
Chapter 8
Shallow Shells

Shallow shells are open shells that have small curvatures (i.e. large radii of cur-
vatures compared with other shell parameters such as length and width). Vlasov
(1951) and Leissa (1973) describe a shallow shell as follows:

Consider a shell outlined in part by some surface and which is a thin-walled spatial
structure with a comparatively small rise above the plane covered by this structure. We call
such shells shallow. If, for example, a building which has a rectangular floor plan is covered
by a shell with a rise of not more than 1/5 of the smallest side of the rectangle lying in the
plane of the supporting points of the structure, then we class such a spatial structure in the
category of shallow shells.

These shells are sometimes referred to as curved plates. The general shell theory
given in Chap. 1 can be readily applied to shallow shells. However, the general shell
equations are rare complicated because the bending of a general shell is coupling with
its stretching. When a shell is shallow as previous described, certain additional
assumptions can be made to reduce the complexity in general shell equations con-
siderably. The resulting set of equations is referred to as shallow shell theory. The
development of the shallow shell theory is principally credited to, Leissa (1973),
Leissa et al. (1984) and Qatu (2004), etc. The classical shallow shell theories (CSST)
and shear deformation shallow shell theory (SDSST) are obtained by making fol-
lowing additional assumptions to the general shell theories (Qatu 2004):

1. The radii of curvature are very large compared to the inplane displacements (i.e.,
the curvature changes caused by the tangential displacement components u and
v are small in a shallow shell, in comparison with changes caused by the normal
component w). Also, the transverse shear forces are much smaller than the term
Ri∂Ni/∂i:

ui
Ri

� 1
Qi

Ri
� @Ni

@i
ð8:1Þ

where ui is either of the inplane displacement components u and v; Qi is either of
the shear forces Qα and Qβ; Ni is Nα, Nβ or Nαβ; and Ri is Rα, Rβ or Rαβ; The term
∂i indicates derivative with respect to either α or β;
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2. The deepness term (1 + z/Ri) is close to 1; where Ri can be Rα, Rβ or Rαβ;
3. The shell is shallow enough to be represented by the plane coordinate systems.

For the case of rectangular orthotropy, this leads to constant Lamé parameters.

It should be stressed that the shallow shell theories should be used for maximum
span to minimum radius ratio of 1/2 or less.

With the progress of composite materials, shallow shells constructed by com-
posite laminas are extensively used in many fields of modern engineering practices
requiring high strength-weight and stiffness-weight ratios such as aircraft structures,
space vehicles. A complete understanding of the bucking, bending, vibration and
other characteristics of these shells is of particular importance. Laminated shallow
shells can be formed as rectangular, triangular, trapezoidal, circular or any other
planforms and various types of curvatures such as singly-curved (e.g., cylindrical),
double-curved (e.g., spherical, hyperbolic paraboloidal) or other complex shapes
such as turbomachinery blades. In the context of this chapter, we consider lami-
nated shallow shells formed in rectangular planform with rectangular orthotropy, in
which the fibers in each layer to the planform being straight.

In recent decades, a huge amount of research efforts have been devoted to the
vibration analysis of laminated shallow shells. So far, some of the static and
dynamic behaviors of these shells with classical boundary conditions had being
presented precisely. Some research papers and articles oriented to such contribu-
tions may be found in following enumeration. Fazzolari and Carrera (2013)
developed a hierarchical trigonometric Ritz formulation for free vibration and
dynamic response analysis of doubly-curved anisotropic laminated shallow and
deep shells. Reddy and Asce (1984) presented the exact solutions of the equations
and fundamental frequencies for simply supported, doubly-curved, cross-ply lam-
inated shells. Khdeir and Reddy (1997) predicted free and force vibration of cross-
ply laminated composite shallow arches by a generalized modal approach. Qatu
(1995a) studied natural vibration of completely free laminated composite triangular
and trapezoidal shallow shells. Soldatos and Shu (1999) used the five-degrees-of-
freedom shallow shell theory in the stress analysis of cross-ply laminated plates and
shallow shell panels having a rectangular plan-form. Some other contributors in this
subject are Dogan and Arslan (2009), Ghavanloo and Fazelzadeh (2013), Kurpa
et al. (2010), Leissa and Chang (1996), Librescu et al. (1989a, b), Qatu (1995a, b,
1996, 2011), Qatu and Leissa (1991), Singh and Kumar (1996). More detailed and
systematic summarizations can be seen in the excellent monographs by Leissa
(1973), Qatu (2002a, b, 2004), Qatu et al. (2010), and Reddy (2003).

In this chapter, we consider vibration of thin and moderately thick laminated
shallow shells with general boundary conditions. Fundamental equations of thin
and thick shallow shells are presented in the first and second sections, respectively.
Then, numerous vibration results of thin and thick laminated shallow shells with
different boundary conditions, lamination schemes and geometry parameters are
given in the third section by using the SDSST and the modified Fourier series. The
results are obtained by applying the weak form solution procedure.
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Consider a laminated shallow shell in rectangular planform as shown in Fig. 8.1,
the length, width and thickness of the shell are represented by a, b and h,
respectively. The shell is shallow enough so that is can be represented by the
orthogonal Cartesian coordinate system (x, y and z). The laminated shallow shell is
characterized by its middle surface, which can be defined by (Qatu 2004):

z ¼ � 1
2

x2

Rx
þ xy
Rxy

þ y2

Ry

� �
ð8:2Þ

where Rx and Ry represent the radii of curvature in the x, y directions as depicted in
Fig. 8.1. Rxy is the corresponding radius of twist. In the present chapter, we focus on
the cases when Rx, Ry and Rxy are constants. In addition, the x and y coordinates are
conveniently oriented to be parallel to boundaries so that Rxy = ∞. The displace-
ments of the shell in the x, y and z directions are denoted by u, v and w, respectively.

In Fig. 8.2, shallow shells constructed as various types of curvatures are plotted.
It can be flat (i.e. Rx = Ry = Rxy = ∞), spherical (e.g., Rx/Ry > 0, Rxy = ∞), circular
cylindrical (e.g., Ry = Rxy = ∞) and hyperbolic paraboloidal (e.g., Rx/Ry < 0,
Rxy = ∞).

Considering the shallow shell in Fig. 8.1 and its Cartesian coordinate system, the
coordinates, characteristics of the Lamé parameters and radius of curvatures are:

a ¼ x b ¼ y A ¼ B ¼ 1 Ra ¼ Rx Rb ¼ Ry ð8:3Þ

The equations of shallow shells are a reduction of the general shell equations given
in Chap. 1 by substituting Eq. (8.3) into such shell equations.

8.1 Fundamental Equations of Thin Laminated
Shallow Shells

Fundamental equations of thin laminated shallow shells are given here by substi-
tuting Eq. (8.3) into the general thin shell equations developed in Sect. 1.2. Sim-
ilarly, the equations are given for the general dynamic analysis.
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Fig. 8.1 Schematic diagram
of laminated shallow shells
with rectangular planform
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8.1.1 Kinematic Relations

Substituting Eq. (8.3) into Eq. (1.7), the middle surface strains and curvature
changes of thin laminated shallow shells can be written in terms of middle surface
displacements. Taking Eq. (8.1) into consideration, they are given as:
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e0x ¼
@u
@x

þ w
Rx

; vx ¼ � @2w
@x2

e0y ¼
@v
@y

þ w
Ry

; vy ¼ � @2w
@y2

c0xy ¼
@u
@y

þ @v
@x

; vxy ¼ �2
@2w
@x@y

ð8:4Þ

where e0x , e
0
y and c0xy indicate the strains in middle surface; χx, χy and χxy are the

curvature changes. Thus, the liner strains in the kth layer space of a laminated
shallow shell can be defined as:

ex ¼ e0x þ zvx
ey ¼ e0y þ zvy

cxy ¼ c0xy þ zvxy

ð8:5Þ

where Zk < z < Zk+1. Zk and Zk+1 denote the distances from the top surface and the
bottom surface of the layer to the referenced middle surface, respectively.

8.1.2 Stress-Strain Relations and Stress Resultants

The stress-strain relations, force and moment resultants for thin laminated shallow
shells formed in rectangular planform are the same as those derived earlier for thin
laminated rectangular plates, see Eqs. (4.4) and (4.6).

8.1.3 Energy Functions

The strain energy (Us) of thin laminated shallow shells during vibration can be
defined in terms of middle surface strains, curvature changes and stress resultants as:

Us ¼ 1
2

Za

0

Zb

0

Nxe
0
x þ Nye

0
y þ Nxyc

0
xy

þMxvx þMyvy þMxyvxy

( )
dxdy ð8:6Þ

And the kinetic energy (T) of thin laminated shallow shells during vibration is:

T ¼ 1
2

Za

0

Zb

0

I0
@u
@t

� �2

þ @v
@t

� �2

þ @w
@t

� �2
( )

dxdy ð8:7Þ

where the inertia term I0 is given in Eq. (1.19). Suppose qx, qy and qz are the
external loads in the x, y and z directions, respectively. Thus, the external work can
be expressed as:
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We ¼
Za

0

Zb

0

qxuþ qyvþ qzw
� �

dxdy ð8:8Þ

The artificial spring boundary technique is adopted here to realize the general
boundary conditions of a thin shallow shell. Under the current framework, symbols
kuw, k

v
w, k

w
w and Kw

w (ψ = x0, y0, x1 and y1) are used to indicate the stiffness of the
boundary spring components at the boundaries x = 0, y = 0, x = a and y = b,
respectively, see Fig. 8.3. Thus, the deformation strain energy about the boundary
springs (Usp) can be defined as:

Usp ¼ 1
2

Zb
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2 þ Kw
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8.1.4 Governing Equations and Boundary Conditions

Substituting Eq. (8.3) into Eq. (1.28) and then simplifying the expressions and
taking Eq. (8.1) into consideration, the reduced governing equations of thin lami-
nated shallow shells are:

@Nx
@x þ @Nxy

@y þ qx ¼ I0 @2u
@t2

@Nxy

@x þ @Ny

@y þ qy ¼ I0 @2v
@t2
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@x2 þ 2 @2Mxy
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@y2 þ qz ¼ I0 @2w
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ð8:10Þ
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Substituting Eq. (8.4) and the stress resultants equations Eq. (4.6) into Eq. (8.10),
the governing equations of thin laminated shallow shells can be writing in matrix
form as:

L11 L12 L13
L21 L22 L23
L31 L32 L33

2
4

3
5� x2

�I0 0 0
0 �I0 0
0 0 �I0

2
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1
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v
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4

3
5 ¼

�px
�py
�pz

2
4

3
5 ð8:11Þ

The coefficients of the linear operator Lij are written as
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And according to Eqs. (1.29) and (1.30), the boundary conditions of thin shallow
shells are:

x ¼ 0 :

Nx þ Mx
Rx
� kux0u ¼ 0

Nxy þ Mxy

Ry
� kvx0v ¼ 0

Qx þ @Mxy

@y � kwx0w ¼ 0

�Mx � Kw
x0

@w
@x ¼ 0

8>>>>><
>>>>>:

x ¼ a :

Nx þ Mx
Rx
þ kux1u ¼ 0

Nxy þ Mxy

Ry
þ kvx1v ¼ 0

Qx þ @Mxy

@y þ kwx1w ¼ 0

�Mx þ Kw
x1

@w
@x ¼ 0

8>>>>><
>>>>>:

y ¼ 0 :

Nxy þ Mxy

Rx
� kuy0u ¼ 0

Ny þ My

Ry
� kvy0v ¼ 0

Qy þ @Mxy

@x � kwy0w ¼ 0

�My � Kw
y0

@w
@y ¼ 0

8>>>>><
>>>>>:

y ¼ 0 :

Nxy þ Mxy

Rx
þ kuy1u ¼ 0

Ny þ My

Ry
þ kvy1v ¼ 0

Qy þ @Mxy

@x þ kwy1w ¼ 0

�My þ Kw
y1

@w
@y ¼ 0

8>>>>><
>>>>>:

ð8:13Þ

In each boundary of thin laminated shallow shells, there exists 12 possible
classical boundary conditions. Taking boundaries x = constant for example, the
possible classical boundary conditions are given in Table 8.1, similar boundary
conditions can be obtained for boundaries y = constant.

Table 8.1 Possible classical
boundary conditions for thin
shallow shells at each
boundary of x = constant

Boundary type Conditions

Free boundary conditions

F Nx þ Mx
Rx

¼ Nxy þ Mxy

Ry
¼ Qx þ @Mxy

@y ¼ Mx ¼ 0

F2 u ¼ Nxy þ Mxy

Ry
¼ Qx þ @Mxy

@y ¼ Mx ¼ 0

F3 Nx þ Mx
Rx

¼ v ¼ Qx þ @Mxy

@y ¼ Mx ¼ 0

F4 u ¼ v ¼ Qx þ @Mxy

@y ¼ Mx ¼ 0

Simply supported boundary conditions

S u = v = w = Mx = 0

SD Nx þ Mx
Rx

¼ v ¼ w ¼ Mx ¼ 0

S3 u ¼ Nxy þ Mxy

Ry
¼ w ¼ Mx ¼ 0

S4 Nx þ Mx
Rx

¼ Nxy þ Mxy

Ry
¼ w ¼ Mx ¼ 0

Clamped boundary conditions

C u ¼ v ¼ w ¼ @w
@x ¼ 0

C2 Nx þ Mx
Rx

¼ v ¼ w ¼ @w
@x ¼ 0

C3 u ¼ Nxy þ Mxy

Ry
¼ w ¼ @w

@x ¼ 0

C4 Nx þ Mx
Rx

¼ Nxy þ Mxy

Ry
¼ w ¼ @w

@x ¼ 0
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8.2 Fundamental Equations of Thick Laminated Shallow
Shells

Like general thin shell theory, the classical shallow shell theory (CSST) is appli-
cable where the thickness is smaller than 1/20 of the smallest of the wave length
and/or radii of curvature (Qatu 2004). For thick shallow shells, the Kirchhoff
hypothesis should be relaxed and the shear deformation and rotary inertia should be
included in the formulation. Fundamental equations of thick laminated shallow
shells will be derived in this section. The following equations are derived from the
general shear deformation shell theory (SDST) described in Sect. 1.3 by imposing
Eq. (8.3) into those of general shells.

8.2.1 Kinematic Relations

As was done for general shells and plates, we assume that normals to the unde-
formed middle surface remain straight but do not normal to the deformed middle
surface and the shell inplane displacements are expanded in terms of shell thickness
of first order expansion. Thus, the displacement field of a thick shallow shell can be
expressed as

Uðx; y; zÞ ¼ uðx; yÞ þ z/x

Vðx; y; zÞ ¼ vðx; yÞ þ z/y

Wðx; y; zÞ ¼ wðx; yÞ
ð8:14Þ

where u, v and w are the middle surface displacements of the shallow shell in the
x, y and z directions, respectively, and ϕx and ϕy represent the rotations of transverse
normal respect to y- and x-axes. Substituting α = x, β = y into Eq. (1.33) and
deleting the z/Rα and z/Rβ terms, the normal and shear strains at any point in the
shallow shell then can be written in terms of middle surface strains and curvature
changes as:

ex ¼ e0x þ zvx; cxz ¼ c0xz
ey ¼ e0y þ zvy; cyz ¼ c0yz

cxy ¼ c0xy þ zvxy

ð8:15Þ
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Substituting Eq. (8.3) into Eq. (1.34) and taking Eq. (8.1) into consideration, the
middle surface strains and curvature changes are:

e0x ¼
@u
@x

þ w
Rx

; vx ¼
@/x

@x

e0y ¼
@v
@y

þ w
Ry

; vy ¼
@/y

@y

c0xy ¼
@v
@x

þ @u
@y

; vxy ¼
@/y

@x
þ @/x

@y

c0xz ¼
@w
@x

þ /x; c0yz ¼
@w
@y

þ /y

ð8:16Þ

The above equations constitute the fundamental strain-displacement relations of a
thick shallow shell formed in rectangular planform.

8.2.2 Stress-Strain Relations and Stress Resultants

The stress-strain relations and stress resultants for thick laminated shallow shells
formed in rectangular planform are the same as those derived earlier for thick
laminated rectangular plates, see Eqs. (4.19), (4.21) and (4.22).

8.2.3 Energy Functions

The strain energy (Us) of thick shallow shells during vibration can be defined as

Us ¼ 1
2

Za

0

Zb

0

Nxe
0
x þ Nye

0
y þ Nxye

0
xy þ Nyxe

0
yx þMxvx

þMyvy þMxyvxy þMyxvyx þ Qycyz þ Qxcxz

( )
dydx ð8:17Þ

And the corresponding kinetic energy function (T) is:

T ¼ 1
2

Za

0

Zb

0

I0 @u
@t

� �2þ2I1 @u
@t

@/x
@t þ I2

@/x
@t

	 
2
þI0 @v

@t

� �2
þ2I1 @v

@t
@/y

@t þ I2
@/y

@t

	 
2
þI0 @w

@t

� �2
8><
>:

9>=
>;dydx ð8:18Þ

The inertia terms Ii (i = 0, 1, 2) are written as in Eq. (1.52). Assuming the dis-
tributed external forces qx, qy and qz are in the x, y and z directions, respectively and
mx and my represent the external couples in the middle surface, thus, the work done
by the external forces and moments is
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We ¼
Za

0

Zb

0

qxuþ qyvþ qzwþ mx/x þ my/y

� �
dydx ð8:19Þ

As was done for thin laminated shallow shells, the artificial spring boundary
technique is adopted here to realize the general boundary conditions of thick
laminated shallow shells, in which three groups of linear springs (ku, kv, kw) and two
groups of rotational springs (Kx, Ky) are distributed uniformly along each shell
boundary artificially, see Fig. 8.4. Therefore, the deformation strain energy (Usp) of
the boundary springs during vibration can be written as:

Usp ¼ 1
2

Zb

0

kux0u
2 þ kvx0v

2 þ kwx0w
2 þ Kx

x0/
2
x þ Ky

x0/
2
y

h i
x¼0j

þ kux1u
2 þ kvx1v

2 þ kwx1w
2 þ Kx

x1/
2
x þ Ky

x1/
2
y

h i
x¼aj

8><
>:

9>=
>;dy

þ 1
2

Za

0

kuy0u
2 þ kvy0v

2 þ kwy0w
2 þ Kx

y0/
2
x þ Ky

y0/
2
y

h i
y¼0

��
þ kuy1u

2 þ kvy1v
2 þ kwy1w

2 þ Kx
y0/

2
x þ Ky

y0/
2
y

h i
y¼b

��
8><
>:

9>=
>;dx ð8:20Þ

where kuw, k
v
w, k

w
w , K

x
w and Ky

w (ψ = x0, y0, x1 and y1) represent the rigidities (per unit
length) of the boundary springs at the boundaries x = 0, y = 0, x = a and y = b,
respectively. In such case, the stiffness of the boundary springs can take any value
from zero to infinity to better model many real-world boundary conditions including
all the classical boundaries and the uniform elastic ones. For instance, the clamped
restraint condition is essentially obtained by setting the spring stiffness substantially
larger than the bending rigidity of the involved shallow shell (107 × D).

8.2.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thick laminated shallow shells
can be derived by the Hamilton’s principle in the same manner as described in

Middle surface

Kx

kv

kw

ku

W

V

U

Edge: x=a

Edge: y=b

Ky

Fig. 8.4 Boundary conditions of thick laminated shallow shells
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Sect. 1.2.4 or specializing from those of general thick shells. Substituting Eq. (8.3)
into Eq. (1.59) and taking Eq. (8.1) into consideration, the governing equations for
thick shallow shells are

@Nx
@x þ @Nxy

@y þ qx ¼ I0 @2u
@t2 þ I1

@2/x
@t2

@Nxy

@x þ @Ny

@y þ qy ¼ I0 @2v
@t2 þ I1

@2/y

@t2

� Nx
Rx
þ Ny

Ry

	 

þ @Qx

@x þ @Qy

@y þ qz ¼ I0 @2w
@t2

@Mx
@x þ @Mxy

@y � Qx þ mx ¼ I1 @2u
@t2 þ I2

@2/x
@t2

@Mxy

@x þ @My

@y � Qy þ my ¼ I1 @2v
@t2 þ I2

@2/y

@t2

ð8:21Þ

Furthermore, the above equations can be written in terms of displacements and
rotation components as

L11 L12 L13 L14 L15
L21 L22 L23 L24 L25
L31 L32 L33 L34 L35
L41 L42 L43 L44 L45
L51 L52 L53 L54 L55

2
6666664

3
7777775
� x2

M11

0

0

M41

0

0

M22

0

0

M52

0

0

M33

0

0

M14

0

0

M44

0

0

M25

0

0

M55

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

u

v

w

/x

/y

2
6666664

3
7777775

¼

�px
�py
�pz
�mx

�my

2
6666664

3
7777775

ð8:22Þ

The coefficients of the linear operator Lij are listed below

L11 ¼ @

@x
A11

@

@x
þ A16

@

@y

� �
þ @

@y
A16

@

@x
þ A66

@

@y

� �

L12 ¼ @

@x
A12

@

@y
þ A16

@

@x

� �
þ @

@y
A26

@

@y
þ A66

@

@x

� �

L13 ¼ @

@x
A11

Rx
þ A12

Ry

� �
þ @

@y
A16

Rx
þ A26

Ry

� �

L14 ¼ @

@x
B11

@

@x
þ B16

@

@y

� �
þ @

@y
B16

@

@x
þ B66

@

@y

� �

L15 ¼ @

@x
B12

@

@y
þ B16

@

@x

� �
þ @

@y
B26

@

@y
þ B66

@

@x

� �

L21 ¼ @

@x
A16

@

@x
þ A66

@

@y

� �
þ @

@y
A12

@

@x
þ A26

@

@y

� �
ð8:23Þ
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L22 ¼ @

@x
A26

@

@y
þ A66

@

@x

� �
þ @

@y
A22

@

@y
þ A26

@

@x

� �

L23 ¼ @

@x
A16

Rx
þ A26

Ry

� �
þ @

@y
A12

Rx
þ A22

Ry

� �

L24 ¼ @

@x
B16

@

@x
þ B66

@

@y

� �
þ @

@y
B12

@

@x
þ B26

@

@y

� �

L25 ¼ @

@x
B26

@

@y
þ B66

@

@x

� �
þ @

@y
B22

@

@y
þ B26

@

@x

� �

L31 ¼ � 1
Rx

A11
@

@x
þ A16

@

@y

� �
� 1
Ry

A12
@

@x
þ A26
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� �
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@y
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� �
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@y
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@
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� �
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þ A12

Ry

� �
� 1
Ry
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� �
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@x
A45
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@x

� �
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@y
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@

@y
þ A45

@
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� �
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@y

� �
� 1
Ry
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@x
þ B26
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@x
þ A45

@

@y
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@

@y
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@

@x
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@
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� �
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Ry

� �
� A45

@

@y
þ A55

@

@x

� �

L44 ¼ @

@x
D11

@

@x
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@y
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@y
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@

@x
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L54 ¼ @

@x
D16

@

@x
þ D66

@

@y

� �
þ @

@y
D12

@

@x
þ D26

@

@y

� �
� A45

L55 ¼ @

@x
D26

@

@y
þ D66

@

@x

� �
þ @

@y
D22

@

@y
þ D26

@

@x

� �
� A44

M11 ¼ M22 ¼ M33 ¼ �I0
M14 ¼ M41 ¼ M15 ¼ M51 ¼ �I1
M44 ¼ M55 ¼ �I2

And according to Eqs. (1.60), (1.61) and (8.3), the general boundary conditions of
thick shallow shells are

x ¼ 0 :

Nx � kux0u ¼ 0

Nxy � kvx0v ¼ 0

Qx � kwx0w ¼ 0

Mx � Kx
x0/x ¼ 0

Mxy � Ky
x0/y ¼ 0

8>>>>>><
>>>>>>:

x ¼ a :

Nx þ kux1u ¼ 0

Nxy þ kvx1v ¼ 0

Qx þ kwx1w ¼ 0

Mx þ Kx
x1/x ¼ 0

Mxy þ Ky
x1/y ¼ 0

8>>>>>><
>>>>>>:

y ¼ 0 :

Nyx � kuy0u ¼ 0

Ny � kvy0v ¼ 0

Qy � kwy0w ¼ 0

Myx � Kx
y0/x ¼ 0

My � Ky
y0/y ¼ 0

8>>>>>><
>>>>>>:

y ¼ 0 :

Nyx þ kuy1u ¼ 0

Ny þ kvy1v ¼ 0

Qy þ kwy1w ¼ 0

Myx þ Kx
y1/x ¼ 0

My þ Ky
y1/y ¼ 0

8>>>>>><
>>>>>>:

ð8:24Þ

For thick shallow shells, there exists 24 possible classical boundary conditions in
each boundary. The classification of the classical boundary conditions shown
in Table 4.2 for thick rectangular plates is applicable for thick shallow shells in
rectangular planform.

The classical boundary conditions of laminated shallow shells can be readily
realized by applying the artificial spring boundary technique. In this chapter, we
mainly consider the F, SD, S and C boundary conditions. Taking edge x = 0 for
example, the corresponding spring rigidities for the four classical boundary con-
ditions are given as in Eq. (4.30).

8.3 Vibration of Laminated Shallow Shells

Free vibration of laminated shallow shells formed on rectangular planforms with
general boundary conditions, arbitrary lamination schemes and various types of
curvatures will be considered, including shallow cylindrical, spherical and hyper-
bolic paraboloidal shells, see Fig. 8.2. Solutions in the framework of shear defor-
mation shallow shell theory (SDSST) will be presented.
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From Eq. (8.23), it is obvious that each displacements/rotation component of
thick laminated shallow shells is required to have up to the second derivatives.
Therefore, regardless of boundary conditions, each displacements/rotation compo-
nent of a laminated shallow shell is expressed as the proposed modified Fourier
series expansion in which several auxiliary functions are introduced to ensure and
accelerate the convergence of the series expansion:

uðx; yÞ ¼
XM
m¼0

XN
n¼0

Amn cos kmx cos knyþ
X2
l¼1

XN
n¼0

alnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

blmPlðyÞ cos kmx

vðx; yÞ ¼
XM
m¼0

XN
n¼0

Bmn cos kmx cos knyþ
X2
l¼1

XN
n¼0

clnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

dlmPlðyÞ cos kmx

wðx; yÞ ¼
XM
m¼0

XN
n¼0

Cmn cos kmx cos knyþ
X2
l¼1

XN
n¼0

elnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

flmPlðyÞ cos kmx

/xðx; yÞ ¼
XM
m¼0

XN
n¼0

Dmn cos kmx cos knyþ
X2
l¼1

XN
n¼0

glnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

hlmPlðyÞ cos kmx

/yðx; yÞ ¼
XM
m¼0

XN
n¼0

Emn cos kmx cos knyþ
X2
l¼1

XN
n¼0

ilnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

jlmPlðyÞ cos kmx

ð8:25Þ

where λm = mπ/a and λn = nπ/b. The auxiliary functions Pl (x) and Pl (y) are given in
Eqs. (4.32) and (4.33).

Like rectangular plates, each shallow shell formed on rectangular planforms has
four boundaries. Thus, for the sake of simplicity, a four-letter string is employed to
represent the boundary condition of a shallow shell, such as FCSSD identifies the
shell having F, C, S and SD boundary conditions at boundaries x = 0, y = 0, x = a,
y = b, respectively. Furthermore, for all numerical examples, unless otherwise
stated, the layers of the considered laminated shallow shells are of equal thickness
and made of the same composite material: E2 = 10 GPa, E1/E2 = open, μ12 = 0.25,
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G12 = 0.6E2, G13 = 0.6E2, G23 = 0.5E2 and ρ = 1,450 kg/m3. In addition, the natural
frequencies of the considered shells will be expressed by the non-dimensional
parameters as X ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E2h2

p
.

8.3.1 Convergence Studies and Result Verification

Table 8.2 shows the first six frequency parameters X ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E1h2

p
for com-

pletely free, [30°/−30°/−30°/30°] laminated graphite/epoxy shallow cylindrical,
spherical and hyperbolic paraboloidal shells with different truncation schemes (i.e.
M = N = 11, 12, 14, 15), respectively, together with results presented by Qatu (2004).

Table 8.2 Convergence of frequency parameters X ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E1h2

p
for [30°/−30°/−30°/30°]

laminated graphite/epoxy shallow cylindrical, spherical and hyperbolic paraboloidal shells

Ry/Rx B.C. M × N Mode number

1 2 3 4 5

0 FFFF 11 × 11 1.912 2.975 4.889 6.697 8.226

12 × 12 1.912 2.975 4.887 6.695 8.223

14 × 14 1.912 2.974 4.885 6.693 8.219

15 × 15 1.911 2.974 4.884 6.693 8.216

CCCC 11 × 11 15.38 15.91 19.71 21.86 24.21

12 × 12 15.38 15.91 19.70 21.85 24.20

14 × 14 15.38 15.90 19.69 21.85 24.19

15 × 15 15.38 15.89 19.69 21.85 24.18

1 FFFF 11 × 11 2.282 3.320 5.847 6.746 8.341

12 × 12 2.280 3.318 5.843 6.742 8.333

14 × 14 2.278 3.316 5.838 6.736 8.325

15 × 15 2.277 3.315 5.836 6.734 8.324

Qatu (2004) 2.283 3.323 5.871 6.781 8.394

CCCC 11 × 11 28.54 31.05 37.24 37.94 39.44

12 × 12 28.54 31.03 37.23 37.93 39.43

14 × 14 28.53 31.01 37.21 37.91 39.43

15 × 15 28.53 31.00 37.20 37.90 39.42

-1 FFFF 11 × 11 2.111 4.873 4.875 8.771 9.060

12 × 12 2.110 4.870 4.874 8.767 9.055

14 × 14 2.109 4.866 4.872 8.762 9.048

15 × 15 2.108 4.865 4.871 8.761 9.046

Qatu (2004) 2.115 4.882 4.887 8.809 9.106

CCCC 11 × 11 22.05 24.51 27.85 27.87 32.86

12 × 12 22.04 24.51 27.84 27.86 32.83

14 × 14 22.04 24.49 27.83 27.84 32.81

15 × 15 22.04 24.49 27.82 27.83 32.81
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The FFFF and CCCC boundary conditions are performed in the study. The geometry
and material constants of the layers of the considered shells are given as: b/a = 1, h/
a = 0.01, Ry/a = 2, E1 = 138 GPa, E2 = 8.96 GPa μ12 = 0.3, G12 = G13 = 7.1 GPa,
G23 = 3.9 GPa. It is obvious that the modified Fourier series solution converges
quickly. The maximum difference between the 11 × 11-term solutions and those of
15 × 15-term is less than 0.24 %. Based on this analysis, the truncated number of the
displacement expressions will be uniformly selected asM = N = 15 in all subsequent
calculations. Furthermore, by comparing with results published by Qatu (2004), we
can find a well agreement between the two results. The differences between these
two results are attributed a different shallow theory was used by Qatu (2004).

Table 8.3 shows the comparison of the fundamental parameters Ω for cross-ply
cylindrical, spherical and hyperbolic paraboloidal shallow shells with SDSDSDSD
boundary conditions and different curvature ratios (a/R). The shells are composed
of graphite/epoxy (E1/E2 = 15, μ12 = 0.25, G12 = G13 = G23 = 0.5E2) and having
geometry properties: a/b = 1, h/a = 0.1. The symmetric lamination [0°/90°/90°/0°]
and two asymmetric laminations [0°/90°] and [90°/0°] are used in the comparison.
“–” represents results that were not considered in the referential work. Curvature
ratios are varied from 0 (flat plate) to 0.5 (limit of shallow shell theory). The table
shows that the present solutions match very well with those reported by Qatu
(2004). Except the case of shallow cylindrical shell with [90°/0°] and curvature
ratio a/R = 0.5, the maximum differences between the two results are less than 1.12,
0.012 and 0.012 % for the shallow cylindrical, spherical and hyperbolic parabo-
loidal shells, respectively.

Table 8.4 shows the comparison of the fundamental parameters Ω for a three-
layered, [0°/90°/0°] shallow spherical shell with different boundary conditions and

Table 8.3 Comparison of the fundamental frequency parameters Ω for cross-ply cylindrical,
spherical and hyperbolic paraboloidal shallow shells with SDSDSDSD boundary conditions and
different curvature ratios

Ry/Rx a/Ry SDSST (Qatu 2004) Present

[0°/90°] [90°/0°] [0°/90°/90°/0°] [0°/90°] [90°/0°] [0°/90°/90°/0°]

0 0 8.1196 8.1196 10.972 8.1205 8.1205 10.972

0.1 8.1259 8.1448 10.987 8.1268 8.1602 10.987

0.2 8.1774 8.1538 11.032 8.1783 8.2454 11.032

0.5 8.5784 8.0831 11.334 8.5790 8.7529 11.335

+1 0 – 8.1196 10.972 8.1205 8.1205 10.972

0.1 – 8.2190 11.043 8.2199 8.2199 11.043

0.2 – 8.5084 11.252 8.5092 8.5092 11.253

0.5 – 10.249 12.572 10.249 10.249 12.571

−1 0 8.1196 8.1196 10.972 8.1205 8.1205 10.972

0.1 8.0785 8.1448 10.961 8.0794 8.1458 10.961

0.2 8.0223 8.1538 10.927 8.0233 8.1548 10.928

0.5 7.7739 8.0831 10.703 7.7748 8.0841 10.704
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curvature ratios (a/R). The shell having SD boundary conditions at the edges y = 0,
y = b and the other two edges having arbitrary boundary conditions. The shell is
formed on square planform and composed of composite layers having following
material and geometry parameters: a/b = 1, h/a = 0.1, E1/E2 = 25, μ12 = 0.25,
G12 = G13 = 0.5E2, G23 = 0.2E2. The state space solutions provided by Librescu
et al. (1989a) are selected as the benchmark solutions. Comparing the two results,
we can find that the current solutions match very well with the referential data. The
maximum difference between the two results is very small and less than 0.17 %.

8.3.2 Laminated Shallow Shells with General Boundary
Conditions

Table 8.5 shows the first four non-dimension frequency parameters Ω of a three-
layered, [0°/90°/0°] shallow cylindrical shell with different boundary conditions and
thickness-length ratios. Four different thickness-length ratios i.e. h/a = 0.01, 0.05,
0.1 and 0.15, corresponding to thin to thick shallow shells are performed in the
analysis. The shell parameters used are: a/b = 1, Rx = ∞, a/Ry = 0.1, E1/E2 = 15. It
can be seen from the table that the augmentation of the thickness-length ratio leads
to the decrease of the frequency parameters. Tables 8.6 and 8.7 show the similar
results for shallow spherical (a/Rx = a/Ry = 0.1) and hyperbolic paraboloidal
(a/Rx = 0.1, a/Ry = −0.1) shells, respectively. The similar observation can be seen in
the tables as well. In addition, comparing the three tables, it can be found that the
frequency parameters of the hyperbolic paraboloidal shell are higher than the
cylindrical and spherical ones. And the results of the shallow cylindrical shell are
the smallest. Furthermore, from Table 8.5, we can see that frequency parameters of

Table 8.4 Comparison of the fundamental frequency parameters Ω for a three-layered, [0°/90°/
0°] shallow spherical shell with different boundary conditions and curvature ratios

Theory a/Ry Boundary conditions

FSFS FSSS FSCS SSSS SSCS CSCS

Present 0 3.788 4.320 6.144 12.163 14.248 16.383

0.05 3.795 4.325 6.146 12.179 14.265 16.487

0.20 3.898 4.404 6.164 12.417 14.514 17.966

SDSST (Librescu et al.
1989a)

0 3.788 4.320 6.144 12.163 14.248 16.383

0.05 3.794 4.325 6.146 12.178 14.264 16.487

0.20 3.891 4.397 6.163 12.394 14.499 17.959

Difference (%) 0 0.01 0.01 0.01 0.00 0.00 0.00

0.05 0.02 0.00 0.01 0.01 0.01 0.00

0.20 0.17 0.16 0.01 0.19 0.11 0.04
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cylindrical shell with curved edge cantilevered (CFFF) are higher than those of
straight edge cantilevered (FFFC).

Influence of the fiber orientations on the modal frequencies of shallow shells is
also investigated. In Fig. 8.5, variations of the lowest three frequency parameters Ω
of certain single-layered ([ϑ]) shallow shells with various fiber orientations are
given. Three types of curvature considered in the study are: cylindrical (Rx = ∞,
a/Ry = 0.1), spherical (a/Rx = a/Ry = 0.1) and hyperbolic paraboloidal (a/Rx = 0.1,
a/Ry = −0.1). In each case, the fiber orientation ϑ is varies from 0° to 180° by an
increment of 10°. The shallow shells under consideration are assumed to be with
SDSDSDSD boundary conditions. The material constants and geometry parameters
of the laminas of the shallow shells are: b/a = 1, h/a = 0.05, E1/E2 = 15. Many
interesting characteristics can be observed from the figure. The first observation is
that all the subfigures are symmetrical about central line (i.e., ϑ = 90°). The second
observation is that the fundamental frequency parameter traces climb up and then
decline, and may reach their crests around ϑ = 45° (when ϑ is increased from 0° to
90°). The similar characteristics can be observed in the subfigure of the second
mode. However, for the third mode, the maximum frequency parameters may occur
around ϑ = 30° or ϑ = 60°. In addition, it is obvious that frequency parameters of the
shallow spherical shell are larger than the shallow cylindrical and hyperbolic
paraboloidal ones. Furthermore, since the length-to-radius ratio used in each case in
this investigation is small (a/R = 0.1), thus, the differences between these results are

Table 8.5 Frequency parameters Ω for a three-layered, [0°/90°/0°] shallow cylindrical shell with
different boundary conditions and thickness-length ratios (a/b = 1, Rx = ∞, a/Ry = 0.1, E1/E2 = 15)

h/a Mode Mode number

FCCC FFCC FFFC CFFF CCFF CCCF

0.01 1 21.441 5.3519 1.2520 4.7214 5.3519 25.358

2 23.308 11.164 3.1822 5.1009 11.164 28.704

3 33.542 23.718 7.8374 10.943 23.718 36.292

4 38.015 25.838 11.515 23.927 25.838 53.380

0.05 1 10.038 4.4519 1.2491 3.8493 4.4519 21.643

2 22.125 9.8673 3.1181 4.8754 9.8673 23.978

3 24.983 22.408 7.7257 10.495 22.408 32.230

4 33.952 22.695 11.156 21.836 22.695 48.200

0.10 1 8.8956 4.2056 1.2411 3.6585 4.2056 16.423

2 19.795 9.2023 3.0083 4.5636 9.2023 18.571

3 20.306 18.167 7.4109 9.8304 18.167 26.348

4 28.154 20.440 10.139 10.921 20.440 34.952

0.15 1 8.0767 3.9166 1.2282 3.4237 3.9166 12.584

2 16.565 8.4317 2.8750 4.1729 8.4317 14.695

3 17.212 14.606 6.9028 7.2807 14.606 21.834

4 23.254 17.471 6.9649 9.0797 17.471 25.490
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small as well. The maximum differences between the results of cylindrical and
spherical shallow shells, cylindrical and hyperbolic paraboloidal shallow shells,
spherical and hyperbolic paraboloidal shallow shells are less than 1.14, 0.61,
6.24 %, respectively.

Figure 8.6 performs the similar study for the shallow shells with CCCC
boundary conditions. The different observation is that the variation tendencies of
the fundamental modes decline firstly and then climb up. The minimum frequency
parameters may occur around ϑ = 45°. For the second mode, the frequency
parameters increase when ϑ increases from 0° to 40° and decrease when ϑ increases
from 50° to 90°. The variation tendencies of the third mode are the same as those in
Fig. 8.5. The figure also shows that the differences between the three results are
small due to the fact that a low length-to-radius ratio is used in this investigation.

Figure 8.7 shows the similar study for the shallow shells with SDSDSDSD
boundary conditions and a higher length-to-radius ratio, i.e., a/R = 0.2 (limit of the
shallow theory). The material and other geometry properties are the same as those
used in Figs. 8.6 and 8.7. The observations from this figure are the same as those of
Fig. 8.5. However, the maximum differences between the results of cylindrical and
spherical shallow shells, cylindrical and hyperbolic paraboloidal shallow shells,
spherical and hyperbolic paraboloidal shallow shells can be as many as 5.29, 6.50,
22.9 %, respectively. It is attributed to the effects of curvatures on the frequency
parameters of shallow shells are more significant when the length-to-radius ratio is

Table 8.6 Frequency parameters Ω for a three-layered, [0°/90°/0°] shallow spherical shell with
different boundary conditions and thickness-length ratios (a/b = 1, a/Rx = a/Ry = 0.1, E1/E2 = 15)

h/a Mode Mode number

FCCC FFCC FFFC CFFF CCFF CCCF

0.01 1 22.125 6.6469 2.4195 4.4589 6.6469 36.435

2 25.223 12.090 3.2764 5.0746 12.090 39.743

3 35.576 25.341 10.435 13.354 25.341 45.528

4 42.189 26.814 11.922 25.096 26.814 60.365

0.05 1 10.101 4.5350 1.3341 3.8447 4.5350 22.313

2 22.225 9.9327 3.1223 4.8711 9.9327 24.631

3 25.075 22.393 7.8779 10.657 22.393 32.715

4 34.138 22.832 11.170 21.583 22.832 48.537

0.10 1 8.9124 4.2279 1.2627 3.6560 4.2279 16.657

2 19.821 9.2191 3.0095 4.5592 9.2191 18.790

3 20.325 18.145 7.4477 9.8768 18.145 26.497

4 28.208 20.485 10.123 10.912 20.485 34.936

0.15 1 8.0840 3.9271 1.2375 3.4215 3.9271 12.723

2 16.570 8.4387 2.8757 4.1680 8.4387 14.818

3 17.223 14.587 6.9003 7.2788 14.587 21.912

4 23.280 17.503 6.9802 9.1028 17.503 25.477
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higher. The figure also shows that the variation tendency of each frequency
parameter of the cylindrical shallow shell is the same as the corresponding ones of
the spherical and hyperbolic paraboloidal shells. Comparing Figs. 8.5, 8.6 and 8.7,
it can be found that the influence of fiber orientations on the modal frequencies of
shallow shells vary with mode sequence and boundary conditions.

Effects of the fiber orientations on the frequency parameters and mode shapes of
laminated shallow shells are further reported. In Tables 8.8, 8.9 and 8.10, the lowest
four frequency parameters Ω of certain three-layered, [0°/ϑ/0°] shallow shells with
various boundary conditions and fiber orientations are presented. The aspect ratio is
chosen to be b/a = 1. The thickness-to-width ratio h/b = 0.1 is used in the calcu-
lation. As usual, the shallow cylindrical (Rx = ∞, a/Ry = 0.1), spherical (a/Rx =
a/Ry = 0.1) and hyperbolic paraboloidal (a/Rx = 0.1, a/Ry = −0.1) shells are con-
sidered in the study. The fiber direction angle ϑ is varied from 0° to 90° with an
increment of 30°. The layers of the shells are made of composite materials with
orthotropy ratio E1/E2 = 15. From Table 8.8, it can be noticed that the results of the
shell with FFCC boundary conditions equal to those of CCFF boundary conditions.
The similar observation can be seen from Tables 8.9 and 8.10 as well.

Figures 8.8, 8.9 and 8.10 give the first three contour plots of the mode shapes and
frequency parameters with various lamination angles for CFFF, single-layered [ϑ]
shallow cylindrical, spherical and hyperbolic paraboloidal shells, respectively. The
aspect ratio a/b = 1, thickness-to-length ratio h/a = 0.05 and orthotropy ratio

Table 8.7 Frequency parameters Ω for a three-layered, [0°/90°/0°] shallow hyperbolic
paraboloidal shell with different boundary conditions and thickness-length ratios (a/b = 1,
a/Rx = 0.1, a/Ry = −0.1, E1/E2 = 15)

h/a Mode Mode number

FCCC FFCC FFFC CFFF CCFF CCCF

0.01 1 22.736 4.935666 2.4375 4.3788 4.9357 36.722

2 26.242 14.70847 3.2710 5.0823 14.708 38.502

3 34.129 26.91862 10.876 15.157 26.919 44.979

4 39.603 27.18928 11.896 25.575 27.189 59.766

0.05 1 10.143 4.429413 1.3368 3.8471 4.4294 22.327

2 22.268 10.09015 3.1212 4.8706 10.090 24.564

3 25.002 22.46707 7.8884 10.750 22.467 32.691

4 34.013 22.82693 11.175 21.644 22.827 48.511

0.10 1 8.9240 4.19818 1.2634 3.6569 4.1982 16.662

2 19.834 9.264119 3.0085 4.5580 9.2641 18.769

3 20.302 18.163 7.4502 9.9013 18.163 26.492

4 28.166 20.48119 10.159 10.917 20.481 34.944

0.15 1 8.0894 3.912118 1.2379 3.4220 3.9121 12.726

2 16.558 8.461952 2.8748 4.1665 8.4620 14.807

3 17.230 14.59844 6.9054 7.2823 14.598 21.911

4 23.255 17.46116 6.9813 9.1142 17.461 25.483
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E1/E2 = 25 are used in the presentation. Mode shapes and frequency parameters are
shown for ϑ = 0, 30°, 60° and 90°. From the figures, we can find that when ϑ = 0, the
mode shapes of the shallow cylindrical, spherical and hyperbolic paraboloidal shells
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Fig. 8.5 The lowest three frequency parameters Ω of single-layered ([ϑ]) shallow shells with
SDSDSDSD boundary condition and various fiber orientations (b/a = 1, h/a = 0.05, a/R = 0.1)
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Fig. 8.6 The lowest three frequency parameters Ω of single-layered ([ϑ]) shallow shells with
CCCC boundary condition and different fiber orientations (b/a = 1, h/a = 0.05, a/R = 0.1)
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Fig. 8.7 The lowest three frequency parameters Ω of single-layered ([ϑ]) shallow shells with
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Table 8.8 Frequency parameters Ω for a three-layered, [0°/ϑ/0°] shallow cylindrical shell with
different boundary conditions and fiber orientations (a/b = 1, h/a = 0.1, Rx = ∞, a/Ry = 0.1,
E1/E2 = 15)

ϑ Mode Boundary conditions

FFFC FFCC FCCC CCCC CCCF CCFF CFFF

0° 1 1.0086 4.1935 7.6932 18.084 16.790 4.1935 3.7272

2 2.8658 8.2303 16.985 23.818 18.445 8.2303 4.6176

3 6.0857 17.494 20.188 34.495 24.372 17.494 8.8185

4 7.1446 18.539 26.655 36.670 28.413 18.539 11.145

30° 1 1.0255 4.2544 7.8266 18.081 16.690 4.2544 3.6999

2 3.0243 8.4954 17.287 24.067 18.506 8.4954 4.6980

3 6.1868 17.845 20.260 34.990 24.685 17.845 9.0384

4 8.2781 18.522 27.064 36.540 35.586 18.522 14.682

60° 1 1.1380 4.2553 8.4006 18.180 16.509 4.2553 3.6655

2 3.0852 9.0720 18.670 24.977 18.569 9.0720 4.6604

3 6.8488 18.270 20.334 36.237 25.658 18.270 9.5119

4 9.8179 19.325 27.760 37.001 35.157 19.325 13.338

90° 1 1.2411 4.2056 8.8956 18.288 16.423 4.2056 3.6585

2 3.0083 9.2023 19.795 25.634 18.571 9.2023 4.5636

3 7.4109 18.167 20.306 36.071 26.348 18.167 9.8304

4 10.139 20.440 28.154 38.556 34.952 20.440 10.921

Table 8.9 Frequency parameters Ω for a three-layered, [0°/ϑ/0°] shallow spherical shell with
different boundary conditions and fiber orientations (a/b = 1, h/a = 0.1, a/Rx = a/Ry = 0.1,
E1/E2 = 15)

ϑ Mode Boundary conditions

FFFC FFCC FCCC CCCC CCCF CCFF CFFF

0° 1 1.0154 4.2034 7.7061 18.405 17.124 4.2034 3.7246

2 2.8665 8.2380 17.010 24.060 18.756 8.2380 4.6131

3 6.1081 17.534 20.201 34.662 24.601 17.534 8.8466

4 7.1418 18.517 26.706 36.665 28.418 18.517 11.135

30° 1 1.0337 4.2659 7.8541 18.388 16.976 4.2659 3.6970

2 3.0252 8.5066 17.329 24.284 18.783 8.5066 4.6937

3 6.2174 17.892 20.297 35.138 24.887 17.892 9.0737

4 8.2752 18.510 27.144 36.544 35.579 18.510 14.641

60° 1 1.1525 4.2700 8.4395 18.439 16.748 4.2700 3.6627

2 3.0868 9.0865 18.706 25.148 18.803 9.0865 4.6564

3 6.8821 18.248 20.374 36.246 25.821 18.248 9.5526

4 9.8140 19.381 27.828 37.117 35.147 19.381 13.313

90° 1 1.2627 4.2279 8.9124 18.510 16.657 4.2279 3.6560

2 3.0095 9.2191 19.821 25.791 18.790 9.2191 4.5592

3 7.4477 18.145 20.325 36.068 26.497 18.145 9.8768

4 10.123 20.485 28.208 38.661 34.936 20.485 10.912
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are symmetrical with respect to the longitudinal center line. It is attributed to the
boundary conditions, geometry and material properties of the shallow shells under
consideration are symmetrical with respect to the longitudinal center line as well.
Furthermore, it is obviously that the maximum frequency parameters for the first,
second and third modes in each case occur at ϑ = 0, ϑ = 0 and ϑ = 30°, respectively.
The figures also show that that the node lines (i.e., lines with zero displacements) of
the mode shapes vary with respect to the fiber orientation. In addition, since the
length-to-radius ratio used in this investigation is small (a/R = 0.1), thus, the
differences between the frequency parameters are small as well.

Tables 8.11, 8.12 and 8.13 present the first four non-dimension frequency
parameters Ω of certain two-layered, angle-ply [45°/−45°] shallow cylindrical,
spherical and hyperbolic paraboloidal shells with different boundary conditions and
length-to-radius ratios, respectively. Four different length-to-radius ratios i.e. a/
R = 0.05, 0.1, 0.15 and 0.2, corresponding to considerably to slightly shallow shells
are performed in the analysis. The shells are formed in rectangular planform with
following geometry and material properties: a/b = 1/2, h/a = 0.1, E1/E2 = 15,
Rx = ∞ for shallow cylindrical shells, Ry = Rx for the spherical shells and Ry = −Rx

for the hyperbolic paraboloidal ones. Seven different boundary conditions, i.e.,

Table 8.10 Frequency parameters Ω for a three-layered, [0°/ϑ/0°] shallow hyperbolic parabo-
loidal shell with different boundary conditions and fiber orientations (a/b = 1, h/a = 0.1, a/Rx = 0.1,
a/Ry = −0.1, E1/E2 = 15)

ϑ Mode Boundary conditions

FFFC FFCC FCCC CCCC CCCF CCFF CFFF

0° 1 1.0157 4.1873 7.7187 18.386 17.124 4.1873 3.7256

2 2.8653 8.2775 17.026 24.050 18.738 8.2775 4.6122

3 6.1094 17.538 20.183 34.655 24.596 17.538 8.8732

4 7.1476 18.505 26.670 36.658 28.411 18.505 11.140

30° 1 1.0341 4.2485 7.8638 18.312 16.953 4.2485 3.6985

2 3.0238 8.5641 17.344 24.249 18.735 8.5641 4.6926

3 6.2200 17.904 20.263 35.119 24.861 17.904 9.1066

4 8.2838 18.501 27.099 36.529 35.567 18.501 14.653

60° 1 1.1531 4.2492 8.4234 18.363 16.743 4.2492 3.6641

2 3.0852 9.1477 18.718 25.127 18.763 9.1477 4.6551

3 6.8868 18.258 20.324 36.219 25.805 18.258 9.5801

4 9.8311 19.378 27.781 37.102 35.140 19.378 13.324

90° 1 1.2634 4.1982 8.9240 18.492 16.662 4.1982 3.6569

2 3.0085 9.2641 19.834 25.782 18.769 9.2641 4.5580

3 7.4502 18.163 20.302 36.060 26.492 18.163 9.9013

4 10.159 20.481 28.166 38.655 34.944 20.481 10.917
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FFFC, FFCC, FCCC, CCCC, CCCF, CCFF and CFFF are performed in the cal-
culation. It can be seen from the table that the augmentation of the length-to-radius
ratio leads to the increases of the frequency parameters. Table 8.11 also shows that
the results of shallow cylindrical shells cantilevered in the curved edge (CFFF) are
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Fig. 8.8 Mode shapes and frequency parameters for CFFF shallow cylindrical shells ([ϑ], a/b = 1,
h/a = 0.05, Rx = ∞, a/Ry = 0.1, E1/E2 = 25)
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higher than those of straight edge cantilevered (FFFC). From Table 8.12, it can be
noticed that the results for the spherical shells with FFCC boundary conditions
equal to those of CCFF boundary conditions. The similar observation can be seen
from Tables 8.10 and 8.13 as well.
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Fig. 8.9 Mode shapes and frequency parameters for CFFF shallow spherical shells ([ϑ], a/b = 1,
h/a = 0.05, a/Rx = a/Ry = 0.1, E1/E2 = 25)
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As the last case, parameter studies are carried out in Figs. 8.11 and 8.12 to
further investigate the effects of length-to-radius ratios a/Rx and a/Ry on the fre-
quency parameters Ω of laminated shallow shells. Figure 8.11 depicts the lowest
three frequency parameters Ω versus length-to-radius ratios a/Rx and a/Ry for a [0°/
90°] layered shallow shell with aspect ratio of a/b = 5 and CCCC boundary con-
ditions. The other shell parameters used in the study are: h/b = 0.1, E1/E2 = 15. It is
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Fig. 8.10 Mode shapes and frequency parameters for CFFF hyperbolic paraboloidal shallow
shells ([ϑ], a/b = 1, h/a = 0.05, a/Rx = 0.1, a/Ry = −0.1, E1/E2 = 25)
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Table 8.11 Frequency parameters Ω for two-layered, angle-ply [45°/−45°] shallow cylindrical
shells with different boundary conditions and length-to-radius ratios (a/b = 1/2, h/a = 0.1, Rx = ∞,
E1/E2 = 15)

a/Ry Mode Boundary conditions

FFFC FFCC FCCC CCCC CCCF CCFF CFFF

0.05 1 0.3640 2.0340 3.6812 10.195 9.1129 2.0340 1.5413

2 2.0500 4.4388 7.6647 13.482 11.007 4.4388 2.7424

3 2.2144 8.1038 11.116 18.452 14.501 8.1038 5.0423

4 3.5598 9.4052 13.149 23.372 19.455 9.4052 8.5097

0.10 1 0.3636 2.1008 3.8405 10.323 9.1883 2.1008 1.6328

2 2.0169 4.4927 7.6996 13.551 11.083 4.4927 2.7494

3 2.2112 8.1231 11.192 18.484 14.542 8.1231 5.0531

4 3.5724 9.4414 13.162 23.406 19.473 9.4414 8.5117

0.15 1 0.3629 2.2068 4.0909 10.532 9.3066 2.2068 1.7725

2 1.9665 4.5838 7.7572 13.666 11.212 4.5838 2.7610

3 2.2049 8.1551 11.317 18.536 14.611 8.1551 5.0715

4 3.5903 9.5079 13.185 23.463 19.503 9.5079 8.5150

0.20 1 0.3620 2.3364 4.4152 10.819 9.4581 2.3364 1.9466

2 1.9036 4.7125 7.8367 13.825 11.398 4.7125 2.7771

3 2.1953 8.1996 11.488 18.609 14.708 8.1996 5.0981

4 3.6104 9.6029 13.218 23.542 19.545 9.6029 8.5196

Table 8.12 Frequency parameters Ω for two-layered, angle-ply [45°/−45°] shallow spherical
shells with different boundary conditions and length-to-radius ratios (a/b = 1/2, h/a = 0.1, Ry = Rx,
E1/E2 = 15)

a/Ry Mode Boundary conditions

FFFC FFCC FCCC CCCC CCCF CCFF CFFF

0.05 1 0.3645 2.0354 3.6866 10.290 9.1764 2.0354 1.5399

2 2.0508 4.4309 7.6754 13.543 11.072 4.4309 2.7416

3 2.2162 8.1005 11.130 18.488 14.546 8.1005 5.0389

4 3.5581 9.4006 13.161 23.374 19.483 9.4006 8.5105

0.10 1 0.3655 2.1093 3.8597 10.694 9.4250 2.1093 1.6277

2 2.0196 4.4727 7.7416 13.793 11.347 4.4727 2.7464

3 2.2188 8.1290 11.246 18.626 14.720 8.1290 5.0392

4 3.5660 9.4297 13.211 23.415 19.582 9.4297 8.5143

0.15 1 0.3671 2.2279 4.1272 11.334 9.7832 2.2279 1.7618

2 1.9718 4.5443 7.8480 14.198 11.816 4.5443 2.7543

3 2.2222 8.1815 11.432 18.854 15.009 8.1815 5.0396

4 3.5769 9.4847 13.295 23.483 19.747 9.4847 8.5199

0.20 1 0.3692 2.3752 4.4659 12.168 10.196 2.3752 1.9296

2 1.9115 4.6421 7.9895 14.744 12.482 4.6421 2.7652

3 2.2259 8.2561 11.680 19.168 15.409 8.2561 5.0396

4 3.5886 9.5615 13.415 23.578 19.976 9.5615 8.5260

300 8 Shallow Shells



seen that each frequency parameter Ω of the shell increases with the increments of
length-to-radius ratios a/Rx or a/Ry. The figure also shows that the effects of length-
to-radius ratios a/Rx and a/Ry on the frequency parameters Ω of laminated shallow
shells vary with mode sequence.

Figure 8.12 shows the similar study for the shallow shell with aspect ratio of
a/b = 1. The figure shows that the fundamental frequency parameter Ω of the shell
increases with the increase of length-to-radius ratios a/Rx or a/Ry. However, for the
second mode, the maximum and minimum frequency parameters occur at
a/Rx = 0.2, a/Ry = −0.2 and a/Rx = 0, a/Ry = 0.2, respectively. And for the third
mode, the minimum and maximum frequency parameters occur at a/Rx = a/Ry = 0
(plate) and a/Rx = a/Ry = 0.2 (spherical curvature), respectively. Figures 8.11 and
8.12 also reveal that the effects of length-to-radius ratios on the vibration charac-
teristics of shallow shells vary with aspect ratios.

Table 8.13 Frequency parameters Ω for two-layered, angle-ply [45°/−45°] shallow hyperbolic
paraboloidal shells with different boundary conditions and length-to-radius ratios (a/b = 1/2,
h/a = 0.1, Ry = −Rx, E1/E2 = 15)

a/Rx Mode Boundary conditions

FFFC FFCC FCCC CCCC CCCF CCFF CFFF

0.05 1 0.3650 2.0546 3.6876 10.178 9.1143 2.0546 1.5421

2 2.0492 4.4454 7.6736 13.476 11.005 4.4454 2.7422

3 2.2213 8.1058 11.111 18.454 14.503 8.1058 5.0559

4 3.5615 9.4232 13.155 23.370 19.460 9.4232 8.5239

0.10 1 0.3677 2.1351 3.8650 10.258 9.1955 2.1351 1.6340

2 2.0144 4.5292 7.7353 13.531 11.070 4.5292 2.7488

3 2.2381 8.1494 11.170 18.491 14.548 8.1494 5.1079

4 3.5788 9.4751 13.189 23.400 19.492 9.4751 8.5679

0.15 1 0.3718 2.2438 4.1437 10.389 9.3293 2.2438 1.7680

2 1.9620 4.6741 7.8368 13.621 11.179 4.6741 2.7593

3 2.2633 8.2275 11.269 18.551 14.624 8.2275 5.1953

4 3.6036 9.5554 13.245 23.450 19.546 9.5554 8.6406

0.20 1 0.3773 2.3628 4.5045 10.571 9.5130 2.3628 1.9247

2 1.8974 4.8796 7.9764 13.746 11.330 4.8796 2.7734

3 2.2949 8.3391 11.405 18.636 14.730 8.3391 5.3187

4 3.6320 9.6628 13.324 23.520 19.621 9.6628 8.7404
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Fig. 8.11 The lowest three frequency parameters Ω versus length-to-radius ratios a/Rx and a/Ry

for a [0°/90°] layered shallow shell with aspect ratio of a/b = 5
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Fig. 8.12 The lowest three frequency parameters Ω versus length-to-radius ratios a/Rx and a/Ry

for a [0°/90°] layered shallow shell with aspect ratio of a/b = 1
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