
Chapter 3
Straight and Curved Beams

Beams, plates and shells are commonly utilized in engineering applications, and
they are named according to their size or/and shape characteristics and different
theories have been developed to study their structural behaviors. A beam is typi-
cally described as a structural component having one dimension relatively greater
than the other dimensions. Specially, a beam can be referred to as a rod or bar when
subjected to tension, a column when subjected to compression and a shaft when
subjected to torsional loads (Qatu 2004). Beams are one of the most fundamental
structural elements. Almost every machine contains one or more beam components,
such as bridges, steel framed structures and building frames. In addition, many
structures can be modeled at a preliminary level as beams. For example, spring
boards, supports of a wind power generation can be treated as cantilever beams, and
a span of an overhead viaduct or bridge can be viewed as a simply supported beam.
In recent decades, laminated beams made from advanced composite materials are
extensively used in many engineering applications where higher strength to weight
ratio is desired, such as aircraft structures, space vehicles, turbo-machines, deep-sea
equipment and other industrial applications. Researches on the vibration and
dynamic analyses of laminated composite beams have been increasing rapidly in
recent decades. A paper which reviewed most of the researches done in years
(1989–2012) on the vibration analysis of composite beams by Hajianmaleki and
Qatu (2013) showed that research articles on the subject during period 2000–2012
are more than twice than those of 1989–2000. Due to the great importance, this
chapter considers the vibration of laminated beams in the framework of classical
thin beam theory (CBT) and shear deformation beam theory (SDBT).

Beams can be straight or curved. Both straight and curved beams are considered
in this chapter. Generally, a straight beam can be considered as a degenerated curved
beam with infinite radius of curvature (zero curvature). This chapter is concerned
with the development of the fundamental equations of laminated curved beams
according to the CBT and SDBT. Equations for the straight beams can be derived by
setting curvatures to zero in those of curved beams. Strain-displacement relations,
force and moment resultants, energy functions, governing equations and boundary
conditions are derived and shown for both theories. Natural frequencies and mode
shapes are presented for straight and curved beams with different boundary

© Science Press, Beijing and Springer-Verlag Berlin Heidelberg 2015
G. Jin et al., Structural Vibration, DOI 10.1007/978-3-662-46364-2_3

63



conditions, lamination schemes and geometry parameters in both strong and weak
forms of the proposed modified Fourier series method. The effects of boundary
conditions, geometry parameters and material properties are studied as well.

3.1 Fundamental Equations of Thin Laminated Beams

Fundamental equations of laminated thin beams are presented in this section in the
framework of classical beam theory. As shown in Fig. 3.1, a laminated curved beam
with uniform thickness h, width b is selected as the model. The beam is charac-
terized by its middle surface, in which R represents the mean radius of the beam and
θ0 denotes the included angle of the curved beam. To describe the beam clearly, we
introduce the following coordinate system: the α-coordinate is taken along the
length of the beam, and β- and z-coordinates are taken along the width and the
thickness directions, respectively. u, v and w separately indicate the middle surface
displacement variations of the beam in the α, β and z directions. It should be
stressed that this chapter addresses vibrations of laminated beams in their plane of
curvature, therefore, the fundamental equations derived for thin deep shells can be
specialized to those for curved beams by further assuming that the displacement v is
identical with zero and the displacements u and w along the coordinate system are
only functions of the α- and z-coordinates.

3.1.1 Kinematic Relations

Letting α = θ, the Lamé parameters of laminated curved beams can be obtained as
A = R. Introducing the Lamé parameters into Eq. (1.7), the middle surface strain and
curvature change of thin beams are:
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Fig. 3.1 Laminated curved beams
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ð3:1Þ

According to the thin beam assumption, the strain at an arbitrary point in the kth
layer of thin laminated beams can be defined as:

eh ¼ e0h þ zvh ð3:2Þ

where Zk < z < Zk+1. Zk+1 and Zk denote the distances from the top surface and the
bottom surface of the layer to the referenced middle surface, respectively.

3.1.2 Stress-Strain Relations and Stress Resultants

Suppose the laminated thin beam is composed of N composite layers which are
bonded together rigidly. And the angle between the principal direction of the
composite material in kth layer and the α axis is denoted by ϑk. According to
Hooke’s law, the corresponding stress-strain relations in the kth layer of the beam
can be written as:

rhf gk¼ Qk
11 ehf gk ð3:3Þ

where σθ is the normal stress in the θ direction. The constant Qk
11 is the elastic

stiffness coefficient of this layer, which is found from following equations:

Qk
11 ¼ Qk

11 cos
4 #k

Qk
11 ¼

E1

1� l12l21

ð3:4Þ

where E1 is modulus of elasticity of the composite material in the principal
direction. μ12 and μ21 are the Poisson’s ratios. The subscript (11) in Eqs. (3.3) and
(3.4) can be omitted but is maintained here for the direct use and comparison with
the thin shell equations presented in Chap. 1. By carrying the integration of the
normal stress over the cross-section results in

Nh ¼ b
Zh=2

�h=2

radz Mh ¼ b
Zh=2

�h=2

razdz ð3:5Þ
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where Nθ is the force resultant and Mθ is the moment resultant. The force and
moment resultant relations to the strains in the middle surface and curvature change
are defined as

Nh

Mh

� �
¼ A11 B11

B11 D11

� �
e0h
vh

� �
ð3:6Þ

where A11, B11, and D11 are the stiffness coefficients arising from the piecewise
integration over the beam thickness:

A11 ¼ b
PN
k¼1

Qk
11ðzkþ1 � zkÞ

B11 ¼ b
2

PN
k¼1

Qk
11 z2kþ1 � z2k
� �

D11 ¼ b
3

PN
k¼1

Qk
11 z3kþ1 � z3k
� �

ð3:7Þ

Notably, when the beam is laminated symmetrically with respect to its middle
surface, the constants Bij equal to zero. The above equations are valid for cylindrical
bending of beams (Qatu 2004).

3.1.3 Energy Functions

The strain energy (Us) of a thin beam during vibration is defined in terms of the
middle surface strains and stress resultants as:

Us ¼ 1
2

Z
h

Nhe
0
h þMhvh

� �
Rdh ð3:8Þ

Substituting Eqs. (3.1) and (3.6) into Eq. (3.8), the strain energy of the beam can be
rewritten in terms of the displacements as:
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The kinetic energy (T) of the beam is written as:

T ¼ 1
2

Z
h

I0
@u
@t

� 	2

þ @w
@t

� 	2
( )

Rdh ð3:10Þ

where the inertia term are:

I0 ¼ b
XN
k¼1

Zzkþ1

zk

qkdz ð3:11Þ

ρk is the mass of the kth layer per unit middle surface area. The external work is
expressed as:

We ¼
Z
h

qhuþ qzwf gRdh ð3:12Þ

where qθ and qz are the external loads in the θ and z directions, respectively.
As described earlier, the general boundary conditions of a beam are implemented

by using the artificial spring boundary technique, in which each end of the beam is
assumed to be restrained by two groups of linear springs (ku and kw) and one group
of rotational springs (Kw) to simulate the given or typical boundary conditions
expressed in the form of boundary forces and the flexural moments, respectively
(see Fig. 3.2). Specifically, symbols kuw; k

w
w andK

w
w (ψ = θ0 and θ1) are used to

indicate the stiffness of the boundary springs at the boundaries θ = 0 and θ = θ0,
respectively. Therefore, the deformation strain energy (Usp) stored in the boundary
springs can be written as:

Usp ¼ 1
2

kuh0u
2 þ kwh0w

2 þ Kw
h0 @w=R@hð Þ2

h i
h¼0

þ kuh1u
2 þ kwh1w

2 þ Kw
h1 @w=R@hð Þ2

h i
h¼h0

8<
:

9=
; ð3:13Þ
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Fig. 3.2 Boundary conditions of thin laminated beams
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3.1.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thin laminated beams can be
obtained by specializing the governing equations of thin shells to those of thin
laminated beams (i.e. substituting α = θ, A = R, B = 1 and Rα = R into Eq. (1.28) and
deleting all the terms with respect to β). According to Eq. (1.28), the governing
equations are:

@Nh

R@h
þ Qh

R
þ qh ¼ I0

@2u
@t2

�Nh

R
þ @Qh

R@h
þ qz ¼ I0

@2w
@t2

ð3:14Þ

where

Qh ¼ @Mh

R@h
ð3:15Þ

And the general boundary conditions of thin laminated beams are

h ¼ 0 :
Nh þ Mh

R � kuh0u ¼ 0
Qh � kwh0w ¼ 0
�Mh � Kw

h0
@w
R@h ¼ 0

8<
: h ¼ h0 :

Nh þ Mh
R þ kuh1u ¼ 0

Qh þ kwh1w ¼ 0
�Mh þ Kw

h1
@w
R@h ¼ 0

8<
: ð3:16Þ

Alternately, the governing equations and boundary conditions of the considered
beam can be obtained by applying Hamilton’s principle in the same manner as
following describe. The Lagrangian function (L) of thin laminated beams can be
expressed in terms of strain energy, kinetic energy and external work as:

L ¼ T � Us � Usp þWe ð3:17Þ

Substituting Eqs. (3.9), (3.10), (3.12) and (3.13) into Eq. (3.17) and applying
Hamilton’s principle:

d
Z t

0

T � Us � Usp þWe
� �

dt ¼ 0 ð3:18Þ

yields:
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Integrating by parts to relieve the virtual displacements δu and δw, we have
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Since the virtual displacements δu and δw are arbitrary, the Eq. (3.20) can be
satisfied only is the coefficients of the virtual displacements are zero. Thus, the
governing equations and boundary conditions of thin laminated beams are obtained,
which is the same as those presented in Eqs. (3.14) and (3.16). For general curved
beams and asymmetrically laminated straight beams, each boundary can exist two
possible combinations for each type of classical boundary conditions (free, simply-
supported, and clamped). At each boundary of θ = constant, the possible combi-
nations for each classical boundary condition are given in Table 3.1.

By using the artificial spring boundary technique, taking edge θ = 0 for example,
the F, S (simply-supported), SD (shear-diaphragm) and C (completely clamped)
boundary conditions which are of particular interest can be readily realized by
assigning the stiffness of the boundary springs at proper values as follows:
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F : kuh0 ¼ kwh0 ¼ Kw
h0 ¼ 0

SD : kwh0 ¼ 107D; kuh0 ¼ Kw
h0 ¼ 0

S : kuh0 ¼ kwh0 ¼ 107D; Kw
h0 ¼ 0

C : kuh0 ¼ kwh0 ¼ Kw
h0 ¼ 107D

ð3:21Þ

where D = E1h
3/12(1 − μ12μ21) is the flexural stiffness of the beam.

Figure 3.3 shows the variations of the fundamental frequency parameters ΔΩ
(where ΔΩ is defined as the difference of the fundamental frequency to that of the
elastic restraint parameter Γ = 10−3, namely, ΔΩ = f (Γ) − f (10−3D)) versus restraint
parameter Γ of a steel (E = 210 GPa, μ = 0.3, ρ = 7800 kg/m3) thin curved beam
with different geometry parameters. The beam is clamped at boundary θ = θ0 and
elastically supported at boundary θ = 0 (i.e., kuh0 ¼ kwh0 ¼ Kw

h0 ¼ CD). According to
Fig. 3.3, we can see that the change of the restraint parameter Γ has little effect on

Table 3.1 Possible classical
boundary conditions for thin
laminated curved beams

Boundary type Conditions

Free boundary conditions

F Nh þ Mh
Rh

¼ Qh ¼ Mh ¼ 0

F2 u ¼ Qh ¼ Mh ¼ 0

Simply supported boundary conditions

S u = w = Mθ = 0

SD Nh þ Mh
Rh

¼ w ¼ Mh ¼ 0

Clamped boundary conditions

C u ¼ w ¼ @w
R@h ¼ 0

C2 Nh þ Mh
Rh

¼ w ¼ @w
R@h ¼ 0
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Fig. 3.3 Variation of fundamental frequency parameter ΔΩ versus elastic restraint parameters Γ
for a thin beam (R = 1) with different geometry parameters (a) θ0 = π/4; (b) h/R = 0.02
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frequency parameter ΔΩ when it is smaller than 100. However, when it is increased
from 100 to 105, the frequency parameters increase rapidly. Then, the frequency
parameters approach their utmost and remain unchanged when Γ approaches
infinity. In such a case, the beam can be deemed as clamped in both ends. In
conclusion, by assigning the stiffness of the boundary springs at 107D, the com-
pletely clamped boundary conditions of a beam can be realized.

3.2 Fundamental Equations of Thick Laminated Beams

In the CBT, the effects of shear deformation and rotary inertia are neglected. It is
only applicable for thin beams. For beams with higher thickness ratios, the
assumption that normals to the undeformed middle surface remain straight and
normal to the deformed middle surface and suffer no extension of the classical beam
theory should be relaxed and both shear deformation and rotary inertia effects
should be included in the calculation. In this section, fundamental equations of
laminated beams in the framework of shear deformation beam theory are developed
and the deepness term (1 + z/Rα) is considered in the formulation.

3.2.1 Kinematic Relations

Assuming that normals to the undeformed middle surface remain straight but not
normal to the deformed middle surface, the displacement field in the beam space can
be expressed in terms of middle surface displacements and rotation component as:

Uðh; zÞ ¼ uðhÞ þ z/hðhÞ; Wðh; zÞ ¼ wðhÞ ð3:22Þ

where u and w are the displacements at the middle surface in the θ and z directions.
ϕθ represents the rotation of transverse normal, see Fig. 3.1. Letting α = θ, A = R and
Rα = R and specializing Eqs. (1.33) and (1.34) to those of beams, the normal and
shear strains at any point of the beam space can be defined in terms of middle
surface strains and curvature change as:

eh ¼ 1
1þ z=Rð Þ e0h þ zvh

� �
chz ¼

1
1þ z=Rð Þ c

0
hz

ð3:23Þ

where e0h and c0hz denote the normal and shear strains in the reference surface. χθ is
the curvature change. They are defined in terms of the middle surface displacements
and rotation component as:
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ð3:24Þ

3.2.2 Stress-Strain Relations and Stress Resultants

According to Hooke’s law, the corresponding stress-strain relations in the kth layer
of thick laminated curved beams can be written as:

rh
shz


 �
k
¼ Qk

11 0
0 Qk

55

" #
eh
chz
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k

ð3:25Þ

where σθ represents the normal stress, τθz is the shear stress. The elastic stiffness

coefficients Qk
ii (i = 1, 5) are defined by following equations:

Qk
11 ¼ Qk

11 cos
4 #k and Qk

11 ¼
E1

1� l12l21

Qk
55¼Qk

55 cos
2 #k and Qk

55¼G13

ð3:26Þ

where E1 is the modulus of elasticity of the composite material in the principal
direction. μ12 and μ21 are the Poisson’s ratios. G13 is the shear modulus. ϑk rep-
resents the included angle between the principal direction of the layer and the
θ-axis. By carrying the integration of the normal stress over the cross-section, the
force and moment resultants can be obtained:

Nh

Qh

� �
¼ b

Zh=2
�h=2
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shz

� �
dz Mh ¼ b

Zh=2
�h=2

rhzdz ð3:27Þ

where Qθ represents the transverse shear force resultant. Performing the integration
operation in Eq. (3.27), the force and moment resultants can be written in terms of
the middle surface strains and curvature change as:
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The stiffness coefficients A11, A55, B11 and D11 are defined as follows:
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� 	
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in which Ks is the shear correction factor, typically taken at 5/6 (Qatu 2004; Reddy
2003).

3.2.3 Energy Functions

The strain energy (Us) of thick laminated curved beams during vibration can be
defined as

Us ¼ 1
2

Z
h

Nhe
0
h þMhvh þ Qhc

0
hz

� �
Rdh ð3:30Þ

Substituting Eqs. (3.24) and (3.28) into Eq. (3.30), the strain energy function of
thick curved beams can be rewritten as:
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The corresponding kinetic energy (T) function of the beams is written as:

T ¼ 1
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where the inertia terms are defined as:

I0¼I0 þ I1
R

I1¼I1 þ I2
R

I2¼I2 þ I3
R

½I0; I1; I2; I3� ¼ b
XN
k¼1

Zzkþ1

zk

qk½1; z; z2; z3�dz

ð3:33Þ

in which ρk is the mass of the k’th layer per unit middle surface area. The external
work is expressed as:

We ¼
Z
h

qhuþ qzwþ mh/hf gRdh ð3:34Þ

where qθ and qz denote the external loads. mθ is the external couples in the middle
surface of the beam. Using the artificial spring boundary technique similar to that
described earlier, symbols kuw; k

w
w andK

h
w (ψ = θ0 and θ1) are used to indicate the

rigidities (per unit length) of the boundary springs at the boundaries θ = 0 and
θ = θ0, respectively, see Fig. 3.4. Therefore, the deformation strain energy (Usp)
stored in the boundary springs during vibration can be defined as:

Usp ¼ 1
2

kuh0u
2 þ kwh0w

2 þ Kh
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2
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n o
ð3:35Þ

3.2.4 Governing Equations and Boundary Conditions

Specializing the governing equations and boundary conditions of the thick shell
(Eq. 1.59) to those of thick beams, we have
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Similarly, according to Eq. (1.60), the general boundary conditions of thick laminated
curved beams are written as:

h ¼ 0 :

Nh � kuh0u ¼ 0

Qh � kwh0w ¼ 0

Mh � Kh
h0/h ¼ 0

8><
>: ; h ¼ h0 :

Nh þ kuh1u ¼ 0

Qh þ kwh1w ¼ 0

Mh þ Kh
h1/h ¼ 0

8><
>: ð3:37Þ

Alternately, the governing equations and boundary conditions for the thick
beams can be obtained by applying Hamilton’s principle in the same manner as
described in Sect. 3.1.4.

For thick curved beams or unsymmetrically laminated straight beams, each
boundary exits two possible combinations for each classical boundary condition. At
each boundary, the possible combinations for each classical boundary condition are
given in Table 3.2.

In the framework of artificial spring boundary technique, taking edge θ = 0 for
example, the frequently encountered boundary conditions F, S, SD and C can be
readily realized by assigning the stiffness of the boundary springs at proper values
as follows:

z
α

Middle surface

0Kθ
θ

0
ukθ 0

wkθ 1
wkθ 1Kθ

θ

1
ukθ

Fig. 3.4 Boundary conditions of a thick laminated beam

Table 3.2 Possible classical
boundary conditions for thick
curved beams

Boundary type Conditions

Free boundary conditions

F Nh ¼ Qh ¼ Mh ¼ 0

F2 u ¼ Qh ¼ Mh ¼ 0

Simply supported boundary conditions

S u ¼ w ¼ Mh ¼ 0

SD Nh ¼ w ¼ Mh ¼ 0

Clamped boundary conditions

C u ¼ w ¼ /h ¼ 0

C2 Nh ¼ w ¼ /h ¼ 0

3.2 Fundamental Equations of Thick Laminated Beams 75

http://dx.doi.org/10.1007/978-3-662-46364-2_1


F : kuh0 ¼ kwh0 ¼ Kh
h0 ¼ 0

SD : kwh0 ¼ 107D; kuh0 ¼ Kh
h0 ¼ 0

S : kuh0 ¼ kwh0 ¼ 107D; Kh
h0 ¼ 0

C : kuh0 ¼ kwh0 ¼ Kh
h0 ¼ 107D

ð3:38Þ

3.3 Solution Procedures

With above fundamental equations and modified Fourier series method developed
in Chap. 2, both strong and weak form solution procedures of laminated beams with
general boundary conditions are presented in this section. To fully illustrate the
modified Fourier series solution procedure, we only consider the free vibration
analysis of laminated beams with general boundary conditions based on the SDBT.
For other beam theories, the corresponding solution procedures can be obtained in
the same manner.

Combining Eqs. (3.24), (3.28) and (3.36), it is obvious that the displacements
and rotation components of thick laminated curved beams are required to have up to
the second derivative. Therefore, regardless of boundary conditions, each dis-
placements and rotation component of a laminated beam can be expanded as a one-
dimensional modified Fourier series as

uðhÞ ¼
XM
m¼0

Am cos kmhþ a1P1ðhÞ þ a2P2ðhÞ

wðhÞ ¼
XM
m¼0

Bm cos kmhþ b1P1ðhÞ þ b2P2ðhÞ

/hðhÞ ¼
XM
m¼0

Cm cos kmhþ c1P1ðhÞ þ c2P2ðhÞ

ð3:39Þ

where λm = mπ/θ0. P1(θ) and P2(θ) denote the auxiliary polynomial functions
introduced to remove all the discontinuities potentially associated with the first-
order derivatives at the boundaries then ensure and accelerate the convergence of
the series expansion of the beam displacements and rotation component. M is the
truncation number. Am, Bm and Cm are the expansion coefficients of standard cosine
Fourier series. a1, a2, b1, b2, c1 and c2 represent the corresponding expansion
coefficients of auxiliary functions P1(θ) and P2(θ). These two auxiliary functions
are defined as

P1ðhÞ ¼ h
h
h0

� 1
� 	2

P2ðhÞ ¼ h2

h0

h
h0

� 1
� 	

ð3:40Þ
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It should be stressed that in the CBT cases, the displacements of a laminated beam
are required to have up to the fourth-order derivatives. In such case, the following
four auxiliary polynomial functions are introduced to remove all the discontinuities
potentially associated with the first-order and third-order derivatives at the
boundaries (Jin et al. 2013a).

P1ðhÞ ¼ 9h0
4p

sinð ph
2h0

Þ � h0
12p

sinð3ph
2h0

Þ

P2ðhÞ ¼ � 9h0
4p

cosð ph
2h0

Þ � h0
12p

cosð3ph
2h0

Þ

P3ðhÞ ¼ h30
p3

sinð ph
2h0

Þ � h30
3p3

sinð3ph
2h0

Þ

P4ðhÞ ¼ � h30
p3

cosð ph
2h0

Þ � h30
3p3

cosð3ph
2h0

Þ

ð3:41Þ

3.3.1 Strong Form Solution Procedure

Substituting Eqs. (3.24) and (3.28) into Eq. (3.36) the governing equations of
laminated curved beams including shear deformation and rotary inertia effects can
be rewritten as:

L11 L12 L13
L21 L22 L23
L31 L32 L33

2
4

3
5� x2

M11 0 M13

0 M22 0
M31 0 M33

2
4

3
5

0
@

1
A u

w
/h

2
4

3
5 ¼

0
0
0

2
4

3
5 ð3:42Þ

where the coefficients of the linear operator (Mij = Mji) are given below:

L11 ¼ A11

R2

@2

@h2
� A55

R2 ; L12 ¼ A11

R2

@

@h
þ A55

R2

@

@h

L13 ¼ B11

R2

@2

@h2
þ A55

R
; L21 ¼ �A11

R2

@

@h
� A55

R2

@

@h

L22 ¼ �A11

R2 þ A55

R2

@2

@h2
; L23 ¼ �B11

R2

@

@h
þ A55

R
@

@h

L31 ¼ B11

R2

@2

@h2
þ A55

R
; L32 ¼ B11

R2

@

@h
� A55

R
@

@h

L33 ¼ D11

R2

@2

@h2
� A55; M11 ¼ M22 ¼ �I0

M13 ¼ M31 ¼ �I1; M33 ¼ �I2

ð3:43Þ
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Rewriting the modified Fourier series expressions (Eq. 3.39) in the matrix form as:

uðhÞ ¼ HscAþHaf a

wðhÞ ¼ HscBþHafb

/hðhÞ ¼ HscCþHaf c

ð3:44Þ

where

Hsc ¼ cos k0h; . . .; cos kmh½ ; . . .; cos kMh�
Haf ¼ ½P1ðhÞ;P2ðhÞ�
A ¼ A0; . . .;Am; . . .;AM½ �T a ¼ a1; a2½ �T

B ¼ B0; . . .;Bm; . . .;BM½ �T b ¼ b1; b2½ �T

C ¼ C0; . . .;Cm; . . .;CM½ �T c ¼ c1; c2½ �T

ð3:45Þ

where superscript T represents the transposition operator. Substituting Eq. (3.44)
into Eq. (3.42) results in

Lsc

A
B
C

2
4

3
5þ Laf

a
b
c

2
4

3
5� x2 Msc

A
B
C

2
4

3
5þMaf

a
b
c

2
4

3
5

0
@

1
A ¼ 0 ð3:46Þ

where

Li¼
L11Hi L12Hi L13Hi

L21Hi L22Hi L23Hi

L31Hi L32Hi L33Hi

2
64

3
75ði ¼ sc; af Þ

Mi¼
M11Hi 0 M13Hi

0 M22Hi 0

M31Hi 0 M33Hi

2
64

3
75ði ¼ sc; af Þ

ð3:47Þ

Similarly, substituting Eq. (3.44) into Eq. (3.37), the boundary conditions of
thick laminated curved beams can be rewritten as
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Lh0
sc

Lh1
sc

� � A
B
C

2
4

3
5þ Lh0

af

Lh1
af

" # a
b
c

2
4

3
5 ¼ 0 ð3:48Þ

where

Lh0
i ¼

A11

R
@Hi

@h
� kuh0Hi

A11

R
Hi

B11

R
@Hi

@h

�A55

R
Hi

A55

R
@Hi

@h
� kwh0Hi A55Hi

B11

R
@Hi

@h
B11

R
Hi

D11

R
@Hi

@h
� Kh

h0Hi

2
6666664

3
7777775
h¼0

ði ¼ sc; af Þ

Lh1
i ¼

A11

R
@Hi

@h
þ kuh1Hi

A11

R
Hi

B11

R
@Hi

@h

�A55

R
Hi

A55

R
@Hi

@h
þ kwh1Hi A55Hi

B11

R
@Hi

@h
B11

R
Hi

D11

R
@Hi

@h
þ Kh

h1Hi

2
6666664

3
7777775
h¼h0

ði ¼ sc; af Þ

ð3:49Þ

Thus, the relation between the expansion coefficients of standard cosine Fourier
series (A, B and C) and those of corresponding auxiliary functions (a, b and c) can
be determined by the following equation:

a
b
c

2
4

3
5 ¼ � Lh0

af

Lh1
af

" #�1
Lh0
sc

Lh1
sc

� � A
B
C

2
4

3
5 ð3:50Þ

In order to derive the constraint equations for the unknown expansion coeffi-
cients, all the sine terms, the auxiliary polynomial functions and their derivatives in
Eq. (3.46) are expanded into Fourier cosine series then collecting the similar terms,
i.e., multiplying Eq. (3.46) with He in the left side and integrating it from 0 to θ0
with respect to θ, we have

Lsc

A
B
C

2
4

3
5þ Laf

a
b
c

2
4

3
5� x2 Msc

A
B
C

2
4

3
5þMaf

a
b
c

2
4

3
5

0
@

1
A ¼ 0 ð3:51Þ
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where

Lsc ¼
Zh0
0

HeLscdh

Laf ¼
Zh0
0

HeLaf dh

Msc ¼
Zh0
0

HeMscdh

Maf ¼
Zh0
0

HeMaf dh

He ¼ HT
sc ¼ cos k0h; . . .; cos kmh½ ; . . .; cos kMh�T

ð3:52Þ

Finally, combining Eqs. (3.50) and (3.51) results in

K�x2M
� �

A B C½ �T¼ 0 ð3:53Þ

where K is the stiffness matrix and M is the mass matrix. They are defined as

K ¼ Lsc � Laf

Lh0
af

Lh1
af

" #�1
Lh0
sc

Lh1
sc

" #

M ¼ Msc �Maf

Lh0
af

Lh1
af

" #�1
Lh0
sc

Lh1
sc

" # ð3:54Þ

Thus, the natural frequencies and modes of the beams under consideration can be
determined easily by solving the standard characteristic equation.

3.3.2 Weak Form Solution Procedure
(Rayleigh-Ritz Procedure)

Instead of seeking a solution in strong form as described in Sect. 3.3.1, all the
expansion coefficients can be treated equally and independently as the generalized
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coordinates and solved directly from the Rayleigh–Ritz technique, which is the
focus of the current section.

For free vibration analysis, the Lagrangian energy functional (L) of beams can be
defined in terms of the strain energy and kinetic energy functions as:

L ¼ T � Us � Usp ð3:55Þ

Substituting Eqs. (3.31), (3.32) (3.35) and (3.39) into Eq. (3.55) and taking its
derivatives with respect to each of the undetermined coefficients and making them
equal to zero

@L
@N

¼ 0 and
N ¼ Am;Bm;Cm

m ¼ 0; 1; 2; . . .M



@L
@W

¼ 0 and W ¼ a1; a2; b1; b2; c1; c2

ð3:56Þ

a total of 3*(M + 3) equations can be obtained and they can be summed up in a
matrix form as:

K�x2M
� �

G ¼ 0 ð3:57Þ

where K is the stiffness matrix for the beam, and M is the mass matrix. They are
defined as

K ¼
Kuu Kuw Kuh

KT
uw Kww Kwh

KT
uh KT

wh Khh

2
64

3
75

M ¼
Muu 0 Muh

0 Mww 0

MT
uh 0 Mhh

2
64

3
75

ð3:58Þ

The explicit forms of submatrices Kij and Mij in the stiffness and mass matrices are
listed in follow
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Kuu ¼
Zh0
0

A11

R
@HT

@h
@H
@h

þ A55

R
HTH


 �
dhþ kuh0H

TH h¼0j þ kuh1H
TH h¼h0j

Kuw ¼
Zh0
0

A11

R
@HT

@h
H� A55

R
HT @H

@h


 �
dh

Kuh ¼
Zh0
0

B11

R
@HT

@h
@H
@h

� A55HTH

 �

dh

Kww ¼
Zh0
0

A11

R
HTHþ A55

R
@HT

@h
@H
@h


 �
dhþ kwh0H

TH h¼0j þ kwh1H
TH h¼h0j

Kwh ¼
Zh0
0

B11

R
HT @H

@h
þ A55

@HT

@h
H


 �
dh

Khh ¼
Zh0
0

D11

R
@HT

@h
@H
@h

þ A55RHTH

 �

dhþ Kh
h0H

TH h¼0j þ Ku
h1H

TH h¼h0j

Muu ¼ Mww ¼
Zh0
0

I0RHTHdh

Muh ¼
Zh0
0

I1RHTHdh

Mhh ¼
Zh0
0

I2RHTHdh

ð3:59Þ

where

H ¼ Hsc Haf½ � ¼ cos k0h; . . .; cos kmh½ ; . . .; cos kMh;P1ðhÞ;P2ðhÞ� ð3:60Þ

G is a column vector which contains, in an appropriate order, the unknown
expansion coefficients:

G = A a B b C c½ �T ð3:61Þ

Obviously, the vibration results can now be easily obtained by solving a standard
matrix eigenproblem.
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3.4 Laminated Beams with General Boundary Conditions

Vibration results of laminated straight and curved beams with general boundary
conditions are given in this section. The isotropic beams are treated as special cases
of laminated beams in the presentation. Natural frequencies and mode shapes for
straight and curved beams with different boundary conditions, lamination schemes
and geometry parameters are presented using both strong form and weak form
solution procedures. The convergence of the solutions is studied and the effects of
shear deformation and rotary inertia, deepness term (1 + z/R) and beam parameters
(boundary conditions, lamination schemes, geometry parameters and material
properties) are investigated as well.

For the sake of simplicity, character strings CBTw, CBTs, SDBTw and SDBTs

are introduced to represent the beam theories and methods used in the calculation
(where subscripts w and s denote weak form and strong form solution procedures,
respectively). In addition, a two-letter string is applied to indicate the end conditions
of a beam, such as C-F denotes a beam with C and F boundary conditions at the
boundaries θ = 0 and θ = θ0, respectively. Unless otherwise stated, the natural
frequencies of the considered beams are expressed in the non-dimensional
parameters as X ¼ xL2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12q=E1h2

p
and the material properties of the beams are

given as: μ12 = 0.25, G13 = 0.5E2 (where Lθ represents the span length of a curved
beam, i.e., Lθ = Rθ0).

3.4.1 Convergence Studies and Result Verification

Table 3.3 shows the convergence studies made for the first six natural frequencies
(Hz) of a moderately thick, two-layered laminated ([0°/90°]) curved beam with
completely free (F-F) and clamped (C-C) boundary conditions. The geometry and
material constants of the beam are given as: R = 1 m, θ0 = 1, h/R = 0.1,
E2 = 10 GPa, E1/E2 = 10, μ12 = 0.27, G13 = 5.5 GPa, ρ = 1,700 kg/m3. Both the
SDBTw and SDBTs solutions for truncation schemes M = 8, 9, 14, 15 are included
in studies. It is obvious that the modified Fourier series solution has an excellent
convergence, and is sufficiently accurate even when only a small number of terms
are included in the series expressions. In addition, from the table, we can see that
the SDBTw solutions converge faster than the SDBTs ones. Unless otherwise stated,
the truncation number (M) of the displacement expressions will be uniformly
selected as M = 15 in the following calculation and the weak form solution pro-
cedure will be adopted in the calculation.

In Table 3.4, comparisons of the frequency parameters Ω for a two-layered,
unsymmetrically laminated ([90°/0°]) curved beam with SD-SD boundary condi-
tions are presented. The geometric properties of the layers of the beam are the same
as those used in Table 3.3 except that the thickness-to-length ratio is given as
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h/Lθ = 0.01, 0.02, 0.05, 0.1 and 0.2 and the elementally material parameters of the
layers are: E1/E2 = 15. From the table, we can see that the present solutions agree
very well with exact solutions published by Qatu (1993). The differences between
the two results are very small, and do not exceed 0.27 % for the worst case. To
further prove the validity of the present method, Table 3.5 lists comparisons of the
frequency parameters Ω for a two-layered, unsymmetrically laminated ([90°/0°])
curved beam with various boundary conditions. The layers of the beam are thought

Table 3.3 Convergence of the first six natural frequencies (Hz) for a [0°/90°] laminated curved
beam with F-F and C-C boundary conditions (R = 1 m, θ0 = 1, h/R = 0.1)

Boundary
conditions

M Mode number

1 2 3 4 5 6

F-F SDBTw

8 123.88 314.88 549.83 813.20 895.85 1099.3

9 123.88 314.84 549.78 812.30 895.63 1098.3

14 123.88 314.81 549.63 811.86 895.58 1096.5

15 123.88 314.81 549.63 811.84 895.57 1096.5

SDBTs

8 124.60 316.99 553.41 821.66 897.25 1109.4

9 124.59 316.20 552.42 817.25 896.32 1106.3

14 124.01 315.15 550.23 813.00 895.80 1098.0

15 124.01 315.09 550.11 812.80 895.72 1097.7

C-C SDBTw

8 262.54 279.29 514.27 723.46 894.04 990.46

9 262.53 279.27 514.07 723.31 893.95 987.46

14 262.52 279.21 513.96 722.71 893.93 986.40

15 262.52 279.21 513.95 722.71 893.93 986.34

SDBTs

8 262.84 280.27 517.05 729.92 895.50 1005.6

9 262.74 279.86 516.23 727.91 894.55 996.79

14 262.57 279.36 514.43 723.68 894.11 988.60

15 262.56 279.33 514.34 723.58 894.04 987.94

Table 3.4 Comparison of the frequency parameters Ω for a [90°/0°] laminated curved beam with
SD-SD boundary conditions (R = 1 m, θ0 = 1)

h/Lθ Qatu (1993) SDBTw

1 2 3 1 2 3

0.01 4.0094 18.000 41.286 4.0179 18.042 41.388

0.02 3.9885 17.839 40.681 3.9969 17.878 40.770

0.05 3.9109 17.089 37.667 3.9190 17.124 37.738

0.10 3.7419 15.329 31.300 3.7496 15.357 31.349

0.20 3.3312 11.808 21.481 3.3387 11.833 21.523
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to be of equal thickness and made from material with following properties:
h/Lθ = 0.01, R/Lθ = 2, E1/E2 = 15. The Ritz solutions obtained by Qatu and
Elsharkawy (1993) by using the classical beam theory are selected as the bench-
mark solutions. A consistent agreement between the present results and the refer-
ential data is seen from the table. Furthermore, comparing the sixth frequencies of
the beam, we can see that the CBT solutions are less accurate in the higher modes.
The maximum difference (in the sixth frequency parameters) between the SDBTw

and CBTw solutions can be 1.67 % for the worst case.

3.4.2 Effects of Shear Deformation and Rotary Inertia

In this section, effects of the shear deformation and rotary inertia which are neglected
in the CBT will be investigated. Shear deformation was first applied in the analysis
of beams by Timoshenko (1921). This effect is higher in composite materials since
the longitudinal to shear modulus ratio is much higher in composites than metallic
materials (Hajianmaleki and Qatu 2012b). Figures 3.5 and 3.6 show the differences
between the lowest three frequency parametersΩ obtained by CBTw and SDBTw for
an isotropic curved beam and a two-layered, [0°/90°] laminated curved beam with
different boundary conditions and thickness-to-span length ratios, respectively. Both
F-F and C-C boundary conditions are shown in each figure. The geometric and
material constants of the layers of the two beams are: R/Lθ = 1, E1/E2 = 1(Fig. 3.5)

Table 3.5 Comparison of the frequency parameters Ω for a [90°/0°] laminated curved beam with
different boundary conditions (h/Lθ = 0.01, R/Lθ = 2, E1/E2 = 15)

B.C. Theory Mode number

1 2 3 4 5

S-S Qatu and Elsharkawy
(1993)

18.434 37.935 74.549 99.888 143.10

SDBTw 18.448 37.910 74.303 99.435 142.01

CBTw 18.473 38.009 74.703 99.905 142.85

SD-SD Qatu and Elsharkawy
(1993)

4.5173 18.593 42.050 74.884 117.92

SDBTw 4.5249 18.606 42.009 74.632 116.37

CBTw 4.5268 18.631 42.137 75.037 117.32

C-C Qatu and Elsharkawy
(1993)

29.015 51.348 94.637 111.64 149.21

SDBTw 28.973 51.167 93.982 111.02 147.71

CBTw 29.076 51.436 94.833 111.35 149.17

C2-C2 Qatu and Elsharkawy
(1993)

10.445 29.145 57.291 94.837 144.65

SDBTw 10.255 29.028 56.995 94.103 140.25

CBTw 10.467 29.205 57.406 95.008 141.98
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and E1/E2 = 15 (Fig. 3.6). The thickness-to-span length ratio h/Lθ is varied from
0.001 to 0.2, corresponding to very thin to thick beams. From the figures, we can see
that the effects of the shear deformation and rotary inertia increase as the orthotropy
ratio (E1/E2) increases. Furthermore, when the thickness-to-span length ratio h/Lθ is
less than 0.02, the maximum difference between the frequency parameters Ω
obtained by CBTw and SDBTw is less than 4 %. However, when the thickness-to-
span length ratio h/Lθ is equal to 0.1, this difference can be as many as 11.5 % for the
isotropic curved beam and 32.3 % for the [0°/90°] laminated one. As expected, it can
be seen that the difference between the CBTw and SDBTw solutions increases with
thickness-to-span length ratio increases. Figure 3.6 also shows that the maximum
difference between these two results can be as many as 50.4 % for a thickness-to-
length ratio of 0.2. In such case, the CBTw results are utterly inaccurate. This
investigation shows that the CBT only applicable for thin beams. For beams with
higher thickness ratios, both shear deformation and rotary inertia effects should be
included in the calculation. These results can be used in establishing the limits of
classical shell and plate theories as well.
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Fig. 3.5 Differences between the lowest three frequency parameters Ω obtained by CBTw and
SDBTw for an isotropic curved beam (R/Lθ = 1, E1/E2 = 1)
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3.4.3 Effects of the Deepness Term (1 + z/R)

Considering Eq. (3.23), the deepness term (1 + z/R) introduces curvature com-
plexity in the kinematic relations. When the thickness of the beam, h, is small
compared to its radius of curvature R, i.e., h/R < <1 and |z/R| < <1, then deepness
term (1 + z/R) approximately equals to 1. In such case, the shear deformation
shallow beam theories (SDSBT) can be obtained from the general SDBT (Khdeir
and Reddy 1997; Qatu 1992). Qatu (2004) pointed out that this term should not be
neglected in the analysis especially when the span length-to-radius ratio is more
than 1/2. In this section, effects of the deepness term (1 + z/R) will be investigated.

Neglecting the deepness term and including the effects of shear deformation and
rotary inertia, the normal and shear strains at any point of a beam can be rewritten as:
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Fig. 3.6 Differences between the lowest three frequency parameters Ω obtained by CBTw and
SDBTw for a [0°/90°] laminated curved beam (R/Lθ = 1, E1/E2 = 15)
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eh ¼ e0h þ zvh chz ¼ c0hz ð3:62Þ

where the normal and shear strains in the reference surface (e0h and c
0
hz) and the

curvature change (χθ) are given as in Eq. (3.24). Thus, the corresponding stress-
strain relations in the kth layer of a laminated beam can be written as:

rh
shz


 �
k
¼ Qk

11 0
0 Qk

55

" #
eh
chz


 �
k

ð3:63Þ

By carrying the integration of the stresses over the cross-section, the force and
moment resultants (Nθ, Qθ and Mθ) become:

Nh

Mh

Qh

2
4

3
5 ¼

A11 B11 0
B11 D11 0
0 0 A55

2
4

3
5 e0h

vh
chz

2
4

3
5 ð3:64Þ

The stiffness coefficients A11, B11 andD11 are given in Eq. (3.7) and A55 is defined as:

A55 ¼ Ksb
XN
k¼1

Qk
11ðzkþ1 � zkÞ ð3:65Þ

where Ks is the shear correction factor, typically taken at 5/6.
Substituting Eq. (3.64) into the energy functions of the beams (see, Sect. 3.2.3)

and applying the Ritz solution procedure in the similar manner described before
(see, Sect. 3.3.2), the vibration solutions of laminated beams in the framework of
SDSBT can be obtained (represent by SDSBTw). It should be stressed that the
inertia terms of the beam in the SDSBT are defined as:

I0¼I0
I1¼I1
I2¼I2

½I0; I1; I2� ¼ b
XN
k¼1

Zzkþ1

zk

qk½1; z; z2�dz

ð3:66Þ

Figures 3.7and 3.8 show the differences between the lowest three non-dimen-
sional frequency parameters Ω obtained by SDBTw and SDSBTw for a two layered,
unsymmetrically laminated [0°/90°] curved beam and an isotropic curved beam
with different span length-to-radius and thickness-to-radius ratios, respectively. The
‘difference’ is defined as: difference = (SDSBTw − SDBTw)/SDBTw*100 %. The
geometric and material constants of the layers of the beam are: R = 1, E1/E2 = 1 or
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15 (laminated). The beams are assumed to be C-F supported. Two span length-to-
radius ratios, i.e., Lθ/R = 0.5 and 5, corresponding to shallow and deep curved
beams are shown in each figure. The thickness-to-radius ratio h/R is varied from
0.001 to 0.1. As expected, the effects of the deepness term increase as the thickness-
to-radius ratio increases. The included angle θ0 of the curved beam is the span
length-to-radius ratio. This means that the span length-to-radius ratio of 5 indicates
a very deep curved beam with an included angle of 286.48°, which are more than
three quarters of the closed circle. In this case, the difference between the frequency
parameters Ω obtained by SDSBTw and SDBTw is very small and the maximum
difference is less than 0.41 % for the worst case. In addition, it is clear from the
figures that the effects of the deepness term vary with mode number and span
length-to-radius ratio and orthotropy ratio (E1/E2). In the case of span length-to-
radius ratio Lθ/R = 5, the SDBTw results are generally higher than those of
SDSBTw. These results can be used in establishing the limits of shell theories and
shell equations.
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Fig. 3.7 Differences between the lowest three frequency parameters Ω obtained by SDBTw and
SDSBTw for a [0°/90°] laminated curved beam (R = 1, E1/E2 = 15)
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3.4.4 Isotropic and Laminated Beams with General
Boundary Conditions

In this section, isotropic and laminated beams with various boundary conditions
including the classical restraints and the elastic ones will be studied. Only the free
vibration solutions (natural frequencies and mode shapes) based on SDBT and
weak form solution procedure are considered in this section.

Table 3.6 shows the frequency parameters Ω obtained for a two-layered, [0°/90°]
laminated curved beam with different thickness-to-radius ratios and various clas-
sical boundary conditions. The geometry and material parameters used in the study
are: R = 1, θ0 = 2π/3, E1/E2 = 15. And the thickness-to-radius ratios performed in
the study are h/R = 0.01, 0.05 and 0.1, corresponding to thin to moderately thick
curved beams. The first observation is that the frequency parameters for curved
beams with F-SD boundary conditions (no constraints on the in-plane displace-
ment) are higher than those of curved beam with F-S boundary conditions.
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Fig. 3.8 Differences between the lowest three frequency parameters Ω obtained by SDBTw and
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The second observation is that the fundamental frequency parameter of the beam
increases with thickness-to-radius ratio increases when subjected to F-F, F-S, F-SD,
S-S and SD-SD boundary conditions. In other cases, the beam frequency param-
eters decrease with thickness-to-radius ratio increases. In Fig. 3.9, the lowest two
mode shapes for the beam with thickness-to-radius ratio h/R = 0.05 are presented
for S-S, S-C and C-C boundary conditions, respectively. These mode shapes are
determined by substituting the related eigenvectors into the assumed displacement
expansions.

Table 3.7 studies the effects of the orthotropy ratio (E1/E2) on the frequency
parameters Ω for a two-layered, [0°/90°] laminated curved beam with different
boundary conditions. The geometry parameters used in the investigation are: R = 1,
θ0 = 2π/3, h/R = 0.05. Four different orthotropy ratios considered in the investi-
gation are: E1/E2 = 1, 10, 20 and 40. From the table, we can see that the increment
in the orthotropy ratio results in decreases of the frequency parameters.

Since the effects of both shear deformation and rotary inertia and the deepness
term are included in the SDBT, therefore, it can be applied to predict vibration
characteristics of moderately thick curved beams with arbitrary included angles.
Table 3.8 shows the frequency parameters Ω obtained for a two-layered, [0°/90°]
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Fig. 3.9 The lowest three mode shapes for a moderately thick (h/R = 0.05), [0°/90°] laminated
curved beam with different boundary conditions (R = 1, θ0 = 2π/3)
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laminated curved beam with different included angles and various combinations of
classical boundary conditions. The geometry and material parameters of the beam
are assumed to be: R = 1, h/R = 0.05, E1/E2 = 15. It can be seen from the table that
in all the boundary condition cases, all the frequency parameters of the beam
decrease with included angle increases. It may be attributed to the stiffness of the
curved beam reduces when the included angle increases. In order to enhance our
understanding of the effects of the included angle, Fig. 3.10 presents the lowest two
mode shapes of the beam with F-C boundary conditions. From the figure, we can
see that the influence of the included angle on the mode shapes of the beam varies
with mode sequence.
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Fig. 3.10 The lowest two mode shapes for a [0°/90°] laminated curved beam with F-C boundary
conditions and different included angles (R = 1, h/R = 0.05)
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Then, influence of the radius-to-span length ratio (R/Lθ) on the frequencies of a
[0°/90°] laminated curved beam (E1/E2 = 15) is investigated. The beam is made
from composite layers with following geometry constants: Lθ = 1, h/Lθ = 0.05.
Figure 3.11 shows variations of the lowest three frequency parameters Ω versus the
radius-to-span length ratio for the beam with S-S and C-C boundary conditions.
Increasing the radius-to-span length ratio from 0.2 (very deep curved beam) to 10
(shallow curved beam), the effects of the radius-to-span length ratio are very large
for the frequency parameters. We can see clearly that the frequency parameter trace
of the fundamental modes climb up and then decline, and reach its crest around
R/Lθ = 2. The same tendency can be seen in the second and third modes as well
while the second and third ones reach their crests around R/Lθ = 1 and R/Lθ = 0.8.
The similar characteristics can be found in the right subfigure. When the radius-
to-span length ratio is increased from 10 to 100, increasing the radius-to-span length
ratio has very limited influence on the frequency parameters due to the curved beam
is very shallow and its vibration behaviors approximate to a straight beam.

Finally, Table 3.9 shows the first three frequency parameters Ω for a [−45°/45°]
laminated curved beam (Lθ = 1, h/Lθ = 0.05, E1/E2 = 15) with different radius-to-
span length ratios and elastic boundary conditions. The radius-to-span length ratios
included in the calculation are 1/π, 4/π and ∞. The radius-to-span length ratio of
1/π and 4/π correspond to curved beam with an included angle of π and π/4,
respectively. The last radius-to-span length ratio of ∞ corresponds to a straight
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Fig. 3.11 Variation of frequency parametersΩ versus radius-to-span length ratio (R/Lθ) for a [0°/90]
laminated curved beam with S-S and C-C boundary conditions (h/Lθ = 0.05)
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beam. The beam is simply-supported at the edge of θ = 0 and elastically restrained
at the other edge (S-Elastic). Table 3.10 shows similar studies for the C-Elastic
boundary conditions. The tables show that increasing the axial restrained rigidity
has very limited effects on the straight beam. It is attributed to the lower frequency
parameters of a straight beam are dominated by its transverse vibration.

In conclusion, vibration of isotropic and laminated straight and curved beams is
studied in this chapter. The effects of shear deformation and rotary inertia, deepness
term (1 + z/R) and other beam parameters are clearly outlined. It is shown that the
difference (for the lowest three frequency parameters) between the CBT and SDBT
solutions increases with thickness-to-length ratio increases. For a laminated curved
beam (R/Lθ = 1, E1/E2 = 15, [0°/90°] lamination scheme) with thickness-to-length
ratios of 0.05, 0.1, 0.15 and 0.2, the maximum differences can be as many as 8.8,
32.3, 42 and 50.4 % for the worst case, respectively. The effects of the deepness
term (1 + z/R) on the frequency parameters is very small, the maximum difference
between the frequency parameters Ω obtained by SDSBT (neglect the deepness
term) and SDBT is less than 0.41 % for the worse case of a curved beam of span
length-to-radius ratio Lθ/R = 5 and thickness-to-radius ratio h/R = 0.1. A variety of

Table 3.9 The first three frequency parameters Ω for a [−45°/45°] laminated curved beam with
different radius-to-span length ratios and S-Elastic boundary conditions (Lθ = 1, h/Lθ = 0.05)

R/Lθ Γ kuh1¼C; kwh1¼107D;Kh
h1¼0 kuh1¼0; kwh1¼107D;Kh

h1¼C

1 2 3 1 2 3

1/π 10−1D 0.4465 12.851 36.277 0.6846 12.974 36.380

100D 1.4104 12.863 36.280 1.8096 13.816 37.125

101D 4.4087 12.992 36.314 2.8424 15.779 39.292

102D 10.805 16.473 36.709 3.0734 16.507 40.291

103D 11.828 32.677 49.626 3.0996 16.600 40.426

104D 11.887 34.153 64.561 3.1022 16.610 40.440

4/π 10−1D 4.6699 20.169 43.834 4.7857 20.328 43.957

100D 4.7105 20.169 43.835 5.4645 21.404 44.860

101D 5.0975 20.169 43.844 6.5092 23.900 47.523

102D 7.8777 20.170 43.932 6.7873 24.804 48.738

103D 17.166 20.189 44.503 6.8198 24.918 48.902

104D 20.147 25.119 45.374 6.8231 24.929 48.918

∞ (straight) 10−1D 5.4235 20.949 44.711 5.5870 21.101 44.843

100D 5.4235 20.949 44.711 6.5033 22.146 45.818

101D 5.4235 20.949 44.711 7.8962 24.625 48.748

102D 5.4234 20.949 44.711 8.2619 25.535 50.111

103D 5.4236 20.949 44.711 8.3044 25.649 50.295

104D 5.4234 20.949 44.711 8.3087 25.661 50.314
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new vibration results including frequencies and mode shapes for straight and curved
laminated beams with classical and elastic restraints as well as different geometric
and material parameters are given, which may serve as benchmark solutions for the
future researches.

Table 3.10 The first three frequency parameters Ω for a [−45°/45°] laminated curved beam with
different radius-to-span length ratios and C-Elastic boundary conditions (Lθ = 1, h/Lθ = 0.05)

R/Lθ Spring
rigidity

kuh1¼C; kwh1¼107D;Kh
h1¼0 kuh1¼0; kwh1¼107D;Kh

h1¼C

1 2 3 1 2 3

1/π 10−1D 3.0784 17.040 40.988 3.0752 17.181 41.080

100D 3.3805 17.045 40.991 3.2670 18.139 41.756

101D 5.5452 17.094 41.022 3.5970 20.410 43.784

102D 13.775 18.337 41.374 3.6929 21.272 44.749

103D 16.321 35.923 51.778 3.7044 21.382 44.882

104D 16.397 38.427 69.273 3.7055 21.394 44.895

4/π 10−1D 7.5129 24.694 48.910 7.6416 24.848 49.019

100D 7.5373 24.694 48.912 8.4238 25.915 49.821

101D 7.7754 24.695 48.929 9.7649 28.553 52.224

102D 9.7491 24.703 49.084 10.149 29.564 53.331

103D 17.734 24.797 49.989 10.195 29.693 53.480

104D 23.782 26.081 51.044 10.200 29.706 53.495

∞
(straight)

10−1D 8.3092 25.662 50.316 8.4796 25.807 50.442

100D 8.3092 25.662 50.316 9.4924 26.822 51.368

101D 8.3092 25.662 50.316 11.219 29.395 54.250

102D 8.3092 25.662 50.316 11.710 30.398 55.641

103D 8.3092 25.662 50.316 11.768 30.526 55.832

104D 8.3092 25.662 50.316 11.774 30.539 55.851
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