
Chapter 15

Modeling and Simulation

Lina Girdauskaite, Georg Haasemann, and Sybille Krzywinski

This chapter will describe the fundamental aspects and methods for the modeling

and simulation of textile reinforcement structures and fiber-reinforced plastic

composites (FRPCs). Due to the anisotropic material properties, the simulation of

the deformation behavior of textile reinforcement structures is a complex matter.

Various approaches will be introduced and simulation solutions based on kinematic

models will be discussed in detail. The focus of this chapter is to assist designers

and engineers in the design of preforms for complex FRPC components. To

correctly configure the composite material according to the expected strains by

means of Finite Element Models (FEM), extensive experimental tests for the

quantification of composite characteristics are necessary. This contribution will

therefore also address modeling and simulation methods based on multi-scale

approaches to the determination of special mechanical values of materials.

15.1 Introduction

The use of computer-assisted methods for the assessment of a component design

and its constructive realization has become crucial to achieve ever shorter product

development cycles. Apart from that, generating geometry models to describe the

product dimensions requires the characterization of material behavior of the textile
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composite reinforcements for purposes of modeling. Ensuring a wrinkle-free shap-

ing of textile reinforcement structures into strongly curved shapes, sometimes even

double-curved spatial contours, and realizing a load-adapted orientation of the

reinforcement yarns are essential criteria in the designing of FRPC components.

The mechanical behavior of textile reinforcement structures differs considerably

from that of monolithic materials. Due to the inhomogeneous structure made from

fibers and yarns, locally varying material properties are common. Globally varying

material properties arise from the production of textile reinforcements made from

approximately similar fibers and yarns but manufactured by means of different

fabric formation technologies. Due to the orientation of the reinforcement yarns, the

properties of the reinforcement structures are anisotropic.

The flexible, anisotropic behavior of textile reinforcements makes the modeling

of such structures for simulation processes for the purpose of specific designing and

construction quite complex. Established methods can be classified according to the

depth of analysis into the micro (fiber) level, the meso (yarn) level, and the macro

(fabric) level. While the structure in the micro and meso scales is inhomogeneous,

the macro scale allows a homogeneous approach.

The load-adapted orientation of the textile reinforcement structures of complex-

shape components imposes high engineering requirements not only on the compu-

tation and simulation software to be used but also on the machines and methods

suitable for production. If reinforcement structures are selected specifically and

provided efficient manufacture, fiber-reinforced plastic composites allow a more

cost-efficient component production in comparison to the metal materials. This

requires an adaption of the geometry and designing/constructive aspects to the

processed material. If this is taken into account, composite materials can be used

to realize complex component geometries which could (easily) be produced with

metal materials [1–6].

The current technologies used to manufacture textile preforms and precisely

position them in the mold for shaping/consolidation are not sufficiently economical

outside of aeronautics applications, regardless of component manufacturing method

and used matrix material [7–9]. Preform production costs constitute a significant

part of the total production costs.

Currently, the desired reproducibility of the preform quality and the resulting

structure-mechanical component properties are not achieved due to the significant

geometry alterations during the handling of textiles required in building the stack of

layers and in shaping and positioning in the consolidation mold. During shaping

into complex components, the load-adapted yarn orientation is partially lost, mak-

ing an increased use of material necessary to ensure the safety required by the

design. This is done at the expense of the lightweight construction effect and

increases costs due to over-dimensioning. Improving simulation tools for the

characterization of the deformation behavior of dry textile structures and fiber-

reinforced plastic composites is therefore a priority. For this, the material param-

eters needed for the simulation have to be determined.
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15.2 Deformation Behavior of Textile Semi-finished

Products

15.2.1 General Discussion

For the application of textile semi-finished products made from high-performance

fibers in FRPCs, it is crucial to realize the reinforcement of complex, sometimes

strongly curved geometries without the formation of wrinkles. To perform this task

without an excessive number of iterations in the future, a simulation of the defor-

mation is currently a priority goal. For this, parameters characterizing the defor-

mation behavior are required.

Tensile, flexural, and shear parameters as well as torsion rigidities [10–12] have
to be taken into account in the mechanical assessment of the deformation of textile

fabrics. A measuring method for the determination of torsion rigidities in textile

fabrics has been developed and tested for classical textile structures, and it is also

suitable for textiles made from high performance fibers. The currently available

experimental examinations will have to be extended in the future to specify exact

test conditions [13].

15.2.2 Tensile Values

The deformation behavior of textile fabrics under tensile loads results from the

mechanical properties of the processed fibers, yarns, and the construction design

[12]. Changes in length, related to the initial length of the sample, are referred to as

elongations [14].

Determining the tensile values by means of tensile tests on strips according to

DIN EN ISO 13934 T1 is explained in detail in Sect. 14.5.3.

Stress-strain behavior is tested using tensile tests on strips, preferably in two

directions usually corresponding with the direction of the reinforcement yarns. To

minimize the effects of transverse deformation the test can also be performed on

biaxial tensile testers (manufacturers include Zwick GmbH & Co. KG [15], Kato

Iron Works Co. Ltd [16]). The measuring sample is held in place by several clamps

located on all four sides. The clamps are arranged perpendicular to the load

direction or move proportional to the current change in length, controlled by

computers. Tensile force is measured in both directions. The biaxial tensile test

offers the possibility to test in an approximately load-adapted manner [17]. For the

deformation simulation, transverse normal stiffnesses can be measured in addition

to longitudinal normal stiffnesses. To gather test results with minimal spread, the

clamping variations and sample shape have to be defined precisely and observed

accurately. At the time of writing, no standards, but numerous recommendations on

biaxial tensile tests exist. To avoid transverse deformation and the influence of the
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material clamping, the literature mainly discusses application-related test forms and

force introductions [18–21].

15.2.3 Flexural Values

The flexural rigidity B is a measure of the resistance with which a textile fabric

counters the bending moment of a defined bending change [10]. Flexural rigidity in

textile fabrics depends on the fiber material used and the yarn construction. Both the

rigidity of the fibers in the yarn and the construction design of the fabric signifi-

cantly influence this specific value. The flexural rigidity of a fabric is commonly

measured using a cantilever process, which is detailed in Sect. 14.5.4.

Extensive research at the Institute of Textile Machinery and High Performance

Material Technology (ITM) at TU Dresden have shown that the currently used

devices for flexural testing with cantilever methods do not offer reproducible results

due to manual operation and the corresponding subjective influences. The visually

determined overhanging length is included in the calculation of flexural rigidity in

cubic power. Thus, even slight inaccuracies in reading the results and the insuffi-

ciently accurate scale marking can cause calculation errors of the flexural rigidity.

Therefore, a new flexural rigidity measuring system (ACPM 200) was developed at

the ITM [22]. The high degree of test process automation and analysis compensates

the mentioned disadvantages of previous devices. Furthermore, the influence of

local differences in rigidity across the sample width can be quantified. The devel-

oped device can be used for flexural rigidity tests of fabrics made from high-

performance fibers.

A provision of the measured values in the form of a moment-curvature curve is

required for the simulation of flexural behavior. This curve is not recorded in

flexural tests on the ACMP 200. EISCHEN et al. [23] gives an indirect method to

determine the moment-curvature curve, based on the cantilever method. In the first

step, the X-Y coordinates along the bending curve are recorded from a side view,

using a digital camera (Fig. 15.1).

The data is computer-processed to determine the value pairs of the moments and

curvatures along the overhang from the free endpoint to a locally defined endpoint.

The zero point of the coordinate system is located at the free end of the sample.

Programming the algorithm for the ascertainment of the bending moment—curva-

ture curve (Fig. 15.2) can be performed with MATLAB.

15.2.4 Shear Values

Shearing is the change of the angle of the crossing yarn systems caused by shear

loads. The yarn intersection points form a center of rotation in which the distance of

the points remains constant. Four intersection points are considered in Fig. 15.3.
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The originally rectangular arrangement of the points is distorted into a rhombus

under shear strain. The resulting angle φ is referred to as the shear angle. When the

deformation results in a maximum yarn compression, the shear angle reaches the

Fig. 15.1 Experimentally determined bending curve

Fig. 15.2 Bending curve calculated with ACPM 200 data
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critical value φkr. Further yarn compressions cannot take place in the plane. This

necessarily results in the creation of wrinkles in the fabrics.

The shear of textile fabrics can be distinguished into two essential types of shear:

simple and pure shear [26]. Figure 15.4 represents the different shear principles.

Numerous methods for the characterization of the shear behavior of fabrics have

been tested. However, not all of them are suitable for tests on reinforcement textiles

made from high-performance fibers.

In simple shear (Fig. 15.4a), shear loads cause not only angular changes between

the yarns, but also tensile strain caused by yarn torsion at the crossing points. The

distance between the two clamping lines remains constant during the entire shear

process, causing a change of the length of the unclamped sample edge. If a tensile

force is overlaid on shear deformation across the entire load cycle, a premature

buckling of the fabric can be prevented in classical textiles. Usually, classical

textiles tend to form wrinkles at low shear angles. As a shear angle of up to 8� is
not sufficient for tests on textile composite reinforcements, this test method is not

recommended. At greater angles, simple shear testing results in tensile deforma-

tions, which can only be realized by very high forces in textile composite rein-

forcements and are therefore irrelevant for the application of preforming.

Therefore, pure shear testing is recommended for tests on textile reinforcements

(Fig. 15.4b). In pure shear, only the angle between the yarns is changed without

yarn elongation. The distance between the clamping lines remains constant, and the

Fig. 15.3 Shear angles according to [12, 24, 25]

Fig. 15.4 Schematic representation of shear principles [26]: (a) simple shear, (b) pure shear
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sample edges do not change. This test principle is realized in bias extension tests

and shear frame tests. The realization of shear in bias-extension tests can be

performed on monaxial as well as biaxial tensile testers. They are tensile tests

using a sample cut at a 45� angle to the yarn directions [27, 28]. In section A

(Fig. 15.5), pure shear is measured. In section B, half the value of the shear

measured in section A is registered. Section C does not contribute to shear force.

During testing, the shear force—shear displacement diagram is recorded.

The NAISS Company developed the TEXPROOF textile testing machine, which

includes a shear test module (Fig. 15.6) [29]. The sample is affixed between two

clamps, one of which is fixed, while the other can travel on a curved course. This

course realizes the “Trellis” effect. The effect is triggered when the directions of

introduced tensile forces do not correspond to the main directions of the reinforce-

ment yarns. Shear with a change of the angle occurs until the reinforcement yarns

are oriented in force-direction or until a maximum angle is achieved, which

depends of the reinforcement geometry [29]. Independent of the sample thickness,

light barriers register the shear angle at a crease height of 3 mm perpendicular to

the plane.

In the shear frame test [26–28, 30–37], pure shear is realized by fixing a square

sample in a shear frame, clamped in a monaxial tensile tester at opposing corners,

and deformed into a rhombus to a preset deformation distance (Fig. 15.7). Mean-

while, the force plot is recorded along the entire deformation distance. The shear

angle can be calculated from the change in length of the rhombus diagonal.

Clamping influences on the shear result are minimized by fixing the sample on

needle bars [26]. For this test, the samples (300 mm� 300 mm) are needled onto the

shear frame without tension, and secured.

Fig. 15.5 Schematic of the bias-extension test [27]
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The deformation distance of the shear frame in these tests ranges from 60 mm

(for multiaxial non-crimp fabrics) to a maximum of 100 mm (for woven fabrics).

This is equivalent to shear angles of φ¼ 0� to φ¼ 28�, or φ¼ 0� to φ¼ 56.3�

respectively. At the ITM, test speed is set at vtest¼ 200 mm/min. During the shear

test, the shear force is recorded along the traveling distance and then depicted

graphically.

The shear angle can be calculated according to Eq. 15.1

φ ¼ 90� 2arccos
1ffiffiffi
2

p þ h

2a

� �
ð15:1Þ

Fig. 15.7 Test set-up and sample deformation principle

Fig. 15.6 Shear test module TEXPROOF [29]
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Here, φ is the shear angle in �, h is the deformation distance of the shear frame in

mm, and a is the side length of the shear frame in mm (200 mm in the test case).

At the beginning of the measurement series, reference measurements are taken

with the frame without inserted sample, determining the friction forces of the shear

frame during the test. The friction force is subtracted from all measurement curves

as a reference curve. The deformation of the samples is also recorded with a camera

during testing, and the wrinkling in Z direction is optically captured by means of the

shade. The camera is positioned facing the surface normal in the center of the

sample. At least three photographs per second are recommended to photographi-

cally record the sample over the entire test duration.

From the calculated shear force—shear angle diagrams, statements regarding the

expectable deformability can be derived. To analyze the shear behavior, critical

shear angles and the limiting angle are used, as they can be stored in the simulation

tools.

To determine the limiting angle, the shear force—shear angle plot is separated

into a linear and a non-linear zone as suggested by [38] (Fig. 15.8). The warning

angle φlim is defined at the transition from linear to non-linear zone.

Due to the force increase at the beginning of the shear test, the measured values

at the beginning of the curve are not considered. After this increase of force, the

curve transitions into a nearly linear section. This is chosen as the initial value of the

regression analysis. Usually, these are measured values in a range from 5� and 10�.
In the test example, the results from the difference between the measured curve and

the line are characterized by fluctuations under 3 %. In the transition from the linear

to the non-linear section, the deviation is significantly higher. The end of the linear

section is defined at a deviation of 5 % [26].

The critical shear angle of a fabric can be determined optically, as described

above. The first bulking of the sample is often subjectively detected visually

from the recorded images. It is however recommended to recognize wrinkles

Fig. 15.8 Shear force—shear angle diagram with φlim for a woven fabric
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instrumentally. Grey value image analysis or optical 3D deformation measurement

systems are suitable options to detect the formation of wrinkles [26, 31].

Currently, preforms for complex FRPC components are largely manufactured

manually. The textile composite reinforcements are shaped from the plane into the

desired component geometry without tension. Recent developments are concerned

with the automation of preform structuring. So-called “guidance systems” enable

an automated laying of the reinforcement structures. These create a primary tension

in the textile, which can influence wrinkling during deformation. To analyze this

influence, the test device described in the following section was developed [28].

The shear measuring device built in [28] consists of a shear frame equipped with

force sensors to determine primary tension and tensile force in warp and weft

direction (Fig. 15.9). This allows a measuring of the tensile forces occurring in

warp and weft direction during the test, and an allocation of the primary tensions to

the shear deformation.

To date, a variety of research efforts to determine suitable shear test methods and

to apply experimental results in modeling approaches related to the deformation

behavior have been conducted in parallel, but without co-ordination between

individual research groups. Therefore, academic and industrial researchers founded

an international group for developing and implementing a benchmarking in 2003

[31]. Shear frame and bias-extension tests for textile composite reinforcements with

symmetrical or asymmetrical reinforcement yarn arrangements were performed and

compared. The tests were realized on three identical woven fabrics by seven

international research institutions: (NU) Northwestern University, USA;

(UT) University of Twente, Netherlands; (LMSP) Laboratoire de Mécanique des

Systèmes et des Procédés, France; INSA-Lyon, France; (UML) University of

Massachusetts Lowell, USA; (UN) University of Nottingham, United Kingdom;

(KUL) Katholieke Universiteit Leuven, Belgium; and (HKUST) Hong Kong Uni-

versity of Science and Technology, China. Six of the research groups delivered

Fig. 15.9 Shear frame with

force sensors [28]
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results based on the use of a shear frame, and four of the groups submitted findings

based on bias-extension tests.

The efforts of the abovementioned [31] and other research works aim to provide

recommendation of suitable testing technology and a standardized test method. In

[31] no significant limitations were given regarding the conduct of the test.

The samples are square and adapted to the respective frame dimensions (145–

250 mm). More details regarding sample preparation are given below. Woven

fabrics are selected as test material, meaning that the reinforcement yarns are

oriented in 0�/90� direction to one another. The tests are performed at different

velocities ranging from 10 to 1,000 mm/min. The shear frame constructions are not

identical (Fig. 15.10), but all the frames share certain characteristics. The textile

reinforcements are held by the shear frame clamping mechanisms in a fashion that

prevents slipping during the test. The friction between reinforcement structure and

clamping is not considered. To eliminate the share of the force resulting from the

shear of the selvedge reinforcement yarns, HKUST removed all clamped selvedge

yarns running parallel to the clamping direction. Likewise, UT eliminated all

reinforcement yarns arranged at a defined distance parallel to clamping direction,

in order to prevent premature crease formation.

For bias-extension tests, samples of different sizes are used as well, and tested at

different machine speeds.

Fig. 15.10 Shear frames used [31]: (a) HKUST, (b) KUL, (c) UML, (d) UT, (e) LMSP, (f) UN
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The results of the study have shown that it is possible to use shear frames to

obtain valuable experimental data for the characterization of the shear behavior of

reinforcement structures, despite different test engineering preconditions. The

mechanical conditioning of the sample can improve repeatability, as shown by

the results of UML and KUL. All samples tested by UML were mechanically

conditioned and gave results showing lower fluctuations. Using mechanical condi-

tioning, the tensions remaining in the reinforcement structure from weaving are

compensated (Fig. 15.11).

In order to compare different shear frame constructions, shear frame and/or

sample sizes, and designs, normalization methods [27, 31, 39] were developed

and presented (Fig. 15.12). After applying the normalization methods described in

the study, test results are similar in the range up to 35�, which is relevant for the

deformation of textile reinforcements (Fig. 15.12).

Parallel to calculating the shear angle, optical methods are used to record

wrinkle formation. As a result, it can be stated that—up to a shear angle of 35� in
shear frame tests, and up to 30� in bias-extension tests—plain-woven fabrics

display consistent matches with the shear angle determination based on the tra-

versal path. At greater angles, optical wrinkling detection is recommended.

So far, this chapter has established the lack of a suitable testing standard.

Currently, global research is being conducted to understand the effects of primary

tension [28, 31].

As shown above, a textile-physical characterization of textile reinforcements

made from high-performance fibers requires adjustments of the textile testing

technology, as these textile reinforcements differ considerably from classic fabrics

with regard to geometrical and structural construction.

Fig. 15.11 Shear force—shear angle curves [31]
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In summary, it can be said that the deformation behavior of fabrics made from

yarns produced from continuous high-performance fibers consist in shares of yarn

elongation, yarn extension, yarn displacement (Fig. 15.13), and surface shearing

[12, 24, 25, 38, 40]. Shear, which is the single most important specific value for the

description of the deformation behavior of textile reinforcements, has been char-

acterized in details. The other deformation mechanisms are described in the fol-

lowing sections.

15.2.4.1 Yarn Elongation

Woven fabrics, knitted fabrics with biaxial or multiaxial reinforcement yarns, or

non-crimp fabrics made from high-performance yarns are characterized by a

minimal elongation at tensions below 100 N (which is the value required for

draping). Therefore, elongation has only a miniscule share in the deformation of

the textile fabric [12, 25, 28].

15.2.4.2 Yarn Extension

In fabrics produced by the interlacing (e.g. woven fabrics, braided fabrics) or inter-

looping (knitted fabrics), the yarns are not oriented straight and stretched, but in

waves, sinuses, or loops. Due to the change of curvature radii under loads, the yarns

of the semi-finished product are stretched [25, 26]. Figure 15.13 shows the yarn

stretching of a woven fabric.

Fig. 15.12 Shear force—shear angle curves after normalization based on frame length [31]
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15.2.4.3 Yarn Displacement

Yarn displacement often occurs in fabrics made from high-performance fiber

materials at low yarn-yarn friction. Such fabrics include multiaxial non-crimp

fabrics and fabrics with long floating loops (twill and atlas-woven fabrics).

The shear behavior is therefore the most important specific deformation value

for modeling and simulating the shaping process of textile reinforcement structures

made from high-performance fibers. The aim is to support the constructive com-

ponent design in high-performance fiber composite application with an informed

selection of reinforcement structures. Here, precise previous knowledge of the

degree of crease-free shaping of dry reinforcement structures is crucial.

Model examination for a comparison of the deformation behavior of dry rein-

forcement structures can be performed by means of push-out tests.

Fig. 15.13 Basic deforming mechanisms of textile reinforcement structures [24, 25]
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A test setup constructed especially for the push-out test is integrated into a

tensile tester (Fig. 15.14). In this setup, a cylindrically tapered hemisphere (diam-

eter: 100 mm) pushes the textile to be tested through a ring. This ring is exchange-

able, but has an internal diameter of 120 mm, and an edge radius of 2 mm in the case

of the performed tests [8]. The squarely cut textile to be tested is fixed by spring-

attached clamps at four points and repositioned by them in a defined manner during

the test. This clamping mechanism only slightly impedes the deformation of the

textile semi-finished product and does not significantly influence the course of the

measurement curve. The push-out punch and ring with its bracket are clamped

respectively in the bottom and top clamping device of a tensile tester (e.g. the

Zwick GmbH Z100). The test records and analyses the push-out force in relation to

the traverse path.

15.3 Computer-Assisted Simulation of the Deformation

Behavior of Textile Composite Reinforcements

15.3.1 Models for Simulating the Deformation Behavior
Simulation

The achievable draping behavior for a wrinkle-free shaping in complex components

is of equal importance as the load-adapted reinforcement by means of single- or

multilayer structures. Here, the reinforcement-adjusted yarn orientation is to be

retained after shaping into the desired component contour in order to avoid a

deterioration of the mechanical properties of the component by an undefined

placement of the reinforcement textile.

Fig. 15.14 (a) 3D model of the push-out test setup, (b) push-out test performed on a multilayered

knitted fabric [8]
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In general, two variations of shaping are distinguished. In the first case, a

rectangular cutting of the textile reinforcement is draped into a mold that matches

the desired component geometry. In combination with yarn extension, and

depending on the curvature, this can cause sometimes considerable yarn displace-

ment and surface shearing, affecting the desired yarn orientation. In areas where

wrinkles occur, the reinforcement structure is incised and extensively overlapped

without a joining process, resulting in according with thickenings and higher

component masses.

In the second case, ready-made technology is used to project the complex

geometry in the plane as undistorted as possible by means of a partition into several

smaller cuts. To produce a preform largely matching the component contour, the

aim is to approximately project the component geometry by as few partial cuts as

possible. However, further draping is required for the shaping. Angle and distance

alterations of the yarns are inevitable in the process. To achieve the desired 3D

component shape in a load-adapted design without later additional process steps,

the smaller cuts are designed directly on the virtual geometry model [12].

The individual smaller cuts are placed in the mold either manually or by robots,

or are joined into near-net shape preforms. Usually, the joining sections change the

wall thickness in the joint zone.

According to [38, 41, 42] the following approximate classification can be

derived for the modeling of the draping behavior of bidirectional textiles:

• the kinematic model,

• the elasticity model, and

• the particle model

The kinematic model depicts the meso structure (yarn level) of the textile by a

geometric pattern with regard to the geometric boundary conditions on a surface.

In the elasticity model the textile semi-finished products, which are largely

represented anisotropically and partly orthotropically, are discretized in order to

determine the deformation and the yarn orientation by means of the Finite Element

Method.

The particle model represents microscopic interactions describing the properties

of the macroscopic system. Each yarn intersection point is represented by a particle

possessing the physical characteristics of the reinforcement structure. The most

probable arrangement of the intersection points is determined by establishing the

minimum particle energy. This approach does not require a flat placement of the

textile, allowing a simulation of the free deformation of textiles under the influence

of gravity. The fiber bending is factored in.

CHERIF [38] develops a significant contribution to the drape-ability simulation

of woven fabrics and multiaxial non-crimp fabrics on the basis of the Finite

Element Method. Apart from the anisotropic material behavior, production-

technological constrains are considered as well. To describe the mechanical mate-

rial behavior, a four-noded shell element is used. The macromechanical model

allows the consideration of high and non-linear shear deformation degrees at

negligible elongations. Extensive experiments serve to determine the required
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specific values. Furthermore, geometrical non-linearities caused by the contact of

reinforcement structure and shaping mold, as well as boundary conditions varying

with the proceeding draping process can be simulated. To omit a repetition of any

detailed deliberations on the subject, the respective literature is recommended for

in-depth information.

Beyond this, the textile structure can be depicted as precisely as possible by

means of a unit cell (RVE—Representative Volume Element) [43–48]. Determining

the modeling parameters can be an elaborate process, but given sufficient param-

etrization, can be used to represent a variety of structures of the same fabric

formation process. The modeling of the entire structure to simulate draping behav-

ior on different component geometries still requires enormous computing power.

Kinematic models for the simulation of the deformation behavior of reinforce-

ment structures have disadvantages. Even so, short computing times and the

precision of calculation results make them increasingly relevant for practical

applications due. Both factors may vary depending on component complexity.

The disadvantages include [38]:

• Only single-layer structures are simulated. Frictions between the layers during

simultaneous draping of several layers are not considered.

• The effect of any drape effectors or other shaping molds on the draping result

cannot be simulated.

• The influence of a guidance system for a reproducible, preferably wrinkle-free

shaping is disregarded.

Despite worldwide research efforts for the description of draping processes by

means of FEM, the currently commercially available simulation tools require

extensive computing times and considerable experimental effort for the determi-

nation of the required specific values.

15.3.2 Kinematic Modeling of the Deformation Behavior

As established above, shearing behavior is the most important specific value to be

considered in the simulation of the deformation behavior of dry reinforcement

structures. When describing the deformation, the effects of yarn elongation and

yarn extension are usually omitted. In the kinematic model, only deformations

based on shear are considered. The placement of the bidirectional reinforcement

structure on the surface of the form is simulated. The model delivers geometrical

information on the shear angles required for the deformation. The mechanical

properties of the reinforcement structure are not entered in the modeling

[42, 49, 50].

The crossing points of the yarn axes between the yarns are modeled as joints.

Between these intersection points, the yarns behave as beams with constant length.

A geometric algorithm allows the determination of the crossing points of the

reinforcement structure, if the location of the point on the shape geometry and the
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fiber orientation direction in the point are known. The yarns between the joins are

geodesically placed on the geometry. The resulting angles in the joints match the

shear angles of the reinforcement structure. Shear limitations for the realization of a

wrinkle-free draping may prevent the placement of the intersection points. This is

always the case if the critical shear angle stored in the simulation tool is exceeded

[42, 49].

Using a comparison of the calculated local shear angles to the critical shear

angles of the textile semi-finished products to be used (which can differ greatly

between multilayered knitted fabrics, woven fabrics, and multiaxial non-crimp

fabrics), a sensible default is set for the cut parts. Usually, these algorithms do

not consider loads or friction effects.

FiberSIM® [51], DesignConcept 3D (DC3D) [52], PAM Quickform [53], Com-
posite Part Design (CPD) [54] are examples of commercial software packages on a

geometrical basis, and contain interfaces with FE-calculation programs such as

ANSYS [55] or MSC-Patran and MSC-Nastran® [56]. With these, the yarn orienta-

tion can be simulated and represented on the basis of a geometrically sufficiently

defined reinforcement structure. The result can be transferred into FE-calculation

programs and is used to recalculate load cases.

The FiberSIM® and DC3D software solutions are examined with regard to

deformation simulation and cut generation in [57]. The simulations are based on

the kinematic model.

The textile preform has to match the desired component geometry as precisely as

possible. The desired component thickness is an exception, as it is only achieved

after the consolidation process. The aim is to design the cutting of the reinforcement

textile in a manner that creates minimum material compressions or extensions,

adheres to the set reinforcement direction, and ensures a wrinkle-free deformation.

The 3D data required for cut generation of the projected components can be created

with commercially available 3D-CAD software solutions (such as CATIA [53],

SolidWorks [58]) or implemented into the simulation software via neutral interface

formats (e.g. IGES and STEP).

Using the DC3D software solution [52], the user can create virtual 3D geometry

models and conduct feasibility analyses based on an automated cutting generation.

The cutting contours for the realization of the desired component shape are based

on the 3D geometry. To this end, cutting boundaries are set on the surface. In order

to be able to represent the cutting designed in 3D in the plane, the surfaces are

triangulated. Triangulation refers to the partition of an area into triangles. Trian-

gulation can be performed curvature-dependently or uniformly.

The simulation criterion consists of minimizing changes to the edge length of the

triangles, the angles in the triangle, and the areas of the triangles [12, 57]. The

flattening result is influenced significantly by two boundary conditions: the starting
point and the fiber orientation direction [40]. In assembling, the term flattening is

used for the representation of the 3D-developed cut parts in the plane.

As reinforcement textiles can have an anisotropic stress-strain behavior, fiber

orientations play a crucial part. Textile-reinforced plastic components are
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differently loaded in practice, and therefore the reinforcement yarns have to be

oriented according to the structure-mechanical design.

Fiber orientation directions and starting point of the simulation are varied for a

reference geometry (hemisphere with flat contact surface) (Fig. 15.15).

The flattening analysis shows which shear angles are necessary to drape the

cutting onto the shaping mold. By comparing the experimentally established critical

shear angles of the textile reinforcements, the designer can judge whether the

selected cutting determination is suitable for the component geometry to be real-

ized. The designer has to decide whether the shear-induced local displacements of

the reinforcement yarns are permissible for the load-adapted component design.

To achieve the desired wall thickness of the component, several layers of

reinforcement structure are often required. The component geometry therefore

has to be adjusted according to layer thickness in the compacted state, in order to

ensure accurate cutting generation.

The FiberSIM® software is currently in use by leading manufacturers in aero-

nautics to develop fiber-reinforced plastic composite constructions.

The cutting contours are derived from the 3D geometry. As mentioned above,

the cut boundaries are defined on the surface for this purpose. FiberSIM® works

directly on the CAD representation of the component, evaluating the native geom-

etry without transformation and approximation [51]. After the simulation of the

reinforcement structure placement on the respective geometry, information

concerning the necessary shear angles becomes available [42, 49]. The simulation

results are represented on the surface of the geometry by means of a set of curves

known as “fiber trajectories”, which reflect the final state of the semi-finished

Fig. 15.15 Cuttings under variation of fiber orientation and simulations starting point [57]
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product after draping. For biaxially reinforced structures, the result is a grid on the

model surface.

FiberSIM® contains a material database in which the basic specific values and

characteristic values for a description of the shear behavior of reinforcement

textiles can be stored. The calculation results are compared to the limiting angle

and critical angle values under shear loads, stored in the database. The “fiber

trajectories” are shown color-scaled. Areas visualized in blue display low strain, a

yellow color signalizes that the limiting shear angle has already been reached, while

a red color indicates that no wrinkle-free draping is possible. Figure 15.16a gives an

example of this.

By means of the analysis of deviations from the selected fiber orientation

direction, FiberSIM® offers additional control to avoid multiple iterations during

preform development. One example is given in Fig. 15.16b.

As the surface area of the planar cutting deviates greatly from the surface area of

the counterpart in 3D, problems during draping can be identified early on

(Fig. 15.17). This proves that variations of the starting point can contribute to an

optimization of the flattening result.

The deformation analysis results of both software solutions are similar

(Fig. 15.18). As can be seen from Fig. 15.19 and Table 15.1, the calculated cuttings

of both software solutions can differ significantly.

The examined software solutions are based on different algorithms (Fishnet—
FiberSIM®, Mosaic—DC3D), which are explained and discussed below [42, 49,

59–62].

Both algorithms use the basis algorithm of the kinematic model. All pointsex on a

double-curved geometry surface can be represented parametrically with surface

coordinates ui [42]

x
! ¼ x

!
u1; u2ð Þ: ð15:2Þ

The elementary length dS of a surface segment between two closely located points

is given by the first surface fundamental form

Fig. 15.16 (a) Shear deformation on the cutting, (b) Deviation from the defined orientation of the

reinforcement yarns [57]
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Fig. 15.17 Cuttings under variation of the fiber orientation and the simulation starting point [57]

Fig. 15.18 Deformation analysis [57]: (a) DC3D, (b) FiberSIM®
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dS2 ¼ Gi jduidu j ð15:3Þ

with the coefficients

Gi j ¼ ∂x
!

∂ui
� ∂x

!

∂u j
: ð15:4Þ

In Eq. 15.3, the Einstein notation is used, which states that all indices occurring

twice in a term are automatically summed up.

The biaxially reinforced textile structure is described by coordinates vi along the
directions of the reinforcement yarns. The elementary length ds of a section of the

deformed textile is given by

ds2 ¼ δi j þ 2Ei j

� �
dvidv j: ð15:5Þ

Eij describes the coordinates of the Green-Lagrange tensor with

E11 ¼ 0,E22 ¼ 0 no fiber elongationð Þ and 2E12 ¼ cos α; ð15:6Þ

i.e. it is assumed that the deformation of the biaxially reinforced textile structure

under shear is caused by pure shear at a fiber angle α. When placing the textile on

the surface, the length of one surface segment is equal to that of the corresponding

textile section, therefore

Fig. 15.19 Comparison of cuttings developed with FiberSIM® (dotted line) and DC3D (contin-
uous line) [57]: (a) starting point at the cut tip (apex), fiber orientation 0� to warp direction, (b)

starting point at the cut tip (apex), fiber orientation 45� to warp direction, (c) starting point at the

center of the area of the cut, fiber orientation 0� to warp direction, (d) starting point at the center of
the area, fiber orientation 45� to warp direction

Table 15.1 Surface area of

the cuts shown in Fig. 15.19
Cutting

Cutting area size (mm2)

Area difference (%)DC3D FiberSIM®

(a) 63111.5 63980.5 1.4

(b) 63111.5 69097.5 9.5

(c) 63598.6 64379.5 1.2

(d) 63598.6 67261.0 5.7
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dS ¼ ds ð15:7Þ

applies, from which follows

Gi jduidu j ¼ δi j þ 2Ei j

� �
dvidv j: ð15:8Þ

Using the Einstein notation, and insertion into Eq. (15.8) result in

G11du
2
1 þ 2G12du1du2 þ G22du

2
2 ¼ dv21 þ 2 cos αdv1dv2 þ dv22: ð15:9Þ

The draping of a biaxially reinforced textile structure onto the surface is described

by the equation

ui ¼ ui v1; v2ð Þ: ð15:10Þ

Inserting

du1 � ∂u1
∂v1

dv1 þ ∂u1
∂v2

dv2 and

du2 � ∂u2
∂v1

dv1 þ ∂u2
∂v2

dv2

ð15:11Þ

into Eq. (15.9) results in

ds2 ¼ G11
∂u1
∂v1

� �2
þ 2G12

∂u1
∂v1

∂u2
∂v1

þ G22

∂u2
∂v1

� �2
" #

dv21 þ � � �

� � � þ G11
∂u1
∂v2

� �2
þ 2G12

∂u1
∂v2

∂u2
∂v2

þ G22

∂u2
∂v2

� �2
" #

dv22 þ � � �

� � � þ 2 G11

∂u1
∂v1

∂u1
∂v2

þ G12

∂u1
∂v1

∂u2
∂v2

þ ∂u1
∂v2

∂u2
∂v1

� �
þ G22

∂u2
∂v1

∂u2
∂v2

	 

dv1dv2 ¼ � � �

. . . ¼ dv21 þ 2 cos αdv1dv2 þ dv22:

ð15:12Þ

A comparison of the coefficients gives

G11
∂u1
∂v1

� �2
þ 2G12

∂u1
∂v1

∂u2
∂v1

þ G22

∂u2
∂v1

� �2

¼ 1

G11
∂u1
∂v2

� �2
þ 2G12

∂u1
∂v2

∂u2
∂v2

þ G22

∂u2
∂v2

� �2

¼ 1

G11

∂u1
∂v1

∂u1
∂v2

þ G12

∂u1
∂v1

∂u2
∂v2

þ ∂u1
∂v2

∂u2
∂v1

� �
þ G22

∂u2
∂v1

∂u2
∂v2

¼ cos α:

ð15:13Þ

The initial and boundary conditions are necessary to solve the equations of the

kinematic model numerically. As boundary conditions for
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v1 ¼ 0 and v2 ¼ 0 ð15:14Þ

the yarns are to be placed geodesically. To numerically solve the set of non-linear

equations (15.13), the biaxially reinforced textile structure is discretized in a mesh

of edge length d, so that the node (i, j) has the coordinates

v1 ¼ id and

v2 ¼ jd:
ð15:15Þ

The surface coordinates or the spatial coordinates can then be calculated for each

node, from which the angle α can be determined [42, 49].

The draping is simulated in five steps:

1. The starting point for the placement of the reinforcement structure on the surface

of the geometry is selected

2. The draping direction for the yarns is determined as v2¼ 0,

3. The yarns with v2¼ 0 are placed on the surface geometry along a geodesic curve,

4. Steps 2 and 3 are repeated for the yarns with v1¼ 0,

5. All nodes (i, j) are traversed, and the conditions set by Eq. (15.13) will be

complied for each cell with nodes (i, j) and (i� 1, j� 1)

Figure 15.20 illustrates the kinematic model for reinforcement yarns during the

draping of a bidirectional reinforcement structure. For the illustration of u1 (v1, v2),
different approaches can be used [40, 49], which are described below.

In the fishnet algorithm, the bidirectionally reinforced textile structure is

represented by a web of intersecting yarns arranged on the surface along geodesic

curves. For this, a freely selected cell will be considered below (Fig. 15.20).

Initially it is assumed that the length of the edges originating in the left intersection

Fig. 15.20 Kinematic simulation of draping on a spherical surface, discretization of the bidirec-

tional textile [42, 49, 57]
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point is known. The initial direction of the geodesic edges beginning in the upper

and lower intersection point are determined, whose terminal points have to meet.

The calculation rule is framed as an optimization problem of the distance between

two terminal points.

As the analysis of the objective function includes the integration of a differential

for geodesic curves of given length d, the problem is not solvable analytically.

Therefore, Gradient and Hessian matrix are calculated numerically by the finite

difference method [49]. A geodesic edge is determined by parametrically defining

the reinforcement yarn on the surface by Eq. (15.2), using

u1 ¼ u1 vð Þ
u2 ¼ u2 vð Þ ð15:16Þ

This designates the arc length v. If

d x
!

dv
� d x

!

dv
¼ 1 ð15:17Þ

and

d x
!

dv
¼ ∂x

!

∂u1
u

0
1 þ

∂x
!

∂u2
u

0
2; ð15:18Þ

the reinforcement yarn is inextensible.

The yarn is referred to as geodesic if the position-dependent normal to the curve

and the normal to the surface coincide [49]. This can be phrased as follows:

d2 x
!

dv2
¼ 1

ρ
n: ð15:19Þ

This describes the curvature 1/ρ. With the equation

n ¼ J

J
�� �� ð15:20Þ

the normal to the surface is calculated, where

J ¼ ∂x
!

∂u1
� ∂x

!

∂u2
: ð15:21Þ

The differentiation of the condition (15.17) results in
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∂x
!

∂uk
u

0
k

 !
∂2

x
!

∂ui∂u j
u

0
iu

0
j þ

∂x
!

∂ui
u

00
i

 !
¼ 0: ð15:22Þ

Considering Eq. (15.19),

u
00
1

u
00
2

1=ρ

8<:
9=; ¼ � ∂x

!

∂u1

∂x
!

∂u2
� n

" #�1
∂2

x
!

∂ui∂u j
u

0
iu

0
j

( )
ð15:23Þ

follows.

The first two rows are differentials of the second order for curvilineal coordi-

nates uk0, while the third row gives the curvature. The initial conditions for

Eq. (15.23) in the starting point are u1 (0) and u2 (0), where du2/du1 are the adequate
values for the initial orientation direction. The values u01 (0) and u02 (0) include the
normalization conditions (15.17) [49].

If the surface of a model geometry is described with planar triangles, the mosaic
algorithm [49, 62] is used. For complex surfaces, a multitude of elements are

required for a precise approximation of a curvature. A geodesic curve is reduced

to a zigzag line by means of such mosaic surfaces (Fig. 15.21).

If the starting point and fiber orientation are given, consecutive node points on

the edges of the mosaic can be defined. The fiber direction at the beginning of the

consequent triangle results from the observation that the angle between the yarn and

the edge does not change between triangles (α¼ β in Fig. 15.21). If the trajectories

AB and AC in any given cell ABCD are known, the initial directions of the

trajectories BD and CD have to be defined in a way that ensures that the end points

coincide at D. In turn, this is equivalent to an optimization problem, which has

previously been explained for the fishnet algorithm [49]. The quality of the mosaic

algorithm is impaired by a constant error caused by the discretization of the surface.

In summary it can be stated that the determination of the optimum between

structure-mechanical requirements and shaping possibilities (separation into indi-

vidual cuttings) has to be made accurately for each individual case. For this

Fig. 15.21 Changes of

fiber orientation in kink

points [49, 57]
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purpose, the abovementioned and tested simulation tools can be very helpful and

reduce required development times.

15.3.3 Local Structural Fixations for the Defined Draping
of Textile Structures on Strongly Curved Surfaces

During the shaping and placing of textile reinforcements for the construction of a

preform, deformability plays a crucial role. As the flexible textile fabrics are very

sensitive, the reinforcement yarns are at risk of being displaced in an undefined

manner during handling. In addition, selvedge yarns (especially in acute-angled

outlines) can become disengaged or displaced. To counter these effects, fixation

agents in the form of binders can be applied to the textile reinforcements. If the

binder is applied to the entire surface, the form stability of the textile is increased

significantly, which usually limits the wrinkle-free deformation capacity. For this

reason, only sections of the pre-assembled textile structures are fixated [63–65].

For this purpose, a method that can contribute greatly to an improvement of the

preforming process will be portrayed. The developed and patented method for the

structure fixation [66] realizes tailor-made local fixations with due regard to the 3D

component geometry. Thus, it can solve current, sometimes substantial problems of

cutting, handling, and shaping along the preform production chain. The following

features characterize this software-based method, according to [66]:

• adjustment of the structural fixation according to the calculated cutting

geometries,

• identification of shear deformation during spatial arrangement of the cutting into

the preform geometry,

• fixation of the sections exposed to small strains/displacement by deformation,

• application of the fixation agents in a grid-like pattern or intermittently (the

manner of fixation depends of the respective fabric structures and the fiber

materials to be processed),

• minimization of the amount of the fixation agent with regard to the usually

porous structure of the textile structure, continuous or discontinuous perfor-

mance of the structural fixation in the preform production chain,

• contour-adapted stacking of fixated cuttings with due regard to the sectional

drawing, and

• observance of the matrix compatibility of the fixation agent.

Sections exposed only to small displacements by the deformation are suitable as

local fixation areas. These sections can be identified by calculation and flattening

analyses (see Sect. 15.3.2).

The fixated areas can be arranged over lines or over areas. For the hemispherical

reference geometry, the structural fixation is adjusted over lines, as shown in

Fig. 15.22. The fixation lines run over the cutting in crossed and longitudinal
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lines, fixating all yarns running transversely and lengthwise respectively. This

prevents the yarns from falling apart without fixation the edges of the cutting

[64]. The amount of fixation agent is minimized in this method to achieve good

deformability of the reinforcement structures into the preform and avoid negative

influences on the specific mechanical values of the composite.

Due to the significantly different fabric structures, any measures of structural

fixation have to be adjusted to the textiles in question. For this purpose, they are

modeled with sufficient accuracy (Fig. 15.23a), based on microscopic experiments.

The illustration uses a woven reinforcement fabric as an example.

The following parameters are commonly required for a 3D fabric modeling:

• width of the warp and weft yarns,

• fabrics thickness,

• distance between yarn centers normal to the woven fabric plane, and

• distance between yarn centers in the woven fabric plane

The modeled woven reinforcement textiles are shown in Fig. 15.23b.

By modeling the woven fabrics, the cutting contours and structures of the textiles

can be “coupled” with each other, in order to adjust the zones of local fixation to the

structure (Fig. 15.24). The applied method of structural modeling is expensive and

therefore rarely realizable for the multitude of used reinforcement structures in

practice. Therefore, another method allowing the virtual control of the reinforce-

ment yarn position is being developed. A grid representing the yarn course of the

Fig. 15.22 Determination of the fixation lines of different cuttings [57]
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reinforcement structure is drawn on the 2D cutting calculated in DC3D. Adjusted
for strain, this is then projected onto the virtual shaping tool (Fig. 15.24b).

The structural modeling indicates the positions of reinforcement structure where

binder has to be applied in order to realize the determined fixation patterns and

fixate all yarns of the cutting.

15.4 Composite Material Modeling

The mechanical behavior of fiber-reinforced composite materials differs fundamen-

tally from that of classical, monolithic materials. The significant distinguishing

features are:

• locally varying material properties due to inhomogeneous composite structure,

• globally varying material properties due to changing composite configuration,

and

• anisotropic material properties caused by the orientation of the reinforcement

fibers

Fig. 15.23 (a) Distances between yarn centers: (top) normal distance to woven fabric plane,

(bottom) in the woven fabric plane, (b) 3D woven fabric models (top view)

Fig. 15.24 (a) Matching the woven fabric to the reference geometry, binder application, (b)

virtual control of the reinforcement yarns, binder application
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The major challenge for the designer is to find the optimum configuration of the

composite material with regard to the expected load on a component. To analyze

the selected component design concerning criteria such as maximum deformation

or strain, FE calculation are used. For the FE models, the geometry and the

constitutive laws have to be given, according to the respective material. The

adaptivity and resulting multitude of possible configurations of textile composite

materials and the complex material behavior require extensive experimental efforts

to quantify composite properties, especially when considering the physically

nonlinear behavior. Alternatively, both mechanical and other specific material

values can be determined much more efficiently with modeling and simulation

methods based on a multi-scale approach.

The hierarchical structure of composite materials, as shown in Fig. 15.25, allows

a clear distinction between different scales, which are defined by characteristic

dimensions.

Accordingly, a distinction will be drawn here between:

• Micromechanics (<0.1 mm), which describes e.g. the influence of interfaces, or

the interaction of fiber filaments and matrix,

• Mesomechanics (0.1 mm–1.0 cm), which captures the properties of the yarn/

matrix bundles, their interactions, and matrix cracks, and

• Macromechanics (>1 cm) for the determination of component behavior under

defined external loads

The bracketed dimensions match characteristic dimensions for the respective

level of observation.

On the one hand, a multi-scale simulation is based on the constitutive relations of

composite constituents, which are often characterized by a simple formulation and

well-known quantification. On the other hand, the modeling, e.g. based on the FEM,

represents the composite architecture. Homogenization then refers to the transition

Fig. 15.25 Definition of micro, meso, and macro scale, based on the hierarchical structure of

composite materials
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from one scale to the next coarser scale, i.e. from micro to meso, or from meso to

macro. The reversal, which is the transition from one scale into the next finer scale

is equivalent to a localization. With this approach and the corresponding methods,

variations of the specific geometrical or material values in the micro and meso

scales allow a targeted adjustment of the macroscopic properties of the composite

without experiments.

In the following, the modeling of textile-reinforced composite materials on the

micro and meso level will be described in greater detail. This includes the geomet-

rical analysis of the composite on the respective observation level as well as the

application of special modeling methods to efficiently generate FE models for the

representation of complex reinforcement architectures.

15.4.1 Modeling the Fiber/Matrix Composite (Micro-level)

To simulate the material behavior on the micro-level and calculate the effective

properties of the meso-level by means of FE-based homogenization methods, the

composite (which consist of high-performance filaments and surrounding plastics)

has to be modeled. The assumptions and prerequisites made for that purpose are

described below.

The impregnation of the meshed non-crimp fabric structure with matrix material

depends on the technological parameters of the production method. Here, it is

assumed that the space between filaments is completely filled with matrix material.

As shown by the CT scan in Fig. 15.26, the filaments are arranged parallel in a

roving, without local irregularities.

Fig. 15.26 CT scan of the

composite
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Thus, for the microscopic modeling of the representative volume element

(RVE), the fiber/matrix area is considered as a UD composite.

The irregular arrangement of the filaments in the cross-section of the roving can

be seen in Fig. 15.28, showing a polished composite section. Due to the high

number of filaments and their statistical distribution the effective mechanical

properties perpendicular to the roving alignment are independent of the orientation.

Therefore, a transversely isotropic material law can be used to describe the

mechanical behavior. To avoid an elaborate modeling of the statistical distribution,

an equivalent, idealized UD composite with regularly arranged filaments, for which

a unit cell can be defined as RVE, is considered. One prerequisite for the trans-

versely isotropic material is an equally spaced positioning of neighboring filaments.

Several possibilities are available to determine the unit cell area, where the case of

an oblique parallelepiped is shown in Fig. 15.29.

Due to the periodic structure, the exterior dimensions of the model in filament

direction have no influence on the effective properties and can therefore be selected

freely. The acute angle enclosed by the sidelines of the cross-section is 60�. The
length a of these lines can be calculated by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2
ffiffiffi
3

p
φ

r
d f ð15:24Þ

if the filament diameter df and the fiber volume content φ are known.

15.4.2 Modeling of the Textile in the Composite (Meso-level)

15.4.2.1 Geometrical Description of the Multilayer Knitted Fabric

Reinforcement (MLG Reinforcement)

Textile-technical and manufacturing engineering parameters are the basis for a

description of the geometry and of the determination of independent geometry

values. Furthermore, as shown in Fig. 15.30, digital shots of the textile and

composite can be made with scanners or transmitted-light microscopes, and ana-

lyzed regarding their planar dimensions. The geometry values in thickness direction

can be determined using CT scans, as shown in Fig. 15.26. As CT scans are

expensive, the equations for the determination of spatial reinforcement geometries

derived in the following section will rely solely on specific textile-technical values,

and dimensions which can be established from optical images in the textile plane.

For the modeling based on the FEM for the experiments of composite behavior

on the meso-level, the orientation and course of the reinforcement yarns has to be

known. In order to simplify the geometrical description and thus the modeling, only

the basic geometrical shapes are used, such as lines and circle segments. By using

basic geometrical shapes for the yarn cross-sections, the positions of the center of

gravity can be determined. The path of this center of gravity along the respective
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reinforcement yarn has to be known for the Binary Model, described in

Sect. 15.4.2.2.

The CT scans show that an ellipse can be assumed as an approximate cross-

section for the weft yarn, while a circular segment is a suitable cross-section

approximation for the warp yarn. In comparison to warp and weft yarns, the loop

yarn has a smaller cross-section. For simplicity, it is therefore regarded as circular.

By means of these geometrical abstractions, the reinforcement architecture of a

composite with a textile reinforcement consisting of two conversely placed MLGs

can be represented as shown in Fig. 15.27. For the quantitative description of the

orientation, a coordinate system matching the three views in Fig. 15.31 is defined.

In the definition of geometry parameters, it is assumed that variables with

subscript We, Wa, and L refer to values in relation to weft, warp, or loop yarns.

Fig. 15.27 Volume model of a multilayer non-crimp fabric

Fig. 15.28 Polished section of the warp yarn area with irregular filament arrangement
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Geometry of the Biaxial Reinforcement

The distance between the neighboring warp and weft yarns can be determined from

the warp and weft yarn densities ηWa and ηWe where lWa ¼ 1
ηWe and lWe ¼ 1

ηWa,

respectively. The area of the cross-sections AWa and AWe can be computed based on

the assumptions regarding the geometrical shape, and the dimensions DWa, dWa,

DWe, and dwe, which are defined in Fig. 15.31 by

AK ¼ 2

3
DKdK þ d3K

2DK

and AS ¼ π

4
DSdS ð15:25Þ

Here, the equation for AWa conforms to an approximation of the area of a circular

section. The independent values DWa and DWe are easily determined from the scans

and microscopic images, since they are dimensions in the composite plane. In

contrast to that, dWa and dWe as dimensions in Z direction can only be determined

by means of expansive polished sections or CT scans. Alternatively, these values

can be estimated from the relations of the mass content ratio mWa and mWe of warp

and weft yarns, which are known as textile-technical parameters. Based on the

(a) (b)

Fig. 15.30 Optical images of the MLG and the composite. (a) Scan of the MLG 3a. (b)

Microscopic view of the composite

Fig. 15.29 Model of a unit cell in a UD composite
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assumption that the mass densities of the rovings are approximately identical, the

resulting relation is

mS

mK
¼ ASlSnS

AKlKnK
; ð15:26Þ

where nWa and new are the respective number of warp and weft yarn systems in the

MLG. Substituting the areas AWa and AWe with the Eq. (15.25), neglecting the cubic

part of dK and with the definition of the ratio

rd :¼ dS
dK

¼ 8mSDKnKηK
3πmKDSnSηS

the following equations can be derived for the computation of the warp and weft

yarn thicknesses, respectively.

dK ¼ dMLG

nSrd þ nKð ÞξK
with dMLG :¼ d=nMLG and

dS ¼ ξK
ξS
rd dK with

1

2
� ξK=S � 1

ð15:27Þ
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Fig. 15.31 Graphic definition of the MLG geometry parameters
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Here, dMLG is the thickness of an MLG in the composite. Furthermore, it is assumed

that the contribution of the loop yarn to the composite thickness is negligible. The

factors ξWe and ξWa describe the superposition of yarn layers by interloping. This

occurs, for instance, in alternately laid biaxial knitted fabrics and can clearly be

seen in the top of Fig. 15.26 for the warp yarn layer. For knitted fabrics with a

double loop yarn system, the structure of the textile prevents superposition, from

which follows that ξWe¼ ξWa¼ 1. The factors ξWe and ξWa depend extensively on

the compression of the knitted fabric layers in thickness direction. For this reason,

analytical solutions on a purely geometrical basis do not give satisfying results.

For an analytical approximation of the effective mechanical properties of the

fiber/matrix areas in the composite, the respective fiber volume fraction has to be

known. It can be determined by φ :¼Af/A, if this domain is considered as a UD

composite. The total cross-section area A can be determined from the Eq. (15.25)

for the warp and weft yarns. The fiber cross-section area Af is calculated from the

yarn fineness Tt and the thickness of the textile material ρ, as Af¼ Tt/ρ.
The coordinate ΖK of the warp yarn axis results from the equation

zK ¼
DK

2

� �2 þ d2K
2dK

� D3
K

12AK
;

derived from the circle radius und the distance of the centroid to the center of the

circle. With the thicknesses dWa and dWe, all other Ζ coordinates of the reinforce-

ment layers can be determined. For this example considered here it follow,

zS ¼ dK þ 1

2
dS:

Loop Yarn System Geometry

The loop yarn is represented strongly abstracted, with due regard to the geometrical

resolution on the meso-level, and as shown in Fig. 15.31. The actual geometry

of the cross-section area of the loop yarns is very variable locally. Due to the

relatively small diameter, the cross-section can be simplified into a circle. To

calculate the area AL, it is also assumed that the fiber volume fraction of the loop

yarn φL ¼ A f
L =AL matches the averaged value of warp and weft yarns. Therefore,

the diameter can be determined by dL ¼ 2
ffiffiffiffi
AL
π

q
. With the yarn diameter, the y and

z coordinates of the loop yarn in the area of the warp yarn enclosure are known.

The geometry of the top area is largely determined by the radius RL of the stitch

loop. This radius can be measured in its projection onto the x-y plane as RL in the

microscopic and scan views. Since the stitch, as visible in the CT scans, is inclined

downwards, it is assumed that the center is placed at height of the weft yarn axis

zWe. The coordinate of the loop section in thickness direction (which is regarded as

plane) can be determined with zL ¼ zWe þ 1
2
dWe. Thus, the stitch radius can be

calculated from the projection radius and the z coordinates by means of
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RM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieR2
M þ zM � zSð Þ2

q
As the center of the stitch loops (as in Fig. 15.26) is touching the weft yarn,

xR ¼ lK � 1

2
DS þ dM þ 2eRM

� �
:

applies to the x coordinate of the center of the circular arc. Value a1 describes the
y distance of the contact point between the downward running loop yarns and the

stitch loop (Fig. 15.31). With due regard to the yarn layer orientation, this distance

can be estimated with a1¼ lWe�DWa� 2dL. From the intersection point of the

stitch loop arc with the coordinate y¼ a1/2 follows the equation

xM ¼ xR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieR2 � a1

2

� �2r
With the help of the theorem of intersecting lines, the equation for the calculation of

the distance a2 can be derived:

a2 ¼ lK � xM
lK � xM þ xR

2eR � a1

� �
þ a1:

With these previously mentioned equations, the spatial geometry of the loop yarn

can be described entirely.

The mentioned analyses for the determination of specific geometrical values of

the MLG can be transferred analogically to other MLGs, if attention is paid to

possibly varying number of warp and weft yarn systems, for instance. Furthermore,

the equations can be adjusted to determine the geometry of similar textiles such as

woven multiaxial non-crimp or knitted fabrics.

15.4.2.2 Finite Element Modeling with the Binary Model

Concept and Numerical Implementation of the Binary Model

The Binary Model was developed for the efficient modeling of textile-reinforced

composites [67–69], and is used in a multitude of simulations for static, thermal,

and dynamic problems [70, 71].

The central characteristic of the binary model is the separation of the mechanical

composite properties. This principle is based on great differences in stiffness

between the reinforcement fibers and the matrix material. In the case of the

composite examined here, the Young’s modulus of the glass fibers is 25 times

higher than that of the resin.
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Figure 15.32 gives a schematic representation of the Binary Model for a biaxial

fiber composite regarding the meso-level.

Here, the axial stiffnesses of the fiber/matrix bundles are replaced with tows. The

so-called effective medium represents all remaining properties of matrix and yarn

material. In the case of a purely mechanical model, these include the Poisson’s
effect as well as shear and normal stiffness of the matrix material.

With the transfer of this observation to the FE modeling, the axial stiffnesses are

replaced with two-noded line elements, and the effective medium with eight-noded

volume elements. The latter take up the entire space of the considered component

domain. The element geometry does not have to be adjusted to the interface

between matrix and yarn, as is required for a conventional FE-mesh. Therefore

the shape of the elements can always match that of a cuboid, which benefits

convergence and precision of the solutions.

The locations of the line elements therefore represent the center of gravity line of

the respective yarn cross-section. Suitable constraints are to be used to ensure

continuity of the displacement field of the superimposed volume and line elements.

For this, the two following possibilities have to be distinguished.

If a node of the line elements occupies the same place as a node of the volume

element, both can be replaced by a shared node.

If, as in Fig. 15.32, the direction and location of the line elements are identical to

the edges of the volume elements, the node positions of line and volume elements

can always be correlated.

For irregular geometries as those of the loop yarn, extensive efforts would be

required to match the positions of the respective volume element with those of line

elements. Therefore, a second case will be taken into account, in which the line

element nodes, as shown in Fig. 15.33, can be placed in any desired location within

the volume elements. For this, the continuity of the displacement field is ensured by

eliminating the degrees of freedom of the node of the beam element i, here
designated generally as {û}(T). The displacement constraints between {û}(T) and

Binary modelFiber composite

Effective medium

X3

X2

X1

Tow

Fig. 15.32 Binary model of a biaxial fiber composite
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the degrees of freedom of the volume elements {û}(EM) can be described in the

equations

ûi
� 
 Tð Þ ¼

X8
I¼1

NI ξtð Þ 0 0

0 NI ξtð Þ 0

0 0 NI ξtð Þ

24 35 ûI
� 
 EMð Þ ¼: Ti

� �
ûf g EMð Þ ð15:28Þ

where NI are the eight shape functions of the volume element, and ξt are the local
coordinates of the volume element of the line node (Fig. 15.33).

With the matrix [Ti] thus determined, the constraints can be implemented as

described in [72]. The number of degrees of freedom of the FE Binary Model is

therefore exclusively determined by the number of volume element nodes. The FE

mesh of the volume elements and the structure of the line elements of the RVE with

two alternatively placed biaxial weft-knitted fabrics are given as an example of the

Binary Model in Fig. 15.34.

The evaluated biaxial weft-knitted fabric and the employed geometry match the

example analyzed in Sect. 15.4. This FE model requires 3,927 degrees of freedom.

A similar conventional FE model describing just the structure of the warp and weft

yarns with volume elements only needs circa 18,200 degrees of freedom. This

comparison clarifies the efficiency of the Binary Model concerning the numerical

efforts. The meshing of the loop structure based on volume elements also entails

considerable modeling efforts. For this reason, the mesh has to be refined signifi-

cantly, which in turn further increases the number of degrees of freedom of the

equation system.

Fig. 15.33 Local volume element coordinates of a line element node
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The geometrical abstraction of the binary model requires a derivation of the

constitutive equations which are then assigned to the line and volume elements.

According to the statements of XU et al. [68], an elastic material behavior is

detailed below.

Constitutive Equations of the Effective Medium

The mechanical properties of the effective medium for a biaxial reinforcement can

be derived from the effective properties of the UD composite. These can be

calculated by means of homogenizing a UD model according to Sect. 15.4.1 or

by analytical approximation (see [73]). For reasons of differentiation, all values of

the UD composite or of the effective medium will be designated by a superscript

(UD) or (EM) respectively. Beyond that, the fiber volume fraction φ(EM) is defined

as the relation of the volumes of fiber reinforcement and RVE. The fiber orientation

Fig. 15.34 Binary model of

the RVE with MLG

reinforcement, (a) FE mesh

of the volume elements, (b)

Structure of the line

elements
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in the UD composite matches the x1 direction. The following indices of the values

of the effective medium are based on the coordinate system given in Fig. 15.32.

When applying specific UD values to the characteristics of the effective

medium, it is assumed that the transverse stiffness of the fiber matrix bundle

significantly influences the Young’s modulus E
ðEMÞ
3 in thickness direction. For

lateral contractions and shear moduli of the effective medium, an estimation with

v
ðUDÞ
12 or G

ðUDÞ
12 respectively, is the obvious choice [68]. The remaining Young’s

moduli regarding the composite planes E
ðEMÞ
1 and E

ðEMÞ
2 can be calculated from

shear modulus and lateral contraction, based on a transversal isotropy where fibers

are aligned with the x3 axis. The material properties of the linear-elastic effective

medium can be summarized as:

G
EMð Þ
23 ¼ G

EMð Þ
13 ¼ G

EMð Þ
12 ¼ G

UDð Þ
12 ,

v
EMð Þ
23 ¼ v

EMð Þ
13 ¼ v

EMð Þ
12 ¼ v

UDð Þ
12 ,

E
EMð Þ
3 ¼ E

UDð Þ
2 and

E
EMð Þ
1 ¼ E

EMð Þ
2 ¼ 2 1þ v

EMð Þ
12

� �
G

EMð Þ
12 :

ð15:29Þ

This elastic behavior only deviates from an isotropic material because of the

different Young’s moduli. As stiffnesses in textile composite are primarily deter-

mined by the reinforcement yarns, the identities of E
EMð Þ
1 ¼ E

EMð Þ
2 ¼ E

UDð Þ
2 can be

simplifyingly assumed, as in [68]. From this follows an isotropic behavior of the

effective medium.

The reinforcement architecture of MLG composites differs from that of the

previously considered biaxial composite in terms of the loop structure. As the

loop structure only makes up 4–14 % of the total textile mass, the structural

influence on the properties of the effective medium can be neglected. The volume

of the loop yarn is only taken into account for the calculation of φ(EM).

Constitutive Equations of the Lines

As described in this section, the line elements in the Binary Model represent the

axial stiffnesses of the filaments consolidated with matrix material in the composite

material. The rovings used for warp and weft yarns do not contain twisted filament

fibers. As visible from Fig. 15.26, the respective orientations of the filaments and

the rovings match well, which allows the treatment of these fiber/matrix areas as a

UD composite.

If the loop yarn consists of a twisted glass yarn, there are limitations to treating it

as UD. But as the fiber volume content ratio of the loop yarn is relatively low in the

composite, the mechanical influence of the twisted filament arrangement can be

neglected. Therefore, the area of the loop yarn in the consolidated MLG can be

simplistically modeled as a UD composite.
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For the following derivations for a description of effective properties of the line

elements, the components of the UD composites (in this case glass and epoxy resin)

are treated as continua.

The elastic stiffness of the line elements can be determined analogously to the

effective medium, using an analytical UD model. In consequence, the resulting

Young’s modulus in orientation of the line element matches the value E
ðUDÞ
1 (φ)

calculated from the fiber volume content ratio φ of the fiber-matrix area and the

material properties of fiber and matrix.

In the FE model, line and volume elements are superimposed. This corresponds

to a parallel arrangement of the axial stiffnesses of both elements. To prevent a

multiple consideration of the contribution of the elastic stiffness of the matrix

material, the Young’s modulus of the line element E(T ) is set according to the

equation

E
Tð Þ
β ¼ E

UDð Þ
1 φβ

� � ¼ E
EMð Þ
axial with β 2 K; S;Mf g ð15:30Þ

The index β describes the relation to the respective warp, weft, and loop yarn, while
E
ðEMÞ
axial matches the stiffness of the effective medium in the orientation of the line

element.

To calculate E
ðEMÞ
axial , the strain state of the line element is transferred on the

allocated volume element. With this, the desired value can be numerically calcu-

lated using

E
EMð Þ
axial ¼ ε�tf gT C EMð Þ

h i
ε�tf g ð15:31Þ

where the vector ε�tf g corresponds to a unit strain in orientation with the line, and

the matrix [C(EM)] matches the material stiffness of the effective medium. In the

case of an FE simulation with an elastic-plastic material law for the effective

medium, the matrix in Eq. (15.31) is to be replaced with the respective consistent

tangent stiffness.

15.5 Material Properties of Composite Materials,

Exemplified by Multi-layered Weft-Knitted Fabrics

15.5.1 Experimental Examinations

The aim of experimental examinations of composite materials with textile rein-

forcement usually consists of the general study of material behavior with due regard

to various material behaviors at different length scales and the quantification of

effective in-plane material properties. These can be used directly, or in the calcu-

lation of structural models from the corresponding composite material, or as the
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basis for validation of simulation and modeling methods. Furthermore, the evalu-

ation of tests performed on pure-resin test specimens can provide the material

properties for the micro and meso models of Sect. 15.4.2.

In contrast to many monolithic materials, the properties of continuous-fiber-

reinforced composites are strongly anisotropic and dependent on the type of load. In

comparison to the first mentioned group of materials, this requires a significantly

larger test effort for a thorough and complete experimental analysis. In general, the

anisotropic properties can be examined in tensile, compression, flexural, and shear

tests. In the following, these tests and the related evaluations will be considered in

greater detail.

15.5.1.1 Tensile and Compression Tests

As described in Sect. 14.6.2.1, tensile and compression tests are used to examine the

behavior of a material under monaxial tensile and compressive loads. The aniso-

tropic material behavior requires an evaluation of data sets of specimens with

different textile orientations. For an orthotropic behavior, tests with three different

directions, e.g. 0�, 45�, and 90�, are required to determine the specific elastic

in-plane values. Examinations of specimens with additional textile orientations

allow a validation of the assumption of orthotropic behavior.

The experimental test method for the compression behavior is to be selected

under consideration of the composite thickness d and of the regarded load spectrum.

In case of risk of buckling on the specimen, a buckle support (as shown in

Fig. 15.35a) needs to be used.

Fig. 15.35 Experimental devices for compression testing, (a) buckle support for thin specimens,

(b) compression die for thick specimens
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As discussed in Sect. 14.6.2.2, sufficiently thick composite materials can be

clamped directly into the clamping jaws of the testing machine, or fixated between

two compression dies, as shown in Fig. 15.35.

Measured data are generally recorded by the control computer of the testing

machine. The force and traverse path can be measured by dedicated devices

integrated in the tester. Strains on the specimen surface can be measured by

means of strain gages. In comparison to monolithic material, strain gages have to

be much longer for measurements on composite materials [74]. Unfortunately, the

use of these longer strain gages is much more costly. Laser extensometers are an

alternative for the determination of transverse strain. For this, two measuring

markers are affixed to the specimen, and their distance is registered by a laser

beam during the entire test. The control program uses these measurements to

calculate the nominal strain, which is to be interpreted as an integral quantity

over the area between the measuring markers. Another measurement possibility is

simultaneously determining the deformation field of the opposite specimen surface

with ARAMIS (by GOM GmbH, Braunschweig, Germany). This allows a simul-

taneous measurement of longitudinal and transverse strains, and the examination of

bending deformations. A corresponding test setup is shown in Fig. 15.36.

For exemplary purposes, Fig. 15.37 compares three typical stress-strain plots

from tensile test in 0�, 45�, and 90� direction with specimens made from a biaxial

MLG composite material.

It is to be expected from the reinforcement architecture that the composite

displays a substantially higher stiffness in the direction of the reinforcement fibers

as compared to the 45� direction. The tests also prove the curve section, which can

be correlated with the linear-elastic area, to be greater in the principal material axis.

Furthermore, the curve section delineates itself from the subsequent inelastic

Fig. 15.36 Tensile test with parallel measuring by ARAMIS and laser extensometer
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behavior by the dropping of the plot. From the initially linear slope of the stress-

strain curves, the Young’s modulus E(α) is to be determined for each test with textile

orientation α. The Poisson’s ratio v(α) is determined from the slope εq (εl), where εq
and εl are the transverse and longitudinal strains. From these engineering properties,

the components of the compliance tensor are calculated by means of

S
αð Þ
11 ¼ 1

E αð Þ and S
αð Þ
12 ¼ v αð Þ

E αð Þ ð15:32Þ

For q experimental tests on specimens with different angles αi (i¼ 1, . . . q) of
textile orientation, these results can be related to the components of the compliance

tensor Sxx, Syy, and Sss in the main axis system x-y, where Sss designates the shear
compliance. Assuming orthotropic material behavior, the following system of

equations results:

m4
1 n41 2m2
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2
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2
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; ð15:33Þ

Here, mi :¼ cos(αi) and ni :¼ sin(αi). If the number of tests and therefore of results

to be analyzed is more than four, the equation system (15.33) is overdetermined,

and the solution of the unknown components of the compliance tensor can be

determined by means of a regression calculation, for instance in MATLAB.

Fig. 15.37 Stress-strain

diagram of tensile tests in

0�, 45�, and 90� directions
on an MLG composite

material
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15.5.1.2 Flexural Tests

The behavior of composite materials under flexural loads can deviate significantly

from tensile or compressive loads. This is due to the structural design of the

composite in thickness direction [50]. Therefore, an experimental examination of

the flexural stiffness is necessary, especially for thinner composite plates.

A great number of different construction methods are available for the flexural

test device. In addition to the deliberation regarding tests based on standards in

Sect. 14.6.2.3, a distinction can be drawn between devices with horizontal or

vertical specimen arrangement and devices with the possibility to apply alternating

flexural loads. To examine the behavior of materials under alternative flexural

loads, the Institute of Solid Mechanics at TU Dresden developed a horizontal

device with four-point bearing. As shown in Fig. 15.38, the specimen is mounted

between two fixed and two mobile rollers.

The carriers of the roller pairs have an internal distance lb, and are pivoted in

order to avoid a prevention of flexural deformation. Mobile rollers, which are fixed

to the shafts with bearing pins at a distance Lb> lb, expose the specimen to the load.

The construction of this device allows a variable adjustment of the geometry values

lb and Lb.
Suitable sensors on the test station record data of the path and force measurement

from the control computer. Additionally, the spatial displacement of the specimen

surface is determined by the ARAMIS measuring system. Using the displacement

field shown for 0� and 45� directions in Fig. 15.39, the lateral contraction of the

composite material can be determined [50].

Fig. 15.38 Horizontal alternating flexural load device
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Assuming a linear stress plot across the thickness of the composite (regarded as

homogeneous), the measured strains εb on the surface allow a determination of the

plots σb (εb) of the flexural stress. The slope of the initially linear curve is referred to

as flexural Young’s modulus E
ðαÞ
b for the textile orientation α. A comparison of the

tensile and flexural Young’s modulus in the composite plane of an MLG composite

is shown in the polar diagram of Fig. 15.40.

An excellent match of the results in 45� direction is evident. In comparison, the

Young’s modulus at 0� is higher (and lower at 90�, respectively) than the values

from the tensile tests. This effect is caused by an inhomogeneous loading under

flexure, and by the construction of the reinforcement structure. For instance, the

specimens with a 90� orientation are exposed to a flexural load around 0�. Here, the

Fig. 15.39 Color-coded representation of the displacement uz of the specimen surface of a

composite with MLG reinforcement, (a) textile orientation 0�, (b) textile orientation 45�

Fig. 15.40 Young’s modulus in the composite plane, from tensile and flexural test on a MLG

composite
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absolute flexural stress increases towards the specimen surface starting at the

mid-surface plane. In this direction, there is no reinforcement in the sections

close to the surface. By contrast, the weft yarns situated on the outer edges of the

layer construction cause a higher resistance against the deformation when bent by

90�. The location of the reinforcement yarns in thickness direction is irrelevant for

stiffness under pure tensile loads.

15.5.1.3 Shear Tests

A variety of different testing and loading devices for an experimental examination

of the composite behavior under pure shear loads are available (see Sect. 14.6.2.4).

As described in [75], testing with a shear frame is distinguished by a number of

advantages over alternative methods. Figure 15.41 shows one such device, dimen-

sioned based on DIN 53399-2. By means of applied cap strips, a homogeneous load

introduction is ensured. Analogous to the tensile tests, the laser extensometer or

ARAMIS can be used for measuring the deformation on the respectively opposite

side of the specimen.

The macroscopic shear stress τ is calculated with the equation

τ ¼
ffiffiffi
2

p

2ld
F; ð15:34Þ

where l is the edge length of the measured surface, and F designates the outer

tensile force on the test device. The result of the ARAMS measurements is

determining the strain plots in the diagonal directions of the square measured

surface. Due to the parallel determination of the vertical strain by means of the

laser extensometer, a possible flexure of the specimen can be determined.

Fig. 15.41 Test setup and

measuring devices of the

shear test
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The test setup in Fig. 15.41 correlates to the vertical strain of the major strain ε1
and the horizontal strain of the minor strain ε2. With due regard to an anisotropic

deformation, the shear strain γ results from [76]

γ ¼ ε1 � ε2
1þ ε1 þ ε2

: ð15:35Þ

Figure 15.42 shows the distribution of the major strain determined by ARAMIS.

Except for local inhomogeneities, the homogeneous strain distribution is not dis-

turbed by boundary effects caused by the load transmission into the specimen.

The plane shear modulusGxy of the tested composite can be determined from the

initial slope of the curve plot τ(γ). A comparison with the results of the tensile test

allows the verification of the consistency of the results of both experiments.

15.5.2 Homogenization on the Basis of the Energy Criterion

15.5.2.1 Basics of Homogenization

For efficiency reasons, the modeling of the meso and micro structures is not a

sensible option in the computer-assisted simulation of load and deformation states

of macroscopic components. Therefore, the heterogeneous material for these cal-

culations is created by a homogeneous continuum. The material parameters in the

constitutive equations of the substitute continuum, which are here also referred to as

effective material properties, can generally be determined by experiments. Due to

the macroscopically anisotropic material behavior and the resulting multitude of

specific values, this requires extensive efforts. In addition, every alteration of the

reinforcement architecture or the material of the composite components makes new

Fig. 15.42 Distribution of the major strain in the shear test on a MLG composite
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experiments necessary. To avoid this effort, the effective properties can be calcu-

lated using homogenization methods.

In this section, the heterogeneous micro- as well as the homogeneous macro-

level are considered exemplarily for a multi-scale analysis at different length scales.

On the macro-level, the characteristic length L can be defined as the maximum

distance of two points in a homogeneous body Ω with

L ¼ max
X1,X22Ω

X1 � X2j j ð15:36Þ

Analogously, l describes a characteristic length of the micro structure. One essential

basis of many homogenization methods is the concept of a representative volume

element (RVE). For this, a partial areaY ¼ y ¼ yiei, y
ij j < a

2

� 

on the micro-level is

selected, which completely represents the macro-level characteristics of the mate-

rial from a statistical point of view. This partial area is referred to as a representative

volume element. For composite materials with a periodic micro-structure the RVE

can also be defined as a unit cell, as shown in Fig. 15.43.

Using the previously introduced characteristic lengths, general conditions for

using homogenization methods and definitions of the RVE can be stated. If both the

RVE and the substitute continuum are described within in a CAUCHY continuum,

the condition

L � a � l ð15:37Þ

must be met [50]. If this cannot be ensured, an extended theory, such as the

COSSERAT continuum, must be used to consider the macroscopic body.

Fig. 15.43 Macro- and meso-level
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Otherwise, the prerequisites for the consideration of the heterogeneous body using a

homogeneous continuum are not met, making it incorrect.

In the following, it is agreed that all variables with capital letters are defined in

relation with the macro-continuum, while lowercase letters refer to the micro-

continuum. The basic element of homogenization within the scope of the energy

criterion consists of a coupling between micro- and meso-level. The static equilib-

rium on micro-level, neglecting volume forces, can be stated with the equations

∇� σ ¼ 0 and σ ¼ σT in Y ð15:38Þ

where ∇ is the gradient operator, and σ is the CAUCHY-stress tensor. The

constitutive equations

σn τð Þ ¼ Fn
σ ε tð Þ, t 2 0; τ½ �ð Þ 8 n 2 1 . . .Nf g ð15:39Þ

each describe respective current stress strain relations at the time t for the material

component n in a RVE with N materials. The strains ε

ε yð Þ ¼ sym u	∇ð Þ ð15:40Þ

are calculated from the displacement filed u(y) of the micro-level.

By means of the volume average, the specific values from micro- and macro-

level are coupled, resulting in the equations

X
:¼ 1

Yj j
ð
∂Y
y	 tdA with t : σT � n ð15:41Þ

for the macroscopic tension Σ and

E :
1

Yj j
ð
∂Y
sym u	 nð ÞdA ð15:42Þ

for the macroscopic strain E. Equations (15.41) and (15.42) show that macroscopic

state variables are described unambiguously by the stress or strain vector t and u on

the surface ∂Y of the RVE.

A calculation of effective stresses and strains based on Eqs. (15.38)–(15.42) is

referred to as homogenization. The macroscopic material propertiesC then describe

the linear transformation between these fields by

σ yð Þh i ¼ C : ε yð Þh i with � � �h i :¼ 1

Yj j
ð
Y

� � �ð Þdy : ð15:43Þ

The inverse problem, i.e. the determination of the microscopic variables with

defined macroscopic variables, is referred to as localization. As there are not

boundary conditions for this case, the problem is yet only incompletely formulated.

The definition of these boundary conditions aims to reproduce the state of the
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material within the respective area as precisely as possible. Below, a summary is

given of the derivation of three types of boundary conditions, based on an energy

criterion.

The energy theorem according to [77], also known as HILL-MANDEL condi-

tion, requires energy equivalence of the heterogeneous micro-continuum and the

homogeneous equivalent continuum. From this follow the equations

ε yð Þ : c yð Þ : δε yð Þh i ¼ ε yð Þh i : C : δε yð Þh i
1

Yj j
ð
∂Y
t � δu dA ¼

X
: δE; ð15:44Þ

where δ is the variation operator.

If the strain fluctuation is defined as the deviation of the field from the mean

value,

�ε yð Þ :¼ ε yð Þ � ε yð Þh i:

applies.

The positive definition of the elasticity tensor c is ensured if

�ε yð Þ :¼ c yð Þ : �ε yð Þ 
 0 ð15:45Þ

applies to the quadratic form. This relationship can be combined with Eqs. (15.43)

and (15.44) as

ε yð Þh i : c yð Þh i � Cð Þ : ε yð Þh i 
 0 ð15:46Þ

The quadratic form of the average volume of c is therefore higher than that of the

effective elasticity tensor C and represents an upper bound, also referred to as

VOIGT bound. Analogously, these considerations, in combination with comple-

mentary energy, i.e. the quadratic form of the compliance tensor s :¼ c�1 lead to the

REUSS bound, which correlates to a bottom bound.

ε yð Þh i : c yð Þh i � Cð Þ : ε yð Þh i 
 0

To determine these bounds, the microscopic strain or stress fields are constantly

defined by

ε yð Þ :¼ εh i=σ yð Þ :¼ σh i

from which follow the definitions

CV :¼ ch i and ð15:47aÞ
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CR :¼ c�1
� ��1 ð15:47bÞ

as VOIGT and REUSS bounds for the effective elasticity tensor C.

By specifying a constant strain or stress field respectively, the mechanical

equilibrium or the compatibility conditions is generally infringed. As the micro-

scopic stresses and strains in Eqs. (15.41) and (15.42) are unambiguously defined

by the corresponding boundary conditions, the question of boundary conditions

fulfilling the HILL-MANDEL condition arises Eq. (15.44). The three following

statements fulfill this condition:

1. The specification of u on the surface of the RVE by

u yð Þ ¼ E � y 8 y 2 ∂Y ð15:48Þ

matches displacements which are linear in y.

2. Analogously, constant surface stresses can be defined with

t yð Þ ¼P �n yð Þ 8 y 2 ∂Y ð15:49Þ

3. The validity of periodic boundary displacements and anti-periodic stress

vectors

u yþð Þ � u y�ð Þ ¼ E � yþ � y�ð Þ ð15:50aÞ
t yþð Þ ¼ �t y�ð Þ ð15:50bÞ

is based on a periodic microstructure in the unit cell.

y+ 2 ∂Y+ and y� 2 ∂Y� define the coordinates of two points, which are

associated according to periodic geometry on the opposite surfaces ∂Y� and ∂Y+

of the RVE (Fig. 15.44).

In a heterogeneous continuum, the three types of boundary conditions have

different results. In general, and comparable to the VOIGT and REUSS approaches,

the behavior of an RVE is stiffer for linear boundary displacements, and more

flexible for constant boundary stresses in comparison to periodic boundary

Fig. 15.44 RVE with three

associated surface pairs
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displacements. For many materials, it has been shown that periodic boundary

conditions create the best results by comparison [78]. Therefore, the following

considerations will be reduced to this form.

15.5.2.2 Introduction of Generalized Variables

To transfer the periodic displacement boundary conditions (15.50a) to an FE model

representing the unit cell, the following generalized variables will be introduced

below. They are also prerequisites for an efficient evaluation of the simulation

results, e.g. for the calculation of the effective properties or tangent stiffnesses.

When considering any unit cell, for instance as shown in Fig. 15.44, the surface

can be segmented into respectively associated lateral surfaces α 2 {1, 2, 3}. These

surfaces dYα+ and dYα� have to be compatible for the purpose of periodicity. Thus,

the difference of the spatial coordinates in Eq. (15.50a) is constant for each surface

pair α and can be expressed with the definition

Δyα :¼ yαþ � yα� 8 α 2 1; 2; 3f g ð15:51Þ

With this equation and the introduction of a generalized displacement increment

Δuα, Eq. (15.50a) can be described by

Δuα :¼ u yαþð Þ � u yα�ð Þ ¼ E : Δyα ð15:52Þ

The complete formulation of a spatial or plane boundary value problem (BVP)

therefore requires the specification of nine or four generalized displacement incre-

ments respectively.

Analogously to the displacements, generalized forces in the form of

Fα :¼
ð
∂Yαþ

tþdA ð15:53Þ

are added, making the homogenized stress Eq. (15.41) calculable with

X
¼ 1

Yj j
X
α

Δyα 	 Fα ð15:54Þ

A comparison of this equation to the previous integral equation (15.41) clarifies the

significantly reduced effort regarding a numerical realization made possible by the

introduction of generalized variables.

To determine the effective linear-elastic stiffness tensor C, six different macro-

scopically homogeneous deformation states have to be considered, for which the

strain tensor E is specified by

590 L. Girdauskaite et al.



Ei j ¼ E ji ¼ 1 for i ¼ I, j ¼ J
0 otherwise

�
ð15:55Þ

Table 15.2 contains a possible assignment for the indices I and J.
With the displacement boundary conditions (15.52) and the solution of the BVP,

the generalized forces Fα (EIJ) at averaged strain can be calculated. Thus, the

macroscopic stresses in Eq. (15.54) are equivalent to the material stiffnesses

induced by the deformation, and

X
kl
EIJð Þ ¼ CklIJE IJð Þ ¼ 1

Yj j
X
α

Δyαk F
α
l EIJð Þ ð15:56Þ

applies, where no summation convention is applied to bracketed indices.

15.5.2.3 Homogenization in the Macroscopic In-plane or Monaxial

Stress State

From a macroscopic perspective, any heterogenic materials, such as the textile

composite considered here, can be regarded as shell structures within the scope of a

plane stress condition (PSC), giving rise to the question of a homogenization

method with which the effective mechanical properties of this structural observa-

tion can be determined directly. Due to the distinct three-dimensional architecture

in the textile composite, homogenization is required to ensure the transfer from a

spatially heterogeneous RVE onto a homogeneous, plane structure.

In the PSC, Σi3¼ 0 applies, with the coordinate direction X3 concurs with the

normal vector of the shell mid-surface. Therefore, constant surface tensions are

specified on the shells surface according to the abovementioned second kind of

boundary conditions. From this follows

t yð Þ ¼ 0 8 y 2 ∂Y3 : ð15:57aÞ

The transfer of planar macroscopic strains {Eβγ | β, γ 2 {1, 2}} onto the RVE is then

performed by the periodic displacement boundary conditions on the remaining

surfaces ∂Y1 and ∂Y2, whose normal vectors are tangentially in the shell plane.

With Eq. (15.52), these boundary conditions can be described by

Table 15.2 Assignment for the Indices I and J in Eq. (15.55)

BVP no. 1 2 3 4 5 6

IJ for EIJ¼ 1 11 22 33 23 13 12
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Δuα ¼ E � Δyα 8 α 2 1; 2f g ð15:57bÞ

As E13¼E23¼ 0 applies for macroscopic strains in the context of the PSC, and the

vectors Δy1 and Δy2 are located in the y1� y2 plane, the displacement increments

are Δu1
3
and Δu2

3
¼ 0.

As the result of the homogenization, the planar stresses Σβγ calculated with

Eq. (15.54), where summation convention is applied over α 2 {1, 2}. Additionally,

the macroscopic strain E33 can be calculated with Eq. 15.42.

As a consistent continuation of the consideration regarding the PSC, the bound-

ary conditions for a monaxial stress state can be derived. With the specification of

Σ11 as the macroscopic stress (different from zero), the stress vectors

t yð Þ ¼ 0 8 y 2 ∂Y2 [ Y3 ð15:58aÞ

and the displacement increments are

Δu1 ¼ E11Δy
1 ð15:58bÞ

to be specified on the surface of the RVE. To ensure a completed formulation of

boundary conditions in this case, it is important to prevent rigid body translation

and rotation along the tensile axis.

15.5.2.4 Example for the Homogenization of a MLG Composite

In the following, an example for the application of the homogenization method

applied to a composite with glass fiber MLG and epoxy resin will be considered.

Here, the textile reinforcement in the composite consists of two alternatively laid

knitted fabrics, whose geometry is analyzed in Sect. 15.4.2.1.

Based on the multi-scale approach, calculating the effective specific material

values of a UD composite of the micro-level is the initial step. The corresponding

deformation of the unit cell described Sect. 15.4.1 at unit strain E11¼ 1 and unit

shear stress Γ12¼ 1 are shown in Fig. 15.45a, b.

With these calculated specific effective elastic values, the constitutive equations

of the binary model of the meso-level can be specified according to the description

in Sect. 15.4.2.2.

The FE model of the meso-level of this composite is shown in Fig. 15.34 as a

binary model. The homogenization within the scope of the plane stress state

requires three simulations with specified macroscopic strain. The deformation

state Exx¼ 1 and Γxy¼ 1 are shown with the calculated local strain distribution

εxx and γxy respectively in Fig. 15.46.

The color coding of both illustrations shows that strain or shear stress¼ 1 for

large areas of the RVE, corresponding to the macroscopically specified deforma-

tion. The local fluctuation occurs only because of the line elements.
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The verification of simulation results is performed with experimental data based

on engineering constants. For instance, the polar diagram of Fig. 15.47 shows the

Young’s modulus of the x� y plane dependent on the angle α.
The lines oriented in radial direction mark the scatter ranges of the experimen-

tally determined Young’s moduli. The curve plot of the numerically calculated

Young’s moduli is very good prediction of the experimentally determined values.

The little differences between simulation and experiment can often be traced to

technological causes. For example, slight deformations of the textile during the

consolidation process create local variations in the reinforcement architecture. This

leads to a minor deviation between the modeled and the real composite geometries

on the meso-level.

In summary, it can be stated that the linear-elastic effective properties of the

MLG composite can be estimated very well by means of the homogenization

method in combination with the binary model. Therefore, this modeling concept

is much more efficient in comparison to conventional volume meshing and of equal

value with regard to mechanical evaluation criteria.

4.29

a b

0.13

3.84

0.11

Fig. 15.45 Deformation of the UD unit cell, (a) macro-deformation E11 with color-coded ε11, (b)
macro-deformation Γ12 with color-coded γ12

0.7273

1.3432

a b

1.2748

1.2063

1.1379

1.0695

1.001

0.9326

0.86417

0.79574

Fig. 15.46 Deformation of the composite unit cell, (a) macrodeformation Exx¼ 1 with color-

coded εxx (x, y), (b) macrodeformation Γxy¼ 1 with color-coded γxy (x, y)
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Reproduzierbare Preformfertigung für textilverstärkte Kunststoffe. In: Lightweightdesign
(2009), No. 5

66. Protective right DE102007032904 (27th November 2008).

67. CARTER, W. C.; COX, B. N.; FLECK, N. A.: A binary model of textile composites -

I. Formulation. In: Acta Metallurgica et Materialia 42 (1994), No. 10, pp. 3463–3479. DOI

10.1016/0956–7151(94)90479–0

68. XU, J.; COX, B. N.; MCGLOCKTON, M. A.; CARTER, W.C.: A binary model of textile

composites–II. The elastic regime. In: Acta Metallurgica et Materialia 43 (1995), No. 9, pp.

3511–3524

69. MCGLOCKTON, M. A.; COX, B. N.; MCMEEKING, R. M.: A Binary Model of textile

composites: III. High failure strain and work of fracture in 3D weaves. In: J. Mech. Phys.
Solids. 51 (2003), No. 8, pp. 1573–1600

70. HAASEMANN, G.: An application of the Binary Model to dynamic finite element analysis.

In: Proc. Appl. Math. Mech. 3 (2003), No. 1, pp. 176–177

71. HAASEMANN, G.; ULBRICHT, V.; BRUMMUND, J.: Modelling the mechanical properties

of biaxial weft-knitted fabric reinforced composites. In: Proc. Appl. Math. Mech. 4 (2004),

No. 1, pp. 193–194

72. COOK, R. D.; MALKUS, D. S.; PLESHA, M. E.: Concepts and applications of finite element
analysis. 3. Auflage. New York, USA : John Wiley Sons, 1989

73. ALTENBACH, H.; ALTENBACH, J.; RIKARDS, R.: Einf€uhrung in die Mechanik der
Laminat und Sandwichtragwerke. Stuttgart : Deutscher Verlag für Grundstoffindustrie, 1996

74. TUTTLE, M. E.; BRINSON, H. F.: Resistance-foil strain-gage technology as applied to

composite materials. In: Experimental Mechanics 24 (1984), No. 1, pp. 54–65

15 Modeling and Simulation 597

http://www.vistagy.com/
http://www.lectra.com/
http://www.esi-group.com/
http://www.3ds.com/
http://www.ansys.com/
http://www.mscsoftware.com/
http://www.solidworks.com/
http://dx.doi.org/10.1016/0956%E2%80%937151(94)90479%E2%80%930


75. SKUDRA, A. M.; BULAVS, F. J.; ROCENS, K. A.: Kriechen und Zeitstandverhalten
verst€arkter Plaste. Leipzig : VEB Deutscher Verlag für Grundstoffindustrie, 1975
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GEREKE, Th.; DÖBRICH, O.; HÜBNER, M.; CHERIF, Ch.: Experimental and computational

composite textile reinforcement forming: A review. In: Composites: Part A 43 (2013), pp. 1-10
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