Chapter 3
Straight and Curved Beams

Beams, plates and shells are commonly utilized in engineering applications, and
they are named according to their size or/and shape characteristics and different
theories have been developed to study their structural behaviors. A beam is typi-
cally described as a structural component having one dimension relatively greater
than the other dimensions. Specially, a beam can be referred to as a rod or bar when
subjected to tension, a column when subjected to compression and a shaft when
subjected to torsional loads (Qatu 2004). Beams are one of the most fundamental
structural elements. Almost every machine contains one or more beam components,
such as bridges, steel framed structures and building frames. In addition, many
structures can be modeled at a preliminary level as beams. For example, spring
boards, supports of a wind power generation can be treated as cantilever beams, and
a span of an overhead viaduct or bridge can be viewed as a simply supported beam.
In recent decades, laminated beams made from advanced composite materials are
extensively used in many engineering applications where higher strength to weight
ratio is desired, such as aircraft structures, space vehicles, turbo-machines, deep-sea
equipment and other industrial applications. Researches on the vibration and
dynamic analyses of laminated composite beams have been increasing rapidly in
recent decades. A paper which reviewed most of the researches done in years
(1989-2012) on the vibration analysis of composite beams by Hajianmaleki and
Qatu (2013) showed that research articles on the subject during period 2000-2012
are more than twice than those of 1989-2000. Due to the great importance, this
chapter considers the vibration of laminated beams in the framework of classical
thin beam theory (CBT) and shear deformation beam theory (SDBT).

Beams can be straight or curved. Both straight and curved beams are considered
in this chapter. Generally, a straight beam can be considered as a degenerated curved
beam with infinite radius of curvature (zero curvature). This chapter is concerned
with the development of the fundamental equations of laminated curved beams
according to the CBT and SDBT. Equations for the straight beams can be derived by
setting curvatures to zero in those of curved beams. Strain-displacement relations,
force and moment resultants, energy functions, governing equations and boundary
conditions are derived and shown for both theories. Natural frequencies and mode
shapes are presented for straight and curved beams with different boundary
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64 3 Straight and Curved Beams

conditions, lamination schemes and geometry parameters in both strong and weak
forms of the proposed modified Fourier series method. The effects of boundary
conditions, geometry parameters and material properties are studied as well.

3.1 Fundamental Equations of Thin Laminated Beams

Fundamental equations of laminated thin beams are presented in this section in the
framework of classical beam theory. As shown in Fig. 3.1, a laminated curved beam
with uniform thickness A, width b is selected as the model. The beam is charac-
terized by its middle surface, in which R represents the mean radius of the beam and
6y denotes the included angle of the curved beam. To describe the beam clearly, we
introduce the following coordinate system: the a-coordinate is taken along the
length of the beam, and S- and z-coordinates are taken along the width and the
thickness directions, respectively. u, v and w separately indicate the middle surface
displacement variations of the beam in the a, f and z directions. It should be
stressed that this chapter addresses vibrations of laminated beams in their plane of
curvature, therefore, the fundamental equations derived for thin deep shells can be
specialized to those for curved beams by further assuming that the displacement v is
identical with zero and the displacements u and w along the coordinate system are
only functions of the a- and z-coordinates.

3.1.1 Kinematic Relations

Letting o = 6, the Lamé parameters of laminated curved beams can be obtained as
A =R. Introducing the Lamé parameters into Eq. (1.7), the middle surface strain and
curvature change of thin beams are:

Fig. 3.1 Laminated curved beams
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According to the thin beam assumption, the strain at an arbitrary point in the kth
layer of thin laminated beams can be defined as:

g0 = &) + 21y (3.2)

where Z;, < z < Zy,1. Zyy1 and Z; denote the distances from the top surface and the
bottom surface of the layer to the referenced middle surface, respectively.

3.1.2 Stress-Strain Relations and Stress Resultants

Suppose the laminated thin beam is composed of N composite layers which are
bonded together rigidly. And the angle between the principal direction of the
composite material in kth layer and the « axis is denoted by . According to
Hooke’s law, the corresponding stress-strain relations in the kth layer of the beam
can be written as:

{oo}i= Of {eo} (33)

where oy is the normal stress in the 6 direction. The constant Qflfl is the elastic
stiffness coefficient of this layer, which is found from following equations:

Qflfl = Q’l‘1 cos* ¥F
of — E, (3.4)
U = ppap

where E; is modulus of elasticity of the composite material in the principal
direction. u1, and u,; are the Poisson’s ratios. The subscript (11) in Egs. (3.3) and
(3.4) can be omitted but is maintained here for the direct use and comparison with
the thin shell equations presented in Chap. 1. By carrying the integration of the
normal stress over the cross-section results in

h/2 h/2

No=0>b / o,dz My=1D> / 0,2dz (3.5)
—h/2 —n/2
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where Ny is the force resultant and My is the moment resultant. The force and
moment resultant relations to the strains in the middle surface and curvature change

are defined as
No | _ |An Bu & (3.6)
My Bii Dut ||y '

where Ay, B;, and D, are the stiffness coefficients arising from the piecewise
integration over the beam thickness:

N
A =bY 0% (zk1 — @)

k=1
N

B :%/;1 Qlfl(Z%H Zz) (3.7)
N

Dy = %/;1 Qll(l(ZZH Z13<)

Notably, when the beam is laminated symmetrically with respect to its middle
surface, the constants Bj; equal to zero. The above equations are valid for cylindrical
bending of beams (Qatu 2004).

3.1.3 Energy Functions

The strain energy (Uy) of a thin beam during vibration is defined in terms of the
middle surface strains and stress resultants as:

1
Us=5 / {No&y + Moy, } RAO (3.8)
0

Substituting Egs. (3.1) and (3.6) into Eq. (3.8), the strain energy of the beam can be
rewritten in terms of the displacements as:

A Ou +w 2+ Ou Pw )2
1l st 5 W om— =3
U, — 1 / ROO " R R0 R200*) \pap (3.9)

2 2B ou B 0w ﬁ_’_y
0 "\ R200 ~ rReo0?)\ROO " R



3.1 Fundamental Equations of Thin Laminated Beams 67

z Middle surface

u w w w
koo kgo ko Ko
Fig. 3.2 Boundary conditions of thin laminated beams

The kinetic energy (7) of the beam is written as:

r=3 [of (%) +(%) Ja w10
0

where the inertia term are:

k41

N
10:1)2/ prdz (3.11)
k=1
Zk

p* is the mass of the kth layer per unit middle surface area. The external work is
expressed as:

W, = / {qou + q;w}RdO (3.12)
0

where g, and ¢, are the external loads in the € and z directions, respectively.

As described earlier, the general boundary conditions of a beam are implemented
by using the artificial spring boundary technique, in which each end of the beam is
assumed to be restrained by two groups of linear springs (k, and k,,) and one group
of rotational springs (K,,) to simulate the given or typical boundary conditions
expressed in the form of boundary forces and the flexural moments, respectively
(see Fig. 3.2). Specifically, symbols kf;, kf; andKl”; (w = 6y and 6;) are used to
indicate the stiffness of the boundary springs at the boundaries § = 0 and 8 = 6,,
respectively. Therefore, the deformation strain energy (Uy,) stored in the boundary
springs can be written as:

[k -+ kigw? -+ Ky (Dw/RO0)’|
va = =0

1
=— 3.13
2\ + [k + ki + K (w/RO0)| 313)

—6o
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3.1.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thin laminated beams can be
obtained by specializing the governing equations of thin shells to those of thin
laminated beams (i.e. substituting o = 6, A=R, B=1 and R, = R into Eq. (1.28) and
deleting all the terms with respect to ). According to Eq. (1.28), the governing
equations are:

ONg | Qp Ou
- - = =l —
RO R TR (3.14)
Ny L 00y - Pw
R "RoO T 092
where
oMy
=— 3.15
Qo R0 (3.15)
And the general boundary conditions of thin laminated beams are
No+ —kiu=0 No+ 4+ kiu=0
0=0:< Qog—kpw=0 0=0p:4 Qo+kjw=0 (3.16)
—My—Kjpy 2 =0 —My+ K} 2 =0

Alternately, the governing equations and boundary conditions of the considered
beam can be obtained by applying Hamilton’s principle in the same manner as
following describe. The Lagrangian function (L) of thin laminated beams can be
expressed in terms of strain energy, kinetic energy and external work as:

L=T—-U—Up+W, (3.17)

Substituting Egs. (3.9), (3.10), (3.12) and (3.13) into Eq. (3.17) and applying
Hamilton’s principle:

t
5/ (T —Us— Uy + We)dt = 0 (3.18)
0

yields:
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Integrating by parts to relieve the virtual displacements du and ow, we have

0—//{%+R( +qo — 10882>}5ud0dt
0w
Ng+—+R q; — 1032 owdOdt

My M, (3.20)
(NF?"' r ko >5u|90 - <N9+R_k90”>5”|0

t
» Ow '\ 06w
_/ * <_M"+K‘“ Rc’%)) 90
0

ow \ 0w w
+ <M9 + Ko R80> R0 lo = (Qo — kjow) ol

+ (Qo + kyyw)owlg, pdt

Since the virtual displacements du and ow are arbitrary, the Eq. (3.20) can be
satisfied only is the coefficients of the virtual displacements are zero. Thus, the
governing equations and boundary conditions of thin laminated beams are obtained,
which is the same as those presented in Eqs. (3.14) and (3.16). For general curved
beams and asymmetrically laminated straight beams, each boundary can exist two
possible combinations for each type of classical boundary conditions (free, simply-
supported, and clamped). At each boundary of 6 = constant, the possible combi-
nations for each classical boundary condition are given in Table 3.1.

By using the artificial spring boundary technique, taking edge 8 = 0 for example,
the F, S (simply-supported), SD (shear-diaphragm) and C (completely clamped)
boundary conditions which are of particular interest can be readily realized by
assigning the stiffness of the boundary springs at proper values as follows:
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Table 3.1 Possible classical

boundary conditions for thin Boundary type ‘ Conditions

laminated curved beams Free boundary conditions
F No+% = Qo =My =0
F2 u=Qyp=My=0
Simply supported boundary conditions
S u=w=My=0
SD No+R=w=My=0
Clamped boundary conditions
C u=w=2-=0
C2 N+%;)_W—Rd() 0

F: kly=kpy=Kjy=0
SD: kjy, = 10'D, ki = K}, =0
S: ki =kjy =10'D, Kjjy =0
C: ky = k()o*Koo*107

(3.21)

where D = E;h/12(1 — L1ottn1) 1s the flexural stiffness of the beam.

Figure 3.3 shows the variations of the fundamental frequency parameters AQ
(where AQ is defined as the difference of the fundamental frequency to that of the
elastic restraint parameter ' = 1073, namely, AQ=f(T) —f (107°D)) versus restraint
parameter I of a steel (E = 210 GPa, u = 0.3, p = 7800 kg/m") thin curved beam
with different geometry parameters. The beam is clamped at boundary 6 = 6, and
elastically supported at boundary 6 = 0 (i.e., kj, = kj, = Ky, = I'D). According to
Fig. 3.3, we can see that the change of the restraint parameter I" has little effect on
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Fig. 3.3 Variation of fundamental frequency parameter AQ versus elastic restraint parameters I"
for a thin beam (R = 1) with different geometry parameters (a) 6y = n/4; (b) h/R = 0.02
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frequency parameter AQ when it is smaller than 10°. However, when it is increased
from 10° to 10°, the frequency parameters increase rapidly. Then, the frequency
parameters approach their utmost and remain unchanged when I' approaches
infinity. In such a case, the beam can be deemed as clamped in both ends. In
conclusion, by assigning the stiffness of the boundary springs at 10’D, the com-
pletely clamped boundary conditions of a beam can be realized.

3.2 Fundamental Equations of Thick Laminated Beams

In the CBT, the effects of shear deformation and rotary inertia are neglected. It is
only applicable for thin beams. For beams with higher thickness ratios, the
assumption that normals to the undeformed middle surface remain straight and
normal to the deformed middle surface and suffer no extension of the classical beam
theory should be relaxed and both shear deformation and rotary inertia effects
should be included in the calculation. In this section, fundamental equations of
laminated beams in the framework of shear deformation beam theory are developed
and the deepness term (1 + z/R,) is considered in the formulation.

3.2.1 Kinematic Relations

Assuming that normals to the undeformed middle surface remain straight but not
normal to the deformed middle surface, the displacement field in the beam space can
be expressed in terms of middle surface displacements and rotation component as:

U(0,2) = u(0) +z¢0(0), W(0,2) = w(0) (3.22)

where u and w are the displacements at the middle surface in the § and z directions.
¢y represents the rotation of transverse normal, see Fig. 3.1. Letting a = 6, A = R and
R, = R and specializing Eqs. (1.33) and (1.34) to those of beams, the normal and
shear strains at any point of the beam space can be defined in terms of middle
surface strains and curvature change as:

PO
" +/R)
Yoo =
(1 +2/R)"

88 + Z}{())
(3.23)

where &) and ng denote the normal and shear strains in the reference surface. y, is
the curvature change. They are defined in terms of the middle surface displacements
and rotation component as:
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(3.24)

3.2.2 Stress-Strain Relations and Stress Resultants

According to Hooke’s law, the corresponding stress-strain relations in the kth layer
of thick laminated curved beams can be written as:

@l e
o f, |0 0% | e Sy '

where o, represents the normal stress, 7, is the shear stress. The elastic stiffness

coefficients Qj‘l (i =1, 5) are defined by following equations:

— E
Q’fl = Q’fl cos* 9¢ and Q’fl L N
1= oty (3.26)

k 2 gk k
0% =055 cos® 9" and 05=G3

where E; is the modulus of elasticity of the composite material in the principal
direction. u;, and u,; are the Poisson’s ratios. G;3 is the shear modulus. b rep-
resents the included angle between the principal direction of the layer and the
f-axis. By carrying the integration of the normal stress over the cross-section, the
force and moment resultants can be obtained:

h/2 h/2
N() _ agg _
{Qo] =b / L(}Z]dz My=b / o9zdz (3.27)
—h/2 —h/2

where Qg represents the transverse shear force resultant. Performing the integration
operation in Eq. (3.27), the force and moment resultants can be written in terms of
the middle surface strains and curvature change as:

0

Ny Ay By O &
Mo | =1 By Dy 0 Xo (3.28)
or 0 0 Ass 0

Yoz
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The stiffness coefficients A, Ass, Bi; and Dy, are defined as follows:
N Rtz
A =RbY 0% In —*)
B =1 i ( R~z
N R+ 2z
Ass = KRb> 0s1n *)
55 R 0Oss (R+Zk
N R+ Zps1
_ y _ _ +
Bi1 = Rb E Qn[(ZkH %) Rln< R+ )]

R+z
Dy = RbZQ [ Tt = %) — 2R(@ — %) + R In <r];’:l>]

(3.29)

in which Kj is the shear correction factor, typically taken at 5/6 (Qatu 2004; Reddy
2003).

3.2.3 Energy Functions

The strain energy (Uy) of thick laminated curved beams during vibration can be
defined as

1
U, = 3 / {No&) + Moy + Qoyp, } RAO (3.30)
0

Substituting Egs. (3.24) and (3.28) into Eq. (3.30), the strain energy function of
thick curved beams can be rewritten as:

<8u +W>2+ZB Jd¢y ( +w>
il 5ant %
ROO R "ROO\RDO " R RO

1 A
2
0 +D11<8¢9> +A55(6W - ¢0>

ROO ROO R

(3.31)

The corresponding kinetic energy (7) function of the beams is written as:

1 Ou oudpy on ow
T= 2/{10(8> +2I — 5 B +1 (8t +Iy 5 Rd0 (3.32)
0
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where the inertia terms are defined as:

(3.33)

o, 11, 1>, I5]

N
bz / "1, z,2%,2°)dz

in which p* is the mass of the & th layer per unit middle surface area. The external
work is expressed as:

We = / {qou + g:w + mopy}RAO (3.34)
0

where gy and g, denote the external loads. my is the external couples in the middle
surface of the beam. Using the artificial spring boundary technique similar to that
described earlier, symbols kf;, k&f and Kﬁ (w = 6y and ;) are used to indicate the
rigidities (per unit length) of the boundary springs at the boundaries § = 0 and
0 = 8, respectively, see Fig. 3.4. Therefore, the deformation strain energy (Us,)
stored in the boundary springs during vibration can be defined as:

1

Usp 2

{ Koot + Kiow?® + KioF] o [kt + Kjiw? + K§u63], | (339)

3.2.4 Governing Equations and Boundary Conditions

Specializing the governing equations and boundary conditions of the thick shell
(Eq. 1.59) to those of thick beams, we have

ONyg Qy _—821/! _82¢9
R786+?+q0*10¥+11 o2
N() 8Q0 —aZW
_0v, Zx0 . Niid 3.36
R TrRoo =T gp (3.36)
M BPu P,

Oyt my =S4T,

ROO or? or?


http://dx.doi.org/10.1007/978-3-662-46364-2_1

3.2 Fundamental Equations of Thick Laminated Beams 75

Middle surface

Fig. 3.4 Boundary conditions of a thick laminated beam

Similarly, according to Eq. (1.60), the general boundary conditions of thick laminated
curved beams are written as:

No — kjou =0 No +kjju=20
0=0:Q Qo—kjyw=0 , 0=0p:{ Qp+kjw=0 (3.37)
My — Kiypg =0 My + K} g =0

Alternately, the governing equations and boundary conditions for the thick
beams can be obtained by applying Hamilton’s principle in the same manner as
described in Sect. 3.1.4.

For thick curved beams or unsymmetrically laminated straight beams, each
boundary exits two possible combinations for each classical boundary condition. At
each boundary, the possible combinations for each classical boundary condition are
given in Table 3.2.

In the framework of artificial spring boundary technique, taking edge ¢ = 0 for
example, the frequently encountered boundary conditions F, S, SD and C can be
readily realized by assigning the stiffness of the boundary springs at proper values
as follows:

Table 3.2 Possible classical

boundary conditions for thick Boundary type | Conditions

curved beams Free boundary conditions
F Ng=Qp=My=0
F2 u=Qp=My=0
Simply supported boundary conditions
S u=w=My=0
SD No=w=Mp=0
Clamped boundary conditions
C u=w=q¢y=0
c2 No=w=¢y=0
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u w 0
Fo kpy = koo = Ko =0
SD: ki =10'D, kiy =K5 =0
S: Kiy=kiy=10"D, K}y =0
u w 0
C: oo = koo = Kygo = 10'D

(3.38)

3.3 Solution Procedures

With above fundamental equations and modified Fourier series method developed
in Chap. 2, both strong and weak form solution procedures of laminated beams with
general boundary conditions are presented in this section. To fully illustrate the
modified Fourier series solution procedure, we only consider the free vibration
analysis of laminated beams with general boundary conditions based on the SDBT.
For other beam theories, the corresponding solution procedures can be obtained in
the same manner.

Combining Eqgs. (3.24), (3.28) and (3.36), it is obvious that the displacements
and rotation components of thick laminated curved beams are required to have up to
the second derivative. Therefore, regardless of boundary conditions, each dis-
placements and rotation component of a laminated beam can be expanded as a one-
dimensional modified Fourier series as

M
u(0) = ZAm cos Anl + a1 P1(0) + axP2(0)

m=0

M
w(0) = By cos Al + b1 Py(0) + baP,(0) (3.39)

m=0

M
$(0) = Cucos A + 1 P1(0) + c2P2(0)

m=0

where 4,, = mn/6y. P1(0) and P,(#) denote the auxiliary polynomial functions
introduced to remove all the discontinuities potentially associated with the first-
order derivatives at the boundaries then ensure and accelerate the convergence of
the series expansion of the beam displacements and rotation component. M is the
truncation number. A,,, B,, and C,, are the expansion coefficients of standard cosine
Fourier series. a;, a», by, by, ¢; and ¢, represent the corresponding expansion
coefficients of auxiliary functions P;(d) and P,(#). These two auxiliary functions
are defined as

Py (0) = 6)<9—0— 1)2 P5(0) :3-2(6%— 1) (3.40)
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It should be stressed that in the CBT cases, the displacements of a laminated beam
are required to have up to the fourth-order derivatives. In such case, the following
four auxiliary polynomial functions are introduced to remove all the discontinuities
potentially associated with the first-order and third-order derivatives at the
boundaries (Jin et al. 2013a).

_9()0 . 7'[0 00 . 37[0

P] (0) = an SIH(Z_HO) — 127 SIH(Z—QO)
90 n0 0 3n0
P2(0) = —4—7?005(2—90) — éCOS(Z—QO)

6 70, 6 30 (3.41)

P3(0) = ;Sl (2—00) — ﬁsln(z—eo)
6 om0 62  3n0
P4(0) = —n—gcos(z—eo) - 3—7?3005(2—90)

3.3.1 Strong Form Solution Procedure

Substituting Egs. (3.24) and (3.28) into Eq. (3.36) the governing equations of
laminated curved beams including shear deformation and rotary inertia effects can
be rewritten as:

Ly Lpp L My 0 M u 0
L21 L22 L23 — 602 0 M22 0 w =10 (342)
Ly Lz L33 M3y 0 Mss o 0

where the coefficients of the linear operator (M;; = Mj;) are given below:

_An P Ass _An 0 Ass 9
TR 92 R 2T R00T R 00
Lo Bu® As o And As O
BT R 92 TR 2 T TRZ90 R 00

Al Ass O B 0  Ass O
L,—_ A, 4s 0, Buo A5 0
2= TR TR BT TR R 00 (3.43)
By 8  Ass B 0 Ass 0
Ly=ouf By, Pud A0
R? 90 R R200 R 00
Dy 02 _
L33 — Ass, My = My = -1

o =
M3 = M3 = -1, My = -1
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Rewriting the modified Fourier series expressions (Eq. 3.39) in the matrix form as:

u(0) = Hy,A+H,a
w(0) = HyB-+H,b (3.44)
¢0(0) = chC+HafC

where
= [cos Ao0, . ..,c08 A0, . . ., cos Ay 0]
Hy = [P1(6), P ( )]
A=A ... Am .. Ay a=[a,a)" (3.45)
B=[Bo,....Bu,...Bu]" b=[b,b]"
C=1[Co....Cn... Cu]' €= lcr, 0]

where superscript T represents the transposition operator. Substituting Eq. (3.44)
into Eq. (3.42) results in

A a A a
Le|B| +Ly|(b| -0 | Mg [B|+My|b|]=0 (3.46)
C c C c

where

(L H; LH; Li3H;
Li=|LuH; LpH; LyH; |(i=sc,af)
| L3 H;  LypH;  LyzH;

L (3.47)
My H; 0 M3H;
M=(0 MyH; 0 (i = sc,af)
| M5 H; 0 M33H;

Similarly, substituting Eq. (3.44) into Eq. (3.37), the boundary conditions of
thick laminated curved beams can be rewritten as
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A 00 a
L% L,
[L‘fﬁ} B|+ L"{. b| =0 (3.48)
sc C af c
where
(A OH; Ay B OH; i
& o0 footi T Hi R 00
A AssOH; .
L?O - —%Hl %% - k()OHi A55Hi (l = SC, af)
By OH; B D, OH; 0
i) Puy, PuOh gy,
L R 90 R R 90 %o
_All c’)H, u All Bll c')H, i
& o0 roti R 00
A Ass OH; .
L' = | -=%H, = ap TkiH AssH, (i = sc,af)
B 0H; B Dy OH; 0
—_— —H; ——+ K, H;
| R 90 R R o0 R,

(3.49)

Thus, the relation between the expansion coefficients of standard cosine Fourier
series (A, B and C) and those of corresponding auxiliary functions (a, b and ¢) can
be determined by the following equation:

a lL())g
b =—| %
c L“f

[Lf? } 11; (3.50)
C

In order to derive the constraint equations for the unknown expansion coeffi-
cients, all the sine terms, the auxiliary polynomial functions and their derivatives in
Eq. (3.46) are expanded into Fourier cosine series then collecting the similar terms,
i.e., multiplying Eq. (3.46) with H, in the left side and integrating it from 0 to 6,
with respect to 4, we have

A a A a
L. |B| +Ly|b| —0’| My |B| +My|b| ]| =0 (3.51)
C c C c
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where

00
tsc = / HeLs‘ch
0

00
L, — / H,Lyd0
0

00 (3.52)
sc — / HeMscdH
0

=<l

00
M, — / H,M,d0
0
H, = H!, = [cos 400, . . .,c0s 2,0, .. ., cos /IMG]T
Finally, combining Egs. (3.50) and (3.51) results in
(K-o’M)[A B C]'=0 (3.53)

where K is the stiffness matrix and M is the mass matrix. They are defined as

-1

LHO L90
T I af sc
K= LSC a Laf L@} Lf)l
a sc 54
o . LZ}) -1 L90 (3 5 )
M= Msc — Maf LE)} Lm

Thus, the natural frequencies and modes of the beams under consideration can be
determined easily by solving the standard characteristic equation.

3.3.2 Weak Form Solution Procedure
(Rayleigh-Ritz Procedure)

Instead of seeking a solution in strong form as described in Sect. 3.3.1, all the
expansion coefficients can be treated equally and independently as the generalized



3.3 Solution Procedures 81

coordinates and solved directly from the Rayleigh—Ritz technique, which is the
focus of the current section.

For free vibration analysis, the Lagrangian energy functional (L) of beams can be
defined in terms of the strain energy and kinetic energy functions as:

L=T-U—U, (3.55)

Substituting Eqgs. (3.31), (3.32) (3.35) and (3.39) into Eq. (3.55) and taking its
derivatives with respect to each of the undetermined coefficients and making them
equal to zero

OL E:AmaBm»Cm

——==0 and

0= m=0,1,2,..M (3.56)
OL

8_‘1’:0 and Y =ay,a,b1,bs,c1,02

a total of 3*(M + 3) equations can be obtained and they can be summed up in a
matrix form as:

(K—’M)G =0 (3.57)

where K is the stiffness matrix for the beam, and M is the mass matrix. They are
defined as

Kuu Kuw Kuo

K= Kl{w K., Ky

K/, K, K

L %up e 0 (3.58)
Muu 0 Mu()

M=1|0 M, 0

i M, 0 Myo

The explicit forms of submatrices K;; and M;; in the stiffness and mass matrices are
listed in follow
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d0 + ki H H|g—o + kfj H'H|9_go

|
=
\
%

=

‘R 00 00

00
M, =M, = / TLRHHdO

0
00

M,y = / I,RH"H40

0
00

My = / LRHHAO
0
(3.59)

where
H=[H,, Hy|=|[cosAb,...,cosiyb,... cosiyb, P1(0),P(0)] (3.60)

G is a column vector which contains, in an appropriate order, the unknown
expansion coefficients:

G=[A a B b C ¢ (3.61)

Obviously, the vibration results can now be easily obtained by solving a standard
matrix eigenproblem.
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3.4 Laminated Beams with General Boundary Conditions

Vibration results of laminated straight and curved beams with general boundary
conditions are given in this section. The isotropic beams are treated as special cases
of laminated beams in the presentation. Natural frequencies and mode shapes for
straight and curved beams with different boundary conditions, lamination schemes
and geometry parameters are presented using both strong form and weak form
solution procedures. The convergence of the solutions is studied and the effects of
shear deformation and rotary inertia, deepness term (1 + z/R) and beam parameters
(boundary conditions, lamination schemes, geometry parameters and material
properties) are investigated as well.

For the sake of simplicity, character strings CBT,,, CBT,, SDBT,, and SDBT
are introduced to represent the beam theories and methods used in the calculation
(where subscripts w and s denote weak form and strong form solution procedures,
respectively). In addition, a two-letter string is applied to indicate the end conditions
of a beam, such as C-F denotes a beam with C and F boundary conditions at the
boundaries & = 0 and 8 = 6, respectively. Unless otherwise stated, the natural
frequencies of the considered beams are expressed in the non-dimensional

parameters as Q = wL}+/12p/E h? and the material properties of the beams are
given as: ujp = 0.25, G5 = 0.5E, (where Ly represents the span length of a curved
beam, i.e., Ly = R6y).

3.4.1 Convergence Studies and Result Verification

Table 3.3 shows the convergence studies made for the first six natural frequencies
(Hz) of a moderately thick, two-layered laminated ([0°/90°]) curved beam with
completely free (F-F) and clamped (C-C) boundary conditions. The geometry and
material constants of the beam are given as: R = 1 m, §, = 1, /R = 0.1,
E> = 10 GPa, E\/E, = 10, uj» = 0.27, Gy3 = 5.5 GPa, p = 1,700 kg/m’. Both the
SDBT,, and SDBT, solutions for truncation schemes M = 8, 9, 14, 15 are included
in studies. It is obvious that the modified Fourier series solution has an excellent
convergence, and is sufficiently accurate even when only a small number of terms
are included in the series expressions. In addition, from the table, we can see that
the SDBT,, solutions converge faster than the SDBT; ones. Unless otherwise stated,
the truncation number (M) of the displacement expressions will be uniformly
selected as M = 15 in the following calculation and the weak form solution pro-
cedure will be adopted in the calculation.

In Table 3.4, comparisons of the frequency parameters Q for a two-layered,
unsymmetrically laminated ([90°/0°]) curved beam with SD-SD boundary condi-
tions are presented. The geometric properties of the layers of the beam are the same
as those used in Table 3.3 except that the thickness-to-length ratio is given as
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Table 3.3 Convergence of the first six natural frequencies (Hz) for a [0°/90°] laminated curved
beam with F-F and C-C boundary conditions (R =1 m, §, = 1, h/R = 0.1)

Boundary M Mode number
conditions 1 | 2 | 3 | 4 | 5 | 6
F-F SDBT,,

8 |123.88 [314.88 [549.83 81320 [895.85 |1099.3
9 12388 |314.84 54978 |812.30 |895.63 |1098.3
14 |123.88 |314.81 [549.63 |811.86 |895.58 |1096.5
15 |123.88 31481 [549.63 |811.84 |895.57 |1096.5
SDBT,
8 |12460 [31699 [55341 |821.66 |897.25 |1109.4
9 12459 [31620 55242 |[817.25 (89632 |11063
14 |12401 [315.15 [55023 [813.00 |895.80 |1098.0
15 |12401 [315.09 [550.11 |812.80 |895.72 |1097.7
c-C SDBT,,
8 |262.54 (27929 |51427 72346 |894.04 | 990.46
9 (26253 [27927 |514.07 |72331 [893.95 | 987.46
14 |26252 [27921 |513.96 |722.71 |893.93 | 986.40
15 |26252 27921 |[513.95 |722.71 |893.93 | 986.34
SDBT,
8 |262.84 [28027 |[517.05 72992 [89550 |1005.6

9 26274 [279.86 51623 [727.91 [894.55 | 996.79
14 |26257 27936 |514.43 |723.68 |894.11 | 988.60
15 |26256 27933 |514.34 |723.58 |894.04 | 987.94

Table 3.4 Comparison of the frequency parameters Q for a [90°/0°] laminated curved beam with
SD-SD boundary conditions (R =1 m, 6y = 1)

hiLg Qatu (1993) SDBT,,

1 2 3 1 2 3
0.01 4.0094 18.000 41.286 4.0179 18.042 41.388
0.02 3.9885 17.839 40.681 3.9969 17.878 40.770
0.05 3.9109 17.089 37.667 3.9190 17.124 37.738
0.10 3.7419 15.329 31.300 3.7496 15.357 31.349
0.20 3.3312 11.808 21.481 3.3387 11.833 21.523

h/Ly=0.01, 0.02, 0.05, 0.1 and 0.2 and the elementally material parameters of the
layers are: E\/E, = 15. From the table, we can see that the present solutions agree
very well with exact solutions published by Qatu (1993). The differences between
the two results are very small, and do not exceed 0.27 % for the worst case. To
further prove the validity of the present method, Table 3.5 lists comparisons of the
frequency parameters Q for a two-layered, unsymmetrically laminated ([90°/0°])
curved beam with various boundary conditions. The layers of the beam are thought
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Table 3.5 Comparison of the frequency parameters € for a [90°/0°] laminated curved beam with
different boundary conditions (#/Ly = 0.01, R/Ly = 2, E|/E, = 15)

B.C. Theory Mode number
1 2 3 4 5
S-S Qatu and Elsharkawy 18.434 37.935 | 74.549 99.888 143.10
(1993)
SDBT,, 18.448 37910 |74.303 99.435 142.01
CBT,, 18.473 38.009 |74.703 99.905 142.85
SD-SD | Qatu and Elsharkawy 4.5173 18.593 | 42.050 74.884 | 117.92
(1993)
SDBT,, 4.5249 |18.606 | 42.009 74.632 | 116.37
CBT,, 4.5268 18.631 |42.137 75.037 117.32
Cc-C Qatu and Elsharkawy 29.015 51.348 | 94.637 111.64 149.21
(1993)
SDBT,, 28.973 51.167 93982 |111.02 147.71
CBT,, 29.076 51.436 |94.833 111.35 149.17
C2-C2 Qatu and Elsharkawy 10.445 29.145 |57.291 94.837 144.65
(1993)
SDBT,, 10.255 29.028 [56.995 94.103 140.25
CBT,, 10.467 29.205 |57.406 95.008 141.98

to be of equal thickness and made from material with following properties:
hiLg = 0.01, R/ILy = 2, E|/E, = 15. The Ritz solutions obtained by Qatu and
Elsharkawy (1993) by using the classical beam theory are selected as the bench-
mark solutions. A consistent agreement between the present results and the refer-
ential data is seen from the table. Furthermore, comparing the sixth frequencies of
the beam, we can see that the CBT solutions are less accurate in the higher modes.
The maximum difference (in the sixth frequency parameters) between the SDBT,,
and CBT,, solutions can be 1.67 % for the worst case.

3.4.2 Effects of Shear Deformation and Rotary Inertia

In this section, effects of the shear deformation and rotary inertia which are neglected
in the CBT will be investigated. Shear deformation was first applied in the analysis
of beams by Timoshenko (1921). This effect is higher in composite materials since
the longitudinal to shear modulus ratio is much higher in composites than metallic
materials (Hajianmaleki and Qatu 2012b). Figures 3.5 and 3.6 show the differences
between the lowest three frequency parameters Q obtained by CBT,, and SDBT,, for
an isotropic curved beam and a two-layered, [0°/90°] laminated curved beam with
different boundary conditions and thickness-to-span length ratios, respectively. Both
F-F and C-C boundary conditions are shown in each figure. The geometric and
material constants of the layers of the two beams are: R/Ly = 1, E|/E, = 1(Fig. 3.5)
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Fig. 3.5 Differences between the lowest three frequency parameters Q obtained by CBT,, and
SDBT,, for an isotropic curved beam (R/Ly = 1, E\/E, = 1)

and E|/E, = 15 (Fig. 3.6). The thickness-to-span length ratio h/Ly is varied from
0.001 to 0.2, corresponding to very thin to thick beams. From the figures, we can see
that the effects of the shear deformation and rotary inertia increase as the orthotropy
ratio (E/E,) increases. Furthermore, when the thickness-to-span length ratio A/Ly is
less than 0.02, the maximum difference between the frequency parameters
obtained by CBT,, and SDBT,, is less than 4 %. However, when the thickness-to-
span length ratio h/L, is equal to 0.1, this difference can be as many as 11.5 % for the
isotropic curved beam and 32.3 % for the [0°/90°] laminated one. As expected, it can
be seen that the difference between the CBT,, and SDBT,, solutions increases with
thickness-to-span length ratio increases. Figure 3.6 also shows that the maximum
difference between these two results can be as many as 50.4 % for a thickness-to-
length ratio of 0.2. In such case, the CBT,, results are utterly inaccurate. This
investigation shows that the CBT only applicable for thin beams. For beams with
higher thickness ratios, both shear deformation and rotary inertia effects should be
included in the calculation. These results can be used in establishing the limits of
classical shell and plate theories as well.
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Fig. 3.6 Differences between the lowest three frequency parameters Q obtained by CBT,, and
SDBT,, for a [0°/90°] laminated curved beam (R/Ly = 1, E\/E, = 15)

3.4.3 Effects of the Deepness Term (1 + Z/R)

Considering Eq. (3.23), the deepness term (1 + z/R) introduces curvature com-
plexity in the kinematic relations. When the thickness of the beam, &, is small
compared to its radius of curvature R, i.e., #/R < <1 and |z/R| < <1, then deepness
term (1 + z/R) approximately equals to 1. In such case, the shear deformation
shallow beam theories (SDSBT) can be obtained from the general SDBT (Khdeir
and Reddy 1997; Qatu 1992). Qatu (2004) pointed out that this term should not be
neglected in the analysis especially when the span length-to-radius ratio is more
than 1/2. In this section, effects of the deepness term (1 + z/R) will be investigated.

Neglecting the deepness term and including the effects of shear deformation and
rotary inertia, the normal and shear strains at any point of a beam can be rewritten as:
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& = 83 +Z%e Ve = ng (3.62)

where the normal and shear strains in the reference surface (82 and ng) and the
curvature change (yg) are given as in Eq. (3.24). Thus, the corresponding stress-
strain relations in the kth layer of a laminated beam can be written as:

IR IR
Toz ) & 0 lecs Yoz )« '

By carrying the integration of the stresses over the cross-section, the force and
moment resultants (Ng, Qg and My) become:

Ng An B 0 &)
My| = |Bu Dy O %o (3.64)
Qo 0 0  Ass| |7

The stiffness coefficients A, By, and Dy, are given in Eq. (3.7) and Ass is defined as:

N —_
Ass = Kby Ok (i1 — ) (3.65)
k=1

where K; is the shear correction factor, typically taken at 5/6.

Substituting Eq. (3.64) into the energy functions of the beams (see, Sect. 3.2.3)
and applying the Ritz solution procedure in the similar manner described before
(see, Sect. 3.3.2), the vibration solutions of laminated beams in the framework of
SDSBT can be obtained (represent by SDSBT,,). It should be stressed that the
inertia terms of the beam in the SDSBT are defined as:

I=Iy
L=,
L=h (3.66)

2]
N k+1

o, I, ) = Z/ [1,z, z dz
k=1

Figures 3.7and 3.8 show the differences between the lowest three non-dimen-
sional frequency parameters Q obtained by SDBT,, and SDSBT,, for a two layered,
unsymmetrically laminated [0°/90°] curved beam and an isotropic curved beam
with different span length-to-radius and thickness-to-radius ratios, respectively. The
‘difference’ is defined as: difference = (SDSBT,, — SDBT,,)/SDBT,,*100 %. The
geometric and material constants of the layers of the beam are: R =1, E\/E; = 1 or
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Fig. 3.7 Differences between the lowest three frequency parameters Q obtained by SDBT,, and
SDSBT,, for a [0°/90°] laminated curved beam (R = 1, E|/E, = 15)

15 (laminated). The beams are assumed to be C-F supported. Two span length-to-
radius ratios, i.e., Lg/R = 0.5 and 5, corresponding to shallow and deep curved
beams are shown in each figure. The thickness-to-radius ratio A/R is varied from
0.001 to 0.1. As expected, the effects of the deepness term increase as the thickness-
to-radius ratio increases. The included angle 8, of the curved beam is the span
length-to-radius ratio. This means that the span length-to-radius ratio of 5 indicates
a very deep curved beam with an included angle of 286.48°, which are more than
three quarters of the closed circle. In this case, the difference between the frequency
parameters Q obtained by SDSBT,, and SDBT,, is very small and the maximum
difference is less than 0.41 % for the worst case. In addition, it is clear from the
figures that the effects of the deepness term vary with mode number and span
length-to-radius ratio and orthotropy ratio (E1/E,). In the case of span length-to-
radius ratio Ly/R = 5, the SDBT,, results are generally higher than those of
SDSBT,,. These results can be used in establishing the limits of shell theories and
shell equations.
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Fig. 3.8 Differences between the lowest three frequency parameters Q obtained by SDBT,, and
SDSBT,, for an isotropic curved beam (R = 1, E\/E, = 1)

3.4.4 Isotropic and Laminated Beams with General
Boundary Conditions

In this section, isotropic and laminated beams with various boundary conditions
including the classical restraints and the elastic ones will be studied. Only the free
vibration solutions (natural frequencies and mode shapes) based on SDBT and
weak form solution procedure are considered in this section.

Table 3.6 shows the frequency parameters Q obtained for a two-layered, [0°/90°]
laminated curved beam with different thickness-to-radius ratios and various clas-
sical boundary conditions. The geometry and material parameters used in the study
are: R = 1, 6y = 2n/3, E\/E, = 15. And the thickness-to-radius ratios performed in
the study are #/R = 0.01, 0.05 and 0.1, corresponding to thin to moderately thick
curved beams. The first observation is that the frequency parameters for curved
beams with F-SD boundary conditions (no constraints on the in-plane displace-
ment) are higher than those of curved beam with F-S boundary conditions.
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Fig. 3.9 The lowest three mode shapes for a moderately thick (h/R = 0.05), [0°/90°] laminated
curved beam with different boundary conditions (R = 1, 8, = 2n/3)

The second observation is that the fundamental frequency parameter of the beam
increases with thickness-to-radius ratio increases when subjected to F-F, F-S, F-SD,
S-S and SD-SD boundary conditions. In other cases, the beam frequency param-
eters decrease with thickness-to-radius ratio increases. In Fig. 3.9, the lowest two
mode shapes for the beam with thickness-to-radius ratio #/R = 0.05 are presented
for S-S, S-C and C-C boundary conditions, respectively. These mode shapes are
determined by substituting the related eigenvectors into the assumed displacement
expansions.

Table 3.7 studies the effects of the orthotropy ratio (E,/E;) on the frequency
parameters Q for a two-layered, [0°/90°] laminated curved beam with different
boundary conditions. The geometry parameters used in the investigation are: R = 1,
6y = 2n/3, h/R = 0.05. Four different orthotropy ratios considered in the investi-
gation are: E|/E, = 1, 10, 20 and 40. From the table, we can see that the increment
in the orthotropy ratio results in decreases of the frequency parameters.

Since the effects of both shear deformation and rotary inertia and the deepness
term are included in the SDBT, therefore, it can be applied to predict vibration
characteristics of moderately thick curved beams with arbitrary included angles.
Table 3.8 shows the frequency parameters Q) obtained for a two-layered, [0°/90°]
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Fig. 3.10 The lowest two mode shapes for a [0°/90°] laminated curved beam with F-C boundary
conditions and different included angles (R = 1, A/R = 0.05)

laminated curved beam with different included angles and various combinations of
classical boundary conditions. The geometry and material parameters of the beam
are assumed to be: R =1, #/R = 0.05, E,/E, = 15. It can be seen from the table that
in all the boundary condition cases, all the frequency parameters of the beam
decrease with included angle increases. It may be attributed to the stiffness of the
curved beam reduces when the included angle increases. In order to enhance our
understanding of the effects of the included angle, Fig. 3.10 presents the lowest two
mode shapes of the beam with F-C boundary conditions. From the figure, we can
see that the influence of the included angle on the mode shapes of the beam varies
with mode sequence.
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Fig. 3.11 Variation of frequency parameters Q versus radius-to-span length ratio (R/L) for a [0°/90]
laminated curved beam with S-S and C-C boundary conditions (4#/Ly = 0.05)

Then, influence of the radius-to-span length ratio (R/Ly) on the frequencies of a
[0°/90°] laminated curved beam (E,/E, = 15) is investigated. The beam is made
from composite layers with following geometry constants: Ly, = 1, h/Ly = 0.05.
Figure 3.11 shows variations of the lowest three frequency parameters Q versus the
radius-to-span length ratio for the beam with S-S and C-C boundary conditions.
Increasing the radius-to-span length ratio from 0.2 (very deep curved beam) to 10
(shallow curved beam), the effects of the radius-to-span length ratio are very large
for the frequency parameters. We can see clearly that the frequency parameter trace
of the fundamental modes climb up and then decline, and reach its crest around
R/Ly = 2. The same tendency can be seen in the second and third modes as well
while the second and third ones reach their crests around R/Ly =1 and R/Ly = 0.8.
The similar characteristics can be found in the right subfigure. When the radius-
to-span length ratio is increased from 10 to 100, increasing the radius-to-span length
ratio has very limited influence on the frequency parameters due to the curved beam
is very shallow and its vibration behaviors approximate to a straight beam.

Finally, Table 3.9 shows the first three frequency parameters Q for a [—45°/45°]
laminated curved beam (Ly = 1, h/Ly = 0.05, E|/E, = 15) with different radius-to-
span length ratios and elastic boundary conditions. The radius-to-span length ratios
included in the calculation are 1/m, 4/n and ©0. The radius-to-span length ratio of
1/m and 4/ correspond to curved beam with an included angle of m and w/4,
respectively. The last radius-to-span length ratio of 00 corresponds to a straight
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Table 3.9 The first three frequency parameters Q for a [-45°/45°] laminated curved beam with
different radius-to-span length ratios and S-Elastic boundary conditions (Ly = 1, h/Ly = 0.05)

R/Ly r ke, =T, k¥, =107D, K{, =0 K =0, ki =10"D, K4 =T
1 2 3 1 2 3
1n 107'D | 04465 |12.851 [36.277 |0.6846 |12.974 |36.380
10°D 14104 |12.863 |36.280 |1.8096 |13.816 |37.125
10'D 44087 12992 |36.314 | 2.8424 |15779 [39.292

10°D 10.805 16.473 36.709 3.0734 16.507 40.291
10°D 11.828 32.677 49.626 3.0996 16.600 40.426
10D 11.887 34.153 64.561 3.1022 16.610 40.440

4/n 107'D 4.6699 20.169 43.834 4.7857 20.328 43.957
10°D 4.7105 20.169 43.835 5.4645 21.404 44.860
10'D 5.0975 20.169 43.844 6.5092 23.900 47.523
10°D 7.8777 20.170 43.932 6.7873 24.804 48.738

10°D 17.166 20.189 44.503 6.8198 24.918 48.902
10°D 20.147 25.119 45.374 6.8231 24.929 48.918
00 (straight) 107'D 5.4235 20.949 44711 5.5870 21.101 44.843

10°D 5.4235 20.949 44.711 6.5033 22.146 45.818
10'D 5.4235 20.949 44.711 7.8962 24.625 48.748
10°D 5.4234 20.949 44.711 8.2619 25.535 50.111
10°D 5.4236 20.949 44711 8.3044 25.649 50.295
10*D 5.4234 20.949 44.711 8.3087 25.661 50.314

beam. The beam is simply-supported at the edge of # = 0 and elastically restrained
at the other edge (S-Elastic). Table 3.10 shows similar studies for the C-Elastic
boundary conditions. The tables show that increasing the axial restrained rigidity
has very limited effects on the straight beam. It is attributed to the lower frequency
parameters of a straight beam are dominated by its transverse vibration.

In conclusion, vibration of isotropic and laminated straight and curved beams is
studied in this chapter. The effects of shear deformation and rotary inertia, deepness
term (1 + z/R) and other beam parameters are clearly outlined. It is shown that the
difference (for the lowest three frequency parameters) between the CBT and SDBT
solutions increases with thickness-to-length ratio increases. For a laminated curved
beam (R/Ly = 1, E\/E, = 15, [0°/90°] lamination scheme) with thickness-to-length
ratios of 0.05, 0.1, 0.15 and 0.2, the maximum differences can be as many as 8.8,
32.3, 42 and 50.4 % for the worst case, respectively. The effects of the deepness
term (1 + z/R) on the frequency parameters is very small, the maximum difference
between the frequency parameters Q obtained by SDSBT (neglect the deepness
term) and SDBT is less than 0.41 % for the worse case of a curved beam of span
length-to-radius ratio Ly/R = 5 and thickness-to-radius ratio #/R = 0.1. A variety of
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Table 3.10 The first three frequency parameters Q for a [-45°/45°] laminated curved beam with
different radius-to-span length ratios and C-Elastic boundary conditions (Ly = 1, h/Ly = 0.05)

R/Lg Spring ki, =T, ki =10"D, K§,=0 ki =0, ky,=107D, K, =T
rigidity 1 2 3 1 2 3

1/n 107'D 3.0784 | 17.040 |40.988 3.0752 | 17.181 | 41.080
10°D 3.3805 | 17.045 |40.991 32670 | 18.139 |41.756
10'D 55452 | 17.094 |41.022 3.5970 |20.410 |43.784
10°D 13.775 18.337 |41.374 3.6929 21272 |44.749
10°D 16.321 35.923  |51.778 3.7044 21382 | 44.882
10°D 16.397 38427 |69.273 37055 |21.394 |44.895

A 107'D 7.5129 | 24.694 |48.910 7.6416 | 24.848 |49.019
10°D 75373 |24.694 48912 8.4238 25915 |49.821
10'D 77754  |24.695 | 48929 97649 |28.553 |52.224
10°D 97491 |24.703 [49.084 |10.149 29.564 |53.331
10°D 17.734 24797 | 49.989 |10.195 29.693 | 53.480
10°D 23782 26081 |51.044 |10.200 29706 | 53.495

o0 107'D 83092 |25.662 |50.316 8.4796 |25.807 |50.442

(straight) | 10°p 83092 |25.662 |[50.316 9.4924 |26.822 |51.368
10'D 83092 |25.662 [50.316 |11.219 29.395 | 54.250
10°D 83092 |25.662 |[50.316 |11.710 30.398 | 55.641
10°D 83092 |25.662 |50.316 |[11.768 30.526 | 55.832
10°D 83092 |25.662 [50.316 |11.774 30.539 | 55.851

new vibration results including frequencies and mode shapes for straight and curved
laminated beams with classical and elastic restraints as well as different geometric
and material parameters are given, which may serve as benchmark solutions for the
future researches.
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