
 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XVII

Selected Papers from DaWaK 2013

LN
CS

 8
97

0

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e Ladjel Bellatreche • Mukesh Mohania
Guest Editors

Lecture Notes in Computer Science 8970

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/8637

http://www.springer.com/series/8637

Abdelkader Hameurlain • Josef Küng
Roland Wagner • Ladjel Bellatreche
Mukesh Mohania (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XVII
Selected Papers from DaWaK 2013

123

Editors-in-Chief
Abdelkader Hameurlain
IRIT, Paul Sabatier University
Toulouse
France

Josef Küng
FAW, University of Linz
Linz
Austria

Guest Editors
Ladjel Bellatreche
LIAS/ISAE-ENSMA
Chasseneuil-du-Poitou
France

Roland Wagner
FAW, University of Linz
Linz
Austria

Mukesh Mohania
IBM India Research Lab
New Delhi
India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-46334-5 ISBN 978-3-662-46335-2 (eBook)
DOI 10.1007/978-3-662-46335-2

Library of Congress Control Number: 2015930728

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Special Issue of DaWak 2013

We welcome you to this special issue dedicated to the best papers presented at the 15th
International Conference on Data Warehousing and Knowledge Discovery (DaWaK)
that was held in Prague, Czech Republic, during August 26–29, 2013. Data Ware-
housing and Knowledge Discovery has been widely accepted as a key technology for
enterprises and organizations to improve their abilities in data analysis, decision sup-
port, and the automatic extraction of knowledge from data. With the exponentially
growing amount of information to be included in the decision-making process, the data
to be considered becomes more and more complex in both structure and semantics.
New developments such as cloud computing and Big Data add to the challenges with
massive scaling, a new computing infrastructure, and new types of data. Consequently,
the process of retrieval and knowledge discovery from this huge amount of hetero-
geneous complex data builds the litmus-test for the research in the area. During the past
years, the International Conference on Data Warehousing and Knowledge Discovery
(DaWaK) has become one of the most important international scientific events to bring
together researchers, developers, and practitioners to discuss the latest research issues
and experiences in developing and deploying data warehousing and knowledge dis-
covery systems, applications, and solutions. DaWaK is in the top 20 of the google
scholar ranking related to Data Mining and Analysis: http://scholar.google.com/
citations?view_op=top_venues&hl=fr&vq=eng_datamininganalysis.

The DaWaK 2013 call for papers attracted 89 papers and the Program Committee
finally selected 24 full papers and 8 short papers, making an acceptance rate of 36% of
submitted papers. The accepted papers cover a number of broad research areas on both
theoretical and practical aspects of data warehouse and knowledge discovery. In the
area of data warehousing, the topics covered included conceptual design, query opti-
mization, MapReduce paradigm, scalability, data compression, materialized views, data
partitioning, distributed and parallel processing and data warehouses and data mining
applications integration, recommendation and personalization, multidimensional anal-
ysis of text documents, and data warehousing for real-world applications such as
health, spatial applications, energy, etc. In the areas of data mining and knowledge
discovery, the topics included stream data analysis and mining, dimensionality
reduction, and traditional data mining techniques topics such as frequent item sets,
clustering, association, classification ranking, and application of data mining technol-
ogies to real-world problems. It is especially notable to see that some papers covered
emerging real-world applications as bioinformatics, social network, mobile data,
energy power, email management, environment surveillance as well as integration of
multiple technologies such as conceptual modeling, evaluation metrics, and OLAP
mining.

Out of the 24 full papers, we selected six papers to be invited for the special issue in
the Journal LNCS Transactions on Large-Scale Data- and Knowledge-Centered Sys-
tems and after a second round of review we finally accepted five papers. Thus, the

http://scholar.google.com/citations?view_op=top_venues&hl=fr&vq=eng_datamininganalysis
http://scholar.google.com/citations?view_op=top_venues&hl=fr&vq=eng_datamininganalysis

relative acceptance rate for the papers included in this special issue is competitive.
Needless to say, these five papers represent innovative and high-quality research, where
two papers cover data warehousing aspects related to query processing optimization in
advanced platforms (MapReduce and parallel databases) and three cover knowledge
discovery (causal network inference problem, dimensionality reduction, and the quality
of pattern mining task). The particularity of these papers is that most of them used case
studies issued from international projects (e.g., EU-funded FP7) and real systems. We
congratulate the authors of these five papers and thank all authors who submitted
articles to DaWaK.

The five selected papers are summarized as follows:
The first paper, titled Data Warehouse Processing Scale-up for Massive Concurrent

Queries with SPIN, by João Costa and Pedro Furtado, presents a data processing model
to handle large concurrent workloads executed on the top of a data warehouse. In this
situation, queries compete for the same resources and consequently, their response time
may significantly increase. The proposal is based on a solid theory. The most important
state-of-the-art studies are analyzed and the authors show their inefficiency in terms of
scalability and large memory requirements. The proposed model called SPIN is
developed to predict execution times when a large set of aggregated star queries are
concurrently executed. SPIN is accompanied with operators like selection, projection,
computation, data switches, and aggregation operators. These operators are processed
in the pipeline way. The functional architecture of SPIN system is given and evaluated
using TPC-H benchmark.

The second paper, titled An Uncoupled Data Process and Transfer Model for
MapReduce, by Li Zha, Jie Zhang, Wei Liu, and Jian Lin, proposes an approach to
optimize the functions of MapReduce in order to improve the performance of a system
running in a cloud environment. The proposed model uncouples the dependency
relationship of maps and reduces in the original MapReduce in order to make full use
of the network bandwidth in map and reduce tasks and balance the network load. Issues
regarding workload balancing, data transferring, and fault tolerance are studied in the
proposed model. The proposal is evaluated in Baidu, the biggest search engine com-
pany in China, to evaluate its efficiency and effectiveness. The proposed model is
transparent to end users and compatible with the original Hadoop. Efficient state-of-the-
art methods improve the throughput of a given system by making full use of its
resources. We can cite, for instance, Hadoop Online Prototype, Copy-compute Split-
ting, Dynamic Weight Assignment, MapReduce Energy Efficiency, etc.

The third paper, titled Enhanced Fast Causal Network Inference over Event Streams,
by Saurav Acharya and Byung Suk Lee, addresses a challenging problem of causal
network inference in the context of streaming events. Several advanced applications are
concerned by causal inference in diverse domains such as health care, stock markets,
smart electric grids, and social media. The main issue of these applications is to infer
the causes of abnormal activities immediately from their event streams. To deal with
this problem, two algorithms are presented: OATNI for Order-Aware Temporal Net-
work Inference and EFCNI for Enhanced Fast Causal Network Inference. The OATNI

VI Special Issue of DaWak 2013

exploits a temporal network structure (a directed acyclic graph) to represent temporal
precedence relationships between event types. The EFCNI uses a time-centric causal
modeling strategy to speed up the learning of causal network and to learn an accurate
causal network even if the streaming events are out of order. Complexity analysis of the
proposed algorithms is given. These algorithms are compared theoretically and
experimentally against two state-of-the-art algorithms, PC and Fast Causal Network
Inference. These experiments show their efficiency in terms of computation time and
resiliency to out-of-order in streams.

The fourth paper, titled Learning through Non-linearly Supervised Dimensionality
Reduction, by Josif Grabocka and Lars Schmidt-Thieme proposes a novel dimen-
sionality reduction which simultaneously reconstructs the predictors by the means of
matrix factorization and estimates the target variable. The originality of this proposal is
the use of a nonlinear SVM as the classification loss term. A consistent state of the art
has been established that includes: Dimensionality Reduction, Matrix Factorization,
and Supervised Dimensionality Reduction. The proposed algorithm called Nonlinearly
Supervised Dimensionality Reduction (NSDR) is compared against three algorithms,
PCA-SVMs (Principal Component Analysis and then SVMs classification), SVMs, and
LSDR (Linearly Supervised Dimensionality Reduction) using five real-life datasets.
The obtained results show a significant improvement against unsupervised techniques.
Application of this work is developed in two FP7 projects: Reduction (www.reduction-
project.eu) and iTalk2Learn (www.italk2learn.eu).

The fifth paper, titled Metrics for Association Rule Clustering Assessment, by
Veronica Carvalho, Fabiano Santos, and Solange Rezende, addresses a difficult
problem that consists in evaluating a pattern mining task. The authors consider the case
of association rule clustering. A questionnaire is used to understand the important
aspects to be considered by a user when association rule mining is preceded by clus-
tering. Benefiting from these results, 11 metrics are proposed to assess the quality of
clustering-based association rule mining. Basically, each metric compares the set of
mined association rules with the set that would be mined without clustering. This work
provides relevant metrics for evaluating the quality pattern mining algorithms.

January 2015 Ladjel Bellatreche
Mukesh Mohania

Special Issue of DaWak 2013 VII

http://www.reduction-project.eu
http://www.reduction-project.eu
http://www.italk2learn.eu

Organization

Program Committee

Alberto Abelló Universitat Politècnica de Catalunya, Spain
Mohammed Al-Kateb Teradata Labs, USA
Ladjel Bellatreche LIAS/ISAE-ENSMA, France
Petr Berka University of Economics, Prague, Czech Republic
Vasudha Bhatnagar University of Delhi, India
Karen Davis University of Cincinnati, USA
Dejing Dou University of Oregon, USA
Selma Khouri National High School for Computer Science,

Algeria
Sofian Maabout University of Bordeaux, France
Mukesh Mohania IBM Research, India
Lu Qin University of Technology, Sydney, Australia
Arnaud Soulet University of Tours, France
Anand Prabhu Subramanian IBM Research, India
Olivier Teste IRIT, France
Panos Vassiliadis University of Ioannina, Greece

Editorial Board

Reza Akbarinia Inria, France
Bernd Amann LIP6 – UPMC, France
Dagmar Auer FAW, Austria
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università Mediterranea di Reggio Calabria, Italy
Qiming Chen HP Labs, USA
Tommaso Di Noia Politecnico di Bari, Italy
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University Klagenfurt, Austria
Stefan Fenz Vienna University of Technology, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern, Germany
Andreas Herzig IRIT, Paul Sabatier University, France
Hilda Kosorus FAW, Austria
Dieter Kranzlmüller Ludwig-Maximilians-Universität München,

Germany
Philippe Lamarre INSA Lyon, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Mukesh Mohania IBM Research, India
Franck Morvan IRIT, Paul Sabatier University, France
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Gultekin Ozsoyoglu Case Western Reserve University, USA
Themis Palpanas Paris Descartes University, France
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Klaus-Dieter Schewe University of Linz, Austria
Sherif Sakr University of New South Wales, Australia
David Taniar Monash University, Australia
A Min Tjoa Vienna University of Technology, Austria
Chao Wang Oak Ridge National Laboratory, USA

Reviewers

Alberto Abellò Universitat Politècnica de Catalunya, Spain
Mohammed Al-Kateb Teradata Labs, USA
Ladjel Bellatreche LIAS/ISAE-ENSMA, France
Petr Berka University of Economics, Prague, Czech Republic
Vasudha Bhatnagar University of Delhi, India
Karen Davis University of Cincinnati, USA
Dejing Dou University of Oregon, USA
Selma Khouri National High School for Computer Science,

Algeria
Sofian Maabout University of Bordeaux, France
Mukesh Mohania IBM Research, India
Lu Qin University of Technology, Sydney, Australia
Arnaud Soulet University of Tours, France
Anand Prabhu Subramanian IBM Research, India
Olivier Teste IRIT, France
Panos Vassiliadis University of Ioannina, Greece

XII Editorial Board

Contents

Data Warehouse Processing Scale-Up for Massive Concurrent Queries
with SPIN . 1

João Pedro Costa and Pedro Furtado

An Uncoupled Data Process and Transfer Model for MapReduce 24
Li Zha, Jie Zhang, Wei Liu, and Jian Lin

Enhanced Fast Causal Network Inference over Event Streams. 45
Saurav Acharya and Byung Suk Lee

Learning Through Non-linearly Supervised Dimensionality Reduction 74
Josif Grabocka and Lars Schmidt-Thieme

Metrics for Association Rule Clustering Assessment 97
Veronica Oliveira de Carvalho, Fabiano Fernandes dos Santos,
and Solange Oliveira Rezende

Author Index . 129

http://dx.doi.org/10.1007/978-3-662-46335-2_1
http://dx.doi.org/10.1007/978-3-662-46335-2_1
http://dx.doi.org/10.1007/978-3-662-46335-2_2
http://dx.doi.org/10.1007/978-3-662-46335-2_3
http://dx.doi.org/10.1007/978-3-662-46335-2_4
http://dx.doi.org/10.1007/978-3-662-46335-2_5

Data Warehouse Processing Scale-Up
for Massive Concurrent Queries with SPIN

João Pedro Costa1,2(&) and Pedro Furtado2

1 DEIS, ISEC, Polytechnic Institute of Coimbra, Coimbra, Portugal
jcosta@isec.pt

2 University of Coimbra, Coimbra, Portugal
pnf@dei.uc.pt

Abstract. Data Warehouses (DW) store valuable information not only for
strategic business decisions, but also for operational daily decisions. As a
consequence, a large number of queries are concurrently submitted, stressing the
database engine ability to handle such query workloads without severely
degrading query response times. The query-at-time model of common database
engines, where each query is independently executed and competes for the same
resources, is inefficient for handling large DWs and does not provides the
expected performance and scalability when processing large numbers of con-
current queries. Related work shows that there’s a performance advantage on
sharing data and processing, but the proposed solutions suffer from memory
limitations, reduced scalability and unpredictable execution times when applied
to large DWs, particularly those with large dimensions. SPIN proposes an
approach to share computation and data among concurrent queries that delivers
scale-up, even in the presence of massive query workloads. In this paper we
describe the mechanisms used by SPIN to embed data and queries into a shared
query processing pipeline tree and how SPIN dynamically reorganizes the
processing tree. We also provide experimental validation of the approach.

1 Introduction

With the query-at-a-time model of common database systems, each query competes for
resources (IO, CPU, …) and is independently executed without any processing and
data sharing considerations. Relations are concurrently scanned by each query of the
concurrently running workload, and tuples are independently filtered, joined and
aggregated. While this may not raise performance issues for most operational systems,
it is a performance killer when dealing with large Data Warehouses (DW), with large
fact and dimension relations. Therefore, the database engine is unable to handle con-
current query workloads scalably without significantly affecting the query execution
time. Consequently, predictable execution times under scalable data volumes and query
workloads can only be attained through high level data and processing sharing among
concurrently running queries.

Recent proposals aimed to provide improved sharing [1] focus on sharing fact table
reading and joining costs among running queries, by using a set of dimension filters to
perform fact-to-dimension joins. However, the usefulness of those approaches is

© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XVII, LNCS 8970, pp. 1–23, 2015.
DOI: 10.1007/978-3-662-46335-2_1

limited to small dimensions that can fit entirely in memory, as recognized in [2],
therefore large dimensions may severely degrade performance.

We argue that there’s a need for improved data and processing sharing among a
large number of concurrently running star queries. Such approach should also deal with
scalable data volumes and processing infrastructures.

Our SPIN approach is a data and processing sharing model that can deliver pre-
dictable execution times to a large set of concurrently running aggregation star queries.
It has minimum memory requirements and can handle large data volumes and be
deployed over scalable processing infrastructures with almost linear speedups. We
describe the mechanisms used by SPIN to embed data and queries into a shared query
processing pipeline tree and how SPIN dynamically reorganizes the processing tree.
We discuss how SPIN characteristics overcome the limitations of recent proposals on
data and processing sharing, such as memory limitations, reduced scalability and
unpredictable execution times when applied to large DWs, particularly those with large
dimensions.

The paper is organized as follow: Sect. 2 reviews related work on data and pro-
cessing sharing, and their limitations on delivering scalable and predictable perfor-
mance. Section 3 presents and discusses SPIN and how it can overcome such
limitations and Sect. 4 presents implementation details of the SPIN prototype. We
evaluate SPIN in Sect. 5, and finally we present conclusions in Sect. 6.

2 Related Work

The usage pattern of DWs is changing from the traditional, limited set of simultaneous
users and queries, mainly well-known reporting queries, to a more dynamic and con-
current environment, with more simultaneous users and ad hoc queries. DW query
patterns are mainly composed by star aggregation queries, which contain a set of query
predicates (filters) and aggregations. Figure 1 illustrates the query template.

The query-at-a-time execution model of traditional RDBMS systems, where each
query is executed independently, does not provide a scalable environment to handle
much larger, concurrent and unpredictable workloads. The use of a parallel infra-
structure does not solve this problem because the additional computational and storage
capabilities only lessen it, while introducing others problems such as load-balancing,
optimal data distribution and network capacity.

Queries submitted to a star schema model have common processing tasks, partic-
ularly those related to IO processing of the fact table (costly operations).

Fig. 1. Template of an Aggregated Star Query

2 J.P. Costa and P. Furtado

Queries submitted to a star schema model have common processing tasks, partic-
ularly those related to IO processing of the fact table (costly operations). Analyzing the
execution query plan, we observe that the low-level data access methods, such as
sequential scan, represent a major weight in the overall query execution time. One way
to reduce such a burden is to store relations in memory. However, the size of the
physical memory may be insufficient to hold large DW, and at the same time for
performing join and sort operations.

Cooperative scans [3] enhances performance by improving data sharing between
concurrent queries, by dynamic scheduling queries and their data requests according to
the current executing actions. While this minimizes the overall IO costs, by mainly
using sequential scans instead of a large number of costly random IO operations, and
the number of scan operations (since scans are shared between queries), it introduces
undesirable delays to query execution, since the execution of some actions may have to
be postponed, and does not deliver predictable query execution times.

QPipe [4] applies on-demand simultaneous pipelining of common intermediate
results across queries, avoiding costly materializations and improving performance
when compared to tuple-by-tuple evaluation. Each operator is promoted to an inde-
pendent micro-engine, called μEngine, which accepts request and serve them as
queues. It introduced the concept of Window of opportunity, as the time interval where
newly submitted operators can take advantage of the one already in progress. Resource
utilization is improved when requests of the same nature are grouped together, and
when dedicated processes are used to process each group of similar requests.

Crescando [5] is based on parallel and collaborative scans in main memory and the
so-called “query-data” joins known from data-stream processing. Crescando loads a
tuple into memory and then “joins” the tuple with all interested queries, so that the cost
associated with loading the tuple into memory is amortized. While the proposed
approach is not always optimal for a given workload, it provides latency and freshness
guarantees for all workloads.

DataPath [6] is a “data-centric” system where queries do not request the data,
instead the data is automatically pushed onto processors. It resembles the QPipe and the
main-memory-based Crescando system in the way it attempts to share memory access
latency and bandwidth.

SharedDB [7] introduce the concept of Global Query Plans, which compiles a
single plan for the whole workload, instead of compiling each individual query into
separate plans. This plan serves multiple concurrent queries and may be reused over a
long period of time. The proposed Shared Join plans approach, which combines (union)
relation tuples of all concurrent queries before performing a single large shared join,
instead of multiple smaller joins, only proved to be efficient for large number of
concurrent queries. SharedDB batches queries and updates and, thereby making use of
traditional, best-of-breed algorithms to implement joins, sorting, and grouping. While
one batch of queries and updates is processed, newly arriving queries and updates are
queued. When the current batch of queries and updates has been processed, then the
queues are emptied in order to form the next batch of queries and updates. This batch-
based execution model adds latency to each query. A specific advantage of SharedDB
as compared to QPipe and DataPath is its ability to meet SLAs and bound the response
time of queries.

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 3

CJOIN [1, 2] applies a continuous scan model to the fact table, reading and placing
fact tuples in a pipeline, and sharing dimension join tasks among queries, by attaching a
bitmap tag to each fact tuple, one bit for each query, and attaching a similar bitmap tab
to each dimension tuple referenced by at least one of the running queries. Each fact
tuple in the pipeline goes through a set of filters (one for each dimension) to determine
if it is referenced by at least one of the running queries. It not, the tuple is discarded.
Tuples that reach the end of the pipeline (tuples not discarded in filters) are them
distributed to dedicated query aggregations operators, one for each query.

CJoin overcomes the limitations of the query-at-a-time model, allowing high level of
concurrency, with multiple concurrent queries being processed at a time, by scheduling
processing tasks so that they can share IO, particularly scanning tasks. In this model,
after creating the execution plan of multiple queries a pre-processor analysis the pro-
cessing tasks and schedules them so that they can share processing tasks. This is applied
not only to IO processing tasks but also to filtering and aggregation tasks, arranged in a
pipelined fashion. The system is continuously scanning the fact table and tuples are put
in a pipeline for processing. The pre-processor add a bit vector to each tuple that it
receives, one bit for each query in the workload, before forwarding the tuples to the
pipeline. A similar bit vector is also added to each dimension tuple, where each bit
indicates if the dimension tuple satisfies the restrictions (of filtering conditions) of the
corresponding query. This bit vector information is used to decide (filter) which fact
tuples satisfy the conditions and should be forward into the pipeline.

While this approach reduces IO cost, it requires all dimension tables to reside in
memory in order to be probed for performing hash joins, and to continuously update
dimension bit vectors (with varying numbers of bits) when new queries are submitted
or running queries have finished. However, in practice, dimension’ sizes can be large.
As a consequence, it may require external hash-joins and therefore resulting in slower
performance and unpredictable query execution times.

Our proposal, SPIN, shares some characteristics with those solutions, namely the
data sharing, the data pipeline processing, and processing and sharing data scans in a
circular loop. While SharedDB uses standard query processing techniques such as
index nested-loops, hashing and sorting for any kind of operator of the relational
algebra (e.g., joins, grouping, ranking, and sorting), CJoin and DataPath are limited to
sharing the join computation and to the cases in which the particular CJoin and Da-
taPath join methods show good performance.

We tackle the dimension size problem using a different approach, which has small
memory requirements and can effectively be deployed into parallel shared nothing
architectures composed of heterogeneous processing nodes. Our proposal, SPIN is
conceptually related toCJoin, andQPipe inwhat concerns the continuous scanning offact
data, but it uses a simpler approach with minimum memory requirements and does not
have the limitations of such approaches. SPIN uses a de-normalizedmodel, as proposed in
[8], as a way to avoid joining costs, at the expense of additional storage costs, and to attain
massive parallelization [9] with balanced data distribution, scalable performance and
predictable query execution times. The CJOIN logic for small in-memory relations and
the dynamic scheduling of cooperative scans can be integrated in SPIN.

4 J.P. Costa and P. Furtado

3 The SPIN Processing Model

SPIN provides workload scale-out by combining the costly IO requests from all the
queries into a common data flow (aka pipeline) that is filled by a sequential continuous
scan executed in a circular loop. Query execution them proceeds by consuming the
relevant data for each query as it flows along the pipeline. This presents a huge
potential for data and processing sharing. SPIN uses the de-normalized data model
(ONE) proposed in [8, 9], this means that the star schema is physically organized as a
single de-normalized relation (Od).

It views the ONE relation (Od) logically as a circular relation, i.e. a relation that is
constantly scanned in a circular fashion (when the end is reached, it continues scanning
from the beginning). The relation is divided into a set of logical fragments (or chunks),
with the chunk size adjusted to storage characteristics. The circular loop is continuously
spinning, sequentially reading data chunks, while there are queries running. Data is
read from storage and shared to all running concurrent queries, as illustrated in Fig. 2.

A Data Reader sequentially reads chunks of relation Od, and continuously fills a
data pipeline. Tuples when entering the pipeline, have to go through a fast and simple
selection operator to early discard large subsets of tuples not required by the currently
registered queries (early selection). Only tuples relevant for at least one the queries flow
through the pipeline to a Data Switch (DS), which diverts tuples to each of the running
queries, building a dedicated logical branch for each query. For performance reasons,
some fast early selection predicates are incorporated within the Data Reader.

Since Od is de-normalized, no costly join tasks need to be processed, only query
operations. Any query q, when submitted, starts consuming and processing the tuples
that are placed along the data pipeline.

3.1 Query Registering and Processing

A Query Handler handles the query (de)registering. Any query q registers as a con-
sumer of the data in the pipeline, following a publish-subscribe model. Each query q,
has to process every tuple from relation Od, at most once, although data query pro-
cessing does not need to start at record 0.

For each running query, the Query Handler maintains an indicator of the first
logical tuple (position in the circular loop) consumed by the query. The position of this

Base Pipeline

Data
Switch

Filter
Circular Data

Reader

Fig. 2. SPIN Data processing model

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 5

logical first row is fundamental to determine when the end of the query is reached. When
that occurs, then the query q has considered all tuples for execution, therefore finishes its
execution and sends the results back to the client. Figure 3 illustrates the data reading
circular process, depicting the position of logical first row of queries q1, q2 and q3.

Since each query starts consuming tuples from the current position (logical
beginning) in the circular loop, without the need to start from a specific record, the
reading cost (IO cost) is shared among all running queries Qr without introducing
additional IO overhead or random reads. Other costs related to query processing may
be shared at subsequent executing phases, such as selection, logical branching and
pipeline processing.

When submitted, a query is analyzed and decomposed into a sequentially-organized
set of predicates, computations and aggregations tasks. This decomposition into tasks
allows SPIN to determine and update the set of early selection predicates that are
placed at the base data pipeline. The remaining query tasks are mapped into SPIN
operators for execution. To ensure a fast early selection phase, complex (costly) query
predicates are placed at later stages.

3.2 SPIN Operators and Data Processing Pipelines

SPIN follows a flow oriented processing model where each query is decomposed into
tasks, which are later mapped to operators placed along a query-specific processing
pipeline. A processing pipeline is a collection of sequentially-organized operators that
transform tuples as they flow along the pipeline (illustrated in Fig. 4).

Fig. 3. SPIN sequential data reading loop

Base Pipeline

Computation

Circular Data
Reader

Data
Switch

ProjectionAggregationSelection
Filter

Fig. 4. SPIN Data pipeline processing model

6 J.P. Costa and P. Furtado

SPIN include the following base operators:

– Selection Operators - σ (conditions) – apply predicate clauses to filter incoming
tuples, trashing those that do not meet the predicate clauses. Each Selection
Operation maps a query predicate (default) or a set of related query predicates. The
selection operators are typically placed at the beginning of the processing pipeline,
to filter tuples that pass-through the pipeline before entering into subsequent pro-
cessing operators. Selection Operators are placed in a sequential ordered fashion
according to their selectivity and evaluation costs, with more restrictive and fastest
placed at early stages.

– Projection operators - π (attributes) – restrict to a subset of tuple attributes that
flows throw the pipeline. A projection and a selection operator can be combined
into a single step operator.

– Computation Operators - φ (computation expression) - perform tuple level data
transformations, including arithmetic (e.g. φ(a + b)) and string manipulation (e.g.
substring). A dedicated Computational Operator is built for each specific transfor-
mation. A Computation Operator maps a tuple-level arithmetic, function or oper-
ation expressed in any of the query clauses (e.g. the arithmetic expression
QUANTITY * PRICE). The mapping into φ is particularly relevant for complex
computations that appear in several query clauses. Query predicates that include
computations (e.g. QUANTITY * PRICE > 1000) may be mapped into a σ, pre-
ceded by a φ that performs the computation. The goal is to build fast selection
operation with simple and fast evaluation predicates.

– Data Switches - DS (attribute conditional switching) –forward incoming data
tuples into a set of data outputs, called logical data branches (B). Tuples are
forwarded to all branches b, b ϵ B, or forwarded according to each branch condi-
tions. For each branch, a tuple is only forwarded if it matches the branch’s con-
ditions bp (if exists). Tuples not matching any branch predicates are trashed.

– Aggregation operators - Σ (grouping attributes; aggregation functions) – perform
group by computations, by grouping tuples according to the grouping attribute
clause, and processing the aggregation functions (e.g. SUM). Aggregation opera-
tors output results when all tuples for a given query as been considered for
processing.

A Data Processing Pipeline (or simply referenced as pipeline) is a set of
sequentially organized operators. A pipeline represents a set of common operations that
must be performed to incoming tuples. Each query is decomposed into tasks (e.g.
filtering, aggregation) that are mapped into a set of sequential operators and placed a
along a query-specific pipeline. Query processing only starts after the pipeline is built
and a logical branch is registered as a consumer of the base data pipeline.

3.3 Workload Processing Tree (WT) and Logical Data Paths

The amount of operators (e.g. selection and aggregation operators) and query-specific
pipelines (one for each query) increases with the query load, and can rapidly exhaust
memory and processing resources. With large concurrent query loads, queries may

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 7

have common query predicates, computations, and aggregations, resulting in multiple
similar operators (each doing its own computation) being placed in query-specific
pipelines. The circular Data Reader shares the IO reading cost among queries, but SPIN
exploits further data processing opportunities.

Sets of queries may share the same query predicates, computations or aggregations.
For each query, SPIN splits the query-specific pipeline into an equivalent ordered set of
sequentially connected partial pipelines. Each of these partial pipelines, composed with
one or set of logically related operators, is connected as a data consumer of its pre-
decessor. For the currently running query load, similar partial pipelines (with the same
operators over the same tuples) from different queries are combined into a common
pipeline and a data switch is appended to end to share its results. The subsequent
connected data pipelines are then connected as logical branches of this common data
pipeline, consuming its output. A set of parallel query-specific pipelines with common
operators are rearranged in order to push–forward and to orchestrate similar operators
into a common processing pipeline. At the end of this pipeline, a DS diverts tuples to
further processing in subsequent logical branches.

As a result, the initial query-specific processing pipelines of the currently running
queries are split, merged and organized into a workload data processing tree (WT). In
the end, the initial query-specific data pipeline of each query will be represented by an
equivalent logical data path, which passes through logical branches, DS and pipelines.

Figure 5 illustrates a SPIN processing layout with two logical branches composed
by two query-specific processing pipelines connected to a common processing pipeline.

3.4 Building the Workload Processing Tree

The merging of common data processing pipelines and operators is enforced through
all the query execution steps, to maximize data and processing sharing and reduce
memory and processing usage. For instance, selection operators that are common to
running queries are pushed closer to the Data Reader to reduce the data volume within
the pipelines and thus increasing the level of data processing sharing. The base pipeline
trashes tuples not required by any of its logical branches.

For example, consider that three following aggregation queries are currently run-
ning, each with different query predicates:

q2 pipeline

(AVG(sales)cust >=342

Data Pipeline

Data

Switch
Filter
Y=2000Circular Data

Reader

q1 pipeline

SUM(sales)
prod >=45

(price+VAT)

Fig. 5. SPIN Data pipeline processing model

8 J.P. Costa and P. Furtado

q1 ¼ SUM rp¼ a salesð Þ� �

q2 ¼ SUM ry¼ 2000 salesð Þ� �

q3 ¼ SUM ry¼ 2000K p¼ a salesð Þ� �

For each query, an initial query-specific pipeline is built which must be connected
to the base pipeline. Figure 6 depicts the query-specific pipeline, one for each query.

When a new query is submitted, and instead of simply connecting the corresponding
query-specific pipeline to the base pipeline, SPIN tries to find intersection points in the
current workload processing tree, in order to maximize data and processing sharing with
the already running queries. To accomplish this goal, SPIN uses the addPath algorithm,
shown below, to maintain and update the workload processing tree to reflect the changes
introduced by the query-specific pipeline of the new submitted query.

The query-specific pipeline is split into a set of sequentially connected partial-
pipelines, called the query data path - Qpath. If Qpath cannot be fully mapped in WT, i.e.
WT does not have an equivalent logical path (Tpath), then it attempts to match some of
Qpath‘s pipelines. This process is performed to each WT’s pipeline, starting from the
WT’s root pipeline to the leaves, while the current WT’s pipeline (b) fully matches a
pipeline of Qpath. The matching pipelines are removed from Qpath and the process is
recursively executed for the remaining Qpath using b as the new root pipeline.

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 9

If there’s no branch b that fully matches one of Qpath pipelines (p), then it tries to
find a branch b that partially matches p. When there’s a partial match between a WT’s
pipeline (b) and a Qpath‘p ∩ bpipeline (p), i.e. there’s a interception between their
selection predicate regions, then p is removed from Qpath and two distinct paths Qpath1

and Qpath2 are created, where Qpath1 = Qpath + {p ∩ b} and Qpath2 = Qpath + {b − (p ∩
b)}. The algorithm is then applied to each of these paths Qpath1 and Qpath2.

When a pipeline does not matches a Qpath‘s pipeline, either fully or partially, then
remaining Qpath is connected to as a new branch of the last matching pipeline. If no
matching pipeline exists then Qpath is connected to the base pipeline.

The number and placement of DSs, and logical branches, are orchestrated in order
to minimize the switching cost DScost, the number of evaluated predicates, the predicate
evaluation costs and the memory requirements for branch management. New logical
branches are created and connected to DS when query predicates of processing pipe-
lines queries do not match the predicates of the existing branches.

3.5 Merging and Reusing Intermediate Results

An optimization process transverses all logical branches trying to push-forward oper-
ators into the preceding pipelines. The deployment of σ and DS is planned in order to
reduce the data volume that flow along the pipelines, and to maximize data and pro-
cessing sharing.

Afterwards, SPIN applies a merging process that analyses selection predicates and
how processing of intermediate results can be reused and shared among processing
pipelines, and merged to avoid similar computations of other pipelines. For each logical
data path, it follows the path backwards to the source, and at each pipeline P of the data
path, it determines if exists other logical paths to process, or has already started to be
process a subset of the tuples that this pipeline has to process.

When a logical path LP exists, then this pipeline is divided in two sequential
pipelines (P1 and P2). The latter (P2) is connected to P1 and LP and starts consuming
their outputs and merging the results. The selection predicates of P1 are updated to
exclude the predicates of the logical path LP. This process can result in multiple
alternative branching deployments.

Base
pipeline

Data
SwitchCircular Data

Reader

q3 pipeline

P=a ;
Y=2000; sum(sales)

q1 pipeline

P=a
sum(sales)

q2 pipeline

y=2000 sum(sales)

LB 2

Fig. 6. SPIN deployment of query-specific pipelines

10 J.P. Costa and P. Furtado

To evaluate these alternative deployments, and merging configurations, the merg-
ing process uses several data related metrics: ntuples as the number of relation tuples,
neval as the total number of tuples evaluated by σs, and nag as the total number tuples
aggregated by Σs. In the example, the initial deployment, without considering con-
sidered merging, the number of evaluated and aggregated tuples are computed,
respectively, as

neval ¼ 3� n and nag ¼ nevalðrp¼a#Þ þ nevalðry¼2000Þ þ nevalðrp¼a;y¼2000Þ

After the merging process, the number of evaluated tuples neval which has obtained
as a function of the number of running queries Q, is reduced from Q�
ntuples to RnevalðprÞ with pσ the selection predicates of p. Figure 7 depicts the final
deployment after the merging process.

The number of aggregated tuples nag is also reduced from RnevalðrqÞ to
nevalðry¼ 2000Þ þ nevalðrp¼ a;y¼ 2000Þ: The total number of evaluated and aggregated
tuples are computed, respectively as

neval ¼ nevalðry¼ 2000Þ þ nevalðry¼ 2000Þ þ nevalðry 6¼ 2000Þ ¼ ntuples þ nevalðry¼ 2000Þ
nag ¼ nevalðrp¼ a; y¼ 2000Þ þ nevalðrp¼ a; y 6¼ 2000Þ þ nevalðrp 6¼ a; y¼ 2000Þ

¼ nevalðry¼ 2000Þ þ nevalðrp¼ a; y 6¼ 2000Þ

In this example, we observe that the number of evaluated tuples ðnevalÞ is sub-
stantially reduced from 3 times the number of tuples ðntuplesÞ to ntuples plus the number
of tuples that satisfy the predicate ðry¼ 2000Þ: More than 1/3 of the tuples, depending of
the selectivity of ry¼ 2000; aren’t evaluated. This reduction is even greater as the number
of concurrent queries increases and as the overlapping of query predicates increases.
Figure 8 illustrates this behavior, using the setup described in Sect. 5.

The results show, as the number of concurrent queries increases, a significant
reduction in the number of evaluated tuples by SPIN, while observing an almost linear
increase in the number of evaluated tuples of the common query-at-time processing
model of most database systems.

Base

DS
Y=2000?Circular Data

Reader

pipeline 1

DS
p=a?

pipeline 2

P=a (sales)

pipeline 3

(sales)

pipeline 4

DS(sales)

pipeline 6
Merge
(sales)

pipeline 7
Merge
(sales)

LB 3.6

LB 2.7

Fig. 7. Merging and reusing intermediate results

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 11

3.6 Query Handling and Workload Processing Tree Reorganization

The workload processing tree (WT) is continuously reorganized as new queries are
submitted. New queries that cannot be directly plugged into WT are kept as distinct
branches connected to the base (root) pipeline.

When a query finishes its execution, the Query Handler, removes the query-specific
pipelines, which are not used in other logical paths, from the workload processing tree.
Pipelines used by other logical paths are maintained, only the query-specific outputs are
detached. Query-specific logical branches are detached and removed. Then a reorga-
nization process is triggered to update the workload processing tree.

For instance, in the previous example (Fig. 7), when the query q3 finishes its
execution, the query-specific pipeline 7 is detached from both pipeline 2 and 4 before
being removed.

When a pipeline is removed, it triggers a reorganization process to update the
workload processing tree. The goal is to determine if exists WT pipelines that are
producing output results that aren’t consumed (i.e. without connected outputs), and
therefore can be removed from the WT (Fig. 9).

0

20

40

60

80

100

0 20 40 60 80 100
concurrent queries

Evaluated tuples (increasing factor)

TPCH SPIN

Fig. 8. Number of times tuples are evaluated

Base

DS
Y=2000?Circular Data

Reader

pipeline 1

DS
p=a?

pipeline 2

P=a (sales)

pipeline 3

(sales)

pipeline 4

DS(sales)

pipeline 6

Merge
(sales)

pipeline 7
Merge
Σ (sales)

LB 3.6

LB 2.7

Fig. 9. WT reorganization with group removal – step 1

12 J.P. Costa and P. Furtado

In pipeline 2, the aggregation operator (e.g. SUM (sales) of ry¼ 2000 and σp = a) that
is not used by any of the running queries, can be excluded from query processing. As a
result, the related processing branch (pipeline 2 in the example) can also be removed
from the workload processing tree (reducing memory usage and data processing). The
selection predicates can be pushed to preceding pipelines, in order to reduce the amount
of data to be processed and that flows through the pipelines. Pushing selection pred-
icates to preceding pipelines may cause the removal of additional branches, with the
associated benefits (Fig. 10).

Since pipeline 2 is removed, the data switch in base pipeline is replaced by a
selection predicate ry¼ 2000 and the data switch and the logical branch of pipeline 1 is
pushed to the base pipeline. Then pipeline 1 is also removed. Operators in use by other
running queries are updated to reflect the removal of query-specific clauses. Figure 11
depicts the final WT layout.

After the WT reorganization is completed, a data branching optimization process is
triggered to determine if other logical branching deployment can deliver improved
performance.

4 SPIN Prototype

We have built a SPIN prototype implemented in Java to evaluate its performance and
scalability capabilities. This section presents details of the SPIN prototype, which
implements the mechanism discussed above. The prototype was built as a set of flexible

Base

DS
Y=2000?Circular Data

Reader

pipeline 1

DS
p=a?

pipeline 2

P=a (sales)

pipeline 3

(sales)

pipeline 4

DS(sales)

pipeline 6
Merge
(sales)

LB 3.6

Fig. 10. WT reorganization with group removal - step 2

Base

Circular Data
Reader

DS
p=a?

pipeline 3

(sales)

pipeline 4

DS(sales)

pipeline 6
Merge
(sales)

LB 3.6

Y=200

Fig. 11. WT reorganization with group removal- final layout

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 13

and extensible modules, organized in three main layers (illustrated in Fig. 12): a data
access layer, a SPIN core processing layer and a query handler layer.

The SPIN prototype offers a SPIN API for querying and interacting with SPIN. It
also offers a JDBC compliant interface that interprets SQL-92 SELECT queries,
allowing SPIN to be used as a replacement of the existing DW infrastructure or be used
as query accelerator.

The illustrated prototype in Fig. 12 relates to the release 1.6.3 (June2013), which
has about 32klocs and 153 java classes and do not include several of SPIN optimization
mechanisms, such as: data columnar storage organization, compression, partial de-
normalized relations with in-memory dimensions, massive data sharding, data loading
and snapshot isolation.

4.1 The Data Access Layer

The data access layer implements all the functionalities related to gathering the data
from storage to the base pipeline for processing. Data is gathered by its main module, the
data reader, which can be extended to handle distinct storage locations and physical data
organizations. The default data reader accesses tuples physically stored in a row-wise

Query Timely
Handler

Query Parser

L2P Query Rewriter

JDBC SPIN API

SPIN Core Engine

Data Reader

Distributed Filesystem

db

Query Handler

WTRee Branch
Optimizer

JIT Query Processor

D
at

a
A

cc
es

s
L

ay
er

S
P

IN

P
ro

ce
ss

in
g

L

ay
er

Q
u

er
y

H
an

d
le

r

L
ay

er

Memory
management

Catalog Metadata

QPath Plan

File

Fig. 12. SPIN prototype diagram - release 1.6.3 (June2013)

14 J.P. Costa and P. Furtado

format in a full de-normalized relation as proposed in [8]. We have implemented several
data readers, including sequential and mapped memory file using row-wise tuple
organization, in-memory object-oriented tuple organization, compressed row-wise, and
SQL based data gathering from common databases using a JDBC driver. The later data
reader allows SPIN to act as a middle-layer query accelerator of existing DW infra-
structures. This layer also manages a buffering (caching) memory to speedup the data
access time, and the processing of frequent accessed data.

4.2 The Query Handler Layer

The query handler layer is responsible for handling query requests, for parsing and
performing a syntactical and object validation against the information in the metadata
catalog. It also contains a module that extracts, if exists, and validates the timely related
clauses, to check if they can be satisfied under the current query load. As discussed
above, SPIN by default uses a denormalized ONE storage organization to avoid joining
relations, particularly large dimensions that cannot fit entirely in memory, and therefore
providing predictable execution times, but a distinct data reader can be implemented to
use other storage organization. SPIN, in order to be a used as a middle-layer and/or a
transparent replacement of the existing DW infrastructure, it maintains a logical star-
schema representation of the DW model, regardless of the physical storage
organization.

A Logical-to-Physical translator module rewrites the star-schema queries according
to the SPIN’s physical storage model. It provides a JDBC interface to allow seamless
integration with users and applications and the submitted SQL queries are syntactically
analyzed according to the logical star-schema view. As the physical schema may
diverge from the logical star-schema view, queries are rewritten according to the
physical schema representation, into a set of simpler processing tasks with more pre-
dictable execution time. A query Q, syntactically valid according to the logical schema,
is translated (rewritten) into query Qt (or a set of sub-queries) according to the internal
physical organization. Appendix A shows some TPC-H queries and their equivalent
translation made by SPIN before being processed.

Afterwards, a query planner and optimizer builds a Qpath execution plan for each
rewritten query. A query handler manages the execution and completion of the query
Qpath plan execution and triggers the WT reorganization when the query completes
(reaches the first logical row).

4.3 The SPIN Processing Layer

The SPIN processing layer handles the query execution maximizing the data and
processing sharing among queries. It implements the algorithms discussed in Sect. 3.1
to plug the specific query pipeline (Qpath) to the currently running workload processing
tree (WT). Then a just-in-time (JIT) query processor uses dynamic coding, to imple-
ment all the specific operators, pipelines and data branches required to process the
running queries. Afterward the query execution can be started by the SPIN core engine.

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 15

A WTree branch optimizer is continuously monitoring the execution, the addition and
conclusion of running queries. A workload processing tree reorganization is triggered
whenever a different deployment can provide higher data and processing sharing and
yield better performance.

5 Evaluation

This section discusses experimental evaluation results obtained by the SPIN prototype
described above (release 1.6.3), which implements the mechanisms discussed in the
paper. We used the default data reader that reads tuples in a row-wise format physically
stored in a full de-normalized relation as proposed in [8], with disabled optimization
features (e.g. compression, materialized views, automatic in-memory bit-selections).

The setup is based on an Intel i5 processor, with 8 GB of RAM and a RAID0
storage system composed with 3 SATAIII disks with 2 Terabytes each, running a
default Linux Server distribution. An additional server, connected through a gigabit-
Ethernet switch, was used for submitting a varying concurrent query load. The server
runs a default installation of PostgreSQL 9.0 [10], with shared data buffers set to 2 GB.
We also evaluated SPIN with DbmsX (a well known commercial RDBMS) and
obtained similar results.

We used the TPC-H benchmark with scale factors 1 (SF1) and 10 (SF10) and build
two distinct setups to evaluate SPIN. The TPCH setup which was populated with the
TPC-H data generator tool (DBGEN) available at [11] and the SPIN setup which access
a ONE relation populated with a modified version that generates the de-normalized data
as single flat file.

To evaluate the impact of the concurrent query load in performance and data
volume, we used a query load composed by several variants of the query Q5 with
different selectivity (different date ranges: 1 year, x days, …) and aggregation groups
(e.g. n_name or n_name, c_mktsegment, …). We also used a more complex workload
composed with variants of the queries Q1, Q3 and Q5 with distinct query predicates to
evaluate the influence of the workload query pattern in the average execution time.
Appendix A shows an example of the original submitted queries and also the equiv-
alent queries after translated by the L2P Query Rewriter before being processed by
SPIN.

The query load consisted in a total of 1000 queries chosen randomly among these
variants, each with a random number of filter predicates and random values in the filter
predicate (e.g. X days). The queries were submitted concurrently by a varying number
of simultaneous clients. The results depicted below were obtained as the average of 30
runs.

5.1 Influence of Number of Queries in Query Performance

Query execution time of common RDBMS that follow a query-at-time execution
model, is highly influenced by the number of queries that are concurrently being
executed. In this setup, we evaluate how the number of concurrent queries influences

16 J.P. Costa and P. Furtado

the average execution of SPIN and TPCH. Figure 13 depicts the average execution time
for a scale factor of SF = 10.

We observe that with low concurrent query loads (less than 20 concurrent queries),
the TPCH setup yields better average execution times. However as the number of
concurrent queries increases, the TPCH setup exhibits significantly higher average
execution times because more queries are competing for resources. On the other hand,
the average execution time with the SPIN setup remains almost constant. There’s a
slight increase at higher concurrent query loads due to the pipeline management
overheads and the cost of processing the query-specific pipelines that cannot be
combined with other query pipelines.

Figure 14 depicts the impact of submitting additional queries in the average exe-
cution time of the currently running queries. The results show that at higher query
loads, SPIN introduces low overheads per query (below 1 %) in the average execution
time. The overhead is higher at low query loads (less than 10 concurrent queries)
because the running queries exhibit less opportunities for data and processing sharing.

10

100

1.000

10.000

100.000

0 20 40 60 80 100

time (s)

#concurrent queries

AVG Time
TPCH
SPIN

Fig. 13. Average execution time for varying query loads (lower is better)

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

0 20 40 60 80 100
concurrent queries

Increase in AVG exec time per query

Fig. 14. Overhead per query in the average execution time (lower is better)

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 17

The results also reveal that, when a query is submitted using SPIN, there’s a high
degree of confidence regarding how long it will take to deliver the result, regardless of
the currently running query load.

5.2 Influence of Number of Queries in Throughput

Since the average execution time is not significantly influenced by the concurrent query
load, SPIN yields almost linear throughput. The probability that two or more queries
may share overlapping selection predicates and processing operators, increases with the
number of concurrently running queries and therefore yielding improved throughput
(Fig. 15).

We observe that with low concurrent query loads, the TPCH setup yields higher
throughputs than SPIN. However as we increase the number of queries running con-
current this behavior changes drastically. SPIN does not deliver a linear throughput due
to the pipeline management overheads and the cost of processing the query-specific
pipelines that cannot be combined with other query pipelines.

5.3 Influence of the Data Volume in Throughput

Throughput is influenced by the query load, but also by the data volume. Figure 16
depicts the throughput for two distinct data volumes: SF1 (a) and SF10 (b). In the
figure, we observe that throughput of SPIN increases almost linearly with the number
of concurrent running queries, as more data and processing is shared among queries.
With SF1, TPCH yields significantly higher throughput since all data and processing is
done almost exclusively in memory. However as the number of concurrent queries

0

100

200

300

400

500

0 20 40 60 80 100

Qph

concurrent queries

Throughput (Qph)
TPCH
SPIN

Fig. 15. Throughput for varying query loads (higher is better)

18 J.P. Costa and P. Furtado

increase we observe a significant drop in throughput as the running queries exhaust the
available memory. SPIN, does not have these memory issues and can be massively
partitioned among low-end commodity servers.

This effect can be observed in Fig. 17, which compares the throughput ratio (Qph
(SF1)/Qph(SF10)). As the data volume increases by a factor of 10, from SF = 1 to
SF = 10, we observe that at low query workloads (less than 10 queries running
concurrently), the throughput drops by a factor of around 30, mainly because with
SF = 1, TPC-H is remains almost entirely in memory, while with SF = 10 there’s more
IO operations. As the query workload increases loads, TPCH shows an increasingly
larger drop in throughput, since more IO operations are required to process queries.
With 100 concurrent queries, an increase in data volume by factor of 10 results in a

0

2.000

4.000

6.000

8.000

10.000

12.000

1 2 10 20 75 100

Qph

#Concurrent queries

Througput (Qph) - SF1
TPCH
SPIN

0

50

100

150

200

250

300

1 2 10 20 75 100

Qph

#Concurrent queries

Througput (Qph) - SF10
TPCH
SPIN

Fig. 16. Throughput for varying query loads with (a) SF = 1 and (b) SF = 10 (higher is better)

0

50

100

150

200

250

300

350

400

450

1 2 10 20 75 100
concurrent queries

Qph(SF1) / Qph(SF10)

TPCH SPIN

Fig. 17. Impact in throughput of a 10x increase in data volume (lower is better)

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 19

drop in throughput by a factor greater than 400. On the other hand, the throughput of
SPIN drops almost proportionally to the data volume increase factor.

For a higher data volume, the TPCH setup will experience a higher drop in
throughput since it will require more IO operations to process the joins, while SPIN
will yield a drop in throughput, proportional to the data volume increase.

5.4 Influence of the Workload Query Pattern in Query Performance

Since data is sequentially read and shared by the running queries, the IO cost remains
constant regardless of the query pattern. But in Fig. 13 we observed a slight increase in
the average execution time as the number of concurrent queries increases, mainly
because the workload processing tree becomes wider, as more queries as being
simultaneous processed, and also due to the complexity of the evaluation predicates.
The above experiments were carried out using variants of the query Q5 but with
different predicate clauses, selectivity and aggregation groups.

We now compare these average execution times with more complex query loads, to
evaluate the influence of the query workload pattern in the average execution time.
Figure 18 depicts SPIN results for the SF = 10 with three distinct query workloads: Q1
and Q5 are query workloads exclusively composed by variants of query Q1 and Q5,
respectively; Q135 is a workload composed by a set of variants of the queries Q1, Q3
and Q5 (Appendix A), that where randomly chosen for execution.

The results show that the query workload has minimum impact in the average
execution time, for all the considered number of concurrent queries. Although some
queries have more complex computations, there are no significant changes in the
average execution time because for such concurrent query workloads the CPU hasn’t

1

10

100

1.000

10.000

2 5 10 20 50 100

Time (s)

#concurrent queries

AVG Time

Q1

Q5

Q135

Fig. 18. Influence of the query workload pattern in average execution time

20 J.P. Costa and P. Furtado

the bottleneck, but the IO performance. Therefore, and because it uses the scalable and
predictable ONE model, SPIN performance can be significantly boosted if a parallel
infrastructure is used.

6 Conclusions

We presented the mechanisms of SPIN, a data and processing sharing model that
deliver predictable execution times to star-join queries even in the presence of large
concurrent workloads, without the memory and scalability limitations of existing
approaches. We described the mechanisms used by SPIN to embed data and queries in
a shared workload query processing tree and how SPIN dynamically reorganizes the
processing tree. We described the implementation details of the SPIN prototype used in
experimental evaluation and used the TPC-H benchmark to assess its ability to provide
scalable performance and predictable execution times, even in presence of large con-
current query loads.

Currently, we are undergoing a more exhaustive performance analysis, using a
larger subset of the TPC-H queries, and we are extending the SPIN processing model to
deliver assured time guarantees with large parallel heterogeneous deployments, with
massive data sharding.

Appendix A

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 21

22 J.P. Costa and P. Furtado

References

1. Candea, G., Polyzotis, N., Vingralek, R.: A scalable, predictable join operator for highly
concurrent data warehouses. Proc. VLDB Endow. 2, 277–288 (2009)

2. Candea, G., Polyzotis, N., Vingralek, R.: Predictable performance and high query
concurrency for data analytics. VLDB J. 20(2), 227–248 (2011)

3. Zukowski, M., Héman, S., Nes, N., Boncz, P.: Cooperative scans: dynamic bandwidth
sharing in a DBMS. In: Proceedings of the 33rd International Conference on Very Large
Data Bases, Vienna, Austria, pp. 723–734 (2007)

4. Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: QPipe: a simultaneously pipelined
relational query engine. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pp. 383–394 (2005)

5. Unterbrunner, P., Giannikis, G., Alonso, G., Fauser, D., Kossmann, D.: Predictable
performance for unpredictable workloads. Proc. VLDB Endow. 2, 706–717 (2009)

6. Arumugam, S., Dobra, A., Jermaine, C.M., Pansare, N., Perez, L.: The DataPath system: a
data-centric analytic processing engine for large data warehouses. In: Proceedings of the
2010 International Conference on Management of Data, pp. 519–530 (2010)

7. Giannikis, G., Alonso, G., Kossmann, D.: SharedDB: killing one thousand queries with one
stone. Proc. VLDB Endow. 5(6), 526–537 (2012)

8. Costa, J.P., Cecílio, J., Martins, P., Furtado, P.: ONE: a predictable and scalable DW model.
In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 1–13. Springer,
Heidelberg (2011)

9. Costa, J.P., Martins, P., Cecílio, J., Furtado, P.: A predictable storage model for scalable
parallel DW. In: Fifteenth International Database Engineering and Applications Symposium
(IDEAS 2011), Lisbon, Portugal (2011)

10. PostgreSQL. http://www.postgresql.org/
11. TPC-H Decision Support Benchmark. http://www.tpc.org/tpch/

Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN 23

http://www.postgresql.org/
http://www.tpc.org/tpch/

An Uncoupled Data Process and Transfer Model
for MapReduce

Li Zha1, Jie Zhang1,2, Wei Liu1,2(B), and Jian Lin1,2

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
char@ict.ac.cn, {zhangjie,liuwei,linjian}@software.ict.ac.cn

2 University of the Chinese Academy of Sciences, Beijing, China

Abstract. In the original MapReduce model, reduce tasks need to fetch
output data of map tasks in the manner of “pull”. However, reduce tasks
which are occupying reduce slots cannot start executing until all the cor-
responding map tasks are completed. It forms the dependence between
map and reduce tasks, which is called the coupled relationship in this
paper. The coupled relationship leads to two problems: reduce slot hoard-
ing and underutilized network bandwidth. Meanwhile, storing the result
data is costly especially when the system has replications, which leads to
the inefficient storage problem. We propose an uncoupled data process
and transfer model in order to address these problems. Four core tech-
niques, including weighted mapping, data pushing, partial data backup,
and data compression are introduced and applied in Apache Hadoop,
the mainstream open-source implementation of MapReduce model. This
work has been practiced in Baidu, the biggest search engine company
in China. A real-world application for web data processing shows that
our model can improve the system throughput by 29.5 %, reduce the
total wall time by 22.8 %, provide a weighted wall time acceleration of
26.3 %, and reduce the result data stored in disk by 70 %. What’s more,
the implementation of this model is transparent to users and compatible
with the original Hadoop.

Keywords: MapReduce ·Data transfer ·Uncoupledmodel ·Compression

1 Introduction

With the arrival of “big data” era, the original computing and storing sys-
tems face great challenges. Platforms which can process and store large data
are receiving more and more attention, such as MapReduce [12], Dryad [16],
Sector/Sphere [15], and BigTable [8]. The MapReduce programming model pro-
posed by Google has become the mainstream data-centric platform for large
data processing because of its scalability and simplicity. Apache Hadoop [1], an
open-source implementation of MapReduce, is widely used.

The MapReduce model is a software architecture for parallel computing on
large data sets with commercial hardware. A job is divided into map tasks and
reduce tasks. Map tasks are responsible for reading the source data, resolving
c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XVII, LNCS 8970, pp. 24–44, 2015.
DOI: 10.1007/978-3-662-46335-2 2

An Uncoupled Data Process and Transfer Model for MapReduce 25

the data into key-values, and writing the intermediate result into local disk.
Reduce tasks read the intermediate result written by corresponding map tasks,
resolve the key-values of the same key and write the final result into file system.
In the MapReduce architecture, one node works as the master where a Job-
Tracker runs. The JobTracker is responsible for monitoring and managing map
and reduce tasks. The other nodes work as slaves where TaskTrackers run. The
TaskTrackers are responsible for executing map and reduce tasks. When a job is
submitted, the related input data is divided into several splits. The JobTracker
will pick up idle TaskTrackers to perform map tasks on the splits, and then per-
form reduce tasks on the intermediate output of map tasks. The final result will
usually be a set of key-value pairs stored in a distributed file system like HDFS
[22] and GFS [13].

Data Index

Disk

P1 I1

P2 I2

Data Index
Disk

P1 I1
P2 I2

Data Index
Disk

P1 I1
P2 I2

Map

MemBuffer

SortAndSpill

Merge

Node2

Data Index

Disk

P1 I1

P2 I2

Data Index
Disk

P1 I1
P2 I2

Data Index
Disk

P1 I1
P2 I2

Map

MemBuffer

SortAndSpill

Merge

Node1

Data Index

Disk

P1 I1

P2 I2

Data Index
Disk

P1 I1
P2 I2

Data Index
Disk

P1 I1
P2 I2

Map

MemBuffer

SortAndSpill

Merge

Node3

Node 1

Disk

Reduce

 Mem P1

M1 M2 M3

Node 2

Disk

Reduce

 Mem P2

M1 M2 M3

Fig. 1. The data flow in original MapReduce

In the original MapReduce model, data is transferred between map tasks
and reduce tasks in the way that can be described as “pull”. The reduce task is
divided into three phases: shuffle, sort and reduce. When some of the map tasks
are completed, the corresponding reduce tasks can fetch data in the shuffle phase.
However, the reduce phase of the reduce task will not start until all the map
tasks finish. Thus, the reduce tasks will occupy the assigned slots all the time

26 L. Zha et al.

to wait for the completion of all map tasks, which is called the coupled relation-
ship. Due to the coupled relationship between map and reduce tasks, it results in
two problems: reduce slot hoarding [26] and underutilized network bandwidth.
Meanwhile, as a fault-tolerant computing model, MapReduce introduces repli-
cated distributed storage, which leads to inefficient storage in the data pulling
scene (Fig. 1).

1.1 Reduce Slot Hoarding Problem

In the MapReduce model, it usually begins to schedule reduce tasks when a
certain amount of map tasks are completed. If a big job is submitted, reduce
tasks of the job will occupy all the assigned slots until all the map tasks finish.
Consequently, when another job is submitted at this moment, it will not get
corresponding reduce slots even after all the map tasks finish. Therefore, the
later one will starve until the big job is completed. This is called the reduce slot
hoarding problem, which will seriously reduce the execution efficiency of jobs,
especially for small ones.

Figure 2 shows an example of reduce slot hoarding problem. Job1 and job2
are submitted at the same time while job3 is submitted a little later. The reduce
task of job1 start when a certain amount of the map task finished, but no reduce
tasks can be finished before all map tasks finished, so the reduce slots will be
occupied by job1 for a long time. In this case, the reduce task of job3 can’t
execute when its map tasks are finished since job1 occupies all the reduce slots.
Job3 will starve until job1 releases the reduce slots.

Fig. 2. Reduce slot hoarding problem

An Uncoupled Data Process and Transfer Model for MapReduce 27

One solution to this problem is to delay the reduce tasks. In [26], the authors
put forward a solution that starts reduce tasks after the completion of map
tasks. However, their tests show that it will decrease the whole throughput. We
consider that if reduce tasks start early, partially overlapped with map tasks,
they will get a part of the data from map tasks, which can save the time of data
transfer and the total completion time.

1.2 Underutilized Network Bandwidth Problem

For a MapReduce job, the network load will mainly concentrate in reduce tasks.
In the reduce task, both shuffle and reduce phase need large network bandwidth
since shuffle phase should pull data from other nodes, and reduce phase should
write the result data into distributed file system. However, map tasks almost
don’t need large network bandwidth, because MapReduce has done some data
locality optimization [7,20,21] when scheduling to make sure map tasks execute
on the node where the needed data is stored on. So a map task can mostly read
data from local disks.

There are some capabilities to balance network load and optimize network
bandwidth in the original version of MapReduce, such as scheduling reduce tasks
in advance. When the completion of map tasks reaches a certain ratio (default
5 %), the reduce task will start so that they can run in parallel with maps.
However, it can only alleviate this problem rather than resolve it. When some
of the early-scheduled reduce tasks, whose desired intermediate data is ready,
are getting partitions through shuffle, they cannot use much bandwidth in the
map task. Conversely, they will occupy the reduce slots all the time. Besides,
limited by the total slots, not all the reduce tasks can be scheduled. Therefore,
these reduce tasks cannot work with map tasks simultaneously, and the network
bandwidth will still be underutilized.

1.3 Inefficient Storage Problem

The MapReduce model is designed to run on big data sets with commercial
hardware. In original version of MapReduce, the result is written into distributed
file system directly. It will need many disks to store the data when the result is
huge, which is costly especially when the system has one or more replications.
This is the inefficient storage problem.

Compressing the result of MapReduce is a good way to reduce the data
that is needed to be stored on the disk. Many compression modules have been
proposed to address the inefficient storage problem. Apache Hadoop, an open-
source implementation of MapReduce, can also support compressing the data
now. Hadoop allows users to choose one compression algorithm. Once chosen,
all the data will be compressed using this algorithm. BlobSeer [18,19], a typical
compression module that has achieved a great success on distributed file system,
is a transparent compression module using prediction to determine whether to
compress the data or not. First, BlobSeer samples part of the data to predict
the compression ratio of total data block, then they judge if compressing the

28 L. Zha et al.

data is beneficial to the system. This module only compresses the data when
they think that compression is beneficial to the system. BlobSeer can save about
40 % space comparing with storing the data directly. However, these two modules
don’t take CPU rate and memory usage into consideration. As we all know that
compression can cost too much CPU and memory resource, these modules may
have a bad effect on other jobs if CPU is overload or memory is exhausted.

In this paper, we propose an uncoupled MapReduce model to address the
above three problems, which can improve the system throughput and overall
resource utilization. The rest of this paper is organized as follows. In Sect. 2, we
present the uncoupled MapReduce model. Section 3 describes the architecture
and implementation of this model. Section 4 offers the evaluation about our
model and its application effects. Section 5 lists some related work. At last, Sect. 6
concludes the paper.

2 The Uncoupled MapReduce Model

An uncoupled MapReduce model with intermediate data transfer is designed to
address the three problems, meanwhile improving the job execution efficiency
and system throughput. Figure 3 shows the data flow in this model. The data
transfer is completed during the map task in the uncoupled version of MapRe-
duce, instead of during the reduce task as the original version does. It needs to
meet three conditions as follows:

– To address the reduce slot hoarding problem thoroughly, reduce tasks should
be scheduled after all map tasks are completed. Reduce tasks will not occupy
the slots, and they can read the data to process locally once launched, which
improves job execution efficiency and system throughput.

– To address the underutilized network bandwidth problem, the data transfer
process of maps’ result should be completed in the map task. When reduce
tasks start, they will read data directly from local disks. Therefore, the net-
work load will not concentrate in the reduce task and the network bandwidth
in the map task can be used fully.

– To address the inefficient storage problem, the result data of MapReduce
jobs should be compressed before stored in file system. Compression should
be done transparently and automatically. Considering compression jobs may
cause overload of CPU, a specific hardware is needed to help reducing the
workload of CPU.

However, there is a conflict between the fist two conditions. Map tasks need
to transfer data to reduce tasks, but reduce tasks do not run until all the map
tasks are completed. Therefore, some trade-offs are necessary to find out when
and where reduce tasks run. The inefficient storage problem is more independent
relatively to the first two conditions. In order to resolve these problems, we
introduce the following four techniques.

An Uncoupled Data Process and Transfer Model for MapReduce 29

Map

Dynamic
MemBuffer

Node2

Map

Dynamic
MemBuffer

Node1

Map

Dynamic
MemBuffer

Node3

Mem

Data Index

P1 I1
P2 I2

Mem

Data Index

P1 I1
P2 I2

Mem

Data Index

P1 I1
P2 I2

Data-P1 Index-P1

Disk

M1 I1

M2 I2

M3 I3

Data-P2 Index-P2

Disk

M1 I1

M2 I2

M3 I3

compress compress compress

Node 1

Reduce

Mem

Data-
P1

Index-
P1

Disk

M1 I1

M2 I2

M3 I3

Node 2

M
ap

R
ed

uc
e

Compress Reduce

Mem

Data-
P1

Index-
P1

Disk

M1 I1

M2 I2

M3 I3

Compress

Fig. 3. The data flow in uncoupled MapReduce

– Weighted mapping [23]. This technique creates a mapping relationship
between reduce tasks and nodes. Through the mapping relationship, the map
task can find out the node where the corresponding reduce tasks will run, and
they can transfer data to these nodes. In a heterogeneous cluster, the comput-
ing capability of each node is not identical. In consideration of this fact, each
node has its own weight. The node with higher weight will get more tasks.
This technique can guarantee balance and consistency of task assignment.
• Balance. The balance means that the node with greater weight will be

assigned more reduce tasks. A linear relationship exists between the number
of assigned tasks and the node’s weight. We assume that there are n nodes
with weight wi(1 ≤ i ≤ n) in a cluster. Normalize the weight and get the
normalization value w′

i from wi, as shown in Eq. 1.

w′
i =

wi∑n
i=1 wi

(1)

The variable M stands for the total number of reduce tasks, and Mi stands
for the number of reduce tasks assigned to node i. Equation 2 shows the
result of task assignment.

Mi = w′
iM =

wi∑n
i=1 wi

M (2)

The two equations above can ensure the balance of task assignment.

30 L. Zha et al.

• Consistency. The consistency means that the fixed mapping relation-
ship between reduce tasks and nodes should be guaranteed and cannot be
changed once decided. We assign reduce task Rj(1 ≤ j ≤ M) with weight
wRj

. The relationship is expressed in Eq. 3.

wRj
=

j

M
(3)

Reduce task Rj with weight wRj
will be mapped to node k(1 ≤ k ≤ n) if

they follow the relationship in Eq. 4.

k−1∑

i=1

w′
i < wRj

≤
k∑

i=1

w′
i (4)

The mapping relationship is shown in Fig. 4. The two kinds of weights will
be normalized into the same range, and then we can establish the mapping
relationship between reduce tasks and nodes if they have the same weighs
after normalizing. Any module of a MapReduce application can inquire the
relationship through Eq. 4.
Weighted mapping technique has no conflict with the scheduler in original
MapReduce module. The original MapReduce module focuses on schedul-
ing map tasks and reduce tasks between different MapReduce jobs while
weighted mapping technique focus on the nodes and reduce tasks in one
MapReduce job.

Fig. 4. The mapping relationship between reduce tasks and nodes

– Data pushing. In the uncoupled version of MapReduce, map tasks imple-
ment data transfer using data pushing. As shown in Fig. 3, map tasks will put
intermediate data into dynamic buffers and partition them. Then they push
data to the reduce tasks in corresponding mapped node from partition 1 to
n in order, which is infeasible in the original version because where reduce
tasks are responsible for getting data from map tasks. This idea is partially
inspired by the pipelined MapReduce [11]. In the uncoupled version, a server
is setup in each node which is responsible for receiving data from map tasks
as shown in Fig. 5. When map tasks are generating intermediate output data,
they will work as clients and push data to the servers. So there is no need to
start reduce tasks before map tasks finish.

– Partial data backup. Each node has a server for receiving data from map
tasks. If some servers go wrong, the data pushed by map tasks will be lost.
It’s costly to re-execute map tasks to get the lost data. The original version of

An Uncoupled Data Process and Transfer Model for MapReduce 31

 Server

MemBuffer

Disk
1 ...

Disk
2

Disk
n

 Client
Map tasks

...

Push

Node 1

 Server

MemBuffer

Disk
1 ...

Disk
2

Disk
n

Push

Node 2

Push Push

 Client
Map tasks

Fig. 5. The diagram of data pushing

MapReduce has the fault-tolerance module to avoid re-executing map tasks.
However, uncoupled MapReduce changes the data transfer module leading to
the useless of the original fault-tolerance module. The partial data backup
technique in uncoupled MapReduce can resolve this problem. When the map
tasks are pushing data, the data will also be backed up on local disks. When
some servers go wrong, there is no need to re-execute the completed map tasks,
because the data can be recovered by reduce tasks. A backup server is setup
on each node which is responsible for managing the backup data. Reduce tasks
will pull their own backup data by requesting each backup server. “Partial”
here means if a partition is pushed from a map task to its own node, it will not
be backed up. What’s more, it is compatible with the original fault tolerance
mechanism in MapReduce.

– Data compressing. In the uncoupled version of MapReduce, the result data
of MapReduce jobs is stored into file system after compression which can
reduce the data amount dramatically. CPU may be overload since the com-
pression jobs need a lot of computing. In this case, other executing jobs may
be seriously affected due to CPU resources exhausted. In data compressing
technique, we choose the most appropriate compression algorithm to do com-
pression jobs according to the CPU workload, the data property and so on.
The technique will transfer compression jobs to a specific hardware if we think
the workload of CPU is too heavy. All the job concerning compression include
algorithm selecting and compressing are done transparently, and automati-
cally to the user.

This model uncouples the dependency relationship between maps and reduces
in MapReduce, replaces the shuffle phase in the original version and compresses
the result data of MapReduce jobs. Through the four techniques mentioned
above, it can make sure that all the reduce tasks can read data from their local
disks when the map tasks are completed and all result data is stored after com-
pressed. Therefore, reduce tasks will not occupy the reduce slots to wait for the
completion of map tasks. It can also satisfy the needs of slots from other jobs.

32 L. Zha et al.

This model can make full use of the network bandwidth in map and reduce tasks,
balance the network load and improve the efficiency of storage.

3 Architecture and Implementation

Considering the original architecture of MapReduce and the requirements of
four techniques mentioned above, the architecture of uncoupled MapReduce
is designed. It includes four kinds of modules: master control module, data
transfer module, fault tolerance module, and data compress module. We have
implemented the architecture in Hadoop, and integrated different modules in
the master and slave nodes. The uncoupled MapReduce architecture and its
implementation in Hadoop are presented in Fig. 6.

Slave

Data
Transfer

Fault
Tolerant

control

data

Master

Control

Fault
Tolerant

Data
Compress

Slave

Data
Transfer

Fault
Tolerant

Data
Compress

Fig. 6. The uncoupled MapReduce architecture and its implementation in Hadoop

3.1 Master Control Module

The master control module lies in the master node, responsible for monitoring
and scheduling tasks, and coordinating other modules. This module should run
all through the MapReduce job. Its functionalities are as follows.

– Create the mapping relationship between reduce tasks and nodes to make sure
that reduce tasks will be executed on the node where data stored.

– Convey the mapping relationship information to the data transfer module and
the fault tolerance module.

– Schedule tasks and make sure that reduce tasks will not start until all the
map tasks are completed. When scheduling reduce tasks, make sure all the
data is transferred to the specific node.

An Uncoupled Data Process and Transfer Model for MapReduce 33

– Ensure balance and consistency of the mapping relationship, configure the
computing capability of every node and make each node getting proper tasks
according to its computing capability.

– Coordinate the data transfer module and the fault tolerance module. Nor-
mally, this module controls the data transfer module to complete the task of
data pushing. If there is something wrong with data pushing, this module will
notify the fault tolerance module to recover the missing data.

3.2 Data Transfer Module

The data transfer module lies in all the slave nodes, responsible for processing,
storing, and pushing data. The module creates a server responsible for receiv-
ing and managing the intermediate data for every slave nodes since the data
should be pushed to the node where the corresponding reduce tasks run accord-
ing to the mapping relationship before reduce tasks begin in uncoupled version
of MapReduce. The functionalities of this module are as follows.

– Create a data transfer server in each slave node.
– Get the output data from the map tasks.
– Do some preprocessing on the data.
– Get the mapping relationship.
– Work as a client to push the data of each partition to their corresponding

reduce tasks.
– The data transfer server in this module is responsible for receiving and man-

aging data.

3.3 Fault Tolerance Module

The fault tolerance module lies in all the nodes, responsible for processing excep-
tions caused by system crash, power outage and so on. As our model changes
the intermediate data transfer mode, we must make some supplements to the
original fault tolerance mechanism. In this module, the partial data backup tech-
nique is introduced following specific rules. The functionalities of this module
are as follows.

– Backup each partition that map tasks will push to other nodes in the local
disk.

– Assign the mapped reduce tasks to other nodes when a node failed.
– Offer the backup data to reduce tasks through backup servers, if the backup

data has been made successfully. A reduce task checks whether the node is the
mapped one through weighted mapping mechanism. If it is not the mapped
one, the reduce task will pull its own backup data by requesting to other
backup servers.

The fault tolerance module backups the partitions and the data transfer mod-
ule pushes the partition to the node where reduce tasks will run. If one node

34 L. Zha et al.

failed, the module will assign the mapped reduce tasks to other nodes and the
transfer module can push the intermediate data to the new node without execut-
ing map tasks again. The fault tolerance module can not handle any exceptions,
it’s helpless if the system run into a catastrophic failure.

3.4 Data Compress Module

The data compress module lies in all the slave nodes, responsible for predicting,
deciding, and compressing. This module will predict the CPU workload to decide
whether compress the data in CPU or the specific hardware, and also predict
the property of output data to decide which algorithm is the most appropriate
compression algorithm. After predicting and deciding, the module will do the
data compression using the decided algorithm. The functionalities of this module
are as follows.

– Predict the CPU workload if the compressing job will be done in CPU.
– Predict the property of the output data.
– Decide whether the data compression job should be done in CPU or the

specific hardware.
– Decide which is the most appropriate compression algorithm under this con-

dition.
– Compress the data according to the decided strategy.

We find that different compression algorithm has its advantages and disad-
vantages after research. The data compress module implements five kinds of
compression algorithms including quicklz [5], elzs, exar, snappy [6], and zlib, for
different kinds of data under different conditions. First, the module predicts the
CPU workload and the property of the output data. Then the module chooses
the best compression algorithm. At last, do the compressing job according to
the decided strategy.

The four modules remove the coupled relationship of map tasks and reduce
tasks in original MapReduce, and compress the result of MapReduce jobs. It
guarantees that the uncoupled MapReduce can resolve the reduce slot hoarding,
underutilized network bandwidth, and inefficient storage problems.

4 Evaluations

We evaluate the model and its application effects using a micro-benchmark and
a real-world example. In the micro-benchmark, we use a cluster to compare the
job execution time in the uncoupled version of Hadoop with that in the original
version. Our work has also been applied in a production environment of Baidu,
which gives a comprehensive evaluation on the uncoupled MapReduce model.

– Definition 1: Wall time is the total time span from the moment a job is
submitted to the moment it is completed.

An Uncoupled Data Process and Transfer Model for MapReduce 35

– Definition 2: Throughput T is the number of jobs finished in a unit time
interval. Suppose that N jobs are completed in a time interval t, we will get:

T =
N

t
(5)

Our tests use the same workload in both the original version and the uncou-
pled version, so:

Noriginal = Nuncoupled (6)

Suppose all the jobs are submitted nearly simultaneously. t1i is the wall
time of job i in the original version, and t2i is that in the uncoupled version.
Use toriginal = max({t1i}) and tuncoupled = max({t2i}) (1 ≤ i ≤ N) to represent
the total wall time in the original version and the uncoupled version. Then we
define the throughput increment rate as I:

I =
Tuncoupled − Toriginal

Toriginal
=

Nuncoupled

tuncoupled
− Noriginal

toriginal

Noriginal

toriginal

=
toriginal

tuncoupled
− 1 (7)

Then we define the rate of total wall time reduction as r, and the rate of job
i’s wall time reduction as ri:

r =
toriginal − tuncoupled

toriginal
(8)

ri =
t1i − t2i

t1i
(9)

The impact factor of job i, λi, represents the proportion of job i’s wall time
in all the jobs. We can get λi from Eq. 10:

λi =
t1i

∑N
i=1 t1i

(10)

The weighted wall time acceleration P represents the sum of wall time reduc-
tion rate with impact factors. It can be deduced from Eq. 11:

P =
N∑

i=1

λiri =
N∑

i=1

t1i
∑N

i=1 t1i

t1i − t2i
t1i

=
∑N

i=1 (t1i − t2i)
∑N

i=1 t1i
= 1 −

∑N
i=1 t2i

∑N
i=1 t1i

(11)

The throughput increment rate and total wall time reduction rate are the
metrics reflecting the overall performance. The weighted wall time acceleration
is the metric reflecting the cumulative performance of each job.

36 L. Zha et al.

4.1 Micro-Benchmark

The micro-benchmark is performed in a cluster with 6 nodes. The operating
system is CentOS 6.1 × 86 64, and the Hadoop version is 0.19. We use gridmix
[3] applications for our test. Gridmix is a set of benchmark programs for Hadoop
which contains several kinds of jobs. The micro-benchmark includes 3 jobs as
shown in Table 1. job1 was submitted first, then job2, and job3 at last. The
interval between two adjacent jobs is 30 seconds. We divide the micro-benchmark
into three parts as follows.

Table 1. The workload of the micro-benchmark

Job name Input size Maps Reduces

job1 50 GB 400 200

job2 12.5 GB 100 50

job3 6.25 GB 50 25

Slot Allocation. In original MapReduce, reduce tasks of job1 occupy all the
reduce slot since only job1 in the system at that time in Fig. 7. Reduce tasks
of job2 and job3 can not start until one or more reduce tasks of job1 finished.
As job2 and job3 are small jobs comparing to job1, when map tasks of job2
and job3 finished, no reduce tasks of job1 finished and all reduce slots were
stilled occupied by job1. So it caused the reduce slot hoarding problem. As we
can see in Fig. 8, the uncoupled MapReduce resolves the reduce slot hoarding
problem by taking the strategy that all reduce tasks must be executed after all
map tasks finished.

Network Bandwidth. Although the coupled MapReduce starts reduce tasks
before all map tasks finished, most of reduce tasks have to wait due to the
limitation of reduce slots. So the network load is low since only reduce tasks
need large network bandwidth. As we can see in Fig. 9, network bandwidth is

Fig. 7. Reduce slot in original
MapReduce

Fig. 8. Reduce slot in uncoupled
MapReduce

An Uncoupled Data Process and Transfer Model for MapReduce 37

underutilized for that the network load in reduce tasks is much higher than that
in map tasks. In map tasks, the uncoupled MapReduce transfers the intermediate
data to the node where the mapping reduce tasks will run on. So the uncoupled
MapReduce makes full use of network bandwidth as the map tasks transfer the
intermediate data and the reduce tasks write the result and replications into file
system. Figure 10 shows the network traffic in uncoupled MapReduce.

Fig. 9. Network traffic in original
MapReduce

Fig. 10. Network traffic in uncoupled
MapReduce

System Performance. Figure 11 shows the execution time of each job and
the total completion time of all the workloads. In our test, the total time of the
original version is 3500s, and that of the uncoupled version is 2620s. There is no
reduce slot hoarding in the uncoupled version. The throughput increment is 34 %
(I) through Eq. 7, The total wall time is reduced by 25 % (r) through Eq. 8, and
the weighted wall time acceleration reaches 48 % (P) through Eq. 11. The test
shows that our model can balance the network load properly and improve the
system throughput. The uncoupled MapReduce makes full use of disk storage
since it can reduce 70 % data volume comparing to the original MapReduce
according to our benchmark.

4.2 Real-World Example

The uncoupled MapReduce implementation based on Hadoop has been deployed
in a production environment of Baidu supporting some business applications.
The real-world example provides strong evidence on the effects of this work.

Baidu is the biggest search engine company in China. It has tens of clus-
ters performing Hadoop jobs for many web data processing applications, and
generates more than 3 PB data volume per day [17]. Although the clusters can
deal with hundreds of jobs everyday, they still meet with some problems. For
example, the CPU and network bandwidth utilization rates are not high in spite
of full workload. The uncoupled version of Hadoop has been deployed in a server
cluster with 70 nodes, which is one of the shared Hadoop platforms for many
departments. The resource scale reaches about 560 cores, 1,120 GB memory, and
770 TB storage. The operating system is Red Hat Enterprise Linux AS release 4,
and the Hadoop version is 0.19. Many kinds of jobs run in this real environment,

38 L. Zha et al.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

job1 job2 job3 total

tim
e

(s
)

original
uncoupled

Fig. 11. Comparison of execution time in the micro-benchmark

such as log analysis, inverted index, web ranking, etc. Four kinds of jobs are
used in our test, including CPU-intensive ones and I/O-intensive ones. The job
information is shown in Table 2.

Table 2. The workload of the real-world example

Job name Input size Maps Reduces

job1 3.4 TB 14700 1600

job2 3.2 TB 14400 1600

job3 353 GB 1700 800

job4 343 GB 1600 800

Figure 12 shows the execution time of each job and the total completion
time of all the workload. In our test, the total time of the original version is
272 min, and that of the uncoupled version is 210 min. So we can get the rate of
throughput increment:

I =
toriginal

tuncoupled
− 1 = 29.5% (12)

The rate of total wall time reduction:

r =
toriginal − tuncoupled

toriginal
= 22.8% (13)

And the weighted wall time acceleration:

P = 1 −
∑4

i=1 t2i
∑4

i=1 t1i
= 26.3% (14)

An Uncoupled Data Process and Transfer Model for MapReduce 39

In addition, job3 and job4 in the original version cannot get reduce slots
when their map tasks are completed. They are delayed by 51 min and 63 min
respectively because of reduce slot hoarding problem.

 0

 50

 100

 150

 200

 250

 300

 350

job1 job2 job3 job4 total

tim
e

(m
in

)
original

uncoupled

Fig. 12. Comparison of execution time in the real-world example

Figures 13, 14, 15, and 16 show the comparison of the original version and the
uncoupled version in resources utilization. The workload is the above examples.
In the uncoupled version, it took 3.5 h to complete all the jobs, and the last
map task finished in about 2.5 h. While in the original version, it took 4.5 h to
complete all the jobs, and the last map task finished in about 3.3 h.

Figure 13 illustrates the average CPU utilization rate of the cluster. The
CPU utilization rate in the uncoupled version is higher than that in the original
version. The reason can be explained from the map and reduce tasks respectively.
In the map tasks, intermediate data is pushed and received by the corresponding
servers, which results in more data preprocessing and transferring operations. In
the reduce tasks, data is processed faster due to data locality.

Figure 14 shows the network load (send throughput) of the cluster. The
uncoupled version uses more network bandwidth in the map tasks to trans-
fer data. Each map will push all of its output data to its corresponding reduce
tasks, instead of data being pulled partially by reduce tasks in the original ver-
sion. There is little network bandwidth in reduce phase of the uncoupled version,
because the reduce tasks will read data from their local disks. The peak in the
end shows that HDFS uses more bandwidth to backup the output data of reduce
tasks including the results and completion information of jobs.

Figures 15 and 16 show the disk I/O (write and read throughput) of the
cluster. In the uncoupled version, more disk I/O workload is involved in the map
task than that in the reduce task, because the map task will read data from disks
and push them to the mapped nodes where the servers receive and write data.
While in the original version, the average throughput of disks is relatively low.
Shuffle is an ineffective and complicated phase, which has a significant impact
on the execution time and system throughput.

Overall, the uncoupled version of Hadoop increases the resource utilization
rates, and avoids the waste of network and disk bandwidth.

40 L. Zha et al.

Fig. 13. Comparison of the average
CPU utilization rate of the cluster

Fig. 14. Comparison of the average
network load (send) of the cluster

Fig. 15. Comparison of the average
disk I/O (write) of the cluster

Fig. 16. Comparison of the average
disk I/O (read) of the cluster

5 Related Work

There are a lot of researches on MapReduce. This section will introduce some
related work. They aim at improving the system throughput and making full
use of system resources.

– The Pipeline In Hop [11]. Hadoop Online Prototype can push the map
tasks’ output to reduce tasks so that there is no need to write the output as
intermediate data into local disks. Then reduce tasks can go into the sorting
and reducing phases without waiting for the finish of map tasks. Therefore,
map and reduce tasks can work simultaneously, which can improve job perfor-
mance and efficiency, and balance the network load. However, since no inter-
mediate data stored in the local disk, the fault tolerance mechanism can not
work, resulting in high cost for error recovering. In uncoupled MapReduce,
we back up the intermediate data in local disk when pushing it to reduce
tasks. So there is no need to re-execute map tasks when error happens in data
transformation.

– Copy-compute Splitting [26]. This work is put forward by Facebook and
includes two phases, copy and compute. The copy phase is I/O-intensive and
needs to pull the map tasks’ output from other nodes, while the compute phase
is CPU-intensive. The reduce task consists of two kinds of tasks, the copy task
and compute task, which could run simultaneously. The copy task notifies the
compute task to work when it gets all the output from the map tasks. This
technique can alleviate the reduce slot hoarding problem. However, it needs
to set two variables, maxComputing and maxReducers. MaxComputing is the
same as the reduce slot number in the original Hadoop. Limited by the number

An Uncoupled Data Process and Transfer Model for MapReduce 41

of copy slots, it will also cause Copy Slot Hoarding problem when big jobs
occupy all the copy slots.

– Dynamic Weight Assignment [24]. In this model, map and reduce tasks
share the total number of slots. Each job can get its own slots according to
its weight. At the beginning of a job, the map tasks get big weights and red-
uce tasks get small ones. Gradually, the map tasks get fewer slots while the
reduce tasks get more slots. But the big job can still get a small number of
reduce slots which can only alleviate reduce slot hoarding problem. Besides,
it will also have an effect on the job priority. The job with high priority may
not be scheduled in time and reduce tasks may be delayed, which can decrease
the network bandwidth.

– Weighted Shuffle Scheduling [10]. In this model, the authors think that
the shuffle phase needs to get a lot of data, which will occupy a large amount of
the job operating time. Through the analysis of jobs in Facebook, it shows that
shuffle can take about 33 % of the operating time in reduce tasks. Therefore,
they think that shuffle plays an important role on the performance of the
system. This technique can raise the efficiency of shuffle. They assign each flow
(a flow is a socket connection between a map task and a reduce task) with
a weight. Then the network bandwidth can be under control through this
weight. However, it cannot address the reduce slot hoarding or unbalanced
network load problem. The network bandwidth is still concentrated in reduce
tasks.

– Spark [27]. MapReduce is built around an acyclic model that is not suitable
for iterative algorithm and interactive data analysis. Spark is a new cluster
computing framework supporting this kinds of work while retaining the scala-
bility and fault tolerance of MapReduce. A resilient distributed dataset(RDD)
is the main abstraction in Spark representing a read-only collection of objects
partitioned across a set of machines that can be rebuilt if a partition is lost.
This model can outperform Hadoop by 10x in iterative machine learning
jobs, and can be used to interactively query a 39GB dataset with sub-second
response time. However, it is not suitable for fine-grained and asynchronous
update operations since Spark is a coarse-grained data parallel computing
model.

– MapReduce Energy Efficiency [9]. Since data becomes larger and larger,
the modern data center puts more and more attention on energy efficiency.
Compression can reduce data dramatically and reduces the usage of disks.
However, it may not improve energy efficiency since the compressing data
needs additional computing. Reference [9] come up with a module to help
improve the energy efficiency by 35–60% for the data read frequently on
MapReduce. The module predicts the compression ratio and the visited fre-
quency of the data to decide whether to compress. When the compression
ratio is smaller than 0.2, the data will be compressed. When the compression
ratio is between 0.2 and 0.4, the data will be compressed if the data will be
frequently read. Under other conditions, the data will be stored and trans-
ferred directly. This model is useful in the practical application. Reference
[14] also comes up with a good model to improve energy efficiency, it proves

42 L. Zha et al.

that compressing and decompressing take up 7–11% time of map tasks while
37.9–41.2 % time of reduce tasks since compressing and decompressing can
increase the burden of CPU. This module introduces a specific hardware to
do compressing and decompressing jobs instead of CPU, which has achieved a
good performance. However, the efficient of these two systems is still low since
they only focus on energy efficiency when compressing without concerning the
coupled relationship between maps and reduces.

– BlobSeer [18,19]. BlobSeer is a transparent compression module on Blob-
Seer File System(BSFS) aiming at reducing the data amount and improve
the throughput of the system. This module can be implemented by Hadoop
and used by MapReduce. Before compressing the total data, it compresses a
small part of data using sampling method to predict the compression ratio
of total data and determines whether compressing is useful. Users can choose
compression algorithms according their needs, but only the chosen algorithm
can be used when the system is running. Experiments has been done using
algorithm LZO [4] and BZIP2 [2], and result shows that BlobSeer can reduce
40 % data. However, it will cause CPU overload problem that have a bad
effect on other jobs. In uncoupled MapReduce, we solve this problem using a
specific hardware.

6 Conclusion and Future Work

Although there are a variety of optimizations to improve the localization rate of
data in the MapReduce model, data transfer is inevitable. Reduce tasks need to
pull intermediate data from map tasks, which will decrease the execution efficiency
of jobs. In [10], it shows that shuffle can take about 33 % of the operating time in
reduce tasks. Meanwhile, data transfer efficiency is very low, which is a system
bottleneck [25]. Since the MapReduce model is designed to be fault-tolerant, it’s
costly to store the replicated file especially when the result is huge. Impacted by
these facts, the original MapReduce model results in three problems: reduce slot
hoarding, underutilized network bandwidth, and inefficient storage.

In this paper, we propose an uncoupled MapReduce model to resolve these
problems with the aim of improving the resource utilization and system through-
put. Four techniques, including weighted mapping, data pushing, partial data
backup and data compression, are implemented. This work has been practiced in
Baidu, the biggest search engine company in China. In a real-world application,
the test shows that the throughput can be increased by 29.5 %, the total wall
time is reduced by 22.8 %, the weighted wall time acceleration reaches 26.3 %,
and reduce the result data storage by 70 % compared with the original version
of Hadoop. The resource utilization rates of CPU, network and disk are also
increased.

Two improvements are planned: (1) Design a kind of scheduler for this model
which can use the cluster resources more reasonably. (2) Monitor workloads and
resources dynamically, instead of setting constant slots and weights. Hopefully,
our paper would assist in the study of heterogeneous resources utilization.

An Uncoupled Data Process and Transfer Model for MapReduce 43

Acknowledgment. We would like to thank Ruijian Wang, Maosen Sun, Chen Feng,
Fan Liang, and Dixin Tang from Institute of Computing Technology, Chinese Academy
of Sciences for the valuable discussions. We also thank Chuan Xu, Linjiang Lian, and
Meng Wang from Baidu for their assistance and support. This research is supported
in part by the Hi-Tech Research and Development (863) Program of China (Grant No.
2013AA01A213, 2011AA01A203).

References

1. Apache hadoop. http://hadoop.apache.org/
2. Bzip2 compression. http://www.bzip.org/
3. Gridmix. http://hadoop.apache.org/docs/stable/gridmix.html
4. Lempel-ziv-oberhumer(lzo) compression. http://www.oberhumer.com/opensource/

lzo
5. Quicklz. http://www.quicklz.com/
6. Snappy. http://code.google.com/p/snappy/
7. Cao, P., Felten, E.W., Karlin, A.R., Li, K.: A study of integrated prefetching and

caching strategies. SIGMETRICS Perform. Eval. Rev. 23(1), 188–197 (1995)
8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst. 26(2), 4:1–4:26 (2008)

9. Chen, Y., Ganapathi, A., Katz, R.H.: To compress or not to compress - compute
vs. IO tradeoffs for MapReduce energy efficiency. In: Proceedings of the First ACM
SIGCOMM Workshop on Green Networking, Green Networking 2010, pp. 23–28.
ACM, New York (2010)

10. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data trans-
fers in computer clusters with orchestra. In: Proceedings of the ACM SIGCOMM
2011 Conference, SIGCOMM 2011, pp. 98–109 (2011)

11. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.:
MapReduce online. In: Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI 2010, pp. 1–15 (2010)

12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th USENIX Symposium on Operating Systems Design &
Implementation, OSDI 2004, pp. 137–150 (2004)

13. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. SIGOPS Oper.
Syst. Rev. 37(5), 29–43 (2003)

14. Gu, X., Hou, R., Zhang, K., Zhang, L., Wang, W.: Application-driven energy-
efficient architecture explorations for big data. In: Proceedings of the 1st Work-
shop on Architectures and Systems for Big Data, ASBD 2011, pp. 34–40. ACM,
New York (2011)

15. Gu, Y., Grossman, R.L.: Sector and sphere: Towards simplified storage and process-
ing of large scale distributed data (2008). arXiv:0809.1181

16. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. In: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems, EuroSys 2007,
pp. 59–72 (2007)

17. Ma, R.: Introduction to part of the baidu’s distributed systems. http://www.
slideshare.net/cydu/sacc2010-5102684

http://hadoop.apache.org/
http://www.bzip.org/
http://hadoop.apache.org/docs/stable/gridmix.html
http://www.oberhumer.com/opensource/lzo
http://www.oberhumer.com/opensource/lzo
http://www.quicklz.com/
http://code.google.com/p/snappy/
http://arxiv.org/abs/0809.1181
http://www.slideshare.net/cydu/sacc2010-5102684
http://www.slideshare.net/cydu/sacc2010-5102684

44 L. Zha et al.

18. Nicolae, B., Moise, D., Antoniu, G., Bouge, L., Dorier, M.: Blobseer: Bringing high
throughput under heavy concurrency to hadoop map-reduce applications. In: 2010
IEEE International Symposium on Parallel Distributed Processing (IPDPS), pp.
1–11 (2010)

19. Nicolae, B.: High throughput data-compression for cloud storage. In: Hameurlain,
A., Morvan, F., Tjoa, A.M. (eds.) Globe 2010. LNCS, vol. 6265, pp. 1–12. Springer,
Heidelberg (2010)

20. Padmanabhan, V.N., Mogul, J.C.: Using predictive prefetching to improve world
wide web latency. SIGCOMM Comput. Commun. Rev. 26(3), 22–36 (1996)

21. Seo, S., Jang, I., Woo, K., Kim, I., Kim, J.S., Maeng, S.: Hpmr: Prefetching and pre-
shuffling in shared mapreduce computation environment. In: IEEE International
Conference on Cluster Computing and Workshops, CLUSTER 2009, pp. 1–8 (2009)

22. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10 (2010)

23. Wang, X.W., Zhang, J., Liao, H.M., Zha, L.: Dynamic split model of resource
utilization in mapreduce. In: Proceedings of the Second International Workshop
on Data Intensive Computing in the Clouds, DataCloud-SC 2011, pp. 21–30. ACM,
New York (2011)

24. Wang, X., Zhang, J., Liao, H., Zha, L.: Dynamic split model of resource utiliza-
tion in MapReduce. In: Proceedings of the 2nd International Workshop on Data
Intensive Computing in the Clouds, DataCloud-SC 2011, pp. 21–30 (2011)

25. Wang, Y., Que, X., Yu, W., Goldenberg, D., Sehgal, D.: Hadoop acceleration
through network levitated merge. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp.
1–10 (2011)

26. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Job scheduling for multi-user MapReduce clusters. Technical report UCB/EECS-
2009-55, EECS Department, University of California, Berkeley (2009)

27. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Workshop on
Hot Topics in Cloud Computing, HotCloud 2010 (2010)

Enhanced Fast Causal Network Inference
over Event Streams

Saurav Acharya(B) and Byung Suk Lee

Department of Computer Science, University of Vermont, Burlington 05405, USA
{sacharya,bslee}@uvm.edu

Abstract. This paper addresses causal inference and modeling over
event streams where data have high throughput, are unbounded, and may
arrive out of order. The availability of large amount of data with these
characteristics presents several new challenges related to causal model-
ing, such as the need for fast causal inference operations while ensuring
consistent and valid results. There is no existing work specifically for
such a streaming environment. We meet the challenges by introducing
a time-centric causal inference strategy which leverages temporal prece-
dence information to decrease the number of conditional independence
tests required to establish the causalities between variables in a causal
network. (Dependency and temporal precedence of cause over effect are
the two properties of a causal relationship.) Moreover, we employ change-
driven causal network inference to safely reduce the running time further.
In this paper we present the Order-Aware Temporal Network Inference
algorithm to model the temporal precedence relationships into a tempo-
ral network and then propose the Enhanced Fast Causal Network Infer-
ence algorithm for learning a causal network faster using the temporal
network. Experiments using synthetic and real datasets demonstrate the
efficacy of the proposed algorithms.

Keywords: Causal inference · Event streams · Temporal data

1 Introduction

In recent years, there has been a growing need for active systems that can per-
form causal inference in diverse applications such as health care, stock markets,
user activity monitoring, smart electric grids, and network intrusion detection.
These applications need to infer the cause of abnormal activities immediately
from their event streams, where the event arrival may be in order (e.g., [1,2]) or
out of order (e.g., [3–7]) such that informed and timely preventive measures can
be taken. As a case in point, consider a smart electric grid monitoring applica-
tion. The failure of a component can cause cascading failures, effectively causing
a massive blackout. The identification of such cause and effect components in
a timely manner enables preventive measures in the case of failure of a cause
component, thereby preventing blackouts.

c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XVII, LNCS 8970, pp. 45–73, 2015.
DOI: 10.1007/978-3-662-46335-2 3

46 S. Acharya and B. Suk Lee

Causal network, a directed acyclic graph where the parent of each node is its
direct cause, has been popularly used to model causality [8–14]. There are two
distinct types of algorithms for learning a causal network: score-based [8–11] and
constraint-based [12–15]. Both types of algorithms are slow and, therefore, not
suitable for event streams where prompt causal inference is required. Score-based
algorithms perform a greedy search (usually hill climbing) to select a causal net-
work with the highest score from a large number of possible networks. With
an increase in the number of variables in the dataset, the number of possible
networks grows exponentially, resulting in slow causal network inference. On the
other hand, constraint-based algorithms (e.g., PC algorithm [14]) discover the
causal structure via a large number of tests on conditional independence(CI).
There can be no edge between two conditionally independent variables in the
causal network (e.g., [16,17]). Two variables X and Y are said to be conditionally
independent given a condition set S if there is at least one variable in S such that
X and Y are independent (e.g., [18,19]). In a causal network of n variables, the
condition set S consists of all possible 2n−2 combinations of the remaining n − 2
variables, and therefore the computational complexity grows exponentially as
the number of variables increases. So, the current techniques for causal inference
are slow and not suitable for event streams which have a high data throughput
and where the number of variables (i.e., event types) is large. Besides, these tech-
niques perform the time-consuming causal inference computations every time a
new batch of events arrives even though there may not be significant enough
changes in the event stream statistic.

With these concerns, this paper describes a new time-centric causal modeling
approach to speed up the causal network inference. Every causal relationship
implies temporal precedence relationship (e.g., [20,21]). So, the idea is to exploit
temporal precedence information as an important clue to reducing the number of
required CI tests and thus maintaining feasible computational complexity. Four
strategies are employed utilizing this idea to achieve fewer computations of CI
tests. First, since causality requires temporal precedence, we ignore the causality
test for those nodes with no temporal precedence relationship between them.
Second, in the CI test of an edge, we exclude those nodes from the condition set
which do not have temporal precedence relationship with the nodes of the edge;
this strategy reduces the size of the condition set which is a major cause of the
exponential computational complexity. Third, we perform the CI tests for weaker
edges (i.e., having lower temporal strength) earlier to reduce the size of the
condition set of stronger edges, thereby reducing the overall number of CI tests.
The rationale for this is that weaker edges are more likely to be eliminated than
stronger edges [22]. Fourth, we perform the causal inference computations only
if there is a significant enough change in the temporal precedence relationships,
which is a necessary condition for a change to occur in the resulting causal
relationships. Such a change detection strategy helps to avoid unnecessary causal
inference computations, and therefore, saves time.

Due to the reliance on the temporal precedence relationships in an event
stream, events arriving out of order can bring ambiguities in the resulting causal
directions. For instance, the precedence relationships represented in an edge and

Enhanced Fast Causal Network Inference over Event Streams 47

its reversed edge in a temporal network, which models the temporal precedence
relationships, may not be significantly different enough to determine the edge
direction. Intuitively, an undirected edge can be used to signify such an ambigu-
ity. Thus, we propose a mechanism to decide between directed and undirected
edge in the temporal network in such cases. Note that the constraint-based algo-
rithms like the PC algorithm naturally handle out-of-order event arrivals, as
these algorithms do not depend on the temporal ordering of events, and so they
can provide a suitable baseline to evaluate the handling of out-of-order events
in our proposed method.

The main contributions of this paper are summarized as follows. First,
it presents a temporal network structure to represent temporal precedence rela-
tionships between event types and proposes an algorithm, Order-Aware
Temporal Network Inference (OATNI), to construct a temporal network applica-
ble in the streaming environment. Second, it introduces a time-centric causal
modeling strategy and proposes an algorithm, Enhanced Fast Causal Network
Inference (EFCNI), to speed up the learning of causal network. Third, it empir-
ically demonstrates the advantages of the proposed algorithm in terms of the
accuracy and speed of learning the causal network by comparing it against two
state-of-art algorithms, the PC algorithm (details in Sect. 3.4) and the FCNI
algorithm [23].

This paper contains the results of a comprehensive study extended from our
earlier work [23]. The two algorithms in our prior work, the Temporal Network
Inference (TNI) and the Fast Causal Network Inference (FCNI), are extended
to the OATNI and the FECNI algorithms, respectively. Specifically, two major
extensions have been made. First, the speed of the causal inference mechanism
has been increased with two strategies. As the first strategy, the CI tests are
performed in the increasing order of the temporal strengths of the edges in
order to remove the most probable spurious edge as early as possible, which
decreases the condition set size. As the second strategy, presumably unnecessary
causal inference computations are avoided by determining whether the changes
in temporal precedence information in the event stream are significant enough to
warrant such computations. Second, the previous work made an assumption that
the event stream is in order. In this paper, the support for fast causal modeling
over an out-of-order event stream is added so that the temporal precedence
relationships cannot be relied upon as they are. In addition to these two major
extensions, the presentation has been extended throughout in many parts of the
paper.

The rest of this paper is organized as follows. Section 2 reviews the existing
work on causal network inference. Section 3 presents the basic concepts used in
the paper. Sections 4 and 5 propose the learning algorithms of temporal network
(OATNI) and faster causal network (EFCNI), respectively. Section 6 evaluates
the proposed EFNCI algorithm. Section 7 concludes the paper and suggests fur-
ther research.

48 S. Acharya and B. Suk Lee

2 Related Work

As explained earlier, there are two main approaches for causal network inference.
The first approach, score-based [8–11], performs greedy search (usually hill

climbing) over all possible network structures in order to find the network that
best represents the data based on the highest score. This approach, however, has
two problems. First, it is slow due to the exhaustive search for the best network
structure. An increase in the number of variables in the dataset increases the
computational complexity exponentially. Second, two or more network struc-
tures, called the equivalence classes [24], may represent the same probability
distribution, and consequently the causal directions between nodes are quite
random. There is no technique for alleviating these problems in a streaming
environment. Thus, score-based algorithms are not suitable for streams.

The second approach, constraint-based [12–15], does not have the problem of
equivalence classes. However, it is slow as it starts with a completely connected
undirected graph and thus performs a large number of CI tests to remove the
edges between conditionally independent nodes. The number of CI tests increases
exponentially with the increase in the number of variables in the dataset. To
alleviate this problem, some constraint-based algorithms start with a minimum
spanning tree to reduce the initial size of condition sets. However, this idea
trades the speed with the accuracy of the causal inference. The constraint-based
algorithms include IC* [12], SGS [13], PC [14], and FCI algorithm [14]. The FCI
algorithm focuses on the causal network discovery from the dataset with latent
variables and selection bias, which is quite different from the scope of this paper.
The PC algorithm is computationally more efficient than IC* and SGS. This is
why we evaluate the proposed EFCNI algorithm by comparing it against the
PC algorithm. Like the others, the PC algorithm starts with a completely con-
nected undirected graph. To reduce the computational complexity, it performs
CI tests in several steps. Each step produces a sparser graph than the earlier
step, and consequently, the condition set decreases in the next step. However,
the computational complexity is still O(n2 · 2n−2). (The details are explained
in Sect. 3.4.) Therefore, the current constraint-based algorithms are not suitable
for fast causal inference over streams.

There have been a number of research works on handing out-of-order event
streams [3–7]. To the best of our knowledge, however, there exists no work
applicable to the causal network inference. (Thus, a new approach is needed,
and our approach is to allow undirected edges in the temporal network.)
Johnson et al. [3] propose an algorithm for regular expression matching on
streams with out-of-order data, which is not related to causal inference. The
works by Li et al. [4] and Liu et al. [5] discuss the problem of processing event
pattern queries over event streams that may contain out-of-order data. Li et al.
[6] present a new architecture for stream systems for out-of-order query process-
ing whereas Wang and Yu [7] propose algorithms for generating and matching
queries to raise accuracy and shorten the response time as much as possible over
out-of-order events. None of these works is related to causal network inference.

Enhanced Fast Causal Network Inference over Event Streams 49

3 Basic Concepts

This section presents some key concepts needed to understand the paper.

3.1 Event Streams

An event stream in our work is a sequence of continuous and unbounded
timestamped events. An event refers to any action that has an effect and is
created by an event owner. One event can trigger another event in chain reac-
tions. Each event instance belongs to one and only one event type which is a
prototype for creating the instances. Two event instances are related to each
other if they share common attributes such as event owner, location, and time.
We call these attributes common relational attributes (CRAs).

In this paper we denote an event type as Ej and an event instance as eij ,
where i indicates the CRA and j indicates the event type.

Example 1. Consider a diabetic patient monitoring system in a hospital. Each
patient is uniquely identifiable, and each clinical test or measurement of each
patient makes one event instance. For example, a patient is admitted to the
hospital, has their blood pressure and glucose level measured, and takes medica-
tion over a period of time. This creates the instances of the above event types as
a result. Typical event types from these actions include hypoglycemic-symptoms-
exists, blood-glucose-measurement-decreased, increased, regular-insulin-dose-
given, etc. Note that the patient ID is the CRA, as the events of the same
patient are causally related.

To facilitate the handling of events in a streaming environment, we use a time-
based window over the stream. Typically, the application offers a natural obser-
vation period (e.g., hour) that makes a window. The causal relationship is only
possible between events with the same CRA. Therefore, the events in a window
are arranged by CRA and then ordered by the timestamp as they arrive, pro-
ducing a partitioned window as a result. Figure 1 illustrates it. (We refer to the
partitioned window simply as the window for the rest of the paper.)

With the arrival of a new batch of event instances, we augment each partition
in the new window by prefixing it with the last instance of the partition with the

(a) Events collected during an observation period (window).

(b) Events in the window partitioned by CRA.

Fig. 1. Partitioned window of events

50 S. Acharya and B. Suk Lee

same CRA value in the previous window. This is necessary in order to identify
the related instances that are separated into the two consecutive batches.

We support event streams which may be in order or out of order. An event
stream is said to be in order if and only if every event in every partition arrives
in the same temporal order as it was created. In other words, the stream is out
of order if any event in any partition arrives in a different temporal order than
it was created. The degree of out-of-order, doo, is given as

doo =
∑np

k=1 ok
nins

(1)

where np is the number of partitions, ok is the number of out-of-order events in
the k-th partition and nins is the total number of events in all partitions. Note
that doo is zero for in-order event streams.

3.2 Causal Networks

Causal network is a popularly used data structure for representing causality
[8–11,25]. It is a graph G = (N, ξ) where N is the set of nodes (representing
event types) and ξ is the set of edges between nodes. For each directed edge, the
parent node denotes the cause, and the child node denotes the effect.

Consider the event stream of Fig. 1. The causal relationships among the event
types in the stream may be modeled as a causal network like the one shown in
Fig. 2.

Fig. 2. Causal network

The joint probability distribution of a set of n event types E ≡ {E1, ..., En}
in a causal network is specified as

P (E) =
n∏

i=1

P (Ei|Pai)

where Pai is the set of the parent nodes of event type Ei.

Enhanced Fast Causal Network Inference over Event Streams 51

3.3 Conditional Mutual Information

A popular approach for testing the conditional independence, with respect to
the joint probability P , of two random variables X and Y given a subset S of
random variables is conditional mutual information(CMI) (e.g., [15,26]). CMI
gives the strength of dependency between variables in a measurable quantity,
which helps to identify strong and weak causal relationships in the final causal
network.

To test whether X and Y are conditionally independent given S, we compute
the conditional mutual information IMI(X,Y |S) as

IMI(X,Y |S) =
∑

x∈X

∑

y∈Y

∑

s∈S

pX,Y,S(x, y, s)log2
pX,Y |S(x, y|s)

pX|S(x|s)pY |S(y|s)

where p is the probability mass function calculated from the frequencies of vari-
ables.

We only keep the record of these frequencies, not the whole events, by updat-
ing them as a new batch of events arrives. Consequently, the independence test
procedure is incremental in our case.

It is said that two variables X and Y are independent when IMI(X,Y |S) = 0;
otherwise, they are dependent. However, this presents us with the risk of spurious
relationships due to weak dependencies (we cannot assume IMI(X,Y |S) = 10−5

and IMI(X,Y |S) = 10 provide the same degree of confidence in the dependency).
With an increase in the value of IMI(X,Y |S), the dependency between the
variables X and Y grows stronger. Therefore, to prune out weak dependencies,
we need to set a threshold value of mutual information below which we ignore
the evidence as weak. To do so, we relate CMI with G2 test statistics [14,27] as
below, where Ns is the sample size.

G2(X,Y |S) = 2 · Ns · loge2 · IMI(X,Y |S)

G2 follows the χ2 distribution [28], with the degree of freedom df equal to
(rx −1)(ry −1)

∏
s∈S rs, where rx, ry, and rs are the number of possible distinct

values of X, Y, and S, respectively. So, we use χ2 test, which provides a threshold
based on df and significance level α, to validate the dependency result. We set
α to the universally accepted value of 95%.

3.4 The PC Algorithm

The key idea of the PC algorithm [14] is that a causal network has an edge
between two nodes, X and Y , if and only if X and Y are not independent given
any of the condition subsets of the remaining neighbor nodes [16,17]. Algorithm 1
outlines the PC algorithm.

The algorithm has two parts. In the first part, the algorithm learns the topol-
ogy of the causal network (Lines 1– 18). It starts with a completely connected
undirected graph G of n nodes. Two sets are used for bookkeeping – Neigh-
bors(G,X) and SepSet(X,Y). Neighbors(G,X) gives the set of nodes adjacent

52 S. Acharya and B. Suk Lee

Algorithm 1. PC algorithm
Require: Window W
1: Construct the completely connected undirected graph G of all nodes;
2: for each node X in G do
3: Initialize Neighbors(G,X) as the set of nodes adjacent to X in G;
4: end for
5: for each pair of nodes X and Y in G do
6: Initialize an empty set SepSet(X,Y) as the set of nodes that causes independence

between X and Y in G;
7: end for
8: k ← 0;
9: repeat

10: repeat
11: Select any edge X − Y such that |Neighbors(G, X)\Y | ≥ k;
12: repeat
13: Select any subset S of Neighbors(G, X)\Y such that |Neighbors(G, X)\Y |

= k;
14: If X and Y are independent given S, remove X −Y from G, remove Y from

Neighbors(G,X), remove X from Neighbors(G,Y), and add S to SepSet(X,Y)
and SepSet(Y,X);

15: until every subset S of Neighbors(G, X)\Y such that |Neighbors(G, X)\Y |
= k has been selected.

16: until every edge X − Y such that |Neighbors(G, X)\Y | ≥ k has been selected.
17: k = k + 1;
18: until no edge X ′ − Y ′ satisfies |Neighbors(G, X ′)\Y ′| ≥ k.
19: for each triplet of nodes X, Y, Z such that the edge X − Y and Y − Z exists in

G but not X − Z do
20: Orient X − Y − Z as X→Y←Z if and only if SepSet(X,Z) does not contain Y;
21: end for
22: repeat
23: If there exists X → Y and Y −Z, but not X −Z, then orient Y −Z as Y → Z;

24: If there exists X − Y and a directed path from X to Y, then orient X − Y as
X → Y ;

25: until no edge can be oriented.

to X, and SepSet(X,Y) gives the set of nodes which causes X and Y to be
conditionally independent. Initially, Neighbors(G,X) has the remaining n − 1
nodes and SepSet(X,Y) is empty. Then, the CI tests are performed between
every pair of nodes that have an edge between them to determine whether they
are conditionally independent of any other nodes in G. The edge between the
conditionally independent nodes is removed. To ensure that all possible combi-
nation of nodes are considered in the condition set, the algorithm starts with an
empty condition set and ends with the condition set with the maximum possi-
ble number of nodes. That is, in the algorithm k refers to the number of nodes
in the condition set and is initially set to 0 to denote an empty condition set,
and then k is gradually increased (by 1 at each iteration) and the CI tests are

Enhanced Fast Causal Network Inference over Event Streams 53

performed between every pair of nodes with the condition set of size k. This
process is repeated until there is no edge left in G whose condition set size is
greater than k. Eventually, an undirected network is obtained where an edge
between two nodes denotes that these nodes are not conditionally independent
in the presence of any of the other n − 2 nodes.

In the second part, the undirected network topology is assigned causal direc-
tions (Lines 19 – 25). It is done in three steps. First, if there are two edges X −Y
and Y −Z but not X −Z and SepSet(X,Z) does not contain Y , then X −Y −Z
is assigned the edge orientations X → Y ← Z. The reason is that X and Z are
dependent given Y , as the absence of Y in SepSet(X,Z) indicates that X and
Z are not conditionally independent given Y [29,30]. Second, if there are edges
X → Y and Y − Z but not X − Z, then Y − Z is oriented as Y → Z. The
absence of an edge between X and Z means that X and Z are not dependent.
A directed edge from X to Y and Y to Z with no edge between X and Z makes
X and Z independent of Y [29,30]. Thus, the edge between Y and Z is oriented
as Y → Z. Third, if there are edges X − Y and a directed path from X to
Y through any number of nodes, then X − Y is oriented as X → Y . This is
necessary to make the graph acyclic, as the edge direction X ← Y would make
the graph cyclic.

4 Learning Temporal Precedence Relationships

In this section, we describe an incremental approach to model temporal prece-
dence relationships from time-stamped events into a temporal network.

4.1 Temporal Network Model

A temporal network is a network of nodes representing event types where an
edge between two nodes represents the temporal precedence relationship between
them. To determine when an edge should be added in a temporal network, a
measure providing an evidence of temporal precedence between the event types
should be defined. The evidence we use is the frequency of the observation of an
instance of Ej following an instance of Ei. We call this the precedence frequency.

Definition 1 (Precedence frequency). The precedence frequency fij between
two event types Ei and Ej is the total number of observations in which an event
of type Ei precedes an event of type Ej over all partitions in the partitioned
window.

fij =
np∑

k=1

n(eki,ekj)

where np is the number of partitions and n(eki,ekj) is the number of observations
in which an event of type Ei precedes an event of type Ej in the k-th partition.

54 S. Acharya and B. Suk Lee

In our prior work [23], we assume that the event stream is in order and the tem-
poral network from such an event stream is directed and acyclic. However, in an
event stream with out-of-order event arrivals, the reliance on the temporal order
for a definite temporal edge direction between event types may lead to ambigu-
ous scenarios. For instance, the precedence frequencies between two event types
Ei and Ej of an edge Ei → Ej and its reversed edge Ei ← Ej may not differ sig-
nificantly enough to determine an edge direction between them. An undirected
edge Ei−Ej is warranted to reflect such ambiguity. Thus, we support undirected
edges as well as directed edges in the temporal network model. A directed edge
between two nodes reflects a strong temporal precedence relationship between
them, whereas an undirected edge reflects an ambiguous temporal precedence
relationship between them. A threshold called the temporal confidence (θ) is used
to select between directed and undirected edges, as presented in Rule 1 below.

Rule 1. Temporal edge direction selection
Suppose the precedence frequencies of an edge Ei → Ej and its reversed edge
Ei ← Ei are fij and fji such that either fij > 0 or fji > 0, respectively. Then,
the edge direction between these two event types Ei and Ej (i.e., Ξ(Ei, Ej)) is
selected as follows.

Ξ(Ei, Ej) =

⎧
⎪⎨

⎪⎩

Ei → Ej if fij−fji
fij+fji

> θ

Ei ← Ej if fji−fij
fij+fji

> θ

Ei − Ej if | fij−fji
fij+fji

| ≤ θ

��
Given a temporal network, we define the edge strength, called the temporal

strength, as follows.

Definition 2 (Temporal strength). Consider an edge Ei → Ej (i �= j) in a
temporal network of n event types. Let fij be the precedence frequency from the
event type Ei to the event type Ej. Then, we define the temporal strength, sij,
of the edge Ei → Ej as

sij � fij∑n
k=1 fik

��
That is, the temporal strength of Ei → Ej is the precedence frequency of (Ei, Ej)
relative to the total precedence frequency over all children nodes of Ei.

4.2 Order-Aware Temporal Network Inference Algorithm

The idea behind the OATNI algorithm is to collect events from an event stream
in a window and then use temporal precedence information from the sequence
of event pairs in the window to construct a temporal network at the event type
level. The overall algorithm is centered on a frequency matrix, which is initially
empty (i.e., all zero elements) and updated with each new batch of events.

The algorithm has two steps for each window, as outlined in Algorithm2.

Enhanced Fast Causal Network Inference over Event Streams 55

Algorithm 2. Order-Aware Temporal Network Inference (OATNI)
Require: Edgeless network structure TN, Event stream(s) S, Temporal confidence θ
1: Initialize an empty frequency matrix FM, an empty strength matrix SM, two empty

buffers Bp and Bc (used to store “parent” events and “child” events, respectively);

2: for each window W in S do
3: for each partition P (corresponding to CRA a) in W do
4: for i = 1 to tn − 1 where tn is the number of unique timestamps in P do
5: Clear Bp and Bc;
6: Insert all events with timestamp ti and ti+1 into Bp and Bc, respectively;
7: for each event instance eap in Bp do
8: for each event instances eac in Bc do
9: if type(eac) �= type(eap) {//There cannot be causal relationships

between events of the same type.} then
10: Increase the frequency of element ftype(eap),type(eac) in FM by 1;
11: end if
12: end for
13: end for
14: end for
15: end for
16: for each pair of elements fij and fji such that fij > 0 or fji > 0 in FM do
17: sij ← 0, sji ← 0;

18: if
fij−fji
fij+fji

> θ then

19: Add an edge Ei → Ej in TN and set its strength to sij =
fij∑n

k=1 fik
;

20: else if
fji−fij
fij+fji

> θ then

21: Add an edge Ei ← Ej in TN and set its strength to sji =
fji∑n

k=1 fjk
;

22: else if
|fij−fji|
fij+fji

≤ θ then

23: Add an edge Ei − Ej in TN and set the strengths to sij =
fij∑n

k=1 fjk
and

sji =
fji∑n

k=1 fjk
;

24: end if
25: end for
26: end for

1. Update the frequency matrix FM by observing the precedence relationships
of event pairs in the partitioned window (Lines 3–15). An element fij in FM
reflects the total number of times events of type Ei precede events of type
Ej (i �= j). Each time an event pair (eoi, eoj) is observed in the event stream
such that eoi precedes eoj , increase the value of fij by 1.

2. Determine the edges of the temporal network using FM (Lines 16–25). For
each pair of nodes, add an edge according to Rule 1. For a directed edge added,
e.g., Ei → Ej , calculate its temporal strength and store it in sij of SM. For
an undirected edge added, e.g., Ei − Ej , calculate the temporal strengths of
both directions and store them in sij and sji of SM.

56 S. Acharya and B. Suk Lee

Note that when the events arrive in order, the OATNI algorithm reduces to
the TNI algorithm by setting the threshold θ to 0 so that Rule 1 always chooses
between the first two cases.

5 Learning Causal Network in Reduced Time

In this section, we describe a new approach which reduces the number of CI
tests needed to infer the causal structure, thereby speeding up the learning
process. Specifically, we explain the key ideas employed and discuss the con-
crete algorithm. We then prove the correctness of the algorithm and analyze its
computational complexity.

5.1 Key Ideas

Given that the key approach is to exploit temporal precedence relationships
to learn the causal network, there are a number of ideas employed to reduce
the causal network construction time. We begin by proposing some preliminary
lemmas.

Lemma 1. A CI test between two event types with no temporal precedence rela-
tionship is unnecessary.

Proof. Two event types can a have causal relationship only if they have a tem-
poral precedence relationship. Therefore, it is not necessary to perform a CI
test (for detecting causality) between two event types which are not temporally
related. ��
Lemma 2. Event types which do not have temporal precedence relationships
with either of the two event types being tested for causality are not needed in
the condition set of the CI test.

Proof. Consider two event types, Ei and Ej , tested for causality, and consider
another event type Ek (k �= i, j). Ek can causally influence Ei (or Ej) only if Ek

has a temporal precedence relationship with Ei (or Ek). Therefore, the CI tests
between Ei and Ej can safely exclude from the condition set those event types
(i.e., Ek) which are not temporally related to either of them. ��
Based on Lemma 1, the CI tests are performed only for the edges in the temporal
network. That is, not every possible edges are considered for the CI tests leading
to a reduced number of CI tests. Moreover, since the size of the condition set
contributes to the number of CI tests exponentially, we use Lemma 2 to reduce
the condition set size by including only those event types which have temporal
relationships, hence possibly causal relationships, to the event types being tested.

Enhanced Fast Causal Network Inference over Event Streams 57

We employ another idea to speed up the network inference further, based on
Lemma 3 below.

Lemma 3. The number of CI tests performed in the causal network inference
decreases if the CI tests between event types are performed in an increasing order
of their temporal strength.

Proof. Event types with weaker temporal strengths between them have higher
likelihood of being conditionally independent than those with stronger temporal
strengths. Therefore, if the CI tests are performed between event types with the
lowest temporal strength first, then the initial causal network becomes sparser
faster and, consequently, the condition sets for the CI tests between event types
become smaller faster. This leads to the reduction in the total number of CI
tests performed through the causal network inference. ��
Evidently, the reduction in the number of CI tests brings the reduction of running
time.

Further, we employ the idea of reducing the overhead of causal network
inference by performing it only when there are significant enough changes in
temporal precedence relationships in the event stream. The rationale for this
is that the causal network tends to absorb changes in the temporal network
until the changes are significant enough. We introduce the temporal precedence
probability as the measure to normalize the precedence frequencies between event
types. The changes in the precedence probabilities give a normalized measure of
the changes that have occurred in the temporal network since the last batch of
events in the stream.

Definition 3 (Precedence probability). The precedence probability pij
between two event types Ei and Ej is defined as the ratio of fij and the summa-
tion of all precedence frequencies.

pij =
fij∑n

x=1

∑n
y=1 fxy ��

Let PM@ti and PM@ti+1 be the matrices representing the precedence probabil-
ities at the timestamps ti and ti+1, respectively. Then, the measure of change
in the precedence information, called precedence change (Cp), is calculated as
follows.

Cp =
n∑

x=1

n∑

y=1

|pxy@ti+1 − pxy@ti|

where pxy is the element at the position (x, y) (i.e., event types (Ex, Ey)) in PM.
Given this change measure, we update the causal network only if the calculated
Cp exceeds a certain threshold, called the precedence change confidence (δ).

58 S. Acharya and B. Suk Lee

Algorithm 3. Enhanced Fast Causal Network Inference (EFCNI)
Require: Window W, Precedence change confidence δ, Edgeless causal network G.
1: Run theOATNI algorithm and initialize G = (N, ξ) with the learned temporal

network; {N and ξ are the set of nodes and the set of edges, respectively.}
2: Calculate Cp. If Cp < δ, then exit; {Stop if there is no significant change in the

event stream.}
3: Sort the edges in ξ in the increasing order of their temporal strength.
4: for each edge (Ei, Ej) ∈ ξ do
5: independent = IsIndependent(Ei, Ej , φ), where φ is the empty set;

{IsIndependent(Ei, Ej , S) calculates IMI(Ei, Ej |S) for CI test.}
6: if independent is true then
7: Remove (Ei, Ej) from ξ;
8: end if
9: end for

10: k ← 0;
11: repeat
12: for each edge (Ei, Ej) ∈ ξ do
13: Construct a set of condition sets, Z, each of cardinality k from the parents of

Ej excluding Ei;
14: repeat
15: Select any subset S from Z;
16: independent = IsIndependent(Ei, Ej , S);
17: Remove S from Z;
18: until Z is empty or independent is true
19: if independent is true then
20: Remove (Ei, Ej) from ξ;
21: end if
22: end for
23: k = k + 1;
24: until there is no Ej in any edge (Ei, Ej) ∈ ξ with k incident edges.

5.2 Enhanced Fast Causal Network Inference Algorithm

The algorithm has four steps, as outlined in Algorithm 3.

1. The first step (Line 1) learns a temporal network by running the OATNI algo-
rithm. The temporal network, which can have both directed and undirected
edges, is set as the initial causal network.

2. The second step (Line 2) checks if there has been a significant enough change
in the temporal precedence statistic (i.e., Cp) in the event stream from the
last observation period, and stops if not.

3. The third step (Line 3) sorts the edges of the initial causal network in the
increasing order of their temporal strength.

4. The fourth step (Lines 4–24) constructs the final causal network by prun-
ing out the edges between independent nodes. CI tests are performed on
every edge between adjacent nodes in the initial causal network to verify
dependency between them. Conditionally independent nodes are considered
spurious, and hence the edge between them is removed.

Enhanced Fast Causal Network Inference over Event Streams 59

The main difference from the PC algorithm is the manner in which the CI
tests are performed. In the PC algorithm, the condition set S for an edge Ei−Ej

(undirected) considers the neighbors of both Ei and Ej whereas in the EFCNI
algorithm, the condition set S for an edge Ei → Ej (directed) needs to consider
only the parents of Ej . (Ej is independent of the parents of Ei that do not have
edge to Ej .) Consequently, fewer CI tests are needed. In addition, note that the
EFCNI algorithm reduces to the FCNI algorithm by omitting the second and
the third steps.

5.3 Correctness of the Algorithm

To prove the correctness of the algorithm, it suffices to prove the correctness
of our approach which starts with a temporal network as the initial causal net-
work and removes edges through CI tests on them. We show the correctness
as follows. First, a temporal precedence relationship is a necessary condition
for inferring causality [20]. Therefore, causal relationship subsumes temporal
precedence relationship, that is, the causal network is a subgraph of the tempo-
ral network (Lemma 1). Second, a causal network should satisfy the Causal
Markov Condition (CMC) [13,16,31] where for every node X in the set of
nodes N , X is independent of its non-descendants excluding its parents (i.e.,
N\(Descendants(X)∪Parents(X))) given its parents. In a temporal network of
vertex (or node) set N, a node is temporally independent, and therefore causally
independent, of all its non-descendants (except its parents) given its parents
(Lemma 2).

5.4 Complexity Analysis

Given n nodes, the computational complexity of the EFCNI algorithm
is O(n2 · 2n−2) in the worst case and O(n) in the best case.

Proof. The computational complexity of the EFCNI algorithm is governed by the
total number of possible CI tests which is calculated by summing up the number
of CI tests involving each edge. In the worst case, the number of edges in the
network is that of a completely connected graph and all edges are undirected.
The number of edges in a completely connected graph of n nodes is n(n−1)

2 . For
every edge between two nodes, the remaining n − 2 nodes are considered in the
condition set, as the graph is completely connected and undirected. Therefore,
to test conditional independence between a pair of nodes in an edge, there are
2n−2 CI tests to perform. Consequently, the total number of CI tests for all edges
is n(n−1)

2 · 2n−2, resulting in the computational complexity of O(n2 · 2n−2).
In the best case, the initial causal network (i.e., temporal network) is a

directed linear graph and the number of edges is the minimum (i.e., n − 1).
In such a graph, there are n − 2 edges with one incoming edge to either of the
nodes and one edge with no incoming edge to either of the nodes. For the edges
with one incoming edge, the condition set size is one, and therefore there are
two CI tests to perform. For n − 2 such edges, there are 2n − 4 CI tests. For the

60 S. Acharya and B. Suk Lee

remaining one edge with no incoming edge to either of the nodes, there is only
one CI test to perform. Therefore, there are 2n − 3 CI tests to perform in the
best case, resulting in the computational complexity of O(n). ��
The computational complexity of the PC algorithm is O(n) in the best case
and O(n2 · 2n−2) in the worst case [14]. Note that, while the computational
complexities are the same, the EFCNI algorithm starts with a sparse network
as the use of temporal precedence relationships removes many of the edges. So,
it starts closer to the best case. In contrast, the PC algorithm always starts
with a completely connected dense network. So, it starts from the worst case.
As a result, in practice the EFCNI algorithm shows significant improvement in
runtime over the PC algorithm.

The computational complexity of the FCNI algorithm is O(n) in the best
case and O(n · 2n−2) in the worst case [23]. FCNI’s worst case computation
complexity is lower than that of EFCNI by a factor of n. However, unlike the
EFCNI algorithm, the FCNI algorithm is not suitable for out-of-order event
streams. Moreover, as mentioned earlier, the EFCNI algorithm reduces to the
FCNI algorithm when the events are in order and θ is zero. As a result, in practice
the EFCNI algorithm is at least as fast and accurate as the FCNI algorithm when
the events are in order and preserves the accuracy in the face of out-of-ordered
events, compromising the runtime to some extent as an increasing number of
events arrive out of order.

6 Performance Evaluation

We conducted experiments to compare the proposed EFCNI algorithm against
the FCNI and the PC algorithms. There are three sets of experiments – first in
terms of the accuracies of the resulting causal networks, second the running time,
and third the number of CI tests required. In each set of experiments, we consider
both the cases of stream being in order and out of order and also see the effect of
the EFCNI’s change-driven causal network construction strategy by comparing
it with FCNI and PC when there are changes in the event stream statistic.
Section 6.1 describes the experiment setup, Sect. 6.2 explains the datasets used,
and Sect. 6.3 presents the experiment results.

6.1 Experiment Setup

6.1.1 Evaluation Metrics

The evaluation metrics are the speed of the causal network generation and the
accuracy of the generated causal network. The running time is the CPU time, and
the number of performed CI tests affects the speed. The accuracy is evaluated
by examining how closely the constructed causal network structure resembles
the target causal network. For this, we adopt the structural Hamming distance
proposed by Tsamardinos et al. [32] as the measure. The nodes (i.e., event types)
are fixed as given to the algorithms, and therefore the network structures are
compared with respect to the edges between nodes. There are three kinds of

Enhanced Fast Causal Network Inference over Event Streams 61

possible errors in the causal network construction: reversed edges, missing edges,
and spurious edges. We use the number of erroneous edges of each kind as the
evaluation metric.

6.1.2 Platform

The experiments are conducted on RedHat Enterprise Linux 5 operating sys-
tem using Java(TM) 2 Runtime Environment–SE 1.5.0 07 in Vermont Advanced
Computing Core (VACC) cluster computers.

6.2 Datasets

Experiments are conducted using both synthetic and real datasets.

Synthetic Datasets. A synthetic dataset is reverse-engineered from a target
causal network. Given control parameters in Table 1, the idea is to generate
a random causal network, and then convert the causal network to an event
stream which reflects the underlying probability distribution of the causal net-
work. Specifically, there are three steps. First, NET nodes are created and edges
are added randomly, and random conditional probabilities are assigned to each
edge. Each node can have up to MaxNC edges from cause nodes and up to MaxNE

edges to effect nodes. (We set both MaxNC and MaxNE to 3 for the experiments
presented here.) Second, a joint probability distribution (JPD) table is built from
the conditional probabilities assigned to edges of the target causal network. The
rows of the JPD table collectively cover all event sequences possible, while each
row has its own probability. Third, the probability for each row in the JPD table
is multiplied by NO to calculate the number of repetitions of that event sequence
in the dataset. We assume that the event owner is the CRA for the dataset.

Table 1. Control parameters for synthetic event stream generation

Parameter Meaning

NO Number of event owners (with unique ID)

NET Number of event types (i.e., nodes)

MaxNC Maximum number of cause events (parents)

MaxNE Maximum number of effect events (children)

The size of a JPD table grows exponentially with NET and therefore we use
parallel processing for the event stream generation. The JPD table is divided
into multiple partitions and the dataset is created by running parallel processes
over each of these partitions. The dataset is thus represented by a collection of
files in which the events are shuffled according to the owner ID while preserving
the temporal order.

There are five cases of datasets, DS1 through DS5, according to the num-
ber of nodes in the represented target causal networks (see their profiles in

62 S. Acharya and B. Suk Lee

Table 2). The target causal networks have 4, 8, 12, 16 and 20 nodes, respec-
tively. They are created with 1, 2, 16, 64 and 512 parallel processes, respectively,
thus consisting of 1, 2, 16, 64 and 512 files, respectively. Each row of a synthetic
dataset represents one event instance. To obtain out-of-order event streams, each
case of datasets is shuffled randomly up to the required degree of out-of-order
(see Eq. 1). Changes in the event stream statistic is achieved by altering the
precedence frequencies of events. Specifically, we generate six batches of the
event stream for six observation points (t1 through t6) with the Cp values of
14%, 16%, 4%, 6%, 10%, and12%, respectively, for each case of the datasets.
The six batches are equal-sized for each dataset specified in Table 2, so the num-
ber of instances in a single batch is 2521, 20745, 528874, 8374548, and 85161947
for the dataset D1, D2, D3, D4, D5, and D6, respectively.

Table 2. Profiles of the five synthetic datasets

Dataset NET Nedges NO Nins

DS1 4 4 5000 15128

DS2 8 15 30000 124475

DS3 12 22 500000 3173246

DS4 16 39 6553600 50247293

DS5 20 49 52428800 510971687

(Nedges is the number of actual edges in the
network. Nins is the average number of event
instances in the datasets of each case.)

Real dataset. The real dataset DR contains diabetes lab test results [33] of
70 different patients over a period ranging from a few weeks to a few months.
The dataset has a total 28143 records, about 402 records for each patient. Each
record has four fields – date, time, test code, test value. The clinical data of a
patient is independent of other patients. Therefore, the patient ID is the CRA
for this dataset. There are 20 different test codes appearing in the file (shown in
the left column of Table 3) from which we define event types of interest (shown
in the right column of Table 3).

6.3 Experiment Results

We run the EFCNI, FCNI and PC algorithms over each type of the five synthetic
datasets and the real dataset. We present our evaluation in each of the three sets
of experiments. First, we evaluate the accuracy of the generated causal networks
against the target causal network and determine how closely they resemble the
true causal network. Specifically, we count the number of spurious edges, the
number of missing edges, and the number of reversed edges. Second, we evaluate
the running time (CPU time), and third, we evaluate the number of CI tests
performed. We show that reducing the number of CI tests is the key to reducing

Enhanced Fast Causal Network Inference over Event Streams 63

Table 3. Event types defined from the diabetes dataset

Test Code Event Type

Regular insulin dose Regular-insulin-dose-given(RIDG)

NPH insulin dose NPH-insulin-dose-given(NIDG)

UltraLente insulin dose UltraLente-insulin-dose-given(UIDG)

Unspecified BGM*

Pre-breakfast BGM*

Post-breakfast BGM* Blood-glucose-measurement-

Pre-lunch blood BGM* increased(BGMI)

Post-lunch BGM* Blood-glucose-measurement-

Pre-supper BGM* decreased(BGMD)

Post-supper BGM*

Pre-snack BGM*

Hypoglycemic symptoms Hypoglycemic-symptoms-exist(HSE)

Typical meal ingestion Typical-meal-ingested(TMI)

More than usual meal ingestion More-than-usual-meal-ingested(MTUMI)

Less than usual meal ingestion Less-than-usual-meal-ingested(LTUMI)

Typical exercise activity Typical-exercise-taken(TET)

More than usual exercise activity More-than-usual-exercise-taken(MTUET)

Less than usual exercise activity Less-than-usual-exercise-taken(LTUET)

(Note BGM*: blood glucose measurement)

the running time of causal network inference. In each set of experiments, the
evaluation covers the scenarios of the event stream being in order and out of
order, and, additionally, the scenario of the event stream statistic changing. For
the latter scenario, the value of the precedence change confidence δ is set to 9%
for all synthetic datasets (DS1 through DS5). For the experiments involving
in-order event streams, the temporal precedence confidence θ is set to zero (so
EFCNI reduces to FCNI) and, for the experiments involving out-of-order event
streams, it is set to 24.80%, 17.23%, 18.19%, 21.97%, 26.50% (each determined
after training from 70% of the data) for all synthetic datasets. The experiment
is repeated ten times for each dataset (DS1 through DS5 and DR) to calculate
the average.

6.3.1 Comparison of the Accuracies of the PC, FCNI, and EFCNI
Algorithms

6.3.1.1 When the events arrive in order

Table 4 presents the number of erroneous edges in the causal network produced
by the PC, FCNI, and EFCNI algorithms. The results show that the accuracy
of the causal network from the EFCNI algorithm is similar to that of the FCNI

64 S. Acharya and B. Suk Lee

and PC algorithms. First, the number of missing and the number of spurious
edges are comparable among all three algorithms. This is due to the reliance of
the three algorithms on the same test statistics (CMI in our case) to infer the
independence of two event types. Additionally, each number is the same between
EFCNI and FCNI because EFCNI reduces to FCNI. Second, the number of
reversed edges is zero for both the FCNI and EFCNI algorithms. Clearly the
FCNI and EFCNI algorithms, through the temporal network, are much better
at determining the correct causal edge directions. It is because of the fact that
the cause always precedes its effect is embodied in the temporal precedence
relationship. Overall, the results show that, when the event stream is in order,
the EFCNI algorithm produces the same topology as the FCNI algorithm and
almost the same topology as the PC algorithm, while the accuracy of the causal
directions in the EFCNI algorithm remains the same as the FCNI algorithm and
is improved over the PC algorithm.

Table 4. Number of erroneous edges in an in-order event stream

Type of Erroneous Edges Algorithm Dataset

DS1 DS2 DS3 DS4 DS5 DR

Missing PC 0 0 0 0 1 1

FCNI 0 1 0 0 1 1

EFCNI 0 1 0 0 1 1

Reversed PC 0 2 0 2 3 2

FCNI 0 0 0 0 0 0

EFCNI 0 0 0 0 0 0

Spurious PC 0 3 0 4 3 1

FCNI 0 3 0 4 3 1

EFCNI 0 3 0 4 3 1

6.3.1.2 When the events arrive out of order

Table 5 presents the number of erroneous edges in the causal network produced
by the three algorithms for varying degree of out-of-order in the event stream.
We show the results for the two datasets DS4 and DS5 only; the results from
the other datasets are consistent with the results from the two datasets.

We make two observations from the results. First, the PC algorithm is more
resilient to the out-of-order event arrival than the FCNI or EFCNI algorithm.
The number of spurious edges and the number of missing edges are higher in
the EFCNI algorithm than in the PC algorithm when the degree of out-of-order
is large (i.e., doo = 20%, 25%). The reason is that the PC algorithm does not
depend on the temporal precedence order for causal network inference at all
whereas FCNI and EFCNI do. Second, between the FCNI algorithm and the

Enhanced Fast Causal Network Inference over Event Streams 65

EFCNI algorithm, EFCNI results in a comparable number of erroneous edges
as PC while FCNI results in a larger number of erroneous edges than EFCNI
or PC. The FCNI algorithm completely depends on the temporal order of the
events to generate the causal network structure and, consequently, is sensitive
to even a small change in the order of the events. In contrast, the EFCNI algo-
rithm employs the OATNI algorithm where the temporal confidence threshold
mechanism selects undirected edges in the temporal network when the temporal
precedence is ambiguous, and this mechanism makes EFCNI more resilient to
the changes than FCNI.

Table 5. Number of erroneous edges in an out-of-order event stream for different
degrees of out-of-order (doo) (datasets: DS4 and DS5)

Type of Algorithm doo for DS4 doo for DS5

Erroneous

Edges

0% 5% 10% 15% 20% 25% 0% 5% 10% 15% 20% 25%

Missing PC 0 0 0 0 0 0 1 1 1 1 1 1

FCNI 0 1 3 4 4 7 1 4 6 7 11 13

EFCNI 0 0 0 0 1 2 1 1 1 1 1 2

Reversed PC 2 2 2 2 2 2 3 3 3 3 3 3

FCNI 0 2 3 5 8 14 0 3 5 6 9 15

EFCNI 0 0 0 0 0 0 0 0 0 0 0 0

Spurious PC 4 4 4 4 4 4 3 3 3 3 3 3

FCNI 4 7 9 12 13 17 3 5 9 11 18 23

EFCNI 4 4 4 4 4 6 3 3 3 3 4 7

6.3.1.3 When the event stream has changing temporal precedence statistic

Table 6 presents the number of erroneous edges in the causal networks resulting
from the three algorithms for the event stream with changing temporal prece-
dence statistic. As expected, the number of erroneous edges from the FCNI or
PC algorithm is not affected by these changes because the causal network infer-
ence is run every time a new batch of events arrives. In contrast, for the EFCNI
algorithm, the number of erroneous edges increases when Cp is lower than δ (at t3
and t4). (Note that in such cases the causal network inference is not run.) Addi-
tionally, the errors are larger at t4 than t3. This is because the higher value of Cp

results in a greater difference between the causal network constructed and the
true causal network and, more importantly, because the accuracy of the resulting
causal network keeps on degrading as we keep on skipping the causal inference.
On the other hand, for a batch of events with Cp greater than δ (i.e., at t1, t2, t5,
and t6), the EFCNI algorithm rebuilds the causal network and, consequently, the
resulting causal network reflects the true causal network representing the event
stream seen thus far. Therefore, at these time points the number of erroneous
edges remains the same as if the event stream had no change.

66 S. Acharya and B. Suk Lee

Table 6. Number of erroneous edges in a changing event stream over the six observation
points t1 through t6 (datasets: DS4 and DS5)

Type of Erroneous Edges Algorithm DS4 DS5

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

Missing PC 0 0 0 0 0 0 1 1 1 1 1 1

FCNI 0 0 0 0 0 0 1 1 1 1 1 1

EFCNI 0 0 1 2 0 0 1 1 2 4 1 1

Reversed PC 2 2 2 2 2 2 3 3 3 3 3 3

FCNI 0 0 0 0 0 0 0 0 0 0 0 0

EFCNI 0 0 0 1 0 0 0 0 1 2 0 0

Spurious PC 4 4 4 4 4 4 3 3 3 3 3 3

FCNI 4 4 4 4 4 4 3 3 3 3 3 3

EFCNI 4 4 5 7 4 4 3 3 5 8 3 3

6.3.2 Comparison of the Running Time of the PC, FCNI, and EFCNI
Algorithms

6.3.2.1 When the events arrive in order

Figure 3(a) shows the average running time of the EFCNI, FCNI, and PC algo-
rithms for varying number of event types in the synthetic datasets. In all cases,
the running time of the EFCNI algorithm is the shortest while the running time
of the PC algorithm is the longest. Clearly, the temporal precedence informa-
tion helps to reduce the size of condition set and the number of edges for CI
tests in both the FCNI and EFCNI algorithms. In addition, the EFCNI algo-
rithm sorts the edges based on their temporal strength and then tests the condi-
tional independence of the weaker edges, which are more likely to fail the tests,

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 4 8 12 16 20

R
un

tim
e

(m
se

c)

n

PC
FNCI

EFCNI

(a) Running time for varying number of
event types.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 4 8 12 16 20

N
um

be
r o

f C
I t

es
ts

n

PC
FNCI

EFCNI

(b) Number of CI tests for varying num-
ber of event types.

Fig. 3. Comparison of the running time of the PC, FCNI and EFCNI algorithms for
in-order event streams

Enhanced Fast Causal Network Inference over Event Streams 67

 0

 50

 100

 150

 200

 0 5 10 15 20 25

R
un

tim
e

(m
se

c)

Degree of out-of-order

PC
FNCI

EFCNI

(a) n = 8.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25

R
un

tim
e

(m
se

c)

Degree of out-of-order

PC
FNCI

EFCNI

(b) n = 12.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25

R
un

tim
e

(m
se

c)

Degree of out-of-order

PC
FNCI

EFCNI

(c) n = 16.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20 25

R
un

tim
e

(m
se

c)

Degree of out-of-order

PC
FNCI

EFCNI

(d) n = 20.

Fig. 4. Comparison of the running time of the PC, FCNI, and EFCNI algorithms for
out-of-order event streams

earlier and therefore further reduces the running time. As the number (n) of
event types increases, the running time increases in all three algorithms, but
the rate of increase is the highest for the PC algorithm and the lowest for the
EFCNI algorithm. The same observation is made in the real dataset where the
running time of the PC, FCNI, and EFCNI algorithms are 817, 118, and 112
msecs, respectively. These results verify the important role of temporal prece-
dence relationships in reducing the running time.

6.3.2.2 When the events arrive out of order

Figure 4 shows that the EFCNI algorithm performs the fastest causal network
inference among the three algorithms when the event stream is in order (i.e.,
degree of out-of-order doo = 0). As doo increases, the running time of the EFCNI
algorithm increases rapidly. It is due to the strategy that renders the edges
with temporal strength lower than θ in the temporal network undirected. Con-
sequently, the number of CI tests increases, resulting in an increase in the run-
ning time. On the other hand, as seen in the figure, the running time of FCNI
algorithm remains short for the out-of-order event arrivals. However, the FCNI
algorithm compromises the accuracy in such an event stream as discussed in
Sect. 6.3.1. In addition, the result shows that the running time of the PC algo-
rithm is constant as it is not affected by the out-of-order event arrivals.

68 S. Acharya and B. Suk Lee

 0

 50

 100

 150

 200

t1 t2 t3 t4 t5 t6

R
un

tim
e

(m
se

c)

Observation time

PC
FCNI

EFCNI

(a) n = 8.

 0

 100

 200

 300

 400

 500

 600

 700

 800

t1 t2 t3 t4 t5 t6

R
un

tim
e

(m
se

c)

Observation time

PC
FCNI

EFCNI

(b) n = 12.

 0

 1000

 2000

 3000

 4000

 5000

 6000

t1 t2 t3 t4 t5 t6

R
un

tim
e

(m
se

c)

Observation time

PC
FCNI

EFCNI

(c) n = 16.

 0

 5000

 10000

 15000

 20000

 25000

 30000

t1 t2 t3 t4 t5 t6

R
un

tim
e

(m
se

c)

Observation time

PC
FCNI

EFCNI

(d) n = 20.

Fig. 5. Comparison of the running time of the PC, FCNI, and EFCNI algorithms for
changing event streams

6.3.2.3 When the event stream has changing temporal precedence statistic

Figure 5 shows that the EFCNI algorithm performs the fastest causal network
inference among the three algorithms over the event stream with changing tem-
poral precedence statistic. In the figure, for all values of n, the FCNI and PC
algorithms perform the CI tests for the causal network inference every time a
new batch of events arrives. On the other hand, the EFCNI algorithm performs
it only when the precedence statistic changes significantly enough in the event
stream. (Cp is greater than δ at t1, t2, t5, and t6.) The EFCNI algorithm skips
the causal inference at t3 and t4, which helps to reduce the overall running time.

6.3.3 Comparison of the Number of CI Tests of the PC, FCNI,
and EFCNI Algorithms

6.3.3.1 When the events arrive in order

Figure 3 shows that the EFCNI algorithm performs fewer CI tests than the PC
and FCNI algorithms in all synthetic datasets. The CI tests are decreased by
reducing the size of the condition set and the number of edges to test with
the help of the temporal precedence information. In addition, the sorting of the
edges (based on the their temporal strengths) helps to reduce the number of CI
tests. With an increase in the number of event types (n), the rate of increase

Enhanced Fast Causal Network Inference over Event Streams 69

in the number of CI tests of the PC algorithm is much higher than that of
the EFCNI and FCNI algorithms. A similar observation is made in the real
dataset where the number of CI tests of the PC, FCNI, and EFCNI algorithms
are 1239, 192, and 176, respectively. These results confirm the important role
of temporal precedence relationships in reducing the number of CI tests. Note
the result of CI tests (Fig. 3(b)) looks almost the same as that of the running
time (Fig. 3(a)). This demonstrates that CI tests are the major performance
bottleneck and validates the key idea of our work that reducing the number of
CI tests reduces the run time.

6.3.3.2 When the events arrive out of order

Figure 6 shows that, as the degree of out-of-order increases, the number of CI
tests of the EFCNI algorithm increases. A higher degree of out-of-order leads to
the temporal strengths of more edges lower than the temporal confidence thresh-
old (i.e., θ), and this results in rendering more edges undirected and therefore
performing more CI tests. Consequently, as the degree of out-of-order increases,
the number of CI tests of the EFCNI algorithm becomes closer to that of the
PC algorithm. Note that the PC algorithm is not affected by the out-of-order
event arrivals and, thus, the number of CI tests does not change for varying

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

N
um

be
r o

f C
I t

es
ts

Degree of out-of-order

PC
FNCI

EFCNI

(a) n = 8.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25

N
um

be
r o

f C
I t

es
ts

Degree of out-of-order

PC
FNCI

EFCNI

(b) n = 12.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 5 10 15 20 25

N
um

be
r o

f C
I t

es
ts

Degree of out-of-order

PC
FNCI

EFCNI

(c) n = 16.

 0

 50000

 100000

 150000

 200000

 0 5 10 15 20 25

N
um

be
r o

f C
I t

es
ts

Degree of out-of-order

PC
FNCI

EFCNI

(d) n = 20.

Fig. 6. Comparison of the number of CI tests of the PC, FCNI, and EFCNI algorithms
for out-of-order event streams

70 S. Acharya and B. Suk Lee

 0

 50

 100

 150

 200

 250

 300

 350

 400

t1 t2 t3 t4 t5 t6

N
um

be
r o

f C
I t

es
ts

Observation time

PC
FCNI

EFCNI

(a) n = 8.

 0

 200

 400

 600

 800

 1000

 1200

 1400

t1 t2 t3 t4 t5 t6

N
um

be
r o

f C
I t

es
ts

Observation time

PC
FCNI

EFCNI

(b) n = 12.

 0

 10000

 20000

 30000

 40000

 50000

 60000

t1 t2 t3 t4 t5 t6

N
um

be
r o

f C
I t

es
ts

Observation time

PC
FCNI

EFCNI

(c) n = 16.

 0

 50000

 100000

 150000

 200000

t1 t2 t3 t4 t5 t6

N
um

be
r o

f C
I t

es
ts

Observation time

PC
FCNI

EFCNI

(d) n = 20.

Fig. 7. Comparison of the number of CI tests of the PC, FCNI, and EFCNI algorithms
for changing event streams

degree of out-of-order. The results also show that the FCNI algorithm performs
the smallest number of CI tests when the events arrive out of order. However,
its accuracy is the worst among the three algorithms as discussed in Sect. 6.3.1.

6.3.3.3 When the event stream has changing temporal precedence statistic

Figure 7 shows that the EFCNI algorithm performs the smallest number of CI
tests among the three algorithms over the event stream with changing temporal
precedence statistic. As discussed earlier, the FCNI and PC algorithms regener-
ate the causal network with the arrival of every new batch of events while the
EFCNI algorithm does it only when the change in the event stream (i.e., Cp) is
greater than δ (as seen at t1, t2, t5, and t6). As a result, the EFCNI algorithm
skips causal inference computations involving a large number of CI tests at t3
and t4 where the value of Cp is less than δ. As expected, the number of CI tests
is highest for the PC algorithm at every observation point t1 through t6 due to
its highest computational complexity.

6.3.4 Summary of Experiment Results

The EFCNI algorithm is faster than the FCNI algorithm for an event stream
where the events arrive in order. The EFCNI algorithm enhances the FCNI
algorithm with two additional strategies to reduce the number of CI tests. It has

Enhanced Fast Causal Network Inference over Event Streams 71

been demonstrated that the CI tests are the performance bottleneck and thus
the reduction in the number of CI tests is the key to decreasing the running time
of the algorithm. Moreover, unlike the FCNI algorithm which requires events to
arrive in order, the EFCNI algorithm can perform the causal network inference
accurately even when the events arrive out of order. As the degree of out-of-
orderness doo increases, the accuracy of the EFCNI algorithm comes at the
expense of the running time (i.e., the number of CI tests) to some extent.

The EFCNI algorithm is much faster than the PC algorithm in all experi-
ments. In some scenarios (e.g., medical applications like patient health tracking),
the accuracy of the result may be more important than the runtime. In case the
accuracy of the EFCNI algorithm is not satisfactory in such scenarios – for exam-
ple, if the event stream has many out-of-order events (i.e., with large doo) – then
the OATNI algorithm can be tweaked to increase the EFCNI algorithm’s accu-
racy by setting θ to a larger value (e.g., toward 100%). A larger θ value forces
the edges more to be undirected and, therefore, makes the EFCNI algorithm
behave more like the PC algorithm, thus achieing higher accuracy.

Furthermore, the EFCNI algorithm saves time by avoiding causal inference
computations when there is not significant enough changes in the statistic of the
event stream.

7 Conclusion and Future Work

In this paper, we presented a novel strategy to exploit temporal precedence
relationships to learn the causal network over event streams. First, we intro-
duced the Order-Aware Temporal Network Inference algorithm to model tem-
poral precedence information. Then, we presented the Enhanced Fast Causal
Network Inference algorithm to reduce the running time of learning causal net-
work by reducing the number of performed CI tests significantly. These algo-
rithms efficiently handle the event streams even if the events are out of order and
saves the running time further by performing causal inference only if the tempo-
ral precedence statistic changes significantly enough. We showed the experiment
results to validate our approach by comparing against the state-of-the-art PC
and FCNI algorithms.

There are a number of future work in the plan. First, we plan to support cyclic
causality. Second, we plan to investigate the effect of concept drift in the causal
network inference so that the computations are performed only among the event
types affected by the changes. Third, we plan to perform the experiments on
datasets with a much larger number (i.e., hundreds to thousands) of event types
to show the practicality of our proposed algorithms in a big data environment.

References

1. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent streaming through
time: a vision for event stream processing. In: Proceedings of the Third Biennial
Conference on Innovative Data Systems Research, CIDR 2007, pp. 363–374 (2007)

72 S. Acharya and B. Suk Lee

2. Zhao, Y., Strom, R.: Exploitng event stream interpretation in publish-subscribe
systems. In: Proceedings of the Twentieth Annual ACM Symposium on Principles
of Distributed Computing, PODC 2001, pp. 219–228 (2001)

3. Johnson, T., Muthukrishnan, S., Rozenbaum, I.: Monitoring regular expressions on
out-of-order streams. In: Proceedings of the IEEE 23rd International Conference
on Data Engineering, ICDE 2007, pp. 1315–1319 (2007)

4. Li, M., Liu, M., Ding, L., Rundensteiner, E.A., Mani, M.: Event stream processing
with out-of-order data arrival. In: Proceedings of the 27th International Conference
on Distributed Computing Systems Workshops, ICDCSW 2007, pp. 67–74. IEEE
Computer Society, Washington, DC, USA (2007)

5. Liu, M., Li, M., Golovnya, D., Rundensteiner, E., Claypool, K.: Sequence pattern
query processing over out-of-order event streams. In: Proceedings of the IEEE 25th
International Conference on Data Engineering, ICDE 2009, pp. 784–795 (2009)

6. Li, J., Tufte, K., Shkapenyuk, V., Papadimos, V., Johnson, T., Maier, D.: Out-of-
order processing: a new architecture for high-performance stream systems. Proc.
VLDB Endow. 1(1), 274–288 (2008)

7. Wang, K., Yu, Y.: A query-matching mechanism over out-of-order event stream in
iot. Int. J. Ad Hoc Ubiquitous Comput. 13(3/4), 197–208 (2013)

8. Heckerman, D.: A Bayesian approach to learning causal networks. In: Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI 1995, pp.
285–295 (1995)

9. Ellis, B., Wong, W.H.: Learning causal Bayesian network structures from experi-
mental data. J. Am. Stat. Assoc. 103(482), 778–789 (2008)

10. Li, G., Leong, T.-Y.: Active learning for causal Bayesian network structure with
non-symmetrical entropy. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho,
T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 290–301. Springer, Heidelberg
(2009)

11. Meganck, S., Leray, P., Manderick, B.: Learning causal Bayesian networks from
observations and experiments: a decision theoretic approach. In: Torra, V.,
Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds.) MDAI 2006. LNCS (LNAI),
vol. 3885, pp. 58–69. Springer, Heidelberg (2006)

12. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge Uni-
versity Press, Cambridge (2009)

13. Spirtes, P., Glymour, C.N., Scheines, R.: Causality from probability. In: Proceed-
ings of the Conference on Advanced Computing for the Social Sciences, ACSS 1990
(1990)

14. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT
Press, Cambridge (2000)

15. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Bayesian networks
from data: an information-theory based approach. Artif. Intell. 137(1–2), 43–90
(2002)

16. Pearl, J.: Causal diagrams for empirical research. Biometrika 82, 669–710 (1995)
17. Spirtes, P., Meek, C.: Learning Bayesian networks with discrete variables from data.

In: Proceedings of the First International Conference on Knowledge Discovery and
Data Mining, KDD 1995, pp. 294–299 (1995)

18. Chow, Y.S., Teicher, H.: Probability Theory: Independence, Interchangeability,
Martingales. Springer, New York (1978)

19. Prakasa Rao, B.: Conditional independence, conditional mixing and conditional
association. Ann. Inst. Stat. Math. 61(2), 441–460 (2009)

20. Popper, K.: The Logic of Scientific Discovery, Reprint edition. Routledge, New
York (1992)

Enhanced Fast Causal Network Inference over Event Streams 73

21. Hamilton, H.J., Karimi, K.: The TIMERS II algorithm for the discovery of causal-
ity. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol.
3518, pp. 744–750. Springer, Heidelberg (2005)

22. Utrera, A.C., Olmedo, M.G., Callejon, S.M.: A score based ranking of the edges for
the pc algorithm. In: Proceedings of the 4th European Workshop on Probabilistic
Graphical Models, PGM 2008, pp. 41–48 (2008)

23. Acharya, S., Lee, B.S.: Fast causal network inference over event streams. In:
Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 222–
235. Springer, Heidelberg (2013)

24. Chickering, D.M.: Learning equivalence classes of Bayesian-network structures. J.
Mach. Learn. Res. 2, 445–498 (2002)

25. Borchani, H., Chaouachi, M., Ben Amor, N.: Learning causal Bayesian net-
works from incomplete observational data and interventions. In: Mellouli, K. (ed.)
ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 17–29. Springer, Heidelberg (2007)

26. de Campos, L.M.: A scoring function for learning Bayesian networks based on
mutual information and conditional independence tests. J. Mach. Learn. Res. 7,
2149–2187 (2006)

27. Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: The-
ory and Practice. MIT Press, Cambridge (1975)

28. Kullback, S.: Information Theory and Statistics, 2nd edn. Dover Publication, New
York (1968)

29. Verma, T., Pearl, J.: Causal networks: Semantics and expressiveness. In: Proceed-
ings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence, UAI
1988, pp. 69–78 (1988)

30. Geiger, D., Pearl, J.: On the logic of causal models. In: Proceedings of the Fourth
Annual Conference on Uncertainty in Artificial Intelligence, UAI 1988, pp. 3–14
(1988)

31. Pearl, J.: Graphs, causality, and structural equation models. Sociol. Methods Res.
27, 226–284 (1998)

32. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)

33. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.
ics.uci.edu/ml/datasets/Diabetes

http://archive.ics.uci.edu/ml/datasets/Diabetes
http://archive.ics.uci.edu/ml/datasets/Diabetes

Learning Through Non-linearly Supervised
Dimensionality Reduction

Josif Grabocka(B) and Lars Schmidt-Thieme

Information Systems and Machine Learning Lab, Samelsonplatz 22,
31141 Hildesheim, Germany

{josif,schmidt-thieme}@ismll.uni-hildesheim.de

Abstract. Dimensionality reduction is a crucial ingredient of machine
learning and data mining, boosting classification accuracy through the
isolation of patterns via omission of noise. Nevertheless, recent studies
have shown that dimensionality reduction can benefit from label infor-
mation, via a joint estimation of predictors and target variables from
a lowf-rank representation. In the light of such inspiration, we propose
a novel dimensionality reduction which simultaneously reconstructs the
predictors using matrix factorization and estimates the target variable
via a dual-form maximum margin classifier from the latent space. Com-
pared to existing studies which conduct the decomposition via linearly
supervision of targets, our method reconstructs the labels using non-
linear functions. If the hyper-plane separating the class regions in the
original data space is non-linear, then a nonlinear dimensionality reduc-
tion helps improving the generalization over the test instances. The joint
optimization function is learned through a coordinate descent algorithm
via stochastic updates. Empirical results demonstrate the superiority of
the proposed method compared to both classification in the original space
(no reduction), classification after unsupervised reduction, and classifi-
cation using linearly supervised projection.

Keywords: Machine learning · Dimensionality reduction · Feature
extraction · Matrix factorization · Supervised dimensionality reduction

1 Introduction

Dimensionality reduction is an important ingredient of machine learning and
data mining. The benefits of projecting data to latent spaces constitute in
(i) converting large dimensionality datasets into feasible dimensions, but also
(ii) improving the classification accuracy of small and medium datasets [1]. The
scope of this work lies on improving prediction accuracy rather than ensur-
ing scalability. There exists a trade-off between accurate and scalable methods,
concretely a plain unsupervised dimensionality reduction is often advised for
scalability (fast classification) purposes [2]. Via carefully tuned dimensionality
reduction (aka feature extraction) we are able to retrieve the necessary patterns
from the datasets, by leaving out the noise. Traditional dimensionality reduction
c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XVII, LNCS 8970, pp. 74–96, 2015.
DOI: 10.1007/978-3-662-46335-2 4

Learning Through Non-linearly Supervised Dimensionality Reduction 75

(described in Sect. 2.1) has been focused on extracting features prior to classifi-
cation. Such a mentality has been recently found to perform non-optimal [3,4],
since the features are not directly extracted/optimized for boosting classifica-
tion. This discrepancy is created because the objective function (loss) of the
unsupervised decomposition process is different from the one used during the
evaluation of the prediction accuracy. Typically the L2 (Euclidean) error is used
in approximating the original predictor values from the low-rank data, while a
logistic, or hinge loss function, for the classification of targets. In order to solve
this challenge, there have been attempts to incorporate class supervision into
feature extraction, (mentioned in Sect. 2.3), such that the latent features are
guided to enforce the discernment/separation of instances belonging to opposite
classes in the reduced space.

Throughout this work we propose a principle, (details in Sect. 3.1), according
to which dimensionality reduction should optimize the latent features through
the same optimization function as the final classification method, thereby ensur-
ing that the classification accuracy in the latent space is optimized. Inspired by
the accuracy success of Support Vector Machines (SVM) which is largely cred-
ited to the kernel trick approach, we propose a novel supervised dimensionality
reduction that incorporates kernel-based classification in the reduced dimen-
sion (Sect. 3). The novelty relies on defining a joint dimensionality reduction via
matrix factorization, in parallel to a dual-form kernel-based maximum margin
classification in the latent space. The reduced data is simultaneously updated in
a coordinate descent fashion in order to optimize both loss terms. Experimental
results (Sect. 4) demonstrate the superiority of the proposed method compared
to both unsupervised dimensionality reduction and classification in the original
space. The main contribution of this work are:

1. Defined a supervised dimensionality reduction with a kernel-based target vari-
able estimation

2. Reviewed and elaborated the state of the art in supervised dimensionality
reduction

3. Derived a coordinate descent algorithm which simultaneously learns the latent
factors for the reconstruction of predictors and the accuracy over target

4. Compared the paradigms of linearly versus non-linearly supervised dimen-
sionality reduction

5. Provided empirical results to demonstrate the superiority of the proposed
method

2 Related Work

2.1 Dimensionality Reduction

Dimensionality reduction is a field of computer science that focuses on extract-
ing lower dimensionality features from datasets [1]. Numerous techniques exist
for extracting features. Principal Component Analysis (PCA) is a famous app-
roach involving orthogonal transformations and selecting the topmost principal

76 J. Grabocka and L. Schmidt-Thieme

components, which preserve necessary variance [5]. Alternatively, Singular Value
Decomposition decomposes a dataset into latent unitary, nonnegative diagonal
and conjugate transpose unitary matrices [1].

Further elaborations of dimensionality reductions involve nonlinear decom-
position of data [6]. For instance kernel PCA replaces the linear operations of
PCA through nonlinear mappings in a Reproducing Kernel Hilbert Space [7].
The whole subfield of manifold learning elaborates, as well, on nonlinear pro-
jections. Specifically, Sammon’s mappings preserves the structure of instance
distances in the reduced space [8], while principal curves embed manifolds using
standard geometric projections [9]. More nonlinear dimensionality algorithms
are described in [10]. In addition, temporal dimensionality reduction have been
proposed in scenarios where the time difference of observations is not evenly
spaced [11]. The field of Gaussian Processes have been extended to dimensional-
ity reduction through the Gaussian Processes Latent Variable Models (GPLVM)
[12,13]. In comparison to PCA, the GPLVM models define nonlinear approxi-
mative functions for the predictor values [12].

2.2 Matrix Factorization

Matrix factorization refers to a family of decompositions which approximate a
dataset as a product of latent matrices of typically lower dimensions. A gen-
eralization and categorization of the various proposed factorization models is
elaborated in [14], where factorizations are seen as applications of the Bregman
Divergence paradigm. The learning of the decomposition is typically conducted
by defining a L2-norm and updating the latent matrices via a stochastic gradi-
ent descent algorithm [15]. Matrix factorization has been applied in a range of
domains, ranging from recommender systems where decomposition focuses on
collaborative filtering of sparse user-item ratings [16], up to time series dimen-
sionality reduction [17]. The Matrix Factorization approach is a special instance
of a probabilistic PCA, while it extends the functionality of a PCA by adding
bias terms [15]. In terms of similarities, a factorization can be also characterized
as a biased probabilistic SVD. In a broader sense, the linear approximation of
predictors can be also interpreted as an instance of the GPLVM models for a
linear (polynomial of degree one) kernel [12].

2.3 Supervised Dimensionality Reduction

In addition to the standard dimensionality reduction and Matrix Factorization,
there has been attempts to utilize the labels information, therefore dictating a
supervised projection. Fisher’s linear discriminant analysis is a popular super-
vised projection method [18]. The classification accuracy loss objective functions
occurring in literature vary from label least square regression [19], to generalized
linear models [20], linear logistic regression [3], up to hinge loss [4,21]. Another
study aimed at describing the target variable as being conditionally dependent on
the features [22]. Other families of supervisions strive for preserving the neigh-
borhood structure of intra-class instances [23], or links in a semi supervised

Learning Through Non-linearly Supervised Dimensionality Reduction 77

scenarios [24]. The GPLVM models have been, as well, adopted for discrimi-
native classification [25]. A self-contained description of the state of the art in
linearly supervised dimensionality reduction is offered in Sect. 3.4. In comparison
to the aforementioned methods, we propose a supervised dimensionality reduc-
tion with a kernel-based classifier that directly optimizes the dual formulation
in the projected space.

3 Proposed Method

3.1 Principle

The method proposed in this study relies on the principle that feature extraction,
analogously referred also as dimensionality reduction, should not be conducted
“ad-hoc” or via particular heuristics. Most of the classification tasks have a uni-
fying objective, which is to improve classification accuracy. In that context we are
referring as “ad-hoc” to the family of feature extraction techniques that don’t
directly optimize their loss functions for classification accuracy. Unsupervised
projection is not optimized for the same loss function which is used during the
evaluation of the target variable. Techniques such as SVD or Matrix Factoriza-
tion focus solely on approximating the predictors of the original data. Unfortu-
nately, unsupervised decompositions pose the risk of losing the signal relevant to
the prediction accuracy. While such approaches approximate the original data,
they become vulnerable to the noise present in the observed predictors’ val-
ues. Stated else-wise, we believe that instance labels should guide the feature
extraction, such that the utilization of the extracted features improves accuracy.
In that perspective, we propose a feature extraction method which operates by
optimizing a joint objective function composed of the feature extraction term and
also the classification accuracy term. In comparison with similar feature extrac-
tion ideas reviewed in Sect. 2.3, which use linear classifiers in the optimization,
we propose a novel method which learns a nonlinear SVM over the projected
space via jointly optimizing a dual form together with dimensionality reduction.
Further details will be covered throughout Sect. 3 which is organized progres-
sively. Initially the unsupervised dimensionality reduction is explained and then
the state of the art in linearly supervised decomposition. Finally the stage is
ready for introducing our novel method on non-linearly supervised dimensional-
ity reduction.

3.2 Introduction to Supervised Dimensionality Reduction

Unsupervised dimensionality reduction (e.g.: matrix factorization described in
Sect. 3.3), is guided only by the reconstruction loss. Such an approach does not
take into consideration the classification accuracy impact of the extracted fea-
tures, therefore the produced reduced dimensionality data is not optimized to
improve accuracy. In order to overcome such a drawback, the so called supervised
dimensionality reduction has been proposed by various authors (see Sect. 2.3).

78 J. Grabocka and L. Schmidt-Thieme

The key commonalities of those supervised dimensionality methods rely on defin-
ing a joint optimization function, consisting of the reconstruction loss terms and
the classification accuracy terms.

The typical classification accuracy loss term focuses on defining a classifier in
the latent space, i.e. U ∈ R

(n+n′)×d, via a hyperplane defined by the weights vec-
tor W ∈ R

d, such that the weights can correctly classify the training instances
of U in order to match observed label Y ∈ R

n. Equation 1 defines a cumula-
tive joint optimization function using a reconstruction term for the predictors,
denoted FR(X,U, V), and a classification accuracy term, denoted FCA(Y,U,W).
The trick of such a joint optimization constitutes on updating the low-rank data
U simultaneously, in order to minimize both FR and FCA via gradient descent on
both loss terms. The hyper parameter β is a switch which balances the impact of
reconstruction vs classification accuracy. Throughout this paper we evaluate the
binary classification problem, even though the explained methods could be triv-
ially transferred to multi-nominal target variables by employing the one-vs-all
technique. Should that be needed, we would have to build as many classifiers as
there are categories in the target variable, while each classifier would treat one
category value as the positive class and all the remaining categories as the neg-
ative class. In addition to the reconstruction FR and the classification accuracy
FCa loss terms, the model has additive regularization terms parametrized by
coefficients λU , λV , λW . Such a regularization helps the model avoid overfitting
and enables a better generalization over the test instances.

F (X,Y,U, V,W) = β FR(X,U, V) + (1 − β)FCA(Y,U,W) (1)

3.3 Matrix Factorization as Dimensionality Reduction

Matrix factorization is a dimensionality reduction technique which decomposes a
dataset X ∈ R

(n+n′)×m matrix of n training instances and n′ testing instances,
per m features, into two smaller matrices of dimensions U ∈ R

(n+n′)×d and
V ∈ R

d×m [15]. The latent/reduced projection of the original data X is the
latent matrix U , where d is the dimensionality of the projected space. Typically
d is much smaller than m, meaning that the dimensionality is reduced. In case
d < m, then U is nominated as the low-rank representation of X. Otherwise,
if d > m a non-grata inflation phenomenon is achieved. Such decomposition is
expressed in a form of a regularized reconstruction loss, denoted FR(X,U, V) and
depicted in Eq. 2. The optimization of such a function aims at computing latent
matrices U, V such that their dot product approximates the original matrix X
via an Euclidean distance (L2 norm) loss. In addition to the L2 reconstruction
norm, we also add L2 regularization terms weighted by factors λU , λV in order
to avoid over-fitting.

argmin
U,V

FR(X,U, V) = ||X − UV ||2 + λU ||U ||2 + λV ||V ||2 (2)

Bias terms, BU ∈ R
(n+n′)×1, BV ∈ R

1×m are added to the reconstruction
loss [15], such that each element of BU incorporates the prior belief value of

Learning Through Non-linearly Supervised Dimensionality Reduction 79

the respective instance, while each element of BV the prior belief value of the
respective feature. More concretely the loss can be expanded as a reconstruction
of each cell Xi,j as depicted by Eq. 3.

argmin
U,V,BU ,BV

FR(X,U, V) =
n+n′
∑

i=1

m∑

j=1

(

Xi,j −
(

d∑

k=1

Ui,kVk,j + BUi
+ BVj

))2

+ λU

n+n′
∑

i=1

d∑

k=1

U2
i,k + λV

d∑

k=1

m∑

j=1

V 2
k,j (3)

In order to learn the Matrix Factorization defined in Eq. 3 we need to define
the gradients to be used for updating our latent matrices. Stochastic Gradient
Descent is a fast optimization technique for factorizations [15] and operates by
reducing the approximation error of each cell (i, j) of X. Therefore, we can
represent the reconstruction loss FR as sum of smaller loss terms FRi,j , per each
cell (i, j) of the original dataset X. Such a decomposition will later enable the
stochastic gradient descent to optimize for each small loss term stochastically,
i.e. the indices (i, j) will be visited randomly.

FR(X,U, V) =
n+n′
∑

i=1

m∑

j=1

FR(X,U, V)i,j (4)

FR(X,U, V)i,j = β

(

Xi,j −
(

d∑

k=1

Ui,kVk,j + BUi
+ BVj

))2

+ λU
1
m

d∑

k=1

U2
i,k + λV

1
n + n′

d∑

k=1

V 2
k,j (5)

The gradients of the latent data U, V with respect to the reconstruction loss
are computed as the first derivative of the loss. The error in approximating a
cell Xi,j is defined as ei,j and can be pre-computed for scalability. As can be
observed from the gradients of Eqs. 6–9, the pre-computed error term ei,j is used
in all gradients.

ei,j = Xi,j −
d∑

k=1

Ui,kVk,j − BUi
− BVj

(6)

∂FR(X,U, V)i,j

∂Ui,k
= −2β ei,j Vk,j + 2λU

1
m

Ui,k (7)

∂FR(X,U, V)i,j

∂Vk,j
= −2β ei,j Ui,k + 2λV

1
n + n′ Vk,j (8)

∂FR(X,U, V)i,j

∂BUi

=
∂FR(X,U, V)i,j

∂BVj

= −2β ei,j (9)

80 J. Grabocka and L. Schmidt-Thieme

3.4 Linearly Supervised Dimensionality Reduction

The linear supervision of the dimensionality reduction refers to the inclusion of
a linear classification loss term to the objective function, expressed as FCA in
Eq. 1. The addition of the linear classification loss term enforces the instances
of different classes to be linearly separable in the low-rank space. Various loss
terms have been proposed depending on the utilized linear classifier. Before
explaining the different losses, we introduce the predicted value of instance i as
Ŷi and defined in Eq. 10. The predicted value is the dot product of the instance
values Ui,: ∈ R

d and linear weights W ∈ R
d. In addition, the bias term for the

instance BUi
∈ R and the bias of the classification weight vector W0 ∈ R are

summed up.

Ŷi = BUi
+ W0 +

d∑

k=1

Ui,kWk, ∀i ∈ N
n
i (10)

Loss terms quantify the degree of violation that a classifier exhibits from the
desired (perfect) prediction accuracy. Concretely the least square loss measures
the L2 distance between the true targets Y and predicted vales Ŷ . In the context
of linearly supervised reduction [19], the least-squares loss term can be defined
as shown in Eq. 11. Similar to the regression case, least squares is adopted for
classification by treating the target values as Y ∈ {−1, 1}n, while predicted
positive values Ŷ indicate a positive class and vice versa.

FCA(Y,U,W)LS =
n∑

i=1

(
Yi − Ŷi

)2

+ Reg(U,W), ∀i ∈ N
n
i (11)

The logistic loss has been applied to guide the decomposition by minimizing
the target prediction error along a sigmoid curve [3]. Equation 12 presents the
loss, while the target values are expected to be in the range Y ∈ {0, 1}n. Please
note that the sigmoid function is defined as: sigmoid(Ŷ) = 1

1+e−Ŷ
.

FCA(Y,U,W)LO =
n∑

i=1

−Yi log(sigmoid(Ŷi)) − (1 − Yi)

× log
(
1 − sigmoid(Ŷi)

)
+ Reg(U,W) (12)

Another strong linear classifier is the hinge loss, which represents the under-
lying foundation of the Support Vector Machines is depicted in Eq. 13. The hinge
loss has been also applied to supervised reduction [4]. The hinge loss is also called
a maximum margin loss because it tries to find a margin of unit size between
the hyperplane W and the region of each class.

FCA(Y,U,W)HI =
n∑

i=1

max(0, 1 − YiŶi) + Reg(U,W), ∀i ∈ N
n
i (13)

Learning Through Non-linearly Supervised Dimensionality Reduction 81

Unfortunately the hinge loss is not differentiable at Y Ŷ = 1, therefore a
smoothed variant of the hinge loss [21] is preferred in cases where a gradient
based optimization is needed (Eq. 14).

FCA(Y,U,W)SH =
n∑

i=1

⎛

⎜
⎜
⎝

⎧
⎪⎪⎨

⎪⎪⎩

1 − YiŶi YiŶi < 0
1
2

(
1 − YiŶi

)2

0 ≤ YiŶi < 1

0 YiŶi ≥ 1

⎞

⎟
⎟
⎠ + Reg(U,W) (14)

The regularization term is a L2 norm and defined in Eq. 15. The regular-
ization parameters λU , λW control the complexity of the model and avoid over-
fitting.

Reg(U,W) =
n+n′
∑

i=1

d∑

k=1

Ui,k
2 +

d∑

k=1

Wk
2 (15)

The Advantage of Supervised Decomposition relies on using the label
information to guide the projection. In that way, any noise which is present in
the observed data can be eliminated in the low-rank representation.

In order to show the advantage of the supervised decomposition, we present
the experiment of Fig. 1. A 2-dimensional synthetic dataset of ten instances,
belonging to two classes (red, blue) is depicted in sub-figure (a). Please note that
the original data are linearly separable by a hyperplane. Then, we added a ran-
dom variable X3 (shown in (b)) of uniform random values between [−1, 1]. The
experiment aims at reducing the 3-dimensional noisy data back to 2-dimensions
using both unsupervised and supervised dimensionality reductions. As can be
observed, the unsupervised projection is affected by the added noise and the
resulting 2-dimensional data in (c) is not anymore linearly separable. In con-
trast, the linearly supervised decomposition can benefit from a linear classifi-
cation accuracy loss term to separate instances by label. A smooth hinge loss
supervised decomposition was applied to the decomposition of (d). Please note
that the resulting 2-dimensional projection depicted in (d) is linearly separable
as the original data. The experiment demonstrates that a supervised decompo-
sition has stronger immunity towards the presence of noise in the data. For the
sake of reproducibility, the parameters used during the experiment are provided
in the caption note.

Learning the Linearly Supervised Decomposition is carried on through
optimizing the latent weights U and W by taking a step in the first derivative of
the classification accuracy term FCA. In comparison to full gradient approaches,
stochastic techniques operate by eliminating the error of a random single instance
i, i.e. optimizing for FCAi. Since the gradient computations for each instance are
much simpler than for the full dataset, the stochastic gradient descent computes
faster than the full gradient learning.

82 J. Grabocka and L. Schmidt-Thieme

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
a) Example Data

X1

X
2

−1−0.5 0 0.5 1

−1−0.500.51
−1

−0.5
0

0.5
1

X1

b) Noise (X3) Added

X2

X
3

−0.8 −0.4 0 0.4 0.8
−0.4

−0.3

−0.2

−0.1

0
c) Unsupervised Dim.Red.

U1

U
2

−0.9 −0.45 0 0.45 0.9
−0.7

−0.35

0

0.35

0.7
d) Linearly Supervised Dim.Red.

U1

U
2

Fig. 1. Supervised reduction: (a) original data with two classes (blue and red);
(b) random noise variable (X3) added; (c) unsupervised dimensionality reduction
through matrix factorization (from (b) to (c)); (d) linearly supervised maximum mar-
gin dimensionality reduction (from (b) to (d)). Parameters: ηR = ηCA = 0.001,
λU = λV = 0.0001, λV = and β = 0.4 (Color figure online).

More specifically, the gradients of the least-squares loss term are shown in
Eqs. 16–18 and are the result of the first derivative with respect to each cell of
U,W and the biases BUi

,W0.

∂FCA(Y,U,W)LS
i

∂Ui,k
= −2

(
Yi − Ŷi

)
Wk + 2

λU

m
Ui,k (16)

∂FCA(Y,U,W)LS
i

∂Wk
= −2

(
Yi − Ŷi

)
Ui,k + 2

λW

n
Wk (17)

∂FCA(Y,U,W)LS
i

∂BUi

=
∂FCA(Y,U,W)LS

i

∂W0
= −2

(
Yi − Ŷi

)
(18)

The logistic loss has derivatives similar to the least square loss with the
difference being the inclusion of the sigmoid of the predicted target value Ŷ .
The detailed gradients for the latent weights, with respect to the logistic loss
term FCA(Y,U,W)LO are presented in Eqs. 19–21.

Learning Through Non-linearly Supervised Dimensionality Reduction 83

∂FCA(Y,U,W)LO
i

∂Ui,k
= −2

(
Yi − sigmoid(Ŷi)

)
Wk + 2

λU

m
Ui,k (19)

∂FCA(Y,U,W)LO
i

∂Wk
= −2

(
Yi − sigmoid(Ŷi)

)
Ui,k + 2

λW

n
Wk (20)

∂FCA(Y,U,W)LO
i

∂BUi

=
∂FCA(Y,U,W)LS

i

∂W0
= −2

(
Yi − sigmoid(Ŷi)

)
(21)

The optimization of the smooth hinge loss requires the optimization of the
three conditional steps present in the loss function, for the regions Y Ŷ < 0,
0 ≤ Y Ŷ < 1 and Y Ŷ < 1. The computation of the gradients follows a similar
practice as the other aforementioned loss types. First derivatives of the smooth
hinge loss term FSH

CA are computed per each latent weight U,W,BU ,W0. The
derived gradients are shown in Eqs. 22–24.

∂FCA(Y,U,W)SH
i

∂Ui,k
=

⎛

⎜
⎜
⎝

⎧
⎪⎪⎨

⎪⎪⎩

−YiŶiWk YiŶi < 0

−
(
1 − YiŶi

)
Wk 0 ≤ YiŶi < 1

0 YiŶi ≥ 1

⎞

⎟
⎟
⎠ + 2

λU

m
Ui,k (22)

∂FCA(Y,U,W)SH
i

∂Wk
=

⎛

⎜
⎜
⎝

⎧
⎪⎪⎨

⎪⎪⎩

−YiŶiUi,k YiŶi < 0

−
(
1 − YiŶi

)
Ui,k 0 ≤ YiŶi < 1

0 YiŶi ≥ 1

⎞

⎟
⎟
⎠ + 2

λW

n
Wk (23)

∂FCA(Y,U,W)SH
i

∂BUi

=
∂FCA(Y,U,W)SH

i

∂W0
=

⎧
⎪⎪⎨

⎪⎪⎩

−YiŶi YiŶi < 0

−
(
1 − YiŶi

)
0 ≤ YiŶi < 1

0 YiŶi ≥ 1

(24)

A Final Learning Algorithm is constructed by applying the defined gradients
in a stochastic gradient descent approach over the reconstruction and accuracy
loss terms. Algorithm 1 concatenates all the pieces of the learning process. The
learning process is separated into two main sections, namely (i) the updates
with respect to the reconstruction loss and (ii) the updates with respect to
the classification accuracy loss terms. The first loop iterates over all cells of X
indexed by row-column pairs (i, j), and also updates all the cells of U according
to the error present in approximating Xi,j . Similarly, the second loop iterates
over the train targets Yi and corrects the classification errors. The name of the
loss term (LT) is a generic placeholder and aforementioned gradients of each
loss (least-squares, logistic and hinge) can be directly plugged in.

Updates are applied to all the cells of U, V,W and the biases BU , BV ,W0 in
a stochastic gradient fashion, i.e. visited randomly. The random updates speed
up the learning process because the continuous update of columns from a single
row is avoided. An update relies on decrementing the value of a cell in the
direction of the aforementioned gradients. The magnitude of the decrement step
is controlled using a learning rate parameters. Technically, there are two learning

84 J. Grabocka and L. Schmidt-Thieme

Algorithm 1. Learning Algorithm: Linearly Supervised Dim. Red.

Input: Dataset matrix X ∈ R
(n+n′)×m, Labels vector Y ∈ R

n, Parameters:
{Optimization switch β, Latent dimensions d, Learning rates ηR, ηCA, Regulariza-
tions λU , λV , λW }

Output: U, V, BU , BV , W, W0

Initialize randomly U ∈ R
(n+n′)×d, V ∈ R

d×m, W ∈ R
d, BU ∈ R

(n+n′)×1, BV ∈
R

1×m, W0 ∈ R

while FR + FCA not reached an optimum do
for ∀(i, j, k) ∈ ({1...(n + n′)}, {1...m}, {1...d}) in random order do

Ui,k ← Ui,k − ηR
∂FR(X,U,V)i,j

∂Ui,k

Vk,j ← Vk,j − ηR
∂FR(X,U,V)i,j

∂Vk,j

BUi ← BUi − ηR
∂FR(X,U,V)i,j

∂BUi

BVj ← BVj − ηR
∂FR(X,U,V)i,j

∂BVj

end for
LT ← {LS, LO, SH} {LT stands for ’Loss Type’}
for ∀(i, k) ∈ ({1...n}, {1...d}) in random order do

Ui,k ← Ui,k − ηCA
∂FCA(Y,U,W)LT

i
∂Ui,k

Wk ← Wk − ηCA
∂FCA(Y,U,W)LT

i
∂Wk

BUi ← BUi − ηCA
∂FCA(Y,U,W)LT

i
∂BUi

W0 ← W0 − ηCA
∂FCA(Y,U,W)LT

i
∂W0

end for
end while
return U, V, BU , BV , W, W0

rates for each relation ηR and ηCA, which can also have equal values. The second
cycle iterates over all the low-rank instances Ui,: and the classification weights
vector Wk.

Ŷ LS,SH
t = sign(W0 + BUt

+
d∑

k=1

Ut,kWk), t ∈ N
n′
n+1 (25)

Ŷ LO
t = sigmoid(W0 + BUt

+
d∑

k=1

Ut,kWk) >
1
2

? 1 : 0, t ∈ N
n′
n+1 (26)

Once the weights are learned, then the prediction of the test instances can
be produced as shown in Eqs. 25–26. For the least squares and the smooth hinge
loss the sign function defines the prediction, i.e.: the positive class for positive
predictive values, otherwise the negative class. On the other side, the logistic
loss is defined in Eq. 26 as one of {0, 1} based on the value threshold of 0.5.

3.5 Nonlinearly Supervised Dimensionality Reduction

In comparison to previous approaches that propose linear models, in this study
we propose a kernel-based binary classifier approach in the latent space U .

Learning Through Non-linearly Supervised Dimensionality Reduction 85

Let us initially define the classification accuracy loss term, denoted FCA(Y,U,W),
in Eq. 27, in form of a maximum margin soft SVMs with hinge loss [26]. Such
form of the SVMs is called the primal form. The parameter C scales the penaliza-
tion of the instances violating the distances from the maximum margin. Please
note that W0 is the intercept bias term of the hyperplane weights vector W .

argmin
U,W

FCA(Y,U,W) =
1
2
||W ||2 + C

n∑

i=1

ξi (27)

s.t: Yi(〈W,Ui〉 + BUi
+ W0) ≥ 1 − ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n

Unfortunately the primal form doesn’t support kernels, therefore we have
to convert the optimization functions into the dual form Eq. 28. In order to
get rid of the inequality constraint we apply Lagrange multipliers to include
the inequalities by introducing dual variables αi per instance and adding
αi (yi(〈W,Ui〉 + W0)) to the optimization function for all instance i. Then we
solve the objective function for W and W0 by equating the first derivative to
zero. Putting the derived expressions of W and W0 to the objective function, we
obtain the so-called dual representation optimization:

argmin
U,α

FCA(Y,U, α) =
1
2

n∑

i=1

n∑

l=1

αiαlYiYl〈[Ui,∗, BUi
], [Ut,∗, BUl

]〉 −
n∑

i=1

αi (28)

s.t: 0 ≤ αi ≤ C, i = 1, ..., n; and
n∑

i=1

αiYi = 0

Once the optimization model is build any new test instance Ut can be clas-
sified in terms of learned α as shown in Eq. 29.

Ŷt = sign

(
n∑

i=1

αiYi〈[Ui,∗, BUi
], [Ut,∗, BUl

]〉 + W0

)

(29)

The dot product, found in the dual formulation, between the instance vectors
appears both in the optimization function 28 and the classification function 29.
Such a dot product can be replaced by the so called kernel functions [26]. Various
kernel representations exists, however in this study, for the sake of clarity and gen-
erality, we are going to prove the concept of the method using polynomial kernels,
defined in Eq. 30, which are known to be successful off-the-shelf kernels [26].

K([Ui,∗, BUi
], [Ut,∗, BUl

]) =

(

BUi
BUl

+
d∑

k=1

Ui,kUl,k + 1

)p

(30)

The ultimate objective function that defines nonlinear supervised dimen-
sionality reduction is presented in Eq. 31. This model, in cooperation with the
forthcoming learning algorithm, are the main contributions of our paper.

86 J. Grabocka and L. Schmidt-Thieme

argmin
U,V,α,BU ,BV

F (X, Y, U, V, α) = β

n+n′∑

i=1

m∑

j=1

(
Xi,j −

(
d∑

k=1

Ui,kVk,j + BUi + BVj

))2

+ (1 − β)

(
1

2

n∑

i=1

n∑

l=1

αiαlYiYl K([Ui,∗, BUi], [Ut,∗, BUl]) −
n∑

i=1

αi

)

+ λU

n+n′∑

i=1

d∑

k=1

U2
i,k + λV

d∑

k=1

m∑

j=1

V 2
k,j (31)

s.t: 0 ≤ αi ≤ C, i = 1, ..., n
n∑

i=1

αiYi = 0

Meanwhile the classification of a test instance Ut using kernels and the
learned U,α, resulting from the solution of the dual joint optimization is shown
in Eq. 32.

Yt = sign

(
n∑

i=1

αiYi K([Ui,∗, BUi
], [Ut,∗, BUl

]) + W0

)

(32)

The Benefit of Non-linear Supervision is the ability to preserve both the
reconstruction and the classification accuracy. This dual objective is achieved
best if there is no sacrifice in terms of reconstruction. More concretely, let us
assume the original data is non-linearly separable. Then, a linearly supervised
decomposition cannot easily minimize both FR and FCA. The handicap is created
due to trying to classify the low-rank data linearly, even though the original data
is non-linear. As a consequence, the structure of the data cannot be accurately
preserved and the reconstruction is poor, i.e. high FR error. Unable to preserve
the structure of the data, a linearly supervised decomposition struggles to achieve
a competitive generalization of prediction accuracy over the test instances.

Figure 2 illustrates the benefit of the non-linear supervision with a concrete
experiment. A 2-dimensional synthetic non-linearly separable dataset is created
in sub-figure a). For experimental purposes we added noise through a new vari-
able X3 that contains random values between [−1, 1]. The key aspect of the exper-
iment is to project the noisy 3-dimensional data back to 2-dimensions using both
linearly (c)) and non-linearly (d)) supervised reductions. The projection parame-
ters are found in the caption comment. As can be seen from sub-figure (c), the lin-
ear supervision cannot linearly separate all instances in the low-rank space under
reasonable β values. On the contrary, a non-linear decomposition can achieve a
0 % training error, because a non-linear arrangement of the data is easily achieved
in the low-rank space. Please note that reasonable switch parameter values are
β > 0. In the absurd case of β = 0 no reconstruction loss updates will be applied
and the classification loss term will create a low-rank arrangement of the train-
ing instances without preserving at all the structure of the original data. Such a
classifier is destined to under-perform over the test data.

Learning Through Non-linearly Supervised Dimensionality Reduction 87

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
a) Example Data

X1

X
2

−1 −0.50 0.5 1

−1−0.500.51
−1

−0.5
0

0.5
1

X1

b) Noise (X3) Added

X2

X
3

−1.2 −0.7 −0.2 0.3 0.8
−0.4

−0.2

0

0.2

0.4
c) Linearly Supervised Dim.Red.

U1

U
2

−1.1 −0.55 0 0.55 1.1
−0.5

−0.25

0

0.25

0.5
d) Nonlinearly Supervised Dim.Red.

U1

U
2

Fig. 2. Nonlinearly supervised reduction: (a) original data with two classes (blue and
red); (b) random noise variable (X3) added; (c) linearly supervised dimensionality
reduction (from (b) to (c)); (d) non-linearly supervised dimensionality reduction (from
(b) to (d)). Parameters: ηR = ηCA = 0.001, λU = λV = 0.01, λW = 2, C = 0.5, p = 3
and β = 0.7 and 300 iterations (Color figure online).

3.6 Algorithm for Learning the Non-linearly Supervised
Dimensionality Reduction

The objective function of Eq. 31 is a non-convex function in terms of U, V and W ,
which makes it challenging for optimization. However stochastic gradient descent
is shown to perform efficiently in minimizing such non-convex functions [15]. The
benefits of stochastic gradient descent rely on better convergence, because cells
of X are randomly picked for optimization, thus updating different rows of U ,
instead of iterating through the all the features of the same instance.

On the other side, the classification accuracy terms of Eq. 28 can be solved,
in terms of α, by any standard SVMs dual solver method in case we consider U
to be fixed. Thus, in an alternating fashion we solve the α-s by keeping U fixed.
Then in the next step we update U using the learned α-s and V matrix, by
taking a step in the negative direction of the overall loss w.r.t U . The update of
V is performed as last step. Those three steps can be repeated until convergence
as shown in the Algorithm 3.

Similarly, we can split up the classification accuracy loss term, FCA, into
smaller loss terms FCAi,l, defined per each instance pair (i, l).

88 J. Grabocka and L. Schmidt-Thieme

FCA(Y, U, α) =

n∑

i=1

n∑

l=1

FCA(Y, U, α)i,l (33)

FCA(Y, U, α)i,l = (1 − β)
(αiαl

2
YiYl K([Ui,∗, BUi], [Ul,∗, BUl]) − αi + αl

n2

)
(34)

Gradients:

∂FCA(Y, U, α)i,l

∂Ui,k
=

β − 1

2
αiαlYiYl p

(
BUiBUl +

d∑

k=1

Ui,kUl,k + 1

)p−1

Ul,k (35)

∂FCA(Y, U, α)i,l

∂Ul,k
=

β − 1

2
αiαlYiYl p

(
BUiBUl +

d∑

k=1

Ui,kUl,k + 1

)p−1

Ui,k (36)

∂FCA(Y, U, α)i,l

∂BUi

=
β − 1

2
αiαlYiYl p

(
BUiBUl +

d∑

k=1

Ui,kUl,k + 1

)p−1

BUl (37)

∂FCA(Y, U, α)i,l

∂BUl

=
β − 1

2
αiαlYiYl p

(
BUiBUl +

d∑

k=1

Ui,kUl,k + 1

)p−1

BUi (38)

The updates of α-s is carried through an algorithm which is a reduced version
of the Sequential Minimal Optimization (SMO) [27]. Since the dual form opti-
mization function contains the constraint

∑n
i=1 αiYi = 0, then any update of an

αi will violate the constraint. Therefore SMO updates the α-s in pair, offering
three heuristics which defines which subset of the pairs should be updates first,
in order to speed up the algorithm.

In difference to the original algorithm, we have ignored the selection heuristic
for the α pairs to update. The reason for omitting the heuristics is due to the
fact that U instances are continuously updated/modified. For instance, let us
consider an imaginary instance Ui far away from the decision boundary, which
means αi = 0. However in the next iteration, the instance Ui might be updated
and move close to the boundary, meaning that αi becomes a candidate for being
updated (0 < αi ≤ C), opposite to the functioning of SMO heuristic that would
have avoided updating the instance, alluding that αi is still 0.

The alpha updates rely on solving the function analytically for a pair of α-s
at a step, until no αi,∀i, violates the KKT [27] conditions described in Eq. 39.

Let Ŷi = sign

⎛

⎝
n∑

j=1

αjYj K([Ui,∗, BUi
], [Ut,∗, BUl

]) + W0

⎞

⎠

αi = 0 → YiŶi ≥ 1
0 < αi < C → YiŶi = 1

αi = C → YiŶi ≤ 1 (39)

Therefore the learning algorithm will update all the pairs of α-s in each iter-
ation. The SMO-like update of each pair of alphas is shown in the Algorithm 2,
with more details in [27]. Please note that the algorithm also updates the hyper-
plane intercept W0, which is used for classification of latent instances.

Learning Through Non-linearly Supervised Dimensionality Reduction 89

Algorithm 2. UpdateAlphaPair
Input: First alpha index i, Second alpha index j
Output: Updated α and W0

(αold
i , αold

j) ← (αi, αj)
Let s ← YiYj

(L, H) ← (max(0, αold
j + sαold

i − s+1
2

C), min(C, αold
j + sαold

i − s−1
2

C)
)

Ek ← (∑n
l=0 YlαlK(Ul,∗, Uk,∗) + W0

)− Yk, ∀k ∈ {i, j}
αnew

j ← αold
j − Yj(Ei−Ej)

2K(Ui,∗,Uj,∗)−K(Ui,∗,Ui,∗)−K(Uj,∗,Uj,∗)
1

αnew,clipped
j =

⎧
⎪⎨

⎪⎩

L , if αnew
j < L

αnew
j , if L < αnew

j < H

H, if αnew
j > H

αnew
i ← αold

i + s(αnew,clipped
j − αold

j)

bi ← Ei + yi(α
new
i − αold

i)K(Ui,∗, Ui,∗) + Y2(α
new,clipped
j − αold

j)K(Ui,∗, Uj,∗) + W0

bj ← Ej + yi(α
new
i −αold

i)K(Ui,∗, Ui,∗)+Y2(α
new,clipped
j −αold

j)K(Ui,∗, Uj,∗)+W0

W0 ← bi+bj

2
, (αj, αi) ←

(
αnew,clipped
j , αnew

i

)

return α, W0

Having defined the gradients for updating latent matrices U, V with respect
to the optimization loss and also the update rules for α-s, we can derive a final
learning algorithm based on coordinate gradient descent. Algorithm 3 shows
the learning algorithm in full terms. The updates of each cell of U, V,BU , BV ,
as response to the reconstruction loss FR and the classification accuracy loss
FCA, are conducted in the negative direction of the gradients scaled by hyper-
parameter learning rates ηR, ηCA. The convergence is guaranteed by selecting
small values for the learning rates. The stopping criteria is when the final loss
from Eq. 31 reaches an optimum, meaning it doesn’t get further minimized.

The Convergence of Learning is guaranteed because both steps (i) the learn-
ing of the latent data U, V for the reconstruction loss, (ii) updates of U for the
classification loss and the Lagrangian multipliers, are both steps of the Expecta-
tion Maximization algorithm. Figure 3 specifically illustrate the convergence of
our algorithm for the Ionosphere dataset.

The reconstruction loss (FR) and the classification accuracy loss (FCA)
converge smoothly as depicted in the left plot of Fig. 3. The learning algorithm
updates the latent data with respect to the objective function of Eq. 1, therefore
the decrease of the values of loss terms (shown in sub-figure (a)) is an indi-
cation that our algorithm converge as expected. On the right, sub-figure (b)
demonstrates the consequence that a minimization of the classification loss has
towards decreasing the error rate on both training and testing data. There is no
significant gap between the train and test errors, which indicates that the
hyper-plane (α) learned over training instances generalizes accurately on the
unobserved test data.

90 J. Grabocka and L. Schmidt-Thieme

Algorithm 3. Learning Algorithm: Nonlinearly Supervised Dim. Red.

Input: Dataset matrix X ∈ R
(n+n′)×m, Labels vector Y ∈ R

n, Parameters: { Box
constraint C, Optimization switch β, Latent dimensions d, Learning rates ηR, ηCA,
Regularizations λU , λV , Kernel degree p }

Output: U, V, BU , BV , α, W0

Initialize U ∈ R
(n+n′)×d, V ∈ R

d×m, BU ∈ R
(n+n′)×1, BV ∈ R

1×m randomly
Initialize α ← {0}n, W0 ← 0
while F not reached an optimum do

for ∀(i, j, k) ∈ ({1...(n + n′)}, {1...m}, {1...d}) in random order do

Ui,k ← Ui,k − ηR
∂FR(X,U,V)i,j

∂Ui,k

Vk,j ← Vk,j − ηR
∂FR(X,U,V)i,j

∂Vk,j

BUi ← BUi − ηR
∂FR(X,U,V)i,j

∂BUi

BVj ← BVj − ηR
∂FR(X,U,V)i,j

∂BVj

end for
for ∀(i, l, k) ∈ ({1...n}, {1...n}, {1...d}) in random order do

Ui,k ← Ui,k − ηCA
∂FCA(Y,U,α)i,l

∂Ui,k

Ul,k ← Ul,k − ηCA
∂FCA(Y,U,α)i,l

∂Ul,k

BUi ← BUi − ηCA
∂FCA(Y,U,α)i,l

∂BUi

BUl ← BUl − ηCA
∂FCA(Y,U,α)i,l

∂BUl

end for
for ∀i ∈ {1 . . . n} do

if αi violates KKT of Equation 40 then
for ∀j ∈ {1 . . . n} in random order do

(α, W0) ← UpdateAlphaPair(i, j), from Algorithm 2
end for

end if
end for

end while
return U, V, BU , BV , α, W0

The Algorithmic Complexity of our method both in terms of run-time and
space depends on the size of the data. Concretely, the storage requirements are
upper bounded to the size of the predictors, since for d < m the storage of Y ,
U , V and α are all less than X. Therefore the space complexity of the method
is O((n + n′) × m). The running time depends on the number of iterations
of Algorithm 3. If we denote the iterations as I, then the number of updates is
proportional to O(I ×(n+n′)×m×d), since for every cell Xi,j we update all the
k-many row cells Ui,k and column cells Vj,k. The updates of the classification
accuracy loss term α-s are inferior in number (O(I × (n + n′) × m)) and do
not influence the upper bounding algorithmic complexity with respect to the
reconstruction loss. Note that l, the number of target categories, is a small
constant equals to two for binary problems. It is not possible to forecast exactly
the number of iterations that a dataset will require until convergence, since it

Learning Through Non-linearly Supervised Dimensionality Reduction 91

0 200 400 600 800 1000
0

10

20

30

40

50

60

70
a) Convergence of Loss

Iterations

Lo
ss

Reconstruction (1/150)
Classification

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5
b) Convergence of Error

Iterations

E
rr

or

Test Error
Train Error

Fig. 3. Convergence of the loss terms and errors belonging to the Ionosphere dataset;
Parameters β = 0.7, C = 1, p = 1, λU = λV = 10−5, ηR = 0.001, ηCA = 0.0001 and
d = 25.

depends on the slope of the loss function’s surface (FR + FCA) and the learning
rate parameter. Large learning rates converge faster but increase both the risk of
divergence and missing narrow local optima. On the other hand, small learning
rates require more iterations to minimize the loss.

4 Experimental Results

4.1 Experimental Setup

In order to compare the classification accuracy of our method Nonlinearly
Supervised Dimensionality Reduction (NSDR), we implemented and compared
against three baselines:

– PCA-SVMs: Matcshing against the standard PCA dimensionality reduction
and then SVMs classification will demonstrate the advantage of supervised
decomposition against unsupervised decomposition (PCA).

– SVMs: Comparison against the default SVMs will provide insights on the
advantages of dimensionality reduction.

– LSDR: The linearly supervised dimensionality reduction represents the state
of the art in data projection. A comparison against this baseline clarifies the
superiority position of our method [3,4]. The smooth hinge loss is used due to
its competitiveness and high prediction accuracy demonstrated together with
SVMs.

The experiments were conducted using five folds cross validation, where the
data was divided into five splits and each split was, in turn, the test and the
other four the training data.

The hyper parameters of our method and the baselines was selected using
a validation data split from the training data. The best grid-search combi-
nations of hyper parameters that yielded the best accuracy was selected for

92 J. Grabocka and L. Schmidt-Thieme

Table 1. Hyper-parameter Search Results

DATASET LSDR NSDR PCA-SVMs SVMs

breast canc.
λU = 10−4;λV = 10−5; λU = 10−2;λV = 1; var = 1; C = 10

ηR = 10−3; ηCA = 10−4; d = 6; ηR = 10−3; ηCA = 10−4; d = 9; C = 10; p = 2 p = 2
β = 0.1, λW = 1 β = 0.9;C = 10; p = 2

ionosphere
λU = 10−6;λV = 10−5; λU = 10−6;λV = 10−6; var = 1; C = 0.1

ηR = 10−3; ηCA = 10−4; d = 25; ηR = 10−3; ηCA = 10−4; d = 9; C = 1; p = 3 p = 2
β = 0.9, λW = 1 β = 0.9;C = 10; p = 2

pi-diabetes
λU = 10−6;λV = 10−3; λU = 10−4;λV = 1; var = 1 C = 10

ηR = 10−3; ηCA = 10−4; d = 6; ηR = 10−3; ηCA = 10−4; d = 6; C = 1; p = 3 p = 3
β = 0.9, λW = 0.1 β = 0.1;C = 0.1; p = 3

sonar
λU = 10−6;λV = 1; λU = 10−2;λV = 1; var = 0.7 C = 0.1

ηR = 10−3; ηCA = 10−4; d = 45; ηR = 10−3; ηCA = 10−4; d = 60; C = 10; p = 2 p = 3
β = 0.5, λW = 10 β = 0.1;C = 0.1; p = 2

spect
λU = 10−2;λV = 1; λU = 10−2;λV = 10−5; var = 1 C = 0.1

ηR = 10−3; ηCA = 10−4; d = 16; ηR = 10−3; ηCA = 10−4; d = 22; C = 1; p = 3 p = 2
β = 0.5, λW = 0.1 β = 0.5;C = 0.1; p = 3

being applied to the test split. The ranges of search for the LSDR and NSDR
methods were λU ∈ {10−6, 10−5, . . . , 100, 101}, λV ∈ {10−6, 10−5, . . . , 100, 101},
ηR ∈ {10−4, 10−3}, ηCA ∈ {10−4, 10−3}, d ∈ {25%, 50%, 75%, 100%} of m,
β ∈ {0.1, 0.5, 0.9}, C ∈ {0.1, 1, 10}, p ∈ {1, 2, 3, 4}. For PCA-SVMs there is a
variance parameter var ∈ {0.5, 0.7, 1.0} × 100%. The other SVMs parameters
C, p for both PCA-SVMs and SVMs were searched in the same ranges as the
ones reported for NSDR previously.

4.2 Results

In order to validate the proposed method we selected five popular binary datasets
from the UCI repository, which cover a range of applications such as medi-
cine (Breast Cancer, Pi-Diabetes and Spect), radar (Ionosphere) and undersea
explorations (Sonar). The hyper-parameters of the models were fit in a 5-folds
cross-validation fashion among the aforementioned ranges. In order to promote
experimental reproducibility, we present the exact values of parameters in Table 1
for our method and all the baselines.

The Sensitivity of Parameters depends on the impact that a perturbation of
the value of a parameter has over the error rate. The most sensitive parameters in
a learning method are usually the regularization weights of the model complexity.
In the case of NSDR, the learning rate, the number of iterations and the latent
dimensions are less critical with respect to accuracy. The learning rate should
be set small enough to avoid divergence and the iterations large enough to ensure
convergence. In order to avoid under-fitting, the number of dimensions has to be
set at a large value, e.g. 75% of m. Therefore, the most sensitive parameters are
λU , λV for the reconstruction loss and C, p for the classification accuracy loss.
Figure 4 illustrate the sensitivity relation among the complexity regularization
parameters on the SPECT dataset. The left plot demonstrate the error rate
heatmap (the smaller the less error) as a result of perturbing the values of λU

Learning Through Non-linearly Supervised Dimensionality Reduction 93

Fig. 4. Parameter Sensitivity Analysis on SPECT dataset; Parameters β = 0.9,
C = 0.1, p = 2, λU = 10−6, λV = 10−5, ηR = 0.001, ηCA = 0.0001 and d = 11.

versus λV . All the other parameters are kept constant at their optimal value
(yielding smallest error) and are displayed in the figure caption. The ranges of
the plot axis are displayed as the logarithm of the parameters values in order to
have equidistant ticks. The plot on the right presents the sensitivity of the error
rate with respect to the changes of the accuracy parameters C and p. As can be
seen from both plots, the error fluctuates significantly in the case of C, p, which
indicates that a practitioner should search for those parameters in a narrow grid
of values. On the contrary, the search for λU , λV are less critical because there
exists a large region of optimal values, which is expressed as a blue plateau.

We would like to point out that our non-linearly supervised dimensional-
ity reduction (NSDR) is a generalization of the linearly supervised projection
(LSDR). The linear case can be instantiated as a polynomial kernel of degree one.
Since our method NSDR includes the functionality of LSDR, then every com-
petitive result of LSDR is easily achieved by NSDR (with parameter p = 1). On
the contrary, as our experiments show, a linear decomposition does not recover
the inexpressive nature of its linear hyper-plane.

The accuracy results in terms of error ratios is presented in Table 2 with
respect to five real-life datasets. The winning method per each dataset is shown
in bold. As we can observe our proposed method outperforms the baselines in
all the datasets.

NSDR improves the classification on the ionosphere and sonar datasets with
significant differences, while on the other datasets the gap to the second best
is smaller. As can be deduced from the results, the linearly supervised decom-
position is superior to the unsupervised decomposition (PCA-SVMs) in 3 out
of 5 datasets. Furthermore the nonlinear supervision (NSDR) outperforms the
linear method (LSDR) in all the datasets. The outcomes of the experiments val-
idate the expectations of our paper and demonstrate the usefulness of non-linear
supervision with respect to real-life data.

94 J. Grabocka and L. Schmidt-Thieme

Table 2. Error Ratios on Real-Life Datasets

DATASET NSDR LSDR PCA-SVMs SVMs

breast cancer w 0.070 ± 0.018 0.122 ± 0.013 0.082 ± 0.019 0.073 ± 0.021

ionosphere 0.066 ± 0.008 0.097 ± 0.016 0.091 ± 0.010 0.140 ± 0.018

pi-diabetes 0.264 ± 0.023 0.279 ± 0.016 0.280 ± 0.006 0.274 ± 0.030

sonar 0.106 ± 0.041 0.188 ± 0.042 0.226 ± 0.129 0.226 ± 0.056

spect 0.138 ± 0.051 0.142 ± 0.056 0.243 ± 0.103 0.206 ± 0.002

4.3 Run-Time Disadvantage

While our proposed method (NSDR) achieves a better classification accuracy
than the baseline, still it has a costly optimization procedure. Compared to faster
classifiers like SVMs, our method has a joint factorization and classification loss
term. The joint optimization requires significant time to compute, in particular
because of the slower learning rates that are required to ensure a convergence. For
instance, it takes only 0.415 s for the SVMs and 158.065 for NSDR to compute.
Clearly, the run-time is a negative aspect of the paper with respect to SVMs.
As a rule of thumb, we advice practitioners to use NSDR only if classification
accuracy, not run-time, is the primary objective.

5 Conclusions

Throughout this study we presented a non-linearly supervised dimensionality
reduction technique, which jointly combined a joint optimization on reconstruc-
tion and classification accuracy. Such an approach distances from traditional
data mining that considered dimensionality reduction and classification as two
disjoint, sequential processes. The supervised decomposition benefits from the
knowledge on the target values of training instances, in order to both eliminate
the noise present in the predictor values and also preserve the class segregation.

In our presented method, the reconstruction loss term is expressed as matrix
factorization decomposition of latent matrices, while the classification accuracy
as a dual form kernel maximum margin classifier. Consequently, the reduced
dataset is learned via a coordinate descent algorithm which updates the reduced
dimensionality dataset w.r.t to both loss terms simultaneously.

Existing state of the art methods in supervised decomposition incorporate lin-
ear classification terms in the objective function. In contrast, our method intro-
duces a novel non-linear supervision of the dimensionality reduction process.
We adopt a kernel based classification loss, which guides the low-rank data
into being separated via a non-linear hyper-plane. A non-linear decomposition
improves accuracy in cases where the original data is not linearly separable,
because preserving the non-linear arrangement of instances does not deteriorate
the reconstruction loss of predictor values. Since the linear supervision is a spe-
cial instance of our methods for a polynomial kernel of degree, then our method
offers a super-set of expressiveness.

Learning Through Non-linearly Supervised Dimensionality Reduction 95

Empirical results over five real-life datasets show that the proposed method
outperforms the selected baselines in the majority of the datasets. Significant
improvement is present against unsupervised techniques, which indicates the
benefit of incorporating target value information into dimensionality reduction.
In addition, experimental results validated the superiority of non-linearly guided
supervision against the linearly supervised state of the art decomposition.

Acknowledgment. This study was funded by the Seventh Framework Programme
(FP7) of the European Commission, through projects REDUCTION(www.reduction-
project.eu) and iTalk2Learn(www.italk2learn.eu).

In addition, the authors express their gratitude to Lucas Rego Drumond (University
of Hildesheim) for his assistance on formalizing the linearly supervised decomposition.

References

1. Samet, H.: Foundations of Multidimensional and Metric Data Structures (The
Morgan Kaufmann Series in Computer Graphics and Geometric Modeling).
Morgan Kaufmann Publishers Inc., San Francisco (2005)

2. Grabocka, J., Bedalli, E., Schmidt-Thieme, L.: Efficient classification of long time-
series. In: Markovski, S., Gushev, M. (eds.) ICT Innovations 2012. AISC, vol. 207,
pp. 47–57. Springer, Heidelberg (2013)

3. Grabocka, J., Nanopoulos, A., Schmidt-Thieme, L.: Classification of sparse time
series via supervised matrix factorization. In: Hoffmann, J., Selman, B. (eds.)
AAAI, AAAI Press (2012)

4. Das Gupta, M., Xiao, J.: Non-negative matrix factorization as a feature selection
tool for maximum margin classifiers. In: Proceedings of the 2011 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2011, pp. 2841–2848. IEEE
Computer Society, Washington, DC (2011)

5. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)
6. Wismüller, A., Verleysen, M., Aupetit, M., Lee, J.A.: Recent advances in nonlinear

dimensionality reduction, manifold and topological learning. In: ESANN (2010)
7. Hoffmann, H.: Kernel pca for novelty detection. Pattern Recognit. 40(3), 863–874

(2007)
8. Sun, J., Crowe, M., Fyfe, C.: Extending metric multidimensional scaling with breg-

man divergences. Pattern Recognit. 44(5), 1137–1154 (2011)
9. Gorban, A.N., Zinovyev, A.Y.: Principal manifolds and graphs in practice: from

molecular biology to dynamical systems. Int. J. Neural Syst. 20(3), 219–232 (2010)
10. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, New York;

London (2007)
11. Gashler, M.S., Martinez, T.: Temporal nonlinear dimensionality reduction. In: Pro-

ceedings of the IEEE International Joint Conference on Neural Networks, IJCNN
2011, pp. 1959–1966. IEEE Press (2011)

12. Lawrence, N., Hyvrinen, A.: Probabilistic non-linear principal component analysis
with gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816
(2005)

13. Lawrence, N.: Gaussian process latent variable models for visualisation of high
dimensional data. In: NIPS (2003, 2004)

www.reduction-project.eu
www.reduction-project.eu
www.italk2learn.eu

96 J. Grabocka and L. Schmidt-Thieme

14. Singh, A.P., Gordon, G.J.: A unified view of matrix factorization models. In:
Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS
(LNAI), vol. 5212, pp. 358–373. Springer, Heidelberg (2008)

15. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recom-
mender systems. IEEE Comput. 42(8), 30–37 (2009)

16. Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix fac-
torization models for large-scale recommender systems. In: Pu, P., Bridge, D.G.,
Mobasher, B., Ricci, F. (eds.) RecSys, pp. 251–258. ACM (2008)

17. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix fac-
torization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8),
1548–1560 (2011)

18. Giannakopoulos, T., Petridis, S.: Fisher linear semi-discriminant analysis for
speaker diarization. IEEE Trans. Audio Speech Lang. Process. 20(7), 1913–1922
(2012)

19. Menon, A.K., Elkan, C.: Predicting labels for dyadic data. Data Min. Knowl. Dis-
cov. 21(2), 327–343 (2010)

20. Rish, I., Grabarnik, G., Cecchi, G., Pereira, F., Gordon, G.J.: Closed-form super-
vised dimensionality reduction with generalized linear models. In: ICML 2008: Pro-
ceedings of the 25th International Conference on Machine Learning, pp. 832–839.
ACM, New York (2008)

21. Rennie, J.D.M.: Loss functions for preference levels: regression with discrete
ordered labels. In: Proceedings of the IJCAI Multidisciplinary Workshop on
Advances in Preference Handling, pp. 180–186 (2005)

22. Fukumizu, K., Bach, F.R., Jordan, M.I.: Dimensionality reduction for supervised
learning with reproducing kernel hilbert spaces. J. Mach. Learn. Res. 5, 73–99
(2004)

23. Salakhutdinov, R., Hinton, G.: Learning a nonlinear embedding by preserving class
neighbourhood structure. In: Proceedings of the International Conference on Arti-
ficial Intelligence and Statistics, vol. 11 (2007)

24. Zhang, D., Zhou, Z.-H., Chen, S.: Semi-supervised dimensionality reduction. In:
Proceedings of the 7th SIAM International Conference on Data Mining, pp. 11–
393 (2007)

25. Urtasun, R., Darrell, T.: Discriminative gaussian process latent variable models
for classification. In: International Conference in Machine Learning (2007)

26. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

27. Platt, J.: Fast training of support vector machines using sequential minimal opti-
mization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods - Support Vector Learning. MIT Press, Cambridge (1998)

Metrics for Association Rule Clustering
Assessment

Veronica Oliveira de Carvalho1(B), Fabiano Fernandes dos Santos2,
and Solange Oliveira Rezende2

1 Instituto de Geociências e Ciências Exatas,
UNESP - Universidade Estadual Paulista, Rio Claro, Brazil

veronica@rc.unesp.br
2 Instituto de Ciências Matemáticas e de Computação,
USP - Universidade de São Paulo, São Carlos, Brazil

{fabianof,solange}@icmc.usp.br

Abstract. Issues related to association mining have received attention,
especially the ones aiming to discover and facilitate the search for inter-
esting patterns. A promising approach, in this context, is the application
of clustering in the pre-processing step. In this paper, eleven metrics are
proposed to provide an assessment procedure in order to support the
evaluation of this kind of approach. To propose the metrics, a subjec-
tive evaluation was done. The metrics are important since they provide
criteria to: (a) analyze the methodologies, (b) identify their positive and
negative aspects, (c) carry out comparisons among them and, therefore,
(d) help the users to select the most suitable solution for their problems.
Besides, the metrics do the users think about aspects related to the prob-
lems and provide a flexible way to solve them. Some experiments were
done in order to present how the metrics can be used and their usefulness.

Keywords: Association rules · Pre-processing · Clustering · Evaluation
metrics

1 Introduction

Association has been highlighted, among the data mining tasks, due to its com-
prehensibility even by non-experts in the field. To have an idea, the Apriori
algorithm, broadly used to obtain association patterns, was elected as one of the
ten data mining algorithms most employed by the community [1]. For this and
other reasons, association has been applied in many domains, as noticed in [2–6]
works.

In the last years, researches have adopted some strategies to aid the user to
identify the relevant associative patterns of the domain. One of these strategies
is to pre-process the data before obtaining the rules. For that, many approaches
have been proposed, being clustering a promising one. In this case, as seen in
Fig. 1, the data are initially grouped into n groups (GD1,GD2,...,GDn). Associa-
tion rules are extracted within each group and, in the end, n groups of rules are
c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XVII, LNCS 8970, pp. 97–127, 2015.
DOI: 10.1007/978-3-662-46335-2 5

98 V.O. de Carvalho et al.

obtained (GR1,GR2,...,GRn). All these rules compose the rule set. According
to [7], each group expresses its own associations without the interference of the
other groups that contain different association patterns. The aim is to obtain
potentially interesting rules that would not be extracted from unpartitioned data
sets1. The user must set the minimum support to a low value to discover these
same patterns from unpartitioned data sets, causing a rapidly increase in the
number of rules. Recent works have used these ideas in different domains as [8]
in maintenance systems, [9] in banking context and [10,11] in automotive data.

Fig. 1. Overview of the process to extract association rules through clustering in com-
parison to the traditional one.

Distinct methodologies have been proposed to enable the described process.
Each methodology uses a different combination of similarity measures with clus-
tering algorithms to obtain the groups of rules (see Fig. 1). However, little has
been done to analyze the performance of the methodologies or even to compare
the results. For example, given a specific problem of a domain, how could the
user identify the most suitable methodology to use in his problem? Or, how the
user could check if the selected methodology was good enough for the problem,
considering that different interests may be important for his decision? To aid
the user in these tasks, considering the aims of the clustering process above
discussed, there are some issues that have to be investigated (see Fig. 1):

Issue 1. Is there overlap between a rule set obtained through partitioned data,
i.e., extracted from clustered data, in relation to a rule set obtained through
unpartitioned data, i.e., extracted from traditional process? A rule set obtained
through a partitioned data is named here as RsP and a rule set obtained through
a traditional process is named here as RsT.
1 In this work, it is assumed that a pattern is interesting if it is relevant and/or useful

to the user – rules having high support and/or high confidence are not necessarily
interesting to the user.

Metrics for Association Rule Clustering Assessment 99

Issue 2. Is there overlap between the rules in RsT and RsP regarding the
interesting knowledge? In other words, has RsP, in fact, more interesting patterns
than RsT?

Issue 3. What is the process behavior regarding the number of rules that are
obtained in RsP?

Based on the exposed arguments and on the three presented issues, eleven
metrics are proposed in this paper to provide an assessment procedure in order
to support the evaluation of the methodologies that use clustering in the pre-
processing step. However, to propose the metrics, a subjective evaluation was
done with some users to understand each issue. The analysis was done as a way
to comprehend the important aspects to be considered by a user when comparing
the performance of some methodologies or even their results. Thereby, this paper
contributes with current researches since the metrics provide criteria to: (a)
analyze the methodologies, (b) identify their positive and negative aspects, (c)
carry out comparisons among them and, therefore, (d) help the users to select
the most suitable solution for their problems. Besides, the paper does the users
think about many aspects to be considered in the presented context and provides
to them a flexible way to explore their problems. This paper is an extension of
[12]’s work, in which two more metrics are proposed (MP , MRF) and where the
subjective evaluation is used to attest the importance of the previous obtained
results.

This paper is organized as follows. Section 2 surveys the related researches.
Section 3 presents the subjective evaluation and Sect. 4 the proposed metrics.
Section 5 describes some experiments that were carried out to show how the
metrics can be used. Section 6 discusses the results obtained in the experiments.
Conclusion is given in Sect. 7.

2 Related Works

There are many researches that initially cluster data aiming to discover and
facilitate the search for the interesting pattern of the domain. Some of these
works are described below.

Plasse et al. [11] propose to split the transactions’ items into groups in order
to extract the rules. The aim is to find interesting associations among rare items
(less frequent) that would not be discovered if the traditional process were applied,
mainly in sparse data. Besides, the authors show that if the data are clustered it
is possible to reduce both the amount and the complexity of obtained rules com-
pared to non-clustered data. However, these results depend on the used cluster-
ing algorithms and similarity measures. The authors evaluate many hierarchical
algorithms (Single, Complete, Average, Ward, Varclus) combined with many sim-
ilarity measures (Jaccard, Russel Rao, Dice, Ochiai, Pearson). Nevertheless, it is
not understandable how the rules are obtained within the groups, since it is neces-
sary to have a set of transactions and not a set of items. This means that it is not
clear how the transactions are distributed over the groups. Among the similarity

100 V.O. de Carvalho et al.

measures used by them, we emphasize Jaccard (Eq. 1) and Russel Rao (Eq. 2) –
the Russel Rao due to its good performance in the experiments presented in [11]
and the Jaccard due to its use by the measure described below (Agg). The Jac-
card between two items i1 and i2, named here as P-J (P lasse Jaccard), is the ratio
between the transactions t the items cover simultaneously and the total of transac-
tions the items cover. An item covers a transaction t if the item is in t. The Russel
Rao between two items i1 and i2, named here as P-RR (P lasse Russel Rao), is
computed considering the transactions t the items cover simultaneously over all
the transactions. In fact, this measure is equivalent to the support of i1 ∩ i2. In
Eq. 2, Nt represents the total number of transactions.

P-J(i1, i2) =
|{t covered by i1} ∩ {t covered by i2}|
|{t covered by i1} ∪ {t covered by i2}| . (1)

P-RR(i1, i2) =
|{t covered by i1} ∩ {t covered by i2}|

Nt

. (2)

Aggarwal et al. [13] propose an algorithm, named CLASD, to split the trans-
actions aiming to discover associations on small segments (subsets) of the data.
The authors justify that the approach has a considerable impact on the rules
that are obtained, since the patterns that cannot be identified in the whole set
can be identified in the subsets. To cluster the transactions, [13] use a similarity
measure proposed by them (Eq. 3), named here as Agg (Aggarwal). The cluster-
ing is done by CLASD. In this case, the similarity between two transactions t1
and t2 is computed by the affinity (Af) average among the transactions’ items.
It can be noted that the affinity (Af) is equivalent to the measure P-J. There-
fore, after computing P-J among the m items in t1 and the n items in t2, the
average among them is obtained. The higher the affinity among the items the
more similar the transactions. From this initially clustering the rules are then
extracted. Different from [11], the number of rules that are extracted by their
process is higher compared to the traditional process, but smaller if the support
in the traditional process had to be set with a very low value to obtain the same
associations. A limitation of the approach is the number of parameters that has
to be set (five plus two constants).

Agg(t1, t2) =

∑m
p=1

∑n
q=1 Af(ip, jq)

m ∗ n
,Af(i,j) =

sup({i, j})
sup({i}) + sup({j}) − sup({i, j}) . (3)

Koh and Pears [7] propose a methodology to cluster transactions and then
extract a rare association rule set. The algorithm they proposed, named Apriori
Inverse, applies upon groups of transactions in order to verify if it is possible
to extract rare rules that are not discovered considering the whole data. There-
fore, the idea is similar to the works above described. The authors demonstrate
that the clustering contributes to the discovery of new associations. To clus-
ter the transactions, their algorithm initially finds k seeds (centroids), where k
indicates the number of frequent itemsets in transactions that match some con-
ditions. Each seed forms a group. After the seed generation, each transaction t is
allocated to one of the groups (seed) considering the similarity obtained through

Metrics for Association Rule Clustering Assessment 101

the measure presented in Eq. 4. The equation is an adaptation of the Jaccard
coefficient and it compares the number of common items that occur between the
transaction (t) and the group centroid (ck). In this case, the higher the overlap
between t and a centroid the higher the similarity value (Sim = similarity). In
this approach it is necessary to set two additional values beyond the minimum
support, hindering a little the exploration.

Sim(t, ck) =
|t ∩ ck|

|t ∪ ck| − |t ∩ ck| + 1
. (4)

There are other researches concerned with the clustering of transactions that,
although not related to the extraction of association rules, could be used for that
purpose [14–17]. In [18] the authors propose an approach to identify, a priori, the
potentially interesting items to appear in the antecedents and in the consequents
of the association rules without extracting them. The approach is divided in two
steps: the clustering of the transactions and the selection of the interesting items.
To do the clustering the authors propose the use of incremental K-means with
the similarity measure presented in Eq. 5, named here as Denza. Note that this
measure is the Jaccard between transactions. Therefore, the similarity between
two transactions t1 and t2 is computed considering the items the transactions
share. After the grouping, statistics are applied upon the groups to identify the
items that are relevant to the application.

Denza(t1, t2) =
|{items in t1} ∩ {items in t2}|
|{items in t1} ∪ {items in t2}| . (5)

Among the papers above described, little has been done to analyze the per-
formance of the methodologies, allowing to identify their positive and negative
aspects, or even to compare the results among them. In general, the researchers
compare the number of rules and/or itemsets that are obtained from unparti-
tioned data and clustered data to expose the usefulness of the methodologies.
This strategy can be found in [7,11,13] and is related to “Issue 3” of Sect. 1. How-
ever, [11] also analyze the process considering the complexity of the rules that
are obtained – the greater the number of items that compose a rule the higher
its complexity. Koh and Pears [7] and Aggarwal et al. [13] discuss about some
rules found through clustering to show that the process provides the discovery of
interesting patterns, but the analysis of the process is subjective. Aggarwal et al.
[13] also consider the execution time. Finally, [7] is the only work that allows a
better analysis considering the existing overlap between the rules obtained from
unpartitioned data and clustered data. This strategy is related to “Issue 1” of
Sect. 1. Based on the presented arguments, as mentioned before, the necessity of
an assessment procedure becomes evident.

It is important to mention that cluster validation indices (CVI), indepen-
dently of being relative, internal, or external [19,20], are not reviewed here. It is
understood that these CVI can be used to evaluate the groups of transactions
before obtaining the association rules: in this case, the aim is to check if the par-
tition fits the structure underlying the data. However, after obtaining the groups
of transactions, the rules are obtained and, therefore, the CVI can no longer be

102 V.O. de Carvalho et al.

used, since the data used as input (for example, transactions) must be the same
of the output (for example, groups of transactions); however, in this case, the
input are transactions and the output are rules. Thus, the metrics presented here
are important as a final step to evaluate the usefulness of a clustering process in
obtaining groups of rules. Therefore, the works described in this section are the
ones that aim to apply clustering as a previous step to obtain association rules
and their limitations regarding an assessment procedure.

3 Understanding the Issues Through a Subjective
Evaluation

A subjective evaluation was done with some users to understand each issue
before proposing the metrics. The analysis was done as a way to comprehend the
important aspects to be considered by a user when comparing the performance
of some methodologies or even their results.

The evaluation was done through a questionnaire, which was elaborated to
present to the users scenarios that can occur in the considered context. For each
scenario a question was formulated in order to comprehend the importance of
the aspects related to the exposed problem. The full questionnaire can be found
in Appendix. Before presenting the Questions, a brief introduction was given to
the users about the questionnaire. The questionnaire comprehends 10 Questions:
Questions 1 and 2 are related to “Issue 1”, Questions 3, 4, 5 and 6 to “Issue 2” and
Question 7 to “Issue 3”. Question 8 is related to a more general advantage the
clustering process can provide. Questions 9 and 10 are general questions about
the evaluation. The questionnaire was answered by 5 users, all of them researches
on data mining and/or text mining. All of them have knowledge on clustering and
association rules, including their particularities, problems, means of validation,
etc., and, so, they could understand the exposed problem and contribute with
the current research. A brief overview of their experiences is here presented: (user
(1)) worked with objective measures to post-process association rules obtained to
extract related words in a collection of documents to construct a enriched bag-of-
words representation; worked with clustering to construct a topic hierarchy based
on features extracted through association rules; (user (2)) worked with clustering
to post-process association rules and developed a labeling method to label groups
of rules; worked with complex networks and semi-supervised learning to post-
process association rules; (user (3)) worked with clustering and semi-supervised
learning to build a dynamic topic hierarchy; worked with association rules in
some applications; (user (4)) worked with objective and subjective measures
to post-process association rules; worked with clustering to organize document
collections; (user (5)) worked with taxonomies to generalize association rules to
help users during the post-processing phase; worked with association rules to
develop recommendation systems; worked with clustering in some applications.
The users’ answers are presented in Table 1, which are discussed below along
with each Question.

Metrics for Association Rule Clustering Assessment 103

Table 1. Users’ evaluation about the exposed scenarios.

Question User

1 2 3 4 5

1 desirable desirable desirable desirable desirable

2 desirable desirable desirable desirable indifferent

3 desirable desirable indifferent : no desirable desirable

4 indifferent : no indifferent indifferent : no desirable desirable

5 indifferent : no desirable desirable desirable indifferent

6 desirable no desirable desirable no desirable desirable

7 low high low average average

8 yes yes yes yes yes

Question 1 (Issue 1). The idea behind this question, presented in Fig. 2, was
to analyze if it is important not to lose knowledge during the clustering
process. The other idea was to analyze, regarding the repetition over the
clusters, if the knowledge must be in subsets that express its own associa-
tions. All of them considered that is desirable that rules extracted in RsT
be found in RsP, directing the analysis to the aspects embedded in question.
Besides, all of them stated that this aspect is important for an assessment
procedure (1.a.) – the “yes” answers, in all the questions, regarding the
importance of the considered aspect, are omitted in Table 1. In relation to
the comments made by the users (1.b.), we can mention: (a) the necessity to
differentiate the rules that don’t repeat over the clusters from the ones that
repeat; (b) the understanding that if the patterns are present in both sets
it is because they are relevant (even if they, probably, represent a frequent
relation of the domain), being desirable that this scenario occurs. To formal-
ize these aspects, two metrics are proposed in the next section: MO−RsP and
MR−O−RsP .

Fig. 2. Question 1 (see Appendix for details).

104 V.O. de Carvalho et al.

Question 2 (Issue 1). The idea behind this question, presented in Fig. 3, was
to analyze if it is important to obtain new knowledge during the clustering
process. The other idea was to analyze, regarding the repetition over the
clusters, if the new knowledge must be in subsets that express its own asso-
ciations. Almost all of them (four out five) considered that is desirable that
rules extracted in RsP be not found in RsT, directing the analysis to the
aspects embedded in question. However, all of them stated that this aspect
is important for an assessment procedure (2.a.). In relation to the comments
made by the users (2.b.), we can mention: (a) the necessity to differenti-
ate the rules that don’t repeat over the clusters from the ones that repeat;
(b) the understanding that the patterns appearing only in RsP represent
new knowledge, probably interesting to the users, that would be difficult to
be found through the traditional process. To formalize these aspects, two
metrics are proposed in the next section: MN−RsP and MR−N−RsP .

Fig. 3. Question 2 (see Appendix for details).

Question 3 (Issue 2). The idea behind this question, presented in Fig. 4, was
to analyze if it is important to discovery new interesting knowledge; if so,
the cost of the clustering process would be minimized since new interesting
knowledge would be found. Almost all of them (four out five) considered
that is desirable that some (or none) of the n most interesting rules in RsP
be not found in RsT, directing the analysis to the aspect embedded in ques-
tion. Besides, almost all of them (four out five) stated that this aspect is
important for an assessment procedure (3.a.). In relation to the comments
made by the users (3.b.), we can mention: (a) the importance of identifying
new interesting rules not extracted through the traditional process; (b) the
understanding that these new interesting patterns are the ones that stand
in a certain group of data. To formalize this aspect, one metric is proposed
in the next section: MN−I−RsP .

Question 4 (Issue 2). The idea behind this question, presented in Fig. 5, was
to analyze if it is important not to lose interesting knowledge during the
clustering process. Most of them (three out five) considered that is indifferent
that some (or none) of the n most interesting rules in RsT be not found in
RsP; thus, in this case, any conclusion was done in relation to the aspect
embedded in question. However, most of them (three out five) stated that

Metrics for Association Rule Clustering Assessment 105

Fig. 4. Question 3 (see Appendix for details).

this aspect is important for an assessment procedure (4.a.). In relation to the
comments made by the users (4.b.), there were few relevant observations.
Only one user mentioned that it is important to analyze the considered
scenario because it is understood that the clustering process could be losing
knowledge, making the user to think about the truth quality of the clusters
(directing to the aspect embedded in question). Although no conclusion could
be made in relation to the main question, considering the importance for an
assessment procedure (4.a.), one metric is proposed in the next section to
formalize the aspect: MO−I−N−RsP .

Fig. 5. Question 4 (see Appendix for details).

Question 5 (Issue 2). The idea behind this question, presented in Fig. 6, was
to analyze if it is important that an intersection exists between the new
interesting knowledge, discovery through the clustering process, in relation
to the interesting knowledge already found through the traditional process.
Most of them (three out five) considered as desirable the existing intersection
between the n most interesting rules in RsP and the n most interesting rules
in RsT, directing the analysis to the aspect embedded in question. Besides,
almost all of them (four out five) stated that this aspect is important for
an assessment procedure (5.a.). In relation to the comments made by the
users (5.b.), we can mention: (a) the understanding that interesting rules
appearing in both sets have a high probability of being really interesting to
the users; (b) however, as an opposed idea, the understanding that different
knowledge must be extracted from the clustering process compared to the
traditional one (indifferent cases). Thus, although distinct views exist (5.b.),

106 V.O. de Carvalho et al.

considering the importance for an assessment procedure (5.a.), one metric is
proposed in the next section to formalize the aspect: MC−I (which can be
interpreted according to the user’s view).

Fig. 6. Question 5 (see Appendix for details).

Question 6 (Issue 2). The idea behind this question, presented in Fig. 7, was
to analyze if it is important that the new interesting knowledge be found
in a small number of the groups. Most of them (three out five) considered
as desirable the spread of the n most interesting rules in RsP in a small
number of clusters, directing the analysis to the aspect embedded in question.
Besides, all of them stated that this aspect is important for an assessment
procedure (6.a.). In relation to the comments made by the users (6.b.), we
can mention: (a) the understanding that the user could explore a group of
interesting knowledge, directing the user to a reduced exploration space;
(b) however, as an opposed idea, the understanding that it could be more
relevant to explore the interesting rules within each cluster, since each group
express different concepts of the domain (no desirable cases). Thus, although
distinct views exist (6.b.), considering the importance for an assessment
procedure (6.a.), one metric is proposed in the next section to formalize the
aspect: MNC−I−RsP (which can be interpreted according to the user’s view).

Fig. 7. Question 6 (see Appendix for details).

Question 7 (Issue 3). The idea behind this question, presented in Fig. 8, was
to analyze the clustering process regarding the number of extracted rules in
relation to the traditional one. Two of them considered that the amount of
rules to be extracted through clustering, compared to the traditional process,
should be low, two of them average and one high. However, all of them

Metrics for Association Rule Clustering Assessment 107

stated that this aspect is important for an assessment procedure (7.a.). In
relation to the comments made by the users (7.b.), we can mention: (a) the
understanding that, since each group contains a specific bunch of items, the
amount of rules should be low (low cases); (b) the understanding that each
group will contain a small number of rules (due to the same arguments of
(a)) and, as a consequence, an average amount considering all the groups
(average cases); (c) the understanding that since each group will contain
similar items, the amount of rules should be high (due to the low diversity
of items compared to the traditional process considering the same value of
support/confidence) (high cases). Thus, although distinct views exist (7.b.),
considering the importance for an assessment procedure (7.a.), one metric is
proposed in the next section to formalize the aspect: MNR−RsP (which can
be interpreted according to the user’s view).

Fig. 8. Question 7.

Question 8 (Others). The idea behind this question, presented in Fig. 9, was
to analyze the clustering process regarding the spread of the concepts of the
domain. All of them considered that is desirable that the clustering process
should, as a consequence, enable each cluster to express a distinct topic of
the domain. Besides, all of them stated that this aspect is important for an
assessment procedure (8.a.). In relation to the comments made by the users
(8.b.), we can mention, unanimously, the understanding that the aim of the
clustering process is to split the distinct topics of the domain in order to aid
rule exploration. To formalize this aspect, two metrics are proposed in the
next section: MP and MRF .

Fig. 9. Question 8.

108 V.O. de Carvalho et al.

Question 9 and 10 (Others). Questions 9 and 10 are general questions about
the evaluation. In relation to “Question 9”, presented in Fig. 10, none of
them gave any suggestion. However, in relation to “Question 10”, also pre-
sented in Fig. 10, two comments were made: (a) the understanding that an
assessment procedure should consider two or more scenarios but maintaining
a good trade-off among them; (b) the understanding that the presentation
of the rules in different scenarios, as the ones exposed, can aid the user dur-
ing an evaluation process, since the user can give more attention to some
aspects according to his aims. Therefore, as observed, this paper contributes
with current researches making the users think about some aspects to be
considered in the presented context and providing to them a flexible way to
explore their problems (since the users can interpret a metric according to
their view).

Fig. 10. Questions 9 and 10.

4 Evaluation Metrics: Providing an Assessment
Procedure

Eleven metrics are proposed to provide an assessment procedure in order to sup-
port the evaluation of the methodologies that use clustering in the pre-processing
step (as the ones described in Sect. 2). These metrics formalize the aspects related
to each issue, which were analyzed by some users through a subjective evalua-
tion. Each metric, which was implicit explored through a subjective question, is
related to an issue. For each issue there are one or more metrics. All metrics,
with exception to MNR−RsP , range from 0 to 1. Since RsP contains all the rules
extracted within each group, repeated rules may exist in the set; therefore, RsP
can be, in some cases, a multiset. In RsT the same doesn’t occur since the rules
are unique.

Issue 1. Regarding the existing overlap among the rules in RsP and RsT, four
metrics are proposed, which are described as follows:

MO−RsP Related to “Question 1”, measures the ratio of “old” rules in RsP, i.e.,
the ratio of rules in RsT found in RsP (Eq. 6). A rule is considered “old”
if it is in RsT, i.e., in the rule set obtained through the traditional process.
Therefore, considering users’ analysis, the higher the value the better the

Metrics for Association Rule Clustering Assessment 109

metric, since the value indicates that there was no loss of knowledge during
the process.

MO−RsP =
|RsT ∩ RsP |

|RsT | . (6)

MR−O−RsP Related to “Question 1”, measures the ratio of “old” rules that
repeat in RsP (Eq. 7). In this work, it is assumed that a rule should exist
in only one of the clustering groups, since it has to be in a subdomain that
expresses its own associations. Therefore, considering users’ analysis and
authors’ understanding on the problem, the lower the value the better the
metric, since the value indicates that the knowledge, already known, is in
subsets that express its own associations.

MR−O−RsP =
FindRepetitionRsP (RsT ∩ RsP)

|RsT ∩ RsP | ,

FindRepetitionRsP: function that receives by parameter a set of non repeated rules
and returns the number of rules in the set that repeat in RsP.

(7)

MN−RsP Related to “Question 2”, measures the ratio of “new” rules in RsP,
i.e., the ratio of rules in RsP not found in RsT (Eq. 8). A rule is “new” if
it isn’t in RsT, i.e., in the rule set obtained through the traditional process.
Although it is important that any knowledge be lost (metric MO−RsP), it
is expected that the ratio of “new” rules in RsP be greater than the ratio
of “old” rules. Therefore, considering users’ analysis, the higher the value
the better the metric, since the value indicates the amount of knowledge,
previously unknown, obtained during the process.

MN−RsP =
|RsP∗ − RsT |

|RsP | ,

RsP∗: all rules in RsP found in RsT are considered “old” rules and, therefore, are
computed as having only one occurence in RsP.

(8)

MR−N−RsP Related to “Question 2”, measures the ratio of “new” rules that
repeat in RsP (Eq. 9). Idem to MR−O−RsP . Therefore, considering users’
analysis and authors’ understanding on the problem, as in MR−O−RsP , the
lower the value the better the metric, since the value indicates that the
knowledge, previously unknown, is in subsets that express its own associa-
tions.

MR−N−RsP =
FindRepetition(RsP∗ − RsT)

|RsP∗ − RsT | ,

FindRepetition: function that receives by parameter a set that may contain repeated
rules and returns the number of rules in the set that repeat; RsP∗: idem Eq. 8.

(9)

Issue 2. Regarding the existing overlap among the rules in RsP and RsT consid-
ering the interesting aspect of the knowledge, four metrics are proposed, which
are described as follows:

110 V.O. de Carvalho et al.

MN−I−RsP Related to “Question 3”, measures the ratio of “new” rules among
the h-top interesting rules in RsP (Eq. 10). Given a subset of h-top interesting
rules, selected from RsP, it is expected that the ratio of “new” rules in
this subset be as large as possible. The h-top rules are the h rules that
contain the highest values regarding an objective measure, where h is a
number to be chosen2. Therefore, considering users’ analysis and authors’
understanding on the problem, the higher the value the better the metric,
since the value indicates that the cost of the process is minimized by the
discovery of interesting knowledge, previously unknown, in RsP.

MN−I−RsP =
CountTopRules(htop of RsP,RsP∗ − RsT)

|htop of RsP | ,

CountTopRules: function that receives by parameter a set of h-top interesting rules
and a set of rules and returns the number of rules that appears among the h-top;
RsP∗: idem Eq. 8.

(10)

MO−I−N−RsP Related to “Question 4”, measures the ratio of “old” rules not in
RsP among the h-top interesting rules in RsT (Eq. 11). Given a subset of
h-top interesting rules, selected from RsT, it is expected that all these rules
are present in RsP. Since any conclusion could be done considering users’
analysis, it is understood, in this work, that is not desirable that patterns in
RsT disappear in RsP, which would imply in the loss of relevant knowledge.
Thus, this metric measures the ratio of “old” interesting rules not in RsP.
The h-top rules are as described in MN−I−RsP . Therefore, considering the
importance of this aspect for an assessment procedure, according to users’
view, and authors’ understanding on the problem, the lower the value the
better the metric, since the value indicates that the interesting knowledge in
RsT was not lost during the process.

MO−I−N−RsP =
CountTopRules(htop of RsT,RsT − RsP)

|htop of RsT | ,

CountTopRules: idem Eq. 10.

(11)

MC−I Related to “Question 5”, measures the ratio of common rules among
the h-top interesting rules in RsP and the h-top interesting rules in RsT
(Eq. 12). Consider two subsets, S1 and S2, containing, respectively, the h-
top interesting rules in RsP and the h-top interesting rules in RsT. This
metric measures the existing intersection between these two subsets, which
is expected to be as large as possible according to the users (different from
what was assumed in [12], that presented a metric interpretation as in the
indifferent cases (see the justification below)). Therefore, the higher the value
the better the metric, since the users understand that rules present in both
sets have a high probability of being really interesting to them. However, the
value of the metric can be interpreted according to the user’s view, being the
lower the value the better the metric (indifferent cases – in this condition,

2 Any other criteria could be adopted to select the h-top interesting rules.

Metrics for Association Rule Clustering Assessment 111

the process would not provide any additional relevant information, since
all the knowledge already known as interesting in RsT is also identified as
interesting in RsP, as understood in [12]). Therefore, as noticed, the metric
provides a flexible way to analyze the problem.

MC−I =
|htop of RsP ∩ htop of RsT |

h
,

h is the number to be chosen to realize the selection of the rules in both sets, i.e.,
RsP and RsT.

(12)

MNC−I−RsP Related to “Question 6”, measures the ratio of groups in the
clustering related to RsP that contains the h-top interesting rules in RsP
(Eq. 13). Therefore, considering users’ analysis, the lower the value the bet-
ter the metric. This means that just some of the groups would have to
be explored by the user, which will contain the “new” relevant knowledge
extracted during the process. However, the value of the metric can be inter-
preted according to the user’s view, being the higher the value the better the
metric (indifferent cases – in this condition, each cluster would express its
own interesting knowledge). As noticed, the metric provides a flexible way
to analyze the problem.

MNC−I−RsP =
FindGroups(htop of RsP)

N
,

N: number of groups in the clustering; FindGroups: function that receives by para-
meter a set of h-top interesting rules, finds their groups and returns the number of
distinct selected groups.

(13)

Issue 3. Regarding the process behavior related to the number of rules that are
obtained in RsP, a unique metric is proposed, which is described as follows:

MNR−RsP Related to “Question 7”, measures the ratio of rules in RsP in rela-
tion to RsT (Eq. 14). It is important to analyze the process in relation to
the number of rules in RsP. It is not desirable, according to the authors’
understanding, to have a large increase in the volume of rules, because even
if new patterns are discovered, it will be harder for the user to identify them.
Therefore, the lower the value the better the metric, since the value indicates
that although new patterns have been extracted, the number of extracted
rules is not big enough to overload the user. However, the value of the metric
can be interpreted according to the user’s view, since each user has a differ-
ent opinion (although all of them agree with the importance of this aspect
for an assessment procedure). As noticed, the metric provides a flexible way
to analyze the problem.

MNR−RsP =
|RsP |
|RsT | . (14)

Others. “Question 8” tried to capture a more general advantage the clustering
process can provide: to enable each cluster expresses a distinct topic of the domain.

112 V.O. de Carvalho et al.

According to the users, this is a desirable aspect. Carvalho et al. [21] evaluated
some labeling methods for association rule clustering through two measures.
Precision (P) measures how much a labeling method finds labels that represent
as accurately as possible the rules contained in their own groups – if the labels
don’t represent the knowledge inside each cluster the user will have difficult to
explore the existing concepts related to the topics the labels express. Repetition
Frequency (RF) measures how the labels are distributed over the clusters – if the
labels appear repeatedly over the clusters the user will have difficult to identify
the existing topics. As known, a labeling method is applied over the clusters
obtained through a clustering process. Thus, considering that a good labeling
method exists3, it is assumed that a methodology, in the presented context,
provides a good distribution of the topics if it presents high values for P and
RF , since which will impact the results is the clustering itself. Therefore, these
measures are used as metrics in the considered context, which are described as
follows:

MP Considering that a good labeling method is available, measures how much
the labels, built over the obtained clustering, represent the rules contained
in the clusters (Eq. 15). The more a methodology provides groups that
express their own associations, more specific domain knowledge the groups
will contain and, probably, the more the labels will represent the rules in the
clusters. Therefore, the higher the value the better the metric, since the value
indicates that the methodology succeed to enable a suitable distribution of
the domain topics.

MP =

∑N
i=1 P (Ci)

N
,P (Ci) =

#{rules covered in Ci by Ci labels}
#{rules in Ci}

,

N refers to the number of clusters. A rule is covered (represented) by a set of labels
if the rule contains at least one of the labels.

(15)

MRF Considering that a good labeling method is available, measures how much
the distinct labels, built over the obtained clustering, don’t repeat (Eq. 16).
The more a methodology provides groups that express their own associations,
more specific domain knowledge the groups will contain and, probably, the
more distinct the labels will be over the clusters. Therefore, the higher the
value the better the metric, since the value indicates that the methodology
succeed to enable a suitable distribution of the domain topics.

MRF = 1 − #{distinct labels that repeat in the clusters}
#{distinct labels in the clusters} . (16)

Table 2 summarizes the metrics above described, indicating the suitable use
of each one. As noticed, the metrics provide a flexible way to analyze the prob-
lem, since the user can analyze the results according to his interests (users can
disagree about some aspects), both in relation to the metrics values’ interpreta-
tion as in relation to the importance (weight) of each one to a given domain – as
in other contexts, such as objective measures for association rules [23], where the

3 In this work, it is considered that this labeling method is the one presented by [22].

Metrics for Association Rule Clustering Assessment 113

Table 2. Summary and recommended use of the proposed evaluation metrics.

Metric Description

MO−RsP [↑] Ratio of “old” rules in RsP

Recommended use: to measure the loss of knowledge obtained
by the clustering process

MR−O−RsP [↓] Ratio of “old” rules in RsP that repeat

Recommended use: to measure if the knowledge, already
known, is in subsets that express their own associations

MN−RsP [↑] Ratio of “new” rules in RsP

Recommended use: to measure the amount of knowledge,
previously unknown, obtained by the clustering process

MR−N−RsP [↓] Ratio of “new” rules in RsP that repeat

Recommended use: to measure if the knowledge, previously
unknown, is in subsets that express their own associations

MN−I−RsP [↑] Ratio of “new” rules among the h-top interesting rules in RsP

Recommended use: to measure the amount of previously
unknown patters among the knowledge, obtained by the
clustering process, identified as interesting

MO−I−N−RsP [↓] Ratio of “old” rules not in RsP among the h-top interesting rules
in RsT

Recommended use: to measure the amount of knowledge
already known as interesting among the knowledge obtained by
the clustering process

MC−I [↑] Ratio of common rules among the h-top interesting rules in RsP
and the h-top interesting rules in RsT

Recommended use: to measure the amount of common
interesting knowledge between the patterns already known as
interesting and the patterns previously unknown that were
identified as interesting

MNC−I−RsP [↓] Ratio of groups in the clustering related to RsP that contains the
h-top interesting rules in RsP

Recommended use: to measure if the patterns, previously
unknown, identified as interesting, are spread over a small
number of groups

MNR−RsP [↓] Ratio of rules in RsP in relation to RsT

Recommended use: to measure if the number of patterns
obtained by the clustering process don’t overload the user

MP [↑] Behavior of topics’ distribution regarding precision

Recommended use: to measure if an obtained clustering enables
a suitable distribution of the domain topics regarding precision

MRF [↑] Behavior of topics’ distribution regarding repetition frequency

Recommended use: to measure if an obtained clustering
enables a suitable distribution of the domain topics regarding
repetition frequency

114 V.O. de Carvalho et al.

user chooses the measures (and sometimes their thresholds cut) to evaluate the
obtained patterns according to his interests. Besides, the metrics also contribute
in the sense of enabling the users to think about important aspects related to
the presented context. Finally, relating the proposed metrics by the researchers
found in the literature (Sect. 2), it can be observed that: (a) [7] is the only work
that provides a similar analysis related to the metrics MO−RsP and MN−RsP

in Issue 1 ; (b) none of them provide an analysis related to the aspects cov-
ered by Issue 2 and Others; [7,11,13] provide a similar analysis related to the
metric MNR−RsP in Issue 3. Thus, as mentioned in Sect. 2, the necessity of an
assessment procedure becomes evident.

5 Experiments

Some experiments were carried out in order to present how the metrics can be
used. Therefore, two contexts were defined. Suppose a user decides to apply
clustering in the pre-processing step. First of all, he has to find the most suit-
able methodology to use in his problem. After that, he has to check if the
selected methodology was good enough for the problem, considering that dif-
ferent interests may be important for his decision. Thus, two different situations
were regarded: (i) identify among some clustering setups the most suitable; (ii)
analyze the process itself. A clustering setup is obtained by the application of a
clustering algorithm combined with a similarity measure. Therefore, the metrics
provide the support to evaluate each situation under the discussed issues: while
in (i) the data is initially clustered through some clustering setups in order to
identify the one that obtains a good association set, in (ii) the usefulness of the
process itself is analyzed. Four data sets and four clustering setups were selected
to be used in the experiments. It is important to mention that the choices below
could be changed without affecting the paper relevance, since the aim here is to
present the metrics and to demonstrate how they can be used, independently of
the clustering setup.

The four data sets were Adult (48842;115), Income (6876;50), Groceries
(9835;169) and Sup (1716;1939). The numbers in parenthesis indicate, respec-
tively, the number of transactions and the number of distinct items in each
data set. The first three are available in the R Project for Statistical Comput-
ing through the package “arules”4. The last one was donated by a supermarket
located in São Carlos city, Brazil. Adult and Income are relational sets and Gro-
ceries and Sup transactional. Therefore, before extracting the rules on Adult and
Income, the sets were converted to a transactional format, where each transac-
tion was composed by pairs of the form “attribute=value”.

The four clustering setups were obtained by the combination of the algo-
rithms and similarity measures presented in Table 3. Each combination gives a
clustering setup, i.e., a different way to analyze the process. PAM is a partitional
medoid-based algorithm that splits n objects in k groups, in which each object
is closer to the medoid that defines its own cluster than to the medoid of any
4 http://cran.r-project.org/web/packages/arules/index.html.

http://cran.r-project.org/web/packages/arules/index.html

Metrics for Association Rule Clustering Assessment 115

other cluster – a medoid is an object that has the minimal average dissimilarity
to all the other objects in the same cluster [24]. Therefore, the algorithm works
searching for the k representative objects in n to built the k clusters by assigning
each object to its nearest medoid. On the other hand, Ward is an agglomera-
tive hierarchical algorithm that starts by considering each object as a singleton
cluster and then, at each iteration, merges the two closest clusters until a single
cluster remains. The two closest clusters are the ones that minimize the increase
of the within-cluster sum of the squared errors (SSE) [24]. Despite the existence
of algorithms designed for transactions, such as ROCK, the choices of the algo-
rithms were made based on works that cluster the rules in the post-processing
phase, as [25,26], aiming a posteriori comparison. The similarity measures were
chosen considering the works described in Sect. 2 – only the similarities among
transactions were selected based on previous experiments. Finally, although it is
necessary to set k, the number of groups, in order to obtain a clustering setup,
this value was only used to analyze the clustering setups on different views.
We understand that even though k is an important parameter, its values were
ranged and then averaged (see Sect. 6) without affecting the experiments’ results,
since the aim of the paper, as mentioned before, is to present some metrics and
to demonstrate how they can be used, independently of the clustering setup.
Besides, as it will be seen in Sect. 6, almost all the metrics present a low stan-
dard deviation, showing a good homogeneity among the results obtained over
the values of k5.

As described before, the rules are extracted within each group after clus-
tering the data. The values of the minimum support (min-sup) and minimum
confidence (min-conf) have to be set in order to extract a set of association
rules. To automate the specification of the min-sup in each group, the following
procedure was adopted: (i) find the 1-itemsets of the group with their supports,
(ii) compute the average of these supports, (iii) use this average support as the
min-sup of the group. This strategy was adopted since some groups can have few
transactions and others many transactions, which implies in choosing suitable
parameter values to avoid an explosion of rules within a group or the obtainment
of an empty rule set. Regarding min-conf, the following values were used for each
data set: Adult 50 %; Income 50 %; Groceries 10 %; Sup 100 %. Thus, the same
min-conf value was applied in all the groups of a given data set. These values
were chosen experimentally. Although it is known that min-sup and min-conf
impact on the set of rules that are obtained, it was assumed that the focus was
on the use of the metrics and, so, that the values were adequate for the proposed
problem (the same argument is also applied to algorithms, similarity measures
and k). The rules were extracted with an Apriori implementation developed by
Christian Borgelt6 with a minimum of two items and a maximum of five items
per rule.
5 In this work, each dendrogram obtained by Ward were cut considering each one of

the values of k.
6 http://www.borgelt.net/apriori.html.

http://www.borgelt.net/apriori.html

116 V.O. de Carvalho et al.

Considering the four clustering setups, the RsP sets were obtained. However,
once almost all the metrics are based on the rules obtained through the tradi-
tional process, the four data sets were also processed to obtain the RsT sets. For
that, the min-sup was set automatically, as described before. Regarding min-
conf, the same values used in RsP were considered, i.e., Adult 50 %, Income
50 %, Groceries 10 % and Sup 100 %. Furthermore, as some of the metrics are
based on the h-top interesting rules of a given rule set, an objective measure
should be selected. Instead of choosing a specific measure, the average rating
obtained through 18 objective measures (see Table 3) was considered as follows:
(i) the value of 18 measures was computed for each rule; (ii) each rule received
18 ID’s, each ID corresponding to the rule position in one of the ranks related
to a measure; (iii) the average was then calculated based on the rank positions
(ID’s). Thus, the h-top rules were selected considering the best average ratings.
h, also a number to be set, was defined, in all the sets (RsT and RsP), to assume
10 % of the total of rules in RsT (always the smallest set). Therefore, each rule
set contains its own values that are proportional in all of them.

To finish, as mentioned before, the labeling method applied over the clusters
of each obtained clustering was the one presented by [22], named GLM (Genetic
Labeling M ethod). In GLM the labels of each cluster are chosen by optimiz-
ing Precision (P) and Repetition Frequency (RF), the two measures previous
described in Sect. 4. In fact, GLM is a genetic algorithm approach that aims to
ensure a good tradeoff between P and RF . The fitness function of an individual is
defined by Fitness(I) = (P +RF)−

(
Max(P,RF)
Min(P,RF) ∗ 10−5

)
, where (P+RF) shows

how good are the measures according to the labels and
(

Max(P,RF)
Min(P,RF) ∗ 10−5

)
the

penalty proportional to the distance between P and RF . Table 3 summarizes
the configurations used to apply the proposed metrics.

Table 3. Configurations used to apply the proposed metrics.

Data sets Adult; Income; Groceries; Sup

Algorithms PAM; Ward [algorithms details in [24]]

Similarity measures Agg; Denza

k 5 to 25, steps of 5

h 10 % of the total of rules in RsT

Objective measures [measures details
in [23]]

Added Value, Certainty Factor,
Collective Strength, Confidence,
Conviction, IS, φ-coefficient, Gini
Index, J-Measure, Kappa, Klosgen, λ,
Laplace, Lift, Mutual Information
(asymmetric), Novelty, Support, Odds
Ratio

Labeling Method GLM [details in [22]]

Metrics for Association Rule Clustering Assessment 117

6 Results and Discussion

Considering the configurations presented in Table 3 and the RsT sets above
described, the experiments were carried out and the values of each metric
obtained. Regarding the first proposed situation, i.e., identify among some clus-
tering setups the most suitable (Sect. 5), an analysis based on the average of each
metric was carried out. Table 4 presents the results for each data set. In this case,
the metrics will help the users to find a suitable methodology for their problems.
In order to aid the comparison of the results, all the metrics that present bet-
ter results when their values are the smallest (MR−O−RsP , for example) were
processed to store the complement of the information. Therefore, all the metric,
with exception to MNR−RsP , have the same interpretation: the higher the value
the better the performance. Furthermore, all the metrics can be seen in terms
of percentage if multiplied by 100 (ex.: 0.807*100 = 80.7 %).

Each average in Table 4 was obtained from the results of the experiments
related to the presented configuration. The value 0.807 in MO−RsP at Adult:-
PAM:Agg, for example, was obtained by the average of the values in MO−RsP

at Adult:PAM:Agg over the values of k. The table also presents, between “[]”,
the standard deviations; regarding the last example, the standard deviation is
±0.02 (0.807 [±0.02]). It can be observed that almost all the metrics present a
low standard deviation, showing a good homogeneity among the results obtained
over the values of k. The major exception is MNR−RsP , which presents high
standard deviation values, since the higher the number k of groups the higher
the number of rules. For each data set, the highest averages are marked with
� in each metric. The only exception is MNR−RsP , where the lowest averages
are highlighted. For Adult, for example, the best average for MR−O−RsP is the
one related to PAM:Agg (0.807). Thereby, it is possible to visualize, for each
data set, the most suitable clustering setup. It is important to mention that the
results are deterministic and, therefore, no statistical test was done to check if
there is a significant difference among the averages. It can be noticed that:

Adult. The most suitable configuration for this data set is PAM:Agg , since
it presents better results in 8 of the 11 metrics. Furthermore, it can be noticed
that in some cases the values in PAM:Agg are more representative than the
others – observe, for example, that while in PAM:Agg MO−RsP presents a per-
formance above 80 %, the others presents a performance below 60 % (see also
MO−I−N−RsP and MNR−RsP).

Income. The most suitable configuration for this data set is PAM:Denza ,
since it presents better results in 4 of the 11 metrics. However, PAM:Agg can
also be useful, since it presents better results in 3 of the 11 metrics and the two
setups present close values in almost all the metrics. Thus, in this case, the user
can choose one of them based on the importance each metric represents to him
in the considered problem.

Groceries. The most suitable configuration for this data set is Ward:Agg , since
it presents better results in 7 of the 11 metrics (in 5 excluding the ties). Fur-
thermore, it can be noticed that in some cases the values in Ward:Agg are more

118 V.O. de Carvalho et al.

Table 4. Average of the proposed metrics, for each data set, in the considered clustering
setups.

Adult

Algorithm Measure MO−RsP MR−O−RsP MN−RsP MR−N−RsP MN−I−RsP MO−I−N−RsP

PAM

Agg 0.807 [±0.02]� 0.343 [±0.07]� 0.834 [±0.02] 0.890 [±0.01]� 0.588 [±0.02] 0.840 [±0.01]�
Denza 0.585 [±0.03] 0.314 [±0.06] 0.888 [±0.03]� 0.863 [±0.03] 0.824 [±0.03] 0.333 [±0.05]

MC−I MNC−I−RsP MNR−RsP MP MRF

Agg 0.778 [±0.02] 0.551 [±0.08]� 12.221 [±2.53]� 0.699 [±0.03]� 0.830 [±0.06]�
Denza 0.886 [±0.03] 0.483 [±0.15] 20.460 [±9.63] 0.657 [±0.03] 0.789 [±0.12]

Ward

MO−RsP MR−O−RsP MN−RsP MR−N−RsP MN−I−RsP MO−I−N−RsP

Agg 0.565 [±0.01] 0.253 [±0.07] 0.867 [±0.03] 0.854 [±0.02] 0.932 [±0.02]� 0.150 [±0.01]
Denza 0.565 [±0.04] 0.298 [±0.03] 0.878 [±0.03] 0.854 [±0.03] 0.870 [±0.04] 0.237 [±0.10]

MC−I MNC−I−RsP MNR−RsP MP MRF

Agg 0.993 [±0.01]� 0.394 [±0.11] 17.587 [±7.99] 0.619 [±0.04] 0.805 [±0.11]
Denza 0.921 [±0.05] 0.385 [±0.22] 18.057 [±7.61] 0.618 [±0.04] 0.804 [±0.12]

Income

Algorithm Measure MO−RsP MR−O−RsP MN−RsP MR−N−RsP MN−I−RsP MO−I−N−RsP

PAM

Agg 0.909 [±0.03]� 0.134 [±0.05] 0.979 [±0.01] 0.871 [±0.04] 0.844 [±0.10] 0.942 [±0.04]�
Denza 0.876 [±0.03] 0.156 [±0.10] 0.983 [±0.00]� 0.894 [±0.03] 0.924 [±0.05]� 0.833 [±0.08]

MC−I MNC−I−RsP MNR−RsP MP MRF

Agg 0.898 [±0.07] 0.640 [±0.15] 238.519 [±120.36]� 0.654 [±0.06] 0.759 [±0.16]
Denza 0.938 [±0.03] 0.643 [±0.23] 300.608 [±169.34] 0.666 [±0.06]� 0.786 [±0.13]�

Ward

MO−RsP MR−O−RsP MN−RsP MR−N−RsP MN−I−RsP MO−I−N−RsP

Agg 0.871 [±0.07] 0.173 [±0.09]� 0.980 [±0.00] 0.888 [±0.04] 0.909 [±0.05] 0.782 [±0.10]
Denza 0.879 [±0.06] 0.120 [±0.10] 0.978 [±0.01] 0.901 [±0.04]� 0.869 [±0.08] 0.782 [±0.08]

MC−I MNC−I−RsP MNR−RsP MP MRF

Agg 0.942 [±0.05]� 0.612 [±0.12] 241.775 [±134.24] 0.632 [±0.07] 0.773 [±0.13]
Denza 0.916 [±0.04] 0.681 [±0.15]� 249.930 [±139.44] 0.644 [±0.08] 0.773 [±0.11]

Groceries

Algorithm Measure MO−RsP MR−O−RsP MN−RsP MR−N−RsP MN−I−RsP MO−I−N−RsP

PAM

Agg 0.981 [±0.03] 0.429 [±0.17] 0.807 [±0.05]� 0.948 [±0.03] 0.500 [±0.11] 1.000 [±0.00]�
Denza 1.000 [±0.00]� 0.100 [±0.07] 0.798 [±0.07] 0.880 [±0.02] 0.567 [±0.17]� 1.000 [±0.00]�

MC−I MNC−I−RsP MNR−RsP MP MRF

Agg 1.000 [±0.00]� 0.909 [±0.06]� 11.238 [±4.41] 0.613 [±0.10] 0.833 [±0.10]
Denza 0.933 [±0.08] 0.714 [±0.19] 18.178 [±8.58] 0.558 [±0.10] 0.800 [±0.09]

Ward

MO−RsP MR−O−RsP MN−RsP MR−N−RsP MN−I−RsP MO−I−N−RsP

Agg 1.000 [±0.00]� 0.894 [±0.13]� 0.245 [±0.27] 0.997 [±0.01]� 0.367 [±0.45] 1.000 [±0.00]�
Denza 1.000 [±0.00]� 0.509 [±0.37] 0.538 [±0.27] 0.949 [±0.06] 0.567 [±0.36]� 1.000 [±0.00]�

MC−I MNC−I−RsP MNR−RsP MP MRF

Agg 0.367 [±0.45] 0.792 [±0.09] 1.866 [±1.05]� 0.893 [±0.09]� 0.966 [±0.04]�
Denza 0.700 [±0.40] 0.850 [±0.03] 5.978 [±4.29] 0.758 [±0.15] 0.950 [±0.08]

Sup

Algorithm Measure MO−RsP MR−O−RsP MN−RsP MR−N−RsP MN−I−RsP MO−I−N−RsP

PAM

Agg 0.778 [±0.03] 0.990 [±0.01] 0.996 [±0.00]� 0.999 [±0.00] 1.000 [±0.00]� 1.000 [±0.00]�
Denza 0.849 [±0.09] 0.920 [±0.09] 0.971 [±0.05] 0.999 [±0.00] 0.924 [±0.15] 0.972 [±0.03]

MC−I MNC−I−RsP MNR−RsP MP MRF

Agg 1.000 [±0.00]� 0.909 [±0.06]� 528.422 [±735.64] 0.496 [±0.06] 0.971 [±0.03]
Denza 0.959 [±0.08] 0.855 [±0.13] 845.059 [±942.35] 0.538 [±0.09] 0.960 [±0.03]

Ward

MO−RsP MR−O−RsP MN−RsP MR−N−RsP MN−I−RsP MO−I−N−RsP

Agg 0.952 [±0.05]� 1.000 [±0.00]� 0.245 [±0.25] 1.000 [±0.00]� 0.055 [±0.07] 0.993 [±0.01]
Denza 0.946 [±0.05] 1.000 [±0.00]� 0.848 [±0.11] 0.999 [±0.00] 0.641 [±0.24] 0.993 [±0.01]

MC−I MNC−I−RsP MNR−RsP MP MRF

Agg 0.228 [±0.10] 0.864 [±0.04] 1.439 [±0.54]� 0.961 [±0.02]� 1.000 [±0.00]�
Denza 0.669 [±0.20] 0.885 [±0.05] 437.856 [±863.97] 0.862 [±0.05] 0.978 [±0.03]

representative than the others – observe, for example, that while in Ward:Agg
MR−O−RsP presents a performance above 89 %, the others presents a perfor-
mance below 50 % (see also MNR−RsP and MP).

Sup. The most suitable configuration for this data set is Ward:Agg , since it
presents better results in 6 of the 11 metrics (in 5 excluding the ties). Further-
more, it can be noticed that in some cases the values in Ward:Agg are more

Metrics for Association Rule Clustering Assessment 119

representative than the others (see MNR−RsP and MP). However, PAM:Agg
can also be useful, since it presents better results in 5 of the 11 metrics (also 5
excluding the ties). Thus, in this case, the user can choose one of them based on
the importance each metric represents to him in the considered problem.

Therefore, considering the user selected and used the configurations presented
in Table 3, it can be observed that the most suitable clustering setup according
to the metrics is PAM:Agg for Adult, PAM:Denza for Income and Ward:Agg
for Groceries and Sup. In other words, the user will obtain better results, i.e.,
reasonable rule sets, if he initially clusters Adult through PAM:Agg, Income
through PAM:Denza and Groceries and Sup through Ward:Agg. However, in
other situations, different aspects can be of interesting, providing to the user a
flexible way to explore his problems: the user can choose the metrics to apply
and their better interpretations (lower/higher values (as mentioned in some of
the metrics (Sect. 4))). Thus, in this first situation, the metrics provide criteria to
carry out comparisons, helping the user to select the most suitable methodology
for his problem.

From that point, supposing that PAM:Agg is a suitable solution for the user’s
problem regarding Adult, it is possible to analyze the process itself, i.e., to check
if good results are really obtained (the same is valid for the other data sets).
Observe that different interests may be important for his decision. Thus, the
metrics provide criteria not only to analyze the process, but also to identify
its positive and negative aspects, helping the user to reach a conclusion. To
discuss this second situation, Table 5 presents the values of the metrics, in the
selected clustering setup, regarding Adult (although this second situation is only
discussed on Adult, the same analysis can be done to the other data sets). These
values are the ones presented in Table 4, but in their original scales, since the
smaller scales (↓) were previous converted – the larger scales (↑) remain the
same. The scale, in each metric, is found between “[]”. It can be noticed that:

MO−RsP : little knowledge is lost during the process, around 20 %, since more
than 80 % of the rules in RsT are found in RsP – being a positive aspect.

MR−O−RsP : the repetition of “old” rules in RsP is high, around 66 %, indicating
that the knowledge, already known, is not in subdomains that express its
own associations – being a negative aspect.

MN−RsP : most of the rules in RsP are “new”, around 83 %, indicating the dis-
covery of a great amount of knowledge previously unknown – being a positive
aspect.

MR−N−RsP : the repetition of “new” rules in RsP is low, around 11 %, indicating
that the knowledge, previously unknown, is in subdomains that express its
own associations – being a positive aspect.

MN−I−RsP : nearly half of the h-top interesting rules in RsP are “new”, around
59 %, indicating that the cost of the process is minimized by the discovery of
interesting knowledge, previously unknown, in RsP – being a positive aspect.

MO−I−N−RsP : the loss of “old” and interesting knowledge is low, around 16 %,
since a great amount of the h-top interesting rules in RsT are found in RsP,
around 84 % (100% − 16%) – being a positive aspect.

120 V.O. de Carvalho et al.

MC−I : the intersection between the h-top interesting rules in RsP and the h-
top interesting rules in RsT is high, around 78 %, indicating that a great
amount of the knowledge already known as interesting in RsT is found in
RsP – being a positive aspect.

MNC−I−RsP : the number of groups that contain the h-top interesting rules in
RsP is high, around 45 % – being a negative aspect, since many groups would
have to be explored once the “new” relevant knowledge of the domain would
be spread over the clusters.

MNR−RsP : the number of rules in RsP is only around 12 times greater in relation
to RsT – being a positive aspect (it can be seen in Table 4 that this ratio
can be very high).

MP : the selected clustering setup provides a suitable distribution of the
domain topics, since the labels represent the rules in the clusters at a ratio
around 70 % – being a positive aspect.

MRE : the selected clustering setup provides a suitable distribution of the
domain topics, since the distinct labels don’t repeat over the clusters at
a ratio around 83 % – being a positive aspect.

Table 5. Average of the proposed metrics in Adult, PAM:Agg clustering setup.

Data set MO−RsP [↑] MR−O−RsP [↓] MN−RsP [↑] MR−N−RsP [↓] MN−I−RsP [↑] MO−I−N−RsP [↓]

Adult
0.807 0.657 0.834 0.110 0.588 0.160

MC−I [↑] MNC−I−RsP [↓] MNR−RsP [↓] MP [↑] MRF [↑]
PAM:Agg 0.778 0.449 12.221 0.699 0.830

As seen, considering the positive and negative aspects of the process, the user
can analyze the results, according to his interests, and conclude if good results
were reached. It is relevant to mention that the importance of each percentage
depends on the user’s needs, on the data sets, etc., and, therefore, the metrics
provide a flexible way for him to explore the problems. Regarding the presented
context, it can be said that the process obtains reasonable results, since 9 of
the 11 aspects were considered positives. However, if the weight of the negative
aspects is more important to the user, he can discard the results. Moreover, he
can try to improve the process to obtain better results in these metrics, since he
has an overview of all the aspects. Thus, in this second situation, the metrics
provide criteria to analyze the process based on different interests, identifying
its positive and negative aspects, helping the user to reach a conclusion.

Finally, to complement and finalize the discussion, Fig. 11 presents the vari-
ation of h parameter in the four metrics that depend on that value: MN−I−RsP ,
MO−I−N−RsP , MC−I , MNC−I−RsP . The clustering setup related to each data
set is the one above identified as the most suitable. Axis x is related to h and
axis y to the metrics’ values. The metrics are represented by the different lines
in the graphics. Note that the metrics’ values related to h=10 % are the same
as the ones presented in Table 4 (as before, each metric’s value was obtained by
the average of the values in the metric over the values of k). It can be seen that:

Metrics for Association Rule Clustering Assessment 121

Fig. 11. Behavior of the h parameter in MN−I−RsP , MO−I−N−RsP , MC−I ,
MNC−I−RsP in each data set (Color figure online).

(a) MN−I−RsP [↑] (blue line) tends to become higher as h increases or tends to
assume a value close to the other h values; therefore, this metric presents better
results with high values of h; (b) MO−I−N−RsP [↓] (red line) tends to decrease
as h increases or tends to assume a value close to the other h values; therefore,
this metric presents better results with high values of h; (c) MC−I [↑] (green
line) does not present a pattern; however, while in the relational data sets the
values are close and high regardless the h value in the transactional ones the
values are close and low regardless the h value; (d) MNC−I−RsP [↓] (purple line)
tends to decrease as h increases or tends to assume a value close to the other h
values; therefore, this metric presents better results with high values of h.

7 Conclusion

In this paper, eleven metrics were proposed to provide an assessment procedure
in order to support the evaluation of methodologies that use clustering in the
pre-processing step. The metrics were developed to answer three main issues.
However, to propose the metrics, a subjective evaluation was done with some
users to understand each issue. Some experiments were carried out in order
to present how the metrics can be used. For that, two different situations were
regarded: (i) identify among some clustering setups the most suitable; (ii) analyze
the process itself. Through the experiments, it could be noticed that the metrics
provide criteria to: (a) analyze the methodologies, (b) identify their positive
and negative aspects, (c) carry out comparisons among them and, therefore,

122 V.O. de Carvalho et al.

(d) help the users to select the most suitable solution for their problems. Besides,
the metrics do the users think about aspects to be considered in the presented
context and provide to them a flexible way to explore the problems. Finally, this
paper complements [12]’s work, since the subjective evaluation is used to attest
the importance of the previous obtained results.

Acknowledgments. We wish to thank Fundação de Amparo à Pesquisa do Estado de
São Paulo (FAPESP) (processes numbers: 2010/07879-0 and 2011/19850-9) and Coor-
denação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) (process number
DS-6345378/D) for the financial support. Besides, we also want to thank the reviewers
for the great contributions.

Appendix: Questionnaire

Introduction. Many issues related to association rule mining have received
attention in the last years, especially the ones aiming to discover and facilitate
the search for the interesting patterns of the domain. One approach related
to this issue is the application of clustering in the pre-process step. In this
case, as noticed in the figure below, data are initially grouped in n groups
(GD1,GD2,...,GDn). From this initial clustering, the rules are then extracted
within each group (cluster), obtaining n groups of rules (GR1,GR2,...,GRn).
The aim is to obtain potentially interesting rules that would not be
extracted from unpartitioned data sets, for not having enough sup-
port, without overloading the user with a great amount of patterns.
The user must set the minimum support to a low value to discover these same
patterns from unpartitioned data sets, causing a rapidly increase in the number
of rules. Thereby, data are initially split and the rules are extracted within each
group, in a manner that each group expresses its own associations with-
out the interference of the other groups that contain different asso-
ciation patterns. Distinct methodologies have been proposed to enable this
process. Each methodology uses a different combination of clustering algorithms
and similarity measures in order to obtain the groups of rules.

Metrics for Association Rule Clustering Assessment 123

It is in this context that this evaluation should be done. Some scenarios that
can occur in this scope are shown below, waiting for your contribution for a better
understanding of the problem. In all the cases, it is assumed that two rule sets
are available, in order to evaluate the presented scenarios: one extracted through
traditional process, RsT7, and one extracted through clustering (process above
described), RsP8 – the examples presented below are merely illustrations of the
scenarios and, therefore, should not be evaluated considering the knowledge they
express. Based on this evaluation, the aim is to propose an assessment procedure
to support the analysis of the existing methodologies.

Scenarios

1. In your opinion, observing “Scenario-A” (Table 6), how do you consider the
occurrence of rules obtained in RsT in RsP (cases in green and orange)?
Both the cases, green and orange, represent rules obtained in both of the
sets, but the rules in orange are extracted more than once in RsP over the
groups. If needed to distinguish the green cases of the orange cases, please let
it indicated.
() desirable () indifferent () no desirable
a. Do you think important to consider this scenario in an assessment proce-
dure to be used in the presented context?
() yes () no
b. Would you like to make any comment about the scenario (advantage, dis-
advantage, etc.)?

2. In your opinion, observing “Scenario-A” (Table 6), how do you consider the
non-occurrence of rules obtained in RsP in RsT (cases in purple and red)?
Both the cases, purple and red, represent rules obtained only in RsP, but the
rules in red are extracted more than once in RsP over the groups. If needed
to distinguish the purple cases of the red cases, please let it indicated.
() desirable () indifferent () no desirable
a. Do you think important to consider this scenario in an assessment proce-
dure to be used in the presented context?
() yes () no
b. Would you like to make any comment about the scenario (advantage, dis-
advantage, etc.)?

For questions “3” to “6”, consider that for each rule set, RsP and RsT, it
is shown only the subset related to the n most interesting rules of the domain.
These subsets can be identified, for example, automatically, based on a set of
objective measures – assuming that objective measures are suitable to find the
most interesting knowledge of a given domain.
3. In your opinion, observing “Scenario-B” (Table 7), how do you consider the

non-occurrence of some (or none) of the n most interesting rules in RsP in
RsT (cases in blue)? Notice that the blue rules belong only to the RsP set.
() desirable () indifferent () no desirable

7 Rule set obtained through a traditional process.
8 Rule set obtained through a partitioned data.

124 V.O. de Carvalho et al.

Table 6. Scenario-A. This scenario was formulated based on the Sup data set described
in Sect. 5. In this scenario the rules in RsP are presented in their own clusters since
the aim here is to detach to the user the situations that can occur among the groups
(repetitions of rules) and between RsT and RsP (occurrence/non-occurrence of rules
between the sets).

RsT RsP

CALDO MAGGI & FERMROYAL ⇒ CREME DE LEITE NESTLE Clustern
PAPEL ALUMROLITTO & GELATINA ROYAL ⇒ FARTRIGO RENATA CALDO MAGGI & FERMROYAL ⇒ CREME DE LEITE NESTLE

PAPEL ALUMROLITTO & GELATINA ROYAL ⇒ FARTRIGO RENATA
MILHO VERDE QUERO & FEIJAO TORRESAN ⇒ ACHOCNESCAU
FERMROYAL & DETERGLIMPOL ⇒ LEITE MOCA

Clusterm
PAPEL ALUMROLITTO & GELATINA ROYAL ⇒ FARTRIGO RENATA
FERMROYAL & DETERGLIMPOL ⇒ LEITE MOCA

a. Do you think important to consider this scenario in an assessment proce-
dure to be used in the presented context?
() yes () no
b. Would you like to make any comment about the scenario (advantage, dis-
advantage, etc.)?

4. In your opinion, observing “Scenario-B” (Table 7), how do you consider the
reverse scenario? This is, the non-occurrence of some (or none) of the n most
interesting rules in RsT in RsP (cases in orange)? Notice that the orange
rules belong only to the RsT set.
() desirable () indifferent () no desirable
a. Do you think important to consider this scenario in an assessment proce-
dure to be used in the presented context?
() yes () no
b. Would you like to make any comment about the scenario (advantage, dis-
advantage, etc.)?

5. In your opinion, observing “Scenario-B” (Table 7), how do you consider the
existing intersection between the n most interesting rules in RsP and the n
most interesting rules in RsT (cases in red)?
() desirable () indifferent () no desirable
a. Do you think important to consider this scenario in an assessment proce-
dure to be used in the presented context?
() yes () no
b. Would you like to make any comment about the scenario (advantage, dis-
advantage, etc.)?

6. In your opinion, how do you would consider the spread of the n most inter-
esting rules in RsP in a small number of clusters?
() desirable () indifferent () no desirable
a. Do you think important to consider this scenario in an assessment proce-
dure to be used in the presented context?
() yes () no
b. Would you like to make any comment about the scenario (advantage, dis-
advantage, etc.)?

Metrics for Association Rule Clustering Assessment 125

Table 7. Scenario-B. This scenario was formulated based on the Sup data set described
in Sect. 5. In this scenario the rules in RsP are presented all together since, in this case,
only the n most interesting rules in the set are exhibited to the user, independently of
the group they were extracted – the aim here is to detach to the user the situations
that can occur between the subsets containing the n most interesting rules.

RsT RsP

n most interesting rules in RsT n most interesting rules in RsP

SPO MINERVA & BISCNESTLE & LEITE MOCA ⇒ ACHOCNESCAU ACUCAR CRISTAL DA BARRA & OLEO SOJA SOYA & SAL CISNE ⇒ FEIJAO TORRESAN
SHELSEVE & COCA COLA ⇒ LEITE MOCA FANTA & ACUCAR DA BARRA & LEITE MOCA ⇒ OLEO SOJA SOYA
LUSTRA MOVPOLIFLOR & CREME DE LEITE NESTLE ⇒ LEITE MOCA MILHO VERDE QUERO & FEIJAO TORRESAN ⇒ ACHOCNESCAU
CALDO MAGGI & FERMROYAL & LEITE MOCA ⇒ CREME DE LEITE NESTLE SHELSEVE & COCA COLA⇒ LEITE MOCA
NISSIM L AMEM & PAPEL HIGPERSONAL & BISCNESTLE ⇒ ACHOCNESCAU LUSTRA MOVPOLIFLOR & CREME DE LEITE NESTLE ⇒ LEITE MOCA
SCLIXO PLASLIXO & GELATINA ROYAL ⇒ ARROZ PRATO FINO CALDO MAGGI & FERMROYAL & LEITE MOCA ⇒ CREME DE LEITE NESTLE
LUSTRA MOVPOLIFLOR & ACUCAR UNIAO ⇒ LEITE MOCA NISSIM L AMEM & PAPEL HIGPERSONAL & BISCNESTLE ⇒ ACHOCNESCAU
OLEO SOJA SOYA & BISCNESTLE & COCA COLA⇒ LEITE MOCA PAPEL ALUMROLITTO & GELATINA ROYAL & FARTRIGO RENATA ⇒ BISCNESTLE
FEIJAO TORRESAN & PAPEL HIGPERSONAL & BISCNESTLE ⇒ LEITE MOCA SCLIXO PLASLIXO & GELATINA ROYAL ⇒ ARROZ PRATO FINO
LUSTRA MOVPOLIFLOR & VEJA MUSO ⇒ LEITE MOCA PAPEL ALUMROLITTO & GELATINA ROYAL ⇒ BISCNESTLE
VEJA MUSO & FERMROYAL ⇒ LEITE MOCA PAPEL ALUMROLITTO & GELATINA ROYAL & CREME DE LEITE NESTLE ⇒ FARTRIGO RENATA
OLEO SOJA SOYA & FERMROYAL & PAPEL HIGPERSONAL ⇒ ACUCAR DA BARRA OLEO SOJA SOYA & BISCNESTLE & COCA COLA ⇒ LEITE MOCA
DESINFPINHO & CREME DE LEITE NESTLE ⇒ LEITE MOCA SCLIXO PLASLIXO & GELATINA ROYAL & LEITE MOCA ⇒ ARROZ PRATO FINO
PAPEL ALUMROLITTO & GELATINA ROYAL ⇒ FARTRIGO RENATA FEIJAO TORRESAN & PAPEL HIGPERSONAL & BISCNESTLE ⇒ LEITE MOCA
CALDO KNORR & PAPEL HIGPERSONAL ⇒ LEITE MOCA OLEO SOJA SOYA & FERMROYAL & PAPEL HIGPERSONAL ⇒ ACUCAR DA BARRA
FEIJAO TORRESAN & OLEO SOJA SOYA & ACHOCNESCAU ⇒ LEITE MOCA DESINFPINHO & CREME DE LEITE NESTLE ⇒ LEITE MOCA
CARGA GILLETTE & BOMBRIL ⇒ LEITE MOCA ESPONJA BOMBRIL & ACHOCNESCAU & BISCNESTLE ⇒ LEITE MOCA
SABPROTEX & AGUA SANITCANDURA ⇒ PAPEL HIGPERSONAL PAPEL ALUMROLITTO & GELATINA ROYAL ⇒ FARTRIGO RENATA
OLEO SOJA SOYA & PAPEL HIGPERSONAL & BISCNESTLE ⇒ LEITE MOCA FEIJAO TORRESAN & OLEO SOJA SOYA & ACHOCNESCAU ⇒ LEITE MOCA
PAPEL ALUMROLITTO & GELATINA ROYAL & BISCNESTLE ⇒ FARTRIGO RENATA CALDO MAGGI & FERMROYAL & BISCNESTLE ⇒ CREME DE LEITE NESTLE
OLEO SOJA SOYA & FEIJAO BROTO LEGAL ⇒ LEITE MOCA SABPROTEX & AGUA SANITCANDURA ⇒ PAPEL HIGPERSONAL
NESCAFE TRADICAO & COCA COLA ⇒ LEITE MOCA OLEO SOJA SOYA & PAPEL HIGPERSONAL & BISCNESTLE ⇒ LEITE MOCA
AGUA SANITCANDURA & GELATINA ROYAL ⇒ FARTRIGO RENATA PAPEL ALUMROLITTO & GELATINA ROYAL & BISCNESTLE ⇒ FARTRIGO RENATA
AMACCOMFORT & FARTRIGO RENATA & CREME DE LEITE NESTLE ⇒ LEITE MOCA OLEO SOJA SOYA & FEIJAO BROTO LEGAL ⇒ LEITE MOCA
REQCATUPIRY & CREME DE LEITE NESTLE ⇒ LEITE MOCA ESPONJA BOMBRIL & FERMROYAL & LEITE MOCA ⇒ CREME DE LEITE NESTLE
ESPONJA BOMBRIL & ACHOCNESCAU ⇒ LEITE MOCA AGUA SANITCANDURA & GELATINA ROYAL ⇒ FARTRIGO RENATA
LUSTRA MOVPOLIFLOR & BISCNESTLE ⇒ LEITE MOCA AMACCOMFORT & FARTRIGO RENATA & CREME DE LEITE NESTLE ⇒ LEITE MOCA
ESPONJA BOMBRIL & DETERGLIMPOL & LEITE MOCA ⇒ ACHOCNESCAU REQCATUPIRY & CREME DE LEITE NESTLE ⇒ LEITE MOCA
CALDO MAGGI & FERMROYAL ⇒ CREME DE LEITE NESTLE ESPONJA BOMBRIL & ACHOCNESCAU ⇒ LEITE MOCA

CDCLOSEUP & ACHOCNESCAU & LEITE MOCA ⇒ BISCNESTLE
PAPEL ALUMROLITTO & GELATINA ROYAL & LEITE MOCA ⇒ FARTRIGO RENATA
CALDO MAGGI & FERMROYAL ⇒ CREME DE LEITE NESTLE

7. In your opinion, do you consider that the amount of rules to be extracted
through clustering, compared to the traditional process, should be:
() low () average () high
a. Do you think important to consider this scenario in an assessment proce-
dure to be used in the presented context?
() yes () no
b. Would you like to make any comment about the scenario (advantage,
disadvantage, etc.)?

8. In your opinion, only in relation to RsP, do you consider that the clustering
process should, as a consequence, enable each cluster to express a distinct
topic of the domain?
() yes () indifferent () no
a. Do you think important to consider this scenario in an assessment proce-
dure to be used in the presented context?
() yes () no

b. Would you like to make any comment about the scenario (advantage,
disadvantage, etc.)?

9. Can you identify other scenario(s), not previously explored, that can be rel-
evant to the presented context? Give an example of the scenario(s) that you
identified.
a. Do you think important to consider this(these) scenario(s) in an assess-
ment procedure to be used in the presented context?
() yes () no

10. If you want to leave any comment/observation, please do it below.

126 V.O. de Carvalho et al.

References

1. Wu, X., Kumar, V.: The Top Ten Algorithms in Data Mining. Chapman &
Hall/CRC, Boca Raton (2009)

2. Dadaser-Celik, F., Celik, M., Dokuz, A.S.: Associations between stream flow and
climatic variables at Kizilirmak river basin in Turkey. Glob. NEST J. 14(3), 354–
361 (2012)

3. Xiao, G.: Association rules algorithm in bank risk assessment. In: Lee, J. (ed.)
Advanced Electrical and Electronics Engineering. LNEE, vol. 87, pp. 675–681.
Springer, Heidelberg (2011)

4. Nuwangi, S.M., Oruthotaarachchi, C.R., Tilakaratna, J.M.P.P., Caldera, H.A.:
Usage of association rules and classification techniques in knowledge extraction of
diabetes. In: Proceedings of the 6th International Conference on Advanced Infor-
mation Management and Service, pp. 372–377 (2010)

5. Rajasekar, U., Weng, Q.: Application of association rule mining for exploring the
relationship between urban land surface temperature and biophysical/social para-
meters. Photogram. Eng. Remote Sens. 75(3), 385–396 (2009)

6. Changguo, Y., Nianzhong, W., Tailei, W., Qin, Z., Xiaorong, Z.: The research on
the application of association rules mining algorithm in network intrusion detec-
tion. In: Proceedings of the 1st International Workshop on Education Technology
and Computer Science, vol. 2, pp. 849–852 (2009)

7. Koh, Y.S., Pears, R.: Rare association rule mining via transaction clustering. In:
7th Australasian Data Mining Conference. CRPIT, vol. 87, pp. 87–94 (2008)

8. Maquee, A., Shojaie, A.A., Mosaddar, D.: Clustering and association rules in ana-
lyzing the efficiency of maintenance system of an urban bus network. Int. J. Syst.
Assur. Eng. Manage. 3(3), 175–183 (2012)

9. Farajian, M.A., Mohammadi, S.: Mining the banking customer behavior using
clustering and association rules methods. Int. J. Ind. Eng. Prod. Res. 21(4), 239–
245 (2010)

10. Fan, L.: Research on classification mining method of frequent itemset. J. Conver-
gence Inf. Technol. 5(8), 71–77 (2010)

11. Plasse, M., Niang, N., Saporta, G., Villeminot, A., Leblond, L.: Combined use
of association rules mining and clustering methods to find relevant links between
binary rare attributes in a large data set. Comput. Stat. Data Anal. 52(1), 596–613
(2007)

12. de Carvalho, V.O., dos Santos, F.F., Rezende, S.O.: Metrics to support the eval-
uation of association rule clustering. In: Bellatreche, L., Mohania, M.K. (eds.)
DaWaK 2013. LNCS, vol. 8057, pp. 248–259. Springer, Heidelberg (2013)

13. Aggarwal, C.C., Procopiuc, C., Yu, P.S.: Finding localized associations in market
basket data. IEEE Trans. Knowl. Data Eng. 14(1), 51–62 (2002)

14. Wang, K., Xu, C., Liu, B.: Clustering transactions using large items. In: 8th Inter-
national Conference on Information and Knowledge Management, pp. 483–490
(1999)

15. Yun, C.-H., Chuang, K.-T., Chen, M.-S.: An efficient clustering algorithm for
market basket data based on small large ratios. In: 25th International Computer
Software and Applications Conference on Invigorating Software Development, pp.
505–510 (2001)

16. Wang, J., Karypis, G.: Summary: efficiently summarizing transactions for cluster-
ing. In: 4th IEEE International Conference on Data Mining, pp. 241–248 (2004)

Metrics for Association Rule Clustering Assessment 127

17. Yang, L.: Pruning and visualizing generalized association rules in parallel coordi-
nates. IEEE Trans. Knowl. Data Eng. 17(1), 60–70 (2005)

18. D’Enza, A.I., Palumbo, F., Greenacre, M.: Exploratory data analysis leading
towards the most interesting binary association rules. In: 11th Symposium on
Applied Stochastic Models and Data Analysis, pp. 256–265 (2005)

19. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An exten-
sive comparative study of cluster validity indices. Pattern Recogn. 46(1), 243–256
(2013)

20. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
J. Intell. Inf. Syst. 17(2/3), 107–145 (2001)

21. Carvalho, V.O., Biondi, D.S., Santos, F.F., Rezende, S.O.: Labeling methods for
association rule clustering. In: Proceedings of the 14th International Conference
on Enterprise Information Systems, pp. 105–109 (2012)

22. Padua, R., Carvalho, V.O., Serapião, A.B.S.: Labeling association rule clustering
through a genetic algorithm approach. In: Proceedings of the 17th East European
Conference on Advances in Databases and Information Systems, pp. 45–52 (2013)

23. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right objective measure for
association analysis. Inf. Syst. 29(4), 293–313 (2004)

24. Xu, R., Wunsch, D.: Clustering. Computational Intelligence. IEEE Press/Wiley,
New York (2008)

25. Carvalho, V.O., Santos, F.F., Rezende, S.O., Padua, R.: PAR-COM: a new method-
ology for post-processing association rules. Lect. Notes Bus. Inf. Process. 102,
66–80 (2012)

26. Carvalho, V.O., Santos, F.F., Rezende, S.O.: Post-processing association rules with
clustering and objective measures. In: Proceedings of 13th International Conference
on Enterprise Information Systems, vol. 1, pp. 54–63 (2011)

Author Index

Acharya, Saurav 45

Costa, João Pedro 1

de Carvalho, Veronica Oliveira 97
dos Santos, Fabiano Fernandes 97

Furtado, Pedro 1

Grabocka, Josif 74

Lin, Jian 24
Liu, Wei 24

Rezende, Solange Oliveira 97

Schmidt-Thieme, Lars 74
Suk Lee, Byung 45

Zha, Li 24
Zhang, Jie 24

	Special Issue of DaWak 2013
	Organization
	Editorial Board
	Contents
	Data Warehouse Processing Scale-Up for Massive Concurrent Queries with SPIN
	Abstract
	1 Introduction
	2 Related Work
	3 The SPIN Processing Model
	3.1 Query Registering and Processing
	3.2 SPIN Operators and Data Processing Pipelines
	3.3 Workload Processing Tree (WT) and Logical Data Paths
	3.4 Building the Workload Processing Tree
	3.5 Merging and Reusing Intermediate Results
	3.6 Query Handling and Workload Processing Tree Reorganization

	4 SPIN Prototype
	4.1 The Data Access Layer
	4.2 The Query Handler Layer
	4.3 The SPIN Processing Layer

	5 Evaluation
	5.1 Influence of Number of Queries in Query Performance
	5.2 Influence of Number of Queries in Throughput
	5.3 Influence of the Data Volume in Throughput
	5.4 Influence of the Workload Query Pattern in Query Performance

	6 Conclusions
	Appendix A
	References

	An Uncoupled Data Process and Transfer Model for MapReduce
	1 Introduction
	1.1 Reduce Slot Hoarding Problem
	1.2 Underutilized Network Bandwidth Problem
	1.3 Inefficient Storage Problem

	2 The Uncoupled MapReduce Model
	3 Architecture and Implementation
	3.1 Master Control Module
	3.2 Data Transfer Module
	3.3 Fault Tolerance Module
	3.4 Data Compress Module

	4 Evaluations
	4.1 Micro-Benchmark
	4.2 Real-World Example

	5 Related Work
	6 Conclusion and Future Work
	References

	Enhanced Fast Causal Network Inference over Event Streams
	1 Introduction
	2 Related Work
	3 Basic Concepts
	3.1 Event Streams
	3.2 Causal Networks
	3.3 Conditional Mutual Information
	3.4 The PC Algorithm

	4 Learning Temporal Precedence Relationships
	4.1 Temporal Network Model
	4.2 Order-Aware Temporal Network Inference Algorithm

	5 Learning Causal Network in Reduced Time
	5.1 Key Ideas
	5.2 Enhanced Fast Causal Network Inference Algorithm
	5.3 Correctness of the Algorithm
	5.4 Complexity Analysis

	6 Performance Evaluation
	6.1 Experiment Setup
	6.2 Datasets
	6.3 Experiment Results

	7 Conclusion and Future Work
	References

	Learning Through Non-linearly Supervised Dimensionality Reduction
	1 Introduction
	2 Related Work
	2.1 Dimensionality Reduction
	2.2 Matrix Factorization
	2.3 Supervised Dimensionality Reduction

	3 Proposed Method
	3.1 Principle
	3.2 Introduction to Supervised Dimensionality Reduction
	3.3 Matrix Factorization as Dimensionality Reduction
	3.4 Linearly Supervised Dimensionality Reduction
	3.5 Nonlinearly Supervised Dimensionality Reduction
	3.6 Algorithm for Learning the Non-linearly Supervised Dimensionality Reduction

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Results
	4.3 Run-Time Disadvantage

	5 Conclusions
	References

	Metrics for Association Rule Clustering Assessment
	1 Introduction
	2 Related Works
	3 Understanding the Issues Through a Subjective Evaluation
	4 Evaluation Metrics: Providing an Assessment Procedure
	5 Experiments
	6 Results and Discussion
	7 Conclusion
	References

	Author Index

