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5.1 Introduction

The human genome contains a large number of
genes, each of which may be viewed as a specific
genomic segment that encodes information for
one or several defined functions. Parts of the
DNA sequence of a gene are transcribed into
RNA that is then translated into protein. The vast
majority of genes encode one or several proteins,
and the intermediate RNA product is therefore
referred to as messenger RNA, or mRNA.
However, there are a number of genes producing
non-coding RNA molecules, such as ribosomal
RNA (rRNA), transfer RNA (tRNA), or micro
RNA, among others, where the RNA molecules
have a variety of functions by themselves. All
forms of RNA molecules are the subject of gene
expression studies but different technologies may
be required to investigate different types of RNA.

Figure 5.1 provides a basic overview of the
central information flow in biology and the var-
ious analytical techniques and areas of genetic
and epidemiological investigation related to it.

The main focus of human genetic epidemiolog-
ical research is to identify the genes, and their
variants, which influence our individual charac-
teristics, with the most emphasis (and money)
directed toward diseases and other clinically
relevant traits. The statistical methods for corre-
lating genotypes and phenotypes are referred to
as linkage analysis and association analysis. For
this type of analysis, genotype data must be
generated. Over the last several years, aided by
astounding progress in genomic and other labo-
ratory technologies, a variety of additional
approaches have gained popularity to investigate
the genetic etiology of human diseases and their
pathology. These approaches are complementary
to genotype-based linkage and association anal-
ysis (and to each other), providing additional
information that can be used to understand the
biology of human conditions. These approaches
include correlation analysis between a trait of
interest and gene expression levels. This analysis
requires quantification of gene expression levels
rather than genotyping. Similar techniques
include proteomic (Kooij et al. 2014; Van Eyk
2011) and metabolomic profiling (Kettunen et al.
2012; Sreekumar et al. 2009; Tukiainen et al.
2012) (or methylomic profiling (Mill and Heij-
mans 2013), which involves assessment of DNA
methylation status; not shown in Fig. 5.1). In
each case, the goal is to correlate a trait of
interest to measured levels of transcripts, pro-
teins, or metabolites, in order to identify any
processes that are connected, in some manner, to
the trait of interest.

H.H.H. Göring (&)
Department of Genetics, Texas Biomedical Research
Institute, PO Box 760549, San Antonio TX
78245-0549, USA
e-mail: hgoring@txbiomedgenetics.org

H.H.H. Göring
Department of Genetics, Texas Biomedical Research
Institute, 7620 NW Loop 410, San Antonio TX
78227, USA

R. Duggirala et al. (eds.), Genome Mapping and Genomics in Human and Non-Human Primates,
Genome Mapping and Genomics in Animals 5, DOI 10.1007/978-3-662-46306-2_5,
© Springer-Verlag Berlin Heidelberg 2015

67



It is now possible to simultaneously quantify
the abundance of essentially all transcripts in a
tissue sample (or even a single cell) using modern
genomic technologies. The characterized tran-
scriptome can then be used for two main pur-
poses: First, the abundance of individual
transcripts (or sets of transcripts) can be corre-
lated with a trait of interest in order to identify
those that are significantly correlated with the
trait. The genes encoding these transcripts may
possibly be involved in the etiology of the trait,
and/or it may be that the trait in turn has an impact
on the expression levels of these genes. I will
refer to this type of investigation as transcrip-
tional correlation analysis, transcriptional profil-
ing, transcriptomic profiling, or gene expression
profiling. Second, each transcript may be viewed
as a trait whose genetic regulation can be inves-
tigated by statistical genetic technologies, in order
to identify genomic variants that influence the
transcriptional activity of the gene being exam-
ined. This second type of investigation is some-
times referred to as “genetical genomics” (de
Koning and Haley 2005; Jansen and Nap 2001), a
terminology which I view as confusing and which
I will not use here. Both of these investigations
involving gene expression data—transcriptional
profiling and genetic regulation of gene expres-
sion—are the topics of this chapter.

Another way to describe the central analyses
involving gene expression data in genetic epi-
demiological research is shown in Fig. 5.2. There
are three central information sources available to

us—trait phenotypes, gene expression levels, and
genotypes––and these permit three types of cor-
relations to be analyzed. The traditional associ-
ation analysis (or linkage analysis) investigates
the relationship between trait phenotypes and
genotypes at polymorphic variants (shown on the
left side of Fig. 5.2). Assuming that the genetic
variants influencing a trait of interest exert their
effect via modulation of gene expression, gene
expression data may be viewed as an intermedi-
ate trait between genotype and clinical outcome
of interest, and the overall correlation between
genotype and trait phenotype may be viewed as
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an amalgamation of the correlation between
genotype and gene expression level and between
gene expression level and the trait phenotype.
Again, these are the two types of investigations
involving gene expression data commonly
undertaken, here referred to as transcriptional
profile analysis and analysis of the genetic reg-
ulation of gene expression, respectively, as
mentioned previously.

Perhaps the main motivation behind tran-
scriptional investigations at the present time is
the observation that most of the genetic variants
that are significantly associated with complex
traits (as typically identified in genome-wide
association studies, or GWAS) do not alter the
amino acid sequence of proteins or have any
other obvious functional effect (Hindorff et al.
2009; Visscher et al. 2012; Welter et al. 2014). In
many cases, the associated variants are located
outside of genomic regions known to be part of a
gene. This leads to the speculation that the
variants underlying complex traits are often
regulatory in nature. This is in contrast to the
genetic defects underlying many Mendelian dis-
orders, many of which directly impact the protein
sequence, thereby altering or abolishing protein
function. While the activity of genes is regulated
at many different levels, including at the stage of
transcription, translation, and post-translationally
by modification of proteins, transcriptional reg-
ulation is a critical component, and the abun-
dance of transcripts can be assessed more readily
and more comprehensively than the amounts of
proteins and their modifications, due to the
pairing potential of the building blocks of DNA
and RNA, which is what makes amplification via
PCR possible. It is important to note that tran-
scriptional regulation itself is a highly complex
process, with multiple potential stages of regu-
lation, including in the location, timing, and
speed of transcription, in the decay of transcripts,
in the usage of alternative promoters, transcrip-
tional stops, and different splice sites (which lead
to the existence of potentially many different
transcripts per gene), in other RNA editing pro-
cesses, and at other steps which are not yet
understood. When gene expression level is
measured using some molecular technique in the

laboratory, we often do not know whether it is a
higher transcription rate or a lower rate of decay
(or both) that is behind the observed high abun-
dance of a given transcript. Fortunately, this does
not complicate the statistical analyses per se, but
this uncertainty must be taken into account when
interpreting the results. Note also that terms such
as “gene expression level” or “transcript level”
are often not well-defined in manuscripts, with
sloppy wordage widespread. In most cases, what
is measured is the abundance of RNA detected
by some specific probe (as in microarray studies)
or the number of RNA sequencing (RNAseq)
reads belonging to a gene or parts of a gene (such
as an exon). Quantifying specific transcripts is
actually very challenging even now and is not
routinely undertaken in most large-scale tran-
scriptomic studies.

This book chapter focuses on the overall
concepts related to gene expression studies.
Details on the laboratory and analytical methods
of these studies are beyond the scope here. This
field of investigation is developing rapidly and
gaining in popularity, and I will only focus on
some key aspects of these types of studies. The
references cited here are only a small selection of
the rapidly expanding literature; the reader is
encouraged to find additional, and potentially
newer or better, references on his/her own.

5.2 Correlation Analysis Between
Trait Phenotypes
and Expression Levels

As mentioned, gene expression data permits us to
correlate trait phenotypes with gene expression
levels. Those genes whose expression level is
significantly correlated (after appropriate multi-
ple testing correction) with the trait of interest are
presumably somehow related to that trait, and the
set of genes may shed light on the biological
pathways related to trait etiology or physiology.
The large literature on complex trait gene map-
ping studies, in particular GWAS studies
(Hindorff et al. 2009; Visscher et al. 2012; Welter
et al. 2014), clearly shows that individual com-
mon variants associated with the risk of a
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complex disease can be localized. However, it
should not be forgotten that this is a challenging
undertaking even for common variants, typically
requiring sample sizes that were unimaginable
only a few years ago. The reason is that these
variants individually only modestly influence the
risk (of some disease) for a person, and at a
population level account for only a small fraction
of trait heritability. Common variants with a
large influence on penetrance are very rare for
complex traits. One example is ApoE4 and
Alzheimer’s disease (Corder et al. 1993; Stritt-
matter et al. 1993). It seems likely that for many
complex diseases low frequency variants of high
penetrance exist (Terwilliger and Göring 2009),
but these variants are difficult to localize because
of their rarity. Conceptually, transcriptional pro-
file studies could be more powerful. One intuitive
reason may be that many functional variants
within a gene could be assessed simultaneously
using this approach, as long as these variants
influence the expression level that can be mea-
sured. In effect, the expression level is a read-out
that combines the effects of all regulatory vari-
ants impacting transcription, and it might there-
fore be easier to identify genes related to a trait of
interest. At least that is the argument that is often
made (It may also be the case that the multiple
testing burden is somewhat reduced compared to
genome-wide analysis of sequence variants, but
this may no longer hold as our molecular tech-
niques for gene expression characterization
become ever better, leading to discovery of many
alternative transcripts per gene).

Despite the general promise and potential,
correlation studies between a clinical trait and
transcript data have substantial drawbacks. For
illustration, let us contrast these studies with a
linkage or association study that is based on
genotype data. When significant evidence of
linkage and/or association has been found, it is
clear that a causal factor in the etiology of the
trait being studied has been localized (assuming
that the finding is not a false positive, the
approximate risk of which can be gleaned from
the obtained significance level). We may not
know which gene(s) and which variant(s) in the
mapped candidate region are causal, but it is

certain that the identified genomic region harbors
one or several variants that influence the trait
being investigated. The only real concern related
to study design is that the study subjects are
matched for ethnicity, which really means that
the genome-wide allele frequencies are very
similar in cases and controls. If this concern is
avoided by design from the outset, such as by
ascertaining cases and controls from the same
ethnically homogeneous population, or even by a
variety of statistical control techniques after
ascertainment, and if there is no difference in
genotyping approach and quality between both
groups, then a causal inference is warranted. [As
an aside: One more caveat is that the relationship
between genotype and trait risk may not be
direct. One example is the FTO locus that was
first identified as a risk locus for type II diabetes
in a case-control study of that disease (Zeggini
et al. 2007). It ultimately turned out that it is
really an obesity locus (Frayling et al. 2007) that
was mapped in the diabetes study because the
cases and controls had different average body
mass index levels because of the correlation
between obesity and diabetes in the population.]
Note that in such genetic studies it is not abso-
lutely crucial (though it may help power and be
therefore warranted) that cases and controls are
matched for other characteristics, such as sex,
age, socioeconomic status, or smoking habits.
The key reason behind all these characteristics of
linkage and association studies is that genotypes
are constant throughout life. Ignoring many
exceptions here for simplicity, genotypes are the
same in all cells of an individual and are inde-
pendent of environmental factors to which a
person is exposed.

The situation is very different in studies
relating a trait of interest to transcript abundance.
The expression level of a given gene is not the
same in all cells of a body, and the expression
level is often influenced by factors of the external
environment as well as of the internal environ-
ment (i.e., the body and its conditions). The
ramifications of this are profound. First, if a
significant correlation between disease and gene
expression has been observed, the cause–effect
relationship is not clear. To stay with diabetes as
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our example, it is possible that significant tran-
scriptional correlates of the disease are involved
in the etiology of the trait (as the loci identified in
genetic association studies definitely are). It is
also possible that the identified genes are them-
selves influenced in their expression by the dis-
ease. And both relationships could exist at the
same time. The former would be useful to learn
about trait etiology, while the latter would inform
about pathophysiology. Upfront, it is not clear
whether the identified transcripts “act upstream
or downstream” of the studied disease. A pro-
spective study design or other timeline tech-
niques may help to clarify what is cause and what
is effect. Perturbation studies, in which gene
expression of a sample is taken before and after
some type of manipulation, such as exposure to a
chemical, may also help in addressing the
ordering of the observed significant correlations.

Second, it is possible that confounder vari-
ables could explain the observed, statistically
significant correlations between trait and tran-
scripts. For example, it is possible that, say, the
diabetic study participants take medications that
the control individuals do not; or that the dia-
betics on average eat a different diet than the
controls; or that they exercise less than the con-
trols; and so on. All of these differences between
cases and controls, individually or jointly, could
potentially explain the observed differences in
transcript levels, in which case the observed
significant correlations would be artifacts caused
by confounder variables. It is very difficult to
exclude this possibility in transcriptional profile
studies. It is advisable to match cases and con-
trols for as many possible confounder variables
as possible, or to measure known confounders
and subsequently account for their effects ana-
lytically. However, the identity of these con-
founders is often not known or they cannot be
measured accurately. A possible solution is to
use the transcriptional profile data itself as a way
to identify potential confounders. One example
of this is to use the expression levels of “indi-
cator genes” to infer the cell type composition of
a tissue sample (such as blood) (Gaujoux and
Seoighe 2013). A general approach could be
implemented based on principal components

analysis, and the top principal components
(which tag the key sources of covariation in the
expression data, many of which may be related to
potential confounder variables) could be subse-
quently regressed out. The difficulty here is that
this approach risks removing the very relation-
ship between trait and gene expression that one
seeks to identify; in essence, one may throw out
the baby with the bathwater.

Third, tissue specificity of gene expression
comes into play. In many cases, the appropriate
target tissue is not accessible, or it may not be
known. In those situations, investigators conduct
their study using another source tissue, in the
hope that it will serve as a suitable surrogate
tissue. However, this is not a generalizable
characteristic of different tissues, because it can
vary from gene to gene (and potentially from
genetic variant to genetic variant) whether two
tissues are suitable proxies for one another. This
is discussed in detail below.

We have grappled with these types of com-
plications in a study of schizophrenia, where we
contrasted the expression profiles from lympho-
blastoid cell lines (LCLs) from cases with
schizophrenia and controls without the disease
(Sanders et al. 2013). While it is perhaps unlikely
that differences in expression levels of cell lines
are caused by the disease status (or related dif-
ferences in environment, attributable to disease-
related medication or, say, smoking)—after all,
these cell lines are far removed from study sub-
jects and their exposures—it is difficult to
exclude the possibility that some aspects of the
LCLs could vary between cases and controls,
independent of disease. For example, could it be
that the LCLs of cases and controls were gener-
ated in slightly different manners, which may be
the cause of observed transcriptional differences?
To guard against this, we measured various cell
lines characteristics as part of the study and
included these variables as covariates. However,
the fact remains that using different sets of
covariates leads to somewhat different findings,
and one cannot know whether all relevant con-
founders are accounted for.

All these complications that arise in tran-
scriptional correlation studies compared with
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genotypic correlation studies can be viewed as
the difference between genetic epidemiology and
epidemiology more generally. It is the former
that is unusual. The nature of genetic inheritance
endows genetic epidemiological studies with
many advantages that are not shared in most
areas of epidemiological research. When corre-
lating transcript abundances with clinical phe-
notypes, we are no longer in the realm of genetic
epidemiology, and thus face many systematic
challenges that can be difficult to overcome.

5.3 Genetic Regulation of Gene
Expression

Instead of correlating gene expression to a trait of
interest, as discussed in the previous section,
gene expression levels can also be subjected to
statistical genetic dissection. The quantitative
expression level of a gene, an exon, or a specific
transcript may be viewed as a quantitative trait
that is under the influence of genetic and envi-
ronmental influence like any other trait. Linkage
and association analyses can therefore be con-
ducted on transcript abundance values in order to
localize the genomic regions and variants that
influence the amount of a transcript being present
in a given sample.

Studies investigating the genetic regulatory
machinery influencing gene expression levels
have gained popularity for two main reasons:
First, they permit us to study the basic biology
underlying a key regulatory step in how our
genes’ activities are controlled. Second, knowl-
edge about which genetic variants are signifi-
cantly associated with the expression of a
particular gene provides clues about the identity
of likely functional variants and their regulatory
potential. This sort of functional information can
be used, potentially along with many other pieces
of information, to prioritize which of the variants
that were previously identified in a GWAS of a
complex disease are most likely to be functional.
This information is relevant in particular because
of the hypothesis that most of the functional
variants underlying complex traits are subtle
regulatory variants. Ultimately, laboratory assays

will generally be required to prove that a given
variant causally influences a trait of interest, but
by accumulating different sources of information
on each variant, including whether or not (and in
which direction and to which degree) it is asso-
ciated with the expression of a particular gene,
we can hone in on the true functional variants
with a greater degree of precision, thereby
reducing and speeding up the more time-con-
suming and much more expensive functional
assays to be conducted in the laboratory. A
genetic variant found to be significantly associ-
ated with some expression level is typically
referred to as an expression quantitative trait
locus (eQTL) or an expression quantitative trait
nucleotide (eQTN) in the case of single nucleo-
tide polymorphisms (SNPs). The term regulatory
SNP, or rSNP, is also sometimes used (Guo et al.
2014).

Genetic studies of gene regulation have pro-
ven to be highly successful in many regards. This
is perhaps not surprising because the expression
level of a given gene is, after all, a very direct
representation of gene action, and the impact of a
regulatory genetic variant on gene expression
thus could be pronounced. The relationship
would certainly appear to be much closer than
one would expect to exist between a gene’s
activity and a complex trait, where any one
variant influences disease risk typically by only a
very small amount. Thus, one might expect a
priori that studying the genetic regulation of gene
expression would be a fruitful undertaking. A
variety of studies, conducted in families, in
twins, and more recently in unrelated individuals,
have shown that the vast majority of gene
expression levels are significantly heritable
(Göring et al. 2007; Nica et al. 2011; Price et al.
2011; Grundberg et al. 2012). This is clear evi-
dence for the existence of genetic regulatory
variants and their influence on gene expression
levels in the aggregate. Note, however, that the
estimated heritabilities for many expression traits
are quite modest, similar to the estimates
obtained for many complex diseases. This sug-
gests that either there is substantial measurement
error in quantifying gene expression levels, and/
or that these traits are subject to myriad
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influences, including by environmental factors
(both of the external environment acting upon a
person as well as the internal environment,
within the body, to which a given cell is
exposed). Therefore, gene expression levels are
best viewed as being fairly complex traits.

We conducted one of the largest genetic
investigations of genome-wide gene expression
at the time, measuring gene expression by Illu-
mina microarrays in white blood mononuclear
cells in 1,240 randomly ascertained Mexican
American family members from around San
Antonio, Texas, USA (Göring et al. 2007). A
brief review of this study is provided here as an
example of a genetic investigation of gene
expression. After full processing, 20,413 (43 %)
probes out of a total of 47,289 on the microarray
detected significant expression at a false discov-
ery rate (FDR) of 0.05. Among the autosomal
probes with significant expression, the quantita-
tive expression levels of the vast majority of
probes (85 %) were significantly heritable at
FDR 0.05. The median heritability estimate was
23 %, with higher heritabilities among RefSeq
probes (which are much better designed and
annotated, on average). These estimates support
the view that gene expression traits are substan-
tially controlled by genetic factors. We subse-
quently conducted linkage analysis in order to
localize major loci influencing the expression
traits. As described in the sections below, we
broke the genome into two components—the
gene locus targeted by a given probe itself and
the remainder of the genome. At FDR 0.05, a
large number of probes (1,345), though repre-
senting only a fairly small proportion of probes
(7 %), showed significant evidence of linkage to
the structural gene locus. This is clear evidence
that genetic variants in and around a given gene,
such as in the promoter region, have substantial
influence on that gene’s expression levels. For
some genes, the heritability attributable to the
structural gene locus explained virtually all the
estimated overall heritability, suggesting that
these genes’ expression is largely monogenically
controlled. The mean effect size of the structural
locus was 5 % on average (with a median of
2 %). The structural locus thus appears to

account for a substantial proportion of heritabil-
ity (based on this particular study, the estimated
proportion of genetic variance explained by the
structural gene locus is in the range of 10–25 %).
We largely failed to identify significant eQTLs
elsewhere in the genome, far away from the
structural gene, suggesting that these distant
regulatory genetic factors, while clearly impor-
tant in the aggregate, have individually very
small effect sizes, making them difficult to detect.
Later studies, using better molecular technolo-
gies, have largely supported our findings, refin-
ing estimates and identifying many more
significant eQTLs, as described in the following
paragraphs.

5.3.1 Cis eQTLs

Given the substantial heritabilities of most gene
expression levels, the logical next step is to con-
duct linkage and in particular association analyses
in order to localize specific variants that are sig-
nificantly associated with expression traits. In
contrast to studies of most clinically relevant
traits, when investigating the genetic regulation of
a particular gene there is an obvious genomic
candidate region, namely the gene itself and its
chromosomal vicinity (see Fig. 5.3). The reason
for paying special attention to this small fraction
of the genome is that genetic variants near a gene,
and in particular in its promoter region, are quite
likely to influence that gene’s expression level,
e.g., by interfering with the binding of proteins
required for transcription. Many of these variants
presumably act in cis. The difference between cis
and trans is shown in Fig. 5.4. By cis (from Latin,
meaning “on this side”) we mean that a given
gene expression regulatory variant influences the
expression level only on the physical molecule—
i.e., the chromosome—on which it resides, but
not on the homologous sister chromosome. The
reasons are likely structural, i.e., proteins and
other factors bind to a particular chromosomal
region to initiate, maintain, and regulate gene
expression of that chromosomal molecule, and
alleles on that entity thus influence the expression
of the gene on only that chromosomal copy. Most
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variants located elsewhere in the genome are
thought to act in trans (from Latin, meaning “on
the other side”). These variants influence both
chromosomal copies equally. For example, some
variant may alter the structure of a transcription
factor, which in turn alters the expression of both
copies of a given gene—regardless on which

sister chromosome a copy of the gene is located.
In general, cis-acting variants are equated with
those close to a given gene, sometimes referred to
as proximal variants. Similarly, the term trans-
acting variant is used for those variants located far
away on the same chromosome or on a different
chromosome, sometimes called distal or distant
variants. While the assumption about how a var-
iant acts based on where it is located relative to a
gene will often be correct, it is nonetheless gen-
erally only an assumption until confirmed by
other means (Gilad et al. 2008). Some variants
close to a gene may turn out to be trans eQTLs.
And some cis variants may be located far from a
gene but on the same chromosome. (Could it be
that cis variants may even be located on another
chromosome, depending on how chromosomes
are packed in three dimensions within the
nucleus?) This caveat should be kept in mind
when reading the literature, in which these terms
are often used interchangeably.

Given the existence of a well-justified candi-
date region of interest around any gene, one may
break a genome-wide search for eQTLs into two
parts, one confined to a gene and its surrounding
genomic region to search for cis variants, and one

chr. 1  2 …

proximal 

locus

distal remainder 

of genome

Fig. 5.3 Partitioning of the genome into the proximal
locus and the distal remainder of the genome (relative to a
gene). When investigating the genetic regulation of gene
expression of a particular gene (shown here in red, located
in chromosome 1), the genome-wide search may be

conducted in two parts. The gene itself and its chromo-
somal surrounding area is a good candidate region to
harbor cis eQTLs, while the rest of the genome may
harbor trans eQTLs. Note the enormous differences in
search area and associated multiple testing burden

cis

trans

Fig. 5.4 Illustration of cis and trans effects. An allele
acting in cis influences only the molecular molecule
(chromosome) on which it resides. In contract, trans
acting factors influence both sister chromosomes
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covering the remainder of the genome to localize
trans variants (Göring et al. 2007). eQTL studies
have proven to be highly successful in the search
for cis variants (Cheung et al. 2005; Dixon et al.
2007; Göring et al. 2007; Stranger et al. 2007;
Emilsson et al. 2008; Montgomery et al. 2010;
Pickrell et al. 2010; Grundberg et al. 2012). With
gradual improvements in measuring gene
expression, and with increased sample sizes, the
proportion of genes estimated to be cis regulated
is creeping upwards, from a small number of cis-
regulated genes observed at first to perhaps ulti-
mately the majority of genes investigated. It
appears likely that every gene is under cis regu-
lation to at least some degree, with only power
limiting our ability to detect significant proximal
associations for all genes. Cis eQTLs are there-
fore frequent, and in fact likely universal for all
genes in all tissues. Their impact on quantitative
gene expression has frequently been shown to be
substantial. In some cases, cis-regulatory variants
appear to account for much of the estimated
heritability of a gene, indicating that the expres-
sion level of such a gene is essentially a mono-
genic trait (though not necessarily influenced by
only a single variant). For other genes, cis-reg-
ulatory effects account for only some proportion
of overall genetic variation, suggesting a more
complex mode of inheritance with substantial
aggregate importance of trans-acting variants.
Cis effects are fairly easy to detect for two rea-
sons: Their commonly strong effect sizes, and
because of the limited multiple testing correction
that is required when searching for them, because
only a very small proportion of the genome,
namely the gene and its vicinity, needs to be
screened. By now, there are catalogs listing many
putative cis eQTLs for many genes in many tis-
sues, and these databases are freely available
http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/
index.cgi (Yang et al. 2010; Xia et al. 2012).

5.3.2 Trans eQTLs

In contrast to the local search for cis variants,
mapping of trans variants requires searching
systematically through the entire genome

(excluding the small proximal region around a
gene). Trans eQTL studies have proven to be
quite difficult (Cheung et al. 2005; Dixon et al.
2007; Göring et al. 2007; Stranger et al. 2007;
Emilsson et al. 2008; Montgomery et al. 2010;
Pickrell et al. 2010; Grundberg et al. 2012),
perhaps more difficult than some scientists had
initially assumed. Part of the explanation is the
enormous multiple testing burden incurred when
searching the entire genome, especially when one
does so on thousands of gene expression traits.
Beyond that reason, the difficulty of finding trans
eQTLs indicates that these regulatory variants
individually only influence the expression level
of a given gene modestly. In other words, the
effect sizes of individual trans eQTLs are small.
Thus, large sample sizes will be required to
localize these variants robustly and comprehen-
sively. At the present time, many studies report a
small number of potential trans eQTLs, but the
evidence is generally fairly weak and large-scale
replication studies are still limited (Grundberg
et al. 2012). There are some observations sug-
gesting the existence of “master regulators”, i.e.,
trans eQTLs that influence the expression of
many genes. This makes intuitive sense if one,
e.g., thinks of variants within a transcription
factor that is involved in the expression of a
whole range of genes. At the present time, much
of the supporting data for master regulators is
fairly modest, and future work is required to
characterize master regulatory eQTLs better.

Figure 5.5 shows an example of a genome-
wide joint linkage and association study for a
particular gene (PPA2), in this case conducted on
peripheral blood mononuclear cells from ran-
domly ascertained participants belonging to
multigenerational families (Göring et al. 2007).
Note that this plot looks very different from a so-
called Manhattan plot from a normal GWAS on a
complex disease. Here, there is an enormous
peak on chromosome 4, which is centered on the
exact location where the studied gene is located
in the human genome. This signal almost cer-
tainly points to cis variants in and near the gene,
and the magnitude of the signal highlights the
substantial effect size of the variants in the
proximal gene region. In contrast, the remaining
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genome yields a very flat pattern, without any
outstanding peaks. This illustrates the small
effect sizes of trans eQTLs and the associated
difficulty in localizing them.

5.4 Integrative Genomic Studies

In the previous two sections, I have separately
discussed studies correlating gene expression
profiles to a trait of interest and studies investi-
gating the genetic regulation of gene expression,
respectively. These are two of the three branches
of investigation shown in Fig. 5.2, with trait-
genotype correlation analysis being the third, and
most commonly performed investigation. Ideally,
we would like to bring as many sources of
information to bear to dissect the etiology of a

trait and to identify the functional genetic vari-
ants. I have tried to illustrate this conceptually in
Fig. 5.6. Thus, we would like to integrate the
results obtained from different data sources, to
comprehensively assess the evidence for genetic
correlation of specific variants with a clinical trait
of interest, and the likelihood that the associated
variants are functional and of relevance. In the
case of gene expression studies, the focus is on
the three types of analyses shown in Fig. 5.2, but
this is not meant as a suggestion that other
sources of information, such as from proteins,
metabolites, gene methylation, sequence conser-
vation, predictions of deleteriousness of variants
based on structural protein changes, etc., are
unimportant or should not be used.

Such integration of the central three types of
analyses shown in Fig. 5.2 is not easy, at least if

Fig. 5.5 An example of a genome-wide search for
eQTLs. The particular example is the PPA2 gene
(inorganic pyrophosphatase 2 precursor), whose expres-
sion level in peripheral blood mononuclear cells was
assessed with probe GI_31881619-A on a microarray.
The large linkage/association peak on chromosome 4 is

located at the position of the gene and demonstrates the
strength of the effects of cis eQTLs on gene expression. In
contrast, the plot does not contain outstanding peaks
elsewhere in the genome, highlighting the small effect
sizes of trans eQTLs and the associated difficulty in
localizing them
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the goal is to use a comprehensive analytical
approach (such as a Bayesian approach in which
the posterior probabilities yielded by one type of
data and analysis serve as the prior probabilities
for the next data source and analytical step). In
most cases, studies use more of an ad hoc
approach. If data on trait phenotypes, genotypes,
and gene expression levels are all available in the
same dataset, one may first perform regular
linkage and association analysis, and then sub-
sequently examine whether the significant (or
suggestive) trait-associated variants are also sig-
nificantly associated with the expression level of
nearby genes. This could suggest a possible way
in which a positional variant may influence the
trait of interest, and may increase the interest and
attention devoted to this variant. Lastly, one may
then investigate whether the gene(s) regulated by
the eQTLs show evidence for correlation with
the trait of interest, thereby closing the circle.
Note that the three analyses comprising the circle
of relationships must yield results that are con-
sistent with one another (at least if undertaken on
the same dataset). Either all three correlations are
positive, or one correlation is positive while the
two others are negative. If different datasets are
used for association analysis of the trait, for
eQTL discovery, and/or for transcriptional pro-
filing of the trait, then one may still seek to

combine the results from these separate investi-
gations, but power may be reduced (e.g., because
a given variant may have a large effect size in
one dataset but not in another). In this case, it is
possible that the results of the three analyses are
no longer consistent with one another. However,
truly existing, important relationships between a
trait, genotype, and gene expression level should
still yield consistent results (except in unusual
situations).

It is also possible to perform the analyses in
the opposite direction. One may start with a
transcriptional profile study, then identify cis
eQTLs influencing trait-correlated transcripts,
and lastly examine whether the identified candi-
date variants truly show evidence of association
with the clinical trait. When the analyses are
conducted in this orientation, then the eQTL and
trait association steps can be used to determine
whether the observed transcriptional signatures
reflect genes involved in the etiology of the trait,
or whether the causal connection goes in the
other direction, with the trait phenotype influ-
encing the expression levels of these genes
(Schadt et al. 2005). In general, there is ample
opportunity for smart approaches to be devel-
oped to integrate different information sources
and to use these data to order the relationships
between the different variables being examined.

trait
locus/gene
   /variant

linkage

(co-segregation in 
pedigrees)

linkage 
disequilibrium 
(co-segregation in 

population) correlation with 
transcript 

abundance

correlation with 
protein 

abundance

prior 
knowledge

other

correlation with 
metabolite 
abundance

Fig. 5.6 Many different information sources can be used
to identify the loci, genes, and genetic variants influencing
a complex trait. Integration of these disparate data sources

can be difficult, and this chapter mainly focused on the
use of genotype data and transcriptional profile data
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5.5 Tissue Specificity

Tissue specificity is an important consideration in
gene expression studies. This is a very important
topic, but it is also one that is complicated and
for which there are no clear-cut answers that
generalize to all traits, genes, and genetic vari-
ants. This issue mainly arises because the tissue
that is the primary source of a disease is often not
available for study (In fact, in many cases the
true source tissue is not even certain). Often the
reason is that the tissue is inaccessible to a certain
degree, and ethical considerations preclude
invasive procedures required to obtain it. A fur-
ther, related complication is that most tissues
comprise many different cell types, which vary
from one another in their gene expression, and
the relevant cell type is often not known or
cannot be readily isolated (or only in a manner
which possibly impacts those cells and their
behavior greatly).

When talking about tissue specificity it is
important to realize that it is not important
whether the absolute expression level of a gene is
the same in different tissues—as long as the gene
is expressed sufficiently highly so that the
expression level can be accurately measured.
When assessing whether one (accessible) tissue
can serve as a surrogate for another (inaccessible)
tissue, what matters is whether the inter-indi-
vidual variation in the expression of a gene is
maintained between different study subjects. In
eQTL studies, the critical question is whether the
same genetic variants influence gene expression,
and whether the direction and effect sizes of these
variants are similar. This has been empirically
examined in a number of studies (Ding et al.
2010; Greenawalt et al. 2011; Nica et al. 2011;
Grundberg et al. 2012). In transcriptional profil-
ing studies relating gene expression to some
disease, the central concern is whether the rela-
tionship between the trait and gene expression
level is the same in both tissues. My own opinion
is that the suitability of a surrogate tissue will
depend on the trait being studied, the particular
gene(s) involved, and their underlying eQTL(s).
It seems unlikely that any given tissue, or for that
matter any given cell type, can universally serve

as a proxy for another tissue or cell type. The
best that we can hope for is to estimate the
similarity of gene expression and its genetic
regulatory machinery between as many different
tissues and cell types as possible, in order to
identify the best overall match, with the greatest
overlap in gene expression patterns and eQTLs
(Göring 2012).

An important project designed to assess tissue
specificity of eQTLs is the US American
National Institutes of Health sponsored Geno-
type-Tissue Expression Roadmap project now
underway (GTEx Consortium 2013). The goal is
to obtain tissue samples of >1,000 fatal accident
victims, gathering as many tissues as quickly as
possible after death. These tissues will then be
expression profiled, and large-scale eQTL studies
will be undertaken in each tissue separately and
multiple tissues jointly. Ultimately, this will lead
to a catalog of eQTLs, and their estimated effect
sizes, in a large number of human tissues. This
will permit us to identify best tissue matches,
potentially even on a per-gene or per-genetic
variant basis. An alternative approach, which is
less centralized in scientific direction but which
may ultimately be even more informative, is
based on attempts to recreate different cell types
(ultimately all cell types?) from induced plurip-
otent stem cells (iPSCs). This topic is well
beyond this chapter, but this technology ulti-
mately holds the promise that many (or even all?)
cell types become accessible for gene expression
study in each study participant or clinical patient
(Robinton and Daley 2012).

At the present time, our knowledge of the
tissue specificity of eQTLs is fairly limited. It
appears to be the case that strong cis eQTLs, in
particular those close to the transcriptional start
site, are fairly universal between tissues, and that
those further away are increasingly tissue-spe-
cific (Dimas et al. 2009; Grundberg et al. 2012).
There are some indications that trans eQTLs may
often be tissue specific (Grundberg et al. 2012).
An important caveat to keep in mind when
interpreting these results is that the real effect size
of a true eQTL is correlated with our ability to
detect it in the first place, as well as with our
certainty that the finding is real. Thus, the weaker
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any cis eQTL variants are as we move away from
the transcriptional start site, the less certain we
are to detect them. It is thus not surprising that
less consistency is observed for those more
subtle variants. This caveat is even more
important in the case of trans eQTLs, whose
effect sizes are generally smaller and where our
power of localization is further weakened owing
to the enormous multiple testing burden. While it
seems quite plausible that more distant cis eQTLs
and trans eQTLs are more tissue-specific in their
influence on gene expression than strong cis
eQTLs close to the transcriptional start site, I do
not find the supporting data wholly convincing at
the present time.

Note that it is fully rational and also reason-
able, at least in my opinion, to use proxy tissues
in many scientific examinations at this point in
time. While negative results may be difficult to
interpret and may even be entirely uninformative,
positive correlations observed between a clinical
trait and a gene’s expression, or the realization
that a candidate variant may be an eQTLs, pro-
vide potentially interesting clues that can then be
pursued in more detail in the laboratory and/or in
a more appropriate tissue that is only available in
few samples.

5.6 Microarray Versus RNAseq

Microarrays containing a large number of probes
and RNA sequencing (RNAseq) are the two
approaches that are now being used to charac-
terize gene expression on a whole genome basis.
Older methods, such as quantitative PCR, con-
tinue to be used as well, but they are limited to
specific genes rather than assess the entire gen-
ome at once. Microarray and RNAseq technolo-
gies both have advantages and disadvantages.
For a review, see (Majewski and Pastinen 2011).
Some of the pros and cons of both approaches
are the following: The drawbacks of microarrays
are that they are limited to known transcripts;
they assess only the expression level of a short
stretch of RNA and generally cannot distinguish
between alternative transcripts; they are suscep-
tible to polymorphisms in the sequence targeted

by a probe; they require many copies of RNA
molecule for robust expression detection and
quantification; they are somewhat susceptible to
batch effects. On the plus side, however, micro-
array studies are fairly cheap, fast, and require
limited annotation work by the investigators.

In contrast, RNAseq is (at least conceptually)
able to identify all transcripts, including alterna-
tive transcripts of a gene; RNAseq is much better
suited for the study of RNA editing; since there is
no probe per se, RNAseq is less susceptible to
polymorphisms in specific transcript regions
(though the presence of polymorphisms may
interfere with alignment); and RNAseq is much
more sensitive in the detection of low frequency
(even single copy?) RNA molecules. Downsides
of the technology include its substantial cost, and
the substantial annotation work that is required.
Also, RNAseq is sensitive to sequencing prob-
lems and artifacts, and it is not clear whether low
copy transcripts have biological function (even if
they are reproducible).

Previously, most studies used microarrays, but
increasingly thefield is transitioning toRNAseq as
the preferred choice of technology. As the cost of
sequencing comes downmore, and as the length of
sequencing reads and sequence accuracy improves
further, the benefits of RNAseq compared to
microarrays will become more pronounced.

5.7 Allele-Specific Expression
Analysis

Most eQTL studies conducted to date have
searched for association between the genotype of
a genetic variant and the overall expression level
of a gene, exon, or particular transcript. In many
cases, transcripts themselves include polymor-
phic sites, and the allele present in a given
transcript molecule tells which of the two sister
chromosome produced the transcript. It is thus
possible to estimate the expression level sepa-
rately for each chromosome. Each “allele’s”
expression level can then be genetically analyzed
separately. It is particularly useful to analyze the
proportion of transcripts of a given gene derived
from one of the two sister chromosomes, to
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search for eQTLs, which is referred to as allele-
specific expression (ASE) analysis (Almlöf et al.
2012; Pastinen 2010). The reason why allele-
specific expression analysis is so useful is that
there is a built-in internal control for many fac-
tors, including most environmental influences on
gene expression and also trans eQTLs. In gen-
eral, these factors will equally influence the
expression of both copies of a gene, assuming
there is no interaction between the factors and
proximal eQTLs. (And the very meaning of the
term trans refers to the fact that trans eQTLs
impact the expression of both chromosomes). By
taking the relative proportions of transcripts
derived from one chromosome compared to its
sister chromosome, one automatically controls
for these chromosome-non-specific factors. For
this reason, ASE studies are extremely powerful
for the detection of cis eQTLs. It seems likely
that many more ASE studies will be conducted in
the future, and there is opportunity to refine the
analytical methods and to combine ASE analyses
with conventional eQTL studies.

5.8 Exposome Studies
and Intervention Studies

This chapter has focused on the utility of tran-
scriptional profile studies to investigate the eti-
ology and pathophysiology of complex diseases
and to study the genetic regulation of gene
expression. More generally, gene expression
profiles are one kind of “deep cellular pheno-
type”, providing a highly detailed characteriza-
tion of the state of a given cell type or tissue type
from a study subject at the time of sample col-
lection. Therefore, gene expression profiling is a
very general tool that can be used to address
many different research questions.

One area of great interest is to use transcrip-
tional profiles for investigating the influence of
environmental factors. The totality of the envi-
ronmental factors to which we are exposed is
sometimes referred to as the exposome (Wild
2005). Therefore, one can attempt to correlate
gene expression data to measured environmental

exposures to search for significant transcriptional
correlates of the exposure. This can provide
information how the exposure influences cellular
biology. For example, one may contrast smokers
to nonsmokers. Significant differences in tran-
scriptional profiles may conceptually include
genes that influence the probability that someone
is a smoker (these genes would therefore be
involved in the etiology of the smoking trait). Or
the differences may reflect the consequences of
smoke inhalation on cellular processes, which
may be useful for understanding how smoking
influences our body and what the pathophysio-
logical consequences may be. We have con-
ducted a transcriptomic study of smoking and
found substantial differences between smokers
and nonsmokers in the transcriptional profiles
from PBMCs (Charlesworth et al. 2010). Our
interpretation was that these differences largely
reflect the consequences of smoking behavior
rather than modulate the probability of smoking.
An example of a transcriptomic study to inves-
tigate environmental pollutants is described in a
recent manuscript (De Coster et al. 2013).

Intervention studies involving transcriptional
profiling are a useful way to investigate the
physiological consequences of an exposure. For
example, one may measure gene expression in a
relevant tissue in patients with a particular dis-
ease before and after administering a relevant
drug. Such an investigation may provide infor-
mation about the means of drug action. In addi-
tion, it may be possible to screen the patient pool
for those individuals for whom the drug is likely
to be effective and for those people in whom the
drug may not work. Perturbation studies can also
be conducted in cell lines and fresh tissue sam-
ples, in which case gene expression levels are
measured before and after the perturbation has
been administered to the samples. As an example
from my own research (unpublished), we are
currently conducting a study in which we expose
lymphoblastoid cell lines derived from schizo-
phrenics and controls to the neurotransmitter
dopamine and measure the gene expression lev-
els before and after exposure via RNAseq, with
the goal of understanding the relationship of
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dopamine to the disease. This type of study
provides a very high level of experimental con-
trol and permits the administration of highly
topical perturbations. It seems likely that
expression profiling will become a more com-
mon component of such studies, in order to
assess the impact of an intervention on cellular
activity and processes.

5.9 Concluding Remarks

Transcriptional profile data is now generated as
part of many different types of studies. This
chapter has mainly focused on using gene
expression data to identify genes connected to
the trait of inference (either etiologically or
physiologically) and for examining the genetic
regulation of gene expression in detail. Com-
prehensive genome-wide assessment of gene
expression has only been possible for less than a
decade or so, and transcriptional profile studies
have quickly become part of the standard reper-
toire of investigative tools available to research-
ers and clinicians. Given the enormous range of
studies involving gene expression profiling, it is
difficult to give a comprehensive overview. I
have purposefully not focused on details of the
methodology (both on the laboratory side and on
the analytical side). Instead, I have sought to
highlight some of the basic concepts and how
transcriptional profiling studies fit into the wider
context of human genetic epidemiological
investigations of complex diseases. This area of
research has proven to be very fruitful, and it is
clear that transcriptional profiling studies will
become more common in the future.
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