
A Primer on Economic Choice Automata

Mark R. Johnson

Abstract This paper presents a development of the transformation semigroup of
economic choice automata as a subgroup of the semigroup (monoid) of partial
functions defined over the states of a finite state machine. The classes of consistency
behavior considered are those rationalized by linear orders, weak orders, quasi-
transitive relations and non-rationalizable path independent choice functions. For
each of these classes of choice behavior, a particular class of lattice is identified
as the action semigroup that drives the automaton. Given these characterizations,
several features of the choice behavior are considered. In particular, the simplifying
interval property of path independent choice, the importance of the distributive
property of quasi-transitive rational choice in reducing the complexity of dynamic
choice is addressed. Based on the algebraic structure of semiautomata implementing
path independent choice functions it is possible to rank these semiautomata by the
mathematical power required to implement a particular class of choice functions.
This provides a means for ranking these machines by their “implementation com-
plexity”. Dually, the computational complexity of constructing a semiautomaton
that implements a particular class of choice functions is investigated. It is seen that
these complexities are inversely related.

Keywords Automata • Choice functions • Computational complexity •
Implementation complexity • Semiautomata

1 Introduction

Notions of complexity lie at the core of our thinking about economic decision
making. Generally, there is a belief that differences in complexity will affect the
behavior of individuals or the structure of economic institutions. For example, in
an elementary, unchanging world, a simple rule of thumb may be an adequate and
appropriate method for making decisions. In a more complicated, rapidly changing

M.R. Johnson (�)
Department of Finance and Economics, A. B. Freeman School of Business, Tulane University,
New Orleans, LA 70118, USA
e-mail: mjohnso@wave.tulane.edu

© Springer-Verlag Berlin Heidelberg 2015
C. Binder et al. (eds.), Individual and Collective Choice and Social Welfare,
Studies in Choice and Welfare, DOI 10.1007/978-3-662-46439-7_5

65

mailto:mjohnso@wave.tulane.edu

66 M.R. Johnson

world, the same simple rule of thumb may be quickly over come and lead to
mistakes. Similarly, an overly complicated corporate decision structure involving
many people and elaborate departmental check-offs might be too expensive and
reduce the firm profits. The discussion below identifies the limitations imposed on
the complexity of choice by economic consistency axioms.

Simon was one of the first economists explicitly to incorporate constraints on the
information processing capacities of individuals and firms. For Simon [56], there
were several ways that information processing limitations could affect economic
activity and he categorized models incorporating these limitations as “theories
of bounded rationality”. While Simon was one of the early articulators on the
importance of information processing to economic behavior and structure, other
economists have appealed to these arguments as well. Most have adhered to Simon’s
view that different economic structures might have different complexities, and
their writings have reflected a shared belief that complexities can either be scaled
or, at least, compared. Among other early examples of information processing
considerations in the model of individual choice is Strotz’s [57, 58] exchange with
Gorman [25] on the separability property for utility functions. In that exchange,
Strotz maintained that separability was desirable because it simplified the consumer
budgeting problem. A more recent example of information processing impacts on
economic models is Auman’s [4] suggestion that players in a game be modeled
as automata and that the complexity measure based on the number of states in
the automaton required to implement each strategy be used to separate classes
of strategies.1 Rubinstein [54] was one of many to follow up on this suggestion.
With respect to organizational structure, Radner [53] has suggested that information
processing is a major part of a corporation’s “management” activities and that the
hierarchical structure of a firm arises, at least in part because of this structure’s
efficiency at processing decentralized information.2 Other authors also have made
links between collective decision-making structures and complexity issues.3

A number of authors have suggested that one way information processing costs
affect economic behavior is through the consistency axioms either satisfied by or

1An early survey of the literature growing out of this suggestion is offered in Kalai [40] while
Chatterjee and Sabourian [15] offer a more recent treatment.
2Radner [53] also suggested that “the costliness of information processing contributes to organiza-
tional economies or diseconomies of scale”. This idea that there are information costs contributing
to the operational costs of a decision making organizations is very similar to Hurwicz’s [30]
suggestion of a resource cost to allocation mechanisms.
3For example, Bartholdi and Orlin [7], Bartholdi et al. [8, 9] address matters of computational
complexity and the complexity of strategic manipulation in voting schemes. Johnson [31]
references the relationship between the distribution of power and notions of choice complexity
in Arrow type choice procedures.

A Primer on Economic Choice Automata 67

imposed on the choices made by the individual or institution being modeled.4

In particular both Arrow [2] and Plott [52] envisioned choice as an algorithm or
process in which the elements of the feasible set were examined and a choice set
determined.5 Plott specifically suggested that there was a “computational efficiency”
aspect to consistency axioms in general and to his path independence axiom in
particular. Especially relevant to the results presented here, Plott provided a link
between computing machines and path independent choice functions by proving
that path independent choice functions form a semigroup under a naturally defined
operation. The significance of this result is that, every semigroup can be used to
define a semiautomaton (the basic building block of computing machines) and every
semiautomaton has an associated semigroup.6 More recently, Johnson [32, 34] has
suggested that the link between the computational efficiency of a choice function
and the consistency axiom it satisfies is captured by the algebraic structure of a
subsemigroup of the semigroup originally identified by Plott.

Because the consistency axioms impose limitations on the relationship between
the choice made on one set and that made on other sets, Plott’s suggestion is
intuitively appealing. Especially in the case of the most commonly used consistency
requirements (i.e., rationalizability by either linear orders or weak orders and
quasi transitivity for his path independence axiom), Plott observed that consistency
axioms removed the requirement of re-examining previously considered alterna-
tives. For the most commonly used axioms, it is the case, also, that the classes of
choice functions satisfying these axioms form a nested set. Thus, the expectation is
that, if consistency axioms are related to information processing efficiencies, then
the choice function complexity should grow as the consistency axioms are relaxed.
This intuition provides the same complexity ranking as the ordering by algebraic
structure suggested by Johnson [31].

In these early discussions there, often, was an ambiguity in the use of the
term “complexity” with imprecision in distinguishing between what information

4Virtually all economic models of individual choice assume that the individual satisfies the Weak
Axiom of Revealed Preference. Often, as in the case of theorems following out of Arrow’s
general Possibilities Theorem [3], group decision structures are assumed to satisfy some type of
consistency axiom. Many of these structures are surveyed in Kelly [42].
5Several other authors have formalized the search/process aspects of choice, which Arrow and
Plott left somewhat unspecified, as an algorithm and investigated the relationship between these
algorithms and the act of choice. Of particular note are Campbell’s [13, 14] work on the existence
of desirable algorithms for computing choice functions, Kelly’s [43] look at the computability of
collective choice rules and Bandyopadhyay’s [5] characterization of a class of choice functions
by means of a specific algorithm. Also contributing to this line of research are Lewis’s [49, 50]
investigations into the ability of a Turing machine (see Turing [59]) to compute economic choice
automata on non-finite sets.
6More precisely, the link is between transformation semigroups and semiautomata. The transfor-
mation semigroup representation of a semiautomaton is discussed in Sect. 2.3. The relationship
between transformation semigroups and semiautomata is discussed in Holcombe [28, pp. 31–
34]. Holcombe [28, p. 145] also has a discussion of the relationship between semiautomata and
automata.

68 M.R. Johnson

scientists call “implementation complexity” and “computational complexity”. The
difference between these two complexities is that implementation complexity is
determined by the difficulty of making an already determined choice. That is,
given a choice function defined on a finite set, how much “computing power” is
required by a semiautomaton to make choices consistent with the already specified
choice function. Johnson [31] presents an intuitive example of this aspect of choice
“difficulty”. There, the difficulty of implementing a choice function is scaled by
the number of entries in the incidence matrix representing the binary relation that
rationalizes the choice function that are required to be known in order to assure
the correct choice is made as the feasible set is expanded. There, this difficulty was
called the “bit cost” of making choice. This implementation complexity is contrasted
with “computational complexity” which reflects the difficulty of making the choice
function. Until recently this “computational complexity” has arisen most explicitly
in game theory.

In game theoretic discussions, the complexity of computing the best response
(e.g., [10, 24, 45, 51]) has been substantially discussed. In these papers, the
computational complexity is treated in the classical manner; usually some tool such
as a time or memory space bound on determining a solution. Typically each of
these is a computational complexity measure satisfying what are known as the Blum
axioms [12].7 One attraction of a computational complexity measure satisfying the
Blum axioms is that the resulting scaling is independent of the machine performing
the calculations. Similarly, the computational complexity measure introduced in
Sect. 4 also satisfies the Blum axioms.

In contrast, implementation complexity has been interpreted in a number of
disparate manners. Most commonly the scaling of implementation complexity is by
the number of states in the semiautomaton implementing the desired strategy. The
number-of-states measure of implementation complexity has some appeal in that it
is numerical, simple to use, and as a result, it is easy to obtain results. However,
even Abreu and Rubinstein [1] note limitations to their use of the number-of-states
measure;

Various features of the model presented below, such as the complexity measure we use, are
rather special. Our results are therefore regarded as suggestive, and we strongly emphasize
the exploratory nature of the present paper.

Kalai and Stanford [41] amend the basic number-of-states measure to reflect the
fact that a semiautomaton can have extraneous states and appeal to the minimum
number-of-states machine implementing a strategy. Banks and Sundaram [6] tried
to capture the fact that there is more to machine complexity than the number of
states in the machine by using a criterion that depends on both the number of states
as well as the number of edges in the directed graph representation of the machine.
Johnson [33] pointed out that, on machines with two states and two transitions,

7The reader is referred directly to Blum’s classic paper for a discussion of the issues and techniques.
The paper is short and readable.

A Primer on Economic Choice Automata 69

there are, up to isomorphism, four distinct semiautomata and that these machines
are categorized as (1) a machine that can’t count, and can’t detect differences in
order of play, (2) a machine that can count but can’t detect differences in the order
of play, (3) a machine that can’t count but can detect differences in the order of play,
and, finally (4) a machine that can count and detect differences in the order of play.
Johnson obtained these observations by using algebraic techniques similar to those
employed in the results presented here.

Within algebraic complexity, the Krohn-Rhodes [47, 48] measure is commonly
used.8 This measure is based on the minimum number of simple groups in a
wreath product that forms a semigroup covering of the semigroup generated by
the machine of interest. Gottinger [26] in particular has suggested using the Krohn-
Rhodes measure for some economic applications. In applications, however, there is
a general problem in that it is not known how to determine what is the minimum
number of simple groups in the decomposition of a particular semigroup. For
specific application to choice functions, the measure is not very useful because there
are no groups in the semigroup associated with the machines implementing path
independent choice functions and, as a result, the Krohn-Rhodes measure would
give an implementation complexity of zero to all path independent choice function
implementing semiautomata. In the following, the power required to implement a
choice function is ordered by the algebraic class of the machine implementing the
choice function. Because these algebras are nested, comparison of the power of the
different systems is straightforward.

From an economic perspective, one interpretation of these different complexities
is that the computational complexity can be viewed as a fixed cost. This is the cost
of determining or constructing the choice machine that will be used to implement
choices. The computational complexity cost is born only once when the machine
is made. This interpretation is consistent with classical views on computational
complexity and with the way computational complexity is used in game theory.
In contrast, the implementation complexity is more like a marginal cost. In order to
implement a particular choice function, you need to maintain a machine with the
requisite power to implement the choice function. This intuition is similar to the
justification Rubinstein [54] gave in support of the number of state based measure
of implementation complexity he used in his introduction of complexity costs into
repeated play games.9

The first results presented here identify the structure of semiautomata constrained
to satisfy Path Independence. The key requirement is to demonstrate that a particular
semigroup is a subsemigroup of the semigroup of partial functions defined on
the feasible sets. The particular subsemigroup also is a the subsemigroup of
the semigroup identified by Plott in his first demonstration of the link between
path independent choice functions and semigroups. In the past, Johnson [34] has

8See Krohn-Rhodes [47, 48] directly or Eilenberg [20, 21] for a more modern treatment.
9While not investigated here, this intuition naturally raises the possibility of trade offs between
fixed costs and marginal costs in the design of choice machines/institutions.

70 M.R. Johnson

demonstrated that choice semiautomata can be constructed by means of Eilenberg’s
embedding theorem. Demonstrating that the required semigroup already is a
subsemigroup of the semigroup of partial functions, both simplifies the presentation
and tightens the link between path independent choice functions and automata.
Given this, it can be seen that choice semiautomata have elementary structure. For
example, no “memory” is required to implement path independent choice.

Subsequent results identify a complexity ordering of path independent choice
functions defined on finite sets. The classes of choice functions considered are
those satisfying the Strong Axiom of Preference (SAP), the Weak Axiom of
Revealed Preference (WARP), Quasitransitive rational Path Independence and (not
necessarily rational) Path Independence. Each of the classes of choice functions
are ordered by the mathematical power of the system implied by the defining
consistency axiom. These comparisons confirm Plott’s conjecture that consistency
axioms contain information processing implications as well as conforming to
Johnson’s [31] ranking of choice function complexity by algebraic structure.

In order to focus the presentation a number of simplifications are made. For
example, it is assumed that the choice functions are complete. This simplification
will imply that the resulting automata, also are complete. In fact, the semiautomata
model is perfectly capable of, and, in many ways, ideally suited for dealing with
situations where completeness is not present but the exposition of the choice
function implementing automata is simpler in the complete case. In addition, in
the complete case, a natural nesting arises that eases discussion of implementation
complexity rankings. If completeness is not assumed, then, depending on the precise
nature of the incompleteness, the nesting of systems seen in this presentation may
or may not be visible.10 Another example of a simplification is that, while it is
necessary to implement choice both as the feasible set expands as well as when it
contracts, this presentation details only those machines that implement choice as
the feasible set expands.11

Following specification of choice semiautomata and identifying the implemen-
tation complexity for each class, the matter of “computational complexity” is
addressed. In this treatment a very simple approach is adopted. First, a result is
presented that allows construction of all path independent choice functions on a
finite set by means of a series of contractions.12 This result provides the intuition
for a partial order of the computational complexity of different choice functions.

10As a particular example, one of the referees inquired about restricting choice to sets that have null
intersection. For the Path Independent choice functions considered, the mathematical structure that
arises is a particular class of lattice. In a finite lattice, the meet and join of any two elements in
the lattice must be well defined. If a choice operation from sets that have a non-empty intersection
were not allowed, the lattice structure exploited here may not obtain.
11Choice functions that implement choice as the feasible set both expands and contracts are
addressed in Johnson [34].
12I thank my co-author Richard A. Dean for permission to use our previously unpublished, original
proof of this result. The appeal of this proof is that it is based on traditional lattice theoretic tools
and, as a result, some may find it more accessible that other proofs.

A Primer on Economic Choice Automata 71

Loosely, the scaling for the computational complexity is related to the number
of elements removed from a particular feasible set in determining its choice set.
This interpretation arises because each contraction deletes a single alternative as a
possible choice element from a particular feasible set. It is seen that it is possible
to order the classes of choice functions by their computational complexity. And, as
noted earlier, the method satisfies the Blum axioms.

Most intriguingly, in a very natural manner, it turns out that the implemen-
tation complexity and the computational complexity are dual in the sense that
classes of choice functions that have higher implementation complexity have lower
computational complexity. Because of the number and range of different choice
functions in each class, there is some overlap in the computational complexities
of specific choice functions but, for the most computationally intensive and least
computationally intensive representatives of each class, the duality holds.13

Section 2 presents the basic definitions and tools. The semiautomaton model
and the transition to path independent choice function implementing machines are
summarized in Sect. 3. A principle focus is in demonstrating that the mappings
for the choice semiautomaton form a subsemigroup of the semigroup of partial
functions among the possible subsets. This section also reports on the results
for implementation complexity. Section 4 presents the results on computational
complexity. Conclusions are in Sect. 5 and the original proof of the contraction
theorem is provided in the Appendix.

2 Definitions and Notation

The technical tools used in the results presented below are choice functions, the
elementary algebra of sets, primarily semigroups and lattices, and the transformation
semigroup representation of a semiautomaton. The definitions and prerequisites of
choice functions and consistency requirements on choice functions are presented in
Sect. 2.1. Algebras are covered in Sect. 2.2. Semiautomata and the links to algebra
are covered in Sect. 2.3.

2.1 Notation, Choice Functions and Consistency Requirements

The universal set V is composed of a finite number of distinct alternatives, and 2V is
the power set of V . Subsets of V , denoted by v, are elements of 2V . Unless otherwise
stated, the cardinality of V , denoted by jV j, is t , and the cardinality of v 2 2V is
n; note n � t . Distinct subsets of V are subscripted with an integer i 2 f1; : : : 2tg;
where

˚
vi g D ˚

vj g if and only if i D j .

13Previous results existed only for the least computationally intensive representative of each class.

72 M.R. Johnson

A choice function is a mapping C W 2V ! 2V , such that C.v/ � v and C.v/ D ;
if and only if v D ;. A choice function C defined on V is discriminating if there
is some v 2 2V for which C.v/ ¤ v. A choice function C is rational if and only
if there exists a relation R such that, for every v 2 2V , C.v/ D G.vIR/ where,
G.vIR/ D fx 2 vjxRy;8y 2 vg. The function G.vIR/ selects the R-maximal
elements.

The classes of choice functions considered are those satisfying the Strong Axiom
of Preference, the Weak axiom of Revealed Preference, the conjunction of Path
Independence and Extension, and Path Independence (alone). The consistency
axioms are defined formally as follows.

Strong Axiom of Preference (SAP):

(i) 8x; y 2 V; x 2 C.fx; yg/) y … C.fx; yg/; and

(ii) 8v1; v2 � V; v1 � v2) ˚
v1 \ C.v2/g D

(
;; or
C.v1/

.

Weak Axiom of Revealed Preference (WARP)

8v1; v2 � V; v1 � v2) ˚
v1 \ C.v2/g D

(
;; or
C.v1/

.

Rational Path Independence (RPI)

(i) 8v1; v2 � V;C.C.v1/ [C.v2// D C.v1 [v2/, and
(ii) Extension (E): 8v � V; .x 2 v and .8yy2v; x 2 C.fx; yg//) x 2 C.v// .

Path Independence (PI)
8v1; v2 � V;C.C.v1/ [C.v2// D C.v1 [v2/.
The first two of these classes always can be rationalized by a complete, reflexive

and transitive binary relation [2]. Choice functions satisfying the Strong Axiom
are always single-valued and rationalized by linear orders while choice functions
meeting WARP need not be single-valued and are rationalized by weak orders. The
two classes of path independent choice functions are distinguished by whether or not
they are rationalizable; choice functions satisfying both PI and E are rationalizable
by a quasitransitive relation while choice functions satisfying PI need not be
rationalizable [52].14

2.2 Algebras

The definitions of binary systems and system properties are provided in terms of an
arbitrary finite non-empty set N , which is used as both the domain and the range,

14A complete, reflexive relation R, where the strict preference part is denoted by P , is quasitransi-
tive if for all x; y; z 2 V; xPy and yPz ! xPz: Thus strict preference is transitive while indifference
need not be.

A Primer on Economic Choice Automata 73

and a binary operation denoted by (�). Thus, � W N � N ! N , and the binary
system for N under the operation (�) is hN I �i. Algebraic properties defined for all
vi ; vj ; vk 2 N are

(B-1) Closure: vi � vj 2 N ,
(B-2) Associativity: vi �(vj � vk) = (vi � vj) �vk ,
(B-3) Commutativity: vi � vj D vj � vi , and
(B-4) Idempotence: vi � vi D vi .

A binary system satisfying (B-1) and (B-2) is called a semigroup, and a semi-
group satisfying (B-3) is called a commutative semigroup. A semigroup for which
every element satisfies (B-4) is called an idempotent semigroup. A commutative
idempotent semigroup is a semilattice. Conceptually, some may find it easier to
consider these semilattices diagrammatically under the natural partial ordering of
the semigroup where the natural partial ordering is defined as follows: a �b D b ,
a � b .15

For application to choice functions, the power set of the universal set V is used
as both the domain and the range, and the binary operation (�) is adopted from
Plott [52].

Definition 1 Given a path independent choice function C , the Plott Product (�) is
defined as follows, � W 2V � 2V ! 2V , where 8v1; v2 2 2V ; v1 � v2 D C.C.v1/ [
C.v2//.

Formally, the operation (�) should be subscripted by the choice function used in
its definition, however, to avoid excess notation, this subscripting is omitted where
the choice function can be inferred from the context. The binary system for V

under the operation (�) is denoted by h2V I �i. Plott [52] proved that this system
is a commutative semigroup.

In addition to the properties of the operation, it is useful to identify two special
members of binary systems.

Definition 2 Given a binary system T D hN I �i an element z such that x �z D z�x D
z;8x 2 T is called a zero, and an element e such that t � e D e � t D t;8t 2 T is
called an identity.

A semigroup that has an identity is a monoid. An idempotent commutative
monoid with a zero is a lattice. Johnson [32] identified a subsemigroup of Plott’s
semigroup that has precisely these properties. Further, Johnson conjectured that this
subsemigroup might be relevant to economic applications of automata theory. The
results below validate that conjecture. While initially identified by means of Plott’s
single operation (�), lattices actually have two operations, typically called the join
denoted by _ and the meet denoted by ^. A lattice L is denoted by hLI _;^i. A
lattice L has a dual denoted by D obtained by interchanging the roles of the meet
and join operations so that if a _ b D a in L then a _ b D b in D. Given a

15The natural partial ordering is adopted from Clifford and Preston [16, 17].

74 M.R. Johnson

lattice L D hLI ^;_i for which there is a set K such that ; ¤ K � L and
a; b 2 K implies a ^ b 2 K and a _ b 2 K then K D hKI ^;_i is a sublattice of
L. An element x in a lattice is called join-irreducible if a_ b D x implies x D a or
x D b. By convention, bottom elements of a lattice are not called join-irreducible.
Dually, an element y in a lattice is called meet-irreducible if a ^ b D y implies
y D a or y D b. For both the join irreducibles and the meet irreducibles, the
partially ordered set of irreducibles hP I 6i may be important. In a partially ordered
set P , x covers y if x > y and for no a 2 P , x > a > y. Lattices are well
covered in such classics as Birkhoff [11] and Davey and Priestly [18]; however, a
few especially useful properties are summarized here. One important property of
some lattices is the distributive law. A lattice hLI _;^i is a distributive lattice if it
satisfies the distributive law:

a _ .b ^ c/ D .a _ b/ ^ .a _ c/ for all .a; b; c 2 L/:

Given a lattice L with a zero 0 and an identity 1, and some element a 2 L, for which
there is an element b 2 L such that a ^ b D 0 and a _ b D 1, then a is said to
have a compliment. If a has a unique compliment, then the compliment is denoted
by a0. Taking the compliment is a unary operation. A Boolean algebra is a system
hBI ^;_;0 ; 0; 1i such that (1) hB;^;_i is a distributive lattice, (2) a ^ 1 D a and
a_ 0 D a for all a 2 B , and (3) a^ a0 D 0 and a _ a0 D 1 for all a 2 B . The finite
Boolean algebras considered here are isomorphic to 2V under set union, intersection
and complementation.

Within the Boolean algebra 2V for sets V � T � B , the collection of sets K

such that T � K � B is called an interval, and the interval is denoted by T=B . T is
the top of the interval, and B is the bottom of the interval. An interval T=B is called
proper if T ¤ B . If T D B [fxg, then T covers B and the interval T=B is a prime
interval.16 It will turn out that intervals are significant in path independent choice
functions. In fact, little else is required in addition to the interval property in order
to define a path independent choice function.17 Two examples of the presence of
intervals in the domain of the choice function being mapped into a particular choice
element are presented in Fig. 1.

A particular class of lattices initially identified by Dilworth [19] and now
known as lower locally distributive lattices (LLDs) is relevant for choice functions.
A lattice is an LLD if every element in the lattice has a unique irredundant
representation as the join of join irreducibles. Here a representation of an element
a in a lattice as the irredundant join of join irreducibles means that if a D
x1 _ x2 _ : : : _ xk then a is not the join of any proper subset of fx1; : : : ; xkg. This
representation also is unique in the sense that if a D y1 _ y2 _ : : : _ yh as well as

16Birkhoff attributes this use of the term prime interval to Morgan Ward.
17See Johnson and Dean [39] for the characterization of path independent choice functions result
using partitions of the domain satisfying the interval property and little else.

A Primer on Economic Choice Automata 75

123

12 13 23

1 2 3

123/13

12 23

1 2 3

123

12 13 23

1 2 3

123/13

12/1 23

2 3

a b

dc

Fig. 1 Demonstration of relationship between identified intervals and lattice representations of
Path Independent choice functions; (a) Boolean algebra with one interval identified, (b) Boolean
algebra with two intervals identified, (c) image lattice of (a) with interval 123=13 identified, and
(d) image lattice of (b) with intervals 123=13 and 12=1 identified

a D x1 _ x2 _ : : :_ xk then h D k and fx1; : : : ; xkg D fy1; : : : ; yhg.18 Johnson and
Dean [35, 36] and, independently, Koshevoy [46] demonstrated a direct link between
path independent choice functions and LLDs in that every PI choice function has a
representation as an LLD lattice and for every LLD lattice, there is an associated PI
choice function.19 Further, Johnson and Dean demonstrated characterization results
between the predominant classes of PI choice functions and subclasses of LLDs.
Significantly, not all of these LLDs are distributive.

2.3 Semiautomata, Transformation Semigroups and Action

Although employed here only as a link to other literature, a common means for
representing a semiautomaton, or finite state machine, in economics is through
the directed graph. A directed graph representation of a semiautomaton M D
.Q;˙;F / consists of a finite number of states Q, an alphabet ˙ and partial
functions F . The partial functions F are the transitions so that F W Q � ˙ ! Q.
If the partial functions F are functions then the semiautomaton is a complete

18The partition lattice on five elements is an example of a lattice that fails to meet this requirement.
19Koshevoy [46] used convex geometries to obtain results related to a subset of the Johnson and
Dean [35, 36] results. Here the full range of the Johnson and Dean characterizations is used.

76 M.R. Johnson

semiautomaton. In the directed graph, the states become the vertices, the partial
functions F are the edges, and the alphabet labels the edges.20

Within information science and mathematics, a standard alternative to the
directed graph representation is the transformation semigroup. This fundamental
semigroup of algebraic automata theory consists of an underlying set and an
action semigroup (see Eilenberg [20, 21] or Holcombe [28]). The transformation
semigroup and its component parts are defined as follows.21

Let Q be a finite set, and let PF.Q/ be the monoid of partial functions Q ! Q

with composition of partial functions as multiplication. The identity partial function
is the unit denoted by 1Q. (In this paper, the situation is simplified because the
mappings considered are functions.) A transformation semigroup X D .Q; S/ is a
finite set Q and S is a subsemigroup of PF.Q/. The set Q is called the underlying
set of X , and the members of Q are called states. The semigroup S is called the
action semigroup of X , and the elements of S are called the transformations of X .

The transformation semigroup X is complete if the following two conditions are
met.

(a) Q ¤ ;
(b) qs ¤ ; for all q 2 Q; s 2 S .

Condition (a) assures that the underlying set is not empty and condition (b)
requires that each transformation be defined at every state. Thus, as with the directed
graph representation, the transformation semigroup representation is complete if the
transformations of X are functions.

Both the transformation semigroup and the action semigroup are important items
in the study of automata theory. However, while the transformation semigroups
characterize semiautomata, all of the mathematical power or algebraic complexity
is contained in the action semigroup [21]. For this reason, much of the remaining
analysis is focused on the action semigroup.

3 From Generic Semiautomata to Choice Semiautomata

As described above, semiautomata can be represented either as a directed graph
or as a transformation semigroup. Two small examples of the directed graph
representations are depicted in Fig. 2. In the left most example (Fig. 2a), there are
three states and two letters in the alphabet labeling transitions among the states. The
transitions labeled “a” form a cycle among the three states while the transitions
labeled “b” flip the triangle about the state 1. The algebra associated with the

20For perspective, the more commonly employed automaton is a semiautomaton that has been
augmented by identification of an initial state i and a collection of terminal states T . Thus an
automaton A D .M ; i; T /.
21This summary borrows from Eilenberg [20, 21].

A Primer on Economic Choice Automata 77

1

23

a

a

a

b

b

b

23

1

a

a

aa b

Fig. 2 Example of two three-state semiautomata, (a) on the left with two-letter alphabet labeling
transitions, and (b) on the right with a single-letter alphabet

semiautomaton is the dihedral group. This system is one of the most “powerful”
systems on three states with two transitions. To information scientists, what makes
this example “powerful” is that it is a group.22 The group structure endows this
system with the ability to count repeatedly. Moreover, this particular group is
not commutative, thus, the machine associated with it has the ability to detect
differences in the sequence of action. Standard algebraic complexity holds that any
system without a group structure (one or more groups in the algebra associated
with the machine) has zero algebraic complexity (also called implementation
complexity). Significantly, none of the structures implementing path independent
choice posses a group structure. All of the “choice semiautomata” considered rely
only on the lattices we will see as we progress. To make this semiautomaton an
automaton what needs to be done is to identify one of the states as the “initial” state
and some subset of the states as potential “terminal states”. On the right side of
Fig. 2, (Fig. 2b) is another three-state semiautomaton with a single letter alphabet.
In this case the algebra associated with this machine is a chain. This semiautomaton
is one of the “simplest” on three states. It is simple, in part, because, lacking a group
structure, it can count only once and, being a commutative system, it does not have
the ability to detect differences in sequence. An automaton is achieved once again
by specifying an initial state and possible terminal states.

There are several ways to determine the algebra associated with a particular
directed graph representation of a semiautomaton. One useful technique is demon-
strated here using the Fig. 2a directed graph representation as a start. This method
works by representing the transformations by transformation matrices and then
working out the operation table for the semigroup obtained as the multiplicative

22A group is a semigroup in which there is an identity e and for which every element a in the
semigroup has an inverse a�1 such that a � a�1 D a�1 � a D e.

78 M.R. Johnson

closure of all possible products of the transformation matrices. For example, the
transformation a takes state 1 into state 2 and state 2 into state 3 and state 3 into
state 1. From there the cycle repeats. If we represent the initial state as the row
and the destination state as the column, this transformation is represented by the
following matrix,

a D
2

4
0 1 0

0 0 1

1 0 0

3

5 :

Similarly, the transformation b is represented by this matrix,

b D
2

4
1 0 0

0 0 1

0 1 0

3

5 :

The letters a and b are the letters of the alphabet for this Fig. 2a semiautomaton.
Taking the multiplicative closure of these two matrices generates the four words of
this machine. These words are presented below.

a2 D
2

4
0 0 1

1 0 0

0 1 0

3

5 ; a3 D b2 D I D
2

4
1 0 0

0 1 0

0 0 1

3

5 ;

ba D
2

4
0 1 0

1 0 0

0 0 1

3

5 ; ab D
2

4
0 0 1

0 1 0

1 0 0

3

5

:

This information is compactly summarized by the operation table presented in
Fig. 3.

To complete our description of this machine as a transformation semigroup, note
that the underlying set Q3 D f1; 2; 3g while the action semigroup is the dihedral
group on three elements SD3 with the operation table as depicted in Fig. 3. Thus, the
transformation semigroup XD D .Q3; SD3/. Evident in the operation table is the

Fig. 3 Operation table for
SD3 dihedral group
associated with the directed
graph in Fig. 2a

I a a2 b ab ba

I I a a2 b ab ba

a a a2 I ab ba b

a2 a2 I a ba b ab

b b ba ab I a2 a

ab ab b ba a I a2

ba ba ab b a2 a I

A Primer on Economic Choice Automata 79

Fig. 4 Operation table for
SC3 the chain associated with
the directed graph of Fig. 2b

a a2

a a2 a2

a2 a2 a2

cyclic counting from the interaction of the “a” mapping while interaction between a

and b or between a and products of a and b provide the sequence detecting ability.
For example, the sequence ba followed by ab leads to a different result from the
sequence ab followed by the sequence ba.

Another technique for constructing a machine algebra is exposited using the
Fig. 2b semiautomaton.23 The semiautomaton depicted in Fig. 2b is less rich. By
examination, it can be seen that the single mapping a has the property that once it
is applied to any state twice (aa D a2) the result is that, independent of where the
semiautomaton is started, it will be in state 1. This situation is represented formally
in the state transition table below. On the top is a listing of the states; 1; 2;and 3.
Subsequent rows specify what happens when the transition a is applied once (first
row) and twice (second row).

1 2 3

a 1 1 2

a2 1 1 1

The corresponding operation table is presented in Fig. 4. Notably, because this
semiautomaton does not have an identity mapping and, as a consequence, neither
does it’s algebra the operation table is not especially informative. These mappings
do endow the algebraic system with a zero (a2) and this is evident in the operation
table. And, as before, we can identify the transformation semigroup as follows. The
underlying set is the same Q3 D f1; 2; 3g but the action semigroup is different SC3

with the transitions as described in the state transition table and operation table as
in Fig. 4. Given this, we see the transformation semigroup is XC D .Q3; SC3/.

Of course, these are just two of the many semiautomata that can be defined
on three states and having one or two transitions. In fact, these two are both
subsemigroups of the semigroup of partial functions on these three states. There
are many more subsemigroups including the null machine and the identity machine
and all other possibilities of partial functions mapping a state to itself or some other
state or to no state at all (often called the null map). Each of these semiautomata
has an associated semigroup and every semigroup has at least one semiautomaton
that is associated with it. The number of semigroups varies on the precise class
meant (e.g., mononids, commutative, only non-isomorphic semigroups, etc.). One
nice result provided by Kleitman et al. [44] offers an asymptotic approximation for

23Yet another technique using permutation notation for representing the partial functions can be
seen in Howie [29].

80 M.R. Johnson

123

12 13 23

1 2 3

123

12 13 23

1 2 3

C

CC C

C

C

C C

a b

Fig. 5 Start at defining a “choice semiautomaton”. (a) Depicts the eight states labeled as elements
of the Boolean algebra on three alternatives. (b) Depicts the same eight states and one particular
set of transformations C

the number of semigroups S.n/ on n elements as S.n/ D
�

nP

iD1

f .t/

�
.1 C o .1//

where f .t/ D
�
n

t

�
t1C.n�t /2 . Other estimates under different assumptions range

from the very early Forsythe [22] to the more recent Grillet [27].
Of all the possible semiautomata on n states, we are interested only in those

that implement Path Independent choice. From Johnson [31] we know that not all
semiautomata meet the requirements for Path Independent choice. In Fig. 5a, b we
see both the initial layout of the eight states representing the possible choice sets on
three alternatives. Of course, three alternatives means there will be eight different
sets (including the empty set from which the choice only can be the empty set)
from which we might have to choose and thus, eight states in the semiautomaton.24

Each of the states is labeled as a subset of a feasible set f1; 2; 3g. In Fig. 5a there
are no transitions while in Fig. 5b there are a number of transitions. The intent is
to build a semiautomaton that implements the choice function rationalized by the
linear order where 1 is preferred to 2 and both 1 and 2 are preferred to 3. Clearly
visible is the interval property of Path Independent choice functions; for example,
every state between 1 and 123 in the Boolean algebra on f1; 2; 3; g is mapped into
1.25 What the interval property reflects is an equivalence class of the input signals to
the semiautomaton. Specifically, because any of the input signals (here, the signal
are new sets of available alternatives) f1; 2; 3g, f1; 2g, f1; 3g, and f1g, has the same
effect as the choice element from each of these sets, viz. f1g. After a little further
development, this choice function is used as a example in specifying the choice
semiautomaton.

24Satoh et al. [55] calculate the number of non-equivalent semigroups of order 8 at around 1.85
billion.
25As in Fig. 1, the soft brackets are omitted to simplify notation.

A Primer on Economic Choice Automata 81

Fig. 6 Figure 5 mappings
under C with additional
mappings added as required
for meeting the implications
of Plott’s product (�)

123

12 13 23

1 2 3

C

CC C

C

C

C C

1

3

21

2
1

Fig. 7 On the left is the
Boolean algebra on three
alternatives and on the right
is the image of the mapping
C combined with the
information of Plott’s “�” to
produce the chain IC3 on the
right

123

12 13 23

1 2 3

1

2

3

C

C

C

C

Now, there are a number of possible labelings for the partial functions in Fig. 5
but one useful way of labeling is to use the notation C , for choice for each of the
transitions. In Fig. 6, the additional requirements imposed by the ranking of 1 over
2 and both of these over 3 is incorporated. At this point, the diagram is getting fairly
confusing. A, perhaps, more easily read representation is presented in Fig. 7. On
the left in Fig. 7a is the same diagram as in Fig. 5b with the labeling and in Fig. 7b
the presentation I find most useful. In the presentation, the underlying set Q is on
the left and the subset of the underlying set to which all states are mapped is on the
right. Here, these elements are ordered in the manner required by the Plott operation
(�) while the elements f1; 2; 3;;g in Fig. 5 use only the information of the mapping
C . The ordering in Fig. 7 is a chain which is labeled IC3 for future use.

This representation is very useful in understanding the operation of a “choice
semiautomaton”. In particular, the C mapping incorporates the interval property
present in all path independent choice functions and the operation (�) helps provide
the ordering. In fact, for all path independent choice functions it is useful to
recognize that both the mappings C and the impact of the interactions resulting
from aggregating choice sets leads to a representation as a lattice.

The following remarks summarize salient points of this discussion.

Remark 1 Note that the mappings in Fig. 6 are a subset of all possible partial
functions among the elements of the underlying set. While demonstrated only on
this small example, the observation extends to all finite sets.

82 M.R. Johnson

Remark 2 As a result of Remark 1, the semigroup obtained from the transitions will
be a subsemigroup of the semigroup of all partial functions on the underlying set.
Again, while this result is demonstrated only on a small example, the result extends
to all finite sets.

In addition, because the choice functions are functions this is a complete
semiautomaton. Analytically, it is useful to think of choice functions and Plott’s
(�) operation in the Boolean algebra domain and the meet and join operations
in the lattice domain. And, conveniently, the lattices that form the range of the
mapping have been characterized.26 These results are summarized in the following
proposition.

Proposition 1 Let C be a discriminating choice function that satisfies PI on V,
let .�/ be the Plott product, and let T D .2V IJ / be the complete transformation
semigroup derived from C. Then

1. C satisfies PI if and only if J is an LLD lattice,
2. C satisfies PI and E if and only if J is a distributive lattice,
3. C satisfies WARP if and only if J is a chain of Boolean algebras, and
4. C satisfies SAP if and only if J is a chain.

Examples of each of these systems on a three alternative domain are represented
in Fig. 8. Figure 8a is the canonical seven-element LLD lattice that is a sublattice
of every LLD lattice, Fig. 8b is a six-element distributive lattice, Fig. 8c is a chain

123/13

12 23

1 2 3

123/13

12/1 23

2 3

123/1

23

2 3

123/1

23/3

2

a b

c d

Fig. 8 (a) is an LLD lattice, (b) is a distributive lattice, (c) is chain of Boolean algebras and (d) is
a chain

26See Johnson and Dean [35, 36] for the complete set of characterizations and Koshevoy [46] for a
subset of these characterizations.

A Primer on Economic Choice Automata 83

of Boolean algebras and Fig. 8d is a chain. For these lattices derived from choice
functions defined on three alternatives, it turns out that the representatives of each
class of lattice are differentiated by the number of elements in the image lattice.
When the domain has four or more alternatives, this is no longer true.27 On four
or more alternatives, there is substantial overlap in the number of elements of
the representatives of each class. Most important, independent of the number of
alternatives in V , the class of distributive lattices is a strictly contained in the class
of LLDS lattices and the class of chains of Boolean algebras is strictly contained
in the class of distributive lattices, while the class of chains is strictly contained in
the class of chains of Boolean algebras. Thus, the relevant algebras for the action
semigroup are nested.

Notably the systems identified are nested so that comparison of the mathematical
powers is direct. A chain is capable only of ordering a set; it does not have the
ability to allow for indifference among alternatives. Similarly, a chain of Boolean
algebras has the ability to permit indifference but cannot handle the case where
strict preference is transitive but indifference need not be transitive. The distributive
lattices have the power to allow for intransitive indifference but can not handle
the case where the final choice can depend on the sequence of expansions and
contractions. Finally, an LLD lattice has sufficient power to handle choice situations
where there may not be an underlying relation rationalizing choice and where the
final choice may depend of the sequence of expansions and contractions.28 Given
this nesting, it is seen that non-rationalizable path independent choice functions have
the highest requirement for implementation while choice functions rationalized by
linear orders have the lowest mathematical requirement.

Example Building on the choice function rationalized by the linear order of 1

preferred to 2 and 2 preferred to 3 the transformation semigroup X of choice
semiautomaton can be specified. First, the underlying set, Q, is the Boolean algebra
on f1; 2; 3g. As specified in Proposition 1, the action semigroup of the lattice of
idempotents that, in this case, is a chain. For this choice function the idempotents
are I D f;; 1; 2; 3g. Thus, the transformation semigroup is X D .2V ; I /. In
this representation, the underlying set is not the “minimum number of states” that
will implement the relevant choice. In the minimum number of state machine,
only the “representative” states are required; these “representative” states are the
same elements as the idempotents, I . Thus, the transformation semigroup of the
minimum-number-of-state semiautomaton, NX , is NX D .I; I /. To see the operation
of this choice function, consider the following choice problem

f2; 3g � f1; 3g D‹

27See Johnson and Dean [37] for an atlas of unique LLDs on four alternatives.
28The key issue here is that LLD lattices are not distributive so that the final choice can depend
on the interactions of the meet and join operations. Most critically, in the non-rational path
independent choice functions, the choice from the intersection of two sets depends on the largest
sets from which the relevant choice sets are drawn. See Johnson [34] for a concrete example of this
“path dependence”.

84 M.R. Johnson

In this case, the representative state for f2; 3g D 2 (with the brackets left off the
representative element). Similarly, for f1; 3g D 1 and in the lattice domain, the join
operation yields 2 _ 1 D 1. }

Similar examples can be constructed for the other choice functions presented in
this section.

In the next section it will be seen that this ordering by implementation complexity
is reversed when computational complexity is considered.

4 Computational Complexity of Path Independent Choice
Functions

In general, the number of steps required to solve a problem of a particular type
can depend on the nature of the computer applied to the problem. For this reason
many approaches to computational complexity look for some more fundamental
aspect of what is required to solve the problem. Frequently, the goal that is
sought is some scaling that is independent of the particular machine or algorithm
applied to the problem.29 The measure that is used here fits within that framework.
For path independent choice functions the effort that is expended to create a
choice implementing semiautomaton must identify the collection of sets from
which the same choice will be made. For path independent choice functions, an
attractive computational complexity measure of a particular choice implementing
semiautomaton is the number of prime intervals defining the collection of sets from
which the same choice will be made. As noted earlier, each of these collections of
sets will be an interval in the domain of the choice function being implemented.

In addition to being independent of a particular algorithm or machine, using the
prime intervals has two attractive economic intuitions. First, identifying a prime
interval selects two subsets of the feasible set from which the same choice will be
made. Effectively, identifying a prime interval answers the question, “Do you want
to make the same choice from these two sets?”. This idea is firmly rooted in the view
that consistency axioms are concerned with the relationship between choice made
on one set and choices made on other sets. Second, the size of the two sets related by
a prime interval differ by a single alternative with the superset being larger than the
subset. Thus, identifying a prime interval also specifies some particular alternative
that will not be in the choice from the larger of these sets.

The foundation for this approach is the following lemma from Johnson and Dean
[36] which provides conditions under which a contraction of an interval will result in
a new path independent choice function. Combined with a related result that assures

29As noted earlier computational complexity measures that have this property satisfy the Blum [12]
axioms.

A Primer on Economic Choice Automata 85

that the contractions are reversible, this lemma provides a means of constructing all
path independent choice functions on a finite set.30

Lemma 1 Let C be a path independent choice function on a set V . Let B be a meet
irreducible element in the lattice of idempotents of C that is not equal to C.V / or ;.
Let A be the unique element covering B in this lattice. Suppose that A D B [fxg.
Let the function C � defined as:

C �.S/ D C.S/ if C.S/ ¤ A

C �.B/ D B if C.S/ D A

The function C � is a path independent choice function on V . We say that C � is
obtained from C by contracting the quotient A=B in the lattice of idempotents
under C .

Proof See Appendix.

While the measure of computational complexity is independent of any particular
algorithm, it is useful to examine a concrete example of how the sequence of
contractions described in the lemma above actually works. In particular, reviewing
the operation of the contractions provides a clear understanding of what really
happens to the prime intervals in the process of identifying a particular action
semigroup.

Example Construction of the five discriminating choice lattices on three elements
is diagramed in Fig. 9. Application of the contraction procedure is direct. In most
cases, so is identifying the computational complexity. The exceptions are the
sequences of contractions resulting in the two chains of Boolean algebras. Special
note will be made of features of those contractions and how that relates to the
computational complexity of the choice function. Consider PI choice functions
defined on V D f1; 2; 3g. To help in the exposition of the process as well as to
identify the prime intervals that will be the scale for the computational complexity
Fig. 9 presents the domain of the choice function 23 on the left side, the five
discriminating choice functions in the center and the intermediate lattices on the
far right side. The Boolean algebras presented on the left are used to identify and
keep track of the total number of prime intervals that are identified in the domain.
The intermediate lattices on the right are used to identify the single prime intervals
that are contracted in each application of Lemma 1.

The algorithm begins with the Boolean algebra on three elements presented at
the top left of Fig. 9. The first discriminating lattice, labeled L7 at the center top of
the diagram, is constructed by contracting one of the three intervals 123/12, 123/13,
123/23. Each of these contractions will result in a lattice isomorphic to the lattice
L7. In L7, the interval 123/13 has been contracted. Note that one prime interval has

30See Johnson and Dean [36].

86 M.R. Johnson

123

12 13 23

1 2 3

ø

123

12 13 23

1 2 3

ø

123

12 13 23

1 2 3

ø

123

12 13 23

1 2 3

ø

123/13

12/1 23

2 3

ø

123/13

12 23

1 2 3

ø

123/1

23

2 3

ø

123/13

12/1 23/3

2

ø

123/1

23/3

2

ø

123

12 13 23

1 2 3

ø

L7

L6

L5a

L5b

L4

123/13

12 23

1 2 3

ø

123/1

23

2 3

ø

123/13

12/1 23

2 3

ø

123/13

12/1 23

2 3

ø

Fig. 9 Sequence of contractions leading to construction of all non-isomorphic LLD lattices that
are possible action semigroups of semiautomata implementing Path Independent Choice Functions
on a three alternative domain using the contraction process

been contracted and it has been determined that the alternative 2 will not be chosen
from the set f1; 2; 3g.

The second lattice constructed, L6 is obtained by contracting one of two intervals
in L7 meeting the conditions of Lemma 1. In this case the two intervals that could
have been contracted: 12/1 or 23/3. Either contraction will result in a lattice that is
isomorphic to the six element distributive lattice second from the top of the middle
column labeled L6. In this case the interval 12/1 has been contracted as indicated

A Primer on Economic Choice Automata 87

in the seven element lattice to the upper right of L6. It has been determined that the
alternative 2 will not be selected from the set f1; 2g. As can be seen in the Boolean
algebra to the left of L6, two prime intervals in the domain have been identified.

In L6, there are again two intervals that can be contracted. This time however, the
contractions will not result in isomorphic lattices (in fact, they will be dual lattices).
One of possible contractions, 23/3, is easy to see because it is just like the earlier
contractions. Contracting this interval leads to the lattice L5a in the middle of the
center column. This lattice has a two-element Boolean algebra on top of a singleton.
As can be seen in the Boolean algebra to the left of L5a, in this lattice, three prime
intervals have been contracted.

The other interval in L6 that can be contracted is an interval that involves two
previously contracted intervals; this interval consists of the lattice point labeled 12/1
and the lattice point labeled 123/13 (see the copy of L6 to the upper left of L5b).
The result of this contraction is the lattice with a two-element Boolean algebra on the
bottom, labeled L5b. Looking to the left of this lattice, it can be seen that, although
only three contraction operations have been made, a total of four prime intervals
have been contracted. This is because the interval being contracted consisted of
previously contracted intervals. Even though only three contraction operations have
been made, the fourth prime interval has been contracted because of the implication
of the two contractions made previously. The induced contraction is depicted by the
dashed loop in the Boolean algebra to the left of L5b. Notice that this mapping is the
first case of an interval that is not just a prime interval. Here, the interval consists of
all the sets between f1g and f1; 2; 3g in the Boolean algebra for a total of four prime
intervals. Equally important, the cumulative impact of the individual prime interval
contractions is that alternative 1 is the only alternative chosen from any of the sets
in the interval 1=123. Observe that identifying the first prime interval determined
that alternative 2 would not be chosen from the set f1; 2; 3g, identifying the second
prime interval determined that alternative 2 would not be chosen from the set f1; 2g
and the final prime interval, determined that alternative 3 would not be chosen from
the set f1; 3g with the implication that only alternative 1 will be chosen from the set
f1; 2; 3g.

The final contraction is performed on L5b and results in the chain labeled L4. In
this case the interval 23=3 is contracted in lattice L5b. As can be seen in the Boolean
algebra to the left of L4 this lattice has five prime intervals that have been contracted.
If instead of working with L5b we had stayed with L5a where the Boolean algebra
is on top, then there are two intervals that can be contracted, and both of them
involve previously contracted intervals. Contracting either of them results in a lattice
isomorphic to the chain in L4, and that chain must have five prime intervals that have
been contracted. }

Now, the computational complexity measures can be formalized. For a standard
problem it is common to consider three different computational complexities; (1) the
best case for determining the answer, (2) the average case for determining the
answer, and (3) the worst case for determining the answer. Currently, not enough
is known about the distribution of the numbers of each type of path independent

88 M.R. Johnson

choice function to be able to determine the average number of prime intervals that
must be identified for the class. It is, however, possible to determine the best and
worst cases and the results below accomplish that task.

First to simplify notation, let P denote the class of LLD lattices, D the class of
distributive lattices, W the class of chains of Boolean algebras and S the class of
chains. Then let P � be the class of LLD lattices that are not distributive, D� the
class of distributive lattices that are not chains of Boolean algebras or chains and
W � the class of chains of Boolean algebras that are not chains. Note that S D S�.
Thus, the starred classes are in some sense, “pure” representatives of their class.

Definition 3 Let C be a path independent choice function defined on V and let J
be the associated idempotent action semigroup. The computational complexity of J ,
k.J /, is the number of prime intervals in the Boolean algebra 2V that are contracted
in J .

Here we see that the computational complexity of a particular choice function is
measured by the number of prime intervals that must be contracted in the Boolean
algebra in order to construct the action semigroup for the choice implementing
semiautomaton. This measure simply reflects the effort required to identify the
collections of sets from which the same choice will be made.

In economic applications, a major focus is on the computational complexity of
the classes of choice functions and their associated semiautomata rather than the
complexity of a specific semiautomaton. This is a common event in computational
complexity. Where the complexity of the a class of problems is considered, the
standard approach is to identify separate complexities for the minimum complexity
of the class, the average complexity of the class and the maximum complexity of
the class. For choice functions, it is possible to define each of these computational
complexities. For the minimum computational complexity and the maximum
computational complexity of a class, the class computational complexity measure
can be identified. At this stage, however, not enough is know about the number of
members of each class to be able to calculate the average computational complexity.

Definition 4 For path independent choice functions defined on V with cardinality
t satisfying a consistency axiom A and action semigroups J with t join irreducibles
belonging to the class of LLD lattices B, let the minimum computational complexity
Kmin of a class B of LLD lattices be defined as follows:

Kmin.B/ D .r jr D minJ2B.k.J ///:

Definition 5 For path independent choice functions defined on V with cardinality
t satisfying a consistency axiom A and action semigroups J with t join irreducibles
belonging to the class of LLD lattices B, let the maximum computational complexity
Kmax of a class B of LLD lattices be defined as follows:

Kmax.B/ D .r jr D maxJ2B.k.J ///:

A Primer on Economic Choice Automata 89

Definition 6 For path independent choice functions defined on V with cardinality
t satisfying a consistency axiom A and action semigroups J with t join irreducibles
belonging to the class of LLD lattices B, let the average computational complexity
Kmax of a class B of LLD lattices be defined as follows:

Kave.B/ D .r jr D aveJ2B.k.J ///:

This sequence of definitions identifies: (1) a computational complexity measure
for a semiautomaton implementing a particular choice function based on the number
of prime intervals that must be identified in order to construct the action semigroup,
(2) for a class of LLD action semigroup lattices, the computational complexity of
the class by either of the minimum number of prime intervals that must be identified
in order to construct a member of the class, the maximum number of prime intervals
identified for a member of the class and the average number of intervals identified
for the non-isomorphic members of the class. Note Kmin.B/ < Kave.B/ < Kmax.B/

so that Kmin.B/ and Kmax.B/ bound Kave.B/.31

Remark 3 Let V be a collection of t � 3 join irreducibles and let 2V be the
Boolean algebra on V . For discriminating choice functions defined on V , the
minimum computational complexities of the following classes of action semigroups
P �;D�;W �, and S� are ordered as follows:

Kmin.P
�/ < Kmin.D

�/ < Kmin.W
�/ < Kmin.S

�/:

Remark 4 Let V be a collection of t � 3 join irreducibles and let 2V be the
Boolean algebra on V . For discriminating choice functions defined on V , the
maximum computational complexities of the following classes of action semigroups
P �;D�;W �, and S� are ordered as follows:

Kmax.P
�/ < Kmax.D

�/ < Kmax.W
�/ < Kmax.S

�/:

Formal proofs of these results are presented in Johnson [34]. The primary
technique used in the proofs is to provide general examples on t join irreducibles for
each of the distinguishing cases. The remarks above demonstrate that both Kmin.B/

and Kmax.B/ provide the same ordering of the computational complexities of the
classes of choice functions. Finally, while it is not yet possible to determineKave.B/

for arbitrary sized domains, direct computation on three and four element domains
confirms that Kave.B/ orders choice function classes the same as Kmin.B/ and
Kmax.B/ for those domains.

Referring back to the example of this section, in these sample construction there
is only one member of P � which has a Kmin.P

�/ D Kmax.P
�/ D 1. Similarly,

31A joke I heard frequently from information scientists working on computational complexity
problems is that “the average case is almost always the worst case”.

90 M.R. Johnson

there is only one member of D� and it has a Kmin.D
�/ D Kmax.D

�/ D 2. The class
W � has two members and we see, for the first time, that Kmin.W

�/ D 3 ¤ 4 D
Kmax.W

�/. Finally, for S�, Kmin.S
�/ D Kmax.S

�/ D 5. Of course, these numbers
are only for the particular choice functions in the example. A complete treatment
would have to include all possible choice functions on three elements, however, in
this case, up to isomorphism, all members are represented.32

5 Conclusions

While differing from previous approaches to addressing the structure of economic
choice automata (for example, see Futia [23] or Gottinger [26]), the results
presented here characterize the structure of choice implementing semiautomata
when constrained to satisfy standard economic consistency axioms. The approach
is to combine previous algebraic results on choice functions of Plott [52], Johnson
[31, 32] and Johnson and Dean [35–38] with work on classic algebraic automata
theory results from Eilenberg [20, 21] and Holcombe [28]. Notably, the characteri-
zation results are tight in that each class of PI choice function is associated with a
specific class of action semigroup.

For these choice implementing semiautomata, two different complexities are
identified. The first, deriving directly from the characterization results, is imple-
mentation or algebraic complexity, which reflects the mathematical power required
of the semiautomaton in order to correctly implement the choice rule being effected.
When ranked by algebraic complexity, the broadest class of choice functions is
identified as requiring the highest power in order to be correctly implemented. As
the class of choice functions becomes increasingly restricted, the power required
correctly to implement the choice rule is reduced. When viewed as choice imple-
menting semiautomata, one intuition is that as the class of choice functions becomes
more restrictive, the environments in which the semiautomata operate becomes
“simpler” .

In contrast, the computational complexity which is determined by the effort
required to make the action semigroups of the choice implementing semiautomaton
is demonstrated to be lowest for the broadest class of choice functions and increas-
ingly higher for the more restrictive classes. The class of choice functions with the
highest computational complexity is the class of choice functions rationalized by
linear orders.

Perhaps most intriguingly, the two complexities are dual with algebraic complex-
ity being highest when the computational complexity is lowest.

32Note here that both of the choice machines in the class W � have the same number of lattice
points and, yet, have different computational complexities.

A Primer on Economic Choice Automata 91

Appendix

Proof of Lemma 1 33

Proof We omit the verification that C � is a choice function on V . We shall verify
that C satisfies properties Q and CA. As a preliminary recall from Lemma 11 that
if, under C , arc.B/ D B^=B and arc.A/ D A_=A then A_ � B_. Then it follows
because B is meet irreducible in the lattice of idempotents under C , that if K 2
A^=B then C.K/ D A or C.K/ D B .

To see this, the computation: C.K/ � B D C.C.K/ [C.B// D C.K [B/ D
C.K/ means that C.K/ � B and so either C.K/ D B or C.K/ � A in the
lattice. In the latter case, C.K/ D C.K/ � A while the computation C.K/ � A D
C.C.K/ [C.A// D C.K [A/ D C.A/ since K [A 2 A^=A. This means that
K 2 A^=B implies K 2 A^=A or K 2 B^=B and hence that B^ is a relative
compliment of A in the quotient A^=B in 2V . It also means that K 2 A^=B implies
that C �.K/ D B .

First we verify that the inverse images under C � are quotients in 2V . Now the
inverse images of C are unchanged under C � unless C �.S/ D B . So it must
be verified that the inverse image of B under C � is an interval. We prove that
fS W C �.S/ D Bg D A^=B . We have just shown that for K 2 A^=B;C �.K/ D B .
Conversely, as we have shown A^ � B^ 34 so if C.X/ D B then X 2 A^=B . Now
C �.S/ D B if and only if C.S/ ¤ A and C.S/ D B , in which case S 2 B^=B
or C.S/ D A, in which case S 2 A^=A. So the inverse image of B under C � is
contained in A^=B .

Second we verify the condition: D � E implies C �.E/ � C �.D/\E . Because
C is path independent, C.E/ � C.D/ \ E . There are four cases to check:

Case 1. Neither D nor E belong to A^=A.

In this case there is no change from C to C � and so the condition holds.

Case 2. Both D and E belong to A^=A.

Then C �.D/ D C �.E/ D B and the condition holds.

Case 3. D 2 A^=A and E … A^=A.

In this case C �.E/ D C.E/; C.D/ D A and C �.D/ D B , so the condition
to be verified is C.E/ � B \ E . but this is true because C.E/ � C.D/ \ E D
A \ E 	 B \ E .

Case 4. D … A^=A and E 2 A^=A.

33The proof reproduced here is the original proof of Johnson and Dean [35]. This proof is offered
here because it is more algorithmic and instructive for this application to computational complexity.
Additionally, this proof is founded on basic principles instead of relying on additional constructs
as in Johnson and Dean [36].
34The claim is from Lemma 11 of Johnson and Dean [35] restated at the end of this proof.

92 M.R. Johnson

The condition D � E entails C.E/ � C.D/ \ E since C is path independent.
C.E/ D A in this case so A � C.D/\E . We are to verify that C �.E/ � C �.D/\
E , or in this case, that B � C.D/\E . Since A D B [fxg this condition will hold
if x … C.D/, so we suppose for the remainder of the discussion of Case 4 that
x 2 C.D/ and derive a contraction. We prove that D 2 A^=A contrary to the
Case 4 hypothesis.

In any even we have D � E � A. Let y 2 D;y … A, in particular y ¤ x.
Consider B [fyg. The computation B � C.B [fyg/ D C.B [C.B [fyg// D
C.B [B [fyg/ D C.B [fyg/ shows that C.B [fyg/ � B in the lattice of
idempotents under C . Because B is meet irreducible, either C.B [fyg/ D B or
C.B [fyg/ � A in the lattice.

The second alternative cannot hold as we now argue. If it did C.B [fyg/ D
C.B [fyg/ � A D C.A [C.B [fyg// D C.A [B [fyg/ D C.A [fyg/. Now
D � A [fyg so C.A [fyg/ � C.D/ \ .A [fyg/ and since x 2 C.D/ \ A, it
follows that x 2 C.A [fyg/ D C.B [fyg/; but x … B [fyg, a contradiction.

Thus for all y 2 D;y … A;C.B [fyg/ D B , or B [fyg 2 B^=B , hence for
these y’s, A^ � B [fyg. But if y 2 A, then A^ � B [fyg anyway, so for all
y 2 D;A^ 	 fyg; i.e. A^ � D, but that means D 2 A^=A, contrary to Case 4. �

Lemma 11 35 If C is PI and A > B in the lattice of idempotents then A^ 	 B^.

References

1. Abreu D, Rubinstein A (1988) The structure of Nash equilibrium in repeated games with finite
automata. Econometrica 56:1259–1281

2. Arrow KJ (1959) Rational choice functions and orderings. Econometrica 26:121–127
3. Arrow KJ (1963) Social choice and individual values, 2nd edn. Yale University Press,

New Haven
4. Auman RJ (1981) Survey of repeated games. In: Aumann et al. (eds) Essays in game theory

and mathematical economics in Honor of Oskar Morgenstern, vol 4. of Gesellschaft, Recht,
Wirtschaft, Wissenschaftsverlag Bibliographisches Institute, Mannheim, pp 11–42

5. Bandyopadhyay T (1988) Revealed preference theory, ordering and the axiom of sequential
path independence. Rev Econ Stud 55:343–351

6. Banks JS, Sundaram RK (1990) Repeated games, finite automata and complexity. Games Econ
Behav 2:97–117

7. Bartholdi III JJ, Orlin JB (1991) Single transferable vote resists strategic voting. Soc Choice
Welf 8:341–354

8. Bartholdi III JJ, Tovey CA, Trick MA (1989) Voting schemes for which it can be difficult to
tell who won the election. Soc Choice Welf 6:157–165

9. Bartholdi III JJ, Tovey CA, Trick MA (1989) The computational difficulty of manipulating an
election. Soc Choice Welf 6:227–241

10. Ben-Porath E (1990) The complexity of computing a best response automaton in repeated
games with mixed strategies. Games Econ Behav 2:1–12

11. Birkhoff G (1979) Lattice theory, 3rd edn. American Mathematical Society, Providence

35See Johnson and Dean [35].

A Primer on Economic Choice Automata 93

12. Blum M (1967) A machine-independent theory of complexity of recursive functions. J Assoc
Comput Mach 14:322–336

13. Campbell DE (1978) Realization of choice functions. Econometrica 46:171–180
14. Campbell DE (1978) Rationality from a computational standpoint. Theor Decis 9:255–266
15. Chatterjee K, Sabourian H (2009) Game theory and strategic complexity. Encyclopedia of

complexity and systems science. Springer, New York, pp 4098–4114
16. Clifford AH, Preston GB (1961) The algebraic theory of semigroups, vol 1. American

Mathematical Society, Providence
17. Clifford AH, Preston GB (1961) The algebraic theory of semigroups, vol 2. American

Mathematical Society, Providence
18. Davey BA, Priestly HA (1990) Introduction to lattices and order. Cambridge University Press,

Cambridge
19. Dilworth RP (1950) A decomposition theorem for partially ordered sets. Ann Math 51:161–166
20. Eilenberg S (1974) Automata, languages and machines, vol A. Academic, New York
21. Eilenberg S (1976) Automata, languages and machines, vol B. Academic, New York
22. Forsythe GE (1955) SWAC computes 126 distinct semigroups of order 4. Proc Am Math Soc

6:443–447
23. Futia C (1977) The complexity of economic decision rules. J Math Econ 4:289–299
24. Gilboa I (1988) The complexity of computing best response automata in repeated games.

J Econ Theory 45:342–352
25. Gorman WM (1959) Separable utility and aggregation. Econometrica 27:469–481
26. Gottinger HW (1978) Complexity in social decision rules. In: Gottenger HW, Leinfellner W

(eds) Decision theory and social ethics, pp 251–269. D. Reidel, Dordecht
27. Grillet PA (1995) The number of commutative semigroups of order N. Semigroup Forum

50:317–326
28. Holcombe WML (1982) Algebraic automata theory. Cambridge University Press, Cambridge
29. Howie JM (1991) Automata and languages. Oxford University Press, New York
30. Hurwicz L (1986) On informational decentralized systems. In: McGuire CB, Radner R (eds)

Decision and organization. North-Holland, Amsterdam
31. Johnson MR (1990) Information, associativity and choice. J Econ Theory 52:440–452
32. Johnson MR (1995) Ideal structures of path independent choice functions. J Econ Theory

65:468–504
33. Johnson MR (1996) Algebraic complexity of strategy-implementing semiautomata for

repeated-play games. Mimeo presented southeast economic theory and international trade
meetings 1–3 Nov 1996, Florida International University, Miami, FL

34. Johnson MR (2005) Economic choice semiautomata; structure, complexities and aggregations.
Presented at Econometric Society 2005 World Congress, London

35. Johnson MR, Dean RA (1996) An algebraic characterization of path independent choice
functions. Presented at the third international meeting of the Society for Social Choice and
Welfare, Maastricht, 1996. Available at http://markrjohnson.net/read-me/

36. Johnson MR, Dean RA (2001) Locally complete path independent choice functions and their
lattices. Math Soc Sci 42:53–87

37. Johnson MR, Dean RA (2001) The construction of all lower locally distributive lattices on 4
elements. Available at http://markrjohnson.net/read-me/

38. Johnson MR, RA Dean (2002) Construction of finite lower locally distributive lattices.
Presented at American Mathematics Society Meetings, San Diego, CA. Available at http://
markrjohnson.net/read-me/

39. Johnson MR, Dean RA (2005) Designer path independent choice functions. Econ Theory
26:729–740

40. Kalai E (1990) Bounded rationality and strategic complexity in repeated games. In: Ichiishi T,
Neyman A, Tauman Y (eds) Game theory and applications, pp 131–157. Academic, San Diego

41. Kalai E, Stanford W (1988) Finite rationality and interpersonal complexity in repeated games.
Econometrica 56:397–410

42. Kelly JS (1978) Arrow impossibility theorems. Academic, New York

http://markrjohnson.net/read-me/
http://markrjohnson.net/read-me/
http://markrjohnson.net/read-me/
http://markrjohnson.net/read-me/

94 M.R. Johnson

43. Kelly JS (1988) Social choice and computational complexity. J Math Econ 17:1–8
44. Kleitman JK, Rothschild BR, Spencer JH (1976) The number of semigroups of order n. Proc

Am Math Soc 55:227–232
45. Knoblauch V (1994) Computable strategies for repeated prisoner’s dilemma. Games Econ

Behav 7:381–389
46. Koshevoy G (1999) Choice functions and abstract convex geometries. Math Soc Sci 38:35–44
47. Krohn KB, Rhodes JL (1962) Algebraic theory of machines. In: Proceedings of symposium on

the mathematical theory of automata, pp 341–378. Polytechnic Institute of Brooklyn, New York
48. Krohn KB, Rhodes JL (1965) Algebraic theory of machines, I Prime decomposition theorem

for finite semigroups and machines. Trans Am Math Soc 116:L450–L464
49. Lewis A (1985) On effectively computable realizations of choice functions. Math Soc Sci

10:43–80
50. Lewis A (1985) The minimum degree of recursively representable choice functions. Math Soc

Sci 10:179–188
51. Papadimitriou CH (1992) On players with a bounded number of states. Games Econ Behav

4:122–131
52. Plott CR (1973) Path independence, rationality and social choice. Econometrica 41:1075–1091
53. Radner R (1993) The organization of decentralized information processing. Econometrica

61:1109–1146
54. Rubinstein A (1991) Comments on the interpretation of game theory. Econometrica 59:909–

924
55. Satoh S, Yama K, Tokizawa M (1994) Semigroups of order 8. Semigroup Forum 49:7–29
56. Simon HA (1972) Theories of bounded rationality. In: McGuire CB, Radner R (eds) Decision

and organization. North-Holland, Amsterdam
57. Strotz RH (1957) The empirical implications of the utility tree. Econometrica 25:269–280
58. Strotz RH (1959) The utility tree a correction and further appraisal. Econometrica 27:482–488
59. Turing AM (1937) On computable numbers, with an application to the entscheidungs problem.

Proc Lond Math Soc 42:230–265

	A Primer on Economic Choice Automata
	1 Introduction
	2 Definitions and Notation
	2.1 Notation, Choice Functions and Consistency Requirements
	2.2 Algebras
	2.3 Semiautomata, Transformation Semigroups and Action

	3 From Generic Semiautomata to Choice Semiautomata
	4 Computational Complexity of Path Independent Choice Functions
	5 Conclusions
	Appendix
	References

