
Chapter 2
Quantum Systems and Resolvent Algebras

Detlev Buchholz and Hendrik Grundling

2.1 Introduction

The conceptual backbone for the modeling of the kinematics of quantum systems
is the Heisenberg commutation relations which have found their mathematical
expression in various guises. There is an extensive literature analyzing their
properties, starting with the seminal paper of Born, Jordan and Heisenberg on the
physical foundations and reaching a first mathematical satisfactory formulation in
the works of von Neumann and of Weyl.

These canonical systems of operators may all be presented in the following
general form: there is a real (finite or infinite dimensional) vector space X equipped
with a non-degenerate symplectic form � W X � X ! R and a linear map � from
X onto the generators of a polynomial *-algebra P.X; �/ of operators satisfying the
canonical commutation relations

�
�.f /; �.g/

� D i�.f; g/ 1; �.f /� D �.f / :

In the case that X is finite dimensional, one can reinterpret this relation in terms
of the familiar quantum mechanical position and momentum operators, and if X

consists of Schwartz functions on some manifold one may consider � to be a
bosonic quantum field. As is well-known, the operators �.f / cannot all be bounded.
Moreover, the algebra P.X; �/ does not admit much interesting dynamics acting
on it by automorphisms; in fact there are in general only transformations induced
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by polynomial Hamiltonians which leave it invariant [7]. Thus P.X; �/ is not a
convenient kinematical algebra in either respect.

The inconveniences of unbounded operators can be evaded by expressing the
basic commutation relations in terms of bounded functions of the generators �.f /.
In the approach introduced by Weyl, this is done by considering the C*-algebra
generated by the set of unitaries W.f / PD exp.i�.f //, f 2 X (the Weyl operators)
satisfying the Weyl relations

W.f /W.g/ D e�i�.f;g/=2 W.f C g/ ; W.f /� D W.�f / :

This is the familiar Weyl (or CCR) algebra W.X; �/. Yet this algebra still suffers
from the fact that its automorphism group does not contain physically significant
dynamics [9]. This deficiency can be traced back to the fact that the Weyl algebra is
simple, whereas any unital C*-algebra admitting an expedient variety of dynamics
must have ideals [4, Sec. 10], cf. also the conclusions.

For finite systems this problem can be solved by proceeding to the twisted
group algebra [10] derived from the unitaries W.f /, f 2 X . By the Stone–von
Neumann theorem this algebra is isomorphic to K.H/, the compact operators on a
separable Hilbert space, for any finite dimensional X . This step solves the problem
of dynamics for finite systems, but it cannot be applied as such to infinite systems
since there X is not locally compact. Moreover, one pays the price that the original
operators, having continuous spectrum, are not affiliated with K.H/. So one forgets
the specific properties of the underlying quantum system.

This unsatisfactory situation motivated the formulation of an alternative version
of the C*-algebra of canonical commutation relations, given in [4]. Here one con-
siders the C*-algebra generated by the resolvents of the basic canonical operators
which are formally given by R.�; f / PD .i�1��.f //�1 for � 2 Rnf0g, f 2 X . All
algebraic properties of the operators �.f / can be expressed in terms of polynomial
relations amongst these resolvents. Hence, in analogy to the Weyl algebra generated
by the exponentials, one can abstractly define a unital C*-algebraR.X; �/ generated
by the resolvents, called the resolvent algebra.

In accordance with the requirement of admitting sufficient dynamics the resol-
vent algebras have ideals. Their ideal structure was recently clarified in [1], where it
was shown that it depends sensitively on the size of the underlying quantum system.
More precisely, the specific nesting of the primitive ideals encodes information
about the dimension of the underlying space X . This dimension, if it is finite,
is an algebraic invariant which labels the isomorphism classes of the resolvent
algebras. Moreover, the primitive ideals are in one-to-one correspondence to the
spectrum (dual) of the respective algebra, akin to the case of commutative algebras.
The resolvent algebras are postliminal (type I) if the dimension of X is finite and
they are still nuclear if X is infinite dimensional. Thus these algebras not only
encode specific information about the underlying systems but also have comfortable
mathematical properties.

The resolvent algebras already have proved to be useful in several applications
to quantum physics such as the representation theory of abelian Lie algebras of
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derivations [5], the study of constraint systems and of the BRST method in a
C*-algebraic setting [4, 6], the treatment of supersymmetric models on non-compact
spacetimes and the rigorous construction of corresponding JLOK-cocycles [3].
Their virtues also came to light in the formulation and analysis of the dynamics
of finite and infinite quantum systems [2, 4].

In the present article we give a survey of the basic properties of the resolvent
algebras and an outline of recent progress in the construction of dynamics, shedding
light on the role of the ideals. The subsequent section contains the formal definition
of the resolvent algebras and some comments on their relation to the standard Weyl
formulation of the canonical commutation relations. Section 2.3 provides a synopsis
of representations of the resolvent algebras and some structural implications and
Sect. 2.4 contains the discussion of observables and of dynamics. The article
concludes with a brief summary and outlook.

2.2 Definitions and Basic Facts

Let .X; �/ be a real symplectic space; in order to avoid pathologies we make the
standing assumption that .X; �/ admits a unitary structure [11]. The pre-resolvent
algebra R0.X; �/ is the universal *-algebra generated by the elements of the set
fR.�; f / W � 2 Rnf0g; f 2 Xg satisfying the relations

R.�; f / � R.�; f /Di.� � �/R.�; f /R.�; f / (2.1)

R.�; f /�DR.��; f / (2.2)
�
R.�; f /; R.�; g/

�Di�.f; g/ R.�; f / R.�; g/2R.�; f / (2.3)

� R.��; �f /DR.�; f / (2.4)

R.�; f /R.�; g/DR.� C �; f C g/
�
R.�; f / C R.�; g/

C i�.f; g/R.�; f /2R.�; g/
�

(2.5)

R.�; 0/D� i
�

1 (2.6)

where �; �; � 2 Rnf0g and f; g 2 X , and for (2.5) we require � C � 6D 0. That
is, start with the free unital *-algebra generated by fR.�; f / W � 2 Rnf0g; f 2 Xg
and factor out by the ideal generated by the relations (2.1) to (2.6) to obtain the
*-algebra R0.X; �/.

Remarks (a) Relations (2.1), (2.2) encode the algebraic properties of the resolvent
of some self-adjoint operator, (2.3) amounts to the canonical commutation
relations and relations (2.4) to (2.6) correspond to the linearity of the initial
map � on X .
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(b) The *-algebra R0.X; �/ is nontrivial, because it has nontrivial representations.
For instance, in a Fock representation .�;H/ one has self-adjoint operators
��.f /, f 2 X satisfying the canonical commutation relations over .X; �/

on a sufficiently big domain in the Hilbert space H so that one can define
�.R.�; f //

:D .i�1 � ��.f //�1 to obtain a representation � of R0.X; �/.

It has been shown in [4, Prop. 3.3] that the following definition is meaningful.

Definition 2.1 Let .X; �/ be a symplectic space. The supremum of operator norms
with regard to all cyclic *-representations .�;H/ of R0.X; �/

kRk :D sup
.�;H/

k�.R/kH ; R 2 R0.X; �/

exists and defines a C*-seminorm on R0.X; �/. The resolvent algebra R.X; �/ is
defined as the C*-completion of the quotient algebra R0.X; �/= ker k � k, where here
and in the following the symbol ker denotes the kernel of the respective map.

Of particular interest are representations of the resolvent algebras, such as the
Fock representations, where the abstract resolvents characterized by conditions
(2.1), (2.2) (sometimes called pseudo-resolvents) are represented by genuine resol-
vents of self-adjoint operators.

Definition 2.2 A representation .�;H/ of R.X; �/ is said to be regular if for each
f 2 X there exists a densely defined self-adjoint operator ��.f / such that one has
�.R.�; f // D .i�1 � ��.f //�1, � 2 Rnf0g. (This is equivalent to the condition
that all operators �.R.�; f // have trivial kernel.)

The following result characterizing regular representations, cf. [4, Thm. 4.10 and
Prop. 4.5], is of importance, both in the structural analysis of the resolvent algebras
and in their applications. It implies in particular that the resolvent algebras have
faithful irreducible representations (e.g. the Fock representations), so their centers
are trivial.

Proposition 2.3 Let .�;H/ be a representation of R.X; �/.

(a) If .�;H/ is regular it is also faithful, i.e. k�.R/kH D kRk for R 2 R.X; �/.
(b) If .�;H/ is faithful and the weak closure of �.R.X; �// is a factor, then .�;H/

is regular.

The regular representations of the resolvent algebras are in one-to-one correspon-
dence with the regular representations of the Weyl-algebras, cf. [4, Cor. 4.4]. (Recall
that a representation .�;H/ of W.X; �/ is regular if the maps � 2 R 7! �.W.�f //

are strong operator continuous for all f 2 X .) In fact one has the following result.

Proposition 2.4 Let .X; �/ be a symplectic space and

(a) let .�;H/ be a regular representation of the resolvent algebra R.X; �/

with associated self-adjoint operators ��.f / defined above. The exponentials
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W�.f /
:D exp.i��.f //, f 2 X satisfy the Weyl relations and thus define a

regular representation of the Weyl algebra W.X; �/ on H;
(b) let .�;H/ be a regular representation of the Weyl algebra W.X; �/ and let

��.f / be the self-adjoint generators of the Weyl operators. The resolvents
R�.�; f / D .i�1 � ��.f //�1 with � 2 Rnf0g, f 2 X satisfy relations (2.1) to
(2.6) and thus define a regular representation of the resolvent algebra R.X; �/

on H.

Whilst this proposition establishes the existence of a bijection between the
regular representations of R.X; �/ and those of W.X; �/, there is no such map
between the non-regular representations of the two algebras. In order to substantiate
this point consider for fixed nonzero f 2 X the two commutative subalgebras
C �fR.1; sf / W s 2 Rg � R.X; �/ and C �fW.sf / W s 2 Rg � W.X; �/. These
algebras are isomorphic respectively to the continuous functions on the one point
compactification of R, and the continuous functions on the Bohr compactification
of R. Now the point measures on the compactifications having support in the com-
plement of R produce non-regular states (after extending to the full C*-algebras by
Hahn–Banach) and there are many more of these for the Bohr compactification than
for the one point compactification of R. Proceeding to the GNS-representations it
is apparent that the Weyl algebra has substantially more non-regular representations
than the resolvent algebra.

2.3 Ideals and Dimension

Further insight into the algebraic properties of the resolvent algebras is obtained by
a study of its irreducible representations. In case of finite dimensional symplectic
spaces these representations have been completely classified [4, Prop. 4.7], cf.
also [1].

Theorem 3.1 Let .X; �/ be a finite dimensional symplectic space and let .�;H/

be an irreducible representation of R.X; �/. Depending on the representation, the
space X decomposes as follows, cf. Fig. 2.1.

(a) There is a unique subspace XR � X such that there are self-adjoint operators
��.fR/ satisfying �.R.�; fR// D .i�1 � ��.fR//�1 for � 2 Rnf0g, fR 2 XR.

(b) Let XT
:D ff 2 XR W �.f; g/ D 0 for all g 2 XRg. Then �� restricts on XT to

a linear functional ' W XT ! R such that �.R.�; fT // D .i� � '.fT //�11 for
fT 2 XT , � 2 Rnf0g.

(c) For fS 2 XS
:D XnXR and � 2 Rnf0g one has �.R.�; fS// D 0.

Conversely, given subspaces XT � XR � X and a linear functional ' W XT ! R

there exists a corresponding irreducible representation .�;H/ of R.X; �/, unique
up to equivalence, with the preceding three properties.
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Fig. 2.1 Decomposition of X fixed by an irreducible representation

This result may be regarded as an extension of the Stone–von Neumann
uniqueness theorem for regular representations of the CCR algebra. It shows that the
only obstruction to regularity is the possibility that some of the underlying canonical
operators are infinite and the corresponding resolvents vanish. This happens in
particular if there are some canonically conjugate operators having sharp (non-
fluctuating) values in a representation, as is the case for constraint systems [4,
Prop. 8.1]. But, in contrast to the Weyl algebras, the non-regular representations
of the resolvent algebras only depend on the values of these canonical operators. So
the abundance of different singular representations of the Weyl algebras shrink to a
manageable family on the resolvent algebras.

The preceding theorem is the key to the structural analysis of the resolvent
algebras for symplectic spaces of arbitrary finite dimension. We recall in this context
that the primitive ideals of a C*-algebra are the (possibly zero) kernels of irreducible
representations and that the spectrum of the algebra is the set of unitary equivalence
classes of irreducible representations. The following result has been established
in [1].

Theorem 3.2 Let .X; �/ be a finite dimensional symplectic space.

(a) The mapping O� 7! ker O� from the elements O� of the spectrum (dual) of the
resolvent algebra R.X; �/ to its primitive ideals ker O� is a bijection.

(b) Let L
:D sup fl 2 N W ker O�1 � ker O�2 � � � � ker O�l g be the maximal length of

proper inclusions of primitive ideals of R.X; �/. Then L D dim.X/=2 C 1.

Remarks Property (a) is a remarkable feature of the resolvent algebras, shared with
the abelian C*-algebras. It rarely holds for non-commutative algebras and also
fails if X is infinite dimensional. The quantity L defined in (b) is an algebraic
invariant, so this result shows that the dimension dim.X/ of the underlying systems
is algebraically encoded in the resolvent algebras. As a matter of fact, L is a
complete algebraic invariant of resolvent algebras in the finite dimensional case.

As indicated above, there is an algebraic difference between the resolvent
algebras for finite dimensional X and those where X has infinite dimension. A
further difference is seen through the minimal (nonzero) ideals [1].

Proposition 3.3 Let .X; �/ be a symplectic space of arbitrary dimension and let
I � R.X; �/ be the intersection of all nonzero ideals of R.X; �/.
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(a) If dim.X/ < 1 then I is isomorphic to the C*-algebra K.H/ of compact
operators. Moreover, in any irreducible regular representation .�;H/ one has
�.I/ D K.H/.

(b) If dim.X/ D 1 then I D f0g. In fact, there exists no nonzero minimal ideal of
R.X; �/ in this case.

If .X; �/ is infinite dimensional the resolvent algebraR.X; �/ is the C*-inductive
limit of the net of its subalgebras R.Y; �/ where Y � X ranges over all finite
dimensional non-degenerate subspaces of X , cf. [4, Thm. 4.9]. This fact in
combination with the first part of the preceding result is a key ingredient in the
construction of dynamics, see below. It also enters in the proof of the following
statement [1].

Proposition 3.4 Let .X; �/ be a symplectic space of arbitrary dimension.

(a) R.X; �/ is a nuclear C*-algebra,
(b) R.X; �/ is a postliminal (type I) C*-algebra if and only if dim.X/ < 1.

Recall that a C*-algebra is said to be postliminal (type I) if all of its irreducible
representations contain the compact operators and that postliminal C*-algebras as
well as their C*-inductive limits are nuclear, i.e. their tensor product with any other
C*-algebra is unique. It should be noted, however, that the resolvent algebras are
not separable [4, Thm. 5.3]. With this remark we conclude our outline of pertinent
algebraic properties of the resolvent algebras.

2.4 Observables and Dynamics

The main virtue of the resolvent algebras consists of the fact that it includes
many observables of physical interest and admits non-trivial dynamics. In order
to illustrate this important feature we discuss in detail a familiar example of a finite
quantum system and comment on infinite systems at the end of this section.

Let .X; �/ be a finite dimensional symplectic space, i.e. dim.X/ D 2N for
some N 2 N. Since regular representations of the resolvent algebras are faithful,
cf. Proposition 2.3, it suffices to consider any regular irreducible representation
.�0;H0/ ofR.X; �/ (which is unique up to equivalence). Choosing some symplectic
basis fk; gk 2 X and putting Pk

:D ��0.fk/, Qk
:D ��0.gk/, k D 1; : : : N we

identify the self-adjoint operators fixed by the corresponding resolvents with the
momentum and position operators of N particles in one spatial dimension.

The (self-adjoint) quadratic Hamiltonian

H0
:D

NX

kD1

. 1
2mk

P 2
k C mk!2

k

2
Q2

k/
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describes the free, respectively oscillatory motion of these particles, where mk are
the particle masses and !k � 0 the frequencies of oscillation, k D 1; : : : N . The
interaction of the particles is described by the operator

V
:D

X

1�k<l�N

Vkl.Qk � Ql/

where we assume for simplicity that the potentials Vkl are real and continuous,
vanish at infinity, but are arbitrary otherwise. Since V is bounded, the Hamiltonian
H

:D H0 CV is self-adjoint on the domain of H0 and its resolvents are well defined.

Proposition 4.1 Let H be the Hamiltonian defined above. Then

.i�1 � H/�1 2 �0.R.X; �// ; � 2 Rnf0g :

Remark Since �0 is faithful its inverse ��1
0 W �0.R.X; �// ! R.X; �/ exists, so

this result shows that H is affiliated with the resolvent algebra. Note that this is
neither true for the Weyl algebra W.X; �/ nor for the corresponding twisted group
algebra K.H/ if one of the frequencies !k vanishes. Thus R.X; �/ contains many
more observables of physical interest than these conventional algebras.

Proof Let Xk � X be the two-dimensional subspaces spanned by the symplectic
pairs .fk; gk/, let �k

:D � � Xk � Xk and let .�k;Hk/ be regular irreducible
representations of R.Xk; �k/, k D 1; : : : N . Then �0

:D �1 ˝ � � � ˝ �N defines an
irreducible representation of the C*-tensor product R.X1; �1/˝� � �˝R.XN ; �N / on
the Hilbert space H0

:D H1 ˝� � �˝HN . It extends by regularity to the Weyl algebra
W.X; �/ ' W.X1; �1/ ˝ � � � ˝ W.XN ; �N / and hence to a regular representation
of R.X; �/, cf. Proposition 2.4.

One has H0k
:D .i�1 � 1

2mk
P 2

k � mk!2
k

2
Q2

k/�1 2 �k.R.Xk; �k//, k D 1; : : : N ,
disregarding tensor factors of 1. If !k > 0 this follows from the fact that the
resolvent of the harmonic oscillator Hamiltonian is a compact operator and hence
belongs to the compact ideal of �k.R.Xk; �k//, cf. Proposition 3.3. If !k D 0

one resorts to the fact that the abelian C*-algebra generated by the resolvents
.i�1 � Pk/�1, � 2 Rnf0g coincides with C0.Pk/, the algebra of all continuous
functions of Pk vanishing at infinity. Hence C0.Pk/ � �k.R.Xk; �k//. Since
.i�1 � 1

2mk
P 2

k /�1 2 C0.Pk/ the preceding statement holds also for !k D 0.

As is well known C0.RCN / D C0.RC/

N
‚ …„ ƒ˝ � � � ˝ C0.RC/ and it is also clear that

u1; : : : ; uN 7! .i� � u1 � � � � uN /�1 is an element of C0.RCN /. Since the resol-
vents of the positive self-adjoint operators H0k generate the abelian C*-algebras
C0.H0k/, k D 1; : : : ; N , it follows from continuous functional calculus that
.i�1 � H0/�1D�

i�1 � H01� � � � H0N

��12C0.H01/˝ � � � ˝C0.H0N /��0.R.X; �//.
Similarly, for the interaction potentials one uses the fact that the abelian C*-

algebras generated by the resolvents .i�1 � .Qk � Ql//
�1, � 2 Rnf0g coincide
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with C0.Qk � Ql/. So as Vkl 2 C0.R/, one also has that

V D
X

1�k<l�N

Vkl.Qk � Ql/ 2 �0.R.X; �//:

In summary one gets .1 � .i�1 � H0/
�1V / 2 �0.R.X; �//. Its inverse exists if

j�j > kV k and .i�1�H/�1 D .1�.i�1�H0/�1V /�1.i�1�H0/
�1 2 �0.R.X; �//

for such �. The statement for arbitrary � 2 Rnf0g then follows from the resolvent
equation for H , completing the proof.

As a matter of fact, the preceding proposition holds for a much larger class
of interaction potentials, including discontinuous ones. It does not hold, however,
for certain physically inappropriate Hamiltonians such as that of the anti-harmonic
oscillator [4, Prop. 6.3]. The characterization of all Hamiltonians which are affiliated
with resolvent algebras is an interesting open problem.

We turn now to the analysis of the dynamics induced by the Hamiltonians
given above. The exponentials of the quadratic Hamiltonians H0 induce symplectic
transformations, so one has .Ad eitH0 /.�0.R.X; �/// D �0.R.X; �// for t 2 R.
For the proof that the resolvent algebra is also stable under the adjoint action of
the interacting dynamics the crucial step consists of showing that the cocycles
�.t/ D eitHe�itH0 are elements of �0.R.X; �//. Putting V.t/ D .Ad eitH0 /.V / one
can present the cocycles in the familiar form of a Dyson series

�.t/ D 1 C
1X

nD1

in

Z t

0

dt1

Z t1

0

dt2 : : :

Z tn�1

0

dtn V .tn/ � � � V.t1/

and this series converges absolutely in norm since the operators V.t/ are uniformly
bounded. Moreover, the functions t 7! V.t/ have values in the algebra �0.R.X; �//;
but since they are only continuous in the strong operator topology it is not clear
from the outset that their integrals, defined in this topology, are still contained in
this algebra. Here again the specific structure of the resolvent algebra matters. It
allows to establish the desired result.

Proposition 4.2 Let H be the Hamiltonian defined above. Then

.Ad eitH /.�0.R.X; �/// D �0.R.X; �// ; t 2 R :

Remark Since �0 is faithful it follows from this result that ˛t
:D ��1

0 .Ad eitH /�0,
t 2 R defines a one-parameter group of automorphisms of R.X; �/. It should be
noted, however, that its action is not continuous in the strong (pointwise norm)
topology of R.X; �/.

Proof Let k; l 2 1; : : : ; N be different numbers, let .fk; gk/ and .fl ; gl / be
symplectic pairs as in the previous proof and let Xkl � X be the space spanned
by hkl.t/

:D ..cos !kt/ gk � .cos !l t/ gl C .sin !kt/=mk!k fk � .sin !l t/=ml!l fl /,
t 2 R, where we stipulate .sin !t/=! D t if ! D 0. This space is non-degenerate
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and, depending on the masses and frequencies, either two or four dimensional.
We put �kl

:D � � Xkl � Xkl. Let Vkl.t/
:D .Ad eitH0 /.Vkl.Qk � Ql//, where

Vkl.Qk � Ql/ is any one of the two-body potentials contributing to V . Then, for
any t 2 R,

Vkl.t/ D Vkl..cos !kt/Qk � .cos !lt/Ql C .sin !kt/=mk!kPk � .sin !lt/=ml !l Pl/

2 �0.R.Xkl; �kl// :

Now the function s1; : : : sd 7! Vkl.s1/ � � � Vkl.sd / is continuous in the strong
operator topology and, for almost all s1; : : : sd , an element of the compact ideal
of �0.R.Xkl; �kl//, provided d � dim.Xkl/. The latter assertion follows from the
fact that Vkl.s/ is, for given s, an element of the abelian C*-algebra generated by
the resolvents �0.R.�; hkl.s///, � 2 Rnf0g and that the compact ideal coincides
with the principal ideal of �0.R.Xkl; �kl// generated by �0.R.�1; h1/ � � � R.�d ; hd //

for any choice of �1; : : : �d 2 Rnf0g and of elements h1; : : : hd 2 Xkl which span

Xkl [2]. It is then clear that
� R t

0
ds Vkl.s/

�d D R t

0
ds1 � � � R t

0
dsd Vkl.s1/ � � � Vkl.sd / is

contained in the compact ideal of �0.R.Xkl; �kl//. But this is then also true for
the operator

R t

0
ds Vkl.s/ since it is self-adjoint. As k; l were arbitrary this impliesR t

0
dt1V .t1/ 2 �0.R.X; �//.
That all other terms in the Dyson series are elements of �0.R.X; �// is seen

by induction. Let In.t/
:D R t

0
dt1

R t1
0

dt2 : : :
R tn�1

0
dtn V .tn/ � � � V.t1/ 2 �0.R.X; �//,

t 2 R; then InC1.t/ D R t

0 dt1In.t1/V .t1/, where the integrals are defined in the
strong operator topology. Now t 7! In.t/ is continuous in norm, hence InC1.t/ can
be approximated according to

InC1.t/ D lim
J !1

JX

j D1

In. jt=J /

Z jt=J

.j �1/t=J

dt1V .t1/ ;

where the limit exists in the norm topology. Since each term in this sum is
an element of �0.R.X; �// according to the induction hypothesis it follows that
InC1.t/ 2 �0.R.X; �//. Because of the convergence of the Dyson series this implies
�.t/ 2 �0.R.X; �//, t 2 R, completing the proof of the statement.

Having illustrated the virtues of the resolvent algebras for finite systems we
discuss now the situation for infinite systems. There the results are far from being
complete, though promising. For the sake of concreteness we consider an infinite
dimensional symplectic space .X; �/ with a countable symplectic basis fk; gk 2 X ,
k 2 Z. Similarly to the case of finite systems one can analyze the observables
and dynamics associated with R.X; �/ in any convenient faithful representation
.�0;H0/, such as the Fock representation.

As before, we identify the self-adjoint operators fixed by the resolvents with the
momentum and position operators of particles, Pk

:D ��0.fk/, Qk
:D ��0.gk/,

k 2 Z. In view of Haag’s Theorem [8] it does not come as a surprise that global
observables, such as Hamiltonians having a unique ground state or the particle
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number operator are no longer affiliated with the resolvent algebras of such infinite
systems. In fact, one has the following general result [2].

Lemma 4.3 Let .X; �/ be an infinite dimensional symplectic space, let .�0;H0/ be
a faithful irreducible representation of R.X; �/ and let N be a (possibly unbounded)
self-adjoint operator on H0 with an isolated eigenvalue of finite multiplicity. Then
.i�1 � N /�1 … �0.R.X; �// for � 2 Rnf0g, i.e. N is not affiliated with R.X; �/.

Observables corresponding to finite subsystems of the infinite system are still
affiliated with R.X; �/. Relevant examples are the partial Hamiltonians of the form
given above,

Hƒ
:D

X

k2ƒ

. 1
2mk

P 2
k C mk!2

k

2
Q2

k/ C
X

k;l 2 ƒ

Vkl.Qk � Ql/ ;

where ƒ � Z is any finite set. By exactly the same arguments as in the proof
of Proposition 4.1 one can show that any such Hƒ is affiliated with R.X; �/.
Clearly, these Hamiltonians may have isolated eigenvalues, but these have infinite
multiplicity. By the preceding arguments one can also show that the resolvent
algebra is stable under the time evolution induced by the partial Hamiltonians.
Moreover, for suitable potentials the evolution converges to some global dynamics
in the limit ƒ % Z. The precise results are as follows.

Proposition 4.4 Let Hƒ, ƒ � Z be the partial Hamiltonians introduced above,
where Vkl are continuous functions tending to 0 at infinity, k; l 2 Z.

(a) Then .Ad eitHƒ / .�0.R.X; �/// D �0.R.X; �//, t 2 R.
(b) Let C; D be positive constants such that kVklk � C and Vkl D 0 for jk�l j � D,

k; l 2 Z. Then limƒ%Z .Ad eitHƒ /, t 2 R exists pointwise on �0.R.X; �// in
the norm topology.

A proof of this statement is given in [2]. It generalizes the results on a class of
models describing particles which are confined to the points of a one-dimensional
lattice by a harmonic pinning potential and interact with their nearest neighbors [4].
In the present more general form it also has applications to other models of physical
interest. These results provide evidence to the effect that the resolvent algebras are
an expedient framework also for the discussion of the dynamics of infinite systems.
Yet a full assessment of their power for the treatment of such systems requires
further analysis.

2.5 Conclusions

In the present survey we have outlined some recent structural results and instructive
applications of the theory of resolvent algebras. These algebras are built from the
resolvents of the canonical operators in quantum theory and their algebraic relations



44 D. Buchholz and H. Grundling

encode the basic kinematical features of quantum systems just as well as the Weyl
algebras. But, as we have shown, the novel approach cures several shortcomings of
this traditional algebraic setting.

The resolvent algebras comply with the condition that kinematical algebras of
quantum systems must have ideals if they are to carry various dynamics of physical
interest. This requirement can easily be inferred from the preceding arguments in
case of a single particle: there the cocycles �.t/ D eitHe�itH0 appearing in the
interaction picture have the property that the differences .�.t/ � 1/ are compact
operators for generic interaction potentials. Hence .eitHW e�itH � eitH0W e�itH0 / is
a compact operator for any choice of bounded operator W . It is then clear that any
unital C*-algebra which is stable under the action of these dynamics must contain
compact operators and consequently have ideals.

The resolvent algebras, respectively their subalgebras corresponding to finite
subsystems, contain these ideals from the outset. As we have demonstrated by
several physically significant examples, the ideals play a substantial role in the con-
struction of dynamics of finite and infinite quantum systems. For they accommodate
the terms in the Dyson expansion of the cocycles resulting from the interaction
picture and thereby entail the stability of the resolvent algebras under the action of
the perturbed dynamics. In order to cover a wider class of models it would, however,
be desirable to invent some more direct argument, avoiding this expansion and the
ensuing questions of convergence.

The ideals of the resolvent algebras also play a prominent role in their classifi-
cation. The nesting of primitive ideals encodes precise information about the size
of the underlying quantum system, i.e. its dimension. It is a complete algebraic
invariant in the finite dimensional case. There is also a sharp algebraic distinction
between finite and infinite quantum systems in terms of their minimal ideals.
In either case the resolvent algebras have comfortable algebraic properties: they
are nuclear, thereby allowing to form unambiguously tensor products with other
algebras which plays a role in the discussion of coupled systems.

In company with the resolvents of the canonical operators all their continuous
functions vanishing at infinity are contained in the resolvent algebras. This feature
ensures, as we have shown, that many operators of physical interest are affiliated
with the resolvent algebras. It also implies that these algebras contain multiplicative
mollifiers for unbounded operators which appear in the algebraic treatment of
supersymmetric models [3] or of constraint systems [4, 6]. Thus the resolvent
algebras provide in many respects a natural and convenient mathematical setting
for the discussion of finite and infinite quantum systems.
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