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Abstract In the line opened by Kalai and Muller (J Econ Theory 16:457–469,
1977), we explore new conditions on preference domains which make it possible
to avoid Arrow’s impossibility result. In our main theorem, we provide a complete
characterization of the domains admitting nondictatorial Arrovian social welfare
functions with ties (i.e. including indifference in the range) by introducing a notion
of strict decomposability. In the proof, we use integer programming tools, following
an approach first applied to social choice theory by Sethuraman et al. (Math Oper
Res 28:309–326, 2003; J Econ Theory 128:232–254, 2006). In order to obtain
a representation of Arrovian social welfare functions whose range can include
indifference, we generalize Sethuraman et al.’s work and specify integer programs in
which variables are allowed to assume values in the set f0; 1

2
; 1g: indeed, we show

that there exists a one-to-one correspondence between the solutions of an integer
program defined on this set and the set of all Arrovian social welfare functions—
without restrictions on the range.
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1 Introduction

Arrow [1] established his celebrated impossibility theorem for Arrovian Social Wel-
fare Functions (ASWFs)—that is social welfare functions satisfying the hypotheses
of Pareto optimality and independence of irrelevant alternatives—defining them on
the unrestricted domain of preference orderings. As is well known, this result holds
also for ASWFs defined on the domain of all antisymmetric preference orderings.
Kalai and Muller [3] dealt with the problem of introducing restrictions on this
latter domain of individual preferences in order to overcome Arrow’s impossibility
result.1 They gave the first complete characterization of the domains of antisymmet-
ric preference orderings which admit nondictatorial ASWFs “without ties”—that is
ASWFs which do not admit indifference between distinct alternatives in their range.
They did this by means of two theorems: in their Theorem 1, they showed that
there exists a n-person nondictatorial ASWF for a given domain of antisymmetric
preference orderings if and only if there exists a 2-person nondictatorial ASWF for
the same domain; in their Theorem 2, they gave the domain characterization, by
introducing the concept of decomposability.

In this paper, we proceed along the way opened by Kalai and Muller, and
explore new conditions on preference domains which allow for the existence
of nondictatorial ASWFs. In fact, Kalai and Muller’s Theorem 2 provides a
complete characterization of the domains of antisymmetric preference orderings
admitting nondictatorial ASWFs without ties and of those admitting dictatorial
ASWFs without ties. The problem of characterizing the domains of antisymmetric
preference orderings admitting nondictatorial ASWFs “with ties”—that is ASWFs
which admit indifference between distinct alternatives in their range—has so far
been left open. Here, we overcome this problem: in our main theorem, we provide
a complete characterization of these domains by introducing the notion of strict
decomposability.

We develop our analysis on nondictatorial ASWFs by using the tools of integer
programming, first applied to the traditional field of social choice theory by
Sethuraman et al. [5, 6]. As remarked by these authors, integer programming is
a powerful analytical tool, which makes it possible to derive, in a systematic and
simple way, many of the already known theorems on ASWFs, and to prove new
results.

In particular, Sethuraman et al. developed Integer Programs (IPs) in which
variables assume values only in the set f0; 1g. Binary IPs of this kind are suitable to
be used as an auxiliary tool to represent ASWFs without ties: a fundamental theorem
in [5] establishes a one-to-one correspondence, on domains of antisymmetric
preference orderings, between the set of feasible solutions of their main binary IP
and the set of ASWFs without ties. In both papers mentioned above, Sethuraman
et al. used binary integer programming to analyze, among other issues, neutral

1Maskin [4] independently investigated the same issue.
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and anonymous ASWFs. Moreover, in the 2003 paper, they opened the way to
a reconsideration, in terms of integer programming, of the work by Kalai and
Muller [3]. In particular, they provided a simplified version of Kalai and Muller’s
Theorem 1 by using a binary IP.

In this paper, we extend Sethuraman et al’s approach in order to obtain a general
representation of ASWFs, without restrictions on the range. To this end, we specify
IPs in which variables are allowed to assume values in the set f0; 1

2
; 1g. We call these

programs “ternary IPs,” with some abuse with respect to the current specialized
literature.2 Indeed, we provide a theorem establishing that there exists a one-to-one
correspondence between the set of feasible solutions of a ternary IP and the set of
all ASWFs. Then, we exploit these generalized integer programs as a basic tool to
show our characterization theorem on ASWFs with ties.

This new characterization result raises the question of which is the relation-
ship between decomposable and strictly decomposable domains. We point out a
redundant condition in the notion of decomposability proposed by Kalai and Muller
[3] and conclude our analysis showing that all strictly decomposable domains are
decomposable whereas the converse relation does not hold.

2 Notation and Definitions

Let E be any initial finite subset of the natural numbers with at least two elements
and let jEj be the cardinality of E , denoted by n. Elements of E are called agents.

Let E be the collection of all subsets of E . Given a set S 2 E , let Sc D E n S .
Let A be a set such that jAj � 3. Elements of A are called alternatives.
Let A2 denote the set of all ordered pairs of alternatives.
Let R be the set of all the complete and transitive binary relations on A, called

preference orderings.
Let † be the set of all antisymmetric preference orderings.
Let � denote a nonempty subset of †. An element of � is called admissible

preference ordering and is denoted by p. We write xpy if x is ranked above y

under p.
A pair .x; y/ 2 A2 is called trivial if there are not p; q 2 � such that xpy and

yqx. Let TR denote the set of trivial pairs. We adopt the convention that all pairs
.x; x/ 2 A2 are trivial.

A pair .x; y/ 2 A2 is nontrivial if it is not trivial. Let NTR denote the set of
nontrivial pairs.

2We have to stress that we still apply the basic tools of integer linear programming and that
the programs we introduce could be equivalently defined on the set f0; 1; 2g. Nonetheless, here
we prefer to follow Sethuraman et al. [6], and keep using the value 1

2
in order to incorporate

indifference between social alternatives into the analysis.



152 F. Busetto et al.

Let �n denote the n-fold Cartesian product of �. An element of �n is called
a preference profile and is denoted by P D .p1; p2; : : : ; pn/, where pi is the
antisymmetric preference ordering of agent i 2 E .

A Social Welfare Function (SWF) on � is a function f W �n ! R.
f is said to be “without ties” if f .�n/ \ .R n †/ D ;.
f is said to be “with ties” if f .�n/ \ .R n †/ ¤ ;.
Given P 2 �n, let P.f .P// and I.f .P// be binary relations on A. We write

xP.f .P//y if, for x; y 2 A, xf .P/y but not yf .P/x and xI.f .P//y if, for x; y 2 A,
xf .P/y and yf .P/x.

A SWF on �, f , satisfies Pareto Optimality (PO) if, for all .x; y/ 2 A2 and for
all P 2 �n, xpi y, for all i 2 E , implies xP.f .P//y.

A SWF on �, f , satisfies Independence of Irrelevant Alternatives (IIA) if, for
all .x; y/ 2 NTR and for all P; P0 2 �n, xpi y if and only if xp0

i y, for all i 2 E ,
implies, xf .P/y if and only if xf .P0/y, and yf .P/x if and only if yf .P0/x.

An Arrovian Social Welfare Function (ASWF) on � is a SWF on �, f , which
satisfies PO and IIA.

An ASWF on �, f , is dictatorial if there exists j 2 E such that, for all .x; y/ 2
NTR and for all P 2 �n, xpj y implies xP.f .P//y. f is nondictatorial if it is not
dictatorial.

Given .x; y/ 2 A2 and S 2 E , let dS.x; y/ denote a variable such that dS .x; y/ 2
f0; 1

2
; 1g.

An Integer Program (IP) on � consists of a set of linear constraints, related to
the preference orderings in �, on variables dS.x; y/, for all .x; y/ 2 NTR and
for all S 2 E , and of the further conventional constraints that dE.x; y/ D 1 and
d;.y; x/ D 0, for all .x; y/ 2 TR.

Let d denote a feasible solution (henceforth, for simplicity, only “solution”) to
an IP on �. d is said to be a binary solution if variables dS .x; y/ reduce to assume
values in the set f0; 1g, for all .x; y/ 2 NTR, and for all S 2 E . It is said to be a
“ternary” solution, otherwise.

A solution d is dictatorial if there exists j 2 E such that dS .x; y/ D 1, for
all .x; y/ 2 NTR and for all S 2 E , with j 2 S . d is nondictatorial if it is not
dictatorial.

An ASWF on �, f , and a solution to an IP on the same �, d , are said to
correspond if, for each .x; y/ 2 NTR and for each S 2 E , xP.f .P//y if and only
if dS .x; y/ D 1, xI.f .P//y if and only if dS .x; y/ D 1

2
, yP.f .P//x if and only if

dS.x; y/ D 0, for all P 2 �n such that xpi y, for all i 2 S , and ypi x, for all i 2 Sc .

3 Arrovian Social Welfare Functions and Ternary Integer
Programming: A Correspondence Theorem

The first formulation of an IP on � was proposed by Sethuraman et al. [5], for
the case where dS.x; y/ 2 f0; 1g, for all .x; y/ 2 NTR and for all S 2 E .
Moreover, in both their 2003 and 2006 papers, they used binary IPs on � to provide
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a representation of ASWFs different from the axiomatic one previously used in the
Arrow’s tradition.

In this section, we extend Sethuraman et al.’s approach, specifying two integer
programs in which variables dS .x; y/ are allowed to assume values in the set
f0; 1

2
; 1g. We will show that these ternary programs on � can be used to provide

a general representation of ASWFs, with and without ties in the range. Our first IP
on �—called IP1—consists of the following set of constraints:

dE.x; y/ D 1; (1)

for all .x; y/ 2 NTR;

dS.x; y/ C dSc .y; x/ D 1; (2)

for all .x; y/ 2 NTR and for all S 2 E ;

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ � 2; (3)

if dA[U [V .x; y/; dB[U [W .y; z/; dC [V [W .z; x/ 2 f0; 1g;

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ D 3

2
; (4)

if dA[U [V .x; y/ D 1
2

or dB[U [W .y; z/ D 1
2

or dC [V [W .z; x/ D 1
2
, for all triples of

alternatives x; y; z and for all disjoint and possibly empty sets A; B; C; U; V; W 2 E
whose union includes all agents and which satisfy the following conditions, drawn
from [5], and hereafter referred to as Conditions (�):

A ¤ ; only if there exists p 2 � such that xpzpy;

B ¤ ; only if there exists p 2 � such that ypxpz;

C ¤ ; only if there exists p 2 � such that zpypx;

U ¤ ; only if there exists p 2 � such that xpypz;

V ¤ ; only if there exists p 2 � such that zpxpy;

W ¤ ; only if there exists p 2 � such that ypzpx:

In fact, we propose now a result which establishes a one-to-one correspondence
between the set of the solutions to IP1 on a given � and the set of all ASWFs on the
same �.

Theorem 1 Consider a domain �. Given an ASWF on �, f , there exists a unique
solution to IP1 on �, d , which corresponds to f . Given a solution to IP1 on �, d ,
there exists a unique ASWF on �, f , which corresponds to d .
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Proof Consider a domain � and an ASWF on �, f . Determine d as follows. Given
.x; y/ 2 NTR and S 2 E , consider P 2 �n such that xpi y, for all i 2 S , and
ypi x, for all i 2 Sc . Let dS .x; y/ D 1 if xP.f .P//y, dS .x; y/ D 1

2
if xI.f .P//y,

dS.x; y/ D 0 if yP.f .P//x. Then, for each .x; y/ 2 NTR and for each S 2 E , we
have xP.f .P//y if and only if dS .x; y/ D 1, xI.f .P//y if and only if dS .x; y/ D 1

2
,

yP.f .P//x if and only if dS.x; y/ D 0, for all P 2 �n such that xpi y, for all i 2 S ,
and ypi x, for all i 2 Sc , as f satisfies IIA. d satisfies (1), as f .P/ satisfies PO,
and (2), as f .P/ is a complete binary relation on A, for all P 2 �n. Consider a triple
x; y; z, and disjoint and possibly empty sets A; B; C; U; V; W 2 E whose union
includes all agents and which satisfy Conditions (�). Moreover, consider P 2 �n.
Then, by Conditions (�), we have: xpi y, for all i 2 A [ U [ V ; ypi x, for all
i 2 .A [ U [ V /c ; ypi z, for all i 2 B [ U [ W ; zpi y, for all i 2 .B [ U [ W /c ;
zpi x, for all i 2 C [ V [ W ; xpi z, for all i 2 .C [ V [ W /c . Suppose that
dA[U [V .x; y/; dB[U [W .y; z/; dC [V [W .z; x/ 2 f0; 1g and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ > 2:

Then, we have xP.f .P//yP.f .P//z and zP.f .P//x, a contradiction. Suppose that
dA[U [V .x; y/ D 1

2
and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ <
3

2
:

Consider the following three cases. First, dB[U [W .y; z/ D 0 and dC [V [W .z; x/ D
0. Then, we have zP.f .P//yI.f .P//x and xP.f .P//z, a contradiction. Second,
dB[U [W .y; z/ D 1

2
and dC [V [W .z; x/ D 0. Then, we have xI.f .P//yI.f .P//z

and xP.f .P//z, a contradiction. Third, dB[U [W .y; z/ D 0 and dC [V [W .z; x/ D 1
2
.

Then, we have zI.f .P//xI.f .P//y and zP.f .P//y, a contradiction. Suppose now
that dA[U [V .x; y/ D 1

2
and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ >
3

2
:

Consider the following three cases. First, dB[U [W .y; z/ D 1 and dC [V [W .z; x/ D
1. Then, we have xI.f .P//yP.f .P//z and zP.f .P//x, a contradiction. Second,
dB[U [W .y; z/ D 1

2
and dC [V [W .z; x/ D 1. Then, we have xI.f .P//yI.f .P//z

and zP.f .P//x, a contradiction. Third, dB[U [W .y; z/ D 1 and dC [V [W .z; x/ D 1
2
.

Then, we have xI.f .P//yP.f .P//z and zI.f .P//x, a contradiction. Therefore, d

satisfies (3) and (4). Hence, d is a solution to IP1 on � which corresponds to
f . Suppose that d is not unique. Then, there exist a solution to IP1 on �, d 0,
.x; y/ 2 NTR, and S 2 E such that dS .x; y/ ¤ d 0

S .x; y/. Consider P 2 �n such
that xpi y, for all i 2 S , and ypi x, for all i 2 Sc . Then, we have xP.f .P//y

and xI.f .P//y, or, yP.f .P//x and xI.f .P//y, or, xP.f .P//y and yP.f .P//x, a
contradiction. But then, d is unique. Now, consider a solution to IP1 on �, d .
Determine f as follows. Given .x; y/ 2 TR, let xP.f .P//y, for all P 2 �n.
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Given .x; y/ 2 NTR and P 2 �n, let S 2 E be the set of agents such that
xpi y, for all i 2 S , and ypi x, for all i 2 Sc . Let xP.f .P//y if dS.x; y/ D 1,
xI.f .P//y if dS .x; y/ D 1

2
, and yP.f .P//x if dS.x; y/ D 0. f .P/ is a complete

binary relation on A, for all P 2 �n, by construction and by (2). Now, we show
that f .P/ is also a transitive binary relation on A, for all P 2 �n. Consider a
triple x; y; z and a preference profile P 2 �n. Then, there exist three nonempty
sets H , I , J such that xpi y, for all i 2 H , ypi x, for all i 2 H c , ypi z, for
all i 2 I , zpi y, for all i 2 I c , zpi x, for all i 2 J , xpi z, for all i 2 J c . Let
A D H n .I [ J /, B D I n .H [ J /, C D J n .H [ I /, U D H \ I ,
V D H \ J , W D I \ J . Then, A; B; C; U; V; W 2 E are disjoint sets of agents
whose union includes all agents and which satisfy Conditions (�). Moreover, they
satisfy A[U [V D H , B [U [W D I , C [V [W D J . Consider the following
eight cases. First, xP.f .P//yP.f .P//z and zP.f .P//x. Then, dA[U [V .x; y/ D 1,
dB[U [W .y; z/ D 1, dC [V [W .z; x/ D 1, and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ > 2;

contradicting (3). Second, xP.f .P//yP.f .P//z and xI.f .P//z. Then, dC [V [W

.z; x/ D 1
2

and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ >
3

2
;

contradicting (4). Third, xI.f .P//yP.f .P//z and zP.f .P//x. Then, dA[U [V

.x; y/ D 1
2

and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ >
3

2
;

contradicting (4). Fourth, xI.f .P//yP.f .P//z and xI.f .P//z. Then, dA[U [V

.x; y/ D 1
2

and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ >
3

2
;

contradicting (4). Fifth, xP.f .P//yI.f .P//z and zP.f .P//x. Then, dB[U [W

.y; z/ D 1
2

and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ >
3

2
;

contradicting (4). Sixth, xP.f .P//yI.f .P//z and xI.f .P//z. Then, dB[U [W

.y; z/ D 1
2

and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ >
3

2
;
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contradicting (4). Seventh, xI.f .P//yI.f .P//z and xP.f .P//z. Then, dA[U [V

.x; y/ D 1
2

and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ <
3

2
;

contradicting (4). Eighth, xI.f .P//yI.f .P//z and zP.f .P//x. Then, dA[U [V

.x; y/ D 1
2

and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ >
3

2
;

contradicting (4). f satisfies PO as, for all .x; y/ 2 TR, we have xP.f .P//y, for all
P 2 �n; moreover, for all .x; y/ 2 NTR and for all P 2 �n, xpi y, for all i 2 E ,
implies xP.f .P//y, by (1). f satisfies IIA as, for each .x; y/ 2 NTR and for each
S 2 E , we have xP.f .P//y if and only if dS.x; y/ D 1, xI.f .P//y if and only if
dS.x; y/ D 1

2
, and yP.f .P//x if and only if dS.x; y/ D 0, for all P 2 �n such that

xpi y, for all i 2 S , and ypi x, for all i 2 Sc . Hence, f is an ASWF on �, which
corresponds to d . Suppose that f is not unique. Then, there exists an ASWF on �,
f 0, .x; y/ 2 NTR and P 2 �n such that we have xf .P/y but not xf 0.P/y. Let S 2 E
be the set such that xpi y, for all i 2 S , and ypi x, for all i 2 Sc . Then, dS .x; y/ D 1

and dS.x; y/ D 0, or, dS.x; y/ D 1
2

and dS.x; y/ D 0, a contradiction. But then, f

is unique. �

We introduce now a second ternary IP on �, which we will call IP2. It consists
of constraints (1), (2), and the following four logically independent constraints3:

dS.x; y/ � dS.x; z/; (5)

if dS .x; y/ 2 f0; 1g;

dS.x; y/ < dS.x; z/; (6)

if dS .x; y/ D 1
2
, for all triples x; y; z such that there exist p; q 2 � satisfying xpypz

and yqzqx, and for all S 2 E ;

dS .x; y/ C dS.y; z/ � 1 C dS.x; z/; (7)

3In building IP2, we take inspiration from a binary IP on �, introduced by Sethuraman et al. [5],
which incorporates a reformulation of Kalai and Muller’s condition of decomposability. It can
be shown that the set of constraints proposed by Sethuraman et al. exhibits problems of logical
dependence (see Busetto and Codognato [2]), which are eliminated in our IP2. These problems
parallel some logical redundancies inherent in Kalai and Muller’s notion of decomposability, which
we will point out in Sect. 4.
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if dS .x; y/; dS .y; z/ 2 f0; 1g;

dS.x; y/ C dS .y; z/ D 1

2
C dS.x; z/; (8)

if dS.x; y/ D 1
2

or dS.y; z/ D 1
2
, for all triples x; y; z such that there exist p; q 2 �

satisfying xpypz and zqyqx, and for all S 2 E .
In the remainder of this section, we prove two propositions which establish the

relationships between IP1 and IP2.

Proposition 1 If d is a solution to IP1 on �, then it is a solution to IP2 on the
same �.

Proof Let d be a solution to IP1 on �. Consider a triple x; y; z and S 2 E . Suppose
that there exist p; q 2 � which satisfy xpypz and yqzqx. Let U D S , W D Sc ,
and A D B D C D V D ;. Then, A; B; C; U; V; W are sets whose union includes
all agents and which satisfy Conditions (�). Suppose that dS.x; y/ 2 f0; 1g and
dS.x; y/ > dS.x; z/. Consider the following two cases. First, dS .x; z/ 2 f0; 1g.
Then,

dU .x; y/ C dU [W .y; z/ C dW .z; x/ > 2;

contradicting (3). Second, dS.x; z/ D 1
2
. Then,

dU .x; y/ C dU [W .y; z/ C dW .z; x/ >
3

2
;

contradicting (4). Therefore, d satisfies (5). Suppose now that dS.x; y/ D 1
2

and
dS.x; y/ � dS.x; z/. Then,

dU .x; y/ C dU [W .y; z/ C dW .z; x/ >
3

2
;

contradicting (4). Therefore, d satisfies (6). Consider a triple x; y; z and S 2 E .
Suppose that there exist p; q 2 � satisfying xpypz and zqyqx. Let C D Sc ,
U D S , and A D B D V D W D ;. Then, A; B; C; U; V; W are sets
whose union includes all agents and which satisfy Conditions (�). Suppose that
dS.x; y/; dS .y; z/ 2 f0; 1g and dS.x; y/ C dS .y; z/ > 1 C dS.x; z/. Consider the
following two cases. First, dS .x; z/ 2 f0; 1g. Then,

dU .x; y/ C dU .y; z/ C dC .z; x/ > 2;

contradicting (3). Second, dS.x; z/ D 1
2
. Then,

dU .x; y/ C dU .y; z/ C dC .z; x/ >
3

2
;
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contradicting (4). Therefore, d satisfies (7). Suppose now that dS.x; y/ D 1
2

and
dS.x; y/ C dS .y; z/ < 1

2
C dS.x; z/. Then,

dU .x; y/ C dU .y; z/ C dC .z; x/ <
3

2
;

contradicting (4). Suppose that dS.x; y/ D 1
2

and dS .x; y/ C dS.y; z/ > 1
2

C
dS.x; z/. Then,

dU .x; y/ C dU .y; z/ C dC .z; x/ >
3

2
;

contradicting (4). Therefore, d satisfies (8). Hence, d is a solution to IP2 on �. �

The following result shows that the converse of Proposition 3 holds—and IP1
and IP2 coincide—when n D 2.

Proposition 2 Let n D 2. If d is a solution to IP2 on �, then it is a solution to IP1
on the same �.

Proof Let n D 2. Let d be a solution to IP2 on �. Consider a triple
x; y; z and disjoint and possibly empty sets A; B; C; U; V; W 2 E whose
union includes all agents and which satisfy Conditions (�). Suppose that
dA[U [V .x; y/; dB[U [W .y; z/; dC [V [W .z; x/ 2 f0; 1g and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ > 2:

Consider the case where A ¤ ; and W ¤ ;. Then, there exist p; q 2 � satisfying
xpzpy and yqzqx. Suppose that A D f1g and W D f2g. Then,

df2g.y; z/ C df2g.z; x/ > 1 C df2g.y; x/;

contradicting (7). The cases where B ¤ ;, V ¤ ;, and C ¤ ;, U ¤ ; lead, mutatis
mutandis, to the same contradiction. Consider the case where U ¤ ; and V ¤ ;.
Then, there exist p; q 2 � satisfying xpypz and zqxqy. Suppose that U D f1g and
V D f2g. Then,

df2g.z; x/ > df2g.z; y/;

contradicting (5). The cases where V ¤ ;, W ¤ ;, and U ¤ ;, W ¤ ;, lead,
mutatis mutandis, to the same contradiction. Therefore, d satisfies (3). Suppose that
dA[U [V .x; y/ D 1

2
and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ <
3

2
:
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Consider the case where A ¤ ; and B ¤ ;. Then, there exist p; q 2 � satisfying
xpzpy and yqxqz. Suppose that A D f1g and B D f2g. Then, df2g.y; x/ D 1

2
and

df2g.y; x/ � df2g.y; z/;

contradicting (6). The case where A ¤ ; and C ¤ ; leads, mutatis mutandis, to
the same contradiction. Consider the case where A ¤ ; and W ¤ ;. Then, there
exist p; q 2 � satisfying xpzpy and yqzqx. Suppose that A D f1g and W D f2g.
Suppose that df2g.y; z/ D 0 and df2g.z; x/ D 0. Then,

df1g.x; z/ C df1g.z; y/ > 1 C df1g.x; y/;

contradicting (7). Suppose that df2g.y; z/ D 1
2

and df2g.z; x/ D 0. Then,

df2g.y; z/ C df2g.z; x/ <
1

2
C df2g.y; x/;

contradicting (8). Consider the case where U ¤ ; and C ¤ ;. Then, there exist
p; q 2 � satisfying xpypz and zqyqx. Suppose that U D f1g and C D f2g. Then,
df1g.x; y/ D 1

2
and

df1g.x; y/ C df1g.y; z/ <
1

2
C df1g.x; z/;

contradicting (8). The case where V ¤ ; and B ¤ ; leads, mutatis mutandis, to the
same contradiction. Suppose that dA[U [V .x; y/ D 1

2
and

dA[U [V .x; y/ C dB[U [W .y; z/ C dC [V [W .z; x/ >
3

2
:

Consider the case where A ¤ ; and W ¤ ;. Then, there exist p; q 2 �

satisfying xpzpy and yqzqx. Suppose that A D f1g and W D f2g. Suppose that
df2g.y; z/ D 1 and df2g.z; x/ D 1. Then,

df2g.y; z/ C df2g.z; x/ > 1 C df2g.y; x/;

contradicting (7). Suppose that df2g.y; z/ D 1
2

and df2g.z; x/ D 1. Then,

df2g.y; z/ C df2g.z; x/ >
1

2
C df2g.y; x/;

contradicting (8). Consider the case where U ¤ ; and C ¤ ;. Then, there exist
p; q 2 � satisfying xpypz and zqyqx. Suppose that U D f1g and C D f2g.Then,
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df1g.x; y/ D 1
2

and

df1g.x; y/ C df1g.y; z/ >
1

2
C df1g.x; z/;

contradicting (8). The case where V ¤ ; and B ¤ ; leads, mutatis mutandis, to the
same contradiction. Consider the case where U ¤ ; and W ¤ ;. Then, there exist
p; q 2 � satisfying xpypz and yqzqx. Suppose that U D f1g and W D f2g. Then,
df1g.x; y/ D 1

2
and

df1g.x; y/ � df1g.x; z/;

contradicting (6). The case where V ¤ ; and W ¤ ; leads, mutatis mutandis,
to the same contradiction. Therefore, d satisfies (4). Hence, d is a solution to IP1
on �. �

4 Nondictatorial Arrovian Social Welfare Functions
with Ties and Integer Programming:
A New Characterization Theorem

In this section, we use the integer programs developed above to deal with the issues
concerning the dictatorship property of ASWFs. As already reminded, Arrow’s
impossibility theorem is established for ASWFs admitting ties in their range and
defined on the unrestricted domain of preference orderings.

Kalai and Muller [3] were the first who overcome Arrow’s impossibility theorem
by providing a complete characterization of the domains of antisymmetric prefer-
ence orderings which admit nondictatorial ASWFs without ties. They did this by
means of two theorems. In their Theorem 1, they showed that, for a given domain
�, there exists a nondictatorial ASWF without ties for n > 2 if and only if, for
the same �, there exists a nondictatorial ASWF without ties for n D 2. In their
Theorem 2, they gave the domain characterization, based on the following notion of
decomposability, henceforth called KM-decomposability.

� is said to be KM-decomposable if there exists a set R, with TR ¤ R ¤ A2,
satisfying the following conditions.

Condition I For every two pairs .x; y/; .x; z/ 2 NTR, if there exist p; q 2 � for
which xpypz and yqzqx, then .x; y/ 2 R implies that .x; z/ 2 R.

Condition II For every two pairs .x; y/; .x; z/ 2 NTR, if there exist p; q 2 � for
which xpypz and yqzqx, then .z; x/ 2 R implies that .y; x/ 2 R.

Condition III For every two pairs .x; y/; .x; z/ 2 NTR, if there exists p 2 � for
which xpypz, then .x; y/ 2 R and .y; z/ 2 R imply that .x; z/ 2 R.
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Condition IV For every two pairs .x; y/; .x; z/ 2 NTR, if there exists p 2 � for
which xpypz, then .z; x/ 2 R implies that .y; x/ 2 R or .z; y/ 2 R.

It is useful to reproduce here Kalai and Muller’s characterization theorem for
ASWFs without ties. It can be stated as follows.

Theorem 2 There exists a nondictatorial ASWF without ties on �, f , for n � 2, if
and only if � is KM-decomposable.

The fundamental aim of this section is taking a step forward along the way
opened by Kalai and Muller: our main theorem establishes a characterization of the
domains of antisymmetric preference orderings admitting nondictatorial ASWFs
with ties.

In order to prove it, we need to establish some preliminary results. To begin with,
let us reconsider Kalai and Muller’s Theorem 1: Sethuraman et al. [5] provided a
reformulation of this theorem in terms of integer programming. More precisely, they
established a biunivocal relation between the nondictatorial solutions of a binary IP
on �, for n D 2, and its nondictatorial solutions for n > 2. Here, we extend this
result to the case of ternary solutions to IP1.

Theorem 3 There exists a nondictatorial ternary solution to IP1 on �, d , for n D
2, if and only if there exists a nondictatorial ternary solution to IP1 on �, d �, for
n > 2.

Proof Let d be a nondictatorial ternary solution to IP1 on � for n D 2. Determine
d � as follows. Given .x; y/ 2 NTR and S 2 E , let d �

S .x; y/ D 1 if 1; 2 2 S ;
dS.x; y/ D 0 if 1; 2 2 Sc ; d �

S .x; y/ D df1g.x; y/ and d �
Sc .y; x/ D df2g.y; x/ if

1 2 S and 2 2 Sc . Then, it is straightforward to verify that d � satisfies (1)–(4) and
that is nondictatorial. Hence, d � is a nondictatorial ternary solution to IP1 on �, for
n > 2. Conversely, let d � be a nondictatorial ternary solution to IP1 on � for n > 2.
Determine d as follows. Consider .u; v/ 2 NTR and NS 2 E such that d �NS .u; v/ D 1

2
.

Given .x; y/ 2 NTR, let df1;2g.x; y/ D 1, d;.x; y/ D 0, df1g.x; y/ D d �NS .x; y/,
df2g.y; x/ D d �NSc .y; x/. Then, it is straightforward to verify that d satisfies (1)
and (2). Moreover, by Proposition 1, d satisfies (5)–(8) as d � is a solution to IP1 on
�. But then, d is a solution to IP2 on � and this, in turn, implies that it is a solution
to IP1 on �, by Proposition 2. Finally, d is nondictatorial as df1g.u; v/ D 1

2
. Hence,

d is a nondictatorial ternary solution to IP1 on �, for n D 2. �

From Theorem 3, we obtain the following corollary, which extends Kalai and
Muller’s Theorem 1 to the case of ASWFs with ties. It is an immediate consequence
of our Theorem 1 in Sect. 3.

Corollary There exists a nondictatorial ASWF with ties on �, f , for n D 2, if and
only if there exists a nondictatorial ASWF with ties on �, f �, for n > 2.

At this point, we need to introduce a reformulation of the concept of KM-
decomposability suitable to be applied within the analytical context of a ternary
IP on �. We will show below that this reformulation is equivalent to the original



162 F. Busetto et al.

version proposed by Kalai and Muller. Our concept is based on the existence of two
sets, R1; R2 2 A2—instead of only one—satisfying the restrictions introduced here.

Given a set R � A2, consider the following conditions on R.

Condition 1 For all triples x; y; z, if there exist p; q 2 � satisfying xpypz and
yqzqx, then .x; y/ 2 R implies that .x; z/ 2 R.

Condition 2 For all triples x; y; z, if there exist p; q 2 � satisfying xpypz and
zqyqx, then .x; y/ 2 R and .y; z/ 2 R imply that .x; z/ 2 R.

A domain � is said to be decomposable if there exist two sets R1 and R2, with
; ¤ Ri ¤ NTR, i D 1; 2, such that, for all .x; y/ 2 NTR, we have .x; y/ 2 R1 if
and only if .y; x/ … R2; moreover, Ri , i D 1; 2, satisfies Conditions 1 and 2.

With regard to this definition of a decomposable domain, let us notice the
main differences with Kalai and Muller’s original notion, introduced to make it
compatible with the integer programming analytical setting: Conditions 1 and 2
differ from the corresponding Conditions I and III as the former refer to triples,
rather than pairs, of alternatives. Moreover, Condition 2 is reformulated in terms
of a pair of preference orderings, instead of only one. This is consistent with the
formulation of our constraints (7) and (8), which are in fact a reinterpretation of
Condition 2 in terms of integer programming. Also, our notion of decomposability
does not require that R1 and R2 contain TR, whereas Kalai and Muller’s one requires
that R contains TR. In particular, let us stress that our definition requires that R1 and
R2 satisfy only two conditions—instead of four, as in Kalai and Muller’s version. As
the next proposition makes it clear, this implies a redundancy of Kalai and Muller’s
Conditions II and IV. Nevertheless, as anticipated above, the following proposition
establishes that the two concepts are equivalent.

Proposition 3 � is KM-decomposable if and only if it is decomposable.

Proof Let � be KM-decomposable. Then, there exists a set R, with TR ¤ R ¤ A2,
which satisfies Conditions I–IV. By Lemma 4 in Kalai and Muller, there exists a
set NR, with TR ¤ NR ¤ A2, such that, for all .x; y/ 2 NTR, we have .x; y/ 2 R if
and only if .y; x/ … NR, and which satisfies Conditions I–IV. Let R1 D R n TR and
R2 D NR n TR. Then, ; ¤ Ri ¤ NTR, i D 1; 2, and, for all .x; y/ 2 NTR, we have
.x; y/ 2 R1 if and only if .y; x/ … R2. Consider a triple x; y; z and suppose there
exist p; q 2 � satisfying xpypz and yqzqx. Moreover, suppose that .x; y/ 2 R1

and .x; z/ … R1. Then, .x; y/ 2 R and .x; z/ … R as .x; z/ 2 NTR, contradicting
Condition I. Hence, Ri , i D 1; 2, satisfies Condition 1. Consider a triple x; y; z and
suppose that there exist p; q 2 � satisfying xpypz and zqyqx. Moreover, suppose
that .x; y/; .y; z/ 2 R1 and .x; z/ … R1. Then, .x; y/; .y; z/ 2 R, and .x; z/ … R

as .x; z/ 2 NTR, contradicting Condition III. Hence, Ri , i D 1; 2, satisfies
Condition 2. We have proved that � is decomposable. Conversely, suppose that � is
decomposable. Then, there exist two sets R1 and R2, with ; ¤ Ri ¤ NTR, i D 1; 2,
such that, for all .x; y/ 2 NTR, we have .x; y/ 2 R1 if and only if .y; x/ … R2;
moreover, Ri , i D 1; 2, satisfies Conditions 1 and 2. Let R D R1[TR. Consider two
pairs .x; y/; .x; z/ 2 NTR and suppose there exist p; q 2 � satisfying xpypz and
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yqzqx. Moreover, suppose that .x; y/ 2 R and .x; z/ … R. Then, .x; y/ 2 R1 and
.x; z/ … R1 as .x; y/; .x; z/ 2 NTR, contradicting Condition 1. Hence, R satisfies
Condition I. Now, suppose that .z; x/ 2 R and .y; x/ … R. Then, .x; y/ 2 R2

and .x; z/ … R2 as .x; y/; .x; z/ 2 NTR, contradicting Condition 1. Hence, R

satisfies Condition II. Consider two pairs .x; y/; .x; z/ 2 NTR and suppose there
exists p 2 � satisfying xpypz. Moreover, suppose that .x; y/; .y; z/ 2 R, and
.x; z/ … R. There exists q 2 � such that zqx as .x; z/ 2 NTR. Consider the
case where yqzqx. Then, there exist p; q 2 � satisfying xpypz and yqzqx,
.x; y/ 2 R, and .x; z/ … R, contradicting Condition I. Consider the case where
zqxqy. Then, there exist p; q 2 � satisfying xpypz and zqxqy, .y; z/ 2 R,
and .x; z/ … R, contradicting Condition II. Consider the case where zqyqx.
Then, there exist p; q 2 � satisfying xpypz and zqyqx, .x; y/; .y; z/ 2 R1,
and .x; z/ … R1 as .x; y/; .y; z/; .x; z/ 2 NTR, contradicting Condition 2. Hence,
R satisfies Condition III. Consider two pairs .x; y/; .x; z/ 2 NTR and suppose
there exists p 2 � satisfying xpypz. Moreover, suppose that .z; x/ 2 R and
.y; x/; .z; y/ … R. There exists q 2 � such that zqx as .x; z/ 2 NTR. Consider
the case where zqxqy. Then, there exist p; q 2 � satisfying xpypz and zqxqy,
.z; x/ 2 R, and .z; y/ … R, contradicting Condition I. Consider the case where
yqzqx. Then, there exist p; q 2 � satisfying xpypz and yqzqx, .z; x/ 2 R, and
.y; x/ … R, contradicting Condition II. Consider the case where zqxqy. Then, there
exist p; q 2 � satisfying xpypz and zqyqx, .x; y/; .y; z/ 2 R2, and .x; z/ …
R2 as .x; y/; .y; z/; .x; z/ 2 NTR, contradicting as .x; y/; .y; z/; .x; z/ 2 NTR,
contradicting Condition 2. Hence, R satisfies Condition IV. We have proved that
� is KM-decomposable. �

In order to obtain our characterization theorem for ASWFs with ties, we need
to restrict further the condition of decomposability introduced above. Then, we
introduce a new notion, which we define as “strict decomposability.” The next
section will be devoted to establish the exact relationship between the two notions
of decomposability and strict decomposability.

Then, given a set R � A2, consider the following conditions on R.

Condition 3 There exists a set R� � A2, with R \ R� D ;, such that, for all
triples x; y; z, if there exist p; q 2 � satisfying xpypz and yqzqx, then .x; y/ 2 R�
implies that .x; z/ 2 R.

Condition 4 There exists a set R� � A2, with R \R� D ;, such that, for all triples
of alternatives x; y; z, if there exist p; q 2 � satisfying xpypz and zqyqx, then
.x; y/ 2 R and .y; z/ 2 R� imply that .x; z/ 2 R, and .x; y/ 2 R� and .y; z/ 2 R

imply that .x; z/ 2 R.

A domain � is said to be strictly decomposable if and only if there exist four sets
R1, R2, R�

1 , and R�
2 , with Ri ¤ NTR, ; ¤ R�

i � NTR, i D 1; 2, such that, for all
.x; y/ 2 NTR, we have .x; y/ 2 R1 if and only if .x; y/ … R�

1 and .y; x/ … R2;
.x; y/ 2 R�

1 if and only if .y; x/ 2 R�
2 ; moreover, Ri , i D 1; 2, satisfies Condition 1;

Ri and R�
i , i D 1; 2, satisfy Condition 2; each pair .Ri ,R�

i /, i D 1; 2, satisfies
Conditions 3 and 4.



164 F. Busetto et al.

On the basis of the notion of strict decomposability, we provide now the
characterization of domains admitting nondictatorial ternary solutions to IP1.

Theorem 4 There exists a nondictatorial ternary solution to IP2 on �, d , for
n D 2, if and only if � is strictly decomposable.

Proof Let d be a nondictatorial ternary solution to IP2 on �, for n D 2. Let R1 D
f.x; y/ 2 NTR W df1g.x; y/ D 1g, R2 D f.x; y/ 2 NTR W df2g.x; y/ D 1g,
R�

1 D f.x; y/ 2 NTR W df1g.x; y/ D 1
2
g, R�

2 D f.x; y/ 2 NTR W df2g.x; y/ D
1
2
g. Consider .x; y/ 2 NTR. Suppose that .x; y/ 2 R1 and .x; y/ 2 R�

1 . Then,
df1g.x; y/ D 1 and df1g.x; y/ D 1

2
, a contradiction. Suppose that .x; y/ 2 R1

and .y; x/ 2 R2. Then, df1g.x; y/ D 1 and df2g.y; x/ D 1, contradicting (2).
Suppose that .x; y/ … R�

1 , .y; x/ … R2, and .x; y/ … R1. Then, df1g.x; y/ ¤ 1
2
,

df1g.x; y/ ¤ 0, and df1g.x; y/ ¤ 1, a contradiction. Suppose that .x; y/ 2 R�
1 and

.y; x/ … R�
2 . Then, df1g.x; y/ D 1

2
and df2g.y; x/ ¤ 1

2
, contradicting (2). Hence,

for all .x; y/ 2 NTR, .x; y/ 2 R1 if and only if .x; y/ … R�
1 and .y; x/ … R2;

.x; y/ 2 R�
1 if and only if .y; x/ 2 R�

2 . Suppose that R1 D NTR. Then, d is
dictatorial, a contradiction. Hence, Ri ¤ NTR, i D 1; 2. Suppose that R�

i D ;,
i D 1; 2. Then, d is a binary solution, a contradiction. Hence, ; ¤ R�

i � NTR.
Consider a triple x; y; z and suppose that there exist p; q 2 � satisfying xpypz and
yqzqx. Moreover, suppose that .x; y/ 2 R1 and .x; z/ … R1. Then, df1g.x; y/ D 1

and

df1g.x; y/ > df1g.x; z/;

contradicting (5). Hence, Ri , i D 1; 2, satisfies Condition 1. Consider a triple
x; y; z and suppose that there exist p; q 2 � satisfying xpypz and zqyqx.
Moreover, suppose that .x; y/; .y; z/ 2 R1, and .x; z/ … R1. Then, df1g.x; y/ D 1,
df1g.y; z/ D 1, and

df1g.x; y/ C df1g.y; z/ > 1 C df1g.x; z/;

contradicting (7). Hence, Ri , i D 1; 2, satisfies Condition 2. Consider a triple x; y; z
and suppose that there exist p; q 2 � satisfying xpypz and zqyqx. Moreover,
suppose that .x; y/ 2 R�

1 , .y; z/ 2 R�
1 , and .x; z/ … R�

1 . Then, df1g.x; y/ D 1
2
,

df1g.y; z/ D 1
2
, and

df1g.x; y/ C df1g.y; z/ ¤ 1

2
C df1g.x; z/;

contradicting (8). Hence, R�
i satisfies Condition 2, i D 1; 2. Consider a triple x; y; z

and suppose that there exist p; q 2 � satisfying xpypz and yqzqx. Moreover,
suppose that .x; y/ 2 R�

1 and .x; z/ … R1. Then, df1g.x; y/ D 1
2

and

df1g.x; y/ � df1g.x; z/;
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contradicting (6). Hence, each pair .Ri ; R�
i /, i D 1; 2, satisfies Condition 3.

Consider a triple x; y; z and suppose that there exist p; q 2 � satisfying xpypz
and zqyqx. Moreover, suppose that .x; y/ 2 R1, .y; z/ 2 R�

1 , and .x; z/ … R1.
Then, df1g.y; z/ D 1

2
and

df1g.x; y/ C df1g.y; z/ ¤ 1

2
C df1g.x; z/;

contradicting (8). Now, suppose that .x; y/ 2 R�
1 , .y; z/ 2 R1, and .x; z/ … R1.

Then, df1g.x; y/ D 1
2

and

df1g.x; y/ C df1g.y; z/ ¤ 1

2
C df1g.x; z/;

contradicting (8). Hence, each pair .Ri ; R�
i /, i D 1; 2, satisfies Condition 4. We

have proved that � is strictly decomposable. Conversely, suppose that � is strictly
decomposable. Then, there exist four sets R1, R2, R�

1 , and R�
2 , with Ri ¤ NTR,

; ¤ R�
i � NTR, i D 1; 2, such that, for all .x; y/ 2 NTR, we have .x; y/ 2 R1

if and only if .x; y/ … R�
1 and .y; x/ … R2; .x; y/ 2 R�

1 if and only if .y; x/ 2
R�

2 ; moreover, Ri , i D 1; 2, satisfies Condition 1; Ri and R�
i , i D 1; 2, satisfy

Condition 2; each pair .Ri ,R�
i /, i D 1; 2, satisfies Conditions 3 and 4. Determine d

as follows. For each .x; y/ 2 NTR, let d;.x; y/ D 0, dE.x; y/ D 1; dfig.x; y/ D 1

if and only if .x; y/ 2 Ri ; dfig.x; y/ D 1
2

if and only if .x; y/ 2 R�
i ; dfig.x; y/ D 0

if and only if, .x; y/ … Ri and .x; y/ … R�
i , for i D 1; 2. Then, d satisfies (1) and (2)

as, for all .x; y/ 2 NTR, .x; y/ 2 R1 if and only if .x; y/ … R�
1 and .y; x/ … R2,

.x; y/ 2 R�
1 if and only if .y; x/ 2 R�

2 . Consider a triple x; y; z and suppose that
there exist p; q 2 � satisfying xpypz and yqzqx. Moreover, suppose that

df1g.x; y/ > df1g.x; z/:

Then, we have .x; y/ 2 R1 and .x; z/ … R1, contradicting Condition 1. Therefore, d

satisfies (5). Consider a triple x; y; z and suppose that there exist p; q 2 � satisfying
xpypz and zqyqx. Moreover, suppose that

df1g.x; y/ C df1g.y; z/ > 1 C df1g.x; z/:

Then, we have .x; y/; .y; z/ 2 R1 and .x; z/ … R1, contradicting Condition 2.
Therefore, d satisfies (7). Consider a triple x; y; z and suppose there exist p; q 2 �

satisfying xpypz and yqzqx. Moreover, suppose that df1g.x; y/ D 1
2

and

df1g.x; y/ � df1g.x; z/:

Then, .x; y/ 2 R�
1 and .x; z/ … R1, contradicting Condition 3. Therefore, d

satisfies (6). Consider a triple x; y; z and suppose there exist p; q 2 � satisfying
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xpypz and zqyqx. Moreover, suppose that df1g.x; y/ D 1
2

and

df1g.x; y/ C df1g.y; z/ >
1

2
C df1g.x; z/:

Consider the following two cases. First, df1g.y; z/ D 1. Then, .x; y/ 2 R�
1 , .y; z/ 2

R1, and .x; z/ … R1, contradicting Condition 4. Second, df1g.y; z/ D 1
2
. Then,

.x; y/ 2 R�
1 , .y; z/ 2 R�

1 , and .x; z/ … R�
1 , contradicting Condition 2. Finally,

suppose that df1g.x; y/ D 1
2

and

df1g.x; y/ C df1g.y; z/ <
1

2
C df1g.x; z/:

Consider the following two cases. First, df1g.y; z/ D 0. Then, .z; y/ 2 R2, .y; x/ 2
R�

2 , and .z; x/ … R2, contradicting Condition 4. Second, df1g.y; z/ D 1
2
. Then,

.x; y/ 2 R�
1 , .y; z/ 2 R�

1 , and .x; z/ … R�
1 , contradicting Condition 2. Therefore,

d satisfies (8). d is nondictatorial as ; ¤ R�
i � NTR, i D 1; 2. Hence, d is a

nondictatorial ternary solution to IP2 on �. �

Our characterization theorem for ASWFs with ties immediately follows from
Theorems 1 and 3. This result is a generalization of Kalai and Muller’s Theorem 2
for ASWFs without ties.

Theorem 5 There exists a nondictatorial ASWF with ties on �, f , for n � 2, if
and only if � is strictly decomposable.

Proof It is a straightforward consequence of Propositions 1 and 2, Theorems 1, 3,
and 4. �

5 The Relationship Between Decomposable and Strictly
Decomposable Domains

In this section, we analyze the relationship between the notions of decomposable
and strictly decomposable domain. The following example illustrates the two
notions.

Example 1 Let A D fa; b; c; d g and � D fp 2 † W apbpcpd; cpdpapb;

dpcpbpag. Then, � is decomposable and strictly decomposable.

Proof The triples x; y; z for which there exist p; q 2 � such that xpypz and
yqzqx are c,a,b; d,a,b; a,c,d; b,c,d. The triples x; y; z for which there exist
p; q 2 � such that xpypz and zqyqx are a,b,c; a,b,d; a,c,d; b,c,d. Let R1 D
f.a; b/; .b; a/; .c; d /; .d; c/g and R2 D f.a; c/; .c; a/; .a; d/; .d; a/; .b; c/; .c; b/;

.b; d/; .d; b/g. Then, we have ; ¤ Ri ¤ NTR, i D 1; 2. Moreover, for
all .x; y/ 2 NTR, we have .x; y/ 2 R1 if and only if .y; x/ … R2. R1
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vacuously satisfies Conditions 1 and 2. R2 satisfies Condition 1 as we have:
.a; c/ 2 R2 and .a; d/ 2 R2; .c; a/ 2 R2 and .c; b/ 2 R2; .d; a/ 2 R2 and
.d; b/ 2 R2; .b; c/ 2 R2 and .b; d/ 2 R2. R2 vacuously satisfies Condition 2.
We have shown that � is decomposable. Now, let V1 D f.a; b/; .c; d /g, V2 D
f.a; c/; .c; a/; .a; d/; .d; a/; .b; c/; .c; b/; .b; d/; .d; b/g, V �

1 D f.b; a/; .d; c/g,
V �

2 D f.a; b/; .c; d /g. Then, we have Vi ¤ NTR, i D 1; 2, and ; ¤ V �
i � NTR,

i D 1; 2. Moreover, for all .x; y/ 2 NTR, we have: .x; y/ 2 V1 if and only if
.x; y/ … V �

1 and .y; x/ … V2; .x; y/ 2 V �
1 if and only if .y; x/ 2 V �

2 . V1 vacuously
satisfies Conditions 1 and 2. V �

1 vacuously satisfies Condition 2. Moreover, the pair
.V1; V �

1 / vacuously satisfies Conditions 3 and 4. V2 satisfies Conditions 1 and 2
as V2 D R2. V �

2 vacuously satisfies Condition 2. The pair .V2; V �
2 / vacuously

satisfies Condition 3. Moreover, it satisfies Condition 4 as we have: .a; c/ 2 V2,
.c; d / 2 V �

2 , and .a; d/ 2 V2; .b; c/ 2 V2, .c; d / 2 V �
2 , and .b; d/ 2 V2;

.a; b/ 2 V �
2 , .b; c/ 2 V2, and .a; c/ 2 V2; .a; b/ 2 V �

2 , .b; d/ 2 V2, and
.a; d/ 2 V2. We have shown that � is strictly decomposable. �

The example above specifies a domain which is both decomposable and strictly
decomposable. Nonetheless, this is not the general case. In the following, we will
show, with a theorem and a further example, that a strictly decomposable domain is
always decomposable, but the converse is not true.

In order to obtain these results, we preliminarily show the following theorem on
the nondictatorial solutions to IP2.

Theorem 6 If there exists a nondictatorial ternary solution to IP2 on �, d , for
n D 2, then there exists a nondictatorial binary solution to IP2 on �, Od , for n D 2.

Proof Let d be a ternary solution to IP2 on �, for n D 2. Determine d 0 as
follows. Consider q 2 †. For each .x; y/ 2 NTR, let: d 0;.x; y/ D 0, d 0

E.x; y/=1;
d 0

fig.x; y/ D dfig.x; y/, if dfig.x; y/ 2 f0; 1g, i D 1; 2; d 0
f1g.x; y/ D 1 and

d 0
f2g.y; x/ D 0, if df1g.x; y/ D df2g.y; x/ D 1

2
and xqy. Then, it is immediate to

verify that d 0 is a solution to IP2 on �, for n D 2. Suppose that d 0 is nondictatorial.
Then, Od D d 0 is a nondictatorial binary solution to IP2 on �, for n D 2. Suppose
that d 0 is dictatorial: say, for example, that, for all .x; y/ 2 NTR, dS .x; y/ D 1,
for all S containing agent 1. In this case, we can say that agent 1 is the dictator for
d 0. Determine d 00 as follows. Let q�1 2 † be an antisymmetric preference ordering
such that, for each .x; y/ 2 A2, xqy if and only if yq�1x. For each .x; y/ 2 NTR,
let: d 00; .x; y/ D 0, d 00

E.x; y/=1; d 00
fig.x; y/ D dfig.x; y/, if dfig.x; y/ 2 f0; 1g,

i D 1; 2; d 00
f1g.x; y/ D 1 and d 00

f2g.y; x/ D 0, if df1g.x; y/ D df2g.y; x/ D 1
2

and xq�1y. Then, it is immediate to verify that Od D d 00 is a binary solution to IP2
on �, for n D 2, and that agent 1 is not a dictator for d 00. Suppose that agent 2 is
a dictator for d 00. Consider .x; y/ 2 NTR such that df1g.x; y/ D df2g.y; x/ D 1

2
.

Suppose that yqx. This implies that d 0
f1g.x; y/ D 0 and agent 1 is not a dictator for

d 0, a contradiction. But then, we must have that xqy. Consider variables df1g.y; x/

and df2g.x; y/. Suppose that df1g.y; x/ D 1 and df2g.x; y/ D 0. Then, agent 2 is not
a dictator for d 00, a contradiction. Suppose that df1g.y; x/ D 0 and df2g.x; y/ D 1.
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Then, agent 1 is not a dictator for d 0. This implies that df1g.y; x/ D df2g.x; y/ D 1
2

and this, in turn, implies that d 00
f2g.x; y/ D 0 and agent 2 is not a dictator of d 00,

a contradiction. Then, Od D d 00 is a nondictatorial binary solution to IP2 on �, for
n D 2. �

Then, the following theorem can be immediately proved.

Theorem 7 If a domain � is strictly decomposable, then it is decomposable.

Proof Let � be a strictly decomposable domain. Then, by Theorem 4, there exists
a nondictatorial ternary solution to IP2 on �, d , for n D 2. But then, by Theorem 6,
there exists a nondictatorial binary solution to IP2 on �, Od , for n D 2. Hence, by
Theorems 1 and 2, and Proposition 3, � is decomposable. �

The following example shows that the converse of Theorem 7 does not hold.

Example 2 Let A D fa; b; c; d g and � D fp 2 † W apbpcpd; cpapdpb;

dpcpbpa; bpdpapcg. Then, � is decomposable but it is not strictly decomposable.

Proof The triples x; y; z for which there exist p; q 2 � such that xpypz and yqzqx

are: c,a,b; c,b,a; a,b,d; a,d,b; d,a,c; d,c,a; b,c,d; b,d,c. The triples x; y; z for which
there exist p; q 2 � such that xpypz and zqyqx are: a,b,c; c,a,b; a,b,d; a,d,b; a,c,d;
c,a,d; b,c,d; c,d,b. Let Ri D f.a; b/; .a; c/; .a; d/; .b; c/; .b; d/; .c; d /g, i D 1; 2.
Then, we have ; ¤ Ri ¤ NTR, i D 1; 2. Moreover, for all .x; y/ 2 NTR, we
have .x; y/ 2 R1 if and only if .y; x/ … R2. Ri , i D 1; 2, satisfies Condition 1 as
we have: .a; b/ 2 Ri and .a; d/ 2 Ri ; .a; d/ 2 Ri and .a; b/ 2 Ri ; .b; c/ 2 Ri

and .b; d/ 2 Ri ; .b; d/ 2 Ri and .b; c/ 2 Ri , i D 1; 2. Ri , i D 1; 2, satisfies
Condition 2 as we have: .a; b/ 2 Ri , .b; c/ 2 Ri , and .a; c/ 2 Ri ; .a; b/ 2 Ri ,
.b; d/ 2 Ri , and .a; d/ 2 Ri ; .a; c/ 2 Ri , .c; d / 2 Ri , and .a; d/ 2 Ri ; .b; c/ 2
Ri , .c; d / 2 Ri , and .b; d/ 2 Ri , i D 1; 2. We have shown that � is decomposable.
Now suppose that � is strictly decomposable. Then, there exist four sets V1, V2, V �

1 ,
and V �

2 , with Vi ¤ NTR, ; ¤ V �
i � NTR, i D 1; 2, such that, for all .x; y/ 2 NTR,

we have: .x; y/ 2 V1 if and only if .x; y/ … V �
1 and .y; x/ … V2; .x; y/ 2 V �

1 if
and only if .y; x/ 2 V �

2 . Moreover, Vi , i D 1; 2, satisfies Condition 1; Vi and V �
i ,

i D 1; 2, satisfy Condition 2; each pair .Vi , V �
i /, i D 1; 2, satisfies Conditions 3

and 4. Suppose that .a; b/ 2 V �
1 and .b; a/ 2 V �

2 . Then, .a; d/ 2 V1 as the pair
.V1; V �

1 / satisfies Condition 3. But then, .a; b/ 2 V1 as V1 satisfies Condition 1, a
contradiction. Suppose that .a; c/ 2 V �

1 and .c; a/ 2 V �
2 . Then, .c; b/ 2 V2 as the

pair .V2; V �
2 / satisfies Condition 3. But then, .c; a/ 2 V2 as V2 satisfies Condition 1,

a contradiction. Suppose that .a; d/ 2 V �
1 and .d; a/ 2 V �

2 . Then, .a; b/ 2 V1 as the
pair .V1; V �

1 / satisfies Condition 3. But then, .a; d/ 2 V1 as V1 satisfies Condition 1,
a contradiction. Suppose that .b; c/ 2 V �

1 and .c; b/ 2 V �
2 . Then, .b; d/ 2 V1 as the

pair .V1; V �
1 / satisfies Condition 3. But then, .b; c/ 2 V1 as V1 satisfies Condition 1,

a contradiction. Suppose that .b; d/ 2 V �
1 and .d; b/ 2 V �

2 . Then, .b; c/ 2 V1 as the
pair .V1; V �

1 / satisfies Condition 3. But then, .b; d/ 2 V1 as V1 satisfies Condition 1,
a contradiction. Suppose that .c; d / 2 V �

1 and .d; c/ 2 V �
2 . Then, .d; a/ 2 V2 as the

pair .V2; V �
2 / satisfies Condition 3. But then, .d; c/ 2 V2 as V2 satisfies Condition 1,
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a contradiction. Hence, V �
i D ;, i D 1; 2, a contradiction. We have shown that � is

not strictly decomposable. �
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