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Preface

In practical applications that range from outer space to the deep oceans, engineering
structures such as aircraft, rockets, automobiles, turbines, architectures, vessels, and
submarines often work in complex environments and can be subjected to various
dynamic loads, which can lead to the vibratory behaviors of the structures. In all
these applications, the engineering structures may fail and collapse because of
material fatigue resulting from vibrations. Many calamitous incidents have shown
the destructive nature of vibrations. For instance, the main span of the famous
Tacoma Narrows Bridge suffered severe forced resonance and collapsed in 1940
due to the fact that the wind provided an external periodic frequency that matched
one of the natural structural frequencies of the bridge. Furthermore, noise generated
by vibrations always causes annoyance, discomfort, and loss of efficiency to human
beings. Therefore, it is of particular importance to understand the structural
vibrations and reduce them through proper design to ensure a reliable, safe, and
lasting structural performance. An important step in the vibration design of an
engineering structure is the evaluation of its vibration modal characteristics, such as
natural frequencies and mode shapes. This modal information plays a key role in
the design and vibration suppression of the structure when subjected to dynamics
excitations. In engineering applications, a variety of possible boundary restraining
cases may be encountered for a structure. In recent decades, the ability of predicting
the vibration characteristics of structures with general boundary conditions is of
prime interest to engineers and designers and is the mutual concern of researchers in
this field as well.

Beams, plates, and shells are basic structural elements of most engineering
structures and machines. A thorough understanding of their vibration characteristics
is of great significance for engineers to predict the vibrations of the whole structures
and design suitable structures with low vibration and noise radiation characteristics.
There exists many books, papers, and research reports on the vibration analysis of
beams, plates, and shells. In 1969, Prof. A.W. Leissa published the excellent
monograph Vibration of Plates, in which theoretical and experimental results of
approximately 500 research papers and reports were presented. And in 1973, he
organized and summarized approximately 1,000 references in the field of shell
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vibrations and published another famous monograph entitled Vibration of Shells.
New survey shows that the literature on the vibrations of beams, plates, and shells
has expanded rapidly since then. Based on the Google Scholar search tool, the
numbers of article related to the following keywords from 1973 up to 2014 are:
315,000 items for “vibration & beam,” 416,000 items for “vibration & plates,” and
101,000 items for “vibration & shell.” This clearly reveals the importance of the
vibration analysis of beams, plates, and shells.

Undeniably, significant advances in the vibration analysis of beams, plates, and
shells have been achieved over the past four decades. Many accurate and efficient
computational methods have also been developed, such as the Ritz method, dif-
ferential quadrature method (DQM), Galerkin method, wave propagation approach,
multiquadric radial basis function method (MRBFM), meshless method, finite
element method (FEM), discrete singular convolution approach (DSC), etc.
Furthermore, a large variety of classical and modern theories have been proposed
by researchers, such as the classical structure theories (CSTs), the first-order shear
deformation theories (FSDTs), and the higher order shear deformation theories
(HSDTs).

However, after the review of the literature in this subject, it appears that most
of the books deal with a technique that is only suitable for a particular type of
classical boundary conditions (i.e., simply supported supports, clamped boundaries,
free edges, shear-diaphragm restrains and their combinations), which typically
requires constant modifications of the solution procedures and corresponding
computation codes to adapt to different boundary cases. This will result in very
tedious calculations and be easily inundated with various boundary conditions in
practical applications since the boundary conditions of a beam, plate, or shell may
not always be classical in nature, a variety of possible boundary restraining cases,
including classical boundary conditions, elastic restraints, and their combinations
may be encountered. In addition, with the development of new industries and
modern processes, laminated beams, plates, and shells composed of composite
laminas are extensively used in many fields of modern engineering practices such as
space vehicles, civil constructions, and deep-sea engineering equipments to satisfy
special functional requirements due to their outstanding bending rigidity, high
strength-weight and stiffness-weight ratios, excellent vibration characteristics, and
good fatigue properties. The vibration results of laminated beams, plates, and shells
are far from complete. It is necessary and of great significance to develop a unified,
efficient, and accurate method which is capable of universally dealing with lami-
nated beams, plates, and shells with general boundary conditions. Furthermore, a
systematic, comprehensive, and up-to-date monograph which contains vibration
results of isotropic and laminated beams, plates, and shells with various lamination
schemes and general boundary conditions would be highly desirable and useful for
the senior undergraduate and postgraduate students, teachers, engineers, and indi-
vidual researchers in this field.

In view of these apparent voids, the present monograph presents an endeavor to
complement the vibration analysis of laminated beams, plates, and shells. The title,
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Structural Vibration: A Uniform Accurate Solution for Laminated Beams, Plates
and Shells with General Boundary Conditions, illustrates the main aim of this book,
namely:

(1) To develop an accurate semi-analytical method which is capable of dealing with
the vibrations of laminated beams, plates, and shells with arbitrary lamination
schemes and general boundary conditions including classical boundaries, elastic
supports and their combinations, aiming to provide a unified and reasonable
accurate alternative to other analytical and numerical techniques.

(2) To provide a summary of known results of laminated beams, plates, and shells
with various lamination schemes and general boundary conditions, which may
serve as benchmark solutions for the future research in this field.

The book is organized into eight chapters. Fundamental equations of laminated
shells in the framework of classical shell theory and shear deformation shell theory
are derived in detail, including the kinematic relations, stress—strain relations and
stress resultants, energy functions, governing equations, and boundary conditions.
The corresponding fundamental equations of laminated beams and plates are spe-
cialized from the shell ones. Following the fundamental equations, a unified
modified Fourier series method is developed. Then both strong and weak form
solution procedures are realized and established by combining the fundamental
equations and the modified Fourier series method. Finally, numerous vibration
results are presented for isotropic, orthotropic, and laminated beams, plates, and
shells with various geometry and material parameters, different lamination schemes
and different boundary conditions including the classical boundaries, elastic ones,
and their combinations. Summarizing, the work is arranged as follows:

The theories of linear vibration of laminated beams, plates, and shells are well
established. In this regard, Chap. 1 introduces the fundamental equations of lami-
nated beams, plates, and shells in the framework of classical shell theory and the
first-order shear deformation shell theory without proofs.

Chapter 2 presents a modified Fourier series method which is capable of dealing
with vibrations of laminated beams, plates, and shells with general boundary
conditions. In the modified Fourier series method, each displacement of a laminated
beam, plate, or shell, regardless of boundary conditions, is invariantly expressed as
a new form of trigonometric series expansions in which several supplementary
terms are introduced to ensure and accelerate the convergence of the series
expansion. Then one can seek the solutions either in strong form solution procedure
or the weak form one. These two solution procedures are fully illustrated in this
chapter.

Chapters 3-8 deal with laminated beams, plates, and cylindrical, conical,
spherical and shallow shells, respectively. In each chapter, corresponding funda-
mental equations in the framework of classical and shear deformation theories for
the general dynamic analysis are developed first, which can be useful for potential
readers. Following the fundamental equations, numerous free vibration results are
presented for various configurations including different boundary conditions, lam-
inated sequences, and geometry and material properties.
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Chapter 1
Fundamental Equations of Laminated
Beams, Plates and Shells

Beams, plates and shells are named according to their size or/and shape features.
Shells have all the features of plates except an additional one-curvature (Leissa
1969, 1973). Therefore, the plates, on the other hand, can be viewed as special
cases of shells having no curvature. Beams are one-dimensional counterparts of
plates (straight beams) or shells (curved beams) with one dimension relatively
greater in comparison to the other two dimensions. This chapter introduces the
fundamental equations (including kinematic relations, stress-strain relations and
stress resultants, energy functions, governing equations and boundary conditions)
of laminated shells in the framework of the classical shell theory (CST) and the
shear deformation shell theory (SDST) without proofs due to the fact that they have
been well established. The corresponding equations of laminated beams and plates
are specialized from the shell ones.

1.1 Three-Dimensional Elasticity Theory in Curvilinear
Coordinates

Consider a three-dimensional (3D) shell segment with total thickness % as shown in
Fig. 1.1, a 3D orthogonal coordinate system (a, S and z) located on the middle
surface is used to describe the geometry dimensions and deformations of the shell,
in which co-ordinates along the meridional, circumferential and normal directions
are represented by a, f and z, respectively. R, and Ry are the mean radii of curvature
in the a and S directions on the middle surface (z = 0). U, V and W separately
indicate the displacement variations of the shell in the a, £ and z directions. The
strain-displacement relations of the three-dimensional theory of elasticity in
orthogonal curvilinear coordinate system are (Leissa 1973; Soedel 2004; Carrera
et al. 2011):
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Fig. 1.1 Notations in shell
coordinate system (a, ff and z)
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where the quantities A and B are the Lamé parameters of the shell. They are deter-
mined by the shell characteristics and the selected orthogonal coordinate system. The
detail definitions of them are given in Sect. 1.4. The lengths in the a and f directions
of the shell segment at distance dz from the shell middle surface are (see Fig. 1.1):
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Z Z
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The above equations contain the fundamental strain-displacement relations of a 3D

body in curvilinear coordinate system. They are specialized to those of CST and
FSDT by introducing several assumptions and simplifications.

1.2 Fundamental Equations of Thin Laminated Shells

According to Eq. (1.1), it can be seen that the 3D strain-displacement equations of a
shell are rather complicated when written in curvilinear coordinate system. Typi-
cally, researchers simplify the 3D shell equations into the 2D ones by making
certain assumptions to eliminate the coordinate in the thickness direction. Based on
different assumptions and simplifications, various sub-category classical theories of
thin shells were developed, such as the Reissner-Naghdi’s linear shell theory,
Donner-Mushtari’s theory, Fliigge’s theory, Sanders’ theory and Goldenveizer-
Novozhilov’s theory, etc. In this book, we focus on shells composed of arbitrary
numbers of composite layers which are bonded together rigidly. When the total
thickness of a laminated shell is less than 0.05 of the wavelength of the deformation
mode or radius of curvature, the classical theories of thin shells originally devel-
oped for single-layered isotropic shells can be readily extended to the laminated
ones. Leissa (1973) showed that most thin shell theories yield similar results. In this
section, the fundamental equations of the Reissner-Naghdi’s linear shell theory are
extended to thin laminated shells due to that it offers the simplest, the most accurate
and consistent equations for laminated thin shells (Qatu 2004).

1.2.1 Kinematic Relations

In the classical theory of thin shells, the four assumptions made by Love (1944) are
universally accepted to be valid for a first approximation shell theory (Rao 2007):

1. The thickness of the shell is small compared with the other dimensions.

2. Strains and displacements are sufficiently small so that the quantities of second-
and higher-order magnitude in the strain-displacement relations may be
neglected in comparison with the first-order terms.

3. The transverse normal stress is small compared with the other normal stress
components and may be neglected.

4. Normals to the undeformed middle surface remain straight and normal to the
deformed middle surface and suffer no extension.
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The first assumption defines that the shell is thin enough so that the deepness
terms z/R, and z/Rg can be neglected compared to unity in the strain-displacement
relations (i.e., /R, K 1 and z/Rg < 1). The second assumption ensures that the
differential equations will be linear. The fourth assumption is also known as
Kirchhoff’s hypothesis. This assumption leads to zero transverse shear strains and
zero transverse normal strain (y,, = 0, yg. = 0 and &; = 0). Taking these assump-
tions into consideration, the 3D strain-displacement relations of shells in orthogonal
curvilinear coordinate system can be reduced to those of 2D classical thin shells as:

o —10U VoA W
* AOwx ABOf R,
_Uos 19v W
%= ABox BOP R
AQ Ul BO[V
Vaﬁga_ﬁ{z] Z%{E]

(1.3a—)

According to the Kirchhoff hypothesis, the displacement variations in the a, f
and z directions are restricted to the following linear relationships (Leissa 1973):

U(d,ﬂ,z) = M(O@ ﬁ) + Z(f)“(a, ﬂ)
V(OC, ﬁ: Z) = V(“» ﬁ) + Z(f)/i(“v ﬁ) (14)
W(OC’ ﬂv Z) = W(OC’ )

where u, v and w are the displacement components on the middle surface in the a,
and z directions. ¢,, ¢4 represent the rotations of transverse normal respect to - and
a-axes, respectively. They are determined by substituting Eq. (1.4) into Eq. (1.1e, f)
and letting y,, = 0, 74, = 0, i.e.

u 10w V 10w

%ZR?*Za (’bﬁ:Ri/jiEaiﬁ (1.5)

Substituting Egs. (1.4) and (1.5) into Eq. (1.3), the strain-displacement relations
of thin shells can be rewritten as:

&y = 82 + 2x,
ép = 8([); +2xp (1.6)
Vap = Vg/a + Zap

where &0, 8% and yg s denote the normal and shear strains in the middle surface. x., x4

and y,; are the corresponding curvature and twist changes. They are written in
terms of shell displacements u, v and w as:
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Equation (1.7) constitutes the strain-displacement relations of a thin shell in
curvilinear coordinates.

1.2.2 Stress-Strain Relations and Stress Resultants

With the development of new industries and modern processes, composite materials
are extensively used in many fields of modern engineering practices such as aircraft
and spacecraft, civil constructions and deep-ocean engineering to satisfy special
functional requirements due to their outstanding bending rigidity, high strength-
weight and stiffness-weight ratios, excellent vibration characteristics and good
fatigue properties. For instance, more than 20 % of the A380’s airframe is composite
materials.

Typically, composite materials are made of reinforcement material distributed in
matrix material. There commonly exist three types of composite materials (Reddy
2003; Ye 2003): (1) fiber composites, in which the reinforcements are in the form of
fibers. The fibers can be continuous or discontinuous, unidirectional, bidirectional,
woven or randomly distributed; (2) particle composites, which are composed of
macro size particles of reinforcement in a matrix of another, such as concrete;
(3) laminated composites, which consist of layers of various materials, including
composites of the first two types. As for many other kinds of composite structures,
beams, plates and shells composed of arbitrary numbers of unidirectional fiber
reinforced layers with different fiber orientations (see Fig. 1.2) are most frequently
used in the engineering applications and are the mutual concern of researchers in
this field as well. In such cases, by appropriately orientating the fibers in each
lamina of the structure, desired strength and stiffness parameters can be achieved.
As a consequence, this book is devoted to the vibration analysis of laminated
beams, plates and shells made of this type of laminated composite.
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Fig. 1.2 A laminated shell
made up of composite layers
with different fiber
orientations

In this section we primarily study the stress-strain relations of a unidirectional
fiber reinforced layer, which is the basic building block of a composite laminated
structure. A unidirectional fiber reinforced layer can be treated as an orthotropic
material whose material symmetry planes are parallel and transverse to the fiber
direction (Reddy 2003). See Fig. 1.3, suppose the laminated shell is constructed by
N unidirectional fiber-reinforced layers which are bonded together rigidly. The
principal coordinates of the composite material in the kth layer are denoted by 1, 2
and 3, in which the coordinate axes 1 and 2 are taken to be parallel and transverse to
the fiber orientation. The 3 axis is parallel to the normal direction of the shell. The
angle between the material axis 1 (or 2) and the a axis (or ) is denoted by 9 and Zi1
and Z; are the distances from the top surface and the bottom surface of the layer to
the referenced middle surface, respectively. Thus, according to generalized Hooke’s
law, the corresponding stress-strain relations in the kth layer of the laminated shell
can be written as:

y y 3
Oy 01, On Qi o

oo =|0h 05 04w (1.8

b )k O Q56 Qs Tap )

~—
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Fig. 1.3 Lamination, geometry and material coordinate systems of a laminated shell

where o, and op are the normal stresses in the a, f directions, respectively. 7,4

represents the corresponding shear stress. The constants 55 (i, j=1,2 and 6) are
elastic stiffness coefficients of the layer which are found from following equations:

Q_Ilc' i Q_I{6 Ql]lil Qiz 0 .
0h 05, O |=T|% % O ' T (1.9)
]fs 156 ng6 0 0 66

where superscript T represents the transposition operator. The material constants Qg(i,

j=1,2 and 6) are defined in terms of the material properties of the orthotropic layer:

Ey

Q]l<1 = 1 _
HiaHo1

Hi2En

Q]f2 = 1=t
Hizloy (1.10)
E,

Q=1 —

2 — pppy

Ofs =G
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Table 1.1 Values of the material parameters for several materials (Reddy 2003)

Material E, E, Es Hi2 Hi13 H23 Gz Gi3 Gas
Aluminum 73.1 73.1 73.1 0.33 0.33 0.33 23.3 233 23.3
Copper 124.1 124.1 124.1 0.33 0.33 0.33 44.1 44.1 44.1
Steel 206.8 206.8 206.8 0.29 0.29 0.29 77.5 77.5 77.5

Gr.-Ep (As) 137.9 9.0 9.0 |03 0.3 0.49 7.1 7.1 6.2
Gr.-Ep (T) 131.0 10.3 10.3 022 022 [049 6.9 6.2 6.2

Gr.-Ep (1) 53.8 17.9 179 ]0.25 0.25 0.34 9.0 9.0 3.4
Gr.-Ep (2) 38.6 8.3 9.0 |026 |026 |0.34 4.1 4.1 3.4
Br.-Ep 206.8 20.7 20.7 |03 0.25 0.25 6.9 6.9 4.1

Moduli are in GPa; Gr.-Ep (AS) = graphite-epoxy (AS13501); Gr.-Ep (T) = graphite-epoxy (T300/
934); GL-Ep = glass-epoxy; Br.-Ep = boron-epoxy

E/ and E, are moduli of elasticity of the unidirectional fiber-reinforced material in the
1 and 2 directions, respectively. i, is the major Poisson’s ratio. The other Poisson’s
ratio u,, is determined by equation u,E, = o E; and Gy, is shear modulus.
An isotropic shell model can be obtained by letting E| = E,, Gip = E/(2 + 2u15).
The material parameters of the unidirectional fiber-reinforced material can be
determined experimentally using an appropriate test specimen made up the material.
The values of the material parameters for several materials are given in Table 1.1
(Reddy 2003). T is the transformation matrix which represents the relation of the
principal material coordinate system (1, 2, 3) of the kth layer with respect to the shell
coordinate system (a, S, z). It is defined as:

cos? ¥ sin? 9¥ —2 sin 9 cos ¥
T = | sin? ¥ cos? ¥ 2 sin 9% cos ¥* (1.11)
sin¥¥ cos 9  —sin¥ cos ¥ cos? ¥ — sin? 9*

Performing the matrix multiplication in Eq. (1.9), the elastic stiffness coefficients

constants Qg can be written as:

0f, = 0} cos* 0" + (201, +4Qe) cos® 9 sin 0 + 03 sin” "

0f, = (01, + @5, — 404) cos” 0" sin ¥* + 01 (cos* 0" + sin* o)

Gio = (0}~ 01 ~20%) cos' o' sin + (01— B + 204 os  sin

Q_'§2 = 0%, sin* 9% + 04, cos* OF + (20%, + 40%) cos® ¥* sin® O

0l = (O — Ol — 20%) cos " sin” " + (01 — 03, + 20fg) cos™ 9 sin "

0ky = Ot (cos* 0 +sin* 9*) + (Of, — 204, + O, — 20%) cos® ¥ sin” "
(1.12)
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The force and moment resultants of thin laminated shells are obtained by
carrying the integration of stresses over the cross-section, from layer to layer:

N“ 11/2 0_1 M“ 11/2 O-o(
N/; = ap dz Ml; = ap zdz (113)
Nup ] jijp Lo Mup ] p L7ap

Performing the matrix integration in Eq. (1.13), the force and moment resultants can
be defined in terms of the middle surface strains and curvature changes as:

N, Ay A A Bu Bz B &

Ny Ap Ay Ay Bia By By 32

Nup | _ | Ais Ass Ass  Bis B Bes | |75 (1.14)
M, By Bix Bis Du Di D ||y, ’
Mpg By Bn By Din Dn D ||y

M,p Bis By Bes Dis D Des 1 [ 1,

where N,, Nj and N,z are the normal and shear force resultants and M,,, My and M,z
denote the bending and twisting moment resultants. A;, B;;, and Dj; are the stiffness
coefficients arising from the piecewise integration over the shell thickness:

k=1
¢ k(2 2
Bjj = QZ ij(zk+l - %) (1.15)
=1
N Ok (3 3
Dy = gz U(Zk-H —Zk)
=1

Notably, when a thin shell is laminated symmetrically with respect to its middle
surface, the constants B;; equal to zero. This will sufficiently reduce the complexity
of the stress-strain relations, energy functions, governing equations and boundary
conditions of the shell.

1.2.3 Energy Functions

The energy functions are very convenient in deriving the governing equations and
boundary conditions of a structure. In addition, they are important in searching
approximate solutions of practical problems. The strain energy (U,) of a thin
laminated shell during vibration can be defined in terms of the middle surface
strains and curvature changes and stress resultants as:
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1 Ny&d + Npelh + Nyp)°
- BTN ap ABdod 1.16
2 / ﬁ/ { +Myy., + Mpyp + Moy 4 (1.16)
o
Substituting Eq. (1.7) into Eq. (1.16), the above equation can be rewritten as:
du 0A ABw
Na<B, +vaﬁ+—)
v w
+Ng (A GruF -+ ) + Ny

v OB

_ l// (B‘ ”()[f+Ad/i de) ddf (1.17)
B 9%s '

| (e )

19}
+Mﬂ( ad;f + 6,5 ) + My
B A 29, OB
( T~ ba Gyt AGE d)ﬁ%)

The kinetic energy (7) of the shell is written as:

[ ) e

where the inertia terms are:

n=3y [ e (1.19)

in which p* represents the mass of the kth layer per unit area. The external work
(W,) can be expressed as:

W, = / / {qau +gpv+ qzw}ABdocd[)’ (1.20)
o B

where ¢q,, gz and g, denote the external loads in the a, f and z directions,
respectively.

Laminated shells with a variety of possible boundary conditions, such as free
edges, shear-diaphragm restraints, simply-supported supports, clamped boundaries,
elastic constraints and their combinations can be encountered in practice. Since the
main focus of this book is to complement the vibration studies of composite
laminated structures with general boundary conditions, in order to satisfy the
request, at each of the four boundaries of a laminated shell, the general boundary
conditions are implemented by using the artificial spring boundary technique in
which three groups of linear springs (k,,, k,, k,,) and one group of rotational springs
(K,,) which are distributed uniformly along the boundary are introduced to



1.2 Fundamental Equations of Thin Laminated Shells 11

Fig. 1.4 Notations of
artificial spring boundary
technique of a thin laminated
shell

separately simulate the given or typical boundary conditions expressed in the form
of axial force resultant, tangential force resultant, transverse force resultant, and the
flexural moment resultant, see Fig. 1.4. The stiffness of the boundary springs can
take any value from zero to infinity to better model many real-world restraint
conditions. For instance, the clamped boundary conditions are essentially obtained
by setting the spring stiffness substantially larger than the bending rigidity of the
involved shell. Specifically, symbols &y, ky, kj; and K (y = a0, $0, al and S1) are
used to indicate the stiffness (per unit length, unless otherwise stated, N/m and
N/rad are utilized as the units of the stiffness about the linear springs and rotational
springs, respectively) of the boundary springs at the boundaries o =0, =0, a = L,
and B = Lg, respectively (L, and Ly represent the lengths of the shell in the a and f
directions, respectively). Therefore, the deformation strain energy about the
boundary springs (Uj,) can be defined as:

| [k;ouz RV RS W+ K (Ow /Aaa)z} »
Us - 5/ 27 Bdﬁ
Do\ [ kR R K (Ow/a0e)?|
u vV w w 2
U [ [+ Ko + K + Ky (0w BOB) L;:o
+ 2 / ) Ada (1.21)
u 2 v 2 w2 W
[+ iy V2 o+ K w? - K (9w BOB) L:Lﬁ

The energy functions presented here will be applied to derive the governing

equations and boundary conditions of thin laminated shells in the next section.

1.2.4 Governing Equations and Boundary Conditions

Hamilton’s principle is a generalized principle of the principle of virtual displacement
to dynamics of systems. It is very convenient in deriving the governing equations and
boundary conditions of a structure and is covered in many textbooks (Reddy 2002).
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The present section is devoted to the application of Hamilton’s principle in finding the
compatible set of governing equations and boundary conditions of a thin laminated
shell with general boundary conditions.

The Lagrangian functional (L) of a thin laminated shell can be expressed in terms
of strain energy, kinetic energy and external work as (Qatu 2004; Reddy 2002):

L=T—-U—Up+W, (1.22)

Hamilton’s principle states that the actual displacements of a structure actually go
through from instant O to instant #; out of many possible paths, is that which
achieves an extremum of the line integral of the Lagrangian functional (Qatu 2004),
namely:

t
5/(T7UY7UYP+Wg)dt:O (123)
0

Substituting Egs. (1.17)—(1.21) into Eq. (1.23) and applying the Hamilton’s
principle yields:

du dou [‘)v dov 4 Ow ow 8()w)
/// 6t “or Bt o ot ot ABdO(d,Bdt
+q.0u + qpov + q;ow

/ / (Ksguu + kyovdv + kgwow + Ky B 95
(k2 udu + ki vov + klywow + K| /f(;g 2?;) el

} Bdpdt

w _Ow ddw
kﬁouéu + kiggvov + kggwow + K, 255 g%ﬁ) =0

/ / Adodt
kﬁluéu + kﬁlvév + k”lwéw + Kl’fl l?t;vﬁ gg’};)ﬂ L
N, <B(?¢5u 1oy oa +AB(3\¢>
+Np (A% + ul 4 AB) 4,
t v u
(B ot A gym)
doddt (1.24)

]

S

+M, (B2 + 56, 2)

O
JrMﬁ( g;?’quéqs“aB) JrMO(ﬁ
><( B — 5,28+ A% — 5¢ﬁg—§)
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Substituting Eq. (1.5) into Eq. (1.24) and integrating by parts to relieve the virtual
displacements ou, dv and dw, such as:

t t
3u35u 8u &%u
o o =0 / (82 5”)
0 0

//BNx@dadﬁ:/ BNméué*—/a(BN“) oudo pdp;
Oa. Oa
o B B

o

My 5A L M, 9A 5
B{)[iéw|ﬁ f{R op }

/ p/ vt / + /(i (i) ow s “
// aédnd dp = //{B;eu 8@? B, 59 (igw) }d 1 (125
-/ {M - [ (Yoo
B o
—BM, 515 + 2 owly
+/{ fa(y(fg;l“)éwda }dﬁ
[ [ (st Y= [ Yoo [
0 p 0 s

dt

op

Proceeding with all terms of Eq. (1.24) in this fashion and letting

_0(BM,) O(AM,5) M,;0A MjyOB

@ =\ Bon ABOB ' AB Of AB O (1.26)
_ 0(AMy)  O0(BM.g)  M,;0B M, DA '

Q8 ="AB0p T ABOx ' AB 9%  ABOP
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we get

// {10—&40 + Iy az g +10%5w|g}ABdadﬁ

+ / 2M, gl | i
0

Ié O(AN,
t e — (AN ) Nup 53
+ ) oudod fdt
0% B —Np? B+AB(QX+% dtz)
! d(BNys) | 0(ANg) a
dot + ap + N ()I;
+ " o - ovdod fdt
0 o B _N 0/} + AB (Rﬁ + qp — IO W)

—AB (e 4+ ) + 252

t
et s
¢ Q/i)
bou oy | o +AB(qZ )

(Na TR kZIM) ouly, — (Nx +5— kgou) Sul,
!
+(Na + lﬂ +k, V) ov <N3( 4 Yop _ gy v)bv
_ / / B al |L BT Ry %0 ‘0 B
0 (Q“ + BOM + &y W) owl,, — (Qac + BO”‘ K w) owl,
w _Ow) 9w w Ow) 9ow
+(_M“ + Kﬂtl A[‘)a) A(f))oc |L1 - (_M Kx() Adoc) Ado IO
(N“ﬂ + o+ kﬂl”) oul,, — ( b+ — ﬁou) dul,
' +<Nﬁ+%+k;1v)5v|Lﬁ (N/; + 5L Rf kﬁo">5v|o
N / / Adodt
0 « (Qﬁ + o My /ilw>5W|Lﬁ — (Qﬂ + o5 My k/;ow) wl,
w Ow | 9w w Ow | 9ow
( My + Ky B()ﬂ) Bof Ly — <—M/; K}y Baﬁ) o,
- (1.27)

Since the virtual displacements ou, év and 6w are arbitrary, Eq. (1.27) can be
satisfied only is the coefficients of the virtual displacements are zero. Thus, the
governing equations of thin laminated shells are:

O(BN,) = O(AN,p) OA OB ABQ, ou
o T op T Nop 7 5 ~Npgy t g TABG=ABh o5
O(BN,g) O(ANp) OB OA  ABQg v
f = ABgg = ABly— (1.28a~
gr T ap T Nwgy NigptTg, TABu=ABLGs (1.28ac)
N, Ng\ O(BQ,) O(AQp) _ O*w
AB (R + RB) ax T op +ABg. = ABly —
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and the following boundary conditions are obtained for thin shells for a = constant
(a=0and a = L,):

Ny + 52— Kiu =0 Ny + 5+ ku =0
M, M,
Nyg +ZE = kv =0 Noyg +ZE 4 kv =0
a=0:0 TR0 P N (1.29)
Qx + g5 — ksw =0 Qx + g7 + Ky =0
—M, — K}y 2 =0 —M, + K} 2 =0
Similarly equations can be obtained for # = constant (f = 0 and S = Lp):
Nag + 2 = Ky = 0 Nap + &+ Ky =0
M, M,
Ng+L—kjyv=0 Ng+ZL+kyv=0
p=0:9 "R T p=ry:g PRI (1.30)
Op + Fay — kgow =0 Qp + g, Hhpw=0
w _ ow _
—Mp — Ky 555 = 0 —Mp + K 555 = 0

Alternately, the governing equations and boundary conditions of thin laminated
shells can be derived by physical arguments, namely, by taking a differential
element of the shell and requiring the sum of the external and internal forces and
moments in the a, £ and z directions to be zero.

For general thin shells and unsymmetrically laminated thin plates, each
boundary can exist four possible combinations for each classical boundary condi-
tion (free, simply-supported, and clamped) (Qatu 2004). For example, at each
boundary of o = constant, the possible combinations for each classical boundary
condition are given in Table 1.2, similar classifications can be obtained for
boundaries £ = constant.

It is obvious that there exists a huge number of possible combinations of
boundary conditions for a thin laminated shell, particularly when the shells are
open. In the open literature, it appears that most of the studies have mostly dealt
with a technique that is only suitable for a particular type of boundary conditions
(i.e., F, SD, S, C and their combinations) which typically require constant modi-
fications of the solution procedures to adapt to different boundary cases. Therefore,
the use of the existing solution procedures will result in very tedious calculations
and be easily inundated with various boundary conditions in practical applications.
By using the artificial spring boundary technique, the stiffness of the boundary
springs can take any value from zero to infinity to better model many real-world
restraint conditions. Taking edge a = 0 for example, the F (completely free),
S (simply-supported), SD (shear-diaphragm) and C (completely clamped) boundary
conditions which are widely encountered in the engineering applications and are of
particular interest can be readily realized by assigning the stiffness of the boundary
springs at proper values as follows:
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Table 1.2 Possible classical -
.. . Boundary Conditions

boundary conditions for thin ’

shell at each boundary of ype

o = constant Free boundary conditions

OM,
F Mot e = Moy + 5= 0+ = M =0
F2 =Ny + 3= 0.+ G =M, =0
oM,
F3 N, + 1:v 0, + BA;I)/?/;: M, =0
F4 M—V—Qa-i-Baw M,=0
Simply supported boundary conditions
S u=v=w=mM,=0
SD N, + =yv=w=M,=0
S3 =N, =w=M,=0
S4 N1+R—:= 7/;+ F=w=M,=0
Clamped boundary conditions
C Uu=v=w= % =0
© W= v—w= =0
M,

cs =+ = 0
c4 Ny + =Ny + 3 =w=1=

Fiky =ky=ky=Kip=0

SD: kg =kly = 10'D, k! =K}y =0
S: Ky =Ky =kl = 10D, Ky =0
C:kly =k =Ky =Kl =10'D

(1.31)

where D = E;h*/12(1 — piousy) is the flexural stiffness of the shell. The appro-
priateness of defining these types of boundary conditions in terms of boundary
spring components had been proved by several researches (Jin et al. 2013a; Ye et al.
2013, 2014c).

Equations (1.3a—c)—(1.31) describe the fundamental equations of thin laminated
shells in the framework of classical thin shell theory. It is applicable for thin
isotropic and laminated composite shells with general boundary conditions. These
equations will be specialized later for laminated beams.

1.3 Fundamental Equations of Thick Laminated Shells

In the previous section, the fundamental equations of thin laminated shells have
been derived according to Love’s assumptions. When the shell thickness is less than
1/50 of the wave length of the deformation mode and/or radius of curvature, the thin
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shell theory is generally acceptable (Qatu 2004). Although sufficiently accurate
vibration results for thin shells can be achieved using the thin shell theory with
appropriate solution procedures, however, it is inadequate for the vibration analysis
of laminated shells which are rather thick or when they are made from materials
with a high degree of anisotropic. Love’s first assumption assumed that the
thickness of the shell is small compared with the other dimensions, the deepness
terms z/R, and z/Ry are less important and they can be neglected in the thin shell
theory. In such case, symmetric stress resultants are obtained, namely Ny = Ng,,
M,z = Mpg,. This is not true for the shells that are not spherical. Love’s fourth
assumption was that normals to the undeformed middle surface remain straight and
normal to the deformed middle surface and suffer no extension. The shear defor-
mation is taken to be zero. This assumption allowed us to obtain ¢, and ¢z as
functions of the displacement components u, v and w. For thick shells, shear
deformation can no longer be neglected and normal to the undeformed middle
surface is no longer normal to the deformed middle surface, the shear deformation
and rotary inertia effects become significant in thick and deep shells. In such case,
this assumption should be relaxed by including transverse shear strains in the theory
for shells with higher thickness ratios or when they are made from materials with a
high degree of anisotropic.

In the shear deformation shell theories, the middle surface displacements of a
shell can be expanded in terms of shell thickness of a first or a higher order. In the
case of first order expansion, the theories are referred to as first-order shear
deformation theories (Qatu 2004). Under the remaining assumptions and restric-
tions as in the thin laminated shell theory, fundamental equations of laminated
shells in the framework of the first-order shear deformation shell theory in which
both the shear deformation and the rotary inertia effects as well as the deepness
terms z/R,, and z/Ry are considered are derived in this section.

1.3.1 Kinematic Relations

Assuming that normals to the undeformed middle surface remain straight but not
normal to the deformed middle surface, the displacement field in the shell space
can be expressed in terms of the middle surface displacements and rotation
components as:

U, B,2) = u(a, B) + 2¢5 (2, B)
V(e B,2) = v(o, B) + 25(x, B) (1.32)
W(x, f,2) = w(, f)

where u, v and w are the displacement components at the middle surface in the a, f

and z directions. ¢, and ¢ represent the rotations of transverse normal respect to
[- and a-axes, respectively, see Fig. 1.1. It should be pointed out that, unlike those
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of the classical thin shell theories, ¢, and ¢4 are not functions of u, v and w, they are
treated as independent variables. The third of Eq. (1.32) yields ¢, = ow/9z = 0.
Substituting Eq. (1.32) into Eq. (1.1), the strains at any point in the shells can be
defined in terms of middle surface strains and curvature changes as:

1
6 = 7o (80 + 2s)
(l+Z/R1)
1 0
gp=———16p+2 >
’ <1+z/Rﬁ>(ﬁ &
1 1
Va/}:7<y2ﬁ+ZXaﬁ>+7(y2a+zxm) (1.33)
(1+z/R,) (1+2/Rp) '
~0
S
o (1+2/Ry)
20
7Bz

where €2, 8%, ygﬁ and y%“ denote the normal and shear strains in the reference
surface. y,, %, 1.5 and y, are the curvature and twist changes; ygz and y%z represent
the transverse shear strains. The middle surface strains and curvature changes are:

o_Lou vOoA w _10¢, 9504
“ = A9y ABOF R, " A 0x ' ABOP
o lov udB w 19¢s ¢, 0B
6ﬁ:—— ———|——7 X/}:_— Lo -
BOf  ABOx Ry B op " AB O
o 1 uoA _10¢y ¢,0A
"0 Ada ABOB’ 6 =2 9x ~ ABOP (1.34)
o _1ou_v OB L _10¢, by '
b+~ BB AB O’ X = B"9f ~ AB O
Oflaiw_l+¢
y“ziAaoc R, *
1ow v
0—____

The above equations constitute the fundamental strain-displacement relations of a
thick 2D shell in curvilinear coordinates.

1.3.2 Stress-Strain Relations and Stress Resultants

According to the generalized Hooke’s law, the corresponding stress-strain relations
in the kth layer of thick laminated shell can be written as (see, Fig. 1.3):
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7 0 Qb 0 0 Q| (g
9 o, 05 o 0 S | | e
=10 0 Qf 0 0 Vb (1.35)
Ty 0 0 Q% 0% o Yoz

Ak k b2
Tap ) Qlfﬁ Qlﬁé 0 0 Q]é6 W)

where o, and op represent the normal stresses in the a, f# directions, 7,s, 7,, and 75,
are the corresponding shear stress components. The elastic stiffness coefficients QZ
(i,j=1,2,4,5 and 6) are defined by following equation:

ok Ok 0 o OF

o 2 e o4 b0 0 0
Qll(2 Q§2 0_ O_ Qéﬁ 11€2 152 0 0 0
o o ¢, 0, o0 |=Tfo o0 0 0 o0 |[T" (1.36)
0 0 O 0L 0 0 0 0 0% 0

o - o 0 0 0 @
Qs O 0 0 0f 0

where superscript T represents the transposition operator. The material elastic
stiffness coefficients ij- of the kth layer are written in terms of the material prop-
erties of the layer:

Q][ = B Q§4 =Gy
- Hi2Hloy
HinEn k
0, =—"——, 0 =G 1.37
S TS » (137)
E> L
0y =—"—, 0Oi=0Gn
2 — ppapy o6

where E; and E, are moduli of elasticity of the unidirectional fiber-reinforced
material in the 1 and 2 directions, respectively. u;, is the major Poisson’s ratio. The
Poisson’s ratio u,; are determined by equation u,E, = s Ey. G12, G13 and G,3 are
shear moduli. It should be noted that by letting E; = E;, G, = G35 = Gp3 = Ey/
(2 + 2u15), the present analysis can be readily used to analyze isotropic thick shells.
T is the transformation matrix:

cos? 9 sin? 9¥ 0 0 —2 sin ¥ cos ¥*
sin® O cos? ¥¥ 0 0 2 sin Y¥ cos ¥
T=]0 0 cos¥*  sink 0 (1.38)
0 0 —sind* cos¥* 0
sin¥¥ cos ¥ —sind*cos ¥ 0 0 cos? 9% — sin? ¥¥

where 9" is the included angle between the principal direction of the layer and the
o-axis. Performing the matrix multiplication in Eq. (1.36), the elastic stiffness

coefficients constants Q_fj i,j=1,2,4,5 and 6) can be written as:
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0, = 0%, cos* 0% + (20%, + 40k,) cos? 0 sin® 9% + O, sin* O

o, = (01, + 05, — 40%) cos® ¥* sin® ¥ + 0}, (cos* ¥* + sin* ¥¥)

Q_’fe = (Q,fl - Q11<2 - ZQI(‘]G) cos® ¥ sin ¢ + (Q'fz — Q';z + 2Q'g6) cos V¥ sin’ 9%
Qflﬁz = 0}, sin* v + 0%, cos® ¥F + (2Q]f2 + 4Q§6) cos? ¥ sin® ¥

ko
26 —

(0F, — 0F, — 20%;) cos ¥* sin® ¥* + (0%, — 08, +20f) cos® ¥ siny*  (1.39)

Ok = OF(cos* 0% + sin* 9*) + (X, — 20%, + 0%, — 20%,) cos? ¥* sin? ¥
0%, = O cos” v + O sin” v
Q_ﬁs = (le(s - Qfm) cos 9¥ sin 9

0 = 0% cos? 9% + QF, sin® ¥*

The force and moment resultants of laminated thick shells can be obtained by
carrying the integration of stresses over the cross-section, from layer to layer (see
Eq. (1.2), Figs. 1.5 and 1.6):

N, h/2 | Ou
Ny | = [ |t
_Qaz —hf2 | Toz |
[ Ng w2 [ op
Np | = [ | tp
| O “h2 | g |

(1 +Riﬁ>dz, [M

o
M,z

M/;
Mg,

(1 +é)dz, [

W2 T
/|7
—nj2 Lt

hfZ |:

—h/2

}(1 + ) ade

where N, Ng, N,z and Ng, are the normal and shear force resultants and M,,, M,
M,z and My, denote the bending and twisting moment resultants. Q,, and Qy are the
transverse shear force resultants. It should be stressed that although 7,4 equal to zg,
from the symmetry of the stress tensor, it is obvious form Eq. (1.40) that when the

oN
+—Lap

Ny B

Fig. 1.5 Notations of force resultants in shell coordinate system (Qatu 2004)
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M,
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s M, + oM, da
% do o
80{ M[Ka+

M .+

o

Fig. 1.6 Notations of moment resultants in shell coordinate system

shells are not spherical, the shear force resultants N,z and Ng, are not equal.
Similarly, the twisting moment resultants M,z and My, are not equal too. In
addition, for rectangular plates, z/R, = z/Rz = 0 automatically satisfied, these force
and moment resultants will be equal. Performing the integration operation in
Eq. (1.40), the force and moment resultants can be written in terms of the middle
surface strains and curvature changes as:

N, 7 [An Aw A As Bu B B B ||

Ng A Ap Ay Ax B Bn By By 82

Nug Ais Ax Asws Ass Bis Bw Bes Bss || 7

Np | _ 1 Ais Ax Aw Ass Bis B Bao Boo || 75 | (141)

M, Bii Bz Bis Bis Dn Diz Dig Dig L

My Biy By Bx Bxs D Dn Dy D || 1

Moy Bis By Bss Bss Dis Dy Des Des | | 1yp

L M. | Bis Bxs Bess Bssc Dic D Des Des | | %ps |
GEE o
o Ass Ass| [0

The stiffness coefficients A;;, B;; and Dj; are defined as follows:

(i,j =1,2,6)

k=1 (1.43)
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in which K; is the shear correction factor, typically taken at 5/6. The shear cor-
rection factor is computed to make sure that the strain energy due to the transverse
shear stresses in Eq. (1.42) equals the strain energy due to the true transverse shear
stresses predicted by the 3D elasticity theory. Since the shear correction factor for a
laminated composite shell depends on the shell parameters, such as lamination
schemes, degree of orthotropic and material properties, boundary and loading
conditions, it is still an unsolved issue to determinate the true value of shear correct

factor (Reddy 2003). The stiffness coefficients A;, By, Dy, Az, B; and Dy are
defined as follows:

N 2
R R.+Zk+l>] ..
(zke1 —z) + Ry — 22 ) In[ =—— |, (i,j=1,2,6
E Ql{ kel — 2k) ( o R,;) (Ra+Zk (i,j )

k=1
IKéi [ Zk+1—Zk)+(Ra—§—i>ln(%>]y (i,j =4,5)
(R R G =20+ G - ) (1.44)
5+ (- ) n()
_[ (- -+ (5-5%) @ -2

i R, Ri R,+z
SRS (@ —2) + <R3 - @) In (7&1;1)
N 2
— — R R Rg + Zx+1
A, — E K| 28 _ Rp— =2 | n( 22 <ktL
T HT R (@ Zk)+( P7R) "\ Ryt a

N R? Rp +
B BT 21
= — Ry — P | In( 2224
Z U[ (241 Z")+< Rx) n<R/g+zk)
[ Rz Ry (2 2
J— (R/f _*> (Z]H»l Zk) +T&(Zk+1 _Zk) (145>
i R} Ry+acs
SR m) ()
r R3 RZ
(Fﬁ - R%) (zkr1 —2) + (szﬂ - Tlgy) (T — 1)
R Ryt
|+ (@ —2) + (Rﬁ - RT) In (IQ/TQ»
The above equations include the effects of deepness terms z/R, and z/Rg, thus
creates much complexities in carrying out the integration and the corresponding
programming. When the SDST is applied to thin and slightly thick shells, the z/R,,

and z/Rg terms can be neglected (Qu et al. 2013a; Jin et al. 2013b, 2014a; Ye et al.
2014a, b). In such case, Eqgs. (1.41) and (1.42) is degenerated as:

» (1j=1,2,6)

) (iaj: 4a5)
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In addition, for thick spherical shell (R, = Rp) and flat plates (R, = Rz = 00), their
stress resultants to middle surface strain-curvature change relations are in the same
form as Eqs. (1.46) and (1.47).

1.3.3 Energy Functions

The strain energy (Uy) of thick laminated shells during vibration can be defined in
terms of the shell strains and corresponding stresses as:

ye)

1 04y + OpER z z
v, =3 / / / g + T (1 + R_> (1 +R—>A3dzdﬂdoc (1.48)
“ B —h/2 +T/3zy[§z * ¢

Substituting Eq. (1.40) into Eq. (1.48), the strain energy (U;) function of the thick
shells can be written in terms of the middle surface strains, curvature changes and
the stress resultants as:

) N,&d + N/;e% + pr"/gﬁ + Nﬁay%a
U, = E/ / Moy, + Mpyg + Muptap ABdfdo (1.49)
o B +M/5“/Cﬂoz + Q%V(;Z + Q/)’V(/)jz

Substituting Eq. (1.34) into Eq. (1.49), the strain energy of thick laminated shells
can be rewritten as:
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N, (B(?u+v ﬂ+ABW>
Ov w

+Np (A + ull + 48e)

+N%/;(Ba—vf u%) +N/;“(A0—“7 Vgg)

1 d% df/’/;

=3 +M, (B + g dﬁ) + My (A% + 6,2 ) dfds (1.50)
34’

+Ma[5( = 0,5 )+Mﬁx( T~ b5 )

+0, (B@ ~ 4801 ABg, )

+05( d—ﬁ—/ﬁ+AB¢p)

The kinetic energy (7) of the shell is written as:

o 90\
» (— %)
Z Z
// / _i_z(hp,f) (H_R_“) <1+R—ﬁ>Adedﬁda
Bo=h/2 ow
+(dt)
o(G) +1 () 1 (%)’
_l// 2L % o %%\ gy (1.51)

(2 "’) +5 (‘”ﬁ)

where the inertia terms are:

h=l+iy iy b
07T R, "Ry R.Ry
L b I
h=1 24 =
! 1+R +R,;+RaRﬂ
I (1.52)

L=1I + +—+
2T Rs ' R,Rg

N Zk+1

o, 11, 1>, I3, 14) :Z/ P22, 2, 2dz
k=1

Tk

in which p* is the mass of the kth layer per unit surface area. The external work is
(W,) expressed as:
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Fig. 1.7 Notations of artificial spring boundary technique for thick laminated shells

We://{qau+qﬁv+qzw+m“¢a+m3c/)ﬁ}ABdocdﬁ (1.53)
x B

where q,, gz and g, denote the external loads. m, and mg are the external couples in
the middle surface of the shell.

Using the artificial spring boundary technique similar to that described earlier,
the general boundary conditions of a laminated thick shell are implemented by
introducing three groups of translational springs (k,, k, and k,,) and two groups of
rotational springs (K, and Kj) which are distributed uniformly along the boundary
at each shell boundary (see Fig. 1.7). Therefore, arbitrary boundary conditions of
the shell can be generated by assigning the translational springs and rotational

springs at proper rigidities. Specifically, symbols &/}, k;/, k:/f , K, and Kg (w = a0, S0,
ol and f1) are used to indicate the rigidities (per unit length) of the boundary
springs at the boundaries of a =0, f# =0, a = L, and = Ly, respectively. Therefore,
the deformation strain energy about the boundary springs (Uy,) is defined as:

Up ==

b [kt -+ kig? + Kigw? + K282 + KLy 3]
2

0 ABdfp
Jo| [+ ke + k? + K6l K|

u v w o 42 B2
! [kﬁolﬂ + kpoV2 + kﬂow2 + Kﬁoqﬁa + Kﬁ(,qsﬁ} o
+§/ 2 : i o Adx (1.54)
S|+ e+ + ki +K§l¢°‘+Km¢ﬁ}ﬁzLﬁ

The energy expressions presented here will be used to derive the governing
equations and boundary conditions of thick laminated shells in the next section by
applying Hamilton’s principle as described earlier.
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1.3.4 Governing Equations and Boundary Conditions

The Lagrangian functional (L) of thick laminated shells can be expressed in terms
of strain energy, kinetic energy and external work as:

L=T—-U—Ugp+W, (1.55)

Substituting Egs. (1.50), (1.51), (1.53) and (1.54) into Eq. (1.55) and applying the
Hamilton’s principle

t
5/ (T—Us—Ugp+W,)dt =0 (1.56)
0
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Integrating by parts to relieve the virtual displacements ou, dv, dw, ¢ and 6¢4 such

as:
ggza - /’(gzau)
/ /BN LI /{ - [ um}dﬂ
[ . - /{BMWO_ JEEEr }dﬁ (59

o o

Proceeding with all terms of Eq. (1.57) in this fashion, we get the following
governing equations:

a(giv“) + Ny 2—2 — Ny gB + 8([;]? :) + AZQ“ + ABq,

= AB <10882;’ +1 a;i“)
W—N 22 + Npy gi 8(22]ﬁ) +Ai—pQﬁ+AB‘1ﬁ

— AB (10222 +1 82%)

_ABC; +1;/£> +a(g31) +3(2§/f) + ABg, _AB(,OZZZ) (159)

a(l;jf“) + M,y 22 My + 8(1?;/}“) — ABQ, + ABm,

— AB <ﬁ?;2 s 3;;2«)
a(Ba—A;[“ﬁ) M, 2—2 + M, % 8(21;13) — ABQg + ABmy
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On each boundary of a = constant, five boundary equations are obtained:

Ny — kijou =0 Ny +kjju=0
Nx/; — k;ov =0 Naﬁ + k;lv =0
o=0:{ Ox—kyw=0 o=1L,:{ Qu+kjw=0 (1.60)
M, — K¢y, =0 M, + K5 ¢, =0
M.p — Ko/jo(f)ﬁ =0 Myp +Kf1¢l3 =0

Similarly, for boundaries = 0 and 8 = L, the corresponding boundary conditions
are:

N/;a—kz,ouzo N/;a—‘rk'f“uzo
N/;—k}}o\/:() N/;—Fk[‘;lv:()

p=0: Qp—kgw=0 p=Lg: Op +kjw=0 (1.61)
Mﬁa_Kzod)a:O Mﬁx—i-Kgl(f)a:O
Mﬁ_Kgod’/f:O Mﬁ+K//;1¢ﬁ =0

For general thick shells and unsymmetrically laminated thick plates, each
boundary can exist eight possible combinations for each of the classical boundary
conditions (free, simple supported, clamped (Qatu 2004)). For example, at each
boundary of a = constant, the 24 possible classical boundary conditions are given in
Table 1.3, similar classifications can be obtained for boundaries S = constant.

In the engineering applications, the F (completely free), S (simply supported),
SD (shear diaphragm supported) and C (completely clamped) boundary conditions
are widely encountered and are of particular interest. Using the artificial spring
boundary technique as described earlier, the stiffness of the boundary springs can
take any value from zero to infinity to better model many real-world restraint
conditions. Taking edge a = 0 for example, the corresponding spring stiffness for
the mentioned classical boundary conditions can be defined in terms of boundary
spring rigidities as:

Frkgy = ko = kg = Ko = Kfo =0

ol
SD: k' = k% = KBy = 10D, k) = K% =0
S: ki = ki = Ky = Kl = 10D, K}y =0
C:kyy = kyy = kyy = Koy = Kfo =10'D

(1.62a)

The appropriateness of defining these types of boundary conditions in terms of
boundary spring components had been proved by several researches (Jin et al.
2013b, 2014a; Su et al. 2014a, b, c; Ye et al. 2014a, b).

Equations (1.32)—(1.62a) describe the first-order shear deformation theory for
2D thick laminated shells. It is applicable for isotropic and laminated composite
thick shells (the shell thickness is less than 1/10 of the wave length of the
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Table 1.3 Possible classical

boundary conditions for thick Boundary type Conditions

shell at each boundary of Free boundary conditions

o = constant F No=Ny=0,=M,=M,;=0
F2 U=Ny=0,=M, =M, =0
F3 Ny=v=0,=M,=M,; =0
F4 u=v=0,=M,=My =0
F5 Ny=Ny=0,=M,=¢3=0
F6 U=Ny=0,=M,=¢p=0
F7 Noy=v=0,=M,=¢p=0
F8 u=v=0,=M,=¢3=0
Simply supported boundary conditions
S u=v=w=M,=¢p=0
SD Ny=v=w=M,=¢p=0
S3 U=Ny =w=M,=¢3=0
S4 Ny=Nyg=w=M,=¢g=0
S5 u=v=w=M,=M,p=0
S6 No=v=w=M, =M,z =0
S7 u=Ny =w=M, =My =0
S8 Ny, =Ngg =w=M, =M,z =0
Clamped boundary conditions
C U=v=w=¢,=¢sp=0
C3 =Ny =w=¢,=¢p=0
C4 Ny =Ny =w=¢,=¢3=0
C5 u=v=w=g¢,=Myp=0
C6 Na:V:WZ¢a:Maﬂ:0
Cc7 U=Nyg =w=¢,=My=0
C8 Ny =Ny =w=¢,=M,3=0

deformation mode and/or radii of curvature) with general boundary conditions. This
theory will be specialized later for laminated beams, plates and various closed and
open shells (Chaps. 3-8).

1.4 Lamé Parameters for Plates and Shells

The fundamental equations of laminated shells presented in previous sections can
be readily specialized to some of the frequently encountered structural elements
such as flat plates, cylindrical shells, conical shells, spherical shells and shallow
shells by substituting their Lamé parameters into the equations. Lamé parameters
for plates and shells are considered in this section.
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In the global Cartesian coordinate system (X, Y, Z), the point vector of a point
P (a, S, 0) in the middle surface of a shell, r, can be written in terms of orthogonal
shell coordinates o and f as (see Fig. 1.8):

r=r(x,ff) (1.63)

and in the global Cartesian coordinate system (X, Y, Z), the coordinates can be
written as functions of a and f as:

X=Xp) Y=Yap Z=2Zp (1.64)
Therefore, the point vector r can be rewritten as:
r=X(o, P+ Y(o, B)j + Z(x, Hk (1.65)

where i, j and k represent the unit vectors along the X, Y and Z coordinates,
respectively. The incensement of the vector r in moving from point P (a, f , 0) to
point Q (a + da, f + dp, 0) is defined as:

or or
dr_%doc—i—a—ﬁdﬁ (1.66)

Thus, the square of the distance ds between point (a, f, 0) and point (a + da, f + dp,
0) on the middle surface is:

or or

(ds)*= dr-dr = —do’ + 25 a—ﬁdocdﬁ+

or or or or
p o

dp? (1.67)

Fig. 1.8 Coordinate systems
of the shell’s middle surface
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Letting
2 2
p2 00 O _|on” g Or Or_|or (1.68)
do. do |Ow op op |0B
and considering the coordinates a and f are orthogonal, so that
or Or 2 2.2 2 102
—-—=0 ds)"=A"d B-d 1.69
Gy g ()= A+ Bdp (169)

where A and B are the so called Lamé parameters. Equation (1.67) can be rewritten
as:

(ds)*= ds* +ds?, ds; = Ado, ds, = Bdfs (1.70)

It can be seen that the Lamé parameters relate a change in the arc length in the
middle surface to the changes in the curvilinear coordinates of the shell.

In engineering practices, the rectangular plates, sectorial plates, cylindrical
shells, conical shells and spherical shells are the most commonly used structural
elements. The Lamé parameters of these structural elements are given below.

(a) Rectangular plates

Let @ = x and f =y as shown in Fig. 1.9. 1, j and k denote the unit vectors along the
x, y and z coordinates. Any point P in the middle surface of the rectangular plate is
defined by the vector

r = xi+yj (1.71)
Thus, the Lamé parameters of rectangular plates can be obtained as
or Or or
— = — =i A = |—| =il = 1
ox  ox oo il (172)
or or B— 6r_|,|_1 .
o — oy U jap T VT
Fig. 1.9 Rectangular plates
-
y

»y
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Fig. 1.10 Sectorial plates

\As

(b) Sectorial (annular or circular) plates

Let @ = r and f = 0 as shown in Fig. 1.10. i and j denote the unit vectors along the
x and y coordinates. Any point P in the middle surface of the sectorial plate is
defined by the vector

r=rcost-i+rsinf-j (1.73)

Thus, the Lamé parameters of sectorial plates can be obtained as

or Or . . .
—=—=cosf-i+sinf-j
Ooa  Or
2 (1.74)
A:‘_ =|cos@-i+sinf-j =1
or
%:%:—rsin@i—i—rcos@j
o (1.75)
B = 20 =|—rsinf-i+rcosf-j=r

(c) Cylindrical shells

Let o = x and f = 0, where «a is parallel to the axis of revolution and f is in the
circumferential direction as shown in Fig. 1.11. R is the radius of the middle surface
of the cylindrical shell and i, j and k represent the unit vectors along the Cartesian
coordinate system (x, y, z). Any point P in the middle surface of the cylindrical shell
is defined by the vector

r=xi+RcosO-j+ Rsin0-k (1.76)
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Fig. 1.11 Cylindrical shells

-

Thus, the Lamé parameters of cylindrical shells can be obtained as

o _or_ o forl

ou ox ou) ~ M T

or Or . A

8—ﬁ—%——Rsm0-,}+Rcose-k (1.77)
or . . _

B= BT = |—Rsin0-j+ Rcos0-k| =R

(d) Conical shells

Let o = x and f = 6. Figure 1.12 shows the geometry and the coordinate system
(x, 0, z) for the middle surface of conical shells, in which x is measured along the
generator of the cone starting at the vertex, 8 is in the circumferential direction and
z is perpendicular to the middle surface. ¢ is the semi-vertex angle of the conical
shell and R, denotes the middle surface radius of the conical shell at its small edge.
i, j and k represent the unit vectors along the Cartesian coordinate system (X, Y, Z).
Any point P in the middle surface of the conical shell can be defined by the vector

r=xcos@i+xsinpcosl-j+xsingsinf -k (1.78)
Thus, the Lamé parameters of the conical shell can be obtained as

Or _or i+ si 0-j+si in0 -k
—=—=cospi+singcosf-j+sinpsind-
90 Ox ¢ % J ¢

(1.79)
or c c .
A= ‘&x‘ = |cos @i+ singcosO - j+singsinfd-k| =1
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Fig. 1.12 Conical shells

@:@: —xsin¢@sin0 - j+ xsingpcos0 -k
op 00

o, (1.80)
B= ‘8—[3’ = |—xsin@sin0 - j+ xsin @ cos 0 - k| = xsin ¢

(e) Spherical shells

Let a = ¢ and f = 0, where ¢ and @ are taken in the meridional and circumferential
directions of the spherical shell, respectively, see Fig. 1.13. i, j and k represent the
unit vectors along the Cartesian coordinate system (x, y, z). R denotes the radius of
the middle surface of the spherical shell. Any point P in the middle surface of the
spherical shell is defined by the vector

Fig. 1.13 Spherical shells
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r =Rcosgi+ Rsin¢cos-j+ Rsin¢gsinf -k
Thus, the Lamé parameters of spherical shells can be obtained as

Rsin i+ Rcos ¢ cos - j+ Rcos ¢psinf - k

or_or_
do. Op
A= ? = |~Rsin ¢i+ Rcos ¢pcosO - j+ Rcos ¢psin0 - k| =R
o
g_;:%:—Rsin<f>sin9-j+RSin¢0050'k

B= ‘g—;‘ = |—Rsin¢sinf - j+ Rsin¢pcosf - k| = Rsin ¢
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(1.81)

(1.82)

(1.83)



Chapter 2
Modified Fourier Series and Rayleigh-Ritz
Method

Although the governing equations and associated boundary equations for laminated
beams, plates and shells presented in Chap. 1 show the possibility of seeking their
exact solutions of vibration, however, it is commonly believed that very few exact
solutions are possible for plate and shell vibration problems. For instance, an exact
solution is available only for rectangular plates which are simply supported along,
at least, one pair of opposite edges, and one has to resort to an approximate solution
for other boundary conditions (Zhang and Li 2009). It is important for engineering
applications to have available approaches that give accurate solutions for cases that
cannot be solved accurately.

In recent decades, many accurate and efficient experimental and computational
methods have been developed for the vibration analysis of laminated beams, plates
and shells, such as the scaled down models and similitude theory, Ritz method,
differential quadrature method (DQM), Galerkin method, wave propagation
approach, multiquadric radial basis function method, meshless method, finite ele-
ment method (FEM), discrete singular convolution approach (DSC), etc. It should
be stressed that most of these methods were applied firstly to isotropic structures,
and were subsequently extended to study the dynamic behaviors of the anisotropic
and laminated composite ones. However, it appears that most of the existing
methods are only suitable for a particular type of boundary conditions which typ-
ically require constant modifications of the solution procedures to adapt to different
boundary cases. Therefore, the use of the existing solution procedures will result in
very tedious calculations and be easily inundated with various boundary conditions
in practical applications due to the fact that the boundary conditions of a beam,
plate or shell may not always be classical in nature, a variety of possible boundary
restraining cases, including classical boundary conditions, elastic restraints and
their combinations can be encountered in practice. For example, even just con-
sidering the four simplest classical boundary conditions (i.e., F, SD, S and C), one
should realize that there can constitute 256 combinations of different boundary
conditions for a thin shell (four edges) or unsymmetrically laminated thin plate.
Furthermore, the possible combinations of classical boundary conditions of a
general thick open shell or unsymmetrically laminated thick plate can be as many as
331,776 types. The finite element method (FEM) has dominated engineering
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computations since its invention and its application has expanded to a variety of
engineering fields. The FEM overcomes the difficulties in dealing with various
boundary conditions, however, there still exist some drawbacks due to its mesh-
based interpolation. For instance, it suffers heavily from mesh distortion in large
deformation and intensive remeshing requirements in dealing with the structures
with complex geometries and discontinuities. In addition, the computational
demands increase with structural and material complexity and with analysis fre-
quency range (Price et al. 1998; Liew et al. 2011). It is necessary and of great
significance to develop a unified, efficient and accurate method which is capable of
universally dealing with laminated beams, plates and shells with general boundary
conditions.

The present chapter deals with a unified modified Fourier series method which is
capable of universally dealing with laminated beams, plates and shells with general
boundary conditions. The accurate modified Fourier series solutions of isotropic,
anisotropic and laminated beams, plates and shells can be obtained by using both
strong and weak form solution procedures as described in the following sections.

2.1 Modified Fourier Series

For vibration problems of beams, plates and shells, the admissible functions are
often expressed in the form of Fourier series expansions because of their orthog-
onality and completeness, as well as their excellent stability in numerical calcula-
tions. Furthermore, vibrations are naturally expressible as waves, which are
normally described by Fourier series (Li 2000). However, the conventional Fourier
series expression will generally has a convergence problem along the boundary
edges except for a few simple boundary conditions, thus limiting the applications of
Fourier series to only a few ideal boundary conditions. Mathematically, when the
displacements of a shell (2D) are periodically extended as standard Fourier series
onto the entire o—f surface, discontinuities potentially exist in original displace-
ments and their derivatives at the edges. In such case, the Fourier series expansions
cannot be differentiated term-by-term, and thus the solution may not converge or
converge slowly. Recognizing the fact that the convergence rate for the Fourier
series expansion of a periodic function is directly related to its smoothness, Li
(2000, 2002) proposed a modified Fourier series method for the vibration analysis
of isotropic Euler Bernoulli beams with general elastic boundary conditions.

In this book, this method is further developed and extended to the vibration
analysis of laminated composite beams, plates and shells with general boundary
conditions and arbitrary lamination schemes, aiming to provide a unified and rea-
sonable accurate alternative to other analytical and numerical techniques. The
method will be briefly explained in this section for the completeness of the book.
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2.1.1 Traditional Fourier Series Solutions

To fully illustrate the basic idea of the modified Fourier series method, we consider
the longitude and transverse vibrations of a classical straight beam with length L,
uniform thickness # and width b as shown in Fig. 2.1. The two-dimensional rect-
angular coordinate system (x, z) is used to describe the geometry dimensions and
deformations of the beam, in which co-ordinates along the axial and thickness
directions are represented by x and z, respectively.

Letting o = x, A = 1, according to Eqgs. (1.7), (1.14) and (1.28), the governing
equations for free vibration of a generally laminated composite beam are obtained
as:

O*u Pw
A“W By, e —w’Iou
y N (2.1a,b)
B u O*w W
11 1l g = —Wiow
ox3 ox*

where @ represent the natural frequencies of the beam. Suppose the classical beam
considered here is made from isotropic materials, therefore, the B, terms become
zero. In such case, the longitude and transverse vibrations of the beam are
decoupled. Subsequently, Eq. (2.1) is rewritten as:

2

u
A“ m = —(,L)ZIOM
* (2.2a,b)
v
D11 ﬁ = I()W

The solution of Eq. (2.2) is often desired to be expanded in the form of either
Fourier sine series or Fourier cosine series. Take the transverse vibration problem
for example (Eq. 2.2b), mathematically, the displacement w(x) can be expanded as
Fourier series only contains the cosine terms by making the even extension of w
(x) from the interval [0, L] onto the interval [-L, 0], as shown in Fig. 2.2 (Xu 2011):

z (w)

v x (u)
T

h

Fig. 2.1 Notations of a classical straight beam
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http://dx.doi.org/10.1007/978-3-662-46364-2_1
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Fig. 2.2 An illustration of the
possible discontinuities of the
displacement at the ends

e
[y

w(x) = ZA,,, cos Apyx 0<x<L (2.3)

m=0

where A,, are the expansion coefficients, 4,, = ma/L. According to Eq. (2.2b), it
is obvious that the transverse displacement w(x) is required to have up to the
fourth-derivative (w'""'(x)). The Fourier cosine series is able to correctly converge to
w(x) at any point over [0, L]. However, its first-derivative w'(x) and third- derivative
w''(x) are odd functions over [—-L, L] leading to a jump at end locations (see
Fig. 2.2). Thus, their Fourier series expansions (sine series) will accordingly have a
convergence problem due to the discontinuity at end points. Moreover, the dis-
placement function w(x) of the beam given in Eq. (2.3) may not be differentiated
term-by-term. The reasons are given below (Tolstov 1976):

Theorem 1 Let fix) be a continuous function defined on [0, L] with an absolutely
integrable derivative, and let f(x) be expanded in Fourier sine series

flx)= iam sin A,x, O0<x<L (Jy =mn/L) (2.4)

m=1

7109 = LEZLO S (2117 0) O] + i ) cos T (29
m=1
Apparently, when f{L) = f(0) = 0,

f/(x) = Z Cyy Ay COS Loy X (26)

m=1

The theorem reveals that a sine series can be differentiated term-by-term only if f

(L) = f(0) = 0.
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Theorem 2 Let f(x) be a continuous function defined on [0, L] with an absolutely
integrable derivative, and let f(x) be expanded in Fourier cosine series

flx) = me cos Ayx, O<x<L (A, =mmn/L) (2.7)
m=0
then
F1X) == by sin Apx (2.8)
m=1

The theorem reveals that a cosine series can always be differentiated term-by-term.

Theorem 3 Let f(x) be a continuous function of period 2L, which has n derivatives,
where n—1 derivatives are continuous and the mth derivative is absolutely inte-
grable (the mth derivative may not exist at certain points). Then, the Fourier series
of all m derivatives can be obtained by term-by-term differentiation of the Fourier
series of fix), where all the series, except possibly the last, converge to the cor-
responding derivatives. Moreover, the Fourier coefficients of the function f{x) sat-
isfy the relations

lim a4, = lim b, =0 (2.9)

n—oo

With these in mind, for the cases when the beam is elastically supported, we have

W) == JnApsindyx, 0<x<L (2.10)

m=1

x (2.11)
+ Z (g [(=1)"w'(L) — w'(0)] —A,Mi) cos Apx, 0<x<L

w”(x) = — i (2 [(—=1)"W' (L) — W' (0)] An Amﬂvfn> sin A,x, O0<x<L (2.12)

o [ 2[(—1Y"w" (L) — w" (0
+Z 7 [(=1)"w"(L) —w"(0)] ) 4 | cosiux, 0<x<L
"(L) — W (0)] 42, + Andi,

|
[l (]

|
—
N

3
S

(2.13)
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and the Fourier coefficient A,, satisfies

lim Ayl =0 (2.14)

Combining Egs. (2.2b) and (2.13) results in

b, W;//(L) ; WW(O) + io: (2211 [(—I)mWW(L) _ WW(O)]) COS Ay

" i(z’j [~ 1)/ (1) = W (O)]2 (215)

m=1

+ (D2 — a)zlo)Am> oS Amx = w1y

Obviously, it is a big challenge to obtain the natural frequencies and determine
the expansion coefficients from Eq. (2.15).

Alternatively, one may prefer to expand the beam displacement w(x) in the form
of Fourier sine series. In such case

w(x) = ZAm sin 4,,x, O0<x<L (2.16)
m=1

N (2.17)
# 3 (FU10) = w0 + A

)cosimx, 0<x<L

(2.19)
%[(_l)mW(L) — W(O)]/l?n _Am;;*n> sinAyx, O<x<L

(2.20)
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and the Fourier coefficient A,, satisfies

lim A, =0 (2.21)

m—0o0

Combining Egs. (2.2b) and (2.20) results in

[(=1)"w"(L) = w"(0)]2m — [(—1)"w(L)
AnL

—wO)4, = 35~ (0’ = DuZ,) (222)
and
___ 2Dum [(=1)"w"(L) = w"(0)]
Ap = Lon/ — o), <_[(_1)mw(L) B W(O)]ﬂf,,m) (2.23)

Mathematically, the natural frequencies are simply obtained by requiring the
determinant of the coefficient matrix to vanish (Wang and Lin 1996). Such a
procedure involves solving a non-linear equation, which may not always be an easy
job numerically (Li 2000).

In conclusion, a beam with simply supported boundary conditions, the Fourier
sine series can be used to determine the vibrations of the beam readily due to the
fact that all the required derivatives of the displacement function can be directly
obtained from the Fourier sine series through term-by-term differentiation. For other
boundary conditions, however, a Fourier series tends to become slow converged, if
it converges at all, and its derivatives may not be so easily obtained (Li 2000). In
order to overcome these difficulties and satisfy the general boundary conditions, a
modified Fourier series method was proposed by Li (2000), in which several
supplementary terms are introduced into the Fourier series expansion to remove any
potential discontinuities of the original displacements and their derivatives
throughout the entire solution domain including the boundaries and then to effec-
tively enhance the convergence of the results. This modified Fourier series method
is briefly illustrated in following section.

2.1.2 One-Dimensional Modified Fourier Series Solutions

Unlike in the traditional Fourier methods, the transverse displacement w(x) of the
beam is expanded into a standard Fourier cosine series plus an sufficiently smooth
auxiliary polynomial function defined over [0, L] as:

w(x) = W(x) + P(x), and W(x) = A, cosinx (2.24)
m=0
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where A,, are the expansion coefficients, 4,, = mn/L. The sufficiently smooth auxiliary
polynomial function P(x) is selected to remove all the discontinuities potentially
associated with the first-order and third-order derivatives at the boundaries. By setting

P'(0)
P,// (0)

'(0) =<1
"(0) =g P(L) =w"(L) =y

: (2.25)

Such requirements can be readily satisfied by choosing simple polynomials as
follows (Zhang and Li 2009; Du 2009):

Py(x) S10
P> (x) S
P(x) = 2.26a
(x) P3(x) S30 ( )
Py(x) S31
and
Pi(x) Esin(B) — ﬁsm(%)3
Py(x) | —5005(2—) ~ Ton 0s(37) 2 96b
Py | = | Bsin(E) © L sin() (2:260)
3()6) Pl sin 2L 3n3 2L
P4(x) —Licos(B) — L cos(3)

It should be pointed out that in actual calculation, the boundary values i, (i1,
{30 and {3, can be treated as undetermined coefficient associated with the auxiliary
polynomial function and solved in a strong form solution procedures or a weak
form one such as Ritz method. It is easy to verify that

(177 0] 01" w0
0 1
ro=|o| | Po=1] |
G30 30
0 c 0 C
P Lo (2.27)
0 ST)) 0 c10
P///(O) _ 0 C11 /// 0 C11
1 G30 0 G30
LO] L 1 G31
so that
w'(0)=w(L)=0 W"0)=W"L)=0 (2.28)

Essentially, W(x) represents a residual beam displacement which is continuous
over [0, L] and has zero-slopes at the both ends as shown in Fig. 2.3. Apparently,
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Fig. 2.3 An illustration of the
modified Fourier method
(Xu 2010)

the cosine series representation of W(x) is able to converge correctly to the function
itself and its first derivative at every point (including the boundaries) on the beam.
Analogously, discontinuities potentially associated with the third-order derivative
can be removed as well. In addition, the residual beam displacement W(x) has at
least three continuous derivatives, then all the required differentiations can be
simply carried out term-by-term basically. In such case, we have

w(x) = — f: oA $i0 Apx + P'(x) (2.29)
=l
w'(x) = — iAm)fn 08 Ayx + P (x) (2.30)
m=1
w” (x) = zoo:Ami?n sin A,,x + P" (x) (2.31)
=1
w" (x) = iAm/li cos Ayx + P (x) (2.32)

m=1
and the Fourier coefficient A,, satisfies

lim A7, =0 (2.33)

Comparing Eq. (2.33) with (2.21), it can be found that the modified Fourier
series solution converges at a much faster speed. It should be stressed that the form
of auxiliary polynomial function given in Eq. (2.26a, b) should be understood as a
continuous function that satisfies Eq. (2.25), its form is not a concern with respect to
the convergence of the series solution (Li 2004). Actually, any function satisfies
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Eq. (2.25) such as polynomials and trigonometric functions can be used. Com-
bining Eqgs. (2.2b) and (2.32) obtains

Dy

00 2 0
ZAmifn 08 Apx + P"(x) = ol (Z A,y COS A + P(x)) (2.34)

m=1 m=0

In order to derive the constraint equations for the unknown Fourier coefficients,
the auxiliary polynomial function P(x) and its four-order derivative P""(x) in
Eq. (2.32) are expanded into Fourier cosine series, namely

(x) = Z B, €08 Jpyx

(2.35)
P"( Z C,, COS Apyx
where
fo ) €OS Ayxdx
" €OS Apx) dx
f” y (2.36)
c f P""(x) cos Ayxdx
" fo (cos Apx)*dx
Substituting Eq. (2.35) into Eq. (2.34), we have
Co+ Z /14 + C cos AmX = Z pr m + Bm) €OS Jpyx (2.37)
m=0
where pp = Io/D1;, Therefore
Co — pp®*(Ag +By) =0
0 = pp (Ao + Bo) (2.38)

Al + Cp— pp@* (A +By) =0 m=1,2,...

According to Eq. (1.29), the general boundary conditions for the beam can be
written as

kow(0) = Dyw”'(0)  kyw(L) = —Dyw" (L)

KXV:)W/(O) = D“WN(0> KWIW (L) — _DUWN(L) (239)


http://dx.doi.org/10.1007/978-3-662-46364-2_1

2.1 Modified Fourier Series 47

Substituting Eq. (2.24) into Eq. (2.39) the boundary conditions of the beam can be
rewritten as

kY (iAm + P(O)) =D P"(0)

m=0

k;bl (i (*1)’"Am + P(L)) = ,D“P///(L)
m=0

N (2.40)
K%P'(0) = Dy, (Z 22 A+ P”(O))

m=0

K"P'(L) = —Dy, (Z (=" 22 A, + P”(L))

m=0

The natural frequencies and mode shapes of the beam can now be easily
determined by solving Eq. (2.38) with boundary condition equations Eq. (2.40), the
more detail solution procedure will be given in Sect. 2.2.

Alternatively, the transverse displacement of the beam can also be expanded into
a modified Fourier sine series. In that case, the auxiliary polynomial function P(x) is
selected to remove all the discontinuities potentially associated with the original
displacement and its second-order derivative at the boundaries. Namely, the
transverse displacement w(x) of the beam should be expanded into a standard
Fourier sine series plus a sufficiently smooth auxiliary polynomial function defined
over [0, L] as:

w(x) = W(x) + P(x), where W(x)=> A, sini,x (2.41)
m=0
and
P 0 = 0 = C, P L = L =

”( ) W” ) = oo /(/ )=w N) ot (2.42)

P0) =w"(0) = ¢ P'(L)=w'(L) =cy

Similarly, Eqs. (2.17)-(2.20) can be rewritten as

w(x) = ZAm/Im 08 Apx + P'(x) (2.43)

m=1

m

w'(x) = = Aplasin dyx + P (x) (2.44)

m=1
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w"(x) = = Anip, 08 Jyx + P"(x) (2.45)
m=1
w" (x) =) Awdiy sin Zx + P (x) (2.46)
m=1

The solution procedure is the same as those of the modified Fourier cosine series.

2.1.3 Two-Dimensional Modified Fourier Series Solutions

Using the modified Fourier series technique, in the manner similar to that described
earlier, two-dimensional modified Fourier series solutions for laminated plates and
shells are presented in this section. For the sake of completeness, we consider the
free vibration analysis of a moderately thick. Generally laminated rectangular plate
(where a and b denote its length and width) with general boundary conditions (see
Fig. 2.4), the solution procedure is given step-by-step as follows.

Substituting & = x, f# =y, A=B =1 and R, = Rz = 00 into Eq. (1.59), the
governing equations of the plate are written as:

3612’: n aéV;X = —o*(Iou+1,,)

a;\;cy N ‘98Nyy =~ (v + L ¢,)

5 a% 38_% e (2.47a—)
%\zx 32?% — 0= — *(hhu+ L))

oM,  OM,

ox oy 9T @ (v + L)

Fig. 2.4 A generally
laminated moderately thick
rectangular plate



http://dx.doi.org/10.1007/978-3-662-46364-2_1

2.1

Modified Fourier Series

49

Similarly, substituting & = x, =y, A= B =1 and R, = Rz = ©0 into Egs. (1.34),
(1.46) and (1.47) and then substituting these three equations into Eq. (2.47) yields

Ly
Ly
L3,
Ly
Ls;

Lo
L
L3,
Ly
Ls;

Lz
Lo
L33
Ly
Ls3

L14 L|5 M]l 0 0 M14 0 u 0
Ly Lps 0 My O 0 Mps v 0
Ly Lss| —0*|0 0  Mp 0 0 w | =10
Ly Lys My O 0 My O o, 0
Lsy Lss 0 Ms; 0 0 Mss oy 0

(2.48)

where the coefficients of the linear operator L(L; = L;;, M;; = Mj;) are given below:

? ? ?
L;=A 2A A
11 1182+ 1688+66y
2 2 9
Lp,=A + (A A A=
12 652 + (A2 + 66)8a+ 266))2
Li3=0 Ly3=0
0 0 I
Ly =Biu+3 2 +2B168 Ty +B668y2
82 2 82
Lis =Bis=—+ (B B, By —
15 = 1682+(12+ 66)aa+ 268y2
2 2 9
Ly = A66a 2+2A268 dy +A2287y2
62 2 62
=Bis=—+ (B B B
Loy 168x2+( 12+ 66)68 + 2 552
82 2 82
Lys =B 2B B,
25 6682+ 2668"1‘ 226y2
0* 0? o?
Ly3 = —Ass = g —2A45 - Oy A448_yz
L —Ass —— A 2
= Ass 5 5 5y
0
L35 = —A — Ay —
35 57 “ 3y
0? ? o?
Ly =Dy ) + 2D o + DﬁﬁaT)z Ass
9 9 0
L Dig=—+ (D D¢s) =—=—+D —A
45 1652+ (D12 + Des) axdy + Dae FER
0* 8 0?
Lss = Dgg == + 2D Dy——A
55 56 52 + 2Dx 0 + Dy P 44

(2.49)


http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
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and the general boundary conditions of the plate are:

N, = kiyu Ny = —kiju
Ny = kyv Ny = —kjv
x=0:{ Ov=kgw x=a:{ Ov=—kyw
My = Kb, M, = —K3, ¢,
M,y = K,fo‘by M,y = _K}:l ¢y (2 50)
Ny, = k;‘ou Ny, = —k;‘,lu ’
N, = k)‘,’ov N, = —ky”'lv
y=0: Q) = kyw y=b: Q) = —kjyw
My, = K;O@bx My, = _K;Cl by
M, = %‘rﬁy M, = *K51 by

Taking the plate displacement component u(x, y) for example, it can be
expanded into a standard double Fourier cosine series plus two sufficiently smooth
auxiliary polynomial functions defined over [0, a] x [0, b] as

M()C,y) = U(xay) + Px()@y) + Py(xyy) (2513)
and
Ux,y) = Z ZA’"” COS JpX COS A,y (2.51b)
m=0 n=0

where A,,, are the expansion coefficients. 4, = mn/a and 4,, = nn/b. P\(x, y) and P,(x, y)
denote the auxiliary polynomial functions introduced to ensure and accelerate the
convergence of the series expansion of the displacement u(x, y). According
to Eq. (2.49), it is obvious that each of the displacements and rotation components of
the plate is required to have up to the second derivatives. Therefore, the auxiliary
polynomial functions P,(x, y) and P,(x, y) are selected to remove all the disconti-
nuities potentially associated with the first-order derivatives at the boundaries.
By setting

OP(0,y) _ 9u(0,y)

Ox Ox = Gx0 (y)
a X b a b
e _vie
0P, (x.0) _ du(x0) _, (2.52)
ay - 8)) — 50 (X)

OPy(x,b)  Ou(x,b)
ay = ay = Gyl (X)
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where &0(y), &), &o(x) and & (x) are the unknown boundary derivatives at

boundaries x =0, x = a, y = 0 and y = b, respectively. They can be expanded in the
form of Fourier cosine series as

Eo(y) =) aincos iy
n=0

&a(y) =Y ancos iy

=0 (2.53)
Eolx) = Z bipm COS Apx

m=0

00
évl (x) = Z by €OS Jx
m=0

where ay,, as,, by, and b,,, are the expansion coefficients. The requirements of
Eq. (2.52) can be readily satisfied by choosing the auxiliary polynomial functions
P(x, y) and Py(x, y) as follows (Du 2009):

R P S P e e A B
and

- (30 23] (2]~ ] oo

It is easy to verify that

OP.(0,y) _ [117[00)]
ax 0 L éxl (y) i
OP.(a,y) _ 0 T-fxo()’)-
Ox L] [Ea(y)] (2.55)
oP,(5,0)  [117[&0(x)] '
ay B 0_ L éyl (X) d
oP,(x,b)  [077[&0(0)]
ay |1 L &1 (X) |
so that
9U(0,y) _ 0U(ay) _
Ox Ox
OU(x,0) _U(x,b) _ (2.56)

dy Jy
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Essentially, U(x, y) represents a residual plate displacement which is continuous
over [0, a] x [0, b] and has zero-slopes at the four boundaries. Apparently, the
cosine series representation of U(x, y) is able to converge correctly to the function
itself and its first derivative at every point on the plate. Moreover, all the required
differentiations of the residual plate displacement U(x, y) can be simply carried out
term-by-term. Thus, the plate displacement function of component u(x, y) can be
rewritten as

oo 00 2
= Z ZA’"" COS ApX €OS A,y + Z Z anPi(x) cos 2,y
m n=0

=0 n=0 =1 n= (257)

2 00
+ Z bimPi(y) cos Apx
I=1 m=

(=]

Similarly, the other displacements and rotation components of the plate can be
expanded as the two-dimensional modified Fourier series as

00 o0 2
v(x,y) = Z Z By €08 Apx €OS A,y + Z
=0

o0

cimPi(x) cos A,y
=0

m=0 n=0 n
)
+ Z Z dimPi(y) cos Ayx
=0 m=0
o0 o0
w(x,y) = Z Z Cun COS Ay €OS A,y + Z Z e Pi(x) cos A,y
m=0 n=0 =0 n=
2 00
+ Z ZﬁmPl (y) cos Apx
=0 m=0 (2.58)
Z Dy COS AyX COS Ay + Z Z gimPi(x) cos A,y
m=0 n=0 =0 n=
2 00
+ Z Z i Pi(y) cos Ayx
=0 m=0
o0 0 2 oo
qﬁy X,Y) Z Z E, . cOS Jypx cOS 2,y + Z Z i Py (x) cos A,y
m=0 n=0 =0 n=0

2
+ Z ZjlmP,(y) COS ApX
=0 m=0

where B,,.,., C,.., D, and E,,,,, are the standard Fourier series expansion coefficients.
Cins Aims €ins fim &ins Mum» 11, and jy,, are the corresponding supplement coefficients.
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2.2 Strong Form Solution Procedure

With the modified Fourier series, vibration of isotropic, anisotropic and laminated
beams, plates and shells can be obtained by using the strong form solution pro-
cedures as described below. Taking the previously studied laminated rectangular
plate for example, the solution procedure is given step-by-step as follows.

In the actual calculations, all the five infinite modified Fourier series expressions
given in Egs. (2.57) and (2.58) need to be truncated as finite series to obtain the
results with acceptable accuracy due to the limited speed, the capacity and the
numerical accuracy of computers. Unless otherwise stressed, the involving terms in
all the plate displacements and rotation components are uniformly taken as m € [0,
M] and n € [0, N]. Thus, the modified Fourier series expressions presented in
Egs. (2.57) and (2.58) can be rewritten in the matrix form as:

u(x,y) = HyA + Hya+ H,b
v(x,y) = H,B + Hyc + H,d
w(x,y) = H,,C + Hye + H,f (2.59)
¢x(x7y) = HmD + H,g + Hyh
¢y(x7y) = HX}'E + Hxi + Hyj
where
H,, = [cos Agx cos Agy, . .., COS ApX COS ZpY, .. ., COS AyX COS AnY]
H, = [P (x) cos gy, . . ., Pi(x) cos 4.y, . . ., P2(x) cos AyY] (2.60)

H, = [Pi(y) cos Aox, . . ., P(y) €08 Apx, . . ., P2(y) cos Apx]
and

= [A00s - - -y Apny - - .,AMN]T a=ap,...,dp,.. .,azN]T
= [b10, - - o Bimy - - -, bont]”
]T c:[clo,...,cln,...,cm]r
= [do, -, dim, - - - dom]"

A

b=

B = [Boo, - s Buny - - -» Bun

d=|

C=1[Co0s--sComy -, Conv]" €= €10, 0, ..., em]"
f

D

h

E

T (2.61)
= [f107 .- ~aﬁmv .- waM}

[D007 .. -aDmm .. '7DMN]T g= [g107 - 8lny - - 'agZN]T
= [hl()a .- '7hlm7 . '7h2M]T
= [EOOa"')EmrH"-aEMN]T i= [i107"'7ilna"')i2N]T

j = [j107 .. 'aj[m7 .. '7j2M]T
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Superscript T represents the transposition operator. Substituting Eq. (2.59) into
Eq. (2.48) results in

LTy + L, + LTy — 0 (M Ly + M, + M,I,) =0 (2.62)
where
LiH; LpH; LisH; LisH; LisH;
LyH; LpH; LpH; LyH; LsH;
L=|LyH; LpH;, LyH;, LyuH: LssH |, (i=xy,x,y) (2.63)
LyH; LpH; LgH; LyH;  LysH;
Ls1H; Ls)H; LssH; LssH;  LssH;
MH; 0 0 M4H; 0
0 MyH; 0 0 M>sH;
M=|0 0 M3:H; 0 0 . (i=2xy,x,y) (2.64)
MuyH; 0 0 MyuH; 0
0 M52Hi 0 0 MSSHi
A a b
B c d
r,=|c|, r=|e|, r=|f (2.65)
D g h
E i j

In the same way, substituting Eq. (2.59) into Eq. (2.50), the general boundary
conditions of the plate can be rewritten as

x=0: LIy + LT, + LT, = 0

' ) ) (2.66a)
x:a:Liyrx_y—FLj FX—FL’y‘ ry=0
y=0:LTy + LT, + LT, =0 (2.66b)
y=b:L)Ty+ LT, +L'T, =0 '
in which
L{lHi L{2H,- L{3Hl~ L{4H,~ L{SH,-
| LyH LpH; LpH LyH; LyH; = xy,x,y
L/ = |LH; LLH; LLH; LiH, LiH; |, | J=x0xl, (2.67)
LyH; LypH: LypH LyH; LisH; y0,y1
LyH; LH: LgH; LyH: L5H,
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the coefficients of the linear operator in Eq. (2.67) are given below:

and

e :All(%-f-Alé%—kfo’
L = Ly = L3 =0,
L :Blz%+316%>
Ly =A265%+A66%*k¥0»
L3 =316%+3665%7
L3 :A45%+A55%—kﬁ)7
L :Blz(%-f—Bm%,
)5t :DIZ;%“FDlé@%v
Lﬁ=D16%+Déea%,

) :A160%+A66%_ ko,
L3 =L = Lj; =0,
L= Bzéa%ﬂLBee%,

L§3 :Azzg%-i-Azé%— ko
Lﬁ‘i 2312%4—326(%,

Ly = A44%+A45%— k3o,
Lﬁg = BZ6%+B66(%7

Ly :D26%+D66%7

ng =D120%+D263%,

And for j = x1 and j = y1, we have:

Ly =L, (i # ));

L} = An 5+ A 5+ kY,
L3y = Ao & + Aco &% + k.
L3y = Ass 5+ Ass k3,
Ly :Dll%+Dl6%+K;€17
L3y = Dag &+ Des & + K3

Ly :A12%+A16%
Ly} = Bu g+ Bis g = Lj]
Iy :A16%+A663%
LR = 1 =13 =0
oy :BZ6%+B%%:L§2
LY = Ass, L2 = Aus
L =Duf+Dish— Ky
Ly 2316%“"3663%
V£ =D26%+D66%*K;§o

Ly :A26%+A66%

Ly = Bio & + Bos = Ll
LE? :A12%+A260%
D=0 =05=0

L3 =Bnf + B f = L
Ly =Ass, L =Au

Ly = Dis .+ Des 3, — Ky
LY = Bia i+ Bas &

L§(§ = D22(%+D26%_I(§0

Ly =Ly, (i #))

L} = Ats e+ Ass 5+ kY
L;; :A22%+A263%+k;1
2 — A+ A
LX}; :D16%+D66%+K;‘1

L= Dy + Das £+ K,
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(2.68)

(2.69)

(2.70)

In order to derive the constraint equations for the unknown Fourier coefficients,

all the sine terms, the auxiliary polynomial functions and their derivatives in
Egs. (2.62) and (2.66a, b) will be expanded into Fourier cosine series. Letting

C,, = [cos Agx co8 Aoy, . .
C, = [cos Aox, .

C, = [cos Agy, . .

T
.+, COS AyX, . . ., COS AprX]

] s AT
., COS AyX, . . ., COS AyY]

., €08 Apx cos Ay, . .

., €OS Ayx oS Ayy

]T

(2.71)
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Multiplying Eq. (2.62) with C,, in the left side and integrating it from O to a and
0 to b separately with respect to x and y obtains

y y

L0yt (L L] {H _o? (erw (M, M,] HD —0 (27

where

ll

o =[5 L CyLgdydx, My = [i' [¥ CyM,dydx
X foa f(i) nyLxdydx7 Mx = foa fé) nydeydx (273)
Y f(;l f: CyLydydx, M, = f(;l f: CyM,dydx

=
[l

Similarly, multiplying Eq. (2.66a) with C, in the left side then integrating it from
0 to b with respect to y, and multiplying Eq. (2.66b) with C, in the left side then
integrating it from O to a with respect to x, we have

x=0:LyTy + LT, + LT, =0

—xl —x1 —x1 (2743)
x=a:nyl"Xy+Lx l"x+Ly ry=0
=)0 =0 =0
y=0:L Ly +L T, +LT,=0 (2.74b)
y=b:L Ly +L'T,+L'T, =0
where
=—x0 b —x1 b
L.:y = CyLﬁdy ) L;y =Jo C,Lf,)l,dy
=—x0 +—x1
L;O S8 L L)jl = [Pc, LM dy (2.75a)
X b T b X
Ly = [y CGLYdy, L = [JC,L'dy
L) = [ Ly, L)) = ¢ CLildx
L’ = [fclx T = [fCL)dx (2.75a)
L' = [fcLlar, L' = [ CLd
Thus, Eq. (2.74a, b) can be rewritten as
0 =01 ! F—
L’ .’ L,
T, A T L
== 0 2 Ty 2.76
{D} 17D vl BN D vl (2.76)
=yl =yl 1
L L L,

Finally, combine Eqgs. (2.72) and (2.76) results in
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(K—o*™M)T,, =0 (2.77)

where K is the stiffness matrix for the plate, and M is the mass matrix. They are
defined as

_ —0A —1
17 ol I I i
Exl fixl tx‘l
K=L,—-[L, L,|_ 2 _ S 2.78a
) [ )] Li() L;O Li? ( )
Tyl Tyl Tyl
L, Ly ny

LYl Ly LxI

o . . rr Exl Lx
M=M, - [M, M| S| |2 (2.78b)

L, L'y L’Xy

L' L

Mathematically, Eq. (2.77) represents a generalized eigenvalue problem from
which all the natural frequencies and modes of the plate can be determined easily by
solving the standard characteristic equation. Once the coefficient eigenvector Iy, is
determined for a given frequency, the corresponding supplement coefficient
eigenvectors I', and I', can be obtained. Then the displacements and rotation com-
ponents of the plate can be determined by substituting these coefficients into
Egs. (2.57) and (2.58). Thus, the corresponding mode shape of the plate can be
directly constructed from the determined displacement functions. Although
Eq. (2.77) represents the free vibration of laminated rectangular plates, by summing
the loading vector F on the right side of Eq. (2.77), thus, the characteristic equation for
the forced vibration is readily obtained. Similarly, the present formulation can be
readily applied to static analysis of laminated plates with general boundary conditions
by letting @ = 0 and summing the loading vector F on the right side of Eq. (2.77).

Although the modified Fourier series solution procedure derived herein is focused
on rectangular plates, it can readily be used for other laminated structures, such as
beams, cylindrical shells, conical shells, spherical shells and shallow shell, etc. The
method described in this section is believed to include two main advantages: first, itis a
general method which can be used to determinate the static, bending, free and forced
vibration behaviors of laminated pates with arbitrary boundary conditions accurately;
second, the proposed method offers an easy analysis operation for the entire restraining
conditions and the change of boundary conditions from one case to another is as easy
as changing structure parameters without the need of making any change to the
solution procedure or modifying the basic functions as often required in other methods.

Instead of seeking a solution in strong form solution procedure as described in
the previous paragraphs, all the expansion coefficients can be treated equally and
independently as the generalized coordinates and solved directly from the weak
form solution procedure such as Rayleigh—Ritz technique, which is the focus of the
next section.
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2.3 Rayleigh-Ritz Method (Weak Form Solution
Procedure)

In a variety of vibration problems, exact solutions always unable to be obtained, in
such cases, one has to employ approximate method. In this regard, many methods
exist. Among them, the minimization of energy approaches such as the Rayleigh-
Ritz method, the variational integral method and the Galerkin method are widely
used in the vibration analysis of continuous systems due to the reliability of their
results and efficiency in modeling and solution procedure. In this section, we focus
on the Rayleigh-Ritz method. The modified Fourier series version of Rayleigh-Ritz
method is presented as follows.

In the Rayleigh-Ritz method, a displacement field associated with undetermined
coefficients is assumed firstly. The displacement field is then substituted into the
Lagrangian energy functional (i.e., Il = T — U + W). Then the undetermined
coefficients in the displacement field are determined by finding the stationary value
of the energy functional, namely, minimizing the total expression of the Lagrangian
energy function by taking its derivatives with respect to the undetermined coeffi-
cients and making them equal to zero. Finally, a series of equations related to
corresponding coefficients can be achieved and summed up in matrix form as a
standard characteristic equation. And the desired frequencies and modes of the
structure can be determined easily by solving the standard characteristic equation
(Qatu 2004; Reddy 2002).

The constructing of appropriate admissible displacement field is of crucial
importance in the Rayleigh—Ritz procedure because the accuracy of the solution
will usually depend upon how well the actual displacement can be faithfully rep-
resented by it. For vibration analysis of laminated beams, plates and shells, the
admissible displacement field is often expressed in terms of beam functions under
the same boundary conditions. Thus, a specially customized set of beam functions
is required for each type of boundary conditions. As a result, the use of the existing
solution procedures will result in very tedious calculations and be easily inundated
with various boundary conditions because even only considering the classical
(homogeneous) cases, one will have a total of hundreds of different combinations.
Instead of the beam functions, one may also use other forms of admissible functions
such as orthogonal polynomials. However, the higher order polynomials tend to
become numerically unstable due to the computer round-off errors. This numerical
difficulty can be avoided by expressing the displacement functions in the form of a
Fourier series expansion because Fourier functions constitute a complete set and
exhibit an excellent numerical stability. However, the conventional Fourier series
expression will generally have a convergence problem along the boundary edges
and cannot be differentiated term-by-term except for a few simple boundary con-
ditions (see Sect. 2.1.1). These difficulties can be overcame by using the modified
Fourier series. A weak form solution procedure which combining the modified
Fourier series and the Rayleigh-Ritz method is given below step-by-step.



2.3 Rayleigh-Ritz Method (Weak Form Solution Procedure) 59

Taking the previous studied moderately thick laminated rectangular plate
(Fig. 2.4) for example, letting

G'=[A, a, b]"
G'=[B, ¢, d]’
G"=[C, e f]
G'=[D, g h]

Gy _ E, ., T

E. 1] (2.79)

H = [Hy, H,, H,|

where H,,, H,, H,, A to E and a to j are presented in Egs. (2.60) and (2.61).

Therefore, the displacement expressions of the plate can be rewritten in the vector
form as:

u(x,y) = HG"

v(x,y) = HG"

w(x,y) = HG" (2.80)
¢.(x,y) = HG*
¢,(x,y) = HG’

For free vibration analysis, the Lagrangian energy functional (L) of the plate can
be simplified and written in terms of the strain energy and kinetic energy functions
as:

L=T-U,—U, (2.81)

According to Egs. (1.50), (1.51) and (1.54). The kinetic energy and strain energy
functions of the laminated plate are:

’ Iou® + 2Lue, + Lp?
=7 y p dxd 2.82
2 /x /y { +Ipv* + 2o, + 124)5 T Igw? } xdy ( )

U - 1 /b [Kigu® + kjgv® + kigw” + Kby + K}r()(bi]x:o
sp— ) +[
a

K 4 kv + Rw? + K5 7 + K¢l

0
: (2.83)
l/ { [k;‘ouz + k;ovz + k;vowz + K;O‘]ﬁ + K,ioqb_%]yzo }
0

+ '
2 "‘[k;{l“z + &y, v +kyW1W2 + K3, o2 +K;1¢§]y:b
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ox 'y

N2
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2 dydx

2o (3 3) (3) +au (0, + %)’
()w) +2) 4 Ass (¢, +0u)
N S
/ / ()(p ) ( + 2Dy (d¢ + j:) dydx
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0 (3)(8) )0
[ e
- /0 /0 +Bzz( f )( ) +Bzﬁ( b 42 )(dv) dydx (2.84)
+Ble(d¢ ) (()x +¢ ) + B (ﬁd) ) (()X + 3’:)
+Boo (5 + 52) (2 + )
Substituting the displacement expressions of the plate (Eqgs. 2.57 and 2.58) into
the Lagrangian energy functional (Eq. 2.81) and minimizing the total expression of

the Lagrangian energy functional by taking its derivatives with respect to each of
the undetermined coefficients and making them equal to zero

+2A45( ¢

. Z==A,B,C,D,E
OL ) By ey M
g, = O and{m:O,l,...M; n=0,1,...N
Y =a,ceg,i
i— 777g7
o, = 0; m%zzhz n=0,1,..N (2.:85)

. Y =b.d.f,h,j
oL 2y ¥ 0 T
v, =0, a“d{z: 1,2, m=0,1,...M

a total of 5*(M + 1)*(N + 1) + 10¥(M + N + 2) equations can be obtained. They are
summed up in a matrix form as:

(K—™M)G =0 (2.86)

where K is the stiffness matrix of the plate, and M is the mass matrix. Both of them
are symmetric matrices and they can be expressed as

Ku Ko Kiu Kip Kuy
KT K, K, K Kvy

K= Ki-w K\T;w wa wa Kwy (2873)
uy vy wy Xy VY
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M, 0 0 M, 0
0 M, 0 0o M,
M={0 0 M, 0 0
M0 o0 M, 0
0 M 0 0o M,
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(2.87b)

The superscript T represents the transposition operator. The explicit forms of
submatrices in the stiffness matrix K and mass matrix M are listed as follows

// BHT0H+A OHTOH+A al{TaH+
uu ll 0x ()X 16 0 Oy 16 0{ 0

OHT OH
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G is a column vector which contains, in an appropriate order, the unknown
expansion coefficients that appear in the series expansions, namely:

G = [G",G",G",G", " (2.89)

where G”, G*, G, G* and G’ are given in Eq. (2.79). Obviously, the natural
frequencies and eigenvectors can be easily obtained by solving a standard matrix
eigenproblem. Once the coefficient eigenvector G is determined for a given fre-
quency, the displacements of the plate can be determined by substituting the
coefficients into Egs. (2.57) and (2.58).

The modified Fourier series solution procedure derived herein is focused on
rectangular plates, it can readily be used for other laminated structures, such as
beams, cylindrical shells, conical shells, spherical shells and shallow shell, see
Chaps. 3-8.
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Chapter 3
Straight and Curved Beams

Beams, plates and shells are commonly utilized in engineering applications, and
they are named according to their size or/and shape characteristics and different
theories have been developed to study their structural behaviors. A beam is typi-
cally described as a structural component having one dimension relatively greater
than the other dimensions. Specially, a beam can be referred to as a rod or bar when
subjected to tension, a column when subjected to compression and a shaft when
subjected to torsional loads (Qatu 2004). Beams are one of the most fundamental
structural elements. Almost every machine contains one or more beam components,
such as bridges, steel framed structures and building frames. In addition, many
structures can be modeled at a preliminary level as beams. For example, spring
boards, supports of a wind power generation can be treated as cantilever beams, and
a span of an overhead viaduct or bridge can be viewed as a simply supported beam.
In recent decades, laminated beams made from advanced composite materials are
extensively used in many engineering applications where higher strength to weight
ratio is desired, such as aircraft structures, space vehicles, turbo-machines, deep-sea
equipment and other industrial applications. Researches on the vibration and
dynamic analyses of laminated composite beams have been increasing rapidly in
recent decades. A paper which reviewed most of the researches done in years
(1989-2012) on the vibration analysis of composite beams by Hajianmaleki and
Qatu (2013) showed that research articles on the subject during period 2000-2012
are more than twice than those of 1989-2000. Due to the great importance, this
chapter considers the vibration of laminated beams in the framework of classical
thin beam theory (CBT) and shear deformation beam theory (SDBT).

Beams can be straight or curved. Both straight and curved beams are considered
in this chapter. Generally, a straight beam can be considered as a degenerated curved
beam with infinite radius of curvature (zero curvature). This chapter is concerned
with the development of the fundamental equations of laminated curved beams
according to the CBT and SDBT. Equations for the straight beams can be derived by
setting curvatures to zero in those of curved beams. Strain-displacement relations,
force and moment resultants, energy functions, governing equations and boundary
conditions are derived and shown for both theories. Natural frequencies and mode
shapes are presented for straight and curved beams with different boundary
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conditions, lamination schemes and geometry parameters in both strong and weak
forms of the proposed modified Fourier series method. The effects of boundary
conditions, geometry parameters and material properties are studied as well.

3.1 Fundamental Equations of Thin Laminated Beams

Fundamental equations of laminated thin beams are presented in this section in the
framework of classical beam theory. As shown in Fig. 3.1, a laminated curved beam
with uniform thickness A, width b is selected as the model. The beam is charac-
terized by its middle surface, in which R represents the mean radius of the beam and
6y denotes the included angle of the curved beam. To describe the beam clearly, we
introduce the following coordinate system: the a-coordinate is taken along the
length of the beam, and S- and z-coordinates are taken along the width and the
thickness directions, respectively. u, v and w separately indicate the middle surface
displacement variations of the beam in the a, f and z directions. It should be
stressed that this chapter addresses vibrations of laminated beams in their plane of
curvature, therefore, the fundamental equations derived for thin deep shells can be
specialized to those for curved beams by further assuming that the displacement v is
identical with zero and the displacements u and w along the coordinate system are
only functions of the a- and z-coordinates.

3.1.1 Kinematic Relations

Letting o = 6, the Lamé parameters of laminated curved beams can be obtained as
A =R. Introducing the Lamé parameters into Eq. (1.7), the middle surface strain and
curvature change of thin beams are:

Fig. 3.1 Laminated curved beams
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According to the thin beam assumption, the strain at an arbitrary point in the kth
layer of thin laminated beams can be defined as:

g0 = &) + 21y (3.2)

where Z;, < z < Zy,1. Zyy1 and Z; denote the distances from the top surface and the
bottom surface of the layer to the referenced middle surface, respectively.

3.1.2 Stress-Strain Relations and Stress Resultants

Suppose the laminated thin beam is composed of N composite layers which are
bonded together rigidly. And the angle between the principal direction of the
composite material in kth layer and the « axis is denoted by . According to
Hooke’s law, the corresponding stress-strain relations in the kth layer of the beam
can be written as:

{oo}i= Of {eo} (33)

where oy is the normal stress in the 6 direction. The constant Qflfl is the elastic
stiffness coefficient of this layer, which is found from following equations:

Qflfl = Q’l‘1 cos* ¥F
of — E, (3.4)
U = ppap

where E; is modulus of elasticity of the composite material in the principal
direction. u1, and u,; are the Poisson’s ratios. The subscript (11) in Egs. (3.3) and
(3.4) can be omitted but is maintained here for the direct use and comparison with
the thin shell equations presented in Chap. 1. By carrying the integration of the
normal stress over the cross-section results in

h/2 h/2

No=0>b / o,dz My=1D> / 0,2dz (3.5)
—h/2 —n/2
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where Ny is the force resultant and My is the moment resultant. The force and
moment resultant relations to the strains in the middle surface and curvature change

are defined as
No | _ |An Bu & (3.6)
My Bii Dut ||y '

where Ay, B;, and D, are the stiffness coefficients arising from the piecewise
integration over the beam thickness:

N
A =bY 0% (zk1 — @)

k=1
N

B :%/;1 Qlfl(Z%H Zz) (3.7)
N

Dy = %/;1 Qll(l(ZZH Z13<)

Notably, when the beam is laminated symmetrically with respect to its middle
surface, the constants Bj; equal to zero. The above equations are valid for cylindrical
bending of beams (Qatu 2004).

3.1.3 Energy Functions

The strain energy (Uy) of a thin beam during vibration is defined in terms of the
middle surface strains and stress resultants as:

1
Us=5 / {No&y + Moy, } RAO (3.8)
0

Substituting Egs. (3.1) and (3.6) into Eq. (3.8), the strain energy of the beam can be
rewritten in terms of the displacements as:

A Ou +w 2+ Ou Pw )2
1l st 5 W om— =3
U, — 1 / ROO " R R0 R200*) \pap (3.9)

2 2B ou B 0w ﬁ_’_y
0 "\ R200 ~ rReo0?)\ROO " R
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Fig. 3.2 Boundary conditions of thin laminated beams

The kinetic energy (7) of the beam is written as:

r=3 [of (%) +(%) Ja w10
0

where the inertia term are:

k41

N
10:1)2/ prdz (3.11)
k=1
Zk

p* is the mass of the kth layer per unit middle surface area. The external work is
expressed as:

W, = / {qou + q;w}RdO (3.12)
0

where g, and ¢, are the external loads in the € and z directions, respectively.

As described earlier, the general boundary conditions of a beam are implemented
by using the artificial spring boundary technique, in which each end of the beam is
assumed to be restrained by two groups of linear springs (k, and k,,) and one group
of rotational springs (K,,) to simulate the given or typical boundary conditions
expressed in the form of boundary forces and the flexural moments, respectively
(see Fig. 3.2). Specifically, symbols kf;, kf; andKl”; (w = 6y and 6;) are used to
indicate the stiffness of the boundary springs at the boundaries § = 0 and 8 = 6,,
respectively. Therefore, the deformation strain energy (Uy,) stored in the boundary
springs can be written as:

[k -+ kigw? -+ Ky (Dw/RO0)’|
va = =0

1
=— 3.13
2\ + [k + ki + K (w/RO0)| 313)

—6o
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3.1.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thin laminated beams can be
obtained by specializing the governing equations of thin shells to those of thin
laminated beams (i.e. substituting o = 6, A=R, B=1 and R, = R into Eq. (1.28) and
deleting all the terms with respect to ). According to Eq. (1.28), the governing
equations are:

ONg | Qp Ou
- - = =l —
RO R TR (3.14)
Ny L 00y - Pw
R "RoO T 092
where
oMy
=— 3.15
Qo R0 (3.15)
And the general boundary conditions of thin laminated beams are
No+ —kiu=0 No+ 4+ kiu=0
0=0:< Qog—kpw=0 0=0p:4 Qo+kjw=0 (3.16)
—My—Kjpy 2 =0 —My+ K} 2 =0

Alternately, the governing equations and boundary conditions of the considered
beam can be obtained by applying Hamilton’s principle in the same manner as
following describe. The Lagrangian function (L) of thin laminated beams can be
expressed in terms of strain energy, kinetic energy and external work as:

L=T—-U—Up+W, (3.17)

Substituting Egs. (3.9), (3.10), (3.12) and (3.13) into Eq. (3.17) and applying
Hamilton’s principle:

t
5/ (T —Us— Uy + We)dt = 0 (3.18)
0

yields:
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Ou 85u Ow 9w
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Integrating by parts to relieve the virtual displacements du and ow, we have

0—//{%+R( +qo — 10882>}5ud0dt
0w
Ng+—+R q; — 1032 owdOdt

My M, (3.20)
(NF?"' r ko >5u|90 - <N9+R_k90”>5”|0

t
» Ow '\ 06w
_/ * <_M"+K‘“ Rc’%)) 90
0

ow \ 0w w
+ <M9 + Ko R80> R0 lo = (Qo — kjow) ol

+ (Qo + kyyw)owlg, pdt

Since the virtual displacements du and ow are arbitrary, the Eq. (3.20) can be
satisfied only is the coefficients of the virtual displacements are zero. Thus, the
governing equations and boundary conditions of thin laminated beams are obtained,
which is the same as those presented in Eqs. (3.14) and (3.16). For general curved
beams and asymmetrically laminated straight beams, each boundary can exist two
possible combinations for each type of classical boundary conditions (free, simply-
supported, and clamped). At each boundary of 6 = constant, the possible combi-
nations for each classical boundary condition are given in Table 3.1.

By using the artificial spring boundary technique, taking edge 8 = 0 for example,
the F, S (simply-supported), SD (shear-diaphragm) and C (completely clamped)
boundary conditions which are of particular interest can be readily realized by
assigning the stiffness of the boundary springs at proper values as follows:
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Table 3.1 Possible classical

boundary conditions for thin Boundary type ‘ Conditions

laminated curved beams Free boundary conditions
F No+% = Qo =My =0
F2 u=Qyp=My=0
Simply supported boundary conditions
S u=w=My=0
SD No+R=w=My=0
Clamped boundary conditions
C u=w=2-=0
C2 N+%;)_W—Rd() 0

F: kly=kpy=Kjy=0
SD: kjy, = 10'D, ki = K}, =0
S: ki =kjy =10'D, Kjjy =0
C: ky = k()o*Koo*107

(3.21)

where D = E;h/12(1 — L1ottn1) 1s the flexural stiffness of the beam.

Figure 3.3 shows the variations of the fundamental frequency parameters AQ
(where AQ is defined as the difference of the fundamental frequency to that of the
elastic restraint parameter ' = 1073, namely, AQ=f(T) —f (107°D)) versus restraint
parameter I of a steel (E = 210 GPa, u = 0.3, p = 7800 kg/m") thin curved beam
with different geometry parameters. The beam is clamped at boundary 6 = 6, and
elastically supported at boundary 6 = 0 (i.e., kj, = kj, = Ky, = I'D). According to
Fig. 3.3, we can see that the change of the restraint parameter I" has little effect on

(a) (b)
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i IC
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107 10° 10*° 10* 10°  10° 10° 10" 10° 10 10° 10’
Restraint Parameter:T" Restraint Parameter: T’

Fig. 3.3 Variation of fundamental frequency parameter AQ versus elastic restraint parameters I"
for a thin beam (R = 1) with different geometry parameters (a) 6y = n/4; (b) h/R = 0.02
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frequency parameter AQ when it is smaller than 10°. However, when it is increased
from 10° to 10°, the frequency parameters increase rapidly. Then, the frequency
parameters approach their utmost and remain unchanged when I' approaches
infinity. In such a case, the beam can be deemed as clamped in both ends. In
conclusion, by assigning the stiffness of the boundary springs at 10’D, the com-
pletely clamped boundary conditions of a beam can be realized.

3.2 Fundamental Equations of Thick Laminated Beams

In the CBT, the effects of shear deformation and rotary inertia are neglected. It is
only applicable for thin beams. For beams with higher thickness ratios, the
assumption that normals to the undeformed middle surface remain straight and
normal to the deformed middle surface and suffer no extension of the classical beam
theory should be relaxed and both shear deformation and rotary inertia effects
should be included in the calculation. In this section, fundamental equations of
laminated beams in the framework of shear deformation beam theory are developed
and the deepness term (1 + z/R,) is considered in the formulation.

3.2.1 Kinematic Relations

Assuming that normals to the undeformed middle surface remain straight but not
normal to the deformed middle surface, the displacement field in the beam space can
be expressed in terms of middle surface displacements and rotation component as:

U(0,2) = u(0) +z¢0(0), W(0,2) = w(0) (3.22)

where u and w are the displacements at the middle surface in the § and z directions.
¢y represents the rotation of transverse normal, see Fig. 3.1. Letting a = 6, A = R and
R, = R and specializing Eqs. (1.33) and (1.34) to those of beams, the normal and
shear strains at any point of the beam space can be defined in terms of middle
surface strains and curvature change as:

PO
" +/R)
Yoo =
(1 +2/R)"

88 + Z}{())
(3.23)

where &) and ng denote the normal and shear strains in the reference surface. y, is
the curvature change. They are defined in terms of the middle surface displacements
and rotation component as:
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ou w ol
o_ Y W g — 270
“=Roo TR % Roo
ow u
ng:ﬁiﬁJr%

(3.24)

3.2.2 Stress-Strain Relations and Stress Resultants

According to Hooke’s law, the corresponding stress-strain relations in the kth layer
of thick laminated curved beams can be written as:

@l e
o f, |0 0% | e Sy '

where o, represents the normal stress, 7, is the shear stress. The elastic stiffness

coefficients Qj‘l (i =1, 5) are defined by following equations:

— E
Q’fl = Q’fl cos* 9¢ and Q’fl L N
1= oty (3.26)

k 2 gk k
0% =055 cos® 9" and 05=G3

where E; is the modulus of elasticity of the composite material in the principal
direction. u;, and u,; are the Poisson’s ratios. G;3 is the shear modulus. b rep-
resents the included angle between the principal direction of the layer and the
f-axis. By carrying the integration of the normal stress over the cross-section, the
force and moment resultants can be obtained:

h/2 h/2
N() _ agg _
{Qo] =b / L(}Z]dz My=b / o9zdz (3.27)
—h/2 —h/2

where Qg represents the transverse shear force resultant. Performing the integration
operation in Eq. (3.27), the force and moment resultants can be written in terms of
the middle surface strains and curvature change as:

0

Ny Ay By O &
Mo | =1 By Dy 0 Xo (3.28)
or 0 0 Ass 0

Yoz



3.2 Fundamental Equations of Thick Laminated Beams 73

The stiffness coefficients A, Ass, Bi; and Dy, are defined as follows:
N Rtz
A =RbY 0% In —*)
B =1 i ( R~z
N R+ 2z
Ass = KRb> 0s1n *)
55 R 0Oss (R+Zk
N R+ Zps1
_ y _ _ +
Bi1 = Rb E Qn[(ZkH %) Rln< R+ )]

R+z
Dy = RbZQ [ Tt = %) — 2R(@ — %) + R In <r];’:l>]

(3.29)

in which Kj is the shear correction factor, typically taken at 5/6 (Qatu 2004; Reddy
2003).

3.2.3 Energy Functions

The strain energy (Uy) of thick laminated curved beams during vibration can be
defined as

1
U, = 3 / {No&) + Moy + Qoyp, } RAO (3.30)
0

Substituting Egs. (3.24) and (3.28) into Eq. (3.30), the strain energy function of
thick curved beams can be rewritten as:

<8u +W>2+ZB Jd¢y ( +w>
il 5ant %
ROO R "ROO\RDO " R RO

1 A
2
0 +D11<8¢9> +A55(6W - ¢0>

ROO ROO R

(3.31)

The corresponding kinetic energy (7) function of the beams is written as:

1 Ou oudpy on ow
T= 2/{10(8> +2I — 5 B +1 (8t +Iy 5 Rd0 (3.32)
0
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where the inertia terms are defined as:

(3.33)

o, 11, 1>, I5]

N
bz / "1, z,2%,2°)dz

in which p* is the mass of the & th layer per unit middle surface area. The external
work is expressed as:

We = / {qou + g:w + mopy}RAO (3.34)
0

where gy and g, denote the external loads. my is the external couples in the middle
surface of the beam. Using the artificial spring boundary technique similar to that
described earlier, symbols kf;, k&f and Kﬁ (w = 6y and ;) are used to indicate the
rigidities (per unit length) of the boundary springs at the boundaries § = 0 and
0 = 8, respectively, see Fig. 3.4. Therefore, the deformation strain energy (Us,)
stored in the boundary springs during vibration can be defined as:

1

Usp 2

{ Koot + Kiow?® + KioF] o [kt + Kjiw? + K§u63], | (339)

3.2.4 Governing Equations and Boundary Conditions

Specializing the governing equations and boundary conditions of the thick shell
(Eq. 1.59) to those of thick beams, we have

ONyg Qy _—821/! _82¢9
R786+?+q0*10¥+11 o2
N() 8Q0 —aZW
_0v, Zx0 . Niid 3.36
R TrRoo =T gp (3.36)
M BPu P,

Oyt my =S4T,

ROO or? or?
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Middle surface

Fig. 3.4 Boundary conditions of a thick laminated beam

Similarly, according to Eq. (1.60), the general boundary conditions of thick laminated
curved beams are written as:

No — kjou =0 No +kjju=20
0=0:Q Qo—kjyw=0 , 0=0p:{ Qp+kjw=0 (3.37)
My — Kiypg =0 My + K} g =0

Alternately, the governing equations and boundary conditions for the thick
beams can be obtained by applying Hamilton’s principle in the same manner as
described in Sect. 3.1.4.

For thick curved beams or unsymmetrically laminated straight beams, each
boundary exits two possible combinations for each classical boundary condition. At
each boundary, the possible combinations for each classical boundary condition are
given in Table 3.2.

In the framework of artificial spring boundary technique, taking edge ¢ = 0 for
example, the frequently encountered boundary conditions F, S, SD and C can be
readily realized by assigning the stiffness of the boundary springs at proper values
as follows:

Table 3.2 Possible classical

boundary conditions for thick Boundary type | Conditions

curved beams Free boundary conditions
F Ng=Qp=My=0
F2 u=Qp=My=0
Simply supported boundary conditions
S u=w=My=0
SD No=w=Mp=0
Clamped boundary conditions
C u=w=q¢y=0
c2 No=w=¢y=0
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u w 0
Fo kpy = koo = Ko =0
SD: ki =10'D, kiy =K5 =0
S: Kiy=kiy=10"D, K}y =0
u w 0
C: oo = koo = Kygo = 10'D

(3.38)

3.3 Solution Procedures

With above fundamental equations and modified Fourier series method developed
in Chap. 2, both strong and weak form solution procedures of laminated beams with
general boundary conditions are presented in this section. To fully illustrate the
modified Fourier series solution procedure, we only consider the free vibration
analysis of laminated beams with general boundary conditions based on the SDBT.
For other beam theories, the corresponding solution procedures can be obtained in
the same manner.

Combining Eqgs. (3.24), (3.28) and (3.36), it is obvious that the displacements
and rotation components of thick laminated curved beams are required to have up to
the second derivative. Therefore, regardless of boundary conditions, each dis-
placements and rotation component of a laminated beam can be expanded as a one-
dimensional modified Fourier series as

M
u(0) = ZAm cos Anl + a1 P1(0) + axP2(0)

m=0

M
w(0) = By cos Al + b1 Py(0) + baP,(0) (3.39)

m=0

M
$(0) = Cucos A + 1 P1(0) + c2P2(0)

m=0

where 4,, = mn/6y. P1(0) and P,(#) denote the auxiliary polynomial functions
introduced to remove all the discontinuities potentially associated with the first-
order derivatives at the boundaries then ensure and accelerate the convergence of
the series expansion of the beam displacements and rotation component. M is the
truncation number. A,,, B,, and C,, are the expansion coefficients of standard cosine
Fourier series. a;, a», by, by, ¢; and ¢, represent the corresponding expansion
coefficients of auxiliary functions P;(d) and P,(#). These two auxiliary functions
are defined as

Py (0) = 6)<9—0— 1)2 P5(0) :3-2(6%— 1) (3.40)
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It should be stressed that in the CBT cases, the displacements of a laminated beam
are required to have up to the fourth-order derivatives. In such case, the following
four auxiliary polynomial functions are introduced to remove all the discontinuities
potentially associated with the first-order and third-order derivatives at the
boundaries (Jin et al. 2013a).

_9()0 . 7'[0 00 . 37[0

P] (0) = an SIH(Z_HO) — 127 SIH(Z—QO)
90 n0 0 3n0
P2(0) = —4—7?005(2—90) — éCOS(Z—QO)

6 70, 6 30 (3.41)

P3(0) = ;Sl (2—00) — ﬁsln(z—eo)
6 om0 62  3n0
P4(0) = —n—gcos(z—eo) - 3—7?3005(2—90)

3.3.1 Strong Form Solution Procedure

Substituting Egs. (3.24) and (3.28) into Eq. (3.36) the governing equations of
laminated curved beams including shear deformation and rotary inertia effects can
be rewritten as:

Ly Lpp L My 0 M u 0
L21 L22 L23 — 602 0 M22 0 w =10 (342)
Ly Lz L33 M3y 0 Mss o 0

where the coefficients of the linear operator (M;; = Mj;) are given below:

_An P Ass _An 0 Ass 9
TR 92 R 2T R00T R 00
Lo Bu® As o And As O
BT R 92 TR 2 T TRZ90 R 00

Al Ass O B 0  Ass O
L,—_ A, 4s 0, Buo A5 0
2= TR TR BT TR R 00 (3.43)
By 8  Ass B 0 Ass 0
Ly=ouf By, Pud A0
R? 90 R R200 R 00
Dy 02 _
L33 — Ass, My = My = -1

o =
M3 = M3 = -1, My = -1
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Rewriting the modified Fourier series expressions (Eq. 3.39) in the matrix form as:

u(0) = Hy,A+H,a
w(0) = HyB-+H,b (3.44)
¢0(0) = chC+HafC

where
= [cos Ao0, . ..,c08 A0, . . ., cos Ay 0]
Hy = [P1(6), P ( )]
A=A ... Am .. Ay a=[a,a)" (3.45)
B=[Bo,....Bu,...Bu]" b=[b,b]"
C=1[Co....Cn... Cu]' €= lcr, 0]

where superscript T represents the transposition operator. Substituting Eq. (3.44)
into Eq. (3.42) results in

A a A a
Le|B| +Ly|(b| -0 | Mg [B|+My|b|]=0 (3.46)
C c C c

where

(L H; LH; Li3H;
Li=|LuH; LpH; LyH; |(i=sc,af)
| L3 H;  LypH;  LyzH;

L (3.47)
My H; 0 M3H;
M=(0 MyH; 0 (i = sc,af)
| M5 H; 0 M33H;

Similarly, substituting Eq. (3.44) into Eq. (3.37), the boundary conditions of
thick laminated curved beams can be rewritten as
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A 00 a
L% L,
[L‘fﬁ} B|+ L"{. b| =0 (3.48)
sc C af c
where
(A OH; Ay B OH; i
& o0 footi T Hi R 00
A AssOH; .
L?O - —%Hl %% - k()OHi A55Hi (l = SC, af)
By OH; B D, OH; 0
i) Puy, PuOh gy,
L R 90 R R 90 %o
_All c’)H, u All Bll c')H, i
& o0 roti R 00
A Ass OH; .
L' = | -=%H, = ap TkiH AssH, (i = sc,af)
B 0H; B Dy OH; 0
—_— —H; ——+ K, H;
| R 90 R R o0 R,

(3.49)

Thus, the relation between the expansion coefficients of standard cosine Fourier
series (A, B and C) and those of corresponding auxiliary functions (a, b and ¢) can
be determined by the following equation:

a lL())g
b =—| %
c L“f

[Lf? } 11; (3.50)
C

In order to derive the constraint equations for the unknown expansion coeffi-
cients, all the sine terms, the auxiliary polynomial functions and their derivatives in
Eq. (3.46) are expanded into Fourier cosine series then collecting the similar terms,
i.e., multiplying Eq. (3.46) with H, in the left side and integrating it from 0 to 6,
with respect to 4, we have

A a A a
L. |B| +Ly|b| —0’| My |B| +My|b| ]| =0 (3.51)
C c C c
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where

00
tsc = / HeLs‘ch
0

00
L, — / H,Lyd0
0

00 (3.52)
sc — / HeMscdH
0

=<l

00
M, — / H,M,d0
0
H, = H!, = [cos 400, . . .,c0s 2,0, .. ., cos /IMG]T
Finally, combining Egs. (3.50) and (3.51) results in
(K-o’M)[A B C]'=0 (3.53)

where K is the stiffness matrix and M is the mass matrix. They are defined as

-1

LHO L90
T I af sc
K= LSC a Laf L@} Lf)l
a sc 54
o . LZ}) -1 L90 (3 5 )
M= Msc — Maf LE)} Lm

Thus, the natural frequencies and modes of the beams under consideration can be
determined easily by solving the standard characteristic equation.

3.3.2 Weak Form Solution Procedure
(Rayleigh-Ritz Procedure)

Instead of seeking a solution in strong form as described in Sect. 3.3.1, all the
expansion coefficients can be treated equally and independently as the generalized
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coordinates and solved directly from the Rayleigh—Ritz technique, which is the
focus of the current section.

For free vibration analysis, the Lagrangian energy functional (L) of beams can be
defined in terms of the strain energy and kinetic energy functions as:

L=T-U—U, (3.55)

Substituting Eqgs. (3.31), (3.32) (3.35) and (3.39) into Eq. (3.55) and taking its
derivatives with respect to each of the undetermined coefficients and making them
equal to zero

OL E:AmaBm»Cm

——==0 and

0= m=0,1,2,..M (3.56)
OL

8_‘1’:0 and Y =ay,a,b1,bs,c1,02

a total of 3*(M + 3) equations can be obtained and they can be summed up in a
matrix form as:

(K—’M)G =0 (3.57)

where K is the stiffness matrix for the beam, and M is the mass matrix. They are
defined as

Kuu Kuw Kuo

K= Kl{w K., Ky

K/, K, K

L %up e 0 (3.58)
Muu 0 Mu()

M=1|0 M, 0

i M, 0 Myo

The explicit forms of submatrices K;; and M;; in the stiffness and mass matrices are
listed in follow
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d0 + ki H H|g—o + kfj H'H|9_go

|
=
\
%

=

‘R 00 00

00
M, =M, = / TLRHHdO

0
00

M,y = / I,RH"H40

0
00

My = / LRHHAO
0
(3.59)

where
H=[H,, Hy|=|[cosAb,...,cosiyb,... cosiyb, P1(0),P(0)] (3.60)

G is a column vector which contains, in an appropriate order, the unknown
expansion coefficients:

G=[A a B b C ¢ (3.61)

Obviously, the vibration results can now be easily obtained by solving a standard
matrix eigenproblem.



3.4 Laminated Beams with General Boundary Conditions 83

3.4 Laminated Beams with General Boundary Conditions

Vibration results of laminated straight and curved beams with general boundary
conditions are given in this section. The isotropic beams are treated as special cases
of laminated beams in the presentation. Natural frequencies and mode shapes for
straight and curved beams with different boundary conditions, lamination schemes
and geometry parameters are presented using both strong form and weak form
solution procedures. The convergence of the solutions is studied and the effects of
shear deformation and rotary inertia, deepness term (1 + z/R) and beam parameters
(boundary conditions, lamination schemes, geometry parameters and material
properties) are investigated as well.

For the sake of simplicity, character strings CBT,,, CBT,, SDBT,, and SDBT
are introduced to represent the beam theories and methods used in the calculation
(where subscripts w and s denote weak form and strong form solution procedures,
respectively). In addition, a two-letter string is applied to indicate the end conditions
of a beam, such as C-F denotes a beam with C and F boundary conditions at the
boundaries & = 0 and 8 = 6, respectively. Unless otherwise stated, the natural
frequencies of the considered beams are expressed in the non-dimensional

parameters as Q = wL}+/12p/E h? and the material properties of the beams are
given as: ujp = 0.25, G5 = 0.5E, (where Ly represents the span length of a curved
beam, i.e., Ly = R6y).

3.4.1 Convergence Studies and Result Verification

Table 3.3 shows the convergence studies made for the first six natural frequencies
(Hz) of a moderately thick, two-layered laminated ([0°/90°]) curved beam with
completely free (F-F) and clamped (C-C) boundary conditions. The geometry and
material constants of the beam are given as: R = 1 m, §, = 1, /R = 0.1,
E> = 10 GPa, E\/E, = 10, uj» = 0.27, Gy3 = 5.5 GPa, p = 1,700 kg/m’. Both the
SDBT,, and SDBT, solutions for truncation schemes M = 8, 9, 14, 15 are included
in studies. It is obvious that the modified Fourier series solution has an excellent
convergence, and is sufficiently accurate even when only a small number of terms
are included in the series expressions. In addition, from the table, we can see that
the SDBT,, solutions converge faster than the SDBT; ones. Unless otherwise stated,
the truncation number (M) of the displacement expressions will be uniformly
selected as M = 15 in the following calculation and the weak form solution pro-
cedure will be adopted in the calculation.

In Table 3.4, comparisons of the frequency parameters Q for a two-layered,
unsymmetrically laminated ([90°/0°]) curved beam with SD-SD boundary condi-
tions are presented. The geometric properties of the layers of the beam are the same
as those used in Table 3.3 except that the thickness-to-length ratio is given as
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Table 3.3 Convergence of the first six natural frequencies (Hz) for a [0°/90°] laminated curved
beam with F-F and C-C boundary conditions (R =1 m, §, = 1, h/R = 0.1)

Boundary M Mode number
conditions 1 | 2 | 3 | 4 | 5 | 6
F-F SDBT,,

8 |123.88 [314.88 [549.83 81320 [895.85 |1099.3
9 12388 |314.84 54978 |812.30 |895.63 |1098.3
14 |123.88 |314.81 [549.63 |811.86 |895.58 |1096.5
15 |123.88 31481 [549.63 |811.84 |895.57 |1096.5
SDBT,
8 |12460 [31699 [55341 |821.66 |897.25 |1109.4
9 12459 [31620 55242 |[817.25 (89632 |11063
14 |12401 [315.15 [55023 [813.00 |895.80 |1098.0
15 |12401 [315.09 [550.11 |812.80 |895.72 |1097.7
c-C SDBT,,
8 |262.54 (27929 |51427 72346 |894.04 | 990.46
9 (26253 [27927 |514.07 |72331 [893.95 | 987.46
14 |26252 [27921 |513.96 |722.71 |893.93 | 986.40
15 |26252 27921 |[513.95 |722.71 |893.93 | 986.34
SDBT,
8 |262.84 [28027 |[517.05 72992 [89550 |1005.6

9 26274 [279.86 51623 [727.91 [894.55 | 996.79
14 |26257 27936 |514.43 |723.68 |894.11 | 988.60
15 |26256 27933 |514.34 |723.58 |894.04 | 987.94

Table 3.4 Comparison of the frequency parameters Q for a [90°/0°] laminated curved beam with
SD-SD boundary conditions (R =1 m, 6y = 1)

hiLg Qatu (1993) SDBT,,

1 2 3 1 2 3
0.01 4.0094 18.000 41.286 4.0179 18.042 41.388
0.02 3.9885 17.839 40.681 3.9969 17.878 40.770
0.05 3.9109 17.089 37.667 3.9190 17.124 37.738
0.10 3.7419 15.329 31.300 3.7496 15.357 31.349
0.20 3.3312 11.808 21.481 3.3387 11.833 21.523

h/Ly=0.01, 0.02, 0.05, 0.1 and 0.2 and the elementally material parameters of the
layers are: E\/E, = 15. From the table, we can see that the present solutions agree
very well with exact solutions published by Qatu (1993). The differences between
the two results are very small, and do not exceed 0.27 % for the worst case. To
further prove the validity of the present method, Table 3.5 lists comparisons of the
frequency parameters Q for a two-layered, unsymmetrically laminated ([90°/0°])
curved beam with various boundary conditions. The layers of the beam are thought
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Table 3.5 Comparison of the frequency parameters € for a [90°/0°] laminated curved beam with
different boundary conditions (#/Ly = 0.01, R/Ly = 2, E|/E, = 15)

B.C. Theory Mode number
1 2 3 4 5
S-S Qatu and Elsharkawy 18.434 37.935 | 74.549 99.888 143.10
(1993)
SDBT,, 18.448 37910 |74.303 99.435 142.01
CBT,, 18.473 38.009 |74.703 99.905 142.85
SD-SD | Qatu and Elsharkawy 4.5173 18.593 | 42.050 74.884 | 117.92
(1993)
SDBT,, 4.5249 |18.606 | 42.009 74.632 | 116.37
CBT,, 4.5268 18.631 |42.137 75.037 117.32
Cc-C Qatu and Elsharkawy 29.015 51.348 | 94.637 111.64 149.21
(1993)
SDBT,, 28.973 51.167 93982 |111.02 147.71
CBT,, 29.076 51.436 |94.833 111.35 149.17
C2-C2 Qatu and Elsharkawy 10.445 29.145 |57.291 94.837 144.65
(1993)
SDBT,, 10.255 29.028 [56.995 94.103 140.25
CBT,, 10.467 29.205 |57.406 95.008 141.98

to be of equal thickness and made from material with following properties:
hiLg = 0.01, R/ILy = 2, E|/E, = 15. The Ritz solutions obtained by Qatu and
Elsharkawy (1993) by using the classical beam theory are selected as the bench-
mark solutions. A consistent agreement between the present results and the refer-
ential data is seen from the table. Furthermore, comparing the sixth frequencies of
the beam, we can see that the CBT solutions are less accurate in the higher modes.
The maximum difference (in the sixth frequency parameters) between the SDBT,,
and CBT,, solutions can be 1.67 % for the worst case.

3.4.2 Effects of Shear Deformation and Rotary Inertia

In this section, effects of the shear deformation and rotary inertia which are neglected
in the CBT will be investigated. Shear deformation was first applied in the analysis
of beams by Timoshenko (1921). This effect is higher in composite materials since
the longitudinal to shear modulus ratio is much higher in composites than metallic
materials (Hajianmaleki and Qatu 2012b). Figures 3.5 and 3.6 show the differences
between the lowest three frequency parameters Q obtained by CBT,, and SDBT,, for
an isotropic curved beam and a two-layered, [0°/90°] laminated curved beam with
different boundary conditions and thickness-to-span length ratios, respectively. Both
F-F and C-C boundary conditions are shown in each figure. The geometric and
material constants of the layers of the two beams are: R/Ly = 1, E|/E, = 1(Fig. 3.5)
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Fig. 3.5 Differences between the lowest three frequency parameters Q obtained by CBT,, and
SDBT,, for an isotropic curved beam (R/Ly = 1, E\/E, = 1)

and E|/E, = 15 (Fig. 3.6). The thickness-to-span length ratio h/Ly is varied from
0.001 to 0.2, corresponding to very thin to thick beams. From the figures, we can see
that the effects of the shear deformation and rotary inertia increase as the orthotropy
ratio (E/E,) increases. Furthermore, when the thickness-to-span length ratio A/Ly is
less than 0.02, the maximum difference between the frequency parameters
obtained by CBT,, and SDBT,, is less than 4 %. However, when the thickness-to-
span length ratio h/L, is equal to 0.1, this difference can be as many as 11.5 % for the
isotropic curved beam and 32.3 % for the [0°/90°] laminated one. As expected, it can
be seen that the difference between the CBT,, and SDBT,, solutions increases with
thickness-to-span length ratio increases. Figure 3.6 also shows that the maximum
difference between these two results can be as many as 50.4 % for a thickness-to-
length ratio of 0.2. In such case, the CBT,, results are utterly inaccurate. This
investigation shows that the CBT only applicable for thin beams. For beams with
higher thickness ratios, both shear deformation and rotary inertia effects should be
included in the calculation. These results can be used in establishing the limits of
classical shell and plate theories as well.
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Fig. 3.6 Differences between the lowest three frequency parameters Q obtained by CBT,, and
SDBT,, for a [0°/90°] laminated curved beam (R/Ly = 1, E\/E, = 15)

3.4.3 Effects of the Deepness Term (1 + Z/R)

Considering Eq. (3.23), the deepness term (1 + z/R) introduces curvature com-
plexity in the kinematic relations. When the thickness of the beam, &, is small
compared to its radius of curvature R, i.e., #/R < <1 and |z/R| < <1, then deepness
term (1 + z/R) approximately equals to 1. In such case, the shear deformation
shallow beam theories (SDSBT) can be obtained from the general SDBT (Khdeir
and Reddy 1997; Qatu 1992). Qatu (2004) pointed out that this term should not be
neglected in the analysis especially when the span length-to-radius ratio is more
than 1/2. In this section, effects of the deepness term (1 + z/R) will be investigated.

Neglecting the deepness term and including the effects of shear deformation and
rotary inertia, the normal and shear strains at any point of a beam can be rewritten as:
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& = 83 +Z%e Ve = ng (3.62)

where the normal and shear strains in the reference surface (82 and ng) and the
curvature change (yg) are given as in Eq. (3.24). Thus, the corresponding stress-
strain relations in the kth layer of a laminated beam can be written as:

IR IR
Toz ) & 0 lecs Yoz )« '

By carrying the integration of the stresses over the cross-section, the force and
moment resultants (Ng, Qg and My) become:

Ng An B 0 &)
My| = |Bu Dy O %o (3.64)
Qo 0 0  Ass| |7

The stiffness coefficients A, By, and Dy, are given in Eq. (3.7) and Ass is defined as:

N —_
Ass = Kby Ok (i1 — ) (3.65)
k=1

where K; is the shear correction factor, typically taken at 5/6.

Substituting Eq. (3.64) into the energy functions of the beams (see, Sect. 3.2.3)
and applying the Ritz solution procedure in the similar manner described before
(see, Sect. 3.3.2), the vibration solutions of laminated beams in the framework of
SDSBT can be obtained (represent by SDSBT,,). It should be stressed that the
inertia terms of the beam in the SDSBT are defined as:

I=Iy
L=,
L=h (3.66)

2]
N k+1

o, I, ) = Z/ [1,z, z dz
k=1

Figures 3.7and 3.8 show the differences between the lowest three non-dimen-
sional frequency parameters Q obtained by SDBT,, and SDSBT,, for a two layered,
unsymmetrically laminated [0°/90°] curved beam and an isotropic curved beam
with different span length-to-radius and thickness-to-radius ratios, respectively. The
‘difference’ is defined as: difference = (SDSBT,, — SDBT,,)/SDBT,,*100 %. The
geometric and material constants of the layers of the beam are: R =1, E\/E; = 1 or
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Fig. 3.7 Differences between the lowest three frequency parameters Q obtained by SDBT,, and
SDSBT,, for a [0°/90°] laminated curved beam (R = 1, E|/E, = 15)

15 (laminated). The beams are assumed to be C-F supported. Two span length-to-
radius ratios, i.e., Lg/R = 0.5 and 5, corresponding to shallow and deep curved
beams are shown in each figure. The thickness-to-radius ratio A/R is varied from
0.001 to 0.1. As expected, the effects of the deepness term increase as the thickness-
to-radius ratio increases. The included angle 8, of the curved beam is the span
length-to-radius ratio. This means that the span length-to-radius ratio of 5 indicates
a very deep curved beam with an included angle of 286.48°, which are more than
three quarters of the closed circle. In this case, the difference between the frequency
parameters Q obtained by SDSBT,, and SDBT,, is very small and the maximum
difference is less than 0.41 % for the worst case. In addition, it is clear from the
figures that the effects of the deepness term vary with mode number and span
length-to-radius ratio and orthotropy ratio (E1/E,). In the case of span length-to-
radius ratio Ly/R = 5, the SDBT,, results are generally higher than those of
SDSBT,,. These results can be used in establishing the limits of shell theories and
shell equations.
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Fig. 3.8 Differences between the lowest three frequency parameters Q obtained by SDBT,, and
SDSBT,, for an isotropic curved beam (R = 1, E\/E, = 1)

3.4.4 Isotropic and Laminated Beams with General
Boundary Conditions

In this section, isotropic and laminated beams with various boundary conditions
including the classical restraints and the elastic ones will be studied. Only the free
vibration solutions (natural frequencies and mode shapes) based on SDBT and
weak form solution procedure are considered in this section.

Table 3.6 shows the frequency parameters Q obtained for a two-layered, [0°/90°]
laminated curved beam with different thickness-to-radius ratios and various clas-
sical boundary conditions. The geometry and material parameters used in the study
are: R = 1, 6y = 2n/3, E\/E, = 15. And the thickness-to-radius ratios performed in
the study are #/R = 0.01, 0.05 and 0.1, corresponding to thin to moderately thick
curved beams. The first observation is that the frequency parameters for curved
beams with F-SD boundary conditions (no constraints on the in-plane displace-
ment) are higher than those of curved beam with F-S boundary conditions.
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Fig. 3.9 The lowest three mode shapes for a moderately thick (h/R = 0.05), [0°/90°] laminated
curved beam with different boundary conditions (R = 1, 8, = 2n/3)

The second observation is that the fundamental frequency parameter of the beam
increases with thickness-to-radius ratio increases when subjected to F-F, F-S, F-SD,
S-S and SD-SD boundary conditions. In other cases, the beam frequency param-
eters decrease with thickness-to-radius ratio increases. In Fig. 3.9, the lowest two
mode shapes for the beam with thickness-to-radius ratio #/R = 0.05 are presented
for S-S, S-C and C-C boundary conditions, respectively. These mode shapes are
determined by substituting the related eigenvectors into the assumed displacement
expansions.

Table 3.7 studies the effects of the orthotropy ratio (E,/E;) on the frequency
parameters Q for a two-layered, [0°/90°] laminated curved beam with different
boundary conditions. The geometry parameters used in the investigation are: R = 1,
6y = 2n/3, h/R = 0.05. Four different orthotropy ratios considered in the investi-
gation are: E|/E, = 1, 10, 20 and 40. From the table, we can see that the increment
in the orthotropy ratio results in decreases of the frequency parameters.

Since the effects of both shear deformation and rotary inertia and the deepness
term are included in the SDBT, therefore, it can be applied to predict vibration
characteristics of moderately thick curved beams with arbitrary included angles.
Table 3.8 shows the frequency parameters Q) obtained for a two-layered, [0°/90°]
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Fig. 3.10 The lowest two mode shapes for a [0°/90°] laminated curved beam with F-C boundary
conditions and different included angles (R = 1, A/R = 0.05)

laminated curved beam with different included angles and various combinations of
classical boundary conditions. The geometry and material parameters of the beam
are assumed to be: R =1, #/R = 0.05, E,/E, = 15. It can be seen from the table that
in all the boundary condition cases, all the frequency parameters of the beam
decrease with included angle increases. It may be attributed to the stiffness of the
curved beam reduces when the included angle increases. In order to enhance our
understanding of the effects of the included angle, Fig. 3.10 presents the lowest two
mode shapes of the beam with F-C boundary conditions. From the figure, we can
see that the influence of the included angle on the mode shapes of the beam varies
with mode sequence.
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Fig. 3.11 Variation of frequency parameters Q versus radius-to-span length ratio (R/L) for a [0°/90]
laminated curved beam with S-S and C-C boundary conditions (4#/Ly = 0.05)

Then, influence of the radius-to-span length ratio (R/Ly) on the frequencies of a
[0°/90°] laminated curved beam (E,/E, = 15) is investigated. The beam is made
from composite layers with following geometry constants: Ly, = 1, h/Ly = 0.05.
Figure 3.11 shows variations of the lowest three frequency parameters Q versus the
radius-to-span length ratio for the beam with S-S and C-C boundary conditions.
Increasing the radius-to-span length ratio from 0.2 (very deep curved beam) to 10
(shallow curved beam), the effects of the radius-to-span length ratio are very large
for the frequency parameters. We can see clearly that the frequency parameter trace
of the fundamental modes climb up and then decline, and reach its crest around
R/Ly = 2. The same tendency can be seen in the second and third modes as well
while the second and third ones reach their crests around R/Ly =1 and R/Ly = 0.8.
The similar characteristics can be found in the right subfigure. When the radius-
to-span length ratio is increased from 10 to 100, increasing the radius-to-span length
ratio has very limited influence on the frequency parameters due to the curved beam
is very shallow and its vibration behaviors approximate to a straight beam.

Finally, Table 3.9 shows the first three frequency parameters Q for a [—45°/45°]
laminated curved beam (Ly = 1, h/Ly = 0.05, E|/E, = 15) with different radius-to-
span length ratios and elastic boundary conditions. The radius-to-span length ratios
included in the calculation are 1/m, 4/n and ©0. The radius-to-span length ratio of
1/m and 4/ correspond to curved beam with an included angle of m and w/4,
respectively. The last radius-to-span length ratio of 00 corresponds to a straight
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Table 3.9 The first three frequency parameters Q for a [-45°/45°] laminated curved beam with
different radius-to-span length ratios and S-Elastic boundary conditions (Ly = 1, h/Ly = 0.05)

R/Ly r ke, =T, k¥, =107D, K{, =0 K =0, ki =10"D, K4 =T
1 2 3 1 2 3
1n 107'D | 04465 |12.851 [36.277 |0.6846 |12.974 |36.380
10°D 14104 |12.863 |36.280 |1.8096 |13.816 |37.125
10'D 44087 12992 |36.314 | 2.8424 |15779 [39.292

10°D 10.805 16.473 36.709 3.0734 16.507 40.291
10°D 11.828 32.677 49.626 3.0996 16.600 40.426
10D 11.887 34.153 64.561 3.1022 16.610 40.440

4/n 107'D 4.6699 20.169 43.834 4.7857 20.328 43.957
10°D 4.7105 20.169 43.835 5.4645 21.404 44.860
10'D 5.0975 20.169 43.844 6.5092 23.900 47.523
10°D 7.8777 20.170 43.932 6.7873 24.804 48.738

10°D 17.166 20.189 44.503 6.8198 24.918 48.902
10°D 20.147 25.119 45.374 6.8231 24.929 48.918
00 (straight) 107'D 5.4235 20.949 44711 5.5870 21.101 44.843

10°D 5.4235 20.949 44.711 6.5033 22.146 45.818
10'D 5.4235 20.949 44.711 7.8962 24.625 48.748
10°D 5.4234 20.949 44.711 8.2619 25.535 50.111
10°D 5.4236 20.949 44711 8.3044 25.649 50.295
10*D 5.4234 20.949 44.711 8.3087 25.661 50.314

beam. The beam is simply-supported at the edge of # = 0 and elastically restrained
at the other edge (S-Elastic). Table 3.10 shows similar studies for the C-Elastic
boundary conditions. The tables show that increasing the axial restrained rigidity
has very limited effects on the straight beam. It is attributed to the lower frequency
parameters of a straight beam are dominated by its transverse vibration.

In conclusion, vibration of isotropic and laminated straight and curved beams is
studied in this chapter. The effects of shear deformation and rotary inertia, deepness
term (1 + z/R) and other beam parameters are clearly outlined. It is shown that the
difference (for the lowest three frequency parameters) between the CBT and SDBT
solutions increases with thickness-to-length ratio increases. For a laminated curved
beam (R/Ly = 1, E\/E, = 15, [0°/90°] lamination scheme) with thickness-to-length
ratios of 0.05, 0.1, 0.15 and 0.2, the maximum differences can be as many as 8.8,
32.3, 42 and 50.4 % for the worst case, respectively. The effects of the deepness
term (1 + z/R) on the frequency parameters is very small, the maximum difference
between the frequency parameters Q obtained by SDSBT (neglect the deepness
term) and SDBT is less than 0.41 % for the worse case of a curved beam of span
length-to-radius ratio Ly/R = 5 and thickness-to-radius ratio #/R = 0.1. A variety of
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Table 3.10 The first three frequency parameters Q for a [-45°/45°] laminated curved beam with
different radius-to-span length ratios and C-Elastic boundary conditions (Ly = 1, h/Ly = 0.05)

R/Lg Spring ki, =T, ki =10"D, K§,=0 ki =0, ky,=107D, K, =T
rigidity 1 2 3 1 2 3

1/n 107'D 3.0784 | 17.040 |40.988 3.0752 | 17.181 | 41.080
10°D 3.3805 | 17.045 |40.991 32670 | 18.139 |41.756
10'D 55452 | 17.094 |41.022 3.5970 |20.410 |43.784
10°D 13.775 18.337 |41.374 3.6929 21272 |44.749
10°D 16.321 35.923  |51.778 3.7044 21382 | 44.882
10°D 16.397 38427 |69.273 37055 |21.394 |44.895

A 107'D 7.5129 | 24.694 |48.910 7.6416 | 24.848 |49.019
10°D 75373 |24.694 48912 8.4238 25915 |49.821
10'D 77754  |24.695 | 48929 97649 |28.553 |52.224
10°D 97491 |24.703 [49.084 |10.149 29.564 |53.331
10°D 17.734 24797 | 49.989 |10.195 29.693 | 53.480
10°D 23782 26081 |51.044 |10.200 29706 | 53.495

o0 107'D 83092 |25.662 |50.316 8.4796 |25.807 |50.442

(straight) | 10°p 83092 |25.662 |[50.316 9.4924 |26.822 |51.368
10'D 83092 |25.662 [50.316 |11.219 29.395 | 54.250
10°D 83092 |25.662 |[50.316 |11.710 30.398 | 55.641
10°D 83092 |25.662 |50.316 |[11.768 30.526 | 55.832
10°D 83092 |25.662 [50.316 |11.774 30.539 | 55.851

new vibration results including frequencies and mode shapes for straight and curved
laminated beams with classical and elastic restraints as well as different geometric
and material parameters are given, which may serve as benchmark solutions for the
future researches.



Chapter 4
Plates

Plates are one of the most fundamental structural elements which are widely used in
a variety of engineering applications. A plate can be defined as a solid body
bounded by two parallel flat surfaces having two dimensions relatively greater than
the other one (thickness). It can also be viewed as a special case of shells with zero
curvature (infinite radii of curvature). The vibration of plates is an old topic and a
lot of books, papers and reports have already been published in the past decades. In
1969, A.W. Leissa published an excellent monograph titled Vibration of Plates, in
which theoretical and experimental results of approximately 500 research papers
and reports were presented. Most 90 % of this book considers the homogeneous
thin plates. A plate is typically considered to be thin when the ratio of its thickness
to representative lateral dimension is less than 1/20 (Leissa 1969; Qatu 2004).
As pointed by Leissa (Liew et al. 1998), the classical thin plate theory (CPT)
permits one to obtain a fundamental frequency with good accuracy. However, the
higher frequencies of a plate with thickness ratio of 1/20, determined by thin plate
theory, will not be accurate. It will be somewhat too high. The inaccuracies can be
largely eliminated by use of the shear deformation plate theories (SDPTs) for they
include both shear deformation and rotary inertia due to rotations. Liew et al. (1998)
presented a book deal with thick isotropic plates using the p-version Ritz method.

Plates can be rectangular, circular, annular, sectorial, elliptical, triangular, trap-
ezoidal and of other shapes. Chakraverty (2009) analyzed vibrations of plates of
various shapes and classical boundary conditions by using the boundary charac-
teristic orthogonal polynomials with the Ritz method. The homogeneous thin plates
are the subject of Chakraverty’s work as well. With the development of new
industries and modern processes, laminated plates composed of composite laminas
are extensively used in many fields of modern engineering practices such as space
vehicles, civil constructions and deep-sea engineering equipments. Laminated
plates are treated by various studies and books. The development of research on this
subject has been well documented in several monographs respectively by Qatu
(2004), Reddy (2003), Carrera et al. (2011), Ye (2003), and review or survey
articles (Carrera 2002, 2003; Liew et al. 2011).
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This chapter considers vibrations of laminated plates with various shapes and
general boundary conditions. The fundamental equations of shells in the framework
of CST and SDST described in Chap. 1 will be specialized to those of plates by
setting the curvatures to zero. We will begin with the fundamental equations of
rectangular plates, followed by vibration results of laminated rectangular plates with
general boundary conditions. Strain-displacement relations, force and moment
resultants, energy functions, governing equations and boundary conditions are
derived and shown for both theories. On the basis of SDPT, numerous natural
frequencies and mode shapes are presented for laminated rectangular plates with
different boundary conditions, lamination schemes and geometry parameters by
using the modified Fourier series and weak form solution procedure (see, Chap. 2)
because previous studies showed that convergence of solutions with weak form
solution procedure is faster (Table 3.3). Effects of boundary conditions, geometry
parameters and material properties are studied as well. Vibration of sectorial,
annular and circular plates will then be treated in the later sections of this chapter.

4.1 Fundamental Equations of Thin Laminated
Rectangular Plates

As shown in Fig. 4.1, a rectangular laminated plate with length a, width b and total
thickness of 4 is selected as the analysis model. To describe the plate clearly, we
introduce the following coordinate system: the x-coordinate is taken along the
length of the plate, and y- and z-coordinates are taken along the width and the
thickness directions, respectively. The middle surface displacements of the plate in
the x, y and z directions are denoted by u, v and w, respectively. The laminated
rectangular plate is assumed to be composed of N; composite layers. Consider the
laminated rectangular plate and its rectangular coordinate system in Fig. 4.1, the
coordinates, characteristics of the Lamé parameters and radii of curvatures are:
a=x,f=y,A=1,B=1,R, =00, Ry =00,

Fundamental equations of thin laminated rectangular plates are presented in this
section by substituting their geometry parameters into those of general thin lami-
nated shell equations.

4.1.1 Kinematic Relations

Based on the assumptions of Kirchhoff, the displacement field of thin rectangular
plates is restricted to the following linear relationships (see Fig. 4.2, Reddy (2003)):


http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_2
http://dx.doi.org/10.1007/978-3-662-46364-2_3

4.1 Fundamental Equations of Thin Laminated Rectangular Plates 101

Fig. 4.1 Laminated rectangular plates

U(x,y,z) = Lt(x,y) — Zw
V(x,y,z) =v(x,y) —Z%);y) (4'1)

W(x,y,2) = w(x,y)

where u, v and w are the middle surface displacements. Letting a =x, f =y, A = B=1
and R, = Ry = 00, the strain-displacement relations of rectangular plates can be
obtained from Egs. (1.6) and (1.7) as

& = .92 + Z)y
gy = s(y) + 2%y (4.2)

Ty = Yoy + 2y


http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1

102 4 Plates

Fig. 4.2 Undeformed and deformed geometries of an edge of a plate under the Kirchhoff
assumption (Reddy 2003)

where
0 _ Ou _ @
o ox’ X 82)62
ov ow
0_ - _
&y dy’ Ly By2 (4.3)
o v N u . Pw
T T By oy’ Ty = Oxdy

4.1.2 Stress-Strain Relations and Stress Resultants

According to Hooke’s law, the corresponding stresses in the k'th layer of the plate
are written as:

3 3 3 )
Ox 0L Qi Qi Ex
Oy = Qlfz Qlﬁz Q§6 &y (4.4)
Dol L0l @ Ol o)k

The lamina stiffness coefficients Qig-(i, j=1,2,6) can be written as in Eq. (1.9).
Then, the force and moment resultants are obtained by carrying the integration of
stresses over the cross-section:


http://dx.doi.org/10.1007/978-3-662-46364-2_1
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/2

[Ne Ny Ny]= / [ox 0y Tyldz
—h)2
W2 (4.5)
(M. M, My]= / [ox 0y Tylzdz
—h/2
Performing the integration operation in Eq. (4.5) yields
[Ny ] (A An A Bu B Bis ] |&
N, A Ap Ay Bio Bxn B 88
Ny | | Aie A Ae Bis B Beo oy (4.6)
M, Bii Bz Bis Dn Dui D ||y,
M, By By By Di Dn Dy ||y,
| M, | L Bis B Bss  Dis Das Des | | 1 |

where N,, N, and N,, are the normal and shear force resultants and M,, M,, M,,
denote the bending and twisting moment resultants. A;, B;;, and Dj; are the stiffness
coefficients arising from the piecewise integration over the plate thickness, they can
be written as in Eq. (1.15).

In comparing to homogeneous thin plates, there exist some fundamental dif-
ferences in the equations of generally thin laminated plates. The most important
difference is that the transverse vibration is coupled with in-plane vibration for
generally laminated plates. When a laminated plate is symmetrically laminated with
respect to the middle surface, the constants B;; equal to zero and the in-plane
vibration is then decoupled from the transverse vibration, which will sufficiently
reduce the complexity of the stress-strain relations, energy functions, governing
equations and boundary condition equations of the plate.

4.1.3 Energy Functions

The strain energy (Uj) of thin laminated rectangular plates during vibration can be
written as:

a b
1 N&l + Nyl + Ny )°
US:_ X%x Yy XY/ xy dd 47
2//{+Mxxx+Myxy+Mx,xw ray (4.7)
0 0

Substituting Eqgs. (4.3) and (4.6) into Eq. (4.7), the strain energy of the thin
laminated plates can be rewritten in terms of displacements as:


http://dx.doi.org/10.1007/978-3-662-46364-2_1
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o\ > ov\ (Ou ov
a b - - _
i () +20 (55) (3) + 200 (52 55 }
ov\? ov  Ou\ [Ov av
o () (e ) (3) + s
Pw\ [Ou Pw\ [Ou 3
) (G ) (50) + 2 (w)(a)”&ﬁ ) (31)
Pw\ [Ov Pw\ [ov Pw [Ov
][5 (&)« (50) (3) + 200 (5 () o
0 0
Pw Pw Pw ov  Ou
(0 () 0 (5) + 280 (55 ) ()
Pw\ 2 Pw\ [Pw Pw [(O*w
a b - - - - -
5/ o) 22 (57) (5%) 0 (55) (5%)
2
0 0

Pw\’ Pw [Pw Pw\’
Dy (== ) +4Ds( —— ) [ == ) + 4Dgo | ——
+02(57) +40(g3) (%) + 40 (53
The corresponding kinetic energy (7) is:

SRR .

(4.8)

where the inertia term [, is given as in Eq. (1.19). The external work (W,) is
expressed as:

a b
W, = / / {q.u + qyv + q.w}dxdy (4.10)
0 0

where g, g, and g, are the external loads in the x, y and z directions, respectively.

As described in Sect. 1.2.3, the general boundary conditions of a plate are
implemented by using the artificial spring boundary technique. Specifically, sym-
bols k:Z, k&, k‘w“ and K:; (w = x0, y0, x1 and y1) are used to indicate the stiffness of
the boundary springs at the boundaries x = 0, y = 0, x = a and y = b, respectively.
Therefore, the deformation strain energy about the boundary springs (Us,) is
defined as (Fig. 4.3):


http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
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Fig. 4.3 Boundary
conditions of thin laminated
rectangular plates

Middle surface

Uy =
i [k)’c‘l w? + kv + R 4+ K (aw/ﬁx)] lx=a

X

b 2 2 )
1 / [Ku? + kv + kigw? + Ko (0w /0x) ] [+—0
2 +
0

(4.11)

—_

X

4 [kjv‘ouz + k}v,ov2 + k;ng + K;f)(aw/ay)} ‘yzo
= /
0 +

[k;’luz + k;jlv2 + k;vlwz + K;Vl (6w/8y)} ’y:b

4.1.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thin rectangular plates can be
obtained by specializing those of thin shells or applying the Hamilton’s principle in
the same manner as described in Sect. 1.2.4. Substitutinga =x, f=y,A=B =1 and
R, = Ry = o0 into Eq. (1.28) yields following governing equations:

ONx + % +qg. =1 @
oax oy T 09
ON,, ON, %

DN g =1, 2Y 4.12
ox oy 9T ge (4.12)
oM, M, O'M, O*w

+q; =

Ox? 2 Ox0y + 0y? o


http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
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The corresponding boundary conditions of thin laminated plates at boundaries of

X = constant are:

Ny — kKu =0

Ny — kv =0

OM,
Qx + 3yy

w ow
M, — K}y 5

w
— kow

0

Ny +Khu =0
Ny + Ky =0
O+ B+ kw =0
~M,+K}%:=0

y
w
KXIW_

(4.13)

Similarly, for boundaries y = 0 and y = b, the boundary conditions are obtained as:

Ny — kjou =0
N, — Koy =0

OM,,
O+

7MV —

Y

w ow __
KO(?y*

=b:
—kpw=0 "

0

ny—i—k;lu =0

Ny + k=0
0 Xy w
Qy+ gﬁ"’ ylWZO
~M, + 0

w Ow
Kylaiy*

(4.14)

For generally laminated thin plates, each boundary can exist 12 possible classical
boundary conditions. Taking boundaries x = constant for example, the possible
combinations for each classical boundary condition are given in Table 4.1.

Table 4.1 Possible classical

Boundary type

‘ Conditions

boundary conditions for
generally laminated thin

Free boundary conditions

rectangular plates at each
boundary of x = constant

M,y
F Nx:Nxv:Qx+a /\}:Mx:
) ay
F2 OM.y
u:ny:Qx“’TyV:Mx:
M,
F3 Nx:V_Qx‘i'aJ:Mx:
dy
OM,,
k4 u=v=0,+ y_Mt:
dy

Simply supported boundary conditions

S u:v:w:Mx:O
SD N,=v=w=M,=0
S3 u=ny=w=]\/[x=
S4 NX_ND,:W:MX:O
Clamped boundary conditions
C ow
—y=w=—a=0
u=v=w=-_
0
2 N,C:v:w:—w 0
Ox
3 u:NXV:w:a—W:O
Ox
4 NX:ny:w:a—W:O
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In the framework of artificial spring boundary technique, taking edge x = O for
example, the frequently encountered boundary conditions F, SD, S and C can be
readily realized by assigning the stiffness of the boundary springs at proper values
as follows:

Fiklg =k = ko =Ko =0

SD: k), =Ky =10'D, Ky =K% =0
S: kY =k'y =k% =10'D, K% =0
C:kly=Ky=kly =K} =10"D

(4.15)

where D = E1h3 /12(1—uy5 pa1) is the flexural stiffness of the plate.

4.2 Fundamental Equations of Thick Laminated
Rectangular Plates

This section presents fundamental equations that can be used for thick laminated
plates. The treatment that follows is a specialization of shear deformation shell
theory (SDST) to laminated plates. For thick plates, the Kirchhoff hypothesis is
relaxed by assuming that normals to the undeformed middle surface remain straight
but do not normal to the deformed middle surface, see Fig. 4.4 (Reddy 2003). The
following equations are referred to as shear deformation plate theory (SDPT).

Fig. 4.4 Undeformed and deformed geometries of an edge of a plate including shear deformation
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4.2.1 Kinematic Relations

Based on the plate model presented in Fig. 4.1 and the assumptions of the first-order
shear deformation theory, the displacement field of thick laminated rectangular
plates is of the form

U(x,y,2) = u(x,y) + 29,
V(x,y,2) = v(x,y) + 29, (4.16)
W(xvy’ Z) = W<xay)

where u, v and w are the middle surface displacements of the plate in the x, y and
z directions, respectively; ¢, and ¢, represent the transverse normal rotations of the
reference surface respect to the y and x axes. Specializing Egs. (1.33) and (1.34) to
those of plates, the normal and shear strains at any point of the plate space can be
defined in terms of the middle surface strains and curvature changes as:

B =+ Ve =T
8y = 68 + ZX):’ Vyz = VSZ (417)
Yoy = Yoy + 2y

where ygz and ySZ indicate the transverse shear strains, it is assumed to be constant

through the thickness. The middle surface strains and curvature changes are written
in terms of middle surface displacements and rotation components as:

Ou o
0o_ou , 9P
T o = "ox
Ov 1910
88 = a—y, Xy = a—yy
dv  Ou 0¢, 09,
o 2 =, _ ¥ J 4.18
Ty 8x+(9y7 Xy Ay *ox (4.18)

ow
ygz = a + ¢x
ow

9 0 = — +
Yz By oy
4.2.2 Stress-Strain Relations and Stress Resultants

According to Eq. (1.35), the corresponding stress-strain relations in the layer & of a
thick laminated rectangular plate are:


http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
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. on 2 0 0 Q| (g,
oy o, 05 o 0 056 &y
T, p = |0 0 0%, Qﬁ s 0 Vyz (4.19)
Txz 0 o0 O 0 0 Vxz

Txy K ok ok 75
k O Oy O 0 Oss ok
The force and moment resultants are obtained by integrating the stresses over the
plate thickness

h/2

[N« Ny Ny O Qy]= / [0x 0y Ty Te Tyldz
—h/2
n/2
My My, My]= / [ox 0y Tylzdz
—h/2

(4.20)

where O, and O, are the transverse shear force resultants. Carrying out the inte-
gration over the thickness, from layer to layer, yields

N, Ay A A B Bz Bis &

Ny App Ay Ay Bip Bxn By '98

Ny | _ | Ais Ax Aec  Bis B Bes | |70 (4.21)
M, By Bz Bis Dit D Dig P '
M, By Bx By D Dxp Dy Ly

M, Bis By Bes Disc Dy Des d | y,,

Oy|  |Au Ags “/21
EAR (ki 422

The stiffness coefficients A;;, B;; and D;; are defined as in Eq. (1.43). When a thick

rectangular plate is symmetrically laminated with respect to the middle surface, the
constants Bj; equal to zero, however, the in-plane vibration will not be decoupled
from the bending vibration due to the shear deformation.

4.2.3 Energy Functions

The strain energy (U,) of thick laminated rectangular plates during vibration can be
defined in terms of the middle surface strains and curvature changes and stress
resultants as


http://dx.doi.org/10.1007/978-3-662-46364-2_1
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a b
1 Nigd + Nyed + Nyyel + Moy }
Us=53 X dydx 4.23
2//{ My, + My + Ot + O, [ (423)
0

Substituting Eqs. (4.18) and (4.21) into Eq. (4.23), the strain energy of the
laminated plate can be expressed in terms of displacements (u, v, w) and rotation
components (¢, ¢,) as in Eq. (2.84).

The corresponding kinetic energy (7) function is:

R R A

v O, ¢ ow\ 2
0 2’153“2(@;) “°<at)

The inertia terms are written as in Eq. (1.52). Assuming the distributed external
forces gy, g, and g, are in the x, y and z directions, respectively and m, and m,
represent the external couples in the middle surface, thus, the work done by the
external forces and moments is

W, = / / {qau+ gy + qw + m, + myqﬁy}dydx (4.25)

Using the artificial spring boundary technique similar to that described earlier,
symbols kl//,klv//,kl//',Ki and Ki (w = x0, y0, x1 and yl) are used to indicate the
rigidities (per unit length) of the boundary springs at the boundaries x = 0, y = 0,
x =a and y = b, respectively, see Fig. 4.5. Therefore, the deformation strain energy

(Uyy) stored in the boundary springs during vibration is defined as:

Fig. 4.5 Boundary
conditions of a thick
laminated rectangular plate

k'th layer

Middle’surface <&


http://dx.doi.org/10.1007/978-3-662-46364-2_2
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1 /b { u? + kg + Kyw? + K;‘Od)i + Kio‘ﬁﬂ =0
=_ dy
Ugp
2/ + 4R R KW K ¢ Kflqﬂ e
(4.26)
kgou K + K + K32 + Ko 10 )
X
[k 4 K02 R+ K2 + K2 [

4.2.4 Governing Equations and Boundary Conditions

Specializing the governing equations and boundary conditions of thick general
shells (Eq. (1.59)) to those of thick rectangular plates, we have

ON,  ON, P 0%,
ax "oy Te=hgathiga
ON,, 0N, Pv o,
- = I 1
ox oy 92 T
00, 90, PP
b g =, Y 427
ox oy TE=hgs (4.27)
oM, M,  Pu P,
ox oy StmThgathge
OM,, OM, a? >,
ax gy &tm= s thga

Substituting Eqs. (4.17), (4.18), (4.21) and (4.22) into above equations, the
governing equations can be written in terms of displacements. These equations are
proved useful when exact solutions are desired. These equations can be written as

Ly Ly Lz Lis Lis M; ;0 0 Muyuo0 u —PDx
Lyy Ly Ly Loy Los 0 MpO 0 M v —Dy
Ly Ly Ly Ly Lis|—o’|0 0 M0 0 w | =|-p:
Ly Ly Liz Lag Lus My 0 0 MyO b, —niy
Lsi Lsp Ls3 Lsy Lss 0 M50 0 Mss o, —ny
(4.28)

The coefficients of the linear operator L;; and M;; are given as in Eq. (2.49). The
general boundary conditions of the plate are:


http://dx.doi.org/10.1007/978-3-662-46364-2_1
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Ny —kKlu=0 Ny +khu=0
Ny —kjyv=0 Ny +k)v=0
x=0:¢ Oy —kjyw=0 x=a:{ O« +kw=0
My~ Kiyh, =0 M, + Ky, = 0
My — K, =0 My + K¢, =0
Ny — k;‘;it o Ny + k;q; —0 (4.29)
N, — kv =0 Ny + k=0
y=0:{ 0, — Kiw =0 y=b:{ Oy +kiw=0
Mry - K;Co‘z’x =0 MXy + I(;l(rbx =0
M, — K;VOgby =0 M, +K"yvl¢y =0

The classification of the classical boundary conditions shown in Table 1.3 for
thick laminated shells is applicable for plates. Taking boundaries x = constant for
example, the possible combinations for each classical boundary conditions are
given in Table 4.2.

Similarly, in the framework of artificial spring boundary technique, the afore-
mentioned classical boundary conditions can be readily realized by assigning the
stiffness of the boundary springs at proper values. Taking edge x = 0 for example, the
frequently encountered boundary conditions F, SD (shear-diaphragm), S (simply-
supported) and C can be defined in terms of boundary spring rigidities as follows:

Fky=ky,=ky=Ky=K,=0

SD: ki = ki = Ky = 10'D, Ky =K}y =0
S: kY =Ky =kl =K}y =10'D, K, =0
C:kliy=kly=kly =Ky =K}y =10'D

(4.30)

where D = E\ 1%/ 12(1-p15101) is the flexural stiffness of the plate. Figure 4.6 (Ye et al.
2014a) shows the variations of the first three frequency parameters AQ versus
restraint parameters I'; (1 = u, v, w, x and y) of a [0°/90°/0°] laminated plate (a/b = 1,
h/a = 01, El/Ez = 40, U2 = 025, G12 = O.6E2, G13 = 06E2 and G23 = 05E2), where
AQ is defined as the difference of the frequency parameter Q = wb?/n*+/ph/D to
that of the elastic restraint parameter I'; = 107", namely, AQ =Q (I';) — Q (107'D).
The plates under consideration are completely free at boundaries y = 0, y = b, and
completely clamped at boundary x = 0, while at edge x = a, the plates are elastically
supported by only one group of spring components with stiffness assigned as
I' x D. According to Fig. 4.6, we can see that when the restraint parameter I' is
increased from 10° to 10, the frequency parameters increase rapidly and approach
their utmost. Then they remain unchanged when I' approaches infinity. In such a
case, the plate can be deemed as clamped in both ends. Thus, by assigning the
stiffness of the entire boundary springs at 10’D, the completely clamped boundary
conditions of a plate can be realized.


http://dx.doi.org/10.1007/978-3-662-46364-2_1
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Table 4.2 Possible classical
boundary conditions for thick
rectangular plates at each
boundary of x = constant
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Boundary type

Conditions

Free boundary conditions

F Ny=Ny=0,=M,=M,, =0
F2 U=Ny=0,=M=My,=0
F3 Ne=v=0,=M,=M,, =0
F4 u=v=0=M,=M,=0
F5 Ny=Ny=0:=M,=¢,=0
F6 U=Ny=0,=M,=¢,=0
F7 Ne=v=0,=M,=¢,=0
F8 u=v=0,=M=¢,=0

Simply supported boundary conditions

S u=v=w=M,=¢,=0
SD Ne=v=w=M,=¢,=0
S3 u=Ny=w=M,=¢,=0
S4 Ny=Ny=w=M,=¢,=0
S5 u=v=w=M,=M,,=0
S6 Ne=v=w=M,=M,=0
S7 u=Ny=w=M,=M,=0
S8 Ny=Ny=w=M,=M,,=0

Clamped boundary conditions

C u=v=w=¢.=¢,=0
2 Ne=v=w=¢.=¢,=0
C3 U=Ny=w=¢,=¢,=0
C4 Ne=Ny=w=¢,=¢,=0
C5 u=v=w=¢.=M,=0
C6 Ne=v=w=¢,=M,,=0
Cc7 U=Ny=w=¢, =M, =0
Cs Ne=Ny=w=g,=M,=

4.3 Vibration of Laminated Rectangular Plates

In this section, we consider free vibration laminated rectangular plates with general
boundary conditions. The homogeneous rectangular plates are treated as a special
case of the laminated ones in the study. Only solutions in the framework of SDPT
are considered in this section. Natural frequencies and mode shapes for thin and
thick laminated rectangular plates with different boundary conditions, lamination
schemes and geometry parameters are presented. For the sake of simplicity, a four-
letter string is employed to represent the boundary condition of a plate, such as
FCSSD identify a rectangular plate with edges x=0,y=0,x=a, y =b having F, C,

S and SD boundary conditions, respectively.

Combining Egs. (2.49) and (4.28), it is obvious that the displacements and
rotation components of laminated rectangular plates in the framework of SDPT are
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Fig. 4.6 Variation of the frequency parameters AQ versus the elastic restraint parameters I'; for a
three-layered, [0°/90°/0°] rectangular plate

required to have up to the second derivatives. Therefore, regardless of boundary
conditions, each displacement and rotation component of a laminated plate is
expanded as a two-dimensional modified Fourier series as:
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where 1, = ma/a and A, = na/b. A,... Bums Coins D and E,,, are expansion
coefficients of the standard cosine Fourier series. a;,, by, Cins Aims €1ns fim &ins Mims in
and j;,,, are the corresponding supplement coefficients. M and N denote the truncation
numbers with respect to variables x and y, respectively. P; (x) and P; (v) denote the
auxiliary polynomial functions introduced to remove all the discontinuities poten-
tially associated with the first-order derivatives at the boundaries. These auxiliary
functions are defined as

Pi(x) :x(;—“— 1)2 Py(x) :’SG— 1) (4.32)
Py(y) =y(%— 1)2 P> (y) Zg(%—l) (4.33)

The solutions of laminated rectangular plates under consideration can be sought
in the strong form solution procedure as described in Sect. 2.1.2. Alternately, all the
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expansion coefficients in Eq. (4.31) can be treated equally and independently as the
generalized coordinates and solved directly from the Rayleigh—Ritz technique in a
fashion similar to that done in Sect. 2.2. Table 3.3 shows that the solutions obtained
by the weak form solution procedure (i.e., Ritz technique) converge faster than
those of strong form solution procedure, therefore, the weak form solution proce-
dure will be adopted in the following calculation. Unless otherwise stated, the
natural frequencies of the considered plates are expressed in the non-dimensional

parameters as Q = wa®+/p/E,h? and the material properties of the layers are given
as: E2 =10 GPa, El/Ez = open, Ujp = 025, G12 = 0.6E2, Gl3 = 0.6E2, G23 = 05E2
and p = 1,450 kg/m’.

4.3.1 Convergence Studies and Result Verification

A moderately thick, symmetrically laminated rectangular plate with completely free
boundary condition has been selected to demonstrate the convergence and accuracy
of the current method. The material properties and geometrical dimensions of the
plate are given as follows: a/b = 3/2, h/a = 0.1, E\/E; = 20, 15, = 0.25, G, = 0.5E,,
G113 =0.5E, and G,3 = 0.33E,. In Table 4.3 (Ye et al. 2014a), the first six frequency
parameters Q = waz\/p/Elh2 for the plate with [30°/—30°/—30°/30°] lamination
scheme are examined. Results without considering the supplementary terms in the
admissible functions are also included in the table. The table shows the proposed
method has fast convergence behavior. The maximum discrepancy in the worst case
between the 11 x 11 truncated configuration and the 13 X 13 one is less than
0.0013 %. In order to check the model, the present results are also compared with

Table 4.3 Comparison and convergence of the first six frequency parameters Q = wa’+/p/Eh?
for a completely free, [30°/=30°/—30°/30°] laminated rectangular plate (a/b = 3/2, h/a = 0.1)

Methods M x N Mode number
1 2 3 4 5 6
Present 11 x 11 2.3449 2.8767 4.9502 5.1610 5.6962 8.4310

12 x 12 23449 |2.8767 |4.9502 |5.1610 |[5.6962 |8.4310
13 x 13 23449 |2.8767 [4.9502 |5.1610 |5.6962 |8.4310
Present * 11 x 11 0.7499 1.0034 |2.2191 2.8797 |3.7857 |4.2837
12 x 12 |0.7141 0.9565 |2.1952 |2.7305 3.7630 | 4.2406
13 x 13 ]0.7051 09472 |2.1472 |2.6935 3.6792 | 4.1875

Frederiksen 16 x 16 |2.3223 |2.8745 |4.9152 |[5.0674 |5.6589 |8.2288
(1995) 18 x 18 [2.3223 |2.8745 [49152 |5.0674 [5.6589 |8.2288
Messina and Soldatos 2.3251 2.8777 4.9458 5.0910 5.6871 8.3580
(1999a)

Present* Results without considering the supplementary terms in Eq. (4.31)
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Table 4.4 Comparison of the frequency parameters Q = wb?/n*+/p/E,h? for a thick, [45°/—45°/
45°/-45°/45°] laminated plate (a/b = 1, h/a = 0.1, E\/E, = 40)

Boundary Method Mode number

conditions 1 2 3 4 5 6

SSSS Present 1.8803 |3.3763 |3.6923 |4.9665 |5.4801 |5.5985
Karami et al. (2006) | 1.8788 |3.3776 |3.6921 |4.9680 |5.4834 |5.6000
Wang (1997) 1.8792 |3.3776 |3.6924 |4.9682 |5.4835 |5.6002
Liew et al. (2005) 1.8466 |3.3774 |3.6425 |4.9661 |5.4348 |5.5187

cccce Present 2.2855 [3.7363 |3.9792 |5.1777 |5.6966 |5.8416
Karami et al. (2006) |2.2857 |3.7392 [3.9813 |5.1799 |5.7019 |5.8454
Wang (1997) 2.2857 [3.7392 | 3.9813 |5.1800 |5.7019 |5.8455
Liew et al. (2005) 2.2785 [3.7383 |3.9583 |5.1836 |5.6808 |5.8066

data published by Frederiksen (1995) who used Ritz method, Messina and Soldatos
(1999a) based on HSDT formulation. From the table, one can see that the present
solutions agree very well with the referential results.

To further validate the accuracy and reliability of current solutions, Table 4.4
(Ye et al. 2014a) shows the comparison of the first six frequency parameters Q =
wb? / 72/ p/Exh? of a thick, [45°/—45°/45°/—45°/45°] laminated plate which was
studied by Karami et al. (2006), Liew et al. (2005) and Wang (1997). The material
properties and geometrical dimensions used in the investigation are: a/b = 1,
h/a = 0.1, E|/E, = 40. The SSSS and CCCC boundary conditions are performed in
the comparison. It is observed that the comparison is very good. The discrepancies
are negligible and the worst one is less than 1.83 %.

4.3.2 Laminated Rectangular Plates with Arbitrary Classical
Boundary Conditions

The excellent agreement between the current solutions and those provided by other
researchers observed from Tables 4.3 and 4.4 indicate that the proposed method is
sufficiently accurate to deal with laminated rectangular plates with arbitrary
boundary conditions. It also verified that the definition of the four types of classical
boundaries in Eq. (4.30) is appropriate. In this section, laminated rectangular plates
with various boundary conditions including the classical restraints and the elastic
ones will be studied.

In Table 4.5, the first four non-dimension frequency parameters Q of a two-
layered, angle-ply [45°/—45°] laminated square plate (E/E, = 40) subjected to five
possible combinations of boundary conditions are presented. Four different thick-
ness-length ratios, i.e. h/a = 0.01, 0.05, 0.1 and 0.15, corresponding to thin to thick
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Table 4.5 The first four frequency parameters Q for a [45°/—45°] laminated square plate with
various boundary conditions and thickness—length ratios

hla Mode number Boundary conditions
FFFF FSFS FCFC SSSS CCCC
0.01 1 79118 6.2094 12.320 18.457 23.325
2 11.467 12.849 17.489 37.712 46.788
3 14.782 21.385 31.281 37.712 46.788
4 24.979 28.160 34.054 63.436 73.851
5 24.979 32.609 41.532 64.007 80.563
0.05 1 7.8140 6.0044 11.703 17.628 21.405
2 10.964 12.234 16.111 34.803 41.031
3 14.391 20.220 27.942 34.803 41.031
4 22.971 26.027 30.872 56.213 61.328
5 22.971 29.825 36.684 56.379 67.024
0.10 1 7.5763 5.6488 10.480 15.621 17.910
2 10.176 11.216 13.871 28.893 31.961
3 13.515 18.065 23.029 28.893 31.961
4 19.946 22.357 25.207 43.258 44.986
5 19.946 25.281 29.347 44388 48.908
0.15 1 7.2469 5.2481 9.1388 13.451 14.794
2 9.3174 10.121 11.816 23.591 25.081
3 12.437 15.834 19.078 23.591 25.081
4 17.088 18.897 20.312 33.556 34.211
5 17.088 21.168 23.548 35.125 37.055

plates are performed in the calculation. It can be seen from the table that the
augmentation of the thickness-length ratio leads to the decrease of the frequency
parameters. Then let us consider moderately thick (hA/a = 0.05), [0°/90°] and [0°/
90°/0°] laminated rectangular (b/a = 2) plates with various anisotropic degrees. In
Table 4.6, the first three frequency parameters Q for the plates with four types of
boundary conditions and five different anisotropic degrees, i.e. E{/E, = 1, 5, 10, 20
and 40 are listed, respectively. It can be seen from the table that the frequency
parameters increase in general as the anisotropic ratio increases.

In a composite lamina, fibers are the principal load carrying members (Reddy
2003). By appropriately arranging the fiber directions in the layers of a laminated
plate, special functional requirements can be satisfied. The influence of fiber ori-
entations on the vibration characteristics of composite laminated plates is investi-
gated. In Fig. 4.7 (Ye et al. 2014a), variation of the lowest four frequency
parameters Q of a three-layered, [0°/9/0°] composite plate with CFFF and CFCF
boundary conditions against the fiber direction angle 9 are depicted, respectively.
The geometric and material properties of the layers of the plate are: a/b = 1,
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Table 4.6 The first three frequency parameters Q for [0°/90°] and [0°/90°/0°] laminated
rectangular plates with various anisotropic degrees (b/a = 2, h/a = 0.05)

Boundary E\/ | [0°/90°] [0°/90°/0°]
conditions E, 1 2 3 1 2 3
FFFF 1 1.6186 2.4368 4.4783 1.6186 2.4363 4.4779

5 2.2796 2.4714 5.4939 1.7283 2.4512 4.7494
10 2.4895 2.6649 5.6947 1.8618 2.4598 5.1119
20 2.5122 3.2378 6.0173 2.1036 2.4729 5.4672
40 2.5380 4.1190 6.5613 2.4927 2.5179 5.6761
SDSDSDSD 1 3.8245 6.2386 10.007 3.8244 6.2378 10.005

5 4.7235 7.2379 11.887 6.7027 8.3403 11.545
10 5.3177 7.9484 13.174 9.0302 10.352 13.267
20 6.2521 9.1169 15.236 12.270 13.351 16.049
40 7.7320 11.025 18.515 16.547 17.487 20.152
SSSS 1 3.8837 6.3851 10.207 3.8839 6.3851 10.206

5 5.4240 7.9582 12.629 6.7356 8.4471 11.711
10 6.7036 9.2081 14.405 9.0538 10.435 13.407
20 8.5373 11.043 17.090 12.287 13.413 16.158
40 11.135 13.755 21.157 16.559 17.530 20.232
Ccccc 1 7.3712 9.7520 13.697 7.3733 9.7535 13.697

5 9.6590 12.147 16.906 13.969 15.344 18.173
10 11.049 13.668 18.954 18.547 19.622 22.041
20 13.112 15.991 22.086 23.992 24.886 27.090
40 16.171 19.520 26.832 29.592 30.499 32.762

h/a = 0.1, E|/E, = 40. Many interesting characteristics can be observed from the
figures. Firstly, all the figures are symmetrical about $ = 90°. From Fig. 4.7a, we
can see that there is little variation in the 1st and 2nd mode frequency parameters
when § is increased from 0 to 90°. However, for the 3rd mode, the frequency
parameter traces climb up and then decline, and may reach its crest around $ = 75°.
Figure 4.7b shows that the 1st and 2nd mode frequency parameters of the plate have
decreased slightly with the fiber direction angle § increased (from 0 to 90°). And
there is little variation in frequency parameters of the 3rd modes. Comparing with
the lowest three modes, the 4th mode frequency curves in all subfigures have more
significant changes which also climb up and then decline.

The effects of the fiber direction angle on frequency parameters and mode shapes
of single-layered composite rectangular plates are further reported. In Tables 4.7
and 4.8, the lowest three frequency parameters Q of a single-layered composite
rectangular plate with various boundary conditions and fiber directions are pre-
sented. The aspect ratio is chosen to be b/a = 2/3. The thickness-to-width ratio
h/b = 0.1 is used in the calculation. The fiber direction angle 4 is varied from 0° to
90° with an increment of 15°. It can be noticed that increasing 9 from 0° to 90°
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Fig. 4.7 Variation of the frequency parameters Q versus the fiber direction angle $ for a [0°/9/0°]
laminated plate with different boundary conditions: a CFFF; b CFCF

increases the fundamental frequency parameters for plates with FSDSDSD, FCCC
and FFFC boundary conditions. For the plates with orthotropy ratio E|/E, = 25 and
FFSDSD or FFFSD boundary conditions, when 4 is varied from 0° to 45°, the
fundamental frequency parameters increased as well. However, increasing the fiber
direction angles from 45° to 90° decreases these frequency parameters. Further-
more, it can be seen from the table that the frequency parameters increase in general
as the orthotropy ratio increases. Contour plots of the mode shapes for the plate
with CCCC, FCCC and FFCC boundary conditions and orthotropy ratio E|/E, = 25
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Table 4.7 The first three frequency parameters Q for a single-layered rectangular plate with
various boundary conditions and fiber direction angles (b/a = 2/3, h/b = 0.1)

9 Mode |EJ/E,=5 EJE, =25
FSDSDSD |FFSDSD |FFFSD | FSDSDSD |FESDSD | FFFSD
0 |1 7.1214 1.8181 3.5800 | 7.1137 1.8435 3.5894
2 15.243 10.782 9.8028 | 18.251 11.130 9.7959

3 18.251 11.359 14387 | 23.004 20.706 14.450
15° |1 7.4299 1.7988 3.8005 | 8.0005 1.9288 42139
2 15.531 9.8858  [10.017  |20.939 10.880 10.023

3 19.368 12.610 13413 [22.275 20.818 14.875
300 |1 8.2871 1.8809 41752 | 9.7757 2.1294 5.0365
2 15.979 8.8869 [10.716 |21.598 9.8323 | 11.117

3 21.867 14214 12576 [27.293 20.197 15.100
45° |1 9.7045 1.9282 42298 | 12.792 2.2254 4.9192
2 16.202 8.0423 | 10.768  |21.975 8.6321 | 11.569

3 23.053 16.088 13.950  [30.772 18.577 18.381
60° |1 11.627 1.8796 39882 | 17.759 2.0992 43109
2 16.507 74340 10219  |24.223 7.8529 | 10.792

3 21.324 16.829 16952  [24.768 17.493 21.032
752 |1 13.407 1.7920 37406 | 20.110 1.8774 3.8508
2 17.030 7.0324 9.7324 | 23.942 7.2353 9.9781

3 19.144 16.453 19.485 | 26.949 16.736 20.346
90° |1 14.131 1.7831 3.6445 | 18.251 1.7886 3.6870
2 17.333 6.9315 9.5416 | 27.073 6.9836 9.6477

3 18.251 16318 19.854 | 28.512 16.368 19.985

are given in Figs. 4.8, 4.9 and 4.10, respectively. From Figs. 4.8 and 4.10, we can
see that the node lines (i.e., lines with zero displacements) of the second modes are
paralleled to the fiber orientation.

Figure 4.11 shows the lowest three frequency parameters Q and mode shapes for
a FFFF, single-layered square composite plate with different fiber direction angles.
The plate is assumed to be thin (#/a = 0.01) and made of material with orthotropy
ratio Ey/E, = 25. Since the plate symmetrize about the line x = y, the frequency
parameters for the plate with 9 = 0°, 15° and 30° are the same as those with fiber
direction angles 3 = 90°, 75° and 60°, respectively. Similarly, mode shapes for
9 =0°, 15° and 30° are similar to those given for 9 = 90°, 75° and 60°. In addition,
it can be observed that the increment of the fiber direction angle from 0° to 45°
results in increases of the lowest two frequency parameters of the plate.
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Table 4.8 The first three frequency parameters Q for a single-layered rectangular plate with
various boundary conditions and fiber direction angles (b/a = 2/3, h/b = 0.1)

9 Mode |EJ/E,=5 EJ/E, = 25
FCCC | FFCC FFFC FCCC FFCC FFFC
0° 1 14.643 4.1554 22781 | 15.20202 5.9673 2.2701
2 2421 | 14.664 4.8398 3026969 | 15.835 4.8543
3 36.706 | 15.571 13.701 36.83315 | 25.755 13.704
15 |1 15.083 4.5393 23376 | 16.05186 6.9774 2.3549
2 22761 | 14.194 50506 | 30.07846 | 16.832 5.3525
3 37749 | 16.991 13.868 39.00083 | 26.250 14.089
300 |1 16.606 4.8977 25768 | 19.28065 7.5381 2.8620
2 23.696 | 13.336 55623 |30.81169 | 17.481 6.6963
3 37.543 | 19.019 13.278 4552704  |27.112 15.349
45° |1 19.407 5.2668 3.0716 | 25.0631 8.4171 3.9445
2 25.138 | 12.410 6.0661 | 33.3452 16.559 8.3679
3 36.231 | 21.782 12.658 4498416  |28.239 15.340
60° |1 23.010 5.6496 37998 | 31.95584 9.6762 5.5627
2 27.055 | 11.613 6.3853  |37.2734 15.532 9.7606
3 35.664 | 22.128 12.250 4464113  [25914 15519
75 |1 26.273 5.8850 4.6070 |38.42538 | 10.791 8.0540
2 28.954 | 10.957 6.5741 | 40.75042 | 14.863 10.835
3 35.693 | 20.858 11.783 4528074 | 23.461 15.109
90° |1 27.580 5.6969 50260 |41.36358 | 10.730 10.436
2 29.797 | 10.453 6.6394  |4227473 | 13.663 11.169
3 35.804 | 20.259 11.530 4579356  |21.932 14.438

4.3.3 Laminated Rectangular Plates with Elastic Boundary
Conditions

In order to prove the validity of the present method for the free vibration analysis of
laminated plates with elastic boundary conditions, Table 4.9 shows the comparison

of the first five frequency parameters Q = wb?*/n?\/ph/D for [0°/90°/0°...]o
laminated plates with edges elastically restrained against rotation and translation
(i.e. at edges x = 0 and a: N, = 0, Ny, = 0, k,, = [#Dao/b”, K, = T*Dyo/b, M, = 0 and
atedgesy=0and b: N,,=0,N, =0, k, = F*Dzz/a3, M,, =0, K, = T'*Dy,/a). The
material constants and geometry parameters of the considered plates are: a/b = 1,
E\/E, = 40. The theoretical results reported by Liew et al. (1997) by using Pb2-Ritz
method and Karami et al. (2006) based on DQM are included in the table. The
results for thin (A/a = 0.001) and moderately thick plates (h/a = 0.2) with two
different values of stiffness of elastic edges are found and are shown in the com-
parison. It is obvious that the proposed modified Fourier solution is sufficient to
yield the solutions in good agreements with those of Pb2-Ritz method and DQM.
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E\/E, = 25)

In the last example in this section, vibration frequencies of composite laminated
plates with some types of elastic restraints will be presented. Although we can
obtain accurate solutions for composite laminated plates with arbitrary uniform and
un-uniform elastic restraints, in this work, we choose three typical uniform elastic
restraint conditions that are defined as follows (at x = 0):

E': the normal direction is elastically restrained (u # 0, Ny=0= =M, =0).
E* the transverse direction is elastically restrained (w # 0, Nx = N,, =
M, =M, =0).

E?: the rotation is elastically restrained (¢, # 0, N, = N, = O, = M,,, = 0).

Table 4.10 shows the lowest three frequency parameters Q of laminated plates
(E/E» =20, a/b = 3/2) with different lamination schemes and thickness ratios. Two
different lamination schemes, i.e. [0°/90°] and [0°/90°/0°], corresponding to sym-
metrically and unsymmetrically laminated plates are performed in the calculation.
The thickness ratios used are h/a = 0.01, 0.05 and 0.1. The plates under consid-
eration are clamped at the edge of y = b, free at edges y = 0, x = ¢ and with E'
boundary conditions at the edge of x = 0 (E'FFC). The table shows that increasing
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3

the normal restrained rigidity has very limited effects on the frequency parameters
of both symmetrically and unsymmetrically laminated plates. When the normal
restrained rigidity is varied from 107'*D to 10**D, the maximum increment in the
table are less than 1.83 % for all cases. It may be attributed to the lower frequency
parameters of a laminated plate with lower thickness ratios are dominated by the
transverse vibration. The further observation from the table is that the effects for the
[0°/90°] plate are larger than the [0°/90°/0°] one.

Tables 4.11 and 4.12 show similar studies for the EFFC and E°FFC boundary
conditions, respectively. Table 4.11 reveals that the transverse restrained rigidity
has a large effect on the frequency parameters of both [0°/90°] and [0°/90°/0°]
laminated plates, especially the second mode. When the transverse restrained
rigidity is varied from 107"#D to 10**D, the increments of the second mode can be
292.62, 286.48 and 263.75 % for the [0°/90°/0°] plate with thickness ratios of 0.01,
0.05 and 0.1, respectively. Table 4.12 shows that the rotation restrained rigidity has
very limited effects on the fundamental frequency parameters of the plates, with the
maximum increment less than 0.02 % in all cases when the rotation restrained
rigidity is varied from 10”'*D to 10**D. However, for the second mode, increasing
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Fig. 4.10 Mode shapes for FFCC, single-layered rectangular plates (b/a = 2/3, h/b = 0.1,
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the rotation restrained rigidity from 107'*D to 10**D increases the frequency
parameters by almost 8 and 50 % in each plate configuration. From these tables, it is
obvious that the effects of elastic restraint rigidity on the frequency parameters of
composite laminated plates varies with mode sequences, lamination schemes and

spring components. These results may serve as benchmark solutions for further
researchers.

4.3.4 Laminated Rectangular Plates with Internal Line
Supports

In the engineering practices, laminated plates are often restrained by internal line
supports to reduce the magnitude of dynamic and static stresses and displacements
of the structure or satisfy special architectural and functional requirements. The
study of the vibrations of laminated plates with internal line supports is an
important aspect in the successful applications of these structures. Thus, in this part,
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Fig. 4.11 Frequency parameters Q and mode shapes for FFFF, thin single-layered square plates
(h/a = 0.01, E\/E, = 25)

the present method is applied to investigate the free vibration behaviors of lami-
nated rectangular plates with internal line supports and arbitrary boundary condi-
tions. As shown in Fig. 4.12, a laminated rectangular plate restrained by arbitrary
internal line supports is considered. x; and y; represent the position of the ith and jth
line supports along the y- and x-axes, respectively. The displacement fields in the
position of the line support satisfy w (x; y) = 0 and w (x, y;) = 0 (Cheung and Zhou
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Fig. 4.11 (continued)

2001a, b). This condition can be readily obtained by introducing a group of
continuously distributed linear springs at the location of each line support and
setting the stiffness of these springs equal to infinite (which is represented by a very
large number, 10"#D). Thus, the potential energy (P;,) stored in these springs is:

Pu = / > bt e+ / z wiey) pds (434)

kij
denote the corresponding line supported springs distributed at x = x; and y = y;. By
adding the potential energy P;;, functions in the Lagrangian energy functional and
applying the weak form solution procedure, the characteristic equation for a plate
with arbitrary boundary conditions and internal line supports is readily obtained.

where N; and M; are the amount of line supports in the y and x directions. k',

Xi?
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Table 4.9 Comparison of the frequency parameters Q = wb?/n*+/ph/D for a [0°/90°/0°...] o
laminated plate with edges elastically restrained against rotation and translation (a/b = 1,
E]/EZ = 40)

Tr hla Method Mode number
1 2 3 4 5
10> |0.001 | Present 1.8096 |2.5703 |2.7234 3.3061 4.6721

Karami et al. (2006) | 1.8095 |2.5703 |2.7234 3.3061 4.6721
Liew et al. (1997) 1.8096 |2.5703 |2.7234 3.3061 4.6721
0.2 Present 1.1236 | 1.7134 | 1.7635 2.1909 2.5323
Karami et al. (2006) |1.1236 |1.7134 | 1.7636 2.1909 2.5323
Liew et al. (1997) 1.1236 | 1.7134 | 1.7636 2.1909 2.5323
108 [0.001 |Present 39126 |7.0767 |9.0087 |10.878 12.743

Karami et al. (2006) |3.9126 |7.0767 |9.0087 |10.878 12.743

Liew et al. (1997) 39126 |7.0743 |9.0088 |10.878 12.744

0.2 Present 1.3177 |2.0543 |2.1064 2.6346 2.9945
Karami et al. (2006) |1.3177 [2.0543 |2.1064 2.6346 2.9946
Liew et al. (1997) 1.3177 |2.0543 |2.1064 2.6346 2.9945

Table 4.10 The first three frequency parameters Q for laminated rectangular plates with E'FFC
boundary conditions and different thickness ratios (E}/E, = 20, a/b = 3/2)

hla k4 /D [0°/90°] [0°/90°/0°]
1 2 3 1 2 3

0.01 107! 4.6013 6.5918 16.506 2.9838 5.5004 18.670
10° 4.6013 6.5920 16.507 2.9838 5.5004 18.670
10" 4.6013 6.5939 16.512 2.9838 5.5004 18.670
10 4.6013 6.6070 16.554 2.9838 5.5004 18.670
10° 4.6014 6.6536 16.707 2.9838 5.5004 18.670
10* 4.6014 6.6846 16.809 2.9838 5.5004 18.670

0.05 107! 4.5518 6.4066 15.935 2.9686 5.3613 18.045
10° 4.5518 6.4124 15.954 2.9686 5.3613 18.047
10" 4.5518 6.4356 16.012 2.9686 5.3613 18.045
10° 45518 6.4874 16.165 2.9686 5.3613 18.048
10° 4.5518 6.5046 16.197 2.9686 5.3613 18.048
10* 45518 6.5158 16.205 2.9686 5.3613 18.044

0.10 107" 4.4076 6.0284 14.736 2.9232 5.1045 16.449
10° 4.4076 6.0435 14.795 2.9232 5.1045 16.449
10! 4.4076 6.0917 14.812 2.9232 5.1045 16.449
10 4.4076 6.1232 14.693 2.9232 5.1045 16.449
10° 4.4076 6.1250 14.827 2.9232 5.1045 16.449
10* 4.4076 6.1250 14.825 2.9232 5.1045 16.449
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Table 4.11 The first three frequency parameters Q for laminated rectangular plates with E°’FFC
boundary conditions and different thickness ratios (E\/E, = 20, a/b = 3/2)

hla kYy/D [0°/90°] [0°/90°/0°]
1 2 3 1 2 3

0.01 107! 4.8727 7.5360 17.057 3.3908 6.7176 18.785
10° 5.1045 10.714 21.873 3.7219 12.806 19.279
10" 5.1603 12.039 29.342 3.8062 19.314 19.938
10? 5.1724 12.198 29.386 3.8233 19.632 20.806
10° 5.1751 12.217 29.393 3.8268 19.652 20911
10* 5.1760 12.221 29.395 3.8280 19.657 20.922

0.05 107" 4.8173 7.3853 16.448 3.3651 6.5993 18.162
10° 5.0194 10.468 21.285 3.6688 12.578 18.618
10 5.0688 11.701 27.306 3.7430 18.529 19.135
10 5.0781 11.841 27.343 3.7574 18.869 19.801
10° 5.0848 11.816 27.346 3.7626 18.893 19.889
10* 5.0820 11.846 27.353 3.7635 18.906 19.893

0.10 107! 4.6552 7.0274 15.301 3.3015 6.3737 16.568
10° 4.8229 9.9146 17.015 3.5636 11.976 16.810
10! 4.8608 10.922 17.018 3.6276 16.595 16.808
10 4.8681 11.037 17.018 3.6370 16.810 17.028
10° 4.8690 11.051 17.013 3.6387 16.809 17.054
10* 4.8695 11.045 17.019 3.6354 16.810 17.051

In order to prove the validity of the present method in dealing with vibration of
laminated composite plate with internal line supports, Table 4.13 presents the
comparison of the first nine frequency parameters Q = wab+/ph/D for a square
cross-ply [0°/90°] laminated plate with a central line support in each direction. The
material used is graphite-epoxy with the following proprieties: E/E, = 40,
112 =0.25, G, =0.5E,, G13 =0.5E,, Go3 = 0.2E,. Three different classical boundary
conditions, i.e. FFFF, SDSDSDSD and CCCC are considered in the comparison.
The benchmark solutions provided by Cheung and Zhou (2001a) based on CPT are
referenced. From the table a consistent agreement of present results and referential
date is seen. The discrepancy is very small and does not exceeds 0.52 % for the worst
case although different trial functions are used in the literature. In addition, the table
shows that the line supports increase the frequencies of the plate.

Influence of the locations of line supports on the frequency parameters of a three-
layered, cross-ply [0°/90°/0°] plate is investigated as well. The plate is assumed to be
thick (A/b = 0.2) and with similar material parameters as those used in Table 4.13.
For the sake of brevity, only a line support along y direction (x;) is considered in the
analysis. In Fig. 4.13, variations of the lowest three mode frequency parameters

Q = wab+/ph/D of the considered plate with high length—width ratio (a/b = 5)
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Table 4.12 The first three frequency parameters Q for laminated rectangular plates with E°FFC
boundary conditions and different thickness ratios (E{/E, = 20, a/b = 3/2)

hla K%, /D [0°/90°] [0°/90°/0°]
1 2 3 1 2 3
0.01 107! 4.6014 6.8477 17.434 2.9838 5.9550 18.671
10° 4.6014 7.2371 19.370 2.9840 7.5831 18.675
10! 4.6014 7.3529 20.096 2.9842 8.7787 18.678
10? 4.6014 7.3669 20.188 2.9843 8.9800 18.679
10° 4.6014 7.3682 20.197 2.9843 9.0014 18.679
10* 4.6014 7.3684 20.198 2.9843 9.0037 18.679
0.05 1071 4.5518 6.6726 16.843 2.9687 5.8207 18.047
10° 4.5518 7.0598 18.688 2.9690 7.4238 18.048
10! 4.5518 7.1817 19.364 2.9691 8.5934 18.054
107 4.5518 7.1886 19.444 2.9692 8.7857 18.055
10° 4.5518 7.1878 19.495 2.9692 8.8088 18.056
10* 4.5518 7.2143 19.457 2.9692 8.8104 18.054
0.10 107! 4.4076 6.3041 15.549 2.9233 5.5674 16.450
10° 4.4077 6.6868 17.012 2.9235 7.1204 16.453
10! 4.4078 6.7927 17.019 2.9238 8.1643 16.455
10? 4.4078 6.8034 17.018 2.9238 8.3348 16.456
10° 4.4078 6.8054 17.018 2.9239 8.3503 16.456
10* 4.4078 6.8064 17.018 2.9239 8.3667 16.456
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Fig. 4.12 Schematic diagram of laminated rectangular plates with arbitrary internal line supports

against the line support location parameter x;/a are depicted. Six types of edge
conditions used in the investigation are: F-S, S-F, S-S, C-C, F-C and C-F. It is
obvious that the frequency parameters of the plate are significantly affected by the
position of the line support, and this effect can vary with the boundary conditions.
And for different modes, the effects of line support location are quite different. For
the sake of completeness, the similar studies for the considered plate with lower
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Table 4.13 Comparison of the first five frequency parameters Q = wab+/ph/D for a square,
[0°/90°] laminated plate with a central line support in each direction (h/a = 0.001)

Boundary Method Mode number
conditions 1 2 3 4 5
FFFF Present 2.636 6.569 6.569 9.005 |26.046
Cheung and Zhou 2.631 6.572 6.572 9.006 |26.067
(2001a)
Error (%) 0.19 0.05 0.05 0.01 0.08
SDSDSDSD Present 24438 [31.348 |31.383 |37.078 |68.539
SDSDSDSD Cheung and Zhou 24440 [31.333 |31.333 |36.989 |68.549
(2001a)
Error (%) 0.01 0.05 0.16 0.24 0.01
Ccccc Present 36.971 |45.505 |45.563 |52.703 |87.040
Cheung and Zhou 37.002 45528 |45.528 |52.695 |87.499
(2001a)
Error (%) 0.08 0.05 0.08 0.02 0.52

length-width ratio (a/b = 1) are presented in Fig. 4.14. Comparing Figs. 4.13 with
4.14, we can see that the influence of the line support location on the frequency
parameters vary with length-width ratios and boundary conditions.

4.4 Fundamental Equations of Laminated Sectorial,
Annular and Circular Plates

The sectorial, annular and circular plates are plates of circular peripheries. They are
used quite often in aerospace crafts, naval vessels, civil constructions and other
fields of modern technology. When dealing with these plates, it is expedient to use
polar coordinate system in the formulation. Sectorial, annular and circular plates
made of isotropic materials have received considerable attention in the literature.
When compared with the amount of information available for isotropic sectorial,
annular and circular plates, studies reported on the vibration analysis of orthotropic
and laminated sectorial, annular and circular plates are very limited. This can be due
to the difficulty in constructing such plates. There commonly exist two types of
orthotropic sectorial, annular and circular plates. The first type is to actually con-
struct the plates with rectangular orthotropy and then cut the plates in sectorial,
annular or circular shapes. On the other hand, one can also construct circular plates
that the material principle directions take a circular shape around the center of the
plates, thus results in polar orthotropy, and then cut the plates in sectorial, annular
or circular shapes with desired geometry dimensions. The section deals with
vibration of laminated sectorial, annular and circular plates made of layers having
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Fig. 4.13 Variation of the frequency parameters Q = wab+/ph/D versus the line support
locations for a long (a/b = 5), [0°/90°/0°] laminated plate with a y direction internal line support

polar orthotropy (i.e., lamination angle of 0° or 90°). The corresponding isotropic
ones are considered as well.

Annular and circular plates can be treated as special cases of sectorial plates with
circumferential direction of full circle (2m). As shown in Fig. 4.15, a general
laminated sectorial plate of circumferential direction 6, constant thickness /4, inner
radius Ry and outer radius R, is selected as the analysis model. Polar coordinate
system (r, € and z) located at the middle surface of the plate is used for plate
coordinates, in which z is parallel to the thickness direction. The middle surface
displacements of the plate in the r, 8 and z directions are denoted by u, v and w,
respectively. The laminated sectorial plate is assumed to be composed of N; layers
of polar orthotropic laminae.

Consider the sectorial plate in Fig. 4.15 and its polar coordinate system. The
following geometry parameters can be applied to the shell equations derived in
Chap. 1 to obtain those of sectorial, annular and circular plates.


http://dx.doi.org/10.1007/978-3-662-46364-2_1
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Fig. 4.15 Geometry and
coordinate system of
laminated sectorial plates with
polar orthotropy
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o=r, ﬁ:@, A:l7 B:}"7 R%:oo7 R/}:OO (435)

We will first derive the fundamental equations for the thin plates (neglecting
shear deformation and rotary inertia), followed by the thick ones. For the sake of
brevity, the annular and circular plates will be treated as the special cases of
sectorial plates in the following formulation.

4.4.1 Fundamental Equations of Thin Laminated Sectorial,
Annular and Circular Plates

Substituting Eq. (4.35) into Eq. (1.7), the middle surface strains, curvature and twist
changes of a sectorial plate can be written as:

0 ou o Pw

r _aar’ Xr _82 or? 5
0o_ v u yo—_IW oW 4.36
0= 700 + r’ Xo 200>  ror (4.36)

30 —@_Fﬂ_X P P*w + Ow
= or 0 r T T 900 T 2200

Thus, the strain-displacement relations for an arbitrary point in the plate space
can be defined as:

& =&+ 71,
g0 = &9+ 2%y (4.37)
o = Vo0 + o

Considering Hooke’s law, the corresponding stresses in the plate space are:

gy Ql{l QIIZ Q]l<6 &r
(o) = ]fz 152 Q§6 &p (4.38)

b0 J Ol O Qs 70 )k

The lamina stiffness coefficients Qg- @i, j=1,2,6) are given in Eq. (1.12). By
carrying the integration of stresses over the cross-section, the force and moment
resultants can be obtained in terms of the middle surface strains and curvature
changes as


http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
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where N,, Ny and N, are the normal and shear force resultants and M,, My, M,,
denote the bending and twisting moment resultants. A;, B;;, and Dj; are the stiffness
coefficients arising from the piecewise integration over the plate thickness direction,
they can be written as in Eq. (1.15).

Substituting Eq. (4.35) into Eqs. (1.16), (1.17), (1.19) and (1.21), the energy
functions of a sectorial plate with general boundary conditions can be obtained.

1 N,&% + Nyed + Nyg)° }
U, =~ rr 0 " rdrd0 4.40a
2/ / { +M. 1, + Moxg + Mroyyg ( )

ro 0

T— % / / 1o (0000 (@0 /01)+ (9w /00 }rdrat) (4.40b)
r 0
W, = / / {g-u+ qov + q.w}rdrd0 (4.40c¢)
ro0
| [k’;ouz + RV 4 Kw? + K:g(aw/ar)z}
Up=3 / S rdo
20| R R R K (00
=k (4.40d)

X / [kl + Ko -+ Kiow? -+ K (9w rd0)’| .y

+= . r
20| [k + ki + ki + K 0w/rooy?|
=Vo

where U, and T are the stain and kinetic energy functions. W, represents external
work done by the external loads, in which ¢,, gy and g, denote the external loads in
the r, 6 and z directions, respectively. U, is boundary spring deformation energy
function introduced by the artificial spring boundary technique (see Sect. 1.2.3 and
Fig. 4.16).

Specializing Egs. (1.33) and (1.34) to those of sectorial plates results in
following governing equations


http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
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Fig. 4.16 Boundary conditions of a thin laminated sectorial plate
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For a sectorial plate symmetrically laminated with respect to the middle surface,
the first two governing equations are decoupled from the third one, i.e., the in-plane
vibration (u, v) will be decoupled from the bending vibration (w). The corre-
sponding boundary conditions of thin laminated sectorial plates are:

N, — k%u =0
Ny —Kgv =0
= M BMI‘G w
r R(). Qr 88 _ krOW — 0
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4.4.2 Fundamental Equations of Thick Laminated Sectorial,
Annular and Circular Plates

Fundamental equations of thick sectorial plates are obtained by directly substituting
Eq. (4.35) into those of thick laminated shells given in Sect. 1.3.

In the framework of first-order shear deformation plate theory, the displacement
field in an arbitrary point of a thick laminated sectorial plate is expressed in terms of
middle surface displacements and rotation components as:

U(r,0,2) = u(r,0) + z¢,(r, 0)
V(}", 91 Z) = V(V, 0) + Z¢9(V, 0) (444)
W(r,0,z) = w(r,0)

where ¢, and ¢, represent the rotations of transverse normal respect to € and
r directions. Thus, the corresponding strains at this point are defined in terms of
middle surface strains, curvature and twist changes as

& = C(r) + Zhrs Yz = y?z
g = 82 + zxp, Yo = ng (4.45)

Vo = y(r)(? + 2Xr0

where the middle surface strains and curvature and twist changes are written as:

o ou 0,
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v oY _ _% 4.46
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y?z = E + ¢r

0 ow
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According to Eqgs. (1.46) and (1.47), the force and moment resultant equations of
thick sectorial plates become:

N’ All A12 A16 By B B16 8(6)
Ny Ap Axn Ax B Bxn By &
Ny _ | A6 Ay Ags Bis B Bes V(r)o (447)
M, Bii Bz Bis Du Duix Dig || A
My Biy Bn By Din Dn Dy ||y,
| M, | Bie By Bes Dis D Deo I |, |
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{Q(}} _ {A44 A45]
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Substituting Eq. (4.35) into Egs. (1.49), (1.51), (1.53) and (1.54) yields the
energy functions of a sectorial plate including shear deformation and rotary inertia:

1 NS +N()80+Nr0V0+Mr/
== r r rdrd0 4.49a
2 / / { +M0/0 + M,g7,0 + 0%, + Qovp, ( )

70
s (4.48)
2,

)l () (2 +12(5€)
/ / rd (4.49b)
121, %;3(% 121, Dvdff)u +b <d¢0)
W, = / / {q-u+ qov + q.w + m, b, + mg,}rdrd6 (4.49¢)

U 1/ [kou + klgv? + Kow? +K,Q)¢2+K()0¢2], Ry 10
sp— A T
v 2[R 4 d? £ ke + K¢+ KL
) s (4.494)

N 1/{ [Kfota® + Koy + kjow? + Kpod7 + Ky 7] }d

2 w2 2 rog2 0 12 r

2 J + [k u? + kv A kw? + Ky by + Kby ]
where U,, T and W, are the stain energy, kinetic energy and external work func-
tions. Uy, represents boundary spring deformation energy function introduced by
the artificial spring boundary technique (see Sect. 1.3.3 and Fig. 4.17).

The governing equations and boundary conditions for thick laminated sectorial
plates are obtained by substituting Eq. (4.35) into Egs. (1.59), (1.60) and (1.61).
The governing equations are

Az Ko ko
Kr
r
ku
RO %kw

Fig. 4.17 Boundary conditions of a thick laminated sectorial plate
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And the corresponding boundary conditions are
N, —kiyu=0 N, +ku=0
Ny —kjyv=0 Ny +kiv=0
r=Ry:¢ O —kjyw=0 r=Ri:¢ Q0 +kw=0
M, — Ky, =0 M, +K,h, =0
M,y — K%y =0 M,y +K’ ¢y =0
0 r0¢9 0 rld)() (451)
Nrg — kygou=0 Ny + kijju=0
Ny — kjyv=0 Ny + kjyv=0
0=0:q Qp— kjyw=0 0=200:q Qo+ kjw=0
M,y — Kjyp, =0 M,y +Kp ¢, =0
My — Kby =0 My +K) g =0

4.5 Vibration of Laminated Sectorial, Annular
and Circular Plates

4.5.1 Vibration of Laminated Annular and Circular Plates

In this section, we consider free vibration of homogeneous and laminated annular
and circular plates with general boundary conditions. The homogeneous circular
plates are treated as special cases of the laminated ones in the studies. Only solu-
tions considering effects of shear deformation are given in this section. The weak
form solution procedure is adopted in the calculations.

There are two boundaries in an annular plate, in this work a two-letter character
is employed to represent the boundary condition of an annular plate, such as FC
identifies the plate with inner edge free and outer edge clamped. Unless otherwise
stated, the natural frequencies of the considered plates are expressed in the non-

dimensional parameters as Q = wR;+/ph/Dy;. Unless otherwise stated, material



140 4 Plates

properties of the layers of laminated annular and circular plates under consideration
are given as: E, = 10 GPa, E/E, = open, ui» = 0.25, G1» = 0.6E,, G;3 = 0.6E,,
Go; = 0.5E, and p = 1,500 kg/m’ (subscript 1 and 2 represent the principle
directions of the material and they are paralleled to r and 6 directions, respectively).

Considering the circumferential symmetry of annular and circular plates, each
displacement and rotation component of a laminated annular or circular plate is
expanded as a modified Fourier series in the following form:

M N 2 N
u(r,0) = Z ZA,,," cos A1 cos nb + Z Z aPi(r) cosnf
m=0 n=0 =1 n=0
M N 2 N
v(r,0) = Z Z B, €08 Ayyr sinnf + Z Z by Pi(r) sinné
m=0 n=0 =1 n=0
M N 2 N
w(r,0) = Z Z Copn €OS A,r cos nl + Z Z ciPi(r) cosnb (4.52)
m=0 n=0 =1 n=0
M N 2 N
¢, (r,0) = Z Z D, cos A1 cos nf + Z Z dp,Py(r) cosnf
m=0 n=0 =1 n=0
M N 2 N
Gp(r,0) = Z Z E,, cos J,,r sinn0 -+ Z Z e Pi(r) sinnd
m=0 n=0 =1 n=0

where /,, = ma/AR, (AR = Ri—Ry). n represents the circumferential wave number of
the corresponding mode. It should be noted that n is non-negative integer. Inter-
changing of sin n6 and cos nf in Eq. (4.52), another set of free vibration modes
(anti-symmetric modes) can be obtained. P; (r) denote the auxiliary polynomial
functions introduced to remove all the discontinuities potentially associated with the
first-order derivatives at the boundaries. These auxiliary functions are in the same
forms as those of Eq. (4.33). Note that the modified Fourier series presented in
Eq. (4.52) are complete series defined over the domain [0, AR]. Therefore, linear
transformations for coordinates from r € [Ry, R;] to [0, AR] need to be introduced
for the practical programming and computing.

In Table 4.14 (Jin et al. 2014a), the first six frequencies (Hz) of a single-layered,
moderately thick composite annular plate with completely free boundary conditions
and different truncated configurations are chosen to demonstrate the convergence of
the current method. Considering the circumferential symmetry of the annular plate,
the expression terms with respect to 6 in displacements and rotation components
automatically satisfy the governing equations and boundary conditions. Thus, the
convergence only needs to be checked in the axial direction (7). The geometric and
material constants of the plate are: Ej/E, =15, Rg=1m, Ry =3m, h=0.1 m. In all
the following computations, the zero frequencies corresponding to the rigid body
modes were omitted from the results. The table shows the present solutions has fast
convergence behavior.
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Table 4.14 Convergence of the first six frequencies (Hz) of a single-layered composite annular
plate with FF boundary conditions

M x N Mode number

1 2 3 4 5 6
11 x 10 7.2421 11.244 18.650 28.423 33.407 51.069
12 x 10 7.2417 11.244 18.649 28.417 33.405 51.067
13 x 10 7.2415 11.244 18.649 28.415 33.405 51.067
14 x 10 7.2414 11.244 18.648 28.413 33.404 51.066
15 x 10 7.2414 11.244 18.648 28.413 33.404 51.066

Table 4.15 Comparison of the fundamental frequency parameters Q for composite laminated
annular plates with different boundary conditions and lamination schemes (Ry/R; = 0.5)

B.C. Method h/R, Lamination schemes

] (1] [/M/1/1T] [1/I/1I/T]
CcC Lin and Tseng (1998) 0.10 84.977 66.057 75.706 79.226
0.05 102.62 82.416 92.216 98.656
0.02 110.04 89.776 99.272 107.37

0.01 111.24 91.002 100.43 108.83
Present 0.10 87.134 68.693 78.711 81.861
0.05 103.58 83.591 94.013 99.876
0.02 110.19 89.928 100.22 107.58
0.01 111.21 90.960 101.22 108.81
SC Lin and Tseng (1998) 0.10 76.596 54.319 65.559 71.644
0.05 88.679 63.002 75.585 84.914

0.02 93.307 66.337 79.362 90.250
0.01 94.033 66.860 79.987 91.102
Present 0.10 77.603 55.899 67.959 73.015
0.05 89.256 63.675 77.562 85.670
0.02 93.571 66.549 80.997 90.541
0.01 94.189 66.994 81.528 91.265
FC Lin and Tseng (1998) 0.10 37.329 20.636 30.173 35.010
0.05 41.246 21.851 32.847 39.320
0.02 42.591 22.233 33.737 40.850
0.01 42.794 22.290 33.870 41.084
Present 0.10 38.150 20.936 30.979 35.896
0.05 41.582 21.995 33.371 39.689
0.02 42.728 22.323 34.151 40.993
0.01 42.899 22.371 34.267 41.190

To validate the accuracy and reliability of current solutions, comparison of the
fundamental frequency parameters Q for a composite laminated annular plate
(Ro/R, = 0.5) when the outer edge is clamped and the inner edge is either clamped,
simply supported or free is presented in Table 4.15 (Jin et al. 2014a), in which four
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Table 4.16 Frequency parameters Q of a [0°/90°] laminated circular plate with different boundary
conditions (R, = 1)

h/R, Mode E\/E, = 1 (isotropic) E\/E, = 15
F S C F S C

0.01 1 6.0186 4.8598 10.21379 3.4024 3.8685 8.8441
2 8.8888 14.596 22.087 6.8133 8.3294 13.555
3 13.747 27.196 36.53708 7.8292 15.542 21.015
4 21.634 29.650 39.74355 11.828 24.076 30.300

0.05 1 5.9897 4.8524 10.16563 3.3735 3.8493 8.6463
2 8.8615 14.525 21.86786 6.7621 8.2339 13.184
3 13.631 26.945 35.95093 7.7342 15.230 20.229
4 21.431 29.366 39.10696 11.630 23.360 28.832

0.1 1 5.9332 4.8295 10.01998 3.3116 3.7898 8.0874
2 8.7785 14.311 21.22982 6.6109 7.9643 12.215
3 13.387 26.221 34.32761 7.4922 14.397 18.329
4 20.906 28.539 37.32406 11.107 21.526 25.448

different thickness-radius ratios are included, i.e., A//R; = 0.1, 0.05, 0.02 and 0.01,
corresponding to thick to thin laminated annular plates. Four types of lamination
schemes included in the comparison are: [I], [II], [/I/I/IT] and [I/II /II/T], where 1
and II represent two kinds of composite laminate, their material properties are given
as: for material I: E2/E1 = 50, GlZ = O6613E1, G13 = G23 = 05511E1, Hi2 = 0006,
for material 1II: E2/E1 = 5, G]2 = 035E1, G13 = G23 = 0292E1, Uip = 0.06. By
comparing, we can find that the discrepancies between present results and solutions
reported by Lin and Tseng (1998) based on an eight node isoparametric finite
element method are acceptable. The discrepancy in the results may be attributed to
different solution approaches are used in the literature. The table also shows that
natural frequencies are influenced by stacking sequence, the order of the magnitude
of the fundamental frequencies for the four different lamination schemes being
(1] > [/I/1/1] > [/ > (1.

For a circular plate, there is only one boundary. Table 4.16 shows the lowest
three frequency parameters Q for a [0°/90°] laminated circular plate with different
boundary conditions and thickness-to-outer radius ratios (4/R;). The F, S and C
boundary conditions, two orthotropy ratio E,/E, = 1 and 25, and thickness-to-outer
radius ratios of 0.01, 0.05 and 0.1 are used. As seen in the table, the frequency
parameters for the circular plate with E/E, = 25 are smaller than those of E/E, = 1.
And the frequency parameters decrease with the thickness-to-outer radius ratio
increases. The corresponding contour mode shapes for the plate with orthotropy
ratio E/E, = 25 and thickness-to-outer radius ratios A/R; = 0.05 are given in
Fig. 4.18. As seen in the figure, the mode shapes for S boundary conditions are
similar to those of C boundary conditions.

Table 4.17 presents the first three frequency parameters Q of a [0°/90°] lami-
nated annular plate with different boundary conditions and various inner-to-outer
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1

Fig. 4.18 Mode shapes for a [0°/90°] laminated circular plate with different boundary conditions
(h/R, = 0.05, E\/E, = 15)

radius ratios (Ro/R;). The considered plate is assumed to be made of composite
layers with following parameters: R; = 1, /AR = 0.05, E1/E, = 15. Four inner-to-
outer radius ratios, i.e., R¢/R; = 0.2, 0.4, 0.6 and 0.8 and six sets of boundary
conditions, i.e., FF, FS, FC, SS, SC and CC are studied. From the table, we can see
that frequency parameters for the plate with FC, SS, SC and CC boundary condi-
tions increase with inner-to-outer radius ratio increases. However, for FF boundary
conditions, the maximum fundamental, second and third frequency parameters
occur at inner-to-outer radius ratios of 0.2, 0.6 and 0.8, respectively and for FS
boundary conditions, the minimum fundamental, second and third frequency
parameters separately occur at inner-to-outer radius ratios of 0.2, 0.4 and 0.8,
respectively. In order to enhance our understanding of the effects of the inner-to-
outer radius ratios on vibrations of annular plates, the lowest three mode shapes for
the laminated annular plate with FC boundary conditions are given in Fig. 4.19.
Due to the circumferential symmetry of the annular plate, the mode shapes are
symmetrical as well. These figures also show that mode shapes are influenced by
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Table 4.17 The first three frequency parameters Q of a [0°/90°] laminated annular plate with
different boundary conditions (R; = 1, W/AR = 0.05, E\/E, = 15)

Ro/R, Mode Boundary conditions
FF FS FC SS SC CC

0.2 1 3.1899 3.5483 9.3364 14.912 20.177 23.162
2 5.4501 7.7562 12.451 15.777 20.824 24.238
3 7.7137 14.481 19.806 17.211 22.320 24.421

0.4 1 2.8314 4.0587 12.171 25.444 32.994 40.389
2 5.6991 6.9513 12.853 25.519 33.033 40.637
3 7.4366 13.351 18.527 26.532 33.932 40.768

0.6 1 2.4299 5.4710 20.153 55.144 69.808 88.976
2 6.7767 7.5738 20.301 55.323 69.963 89.035
3 7.1894 12.736 22.748 56.113 70.660 89.392

0.8 1 2.0330 9.8049 64.064 215.18 268.65 351.93
2 5.8389 12.098 64.184 215.40 268.85 352.06
3 11.255 17.545 65.209 216.10 269.49 352.47

inner radius. Figure 4.20 shows the lowest three mode shapes for the laminated
annular plate (Ro/R; = 0.4) with CF and FC boundary conditions. It can be seen that
the mode shapes of the plate in these two cases are quite different although the plate
is camped at one boundary and free at the other boundary.

4.5.2 Vibration of Laminated Sectorial Plates

In this section, we consider free vibration of laminated sectorial plates with general
boundary conditions. Similar to the studies performed earlier for laminated annular
and circular plates, the results given in this section are obtained by using the shear
deformation plate theory (SDPT) and weak form solution procedure. Only plates
having polar orthotropy will be studied.

For a general sectorial plate, there exist four boundaries, i.e., r =Ry, r =R, 0 =0
and 8 = 6,. For the sake of brevity, a four-letter character is employed to represent the
boundary condition of a sectorial plate, such as FCSC identifies the plate with
F, C, S and C boundary conditions at boundaries » = Ry, 8 = 0, r = R; and 0 = 0,
respectively. In addition, unless otherwise stated, the non-dimensional frequency
parameter Q = wR;+/ph/D; is used and material properties of the layers of lami-
nated sectorial plates under consideration are given as: E, = 10 GPa,
E]/E2 =open, uyjp = 025, G12 = O.6E2, G13 = 0.6E2, G23 = 05E2 andp = 1,500 kg/m3

For a circular or annular plate, the assumed 2D displacement field can be
reduced to a quasi 1D problem through Fourier decomposition of the circumfer-
ential wave motion. However, for a general sectorial plate, the assumption of whole
periodic wave numbers in the circumferential direction is inappropriate, and thus, a
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set of complete two-dimensional analysis is required and resort must be made to a
full two-dimensional solution scheme. Therefore, each displacement and rotation
component of the laminated sectorial plates is expanded as a two-dimensional
modified Fourier series as:

M N 2 N
= Z Z A,un €OS Ay rcos 4,0 + Z Z apPy(r) cos 4,0

I=1 n=0

) COS Ay

_|_
MN

I ME s
S
N
:U

2 N
B,,m €OS A1 cos 4,0 + Z Z ¢ Pi(r) cos 4,0
I=1 n=0

m=0 n=0
2 M
+ Z Z dimPi(0) cos Ayr
Ml: le:0 ) y
Z Z Cyn COS Ayt COS A, 0 + Z Z enPi(r) cos 4,0
m=0 n=0 =1 n=0
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where /4, = ma/AR and 2,, = n/B,. P, (r) and P; (6) denote the auxiliary polynomial
functions introduced to remove all the discontinuities potentially associated with the
first-order derivatives at the boundaries. These auxiliary functions are in the same
form as those of Eq. (4.33). Similarly, linear transformations for coordinates from
r € [Ro, R{] to [0, AR] need to be introduced for the practical programming and
computing.

Table 4.18 shows a convergence and comparison study of the lowest six natural
frequencies (Hz) for an isotropic (E = 210 GPa, x = 0.3 and p = 7,800 kg/m?)
sectorial plate with FFFF and CCCC boundary conditions. The sectorial plate
having inner radius Ry = 0.5 m, outer radius R; = 1 m, thickness 4 = 0.01 m and
circumferential dimension 6, = m. The present results are compared with those of
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Fig. 4.19 Mode shapes for a [0°/90°] laminated annular plate with FC boundary conditions

FEM analysis (ANSYS with element type of SHELL63 and element size of
0.01 m). As can be seen from Table 4.18, the frequencies have converged mono-
tonically up to four significant figures as the truncation numbers increase. The table
also shows good agreements in the comparison.
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Fig. 4.20 Mode shapes for a [0°/90°] laminated annular plate (Ro/R; = 0.4) with CF and FC
boundary conditions

Table 4.18 Convergence and comparison of frequencies (Hz) for an isotropic sectorial plate with
FFFF and CCCC boundary conditions (Ry = 0.5 m, R\/Ry = 2, h/Ry = 0.02, 6y = n, E = 210 GPa,
u =03 and p = 7,800 kg/m?)

Boundary M x N | Mode number
conditions 1 2 3 4 5 6
FFFF 15 x 15 | 17.775 | 18.739 | 38.540 | 42.003 | 69.740 | 71.841

15 x16 | 17.760 | 18.738 | 38.537 | 41.999 | 69.706 | 71.838
15 x 17 | 17.757 | 18.736 | 38.537 | 41.990 | 69.699 | 71.833
15 x 18 | 17.747 | 18.735 | 38.535 | 41.988 | 69.683 | 71.831
16 x 18 | 17.742 | 18.733 | 38.524 | 41.983 | 69.677 | 71.810
17 x 18 | 17.739 | 18.730 | 38.520 | 41.982 | 69.675 | 71.807
18 x 18 | 17.735 | 18.728 | 38.510 | 41.979 | 69.670 | 71.790
ANSYS | 17.744 | 18.729 | 38.677 | 42.006 | 69.741 | 72.094
CCCC 15 x 15 |225.33 |234.63 |251.37 |276.82 |311.91 |357.42
15 x 16 |225.33 |234.62 |251.32 |276.67 |311.73 |356.71
15 x 17 |225.33 |234.60 |251.27 |276.59 |311.47 |356.47
15 x 18 |225.32 23459 |251.24 |276.51 |311.36 |356.08
16 x 18 |225.31 |234.57 |251.23 |276.49 |311.34 |356.06
17 x 18 |225.31 |234.57 |251.22 |276.48 |311.33 |356.06
18 x 18 |225.30 |[234.56 |251.21 |276.47 |311.32 |356.05
ANSYS |22597 |23524 |251.88 |[277.09 |311.76 |356.24
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Table 4.19 The first five frequency parameters Q of a [0°/90°] laminated sectorial plate with
different boundary conditions (Ry = 0.5 m, R{/Ry = 2, 6y = &, E\/E, = 15)

hIAR Mode Boundary conditions
FFFF SSSS CCCC FCFC CFCF FSFS
0.01 1 3.9802 36.096 59.994 2.0332 59.062 2.6844
2 4.7963 37.086 60.694 5.1950 59.126 7.2936
3 8.3330 39.772 62.835 10.284 60.041 9.6338
4 10.548 44.802 67.063 10.993 61.283 13.394
5 14.906 52.593 73.970 17.032 64.075 16.789
0.05 1 39119 36.015 57.657 2.0275 56.796 2.6443
2 4.7635 36.981 58.354 5.1583 56.856 7.2195
3 8.2257 39.587 60.436 10.177 57.697 9.5120
4 10.460 44.442 64.528 10.863 58.893 13.241
5 14.652 51.929 71.121 16.809 61.577 16.524
0.10 1 3.8324 34.360 51.823 2.0151 51.149 2.6109
2 47117 35.297 52.512 5.0908 51.204 7.1182
3 8.0639 37.800 54.508 9.9678 51.872 9.3185
4 10.292 42.399 58.366 10.579 53.000 12.974
5 14.162 49.357 64.439 16.332 55.494 15.953

Fig. 4.21 Mode shapes for a [0°/90°] laminated sectorial plate (Ry/R;

various boundary conditions

0.5, h/AR = 0.05) with
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Fig. 4.21 (continued)

The effects of thickness ratio (h/AR) on the frequency parameters of sectorial
plates are studied by the following example. Table 4.19 shows the lowest five
frequency parameters Q for a [0°/90°] laminated sectorial plate with different
boundary conditions and various thickness ratios h/AR. The sectorial plate is
assume to be made of polar orthotropic layer of orthotropy ratio E/E, = 15. Three
types of thickness ratios, i.e., #/AR = 0.01, 0.05 and 0.1, corresponding to thin to
moderately thick sectorial plates are considered in the investigation. From the table,
we can see that the frequency parameters of the plate in all cases decrease with the
thickness ratio #/AR increases. Despite this, it should be noted that, the natural
frequencies of the plate increase with the thickness ratio #/AR increases due to the
fact that the stiffness of the plate get larger. The corresponding contour mode shapes
for the plate with thickness ratio #/AR = 0.05 are given in Fig. 4.21 as well. As seen
in the figure, the mode shapes for the SSSS boundary conditions are similar to those
for boundary conditions of CCCC. Due to the symmetry in the boundary conditions
and geometry, the corresponding mode shapes of the plate are symmetrical as well.

The effects of circumferential dimension (i.e., circumferential included angle )
on the frequency parameters of sectorial plates are also investigated. Table 4.20
shows the lowest five frequency parameters Q for a [0°/90°] laminated sectorial
plate with different boundary conditions and circumferential dimensions. The
geometry and material parameters of the considered sectorial plate are similar to
those used in Table 4.20 except that the current plate having a thickness-to-inner
radius ratio #//AR = 0.1. From the table, we can see that the fundamental frequency
parameter of the plate having CFFF boundary conditions increases with circum-
ferential included angle 6, increases while for the plate with CCCF boundary
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Table 4.20 The first five frequency parameters Q of a [0°/90°] laminated sectorial plate with
different boundary conditions and circumferential dimensions (Ry = 0.5 m, Ri/Ry = 2, /Ry = 0.1,
El/Ez = 15)

6o Mode Boundary conditions
FFFC FFCC FCCC CFFF CCFF CCCF
/4 1 6.3800 18.779 56.096 7.4494 10.329 52.191
2 15.500 57.237 86.414 10.749 29.959 69.542
3 30.226 61.331 108.72 32.499 51.239 115.45
4 43.421 94.202 149.20 33.550 69.149 123.79
5 58.385 114.59 151.39 48.868 75.023 137.53
3n/4 1 0.8700 12.794 17.871 7.9348 8.0795 51.175
2 2.5360 18.789 27.405 8.0873 9.2724 52.190
3 6.1158 28.739 41.720 9.3391 12.500 54.578
4 9.4626 42.736 58.147 13.085 19.445 60.033
5 10.027 56.919 61.123 20.115 29.359 69.307
Sn/4 1 0.3527 12.685 15.313 7.9946 8.0151 51.179
2 0.8757 15.430 17.926 8.0296 8.7689 51.749
3 2.5561 18.667 23.342 8.7377 9.2431 52.120
4 4.6200 24.160 30.564 8.9771 10.502 53.205
5 4.9623 31.311 39.131 10.708 13.310 55.254

conditions, the minimum fundamental frequency parameter occurs at 8, = 3n/4. In
other cases, the frequency parameters decrease with circumferential included angle
6y increases. This may be attributed to the stiffness of the sectorial plate reduce with
circumferential included angle 6, increases.

For a solid sectorial plate, there exist only three boundaries, i.e., r= Ry, § = 0 and
6 = 6. The results on this subject are very limited in the open literature. The lowest
three frequency parameters and contour plots of the corresponding mode shapes for
a [0°/90°] laminated solid sectorial plate are given in Fig. 4.22. The orthotropy ratio
is chosen to be E/E, = 15. The thickness ratio #/R; = 0.05 is used in the calcu-
lation. The circumferential included angle 8, is varied from 7/2 (90°) to 37/2 (270°)
by a step of m/4 (45°). The solid laminated sectorial is completely clamped (C) at
boundary r = R and completely free (F) at the other two boundaries. It is noticed
that vary 6, from m/2 to 37/2 increases the fundamental frequency parameter of the
plate. For the second mode, it can be found that the minimum frequency parameter
occurs at 6y = 5n/4. Considering the third mode, it is observed that increasing 6,
from n/2 to 3n/2 decreases the value of the frequency parameter. In addition, the
mode shapes in all the subfigures are symmetrical about geometric center line. It is
attributed to the symmetry in the boundary conditions and geometry of the plate.
The similar observations can be seen in Figs. 4.18, 4.19, 4.20 and 4.21 as well.

In conclusion, vibration of laminated plates is studied in this chapter, including
the rectangular, circular, annular and sectorial plates. A variety of vibration results
including frequencies and mode shapes for laminated plates with classical and
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Fig. 4.22 Mode shapes and frequency parameters for a [0°/90°] laminated solid sectorial plate
with various circumferential dimensions (R, = 1, /R, = 0.05, E\/E, = 15)

elastic boundary conditions are presented for different geometric and material
parameters and lamination schemes, which may serve as benchmark solution for
future researches. It is found that due to the symmetry in the boundary conditions
and geometry, mode shapes of the annular and circular plates are symmetrical as
well.



Chapter 5
Cylindrical Shells

Cylindrical shells are the simplest case of shells of revolution. A cylindrical shell is
formed by revolving a straight line (generator) around an axis that is paralleled to
the line itself. The surface obtained from the revolution of the generator defined the
cylindrical shell’s middle surface. Cylindrical shells may have different geometrical
shapes determined by the revolution routes and circumferential included angles. By
appropriately selecting the revolution routes, cylindrical shells with desired cross-
sections can be produced, such as circular, elliptic, rectangular, polygon, etc. In the
literature and engineering applications, cylindrical shells with circular cross-
sections are most frequently encountered. In this type of cylindrical shells, each
point on the middle surface maintains a similar distance from the axis. The current
chapter is devoted to dealing with closed and open circular cylindrical shells.

In recent decades, composite materials have found increasing application with
the rapid development of industries because they offer advantages over conven-
tional materials. As one of the important structural components, composite lami-
nated circular cylindrical shells are widely used in various engineering applications,
such as naval vehicles aircrafts, and civil industries. The vibration analysis of them
is often required and has always been one important research subject in dynamic
behaviors and optimal design of complex composite shells. The literature on the
vibration analysis of cylindrical shells is vast. A large variety of classical and
modern theories and different computational methods have been proposed by
researchers, and extensive studies have been carried out based on these theories and
methods. There are mainly three major theories which are usually known as: the
classical shell theories (CSTs), the first-order shear deformation theories (FSDTs)
and the higher-order shear deformation theories (HSDTs). The CSTs are based on
the Kirchhoff-Love assumptions, in which transverse normal and shear deforma-
tions are neglected. Unlike thin plates, where only one theory (i.e., classical plate
theory) is agreed upon by most researchers, thin shells have a variety of sub-
category thin shell theories developed through different assumptions and simplifi-
cations, such as Reissner-Naghdi’s linear shell theory, Donner-Mushtari’s theory,
Fliigge’s theory, Sanders’ theory, etc., about which detailed descriptions are
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available in the monograph by Leissa (1973). Many of the previous studies
regarding laminated cylindrical shells are based on the CSTs (for example, Jin et al.
2013a; Lam and Loy 1995a, b, 1998; Liu et al. 2012; Qu et al. 2013c; Zhang 2001,
2002).

Although sufficiently accurate vibration results for thin shells can be achieved
using the CSTs with appropriate solution procedures, they are inadequate for the
vibration analysis of composite laminated shells which are rather thick or when they
are made from materials with a high degree of anisotropic. In such cases, the effects
of transverse shear deformations must be considered. Thus, FSDTs based on
Reissner-Mindlin’s displacement assumptions were developed to take into account
the effects of transverse shear deformations. There exist considerable research
efforts devoted to the laminated cylindrical shells based on the FSDTs (such as,
Ferreira et al. 2007; Jin et al. 2013b, 2014a; Khdeir 1995; Khdeir and Reddy 1989;
Qatu 1999; Qu et al. 2013a, b; Reddy 1984; Soldatos and Messina 2001; Zenkour
1998; Zenkour and Fares 2001; Ye et al. 2014b).

Since the transverse shear strains in the conventional FSDTs are assumed to be
constant through the thickness, shear correction factors have to be incorporated to
adjust the transverse shear stiffness. To overcome the deficiency of the FSDTs and
further improve the dynamic analysis of shell structures, a number of HSDTs with
varying degree of refinements of the kinematics of deformation were developed.
Noticeably, significant contributions to the higher order shear deformation theories
of composite shells have been made recently by many researchers (Ferreira et al.
2006; Mantari et al. 2011; Pinto Correia et al. 2003; Reddy and Liu 1985; Schmidt
and Reddy 1988; Viola et al. 2012, 2013). As pointed out by Reddy (2003),
although the HSDTs are capable of solving the global dynamic problem of shells
more accurately, they introduce rather sophisticated formulations and boundary
terms that are not easily applicable or yet understood. And these theories require
more computational demanding compared to those FSDTs. Therefore, such theories
should be used only when necessary. When the main emphasis of the analysis is to
determine the vibration frequencies and mode shapes, the FSDTs may be a rec-
ommendable compromise between the solution accuracy and effort.

The development of researches on this subject has been well documented in
several monographs respectively by Carrera et al. (2011), Qatu (2004), Reddy
(2003), Ye (2003), Soedel (2004) and reviews (Carrera 2002, 2003; Liew et al.
2011; Qatu 2002a, b; Qatu et al. 2010; Toorani and Lakis 2000).

This chapter considers vibrations of laminated circular cylindrical shells with
general boundary conditions. Equations of thin (classical shell theory, CST) and
thick (shear deformation shell theory, SDST) laminated cylindrical shells are given
in the first and second sections, respectively, by specializing the corresponding
equations of the general shells (Chap. 1) to those of cylindrical shells. On the basis
of SDST, several vibration results are presented for closed laminated cylindrical
shells with different boundary conditions, lamination schemes and geometry
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Fig. 5.1 Geometry notations and coordinate system of open laminated circular cylindrical shells

parameters by using the modified Fourier series and weak form solution procedure
developed in Chap. 2 (Table 3.3 shows that convergence of solutions with weak
form solution procedure is faster than the strong form one). Effects of boundary
conditions, geometry parameters and material properties are studied as well.
Vibration of shallow and deep open laminated cylindrical shells will then be treated
in the latest section of this chapter.

Closed cylindrical shells are special cases of the open ones. Consider an open
laminated circular cylindrical shell as shown in Fig. 5.1. The length, mean radius,
total thickness and circumferential included angle of the shell are represented by L,
R, h and 6, respectively. The middle surface of the shell where an orthogonal
coordinate system (x, 8 and z) is fixed is taken as the reference surface of the shell.
The x, 6 and z axes are taken in the axial, circumferential and radial directions
accordingly. The middle surface displacements of the shell in the axial, circum-
ferential and radial directions are denoted by u, v and w, respectively. The shell is
assumed to be composed of arbitrary number of liner orthotropic laminas which are
perfectly bonded together. The principal coordinates of the composite material in
each layer are denoted by 1, 2 and 3, respectively, and the angle between the
material axis and the x-axis of the shell is devoted by &. The distances from the top
surface and the bottom surface of the kth layer to the referenced middle surface are
represented by Z;,, and Z; accordingly. The partial cross-sectional view of the
cylindrical shell is given in Fig. 5.2.

Consider the cylindrical shell in Fig. 5.1 and its cylindrical coordinate system.
The coordinates, characteristics of the Lamé parameters and radii of curvatures are:

a=x, =0, A=1, B=R, R,=o0, Ry=R (5.1)

The above geometry parameters can be directly applied to the general shell equa-
tions derived in Chap. 1 to obtain those of cylindrical shells.
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Fig. 5.2 Partial cross-
sectional view of laminated
circular cylindrical shells

Middle surfa{e

5.1 Fundamental Equations of Thin Laminated
Cylindrical Shells

We first derive the fundamental equations for thin laminated cylindrical shells
(neglecting shear deformation and rotary inertia), followed by the thick ones. We
will only consider laminated composite layers with cylindrical orthotropy. The
equations are formulated for the general dynamic analysis of laminated cylindrical
open shells. It can be readily applied to static (i.e., letting frequency w equal to
zero) and free vibration (i.e., neglecting the external load) analysis.

5.1.1 Kinematic Relations

Substituting Eq. (5.1) into Eq. (1.7), the middle surface strains and curvature
changes of thin cylindrical shells can be specialized from those of general shells.
They are formed in terms of middle surface displacements as:

0 _ du __ w
& = ox Ix = " a2 |

0O _ v 4w _ Ov _ 0w
& =rw TR X0= R mor (5.2)
0 vy Ou — O Pw_

W0 = ox TRo0 a0 = Rox — 2 Rowdo

where eg, 82 and yg(, denote the middle surface normal and shear strains. y,, yy and
1o are the middle surface curvature and twist changes. Thus, the strain-displace-
ment relations for an arbitrary point in the kth layer of a thin laminated cylindrical
shell can be defined as:
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& = & + 2y
&0 = &5 + 2 (5.3)
Veo = Vo + Tt

where 7 <z<Z;.

5.1.2 Stress-Strain Relations and Stress Resultants

The corresponding stress-strain relations in the kth layer can be obtained according
to generalized Hooke’s law as:

3 3 3
Ox o, O, @ 16 Ex
o 0= |0, 05 0% €9 (5-4)
=2 =2 =00
Tx0 ) g Of O Ot 7x0 ) k

where o, and gy are the normal stresses in the x and 6 directions, respectively. 7,4 is
the corresponding shear stress. The lamina stiffness coefficients Q_f; (i,j=1,2,6)
represent the elastic properties of the material of the layer. They are written as in
Eq. (1.12). Integrating the stresses over the thickness or substituting Eq. (5.1) into

Eq. (1.14), the force and moment resultants of thin laminated cylindrical shells can
be obtained in a matrix form as

N, A A A Bi B B | [&

Ny Ay Ay Ay B By By || &)

Nw | _ [Aie Az Aes Bis B Bes % (5.5)
M, Biy Biz Bis Dt D Dis | | x '
My Biy Bx By D1z Dxn D ||y

M.y Bis By Bes Disc Dy Des | | xro

where N, Ny and N,y are the normal and shear force resultants and M,, My and M,
denote the bending and twisting moment resultants. The stiffness coefficient A;;, By,
and D;; are given in Eq. (1.15). It should be noted that for a laminated cylindrical
shell which is symmetrically laminated with respect to the middle surface, the
constants B;; equal to zero.
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5.1.3 Energy Functions

The strain energy function for thin laminated cylindrical shells during vibration can
be written as:

_1// {Nx32+N083+Nx()y20 }Rd@dx (5 6)
7 .
x 0

FMyy, + Moyg + Moo

Substituting Eqgs. (5.2) and (5.5) into Eq. (5.6), the strain energy function can be
written in terms of middle surface displacements and divided to three components
Us;= U + Ug, + Ug,s, Wwhere Uy, U, and Uy, represent the stretching strain energy,
bending strain energy and bending—stretching coupling energy, respectively.

2
[ ) e ) ()
o=y [ [ 42 () () + 200 6) (1) praoe 679
Y +2A26( +RB())(B()+W)

2 \2 t
D () 2 (- 5) (52) - %

1 2
Up =5 / / x(5%) (3-2 gjf,o) + (B 2) e ARA0x (570)

x 0 2
v d*w 2D (Ov __ H O*w v Ow
x (()x 2 axao) + % ((?x 2 axae) (ao 592)

_ 12 o _ ()u A
Bll (avz) (0 392) R

B
( o 8x80) ) =% (W)(W+W) TF
2 (G +w) + 5% (2 -2 62w)
Usss = / / (858 Gt v JoAm o Rdbdx  (5.7¢)
v u
D < (F+w) - Bl6(dx-)(0x+R39) &

(f - W) R%Ae)

v Ou v Pw
+ 7 (% + Rax) ( Ox -2 3x89)

The corresponding kinetic energy (7) of the shells can be written as:

/ / Io{(au) (%>2+<%>2}Rd0dx (5.8)
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Fig. 5.3 Boundary conditions of thin laminated cylindrical shells

The inertia term I, is the same as in Eq. (1.19). Suppose ¢,, qo9 and g, are the
external loads in the x, 6 and z directions, respectively. Thus, the external work can
be expressed as:

W, = / / {q.u + qov + q;w}RdOdx (5.9)
x 0

The same as usual, the general boundary conditions of a cylindrical shell are
implemented by using the artificial spring boundary technique (see Sect. 1.2.3).
Letting symbols kj, ky, k; and k) (Y = x0, 60, x1 and 61) to indicate the stiffness
of the boundary springs at the boundaries x = 0, 6 =0, x = L and 6 = 6,
respectively (see Fig. 5.3). Therefore, the deformation strain energy stored in the
boundary springs (Uy,) during vibration can be defined as:

Up ==
¥ [k R 4 R+ K (0w 0x)] et

X

1 / { [t + Kigv? + Kiyw? + K2 (0w/0x)] [eo }Rde

1/{w¢+mﬁ+%w+mmwmwmo

+= dx 5.10
2 + [kt u? + Ky v* + kpw? + K (Ow/RO0) | [g—0, } (5.10)

5.1.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thin laminated cylindrical
shells can be obtained by specializing form the governing equations of thin general
laminated shells or applying the Hamilton’s principle in the same manner as
described in Sect. 1.2.4. Substituting Eq. (5.1) into Eq. (1.28) and then simplifying
the expressions. Thus, the governing equations of thin laminated cylindrical shells
become:
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where Q, and Qg are defined as

_OM,  OMy
O = Ox  RO0O
- oM,y OMy
Q= dox ' ROO

(5.11)

(5.12)

Substituting Egs. (5.2), (5.5) and (5.13) into Eq. (5.12), the governing equations
can be written in terms of middle surface displacements. These equations are
proved useful when exact solutions are desired. These equations can be written as:

Ly Ly L3 -y O 0 u —PDx
Ly Lyp Ln| -’ 0 - 0 v —Po
Ly1 Ly L33 0 0 =l w —P:

The coefficients of the linear operator L;; are written as
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And the general boundary conditions of thin laminated cylindrical shells are:

Ny —kju=20 N+ kju=0
Nx9+%—k;0v:0 NY‘Q«I»A%”{»](;]\):O
x=0: My _ gw., x=L: OM. W,
Ox + gy — kow =0 O+ Fag +kaw =0
ow __ ow __
M — K5, =0 M.+ K49 =0 5.15)
NxH*kZ()MZO ngJrkZlu:O '
N9+%—k50v:0 N0+%+k51v:0
0=0: My _ qw ., 0=10o: OM. W,
) Ow ow __
—My — Ko ggg = 0 —My + K} 2 =0

The classification of the classical boundary conditions shown in Table 1.3 for

thin laminated general shells is applicable for thin laminated cylindrical shells.
Taking boundaries x = constant for example, the possible combinations for each
classical boundary conditions are given in Table 5.1. Similar boundary conditions
can be obtained for boundaries € = constant.
It is obvious that there exists a huge number of possible combinations of boundary
conditions for a thin laminated cylindrical shell. In contrast to most existing
solution procedures, the artificial spring boundary technique offers a unified oper-
ation for laminated cylindrical shells with general boundary conditions. The stiff-
ness of the boundary springs can take any value from zero to infinity to better model
many real-world restraint conditions. Taking edge x = 0 for example, the widely
encountered classical boundary conditions, such as F (completely free), S (simply-
supported), SD (shear-diaphragm) and C (completely clamped) boundaries can be
readily realized by assigning the stiffness of the boundary springs as:

F: k) =ky =k =K% =0

SD: &'y = k% = 10'D, k" =K% =0
Skl =kly =k% =10"D,K% =0
C: Ky = kjg = klg = K = 10D

(5.16)

where D = E\h*/12(1 — py, f1;) is the flexural stiffness of the cylindrical shell.
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Table 5.1 Possible classical
boundary conditions for thin
laminated cylindrical shells at

Boundary type Conditions

Free boundary conditions

boundaries x = constant F Ny=Ng+ 0=, + %= M, =0
F2 u=Ny+% =0 + % =M =0
F3 Ny=v=0,+%M =M =0
F4 u=v=0Q+%— M =0
Simply supported boundary conditions
S u=v=w=M,=0
SD Ni=v=w=M,=0
S3 u:Nx9+%:w:MX:O
s4 Ne= Ny +%8 = =M, =
Clamped boundary conditions
C u=v=w=2=0
C2 NX:v:w:%:O
C3 u:Nx()+%:W:%—::0
c4 Ne=Ng+M%=w=20=0

5.2 Fundamental Equations of Thick Laminated
Cylindrical Shells

The fundamental equations of thin laminated cylindrical shells presented in pre-
vious section are applicable only when the total thickness of the shell is smaller than
1720 of the smallest of the wave lengths and/or radii of curvature (Qatu 2004) due to
the fact that both shear deformation and rotary inertia are neglected in the formu-
lation. This section presents fundamental equations of thick laminated cylindrical
shells considering the effects of shear deformation and rotary inertia. The treatment
that follows is a specialization of the general first-order shear deformation shell
theory (SDST) given in Sect. 1.3 to those of the thick laminated cylindrical shells.

5.2.1 Kinematic Relations

On the basis of the shell model given in Fig. 5.1 and the assumptions of SDST, the
displacement field of thick laminated cylindrical shells is defined in terms of the
displacements and rotation components of the middle surface as

U(x,0,z) = u(x,0) + z¢,
V(x,0,2) = v(x, 0) + z¢y (5.17)
W(x,0,z) = w(x,0)

where u, v and w are the middle surface displacements of the shell in the axial, cir-
cumferential and radial directions, respectively, and ¢, and ¢, represent the rotations of
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transverse normal respect to 6- and x-axes. Specializing Egs. (1.33) and (1.34) to those
of cylindrical shells, the normal and shear strains at any point of the shell space can be
defined in terms of the middle surface strains and curvature changes as:

& = 82 + 2y
1 0
gg = —— (&) + 2
0= ) G0t a)
1
o = (M + 220) + (+2/R) (V6. + 2x0x) (5.18)
Tee = Ve
70:

T

where ygz and VSZ represent the transverse shear strains. The middle surface strains
and curvature changes are defined as:
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W
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ow v
0 _ 77
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5.2.2 Stress-Strain Relations and Stress Resultants

According to Hooke’s law, the corresponding stresses in the kth layer of a thick
laminated cylindrical shell can be obtained as:

o Qo 2L, 0 0 Qi (g
09 Qlfz 152 O_ 0_ ]56 &0
=10 0 Qf O 0 [ (5.20)
Txz 0 0 Q]is Q§5 0 Vxz

0 ) 1 Qilf6 Qilé6 0 0 Q71é6 Px0 k

where 7, and 7y, are the corresponding shear stress components. Q_z (1,j=1,2,4,5,6)
are known as the transformation stiffness coefficients, which represent the elastic
properties of the material of the layer. They are given in Eq. (1.39). By carrying the

integration of stresses over the cross-section, the force and moment resultants can be
obtained:
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(5.21)

It should be stressed that although 7,4 equals to 74, from the symmetry of the
stress tensor, it is obvious from Eq. (5.21) that the shear force resultants N, and Ny,
are not equal. Similarly, the twisting moment resultants M,y and Mj, are not equal
too. Carrying out the integration over the thickness, from layer to layer, yields

The stiffness coefficients A;;
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coefficients A, Bj;, Dj; A B; andD are defined as:
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; and D;; are given as in Eq. (1.43). The stiffness
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where K is the shear correction factor. N, represents the mount of the layers. E;; are
defined as

1 N PN 4 ..
Ej= Z/; Oz —al, (1.j=1,2,6) (5.25)

The above equations include the effects of the deepness term z/R, and thus create
complexities in carrying out the integration and the follow-up programming.
Figures 3.7 and 3.8 showed that the effects of the deepness term z/R on the frequency
parameters of an extremely deep, unsymmetrically laminated curved beam (6, = 286.
48°) with thickness-to-radius ratio #/R = 0.1 are very small and the maximum effect is
less than 0.41 % for the worse case. These results can be used in establishing the limits
of shell theories and shell equations as well. When the FSDT is applied to thin and
moderately thick cylindrical shells, the deepness term z/R can be neglected (Qu et al.
2013a, b; Jinet al. 2013b, 2014a; Ye et al. 2014b), in such case, the force and moment
resultants of cylindrical shells (Eq. (5.23)) can be rewritten as:

[N T rAn A A A Bu B Bis Big [ &
Ny Ap Ap Ay Ay Bia Bxn By By &
N A Ay Aes Ass Bis By Bes Bes 7%
Nox | _ | A Az Aes A  Bis B Beo Bos Yo (5.26)
M, Byt Bix Bis Bis Di Din Dis Dis L '
My By By By By Dz Dy Dy Dy %o
M, Bis By Bss Bes Dic D Des Des 1xo
L My, | LBis Baxs Bes Bes Die Dz Des Des 1 | iy |
Oo|  |Au Asgs */Sz]
o= [h asl 527

5.2.3 Energy Functions

The strain energy (U,) of laminated cylindrical shells including shear deformation
effects during vibration can be defined in terms of the middle surface strains and
curvature changes and stress resultants as

0 0 0 0 .
U, = 1/ / {ngx + Nogg + Naoyyg + NoxVg, + May, }Rd@dx (5.28)
2 +Moyg + Moy + Moxxgr + Qo7p, + OxVx,
x 0

Substituting Egs. (5.19), (5.22) and (5.23) into Eq. (5.28), the strain energy of the
shell can be expressed in terms of middle surface displacements (u, v, w) and
rotation components (¢, @g).
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The kinetic energy (T) of the cylindrical shells including rotary inertia is written as:

] LA ) ) Yo

—h/2

I() 0[ +211 %l; 8;;( + 12 ( ) +10( )
/ / Rd0dx (5.29)
s _|_2[ 3vd¢0 —|—I (d¢0) +I ( )

where the inertia terms are:

Iy=1I+1/R

L =L +L/R

E:Iz+]3/R (5.30)
N, Zk+1

o, I, 1o, I3] = Z/ pM[l,2,2°,2)dz
k=1

Zk
in which p* is the mass of the kth layer per unit middle surface area. Assuming the
distributed external forces g,, gy and ¢, are in the x, 6 and z directions, respectively,
and m, and my represent the external couples in the middle surface, thus, the work
done by the external forces and moments is

W, = / / (quit+ qov + qow + myby + modg}RAOdx (531

X

Using the artificial spring boundary technique as described earlier, let ki, k;, kj,
K, and Kw(lp = x0, 00, x1 and 01) to represent the rigidities (per unit length) of
the boundary springs at the boundaries x =0, § = 0, x = L and 6 = 0, respectively.
Therefore, the deformation strain energy (Uy,) stored in the boundary springs
during vibration is defined as (Fig. 5.4):

zw)h___0()

Fig. 5.4 Boundary conditions of thick laminated cylindrical shells
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U 1/ [ktgu® + kigv? + Kigw? + KX + Kb dg] o 0
TS ke 4k kg K5 6+ KD 6]
/{ [liou® + ko2 + kpow? + Ko % + Ko 2] [o=o

4= dx (5.32)
2 Y [keluz + km" + kmwz + Ky, qs)z( + K@ld’e] lo=0, }

5.2.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thick laminated cylindrical
shells can be obtained by substituting Eq. (5.1) into those of laminated general thick
shells (Eq. (1.59)). According to Eq. (1.59), we have

ON,  ONow g Pu P

Ox  ROO or? O

_&+6§x+%+ q. 70%2_;;} (5.33)
2 2

Substituting Eqgs. (5.19), (5.22) and (5.23) into above equations, the governing
equations of thick cylindrical shells can be written in terms of displacements as

Ly Lo Liz L Lis My 0 0 My O u

Ly Ly Ly Ly Lps 0 My 0 0 Mo v

Ly Ly Ly Ly Lys| -0 0 0 Mz 0 0 w

Lyy Ly Liz Ly Lys My 0 0 My O o

Lsy Lsy Ls3 Lsy Lss 0 Ms 0 0 Mss bo
—Dx
—Py

_ | . (5.34)

—m,
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The coefficients of the linear operator L; and M;; are given as

P 245 P Ag P
2T R 300 TR A
ox R Ox00 R? 90
> A Ae\ P Ay O
Ly =1L = Alﬁa 5+ ( —) —8x86+ﬁﬁ

Ly =A;

R
A O Ay 0
Liy=—Ly =-29 ;7269
BT = e TR o0
P 2Big &P  Beg &
Liy =Ly = By o + —2 66

TR x0T R o

9 /By, Be\ 0 By O
o =

Ox? R 0x00  R? 90

P 28 P Ap P Ay

=455t 1 000 T RaE R

A +Ags) O Ay + A\ 0
fos = —lo = <T) T (T) a0

Lis=Ls; =Bis =

ox? R 0x00  R? Hp>
& 2By & Bp & Ay

o+ R gt
Ox R 0x00 ' R29¢* 'R

P 25 P Aw P Ap

Lys =Ly = Bis =

(5.35)
Lys = Ls; = Bes =

— Aex 45 O AM 0 An
ST R ox00 R oP R
— B, ® Ay By 0
L= —Lix = (Ass — —=) — + (—= — =2
34 43 = (Ass R)8x+(R )80
B B By, 0 Ap B:22 0
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7 T Y A
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i 22 ey T 0 4
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According to Egs. (1.60) and (1.61), the general boundary conditions of thick
laminated cylindrical shells are

Ny —kjpu=20 N+ kfju=0
Ny — k;()v =0 Ny + k)tlv =0
x=0:¢ Oxr—kyw=0 x=L< Oy +kiw=0
M, - K¢, =0 M, + K¢, =0
M,y — Kfo(/’o =0 M,y + K)?l ¢0 =0 (5 36)
Noy — kjyu =0 Nox + kjyu =0 ‘
Ny — kpyv =0 No +kyv=20
0=0:¢ Qg —kyyw=20 0 =00:x Qp+kpyw=0
My, — K’go(i)x =0 My, + K, ¢, =0
My — Kjypg =0 Mo+ Ky =0

Thick cylindrical shells can have 24 possible classical boundary conditions at each
edge. This yields a numerous combinations of boundary conditions, particular for
open cylindrical shells. Table 5.2 shows the 24 possible classical boundary con-
ditions for boundaries x = constant, similar boundary conditions can be obtained for
boundaries 6 = constant (only existing in open cylindrical shells).

Classical boundary conditions can be seen as special cases of the elastic ones. By
using the artificial spring boundary technique, all the aforementioned classical
boundary conditions can be readily generated by assigning the boundary springs at
proper stiffness. Although we can obtain accurate solutions for laminated cylin-
drical shells with arbitrary classical conditions and their combinations, in this
chapter we will consider four typical boundary conditions that are frequently
encountered in practices, namely, F, SD, S and C boundary conditions. Taking edge
x =0 for example, the corresponding spring stiffness for the four classical boundary
conditions are given below (N/m and N/rad are utilized as the units of the stiffness
about the translational springs and rotational springs, respectively):

F k) =kly =k =K\ =K =0

SD: &'y = k% =Kl = 10'D, k') =K% =0
S: kY =k =k =K =10'D, K% =0
C:kYy =Ky =k =K\, =K =10"D

(5.37)

5.3 Vibration of Laminated Closed Cylindrical Shells

Thin and thick laminated closed cylindrical shells with different boundary condi-
tions, lamination schemes and geometry parameters are treated in the subsequent
analysis. Both solutions in the framework of the CST and SDST (neglecting the
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Table 5.2 Possible classical

boundary conditions for thick Boundary type Conditions

cylindrical shells at each Free boundary conditions

boundary of x = constant F Ny=Ny=0,=M,=M=0
F2 U=Ny=0,=M,=My=0
F3 Ne=v=0,=M,=My=0
F4 u=v=0,=M,=M4y=0
F5 Ny=Ny=0:=M.=¢p=0
F6 U=Nip=0:=M,=¢p=0
F7 Ne=v=0,=M,=¢g=0
F8 u=v=0,=M,=¢y=0
Simply supported boundary conditions
S u=v=w=M,=¢y=0
SD Ny=v=w=M,=¢p=0
S3 Uu=Nyg=w=M,=¢y=0
S4 Ny=Ny=w=M,=¢y=0
S5 u=v=w=M,=My=0
S6 Ne=v=w=M,=M4y=0
S7 U=Ny=w=M,=M,,=0
S8 Ny=Ny=w=M,=My=0
Clamped boundary conditions
C u=v=w=¢,=¢y=0
Cc2 Ne=v=w=¢,=¢yp=0
C3 u=Ny=w=¢,=¢y=0
C4 Ne=Nwy=w=¢.=¢o=0
C5 u=v=w=¢, =Myp=0
C6 Ne=v=w=¢,=M,y=0
Cc7 u=Nyp=w=¢,=My=0
C8 Ne=Ny=w=¢,=My=0

deepness term z/R, i.e., Eq. (5.26)) are presented. Natural frequencies and mode
shapes of the cylindrical shells are obtained by applying the previous developed
modified Fourier series and weak form solution procedure. For a laminated closed
cylindrical shell, there exist two boundaries, i.e., x = 0 and x = L. For the sake of
simplicity, a two-letter string is employed to represent the boundary condition of a
cylindrical shell, such as F-C indicates the shell with edges x = 0 and x = L having
F and C boundary conditions, respectively. Unless otherwise stated, the natural
frequencies of the considered shells are expressed in the non-dimensional param-
eters as Q = (wL?/h)+/p/E, and the material properties of the layers of laminated
cylindrical shells under consideration are given as: E, = 10 GPa, E,/E, = open,
w2 =025, Gy = 0.6 Es, Giz = Gaz = 0.5 E, p = 1,450 kg/m’.
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Considering the circumferential symmetry of closed circular cylindrical shells,
the assumed 2D displacement field can be reduced to a quasi 1D problem through
Fourier decomposition of the circumferential wave motion. Thus, taking the FSDT
displacement field for example, each displacement and rotation component of a
closed circular cylindrical shell is expanded as the following form:

M N 2 N
u(x,0) = Z Z A un €OS Ayx cos nb + Z Z anP;(x) cos nd
m=0 n=0 =1 n=0
M N 2 N
v(x,0) = Z Z By €OS Aypx sin n0 + Z Z binPy(x) sin n0
m=0 n=0 =1 n=0
M N 2 N
w(x,0) = Z Z Cyun €08 Ayyx cos nf + Z Z cnPy(x) cos nl (5.38)
m=0 n=0 =1 n=0
M N 2 N
¢ (x,0) = Z Z D,yn €OS Ayx cos nl -+ Z Z dinP;(x) cos nf
m=0 n=0 =1 n=0
M N 2 N
do(x,0) = Z Z E,p €OS Apx sinnf + Z Z enP;(x) sinnd

Il

o
T
o

1 n=

3
Il
<

n

where 4, = mn/L. n represents the circumferential wave number of the corre-
sponding mode. It should be note that n is a non-negative integer. Interchanging of
sin n6 and cos nf in Eq. (5.38), another set of free vibration modes (anti-symmetric
modes) can be obtained. A,,,,, B, Coins D and E,,,,, are expansion coefficients of
standard cosine Fourier series. ay,, by,, ¢, d;, and e, are the corresponding sup-
plement coefficients. M and N denote the truncation numbers with respect to variables
x and 6, respectively. According to Eq. (5.35), it is obvious that each displacement
and rotation component in the FSDT displacement field is required to have up to the
second derivatives. Therefore, two auxiliary polynomial functions P; (x) are intro-
duced in each displacement expression to remove all the discontinuities potentially
associated with the first-order derivatives at the boundaries. These auxiliary functions
are defined as (Ye et al. 2014a, d, e)

2 2

Pi(x) :x(%f 1) Py(x) :xz(% 1) (5.39)
According to Eq. (5.14), it can be seen that the displacements in the CST dis-
placement field are required to have up to the third (# and v) or fourth (w) deriva-
tives. In such case, the axial, circumferential and radial displacements of a closed
circular cylindrical shell are expanded as a 1-D modified Fourier series in which
four auxiliary polynomial functions should be introduced to remove all the dis-
continuities potentially associated with the first-order and third-order derivatives at
the boundaries:
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M N 4 N
u(x,0) = Z ZA’”” cos Ayux cosnl + Z Z anPy(x) cos nd
m=0 n=0 =1 n=0
M N 4 N
v(x,0) = Z Z By €08 Jpx sinnf) + Z Z binPi(x) sinnd (5.40)
m=0 n=0 =1 n=0
M N 4 N
w(x, 0) = Z Z Copn €OS Ayx cos nl + Z Z cmPi(x) cos nl

3
Il
o

l§

i
o

1 n

3
I
o

I

where the four auxiliary polynomial functions P; (x) are given as (Zhang and
Li 2009)

9L . 7mx L . 3mnx

P1 (X) = HSIH(Z) — msln(ﬁ)

9L X L 37x
Py(x) = —Ecos(i) — ECOS(Z)

L3 X L’ 3nx (5.41)
P3(x) = =sin(=—) — =—sin(=—)
} w2l 30 2L

3 X r? 37mx

P4(X) = —;COS(E) — ﬁCOS(I)

5.3.1 Convergence Studies and Result Verification

Considering the circumferential symmetry of the circular shells, the convergence
only needs to be checked in the axial direction (i.e., x). In Table 5.3, the first six
natural frequencies (Hz) for a two-layered, [0°/90°] laminated cylindrical shell with
six truncation schemes (i.e., M = 6, 7, 8, 9, 10, 11, N = 10) are presented. The
geometric and material constants of the shell are: R =1 m, /R = 5, /R = 0.1,
E, = 10 GPa, E|/E, = 15, puj, = 0.27, G, = 0.5E,, Gy3 = 0.5E,, Gz = 0.2E,,
p = 1,700 kg/m>. The natural frequencies of the shell are calculated by MATAB on
a notebook. The configuration of the computer is: Inter Core2 Duo CPU and 2 GB
RAM. It is obviously that the modified Fourier series solution has an excellent
convergence, and is sufficient accuracy even when only a small number of terms are
included in the series expression. The maximum difference between the ‘M = 6’ and
‘M = 11" form results for the F-F and C—C boundary conditions are less than 0.15
and 0.08 %, respectively. Furthermore, from the table, we can see that although the
series are truncated as much as 11 x 10, the computing time is less 1.53 s. In
addition, convergence of the C—C solutions is faster than the case of F-F boundary
conditions. Unless otherwise stated, the truncated number of the displacement
expressions will be uniformly selected as M = 11 in the following discussions.
To validate the accuracy and reliability of current method, the current solutions
are compared with those reported by other researchers. First, let us consider a



5.3 Vibration of Laminated Closed Cylindrical Shells 173

Table 5.3 Convergence of the first six frequencies (Hz) for a [0°/90°] laminated cylindrical shell
with F-F and C—C boundary conditions

B.C. M Mode number Time (s)
1 2 3 4 5 6
6 3.4476 52.387 54.131 135.37 144.13 146.02 1.11
7 3.4476 52.387 54.131 135.35 144.13 146.02 1.17
8
9

F-F

3.4446 52.387 54.127 135.35 144.13 146.02 1.25
3.4446 52.387 54.127 135.34 144.13 146.02 1.35
10 3.4423 52.387 54.123 135.34 144.13 146.02 1.42
11 3.4423 52.387 54.123 135.33 144.13 146.02 1.53
c-C |6 91.565 118.86 154.66 160.87 185.97 |235.66 1.10
91.514 118.77 154.65 160.87 185.97 |235.65 1.19
8 91.514 118.77 154.65 160.80 185.94 |235.54 1.25
9 91.500 118.74 154.65 160.79 185.94 |235.54 1.34
10 |91.501 118.74 154.65 160.77 185.93 |235.52 1.42
11 91.494 118.73 154.65 160.77 185.94 | 235.51 1.52

Table 5.4 Comparison of the frequency parameters Q for a [0°/90°/0°] laminated cylindrical shell
with different boundary conditions

n F-F Cc-C
Messina and Present Error Messina and Present Error
Soldatos (1999c) (%) Soldatos (1999c¢) (%)
1 304.13 304.16 0.01 159.31 159.44 0.08
2 26.58 26.56 —-0.09 107.71 107.89 0.17
3 7491 74.78 -0.17 108.05 108.11 0.06
4 142.93 142.51 -0.29 157.23 156.94 —0.18
5 229.74 228.70 -0.45 237.70 236.76 —0.40
7 456.60 452.69 -0.86 460.98 457.16 —0.83
10 |917.18 902.24 -1.63 920.32 905.47 —1.61

three-layered, cross-ply [0°/90°/0°] cylindrical shell. The elementally material
parameters and geometric properties of the layers of the shell are given as: L/R =5,
R = 005, EI/E2 = 25, Hi2 = 025, G12 = 0.5E2, G13 = 0.5E2, G23 = 02E2
Comparisons of the shell with two sets of classical boundary conditions (i.e., F-F
and C—C) for the first longitudinal mode (i.e., m = 1) and six different circumference
wave numbers (i.e., n = 1-5 and 10, n = 6, 8 and 9 were not considered in
referential paper) are presented in Table 5.4. From the table, we can see that the
present solutions agree very well with results obtained by Messina and Soldatos
(1999c). The differences between these two results are very small, and do not
exceed 1.63 % for the worst case. The small differences may be caused by a
different solution procedure were used by Messina and Soldatos (1999c).
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Table 5.5 Comparison of frequency parameters Q = wh/7n\/p/Gi, for two S-S supported,
cross-ply laminated cylindrical shells with different thick-radius ratios (R = 1 m, L/R = 1,
EI/EZ = 40)

h/R [0°/90°/90°/0°] [90°/0°/0°/90°]
Present Ye Ich Thinh and Present Ye Ich Thinh and
(2003) Nguyen (2013) (2003) Nguyen (2013)
0.1 0.0639 0.0646 | 0.0640 0.0533 0.0527 0.0531
0.0657 0.0663 0.0657 0.0592 0.0591 0.0591
0.0789 0.0793 0.0789 0.0710 0.0707 0.0709
0.2 0.1588 0.1638 0.1589 0.1335 0.1302 | 0.1333
0.1678 0.1709 | 0.1683 0.1528 0.1507 0.1527
0.1727 0.1752 | 0.1726 0.1593 0.1589 | 0.1592
0.3 0.2542 0.2630 | 0.2546 0.2275 0.2188 0.2273
0.2670 0.2729 | 0.2669 0.2430 0.2364 |0.2428
0.2788 0.2838 0.2797 0.2701 0.2683 0.2699

The previous example is presented as thin laminated composite cylindrical shell
with classical boundary conditions. The validity of the proposed method for
vibration analysis of thick laminated composite cylindrical shells will be proved in
following examples. In Table 5.5, the detail comparisons between results obtained
by present method and those provided by Ye (2003) with 3D elasticity theory as
well as Ich Thinh and Nguyen (2013) by the FSDT for certain cross-ply cylindrical
shells with S-S boundary conditions are presented, in which two types of lami-
nation schemes ([0°/90°/90°/0°] and [90°/0°/0°/90°]) are included. The material
parameters and geometric properties of the layers of the considered shells are
assumed to be: R =1 m, L/R = 1, E|/E, = 40. The comparisons are conducted for
thickness-to-radius ratios A/R = 0.1, 0.2, 0.3, respectively. The lowest three fre-
quencies of the shells, which are expressed in terms of non-dimension parameters,
Q = wh/n\/p/G1, are computed. It is obvious that the current results match very
well with the referential data. The proposed solution is efficient and accurate in
predicting nature frequencies of thick laminated cylindrical shells. The differences
between the present results and those reported by Ye (2003) are bigger than those
relative to Ich Thinh and Nguyen (2013). It is attributed to different shell theories
were used in the literature.

Then, a further comparison is performed for laminated composite shells with
different boundary conditions and length-to-radius ratios. The used material con-
stants are the same as previous example. Two types of lamination schemes ([0°/90°]
and [0°/90°/0°]) and two kinds of length-to-radius ratios (i.e., L/R = 1 and 2) are
considered. The fundamental frequency parameters Q = (wL?/100h)\/p/E, for
the shells with thickness-to-radius ratio #/R = 0.2 are calculated. In Table 5.6,
comparisons between the present solutions and results reported by Khdeir et al.
(1989), Ich Thinh and Nguyen (2013) are presented, in which two sets of classical
boundary conditions i.e., S—C and C-C are considered. A good agreement can be
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Table 5.6 Comparison of the fundamental frequency parameters Q = (wL?/100h)+/p/E, of two
certain cross-ply laminated cylindrical shells with different length-radius ratios and boundary
conditions (R = 1 m, /R = 0.2)

Lamination Theories S-C c-C
schemes LUR=1 |L/R=2 |L/R=1 |L/R=2
[0°/90°] HSDT (Khdeir et al. 1989) 0.0938 0.1726 0.1085 0.1928
FSDT (Khdeir et al. 1989) 0.0893 0.1697 0.1002 0.1876
CST (Khdeir et al. 1989) 0.1152 0.1841 0.1048 0.2120
FSDT 0.0823 0.1661 0.0982 0.1737
(Ich Thinh and Nguyen 2013)
Present 0.0921 0.1639 0.0982 0.1738
[0°/90°/0°] HSDT (Khdeir et al. 1989) 0.1087 0.1972 0.1192 0.2191
FSDT (Khdeir et al. 1989) 0.1036 0.1945 0.1093 0.2129
CST (Khdeir et al. 1989) 0.1850 0.2662 0.2049 0.3338
FSDT 0.1025 0.1950 0.1083 0.2083
(Ich Thinh and Nguyen 2013)
Present 0.1028 0.1991 0.1086 0.2084

seen from the table. The small deviations in the results are caused by different
computation methods and shell theories were used in the literature.

5.3.2 Effects of Shear Deformation and Rotary Inertia

In this section, effects of the shear deformation and rotary inertia which are
neglected in the CST will be investigated. Figures 5.5 and 5.6 show the differences
between the lowest three frequency parameters Q) obtained by CST and SDST of a
short (R/L = 1), two-layered, [0°/90°] laminated cylindrical shell with different
thickness-to-radius ratios (A/R) and orthotropy ratios (E,/E,) for F—-F and C-C
boundary conditions, respectively. Two orthotropy ratios, i.e., E;/E, = 1 and 40,
corresponding to isotropic and composite shells are shown in each figure. The
thickness-to-radius ratio A/R is varied from 0.001 to 0.2, corresponding to very thin
to thick cylindrical shells. As expected, the figures show that the difference between
the CST and SDST solutions increases as 4/R increases. In addition, we can see that
the effects of the shear deformation and rotary inertia increase as the orthotropy
ratio (E,/E,) increases. From Fig. 5.5, we can see that when A/R is less than 0.01,
the maximum difference between the frequency parameters Q obtained by CST and
SDST is less than 0.21 % for the worst case. However, when A/R is equal to 0.1, the
maximum difference can be as many as 3.75 and 4.3 % for the cylindrical shell with
orthotropy ratios of E|/E, = 1 and E|/E, = 40, respectively. Figure 5.5 also shows
that the maximum differences between these two results can be as many as 8.12 and
10.22 % for a thickness-to-radius ratio of 0.2. Figure 3.6 shows that the maximum
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Fig. 5.5 Differences between the lowest three frequency parameters Q obtained by CST and
SDST for a short [0°/90°] laminated cylindrical shell with F-F boundary conditions (R/L = 1)

difference between these CST and SDST results can be as many as 16.3 and 59.9 %
for the C—C cylindrical shell with orthotropy ratios of E\/E, = 1 and E/E, = 40,
respectively. In such case, the CST results are utterly inaccurate.

For the sake of completeness, Figs. 5.7 and 5.8 show the similar studies for a long
(R/IL = 5), [0°/90°] laminated cylindrical shell. Constantly, the effects of shear
deformation and rotary inertia increase with thickness-to-span length ratio increases.
Comparing Figs. 5.7 and 5.8 with Figs. 5.5 and 5.6, we can find that the effects of
shear deformation and rotary inertia decrease as length-to-radius ratio increases. The
maximum difference between the CST and SDST results is less than 7.5 % for the
worst case, which is only one eighth of those of cylindrical shell with length-to-
radius ratio L/R = 1. These investigations show that the CST is only applicable for
thin cylindrical shells as well as the long moderately thick ones. For cylindrical
shells with higher thickness ratios or smaller length-to-radius ratios, both shear
deformation and rotary inertia effects should be included in the calculation.



5.3 Vibration of Laminated Closed Cylindrical Shells 177

é /E =1 ‘ S‘rd mode ‘
15 1 2 |
2nd mode .
& 7, .
@ 10 1st mode gl 1
o g
=
o
9]
=
a 5t .
0 - -
Il Il Il Il Il Il Il
0.001 0.005 0.01 0.05 0.1 0.15 0.2
h/R
60 [ ‘ e
E_ /E_=40
17 2 1st mode s
50 B
‘?\O_ 40 3rd mode ]
@ %
§ 30 | 2nd mode ",- i
k]
Q20 ’ B
10 b
0 r 4
Il Il Il Il Il Il Il
0.001 0.005 0.01 0.05 0.1 0.15 0.2

h/R

Fig. 5.6 Differences between the lowest three frequency parameters Q obtained by CST and
SDST for a short [0°/90°] laminated cylindrical shell with C—C boundary conditions (R/L = 1)

5.3.3 Laminated Closed Cylindrical Shells with General
End Conditions

First, let us consider a three-layered, [0°/90°/0°] cylindrical shell with various
thickness-to-radius ratios. The material properties and geometric constants of the
layers of the shell are: E1/E, = 15, R =1 m, L/R = 2. In Table 5.7, the lowest four
frequency parameters Q for the shell are presented, in which six sets of classical
boundary combinations (i.e., F-F, F-S, F-C, S-S, S—C and C-C) and five kinds of
thickness-to-radius ratios (A/R = 0.01, 0.02, 0.05, 0.1 and 0.15) are included in the
table. It can be seen from the table that the frequency parameters increase in general
as the thickness-radius ratio increases. The second observation that needs to be
made here is that the effects of thickness-to-radius ratio are much higher for the
thicker cylindrical shells than it is for the thinner ones. In addition, it is obviously
that boundary conditions have a conspicuous effect on the vibration frequencies of
the shell. Increasing the restraint stiffness always results in increment of the fre-
quency parameters.
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SDST for a long [0°/90°] laminated cylindrical shell with F-F boundary conditions (R/L = 5)

Table 5.8 shows the lowest four frequency parameters Q of a moderately thick
cylindrical shell with different lamination schemes for various boundary conditions.
Five lamination schemes, i.e., [0°], [90°], [0°/90°], [0°/90°/0°] and [0°/90°/0°/90°]
are studied for all aforementioned boundary conditions (see Table 5.7). The geometric
and material constants used in the study are: R=1m, L/R=1,W/R=0.1, E\/E, = 15.
When the shell with F-F, F-S and F-C boundary conditions, the [90°] lamination
scheme yields higher frequency parameter than those of [0°], [0°/90°], [0°/90°/0°] and
[0°/90°/0°/90°] (except the fundamental mode). For other boundary conditions, the
frequency parameters of [90°] are the smallest among the five lamination schemes.
Furthermore, the [0°] lamination scheme yields significantly lower frequency
parameters than those of [0°/90°/0°]. The similar comparison results can be seen for
[0°/90°] and [0°/90°/0°/90°] lamination schemes.

The effects of length-to-radius ratio on frequency parameters are also investi-
gated. Table 5.9 shows the lowest four frequency parameters ( for a two-layered,
unsymmetrically laminated cross-ply cylindrical shell ([0°/90°]) with various length-
to-radius ratios and different sets of boundary conditions. The shell is assumed to
be made of composite layers with following geometric and material constants:
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R=1m, h/R =0.05, E|/E, = 15. It is obviously that the length-to-radius ratio has a
great influence on the vibration of the shell. The frequency parameters decrease
when the length-radius ratio is increased.

The following numerical analysis is conducted to investigate the influence of
fiber orientations on the frequency parameters Q of laminated cylindrical shells. Let
us consider a three-layered [0°/9/0°] cylindrical shell with varying boundary con-
ditions. The shell is modeled as both the top and bottom layers are of uniform
principal direction which is paralleled to x-axis whilst the included angle between
the fiber orientation of the middle layer and x-axis is changed from 0° to 180° step-
by-step. In Fig. 5.9, the first three frequency parameters Q for the shell with three
types of boundary conditions (i.e., SD-SD, S-S and C—C) are plotted, respectively.
The following geometric and material properties are used in the analysis: R = 1 m,
L/R =2, /R = 0.05, E\/E, = 15. Many interesting characteristics can be observed
from the figure. The first observation is that all the figures are symmetrical about
central line (i.e., $ = 90°). The second observation is that the frequency parameter
traces in all cases climb up and then decline, and reach their crests around § = 50°
when 4 is increased from 0 to 90° except the second mode of SD-SD boundary
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Table 5.7 Frequency parameters Q for a [0°/90°/0°] laminated cylindrical shell with various
thickness-to-radius ratios and boundary conditions (R = 1 m, /R = 2, E|/E, = 15)

h/R Mode Boundary conditions
F-F F-S F-C S-S S-C c-C
0.01 1 0.6924 47.444 47.887 91.228 93.711 96.460
2 3.8252 49.853 50.482 94.879 97.010 99.436
3 5.7572 55.831 56.111 97.776 100.42 103.28
4 10.818 65.872 66.601 107.00 108.73 110.75
0.02 1 0.6913 31.185 31.833 59.048 61.749 64.919
2 3.8242 34.505 35.361 62.322 65.184 68.399
3 5.7498 38.063 38.471 64.959 67.227 70.009
4 10.812 50.185 51.009 76.562 79.194 82.038
0.05 1 0.6868 17.397 18.321 34.303 37.189 40.825
2 3.8178 20.540 21.570 34.342 37.371 40.972
3 5.7149 23.205 23.788 41.782 44.120 47.219
4 10.772 33.448 34.046 43.830 46.327 49.130
0.10 1 0.6794 11.010 12.122 22.277 25.089 28.433
2 3.7968 13.105 13.921 23.925 26.512 29.471
3 5.6384 16.769 17.456 27.431 29.741 32.624
4 10.638 21.360 21.857 34.142 35.582 37.150
0.15 1 0.6720 8.053 9.1254 17.725 19.981 22.435
2 3.7633 11.216 11.919 18.755 20.955 23.424
3 5.5395 11.945 12.638 23.400 24.722 26.135
4 10.431 20.377 20.789 25.035 26.676 28.591

conditions, in which the maximum frequency parameters occur around 4 = 60°. In
addition, it is obvious that, the second frequency parameters almost equal to the
third ones when 3 = 20° and the differences between the first frequency parameters
and the second ones are very small for a fiber orientation of 90°.

Figure 5.10 performs the similar study for a two-layered [0°/9] cylindrical shell.
The similar characteristics observed in Fig. 5.9 can be found in this figure as well.
The different observation is that the variation tendencies of the frequency param-
eters are more complicated than those of Fig. 5.9. It may be due to the shell is
unsymmetrically laminated.

Laminated composite cylindrical shells with elastically restrained edges are
widely encountered in engineering practices. The vibration analyses of these shells
are necessary and of great significance. There are infinite types of possible com-
binations of elastic boundary conditions at the two edges of the cylindrical shells,
and it is impossible to undertake an all-encompassing survey of them. Therefore, in
this paper we choose three typical uniform elastic restraint conditions that are
defined as follows (at x = 0):
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Table 5.8 Frequency parameters Q for a moderately thick laminated cylindrical shell with various
lamination schemes and boundary conditions (R =1 m, L/R = 1, h/R = 0.1, E|/E, = 15)

Lamination Mode | Boundary conditions
schemes F-F F-S F-C S-S S-C c-C
[0°] 1 0.1973 4.6489 6.0143 12.092 14.494 16.976
2 0.7703 5.0847 6.3089 12.366 14.746 17.220
3 1.8917 5.6701 6.8472 12.575 14.863 17.242
4 2.1636 7.0632 7.8891 13.256 15.555 17.986
[90°] 1 0.1993 5.3648 5.5490 11.244 11.865 12.571
2 2.8163 7.9426 8.0825 11.354 11.956 12.691
3 2.8341 8.1412 8.2330 15.357 15.793 16.357
4 7.5175 13.087 13.667 16.394 16.750 17.132
[0°/90°] 1 0.1993 5.7888 5.9648 11.441 12.140 13.279
2 1.3637 5.8632 5.9869 12.411 13.062 14.113
3 2.0319 8.1790 8.2594 12.558 13.185 14.199
4 3.7740 8.3929 8.5320 15.247 15.756 16.563
[0°/90°/0°] 1 0.1990 49791 6.3003 12.512 14.780 17.130
2 0.9487 5.5288 6.7570 12.936 15.140 17.446
3 1.9630 6.3494 7.4064 13.549 15.578 17.699
4 2.6585 8.3430 9.0301 14.484 16.444 18.538
[0°/90°/0°/90°] 1 0.1992 5.8999 6.4928 12.256 13.833 15.742
2 1.9420 6.8706 7.3300 12.748 14.224 15.985
3 2.3103 8.4126 8.7915 14.384 15.745 17.451
4 5.3078 10.520 10.806 16.692 17.654 18.795

E': The normal direction is elastically restrained (u Z 0, v=w = ¢, = ¢y = 0), i.e.,
k,=T;

E?: The transverse direction is elastically restrained (W # 0, u =v = ¢, = g9 = 0), i.e.,
k, =T}

E>: The rotation is elastically restrained (¢, Z 0, u =v=w = ¢y =0), i.e., K, = T.

Table 5.10 shows the lowest two frequency parameters Q of a two-layered [0°/9]
cylindrical shell with different restrain parameters I" and fiber orientations. Four
different lamination schemes, i.e., 3 = 0°, 30°, 60° and 90° are performed in the
calculation. The shell parameters used are R = 1 m, L/R = 3, h/R = 0.05, E\/E, = 15.
The shell is clamped at the edge of x = L and with elastic boundary conditions at the
other edge. The table shows that increasing restraint rigidities in the normal and
transverse directions have very limited effects on the frequency parameters of the
shell. When the normal restrained rigidity is varied from 10" * D to 10 * D, the
maximum increment in the table is less than 2.49 % for all cases. The further
observation from the table is that for the shell with lamination scheme of [0°],
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Table 5.9 The lowest four frequency parameters  for a [0°/90°] laminated cylindrical shell with
various length-to-radius ratios and boundary conditions (R = 1 m, #//R = 0.05, E|/E; = 15)

L/R Mode Boundary conditions
F-F F-S F-C S-S S-C c-C

1 1 0.2032 8.8400 8.9230 16.894 17.614 18.718
2 1.4017 9.9271 9.9750 17.726 18.459 19.555
3 2.1356 10.866 10.982 18.653 19.283 20.253
4 3.9373 13.394 13.428 21.924 22.558 23.462

2 1 0.6868 20.615 20.618 36.090 36.479 36.953
2 5.6072 20.664 20.676 40.438 40.710 41.043
3 6.8179 31.790 31.795 43913 44.325 44.813
4 15.751 33.172 33.173 54.095 54.271 54.483

3 1 1.2663 29.385 29.487 58.491 58.637 58.800
2 12.617 39.266 39.324 65.558 65.780 66.026
3 14.005 48.125 48.161 77.299 77.366 77.439
4 35.441 66.797 67.810 97.770 99.630 101.60

4 1 1.8621 38.500 38.718 86.300 86.330 86.363
2 22.430 61.348 61.495 86.869 86.961 87.057
3 23.895 65.943 66.010 128.66 128.67 128.68
4 63.007 94.226 94.610 133.41 134.70 134.98

5 1 2.4535 49.307 49.581 107.98 107.99 107.99
2 35.047 72.760 73.053 120.62 120.62 120.62
3 36.550 100.78 100.84 167.63 167.65 167.70
4 98.451 127.71 127.81 172.83 173.61 174.42

the effect of the rotation direction restraint rigidity is more significant. When the
rotation restraint rigidity is varied from 10" * D to 10* * D, the increments of the
first and second modes can be 5.57 and 4.99 %, respectively).

Table 5.11 shows similar studies for the shell with F boundary conditions at the
edge of x = L. The table reveals that the restraint rigidity at normal direction has large
effects on the frequency parameters of all the lamination schemes. When the normal
direction restraint rigidity is varied from 10" * D to 10® * D, the increments of these
four lamination schemes for the first and second modes can be (1,037, 1,087, 1,118,
1,103 %) and (359, 393, 654, 879 %), respectively. This table also shows that the
increments of the restraint rigidities in the transverse and rotation directions have
very limited effects on the frequency parameters of the shell, with maximum
increment less than 2.73 % in all cases when the rotation restrained rigidity is varied
from 107" * D to 10* * D. From the two tables, it is obvious that the effects of elastic
restraint rigidity on the frequency parameters of laminated cylindrical shells is varied
with mode sequences, lamination schemes and spring components.
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cylindrical shell

5.3.4 Laminated Closed Cylindrical Shells with Intermediate
Ring Supports

Cylindrical shells with intermediate ring supports are widely used in engineering
practices, such as pipelines for undersea transmission cables, irrigation pipes, and
household water pipes. Without these intermediate supports, these structures may
undergo large deformation, and violent vibration due to their low stiffness, and will
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Table 5.10 The first two frequency parameters Q for a two-layered [0°/9] cylindrical shell with
different restrain parameters I" and fiber orientations (R = 1 m, L/R = 3, h/R = 0.05, E|/E, = 15)

9 r E'-C E*-C E-C
1 2 1 2 1 2
0° 107" x D 54.351 57.998 55.146 58.474 53.390 56.641

10° x D 54.351 57.998 55.178 58.460 53.905 57.149
10" x D 54.358 58.002 55.265 58.548 55.473 58.649
10> x D 54.418 58.037 55.808 58.988 56.256 59.370
10> x D 54.871 58.311 56.282 59.393 56.366 59.470
30° 107" x D 68.056 68.804 69.239 72.454 68.847 72.258
10° x D 68.057 68.805 69.257 72.582 69.142 72.550
10" x D 68.061 68.818 69.321 72.689 70.063 73.498
10> x D 68.108 68.946 69.804 73.229 70.536 74.008
10> x D 68.498 69.954 70.441 73.914 70.604 74.082
60° 107" x D 64.869 73.191 70.924 75.311 71.434 75.639
10° x D 64.869 73.192 70.923 75.308 71.457 75.663
10' x D 64.891 73.198 70.944 75.316 71.518 75.726
10> x D 65.077 73.251 71.095 75.431 71.544 75.752
10° x D 66.487 73.688 71.420 75.663 71.548 75.755
90° 107 x D 55.862 62.395 58.534 65.692 58.644 65.790
10° x D 55.863 62.396 58.535 65.693 58.687 65.850
10" x D 55.875 62.422 58.546 65.703 58.770 65.976
10> x D 56.000 62.632 58.611 65.783 58.796 66.019
10* x D 56.833 63.889 58.747 65.954 58.800 66.026

eventually lead to failure. The vibration analyses of these shells are necessary and
particularly important. However, cylindrical shells with intermediate supports have
received limited attention. Vibrations of laminated cylindrical shells with arbitrary
intermediate ring supports will be considered in the subsequent analysis.

As shown in Fig. 5.11, a laminated cylindrical shell restrained by arbitrary
intermediate ring supports is chosen as the analysis model. a; represents the position
of the i’th ring support along the axial direction of the shell. The displacement fields in
the position of the ring support satisfy wq (a;, #) = 0 (Swaddiwudhipong et al. 1995;
Zhang and Xiang 2006). This condition can be readily obtained by introducing a set
of continuously distributed linear springs at the position of each ring support to
restrict the displacement in radial direction and setting the stiffness of these springs
equal to infinite (which is represented by a very large number, 10’ D). Thus, the
potential energy (P;,,) stored in the ring supported springs can be depicted as:

1 al i 2
P _5/ {;kww(ai,ﬁ) }Rd@ (5.42)
y =
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Table 5.11 The first two frequency parameters Q for a two-layered [0°/9] cylindrical shell with
different restrain parameters I" and fiber orientations (R = 1 m, L/R = 3, h/R = 0.05, E|/E, = 15)

9 r E'-F E>-F E>-F
1 2 1 2 1 2

0° 107t x D 1.8409 51377 |27916  |30.197 |27.470 |29.729
10° x D 5.5480 58210 [27.918 |30.206 |27.585 |29.860
10" x D 8.5948 10.415 27936 30234  |27.925 30.281
102 x D 12.470 20.970 28.021 30.381 28.090  |30.506
10° x D 20.946 23.605 28.099  |30.515 |28.114 |30.539

30° 107" x D 1.8409 5.2805 20420 [35.936 |29.589 |36.424
10° x D 5.6731 58208 29422 35937 [29.622  |36.470
10' x D 8.6521 11.695 29439 35986 29730 |36.625
102 x D 13.358 21.687 29.579 36274  |29.788 36.715
10> x D 21.870 26.044 29.755 36.636 29796 | 36.728

60° 107t x D 1.8409 4.4993 34774 |36.036  |34.893 36.107
10° x D 4.9467 5.8205 34776 |36.037 34920 |36.112
10' x D 8.1479 13.429 34784  [36.040  |34.995 36.126
10> x D 14.868 21.309 34846 |36.064 [35029 |36.133
10° x D 22.433 33.538 34980 |36.111 35.034 | 36.134

90° 107t x D 1.8409 3.8049 | 29.401 39.298  29.389  |39.269
10°x D 4.3293 5.8205  [29.401 39.298 (29414  |39.284
10' x D 7.7880 13.965 20404 39299 29466 39313
10> x D 15.478 20.351 20424 39306 |29.484 39323
10> x D 22.150 37.252 20468 39319 |29.486  |39.324

where N; is the amount of ring supports. ki, denotes the set of ring supported springs
distributed at x = ;. By adding the potential energy P, stored in the ring supported
springs in the Lagrangian energy functional and applying the weak form solution
procedure, the characteristic equation for the shell with arbitrary end conditions and
ring supports can be readily obtained.

To validate the present analysis, results for C—F isotropic cylindrical shells with
one ring support are compared with others in the literature. In Table 5.12, com-
parisons of the first three longitudinal modal (i.e., m = 1, 2, 3) non-dimensional

frequency parameters Q = wR+/p(1 — p?)/E of an isotropic cylindrical shell with
one (a;/L = 1/2) ring supports are presented. The lowest four circumference wave
numbers (i.e., n = 1, 2, 3, 4) are considered in the analysis. The material and
geometrical properties of the shell are given as: L/R = 50, u = 0.3. The comparisons
are conducted for thickness ratios #/R = 0.005, 0.05, respectively. The results
reported by Swaddiwudhipong et al. (1995) are considered in the comparison.
A good agreement can be seen from the table. The small deviations in the results are
caused by different computation methods and shell theories are used in the literature.
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Fig. 5.11 Schematic diagram z ai
of a laminated cylindrical
shell with intermediate ring
supports

Table 5.12 Comparison of frequency parameters Q = wR\/p(1 — u?)/E of a C-F cylindrical
shell with one (a,/L = 1/2) ring support (L/R = 50, x = 0.3)

h/R n Swaddiwudhipong et al. (1995) Present
m=1 m=2 m=3 m=1 m=2 m=3

0.005 1 0.00267 0.01599 0.02268 0.00265 0.01598 0.02243
2 0.00394 0.00651 0.00847 0.00397 0.00652 0.00845
3 0.01097 0.01125 0.01155 0.01097 0.01126 0.01156
4 0.02101 0.02108 0.02114 0.02101 0.02108 0.02115

0.05 1 0.00267 0.01600 0.02269 0.00267 0.01601 0.02245
2 0.03876 0.03930 0.03975 0.03871 0.03928 0.03973
3 0.10950 0.10980 0.10990 0.10912 0.10935 0.10957
4 0.21000 0.21020 0.21040 0.20850 0.20873 0.20894

The influence of ring support location on the frequencies of a four-layered, [45°/
—45°/45°/-45°] cylindrical shell with one intermediate ring support is also inves-
tigated. The material and geometric constants of the layers of the shell are:
L/R = 10, R = Ol, El/E2 = 25, Hi2 = 027, G12 = 0.5E2, G13 = 0.5E2, G23 = 02E2
In Fig. 5.12, variations of the lowest three longitudinal model (n = 1, m = 1, 2, 3)
frequency parameters Q of the considered cylindrical shell against the ring support
location parameter a/L are depicted. Four types of end conditions included in the
presentation are: F-C, C-F, S-S, and C-C. It is obvious that the frequency
parameters of the shell significantly affected by the location of the ring support, and
this effect varies with the end conditions. For a cylindrical shell with symmetrical
boundary conditions imposed on both ends, such as S-S and C—C boundary con-
ditions, the frequency parameter curves are symmetrical about the center line of the
figure (i.e., a/L = 0.5). For a cylindrical shell with unsymmetrical end conditions,
such as F-C and C-F boundary conditions, the frequency parameter curves are not
symmetrical about the center line of the figure. Figures 5.13 and 5.14 show the
similar studies for the second and third circumference numbers (n = 2, 3),
respectively. Comparing with Fig. 5.12, it can be seen that the influence of the ring
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support location varies with circumference numbers as well. In addition, the amount
of the peak values of a frequency parameter curve is in direct proportion to the

longitudinal mode number.

5.4 Vibration of Laminated Open Cylindrical Shells

Composite laminated open cylindrical shells have a wide range of engineering
applications, particularly in aerospace crafts, military hardware and civil con-
structions. Table 5.2 shows that thick cylindrical shells can have 24 possible
classical boundary conditions at each edge. This leads to 576 combinations of
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boundary conditions when a cylindrical shell is closed. When the shells are open,
this yields a higher number of combinations of boundary conditions for such shells.

In comparing to laminated closed cylindrical shells, information available for the
vibrations of the shallow and deep open ones is very limited despite their practical
importance. The most likely reason for this lacuna lies in the analytical difficulties
involved: for a completely closed shell such as circular cylindrical, circular conical
and spherical shells, the assumed 2D displacement field can be reduced to a quasi
1D problem through Fourier decomposition of the circumferential wave motion.
However, for an open shell, the assumption of whole periodic wave numbers in the
circumferential direction is inappropriate, and thus, a set of complete two-
dimensional analysis is required and resort must be made to a full two-dimensional
solution scheme. Such a scheme will inevitably be complicated further by the
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Fig. 5.14 Variations of frequency parameters Q versus ring location (a/L) for a [45°/—45°],
laminated cylindrical shell with one intermediate ring support (n = 3)

dependence of the circumferential arc length on its meridional location (Bardell
et al. 1998). This forms a major deterrent so that the analyses of open shells have
not been widely available.

In this section, we consider free vibration of laminated deep open cylindrical
shells. As was done previously for the closed cylindrical shells, only solutions in
the framework of SDST which neglecting the effects of the deepness term z/R (i.e.,
Eq. (5.26)) are considered in this section. Under the modified Fourier series
framework, regardless of boundary conditions, each displacement and rotation
component of a laminated open cylindrical shell is expanded as a two-dimensional
modified Fourier series as:
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where 4,, = ma/L and A, = na/0y. A,y Buns Cons Dy @and E,,,, are expansion
coefficients of standard cosine Fourier series. a;,, by, Cins Aimms €1ns fim &ins Mims i and
Jim are the corresponding supplement coefficients. P; (x) and P, (6) denote two sets
auxiliary polynomial functions introduced to remove all the discontinuities poten-
tially associated with the first-order derivatives at the boundaries of x =0, x = L and
0 =0, 0 = 0,, respectively. These auxiliary functions are in the similar forms as
Eq. (5.41).

For a general open cylindrical shell, there exist four boundaries, i.e., x=0,x =L,
6 =0 and 6 = 6,. For the sake of brevity, a four-letter character is employed to
represent the boundary condition of an open cylindrical shell, such as FCSC
identifies the shell with F, C, S and C boundary conditions at boundaries x = 0,
6 =0, x =L and 8 = 6,, respectively. Unless otherwise stated, the natural fre-

quencies of the considered shells are expressed as frequency parameter as Q =
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(wL?/h)+\/p/E> and the material properties of the layers of open cylindrical shells
under consideration are taken as: E, = 10 GPa, E|/E, = open, u;, = 0.25,
G2 = Gi3 = 0.5E,, Gys = 0.2E,, p = 1,450 kg/m’.

5.4.1 Convergence Studies and Result Verification

Table 5.13 shows the convergence and comparison studies of frequency parameters
Q = wl?/h\/p/E; for a four-layered, [-60°/60°/60°/—60°] open cylindrical shell
with FFFF and CCCC boundary conditions, respectively. The material and
geometry constants of the layers of the shell are: R =2 m, L/R = 0.5, /L = 0.01,
80 =2 arcsin 025, El =60.7 GPa, E2 =248 GPa, Ui = 023, GlZ = G13 = G23 =12
GPa, p = 1,700 kg/m®. It should be noted that the zero frequencies corresponding to
the rigid body modes were omitted from the results. Excellent convergence of
frequencies can be observed in the table. The convergence of the FFFF solutions is
faster than those of CCCC boundary conditions. Numerical results reported by
Zhao et al. (2003) by using mesh-free method and CST, Messina and Soldatos
(1999a) based on HSDT as well as Qatu and Leissa (1991) based on shallow shell

Table 5.13 Convergence and comparison of frequency parameters Q = wL?/h+\/p/E; of a
[—60°/60°/60°/—60°] e-glass/epoxy shallow open cylindrical shell

B.C. M x N Mode number
1 2 3 4 5 6

FFFF |14 x 14 3.2450 | 5.5874 | 8.3715 |11.120 |12.505 |15.272
15 x 15 3.2448 | 5.5873 | 8.3700 |11.118 |12.502 |15.271
16 x 16 3.2439 | 5.5872 | 8.3694 |11.117 |12.500 |15.271
17 x 17 3.2438 | 5.5871 | 8.3681 |11.115 |12.497 |15.270
18 x 18 3.2430 | 5.5870 | 8.3676 |11.114 |12.496 |15.270
Zhao et al. (2003) 3.3016 | 5.7328 | 8.5087 | 11.133 |12.626 |15.724
Messina and Soldatos 3.2498 | 5.5910 | 8.3873 | 11.137 |12.533 |15.328
(1999a)
Qatu and Leissa (1991) 3.2920 | 5.7416 | 8.5412 |11.114 |12.591 |15.696

CCCC |14 x 14 24510 [29.276 |36.634 |37.998 |43.387 |46.288
15 x 15 24509 [29.272 |36.623 |37.986 |43.385 |46.278
16 x 16 24505 [29.255 |36.619 |37.975 |43.384 |46.270
17 x 17 24504 [29.253 |36.613 |37.968 |43.383 |46.265
18 x 18 24.502 [29.243 |36.610 |37.962 |43.382 |46.261
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Table 5.14 Comparison of frequency parameters Q = wL?+/p/E{Rh of a [90°/0°] laminated
open cylindrical shell with SDSDSDSD boundary conditions (L/R = 5, 6, = 60°)

h/R | Method Mode number
1 2 3 4 5 6
0.10 | Present 7.025 7.636 8.850 |10.84 |13.44 |14.05
Messina and Soldatos (1999b) | 7.025 7.702 8.932 |10.94 |13.57 |14.05
Difference (%) 0.01 0.87 0.93 0.97 0.95 0.01
0.05 | Present 5.919 8.140 9.934 |11.11 |14.43 |18.01
Messina and Soldatos (1999b) | 5.932 8.153 9.935 |[11.12 | 1445 |18.03
Difference (%) 0.21 0.15 0.01 0.10 0.13 0.13
0.02 | Present 5.050 9.777 |14.84 15.38 | 15.71 |15.97
Messina and Soldatos (1999b) |5.049 9.774 | 14.84 1540 | 1571 |16.01
Difference (%) 0.02 0.03 0.02 0.14 0.02 0.27
0.01 | Present 5.724 | 11.04 12.29 13.03 | 14.64 |17.63
Messina and Soldatos (1999b) |5.724 | 11.03 12.27 13.03 | 14.62 |17.61
Difference (%) 0.00 0.05 0.13 0.04 0.14 0.13

theory are included in Table 5.13. These comparisons show the present solutions
are in good agreement with the reference results, although different theories and
methods were employed in the literature.

To further validate the accuracy and reliability of current solution, Table 5.14

shows the comparison of frequency parameters Q = wL?+/p/E Rh of a two-lay-
ered, cross-ply [90°/0°] open cylindrical shell subjected to SDSDSDSD boundary
conditions, with results provided by Messina and Soldatos (1999b) based on the
conjunction of Ritz method and the Love-type version of a unified shear-deform-
able shell theory. The shell parameters used in the comparison are: E, = 25E,,
R=1m, L/IR =5, 6, = 60°. The first six frequencies and four sets of thickness-
radius ratios, i.e., #/R = 0.1, 0.05, 0.02 and 0.01, corresponding to thick to thin open
cylindrical shells are performed in the comparison. It is clearly evident that the
present solutions are generally in good agreement with the reference results,
although a different shell theory is employed by Messina and Soldatos (1999b). The
differences between these two results are very small, and do not exceed 0.97 % for
the worst case.

5.4.2 Laminated Open Cylindrical Shells with General
End Conditions

Some further numerical results for laminated open cylindrical shells with different
boundary conditions and shell parameters, such as geometric properties, lamination
schemes are given in the subsequent discussions.
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Table 5.15 Frequency parameters Q of a three-layered, cross-ply [0°/90°/0°] open cylindrical
shell with various boundary conditions and circumferential included angles (R = 1 m, L/R = 2,
h/R = 0.1)

2 Mode | Boundary conditions
FFFF FSFS FCFC SFSF CFCF | SSSS CCcCC
/4 1 11.203 75.065 88.901 12.815 |21.399 |78.293 91.804
2 25.499 77.465 89.414 14769 |22.509 |86.921 |102.555
3 31.422 85.618 94.223 39.514 |41.030 |90.751 |102.682
4 46.947 86.141 99.258 41.021 |49.378 |95.231 |[114.025
n/2 1 5.6344 | 18.757 28.875 13.570 [21.848 |28.754 39.274
2 11.724 25.491 32.998 16.635 |23.679 |45.505 54.963
3 15.825 41.360 48.575 22.320 |[27.634 |53.806 63.642
4 27.761 42.306 49.078 37.420 [40.797 |62.373 72.898
3n/4 |1 3.5787 7.1550 |12.138 14.598 [22.466 |26.289 31.315
2 49181 |18.335 21.376 15.008 |22.664 |26.570 34.544
3 8.3994 | 19.207 23.673 22.782 |28.235 |40.285 49.556
4 13.994 20.658 23.820 26.321 [30.282 |50.600 59.527
T 1 2.4902 3.1939 6.0606 |14.731 |22.517 |23.135 29.297
2 2.6064 9.6122 |12.938 14960 |22.668 |25.209 30.625
3 5.4335 110.087 13.014 21.990 |[27.370 |31.561 36.692
4 74475 |17.262 17.967 23.496 |28.851 |35.752 43.198
Sn4 1 1.5952 1.4971 3.3390 |14.805 |22.570 |22.463 28.530
2 1.8119 5.5228 7.4940 |14.959 |22.659 |23.343 28.671
3 3.8722 5.6869 7.8281 [21.241 |26.976 |27.562 34.163
4 44292 | 11.566 13.214 23912 |28.954 |31.578 35.014

Table 5.15 gives the first four frequency parameters Q of a three-layered, cross-
ply [0°/90°/0°] open cylindrical shell with various boundary conditions and cir-
cumferential included angles (6y). The material properties and geometric dimen-
sions of the shell are: E, = 15E,, R = 1 m, L/R = 2, h/R = 0.1. Five different
circumferential included angles, i.e., 8y = n/4, n/2, 3n/4, n and 57/4, are considered
in the calculation. These results may serve as benchmark values for future resear-
ches. It is obvious from the tables that the increase of the circumferential included
angle will results in decreases in the frequency parameters. Meanwhile, we can see
that an open shell with higher constraining rigidity will have higher vibration
frequency parameters. For the sake of enhancing our understanding of vibration
behaviors of the open cylindrical and conical shells, the first three mode shapes for
the shell with CCCC boundary conditions are present in Fig. 5.15, which is con-
structed in three-dimension views.

Table 5.16 lists the lowest four frequency parameters Q for a two-layered, cross-
ply [0°/90°] open cylindrical shell with various boundary conditions and thickness-
to-radius ratios. The open cylindrical shell under consideration having radius



5.4 Vibration of Laminated Open Cylindrical Shells 195

Y &4

Fig. 5.15 Mode shapes for a CCCC restrained [0°/90°/0°] laminated open cylindrical shell

1st mode

R =1 m, length-to-radius ratio of 2 and circumferential included angel of n. Five
thickness-to-radius ratios, i.e., #/R = 0.01, 0.02, 0.05, 0.1 and 0.15 are used in the
analysis. It is interesting to see that the frequency parameters of the shell decrease
with thickness-to-radius ratio increases. Furthermore, by comparing results of the
shell with FSFS (or FCFC) boundary conditions with those of SFSF (or CFCF)
case, it is obvious that fixation on a curved boundary will results in higher fre-
quency parameters than on a straight boundary.

As the final numerical example, Table 5.17 shows the lowest five frequency
parameters Q of a three-layered [0°/9/0°] open cylindrical shell with different
boundary conditions and fiber orientations. Four different lamination schemes, i.e.,
8 =0°, 30°, 60° and 90° are performed in the calculation. The shell parameters with
following material and geometry properties are used in the investigation: R = 1 m,
L/R =2, h/IR = 0.05, E\/E, = 15. It is interesting to see that the maximum funda-
mental frequency parameters for different boundary conditions are obtained at
different fiber orientations. For FFFF, FSFS and FCFC boundary conditions, the
corresponding maximum fundamental frequency parameters occur at § = 90°. These
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Table 5.16 Frequency parameters Q of a two-layered, cross-ply [0°/90°] open cylindrical shell
with various boundary conditions and thickness-to-radius ratios (R = 1 m, L/R = 2, 0, = m)

h/R Mode | Boundary conditions
FFFF FSFS FCFC SFSF CFCF | SSSS CCcc
001 |1 2.7758 4.8157 9.4618 |45.087 |46.724 |104.38 106.04
2 3.9626 |14.292 20.056 45.222 |46.904 |105.72 106.88
3 6.5409 | 14.680 20.727 79.406 |83.653 |122.51 129.92
4 11.292 28.036 34.594 79.608 |83.945 |129.47 130.07
002 |1 2.6191 4.7869 9.3262 |30.237 |32.685 68.450 69.976
2 39162 | 14.099 19.714 30.366 |32.818 69.339 71.337
3 6.3503 | 14.556 20.430 55.422 |61.528 85.308 92.157
4 11.239 27.486 33.621 55.517 |61.688 91.626 93.121
005 |1 2.5501 4.6945 9.1067 |18.124 |21.140 39.402 40.629
2 3.8715 |13.446 18.767 18.410 | 21.505 39.478 42.805
3 6.2003 | 14.126 19.714 35339 |36.116 54.089 59.261
4 11.057 25.129 29.092 36.435 |39.984 58.676 61.573
010 |1 2.5060 4.5163 8.6298 |12.651 |15.653 24.724 27.534
2 3.8048 |12.113 16.377 13299 |16.324 27.269 28.391
3 6.0116 |13.250 18.066 21.833 |22.930 35.093 39.281
4 10.663 19.467 19.878 27.237 |28.023 42.300 46.914
0.15 |1 2.4675 4.3166 8.0369 |10.539 |13.198 19.651 21.131
2 3.7283 | 10.655 13.535 11.002 | 13.716 20.182 22.567
3 5.8170 |12.279 14.937 17.058 | 18.066 28.612 32.653
4 10.188 14.864 16.173 19.937 | 20.858 32.926 37.089
Table 5.17 Frequency parameters Q of a three-layered, [0°/%/0°] open cylindrical shell with
various boundary conditions and fiber orientations (R = 1 m, L/R = 2, h/R = 0.05)
9 Mode | Boundary conditions
FFFF FSFS FCFC SESF CFCF SSSS CCCC
0° 1 2.1221 2.6128 5.0303 | 19.047 |28.564 |32.137 |39.663
2 2.5086 7.9443 10.978 19.186 |28.650 |33.589 |40.141
3 5.2843 9.1689 | 11.820 30.775 |37.686 |39.470 |47.388
4 6.1129 | 15.962 18.954 32796 |39.484 |44.132 |50.542
300 |1 2.1451 2.6571 5.1170 | 21.693 | 30.077 |41.030 |47.136
2 2.7402 8.0809 |11.174 21.710 | 30.089 |41.159 |47.779
3 5.6245 9.6128 |12.314 38.942 | 44967 |49.744 |55.636
4 6.2681 16.249 19.961 40.521 |46.410 |50.257 |57.472
60° |1 2.2825 2.9658 5.7048 | 20.985 |29.273 |39.105 |45.667
2 2.8505 9.0178 | 12.470 21.060 |29.317 |40.405 |46.919
3 5.6029 | 10.197 13.296 37.684 |43.651 |48.884 |55.513
4 7.1056 | 18.165 21.597 38.109 | 43.870 |51.548 |59.705
90° |1 2.5305 3.2222 6.2084 | 19.347 |28.270 |34.420 |41.995
2 2.6181 9.8038 | 13.573 19.611 |28.430 |36.452 |42414
3 5.5442 | 10.496 13.889 32218 |38.778 |43.661 |52.435
4 7.5371 19.500 22.541 36.199 | 42.098 |51.308 |57.262
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are obtained at 3 = 30° for SFSF, CFCF, SSSS and CCCC boundary conditions. In
addition, CFCF yields the minimum fundamental frequency parameter at 3 = 90°
while it is obtained at 3 = 0° for other boundary conditions.



Chapter 6
Conical Shells

Conical shells are another special type of shells of revolution. The middle surface of
a conical shell is generated by revolving a straight line (generator line) around an
axis that is not paralleled to the line itself. Conical shells can have different geo-
metrical shapes. This chapter is organizationally limited to conical shells (both the
closed shells and the open ones) having circular cross-sections. In this type of
conical shells, the generator line rotates about a fixed axis and results in a constant
vertex half-angle angle (¢) with respect to the axis. Specially, the vertex half-angle
angle may be equal to zero or 90° (#/2). In the first case, the cylindrical shells
discussed in Chap. 5 will be obtained. Thus, cylindrical shells can be viewed as a
special type of the conical shells, and conical shells have all the classifying
parameters of the cylindrical shells (Leissa 1973). For the second case, the gen-
erator line is vertical to the axis, and the special case of circular plates is obtained.

Laminated conical shells are also one of the important structural components
which are widely used in naval vessels, missiles, spacecrafts and other cutting-edge
engineering fields. The vibration analysis of them is often required and has always
been one important research subject in these fields (Civalek 2006, 2007, 2013; Lam
et al. 2002; Ng et al. 2003; Shu 1996; Tong 1993, 1994a, b; Tornabene 2011;
Viswanathan et al. 2012; Wu and Lee 2011; Wu and Wu 2000). However, com-
paring with the cylindrical shells and the circular plates, relatively little literature is
available regarding the conical shells due to the fact that the conical coordinate
system is function of the meridional direction and the equations of motion for
conical shells consist of a set of partial differential equations with variable
coefficients.

This chapter is focused on vibration analysis of laminated conical shells with
general boundary conditions. Equations of conical shells on the basis of the clas-
sical shell theory (CST) and the shear deformation shell theory (SDST) are pre-
sented in the first and second sections, respectively, by substituting the proper Lamé
parameters of conical shells in the general shell equations (see Chap. 1). Then, in
the framework of SDST, numerous vibration results of laminated closed and open
conical shells with different boundary conditions, lamination schemes and geometry
parameters are given in the third and fourth sections by using the modified Fourier
series and the weak form solution procedure.
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Fig. 6.1 Geometry notations
and coordinate system of
conical shells

"'Jh

As shown in Fig. 6.1, a general laminated open conical shell with length L, vertex
half-angle angle ¢, total thickness A, circumferential included angle 6, small edge
radius R and large edge radius R; is selected as the analysis model. The middle
surface of the conical shell where an orthogonal coordinate system (x, § and z)
is fixed is taken as the reference surface, in which the x co-ordinate is measured
along the generator of the cone starting at the vertex and the # and z co-ordinates are
taken in the circumferential and radial directions, respectively. The middle surface
displacements of the conical shell in the x, 8 and z directions are denoted by u, v and
w, respectively. The conical shell is assumed to be composed of arbitrary number of
liner orthotropic laminas which are bonded together rigidly. The mean radius of the
conical shell at any point x along its length can be written as:

R =xsing (6.1)

Considering the conical shell in Fig. 6.1 and its conical coordinate system, the
coordinates, characteristics of the Lamé parameters and radii of curvatures are:

a=x, p=0, A=1, B=xsingp, R,=o00, Rp=uxtang (6.2)

6.1 Fundamental Equations of Thin Laminated
Conical Shells

Closed conical shells can be defined as a special case of open conical shells having
circumferential included angle of 2m (360°). We will first derive the fundamental
equations for thin open conical shells. The equations are formulated for the general
dynamic analysis by substituting Eq. (6.2) into the general classical shell equations
developed in Sect. 1.2. It can be readily specialized to the static and free vibration
analysis.
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6.1.1 Kinematic Relations

Substituting Eq. (6.2) into Eq. (1.7), the middle surface strains and curvature
changes of conical shells can be specialized from those of general thin shells. They
are formed in terms of the middle surface displacements as:

0 _ Ou , — _ Pw

X T ox I = ~ o2

0 w v Pw _ ow
g=gptity  t=EH o

2s200>  xOx (6.3)
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where 82, 88 and ))20 denote the normal and shear middle surface strains. y,, yo and
Xxo are the corresponding curvature and twist changes. Then, the state of strain at an
arbitrary point in the kth layer of a laminated conical shell can be written as:

& = &) + 2y
g0 = &+ 7)p (6.4)
Vx0 = yﬁc)ﬁ + ZXx0

where Z;,1<z < Z;. And Z;,, and Z; denote the distances from the top surface and
bottom surface of the layer to the referenced middle surface, respectively.

6.1.2 Stress-Strain Relations and Stress Resultants

For laminated conical shells made of composite layers, the well-known stress-strain
relations are given as in Eq. (5.4). It should be noted that the materials considered in
this chapter are restricted to conical orthotropy. Substituting Eq. (6.2) into Eq. (1.14),
the force and moment resultants of the conical shell can be obtained in terms of the
middle surface strains and curvature changes as
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where N,, Ny and N,y are the normal and shear force resultants and M,, M, and M,y
denote the bending and twisting moment resultants. The stiffness coefficients A,

Bjj, and Dj; are written as in Eq. (1.15).
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6.1.3 Energy Functions

The strain energy function of thin laminated conical shells during vibration can be
written in terms of the middle surface strains, curvature changes and stress resultants
as:
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Substituting Egs. (6.3) and (6.5) into Eq. (6.6), the strain energy functions of the
shells can be written in terms of middle surface displacements. The corresponding
kinetic energy (7) of the conical shells during vibration can be written as:

ot [

where the inertia term I, is the same as in Eq. (1.19). Suppose q,, gy and g, are the
external loads in the x, 8 and z directions, respectively. Thus, the external work can
be expressed as:

W, = / / {gxu + qov + g.w}Rdxd0 (6.8)

The same as usual, the general boundary conditions of a conical shell are
implemented by using the artificial spring boundary technique. Letting symbols &/,

k;/, kf/j' and Kl”; (w = x0, B9, x1 and 6) to indicate the stiffness of the boundary springs
at the boundaries R = Ry, § =0, R = R, and 0 = 8, respectively, thus, the deformation
strain energy stored in the boundary springs (Uy,) during vibration can be defined as:
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(6.9)

6.1.4 Governing Equations and Boundary Conditions

Substituting Eq. (6.2) into Eq. (1.28) and then simplifying the expressions, the
resulting governing equations for conical shells are:
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(6.10)

(6.11)

Substituting Egs. (6.3), (6.5) and (6.11) into Eq. (6.10) yields the governing
equations in terms of displacements as:
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The above equations show the level of complexity in solving the governing
equations of a general laminated conical shell. When a conical shell is laminated
symmetrically with respect to its middle surface, the constants B;; equal to zero, and,
hence the equations are much simplified. Substituting Eq. (6.2) into Egs. (1.29) and
(1.30), the general boundary conditions of thin conical shells are:
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Alternately, the governing equations and boundary conditions of thin laminated
conical shells can be obtained by the Hamilton’s principle in the same manner as
described in Sect. 1.2.4.
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Table 6.1 Possible classical boundary conditions for thin laminated conical shells at boundary

R:RO

Boundary type

Conditions

Free boundary conditions

F Ne=Ny+52 =0, + 55 =M, =0
F2 U= N+ = O+ i = M = 0
F3 Ne=v=0Qc+7s=M=0

F4 u=v=0,+%% =M =0

Simply supported boundary conditions

S u=v=w=M,=0

SD Ny=v=w=M,=0

S3 u:Nx()-i-d,\f(‘)‘“:W:Mx:O

s4 Ny =Ny + Wt =y = M, =0
Clamped boundary conditions

C u:v:w:%:o

C2 Nx=v=w=%=0

c3 =N+ S == =0

C4 Nx:Nx()-&-%U*“:WZ%:O

Thin conical shells can have up to 12 possible classical boundary conditions at
each edge. This yields a numerous combinations of boundary conditions, particular
for open conical shells. The possible combinations for each classical boundary
conditions at boundary R = R, are given in Table 6.1. Similar boundary conditions
can be obtained for the other three boundaries (i.e., R = Ry, & = 0 and 6 = 6)).

6.2 Fundamental Equations of Thick Laminated
Conical Shells

The fundamental equations of thin laminated conical shells presented in the pre-
vious section are based on the CST and are applicable only when the total thickness
of a shell is smaller than 1/20 of the smallest of the wave lengths and/or radii of
curvature (Qatu 2004) due to the fact that both shear deformation and rotary inertia
are neglected in the formulation. Fundamental equations of thick laminated conical
shells will be derived in this section. As usual, the equations that follow are a
specialization of the general first-order shear deformation shell theory (see
Sect. 1.3) to those of thick laminated conical shells.
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6.2.1 Kinematic Relations

On the basis of the assumptions of the SDST, the displacement field of a conical
shell is expressed in terms of the middle surface displacements and rotation com-
ponents as

U(x,0,z) = u(x, 0) + z¢,
V(x,0,2) = v(x, 0) + z¢bg (6.15)
W(x,0,z) = w(x, 0)

where u, v and w are the middle surface displacements of the shell in the x, 8 and
z directions, respectively, and ¢, and ¢, represent the rotations of the transverse
normal respect to 6- and x-axes.

Specializing Egs. (1.33) and (1.34) to those of conical shells, the normal and
shear strains at any point of the shell space can be defined as:
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where ¢, ¢, 7., and yy, are the normal and shear strains. y., xg, xxo and yo. denote
the curvature and twist changes; ygz and ng represent the transverse shear strains.

They are defined in terms of the middle surface displacements and rotation com-
ponents as:
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6.2.2 Stress-Strain Relations and Stress Resultants

The stress-strain relations derived earlier for the thick cylindrical shells [i.e.,
Eq. (5.20)] are applicable for the conical shells. Substituting Eq. (6.2) into (1.40),
the force and moment resultants of a thick conical shell can be obtained by fol-
lowing integration operation:

N, nj2 | Ox Ny nj2 | Og
No|= [ |70 (1 + R%,) dz | New | = [ |7ox|dz
Ox “h2 | Ty Qo “h/2 | 1, (6.18)
M W2 T e M, W2 o
x _ X z _
AR G A R

Since the radius of curvature Ry is a function of the x coordinate, thus, the resulting
stiffness parameters will be functions of the x coordinate. This will results in much
complexity in equations of thick conical shells. Qatu (2004) suggested taking the
average curvature of the conical shells when using these equations. Figures 3.7 and
3.8 showed that the effects of the deepness term z/R on the frequency parameters of
an extremely deep, unsymmetrically laminated curved beam (6, = 286.48°) with
thickness-to-radius ratio /R = 0.1 is very small and the maximum effect is less than
0.41 % for the worse case. It is proposed here to neglect the effects of the deepness
term z/Rg. In many prior researches, the effects of the deepness term z/Ry are often
neglected (for example, Jin et al. 2013b, 2014a; Qu et al. 2013a, b; Ye et al. 2014b).
Neglecting the effects of the deepness term, the force and moment resultants of a
thick conical shell can be rewritten as:
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L Mo, | L Bis Bx Bes Bes Dic D Des Des | Ly |
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The stiffness coefficients A, B;; and Dj; are given as in Eq. (1.43).
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6.2.3 Energy Functions

The strain energy (Uj) of thick conical shells during vibration can be defined in
terms of the middle surface strains and curvature changes and stress resultants as

1 0 0 0 0 ,
_1 / / {Nxsx + Nogg + Nuoyyy + Nowp, + M, }xsdedx (6.20)
2 +M0X0 + Mv()Xx@ + M()fo)x + QOV@Z + QXV):Z

Substituting Eqs. (6.17) and (6.19a, 6.19b) into Eq. (6.20), the strain energy of the
shell can be expressed in terms of the middle surface displacements (u, v, w) and
rotation components (¢,, @g) as:
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and the kinetic energy (7) function can be written as:

)21, Qu e +12( ) ()
xsdOdx (6.22)
// +21 gvag)tn +1 ((‘34)0) +1, (dw)

where the inertia terms are given as in Eq. (1.52).

Suppose the shell is subjected to external forces g,, gy and ¢, (in the x, § and
z directions, respectively) and external couples m, and my (in the middle surface),
thus, the work done by the external forces and moments is written as

W, = / / {q.ut + qov + q;w + myp,. + moepy txsdOdx (6.23)

Using the artificial spring boundary technique similar to that described earlier,
let ki, v kf; , K" and Kl//(l// Xo, B9, x1 and ) to represent the rigidities (per unit
length) of the boundary springs at the boundaries R = Ry, # =0, R = R| and 8 = 6,,
respectively. Therefore, the deformation strain energy (Uy,) of the boundary springs
during vibration is:

va =

1 x[ku? + Kgy? + Kow? + K507 + Ko 5] [r=r,
2 xsd0

—|—x[k”v‘1u + K+ R w? + K ¢+ K 1(;’>9]|R_R1
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2J [Kiyia® + gy 2 + kg + Ky &7 + K§y 5] lo—o,

6.2.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thick laminated conical shells
can be obtained by the Hamilton’s principle in the same manner as described in
Sect. 1.2.4. Alternately, it can be specialized from those of general thick shells by
substituting Eq. (6.2) into Eq. (1.59). According to Eq. (1.59), we have (after being
divided by B = xs)
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Substituting Eqgs. (6.17) and (6.19a, 6.19b) into above equation, the governing

equations can be written in terms of displacements as
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These equations are proven useful when exact solutions are desired.
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According to Egs. (1.60) and (1.61), the general boundary conditions of thick
conical shells are:

Ny —ku =0 Ny +ku =0
Ny —kgv=0 Ny +kv=0
R=Ry:{ QO —kgw=0 R=R;:{ O+ kiw=0
M, — K, =0 M.+ K¢, =0
My — Koy =0 Mg+ K" ¢y =0
0 — Koo 0+ K¢ (6.28)
Noy — kpou =0 Noy + kpu =0
Ny —k};OV:O N0+k51v:0
0=0: Qp — klyw =0 0 = 0y: Qo+ kliw=0
My, — Kgo(]sx =0 My, + Kgl(]ﬁx =0
Mﬁ*Kgod)() =0 M9+Kgl¢9 =0

Thick conical shells can have up to 24 possible classical boundary conditions at
each boundary (see Table 6.2) which leads a high number of combinations of
boundary conditions. The classification of the classical boundary conditions shown
in Table 1.3 for general thick shells is applicable for thick conical shells.

Table 6.2 shows the importance of developing an accurate, robust and efficient
method which is capable of simplifying solution algorithms, reducing model input
data and universally dealing with various boundary conditions. This difficulty can
be overcome by using the artificial spring boundary technique. In this chapter,
we mainly consider four typical boundary conditions which are frequently
encountered in practices, i.e., F, SD, S and C boundary conditions. Taking edge
R = Ry for example, the corresponding spring rigidities for the four classical
boundary conditions are given as in Eq. (5.37).

6.3 Vibration of Laminated Closed Conical Shells

In this section, we consider vibrations of laminated closed conical shells. The open
ones will then be treated in the later section of this chapter. It is commonly believed
an exact solution is available only for laminated closed conical shells having cross-
ply lamination schemes and shear diaphragm boundary conditions at both ends.
Tong (1993, 1994a) obtained such solutions for thin and thick conical shells. In this
chapter, in the framework of SDST, accurate vibration solutions for laminated
conical shells with general boundary conditions, lamination schemes and different
geometry parameters will be presented by using the modified Fourier series and
weak form solution procedure. For a laminated closed conical shell, there exists two
boundaries, i.e., R = Ry and R = R,. Thus, a two-letter string is employed to denote
the boundary conditions of the shell, such as F-C identifies the shell with


http://dx.doi.org/10.1007/978-3-662-46364-2_1
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Table 6.2 Possible classical boundary conditions for thick conical shells at each boundary of

R = constant

Boundary type

Conditions

Free boundary conditions

F Ny =Ny =0 =M, =My=0
F2 U=Ny=0,=M,=My=0
F3 Ne=v=0,=M,=My=0
F4 u=v=0, =M, =My=0
F5 Ny =Ny=0:=M,=¢y=0
F6 u:NxHZQx:Mx:d)H:O
F7 Ne=v=0,=M,=¢y=0
F8 u=v=0,=M,=¢,=0

Simply supported boundary conditions

S

SD

S3 u=Np=w=M,=¢dyg=0
S4 Ny=Ny=w=M,=¢y=0
S5 u=v=w=M,=M,y=0
S6 Ne=v=w=M,=My=0
S7 U=Ny=w=M,=My =
S8 Ny=Ny=w=M,=Myy=0

Clamped boundary conditions

C

C2 Ne=v=w=¢,=dy=0
c3 =Ny =w=d, ==
C4 Ne=Ny=w=¢,=¢y=0
C5 u=v=w=¢,=Mypy=0
C6 Ne=v=w=¢,=My=
C7 U=Ny=w=¢,=My=0
C8 Ne=Ny=w=¢,=My=0

completely free and clamped boundary conditions at the edges R = Ry and R = R,
respectively. Unless otherwise stated, the non-dimensional frequency parameter
Q = wRy+/ph/Ay; is used in the subsequent analysis and laminated conical shells
under consideration are assumed to be composed of composite layers having

following material properties: E,

10 GPa, E\/E, = open, u;, = 0.25,

G]g = G13 = O.6E2, G23 = 0.5E2, p= 1,500 kg/m3

Considering the circumferential symmetry of closed conical shells, each dis-
placement/rotation component of a closed conical shell is expanded as a 1-D
modified Fourier series of the following form through Fourier decomposition of the

circumferential wave motion:
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M N 2 N
u(x,0) = Z ZA'"” cos Aux cosnf + Z Z aPy(x) cosnf
m=0 n=0 =1 n=0
M N 2 N
v(x, 0) = Z Z By €08 Ayx sinnf + Z Z b Py(x) sinnf
m=0 n=0 =1 n=0
M N 2 N
w(x,0) = Z Z Copn COS Ayx cos nl + Z Z ciPi(x) cosnd (6.29)
m=0 n=0 I=1 n=0
M N 2 N
. (x,0) = Z Z Dy, €08 Jyx cos nl + Z Z dpPy(x) cos nd
m=0 n=0 =1 n=0
M N 2 N
dp(x,0) = Z Z E,pn €08 Apx sinnf + Z Z e Pi(x) sinnd
m=0 n=0 =1 n=0

where 4, = ma/L. Similarly, n represents the circumferential wave number of the
corresponding mode. It should be note that n is a non-negative integer. Interchanging
of sin nf and cos né in Eq. (6.29), another set of free vibration modes (anti-sym-
metric modes) can be obtained. It is obvious that each displacement and rotation
component in the FSDT displacement field is required to have up to the second
derivatives [see Eq. (6.27)]. Thus, two auxiliary polynomial functions P; (x) are
introduced in each displacement expression to remove all the discontinuities
potentially associated with the first-order derivatives at the boundaries. These aux-
iliary functions are defined as in Eq. (5.39).

6.3.1 Convergence Studies and Result Verification

Table 6.3 shows the convergence study of the natural frequencies (Hz) for a single-
layered conical shell with F-F and C-C boundary conditions. The geometric
and material constants of the shell are: Ry = 1 m, L =2 m, 7 = 0.1 m, ¢ = 45°,
E\/E, = 15. Five truncation schemes (i.e. M = 11 — 15 and N = 10) are performed in
the study. The table shows the present solutions converge fast. The maximum
differences between the ‘11 x 10” and ‘15 x 10’ form results for the F-F and C-C
boundary conditions are less than 0.025 and 0.004 %, respectively. In addition,
comparing with Table 5.3, we can find that the convergence of the solutions for the
cylindrical shells is better than the conical ones. Furthermore, the C—C solutions
converge faster than those of F-F boundary conditions. Unless otherwise stated, the
truncated number of the displacement expressions will be uniformly selected as
M = 15 in the following discussions.

To further validate the accuracy and reliability of current method, the current
solutions are compared with those reported by other researchers by the subsequent
numerical examples. Table 6.4 lists the comparison of the fundamental dimen-
sionless frequencies € for cross-ply conical shells with different boundary
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Table 6.3 Convergence of the natural frequencies (Hz) for a single-layered conical shell with F-F
and C-C boundary conditions (Ry =1 m, L=2m, h =0.1 m, ¢ = 45°, E|/E, = 15)

B.C. M Mode number
1 2 3 4 5 6

F-F 11 1.3975 10.045 25.970 40.249 46.792 71.916
12 1.3972 10.045 25.969 40.243 46.791 71.913
13 1.3972 10.045 25.969 40.242 46.790 71913
14 1.3971 10.045 25.969 40.239 46.790 71912
15 1.3971 10.045 25.969 40.239 46.790 71.912

c-C 11 247.80 252.15 253.50 266.46 269.13 281.76
12 247.80 252.15 253.50 266.47 269.13 281.76
13 247.80 252.14 253.50 266.46 269.13 281.76
14 247.80 252.14 253.50 266.46 269.13 281.76
15 247.79 252.14 253.50 266.45 269.13 281.76

Table 6.4 Comparison of the fundamental frequency parameters Q for two cross-ply conical
shells with various thickness-radius ratios (Ry = 0.75 m, L = 0.5 m, ¢ = 30°)

B.C. Layout Method h/R,
0.01 0.03 0.05 0.07 0.09
SD-SD | [0°/90°] CST (Shu 1996) 0.1799 |0.2397 |0.2841 |0.3277 | 0.3680
FSDT (Wu and Lee 0.1759 |0.2320 |0.2710 |0.3061 |0.3358
2011)
Present 0.1759 |0.2320 |0.2710 |0.3061 |0.3358
[0°/90°];0 | CST (Shu 1996) 0.1976 |0.2669 |0.3304 |0.3873 |0.4321
FSDT (Wu and Lee 0.1958 |0.2607 |0.3134 |0.3544 |0.3832
2011)
Present 0.1958 |0.2607 |0.3134 |0.3544 |0.3832
Cc-C [0°/90°] CST (Shu 1996) 0.2986 |0.6210 |0.9331 |1.2344 | 1.5206
FSDT (Wu and Lee 0.3045 |0.5834 | 0.7967 |0.9476 |1.0457
2011)
Present 0.2966 |0.5835 |0.7971 |0.9480 |1.0466
[0°/90°],0 | CST (Shu 1996) 0.3771 |0.8578 |1.3361 |1.5730 | 1.5735
FSDT (Wu and Lee 0.3720 |0.7509 |0.9797 |1.1025 | 1.1759
2011)
Present 0.3720 |0.7509 |0.9799 |1.1031 |1.1770

conditions and thickness-to-large edge radius ratios (4/R;). Two types of lamination
schemes, i.e., [0°/90°] and [0°/90°],, are examined. The SD—-SD and C—C boundary
conditions are considered in the comparisons. The thickness-to-large edge radius
ratio #/R; is varied from 0.01 to 0.09 by a step of 0.02, corresponding to thin to
moderately thick conical shells. The material constants and geometry parameters of
the shell are: E, = 10 GPa, E\/E, = 15, u;, = 0.25, G, = 0.5E,, G13 = 0.3846E,,



6.3 Vibration of Laminated Closed Conical Shells 219

Table 6.5 Comparison of the frequency parameters Q for a cross-ply [0°/90°];( conical shell with
various boundary conditions (Rp = 0.75 m, L=0.5m, ¢ =30°, m = 1)

n FSDT (Qu et al. 2013a) Present
S-F S-S S-C S-F S-S S-C

0 0.6527 1.2919 1.4065 0.6528 1.2919 1.4065
1 0.4016 1.0903 1.1977 0.4016 1.0903 1.1976
2 0.2711 0.9789 1.1020 0.2712 0.9789 1.1020
3 0.2941 0.9692 1.0945 0.2941 0.9692 1.0944
4 0.4315 1.0312 1.1488 0.4315 1.0312 1.1487
5 0.6203 1.1490 1.2545 0.6203 1.1490 1.2545
6 0.8315 1.3076 1.4007 0.8315 1.3076 1.4006
7 1.0532 1.4936 1.5757 1.0532 1.4936 1.5756
8 1.2796 1.6968 1.7700 1.2796 1.6968 1.7700
9 1.5078 1.9105 1.9768 1.5078 1.9105 1.9767

G3=0.3846E,, Ry=0.75 m, L=0.5 m and ¢ = 30°. The comparisons are performed
between the present results and the FSDT solutions reported by Wu and Lee (2011)
and CST solutions published by Shu (1996). The comparisons in the table show a
excellent agreement between the present results and those reported by Wu and Lee
(2011). It is obvious that the discrepancies are negligible and not exceed 0.012 % for
the worst case. The comparisons validate the high accuracy of the modified Fourier
series method in predicting vibrations of composite conical shells.

In Table 6.5, the first longitudinal mode (m = 1) frequency parameters Q for the
[0°/90°],¢ conical shell given in Table 6.4 with three set of classical boundary
conditions, i.e., S-F, S-S and S—-C are presented. The lowest ten circumference
wave numbers (i.e., n = 1-10) are considered in the calculation. The results reported
by Qu et al. (2013a) based on the first-order shear deformation theory are also
included in the table. A consistent agreement of the present results and the refer-
ential data can be seen from the table. The discrepancies are very small and less
than 0.015 % for the worst case. The small discrepancies in the results may be
attributed to the different solution approaches were used in the literature.

6.3.2 Laminated Closed Conical Shells with General
Boundary Conditions

Table 6.6 shows the lowest four frequency parameters Q for a two-layered, [0°/90°]
laminated conical shell with various thickness-to-small edge radius ratios (h/R). The
material properties and geometric constants of the layers of the shell are: E\/E;, = 15,
Ro=1m, L/Ry =2, ¢ =45°. Six sets of classical boundary combinations, i.e., F-S,
S—F, F-C, C-F, S-S and C-C and five kinds of thickness-to-small edge radius ratios
(h/Ry=0.01,0.02,0.05, 0.1 and 0.15) are included in the table. It can be seen from the
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Table 6.6 Frequency parameters Q for a [0°/90°] laminated conical shell with various boundary
conditions and thickness-to-small edge radius ratios (Ei/E, = 15, Ry = 1 m, L/Ry = 2, ¢ = 45°)

/Ry Mode Boundary conditions
F-S S-F F-C C-F S-S Cc-C
0.01 1 0.1188 0.0415 0.1189 0.0416 0.1364 0.1373
2 0.1198 0.0454 0.1198 0.0454 0.1399 0.1411
3 0.1291 0.0455 0.1293 0.0456 0.1417 0.1426
4 0.1365 0.0546 0.1366 0.0548 0.1527 0.1540
0.02 1 0.1559 0.0543 0.1559 0.0543 0.1786 0.1825
2 0.1581 0.0613 0.1584 0.0614 0.1802 0.1836
3 0.1741 0.0620 0.1759 0.0621 0.1961 0.2001
4 0.1867 0.0775 0.1867 0.0777 0.1977 0.2022
0.05 1 0.2192 0.0754 0.2208 0.0761 0.2538 0.2699
2 0.2302 0.0914 0.2347 0.0914 0.2728 0.2900
3 0.2697 0.0922 0.2779 0.0939 0.2766 0.2921
4 0.2758 0.1268 0.2811 0.1270 0.3256 0.3435
0.10 1 0.2896 0.0988 0.3000 0.1034 0.3408 0.3835
2 0.2988 0.1061 0.3064 0.1072 0.3746 0.4140
3 0.3560 0.1584 0.3788 0.1585 0.3862 0.4277
4 0.4472 0.1585 0.4604 0.1626 0.4593 0.4981
0.15 1 0.3269 0.1070 0.3414 0.1142 0.4197 0.4852
2 0.3640 0.1396 0.3863 0.1412 0.4300 0.4966
3 0.4527 0.1595 0.4735 0.1672 0.4992 0.5575
4 0.4783 0.2249 0.5173 0.2249 0.5760 0.6327

table that the frequency parameters of the shell increase as the thickness-to-small edge
radius ratio increases. In addition, it is obviously that the boundary conditions have a
conspicuous effect on the vibration frequencies. Increasing the restraint stiffness
always results in increments of the frequency parameters.

Table 6.7 lists the lowest four frequency parameters Q for conical shells with
different angle-ply lamination schemes and boundary conditions. Single-layered
lamination [0°], antisymmetric laminations [0°/45°] and [0°/45°/0°/45°] and sym-
metric lamination [0°/45°/0°] are used in the calculation. The geometric and
material constants of these shells are: E{/E, = 15, Ro =1 m, L/Ry =2, /Ry = 0.1,
@ =45°. As can be observed from Table 6.7, frequency parameters Q of the [0°/45°/
0°/45°] shell are larger than those of the other three lamination schemes and the
minimum frequency parameter for each mode in all the boundary condition occurs
at those of single-layered lamination [0°]. In order to enhance our understanding of
the vibration behaviors of laminated conical shells, some selected mode shapes and
their corresponding frequency parameters €, ,, for the [0°/45°/0°/45°] laminated
conical shell with F-C boundary condition are plotted in Fig. 6.2, where n and
m denote the circumferential wave number and longitudinal mode number. These
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Table 6.7 Frequency parameters Q for laminated conical shells with various lamination schemes
and boundary conditions (E\/E, = 15, Ry = 1 m, L/Ry = 2, h/Ry = 0.1, ¢ = 45°)

Structure element | Mode | Boundary conditions
F-S S-F F-C C-F S-S Cc-C
[0°] 1 0.1652 | 0.0611 |0.2024 |0.0793 |0.2399 |0.3751
2 0.1818 |0.0674 |0.2143 |0.0855 |0.2496 |0.3817
3 0.1946 | 0.0793 |0.2366 |0.0914 |0.2534 |0.3837
4 0.2449  0.1063 |0.2766 |0.1165 |0.2809 |0.4033
[0°/45°] 1 0.2800 |0.0903 |0.3020 |0.0972 |0.3813 |0.4632
2 0.3219 |0.1177 |0.3453 |0.1219 |0.3919 |0.4780
3 0.3612 | 0.1185 |0.3750 |0.1254 |0.4268 |0.5002
4 0.3995 |0.1745 |0.4371 |0.1762 |0.4588 |0.5427
[0°/45°/0°] 1 0.2480 |0.0898 |0.2853 |0.1088 |0.3389 |0.4710
2 0.2592 |0.1016 |0.3010 |0.1147 |0.3476 |0.4775
3 0.3073 | 0.1150 |0.3443 |0.1328 |0.3623 |0.4882
4 0.3171 |0.1380 |0.3681 |0.1447 |0.3873 |0.5077
[0°/45°/0°/45°] 1 0.3180 |0.1104 |0.3427 |0.1197 |0.4224 |0.5190
2 0.3676 | 0.1306 | 0.3977 |0.1420 |0.4355 |0.5270
3 0.3728 | 0.1451 |0.4013 |0.1494 |0.4645 |0.5582
4 0.4646 | 0.2090 |0.5102 |0.2107 |0.4992 |0.5814

mode shapes are constructed by means of considering the displacement field in
Eq. (6.29) after solving the eigenvalue problem.

The vertex half-angle angle (p) is a key parameter of a conical shell. The
cylindrical shells and annular plates considered in previous chapters can be seen as
the special cases of conical shells with zero and 90° (w/2) vertex half-angle angles,
respectively. In the following example, influence of vertex half-angle angle (¢) on
the vibration characteristics of laminated conical shells is investigated. Table 6.8
shows the lowest four frequency parameters Q for a three-layered, cross-ply [0°/
90°/0°] conical shell with different boundary conditions. The material constants and
geometric parameters are the same as the previous example (see Table 6.7) except
that the vertex half-angle angle (¢) of the shell is changed from ¢ = 15° to ¢ = 75°
by a step of 15°. The table shows that the shell with C—F and S-F boundary
conditions yields lower frequency parameters than those of F—C and F-S boundary
conditions. The similar observation can be seen in Tables 6.6 and 6.7. The second
observation made here is that the shell with C-F and S-F boundary conditions gave
closer results. In addition, we can see that the maximum frequency parameters of
the shell with F-S, S-F, F-C, C-F, S-S and C-C boundary conditions occur at
@ =45°, 15°, 60°, 15°, 45° and 75°, respectively.

Effects of the lamination layer number on the frequency parameters of conical
shells are investigated as well. In Fig. 6.3, variation of the lowest three dimen-
sionless frequencies Q of a [0°/9], layered conical shell with F-C boundary con-
dition against the number of layers n are depicted, respectively (where n = 1 means
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Qo= 0.75217 Q5= 1.16012

Q,,= 0.71463

Q= 0342741 Q;,=0.70118 Q3 3= 1.20939

Fig. 6.2 Mode shapes for a [0°/45°/0°/45°] laminated conical shell with F~C boundary condition
(Qn,nu n= 1_37 m= 1_3)

a single-layered shell; n = 2 means a two-layered shell, i.e. [0°/%], and so forth).
Three lamination schemes, i.e. $ = 30°, 45° and 60° are considered in the inves-
tigation. The layers of the shells are of equal thickness and made from the same
material with follow proprieties: E/E, = 15, Ry = 1 m, L/Ry = 2, h/Ry = 0.1,
@ = 45°. As clearly observed from Fig. 6.3, the frequency parameters of the shell
increases rapidly and may reaches their crest around n = 18, and beyond this range,
the frequency parameters remain unchanged (ignore the fluctuation). The fluctua-
tion on the curves curves curved may be due to the fact that the shell are
symmetrically laminated when 7 is an odd number, and n equal to an even number
means the shells are unsymmetrically laminated.

The following numerical analysis is conducted to laminated conical shells with
elastic boundary conditions. As what treated in previous chapter, the following two
typical uniform elastic boundary conditions are considered in the subsequent
analysis (taking edge R = R, for example):
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Table 6.8 Frequency parameters Q for a [0°/90°/0°] laminated conical shells with different
boundary conditions and vertex half-angle angles (E\/E, = 15, Ry = 1 m, L/Ry = 2, h/Ry = 0.1)

[ Mode Boundary conditions
F-S S-F F-C C-F S-S c-C
15° 1 0.1504 0.0942 0.1671 0.1051 0.2360 0.3182
2 0.1582 0.0946 0.1742 0.1087 0.2571 0.3350
3 0.2094 0.1384 0.2270 0.1434 0.2719 0.3420
4 0.2466 0.1483 0.2561 0.1568 0.3202 0.3861
30° 1 0.1936 0.0878 0.2226 0.1043 0.2841 0.3996
2 0.2200 0.0942 0.2455 0.1139 0.2939 0.4078
3 0.2421 0.1214 0.2761 0.1297 0.3318 0.4310
4 0.3244 0.1513 0.3630 0.1635 0.3451 0.4474
45° 1 0.2165 0.0791 0.2588 0.1006 0.3066 0.4575
2 0.2457 0.0843 0.2830 0.1099 0.3159 0.4648
3 0.2625 0.1092 0.3136 0.1208 0.3506 0.4852
4 0.3402 0.1394 0.4048 0.1563 0.3628 0.4991
60° 1 0.2131 0.0658 0.2699 0.0931 0.3031 0.4898
2 0.2226 0.0678 0.2724 0.0970 0.3216 0.5019
3 0.2683 0.0992 0.3355 0.1132 0.3269 0.5034
4 0.3414 0.1105 0.3858 0.1332 0.3708 0.5359
75° 1 0.1582 0.0414 0.2200 0.0788 0.2806 0.4994
2 0.1928 0.0566 0.2612 0.0841 0.2860 0.5026
3 0.2107 0.0633 0.2626 0.0943 0.3129 0.5179
4 0.2648 0.0920 0.3442 0.1072 0.3176 0.5213

E": the transverse direction is elastically restrained (w # 0, u = v = ¢, = ¢y = 0),
ie, k,=T;
E?: the rotation is elastically restrained (¢, Z0, u=v=w=¢yp=0),1e, K, =T

Table 6.9 shows the lowest three frequency parameters Q of a two-layered [0°/
90°] conical shell with different restrain parameters I" and vertex half-angle angles.
The vertex half-angle angle ¢ varies from 0° to 90° by a step of 30°. The shell
parameters used are E/E, = 15, Ry = 1 m, L/Ry = 2, h/Ry = 0.05. The shell is
clamped at the edge of R = R, and with elastic boundary conditions at the other
edge. The table shows that when the vertex half-angle angle ¢ = 0°, 30° and 60°,
increasing restraint rigidities in the transverse and rotation directions have very
limited effects on the frequency parameters of the shell. When the restrained rigidity
parameter I is varied from 107> x D to 10* x D, the corresponding maximum
differences of the lowest frequency parameters for the shell with E'-C and E>-C
boundary conditions are less than 1.36, 2.42, 0.85 % and 3.32, 4.45, 1.35 %,
respectively. However, the similar frequency parameter differences reach 177, 60,
16 % and 21.4, 22. 3, 18.3 % for the shell with vertex half-angle angle of ¢ = 90°.
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Fig. 6.3 Variation of the
frequency parameters Q
versus the number of layers
n for a [0°/3], layered conical
shell: a $ = 30°;, b 9 = 45°;
¢ 4 =060°
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Table 6.10 shows the similar studies for the shell with F boundary conditions at
the edge of R = R,. The table also reveals that when the vertex half-angle angle
@ = 0°, 30° and 60°, increasing the restraint rigidities in the transverse and rotation
directions have very limited effects on the frequency parameters of the shell. In
addition, it can be seen that the change of the restraint rigidity parameter I" has large
effects on the frequency parameters of all conical shells with vertex half-angle angle
¢ = 90°. Increasing the rigidity parameter I" from 10”2 x D to 10* x D increases the
frequency parameters by almost 651.4, 22.5, 36.5 % and 101.2, 54.6, 94.6 % for the
E'-F and E*-F boundary conditions, respectively.
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Table 6.9 Frequency parameters Q for a two-layered [0°/90°] conical shell with different restrain
parameters " and vertex half-angle angles (Ry = 1 m, L/Ry = 2, h/Ry = 0.05, E|/E, = 15)

® r E'-C E-C
1 2 3 1 2 3

0° 102x D |0.1614 [0.1800 |0.1960  |0.1610  [0.1797  |0.1955
10'x D 01614 |0.1800 [0.1960  |0.1610  |0.1798  |0.1956
10°% D 0.1614  |0.1800  [0.1960  |0.1616  |0.1802 | 0.1961
10' x D 0.1615 |0.1801  [0.1961  |0.1627  |0.1809  |0.1973
10°x D 0.1619  |0.1804  [0.1965 |0.1630  |0.1812  |0.1976
10°x D 0.1627  |0.1810  |0.1973  [0.1631  [0.1812  |0.1977
10°x D 0.1630  |0.1812  [0.1977 |0.1631  |0.1812  |0.1977

30° |1072x D 02555 02732  [02831 |0.2533 02706 |0.2822
10'x D 02555 [02732 |0.2832 02535 |02708 |0.2822
10°% D 0.2556  |0.2732 (02831 |0.2548 02726 |0.2828
10' x D 0.2557 |0.2734 [02832 |0.2572 02760 |0.2838
10°x D 0.2564 02745 |02834 |02580 [02771  |0.2841
10°x D 02576 02765 [02840 |02581 |02772  |0.2842
10°x D 0.2581  |02771  [02841  |02581 |02772  |0.2842

60° |1072x D [02532 |02577 |0.2837 02485 [0.2527 |0.2813
10'x D 02533 [02577 |0.2838 02488  [0.2532  |0.2815
10°x D 02532 |0.2576 02839  |0.2512 02565 |0.2825
10'x D 0.2534 02582  [0.2834 |0.2554 02622  |0.2845
10> x D 0.2548 02608 [0.2843 |0.2566 |0.2638 | 0.2851
10°x D 02563 02634 |02850 |0.2567 |0.2640 |0.2851
10*x D 02567  |0.2640 02851  [02567 |0.2640 |0.2851

90°  |1072xD 0.0592  |0.1036  [0.1434  |0.1351  |0.1360 | 0.1406
107 x D 0.0614  |0.1010  [0.1436  |0.1370  |0.1379 | 0.1422
10°x D 0.0793  |0.1067 |0.1439  |0.1476  |0.1489 | 0.1515
10' x D 0.1364  |0.1402  |0.1521  [0.1607  [0.1628 | 0.1632
10°x D 0.1608  |0.1629  [0.1633  |0.1636  [0.1659 | 0.1660
10°x D 0.1637 |0.1659  [0.1660 |0.1640 | 0.1663  |0.1663
10°x D 0.1640  |0.1663 [0.1663  |0.1640 | 0.1663 | 0.1664

6.4 Vibration of Laminated Open Conical Shells

Laminated open conical shells can be obtained by cutting a segment of the lami-
nated closed conical shells. For an open conical shell, the assumption of whole
periodic wave numbers in the circumferential direction is inappropriate, and thus, a
set of complete two-dimensional analysis is required and resort must be made to a
full two-dimensional solution scheme. This forms a major deterrent so that the
analyses of deep open conical shells have not been widely available. Among those
available, Bardell et al. (1999) studied the vibration of a general three-layer conical
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Table 6.10 Frequency parameters Q for a two-layered [0°/90°] conical shell with different
restrain parameters I' and vertex half-angle angles (R = 1 m, L/Ry = 2, h/Ry = 0.05, E|/E, = 15)

® r E'-F E-F
1 2 3 1 2 3
0° 102xD 00904 |0.0909 [0.1403 0.0909  [0.0912 | 0.1404

107" xD 0.0904 0.0909 0.1403 0.0909 0.0912 0.1404
10° x D 0.0904 0.0909 0.1403 0.0909 0.0912 0.1404
10' x D 0.0904 0.0909 0.1403 0.0909 0.0912 0.1404
10> x D 0.0905 0.0910 0.1403 0.0909 0.0912 0.1404
10> x D 0.0908 0.0912 0.1404 0.0909 0.0912 0.1404
10* x D 0.0909 0.0912 0.1404 0.0909 0.0912 0.1404
30° 102%xD 0.0831 0.1018 0.1025 0.0841 0.1027 0.1031
107 xD 0.0831 0.1018 0.1025 0.0841 0.1027 0.1031
10° x D 0.0831 0.1019 0.1025 0.0841 0.1027 0.1033

10" x D 0.0832 0.1019 0.1025 0.0842 0.1027 0.1037
10> x D 0.0835 0.1024 0.1026 0.0843 0.1027 0.1038
10> x D 0.0841 0.1027 0.1034 0.0843 0.1027 0.1038

10* x D 0.0842 0.1027 0.1037 0.0843 0.1027 0.1038
60° 1072x D 0.0617 0.0705 0.0801 0.0620 0.0710 0.0803
107 x D 0.0617 0.0705 0.0801 0.0620 0.0712 0.0803
10° x D 0.0617 0.0706 0.0801 0.0625 0.0722 0.0803
10' x D 0.0618 0.0709 0.0801 0.0631 0.0737 0.0804
10> x D 0.0625 0.0724 0.0802 0.0632 0.0742 0.0804
10* x D 0.0631 0.0739 0.0803 0.0633 0.0742 0.0804
10* x D 0.0632 0.0742 0.0804 0.0633 0.0742 0.0804
90° 102xD 0.0030 0.0196 0.0232 0.0110 0.0156 0.0163
107 x D 0.0091 0.0197 0.0233 0.0127 0.0172 0.0175
10° x D 0.0203 0.0224 0.0233 0.0182 0.0208 0.0250
10" x D 0.0216 0.0236 0.0304 0.0216 0.0235 0.0306
10> x D 0.0221 0.0240 0.0316 0.0221 0.0240 0.0316
10° x D 0.0222 0.0240 0.0317 0.0222 0.0240 0.0317
10* x D 0.0222 0.0240 0.0317 0.0222 0.0240 0.0317

sandwich panel based on the h-p version finite element method. Chern and Chao
(2000) made a general survey and comparison for variety of simply supported
shallow spherical, cylindrical, plate and saddle panels in rectangular planform. Lee
et al. (2002) and Hu et al. (2002) reported the vibration characteristics of twisted
cantilevered conical composite shells. Also, vibration of cantilevered laminated
composite shallow conical shells was presented by Lim et al. (1998), etc.

In this section, we consider free vibration of laminated deep open conical shells.
As was done previously for laminated open cylindrical shells, regardless of
boundary conditions, each displacement and rotation component of the open
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conical shells under consideration is expanded as a two-dimensional modified
Fourier series as Eq. (5.43). The similar non-dimensional parameter Q =

®R+/ph/Ay; is used in the calculations. And unless otherwise stated, the layers of
open conical shells under consideration are made of composite material with fol-
lowing properties: E, = 10 GPa, E|/E, = open, u;» = 0.25, G5 = Gi13 = Go3 = 0.5E,,
p = 1,500 kg/m’>. For an open conical shell, there exits four boundaries, i.e., R = Ry,
R=R;, 0=0and 8 = 6. Similarly, the boundary condition of an open conical shell
is represented by a four-letter character, such as FCSC identify the shell with F, C,
S and C boundary conditions at boundaries R = Ry, § = 0, R = R and 0 = 0,,
respectively.

6.4.1 Convergence Studies and Result Verification

Tables 6.11 shows the convergence studies of the lowest six frequency parameters
Q for a three-layered, [0°/90°/0°] deep open conical shell with FFFF and CCCC
boundary conditions, respectively. The material and geometry constants of the shell
are: E\/E, =15, Ry=1m, L/Ry=2, h/Ry= 0.1, ¢ = /4, 6, = n. The zero frequency
parameters corresponding to the rigid body modes of the shell with FFFF boundary
conditions are omitted from the results. Excellent convergence of frequencies can
be observed in the table. Furthermore, the convergence of the FFFF solutions is
faster than those of CCCC boundary conditions.

Table 6.12 shows the comparison of the non-dimensional frequency parameters

Q = wL?*\/ph/D of SSSS and CCCC supported, [0°/90°/0°] laminated shallow and
deep open conical shells with results provided by Ye et al. (2014b) based on the
conjunction of Ritz method and the first-order shear deformable shell theory. The

Table 6.11 Convergence of the frequency parameters Q of a [0°/90°/0°] laminated open conical
shell with FFFF and CCCC boundary conditions (Ry = 1 m, L/Ry = 2, h/Ry = 0.1, 6y = =, E/
E2 = 15)

B.C. M x N Mode number
1 2 3 4 5 6
FFFF 14 x 14 0.0181 0.0325 0.0485 0.0711 0.0886 0.1268

15 x 15 0.0181 0.0325 0.0485 0.0711 0.0885 0.1268
16 x 16 0.0181 0.0325 0.0485 0.0711 0.0885 0.1268
17 x 17 0.0181 0.0325 0.0485 0.0711 0.0885 0.1268
18 x 18 0.0181 0.0325 0.0484 0.0711 0.0885 0.1267
CcCccc 14 x 14 0.4588 0.4616 0.5151 0.5259 0.5991 0.6611
15 x 15 0.4588 0.4615 0.5150 0.5258 0.5987 0.6610
16 x 16 0.4588 0.4615 0.5149 0.5257 0.5987 0.6602
17 x 17 0.4588 0.4615 0.5149 0.5257 0.5986 0.6601
18 x 18 0.4588 0.4615 0.5148 0.5257 0.5986 0.6597
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Table 6.12 Comparison of frequency parameters Q = wL?\/ph/D for [0°/90°/0°] laminated
shallow and deep open conical shells with SSSS and CCCC boundary conditions (Ryp = 1 m,
L/IRy =2, /Ry = 0.1, ¢ = n/4, E\/E; = 15)

2 Mode Ye et al. (2014b) Present Difference (%)
SSSS CCCC SSSS CCCC SSSS CCCC
45° 1 29.953 37.831 29.956 37.831 0.010 0.002
2 32.542 44.176 32.543 44.177 0.003 0.002
3 50.005 58.363 50.006 58.364 0.003 0.001
4 52.410 67.406 52.415 67.408 0.010 0.002
90° 1 16.702 24.103 16.704 24.104 0.012 0.002
2 19.810 27.671 19.814 27.673 0.019 0.008
3 29.910 37.898 29.918 37.900 0.027 0.003
4 33.347 39.299 33.349 39.304 0.005 0.014
135° 1 15.281 22.565 15.284 22.566 0.019 0.004
2 16.536 22.888 16.537 22.889 0.010 0.004
3 19.943 26.779 19.949 26.782 0.027 0.010
4 22.977 30.186 22.989 30.197 0.049 0.035
180° 1 14.820 21.855 14.823 21.856 0.023 0.002
2 15.129 21.983 15.129 21.985 0.005 0.010
3 17.444 24.519 17.454 24.525 0.058 0.022
4 19.367 25.038 19.375 25.042 0.038 0.018
225° 1 14.571 21.526 14.572 21.527 0.006 0.002
2 14.588 21.667 14.592 21.670 0.028 0.012
3 16.470 23.078 16.480 23.078 0.065 0.002
4 16.915 23.431 16.916 23.438 0.003 0.030

shell parameters used in the comparison are the same as those for Table 6.11. Five
different circumferential included angles, i.e., 6, = 45°, 90°, 135°, 180° and 225°,
corresponding to shallow to deep open conical shells are performed in the com-
parison. It is clearly evident that the present solutions are in a good agreement with
the referential data, although different admissible displacement functions were
employed by Ye et al. (2014b). The differences between the two results are very
small, and do not exceed 0.065 % for the worst case.

6.4.2 Laminated Open Conical Shells with General Boundary
Conditions

Some further numerical results for laminated open conical shells with different
boundary conditions and shell parameters, such as geometric properties, lamination
schemes are given in the subsequent discussions.
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Isotropic open conical shells are a special case of the laminated ones. Vibration
results of these shells with general boundary conditions are rare in the literature as
well. Therefore, Table 6.13 shows the first four frequency parameters Q of an
isotropic (E = 210 GPa, x> = 0.3, p = 7,800 kg/m*>) open conical shell with different
types of boundary conditions (FFFC, FFCC, FCCC, CCCF, CCFF and CFFF) and
thickness-to-small edge radius ratios (A/R). The geometry parameters used in the
analysis are: Ry = 1 m, L =2 m, 6, =90°, ¢ = 30°. Four different thickness-to-small
edge radius ratios, i.e., h/Ry = 0.01, 0.02, 0.05 and 0.1 are used in the calculation.
The table shows that the frequency parameters of the shell tend to increase with
thickness-to-small edge radius ratio increases. This is true due to the stiffness of an
isotropic open conical shell increases with thickness increases. Furthermore, it is
interesting to find that the frequency parameters of the shell with cantilever
boundary conditions in the curved edge are higher than those of straight edges.

The first six mode shapes for the shell with thickness-to-small edge radius ratio
h/Ry = 0.01 and FCCC boundary condition are given in Fig. 6.4. These 3-D view
mode shapes serve to enhance our understanding of the vibratory characteristics of
the open conical shell. Table 6.14 shows the similar studies for a two-layered [0°/
90°] open conical shell. The layers of the shell are made of composite material with
following properties: Ei/E, = 15. Table 6.14 also shows that the frequency
parameters of laminated open conical shells increase with thickness-to-small edge
radius ratio increases.

Table 6.13 Frequency parameters Q of an isotropic open conical shell with various boundary
conditions and thickness-to-radius ratios (Rp = 1 m, L = 2 m, 6, = 90°, ¢ = 30°)

Ry Mode Boundary conditions
FFFC FFCC FCCC CCCF CCFF CFFF
0.01 1 0.0037 0.0590 0.2277 0.0996 0.0263 0.0240
2 0.0100 0.1212 0.2537 0.1907 0.0738 0.0281
3 0.0172 0.1788 0.3233 0.2479 0.0995 0.0622
4 0.0345 0.2172 0.3411 0.2769 0.1060 0.0908
0.02 1 0.0074 0.0872 0.3525 0.1501 0.0393 0.0360
2 0.0198 0.1837 0.3722 0.3004 0.1052 0.0393
3 0.0342 0.2540 0.4800 0.3473 0.1571 0.1018
4 0.0681 0.3293 0.5113 0.4079 0.1707 0.1143
0.05 1 0.0184 0.1470 0.5520 0.2695 0.0682 0.0510
2 0.0489 0.3335 0.6682 0.5239 0.1861 0.0820
3 0.0842 0.4356 0.8394 0.5964 0.2820 0.1307
4 0.1629 0.5654 0.9446 0.6877 0.2874 0.2357
0.10 1 0.0366 0.2299 0.8543 0.4357 0.1096 0.0817
2 0.0953 0.5164 0.9780 0.7747 0.2542 0.1080
3 0.1652 0.6100 1.2614 0.9499 0.4405 0.2062
4 0.2996 0.8463 1.2658 1.0000 0.4729 0.4047
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Fig. 6.4 Mode shapes for an isotropic open conical shell with FCCC boundary conditions
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Table 6.14 Frequency parameters Q of a two-layered [0°/90°] open conical shell with various
boundary conditions and thickness-to-radius ratios (Ry = 1 m, L = 2 m, 6, = 90°, ¢ = 30°, E/
E, = 15)

h/Rq Mode Boundary conditions
FFFC FFCC FCCC CCCF CCFF CFFF
0.01 1 0.0024 0.0412 0.1344 0.0628 0.0187 0.0173
2 0.0052 0.0765 0.1466 0.1147 0.0498 0.0200
3 0.0102 0.1158 0.1899 0.1394 0.0616 0.0438
4 0.0202 0.1307 0.1906 0.1556 0.0698 0.0577
0.02 1 0.0047 0.0578 0.1979 0.0906 0.0267 0.0256
2 0.0102 0.1123 0.2039 0.1760 0.0684 0.0262
3 0.0201 0.1552 0.2693 0.1926 0.0942 0.0654
4 0.0399 0.1934 0.2941 0.2173 0.1112 0.0758
0.05 1 0.0118 0.0914 0.3067 0.1583 0.0441 0.0336
2 0.0254 0.1990 0.3915 0.2830 0.1135 0.0524
3 0.0491 0.2533 0.4713 0.3519 0.1591 0.0824
4 0.0953 0.3186 0.5573 0.3917 0.1742 0.1454
0.10 1 0.0234 0.1377 0.4786 0.2556 0.0690 0.0468
2 0.0498 0.3080 0.6516 0.4231 0.1442 0.0742
3 0.0946 0.3353 0.6981 0.5271 0.2666 0.1182
4 0.1735 0.4728 0.8905 0.5919 0.2746 0.2194

At the end of this section, the influence of circumferential included angle 6, on
the frequency parameters of laminated open conical shells is investigated.
A two-layered [0°/90°] open conical shell with small edge radius Ry = 1 m, length
L =2 m, thickness & = 0.05 m is investigated. The layers of the shell are made of
composite material having orthotropy ratio E|/E, = 15. Three different vertex half-
angle angles, i.e., ¢ = 0°, 45° and 90°, corresponding to open cylindrical shell,
general open conical shell and sectorial plate are performed in the investigation.
Figure 6.5 shows the variation of the lowest three frequency parameters Q of the
shell with SSSS boundary condition against the circumferential included angle 6.
As observed from the figure, the frequency parameter traces of the shell decline
when the circumferential included angle 6, is varied from 30° to 330° by a step of
15°. It is attributed to the stiffness of the shell decreases with circumferential
included angle 6, increases. Furthermore, it is obvious that the effect of the
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circumferential included angle 6 is much higher for open cylindrical, conical shells
and sectorial plates with lower circumferential included angle. Changing 6, from
30° to 90° results in frequency parameters that are more than five times lower.
Conversely, increasing 6, from 90° to 330° yields less than 30 % decrement of the

frequency parameters.
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Figure 6.6 shows the similar studies for the conical shell with CCCC boundary

condition. The similar observations can be

seen in this figure.



Chapter 7
Spherical Shells

The cylindrical and conical shells considered in Chaps. 5 and 6 are special cases of
shells of revolution. Spherical shells are another special case of shells of revolution.
A spherical shell is a doubly-curved shell characterized by a middle surface generated
by the rotation of a circular cure line segment (generator) about a fixed axis. If the axis
of rotation along the diameter of the circle of the line segment, a spherical shell with
constant curvature in the meridional and circumferential directions will be resulted
and the two radii of curvature are equal. It is noticeable that the spherical shells are
very stiff for both in-plane and bending loads due to the curvature of the middle
surface, which is also a reason for the analysis difficulties of the shells, especially the
exact three-dimensional elasticity (3-D) analysis. The spherical shells can be closed
and open. If the generator rotates less than one full revolution about the axis, the
spherical shell is open and has four boundaries. If further, the generator rotates one
full revolution about the axis and the proper continuity conditions are satisfied along
the junction line, a closed spherical shell results, which has only two edges.
Laminated spherical shells composed of advance composite material layers are
another important structural components widely used in an increasing number of
engineering structures to satisfy special functional requirements. Understanding the
vibration characteristics of these structural elements is particularly important for
engineers to design suitable structures with low vibration and noise radiation
characteristics. However, the literature of vibration analysis of laminated spherical
shells is limited. Among those available, Qatu (2004) presented the fundamental
equations of thin and thick spherical shells. Gautham and Ganesan (1997) dealt with
the free vibration characteristics of isotropic and laminated orthotropic spherical
caps using semi-analytical shell finite element. Sai Ram and Sreedhar Babu (2002)
applied an eight-node degenerated isoparametric shell element method to investigate
the free vibration of composite spherical shell cap with and without a cutout. Qu
et al. (2013a) developed a unified formulation for vibration analysis of composite
laminated cylindrical, conical and spherical shells including shear deformation and
rotary inertia, in which a modified variational principle in conjunction with a multi-
segment partitioning technique is employed to derive the formulation based on the
first-order shear deformation theory. Jin et al. (2014a) investigated vibrations of
laminated spherical shells with general boundary conditions. Free vibration of
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simply supported laminated spherical panels with random material properties is
reported by Singh et al. (2001) based on the high-order shear deformation shallow
theory. Ye et al. (2014b, c) developed a unified Chebyshev—Ritz formulation for the
vibration analysis of thin and thick laminated open cylindrical, conical and spherical
shells with arbitrary boundary conditions, etc.

The emphasis in this chapter is the closed and deep open spherical shells
composed of layers having spherical orthotropy. Fundamental equations of thin
(CST) and thick (SDST) spherical shells are presented in the first and second
sections, respectively, including the strain-displacement relations, force and
moment resultants, energy functions, governing equations and boundary condition
equations. These equations are obtained by substituting the proper Lamé parameters
of spherical shells in the general shell equations. On the basis of shear deformation
shell theory (SDST) and modified Fourier series, numerous vibration results of thin
and thick laminated closed spherical shells with different boundary conditions,
lamination schemes and geometry parameters are given in the third section by
applying the weak form solution procedure. Vibration of deep open laminated
spherical shells will then be treated in the latest section of this chapter.

Closed spherical shells can be viewed as a special case of open spherical shells
having circumferential included angles of 2n (or 360°) and the proper continuity
conditions are satisfied along the junction line. For the sake of brevity, a general
laminated open spherical shell with mean radius R and total thickness 4 is selected
as the analysis model. As shown in Fig. 7.1, the geometry and dimensions of the
shell are defined with respect to the coordinates ¢, 6 and z along the meridional,
circumferential and radial directions which is located in the middle surface of the
shell. The shell domain is bounded by ¢ < ¢ < @1, 0 < 8 < 0y and h/2 < z < h/2. The
middle surface displacements of the spherical shell in the ¢, § and z directions are
denoted by u, v and w, respectively.

Consider the spherical shell in Fig. 7.1 and its spherical coordinate system, the
coordinates, characteristics of the Lamé parameters and radii of curvatures are:

Fig. 7.1 Geometry notations and coordinate system of spherical shells
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a=¢, p=0, A=R, B=Rsing, R,=Rp=R (7.1)

The equations of spherical shells are a specialization of the general shell
equations given in Chap. 1 by substituting Eq. (7.1) into such shell equations.

7.1 Fundamental Equations of Thin Laminated Spherical
Shells

We will first derive the fundamental equations for thin laminated spherical shells by
substituting Eq. (7.1) into the general thin shell equations developed in Sect. 1.2.
The equations are formulated for the general dynamic analysis. It can be readily
specialized to static (letting frequency @ equal to zero) and free vibration
(neglecting the external load) analysis.

7.1.1 Kinematic Relations

Substituting Eq. (7.1) into Eq. (1.7) yields the middle surface strains and curvature
changes for a thin spherical shell in terms of middle surface displacements as:

so—l %—&-w 80—l E—&-ﬁ—&-w
? R\0¢ 07 R\r " 500

o _L(ouw v v _ L (0w Pw
"0 = R\s00 Tap 1) Fr T R \Bp 092

l(u o Pw aw) (7.2)

=\ Tsa0 2o e
, L (0w v v 200w  Ow
Lod =2 \500 " 9p 1 50900 ' 5190

and s=singp c=cosep t=tang

0 0 0 : :
where &,, & and y, are the middle surface normal and shear strains. y, xo and y,o

denote the middle surface curvature and twist changes. Then, the state of strain at an
arbitrary point in the kth layer of the thin spherical shell can be defined as:

&p = 82) + 22X
&0 = &y + 2 (7.3)

0
Yoo = Yoo t 2Up0
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where Z,1 < z < Z; (Zi,1 and Z; denote the distances from the top surface and
bottom surface of the layer to the referenced middle surface, respectively).

7.1.2 Stress-Strain Relations and Stress Resultants

According to the generalized Hooke’s law, the corresponding stress-strain relations
in the kth layer of the thin spherical shells are:

Ak k. ok
O o1 2 Qs €p
g 0= |0, 05 0% €0 (7.4)
X X %
Tp0 ) 1 Ols Q36 Dso Vo0 ) i

where ¢, and o, are the normal stresses in the ¢ and 6 directions, 7, is the shear

stress. The constants Qg(i, j =1, 2, 6) represent the elastic properties of the material
of the layer. They are written as in Eq. (1.12). It should be noted that the orthotropy
treated here is spherical orthotropy.

Integrating the stresses over the shell thickness or substituting Eq. (7.1) into
Eq. (1.14), the force and moment resultants of thin spherical shells can be obtained
in terms of the middle surface strains and curvature changes as

Ny Aii A Ais Bii Bin Bis 33

Ny Ay Ay Ay Bip By By &)

Noo | _ | Al A Aes Bis Ba Bes Voo (7.5)
M, Bi Bi Bis Du Di Dis ||y, '
My B Byn Bx D Dn D ||y

Mo Bis By Bes Disc Das Des d |y

where N, and N, are the normal force resultants in the ¢ and 0 directions, N, is the
corresponding shear force resultants. M,, M, and M,y denote the bending and
twisting moment resultants. The stiffness coefficients A;;, Bj;, and D;; are written as
in (1.15).

ij>

7.1.3 Energy Functions

The strain energy (U,) of thin laminated spherical shells during vibration can be

defined as:
1 N,e? + Nl + N,py°
v, =L / / ofe TR0 T Roo0 g2 10 (7.6)
2({) Y +M¢X(p +M9X9 +M¢0X(/19
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The corresponding kinetic energy function is:

b [ ) e o0

where the inertia term I, is defined as in Eq. (1.19). Suppose g, gy and g, are the
external loads in the ¢, 8 and z directions, respectively. Thus, the external work can
be expressed as:

W, = // {qou + qov + q.w}R*sd0d (7.8)
¢

The same as usual, the general boundary conditions of a thin spherical shell are
implemented by using the artificial spring boundary technique (see Sect. 1.2.3).
Letting ky, ky,, ky and Ky (y = 90, 60, ¢1 and 61) to indicate the stiffness of the
boundary springs at the boundaries ¢ = ¢g, 8 = 0, ¢ = ¢, and 8 = 0, respectively,
therefore, the deformation strain energy stored in the boundary springs (U,,) during
vibration can be defined as:

[kf;)ouz + k:/,)OVZ + k:/fo + Ko (Ow/ROp) } | =00

1
Usp :5/ Rsd0
3| R K R+ K (0w /RO) |-,

1 kisou? + kpov? + kjow* + Kj (0w /RO®)] |00
/{ [ 00 60 60 00 ] Rdp  (7.9)

2 , Ut [k® + kv + kiyw? + K3y (Ow/RO) ] o=,

The energy functions presented here can be applied to derive the governing
equations and boundary conditions of thin laminated spherical shells or search the
approximate solutions of practical problems.

7.1.4 Governing Equations and Boundary Conditions

Substituting Eq. (7.1) into Eq. (1.28) and then simplifying the expressions, the
resulting governing equations of thin laminated spherical shells are:

ON, N, ONy, Ny O*u
ey 04 0, + Rq, = Rlp—
9o "1 a0 1 Qe tRa =Rhgs
8N(/,@ 2N ONy v
R RIy— 7.10
90 -t ag T Qo+ Rao = Rlo 5 (7.10)
aQ(p qu aQ@ 8271’1/

— (N +No) + == +=L+—>+Rq. =Rl

O t 500 or?
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where

BM(,, + M(p - % aM(pG
ROp Rt Rt RsO0
an)(? ZM(/)G aM@
ROg Rt Rs00

Q(p =
(7.11)
Qp =

According to Egs. (1.29) and (1.30), the boundary conditions of thin laminated
spherical shells are:

N(p+%—kg;u=0 Ny +5e+ku=0
N + Yo —kpyv =0 Nyo + w"—i—kVIV—O
P = ) w P=y: 4 M, w
Qp + R[.;’/Igl()) g =0 0, + Rvag +kgpw =0
W (?w _ w aw _
M K(pO ROy — 0 _M(p - K‘Pl RO — 0 (7. 12)
Noo —|— — kyou=0 Nyo —|— '”0 + kju=0
N, +—— khov=0 N, + +k y=0
0:0: 0 0 00 0:00: ¢ BMo o
Q + Ra(/’ kWOW_O Q() + Rdz;) + kWIW_O
w _Oow __ w _ow __
—Mp — Ko 7555 =0 —Mp + Kjy 2550 =0

For thin spherical shells, each boundary can have up to 12 possible classical
boundary conditions. The possible classical boundary conditions for boundaries
@ = constant are given in Table 7.1, similar boundary conditions can be obtained for
boundaries § = constant.

Table 7.1 Possible classical

boundary conditions for thin ?oundary Conditions
spherical shells at each ype
boundary of ¢ = constant Free boundary conditions
F No + % = Noo + 222 = 0, + it = M, =0
= U= Noo + 5" = Oy + g = My = 0
F3 Nw*%:":QPjL?etM_Mw:O
F4 Mo

u=v=0,+%z =M,=0

Simply supported boundary conditions

S u=v=w=M,=0

SD N(,,—&—%:V:W:M(,,:O

S3 u:Nq,()+Ml;”":w=Mq,=0

S4 Ny + Mo = Npg +- Y0 =y =M, =0
Clamped boundary condmons

C u—v-w-S:,’—O

2 N, + “‘—v—w:d:”—o

C3 uzNa,oJrM‘”“:w:g—:;:O

C4 Nop+%=Npp+ gt =w=2=0



http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1

7.2 Fundamental Equations of Thick Laminated Spherical Shells 241

7.2 Fundamental Equations of Thick Laminated Spherical
Shells

Fundamental equations of thick laminated spherical shells will be derived in this
section. Similarly, the equations that follow are a specialization of the general shear
deformation shell theory (SDST).

7.2.1 Kinematic Relations

Based on the assumptions of SDST, the displacement field of a thick spherical shell
can be expressed in terms of the middle surface displacements and rotation com-
ponents as

U((pv 0, Z) = u((P7 0) + Zd)q)
V(9,0,2) = v(e,0) + 20, (7.13)
W(q)v 07 Z) = W((p, 9)

where u, v and w are the middle surface shell displacements in the ¢, 6 and
z directions, respectively, and ¢, and ¢, represent the rotations of the transverse
normal respect to - and p-axes. Substituting Eq. (7.1) into Egs. (1.33) and (1.34),
the normal and shear strains at any point of the thick spherical shell space can be
defined in terms of the middle surface strains and curvature changes as

1 0
Ep = (1 +Z/R) <8¢ +ZX(/J)

0

&y = (& + 2
0 (1+Z/R)(9 o)
Ve:—l <V09+27 0+ V00 + 21 g) 7.14
@ (1+Z/R) @ Lo @ Lo ( . )
o T
o T T+ /)

Vo

=27
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where
0 _1(du _ 199,
8w7R<8(/7+W) /(<07R »
0 _ 1 (u v _1(9¢ | b
3(}*R(z+vae+w) KO*R(s'e+t
W0 1ov _ 199y
/(/JG_R[“)(p Yoo = R )
W0 —L(du v . 1(9%, ¢y
oy R(s(?() z) oo =R \500 — ¢
W — 1w _u
Yoz = Rog kTP
W — Low v
Vo: = &0 —r T+ Po

7.2.2 Stress-Strain Relations and Stress Resultants
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(7.15)

Substituting o = ¢ and S = 6 into Eq. (1.35), the corresponding stress-strain relations

in the kth layer of a thick spherical shell can be written as:

%o o 0, 0 0 O
0 0 05 0 0 0 &
T, p = |0 0 ok, 0% 0 Yoz
Tz 0 0 045 0% 0 Yoz
Too ) & 6 Q% O 0 O%s Y0

(7.16)

k

where 7,,; and 7, are the corresponding shear stress components. The elastic stiff-
ness coefficients Qf‘] are given as in Eq. (1.39). Substituting Eq. (7.1) into (1.40), the
force and moment resultants of a thick spherical shell can be obtained by following

integration operation:

(1+5)az (7.17)

N, w2 [ oo Ny w2 | oo
z z

Noo | = o | (1 5)de Moo | = / wy | (14 )4
| Qo “h/2 | 14 Qo -h/2 | 1,
o n2 - /2

M, Oy z My )

= (1 + E) zdz, =

[ Moo | —hj2 b To0 Mo, —h/2 0o

The deepness term (1 + z/R) exist in both the numerator and denominator of the
force and moment resultants, this will yields symmetric stress resultants (N,g = Ny,
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and M,y = My,) and effectively reduce the equations to those of plates with the
proper change of the coordinates. Performing the integration operation in Eq. (7.17)
yields the force and moment resultants in terms of the middle surface strains and
curvature changes as:

[Ny ] Ay An A A B B Bie B [ % ]
Ny Ap Ax Ay Ay Bin By By B &
Ny Aig Ay Ass Ass  Bis B Bes Bes Vg;()
Nog _ | Ais Ax A Ass  Bis Bxs Bes Bes ng,
M, Bu Bin Bis Bie Du D Dis Dis || 4, (7.18)
My Biy Byn By By Di Dn Dy Dy ||y, '
Mo Bis B Beo Bos Die D Des Des | | 1,
LMoo I LBis By Beo Bec Dic D Des Des || y,, |
[Qa} _ [Au A45} [”/31
0,1 A5 Ass V%Z

The stiffness coefficients A;, B;; and Dj; are given as in Eq. (1.43). Note that
when a spherical shell is symmetrically laminated with respect to its middle surface,
the constants B;; equal to zero, and, hence the equations are much simplified.

7.2.3 Energy Functions

The strain energy (Uy) of thick spherical shells during vibration can be defined in
terms of the middle surface strains, curvature changes and corresponding stress
resultants as

U l// {N(ps% + Nogg + Nootg + Nog o, + My,
S 2
® 0

R*sd0d ¢
+ Moo + Moot po + Mop oy + Qo7 + QoVo:

(7.19)

Substituting Eqgs. (7.17) and (7.20) into Eq. (7.21), the above equation can be
expressed in terms of the middle surface displacements (u#, v, w) and rotation
components (@, ¢g). The corresponding kinetic energy (7) of thick spherical shells
during vibration can be written as:


http://dx.doi.org/10.1007/978-3-662-46364-2_1

244 7 Spherical Shells

ou  0,\’

R2 h/2 (8t+28t>

SE
?

v Apy\* [Ow
0 —h/2 - 70 -
* <8t+z 8t> +<8t>

(0N _oudd, —(0d,\ —_[Ov\?
Io(at) +2Ilatat+12( 8[) +10<8[>

N\ dbded
5 <1+I_?)S pdz

R2
:7// 5 5 sd0de  (7.20)
_vOpy (0 —_[(Ow
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where the inertia terms are:
2y L
IO—IO+ R +ﬁ
2L, I
L=1 +?+ﬁ
— 2L, I 7.21
122124'74-@ ( )
N Zk+1
lo, Iy, 1o, I3, 14] :Z/ Pl 2,2%, 2, dz
k=1
Tk

in which p* is the mass of the kth layer per unit middle surface area. Suppose the
distributed external forces g, q¢ and g are in the ¢, 6 and z directions, respectively,
and m, and m, represent the external couples in the middle surface, thus, the work
done by the external loads can be written as

W, = / / {qq,u +qov + qw + mpd, + mgqﬁg}stde(p. (7.22)
® 0

Using the artificial spring boundary technique similar to that described earlier,
the deformation strain energy (U,,) of the boundary springs during vibration is:

u 2 v 2 w2 q 2 0 42
| s {kwou + kipov” + kiow” + K£0¢w + Kwo%} }ff’:%
U, =L / Rd0
2 u v w g
9 —Q—s{kq}]uz—i-k(plvz+k({,1W2+K£1¢(2,,+K31¢5Mw=¢1
1 {k%”z + kyov? + kpow” + Ky <2p + K,?quﬂ lo=0
I / Rdp  (7.23)

b | [+ K+ ki + KG 82 + KD 93 lo-a,
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where ky, ky, ky, K, ? and Kl// (w = 00, 60, p1 and 61) represent the rigidities (per unit
length) of the boundary springs at the boundaries ¢ = ¢g, 8 =0, ¢ = @1 and 6 = 6,,
respectively.

The energy functions presented here will be applied to search the approximate
solutions of free vibration problems of spherical shells with general boundary
conditions in the later sections.

7.2.4 Governing Equations and Boundary Conditions

Substituting Eq. (7.1) into Eq. (1.59), the governing equations of thick laminated
spherical shells can be specialized from those of general thick shells. The resulting
equations become

86—]\(];4-%—&-1-81;? +0, +wa=Rﬁ)%+Rh%

% + 8;;2’" Nt Moo 4 0y + Ry =RTy ng +RI a;f;‘)

—(Ng + No) + aaQ‘P +% +%+Rq —RE(?;—;V (7.24)
8;2 +MT—M0+8A;2"’ Iqu,jLng,,zmlg2 +RI, ;ﬁ"’
% + 824(;"0 Mt“’“ + Mt — RQy + Rmy =Rl gzzv +RL, a;;;;@

Substituting Eqgs. (7.15) and (7.18) into Eq. (7.24), the governing equations of thick
spherical shells can be written in terms of displacements as

Ly Lo L3z Ly Lis M0 0 Mjy0 u P
Ly Ly Ly Loy Los 0 MpyO0O 0 M v —Po
L3y L3 Lsz Lsg Lss | — w2 0 0 M35 0 0 w =R —Pz
Ly Ly Liz Ly Lys My O 0O My O qb(p —my,
Lsi Lsp Lsy Lsa Lss 0 Msx0 0 Mss bo —my
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The coefficients of the linear operator L; are

0 (A1 0 Ap A 0 1 /A 0 Ap A 0
L = — | ——— —_ _— - ——— —_ _—
“ 8(p<R8(p+Rt+Rs80> (Ra(p+Rt+Rs89>
App 0 L An | Ax 9 + 9 0 (A O L Aw | A O 9\ Ass
R 8(p Rt Rv a0 sO0\ R ¢ ' Rt ' Rs 80 R

L :3 Ap 0 A16 9 A\ 1 ﬂi_‘rAlﬁ 9 A
12 o0 Rs s80 R Btp Rt Rs s00 R 0¢ Rt
(A2 0 Ax 0 Ax), 0 (Ax 0  Aw 0 A As
t \ Rs s60 R 0p Rt s00 \Rs s00 '~ R d¢ Rt R
0 (An A12 A | A 1 (A Axp
Lis = — Ay 2412 A2
o= (x5 (F %) (R %)
0 (A A Ays O Ass O
00 9<R+ R)+<Rs80+ R aq;)
L _ 0 @£+B12_~_B16 0 1 (B 0 B B0
T 99\ R 9p ' Rt ' Rs 00 R 0p ' Rt ' Rs 00
1 @i By B26 0 Bis 0 BZ6+B66 0 T A
\ "o R T Re 00 sae ‘'R d¢ ' Rt ' Rsd0 »
L9 (Bud Bud B\ 1(Bud Bud B
5= 90\ Rs00 " R ¢ Rt Rs90 R 0p Rt
1 (B O By O B By O  Bes O  Bes
- 26 9 2% Boc 9 _Peo) 44
t<Rsae R 99 Rt)+s86(Rs89+R8q) Rt>+ &

8A8A Az O
Ly = <12 Az | A >+

Ais O A  Aes O
R 9p  Ri ' Rs 00 ( TR TR )

R dp ' Rt  Rsd0

+% A 0 A26 A66 A45
t\ R 8@ Rt RS a0
Ly = — ) ISR i S e
500 \ Rs SBH R 0p Rt Op \Rs s00 R ¢ Rt
L 2(A% 0 A O Aw) Au
t \Rs 500 ' R dp Rt R
0 (A  Axp 0 (A  As 2 (Ag | Ads
L = — | — _ _ _ — | — _
> s9<R+ )+a¢( TR +t<R R)
Ay 0 Ays O
\rRsoo TR a(p)

0 (Ba 0 By By 0 0 (Bis O By Bes O
LM_S@G(R8(p+Rt+R580>+8q)(R 8go+Rt+Rs86>

Bis 0 By  Bes O
A
<R8¢+R1+Rs80 s



7.2 Fundamental Equations of Thick Laminated Spherical Shells

L. _ 0 (Bno
27500 \ Rs 90

By O By 0 (By O Bes O Bes
TR o Rt)+8(p(Rsa(9+R8go Rt)

Byg 0
(R; a0+

Begs O Bgs
Zo6 9 T00) 44
Rop Rr) A

(A 0 Ap A0 Ap 0 | Axn Ay 0
Lo = _(Ta_q)Jr R Rs 30) (78_@+ Rt " Rs ae)
_Ass 0 | Ass A O
R 0¢ Rt Rs 00
Lo (A2 0 A 9 A\ (An 0 A 0 Ay
2 Rss00 R O0¢p Rt Rs s00 R Op Rt
_As 0 A Au D
R Op Rt RsO0
Ay A A | An 0 (A5 0 Ass O
Ly = — (20 212} (2 R
. <R+R) (R+ )+8¢(RSBH+R8(/J)

L (A 0
Rs 00

Bll 0
|
34 (R8g0+

0 Ass
+Ass —+—

o

A55 8 8 A44 8 A45 8
+7%) o0 (E%+T%>

By

Bis 0 B, 0 +BZZ+326 0
Rs 00 R 8g0 Rs 00
0

A
+4589

L — <BIZ 0 BIG 0 Blé) <322 0 By 0 Bze)
35 =

Rs 00

0 Ay
+ A —+—

o
0 B”é)
840<R 0(/)
1 /By, 0
_?(R 8qo

B

Ly =

Ly =

8 Rs 590
B

B 9
@
o (Rs 500

R 0¢p Rt

+ - = —

Rs 00 R Op Rt
0
$00
B12 B16
Rt Rs a0
Bzz 326 0 Bis O
&t T Rs ae) +s89 <7%+
(B0 ) 1m0
R 0¢p Rt Rs sﬁ@

> 4 Ay ——

1 (B 9 Blz B 0
+- e

t\ R G(p Rt  Rs 80
Bys | Bes O

—+R—%) s

LB 0 B
R 0p Rt

Bss O B
NCNCRE S N

s00

R 0¢p Rt Rss00 R O¢p Rt

0 (B B 1 (B , Bn 1 (B Bxn

Ipn = — (24212 2 (20 P2y 2 (212, 722

. 8@<R+R Ti\RTR) i\ R TR
0

Bis
+sa—e(7+

9 (D 0
a9 \ R 99
1 /Dy
?(R g

Ly =

B26 A45 8 8
T) - ( 89+A55 a(p)

Rt ' Rs 00 R 8@
Dy Dy 0 0 (D 0 D26
R R ae) +589< R 99 Rt

+D|6 0
Rs 00

Degg 0
TR ae) ~ RAss

247



248

7 Spherical Shells

_0 (Pnd %__% 1(DPd D9 D
A ‘Rs 89 R 0¢ t \Rs 89 R 0¢p Rt
_1(Dnod %i_% 0 (D0  Des 0 Des) o,
\Rs 20" R 90 s00 \Rs 00 R d¢ Rt “
i B__ @ By 0 0 (Bis 0 +BZG+B668
500\R 9p R Rs00) 99\ 'R 9p Rt " Rs 00
2 (Big 0 B26 Bgg
2 (2 € | P, D66 A
+z(R (p TR TR 89>+45
9 VB0 B\ 0 (B0 B d B
500 Rs v@@ R 0p Rt 8(/) Rss00 ' R op Rt
2 (B Bss Bss
+;(Rv v@@ ___H) tAu
0 (B, Bxn 0 (Bis B 2 (Bis |, Bas
Ly =2 (212,22, 9 (Pie P, 2 (P16, 5%
” sﬁ(R+R)+0<p(R+R>+t(R+R) (7.26)
Ay O 0
- %+A45%)
L 0 D12 0 Dzz Dze 0 0 (Dys 0 D26+D66 0
¥ 500\ R 6(/) Y Rs90) T9p\ R 90 " Re " Rs 00
2 D26 Dﬁﬁa
+?( R 9 Rt R 89> RAlas
0 (D=0 %i,% 9 (P20 D 9 _Des
~ 500 \ Rs 00 R O¢ 1ol0) ‘Rs 90 ' R dp Rt
2 (Dy O D¢ O  Des
ﬂ(zesae 7%**) RAua

My = My = Ms3 = —RIy
My = Mgy = Mys = Ms; = —RI;
My = Mss = —RL,

The above equations show the level of complexity in solving governing equations
of a general laminated spherical shell. According to Eqs. (1.60), (1.61) and (7.1),
the general boundary conditions of thick laminated spherical shells are

— Ktu =0
Nq,g k(pov =0
@ =0qp: 4 Qo kpw=0
My, —KSoh, =0
Mgy — Kiopg = 0
Noy — kgou = 0
— Ky =0
0=0: Qo—keOW—O
My, — Keo 0
oo%

Ny +k4yu =0
Nogo + kv =0
Qp +kyw=0
M, + K h, =0
Mo + K g =0

Nop + kjiu=0

No+kyv=20

Qo +kjw=0

My, + K ¢, =0

My + Kjy g =0

b=
(7.27)
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Similarly, thick spherical shells can have up to 24 possible classical boundary
conditions at each boundary (see Table 7.2) which leads a high number of com-
binations of boundary conditions, particular for the open ones.

The classical boundary conditions given in Table 7.2 can be readily realized by
applying the artificial spring boundary technique. In this chapter we mainly con-
sider four typical boundary conditions which are frequently encountered in prac-
tices, i.e., F, SD, S and C. Taking edge ¢ = ¢, for example, the corresponding
spring rigidities for the four classical boundary conditions are given as follows:

F:
SD:
S:
C:

0
f;o: XDOZk(pO_Kg(gO_Kq)O:O
ki = ki = Kby = 10'D, K4y = K5y =0

Kio = ki = kWO =K), =10'D, k¥, =

7
:pO k(pO K(pO - (pO =10'D

where D = E1h3/12(1 — U1221) 1s the flexural stiffness.

Table 7.2 Possible classical
boundary conditions for thick

spherical shells at each

boundary of ¢ = constant

(7.28)

Boundary type ‘ Conditions

Free boundary conditions

F N, =Nyy=0,=M,=My=0
F2 u—NW—Q(,,—Mq,—MW—O
F3 N,=v=0,=M,=M,=0
F4 u=v=0,=M,=M,y=0
F5 Nw—N¢9—Qw—Mw—¢0—O
F6 = wﬂzsz »=¢0=0
F7 Ny=v=0,=M,=¢y=0
F8 u=v=0,=M —¢g—
Simply supported boundary conditions

S u=v=w=M,=¢,=0

SD Ny=v=w=M,=¢y=0

S3 u=Nyy=w=M,=¢y=0
S4 N,=Ny=w=M,=¢y=0
S5 u=v=w=M,=M,=0
S6 Ny=v=w=M,=M, =0
S7 u=Nyy=w=M,=M,=0
S8 N,=Nyp=w=M,=M,y=0
Clamped boundary conditions

C u=v=w=4¢,=¢y=0

C2 N,=v=w=4¢,=¢y=0
C3 uU=Ny=w=¢,=¢s=0
C4 N,=Nyy=w=4¢,=¢y=0
C5 u=v=w=4¢,=M,=0
co6 N,=v=w=¢,=Mup=0
C7 u=Nyy=w=4¢,=M,y=0
Cc8 N,=Nyy=w=¢,=M,=0
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7.3 Vibration of Laminated Closed Spherical Shells

This section contains vibration results of laminated closed spherical shells including
natural frequencies and mode shapes. The open ones will then be treated in the later
section. Various classical and elastic boundary conditions, lamination schemes and
different geometry parameters will be considered in the subsequent analysis.

For a closed laminated spherical shell, there exists two boundaries, i.e., ¢ = ¢q
and ¢ = ¢;. In a similar treatment as previous chapters, a two-letter string is
employed to denote the boundary conditions of a closed spherical shell, such as F-C
identifies the shell with completely free and clamped boundary conditions at the
edges ¢ = g and ¢ = ¢, respectively. Unless otherwise stated, the non-dimensional

frequency parameter Q = wR+/p/E, is used in the presentation and closed lami-
nated spherical shells under consideration are assumed to be composed of
composite layers having following material properties: E, = 10 GPa, E|/E, = open,
w2 =025, Gy = Gy3 = 0.6E5, Gaz = 0.5 Es, p = 1,500 kg/m’.

Considering the circumferential symmetry of closed spherical shells, each dis-
placement and rotation component of a closed spherical shell is expanded as a 1-D
modified Fourier series of the following form through Fourier decomposition of the
circumferential wave motion:

2 N

M N
u(ep,0) = Z ZA’"” cos Ay cosnf + Z Z aP(@) cosnf
m=0 n=0 =1 n=0
M N 2 N
v(p,0) = Z Z Byun €OS Ay p sin nf + Z Z biPi(¢@) sinnf
m=0 n=0 =1 n=0
M N 2 N
w(p,0) = Z Z Cn €OS Ay cOs nl + Z Z cmPi(@) cosnf (7.29)
m=0 n=0 =1 n=0
M N 2 N
qﬁq,((p, 0) = Z Z D,y €08 Ay p cos nO + Z Z dinPi(¢) cosnf
m=0 n=0 I=1 n=0
M N 2 N
bo(,0) = Z Z Eun €08 Ay sin nf) + Z Z enP (@) sinnb

3
I
(=]
=
I
(=}
T
=
I
(=]

where /,, = ma/Ap, in which 4¢ is the included angle in the meridional direction,
defined as 4p = ¢, — ¢o. n represents the circumferential wave number of the cor-
responding mode. n is non-negative integer. Interchanging of sinnf and cosné in
Eq. (7.29), another set of free vibration modes (anti-symmetric modes) can be
obtained. It should be noted that the modified Fourier series presented in Eq. (7.29)
are complete series defined over the range [0, A@]. Therefore, a linear transformation
for coordinate ¢ from ¢ € [gg, 1] to @ € [0, Ap] need to be introduced for the
practical programming and computing, i.e., ¢ = @ + @,. P; (p) are two auxiliary
functions introduced in each displacement expression to remove all the
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discontinuities potentially associated with the first-order derivatives at the bound-
aries. These auxiliary functions are in the same form as those of Eq. (5.39).

7.3.1 Convergence Studies and Result Verification

Table 7.3 shows the convergence behavior of the lowest six natural frequencies
(Hz) of a single-layered composite ([0°]) spherical shell with different boundary
conditions and meridional included angles. Two different boundary conditions
(i.e. F-F, C-C) and two meridional included angles (i.e. ¢, = m/3 and 5n/6) are
performed to determine the optimal number of truncation terms required for sat-
isfactory solutions. The geometric constants and material properties of the shell are:
¢o =76, R=1m, E, = 10 GPa, E|/E, = 15. Six truncation schemes (i.e. M = 5-10,
N = 10) are performed for each case. From Table 7.3, it can be seen that the natural

Table 7.3 Convergence of frequencies (Hz) for a single-layered composite ([0°]) spherical shell

Ap B. M Mode number

C. 1 2 3 4 5 6

o = /6 F-F 64.748 174.50 202.49 319.84 406.81 450.91

¢ =7/3 64.747 17450 20248 |319.84 |406.81 |450.91

64.747 174.49 202.47 319.84 406.81 450.90

5
6
7 64.747 174.50 202.48 319.84 406.81 450.90
8
9

64.747 174.49 202.47 319.84 406.81 450.90

10 | 64.747 174.49 202.47 319.84 406.81 450.90

C-C 1,957.0 12,0544 |2,091.7 |2,1243 |2,141.3 |2,163.6

1,957.0 12,0544 |2,091.7 |2,1243 |2,141.3 |2,163.6

1,957.0 12,0544 |2,091.7 |2,1243 |2,141.3 2,163.6

5
6
7 1,957.0 |2,0544 |2,091.7 |2,1243 |2,141.3 |2,163.6
8
9

1,957.0 12,0544 |2,091.7 |2,1243 |2,141.3 |2,163.6

10 1,957.0 12,0544 |2,091.7 |2,1243 |2,141.3 |2,163.6

o = T/6 F-F 139.83 148.61 334.48 349.64 366.51 412.93

@1 = 5m/6 139.83 148.21 333.81 349.63 366.47 412.93

139.69 148.02 333.56 349.24 366.45 412.93

5
6
7 139.69 148.21 333.81 349.24 366.47 412.93
8
9

139.62 148.02 333.56 349.08 366.45 412.93

10 139.62 147.93 333.45 349.08 366.44 412.93

C-C 470.77 502.73 505.70 593.78 706.29 734.59

470.76 502.72 505.69 593.77 706.29 734.55

470.75 502.72 505.68 593.77 706.28 734.55

5
6
7 470.75 502.72 505.68 593.77 706.28 734.55
8
9

470.75 502.72 505.68 593.77 706.28 734.55

10 | 470.75 502.72 505.68 593.77 706.28 734.55
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frequencies of the shell converge monotonically and rapidly as the truncation
number M increases. The maximum differences between the ‘10 x 10” and ‘5 x 10’
form results for the F-F and C-C boundary conditions are less than 0.46 and 0.01 %,
respectively. Furthermore, Table 7.3 shows that the C-C solutions converge faster
than those of F-F boundary conditions and solutions of spherical shells with smaller
meridional included angle converge faster. Unless otherwise stated, the truncated
number of the displacement expressions will be uniformly selected as M = 15 in all
the following examples.

Table 7.4 shows the comparison of the first longitudinal mode frequency
parameters Q for a three-layered, cross-ply [0°/90°/0°] spherical shell with three
different boundary conditions to prove the validity of the present method for
vibration analysis of composite laminated spherical shells. The first ten circum-
ferential wave number, i.e., n = 0-9 are considered in the comparison. The
geometric and material constants of the spherical shell are: E, = 10.6 GPa,
E, = 138 GPa, uj5 = 0.28, Gy, = 6 GPa, G5 = G,3 = 3.9 GPa, p = 1,500 kg/m”,
R=1m, h=0.05m, gy =60° ¢, =90°. The results provided by Qu et al. (2013a)
based on a FSDT formulation are selected as the benchmark solutions. It can be
seen that the accuracy of the present method compares well with the referential
data. The discrepancies are very small and do not exceed 0.051 % for the worst case
although different solution approaches were used in the literature.

7.3.2 Closed Laminated Spherical Shells with General
Boundary Conditions

As the first case, a four-layered, cross-ply [0°/90°/0°/90°] spherical shell is con-
sidered. The start and end meridional angles of the shell are ¢y = 15°, 30° or 45°
and ¢, = 90°, other structure quantities used in the calculation are: E\/E, = 15,

Table 7.4 Comparison of the frequency parameters Q for a three-layered, cross-ply [0°/90°/0°]
spherical shell with different restraints (R = 1 m, & = 0.05 m, ¢y = 60°, p; = 90°, m = 1)

n FSDT (Qu et al. 2013a) Present
SD-SD S-S C-C SD-SD S-S C-C

0 0.5030 3.8955 4.3368 0.5030 3.8940 4.3355
1 0.9123 3.5823 3.9707 09117 3.5810 3.9696
2 1.6095 3.3768 3.8241 1.6083 3.3754 3.8229
3 2.1245 3.2947 3.7732 2.1234 3.2933 3.7720
4 2.1239 3.2719 3.7616 2.1228 3.2705 3.7604
5 2.1640 3.2846 3.7736 2.1629 3.2832 3.7724
6 2.2506 3.3258 3.8062 2.2495 3.3244 3.8050
7 2.3790 3.3949 3.8607 2.3779 3.3936 3.8595
8 2.5469 3.4938 3.9401 2.5457 3.4925 3.9390
9 2.7523 3.6247 4.0477 2.7512 3.6235 4.0466
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R=1mand h=0.1 m. In Table 7.5, the lowest five frequency parameters Q of the
spherical shell subjected to as many as six possible boundary conditions are pre-
sented. The table shows that the frequency parameters of the shell decrease with
initial meridional angle increases. Figure 7.2 shows some selected mode shapes and
corresponding frequency parameters €, ,, for the spherical shell with initial
meridional angle ¢y = 30° and F-C boundary condition. From the figure, it is
obvious that the frequency parameters of circumferential wave number n = 2 are
smaller than those of n = 1 and 3.

Table 7.6 shows the lowest five frequency parameters Q for a two-layered,
cross-ply [0°/90°] spherical shell with different boundary conditions and thickness-
to-radius ratios. Six different classical boundary combinations (i.e. F-F, F-S, F-C,
S-S, S-C and C-C) and four kinds of thickness-to-radius ratios (/R = 0.01, 0.02,
0.05 and 0.1) are included in the table. The geometric and material constants of the
spherical shell are: R = 1 m, ¢y = 60°, ¢ = 120°, E1/E, = 15. It can be seen from the
table that the frequency parameters of the shell increase in general as the thickness-
radius ratio increases. The second observation that needs to be made here is that
boundary conditions have a conspicuous effect on the vibration frequencies of
spherical shells. Increase of the restraint stiffness always results in increments of the
frequency parameters.

By appropriately selecting each lamina of the composite laminated spherical
shells, desired strength and stiffness parameters can be achieved. In Fig. 7.3, the
first fifteen dimensionless frequencies Q of a two-layered, [0°/90°] cross-ply

Table 7.5 Frequency parameters Q for a four-layered, cross-ply [0°/90°/0°/90°] spherical shell
with different boundary conditions and initial meridional angles (¢; = 90°, R=1m, h = 0.1 m,
EI/EZ = 15)

®o Mode Boundary conditions
F-F F-S F-C S-S S-C C-C
15° 0.2414 0.8844 0.9318 1.9310 2.0209 2.0283

0.6192 1.0955 1.1491 2.0032 2.1837 2.1841
1.0981 1.8795 1.9782 2.1941 2.3925 2.3943
1.1571 1.9253 1.9962 2.3735 2.4103 2.5464
1.4791 2.0133 2.1605 2.3781 2.4352 2.5779

30° 0.2323 0.7254 0.8008 2.2576 2.3487 2.4341
0.6120 0.9782 1.0378 2.3134 2.4555 2.5689
0.6143 1.3630 1.4261 2.4216 2.5983 2.6928
1.0961 2.0498 2.1984 2.6493 2.8630 2.9204
1.4375 2.0975 2.2187 2.7832 2.9672 3.1576
45° 0.2198 0.7417 0.8861 2.5362 2.7911 3.0317

0.3763 0.9916 1.1069 2.5800 2.8360 3.0773
0.5991 1.1813 1.2721 2.6548 2.8538 3.1500
0.9870 1.6005 1.6928 2.7641 3.0383 3.3090
1.0827 2.3083 2.4053 3.0887 3.3560 3.5825

NI W[ BE W= OV RW N~
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Q) ,=1.03778 Q, ,=2.32497 Q) 3=3.77406

0, ,=0.80084 0, ,=2.21868 0, 3=3.61060

Q3 ,=1.42610 Q3,=2.50355 Q3 373.72961

Fig. 7.2 Mode shapes for a F-C supported [0°/90°/0°/90°] spherical shell (%,,,,, n = 1-3, m = 1-3)

spherical shells with F-F, S-S and C-C boundary conditions and various anisotropic
degrees are presented, respectively, for the sake of investigating the influence of the
material properties. In each case, four types of anisotropic degrees, i.e.,
n = E|/E, =5, 15, 25 and 35 are considered. The other geometric and material
properties of the spherical shell are: R = 1 m, h = 0.1 m. gy = 45° and ¢, = 90°.
From the figure, we can see that the influence of the anisotropic degree on the
frequency parameters varies with boundary conditions. The second observation is
that the effects of anisotropic degree () are much higher for the S-S and C-C
supported shells than it is for the F-F one.

Furthermore, Table 7.7 shows the lowest five frequency parameters Q of slightly
thick spherical shells with different lamination schemes for various boundary
conditions. Four lamination schemes, i.e., [0°], [90°], [0°/90°] and [0°/90°/0°] are
studied for each case. The geometric and material constants used in the study are:
@o = 60°, @, = 120°, R = 1 m, /R = 0.05, E\/E, = 15. Compare the results in
Table 7.7, the first observation is that when the spherical shells with F-F, F-S and
F-C boundary conditions, the frequency parameters for spherical shells with fibers
oriented in the meridional direction (i.e., [0°]) are lower than those of fibers oriented
in the circumferential direction (i.e., [90°]). This is not the case of S-S, S-C and C-C
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Table 7.6 Frequency parameters Q of a two-layered, cross-ply [0°/90°] spherical shell with
different sets of boundary conditions and thickness-to-radius ratios (po = 60°, ¢, = 120°, R=1m,
EI/Ez = 15)

h/R Mode Boundary conditions
F-F F-S F-C S-S S-C c-C
0.01 1 0.0237 0.1333 0.1359 1.5433 1.5577 1.5744
2 0.0297 0.1480 0.1486 1.5550 1.5644 1.5789
3 0.0703 0.2270 0.2271 1.5768 1.5902 1.6098
4 0.0824 0.2903 0.2934 1.5800 1.5956 1.6216
5 0.1382 0.3242 0.3242 1.5975 1.6138 1.6246
0.02 1 0.0457 0.1813 0.1858 1.5771 1.6160 1.6655
2 0.0570 0.2697 0.2704 1.5978 1.6336 1.6845
3 0.1337 0.2975 0.3049 1.6336 1.6714 1.7166
4 0.1560 0.4179 0.4179 1.6632 1.6930 1.7439
5 0.2585 0.5909 0.5909 1.7570 1.7788 1.8298
0.05 1 0.1053 0.3232 0.3430 1.8336 1.9347 2.1167
2 0.1306 0.3355 0.3437 1.8484 1.9399 2.1235
3 0.2979 0.5778 0.5789 1.9201 2.0213 22147
4 0.3460 0.6819 0.6963 2.0134 2.0731 2.2369
5 0.5593 0.8863 0.8863 2.0850 2.1800 2.2698
0.10 1 0.1881 0.3759 0.4158 2.0157 2.1568 2.3446
2 0.2347 0.5564 0.5723 2.0438 2.1690 2.4592
3 0.5102 0.6902 0.7218 2.0548 2.1738 2.5138
4 0.6057 0.9704 0.9772 2.1662 2.2747 2.6023
5 0.9257 1.4611 1.4660 2.3662 2.4709 2.7598

boundary conditions. The [0°] lamination give the higher frequency parameter than
those of [90°] lamination. The second observation is that the two-layered,
unsymmetrical lamination scheme [0°/90°] produces lower frequency parameter
than the three-layered, symmetrical lamination scheme [0°/90°/0°]. This is the case
for all boundary conditions under consideration except the F-S type.

Influence of the elastic restraint stiffness on the frequency parameters of lami-
nated spherical shells is investigated in subsequent example. For simplicity and
convenience in the analysis, five non-dimensional spring parameters I'; (1 = u, v, w,
®, 0), which are defined as the ratios of the corresponding spring stiffness to the
flexural stiffness D are introduced here, ie., I', = k,/D, T, = k,/D, T',, = k,,/D,
I', = K,/D and I'y = Ky/D. Also, a frequency parameter AQ which is defined as the
difference of the frequency parameters Q to those of the elastic restraint parameters
I'; equal to 1072 are used in the investigation, i.e., AQ = Q(I;) — Q; = 1072). In
Figs. 7.4 and 7.5, variation of the 1st, 3rd and 5th mode frequency parameters AQ
versus the elastic restraint parameters I'; for a two-layered, [0°/90°] spherical shell
(po=45° ¢, =90°, R=1m, /R = 0.1, E\/E, = 15) with various elastic restraints
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Frequency parameter: Q

Frequency parameter: Q
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Frequency parameter: Q
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Fig. 7.3 The variation of frequency parameters Q versus mode number for a two-layered, cross-
ply [0°/90°] spherical shell with various material properties (n = E/E3)

are presented. In Fig. 7.4, the spherical shell is assumed to be clamped at edge
@ = o whilst the other edge is elastically restrained by only one kind of spring
components with various stiffness (denoted by C-F°). It is clearly that in a certain
range, the frequency parameters AQ increase rapidly as the elastic restraint
parameter I'; increasing. And beyond this range, there is little variation in the
frequency parameters. In Fig. 7.5, the edge ¢ = ¢, of the shell is supported by all the
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Table 7.7 Frequency parameters Q of laminated spherical shells with different sets of boundary
conditions and various lamination schemes (¢o = 60°, ¢, = 120°, R =1 m, #/R = 0.05, E\/E, = 15)

Lamination Mode | Boundary conditions

schemes F-F E-S F-C S-S S-C Cc-C

[0°] 1 0.0924 0.2682 0.3071 1.9167 2.1857 2.3187
2 0.1112 0.2787 0.3651 1.9334 2.1992 2.4786
3 02458 [0.4459 |0.4509 |1.9832 |[2.2410 |2.4901
4 0.2675 0.5803 0.6497 2.0642 2.3096 2.5247
5 0.4351 0.6552 0.6552 2.1734 2.3189 2.5822

[90°] 1 0.1804 0.3155 0.3321 1.2350 1.2521 1.2717
2 0.1937 |0.5417 |0.5453 1.2997 |1.3166 |1.3352
3 0.5140 0.6289 0.6454 1.3638 1.3777 1.3938
4 0.5662 0.9878 0.9888 1.6262 1.6363 1.6472
5 0.9615 1.3481 1.3635 1.6604 | 1.6701 1.6813

[0°/90°] 1 0.1053 0.3232 0.3430 1.8336 1.9347 2.1167
2 0.1306 0.3355 0.3437 1.8484 1.9399 2.1235
3 0.2979 0.5778 0.5791 1.9201 2.0213 2.2147
4 0.3460 |0.6819 |0.6962 |2.0134 [2.0731 |2.2369
5 0.5593 0.8863 0.8862 2.0850 2.1800 2.2698

[0°/90°/0°] 1 0.1201 0.3090 0.3503 2.2789 2.4427 2.4509
2 0.1253 0.3212 0.3870 2.3116 2.4838 2.6692
3 03104 [0.5330 |0.5361 |2.3369 |[2.5121 |2.7288
4 0.3135 0.6760 0.7330 2.4024 2.5331 2.7357
5 0.5178 0.7775 0.7774 24411 2.5919 2.7528

five spring components in which four groups of them with infinite stiffness
(10’D) and the rest one is assigned at changed stiffness (C°). The spherical shell is
assumed to be clamped at edge ¢ = ¢o as usual (denoted by C-C°). The similar
observations as those of Fig. 7.4 can be seen in this figure. This study shows the
active ranges of the elastic restraint parameters on the vibration characteristic of
laminated shells vary with mode sequences, lamination schemes and spring com-
ponents. In this case, they can be defined as I';: 10" to 10%, T,: 10° to 10°, T,,: 107!
to 10°, I, 107! to 10% and | % 107! to 102, respectively.

7.4 Vibration of Laminated Open Spherical Shells

An open laminated spherical shell can be obtained by rotating the generator in
desired circumferential angle (less than one full revolution) about the axis. It can be
produced by cutting a segment of the closed ones as well. For an open spherical
shell, the assumption of whole periodic wave numbers in the circumferential
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Fig. 7.4 Variation of frequency parameters AQ versus spring parameters I, for a [0°/90°]
laminated spherical shell with C-F® boundary conditions: aT,; bT,; ¢ T,; d [y ely

direction is inappropriate, and thus, a set of complete two-dimensional analysis is
required and resort must be made to a full two-dimensional solution scheme. In this
section, we consider free vibration of laminated deep open spherical shells. As was
done previously for the open cylindrical and conical shells, each displacement and
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rotation component of an open spherical shell is expanded as a two-dimensional
modified Fourier series as:

Z ZA,,,,, coS A cos 4,0 +

2 N
Z anPi(@) cos 1,0
=

m=0 n=0 1 n=0
+ Z Z blmPl COS /1m§0
=1 m=0
M N 2 N
v(p,0) = ZZB’”" €OS Ay p cos 1,0 + Z cimPi(@) cos 4,0
m=0 n=0 =1 n=0
2 M
+ Z z dimPi(0) cos Lo
=1 m=0
M N
w(p,0) = ZZC,,,,, €08 Ay €OS 1,0 + ZZ@”P/ ) cos 4,0
m=0 n= =1 n=0
s (7.30)
+ Z Zflmpl cos ;“rn(p
=1 m=0
M N 2 N
Z Z D,y €08 Ay cOs 1,0 + Z gnPi(p) cos 1,0
m=0 n=0 =1 n=0
2 M
+ Z Z himPi(0) cos L,
=1 m=0
M 2 N
= Z Ejn €OS A €OS 1,0 + Z Z imPi(¢p) cos 4,0
m=0 n=0 =1 n=0
+ Z Z.]ImPl Ccos ;“m(p
=1 m=0

where /,, = ma/Agp and A, = n/6,. The auxiliary polynomial functions P; (x) and P,
(0) are in the same form as those of Eq. (5.39). For an open spherical shell, there
exists four boundaries, i.e., ¢ = @o, ¢ = @1, 8 = 0 and 6 = 6,. The boundary
condition of an open spherical shell is represented by a four-letter character, such
as FCSC identifies the shell with F, C, S and C boundary conditions at boundaries
® =0y 8=0, 9 =9 and 6 = 6,, respectively.

7.4.1 Convergence Studies and Result Verification

Several numerical examples are given to confirm the convergence, reliability and
accuracy of the present method for open laminated spherical shells..

Table 7.8 shows the convergence and comparison of the lowest six frequency
parameters Q = a)Lé /h+/p/Ei(where L, is the length of the shell in the meridional
direction, namely, L, = RAg) of a four-layered, [30°/=30°/—30°/30°] graphite/epoxy
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Table 7.8 Convergence and comparison of frequency parameters Q:wL?P /h\/p/E; of a [30°/
—30°/-30°/30°] laminated graphite/epoxy open spherical shell (R =2 m, 2 =0.01 m, po=n/2 — 1/
4, 9, =72 + 1/4, 6y = 1/2)

B.C. M x N Mode number
1 2 3 4 5 6

FFFF 14 x 14 2.3388 3.3944 6.0043 6.8884 8.5215 11.330
15 x 15 2.3379 3.3937 6.0013 6.8850 8.5160 11.328
16 x 16 2.3369 3.3929 6.0000 6.8832 8.5143 11.320
17 x 17 2.3364 3.3925 5.9977 6.8805 8.5098 11.319
18 x 18 2.3357 3.3919 5.9967 6.8791 8.5086 11.312
Qatu 2.283 3.323 5.871 6.781 8.934 -
(2004)

SSSS 14 x 14 27.519 27.574 35.023 37.004 38.510 38.977
15 x 15 27.516 27.571 35.018 37.000 38.508 38.972
16 x 16 27.511 27.569 35.015 36.997 38.506 38.971
17 x 17 27.509 27.567 35.012 36.995 38.505 38.969
18 x 18 27.506 27.565 35.010 36.993 38.504 38.968

cccce 14 x 14 28.491 30.958 37.153 37912 39.323 40.941
15 x 15 28.487 30.950 37.148 37.909 39.320 40.931
16 x 16 28.485 30.944 37.140 37.901 39.318 40.923
17 x 17 28.482 30.940 37.137 37.899 39.316 40918
18 x 18 28.481 30.936 37.133 37.894 39.314 40.914

open spherical shell with FFFF, SSSS and CCCC boundary conditions. The geometry
and material properties of the layers of the shell are: R = 2 m, A = 0.01 m,
po=12—1/4, oy =n/2 + 1/4, 6y = 1/2, E, = 138 GPa, E, = 8.96 GPa, u;, = 0.3,
G12=G13=7.1 GPa, G»3=3.9 GPa, p = 1,500 kg/m3. Five different truncation forms
(e MXN=14x 14,15 x 15,16 x 16, 17 x 17 and 18 x 18) are considered. It is
apparent that as the truncated numbers increase the convergence is achieved.
Furthermore, in Table 7.8, a comparison between the current results and those
reported by Qatu (2004) (by using the classical shallow theory) is performed for the
shell with FFFF boundary condition. The symbols “— are missing data that were not
considered by Qatu (2004). The discrepancy between the two results is acceptable.
The small discrepancy in the results may be attributed to different shell theories and
solution procedures are used in the referential work. In the following studies, the
numerical results will be obtained by using truncation form of M x N = 18 x 18.
Since there are no suitable comparison results in the literature, two illustrative
examples are presented for the laminated shallow spherical panels. As the first case,
Table 7.9 shows the first six frequency parameters Q= coL(zp / hm of a four-
layered, [45°/—45°/45°/—45°] open spherical shell with different classical restraints
(i.e., FFFF, FSES, FCFC, SSSS, SCSC and CCCC), together with the modified
Fourier series solutions obtained by Ye et al. (2013). The shell parameters used in
the comparison are: E/E, = 15, t15 = 0.23, Gj» = G13 = Gp3 = 0.5E,, R=10 m,
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Table 7.9 Comparison of frequency parameters Q:wLi /h\/p/E; of a [45°/—45°/45°/—45°]
open spherical shell with various boundary conditions (R = 10 m, 2 = 0.01 m, ¢ = n/2 — 1/20,
@1 =12 + 1/20, 6, = 1/5)

Theory Mode | Boundary conditions
FFFF FSFS FCFC SSSS SCSC CCCC
2.3732 7.6886 |10.119 |31.799 |32.310 |35.898
5.8131 | 10.895 11.429 |34.178 |34.599 |36.700
8.2261 | 13.397 13.425 34947 |35.113 |40.645
12.141 16.703 17.729 |37.594 |38.487 |42.597
14.152 17.830 20.388 42428 |44.898 |48.469
19.369 22.328 24.034 |43.625 |45.858 |52.539
2.3722 7.6509 |10.062 |31.717 |32.218 |35.750
5.7876 | 10.866 11.406 |34.068 |34.473 |36.547
8.1743 | 13.378 13.402 |34.821 |34.979 |40.442
12.081 16.642 17.631 |37.433 |38.324 |42.368
14.077 17.762 20.274 42269 |44.735 |48.191
19.247 22.200 23933 43481 |45.660 |52.236

CST (Ye et al.
2013)

Present FSDT

AN AR WD AN R W N~

h =0.01 m, pg =n/2 — 1/20, ¢, = /2 + 1/20, 6y = 1/5. Our results are in a closed
agreement with the existing ones. In order to further verify the present formulation,
Table 7.10 shows the comparison of the first nine non-dimensional frequencies
Q:wLé /h\/p/E; of certain three-layered shallow spherical shells subjected to
SDSDSDSD boundary condition, with results provided by Fazzolari and Carrera
(2013) by using the Carrera unified formulation and shallow shell theory. The shell
parameters used in the comparison are: E; = 60.7 GPa, E, = 24.8 GPa, u;, = 0.23,
G,=G13=G3=12GPa,R=2m, h=0.05m, pg=1/2 — 1/4, p; = /2 + 1/4,
6o = 1/2. Four sets of lamination schemes, i.e., [0°], [15°/—15°/15°], [30°/—30°/30°]
and [45°/—45°/45°] are performed in the comparison. It is clearly evident that the

Table 7.10 Comparison of frequency parameters Q= waD /h\/p/E; of certain three-layered
open spherical shells with SDSDSDSD boundary conditions (R =2 m, 2 = 0.05 m, pg = n/2 — 1/4,
o1 =12+ 1/4, 0y = 1/2)

Layout Theory Mode number
1 2 3 4 5
[0°] Fazzolari and Carrera (2013) |8.1600 |12.455 |14.027 |18.335 |20.121
Present 8.1430 |12.374 |13.956 |18.131 |20.053
[15°/—15°/15°] |Fazzolari and Carrera (2013) |8.4908 |12.750 |14.008 |18.562 |20.570
Present 8.4676 |12.639 |13.912 |18.319 |20.453
[30°/-30°/30°] | Fazzolari and Carrera (2013) |9.1409 |13.116 |14.027 |18.993 |21.614
Present 9.0932 |12.958 |13.855 |18.674 |21.408
[45°/—45°/45°] | Fazzolari and Carrera (2013) |9.4813 | 13.164 |14.077 |19.201 |22.670
Present 9.3961 |12.997 |13.855 |18.845 |22.431




7.4 Vibration of Laminated Open Spherical Shells 263

present solutions match well with the reference data. The differences between the
two results are attributed to different shell theories are used in the literature. It has
been proved that the shallow shell theories will give inaccurate results when applied
to deep open shells Qatu (2004).

7.4.2 Laminated Open Spherical Shells with General
Boundary Conditions

Some further vibration results for laminated deep open spherical shells with various
combinations of boundary conditions and shell parameters are presented. In the
following examples, unless otherwise stated, the material constants of the layers of
spherical shells under consideration are: E, = 10 GPa, E|/E, = open, u;, = 0.25,
G2 = Gz = 0.5E,, Gy = 0.2E,, p = 1,500 kg/m® and the non-dimensional fre-
quency parameter Q = wR+/p/E, is used in the subsequent calculations.

Table 7.11 shows the first five frequency parameters Q of a three-layered,
cross-ply [0°/90°/0°] open spherical shell with various boundary conditions and

Table 7.11 Frequency parameters Q of a three-layered, cross-ply [0°/90°/0°] open spherical shell
with various boundary conditions and circumferential included angles (E/E; = 15, R = 1 m,
hR = 0.1, po = 30°, ¢; = 90°)

2 Mode Boundary conditions
FSFS FCFC SFSF CFCF SSSS CCcCC
45° 2.0987 2.2193 1.8423 1.8462 3.4330 3.7494

2.2218 2.7411 2.3813 2.6423 3.6881 3.9026
2.4927 2.7499 2.5450 2.7554 3.7096 4.2086
3.2649 3.5364 2.8010 2.8835 4.3550 4.8337
3.5147 3.9621 2.8930 2.9655 5.2045 5.4755

90° 0.7994 0.9795 1.9122 1.9144 2.7830 2.9932
1.1343 1.2014 2.4170 2.6431 3.0436 3.2609
1.4850 1.5991 2.4395 2.6824 3.1293 3.3746
1.6120 1.8785 2.6830 2.8074 3.2461 3.3923
2.2076 2.2646 2.8318 2.9126 3.5980 3.7936
135° 0.4444 0.5272 1.9351 1.9366 2.5935 2.7310
0.5904 0.6673 2.4213 2.5769 2.7831 29717
0.9489 1.0065 2.4296 2.6700 2.9482 3.1588
1.0845 1.1871 2.5292 2.7106 3.0528 3.2204
1.2694 1.3760 2.7486 2.8692 3.0662 3.2307
180° 0.2672 0.3142 1.9467 1.9479 2.4576 2.5506

0.3349 0.3881 2.3793 2.4489 2.6797 2.8439
0.6236 0.6863 2.4303 2.6625 2.7862 2.9722
0.6871 0.7683 2.4460 2.6858 2.9373 3.1266
0.9963 1.0681 2.6539 2.7960 2.9846 3.1406

N WINR(F AW IR, VR IWN = WOV AW~
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circumferential included angles. The shell parameters used are: E/E, =15, R=1m,
h/IR = 0.1, g = 30°, ¢, = 90°. Six different boundary conditions (i.e., FSFS, FCFC,
SESF, CFCF, SSSS and CCCC) are considered for each circumferential included
angle. It is obvious from the table that the increasing of the circumferential included
angle will result in a decrease in the frequency parameter. Meanwhile, we can see
that an open spherical shell with greater restraining rigidity will have higher
vibration frequencies. For any given frequency parameters, the corresponding mode
shapes of the open spherical shell can be readily determined by Eq. (7.30) after
solving the standard matrix eigenproblem. For instance, the first three mode shapes
for the spherical shell with CCCC boundary condition and circumferential included
angle of 9y = 45°, 90° and 135° are plotted in Fig. 7.6.

Table 7.12 shows the lowest five frequency parameters Q for a two-layered,
[0°/90°] open spherical shell with different boundary conditions and thickness-
to-radius ratios. Four kinds of thickness-to-radius ratios (#/R = 0.01, 0.02, 0.05 and
0.1) are included in the table. The geometric and material constants of the spherical
shell are: R = 1 m, ¢ = 30°, ¢ = 120°, 6, = 135°, E\/E; = 15. It can be seen from

09=45° 1st mode 2nd mode 3rd mode

90=90° 1st mode 2nd mode 3rd mode
0y=135° 1st mode 2nd mode 3rd mode

DD

Fig. 7.6 Mode shapes for a three-layered, cross-ply [0°/90°/0°] open spherical shell with CCCC
boundary conditions
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Table 7.12 Frequency parameters Q of a two-layered, [0°/90°] open spherical shell with various
boundary conditions and thickness-to-radius ratios (E1/E, = 15, R = 1 m, ¢ = 30°, ¢ = 120°,
0o = 135°)

h/R Mode Boundary conditions
FSFS FCFC SFSF CFCF SSSS Cccc
0.01 1 0.2170 0.2385 0.3064 0.3220 1.3909 1.4042
2 0.2311 0.2497 0.3084 0.3316 1.3956 1.4096
3 0.4366 0.4740 0.3241 0.3349 1.4012 1.4101
4 0.4396 0.4764 0.3501 0.3661 1.4051 1.4141
5 0.5461 0.5660 0.6141 0.6430 1.4484 1.4692
0.02 1 0.3261 0.3670 0.4443 0.4685 1.4315 1.4542
2 0.3353 0.3696 0.4516 0.4712 1.4406 1.4646
3 0.6198 0.6567 0.4744 0.5460 1.4588 1.4968
4 0.6499 0.7466 0.5139 0.5736 1.4621 1.4996
5 0.7735 0.8258 0.8558 0.9847 1.5877 1.6112
0.05 1 0.4795 0.5336 0.6014 0.7401 1.5142 1.5887
2 0.5296 0.6386 0.6132 0.7515 1.5270 1.6471
3 0.9001 0.9595 0.9518 1.0171 1.7359 1.7908
4 0.9123 0.9649 0.9944 1.1131 1.7555 1.8162
5 1.0897 1.1762 1.1657 1.2290 1.8956 2.0089
0.10 1 0.5744 0.6831 0.8821 1.0671 1.6844 1.8280
2 0.7306 0.8728 0.8972 1.1196 1.7455 1.9653
3 1.0258 1.1040 1.1061 1.1499 1.8224 2.0112
4 1.0906 1.1740 1.5524 1.6027 2.0816 2.1895
5 1.4615 1.6460 1.6362 1.6600 2.2685 2.4354

the table that the frequency parameters of the shell increase in general as the
thickness-to-radius ratio increases. This is true due to the fact that the stiffness of the
shell increases with the thickness increases. The second observation is that
boundary conditions have a conspicuous effect on the vibration frequencies of the
shell. Increasing the restraint stiffness always results in increments of the frequency
parameters.

Table 7.13 lists the first five frequency parameters Q of a laminated open
spherical shell with various boundary conditions and initial meridional angles (¢).
The shell with two-layered, cross-ply [0°/90°] lamination scheme is considered in
the investigation. The shell is assumed to be thin (R = 1 m, #/R = 0.05) and with end
meridional angle ¢, = 150°, circumferential included angle 8, = 135°. The com-
posite layers of the shell are the same material as those in Table 7.12. Results show
that the CCCC open spherical shell has the highest, whereas the SFSF one has the
lowest frequency parameters. When the shell is subjected to FSFS and FCFC
boundary conditions, the increase of the initial meridional angle ¢y will result in a
decrease of the fundamental frequency parameters. And for SFSF, CFCF, SSSS and
CCCC boundary conditions, open spherical shells with higher initial meridional
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Table 7.13 Frequency parameters Q of a two-layered, [0°/90°] open spherical shell with various
boundary conditions and initial meridional angles (E;/E, = 15, R = 1 m, h/R = 0.05, ¢; = 150°,
0o = 135°)

o Mode Boundary conditions
FSFS FCFC SESF CFCF SSSS CCcCC
30° 1 0.7913 0.8606 0.3562 0.4241 1.3948 1.4372
2 0.8675 0.9443 0.4263 0.4738 1.4165 1.4871
3 0.9428 0.9772 0.4988 0.5397 1.4629 1.4919
4 1.1628 1.3136 0.5800 0.6621 1.5091 1.5722
5 1.1711 1.3531 0.7213 0.7663 1.7329 1.7520
60° 1 0.4795 0.5336 0.6014 0.7401 1.5142 1.5887
2 0.5296 0.6386 0.6132 0.7515 1.5270 1.6471
3 0.9001 0.9595 0.9518 1.0171 1.7359 1.7908
4 0.9123 0.9649 0.9944 1.1131 1.7555 1.8162
5 1.0897 1.1762 1.1657 1.2290 1.8956 2.0089
90° 1 0.3593 0.4350 1.0909 1.4384 1.8532 2.1094
2 0.4142 0.5162 1.0978 1.4497 1.8793 2.1130
3 0.8098 0.9343 1.7959 1.8772 2.1059 2.2805
4 0.8458 0.9411 1.8827 1.9611 2.2063 2.3482
5 1.1502 1.1620 1.9047 2.0362 2.2108 2.4266
120° 1 0.3350 0.4949 1.8017 3.0062 2.2359 3.2276
2 0.4561 0.5823 1.8037 3.0096 2.2756 3.2373
3 0.8565 1.0304 2.1716 3.1549 2.6541 3.5375
4 1.0307 1.2126 2.3206 3.2555 2.8179 3.7615
5 1.4168 1.4915 2.4204 3.2888 3.4268 4.1770

angle yield higher frequency parameters. Furthermore, it is interesting to find that
the frequency parameters of the shell with S and C boundary conditions in the
@ = constant edges are lower than those of 8 = constant edges when ¢, = 30°.
At the end, the influence of circumferential included angle 6, on the frequency
parameters of open laminated spherical shells is investigated. A four-layered
[0°/90°/0°/90°] open spherical shell with mean radius R = 1 m, end meridional
angle ¢, = 120°, thickness-to-radius ratio #/R = 0.1 is investigated. The layers of the
shell are composed of composite material having orthotropy ratio E|/E; = 15. Three
different initial meridional angles, i.e., po = 30°, 60° and 90° are performed in the
investigation. Figure 7.7 shows the variation of the lowest three frequency
parameters Q of the shell with SSSS boundary condition against the circumferential
included angle ;. As observed from the figure, the frequency parameter traces of
the shell decline when the circumferential included angle 6, is varied from 30° to
330° by a step of 10°. It is attributed to the stiffness of the shell decreases with
circumferential included angle 6, increases. Furthermore, it is obvious that the
effect of the circumferential included angle 6, is much higher for open spherical
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with lower circumferential included angle. Change 6, from 30° to 150° can result in
frequency parameters that are more than twice lower. However, increase 6, from
150° to 330° yields less than 20 % decrements of the frequency parameters.
Figure 7.8 shows the similar studies for the open spherical shell with CCCC
boundary conditions. The similar observations can be seen in this figure.



Chapter 8
Shallow Shells

Shallow shells are open shells that have small curvatures (i.e. large radii of cur-
vatures compared with other shell parameters such as length and width). Vlasov
(1951) and Leissa (1973) describe a shallow shell as follows:

Consider a shell outlined in part by some surface and which is a thin-walled spatial
structure with a comparatively small rise above the plane covered by this structure. We call
such shells shallow. If, for example, a building which has a rectangular floor plan is covered
by a shell with a rise of not more than 1/5 of the smallest side of the rectangle lying in the
plane of the supporting points of the structure, then we class such a spatial structure in the
category of shallow shells.

These shells are sometimes referred to as curved plates. The general shell theory
given in Chap. 1 can be readily applied to shallow shells. However, the general shell
equations are rare complicated because the bending of a general shell is coupling with
its stretching. When a shell is shallow as previous described, certain additional
assumptions can be made to reduce the complexity in general shell equations con-
siderably. The resulting set of equations is referred to as shallow shell theory. The
development of the shallow shell theory is principally credited to, Leissa (1973),
Leissa et al. (1984) and Qatu (2004), etc. The classical shallow shell theories (CSST)
and shear deformation shallow shell theory (SDSST) are obtained by making fol-
lowing additional assumptions to the general shell theories (Qatu 2004):

1. The radii of curvature are very large compared to the inplane displacements (i.e.,
the curvature changes caused by the tangential displacement components u and
v are small in a shallow shell, in comparison with changes caused by the normal
component w). Also, the transverse shear forces are much smaller than the term
R:ON/9i:

U Q; _ON;

<l < 8.1
R; R; 0i (8.1)

where u; is either of the inplane displacement components u and v; Q; is either of

the shear forces Q,, and Qp; N;is N,, Ngor N,z and R; is R,, Rg or R,z The term

di indicates derivative with respect to either a or f;
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2. The deepness term (1 + z/R;) is close to 1; where R; can be R, Rj or R
3. The shell is shallow enough to be represented by the plane coordinate systems.
For the case of rectangular orthotropy, this leads to constant Lamé parameters.

It should be stressed that the shallow shell theories should be used for maximum
span to minimum radius ratio of 1/2 or less.

With the progress of composite materials, shallow shells constructed by com-
posite laminas are extensively used in many fields of modern engineering practices
requiring high strength-weight and stiffness-weight ratios such as aircraft structures,
space vehicles. A complete understanding of the bucking, bending, vibration and
other characteristics of these shells is of particular importance. Laminated shallow
shells can be formed as rectangular, triangular, trapezoidal, circular or any other
planforms and various types of curvatures such as singly-curved (e.g., cylindrical),
double-curved (e.g., spherical, hyperbolic paraboloidal) or other complex shapes
such as turbomachinery blades. In the context of this chapter, we consider lami-
nated shallow shells formed in rectangular planform with rectangular orthotropy, in
which the fibers in each layer to the planform being straight.

In recent decades, a huge amount of research efforts have been devoted to the
vibration analysis of laminated shallow shells. So far, some of the static and
dynamic behaviors of these shells with classical boundary conditions had being
presented precisely. Some research papers and articles oriented to such contribu-
tions may be found in following enumeration. Fazzolari and Carrera (2013)
developed a hierarchical trigonometric Ritz formulation for free vibration and
dynamic response analysis of doubly-curved anisotropic laminated shallow and
deep shells. Reddy and Asce (1984) presented the exact solutions of the equations
and fundamental frequencies for simply supported, doubly-curved, cross-ply lam-
inated shells. Khdeir and Reddy (1997) predicted free and force vibration of cross-
ply laminated composite shallow arches by a generalized modal approach. Qatu
(1995a) studied natural vibration of completely free laminated composite triangular
and trapezoidal shallow shells. Soldatos and Shu (1999) used the five-degrees-of-
freedom shallow shell theory in the stress analysis of cross-ply laminated plates and
shallow shell panels having a rectangular plan-form. Some other contributors in this
subject are Dogan and Arslan (2009), Ghavanloo and Fazelzadeh (2013), Kurpa
et al. (2010), Leissa and Chang (1996), Librescu et al. (1989a, b), Qatu (1995a, b,
1996, 2011), Qatu and Leissa (1991), Singh and Kumar (1996). More detailed and
systematic summarizations can be seen in the excellent monographs by Leissa
(1973), Qatu (2002a, b, 2004), Qatu et al. (2010), and Reddy (2003).

In this chapter, we consider vibration of thin and moderately thick laminated
shallow shells with general boundary conditions. Fundamental equations of thin
and thick shallow shells are presented in the first and second sections, respectively.
Then, numerous vibration results of thin and thick laminated shallow shells with
different boundary conditions, lamination schemes and geometry parameters are
given in the third section by using the SDSST and the modified Fourier series. The
results are obtained by applying the weak form solution procedure.
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Fig. 8.1 Schematic diagram
of laminated shallow shells
with rectangular planform

Consider a laminated shallow shell in rectangular planform as shown in Fig. 8.1,
the length, width and thickness of the shell are represented by a, b and h,
respectively. The shell is shallow enough so that is can be represented by the
orthogonal Cartesian coordinate system (x, y and z). The laminated shallow shell is
characterized by its middle surface, which can be defined by (Qatu 2004):

Z:_l<ﬁ+ﬂ+ﬁ> (8.2)

where R, and R, represent the radii of curvature in the x, y directions as depicted in
Fig. 8.1. R,, is the corresponding radius of twist. In the present chapter, we focus on
the cases when R,, R, and R,, are constants. In addition, the x and y coordinates are
conveniently oriented to be parallel to boundaries so that R,, = 00. The displace-
ments of the shell in the x, y and z directions are denoted by u, v and w, respectively.

In Fig. 8.2, shallow shells constructed as various types of curvatures are plotted.
It can be flat (i.e. R, = R, = R,,, = ©0), spherical (e.g., R,/R, > 0, R,, = 00), circular
cylindrical (e.g., R, = R,, = ©0) and hyperbolic paraboloidal (e.g., R/R, < 0,
R,, = 00).

Considering the shallow shell in Fig. 8.1 and its Cartesian coordinate system, the
coordinates, characteristics of the Lamé parameters and radius of curvatures are:

x=x f=y A=B=1 R,=R, Ry=R, (8.3)

The equations of shallow shells are a reduction of the general shell equations given
in Chap. 1 by substituting Eq. (8.3) into such shell equations.

8.1 Fundamental Equations of Thin Laminated
Shallow Shells

Fundamental equations of thin laminated shallow shells are given here by substi-
tuting Eq. (8.3) into the general thin shell equations developed in Sect. 1.2. Sim-
ilarly, the equations are given for the general dynamic analysis.
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Fig. 8.2 Rectangular
planform shallow shells with
various types of curvatures

) Hyperbolic
0 Parabolidal

8.1.1 Kinematic Relations

Substituting Eq. (8.3) into Eq. (1.7), the middle surface strains and curvature
changes of thin laminated shallow shells can be written in terms of middle surface
displacements. Taking Eq. (8.1) into consideration, they are given as:


http://dx.doi.org/10.1007/978-3-662-46364-2_1
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0 Ou L w o 62_w
&= Ox R,’ = "o
o w Pw
0
o, -9 8.4
Sy ay + Ry Y Xy ayz ( )
o Ou Ov O*w
ny + 5o Xx_v =-2
: 5 Ox OxQy
where &), &) and ) indicate the strains in middle surface; y., x, and yu, are the

curvature changes. Thus, the liner strains in the kth layer space of a laminated
shallow shell can be defined as:

& = 82 + 2 x
g = 82 + 21 (8.5)
Ty = Ty + Uy

where Z; < z < Z;,1. Z; and Z;,; denote the distances from the top surface and the
bottom surface of the layer to the referenced middle surface, respectively.

8.1.2 Stress-Strain Relations and Stress Resultants

The stress-strain relations, force and moment resultants for thin laminated shallow
shells formed in rectangular planform are the same as those derived earlier for thin
laminated rectangular plates, see Egs. (4.4) and (4.6).

8.1.3 Energy Functions

The strain energy (Uy) of thin laminated shallow shells during vibration can be
defined in terms of middle surface strains, curvature changes and stress resultants as:

C (NGO 4 N + N
_l/ / TS Ty (8.6)
20 0 +MXXX+M}’X)'+M‘C)’Xxy

And the kinetic energy (7) of thin laminated shallow shells during vibration is:
Ou o\*  [ow\?
I = — dxd 8.7
//{( ) (f»)*(ar)}” 57

where the inertia term Iy is given in Eq. (1.19). Suppose ¢q,, g, and g, are the
external loads in the x, y and z directions, respectively. Thus, the external work can
be expressed as:


http://dx.doi.org/10.1007/978-3-662-46364-2_4
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Fig. 8.3 Boundary
conditions of thin laminated
shallow shells

a b
W, = / / {q.u+ qyv + q.w}dxdy (8.8)
0

The artificial spring boundary technique is adopted here to realize the general
boundary conditions of a thin shallow shell. Under the current framework, symbols
kf/j, k;, kl‘Z and KJ,” (w = x0, y0, x1 and yl) are used to indicate the stiffness of the
boundary spring components at the boundaries x = 0, y = 0, x = a and y = b,
respectively, see Fig. 8.3. Thus, the deformation strain energy about the boundary
springs (Uy,) can be defined as:

| /b [Kiou? + Kogv? + Kiyw? + K2 (0w /0x)] =0 ;
sp -3 )
2) P K+ RWE A+ K (0w /0x)] |va
a [kuobﬂ + kvov + k)“z)w + Kjo(0w/0y) } ‘} -0

41 / ’ dx (8.9)

20 + [k“u + RV + w4 K;Vl(aw/ay)} |y=b

8.1.4 Governing Equations and Boundary Conditions

Substituting Eq. (8.3) into Eq. (1.28) and then simplifying the expressions and
taking Eq. (8.1) into consideration, the reduced governing equations of thin lami-
nated shallow shells are:

\ aN",\ —
&\ + 8)1 +qx IO ;),2

a Xy

5+ B+ ay =I5 (8.10)
2 PM, My P

*(R_,\.+R_y> + O+ 25 e g = Do
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Substituting Eq. (8.4) and the stress resultants equations Eq. (4.6) into Eq. (8.10),
the governing equations of thin laminated shallow shells can be writing in matrix
form as:

Ly Ly Lis —Iy 0 0 u —Dx
L21 L22 L23 — 602 0 _IO 0 v = —Py (811)
L3y Lz L3 0 0 —Iy w —D:

The coefficients of the linear operator L;; are written as
0 0 0 0 0 0
L =42 <A11a+A160*y> +07y <A16a+A665y>

ad 17} 0 17} 19} 0
Ly = Ly = o <Alza—y+A165) +a—y <A26a_y+Aéﬁa>

0 (A A 0? ? 9?
Lu:—<i+£—3 — Bia = — 2Bis )

OX Rx R,V on? 0 ? Oy axa
. 0

(8.12)

9 9
ly x Jy
o? 19} aJ 2
=2 (Ba—+Bis—) +2 B Bs
+8x2<128y+ 1(ax>+ 88y<28+(60>
82 0 ad
8 <3225+BZ65€>
1 (A Ap o ? 0
Ly3 = — R7<R7 Rfy—Bn@—Blzay 281608}1
_L A12+@_ ? _B 0? O?
R,\R;, R, 2o TR oy 2 B oy Oxdy
0* (B,  Bn 0? 0? 0?
*@(f*?j””@*”lzfyz 1 5xdy
8 [Bis B & & o?
2 oy (* E*Dwﬁ*’%fyz*w“a ay>
0° (B, Bn 0? o? &?
W(— & PRaePRap P00,
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And according to Egs. (1.29) and (1.30), the boundary conditions of thin shallow

shells are:

Ny +%— kiu =0

. Ny + % —Kgv =0 o
0.+ % — kiyw =0
—M,— K2 =0
Ny + 52— kiu =0

. Ny+ 5 =Ky =0 o

T o k=0 T
y Ox Yo T
M, - K2 =0

y0dy —

N+ R+ kqu=0
Ny + %2 +kv =0
0.+ %+ kyw =0
M+ K52 =0
" (8.13)
ny—i—R—fﬁ—k;]u:O
Ny+F+ k=0
0y + %+ kw =0
M, + K5 =0

In each boundary of thin laminated shallow shells, there exists 12 possible
classical boundary conditions. Taking boundaries x = constant for example, the
possible classical boundary conditions are given in Table 8.1, similar boundary
conditions can be obtained for boundaries y = constant.

Table 8.1 Possible classical
boundary conditions for thin

Boundary type ‘ Conditions

shallow shells at each Free boundary conditions
boundary of x = constant F N, + % =Ny + ’z> =0, + 615?,\' =M, =0
F2 MZny+1\l§zy:Qx+3{\d/§‘y:Mx:0
M,
F3 Nx‘*‘lg—::V:Qx‘f‘%: =0
F4 u:v:Qx—i-ag”':MX:O
Simply supported boundary conditions
S u=v=w=M,=0
SD Nx-i,-%:vzszx_O
S3 u:ny+%:w:MX:O
S4 NX_A'_AI;[_:_NX}_;'_AI/%\':W:MX:O
Clamped boundary conditions
C U=v=w= 0—")‘: =0
C3 u:]\/)y+1zi>‘:w:g_;¢:0
M,

C4 Ny + %



http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1

8.2 Fundamental Equations of Thick Laminated Shallow Shells 279

8.2 Fundamental Equations of Thick Laminated Shallow
Shells

Like general thin shell theory, the classical shallow shell theory (CSST) is appli-
cable where the thickness is smaller than 1/20 of the smallest of the wave length
and/or radii of curvature (Qatu 2004). For thick shallow shells, the Kirchhoff
hypothesis should be relaxed and the shear deformation and rotary inertia should be
included in the formulation. Fundamental equations of thick laminated shallow
shells will be derived in this section. The following equations are derived from the
general shear deformation shell theory (SDST) described in Sect. 1.3 by imposing
Eq. (8.3) into those of general shells.

8.2.1 Kinematic Relations

As was done for general shells and plates, we assume that normals to the unde-
formed middle surface remain straight but do not normal to the deformed middle
surface and the shell inplane displacements are expanded in terms of shell thickness
of first order expansion. Thus, the displacement field of a thick shallow shell can be
expressed as

U(x,y,2) = u(x,y) + z¢,
V(x,y,2) = v(x,y) + 26, (8.14)
W(x7y7 Z) = W(xay)

where u, v and w are the middle surface displacements of the shallow shell in the
x, y and z directions, respectively, and ¢, and ¢, represent the rotations of transverse
normal respect to y- and x-axes. Substituting a = x, f = y into Eq. (1.33) and
deleting the z/R, and z/Rj; terms, the normal and shear strains at any point in the
shallow shell then can be written in terms of middle surface strains and curvature
changes as:

& = 8()3 + ZXX? yxz = Vgc)z
by =8 F 2y Ny = e (8.15)
Ty = Yoy F Ty
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Substituting Eq. (8.3) into Eq. (1.34) and taking Eq. (8.1) into consideration, the
middle surface strains and curvature changes are:

du w 0
o_ " e _ X
& ox R’ % = "oy
0 0
g(y) — _V + K, Iy = d)y
O R Oy (8.16)
0 _ @ + @ — a¢v .
T = oy dy’ Ty = "hy
ow ow
VSZZE_F(Z)M ygzza_y+¢y

The above equations constitute the fundamental strain-displacement relations of a
thick shallow shell formed in rectangular planform.
8.2.2 Stress-Strain Relations and Stress Resultants

The stress-strain relations and stress resultants for thick laminated shallow shells
formed in rectangular planform are the same as those derived earlier for thick
laminated rectangular plates, see Eqgs. (4.19), (4.21) and (4.22).

8.2.3 Energy Functions

The strain energy (Uy) of thick shallow shells during vibration can be defined as

a b
_l//{N80+N80+Nw8(x)v+vi8° + My,

dydx (8.17)
+ Myxy + My Yy + My + Oyye + OxVy,

And the corresponding kinetic energy function (7) is:

Y ey

+2] dud¢v+l (
// oo T , dydx (8.18)
+21, dmm“ (% ) o (2)

0 L9t "o

The inertia terms I; (i = 0, 1, 2) are written as in Eq. (1.52). Assuming the dis-
tributed external forces g, g, and ¢, are in the x, y and z directions, respectively and
m, and m, represent the external couples in the middle surface, thus, the work done
by the external forces and moments is
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Middle surface™=&

Fig. 8.4 Boundary conditions of thick laminated shallow shells

a b
W, = / / {qu +qyv +qw + mxd)x + my(z)y}dydx (819)
0 0

As was done for thin laminated shallow shells, the artificial spring boundary
technique is adopted here to realize the general boundary conditions of thick
laminated shallow shells, in which three groups of linear springs (k,, ,, k,,) and two
groups of rotational springs (K,, K,) are distributed uniformly along each shell
boundary artificially, see Fig. 8.4. Therefore, the deformation strain energy (Us,) of
the boundary springs during vibration can be written as:

L[ [ e + o + K+ Kl o
Up =3 / dy
0 + [ki‘l W+ K+ kw4 K ¢r 4+ K ‘Zﬂ |x=a

| a [k;ouz 4 k;ovz 4 k;fbwz + K;‘O(f)i + Kioqﬂ |y:0
+ 3 / dx  (8.20)
o | T {k;fl“z + kv kw4 Koy + K;quﬂ [y=b

where k:f/ k;/, kf; s K;/‘, and K.}/ (w =x0, y0, x1 and y1) represent the rigidities (per unit
length) of the boundary springs at the boundaries x =0, y =0, x = a and y = b,
respectively. In such case, the stiffness of the boundary springs can take any value
from zero to infinity to better model many real-world boundary conditions including
all the classical boundaries and the uniform elastic ones. For instance, the clamped
restraint condition is essentially obtained by setting the spring stiffness substantially
larger than the bending rigidity of the involved shallow shell (107 x D).

8.2.4 Governing Equations and Boundary Conditions

The governing equations and boundary conditions of thick laminated shallow shells
can be derived by the Hamilton’s principle in the same manner as described in
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Sect. 1.2.4 or specializing from those of general thick shells. Substituting Eq. (8.3)
into Eq. (1.59) and taking Eq. (8.1) into consideration, the governing equations for
thick shallow shells are

Be+ ovﬂ +ae=l %+ 1 60;?
dz]’;l;y + (3v -t 4 = Io gt;}+ll Z)t2

,(%+ >+ 24+ % 4 g, =100 (8.21)
[“)xx + OdMy“ —Qutme = LG+ DG

My | OMy ¢,
+(8v Oy +my =1 arzv+12 E

Furthermore, the above equations can be written in terms of displacements and
rotation components as

Ly Lip L3 Ly Lis M;0 0 Muu0 u
Ly Ly Ly Ly Lps 0 MpyO 0 My v
Lyi, Ly Ly Ly Ly | —o®|0 0 M0 0 w
Lyt Ly Lz Ly Lys My O 0 My O o
Lsy Lsp Ls3 Lsy Lss 0 Msx0 0 Mss by
—DPx
—py
= | -» (8.22)
—m,
—m,

The coefficients of the linear operator L; are listed below

0 0 0 0 0 0
L11:8X<A11+A16> (A16 + Ags )

Ox Qy 8 Ox ay

0 0 0 0 0 0
Ly = <A128_y+A168_x> +8_y (Azéa—y-%Assa)

0 (An | Anp 0 (A A
L”—a(ze—ﬁk—y)%—y(ze—x =)

0 0 0 0 0
L145<311a+ 168_y>+8—<3168x+3668>
A B AU T |
5= g \Brg, tBiog ) T\ By 6 x

0 1o} 0 1o} 0 0
Ly = b <A16a+A66 8_y> +8_y (Alza—FAze 8_y> (8.23)
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Ly = a(A 8+ 668> 6( 8+ 268>

10) 3 19) 0] 8 10)
Lys = 8(9 ( 16+f;;;) <A12 Azz)
L24_88x<31688x+ 66§>+§y(3128x+ 2688y>
Lps = % (Bzéagy-FBse%) +88y (Bzzgy-Fst%)
e o) oo
o) ool
o ) ) 2
L34——Rix(311%+316§y>—Riy(Bu(%—Fstg) +A55%+A45(%
L35——Rix(312§y+316%>—Riy(Bzzé%-f-st;C) +A45%+A44%
Ly %(Bug—k 1682)4—(%(316%4— 66%)
Ly = % (BnngBm%) Jr% (326§+B66%>
L43_%(%+%)+%<BR—T+% —(A45(%+A5586)
Ly —% <D11§+D16§y) +(% (D16%+D66§y> — Ass
Ls; = % <B16%+366§y> +(% (B12%+BZ6%>
Lsz—%(326§+ 66%)"’%(322%"'326%)
(1) () - ()
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And according to Egs. (1.60), (1.61) and (8.3), the general boundary conditions of
thick shallow shells are

Ny —kiu=0 N+ kiu=0
Ny — Ky =0 Ny + Ky =0
x=0:< Oy —kyw=0 x=a:{ O +kiw=0
M, - K¢, =0 M+ K¢, =0
Mxy—Ki'O¢,:0 M, + x1¢v—0
Ny — K o N + k=0 (8:24)
Ny—k;ovzo g kvv:O
y=0:< Oy —kygw=0 y=0: Q»+kW1W—0
M, — ;Cod) =0 M, + 1¢ =0
M, — Ky, =0 M, +KV1¢ =0

For thick shallow shells, there exists 24 possible classical boundary conditions in
each boundary. The classification of the classical boundary conditions shown
in Table 4.2 for thick rectangular plates is applicable for thick shallow shells in
rectangular planform.

The classical boundary conditions of laminated shallow shells can be readily
realized by applying the artificial spring boundary technique. In this chapter, we
mainly consider the F, SD, S and C boundary conditions. Taking edge x = 0 for
example, the corresponding spring rigidities for the four classical boundary con-
ditions are given as in Eq. (4.30).

8.3 Vibration of Laminated Shallow Shells

Free vibration of laminated shallow shells formed on rectangular planforms with
general boundary conditions, arbitrary lamination schemes and various types of
curvatures will be considered, including shallow cylindrical, spherical and hyper-
bolic paraboloidal shells, see Fig. 8.2. Solutions in the framework of shear defor-
mation shallow shell theory (SDSST) will be presented.
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From Eq. (8.23), it is obvious that each displacements/rotation component of
thick laminated shallow shells is required to have up to the second derivatives.
Therefore, regardless of boundary conditions, each displacements/rotation compo-
nent of a laminated shallow shell is expressed as the proposed modified Fourier
series expansion in which several auxiliary functions are introduced to ensure and
accelerate the convergence of the series expansion:

N 2 N
Z Ay COS 2, X COS Ay + Z Z anPi(x) cos 2,y

I
§\M§

0 n=0 I=1 n=0
2 M
+ Z Z bimPi(y) cos Ayx
=1 m=0
M N 2 N
v(x,y) = Z Z By €08 Apx cOS Ay + Z Z cinPi(x) cos A,y
m=0 n=0 =1 n=0

2 M
+ Z Z dimP1(y) cos Apx

=1

M N
Z Z Cyn €OS Apx cos A,y + Z Z enPi(x) cos A,y

m=0 n=0 =1 n=0 (825)
2 M
+ ZﬁmPl (v) cos Ayx
I=1 m=0
M N
Z Z D,y €OS Apx cos A,y + Z Z ginPi(x) cos A,y
m=0 n=0 =1 n=0
2 M
+ Z Z himP1(y) coS Anx
I=1 m=0
M N 2 N
$y(x,y) = Z Z En €OS Aypx cOS A,y + Z Z inPi(x) cos A,y
m=0 n=0 =1 n=0
2 M
+ Z Zjlmpl( ) Cos )mx
=1 m=0

where A,,, = ma/a and 1, = na/b. The auxiliary functions P; (x) and P; (y) are given in
Egs. (4.32) and (4.33).

Like rectangular plates, each shallow shell formed on rectangular planforms has
four boundaries. Thus, for the sake of simplicity, a four-letter string is employed to
represent the boundary condition of a shallow shell, such as FCSSD identifies the
shell having F, C, S and SD boundary conditions at boundaries x = 0, y = 0, x = q,
y = b, respectively. Furthermore, for all numerical examples, unless otherwise
stated, the layers of the considered laminated shallow shells are of equal thickness
and made of the same composite material: E, = 10 GPa, E|/E, = open, y1, = 0.25,
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G2 =0.6E;, G153 =0.6E,, Go3=0.5E, and p = 1,450 kg/m3. In addition, the natural
frequencies of the considered shells will be expressed by the non-dimensional

parameters as Q = wa>\/p/E)h?.

8.3.1 Convergence Studies and Result Verification

Table 8.2 shows the first six frequency parameters Q = wa*+/p/Eh? for com-
pletely free, [30°/—30°/—30°/30°] laminated graphite/epoxy shallow cylindrical,
spherical and hyperbolic paraboloidal shells with different truncation schemes (i.e.
M=N=11, 12, 14, 15), respectively, together with results presented by Qatu (2004).

Table 8.2 Convergence of frequency parameters Q = wa®+/p/E h* for [30°/—30°/—30°/30°]
laminated graphite/epoxy shallow cylindrical, spherical and hyperbolic paraboloidal shells

R\/R, B.C. M x N Mode number
1 2 3 4 5
0 FFFF 11 x 11 1.912 2.975 4.889 6.697 8.226
12 x 12 1.912 2.975 4.887 6.695 8.223
14 x 14 1.912 2.974 4.885 6.693 8.219
15 x 15 1.911 2.974 4.884 6.693 8.216
CCccc 11 x 11 15.38 1591 19.71 21.86 24.21
12 x 12 15.38 1591 19.70 21.85 24.20
14 x 14 15.38 15.90 19.69 21.85 24.19
15 x 15 15.38 15.89 19.69 21.85 24.18
1 FFFF 11 x 11 2.282 3.320 5.847 6.746 8.341
12 x 12 2.280 3.318 5.843 6.742 8.333
14 x 14 2.278 3.316 5.838 6.736 8.325
15 x 15 2.277 3.315 5.836 6.734 8.324
Qatu (2004) 2.283 3.323 5.871 6.781 8.394
CCccc 11 x 11 28.54 31.05 37.24 37.94 39.44
12 x 12 28.54 31.03 37.23 37.93 39.43
14 x 14 28.53 31.01 37.21 3791 39.43
15 x 15 28.53 31.00 37.20 37.90 39.42
-1 FFFF 11 x 11 2.111 4.873 4.875 8.771 9.060
12 x 12 2.110 4.870 4.874 8.767 9.055
14 x 14 2.109 4.866 4.872 8.762 9.048
15 x 15 2.108 4.865 4.871 8.761 9.046
Qatu (2004) 2.115 4.882 4.887 8.809 9.106
CCcc 11 x 11 22.05 24.51 27.85 27.87 32.86
12 x 12 22.04 24.51 27.84 27.86 32.83
14 x 14 22.04 24.49 27.83 27.84 32.81
15 x 15 22.04 24.49 27.82 27.83 32.81
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The FFFF and CCCC boundary conditions are performed in the study. The geometry
and material constants of the layers of the considered shells are given as: b/a = 1, b/
a=0.01, Ry/a=2, E; =138 GPa, E, = 8.96 GPa u;» = 0.3, G = G;3=7.1 GPa,
Gy3 = 3.9 GPa. It is obvious that the modified Fourier series solution converges
quickly. The maximum difference between the 11 x 11-term solutions and those of
15 x 15-term is less than 0.24 %. Based on this analysis, the truncated number of the
displacement expressions will be uniformly selected as M = N = 15 in all subsequent
calculations. Furthermore, by comparing with results published by Qatu (2004), we
can find a well agreement between the two results. The differences between these
two results are attributed a different shallow theory was used by Qatu (2004).

Table 8.3 shows the comparison of the fundamental parameters Q for cross-ply
cylindrical, spherical and hyperbolic paraboloidal shallow shells with SDSDSDSD
boundary conditions and different curvature ratios (a/R). The shells are composed
of graphite/epoxy (E\/E> = 15, u1» = 0.25, Gi» = G153 = G»3 = 0.5E,) and having
geometry properties: a/b = 1, h/a = 0.1. The symmetric lamination [0°/90°/90°/0°]
and two asymmetric laminations [0°/90°] and [90°/0°] are used in the comparison.
“~ represents results that were not considered in the referential work. Curvature
ratios are varied from O (flat plate) to 0.5 (limit of shallow shell theory). The table
shows that the present solutions match very well with those reported by Qatu
(2004). Except the case of shallow cylindrical shell with [90°/0°] and curvature
ratio a/R = 0.5, the maximum differences between the two results are less than 1.12,
0.012 and 0.012 % for the shallow cylindrical, spherical and hyperbolic parabo-
loidal shells, respectively.

Table 8.4 shows the comparison of the fundamental parameters Q for a three-
layered, [0°/90°/0°] shallow spherical shell with different boundary conditions and

Table 8.3 Comparison of the fundamental frequency parameters Q for cross-ply cylindrical,
spherical and hyperbolic paraboloidal shallow shells with SDSDSDSD boundary conditions and
different curvature ratios

R/R, |al/R, |SDSST (Qatu 2004) Present
[0°/90°] | [90°/0°] | [0°/90°/90°/0°] | [0°/90°] |[90°/0°] |[0°/90°/90°/0°]
0 0 8.1196 8.1196 |10.972 8.1205 8.1205 |10.972
0.1 8.1259 8.1448 | 10.987 8.1268 8.1602 |10.987
02 |8.1774 8.1538 | 11.032 8.1783 8.2454 |11.032
0.5 8.5784 8.0831 |11.334 8.5790 8.7529 |11.335
+1 0 - 8.1196 |10.972 8.1205 8.1205 |10.972
0.1 - 8.2190 |11.043 8.2199 8.2199 |11.043
02 |- 8.5084 | 11.252 8.5092 8.5092 | 11.253
05 |- 10.249 12.572 10.249 10.249 12.571
-1 0 8.1196 8.1196 |10.972 8.1205 8.1205 |10.972
0.1 8.0785 8.1448 | 10.961 8.0794 8.1458 |10.961
0.2 |8.0223 8.1538 |10.927 8.0233 8.1548 |10.928
0.5 |7.7739 8.0831 |10.703 7.7748 8.0841 |10.704
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Table 8.4 Comparison of the fundamental frequency parameters Q for a three-layered, [0°/90°/
0°] shallow spherical shell with different boundary conditions and curvature ratios

Theory a/lR, | Boundary conditions
FSFS |FSSS |FSCS |SSSS SSCS CSCS
Present 0 3788 4320 |6.144 |12.163 |14.248 |16.383

0.05 |3.795 |4.325 |6.146 12.179 14.265 16.487
020 |3.898 [4.404 |6.164 12.417 14.514 17.966

SDSST (Librescu etal. |0 3.788 (4320 |6.144 |12.163 |14.248 |16.383

1989a) 0.05 [3.794 [4325 |6.146 |12.178 |14.264 |16.487
020 [3.891 [4397 [6.163 |12.394 |14.499 |17.959

Difference (%) 0 0.01 0.01 0.01 0.00 0.00 0.00
005 (002 000 |0.01 0.01 0.01 0.00
020 [0.17 0.6 |0.01 0.19 0.11 0.04

curvature ratios (a/R). The shell having SD boundary conditions at the edges y = 0,
y = b and the other two edges having arbitrary boundary conditions. The shell is
formed on square planform and composed of composite layers having following
material and geometry parameters: a/b = 1, h/a = 0.1, E\/E, = 25, u, = 0.25,
G2 = Gi3 = 0.5E;, Go3 = 0.2E,. The state space solutions provided by Librescu
et al. (1989a) are selected as the benchmark solutions. Comparing the two results,
we can find that the current solutions match very well with the referential data. The
maximum difference between the two results is very small and less than 0.17 %.

8.3.2 Laminated Shallow Shells with General Boundary
Conditions

Table 8.5 shows the first four non-dimension frequency parameters Q of a three-
layered, [0°/90°/0°] shallow cylindrical shell with different boundary conditions and
thickness-length ratios. Four different thickness-length ratios i.e. h/a = 0.01, 0.05,
0.1 and 0.15, corresponding to thin to thick shallow shells are performed in the
analysis. The shell parameters used are: a/b = 1, R, = ©, a/R, = 0.1, E}/E, = 15. Tt
can be seen from the table that the augmentation of the thickness-length ratio leads
to the decrease of the frequency parameters. Tables 8.6 and 8.7 show the similar
results for shallow spherical (a/R, = a/R, = 0.1) and hyperbolic paraboloidal
(a/R,=0.1, a/R, = —0.1) shells, respectively. The similar observation can be seen in
the tables as well. In addition, comparing the three tables, it can be found that the
frequency parameters of the hyperbolic paraboloidal shell are higher than the
cylindrical and spherical ones. And the results of the shallow cylindrical shell are
the smallest. Furthermore, from Table 8.5, we can see that frequency parameters of
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Table 8.5 Frequency parameters Q for a three-layered, [0°/90°/0°] shallow cylindrical shell with
different boundary conditions and thickness-length ratios (a/b = 1, R, = 0, a/R, = 0.1, E\/E, = 15)

hla Mode Mode number
FCCC FFCC FFFC CFFF CCFF CCCF
0.01 1 21.441 5.3519 1.2520 4.7214 5.3519 25.358
2 23.308 11.164 3.1822 5.1009 11.164 28.704
3 33.542 23.718 7.8374 10.943 23.718 36.292
4 38.015 25.838 11.515 23.927 25.838 53.380
0.05 1 10.038 4.4519 1.2491 3.8493 44519 21.643
2 22.125 9.8673 3.1181 4.8754 9.8673 23.978
3 24.983 22.408 7.7257 10.495 22.408 32.230
4 33.952 22.695 11.156 21.836 22.695 48.200
0.10 1 8.8956 4.2056 1.2411 3.6585 4.2056 16.423
2 19.795 9.2023 3.0083 4.5636 9.2023 18.571
3 20.306 18.167 7.4109 9.8304 18.167 26.348
4 28.154 20.440 10.139 10.921 20.440 34.952
0.15 1 8.0767 3.9166 1.2282 3.4237 3.9166 12.584
2 16.565 8.4317 2.8750 4.1729 8.4317 14.695
3 17.212 14.606 6.9028 7.2807 14.606 21.834
4 23.254 17.471 6.9649 9.0797 17.471 25.490

cylindrical shell with curved edge cantilevered (CFFF) are higher than those of
straight edge cantilevered (FFFC).

Influence of the fiber orientations on the modal frequencies of shallow shells is
also investigated. In Fig. 8.5, variations of the lowest three frequency parameters Q
of certain single-layered ([9]) shallow shells with various fiber orientations are
given. Three types of curvature considered in the study are: cylindrical (R, = oo,
a/R, = 0.1), spherical (a/R, = a/R, = 0.1) and hyperbolic paraboloidal (a/R, = 0.1,
a/R, = —0.1). In each case, the fiber orientation 4 is varies from 0° to 180° by an
increment of 10°. The shallow shells under consideration are assumed to be with
SDSDSDSD boundary conditions. The material constants and geometry parameters
of the laminas of the shallow shells are: b/a = 1, h/a = 0.05, E/E, = 15. Many
interesting characteristics can be observed from the figure. The first observation is
that all the subfigures are symmetrical about central line (i.e., 4 = 90°). The second
observation is that the fundamental frequency parameter traces climb up and then
decline, and may reach their crests around $ = 45° (when  is increased from 0° to
90°). The similar characteristics can be observed in the subfigure of the second
mode. However, for the third mode, the maximum frequency parameters may occur
around 9 = 30° or § = 60°. In addition, it is obvious that frequency parameters of the
shallow spherical shell are larger than the shallow cylindrical and hyperbolic
paraboloidal ones. Furthermore, since the length-to-radius ratio used in each case in
this investigation is small (a/R = 0.1), thus, the differences between these results are
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Table 8.6 Frequency parameters Q for a three-layered, [0°/90°/0°] shallow spherical shell with
different boundary conditions and thickness-length ratios (a/b = 1, a/R, = a/R, = 0.1, E\/E, = 15)

hla Mode Mode number
FCCC FFCC FFFC CFFF CCFF CCCF
0.01 1 22.125 6.6469 2.4195 4.4589 6.6469 36.435
2 25.223 12.090 3.2764 5.0746 12.090 39.743
3 35.576 25.341 10.435 13.354 25.341 45.528
4 42.189 26.814 11.922 25.096 26.814 60.365
0.05 1 10.101 4.5350 1.3341 3.8447 4.5350 22.313
2 22.225 9.9327 3.1223 48711 9.9327 24.631
3 25.075 22.393 7.8779 10.657 22.393 32.715
4 34.138 22.832 11.170 21.583 22.832 48.537
0.10 1 8.9124 4.2279 1.2627 3.6560 4.2279 16.657
2 19.821 9.2191 3.0095 4.5592 9.2191 18.790
3 20.325 18.145 7.4477 9.8768 18.145 26.497
4 28.208 20.485 10.123 10.912 20.485 34.936
0.15 1 8.0840 3.9271 1.2375 34215 3.9271 12.723
2 16.570 8.4387 2.8757 4.1680 8.4387 14.818
3 17.223 14.587 6.9003 7.2788 14.587 21912
4 23.280 17.503 6.9802 9.1028 17.503 25.477

small as well. The maximum differences between the results of cylindrical and
spherical shallow shells, cylindrical and hyperbolic paraboloidal shallow shells,
spherical and hyperbolic paraboloidal shallow shells are less than 1.14, 0.61,
6.24 %, respectively.

Figure 8.6 performs the similar study for the shallow shells with CCCC
boundary conditions. The different observation is that the variation tendencies of
the fundamental modes decline firstly and then climb up. The minimum frequency
parameters may occur around § = 45°. For the second mode, the frequency
parameters increase when & increases from 0° to 40° and decrease when 9 increases
from 50° to 90°. The variation tendencies of the third mode are the same as those in
Fig. 8.5. The figure also shows that the differences between the three results are
small due to the fact that a low length-to-radius ratio is used in this investigation.

Figure 8.7 shows the similar study for the shallow shells with SDSDSDSD
boundary conditions and a higher length-to-radius ratio, i.e., @/R = 0.2 (limit of the
shallow theory). The material and other geometry properties are the same as those
used in Figs. 8.6 and 8.7. The observations from this figure are the same as those of
Fig. 8.5. However, the maximum differences between the results of cylindrical and
spherical shallow shells, cylindrical and hyperbolic paraboloidal shallow shells,
spherical and hyperbolic paraboloidal shallow shells can be as many as 5.29, 6.50,
22.9 %, respectively. It is attributed to the effects of curvatures on the frequency
parameters of shallow shells are more significant when the length-to-radius ratio is
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Table 8.7 Frequency parameters Q for a three-layered, [0°/90°/0°] shallow hyperbolic
paraboloidal shell with different boundary conditions and thickness-length ratios (a/b = 1,
a/R, = 0.1, a/R, = 0.1, E|/E, = 15)

hla Mode Mode number
FCCC FFCC FFFC CFFF CCFF CCCF
0.01 1 22.736 4.935666 24375 4.3788 4.9357 36.722
2 26.242 14.70847 3.2710 5.0823 14.708 38.502
3 34.129 26.91862 10.876 15.157 26.919 44.979
4 39.603 27.18928 11.896 25.575 27.189 59.766
0.05 1 10.143 4.429413 1.3368 3.8471 4.4294 22.327
2 22.268 10.09015 3.1212 4.8706 10.090 24.564
3 25.002 22.46707 7.8884 10.750 22.467 32.691
4 34.013 22.82693 11.175 21.644 22.827 48.511
0.10 1 8.9240 4.19818 1.2634 3.6569 4.1982 16.662
2 19.834 9.264119 3.0085 4.5580 9.2641 18.769
3 20.302 18.163 7.4502 9.9013 18.163 26.492
4 28.166 20.48119 10.159 10.917 20.481 34.944
0.15 1 8.0894 3912118 1.2379 3.4220 3.9121 12.726
2 16.558 8.461952 2.8748 4.1665 8.4620 14.807
3 17.230 14.59844 6.9054 7.2823 14.598 21911
4 23.255 17.46116 6.9813 9.1142 17.461 25.483

higher. The figure also shows that the variation tendency of each frequency
parameter of the cylindrical shallow shell is the same as the corresponding ones of
the spherical and hyperbolic paraboloidal shells. Comparing Figs. 8.5, 8.6 and 8.7,
it can be found that the influence of fiber orientations on the modal frequencies of
shallow shells vary with mode sequence and boundary conditions.

Effects of the fiber orientations on the frequency parameters and mode shapes of
laminated shallow shells are further reported. In Tables 8.8, 8.9 and 8.10, the lowest
four frequency parameters Q of certain three-layered, [0°/9/0°] shallow shells with
various boundary conditions and fiber orientations are presented. The aspect ratio is
chosen to be b/a = 1. The thickness-to-width ratio /b = 0.1 is used in the calcu-
lation. As usual, the shallow cylindrical (R, = ©0, a/R, = 0.1), spherical (a/R, =
a/R, = 0.1) and hyperbolic paraboloidal (a/R, = 0.1, a/R, = —0.1) shells are con-
sidered in the study. The fiber direction angle 3 is varied from 0° to 90° with an
increment of 30°. The layers of the shells are made of composite materials with
orthotropy ratio E/E, = 15. From Table 8.8, it can be noticed that the results of the
shell with FFCC boundary conditions equal to those of CCFF boundary conditions.
The similar observation can be seen from Tables 8.9 and 8.10 as well.

Figures 8.8, 8.9 and 8.10 give the first three contour plots of the mode shapes and
frequency parameters with various lamination angles for CFFF, single-layered [9]
shallow cylindrical, spherical and hyperbolic paraboloidal shells, respectively. The
aspect ratio a/b = 1, thickness-to-length ratio #/a = 0.05 and orthotropy ratio
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Fig. 8.5 The lowest three frequency parameters Q of single-layered ([9]) shallow shells with
SDSDSDSD boundary condition and various fiber orientations (b/a = 1, h/a = 0.05, a/R = 0.1)

E\/E, = 25 are used in the presentation. Mode shapes and frequency parameters are
shown for 9 = 0, 30°, 60° and 90°. From the figures, we can find that when 9 = 0, the
mode shapes of the shallow cylindrical, spherical and hyperbolic paraboloidal shells
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Table 8.8 Frequency parameters Q for a three-layered, [0°/8/0°] shallow cylindrical shell with
different boundary conditions and fiber orientations (a/b = 1, h/a = 0.1, R, = 00, a/R, = 0.1,
EI/Ez = 15)

9 Mode | Boundary conditions
FFFC FFCC FCCC CCCC |CCCF |CCFF CFFF
0° 1 1.0086 4.1935 7.6932 |[18.084 |16.790 4.1935 3.7272
2 2.8658 8.2303 | 16.985 23.818 |18.445 8.2303 4.6176
3 6.0857 |17.494 20.188 34.495 |24.372 | 17.494 8.8185
4 7.1446 | 18.539 26.655 36.670 |28.413 |[18.539 11.145
30° |1 1.0255 4.2544 7.8266 |18.081 |16.690 4.2544 3.6999
2 3.0243 8.4954 |17.287 24.067 | 18.506 8.4954 4.6980
3 6.1868 | 17.845 20.260 34990 |24.685 |17.845 9.0384
4 8.2781 | 18.522 27.064 36.540 |35.586 |[18.522 14.682
60° |1 1.1380 4.2553 8.4006 |18.180 |16.509 4.2553 3.6655
2 3.0852 9.0720 | 18.670 24977 |18.569 9.0720 4.6604
3 6.8488 |18.270 20.334 36.237 | 25.658 |18.270 9.5119
4 9.8179 |19.325 27.760 37.001 |35.157 |19.325 13.338
90° |1 1.2411 4.2056 8.8956 | 18.288 |16.423 4.2056 3.6585
2 3.0083 9.2023 |19.795 25.634 |[18.571 9.2023 4.5636
3 74109 |18.167 20.306 36.071 |26.348 |18.167 9.8304
4 10.139 20.440 28.154 38.556 | 34.952 |20.440 10.921

Table 8.9 Frequency parameters Q for a three-layered, [0°/3/0°] shallow spherical shell with
different boundary conditions and fiber orientations (a/b = 1, h/a = 0.1, a/R, = a/R, = 0.1,
EI/Ez = 15)

9 Mode | Boundary conditions
FFFC FFCC FCCC CCCC |CCCF |CCFF CFFF
0° 1 1.0154 4.2034 7.7061 | 18.405 |17.124 4.2034 3.7246
2 2.8665 8.2380 | 17.010 24.060 | 18.756 8.2380 4.6131
3 6.1081 |17.534 20.201 34.662 |24.601 |17.534 8.8466
4 7.1418 | 18.517 26.706 36.665 |28.418 |18.517 11.135
30° |1 1.0337 4.2659 7.8541 |18.388 |16.976 4.2659 3.6970
2 3.0252 8.5066 |17.329 24284 |18.783 8.5066 4.6937
3 6.2174 | 17.892 20.297 35.138 | 24.887 |17.892 9.0737
4 8.2752 | 18.510 27.144 36.544 | 35.579 |18.510 14.641
60° |1 1.1525 4.2700 8.4395 |18.439 |16.748 4.2700 3.6627
2 3.0868 9.0865 | 18.706 25.148 | 18.803 9.0865 4.6564
3 6.8821 |18.248 20.374 36.246 | 25.821 |18.248 9.5526
4 9.8140 |19.381 27.828 37.117 |35.147 |19.381 13.313
90° |1 1.2627 4.2279 89124 | 18510 |16.657 4.2279 3.6560
2 3.0095 9.2191 |19.821 25.791 | 18.790 9.2191 4.5592
3 7.4477 | 18.145 20.325 36.068 |26.497 |18.145 9.8768
4 10.123 20.485 28.208 38.661 |34.936 |20.485 10.912
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Table 8.10 Frequency parameters Q for a three-layered, [0°/9/0°] shallow hyperbolic parabo-
loidal shell with different boundary conditions and fiber orientations (a/b = 1, h/a = 0.1, a/R, = 0.1,
a/R, = 0.1, E\/E, = 15)

9 Mode | Boundary conditions
FFFC FFCC FCCC CCCC |CCCF |CCFF CFFF
0° 1 1.0157 4.1873 7.7187 |18.386 |17.124 4.1873 3.7256
2 2.8653 8.2775 | 17.026 24.050 |18.738 8.2775 4.6122
3 6.1094 |17.538 20.183 34.655 |24.596 |17.538 8.8732
4 7.1476 | 18.505 26.670 36.658 |28.411 |18.505 11.140
30° |1 1.0341 4.2485 7.8638 |[18.312 |16.953 4.2485 3.6985
2 3.0238 8.5641 |17.344 24249 |18.735 8.5641 4.6926
3 6.2200 |17.904 20.263 35.119 |24.861 |17.904 9.1066
4 8.2838 | 18.501 27.099 36.529 | 35567 |[18.501 14.653
60° |1 1.1531 4.2492 8.4234 | 18363 |16.743 4.2492 3.6641
2 3.0852 9.1477 |18.718 25.127 | 18.763 9.1477 4.6551
3 6.8868 |18.258 20.324 36.219 |25.805 |18.258 9.5801
4 9.8311 |[19.378 27.781 37.102 | 35.140 |[19.378 13.324
90° |1 1.2634 4.1982 8.9240 |18.492 |16.662 4.1982 3.6569
2 3.0085 9.2641 |19.834 25.782 | 18.769 9.2641 4.5580
3 7.4502 | 18.163 20.302 36.060 |26.492 |18.163 9.9013
4 10.159 20.481 28.166 38.655 |34.944 |20.481 10.917

are symmetrical with respect to the longitudinal center line. It is attributed to the
boundary conditions, geometry and material properties of the shallow shells under
consideration are symmetrical with respect to the longitudinal center line as well.
Furthermore, it is obviously that the maximum frequency parameters for the first,
second and third modes in each case occur at 3 =0, 3 = 0 and 9 = 30°, respectively.
The figures also show that that the node lines (i.e., lines with zero displacements) of
the mode shapes vary with respect to the fiber orientation. In addition, since the
length-to-radius ratio used in this investigation is small (a/R = 0.1), thus, the
differences between the frequency parameters are small as well.

Tables 8.11, 8.12 and 8.13 present the first four non-dimension frequency
parameters Q of certain two-layered, angle-ply [45°/—45°] shallow cylindrical,
spherical and hyperbolic paraboloidal shells with different boundary conditions and
length-to-radius ratios, respectively. Four different length-to-radius ratios i.e. a/
R =0.05,0.1, 0.15 and 0.2, corresponding to considerably to slightly shallow shells
are performed in the analysis. The shells are formed in rectangular planform with
following geometry and material properties: a/b = 1/2, h/a = 0.1, E\/E;, = 15,
R, = oo for shallow cylindrical shells, R, = R, for the spherical shells and R, = =R,
for the hyperbolic paraboloidal ones. Seven different boundary conditions, i.e.,
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Fig. 8.8 Mode shapes and frequency parameters for CFFF shallow cylindrical shells ([$], a/b = 1,
h/a = 0.05, R, = 0, a/R, = 0.1, E\/E, = 25)

FFFC, FFCC, FCCC, CCCC, CCCF, CCFF and CFFF are performed in the cal-
culation. It can be seen from the table that the augmentation of the length-to-radius
ratio leads to the increases of the frequency parameters. Table 8.11 also shows that
the results of shallow cylindrical shells cantilevered in the curved edge (CFFF) are
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Fig. 8.9 Mode shapes and frequency parameters for CFFF shallow spherical shells ([9], a/b = 1,

h/a = 0.05, a/R, = a/R, = 0.1, E|/E, = 25)

higher than those of straight edge cantilevered (FFFC). From Table 8.12, it can be
noticed that the results for the spherical shells with FFCC boundary conditions
equal to those of CCFF boundary conditions. The similar observation can be seen

from Tables 8.10 and 8.13 as well.
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Fig. 8.10 Mode shapes and frequency parameters for CFFF hyperbolic paraboloidal shallow
shells ([8], a/b = 1, h/a = 0.05, a/R, = 0.1, a/R, = =0.1, E|/E, = 25)

As the last case, parameter studies are carried out in Figs. 8.11 and 8.12 to
further investigate the effects of length-to-radius ratios a/R, and a/R, on the fre-
quency parameters Q of laminated shallow shells. Figure 8.11 depicts the lowest
three frequency parameters Q versus length-to-radius ratios a/R, and a/R, for a [0°/
90°] layered shallow shell with aspect ratio of a/b = 5 and CCCC boundary con-
ditions. The other shell parameters used in the study are: h/b =0.1, E\/E, = 15. It is
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Table 8.11 Frequency parameters Q for two-layered, angle-ply [45°/—45°] shallow cylindrical
shells with different boundary conditions and length-to-radius ratios (a/b = 1/2, h/a = 0.1, R, = o0,
E\/E; = 15)

a/R, |Mode |Boundary conditions
FFFC FFCC FCCC CCCC | CCCF CCFF CFFF
0.05 |1 0.3640 | 2.0340 3.6812 | 10.195 9.1129 [2.0340 |1.5413
2 2.0500 |4.4388 7.6647 | 13.482 | 11.007 44388 |2.7424
3 22144 |8.1038 |11.116 18.452 | 14.501 8.1038 | 5.0423
4 3.5598 9.4052 |13.149 23372 | 19.455 9.4052 | 8.5097
0.10 |1 0.3636 | 2.1008 3.8405 |10.323 9.1883 |2.1008 |1.6328
2 2.0169 | 4.4927 7.6996 | 13.551 |11.083 4.4927 |2.7494
3 22112 |8.1231 |11.192 18.484 | 14.542 8.1231 | 5.0531
4 3.5724 |9.4414 |13.162 23.406 | 19.473 9.4414 |8.5117
015 |1 0.3629 | 2.2068 4.0909 |10.532 9.3066 |2.2068 | 1.7725
2 1.9665 | 4.5838 7.7572 | 13.666 | 11.212 4.5838 |2.7610
3 22049 |8.1551 |11.317 18.536 | 14.611 8.1551 |5.0715
4 3.5903 |9.5079 |13.185 23.463 | 19.503 9.5079 |8.5150
020 |1 0.3620 | 2.3364 44152 |10.819 94581 |2.3364 |1.9466
2 1.9036 | 4.7125 7.8367 | 13.825 |11.398 4.7125  |2.7771
3 2.1953  |8.1996 | 11.488 18.609 | 14.708 8.1996 | 5.0981
4 3.6104 ]9.6029 |13.218 23.542 | 19.545 9.6029 |8.5196

Table 8.12 Frequency parameters Q for two-layered, angle-ply [45°/—45°] shallow spherical
shells with different boundary conditions and length-to-radius ratios (a/b = 1/2, h/a = 0.1, R, = R,,
EI/Ez = 15)

a/lR, | Mode |Boundary conditions
FFFC FFCC FCCC CCCC | CCCF CCFF CFFF
005 |1 0.3645 | 2.0354 3.6866 |10.290 9.1764 |2.0354 |1.5399
2 2.0508 |4.4309 7.6754 | 13.543 | 11.072 44309 |2.7416
3 22162 | 8.1005 11.130 18.488 | 14.546 8.1005 |5.0389
4 3.5581 [9.4006 |13.161 23.374 | 19.483 9.4006 | 8.5105
010 |1 0.3655 |2.1093 3.8597 |10.694 9.4250 |2.1093 1.6277
2 2.0196 |4.4727 7.7416 | 13.793 11.347 44727 | 2.7464
3 22188 [8.1290 | 11.246 18.626 | 14.720 8.1290 |5.0392
4 3.5660 [9.4297 |13.211 23.415 19.582 9.4297 |8.5143
0.15 1 0.3671 |2.2279 41272 | 11.334 9.7832 22279 |1.7618
2 1.9718 | 4.5443 7.8480 | 14.198 |11.816 4.5443 | 2.7543
3 22222 |8.1815 11.432 18.854 | 15.009 8.1815 |5.0396
4 3.5769 |9.4847 |13.295 23.483 19.747 9.4847 | 8.5199
020 |1 0.3692 |2.3752 4.4659 | 12.168 10.196 2.3752 | 1.9296
2 19115 |4.6421 7.9895 14.744 | 12.482 4.6421 |2.7652
3 22259 |8.2561 11.680 19.168 | 15.409 8.2561 |5.0396
4 3.5886 [9.5615 13.415 23.578 19.976 9.5615 | 8.5260
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Table 8.13 Frequency parameters Q for two-layered, angle-ply [45°/—45°] shallow hyperbolic
paraboloidal shells with different boundary conditions and length-to-radius ratios (a/b = 1/2,
h/a=0.1, R, = =R, E\/E; = 15)

a/lR, |Mode |Boundary conditions
FFFC FFCC FCCC CCCC |CCCF CCFF CFFF
005 |1 0.3650 | 2.0546 3.6876 |10.178 9.1143 |2.0546 |1.5421
2 2.0492 |4.4454 7.6736 | 13.476 | 11.005 44454 |2.7422
3 2.2213 [8.1058 11.111 18.454 | 14.503 8.1058 |5.0559
4 35615 [9.4232 |13.155 23.370 | 19.460 9.4232 | 8.5239
0.10 |1 0.3677 | 2.1351 3.8650 |10.258 9.1955 |2.1351 1.6340
2 2.0144 45292 7.7353 13.531 11.070 45292 |2.7488
3 2.2381 [8.1494 |11.170 18.491 14.548 8.1494 |5.1079
4 3.5788 |9.4751 13.189 23.400 |19.492 94751 | 8.5679
015 |1 0.3718 |2.2438 4.1437 | 10.389 9.3293 |2.2438 | 1.7680
2 1.9620 |4.6741 7.8368 | 13.621 11.179 4.6741 |2.7593
3 22633 |8.2275 11.269 18.551 14.624 8.2275 |5.1953
4 3.6036 [9.5554 |13.245 23.450 | 19.546 9.5554 | 8.6406
020 |1 0.3773  |2.3628 4.5045 10.571 9.5130 |2.3628 |1.9247
2 1.8974 | 4.8796 79764 |13.746 | 11.330 4.8796 |2.7734
3 22949  |8.3391 11.405 18.636 | 14.730 8.3391 |5.3187
4 3.6320 [9.6628 13.324 23.520 |19.621 9.6628 | 8.7404

seen that each frequency parameter Q of the shell increases with the increments of
length-to-radius ratios a/R, or a/R,. The figure also shows that the effects of length-
to-radius ratios a/R, and a/R,, on the frequency parameters Q of laminated shallow
shells vary with mode sequence.

Figure 8.12 shows the similar study for the shallow shell with aspect ratio of
a/b = 1. The figure shows that the fundamental frequency parameter Q of the shell
increases with the increase of length-to-radius ratios a/R, or a/R,. However, for the
second mode, the maximum and minimum frequency parameters occur at
alR, = 0.2, a/R, = —=0.2 and a/R, = 0, a/R, = 0.2, respectively. And for the third
mode, the minimum and maximum frequency parameters occur at a/R, = a/R, = 0
(plate) and a/R, = a/R, = 0.2 (spherical curvature), respectively. Figures 8.11 and
8.12 also reveal that the effects of length-to-radius ratios on the vibration charac-
teristics of shallow shells vary with aspect ratios.
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Fig. 8.11 The lowest three frequency parameters Q versus length-to-radius ratios a/R, and a/R,
for a [0°/90°] layered shallow shell with aspect ratio of a/b = 5
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