
Chapter 6
Conical Shells

Conical shells are another special type of shells of revolution. The middle surface of
a conical shell is generated by revolving a straight line (generator line) around an
axis that is not paralleled to the line itself. Conical shells can have different geo-
metrical shapes. This chapter is organizationally limited to conical shells (both the
closed shells and the open ones) having circular cross-sections. In this type of
conical shells, the generator line rotates about a fixed axis and results in a constant
vertex half-angle angle (φ) with respect to the axis. Specially, the vertex half-angle
angle may be equal to zero or 90° (π/2). In the first case, the cylindrical shells
discussed in Chap. 5 will be obtained. Thus, cylindrical shells can be viewed as a
special type of the conical shells, and conical shells have all the classifying
parameters of the cylindrical shells (Leissa 1973). For the second case, the gen-
erator line is vertical to the axis, and the special case of circular plates is obtained.

Laminated conical shells are also one of the important structural components
which are widely used in naval vessels, missiles, spacecrafts and other cutting-edge
engineering fields. The vibration analysis of them is often required and has always
been one important research subject in these fields (Civalek 2006, 2007, 2013; Lam
et al. 2002; Ng et al. 2003; Shu 1996; Tong 1993, 1994a, b; Tornabene 2011;
Viswanathan et al. 2012; Wu and Lee 2011; Wu and Wu 2000). However, com-
paring with the cylindrical shells and the circular plates, relatively little literature is
available regarding the conical shells due to the fact that the conical coordinate
system is function of the meridional direction and the equations of motion for
conical shells consist of a set of partial differential equations with variable
coefficients.

This chapter is focused on vibration analysis of laminated conical shells with
general boundary conditions. Equations of conical shells on the basis of the clas-
sical shell theory (CST) and the shear deformation shell theory (SDST) are pre-
sented in the first and second sections, respectively, by substituting the proper Lamé
parameters of conical shells in the general shell equations (see Chap. 1). Then, in
the framework of SDST, numerous vibration results of laminated closed and open
conical shells with different boundary conditions, lamination schemes and geometry
parameters are given in the third and fourth sections by using the modified Fourier
series and the weak form solution procedure.
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As shown in Fig. 6.1, a general laminated open conical shell with length L, vertex
half-angle angle φ, total thickness h, circumferential included angle θ0, small edge
radius R0 and large edge radius R1 is selected as the analysis model. The middle
surface of the conical shell where an orthogonal coordinate system (x, θ and z)
is fixed is taken as the reference surface, in which the x co-ordinate is measured
along the generator of the cone starting at the vertex and the θ and z co-ordinates are
taken in the circumferential and radial directions, respectively. The middle surface
displacements of the conical shell in the x, θ and z directions are denoted by u, v and
w, respectively. The conical shell is assumed to be composed of arbitrary number of
liner orthotropic laminas which are bonded together rigidly. The mean radius of the
conical shell at any point x along its length can be written as:

R ¼ x sinu ð6:1Þ

Considering the conical shell in Fig. 6.1 and its conical coordinate system, the
coordinates, characteristics of the Lamé parameters and radii of curvatures are:

a ¼ x; b ¼ h; A ¼ 1; B ¼ x sinu; Ra ¼ 1; Rb ¼ x tanu ð6:2Þ

6.1 Fundamental Equations of Thin Laminated
Conical Shells

Closed conical shells can be defined as a special case of open conical shells having
circumferential included angle of 2π (360°). We will first derive the fundamental
equations for thin open conical shells. The equations are formulated for the general
dynamic analysis by substituting Eq. (6.2) into the general classical shell equations
developed in Sect. 1.2. It can be readily specialized to the static and free vibration
analysis.
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6.1.1 Kinematic Relations

Substituting Eq. (6.2) into Eq. (1.7), the middle surface strains and curvature
changes of conical shells can be specialized from those of general thin shells. They
are formed in terms of the middle surface displacements as:

e0x ¼ @u
@x vx ¼ � @2w

@x2

e0h ¼ @v
xs@h þ u

x þ w
xt vh ¼ c@v

x2s2@h � @2w
x2s2@h2

� @w
x@x

c0xh ¼ @v
@x þ @u

xs@h � v
x vxh ¼ @v

xt@x � 2v
x2t � 2@2w

xs@x@h þ 2@w
x2s@h

and s ¼ sinu c ¼ cosu t ¼ tanu

ð6:3Þ

where e0x , e
0
h and c0xh denote the normal and shear middle surface strains. χx, χθ and

χxθ are the corresponding curvature and twist changes. Then, the state of strain at an
arbitrary point in the kth layer of a laminated conical shell can be written as:

ex ¼ e0x þ zvx
eh ¼ e0h þ zvh
cxh ¼ c0xh þ zvxh

ð6:4Þ

where Zk+1<z < Zk. And Zk+1 and Zk denote the distances from the top surface and
bottom surface of the layer to the referenced middle surface, respectively.

6.1.2 Stress-Strain Relations and Stress Resultants

For laminated conical shells made of composite layers, the well-known stress-strain
relations are given as in Eq. (5.4). It should be noted that the materials considered in
this chapter are restricted to conical orthotropy. Substituting Eq. (6.2) into Eq. (1.14),
the force and moment resultants of the conical shell can be obtained in terms of the
middle surface strains and curvature changes as
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ð6:5Þ

where Nx, Nθ and Nxθ are the normal and shear force resultants and Mx, Mθ and Mxθ

denote the bending and twisting moment resultants. The stiffness coefficients Aij,
Bij, and Dij are written as in Eq. (1.15).
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6.1.3 Energy Functions

The strain energy function of thin laminated conical shells during vibration can be
written in terms of the middle surface strains, curvature changes and stress resultants
as:

Us ¼ 1
2

Z
x

Z
h

Nxe0x þ Nhe0h þ Nxhc0xh
þMxvx þMhvh þMxhvxh

� �
xsdhdx ð6:6Þ

Substituting Eqs. (6.3) and (6.5) into Eq. (6.6), the strain energy functions of the
shells can be written in terms of middle surface displacements. The corresponding
kinetic energy (T) of the conical shells during vibration can be written as:

T ¼ 1
2

Z
x

Z
h

I0
@u
@t

� �2

þ @v
@t

� �2

þ @w
@t

� �2
( )

xsdhdx ð6:7Þ

where the inertia term I0 is the same as in Eq. (1.19). Suppose qx, qθ and qz are the
external loads in the x, θ and z directions, respectively. Thus, the external work can
be expressed as:

We ¼
Z
x

Z
h

qxuþ qhvþ qzwf gRdxdh ð6:8Þ

The same as usual, the general boundary conditions of a conical shell are
implemented by using the artificial spring boundary technique. Letting symbols kuw,
kvw, k

w
w and Kw

w (ψ = x0, θ0, x1 and θ1) to indicate the stiffness of the boundary springs
at the boundaries R = R0, θ = 0, R = R1 and θ = θ0, respectively, thus, the deformation
strain energy stored in the boundary springs (Usp) during vibration can be defined as:

Usp ¼ 1
2

Z
h

x kux0u
2 þ kvx0v

2 þ kwx0w
2 þ Kx

x0 @w=@xð Þ� �
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( )
sdh

þ 1
2

Z
x
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h¼0j
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2 þ kvh1v

2 þ kwh1w
2 þ Kx

h1 @w=xs@hð Þ� �
h¼h0j

( )
dx

ð6:9Þ

6.1.4 Governing Equations and Boundary Conditions

Substituting Eq. (6.2) into Eq. (1.28) and then simplifying the expressions, the
resulting governing equations for conical shells are:
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where Qx and Qθ are defined as

Qx ¼ @Mx

@x
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x
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x

ð6:11Þ

Substituting Eqs. (6.3), (6.5) and (6.11) into Eq. (6.10) yields the governing
equations in terms of displacements as:
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The coefficients of the linear operator Lij are written as
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x
B22
xt � D12

@2

@x2 þ D22
x

@2

xs2@h2
þ @

@x


 �
� D26

xs
2@2

@x@h � 2@
x@h


 �
 �

0
BBBBBBBB@

1
CCCCCCCCA

þ 1
x

@
@x

B12
xt � D11

@2

@x2 þ D12
x

@2

xs2@h2
þ @

@x


 �
� D16

xs
2@2

@x@h � 2@
x@h


 �
 �
þ 1

xs
@
@h

B26
xt � D16

@2

@x2 þ D26
x

@2

xs2@h2
þ @

@x


 �
� D66

xs
2@2

@x@h � 2@
x@h


 �
 �
þ 1

x
B12
xt � D11

@2

@x2 þ D12
x

@2

xs2@h2
þ @

@x


 �
� D16

xs
2@2

@x@h � 2@
x@h


 �
 �
� 1

x
B22
xt � D12

@2

@x2 þ D22
x

@2

xs2@h2
þ @

@x


 �
� D26

xs
2@2

@x@h � 2@
x@h


 �
 �

0
BBBBBBBB@

1
CCCCCCCCA

þ 1
xs

@

@h

1
xs

@
@h

B22
xt � D12

@2

@x2 þ D22
x

@2

xs2@h2
þ @

@x


 �
� D26

xs
2@2

@x@h � 2@
x@h


 �
 �
þ @

@x
B26
xt � D16

@2

@x2 þ D26
x

@2

xs2@h2
þ @

@x


 �
� D66

xs
2@2
@x@h � 2@

x@h


 �
 �
þ 2

x
B26
xt � D16

@2

@x2 þ D26
x

@2

xs2@h2
þ @

@x


 �
� D66

xs
2@2

@x@h � 2@
x@h


 �
 �

0
BBBB@

1
CCCCA ð6:13Þ

The above equations show the level of complexity in solving the governing
equations of a general laminated conical shell. When a conical shell is laminated
symmetrically with respect to its middle surface, the constants Bij equal to zero, and,
hence the equations are much simplified. Substituting Eq. (6.2) into Eqs. (1.29) and
(1.30), the general boundary conditions of thin conical shells are:

R ¼ R0:

Nx � kux0u ¼ 0

Nxh þ cMxh
R0

� kvx0v ¼ 0

Qx þ @Mxh
R0@h

� kwx0w ¼ 0

�Mx � Kw
x0

@w
@x ¼ 0

8>>>><
>>>>:

R ¼ R1:

Nx þ kux1u ¼ 0

Nxh þ cMxh
R1

þ kvx1v ¼ 0

Qx þ @Mxh
R1@h

þ kwx1w ¼ 0

�Mx þ Kw
x1

@w
@x ¼ 0

8>>>><
>>>>:

h ¼ 0:

Nxh � kuh0u ¼ 0

Nh þ cMh
R0

� kvh0v ¼ 0

Qh þ @Mxh
@x � kwh0w ¼ 0

�Mh � Kw
h0

@w
R0@h

¼ 0

8>>>><
>>>>:

h ¼ h0:

Nxh þ kuh1u ¼ 0

Nh þ cMh
R1

þ kvh1v ¼ 0

Qh þ @Mxh
@x þ kwh1w ¼ 0

�Mh þ Kw
h1

@w
R1@h

¼ 0

8>>>><
>>>>:

ð6:14Þ

Alternately, the governing equations and boundary conditions of thin laminated
conical shells can be obtained by the Hamilton’s principle in the same manner as
described in Sect. 1.2.4.
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Thin conical shells can have up to 12 possible classical boundary conditions at
each edge. This yields a numerous combinations of boundary conditions, particular
for open conical shells. The possible combinations for each classical boundary
conditions at boundary R = R0 are given in Table 6.1. Similar boundary conditions
can be obtained for the other three boundaries (i.e., R = R1, θ = 0 and θ = θ0).

6.2 Fundamental Equations of Thick Laminated
Conical Shells

The fundamental equations of thin laminated conical shells presented in the pre-
vious section are based on the CST and are applicable only when the total thickness
of a shell is smaller than 1/20 of the smallest of the wave lengths and/or radii of
curvature (Qatu 2004) due to the fact that both shear deformation and rotary inertia
are neglected in the formulation. Fundamental equations of thick laminated conical
shells will be derived in this section. As usual, the equations that follow are a
specialization of the general first-order shear deformation shell theory (see
Sect. 1.3) to those of thick laminated conical shells.

Table 6.1 Possible classical boundary conditions for thin laminated conical shells at boundary
R = R0

Boundary type Conditions

Free boundary conditions

F Nx ¼ Nxh þ cMxh
R0

¼ Qx þ @Mxh
R0@h

¼ Mx ¼ 0

F2 u ¼ Nxh þ cMxh
R0

¼ Qx þ @Mxh
R0@h

¼ Mx ¼ 0

F3 Nx ¼ v ¼ Qx þ @Mxh
R0@h

¼ Mx ¼ 0

F4 u ¼ v ¼ Qx þ @Mxh
R0@h

¼ Mx ¼ 0

Simply supported boundary conditions

S u ¼ v ¼ w ¼ Mx ¼ 0

SD Nx ¼ v ¼ w ¼ Mx ¼ 0

S3 u ¼ Nxh þ cMxh
R0

¼ w ¼ Mx ¼ 0

S4 Nx ¼ Nxh þ cMxh
R0

¼ w ¼ Mx ¼ 0

Clamped boundary conditions

C u ¼ v ¼ w ¼ @w
@x ¼ 0

C2 Nx ¼ v ¼ w ¼ @w
@x ¼ 0

C3 u ¼ Nxh þ cMxh
R0

¼ w ¼ @w
@x ¼ 0

C4 Nx ¼ Nxh þ cMxh
R0

¼ w ¼ @w
@x ¼ 0
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6.2.1 Kinematic Relations

On the basis of the assumptions of the SDST, the displacement field of a conical
shell is expressed in terms of the middle surface displacements and rotation com-
ponents as

Uðx; h; zÞ ¼ uðx; hÞ þ z/x

Vðx; h; zÞ ¼ vðx; hÞ þ z/h

Wðx; h; zÞ ¼ wðx; hÞ
ð6:15Þ

where u, v and w are the middle surface displacements of the shell in the x, θ and
z directions, respectively, and ϕx and ϕθ represent the rotations of the transverse
normal respect to θ- and x-axes.

Specializing Eqs. (1.33) and (1.34) to those of conical shells, the normal and
shear strains at any point of the shell space can be defined as:

ex ¼ e0x þ zvx

eh ¼ 1
1þ z=Rhð Þ e0h þ zvh

� 	
cxh ¼ c0xh þ zvxh

� 	þ 1
1þ z=Rhð Þ c0hx þ zvhx

� 	
cxz ¼ c0xz

chz ¼
c0hz

1þ z=Rhð Þ

ð6:16Þ

where e0x , e
0
h, c

0
xh and c0hx are the normal and shear strains. χx, χθ, χxθ and χθx denote

the curvature and twist changes; c0xz and c0hz represent the transverse shear strains.
They are defined in terms of the middle surface displacements and rotation com-
ponents as:

e0x ¼
@u
@x

vx ¼
@/x

@x

e0h ¼
@v
xs@h

þ u
x
þ w
xt

vh ¼
@/h

xs@h
þ /x

x

c0xh ¼
@v
@x

vxh ¼
@/h

@x

c0hx ¼
@u
xs@h

� v
x

vxh ¼
@/x

xs@h
� /h

x

c0xz ¼
@w
@x

þ /x c0hz ¼
@w
xs@h

� v
xt
þ /h

ð6:17Þ
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6.2.2 Stress-Strain Relations and Stress Resultants

The stress-strain relations derived earlier for the thick cylindrical shells [i.e.,
Eq. (5.20)] are applicable for the conical shells. Substituting Eq. (6.2) into (1.40),
the force and moment resultants of a thick conical shell can be obtained by fol-
lowing integration operation:

Nx

Nxh

Qx

2
4

3
5 ¼ Rh=2

�h=2

rx
sxh
sxz

2
4

3
5 1þ z

Rh


 �
dz

Nh

Nhx

Qh

2
4

3
5 ¼ Rh=2

�h=2

rh
shx
shz

2
4

3
5dz

Mx

Mxh

� 
¼ Rh=2

�h=2

rx
sxh

� 
1þ z

Rh


 �
zdz

Mh

Mhx

� 
¼ Rh=2

�h=2

rh
shx

� 
zdz

ð6:18Þ

Since the radius of curvature Rθ is a function of the x coordinate, thus, the resulting
stiffness parameters will be functions of the x coordinate. This will results in much
complexity in equations of thick conical shells. Qatu (2004) suggested taking the
average curvature of the conical shells when using these equations. Figures 3.7 and
3.8 showed that the effects of the deepness term z/R on the frequency parameters of
an extremely deep, unsymmetrically laminated curved beam (θ0 = 286.48°) with
thickness-to-radius ratio h/R = 0.1 is very small and the maximum effect is less than
0.41 % for the worse case. It is proposed here to neglect the effects of the deepness
term z/Rβ. In many prior researches, the effects of the deepness term z/Rβ are often
neglected (for example, Jin et al. 2013b, 2014a; Qu et al. 2013a, b; Ye et al. 2014b).
Neglecting the effects of the deepness term, the force and moment resultants of a
thick conical shell can be rewritten as:

Nx

Nh

Nxh

Nhx

Mx

Mh

Mxh

Mhx

2
66666666666664

3
77777777777775
¼

A11 A12 A16 A16

A12 A22 A26 A26

A16 A26 A66 A66

A16 A26 A66 A66

B11 B12 B16 B16

B12 B22 B26 B26

B16 B26 B66 B66

B16 B26 B66 B66

B11 B12 B16 B16

B12 B22 B26 B26

B16 B26 B66 B66

B16 B26 B66 B66

D11 D12 D16 D16

D12 D22 D26 D26

D16 D26 D66 D66

D16 D26 D66 D66

2
66666666666664

3
77777777777775

e0x
e0h
c0xh
c0hx
vx
vh
vxh
vhx

2
66666666666664

3
77777777777775

ð6:19aÞ

Qh

Qx

� 
¼ A44 A45

A45 A55

� 
c0hz
c0xz

" #
ð6:19bÞ

The stiffness coefficients Aij, Bij and Dij are given as in Eq. (1.43).
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6.2.3 Energy Functions

The strain energy (Us) of thick conical shells during vibration can be defined in
terms of the middle surface strains and curvature changes and stress resultants as

Us ¼ 1
2

Z
x

Z
h

Nxe0x þ Nhe0h þ Nxhc0xh þ Nhxc0hx þMxvx
þMhvh þMxhvxh þMhxvhx þ Qhchz þ Qxcxz

� �
xsdhdx ð6:20Þ

Substituting Eqs. (6.17) and (6.19a, 6.19b) into Eq. (6.20), the strain energy of the
shell can be expressed in terms of the middle surface displacements (u, v, w) and
rotation components (ϕx, ϕθ) as:

Us ¼ 1
2

Z
x

Z
h

A11
@u
@x

� 	2þ2A12
@v
xs@h þ u

x þ w
xt

� 	
@u
@x

� 	
þ2A16

@v
@x þ @u

xs@h � v
x

� 	
@u
@x

� 	þ A22
@v
xs@h þ u

x þ w
xt

� 	2
þ2A26

@v
@x þ @u

xs@h � v
x

� 	
@v
xs@h þ u

x þ w
xt

� 	
þA66

@v
@x þ @u

xs@h � v
x

� 	2þA44
@w
xs@h � v

xt þ /h

� 	2
þ2A45

@w
xs@h � v

xt þ /h

� 	
@w
@x þ /x

� 	þ A55
@w
@x þ /x

� 	2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
xsdhdx

þ
Z
x

Z
h

B11
@/x
@x


 �
@u
@x

� 	þ B12
@/h
xs@h þ /x

x


 �
@u
@x

� 	
þB16

@/h
@x þ @/x

xs@h � /h
x


 �
@u
@x

� 	þ B12
@/x
@x


 �
� @v

xs@h þ u
x þ w

xt

� 	þ B22
@/h
xs@h þ /x

x


 �
� @v

xs@h þ u
x þ w

xt

� 	þ B26
@/h
@x þ @/x

xs@h � /h
x


 �
� @v

xs@h þ u
x þ w

xt

� 	þ B16
@/x
@x


 �
@v
@x þ @u

xs@h � v
x

� 	
þB26

@/h
xs@h þ /x

x


 �
@v
@x þ @u

xs@h � v
x

� 	
þB66

@/h
@x þ @/x

xs@h � /h
x


 �
@v
@x þ @u

xs@h � v
x

� 	

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

xsdhdx

þ 1
2

Z
x

Z
h

D11
@/x
@x


 �2
þ2D12

@/h
xs@h þ /x

x


 �
@/x
@x


 �
þ2D16

@/h
@x þ @/x

xs@h � /h
x


 �
@/x
@x


 �
þD22

@/h
xs@h þ /x

x


 �2
þ2D26

@/h
@x þ @/x

xs@h � /h
x


 �
� @/h

xs@h þ /x
x


 �
þ D66

@/h
@x þ @/x

xs@h � /h
x


 �2

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
xsdhdx

ð6:21Þ
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and the kinetic energy (T) function can be written as:

T ¼ 1
2

Z
x

Z
h

I0 @u
@t

� 	2þ2I1 @u
@t

@/x
@t þ I2

@/x
@t


 �2
þI0 @v

@t

� 	2
þ2I1 @v

@t
@/h
@t þ I2

@/h
@t


 �2
þI0 @w

@t

� 	2
8><
>:

9>=
>;xsdhdx ð6:22Þ

where the inertia terms are given as in Eq. (1.52).
Suppose the shell is subjected to external forces qx, qθ and qz (in the x, θ and

z directions, respectively) and external couples mx and mθ (in the middle surface),
thus, the work done by the external forces and moments is written as

We ¼
Z
x

Z
h

qxuþ qhvþ qzwþ mx/x þ mh/hf gxsdhdx ð6:23Þ

Using the artificial spring boundary technique similar to that described earlier,
let kuw, k

v
w, k

w
w , K

x
w and Kh

w(ψ = x0, θ0, x1 and θ1) to represent the rigidities (per unit
length) of the boundary springs at the boundaries R = R0, θ = 0, R = R1 and θ = θ0,
respectively. Therefore, the deformation strain energy (Usp) of the boundary springs
during vibration is:

Usp ¼ 1
2

Z
h

x kux0u
2 þ kvx0v

2 þ kwx0w
2 þ Kx

x0/
2
x þ Kh

x0/
2
h

� �
R¼R0j

þx kux1u
2 þ kvx1v

2 þ kwx1w
2 þ Kx

x1/
2
x þ Kh

x1/
2
h

� �
R¼R1j

( )
xsdh

þ 1
2

Z
x

kuh0u
2 þ kvh0v

2 þ kwh0w
2 þ Kx

h0/
2
x þ Kh

h0/
2
h

� �
h¼0j

þ kuh1u
2 þ kvh1v

2 þ kwh1w
2 þ Kx

h1/
2
x þ Kh

h1/
2
h

� �
h¼h0j

( )
dx

ð6:24Þ

6.2.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thick laminated conical shells
can be obtained by the Hamilton’s principle in the same manner as described in
Sect. 1.2.4. Alternately, it can be specialized from those of general thick shells by
substituting Eq. (6.2) into Eq. (1.59). According to Eq. (1.59), we have (after being
divided by B = xs)
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@Nx

@x
þ Nx � Nh

x
þ @Nhx

xs@h
þ qx ¼ I0

@2u
@t2

þ I1
@2/x

@t2

@Nxh

@x
þ @Nh

xs@h
þ Nxh þ Nhx

x
þ Qh

xt
þ qh ¼ I0

@2v
@t2

þ I1
@2/h

@t2

� Nh

xt
þ @Qx

@x
þ Qx

x
þ @Qh

xs@h
þ qz ¼ I0

@2w
@t2

@Mx

@x
þMx �Mh

x
þ @Mhx

xs@h
� Qx þ mx ¼ I1

@2u
@t2

þ I2
@2/x

@t2

@Mxh

@x
þ @Mh

xs@h
þMxh þMhx

x
� Qh þ mh ¼ I1

@2v
@t2

þ I2
@2/h

@t2

ð6:25Þ

Substituting Eqs. (6.17) and (6.19a, 6.19b) into above equation, the governing
equations can be written in terms of displacements as

L11 L12 L13 L14 L15
L21 L22 L23 L24 L25
L31 L32 L33 L34 L35
L41 L42 L43 L44 L45
L51 L52 L53 L54 L55

2
66664

3
77775þ x2

I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

2
66664

3
77775

0
BBBB@

1
CCCCA

u
v
w
/x
/h

2
66664

3
77775 ¼

�px
�py
�pz
�mx

�mh

2
66664

3
77775 ð6:26Þ

The coefficients of the linear operator Lij are given as

L11 ¼ @

@x
A11

@

@x
þ A12

x
þ A16

xs
@

@h

� �
þ 1

x
A11

@

@x
þ A12

x
þ A16

xs
@

@h

� �

� 1
x

A12
@

@x
þ A22

x
þ A26

xs
@

@h

� �
þ 1

xs
@

@h
A16

@

@x
þ A26

x
þ A66

xs
@

@h

� �

L12 ¼ @

@x
A12

xs
@

@h
þ A16

@

@x
� 1

x

� �� �
þ 1

x
A12

xs
@

@h
þ A16

@

@x
� 1

x

� �� �

� 1
x

A22

xs
@

@h
þ A26

@

@x
� 1

x

� �� �
þ 1
xs

@

@h
A26

xs
@

@h
þ A66

@

@x
� 1

x

� �� �

L13 ¼ @

@x
A12

xt

� �
þ 1

x
A12

xt

� �
� 1

x
A22

xt

� �
þ 1
xs

@

@h
A26

xt

� �

L14 ¼ @

@x
B11

@

@x
þ B12

x
þ B16

xs
@

@h

� �
þ 1

x
B11

@

@x
þ B12

x
þ B16

xs
@

@h

� �

� 1
x

B12
@

@x
þ B22

x
þ B26

xs
@

@h

� �
þ 1

xs
@

@h
B16

@

@x
þ B26

x
þ B66

xs
@

@h

� �

L15 ¼ @

@x
B12

xs
@

@h
þ B16

@

@x
� 1

x

� �� �
þ 1

x
B12

xs
@

@h
þ B16

@

@x
� 1

x

� �� �

� 1
x

B22

xs
@

@h
þ B26

@

@x
� 1

x

� �� �
þ 1
xs

@

@h
B22

xs
@

@h
þ B26

@

@x
� 1

x

� �� �

L21 ¼ 1
xs

@

@h
A12

@

@x
þ A22

x
þ A26

xs
@

@h

� �
þ @

@x
A16

@

@x
þ A26

x
þ A66

xs
@

@h

� �

þ 2
x

A16
@

@x
þ A26

x
þ A66

xs
@

@h

� �
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L22 ¼ 1
xs

@

@h
A22

xs
@

@h
þ A26

@

@x
� 1

x

� �� �
þ @

@x
A26

xs
@

@h
þ A66
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@x
� 1

x

� �� �

þ 2
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A26

xs
@

@h
þ A66
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@x
� 1

x

� �� �
� A44

x2t2

L23 ¼ 1
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@h
A22

xt

� �
þ @

@x
A26

xt

� �
þ 2A26

x2t
þ A44

x2st
@

@h
þ A45

xt
@

@x

L24 ¼ 1
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@

@h
B12

@

@x
þ B22

x
þ B26

xs
@

@h

� �
þ @

@x
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@x
þ B26

x
þ B66
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@

@h

� �

þ 2
x

B16
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þ B26

x
þ B66
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@h

� �
þ A45

xt

L25 ¼ 1
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@

@h
B22

xs
@

@h
þ B26

@

@x
� 1

x

� �� �
þ @

@x
B26
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These equations are proven useful when exact solutions are desired.
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According to Eqs. (1.60) and (1.61), the general boundary conditions of thick
conical shells are:

R ¼ R0:

Nx � kux0u ¼ 0

Nxh � kvx0v ¼ 0

Qx � kwx0w ¼ 0

Mx � Kx
x0/x ¼ 0

Mxh � Kh
x0/h ¼ 0

8>>>>>>><
>>>>>>>:

R ¼ R1:

Nx þ kux1u ¼ 0

Nxh þ kvx1v ¼ 0

Qx þ kwx1w ¼ 0

Mx þ Kx
x1/x ¼ 0

Mxh þ Kh
x1/h ¼ 0

8>>>>>>><
>>>>>>>:

h ¼ 0:

Nhx � kuh0u ¼ 0

Nh � kvh0v ¼ 0
Qh � kwh0w ¼ 0

Mhx � Kx
h0/x ¼ 0

Mh � Kh
h0/h ¼ 0

8>>>>>><
>>>>>>:

h ¼ h0:

Nhx þ kuh1u ¼ 0

Nh þ kvh1v ¼ 0
Qh þ kwh1w ¼ 0

Mhx þ Kx
h1/x ¼ 0

Mh þ Kh
h1/h ¼ 0

8>>>>>><
>>>>>>:

ð6:28Þ

Thick conical shells can have up to 24 possible classical boundary conditions at
each boundary (see Table 6.2) which leads a high number of combinations of
boundary conditions. The classification of the classical boundary conditions shown
in Table 1.3 for general thick shells is applicable for thick conical shells.

Table 6.2 shows the importance of developing an accurate, robust and efficient
method which is capable of simplifying solution algorithms, reducing model input
data and universally dealing with various boundary conditions. This difficulty can
be overcome by using the artificial spring boundary technique. In this chapter,
we mainly consider four typical boundary conditions which are frequently
encountered in practices, i.e., F, SD, S and C boundary conditions. Taking edge
R = R0 for example, the corresponding spring rigidities for the four classical
boundary conditions are given as in Eq. (5.37).

6.3 Vibration of Laminated Closed Conical Shells

In this section, we consider vibrations of laminated closed conical shells. The open
ones will then be treated in the later section of this chapter. It is commonly believed
an exact solution is available only for laminated closed conical shells having cross-
ply lamination schemes and shear diaphragm boundary conditions at both ends.
Tong (1993, 1994a) obtained such solutions for thin and thick conical shells. In this
chapter, in the framework of SDST, accurate vibration solutions for laminated
conical shells with general boundary conditions, lamination schemes and different
geometry parameters will be presented by using the modified Fourier series and
weak form solution procedure. For a laminated closed conical shell, there exists two
boundaries, i.e., R = R0 and R = R1. Thus, a two-letter string is employed to denote
the boundary conditions of the shell, such as F-C identifies the shell with
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completely free and clamped boundary conditions at the edges R = R0 and R = R1,
respectively. Unless otherwise stated, the non-dimensional frequency parameter
X ¼ xR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=A11

p
is used in the subsequent analysis and laminated conical shells

under consideration are assumed to be composed of composite layers having
following material properties: E2 = 10 GPa, E1/E2 = open, μ12 = 0.25,
G12 = G13 = 0.6E2, G23 = 0.5E2, ρ = 1,500 kg/m3.

Considering the circumferential symmetry of closed conical shells, each dis-
placement/rotation component of a closed conical shell is expanded as a 1-D
modified Fourier series of the following form through Fourier decomposition of the
circumferential wave motion:

Table 6.2 Possible classical boundary conditions for thick conical shells at each boundary of
R = constant

Boundary type Conditions

Free boundary conditions

F Nx ¼ Nxh ¼ Qx ¼ Mx ¼ Mxh ¼ 0

F2 u ¼ Nxh ¼ Qx ¼ Mx ¼ Mxh ¼ 0

F3 Nx ¼ v ¼ Qx ¼ Mx ¼ Mxh ¼ 0

F4 u ¼ v ¼ Qx ¼ Mx ¼ Mxh ¼ 0

F5 Nx ¼ Nxh ¼ Qx ¼ Mx ¼ /h ¼ 0

F6 u ¼ Nxh ¼ Qx ¼ Mx ¼ /h ¼ 0

F7 Nx ¼ v ¼ Qx ¼ Mx ¼ /h ¼ 0

F8 u ¼ v ¼ Qx ¼ Mx ¼ /h ¼ 0

Simply supported boundary conditions

S u ¼ v ¼ w ¼ Mx ¼ /h ¼ 0

SD Nx ¼ v ¼ w ¼ Mx ¼ /h ¼ 0

S3 u ¼ Nxh ¼ w ¼ Mx ¼ /h ¼ 0

S4 Nx ¼ Nxh ¼ w ¼ Mx ¼ /h ¼ 0

S5 u ¼ v ¼ w ¼ Mx ¼ Mxh ¼ 0

S6 Nx ¼ v ¼ w ¼ Mx ¼ Mxh ¼ 0

S7 u ¼ Nxh ¼ w ¼ Mx ¼ Mxh ¼ 0

S8 Nx ¼ Nxh ¼ w ¼ Mx ¼ Mxh ¼ 0

Clamped boundary conditions

C u ¼ v ¼ w ¼ /x ¼ /h ¼ 0

C2 Nx ¼ v ¼ w ¼ /x ¼ /h ¼ 0

C3 u ¼ Nxh ¼ w ¼ /x ¼ /h ¼ 0

C4 Nx ¼ Nxh ¼ w ¼ /x ¼ /h ¼ 0

C5 u ¼ v ¼ w ¼ /x ¼ Mxh ¼ 0

C6 Nx ¼ v ¼ w ¼ /x ¼ Mxh ¼ 0

C7 u ¼ Nxh ¼ w ¼ /x ¼ Mxh ¼ 0

C8 Nx ¼ Nxh ¼ w ¼ /x ¼ Mxh ¼ 0
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uðx; hÞ ¼
XM
m¼0

XN
n¼0

Amn cos kmx cos nhþ
X2
l¼1

XN
n¼0

alnPlðxÞ cos nh

vðx; hÞ ¼
XM
m¼0

XN
n¼0

Bmn cos kmx sin nhþ
X2
l¼1

XN
n¼0

blnPlðxÞ sin nh

wðx; hÞ ¼
XM
m¼0

XN
n¼0

Cmn cos kmx cos nhþ
X2
l¼1

XN
n¼0

clnPlðxÞ cos nh

/xðx; hÞ ¼
XM
m¼0

XN
n¼0

Dmn cos kmx cos nhþ
X2
l¼1

XN
n¼0

dlnPlðxÞ cos nh

/hðx; hÞ ¼
XM
m¼0

XN
n¼0

Emn cos kmx sin nhþ
X2
l¼1

XN
n¼0

elnPlðxÞ sin nh

ð6:29Þ

where λm = mπ/L. Similarly, n represents the circumferential wave number of the
corresponding mode. It should be note that n is a non-negative integer. Interchanging
of sin nθ and cos nθ in Eq. (6.29), another set of free vibration modes (anti-sym-
metric modes) can be obtained. It is obvious that each displacement and rotation
component in the FSDT displacement field is required to have up to the second
derivatives [see Eq. (6.27)]. Thus, two auxiliary polynomial functions Pl (x) are
introduced in each displacement expression to remove all the discontinuities
potentially associated with the first-order derivatives at the boundaries. These aux-
iliary functions are defined as in Eq. (5.39).

6.3.1 Convergence Studies and Result Verification

Table 6.3 shows the convergence study of the natural frequencies (Hz) for a single-
layered conical shell with F–F and C–C boundary conditions. The geometric
and material constants of the shell are: R0 = 1 m, L = 2 m, h = 0.1 m, φ = 45°,
E1/E2 = 15. Five truncation schemes (i.e. M = 11 − 15 and N = 10) are performed in
the study. The table shows the present solutions converge fast. The maximum
differences between the ‘11 × 10’ and ‘15 × 10’ form results for the F–F and C–C
boundary conditions are less than 0.025 and 0.004 %, respectively. In addition,
comparing with Table 5.3, we can find that the convergence of the solutions for the
cylindrical shells is better than the conical ones. Furthermore, the C–C solutions
converge faster than those of F–F boundary conditions. Unless otherwise stated, the
truncated number of the displacement expressions will be uniformly selected as
M = 15 in the following discussions.

To further validate the accuracy and reliability of current method, the current
solutions are compared with those reported by other researchers by the subsequent
numerical examples. Table 6.4 lists the comparison of the fundamental dimen-
sionless frequencies Ω for cross-ply conical shells with different boundary
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conditions and thickness-to-large edge radius ratios (h/R1). Two types of lamination
schemes, i.e., [0°/90°] and [0°/90°]10, are examined. The SD–SD and C–C boundary
conditions are considered in the comparisons. The thickness-to-large edge radius
ratio h/R1 is varied from 0.01 to 0.09 by a step of 0.02, corresponding to thin to
moderately thick conical shells. The material constants and geometry parameters of
the shell are: E2 = 10 GPa, E1/E2 = 15, μ12 = 0.25, G12 = 0.5E2, G13 = 0.3846E2,

Table 6.3 Convergence of the natural frequencies (Hz) for a single-layered conical shell with F–F
and C–C boundary conditions (R0 = 1 m, L = 2 m, h = 0.1 m, φ = 45°, E1/E2 = 15)

B.C. M Mode number

1 2 3 4 5 6

F–F 11 1.3975 10.045 25.970 40.249 46.792 71.916

12 1.3972 10.045 25.969 40.243 46.791 71.913

13 1.3972 10.045 25.969 40.242 46.790 71.913

14 1.3971 10.045 25.969 40.239 46.790 71.912

15 1.3971 10.045 25.969 40.239 46.790 71.912

C–C 11 247.80 252.15 253.50 266.46 269.13 281.76

12 247.80 252.15 253.50 266.47 269.13 281.76

13 247.80 252.14 253.50 266.46 269.13 281.76

14 247.80 252.14 253.50 266.46 269.13 281.76

15 247.79 252.14 253.50 266.45 269.13 281.76

Table 6.4 Comparison of the fundamental frequency parameters Ω for two cross-ply conical
shells with various thickness-radius ratios (R0 = 0.75 m, L = 0.5 m, φ = 30°)

B.C. Layout Method h/R1

0.01 0.03 0.05 0.07 0.09

SD–SD [0°/90°] CST (Shu 1996) 0.1799 0.2397 0.2841 0.3277 0.3680

FSDT (Wu and Lee
2011)

0.1759 0.2320 0.2710 0.3061 0.3358

Present 0.1759 0.2320 0.2710 0.3061 0.3358

[0°/90°]10 CST (Shu 1996) 0.1976 0.2669 0.3304 0.3873 0.4321

FSDT (Wu and Lee
2011)

0.1958 0.2607 0.3134 0.3544 0.3832

Present 0.1958 0.2607 0.3134 0.3544 0.3832

C–C [0°/90°] CST (Shu 1996) 0.2986 0.6210 0.9331 1.2344 1.5206

FSDT (Wu and Lee
2011)

0.3045 0.5834 0.7967 0.9476 1.0457

Present 0.2966 0.5835 0.7971 0.9480 1.0466

[0°/90°]10 CST (Shu 1996) 0.3771 0.8578 1.3361 1.5730 1.5735

FSDT (Wu and Lee
2011)

0.3720 0.7509 0.9797 1.1025 1.1759

Present 0.3720 0.7509 0.9799 1.1031 1.1770
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G23 = 0.3846E2, R0 = 0.75 m, L = 0.5 m and φ = 30°. The comparisons are performed
between the present results and the FSDT solutions reported by Wu and Lee (2011)
and CST solutions published by Shu (1996). The comparisons in the table show a
excellent agreement between the present results and those reported by Wu and Lee
(2011). It is obvious that the discrepancies are negligible and not exceed 0.012 % for
the worst case. The comparisons validate the high accuracy of the modified Fourier
series method in predicting vibrations of composite conical shells.

In Table 6.5, the first longitudinal mode (m = 1) frequency parameters Ω for the
[0°/90°]10 conical shell given in Table 6.4 with three set of classical boundary
conditions, i.e., S–F, S–S and S–C are presented. The lowest ten circumference
wave numbers (i.e., n = 1–10) are considered in the calculation. The results reported
by Qu et al. (2013a) based on the first-order shear deformation theory are also
included in the table. A consistent agreement of the present results and the refer-
ential data can be seen from the table. The discrepancies are very small and less
than 0.015 % for the worst case. The small discrepancies in the results may be
attributed to the different solution approaches were used in the literature.

6.3.2 Laminated Closed Conical Shells with General
Boundary Conditions

Table 6.6 shows the lowest four frequency parameters Ω for a two-layered, [0°/90°]
laminated conical shell with various thickness-to-small edge radius ratios (h/R0). The
material properties and geometric constants of the layers of the shell are: E1/E2 = 15,
R0 = 1 m, L/R0 = 2, φ = 45°. Six sets of classical boundary combinations, i.e., F–S,
S–F, F–C, C–F, S–S and C–C and five kinds of thickness-to-small edge radius ratios
(h/R0 = 0.01, 0.02, 0.05, 0.1 and 0.15) are included in the table. It can be seen from the

Table 6.5 Comparison of the frequency parameters Ω for a cross-ply [0°/90°]10 conical shell with
various boundary conditions (R0 = 0.75 m, L = 0.5 m, φ = 30°, m = 1)

n FSDT (Qu et al. 2013a) Present

S–F S–S S–C S–F S–S S–C

0 0.6527 1.2919 1.4065 0.6528 1.2919 1.4065

1 0.4016 1.0903 1.1977 0.4016 1.0903 1.1976

2 0.2711 0.9789 1.1020 0.2712 0.9789 1.1020

3 0.2941 0.9692 1.0945 0.2941 0.9692 1.0944

4 0.4315 1.0312 1.1488 0.4315 1.0312 1.1487

5 0.6203 1.1490 1.2545 0.6203 1.1490 1.2545

6 0.8315 1.3076 1.4007 0.8315 1.3076 1.4006

7 1.0532 1.4936 1.5757 1.0532 1.4936 1.5756

8 1.2796 1.6968 1.7700 1.2796 1.6968 1.7700

9 1.5078 1.9105 1.9768 1.5078 1.9105 1.9767
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table that the frequency parameters of the shell increase as the thickness-to-small edge
radius ratio increases. In addition, it is obviously that the boundary conditions have a
conspicuous effect on the vibration frequencies. Increasing the restraint stiffness
always results in increments of the frequency parameters.

Table 6.7 lists the lowest four frequency parameters Ω for conical shells with
different angle-ply lamination schemes and boundary conditions. Single-layered
lamination [0°], antisymmetric laminations [0°/45°] and [0°/45°/0°/45°] and sym-
metric lamination [0°/45°/0°] are used in the calculation. The geometric and
material constants of these shells are: E1/E2 = 15, R0 = 1 m, L/R0 = 2, h/R0 = 0.1,
φ = 45°. As can be observed from Table 6.7, frequency parameters Ω of the [0°/45°/
0°/45°] shell are larger than those of the other three lamination schemes and the
minimum frequency parameter for each mode in all the boundary condition occurs
at those of single-layered lamination [0°]. In order to enhance our understanding of
the vibration behaviors of laminated conical shells, some selected mode shapes and
their corresponding frequency parameters Ωn,m for the [0°/45°/0°/45°] laminated
conical shell with F–C boundary condition are plotted in Fig. 6.2, where n and
m denote the circumferential wave number and longitudinal mode number. These

Table 6.6 Frequency parameters Ω for a [0°/90°] laminated conical shell with various boundary
conditions and thickness-to-small edge radius ratios (E1/E2 = 15, R0 = 1 m, L/R0 = 2, φ = 45°)

h/R0 Mode Boundary conditions

F–S S–F F–C C–F S–S C–C

0.01 1 0.1188 0.0415 0.1189 0.0416 0.1364 0.1373

2 0.1198 0.0454 0.1198 0.0454 0.1399 0.1411

3 0.1291 0.0455 0.1293 0.0456 0.1417 0.1426

4 0.1365 0.0546 0.1366 0.0548 0.1527 0.1540

0.02 1 0.1559 0.0543 0.1559 0.0543 0.1786 0.1825

2 0.1581 0.0613 0.1584 0.0614 0.1802 0.1836

3 0.1741 0.0620 0.1759 0.0621 0.1961 0.2001

4 0.1867 0.0775 0.1867 0.0777 0.1977 0.2022

0.05 1 0.2192 0.0754 0.2208 0.0761 0.2538 0.2699

2 0.2302 0.0914 0.2347 0.0914 0.2728 0.2900

3 0.2697 0.0922 0.2779 0.0939 0.2766 0.2921

4 0.2758 0.1268 0.2811 0.1270 0.3256 0.3435

0.10 1 0.2896 0.0988 0.3000 0.1034 0.3408 0.3835

2 0.2988 0.1061 0.3064 0.1072 0.3746 0.4140

3 0.3560 0.1584 0.3788 0.1585 0.3862 0.4277

4 0.4472 0.1585 0.4604 0.1626 0.4593 0.4981

0.15 1 0.3269 0.1070 0.3414 0.1142 0.4197 0.4852

2 0.3640 0.1396 0.3863 0.1412 0.4300 0.4966

3 0.4527 0.1595 0.4735 0.1672 0.4992 0.5575

4 0.4783 0.2249 0.5173 0.2249 0.5760 0.6327
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mode shapes are constructed by means of considering the displacement field in
Eq. (6.29) after solving the eigenvalue problem.

The vertex half-angle angle (φ) is a key parameter of a conical shell. The
cylindrical shells and annular plates considered in previous chapters can be seen as
the special cases of conical shells with zero and 90° (π/2) vertex half-angle angles,
respectively. In the following example, influence of vertex half-angle angle (φ) on
the vibration characteristics of laminated conical shells is investigated. Table 6.8
shows the lowest four frequency parameters Ω for a three-layered, cross-ply [0°/
90°/0°] conical shell with different boundary conditions. The material constants and
geometric parameters are the same as the previous example (see Table 6.7) except
that the vertex half-angle angle (φ) of the shell is changed from φ = 15° to φ = 75°
by a step of 15°. The table shows that the shell with C–F and S–F boundary
conditions yields lower frequency parameters than those of F–C and F–S boundary
conditions. The similar observation can be seen in Tables 6.6 and 6.7. The second
observation made here is that the shell with C–F and S–F boundary conditions gave
closer results. In addition, we can see that the maximum frequency parameters of
the shell with F–S, S–F, F–C, C–F, S–S and C–C boundary conditions occur at
φ = 45°, 15°, 60°, 15°, 45° and 75°, respectively.

Effects of the lamination layer number on the frequency parameters of conical
shells are investigated as well. In Fig. 6.3, variation of the lowest three dimen-
sionless frequencies Ω of a [0°/ϑ]n layered conical shell with F–C boundary con-
dition against the number of layers n are depicted, respectively (where n = 1 means

Table 6.7 Frequency parameters Ω for laminated conical shells with various lamination schemes
and boundary conditions (E1/E2 = 15, R0 = 1 m, L/R0 = 2, h/R0 = 0.1, φ = 45°)

Structure element Mode Boundary conditions

F–S S–F F–C C–F S–S C–C

[0°] 1 0.1652 0.0611 0.2024 0.0793 0.2399 0.3751

2 0.1818 0.0674 0.2143 0.0855 0.2496 0.3817

3 0.1946 0.0793 0.2366 0.0914 0.2534 0.3837

4 0.2449 0.1063 0.2766 0.1165 0.2809 0.4033

[0°/45°] 1 0.2890 0.0903 0.3020 0.0972 0.3813 0.4632

2 0.3219 0.1177 0.3453 0.1219 0.3919 0.4780

3 0.3612 0.1185 0.3750 0.1254 0.4268 0.5002

4 0.3995 0.1745 0.4371 0.1762 0.4588 0.5427

[0°/45°/0°] 1 0.2480 0.0898 0.2853 0.1088 0.3389 0.4710

2 0.2592 0.1016 0.3010 0.1147 0.3476 0.4775

3 0.3073 0.1150 0.3443 0.1328 0.3623 0.4882

4 0.3171 0.1380 0.3681 0.1447 0.3873 0.5077

[0°/45°/0°/45°] 1 0.3180 0.1104 0.3427 0.1197 0.4224 0.5190

2 0.3676 0.1306 0.3977 0.1420 0.4355 0.5270

3 0.3728 0.1451 0.4013 0.1494 0.4645 0.5582

4 0.4646 0.2090 0.5102 0.2107 0.4992 0.5814

6.3 Vibration of Laminated Closed Conical Shells 221



a single-layered shell; n = 2 means a two-layered shell, i.e. [0°/ϑ], and so forth).
Three lamination schemes, i.e. ϑ = 30°, 45° and 60° are considered in the inves-
tigation. The layers of the shells are of equal thickness and made from the same
material with follow proprieties: E1/E2 = 15, R0 = 1 m, L/R0 = 2, h/R0 = 0.1,
φ = 45°. As clearly observed from Fig. 6.3, the frequency parameters of the shell
increases rapidly and may reaches their crest around n = 18, and beyond this range,
the frequency parameters remain unchanged (ignore the fluctuation). The fluctua-
tion on the curves curves curved may be due to the fact that the shell are
symmetrically laminated when n is an odd number, and n equal to an even number
means the shells are unsymmetrically laminated.

The following numerical analysis is conducted to laminated conical shells with
elastic boundary conditions. As what treated in previous chapter, the following two
typical uniform elastic boundary conditions are considered in the subsequent
analysis (taking edge R = R0 for example):

Fig. 6.2 Mode shapes for a [0°/45°/0°/45°] laminated conical shell with F–C boundary condition
(Ωn,m, n = 1–3, m = 1–3)
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E1: the transverse direction is elastically restrained (w ≠ 0, u = v = ϕx = ϕθ = 0),
i.e., kw = Γ;
E2: the rotation is elastically restrained (ϕx ≠ 0, u = v = w = ϕθ = 0), i.e., Kx = Γ

Table 6.9 shows the lowest three frequency parameters Ω of a two-layered [0°/
90°] conical shell with different restrain parameters Γ and vertex half-angle angles.
The vertex half-angle angle φ varies from 0° to 90° by a step of 30°. The shell
parameters used are E1/E2 = 15, R0 = 1 m, L/R0 = 2, h/R0 = 0.05. The shell is
clamped at the edge of R = R1 and with elastic boundary conditions at the other
edge. The table shows that when the vertex half-angle angle φ = 0°, 30° and 60°,
increasing restraint rigidities in the transverse and rotation directions have very
limited effects on the frequency parameters of the shell. When the restrained rigidity
parameter Γ is varied from 10−2 × D to 104 × D, the corresponding maximum
differences of the lowest frequency parameters for the shell with E1

–C and E2
–C

boundary conditions are less than 1.36, 2.42, 0.85 % and 3.32, 4.45, 1.35 %,
respectively. However, the similar frequency parameter differences reach 177, 60,
16 % and 21.4, 22. 3, 18.3 % for the shell with vertex half-angle angle of φ = 90°.

Table 6.8 Frequency parameters Ω for a [0°/90°/0°] laminated conical shells with different
boundary conditions and vertex half-angle angles (E1/E2 = 15, R0 = 1 m, L/R0 = 2, h/R0 = 0.1)

φ Mode Boundary conditions

F–S S–F F–C C–F S–S C–C

15° 1 0.1504 0.0942 0.1671 0.1051 0.2360 0.3182

2 0.1582 0.0946 0.1742 0.1087 0.2571 0.3350

3 0.2094 0.1384 0.2270 0.1434 0.2719 0.3420

4 0.2466 0.1483 0.2561 0.1568 0.3202 0.3861

30° 1 0.1936 0.0878 0.2226 0.1043 0.2841 0.3996

2 0.2200 0.0942 0.2455 0.1139 0.2939 0.4078

3 0.2421 0.1214 0.2761 0.1297 0.3318 0.4310

4 0.3244 0.1513 0.3630 0.1635 0.3451 0.4474

45° 1 0.2165 0.0791 0.2588 0.1006 0.3066 0.4575

2 0.2457 0.0843 0.2830 0.1099 0.3159 0.4648

3 0.2625 0.1092 0.3136 0.1208 0.3506 0.4852

4 0.3402 0.1394 0.4048 0.1563 0.3628 0.4991

60° 1 0.2131 0.0658 0.2699 0.0931 0.3031 0.4898

2 0.2226 0.0678 0.2724 0.0970 0.3216 0.5019

3 0.2683 0.0992 0.3355 0.1132 0.3269 0.5034

4 0.3414 0.1105 0.3858 0.1332 0.3708 0.5359

75° 1 0.1582 0.0414 0.2200 0.0788 0.2806 0.4994

2 0.1928 0.0566 0.2612 0.0841 0.2860 0.5026

3 0.2107 0.0633 0.2626 0.0943 0.3129 0.5179

4 0.2648 0.0920 0.3442 0.1072 0.3176 0.5213
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Table 6.10 shows the similar studies for the shell with F boundary conditions at
the edge of R = R1. The table also reveals that when the vertex half-angle angle
φ = 0°, 30° and 60°, increasing the restraint rigidities in the transverse and rotation
directions have very limited effects on the frequency parameters of the shell. In
addition, it can be seen that the change of the restraint rigidity parameter Γ has large
effects on the frequency parameters of all conical shells with vertex half-angle angle
φ = 90°. Increasing the rigidity parameter Γ from 10−2 × D to 104 × D increases the
frequency parameters by almost 651.4, 22.5, 36.5 % and 101.2, 54.6, 94.6 % for the
E1
–F and E2

–F boundary conditions, respectively.
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Fig. 6.3 Variation of the
frequency parameters Ω
versus the number of layers
n for a [0°/ϑ]n layered conical
shell: a ϑ = 30°; b ϑ = 45°;
c ϑ = 60°
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6.4 Vibration of Laminated Open Conical Shells

Laminated open conical shells can be obtained by cutting a segment of the lami-
nated closed conical shells. For an open conical shell, the assumption of whole
periodic wave numbers in the circumferential direction is inappropriate, and thus, a
set of complete two-dimensional analysis is required and resort must be made to a
full two-dimensional solution scheme. This forms a major deterrent so that the
analyses of deep open conical shells have not been widely available. Among those
available, Bardell et al. (1999) studied the vibration of a general three-layer conical

Table 6.9 Frequency parameters Ω for a two-layered [0°/90°] conical shell with different restrain
parameters Γ and vertex half-angle angles (R0 = 1 m, L/R0 = 2, h/R0 = 0.05, E1/E2 = 15)

φ Γ E1
–C E2

–C

1 2 3 1 2 3

0° 10−2 × D 0.1614 0.1800 0.1960 0.1610 0.1797 0.1955

10−1 × D 0.1614 0.1800 0.1960 0.1610 0.1798 0.1956

100 × D 0.1614 0.1800 0.1960 0.1616 0.1802 0.1961

101 × D 0.1615 0.1801 0.1961 0.1627 0.1809 0.1973

102 × D 0.1619 0.1804 0.1965 0.1630 0.1812 0.1976

103 × D 0.1627 0.1810 0.1973 0.1631 0.1812 0.1977

104 × D 0.1630 0.1812 0.1977 0.1631 0.1812 0.1977

30° 10−2 × D 0.2555 0.2732 0.2831 0.2533 0.2706 0.2822

10−1 × D 0.2555 0.2732 0.2832 0.2535 0.2708 0.2822

100 × D 0.2556 0.2732 0.2831 0.2548 0.2726 0.2828

101 × D 0.2557 0.2734 0.2832 0.2572 0.2760 0.2838

102 × D 0.2564 0.2745 0.2834 0.2580 0.2771 0.2841

103 × D 0.2576 0.2765 0.2840 0.2581 0.2772 0.2842

104 × D 0.2581 0.2771 0.2841 0.2581 0.2772 0.2842

60° 10−2 × D 0.2532 0.2577 0.2837 0.2485 0.2527 0.2813

10−1 × D 0.2533 0.2577 0.2838 0.2488 0.2532 0.2815

100 × D 0.2532 0.2576 0.2839 0.2512 0.2565 0.2825

101 × D 0.2534 0.2582 0.2834 0.2554 0.2622 0.2845

102 × D 0.2548 0.2608 0.2843 0.2566 0.2638 0.2851

103 × D 0.2563 0.2634 0.2850 0.2567 0.2640 0.2851

104 × D 0.2567 0.2640 0.2851 0.2567 0.2640 0.2851

90° 10−2 × D 0.0592 0.1036 0.1434 0.1351 0.1360 0.1406

10−1 × D 0.0614 0.1010 0.1436 0.1370 0.1379 0.1422

100 × D 0.0793 0.1067 0.1439 0.1476 0.1489 0.1515

101 × D 0.1364 0.1402 0.1521 0.1607 0.1628 0.1632

102 × D 0.1608 0.1629 0.1633 0.1636 0.1659 0.1660

103 × D 0.1637 0.1659 0.1660 0.1640 0.1663 0.1663

104 × D 0.1640 0.1663 0.1663 0.1640 0.1663 0.1664
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sandwich panel based on the h-p version finite element method. Chern and Chao
(2000) made a general survey and comparison for variety of simply supported
shallow spherical, cylindrical, plate and saddle panels in rectangular planform. Lee
et al. (2002) and Hu et al. (2002) reported the vibration characteristics of twisted
cantilevered conical composite shells. Also, vibration of cantilevered laminated
composite shallow conical shells was presented by Lim et al. (1998), etc.

In this section, we consider free vibration of laminated deep open conical shells.
As was done previously for laminated open cylindrical shells, regardless of
boundary conditions, each displacement and rotation component of the open

Table 6.10 Frequency parameters Ω for a two-layered [0°/90°] conical shell with different
restrain parameters Γ and vertex half-angle angles (R0 = 1 m, L/R0 = 2, h/R0 = 0.05, E1/E2 = 15)

φ Γ E1
–F E2

–F

1 2 3 1 2 3

0° 10−2 × D 0.0904 0.0909 0.1403 0.0909 0.0912 0.1404

10−1 × D 0.0904 0.0909 0.1403 0.0909 0.0912 0.1404

100 × D 0.0904 0.0909 0.1403 0.0909 0.0912 0.1404

101 × D 0.0904 0.0909 0.1403 0.0909 0.0912 0.1404

102 × D 0.0905 0.0910 0.1403 0.0909 0.0912 0.1404

103 × D 0.0908 0.0912 0.1404 0.0909 0.0912 0.1404

104 × D 0.0909 0.0912 0.1404 0.0909 0.0912 0.1404

30° 10−2 × D 0.0831 0.1018 0.1025 0.0841 0.1027 0.1031

10−1 × D 0.0831 0.1018 0.1025 0.0841 0.1027 0.1031

100 × D 0.0831 0.1019 0.1025 0.0841 0.1027 0.1033

101 × D 0.0832 0.1019 0.1025 0.0842 0.1027 0.1037

102 × D 0.0835 0.1024 0.1026 0.0843 0.1027 0.1038

103 × D 0.0841 0.1027 0.1034 0.0843 0.1027 0.1038

104 × D 0.0842 0.1027 0.1037 0.0843 0.1027 0.1038

60° 10−2× D 0.0617 0.0705 0.0801 0.0620 0.0710 0.0803

10−1 × D 0.0617 0.0705 0.0801 0.0620 0.0712 0.0803

100 × D 0.0617 0.0706 0.0801 0.0625 0.0722 0.0803

101 × D 0.0618 0.0709 0.0801 0.0631 0.0737 0.0804

102 × D 0.0625 0.0724 0.0802 0.0632 0.0742 0.0804

103 × D 0.0631 0.0739 0.0803 0.0633 0.0742 0.0804

104 × D 0.0632 0.0742 0.0804 0.0633 0.0742 0.0804

90° 10−2 × D 0.0030 0.0196 0.0232 0.0110 0.0156 0.0163

10−1 × D 0.0091 0.0197 0.0233 0.0127 0.0172 0.0175

100 × D 0.0203 0.0224 0.0233 0.0182 0.0208 0.0250

101 × D 0.0216 0.0236 0.0304 0.0216 0.0235 0.0306

102 × D 0.0221 0.0240 0.0316 0.0221 0.0240 0.0316

103 × D 0.0222 0.0240 0.0317 0.0222 0.0240 0.0317

104 × D 0.0222 0.0240 0.0317 0.0222 0.0240 0.0317
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conical shells under consideration is expanded as a two-dimensional modified
Fourier series as Eq. (5.43). The similar non-dimensional parameter X ¼
xR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=A11

p
is used in the calculations. And unless otherwise stated, the layers of

open conical shells under consideration are made of composite material with fol-
lowing properties: E2 = 10 GPa, E1/E2 = open, μ12 = 0.25, G12 = G13 = G23 = 0.5E2,
ρ = 1,500 kg/m3. For an open conical shell, there exits four boundaries, i.e., R = R0,
R = R1, θ = 0 and θ = θ0. Similarly, the boundary condition of an open conical shell
is represented by a four-letter character, such as FCSC identify the shell with F, C,
S and C boundary conditions at boundaries R = R0, θ = 0, R = R1 and θ = θ0,
respectively.

6.4.1 Convergence Studies and Result Verification

Tables 6.11 shows the convergence studies of the lowest six frequency parameters
Ω for a three-layered, [0°/90°/0°] deep open conical shell with FFFF and CCCC
boundary conditions, respectively. The material and geometry constants of the shell
are: E1/E2 = 15, R0 = 1 m, L/R0 = 2, h/R0 = 0.1, φ = π/4, θ0 = π. The zero frequency
parameters corresponding to the rigid body modes of the shell with FFFF boundary
conditions are omitted from the results. Excellent convergence of frequencies can
be observed in the table. Furthermore, the convergence of the FFFF solutions is
faster than those of CCCC boundary conditions.

Table 6.12 shows the comparison of the non-dimensional frequency parameters
X ¼ xL2

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
of SSSS and CCCC supported, [0°/90°/0°] laminated shallow and

deep open conical shells with results provided by Ye et al. (2014b) based on the
conjunction of Ritz method and the first-order shear deformable shell theory. The

Table 6.11 Convergence of the frequency parameters Ω of a [0°/90°/0°] laminated open conical
shell with FFFF and CCCC boundary conditions (R0 = 1 m, L/R0 = 2, h/R0 = 0.1, θ0 = π, E1/
E2 = 15)

B.C. M × N Mode number

1 2 3 4 5 6

FFFF 14 × 14 0.0181 0.0325 0.0485 0.0711 0.0886 0.1268

15 × 15 0.0181 0.0325 0.0485 0.0711 0.0885 0.1268

16 × 16 0.0181 0.0325 0.0485 0.0711 0.0885 0.1268

17 × 17 0.0181 0.0325 0.0485 0.0711 0.0885 0.1268

18 × 18 0.0181 0.0325 0.0484 0.0711 0.0885 0.1267

CCCC 14 × 14 0.4588 0.4616 0.5151 0.5259 0.5991 0.6611

15 × 15 0.4588 0.4615 0.5150 0.5258 0.5987 0.6610

16 × 16 0.4588 0.4615 0.5149 0.5257 0.5987 0.6602

17 × 17 0.4588 0.4615 0.5149 0.5257 0.5986 0.6601

18 × 18 0.4588 0.4615 0.5148 0.5257 0.5986 0.6597
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shell parameters used in the comparison are the same as those for Table 6.11. Five
different circumferential included angles, i.e., θ0 = 45°, 90°, 135°, 180° and 225°,
corresponding to shallow to deep open conical shells are performed in the com-
parison. It is clearly evident that the present solutions are in a good agreement with
the referential data, although different admissible displacement functions were
employed by Ye et al. (2014b). The differences between the two results are very
small, and do not exceed 0.065 % for the worst case.

6.4.2 Laminated Open Conical Shells with General Boundary
Conditions

Some further numerical results for laminated open conical shells with different
boundary conditions and shell parameters, such as geometric properties, lamination
schemes are given in the subsequent discussions.

Table 6.12 Comparison of frequency parameters X ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
for [0°/90°/0°] laminated

shallow and deep open conical shells with SSSS and CCCC boundary conditions (R0 = 1 m,
L/R0 = 2, h/R0 = 0.1, φ = π/4, E1/E2 = 15)

θ0 Mode Ye et al. (2014b) Present Difference (%)

SSSS CCCC SSSS CCCC SSSS CCCC

45° 1 29.953 37.831 29.956 37.831 0.010 0.002

2 32.542 44.176 32.543 44.177 0.003 0.002

3 50.005 58.363 50.006 58.364 0.003 0.001

4 52.410 67.406 52.415 67.408 0.010 0.002

90° 1 16.702 24.103 16.704 24.104 0.012 0.002

2 19.810 27.671 19.814 27.673 0.019 0.008

3 29.910 37.898 29.918 37.900 0.027 0.003

4 33.347 39.299 33.349 39.304 0.005 0.014

135° 1 15.281 22.565 15.284 22.566 0.019 0.004

2 16.536 22.888 16.537 22.889 0.010 0.004

3 19.943 26.779 19.949 26.782 0.027 0.010

4 22.977 30.186 22.989 30.197 0.049 0.035

180° 1 14.820 21.855 14.823 21.856 0.023 0.002

2 15.129 21.983 15.129 21.985 0.005 0.010

3 17.444 24.519 17.454 24.525 0.058 0.022

4 19.367 25.038 19.375 25.042 0.038 0.018

225° 1 14.571 21.526 14.572 21.527 0.006 0.002

2 14.588 21.667 14.592 21.670 0.028 0.012

3 16.470 23.078 16.480 23.078 0.065 0.002

4 16.915 23.431 16.916 23.438 0.003 0.030
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Isotropic open conical shells are a special case of the laminated ones. Vibration
results of these shells with general boundary conditions are rare in the literature as
well. Therefore, Table 6.13 shows the first four frequency parameters Ω of an
isotropic (E = 210 GPa, μ12 = 0.3, ρ = 7,800 kg/m3) open conical shell with different
types of boundary conditions (FFFC, FFCC, FCCC, CCCF, CCFF and CFFF) and
thickness-to-small edge radius ratios (h/R0). The geometry parameters used in the
analysis are: R0 = 1 m, L = 2 m, θ0 = 90°, φ = 30°. Four different thickness-to-small
edge radius ratios, i.e., h/R0 = 0.01, 0.02, 0.05 and 0.1 are used in the calculation.
The table shows that the frequency parameters of the shell tend to increase with
thickness-to-small edge radius ratio increases. This is true due to the stiffness of an
isotropic open conical shell increases with thickness increases. Furthermore, it is
interesting to find that the frequency parameters of the shell with cantilever
boundary conditions in the curved edge are higher than those of straight edges.

The first six mode shapes for the shell with thickness-to-small edge radius ratio
h/R0 = 0.01 and FCCC boundary condition are given in Fig. 6.4. These 3-D view
mode shapes serve to enhance our understanding of the vibratory characteristics of
the open conical shell. Table 6.14 shows the similar studies for a two-layered [0°/
90°] open conical shell. The layers of the shell are made of composite material with
following properties: E1/E2 = 15. Table 6.14 also shows that the frequency
parameters of laminated open conical shells increase with thickness-to-small edge
radius ratio increases.

Table 6.13 Frequency parameters Ω of an isotropic open conical shell with various boundary
conditions and thickness-to-radius ratios (R0 = 1 m, L = 2 m, θ0 = 90°, φ = 30°)

h/R0 Mode Boundary conditions

FFFC FFCC FCCC CCCF CCFF CFFF

0.01 1 0.0037 0.0590 0.2277 0.0996 0.0263 0.0240

2 0.0100 0.1212 0.2537 0.1907 0.0738 0.0281

3 0.0172 0.1788 0.3233 0.2479 0.0995 0.0622

4 0.0345 0.2172 0.3411 0.2769 0.1060 0.0908

0.02 1 0.0074 0.0872 0.3525 0.1501 0.0393 0.0360

2 0.0198 0.1837 0.3722 0.3004 0.1052 0.0393

3 0.0342 0.2540 0.4800 0.3473 0.1571 0.1018

4 0.0681 0.3293 0.5113 0.4079 0.1707 0.1143

0.05 1 0.0184 0.1470 0.5520 0.2695 0.0682 0.0510

2 0.0489 0.3335 0.6682 0.5239 0.1861 0.0820

3 0.0842 0.4356 0.8394 0.5964 0.2820 0.1307

4 0.1629 0.5654 0.9446 0.6877 0.2874 0.2357

0.10 1 0.0366 0.2299 0.8543 0.4357 0.1096 0.0817

2 0.0953 0.5164 0.9780 0.7747 0.2542 0.1080

3 0.1652 0.6100 1.2614 0.9499 0.4405 0.2062

4 0.2996 0.8463 1.2658 1.0000 0.4729 0.4047
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Fig. 6.4 Mode shapes for an isotropic open conical shell with FCCC boundary conditions
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At the end of this section, the influence of circumferential included angle θ0 on
the frequency parameters of laminated open conical shells is investigated.
A two-layered [0°/90°] open conical shell with small edge radius R0 = 1 m, length
L = 2 m, thickness h = 0.05 m is investigated. The layers of the shell are made of
composite material having orthotropy ratio E1/E2 = 15. Three different vertex half-
angle angles, i.e., φ = 0°, 45° and 90°, corresponding to open cylindrical shell,
general open conical shell and sectorial plate are performed in the investigation.
Figure 6.5 shows the variation of the lowest three frequency parameters Ω of the
shell with SSSS boundary condition against the circumferential included angle θ0.
As observed from the figure, the frequency parameter traces of the shell decline
when the circumferential included angle θ0 is varied from 30° to 330° by a step of
15°. It is attributed to the stiffness of the shell decreases with circumferential
included angle θ0 increases. Furthermore, it is obvious that the effect of the

Table 6.14 Frequency parameters Ω of a two-layered [0°/90°] open conical shell with various
boundary conditions and thickness-to-radius ratios (R0 = 1 m, L = 2 m, θ0 = 90°, φ = 30°, E1/
E2 = 15)

h/R0 Mode Boundary conditions

FFFC FFCC FCCC CCCF CCFF CFFF

0.01 1 0.0024 0.0412 0.1344 0.0628 0.0187 0.0173

2 0.0052 0.0765 0.1466 0.1147 0.0498 0.0200

3 0.0102 0.1158 0.1899 0.1394 0.0616 0.0438

4 0.0202 0.1307 0.1906 0.1556 0.0698 0.0577

0.02 1 0.0047 0.0578 0.1979 0.0906 0.0267 0.0256

2 0.0102 0.1123 0.2039 0.1760 0.0684 0.0262

3 0.0201 0.1552 0.2693 0.1926 0.0942 0.0654

4 0.0399 0.1934 0.2941 0.2173 0.1112 0.0758

0.05 1 0.0118 0.0914 0.3067 0.1583 0.0441 0.0336

2 0.0254 0.1990 0.3915 0.2830 0.1135 0.0524

3 0.0491 0.2533 0.4713 0.3519 0.1591 0.0824

4 0.0953 0.3186 0.5573 0.3917 0.1742 0.1454

0.10 1 0.0234 0.1377 0.4786 0.2556 0.0690 0.0468

2 0.0498 0.3080 0.6516 0.4231 0.1442 0.0742

3 0.0946 0.3353 0.6981 0.5271 0.2666 0.1182

4 0.1735 0.4728 0.8905 0.5919 0.2746 0.2194
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circumferential included angle θ0 is much higher for open cylindrical, conical shells
and sectorial plates with lower circumferential included angle. Changing θ0 from
30° to 90° results in frequency parameters that are more than five times lower.
Conversely, increasing θ0 from 90° to 330° yields less than 30 % decrement of the
frequency parameters.
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Fig. 6.5 Variation of
frequency parameters Ω
versus θ0 for [0°/90°]
laminated open conical shells
with SSSS boundary
condition: a φ = 0°; b φ = 45°;
c φ = 90°
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Figure 6.6 shows the similar studies for the conical shell with CCCC boundary
condition. The similar observations can be seen in this figure.
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Fig. 6.6 Variation of
frequency parameters Ω
versus θ0 for [0°/90°]
laminated open conical shells
with CCCC boundary
condition: a φ = 0°; b φ = 45°;
c φ = 90°
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