVPÕ(n1.5λ).
In the case of reducing to the classical hardness of the lattice problem, since

1/α = Ω̃(λ
√

n log Q) and we must take Q ≈ 2n/2, the LWE inverse error rate
satisfies 1/α = Ω̃(λ · n). Therefore, the security of our optimized bootstrapping
scheme is reduced to the classical hardness of GapSVPÕ(n2λ).

714 R. Hiromasa et al.

Since all known algorithms that approximate GapSVP and SIVP on any n
dimensional lattices to within a poly(n)-factor run in time 2Ω(n), the 2λ hardness
requires us to choose n = Θ(λ). This makes the problems to which the security
is reduced in the quantum case have the approximation factor Õ(n2.5), which is
smaller than Õ(n3), the one of [1]’s bootstrapping scheme. In the classical case,
the LWE inverse error rate is 1/α = Ω̃(n2) and hence our approximation factor
is Õ(n3). Furthermore, by selecting a larger dimension n = λ1/ε for ε > 0 (so
at the cost of efficiency), the approximation factor can be Õ(n1.5+ε), which is
comparable to the one of [9] and so the best known factor of standard lattice-
based PKE. Consequently, our optimized bootstrapping scheme can be as secure
as any other standard lattice-based PKE without successive dimension-modulus
reduction, which is essential in all the known bootstrapping procedures [1,9]
provided recently.

Acknowledgments. We thank anonymous PKC reviewers for their helpful comments.

References

1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616,
pp. 297–314. Springer, Heidelberg (2014)

2. Barrington, D.A.M.: Bounded-Width polynomial-size branching programs recog-
nize exactly those languages in NC1. In: STOC, pp. 1–5 (1986)

3. Barak, B.: Cryptography course - Lecture Notes, COS 433. Princeton Univer-
sity, Computer Science Department (2010). http://www.cs.princeton.edu/courses/
archive/spring10/cos433

4. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: ITCS, pp. 309–325 (2012)

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106 (2011)

8. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

9. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS,
pp. 1–12 (2014)

10. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

11. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

http://www.cs.princeton.edu/courses/archive/spring10/cos433
http://www.cs.princeton.edu/courses/archive/spring10/cos433

Packing Messages and Optimizing Bootstrapping in GSW-FHE 715

12. Gentry, C.: A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford
University (2009). http://crypto.stanford.edu/craig

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

14. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

15. Gentry, C., Gorbunov, S., Halevi, S.: Graph-Induced Multilinear Maps from Lat-
tices. IACR Cryptology ePrint Archive 2014, 645 (2014)

16. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

17. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

18. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

19. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

20. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

21. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333–342 (2009)

22. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

24. Rothblum, R.: Homomorphic encryption: from private-key to public-key. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 219–234. Springer, Heidelberg (2011)

25. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

26. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In:
Eldar, Y.C., Kutyniok, G. (eds.) Compressed Sensing, Theory and Applications, ch.
5, pp. 210–268. Cambridge University Press (2012). http://www-personal.umich.
edu/romanv/papers/non-asymptotic-rmt-plain.pdf

http://crypto.stanford.edu/craig
http://www-personal.umich.edu/romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/romanv/papers/non-asymptotic-rmt-plain.pdf

Simple Lattice Trapdoor Sampling from a Broad
Class of Distributions

Vadim Lyubashevsky1(B) and Daniel Wichs2

1 Inria/ENS, Paris, France
vadim.lyubashevsky@inria.fr

2 Northeastern University, Boston, USA
wichs@ccs.neu.edu

Abstract. At the center of many lattice-based constructions is an algo-
rithm that samples a short vector s, satisfying [A|AR−HG]s = t mod q
where A,AR,H,G are public matrices and R is a trapdoor. Although
the algorithm crucially relies on the knowledge of the trapdoor R to
perform this sampling efficiently, the distribution it outputs should be
independent of R given the public values. We present a new, simple algo-
rithm for performing this task. The main novelty of our sampler is that
the distribution of s does not need to be Gaussian, whereas all previous
works crucially used the properties of the Gaussian distribution to pro-
duce such an s. The advantage of using a non-Gaussian distribution is
that we are able to avoid the high-precision arithmetic that is inherent in
Gaussian sampling over arbitrary lattices. So while the norm of our out-
put vector s is on the order of

√
n to n - times larger (the representation

length, though, is only a constant factor larger) than in the samplers of
Gentry, Peikert, Vaikuntanathan (STOC 2008) and Micciancio, Peikert
(EUROCRYPT 2012), the sampling itself can be done very efficiently.
This provides a useful time/output trade-off for devices with constrained
computing power. In addition, we believe that the conceptual simplicity
and generality of our algorithm may lead to it finding other applications.

1 Introduction

At the core of many lattice-based cryptosystems is the many-to-one one-way
function fA(s) = As mod q, where A ∈ Z

m×n
q is a random (short & fat) matrix

and s ∈ Z
m
q is a “short” vector. The works of [Ajt96,Ajt99] showed that this

function is one-way under a worst-case lattice assumption, and moreover, that
there is a way to sample a random A along with a trapdoor that allows one
to invert the function fA. However, since the function fA is many-to-one, the
choice of which pre-image we sample might depend on which trapdoor for A
we use. Not leaking information about the trapdoor, which is used as a secret
key in cryptographic schemes, is essential for security – both “provable” and
actual. Some early lattice schemes, such as GGH [GGH97] and NTRU [HHGP03]

V. Lyubashevsky—Partially supported by the French ANR-13-JS02-0003 “CLE”
Project
D. Wichs—Supported by NSF grants 1347350, 1314722, 1413964.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 716–730, 2015.
DOI: 10.1007/978-3-662-46447-2 32

Simple Lattice Trapdoor Sampling from a Broad Class of Distributions 717

signatures, did not have security proofs, and it was subsequently shown that
obtaining a small amount of signature samples was enough to completely recover
the secret key [NR09].

The first algorithm which was able to sample pre-images of fA without leak-
ing any information about the trapdoor was devised in the breakthrough work
of Gentry, Peikert, and Vaikuntanathan [GPV08]. It was able to output such
a pre-image s according to a discrete Gaussian distribution using a short basis
of the lattice L⊥

q (A) := {v ∈ Z
m : Av = 0 mod q} as a trapdoor. Following

the intuition of the two-sided sampler of Agrawal, Boneh, and Boyen [ABB10],
Micciancio and Peikert introduced a sampling procedure that did not explicitly
require a short basis of the underlying lattice [MP12]. In particular, instead of
sampling a uniformly random matrix, they sampled a statistically close matrix
A′ = [A|AR − HG], where A is a uniformly random (short & fat) matrix over
Zq, R is a matrix with small coefficients, H is any matrix invertible over Zq, and
G is a special (publicly-known) matrix that allows one to easily compute a small
vector x satisfying Gx = t mod q for any t ∈ Z

n
q . We think of A,AR,G,H as

publicly known and think of R as a secret trapdoor. They showed how to sample
a short pre-image s = (s1, s2) given some target t so as to satisfy:

fA′(s) = A′s = [A|AR − HG]s = As1 + (AR − HG)s2 = t mod q. (1)

Furthermore, they ensure that the distribution of s does not depend on the
trapdoor R.

The intuition for how the Micciancio-Peikert sampler produces short vectors
while hiding the exact value of R is as follows. If we define A′ = [A|AR−HG]

and R′ =
[
R
−I

]

, then A′R′ = HG. To sample an s such that A′s = t mod q, one

first samples a vector w from a particular distribution, then samples a discrete
Gaussian vector z satisfying Gz = H−1(t − A′w) mod q, and finally outputs
s = w + R′z. One can check that A′s = A′w + A′R′z = t − HGz = t mod
q. The main part of [MP12] consisted of proving that the distribution of s is
independent of R. If z is a discrete Gaussian with a large-enough standard
deviation, then the distribution of R′z is also a discrete Gaussian with covariance
matrix approximately R′R′T . Then, if the distribution of w was also a discrete
Gaussian with covariance matrix s2I − R′R′T , the covariance matrix of the
distribution of s = w + R′z is very close to the sum of the covariance matrices
[Pei10], which is s2I, and is therefore independent of R.1

Both the GPV and the Micciancio-Peikert samplers strongly rely on the
Gaussian nature of the output distribution. The GPV algorithm samples vectors
along the Gram-Schmidt decomposition of the trapdoor, which ends up being
Gaussian due to the rotational invariance of the Gaussian distribution. Similarly,
the Micciancio-Peikert sampler crucially relies on the convolution theorem for
1 The matrix H does not in any way help in the inversion procedure. It is present only

because it is very useful in constructions of various schemes such as CCA-secure
encryption, digital signatures, and identity-based encryption schemes (we refer the
reader to [MP12] for more details).

718 V. Lyubashevsky and D. Wichs

Gaussian distributions, which is also an implicit consequence of the rotational
invariance.

1.1 Our Result

Our main result is another sampler (which is very much inspired by the works
of [ABB10] and [MP12]) that outputs an s satisfying Equation (1) that does not
inherently rely on the special properties of any distribution. For example, it is able
to output an s = (s1, s2) where both s1 and s2 come from (different) uniform dis-
tributions, or the distribution of s2 could be uniform while s1 is a discrete Gaus-
sian. The algorithm is also conceptually very simple. To sample an s, we rewrite
As1 +(AR−HG)s2 = t mod q as Gs2 = H−1(A(s1 +Rs2)− t) mod q. We first
pick the variable y corresponding to s1 + Rs2 according to some distribution Py.
Once this y is fixed, the value of s2 is deterministically determined via the equa-
tion Gs2 = H−1(Ay − t) mod q according to some rule – for example, if G is the
“powers-of-2” matrix (see (4) in Section 3.2), then s2 is just a concatenation of
the binary decompositions of each coefficient of H−1(Ay − t) mod q.2 Once s2 is
chosen, the value of s1 is uniquely determined to be s1 = y − Rs2. At this point,
outputting s = (s1, s2) would leak R, and we need to use rejection sampling to
break the dependency. The idea is similar to that in [Lyu09,Lyu12], except that in
our casey and s2 are dependent on each other (in particular, the only entropy in the
whole algorithm is in y and in the coins that are eventually used for the rejection
sampling) and one needs a more careful argument to show that the distribution of
(s1, s2) can have a distribution that is independent of R.

The main advantage of our sampler lies in its conceptual simplicity and the
generality of its output distribution. A hidden cost of discrete Gaussian sam-
pling over arbitrary lattices is that it requires the storage of, and computation
with, vectors of real numbers (for example, the Gram-Schmidt orthogonalization
in [GPV08] or the square root of the covariance matrix in [Pei10,MP12]) with
precision of at least the security parameter. This could pose a serious implemen-
tation obstacle on devices in which storage space and/or computational power
are at a premium.3 Using our new sampling algorithm, on the other hand, we
can choose the distributions for s1 and s2 to be uniform, and then one only
needs to perform uniform sampling over Zq and the rejection sampling part of
the algorithm simply involves checking whether all the coefficients are in a par-
ticular interval (see the first example in Section 3.2). If a little more processing
power or storage capacity is available, we can change the distribution of s1 to
a discrete Gaussian over Z

m, which will make the outputs slightly shorter but
will require some additional resources for doing discrete Gaussian sampling over
2 One could choose s2 according to some (non-deterministic) distribution instead, but

we do not at present see any reason to do so.
3 It should be pointed out that the signature schemes of [Pei10,MP12] can do a lot of

the necessary high-precision computations “offline” before receiving the message to
be signed. In such an ”online/offline” model, this can save on the computation time
during the online phase, but the storage space still remains an issue.

Simple Lattice Trapdoor Sampling from a Broad Class of Distributions 719

Z
m (cf. [DDLL13,DG14,PDG14]) and for the rejection sampling step (see the

second example in Section 3.1).
The main disadvantage of our sampler is that the norm of the produced vector

s1, and therefore the norm of the entire vector s = (s1, s2) of our algorithm, is
larger by at least a

√
n factor than of the ones produced by the samplers of

[GPV08,MP12] (see the examples in Section 3.2). In practice, having the norms
of the outputs be larger by a factor of O(

√
n) results in the bit-length of the

output s to increase by a factor of 2 or 3 (e.g. compare [GLP12] to [DDLL13]).
Therefore we believe that our sampler provides a time vs. size trade-off that is
most useful in instances where Gaussian sampling over arbitrary lattices is either
not possible or prohibitively expensive.

2 Preliminaries

Let X,Y be distributions or random variables with support S. We define their
statistical distance by SD(X,Y) = 1

2

∑

s∈S |Pr[X = s] − Pr[Y = s]|. We write
X ≈ε Y and say that X and Y are ε-statistically close to denote that SD(X,Y)
≤ ε. For a random variable X, we define the min-entropy of X as H∞(X) :=
− log(maxx Pr[X = x]).

Lemma 2.1 (Leftover Hash Lemma). [HILL99,NZ96] Let H = {h : D →
R} be a universal hash function family, meaning that for all x �= y ∈ D we have
Prh←H[h(x) = h(y)] ≤ 1/|R|. Let X be any random variable with support D and
min-entropy H∞(X) ≥ log(|R|) + 2 log(1/ε). Then (h, h(x)) is ε-statistically
close to (h, r) where h

$← H, x
$← X and r

$← R.
In particular, for a prime q, setting D = Z

m
q , R = Z

n
q and H = {hA(x) :=

Ax | A ∈ Z
n×m
q }, for any distribution x over Z

m
q having entropy H∞(x) ≥

n log(q)+2 log(1/ε) we have (A,Ax) is ε-statistically close to (A, r) where A $←
Z

n×m
q and r $← Z

n
q .

Lemma 2.2. [Lyu12, Lemma 4.7]
Let f, g be probability distributions with the property that

∃M ∈ R
+ such that, Pr

z
$←f

[Mg(z) ≥ f(z)] ≥ 1 − ε

then the distribution of the output of the following algorithm A:

1: z
$← g

2: output z with probability min
(

f(z)
Mg(z) , 1

)

is within statistical distance ε/M of the distribution of the following algorithm
F :
1: z

$← f
2: output z with probability 1/M

Moreover, the probability that A outputs something is at least (1 − ε)/M .

720 V. Lyubashevsky and D. Wichs

Ideal Distribution

1: Generate s2
$← P2

2: Generate s1
$← P1|As1 = t + (HG − AR)s2 mod q

3: Output s = (s1, s2)

Real Distribution

1: Generate y
$← Py

2: Compute s2 ← G−1
(
H−1(Ay − t) mod q

)

3: Compute s1 ← y − Rs2
4: Output s = (s1, s2) with probability P1(s1)

M·Py(s1+Rs2)

5: If nothing was output, GOTO 1.

Fig. 1. Ideal and Real Distributions

3 The Sampling Algorithm

Given matrices A ∈ Z
n×m
q , R ∈ Z

m×l
q , G ∈ Z

n×l
q , H ∈ Z

n×n
q and a target

t ∈ Z
n
q , we would like to output a short vector s = (s1, s2) that satisfies

[A|AR − HG]s = As1 + (AR − HG)s2 = t mod q (2)

and furthermore, the distribution of s is independent of R given the “public”
values A,AR,H,G. In other words, if we think of R as a trapdoor needed to
perform the sampling, we want to ensure that the sample s should not reveal
anything about the trapdoor R.

We present a general framework for performing such sampling with many
different choices on the distribution of s1, s2. The framework is defined in terms
of three component distributions that we call P1, P2 and Py. Using these three
distributions, we compare between an efficiently sampleable distribution which
uses R and which we call the “real distribution”, and an “ideal distribution”
which is not efficiently sampleable but does not use R. We present the ideal
and real distributions in Figure 1. The ideal distribution directly samples s2
from the desired distribution P2, and then samples s1 from some distribution
P1 conditioned on the fact that Equation (2) should be satisfied. Clearly, since
R is never used in the sampling procedure of the ideal distribution, it does not
depend on R, but only on the publicly-available information.

The real distribution that our sampling algorithm samples from, first gener-
ates a y from an intermediate distribution Py. This y will now deterministically
determine both s2 and s1. To compute s2, we first compute H−1(Ay−t) mod q ∈
Z

n
q , and then find an s2 in the support of P2 such that Gs2 = H−1(Ay−t) mod q.

By our choice of G, this value of s2 will be unique and easily computable, and we

Simple Lattice Trapdoor Sampling from a Broad Class of Distributions 721

denote it by s2 = G−1(H−1(Ay−t) mod q).4 We then compute s1 as y−Rs2. At
this point, the distribution of (s1, s2) is not as in the ideal distribution. To correct
the discrepancy, we use rejection sampling, and output (s1, s2) with probability

P1(s1)
M ·Py(s1+Rs2)

where M is some positive real (if this fraction is greater than 1,
we define the probability to be 1).

In Section 3.1, we state the relationships between the matrices and the distri-
butions that are required for our sampling algorithm to produce a distribution
statistically close to the ideal distribution. Then in Section 3.2, we give two illus-
trative examples of instantiations over general lattices and polynomial rings.

3.1 Requirements and Security Proof

Theorem 3.1. Consider matrices A ∈ Z
n×m
q , R ∈ Z

m×l
q , G ∈ Z

n×l
q , and

H ∈ Z
n×n
q , and distributions P1, P2, Py over Z

m, Zl, and Z
m respectively, such

that the following four conditions are satisfied:

1. For the two distributions s $← P1 and s $← Py, the statistical distance between
As mod q and the uniform distribution over Z

n
q is at most 2−(n log q+λ).

2. H is invertible modulo q.
3. The function G mapping the support of P2 to Z

n
q , defined by G(s) = Gs, is

1-to-1 and onto and is efficiently invertible via a function G−1. Furthermore,
P2 is uniformly random over its support.

4. Pr
(x1,x2)

$←IdealDistribution

[
P1(x1)

Py(x1+Rx2)
≤ M

]

≥ 1 − 2−λ for some positive
M ≥ 1.

then the outputs of the ideal distribution and the real distribution are ε-close for
ε = λ · (2M + 1) · 2−λ, whenever λ > 4. Furthermore, the expected number of
iterations of the sampling algorithm is ≈ M .

Proof. We first describe an intermediate distribution, which we will call the
hybrid distribution defined as follows.

Hybrid Distribution without Rejection:
Generate s2

$← P2

Generate y $← Py|(Ay = t + HGs2 mod q)
Compute s1 ← y − Rs2
Output s = (s1, s2)

We also define a “Hybrid Distribution with Rejection” which first samples
(s1, s2) from the above-described Hybrid Distribution and then outputs it with
probability P1(s1)

M ·Py(s1+Rs2)
, else tries again.

4 This is an abuse of notation since G−1 is not a matrix but rather a deterministic
function satisfying G · G−1(z) = z.

722 V. Lyubashevsky and D. Wichs

Lemma 3.2. Let f be the probability density function of the Ideal Distribution
and g be the probability density function of the Hybrid Distribution (without
rejection). Then

f(x1,x2)
g(x1,x2)

=
P1(x1)

Py(x1 + Rx2)
(1 + δ) for some δ : − 2 · 2−λ ≤ δ ≤ 3 · 2−λ

In particular, for λ > 4, this means that the Ideal Distribution is λ(M+1)2−λ

close to the Hybrid Distribution with Rejection.

Proof.

f(x1,x2)
g(x1,x2)

=

Pr
s2

$←P2

[s2 = x2] · Pr
s1

$←P1

[s1 = x1|As1 = t + (HG − AR)x2 mod q]

Pr
s2

$←P2

[s2 = x2] · Pr
y

$←Py

[y = x1 + Rx2|Ay = t + HGx2 mod q]

=

Pr
s1

$←P1

[s1 = x1] · Pr
y

$←Py

[Ay = t + HGx2 mod q]

Pr
y

$←Py

[y = x1 + Rx2] · Pr
s1

$←P1

[As1 = t + (HG − AR)x2 mod q]

=
P1(x1)

Py(x1 + Rx2)
·

Pr
y

$←Py

[Ay = t + HGx2 mod q]

Pr
s1

$←P1

[As1 = t + (HG − AR)x2 mod q]

=
P1(x1)

Py(x1 + Rx2)
· q−n + δ1
q−n + δy

where − q−n2−λ ≤ δ1, δy ≤ q−n2−λ

(3)

=
P1(x1)

Py(x1 + Rx2)
(1 + δ) where − 2 · 2−λ ≤ δ ≤ 3 · 2−λ

Line 3 follows from the requirement of Theorem 3.1 that the distributions of
Ay mod q and As1 mod q are q−n2−λ-close to uniformly random over Zn

q when

y $← Py and s1
$← P1. This proves the first part of the lemma.

For the second part of the lemma, we define one more hybrid distribution,
that we call the “Hybrid Distribution with Ideal Rejection”. It is the same as
the “Hybrid Distribution with Rejection”, but we set the rejection probability
to γideal = min

(
f(s1,s2)

M(1+δ+)g(s1,s2)
, 1

)

for δ+ = 3 · 2−λ. This is instead of the

rejection probability γreal = min
(

P1(s1)
MPy(s1+Rs2)

, 1
)

used in the original “Hybrid
Distribution with Rejection” (in real life, we don’t know γideal exactly, and
therefore are forced to use γreal as an approximation). Note that by the first part
of the lemma, γideal = min

(
(1+δ)P1(s1)

M(1+δ+)Py(s1+Rs2)
, 1

)

for some δ ∈ [−2·2−λ, δ+] and

therefore |γreal−γideal| ≤ 5(2−λ). Furthermore, in the “Hybrid Distribution with
Ideal Rejection”, the rejection sampling step only occurs at most λM times with

probability 1 −
(

1 − 1
(1+δ+)M

)λM

≥ 1 − 2−λ. Therefore, the statistical distance

Simple Lattice Trapdoor Sampling from a Broad Class of Distributions 723

between the “Hybrid Distribution with Rejection” and the “Hybrid Distribution
with Ideal Rejection” is at most λM · 2−λ.

Next, we show that the “Hybrid Distribution with Ideal Rejection” is λ ·2−λ-
statistically close to the ideal distribution. This relies on the rejection sampling
lemma (Lemma 2.2). We note that by requirement (4) of the theorem: we have
for δ+ = 3 · 2−λ:

Pr
(s1,s2)

$←f

[M(1 + δ+)g(s1, s2) ≥ f(s1, s2)] = Pr
(s1,s2)

$←f

[
f(s1, s2)
g(s1, s2)

≤ M(1 + δ+)
]

≥ Pr
(s1,s2)

$←f

[
P1(s1)

Py(s1 + Rs2)
≤ M

]

≥1 − 2−λ

Therefore, by the “rejection sampling lemma” (Lemma 2.2), each iteration of the
“Hybrid Distribution with Ideal Rejection” outputs something which is 2−λ/M
statistically close to outputting a sample from the ideal distribution with prob-
ability 1

M(1+δ+) . Furthermore, the rejection sampling step only occurs at most

λM times with probability 1 −
(

1 − 1
(1+δ+)M

)λM

≥ 1 − 2−λ. Therefore, the
statistical distance between the “Hybrid Distribution with Ideal Rejection” and
the “Ideal Distribution” is at most λ · 2−λ.

Combining the above, the statistical distance between the “Hybrid Distribu-
tion with Rejection” and the “Ideal Distribution” is at most λM ·2−λ +λ ·2−λ =
λ(M + 1)2−λ as claimed. ��

Now we introduce another distribution that we call the “Real Distribution
without Rejection” which matches the real distribution without the rejection
sampling step:

Real Distribution without Rejection:
Generate y $← Py

Compute s2 ← G−1
(

H−1(Ay − t) mod q
)

Compute s1 ← y − Rs2.
Output (s1, s2).

Lemma 3.3. The statistical distance between the “Real Distribution without
Rejection” and the “Hybrid Distribution without Rejection” is at most 2−λ. In
particular, this also means that the statistical distance between the “Real Distri-
bution with Rejection” and the “Hybrid Distribution with Rejection” is at most
λM · 2−λ.

Proof. Let us define a randomized function f(u) which gets as input u ∈ Z
n
q

and does the following:

724 V. Lyubashevsky and D. Wichs

Sample: s2
$← P2|t + HGs2 = u mod q.

Sample: y $← Py|Ay = u mod q.
Compute: s1 ← y − Rs2.
Output: (s1, s2).

It is easy to see that, when u $← Z
n
q , then f(u) is equivalent to the “Hybrid

Distribution”. This is because the distribution of t + HGs2 mod q for s2 ← P2

is indeed uniformly random (due to requirements (2) and (3) of Theorem 3.1).
On the other hand, if we instead sample u by choosing y′ $← Py and set-

ting u := Ay′ mod q then f(u) is equivalent to the “Real Distribution without
Rejection”.

Therefore, the statistical distance between the hybrid and real distribu-
tions without rejection sampling is the statistical distance between Ay′ mod q

: y′ $← Py and the uniform distribution over Z
n
q . By definition, this is at most

2−(n log q+λ) ≤ 2−λ.
The distributions with rejection sampling just depend on at most λM copies

of the corresponding distributions without rejection sampling with overwhelming
probability 1 − 2−λ (using the same argument as in the previous lemma) and
therefore we can use the hybrid argument to argue that the statistical distance
between them is at most λM · 2−λ. ��

Combining the above lemmas, proves the theorem. ��

3.2 Two examples

We will now give two examples of matrices and distributions that satisfy the
requirements of Theorem 3.1. Even though the examples are specific in the
choices of parameters, we believe that they illustrate the techniques needed to
apply our algorithm in other scenarios.

In both examples, we will let q be some prime5, set m = l = n
log q�, and
define G as the matrix

G =

⎡

⎢
⎢
⎣

1 2 4 . . . 2�log q	

1 2 4 . . . 2�log q	

. . .
1 2 4 . . . 2�log q	

⎤

⎥
⎥
⎦

(4)

Notice that with this G, for every element t ∈ Z
n with coefficients between

0 and q − 1 there is a unique vector s2 ∈ {0, 1}m such that Gs2 = t (without
reduction modulo q). We denote this vector by s2 = G−1(t), but note that this
5 The requirement that q is prime only comes from the use of the leftover hash-lemma,

and it can be relaxed. For example, it suffices that the smallest prime divisor of q
is at least as large as 2‖s‖∞. Alternatively, if q is a product of primes and s has
high entropy modulo each of the primes, then we can use the leftover-hash lemma
for each prime divisor separately. For simplicity, we only mention these relaxations
in passing and concentrate on the case when q is prime in what follows.

Simple Lattice Trapdoor Sampling from a Broad Class of Distributions 725

is an abuse of notation as the matrix G is not actually an invertible matrix. The
distribution P2 in our examples will simply be the distribution of s2 = G−1(t)
for a uniformly random t ∈ Z

n having coefficients between 0 and q − 1. Such a
choice of G and P2 satisfy requirement (3) of the theorem.

We will choose our matrix A at random from Z
n×m
q and the distributions

P1, Py to have min-entropy at least 3n log q + 4λ.6 This ensures that, by the
Leftover Hash Lemma (Lemma 2.1), the statistical distance between (A,A ·
s mod q) and (A, r) where s $← P1 (resp. Py) and r $← Z

n
q , is bounded by

2−(n log q+2λ). Let’s say that a fixed matrix A is “good for P1” (resp. “good for
Py”) if the statistical distance between As and r is at most ε = 2−n log q+λ when
s $← P1 (resp. s $← Py). Then, by Markov’s inequality, the probability that a
random A is good for P1 (resp. good for Py) is at least 1 − 2−λ. Let’s say that
A is “good” if it is good for both P1 and Py. By the union bound, a random
A is good with probability at least 1 − 2 · 2−λ. Therefore if the distributions
P1, Py have min-entropy at least 3n log q + 4λ, requirement (1) of the theorem
is satisfied with probability at least 1 − 2 · 2−λ.

In both examples, we will take the matrix R to be uniformly random from
{−1, 0, 1}m×m. The important property we will need from R is that the norm
of Rs2 is not too large.

By the Chernoff bound, we obtain that for any s2 ∈ {0, 1}m, there exists a
k∞ = Θ

(√
λm

)

such that

Pr
R

$←{−1,0,1}m×m

[‖Rs2‖∞ ≤ k∞] ≥ 1 − 2−2λ. (5)

For the distribution P2 over {0, 1}m, we say that a fixed matrix R is �∞-good if
Pr

s2
$←P2

[‖Rs2‖∞ > k∞] ≤ 2−λ. By the above equation we have

Pr
s2

$←P2,R
$←{−1,0,1}m×m

[‖Rs2‖∞ > k∞] ≤ 2−2λ

and therefore by Markov inequality, a random R is �∞-good with probability
1 − 2−λ.

We can also establish a bound on the �2 norm of Rs2. By [Ver10, Theorem
5.39], for all s2 ∈ {0, 1}m, there exists a k2 = Θ(m +

√
λm) = Θ(m) such that

Pr
R

$←{−1,0,1}m×m

[‖Rs2‖ ≤ k2] ≥ 1 − 2−2λ. (6)

For the distribution P2 over {0, 1}m, we say that a fixed matrix R is �2-good if
Pr

s2
$←P2

[‖Rs2‖ > k2] ≤ 2−λ. By the same reasoning as above, a random R is

�2-good with probability 1 − 2−λ.
6 This entropy lower bound is not really a restriction on the distributions P1 and Py.

The distributions that we will need to pick to satisfy property (4) of the theorem
will easily meet this bound.

726 V. Lyubashevsky and D. Wichs

We now proceed to show how to pick the distributions P1 and Py to satisfy
the requirement (4) of the theorem. We will assume that the randomly-chosen A
and R are good for these distributions (as defined above), which happens with
overwhelming probability 1 − 4 · 2−λ. In our first example, both P1 and Py will
be uniform distributions in some cube. The advantage of such distributions is
that they are particularly easy to sample. Our second example will have both
of these distributions be discrete Gaussians over Z

m. The advantage of using
discrete Gaussians rather than the uniform distribution is that the norm of
s1 will end up being smaller. The disadvantage is that sampling the discrete
Gaussian distribution over Z

m is a more involved procedure than sampling the
uniform distribution over Zq. Still, sampling a discrete Gaussian over Z

m is
more efficient and requires less precision than sampling such a distribution over
an arbitrary lattice.

Example for P1 and Py Being Uniform in an m-dimensional Inte-
ger Cube. We define the distribution P1 (respectively Py) to be the uniform
distribution over all vectors x ∈ Z

m such that ‖x‖∞ ≤ mk∞ (respectively
‖x‖∞ ≤ mk∞ + k∞). And we set the constant

M =
(

2mk∞ + 2k∞ + 1
2mk∞ + 1

)m

≈ e. (7)

We will now show that the above choices satisfy the necessary requirements
of Theorem 3.1. First, we will lower-bound the entropies of P1 and Py.

H∞(Py) > H∞(P1) = − log
(

1
(2mk∞ + 1)m

)

> m log m > n log n log q > 3n log q + 4λ,

and so the first requirement of the theorem is satisfied.
We will conclude by showing that requirement (4) of the theorem is also

satisfied. First, it’s easy to see that for any x1 output by the ideal distribu-
tion, P1(x1) = 1

(2mk∞+1)m . Additionally, for any x1 in the support of P1, if
‖Rx2‖∞ ≤ k∞, then x1 + Rx2 is in the support of P2, and so Py(x1 + Rx2) =

1
(2mk∞+2k∞+1)m . Therefore if ‖Rx2‖∞ ≤ k∞, we have

P1(x1)
Py(x1 + Rx2)

=
(

2mk∞ + 2k∞ + 1
2mk∞ + 1

)m

<

(

1 +
1
m

)m

< e, (8)

and so if we let f be the ideal distribution, then

Pr
(x1,x2)

$←f

[
P1(x1)

Py(x1 + Rx2)
≤ M

]

≥ Pr
(x1,x2)

$←f

[‖Rx2‖∞ ≤ k∞] ≥ 1 − 2−λ,

where the last inequality follows by our choice of k∞.
Note that since s1 is chosen to have coordinates of size mk∞ = Θ(m1.5

√
λ),

we have ‖s‖ ≈ ‖s1‖ = Θ(m2
√

λ). We also point out that the rejection sampling

Simple Lattice Trapdoor Sampling from a Broad Class of Distributions 727

part of our sampler in Figure 1 is actually very simple and one does not in
fact need to compute any probability distributions or even the value of M in
equation (7) – simply looking at the infinity norm of s1 is enough. If s1 (in line
3) is outside the support of P1 (i.e. ‖s1‖∞ > mk∞), then P1(s1) = 0 and we
always reject. On the other hand, if ‖s1‖∞ ≤ mk∞, then P1(x1)

MPy(x1+Rx2)
= 1 (by

(7) and (8)), and we always accept.

Example for P1 and Py Being Discrete Gaussians Over Z
m. The discrete

Gaussian distribution with standard deviation σ over Z
m is defined as

Dm
σ (x) =

e−‖x‖2/2σ2

∑

v∈Zm

e−‖v‖2/2σ2 .

In this example, we will define both P1 and Py to be distributions Dm
σ for

σ = 2k2
√

λ, and we set the constant M = e1+1/8λ. We will first lower-bound the
min-entropy of P1. Notice that the heaviest element of the distribution is 0, and
from the proof of [Lyu12, Lemma 4.4], we have

∑

v∈Zm

e−‖v‖2/2σ2
> (

√
2πσ −1)m.

Thus,

H∞(P1) = − log (Dm
σ (0)) = − log

⎛

⎜
⎝

1
∑

v∈Zm

e−‖v‖2/2σ2

⎞

⎟
⎠ > m log σ > 3n log q+4λ.

We will now move on to prove that requirement (4) of Theorem 3.1 is also
satisfied. First, we write

P1(x1)
Py(x1 + Rx2)

=
e−‖x1‖2/2σ2

e−‖x1+Rx2‖2/2σ2 = e(2〈x1,Rx2〉+‖Rx2‖2)/2σ2 ≤ e
〈x1,Rx2〉

σ2 +1/8λ,

where the last inequality follows from our assumption that the random R satisfies
the condition in Equation (6).

We now would like to upper-bound the above quantity when x1,x2 are dis-
tributed according to the ideal distribution. If we let t′ = t + (HG − AR)x2,
then the probability that the absolute value of the dot product 〈x1,Rx2〉 is less
than some arbitrary positive real r is

Pr
x1

$←P1

[|〈x1,Rx2〉| ≤ r|Ax1 = t′]

=

Pr
x1

$←P1

[Ax1 = t′ | |〈x1,Rx2〉| ≤ r] · Pr
x1

$←P1

[|〈x1,Rx2〉| ≤ r]

Pr
x1

$←P1

[Ax1 = t′]

728 V. Lyubashevsky and D. Wichs

By [Lyu12, Lemma 4.3], we have that for r = 2k2σ
√

λ,

Pr
x1

$←P1

[|〈x1,Rx2〉| ≤ r] > 1 − 2−λ.

Furthermore,

H∞(P1 | |〈x1,Rx2〉| ≤ r) ≥ H∞(P1) − log(1 − 2−λ)
> H∞(P1) − 1
> m log σ

> 3n log q + 4λ,

which allows us to apply the Leftover Hash Lemma (Lemma 2.1) to conclude
that

Pr
x1

$←P1

[|〈x1,Rx2〉| ≤ r|Ax1 = t′] ≥ q−n − δ1
q−n + δ1

· (1 − 2−λ) ≥ (1 − δ)(1 − 2−λ)

where δ1 ≤ q−n2−λ and δ < 3 · 2−λ. If we let f be the ideal distribution, then
putting everything together, we obtain that

Pr
(x1,x2)

$←f

[
P1(x1)

Py(x1 + Rx2)
≤ e1+1/8λ

]

≥ Pr
(x1,x2)

$←f

[
2〈x1,Rx2〉 + ‖Rx2‖2

2σ2
≤ 1 + 1/8λ

]

= Pr
x1

$←P1

[|〈x1,Rx2〉| ≤ 2k2σ
√

λ|Ax1 = t′]

≥ (1 − 3 · 2−λ) · (1 − λ) > 1 − 4 · 2−λ.

Since s1 is chosen from Dm
σ for σ = 2k

√
λ = Θ(m

√
λ), the norm of s1 is

tightly concentrated around Θ(m1.5
√

λ) [Ban93]. Therefore choosing the distri-
bution P1 to be a discrete Gaussian rather than uniform (as in the previous
example), allowed us to keep the distribution P2 of s2 exactly the same, while
reducing the expected length of the vector s1.

Sampling over polynomial rings. Just like the sampler of [MP12], ours also
naturally extends to sampling vectors over polynomial rings R = Z[x]/(f(x)),
where f(x) is a monic polynomial with integer coefficients. This allows the sam-
pler to be used in constructions of more efficient lattice primitives based on the
hardness of Ring-SIS [PR06,LM06] and Ring-LWE [LPR13a].

For sampling over polynomial rings, one can keep all the notation exactly
the same, simply taking care that all additions and multiplications that were
done over the rings Z and Zq are now done over the rings Z[x]/(f(x)) and
Zq[x]/(f(x)). The only thing to be careful about is the application of the left-
over hash lemma for satisfying part (1) of Theorem 3.1. If the ring is a field

Simple Lattice Trapdoor Sampling from a Broad Class of Distributions 729

(i.e. f(x) is irreducible over Zq), then everything is very simple because the func-
tion mapping s to As is still universal. If, on the other hand, f(x) does split,
then the function becomes an almost universal hash function whose universality
may degrade with the number of terms into which f(x) splits. In particular, if
f(x) splits into many terms, then it may in fact be impossible to reach the neces-
sary statistical distance for satisfying condition (1), and one will instead need to
use different distributions and leftover hash lemmas, (cf. [Mic07, Theorem 4.2],
[SS11, Theorem 2], [LPR13b, Theorem 7.4]).

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the stan-
dard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 553–572. Springer, Heidelberg (2010)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: STOC, pp. 99–108 (1996)

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In:
Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, p. 1. Springer, Heidelberg (1999)

[Ban93] Banaszczyk, W.: New bounds in some transference theorems in the geom-
etry of numbers. Mathematische Annalen 296, 625–635 (1993)

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures
and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

[DG14] Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete gaussians for
lattice-based cryptography on a constrained device. Appl. Algebra Eng.
Commun. Comput. 25(3), 159–180 (2014)

[GGH97] Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key cryptosystems from
lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 112–131. Springer, Heidelberg (1997)

[GLP12] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based
cryptography: a signature scheme for embedded systems. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer,
Heidelberg (2012)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

[HHGP03] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte,
W.: NTRUSIGN: digital signatures using the NTRU lattice. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg
(2003)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gener-
ator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

[LM06] Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are col-
lision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg
(2006)

[LPR13a] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learn-
ing with errors over rings. J. ACM 60(6), 43 (2013). Preliminary version
appeared in EUROCRYPT 2010

730 V. Lyubashevsky and D. Wichs

[LPR13b] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for Ring-LWE cryptog-
raphy. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 35–54. Springer, Heidelberg (2013)

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 738–755. Springer, Heidelberg (2012)

[Mic07] Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions. Computational Complexity 16(4), 365–411 (2007)

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

[NR09] Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH
and NTRU signatures. J. Cryptology 22(2), 139–160 (2009)

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst.
Sci. 52(1), 43–52 (1996)

[PDG14] Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signa-
tures on reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 353–370. Springer, Heidelberg (2014)

[Pei10] Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg
(2010)

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)

[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems
over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

[Ver10] Vershynin, R.: Introduction to the non-asymptotic analysis of random
matrices. CoRR, abs/1011.3027 (2010)

Identity-Based, Predicate,
and Functional Encryption

Simple Functional Encryption Schemes
for Inner Products

Michel Abdalla(B), Florian Bourse, Angelo De Caro,
and David Pointcheval

ENS, CNRS, INRIA, and PSL,
45 Rue d’Ulm, 75230 Paris Cedex 05, France

{michel.abdalla,florian.bourse,angelo.decaro,
david.pointcheval}@ens.fr

Abstract. Functional encryption is a newparadigm in public-key encryp-
tion that allows users to finely control the amount of information that is
revealed by a ciphertext to a given receiver. Recent papers have focused
their attention on constructing schemes for general functionalities at
expense of efficiency. Our goal, in this paper, is to construct functional
encryption schemes for less general functionalities which are still expres-
sive enough for practical scenarios. We propose a functional encryption
scheme for the inner-product functionality, meaning that decrypting an
encrypted vectorxwith a key for a vectorywill reveal only 〈x,y〉 and noth-
ing else, whose security is based on the DDH assumption. Despite the sim-
plicity of this functionality, it is still useful in many contexts like descriptive
statistics. In addition, we generalize our approach and present a generic
scheme that can be instantiated, in addition, under the LWE assumption
and offers various trade-offs in terms of expressiveness and efficiency.

Keywords: Functional Encryption · Inner-Product · Generic Construc-
tions

1 Introduction

Functional Encryption. Whereas, in traditional public-key encryption, decryp-
tion is an all-or-nothing affair (i.e., a receiver is either able to recover the entire
message using its key, or nothing), in functional encryption (FE), it is possi-
ble to finely control the amount of information that is revealed by a cipher-
text to a given receiver. For example, decrypting an encrypted data set with
a key for computing the mean will reveal only the mean computed over the
data set and nothing else. Somewhat more precisely, in a functional encryption
scheme for functionality F , each secret key (generated by a master authority
having a master secret key) is associated with value k in some key space K;
Anyone can encrypt via the public parameters; When a ciphertext Ctx that
encrypts x, in some message space X, is decrypted using a secret key Skk for
value k, the result is F (k, x). A notable subclass of functional encryption is

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 733–751, 2015.
DOI: 10.1007/978-3-662-46447-2 33

734 M. Abdalla et al.

that of predicate encryption (PE) which are defined for functionalities whose
message space X consists of two subspaces I and M called respectively index
space and payload space. In this case, the functionality F is defined in terms of
a predicate P : K × I → {0, 1} as follows: F (k, (ind;m)) = m if P (k, ind) = 1,
and ⊥ otherwise, where k ∈ K, ind ∈ I and m ∈ M . Those schemes are also
called predicate encryption with private-index. Examples of those schemes are
Anonymous Identity-Based Encryption (AIBE) [BF01,Gen06], Hidden Vector
Encryption [BW07] and Orthogonality [KSW08,LOS+10,OT12], among the oth-
ers. On the other hand, when the index ind is easily readable from the ciphertext
those schemes are called predicate encryption with public-index (PIPE). Exam-
ples of PIPE schemes are Identity-Based Encryption (IBE) [Sha84,BF01,Coc01],
Attribute-Based Encryption (ABE) [SW05,GPSW06], Functional Encryption
for Regular Languages [Wat12].

The standard notion of security for functional encryption is that of indis-
tinguishability-based security (IND). Informally, it requires that an adversary
cannot tell apart which of two messages x0, x1 has been encrypted having oracle
access to the key generation algorithm under the constraint that, for each k for
which the adversary has seen a secret key, it holds that F (k, x0) = F (k, x1). This
models the idea that an individual’s messages are still secure even if an arbitrary
number of other users of the system collude against that user. Boneh, Sahai, and
Waters [BSW11] and O’Neill [O’N10] showed that the IND definition is weak
in the sense that a trivially insecure scheme implementing a certain functional-
ity can be proved IND-secure anyway. The authors, then, initiate the study of
simulation-based (SIM) notions of security for FE, which asks that the “view”
of the adversary can be simulated by simulator given neither ciphertexts nor
keys but only the corresponding outputs of the functionality on the underlying
plaintexts, and shows that SIM-security is not always achievable.

In a recent series of outstanding results, [GGH+13,BCP14,Wat14,GGHZ14]
proposed IND-secure FE schemes for general circuits whose security is based
either on indistinguishable obfuscation and its variants or polynomial hardness of
simple assumptions on multilinear maps. Those schemes are far from being prac-
tical and this led us to investigate the possibility of having functional encryption
schemes for functionalities of practical interest which are still expressive enough
for practical scenarios. In doing so, we seek for schemes that offer simplicity, in
terms of understanding of how the schemes work, and adaptability in terms of
the possibility of choosing the instantiations and the parameters that better fit
the constraints and needs of a specific scenario the user is interested in.

This Work. In this paper, we focus on the inner-product functionality, which has
several practical applications. For example, in descriptive statistics, the discipline
of quantitatively describing the main features of a collection of information, the
weighted mean is a useful tool. Here are a few examples:

Slugging average in baseball. A batter’s slugging average, also called slug-
ging percentage, is computed by: SLG = (1∗SI+2∗DO+3∗TR+4∗HR)/AB,
where SLG is the slugging percentage, SI is the number of singles, DO the

Simple Functional Encryption Schemes for Inner Products 735

number of doubles, TR the number of triples, HR the number of home runs,
and AB is total number of at-bats. Here, each single has a weight of 1, each
double has a weight of 2, etc. The average counts home runs four times as
important as singles, and so on. An at-bat without a hit has a weight of zero.

Course grades. A teacher might say that the test average is 60% of the grade,
quiz average is 30% of the grade, and a project is 10% of the grade. Suppose
Alice got 90 and 78 on the tests; 100, 100 and 85 on the quizzes; and an 81
on the project. Then, Alice’s test average is (90 + 78)/2 = 84, quiz average
is (100 + 100 + 85)/3 = 95, and her course grade would then be: .60 · 84 +
.30 · 95 + .10 · 81 = 87.

Our goal then is to design a simple and efficient functional encryption scheme
for inner products that can be used, for instance, to compute a weighted mean
and to protect the privacy of Alice’s grades, in the example involving course
grades. In fact, we can imagine that Alice’s grades, represented as a vector
x = (x1, . . . , x�) in some finite field, says Zp for prime p, are encrypted in a
ciphertext Ctx and the teacher has a secret key Sky for the vector of weights
y = (y1, . . . , y�). Then Alice’s course grade can be computed as the inner-product
of x and y, written as 〈x,y〉 =

∑

i∈[�] xi · yi. We would like to stress here that,
unlike the inner-product predicate schemes in [KSW08,LOS+10,OT12], our goal
is to output the actual value of the inner product.

A very simple scheme can be constructed to compute the above functionality
whose security can be based on the DDH assumption. Informally, it is like this:

mpk =
(

G, (hi = gsi)i∈[�]

)

Ctx =
(

ct0 = gr, (cti = hr
i · gxi)i∈[�]

)

Sky = 〈s,y〉 =
∑

i∈[�]

si · yi,

where msk = s = (s1, ..., s�) is the master secret key used to generate secret keys
Sky. Then, decryption is done by computing the discrete log of (

∏

i∈[�] ct
yi

i)/ctSky0 .
Please refer to Section 3 for more details.

Despite its simplicity, this DDH-based scheme can be proved secure, in a
selective security model1, against any adversary that issues an unbounded, but
polynomially related to the security parameter, number of secret key queries.
The adversary will not learn anything more than what it is implied by the linear
combination of their keys.

An astute reader could now ask what happens if an adversary possesses secret
keys Skyi

, for i ∈ [q], such that the yi’s form a basis for Z�
p. Clearly, this adversary

can then recover completely x from the ciphertext and wins the security game.
But notice that this has nothing to do with the specific implementation of the
functionality, it is something inherent to the functionality itself. This happens
also for other functionalities: Consider the case of the circuit functionality, where
1 In the selective model, the adversary is asked to commit to its challenge before seeing

the public parameters.

736 M. Abdalla et al.

secret keys correspond to Boolean circuits over � Boolean variables and one-bit
output, and ciphertexts to vectors in {0, 1}�. Then, an adversary having secret
keys for circuits Ci, where Ci extract the i-th bit of the input, can recover
completely the input from a ciphertext no matter how the scheme, supporting
this circuit functionality, is implemented. This subtle aspect will appear in the
security proof, if the adversary asks such a set of secret keys then the simulator
will not be able to answer all those queries. Notice that this is reasonable, because
it is like requiring security when the adversary possesses the master secret key.

One drawback of the above scheme is that restrictions must be put in place
in order to guarantee that the final computed value has small magnitude and the
discrete log can be computed efficiently. To overcome this limitation, let us first
describe some interesting characteristics of the above scheme. To start, please
notice that a ciphertext for a vector x consists of ElGamal ciphertexts [ElG84]
(gr, (hr

i ·gxi)i) under public keys hi = gsi , sharing the same randomness r. Then,
a secret key for a vector y consists of a linear combination of the underlying
ElGamal secrets si. Now notice that, by the ElGamal scheme’s homomorphic
properties, it holds that

∏

i∈[�]

ctyi

i =
∏

i∈[�]

hr·yi

i · gxi·yi = hr · g〈x,y〉

where h is an ElGamal public key corresponding to secret key 〈s,y〉. The above
observations point out that, by possibly combining public-key encryption
schemes secure under randomness reuse [BBS03], and having specific syntac-
tical, non-security-related, properties, we can generalize the above construction
with the aim of (1) having a scheme whose security can be based on different
assumptions and that can provide different trade-offs in terms of efficiency and
expressiveness, (2) have a generic proof of security that reduces security to that
of the underlying public-key encryption scheme. We present our generalization
in Section 4.

Related Work. One of the first example of investigation on reductions between
various primitives has been given by [Rot11] who shows a simple reduction
between any semantically secure private-key encryption scheme which possesses
a simple homomorphic, namely that the product of two ciphertexts Ct1 and
Ct2, encrypting plaintexts m1 and m2, yields a new ciphertext Ct = Ct1 · Ct2
which decrypts to m1 +m2 mod 2. Goldwasser et al. [GLW12] investigated the
construction of PIPE schemes for specific predicates. In particular, they show
how public-key encryption schemes which possess a linear homomorphic prop-
erty over their keys as well as hash proof system features with certain algebraic
structure can be used to construct an efficient identity-based encryption (IBE)
scheme that is secure against bounded collusions (BC-IBE). This weaker secu-
rity notion restricts the adversary to issue only a bounded number of secret keys
during the security game. In more details, they rely on a public-key encryption
scheme whose secret keys and public keys are elements of respective groups (with
possibly different operations, which we denote by + and ·), and there exists an

Simple Functional Encryption Schemes for Inner Products 737

homomorphism μ such that μ(sk0+sk1) = μ(sk0)·μ(sk1), where μ(sk0) and μ(sk1)
are valid public keys for which sk0 and sk1 yield correct decryption, respectively.
Then, to obtain a BC-IBE, the construction by Goldwasser et al. generates
multiple public-key/secret-key pairs (pk1, sk1), . . . , (pk�, sk�), letting the public-
parameters and the master secret key of the scheme be params = (pk1, . . . , pk�)
and msk = (sk1, . . . , sk�), respectively. Then, an efficient map φ associates every
identity ID with a vector [id1, . . . , id �], and a message m is encrypted for an
identity ID as the ciphertext Ct = Encrypt(pkID,m), where pkID =

∏n
i=1 pk

IDi
i .

Then, μ guarantees that Ct can be decrypted using skID =
∑n

i=1 IDi ·ski, since by
the homomorphism it holds that pkID = μ(skID). The map φ is subject to a com-
binatorial requirement that disallows computing skID given skID′ for t different
ID′ �= ID. Later, Tessaro and Wilson [TW14] presented generic constructions of
BC-IBE which rely on encryption schemes that solely satisfy the standard secu-
rity notion of semantic security in addition to some syntactical, non-security-
related, properties. We will use Tessaro and Wilson to present a generalization
of our results.

As already mentioned, in a recent series of outstanding results, [GGH+13,
BCP14,Wat14,GGHZ14] proposed IND-secure FE scheme for general circuits
whose security is based either on indistinguishable obfuscation and its variants
or polynomial hardness of simple assumptions on multilinear maps. Clearly, those
schemes can be used to implement the inner-product functionality, but this would
defeat our main goal which is to construct somewhat efficient functional encryp-
tion schemes for less general functionalities which are still expressive enough for
practical scenarios.

In another line of research, Katz, Sahai, and Waters [KSW08] proposed a
functional encryption scheme for a functionality called orthogonality (in the lit-
erature it is also know as inner-product encryption), meaning that decrypting
an encrypted vector x with a key for a vector y will reveal only if 〈x,y〉 is equals
to zero (meaning that the two vectors are orthogonal) or not, and nothing else.
This functionality is of little help in our case because what we need is for the
decryptor to be able to recover the value 〈x,y〉.

Parameter Sizes For Our Constructions. In Table 1, we present the size of the
parameters and ciphertexts for our concrete construction. Each column refers to
an instantiation of our general scheme and is indexed by its underlying assump-
tion. Each row describes the size of an element of the scheme. The master public
key size does not include public parameters that can be re-used such that (g,A).
Message space is the number of different messages that can be decrypted using
this instantiation. The DDH instantiation can give short ciphertexts and keys
using elliptic curves, but requires the computation of a discrete logarithm in the
decryption, which makes it usable for small message space only. LWE enables
short ciphertexts and keys together with a message space that is independent of
the security parameter, which allows shorter ciphertexts for a smaller message
space.

738 M. Abdalla et al.

Table 1. Parameter Sizes. Here, � is the length of the vectors encrypted in the cipher-
texts and encoded in the secret keys. In DDH, p is the size of a group element. In LWE,
q is the size of a group element, p is the order of the message space, and k is the size
of a message in base r.

DDH LWE

mpk � log p (k + 1)m� log q

msk � log p (k + 1)n� log q

Ctx (� + 1) log p (n + (k + 1)�) log q

Sky log p n log q

message space bounded by computation �r2(k+1)

|{〈x,y〉}| of discrete logarithms computations mod p

2 Basic Tools

In this section, we recall some of the definitions and basic tools that will be used
in the remaining sections, such as the syntax of code-based games, functional
encryption and the assumptions.

2.1 Notation and Conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set of
n-bit strings, and {0, 1}∗ is the set of all bit strings. The empty string is denoted
ε. More generally, if S is a set, then Sn is the set of n-tuples of elements of S,
S≤n is the set of tuples of length at most n. If x is a string then |x| denotes its
length, and if S is a set then |S| denotes its size. If S is finite, then x

R← S denotes
the assignment to x of an element chosen uniformly at random from S. If A is
an algorithm, then y ← A(x) denotes the assignment to y of the output of A on
input x, and if A is randomized, then y

R← A(x) denotes that the output of an
execution of A(x) with fresh coins is assigned to y. Unless otherwise indicated,
an algorithm may be randomized. “PT” stands for polynomial time and “PTA”
for polynomial-time algorithm or adversary. We denote by λ ∈ N the security
parameter. A function ν : N → [0, 1] is said to be negligible if for every c ∈ N

there exists a λc ∈ N such that ν(λ) ≤ λ−c for all λ > λc, and it is said to be
overwhelming if the function |1 − ν(λ)| is negligible.

Let ei be the vector with all 0 but one 1 in the i-th position.

Code-Based Games. We use the code-based game-playing [BR06] to define the
security notions. In such games, there exist procedures for initialization (initial-
ize) and finalization (Finalize) and procedures to respond to adversary oracle
queries. A game G is executed with an adversary A as follows. First, initialize
executes and its outputs are the inputs to A. Then A executes, its oracle queries
being answered by the corresponding procedures of G. When A terminates, its
output becomes the input to the Finalize procedure. The output of the latter,
denoted G(A), is called the output of the game, and “G(A) = y” denotes the
event that the output takes a value y. Boolean flags are assumed initialized to

Simple Functional Encryption Schemes for Inner Products 739

false. Games Gi,Gj are identical until bad if their code differs only in statements
that follow the setting of bad to true.

2.2 Public-Key Encryption

Definition 1 (Public-Key Encryption Scheme). A public-key encryption
(PKE) scheme E is a tuple E = (Setup,Encrypt,Decrypt) of 3 algorithms:

1. Setup(1λ) outputs public and secret keys (pk, sk) for security parameter λ;
2. Encrypt(pk,m), on input public key pk and message m in the allowed mes-
sage space, outputs ciphertext Ct;

3. Decrypt(sk,Ct) on input secret key sk and ciphertext Ct, outputs messages
m′.
In addition we make the following correctness requirement: for all (pk, sk) ←

Setup(1λ), all messages m and ciphertexts Ct ← Encrypt(pk,m), we have that
Decrypt(sk,Ct) = m except with negligible probability.

We often also allow public-key encryption schemes to additionally depend
on explicit public parameters params (randomly generated in an initial phase
and shared across multiple instances of the PKE scheme) on which all of Setup,
Encrypt, and Decrypt are allowed to depend. Examples include the description
of a group G with its generator g. We will often omit them in the descriptions
of generic constructions from PKE schemes.

Indistinguishability-Based Security. We define security against chosen-plaintext
attacks (IND-CPA security, for short) for a PKE scheme E = (Setup,Encrypt,
Decrypt) via the security game depicted on Figure 1. Then, we say that E is
secure against chosen-plaintext attacks (IND-CPA secure, for short) if

∣
∣
∣Pr[Expind-cpa-0E,λ (A) = 1] − Pr[Expind-cpa-1E,λ (A) = 1]

∣
∣
∣ = negl(λ).

We also define selective security against chosen-plaintext attacks (s-IND-CPA
security, for short) when the challenge messages m∗

0 and m∗
1 have to be chosen

before hand. Actually, in this case, the procedures initialize and LR can be
merged into an initialize procedure that outputs both the public key pk and
the challenge ciphertext Ct∗.

2.3 Functional Encryption

Following Boneh et al. [BSW11], we start by defining the notion of functionality
and then that of functional encryption scheme FE for functionality F .

Definition 2 (Functionality). A functionality F defined over (K, X) is a
function F : K × X → Σ ∪ {⊥} where K is the key space, X is the mes-
sage space and Σ is the output space and ⊥ is a special string not contained in
Σ. Notice that the functionality is undefined for when either the key is not in the
key space or the message is not in the message space.

740 M. Abdalla et al.

Game Expind-cpa-bE,λ (A)

proc Initialize(λ)

(pk, sk)
R← Setup(1λ)

Return pk

proc Finalize(b′)
Return (b′ = b)

proc LR(m∗
0,m

∗
1)

Ct∗ R← Encrypt(mpk ,m∗
b)

Return Ct∗

Game Exps-ind-cpa-bE,λ (A)

proc Initialize(λ,m∗
0,m

∗
1)

(pk, sk)
R← Setup(1λ)

Return pk

proc LR()

Ct∗ R← Encrypt(pk,m∗
b)

Return Ct∗

Fig. 1. Games Expind-cpa-bE,λ (A) and Exps-ind-cpa-bE,λ (A) define IND-CPA and s-IND-CPA
security (respectively) of E . The procedure Finalize is common to both games, which
differ in their initialize and LR procedures.

Definition 3 (Functional Encryption Scheme). A functional encryption
(FE) scheme FE for functionality F is a tuple FE = (Setup,KeyDer,Encrypt,
Decrypt) of 4 algorithms:

1. Setup(1λ) outputs public and master secret keys (mpk ,msk) for security
parameter λ;

2. KeyDer(msk , k), on input a master secret key msk and key k ∈ K outputs
secret key skk;

3. Encrypt(mpk , x), on input public key mpk and message x ∈ X outputs
ciphertext Ct;

4. Decrypt(mpk ,Ct, skk) outputs y ∈ Σ ∪ {⊥}.
We make the following correctness requirement: for all (mpk ,msk) ← Setup(1λ),
all k ∈ K and m ∈ M , for skk ← KeyDer(msk , k) and Ct ← Encrypt(mpk ,m),
we have that Decrypt(mpk ,Ct, skk) = F (k,m) whenever F (k,m) �= ⊥2, except
with negligible probability.

Indistinguishability-Based Security. For a functional encryption scheme
FE = (Setup,KeyDer,Encrypt,Decrypt) for functionality F , defined over (K, X),
we define security against chosen-plaintext attacks (IND-CPA security, for short)
via the security game depicted on Figure 2. Then, we say that FE is secure
against chosen-plaintext attacks (IND-CPA secure, for short) if

∣
∣
∣Pr[Expind-cpa-0FE,λ (A) = 1] − Pr[Expind-cpa-1FE,λ (A) = 1]

∣
∣
∣ = negl(λ).

We also define selective security against chosen-plaintext attacks (s-IND-CPA
security, for short) when the challenge messages m∗

0 and m∗
1 have to be chosen

before hand.

Inner-Product Functionality. In this paper we are mainly interested in the inner-
product functionality over Zp (IP, for short) defined in the following way. It
is a family of functionalities with key space K� and message space X� both
2 See [BO12,ABN10] for a discussion about this condition.

Simple Functional Encryption Schemes for Inner Products 741

Game Expind-cpa-bFE,λ (A)

proc Initialize(λ)

(mpk ,msk)
R← Setup(1λ)

V ← ∅
Return mpk

proc KeyDer(k)

V ← V ∪ {k}
skk

R← KeyDer(msk , k)
Return skk

proc LR(m∗
0,m

∗
1)

Ct∗ R← Encrypt(mpk ,m∗
b)

Return Ct∗

proc Finalize(b′)
if ∃k ∈ V such that

F (k,m∗
0) 	= F (k,m∗

1)
then return false

Return (b′ = b)

Game Exps-ind-cpa-bFE,λ (A)

proc Initialize(λ,m∗
0,m

∗
1)

(mpk ,msk)
R← Setup(1λ)

V ← ∅
Return mpk

proc LR()

Ct∗ R← Encrypt(mpk ,m∗
b)

Return Ct∗

Fig. 2. Games Expind-cpa-bFE,λ (A) and Exps-ind-cpa-bFE,λ (A) define IND-CPA and s-IND-CPA
security (respectively) of FE . The procedures KeyDer and Finalize are common to
both games, which differ in their initialize and LR procedures.

consisting of vectors in Zp of length �: for any k ∈ K�, x ∈ X� the functionality
IP�(k, x) = 〈k, x〉 mod p. When it is clear from the context we remove the
reference to the length �.

3 Inner-Product from DDH

In this section, we present our first functional encryption scheme for the inner-
product functionality whose security can be based on the plain DDH assumption.

The Decisional Diffie-Hellman assumption. Let GroupGen be a probabilistic
polynomial-time algorithm that takes as input a security parameter 1λ, and out-
puts a triplet (G, p, g) where G is a group of order p that is generated by g ∈ G,
and p is an λ-bit prime number. Then, the Decisional Diffie-Hellman (DDH)
assumption states that the tuples (g, ga, gb, gab) and (g, ga, gb, gc) are computa-
tionally indistinguishable, where (G, p, g) ← GroupGen(1λ), and a, b, c ∈ Zp are
chosen independently and uniformly at random.

Construction 1 (DDH-IP Scheme). We define our functional encryption
scheme for the inner-product functionality IP = (Setup,KeyDer,Encrypt,Decrypt)
as follows:
• Setup(1λ, 1�) samples (G, p, g) ← GroupGen(1λ) and s = (s1, . . . , s�) ← Z

�
p,

and sets mpk = (hi = gsi)i∈[�] and msk = s. The algorithm returns the pair
(mpk ,msk);

• Encrypt(mpk ,x) on input master public key mpk and message x = (x1, . . . ,
x�) ∈ Z

�
p, chooses a random r ← Zp and computes ct0 = gr and, for

each i ∈ [�], cti = hr
i · gxi . Then the algorithm returns the ciphertext

Ct = (ct0, (cti)i∈[�]);
• KeyDer(msk ,y) on input master secret key msk and vector y = (y1, . . . , y�) ∈

Z
�
p, computes and outputs secret key sky = 〈y, s〉;

742 M. Abdalla et al.

• Decrypt(mpk ,Ct, sky) on input master public key mpk, ciphertext Ct = (ct0,
(cti)i∈[�]) and secret key Sky for vector y, returns the discrete logarithm in
basis g of

∏

i∈[�]

ctyi

i /ct
sky
0 .

Correctness. For all (mpk ,msk) ← Setup(1λ, 1�), all y ∈ Z
�
p and x ∈ Z

�
p, for

sky ← KeyDer(msk ,y) and Ct ← Encrypt(mpk ,x), we have that

Decrypt(mpk ,Ct, sk) =

∏

i∈[�] ct
yi

i

ct
sky
0

=

∏

i∈[�](g
sir+xi)yi

gr(
∑

i∈[�] yisi)

= g
∑

i∈[�] yisir+
∑

i∈[�] yixi−r(
∑

i∈[�] yisi)

= g
∑

i∈[�] yixi = g〈x,y〉.

The above scheme limits the expressiveness of the functionality that can
be computed because in order to recover the final inner-product value a discrete
logarithm computation must take place. In the next section, in order to overcome
this limitation and to generalize to other settings we will present a generic scheme
whose security can be based on the semantic security of the underlying public-
key encryption scheme under randomness reuse. Before moving to the generic
scheme and its proof of security, we sketch below the proof of security for the
above IP scheme to offer to the reader useful intuitions that will be reused in
the proof of security of our generic functional encryption scheme for the inner-
product functionality.

Theorem 1. Under the DDH assumption, the above IP scheme is s-IND-CPA.

Proof Sketch. For the sake of contradiction, suppose that there exists an adver-
sary A that breaks s-IND-CPA security of our IP scheme with non-negligible
advantage. Then, we construct a simulator B that given in input an instance of
the DDH assumption, (g, ga, gb, gc) where c is either ab or uniformly random,
breaks it by using A.

If the challenge messages x0 and x1 are different, there exists a vector in the
message space for which the key shouldn’t be known by the adversary (x1 − x0

is one of them).
To generate the master public key, B first generates secret keys for a basis

(zi) of (x1 − x0)⊥. Setting implicitly a as secret key for x1 − x0, B generates
the master public key using ga. Actually, once group elements are generated for
the basis (yi) completed with (x1 − x0), one can find the public key, for the
canonical basis.

To generate the challenge ciphertext, B chooses a random bit μ and using gb

and gc, generates a ciphertext for message xμ.
Finally, notice that by the constraints of the s-IND-CPA security game, A

is allowed to ask only secret keys for vectors in the vector sub-space generated

Simple Functional Encryption Schemes for Inner Products 743

by the zi’s, and thus orthogonal to x1 − x0. For those vectors, B will be able to
generate the corresponding secret keys.

Now, if c = ab, then the challenge ciphertext is a well-distributed ciphertext
of the message xμ. On the other hand, if c is random, the challenge ciphertext
encrypts message ux0 + (1 − u)x1 where u is uniformly distributed and in this
case μ is information theoretically hidden: for all sky asked, since y is orthogonal
to x1 −x0, and thus 〈x0,y〉 = 〈x1,y〉, while the ciphertexts decrypt to the inner
products

〈ux0 + (1 − u)x1,y〉 = u〈x0,y〉 + (1 − u)〈x1,y〉
= u〈xμ,y〉 + (1 − u)〈xμ,y〉
= 〈xμ,y〉 .

4 A Generic Inner-Product Encryption Scheme

In this section, we present a generic functional encryption scheme for the inner-
product functionality based on any public-key encryption scheme that possesses
some specific properties. The security of this scheme can be then based solely
on the semantic security of the underlying public-key encryption scheme.

We start with a public-key scheme E = (Setup,Encrypt,Decrypt) whose secret
keys are elements of a group (G,+, 0G), public keys are elements of group
(H, ·, 1H), and messages are elements of Zq for some q.

In addition, we rely on three other special properties of the cryptosystem.
First, we require that it remains secure when we reuse randomness for encrypting
under different keys [BBS03]. Then, we require some homomorphic operation,
on the keys and on the ciphertexts. More specifically:

Randomness Reuse. We require the ciphertexts to consist of two parts ct0
and ct1. The first part ct0 corresponds to some commitment C(r) of the
randomness r used for the encryption. The second part ct1 is the encryption
E(pk, x; r) in a group (I, ·, 1I) of the message x under public key pk and
randomness r.
Then, we say that a PKE has randomness reuse (RR, for short) if E(pk, x; r)
is efficiently computed given the triple (x, pk, r), or the triple (x, sk,C(r))
where sk is a secret key corresponding to pk. (In [BBS03], this property is
also called reproducibility and guarantees that it is secure to reuse random-
ness when encrypting under several independent public keys. The idea of
randomness reuse was first considered by [Kur02]);

Linear Key Homomorphism. We say that a PKE has linear key homomor-
phism (LKH, for short) if for any two secret keys sk1, sk2 ∈ G and any y1, y2 ∈
Zq, the component-wise G-linear combination formed by y1sk1 + y2sk2 can
be computed efficiently only using public parameters, the secret keys sk1
and sk2 and the coefficients y1 and y2. And this combination y1sk1 + y2sk2
also functions as a secret key, with a corresponding public key that can be

744 M. Abdalla et al.

computed efficiently from y1, y2 and the public keys pk1 and pk2 of sk1 and
sk2 respectively, fixing the same public parameters, for example pky1

1 · pky2
2 .

Linear Ciphertext Homomorphism Under Shared Randomness. We
say that a PKE has linear ciphertext homomorphism under shared random-
ness (LCH, for short) if E(pk1pk2, x1 + x2; r) can be efficiently computed
from E(pk1, x1; r),E(pk2, x2; r) and C(r), for example E(pk1pk2, x1 +x2; r) =
E(pk1, x1; r)·E(pk2, x2; r). (It doesn’t actually have to be pk1pk2 but a public
key corresponding to sk1 + sk2 if sk1 and sk2 are secret keys corresponding
to pk1 and pk2).

4.1 Construction

Construction 2 (PKE-IP Scheme). Let E = (Setup,Encrypt,Decrypt) be a
PKE scheme with the properties defined above, we define our functional encryp-
tion scheme for the inner-product functionality IP = (Setup,KeyDer,Encrypt,
Decrypt) as follows.
• Setup(1λ, 1�) calls E’s key generation algorithm to generate � independent

(sk1, pk1), . . . , (sk�, pk�) pairs, sharing the same public parameters params.
Then, the algorithm returns mpk = (params, pk1, . . . , pk�) and msk = (sk1,
. . . , sk�).

• KeyDer(msk ,y) on input master secret key msk and a vector y = (y1, . . . , y�)
∈ Z

�
q, computes sky as an G-linear combination of (sk1, . . . , skn) with coeffi-

cients (y1, . . . , y�), namely sky =
∑

i∈[�] yi · ski.

• Encrypt(mpk ,x) on input master public key mpk and message x = (x1, . . . ,
x�) ∈ Z

�
q, chooses shared randomness r in the randomness space of E, and

computes ct0 = E .C(r) and cti = E .E(pki, xi; r). Then the algorithm returns
the ciphertext Ct = (ct0, (cti)i∈[�]).

• Decrypt(mpk ,Ct, sky) on input master public key mpk, ciphertext Ct = (ct0,
(cti)i∈[�]), and secret key Sky for vector y = (y1, . . . , y�), returns the output
of E .Decrypt(Sky, (ct0,

∏

i∈[�] ct
yi

i)).

Correctness. For all (mpk ,msk) ← Setup(1λ, 1�), all y ∈ Z
�
q and x ∈ Z

�
q, for

sky ← KeyDer(msk ,y) and Ct ← Encrypt(mpk ,x), we have that

Decrypt(mpk ,Ct, sky) = E .Decrypt(Sky, (ct0,
∏

i∈[�]

ctyi

i))

= E .Decrypt(Sky, (ct0,
∏

i∈[�]

E .E(pki, xi; r)yi))

= E .Decrypt(Sky, (ct0, E .Encrypt(
∏

i∈[�]

pkyi

i ,
∑

i∈[�]

yixi; r)))

=
∑

i∈[�]

yixi .

Simple Functional Encryption Schemes for Inner Products 745

by the LCH property. Finally, note that the decryption is allowed because
(Sky,

∏

i∈[�] pk
yi

i) is a valid key pair, due to the LKH property.

4.2 Proof of Security

In this section, we prove the following theorem:

Theorem 2. If the underlying PKE E is s-IND-CPA, even under randomness-
reuse, and satisfies the LKH and LCH properties, then the IP scheme of
Section 4.1 is s-IND-CPA.

Proof. his proof follows the intuition provided in the proof sketch of Theorem 1.
To prove the security of our scheme we will show that the s-IND-CPA game is
indistinguishable from a game where the challenge ciphertext encrypts a ran-
dom combination of the challenge messages whose coefficients sum up to one.
Thus, the challenge ciphertext decrypts to the expected values and information
theoretically hides the challenge bit.

More specifically, given an adversary A that breaks the s-IND-CPA security
of our IP scheme with non-negligible probability ε, we construct an adversary
B that breaks the s-IND-CPA security of the underlying PKE scheme E with
comparable probability.

B starts by picking a random element a in the full message space of the
underlying PKE E , and sends challenge messages 0 and a to the challenger C of
PKE security game. C answers by sending an encryption Ct = (ct0, ct1) of either
0 or a and public key pk.

B then invokes A on input the security parameter and gets two different
challenge messages in output, namely (xi = (xi,1, . . . , xi,�))i∈{0,1} both in Z

�
q.

Recall that, by the constraints of security game, the adversary can only issue
secret key queries for vectors y such that 〈x0,y〉 = 〈x1,y〉. Thus, we have that
〈y,x1 − x0〉 = 0 meaning that y is in the vector space defined by (x1 − x0)⊥.

Then, B generates the view for A in the following way:

Public Key. To generate master public key mpk , B does the following. First, B
finds a basis (z1, z2, . . . , z�−1) of (x1−x0)⊥. Then we can write the canonical
vectors in this basis: for i ∈ [�], j ∈ [� − 1], there exist λi,j ∈ Zq and αi ∈ Zq

such that:
ei = αi(x1 − x0) +

∑

j∈[�−1]

λi,jzj . (1)

Then, for j ∈ [� − 1], B sets (pkzj
, skzj

) = E .Setup(1λ), and for i ∈ [�],

γi =
∏

j∈[�−1]

pkλi,j
zj

and pki = pkαiγi.

Eventually, B invokes A on input mpk = (pki)i∈[�].
Notice that, B is implicitly setting ski = αisk +

∑

j∈[�−1] λi,jskzj
because of

the LKH property, where sk is the secret key corresponding to pk, which is
unknown to B.

746 M. Abdalla et al.

Challenge Ciphertext. B computes the challenge ciphertext Ct∗ as follows. B
randomly picks b

R← {0, 1}, computes E .E(γi, 0; r) from ct0 and
∑

j∈[�−1] λi,j

skzj
and E .E(1H , xb,i; r) from secret key 0G and ct0, by randomness reuse. B

then sets

ct∗0 = ct0 and (ct∗i = ctαi
1 · E .E(γi, 0; r) · E .E(1H , xb,i; r))i∈[�] ,

Then the algorithm returns the challenge ciphertext Ct∗ = (ct∗0, (ct
∗
i)i∈[�]).

Secret Keys. To generate a secret key for vector y, B computes sky as

sky =
∑

j∈[�−1]

⎛

⎝
∑

i∈[�]

yiλi,j

⎞

⎠ skzj

At the end of the simulation, if A correctly guesses b, then B returns 0 (B
guesses that C encrypted 0), else B returns 1 (B guesses that C encrypted a).
This concludes the description of adversary B.

It remains to verify that B correctly simulates A’s environment.

First see that the master public key is well distributed, because we are just
applying a change of basis to a well distributed master public key. Now it holds
that αi = x1,i−x0,i

‖x1−x0‖2 because

x1,i − x0,i = 〈x1 − x0, ei〉
= αi‖x1 − x0‖2 +

∑

j∈[�−1]

λi,j〈x1 − x0, zj〉

= αi‖x1 − x0‖2 .

Now recall that a vector y satisfying the security game constraints is such
that 〈y,x0〉 = 〈y,x1〉, so

∑

i∈[�]

yiαi =
∑

i∈[�]

yi
x1,i − x0,i

‖x1 − x0‖2
= 0

which in turn implies that a secret key sky for the vector y is distributed as

sky =
∑

i∈[�]

yiski =
∑

i∈[�]

yiαisk +
∑

i∈[�]

∑

j∈[�−1]

yiλi,jskzj

=
∑

j∈[�−1]

⎛

⎝
∑

i∈[�]

yiλi,j

⎞

⎠ skzj

On the other hand, if A asks for a secret key for some vector y /∈ (x1 − x0)⊥, B
would need to know sk in order to generate a correct secret key for y.

Now, we have to analyze the following two cases, depending on which message
was encrypted by C in the challenge ciphertext:

Simple Functional Encryption Schemes for Inner Products 747

1. C encrypted 0. Then, the challenge ciphertext Ct∗ for message xb is dis-
tributed as

ct∗0 = ct0

and

ct∗i = E .E(pk, 0; r)αi · E .E(γi, 0; r) · E .E(1H , xb,i; r)
= E .E(pki, xb,i; r) ,

thanks to the LCH property, and then as in the real game.
Thus, in this case, B generates a view identical to that A would see in the
real game. Hence, the advantage of B in this game is ε, the same advantage
as A against s-IND-CPA of IP when 0 has been encrypted.

2. C encrypted a. First, in Equation 1, we have αi = (x1,i − x0,i)/‖x1 − x0‖2.
Let us analyze the distribution of the challenge ciphertext in this case. We
have ct∗0 = ct0 and

ct∗i = E .E(pk, a; r)αi · E .E(γi, 0; r) · E .E(1H , xb,i; r)
= E .E(pki, xb,i + αia; r)
= E .E(pki, x̂i; r),

thanks to the LCH property, where x̂i is defined as follows:

x̂i = xb,i + αia =
a

‖x1 − x0‖2
(x1,i − x0,i) + xb,i

=
a

‖x1 − x0‖2
(x1,i − x0,i) + x0,i + b(x1,i − x0,i).

Let us set u = a/‖x1 −x0‖2 + b, which is a random value in the full message
space of E , given that a is random in the same space, then x̂i = ux1,i + (1 −
u)x0,i. Then, the challenge ciphertext is a valid ciphertext for the message
x̂ = ux1 + (1 − u)x0, which is a random linear combination of the vectors
x0 and x1 whose coefficients sum up to one, as expected. Notice that b is
information theoretically hidden because the distribution of u is independent
from b. Hence, the advantage of B in this game is 0, when a random non-zero
a has been encrypted.

Eventually, this shows that ε is bounded by the best advantage one can get
against s-IND-CPA of E . Hence, taking the maximal values, the best advantage
one can get against s-IND-CPA of IP is bounded by the best advantage one can
get against s-IND-CPA of E .

5 Instantiations

5.1 Instantiation from DDH

The scheme of Section 3 can be obtained by plugging into our generalization
the ElGamal encryption scheme [ElG85] which supports the properties that we
require. Namely:

748 M. Abdalla et al.

RR, LKH and LCH properties. The secret key space of this PKE is the group
(Zp,+, 0), and the public key space is the group (G,×, 1). It is easy to see that
pka

1pk2 is the public key corresponding to the secret key ask1 + sk2, and that

ct1 · ct′1 = pkrgm · pk
′rgm′

= (pk · pk′)r · gm+m′
.

For RR, see that ctsk0 = pkr.

5.2 Instantiation from LWE

The LWE Assumption. The learning with errors (LWE) problem was introduced
by Regev [Reg05]. Let n, q be integer parameters. For any noise distribution χ
on Zq, and vector s ∈ Z

n
q , the oracle LWEq,n,χ(s) samples a fresh random n-

dimensional vector a ← Z
n
q , as well as noise e ← χ, and returns (a, 〈a, s〉 + e).

The LWE assumption with noise χ states that for every PPT distinguisher D,

Pr[s ← Z
n
q : DLWEq,n,χ(s) = 1] − Pr[s ← Z

n
q : DLWEq,n,U (s) = 1] = negl(n),

where U is the uniform distribution on Zq.

In other words, in addition to a, the oracle LWEq,n,U (s) simply returns uni-
form random samples, independent of s. In general, the error distribution χ is
chosen to be a discrete Gaussian on Zq.

Let n ∈ Z
+ be a security parameter. Let q = q(n), m = m(n), and 1 < p < q

be positive integers. Let α = α(n) be positive real Gaussian parameters. Let
r = r(n) ≥ 2 be an integer and define k = k(n) := �logr q�.

Construction 3 (LWE-PKE Scheme). We define our public-key encryption
scheme E = (Setup,Encrypt,Decrypt) as follows.

– Setup(1n) samples A ← Z
m×n
q . Then, for γ = 0, . . . , k, samples sγ ← Z

n
q

and computes bγ = Asγ + eγ ∈ Z
m
q , where eγ ← χm. Then, the algorithm

sets pk = (A, (bγ)γ) and sk = (sγ)γ , and returns the pair (pk, sk).
– Encrypt(pk, x) on input public key pk, and message x ∈ Zp, chooses random

r ← {0, 1}m and computes

ct0 = A�r ∈ Z
n
q

and, for γ = 0, . . . , k,

ctγ = 〈r,bγ〉 +
⌊

q

p

⌋

rγxγ ∈ Zq,

where
∑

γ xγrγ = x. Then the algorithm returns the ciphertext Ct = (ct0,
(ctγ)γ).

– Decrypt(pk,Ct, sk) on input public key pk, ciphertext Ct = (ct0, (ctγ)) and
secret key sk, returns the evaluation

y =
⌊

p

q
·
(∑

ctγ − 〈ct0, sk〉
)⌉

.

Simple Functional Encryption Schemes for Inner Products 749

Semantic security. Notice that the above scheme is the Regev scheme where the
message is r-decomposed to ensure that the error doesn’t grow too much. Then,
the proof of the semantic security of this encryption scheme can be found in
[Reg05]. Essentially, the proof relies on two key properties:

– A�r ∈ Z
n
q is computationally indistinguishable from a random vector;

– Distinguishing a Asγ + eγ from a random vector is breaking the LWE
assumption.

RR, LKH and LCH properties. The secret key space of this PKE is the group
((Zn

q)k+1,+,0), and the public key space is the group ((Zm
q)k+1, +,0).

It is easy to see that apk1 + pk2 corresponds to the secret key ask1 + sk2, and
that

ctγ + ct′γ = 〈r,bγ〉 +
⌊

q

p

⌋

rγxγ + 〈r,b′
γ〉 +

⌊
q

p

⌋

rγx′
γ

= 〈r,bγ + b′
γ〉 +

⌊
q

p

⌋

rγ(xγ + x′
γ).

For RR, see that 〈A�r, s〉 = 〈r,As〉.

Acknowledgments. We thank the anonymous reviewers for their fruitful comments
and for pointing out an issue with an instantiation based on Paillier’s encryption
scheme.

This work was supported in part by the European Research Council under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement
no. 339563 – CryptoCloud), by the French ANR-14-CE28-0003 Project EnBiD, and by
the Chaire France Telecom.

References

[ABN10] Abdalla, M., Bellare, M., Neven, G.: Robust Encryption. In: Micciancio,
D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg
(2010)

[BBS03] Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-
recipient encryption schemeas. In: Desmedt, Y., (ed.) PKC 2003. LNCS,
vol. 2567. pp. 85–99. Springer, Heidlburg (2003)

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On Extractability Obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014)

[BF01] Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001)

[BO12] Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Pos-
sibility results, impossibility results and the quest for a general definition.
Cryptology ePrint Archive, Report 2012/515 (2012). http://eprint.iacr.
org/2012/515

http://eprint.iacr.org/2012/515
http://eprint.iacr.org/2012/515

750 M. Abdalla et al.

[BR06] Bellare, M., Rogaway, P.: The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg
(2006)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and
Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011)

[BW07] Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on
Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 535–554. Springer, Heidelberg (2007)

[Coc01] Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic
Residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS,
vol. 2260, pp. 360–363. Springer, Heidelberg (2001)

[ElG84] El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

[ElG85] ElGamal, T.: A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory 31,
469–472 (1985)

[Gen06] Gentry, C.: Practical Identity-Based Encryption Without Random Ora-
cles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
445–464. Springer, Heidelberg (2006)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. Cryptology ePrint Archive, Report 2013/451 (2013). http://
eprint.iacr.org/2013/451

[GGHZ14] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based
encryption from multilinear maps. Cryptology ePrint Archive, Report
2014/622 (2014). http://eprint.iacr.org/2014/622

[GLW12] Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-Collusion IBE
from Key Homomorphism. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 564–581. Springer, Heidelberg (2012)

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In Juels, A., Wright,
R.N., De Capitani di Vimercati, S. (eds) ACM CCS 2006, pp. 89–98.
ACM Press (October / November 2006). Available as Cryptology ePrint
Archive Report 2006/309

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunc-
tions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008)

[Kur02] Kurosawa, K.: Multi-recipient Public-Key Encryption with Shortened
Ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol.
2274, pp. 48–63. Springer, Heidelberg (2002)

[LOS+10] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully
Secure Functional Encryption: Attribute-Based Encryption and (Hierar-
chical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556

http://eprint.iacr.org/2013/451
http://eprint.iacr.org/2013/451
http://eprint.iacr.org/2014/622
http://eprint.iacr.org/2010/556

Simple Functional Encryption Schemes for Inner Products 751

[OT12] Okamoto, T., Takashima, K.: Adaptively Attribute-Hiding (Hierarchi-
cal) Inner Product Encryption. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg
(2012)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds) 37th ACM STOC, pp.
84–93. ACM Press (May 2005)

[Rot11] Rothblum, R.: Homomorphic Encryption: From Private-Key to Public-
Key. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 219–234. Springer,
Heidelberg (2011)

[Sha84] Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–
53. Springer, Heidelberg (1985)

[SW05] Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer,
Heidelberg (2005)

[TW14] Tessaro, S., Wilson, D.A.: Bounded-Collusion Identity-Based Encryption
from Semantically-Secure Public-Key Encryption: Generic Constructions
with Short Ciphertexts. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 257–274. Springer, Heidelberg (2014)

[Wat12] Waters, B.: Functional Encryption for Regular Languages. In: Safavi-
Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–
235. Springer, Heidelberg (2012)

[Wat14] Waters, B.: A punctured programming approach to adaptively secure
functional encryption. Cryptology ePrint Archive, Report 2014/588
(2014). http://eprint.iacr.org/2014/588

http://eprint.iacr.org/2014/588

Predicate Encryption for Multi-dimensional
Range Queries from Lattices

Romain Gay(B), Pierrick Méaux, and Hoeteck Wee

ENS, Paris, France
{rgay,meaux,wee}@di.ens.fr

Abstract. We construct a lattice-based predicate encryption scheme
for multi-dimensional range and multi-dimensional subset queries. Our
scheme is selectively secure and weakly attribute-hiding, and its security
is based on the standard learning with errors (LWE) assumption.
Multi-dimensional range and subset queries capture many interesting
applications pertaining to searching on encrypted data. To the best of our
knowledge, these are the first lattice-based predicate encryption schemes
for functionalities beyond IBE and inner product.

1 Introduction

Predicate encryption [8,17,20] is a new paradigm for public-key encryption that
supports search queries on encrypted data. In predicate encryption, ciphertexts
are associated with descriptive values x in addition to a plaintext, secret keys
are associated with a query predicate f , and a secret key decrypts the ciphertext
to recover the plaintext if and only if f(x) = 1. The security requirement
for predicate encryption enforces privacy of x and the plaintext even amidst
multiple search queries, namely an adversary holding secret keys for different
query predicates learns nothing about x and the plaintext if none of them is
individually authorized to decrypt the ciphertext.

Multi-dimensional Range Queries. Following [8,20], we focus on predicate
encryption for multi-dimensional range queries, as captured by the following
examples:

– For network intrusion detection on logfiles, we would encrypt network flows
labeled with a set of attributes from the network header, such as the source
and destination addresses, port numbers, time-stamp, and protocol numbers.
We could then issue auditors with restricted secret keys that can only decrypt
the network flows that fall within a particular range of IP addresses and some
specific time period.

R. Gay— Supported in part by ANR-14-CE28-0003 (Project EnBiD).
P. Méaux— INRIA and ENS. Supported in part by ANR-13-JS02-0003 (Project CLE).
H. Wee— ENS and CNRS. Supported in part by ANR-14-CE28-0003 (Project
EnBiD), NSF Award CNS-1445424, ERC Project CryptoCloud (FP7/2007-2013
Grant Agreement no. 339563), the Alexander von Humboldt Foundation and a Google
Faculty Research Award.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 752–776, 2015.
DOI: 10.1007/978-3-662-46447-2 34

Predicate Encryption for Multi-dimensional Range Queries from Lattices 753

– For credit card fraud investigation, we would encrypt credit card transactions
labeled with a set of attributes such as time, costs and zipcodes. We could
then issue investigators with restricted secret keys that decrypt transactions
over $1,000 which took place in the last month and originated from a
particular range of zipcodes.

– For online dating, we would encrypt personal profiles labeled with dating
preferences pertaining to age, height, weight and salary. Secret keys are
associated with specific attributes and can only decrypt profiles for which
the attributes match the dating preferences.

More generally, in multi-dimensional range queries, we are given a point
(z1, . . . , zD) ∈ [T]D and interval ranges [x1, y1], . . . , [xD, yD] ⊆ [T] and we want
to know if (x1 ≤ z1 ≤ y1)∧· · ·∧ (xD ≤ zD ≤ yD). We also consider more general
multi-dimensional subset queries where we are given subset S1, . . . , SD ⊆ [T]
and we want to know if (z1 ∈ S1) ∧ · · · ∧ (zD ∈ SD). Note that in the first two
examples, the search queries are associated with the keys, whereas in the third
example, the search queries are associated with the ciphertext. We will refer to
encryption schemes for the former as “key-policy” schemes, and schemes for the
latter as “ciphertext-policy” schemes. In all of these examples, it is important
that unauthorized parties do not learn the contents of the ciphertexts, nor of
the meta-data associated with the ciphertexts, such as the network header or
dating preferences. On the other hand, it is often okay to leak the meta-data
to authorized parties. We stress that privacy of the meta-data is an additional
security requirement provided by predicate encryption but not attribute-based
encryption [14,15].

Prior Works. The first constructions of predicate encryption for multi-
dimensional range queries were given in the works of Boneh and Waters [8]
and Shi, et. al [20]; all of these constructions rely on bilinear groups and achieve
parameters that are linear in the number of dimensions D. The latter work also
presents a generic “brute force” construction based on any anonymous IBE,
where the parameters grow exponentially in D.

1.1 Our Contributions

In this work, we construct a lattice-based predicate encryption scheme for multi-
dimensional range queries, whose security is based on the standard learning
with errors (LWE) assumption. Our scheme is selectively secure and weakly
attribute-hiding, that is, we only guarantee privacy of the ciphertext attribute
against collusions that are not authorized to decrypt the challenge ciphertext.
The scheme is best suited for applications where the range T is very large but
the number of dimensions D is a small constant, as is the case for the three
applications outlined earlier and also the scenario considered in [20]. In addition,
we extend our techniques to multi-dimensional subset queries, where we obtain
improved efficiency over prior schemes [8]. We summarize our schemes in Table 1
and 2.

754 R. Gay et al.

Our Approach. At a high level, our approach follows that of Shi et al. [20],
who showed how to boost an anonymous IBE scheme into a predicate encryption
scheme for multi-dimensional range queries. We show how to carry out a similar
transformation over lattices, starting from the LWE-based anonymous IBE
schemes in [1,4,9]. We highlight the main novelties in this work:

– First, we present a more modular and conceptually simpler approach for
handling multi-dimensional range queries. We construct our scheme for the
simpler AND-OR-EQ predicate (conjunction of disjunction of equalities),
and present a combinatorial reduction from multi-dimensional range queries
to this predicate. The simpler AND-OR-EQ predicate is symmetric, which
immediately yields both key-policy and ciphertext-policy schemes for multi-
dimensional range queries. We can only prove security for our lattice-
based AND-OR-EQ predicate encryption under an “at most one” promise,
which necessitates a more delicate reduction from multi-dimensional range
queries to AND-OR-EQ where we decompose range queries into disjoint sub-
intervals. Indeed, the same technical issue arises in the previous pairing-based
schemes.

– To handle the inner disjunction of equality like (X = a) ∨ (X = b) for the
key-policy AND-OR-EQ predicate where X is associated with the ciphertext
and (a, b) with the key, our new ciphertext is an anonymous IBE ciphertext
for the identity X, and the key comprises two IBE keys for a and b;
decryption works by trying all possible IBE keys. Following [20], we will
pad the plaintext with zeroes, so that we know which of the decryptions
corresponds to the correct plaintext. To handle the outer conjunction, we
rely on secret sharing, as with prior lattice-based fuzzy IBE [3].

– Correctness for the inner disjunction requires more care than that in the
bilinear groups. Roughly speaking, we need to show that decrypting an IBE
ciphertext for identity a with a key for identity b �= a yields a random-
looking value. The straight-forward argument that relies on IBE security
yields computational correctness. To achieve statistical correctness in the
lattice-based setting, we rely on a simple but seemingly novel analysis of the
output of lattice-based trapdoor sampling algorithms (c.f. Lemma 13).

– The intuition for security for the inner disjunction is as follows: if X is
different from a and b, then both X and the plaintext remain hidden via
security of the underlying IBE. On the other hand, if X is equal to one of
a, b, then the decryptor does learn the exact value of X, which means that
we cannot hope to achieve strong attribute-hiding using these techniques.
To establish the weak attribute-hiding for the general AND-OR-EQ, we rely
on techniques from lattice-based inner product encryption [4].

To the best of our knowledge, this is the first lattice-based predicate encryption
scheme for functionalities beyond IBE and inner product [1,4,9,21], and we hope
that it would inspire further research into lattice-based predicate encryption. We
defer a more detailed overview of our construction to Section 4.

Predicate Encryption for Multi-dimensional Range Queries from Lattices 755

Table 1. Summary of existing predicate encryption schemes for multi-dimensional
range queries: given a point (z1, . . . , zD) ∈ [T]D and interval ranges [x1, y1],
. . . , [xD, yD] ⊆ [T], we want to know if (x1 ≤ z1 ≤ y1) ∧ · · · ∧ (xD ≤ zD ≤ yD). Here,
D denotes the number of dimensions and T the number of points in each dimension.
We omit the poly(n) multiplicative overhead, where n is the security parameter.

Reference
Size Time Attribute

Public key Ciphertext Secret key Encryption Decryption hiding

[8] (KP) O(D · T) O(D · T) O(D) O(D · T) O(D) fully

[20] (KP, CP) O(D log T) O(D log T) O(D log T) O(D log T) O((log T)D) weakly

this paper (KP, CP) O(D log T) O(D log T) O(D log T) O(D log T) O((log T)D) weakly

Table 2. Summary of existing predicate encryption schemes for multi-dimensional
subset queries: given a point (z1, . . . , zD) ∈ [T]D and subsets S1, . . . , SD ⊆ [T], we
want to know if (z1 ∈ S1) ∧ · · · ∧ (zD ∈ SD). Here, D denotes the number of dimension
and T the size of the sets. We omit the poly(n) multiplicative overhead, where n is the
security parameter. (KP) stands for key-policy and (CP) stands for ciphertext-policy.

Reference
Size Time Attribute

Public key Ciphertext Secret key Encryption Decryption hiding

[8] O(D · T) O(D · T) O(D · T) O(D · T) O(D · T) fully

this paper (KP) O(D) O(D) O(D · T) O(D) O(TD) weakly

this paper (CP) O(D · T) O(D · T) O(D) O(D · T) O(D) weakly

Organization. The rest of the paper is organized as follows. We recall the
relevant background on lattices and the security model of predicate encryption
in Section 2. We introduce the so-called AND-OR-EQ predicate, and show how
to reduce multi-dimensional subset queries and multi-dimensional range queries
to AND-OR-EQ in Section 3. We give our lattice-based predicate encryption
scheme for AND-OR-EQ in Section 4, and we show that it gives an efficient
construction for multi-dimensional range queries. Finally, we show in Section 5
how to improve the construction of Section 4 in order to obtain an efficient
scheme for multi-dimensional subset queries.

2 Preliminaries

Notations. We denote by s ←r S the fact that s is picked uniformly at random
from a finite set S or from a distribution. By PPT, we denote a probabilistic
polynomial-time algorithm. Throughout this paper, we use 1n as the security
parameter. For every vector u ∈ Z

n
q , we write u = (u1, . . . , un), and for any

matrix M ∈ Z
n×m
q , we write Mi,j the (i, j) entry of M. For any x ∈ R, we

denote by 	x
 the largest integer less than or equal to x. For any z ∈ [0, 1], we
denote by 	z� the closest integer to z.

756 R. Gay et al.

Randomness Extraction. We use the following variant of the left-over hash
lemma [11,16] from [1]:

Lemma 1 ([1], Lemma 13). Let m > (n + 1) log q + ω(log n), q > 2 be a
prime number, R ←r {−1, 1}m×� mod q, where � = �(n) is polynomial in n. Let
A ←r Z

n×m
q ,B ←r Z

n×�
q ; For all vectors u ∈ Z

m the distribution (A,AR,u�R)
is statistically close from the distribution (A,B,u�R).

LWE Assumption. The decisional Learning With Error problem (dLWE) was
introduced by Regev [19],

Definition 1 (dLWE). For an integer q = q(n) ≥ 2, an adversary A and an
error distribution χ = χ(n) over Zq, we define the following advantage function:

Adv
dLWEn,m,q,χ

A := |Pr[A(A, z0) = 1] − Pr[A(A, z1) = 1]|
where

A ←r Z
n×m
q , s ←r Z

n
q , e ←r χm, z0 := s�A + e� and z1 ←r Z

m
q

The dLWEn,m,q,χ assumption asserts that for all PPT adversaries A, the
advantage Adv

dLWEn,m,q,χ

A is a negligible function in n.

Throughout the paper, we denote by χmax < q the bound on the noise
distribution χ.

2.1 Lattice Preliminaries

Lattices. For any matrix A ∈ Z
n×m
q and any vector p ∈ Z

n
q , we define the

orthogonal q-ary lattice of A: Λ⊥
q (A) := {u ∈ Z

m : Au = 0 mod q} and the
shifted lattice: Λp

q (A) := {u ∈ Z
m : Au = p mod q}. Similarly, for any matrix

P ∈ Z
n×�
q , we define: ΛP

q (A) := {U ∈ Z
m×� : AU = P mod q}.

Matrix Norms. For any vector x, we denote by ‖x‖ its �2 norm. For any
matrix R ∈ Z

n×�
q we define the three following norms:

1. ‖R‖ denotes the maximum of the �2 norm over the columns of R.
2. ‖R‖GS denotes the Gram-Schmidt norm of R (see [7] for further details).
3. ‖R‖2 denotes the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Note that for any matrix S ∈ Z
�×m
q , and any vector e ∈ Z

n
q , we have ‖R · S‖ ≤

‖R‖2 · ‖S‖, and ‖e�F‖∞ ≤ ‖e‖ · ‖F‖.

Predicate Encryption for Multi-dimensional Range Queries from Lattices 757

Gaussian Distributions. For any positive parameter σ ∈ R>0, let ρσ(x) :=
exp(−π‖x‖2/σ2) be the Gaussian function on R

n of center 0 and parameter σ.
For any n ∈ N and any subset D of Z

n, we define ρσ(D) :=
∑

x∈D

ρσ(x) the

discrete integral of ρσ over D, and DD,σ the discrete Gaussian distribution over
D of parameter σ. That is, for all y ∈ D, we have DD,σ(y) := ρσ(y)

ρσ(D) .

Lemma 2 ([7], Lemma 2.5). Let n,m, �, q > 0 be integers and σ > 0 be
a Gaussian parameter. For all A ∈ Z

n×m
q , P ∈ Z

n×�
q , U ←r DΛP

q (A),σ and
R ←r {−1, 1}m×m , with overwhelming probability in m,

‖U‖ ≤ σ
√

m , ‖R‖2 ≤ 20
√

m

Trapdoor Generators. The following lemmas state properties of algorithms
for generating short basis of lattices.

Lemma 3 ([5,6,18]). Let n,m, q > 0 be integers with q prime and m =
Θ(n log q). There is a PPT algorithm TrapGen defined as follows:

TrapGen(1n, 1m, q):
Inputs: a security parameter n, an integer m such that m = Θ(n log q), and a
prime modulus q.
Outputs: a matrix A ∈ Z

n×m
q and a basis TA ∈ Z

m×m
q for Λ⊥

q (A) such that
the distribution of A is negl(n)-close to uniform and ‖TA‖GS = O(

√
n log q),

with all but negligible probability in n.

Lemma 4 ([18]). Let n,m, q > 0 be integers with q prime and m = Θ(n log q).
There is a full-rank matrix G such that the lattice Λ⊥

q (G) has a publicly known
basis TG ∈ Z

m×m with ‖TG‖GS ≤
√

5.

Lemma 5 ([13], Lemmas 5.1 and 5.2)

– Let m ≥ 2n log q. With all but negl(n) probability, A ←r Z
n×m
q is full rank

(i.e. the subset-sums of the columns of A generate Z
n
q).

– Assume A ∈ Z
n×m
q is full-rank and σ = ω(

√
log n). Then, the following

distributions are statistically close:

{(u,Au) : u ←r DZm,σ} and {(u,p) : p ←r Z
n
q ,u ←r DΛp

q (A),σ}

2.2 Sampling Algorithms

Given a matrix F := [A‖B] and a matrix P, we would like to sample random
low-norm matrices U such that FU = P. Specifically, we want to sample U
from the distribution DΛP

q (F),σ. The following lemma tells us we could do so
given either (1) a low-norm basis TA of Λ⊥

q (A) using RightSample, or (2) a low-
norm matrix R and an invertible matrix H such that B = HG + AR using
LeftSample. We will use (1) in the actual scheme, and (2) in the security proof.

758 R. Gay et al.

Lemma 6 ([2,9,13,18] and [7], Lemma 2.8)
There exist PPT algorithms RightSample and LeftSample such that:

RightSample(A,TA,B,P, σ):
Inputs: full-rank matrices A,B ∈ Z

n×m
q , a basis TA of Λ⊥

q (A), a matrix

P ∈ Z
n×(�+n)
q and a Gaussian parameter σ = O(‖TA‖GS).

Output: a matrix U ∈ Z
2m×(�+n)
q whose distribution is statistically close to

DΛP
q [A‖B],σ·ω(

√
log m).

Remark 1. We can sample a short matrix U =

⎛

⎝
U1

U2

⎞

⎠ ∈ Z
2m×(�+k)
q in the same

way that [2]. That is, we first sample the bottom part U2 ∈ Z
m×(�+k)
q from

D
Z

m×(�+k)
q ,σ·ω(

√
log n)

and then, we sample the top part U1 ∈ Z
m×(�+k)
q from a

distribution statistically close to D
Λ

P−BU2
q (A),σ·ω(

√
log m)

, using TA.

LeftSample(A,R,G,H,P, σ) :
Inputs: a full-rank matrix A ∈ Z

n×m
q , a matrix R ∈ Z

m×m
q , a full-rank matrix

G ∈ Z
n×m
q as defined in Lemma 4, an invertible matrix H ∈ Z

n×n
q , a matrix

P ∈ Z
n×(�+n)
q and a Gaussian parameter σ = O(‖R‖2).

Output: a matrix U ∈ Z
2m×(�+n)
q whose distribution is statistically close to

DΛP
q [A‖HG+AR],σ·ω(

√
log m).

2.3 Predicate Encryption

A predicate encryption scheme for a predicate P(· , ·) consists of four algorithms
(Setup,Enc,KeyGen,Dec):

Setup(1n,X ,Y,M) → (mpk,msk). The setup algorithm gets as input the
security parameter n, the attribute universe X , the predicate universe Y, and
the message space M.

Enc(mpk, x,m) → ct. The encryption algorithm gets as input mpk, an attribute
x ∈ X and a message m ∈ M. It outputs a ciphertext ct.

KeyGen(mpk,msk, y) → sky. The key generation algorithm gets as input msk
and a value y ∈ Y. It outputs a secret key sky. Note that y is public given sky.

Dec(mpk, sky, ct) → m. The decryption algorithm gets as input sky and a
ciphertext ct. It outputs a message m.

Correctness. We require that for all (x, y) ∈ X × Y such that P(x, y) = 1 and
all m ∈ M,

Pr[ct ← Enc(mpk, x,m);Dec(sky, ct) = m)] = 1 − negl(n),

where the probability is taken over (mpk,msk) ← Setup(1n,X ,Y,M) and the
coins of Enc.

Predicate Encryption for Multi-dimensional Range Queries from Lattices 759

Security Model. For a stateful adversary A, we define the advantage function

AdvpeA (n) := Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β = β′ :

(x∗
0, x

∗
1) ← A(1λ);

β ←r {0, 1};

(mpk,msk) ← Setup(1n,X ,Y,M);

(m0,m1) ← AKeyGen(msk,·)(mpk);

ct ← Enc(mpk, xβ ,mβ);

β′ ← AKeyGen(msk,·)(ct)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies
P(x∗

0, y) = P(x∗
1, y) = 0 (that is, sky does not decrypt ct). A predicate encryption

scheme is selectively secure and weakly attribute-hiding1 if for all PPT adversaries
A, the advantage AdvpeA (n) is a negligible function in n.

3 Reductions Amongst Predicates

3.1 AND-OR-EQ Predicate

In this section we state our general predicate, and exhibit the reductions from
multi-dimensional subset queries and multi-dimensional range queries to the
latter. This general predicate is symmetric (c.f. Lemma 11), which will allow
us to obtain both ciphertext-policy and key-policy predicate encryption schemes
in Section 4.

Disjunction of Equality Queries. Here, Por-eq : Z
�
q × Z

�
q → {0, 1}, and

Por-eq(x,y) = 1 iff
�∨

i=1

(

xi = yi

)

.

We generalize the previous predicate to a multi-dimensional setting as follows
Pand-or-eq : Z

D×�
q × Z

D×�
q → {0, 1}, and:

Pand-or-eq(X,Y) = 1 iff
D∧

i=1

�∨

j=1

(

Xi,j = Yi,j

)

We impose a so-called “at most one” promise on the input domains of the
predicate for our predicate encryption scheme in Section 4. This technical
property is required for our lattice-based instantiations (see Remark 3 in
Section 4) and also implicitly used in prior pairing-based ones. We define

1 In an adaptively secure scheme, the adversary specifies (x∗
0, x

∗
1) after seeing mpk and

making key queries. In a fully attribute-hiding scheme, the adversary is allowed key
queries y for which P(x∗

0, y) = P(x∗
1, y) = 1, in which case the challenge messages

m0, m1 must be equal.

760 R. Gay et al.

the predicate Pat most one : Z
�
q × Z

�
q → {0, 1} and its multi-dimensional variant

Pand at most one : Z
D×�
q × Z

D×�
q → {0, 1} by:

Pat most one(x,y) = 1 iff there exists at most one j ∈ [�], xj = yj

Pand at most one(X,Y) = 1 iff ∀i ∈ [D], there exists at most one j ∈ [�] s.t. Xi,j = Yi,j

We require that the input domains X ,Y ⊆ Z
D×�
q for Pand-or-eq satisfy the “at

most one” promise, namely for all X ∈ X ,Y ∈ Y,

Pand at most one(X,Y) = 1

Indeed, the promise is satisfied by all of our reductions in this section.

3.2 Multi-dimensional Subset Queries

Predicate (ciphertext-policy). Here, Pcp-subset : {0, 1}D×T × [T]D → {0, 1}
and

Pcp-subset(W, z) = 1 iff
D∧

i=1

Wi,zi
= 1

For each dimension i ∈ [D], the i’th row of W is the characteristic vector of a
subset of [T].

Reducing Pcp-subset to Pand-or-eq. We map (W, z) ∈ {0, 1}D×T × [T]D to
(W̃, Z̃) ∈ Z

D×T
q × Z

D×T
q where

– W̃ is the matrix W where zeros are replaced by −1, that is, for all (i, j) ∈
[D] × [T], W̃i,j = 1 if Wi,j = 1, and W̃i,j = −1 otherwise. (We need this
modification in order to satisfy the “at most one” promise.)

– Z̃ ∈ Z
D×T
q denotes the matrix whose i’th row is ezi

∈ Z
1×T
q , where

(e1, . . . , eT) denotes the standard basis of Z
1×T .

For instance, we map ((0, 1, 1), 2) to ((−1, 1, 1), (0, 1, 0)).
We can check that the following lemma holds:

Lemma 7 (Pcp-subset to Pand-or-eq) Let (W, z) ∈ {0, 1}D×T × [T]D, and
(W̃, Z̃) ∈ Z

D×T
q × Z

D×T
q defined as above.

– Pcp-subset(W, z) = 1 iff Pand-or-eq(W̃, Z̃) = 1
– Pand at most one(W̃, Z̃) = 1

3.3 Multi-dimensional Range Queries

Predicate (key-policy). Here, Pkp-range : [T]D × I(T)D → {0, 1} and

Pkp-range(z, I) = 1 iff
D∧

j=1

(zj ∈ Ij), where I(T) denotes the set of all intervals

of [T].
We show how to reduce Pkp-range to Pand-or-eq, which involves rewriting

points and intervals as vectors.

Predicate Encryption for Multi-dimensional Range Queries from Lattices 761

Writing Points and Intervals as Vectors. For simplicity, we write t for
�log T �. In order to realize the “at most one” promise, we need to decompose
intervals into disjoint sub-intervals where each sub-interval contains all the points
with some fixed prefix, e.g. [010, 110] can be written as [010, 011] ∪ [100, 101] ∪
[110, 110]. Indeed, any interval in [T] can be partitioned into at most 2t disjoint
sub-intervals with this property [10, Lemma 10.10].2 In addition, we can ensure
that there are exactly 2t sub-intervals by padding with empty intervals ε (using
empty intervals ensures that no point ever lies in more than one of these 2t
sub-intervals).

Lemma 8 (interval to vector [10]). There is an efficient PPT algorithm
IntVec that on input I ⊆ [T] outputs (w1, w2, . . . , w2t) ∈

(

{0, 1}∗ ∪ {ε}
)2t, where

t := �log T �, with the following properties:
– for each i = 1, . . . , t, we have w2i−1, w2i ∈ {0, 1}i ∪ {ε};
– for all z ∈ [T], we have z ∈ I iff one of w1, . . . , w2t is a prefix of z;
– for all z ∈ [T], at most one of w1, . . . , w2t is a prefix of z.

Here, ε is not a prefix of any string.

For instance, IntVec([010, 110]) = (ε, ε, 01, 10, 110, ε).

Remark 2 (Hashing bit strings into Zq). We map {0, 1}t∪{ε} where t := �log T �
into Zq in the straight-forward way, which requires that q ≥ T +1. We can handle
also larger T by using matrices over Zq à la [1, Section 5].

Now we give the description of algorithm PtVec, used to map points to vectors.

PtVec: On input z ∈ [T], output (v1, . . . , v2t) ∈ Z
2t
q , where v2i−1 = v2i :=

i-bit prefix of z, i = 1, . . . , t.
For instance, PtVec(011) = (0, 0, 01, 01, 011, 011).

Lemma 9. For any point z ∈ [T] and any interval I ⊆ [T],

– z ∈ I iff Por-eq(PtVec(z), IntVec(I)) = 1
– Pat most one(PtVec(z), IntVec(I)) = 1.

Lemma 9 follows readily from Lemma 8.

Reducing Pkp-range to Pand-or-eq. We map (z, I) to (PtVecD(z), IntVecD(I))
where

– PtVecD(z) ∈ Z
D×2t
q denotes the matrix whose i’th row is PtVec(zi)

– IntVecD(I) ∈ Z
D×2t
q denotes the matrix whose j’th row is IntVec(Ij)

Lemma 10 (Pkp-range to Pand-or-eq). For all z ∈ [T]D and I ⊆ (I[T])D,

– Pkp-range(z, I) = 1 iff Pand-or-eq(PtVecD(z), IntVecD(I)) = 1
– Pand at most one(PtVecD(z), IntVecD(I)) = 1

Lemma 10 follows readily from Lemma 9, applied to each dimension i ∈ [D].
2 See http://en.wikipedia.org/wiki/Segment tree for a visualization.

http://en.wikipedia.org/wiki/Segment_tree

762 R. Gay et al.

Predicate (ciphertext-policy). Here, Pcp-range : I(T)D × [T]D → {0, 1} and

Pcp-range(I, z) = 1 iff
D∧

j=1

(

zj ∈ Ij

)

The predicates Por-eq and Pat most one are symmetric:

Lemma 11 (Symmetry of Por-eq and Pat most one). For all x,y ∈ Z
�
q, we

have:

– Por-eq(x,y) = 1 ⇐⇒ Por-eq(y,x) = 1
– Pat most one(x,y) = 1 ⇐⇒ Pat most one(y,x) = 1

Thanks to this symmetry, we can reduce Pcp-range to Pand-or-eq in the same way
we did for Pkp-range.

Reducing Pcp-range to Pand-or-eq. Following the previous reduction, we map
(I, z) to (IntVecD(I),PtVecD(z)).

Lemma 12 (Pcp-range to Pand-or-eq). For all I ⊆ (I[T])D and z ∈ [T]D,

– Pcp-range(I, z) = 1 iff Pand-or-eq(IntVecD(I),PtVecD(z)) = 1
– Pand at most one(IntVecD(I),PtVecD(z)) = 1.

Lemma 12 follows from Lemma 10 and Lemma 11.

4 Predicate Encryption for AND-OR-EQ

Here we describe our predicate encryption scheme for the AND-OR-EQ predicate
defined in Section 3.1, selectively secure and lattice-based. Recall that Pand-or-eq :
Z

D×�
q × Z

D×�
q → {0, 1}, and

Pand-or-eq(X,Y) = 1 iff
D∧

i=1

�∨

j=1

(

Xi,j = Yi,j

)

The security of our scheme relies on the fact the ciphertext attributes and secret
key predicates come from a restricted domain X ,Y ⊆ Z

D×�
q satisfying the “at

most one” promise, namely for all X ∈ X ,Y ∈ Y,

Pand at most one(X,Y) = 1

Indeed, the promise is satisfied by all of our reductions in Section 3.1.

Overview. We begin with the special case D = 1. Given an attribute matrix
x ∈ Z

1×�
q , the ciphertext is an LWE sample corresponding to a matrix of the

form

Predicate Encryption for Multi-dimensional Range Queries from Lattices 763

[

A‖A1 + x1G‖ · · · ‖A� + x�G
]

where A, the Ai’s and G are publicly known matrices, and the message is
masked using an LWE sample corresponding to a public matrix P. The secret
key corresponding to y ∈ Z

1×�
q is a collection of � short matrices U1, . . . ,U�

such that for all j ∈ [�],
[

A‖Aj + yjG
]

Uj = P

To understand how decryption works, let us first suppose that there exists a
unique j such that xj = yj and that the decryptor knows j; then, the decryptor
can use Uj to recover the plaintext. However, since the decryptor does not know
x, he will try to decrypt the ciphertext using each of U1, . . . ,U�. We will also
need to pad the plaintext with redundant zeros so that the decryptor can identify
the correct plaintext.

To establish security with respect to some selective challenge x∗, we will
need to simulate secret keys for all y such that x∗

j �= yj for all j ∈ [�]. We
can then simulate Uj using an “all-but-one” simulation (while puncturing at
x∗

j) exactly as in prior IBE schemes in [1]. In order to establish weak attribute-
hiding, we adopt a similar strategy to that for inner product encryption in [4]:
roughly speaking, we will show that the challenge ciphertext is computational
indistinguishable from an encryption of a random plaintext message under a
random attribute x.

Higher Dimensions. Given an attribute matrix X ∈ Z
D×�
q , the ciphertext is

an LWE sample corresponding to a matrix of the form
[

A‖A1,1 + X1,1G‖ · · · ‖A1,� + X1,�G‖A2,1 + X2,1G‖ · · · ‖AD,� + XD,�G
]

The secret key corresponding to Y ∈ Z
D×�
q is a collection of D · � short matrices

U1,1, . . . ,UD,� such that for i ∈ [D], j ∈ [�]:
[

A‖Ai,j + Yi,jG
]

Ui,j = Pi

where P1, . . . ,PD is an additive secret-sharing of P.
For correctness, observe that if there exist indices (j1, . . . , jD) ∈ [�]D such

that for all i ∈ [D] Xi,ji
= Yi,ji

then the decryptor can use U1,j1 , · · · ,UD,jD

to recover the plaintext. As with the case D = 1, the decryptor will need to
enumerate over all (j1, . . . , jD) ∈ [�]D.

To simulate secret keys for Y with respect to some selective challenge X∗,
we first fix i∗ such that X∗

i∗,j �= Yi∗,j for all j ∈ [�]. Without loss of generality,
suppose i∗ = 1, that is, for all j ∈ [�],X∗

1,j �= Y1,j .
Using the ”at most one” promise on X and Y, we know that for all i ≥ 2, we

have X∗
i,j = Yi,j for at most one j ∈ [�], which we call ji. That is, there exists a

vector of indices (j2, . . . , jD) ∈ [�]D−1 such that for all i ≥ 2 and all j �= ji, we
have X∗

i,j �= Yi,j . We then proceed as follows:
– Sample random short matrices U2,j2 , . . . ,UD,jD

, which in turn determines
the shares P2, . . . ,PD.

764 R. Gay et al.

– Use an all-but-one simulation strategy to sample the short matrices Ui,j , for
all i ≥ 2, and j �= ji.

– Define P1 := P −
∑D

i=2 Pi and use an all-but-one simulation strategy to
sample the remaining short matrices in the secret key.
Note that the construction relies crucially on the “at most one” promise on

X and Y. In fact, the scheme given in Section 4.1 is insecure if this promise
is not fulfilled, that is, there is a PPT adversary that wins the game defined in
Section 2.3 with non negligible advantage. The attack goes as follows. Suppose
that the adversary holds a secret key for Y ∈ Z

D×�
q such that Pand-or-eq(X,Y) =

0 and Pand at most one(X,Y) = 0. Since Pand at most one(X,Y) = 0, for some
dimension i ∈ [D], there are at least two indices j1, j2 ∈ [�] such that Xi,j1 = Yi,j1

and Xi,j2 = Yi,j2 , and therefore, both short matrices Ui,j1 and Ui,j2 allow to
recover the same LWE sample corresponding to the matrix Pi, up to some error.
When Xi,j2 �= Yi,j2 however, Ui,j2 with the corresponding (i, j2) component
of the ciphertext only gives a uniformly random vector. Therefore, the fact
that Ui,j1 and Ui,j2 both decrypts to (almost) the same LWE sample tells the
adversary that Xi,j1 = Yi,j1 and Xi,j2 = Yi,j2 with high probability, contradicting
the fact that the scheme is weakly attribute hiding. This induces an attack whose
running time is polynomial in the security parameter.

4.1 Construction

Let n ∈ N be the security parameter. Let the attribute space X and predicate
space Y be subsets of Z

D×�
q satisfying the “at most one” promise. Let q = q(n)

, m = m(n, �,D) and χmax = χmax(n, q, �,D) be positive integers. Let σ =
σ(n, q, �,D) be a Gaussian parameter.

Setup(1n,X ,Y,M): On inputs the security parameter n, X ⊆ Z
D×�
q , Y ⊆ Z

D×�
q

and M := {0, 1}k, do:

– Pick (A,TA) ← TrapGen(1n, 1m, q).
– For all i ∈ [D] and all j ∈ [�], pick Ai,j ←r Z

n×m
q .

– Pick P ←r Z
n×(k+n)
q .

– Compute (G,TG) as defined in Lemma 4.
– Output mpk := (P,A,A1,1, . . . ,AD,�,G,TG) and msk := TA

Enc(mpk,X,b): On input mpk, X ∈ X and b ∈ {0, 1}k, do:
– Pick s ←r Z

n
q , e ←r χm, and compute c0 := s�A + e�.

– For all i ∈ [D] and all j ∈ [�], do:
• Pick Ri,j ← {−1, 1}m×m.
• Compute ci,j := s�

(

Ai,j + Xi,jG
)

+ e�Ri,j .
– Set b′ := (b, 0, . . . , 0) ∈ {0, 1}k+n, pick e′ ←r χk+n, and compute cf :=

s�P + e′� + b′� · 	q/2
.
– Output ct := (c0, c1,1, . . . , cD,�, cf)

KeyGen(mpk,msk,Y): On input the public parameters mpk, the master secret
key msk, and a predicate matrix Y ∈ Y, do:

Predicate Encryption for Multi-dimensional Range Queries from Lattices 765

– Secret share P as {Pi, i ∈ [D]}, such that
D∑

i=1

Pi = P.

– For all i ∈ [D] and all j ∈ [�] :
Sample a short matrix Ui,j ∈ Z

2m×(k+n)
q such that

[

A‖Ai,j +Yi,jG
]

Ui,j =
Pi using
RightSample(A,TA,Ai,j + Yi,jG,Pi, σ) with σ = O(

√
n log q).

– output the secret key skY = (U1,1, . . . ,UD,�)

Dec(mpk, skY, ct): On input the public parameters mpk, a secret key skY =
(U1,1, . . . ,UD,�) for a predicate matrix Y, and a ciphertext ct = (c0, c1,1, . . . ,
cD,�, cf), do:

– For all (j1, . . . , jD) ∈ [�]D, compute d := cf −
D∑

i=1

[

c0‖ci,ji

]

Ui,ji
mod q.

– If
⌊

d
q/2

⌉

∈ {0, 1}k × 0n, then output the first k bits of
⌊

d
q/2

⌉

. For any
z ∈ [0, 1], we denote by 	z� the closest integer to z.

– Otherwise, abort.

Running Time. The running times are:
– O(D · � · poly(n)) for encryption;
– O(D · � · poly(n)) for key generation;
– O(�D · poly(n)) for decryption.

The above numbers take into account matrix multiplications and additions.
When done naively, the above Dec algorithm takes O(D · �D · poly(n)) time.
However, if one saves the intermediate results

[

c0‖ci,j

]

Ui,j for all (i, j) ∈ [D] ×
[�], one can do it in O(�D · poly(n)) time.

4.2 Correctness

Lemma 13. Suppose that χmax is such that

χmax ≤ q/4 ·
(

1 + D · (1 + 20
√

m) · s · 2m
)−1

where s = σ · ω(
√

log n). Let (X,Y) ∈ X × Y such that Pand-or-eq(X,Y) = 1.
Let skY = (U1,1, . . . ,UD,�) ← KeyGen(mpk,msk,Y)
and ct = (c0, . . . , cf) ← Enc(mpk,X,b)
With overwhelming probability in n, Dec does not abort and outputs b.

Proof. Recall that Dec computes d for all (j1, . . . , jD) ∈
[

�
]D. We consider two

cases:
Case 1: ∀i, Xi,ji

= Yi,ji
. We show that with overwhelming probability in n,

⌊
d

q/2

⌉

= (b, 0, . . . , 0) := b′.
For all i ∈ [D],

[

A||Ai,ji
+ Xi,ji

G
]

Ui,ji
= Pi thus

D∑

i=1

[

A||Ai,ji
+ Xi,ji

G
]

Ui,ji
= P

766 R. Gay et al.

This implies

D∑

i=1

[c0‖ci,ji

]

Ui,ji
≈

D∑

i=1

s�
[

A||Ai,ji
+ Xi,ji

G
]

Ui,ji
= s�P ≈ cf − b′� · 	q/2

and thus d ≈ b′ · 	q/2
. To obtain
⌊

d
q/2

⌉

= b′, it suffices to bound the error
term and show that

∥
∥
∥e′� −

D∑

i=1

(e�||e�Ri,ji
)Ui,ji

∥
∥
∥

∞
< q/4.

We know that ‖e′�‖∞ ≤ χmax. In addition, for all i ∈ [D],
∥
∥
∥(e�||e�Ri,ji

)Ui,ji

∥
∥
∥

∞
≤

∥
∥
∥(e�||e�Ri,ji

)
∥
∥
∥·
∥
∥
∥Ui,ji

∥
∥
∥ ≤

(

‖e‖+‖Ri,ji
‖2·‖e‖

)

·
∥
∥
∥Ui,ji

∥
∥
∥

By Lemma 6, ‖Ui,ji
‖ ≤ σ ·ω(

√
log n)·

√
2m and by Lemma 2, ‖Ri,ji

‖2 ≤ 20
√

m.
Combining these bounds, we obtain

∥
∥
∥e′� −

D∑

i=1

(e�||e�Ri,ji
)Ui,ji

∥
∥
∥

∞
≤ χmax(1 + D(1 + 20

√
m) · σ · ω(

√

log m)
√

2m)

We will set the parameters in Section 4.4 so that the quantity on the right is
bounded by q/4.

Case 2: ∃i∗,Xi∗,ji∗ �= Yi∗,ji∗ . We show that the computed value d has a
distribution which is statistically close to uniform, and therefore the probability
that the last n bits of

⌊
d

q/2

⌉

are all 0 is negligible in n.
By an analogous calculation to that in Case 1, we have:

D∑

i=1

[

A||Ai,ji
+ Xi,ji

G
]

Ui,ji
= P +

D∑

i=1

[0||(Xi,ji
− Yi,ji

)G
]

Ui,ji

We know that there exists some i∗ ∈ [D] such that Xi∗,ji∗ �= Yi∗,ji∗ , and we
focus on

[

0�||s�(Xi∗,ji∗ − Yi∗,ji∗)G
]

Ui∗,ji∗

By Remark 1, we know that the bottom part U2 ∈ Z
m×(k+n)
q of Ui∗,ji∗ is

sampled from D
Zm

q ,σ·ω(
√

log n). Therefore, since Xi∗,ji∗ − Yi∗,ji∗ �= 0 and G
is a full-rank matrix, by Lemma 5, we know that the distribution of GU2

is indistinguishable from uniform over Z
n×(k+n)
q and then, the entire sum is

indistinguishable from uniform over Z
k+n
q . Therefore,

d = cf −
D∑

i=1

[

c0||ci,ji

]

Ui,ji
mod q

is indistinguishable from uniform over Z
k+n
q , and the probability that the last

n bits of
⌊

d
q/2

⌉

are all 0 is negligible in n.

Predicate Encryption for Multi-dimensional Range Queries from Lattices 767

4.3 Proof of Security

Lemma 14. For any adversary A on the predicate encryption scheme, there
exists an adversary B on the LWE assumption whose running time is roughly
the same as that of A and such that

AdvpeA (n) ≤ Adv
dLWEn,m+n+k,q,χ

B + negl(n)

The proof follows via a series of games, analogous to those in [4]. We first define
several auxiliary algorithms for generating the simulated ciphertexts and secret
keys, upon which we can describe the games.

Auxiliary Algorithms. We introduce the following auxiliary algorithms:

S̃etup(1n,X ,Y,M,A,P,X∗): on a security parameter n, an attribute space
X ⊆ Z

D×�
q , a predicate space Y ⊆ Z

D×�
q satisfying the “at most one promise”,

a message space M := {0, 1}k, a matrix A ∈ Z
n×m
q , a matrix P ∈ Z

n×(k+n)
q

and the challenge attribute matrix X∗, do:
– Compute (G,TG) as defined in Lemma 4.
– For all i ∈ [D] and all j ∈ [�], pick Ri,j ← {−1, 1}m×m and set Ai,j :=

ARi,j − X∗
i,jG.

– Output mpk := (P,A,A1,1, . . . ,AD,�,G,TG) and
m̃sk := (X∗,R1,1, · · · ,RD,�,TA)

Ẽnc(mpk,b; m̃sk,d0,df): On input the public parameters mpk, a message b ∈
{0, 1}k, the master secret key m̃sk, and the extra inputs d0 ∈ Z

m
q , df ∈ Z

k+n
q

do:
– Set c0 := d�

0,
– For all i ∈ [D] and all j ∈ [�], compute ci,j := d�

0Ri,j ,
– Compute b′ := (b, 0, . . . , 0) ∈ {0, 1}k+n, and set cf := d�

f + b′�	q/2
.
– Output (c0, . . . , cf).

K̃eyGen(mpk, m̃sk,Y,X∗): On input the public parameters mpk, the master
secret key m̃sk, a predicate matrix Y and the challenge attribute matrix X∗

do:
– If P(X∗,Y) = 1, abort.
– Otherwise, since P(X∗,Y) = 0, there must exist a i∗ ∈ [D] such that for all

j ∈ [�], X∗
i∗,j �= Yi∗,j . By the “at most one” property, for all i ∈ [D], there

is at most one ji ∈ [�] such that X∗
i,ji

= Yi,ji
.

We proceed in three steps :

1. First, for all i ∈ [D] \ {i∗} we sample: Ui,ji
←r D

Z
2m×(k+n)
q ,σ·ω(

√
log n)

with σ = O(
√

n log q) and set

Pi :=
[

A||ARi,ji

]

Ui,ji
∈ Z

n×(k+n)
q

768 R. Gay et al.

2. Next, we set Pi∗ to be: Pi∗ := P −
∑

i
=i∗
Pi

3. We sample the remaining matrices as follows:

Ui,j ← LeftSample(A,Ri,j ,G, Yi,j − X∗
i,j ,Pi, σ).

This is possible because Yi,j − X∗
i,j �= 0, whenever i = i∗ or whenever

j �= ji.

– Output (U1,1, . . . ,UD,�).

Game Sequence. We present a series of games. We write Advxxx to denote the
advantage of A in Gamexxx.

– Game0: is the real security game, as defined in Section 2.3.
– Game1: same as Game0, except that the challenger runs

S̃etup(1n,X ,Y,M;A,P,X∗
β) and Ẽnc(mpk,bβ ; m̃sk, s�A+ e�, s�P+ e′�)

with (A,TA) ←r TrapGen(1n, 1m),P ←r Z
n×(k+n)
q , s ←r Z

n
q , e ←r χm,

and e′ ←r χk+n.

– Game2: same as Game1 except that the challenger runs K̃eyGen.
– Game3: same as Game2 except that the challenger runs

Ẽnc(mpk,bβ ; m̃sk,d0,df)

where d0 ←r Z
m
q and df ←r Z

k+n
q .

– Game4: is the same as Game3 except that the challenger runs KeyGen.

We show in the following lemmas that each pair of games (Gamei,Gamei+1) are
either statistically indistinguishable or computationally indistinguishable under
the decision-LWE assumption. Finally, we show in Lemma 19 that no information
is leaked about β is the last game Game4.

Lemma 15 (Game0 to Game1). For all m > (n + 1) log q + ω(log n), we have
|Adv0 − Adv1| = negl(n).

Proof. From Game0 to Game1, we switch from Setup,Enc to S̃etup, Ẽnc.
Note that the only difference between Game0 and Game1 is that for all i ∈ [D]

and j ∈ [�], the matrix Ai,j is set to be Ai,j ←r Z
n×m
q in Game0, whereas it

is set to be Ai,j := ARi,j − X∗
i,jG in Game1, where Ri,j ←r {−1, 1}m×m. The

matrix Ai,j only appears in the mpk and in the component ci,j = s�(Ai,j +
X∗

i,jG) + e�Ri,j of the ciphertext.
Therefore it suffices to show that the distribution of (A, e,Ai,j , e�Ri,j) in

Game0 and Game1 are statistically close, that is,

(A, e,Ai,j , e�Ri,j) ≈s (A, e,ARi,j − X∗
i,jG, e�Ri,j)

Predicate Encryption for Multi-dimensional Range Queries from Lattices 769

where Ai,j ←r Z
n×m
q , Ri,j ←r {−1, 1}m×m, and e ←r χm. Observe that

(A, e,Ai,j , e�Ri,j)
≡ (A, e,Ai,j − X∗

i,jG, e�Ri,j) since Ai,j ←r Z
n×m
q

≈s (A, e,ARi,j − X∗
i,jG, e�Ri,j) by Lemma 1

Lemma 16 (Game1 to Game2). |Adv1 − Adv2| = negl(n).

Proof. From Game1 to Game2, we switch from KeyGen to K̃eyGen. Therefore, it
suffices to show that for any predicate Y such that P(X∗,Y) = 0, the following
distributions are statistically close:

KeyGen(mpk,msk,Y) ≈s K̃eyGen(mpk, m̃sk,Y,X∗)

We write: Fi,j := (A‖Ai,j + Yi,jG) =
(

A‖ARi,j + (Yi,j − X∗
i,j)G

)

∈ Z
n×2m
q .

Since P(X∗,Y) = 0, we know that there must exist a i∗ ∈ [D] such that Yi∗,j �=
X∗

i∗,j for all j ∈ [�]. Because Pand at most one(X∗,Y) = 1, we know that for all
i ∈ [D], there is at most one ji ∈ [�] such that Yi,ij

= X∗
i,ij

. We proceed in three
steps:
1. First, we argue that the joint distribution {Pi,Ui,ji

: i ∈ [D], i �= i∗}
is statistically close in KeyGen and in K̃eyGen. This follows readily from
Lemma 5.

2. Next, we argue that the joint distribution {Pi : i ∈ [D]} is statistically close
in KeyGen and in K̃eyGen. This follows readily from secret sharing.

3. Finally, fix P1, . . . ,PD. We argue that the distribution of the remaining
matrices is statistically close in KeyGen and in K̃eyGen. This follows from
Lemma 6, which tells us that the output Ui,j of both RightSample in KeyGen

and LeftSample in K̃eyGen, are statistically close to D
Λ

Pi
q (Fi,j),σ·ω(

√
log n)

.

We can sample these Ui,j in K̃eyGen applying LeftSample because Yi,j −
X∗

i,j �= 0 whenever i = i∗ or whenever j �= ji.

Remark 3. Note that the ”at most one” promise is crucial here, because when
Yi,j − X∗

i,j = 0, we cannot use LeftSample to sample a short matrix Ui,j such
that

(

A‖ARi,j + (Yi,j − X∗
i,j)G

)

Ui,j = Pi. If there exists ”at most one” ji ∈ [�]
such that Yi,ji

−X∗
i,ji

= 0, we can sample a short matrix Ui,ji
from some discrete

Gaussian distribution, and set Pi to be Pi := (A‖ARi,j + 0 · G)Ui,j . Lemma
5 ensures that both Ui,j and Pi are correctly distributed. However, if there exist
at least 2 indices ji and j′

i ∈ [�] such that Yi,ji
− X∗

i,ji
= Yi,j′

i
− X∗

i,j′
i

= 0, then
there is more than one matrix that we cannot sample using LeftSample, and the
previous technique does not work anymore.

Lemma 17 (Game2 to Game3). There exists an adversary B whose running
time is roughly the same as that of A and such that

|Adv2 − Adv3| ≤ Adv
dLWEn,m+k+n,q,χ

B

770 R. Gay et al.

Note that only difference between Game2 and Game3 is that we switch the
distribution of the inputs (d0,dD+1) to Ẽnc from LWE instances to random
ones.

Proof. On input an LWE challenge

(A,P,d0,dD+1)

where A ←r Z
n×m
q and P ←r Z

n×(k+n)
q and (d0,dD+1) is either (s�A+e�, s�P+

e′�) or random, B simulates A and proceeds as follows:

– runs S̃etup(1n,X ,Y,M;A,P,X∗
β) as in Game2;

– answers A’s private key queries by using K̃eyGen as in Game2;
– runs Ẽnc(mpk,bβ ; m̃sk,d0,dD+1) to generate the challenge ciphertext;
– Finally, A guesses if it is interacting with a Game2 or a Game3 challenger. B

outputs A’s guess as the answer to the LWE challenge it is trying to solve.
When the LWE challenge is pseudorandom as in Definition 1, the adversary’s
view is as in Game2. When the LWE challenge is random the adversary’s view
is as in Game3. Therefore, B’s advantage in solving LWE is the same as A’s
advantage in distinguishing Game2 and Game3.

Lemma 18 (Game3 to Game4). |Adv3 − Adv4| = negl(n)

Proof. The differences between Game3 and Game4 are:
– In Game3, A ←r Z

n×m
q , and TA := ⊥, whereas in Game4, (A,TA) ←r

TrapGen(1n, 1m).

– In Game3, the challenger answers the adversary’s secret key using the K̃eyGen
algorithm, whereas he answers using the KeyGen algorithm in Game4.

The proof is the same as the one of Lemma 16, by symmetry of the games.

Lemma 19 (Game4). We have |Adv4 − 1/2| = negl(n)

Proof. In Game4, both the challenge ciphertext and the secret keys are indepen-
dent of β. Moreover, by Lemma 1, we know that for all i ∈ [D], for all j ∈ [�]
the two following distributions are statistically close

(A,Ai,j) ≈s (A,ARi,j − X∗
i,jG)

where Ai,j ←r Z
n×m
q , Ri,j ←r {−1, 1}m×m, and e ←r χm. Thus, the mpk does

not leak any information on X∗
β . Therefore, we get |Adv4 − 1/2| = negl(n).

4.4 Parameter Selection

– By Lemma 1, we need m > (n + 1) log q + ω(log n)
– By Lemma 3, and Lemma 4, we require m = Θ(n log q)
– By Lemma 5, we need m ≥ 2n log q

Predicate Encryption for Multi-dimensional Range Queries from Lattices 771

– By Lemma 6, we need σ = O(‖TA‖GS) and σ = O(‖TG‖GS · (1 + ‖R‖2))
where ‖TA‖GS = O(

√
n log q) and ‖R‖2 ≤ 20

√
m with overwhelming

probability in n, according to Lemma 3 and Lemma 5, respectively.
– For correctness of decryption, we require χmax ≤ q

4

(
1 + D(1 + 20

√
m) · s · 2m)−1,

where s = σ · ω(
√

log n).

Consequently we take m = Θ(n log q), σ = O
(√

n log q
)

and χmax = O
(

q

D(n log q)3/2s

)

where s = σ · ω(
√

log n).

4.5 Putting Everything Together for Multi-dimensional Range
Queries

When D denotes the number of dimensions and T the number of points in
each, combining the preceding scheme with the reduction in Section 3.3, we get
a scheme for Pcp-range and Pkp-range with ciphertexts and secret keys of sizes
O(D log T) and running times O(D · log T · poly(n)) for encryption and key
generation, O((log T)D · poly(n)) for decryption.

5 Shorter Ciphertexts and Secret Keys for
Multi-dimensional Subset Queries

The predicate encryption scheme for Pand-or-eq exhibited in Section 4 together
with the reductions presented in Section 3 lead to efficient predicate encryption
schemes for multi-dimensional subset queries.

Indeed, when D denotes the dimension and T denotes the size of the sets,
we obtain a predicate encryption scheme for Pkp-subset and Pcp-subset with
ciphertexts and secret keys of size O(D · T).

However, in this section we show how we can improve the size of the secret
keys and ciphertexts in order to obtain:

– ciphertexts of size O(D) for Pkp-subset

– secret keys of size O(D) for Pcp-subset

5.1 Multi-dimensional Subset Queries, Ciphertext Policy

We can obtain a predicate encryption scheme for Pcp-subset using the reduction to
Pand-or-eq defined in section 3.2, with secret keys of size O(D ·T). We reduce the
size of the secret keys size down to O(D) using the fact that in each dimension,
only one of the T matrices in the secret key is needed to decrypt.

On the one hand, for each dimension i, the reduction maps a point z ∈ [T]
into the vector ez. Therefore, for all j �= z the KeyGen algorithm generates a short
matrix Ui,j which is a preimage of some target for the matrix

[

A‖Ai,j + 0 ·G
]

.
On the other hand, a characteristic vector w ∈ {0, 1}T , is mapped into a

−1, 1 vector. Thus, for all j, the (i, j)’th component of the ciphertext is an LWE
sample corresponding to the matrix

[

Ai,j + ∗G
]

, ∗ ∈ {−1, 1}.

772 R. Gay et al.

Consequently, the matrices Ui,j for j �= z do not yield any useful information
to decrypt the ciphertext. Therefore, we can remove them, and still satisfies
correctness. Moreover, it is clear that removing parts of the secret key will not
affect the security. Removing these matrices, we obtain a scheme whose secret
keys have size O(D), and whose decryption algorithm runs in time O(D·poly(n))
(instead of O(TD · poly(n))).

Construction. Let n ∈ N be the security parameter and T , D positive integers.
Let q = q(n, T,D) , m = m(n, T,D) and χmax = χmax(n, T,D) be positive
integers, and σ = σ(n, T,D) be a Gaussian parameter.

Setup(1n,X ,Y,M): on a security parameter n, an attribute space X :=
{0, 1}D×T , a predicate space Y := Z

D
q , and a message space M := {0, 1}k,

do:

– Pick (A,TA) ← TrapGen(1n, 1m, q).
– Pick A1,1, . . . ,AD,T ←r Z

n×m
q .

– Pick P ←r Z
n×(k+n)
q .

– Compute (G,TG) as defined in Lemma 4.
– Output: mpk := (P,A,A1,1, . . . ,AD,T ,G,TG) and msk := TA

Enc(mpk,X,b): On input the public parameters mpk, an predicate matrix X ∈
X , and a message b ∈ {0, 1}k, do:

– Pick s ←r Z
n
q , e ←r χm, and compute c0 := s�A + e�.

– for all i ∈ [D] and all j ∈ [T], do:
• Pick Ri,j ← {−1, 1}n×m.
• Compute ci,j := s�

(

Ai,j + Xi,jG
)

+ e�Ri,j .
– Set b′ := (b, 0, . . . , 0) ∈ {0, 1}k+n, pick an e′ ←r χk+n, and compute
cf := s�P + e′� + b′� · 	q/2
.

– Output: ct := (c0, c1,1, . . . , cD,T , cf)

KeyGen(mpk,msk,y): On input the public parameters mpk, the master secret
key msk, and an attribute vector y ∈ Y, do:

– Secret share P as {Pi, i ∈ [D]}, such that
D∑

i=1

Pi = P.

– For all i ∈ [D]:
Sample a short matrix Ui ∈ Z

2m×(k+n)
q such that

[

A‖Ai,yi
+ G

]

Ui = Pi

using RightSample(A,TA,Ai,yi
+ G,Pi, σ) with σ = O(

√
n log q).

– Output the secret key skY = (U1, . . . ,UD).

Dec(mpk, sky, ct): On input the public parameters mpk, a secret key sky =
(U1, . . . ,UD) for an attribute vector y, and a ciphertext ct = (c0, c1,1, . . . , cD,T ,
cf), do:

– Compute d := cf −
∑D

i=1

[

c0‖ci,yi

]

Ui mod q.

– Output the first k bits of
⌊

d
q/2

⌉

. For any z ∈ [0, 1], we denote by 	z� the
closest integer of z.

Predicate Encryption for Multi-dimensional Range Queries from Lattices 773

Correctness and Security. Correctness and security proofs follow readily from
those of Pand-or-eq in Section 4.

5.2 Multi-dimensional Subset Queries, Key-Policy

The following scheme is similar (however simpler) to the one presented in
Section 4 for Pand-or-eq.

Overview. We begin with the special case D = 1. Given an attribute vector x ∈
[T]D, the ciphertext is an LWE sample corresponding to the matrix

[

A‖A1+xG
]

and the message is masked using an LWE sample corresponding to a public
matrix P. The secret key corresponding to Y ∈ {0, 1}T is a collection of T short
matrices U1, . . . ,UT such that:

[

A‖A1 + jG
]

Uj = P if Yj = 1
Uj = ⊥ if Yj = 0

For correctness, observe that if Yx = 1, then the decryptor can use Ux to
recover the plaintext. However, since the decryptor does not know x, he will try
to decrypt the ciphertext using each of U1, . . . ,UT . We will need to pad the
plaintext with redundant zeroes so that the decryptor can identify the correct
plaintext.

To establish security with respect to some selective challenge x∗, we will need
to simulate the secret keys for all Y such that Yx∗ = 0. Observe that for all
j = 1, . . . , T ,

Yj = 1 =⇒ j �= x∗

We can then simulate Uj using an “all-but-one” simulation (while puncturing at
x∗) exactly as in prior IBE schemes in [1]. In order to establish weak attribute-
hiding, we adopt a similar strategy to that for inner product encryption in [4].

Higher Dimensions. Given an attribute vector x ∈ [T]D, the ciphertext is an
LWE sample corresponding to the matrix

[

A‖A1 + x1G‖ · · · ‖AD + xDG
]

.
The secret key corresponding to Y ∈ {0, 1}D×T is a collection of D · T short

matrices U1,1, . . . ,UD,T such that for j = 1, . . . , T, i = 1, . . . , D:
[

A‖Ai + jG
]

Ui,j = Pi if Yi,j = 1
Ui,j = ⊥ if Yi,j = 0

where P1, . . . ,PD is an additive secret-sharing of P.
For correctness, observe that if Y1,x1 = Y2,x2 = . . . = YD,xD

= 1, then the
decryptor can use U1,x1 , · · · ,UD,xD

to recover the plaintext. As with the case
D = 1, the decryptor will need to enumerate over all x′ ∈ [T]D.

To simulate secret keys for Y with respect to some selective challenge x∗,
first we fix i∗ such that Yk,x∗

i∗ = 0. Without loss of generality, suppose i∗ = 1,
that is, Y1,x∗

1
= 0. We then proceed as follows:

774 R. Gay et al.

– Sample random short matrices U2,x∗
2
, . . . ,UD,x∗

D
, which in turn determines

the shares P2, . . . ,PD.
– Define P1 := P −

∑D
i=2 Pi and use an all-but-one simulation strategy to

sample the remaining short matrices in the secret key.

Construction. Let n ∈ N be the security parameter and T , D be positive
integers. Let q = q(n) , m = m(n, T,D) and χmax = χmax(n, q, T,D) be positive
integers, and σ = σ(n, q, T,D) be a Gaussian parameter.

Setup(1n,X ,Y,M): on n, X := Z
D
q , Y := {0, 1}D×T and M := {0, 1}k, do:

– Pick (A,TA) ← TrapGen(1n, 1m, q).
– Pick A1, . . . ,AD ←r Z

n×m
q .

– Pick P ←r Z
n×(k+n)
q .

– Compute (G,TG) as defined in Lemma 4.
– Output: mpk := (P,A,A1, . . . ,AD,G,TG) and msk := TA

Enc(mpk,x,b): On input mpk, x ∈ X and b ∈ {0, 1}k:
– Pick s ←r Z

n
q , e ←r χm, and compute c0 := s�A + e�.

– For all i ∈ [D]:
• Pick Ri ← {−1, 1}m×m.
• Compute ci := s�

(

Ai + xiG
)

+ e�Ri.
– Set b′ := (b, 0, . . . , 0) ∈ {0, 1}k+n, pick e′ ←r χk+n, and compute cf :=

s�P + e′� + b′� · 	q/2
.
– Output: ct := (c0, c1, . . . , cD, cf)

KeyGen(mpk,msk,Y): On input mpk, msk, and Y ∈ Y, do:

– Secret share P as {Pi, i ∈ [D]}, such that
D∑

i=1

Pi = P.

– For all i ∈ [D] and j ∈ [T]:

• If Yi,j = 1 then sample a short matrix Ui,j ∈ Z
2m×(k+n)
q such that

[

A‖Ai + jG
]

Ui,j = Pi

using RightSample(A,TA,Ai + jG,Pi, σ) with σ = O(
√

n log q).
• Otherwise set Ui,j :=⊥.

– Output the secret key skY = (U1,1, . . . ,UD,T).

Dec(mpk, skY, ct): On input the public parameters mpk, a secret key skY =
(U1,1, . . . ,UD,T) for a predicate matrix Y, and a ciphertext ct = (c0, c1, . . . , cD,
cf), do:

– For all x′ = (x′
1, . . . , x

′
D) ∈ [T]D, compute dx′ := cf −

D∑

i=1

[

c0‖ci

]

Ui,x′
i

mod q.

Predicate Encryption for Multi-dimensional Range Queries from Lattices 775

– If
⌊
dx′
q/2

⌉

∈ {0, 1}k × 0n for exactly one vector x′ ∈ [T]D, then output the

first k bits of
⌊
dx′
q/2

⌉

. For any z ∈ [0, 1], we denote by 	z� the closest integer
of z.

– Otherwise, abort.

We defer the proofs of correctness and security to the full version [12].

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension
and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)

3. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
Encryption for Threshold Functions (or, Fuzzy IBE) from Lattices. In: Public Key
Cryptography, pp. 280–297 (2012)

4. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner
Product Predicates from Learning with Errors. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

5. Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract).
In: STOC, pp. 99–108 (1996)

6. Alwen, J., Peikert, C.: Generating Shorter Bases for Hard Random Lattices. In:
STACS, pp. 75–86 (2009)

7. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully Key-Homomorphic Encryption,
Arithmetic Circuit ABE and Compact Garbled Circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014)

8. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

9. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate
a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

10. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry. Springer, Heidelberg (2000)

11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1), 97–
139 (2008)

12. Gay, R., Méaux, P., Wee, H.: Predicate Encryption for Multi-Dimensional Range
Queries from Lattices. Cryptology ePrint Archive, Report 2014/965 (2014), http://
eprint.iacr.org/

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

14. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for
circuits. In: STOC, pp. 545–554 (2013), also, Cryptology ePrint Archive, Report
2013/337

http://eprint.iacr.org/
http://eprint.iacr.org/

776 R. Gay et al.

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

16. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-
way functions. In: STOC 1989 Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, pp. 12–24. ACM, New York (1989)

17. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

18. Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster,
Smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 700–718. Springer, Heidelberg (2012)

19. Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC. pp. 84–93 (2005)

20. Shi, E., Bethencourt, J., Chan, H.T.H., Song, D.X., Perrig, A.: Multi-Dimensional
Range Query over Encrypted Data. In: IEEE Symposium on Security and Privacy,
pp. 350–364 (2007)

21. Xagawa, K.: Improved (Hierarchical) Inner-Product Encryption from Lattices. In:
Public Key Cryptography, pp. 235–252 (2013)

On the Practical Security of Inner Product
Functional Encryption

Shashank Agrawal1(B), Shweta Agrawal2, Saikrishna Badrinarayanan3,
Abishek Kumarasubramanian4, Manoj Prabhakaran1, and Amit Sahai3

1 University of Illinois Urbana-Champaign, Champaign, USA
{sagrawl2,mmp}@illinois.edu

2 Indian Institute of Technology Delhi, New Delhi, India
shweta@cse.iitd.ac.in

3 University of California Los Angeles, Los Angeles, USA
{saikrishna,sahai}@cs.ucla.edu

4 Google, California, USA
abishekk@cs.ucla.edu

Abstract. Functional Encryption (FE) is an exciting new paradigm
that extends the notion of public key encryption. In this work we explore
the security of Inner Product Functional Encryption schemes with the
goal of achieving the highest security against practically feasible attacks.
While there has been substantial research effort in defining meaningful
security models for FE, known definitions run into one of the following
difficulties – if general and strong, the definition can be shown impossible
to achieve, whereas achievable definitions necessarily restrict the usage
scenarios in which FE schemes can be deployed.

We argue that it is extremely hard to control the nature of usage
scenarios that may arise in practice. Any cryptographic scheme may be
deployed in an arbitrarily complex environment and it is vital to have
meaningful security guarantees for general scenarios. Hence, in this work,
we examine whether it is possible to analyze the security of FE in a
wider variety of usage scenarios, but with respect to a meaningful class
of adversarial attacks known to be possible in practice. Note that known
impossibilities necessitate that we must either restrict the usage scenar-
ios (as done in previous works), or the class of attacks (this work). We
study real world loss-of-secrecy attacks against Functional Encryption

S. Agrawal, M. Prabhakaran—Research supported in part by NSF grant 1228856.
S. Badrinarayanan—Part of the work was done while the author was at University of
Illinois Urbana-Champaign, supported by S. N. Bose scholarship.
A. Sahai—Research supported in part from a DARPA/ONR PROCEED award, NSF
Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a
Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. This material is based
upon work supported by the Defense Advanced Research Projects Agency through the
U.S. Office of Naval Research under Contract N00014-11- 1-0389. The views expressed
are those of the author and do not reflect the official policy or position of the Depart-
ment of Defense, the National Science Foundation, or the U.S. Government.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 777–798, 2015.
DOI: 10.1007/978-3-662-46447-2 35

778 S. Agrawal et al.

for Inner Product predicates constructed over elliptic curve groups. Our
main contributions are as follows:

– We capture a large variety of possible usage scenarios that may arise
in practice by providing a stronger, more general, intuitive frame-
work that supports function privacy in addition to data privacy, and
a separate encryption key in addition to public key and master secret
key. These generalizations allow our framework to capture program
obfuscation as a special case of functional encryption, and allows
for a separation between users that encrypt data, access data and
produce secret keys.

– We note that the landscape of attacks over pairing-friendly elliptic
curves have been the subject of extensive research and there now
exist constructions of pairing-friendly elliptic curves where the com-
plexity of all known non-generic attacks is (far) greater than the
complexity of generic attacks. Thus, by appropriate choice of the
underlying elliptic curve, we can capture all known practically feasi-
ble attacks on secrecy by restricting our attention to generic attacks.

– We construct a new inner product FE scheme using prime order
groups and show it secure under our new, hitherto strongest known
framework in the generic group model, thus ruling out all generic
attacks in arbitrarily complex real world environments. Since our
construction is over prime order groups, we rule out factoring attacks
that typically force higher security parameters. Our concrete-analysis
proofs provide guidance on the size of elliptic curve groups that are
needed for explicit complexity bounds on the attacker.

Keywords: Functional Encryption · Practical security · Pairing based
cryptography · Inner-product encryption · Generic attacks · Simulation
based security

1 Introduction

Functional Encryption [44,45] (FE) is an exciting new paradigm that generalizes
public key encryption. In functional encryption, each decryption key corresponds
to a specific function. When the holder of a decryption key for the function f
gets an encryption of a message m, the only thing his key allows him to learn is
f(m), but nothing more.

Classic results in the area focused on constructing FE for restricted classes
of functions – point functions or identity based encryption (IBE) [12,17,21,
46] [3,4,20,29] threshold functions [45], membership checking [16], boolean for-
mulas [11,35,39], inner product functions [5,36,39] and more recently, even
regular languages [49]. Recent constructions of FE support general functions:
Gorbunov et al. [34] and Garg et al. [27] provided the first constructions for an
important subclass of FE called “public index FE” (also known as “attribute
based encryption”) for all circuits, Goldwasser et al. [32] constructed succinct
simulation-secure single-key FE scheme for all circuits. In a breakthrough result,
Garg et al. [26] constructed indistinguishability-secure multi-key FE schemes for

On the Practical Security of Inner Product Functional Encryption 779

all circuits. Goldwasser et al. and Ananth et al. [7,31] constructed FE for Turing
machines. Recently, Functional Encryption has even been generalized to multi-
input functional encryption [30].

Alongside ever-more-sophisticated constructions, there has been significant
work in defining the right security model for FE. Boneh, Sahai and Waters [15]
and O’Neill [43] proposed definitional frameworks to study Functional Encryp-
tion in its general form. These works discussed the subtleties involved in defining
a security model for FE that captures meaningful real world security. Since then
there has been considerable research focus on understanding what security means
for FE and whether it can be achieved [6,9,10,15,19,43]. The strongest, most
intuitive notions of security turned out to be impossible to realize theoretically,
while weaker notions restricted the usage scenarios in which FE schemes could
be deployed (more on this below).

Security of Functional Encryption in practice. In this work we explore the secu-
rity of Functional Encryption schemes from a practical standpoint, with the goal
of trying to achieve maximum security against all practically feasible attacks.
While there has been considerable progress in defining meaningful security mod-
els for FE, existing definitions do not capture a number of real world usage
scenarios that will likely arise in practice. However, it is essential to understand
how Functional Encryption systems behave in complex real world environments,
since this is inevitable in the future of FE. Towards this end, we examine security
features that we believe are desirable in practice, and discuss whether these can
be achieved.

– Can we hide the function? Consider the application of keyword searching on
encrypted data, where the keywords being searched for are sensitive and must
remain hidden. This scenario is well motivated in practice; for example the
FBI might recruit untrusted server farms to perform searches on confidential
encrypted data, but desire not to reveal the words being searched. Can FE
schemes achieve this?

– Can we limit what the adversary learns to only the function’s output? Intu-
itively, a functional encryption scheme should only reveal to a decryptor the
function output, and nothing more. For example, if the function has some
computational hiding properties, can we guarantee that the FE scheme does
not leak any additional information beyond the function output?

– Can an adversary break FE schemes where it can ask for keys after receiving
ciphertexts? In real world applications, it is very likely that an adversary can
receive authorized decryption keys even after it obtains the ciphertext that
it is trying to break. For example, in searchable encryption, the decryption
key corresponding to a search would only be given out after the encrypted
database is publicly available. Similarly in Identity Based Encryption, a user
may receive an email encrypted with his identity before he obtains the cor-
responding secret key. Can one guarantee that an attacker who obtains an
arbitrary interleaving of ciphertexts and keys, can learn nothing beyond the
legitimate function values?

780 S. Agrawal et al.

None of the existing security definitions for FE [6,9,10,15,43] provide comprehen-
sive guarantees against all the above usage scenarios. Below, we discuss why this
is the case, and examine alternate approaches to providing meaningful security
guarantees against a wide range of practical attacks, in all the above scenarios.

Recap of security definitions. Before we discuss our approach, it will be useful
to recap existing definitions of security and discuss their restrictions. Known
definitions of security for FE may be divided into two broad classes: Indistin-
guishability (IND) based or Simulation (SIM) based. Indistinguishability based
security stipulates that it is infeasible to distinguish encryptions of any two
messages, without getting a secret key that decrypts the ciphertexts to dis-
tinct values; simulation-based security stipulates that there exists an efficient
simulator that can simulate the view of the adversary, given only the function
evaluated on messages and keys. Both of these notions can be further classified
as follows: [43] described the divide between adaptive (AD) versus non-adaptive
(NA) which captures whether the adversary’s queries to the key derivation oracle
may or may not depend on the challenge ciphertext; and [33] described the divide
between one versus many, which depends on whether the adversary receives a
single or multiple challenge ciphertexts. Thus, existing definitions of security
belong to the class {1,many} × {NA,AD} × {IND,SIM}.

Standard model woes. Unfortunately, none of the above definitions capture secu-
rity in all the usage scenarios discussed above. For example, Boneh et al. and
O’Neill [15,43] showed that IND based definitions do not capture scenarios where
it is required that the user learn only the output of the FE function, for eg.,
when the function hides something computationally. To get around this, [15,43]
proposed SIM based definitions that study FE in the “ideal world-real world”
paradigm. However, the world of SIM security for FE has been plagued with
impossibilities of efficient simulation. Moreover, even the strongest known SIM
based definitions (many-AD-SIM) do not capture function hiding. Even disre-
garding function hiding, [15] showed that many-AD-SIM is impossible even for
very simple functionalities. A weakening of AD-SIM, namely NA-SIM [43] does
not capture scenarios where users may obtain keys after obtaining new third-
party-generated ciphertexts. Despite this severe restriction on usage, NA-SIM
was also shown to be impossible [6], seemingly ruling out security for even those
usage scenarios that are captured.

Does this mean nothing can be said about real world security of FE in sce-
narios not captured by definitions or ruled out by impossibilities for simula-
tion? Given that strong, intuitive definitions capturing real world scenarios are
unachievable, are practitioners doomed to make do with the restricted usage
scenarios offered by IND based security?

There seem to be two complementary directions forward. The first is to seek
notions of security “in-between” IND and SIM that are achievable, thus provid-
ing guarantees for a restricted (but larger than IND) class of usage scenarios
against all efficient attackers. Indeed, there is already research effort pursuing
this agenda [2,6,9]. However, it is extremely hard (if not impossible) to control

On the Practical Security of Inner Product Functional Encryption 781

the nature of usage scenarios that arise in practice. A second direction is to
examine whether it is possible to address as many usage scenarios as we can,
but restrict ourselves to analyzing security only against classes of attacks that
are known to be practically feasible. This is the approach we take in this work.

In this work we study the practical security of Functional Encryption for
Inner Product predicates, which is the state of the art for general FE [5,36,39].
However, we believe that the ideas developed in this work will be applicable to
all FE schemes that are built from pairings on elliptic curves, which captures
the majority of known FE constructions [11,12,17,35,36,39,45,49].

Real world attacks on elliptic curve based FE. The impossibilities exhibited by
[6,15] work by arguing that there exist scenarios which preclude existence of
a simulator by information theoretic arguments. However, non-existence of a
simulator does not imply real world attacks in the sense of distinguishing between
ciphertexts or recovering any useful information about the message or the key.
Arguably, attacks that cause actual loss of secrecy are the attacks that we care
about in practice, and this is the class of attacks we consider in this work.

For pairing friendly elliptic curves that are used for FE constructions, there
has been extensive research effort studying practically feasible attacks. Attacks
can be of two kinds: those that respect the algebraic structure of the underlying
groups, which are called generic attacks, and those that do not, or non-generic
attacks. Generic attacks are described as algorithms that act oblivious of partic-
ular group representations. Due to its importance and wide applicability, much
research effort has been focused on studying the complexity of generic and non-
generic attacks on pairing-friendly elliptic curves. By now, there is a long line
of work [8,22–24] focused on constructing pairing friendly elliptic curves where
the complexity of all known non-generic attacks is extremely high. If such ellip-
tic curves are used to build cryptographic schemes, there is strong heuristic
evidence that the only successful practically feasible attacks will be generic in
nature. We stress that we will work with elliptic curve groups of prime order,
and so factoring-based attacks will not be relevant.

A well known mathematical model to study generic attacks is the Generic
Group Model (GGM) [40,48]. In the GGM, all algorithms obtain access to ele-
ments of the group via random “handles” (of sufficient length) and remain
unaware of their actual representations. The GGM has a strong track record of
usefulness; indeed, even notable critics of provable security, Koblitz and Menezes,
despite their criticisms, admit that the generic group model has been unreason-
ably successful at resisting attack [37].

Our Results. We investigate the security of inner product FE in the generic
group model under a new strong framework for security, that captures all the
usage scenarios discussed above simultaneously. This rules out a large class of
attacks – namely arbitrary generic attacks – against the scheme deployed in
an arbitrary usage environment. We construct a new inner product FE scheme
based on prime order elliptic curve groups. Our results may be summarized as
follows.

782 S. Agrawal et al.

– Capturing arbitrary usage scenarios: We begin by providing a strong, simple
and intuitive framework for security which captures all usage scenarios dis-
cussed above. Our framework captures function hiding in addition to data
hiding; thus it guarantees that CTx and SKf reveal no information about
either x or f beyond what is revealed by f(x). Generalized this way, our
framework can be seen to subsume program obfuscation. We also introduce
the idea of having a separate encryption key in the context of Functional
Encryption. This setting lies between public and symmetric key functional
encryption, in that while the encryption key is not publicly known to all
users, it is also not the same as the master secret key used for generating
secret keys for users in the system. This allows for a division between the peo-
ple that create encryptions and the people that issue secret keys. We believe
this setting is well motivated in the real world, since it is often the case that
there is a hierarchy that separates the people that create encrypted data
and people that access it. A real-world example would be an FBI encrypted
database where police officers can be granted access to parts of the database,
but only FBI personnel can add to the database.

– Resisting generic attacks: We show that our inner product FE scheme is
secure under our strong framework in the Generic Group Model, resolving
the problem left open by [15] and [9]. We obtain unconditional statistical
security for our scheme under our framework in the GGM. Our positive
results also translate to the setting of obfuscation, achieving obfuscation for
hyperplane membership secure against generic attacks.

– Concrete security analysis: Our security analysis is concrete, and as a result
we can show exactly what parameters are needed to (provably) achieve secu-
rity against attackers with different computational resources. For example,
we show that with a pairing-friendly elliptic curve group whose order is a 222-
bit prime, an attacker who is restricted to 280 generic computations, breaks
our scheme with at most 2−60 probability of success. Additional security
calculations are provided in Table 1.

Table 1. The table entries contain the bit length of security parameter to achieve the
corresponding level of security

Adversary Runtime Success Probability Required Prime Group Order (bit-length)

280 2−60 222 bits

280 2−80 242 bits

2100 2−80 282 bits

2128 2−80 338 bits

2128 2−128 386 bits

Our perspective. By showing that our strong security framework is realizable
against all generic attacks, we are providing strong evidence of real-world security
even when the generic model is instantiated in a heuristic manner – in our case
with a suitably chosen pairing-friendly elliptic curve group. Much care and study

On the Practical Security of Inner Product Functional Encryption 783

is required for how, what, and when security is preserved in such instantiations
– indeed this is a very active and important area of research in our community
for the Random Oracle Model. We believe that guarantees obtained by such
analysis are extremely useful in practice. For example, consider the example
of an IBE used in practice, say in a large organization [1]. Suppose the public
parameters are published, and some user creates and publishes 2n encryptions
for users who have yet to obtain their secret keys. Now, if n out of 2n users are
chosen in some arbitrary, ciphertext-dependent way, and these users obtain their
keys, are the remaining n encryptions secure? Simulation based definitions are
the only definitions we know that capture security of the IBE in such scenarios,
but it was shown by [15] that there cannot exist a simulator for many-AD-SIM
security of IBE. On the positive side, [15] also showed that IBE does satisfy
many-AD-SIM in the Random Oracle Model. We believe that this is evidence
that IBEs indeed provide practical security in scenarios such as the above, even
despite the impossibility of simulation in this scenario.

We do caution that care needs to be exercised in understanding the require-
ments of any application of FE, and there may be applications for which our
guarantees of security against generic attacks do not suffice. Intuitively these are
applications where the main threat is not leaking secret information but in not
being able to actually simulate some view. The only example of such a security
property that we know of is deniability, where only the existence of a simulator
would give plausible deniability to a participant. We stress that our analysis of
generic attacks should not be taken to imply any kind of deniability.

Function privacy and obfuscation. The question of function privacy (or key hid-
ing) was considered by Shen et al. [47], in the symmetric key setting and more
recently by Boneh et al. [13,14] in the public key setting under IND based def-
initions. [47] provide a construction of FE for inner product predicates in the
standard model, under the IND based notion of security, using composite order
groups and assuming hardness of factoring (even when viewed in the GGM). Our
result, on the other hand, is unconditionally statistically secure in the generic
group model, under a strong simulation based definition of security, using prime
order groups. Our construction for inner product FE is inspired by the scheme
of [36] and the works of [25,28,38,39,42]. It implies a program obfuscator for
hyperplane membership in the generic group model – for details see Appendix D,
a candidate for which was also given by [18] under a strong variant of the DDH
assumption.

Our Techniques. Prior to our work, the only techniques to achieve positive results
for many-AD-SIM security of FE were in the programmable ROM, for the anony-
mous IBE and public-index functionalities, based on techniques to build non-
committing encryption in the ROM [15]. We develop new and entirely different
techniques to achieve positive results for inner product FE in the GGM under a
definition stronger than many-AD-SIM.

As an illustrative example, consider the scenario where the adversary has
the encryption key. In this setting, the adversary may encrypt any vector of his

784 S. Agrawal et al.

choice, and run the decrypt operation with the secret key he is given and the
messages he encrypted to learn relations between them. The simulator needs
to learn what vectors the adversary is encrypting so as to query the function
oracle and program the requisite relations to hold. However, this strategy is com-
plicated by the fact that the adversary need not generate ciphertexts honestly
and attempt to decrypt them honestly; instead he can carry out an arbitrarily
obfuscated sequence of group operations, which may implicitly be encrypting
and decrypting values. Our proof handles this issue by deploying a novel alge-
braic message extraction technique – the simulator keeps track of all algebraic
relations that the adversary is developing, and is able to test if the algebraic
relation depends on some property of an unknown vector v corresponding to a
decryption key. We prove by algebraic means that if this happens, the adver-
sary can only be checking whether v is orthogonal to some other vector u. No
other algebraic relations about v can be checked by the adversary because of
the randomization present in our inner product FE scheme, except with negli-
gible probability. Furthermore, in this case we prove that the vector u can only
be either a vector corresponding to some challenge (honestly generated by the
system, not the adversary) ciphertext, or a vector u that the simulator can fully
extract from the adversary’s algebraic queries.

The generic group model allows us to bypass impossibility because the adver-
sary is forced to perform computations via the generic group oracle which the
simulator can control. At a high level, the simulator keeps track of the queries
requested by the adversary, uses these queries to learn what the adversary is
doing, and carefully programming the oracle to maintain the requisite relations
between group elements to behave like the real world in the view of the adversary.
For further technical details, please see the proof in Section 5.

2 Preliminaries

In Appendix A, we define some standard notation that is used throughout the
paper. We emphasize that all our groups are multiplicative, and any additive
notation refers to computations in the exponent.

2.1 Functional Encryption

A functional encryption scheme FE consists of four algorithms defined as follows.

– Setup(1κ) is a probabilistic polynomial time (p.p.t.) algorithm that takes
as input the unary representation of the security parameter and outputs
the public parameters, encryption key and master secret key (PP,EK,MSK).
Implicit in the public parameters PP are the security parameter and a func-
tion class FPP = {f : XPP → YPP}.

– KeyGen(PP,MSK, f) is a p.p.t. algorithm that takes as input the public
parameters PP, the master secret key MSK and a function f ∈ FPP and
outputs a corresponding secret key SKf .

On the Practical Security of Inner Product Functional Encryption 785

– Encrypt(PP,EK,x) is a p.p.t. algorithm that takes as input the public param-
eters PP, the encryption key EK and an input message x ∈ XPP and outputs
a ciphertext CTx.

– Decrypt(PP,SKf ,CTx) is a deterministic algorithm that takes as input the
public parameters PP, the secret key SKf and a ciphertext CTx and outputs
f(x).

Definition 1 (Correctness). A functional encryption scheme FE is correct
if for all (PP,MSK,EK) generated by Setup(1κ), all f ∈ FPP and x ∈ XPP,

Pr[Decrypt
(

KeyGen(PP,MSK, f),Encrypt(PP,EK,x)
)

�= f(x)]

is a negligible function of κ, where the probability is taken over the coins of
KeyGen and Encrypt.

Remark 1. A functional encryption scheme FE may permit some intentional
leakage of information. In this case, the secret SKf or the ciphertext CTx may
leak some legitimate information about the function f or the message x respec-
tively. A common example of this type of information is the length of the message
|x| that is leaked in any public key encryption scheme. This is captured by [15]
via the “empty” key, by [6] by giving this information to the simulator directly
and by [9] by restricting to adversaries who do not trivially break the system
by issuing challenges that differ in such leakage. We use the approach of [6] and
pass on any intentionally leaked information directly to the simulator.

2.2 Generic Group (GG) Model Overview

The generic group model [40,48] provides a method by which to study the secu-
rity of algorithms that act oblivious of particular group representations. All
algorithms obtain access to elements of the group via random “handles” (of suf-
ficient length) and remain unaware of their actual representations. In our work
we will require two groups G,GT (called the source and target group respectively)
where G is equipped with a bilinear map e : G×G → GT . Algorithms with generic
access to these may request group multiplications and inverses on either group,
as well as pairings between elements in the source group.

Given group elements in G,GT an adversary will only be able to perform group
exponentiations, multiplications, pairings and equality comparisons. Given this
restricted way in which an adversary is allowed to access the groups G,GT , he is
only able to compute certain relations between elements which we call Admissible
Relations, as defined below.

Definition 2 (Admissible Relations). Consider a group G of order p, which
supports a bilinear map e : G ×G → GT . Let g and gT be the generators of G and
GT respectively. Let {Ai}�

i=1, {Bi}m
i=1 be sets of formal variables taking values

from Zp, representing the exponents of g and gT respectively. Then we define
admissible relations over the set {Ai} ∪ {Bi} to be all relations of the form
∑

k γkAk
?= 0 or

∑

k γkBk +
∑

i,j γi,jAiAj
?= 0 where γk, γi,j ∈ Zp.

786 S. Agrawal et al.

Admissible relations capture the only relations an adversary can learn given only
generic access to elements in the source and target group, described in the expo-
nent for ease of exposition. Thus, exponentiation of a group element becomes
multiplication in the exponent (eg. (gAk)γk becomes gγkAk), multiplication of
two elements in the same group becomes addition in the exponent (

∏

k(gAk)γk

becomes g
∑

k γkAk) and pairing between source group elements becomes multi-
plication in the target group exponent (e(gAi , gAj) becomes g

AiAj

T).

We will also need the Schwartz Zippel lemma.

Theorem 1 (Schwartz Zippel Lemma). Let g1, g2 be any two different �-
variate polynomials with coefficients in field Zp. Let the degree of the polynomial
g1 − g2 be t. Then,

Pr
{Xi}�

i=1
$←−Zp

[g1(X1, . . . , X�) = g2(X1, . . . , X�)] ≤ t

p

3 Wishful Security for Functional Encryption

In this section, we present the dream version security definition for Func-
tional Encryption, which captures data hiding as well as function hiding in the
strongest, most intuitive way via the ideal world-real world paradigm. This def-
inition extends and generalizes the definition of [9,15] to support function hid-
ing in addition to data hiding (subsuming obfuscation), and encryption key in
addition to public key. In the spirit of multiparty computation, this framework
guarantees privacy for inputs of honest parties, whether messages or functions.

We fix the functionality of the system to be Fκ = {f : Xκ → Yκ}. We will
refer to x ∈ X as “message” and f ∈ F as “function” or “key”. Our framework
consists of an external environment Env who acts as an interactive distinguisher
attempting to distinguish the real and ideal worlds, potentially in an adversarial
manner.

Ideal-World. The ideal-world in a functional encryption system consists of the
functional encryption oracle O, the ideal world adversary (or simulator) S, and
an environment Env which is used to model all the parties external to the adver-
sary. The adversary S and the environment Env are modeled as interactive p.p.t
Turing machines.

Throughout the interaction, O maintains a two-dimensional table T with
rows indexed by messages x1, . . .xrows and columns indexed by functions f1, . . . ,
fcols, and the entry corresponding to row xi and column fj is fj(xi). At a given
time, the table contains all the message-key pairs seen in the interactions with
O until then. O is initialized with a description of the functionality1. The envi-
ronment Env interacts arbitrarily with the adversary S. The interaction between
the players is described below:
1 For eg., for the inner product functionality, O needs to be provided the dimension

of the vectors.

On the Practical Security of Inner Product Functional Encryption 787

– External ciphertexts and keys:
• Ciphertexts: Env may send O ciphertext commands (CT,x) upon which

O creates a new row corresponding to x, populates all the newly formed
entries f1(x), . . . , fcols(x) and returns the newly populated table entires
to S.

• Keys: Env may send O secret key commands (SK, f) upon which O
creates a new column corresponding to f , populates all the newly formed
entries f(x1), . . . , f(xrows) and returns the newly populated table entries
to S.

– Switch to public key mode: Upon receiving a command (PK mode) from
Env, O forwards this message to S. From this point on, S may query O for
the function value corresponding to any message x ∈ X of its choice, and
any key in the system. Upon receiving command (x, keys), O updates T as
follows: it adds a new row corresponding to x, computes all the table entries
for this row, and returns the newly populated row entries to S.

At any point in time we allow S to obtain any intentionally leaked information
(as defined in Remark 1) about all the messages and keys present in T from O.
Note that S may add any message or key of its choice to the system at any
point in time through the adversarial environment Env with which it interacts
arbitrarily. Hence, we omit modeling this option in our ideal world. We define
VIEWIDEAL(1κ) to be the view of Env in the ideal world.

Real-World. The real-world consists of an adversary A, a system administrator
Sys and external environment Env, which encompasses all external key hold-
ers and encryptors. The adversary A interacts with other players in the game
through Sys. The environment Env may interact arbitrarily with A. Sys obtains
(PP,EK,MSK) ← Setup(1κ). PP is provided to Env and A. The interaction
between the players can be described as follows:

– External ciphertexts and keys:
• Ciphertexts: Env may send Sys encryption commands of the form

(CT,x) upon which, Sys obtains CTx = Encrypt(EK,x) sends CTx to
A.

• Keys: Env may send Sys secret key commands of the form (SK, f) upon
which, Sys obtains SKf = KeyGen(MSK, f) and returns SKf to A.

– Switch to public key mode: Upon receiving a command (PK mode) from
Env, Sys sends EK to A.

We define VIEWREAL(1κ) to be the view of Env in the real world.
We say that a functional encryption scheme is strongly simulation secure in

this framework, if for every real world adversary A, there exists a simulator S
such that for every environment Env:

{VIEWIDEAL(1κ)}κ∈N

c≈ {VIEWREAL(1κ)}κ∈N

While simulation based security has been shown impossible to achieve even
for data privacy alone, we will show that the stronger definition presented above

788 S. Agrawal et al.

can be achieved against a large class of real world attacks, namely generic attacks.
We believe that this provides evidence that FE schemes enjoy far greater security
in practice.

4 Functional Encryption for Inner Products over Prime
Order Groups

We present a new functional encryption scheme for inner products in the encryp-
tion key setting from prime order bilinear groups. Our scheme starts from the
composite order scheme for inner product FE presented in [36]. It then applies
a series of transformations, as developed in [25,28,38,41,42], to convert it to a
scheme over prime order groups. We will show our scheme to be be fully simula-
tion secure in the generic group model. To begin with, we define some notation
that will be useful to us.

Notation for Linear Algebra over groups. When working over the prime order
group G, we will find it convenient to consider tuples of group elements. Let
v = (v1, · · · , vd) ∈ Z

d
p for some d ∈ Z

+ and g ∈ G. Then we define gv :=
(gv1 , . . . , gvd). For ease of notation, we will refer to (gv1 , . . . , gvd) by (v1, . . . , vd).
This notation allows us to do scalar multiplication and vector addition over
tuples of group elements as:

(gv)a = g(av) and gv · gw = g(v+w).

Finally we define a new function, e, which deals with pairings two d-tuples of
elements v,w as:

e(gv, gw) :=
d∏

i=1

e(gvi , gwi) = e(g, g)v·w,

where the vector dot product v ·w in the last term is taken modulo p. Here g is
assumed to be some fixed generator of G.

Dual Pairing Vector Spaces. We will employ the concept of dual pairing vector
spaces from [38,41,42]. For a fixed dimension d, let B = (b1, . . . , bd) and B

∗ =
(b∗

1, . . . , b
∗
d) be two random bases (represented as column vectors) for the vector

space Z
d
p. Furthermore, they are chosen so that

⎛

⎜
⎜
⎝

bT
1

...
bT

d

⎞

⎟
⎟
⎠

·
(

b∗
1 · · · b∗

d

)

= ψ · Id×d, (1)

where Id×d is the identity matrix and ψ
$←− Zp. Lewko [38] describes a standard

procedure which allows one to pick such bases.

On the Practical Security of Inner Product Functional Encryption 789

We use the notation (B,B∗) ← Dual(Z3
p) in the rest of this work to describe

the selection of such basis vectors for d = 3. Furthermore, we overload vector
notation (the usage will be clear from context) by associating with a three tuple
of formal polynomials (a1, a2, a3), the vector of formal polynomials a1b1+a2b2+
a3b3, and with the tuple (a1, a2, a3)∗, the vector a1b

∗
1 + a2b

∗
2 + a3b

∗
3.

Construction. The functionality F : Zn
p ×Z

n
p → {0, 1} is described as F(x,v) = 1

if 〈x ·v〉 = 0 mod p, and 0 otherwise. Let GroupGen be a group generation algo-
rithm which takes as input a security parameter κ and outputs the description
of a bilinear group of order p, where p is a κ-bit prime. In the description of the
scheme and in the proof, we will “work in the exponent” for ease of notation as
described at the beginning of this section.

The four algorithms Setup,KeyGen, Encrypt and Decrypt are defined as fol-
lows.

– Setup(1κ): Let (p,G,GT , e) ← GroupGen(1κ). Let n ∈ Z, n > 1 be the dimen-
sion of the message space. Pick (B,B∗) ← Dual(Z3

p) and let P,Q,R, R0,

H1, R1, H2, R2, . . . , Hn, Rn
$←− Zp. Set

PP = (p,G,GT , e),

EK =
(

P · b1, Q · b2 + R0 · b3, R · b3, {Hi · b1 + Ri · b3}i=n
i=1

)

,

MSK =
(

P,Q, {Hi}i=n
i=1 , b1, b2, b3, b

∗
1, b

∗
2, b

∗
3

)

.

– Encrypt(EK,x): Let x = (x1, . . . , xn), xi ∈ Zp. Let s, α, r1, . . . , rn
$←− Zp and

construct CTx = (C0, C1, . . . , Cn) as

C0 = s · P · b1,

and for i ∈ [1, n],

Ci = s · (Hi · b1 + Ri · b3) + α · xi · (Q · b2 + R0 · b3) + ri · R · b3.

– KeyGen(MSK,v): Let v = (v1, . . . , vn), vi ∈ Zp. Let δ1, . . . , δn, ζ, T
$←− Zp

and construct SKv = (K0,K1, . . . , Kn) as

K0 =

(

−
n∑

i=1

Hi · δi

)

· b∗
1 + T · b∗

3,

and for i ∈ [1, n],
Ki = δi · P · b∗

1 + Q · ζ · vi · b∗
2.

– Decrypt(SKv,CTx): Compute b = e(C0,K0) ·
∏i=n

i=1 e(Ci,Ki) and output 1 if
b = e(g, g)0 and 0 otherwise.

Intentionally leaked information as defined in Remark 1 for the above scheme
is n, the dimension of the message and key space. Correctness of the scheme relies
on the cancellation properties between the vectors in B and B

∗ as described in
Eqn 1. We provide proof of correctness in Appendix B.

790 S. Agrawal et al.

5 Proof of Security

We will now provide a proof that the scheme presented in Section 4 is fully
simulation secure in the generic group model as per the framework presented in
Section 3. We begin by describing the construction of our simulator.

5.1 Simulator Construction

Intuition. Broadly speaking, our simulator will run the adversary and provide
secret keys and ciphertexts to him, as well as simulate the GG oracle. Our
simulator maintains a table where it associates each group handle that it issues
to the adversary with a formal polynomial. Through its interaction with the
generic group oracle (played by S), A may learn relations between the group
handles that it obtains. Note that since we are in the GG model, A will only
be able to learn admissible relations (Definition 2). Whatever dependencies A
learns, S programs these using its table. To do this, it keeps track of what A
is doing via its requests to the GG oracle, extracts necessary information from
A cleverly where required and sets up these (formal polynomial) relations, thus
ensuring that the real and ideal world views are indistinguishable. This is tricky
in the public key mode, where the adversary may encrypt messages of its choice
(using potentially bad randomness) and attempt to learn relations with existing
keys using arbitrary generic group operations. In this case, the simulator needs to
be able to extract the message from the adversary, obtain the relevant function
values from the oracle, and program the dependencies into the generic group.

Formal Construction. Formally, the simulator S is specified as follows:

– Initialization: S constructs a table called simulation table to simulate the
GG oracle (p,G,GT , e). A simulation table consists of two parts one each
for the source group G and the target group GT respectively. Each part is a
list that contains two columns labelled formal polynomial and group handle
respectively. Group handles are strings from {0, 1}2κ. A formal polynomial is
a multivariate polynomial defined over Zp. We assume that there is a canon-
ical ordering amongst the variables used to create the formal polynomial
entries and thus each polynomial may be represented by a unique canonical
representation.

– Setup: Upon receiving the dimension n of message and key space from
O, S executes the setup algorithm of the scheme as follows. He gener-
ates new group handles corresponding to the identity elements of G and
GT . He picks 18 new formal variables that represent the bases (B,B∗) ←
Dual(Z3

p), as well as a new formal variable ψ. Next, S picks new formal
variables P,Q,R,R0, {Hi, Ri}i=n

i=1 . He sets up the encryption key and master
secret key by generating new group handles to represent the formal poly-
nomials: EK =

{

(P, 0, 0), (0, 0, R), (0, Q,R0), {(Hi, 0, Ri)}n
i=1

}

and MSK =
{

P,Q, {Hi}i=n
i=1 , b1, b2, b3, b

∗
1, b

∗
2, b

∗
3

}

. He stores these associations in the sim-
ulation table.

On the Practical Security of Inner Product Functional Encryption 791

– Running the adversary: S runs the adversary A(1κ) and gives it the pub-
lic parameters PP = (p,G,GT , e). This amounts to S providing the adversary
with oracle access to G,GT , e and sending him p.

– Request for Public Key: When S receives the command PK mode from
O, he sends the group handles of EK to A.

– External Ciphertexts and Keys: At any time, S may receive a message
of the form MsgIdxx, f1(x), . . . , fcols(x) from O. In response:

• S follows the outline of the Encrypt algorithm in the following way. He
picks new formal variables s, α, {xi}n

i=1, {ri}n
i=1 (all indexed by the par-

ticular index MsgIdxx, dropped here for notational convenience). He then
constructs the formal polynomials associated with the following 3-tuples:

C =
{

C0 = (sP, 0, 0),
{

Ci = (sHi, αxiQ, sRi + αxiR0 + riR)
}n

i=1

}

,

and adds each formal polynomial thus generated in C to the simulation
table along with a new group handle.

• S then programs the generic group to incorporate the function val-
ues f1(x), . . . , fcols(x) that were received. To do this, S retrieves the
formal polynomials associated with all the keys in the table {Kj =
(Kj

0 ,Kj
1 , . . . , Kj

n)}j∈[cols]. Then, for each j, he computes the formal poly-
nomials associated with the decrypt operation between C and Kj , i.e.,
b = e(C0,K

j
0)·

∏i=n
i=1 e(Ci,K

j
i). If fj(x) = 0, he sets the resultant expres-

sion to correspond to the group handle for the identity element in the
target group. Else, he generates a new group handle and stores the resul-
tant expression to correspond to it.

• S then sends the group handles corresponding to C to A.
He acts analogously in the case of a KeyIdxj , fj(x1), . . . , fj(xrows) message by
following the KeyGen algorithm to generate formal polynomials correspond-
ing to a new key and programming the decrypt expressions to correspond to
the received function values.

– Generic Group Operations: At any stage, A may request generic group
operations from S by providing the corresponding group handle(s) and spec-
ifying the requested operation, such as pairing, identity, inverse or group
operation. In response, S looks up its simulation table for the formal poly-
nomial(s) corresponding to the specified group handle(s), computes the oper-
ation between the formal polynomials, simplifies the resultant expression and
does a reverse lookup in the table to find a group handle corresponding to
the resultant polynomial. If it finds it, S will return this group handle to A,
otherwise it randomly generates a new group handle, stores it in the simu-
lation table against the resultant formal polynomial, and returns this to A.
For more details, we refer the reader to Appendix C.

Tracking admissible relations learnt by A: If A requests generic group
operations to compute a polynomial involving a term ψQ2expr where expr
is an expression containing a term of the form

∑n
i=1 civi for some constant

ci ∈ Zp, then S considers this as a function evaluation by A on message that

792 S. Agrawal et al.

he encrypted himself. He extracts the message x = (c1, . . . , cn). S then sends
the message (x, keys) to O. Upon receiving MsgIdxx, f1(x), . . . , fcols(x) from
O, S computes the decrypt expressions for the extracted message with all
the keys and programs the linear relations in the generic group oracle as in
the previous step.

In the full version of the paper we show that the real and ideal worlds are
indistinguishable to Env. Formally, we prove the following theorem:

Theorem 2. For all p.p.t. adversaries A, the simulator S constructed in Section
5.1 is such that for all Env with auxiliary input z, {VIEWIDEAL(1κ, z)}κ∈Z+,z∈{0,1}∗

≈ {VIEWREAL(1κ, z)}κ∈Z+,z∈{0,1}∗ in the generic group model.

5.2 Concrete Parameters

From the proof of Theorem 2, we observe that the only case for distinguishability
between real and ideal worlds is the hybrid where we move from Generic Group
elements to polynomials in formal variables.

Thus, we have that if the adversary receives q group elements in total from
the groups G and GT , then the probability that he would be able to distinguish
between the real and ideal worlds is

q
(q − 1)

2
t

p

where t is the maximum degree of any formal variable polynomial that could be
constructed in our cryptosystem. It is a maximum of 3 for each element in the
source group for our FE scheme and thus t = 6 considering possible pairings. p
is the order of the group.

5.3 Practical Considerations

We observe that every pairing in our scheme is between some element of the
ciphertext and an element of the key. Thus suppose G1,G2,GT , e : G1×G2 → GT

be a set of groups with an asymmetric bilinear map. Then it is easy to see that
our scheme extends to this setting by choosing the ciphertext elements from
G1 and the key elements from G2. Furthermore, our security proof also extends
to this setting, as a generic group adversary is now further restricted in the
set of queries he could make. This allows for a scheme in the faster setting of
asymmetric bilinear maps.

We also note that our scheme is shown to be secure against generic attacks
and that non-generic attacks do exist in all known bilinear groups. However, a
long list of previous research focuses on constructing elliptic curves where the
complexity of any non-generic attack is worse than generic attacks [8,12,22–24]
making our work relevant and meaningful. These constructions are practical as
well. Hence we believe that FE constructions over suitably chosen elliptic curve
groups have the potential of being practically secure.

On the Practical Security of Inner Product Functional Encryption 793

A Notation

We say that a function f : Z+ → R
+ is negligible if f(λ) ∈ λ−ω(1). For two distri-

butions D1 and D2 over some set Ω we define the statistical distance SD(D1,D2)
as

SD(D1,D2) :=
1
2

∑

x∈Ω

∣
∣ Pr

D1
[x] − Pr

D2
[x]

∣
∣

We say that two distribution ensembles D1(λ) and D2(λ) are statistically close or
statistically indistinguishable if SD

(

D1(λ),D2(λ)
)

is a negligible function of λ.
We say that two distribution ensembles D1(λ),D2(λ) are computationally

indistinguishable, denoted by
c≈, if for all probabilistic polynomial time turing

machines A,
∣
∣Pr[A(1λ,D1(λ)) = 1] − Pr[A(1λ,D2(λ)) = 1]

∣
∣

is a negligible function of λ.
We use a

$←− S to denote that a is chosen uniformly at random from the set S.

B Correctness of Inner Product Scheme

For any SKv and CTx, the pairing evaluations in the decryption part of our
scheme proceed as follows. Terms that are marked (×) are ones that we do not
care about.

e(C0,K0) = e

(

(sP · b1),
(

(−
n∑

i=1

Hi · δi) · b∗
1 + T · b∗

3

)

)

= (−sP

n∑

i=1

Hiδi) · (bT
1 · b∗

1) + (×)(bT
1 · b∗

3)

= ψ(−sP

n∑

i=1

Hiδi) (by Equation 1)

e(Ci,Ki) = e ((s(Hi · b1 + Ri · b3) + α · xi · (Q · b2 + R0 · b3) + ri · b3) ,

(δi · P · b∗
1 + Q · ζ · vi · b∗

2))
= (sHiδiP)bT

1 b
∗
1 + (αxiQ · Qζvi)bT

2 b
∗
2 + (×)(bT

1 · b∗
2 + bT

2 · b∗
1 +

bT
3 · b∗

1 + bT
3 · b∗

2)
= ψ(sHiδiP + αζQ2xivi) (by Equation 1)

Thus, e(C0,K) ·
i=n∏

i=1

e(Ci,Ki)

= ψ(−sP

n∑

i=1

Hiδi) +
n∑

i=1

(

ψ(sHiδiP + αζQ2xivi)
)

794 S. Agrawal et al.

= ψQ2αζ(
n∑

i=1

xivi)

When
∑n

i=1 xivi is 0 mod p, the final answer is always the identity element
of the target group and when it is not, the answer evaluates to a random element
in the target group (as ψ,Q, α, ζ

$←− Zp).

C Generic Group Operations

Whenever A requests the GG oracle for group operations corresponding G,GT

or the pairing operation e, S does the following:

1. Request for Identity: When A requests for the identity element of the
group G, S looks up the simulation table for the formal polynomial 0 in the
part that corresponds to G and returns the group handle corresponding to
it to the adversary. He acts analogously with request for the identity of GT .

2. Request for Inverses: When A requests the inverse of a group handle h in
G, S looks up the formal polynomial associated with h from the simulation
table, denoted by ĥ. He computes the polynomial (−1)ĥ and looks for it
in the simulation table. If he finds an associated group handle, he returns
it to A. If not, he generates a new group handle and adds the association
between (−1)ĥ and the generated handle to the first part of the table. He
returns the newly generated handle to A. He acts analogously for requests
involving handles in GT .

3. Request for group operation: When A requests a group operation on
two group elements h, � ∈ G, S looks them both up in the simulation table
and obtains their corresponding formal polynomials ĥ and �̂. He computes
the formal polynomial q̂ = ĥ + �̂. S then does a look up in the simulation
table for the polynomial q̂ and if it finds an associated group handle, returns
it to A. If it doesn’t find a group handle corresponding to q̂, it generates a
new group handle and adds this association to the first part of the simulation
table and returns the newly generated handle to A. He acts analogously for
requests involving handles in GT .

4. Request for Pairing operation: When A requests a pairing operation on
two group elements h, � ∈ G, S looks them both up in the simulation table
and obtains their corresponding formal polynomials ĥ and �̂. He computes
the formal polynomial q̂ = ĥ× �̂, where × denotes polynomial multiplication.
S then does a look up in the simulation table for the polynomial q̂ and if it
finds an associated group handle, returns it to A. If it doesn’t find a group
handle corresponding to q̂, it generates a new group handle and adds this
association to the second part of the simulation table and returns the newly
generated handle to A.

D Obfuscation Scheme

In this section we present an obfuscation scheme for hyperplane membership.
We begin by providing a definition for obfuscation schemes from [18].

On the Practical Security of Inner Product Functional Encryption 795

D.1 Formal Definition of Obfuscation

Let C = {Cκ}κ∈Z+ be a family of polynomial-size circuits, where Cκ denotes all
circuits of input length κ. A p.p.t. algorithm O is an obfuscator for the family
C if the following three conditions are met.

– Approximate functionality: There exists a negligible function ε such that
for every κ, every circuit C ∈ Cκ and every x in the input space of C,
Pr[O(C)(x) = C(x)] > 1−ε(κ), where the probability is over the randomness
of O. If this probability always equals 1, then we say that O has exact
functionality.

– Polynomial slowdown: There exists a polynomial q such that for every κ,
every circuit C ∈ Cκ, and every possible sequence of coin tosses for O, the
circuit O(C) runs in time at most q(|C|).

– Virtual black-box: For every p.p.t. adversary A and polynomial δ, there
exists a p.p.t. simulator S such that for all sufficiently large κ, and for all
C ∈ Cκ,

∣
∣Pr[A(O(C)) = 1] − Pr[SC(1κ) = 1]

∣
∣ <

1
δ(κ)

,

where the first probability is taken over the coin tosses of A and O, and the
second probability is taken over the coin tosses of S.

D.2 Construction

Hyperplane membership testing amounts to computing inner-product over a
vector space [18], for which we constructed a functional encryption scheme in
Section 4. The circuit family for hyperplane membership, though, is defined in
a slightly different way because the circuits have the description of a hyperplane
hardwired in them, which is just a vector. More formally, let p be a κ-bit prime
and n a positive integer (n > 1). For a vector v ∈ Z

n
p , let Fv be a circuit which

on input x ∈ Z
n
p outputs 1 if 〈x · v〉 = 0 mod p, and 0 otherwise. We provide

an obfuscator O for the function family Fp,n = {Fv | v ∈ Z
n
p}, basing it directly

on the functional encryption scheme from Section 4.

– Run Setup(1κ) to obtain (PP,MSK,EK). Publish these values as public
parameters.

– Obfuscator O: On input v ∈ Fp,n, execute KeyGen(MSK,v) to get SKv.
Output a circuit with EK and SKv hardwired. On input x, this circuit first
computes CTx ← Encrypt(EK,x), then outputs Decrypt(SKv,CTx).

D.3 Proof of Security

We informally mention the reason why construction from D.2 is a valid obfus-
cation scheme.

– Approximate functionality: The scheme O achieves exact functionality
from the exact correctness of the underlying FE scheme.

796 S. Agrawal et al.

– Polynomial slowdown: The scheme achieves polynomial slowdown because
of the polynomial runtime of Encrypt and Decrypt algorithms of the under-
lying FE scheme.

– Virtual black-box: The scheme satisfies the virtual black-box property in
the generic group model from the proof of security of the underlying FE
scheme. We defer a formal proof of this last property to the full version.

References

1. Voltage security. http://www.voltage.com/
2. Agrawal, S., Agrawal, S., Prabhakaran, M.: Cryptographic agents: towards a unified

theory of computing on encrypted data. In: To appear in Eurocrypt 2015 (2015)
3. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.

In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

4. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 98–115. Springer, Heidelberg (2010)

5. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

6. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
New perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

7. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfus-
cation and applications. Cryptology Eprint Arxiv (2013). http://eprint.iacr.org/
2013/689.pdf

8. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer,
Heidelberg (2013)

9. Barbosa, M., Farshim, P.: On the semantic security of functional encryption
schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 143–161. Springer, Heidelberg (2013)

10. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility
results, impossibility results and the quest for a general definition. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Heidelberg (2013)

11. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

12. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

13. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013)

14. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and Its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013)

http://www.voltage.com/
http://eprint.iacr.org/2013/689.pdf
http://eprint.iacr.org/2013/689.pdf

On the Practical Security of Inner Product Functional Encryption 797

15. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

16. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

17. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

18. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane member-
ship. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer,
Heidelberg (2010)

19. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013)

20. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to dele-
gate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 523–552. Springer, Heidelberg (2010)

21. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

22. Costello, C.: Particularly friendly members of family trees. IACR Cryptology
ePrint Archive, 2012:72 (2012)

23. Freeman, D.: Constructing pairing-friendly elliptic curves with embedding degree
10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076,
pp. 452–465. Springer, Heidelberg (2006)

24. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (2010)

25. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

27. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

28. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: ACM Conference on
Computer and Communications Security, pp. 121–130 (2010)

29. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

30. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

31. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

798 S. Agrawal et al.

32. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In: STOC,
pp. 555–564 (2013)

33. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions from multiparty computation. In: CRYPTO (2012)

34. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for cir-
cuits. In: STOC (2013)

35. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM conference on computer and
communications security, pp. 89–98 (2006)

36. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

37. Koblitz, N., Menezes, A.: Another look at generic groups. In: Advances in Mathe-
matics of Communications, pp. 13–28 (2006)

38. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

39. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 62–91. Springer, Heidelberg (2010)

40. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55 (1994)

41. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

42. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

43. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/

44. Sahai, A., Waters, B.: Functional encryption:beyond public key cryptogra-
phy. Power Point Presentation (2008). http://userweb.cs.utexas.edu/∼bwaters/
presentations/files/functional.ppt

45. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

46. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

47. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

48. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

49. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

http://eprint.iacr.org/
http://userweb.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://userweb.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

Identity-Based Encryption with (Almost)
Tight Security in the Multi-instance,

Multi-ciphertext Setting

Dennis Hofheinz(B), Jessica Koch, and Christoph Striecks

KIT, Karlsruhe, Germany
{Dennis.Hofheinz,Jessica.Koch,Christoph.Striecks}@kit.edu

Abstract. We construct an identity-based encryption (IBE) scheme
that is tightly secure in a very strong sense. Specifically, we consider
a setting with many instances of the scheme and many encryptions per
instance. In this setting, we reduce the security of our scheme to a vari-
ant of a simple assumption used for a similar purpose by Chen and Wee
(Crypto 2013). The security loss of our reduction is O(k) (where k is the
security parameter). Our scheme is the first IBE scheme to achieve this
strong flavor of tightness under a simple assumption.

Technically, our scheme is a variation of the IBE scheme by Chen
and Wee. However, in order to “lift” their results to the multi-instance,
multi-ciphertext case, we need to develop new ideas. In particular, while
we build on (and extend) their high-level proof strategy, we deviate sig-
nificantly in the low-level proof steps.

1 Introduction

Tight Security. For many cryptographic primitives, we currently cannot prove
security directly. Hence, we typically reduce the security of a given scheme to the
hardness of a computational problem, in the sense that every successful attack
on the scheme yields a successful problem solver. Now it is both a theoretically
and practically interesting question to look at the loss of such a reduction.
Informally, the loss of a reduction quantifies the difference between the success
of a hypothetical attacker on the cryptographic scheme, and the success of the
derived problem solver. From a theoretical perspective, for instance, the loss of a
reduction can also be viewed as a quantitative measure of (an upper bound for)
the “distance” between primitive and assumption. But “tight” (or, “loss-free”)
reductions are also desirable from a practical perspective: the tighter a reduction,
the better are the security guarantees we can give for a specific instance of
the scheme. Hence, we can recommend smaller keylengths (which lead to more
efficiency) for schemes with tighter security reduction.

However, in most practical usage scenarios, a cryptographic primitive is
used multiple times. (For instance, in a typical multi-user encryption scenario,

D. Hofheinz—was supported by DFG grants GZ HO 4534/2-2 and GZ HO 4534/4-1.
J. Koch—was supported by BMBF project “KASTEL”.
C. Striecks—was supported by DFG grant GZ HO 4534/2-2.

c© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 799–822, 2015.
DOI: 10.1007/978-3-662-46447-2 36

800 D. Hofheinz et al.

many instances of the encryption scheme are used to produce even more cipher-
texts.) Hence, tight security reductions become particularly meaningful when
they reduce an attacker on the whole system (with many instances of the cryp-
tographic scheme) to a problem solver. In fact, while for many primitives (such
as secret-key [2] or public-key [3] encryption), one-instance security is known to
imply multi-instance security, the corresponding security guarantees for concrete
schemes may indeed vanish in the number of instances [2].
Existing Tightly Secure Schemes. The loss of security reductions has been
considered explicitly by Bellare et al. [2] for the case of encryption schemes. The
first “somewhat tight” reductions (whose loss is independent of the number of
instances of the scheme, but not of the number of ciphertexts) for public-key
encryption (PKE) schemes could be given in [4]. In the following years, more
tight (or somewhat tight) reductions for encryption schemes were constructed in
the random oracle model [7,10,14], or from “q-type” assumptions [15,16].1

However, only recently, the first PKE schemes emerged [1,18,20] whose tight
security (in the multi-instance, multi-ciphertext setting) can be proved under
simple assumptions in the standard model.2 Even more recently, identity-based
encryption (IBE) schemes with “somewhat tight” security (under simple assump-
tions) have been constructed [6,11]. (This required new techniques, since it is not
clear how to extend the techniques of [1,18,20] to the IBE setting.) In this case,
“somewhat tight” means that their security reduction loses only a small mul-
tiplicative factor, but still considers the standard IBE security experiment [9]
with one encryption and one instance of the scheme. Nonetheless, while the
IBE schemes from [6,11] are not proved tightly secure in a multi-user, multi-
ciphertext setting, these schemes imply tightly secure PKE schemes (even in the
multi-user, multi-ciphertext setting) when plugged into the transformations of
[9,18,20].3

Our Contribution. In this work, we construct the first IBE scheme with an
almost tight security reduction in the multi-instance, multi-ciphertext scenario.
Our reduction is only almost tight, since it loses a factor of O(k), where k is
the security parameter. However, we stress that this loss is independent of the
number of ciphertexts, revealed user secret keys, or instances of the scheme.
1 A “q-type” assumption may depend on the size of the investigated cryptographic

system. (That is, larger cryptographic systems may only be secure under a stronger
instance of the assumption.) Hence, a tight reduction (even in a multi-instance sce-
nario) to a q-type assumption may not yield security guarantees that are independent
of the number of users.

2 A “simple” assumption is defined through a security game in which an adversary first
gets a challenge whose size only depends on the security parameter, and must then
output a unique solution without further interaction. Examples of simple assump-
tions are DLOG, DDH, or RSA, but not Strong Diffie-Hellman [8] or q-ABDHE [15].

3 More specifically, Boneh and Franklin [9] mention (and attribute this observation to
Naor) that every IBE scheme can be viewed as a signature scheme. The signature
schemes thus derived from [6,11] are then suitable for the conversions of [18,20],
yielding PKE schemes tightly secure in the multi-user, multi-ciphertext setting.

Identity-Based Encryption with (Almost) Tight Security 801

In our security reduction, we rely on a computational assumption in composite-
order pairing-friendly groups; this assumption is a variant of an assumption used
by Chen and Wee [11] for their IBE scheme, and in particular simple in the above
sense. We note that a conversion to the prime-order setting using the techniques
from [13,17,19,21] (see also [5]) seems plausible—specifically since Chen and
Wee [11] already describe such a conversion for their assumption—, but we leave
such a conversion as an open problem.
Our Approach. Our scheme is a variant of the IBE scheme by Chen and
Wee [11] (which is almost tightly secure in the one-instance, one-ciphertext set-
ting), and our proof strategy draws heavily from theirs. Hence, to describe our
techniques, let us first briefly sketch their strategy.

In a nutshell, Chen and Wee start with a real security game, in which an
adversary A receives a master public key mpk of the scheme, as well as access to
arbitrarily many user secret keys usk id for adversarially chosen identities id . At
some point, A selects a fresh challenge identity id∗ and two messages M∗

0 ,M∗
1 ,

and then receives the encryption C∗
id∗ ← Enc(mpk , id∗,Mb) (under identity id∗)

of one of these messages. After potentially querying more user secret keys (for
identities id �= id∗), A eventually outputs a guess b∗ for b. If b∗ = b, we say
that A wins. Chen and Wee then show security by gradually changing this game
(being careful not to significantly decrease A’s success), until A trivially cannot
win (except by guessing).

As a first preparatory change, Chen and Wee use the user secret key usk id∗

to construct the challenge ciphertext C∗
id∗ . (This way, the encryption random

coins for C∗
id∗ do not have to be known to the security game.) Additionally

C∗
id∗ is now of a special, “pseudo-normal” form that will later enable a gradual

randomization of the encrypted message. The core of the proof then consists of
a number of hybrid steps, in which the distribution of all generated user secret
keys (including the user secret key usk id∗ used to generate C∗

id∗) is modified.
Concretely, in the i-th hybrid game, each used usk id contains an additional
“blinding term” of the form R(id |i), where id |i is the i-bit prefix of id , and R
is a truly random function. Eventually, each user secret key usk id will be fully
randomized by a truly random value R(id). In particular, at this point, the
key usk id∗ used to prepare C∗

id∗ is blinded by a fresh random value R(id∗). By
the special “pseudo-normal” form of C∗

id∗ , this means that the corresponding
encrypted message is also blinded, and A’s view is finally independent of the
challenge bit b.

We keep this high-level proof structure, extending it of course to multiple
ciphertexts and multiple instances of the scheme. However, as we will explain
below, the way Chen and Wee gradually introduce the blinding terms R(id |i)
does not immediately extend to many ciphertexts or instances; hence, we need
to deviate from their proof strategy here.
The Problem. Specifically, Chen and Wee move from the (i−1)-th to the i-th
hybrid through a single reduction as follows: first, they guess the i-th bit id∗

i of
the challenge identity id∗. Then, they set up things such that

802 D. Hofheinz et al.

(a) all user secret keys for identities id with id i = id∗
i (i.e., that coincide in the

i-th bit with id∗) behave as in the previous hybrid (i.e., carry a blinding
term R(id |i−1)),

(b) all user secret keys for identities id with id i = 1 − id∗
i carry a blinding term

of R(id |i−1) · R′(id |i−1)). Depending on the input of the reduction, we have
either that R′ = 1 (such that the overall blinding term is R(id |i−1)), or
that R′ is an independently random function. (In particular, all usk id with
id i = 1 − id∗

i contain an embedded computational challenge R′.)
Depending on whether or not R′ = 1, this setup simulates the (i − 1)-th or the
i-th hybrid. However, we remark that the setup of Chen and Wee only allows to
generate “pseudo-normal” challenge ciphertexts C∗

id∗ for identities id∗ with the
initially guessed i-th bit id∗

i . (Intuitively, any pseudo-normal ciphertext for an
identity id with id i = 1 − id∗

i would “react with” an additional blinding term
R′(id |i−1) in usk id , allowing to trivially solve the computational challenge.)

Hence, in their i-th game hop, only challenge ciphertexts for identities with
the same i-th bit can be generated. Thus, their approach cannot in any obvious
way be extended to multiple challenge ciphertexts for different identities. (For
similar reasons, a generalization to multiple instances of the scheme fails.)
Our Solution. In order to move from the (i− 1)-th to the i-th hybrid, we thus
follow a different strategy that involves three reductions. The main technical
ingredient in our case is the ability to distribute the blinding terms R(id |i)
in user secret keys into two different “compartments” (i.e., subgroups) of the
composite-order group we are working in. (In particular, a term R(id |i) in one
compartment can be changed independently of terms in the other compartment.)

More specifically, recall that in the (i − 1)-th hybrid, all user secret keys
carry an additional R(id |i−1) blinding term, and all challenge ciphertexts are
pseudo-normal (in the sense that they “react with” the blinding terms in user
secret keys). In our first step, we move all blinding terms R(id |i−1) in the usk id

into the two compartments, depending on the i-th bit of id . (That is, if id i = 0,
then the corresponding blinding term R(id |i−1) goes into the first compartment,
and if id i = 1, then it goes into the second.)

In our second step, we can now treat the embedded blinding terms for id i = 0
and id i = 1 separately. In particular, since these cases are now “decoupled” by
being in different compartments, we can completely re-randomize the underlying
random function R in exactly one of those compartments. (This does not lead
to trivial distinctions of the computational challenge since we do not introduce
new blinding terms that would “react with” pseudo-normal ciphertexts and thus
become easily detectable. Instead, we simply decouple existing blinding terms in
different subgroups.) Note however that since now different random functions,
say, R̂ and R̃, determine the blinding terms used for identities with id i = 0 and
id i = 1, we essentially obtain blinding terms that depend on the first i (and not
only i − 1) bits of id .

Finally, we revert the first change and move all blinding terms in the usk id

into one compartment. In summary, this series of three moves has thus created
blinding terms that depend on the first i bits of id . Thus, we have moved to

Identity-Based Encryption with (Almost) Tight Security 803

the i-th hybrid. If we follow the high-level strategy of Chen and Wee again, this
yields a sequence of O(k) reductions that show the security of our IBE scheme.
(From a conceptual perspective, it might also be interesting to note that none
of our reductions needs to guess, e.g., an identity bit.)
Outline of the Paper. After introducing some preliminary definitions in
Section 2, we explain the necessary algebraic structure (mentioned in the “com-
partment discussion” above) of “extended nested dual system groups” (ENDSGs)
in Section 3. (This structure extends a similar structure of Chen and Wee [11].)
In Section 4, we present our IBE scheme from ENDSGs, and in Section 5, we
show how to instantiate ENDSGs in composite-order pairing-friendly groups.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let k ∈ N be the security
parameter. For a finite set S, we denote by s ← S the process of sampling s
uniformly from S. For an algorithm A, let y ← A(k, x) be the process of running
A on input k, x with access to uniformly random coins and assigning the result to
y. (We may omit to mention the k-input explicitly and assume that all algorithms
take k as input.) To make the random coins r explicit, we write A(k, x; r). We
say an algorithm A is probabilistic polynomial time (PPT) if the running time of
A is polynomial in k. A function f : N → R is negligible if it vanishes faster than
the inverse of any polynomial (i.e., if ∀c∃k0∀k ≥ k0 : |f(k)| ≤ 1/kc). Further,
we write vectors in bold font, e.g., v = (v1, . . . , vn) for a vectors of length
n ∈ N and with components v1, . . . , vn. (We may also write v = (vi)i∈[n] or even
v = (vi)i in this case.) In the following, we use a component-wise multiplication
of vectors, i.e., v · v′ = (v1, . . . , vn) · (v′

1, . . . , v
′
n) = (v1 · v′

1, . . . , vn · v′
n). Further,

we write vj := (vj
1, . . . , v

j
n), for j ∈ N, and v−i := (v1, . . . , vi−1, vi+1, . . . , vn),

for i ∈ [n], and sv := (sv1 , . . . , svn). For two random variables X,Y , we denote
with SD (X ; Y) is the statistical distance of X and Y .
Identity-Based Encryption. An identity-based encryption (IBE) scheme IBE
with identity space ID and message space M consists of the five PPT algo-
rithms Par,Gen,Ext,Enc,Dec. Parameter sampling Par(k), on input a security
parameter k, outputs public parameters pp and secret parameters sp. Key gen-
eration Gen(pp, sp), on input pp and sp, outputs a master public key mpk and
a master secret key msk . User secret key extraction Ext(msk , id), given msk
and an identity id ∈ ID, outputs a user secret key usk id associated with id .
Encryption Enc(mpk , id ,M), given mpk , an identity id ∈ ID, and a message
M ∈ M, outputs an id -associated ciphertext Cid . Decryption Dec(usk id , Cid),
given usk id for an identity id , and ciphertext Cid , outputs M ∈ M ∪ {⊥}. For
correctness, we require that for any k ∈ N, for all (pp, sp) ← Par(k), for all
(mpk ,msk) ← Gen(pp, sp), for all id ∈ ID, for all usk id ← Ext(msk , id), for all
M ∈ M, and for all Cid ← Enc(mpk , id ,M), Dec satisfies Dec(usk id , Cid) = M .
For security, we define multi-instance, multi-ciphertext IBE security, dubbed
(μ, q)-IBE-IND-CPA security, for (μ, q) ∈ N2, as follows.

804 D. Hofheinz et al.

Experiment Exp
(µ,q)-ibe-ind-cpa
IBE,A (k)

(pp, sp) ← Par(k)
(mpk j ,msk j)j∈[µ] ← (Gen(pp, sp))µ

b ← {0, 1}
b∗ ← A(Ext(mskj ,·),Enc′(mpkj ,·,b,·,·))j∈[µ](pp, (mpk j)j∈[µ])
if A is valid and b = b∗ then return 1 else return 0

Fig. 1. The (µ, q)-IBE-IND-CPA security experiment

(Weak) (μ, q)-IBE-IND-CPA Security. An IBE scheme IBE defined as above
is (μ, q)-IBE-IND-CPA-secure if and only if any PPT adversary A succeeds in the
following experiment only with probability at most negligibly larger than 1/2.
Let Enc′(mpk , id , b,M0,M1) be a PPT auxiliary encryption oracle that, given a
master public key mpk , a challenge identity id ∈ ID, a bit b ∈ {0, 1}, and two
messages M0,M1 ∈ M, outputs a challenge ciphertext Cid ← Enc(mpk , id ,Mb).
First, A gets honestly generated public parameter pp and master public keys
(mpk1, . . . ,mpkμ). During the experiment, A may adaptively query Ext(msk j , ·)-
oracles and Enc′(mpk j , ·, b, ·, ·)-oracles, for corresponding mpk j ,msk j and a (uni-
form) bit b ← {0, 1}, for all j ∈ [μ]. Eventually, A outputs a guess b∗. We say
that A is valid if and only if A never queries an Ext(msk j , ·) oracle on an identity
id for which it has already queried the corresponding Enc′(mpk j , ·, b, ·, ·) oracle
(and vice versa); each message pair A selected as input to Enc′ contained only
equal-length messages; and A has only queried its Enc′-oracles at most q times
per j-instance. We say that A succeeds if and only if A is valid and b = b∗.
Concretely, the previous described experiment is given in Figure 1 and denoted
Exp

(μ,q)-ibe-ind-cpa
IBE,A . Further, we define the advantage function for any PPT A as

Adv
(μ,q)-ibe-ind-cpa
IBE,A (k) := |Pr

[

Exp
(μ,q)-ibe-ind-cpa
IBE,A (k) = 1

]

− 1/2 |.
Furthermore, we call IBE weakly (μ, q)-IBE-IND-CPA secure if and only if

Adv
(μ,q)-ibe-ind-cpa
IBE,A is negligible for all weak PPT adversaries A. Here, A is weak if

it never requests challenge ciphertexts for the same scheme instance and identity
twice (i.e., if it never queries any Enc′(mpk j , ·, b, ·, ·) oracle twice with the same
identity id).

Finally, we remark that the one-instance, one-ciphertext notion (1, 1)-IBE-
IND-CPA is the standard notion of IBE security considered in, e.g., [6,9,11].
Pairings. Let G,H,GT be cyclic groups of order N . A pairing e : G × H →
GT is a map that is bilinear (i.e., for all g, g′ ∈ G and h, h′ ∈ H, we have
e(g · g′, h) = e(g, h) · e(g′, h) and e(g, h · h′) = e(g, h) · e(g, h′)), non-degenerate
(i.e., for generators g ∈ G,h ∈ H, we have that e(g, h) ∈ GT is a generator), and
efficiently computable.

3 Extended Nested Dual System Groups

(Nested) Dual System Groups. Nested dual system groups (NDSG) [11]
can be seen as a variant of dual system groups (DSG) [12] which itself are based

Identity-Based Encryption with (Almost) Tight Security 805

on the dual system framework introduced by Waters [21]. NDSGs were recently
defined by Chen and Wee and enabled to prove the first IBE (almost) tightly
and fully secure under simple assumptions. In the following, based on NDSGs,
we construct a new notion we call extended nested dual system groups.
A Variant of Nested Dual System Groups. We introduce a variant of
Chen and Wee’s nested dual system groups (NDSG) [11], dubbed extended
NDSG (ENDSG). (Mainly, we re-use and extend the notions from [11].) Fur-
ther, let G(k, n′) be a group generator that, given integers k and n′, gener-
ates the tuple (G,H,GT , N, (gp1 , . . . , gpn′), (hp1 , . . . , hpn′), g, h, e), for a pairing
e : G×H → GT , for composite-order groups G,H,GT , all of known group order
N = p1 · · · pn′ , for k-bit primes (pi)i. Further, g and h are generators of G and
H, and (gpi

)i and (hpi
)i are generators of the (proper) subgroups Gpi

⊂ G and
Hpi

⊂ H of order |Gpi
| = |Hpi

| = pi, respectively. In this setting, an ENDSG
ENDSG consists of algorithms SampP,SampG,SampH, ŜampG, S̃ampG:

Parameter sampling. SampP(k, n), given security parameter k and param-
eter n ∈ N, samples (G,H,GT , N, (gp1 , . . . , gpn′), (hp1 , . . . , hpn′), g, h, e) ←
G(k, n′), for an integer n′ determined by SampP, and outputs public parame-
ters pp = (G,H,GT , N, g, h, e,m, n, pars) and secret parameters sp = (ĥ, h̃,

p̂ars, p̃ars), where m : H → GT is a linear map, ĥ, h̃ are nontrivial H-
elements, and pars, p̂ars, p̃ars may contain arbitrary additional information
used by SampG,SampH, and ŜampG and S̃ampG.

G-group sampling. SampG(pp), given pp, outputs g = (g0, . . . , gn) ∈ Gn+1.
H-group sampling. SampH(pp), given pp, outputs h = (h0, . . . , hn) ∈ Hn+1.
Semi-functional G-group sampling 1. ŜampG(pp, sp), given pp and sp, out-

puts ĝ = (ĝ0, . . . , ĝn) ∈ Gn+1.
Semi-functional G-group sampling 2. S̃ampG(pp, sp), given pp and sp, out-

puts g̃ = (g̃0, . . . , g̃n) ∈ Gn+1.

Correctness of ENDSG. For correctness, for all k ∈ N, for all integers n =
n(k) > 1, for all pp, where pp is the first ouput of SampP(k, n), we require:

Associativity. For all (g0, . . . , gn) ← SampG(pp) and for all (h0, . . . , hn) ←
SampH(pp), we have e(g0, hi) = e(gi, h0), for all i.

Projective. For all s ← Z∗
N , for all g0 which is the first output of SampG(pp; s),

for all h ∈ H, we have m(h)s = e(g0, h).

Security of ENDSG. For security, for all k ∈ N, for all integers n = n(k) > 1,
for all (pp, sp) ← SampP(k, n), we require:

Orthogonality. For m specified in pp, for ĥ, h̃ specified in sp, we have m(ĥ) =
m(h̃) = 1. For g0, ĝ0, and g̃0 that are the first outputs of SampG(pp),
ŜampG(pp, sp), and S̃ampG(pp, sp), respectively, we have that e(g0, ĥ) = 1,
e(g0, h̃) = 1, e(ĝ0, h̃) = 1, and e(g̃0, ĥ) = 1.

806 D. Hofheinz et al.

G- and H-subgroups. The outputs of SampG, ŜampG, and S̃ampG are dis-
tributed uniformly over the generators of different nontrivial subgroups of
Gn+1 (that only depend on pp) of coprime order, respectively, while the
output of SampH is uniformly distributed over the generators of a nontrivial
subgroup of Hn+1 (that only depends on pp).

Non-degeneracy. For ĥ specified in sp and for ĝ0 which is the first output of
ŜampG(pp, sp), it holds that e(ĝ0, ĥ) is uniformly distributed over the gen-
erators of a nontrivial subgroup of GT (that only depends on pp). Similarly,
e(g̃0, h̃) is uniformly distributed over the generators of a nontrivial subgroup
of GT (that only depends on pp), where h̃ is specified in sp and g̃0 is the
first output of S̃ampG(pp, sp).

Left-subgroup indistinguishability 1 (LS1). For any PPT adversary D, we
have that the function

Advls1ENDSG,G,D(k, n) := |Pr [D(pp,g) = 1] − Pr [D(pp,gĝ) = 1] |

is negligible in k, where g ← SampG(pp), ĝ ← ŜampG(pp, sp).
Left-subgroup indistinguishability 2 (LS2). For any PPT adversary D, we

have that the function

Advls2ENDSG,G,D(k, n) := |Pr
[

D(pp, ĥh̃,g′ĝ′,gĝ) = 1
]

− Pr
[

D(pp, ĥh̃,g′ĝ′,gg̃) = 1
]

|

is negligible in k, where g,g′ ← SampG(pp), ĝ, ĝ′ ← ŜampG(pp, sp), g̃ ←
S̃ampG(pp, sp), for ĥ and h̃ specified in sp.

Nested-hiding indistinguishability (NH). For any PPT adversary D, for
all integers q′ = q′(k), the function

AdvnhENDSG,G,D(k, n, q′) :=

max
i∈[�n

2 �]

(

|Pr
[

D(pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (h1, . . . ,hq′)) = 1
]

− Pr
[

D(pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (h′
1, . . . ,h′

q′)) = 1
]

|
)

,

is negligible in k, where ĝ ← ŜampG(pp, sp), g̃ ← S̃ampG(pp, sp), and

hi′ := (hi′,0, . . . , hi′,n) ← SampH(pp),

h′
i′ := (hi′,0, . . . , hi′,2i−1 · (ĥ)γ̂i′ , hi′,2i · (h̃)γ̃i′ , . . . , hi′,n),

for ĥ, h̃ specified in sp, for γ̂i′ , γ̃i′ ← Z∗
ord(H), and for all i′ ∈ [q′].

(Informal) Comparison of NDSGs and ENDSGs. Loosely speaking, in
contrast to the NDSGs from [11], ENDSGs have a second semi-functional G-
group sampling algorithm S̃ampG as well as a second nontrivial H-element in
sp (i.e., h̃). Further, we omit the SampGT-algorithm. Concerning the ENDSG
properties, we extend the NDSG properties and assumptions appropriately and
introduce one additional assumption (i.e., LS2).

Identity-Based Encryption with (Almost) Tight Security 807

4 An (Almost) Tightly (µ, q)-IBE-IND-CPA-Secure IBE

A Variant of the IBE of Chen and Wee [11]. We are now ready to
present our variant of Chen and Wee’s IBE scheme [11]. We use an ENDSG
ENDSG = (SampP,SampG,SampH, ŜampG, S̃ampG) from Section 3 as a basic
building block. Besides, for groups GT (defined below), let UH be a family of
universal hash functions H : GT → {0, 1}k such that for any nontrivial sub-
group G′

T ⊂ GT , and for H ← UH, X ← G′
T , and U ← {0, 1}k, we have

SD ((H,H(X)) ; (H, U)) = O(2−k). Let IBE = (Par,Gen,Ext,Enc,Dec) with iden-
tity space ID = {0, 1}n and message space M = {0, 1}k be defined as follows:

Parameter Generation. Par(k, n) samples (pp′, sp′) ← SampP(k, 2n), with
pp′ = (G,H,GT , N, g, h, e,m, 2n, pars) and sp′ = (ĥ, h̃, p̂ars, p̃ars)), and
H ← UH, and then outputs the public and secret parameters (pp, sp), where
pp = (G,H,GT , N, g, h, e,m, 2n,H, pars) and sp = sp′.

Key Generation. Gen(pp, sp) samples msk ← H, and outputs a master public
key mpk := (pp,m(msk)) and a master secret key msk .

Secret-Key Extraction. Ext(msk , id), given msk ∈ H and an identity id =
(id1 . . . idn) ∈ ID, samples (h0, . . . , h2n) ← SampH(pp) and outputs a user
secret key

usk id := (h0,msk ·
n∏

i=1

h2i−idi
).

Encryption. Enc(mpk , id ,M), given mpk = (pp,m(msk)), an identity id =
(id1 . . . idn) ∈ ID, and a message M ∈ M, computes (g0, . . . , g2n) :=
SampG(pp; s), for s ← Z∗

N , and gT := m(msk)s (= e(g0,msk)), and out-
puts a ciphertext

Cid := (g0,
n∏

i=1

g2i−idi
,H(gT) ⊕ M).

Decryption. Dec(usk id , Cid ′), given a user secret key usk id =: (K0,K1) and a
ciphertext Cid′ =: (C0, C1, C2), outputs

M := H

(
e(C0,K1)
e(C1,K0)

)

⊕ C2.

Correctness of IBE. We have

H

(
e(C0,K1)
e(C1,K0)

)

⊕ C2 = H

(

e(g0,msk ·
∏n

i=1 h2i−idi
)

e(
∏n

i=1 g2i−id′
i
, h0)

)

⊕ H(gT) ⊕ M

(∗)
= H(gT) ⊕ H(gT) ⊕ M,

for id = id ′. (∗) holds due to ENDSG’s associativity and projective properties.
(μ, q)-IBE-IND-CPA Security of IBE. We base our high-level proof strat-
egy on the IBE-IND-CPA proof strategy of Chen and Wee [11], but deviate on

808 D. Hofheinz et al.

the low level. First, we define auxiliary encryption Enc and auxiliary secret-key
extraction Ext, random functions R̂j,i and R̃j,i, pseudo-normal ciphertexts, semi-
functional type-(·, i) ciphertexts, and semi-functional type-i user secret keys as
in [11]:

Auxiliary Secret-Key Extraction. Ext(pp,msk , id ;h), given pp, master secret
key msk , an identity id = id1 . . . idn ∈ ID, and h = (h0, . . . , h2n) ∈
(H)2n+1, outputs a user secret key

usk id := (h0,msk ·
n∏

i=1

h2i−idi
).

Auxiliary Encryption Function. Enc(pp, id ,M ;msk ,g), given parameter pp,
identity id = id1 . . . idn ∈ ID, message M ∈ M, master secret key msk , and
g = (g0, . . . , g2n) ∈ (G)2n+1, outputs a ciphertext

Cid := (g0,
n∏

i=1

g2i−idi
,H(e(g0,msk)) ⊕ M).

Random Function Families. Let id |i := id1 . . . id i be the i-bit prefix of an
identity id , and let ID|i := {0, 1}i. For an instance j and i ∈ [n] ∪ {0},
consider functions R̂j,i : ID|i → H, id |i �→ (ĥ)γ̂j,i(id|i) and R̃j,i : ID|i →
H, id |i �→ (h̃)γ̃j,i(id|i),, where γ̂j,i : ID|i → Z∗

ord(H), id |i �→ γ̂j,id|i and γ̃j,i :
ID|i → Z∗

ord(H), id |i �→ γ̃j,id|i are independently and truly random.

Pseudo-normal Ciphertexts. Pseudo-normal ciphertexts are generated as

Cid := Enc(pp, id ,M ;msk ,gĝ)

= (g0ĝ0,
n∏

i=1

g2i−idi
ĝ2i−idi

,H(e(g0ĝ0,msk)) ⊕ M),

for uniform g = (g0, . . . , g2n) ← SampG(pp) and ĝ = (ĝ0, . . . , ĝ2n) ←
ŜampG(pp, sp). (Hence, pseudo-normal ciphertexts have semi-functional G-
components sampled from ŜampG.)

Semi-functional type-(∧, i) and type-(∼, i) Ciphertexts. Let R̂j,i and R̃j,i

be random functions as defined above. Semi-functional ciphertexts of type
(∧, i) are generated as

Ĉid := Enc(pp, id ,M ;msk · R̂j,i(id |i) · R̃j,i(id |i),gĝ)

(1)
= (g0ĝ0,

n∏

i=1

g2i−idi
ĝ2i−idi

,H(e(g0ĝ0,msk · R̂j,i(id |i))) ⊕ M)

while semi-functional ciphertexts of type (∼, i) are generated as

C̃id := Enc(pp, id ,M ;msk · R̂j,i(id |i) · R̃j,i(id |i),gg̃)

(2)
= (g0g̃0,

n∏

i=1

g2i−idi
g̃2i−idi

,H(e(g0g̃0,msk · R̃j,i(id |i))) ⊕ M),

Identity-Based Encryption with (Almost) Tight Security 809

where g = (g0, . . . , g2n) ← SampG(pp), ĝ = (ĝ0, . . . , ĝ2n) ← ŜampG(pp), and
g̃ = (g̃0, . . . , g̃2n) ← S̃ampG(pp), while (1) and (2) hold due to ENDSG’s
properties.

Semi-functional type-i User Secret Keys. Let R̂j,i and R̃j,i be defined as
above. For h = (h0, . . . , h2n) ← SampH(pp), semi-functional type-i user
secret keys are generated as

usk id := Ext(pp,msk · R̂j,i(id |i) · R̃j,i(id |i), id ;h)

= (h0,msk · R̂j,i(id |i) · R̃j,i(id |i) ·
n∏

i=1

h2i−idi
).

Theorem 1. If ENDSG is a correct and secure ENDSG, then IBE defined as
above is weakly (μ, q)-IBE-IND-CPA-secure. Concretely, for any weak PPT
adversary A with at most q′ = q′(k) extraction queries per instance and run-
ning time t in the (μ, q)-IBE-IND-CPA security experiment with IBE, there
are distinguishers D1 on LS1, D2 on LS2, and D3 on NH with running times
t′1 ≈ t′2 ≈ t′3 ≈ t + O(μqq′nkc), respectively, some constant c ∈ N, with

Adv
(μ,q)-ibe-ind-cpa
IBE,A (k, n) ≤ Advls1ENDSG,G,D1

(k, 2n) + 2n · Advls2ENDSG,G,D2
(k, 2n)

+ n · AdvnhENDSG,G,D3
(k, 2n, q′) + μq · O(2−k), (1)

for group generator G defined as above.

Proof. We show the (μ, q)-IBE-IND-CPA security of IBE for any weak PPT
adversary A in a sequence of games where we successively change the games
until we arrive at a game where A has only negligible advantage (i.e., success
probability of 1/2) in the sense of (μ, q)-IBE-IND-CPA. Let SA,j be the event
that A succeeds in Game j. We give an overview how the challenge ciphertexts
and user secret keys are generated in Table 1.

Game 0. Game 0 is the (μ, q)-IBE-IND-CPA experiment as defined above.
Game 1. Game 1 is defined as Game 0 apart from the fact that all challenge

ciphertexts are pseudo-normal.
Game 2.i.0. Game 2.i.0 is defined as Game 1 except that all user secret keys

are semi-functional of type (i − 1) and all challenge ciphertexts are semi-
functional of type-(∧, i − 1), for all i ∈ [n].

Game 2.i.1. Game 2.i.1 is defined as Game 2.i.0 except that if and only if
the i-th bit of a challenge identity is 1, then the corresponding challenge
ciphertext is semi-functional of type (∼, i − 1). (Otherwise, if and only if
the i-th bit of a challenge identity is 0, then the corresponding challenge
ciphertext is semi-functional of type (∧, i − 1), for all j.)

Game 2.i.2. Game 2.i.2 is defined as Game 2.i.1 except that the challenge
ciphertexts are semi-functional of type (·, i) (where · can be ∧ or ∼ as defined
in Game 2.i.1, i.e., depending on the i-th challenge identity bit) and the user
secret keys are semi-functional of type i.

810 D. Hofheinz et al.

Table 1. Instance-j challenge ciphertexts for challenge identity id∗
j,i′ , for g ←

SampG(pp), for ĝ ← ŜampG(pp, sp), for g̃ ← S̃ampG(pp, sp), for Rj,i′ ← {0, 1}k,
and for instance-j user secret keys for identity id , for h ← SampH(pp), for all
(j, i′, i) ∈ [µ] × [q] × [n]. The differences between games are given by underlining.

Challenge ciphertexts for id∗
j,i′

Game 0 Enc(mpkj , id
∗
j,i′ ,M

∗
j,i′,b)

Game 1 Enc(pp, id∗
j,i′ ,M

∗
j,i′,b;mskj , gĝ)

Game 2.i.0 Enc(pp, id∗
j,i′ ,M

∗
j,i′,b;mskj · ̂Rj,i−1(id

∗
j,i′ |i−1), gĝ)

Game 2.i.1 if id∗
j,i′,i = 0 : Enc(pp, id∗

j,i′ ,M
∗
j,i′,b;mskj · ̂Rj,i−1(id

∗
j,i′ |i−1), gĝ)

if id∗
j,i′,i = 1 : Enc(pp, id∗

j,i′ ,M
∗
j,i′,b;mskj · ˜Rj,i−1(id

∗
j,i′ |i−1), gg̃)

Game 2.i.2 if id∗
j,i′,i = 0 : Enc(pp, id∗

j,i′ ,M
∗
j,i′,b;mskj · ̂Rj,i(id

∗
j,i′ |i), gĝ)

if id∗
j,i′,i = 1 : Enc(pp, id∗

j,i′ ,M
∗
j,i′,b;mskj · ˜Rj,i(id

∗
j,i′ |i), gg̃)

Game 3 Enc(pp, id∗
j,i′ ,M

∗
j,i′,b;mskj · ̂Rj,n(id

∗
j,i′), gĝ)

Game 4 Enc(pp, id∗
j,i′ , Rj,i′ ;mskj · ̂Rj,n(id

∗
j,i′), gĝ)

User secret keys for id

Game 0 Ext(mskj , id)

Game 1 Ext(pp,mskj , id;h)

Game 2.i.0 Ext(pp,mskj · ̂Rj,i−1(id|i−1) · ˜Rj,i−1(id|i−1), id;h)

Game 2.i.1 Ext(pp,mskj · ̂Rj,i−1(id|i−1) · ˜Rj,i−1(id|i−1), id;h)

Game 2.i.2 Ext(pp,mskj · ̂Rj,i(id|i) · ˜Rj,i(id|i), id;h)
Game 3 Ext(pp,mskj · ̂Rj,n(id) · ˜Rj,n(id), id;h)

Game 4 Ext(pp,mskj · ̂Rj,n(id) · ˜Rj,n(id), id;h)

Game 3. Game 3 is defined as Game 2.n.0 except that the challenge ciphertexts
are semi-functional of type (∧, n) and the user secret keys are semi-functional
of type n.

Game 4. Game 4 is defined as Game 3 except that the challenge ciphertext
messages are uniform k-length bitstrings, for all (j, i′) ∈ [μ] × [q].

Lemma 1 (Game 0 to Game 1). Let G be a group generator as defined above.
If the G- and H-subgroups property and LS1 of ENDSG hold, Game 0 and Game
1 are computationally indistinguishable. Concretely, for any PPT adversary A
with at most q′ = q′(k) extraction queries in each instance and running time t in
the (μ, q)-IBE-IND-CPA security experiment with IBE there is an distinguisher
D on LS1 with running time t′ ≈ t+O(μqq′nkc), for integer n = n(k) and some
constant c ∈ N, such that

|Pr [SA,0] − Pr [SA,1] | ≤ Advls1ENDSG,G,D(k, 2n). (2)

Proof. In Game 0, all challenge ciphertexts are normal in the sense of IBE while
in Game 1, all challenge ciphertexts are pseudo-normal. In the following, we
give a description and its analysis of a LS1 distinguisher that uses any efficient
IBE-attacker in the (μ, q)-IBE-IND-CPA sense.

Identity-Based Encryption with (Almost) Tight Security 811

Description. The challenge input is provided as (pp,T), where T is either
g or gĝ, for pp = (G,H,GT , N, e,m, 2n,H, pars), g ← SampG(pp), and ĝ ←
ŜampG(pp, sp). First, D samples (msk j)j ← (H)μ, sets mpk j := (pp,m(msk j)),
for all j, and sends (mpk j)j to A. During the experiment, D answers instance-j
secret key extraction queries to oracle Ext(msk j , ·), for id ∈ ID, with

Ext(pp,msk j , id ;SampH(pp)),

for all j. (We assume that A queries at most q′ = q′(k) user secret keys per
instance.) Then, D fixes a bit b ← {0, 1}. A may adaptively query its Enc′-oracle;
for A-chosen instance-j challenge identities (id∗

j,i)i and equal-length messages
(M∗

j,i,0,M
∗
j,i,1)i, for all i ∈ [q]. D returns

Enc(pp, id∗
j,i,M

∗
j,i,b;msk j ,Tsj,i)

to A, for sj,i ← Z∗
N , for all (j, i). (We assume that A queries at most q challenge

ciphertexts per instance.) Eventually, A outputs a guess b′. D outputs 1 if b′ = b
and A is valid in the sense of (μ, q)-IBE-IND-CPA, else outputs 0.
Analysis. The provided master public keys and the A-requested user secret
keys yield the correct distribution and are consistent in the sense of Game 0
and Game 1. Due to ENDSG’s G- and H-subgroups property, we have that T
is uniformly distributed over the generators of a nontrivial subgroup of G2n+1.
Hence, Ts, for s ← Z∗

N , is distributed uniformly over the generators of a non-
trivial subgroup of G2n+1 and, thus, all challenge ciphertexts yield the correct
distribution in the sense of Game 0 and Game 1. If T = g, then the challenge
ciphertexts are distributed identically as in Game 0. Otherwise, i.e., if T = gĝ,
then the challenge ciphertexts are distributed identically as in Game 1. Hence,
(2) follows.

Lemma 2 (Game 1 to Game 2.1.0). If the orthogonality property of ENDSG
holds, the output distributions of Game 1 and Game 2.1.0 are the same. Con-
cretely, for any PPT adversary A in the (μ, q)-IBE-IND-CPA security experi-
ment with IBE defined as above it holds that

Pr [SA,1] = Pr [SA,2.1.0] . (3)

Proof. In this bridging step, we argue that each instance-j master secret key
msk j , with msk j ← H, generated as in Game 1 and the (implicit) instance-
j master secret keys msk ′

j , with msk ′
j := msk ′′

j · R̂j,0(ε) · R̃j,0(ε), for msk ′′
j ←

H and R̂j,0, R̃j,0 defined as above, generated as in Game 2.1.0, are identically
distributed, for all j. Note that the master public keys for A contain (m(msk j))j ;
but since ((m(msk ′

j))j = (m(msk ′′
j))j , which is due to the orthogonality property

of ENDSG, no R̂j,0-information and no R̃j,0-information is given out in the master
public keys. Further, since (msk j)j and (msk ′′

j)j are identically distributed, it
follows that (3) holds.

812 D. Hofheinz et al.

Lemma 3 (Game 2.i.0 to Game 2.i.1). Let G be a group generator as
defined above. If the G- and H-subgroups property and LS2 of ENDSG hold,
Game 2.i.0 and Game 2.i.1 are computationally indistinguishable. Concretely,
for any PPT adversary A with at most q′ = q′(k) extraction queries in each
instance and running time t in the (μ, q)-IBE-IND-CPA security experiment
with IBE defined as above, there is a distinguisher D on LS2 with running time
t′ ≈ t + O(μqq′nkc), for integer n = n(k) and some constant c ∈ N, such that

|Pr [S2.i.0] − Pr [S2.i.1] | ≤ Advls2ENDSG,G,D(k, 2n), (4)

for all i ∈ [n].

Proof. In Game 2.i.0, we have semi-functional type-(∧, i − 1) challenge cipher-
texts while in Game 2.i.1, challenge ciphertexts are semi-functional of type
(∼, i − 1) if and only if the i-th challenge identity bit is 1.

Description. The challenge input is provided as (pp, ĥh̃,g′ĝ′,T), where T is
either gĝ or gg̃, for pp as before, for ĥ, h̃ specified in sp, for g,g′ ← SampG(pp),
ĝ, ĝ′ ← ŜampG(pp, sp), and g̃ ← S̃ampG(pp, sp). First, D samples (msk j)j ←
(H)μ, sets mpk j := (pp,m(msk j)), for all j, for m specified in pp, and sends
(mpk j)j to A. Further, D defines a truly random function R : [μ] × {0, 1}i−1 →
〈ĥh̃〉. During the experiment, D answers instance-j secret key extraction queries
to oracle Ext(msk j , ·) as

Ext(pp,msk j · R(j, id |i−1), id ;SampH(pp)),

for id ∈ ID and all j. (Again, we assume that A queries at most q′ = q′(k)
user secret keys per instance and we set id |0 = {0, 1}0 =: ε.) A may adap-
tively query its Enc′-oracle; for A-chosen instance-j challenge identity id∗

j,i′ =
id∗

j,i′,1 . . . , id∗
j,i′,n ∈ ID and equal-length messages (M∗

j,i′,0,M
∗
j,i′,1)i′ , for all

i′ ∈ [q]. D returns

Enc(pp, id∗
j,i′ ,M∗

j,i′,b;msk j · R(j, id∗
j,i′ |i−1), (g′ĝ′)sj,i′) if id∗

j,i′,i = 0,

Enc(pp, id∗
j,i′ ,M∗

j,i′,b;msk j · R(j, id∗
j,i′ |i−1),Tsj,i′) if id∗

j,i,i′ = 1,

to A, for (fixed) b ← {0, 1}, for sj,i′ ← Z∗
N , for all (j, i′). Eventually, A outputs a

guess b′. D outputs 1 if b′ = b and A is valid in the sense of (μ, q)-IBE-IND-CPA,
else outputs 0.
Analysis. The master public keys yield the correct distribution as well as the
requested user secret keys (which is due to ENDSG’s G- and H-subgroups prop-
erty). For challenge ciphertexts, note that g′ĝ′ and T are uniformly distributed
over the generators of their respective nontrivial subgroup of G2n+1 and, hence,
(g′ĝ′)s and Ts, for s ← Z∗

N , are distributed uniformly over the generators of
their respective nontrivial G2n+1-subgroup as well. If T = gĝ, then the challenge
ciphertexts are distributed identically as in Game 2.i.0. Otherwise, if T = gg̃,
then the challenge ciphertexts are distributed identically as in Game 2.i.1 (where,

Identity-Based Encryption with (Almost) Tight Security 813

in both cases, ENDSG’s orthogonality and non-degeneracy properties hold; thus,
ĥ and h̃ must contain coprime nontrivial elements and the challenge ciphertexts
yield the correct distribution). Hence, (4) follows.

Lemma 4 (Game 2.i.1 to Game 2.i.2). Let G be a group generator as defined
above. If the G- and H-subgroups property and NH of ENDSG hold, Game 2.i.1
and Game 2.i.2 are computationally indistinguishable. Concretely, for any PPT
adversary A with at most q′ = q′(k) extraction queries in each instance and
running time t in the (μ, q)-IBE-IND-CPA security experiment with IBE defined
as above there is a distinguisher D on NH with running time t′ ≈ t+O(μqq′nkc),
for integer n = n(k) and some constant c ∈ N, such that

|Pr [S2.i.1] − Pr [S2.i.2] | ≤ AdvnhENDSG,G,D(k, 2n, q′), (5)

for all i ∈ [n].

Proof. In Game 2.i.1, the challenge ciphertexts are semi-functional of type (∧, i−
1) if the i-th bit of the challenge identity is 0 and semi-functional of type (∼, i−1)
if the i-th bit of the challenge identity is 1, while in Game 2.i.1, all challenge
ciphertexts are of type (·, i).
Description. The challenge input is (pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (T1, . . . ,Tq′)),
where Ti′ equals either

(hi′,0, . . . , hi′,n) or (hi′,0, . . . , hi′,2i−1 · (ĥ)γ̂j,i′ , hi′,2i · (h̃)γ̃j,i′ , . . . , hi′,n),

for pp as before, ĥ, h̃ as in sp, for ĝ ← ŜampG(pp, sp), for g̃ ← S̃ampG(pp, sp),
for (hi′,0, . . . , hi′,n) ← SampH(pp), for uniform γ̂j,i′ , γ̃j,i′ ∈ Z∗

ord(H). D samples
(msk j)j ← (H)μ, sets mpk j := (pp,m(msk j)), for all j, for m specified in pp,
and sends (mpk j)j to A. Further, D defines random functions R̂j,i−1, R̃j,i−1 as
above. In addition, for identity id = id1 . . . idn ∈ ID, we define

R̂j,i(id |i) := R̂j,i−1(id |i−1) and (implicitly) R̃j,i(id |i) := R̃j,i−1(id |i−1) · (h̃)γ̃j,i′

if id i = 0 and

R̃j,i(id |i) := R̃j,i−1(id |i−1) and (implicitly) R̂j,i(id |i) := R̂j,i−1(id |i−1) · (ĥ)γ̂j,i′

if id i = 1. During the experiment, D returns the ij-th instance-j secret-key-
extraction query to oracle Ext(msk j , ·) for an identity id , with prefix id |i not an
prefix of an already queried identity, as

Ext(pp,msk j · R̂j,i(id |i) · R̃j,i−1(id |i−1), id ;Ti′) if id i = 0,

Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i(id |i), id ;Ti′) if id i = 1.

(We assume that A queries at most q′ = q′(k) user secret keys per instance.)
For an identity prefixes id |i that is an prefix of an already queried identity, let
i′′ ∈ [q′] be the index of that query. In that case, D returns

Ext(pp,msk j · R̂j,i(id |i) · R̃j,i−1(id |i−1), id ;Ti′′ · SampH(pp)) if id i = 0,

Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i(id |i), id ;Ti′′ · SampH(pp)) if id i = 1,

814 D. Hofheinz et al.

for all i′′. (Note that we use SampH to re-randomize the H2n+1-subgroup ele-
ments of Ti′′ .) Further, A may adaptively query its Enc′-oracle; for A-chosen
instance-j challenge identity id∗

j,i′′′ = id∗
j,i′′′,1 . . . , id∗

j,i′′′,n and equal-length mes-
sages (M∗

j,i′′′,0,M
∗
j,i′′′,1)i′′′ , for all i′′′. D returns

Enc(pp, id∗
j,i′′′ ,M

∗
j,i′′′,b;msk j · R̂j,i(id

∗
j,i′′′ |i), (g−(2i−1)ĝ−(2i−1))

sj,i′′′) if id∗
j,i′′′,i = 0,

Enc(pp, id∗
j,i′′′ ,M∗

j,i′′′,b;msk j · R̃j,i(id∗
j,i′′′ |i), (g−2ig̃−2i)sj,i′′′) if id∗

j,i′′′,i = 1,

to A, for sj,i′′′ ← Z∗
N , for g ← SampG(pp), for fixed b ← {0, 1}, for all (j, i′′′).

(Note that a modified Enc-input is provided which has only 4n + 2 elements
instead of 4n + 4 elements. Nevertheless, the removed elements are not needed
to generate a valid ciphertext since it is consistent with id∗

j,i′′′ ; thus, we assume
that the algorithm works as defined above.) Eventually, A outputs a guess b′.
D outputs 1 if b′ = b and A is valid in the sense of (μ, q)-IBE-IND-CPA, else
outputs 0.
Analysis. Note that the provided master public keys yield the correct distribu-
tion; for the A-requested user secret keys note that, since ĥ and h̃ have nontrivial
H-elements of coprime order (again, this is due to the orthogonality and non-
degeneracy properties), the random functions R̂j,i−1, R̂j,i and R̃j,i−1, R̃j,i yield
the correct distributions in the sense of Game 2.i.1 and Game 2.i.2, respectively.
Due to the G- and H-subgroups property of ENDSG, g−(2i−1) and ĝ−(2i−1)

as well as g−2i and g̃−2i are uniformly distributed over the generators of their
respective nontrivial subgroups of G2n and, thus, (g−(2i−1)ĝ−(2i−1))s and
(g−2ig̃−2i)s, for s ← Z∗

N , are distributed uniformly over the generators of their
respective nontrivial subgroup of G2n. Further, if id∗

j,i′′′,i = 0, then it holds
that R̂j,i(id∗

j,i′′′ |i) = R̂j,i(id∗
j,i′′′ |i−1) and all required semi-functional components

ĝ−(2i−1) to create the challenge ciphertexts are given. Analogously, if id∗
j,i′′′,i = 1,

then we have R̃j,i(id∗
j,i′′′ |i) = R̃j,i−1(id∗

j,i′′′ |i−1) and all necessary semi-functional
components g̃−2i are provided as needed. (Thus, the challenge ciphertexts and
user secret keys yield the correct distribution.) If Ti′ = (hi′,0, . . . , hi′,n), for
all i′, then the user secret keys are distributed identically as in Game 2.i.1. If
Ti′ = (hi′,0, . . . , hi′,2i−1 · (ĥ)γ̂j,i′ , hi′,2i · (h̃)γ̃j,i′ , . . . , hi′,n), for all i′, then the user
secret keys are distributed identically as in Game 2.i.2. Thus, (5) follows.

Lemma 5 (Game 2.i-1.2 to Game 2.i.0). Let G be a group generator as
defined above. If the G- and H-subgroups property and LS2 of ENDSG hold,
Game 2.i-1.1 and Game 2.i.0 are computationally indistinguishable. Concretely,
for any PPT adversary A with at most q′ = q′(k) extraction queries in each
instance and running time t in the (μ, q)-IBE-IND-CPA security experiment
with IBE, defined as above, there is a distinguisher D with running time t′ ≈
t + O(μqq′nkc), for integer n = n(k) and some constant c ∈ N, such that

|Pr [S2.i−1.2] − Pr [S2.i.0] | ≤ Advls2ENDSG,G,D(k, 2n), (6)

for all i ∈ [n] \ {1}.

Identity-Based Encryption with (Almost) Tight Security 815

Proof. The proof is essentially the proof of Lemma 3 except that the challenge
ciphertexts and user secret keys depend on the (i − 1)-th instead of the i-th
challenge identity bit.

Lemma 6 (Game 2.n.2 to Game 3). Let G be a group generator as defined
above. If the G- and H-subgroups property and LS2 of ENDSG hold, Game 2.n.2
and Game 3 are computationally indistinguishable. Concretely, for any PPT
adversary A with at most q′ = q′(k) extraction queries in each instance and
running time t in the (μ, q)-IBE-IND-CPA security experiment with IBE defined
as above there is a distinguisher D with running time t′ ≈ t + O(μqq′nkc), for
integer n = n(k) and some constant c ∈ N, such that

|Pr [SA,2.n.2] − Pr [SA,3] | ≤ Advls2ENDSG,G,D(k, 2n). (7)

Proof. It is easy to see that Game 3 and a potential Game 2.n+1.0 would be
identical. Thus, we can reassemble the proof of Lemma 5 with i := n + 1 and
(7) directly follows.

Lemma 7 (Game 3 to Game 4). Then Game 3 and Game 4 are statistically
indistinguishable. Concretely, for any PPT adversary A on the (μ, q)-IBE-IND-
CPA security of IBE defined as above it holds that

|Pr [SA,3] − Pr [SA,4] | ≤ μq · O(2−k). (8)

Proof. In Game 4, we replace each challenge message Mj,i′,b, for challenge bit
b ∈ {0, 1}, with a (fresh) uniformly random k-length bitstring Rj,i′ ← {0, 1}k.
We argue with ENDSG’s non-degeneracy property and the universality of H for
this change. Concretely, for instance-j Game-3 challenge ciphertexts

Enc(pp, id∗
j,i′ ,M∗

j,i′,b;msk j · R̂j,n(id∗
j,i′), (gĝ)sj,i′)

= ((g0ĝ0)sj,i′ , (
n∏

i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)sj,i′ ,H(e((g0ĝ0)sj,i′ ,msk j · R̂j,n(id∗
j,i′)))

⊕ M∗
j,i′,b),

for g ← SampG(pp), for ĝ ← ŜampG(pp, sp), for sj,i′ ← Z∗
N , for all i′ ∈ [q], note

that e((ĝ0)sj,i′ , R̂j,n(id∗
j,i′)) = e((ĝ0)sj,i′ , ĥ)γ̂j,i′ , for uniform γ̂j,i′ ∈ Z∗

ord(H), is uni-
formly distributed in a subgroup G′

T ⊂ GT due to the non-degeneracy property
of ENDSG. Furthermore, since A is a weak adversary, all the R̂j, n are for differ-
ent preimages and thus independently random. Hence, since H is a (randomly
chosen) universal hash function, we have that ε := SD ((H,H(X)) ; (H, U)) =
O(2−k), for X ← G′

T and U ← {0, 1}k. A union bound yields (8).

Lemma 8 (Game 4). For any PPT adversary A in the (μ, q)-IBE-IND-CPA
security experiment with IBE defined as above it holds that

Pr [SA,4] = 1/2. (9)

816 D. Hofheinz et al.

Proof. In Game 4, for (uniform) challenge bit b ∈ {0, 1}, we provide the adver-
sary A with challenge ciphertexts that include only a uniform k-length bitstring
instead of a A-chosen b-dependent messages, for each instance and challenge.
Hence, b is completely hidden from A and (9) follows.

Taking (2), (3), (4), (5), (6), (7), (8), and (9) together, shows (1).

From Weak to Full (μ, q)-IBE-IND-CPA Security. The analysis above
shows only weak security: we must assume that the adversary A never asks for
encryptions under the same challenge identity and for the same scheme instance
twice. We do not know how to remove this restriction assuming only the abstract
properties of ENDSGs. However, at the cost of one tight additional reduction to
(a slight variant of) the Bilinear Decisional Diffie-Hellman (BDDH) assumption,
we can show full (μ, q)-IBE-IND-CPA security.

Concretely, in Game 3, challenge ciphertexts for A are prepared using (the
hash value of) e(ĝs

0, ĥ
γ) as a mask to hide the plaintext behind. Here, ĝs

0 and
ĥ are public (as part of the ciphertext, resp. public parameters), s is a fresh
exponent chosen randomly for each encryption, and γ is a random exponent
that however only depends on the scheme instance and identity. (Thus, γ will be
reused for different encryptions under the same identity). Hence, if we show that
many tuples (ĝsi , e(ĝsi

0 , ĥγ)) (for different si but the same γ) are computationally
indistinguishable from random tuples, we obtain that even multiple encryptions
under the same identity hide the plaintexts, and we obtain full security.

Of course, the corresponding reduction should be tight, in the sense that it
should not degrade in the number of tuples, or in the number of considered γ. In
the full version, we show such a reduction to the BDDH assumption (in suitable
subgroups of G). (In a nutshell, we set up e(ĝs

0, ĥ
γ) = e(g, g)abc for a generator g

and random exponents a, b, c with ĝs
0 = ga and ĥγ = gbc. The BDDH assumption

now states that e(g, g)abc looks random even given g, ga, gb, gc. Furthermore, by
the random self-reducibility of BDDH, the corresponding reduction is tight.)

5 Instantiations of ENDSGs in Composite-Order Groups

Assumptions in Groups with Composite Order. We slightly modify two
(known) dual system assumptions (i.e., see DS1, DS3 below, and [11]) and define
one (new) dual system assumption (see DS2 below). Let G(k, 4) be a composite-
order group generator that outputs the following group parameters (G,H =
G,GT , N, e, g, gp1 , gp2 , gp3 , gp4) with the composite-order groups G,GT , each of
order N = p1 · · · p4, for pairwise-distinct k-bit primes (pi)i. Further, gpi

is a
generator of the subgroup Gpi

⊂ G of order pi, and g is a generator of G. More
generally, we write Gq ⊆ G for the unique subgroups of order q. The assumptions
in groups with composite order are as follows:

Dual System Assumption 1 (DS1). For any PPT adversary D, the function

Advds1G,D(k) := |Pr
[

D(pars, g′
p1

) = 1
]

− Pr
[

D(pars, g′
p1p2

) = 1
]

|

Identity-Based Encryption with (Almost) Tight Security 817

is negligible in k, for (G,GT , N, e, g, (gpi
)i) ← G(k, 4),

pars := (G,GT , N, e, g, gp1 , gp3 , gp4), and g′
p1

g← Gp1 , g′
p1p2

g← Gp1p2 .

Dual System Assumption 2 (DS2). For any PPT adversary D, the function

Advds2G,D(k) := |Pr
[

D(pars, g′
p1p2

) = 1
]

− Pr
[

D(pars, g′
p1p3

) = 1
]

|

is negligible in k, for (G,GT , N, e, g, (gpi
)i) ← G(k, 4),

pars := (G,GT , N, e, g, gp1 , gp4 , gp1p2 , gp2p3),

gp1p2

g← Gp1p2 , gp2p3

g← Gp2p3 , and g′
p1p2

g← Gp1p2 , g′
p1p3

g← Gp1p3 .

Dual System Assumption 3 (DS3). For any PPT adversary D, the function

Advds3G,D(k) := |Pr
[

D(pars, gxy
p2

, gxy
p3

) = 1
]

− Pr
[

D(pars, gxy+γ′
p2

, gxy+γ′
p3

) = 1
]

|

is negligible in k, for (G,GT , N, e, g, (gpi
)i) ← G(k, 4),

pars := (G,GT , N, e, g, gp1 , gp2 , gp3 , gp4 , g
x
p2

X̂4, g
y
p2

Ŷ4, g
x
p3

X̃4, g
y
p3

Ỹ4),

X̂4, X̃4, Ŷ4, Ỹ4
g← Gp4 , x, y,← Z∗

N , and γ′ ← Z∗
N .

ENDSGs in Groups with Composite Order. Let G(k, 4) be as defined above.
For simplicity, we write gi := gpi

and gij := gpipj
, for all (i, j) ∈ [4] × [4].

We instantiate ENDSGs ENDSGco = (SampP,SampG,SampH, ŜampG, S̃ampG)
in composite-order groups as follows:

Parameter Sampling. SampP(k, n), given k and n, samples (G,H,GT , (pi)i, e,
g, h, (gi)i) ← G(k, 4) and outputs pp := (G,H,GT , N, g, e,m, n, pars ,H) and
sp := (ĥ, h̃, p̂ars, p̃ars), for
• m : H → GT , h′ �→ e(g1, h′),
• pars := (g1, g4, gw1 , h, hw · R4), for w ← (Z∗

N)n, R4
g← (Gp4)

n,
• ĥ

g← Gp2p4 , h̃
g← Gp3p4 ,

• p̂ars := (g2, gw2), p̃ars := (g3, gw3).
G-Group Sampling. SampG(pp) samples s ← Z∗

N and outputs (gs
1, g

s·w
1).

H-Group Sampling. SampH(pp) samples r ← Z∗
N and outputs (hr, hr·w ·R′

4),
for R′

4
g← (Gp4)

n.
Semi-functional G-group Sampling 1. ŜampG(pp, sp) samples s ← Z∗

N and
outputs (gs

2, g
s·w
2).

Semi-functional G-group Sampling 2. S̃ampG(pp, sp) samples s ← Z∗
N and

outputs (gs
3, g

s·w
3).

Correctness of ENDSGco. For all k, n ∈ N and group parameters (G,H,GT , N,
e, g, h, (gi)i) ← G(k, 4), we have:

818 D. Hofheinz et al.

Associativity. For all s, r ← Z∗
N , for all (gs

1, g
s·w
1) ← SampG(pp; s), for all

(hr, hr·w · R′
4) ← SampH(pp; r), for R′

4 = (R′
i)i ∈ (Gp4)

n, it holds that

e(gs
1, h

r·wi · R′
i) = e(gs

1, h
r·wi) = e(gs·wi

1 , hr)

for all i ∈ [n], and for w = (w1, . . . , wn) ∈ (Z∗
N)n.

Projective. For all s ← Z∗
N , for all h′ ∈ H, it holds that m(h′)s = e(g1, h′)s =

e(gs
1, h

′). (Note that gs
1 is the first output of SampG(pp; s).)

Security of ENDSGco. Let G be a composite-order group generator as defined
above, for all k, n,∈ N, for all (pp, sp) ← SampP(k, n), we have:

Orthogonality. For ĥ, h̃ specified in sp, we have

m(ĥ) = e(g1, ĥ) = e((gp2p3p4)γg1 , (gp1p3)γ
ĥ) = 1

and
m(h̃) = e(g1, h̃) = e((gp2p3p4)γg1 , (gp1p2)γ

h̃) = 1

for suitable exponents γg1 , γĥ, γh̃ ∈ Z∗
N . Further, for gs

1, gs′
2 , and gs′′

3 that are

the first outputs of SampG(pp; s), ŜampG(pp, sp; s′), and S̃ampG(pp, sp; s′′),
for s, s′, s′′ ← Z∗

N , we have e(gs
1, ĥ) = e(gs

1, h̃) = e(gs′
2 , h̃) = e(gs′′

3 , ĥ) = 1.
G- and H-subgroups. Since g1, g2, and g3 are generators of subgroups Gp1 ,

Gp2 , and Gp3 of coprime order, the outputs of SampG, ŜampG, and S̃ampG
are uniform over the generators, which generates nontrivial subgroups of G
of coprime order. Since h is a generator of H and R′

4 is uniform over the
generators of (Gp4)

n, the output of SampH is uniformly distributed over the
generators of H.

Non-degeneracy. For the first output gs
2 of ŜampG(pp, sp; s) (with uniform

s ∈ Z∗
N), and for ĥ ∈ Gp2p3 as specified in sp, it holds that e(gs

2, ĥ) = e(g2, ĥ)s

is uniformly distributed over the generators of the subgroup generated by
e(g2, ĥ). Similarly, for the first output gs

3 of S̃ampG(pp, sp; s), it holds that
e(gs

3, h̃) = e(g3, h̃)s is distributed uniformly over the generators of the sub-
group generated by e(g3, h̃).

Left-Subgroup Indistinguishability 1. We prove the following lemma

Lemma 9 (DS1 to LS1). For any PPT adversary D with running time
t on LS1 of ENDSGco as defined above there is a distinguisher D′ on DS1
with running time t′ ≈ t such that

Advls1ENDSGco,G,D(k, n) = Advds1G,D′(k), (10)

for G as defined above. Hence, LS1 holds under DS1.

Proof. Description. The challenge input to D′ is provided as (pars,T),
where T is either g′

1 ← Gp1 or g′
12 ← Gp1p2 , for pars = (G,GT , N, e, g, g1, g3,

g4). First, D′ sets the public parameter as pp := (G,H := G,GT , N, g, e,m,

Identity-Based Encryption with (Almost) Tight Security 819

n, pars ′), for m : h′ �→ e(g1, h′), pars ′ := (g1, g4, gw1 , h := g, hw), for w ←
(Z∗

N)n, and for some integer n determined by D′. Then, D′ sends (pp,T,Tw)
to D. Finally, D outputs a value which D′ forwards to its own challenger.
Analysis. Note that pp is distributed as defined in LS1. If T = g′

1,
then (g′

1, (g
′
1)

w) is distributed as the output of SampG(pp) as needed and,
hence, Pr [D′(pars, g′

1) = 1] = Pr [D(pp, (g′
1, (g

′
1)

w)) = 1] follows. Otherwise,
if T = g′

12, then (g′
12, (g

′
12)

w) is distributed as SampG(pp) · ŜampG(pp, sp),
for suitable sp, as desired and, hence, we have that Pr [D′(pars, g′

12) = 1] =
Pr [D(pp, (g′

12, (g
′
12)

w)) = 1]. As a consequence, (10) follows.

Left-subgroup indistinguishability 2. We prove the following lemma

Lemma 10 (DS2 to LS2). For any PPT adversary D with running time
t on LS2 of ENDSGco defined as above there is a distinguisher D′ on DS2
with running time t′ ≈ t such that

Advls2ENDSGco,G,D(k, n) = Advds2G,D′(k), (11)

for G as defined above. Hence, LS2 holds under DS2.

Proof. Description. The challenge input to D′ is provided as (pars,T),
where T is either g′

12 ← Gp1p2 or g′
13 ← Gp1p3 , for pars = (G,GT , N, e, g, g1,

g4, g12, g23). First, D′ defines the public parameter as pp := (G,H := G,GT ,
N, g, e,m, n, pars ′), for m : h′ �→ e(g1, h′), pars ′ := (g1, g4, gw1 , h := g, hw),
for w ← (Z∗

N)n, and for some integer n determined by D′. Then, D′ sends
(pp, g23g

γ
4 , g12,T,Tw), for γ ← Z∗

N , to D. Eventually, D outputs a value
which is forwarded by D′ to its own challenger.
Analysis. Note that pp is distributed as defined in LS2. If T = g′

12, then
(g′

12, (g
′
12)

w) is distributed as SampG(pp) · ŜampG(pp, sp), for suitable sp, as
needed and, hence, we have that Pr [D′(pars, g′

12) = 1] =
Pr [D(pp, g23g

γ
4 , g12, (g′

12, (g
′
12)

w)) = 1] follows. Otherwise, if T = g′
13, then

(g′
13, (g

′
13)

w) is distributed as SampG(pp) · S̃ampG(pp, sp), for suitable sp, as
desired and, hence, Pr [D′(pars, g′

13) = 1] =
Pr [D(pp, g23g

γ
4 , g12, (g′

13, (g
′
13)

w)) = 1] holds. As a consequence, (11) follows.

Nested-hiding indistinguishability. We prove the following lemma

Lemma 11 (DS3 to NH). For any PPT adversary D with running time
t on NH of ENDSGco there is a distinguisher D′ on DS3 with running time
t′ ≈ t such that

AdvnhENDSGco,G,D(k) ≤ Advds3G,D′(k), (12)

for G as defined above. Hence, NH holds under DS3.

Proof. The proof follows the same strategy as shown in Chen and Wee’s
work [11] except that we have to integrate two coprime-order semi-functional
generators ĥ and h̃ instead of just one as in [11].

820 D. Hofheinz et al.

Description. The challenge input to D′ is provided as (pars,T), where
T := (T̂, T̃) is either (gxy

2 , gxy
3) or (gxy+γ′

2 , gxy+γ′
3), for

pars =: (G,GT , N, e, g1, g2, g3, g4, g
x
2 X̂4, g

y
2 Ŷ4, g

x
3 X̃4, g

y
3 Ỹ4),

for X̂4, Ŷ4, X̃4, Ỹ4
g← Gp4 , x, y ← Z∗

N , and for γ′ ← Z∗
N . Furthermore, D′

receives an auxiliary input i ∈ [�n
2 �], for some integer n ∈ N determined by

D′. First, D′ samples r, r̂, r̃, ŝ, s̃ ← Z∗
N , R′

4
g← (Gp4)

n, w′ ← (Z∗
N)n, and

sets

h := (g1g2g3g4)r, ĥ := (g2g4)r̂, h̃ := (g3g4)r̃,

ĝ−(2i−1) := (gŝ
2, g

ŝw′
2)−(2i−1), g̃−2i := (gs̃

3, g
s̃w′
3)−(2i),

where h, ĥ, and h̃ are generators of G, Gp2p4 , and Gp3p4 . Then, D′ defines
public parameter as

pp := (G,H := G,GT , N, g, e, n,m, pars ′),

for m : h′ �→ e(g1, h′) and

pars ′ := (g1, g4, gw
′

1 , h, hw′
(gy

2 Ŷ4)re2i−1(gy
3 Ỹ4)re2iR′

4)
= (g1, g4, gw1 , h, hwR4),

where ej is the j-th unit vector of length n and, implicitly, we have

w =

⎧

⎪⎨

⎪⎩

w′ mod p1p4

w′ + y · e2i−1 mod p2

w′ + y · e2i mod p3

and R4 = R′
4 + Ŷ r

4 · e2i−1 + Ỹ r
4 · e2i.

Now, by running the algorithm from [12, Lemma 6] on input
(1q′

, (g2, g4, gx
2 X̂4, g

y
2 Ŷ4, T̂)) and on input (1q′

, (g3, g4, gx
3 X̃4, g

y
3 Ỹ4, T̃)), D′

generates tuples

(gr̂j

2 X̂4,j , T̂j)
q′
j=1 and (gr̃j

3 X̃4,j , T̃j)
q′
j=1,

respectively, where

T̂j =

{

g
r̂jy
2 · Ŷ4,j , if T̂ = gxy

2

g
r̂jy
2 · Ŷ4,j · g

γ̂′
j

2 , if T̂ = gxy+γ′
2

and

T̃j =

{

g
r̃jy
3 · Ỹ4,j , if T̃ = gxy

3

g
r̃jy
3 · Ỹ4,j · g

γ̃′
j

3 , if T̃ = gxy+γ′
3 .

Further, D′ samples r′
j ← Z∗

N , X′
4,j

g← (Gp4)
n, for all j ∈ [q′], and sends

(pp, ĥ, h̃, ĝ2i−1, g̃2i, (T1, . . . ,Tq′))

Identity-Based Encryption with (Almost) Tight Security 821

to D, where

Tj = (hr′
j · g

r̂j

2 X̂4,j · g
r̃j

3 X̃4,j , (hr′
j · g

r̂j

2 X̂4,j · g
r̃j

3 X̃4,j)w
′ ·

((gy
2 Ŷ4)r′

jrT̂j)e2i−1 · ((gy
3 Ỹ4)r′

jrT̃j)e2iX′
4,j)

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(hrj , hrj ·w · X4,j) if T̂j = g
r̂jy
2 · Ŷ4,j

and T̃j = g
r̃jy
3 · Ỹ4,j

(hrj , hrj ·w · g
γ̂je2i−1
2 · g

γ̃je2i
3 · X4,j) if T̂j = g

r̂jy
2 · Ŷ4,j · g

γ̂j

2

and T̃j = g
r̃jy
3 · Ỹ4,j · g

γ̃j

3

for hrj := hr′
j · g

r̂j

2 X̂4,j · g
r̃j

3 X̃4,j and X4,j := X′
4,j + Ŷ

r′
jr

4 e2i−1 + Ỹ
r′
jr

4 e2i

implicitly and w as above.
Analysis. Note that pp is distributed as defined in NH. If T = (gxy

2 , gxy
3),

then T̂j = g
r̂jy
2 · Ŷ4,j and T̃j = g

r̃jy
3 · Ỹ4,j , for all j ∈ [q′], and, thus,

(T1, . . . ,Tq′) is distributed as (h1, . . . ,hq′), for suitable sp, as needed. Other-
wise, if T = (gxy+γ′

2 , gxy+γ′
3), then T̂j = g

r̂jy
2 ·Ŷ4,j ·gγ̂j

2 and T̃j = g
r̃jy
3 ·Ỹ4,j ·gγ̃j

3

for all j ∈ [q′], and, thus, (T1, . . . ,Tq′) is distributed as (h′
1, . . . ,h′

q′), for
suitable sp, since (ĥ, g

γ̂j

2 · Ŷ4,j) and (h̃, g
γ̃j

3 · Ỹ4,j) are identically distributed as
(ĥ, (ĥ)γ̂j · Ŷ4,j) and (h̃, (h̃)γ̃j · Ỹ4,j), respectively, for γ̂j , γ̃j ← Z∗

N , Ŷ4,j , Ỹ4,j
g←

Gp4 , for all j ∈ [q′].

Acknowledgments. We thank the anonymous reviewers for helpful remarks.

References

1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press
(October 1997)

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

4. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

5. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011)

6. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014)

7. Boldyreva, A.: Strengthening security of RSA-OAEP. In: Fischlin, M. (ed.)
CT-RSA 2009. LNCS, vol. 5473, pp. 399–413. Springer, Heidelberg (2009)

822 D. Hofheinz et al.

8. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

10. Cash, D.M., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

11. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

12. Chen, J., Wee, H.: Dual system groups and its applications – compact hibe and
more. Cryptology ePrint Archive, Report 2014/265 (2014). http://eprint.iacr.org/

13. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

14. Galindo, D., Mart́ın, S., Morillo, P., Villar, J.L.: Easy verifiable primitives and
practical public key cryptosystems. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS,
vol. 2851, pp. 69–83. Springer, Heidelberg (2003)

15. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

16. Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially
many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

17. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

18. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

19. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

20. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg
(2014)

21. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
Simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

22. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

http://eprint.iacr.org/

Author Index

Abdalla, Michel 332, 733
Abe, Masayuki 699
Agrawal, Shashank 777
Agrawal, Shweta 777
Alperin-Sheriff, Jacob 236

Badrinarayanan, Saikrishna 777
Baldimtsi, Foteini 101
Barthe, Gilles 355
Bellare, Mihir 52, 308, 516
Benhamouda, Fabrice 332
Bergsma, Florian 477
Bernhard, David 629
Blazy, Olivier 256
Bourse, Florian 733

Camenisch, Jan 283
Canard, Sébastien 77
Cascudo, Ignacio 495
Cash, David 217
Chaidos, Pyrros 650
Chase, Melissa 101
Chen, Kefei 557
Couvreur, Alain 175

Damgård, Ivan 495
David, Bernardo 495
De Caro, Angelo 733
Deng, Robert H. 557
Döttling, Nico 604
Dowsley, Rafael 52, 217

Enderlein, Robert R. 283

Fagerholm, Edvard 355
Faugère, Jean-Charles 150, 194
Faust, Sebastian 579
Fiore, Dario 355
Fischlin, Marc 629
Fuchsbauer, Georg 101

Gauthier–Umaña, Valérie 175
Gay, Romain 752

Giacomelli, Irene 495
Gligoroski, Danilo 150
Granger, Robert 539
Groth, Jens 650

Heuer, Felix 27
Hiromasa, Ryo 699
Hoang, Viet Tung 308
Hofheinz, Dennis 799

Jager, Tibor 27, 477
Joye, Marc 450

Kakvi, Saqib A. 256
Keelveedhi, Sriram 52, 516
Kijima, Shuji 127
Kiltz, Eike 27, 217, 256
Koch, Jessica 799
Kohlweiss, Markulf 101
Kumarasubramanian, Abishek 777

Lewko, Allison 377
Libert, Benoît 450
Ling, San 427
Liu, Shengli 3, 557
Lyubashevsky, Vadim 716

Méaux, Pierrick 752
Meiklejohn, Sarah 377
Montenegro, Ravi 127
Mukherjee, Pratyay 579

Neven, Gregory 283
Nguyen, Khoa 427
Nguyen, Phong Q. 401
Nielsen, Jesper Buus 495, 579

Okamoto, Tatsuaki 699
Orsini, Emmanuela 673
Otmani, Ayoub 175

Pan, Jiaxin 256
Paterson, Kenneth G. 3

Pena, Marta Conde 194
Perret, Ludovic 150, 194
Peters, Thomas 450
Pointcheval, David 77, 332, 733
Prabhakaran, Manoj 777

Qin, Baodong 557

Sahai, Amit 777
Samardjiska, Simona 150
Sanders, Olivier 77
Scedrov, Andre 355
Schäge, Sven 27
Schmidt, Benedikt 355
Schwenk, Jörg 477
Scott, Michael 539
Smart, Nigel P. 673
Striecks, Christoph 799

Thomae, Enrico 150
Tibouchi, Mehdi 355
Tillich, Jean-Pierre 175
Traoré, Jacques 77
Trifiletti, Roberto 495

van de Pol, Joop 673
Venturi, Daniele 579

Wang, Huaxiong 427
Warinschi, Bogdan 629
Wee, Hoeteck 752
Wichs, Daniel 716

Yuen, Tsz Hon 557
Yung, Moti 450

Zhang, Jiang 401
Zhang, Zhenfeng 401

824 Author Index

	Preface
	Organization
	Contents
	Public-Key Encryption
	Simulation-Based Selective Opening CCA Security for PKE from Key Encapsulation Mechanisms
	1 Introduction
	1.1 Our Contributions
	1.2 Ingredients of Our Main Construction
	1.3 Overview of Our Main Construction
	1.4 SIM-SO-CCA Security of Our Main Construction
	1.5 Related Work

	2 Preliminaries
	2.1 Public Key Encryption
	2.2 Simulation-Based, Selective Opening CCA Security of PKE
	2.3 Key Encapsulation Mechanisms
	2.4 Efficiently Samplable and Explainable (ESE) Domain

	3 KEM Tailored for Construction of PKE with SIM-SO-CCA Security
	3.1 Valid Ciphertext Indistinguishability (VCI) of KEMs
	3.2 Tailored KEMs

	4 Construction of PKE with SIM-SO-CCA Security from Tailored KEMs
	5 Instantiations
	5.1 Strongly Universal2 Hash Proof Systems
	5.2 Tailored KEM Based on n-Linear Assumption
	5.3 Tailored KEM Based on Indistinguishability Obfuscation and Puncturable PRF

	References

	On the Selective Opening Security of Practical Public-Key Encryption Schemes
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Games
	2.2 Public Key Encryption Schemes
	2.3 SIM-SO-CCA Security Definition

	3 Transformation from Any OW-PCA Secure KEM
	3.1 Key Encapsulation Mechanisms and Message Authentication Codes
	3.2 The Transformation
	3.3 Implications for Practical Encryption Schemes

	4 The OAEP Transformation
	4.1 Trapdoor Permutations and Partial-Domain Onewayness
	4.2 Optimal Asymmetric Encryption Padding (OAEP)
	4.3 Security of OAEP against SO-CCA Attacks

	References

	How Secure is Deterministic Encryption?
	1 Introduction
	2 Preliminaries
	3 Deterministic PKE
	4 Does SM Security Imply ROM Security?
	5 Is SOA Security Achievable?
	6 Does SU Security Imply MU Security?
	References

	E-Cash
	Divisible E-Cash Made Practical
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Organization

	2 Preliminaries
	3 Divisible E-cash System
	3.1 Syntax
	3.2 Security Model

	4 Our Construction: Intuition
	4.1 Setup
	4.2 High Level Description

	5 Our Divisible E-Cash System
	5.1 The Protocol
	5.2 Efficiency

	6 Security Proofs
	6.1 Proof of Anonymity
	6.2 Proof of Traceability
	6.3 Proof of Exculpability

	7 Conclusion
	References

	Anonymous Transferable E-Cash
	1 Introduction
	2 Definitions for Transferable E-Cash
	2.1 Security Properties
	2.2 Anonymity Properties

	3 Double-Spending Detection
	3.1 Properties of Serial Numbers and Double-Spending Tags
	3.2 A Double-Spending Detection Mechanism

	4 Transferable E-Cash Based on Malleable Signatures
	4.1 Malleable Signatures
	4.2 Allowed Transformations
	4.3 A Transferable E-Cash Construction
	4.4 Why Malleable Signatures

	5 Instantiation
	References

	Cryptanalysis
	Collision of Random Walks and a Refined Analysis of Attacks on the Discrete Logarithm Problem
	1 Introduction
	1.1 Description of Algorithms
	1.2 Heuristic Run Time
	1.3 New Results

	2 Methods of Studying Collision Time
	2.1 Past Work
	2.2 Our Approach

	3 Pollard's Kangaroo Method
	4 Pollard's Rho Method
	5 Gaudry-Schost
	6 The Collision Number
	7 Sharpness of our Results
	References

	A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems
	1 Introduction
	1.1 Our Contribution
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Basic Notations
	2.2 The MinRank Problem
	2.3 Good Keys

	3 MQQ Cryptosystems
	3.1 MQQ-SIG Signature Scheme
	3.2 MQQ-ENC Encryption Scheme

	4 The Algebraic Structure of MQQ-ENC and MQQ-SIG
	5 Key-Recovery Attack
	5.1 High Level Description of the Attack
	5.2 Detailed Description of the Attack

	6 Modeling Good Keys as MinRank for Rectangular Matrices
	7 Complexity of the Key-Recovery Attack
	7.1 Theoretical Complexity
	7.2 Experimental Results

	8 Conclusion
	A The MinRank Problem
	B Complexity Theorems Proofs
	B.1 Proof of Theorem 4
	B.2 Proof of Theorem 5

	References

	A Polynomial-Time Attack on the BBCRS Scheme
	1 GRS Codes and the Square Code Construction
	2 Description of the Scheme
	2.1 Previous Attacks and Discussion on the Parameters
	2.2 Notation
	2.3 Structure of the Public Code

	3 The Fundamental Tool: Shortening and Puncturing the Dual of the Public Code
	4 Key-Recovery Attack
	4.1 Outline
	4.2 A Distinguisher of the Public Code
	4.3 Description of the Attack

	5 Limits and Complexity of the Attack
	5.1 Choosing Appropriately the Cardinality of I
	5.2 Estimating the Complexity

	6 Experimental Results
	7 Concluding Remarks
	References

	Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case
	1 Introduction
	1.1 Main Results
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Basics of Computer Algebra
	2.2 Definition of the Problem

	3 The HSPq, for q>d
	3.1 General Modeling of HSPq
	3.2 Randomized Polynomial-Time Algorithm for HSPq, with q>d
	3.3 Experimental Results

	4 An Efficient Algorithm for Solving HSP2
	4.1 Experimental Results and Interpretation

	5 Structural Low Degree Equations
	6 Conclusions
	References

	Digital Signatures I
	Digital Signatures from Strong RSA Without Prime Generation
	1 Introduction
	1.1 Our Contributions
	1.2 Efficiency
	1.3 Related Work

	2 Preliminaries
	3 Signature Scheme
	3.1 Security Proof

	4 Setting the Parameters
	References

	Short Signatures with Short Public Keys from Homomorphic Trapdoor Functions
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Signatures
	2.2 Lattices and Gaussians
	2.3 Trapdoors for Lattices

	3 Puncturable Homomorphic Trapdoor Functions
	3.1 Definition
	3.2 Construction: Basic Algorithms
	3.3 Construction: Homomorphic Computation
	3.4 Construction: Security

	4 Signatures from PHTDFs
	4.1 Required Properties of the Function g and Tags
	4.2 Generic Signature Scheme from PHTDFs

	5 Lattice-Based Instantiation of the Function g
	5.1 Tag Instantiations
	5.2 Computation of g
	5.3 Noise Growth Analysis

	References

	Tightly-Secure Signatures from Chameleon Hash Functions
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Signatures
	2.3 Two-Tier Signatures
	2.4 Chameleon Hash Functions

	3 Constructions of Two-Tier Signatures
	3.1 Construction from Any Chameleon Hash Function
	3.2 Direct Constructions of d-Time Two-Tier Signatures

	4 Generic Constructions of Non-adaptive Signatures
	4.1 Construction from any One-Time Two-Tier Signature
	4.2 Construction from any d-Time Two-Tier Signature

	A Hardness Assumptions
	B Applications
	B.1 Tight Simulation-Sound NIZK in Pairing Groups
	B.2 Tight Multi-Challenge (and Multi-User) IND-CCA Scheme

	References

	Password-Based Authentication
	Two-Server Password-Authenticated Secret Sharing UC-Secure Against Transient Corruptions
	1 Introduction
	2 Our Ideal Functionality
	3 Preliminaries
	3.1 Notation
	3.2 Ideal Functionalities that we Use as Subroutines
	3.3 Cryptographic Building Blocks of Our Construction
	3.4 Corruption in the UC Model

	4 Our Construction of TPASS Secure against Transient Corruptions
	4.1 High Level Approach of Our TPASS Protocol
	4.2 Key Ideas of Our TPASS Protocol
	4.3 Detailed Construction of 2pass in the Standard Model (with Erasures)
	4.4 Constructing a Multi-session 2pass with Constant-Size CRS
	4.5 Computational and Communication Complexity in the Standard Model
	4.6 Construction of 2pass in the Random-Oracle Model

	5 Proof Sketch
	6 Conclusion
	References

	Adaptive Witness Encryption and Asymmetric Password-Based Cryptography
	1 Introduction
	2 Preliminaries
	3 Adaptive Witness Encryption
	4 Insufficiency of Soundness Security
	5 Asymmetric Password-Based Encryption
	A Further Versions of SS
	References

	Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks
	1 Introduction
	2 Public-Key Encryption
	2.1 Definition
	2.2 Relations with the IND-CPA and IND-CCA Security Notions
	2.3 Classical Schemes
	2.4 Smooth Projective Hash Functions

	3 The Short Cramer-Shoup Encryption Scheme
	3.1 Smooth Projective Hash Functions
	3.2 IND-PCA Security Proof

	4 PAKE Security Models
	4.1 The Bellare-Pointcheval-Rogaway Security Model
	4.2 The Abdalla-Fouque-Pointcheval Security Model

	5 PAKE Constructions
	5.1 Public-Key Encryption Schemes
	5.2 GL-PAKE Construction and GL-SPOKE
	5.3 GK-PAKE Construction and GK-SPOKE
	5.4 KV-PAKE Construction and KV-SPOKE

	References

	Pairing-Based Cryptography
	Strongly-Optimal Structure Preserving Signatures from Type II Pairings: Synthesis and Lower Bounds
	1 Introduction
	1.1 Our Contribution
	1.2 Other Related Work

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Structure-Preserving Signature Schemes
	2.3 Known Lower Bounds on Type II SPS

	3 Lower Bounds on the Number of Pairings in the Type II Setting
	3.1 Main Result
	3.2 Gaps in Bounds Between EUF-RMA and EUF-CMA-Security
	3.3 Proof of Lemma 5

	4 Synthesis of Schemes
	4.1 Generation of Schemes
	4.2 Proof and Attack Search

	5 Synthesized Schemes
	5.1 A Summary of Our Search
	5.2 New SPS Schemes

	6 Conclusion
	References

	A Profitable Sub-prime Loan: Obtaining the Advantages of Composite Order in Prime-Order Bilinear Groups
	1 Introduction
	2 Definitions and Notation
	2.1 Bilinear Groups
	2.2 Parameter Hiding
	2.3 Generalized Correlated Subgroup Decision

	3 A Prime-Order Bilinear Group Satisfying All Features
	4 A Leakage-Resilient BGN Variant
	4.1 The Scheme
	4.2 Security Analysis

	5 An IBE with IND-CCA1 Security
	References

	Digital Signatures II
	Simpler Efficient Group Signatures from Lattices
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 On Membership Revocation
	1.4 Roadmap

	2 Preliminaries
	2.1 Notation
	2.2 Group Signatures

	3 Lattices and Discrete Gaussians
	3.1 Learning with Errors (LWE) and Small Integer Solutions (SIS)
	3.2 q-ary Lattices and Trapdoors
	3.3 Non-interactive Zero-Knowledge Proofs of Knowledge

	4 Split-SIS Problems
	4.1 A Family of Hash Functions from Split-SIS Problems
	4.2 Zero-Knowledge Proof of Knowledge for the Hash Functions

	5 A Simple and Efficient Group Signature from Lattices
	5.1 Our Construction
	5.2 The Security

	References

	Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based
	1 Introduction
	2 Preliminaries
	2.1 Group Signatures
	2.2 Average-Case Lattices Problems and Their Ring Variants
	2.3 Boyen's ``Lattice-mixing'' Signature Scheme and Its Ring-Based Variant
	2.4 Zero-Knowledge Argument Systems for Lattices

	3 New Zero-Knowledge Protocols for Lattice-Based Cryptography
	3.1 ZKAoK of a Valid Message-Signature Pair for Boyen's Signature Scheme
	3.2 A Lattice-Based Verifiable Encryption Protocol
	3.3 The Combined Protocol

	4 An Improved Lattice-Based Group Signature Scheme
	4.1 Description of Our Scheme
	4.2 Analysis of the Scheme

	5 A Ring-Based Group Signature Scheme
	5.1 Description of the Scheme
	5.2 Analysis

	A Security Requirements for Group Signatures
	References

	Secure Efficient History-Hiding Append-Only Signatures in the Standard Model
	1 Introduction
	2 Background
	2.1 Definitions for History-Hiding Append-Only Signatures
	2.2 Definitions for Homomorphic Signatures
	2.3 Programmable Hash Functions
	2.4 Hardness Assumption
	2.5 Structure-Preserving Signatures Secure Against Random Message Attacks

	3 An Efficient HH-AOS Scheme
	4 Generic Identity-Based Ring Signatures
	A Groth-Sahai Proof Systems
	References

	Efficient Constructions
	One-Round Key Exchange with Strong Security: An Efficient and Generic Construction in the Standard Model
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Secure Non-Interactive Key Exchange
	3.2 One-Round Key Exchange Protocols
	3.3 Secure One-Round Key Exchange
	3.4 Further Building Blocks

	4 Generic Construction of eCK-Secure Key Exchange
	5 Efficiency Comparison with Other ORKE Protocols
	References

	Additively Homomorphic UC Commitments with Optimal Amortized Overhead
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Universal Composability
	2.3 Linear Secret-Sharing Scheme

	3 Linear-Time Secret Sharing and Coding Scheme
	4 Basic Construction
	5 Additive Homomorphic Property
	5.1 Packed Verifiable Secret-Sharing Scheme
	5.2 Homomorphic Commitment Scheme

	6 Complexity and Concrete Efficiency
	6.1 Complexity
	6.2 Concrete Parameters and Efficiency

	References

	Interactive Message-Locked Encryption and Secure Deduplication
	1 Introduction
	2 Preliminaries
	3 Interactive Message-Locked Encryption
	4 The FCHECK Scheme
	5 Incremental Updates
	References

	Faster ECC over F2521-1
	1 Introduction
	2 The Basic Observation
	3 Application to M521 = 2521 - 1
	4 Curves and Implementation Results
	4.1 NIST Curve P-521
	4.2 Edwards Curve E-521
	4.3 Timings

	5 Application to Crandall Numbers
	5.1 Two Examples
	5.2 Application to p = 2221 - 3
	5.3 Application to p = 2255 - 19

	6 Conclusion
	References

	Cryptography with Imperfect Keys
	Continuous Non-malleable Key Derivation and Its Application to Related-Key Security
	1 Introduction
	1.1 Motivation
	1.2 Continuous Non-malleable KDFs
	1.3 Our Contributions
	1.4 Related Work and Remarks

	2 Preliminary
	3 Properties of RKD Functions over Finite Fields
	4 Continuous Non-malleable Key Derivation
	4.1 The Construction
	4.2 Instantiations

	5 Application to RKA-secure IBE
	References

	A Tamper and Leakage Resilient von Neumann Architecture
	1 Introduction
	1.1 Our Model
	1.2 Motivation and Challenges of our Model
	1.3 Our Techniques
	1.4 Other Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Continuous Non-malleable Codes

	3 A Generic Leakage and Tamper Resilient RAM
	4 Main Theorem
	5 Hybrid-to-Split-State Emulator
	5.1 The Hybrid Model
	5.2 The Emulator

	6 The Hybrid Scheme
	References

	Low Noise LPN: KDM Secure Public Key Encryption and Sample Amplification
	1 Introduction
	1.1 Extended LPN
	1.2 KDM Secure Public Key Encryption
	1.3 Unbounded Samples LPN from Bounded Samples LPN

	2 Preliminaries
	2.1 Learning Parity with Noise
	2.2 Key Dependent Message Secure Public Key Encryption

	3 KDM Secure Public Key Encryption from Low Noise LPN
	3.1 Correctness
	3.2 KDM-CPA Security

	4 LPN Sample Amplification
	5 Conclusion
	References

	Interactive Proofs
	Adaptive Proofs of Knowledge in the Random Oracle Model
	1 Introduction
	2 Zero-Knowledge Proofs
	2.1 Proof Schemes
	2.2 Zero-Knowledge
	2.3 Proofs of Knowledge
	2.4 Rewinding Extractors
	2.5 Simulation Soundness and Extractability

	3 Adaptive Proofs of Knowledge
	3.1 Adaptive Proofs and n-Proofs
	3.2 Simulation-Sound Adaptive Proofs

	4 Overview of Our Results
	4.1 Adaptive Proofs Exist
	4.2 Encrypt-Then-Prove
	4.3 Simulation-Sound Adaptive Proofs Yield CCA
	4.4 Fiat-Shamir-Schnorr Is Not Adaptively Secure

	References

	Making Sigma-Protocols Non-interactive Without Random Oracles
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Additively Homomorphic Encryption
	2.2 -Protocols with Linear Answers and Unique Identifiable Challenges
	2.3 Non-interactive Designated Verifier Zero-Knowledge Arguments

	3 Transformation
	3.1 Non-interactive Designated Verifier Arguments for Statements about Ciphertexts

	4 Applications in Voting with Homomorphic Tallying
	4.1 Voting Schemes
	4.2 A Referendum Voting Scheme

	References

	Lattice-Based Cryptography
	Bootstrapping BGV Ciphertexts with a Wider Choice of p and q
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Background
	2.2 Plaintext Slots
	2.3 Ring Switching

	3 The BGV Somewhat Homomorphic Encryption Scheme
	4 Evaluating the Map redrep: Zq+ -3muFp(Simple Version)
	5 A Product of Powers of SIMD Vectors
	5.1 SIMD Raising of an Encrypted Vector to the Powerof a Public Vector
	5.2 Computing u=vM
	5.3 Computing vk=0vkMk

	6 Bootstrapping a Set of Ciphertexts
	6.1 Homomorphically Evaluating rep(x)
	6.2 Repacking

	7 Elliptic Curves Based Variant
	References

	Packing Messages and Optimizing Bootstrapping in GSW-FHE
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Learning with Errors
	2.2 Subgaussian
	2.3 Homomorphic Encryption, Circular Security, and Bootstrapping

	3 Matrix GSW-FHE
	3.1 Construction
	3.2 Relation to Packed FHE

	4 Optimizing Bootstrapping
	4.1 Optimized Procedure
	4.2 Correctness and Security

	References

	Simple Lattice Trapdoor Sampling from a Broad Class of Distributions
	1 Introduction
	1.1 Our Result

	2 Preliminaries
	3 The Sampling Algorithm
	3.1 Requirements and Security Proof
	3.2 Two examples

	References

	Identity-Based, Predicate,
and Functional Encryption

	Simple Functional Encryption Schemes for Inner Products
	1 Introduction
	2 Basic Tools
	2.1 Notation and Conventions
	2.2 Public-Key Encryption
	2.3 Functional Encryption

	3 Inner-Product from DDH
	4 A Generic Inner-Product Encryption Scheme
	4.1 Construction
	4.2 Proof of Security

	5 Instantiations
	5.1 Instantiation from DDH
	5.2 Instantiation from LWE

	References

	Predicate Encryption for Multi-dimensional Range Queries from Lattices
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Lattice Preliminaries
	2.2 Sampling Algorithms
	2.3 Predicate Encryption

	3 Reductions Amongst Predicates
	3.1 AND-OR-EQ Predicate
	3.2 Multi-dimensional Subset Queries
	3.3 Multi-dimensional Range Queries

	4 Predicate Encryption for AND-OR-EQ
	4.1 Construction
	4.2 Correctness
	4.3 Proof of Security
	4.4 Parameter Selection
	4.5 Putting Everything Together for Multi-dimensional Range Queries

	5 Shorter Ciphertexts and Secret Keys for Multi-dimensional Subset Queries
	5.1 Multi-dimensional Subset Queries, Ciphertext Policy
	5.2 Multi-dimensional Subset Queries, Key-Policy

	References

	On the Practical Security of Inner Product Functional Encryption
	1 Introduction
	2 Preliminaries
	2.1 Functional Encryption
	2.2 Generic Group (GG) Model Overview

	3 Wishful Security for Functional Encryption
	4 Functional Encryption for Inner Products over Prime Order Groups
	5 Proof of Security
	5.1 Simulator Construction
	5.2 Concrete Parameters
	5.3 Practical Considerations

	A Notation
	B Correctness of Inner Product Scheme
	C Generic Group Operations
	D Obfuscation Scheme
	D.1 Formal Definition of Obfuscation
	D.2 Construction
	D.3 Proof of Security

	References

	Identity-Based Encryption with (Almost) Tight Security in the Multi-instance, Multi-ciphertext Setting
	1 Introduction
	2 Preliminaries
	3 Extended Nested Dual System Groups
	4 An (Almost) Tightly (,q)-IBE-IND-CPA-Secure IBE
	5 Instantiations of ENDSGs in Composite-Order Groups

	Author Index

