Distance Rationalizability of Scoring Rules

Burak Can

Abstract Collective decision making problems can be seen as finding an outcome
that is “closest” to a concept of “consensus”. Nitzan (1981) introduced “Closeness
to Unanimity Procedure” as a first example to this approach and showed that the
Borda rule is the closest to unanimity under the Kemeny (1959) distance. Elkind
et al. (2009) generalized this concept as distance-rationalizability, and showed that
all scoring rules can be distance rationalized via a class of distance functions, which
we call scoring distances. In this paper, we propose another class of distances, i.e.,
weighted distances, introduced in Can (2014). This class is a generalization of the
Kemeny distance that rationalizes the generalization of the Borda rule, i.e., scoring
rules. Hence the results here extend those in Nitzan (1981) and reveal the broader
connection between Kemeny-like distances and Borda-like voting rules.

Keywords Distance rationalizability ¢ Scoring rules ¢ Voting ¢ Weighted
distances

1 Introduction

Nitzan [9] introduced the closeness to unanimity procedures (CUPs) for collective
decision making problems. Given a distance function as a measure of closeness over
preference profiles, these procedures find “closest” unanimous preference profiles to
the original preference profile at hand. This approach, in a sense, yields the outcome
which requires the minimal total compromise towards a unanimous agreement from
a utilitarian perspective.

Meskanen and Nurmi [8] use other consensus concepts such as the existence of
a Condorcet winner in a profile. Then, the compromise needed is not to achieve
a unanimous profile, but to achieve a profile in which a Condorcet winner exists.
They show that if the consensus concept is not unanimity, but a Condorcet winner
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instead, then the Dodgson winner in a profile is the closest to being a Condorcet
winner under a compromise defined as the Kemeny (swap) distance.

Elkind et al. [4] generalize the notion of closeness to various concepts of consen-
sus as distance-rationalization.' They use many reasonable consensus classes apart
from unanimity, and employ different distance functions to shed light on the existing
voting rules and their relation to distance functions within a consensus approach.

Nitzan [9] showed that the simplest scoring rule, i.e. the Borda rule, is equivalent
to closeness to unanimity procedure under the Kemeny distance. This means that
the Borda rule is somewhat rationalized by the Kemeny distance. Elkind et al. [4]
extend this result and show that non-degenerate® scoring rules are rationalized by a
class which we shall call scoring-distances. They also show that degenerate scoring
rules, e.g., scoring rules which may have equal scores for different positions in a
ranking, can be rationalized by pseudo-distances.’

In this paper, we show that the non-degenerate scoring rules can also be rational-
ized by another class of distance functions introduced in [2], i.e., weighted distances.
There it is shown that weighted distances are generalizations of the Kemeny dis-
tance. Hence, the connection between the “Borda” rule and the “Kemeny” distance
revealed in [9], can be extended to the connection between the “scoring rules”
and the “weighted distances”. The main difference between weighted distances
and scoring distances in [4, 5], is that the former class satisfy a condition called
decomposability. This condition is a weakening of one of the Kemeny distance
axioms, i.e., betweenness. Hence the rationalizability of the Borda rule (with the
Kemeny distance) is naturally extended to rationalizability of scoring rules (with
the weighted Kemeny distances). The results also extend to distance rationalization
of degenerate scoring rules by weighted pseudo-distances.

2 Model

2.1 Preliminaries

Let N be a finite set of agents with cardinality n, and A be a finite set of alternatives
with cardinality m. The set of all possible strict preferences, i.e., complete, transitive
and antisymmetric binary relations over A, is denoted by .Z. A generic preference
is denoted by R € .Z whereas the set of strict preferences with an alternative a at
the top is denoted by .Z“. A preference profile is an n-tuple vector of preferences

IFor a broad analysis of the connection between distance functions and voting rules see [5], for
distance rationalizability of Condorcet-consistent voting rules see [6].

2Non-degenerate scoring rules are scoring rules that assign decreasing scores to the positions in a
ranking, therefore these rules do not include plurality, k-approval rule etc.

3A pseudo-distance is a function which satisfies all metric conditions except identity of indis-
cernibles.
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denoted by p = (p(1), p(2),..., p(n)) € £V . Given an alternative a € A, we
denote the profiles with a as the top alternative in each individual preference by p“.

For !/ = 1,2,...,m, R(l) denotes the alternative in the /th position in R, e.g.,
R(1) denotes the top alternative. Given an alternative a and a preference R, we
denote the position of @ in R by a(R), i.e., a(R) = x if and only if a = R(x). To
denote the position of alternative a in the preference of ith individual in a profile,
we abuse notation and write a(i) instead of a(p(i)), as long as it is clear which
preference profile we refer to. Two linear orders (R, R') € .£? form an elementary
change® in position k whenever R(k) = R'(k + 1), R'(k) = R(k + 1) and for all
t €{k,k+1}, R(t) = R'(t),ie. |R\ R’| = 1. Given any two distinct linear orders
R, R € £, avector of linear orders p = (Ro, Ry, ..., R) is called a path between
Rand R'ifk =|R\ R'|,Ro =R, Ry = R' andforalli =1,2,...k, (Ri—1, R})
forms an elementary change. For the special case where R = R’, we denote the
unique path as p = (R, R).

A vector s = (s1,52,...,8,) over positions of alternatives in a preference is
called a scoring vector whenever s; > s, > ...s, > 0. A scoring vector s is
called non-degenerate if scores are strictly decreasing from s; to s, i.€., §; > §» >

..Sm = 0.The score of an alternative a in a preference R is denoted by score(a, R)
and is equal to 5,(g) in the scoring vector.

A collective choice rule, or a voting rule, is a correspondence a : £V —
24\ @, which assigns each preference profile a nonempty subset of alternatives.
Given a preference profile p € .V, a scoring rule, denoted by o, with scoring
vector s is a choice rule that assigns a summed score to each alternative in A,
> .en Score(a, p(i)), and assigns to each profile the alternatives with maximal total
scores,

oy (p) = max ,%; score(a, p(i))

Example 1 Lets = (m —1,m—2,...,0), then the Borda rule on each preference
profile is defined as:

Oorda(p) = arg gleajg ,%; score(a, p(i)) = arg Igleaj( ,%; (m —af(i)))

Let us now dwell upon the concepts of “closeness” between individual prefer-
ences and thereafter preference profiles. Let a function § : .Z x . — R assign a
real number to each pair of preferences. A function over preferences is a distance
function if it satisfies:

(i) Non-negativity: §(R, R’) > 0forall R, R € &,

(ii) Identity of indiscernibles: (R, R’) = 0 if and only if R = R’ for all R,
R €&,

4We omit the parenthesis whenever it is clear and write R, R’ instead.
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(iii) Symmetry: §(R, R’) = §(R’, R) forall R, R’ € .Z.
(iv) Triangularinequality: (R, R”) < 8(R, R")+8(R’, R") forall R, R, R" € Z.

Two well-known examples of distance functions are the discrete distance, and
the swap distance. The former assigns 0 if the two preferences are identical, and 1
otherwise. The latter function was introduced by Kemeny [7] and re-characterized
with logically independent conditions in [3]. The Kemeny distance counts the
symmetric total number of disjoint ordered pairs in preferences, or simply the
minimal number of “swaps of adjacent alternatives” required to transform one
preference into another.’ Elkind et al. [4] also refer to functions that satisfy i,
iii, and iv. These functions, which lack the identity of indiscernibles condition,
are called pseudo-distance functions. These functions may assign 0 to distances
between distinct pair of rankings, e.g., §(abc, cab) = 0.

For distance rationalizability we will mainly refer to distance functions between
preference profiles. Given a distance function § over preferences, a straightforward
extension of § over preference profiles, say p, p’ € & N can be defined as a function
d: LN x LN — Ras follows:

d(p.p') = _8(p(i), p'(i)).
iEN

Note that this is a very straightforward and common extension of distances over
individual preferences to distances over preference profiles, e.g., see [1]. We abuse
notation for the sake of simplicity by referring to § instead of d as long as it is clear.

2.2 Distance Rationalizability

We only consider “unanimity” as a consensus class. The definitions below are
adapted smoothly to our notation for simplicity. For a more general notation that
would be applicable to many other consensus classes, we refer the reader to [4, 6].

Definition 1 ((U,6)-Score) The unanimity-score of an alternative a in a preference
profile p under the distance function § is the minimal distance between the profile
p and any profile p* where a is unanimity winner. Formally:

(U, §)—score(a, p) = min §(p, p?).
paEfN

Roughly speaking, (U, §) — score of an alternative in a profile tells us how costly
it is to make this alternative the best alternative in each individual preference, i.e.,

SIn the literature, the swap distance and the Kemeny distance are interchangeably used. Kemeny
[7] originally assumes the distance for each swap in a ranking to be 2, whereas in many works,
for convenience, this is normalized to 1. This occurs especially when the domain of preferences is
strict and there is no indifference.
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the unanimity winner. Obviously there are many possible preference profiles, p?,
where the alternative a is the unanimity winner. The aforementioned score assigns
the total cost to convert the original profile to one of such profiles for which the total
cost is minimal. Next we reproduce the definition of distance rationalizability. We
adapt again from [6] to simplify our notation.

Definition 2 A collective choice rule «, is distance-rationalizable via unanimity
and a distance function 6, or simply (U, )-rationalizable, if for all profiles p € & N
we have:

a(p) = argmin[(U, §)—score(a, p)]

To state verbally, a rule is (U,§)-rationalizable if all outcomes the rule assigns
to each profile are also the alternatives which have the minimal (U,§)-scores for
that profile, i.e., the least costly to make the unanimity winner with that distance
function.

2.3 Weighted Distances

Can [2] introduced weighted distances as an extension of the Kemeny distance
on strict rankings, which would allow for differential treatment of the position of
elementary changes. For instance consider, R = abc, R’ = ach, and R = bac. The
Kemeny distance between R and R’ is 1 as well as the Kemeny distance between
R and R. However one might argue that the former two are less dissimilar than the
latter two, i.e., §,(R, R’) < 8,(R, R), because a swap at the top of rankings may
be more critical than a swap at the bottom of thereof.

A weighted distance assigns weights to positions of such swaps with a weight
vector on all possible swaps, e.g., ® = (w;, @2, ..., w;—1). For any two rankings
that require more than a single swap, one would find the summation of sequential
swaps on a shortest path between the two rankings (see Example 2 below for
multiple paths). Hence a path between the two rankings is decomposed into
elementary changes, and each elementary change is assigned its corresponding
weight according to the weight vector.

Example 2 An example of the two possible shortest paths between R = abc and
R’ = cba would then be p; = [abc, bac, bca, cba] and p, = [abc, ach, cab, cba]

For a technical description of the weighted distances, we refer the reader to
[2]. Note that in the case of distance rationalizability, the complication regarding
multiple paths between rankings do not occur. Hence, it is sufficient to illustrate a
weighted distance with an example below:

Example 3 Let R = abcd, and R’ = dabc. Consider the weight vector =
(10,3, 1) and a weighted distance §,, i.e., a swap of alternatives at top creates a
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distance of 10, at the middle a distance of 3, and at the bottom a distance of 1. Then:

8(R, R") = §(abed, abdc) + §(abdc, adbce) + §(adbc, dabc)
S(R,R)=w3+wr +w; =10+3+1=14.

3 Results

Nitzan [9] proved that the plurality rule is (U, 8iscrere)-rationalizable and that the
Borda rule is (U, Skemeny)-rationalizable. In this paper we extend the Borda result
to all scoring rules via a new class of distance functions introduced in [2]. We
show that any non-degenerate® scoring rule is (U, §,)-rationalizable where §,, is
a weighted distance with particular non-zero weights. For degenerate scoring rules,
the rationalization still holds but with weighted pseudo-distances which allows for
zero weights.

The class of weighted distance functions in [2] are characterized by two
conditions on top of the usual metric conditions: positional neutrality and decom-
posability. Both conditions’ are in fact weakening of characterizing axioms of the
Kemeny distance, which allow for differential treatment of positions in a ranking.
Therefore to allow for scoring rules other than the Borda rule, some weakening on
the conditions on the distance functions is necessary. The results herein, therefore
extend the existing interconnectedness (of the Borda rule and the Kemeny distance)
to that of “all scoring rules” and “weighted distances”. Weighted distances are
Kemeny-like metrics which assign weights on the position of the swaps required
to convert one (strict) ranking to another. In that respect, the Kemeny distance is
also a weighted distance where weights on all possible swaps, regardless of their
positions, are identical. The scoring distances introduced in [4], however, are not
decomposable® hence they do not follow a Kemeny-like pattern.

Let oy be a scoring choice rule with the scoring vector s = (s1,52,...,8n).
Then consider a weighted distance §,, with the weight vector v = As = (s; —
82,852 — 83,...,8m—1 — Sm), 1.e., the weight assigned to each swap is the difference

between the scores of the relevant consecutive positions. In the following theorem
we explain the connection with the class of weighted distance functions and the
distance rationalizability of non-degenerate scoring rules.

By non-degenerate scoring rule we mean a non-degenerate scoring vector wherein s; > s;4 for
alli =1,2,..., m.

7Positional neutrality is simply equal treatments of swaps of adjacent alternatives on same positions
whereas decomposability requires additive summation of distances on at least one path as in
Example 2.

8For instance consider the Borda score vector s = (2, 1, 0). According to the scoring distance, the
distance between R = abc and R’ = cba would be 4, i.e.,85c0oring(R, R') = |s1 — s3] + |52 — 52| +
|s3 —s1| = 2+ 0+ 2. However when you consider the two paths between R and R in Example 2,
it is easy to see that the summation on each of the paths should add up to 6.
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Theorem 1 A non-degenerate scoring rule oy is (U, §)-rationalizable if § = 8, is
a weighted distance with o = As.

Proof Let§ = §, be a weighted distance function with a weight vector v = As =
(s; — si+1);.”=_11. We want to show that «; is (U, §,,)-rationalizable which means for
all profiles p € .Z", and for all alternatives ¢ € A, we have a € «,(p) if and
only if (U, §,)-score of a is minimal for all ¢ € A. Take any p € .£" and any
a € A. Now foreachi € N, let p?(i) € £° be such that p*(7) is identical to p(i)
except that alternative a is taken to the top while everything else remains the same.
By triangular inequality of §,, note that p*(i) = argminy«e ¢« 8, (p(i), p*), ie.,
p?(i) is the closest to p(i) among all other preferences which have a at the top. This
is simply because when constructing p“(i), we leave everything unchanged except
bringing a to the top. Hence, for the constructed preference profile p* € £V, the
alternative a is the unanimity winner and furthermore p“ is the closest to the original
profile p among all other profiles p¢ € #" where a is the unanimity winner.
Then, (U,8,) — score(a,p) is Y i_,8(p(i), p(i)). By definition of a

weighted distance and construction of w, this equals to Y ;_, ng_lwt =

Y ng)l_l(s, — 5+1), which’ in turn equals to Y/'_ (51 — Sa¢)) = n X 51 —
> '_1 Sa(i)- Note that the score of a in o is Y 1| Sa(i). Obviously, n xs1—Y [ Sac)
is minimal if and only if >";_, sa() is maximal. Hence (U, §,) — score(a, p) is
minimal if and only if a € a,(p). This completes the proof as the choice of p and

a is arbitrary.

An immediate corollary is on the extension of the result to degenerate scoring
rules via weighted pseudo-distances. The proof follows identical reasoning with the
theorem above, except where an equal score assigned by the degenerate scoring rule
to two adjacent positions leads to a zero weight. This leads to violation of “identity
of indiscernibles” condition hence §,, is a pseudo distance.

Corollary 1 A degenerate scoring rule ay is (U, §)-rationalizable if § = 6§, is a
weighted pseudo-distance with v = As.

Let us finally dwell upon the significance of these results. In Example 3, one
can see “positional neutrality” leading to assigning the same value so long as the
swaps are at the same position. “Decomposability” is also seen in the example via
the additivity of distances on pairs that require a single swap. Decomposability is a
natural weakening of the original Kemeny [7] betweenness condition. This partic-
ular weakening of characterizing conditions lead to the class of weighted distances
which rationalize scoring rules. As we already know “Kemeny” and “Borda” are
very interconnected, it is interesting to see that a natural “generalization” of the
former, i.e., the weighted distances, helps us rationalize the “generalization” of the
latter, i.e., the scoring rules.

Note that if @ is already at the top of p(i), then this formulation gives 0. The equation
a(i)—1
=1 2=
preference.

w, sums the weights (costs) of carrying alternative a to the top in each individual
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4 Conclusion

In this paper we show that the relation between the Borda rule and the Kemeny
distance is further extended to a relation between all scoring rules and all weighted
distances. In fact the relation even spans the degenerate scoring rules in case we
extend the weighted functions to pseudo-distances.

The distance rationalization of scoring rules, as mentioned in the introduction,
has already been shown in [4], albeit the metrics therein do not resemble the Kemeny
distance. The scoring distances proposed in that paper fails to satisfy an additivity
condition, i.e., decomposability. This condition is essential in the axiomatisation
of the Kemeny distance, as shown [2, 3]. This paper shows in fact that distance
rationalization of the scoring rules can be achieved via the weighted distances which
mimic the features of the Kemeny distance. Hence, the rationalization result of the
Borda rule with the Kemeny distance is carried over naturally to a rationalization
result on Borda-like rules with Kemeny-like distances.
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