
Chapter 4
Plates

Plates are one of the most fundamental structural elements which are widely used in
a variety of engineering applications. A plate can be defined as a solid body
bounded by two parallel flat surfaces having two dimensions relatively greater than
the other one (thickness). It can also be viewed as a special case of shells with zero
curvature (infinite radii of curvature). The vibration of plates is an old topic and a
lot of books, papers and reports have already been published in the past decades. In
1969, A.W. Leissa published an excellent monograph titled Vibration of Plates, in
which theoretical and experimental results of approximately 500 research papers
and reports were presented. Most 90 % of this book considers the homogeneous
thin plates. A plate is typically considered to be thin when the ratio of its thickness
to representative lateral dimension is less than 1/20 (Leissa 1969; Qatu 2004).
As pointed by Leissa (Liew et al. 1998), the classical thin plate theory (CPT)
permits one to obtain a fundamental frequency with good accuracy. However, the
higher frequencies of a plate with thickness ratio of 1/20, determined by thin plate
theory, will not be accurate. It will be somewhat too high. The inaccuracies can be
largely eliminated by use of the shear deformation plate theories (SDPTs) for they
include both shear deformation and rotary inertia due to rotations. Liew et al. (1998)
presented a book deal with thick isotropic plates using the p-version Ritz method.

Plates can be rectangular, circular, annular, sectorial, elliptical, triangular, trap-
ezoidal and of other shapes. Chakraverty (2009) analyzed vibrations of plates of
various shapes and classical boundary conditions by using the boundary charac-
teristic orthogonal polynomials with the Ritz method. The homogeneous thin plates
are the subject of Chakraverty’s work as well. With the development of new
industries and modern processes, laminated plates composed of composite laminas
are extensively used in many fields of modern engineering practices such as space
vehicles, civil constructions and deep-sea engineering equipments. Laminated
plates are treated by various studies and books. The development of research on this
subject has been well documented in several monographs respectively by Qatu
(2004), Reddy (2003), Carrera et al. (2011), Ye (2003), and review or survey
articles (Carrera 2002, 2003; Liew et al. 2011).
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This chapter considers vibrations of laminated plates with various shapes and
general boundary conditions. The fundamental equations of shells in the framework
of CST and SDST described in Chap. 1 will be specialized to those of plates by
setting the curvatures to zero. We will begin with the fundamental equations of
rectangular plates, followed by vibration results of laminated rectangular plates with
general boundary conditions. Strain-displacement relations, force and moment
resultants, energy functions, governing equations and boundary conditions are
derived and shown for both theories. On the basis of SDPT, numerous natural
frequencies and mode shapes are presented for laminated rectangular plates with
different boundary conditions, lamination schemes and geometry parameters by
using the modified Fourier series and weak form solution procedure (see, Chap. 2)
because previous studies showed that convergence of solutions with weak form
solution procedure is faster (Table 3.3). Effects of boundary conditions, geometry
parameters and material properties are studied as well. Vibration of sectorial,
annular and circular plates will then be treated in the later sections of this chapter.

4.1 Fundamental Equations of Thin Laminated
Rectangular Plates

As shown in Fig. 4.1, a rectangular laminated plate with length a, width b and total
thickness of h is selected as the analysis model. To describe the plate clearly, we
introduce the following coordinate system: the x-coordinate is taken along the
length of the plate, and y- and z-coordinates are taken along the width and the
thickness directions, respectively. The middle surface displacements of the plate in
the x, y and z directions are denoted by u, v and w, respectively. The laminated
rectangular plate is assumed to be composed of NL composite layers. Consider the
laminated rectangular plate and its rectangular coordinate system in Fig. 4.1, the
coordinates, characteristics of the Lamé parameters and radii of curvatures are:
α = x, β = y, A = 1, B = 1, Rα = ∞, Rβ = ∞.

Fundamental equations of thin laminated rectangular plates are presented in this
section by substituting their geometry parameters into those of general thin lami-
nated shell equations.

4.1.1 Kinematic Relations

Based on the assumptions of Kirchhoff, the displacement field of thin rectangular
plates is restricted to the following linear relationships (see Fig. 4.2, Reddy (2003)):
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Uðx; y; zÞ ¼ uðx; yÞ � z
@wðx; yÞ

@x

Vðx; y; zÞ ¼ vðx; yÞ � z
@wðx; yÞ

@y

Wðx; y; zÞ ¼ wðx; yÞ

ð4:1Þ

where u, v and w are the middle surface displacements. Letting α = x, β = y, A = B=1
and Rα = Rβ = ∞, the strain-displacement relations of rectangular plates can be
obtained from Eqs. (1.6) and (1.7) as

ex ¼ e0x þ zvx
ey ¼ e0y þ zvy

cxy ¼ c0xy þ zvxy

ð4:2Þ
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Fig. 4.1 Laminated rectangular plates
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e0x ¼
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; vx ¼ � @2w
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; vy ¼ � @2w
@y2
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; vxy ¼ �2
@2w
@x@y

ð4:3Þ

4.1.2 Stress-Strain Relations and Stress Resultants

According to Hooke’s law, the corresponding stresses in the k′th layer of the plate
are written as:

rx
ry
syz

8<
:

9=
;

k

¼
Qk

11 Qk
12 Qk

16

Qk
12 Qk

22 Qk
26

Qk
16 Qk

26 Qk
66

2
64

3
75 ex

ey
cxy

8<
:

9=
;

k

ð4:4Þ

The lamina stiffness coefficients Qk
ij(i, j = 1, 2, 6) can be written as in Eq. (1.9).

Then, the force and moment resultants are obtained by carrying the integration of
stresses over the cross-section:
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Fig. 4.2 Undeformed and deformed geometries of an edge of a plate under the Kirchhoff
assumption (Reddy 2003)
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Nx Ny Nxy½ � ¼
Zh=2

�h=2

rx ry sxy½ �dz

Mx My Mxy½ � ¼
Zh=2

�h=2

rx ry sxy½ �zdz

ð4:5Þ

Performing the integration operation in Eq. (4.5) yields
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where Nx, Ny and Nxy are the normal and shear force resultants and Mx, My, Mxy

denote the bending and twisting moment resultants. Aij, Bij, and Dij are the stiffness
coefficients arising from the piecewise integration over the plate thickness, they can
be written as in Eq. (1.15).

In comparing to homogeneous thin plates, there exist some fundamental dif-
ferences in the equations of generally thin laminated plates. The most important
difference is that the transverse vibration is coupled with in-plane vibration for
generally laminated plates. When a laminated plate is symmetrically laminated with
respect to the middle surface, the constants Bij equal to zero and the in-plane
vibration is then decoupled from the transverse vibration, which will sufficiently
reduce the complexity of the stress-strain relations, energy functions, governing
equations and boundary condition equations of the plate.

4.1.3 Energy Functions

The strain energy (Us) of thin laminated rectangular plates during vibration can be
written as:

Us ¼ 1
2

Za

0

Zb

0

Nxe0x þ Nye0y þ Nxyc0xy
þMxvx þMyvy þMxyvxy

� �
dxdy ð4:7Þ

Substituting Eqs. (4.3) and (4.6) into Eq. (4.7), the strain energy of the thin
laminated plates can be rewritten in terms of displacements as:
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The corresponding kinetic energy (T) is:

T ¼ 1
2
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( )

dxdy ð4:9Þ

where the inertia term I0 is given as in Eq. (1.19). The external work (We) is
expressed as:

We ¼
Za

0

Zb

0

qxuþ qyvþ qzw
� �

dxdy ð4:10Þ

where qx, qy and qz are the external loads in the x, y and z directions, respectively.
As described in Sect. 1.2.3, the general boundary conditions of a plate are

implemented by using the artificial spring boundary technique. Specifically, sym-
bols kuw; k

v
w; k

w
w and Kw

w (ψ = x0, y0, x1 and y1) are used to indicate the stiffness of
the boundary springs at the boundaries x = 0, y = 0, x = a and y = b, respectively.
Therefore, the deformation strain energy about the boundary springs (Usp) is
defined as (Fig. 4.3):
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4.1.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thin rectangular plates can be
obtained by specializing those of thin shells or applying the Hamilton’s principle in
the same manner as described in Sect. 1.2.4. Substituting α = x, β = y, A = B = 1 and
Rα = Rβ = ∞ into Eq. (1.28) yields following governing equations:
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Middle surface

k'th layer

z(w)

x(u)
y(v)

kv

Kw

ku

kw

Fig. 4.3 Boundary
conditions of thin laminated
rectangular plates
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The corresponding boundary conditions of thin laminated plates at boundaries of
x = constant are:

x ¼ 0 :
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8>>>>><
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Similarly, for boundaries y = 0 and y = b, the boundary conditions are obtained as:
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For generally laminated thin plates, each boundary can exist 12 possible classical
boundary conditions. Taking boundaries x = constant for example, the possible
combinations for each classical boundary condition are given in Table 4.1.

Table 4.1 Possible classical
boundary conditions for
generally laminated thin
rectangular plates at each
boundary of x = constant

Boundary type Conditions

Free boundary conditions

F
Nx ¼ Nxy ¼ Qx þ @Mxy

@y
¼ Mx ¼ 0

F2
u ¼ Nxy ¼ Qx þ @Mxy

@y
¼ Mx ¼ 0

F3
Nx ¼ v ¼ Qx þ @Mxy

@y
¼ Mx ¼ 0

F4
u ¼ v ¼ Qx þ @Mxy

@y
¼ Mx ¼ 0

Simply supported boundary conditions

S u = v = w = Mx = 0

SD Nx = v = w = Mx = 0

S3 u = Nxy = w = Mx = 0

S4 Nx = Nxy = w = Mx = 0

Clamped boundary conditions

C
u ¼ v ¼ w ¼ @w

@x
¼ 0

C2
Nx ¼ v ¼ w ¼ @w

@x
¼ 0

C3
u ¼ Nxy ¼ w ¼ @w

@x
¼ 0

C4
Nx ¼ Nxy ¼ w ¼ @w

@x
¼ 0
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In the framework of artificial spring boundary technique, taking edge x = 0 for
example, the frequently encountered boundary conditions F, SD, S and C can be
readily realized by assigning the stiffness of the boundary springs at proper values
as follows:

F: kux0 ¼ kvx0 ¼ kwx0 ¼ Kw
x0 ¼ 0

SD: kvx0 ¼ kwx0 ¼ 107D; kux0 ¼ Kw
x0 ¼ 0

S: kux0 ¼ kvx0 ¼ kwx0 ¼ 107D; Kw
x0 ¼ 0

C: kux0 ¼ kvx0 ¼ kwx0 ¼ Kw
x0 ¼ 107D

ð4:15Þ

where D = E1h
3/12(1−μ12 μ21) is the flexural stiffness of the plate.

4.2 Fundamental Equations of Thick Laminated
Rectangular Plates

This section presents fundamental equations that can be used for thick laminated
plates. The treatment that follows is a specialization of shear deformation shell
theory (SDST) to laminated plates. For thick plates, the Kirchhoff hypothesis is
relaxed by assuming that normals to the undeformed middle surface remain straight
but do not normal to the deformed middle surface, see Fig. 4.4 (Reddy 2003). The
following equations are referred to as shear deformation plate theory (SDPT).
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Fig. 4.4 Undeformed and deformed geometries of an edge of a plate including shear deformation
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4.2.1 Kinematic Relations

Based on the plate model presented in Fig. 4.1 and the assumptions of the first-order
shear deformation theory, the displacement field of thick laminated rectangular
plates is of the form

Uðx; y; zÞ ¼ uðx; yÞ þ z/x

Vðx; y; zÞ ¼ vðx; yÞ þ z/y

Wðx; y; zÞ ¼ wðx; yÞ
ð4:16Þ

where u, v and w are the middle surface displacements of the plate in the x, y and
z directions, respectively; ϕx and ϕy represent the transverse normal rotations of the
reference surface respect to the y and x axes. Specializing Eqs. (1.33) and (1.34) to
those of plates, the normal and shear strains at any point of the plate space can be
defined in terms of the middle surface strains and curvature changes as:

ex ¼ e0x þ zvx; cxz ¼ c0xz
ey ¼ e0y þ zvy; cyz ¼ c0yz

cxy ¼ c0xy þ zvxy

ð4:17Þ

where c0xz and c0yz indicate the transverse shear strains, it is assumed to be constant
through the thickness. The middle surface strains and curvature changes are written
in terms of middle surface displacements and rotation components as:

e0x ¼
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@/x
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@w
@x

þ /x
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@w
@y

þ /y

ð4:18Þ

4.2.2 Stress-Strain Relations and Stress Resultants

According to Eq. (1.35), the corresponding stress-strain relations in the layer k of a
thick laminated rectangular plate are:
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The force and moment resultants are obtained by integrating the stresses over the
plate thickness

Nx Ny Nxy Qx Qy½ � ¼
Zh=2

�h=2

rx ry sxy sxz syz½ �dz

Mx My Mxy½ � ¼
Zh=2

�h=2

rx ry sxy½ �zdz

ð4:20Þ

where Qy and Qx are the transverse shear force resultants. Carrying out the inte-
gration over the thickness, from layer to layer, yields
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� �
c0yz
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� �
ð4:22Þ

The stiffness coefficients Aij, Bij and Dij are defined as in Eq. (1.43). When a thick
rectangular plate is symmetrically laminated with respect to the middle surface, the
constants Bij equal to zero, however, the in-plane vibration will not be decoupled
from the bending vibration due to the shear deformation.

4.2.3 Energy Functions

The strain energy (Us) of thick laminated rectangular plates during vibration can be
defined in terms of the middle surface strains and curvature changes and stress
resultants as
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Substituting Eqs. (4.18) and (4.21) into Eq. (4.23), the strain energy of the
laminated plate can be expressed in terms of displacements (u, v, w) and rotation
components (ϕx, ϕy) as in Eq. (2.84).

The corresponding kinetic energy (T) function is:
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The inertia terms are written as in Eq. (1.52). Assuming the distributed external
forces qx, qy and qz are in the x, y and z directions, respectively and mx and my

represent the external couples in the middle surface, thus, the work done by the
external forces and moments is

We ¼
Za

0

Zb

0

qxuþ qyvþ qzwþ mx/x þ my/y

� �
dydx ð4:25Þ

Using the artificial spring boundary technique similar to that described earlier,
symbols kuw; k

v
w; k

w
w;K

x
w and Ky

w (ψ = x0, y0, x1 and y1) are used to indicate the
rigidities (per unit length) of the boundary springs at the boundaries x = 0, y = 0,
x = a and y = b, respectively, see Fig. 4.5. Therefore, the deformation strain energy
(Usp) stored in the boundary springs during vibration is defined as:
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Fig. 4.5 Boundary
conditions of a thick
laminated rectangular plate
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4.2.4 Governing Equations and Boundary Conditions

Specializing the governing equations and boundary conditions of thick general
shells (Eq. (1.59)) to those of thick rectangular plates, we have
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Substituting Eqs. (4.17), (4.18), (4.21) and (4.22) into above equations, the
governing equations can be written in terms of displacements. These equations are
proved useful when exact solutions are desired. These equations can be written as

L11 L12 L13 L14 L15
L21 L22 L23 L24 L25
L31 L32 L33 L34 L35
L41 L42 L43 L44 L45
L51 L52 L53 L54 L55

2
66664

3
77775� x2

M11

0
0
M41

0

0
M22

0
0
M52

0
0
M33

0
0

M14

0
0
M44

0

0
M25

0
0
M55

2
66664

3
77775

0
BBBB@

1
CCCCA

u
v
w
/x
/y

2
66664

3
77775 ¼

�px
�py
�pz
�mx

�my

2
66664

3
77775

ð4:28Þ

The coefficients of the linear operator Lij and Mij are given as in Eq. (2.49). The
general boundary conditions of the plate are:
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x¼0 :

Nx � kux0u ¼ 0

Nxy � kvx0v ¼ 0

Qx � kwx0w ¼ 0

Mx � Kx
x0/x ¼ 0

Mxy � Ky
x0/y ¼ 0

8>>>>>><
>>>>>>:

x¼a :

Nx þ kux1u ¼ 0

Nxy þ kvx1v ¼ 0

Qx þ kwx1w ¼ 0

Mx þ Kx
x1/x ¼ 0

Mxy þ Ky
x1/y ¼ 0

8>>>>>><
>>>>>>:

y¼0 :

Nxy � kuy0u ¼ 0

Ny � kvy0v ¼ 0

Qy � kwy0w ¼ 0

Mxy � Kx
y0/x ¼ 0

My � Ky
y0/y ¼ 0

8>>>>>><
>>>>>>:

y¼b :

Nxy þ kuy1u ¼ 0

Ny þ kvy1v ¼ 0

Qy þ kwy1w ¼ 0

Mxy þ Kx
y1/x ¼ 0

My þ Ky
y1/y ¼ 0

8>>>>>><
>>>>>>:

ð4:29Þ

The classification of the classical boundary conditions shown in Table 1.3 for
thick laminated shells is applicable for plates. Taking boundaries x = constant for
example, the possible combinations for each classical boundary conditions are
given in Table 4.2.

Similarly, in the framework of artificial spring boundary technique, the afore-
mentioned classical boundary conditions can be readily realized by assigning the
stiffness of the boundary springs at proper values. Taking edge x = 0 for example, the
frequently encountered boundary conditions F, SD (shear-diaphragm), S (simply-
supported) and C can be defined in terms of boundary spring rigidities as follows:

F: kux0 ¼ kvx0 ¼ kwx0 ¼ Kx
x0 ¼ Ky

x0 ¼ 0

SD: kvx0 ¼ kwx0 ¼ Ky
x0 ¼ 107D; kux0 ¼ Kx

x0 ¼ 0

S: kux0 ¼ kvx0 ¼ kwx0 ¼ Ky
x0 ¼ 107D; Kx

x0 ¼ 0

C: kux0 ¼ kvx0 ¼ kwx0 ¼ Kx
x0 ¼ Ky

x0 ¼ 107D

ð4:30Þ

where D = E1h
3/12(1-μ12μ21) is the flexural stiffness of the plate. Figure 4.6 (Ye et al.

2014a) shows the variations of the first three frequency parameters ΔΩ versus
restraint parameters Γλ (λ = u, v, w, x and y) of a [0°/90°/0°] laminated plate (a/b = 1,
h/a = 0.1, E1/E2 = 40, μ12 = 0.25, G12 = 0.6E2, G13 = 0.6E2 and G23 = 0.5E2), where
ΔΩ is defined as the difference of the frequency parameter X ¼ xb2=p2

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
to

that of the elastic restraint parameter Γλ = 10−1, namely, ΔΩ = Ω (Γλ) − Ω (10−1D).
The plates under consideration are completely free at boundaries y = 0, y = b, and
completely clamped at boundary x = 0, while at edge x = a, the plates are elastically
supported by only one group of spring components with stiffness assigned as
Γ × D. According to Fig. 4.6, we can see that when the restraint parameter Γ is
increased from 100 to 105, the frequency parameters increase rapidly and approach
their utmost. Then they remain unchanged when Γ approaches infinity. In such a
case, the plate can be deemed as clamped in both ends. Thus, by assigning the
stiffness of the entire boundary springs at 107D, the completely clamped boundary
conditions of a plate can be realized.

112 4 Plates

http://dx.doi.org/10.1007/978-3-662-46364-2_1


4.3 Vibration of Laminated Rectangular Plates

In this section, we consider free vibration laminated rectangular plates with general
boundary conditions. The homogeneous rectangular plates are treated as a special
case of the laminated ones in the study. Only solutions in the framework of SDPT
are considered in this section. Natural frequencies and mode shapes for thin and
thick laminated rectangular plates with different boundary conditions, lamination
schemes and geometry parameters are presented. For the sake of simplicity, a four-
letter string is employed to represent the boundary condition of a plate, such as
FCSSD identify a rectangular plate with edges x = 0, y = 0, x = a, y = b having F, C,
S and SD boundary conditions, respectively.

Combining Eqs. (2.49) and (4.28), it is obvious that the displacements and
rotation components of laminated rectangular plates in the framework of SDPT are

Table 4.2 Possible classical
boundary conditions for thick
rectangular plates at each
boundary of x = constant

Boundary type Conditions

Free boundary conditions

F Nx = Nxy = Qx = Mx = Mxy = 0

F2 u = Nxy = Qx = Mx = Mxy = 0

F3 Nx = v = Qx = Mx = Mxy = 0

F4 u = v = Qx = Mx = Mxy = 0

F5 Nx = Nxy = Qx = Mx = ϕy = 0

F6 u = Nxy = Qx = Mx = ϕy = 0

F7 Nx = v = Qx = Mx = ϕy = 0

F8 u = v = Qx = Mx = ϕy = 0

Simply supported boundary conditions

S u = v = w = Mx = ϕy = 0

SD Nx = v = w = Mx = ϕy = 0

S3 u = Nxy = w = Mx = ϕy = 0

S4 Nx = Nxy = w = Mx = ϕy = 0

S5 u = v = w = Mx = Mxy = 0

S6 Nx = v = w = Mx = Mxy = 0

S7 u = Nxy = w = Mx = Mxy = 0

S8 Nx = Nxy = w = Mx = Mxy = 0

Clamped boundary conditions

C u = v = w = ϕx = ϕy = 0

C2 Nx = v = w = ϕx = ϕy = 0

C3 u = Nxy = w = ϕx = ϕy = 0

C4 Nx = Nxy = w = ϕx = ϕy = 0

C5 u = v = w = ϕx = Mxy = 0

C6 Nx = v = w = ϕx = Mxy = 0

C7 u = Nxy = w = ϕx = Mxy = 0

C8 Nx = Nxy = w = ϕx = Mxy = 0
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required to have up to the second derivatives. Therefore, regardless of boundary
conditions, each displacement and rotation component of a laminated plate is
expanded as a two-dimensional modified Fourier series as:
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Fig. 4.6 Variation of the frequency parameters ΔΩ versus the elastic restraint parameters Γλ for a
three-layered, [0°/90°/0°] rectangular plate
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uðx; yÞ ¼
XM
m¼0

XN
n¼0

Amn cos kmx cosknyþ
X2
l¼1

XN
n¼0

alnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

blmPlðyÞ cos kmx

vðx; yÞ ¼
XM
m¼0

XN
n¼0

Bmn cos kmx cosknyþ
X2
l¼1

XN
n¼0

clnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

dlmPlðyÞ cos kmx

wðx; yÞ ¼
XM
m¼0

XN
n¼0

Cmn cos kmx cosknyþ
X2
l¼1

XN
n¼0

elnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

flmPlðyÞ cos kmx

/xðx; yÞ ¼
XM
m¼0

XN
n¼0

Dmn cos kmx cos knyþ
X2
l¼1

XN
n¼0

glnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

hlmPlðyÞ cos kmx

/yðx; yÞ ¼
XM
m¼0

XN
n¼0

Emn cos kmx cos knyþ
X2
l¼1

XN
n¼0

ilnPlðxÞ cos kny

þ
X2
l¼1

XM
m¼0

jlmPlðyÞ cos kmx

ð4:31Þ

where λm = mπ/a and λn = nπ/b. Amn, Bmn, Cmn, Dmn and Emn are expansion
coefficients of the standard cosine Fourier series. aln, blm, cln, dlm, eln, flm gln, hlm, iln
and jlm are the corresponding supplement coefficients.M and N denote the truncation
numbers with respect to variables x and y, respectively. Pl (x) and Pl (y) denote the
auxiliary polynomial functions introduced to remove all the discontinuities poten-
tially associated with the first-order derivatives at the boundaries. These auxiliary
functions are defined as

P1ðxÞ ¼ x
x
a
� 1

� �2
P2ðxÞ ¼ x2

a
x
a
� 1

� �
ð4:32Þ

P1ðyÞ ¼ y
y
b
� 1

� �2
P2ðyÞ ¼ y2

b
y
b
� 1

� �
ð4:33Þ

The solutions of laminated rectangular plates under consideration can be sought
in the strong form solution procedure as described in Sect. 2.1.2. Alternately, all the
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expansion coefficients in Eq. (4.31) can be treated equally and independently as the
generalized coordinates and solved directly from the Rayleigh–Ritz technique in a
fashion similar to that done in Sect. 2.2. Table 3.3 shows that the solutions obtained
by the weak form solution procedure (i.e., Ritz technique) converge faster than
those of strong form solution procedure, therefore, the weak form solution proce-
dure will be adopted in the following calculation. Unless otherwise stated, the
natural frequencies of the considered plates are expressed in the non-dimensional
parameters as X ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E2h2

p
and the material properties of the layers are given

as: E2 = 10 GPa, E1/E2 = open, μ12 = 0.25, G12 = 0.6E2, G13 = 0.6E2, G23 = 0.5E2

and ρ = 1,450 kg/m3.

4.3.1 Convergence Studies and Result Verification

A moderately thick, symmetrically laminated rectangular plate with completely free
boundary condition has been selected to demonstrate the convergence and accuracy
of the current method. The material properties and geometrical dimensions of the
plate are given as follows: a/b = 3/2, h/a = 0.1, E1/E2 = 20, μ12 = 0.25, G12 = 0.5E2,
G13 = 0.5E2 and G23 = 0.33E2. In Table 4.3 (Ye et al. 2014a), the first six frequency
parameters X ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E1h2

p
for the plate with [30°/−30°/−30°/30°] lamination

scheme are examined. Results without considering the supplementary terms in the
admissible functions are also included in the table. The table shows the proposed
method has fast convergence behavior. The maximum discrepancy in the worst case
between the 11 × 11 truncated configuration and the 13 × 13 one is less than
0.0013 %. In order to check the model, the present results are also compared with

Table 4.3 Comparison and convergence of the first six frequency parameters X ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E1h2

p
for a completely free, [30°/−30°/−30°/30°] laminated rectangular plate (a/b = 3/2, h/a = 0.1)

Methods M × N Mode number

1 2 3 4 5 6

Present 11 × 11 2.3449 2.8767 4.9502 5.1610 5.6962 8.4310

12 × 12 2.3449 2.8767 4.9502 5.1610 5.6962 8.4310

13 × 13 2.3449 2.8767 4.9502 5.1610 5.6962 8.4310

Present * 11 × 11 0.7499 1.0034 2.2191 2.8797 3.7857 4.2837

12 × 12 0.7141 0.9565 2.1952 2.7305 3.7630 4.2406

13 × 13 0.7051 0.9472 2.1472 2.6935 3.6792 4.1875

Frederiksen
(1995)

16 × 16 2.3223 2.8745 4.9152 5.0674 5.6589 8.2288

18 × 18 2.3223 2.8745 4.9152 5.0674 5.6589 8.2288

Messina and Soldatos
(1999a)

2.3251 2.8777 4.9458 5.0910 5.6871 8.3580

Present* Results without considering the supplementary terms in Eq. (4.31)
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data published by Frederiksen (1995) who used Ritz method, Messina and Soldatos
(1999a) based on HSDT formulation. From the table, one can see that the present
solutions agree very well with the referential results.

To further validate the accuracy and reliability of current solutions, Table 4.4
(Ye et al. 2014a) shows the comparison of the first six frequency parameters X ¼
xb2=p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E2h2

p
of a thick, [45°/−45°/45°/−45°/45°] laminated plate which was

studied by Karami et al. (2006), Liew et al. (2005) and Wang (1997). The material
properties and geometrical dimensions used in the investigation are: a/b = 1,
h/a = 0.1, E1/E2 = 40. The SSSS and CCCC boundary conditions are performed in
the comparison. It is observed that the comparison is very good. The discrepancies
are negligible and the worst one is less than 1.83 %.

4.3.2 Laminated Rectangular Plates with Arbitrary Classical
Boundary Conditions

The excellent agreement between the current solutions and those provided by other
researchers observed from Tables 4.3 and 4.4 indicate that the proposed method is
sufficiently accurate to deal with laminated rectangular plates with arbitrary
boundary conditions. It also verified that the definition of the four types of classical
boundaries in Eq. (4.30) is appropriate. In this section, laminated rectangular plates
with various boundary conditions including the classical restraints and the elastic
ones will be studied.

In Table 4.5, the first four non-dimension frequency parameters Ω of a two-
layered, angle-ply [45°/−45°] laminated square plate (E1/E2 = 40) subjected to five
possible combinations of boundary conditions are presented. Four different thick-
ness-length ratios, i.e. h/a = 0.01, 0.05, 0.1 and 0.15, corresponding to thin to thick

Table 4.4 Comparison of the frequency parameters X ¼ xb2=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E2h2

p
for a thick, [45°/−45°/

45°/−45°/45°] laminated plate (a/b = 1, h/a = 0.1, E1/E2 = 40)

Boundary
conditions

Method Mode number

1 2 3 4 5 6

SSSS Present 1.8803 3.3763 3.6923 4.9665 5.4801 5.5985

Karami et al. (2006) 1.8788 3.3776 3.6921 4.9680 5.4834 5.6000

Wang (1997) 1.8792 3.3776 3.6924 4.9682 5.4835 5.6002

Liew et al. (2005) 1.8466 3.3774 3.6425 4.9661 5.4348 5.5187

CCCC Present 2.2855 3.7363 3.9792 5.1777 5.6966 5.8416

Karami et al. (2006) 2.2857 3.7392 3.9813 5.1799 5.7019 5.8454

Wang (1997) 2.2857 3.7392 3.9813 5.1800 5.7019 5.8455

Liew et al. (2005) 2.2785 3.7383 3.9583 5.1836 5.6808 5.8066
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plates are performed in the calculation. It can be seen from the table that the
augmentation of the thickness-length ratio leads to the decrease of the frequency
parameters. Then let us consider moderately thick (h/a = 0.05), [0°/90°] and [0°/
90°/0°] laminated rectangular (b/a = 2) plates with various anisotropic degrees. In
Table 4.6, the first three frequency parameters Ω for the plates with four types of
boundary conditions and five different anisotropic degrees, i.e. E1/E2 = 1, 5, 10, 20
and 40 are listed, respectively. It can be seen from the table that the frequency
parameters increase in general as the anisotropic ratio increases.

In a composite lamina, fibers are the principal load carrying members (Reddy
2003). By appropriately arranging the fiber directions in the layers of a laminated
plate, special functional requirements can be satisfied. The influence of fiber ori-
entations on the vibration characteristics of composite laminated plates is investi-
gated. In Fig. 4.7 (Ye et al. 2014a), variation of the lowest four frequency
parameters Ω of a three-layered, [0°/ϑ/0°] composite plate with CFFF and CFCF
boundary conditions against the fiber direction angle ϑ are depicted, respectively.
The geometric and material properties of the layers of the plate are: a/b = 1,

Table 4.5 The first four frequency parameters Ω for a [45°/−45°] laminated square plate with
various boundary conditions and thickness–length ratios

h/a Mode number Boundary conditions

FFFF FSFS FCFC SSSS CCCC

0.01 1 7.9118 6.2094 12.320 18.457 23.325

2 11.467 12.849 17.489 37.712 46.788

3 14.782 21.385 31.281 37.712 46.788

4 24.979 28.160 34.054 63.436 73.851

5 24.979 32.609 41.532 64.007 80.563

0.05 1 7.8140 6.0044 11.703 17.628 21.405

2 10.964 12.234 16.111 34.803 41.031

3 14.391 20.220 27.942 34.803 41.031

4 22.971 26.027 30.872 56.213 61.328

5 22.971 29.825 36.684 56.379 67.024

0.10 1 7.5763 5.6488 10.480 15.621 17.910

2 10.176 11.216 13.871 28.893 31.961

3 13.515 18.065 23.029 28.893 31.961

4 19.946 22.357 25.207 43.258 44.986

5 19.946 25.281 29.347 44.388 48.908

0.15 1 7.2469 5.2481 9.1388 13.451 14.794

2 9.3174 10.121 11.816 23.591 25.081

3 12.437 15.834 19.078 23.591 25.081

4 17.088 18.897 20.312 33.556 34.211

5 17.088 21.168 23.548 35.125 37.055
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h/a = 0.1, E1/E2 = 40. Many interesting characteristics can be observed from the
figures. Firstly, all the figures are symmetrical about ϑ = 90°. From Fig. 4.7a, we
can see that there is little variation in the 1st and 2nd mode frequency parameters
when ϑ is increased from 0 to 90°. However, for the 3rd mode, the frequency
parameter traces climb up and then decline, and may reach its crest around ϑ = 75°.
Figure 4.7b shows that the 1st and 2nd mode frequency parameters of the plate have
decreased slightly with the fiber direction angle ϑ increased (from 0 to 90°). And
there is little variation in frequency parameters of the 3rd modes. Comparing with
the lowest three modes, the 4th mode frequency curves in all subfigures have more
significant changes which also climb up and then decline.

The effects of the fiber direction angle on frequency parameters and mode shapes
of single-layered composite rectangular plates are further reported. In Tables 4.7
and 4.8, the lowest three frequency parameters Ω of a single-layered composite
rectangular plate with various boundary conditions and fiber directions are pre-
sented. The aspect ratio is chosen to be b/a = 2/3. The thickness-to-width ratio
h/b = 0.1 is used in the calculation. The fiber direction angle ϑ is varied from 0° to
90° with an increment of 15°. It can be noticed that increasing ϑ from 0° to 90°

Table 4.6 The first three frequency parameters Ω for [0°/90°] and [0°/90°/0°] laminated
rectangular plates with various anisotropic degrees (b/a = 2, h/a = 0.05)

Boundary
conditions

E1/
E2

[0°/90°] [0°/90°/0°]

1 2 3 1 2 3

FFFF 1 1.6186 2.4368 4.4783 1.6186 2.4363 4.4779

5 2.2796 2.4714 5.4939 1.7283 2.4512 4.7494

10 2.4895 2.6649 5.6947 1.8618 2.4598 5.1119

20 2.5122 3.2378 6.0173 2.1036 2.4729 5.4672

40 2.5380 4.1190 6.5613 2.4927 2.5179 5.6761

SDSDSDSD 1 3.8245 6.2386 10.007 3.8244 6.2378 10.005

5 4.7235 7.2379 11.887 6.7027 8.3403 11.545

10 5.3177 7.9484 13.174 9.0302 10.352 13.267

20 6.2521 9.1169 15.236 12.270 13.351 16.049

40 7.7320 11.025 18.515 16.547 17.487 20.152

SSSS 1 3.8837 6.3851 10.207 3.8839 6.3851 10.206

5 5.4240 7.9582 12.629 6.7356 8.4471 11.711

10 6.7036 9.2081 14.405 9.0538 10.435 13.407

20 8.5373 11.043 17.090 12.287 13.413 16.158

40 11.135 13.755 21.157 16.559 17.530 20.232

CCCC 1 7.3712 9.7520 13.697 7.3733 9.7535 13.697

5 9.6590 12.147 16.906 13.969 15.344 18.173

10 11.049 13.668 18.954 18.547 19.622 22.041

20 13.112 15.991 22.086 23.992 24.886 27.090

40 16.171 19.520 26.832 29.592 30.499 32.762
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increases the fundamental frequency parameters for plates with FSDSDSD, FCCC
and FFFC boundary conditions. For the plates with orthotropy ratio E1/E2 = 25 and
FFSDSD or FFFSD boundary conditions, when ϑ is varied from 0° to 45°, the
fundamental frequency parameters increased as well. However, increasing the fiber
direction angles from 45° to 90° decreases these frequency parameters. Further-
more, it can be seen from the table that the frequency parameters increase in general
as the orthotropy ratio increases. Contour plots of the mode shapes for the plate
with CCCC, FCCC and FFCC boundary conditions and orthotropy ratio E1/E2 = 25
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Fig. 4.7 Variation of the frequency parameters Ω versus the fiber direction angle ϑ for a [0°/ϑ/0°]
laminated plate with different boundary conditions: a CFFF; b CFCF

120 4 Plates



are given in Figs. 4.8, 4.9 and 4.10, respectively. From Figs. 4.8 and 4.10, we can
see that the node lines (i.e., lines with zero displacements) of the second modes are
paralleled to the fiber orientation.

Figure 4.11 shows the lowest three frequency parameters Ω and mode shapes for
a FFFF, single-layered square composite plate with different fiber direction angles.
The plate is assumed to be thin (h/a = 0.01) and made of material with orthotropy
ratio E1/E2 = 25. Since the plate symmetrize about the line x = y, the frequency
parameters for the plate with ϑ = 0°, 15° and 30° are the same as those with fiber
direction angles ϑ = 90°, 75° and 60°, respectively. Similarly, mode shapes for
ϑ = 0°, 15° and 30° are similar to those given for ϑ = 90°, 75° and 60°. In addition,
it can be observed that the increment of the fiber direction angle from 0° to 45°
results in increases of the lowest two frequency parameters of the plate.

Table 4.7 The first three frequency parameters Ω for a single-layered rectangular plate with
various boundary conditions and fiber direction angles (b/a = 2/3, h/b = 0.1)

ϑ Mode E1/E2 = 5 E1/E2 = 25

FSDSDSD FFSDSD FFFSD FSDSDSD FFSDSD FFFSD

0° 1 7.1214 1.8181 3.5800 7.1137 1.8435 3.5894

2 15.243 10.782 9.8028 18.251 11.130 9.7959

3 18.251 11.359 14.387 23.004 20.706 14.450

15° 1 7.4299 1.7988 3.8005 8.0005 1.9288 4.2139

2 15.531 9.8858 10.017 20.939 10.880 10.023

3 19.368 12.610 13.413 22.275 20.818 14.875

30° 1 8.2871 1.8809 4.1752 9.7757 2.1294 5.0365

2 15.979 8.8869 10.716 21.598 9.8323 11.117

3 21.867 14.214 12.576 27.293 20.197 15.100

45° 1 9.7045 1.9282 4.2298 12.792 2.2254 4.9192

2 16.202 8.0423 10.768 21.975 8.6321 11.569

3 23.053 16.088 13.950 30.772 18.577 18.381

60° 1 11.627 1.8796 3.9882 17.759 2.0992 4.3109

2 16.507 7.4340 10.219 24.223 7.8529 10.792

3 21.324 16.829 16.952 24.768 17.493 21.032

75° 1 13.407 1.7920 3.7406 20.110 1.8774 3.8508

2 17.030 7.0324 9.7324 23.942 7.2353 9.9781

3 19.144 16.453 19.485 26.949 16.736 20.346

90° 1 14.131 1.7831 3.6445 18.251 1.7886 3.6870

2 17.333 6.9315 9.5416 27.073 6.9836 9.6477

3 18.251 16.318 19.854 28.512 16.368 19.985
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4.3.3 Laminated Rectangular Plates with Elastic Boundary
Conditions

In order to prove the validity of the present method for the free vibration analysis of
laminated plates with elastic boundary conditions, Table 4.9 shows the comparison
of the first five frequency parameters X ¼ xb2=p2

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
for [0°/90°/0°…]9

laminated plates with edges elastically restrained against rotation and translation
(i.e. at edges x = 0 and a: Nx = 0, Nxy = 0, kw = Γ*D22/b

3, Kx = Γ*D22/b,Mxy = 0 and
at edges y = 0 and b: Nxy = 0, Ny = 0, kw = Γ*D22/a

3, Mxy = 0, Ky = Γ*D22/a). The
material constants and geometry parameters of the considered plates are: a/b = 1,
E1/E2 = 40. The theoretical results reported by Liew et al. (1997) by using Pb2-Ritz
method and Karami et al. (2006) based on DQM are included in the table. The
results for thin (h/a = 0.001) and moderately thick plates (h/a = 0.2) with two
different values of stiffness of elastic edges are found and are shown in the com-
parison. It is obvious that the proposed modified Fourier solution is sufficient to
yield the solutions in good agreements with those of Pb2-Ritz method and DQM.

Table 4.8 The first three frequency parameters Ω for a single-layered rectangular plate with
various boundary conditions and fiber direction angles (b/a = 2/3, h/b = 0.1)

ϑ Mode E1/E2 = 5 E1/E2 = 25

FCCC FFCC FFFC FCCC FFCC FFFC

0° 1 14.643 4.1554 2.2781 15.20202 5.9673 2.2701

2 22.421 14.664 4.8398 30.26969 15.835 4.8543

3 36.706 15.571 13.701 36.83315 25.755 13.704

15° 1 15.083 4.5393 2.3376 16.05186 6.9774 2.3549

2 22.761 14.194 5.0506 30.07846 16.832 5.3525

3 37.749 16.991 13.868 39.00083 26.250 14.089

30° 1 16.606 4.8977 2.5768 19.28065 7.5381 2.8620

2 23.696 13.336 5.5623 30.81169 17.481 6.6963

3 37.543 19.019 13.278 45.52704 27.112 15.349

45° 1 19.407 5.2668 3.0716 25.0631 8.4171 3.9445

2 25.138 12.410 6.0661 33.3452 16.559 8.3679

3 36.231 21.782 12.658 44.98416 28.239 15.340

60° 1 23.010 5.6496 3.7998 31.95584 9.6762 5.5627

2 27.055 11.613 6.3853 37.2734 15.532 9.7606

3 35.664 22.128 12.250 44.64113 25.914 15.519

75° 1 26.273 5.8850 4.6070 38.42538 10.791 8.0540

2 28.954 10.957 6.5741 40.75042 14.863 10.835

3 35.693 20.858 11.783 45.28074 23.461 15.109

90° 1 27.580 5.6969 5.0260 41.36358 10.730 10.436

2 29.797 10.453 6.6394 42.27473 13.663 11.169

3 35.804 20.259 11.530 45.79356 21.932 14.438
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In the last example in this section, vibration frequencies of composite laminated
plates with some types of elastic restraints will be presented. Although we can
obtain accurate solutions for composite laminated plates with arbitrary uniform and
un-uniform elastic restraints, in this work, we choose three typical uniform elastic
restraint conditions that are defined as follows (at x = 0):

E1: the normal direction is elastically restrained (u ≠ 0, Nxy = Qx = Mx = Mxy = 0).
E2: the transverse direction is elastically restrained (w ≠ 0, Nx = Nxy =

Mx = Mxy = 0).
E3: the rotation is elastically restrained (ϕx ≠ 0, Nx = Nxy = Qx = Mxy = 0).

Table 4.10 shows the lowest three frequency parameters Ω of laminated plates
(E1/E2 = 20, a/b = 3/2) with different lamination schemes and thickness ratios. Two
different lamination schemes, i.e. [0°/90°] and [0°/90°/0°], corresponding to sym-
metrically and unsymmetrically laminated plates are performed in the calculation.
The thickness ratios used are h/a = 0.01, 0.05 and 0.1. The plates under consid-
eration are clamped at the edge of y = b, free at edges y = 0, x = a and with E1

boundary conditions at the edge of x = 0 (E1FFC). The table shows that increasing
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Fig. 4.8 Mode shapes for CCCC, single-layered rectangular plates (b/a = 2/3, h/b = 0.1,
E1/E2 = 25)
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the normal restrained rigidity has very limited effects on the frequency parameters
of both symmetrically and unsymmetrically laminated plates. When the normal
restrained rigidity is varied from 10−1*D to 104*D, the maximum increment in the
table are less than 1.83 % for all cases. It may be attributed to the lower frequency
parameters of a laminated plate with lower thickness ratios are dominated by the
transverse vibration. The further observation from the table is that the effects for the
[0°/90°] plate are larger than the [0°/90°/0°] one.

Tables 4.11 and 4.12 show similar studies for the E2FFC and E3FFC boundary
conditions, respectively. Table 4.11 reveals that the transverse restrained rigidity
has a large effect on the frequency parameters of both [0°/90°] and [0°/90°/0°]
laminated plates, especially the second mode. When the transverse restrained
rigidity is varied from 10−1*D to 104*D, the increments of the second mode can be
292.62, 286.48 and 263.75 % for the [0°/90°/0°] plate with thickness ratios of 0.01,
0.05 and 0.1, respectively. Table 4.12 shows that the rotation restrained rigidity has
very limited effects on the fundamental frequency parameters of the plates, with the
maximum increment less than 0.02 % in all cases when the rotation restrained
rigidity is varied from 10−1*D to 104*D. However, for the second mode, increasing
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Fig. 4.9 Mode shapes for FCCC, single-layered rectangular plates (b/a = 2/3, h/b = 0.1,
E1/E2 = 25)
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the rotation restrained rigidity from 10−1*D to 104*D increases the frequency
parameters by almost 8 and 50 % in each plate configuration. From these tables, it is
obvious that the effects of elastic restraint rigidity on the frequency parameters of
composite laminated plates varies with mode sequences, lamination schemes and
spring components. These results may serve as benchmark solutions for further
researchers.

4.3.4 Laminated Rectangular Plates with Internal Line
Supports

In the engineering practices, laminated plates are often restrained by internal line
supports to reduce the magnitude of dynamic and static stresses and displacements
of the structure or satisfy special architectural and functional requirements. The
study of the vibrations of laminated plates with internal line supports is an
important aspect in the successful applications of these structures. Thus, in this part,
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Fig. 4.10 Mode shapes for FFCC, single-layered rectangular plates (b/a = 2/3, h/b = 0.1,
E1/E2 = 25)
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the present method is applied to investigate the free vibration behaviors of lami-
nated rectangular plates with internal line supports and arbitrary boundary condi-
tions. As shown in Fig. 4.12, a laminated rectangular plate restrained by arbitrary
internal line supports is considered. xi and yj represent the position of the ith and jth
line supports along the y- and x-axes, respectively. The displacement fields in the
position of the line support satisfy w (xi, y) = 0 and w (x, yj) = 0 (Cheung and Zhou

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ϑ=0°

Ω= 5.1205 Ω=6.4569 Ω=12.295

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ϑ=15°

Ω=5.2184 Ω=6.6098 Ω=12.195

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ϑ=30°

Ω=5.3624 Ω=7.2140 Ω=12.145

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω=5.4271 Ω=7.7113 Ω=12.278

ϑ=45°

Fig. 4.11 Frequency parameters Ω and mode shapes for FFFF, thin single-layered square plates
(h/a = 0.01, E1/E2 = 25)
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2001a, b). This condition can be readily obtained by introducing a group of
continuously distributed linear springs at the location of each line support and
setting the stiffness of these springs equal to infinite (which is represented by a very
large number, 107*D). Thus, the potential energy (Pils) stored in these springs is:

Pils ¼ 1
2

Zb

0

XNi

i¼1

kixiwðxi; yÞ2
( )

dyþ 1
2

Za

0

XMj

j¼1

k j
yjwðx; yjÞ2

( )
dx ð4:34Þ

where Ni and Mj are the amount of line supports in the y and x directions. kixi, k
j
yj

denote the corresponding line supported springs distributed at x = xi and y = yj. By
adding the potential energy Pils functions in the Lagrangian energy functional and
applying the weak form solution procedure, the characteristic equation for a plate
with arbitrary boundary conditions and internal line supports is readily obtained.
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Table 4.9 Comparison of the frequency parameters X ¼ xb2=p2
ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
for a [0°/90°/0°…] 9

laminated plate with edges elastically restrained against rotation and translation (a/b = 1,
E1/E2 = 40)

Γ h/a Method Mode number

1 2 3 4 5

102 0.001 Present 1.8096 2.5703 2.7234 3.3061 4.6721

Karami et al. (2006) 1.8095 2.5703 2.7234 3.3061 4.6721

Liew et al. (1997) 1.8096 2.5703 2.7234 3.3061 4.6721

0.2 Present 1.1236 1.7134 1.7635 2.1909 2.5323

Karami et al. (2006) 1.1236 1.7134 1.7636 2.1909 2.5323

Liew et al. (1997) 1.1236 1.7134 1.7636 2.1909 2.5323

108 0.001 Present 3.9126 7.0767 9.0087 10.878 12.743

Karami et al. (2006) 3.9126 7.0767 9.0087 10.878 12.743

Liew et al. (1997) 3.9126 7.0743 9.0088 10.878 12.744

0.2 Present 1.3177 2.0543 2.1064 2.6346 2.9945

Karami et al. (2006) 1.3177 2.0543 2.1064 2.6346 2.9946

Liew et al. (1997) 1.3177 2.0543 2.1064 2.6346 2.9945

Table 4.10 The first three frequency parameters Ω for laminated rectangular plates with E1FFC
boundary conditions and different thickness ratios (E1/E2 = 20, a/b = 3/2)

h/a kux0=D [0°/90°] [0°/90°/0°]

1 2 3 1 2 3

0.01 10−1 4.6013 6.5918 16.506 2.9838 5.5004 18.670

100 4.6013 6.5920 16.507 2.9838 5.5004 18.670

101 4.6013 6.5939 16.512 2.9838 5.5004 18.670

102 4.6013 6.6070 16.554 2.9838 5.5004 18.670

103 4.6014 6.6536 16.707 2.9838 5.5004 18.670

104 4.6014 6.6846 16.809 2.9838 5.5004 18.670

0.05 10−1 4.5518 6.4066 15.935 2.9686 5.3613 18.045

100 4.5518 6.4124 15.954 2.9686 5.3613 18.047

101 4.5518 6.4356 16.012 2.9686 5.3613 18.045

102 4.5518 6.4874 16.165 2.9686 5.3613 18.048

103 4.5518 6.5046 16.197 2.9686 5.3613 18.048

104 4.5518 6.5158 16.205 2.9686 5.3613 18.044

0.10 10−1 4.4076 6.0284 14.736 2.9232 5.1045 16.449

100 4.4076 6.0435 14.795 2.9232 5.1045 16.449

101 4.4076 6.0917 14.812 2.9232 5.1045 16.449

102 4.4076 6.1232 14.693 2.9232 5.1045 16.449

103 4.4076 6.1250 14.827 2.9232 5.1045 16.449

104 4.4076 6.1250 14.825 2.9232 5.1045 16.449
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In order to prove the validity of the present method in dealing with vibration of
laminated composite plate with internal line supports, Table 4.13 presents the
comparison of the first nine frequency parameters X ¼ xab

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
for a square

cross-ply [0°/90°] laminated plate with a central line support in each direction. The
material used is graphite-epoxy with the following proprieties: E1/E2 = 40,
μ12 = 0.25, G12 = 0.5E2,G13 = 0.5E2, G23 = 0.2E2. Three different classical boundary
conditions, i.e. FFFF, SDSDSDSD and CCCC are considered in the comparison.
The benchmark solutions provided by Cheung and Zhou (2001a) based on CPT are
referenced. From the table a consistent agreement of present results and referential
date is seen. The discrepancy is very small and does not exceeds 0.52 % for the worst
case although different trial functions are used in the literature. In addition, the table
shows that the line supports increase the frequencies of the plate.

Influence of the locations of line supports on the frequency parameters of a three-
layered, cross-ply [0°/90°/0°] plate is investigated as well. The plate is assumed to be
thick (h/b = 0.2) and with similar material parameters as those used in Table 4.13.
For the sake of brevity, only a line support along y direction (x1) is considered in the
analysis. In Fig. 4.13, variations of the lowest three mode frequency parameters
X ¼ xab

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
of the considered plate with high length–width ratio (a/b = 5)

Table 4.11 The first three frequency parameters Ω for laminated rectangular plates with E2FFC
boundary conditions and different thickness ratios (E1/E2 = 20, a/b = 3/2)

h/a kwx0=D [0°/90°] [0°/90°/0°]

1 2 3 1 2 3

0.01 10−1 4.8727 7.5360 17.057 3.3908 6.7176 18.785

100 5.1045 10.714 21.873 3.7219 12.806 19.279

101 5.1603 12.039 29.342 3.8062 19.314 19.938

102 5.1724 12.198 29.386 3.8233 19.632 20.806

103 5.1751 12.217 29.393 3.8268 19.652 20.911

104 5.1760 12.221 29.395 3.8280 19.657 20.922

0.05 10−1 4.8173 7.3853 16.448 3.3651 6.5993 18.162

100 5.0194 10.468 21.285 3.6688 12.578 18.618

101 5.0688 11.701 27.306 3.7430 18.529 19.135

102 5.0781 11.841 27.343 3.7574 18.869 19.801

103 5.0848 11.816 27.346 3.7626 18.893 19.889

104 5.0820 11.846 27.353 3.7635 18.906 19.893

0.10 10−1 4.6552 7.0274 15.301 3.3015 6.3737 16.568

100 4.8229 9.9146 17.015 3.5636 11.976 16.810

101 4.8608 10.922 17.018 3.6276 16.595 16.808

102 4.8681 11.037 17.018 3.6370 16.810 17.028

103 4.8690 11.051 17.013 3.6387 16.809 17.054

104 4.8695 11.045 17.019 3.6354 16.810 17.051
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against the line support location parameter x1/a are depicted. Six types of edge
conditions used in the investigation are: F–S, S–F, S–S, C–C, F–C and C–F. It is
obvious that the frequency parameters of the plate are significantly affected by the
position of the line support, and this effect can vary with the boundary conditions.
And for different modes, the effects of line support location are quite different. For
the sake of completeness, the similar studies for the considered plate with lower

Table 4.12 The first three frequency parameters Ω for laminated rectangular plates with E3FFC
boundary conditions and different thickness ratios (E1/E2 = 20, a/b = 3/2)

h/a Kx
x0=D [0°/90°] [0°/90°/0°]

1 2 3 1 2 3

0.01 10−1 4.6014 6.8477 17.434 2.9838 5.9550 18.671

100 4.6014 7.2371 19.370 2.9840 7.5831 18.675

101 4.6014 7.3529 20.096 2.9842 8.7787 18.678

102 4.6014 7.3669 20.188 2.9843 8.9800 18.679

103 4.6014 7.3682 20.197 2.9843 9.0014 18.679

104 4.6014 7.3684 20.198 2.9843 9.0037 18.679

0.05 10−1 4.5518 6.6726 16.843 2.9687 5.8207 18.047

100 4.5518 7.0598 18.688 2.9690 7.4238 18.048

101 4.5518 7.1817 19.364 2.9691 8.5934 18.054

102 4.5518 7.1886 19.444 2.9692 8.7857 18.055

103 4.5518 7.1878 19.495 2.9692 8.8088 18.056

104 4.5518 7.2143 19.457 2.9692 8.8104 18.054

0.10 10−1 4.4076 6.3041 15.549 2.9233 5.5674 16.450

100 4.4077 6.6868 17.012 2.9235 7.1204 16.453

101 4.4078 6.7927 17.019 2.9238 8.1643 16.455

102 4.4078 6.8034 17.018 2.9238 8.3348 16.456

103 4.4078 6.8054 17.018 2.9239 8.3503 16.456

104 4.4078 6.8064 17.018 2.9239 8.3667 16.456

y

x x

y

z

o

o

z

o

bi

bi+1

a iai
+1

Fig. 4.12 Schematic diagram of laminated rectangular plates with arbitrary internal line supports

130 4 Plates



length-width ratio (a/b = 1) are presented in Fig. 4.14. Comparing Figs. 4.13 with
4.14, we can see that the influence of the line support location on the frequency
parameters vary with length-width ratios and boundary conditions.

4.4 Fundamental Equations of Laminated Sectorial,
Annular and Circular Plates

The sectorial, annular and circular plates are plates of circular peripheries. They are
used quite often in aerospace crafts, naval vessels, civil constructions and other
fields of modern technology. When dealing with these plates, it is expedient to use
polar coordinate system in the formulation. Sectorial, annular and circular plates
made of isotropic materials have received considerable attention in the literature.
When compared with the amount of information available for isotropic sectorial,
annular and circular plates, studies reported on the vibration analysis of orthotropic
and laminated sectorial, annular and circular plates are very limited. This can be due
to the difficulty in constructing such plates. There commonly exist two types of
orthotropic sectorial, annular and circular plates. The first type is to actually con-
struct the plates with rectangular orthotropy and then cut the plates in sectorial,
annular or circular shapes. On the other hand, one can also construct circular plates
that the material principle directions take a circular shape around the center of the
plates, thus results in polar orthotropy, and then cut the plates in sectorial, annular
or circular shapes with desired geometry dimensions. The section deals with
vibration of laminated sectorial, annular and circular plates made of layers having

Table 4.13 Comparison of the first five frequency parameters X ¼ xab
ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
for a square,

[0°/90°] laminated plate with a central line support in each direction (h/a = 0.001)

Boundary
conditions

Method Mode number

1 2 3 4 5

FFFF Present 2.636 6.569 6.569 9.005 26.046

Cheung and Zhou
(2001a)

2.631 6.572 6.572 9.006 26.067

Error (%) 0.19 0.05 0.05 0.01 0.08

SDSDSDSD Present 24.438 31.348 31.383 37.078 68.539

Cheung and Zhou
(2001a)

24.440 31.333 31.333 36.989 68.549SDSDSDSD

Error (%) 0.01 0.05 0.16 0.24 0.01

CCCC Present 36.971 45.505 45.563 52.703 87.040

Cheung and Zhou
(2001a)

37.002 45.528 45.528 52.695 87.499

Error (%) 0.08 0.05 0.08 0.02 0.52
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polar orthotropy (i.e., lamination angle of 0° or 90°). The corresponding isotropic
ones are considered as well.

Annular and circular plates can be treated as special cases of sectorial plates with
circumferential direction of full circle (2π). As shown in Fig. 4.15, a general
laminated sectorial plate of circumferential direction θ0, constant thickness h, inner
radius R0 and outer radius R1 is selected as the analysis model. Polar coordinate
system (r, θ and z) located at the middle surface of the plate is used for plate
coordinates, in which z is parallel to the thickness direction. The middle surface
displacements of the plate in the r, θ and z directions are denoted by u, v and w,
respectively. The laminated sectorial plate is assumed to be composed of NL layers
of polar orthotropic laminae.

Consider the sectorial plate in Fig. 4.15 and its polar coordinate system. The
following geometry parameters can be applied to the shell equations derived in
Chap. 1 to obtain those of sectorial, annular and circular plates.
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Fig. 4.13 Variation of the frequency parameters X ¼ xab
ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
versus the line support

locations for a long (a/b = 5), [0°/90°/0°] laminated plate with a y direction internal line support
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Fig. 4.14 Variation of the frequency parameters X ¼ xab
ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
versus the line support

locations for a square, [0°/90°/0°] laminated plate with a y direction internal line support
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Fig. 4.15 Geometry and
coordinate system of
laminated sectorial plates with
polar orthotropy
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a ¼ r; b ¼ h; A ¼ 1; B ¼ r; Ra ¼ 1; Rb ¼ 1 ð4:35Þ

We will first derive the fundamental equations for the thin plates (neglecting
shear deformation and rotary inertia), followed by the thick ones. For the sake of
brevity, the annular and circular plates will be treated as the special cases of
sectorial plates in the following formulation.

4.4.1 Fundamental Equations of Thin Laminated Sectorial,
Annular and Circular Plates

Substituting Eq. (4.35) into Eq. (1.7), the middle surface strains, curvature and twist
changes of a sectorial plate can be written as:

e0r ¼
@u
@r

; vr ¼ � @2w
@r2

e0h ¼
@v
r@h

þ u
r
; vh ¼ � @2w

r2@h2
� @w
r@r

c0rh ¼
@v
@r

þ @u
r@h

� v
r
; vrh ¼ �2

@2w
r@r@h

þ @w
2r2@h

ð4:36Þ

Thus, the strain-displacement relations for an arbitrary point in the plate space
can be defined as:

er ¼ e0r þ zvr
eh ¼ e0h þ zvh
crh ¼ c0rh þ zvrh

ð4:37Þ

Considering Hooke’s law, the corresponding stresses in the plate space are:

rr

rh

srh

8><
>:

9>=
>;

k

¼
Qk

11 Qk
12 Qk

16

Qk
12 Qk

22 Qk
26

Qk
16 Qk

26 Qk
66

2
664

3
775

er

eh

crh

8><
>:

9>=
>;

k

ð4:38Þ

The lamina stiffness coefficients Qk
ij (i, j = 1, 2, 6) are given in Eq. (1.12). By

carrying the integration of stresses over the cross-section, the force and moment
resultants can be obtained in terms of the middle surface strains and curvature
changes as
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Nr

Nh

Nrh
Mr

Mh

Mrh

2
666664

3
777775 ¼

A11 A12 A16

A12 A22 A26

A16 A26 A66

B11 B12 B16

B12 B22 B26

B16 B26 B66
B11 B12 B16

B12 B22 B26

B16 B26 B66

D11 D12 D16

D12 D22 D26

D16 D26 D66

2
666664

3
777775

e0r
e0h
c0rh
vr
vh
vrh

2
6666664

3
7777775

ð4:39Þ

where Nr, Nθ and Nrθ are the normal and shear force resultants and Mr, Mθ, Mrθ

denote the bending and twisting moment resultants. Aij, Bij, and Dij are the stiffness
coefficients arising from the piecewise integration over the plate thickness direction,
they can be written as in Eq. (1.15).

Substituting Eq. (4.35) into Eqs. (1.16), (1.17), (1.19) and (1.21), the energy
functions of a sectorial plate with general boundary conditions can be obtained.

Us ¼ 1
2

Z
r

Z
h

Nre0r þ Nhe0h þ Nrhc0rh
þMrvr þMhvh þMrhvrh

� �
rdrdh ð4:40aÞ

T ¼ 1
2

Z
r

Z
h

I0 @u=@tð Þ2þ @v=@tð Þ2þ @w=@tð Þ2
n o

rdrdh ð4:40bÞ

We ¼
Z
r

Z
h

qruþ qhvþ qzwf grdrdh ð4:40cÞ

Usp ¼ 1
2

Z
h

kur0u
2 þ kvr0v

2 þ kwr0w
2 þ Kw

r0 @w=@rð Þ2
h i

r¼R0

þ kur1u
2 þ kvr1v

2 þ kwr1w
2 þ Kw

r1 @w=@rð Þ2
h i

r¼R1

8><
>:

9>=
>;rdh

þ 1
2

Z
r

kuh0u
2 þ kvh0v

2 þ kwh0w
2 þ Kw

h0 @w=r@hð Þ2
h i

h¼0

þ kuh1u
2 þ kvh1v

2 þ kwh1w
2 þ Kw

h1 @w=r@hð Þ2
h i

h¼h0

8><
>:

9>=
>;dr

ð4:40dÞ

where Us and T are the stain and kinetic energy functions. We represents external
work done by the external loads, in which qr, qθ and qz denote the external loads in
the r, θ and z directions, respectively. Usp is boundary spring deformation energy
function introduced by the artificial spring boundary technique (see Sect. 1.2.3 and
Fig. 4.16).

Specializing Eqs. (1.33) and (1.34) to those of sectorial plates results in
following governing equations
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@ rNrð Þ
@r

þ @ Nrhð Þ
@h

� Nh þ rqr ¼ rI0
@2u
@t2

@ rNrhð Þ
@r

þ @ Nhð Þ
@h

þ Nrh þ rqh ¼ rI0
@2v
@t2

@ rQrð Þ
@r

þ @ðQhÞ
@h

þ rqz ¼ rI0
@2w
@t2

ð4:41Þ

where

Qr ¼ @ rMrð Þ
r@r

þ @ Mrhð Þ
r@h

�Mh

r

Qh ¼ @ Mhð Þ
r@h

þ @ rMrhð Þ
r@r

þMrh

r

ð4:42Þ

For a sectorial plate symmetrically laminated with respect to the middle surface,
the first two governing equations are decoupled from the third one, i.e., the in-plane
vibration (u, v) will be decoupled from the bending vibration (w). The corre-
sponding boundary conditions of thin laminated sectorial plates are:

r ¼ R0:

Nr � kur0u ¼ 0

Nrh � kvr0v ¼ 0

Qr þ @Mrh

r@h
� kwr0w ¼ 0

�Mr � Kw
r0
@w
@r

¼ 0

8>>>>>>><
>>>>>>>:

r ¼ R1:

Nr þ kur1u ¼ 0

Nrh þ kvr1v ¼ 0

Qr þ @Mrh

r@h
þ kwr1w ¼ 0
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¼ 0

8>>>>>>><
>>>>>>>:
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Qh þ @Mrh

@r
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¼ 0

8>>>>>>><
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h ¼ h0:
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Fig. 4.16 Boundary conditions of a thin laminated sectorial plate
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4.4.2 Fundamental Equations of Thick Laminated Sectorial,
Annular and Circular Plates

Fundamental equations of thick sectorial plates are obtained by directly substituting
Eq. (4.35) into those of thick laminated shells given in Sect. 1.3.

In the framework of first-order shear deformation plate theory, the displacement
field in an arbitrary point of a thick laminated sectorial plate is expressed in terms of
middle surface displacements and rotation components as:

Uðr; h; zÞ ¼ uðr; hÞ þ z/rðr; hÞ
Vðr; h; zÞ ¼ vðr; hÞ þ z/hðr; hÞ
Wðr; h; zÞ ¼ wðr; hÞ

ð4:44Þ

where ϕr and ϕθ represent the rotations of transverse normal respect to θ and
r directions. Thus, the corresponding strains at this point are defined in terms of
middle surface strains, curvature and twist changes as

er ¼ e0r þ zvr; crz ¼ c0rz
eh ¼ e0h þ zvh; chz ¼ c0hz
crh ¼ c0rh þ zvrh

ð4:45Þ

where the middle surface strains and curvature and twist changes are written as:

e0r ¼
@u
@r

; vr ¼
@/r

@r

e0h ¼
@v
r@h

þ u
r
; vh ¼

@/h

r@h
þ /r

r

c0rh ¼
@v
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r@h

� v
r
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@r
þ @/r

r@h
� /h

r

c0rz ¼
@w
@r

þ /r

c0hz ¼
@w
r@h

þ /h

ð4:46Þ

According to Eqs. (1.46) and (1.47), the force and moment resultant equations of
thick sectorial plates become:
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ð4:47Þ
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" #
ð4:48Þ

Substituting Eq. (4.35) into Eqs. (1.49), (1.51), (1.53) and (1.54) yields the
energy functions of a sectorial plate including shear deformation and rotary inertia:
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where Us, T and We are the stain energy, kinetic energy and external work func-
tions. Usp represents boundary spring deformation energy function introduced by
the artificial spring boundary technique (see Sect. 1.3.3 and Fig. 4.17).

The governing equations and boundary conditions for thick laminated sectorial
plates are obtained by substituting Eq. (4.35) into Eqs. (1.59), (1.60) and (1.61).
The governing equations are

Kr

ku

kw

kv
Kθ 

r

z

R0R1

Fig. 4.17 Boundary conditions of a thick laminated sectorial plate
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þMrh � rQh þ rmh ¼ rI1
@2v
@t2

þ rI2
@2/h

@t2

ð4:50Þ

And the corresponding boundary conditions are

r ¼ R0 :

Nr � kur0u ¼ 0

Nrh � kvr0v ¼ 0

Qr � kwr0w ¼ 0

Mr � Kr
r0/r ¼ 0

Mrh � Kh
r0/h ¼ 0

8>>>>>><
>>>>>>:

r ¼ R1 :

Nr þ kur1u ¼ 0

Nrh þ kvr1v ¼ 0

Qr þ kwr1w ¼ 0

Mr þ Kr
r1/r ¼ 0

Mrh þ Kh
r1/h ¼ 0

8>>>>>><
>>>>>>:

h ¼ 0 :

Nrh � kuh0u¼0

Nh � kvh0v¼0

Qh � kwh0w¼0

Mrh � Kr
h0/r ¼ 0

Mh � Kh
h0/h ¼ 0

8>>>>>><
>>>>>>:

h ¼ h0 :

Nrh þ kuh1u¼0

Nh þ kvh1v¼0

Qh þ kwh1w¼0

Mrh þ Kr
h1/r ¼ 0

Mh þ Kh
h1/h ¼ 0

8>>>>>><
>>>>>>:

ð4:51Þ

4.5 Vibration of Laminated Sectorial, Annular
and Circular Plates

4.5.1 Vibration of Laminated Annular and Circular Plates

In this section, we consider free vibration of homogeneous and laminated annular
and circular plates with general boundary conditions. The homogeneous circular
plates are treated as special cases of the laminated ones in the studies. Only solu-
tions considering effects of shear deformation are given in this section. The weak
form solution procedure is adopted in the calculations.

There are two boundaries in an annular plate, in this work a two-letter character
is employed to represent the boundary condition of an annular plate, such as FC
identifies the plate with inner edge free and outer edge clamped. Unless otherwise
stated, the natural frequencies of the considered plates are expressed in the non-
dimensional parameters as X ¼ xR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D11

p
. Unless otherwise stated, material
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properties of the layers of laminated annular and circular plates under consideration
are given as: E2 = 10 GPa, E1/E2 = open, μ12 = 0.25, G12 = 0.6E2, G13 = 0.6E2,
G23 = 0.5E2 and ρ = 1,500 kg/m3 (subscript 1 and 2 represent the principle
directions of the material and they are paralleled to r and θ directions, respectively).

Considering the circumferential symmetry of annular and circular plates, each
displacement and rotation component of a laminated annular or circular plate is
expanded as a modified Fourier series in the following form:

uðr; hÞ ¼
XM
m¼0

XN
n¼0

Amn cos kmr cos nhþ
X2
l¼1

XN
n¼0

alnPlðrÞ cos nh

vðr; hÞ ¼
XM
m¼0

XN
n¼0

Bmn cos kmr sin nhþ
X2
l¼1

XN
n¼0

blnPlðrÞ sin nh

wðr; hÞ ¼
XM
m¼0

XN
n¼0

Cmn cos kmr cos nhþ
X2
l¼1

XN
n¼0

clnPlðrÞ cos nh

/rðr; hÞ ¼
XM
m¼0

XN
n¼0

Dmn cos kmr cos nhþ
X2
l¼1

XN
n¼0

dlnPlðrÞ cos nh

/hðr; hÞ ¼
XM
m¼0

XN
n¼0

Emn cos kmr sin nhþ
X2
l¼1

XN
n¼0

elnPlðrÞ sin nh

ð4:52Þ

where λm = mπ/ΔR, (ΔR = R1−R0). n represents the circumferential wave number of
the corresponding mode. It should be noted that n is non-negative integer. Inter-
changing of sin nθ and cos nθ in Eq. (4.52), another set of free vibration modes
(anti-symmetric modes) can be obtained. Pl (r) denote the auxiliary polynomial
functions introduced to remove all the discontinuities potentially associated with the
first-order derivatives at the boundaries. These auxiliary functions are in the same
forms as those of Eq. (4.33). Note that the modified Fourier series presented in
Eq. (4.52) are complete series defined over the domain [0, ΔR]. Therefore, linear
transformations for coordinates from r ∈ [R0, R1] to [0, ΔR] need to be introduced
for the practical programming and computing.

In Table 4.14 (Jin et al. 2014a), the first six frequencies (Hz) of a single-layered,
moderately thick composite annular plate with completely free boundary conditions
and different truncated configurations are chosen to demonstrate the convergence of
the current method. Considering the circumferential symmetry of the annular plate,
the expression terms with respect to θ in displacements and rotation components
automatically satisfy the governing equations and boundary conditions. Thus, the
convergence only needs to be checked in the axial direction (r). The geometric and
material constants of the plate are: E1/E2 = 15, R0 = 1 m, R1 = 3 m, h = 0.1 m. In all
the following computations, the zero frequencies corresponding to the rigid body
modes were omitted from the results. The table shows the present solutions has fast
convergence behavior.
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To validate the accuracy and reliability of current solutions, comparison of the
fundamental frequency parameters Ω for a composite laminated annular plate
(R0/R1 = 0.5) when the outer edge is clamped and the inner edge is either clamped,
simply supported or free is presented in Table 4.15 (Jin et al. 2014a), in which four

Table 4.14 Convergence of the first six frequencies (Hz) of a single-layered composite annular
plate with FF boundary conditions

M × N Mode number

1 2 3 4 5 6

11 × 10 7.2421 11.244 18.650 28.423 33.407 51.069

12 × 10 7.2417 11.244 18.649 28.417 33.405 51.067

13 × 10 7.2415 11.244 18.649 28.415 33.405 51.067

14 × 10 7.2414 11.244 18.648 28.413 33.404 51.066

15 × 10 7.2414 11.244 18.648 28.413 33.404 51.066

Table 4.15 Comparison of the fundamental frequency parameters Ω for composite laminated
annular plates with different boundary conditions and lamination schemes (R0/R1 = 0.5)

B.C. Method h/R1 Lamination schemes

[I] [II] [I/II/I/II] [I/II/II/I]

CC Lin and Tseng (1998) 0.10 84.977 66.057 75.706 79.226

0.05 102.62 82.416 92.216 98.656

0.02 110.04 89.776 99.272 107.37

0.01 111.24 91.002 100.43 108.83

Present 0.10 87.134 68.693 78.711 81.861

0.05 103.58 83.591 94.013 99.876

0.02 110.19 89.928 100.22 107.58

0.01 111.21 90.960 101.22 108.81

SC Lin and Tseng (1998) 0.10 76.596 54.319 65.559 71.644

0.05 88.679 63.002 75.585 84.914

0.02 93.307 66.337 79.362 90.250

0.01 94.033 66.860 79.987 91.102

Present 0.10 77.603 55.899 67.959 73.015

0.05 89.256 63.675 77.562 85.670

0.02 93.571 66.549 80.997 90.541

0.01 94.189 66.994 81.528 91.265

FC Lin and Tseng (1998) 0.10 37.329 20.636 30.173 35.010

0.05 41.246 21.851 32.847 39.320

0.02 42.591 22.233 33.737 40.850

0.01 42.794 22.290 33.870 41.084

Present 0.10 38.150 20.936 30.979 35.896

0.05 41.582 21.995 33.371 39.689

0.02 42.728 22.323 34.151 40.993

0.01 42.899 22.371 34.267 41.190
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different thickness-radius ratios are included, i.e., h/R1 = 0.1, 0.05, 0.02 and 0.01,
corresponding to thick to thin laminated annular plates. Four types of lamination
schemes included in the comparison are: [I], [II], [I/II/I/II] and [I/II /II/I], where I
and II represent two kinds of composite laminate, their material properties are given
as: for material I: E2/E1 = 50, G12 = 0.6613E1, G13 = G23 = 0.5511E1, μ12 = 0.006;
for material II: E2/E1 = 5, G12 = 0.35E1, G13 = G23 = 0.292E1, μ12 = 0.06. By
comparing, we can find that the discrepancies between present results and solutions
reported by Lin and Tseng (1998) based on an eight node isoparametric finite
element method are acceptable. The discrepancy in the results may be attributed to
different solution approaches are used in the literature. The table also shows that
natural frequencies are influenced by stacking sequence, the order of the magnitude
of the fundamental frequencies for the four different lamination schemes being
[I] > [I/II/II/I] > [I/II/I/II] > [II].

For a circular plate, there is only one boundary. Table 4.16 shows the lowest
three frequency parameters Ω for a [0°/90°] laminated circular plate with different
boundary conditions and thickness-to-outer radius ratios (h/R1). The F, S and C
boundary conditions, two orthotropy ratio E1/E2 = 1 and 25, and thickness-to-outer
radius ratios of 0.01, 0.05 and 0.1 are used. As seen in the table, the frequency
parameters for the circular plate with E1/E2 = 25 are smaller than those of E1/E2 = 1.
And the frequency parameters decrease with the thickness-to-outer radius ratio
increases. The corresponding contour mode shapes for the plate with orthotropy
ratio E1/E2 = 25 and thickness-to-outer radius ratios h/R1 = 0.05 are given in
Fig. 4.18. As seen in the figure, the mode shapes for S boundary conditions are
similar to those of C boundary conditions.

Table 4.17 presents the first three frequency parameters Ω of a [0°/90°] lami-
nated annular plate with different boundary conditions and various inner-to-outer

Table 4.16 Frequency parameters Ω of a [0°/90°] laminated circular plate with different boundary
conditions (R1 = 1)

h/R1 Mode E1/E2 = 1 (isotropic) E1/E2 = 15

F S C F S C

0.01 1 6.0186 4.8598 10.21379 3.4024 3.8685 8.8441

2 8.8888 14.596 22.087 6.8133 8.3294 13.555

3 13.747 27.196 36.53708 7.8292 15.542 21.015

4 21.634 29.650 39.74355 11.828 24.076 30.300

0.05 1 5.9897 4.8524 10.16563 3.3735 3.8493 8.6463

2 8.8615 14.525 21.86786 6.7621 8.2339 13.184

3 13.631 26.945 35.95093 7.7342 15.230 20.229

4 21.431 29.366 39.10696 11.630 23.360 28.832

0.1 1 5.9332 4.8295 10.01998 3.3116 3.7898 8.0874

2 8.7785 14.311 21.22982 6.6109 7.9643 12.215

3 13.387 26.221 34.32761 7.4922 14.397 18.329

4 20.906 28.539 37.32406 11.107 21.526 25.448

142 4 Plates



radius ratios (R0/R1). The considered plate is assumed to be made of composite
layers with following parameters: R1 = 1, h/ΔR = 0.05, E1/E2 = 15. Four inner-to-
outer radius ratios, i.e., R0/R1 = 0.2, 0.4, 0.6 and 0.8 and six sets of boundary
conditions, i.e., FF, FS, FC, SS, SC and CC are studied. From the table, we can see
that frequency parameters for the plate with FC, SS, SC and CC boundary condi-
tions increase with inner-to-outer radius ratio increases. However, for FF boundary
conditions, the maximum fundamental, second and third frequency parameters
occur at inner-to-outer radius ratios of 0.2, 0.6 and 0.8, respectively and for FS
boundary conditions, the minimum fundamental, second and third frequency
parameters separately occur at inner-to-outer radius ratios of 0.2, 0.4 and 0.8,
respectively. In order to enhance our understanding of the effects of the inner-to-
outer radius ratios on vibrations of annular plates, the lowest three mode shapes for
the laminated annular plate with FC boundary conditions are given in Fig. 4.19.
Due to the circumferential symmetry of the annular plate, the mode shapes are
symmetrical as well. These figures also show that mode shapes are influenced by
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Fig. 4.18 Mode shapes for a [0°/90°] laminated circular plate with different boundary conditions
(h/R1 = 0.05, E1/E2 = 15)
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inner radius. Figure 4.20 shows the lowest three mode shapes for the laminated
annular plate (R0/R1 = 0.4) with CF and FC boundary conditions. It can be seen that
the mode shapes of the plate in these two cases are quite different although the plate
is camped at one boundary and free at the other boundary.

4.5.2 Vibration of Laminated Sectorial Plates

In this section, we consider free vibration of laminated sectorial plates with general
boundary conditions. Similar to the studies performed earlier for laminated annular
and circular plates, the results given in this section are obtained by using the shear
deformation plate theory (SDPT) and weak form solution procedure. Only plates
having polar orthotropy will be studied.

For a general sectorial plate, there exist four boundaries, i.e., r = R0, r = R1, θ = 0
and θ = θ0. For the sake of brevity, a four-letter character is employed to represent the
boundary condition of a sectorial plate, such as FCSC identifies the plate with
F, C, S and C boundary conditions at boundaries r = R0, θ = 0, r = R1 and θ = θ0,
respectively. In addition, unless otherwise stated, the non-dimensional frequency
parameter X ¼ xR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D11

p
is used and material properties of the layers of lami-

nated sectorial plates under consideration are given as: E2 = 10 GPa,
E1/E2 = open, μ12 = 0.25,G12 = 0.6E2,G13 = 0.6E2,G23 = 0.5E2 and ρ = 1,500 kg/m3.

For a circular or annular plate, the assumed 2D displacement field can be
reduced to a quasi 1D problem through Fourier decomposition of the circumfer-
ential wave motion. However, for a general sectorial plate, the assumption of whole
periodic wave numbers in the circumferential direction is inappropriate, and thus, a

Table 4.17 The first three frequency parameters Ω of a [0°/90°] laminated annular plate with
different boundary conditions (R1 = 1, h/ΔR = 0.05, E1/E2 = 15)

R0/R1 Mode Boundary conditions

FF FS FC SS SC CC

0.2 1 3.1899 3.5483 9.3364 14.912 20.177 23.162

2 5.4501 7.7562 12.451 15.777 20.824 24.238

3 7.7137 14.481 19.806 17.211 22.320 24.421

0.4 1 2.8314 4.0587 12.171 25.444 32.994 40.389

2 5.6991 6.9513 12.853 25.519 33.033 40.637

3 7.4366 13.351 18.527 26.532 33.932 40.768

0.6 1 2.4299 5.4710 20.153 55.144 69.808 88.976

2 6.7767 7.5738 20.301 55.323 69.963 89.035

3 7.1894 12.736 22.748 56.113 70.660 89.392

0.8 1 2.0330 9.8049 64.064 215.18 268.65 351.93

2 5.8389 12.098 64.184 215.40 268.85 352.06

3 11.255 17.545 65.209 216.10 269.49 352.47
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set of complete two-dimensional analysis is required and resort must be made to a
full two-dimensional solution scheme. Therefore, each displacement and rotation
component of the laminated sectorial plates is expanded as a two-dimensional
modified Fourier series as:

uðr; hÞ ¼
XM
m¼0

XN
n¼0

Amn cos kmr cos knhþ
X2
l¼1

XN
n¼0

alnPlðrÞ cos knh

þ
X2
l¼1

XM
m¼0

blmPlðhÞ cos kmr

vðr; hÞ ¼
XM
m¼0

XN
n¼0

Bmn cos kmr cos knhþ
X2
l¼1

XN
n¼0

clnPlðrÞ cos knh

þ
X2
l¼1

XM
m¼0

dlmPlðhÞ cos kmr

wðr; hÞ ¼
XM
m¼0

XN
n¼0

Cmn cos kmr cos knhþ
X2
l¼1

XN
n¼0

elnPlðrÞ cos knh

þ
X2
l¼1

XM
m¼0

flmPlðhÞ cos kmr

/rðr; hÞ ¼
XM
m¼0

XN
n¼0

Dmn cos kmr cosknhþ
X2
l¼1

XN
n¼0

glnPlðrÞ cos knh

þ
X2
l¼1

XM
m¼0

hlmPlðhÞ cos kmr

/hðr; hÞ ¼
XM
m¼0

XN
n¼0

Emn cos kmr cosknhþ
X2
l¼1

XN
n¼0

ilnPlðrÞ cos knh

þ
X2
l¼1

XM
m¼0

jlmPlðhÞ cos kmr

ð4:53Þ

where λm = mπ/ΔR and λn = nπ/θ0. Pl (r) and Pl (θ) denote the auxiliary polynomial
functions introduced to remove all the discontinuities potentially associated with the
first-order derivatives at the boundaries. These auxiliary functions are in the same
form as those of Eq. (4.33). Similarly, linear transformations for coordinates from
r ∈ [R0, R1] to [0, ΔR] need to be introduced for the practical programming and
computing.

Table 4.18 shows a convergence and comparison study of the lowest six natural
frequencies (Hz) for an isotropic (E = 210 GPa, μ = 0.3 and ρ = 7,800 kg/m3)
sectorial plate with FFFF and CCCC boundary conditions. The sectorial plate
having inner radius R0 = 0.5 m, outer radius R1 = 1 m, thickness h = 0.01 m and
circumferential dimension θ0 = π. The present results are compared with those of
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FEM analysis (ANSYS with element type of SHELL63 and element size of
0.01 m). As can be seen from Table 4.18, the frequencies have converged mono-
tonically up to four significant figures as the truncation numbers increase. The table
also shows good agreements in the comparison.
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Fig. 4.19 Mode shapes for a [0°/90°] laminated annular plate with FC boundary conditions
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Fig. 4.20 Mode shapes for a [0°/90°] laminated annular plate (R0/R1 = 0.4) with CF and FC
boundary conditions

Table 4.18 Convergence and comparison of frequencies (Hz) for an isotropic sectorial plate with
FFFF and CCCC boundary conditions (R0 = 0.5 m, R1/R0 = 2, h/R0 = 0.02, θ0 = π, E = 210 GPa,
μ = 0.3 and ρ = 7,800 kg/m3)

Boundary
conditions

M × N Mode number

1 2 3 4 5 6

FFFF 15 × 15 17.775 18.739 38.540 42.003 69.740 71.841

15 × 16 17.760 18.738 38.537 41.999 69.706 71.838

15 × 17 17.757 18.736 38.537 41.990 69.699 71.833

15 × 18 17.747 18.735 38.535 41.988 69.683 71.831

16 × 18 17.742 18.733 38.524 41.983 69.677 71.810

17 × 18 17.739 18.730 38.520 41.982 69.675 71.807

18 × 18 17.735 18.728 38.510 41.979 69.670 71.790

ANSYS 17.744 18.729 38.677 42.006 69.741 72.094

CCCC 15 × 15 225.33 234.63 251.37 276.82 311.91 357.42

15 × 16 225.33 234.62 251.32 276.67 311.73 356.71

15 × 17 225.33 234.60 251.27 276.59 311.47 356.47

15 × 18 225.32 234.59 251.24 276.51 311.36 356.08

16 × 18 225.31 234.57 251.23 276.49 311.34 356.06

17 × 18 225.31 234.57 251.22 276.48 311.33 356.06

18 × 18 225.30 234.56 251.21 276.47 311.32 356.05

ANSYS 225.97 235.24 251.88 277.09 311.76 356.24
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Table 4.19 The first five frequency parameters Ω of a [0°/90°] laminated sectorial plate with
different boundary conditions (R0 = 0.5 m, R1/R0 = 2, θ0 = π, E1/E2 = 15)

h/ΔR Mode Boundary conditions

FFFF SSSS CCCC FCFC CFCF FSFS

0.01 1 3.9802 36.096 59.994 2.0332 59.062 2.6844

2 4.7963 37.086 60.694 5.1950 59.126 7.2936

3 8.3330 39.772 62.835 10.284 60.041 9.6338

4 10.548 44.802 67.063 10.993 61.283 13.394

5 14.906 52.593 73.970 17.032 64.075 16.789

0.05 1 3.9119 36.015 57.657 2.0275 56.796 2.6443

2 4.7635 36.981 58.354 5.1583 56.856 7.2195

3 8.2257 39.587 60.436 10.177 57.697 9.5120

4 10.460 44.442 64.528 10.863 58.893 13.241

5 14.652 51.929 71.121 16.809 61.577 16.524

0.10 1 3.8324 34.360 51.823 2.0151 51.149 2.6109

2 4.7117 35.297 52.512 5.0908 51.204 7.1182

3 8.0639 37.800 54.508 9.9678 51.872 9.3185

4 10.292 42.399 58.366 10.579 53.000 12.974

5 14.162 49.357 64.439 16.332 55.494 15.953
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Fig. 4.21 Mode shapes for a [0°/90°] laminated sectorial plate (R0/R1 = 0.5, h/ΔR = 0.05) with
various boundary conditions
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The effects of thickness ratio (h/ΔR) on the frequency parameters of sectorial
plates are studied by the following example. Table 4.19 shows the lowest five
frequency parameters Ω for a [0°/90°] laminated sectorial plate with different
boundary conditions and various thickness ratios h/ΔR. The sectorial plate is
assume to be made of polar orthotropic layer of orthotropy ratio E1/E2 = 15. Three
types of thickness ratios, i.e., h/ΔR = 0.01, 0.05 and 0.1, corresponding to thin to
moderately thick sectorial plates are considered in the investigation. From the table,
we can see that the frequency parameters of the plate in all cases decrease with the
thickness ratio h/ΔR increases. Despite this, it should be noted that, the natural
frequencies of the plate increase with the thickness ratio h/ΔR increases due to the
fact that the stiffness of the plate get larger. The corresponding contour mode shapes
for the plate with thickness ratio h/ΔR = 0.05 are given in Fig. 4.21 as well. As seen
in the figure, the mode shapes for the SSSS boundary conditions are similar to those
for boundary conditions of CCCC. Due to the symmetry in the boundary conditions
and geometry, the corresponding mode shapes of the plate are symmetrical as well.

The effects of circumferential dimension (i.e., circumferential included angle θ0)
on the frequency parameters of sectorial plates are also investigated. Table 4.20
shows the lowest five frequency parameters Ω for a [0°/90°] laminated sectorial
plate with different boundary conditions and circumferential dimensions. The
geometry and material parameters of the considered sectorial plate are similar to
those used in Table 4.20 except that the current plate having a thickness-to-inner
radius ratio h/ΔR = 0.1. From the table, we can see that the fundamental frequency
parameter of the plate having CFFF boundary conditions increases with circum-
ferential included angle θ0 increases while for the plate with CCCF boundary
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Fig. 4.21 (continued)
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conditions, the minimum fundamental frequency parameter occurs at θ0 = 3π/4. In
other cases, the frequency parameters decrease with circumferential included angle
θ0 increases. This may be attributed to the stiffness of the sectorial plate reduce with
circumferential included angle θ0 increases.

For a solid sectorial plate, there exist only three boundaries, i.e., r = R1, θ = 0 and
θ = θ0. The results on this subject are very limited in the open literature. The lowest
three frequency parameters and contour plots of the corresponding mode shapes for
a [0°/90°] laminated solid sectorial plate are given in Fig. 4.22. The orthotropy ratio
is chosen to be E1/E2 = 15. The thickness ratio h/R1 = 0.05 is used in the calcu-
lation. The circumferential included angle θ0 is varied from π/2 (90°) to 3π/2 (270°)
by a step of π/4 (45°). The solid laminated sectorial is completely clamped (C) at
boundary r = R1 and completely free (F) at the other two boundaries. It is noticed
that vary θ0 from π/2 to 3π/2 increases the fundamental frequency parameter of the
plate. For the second mode, it can be found that the minimum frequency parameter
occurs at θ0 = 5π/4. Considering the third mode, it is observed that increasing θ0
from π/2 to 3π/2 decreases the value of the frequency parameter. In addition, the
mode shapes in all the subfigures are symmetrical about geometric center line. It is
attributed to the symmetry in the boundary conditions and geometry of the plate.
The similar observations can be seen in Figs. 4.18, 4.19, 4.20 and 4.21 as well.

In conclusion, vibration of laminated plates is studied in this chapter, including
the rectangular, circular, annular and sectorial plates. A variety of vibration results
including frequencies and mode shapes for laminated plates with classical and

Table 4.20 The first five frequency parameters Ω of a [0°/90°] laminated sectorial plate with
different boundary conditions and circumferential dimensions (R0 = 0.5 m, R1/R0 = 2, h/R0 = 0.1,
E1/E2 = 15)

θ0 Mode Boundary conditions

FFFC FFCC FCCC CFFF CCFF CCCF

π/4 1 6.3800 18.779 56.096 7.4494 10.329 52.191

2 15.500 57.237 86.414 10.749 29.959 69.542

3 30.226 61.331 108.72 32.499 51.239 115.45

4 43.421 94.202 149.20 33.550 69.149 123.79

5 58.385 114.59 151.39 48.868 75.023 137.53

3π/4 1 0.8700 12.794 17.871 7.9348 8.0795 51.175

2 2.5360 18.789 27.405 8.0873 9.2724 52.190

3 6.1158 28.739 41.720 9.3391 12.500 54.578

4 9.4626 42.736 58.147 13.085 19.445 60.033

5 10.027 56.919 61.123 20.115 29.359 69.307

5π/4 1 0.3527 12.685 15.313 7.9946 8.0151 51.179

2 0.8757 15.430 17.926 8.0296 8.7689 51.749

3 2.5561 18.667 23.342 8.7377 9.2431 52.120

4 4.6200 24.160 30.564 8.9771 10.502 53.205

5 4.9623 31.311 39.131 10.708 13.310 55.254
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elastic boundary conditions are presented for different geometric and material
parameters and lamination schemes, which may serve as benchmark solution for
future researches. It is found that due to the symmetry in the boundary conditions
and geometry, mode shapes of the annular and circular plates are symmetrical as
well.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1θ
0
=π/2

Ω
1
=5.0696 Ω

2
=13.755 Ω

3
=20.250

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Ω
1
=5.5521 Ω

2
=12.417

θ
0
=3π/4

Ω
3
= 19.442

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1θ
0
=π

Ω
1
=6.0620 Ω

2
=11.921 Ω

3
=16.679

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

Ω
1
=6.5216 Ω

2
=11.771 Ω

3
=14.763

θ
0
=5π/4

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ω
1
=6.8807 Ω

2
=11.807 Ω

3
=13.617

θ
0
=3π/2

Fig. 4.22 Mode shapes and frequency parameters for a [0°/90°] laminated solid sectorial plate
with various circumferential dimensions (R1 = 1, h/R1 = 0.05, E1/E2 = 15)
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