
Chapter 7
Quantum Probability Theory
and the Foundations of Quantum Mechanics

Jürg Fröhlich and Baptiste Schubnel

7.1 A Glimpse of Quantum Probability Theory
and of a Quantum Theory of Experiments

By and large, people are better at coining expressions than at filling them with
interesting, concrete contents. Thus, it may not be very surprising that there are
many professional probabilists who may have heard the expression but do not
appear to be aware of the need to develop “quantum probability theory” into
a thriving, rich, useful field featured at meetings and conferences on probability
theory. Although our aim, in this essay, is not to contribute new results on quantum
probability theory, we hope to be able to let the reader feel the enormous potential
and richness of this field. What we intend to do, in the following, is to contribute
some novel points of view to the “foundations of quantum mechanics”, using
mathematical tools from “quantum probability theory” (such as the theory of
operator algebras).

The “foundations of quantum mechanics” represent a notoriously thorny and
enigmatic subject. Asking 25 grown up physicists to present their views on the
foundations of quantum mechanics, one can expect to get the following spectrum of
reactions1: Two will refuse to talk—alluding to the slogan “shut up and calculate”—
two will say that the problems encountered in this subject are so difficult that it

1This story is purely fictional, but quite plausible.

J. Fröhlich (�)
Institut für Theoretische Physik, HIT K42.3, ETH Zürich, 8093 Zürich, Switzerland
e-mail: juerg@phys.ethz.ch

B. Schubnel
Departement Mathematik, ETH Zürich, 8092 Zürich, Switzerland
e-mail: baptiste.schubnel@math.ethz.ch

© Springer-Verlag Berlin Heidelberg 2015
P. Blanchard, J. Fröhlich (eds.), The Message of Quantum Science, Lecture Notes
in Physics 899, DOI 10.1007/978-3-662-46422-9_7

131

mailto:juerg@phys.ethz.ch
mailto:baptiste.schubnel@math.ethz.ch


132 J. Fröhlich and B. Schubnel

might take another 100 years before they will be solved; five will claim that the
“Copenhagen Interpretation”, [75], has settled all problems, but they are unable to
say, in clear terms, what they mean; three will refer us to Bell’s book [9] (but admit
they have not understood it completely); two confess to be “Bohmians” [25] (but
do not claim to have had an encounter with Bohmian trajectories); two claim that
all problems disappear in the Dirac–Feynman path-integral formalism [23, 24, 30];
another two believe in “many worlds” [28] but make their income in our’s, and
two advocate “consistent histories” [41]; two swear on QBism [36], (but have never
seen “les demoiselles d’Avignon”); two are convinced that the collapse of the wave
function [38]—spontaneous or not—is fundamental; and one thinks that one must
appeal to quantum gravity to arrive at a coherent picture, [60].

Almost all of them are convinced that theirs is the only sane point of view.2

Many workers in the field have lost the ability to do technically demanding work or
never had it. Many of them are knowingly or unknowingly envisaging an extension
of quantum mechanics—but do not know how it will look like. But some claim that
“quantum mechanics cannot be extended” [18], (perhaps unaware of the notorious
danger of “no-go theorems”). See also [66, 72]

At least fifteen of the views those 25 physicists present logically contradict
one another. Most colleagues are convinced that somewhat advanced mathematical
methods are superfluous in addressing the problems related to the foundations of
quantum mechanics, and they turn off when they hear an expression such as “C �-
algebra” or “type-III factor”. Well, it might just turn out that they are wrong! What
appears certain is that the situation is somewhat desperate, and this may explain
why people tend to become quite emotional when they discuss the foundations of
quantum mechanics; (see, e.g., [74]).

When the senior author had to start teaching quantum mechanics to students,
many years ago, he followed the slogan “shut up and calculate”—until he decided
that the situation described above, namely the fact that we do not really understand,
in a coherent and conceptual way, what that most successful theory of physics called
“quantum mechanics” tells us about Nature, represents an intellectual scandal.

Our essay will, of course, not remove this scandal. But we hope that, with
some of our writings, (see also [32, 34]), we may be able to contribute some kind
of intellectual “screw driver” useful in helping to unscrew3 the enigmas at the
root of the scandal, before very long. We won’t attempt to extend or “complete”
quantum mechanics (although we bear people no grudge who try to do so, and
we wish them well). We are convinced that starting from simple, intuitive, general
principles (“information loss” and “entanglement generation”) and then elucidating

2And that Heisenberg’s 1925 paper [46] cannot be understood.
3“dévisser les problèmes” (in reference to A. Grothendieck).
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the mathematical structure inherent in quantum mechanics will lead to a better
understanding of its deep message. (Of course, we realize that our hope is lost
on people who are convinced that the mysteries surrounding the interpretation
of quantum mechanics can be unravelled without any use of somewhat advanced
mathematical concepts.)

Just to be clear about one point: We are not claiming to present any “revolution-
ary” new ideas; and we do not claim or expect to get much credit for our attempts.

But, by all means, let’s get started! Quantum mechanics is “quantum”, and it is
intrinsically “probabilistic” [11, 27]. We should therefore expect that it is intimately
connected to quantum probability theory, hence to “non-commutative measure
theory”, etc. However, in the end, “quantum mechanics is quantum mechanics and
everything else is everything else!”4

7.1.1 Might Quantum Probability Theory be a Subfield
of (Classical) Probability Theory?

And—if not—what’s different about it? These questions are related to one con-
cerning the existence of hidden variables. The first convincing results on hidden
variables and on “Bell non-locality” were brought forward by Kochen and Specker
[51] and (independently) by Bell [7–9]. These matters are so well known, by now,
that we do not repeat them here. The upshot is that, loosely speaking, quantum
probability theory cannot be imbedded in classical probability theory (except in the
case of a two-level system).

The deeper problems of quantum mechanics can probably only be understood if
we admit a notion of time, introduce time-evolution, proceed to consider repeated
measurements, i.e., time-ordered sequences of observations or measurements result-
ing in a time-ordered sequence of events, and understand in which way information
gets lost for ever, in the course of time evolution. (We believe that this will lead
to an acceptable “ontology” of quantum mechanics [2, 25]) not involving any
fundamental role of the “observer”.)

In both worlds, the classical and the quantum world, physical quantities or
(potential) properties are represented by self-adjoint operators, a D a�, and
possible events by spectral projections,…, or certain products thereof (POVM’s; see
Appendix 7.4.A to Sects. 7.4 and 7.5.4). A successful measurement or observation
of a physical quantity or property represented by an operator a D a� results in

4“The one thing to say about art is that it is one thing. Art is art-as-art and everything else is
everything else.” Ad Reinhardt, [63].
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one of several possible events, …1; : : : ;…k (spectral projections of a), with the
properties that

.i/ …2
˛ D …˛ D …�̨; ˛ D 1; : : : ; k;

.ii/ …˛…ˇ D ı˛ˇ…˛;

.iii/
kX

˛D1
…˛ D 1:

(7.1)

Suppose we carry out a sequence of mutually “independent” measurements or
observations of physical quantities, a1; : : : ; an, ordered in time, i.e., a1 before a2
before a3 . . . before an (a1 � a2 � : : : � an). A physical theory should enable us to
predict the probabilities for all possible “histories”,

hn1.˛/ D f….1/
˛1
; : : : ;….n/

˛n
g;

of events, where ….i/
1 ; : : : ;…

.i/

ki
are the possible events resulting from a successful

measurement of ai , i D 1; : : : ; n. On the basis of what prior knowledge? Well, we
must know the time evolution of physical quantities and the “state”,!, of the system,
S , we observe. That means that, given a state !, there should exist a functional,
Prob! , that associates with each history f….1/

˛1 ; : : : ;…
.n/
˛n g—but for what family of

histories, i.e., for which properties a1; : : : ; an?—a probability

0 � �!.˛1; : : : ; ˛n/ � Prob!f….1/
˛1
; : : : ;….n/

˛n
g � 1: (7.2)

By property (iii) in Eq. (7.1),

X

˛1;:::;˛n

�!.˛1; : : : ; ˛n/ D 1; (7.3)

because Prob! is normalized such that Prob!f1;1; : : :g D 1. In a classical theory,
the projections f….i/

˛i gki˛iD1, i D 1; : : : ; n, are characteristic functions on a measure
space, MS , and a state, !, is a probability measure on MS . It then follows from
property (iii) that

kiX

˛D1
Prob!f….1/

˛1
; : : : ;….i/

˛ ; : : : ;…
.n/
˛n

gD Prob!f….1/
˛1
; : : : ;….i�1/

˛i�1
;….iC1/

˛iC1
; : : : ;….n/

˛n
g;

(7.4)

for arbitrary i D 1; : : : ; n.
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Fig. 7.1 Beam of photons passing through polarization filters

If we consider a quantum mechanical system with finitely many degrees of
freedom then the projections f….i/

˛i g are orthogonal projections on a separable
Hilbert space, H, and, by Gleason’s theorem [39], ! is given by a density matrix,
�! , on H. Moreover, according to [50, 54, 64, 76],

Prob!f….1/
˛1
; : : : ;….n/

˛n
g D TrH

�
….n/
˛n
: : :….1/

˛1
�!…

.1/
˛1
: : : ….n/

˛n

�
: (7.5)

The problem with Eq. (7.5) is that, most often, it represents physical and
probability-theoretical nonsense. For example, it is usually left totally unclear what
physical quantities or properties of S will be measurable (i.e., which family of
histories will become observable), given a time evolution �t;s and a state !. But
such problems do not stop people from studying Eq. (7.5) again and again—and we
are no exception. To address one of the key problems with Eq. (7.5), we study an
example.

We consider a monochromatic beam of light, which, according to Einstein [26],
consists of individual photons of fixed frequency. We then bring three filters into the
beam that produce linearly polarized light. The direction of polarization is given by
an angle � that can be varied by rotating the filter around the axis defined by the
beam; see Fig. 7.1.

With the filter i , we associate two possible events

…
.i/
C $ a photon passes through filter i

….i/� D 1 �….i/
C $ a photon does not pass through filter i:

Experimentally, one finds that, for any initially unpolarized beam of light, (meaning
that the photons are all prepared in a state !0 / 1

2
TrC2 .�/),

Prob!0f….i/
C ;…

.j /
C g D 1

2
cos2.�i � �j /; i < j; (7.6)
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if only filters i and j are present, with 1 � i < j � 3. It follows from Eq. (7.6) that

Prob!0f….i/
C ;…

.j /� g D 1

2
sin2.�i � �j /; i < j; (7.7)

the probability that a photon passes the first filter, i , being 1=2, because the initial
beam is unpolarized (or circularly polarized). Formulae (7.6) and (7.7) can be
tested experimentally by intensity measurements before and after each filter. If the
projections….i/

˙ were characteristic functions on a measure space, Mphoton, then we
would have that

Prob!0f….1/
C ;…

.3/� g � Prob!0f….1/
C ;…

.2/� g C Prob!0f….2/
C ;…

.3/� g: (7.8)

For,

Prob!0f….1/
C ;…

.3/� g D Prob!0f….1/
C ;…

.2/� ;….3/� g C Prob!0f….1/
C ;…

.2/
C ;…

.3/� g
� right side of Eq. (7.8);

(7.9)

where Eq. (7.9) follows from the sum rule (7.4), and the upper bound (7.8) from the
trivial inequality 0 � …

.i/

˙ � 1. Plugging expression (7.7) into (7.8). we conclude
that

1

2
sin2.�1 � �3/ � 1

2
sin2.�1 � �2/C 1

2
sin2.�2 � �3/: (7.10)

Setting �1 D 0, �2 D �=6 and �3 D �=3, Eq. (7.10) would imply that
3=8 � 1=8C1=8, which is obviously wrong! What is going on? It turns out that the
sum rule (7.9) is violated. The reason is that the projections ….2/

˙ and ….3/

˙ do not

commute. This fact is closely related to non-vanishing interference between ….2/
C

and ….2/� analogous to the interference encountered in the double-slit experiment.
Interference between….2/

C and ….2/� is measured by

I.….2/
C ;…

.2/� j ….1/
˛ ;…

.3/

ˇ / WD TrH.…
.3/

ˇ …
.2/
C …

.1/
˛ �!0…

.1/
˛ …

.2/� …
.3/

ˇ /: (7.11)

Choosing ˛ D C and ˇ D � (for example), we find a non-vanishing interference
term, which explains why the sum rule (7.9) is violated. What is the message? The
first filter, 1, may be interpreted as “preparing” the photons in the beam hitting the
filter 2 to be linearly polarized as prescribed by the angle �1. In our experimental
set-up there is no instrument measuring whether a photon has passed filter 2, or not.
The only measurement is made after filter 3, where either a photon triggers a Geiger
counter to click, or there is no photon triggering the Geiger counter. Let us denote
the probability for the first event (Geiger counter clicks) by pC, the second by p�.
The histories contributing to p� are



7 Quantum Probability Theory and the Foundations of Quantum Mechanics 137

with p� D pC� C p�� . These two histories show interference. Given that a photon
has passed filter 1, expressions (7.6) and (7.7) appear to imply that

pC� D cos2.�1 � �2/ sin2.�2 � �3/
p�� D sin2.�1 � �2/:

(7.12)

The unique history contributing to pCappears to be

with

pC
C D cos2.�1 � �2/ cos2.�2 � �3/;

and, indeed,

pC
C C pC� C p�� D 1:

These findings can be accounted for by associating with the event “C” the operator

XC D …
.3/
C …

.2/
C

and with the event “�” the operators

XC� D ….3/� …
.2/
C and X�� D ….2/� :

Then,

X�CXC C .XC� /�XC� C .X�� /�X�� D 1:

It should however be noted that

XCX�C CXC� .XC� /� CX�� .X�� /� ¤ 1:
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For this reason, some people may prefer to replace XC by the pair X1 WD …
.3/
C …

.2/
C ,

X2 WD …
.3/
C ….2/� , and to set X3 WD XC� , X4 WD ….3/� ….2/� . Then,

4X

˛D1
X �̨X˛ D

4X

˛D1
X˛X

�̨ D 1: (7.13)

The family .X1;X2;X3;X4/ is called (the “square root” of) a positive operator-
valued measure (POVM); (see [61], and Sects. 7.4.3 and 7.5.4). Note that

TrH.X2�!0X
�
2 / D Prob!0f….2/� ;…

.3/
C g

corresponds to the “virtual history”

which cannot be interpreted classically. This should not bother us, because no
measurement is carried out between filters 2 and 3.

There is a more drastic way to present these findings: Consider N filters in series,
the j th filter being rotated through an angle j�=2N . The probability for an initially
vertically polarized photon .�0 D 0/ to be transmitted through all the filters is then
given by

pC D Prob!�0D0
f….1/

C ; : : : ;…
.N/
C g D

�
cos

� �

2N

��2N �!
N!1 1: (7.14)

If however, all filters, except for the N th one, are removed, then

p0C WD Prob!�0D0
f….N/

C g D cos2
��
2

�
D 0: (7.15)

If ….1/
C ; : : : ;…

.N/
C were “classical events”, i.e., non-negative random variables, then

one would have that pC � p0C: (See [9, 55] for closely related arguments.)
Actually, the discussion presented above, although often repeated, is somewhat

misleading. The only measurement takes place after the last filter and is supposed
to determine whether a photon has passed all the filters, or not. The corresponding
physical quantity corresponds to the operators ….N/

˙ , where N is the label of the
last filter, and the measurement consists in verifying whether a Geiger counter
placed after the last filter has clicked, or not. The filters have nothing to do with
measurements, but determine (or, at least, affect) the form of the time evolution of
the photons. The use of POVM’s in discussing experiments like the ones above is not
justified at a fundamental, conceptual level. It merely substitutes for a more precise
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understanding of time-evolution that involves including the filters in a quantum-
mechanical description. It appears that, often, POVM’s are used to cover up a lack
of understanding of the time-evolution of large quantum systems. The role they play
in a quantum theory of experiments is briefly described in Sect. 7.5.4.

A more compelling way of convincing oneself that quantum probability cannot
be imbedded in classical probability theory than the one sketched above consists
in studying correlation matrices of families of (non-commuting) possible events in
two independent systems. One then finds that the numerical range of possible values
of the matrix elements of such correlation matrices is strictly larger in quantum
probability theory than in classical probability theory, as discovered by Bell [9, 71].
See [51] for an alternative approach.

7.1.2 The Quantum Theory of Experiments

We return to considering a system, S , and suppose that n consecutive measurements
have been carried out successfully, with the i th measurement described by spectral
projections….i/

˛ D .…
.i/
˛ /

�, ˛ D 1; : : : ; ki , of a physical quantity ai D a�
i , with

….i/
˛ …

.i/

ˇ D ı˛ˇ…
.i/
˛ ;

kiX

˛D1
….i/
˛ D 1; (7.16)

for all i . (We could also use POVM’s, instead of projections, but let’s not!) The
probability of a history f….1/

˛1 ; : : : ;…
.n/
˛n g in a state ! of S given by a density matrix

�! is then given by formula (7.5), above. The measurements can be considered to
be successful only if the sum rules (7.4) are very nearly satisfied, for all i. Whether
this is true, or not, can be determined by studying the interference between different
histories. Given a state !, we defineN �N matrices, P! D .P !

˛;˛0

/,N D k:::1 kn, by

P!
˛;˛0

WD !
�
….1/
˛1
: : :….n/

˛n
…
.n/

˛0

n
: : : …

.1/

˛0

1

�
D Tr

�
…
.n/

˛0

n
: : : …

.1/

˛0

1
�!…

.1/
˛1
: : : ….n/

˛n

�
;

(7.17)

where !.a/ is the expectation of the operator a in the state !. Measurements of the
quantities a1; : : : ; an can be considered to be successful only if P! is approximately
diagonal, i.e.,

jP!
˛;˛0

j � 1

2

�
P!
˛;˛ C P!

˛0;˛0

�
; (7.18)

which is customarily called “decoherence”; see, e.g., [10, 37, 47, 49]. All this
is discussed in much detail in Sects. 7.4.3 and 7.5. In particular, we will show
that decoherence is a consequence of “entanglement generation” between the
system S and its environment E and of “information loss”, meaning that the
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original state of S _ E cannot be fully reconstructed from the results of arbitrary
measurements carried out after some time T , long after the interactions between S
and E have set in; see Sect. 7.5, and [17, 31]. In local relativistic quantum theory
with massless particles (photons), the kind of information loss alluded to here is
a general consequence of Huyghens’ principle [14] and of “Einstein causality”.
It appears already in classical field theory. In local relativistic quantum theory it
becomes manifest in the circumstance that the algebra of operators representing
physical quantities measurable by a localized observer after some time T does not
admit any pure states. See [17].

The key problem in a quantum theory of experiments (or measure-
ments/observations) is, however, to find out which physical quantities will be
measured (i.e., what potential properties of a system will become “empirical”
properties, or what families of histories of events can be expected to be observed)
in the course of time, given the choice of a system, S , coupled to an environment,
E , of a specific time evolution of S _ E , and of a fixed state, !, of S _ E . This
is sometimes referred to as the problem of eliminating the mysterious role of the
“observer” from quantum mechanics (making many worlds superfluous), and of
determining the “primitive ontology” of quantum mechanics, [2]. This problem
will be reckoned with in Sects. 7.5.3 and 7.5.4.

One customarily distinguishes between “direct (or von Neumann) measure-
ments” and (indirect, or) “non-demolition measurements” carried out on a physical
system S . It may be assumed that it is clear what is meant by a direct measurement.
A non-demolition measurement is carried out by having a sequence of “probes”
.Ek/ interact with the system S , one after another, with the purpose of measuring
a physical quantity, a D a�, of S with (for simplicity) finite point spectrum,
spec.a/ D f˛1; : : : ; ˛ng. If S is in an eigenstate, j ˛i i, of a corresponding to the
eigenvalue ˛i right before it starts to interact with the kth probe, Ek , the time-
evolution of the composed system, S _ Ek, is assumed to leave j˛i i invariant but
changes the state of Ek in a manner that depends non-trivially on ˛i , for each
i D 1; : : : ; n. This leads to entanglement between S and Ek, k D 1; 2; 3; : : :

If, for simplicity, it is assumed that the probes E1;E2;E3; : : : are all independent
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of one another and that Ek interacts with S strictly after Ek�1 and strictly before
EkC1, then the state of S decohers exponentially rapidly with respect to the basis
j˛1i; : : : ; j˛ni, as k ! 1. More precisely, if �.k/ denotes the state of S after its
interaction with Ek and before its interaction with EkC1, with

�.k/˛i ;˛j WD h˛i j�.k/j˛j i; (7.19)

then

�.k/˛i ;˛j �! ı˛i˛j �˛i ;˛i ; (7.20)

exponentially rapidly. This is easily verified; (see Sect. 7.5.6). A more subtle result
on decoherence involving correlated probes that lead to memory effects has been
established in [21].

One might ask what happens if a direct measurement is carried out on every
probe Ek after it has interacted with S , k D 1; 2; 3; : : :. (We assume, for simplicity,
that all probes Ek are identical, independent and identically prepared, and that they
are all subject to the same direct measurement.) Then one can show that, under
natural non-degeneracy conditions, the state, �.k/, of S , after the passage of k probes
E1; : : : ; Ek , converges to an eigenstate of a, i.e.,

�.k/ �! j˛i ih˛i j; (7.21)

as k ! 1, for some i , and the probability of approach of �.k/ to j˛i ih˛i j is given
by �˛i ;˛i . This important result has been derived by Bauer and Bernard in [6] as a
corollary of the Martingale Convergence Theorem; (see [1, 5, 56] for earlier ideas in
this direction). The convergence claimed in Eq. (7.21) is remarkable, because it says
that, asymptotically as k ! 1, a pure state (some eigenstate of a) is approached;
i.e., a very long sequence of indirect (non-demolition) measurements carried out on
S always results in a “fact” (namely, the state of S approaches an eigenvector of
the quantity a that one intends to measure). Somewhat related results (“approach to
a groundstate”) for more realistic models have been proven in [22, 33, 35].5

In order to control the rate of convergence in Eqs. (7.20) and (7.21), it is helpful
to make use of various notions of quantum entropy; (see, e.g., [20, 62]).

Some details concerning (indirect) non-demolition measurements and some
remarks concerning interesting applications are sketched in Sect. 7.5.6; (but see
[1, 6, 34, 42, 57]).

5A result of the form of Eq. (7.21) was conjectured by J.F. in the 1990s. But the proof remained
elusive.
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7.1.3 Organization of the Paper

In Sect. 7.2, we introduce an abstract algebraic framework for the formulation of
mathematical models of physical systems that is general enough to encompass
classical and quantum mechanical models. We attempt to clarify what kind of
predictions a model of a physical system ought to enable us to come up with.
Furthermore, we summarize some important facts about operator algebras needed
in subsequent sections.

In Sect. 7.3, we describe classical models of physical systems within our
algebraic framework and explain in which sense, and why, they are “realistic” and
“deterministic”.

In Sect. 7.4, we study a general class of quantum-mechanical models of physical
systems within our general framework. We explain what some of the key problems
in a quantum theory of observations and measurements are.

The most important section of this essay is Sect. 7.5. We attempt to elucidate
the roles played by entanglement between a system and its environment and of
information loss in understanding “decoherence” and “dephasing”, which are key
mechanisms in a quantum theory of measurements and experiments; see also
[9, 37, 47, 49]. In particular, we point out that the state of the composition of a
system with its environment can usually not be reconstructed from measurements
long after interactions between the system and its environment have set in;
(“information loss”). We also discuss the problem of “time in quantum mechanics”
and sketch an answer to the question when an experiment can be considered to have
been completed successfully; (“when does a detector click?”). Put differently, the
“primitive ontology” of quantum mechanics is developed in Sects. 7.5.3 and 7.5.4.
Finally, in Sect. 7.5.6, we briefly develop the theory of indirect non-demolition
measurements, following [6].

An outline of relativistic quantum theory and of the role of space-time in
relativistic quantum theory has been sketched in lectures and will be presented
elsewhere; (see also [4]).

The main weakness of this essay (which might be fatal) is that we do not
(and cannot) discuss sufficiently many simple, convincing examples illustrating the
power of the general ideas presented here. This would simply take too much space.
But examples will be discussed in [33, 34].

7.2 Models of Physical Systems

In this section, we sketch a somewhat abstract algebraic framework suitable to
formulate mathematical models of physical systems. Our framework is general
enough to encompass classical and quantum-mechanical models.
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Throughout most of this essay, we consider non-relativistic models of physical
systems, so that, in principle, all “observers” have access to the same observational
data. For this reason, reference to “observers” is superfluous in the framework to be
exposed here. This is radically different in causal relativistic models.

In every model of a physical system, S , one specifies S in terms of (all) its
“potential properties”, i.e., in terms of “physical quantities” or “observables”
characteristic of S ; see, e.g., [50]. No matter whether we consider classical or
quantum-mechanical systems, “physical quantities” are represented, mathemati-
cally, by bounded, self-adjoint, linear operators. Thus, a system S is specified by
a list

PS D fai gi2IS (7.22)

of physical quantities, ai D a�
i , characteristic of S that can be observed or measured

in experiments.
In classical physics, a physical quantity, a, is given by a real-valued (measurable

or continuous) function on a topological space,MS , which is the “state space” of S
(the phase space if S is Hamiltonian). Quantum-mechanically, more general linear
operators are encountered, and, as is well known, the operators in PS D fai gi2IS
need not all commute with one another. It is natural to assume that if a 2 PS is a
physical quantity of S then so is any polynomial, p.a/, in a with real coefficients.
It is, however, not very plausible that arbitrary real-linear combinations and/or
symmetrized products of distinct elements in PS would belong to PS . But, in non-
relativistic physics, it has turned out to be reasonable to view PS as a self-adjoint
subset of an operator algebra, AS , usually taken to be a C �� or a von Neumann
algebra, in terms of which a model of S can be formulated. Physicists tend to be
scared when they hear expressions like ‘C*-’ or ‘von Neumann algebra’. Well, they
shouldn’t!

7.2.1 Some Basic Notions from the Theory of Operator
Algebras

In order to render this paper comprehensible to the non-expert, we summarize some
basic definitions and notions from the theory of operator algebras; for further details
see [69, 70], and [16, 43, 44] .

An algebra, A, over the complex numbers is a complex vector space equipped
with a multiplication: If a and b belong to A, then

• �a C �b 2 A; �; � 2 C,
• a � b 2 A,
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where “�” denotes multiplication in A. One says that A is a �algebra iff there exists
an anti-linear involution, �, on A, i.e., � W A ! A, with .a�/� D a, for all a 2 A,
such that

.�a C �b/� D �a� C �b�;

where � is the complex conjugate of � 2 C, and

.a � b/� D b� � a�:

The algebra A is a normed algebra (Banach algebra) if it comes with a norm k.�/k
satisfying

•

k.�/k W A ! Œ0;1Œ

•

kak D 0; for a 2 A H) a D 0 (7.23)

• (A is complete in k.�/k, i.e., every Cauchy sequence in A converges to an element
of A).

A Banach algebra, A, is a C �-algebra iff

ka� � ak D ka � a�k D kak2; 8a 2 A: (7.24)

We define the centre, ZA, of A to be the subset of A given by

ZA WD fa 2 A j a � b D b � a;8b 2 Ag: (7.25)

A state, !, on a �algebra A with identity 1 is a linear functional ! W A ! C

with the properties that

!.a�/ D !.a/; !.a�a/ 	 0; (7.26)

for all a 2 A, and

!.1/ D 1: (7.27)

A state ! is pure if it cannot be written as a convex combination of two or more
distinct states.
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A representation, � , of a C �-algebra A on a complex Hilbert space, H, is a
�homomorphism from A to the algebra, B.H/, of all bounded linear operators on
H; i.e., � is linear, �.a � b/ D �.a/ � �.b/, �.a�/ D .�.a//�, and k�.a/k � kak,
(where kAk is the operator norm of a bounded linear operator A on H).

A �automorphism, ˛, of a C �-algebra A is a linear isomorphism from A onto A
with the properties

˛.a � b/ D ˛.a/ � ˛.b/;
˛.a�/ D .˛.a//�;

(7.28)

for all a; b 2 A.
With a C �-algebra A and a state ! on A we can associate a Hilbert space, H! , a

unit vector� 2 H! , and a representation, �! , of A on H! such that f�!.a/� j a 2
Ag is dense in H! (i.e. � is cyclic for �!.A/), and

!.a/ D h�;�!.a/�i; (7.29)

where h�; �i is the scalar product on H! . This results from the so-called Gel’fand–
Naimark–Segal (GNS) construction.

A theorem due to Gel’fand and Naimark says that every C �-algebra, A, can
be viewed as a norm-closed subalgebra of B.H/ closed under �, for some Hilbert
space H.

Thus, consider a C �-algebra A 
 B.H/, for some Hilbert space H. We define
the commuting algebra, or commutant, A0, of A by

A0 WD fa 2 B.H/ j a � b D b � a;8b 2 Ag: (7.30)

The double commutant of A, A00, is defined by

A00 � .A0/0 D fa 2 B.H/ j a � b D b � a;8b 2 A0g � A: (7.31)

It turns out that A0 and A00 are closed in the so-called weak � topology of B.H/;
i.e., if fai gi2I is a sequence (net) of operators in A0 (or in A00), with

h'; ai i ! h'; a i; as i ! 1;

for all '; 2 H, where a 2 B.H/, then a 2 A0 (or a 2 A00, respectively).
�Subalgebras ofB.H/ that are closed in the weak � topology and contain the identity
are called von Neumann algebras (or W �-algebras). By a famous theorem of von
Neumann, a �algebra A of operators on a Hilbert space is a von Neumann algebra
if and only if A D A00.

Thus, if A is a C �-algebra contained in B.H/, for some Hilbert space H, then A0
and A00 are von Neumann algebras. A von Neumann algebra M � B.H/ is called
a factor iff its centre, ZM, consists of multiples of the identity operator 1.
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A von Neumann factor M is said to be of type I iff M is isomorphic to B.H0/,
for some Hilbert space H0. A general von Neumann algebra, N , is said to be of
type I iff N is a direct sum (or integral) over its centre, ZN , of factors of type I. A
C �-algebra A is called a type-I C �-algebra, iff, for every representation � , of A on
a Hilbert space H,

�.A/ WD f�.a/ j a 2 Ag

has the property that �.A/00 is a von Neumann algebra of type I. (For mathematical
properties of type-I C �-algebra see [40], and for examples relevant to quantum
physics see [15].)

We define

A0 \ B WD fb 2 B j b � a D a � b; 8a 2 Ag; (7.32)

the “relative commutant” of A in B.
Given a set P D fai gi2I of operators in a C �-algebra B, we define hPi to

be the C �-subalgebra of B generated by P , i.e., the norm-closure of arbitrary
finite complex-linear combinations of arbitrary finite products of elements in the
set fai ; a�

i gi2I , where � is the � operation on B.
A trace � W MC ! Œ0;1	 on a von Neumann Algebra M is a function defined

on the positive cone, MC, of positive elements of M (i.e., elements x 2 M of the
form x D y�y, y 2 M) that satisfies the properties

.i/ �.x C y/ D �.x/C �.y/; x; y 2 MC

.ii/ �.�x/ D ��.x/; � 2 RC; x 2 MC

.iii/ �.x�x/ D �.xx�/; x 2 M:

A trace � is said to be finite if �.1/ < C1. It can then be uniquely extended by
linearity to a state � on M. Conversely, any state � on M enjoying the property

�.a � b/ D �.b � a/; 8a; b 2 M; (7.33)

defines a finite trace on M. We say that � is faithful if �.x/ > 0 for any non-zero
element x 2 MC. A trace � is said to be normal if �.supxi / D sup �.xi / for every
bounded net .xi /i2I of positive elements in M, and semifinite, if, for any x 2 MC,
x ¤ 0, there exists y 2 MC, 0 < y � x, such that �.y/ < 1. Traces play an
important role in the classification of von Neumann algebras. It can be shown that a
von Neumann algebra M is a direct sum (or direct integral) of factors of type In and
type II1 if and only if it admits a faithful finite normal trace; see [69]. Similarly, M
is a direct sum (or direct integral) of type I, type II1 and type II1 factors iff it admits
a faithful semifinite normal trace. We use these results in Sect. 7.5 to characterize
the centralizer of a state !.
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For the time being, we do not have to know more about operator algebras than
what has just been reviewed here. We can test our understanding of the notions
introduced above on the example of direct sums of full finite-dimensional matrix
algebras (block-diagonal matrices) and by doing some exercises, e.g., reproducing
a proof of the GNS construction, or applying this material to group theory.

7.2.2 The Operator Algebras Used to Describe
a Physical System

We have said that (a model of) a physical system, S , is specified by a list

PS D fai gi2IS
of physical quantities or potential properties, ai D a�

i (i 2 IS ), characteristic of
S that can be observed or measured in experiments. (What is meant by this will
hopefully become clear later, in Sects. 7.4 and 7.5.) We assume that PS is a self-
adjoint subset of a C �-algebra. As explained in Sect. 7.2.1, we may then consider

AS WD hPSi; (7.34)

the smallest C �-algebra containing PS . The algebra AS is called the “algebra of
observables” defining S ; (possibly a misnomer, because, a priori, only the elements
of PS correspond to observable physical quantities—but let’s not worry about this).
For physical systems with finitely many degrees of freedom, AS is usually a type-I
C �-algebra.

We would like to have some natural notions of symmetries of a system S ,
including time evolution. Here we encounter, for the first but not the last time, the
complication that S is usually in contact with some environment, E , which may
also include experimental equipment used to measure some observables of S . The
environment is a physical system, too, and there usually are interactions between S
and E; in fact, only thanks to such interactions is it possible to retrieve information
from S , i.e., measure a potential property ai , i 2 IS , of S in a certain interval of
time. One typically chooses E to be the smallest system with the property that the
composed system, S _E , characterized by

PS_E D fa; b j a 2 PS ; b 2 PEg; (7.35)

can be viewed as a “closed physical system”.
What is a “closed physical system”? Let S WD S _ E , and let AS denote the

C �-algebra generated by PS_E ; i.e., AS D hPS_Ei. We say that S is a closed
(physical) system if the time evolution of physical quantities characteristic of S is
given in terms of �automorphisms of AS ; i.e., given two times, s and t , �t;s is a
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�automorphism of AS that associates with every physical quantity in AS specified
at time s an operator in AS representing the same physical quantity at time t . We
must require that

�t;s ı �s;u D �t;u; (7.36)

for any triple of times .t; s; u/.
Given a physical system, S , we choose its environment E such that, within

a prescribed precision, S D S _ E can be considered to be a closed physical
system. “For all practical purposes” (FAPP, see [9]), i.e., within usually astounding
precision, S is much . . . much smaller than the entire universe; it does usually not
include the experimentalist in the laboratory observingS or the laptop of her theorist
colleague next door, etc. To say that S is a closed physical system does, however,
not exclude that S is entangled with another physical system, S 0. Further discussion
and examples of closed systems are presented in [29].

Given S and S D S _ E , as above, we call AS the “dynamical C �-algebra”
of S .

Let GS denote a group of symmetries of S . We will assume that every element
g 2 GS can be represented by a �automorphism, 
g , of AS , with the property that


g1 ı 
g2 D 
g1ıg2 ; (7.37)

i.e., 
 W GS �! �Aut.AS/ is a representation of GS in the group, �Aut.AS /, of
�automorphisms of AS . We say that GS is a group of dynamical symmetries of S
iff 
g and time evolution �t;s commute, for all g 2 GS and arbitrary pairs of times
.t; s/.

By a “state of a physical system” S we mean a state on the C �-algebraAS , in the
sense of Eqs. (7.26) and (7.27) in Sect. 7.2.1. (This will turn out to be a misnomer
when we deal with quantum systems. But the expression appears to be here to stay.)
The set of all states of S is denoted by SS .

To summarize, a (model of a) physical system, S , is specified by the following
data.

Definition 2.1 (Algebraic Data Specifying a Model of a Physical System)

(I) A list of physical quantities, or observables, PS D fai D a�
i gi2IS , generating

a C �-algebra, AS , of “observables”, that is contained in the C �-algebra
AS (the “dynamical C �-algebra” of S ) of a closed system, S D S _ E ,
containing S .

(II) The convex set, SS , of states of S , interpreted as states on the C �-algebra AS .
(III) Time translations of S , represented as �automorphisms f�t;sgt;s2R on AS

satisfying Eq. (7.36), and a group, GS , of symmetries of S represented by
�automorphisms, f
ggg2GS , of AS ; (see Eq. (7.37)).

We should explain what is meant by “time translations”: For each time t 2 R, we
have copies PS.t/ and AS .t/ D hPS.t/i �isomorphic to PS and AS , respectively,
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which are contained in AS . If a.s/ 2 PS.s/ and a.t/ 2 PS .t/ are the operators
in AS representing an arbitrary potential property, or observable, a 2 PS , of S at
times s and t , respectively, then

a.t/ D �t;s.a.s//; (7.38)

with �t;s D �t;u ı �u;s , for arbitrary times t; u and s in R.
We say that the system S D S _E is autonomous iff

�t;s D �t�s (7.39)

where f�t gt2R is a one-parameter group of �automorphisms of AS .
We say that a system S is a subsystem of a system S 0 iff

PS 
 PS 0 (7.40)

and

AS � AS 0

: (7.41)

The composition, S1_S2, of two systems, S1 and S2, can be defined by choosing

PS1_S2 WD PS1 [ PS2 (7.42)

and AS1_S2 to contain the C �-algebra generated by AS1
and AS2

. (A more precise
discussion would lead us into the theory of tensor categories.)

7.2.3 Potential Properties, Information Loss and Possible
Events

Let S be a physical system coupled to an environmentE and described, mathemat-
ically, by data

.PS ;ASDS_E; f�t;sgt;s2R;GS ;SS / (7.43)

with properties as specified in points (I) through (III) of Definition 2.1, Sect. 7.2.2.
A “potential property” of S is represented by an element a 2 PS or, more

generally, by a self-adjoint operator a D a� in the algebra AS . An observation of a
potential property, a, of S at time t will be described in terms of the operator a.t/ D
�t;t0 .a/ 2 AS , where t0 is a fiducial time at which the state of S is specified. Next,
we have to clarify in which sense information is lost, as time increases. In local,
relativistic quantum theory, a distinction between S and S becomes superfluous, and
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one may usually identify S with S . Moreover, the finiteness of the speed of light,
i.e., of the speed of propagation of arbitrary signals, and locality lead to an intrinsic
notion of information loss [17, 31]—at least in theories with massless particles that
satisfy Huyghens’ Principle [14] and are allowed to escape to spatial 1 (or fall into
black holes). This is not so when one considers non-relativistic models of physical
systems, with signals propagating arbitrarily fast (“Fernwirkung”). Nevertheless,
one may argue that whenever properties of S are observed successfully, thanks
to interactions of S with some environment/equipment E , then, as the price to
pay, information is lost irretrievably: It disperses into the environment E , where it
becomes inaccessible to experimental observation. Of course, this idea is plausible
only if the cut between “system S” and “environment E”, given a closed system
S , is made at the right place. To determine this cut, one must specify the list PS of
physical quantities characterising S that are measurable in experiments, using E .
Mathematically, the cut is determined by specifying the pair .AS ;AS / of algebras.

For the purpose of this essay, we adopt the point of view that the only
properties of S that can potentially be observed, experimentally, are properties of
S represented by self-adjoint operators

a.t/ D a�.t/; with a 2 PS ; t 2 R: (7.44)

In order to arrive at a mathematically precise concept of information loss (as time
goes by), it is convenient to introduce the following algebras.

Definition 2.2 The algebra, E�t , of potential properties observable after time t
is the C �-subalgebra of AS generated by arbitrary finite linear combinations of
arbitrary finite products

a1.t1/ : : : an.tn/; n D 1; 2; 3; : : : ;

where ti 	 t and ai 2 AS , i D 1; : : : ; n, (with a.s/ the operator in AS representing
the operator a 2 AS at time s).

It follows from this definition that

E�t � E�t 0 (7.45)

whenever t > t 0, with E�t � AS , for all t 2 R. We speak of loss of information iff

E�t ¨ E�t 0 ; (7.46)

for some times t and t 0, with t > t 0. We define an algebra ES by

ES WD
_

t2R
E�t

k�k
(7.47)
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It is one of the notorious problems in most approaches to a “quantum theory of
experiments” that it is left unclear which self-adjoint operators in some very large
algebra of operators correspond to potential properties of a quantum system that can
actually bemeasured or observed. Most authors consider far too many operators as
corresponding to potential properties of the system that are potentially measurable.
As we will discuss in Sect. 7.5, it appears to be a general principle (“Duality between
Observables and Indeterminates”) that ES ¨ AS and that the relative commutant
of ES inside AS contains a subalgebra isomorphic to ES . (Obviously, for classical
systems—AS abelian, the commutant of ES is all of AS .)

Let ! 2 SS be a state of the system. Let .H!; �!;�/ denote the Hilbert space,
the representation of AS onH! , and the cyclic vector in H! , respectively, associated
to the pair .AS ; !/ by the GNS construction; see Sect. 7.2.1, Eq. (7.29). By A!

S
we

denote the von Neumann algebra corresponding to the weak closure of �!.AS / in
the algebra, B.H!/, of all bounded operators on H! .

Definition 2.3 Given a physical system S , as in Definition 2.1, (I)–(III), above, and
a state ! 2 SS , a possible event in S observable at time t is a spectral projection,

Pa.t/.I /; (7.48)

of the operator �!.a.t// 2 A!

S
associated with a measurable subset I �

spec �!.a.t// � R, where a D a� 2 PS and t 2 R. (Here spec A denotes the
spectrum of a self-adjoint operator A on H! .)

Definition 2.4 The algebra, E!�t , of all possible events observable at times 	 t , is
the von Neumann algebra corresponding to the weak closure of �!.E�t / in B.H!/.
The von Neumann algebra E!S is defined similarly.

Note that if !0 is a state that is normal with respect to the state ! then A!0

S
D A!

S
,

etc. The algebra E!�t contains the spectral projections Pa.s/.I / describing possible
events at times s 	 t ; (see Eq. (7.48)). It is therefore justified to call E!�t the “algebra
of possible events observable at times 	 t”. Loss of information may manifest itself
in the property that the relative commutant

.E!�t /0 \ E!�t 0 (7.49)

is non-trivial, for some t > t 0.
We note that the algebra ES carries an action of the group, R, of time translations

by �automorphisms, f� tgt2R, defined as follows: For a1.t1/ : : : an.tn/ 2 _
t2RE�t , with

ti 2 R; ai 2 AS ; i D 1; : : : ; n,

� t .a1.t1/ : : : an.tn// WD a1.t1 C t/ : : : an.tn C t/: (7.50)
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The definition of � t extends to all of ES by linearity and continuity. One then has
that

� t W E�t 0 �! E�t 0Ct � E�t 0 ; (7.51)

for arbitrary t 	 0.
Let a 2 PS be a potential property of S , and let ! be a state of S (i.e., ! 2 SS ).

Depending on the experimental equipment available to observe a, i.e., depending
on the choice of the time evolution of S D S _ E , and depending on the choice
of a state ! 2 SS , an observation of a may have different alternative outcomes;
in particular, the resolution in an observation of a at some time t� will depend on
the choice of .E; f�t;sgt;s2R; !/. These alternative outcomes correspond to spectral
projectionsPa.t

�

/.I˛/, ˛ D 1; : : : ; k, where I˛ \Iˇ D ;, for ˛ ¤ ˇ, and [k
˛D1I˛ �

spec �!.a.t�//. Then

Pa.t
�

/.I˛/Pa.t
�

/.Iˇ/ D ı˛ˇPa.t
�

/.I˛/; (7.52)

and

kX

˛D1
Pa.t

�

/.I˛/ D 1; (7.53)

for an arbitrary t�.
Traditionally, one says that the purpose of a model of a physical system, S , is to

enable us to make predictions of the following kind: Suppose we are interested
in testing some potential properties (or, put differently, measure some physical
quantities) a1; : : : ; an characteristic of S during intervals of time �1 � �2 � : : : �
�n, where

� � �0 iff, 8t 2 �; 8t 0 2 �0 W t � t 0: (7.54)

We assume that S is in a state ! 2 SS . Then a model of S ought to tell us
whether a1; : : : ; an will actually be measurable (i.e., are “empirical” properties)
and predict the probability (frequency) that, in a test or measurement of ai at
some time ti 2 �i , the event corresponding to the spectral projection Pai .ti /.I

i
˛i
/,

˛i D 1; : : : ; ki , is observed, (i.e., property ai .ti / has a value in the interval I i˛i ),
for all i D 1; : : : ; n; given the state ! 2 SS ; (the properties of the projections
Pai .ti /.I

i
˛i
/ are as in Eqs. (7.52), (7.53)).

We simplify our notation by setting

….i/
˛i

� ….i/
˛i
.ti / WD Pai .ti /.I

i
˛i
/; (7.55)
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with ti 2 �i ; ai 2 PS ; i D 1; : : : ; n, �1 � �2 � : : : � �n. The time-ordered
sequence

hn1.˛/ WD f….1/
˛1
; : : : ;….n/

˛n
g (7.56)

of possible events….i/
˛i (as in Eq. (7.55)) is conventionally called a “history”. Given

such a history, we define operators

Hn
k .˛/ WD ….n/

˛n
: : :….kC1/

˛kC1
….k/
˛k
; (7.57)

with ….i/
˛i as in Eq. (7.55).

Postulate 2.5 (see [59, 64, 76]) Given a model of a physical system S , as specified
in points (I)–(III) of Definition 2.1, Sect. 7.2.2, the probability of a history hn1.˛/ D
f….1/

˛1 ; : : : ;…
.n/
˛n g in a state ! 2 SS is predicted to be given by

Prob! h
n
1.˛/ � Prob!f….1/

˛1
; : : : ;….n/

˛n
g WD !

�
.Hn

1 .˛//
�Hn

1 .˛/
�
; (7.58)

with Hn
1 .˛/ as in Eq. (7.57). (It is assumed here that a1; : : : ; an are measurable, for

the given time-evolution and state of the system; see Sect. 7.5.)
Much discussion in the remainder of this essay is devoted to finding out

under what conditions formula (7.58), is meaningful, and—if it is—what it tells
us about S . To give away our secrets, Postulate 2.5 is perfectly meaningful for
classical models of physical systems, as discussed in Sect. 7.3, and it is most often
meaningless for quantum-mechanical models. While FMPP (“for many practical
purposes”), formula (7.58) is useful in quantum mechanics, conceptually it is
misleading and often nonsensical! It does, however, pass some tests indicating that
it defines a probability:

(1) Prob! satisfies

0 � Prob!f….1/
˛1
; : : : ;….n/

˛n
g � 1; (7.59)

for every state ! 2 SS and an arbitrary history f….1/
˛1 ; : : : ;…

.n/
˛n g.

(2)

X

˛iD1;:::;ki .iD1;:::;n/
Prob!f….1/

˛1
; : : : ;….n/

˛n
g D 1; (7.60)

for arbitrary operators a1; : : : ; an and time intervals�1 � : : : � �n, (with….i/
˛i

as in Eq. (7.55)).
Properties (1) and (2) show that Prob! is a probability functional.

(3) As observed in [48, 59] and references given there, formula (7.58) represents the
“only possible” definition of a probability functional on the lattice of possible
events.
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As already mentioned, formula (7.58) is perfectly adequate for an analysis of
the predictions of classical models of physical systems. Quantum-mechanically,
however, given

.AS ; f�t;sgt;s2R; ! 2 SS /;

one encounters plenty of sequences of potential properties,

fa1.t1/; : : : ; an.tn/g;

with ai 2 PS , ti 2 �i , i D 1; : : : ; n, �1 � : : : � �n, which turn out
to be incompatible with one another. The question then arises which one among
such sequences of potential properties of S actually corresponds to a sequence of
empirical properties of S observed in the course of time; (assuming that there is
only one rather than “many worlds”). Formula (7.58) does not tell us much about
the answer to this question; but the idea of loss of information, as expressed in
Eqs. (7.46) and (7.49), along with the phenomenon of entanglement, does! This is
discussed in Sects. 7.5.3 and 7.5.4.

7.3 Classical (“Realistic”) Models of Physical Systems

We start this section by recalling the usual distinction between classical, realistic
models (abbreviated as “R-models”) and quantum-mechanical-models (abbreviated
as “Q-models”) of physical systems: An R-model of a system S is fully character-
ized by the property that its “dynamical C �-algebra” AS (see Sect. 7.2.2) is abelian
(commutative). Hence AS is abelian, too.

A Q-model of a system S differs from an R-model only in that the algebra AS

(and hence AS ) is non commutative. Apart from this crucial difference, the algebraic
data defining an R- or a Q-model are as specified in points (I)–(III) of Definition 2.1,
Sect. 7.2.2.

7.3.1 General Features of Classical Models

We recall a well-known theorem due to I.M. Gel’fand. Let B be an abelian C �-
algebra. The spectrum,M , of B is the space of all non-zero �homomorphisms from
B into C (the “characters” of B); M is a locally compact topological (Hausdorff)
space. If B contains an identity, 1, then M is compact.
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Theorem 3.1 (Gel’fand) If B is an abelian C �-algebra then it is �isomorphic to
the C �-algebra, C0.M/, of continuous functions on M vanishing at 1, i.e.,

B ' C0.M/: (7.61)

Furthermore, every state, !, on B is given by a unique (Borel) probability measure,
d�! , on M (and conversely).

Every pure state is given by a Dirac ı-function, ıx , on M , for some x 2 M ; i.e.,
the space of pure states can be identified with M , (which is why M is called “state
space”). Thus, the set of pure states of B cannot be endowed with a linear or affine
structure.

If B0 
 B is a subalgebra of B then any pure state of B is also a pure state of B0.
If B D AS is the dynamical C �-algebra of a realistic (classical) model of a physical
system, S , we call M DW MS the state space of S . It is homeomorphic to the space
of pure states of S and does not have a linear structure, i.e. there is no superposition
principle for pure states. If S D S1 _ S2 is the composition of two subsystems,
S1 and S2, these systems are, of course, classical, too, and we have that any pure
state of S is also a pure state of S1 and of S2; i.e., there is no interesting notion of
entanglement.

7.3.2 Symmetries and Time Evolution in Classical Models

According to point (III) of Definition 2.1 in Sect. 7.2.2, symmetries and time
evolution of a system S are given by *automorphisms of its dynamical C �-
algebra AS . If B is an abelian C �-algebra and M denotes its spectrum then any
�automorphism, ˛, of B corresponds to a homeomorphism, �˛, of M : If a is an
arbitrary element of B, thus given by a bounded continuous function (also denoted
by a) on M , then

˛.a/./ DW a.��1
˛ .//;  2 M: (7.62)

Conversely, any homeomorphism, �, from M to M determines a �automorphism,
˛� , by

˛�.a/./ WD a.��1.//;  2 M: (7.63)

If f˛t;sgt;s2R is a groupoid of �automorphisms of B, with ˛t;s ı˛s;u D ˛t;u, then there
exists a groupoid of homeomorphisms, f�t;sgt;s2R, ofM , with �t;s ı�s;u D �t;u, such
that

˛t;s.a/./ D a.�s;t .//;  2 M; (7.64)

where �s;t D ��1
t;s .



156 J. Fröhlich and B. Schubnel

Let us suppose that there is a subalgebra VB 
 B that is norm-dense in B such that

˛t;s.a/ is continuously differentiable in t (and in s), for arbitrary a 2 VB. We define

ıs.a/ D d

dt
˛t;s.a/jtDs; a 2 VB: (7.65)

Then ıs is a �derivation defined on VB. An operator ı W Domı ! B is a �derivation
of B iff Domı � B is norm-dense in B, ı is linear, ı.a�/ D .ı.a//�, and

ı.a � b/ D ı.a/ � b C a � ı.b/ .Leibniz rule/; (7.66)

for arbitrary a; b 2 Domı . If B is abelian then a �derivation ı of B corresponds to a
vector field X onM , (assuming that M admits some vector fields):

ı.a/./ D .Xa/./; (7.67)

where a corresponds to an arbitrary continuously differentiable function on M . If

ıs satisfies Eq. (7.65) then, for a 2 VB � Domıs ,

d

dt
˛t;s.a/jtDs D ıs.a/ D Xsa; (7.68)

where, for each s 2 R,Xs is a vector field onM . Equation (7.68) can be rewritten as

d

dt
�t;s./ D �Xt.�t;s.//;  2 M: (7.69)

Hence, at least formally, the homeomorphisms�t;s can be constructed from a family
of vector fields fXsgs2R by integrating the ordinary differential equations (7.69).
These observations can be made precise if the spectrum M of B admits a tangent
bundle, TM , and the vector fieldsXs are globally Lipschitz and continuous in s, for
all s 2 R. If Xs � X is independent of s then �t;s D �t�s is a one-parameter group
of homeomorphisms ofM , (and conversely).

All these remarks can be applied to a classical (model of a) physical system, S ,
with an abelian dynamical C �-algebra AS . One may then interpret the parameters
t; s 2 R of a groupoid f�t;sgt;s2R of � automorphisms of AS as times; and we
say that S is autonomous iff �t;s D �t�s belongs to a one-parameter group of
�automorphisms of AS , or if the vector field X on MS D specAS generating �t
is time-independent. It is straightforward to describe general symmetries of S in
terms of groups of homeomorphisms of MS .
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7.3.3 Probabilities of Histories, Realism and Determinism

A physical quantity or property of a classical physical system S is given by a
continuous function, a, onMS . We denote the family of all properties of S specified
at a fiducial time t0 by PS D fai gi2IS . A possible event in S at a time t corresponds
to the characteristic function, ��Ii .t/, of an open subset, �I

i .t/, of MS given by

 2 �I
i .t/ , ai .t/./ 2 I; (7.70)

where ai 2 PS , ai .t/ D �t;t0 .ai /, and I is an open subset of R; (see Definition 2.3
in Sect. 7.2.3).

Let �t;s denote the homeomorphism of MS corresponding to �t;s . Setting �I
i WD

�t0;t .�
I
i .t//, we have that

 2 �I
i .t/ , ai .t/./ 2 I , �t;t0 .ai /./ 2 I

, ai .�t0;t .// 2 I , � WD �t0;t ./ 2 �I
i :

We choose n properties, a1; : : : ; an; of S to be measured at times t1 � t2 � : : : � tn,
with the measured value of ai contained in the interval Ii , i D 1; : : : ; n. We let
�i.ti / be the open subset of MS given by

 2 �i.ti / , ai .ti /./ 2 Ii ; (7.71)

i D 1; : : : ; n, and �i D �t0;ti .�i .ti //.
Let � be a state of S , i.e., a probability measure on MS . Every theoretical

prediction concerning S is the prediction of the probability of a history, fti WD
�t0;ti ./ 2 �igniD1:

Prob�f��1.t1/; : : : ; ��n.tn/g WD
Z

MS

d�./

nY

iD1
��i .ti /./

D
Z

MS

d�./

nY

iD1
��i .�t0;ti .//:

(7.72)

If � is a pure state, i.e., � D ı0 , for some 0 2 MS then

Probı0 f��1.t1/; : : : ; ��n.tn/g D
nY

iD1
��i .ti /.0/ D

nY

iD1
��i .�t0;ti .0//; (7.73)

i.e., the possible values of Probı0 are 0 and 1, for any 0 2 MS and all histories. If
t WD �t0;t .0/ is the trajectory of states with initial condition 0 at time t0 then

Probı0 f��1.t1/; : : : ; ��n.tn/g D 1 ” ti 2 �i ; (7.74)
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for all i D 1; : : : ; n; otherwise, Probı0 vanishes. If 0 … �i then the event
f�t0;t ./ 2 �i g is first observed at time t D t i , where

t i WD inf ft j 0;t D �t0;t .0/ 2 �i g; (7.75)

and it is last seen at time t i , where

t i WD sup ft j 0;t D �t0;t .0/ 2 �i g: (7.76)

These features of classical physical systems, in particular the “0-1 laws” in
Eq. (7.74), are characteristic of realism and determinism: Given that we know the
state, 0, of a system S at some time t0, we know its state, t D �t0;t .0/, and the
value, ai .t /, of an arbitrary property, ai 2 PS , of S , at an arbitrary (earlier or
later) time t .

Remark 3.2 (i) A straightforward extension of Eq. (7.72) is the basis for a defini-
tion of the dynamical (Kolmogorov–Sinai) entropy of the state �; see [52, 65].

(ii) A special class of classical systems are Hamiltonian systems, S , for which
MS is a symplectic manifold, and the homeomorphisms �t;s are symplecto-
morphisms.

7.4 Physical Systems in Quantum Mechanics

As indicated in the last section, the only feature distinguishing a quantum-
mechanical model of a physical system S (a Q-model) from a classical model
(an R-model) is that, in a Q-model, AS and hence AS are non-commutative
algebras. This has profound consequences! In this section, we recall some of the
better known ones among them; in particular those that concern problems with the
Schwinger–Wigner formula; see Postulate 2.5, Eq. (7.58).

7.4.1 Complementary Possible Events Do Not Necessarily
Exclude One Another

Let us recall the main task we are confronted with: We have to clarify what the
mathematical data (see Definition 2.1, Sect. 7.2.2)

.PS ;AS ; f�t;sgt;s2R; ! 2 SS / (7.77)
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tell us about the “behaviour” of the system S , as time goes by; in particular about the
empirical properties displayed by S and the events happening in S . This task will be
shouldered for quantum-mechanical models in Sect. 7.5; it has been dealt with for
classical models in the last section, (see also [32]). To set the stage for the analysis
of Sect. 7.5, it is useful to return to formulae (7.52), (7.53), (7.57) and, in particular,
formula (7.58) for the probability of histories; see Sect. 7.2.3. Thus, we consider n
possible events associated with physical quantities/potential properties, ai 2 PS , of
S measured at times ti 2 �i 
 R, i D 1; : : : ; n, with �1 � �2 � : : : � �n. Given
a state ! on AS , possible events are represented by spectral projections,….i/

˛i 2 A!

S
,

of the operators ai .ti / 2 AS . The projections….i/
˛i are given by

….i/
˛i

� ….i/
˛i
.ti / WD Pai .ti /.I

i
˛i
/; (7.78)

˛i D 1; : : : ; ki , i D 1; : : : ; n, where I i˛i are disjoint measurable subsets of R with

[ki
˛iD1I

i
˛i

� spec �!.ai .ti //. It follows that

kiX

˛iD1
….i/
˛i

D 1; (7.79)

for all i . As in Eq. (7.57), we set

Hn
k .˛/ WD ….n/

˛n
: : : ….k/

˛k
; 1 � k � n: (7.80)

A stretch, hkl .˛/, of a history hn1.˛/ is defined by

hkl .˛/ WD f….l/
˛l
; : : : ;….k/

˛k
g; 1 � l � k � n; (7.81)

with hn WD hn1.˛/. Furthermore, we set

hnLk WD f….1/
˛1
; : : : ;….k�1/

˛k�1
;….kC1/

˛kC1
; : : : ;….n/

˛n
g: (7.82)

In the Schwinger–Wigner formula (7.58), the probability of a history, hn, of S , given
a state !, has been defined by

Prob!f….1/
˛1
; : : : ;….n/

˛n
g WD !

�
.Hn

1 .˛//
�Hn

1 .˛/
� D !.….1/

˛1
….2/
˛2
: : :….n/

˛n
: : :….2/

˛2
….1/
˛1
/;

(7.83)

with properties (1)–(3), (see Eqs. (7.59) and (7.60)).
Here we wish to point out some fundamental problems with formula (7.83)

in quantum mechanics. Suppose that the complementary possible events
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…
.i/
1 ; : : : ;…

.i/

ki
were mutually exclusive, given that….1/

˛1 ; : : : ;…
.i�1/
˛i�1 …

.iC1/
˛iC1

; : : : ;…
.n/
˛n

are observed, for some i < n, then we would imagine that the “sum rule”

kiX

˛iD1
Prob! hn1.˛/ D

kiX

˛iD1
Prob!f….1/

˛1
; : : : ;….i/

˛i
; : : : ;….n/

˛n
g

D Prob!f….1/
˛1
; : : : ;….i�1/

˛i�1
;….iC1/

˛iC1
; : : : ;….n/

˛n
g

D Prob! hnLi .˛/

(7.84)

holds; see Eq. (7.82). If ….i/
˛i commuted with the operator Hn

iC1.˛/, for all ˛i—as
is the case in every classical model—then Eq. (7.84) would hold true. However,
because of the non-commutative nature of AS ,

Œ….i/
˛i
;Hn

iC1.˛/	 ¤ 0; (7.85)

in general. This leads to non-vanishing interference terms,

!
�
.H i�1

1 .˛//�….i/
˛i
.Hn

iC1.˛//�Hn
iC1.˛/…

.i/

ˇi
H i�1
1 .˛/

�
; (7.86)

with ˛i ¤ ˇi . In the presence of non-vanishing interference terms the sum
rule (7.84) is usually violated. This means that the complementary possible events
…
.i/
1 ; : : : ;…

.i/

ki
, do, apparently, not mutually exclude one another, given future

events ….iC1/
˛iC1

; : : : ;…
.n/
˛n that cause interference. Put differently, a history hn does,

in general, not result in the determination of a potential property ai , of S in the
i th observation (or measurement), given the data in (7.77) (the time evolution
f�t;sgt;s2R, and a state !). If the sum rule (7.84) is violated, then the operator
ai .ti / does not represent an empirical property of S , given later observations of
physical quantities aiC1; : : : ; an. Apparently, the operators a 2 PS do, in general,
not represent properties of S that exist a priori, but only potential properties of S
whose empirical status depends on the choice of the time evolution f�t;sg�;s2R of
S D S _E and of the state !. This will be made precise in Sect. 7.5.

7.4.2 The Problem with Conditional Probabilities

In Sect. 7.2.3, (7.59) and (7.60), we have seen that

�!.˛/ WD Prob!f….1/
˛1
; : : : ;….n/

˛n
g (7.87)
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is a probability measure on Zk1 � : : : � Zkn . Let us fix ˛1; : : : ; ˛i�1; ˛iC1; : : : ; ˛n,
and ask what the conditional probability

Prob�! f….i/
˛i

j hnLi .˛/g (7.88)

of the possible event….i/
˛i is, given �! and hnLi ; (see Eq. (7.82)). Since (7.87) defines

a probability measure, we may define

Prob�! f….i/
˛i

j hnLi .˛/g WD �!.˛1; : : : ; ˛i ; : : : ; ˛n/Pki
ˇiD1 �!.˛1; : : : ; ˇi ; : : : ; ˛n/

: (7.89)

Unfortunately, there is a problem with this definition! Recall that….i/

ˇi
is a shorthand

for the spectral projection Pai .ti /.I
i
ˇi
/. We fix a subset I i˛i , but introduce a new

decomposition of spec ai into subsets

QI i1 WD I i˛i ; R n I i˛i D [mi
ˇD2 QI iˇ;

with QI iˇ \ QI i� D ;, for ˇ ¤ � , and define

Q….i/

ˇi
WD Pai .ti /.

QI iˇi /;

ˇi D 1; : : : ; mi . We define

Q�!.˛1; : : : ; ˇi ; : : : ; ˛n/ WD Prob!f….1/
˛1
; : : : ; Q….i/

ˇi
; : : : ;….n/

˛n
g:

Then

Q�!.˛1; : : : ; 1; : : : ; ˛n/ D �!.˛1; : : : ; ˛i ; : : : ; ˛n/I

but, most often, the putative “conditional probabilities” are different,

Prob Q�! f….i/
˛i

j hnLi .˛/g ¤ Prob�! f….i/
˛i

j hnLi .˛/g; (7.90)

unless all possible interference terms vanish. Thus, in general, there is no meaning-
ful notion of “conditional probability” in quantum mechanics.

It may be of interest to note that if the operators ai have pure-point spectrum with
only two distinct eigenvalues then

f….i/
˛i

g˛iD1;2 D f Q….i/

ˇi
gˇiD1;2;

and we have equality in Eq. (7.90). These findings may be viewed as a general
version of the Kochen–Specker theorem, [51].
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Let us recall a “test” for one of the possible events f….i/
˛i gki˛iD1 to materialize in

a measurement at time ti of the potential property of S represented by the operator
ai 2 PS ; (see [32] and references given there). For this purpose, we introduce the
matrix

P!
˛;˛0

WD !.….1/
˛1
: : : ….n/

˛n
…
.n/

˛0

n
: : : …

.1/

˛0

1
/; (7.91)

with ˛n D ˛0
n; see (7.17). Classically, P! D .P !

˛;˛0

/ is always a diagonal matrix,

because all the operators….i/
˛i commute with one another and by Eq. (7.52). We say

that a family of histories fhn1.˛g is consistent iff the commutators

Œ….i/
˛i
;Hn

iC1.˛/	

vanish, for all ˛i ; ˛ and i D 1; : : : ; n; (see [41]). If fhn1.˛/g is consistent then P!
˛;˛0

is diagonal, and the sum rules (7.84) are valid for all ˛ and all i D 1; : : : ; n. We say
that a family fhn1.˛/g of histories is ı-consistent(0 � ı � 1) iff

kŒ….i/
˛i
;Hn

iC1.˛/	k � 1 � ı; (7.92)

for all i.
A 1-consistent history is consistent. We define a diagonal matrix�! by

�˛;˛0 WD
(
P!
˛;˛ if ˛ D ˛0

0 else

Clearly inequality (7.92) implies that

kP! ��!k � const..1 � ı/: (7.93)

This shows that, for a ı-consistent family of histories, with ı  1, the sum
rules (7.84) are very nearly satisfied, meaning that the events ….i/

1 ; : : : ;…
.i/

ki
mutually exclude one another FAPP (“for all practical purposes”, [9]). In [32], we
have called

e! WD 1 � kP! ��!k

the “evidence” for ….i/
1 ; : : : ;…

.i/

ki
to mutually exclude one another, FAPP, i D

1; : : : ; n. Apparently, if e! is very close to 1, then everything might appear to be
fine. Well, the appearance is deceptive, as we will explain below!

Dynamical mechanisms that imply that kP! � �!k becomes small, i.e., e!

approaches 1, in suitable limiting regimes are known under the names of “dephas-
ing” and “decoherence”; see [37, 47, 49, 75]. Understanding decoherence is clearly
an important task. Here we summarize a few observations on those mechanisms; but
see Sects. 7.5.3 and 7.5.4. (Some instructive examples will be discussed elsewhere.)
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7.4.3 Dephasing/Decoherence

In our discussion of near (i.e., ı-) consistency of families of histories, hn, operators
Qn
k.˛/, defined by

Qn
k.˛/ WD .Hn

k .˛//
�Hn

k .˛/ D ….k/
˛k
.tk/ : : :…

.n/
˛n
.tn/ : : :…

.k/
˛k
.tk/; (7.94)

tk < tkC1 < : : : < tn, 1 � k � n, play an important role. Inequality (7.92) implies
that

kŒ….i/
˛i
;Qn

iC1.˛/	k � 2.1� ı/ � 1 (7.95)

if ı is very close to 1. Condition (7.95) is slightly weaker than (7.92), so we will
work with (7.95). If (7.95) holds, for all i and all ˛, the sum rules (7.84) are
satisfied, up to tiny errors, and the matrix P! is very nearly diagonal; so there is
“decoherence”. A (very stringent) sufficient condition for

Œ….i/
˛i
;Qn

iC1.˛/	 D 0 (7.96)

to hold, for all i and all ˛, i.e., for perfect decoherence to hold, is the following one:
We observe that

Qn
k.˛/ 2 E!�tk ; for all ˛; (7.97)

where the von Neumann algebras E!�t of possible events observable at times 	 t

have been introduced in Definition 2.4, Sect. 7.2.3. If there is loss of information, in
the sense of condition (7.49), more precisely if the relative commutants

.E!�tiC1
/0 \ E!�Qti ; ti�1 < Qti � ti ; (7.98)

are non-trivial, for suitable choices of sequences of times t1 < t2 < : : : < tn,
Qt1 < Qt2 < : : : < Qtn, and if the operator

ai .ti / 2 .E!�tiC1
/0 \ E!�Qti ; (7.99)

and hence….i/
˛i belongs to .E!�tiC1

/0\E!�Qti , for all ˛i D 1; : : : ; ki , with ti�1 < Qti � ti ,
then

Œ….i/
˛i
;Qn

iC1.˛/	 D 0; (7.100)

for all ˛i and all ˛. If (7.99) and hence Eq. (7.100) hold, for all i � n, then there is
perfect decoherence, and the histories fhn1.˛/g form a consistent family.
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The scenario for decoherence described here is encountered in relativistic
quantum field theories with a massless particle (e.g., the photon), as can be inferred
from results in [14, 17]. In non-relativistic quantum mechanics, the above scenario
for decoherence remains plausible, provided one allows for small changes of
the operators ai .ti / into operators Qai .ti / that belong to .E!�tiC1

/0 \ E!�Qti . In this
connection the following result may be of interest.

Theorem 4.1 Let ….1/
˛1 ; : : : ;…

.n/
˛n be orthogonal projections, and let the operators

Qn
k.˛/ be defined as in Eq. (7.94). Suppose that

kŒ….i/
˛i
;Qn

iC1.˛/	k < �; (7.101)

for all i D 1; : : : ; n � 1 and all ˛ D .˛1; : : : ; ˛n/, with � sufficiently small
(depending on the total number,

Pn
iD1 ki , of n-tuples ˛, with ˛i D 1; : : : ; ki ). Then

there exist orthogonal projections Q….i/
˛i , ˛i D 1; : : : ; ki , i D 1; : : : ; n, with

Q….i/
˛i

Q….i/

ˇi
D ı˛i ˇi

Q….i/
˛i
;

kiX

˛iD1
Q….i/
˛i

D 1; (7.102)

such that

k Q….i/
˛i

�….i/
˛i

k � C�; (7.103)

and

Œ Q….i/
˛i
; QQn

iC1.˛/	 D 0; (7.104)

for all ˛ and all i � n� 1. The constant C in Eq. (7.103) depends on
Pn

iD1 ki , and

� must be chosen so small that C� < 1; (in which case Q….i/
˛i and ….i/

˛i are unitarily
equivalent).

Remark 4.2 The operators ; QQn
k.˛/ are defined as in Eq. (7.94), with ….i/

˛i .ti / �
…
.i/
˛i replaced by Q….i/

˛i , for all i .

The proof of Theorem 4.1 can be inferred from Sect. 4.5 of [32], (Lemmata 7
and 8).
Interpretation of Theorem 4.1. Apparently, dephasing/decoherence in the form of
inequalities (7.101) implies that if one reinterprets the measurements made at times
t1 < t2 < : : : < tn as observations of events Q….1/

˛1 ; : : : ;
Q….n/
˛n that differ slightly from

the spectral projections ….1/
˛1 ; : : : ;…

.n/
˛n of potential properties a1; : : : ; an of S then

all interference terms (see (7.86), (7.91)) vanish, the matrix P! is diagonal, and the
sum rules (7.84) hold. The family of histories f Q….1/

˛1 ; : : : ;
Q….n/
˛n g is consistent, and the

complementary possible events Q….i/
1 ; : : : ;

Q….i/

ki
mutually exclude one another.
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Critique of the Concept of “Families of Consistent Histories”

(i) Given a measurement of a potential property ai 2 PS of S at some time
ti , the success of this measurement, as expressed in the decoherence of
(absence of interference between) the events ….i/

1 ; : : : ;…
.i/

ki
, apparently not

only depends on the past but seems to depend on the future, namely on
subsequent measurements of potential properties aiC1; : : : ; an at times > ti .
This is how conditions such as (7.92), (7.95) and (7.101) must be interpreted.
The consistency of a family fhi1.˛/g of stretches of histories (see Eq. (7.81)
for the definition) can apparently only be assured if one also knows the family
fhniC1.˛/g of stretches of histories in the future of fhi1.˛/g. This may be a deep
aspect of quantum mechanics; but it is more likely an indication that there is
something wrong with the concept of “consistent (families of) histories” and
with a formulation of decoherence in the form of inequalities (7.101).

(ii) Accepting, temporarily, the idea of “consistent (families of) histories”—e.g., in
the appealing form of conditions (7.99)—we encounter the following problem:
Fixing the data

.PS ;AS ; f�t;sgt;s2R; ! 2 SS /; (7.105)

see (7.77), we may consider two (or more) families of potential properties of S ,

fa1; : : : ; ang and fb1; : : : ; bmg; (7.106)

measured at times t1 < : : : < tn and t 01 < : : : < t 0m, respectively, with ai 2
PS and bj 2 PS , for all i and j . Both families may give rise to families of
consistent histories (e.g., if conditions (7.99) hold for the ai ’s and the bj ’s).
Yet, there may not exist any family

fc1; : : : ; cN g; N 	 nCm;

of potential properties of S (cj 2 PS , for all j ) measured at times T1 < : : : <
TN , with

fT1; : : : ; TN g � ft1; : : : ; tng [ ft 01; : : : ; t 0mg;

encompassing the two families in (7.106) and giving rise to a family of
consistent histories. Since the data (7.105) are fixed, the confusing question
arises which one of the two or more incompatible families of potential
properties fa1; : : : ; ang, fb1; : : : ; bmg, . . . will actually be observed in the
course of time, i.e., become real , (or, put differently, correspond to empirical
properties). Some people suggest, following Everett [28], that there is a world
for every family of potential properties of S giving rise to a family of consistent
histories to be observed. This is the “many-worlds interpretation of quantum
mechanics”, which we find entirely unacceptable!
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(iii) Unfortunately, the problem described in (ii) persists even in the decoherence
scenario described in (7.96)–(7.100), above, because the von Neumann alge-
bras

Mi WD .E!�tiC1
/0 \ E!�Qti .ti�1 < Qti � ti / (7.107)

are usually non-commutative. If there are an ai and a bj from the sets of
operators in (7.106) belonging to the same Ml , and if

Œai .ti /; bj .t
0
j /	 ¤ 0; (7.108)

then the problem described in (ii) appears on the scene. It could be avoided
if one assumed that ai .ti / and bj .t 0j / must belong to the center, ZMl

, of Ml ,
because then the commutators on the left side in (7.108) would all vanish.
The right version of something like this idea will be formulated in Sects. 7.5.3
and 7.5.4.

(iv) It has tacitly been assumed, so far, that the times at which quantum-mechanical
measurements of potential properties of a system S are carried out (we are
talking of the times ti at which potential properties ai of S are observed) can
be fixed precisely (by an “observer”?). Obviously, this assumption is nonsense
in quantum mechanics, (as opposed to classical physics); see Sect. 7.5.4.

In an appendix, the reader may find some remarks on positive operator-valued
measures (POVM) [61] and their uses; (but see also the end of Sect. 7.5.4 and [33]).

7.4.A Appendix to Sect. 7.4: Remarks on Positive
Operator-Valued Measures (POVM)

It may and will happen sometimes that the commutators

Œ….i/
˛i
;Qn

iC1.˛/	

are not small in norm, and the matrix P! defined in Eq. (7.91) has “large” off-
diagonal elements. Then some of the operators ai representing potential properties
of S are not measurable and do apparently not represent empirical properties of S ,
given the data

.PS ;AS ; f�t;sgt;s2R; ! 2 SS /:

While this is a perfectly interesting piece of information, it raises the question
whether formula (7.83) continues to contain interesting information, although the
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sum rule (7.84) may be strongly violated. A conventional answer to this question
involves the notion of “positive operator-valued measures” (POVM): For k� < kC,
we define

HkC

k�

.˛/ WD ….kC/
˛
kC

….kC�1/
˛
kC

�1
: : : ….k�C1/

˛k�

C1
….k�/
˛k�

: (7.109)

We observe that

X

˛

�
HkC

k�

.˛/
��
HkC

k�

.˛/ D 1; (7.110)

(and

X

˛

HkC

k�

.˛/
�
HkC

k�

.˛/
�� D 1:/

Consider

Prob!f….1/
˛1
; : : : ;….n/

˛n
g � Prob!fhk��1

1 .˛/; hk
C

k�

.˛/; hn
kCC1.˛/g

WD !
�
.Hk��1

1 /�.HkC

k�

/�.Hn
kCC1/

�Hn
kCC1H

kC

k�

Hk��1
1

�

(7.111)

We may say that hk
C

k�

.˛/ represents a single experiment on the system S if the sum
rule (7.84) is violated substantially, for all i D k�; k� C 1; : : : ; kC, but

X

˛k� ;:::;˛
kC

Prob!fhk��1
1 .˛/; hk

C

k�

.˛/; hn
kCC1.˛/g  Prob!fhk��1

1 .˛/; hn
kCC1.˛/g;

(7.112)

up to an error that is so small that it is below the experimental resolution. In view of
Eq. (7.110), our discussion can be formalized as follows.

Definition 4.3 The “square root” of a positive operator-valued measure (POVM) is
a (finite) family of operators

X D fX˛gN˛D1 (7.113)

with the property that

NX

˛D1
X �̨X˛ D 1: (7.114)

The “positive operator-valued measure” is then given by the operators
fX �̨X˛gN˛D1.
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Given a time-ordered sequence of (“square roots” of) POVM’s, X.1/; : : : ; X.n/,
the probability of observing a “generalized history”

hn1.˛/ D fX.1/
˛1
; : : : ; X.n/

˛n
g (7.115)

is given by

Prob!fX.1/
˛1
; : : : ; X.n/

˛n
g WD !

�
.X.1/

˛1
/� : : : .X.n/

˛n
/�X.n/

˛n
: : : X.1/

˛1

�
: (7.116)

The probabilities of such generalized histories have the desirable properties (7.59)
and (7.60). We say that fX.1/; : : : ; X.n/g, with X.i/ (the square root of) a POVM,
for all i , describes a time-ordered sequence of n successful experiments, or
observations, iff

X

˛i

Prob!fX.1/
˛1
; : : : ; X.i/

˛i
; : : : ; X.n/

˛n
g  Prob!fX.1/

˛1
; : : : ; X.i�1/

˛i�1
; X.iC1/

˛iC1
; : : : ; X.n/

˛n
g;

(7.117)

up to a tiny error below the experimental resolution, for all i D 1; : : : ; n and all ˛.
An example of events described by POVM’s is described in Sect. 7.5.4; (see also
[33]).

All the concepts and notions introduced in Sect. 7.4 can be carried over to this
generalized setup, after replacing ai by X.i/ and …

.i/
˛i � …

.i/
˛i .ti / by X

.i/
˛i �

X
.i/
˛i .�i / (or their adjoints), i D 1; : : : ; n, with�1 � : : : � �n. Wherever possible,

we will, however, consider self-adjoint operators and their spectral projections,
instead of POVM’s, throughout this essay; (but see Remark 5.8, Sect. 7.5.4).

7.5 Removing the Veil: Empirical Properties of Physical
Systems in Quantum Mechanics

In a classical model of a physical system, S , properties of S exist a priori. They
are represented by real-valued continuous (or measurable) functions on the state
space,MS , of the system. In contrast, in a quantum-mechanical model of a physical
system, the system can still be characterized by a list, PS , of potential properties
(represented by self-adjoint operators); but these properties do not exist a priori.
Whether they correspond to empirical properties of S , or not, depends on the choice
of the environment E; (e.g., on the experiments that are made). The question then
arises what the empirical properties are that will be observed in the course of
time, given the time evolution f�t;sgt;s2R of S D S _ E and its state ! 2 SS ;
(see Definition 2.1, Sect. 7.2.2). In (7.43), we have identified the fundamental data
underlying a model of S ,

.PS ;AS ; f�t;sgt;s2R 
 �Aut.AS /; ! 2 SS /; (7.118)
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see also (7.77) and Sect. 7.2.2. These data ought to determine which empirical
properties S exhibits and what family of histories of events (but, of course, not which
history) will be recorded in the course of time if S is monitored/observed when
coupled to a given environment/equipment E . We have seen in Sect. 7.4 that the
answer to the question of what exactly the data in (7.118) determine is not obvious.

7.5.1 Information Loss and Entanglement

Let a be a potential property of S (a D a� 2 PS ). We assume, for simplicity,
that spec a consists of finitely many eigenvalues, ˛1; ˛2; : : : ; ˛k . Let ! be the
state of S D S _ E , and let us suppose that, thanks to an appropriate choice
of E , the potential property a is observed (i.e., becomes an empirical property
of S ) around some time t . According to almost everybody’s understanding of
quantum mechanics, the following claim appears to be reasonably plausible: After
the observation of a at a time  t , S evolves as if its state where given by

! �!
kX

iD1
pi!i ; (7.119)

where pi is the probability to observe the value ˛i of a, and !i is a state with the
property that if a were observed in a system prepared in the state !i at time  t

then its value would be ˛i with certainty. If no measurements are made before a is
observed then, according to Born [11],

pi D !.…i.t//;

where…i.t/ is the spectral projection of the operator a.t/ D �t;t0 .a/ corresponding
to the eigenvalue ˛i , (with t the time of measurement of a). Note that the state
in (7.119) is usually a mixed state, i.e., an incoherent superposition of the states
!i , even if ! is a pure state. It is perceived as one aspect of the “measurement
problem” to understand how a pure state can evolve into a mixture. (Another aspect
is to understand why the state of S is given by !i , right after the measurement of a,
if a is measured to have the value ˛i , for some i D 1; : : : ; k. This will be discussed
in Sects. 7.5.4 and 7.5.6.)

In order to explain why the first aspect of the measurement problem does not
represent a serious problem, we have to return to an analysis of two fundamental
phenomena: (LoI) Loss of information into E; and (E) Entanglement between S
and E .

In Definition 2.2 of Sect. 7.2.3, we have introduced algebras, E�t , of potential
properties of S observable/measurable after time t . These algebras are C �-
subalgebras of the algebra AS . We have denoted by ES the smallest C �-algebra
containing E�t , for all t 2 R; see Eq. (7.47). Clearly ES 
 AS . As indicated
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in Sect. 7.2.3, it is the consequence of a general principle—“Duality between
Observables and Indeterminates”—that ES is properly contained in AS (and that
the relative commutant of ES inside AS contains a subalgebra isomorphic to ES ).
This principle will be discussed in the context of examples in a forthcoming
communication.

The algebra ES carries an action of the group R of time translations by
�automorphisms f� tgt2R, where � t determines �morphisms

� t W E�t 0 �! E�tCt 0 � E�t 0 ;

for all t 0 2 R and all t 	 0; see (7.50) and (7.51).
Thus, in hindsight, the mathematical data enabling one to predict the behavior of

a physical system S in the course of time, given its state, can be chosen to consist
of the filtration of algebras

AS � ES � E�t � E�t 0 � fC1g; t 0 	 t; (7.120)

along with a specification of �morphisms (time translations)

� t W E�t 0 �! E�tCt 0 � E�t 0 ; (7.121)

for t 0 2 R, t 	 0, and of a state !,

! W state on AS : (7.122)

In Definition 2.4, Sect. 7.2.3, we have introduced the von Neumann algebras E!�t ,
t 2 R, and E!S . (We recall that if !0 is an arbitrary state on ES normal with respect
to ! then E!0

S D E!S and E!0

�t D E!�t , for all t .)
Loss of information (LoI) is the phenomenon that if successful measurements of

potential properties of S have been made between some times t and t 0 > t then E�t 0
is strictly contained in E�t . Together with the phenomenon of entanglement (E), this
may entail that the restriction of the state ! to the algebra E�t 0 is a mixture (i.e.,
an incoherent superposition of approximate eigenstates of some physical quantity,
as in (7.119)), even if ! is a pure state of ES .

While (LoI) is common to classical and quantum-mechanical models of physical
systems, (E) and (7.119) (with pi > 0, for two or more choices of i ) is
specific to quantum-mechanical models. We have seen in Sect. 7.2.3 that, quantum-
mechanically, .LoI/ may manifest itself in the property that some of the relative
commutants,

.E!�t /0 \ E!�t 0 (7.123)
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are non-trivial, for some t > t 0; (see (7.49)). If E!�t is a factor (i.e., a von Neumann
algebra with trivial center, as defined in Sect. 7.2.1, (7.25)) then (7.5.6) implies that

E!�t ¨ E!�t 0 : (7.124)

7.5.2 Preliminaries Towards a Notion of “Empirical
Properties” of Quantum Mechanical Systems

Let a D a� 2 ES be an operator representing a potential property (or physical
quantity) of S (i.e., a D �t 0;t0 .c/; c 2 PS ), and let ! denote the state of S . We
assume that a has a finite spectrum,

a D
kX

iD1
˛i…i ; k < 1; (7.125)

where ˛1; : : : ; ˛k are the eigenvalues of a (now viewed as a self-adjoint operator in
the von Neumann algebra E!S ), and …i � …

.i/
˛i 2 E!S is the spectral projection of a

corresponding to ˛i , i D 1; : : : ; k. How should we define empirical properties of
S? To say that a is an empirical property of S at some time t 0 earlier than t , i.e., that
a is measured (or observed) before time t , means that

!.b/ 
kX

iD1
!.…ib…i/; (7.126)

for all b 2 E!�t ; i.e., !jE!
�t

is close to an incoherent superposition (mixture) of
eigenstates, p�1

i !.…i .�/…i/ (pi ¤ 0), of a, where pi D !.…i/, (and pi > 0,
for at least one choice of i ). A sufficient condition for Eq. (7.126) to hold is that

a 2 .E!�t /0 \ E!S : (7.127)

If there existed a sequence of times, t1 < t2 < : : : < tn, and self-adjoint operators
a1; : : : ; an, with finite point spectra, as above, and

al 2 .E!�tlC1/0 \ E!�tl ;

l D 1; : : : ; n � 1, an 2 E�tn , then the family of histories

hn1.j / D f….1/
j1
; : : : ;…

.n/
jn

g;
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where ….l/
jl

is the spectral projection of al corresponding to the eigenvalue ˛.l/jl of
al , l D 1; : : : ; n, is consistent; see (7.96)–(7.100), Sect. 7.4.3. For this observation
to be interesting, the relative commutants .E!�tlC1/

0 \ E!�tl would have to be non-
trivial and if we wish to escape from critique (iii) at the end of Sect. 7.4.3 the
algebras .E!�tlC1/

0 \ E!�tl would have to be abelian, for all l . This does not look
like a satisfactory or plausible assumption, and we have to continue our search for a
good notion of “empirical properties”!

Definition 5.1 (i) Given von Neumann algebras M � N , a state ! on N and an
operator a 2 N , we define fa; !	M to be the bounded linear functional on M
defined by

fa; !	M.b/ WD !.Œa; b	/; b 2 M: (7.128)

(ii) The centralizer (or stabilizer), C!M, of ! is the subalgebra of M defined by

C!M WD fa 2 M j fa; !	M D 0g: (7.129)

It is easy to see that ! defines a trace on C!M. This means that C!M is a direct
sum (or integral) of finite-dimensional matrix algebras, type-II1 factors and abelian
algebras.

Remark 5.2 Centralizers of states or weights on von Neumann algebras play an
interesting role in the classification of von Neumann algebras, (in particular in the
study of type-III factors); see [19, 45]. In an appendix to Sect. 7.5, we recall a few
relevant results on centralizers.

Obviously, strict equality in Eq. (7.126) follows from the assumption that

fa; !	E!
�t

D 0; a 2 E!�t : (7.130)

In other words, condition (7.130) implies that, as a state on the algebra E!�t of
possible events in S observable after time t , ! is an incoherent superposition of
eigenstates of a, even if, as a state on ES , ! is pure. However, to convince oneself
that ! is a mixture (incoherent superposition) it is often enough to assume that the
norm of the linear functional fa; !	E!

�t
, with a 2 E!�t , is small. Let us suppose

that a is self-adjoint and that its spectrum consists of finitely many eigenvalues
˛1 > ˛2 > : : : > ˛k . Then

a D
kX

iD1
˛i…i ;

where …1; : : : ;…k are the spectral projections of a satisfying …i D …�
i , …i…l D

ıil…l , for all i; l D 1; : : : ; k, and
Pk

iD1 …i D 1. The following result is easily
proven.
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Lemma 5.3 The following assertions are equivalent:

(i) jfa; !	E!
�t
.b/j < �kbk; 8b 2 E!�t

(ii) j!.b/ � Pk
iD1 !.…ib…i/j � const. �kbk; 8b 2 E!�t .

In view of Lemma 5.3, one might be tempted to identify elements of the
centralizer

C!�t WD C!E!
�t

(7.131)

with empirical properties of S observable at times 	 t . Yet, this is not quite the
right idea!

(1) A family of operators, a1; : : : ; an, with

ai 2 C!�ti ;

i D 1; : : : ; n, t1 < t2 < : : : < tn, does not necessarily give rise to a
family of consistent histories. The reason is exceedingly simple: Let ….i�1/

l ,
l D 1; : : : ; ki�1, be the spectral projections of ai�1 2 C�ti�1 . Let !l denote the
state

!l.b/ D p�1
l !.…

.i�1/
l b…

.i�1/
l /;

where pl D !.…
.i�1/
l / > 0. Let us assume that pl > 0 for at least two distinct

values of l . The problem is that, in general, the assumption that ai 2 C!�ti does
not imply that ai 2 C!l�ti , for all l D 1; : : : ; ki�1 for which pl > 0; this is the
phenomenon of “spontaneous symmetry breaking”. This means that the “sum
rule” (7.84), Sect. 7.4.1, may be violated at the i th slot, for some 1 < i < n.
Hence the family a1; : : : ; an may not give rise to a family of consistent histories.

(2) In general, the centralizers C!�t are non-abelian algebras. If the centralizers
C!�t are non-commutative algebras then identifying empirical properties of
S observable at times 	 t with elements of C!�t is subject to critique (ii),
Sect. 7.4.3. Our task is then to find out which elements of C!�t may correspond
to empirical properties of S . (The center of C!�t is denoted by Z!�t . If Z!�t were
known to contain operators representing potential properties of S then these
operators could be interpreted as empirical properties of S observed at some
times 	 t , and critique (ii) of Sect. 7.4.3 would not apply, anymore.)

7.5.3 So, What are “Empirical Properties”
of a Quantum-Mechanical System?

Consider the data characterizing a physical system as specified in (7.120)–(7.122).
Let E�t be the algebra of physical quantities pertaining to a system S that can be
observed at times 	 t , and let ES be the C �-algebra obtained as the norm closure
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of _
t2REt . Let ! be a state on ES . By C!�t we have denoted the centralizer of the state

! (viewed as a state on the von Neumann algebra E!�t corresponding to the weak
closure of E�t in the GNS representation associated with .ES ; !/). We have seen,
after definition (7.129), that !jC!

�t
is a trace on C!�t . This implies that

C!�t D
Z ˚

ƒ

C!�t;� ; (7.132)

where every algebra C!�t;�, � 2 ƒ � ƒ! , is either a finite-dimensional matrix
algebra,  Mn�.C/, of n� � n� matrices, with 1 � n� < 1, or a type-II1 factor;
(see [69], Theorem 8.21 in Chapter 4, and Theorem 2.4 in Chapter 5). If C!�t;� is
isomorphic to Mn�.C/ then

!jC!
�t;�

/ trCn� .�/: (7.133)

Let us assume, temporarily, that ƒ is discrete, and

C!�t D
�̊2ƒ

C!�t;�; (7.134)

with

C!�t;� ' Mn�.C/; n� < 1; (7.135)

for all � 2 ƒ. Then E!�t is a von Neumann algebra of type I and

!jE!
�t

DW �!�t ; (7.136)

where �!�t is a density matrix, so that

�!�t D
X

�2ƒ
p�.t/…�.t/; (7.137)

and the operators …�.t/ � …!
� .t/ are the eigenprojections of �!�t , with

dim.…�.t// D n� < 1, the weights p�.t/ � p!� .t/ 	 0 are the eigenvalues
of �!�t , arranged in decreasing order, and

tr.�!t / D
X

�2ƒ
p�.t/dim.…�.t// D 1:

Then C!�t;� ' Mn�.C/ is the algebra of all bounded operators from the eigenspace
Ran …�.t/ to itself, and

!jC!
�t;�

D p�.t/tr.…�.t/.�//:
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Any operator a 2 E!�t commuting with all the projections…�.t/, � 2 ƒ, belongs to
C!�t , and any operator in the center Z!�t of C!�t is a function of the projections…�.t/,
� 2 ƒ! . In particular…�.t/ 2 Z!�t 
 C!�t , for all �, (and hence the eigenprojections
of �!�t might qualify as empirical properties of S ).

Henceforth, we consider the special case specified in Eqs. (7.134)–(7.137); (but
see Remark (1) of Sect. 7.5.5, and Appendix 7.5.A).

Definition 5.4 Let a D a� be an operator in E!�t . We define

a� WD 1

n�
tr.…�.t/a/: (7.138)

If � is such that p�.t/ > 0 then

a� WD 1

p�.t/n�
!.…�.t/a/:

Note that 1
� D 1. We set

a! WD
X

�2ƒ
a�…�.t/ 2 Z!�t 
 C!�t (7.139)

and define the “variance of a in !” by

�!
t a WD

sX

�2ƒ
p�.t/Tr.…�.t/.a � a� � 1/2/ D

p
!..a � a!/2/: (7.140)

We observe that if �!
t a D 0 then a 2 C!�t , and, on the range of �!t , ajRan�!t D

a! jRan�!t is a function of �!t , i.e., ajRan�!t 2 Z!�t . For a general element, a, of E!�t ,

jfa; !	E!t .b/j D j!.Œa; b	/j D j!.Œa � a!; b	/j
� 2

p
!..a � a!/2/!.b�b/ � 2�!

t a kbk;
(7.141)

for arbitrary b 2 E!�t . Thus, if �!
t a is small then kfa; !	E!

�t
k is small, too, and

Lemma 5.3 then tells us that !jE!
�t

is close to an incoherent superposition of
eigenstates of a.

Let d��.˛/ denote the spectral measure of the operator a D a� 2 E!�t in the
state

n�1
� tr.…�.t/.�//:
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Then

0 � !..a � a!/2/ D
X

�2ƒ
p�.t/n�

1

n�
tr.…�.a � a�/2/

D
X

�2ƒ
p�.t/n�

Z
d��.˛/.˛ � a�/2:

Thus,

p�.t/n�

Z
d��.˛/.˛ � a�/2 � .�!

t a/
2;

for every � 2 ƒ. We conclude that if, for some � 2 ƒ,

1

p�.t/n�
.�!

t a/
2 < �2;

for some � > 0, then a has spectrum at a distance less than � from a�. In particular,
if a has discrete spectrum then a has at least one eigenvalue ˛�, with

j˛� � a�j < �: (7.142)

Next, let a 2 PS be the operator representing some potential property of S . Then
a.t/ WD �t;t0 .a/ 2 E!�t .

Definition 5.5 We say that a potential property of S represented by an operator
a 2 PS is an empirical property of S at time t within an uncertainty (of size) ı 	 0 iff

�!
t a.t/ � ı: (7.143)

Remark 5.6 If ı is below the resolution threshold of the equipment used to monitor
S then, FAPP, a.t/ indeed represents an empirical property of S at time t , in the
following sense:

(1) kfa.t/; !	E!
�t

k is so small that it cannot be distinguished from 0;
(2) !.b/  P

i !.…i .t/b…i .t//, for all b 2 E!�t , where …1.t/;…2.t/,. . . are the
spectral projections of a.t/, (assuming a D a� has discrete spectrum; see
Lemma 5.3 for a precise statement);

(3) on the range of the density matrix �!�t , a.t/ is “close” to the operator a.t/! 2
Z!�t ;

(4) a has eigenvalues near the numbers a.t/
�
, for all � 2 ƒ! for which

.p�.t/n�/
�1ı2 is small.
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One may then argue that if �!
t a.t/ is very small, and if a measurement or

observation of a 2 PS at a time  t indicates that it has a value ˛  a.t/
�

then one
may use the state

!� WD 1

n�
tr.…�.t/.�// (7.144)

to predict the behavior of the system S at times later than t . This idea, reminiscent
of “state collapse”, will be further discussed below.

Note that the maximal uncertainty ı admissible in statement (2) above depends
on the spectrum of the operator a.

7.5.4 When Does an Observation or Measurement
of a Physical Quantity Take Place?

Let a D a� 2 PS represent a potential property of a quantum-mechanical system
S , which is assumed to be prepared in a state ! on the algebra ES . We propose to
analyze whether and when a corresponds to an empirical property of S , in the sense
that, given the time evolution f�t;sgt;s2R of S and the state !, a is measurable (i.e.,
the value of a can be measured or observed) at some finite time. Definition 5.5 and
the discussion thereafter suggest to consider the variance �!

t a.t/ (a.t/ D �t;t0 .a/),
of a.t/ as a function of time t . This function is non-negative and bounded. Let ı be
some non-negative number below the resolution threshold of the equipment used to
monitor S . Let t� be defined as the smallest time such that

�!
t
�

a.t�/ � ı: (7.145)

Then it is reasonable to say that a is observed/measured—put differently, a becomes
an empirical property of S within an uncertainty of size ı—at a time & t�. If the
equipment E used to monitor S is only sensitive to observing the eigenvalue ˛i
of a, i.e., to the possible event …i (spectral projection of a corresponding to the
eigenvalue ˛i ) then one may plausibly say that the possible event…i is observed at
a time & t� iff

�!
t
�

a.t�/C 1 � !.…i .t�//

is very small. In this case, we say that the equipmentE prepares the state of S to lie
in the range of the projection …i.t/  P

�2ƒ.i/! …�.t/, with t & t�, where ƒ.i/
! is

defined by the property that j˛i � a.t/�j < ı, for all � 2 ƒ.i/
! . Thus, the function

T!;a.t/ WD �!
t a.t/ (7.146)
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contains all important information on the time around which the potential property
a of S becomes an empirical property; and the function

T i
!;a.t/ WD �!

t a.t/C 1 � !.…i.t// (7.147)

tells us when (around which time) a detector sensitive to the possible event …i

“clicks”; (see also [13, 73] for some ideas on this matter that will not be pursued
here).

Next, we analyze repeated observations/measurements, as in Sect. 7.4.1. It
suffices to consider only two subsequent measurements. Let a D a� 2 PS represent
a potential property of S , and let ı 	 0 be a measure for the resolution of the
equipmentE used to monitor S in a measurement of a.

Definition 5.7 For a D a� 2 PS , ı 	 0, and a time t� > �1, we define a subset
of states on AS (or on ES 
 AS ) by

S.a; ı; t�/ WD f! 2 SS j inf
t�t

�

�!
t a.t/ < ıg; (7.148)

where ı is so small that properties (1) through (4) in Remark 5.6, above, are valid.

Apparently, S.a; ı; t�/ is the set of states of S with the property that, given the
time evolution f�t;sgt;s2R, the operator a corresponds to an empirical property of S ,
within an uncertainty of size ı, that is measurable at some time after t�.

Next, we consider two potential properties of S represented by two self-adjoint
operators, a1 and a2, and we suppose that, first, a1 and, afterwards, a2, are measured.
For simplicity we suppose that the spectra of a1 and a2 consist of finitely many
eigenvalues ˛.i/j , j D 1; : : : ; ki < 1, i D 1; 2. We assume that the state, !, of
S before the measurement of a1, belongs to S.a1; ı1; t1�/, for a sufficiently small
number ı1 (below a threshold of resolution). Then �!

t1
a1.t1/ � ı1, at some time

t1 	 t1�. A successful measurement of a1 around some time t1 	 t1� results in the

assignment of a value ˛.1/j  a1.t1/
�
, � 2 ƒ.j /

! , to the physical quantity represented
by a1, where

ƒ.j /
! WD f� 2 ƒ! j ja1.t1/� � ˛

.1/
j j < ı1g: (7.149)

(For consistency, we assume that min
j¤l

j˛.1/j � ˛
.1/

l j > 2ı1:) The probability of this

measurement outcome is given by

P
.1/
j .t1/ D

X

�2ƒ.j /!
!.…!

� .t1// D
X

�2ƒ.j /!
p!� .t1/n

!
� D !.…

.1/
j .t1//C O.ı1/;

(7.150)

where p�.t1/ � p!� .t1/, n� � n!� D dim…!
�.t1/, and …�.t1/ � …!

�.t1/ are as
defined in Eqs. (7.136) and (7.137), (the superscript “!” is supposed to highlight the
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dependence on the state !), and….1/
j .t1/ is the eigenprojection of the operator a1.t1/

corresponding to the eigenvalue ˛.1/j . If P .1/
j .t1/ is very small one can ignore the

possibility that, for a system S prepared in the state !, an observation/measurement
of a1 will yield a value  ˛

.1/
j .

Let !j denote the state

!j .b/ D
P

�2ƒ.j /! !.…!
� .t1/b…

!
� .t1//

P
.1/
j .t1/

D !.…
.1/
j .t1/b…

.1/
j .t1//

!.…
.1/
j .t1//

C O.ı1/;

(7.151)

for an arbitrary operator b 2 E!�t , with t 	 t1; (recall that E!�t � E!�t1 , for t 	 t1).

Let us suppose that, for all j 2 f1; : : : ; k1g for which P .1/
j .t1/ > ı2 > 0,

!j 2 S.a2; ı2; t .j /2� /; (7.152)

for some time t .j /2� > t1. If ı2 is chosen small enough one may expect to be able to

successfully measure the quantity represented by a2 at a time t2 	 t
.j /
2� , assuming

that, at a time t1 < t
.j /
2� , a1 was found to have a value  ˛

.1/
j .

The joint probability to find a value  ˛
.1/
j in a measurement of a1 around some

time t1 and, in a subsequent measurement around a time t2 > t1, a value  ˛
.2/

l of
the quantity represented by a2, (with l 2 f1; : : : ; k2g), is given by

Prob!f….1/
j .t1/;…

.2/

l .t2/g D P
.1/
j .t1/

X

�2ƒ.l/!j

!j .…
!j
� .t2//

D !.…
.1/
j .t1/…

.2/

l .t2/…
.1/
j .t1//C O.ı1 _ ı2/;

(7.153)

whereƒ.l/
!j D f� 2 ƒ!j j ja2.t2/� � ˛

.2/

l j < ı2g, and ı1 _ ı2 D maxfı1; ı2g.
The definitions of centralizers, C!�t1 , etc., and of the variance �!

t a.t/ readily
imply that

k1X

jD1
!.…

.1/
j .t1/…

.2/

l .t2/b…
.2/

l .t2/…
.1/
j .t1// D !.…

.2/

l .t2/b…
.2/

l .t2//C O.ı1/;

(7.154)

and if !j 2 S.a2; ı2; t .j /2� / then

k2X

lD1
!.…

.1/
j .t1/…

.2/

l .t2/b…
.2/

l .t2/…
.1/
j .t1// D !.…

.1/
j .t1/b…

.1/
j .t1//C O.ı1 _ ı2/;

(7.155)
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for an arbitrary operator b 2 E!�t , with t > maxj t
.j /
2� . It is clear how to

extend our discussion to an arbitrary chronological (time-ordered) sequence of
measurements of quantities a1; : : : ; an, (ai 2 PS ;8i ). Moreover, the mathematical
relationship between Eqs. (7.154) and (7.155), on one side, and ı-consistent families
of histories—see (7.92) and (7.93), Sect. 7.4.2—on the other side, is easy to unravel.
We do not wish to discuss further details.

Remark 5.8 (Remark on the Role of POVM’s) It may and will occasionally
happen that, given that a quantity represented by an operator a1 has been
observed/measured, the quantity represented by the operator a2 can be measured,
subsequently, only for certain, but not all, outcomes of the measurement of a1.
More precisely, it may happen that, for some eigenvalues ˛1j , j 2 G, of a1,

!j 2 S.a2; ı2; t .j /2� /, while, for i 2 B WD f1; : : : ; k1g nG,

!i … S.a2; ı2; t2�/; (7.156)

for any t2� < 1; (ı1 and ı2 being chosen appropriately, depending on the resolution
of the corresponding measurements, as discussed above).

If B ¤ ; then one must take the position that the observations of a1 and
a2 represent one single measurement, which must be described using “posi-
tive operator-valued measures” (POVM’s)—see Appendix 7.4.A, Eqs. (7.113) and
(7.114):

X D fXjl; Xi j j 2 G; l D 1; : : : ; k2; i 2 Bg (7.157)

where, for j 2 G,

Xjl D
X

�12ƒ.j /!

X

�22ƒ.l/!j

…
!j
�2
.t
.j /
2 /…!

�1
.t1/  …

.2/

l .t
.j /
2 /…

.1/
j .t1/; (7.158)

(up to a small perturbation of O.ı1 _ ı2/), while, for i 2 B ,

Xi D
X

�12ƒ.i/!
…!
�1
.t1/  …

.1/
i .t1/; (7.159)

where t1 and t .j /2 are the times of measurement of a1 and a2, respectively. Then

X

j2G

k2X

lD1
X�

jlXjl C
X

i2B
X�
i Xi D 1: (7.160)

The use of POVM’s will be discussed in more detail and in connection with
concrete examples elsewhere. Here we just remark that simple examples showing
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why one needs to introduce POVM’s are encountered in the analysis of repeated
Stern–Gerlach measurements of atomic spins (followed by detectors sensitive to the
arrival of the atoms).

7.5.5 Generalizations and Summary

(1) In order to keep our exposition reasonably simple, we have made the simplify-
ing assumptions (7.134) and (7.135). It is, however, not very hard to develop our
ideas in full generality. For this purpose, we must return to formula (7.132): The
space ƒ D ƒ! appearing in (7.132) is the spectrum of the center, Z!�t , of the
centralizer, C!�t , of the state !, viewed as a state on the algebra E!�t . The theory
of “conditional expectations” [68] enables us (under fairly general hypotheses)
to construct a conditional expectation P��t W E!�t ! Z!�t , which permits us to
associate with every operator a 2 E!�t an operator a! 2 Z!�t . The map a 7! a!

is linear, and .a!/! D a! . (In the special case where Eqs. (7.134) and (7.135)
hold it is given by formula (7.139).) Having constructed a! , we set

�!
t a WD

p
!..a � a!/2/:

From this point on, we may follow the arguments from (7.141) onwards, and in
Sect. 7.5.4.

(2) In our approach to the “quantum theory of experiments/quantum measurement
theory”, the “ontology” underlying a quantum-mechanical model of a physical
system S is represented by

(a) a set, PS , of physical quantities characterizing S ;
(b) a filtration of C �-algebras

ES � E�t � E�t 0 � fC � 1g; t � t 0;

and �morphisms

� t W E�t 0 �! E�t 0Ct � E�t 0 ;

for t 	 0;
(c) a state ! on ES ;
(d) the centralizers C!�t of !jE

�t
and their centers Z!�t .

If S is prepared in a state ! before one attempts to measure a physical quantity
represented by an operator a 2 PS then the measurement is successful around
some time t if a.t/ D �t;t0 .a/ is “close” to an operator in Z!�t , in the sense that
the variance,�!

t a.t/, of a.t/ in ! is small.
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(3) Let us return to the special situation described in Eq. (7.134) through
Eq. (7.137). Suppose that all the algebras E!�t , t 2 R, are isomorphic to a
fixed factor E ' B.H/ of type I1. Then our approach is “dual” to one
where the density matrices f�!�tgt2R are interpreted as states on E and are
considered to be the fundamental objects, and time evolution is described in
terms of completely positive maps on the space of density matrices. With
the idealization/approximation that time evolution is given by a groupoid of
completely positive maps, this is the point of view popular among quantum
information scientists; (see, e.g., [53]).

The trajectories of density matrices f�!�t gt2R are then what replaces the
trajectories ft D �t;t0 .0/gt2R of a classical system (as discussed in Sect. 7.3).
However, because of the phenomena of information loss and entanglement, the
density matrices �!�t tend to describe mixed states, even if the state ! is a pure
state of the algebra ES , and hence only yield probabilistic predictions, while the
states t of a classical system are pure, for all t , provided the initial state is pure,
and hence yield deterministic predictions.

(4) It is clearly important to extend our theory to local relativistic quantum theory
(LRQT). In LRQT, the algebras E�t , t 2 R, are replaced by algebras, EP ,
of “observables” localized inside the forward light cone of a point P (the
momentary position of an observer) on a time-like curve in space-time, (the
observer’s world line). If the theory describes a massless photon and if !
is a state normal to the vacuum then the von Neumann algebras E!P are all
isomorphic to the hyperfinite factor of type III1, as discussed in [17]. Hence
the algebras E!P do not have any pure states, and the principle of Loss of
Information (LoI) is a fundamental feature of the theory. We will return to
this topic elsewhere.

(5) It is clearly important to understand how quantum-mechanical systems can be
prepared in specific states (“preparation of states”). This topic will be discussed
in [34]; but see also (7.144) and the remark right above (7.146). Moreover, it is
quite crucial to back up the general analysis presented in this essay with simple
models of “information loss” and “decoherence/dephasing”. This will be done
in a forthcoming publication.

The last topic we briefly address in this essay is a theory of weak (non-
demolition) experiments, following [6]. This theory explains why in many experi-
ments, the system ends up being in an eigenstate of the operator representing the
quantity that is measured, i.e., why “facts” emerge in non-demolition measure-
ments.

7.5.6 Non-demolition Measurements

After having presented a long and rather abstract discussion of “direct (or von
Neumann) measurements”, in Sects. 7.5.3–7.5.5, we wish to sketch the theory of
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“indirect (non-demolition) measurements”. The main results described here have
recently appeared in [6]; see also [1]. The practical importance of these results
comes from recent experiments; see, e.g., [42].

We consider a physical system S (e.g., the quantized electromagnetic field in
a cavity). We wish to measure a physical quantity represented by an operator
a D a� 2 AS (e.g., the photon number inside the cavity) with the help of
“non-demolition measurements”. For this purpose, we bring S into contact with a
sequence,E1,E2, E3,. . . , of identical “probes” (e.g., excited atoms passing through
the cavity); the interaction ofEk with S is supposed to take place in the time interval
Œk � 1; k	 and is supposed to be turned off during all other times. Actually, after
some direct measurement of a property bk D b�

k 2 AEk at a time later than k—as
described abstractly in Sect. 7.5.4—probe Ek “gets lost for ever”, in the sense that
no further information about Ek can be retrieved, anymore.

Let � denote the initial state of S and  .k/ WD  the initial state of probe Ek ,
(the same for all k). For simplicity, we assume that the spectrum of the operator a
representing the physical property of S to be measured is finite pure-point spectrum.
We denote the spectral projection corresponding to an eigenvalue ˛ of a by …˛ D
…�̨. Then

…˛…ˇ D ı˛ˇ…˛;
X

˛

…˛ D 1:

Next, we specify the time-evolution of the composed system S _ E1 _ E2 _ : : : W
Up to time k D 1; 2; 3; : : : ;, the time evolution of Ej is assumed to be trivial, for
all j > k. For the subsystem S _E1 _ : : : :_Ek it is specified as follows: Let A˛;˛0

be an arbitrary operator in AS mapping Ran …˛0 to Ran …˛, with …ˇA˛;˛0…ˇ0 D
ı˛ˇı˛0ˇ0A˛;˛0 . Let Bj be an operator in AEj , j � k. Then the time-evolution of
A˛;˛0 ˝ B1 ˝ : : :˝ Bk from time 0 to time k in the Heisenberg picture is given by

�k;0.A˛;˛0 ˝ B1 ˝ : : :˝ Bk/ WD A˛;˛0 ˝ U˛B1U
�
˛0

˝ : : :˝ U˛BkU
�
˛0

;

where U˛ is a unitary operator in AEk ' AE , for all ˛ 2 spec a. Defining

U.i; i � 1/ WD
X

˛

…˛ ˝ 1 ˝ : : :˝ U˛ ˝ 1 ˝ : : : ;

with U˛ inserted in the .i C 1/st factor of the tensor product, we have that

�k;0.A˛;˛0 ˝ B1 ˝ : : :˝Bj / D
1Y

iDk

U.i; i � 1/.A˛;˛0 ˝ B1 ˝ : : :˝ Bj /

kY

iD1

U.i; i � 1/�

D �k;0.A˛;˛0 ˝ B1 ˝ : : :˝ Bk/˝ BkC1 ˝ : : :˝ Bj ;

(7.161)
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for arbitrary j 	 k. This is a typical (albeit highly idealized) example of time-
evolution in a non-demolition measurement. Let ‰ WD �˝ ˝ ˝ : : : denote the
initial state of the composed system, S _ E1 _ E2 _ : : :. If we set

B1 D B2 D : : : D Bk0 D 1;

for some k0 < 1 then

‰ .�k;0.A˛;˛0 ˝ 1 ˝ : : :˝ 1 ˝ Bk0C1 ˝ : : :˝ Bk0Cl //

D �.A˛;˛0/ .U˛U
�̨
0

/k0
kY

iDk0C1
 .U˛BiU

�̨
0

/

k0ClY

iDkC1
 .Bi /;

(7.162)

for k0 � k � k0 C l . Because U˛ is unitary, for all ˛ 2 spec a,

j‰.U˛U �
˛0

/j � 1; for all ˛; ˛0;

by the Cauchy–Schwarz inequality. We assume that

j‰.U˛U �̨
0

/j � � < 1; for ˛ ¤ ˛0: (7.163)

Then, for ˛ 6D ˛
0

j‰ .�k;0.A˛;˛0 ˝ 1 ˝ : : :˝ 1 ˝ Bk0C1 ˝ : : :˝ Bk0Cl // j � �k0 ; (7.164)

which, by Eq. (7.163), tends to 0 exponentially fast, as k0 ! 1, for arbitrary
A˛;˛0 , Bk0C1,. . . ,Bk0Cl , with kA˛;˛0 k, kBk0C1k,. . . , kBk0Clk bounded by 1. This is
“decoherence” over the spectrum of the operator a representing the quantity to be
measured:

‰jE
�k0

�!
X

˛

‰.…˛.�/…˛/jE
�k0
; (7.165)

as k0 ! 1, where E�k0 is the algebra introduced in Definition 2.2. Henceforth, we
choose an initial state, �, for S satisfying

� D
X

˛

�.…˛.�/…˛/ D
X

˛

p˛�˛;

where

p˛ D �.…˛/; �˛ D p�1
˛ �.…˛.�/…˛/: (7.166)
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We assume that (after many identical probes have interacted with S , so that
decoherence over the spectrum of the observable a has set in) a direct measurement
of a physical quantity represented by an operator b D b� 2 AE is carried out
on every probe Ek ' E , after it has interacted with S . We assume that the
spectrum of b is pure-point, with eigenvalues denoted by  and corresponding
spectral projections written as � . Then � D ��

 and

��0 D ı0�;
X



� D 1: (7.167)

The probability, �.
k
j˛/, of a history


k

WD f�1 ; : : : ; �k g (7.168)

of possible outcomes of those direct measurements in the state ‰˛ defined by

‰˛ WD �˛ ˝  ˝  ˝ : : : ;

with �˛ as in Eq. (7.166), is given by

�.
k
j˛/ D

kY

iD1
p.i j˛/; (7.169)

where

p.j˛/ WD  .U˛�U
�̨/: (7.170)

Note that
P

 p.j˛/ D 1, by Eq. (7.167) and the unitarity of U˛ . In the following,
we identify � with  and use the notation 

k
D .

k�1; k/. In the initial state ‰, the
probability of the history 

k
is then given by

�.
k
/ D

X

˛

p˛�.k
j˛/: (7.171)

Next, we calculate the probability, p.k/.˛j
k
/ of the possible event …˛, given that

a history 
k

is observed on the first k probes, and given the initial state ‰. By
Eqs. (7.166) and (7.169)–(7.171),

p.k/.˛j
k
/ D p˛

�.
k
j˛/

�.
k
/
; (7.172)
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(with p˛ D �.…˛/; see Eq. (7.166)). These probabilities have the following
properties:

(i)

0 � p.k/.˛j
k
/ � 1; and

X

˛

p.k/.˛j
k
/ D 1:

(ii)

p.k/.˛j
k
/ D p˛

�.˛j
k�1/

�.
k
/
p.kj˛/

D p.k�1/.˛j
k�1/

�.
k�1/

�.
k
/
p.k j˛/

D p.k�1/.˛j
k�1/

p.kj˛/P
ˇ p

.k�1/.ˇj
k�1/p.k jˇ/

;

(7.173)

because, by Eqs. (7.171), (7.169) and (7.172),

�.
k
/

�.
k�1/

D
X

ˇ

pˇ
�.

k�1jˇ/
�.

k�1/
p.k jˇ/

D
X

ˇ

p.k�1/.
k�1jˇ/p.kjˇ/:

(7.174)

(iii) The expectation, Ek , of p.k/.˛j
k
/, given ˛ and 

k�1, satisfies

Ekp
.k/.˛j

k
/ WD

X

k

p.k/.˛j
k�1; k/

�.
k�1; k/P

k
�.

k�1; k/

D
X

k

p.k/.˛j
k�1; k/

�.
k
/

�.
k�1/

D
X

k

p˛
�.

k�1j˛/p.k j˛/
�.

k
/

�.
k
/

�.
k�1/

D
X

k

p.k�1/.˛j
k�1/p.kj˛/ D p.k�1/.˛j

k�1/;

(7.175)

(see below Eq. (7.170)).
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Properties (i) and (iii) identify the random variables fp.k/.˛j
k
/ j ˛ 2 spec ag as

bounded martingales. The Martingale Convergence Theorem (see e.g., [58]) then
implies that

p.k/.˛j/ �!
k!1 p.1/.˛j/;

where  D 1, and p.k/.˛j/ does not depend on kC1; kC2; : : :. Property (ii) then
implies that, for every 1 2 spec b,

p.1/.˛j/ D p.1/.˛j/ p.1j˛/P
ˇ p

.1/.ˇj/p.1jˇ/ : (7.176)

If for all ˛; ˇ 2 spec a with ˛ 6D ˇ, there exists  2 spec b such that p.; j˛/ 6D
p.jˇ/ then Equation (7.176) and

p.1/.˛j/ D ı˛˛0 ; (7.177)

for some ˛0 (depending on ).
Thus, for almost every history  D 1 of outcomes of “von Neumann

measurements” of the probes E1;E2; : : : :; the state ‰ ı �k;0, conditioned on 1,
converges on AS to an eigenstate of the operator a 2 AS representing the physical
quantity to be measured, as k ! 1. The probability (with respect to the histories
1) of convergence to an eigenstate corresponding to the eigenvalue ˛ of a is given
by p˛; (see Eq. (7.166)). Stated differently, the range of values of the functions
p.1/.˛j�/ on the space of histories consists of f0; 1g, and, for almost every history
1,

P
˛ p

.1/.˛j1/ D 1. These are the results that have been announced in
Sect. 7.1.2; see (7.21).

It is not hard to see that the approach of the state of S to an eigenstate of a is
exponential in the time k. This is a “large-deviation estimate” established in [6].
It involves use of a “dynamical relative entropy”. The techniques sketched in this
subsection have interesting applications to Mott’s problem of “particle tracks” in
quantum theory.

For a mathematical theory of “preparation of states” in quantum mechanics, see
[33, 35]. Simple models of “information loss” and “decoherence” will be proposed
and studied in a separate publication.

7.5.A Appendix to Sect. 7.5

The purpose of this appendix is to describe some mathematical structure useful to
imbed the material in Sects. 7.5.3 and 7.5.4 into a more general context. In particular,
we do not wish to assume that the algebras E!�t are type-I von Neumann algebras;
(i.e., we do not start from Eqs. (7.134)–(7.136)). To begin with, we summarize some
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further basic facts concerning von Neumann algebras; (see also Sect. 7.2.1). Let M
be a von Neumann algebra, and let ! be a normal state on M. Then .�!;H!;�/

stands for the representation, �! , of M on the Hilbert space H! , with � the cyclic
unit vector in H! (unique up to a phase) such that

!.a/ D h�;�!.a/�iH! : (7.178)

This is the GNS construction applied to .M; !/; see Eq. (7.29), Sect. 7.2.1. We say
that ! is separating for M iff, for any a 2 M,

!.ba/ D 0; 8b 2 M H) a D 0I (7.179)

or, equivalently, �!.a/� D 0 (in H!) implies that a D 0; (it is assumed that �! is
faithful, and we will henceforth write a for �!.a/).

Given a separating state, !, on a von Neumann algebra M, Tomita–Takesaki
theory [12, 67] guarantees that there is a one-parameter unitary group f�i


! g
2R,
where �! > 0 is a self-adjoint operator on H! (the Tomita–Takesaki modular
operator) and an anti-unitary involution, J! , on H! , with the properties

�i

! a�

�i

! 2 M; J!aJ! 2 M0; (7.180)

for all a 2 M and for all 
 2 R, (M0 is the commutant of M),

�i

! � D �; J!� D �; (7.181)

for all 
 , and

h�; ab�iH! D h�; b�!a�iH! ; (7.182)

for arbitrary a; b 2 M; (KMS condition). If ' is a linear functional on M we define

k'k WD sup
b2M

j'.b/j
kbk (7.183)

Eqs. (7.178) and (7.182) then show that if ! is separating for M,

kfa; !	Mk < � ” k.�!a � a/�kH! < �; (7.184)

for any a 2 M; (recall that fa; !	M.b/ D !.Œa; b	/, b 2 M—see Eq. (7.128),
Sect. 7.5.2). In Eq. (7.129), we have defined the centralizer of ! to be the subalgebra
of M given by

C!M WD fa 2 M j fa; !	M D 0g: (7.185)

We recall that ! defines a trace on C!M. By (7.184),
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C!M D fa 2 M j �!a� D a�g; (7.186)

assuming that ! is separating for M. The following claim is easy to verify (using
Liouville’s theorem for analytic functions of one complex variable, and Eq. (7.186)):
If ! is separating for M

fa; !	M D 0 ” �i

! a�

�i

! D a; 8
 2 R; (7.187)

for any a 2 M; (see, e.g., [3]). The group, f˛
g
2R, of �automorphisms of
M defined by ˛
 .a/ D �i


! a�
�i

! is called the Tomita–Takesaki modular

automorphism group. The equivalence in (7.187) together with Eq. (7.185) show
that if ! is separating for M then the centralizer, C!M, is nothing but the subalgebra
of M of fixed points under the Tomita–Takesaki modular automorphism group. The
following result is due to Takesaki, [68]: Let N be a von Neumann subalgebra of
M, and let ! be a faithful, normal, separating state on M. Then the following
statements are equivalent:

(i) N is invariant under the modular automorphism group f˛
g
2R associated with
.M; !/.

(ii) There exists a (
-weakly) continuous projection, �, of norm 1 (a “conditional
expectation”) of M onto N such that

!.a/ D !jN .�.a//; (7.188)

for all a 2 M.

Remark 5.9 For a; b in N and x 2 M, we have that

�.x�x/ 	 �.x/��.x/ 	 0;

�.axb/ D a�.x/b:

�
(7.189)

As a corollary of Takesaki’s result on conditional expectations, we have that if ! is
separating for M then

(a) there is a conditional expectation, � D �! , from M onto the centralizer C!M of
! satisfying (7.188); and

(b) there is a conditional expectation, P�! , from M onto the center, Z!
M, of C!M

satisfying (7.188).

Definition 5.10 The variance of an operator a 2 M in the state ! is defined by

�!
Ma WD

p
!..a � a!//; (7.190)

where a! WD P�!.a/.
These general results can be applied to the considerations in Sects. 7.5.2–7.5.4,

with the following identifications:
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M ! E!�t ; C!! ! C!�t ; Z!
M ! Z!�t : (7.191)

We then use the notations �! ! �!�t , P�! ! P�!�t and�!
Ma ! �!

t a; (see Eq. (7.140),
Sect. 7.5.3). Concerning the special case introduced in Eqs. (7.134)–(7.136), we
remark that ! is separating for E!�t iff all eigenvalues of the density matrix �!�t
introduced in Eq. (7.136) are strictly positive (which is generically the case). As an
exercise, the reader may enjoy deriving the explicit formulae for �!�t and P�!�t ; (see
Eq. (7.139)). The material sketched here is important in relativistic quantum theory
(LRQT).
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