Chapter 6
Quantum Field Theory on Curved Spacetime
and the Standard Cosmological Model

Klaus Fredenhagen and Thomas-Paul Hack

6.1 Introduction

The attempt to incorporate gravity into quantum theory meets great conceptual
difficulties. The main reason for these problems seems to be the rather different roles
played by space and time in quantum theory and in Einstein’s theory of gravity. In
quantum theory, an a priori notion of space and time enters the formulation and the
interpretation of the theory in a crucial way. In Einstein’s theory of gravity, on the
other side, the structure of space and time is dynamical and strongly influenced by
the distribution of matter which is treated classically.

These severe conceptual problems are accompanied by hard technical problems,
hence testing ideas for solving the problem turns out to be extremely time
consuming, and it is difficult to obtain reliable conclusions. In despair, rather radical
approaches have been proposed as e.g. string theory and loop quantum gravity, but
we think that it is fair to say that none of these approaches has reached its goal, up
to now, nor could either of them be ruled out, neither by empirical results nor by
inner theoretical reasons.

If one is less ambitious and takes into account, that gravitational forces tend to be
very small compared to other forces, one may consider, in a first step, gravity as an
external field, producing a curved spacetime, and treat quantum matter by quantum
field theory on such a background. One may then, in a second step, treat quantum
gravity as a quantum field fluctuating around a given background.
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The second step meets severe problems: the arising theory is nonrenormalizable,
which means that in every order of perturbation theory new interaction terms appear
whose coupling constants have to be determined by experiments. Moreover, the
causal structure of the theory is determined by the background metric, whereas
physics would require that it depends only on the full metric, including the quan-
tum fluctuations. Nevertheless, a consistent perturbative formulation was recently
presented by Brunetti, Rejzner and one of us in [7].

Surprisingly, already the first step is by no means trivial. The reason is, that
quantum field theory in its standard formulation heavily depends on the symmetries
of Minkowski space. These symmetries are used to define the vacuum and the
concept of a particle, and one can then, under quite general conditions, derive the
existence of scattering states and of an S-matrix.

But on a generic Lorentzian spacetime, no nontrivial symmetries exist, and as
a consequence, neither the concept of a vacuum state nor that of particles can be
intrinsically introduced. In particular, the classical picture of particles moving in an
empty spacetime is not supported by quantum field theory. The most spectacular
consequence of this fact is the evaporation of black holes as predicted by Hawking.

The problems of quantum field theory on a given curved back ground have been
solved within the last 20 years by using the concepts of algebraic quantum field
theory and by replacing techniques of operators on Fock space by methods from
microlocal analysis [25]. A compilation of references on algebraic quantum field
theory on curved spacetimes can be found in [3].

Algebraic quantum field theory was originally developed in order to understand
the relation between the local degrees of freedom of quantized fields and the
observed multi-particle states [17]. It was then observed by Dimock and Kay that
it provides a good starting point for formulating a theory on a curved spacetime
[13, 29]. The absence of a distinguished Hilbert space representation, however, was
a severe obstacle for extending the theory to nonlinear fields, the most prominent
being the energy momentum tensor.

For this purpose it was necessary to understand the singularities of correlation
functions. There was overwhelming evidence that the so-called Hadamard states
yield a class of states with the correct singularity structure. A direct characterization
of Hadamard states turned out to be rather complicated [30], and its use for the
determination of correlation functions of nonlinear fields seemed to be extremely
cumbersome.

The situation changed completely when Radzikowski discovered that the
Hadamard condition could equivalently be replaced by a positivity condition on
the wave front set of the 2-point function [41, 42]. This marked the breakthrough
for the modern theory of quantum fields on curved back grounds, and within a few
years it was possible to construct all kinds of composite fields [6] and to prove the
existence of renormalized time ordered products [5].

Renormalization, however, had still the problem that renormalization conditions
at different points of spacetime could not be compared with each other in the
absence of nontrivial symmetries. A new principle was needed, the principle of local
covariance [8]. This principle says that it is not meaningful to do physics on a special
spacetime; instead all structures should depend only on the local geometry. Based on
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this principle, Hollands and Wald were able to finish the renormalization program
[22, 23], which had been started by Brunetti and one of us [5]. One of the outcomes
of this generalization of algebraic quantum field theory is that it is meaningful to
consider the same field on different spacetimes.

A direct application of this fact is the use of the energy momentum tensor as a
source term for Einstein’s equation. But as long as gravity itself is not quantized
one has the problem to compare a quantum object with a classical object. On a
pragmatic level this may be solved by using the expectation value of the energy
momentum tensor. This might be reasonable as long as the fluctuations are small
enough. But here new problems arise. One is the fact that the correlation functions
of the energy momentum tensor diverge at coinciding points. One therefore looks at
appropriate averages; this, however, introduces a new parameter into the theory. The
other problem is even worse: whereas fields exist which can be considered to be the
same on different spacetimes, a corresponding identification of states on different
spacetimes does not exist.

The latter problem can presumably only be treated in a theory containing
quantized gravitational and matter fields. One may, however, restrict oneself to
situations with higher symmetries, as they arise in cosmological spacetimes of the
Friedmann—Robertson—Walker type. There, one may admit only states which are
invariant under the spatial symmetries. Still, this does not fix the states uniquely,
hence additional choices have to be introduced. Nevertheless, one can in this way
reproduce the standard cosmological model from first principles, by modelling the
matter-energy content of the universe entirely in terms of quantum fields rather than
effectively by means of a classical perfect fluid [18].

6.2 The Free Scalar Field and Its Normal Ordered Products

Classically, a configuration of a scalar field may be understood as a smooth function
on spacetime. Let C*°(M) be the set of all smooth functions on a spacetime M,
and let Sol(M) be the subset of smooth solutions of the Klein—-Gordon equation.
Classical observables are functions on C*°(M) modulo functions which vanish on
solutions. The observables of the quantum theory form a suitable subspace on which
the algebraic structures of quantum theory can be defined. This subspace can be
characterized in the following way.

We consider a globally hyperbolic time oriented spacetime. On such a spacetime
the Klein—Gordon equation

Pp=(V'V,+ER+m*)¢p =0,

with curvature scalar R, curvature coupling parameter £ and mass m, possesses
unique retarded and advanced Green’s functions Ag 4 considered as maps from
compactly supported densities to smooth functions. Their difference is the com-
mutator function A. A Hadamard solution of the Klein—Gordon operator P is a
distributional bisolution & with the properties:
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Lo h(x,y) —h(y.x) = i(A(x, y)).

2. WF(h) = {(x,x";k, k") € WE(A)|k € V.'} where V' is the closed forward
lightcone in 7) M .

3. h is a distribution of positive type.

We want to introduce an associative product %, on a subspace F (M) of the space
of maps {F : C*°(M) — C} by setting

h®n 8”_G
S’ S

(F 1 G) (@) =)

n=0

" <8"F >(¢) . 6.1)

n!

In order to make this definition meaningful we require for F € F(M):

1. F is polynomial, therefore the sum over 7 is finite.

2. F is smooth in the sense of the calculus on locally convex spaces, where C*° (M)
is equipped with its standard topology (uniform convergence of all derivatives on
any compact set). From these two conditions it follows that F is of the form

N

F(p) =) (f-9®")

n=0

with compactly supported distributional densities f, on M".

3. The wave front set of f, does not intersect (V)" nor (V' ~)". This condition
guarantees by Hormander’s theorem on the multiplicability of distributions, that,
in view of the wave front set of the Hadamard solution, the summands in the
definition of the product are well defined.

The product is associative. Complex conjugation induces an involution on F (M),

hence F (M) gets the structure of a unital *-algebra, where the unit is the constant
function F(¢) = 1. The subspace {F € F(M)|F(¢) = Ofor¢ € Sol(M)} is
an ideal, and the quotient is the enlarged CCR-algebra. It contains as a subalgebra
the CCR-algebra generated by linear functionals of the form F(¢) = (f, ¢) with
a smooth density f on M and in addition all local polynomials in the field and its
derivatives,

F(p) = / £ @)dvol(x)

where x > j(¢p) = {p+ | € C*°(M) with 3*y¥(x) = 0 for all multiindices o}
is the jet prolongation of ¢, and f is a smooth function on the jet bundle which is a
polynomial in ¢ and its derivatives at every point x € M, and which has compact
spacetime support

suppF = U supp(x = f(Jjx () -
¢
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The definition of the enlarged CCR-algebra depends on the choice of the
Hadamard solution 4. Since two Hadamard solutions differ by a smooth symmetric
and real valued bisolution w, the arising algebras are isomorphic with the isomor-
phism

1 8
I, =exp Eh <w, w> .

Every Hadamard solution /2 + w induces a family of coherent states by

oy (F) = (LWwF) ()

with ¢ € Sol(M). According to a result of Verch, the arising GNS-representations
are locally equivalent [49].

A further crucial ingredient for the interpretation of the theory are locally
covariant fields A. These are, for every spacetime M, linear maps Ay from the
space of (compactly supported) test tensors to the algebra F (M) such that, for every
isometric, time orientation and causality preserving embedding y : M — N into a
larger spacetime N one has the relation

Au(f)(@ox) = An(x=S)(@)

where y . denotes the push forward of test tensors. In other words, a locally covariant
field is a natural transformation between the functor D of test tensor spaces and the
functor F of observable algebras, both based on the category of globally hyperbolic
spacetimes with isometric, time orientation and causality preserving embeddings as
morphisms.

In a first attempt one may look at a polynomial p(d*¢, o € Ng) in ¢ and its
derivatives and set

Au(f)(@) = / £ H () dvol(x) .

But this definition violates the naturality condition for locally covariant fields since
there is no natural choice for the Hadamard solution, i.e. no choice which is
compatible with all possible embeddings of a spacetime into another one, a fact
which is responsible for the nonexistence of a vacuum state.

Let p(V) be a polynomial in covariant derivatives (with respect to the Levi-Civita
connection) and consider the functionals

A(x)(¢) = ePVo(x)
Under the isomorphism T, A(x) transforms as

I,A(x) = e 3P(V®p(V)w(x.x) A(x) .
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We now use the fact, that w is the difference of 2 Hadamard solutions. Hadamard
solutions admit an asymptotic expansion

u(x,y)
a(x.y)

=hy5(x, ) + wh(x, ).

N
+ D (e, o (x, ) (o (x, y)) + wh (x, )

n=0

h(x,y) =

Here x, y are points in a geodesically convex open set, o (x, y) is the signed square
of the geodesic distance between x and y, the functions u and v, are solutions of the
so-called transport equations and are uniquely determined by the local geometry.
is a free parameter with the dimension of inverse length. w’]\, is an 2N + 1 times
continuously differentiable function which depends on the choice of 7. We omit the
e-prescription necessary for iy to be well-defined, see [30].

We now set

Ap(x) = e%p(V)®p(V)W’,’v(x,X)A(x)

where N is larger than or equal to twice the degree of p, and find
Cpir A (x) = Ap(x) .

By expanding the exponential series we obtain a large class of locally covariant
fields. These correspond to Wick powers of the scalar field and its derivatives
regularised by point-splitting and suitable subtractions of derivatives of hj\l,ng. This
class may be enlarged by the ¢-independent locally covariant fields constructed
from the metric. Further details may be found e.g. in [16].

A locally covariant field of particular interest is the energy momentum tensor
T (x). However, it is by no means intrinsically clear which locally covariant
field is the observable whose expectation value is the “correct” source term for
Einstein’s equation. Essentially this is due to the fact that gravity is sensitive to
absolute energy densities rather than energy density differences. Wald [52] and
later Hollands and Wald [24] have suggested that a locally covariant field should
satisfy standard commutation relations, covariant conservation V47 ,(x)(¢) = 0
and suitable analyticity conditions in order to be a meaningful energy momentum
tensor. For a free scalar field this implies that the most general energy momentum
tensor is of the form

T (X) (@) = T (x)(P) + 1 8ap () + 2 Gap(x) + a3 Lp(x) + g Jup(x),  (6.2)

where G, is the Einstein curvature tensor whereas I, and J,;, are local curvature
tensors which are obtained as functional derivatives with respect to the metric of
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the action functionals [ /=g R?dvol(x) and i /=8 Ruy R™dvol(x) respectively.
Moreover, a possible “model” Ta(}, is the functional

, 1
T (@) = Ty ()(@) + lim (Dab - ggahPx) wi(x.y)  N=1 (63)

where Ta“,la“ is the classical energy momentum tensor of the scalar field, D,
is a second order bi-differential operator defined by lim,, Dyw(x,y) =
(w, 2
have a covariantly conserved Ta(}, [35]. The four parameters ¢; are free parameters
which can not be determined intrinsically within QFT on curved spacetimes, but
only by measurements or within a more fundamental theoretical framework.

An alternative “model” Ta(}, can be obtained by taking the functional derivative
with respect to the inverse metric of the “one-loop effective Lagrangean”

)713!"‘“(x)(¢>) and the modification term —%gub P, is necessary in order to

2

L@ = L= + (W

>£cla53(¢)(x) N > 1.

Here w},’\;’WS is the regular part of the deWitt-Schwinger Hadamard solution A s

which is a formal series in o (x, y) with purely geometric coefficients [19].

6.3 The Standard Cosmological Model in Quantum Field
Theory on Curved Spacetimes

In the standard cosmological model the universe is modelled by a Friedmann—
Lemaitre—Robertson—Walker (FLRW) spacetime (M, g) with manifold M = [ x
R?® C R* and metric g = dr ® dt — a*(t)dx’ ® dx;. We consider the case where
the spatial slices are diffeomorphic to R? for simplicity and because this is favoured
by observations. Here ¢ is cosmological time, whereas the scale factor a(?) is a
smooth non-negative function whose logarithmic #-derivative is the Hubble rate H,
which is assumed to be strictly positive in what follows. Further convenient time
variables are the conformal time 7, the scale factor a and the redshift z := ag/a — 1,

where ap = 1 is the scale factor of today. These time variables are related by
dt = adr = % = __&
aH (1+2)H *

Given the high symmetry of (M, g) and the Einstein equation G, = 87Ty,
the energy momentum tensor 7, must be of perfect fluid form and thus determined
by the energy density p = (9,)?(9;)? T, and pressure p, which are related by the
equation of state p = p(p). Moreover, the Einstein equation is equivalent to the
(first) Friedmann equation

81G
H? = = o
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and a conservation equation. According to the standard model of cosmology—the
ACDM-model—our universe contains matter, radiation, and Dark Energy, modelled
macroscopically as perfect fluids with equation of state p = wp, w = 0, %, -1
for matter, radiation and Dark Energy (assuming that the latter is just due to a
cosmological constant) respectively. Consequently, the Friedmann equation can be

conveniently rewritten as

H?  pacom Qp  Q 3H;
= = Q 1 = —L )
AT + pr Po 872G

i — 6.4
i = (6.4)

where H) is the present Hubble rate—the Hubble constant—and the constants €2,
Qn, 2, denote the present fractions of the energy density due to Dark Energy,
matter and radiation respectively. Observations indicate approximately

Qn=03 Q=10 Qr=1-Q,-%, (6.5)

see [1] for the latest exact values from the Planck collaboration. In the context
of cosmology the terms “matter” and “radiation” subsume all matter-energy with
the respective macroscopic equation of state such that e.g. “radiation” does not
encompass only electromagnetic radiation, but also the three left-handed neutrinos
present in standard model of particle physics (SM) and possibly so-called Dark
Radiation, and “matter” subsumes both the baryonic matter which is in principle
well-understood in the SM and Dark Matter. Here, Dark Matter and Dark Radiation
both quantify contributions to the macroscopic matter and radiation energy densities
which exceed the ones expected from the knowledge of the SM and are believed
to originate either from fields not present in the SM or from other sources, i.e.
modifications of classical General Relativity.

Notwithstanding, at least the contributions to the macroscopic matter and
radiation energy densities which are in principle well-understood originate micro-
scopically from excitations of quantum fields, thence it should be possible to derive
those from first principles within QFT on curved spacetimes. Such an analysis of the
standard cosmological model within QFT on curved spacetimes has been performed
by one of us in [18] and we shall review it in what follows.

A comprehensive analysis from this perspective could proceed as follows. One
considers the full standard model of particle physics plus potential other fields and
interactions as a perturbative interacting QFT on curved spacetime. One then aims
to find a pair (w, g), where @ is a Hadamard state on the algebra of this field model
and g is a metric on the manifold M = I x R?> C R* of FLRW type, such that (a)
(w, g) is a solution of the semiclassical Einstein equation

G = 8nGw(Ty)
where T, is the energy momentum tensor of the field model and (b) (6.4) are (6.5)

are satisfied up to suitably small corrections. Unfortunately such an analysis is quite
involved, but we can consider a number of simplifications. First, we disregard all
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field interactions. This is a legitimate approximation if we consider the cosmological
evolution only after the primordial synthesis of light nuclei—the so-called Big
Bang Nucleosynthesis (BBN)—as field interactions are usually assumed to be
irrelevant for the large-scale properties of the quantum state after this era. In the
standard cosmological model, this enters by assuming that the each component of
the perfect fluid in (6.4) satisfies an individual conservation equation. As a further
simplification, we disregard the spin of the quantum fields and model all massive
fields, i.e. “matter”, by a single massive scalar field, and all massless fields, i.e.
“radiation”, by a single massless scalar field, where both fields are considered to
be conformally coupled to the scalar curvature (§ = é). This is done for ease of
presentation as computations with higher spin fields are in principle straightforward,
see for instance [10, 11]; the conformal coupling £ = é is chosen because it
simplifies computations and because the massless Dirac equation and the Maxwell
equation are invariant under conformal isometries. Finally, provided one is able to
assign a state w to a FLRW metric g in a coherent way, o is in general a non-
trivial functional of g and thus obtaining an explicit solution of the semiclassical
Einstein equation is at best difficult. In a recent yet unpublished work, Pinamonti
and Siemssen have proven by a fixed point argument that the semiclassical Einstein
equation can be uniquely solved for a linear scalar field model and a large class of
initial conditions on a Cauchy surface, but for a quantitative analysis one needs to
know the solution explicitly. We thus solve the semiclassical Einstein equation in
the following approximate sense. We assume that the FLRW spacetime is given and
determined by (6.4) and (6.5). On this spacetime we seek to find a pair of quantum
states ™ and w° for the massive and massless scalar field such that the sum of the
energy densities in this states satisfies

°(p) + 0™ (p) —Qn+ & i & _ Pacom
Po a* = at Po

(6.6)

and (6.5) up to suitably small corrections in the time interval of interest z € [O, 109],
where z = 0 marks the present and z = 10° is the redshift at which BBN took place.

In order to follow this program, it is useful to have at ones disposal a map which
assigns a state @ to a FLRW metric g in a given coordinate system; indeed this is
necessary in order for the semiclassical Friedmann equation 3H? = 87 Gw(p) to be
well-defined in the first place. Such a construction is provided by the so-called states
of low energy introduced by Olbermann [36]. These states minimize the energy
density integrated in (cosmological) time with a sampling test function f and are
pure, Gaussian, isotropic and homogeneous states of Hadamard type. Their two-
point Wightman function is (barring an e-prescription) of the form

o(x,y) = m/dk )(k(fx))(k(fy)e'k(V »,
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where the modes yj satisfy the ordinary differential equation

(83 + k? + m*a® + (E — é) Raz) xe(r) =0 (6.7)
and the normalisation condition

k0 Xk — Xk yk =10 (6.8)

Here, k = |l€| and * denotes complex conjugation. The modes y;, which
determine the state, are obtained by choosing arbitrary but fixed reference modes.
The Bogoliubov coefficients in this mode basis are suitable functionals of the
reference modes and the sampling function f. Olbermann has proven the Hadamard
property of these states only for the case & = 0, but one can show that they
are at least sufficiently regular in order to compute the energy density also
in the case § = %. If & = % and m = 0, then the Hadamard property
follows from the fact that these states are related to the Minkowski vacuum
state by a conformal isometry. In the following, we set § = %. A further
assignment of a state to a FLRW spacetime in a given coordinate system is
given by the so-called adiabatic states of order O introduced in [38] and further
developed in [26, 34]. These are defined by the modes which satisfy (6.7) and
the initial conditions i (7)|r=z, = Xk(T)|r=rp> O )k (D)lr=ry = 07k (V) |r=r1o>
where

Jr(t) = \/ﬁ exp (—i /r: Wik, r’)dt’) . W(k,t) = VK% + m2a2.

(6.9)

The functions j(7) solve (6.8) exactly but (6.7) only approximately with error
terms quantified by % and B’W# A detailed discussion of the error terms can be
found in [37].

In the ACDM model, the radiation contribution % to the energy density is
mostly of thermal nature, while the matter contribution 2—? is mostly due to
Dark Matter, which in some scenarios is believed to be of thermal origin as
well. Motivated by this we look for states which satisfy (6.6) and (6.5) among
suitable “thermal excitations” of states of low energy. A fully satisfactory gen-
eralisation of the concept of thermal equilibrium to general curved spacetimes
or even FLRW ones does not exist so far. Probably the most elaborated idea is
the so-called local thermal equilibrium approach, see e.g. [45, 50] for a review.
Here we take a more pragmatic approach and consider the states introduced
in [11]. Given a pure, Gaussian, isotropic and homogeneous Hadamard state w
specified by modes yj, one can construct a family of Gaussian Hadamard states
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wpqp by defining the two-point Wightman function (up to an e-prescription)
as

1 = e [ @) xe(Ty)  xe () xe(zy)
, — dk ik(x—=y) y y ,
(%, y) 873a(zy)a(zy) / ¢ ( 1 — e Fko + eBko — 1
]R3

(6.10)

with ko 1= (/k? + mza%. If yi are the modes of a state of low energy, these states
match the almost equilibrium states introduced by Kiiskii in [33] up to the form
of ko. The Hadamard property of the states defined by (6.10) follows from results
of [40]. In the massless case, these states are independent of ar and satisfy the
conformal KMS condition with respect to the conformal Killing vector 9. In the
massive case, they are considered to describe approximately the quantum state of
a field which has been in thermal equilibrium in the distant past, and has “frozen
out” of equilibrium at the time @ = ar. This corresponds to the phenomenological
picture behind Dark Matter of thermal origin in the standard literature see e.g. [32].

Given this choice of quantum states we are left with the cumbersome task to
compute the energy density in these states. To this avail, we can rewrite the singular
part hj\l,ng (x, y) of a Hadamard solution in terms of a Fourier integral in order to
match the mode expansion of the states at hand, see [12, 14, 40, 43]. In this way we
obtain a Fourier integral expression for the regular part w’}\, (x, y) of the relevant two-
point Wightman function. The energy density is obtained by applying to this regular
object a second order bi-differential operator and then taking the limit x — y,
cf. (6.3). This is well-defined and independent of N if N > 1. As a result, we
obtain the energy density as a convergent integral over k. In the massless case,
this integral can be computed analytically. In the massive case however, both the
integrand and the integral have been computed in [18] partly numerically and partly
using analytical approximations. The reasons are manifold. To name a few, the mode
equation (6.7) can not be solved analytically on FLRW spacetimes of the form (6.4)
if m > 0. Moreover, even a numerical solution fails to be feasible for m > Hy—
which is the realistic case as Hy ~ 10733 eV—because the modes oscillate heavily.
To overcome the latter problem the approximate adiabatic modes j(7), cf.(6.9),
have been used as reference modes for the computation of the modes of the state of
low energy, as they approximate the exact adiabatic modes of order zero particularly
well exactly in the regime m > H.

Altogether the following results can be obtained. To discuss these, we rewrite the
total energy density of the massless and massive conformally coupled scalar fields
in the respective generalised thermal states (6.10) defined with respect to states of
low energy as follows

@°(p) + o™ Povac T Povac + Plin + Py H* H>
(p) (P): g g gth g‘h+y_4+QA+8—2+e—03.

£0 Lo H() HO HO
(6.11)
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Q4, 6 and € parametrise the freedom in the definition of the energy density as
per (6.2). The number of free parameters in this equation has been reduced to three,
because I, and J,;, are proportional in FLRW spacetimes. We take the point of view
that §, which effectively renormalises Newton’s constant, is not a free parameter
because Newton’s constant has been measured already. In order to do this, we have
to fix a value for the inverse length scale w in the singular part of a Hadamard
solution /2y (x, y), we do this by confining 1/ to be a scale in the range in which
the strength of gravity has been measured. Because of the smallness of the Planck
length, the actual value of 1/ in this range does not matter as changing 1/ in this
interval gives a negligible contribution to the energy density. One could also take a
more conservative point of view and consider § to be a free parameter, in this case
comparison with cosmological data, e.g. from Big Bang Nucleosynthesis, would
presumably constrain § to be very small once 1/ is in the discussed range.

On this occasion, we would like to highlight the point of view on the so-called
cosmological constant problem taken here, as well as in most works on QFT on
curved spacetimes in the algebraic approach and e.g. the review [4]. It is often said
that QFT predicts a value for the cosmological constant A and thus for 2, which
is way too large in comparison to the one measured. This conclusion is reached
by computing one or several contributions to the vacuum energy in Minkowski
spacetime Ay, and finding them all to be too large, such that, at best, a fine-tuned
subtraction in terms of a negative bare cosmological constant Ay, iS necessary
in order to obtain the small value Ay,c + Apae We observe. Here, we assume the
point of view that it is not possible to provide an absolute definition of energy
density within QFT on curved spacetimes, and thus neither Ay, nor Apy.e have
any physical meaning by themselves; only Ayac + Apare is physical and measurable
and any cancellation which happens in this sum is purely mathematical. The fact
that the magnitude of A,,. depends on the way it is computed, e.g. the loop or
perturbation order, cf. e.g. [44], is considered to be unnatural following the usual
intuition from QFT on flat spacetime. However, it seems more convincing to us to
accept that Ay, and Ay have no relevance on their own, which does not lead
to any contradiction between theory and observations, rather than the opposite. In
the recent work [21] it is argued that a partial and unambiguous relevance can be
attributed to Ay,. by demanding Apye to be analytic in all coupling constants and
masses of the theory; taking this point of view, one could give the contribution to
Ayac Which is non-analytic in these constants an unambiguous meaning. Indeed the
authors of [21] compute a non-perturbative and hence non-analytic contribution to
Avac, Which turns out to be small. In the view of this, one could reformulate the
above statement and say that contributions to Ay,. and Apye Which are analytic in
masses and coupling constants have no physical relevance on their own.

The term in (6.11) proportional to y, which is not present in the ACDM-model,
appears due to the so-called trace anomaly, which is a genuine quantum and state-
independent contribution to the quantum energy momentum tensor, see e.g. [51].
This term is fixed by the field content, y ~ 107'?? for two scalar fields. As
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H < Hoyz? in the ACDM-model for large redshifts, this term can be safely neglected
for z < 10°.

The first terms in (6.11) denote the genuinely quantum state dependent con-
tributions to the energy densities of the two quantum fields. We have split these
contributions into parts which are already present for infinite inverse temperature
parameter B in the generalised thermal states, and thus could be considered as
contributions due to the states of low energy as generalised vacuum states (pgy,c,
p(g)vac), and into the remaining terms, which could be interpreted as purely thermal
contributions (p’g"lh, pglh). One can show that, up to the freedom parametrised by 24,
8 and €, ,o(g)v,ch = 0 for arbitrary sampling functions f, whereas pgy,/pacom < 1
for small masses m ~ Hj, and large masses m > Hj if the sampling function
f defining the state of low energy has sufficiently large support in time. This
generalises results obtained by Degner on de Sitter spacetime [12] and indicates
that states of low energy with broad sampling functions are reasonable generalised
vacuum states on FLRW spacetimes (Fig. 6.1).

As for the thermal contributions, one finds in the massless case

2

Q
0 _ Mr : —
Poth = r with Q, = 305
Up to degree of freedom factors, this gives the ACDM value 2, ~ 107* if the
temperature parameter 1/8 is in the range of the Cosmic Microwave Background
temperature 1/ ~ 2.7K. In the massive case, one can take typical values of S,
ar and m from Chapter 5.2 in [32] computed by means of effective Boltzmann

3x10712 |

2x10712 | B Co \

) lx10-122 [ ' ,' N ;o
Qgvac,m r . ' oy

0ACDM ¥ o /

—1.x10712 F ~—— -

—2.x10712 |

1x 107 5x 107 0,001 0.005 0.010 0.050 0.100
z

Fig. 6.1 Apg,./pacpm for z < 1 for various values of m (rescaled for ease of presentation). The
dotted line corresponds to m = 100H, and A = 1072, the dashed line to m = 10H, and A = 1
and the solid line to m = Hj and A = 10%. One sees nicely how the energy density is minimal in
the support of the sampling function at around z = 102
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equations. A popular candidate for Dark Matter is a weakly interacting massive
particle (WIMP), e.g. a heavy neutrino, for which [32] computes

xp = Bapm ~ 15+ 3log(m/GeV)  ar ~107%(m/GeV)™".
Using this one finds for large m

1 m 3
m o A 2 ,—X
Petn = (27)3/2 '33a3xFe "

and thus €2, >~ 0.3 for m >~ 100 GeV.

At this stage, we have already seen that there exist states for the field model under
consideration for which the energy density in the time interval z € [0, 10°] is of the
form

w’(p) + 0™ (p) _ Q| Q Joo

Qr+—F+—F+te
00 AT T e TS

(6.12)
with ACDM values for 2,,, 2, and 2. This is the desired result up to the term
6% which is not present in the ACDM model, but quantified by the free parameter

0
€. To analyse the influence of this term, we solve the equation

H2 S-zm Qr JOO

H—(%:QA-F?-%?-FGH—S. (6.13)
As Joo contains second derivatives of H, this equation can be rewritten as a second
order ordinary differential equation for H(z) and solved by choosing e.g. ACDM
initial conditions at z = 0. This analysis is consistent as the derivation of (6.12)
does not only hold for ACDM-backgrounds (6.4), but also for backgrounds of the
form (6.13). One finds that for large redshifts z, the solution of (6.13) is of the form

with Q, (e) = Q,, thus the term € Jy effectively generates additional energy density
of radiation type in the early universe, i.e. Dark Radiation. Surprisingly, one finds
lim¢ o 2,(€) = Q, but limeq 2,(¢) = oo. This is well in line with earlier results
on the stability of the Einstein equation with additional higher order derivative
terms, e.g. [2, 15,20, 31, 39,46]. The value of 2, can be constrained by observations
of the primordial fractions of light nuclei as predicted by BBN, since the synthesis
of these nuclei depends sensitively on the Hubble rate at z =~ 10°. It turns out
that 2, (¢) is in conflict with observations for € < 0, but that the BBN data are
compatible with 0 < € < 2 x 10~ if all Dark Radiation is attributed to the origin
discussed here.
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The value of € can be constrained also by other means. On the one hand, a
further bound on ¢ can be obtained by analysing the effects of higher derivative
contributions to the gravitational Lagrangean in the context of Inflation. In fact,
an early inflationary model proposed by Starobinsky in [47] is based on an €Jy
contribution to the energy density. Confronting this inflationary model with current
Cosmic Microwave Background data yields ¢ ~ 10713 [27]. Thus, if Inflation
occurred due to the € Jyy contribution to the energy density, then € is too small for
generating a considerable amount of Dark Radiation. However, if Inflation has a
different origin or did not occur at all, then one obtains the lower bound € > 107113,
Finally, an upper bound on € can be obtained by considering the Newtonian limit of
the semiclassical Einstein equation. In this limit, the higher order derivative terms
1,» and J,;, in (6.2) generate two Yukawa corrections to the Newtonian potential of a
point mass of opposite sign [48]. Assuming that these corrections don’t cancel on the
relevant length scales, one can obtain bounds on the strength and typical length scale
of these Yukawa terms from torsion-balance experiments [28] and consequently the
upper bound € < 107 [9]. Again, this upper bound would imply that € is too small
for generating a considerable amount of Dark Radiation. However, it is still possible
that the aforementioned Yukawa corrections cancel each other on the length scales
relevant for the experiments described in [28], such that € could be as large as our
upper bound, which in this case would give a real bound on one and hence both
Yukawa corrections. Moreover, the bounds inferred from [28] and from the analysis
reviewed here stem from phenomena on completely different length scales. As a
rough estimate we note that the diameter of our observable universe, which today is
about 6/Hy ~ 10>’ m, was at e.g. z = 107 still 10'® m and thus much larger than the
submillimeter scales relevant for the torsion-balance experiments. Thus it could be
that effects we have not considered yet, e.g. state-dependent effects which are due to
the small-scale structure of the quantum states we have fixed only on cosmological
scales so far, affect the comparison between the two different sources of input for
the determination of e.

We conclude that a more fundamental understanding of the standard cosmo-
logical model appears to be possible within QFT on curved spacetimes. In this
framework one even finds a new free parameter not present in the standard model.
This parameter can potentially account for Dark Radiation, the existence and nature
of which are currently topics of active research.
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