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Preface

In recent years, there has been phenomenal progress in the understanding of
the genetic architecture of normal and disease-related complex phenotypes.
The progress has been fueled by an explosion of research activities related to
the Human Genome Project and subsequent sequencing projects, and the
nonhuman primate comprehensive sequencing projects. Advances in
molecular genetics, statistical genetics, medical genetics, and bioinformatics
have accompanied this progress.

Tracing its roots back to the laws of inheritance established by Mendel,
which continue to be the basic tenets underlying modern genetics, the field of
genetics has expanded tremendously and has richly diversified over the years.
Gene mapping efforts and genomic research on humans and nonhuman
primates have generated an enormous amount of information relevant for
studies of evolution, phylogenetics, human genetics, anthropological genet-
ics, and for biomedical research. Elucidation of gene function, expression,
and regulation and of genetic variation and conservation among primate
species has exciting potential for informing research in the areas of biology,
evolution, population genetics, anthropological genetics, and biomedicine.
The huge increase in the amount of available genomic information and
advances in the tools available to analyze that data have already had a tre-
mendous impact on disciplines such as evolutionary biology, bioinformatics,
genetic epidemiology, medicine, pharmacogenetics, pharmacogenomics, and
anthropology.

This volume is an attempt to provide researchers and academicians with a
review of advanced methodologies and applications in gene mapping and
genomics of humans and nonhuman primates, with an emphasis on genetics
of complex phenotypes and diseases. As a part of the “Genome Mapping and
Genomics in Animals” series (Dr. C. Kole, Editor), this volume is designed
to illustrate ongoing research activities related to gene mapping and
genomics in human and nonhuman primates. The topic of this volume is
broad and a full coverage of such a huge area of research would be impos-
sible. Therefore, we limited the volume to 16 chapters that illustrate the
amazing changes in genomic studies that have occurred since the Human
Genome Project. From the initiation and expansion of the Human Genome
Project to revolutionary next generation sequencing approaches, we have
seen dramatic improvement in the understanding of the genetic architecture
of complex phenotypes in human and nonhuman primates.
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This volume constitutes an overview of the impact of the genomic
revolution on research related to human and nonhuman primate populations.
It also reviews the state-of-the-science with respect to the molecular, statis-
tical genetics, and genetic epidemiologic techniques that are used to dissect
the genetic architecture of normal and disease-related complex phenotypes
using data from human and nonhuman primates. We present examples of
successful applications of genomic methods to traits of particular interest in
biomedical research and evolutionary biology, and provide discussions of
future directions in human and nonhuman primate genomics.

Since genetic investigation of complex phenotypes is by nature multi-
disciplinary, efforts were made to provide readers with review papers which
illustrate the full range of methodological and analytical approaches being
applied to human and nonhuman primate population data sets. Examples and
applications were drawn from diverse areas including evolutionary genetics,
population structure, genetic epidemiology, transcriptomics, copy number
variation, molecular ecology, comparative genomics, and gene mapping for
phenotypes related to behavior, skeletal biology, and cardio-metabolic dis-
ease in human and nonhuman primate populations.

We are in the midst of an exciting scientific era with constantly changing
technology revolutionizing genomic research approaches over and over
again. The advances will ensure continued interest in explorations of
genomics and other “omics” approaches as they relate to normal variation
and disease-related traits in human and nonhuman primate populations.
Progress in gene mapping and genomic sequencing will add further
momentum to progress in comparative genomics, evolutionary genomics,
and biomedical research as it corresponds to disease prevention and treat-
ment, pharmacogenomics, and personalized medicine.

We are grateful to the contributors to this volume who have prepared
comprehensive and informative reviews of advanced, complex genomics-
related topics. We thank Drs. Vidya S. Farook, Sobha Puppala, Geetha
Chittoor, and Laura Cox for reviewing one or more chapters of this volume.
The editors also express their gratitude to Ms. Maria Messenger whose expert
skills in proofreading and formatting greatly improved the quality of this
volume.

Ravindranath Duggirala
Laura Almasy

Sarah Williams-Blangero
Solomon F.D. Paul
Chittaranjan Kole
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1The Utility of Genomics for Studying
Primate Biology
Sarah Williams-Blangero and John Blangero

1.1 Genomics of Primate
Populations Writ Large

This volume was organized with the intent to
review progress in primate genomics and, in
particular, to show the value of studying primate
genomics for understanding the determinants of
risk for disease in human populations. Humans,
our hominid ancestors, and nonhuman primates
(and their ancestors) share most of their genetic
material. The evolutionary proximity of nonhu-
man primates to humans provides us with a
particularly valuable set of tools to make infer-
ences about the causes of human phenotypic
variation using experimental techniques applied
to our close animal relatives. There is a remark-
able amount of anatomical and physiological
similarity across all primates that justifies the use
of nonhuman primate models rather than more
phylogenetically remote animal models, such as
the mouse, for many types of studies. However,
the use of nonhuman primates for modeling the
basis of human phenotypic variation is associated
with considerable costs due to the comparatively

large size of the animals, their relatively long
generation times, and the general expense of
working with nonhuman primates.

The utility of considering primate biology writ
large as a major source for inference about
human biology stems from the close genetic
relationship between humans and nonhuman
primates. With the advent of large-scale genome
sequencing, we now know precisely the extent of
genetic similarity among the phylogenetically
most proximate relatives.

The chimpanzee genome was the first non-
human primate genome to be sequenced and was
completed in 2005 (Chimpanzee Sequencing and
Analysis Consortium 2005). From these data, we
know that chimpanzees and humans diverged
about 6 M years ago and share *98 % sequence
identity. About 29 % of orthologous proteins are
identical between human and chimpanzees with
most proteins differing by an average of only two
amino acids (Chimpanzee Sequencing and
Analysis Consortium 2005). This protein simi-
larity greatly facilitates cross-inference of bio-
logical mechanism between the humans and
chimpanzees species.

Even in the presence of substantial protein
similarity, the genetic differences between the
primate species clearly lead to striking pheno-
typic divergence. For example, comparative
quantitative proteomic and metabolomics studies
using chimpanzee and human biomaterials are
finding fascinating and unexpected differences
that may be of utility for understanding the
substantial differences in brain and muscle
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function between the species (Bozek et al. 2014).
Similarly, advanced neurophenotyping methods
have revealed profound differences in synaptic
phenotypes such as synaptic density between the
humans and chimpanzees that appears to corre-
late with brain function (Liu et al. 2012). For
many reasons, including smaller numbers of
available colony-managed animals, greater
expense, and extreme regulatory burden, chim-
panzees are now little used in biomedical
research despite being the most potentially useful
of all primate species for making inferences
about human health.

The rhesus macaque is the most widely used
nonhuman primate model for human biology and
its genomic sequence was first obtained in 2007
(Rhesus Monkey Sequencing and Analysis
Consortium 2007). The sequence data shows that
humans and rhesus monkeys have *93 % total
sequence identity, the reduction over that with
chimpanzees correlating with the earlier diver-
gence time of about 25 M years ago.

The baboon also is well utilized in biological
research designed to be informative for human
health (as evidenced in the chapters by Cox and
Sherwood and Duren in this volume), as is the
vervet (with examples provided by Bailey et al.
in this volume). The genomes of the baboon
and the vervet are in the process of being
sequenced.

1.2 What Are We Trying
to Explain?

In this volume, almost every chapter ultimately
focuses on trying to explain the causal sources of
human quantitative phenotypic variation. In
many cases, the phenotypes under consideration
are related to complex disease risk. In general,
we would argue that the principle role of modern
human genetics is to identify the causal sequence
variants responsible for quantitative phenotypic
variation. Most of the phenotypes in which we
are interested exhibit complex causal pathways
unlike those seen for simple monogenic traits. An
overriding challenge in the analysis of complex

traits as compared to the analysis of simple
monogenic traits is that multiple loci may be
contributing to the phenotype and, as a result, the
effect size of any one locus is likely to be rela-
tively small. In addition, there may be multiple
types of sequence variation in play, ranging from
substitutions of single nucleotides to rearrange-
ments of chromosomal structure (sequence
deletion, duplication, or inversion), which may
not be equally detectable by any one analytical
technique. Finally, even if the majority of a
genetic effect was confined to a single locus, this
could be either due to a single variable site or
multiple rare alleles segregating in the population
(s) under study.

1.3 Measuring Genetic Variation
in Quantitative Traits

Many of the chapters in this volume at least
implicitly involve characterizing how much of
the observed phenotypic variation in primates is
due to the action of genes. Heritability is the
proportion of the total variance of a phenotype
that is attributable to the additive effects of
alleles. It represents an estimate of the relative
extent of genetic variation in a given phenotype.
Thus, heritability provides us with a single
measure of how important a role genes likely
play in the causal determination of a variable
human trait. In a classical variance-components-
based approach to quantitative genetic analysis,
heritability is readily estimated by decomposing
the phenotypic covariance between pairs of
individuals based on their relatedness:

Covði; jÞ ¼ 2/ijr
2
g

Covði; iÞ ¼ r2g þ r2e

h2 ¼ r2g=r
2
P

ð1:1Þ

whereCovði; jÞ is the covariance between different
individuals i and j, and Covði; iÞ represents the
variance for the ith individual, /ij is the kinship

coefficient between i and j, r2g is the additive

genetic variance,r2e is the error (sometimes termed

2 S. Williams-Blangero and J. Blangero



environmental) variance, r2P is the total pheno-
typic variance of the trait given by r2P ¼ r2g þ r2e ,

and h2 is the additive genetic heritability which
measures the relative contribution of additive
genetic factors to the overall observed phenotypic
variance.

Twice the ‘kinship’ coefficient in this context
refers to the expected proportion of alleles shared
identical by descent (IBD) by two individuals
given their degree of relatedness: siblings share
half their alleles IBD, half-siblings one-fourth of
their alleles, and so on. Classically, we estimate
this relatedness by knowledge of pedigree
records. However, with the advent of high den-
sity assays of genetic variants (such as whole
genome sequencing), we can now empirically
estimate genetic relatedness in the absence of
knowledge of the pedigree relationships among
individuals. This latter development opens up
vast opportunities for the study of wild primate
populations. The genetic variance is a cumulative
variance; it represents the summation over all
additive genetic factors for the phenotype.
Hence, depending upon the phenotype, it may
represent the influence of a single genetic variant
or that of many hundreds of genetic variants.

If variation in a phenotype were entirely due to
genetic causes (and these could be clearly dis-
cerned), the heritability of the trait would, of
course, be 1. Due to multifactorial causation and
measurement error, a typical range of heritability
for many quantitative traits is between 30 and
80 % of the total variance, and estimates may
differ widely from one study to another due to
sampling error. The heritability is a critical mea-
sure of the importance of within-population
genetic variation. This single metric conveys
whether or not the search for the individual con-
tributing genes is merited for a given phenotype.

There have been thousands of studies of her-
itability of human phenotypes but relatively few
of nonhuman primate phenotypes. The lack of
nonhuman primate studies presumably is due to
the paucity of pedigreed populations. However,
the studies that have been conducted show that a
substantial amount of genetic variation relevant

for complex phenotype variation is segregating
in nonhuman primate colonies.

Life history traits such as life span (Martin
et al. 2002) and age at first birth (Williams-
Blangero and Blangero 1995) show significant
heritable components in pedigreed baboons.
Standard hematological parameters in chimpan-
zees show significant heritable components
(Williams-Blangero et al. 1993), as do many
different lipid parameters in baboons (Blangero
et al. 1990). Anatomical phenotypes, in particu-
lar, show high heritabilities (Mahaney et al.
1993; Rogers et al. 2007). Other even more
complex phenotypes, such as the response of
liver enzymes to experimental infection with
hepatitis C virus in chimpanzees (Williams-
Blangero et al. 1996) and longitudinal changes in
fetal baboon morphometrics (Jaquish et al. 1997)
also are significantly heritable in nonhuman pri-
mates. The evidence for substantial additive
genetic variation in fundamental anatomical,
physiological, and biochemical phenotypic
dimensions in nonhuman primates parallels that
seen in human studies and further confirms the
utility of nonhuman primate models for studying
human biological problems.

1.4 Functional Genetic Variation
Determines Heritability

What is the biological source of heritability in
humans? Ultimately, it comes from observable
functional genetic variation at the sequence level.
A functional variant is one that influences the
focal phenotype via some molecular mechanism.
Thus, functional variants can be considered to be
phenotype-specific in this context. If a variant
influences a quantitative trait (such as perfor-
mance), we term it a quantitative trait nucleotide
variant (QTN). The effect of a functional variant
on the phenotype can be quantified by the QTN-
specific variance which is given by
r2q ¼ 2pð1� pÞa2, where p is the minor allele
frequency of the QTN and α is one-half the dif-
ference between phenotypic means of the two

1 The Utility of Genomics for Studying Primate Biology 3



homozygotes. Biologically, we expect α to be
determined by biophysical molecular properties
of the QTL and relatively constant across popu-
lations. The term, 2pð1� pÞ, is also known as the
expected heterozygosity of the underlying
genotype and measures the variance of a trait that
is scored as the number of minor alleles in the
diploid genotype. The relative genetic signal
intensity for this QTN is given by the QTN-
specific heritability h2q ¼ r2q=r

2
P where r2P is the

total variance of the phenotype. The relative
genetic signal for the QTL is determined by the
sum of the QTN-specific heritabilities (although
these must be corrected for possible linkage
disequilibrium amongst variant sites) in the
immediate region of the QTL and thus will be
influenced by all of the relevant functional vari-
ants in the region. In algebraic form, the QTL-

specific heritability is h2q ¼
P

2pið1�piÞai
r2P

¼ P
h2qi

where the summation is over the functional
variants in the regions of the QTL. Similarly, the
total heritability of the phenotype is given by the
sum of all of the QTL-specific heritabilities over
the whole genome or h2 ¼ P

h2qi.

1.5 Identifying Functional
Sequence Variants Is
the Critical Problem in Primate
Biology

One of the main reasons that we study nonhuman
primate species is to aid in the identification of
the function of sequence variants. The four
chapters that specifically utilize nonhuman pri-
mate genomics in this volume ultimately point to
ways to better identify human genes and their
sequence variants that influence human pheno-
typic variation.

In Chap. 7, Kelaita provides an overview of
genomic methods applied to studies of wild pri-
mate populations. Besides the obvious utility of
genomic methods for aiding our understanding of
primate microevolution and primate population
structure, she also suggests that phylogenetic

inference can aid our interpretation of human
adaptations (which are ultimately about human
phenotypic variation).

Information on sequence variation across
species can be used to make evolutionary infer-
ences about genes likely to be under the influence
of natural selection. Such selection only will
occur for functionally relevant sequence varia-
tion (and nearby variants that are in linkage
disequilibrium). Information on selection can be
accumulated and used to aid studies of human
sequence variation when attempting to determine
which variants are most likely to be functional.

There is even more potential value likely to
come from studies of wild nonhuman primate
populations. Using our quantitative genetic
model as described above, we would further
suggest the great potential to better assess the
importance of genetic variation for complex
phenotypes observed in wild nonhuman primate
populations. Now that accurate and direct
molecular assay of genetic relatedness can be
performed via sequencing technology, the
potential to better understand the genetic basis of
many complex phenotypes that are only obser-
vable in wild populations is greatly enhanced.

In Chap. 8, Cox directly shows how causal
gene discovery of relevance for human disease
risk can be directly performed in captive pedi-
greed nonhuman primate colonies. She highlights
a clear benefit of using nonhuman primates for
making inferences about human biology which is
the access to tissues that are extremely difficult to
obtain on a large scale in human studies. In
studies of nonhuman primates, it is possible to
safely obtain tissues such as liver or kidney that
may be of critical value in understanding the
biological mechanisms underlying functional
sequence variation. Indeed, the potential for deep
cellular phenotyping of many different nonhu-
man primate samples represents one of the major
benefits of the primate animal model. Although
the general paradigm Cox utilizes is that of
complex phenotype gene discovery widely used
in human populations, she shows that the ability
to manipulate the other main component of the

4 S. Williams-Blangero and J. Blangero
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causal players, the environment, is possible in
such experimental situations. By carefully con-
trolling the environment, it is feasible to truly test
for such complexities such as genotype-by-
environment interaction. In her case, she focuses
on genotype-by-diet interaction effects on lipid
variation. This type of experiment involving the
rigorous control of diet is extremely difficult to
directly perform in humans and thus the benefit
of doing such in nonhuman primates is obvious.

In Chap. 14, Sherwood and Duren examine
the genetic determinants of variation in the pri-
mate craniofacial complex. This phenotypic
dimension also is of obvious utility for under-
standing a large number of human disorders.
Again, they employ standard gene discovery
approaches to captive primate colonies. The
ability to deeply phenotype animal models
becomes a substantial benefit when dealing with
potentially high dimensional imaging-derived
phenotypes.

Finally, in Chap. 15 Bailey and colleagues
apply similar approaches to nonhuman primate
behavioral phenotypes. These are the most com-
plex of all phenotypes and also among the most
difficult to study. They review a number of studies
including work on pedigreed vervets that show a
consistent heritable component for complex pri-
mate behaviors. Other groups working on vervets
also have used advanced genomic and transcrip-
tomic methods to identify likely genes involved in
complex phenotypes (Jasinska et al. 2012).

Advanced phenotyping relevant for behavior
and psychiatric disease risks such as brain
imaging are possible in large numbers of related
primates to act as potential endophenotypes of
relevance for the focal behaviors/disease risks.
For example, an advanced brain imaging study
that identified substantial genetic variation in the
neural basis of anxious temperament in pedi-
greed rhesus macaques undergoing brain PET
was performed successfully (Oler et al. 2010).
Other clear benefits to working with nonhuman
primates for psychiatric disease studies include
the ability to get cerebrospinal fluid samples from
large numbers of animals, a tissue that is

exceedingly hard to justify in human studies of
normal variation (Rogers et al. 2004).

1.6 Where Are We Going?

Most of the nonhuman primate applications in
this volume still focus on causal gene discovery.
Like others (Aitman et al. 2011), we believe that
the tremendous advances in studies of human
genetics will soon eliminate this focus. The field
of human complex disease genetics is currently
transitioning away from the study of common
sequence variants of small effect (such as those
that have been found typically in genome wide
association studies) to the study of rare variants
that are difficult to capture in sufficient numbers
for testing except in extended families. These
human studies often point to genes that require
additional biological investigation in more con-
trolled experimental circumstances.

Given that we can now sequence very large
numbers of humans to directly search for likely
functional variants, the utility of nonhuman pri-
mate genomic studies should transition to our
second major question, that of aiding the func-
tional characterizations of sequence variants. One
of the most obvious ways to utilize nonhuman
primates in this context is the exploitation of
existing sequence variation through experimental
breeding. For example, in the near future, all
nonhuman primate colonies can easily be
sequenced and all rare coding variation identi-
fied. For a given gene of interest, we can then
identify those animals harboring the most likely
consequential functional variation and design a
breeding plan that will generate sufficient num-
bers of copies of variant animals for deep phe-
notyping studies. The ability to get at critical
tissues, such as neuronal tissues of relevance for
many psychiatric diseases, will greatly facilitate
our ability to decide what the most important
genes and variants are. Indeed, advances in
genome editing and gene therapy are further
likely to give us the tools to study the functional
consequences of human sequence variants in
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nonhuman primates. This should help us identify
and prioritize causal genes that may be of
greatest importance for human disease pathways
with the main advantage of providing an in vivo
biological context that is extremely similar to that
which we observed in humans.
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2The Human Genome Project: Where Are
We Now and Where Are We Going?
Satish Kumar, Christopher Kingsley,
and Johanna K. DiStefano

2.1 The Human Genome Project:
Where Have We Been?

An explosion in our understanding of genetics
and biochemistry, which began in the 1970s, led
to the rapid development of diverse laboratory
techniques such as restriction enzymes, cloning
vectors, nucleic acid hybridization, and DNA
sequencing. Together these methods revolution-
ized research in molecular biology. It was here,
in this fertile atmosphere, that the seeds of gen-
ome sequencing were sown. The progressive
spirit pervading research in the life sciences at
this time consequently helped to fuel the con-
ception of the Human Genome Project (HGP),
whose primary aims were to determine the
identity of the three billion nucleotides com-
prising the human genome and characterize the
full repertoire of genes encoded therein.

2.1.1 Historical Background
of the HGP

The HGP is considered one of the most ambi-
tious and successful international research col-
laborations in the history of biology. Those
individuals and organizations responsible for
bringing the HGP to fruition were both visionary
and innovative, considering that the technologi-
cal and computational tools commonplace today
were unheard of 20 years ago when the idea of
sequencing the human genome was germinated.
Because thorough and engaging accounts of the
conception, implementation, and completion of
the HGP have already been presented elsewhere
(Roberts 2001; Choudhuri 2003), we will pro-
vide only a brief synopsis of its history here.

The idea of sequencing the human genome
was first discussed in 1984 at a meeting in Salt
Lake City, Utah, hosted by the Department of
Energy (DOE) and the Internal Commission for
Protection Against Environmental Mutagens and
Carcinogens. Although the purpose of this
meeting was focused on mutation detection, the
value of a human genome reference sequence was
acknowledged, albeit in an oblique manner
(Cook-Deegan 1989). The actual merit of
sequencing the human genome was brought for-
ward as a focus topic for the first time in 1985
during a conference at the University of Califor-
nia, Santa Cruz. Meeting participants generally
supported the idea of such a project, but largely
agreed that the endeavor laid outside the then
current realms of feasibility and/or practicality.
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Enthusiasm for the initiative quickly mounted
during the following year at meetings held con-
secutively at Los Alamos National Laboratory
and Cold Spring Harbor Laboratory (Roberts
2001). Debate about the value, expense, and
potential consequences of the initiative continued
until 1988, when the National Research Council
panel officially endorsed the HGP. At that time,
the panel refined the initiative, recommending
that physical maps of each chromosome be con-
structed, and genomes of simple organisms be
investigated prior to the full-scale sequencing of
the human genome. In addition to sequencing the
entire human genome, the HGP also aimed to
identify all genes in the human genome, store
sequence information in publicly available dat-
abases, develop and/or improve tools for analyz-
ing sequence data, help transfer technologies
resulting from the HGP to the private sector, and
address relevant ethical, legal, and social issues
(http://www.ornl.gov).

The HGP was officially launched on October
01, 1990, following the initiation of large-scale
sequencing trials on Mycoplasma capricolum,
Escherichia coli, Caenorhabiditis elegans, and
Saccharomyces cerevisiae. The International
Human Genome Sequencing Consortium
(IHGSC), comprised of the National Institutes of
Health (NIH), the DOE, and a collaborative of
investigators from the United Kingdom, France,
Germany, Japan, and China, was formed to
implement the goals of the HGP. In 1998 this
effort was joined by Celera Genomics, a privately
funded venture formed jointly by Dr. J. Craig
Venter, from The Institute for Genomic Research
(TIGR), and the Perkin-Elmer Corporation.
Venter proposed to sequence the human genome
in a shorter period of time and at less cost than
the publicly funded effort, using the relatively
novel technique of whole genome shotgun
sequencing. In early 2001, both IHGSC (Lander
et al. 2001) and Celera Genomics (Venter et al.
2001) published working draft sequences of the
human genome. Although these drafts covered
only *90 % of the euchromatic genome, was
interrupted by *150,000 gaps, had many mis-
assembled segments and errors in the nucleotide
sequence, the accomplishment of such a

tremendous effort was generally applauded
among the scientific community.

Following the publication of these rough draft
versions of the genome, the IHGSC initiated
efforts to finish sequencing the euchromatic
genome and resolve areas containing gaps and
misalignments. Results of these efforts were
published in 2004 (International Human Genome
Sequencing Consortium 2004). This updated
version of the human genome covered 2.85 bil-
lion nucleotides, corresponding to *99 % of the
euchromatic genome. The near-complete draft
was highly accurate: the error rate of the new
genome sequence was reduced to <1 event/
100,000 bases, a figure that surpassed the origi-
nal acceptable estimate of the project (Interna-
tional Human Genome Sequencing Consortium
2004). The number of gaps was likewise
decreased from *150,000 to only 341, and most
of these remaining gaps were associated with
segmental duplications that are not amenable to
current methods of sequencing. With the release
of the near-complete human genome sequence,
the original goals of the HGP were largely
achieved (International Human Genome
Sequencing Consortium 2004). Despite the
incompleteness of this “finished” version, the
availability of these sequence data has already
had an irrevocable impact on the study of human
disease.

2.2 Impact of the Human Genome
Project: Where Are We Now?

Completion of the Human Genome Project has
provided us with a greatly enhanced under-
standing of human genetics, including a greater
appreciation of how DNA shapes species devel-
opment and evolution, biology, and disease sus-
ceptibility. The HGP has also affected the
development and/or maturation of research dis-
ciplines such as genome annotation, knowledge
of genome evolution and segmental duplication,
and comparative genomics, among others. Below
we discuss the areas in which completion of the
HGP has influenced our basic understanding of
genetics, while subsequent sections will address
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the impact of the HGP on the manner in which
we approach disease risk and development
of treatment strategies based on genetic
predisposition.

2.2.1 Enhanced Understanding
of Human Genetics

2.2.1.1 Genome Annotation
The sequencing portion of the HGP was a sig-
nificant technological feat, and provided the
scientific community with a comprehensive
accounting of the working material of the gen-
ome. However, acquisition of DNA sequence
was only the first step toward the ultimate aim of
understanding how the human genome functions
at the molecular level. Necessary next steps
toward this goal include the systematic identifi-
cation and characterization of the functional units
of the genome. This process of genome annota-
tion is currently a multidisciplinary field, inte-
grating the results of many different analytical
approaches, both experimental and computa-
tional, to build our understanding of the func-
tional underpinnings of the human genome
(Table 2.1).

Prior to the completion of the HGP, the field
of genome annotation was largely focused on the
comprehensive identification of protein-coding
genes, which was primarily achieved through the
use of large-scale sequencing of cDNA libraries
derived from reverse-transcribed mRNA tran-
scripts. The resulting expressed sequence tags
(ESTs) were grouped together based on sequence
similarity using multiple sequence alignment
algorithms. It was generally held that if the
starting material was comprised of a mixture of
mRNAs purified from numerous tissue types,
then the number of groups produced by this
process would provide a rough estimate of the
total number of protein-coding genes expressed
throughout the body. Prior to the publication of
the human genome sequence, estimates on the
total number of genes varied widely, from 35,000
to 150,000 (Pennisi 2007).

While cDNA sequencing approaches were
fairly open ended in nature, the HGP produced a
finite database of sequence information that
could be easily searched for the presence of
protein-coding genes. Yet, due to the low pro-
portion of coding sequence in the human gen-
ome, the large number of exons per genes, and
the relatively small exon size, gene annotation
presented a much more difficult proposition in

Table 2.1 Experimental and computational methods of genome annotation

Genomic feature Experimental/computational approach

Gene identification cDNA and peptide sequencing

Computational prediction

Comparative genomics

Transcript identification Tiling microarray

cDNA sequencing

Computational prediction

Comparative genomics

Regulatory sequence identification Chromatin Immunoprecipitation and tiling microarray (ChIP-Chip)

Computational prediction of factor binding sites

Promoter/enhancer assays

Sequence variation DNA resequencing

Copy number microarray

Chromatin structure DNaseI sensitivity assay

Tiling microarray

A number of methods are currently employed to identify functional regions of the genome. The first column lists several
genomic features that are commonly annotated, and the second column lists the experimental or computational
approaches that can be used to identify those features in genome sequence assemblies
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humans compared to previously sequenced
organisms, such as Drosophila melangaster, C.
elegans, or various prokaryotes. Because of this
fact, a hybrid approach was taken that incorpo-
rated multiple lines of evidence, including
homology of genome sequence to ESTs, simi-
larity to other known genes or proteins, and
statistical strategies that took into account splice
site structure, amino acid coding bias, and known
distributions of intron and exon lengths. Using
these approaches with the newly available human
genome sequence, a surprisingly low estimate of
only 30,000–40,000 protein-coding genes was
obtained, but the estimate involved considerable
guesswork owing to the imperfections of the
draft sequence and the inherent difficulty of gene
identification (Lander et al. 2001; Venter et al.
2001). In the years following these initial esti-
mates, it was discovered that many open reading
frames (ORFs) that occur at random in transcripts
are actually nonfunctional, and the total number
of protein-coding genes has been steadily revised
downward since. Currently, the human genome
is estimated to contain approximately 20,000–
21,000 protein-coding genes (Clamp et al. 2007;
Pennisi 2007). Recent RNA-Seq projects have
confirmed the gene catalog, while illuminating
alternative splicing, which seems to occur
at >90 % of protein-coding genes and results in
many more proteins than genes. At this time, the
proteome is now known to be similar across
placental mammals, with about two-thirds of
protein-coding genes having 1:1 orthologues
across species and most of the rest belonging to
gene families that undergo regular duplication
and divergence—the de novo creation of funda-
mentally new proteins is considered a rare phe-
nomenon (Lander 2011).

The human genome also gives rise to a large
number of noncoding RNAs (Kapranov et al.
2007). Oligonucleotide-based tiling microarrays
that interrogate every base pair of genome
sequence over expansive regions have revealed
that a much larger percentage of the human
genome is transcribed compared to what was
originally presumed (Cheng et al. 2005). While
only 1–2 % of the human genome codes for
proteins, approximately 15 % of all interrogated

bases were able to detect RNA molecules from a
single cell line, indicating that the vast majority
of transcription from the human genome pro-
duces noncoding RNA products. The novel RNA
transcripts are often transcribed from both
strands, and transcription of coding sequences
from the antisense strand is particularly common
(Cheng et al. 2005). While the function of most
of these products is not yet known, some non-
coding RNAs exert regulatory effects on coding
transcripts through complementary nucleotide
base pairing. This hybridization decreases tran-
script stability by targeting it for degradation or
translational repression (Kim and Nam 2006).

One of the surprising discoveries about the
human genome was that the majority of the
functional sequence does not encode proteins.
Inferring these non-neutral, conserved noncoding
elements in humans was a challenge before the
HGP. Soon after the first draft the comparative
analysis of the human and mouse genomes
showed a substantial excess of conserved
sequence, relative to the neutral rate in ancestral
repeat elements (Mouse Genome Sequencing
Consortium 2002).

Research groups working independently of
one another have performed most of the
approaches applied toward annotating the human
genome (Table 2.1). The National Human Gen-
ome Research Institute (NHGRI) launched a
public research consortium named ENCODE, the
ENCyclopedia Of DNA Elements, in September
2003, to systematically integrate the genome
annotation efforts in identifying all functional
elements in the human genome sequence.
(ENCODE Project Consortium 2004). The pro-
ject started with two components—a pilot phase
and a technology development phase. The pilot
phase of the ENCODE project tested and com-
pared the existing arsenal of annotation approa-
ches on a series of 44 genomic regions
comprising approximately 30 Mb, or roughly
1 % of the human genome. About half of the
targets were chosen to contain extensively char-
acterized genes or functional regions, while the
other half were randomly selected (ENCODE
Project Consortium 2004). The findings of the
pilot project were published in June 2007
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(ENCODE Project Consortium 2007) and scores
of important information highlighted includes:
• There is abundant transcription beyond the
known protein-coding genes both intragenic
and intergenic transcription, including non-
coding RNA and transcribed pseudogenes.
While this has been previously observed in
other studies, the ENCODE pilot phase con-
firmed this phenomenon on a global level.

• At the same time, known protein-coding genes
revealed unexpected complexity in distal,
untranslated regions (UTRs), exons located as
far as 200 kb away, overlapping or interleaved
loci, and antisense transcription. Together,
these findings challenged the conventional
definition of a “gene”.

• Patterns of histone modifications and DNase
sensitivity revealed domains of packed or
accessible chromatin. These accessibility pat-
terns correlate well with rates of transcriptions,
DNA replication, and regulatory protein fac-
tors binding to the DNA. These results served
to underscore the regulatory importance of
epigenetic factors.
Combined, the ENCODE findings changed

our conceptual framework of the organization
and functional aspects of the genome. Two
additional goals of the pilot ENCODE Project
were to develop and advance technologies for
annotating the human genome, with the com-
bined aims of achieving higher accuracy, com-
pleteness, and cost-effective throughput and
establishing a paradigm for sharing functional
genomics data.

In 2007, the ENCODE Project was expanded
to study the entire human genome, capitalizing
on experimental and computational technology
developments during the pilot project period. The
genome-wide ENCODE phase is currently in
progress focusing on the completion of two
major classes of annotations—genes (both pro-
tein-coding and noncoding) and their RNA
transcripts and transcriptional regulatory regions.

Gene Annotation. A major goal of ENCODE
is to annotate all protein-coding genes, pseudo-
genes, and noncoding transcribed loci in the
human genome and to catalog the products of
transcription, including splice isoforms. Although

the human genome contains 20,000 protein-cod-
ing genes (International Human Genome
Sequencing Consortium 2004), accurate identifi-
cation of all protein-coding transcripts has not
been straightforward. Annotation of pseudogenes
and noncoding transcripts also remains a con-
siderable challenge. While automatic gene anno-
tation algorithms have been developed, manual
curation remains the approach that delivers the
highest level of accuracy, completeness, and
stability (Guigo et al. 2006). This annotation
process involves consolidation of all evidence of
transcripts (cDNA, EST sequences) and proteins
from public databases, followed by building gene
structures based on supporting experimental data
(Harrow et al. 2006). More than 50 % of anno-
tated transcripts have no predicted coding
potential and are classified by ENCODE into
different transcript categories. A classification
that summarizes the certainty and types of the
annotated structures is provided for each tran-
script. Pseudogenes are identified primarily by a
combination of similarity to other protein-coding
genes and an obvious functional disablement
such as an in-frame stop codon. Ultimately, each
gene or transcript model is assigned one of the
three confidence levels. Level 1 includes genes
validated by RT-PCR and sequencing, plus con-
sensus pseudogenes. Level 2 includes manually
annotated coding and long noncoding loci that
have transcriptional evidence in EMBL/Gen-
Bank. Level 3 includes Ensembl gene predictions
in regions not yet manually annotated or for
which there is new transcriptional evidence. The
result of ENCODE gene annotation ‘‘GEN-
CODE’’ is a comprehensive catalog of transcripts
and genemodels. ENCODE gene and transcript
annotations are updated bimonthly and are
available through the UCSC ENCODE browser,
Distributed Annotation Servers (DAS), and the
Ensembl Browser (Flicek et al. 2010; ENCODE
Project Consortium 2011, 2012).

RNA Transcripts. The work on comprehen-
sive genome-wide catalog of transcribed loci that
characterizes the size, polyadenylation status,
and subcellular compartmentalization of all
transcripts is also ongoing at ENCODE, with
transcript data generated from high-density

2 The Human Genome Project … 11



(5 bp) tiling DNA microarrays (Kampa et al.
2004) and massively parallel DNA sequencing
methods (Mortazavi et al. 2008; Wold and Myer
2008; Wang et al. 2009). Because subcellular
compartmentalization of RNAs is important in
RNA processing and function, such as nuclear
retention of unspliced coding transcripts (Schmid
and Jensen 2010) or small nucleolar RNA
(snoRNA) activity in the nucleolus (Bachellerie
et al. 2002), ENCODE is analyzing not only total
whole cell RNAs but also those concentrated in
the nucleus and other subcellular compartments,
providing catalogs of potential microRNAs
(miRNAs), snoRNA, promoter-associated short
RNAs (PASRs) (Kapranov et al. 2007), and other
short cellular RNAs. These analyses revealed
that the human genome encodes a diverse array
of transcripts. Additional transcript annotations
include exonic regions and splice junctions,
transcription start sites (TSSs), transcript 39
ends, spliced RNA length, locations of polyade-
nylation sites, and locations with direct evidence
of protein expression (ENCODE Project Con-
sortium 2011, 2012).

Transcriptional Regulatory Regions. Tran-
scriptional regulatory regions include diverse
functional elements such as promoters, enhanc-
ers, silencers, and insulators, which collectively
modulate the magnitude, timing, and cell speci-
ficity of gene expression (Maston et al. 2006).
The ENCODE Project is using multiple approa-
ches to identify cis-regulatory regions, including
localizing their characteristic chromatin signa-
tures and identifying sites of occupancy of
sequence-specific transcription factors. These
approaches are being combined to create a
comprehensive map of human cis-regulatory
regions.

Chromatin Structure and Modification.
Chromatin accessibility and histone modifica-
tions provide independent and complementary
annotations of human regulatory DNA, and
massively parallel, high-throughput DNA
sequencing methods are being used by ENCODE
to map these features on a genome-wide scale.
Deoxyribonuclease I (DNaseI) hypersensitive
sites (DHSs) and an expanding panel of histone

modifications are also being mapped (Barski
et al. 2007; Johnson et al. 2007; Mikkelsen et al.
2007; Robertson et al. 2007). ENCODE chro-
matin annotation data such as chromatin acces-
sibility, DNase I hypersensitive sites, and
selected histone modifications are available
through the UCSC browser (http://genome.ucsc.
edu/).

Transcription Factor and RNA Polymerase
Occupancy. Much of human gene regulation is
determined by the binding of transcriptional
regulatory proteins to their cognate sequence
element in cis-regulatory region. To create an
atlas of regulatory factor (i.e., transcription fac-
tors, RNA polymerase 2, both initiating and
elongating, and RNA polymerase 3) binding,
ENCODE is applying chromatin immunopre-
cipitation and DNA sequencing (ChIP-seq)
technology, which enables genome-wide map-
ping of transcription factors occupancy pattern
in vivo (Barski et al. 2007; Johnson et al. 2007;
Robertson et al. 2007). Alternative technologies,
such as epitope tagging of transcription factors in
their native genomic context using recombi-
neering (Poser et al. 2008; Hua et al. 2009), are
also being explored.

ENCODEAdditional Data. ENCODE is also
generating additional data types to complement
gene and regulatory region annotations and that
includes data on DNA methylation, DNase I
footprinting, long-range chromatin interaction,
protein–RNA interaction, and genetic and struc-
tural variation in the cell types used in ENCODE
production phase. The key features of the pro-
duction phase include use of several cell types for
the main data collections efforts and the use of
these cell types by all project teams to maintain
consistency. The cell types are organized into tiers
to prioritize experimental investigations. These
features are expected to enable better coordination
of studies and interpretation of results.

2.2.1.2 Segmental Duplications
The HGP has also extended our understanding of
segmental duplications (SDs). Eukaryotic organ-
isms have evolved a complex, highly regulated
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cellular machinery to insure the proper replica-
tion, condensation, and segregation of chromo-
somes during cell division (Hirano 2000).
However, errors in the distribution of genetic
material during cell division occasionally occur,
leading to daughter cells that receive more or less
than the usual complement of genomic DNA
following cell division. If such an alteration in
DNA copy number occurs in the germ cell lineage
of a multicellular organism, then the progeny of
that organism can inherit the change in DNA
copy number. Over many generations, copy
number changes that occur in a single individual
can spread through a population, leading to a
situation in which the copy number status of a
chromosomal region can be considered a type of
genetic polymorphism, typically referred to as a
copy number polymorphism (CNP) or copy
number variation (CNV) (Bailey et al. 2002;
Sebat et al. 2004).

The human genome is enriched for SDs that
vary extensively in copy number (Bailey et al.
2002; Iafrate et al. 2004; Redon et al. 2006; Kidd

et al. 2008). There are about 25,000–30,000 SDs
with ≥90 % sequence identity and ≥1 kb length
have been identified in the human genome,
which cover about 5–6 % of the total genome
(Bailey et al. 2002). It has also been reported that
SDs are highly enriched with genes and pseu-
dogenes in the human genome (i.e., SDs com-
prise ∼5 % of the genome and contain ∼17.8 %
of human genes and ∼36.8 % of human pseu-
dogenes) (Bailey et al. 2002; Zheng 2008).

When a SD contains a functional gene, the
new sequence may contain a paralog performing
the same function as the original gene or a new
function. Duplicated pseudogenes are formed
when the new sequence undergoes mutations that
result in the loss of original function (Fig. 2.1).
The process of SD such as retrotransposition
events may also result in the loss of function
(LOF) of the duplicated gene; such genes are
referred as processed pseudogenes (Mighell et al.
2000; Harrison and Gerstein 2002). Processed
pseudogenes usually lack promoter sequences,
and hence are considered dead on arrival.

Gene Duplication Event

Random Inactivation of
One Copy

Generation of Pseudogene Generation of Pseudogene and
Change of genomic location

Fig. 2.1 Pseudogene generation by gene duplication and
random inactivation. The creation of a novel pseudogene
is initiated by a gene duplication event in which a
sequence containing a functional gene (white box) is
duplicated and inserted into a separate site in the genome
(shown here as a duplication from one chromosome to

another). In most cases of gene duplication, one of the two
copies will be randomly silenced and inactivated by
mutations, leading to the creation of a pseudogene
(checked white box). Depending on which of the two
copies is inactivated during this process, the genomic
position of the original gene can change
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Although pseudogenes are assumed to have lost
the original coding functions of their parent
genes due to the presence of disablements such
as premature stop codons or frameshift muta-
tions, recent studies indicate that they might have
some regulatory roles (Sasidharan and Gerstein
2008). Automated methods of annotating geno-
mic DNA sequences have identified more than
20,000 pseudogenes (International Human Gen-
ome Sequencing Consortium 2004).

Although studies have begun to define the
important roles of SDs in generating novel genes
through adaptive evolution, gene fusion, or exon
exaptation (Lynch and Conery 2000; Taylor and
Raes 2004; Bailey and Eichler 2006), it remains
a mystery how duplicated copies have evolved
from an initial state of complete redundancy
(immediately after duplications) to a stable state
where both copies are maintained by natural
selection. Some glimpse into this important
evolutionary process comes from the investiga-
tions of duplicated protein-coding genes or gene
families showing that duplicated genes can
evolve different expression patterns, leading to
increased diversity and complexity of gene reg-
ulation, which in turn can facilitate an organism’s
adaptation to environmental change (Gu et al.
2004, 2005; Hittinger and Carroll 2007; Louis
2007). Furthermore, the studies of histone mod-
ification in human SDs have also demonstrated
that parental and duplicated copies are not
functionally identical even though they
share ≥90 % identity in their primary sequences,
suggesting that descendants in a new genomic
environment are more likely the candidates for
sequence degeneration or functional innovation
(Zhao et al. 2007; Zheng 2008).

Despite recent technological advances in copy
number detection, a global assessment of genetic
variation of these regions has remained elusive.
Commercial single nucleotide polymorphism
(SNP) microarrays frequently bias against probe
selection within these regions (Estivill et al.
2002; Locke et al. 2006; Cooper et al. 2008;
Pinto et al. 2011). Array comparative genomic
hybridization (array CGH) approaches have
limited power to discern copy number differ-
ences, especially as the underlying number of

duplicated genes increases and the difference in
copy number with respect to a reference genome
becomes vanishingly small (Locke et al. 2003;
Sharp et al. 2005; Redon et al. 2006; Pinto et al.
2011). Even sequence-based strategies such as
paired-end mapping (Tuzun et al. 2005; Korbel
et al. 2007) frequently cannot unambiguously
assign end sequences in duplicated regions,
making it impossible to distinguish allelic and
paralogous variation. Consequently, duplicated
regions have been largely refractory to standard
human genetic analyses (Conrad et al. 2010;
Sudmant et al. 2010).

However, a great deal of interest has devel-
oped around the role of CNPs/CNVs in inherited
diseases, since Lupski et al. (1991) showed for
the first time, that a duplicated region on chro-
mosome 17 caused an inherited form of
Charcot–Marie–Tooth disease. Since that initial
finding, numerous CNPs have been shown to be
associated with several human diseases such as
psoriasis, Crohn’s disease, lupus, rheumatoid
arthritis, Parkinson’s, Alzheimer’s, autism, neu-
roblastoma, obesity, coronary heart disease, and
type 2 diabetes (Cohen 2007; Girirajan et al.
2011). While the number of such cases is still
relatively small compared to the number of
inherited diseases shown to be caused by point
mutations in protein-coding sequences, the
importance of CNPs/CNVs in human disease has
become increasingly apparent over the past few
years. It is now known that at least 15 % of
human neurodevelopmental diseases are due to
rare and large copy number changes that result in
local dosage imbalance for dozens of genes
(Giriraj et al. 2011). Other large CNVs, both
inherited and de novo, have been implicated in
the etiology of autism, schizophrenia, kidney
dysfunction, and congenital heart disease. Sur-
prisingly, studies of the general population sug-
gest that although such alleles are rare,
collectively they are quite common and under
strong purifying selection. These features mean
that a significant fraction of the human popula-
tion carries an unbalanced genome. Such indi-
viduals may be sensitized for the effect of another
variant that could potentially interact with these
CNVs in a digenic manner. The co-occurrence of
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multiple, rare CNVs has been used to explain the
comorbidity and variable expressivity associated
with particular variants in cases of severe
developmental delay. There is circumstantial
evidence that the full complement of both CNVs
and SNPs may be important for understanding
genetic diseases more broadly (O’Roak et al.
2011).

2.2.1.3 Comparative Genomics
and Genome Evolution

Comparative genomics is the study of relation-
ships among genome sequences of different
species. Although a relatively young discipline,
comparative genomics has been used to refine
our understanding of a number of phenomena,
including the evolutionary relationship between
species, and the content and function of gen-
omes. From an evolutionary perspective, the
similarities and differences between genomic
sequences can serve to infer phylogenetic rela-
tionships between species based upon molecular
criteria in the same fashion that morphological
and physiological criteria were used to distin-
guish species in the past. Identification of con-
served regions may also help to elucidate
functionally important sequences such as genes,
regulatory sites, and structural elements.

Before the availability of whole genome
assemblies, comparative genomic analyses were
performed using a small number of homologous
sequences that were individually isolated from
different organisms and sequenced (Murphy et al.
2001). As crucial as these studies were for estab-
lishing broad phylogenetic relationships between
and among species, the relatively small fraction of
genomic sequence used for such analyses was a
significant limitation. The recent explosion in the
field of comparative genomics results directly
from the efforts of numerous sequencing projects
and the widespread availability of whole genome
assemblies from a variety of different species. The
Genomes Online Database (GOLD), which is a
World Wide Web resource for comprehensive
access to information regarding genome and me-
tagenome sequencing projects, and their associ-
ated metadata, documented 11,472 ongoing and

completed genome projects by September 2011.
These comprise 8,473 bacterial, 329 archaeal, and
2,204 eukaryal genomes. Additionally, 340 me-
tagenomic projects are tracked with a total of
1,927 samples associated with them. GOLD also
tracks well over 1,000 proprietary projects, cur-
rently not available to the public, whose metadata
will be accessible once the principal investigators
of these projects give consent for their public
release. In terms of status, 1914 different organ-
isms are completely sequenced and their final
sequence has been released from GenBank. From
those, 1,644 are bacterial, 117 are archaeal, and
153 are eukaryal. A constantly increasing number
of sequencing projects are completed at the level
of a draft genome and their final sequences are
submitted in GenBank. These projects are identi-
fied as “Permanent Draft” genomes. There are
currently 989 genomes at this stage (28 archaeal,
949 bacterial, and 12 eukaryal). As of September
2011, the total number of complete genomes is
2,907, which is the sum of the finished and the
permanent draft genomes (Pagani et al. 2012).

With the availability of genomes representing
multiple species, comprehensive comparisons
have produced results that have been both infor-
mative and unexpected. Primarily, our under-
standing of the functional contents of the human
genome has been substantially enhanced by
comparisons with the genomes of other species.
For example, comparison of the human genome
with distantly related organisms (e.g., the fruit
fly) has been critical for determining the core set
of genes necessary for the development and
function of multicellular eukaryotes. Similarly,
comparison of genomes from humans and verte-
brate species of intermediate evolutionary dis-
tance (e.g., the mouse) can identify both coding
and noncoding sequences that are likely to be
functional based on strong evolutionary conser-
vation (Fig. 2.2). Finally, comparison of genomes
from humans and closely related primates will
help identify the small percentage of divergent
sequence that is responsible for specifically
human traits. The following paragraphs touch
briefly on each of these kinds of comparisons.

The divergence of humans and fruit flies
(D. melanogaster) from a common ancestor is
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estimated to have occurred over half a billion
years ago. The obvious morphological differ-
ences between the two species are reflected in the
substantial differences at the level of the genome,
with the most apparent discrepancies being gen-
ome size and gene content (Adams et al. 2000).
The human genome spans *3.1 billion base
pairs compared to the 180 million base pairs
comprising the drosophila genome (Adams et al.
2000), yet contains less than twice as many genes
compared to the fly. This size–content disparity
is generally consistent with the large expansion
of nongenic sequence present in the human
lineage, resulting mostly from simple repetitive
elements, which are not present in the drosophila
genome. Despite relatively comparable content,
human genes undergo vastly greater amounts of
alternative transcription and splicing events,

which lead to a much greater diversity of protein
products. For example, the *20,000 genes
comprising the human genome give rise to more
than 100,000 proteins. Further comparison of
protein-coding sequences from the genomes of
both species reveals that many genes involved in
basic cellular functions such as metabolism,
DNA replication and repair, core transcriptional
regulation, and cell cycle regulation are con-
served. In contrast, human-specific gene expan-
sions are observed for many different functional
groups, several of which would be expected
given the anatomical and physiological differ-
ences between the two species. In general, these
expansions occur mainly in gene families
involved in adaptive immunity (a vertebrate-
specific process), neuronal function, hemostasis,
and programmed cell death (Venter et al. 2001).

Human Chimpanzee Mouse Fruit Fly

Time

Identification of sequences 
that determine inter-species 
differences

Identification of the core set of genes in 
multicellular organisms

Identification of conserved 
sequences that might be 
functional

~6Mya

~100Mya

~500Mya

Fig. 2.2 Comparative genomics of species at different
evolutionary distances. Genomic comparison of two
species can yield different conclusions depending on the
degree of genetic difference between them. The evolu-
tionary tree shows the estimated time (in millions of
years) from the divergence of human, chimp, mouse, and

fruit fly from their common ancestor. The text at bottom
indicates the information that can be inferred from
comparing the human genome to that of a closely related
species (chimp), a species of intermediate evolutionary
distance (mouse), or a species of great evolutionary
distance (fruit fly)
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The first large-scale comparison of two
mammalian genome assemblies was performed
between human and mouse (Mus musculus), two
species separated by 75–100 million years of
evolution (Mouse Genome Sequencing Consor-
tium 2002; Mural et al. 2002). The human and
mouse genomes share *80–90 % of the same
genes, while the remaining unshared genes rep-
resent mostly species-specific expansions of
functional groups including olfaction, immunol-
ogy, reproduction, and detoxification (Mouse
Genome Sequencing Consortium 2002). One of
the most significant and unexpected findings of
the human/mouse genome comparison was the
large fraction of highly conserved sequences that
are neither protein-encoding nor related to
known genes (Mural et al. 2002). While *5 %
of the human genome is significantly conserved
with that of the mouse (>70 % identity over
100 bp or more), only *1.5 % of each genome
was found to correspond to protein-coding
sequence (Dermitzakis et al. 2003). This finding
suggests that conserved nonprotein coding
sequence is almost twice as abundant as con-
served coding sequence. Further, the degree of
conservation is estimated to be even greater for
noncoding than coding sequences, implying a
substantial degree of selective pressure on non-
coding sequences (Dermitzakis et al. 2003).
Recent comparisons of vertebrate genome
assemblies from organisms as diverse as human,
rat, mouse, dog, and chicken have provided
additional support for this relationship by iden-
tifying hundreds of “ultra-conserved” elements,
in which an extremely high level of conservation
is present among sequences (>95 % over 200 bp
or more), and with most of the conserved regions
occurring outside of known genes (Bejerano
et al. 2004). Although a substantial portion of
this conserved sequence is posited to serve a
regulatory function (Pennacchio et al. 2006;
Prabhakar et al. 2006; Xie et al. 2007), and a very
weak selection could also maintain the sequence
conservation of ultraconserved elements in non-
coding regions (Kryukov et al. 2005; Chen et al.
2007), the reason for this extremely high level of
conservation in noncoding regions over millions
of years remains unknown.

The completion of genomic assemblies from
closely related primates has enabled focus on
more recent events in the molecular evolution,
molecular adaptation, and genome structure of
Homo sapiens (Fig. 2.3). Currently, the genome
sequences of 13 nonhuman primates are avail-
able and at least 11 are approved sequencing
targets (Enard 2012). These genomic assemblies
together with future sequencing will reveal basic
insights into evolutionary processes of mutation,
selection and recombination (Marques-Bonet
et al. 2009), will be essential tools for primate
model organisms (Sasaki et al. 2009), and will
also be directly informative for medically rele-
vant questions (Enard 2012). Among the first
completed after human are chimpanzee (Pan
troglodytes) (Chimpanzee Sequencing and
Analysis Consortium 2005) and rhesus macaque
(Macaca mulatta) (Rhesus Macaque Genome
Sequencing and Analysis Consortium 2007),
which diverged from humans *6 and 25 million
years ago, respectively. Genome-wide compara-
tive analyses of the human, macaque, and
chimpanzee genomes have revealed some
important features and general principles of pri-
mate genome evolution. The alignment of the
majority of genomic sequence from closely
related primates is relatively trivial (Ebersberger
et al. 2002; Thomas et al. 2003) and shows a
neutral pattern of single nucleotide variation
consistent with the primate phylogeny, although
the rate of single nucleotide variation has varied
by a factor of threefold within different lineages
(Li and Tanimura 1987; Steiper et al. 2004; El-
ango et al. 2006). Notably, the pattern of single
nucleotide variation also varies as a function of
chromosome structure and organization (Chim-
panzee Sequencing and Analysis Consortium
2005; Rhesus Macaque Genome Sequencing and
Analysis Consortium 2007). On average, 10 % of
the genomic sequence has proven more elusive in
terms of orthologous alignment. This includes
SDs, subtelomeric regions, pericentromeric
regions, and lineage specific repeats.

Comparative sequence data highlight the
value of genomic sequence from nonhuman pri-
mates to determine the ancestral and derived
status of human alleles (Chen and Li 2001;

2 The Human Genome Project … 17



Kaessmann et al. 2001). There have been some
surprises. Phylogenetic analysis of resequenced
regions among humans and the great apes reveal
that as many as 18 % of genomic regions are
inconsistent with the Homo-Pan clade, and,
rather, support a Homo-Gorilla clade (Chen and
Li 2001). This has been taken as evidence of
lineage-sorting and/or an ancestral hominid
population size greater than five times that of the
effective human population size (n = 10,000).
Another surprise has been the identification of
ancestral allelic variants that now occur as dis-
ease alleles within the human population, i.e.,
phenylketonuria, macular dystrophy, and cystic
fibrosis pyrin and familial Mediterranean fever
(Schaner et al. 2001; Rhesus Macaque Genome
Sequencing and Analysis Consortium 2007).
Such findings suggest that the functional and
selective effects of mutations change over time,
perhaps as a result of environmental changes or
compensatory genetic mutations.

Despite the ease at which genomic sequences
can be aligned among primate genomes, the
number of genes that can be assigned to 1:1:1
orthologous group has changed only slightly with
the first two nonhuman primate genomes
sequenced. A three-way comparison involving
chimp–human–mouse identified 7,645 ortho-
logues (Clark et al. 2003) as compared to 10,376
by human–chimp–macaque (Rhesus Macaque
Genome Sequencing and Analysis Consortium
2007) over the total estimated 20,000 genes in the
human genome, suggesting that a large fraction of
human genes are yet to be subjected to ortholo-
gous comparisons and the pattern of selection
operating on these genes is yet to be adequately
interrogated. Among the primate order of mam-
mals, comparative genomic studies have
advanced more rapidly for taxa closely related to
humans, chimpanzees, macaques, and baboons.
As complete genome sequencing projects advance
for other primate families, including the New

Human Chimpanzee Macaque

RAYQALH RAYRALH RAYRALHTRIB3 Sequence:

~6Mya

~35MyaTime

Fig. 2.3 Ternary analysis of closely related primate
species. Evolutionary triangulation can identify the line-
age in which a sequence variant evolved. The evolution-
ary tree shows the estimated time (in millions of years)
from the divergence of human, chimp, and macaque from
their common ancestor. As an example, the protein
sequence shown at bottom is derived from a portion of the

TRIB3 gene from each species. Since the sequence variant
in the TRIB3 gene is common to chimp and macaque, it
likely occurred in the human lineage within the last 6
million years. Interestingly, the ancestral TRIB3 allele
observed in the chimp and macaque is associated with
insulin resistance when present in humans
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World monkeys (Cebidae) and strepsirhine pri-
mates (lemurs, lorises, aye-aye, pottos, and gala-
gos), new insights are anticipated as, particularly
for a lemur genome project, new information
about primate adaptations and evolution can be
anticipated (Horvath and Willard 2007).

However, identification of the most recent
events in the speciation of H. sapiens will require
comparative analyses between the genomes of
humans and other members of the genus Homo.
While genetic material for such species has been
available for years, the reliable amplification and
sequencing of DNA extracted from ancient bone
samples has not been tenable until recently.
Careful collection procedures, performed under
exceedingly pristine conditions, have enabled
1.3x coverage from three Neanderthal individuals
(Green et al. 2006; Noonan et al. 2006) and the
1.9x coverage from a small finger bone found in
the Denisova cave in Siberia (Reich et al. 2010).
These genomes are on average slightly more
related to each other than to modern human
genomes, but most genomic regions still fall
within the variation of modern humans (Reich
et al. 2010). Interestingly, those regions where
this is not the case, i.e., where all modern humans
are closely related to each other than to Deniso-
vans or Neanderthals, are enriched for regions
that have been positively selected after the pop-
ulation split some 270,000–440,000 years ago
(Green et al. 2006). While a comprehensive
comparison of human and Neanderthal DNA
sequence has the potential to identify the rela-
tively small number of genetic changes that
occurred over the span of time in which H.
sapiens evolved into a distinct species. Further
data and the identification of additional fossils
will lead to considerably better assemblies of
these ancient genomes and 30x coverage data for
Denisovans was recently made available (Meyer
et al. 2012). Although it is unlikely that endoge-
nous DNA sequences can be obtained from much
older hominin fossils, the unexpected finding of
Denisovans allows optimism that genomes from
more hominins can be discovered and will
improve our understanding of human evolution
and even some aspects of human disease.

2.2.2 Genetic Studies of Complex
Traits

Perhaps the greatest impact of the HGP has been
on the manner in which researchers investigate
the causes of complex human diseases. Unlike
monogenic diseases, which arise due to a single
genetic aberration, complex diseases result from
a complicated interaction of multiple genetic and
environmental determinants, none of which are
amenable to identification and characterization
using the traditional approaches to monogenic
disease gene discovery. Completion of the HGP
gave rise to the development of efforts and
technology to characterize genetic variation on a
genome-wide scale, including the genotyping of
common variants, which has led directly to the
application of whole genome association studies
to identify common alleles which contribute to
complex disease risk, or the very recent whole
genome sequencing efforts to identify low-fre-
quency and rare variants in diverse populations.
Each of these areas is discussed in the following
sections.

2.2.2.1 The International HapMap
Project

The sequence data resulting from the HGP paved
the way for the development of an effort lead by
the International HapMap Consortium to char-
acterize all common variation within the human
genome (International HapMap Consortium
2005). The most common type of genetic variant
is the SNP, which occurs with the presence of
two or more different alleles at the same nucle-
otide position. In humans, polymorphisms occur
at a rate of approximately one variant every
kilobase (Wang et al. 1998; Lander et al. 2001),
and the presence of 11 million SNP sites with a
minimal minor allele frequency of 1 % that
constitute *90 % of the variation in the world’s
population has been estimated (Kruglyak and
Nickerson 2001).

The HapMap Project, currently completed
phase III, was officially launched in 2002 to create
a public, genome-wide database of common
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human sequence variation, providing information
needed as a guide to genetic studies of clinical
phenotypes and consists of collaborators from the
United States, Canada, the United Kingdom,
China, Nigeria, and Japan (International HapMap
Consortium 2003).

The Phase I of the HapMap Project contains
high-quality genotype data on more than 1 mil-
lion SNPs, genotyped on 270 samples from 90
individuals (30 parent–parent–offspring trios) of
European descent from Utah (CEU), 90 Yoruba
individuals (30 trios) from Ibadan, Nigeria
(YRI), 45 unrelated Japanese from Tokyo (JPT),
and 45 unrelated Han Chinese from Beijing
(CHB). Although the goal of Phase I was to
genotype at least one common SNP (minor allele
frequency ≥0.05) every 5 kb across the genome
and SNP selection was agnostic to functional
annotation, 11, 500 nonsynonymous SNPs are
prioritized in choosing SNPs for each 5 kb region
(International HapMap Consortium 2005).

The Phase I HapMap Project data had a cen-
tral role in the development of methods for the
design and analysis of Genome-Wide Associa-
tion (GWA) studies. For example, the HapMap
resource provides critical information regarding
the extent of linkage disequilibrium among SNPs
in each of the four distinct populations repre-
sented in the project. In this way, knowledge of a
particular SNP allele at one site can predict
specific alleles at nearby sites (allele combina-
tions along a chromosome are known as haplo-
types). Approximately, 50–75 % of all SNPs in
the HapMap database are highly correlated with
other genotyped markers and >90 % are associ-
ated with nearby SNPs at levels of statistical
significance (International HapMap Consortium
2005). These advances, alongside the release of
commercial platforms for performing economi-
cally viable genome-wide genotyping, have led
to a new phase in human medical genetics.

Large-scale GWA studies have identified
novel loci involved in multiple complex diseases
(Altshuler and Daly 2007; Bowcock, 2007). In
addition, the HapMap data have led to novel
insights into the distribution and causes of
recombination hotspots (International HapMap
Consortium 2005, Myers et al. 2005), the

prevalence of structural variation (Conrad et al.
2006; McCarroll et al. 2006), and the identity of
genes that have experienced recent adaptive
evolution (International HapMap Consortium
2005; Voight et al. 2006).

In Phase II of the HapMap project an addi-
tional 2.1 million SNPs were genotyped on the
same individuals from Phase I. The resulting
HapMap Phase I and II datasets (3.1 million
SNPs) constitute *25–30 % of the 9–10 million
estimated common SNPs (minor allele fre-
quency ≥0.05) in the assembled human genome.
The Phase II HapMap differs from the Phase I
not only in SNP spacing, but also in minor allele
frequency (MAF) distribution and patterns of
linkage disequilibrium. Because the criteria for
choosing additional SNPs did not include con-
sideration of SNP spacing or preferential selec-
tion for high MAF, the SNPs added in Phase II
are, on average, more clustered and have lower
MAF than the Phase I SNPs. One notable con-
sequence is that the Phase II HapMap includes a
better representation of rare variation than the
Phase I HapMap (International HapMap Con-
sortium 2007). The HapMap dataset and other
resources such as public catalog of variant sites
(dbSNP) and databases of structural variants
(SVs) have driven disease gene discovery in the
first generation of GWA studies, wherein geno-
types at several hundred thousand variant sites,
combined with the knowledge of LD structure,
allowed the vast majority of common variants
(MAF ≥ 0.05) to be tested for association with
disease (International HapMap Consortium
2007). Over 6–7 years, GWA studies have
identified more than a thousand genomic regions
associated with disease susceptibility and other
common traits (Hindorff et al. 2012). Genome-
wide collections of both common and rare SVs
have similarly been tested for association with
disease (Wellcome Trust Case Control Consor-
tium 2010). Despite successes, these studies raise
many questions, such as why the identified
variants have low-associated risks and account
for so little heritability (Goldstein 2009). Expla-
nations for this apparent gap are being sought. It
is possible that these studies were limited with
respect to variant type, frequency, and population
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diversity. Only common DNA variants
(MAF ≥ 0.05) have been well studied, even
though the contributions of rare variants, which
were not captured by GWA studies; SVs, which
were poorly captured, and other forms of geno-
mic variation; or interactions between genes or
between genes and environmental factors may be
important (Manolio et al. 2009). Furthermore,
despite their value in locating the vicinity of
genomic variants that may be related to the sus-
ceptibility to disease, few of the SNPs identified
in GWA studies have clear functional implica-
tions that are relevant to mechanisms of disease
(Hindorff et al. 2009). Narrowing an implicated
locus to a single variant with direct functional
consequences has proven challenging. Together,
these findings suggest that additional work will
be necessary to achieve a deep understanding of
the genetic contribution to human phenotypes
and diseases (Manolio et al. 2009).

Once a region has been identified as harboring
a risk locus, a detailed study of all genetic vari-
ants in the locus is required to discover the causal
variant(s), to quantify their contribution to dis-
ease susceptibility, and to elucidate their roles in
functional pathways. A much more complete
catalog of human DNA variation is a prerequisite
to fully understanding the role of common and
low-frequency variants in human phenotypic
variation. The efforts aimed at illuminating the
gaps in the first generation of databases that
contain mostly common variant sites were made.
The HapMap project was expanded into Phase III
to perform genome-wide SNP genotyping and
CNP detection, as well as polymerase chain
reaction (PCR) resequencing in selected genomic
regions on a larger set of 1,184 samples from 11
populations (International HapMap3 Consortium
2010). Also during the same time another con-
sortium project called “1,000 Genomes” aimed to
discover additional genotypes and to provide
accurate haplotype information on all forms of
human DNA polymorphism in multiple human
populations by next generation sequencing, was
initiated (1000 Genomes Project Consortium
2010).

The HapMap Phase III. Despite great pro-
gress in identifying genetic variants influencing

human diseases, most inherited risk remains
unexplained. A more comprehensive strategy
that fully examines the low-frequency and rare
variants in populations of diverse ancestry is
required to understand the genetic architecture of
human diseases. Accordingly, the HapMap Phase
I and II resources were expanded by genotyping
1.6 million SNPs and CNP detection in 1,184
samples from 11 populations. These included all
Phase I and II samples, along with additional
samples from the same four populations (i.e.,
samples from 165 individuals (trios) of European
descent from Utah (CEU), 167 Yoruba individ-
uals (trios) from Ibadan, Nigeria (YRI), 86
unrelated Japanese from Tokyo (JPT), and 84
unrelated Han Chinese from Beijing (CHB)), and
an additional 682 samples from seven new pop-
ulations (i.e., 83 individuals (trios) of African
ancestry from southwestern USA (ASW); 85
unrelated Chinese individuals from metropolitan
Denver, Colorado, USA (CHD); 88 unrelated
Gujarati Indian individuals from Houston, Texas,
USA (GIH); 90 unrelated Luhya individuals
from Webuye, Kenya (LWK); 171 Maasai indi-
viduals (trios + unrelated) from Kinyawa, Kenya
(MKK); 77 unrelated individuals of Mexican
ancestry from Los Angeles, California, USA
(MXL); and 88 unrelated Tuscan individuals
from Italy (Toscani in Italia, TSI). The new
populations were included to provide further
variation data from each of the three continental
regions, as well as data from some admixed
populations. Unlike Phase I and II, a much larger
sample size of 692 unrelated individuals from ten
populations (i.e., ASW, CEU, CHB, CHD, GIH,
JPT, LWK, MXL, TSI, and YRI) were
sequenced for 100 kb each of the ten ENCODE
regions (see International HapMap 3 Consortium
2010 publication for details) by direct PCR-
Sanger capillary sequencing in the Phase III. This
direct sequencing of the selected regions, unlike
SNPs genotyped using microarray platforms,
which are intentionally biased toward high fre-
quency by the discovery and selection process,
the SNPs discovered by sequencing provide a
direct estimate of the underlying allele frequency
spectrum in each population. As in previous
phases, common (MAF ≥ 0.05) and low-
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frequency (MAF = 0.005–0.05) variants account
for the vast majority of the heterozygosity in
each sample, but a large number of rare
(MAF = 0.0005–0.005) and private (singletons
and MAF < 0.0005) variants were also observed.
Each population had 42–66 % of sites with a
MAF < 0.05, compared to 10–13 % in the
genotyping data; 37 % of SNPs with a
MAF < 0.005 were observed in only one popu-
lation. In total, 77 % of the discovered SNPs
were new (that was, not in the SNP database
(dbSNP) build 129) and 99 % of those had a
MAF < 0.05 (International HapMap 3 Consor-
tium 2010). The HapMap Phase III results
underscored the need to characterize population-
specific parameters, and for each stratum of allele
frequency. As expected, lower frequency varia-
tion is less shared across populations, even clo-
sely related ones, highlighting the importance of
sequencing and sampling widely to achieve a
comprehensive understanding of human varia-
tion. With improvement in sequencing technol-
ogy, whole genome sequencing is becoming
increasingly accessible. This revolution will no
doubt expand our ability to identify rare and
private variations along with common variations
to better understand the genetic architecture of
human diseases.

2.2.2.2 The 1000 Genomes Project
Launched in 2008, the 1000 Genomes Project
involving researchers from more than 75 insti-
tutions and companies in the United States, the
United Kingdom, China, and Germany, set its
sights on characterizing over 95 % of variants
that have allele frequency of 1 %, or higher
(MAF ≥ 0.01) in the five major population
groups-West African, European, North Ameri-
can, and East and South Asian. The coding
region of the genome was cataloged for variants
of even lower allele frequencies (i.e.,
MAF ≥ 0.001) because coding regions will more
often have variants with functional conse-
quences, which may also have low allele fre-
quency (1000 Genomes Project Consortium
2010; Patterson 2011).

The pilot phase of the project aimed at
developing and comparing genome-wide
sequencing strategies, sequenced three sets of
samples at three different levels of sequencing
coverage.
• Family trios: high coverage (average 42x)
whole genome sequencing of two HapMap
family trios (i.e., one YRI and one CEU).

• Low coverage: low coverage (2–6x) whole
genome sequencing of 179 unrelated individ-
uals from four HapMap populations (i.e., 59
from YRI, 60 from CEU, 30 from CHB, and
30 from JPT).

• Exon sequencing: targeted capture of the
exons from nearly1,000 randomly selected
protein-coding genes (total 1.4 Mb) followed
by sequencing at high coverage (average > 50
x) in 697 individuals from 7 HapMap popu-
lations (i.e., YRI, LWK, CEU, TSI, CHB, JPT,
and CHD).
The pilot project identified 15 million SNPs, 1

million short insertions and deletions of DNA,
and 20,000 large SVs. Populations of African
ancestry contributed the largest number of vari-
ants to the data, including the biggest portion of
novel variants (1000 Genomes Project Consor-
tium 2010). The pilot project data also showed
that more than half of the genetic variants that
were found were previously unknown. It has also
been observed that an individual’s genome con-
tains many variants of functional consequence
(10,000–11,000 nonsynonymous sites and
10,000–12,000 synonymous sites per genome
that differs from reference). However, the num-
ber of variants with greater functional impact is
much smaller (overall 340–400 premature stop
codons, splice site disruptions, and frame shifts,
affecting 250–300 genes per genome, as putative
LOF variants). In addition, 50–100 of the vari-
ants had previously been associated with an
inherited disease (1000 Genomes Project Con-
sortium 2010).

The success of the pilot project paved the way
for the production phase of the full 1000 Gen-
omes Project, which aims to sequence 2,500
genomes from 27 populations worldwide. The
data on genomes of 1,092 individuals from
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14 populations from Europe, East Asia, sub-
Saharan Africa, and the Americas, sequenced
using combination of whole genome low cover-
age sequencing (2–6 x) and targeted deep
sequencing (50–100 x) of the exome have been
published recently (1000 Genomes Project Con-
sortium 2012). The dataset provides a detailed
view of variations across several populations.
Individuals from different populations carry dif-
ferent profiles of rare and common variants, and
low-frequency variants show substantial geo-
graphic differentiation, which is further increased
by the action of purifying selection. Most com-
mon variants (94 % with MAF ≥ 0.05) were
previously known and their haplotype structures
were also mapped through earlier projects
(International HapMap Consortium 2007; 1000
Genomes Project Consortium 2010). In contrast,
only 62 % of variants with the MAF range
0.005–0.05 and 13 % with MAF ≤ 0.005 had
been described previously. A validated haplotype
map of 38 million SNPs, 1.4 million short indels,
and more than 14,000 larger deletions has been
developed using this phase dataset. The Phase I
data also show that at the most highly conserved
coding sites, 85 % of the nonsynonymous vari-
ants and more than 90 % of stop-gain and splice
disrupting variants are below 0.5 % in frequency,
compared with 65 % of synonymous variants
(1000 Genomes Project Consortium 2012).

2.3 Future Impact of the HGP:
Where Are We Going?

2.3.1 Pharmacogenetics

Response to pharmacological interventions is
variable and in most cases, difficult to predict.
For instance, only about 66 % of individuals
treated with beta blockers actually respond in
the intended way with a reduction in blood
pressure (Abbott 2003). In general, individuals
can respond to drug treatment in one of three
ways: favorably (i.e., as expected), unfavorably
(i.e., adversely or with a blunted response), or
not at all. Many factors, including age, ethnic
background, gender, diet, interactions with other

pharmaceuticals, and clearance function, influ-
ence the manner in which an individual will
respond to a drug. In addition to these deter-
minants, genetic factors are also known to
impact the degree to which an individual will
respond to a drug. The prediction of drug
response based upon genetic variation has
evolved into the field of pharmacogenetics. The
closely related discipline of pharmacogenomics
encompasses pharmacogenetics, but incorpo-
rates analysis of gene expression to understand
genotype-drug interaction; thus, the main dif-
ferences between the two disciplines lie mainly
in the underlying technologies and the level at
which a given gene is investigated. Because the
focus of this chapter is the genome, we will
address the intersection between genotype and
drug response from a perspective favoring the
field of pharmacogenetics.

Although the contribution of genetic variation
on drug response has been recognized for dec-
ades, the availability of human genome reference
sequence and a catalog of common genetic var-
iation in the human genome has expanded the
field tremendously (Collins et al. 2003). Indeed,
it is in the field of pharmacogenetics that the
clinical applicability of the HGP and HapMap
resources has had the most impact. A number of
genetic variants have been identified that at least
partially predict drug response, including asso-
ciations between HLA-B alleles and hypersensi-
tivity to the anti-HIV therapeutic, abacavir
(Hetherington et al. 2002). Among these patients,
46 % of individuals who had previously suffered
an adverse immunological reaction to abacavir
possessed the HLA-B57 variant, compared to
only 4 % of individuals who were not hyper-
sensitive to the drug (Hetherington et al. 2002).

A specific haplotype within the vitamin K
epoxide reductase gene (VKORC1) has been
found to predict 21–25 % of required warfarin
dose. When VKORC1 haplotype is combined
with genotypes in the cytochrome P450, sub-
family IIC, polypeptide 9 gene (CYP2C9), 31 %
of warfarin dose can be predicted (Rieder et al.
2005). This finding is particularly significant
because warfarin, the most commonly prescribed
anticoagulant, has a narrow therapeutic index and
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requires careful and regular monitoring. Dosing
above the required concentration produces
potentially life-threatening side effects, while
dosing below delays therapeutic benefit. The use
of VKORC1 and CYP2C9 genotypes, combined
with age, sex, body, and surface area, can predict
up to 60 % of warfarin dose, thereby better
ensuring achievement of optimal therapeutic dose
(Rieder et al. 2005; Marsh and McLeod 2006).

Clopidogrel therapy improves cardiovascular
outcomes in patients with acute coronary syn-
dromes and following percutaneous coronary
intervention by inhibiting adenosine diphosphate
(ADP)-dependent platelet activation. However,
nonresponsiveness to the drug is widely recog-
nized and is related to recurrent ischemic events.
The cytochrome P450 2C19 (CYP2C19) and
ABCB1 genotypes were found to be associated
with platelet response to clopidogrel treatment
and in the prediction of major cardiovascular
events beyond stent thrombosis in coronary
patients treated with clopidogrel (Shuldiner et al.
2009; Mega et al. 2010). Similarly, it has been
shown that in patients with diabetes, vitamin E
significantly increases HDL function in hapto-
globin 2-2 but significantly decreases HDL
function in haptoglobin 2-1. Thus, vitamin E
therapy provides cardiovascular protection to
individuals with the haptoglobin 2-2 genotype,
but appears to increase cardiovascular risk in
individuals with the haptoglobin 2-1 genotype.
This pharmacogenetic interaction was paralleled
by similar nonsignificant trends in HDL-associ-
ated lipid peroxides, glutathione peroxidase, and
inflammatory cargo (Farbstein et al. 2011).

Pharmacogenetics is a rising concern in clin-
ical oncology, because the therapeutic window of
most anticancer drugs is narrow and patients with
impaired ability to detoxify drugs will undergo
life-threatening toxicities. In particular, genetic
deregulations affecting genes coding for DPD,
UGT1A1, TPMT, CDA, and CYP2D6 are now
considered as critical issues for patients treated
with 5-FU/capecitabine, irinotecan, mercapto-
purine/azathioprine/thiopurine, gemcitabine/
capecitabine/AraC, and tamoxifen, respectively
(Evans 2004; Marques and Ikediobi 2010;

Yang et al. 2011; O’Donnell and Ratain 2012).
Examples like this serve to underscore the reality
that the real clinical impact of pharmacogenetics
will be in identifying those patients who are most
likely to experience the desired therapeutic effect
from the drug under consideration. For these
individuals, quicker control of disease symp-
toms, reduced likelihood of adverse events, and
better disease management will be provided by
pharmacogenetics. Together, these factors will
also impact public health by decreasing health-
care costs.

2.3.2 Nutrigenetics
and Nutrigenomics

Nutrigenetics is the study of the relationship
between genetic variation and metabolic, bio-
chemical, or physiological response to foods.
The related field of nutrigenomics comprises
nutrient impact at the levels of gene expression,
transcript stability, and posttranslational modifi-
cations (Young 2002; Ghosh et al. 2007). Com-
pletion of the HGP and availability of sequence
variants have significantly fueled the develop-
ment of these complementary disciplines; similar
to the promise of pharmacogenetics, both nutri-
genetics and nutrigenomics have the potential to
influence the development of “personalized”
nutrition by delineating dietary composition
based upon specific genotype.

Several variants have been found to impact
upon the metabolism of various dietary compo-
nents (Ghosh et al. 2007; Raqib and Cravioto
2009). For example, individuals with phenylke-
tonuria, an autosomal recessive disorder charac-
terized by a deficiency in phenylalanine
hydroxylase, are unable to metabolize phenylal-
anine and in the presence of foods high in this
amino acid, such as meats, nuts, cheese, and the
artificial sweetener aspartame, develop severe
neurological disorders, including mental retar-
dation. Simple avoidance of such foods prevents
significant medical problems for patients with
this genetic susceptibility. Likewise, variants in
HLA DQ2 and DQ8 have been linked with gluten
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in the development of celiac disease; more than
95 % of celiac patients are positive for either
DQ2 or DQ8 (Sollid and Lie 2005). For indi-
viduals with these risk allelels, a gluten-free diet
is recommended for disease management.

Considerable evidence also suggests that epi-
genetic abnormalities induced by diet are also
among the most important factors affecting can-
cer risk. At least four distinct processes are
involved with epigenetics: DNA methylation,
histone modifications, microRNAs as well as
other noncoding regulatory RNA, and chromatin
modeling (Ross 2007). Some of the strongest
data linking diet to epigenetic events come from
studies with the agouti mouse model. Adding
dietary factors (i.e., choline, betaine, or folic
acid), which enhance methylation, to the mater-
nal diet of pregnant agouti dams leads to a
change in the phenotype of some of the offspring
(Dolinoy 2008). Interestingly, adding genistein,
which does not provide methyl groups, also leads
to a change in the phenotype from a yellow to
more agouti offspring (Dolinoy et al. 2006). Most
importantly, these shifts in coat color are
accompanied by a reduction in the risk of cancer,
diabetes, and obesity. The shift in obesity in
these animals is noteworthy because of the
worldwide obesity epidemic. Such findings
should serve as justification for additional atten-
tion to bioenergetic-epigenetic interrelationships,
especially those that are modified by dietary
factors.

Myzak and Dashwood (2006) have demon-
strated that sulphoraphane, butyrate, and allyl
sulfur are effective inhibitors of histone deace-
tylase (HDAC). HDAC inhibition was associated
with global increases in histone acetylation,
enhanced interactions of acetylated histones with
the promoter regions of the P21 and BAX genes,
and elevated expression of p21Cip1/Waf1 and
BAX proteins. Importantly, sulphoraphane has
been reported to reduce HDAC activity in
humans (Myzak et al. 2006). Future research
likely needs to relate HDAC changes in humans
to a change in cancer-related processes. Fur-
thermore, since acetylation is only one method to
regulate histone homeostasis (Ross 2007),
greater attention needs to be given to how

nutrition might influence the other types of his-
tone modifications (Fenech et al. 2011).

In addition to the development of nutrient-
related diseases, genetic variants can also interact
with dietary components to produce subtle effects
on metabolism. For example, a dose-dependent
interaction between variants in the APOA5 gene
and dietary fat intake was found to increase risk
for obesity in participants of the Framingham
Heart Study (Corella et al. 2007). Similarly,
individuals with the AA genotype at the G(-6)A
marker in the angiotensinogen gene, which is
associated with both higher circulating levels of
angiotensinogen and elevated blood pressure,
were more responsive to the effects of a diet high
in fruits and vegetables and low in fat compared
to individuals with the GG genotype (Svetkey
et al. 2001). Other studies have found relation-
ships between specific genetic variants and
responsiveness to dietary components, and pro-
vide support for a role of dietary shifts in shaping
human evolution. Perry et al. (2007) reported that
individuals from populations with a typically
high-starch diet (i.e., European Americans, Jap-
anese, and Hadza hunter-gatherers) have more
copies of the salivary amylase gene, which
breaks down starch, compared to those from
populations with a low-starch diet (i.e., Biaka,
Mbuti, Datog pastoralists, and the Yakut). This
finding is one of the first examples of positive
selection on copy number variant, and further
supports the idea that individuals may respond
quite differently to the same diet given their
respective genetic backgrounds.

2.4 Conclusions

The completion of HGP represents one of the
momentous projects of modern scientific
research. Delineation of the human genome
sequence has consequently led to a greater
understanding of human genetics and fueled the
development of such diverse disciplines as
comparative genomics, pharmacogenetics, and
nutrigenomics. The fruits of the HGP directly
contributed to the creation of the HapMap and
the 1000 Genomes projects, which has since
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provided the basis for WGA studies. Results
from these investigations will be instrumental in
the elucidation of the genetic variants that con-
tribute to the development of complex diseases
such as cancer, diabetes, autoimmune syn-
dromes, and neurological disorders. Thus, the
HGP has produced a significant impact upon a
variety of different areas, and in completely
unexpected ways.
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3Linkage Mapping: Localizing the Genes
That Shape Human Variation
Laura Almasy, Mark Zlojutro Kos, and John Blangero

3.1 Conceptual Overview

Linkage analysis is a statistical technique used to
localize one or more genes of interest against
genotyped markers with known positions in the
genome. This method is based on the co-segrega-
tion within families of loci that are located near
each other on the same chromosome. Linkage
between any two loci also can be measured and
used to constructmaps of relative genetic distances.

3.2 History of Linkage Analysis
and Its Application in Human
and Nonhuman Primate
Genetics

To date genetic linkage analysis has proven to be
a remarkably successful strategy for investigating
inheritance patterns of variable traits and map-
ping of their underlying genes, including those
for numerous human and nonhuman primate
phenotypes. The approach was originally devel-
oped and applied in the early twentieth century
by Thomas Hunt Morgan in his now famous “Fly
Laboratory” at Columbia University. Studying
the mechanisms of heredity and evolution in the
fruit fly Drosophila melanogaster, Morgan
(1910) was the first to report a connection
between an observable trait and a specific chro-
mosome, determining the locus responsible for
eye color to be sex linked and located on the X
chromosome based on Mendelian inheritance
principles. Other sex-linked traits were discov-
ered soon thereafter in Morgan’s Drosophila
colonies, displaying variable assortment with eye
color in offspring transmissions. Morgan con-
ceived from these results the notion of genetic
linkage, with chromosomes representing linear
assemblages of genes, and inferred the phenom-
enon of chromosome recombination, with the
frequency of recombination being a function of
the distance between genes on a chromosome.
Based on these insights, Alfred Henry Sturtevant,
then an undergraduate student working for
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Morgan, duly recognized that variations in the
strength of linkage could be used as a means of
mapping genes on chromosomes by determining
relative spatial distances between genes. This
principle was used to produce the first gene map
(Sturtevant 1913), representing the relative
locations of various genes on the Drosophila X
chromosome, and would become the basis for
classical gene mapping (Muller 1916), launching
the field of experimental genetics.

Although linkage studies began very early in
Drosophila, the paucity of genetic variation and
poorly delineated chromosomes of mammals,
including humans, limited gene mapping efforts
in other species. The lone exception was the X
chromosome, with its recognizable sex-linked
pattern of inheritance. Hence, the first gene to be
mapped in humans was for color blindness on the
X chromosome by Wilson in (1911), which
prompted more than 20 additional X-linked
genes to be mapped in the ensuing 40 years,
including those for hemophilia and Duchenne
muscular dystrophy (Chakravarti and Lynn
1999). The relative locations of these genes on
the X chromosome remained largely unknown,
aside from those responsible for color blindness
and hemophilia, which J.B.S. Haldane deter-
mined to be closely linked from their co-segre-
gation in affected families (Bell and Haldane
1937). The first autosomal linkage in humans, on
the other hand, would not be discovered until the
early 1950s, between the loci for Lutheran blood
groups and the ABH-secretor system using a sib-
pair method (Mohr 1951, 1954). This was soon
followed by a number of other identified auto-
somal linkages, many involving blood polymor-
phisms (Chalmers and Lawler 1953; Renwick
and Lawler 1955), although with little knowl-
edge of their chromosomal whereabouts. That is,
it was known that these loci were linked, but not
on which chromosome they resided. This situa-
tion would change markedly with the determi-
nation of the correct number of human
chromosomes (Tijio and Levan 1956) and the
corresponding advancement of cytogenetic tech-
niques, revealing associations between chromo-
somal defects and human disease (Nowell and
Hungerford 1960; Lejeune et al. 1963; Lele et al.

1963) and ultimately leading to the first
unequivocal autosome assignment in 1968
between the Duffy blood group locus and a
length polymorphism observed in the paracentric
region of chromosome 1 based on pairwise
linkage analysis (Donahue et al. 1968). However,
despite these significant achievements, the
assignment of traits and linkage groups remained
at this time a largely opportunistic process due to
a lack of detectable physical landmarks on
human chromosomes.

By the 1970s, human gene mapping activity
began to rapidly expand with the application of
interspecies somatic cell hybrids to chromosome
assignments (Weiss and Green 1967) and the
advent of recombinant DNA technology, in par-
ticular the conceptualization of restriction frag-
ment length polymorphisms (RFLPs) (Nathans
and Smith 1975) and their use in mapping dis-
ease susceptibility loci (Botstein et al. 1980).
Unlike classical genetic markers, such as blood
group antigens and allozymes, RFLPs repre-
sented a source of highly polymorphic, anony-
mous DNA fragments from throughout the
genome that exhibit Mendelian inheritance in
pedigrees and thus are potentially informative for
linkage studies and useful in the construction of
comprehensive maps. Early application of these
markers proved successful, revealing numerous
polymorphisms around the human globin loci on
chromosome 11, including ones linked to he-
moglobinopathies such as sickle-cell anemia and
β-thalassemia (Kan and Dozy 1978; Little et al.
1980). However, it was not until a seminal paper
by Gusella et al. (1983) investigating the genetics
of Huntington’s disease (HD) that the value of
DNA polymorphisms for linkage analysis and
mapping of human disease genes was fully
appreciated by molecular biologists. In that
study, two large, multiplex families were typed
for 12 RFLPs and tested for Mendelian model-
based linkage with HD, with one marker, a probe
hybridizing to HindIII-digested DNA, exhibiting
a high likelihood of linkage to a disease locus
(two-point LOD of 8.53), with no recombinants
detected in either pedigree. The probe sequence
was mapped to chromosome 4 using Southern
blot analyses of human–mouse somatic cell
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hybrids, establishing for the first time the chro-
mosomal location of the HD gene. This dramatic
demonstration was closely followed by other
studies successfully mapping Mendelian disor-
ders, including cystic fibrosis on chromosome 7
(Knowlton et al. 1985; Wainwright et al. 1985;
White et al. 1985) and polycystic kidney disease
on chromosome 16 (Reeders et al. 1985),
underscoring the clinical usefulness of linkage
analysis involving RFLP markers.

It was not long after this that the first compre-
hensive human linkage map was constructed
using 393 RFLPs and a small number of mini-
satellites (variable number tandem repeats)
(Donis-Keller et al. 1987), spurring the develop-
ment of increasingly detailed maps. With the later
identification of microsatellite polymorphisms
(Weber and May 1989) and the parallel
improvement of molecular genetic procedures,
most notably the polymerase chain reaction (PCR)
(Saiki et al. 1985), genetic marker number, and
polymorphic content increased substantially. This
allowed for more extensive linkage scanning with
high-throughput genotyping, which by the 1990s
resulted in a series of genome-wide maps of
approximately 1 cM resolution (Weissenbach
1993; Buetow et al. 1994; Gyapay et al. 1994;
Murray et al. 1994). To better utilize the greater
information content available from these tightly
linkedmarkers, multipoint methods (Lathrop et al.
1984) have been widely adopted for traditional
model-dependent linkage analysis (O’Connell
and Weeks 1995).

Although themodel-dependent or “parametric”
approach to maximum likelihood linkage analysis
(Morton 1955) has had tremendous historical
success in mapping genes underlying monogenic
diseases with clear Mendelian inheritance patterns
(as outlined above), many researchers questioned
its usefulness for complex traits that do not follow
a simple single-gene model. This genetic com-
plexity may arise in a disease for a number of
reasons, including heterogeneity in etiology, oli-
gogenic inheritance, epistasis, and gene–environ-
ment interactions. Thus, the parametric method of
assuming a known genetic model for linkage loses
much of its power and may produce erroneous
results (Risch et al. 1989; Risch andGuiffra 1992).

In recognition of the need for linkage analysis that
relies less completely on genetic model specifi-
cation, “nonparametric” methods were developed
that weakened one or more assumptions of the
fully specifiedmodel, including parameters for the
disease gene allele frequencies and penetrance
functions, either by considering only affected
individuals or by reparametrizing the genetic
model. The first nonparametric method to be
developed in humans was a sib-pair linkage
approach, originally described in a seminal paper
by Penrose in 1935 and later expanded by others
(Risch 1990a, b; Haseman and Elston 1972;
Weeks and Lange 1992; Kruglyak and Lander
1995). This approach has been increasingly
applied in gene mapping efforts of complex dis-
ease in recent decades, with the first major break-
through occurring for insulin-dependent (type 1)
diabetes in 1994, producing evidence for three
susceptibility loci that are in addition to previously
identified candidate genes for HLA and insulin
(Davies et al. 1994). This success was later
extended to noninsulin-dependent (type 2) diabe-
tes (Hanis et al. 1996), for which a susceptibility
locus was identified in Mexican-American affec-
ted sibling pairs within the terminal portion of
chromosome 2q (LOD of 3.2), designated NID-
DM1. This large chromosomal region (10–20 cM)
was later narrowed (7 cM) in follow-up linkage
analysis (Cox et al. 1999), ultimately leading to the
identification of CALPAIN 10 as a potential sus-
ceptibility gene in the region based on both linkage
and association evidence (Horikawa et al. 2000).
Other successful applications of the relative pair
approach to linkage analysis at this time included
prostate cancer (Smith et al. 1996), end stage renal
disease (Bowden et al. 1997), asthma (CSGA
1997), febrile convulsions (Johnson et al. 1998),
and others.

More recently, however, pair-based linkage
methods have been criticized by some as being
less powerful in localizing genes than methods
that utilize larger configurations of relatives
(Williams et al. 1997; Alcais and Abel 2000;
Blangero et al. 2000). A large number of papers
on pedigree-based linkage methods that do not
depend on a penetrance model have emerged
(e.g., the variance components approach), in
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particular with relation to quantitative traits
(Amos 1994; Amos et al. 1996; Almasy and
Blangero 1998; de Andrade et al. 1999; Blangero
et al. 2001). With the transition away from
classical analysis of monogenic disorders to a
new emphasis on the genetic basis of common
complex disorders, researchers have become
increasingly interested in measurable quantitative
variation of intermediary phenotypes closely
related to disease risk as a means of examining
physiological pathways that are more proximate
to gene action than the more complex (and sta-
tistically less informative) dichotomous disease
outcome itself (Sing et al. 1996; Blangero et al.
2000). The first localization of a human quanti-
tative trait locus (QTL) from a genome-wide scan
was a linkage peak for obesity-related traits in
Mexican-American families on chromosome 2p
(Comuzzie et al. 1997), which has since been
replicated in French (Hager et al. 1998) and
African-American populations (Rotimi et al.
1999). Other well-replicated human QTL link-
ages include loci influencing variation in tri-
glyceride levels on chromosome 15 (Arnett et al.
2004; Austin et al. 2003; Coon et al. 2001;
Duggirala et al. 2000), body mass index on
chromosome 3 (Kissebah et al. 2000; Wu et al.
2002; Luke et al. 2003), and reading disability on
chromosome 6p (Cardon et al. 1994; Fisher et al.
1999; Grigorenko et al. 1997, 2000) to name just
a few.

For some of the replicated QTL linkages,
researchers have successfully identified specific
associated genes under the linkage peaks. For
instance, in a study by Duggirala et al. (1999), a
QTL influencing type 2 diabetes and its age of
onset was localized to chromosome 10q using
variance component-based linkage analysis for a
liability threshold model. This linkage peak was
later confirmed (Reynisdottir et al. 2003) and
eventually the gene TCF7L2 from the linked
region was identified as strongly associated with
type 2 diabetes by several research groups (Grant
et al. 2006; Lehman et al. 2007; Scott et al. 2007;
Sladek et al. 2007; Tong et al. 2009. Another
example are QTL signals obtained for brain
oscillation measurements of alcohol-dependent
individuals, with linkage peaks emerging on

chromosomes 4p12 and 7q31-34 (Porjesz et al.
2002; Jones et al. 2004). From these two iden-
tified regions, significant associations have been
found between neurotransmitter receptors
GABRA2, GRM8, and CHRM2 and neuroelec-
trical measures (Porjesz et al. 2002; Jones et al.
2006; Chen et al. 2009), as well as associations
with alcohol dependence in various study sam-
ples (Covault et al. 2004; Edenberg et al. 2004;
Wang et al. 2004; Lappalainen et al. 2005; Luo
et al. 2005; Drgon et al. 2006; Enoch et al. 2006;
Fehr et al. 2006; Soyka et al. 2008; Chen et al.
2009), underscoring the effectiveness of inter-
mediate, quantitative phenotypes (or endophe-
notypes) in dissecting the genetic underpinnings
of complex clinical disorders (Almasy 2003;
Gottesman and Gould 2003).

Although linkage analysis has played a long,
important role in the genetic research of nonhu-
man species, especially Drosophila (Morgan
1910; Rubin and Lewis 2000) and laboratory
mice (Haldane et al. 1915; Snell 1941; Lyon and
Searle 1989), its application in nonhuman pri-
mates has been relatively limited in scale and
impact, despite the obvious benefits that these
species can have on biomedical research due to
their close evolutionary relationship to humans.
The first published study of genetic linkage in
nonhuman primates was not until 1973, looking
at polymorphisms in carbonic anhydrase genes of
pig-tailed macaques, Macaca nemestrina (DeSi-
mone et al. 1973). Most of the primate linkage
studies that followed examined variation in
immune responses and antibody reactions,
mainly involving rhesus macaques (Macaca
mulatta), establishing linkages to the major his-
tocompatibility complex (MHC) gene cluster
(Dorf et al. 1975; Maurer et al. 1979; Rogers
et al. 2009), however, without assignment to
specific chromosomes because of the lack of
molecular genetic data. By the 1980s, genetic
linkage analysis in nonhuman primates remained
limited to classical polymorphisms, focusing on
protein or isozyme variants and blood group or
other immunological markers (e.g., Ferrell et al.
1985). Molecular markers began to be employed
in primate linkage studies during the 1990s, with
researchers using RFLPs and highly diverse
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microsatellites (Morin and Woodruff 1992; Inoue
and Takenaka 1993; Rogers and Kidd 1993;
Deka et al. 1994; Kayser et al. 1995; Rogers et al.
1995), leading to the construction of the first
linkage map of a nonhuman primate, the baboon
(Papio hamadryas), based on marker-to-marker
microsatellite linkage analysis (Rogers et al.
2000). This linkage map has proven to be a
valuable resource, allowing detailed analysis of
locus order and recombination distances in
baboon chromosomes and localization of QTLs
that influence phenotypic variation related to
human health and disease (Mahaney et al. 1999;
Comuzzie et al. 2001; Martin et al. 2001; Kam-
merer et al. 2002; Rainwater et al. 2003; Havill
et al. 2005). Since this major breakthrough,
linkage maps of other nonhuman primates have
been generated (Rogers et al. 2006; Jasinska
et al. 2007), which will greatly benefit continued
research of disease phenotypes in these species
and provide important comparative mapping data
as the whole genome sequences of rhesus
macaque, chimpanzee, and other nonhuman pri-
mate species become available in the near future.

3.3 Marker-to-Marker Linkage

The most straightforward type of analysis used in
linkage studies is that between genotyped
markers. Before the development of high-reso-
lution maps that enabled comprehensive, gen-
ome-wide scanning in the 1990s, linkage was
used to find the chromosomal locations of newly
identified genetic markers relative to the known
positions of a limited number of genetic loci.
Imagine that we have a family with 10 individ-
uals (numbered 1–10) in which we have geno-
types for two markers, a letter locus with alleles
A–H and a number locus with alleles 1–8
(Fig. 3.1a). We can use what we observe about
the transmission of alleles from the grandparents
(individuals 1–4) to the parents (individuals 5
and 6) to “set phase” for the genotypic data.
Setting phase essentially involves asking: If these
markers are linked, which alleles are traveling
together on the same chromosome in this family?
Individual 5 got the A allele at the letter locus and

the 1 allele at the number locus from his father
and he received the D and 3 alleles from his
mother. So if the loci are linked, in individual 5
the A is paired with the 1 and the D is paired with
the 3 as transmitted from his parents. By the
same logic, we can set phase in the mother
(individual 6)—the F allele is with the 5 and the
G with the 7. Based on the inferred phase, we can
then test the hypothesis of linkage by examining
the genotypes of the children. If the loci are in
fact linked, then the two markers will be on the
same chromosome, with the allelic combinations
observed in the parents (A and 1, D and 3, F and
5, and G and 7) transmitted together to the off-
spring more often than expected by chance. If, on
the other hand, the two markers are not linked
and are thus located on different chromosomes
(or far apart on the same chromosome), then
based on Mendel’s law of independent assort-
ment, we would expect, for instance, the A allele
at the letter locus to appear with equal frequency
with the 1 and 3 alleles at the number locus
among the children in this pedigree. Therefore,
testing linkage is a matter of testing for violations
in this expectation of independent assortment.

For loci that are linked, any new combination
of alleles appearing in a child (e.g., A with 3,
D with 1, F with 7, or G with 5) would be the
result of genetic crossover, or recombination,
between the loci in a parent during gametogen-
esis. The closer together two linked loci are, the
lower the probability of a recombination event
occurring. Thus, the frequency of recombination
(θ) provides an indirect way of estimating the
distance between two linked loci, as was origi-
nally deduced by A.H. Sturtevant.

Returning to Fig. 3.1a, children 7, 8, and 10
have genotypes that are consistent with the phase
set in their parents and would require no
recombinations. They have the A allele with the
1, D with 3, F with 5, and G with 7. Child 9, on
the other hand, has inherited the D allele at the
letter locus and the 1 allele at the number locus
from his father. This particular arrangement of
genotypes is not observed among the phased
genotypes in the father and would require a
recombination between the letter locus and the
number locus. In Fig. 3.1b, the paternally
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inherited chromosomes are enclosed within
boxes and the recombinant (R) and nonrecom-
binant (N) chromosomes are indicated for each of
the children. The test for linkage and the esti-
mation of genetic distance between the number
locus and the letter locus is based on counting the
number of recombinations that would have to
occur to account for the observed arrangement of
genotypes if the loci were linked. In this case, out
of eight informative meioses (the transmissions
from the father to each of the four children and

from the mother to each of the four children), we
infer only one recombination. If the two loci
were unlinked and the alleles were assorting
randomly, we would expect to observe four
recombinations in eight meioses (i.e., 50 %
recombination).

To assess the statistical support for linkage
versus no linkage, a likelihood ratio test is used.
The likelihood of observing R recombinations
among N informative meioses given a certain
value of θ is:
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Fig. 3.1 Linkage between two genotyped marker loci.
a Genotypes at two loci, a letter locus and a number locus.
b Setting phase and counting recombinant (R) and

nonrecombinant (N) transmissions. c Uninformative mei-
oses due to a homozygous parent. d When phase cannot
be set with certainty
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LðhÞ ¼ hRð1� hÞN�R ð3:1Þ
For the likelihood ratio test, we compare the

likelihood for a value of θ we wish to test to the
likelihood under random assortment, when
θ = ½. Traditionally, the odds ratio is expressed
on a logarithmic scale (referred to as an LOD)
such that a LOD score of 3 represents 1,000
times greater support for the hypothesis of link-
age versus no linkage:

ZðhÞ ¼ log½LðhÞ=L 1=2ð Þ� ð3:2Þ
Of course, when θ = ½, 1 − θ is also ½ and

Eq. 3.1 above simplifies to ½N. Putting Eqs. 3.1
and 3.2 together, we get:

ZðhÞ ¼ log½hRð1� hÞN�R=1=2
N � ð3:3Þ

A positive LOD score indicates support for
linkage and an LOD > 3 is generally considered
significant in a genome-wide scan in humans.
This threshold is based on the length of the
human genome and calculations regarding the
effective number of independent tests given that
adjacent markers are correlated. Some have
suggested that a threshold of 3.3 or 3.6 should be
used in some studies (Lander and Kruglyak
1995); however, this is based on assuming an
infinitely dense map of genotyped markers. In
this type of model-based linkage, both marker-to-
marker and for disease traits (described below),
the LOD score may be negative, indicating
greater support for the hypothesis of no linkage
than for the hypothesis of linkage. This can be
used for exclusion mapping, in which regions are
“ruled out.” A threshold of LOD < −2, indicating
100 times more support for the hypothesis of no
linkage, is generally used for exclusion mapping
in human studies.

The configuration of available individuals and
the observed genotypic data within a pedigree can
limit the linkage information used in analysis. For
instance, what if the mother in our example had
been homozygous for one of the genotyped
markers, say the number locus? In this case
(Fig. 3.1c), the meioses from the mother to the
four children become uninformative. All of the
children obligately must inherit the 5 allele from

the mother, which prevents us from determining
whether or not any recombinations occurred. We
can still conduct our linkage analyses, but we can
only score the four meioses from the father,
reducing the information available and the power
of this family for our linkage study.

Alternatively, what if some of the grandpar-
ents are unavailable and we cannot set phase in
one of the parents? Then the linkage is conducted
taking into account both possible phases
(Fig. 3.1d). We cannot tell whether the mother
inherited the F and the 5 from the same parent or
the F and the 7. If the F and the 5 were inherited
together, the recombination pattern is the same as
before and we observe one recombinant and
seven nonrecombinants in eight meioses. On the
other hand, if the F and the 7 were inherited
together, then the observed genotypes of all four
children would require recombinations on the
maternally transmitted chromosome and we
would have a total of five recombinations and
three nonrecombinations. To accommodate both
scenarios, the numerator of the likelihood ratio
test becomes a weighted average of the two
possibilities. Without any information from the
mother’s parents or siblings, these two scenarios
are equally likely, and we have:

LðhÞ ¼ 1=2h1ð1� hÞ7 þ 1=2h5ð1� hÞ3 ð3:4Þ
And lastly, what if there is more than one

recombination in a given interval? If there has
been an odd number of recombinations, we will
observe a recombinant genotype in the offspring.
But if there has been an even number, the
resulting genotype cannot be distinguished from
one that underwent zero recombinations.

3.3.1 Converting Recombination
Fraction to Distance in cM

As noted above, the observed proportion of
recombinations between two linked loci can be
used to derive a genetic distance between them
measured in centiMorgans (cM). Two widely
used mapping functions for this were proposed
by Kosambi and by Haldane (Ott 1999).
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Haldane’s formula

x ¼ �1=2lnð1� 2hÞ ð3:5Þ
Kosambi’s formula

x ¼ 1=4 ln ðð1 þ 2hÞ = ð1� 2hÞÞ ð3:6Þ
In each case, x represents the distance in

morgans (1/100th the distance in cM). Using
either formula, for small values of θ (i.e., short
distances in which multiple recombinations in an
interval are unlikely), x = θ. Over longer dis-
tances, both formulas take into account the pos-
sibility of multiple recombinations between
genetic markers. Additionally, Kosambi’s for-
mula allows for interference, the idea that
crossing over of DNA between chromosomes
takes up a certain amount of physical space such
that it is unlikely or physically impossible for
two recombinations to occur within a very short
distance of each other.

Genetic measures of distance also have rough
approximations on the scale of physical distances
in base pairs along a chromosome. One cM is
approximately equal to 1,000 kb. However, the
rate of recombination is not constant across the
genome (Yu et al. 2001). In regions with higher
crossover rates, so-called recombination hotspots
or “jungles”, 1 cM will correspond to <1,000 kb.

3.3.2 Mendelian Model-Based Linkage

The same model of linkage described above for
two genotyped markers has also been widely
applied in analyses of simple Mendelian traits,
beginning with T.H. Morgan’s genetic research
on Drosophila during the early twentieth cen-
tury. However, the genotypes of one or both trait
loci cannot be observed directly and must be
inferred from the observed phenotypes of the
family members. For fully penetrant traits with a
clear pattern of inheritance, this is relatively
simple. The terminology for this type of analysis
comes largely from medical genetics, so let us
label the two alleles at the trait locus D (repre-
senting the disease allele) and d. If the trait is
autosomal dominant and fully penetrant, such as

achondroplasia, then unaffected individuals are
guaranteed to have the genotype dd and affected
individuals carry at least one D allele. Because
most simple Mendelian diseases are relatively
rare, we assume the frequency of the D allele is
low and thus it is statistically unlikely that an
individual is homozygous DD. Under these
assumptions, we can easily take the pedigree in
Fig. 3.2a, where affected individuals are shaded
and unaffected ones are not, and write in inferred
genotypes at the trait locus as in Fig. 3.2b. Set-
ting phase as we did above for marker-to-marker
linkage analysis, we can then count recombina-
tions between the loci (Fig. 3.2c). In this case, as
in the example in Fig. 3.1c, only the transmis-
sions from the father (individual 5) to his off-
spring can be scored because the mother
(individual 6) is homozygous for the trait locus
and therefore uninformative.

The same procedure can be used for a simple,
fully penetrant autosomal recessive trait, such as
cystic fibrosis. In this case, affected individuals
obligately have genotype DD. If their parents are
unaffected, they must have genotype Dd, as they
have passed on a D allele to at least one of their
offspring. Often in this case, we do not know
which two of the four grandparents contributed
the D alleles and we must allow for multiple
possible phases, as we did in Fig. 3.1d. Geno-
types at the trait locus can also be easily specified
for highly penetrant X-linked traits such as
hemophilia or Y-linked traits such as hairy ears.

Such model-based linkage becomes more
difficult when the mode of inheritance of the trait
is unclear, when the trait is not completely
penetrant, or when there are phenocopies. Pene-
trance is defined as the probability of being
affected, given one’s genotype. For a simple
dominant trait, the three penetrances for the three
genotypes are f(DD) = 1, f(Dd) = 1, and f
(dd) = 0, though again we would expect the
genotype DD to be very rare. For a simple
Mendelian recessive model, the penetrances are f
(DD) = 1, f(Dd) = 0, and f(dd) = 0. Incomplete
penetrance describes a situation where an indi-
vidual has a disease-causing genotype, but is not
affected. In this case, the penetrance of Dd, under
a dominant model, or DD, under a recessive

40 L. Almasy et al.



model, would be <1. A phenocopy is a case
where an individual is affected, even though he
or she does not have the risk genotype, meaning
a penetrance >0 for genotype dd. When there is
incomplete penetrance or phenocopies, we can
no longer deduce a person’s genotype at the trait
locus given that person’s trait phenotype, and the
calculations must be conducted weighting across
possible genotypes as well as possible phases.

This quickly becomes more complex than is
feasible to do by hand, but is easily accomplished
with existing software packages, such as LINK-
AGE (Lathrop and Lalouel 1984; Lathrop et al.
1984) or GENEHUNTER (Kruglyak et al. 1996).
The one key is that the user must be able to
specify the presumed allele frequencies at the
trait locus and the penetrances for each possible
genotype at the trait locus. This is easily done for
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(shaded = affected, unshaded = unaffected). b Inferred

genotypes at the trait locus and setting phase. c Counting
recombinations
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traits such as cystic fibrosis, hemophilia, or hairy
ears but almost impossible for traits such as heart
disease or schizophrenia or for quantitative traits
such as height or head circumference. In theory,
model-based linkage can be used for quantitative
traits, but it requires specifying the mean trait
values for each genotype, rather than the pene-
trance. Some model misspecification can be tol-
erated in linkage analysis (Ott 1977; Clerget-
Darpoux et al. 1986), but a poor fit between the
model parameters and the true mode of inheri-
tance can lead to false negatives, even to the
point of excluding linkage in regions that contain
true loci (Risch and Giuffra 1992; MacLean et al.
1993). Power for penetrance model-based link-
age analyses is dependent on the number of
informative meioses and correct specification of
the penetrance model. For an in-depth discussion
of model-based linkage analyses, refer to the
classic textbook by Ott (1999).

3.4 Identity by Descent

Because of the difficulties in specifying a simple
genetic model for many traits, new methods of
linkage analysis were developed that did not rely
on specifying the properties of the locus being
sought. These methods are commonly referred to
as nonparametric or penetrance model-free and
they rely on identity by descent sharing of alleles
among relatives. For two alleles to be considered
identical by descent (IBD) they must come from
the same ancestral source and be copies of the
same ancestral chromosome. Humans and non-
human primates have two copies of each chro-
mosome, one inherited from their mother and one
from their father. They thus carry two alleles at
any given locus and a parent may pass along
either of their alleles to each offspring. If two
siblings inherited copies of the same maternal
allele, they are IBD for this allele. They may or
may not also be IBD for the alleles they inherited
from their father. So a pair of relatives may share
zero, one, or two alleles IBD.

The expected IBD sharing for a relative pair is
a function of their pedigree relationship. First
degree relatives are expected to share half of their

alleles, second degree relatives one-quarter, third
degree relatives one–eighth, and so on, with the
expected IBD sharing being ½N, where N is the
degree of relationship. In general, the expected
IBD sharing is also the proportion of their DNA
that a relative pair would be expected to share on
average. At any given marker, a sibling pair may
have IBD of 0, 0.5, or 1, but their IBD averaged
across many such markers across the genome
will be approximately 0.5. Conversely at any
given marker, while a particular sibling pair may
have IBD of 0, 0.5, or 1, the average IBD at this
marker across a large group of sibling pairs
should be approximately 0.5. Many types of
relative pairs cannot share both alleles IBD
because they are related through only one parent,
for example half siblings, aunts and uncles, nie-
ces and nephews, or cousins. However, the same
principle holds. They can share zero or one allele
and on average across many markers or across
many relative pairs, their expected IBD is as
given in Table 3.1.

Two exceptions to this general pattern are
parent–child pairs and identical twin pairs. In
both of these cases, the IBD is invariant. Except
when there is inbreeding, parents and children,
by definition, share exactly one allele IBD and
identical twins must share both alleles IBD. As
such, samples with only these types of relative
pairs are not informative for linkage. Their IBD
will be the same at every marker genotyped.

By definition, a pair of individuals who are
not related share no alleles IBD, even if they
have identical genotypes at a locus. Unrelated
individuals have no common ancestors (unless
we are considering evolutionary time scales) and
thus their alleles cannot be copies of the same
ancestral chromosome.

IBD can be estimated for a particular geno-
typed marker or for a chromosomal location
using multiple genotyped markers in the region.
Such “multipoint” IBD estimation is more com-
putationally intensive, but also more informative.

Support for the hypothesis of linkage in IBD-
based methods can be expressed as an LOD
score, in which case it is interpreted as described
above, with an LOD > 3 being generally regar-
ded as genome-wide significant for human
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studies. However, it is not possible for the LOD
score to be negative in IBD-based linkage anal-
yses without assuming an effect size for the trait
locus and IBD-based exclusion mapping is not
generally employed. Linkage evidence from
IBD-based approaches may also be given as an
NPL (nonparametric linkage) score. This NPL
score is on a slightly different scale, but can
easily be converted using the following rela-
tionship (Abreu et al. 1999):

NPLð Þ2=2�ln 10ð Þ ¼ LOD ð3:7Þ
An NPL of 3.7 is roughly equivalent to an

LOD score of 3.

3.5 Concordant and Discordant
Sibling Pairs

This type of penetrance model-free linkage
analysis is intuitively simple. In the region of a
gene influencing the trait of interest, relatives
who are phenotypically concordant should share
more alleles IBD than expected and relatives
who are discordant should share fewer alleles
IBD than expected. This is true regardless of the
underlying model of gene action. The simplest
linkage test in this framework is assessing whe-
ther a set of concordant sibling pairs have a mean
IBD > 0.5 at a given chromosomal location.
Variations on this involve assessing the propor-
tion of sibling pairs sharing 2 alleles IBD and the
full distribution of the proportions sharing each
of 0, 1, and 2 alleles IBD. The relative power of
each of these tests depends on the underlying

disease model, but the test of mean IBD > 0.5
optimizes power over the widest range of
underlying models of gene action (Blackwelder
and Elston 1985; Knapp et al. 1994). Maximum
likelihood-based affected sibling pair analyses
have also been developed (Risch 1990a, b).

In theory, similar analyses can be conducted
with a sample of discordant relative pairs to
identify regions of the genome where they share
fewer alleles IBD than expected. In practice, few
studies consist solely of discordant relative pairs.
In cases where investigators have set out to col-
lect a sample of discordant sibling pairs, it has
been observed that this selection scheme enriches
the sample for families with pedigree misspeci-
fications (Neale et al. 2002). This illustrates the
important point that linkage analyses are cru-
cially dependent on correct specification of the
pedigree structure. If, for example, the discordant
siblings are in fact half siblings (sharing one
parent) rather than full siblings (sharing both
parents), their expected IBD is then 0.25. If a
sample of discordant sibling pairs contains any
substantial fraction of half siblings, the group
will, on average, have an IBD < 0.5 at many
locations in the genome that have nothing to do
with the trait of interest, simply because the
expected IBD against which we are comparing
observed IBDs is based on false assumptions
regarding the pedigree structures. This is one
reason that standard practice for linkage studies
includes verifying that the specified pedigree
structure is consistent with observed genotypes
prior to analysis. This can be done using a variety
of programs, such as PREST (Sun et al. 2002).
The specific cases of half siblings wrongly

Table 3.1 Expected IBD sharing

Degree of
relationship

Types of relative pairs Pr (share 0) Pr (share 1) Pr (share 2) E (IBD)

– Identical twins 0 0 1 1

1 Parent–child 0 1 0 0.5

1 Siblings, including fraternal twins 0.25 0.50 0.25 0.5

2 Half-sibling; avuncular;
grandparent–grandchild

0.5 0.5 0 0.25

3 First cousin; half avuncular 0.75 0.25 0 0.125

4 Half first cousin; first cousin once
removed

0.875 0.125 0 0.0625
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presumed to be full siblings in a discordant pair
study and identical twins treated as regular full
siblings in a concordant pair study are particu-
larly dangerous because the pedigree misspeci-
fication introduces a consistent bias toward
inflating linkage evidence. Studies using Men-
delian penetrance-based models, those that
include both concordant and discordant pairs,
and quantitative trait studies discussed below are
also dependent on correct specification of the
pedigree relationships; however, misspecification
in these cases generally does not introduce a
consistent bias for or against the detection of
linkage.

Concordant and discordant sibling pair anal-
yses are implemented in programs such as SAGE
(S.A.G.E. 2009), GENEHUNTER (Kruglyak
and Lander 1995), ASPEX (Hinds and Risch
1996), and MERLIN (Abecasis et al. 2002).
Power for concordant and discordant sibling pair
linkage analyses depends on the genotype-spe-
cific relative risk conferred by the locus and the
sample size. Note that the relative risk, the unit of
effect size for affected and discordant pair anal-
yses, is partly a function of the prevalence of a
trait. Because of this, concordant and discordant
pair analyses are more successful for rarer traits.

3.6 Quantitative Traits

Penetrance model-free quantitative trait linkage
analysis relies on essentially the same idea as
linkage analysis of concordant and discordant
sibling pairs, but instead uses quantitative mea-
surements of phenotypes rather than categorizing
them into concordant or discordant groups, such
as disease status. Essentially, the analysis tests
whether relatives who are more alike phenotyp-
ically also share more alleles IBD in a particular
chromosomal region. The simplest such test is
the Haseman–Elston method, in which the
squared difference between the trait values for
pairs of siblings is regressed against the propor-
tion of alleles shared IBD at each location being
tested (Haseman and Elston 1972; Sun et al.
2002). In the presence of linkage, there should be
a negative slope to the regression coefficient.
Pairs with the smallest difference in trait values
should share the most alleles IBD (Fig. 3.3a). In
the absence of linkage, there should be no cor-
relation between trait differences among sibling
pairs and IBD allele sharing and the regression
coefficient would not be different from zero
(Fig. 3.3b). The Haseman–Elston linkage
method, as well as revisions to it that are

0

2

4

6

8

10

12

14

(a) (b)

S
q

u
ar

ed
 d

if
fe

re
n

ce
 in

 t
ra

it
 v

al
u

es

IBD allele sharing
0 1 2 0

2

4

6

8

10

12

S
q

u
ar

ed
 d

if
fe

re
n

ce
 in

 t
ra

it
 v

al
u

es

IBD allele sharing
0 1 2

Fig. 3.3 The basic Haseman–Elston linkage approach.
a In the presence of linkage between a locus influencing
the trait and a genotyped marker, pairs with larger
differences in trait values should share fewer alleles IBD

at the marker, resulting in a negative slope to the
regression line. b In the absence of linkage, the difference
in trait values between siblings should not differ by their
IBD at the genotyped marker
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discussed below, are implemented in the program
SAGE (S.A.G.E. 2009).

The variance component linkage approach
operates on the same principal as the Haseman–
Elston, but accommodates pedigrees of arbitrary
size and complexity and typically uses maximum
likelihood rather than regression. At its most
basic, the variance component approach seeks to
identify the factors that contribute to variation in
a trait and quantify their contributions to the
phenotypic variance observed among individu-
als. This is done by decomposing the observed
variance in the trait into variance attributable to
genes or QTLs (quantitative trait loci) in a region
of linkage ðr2qÞ, additive effects of unspeci-

fied genes elsewhere in the genome ðr2aÞ, and
environmental factors ðr2eÞ. Rather than the dif-
ference between a pair of relatives as in the ori-
ginal Haseman–Elston, the variance component
approach models the contrasts among individuals
using a matrix of the phenotypic covariances
among all pairs of relatives in a pedigree (Ω):

X ¼ Pr2q þ 2Ur2a þ Ir2e ð3:8Þ
Each of the potential genetic and environ-

mental components of variance (r2q, r
2
a, and r2e)

is structured by a matrix that describes the cor-
relations among individuals that would be
expected due to that component. In the simple
linkage model in Eq. 3.8, Π is a matrix of
observed IBD allele sharing in the chromosomal
region where linkage is being assessed, Ф is a
matrix of kinship coefficients among the pairs of
individuals derived from the pedigree relation-
ships, and I is an identity matrix, implying an
unshared environmental component that is
unique to each individual. Maximum likelihood
methods are used to estimate the components of
variance and linkage is tested by comparing the
likelihood of a model where the QTL-specific
variance, r2q, is estimated to a model in which r2q
is constrained to zero, to test whether the vari-
ance due to a QTL in this region is >0. This
likelihood ratio test provides an LOD score that
can be interpreted on the traditional scale, with
an LOD of 3 representing 1,000 times more

support for the hypothesis of linkage (r2q [ 0Þ
versus no linkage (r2q ¼ 0Þ. The simple model in
Eq. 3.8 above is easily expanded to incorporate
multiple loci, shared environmental factors, and
gene–gene or gene–environment interaction
(Blangero et al. 2000, 2001).

This same basic variance decomposition
model also underlies the regression-based
“revised Haseman-Elston” approach (Chen et al.
2004; Wang and Elston 2005) and has been
implemented in Markov chain Monte Carlo
frameworks where the number of QTLs genome-
wide is estimated along with the variance
attributable to each (Daw et al. 2003; Heath
1997). Another regression-based quantitative
trait linkage approach reverses this basic model
to estimate IBD allele sharing as a function of
covariance in trait values among relatives (Sham
et al. 2002). Variance component methods are
implemented in SOLAR (Almasy and Blangero
1998), ACT (Amos et al. 1996), and GENE-
HUNTER (Kruglyak and Lander 1995). The
power of IBD-based quantitative trait linkage
analysis depends on the proportion of variance
due to the QTL, the sample size, and the family
configuration with larger families providing more
power per person sampled. If sample size is held
constant, power is maximized by concentrating
these individuals into as few families as possible
(Blangero et al. 2003).

3.7 Special Challenges for Linkage
Analysis in Nonhuman
Primates

Linkage studies in nonhuman primates face a
number of extra challenges. First, linkage meth-
ods generally assume that the relationships
among individuals are known and require that a
pedigree structure be specified. Often, this
information may not be available for nonhuman
primate studies. Sometimes partial information is
available, for example, when colony records
make it possible to identify the mother of all
individuals born in a facility. If there are a lim-
ited number of potential fathers and DNA is
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available for them, paternity testing may be
performed to fill in the missing pedigree infor-
mation. Or when it is known that individuals
must be either full or half siblings because they
share a mother, estimates of their IBD for many
genotyped markers spread throughout the gen-
ome allow them to be correctly classified for
sibling pair-based analyses. Complicating either
of these is the possibility of inbreeding. Most
pedigree checking programs are not capable of
dealing with situations where the potential father
shares more alleles than expected with a putative
child because the father is genetically related to
the mother or with situations where full or half
siblings share more alleles than expected because
their mother and father are related. In cases
where there is substantial inbreeding or where
pedigree relationships are unknown, one
approach is to use IBD-based methods and esti-
mate the null distribution of allele sharing
empirically, averaging IBD across many geno-
typed markers, rather than relying on a kinship
matrix derived from known pedigree
relationships.

Any kind of genome scanning requires a
minimum of hundreds of STR markers or thou-
sands of SNPs of known chromosomal location
and multipoint linkage analyses also require a
genetic map where the order of the markers is
specified along with the distances between them
in cM. Such high-resolution maps and marker
sets have been available for humans for over a
decade, but exist for only a subset of the non-
human primate species used in research. Linkage
maps have been developed for the baboon (Cox
et al. 2006; Rogers et al. 2000), rhesus macaque
(Rogers et al. 2006), and vervet (Jasinska et al.
2007). Furthermore, a related issue is that the
significance thresholds for genome-wide linkage
screens discussed above are tailored to human
studies. The cutoff of an LOD > 3 incorporates
within it the expected number of independent
tests in a genome-wide scan given the length of
the human genome. The cutoff for genome-wide
significance will differ for linkage studies of
other species, generally being lower, as the total
genome length in cM is shorter for the nonhuman
primate species with available linkage maps.

3.8 Linkage and Linkage
Disequilibrium are Different

Linkage disequilibrium (described in detail in the
chapter on association analyses Hanson and
Malhotra, this volume) is an association of two
alleles at different loci that is present at a popu-
lation level. This occurs when the frequency of a
haplotype differs from the product of the two
allele frequencies. Essentially, this requires not
only that the loci be linked, but that the “phase”
described above for marker-to-marker linkage be
nonrandom. In other words, that one phase is
more common across families. In Fig. 3.4, we
can set phase for the transmissions from the
heterozygous father (individual 3) to his off-
spring (individuals 5–8). In the family on the left,
the A allele and the 1 allele are transmitted
together as are the D allele and the 3 allele. In
contrast, in the family on the right, the A allele is
with the 2 and the D allele is with the 4. In other
families, the A is inherited with the 3 or 4 and the
D allele with the 1 or 2. There is no linkage
disequilibrium between the letter locus and the
number locus. The frequency of the A1 haplo-
type is merely the product of the frequency of the
A allele and the frequency of the 1 allele.
Knowing what allele someone has at the letter
locus does not predict their allele at the number
locus. However, there is still linkage information.
We can still score these families for recombinant
and nonrecombinant meioses, accounting for the
differences between families by the fact that we
set phase separately for each family, and it is still
the case that individuals who are IBD at the letter
locus will also be IBD at the number locus unless
a recombination has occurred between the two
loci. Linkage analyses do not require the pres-
ence of linkage disequilibrium between the trait
locus and a genotyped marker.

3.9 Linkage Analysis in the WGS
Era

With the advent of next generation sequencing
technologies that are rapidly making whole
genome sequence (WGS) studies practically and
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economically feasible, some have questioned the
continued relevance of linkage analysis as a
method for gene localization in the twenty-first
century. When the variants influencing the focal
phenotype are among the genotyped markers, as
will be the case with complete WGS, association
tests can be more powerful than linkage for gene
localization. However, genome-wide association
screening using WGS data necessarily entails
millions of statistical tests and appropriately
rigorous correction for multiple testing will again
limit power. Given this, strategies will be needed
for focused testing of subsets of variants drawn
from WGS or for placing informative prior
probabilities on subsets of variants. One such
strategy will be to utilize the independent infor-
mation from transmission within families, i.e.,
linkage, to limit association testing to targeted
regions drawn from the WGS or to preferentially
weight sequence variants in linkage regions.
Importantly, the large pedigrees that provide the
best power to detect linkage are also an ideal
design for WGS studies as they have the poten-
tial to carry numerous copies of even rare alleles
of interest when founders at the top of the pedi-
gree structure have many descendants. Thus in
many cases, samples selected for WGS will also
be well optimized for linkage and linkage infor-
mation can be utilized to augment analysis of
WGS at no additional cost.
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4Association Studies to Map Genes
for Disease-Related Traits in Humans
Robert L. Hanson and Alka Malhotra

4.1 Introduction

Association studies have been widely used in
human genetics as a way to map important dis-
ease-related traits. Genetic association generally
refers to the tendency for particular alleles at a
genetic marker to co-occur with particular trait
values in a population. Historically, association
studies were almost exclusively used for the
investigation of regions in which there was rea-
son to suspect that there were functional variants
influencing the trait, with such suspicion coming
from the known biology of the trait or from
previous linkage studies. In recent years, how-
ever, technological developments have made it
feasible to genotype hundreds of thousands of
markers simultaneously across the entire gen-
ome. These genome-wide association studies
have become powerful tools for mapping genes
for susceptibility to human disease and for rela-
ted traits.

4.2 Heritability, Power,
and Sample Size

4.2.1 Quantitative Traits

If there is a genetic variant with functional alleles
that influence a quantitative trait, then one would
expect to observe an association between geno-
types at this variant and levels of the trait. The
extent of the expected association depends on the
frequencies of the functional alleles and the differ-
ences among genotypes in the level of the trait. The
effects of these two parameters are described by the
locus-specific heritability (h2), which represents the
proportion of trait variance explained by the asso-
ciation. For a diallelic polymorphism, under the
assumption of Hardy-Weinberg equilibrium:

h2 ¼ f 2HðlHH � lÞ2 þ 2fH 1� fHð Þ lHL � lð Þ2þð1� fHÞ2ðlLL � lÞ2
r2

ð4:1Þ
where

fH frequency of the allele conferring high
trait values,

μHH trait mean for individuals homozygous for
this allele,

μLL mean for individuals homozygous for the
allele conferring low trait values,

μHL mean for heterozygotes,
µ overall trait mean, and
σ2 total trait variance.
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If representative individuals for a population
are selected for the association study without
regard for level of the trait, then the locus-
specific h2 will be the primary determinant of
statistical power or sample size. Figure 4.1 shows
the sample size required to detect a given locus-
specific h2 at genome-wide significance (taken
here as p < 7.2 × 10−8, v.i.) with 80 % power. For
variants with h2 > 0.05 the sample size require-
ments are modest (<1,000), but substantial sam-
ple sizes are required for variants with h2 < 0.01.

4.2.2 Dichotomous Traits

Most human diseases are dichotomous traits in
which individuals are classified as affected or
unaffected. Power and sample size calculations for
dichotomous traits can be conducted in a fashion
analogous to those for quantitative traits with the
additional assumption that affection status is
determined by being above or below a threshold
on an underlying continuous liability scale. In
population-based studies, the fact that the under-
lying quantitative trait is not observed can result in
a substantial increase in the sample size required to
map a dichotomous trait compared with that
required for a quantitative trait. The magnitude of
the increase depends on the prevalence of the
disease. For example, if the disease prevalence is
0.01, a population of *55,000 individuals is
required to detect a locus conferring h2 = 0.01 with
genome-wide significance at 80 % power,

compared with *6,000 if the prevalence is 0.50
and*4,000 if the quantitative trait can be directly
analyzed.

Many disease mapping studies are conducted
using a case-control design in which affected and
unaffected individuals are selected in proportions
that are different from those found in the general
population, and this can greatly improve the
efficiency of mapping studies for diseases with
low prevalence. For example, if equal numbers
of cases and controls are selected in such a study,
*1,800 individuals (900 of each) are required to
detect a locus with h2 = 0.01 for a disease with
prevalence of 0.01, compared with *55,000 if
an unselected population is studied. For rela-
tively rare diseases, the number of available
cases can be a limiting factor, but power can be
increased by including more than one control per
case. For the example of disease prevalence of
0.01 and h2 = 0.01, the total number of individ-
uals required is 3,300 if cases and controls are
matched 1:4 (650 cases and 2,650 controls).
Case-control designs have also been used in the
study of quantitative traits by selection of indi-
viduals for genotyping from the extreme values
of the distribution (Hanson et al. 2006; Schork
et al. 2000).

4.2.3 Allelic Odds Ratio: A Measure
of Association

In case-control studies, it is customary to describe
the association in terms of the allelic odds ratio
(the increase in the odds of the disease per copy
of the allele conferring high risk). If fH-case is the
frequency of this high risk allele in cases and
fH-cont the corresponding frequency in controls,
the allelic odds ratio (ORH) is approximately
equal to [fH-case(1-fH-cont)]/[fH-cont(1-fH-case)],
though its exact value depends on the genotypic
frequencies in cases and controls (Sasieni 1997).
For a given sample size there is a strong depen-
dence of power on frequency of the risk allele (fH)
and ORH. At low values of minor allele frequency
a larger odds ratio is required to achieve the same
locus-specific h2 as when the minor allele fre-
quency is near 0.5. This is illustrated in Fig. 4.2.
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Fig. 4.1 Sample size required to map a quantitative trait
by association according to the trait variance explained by
the associated variant (locus-specific h2) at p < 7.2 × 10−8

with 80 % power. Sample sizes are calculated on the basis
of the correlation coefficient and range from 364 at
h2 = 0.1–38,762 at h2 = 0.001
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4.3 Linkage Disequilibrium

4.3.1 Concordance with Functional
Alleles

In the power and sample size calculations
described in Sect. 4.2, the associations between
marker alleles and trait values have been con-
sidered without regard to the functionality of the
alleles. If the functional alleles (those that
directly influence trait values due to their effects
on molecular processes) can be genotyped, the
parameters for the marker alleles reflect those of
the underlying biologically important variants. In
mapping studies, however, a selection of the
known allelic variation is often assayed without
any knowledge of whether the genotyped alleles
are functional. In this situation, the power to
detect an association with any given marker is
dependent on the extent to which the marker
alleles are concordant with functional alleles;
allelic association that occurs between linked
markers is termed “linkage disequilibrium.” The
degree of concordance between two loci is often
described in terms of the parameter r2. If a
diallelic marker has alleles A and B, the fre-
quencies of the haplotypes they comprise with
the functional alleles, H and L, can be repre-
sented by fHA, fHB, fLA, and fLB. The degree of
concordance is:

r2 ¼ ðfHA fLB � fHB fLAÞ2
fH fL fA fB

ð4:2Þ

(Hill and Weir 1994). r2 is a measure of
linkage disequilibrium that can range between 0
(no allelic association) and 1 (complete concor-
dance), and the required sample size for a marker
is inversely proportional to the r2 with the
functional alleles [assuming that trait association
with the marker alleles is solely a function of
linkage disequilibrium with the functional
alleles] (Zondervan and Cardon 2004).

The human genome contains multiple small
segments (“blocks”) that are characterized by a
high degree of linkage disequilibrium among the
polymorphisms contained therein (Gabriel et al.
2002). The size of these blocks varies across
human populations, in part because of historical
recombination among loci and the multiple serial
founder events from which these populations are
thought to derive (Nordborg and Tavare 2002;
Deshpande et al. 2009). Association studies to
map disease-related traits are designed to exploit
this linkage disequilibrium to identify genetic
markers that are in close proximity to functional
disease-causing variants (even though the func-
tional polymorphism itself may not be directly
genotyped). Since the resolution of association
studies depends on historical recombination,
rather than on the recent recombination that
determines the resolution of family-based linkage
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Fig. 4.2 Odds ratio per copy of the risk allele (ORH) for
a disease (dichotomous trait) according to the frequency
of the risk allele (fH) and the proportion of variance
explained by the association in the underlying quantitative
liability distribution (h2). Results are shown for a disease
with prevalence 0.01 and for one with prevalence 0.50.

Note that, for the same h2, ORH is higher when the risk
allele is rare or common than when it has frequency near
0.5. In addition, for the same h2 and fH, ORH is higher
when the disease is rare (or conversely when it is very
common) compared to when it is near 0.50
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studies, association studies typically identify
smaller genomic regions of interest than do
linkage studies. However, they also require a
larger number of markers.

4.3.2 Linkage Disequilibrium
in Human Populations

Since linkage disequilibrium patterns vary across
human populations, the power of a given set of
markers for association mapping will vary across
populations as well. The International HapMap
project has made an important contribution in
identifying human linkage disequilibrium pat-
terns and, thus, it has greatly facilitated the
design of association studies (The International
HapMap Consortium 2003). In this project,
millions of single nucleotide polymorphisms
(SNPs) have been genotyped in groups of indi-
viduals representing some of the major conti-
nental populations. The initial, and most
extensive, genotyping has been done in Yoruba
in Ibadan, Nigeria (YRI), Chinese in Beijing
(CHB), Japanese in Tokyo (JPT), and individuals
of European origin from the Centre d’Etude du
Polymorphisme Humain collaboration (CEU).
Other populations have been added more
recently including: African ancestry in South-
west USA (ASW), Chinese in metropolitan
Denver, Colorado (CHD), Gujarati Indians in
Houston, Texas (GIH), Luhya in Webuye, Kenya
(LWK), Mexican ancestry in Los Angeles,
California (MEX), Maasai in Kinyawa, Kenya
(MKK), and Tuscan in Italy (TSI). Examination
of linkage disequilibrium patterns among a rep-
resentative HapMap population allows for the
selection of “tag” SNPs that capture the haplo-
typic variation within the population such that all
SNPs are concordant with at least one of these
tags with a specified r2. Computer algorithms
[such as the “tagger” program (de Bakker et al.
2005)] can be applied to select tag SNPs for
genotyping.

The extent to which the HapMap populations
are representative of other populations is vari-
able, but analyses of data from the Human

Genome Diversity Project suggest that common
variation in most populations outside of Africa is
well captured by one of the non-African HapMap
populations [CEU, CHB or JPT] (Conrad et al.
2006). Although tags selected in the YRI popu-
lation capture variation reasonably well in many
African populations, there are African groups in
whom variation is not well captured (Conrad
et al. 2006). As the HapMap Project expands to
include other populations, and as data from
population-level sequencing studies are obtained
from the 1000 Genomes Project (Altshuler et al.
2010), a more complete picture of linkage dis-
equilibrium in human populations is emerging,
and this will provide further utility in the design
of association studies.

4.4 Genotyping

4.4.1 General Strategies

Prior to conducting an association mapping
study, regions of interest must be defined and
markers selected for genotyping. The genomic
regions of interest may be confined to those that
harbor genes that are strong candidates for con-
taining variants that confer susceptibility to dis-
ease; such candidates may be defined on the basis
of previous genetic or physiologic studies.
Alternatively, investigators may choose to inter-
rogate the entire genome to detect susceptibility
variants without regard to whether they were
predicted by existing biological knowledge.
Investigators must also decide whether to attempt
to assay all of the genetic variation in the regions
of interest, by conducting sequencing studies, or
to conduct targeted genotyping in an attempt to
capture most of the relevant variation. Although
large-scale sequencing experiments are rapidly
becoming more feasible, they have generally
been prohibitively costly, so most studies have
attempted to type a subset of the variation. Most
studies have also focused on common variants
(minor allele frequency > 0.05), given the diffi-
culties in assessing rare variants without
sequencing studies.
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4.4.2 Genome-Wide Arrays

A variety of arrays are available for conducting
genotyping for genome-wide association studies.
These arrays are able to simultaneously genotype
large numbers of SNPs (80 K-5 M) across the
entire human genome. Most of the commercially
available arrays are associated with one or more
computer algorithms that assign genotypes from
the data generated by the experiment. Although
these algorithms are generally accurate, a number
of statistical quality control procedures need to
be employed to ensure genotyping quality
(Finner et al. 2010; Weale 2010). Examination of
the sample-specific and SNP-specific call rates
can help identify potentially problematic samples
or SNPs; those with low rates of successful
genotyping often produce erroneous values.
Extreme deviations from Hardy-Weinberg equi-
librium are often indicative of SNPs with sys-
tematic errors in genotype assignment. Individual
samples which exhibit extreme deviations from
the average rate of heterozygosity for the study
may represent problems with DNA quality or
unusual population structure. Inclusion of a
number of samples typed in duplicate can help to
identify SNPs where genotype assignment is
uncertain due to a high degree of technical var-
iation. Many of the genotyping algorithms have
additional quality scores that can indicate
degraded or contaminated samples, and addi-
tional methods have been developed to identify
plates of samples that may contain systematic
genotyping errors (Pluzhnikov et al. 2010).

By examination of the linkage disequilibrium
patterns among SNPs on these arrays and those
identified in the HapMap Project, one can
determine the extent to which these arrays cap-
ture the known variation in the HapMap popu-
lations. These analyses suggest that for the most
widely used dense arrays, which contain
300 K-1 M SNPs, 65–90 % of common SNPs
that are not on the array have r2 > 0.80 with a
SNP on the array in non-African populations
(CEU, CHB, JPT), while in Africans (YRI) the
coverage is lower at 40–70 % (Li et al. 2008).
Sequencing studies have indicated that 75–90 %

of common SNPs that are not represented among
the HapMap SNPs are highly concordant with a
HapMap SNP and thus will generally be captured
by these arrays; however, some common SNPs
are not well captured (Bhangale et al. 2008;
Takeuchi et al. 2008). Most rare variants are not
well captured by these arrays and, since they are
also often not present in HapMap databases,
cannot be tagged using the HapMap populations
(The International HapMap Consortium 2005;
Xu et al. 2007). The development of large-scale
sequencing technology should allow rare variants
to be more easily included in association map-
ping studies in the future.

4.5 Data Analysis

4.5.1 Methods for Association Testing

As association mapping studies are often con-
ducted in “unrelated” individuals, conventional
statistical methods that assume independence of
observations can often be applied, including
analysis of variance for continuous traits and
contingency table methods for dichotomous
traits. To control for important covariates,
methods such as linear or logistic regression can
be employed. If family members are included in
the study, then methods that account for the
dependence among observations (such as the
linear mixed model) are often used. For diallelic
markers, an additive model is often used in
which the odds of disease or the level of a
quantitative trait is modeled as a function of the
number of copies of a given allele (i.e., geno-
types are coded 0, 1, or 2). More general models
that test differences among all 3 genotypes can
also be used, as can those that assume dominance
for one of the alleles, but this comes at the cost of
increasing the number of degrees of freedom or
the number of statistical tests. Although the
additive model captures much of the information
in many scenarios, there are situations when
associations can be missed if other models are
not used (Slager and Schaid 2001), so investi-
gators need to carefully consider the balance
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between missing some associations and increas-
ing the multiple testing burden. A variety of
software packages, such as PLINK and SNP-
TEST, have been developed to conduct these
analyses rapidly over a large number of markers
and to extract the relevant summary statistics
(Purcell et al. 2007; Marchini and Howie 2010).

4.5.2 Genotype Imputation

When dense sets of markers are genotyped, as in
genome-wide association studies, it is possible to
impute the genotypes for untyped markers using
the linkage disequilibrium in a reference panel of
individuals typed at all markers (Browning and
Browning 2007; Marchini et al. 2007; Li et al.
2010). This essentially uses the genotypes at
typed markers and the haplotype frequencies in
the reference sample (usually one of the Hap
Map populations) to assign the probability of a
given genotype at the untyped marker. Analyses
that include imputed markers can result in a
modest increase in the power of association
mapping studies (Hao et al. 2009; Li et al. 2010).
Use of imputed genotypes is particularly impor-
tant in meta-analyses that combine results over
studies that may have used different genotyping
arrays and that, thus, have different SNPs directly
genotyped.

Imputation assumes that the linkage disequi-
librium pattern in the reference population is
representative of that in the study population, but
fairly accurate imputation is possible in many
populations by using combinations of HapMap
populations as the reference (Huang et al.
2009a). However, even modest inaccuracy in
imputation can reduce power and increase type I
error in some situations, so care is necessary in
applying these methods (Huang et al. 2009b;
Almeida et al. 2011). It is often useful to apply
the imputation techniques after masking some of
the typed markers to quantify the accuracy of the
imputation. When imputed genotypes are

analyzed, the analyses need to account for
uncertainty in the assignment of genotypes.
Weighted likelihood-based methods, where the
weights depend on the probability of the geno-
type, are probably optimal for these analyses, but
may be time-consuming. A simple alternative is
to use the posterior expectation of the genotype
as the predictor variable in a conventional
regression model. (For example, if p2 and p1
represent the probability of carrying 2 copies or
1 copy of a given allele assigned by the impu-
tation procedure, the linear term in the additive
model is taken as 2p2 + p1). This approach pro-
vides an accurate approximation to the full like-
lihood calculation in many situations (Guan and
Stephens 2008; Zheng et al. 2011).

4.5.3 Presentation of Genome-Wide
Association Results

The results of a genome-wide association study
are often presented in a “Manhattan” plot, in
which –log10(p-value) for each SNP is plotted by
location across the genome. An example of such
a plot is shown in Fig. 4.3a [reflecting a 100 K
genome-wide association study for type 2 dia-
betes in American Indians (Hanson et al. 2007)].
Although no association achieves genome-wide
significance, there are a number of regions with
evidence suggestive of association. The quan-
tile–quantile plot is another way in which
p-values are often presented for genome-wide
association studies. In this plot, the cumulative
distribution of the p-values in descending order
is plotted in relation to a uniform distribution
(the expected under the global null hypothesis of
no association with any marker). The results for
this example show little deviation from the
expected values overall (Fig. 4.3b). However,
there is some deviation at the levels associated
with greater significance (Fig. 4.3c), which
is expected if there are some truly positive
associations.
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4.6 Population Stratification

4.6.1 Confounding in Association
Studies

Population stratification refers to a process that
leads to a population being composed of different
genetic subpopulations. This could result from
ethnic admixture or undetected relationships
among individuals; all human populations have
some degree of stratification. This can be an
important confounder in association mapping
studies. If a population is composed of subpop-
ulations that differ in risk of disease, then asso-
ciation may be observed with any allele that
differs in frequency among subpopulations
regardless of whether the marker is located in
proximity to a polymorphism conferring disease
susceptibility. An example of such confounding

is that of the Gm3;5,13,14 haplotype of immuno-
globulin G, which is associated with a low
prevalence of type 2 diabetes in American Indi-
ans [p < 0.0001] (Knowler et al. 1988). However,
Gm3;5,13,14 is at a much higher frequency in
Europeans than in full-heritage American Indi-
ans, and Europeans have a lower prevalence of
type 2 diabetes. There is no association with
diabetes once the degree of European heritage is
taken into account (p = 0.30), a finding which
indicates that the overall association is con-
founded by European admixture.

4.6.2 Methods to Account
for Population Stratification

A number of techniques have been developed to
account for population stratification in associa-
tion studies. “Genomic control” is a technique by
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Fig. 4.3 a “Manhattan” plot showing significance of
association in relation to genomic position; significance is
plotted as −log10(p-value) so that higher levels indicate
greater significance. b Quantile–quantile plot of the
cumulative distribution of p-values across all markers;
the solid line represents the observed distribution and the
dotted line is that expected under the global null

hypothesis. Overall there is little departure from the
expected distribution, and this indicates little inflation of
the test statistic. c The same quantile–quantile plot
restricted to the region p < 0.05. There is a modest
increase in significance beyond that expected, as expected
if some markers were truly associated. All data are from
Hanson et al. (2007)
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which one estimates the extent of inflation in
statistical significance in the study sample
(Devlin and Roeder 1999; Devlin et al. 2004);
this estimate is made either from the distribution
of the chi-square (χ2) test statistic for association
in all markers or from that in a randomly selected
set of markers. The inflation factor (λ) is esti-
mated as the ratio of the mean or median value of
the χ2 statistic to its expected value under the
global null hypothesis. This factor is then used to
calculate the p-value for each marker corrected
for the inflation, which is presumably caused by
population stratification (the corrected χ2 is taken
as the uncorrected χ2 divided by λ). This is a
simple technique that is often useful, but it
assumes that overall inflation is due to population
stratification, whereas in polygenic traits it may
be due in part to linkage disequilibrium with
functional variants (Yang et al. 2011a). It also
applies the same correction to all markers so it
does not change their ranking. In theory, how-
ever, some forms of population stratification may
not influence all markers equally, but will pri-
marily affect those that differ in frequency among
subpopulations.

Another approach is to use genetic marker
data to generate covariates that reflect member-
ship in subpopulations. Given known allele fre-
quency differences between ancestral human
populations, estimates of individual admixture
can be derived (Hoggart et al. 2003; Tang et al.
2005; Alexander et al. 2009). Panels of markers
with large differences in allele frequencies
between major human continental populations
are available for this purpose (Halder et al. 2008;
Kosoy et al. 2009).

In genome-wide association studies, covariates
that reflect subpopulation membership can be
derived from the large number of markers avail-
able without a priori specification of the particular
subpopulations. Principal components (linear
combinations derived from all markers that
account for a large part of the total variance
among all individuals) can be generated. Con-
trolling for the first few principal components is
often an effective means of reducing the effects of
population stratification (Price et al. 2006).
Alternatively, clustering methods can be used to

assign individuals to discrete subpopulations, and
covariates for these can be incorporated (Pritchard
et al. 2000). Methods that use marker data to
estimate substructure have the advantage over
genomic control that they do not assume that the
effects of stratification apply equally to all mark-
ers. Nonetheless, there may still be markers that
are confounded by aspects of population stratifi-
cation that are not detected by these methods.

4.6.3 Family-Based Association Tests

Family-based association methods that are robust
to population stratification can also be used, and
a number of such tests have been developed
(Spielman et al. 1993; Lake et al. 2000; Martin
et al. 2000). These methods test whether a spe-
cific allele(s) and the trait of interest are co-
transmitted within families. Family-based tests
can be considered tests of linkage as well as
association. Although these tests are robust to
population stratification, they require collection
of family data and are only informative for
individuals in whom at least one parent is het-
erozygous for the marker. For a given number of
individuals, therefore, they are generally less
powerful than general association tests that do
not require family data.

4.7 Statistical Significance

4.7.1 Multiple Comparisons

The issue of the appropriate level of statistical
significance for genetic association studies has
been somewhat controversial. A large number of
statistical tests are often conducted, particularly
in genome-wide studies. This results in a multi-
ple comparison problem in that, under the global
null hypothesis that none of the variants are truly
associated with the trait, many variants with
nominally significant associations (e.g., p < 0.05)
will still be observed. Furthermore, most genetic
variation is likely to be unassociated with any
given trait, so, in the absence of any functional
biologic information, the “prior” probability of a
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true association is low. Therefore, most nominal
associations are likely to be false, even at levels
of statistical significance conventionally taken as
stringent. For these reasons, most statisticians
recommend very stringent thresholds for statis-
tical significance in association mapping studies.
There are two basic approaches that have been
used to establish the specific threshold: correc-
tion for the number of tests actually performed in
any given experiment and correction for the
number of potential tests across the entire
genome.

4.7.2 Experiment-Wide Significance

In calculation of experiment-wide statistical sig-
nificance, one might consider a Bonferroni cor-
rection in which the desired global p-value is
simply divided by the number of markers to
obtain the marker-specific threshold (e.g., if 300K
markers are typed p < 0.05/300,000 = 1.7 × 10−7

is considered experiment-wide significance at
p < 0.05). However, this approach is probably
overly stringent, because it does not consider
linkage disequilibrium among the markers. The
false discovery rate method (Benjamini and
Hochberg 1995), in which the correction is
applied in a stepwise fashion considering the
overall distribution of p-values, is often less
stringent but still assumes independence among
markers.

Permutation methods, in which the observed
nominal p-value is compared with the null dis-
tribution calculated by repeatedly permuting the
trait at random among study participants, can
effectively account for the correlation among
markers. Permutation methods are computation-
ally burdensome and, since they depend on the
assumption of exchangeability among the indi-
viduals over whom the values are permuted, can
be very difficult to implement in family studies or
other study designs with complex dependencies
among individuals. Alternative methods attempt
to use the linkage disequilibrium among markers
to estimate the number of effectively independent
statistical tests (Nyholt 2004; Duggal et al.

2008), over which the Bonferroni method can be
applied. These methods, while less computa-
tionally intensive than permutation, can still
account for the correlation among markers.

4.7.3 Genome-Wide Significance

A potential disadvantage of all methods for cal-
culating experiment-wide significance is that the
thresholds are dependent on the number of
markers typed, whereas the interpretation of the
result for any given marker is intuitively not
dependent on how many other markers have
been tested. This limitation does not apply if one
attempts to correct for the effective number of
independent potential tests across the whole
genome (if all variation was sampled). Several
investigators have attempted to estimate this
number empirically with extrapolation to an
infinitely dense map [although the ascertainment
of common SNPs may influence this estimate]
(Dudbridge and Gusnanto 2008; Hoggart et al.
2008; Wellcome Trust Case Control Consortium
2007). Based on these estimates, the resulting
thresholds for genome-wide significance range
from 5 × 10−7 to 8 × 10−9 for non-African
populations (with slightly lower values for YRI).
Most investigators have, thus, used a threshold of
in the vicinity of Dudbridge and Gusnanto’s
(2008) estimate of 7.2 × 10−8 for genome-wide
significance.

4.8 Follow-Up Studies

4.8.1 Replication of Results

Once an association mapping study has been
completed a number of steps are required to
ensure the validity of the results and to under-
stand their biological implications. Given tech-
nical and stochastic variation in the methods,
replication of the findings in individuals from
similar populations is important, regardless of
whether genome-wide significance was obtained
in the initial mapping study. Since variants with
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the strongest effects among multiple markers are
typically selected, the effect estimates from the
initial mapping study are likely biased and, thus,
weaker effects will generally be seen in the rep-
lication study. In designing replication studies
the effect of this “winner’s curse” phenomenon
ideally should be taken into account (Zhong and
Prentice 2010). Replication studies may be per-
formed by genotyping additional individuals or
by conducting meta-analyses that compare
results with previously performed association
studies.

Meta-analyses that combine results across
multiple mapping studies may help to identify
consistent associations, some of which may
achieve genome-wide significance only in the
meta-analysis. For example, meta-analysis of the
initial genome-wide association studies of type 2
diabetes helped to distinguish the consistent
associations among them and to identify many
susceptibility variants that were not immediately
obvious in any individual study (Zeggini et al.
2008).

4.8.2 Fine-Mapping and Functional
Studies

The identification of a variant that is reproducibly
associated with a trait does not imply that this
variant is itself functional. Analysis of other
known variants in the region of interest and
identification of additional variants through
sequencing is needed to help identify the func-
tional allele(s). Although association studies
typically have high resolution, the pattern of
linkage disequilibrium can be chaotic, so the
fine-mapping and sequencing studies may still
need to extend over several Mb, particularly if
relatively rare variants underlie the signal
(Dickson et al. 2010). In some cases, the relevant
function may be clear, e.g., if a missense variant
is identified in a gene with a known biological
role in the disease, but in many cases the func-
tional relevance of an association is not clear. In
these cases, evidence for functionality may need
to come from experimental systems, such as

in vitro assays, and “knock-out” or transgenic
animal models.

Prioritizing variants for functional studies can
often benefit from statistical analyses. For
example, analysis of the association of pairs of
variants in linkage disequilibrium, each condi-
tional on the effect of the other, can help to
determine if the association with one of the
variants explains that seen with the other or if
each contributes independent information. Vari-
ants whose effects remain after conditioning on
the effects of others are stronger candidates for
functional studies. The sample sizes required for
such studies, however, can often be prohibitively
large when the linkage disequilibrium is strong,
particularly when the amount of variance
explained by the association is small (see
Table 4.1), as is the case for many disease-
associated traits in humans (for which
h2 = 0.001–0.01 is often typical). These studies
could be facilitated if proximal traits can be
identified in the relevant pathway that are more
closely related to the genetic variation and that,
thus, can be expected to have larger effects (e.g.,
h2 = 0.1–0.3). Studies of gene expression levels
in relevant human tissues are potentially useful in
this respect. Obviously, however, the effects of
variants in complete concordance (r2 ≈ 1) cannot
be distinguished statistically.

4.8.3 Population and Biological
Contexts

Bioinformatic analyses that integrate the genetic
findings into known biochemical pathways may
be useful for understanding the biological
implications of the results of mapping studies.
Many mapping studies are done in selected
samples that are not representative of human
populations, and population-based epidemiologic
studies are necessary to quantify the population-
level effects of the detected variants. The results
of association mapping studies will depend on
the underlying biology of the trait and
how amenable the genetic factors are to the
technology used.
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The extent to which the findings of mapping
studies can explain the overall heritability of the
trait varies. For example, 3 robustly replicated
loci account for 44 % of the variance in fetal
hemoglobin levels in adults, which is 50 % of the
overall heritability (Menzel and Thein 2009). On
the other hand, while 32 variants with replicated
associations with body mass index, a measure of
obesity, have been identified, the effects of these
variants are quite weak. Taken together the 32
variants explain only 1.5 % of the variation in
body mass index or *3 % of the overall heri-
tability (Speliotes et al. 2010). Detection of
variants with such small h2 at genome-wide
significance required genotyping over 200,000
individuals, and it is likely that many other
variants exist that could not be robustly detected.
For genome-wide association studies, methods
are available to estimate the extent to which the
markers are in linkage disequilibrium with vari-
ants that explain this “missing” heritability and to
estimate the number of additional variants con-
tributing to the trait that were not detected (So

et al. 2010; Yang et al. 2011b). Methods to
identify panels of large numbers of markers that
are associated with the trait have also been used
(Purcell et al. 2009). These methods, which use
genomic information in aggregate, are not strictly
mapping studies.

4.9 Conclusion

Genome-wide association studies have been
successful for a variety of human diseases and
related traits. Such studies have identified
robustly reproducible associations for obesity,
metabolic diseases, cardiovascular disease, gas-
trointestinal diseases, hematologic traits and
human cancers, among many others (Easton et al.
2007; Eeles et al. 2008; Menzel and Thein 2009;
Franke et al. 2010; Musunuru and Kathiresan
2010; Speliotes et al. 2010; Voight et al. 2010).
An online catalogue of published genome-wide
association studies is available at http://www.
genome.gov/gwastudies/. In many cases, the

Table 4.1 Sample size requirements to detect a functional allele at p < 0.01 with 80 % power conditional on a marker
in linkage disequilibrium with the functional locus

Locus-specific h2

r2 0.001 0.01 0.05 0.10 0.20 0.30

0.50 23,338 2,316 447 214 97 58

0.60 29,172 2,894 558 266 120 72

0.70 38,894 3,858 743 354 159 94

0.80 58,340 5,785 1,113 529 237 140

0.90 116,676 11,566 2,223 1,055 470 276

0.95 233,349 12,127 4,441 2,105 937 548

r2 represents the degree of linkage disequilibrium between functional and marker alleles; locus-specific h2 is that
associated with the functional alleles. Sample size was calculated by modification of the formula of Milton (1986) as:

n ¼ 3þ ðza þ zbÞ2ð1� h2Þ
ðh2 � r2h2Þ

where zα represents the normal deviate associated with the desired p-value and zβ represents the normal deviate
associated with the desired power. If both functional and marker alleles are typed, the analysis would be conducted to
determine if the functional allele is associated with a quantitative trait conditional on the association with the marker
allele. The identities of functional and marker alleles are likely unknown, but the analysis would be conducted for each
conditional on the other. One would expect the functional alleles to be associated conditional on the marker, while the
marker would not be associated conditional on the functional alleles
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biologic implications of the findings of these
studies are not yet clear and additional studies are
necessary to determine this.

As the molecular genetic methods move
increasingly toward sequencing, association
mapping studies will be able to make use of the
entire range of genetic variation. Since the initial
genome-wide association studies were conducted
with arrays that mostly assayed common vari-
ants, the variants reproducibly associated with
diseases have largely been common ones. As
whole genome and whole exome (those targeting
all the exons in the genome) sequencing studies
become more widely used, it will be possible to
determine the role of relatively rare, as well as
common, variants in susceptibility to human
disease (Cirulli and Goldstein 2010; Gibson
2012). With sequencing studies, however, issues
of data quality, analytic methods, statistical sig-
nificance and replication are likely to become
increasingly complex. Association methods that
simultaneously consider multiple variants within
a gene or region may be particularly useful in the
context where many rare variants influence the
trait (Liu and Leal 2010). Methods that are not
classical association techniques, such as those
that employ measures of genomic similarity, may
also be useful for sequence-based mapping
studies (Bansal et al. 2010). However, in many
situations association methods are likely to best
capture the underlying biology and, thus, they
will remain important tools for genetic mapping
of diseases and related traits in humans and other
primate species.
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5Gene Expression Studies and Complex
Diseases
Harald H.H. Göring

5.1 Introduction

The human genome contains a large number of
genes, each of which may be viewed as a specific
genomic segment that encodes information for
one or several defined functions. Parts of the
DNA sequence of a gene are transcribed into
RNA that is then translated into protein. The vast
majority of genes encode one or several proteins,
and the intermediate RNA product is therefore
referred to as messenger RNA, or mRNA.
However, there are a number of genes producing
non-coding RNA molecules, such as ribosomal
RNA (rRNA), transfer RNA (tRNA), or micro
RNA, among others, where the RNA molecules
have a variety of functions by themselves. All
forms of RNA molecules are the subject of gene
expression studies but different technologies may
be required to investigate different types of RNA.

Figure 5.1 provides a basic overview of the
central information flow in biology and the var-
ious analytical techniques and areas of genetic
and epidemiological investigation related to it.

The main focus of human genetic epidemiolog-
ical research is to identify the genes, and their
variants, which influence our individual charac-
teristics, with the most emphasis (and money)
directed toward diseases and other clinically
relevant traits. The statistical methods for corre-
lating genotypes and phenotypes are referred to
as linkage analysis and association analysis. For
this type of analysis, genotype data must be
generated. Over the last several years, aided by
astounding progress in genomic and other labo-
ratory technologies, a variety of additional
approaches have gained popularity to investigate
the genetic etiology of human diseases and their
pathology. These approaches are complementary
to genotype-based linkage and association anal-
ysis (and to each other), providing additional
information that can be used to understand the
biology of human conditions. These approaches
include correlation analysis between a trait of
interest and gene expression levels. This analysis
requires quantification of gene expression levels
rather than genotyping. Similar techniques
include proteomic (Kooij et al. 2014; Van Eyk
2011) and metabolomic profiling (Kettunen et al.
2012; Sreekumar et al. 2009; Tukiainen et al.
2012) (or methylomic profiling (Mill and Heij-
mans 2013), which involves assessment of DNA
methylation status; not shown in Fig. 5.1). In
each case, the goal is to correlate a trait of
interest to measured levels of transcripts, pro-
teins, or metabolites, in order to identify any
processes that are connected, in some manner, to
the trait of interest.
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It is now possible to simultaneously quantify
the abundance of essentially all transcripts in a
tissue sample (or even a single cell) using modern
genomic technologies. The characterized tran-
scriptome can then be used for two main pur-
poses: First, the abundance of individual
transcripts (or sets of transcripts) can be corre-
lated with a trait of interest in order to identify
those that are significantly correlated with the
trait. The genes encoding these transcripts may
possibly be involved in the etiology of the trait,
and/or it may be that the trait in turn has an impact
on the expression levels of these genes. I will
refer to this type of investigation as transcrip-
tional correlation analysis, transcriptional profil-
ing, transcriptomic profiling, or gene expression
profiling. Second, each transcript may be viewed
as a trait whose genetic regulation can be inves-
tigated by statistical genetic technologies, in order
to identify genomic variants that influence the
transcriptional activity of the gene being exam-
ined. This second type of investigation is some-
times referred to as “genetical genomics” (de
Koning and Haley 2005; Jansen and Nap 2001), a
terminology which I view as confusing and which
I will not use here. Both of these investigations
involving gene expression data—transcriptional
profiling and genetic regulation of gene expres-
sion—are the topics of this chapter.

Another way to describe the central analyses
involving gene expression data in genetic epi-
demiological research is shown in Fig. 5.2. There
are three central information sources available to

us—trait phenotypes, gene expression levels, and
genotypes––and these permit three types of cor-
relations to be analyzed. The traditional associ-
ation analysis (or linkage analysis) investigates
the relationship between trait phenotypes and
genotypes at polymorphic variants (shown on the
left side of Fig. 5.2). Assuming that the genetic
variants influencing a trait of interest exert their
effect via modulation of gene expression, gene
expression data may be viewed as an intermedi-
ate trait between genotype and clinical outcome
of interest, and the overall correlation between
genotype and trait phenotype may be viewed as

gene

RNA

protein
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genetics of trait 
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transcriptomic
“ profiling”

proteomic 
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genetics of 
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Fig. 5.1 Central information flow in biology and analytical techniques and investigations in genetic epidemiology.
This chapter focuses on the investigations involving gene expression data, highlighted in red
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Fig. 5.2 Overview of analyses relating trait phenotypes,
gene expression levels, and genotype data. Note that the
circle of analyses is ideally conducted on a single sample,
which requires that all three types of data are available.
Alternatively, multiple different samples may be used if
necessary. The analyses can be conducted in both
directions
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an amalgamation of the correlation between
genotype and gene expression level and between
gene expression level and the trait phenotype.
Again, these are the two types of investigations
involving gene expression data commonly
undertaken, here referred to as transcriptional
profile analysis and analysis of the genetic reg-
ulation of gene expression, respectively, as
mentioned previously.

Perhaps the main motivation behind tran-
scriptional investigations at the present time is
the observation that most of the genetic variants
that are significantly associated with complex
traits (as typically identified in genome-wide
association studies, or GWAS) do not alter the
amino acid sequence of proteins or have any
other obvious functional effect (Hindorff et al.
2009; Visscher et al. 2012; Welter et al. 2014). In
many cases, the associated variants are located
outside of genomic regions known to be part of a
gene. This leads to the speculation that the
variants underlying complex traits are often
regulatory in nature. This is in contrast to the
genetic defects underlying many Mendelian dis-
orders, many of which directly impact the protein
sequence, thereby altering or abolishing protein
function. While the activity of genes is regulated
at many different levels, including at the stage of
transcription, translation, and post-translationally
by modification of proteins, transcriptional reg-
ulation is a critical component, and the abun-
dance of transcripts can be assessed more readily
and more comprehensively than the amounts of
proteins and their modifications, due to the
pairing potential of the building blocks of DNA
and RNA, which is what makes amplification via
PCR possible. It is important to note that tran-
scriptional regulation itself is a highly complex
process, with multiple potential stages of regu-
lation, including in the location, timing, and
speed of transcription, in the decay of transcripts,
in the usage of alternative promoters, transcrip-
tional stops, and different splice sites (which lead
to the existence of potentially many different
transcripts per gene), in other RNA editing pro-
cesses, and at other steps which are not yet
understood. When gene expression level is
measured using some molecular technique in the

laboratory, we often do not know whether it is a
higher transcription rate or a lower rate of decay
(or both) that is behind the observed high abun-
dance of a given transcript. Fortunately, this does
not complicate the statistical analyses per se, but
this uncertainty must be taken into account when
interpreting the results. Note also that terms such
as “gene expression level” or “transcript level”
are often not well-defined in manuscripts, with
sloppy wordage widespread. In most cases, what
is measured is the abundance of RNA detected
by some specific probe (as in microarray studies)
or the number of RNA sequencing (RNAseq)
reads belonging to a gene or parts of a gene (such
as an exon). Quantifying specific transcripts is
actually very challenging even now and is not
routinely undertaken in most large-scale tran-
scriptomic studies.

This book chapter focuses on the overall
concepts related to gene expression studies.
Details on the laboratory and analytical methods
of these studies are beyond the scope here. This
field of investigation is developing rapidly and
gaining in popularity, and I will only focus on
some key aspects of these types of studies. The
references cited here are only a small selection of
the rapidly expanding literature; the reader is
encouraged to find additional, and potentially
newer or better, references on his/her own.

5.2 Correlation Analysis Between
Trait Phenotypes
and Expression Levels

As mentioned, gene expression data permits us to
correlate trait phenotypes with gene expression
levels. Those genes whose expression level is
significantly correlated (after appropriate multi-
ple testing correction) with the trait of interest are
presumably somehow related to that trait, and the
set of genes may shed light on the biological
pathways related to trait etiology or physiology.
The large literature on complex trait gene map-
ping studies, in particular GWAS studies
(Hindorff et al. 2009; Visscher et al. 2012; Welter
et al. 2014), clearly shows that individual com-
mon variants associated with the risk of a
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complex disease can be localized. However, it
should not be forgotten that this is a challenging
undertaking even for common variants, typically
requiring sample sizes that were unimaginable
only a few years ago. The reason is that these
variants individually only modestly influence the
risk (of some disease) for a person, and at a
population level account for only a small fraction
of trait heritability. Common variants with a
large influence on penetrance are very rare for
complex traits. One example is ApoE4 and
Alzheimer’s disease (Corder et al. 1993; Stritt-
matter et al. 1993). It seems likely that for many
complex diseases low frequency variants of high
penetrance exist (Terwilliger and Göring 2009),
but these variants are difficult to localize because
of their rarity. Conceptually, transcriptional pro-
file studies could be more powerful. One intuitive
reason may be that many functional variants
within a gene could be assessed simultaneously
using this approach, as long as these variants
influence the expression level that can be mea-
sured. In effect, the expression level is a read-out
that combines the effects of all regulatory vari-
ants impacting transcription, and it might there-
fore be easier to identify genes related to a trait of
interest. At least that is the argument that is often
made (It may also be the case that the multiple
testing burden is somewhat reduced compared to
genome-wide analysis of sequence variants, but
this may no longer hold as our molecular tech-
niques for gene expression characterization
become ever better, leading to discovery of many
alternative transcripts per gene).

Despite the general promise and potential,
correlation studies between a clinical trait and
transcript data have substantial drawbacks. For
illustration, let us contrast these studies with a
linkage or association study that is based on
genotype data. When significant evidence of
linkage and/or association has been found, it is
clear that a causal factor in the etiology of the
trait being studied has been localized (assuming
that the finding is not a false positive, the
approximate risk of which can be gleaned from
the obtained significance level). We may not
know which gene(s) and which variant(s) in the
mapped candidate region are causal, but it is

certain that the identified genomic region harbors
one or several variants that influence the trait
being investigated. The only real concern related
to study design is that the study subjects are
matched for ethnicity, which really means that
the genome-wide allele frequencies are very
similar in cases and controls. If this concern is
avoided by design from the outset, such as by
ascertaining cases and controls from the same
ethnically homogeneous population, or even by a
variety of statistical control techniques after
ascertainment, and if there is no difference in
genotyping approach and quality between both
groups, then a causal inference is warranted. [As
an aside: One more caveat is that the relationship
between genotype and trait risk may not be
direct. One example is the FTO locus that was
first identified as a risk locus for type II diabetes
in a case-control study of that disease (Zeggini
et al. 2007). It ultimately turned out that it is
really an obesity locus (Frayling et al. 2007) that
was mapped in the diabetes study because the
cases and controls had different average body
mass index levels because of the correlation
between obesity and diabetes in the population.]
Note that in such genetic studies it is not abso-
lutely crucial (though it may help power and be
therefore warranted) that cases and controls are
matched for other characteristics, such as sex,
age, socioeconomic status, or smoking habits.
The key reason behind all these characteristics of
linkage and association studies is that genotypes
are constant throughout life. Ignoring many
exceptions here for simplicity, genotypes are the
same in all cells of an individual and are inde-
pendent of environmental factors to which a
person is exposed.

The situation is very different in studies
relating a trait of interest to transcript abundance.
The expression level of a given gene is not the
same in all cells of a body, and the expression
level is often influenced by factors of the external
environment as well as of the internal environ-
ment (i.e., the body and its conditions). The
ramifications of this are profound. First, if a
significant correlation between disease and gene
expression has been observed, the cause–effect
relationship is not clear. To stay with diabetes as
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our example, it is possible that significant tran-
scriptional correlates of the disease are involved
in the etiology of the trait (as the loci identified in
genetic association studies definitely are). It is
also possible that the identified genes are them-
selves influenced in their expression by the dis-
ease. And both relationships could exist at the
same time. The former would be useful to learn
about trait etiology, while the latter would inform
about pathophysiology. Upfront, it is not clear
whether the identified transcripts “act upstream
or downstream” of the studied disease. A pro-
spective study design or other timeline tech-
niques may help to clarify what is cause and what
is effect. Perturbation studies, in which gene
expression of a sample is taken before and after
some type of manipulation, such as exposure to a
chemical, may also help in addressing the
ordering of the observed significant correlations.

Second, it is possible that confounder vari-
ables could explain the observed, statistically
significant correlations between trait and tran-
scripts. For example, it is possible that, say, the
diabetic study participants take medications that
the control individuals do not; or that the dia-
betics on average eat a different diet than the
controls; or that they exercise less than the con-
trols; and so on. All of these differences between
cases and controls, individually or jointly, could
potentially explain the observed differences in
transcript levels, in which case the observed
significant correlations would be artifacts caused
by confounder variables. It is very difficult to
exclude this possibility in transcriptional profile
studies. It is advisable to match cases and con-
trols for as many possible confounder variables
as possible, or to measure known confounders
and subsequently account for their effects ana-
lytically. However, the identity of these con-
founders is often not known or they cannot be
measured accurately. A possible solution is to
use the transcriptional profile data itself as a way
to identify potential confounders. One example
of this is to use the expression levels of “indi-
cator genes” to infer the cell type composition of
a tissue sample (such as blood) (Gaujoux and
Seoighe 2013). A general approach could be
implemented based on principal components

analysis, and the top principal components
(which tag the key sources of covariation in the
expression data, many of which may be related to
potential confounder variables) could be subse-
quently regressed out. The difficulty here is that
this approach risks removing the very relation-
ship between trait and gene expression that one
seeks to identify; in essence, one may throw out
the baby with the bathwater.

Third, tissue specificity of gene expression
comes into play. In many cases, the appropriate
target tissue is not accessible, or it may not be
known. In those situations, investigators conduct
their study using another source tissue, in the
hope that it will serve as a suitable surrogate
tissue. However, this is not a generalizable
characteristic of different tissues, because it can
vary from gene to gene (and potentially from
genetic variant to genetic variant) whether two
tissues are suitable proxies for one another. This
is discussed in detail below.

We have grappled with these types of com-
plications in a study of schizophrenia, where we
contrasted the expression profiles from lympho-
blastoid cell lines (LCLs) from cases with
schizophrenia and controls without the disease
(Sanders et al. 2013). While it is perhaps unlikely
that differences in expression levels of cell lines
are caused by the disease status (or related dif-
ferences in environment, attributable to disease-
related medication or, say, smoking)—after all,
these cell lines are far removed from study sub-
jects and their exposures—it is difficult to
exclude the possibility that some aspects of the
LCLs could vary between cases and controls,
independent of disease. For example, could it be
that the LCLs of cases and controls were gener-
ated in slightly different manners, which may be
the cause of observed transcriptional differences?
To guard against this, we measured various cell
lines characteristics as part of the study and
included these variables as covariates. However,
the fact remains that using different sets of
covariates leads to somewhat different findings,
and one cannot know whether all relevant con-
founders are accounted for.

All these complications that arise in tran-
scriptional correlation studies compared with
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genotypic correlation studies can be viewed as
the difference between genetic epidemiology and
epidemiology more generally. It is the former
that is unusual. The nature of genetic inheritance
endows genetic epidemiological studies with
many advantages that are not shared in most
areas of epidemiological research. When corre-
lating transcript abundances with clinical phe-
notypes, we are no longer in the realm of genetic
epidemiology, and thus face many systematic
challenges that can be difficult to overcome.

5.3 Genetic Regulation of Gene
Expression

Instead of correlating gene expression to a trait of
interest, as discussed in the previous section,
gene expression levels can also be subjected to
statistical genetic dissection. The quantitative
expression level of a gene, an exon, or a specific
transcript may be viewed as a quantitative trait
that is under the influence of genetic and envi-
ronmental influence like any other trait. Linkage
and association analyses can therefore be con-
ducted on transcript abundance values in order to
localize the genomic regions and variants that
influence the amount of a transcript being present
in a given sample.

Studies investigating the genetic regulatory
machinery influencing gene expression levels
have gained popularity for two main reasons:
First, they permit us to study the basic biology
underlying a key regulatory step in how our
genes’ activities are controlled. Second, knowl-
edge about which genetic variants are signifi-
cantly associated with the expression of a
particular gene provides clues about the identity
of likely functional variants and their regulatory
potential. This sort of functional information can
be used, potentially along with many other pieces
of information, to prioritize which of the variants
that were previously identified in a GWAS of a
complex disease are most likely to be functional.
This information is relevant in particular because
of the hypothesis that most of the functional
variants underlying complex traits are subtle
regulatory variants. Ultimately, laboratory assays

will generally be required to prove that a given
variant causally influences a trait of interest, but
by accumulating different sources of information
on each variant, including whether or not (and in
which direction and to which degree) it is asso-
ciated with the expression of a particular gene,
we can hone in on the true functional variants
with a greater degree of precision, thereby
reducing and speeding up the more time-con-
suming and much more expensive functional
assays to be conducted in the laboratory. A
genetic variant found to be significantly associ-
ated with some expression level is typically
referred to as an expression quantitative trait
locus (eQTL) or an expression quantitative trait
nucleotide (eQTN) in the case of single nucleo-
tide polymorphisms (SNPs). The term regulatory
SNP, or rSNP, is also sometimes used (Guo et al.
2014).

Genetic studies of gene regulation have pro-
ven to be highly successful in many regards. This
is perhaps not surprising because the expression
level of a given gene is, after all, a very direct
representation of gene action, and the impact of a
regulatory genetic variant on gene expression
thus could be pronounced. The relationship
would certainly appear to be much closer than
one would expect to exist between a gene’s
activity and a complex trait, where any one
variant influences disease risk typically by only a
very small amount. Thus, one might expect a
priori that studying the genetic regulation of gene
expression would be a fruitful undertaking. A
variety of studies, conducted in families, in
twins, and more recently in unrelated individuals,
have shown that the vast majority of gene
expression levels are significantly heritable
(Göring et al. 2007; Nica et al. 2011; Price et al.
2011; Grundberg et al. 2012). This is clear evi-
dence for the existence of genetic regulatory
variants and their influence on gene expression
levels in the aggregate. Note, however, that the
estimated heritabilities for many expression traits
are quite modest, similar to the estimates
obtained for many complex diseases. This sug-
gests that either there is substantial measurement
error in quantifying gene expression levels, and/
or that these traits are subject to myriad
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influences, including by environmental factors
(both of the external environment acting upon a
person as well as the internal environment,
within the body, to which a given cell is
exposed). Therefore, gene expression levels are
best viewed as being fairly complex traits.

We conducted one of the largest genetic
investigations of genome-wide gene expression
at the time, measuring gene expression by Illu-
mina microarrays in white blood mononuclear
cells in 1,240 randomly ascertained Mexican
American family members from around San
Antonio, Texas, USA (Göring et al. 2007). A
brief review of this study is provided here as an
example of a genetic investigation of gene
expression. After full processing, 20,413 (43 %)
probes out of a total of 47,289 on the microarray
detected significant expression at a false discov-
ery rate (FDR) of 0.05. Among the autosomal
probes with significant expression, the quantita-
tive expression levels of the vast majority of
probes (85 %) were significantly heritable at
FDR 0.05. The median heritability estimate was
23 %, with higher heritabilities among RefSeq
probes (which are much better designed and
annotated, on average). These estimates support
the view that gene expression traits are substan-
tially controlled by genetic factors. We subse-
quently conducted linkage analysis in order to
localize major loci influencing the expression
traits. As described in the sections below, we
broke the genome into two components—the
gene locus targeted by a given probe itself and
the remainder of the genome. At FDR 0.05, a
large number of probes (1,345), though repre-
senting only a fairly small proportion of probes
(7 %), showed significant evidence of linkage to
the structural gene locus. This is clear evidence
that genetic variants in and around a given gene,
such as in the promoter region, have substantial
influence on that gene’s expression levels. For
some genes, the heritability attributable to the
structural gene locus explained virtually all the
estimated overall heritability, suggesting that
these genes’ expression is largely monogenically
controlled. The mean effect size of the structural
locus was 5 % on average (with a median of
2 %). The structural locus thus appears to

account for a substantial proportion of heritabil-
ity (based on this particular study, the estimated
proportion of genetic variance explained by the
structural gene locus is in the range of 10–25 %).
We largely failed to identify significant eQTLs
elsewhere in the genome, far away from the
structural gene, suggesting that these distant
regulatory genetic factors, while clearly impor-
tant in the aggregate, have individually very
small effect sizes, making them difficult to detect.
Later studies, using better molecular technolo-
gies, have largely supported our findings, refin-
ing estimates and identifying many more
significant eQTLs, as described in the following
paragraphs.

5.3.1 Cis eQTLs

Given the substantial heritabilities of most gene
expression levels, the logical next step is to con-
duct linkage and in particular association analyses
in order to localize specific variants that are sig-
nificantly associated with expression traits. In
contrast to studies of most clinically relevant
traits, when investigating the genetic regulation of
a particular gene there is an obvious genomic
candidate region, namely the gene itself and its
chromosomal vicinity (see Fig. 5.3). The reason
for paying special attention to this small fraction
of the genome is that genetic variants near a gene,
and in particular in its promoter region, are quite
likely to influence that gene’s expression level,
e.g., by interfering with the binding of proteins
required for transcription. Many of these variants
presumably act in cis. The difference between cis
and trans is shown in Fig. 5.4. By cis (from Latin,
meaning “on this side”) we mean that a given
gene expression regulatory variant influences the
expression level only on the physical molecule—
i.e., the chromosome—on which it resides, but
not on the homologous sister chromosome. The
reasons are likely structural, i.e., proteins and
other factors bind to a particular chromosomal
region to initiate, maintain, and regulate gene
expression of that chromosomal molecule, and
alleles on that entity thus influence the expression
of the gene on only that chromosomal copy. Most
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variants located elsewhere in the genome are
thought to act in trans (from Latin, meaning “on
the other side”). These variants influence both
chromosomal copies equally. For example, some
variant may alter the structure of a transcription
factor, which in turn alters the expression of both
copies of a given gene—regardless on which

sister chromosome a copy of the gene is located.
In general, cis-acting variants are equated with
those close to a given gene, sometimes referred to
as proximal variants. Similarly, the term trans-
acting variant is used for those variants located far
away on the same chromosome or on a different
chromosome, sometimes called distal or distant
variants. While the assumption about how a var-
iant acts based on where it is located relative to a
gene will often be correct, it is nonetheless gen-
erally only an assumption until confirmed by
other means (Gilad et al. 2008). Some variants
close to a gene may turn out to be trans eQTLs.
And some cis variants may be located far from a
gene but on the same chromosome. (Could it be
that cis variants may even be located on another
chromosome, depending on how chromosomes
are packed in three dimensions within the
nucleus?) This caveat should be kept in mind
when reading the literature, in which these terms
are often used interchangeably.

Given the existence of a well-justified candi-
date region of interest around any gene, one may
break a genome-wide search for eQTLs into two
parts, one confined to a gene and its surrounding
genomic region to search for cis variants, and one

chr. 1  2 …

proximal 

locus

distal remainder 

of genome

Fig. 5.3 Partitioning of the genome into the proximal
locus and the distal remainder of the genome (relative to a
gene). When investigating the genetic regulation of gene
expression of a particular gene (shown here in red, located
in chromosome 1), the genome-wide search may be

conducted in two parts. The gene itself and its chromo-
somal surrounding area is a good candidate region to
harbor cis eQTLs, while the rest of the genome may
harbor trans eQTLs. Note the enormous differences in
search area and associated multiple testing burden

cis

trans

Fig. 5.4 Illustration of cis and trans effects. An allele
acting in cis influences only the molecular molecule
(chromosome) on which it resides. In contract, trans
acting factors influence both sister chromosomes
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covering the remainder of the genome to localize
trans variants (Göring et al. 2007). eQTL studies
have proven to be highly successful in the search
for cis variants (Cheung et al. 2005; Dixon et al.
2007; Göring et al. 2007; Stranger et al. 2007;
Emilsson et al. 2008; Montgomery et al. 2010;
Pickrell et al. 2010; Grundberg et al. 2012). With
gradual improvements in measuring gene
expression, and with increased sample sizes, the
proportion of genes estimated to be cis regulated
is creeping upwards, from a small number of cis-
regulated genes observed at first to perhaps ulti-
mately the majority of genes investigated. It
appears likely that every gene is under cis regu-
lation to at least some degree, with only power
limiting our ability to detect significant proximal
associations for all genes. Cis eQTLs are there-
fore frequent, and in fact likely universal for all
genes in all tissues. Their impact on quantitative
gene expression has frequently been shown to be
substantial. In some cases, cis-regulatory variants
appear to account for much of the estimated
heritability of a gene, indicating that the expres-
sion level of such a gene is essentially a mono-
genic trait (though not necessarily influenced by
only a single variant). For other genes, cis-reg-
ulatory effects account for only some proportion
of overall genetic variation, suggesting a more
complex mode of inheritance with substantial
aggregate importance of trans-acting variants.
Cis effects are fairly easy to detect for two rea-
sons: Their commonly strong effect sizes, and
because of the limited multiple testing correction
that is required when searching for them, because
only a very small proportion of the genome,
namely the gene and its vicinity, needs to be
screened. By now, there are catalogs listing many
putative cis eQTLs for many genes in many tis-
sues, and these databases are freely available
http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/
index.cgi (Yang et al. 2010; Xia et al. 2012).

5.3.2 Trans eQTLs

In contrast to the local search for cis variants,
mapping of trans variants requires searching
systematically through the entire genome

(excluding the small proximal region around a
gene). Trans eQTL studies have proven to be
quite difficult (Cheung et al. 2005; Dixon et al.
2007; Göring et al. 2007; Stranger et al. 2007;
Emilsson et al. 2008; Montgomery et al. 2010;
Pickrell et al. 2010; Grundberg et al. 2012),
perhaps more difficult than some scientists had
initially assumed. Part of the explanation is the
enormous multiple testing burden incurred when
searching the entire genome, especially when one
does so on thousands of gene expression traits.
Beyond that reason, the difficulty of finding trans
eQTLs indicates that these regulatory variants
individually only influence the expression level
of a given gene modestly. In other words, the
effect sizes of individual trans eQTLs are small.
Thus, large sample sizes will be required to
localize these variants robustly and comprehen-
sively. At the present time, many studies report a
small number of potential trans eQTLs, but the
evidence is generally fairly weak and large-scale
replication studies are still limited (Grundberg
et al. 2012). There are some observations sug-
gesting the existence of “master regulators”, i.e.,
trans eQTLs that influence the expression of
many genes. This makes intuitive sense if one,
e.g., thinks of variants within a transcription
factor that is involved in the expression of a
whole range of genes. At the present time, much
of the supporting data for master regulators is
fairly modest, and future work is required to
characterize master regulatory eQTLs better.

Figure 5.5 shows an example of a genome-
wide joint linkage and association study for a
particular gene (PPA2), in this case conducted on
peripheral blood mononuclear cells from ran-
domly ascertained participants belonging to
multigenerational families (Göring et al. 2007).
Note that this plot looks very different from a so-
called Manhattan plot from a normal GWAS on a
complex disease. Here, there is an enormous
peak on chromosome 4, which is centered on the
exact location where the studied gene is located
in the human genome. This signal almost cer-
tainly points to cis variants in and near the gene,
and the magnitude of the signal highlights the
substantial effect size of the variants in the
proximal gene region. In contrast, the remaining
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genome yields a very flat pattern, without any
outstanding peaks. This illustrates the small
effect sizes of trans eQTLs and the associated
difficulty in localizing them.

5.4 Integrative Genomic Studies

In the previous two sections, I have separately
discussed studies correlating gene expression
profiles to a trait of interest and studies investi-
gating the genetic regulation of gene expression,
respectively. These are two of the three branches
of investigation shown in Fig. 5.2, with trait-
genotype correlation analysis being the third, and
most commonly performed investigation. Ideally,
we would like to bring as many sources of
information to bear to dissect the etiology of a

trait and to identify the functional genetic vari-
ants. I have tried to illustrate this conceptually in
Fig. 5.6. Thus, we would like to integrate the
results obtained from different data sources, to
comprehensively assess the evidence for genetic
correlation of specific variants with a clinical trait
of interest, and the likelihood that the associated
variants are functional and of relevance. In the
case of gene expression studies, the focus is on
the three types of analyses shown in Fig. 5.2, but
this is not meant as a suggestion that other
sources of information, such as from proteins,
metabolites, gene methylation, sequence conser-
vation, predictions of deleteriousness of variants
based on structural protein changes, etc., are
unimportant or should not be used.

Such integration of the central three types of
analyses shown in Fig. 5.2 is not easy, at least if

Fig. 5.5 An example of a genome-wide search for
eQTLs. The particular example is the PPA2 gene
(inorganic pyrophosphatase 2 precursor), whose expres-
sion level in peripheral blood mononuclear cells was
assessed with probe GI_31881619-A on a microarray.
The large linkage/association peak on chromosome 4 is

located at the position of the gene and demonstrates the
strength of the effects of cis eQTLs on gene expression. In
contrast, the plot does not contain outstanding peaks
elsewhere in the genome, highlighting the small effect
sizes of trans eQTLs and the associated difficulty in
localizing them
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the goal is to use a comprehensive analytical
approach (such as a Bayesian approach in which
the posterior probabilities yielded by one type of
data and analysis serve as the prior probabilities
for the next data source and analytical step). In
most cases, studies use more of an ad hoc
approach. If data on trait phenotypes, genotypes,
and gene expression levels are all available in the
same dataset, one may first perform regular
linkage and association analysis, and then sub-
sequently examine whether the significant (or
suggestive) trait-associated variants are also sig-
nificantly associated with the expression level of
nearby genes. This could suggest a possible way
in which a positional variant may influence the
trait of interest, and may increase the interest and
attention devoted to this variant. Lastly, one may
then investigate whether the gene(s) regulated by
the eQTLs show evidence for correlation with
the trait of interest, thereby closing the circle.
Note that the three analyses comprising the circle
of relationships must yield results that are con-
sistent with one another (at least if undertaken on
the same dataset). Either all three correlations are
positive, or one correlation is positive while the
two others are negative. If different datasets are
used for association analysis of the trait, for
eQTL discovery, and/or for transcriptional pro-
filing of the trait, then one may still seek to

combine the results from these separate investi-
gations, but power may be reduced (e.g., because
a given variant may have a large effect size in
one dataset but not in another). In this case, it is
possible that the results of the three analyses are
no longer consistent with one another. However,
truly existing, important relationships between a
trait, genotype, and gene expression level should
still yield consistent results (except in unusual
situations).

It is also possible to perform the analyses in
the opposite direction. One may start with a
transcriptional profile study, then identify cis
eQTLs influencing trait-correlated transcripts,
and lastly examine whether the identified candi-
date variants truly show evidence of association
with the clinical trait. When the analyses are
conducted in this orientation, then the eQTL and
trait association steps can be used to determine
whether the observed transcriptional signatures
reflect genes involved in the etiology of the trait,
or whether the causal connection goes in the
other direction, with the trait phenotype influ-
encing the expression levels of these genes
(Schadt et al. 2005). In general, there is ample
opportunity for smart approaches to be devel-
oped to integrate different information sources
and to use these data to order the relationships
between the different variables being examined.

trait
locus/gene
   /variant

linkage

(co-segregation in 
pedigrees)

linkage 
disequilibrium 
(co-segregation in 

population) correlation with 
transcript 

abundance

correlation with 
protein 

abundance

prior 
knowledge

other

correlation with 
metabolite 
abundance

Fig. 5.6 Many different information sources can be used
to identify the loci, genes, and genetic variants influencing
a complex trait. Integration of these disparate data sources

can be difficult, and this chapter mainly focused on the
use of genotype data and transcriptional profile data
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5.5 Tissue Specificity

Tissue specificity is an important consideration in
gene expression studies. This is a very important
topic, but it is also one that is complicated and
for which there are no clear-cut answers that
generalize to all traits, genes, and genetic vari-
ants. This issue mainly arises because the tissue
that is the primary source of a disease is often not
available for study (In fact, in many cases the
true source tissue is not even certain). Often the
reason is that the tissue is inaccessible to a certain
degree, and ethical considerations preclude
invasive procedures required to obtain it. A fur-
ther, related complication is that most tissues
comprise many different cell types, which vary
from one another in their gene expression, and
the relevant cell type is often not known or
cannot be readily isolated (or only in a manner
which possibly impacts those cells and their
behavior greatly).

When talking about tissue specificity it is
important to realize that it is not important
whether the absolute expression level of a gene is
the same in different tissues—as long as the gene
is expressed sufficiently highly so that the
expression level can be accurately measured.
When assessing whether one (accessible) tissue
can serve as a surrogate for another (inaccessible)
tissue, what matters is whether the inter-indi-
vidual variation in the expression of a gene is
maintained between different study subjects. In
eQTL studies, the critical question is whether the
same genetic variants influence gene expression,
and whether the direction and effect sizes of these
variants are similar. This has been empirically
examined in a number of studies (Ding et al.
2010; Greenawalt et al. 2011; Nica et al. 2011;
Grundberg et al. 2012). In transcriptional profil-
ing studies relating gene expression to some
disease, the central concern is whether the rela-
tionship between the trait and gene expression
level is the same in both tissues. My own opinion
is that the suitability of a surrogate tissue will
depend on the trait being studied, the particular
gene(s) involved, and their underlying eQTL(s).
It seems unlikely that any given tissue, or for that
matter any given cell type, can universally serve

as a proxy for another tissue or cell type. The
best that we can hope for is to estimate the
similarity of gene expression and its genetic
regulatory machinery between as many different
tissues and cell types as possible, in order to
identify the best overall match, with the greatest
overlap in gene expression patterns and eQTLs
(Göring 2012).

An important project designed to assess tissue
specificity of eQTLs is the US American
National Institutes of Health sponsored Geno-
type-Tissue Expression Roadmap project now
underway (GTEx Consortium 2013). The goal is
to obtain tissue samples of >1,000 fatal accident
victims, gathering as many tissues as quickly as
possible after death. These tissues will then be
expression profiled, and large-scale eQTL studies
will be undertaken in each tissue separately and
multiple tissues jointly. Ultimately, this will lead
to a catalog of eQTLs, and their estimated effect
sizes, in a large number of human tissues. This
will permit us to identify best tissue matches,
potentially even on a per-gene or per-genetic
variant basis. An alternative approach, which is
less centralized in scientific direction but which
may ultimately be even more informative, is
based on attempts to recreate different cell types
(ultimately all cell types?) from induced plurip-
otent stem cells (iPSCs). This topic is well
beyond this chapter, but this technology ulti-
mately holds the promise that many (or even all?)
cell types become accessible for gene expression
study in each study participant or clinical patient
(Robinton and Daley 2012).

At the present time, our knowledge of the
tissue specificity of eQTLs is fairly limited. It
appears to be the case that strong cis eQTLs, in
particular those close to the transcriptional start
site, are fairly universal between tissues, and that
those further away are increasingly tissue-spe-
cific (Dimas et al. 2009; Grundberg et al. 2012).
There are some indications that trans eQTLs may
often be tissue specific (Grundberg et al. 2012).
An important caveat to keep in mind when
interpreting these results is that the real effect size
of a true eQTL is correlated with our ability to
detect it in the first place, as well as with our
certainty that the finding is real. Thus, the weaker
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any cis eQTL variants are as we move away from
the transcriptional start site, the less certain we
are to detect them. It is thus not surprising that
less consistency is observed for those more
subtle variants. This caveat is even more
important in the case of trans eQTLs, whose
effect sizes are generally smaller and where our
power of localization is further weakened owing
to the enormous multiple testing burden. While it
seems quite plausible that more distant cis eQTLs
and trans eQTLs are more tissue-specific in their
influence on gene expression than strong cis
eQTLs close to the transcriptional start site, I do
not find the supporting data wholly convincing at
the present time.

Note that it is fully rational and also reason-
able, at least in my opinion, to use proxy tissues
in many scientific examinations at this point in
time. While negative results may be difficult to
interpret and may even be entirely uninformative,
positive correlations observed between a clinical
trait and a gene’s expression, or the realization
that a candidate variant may be an eQTLs, pro-
vide potentially interesting clues that can then be
pursued in more detail in the laboratory and/or in
a more appropriate tissue that is only available in
few samples.

5.6 Microarray Versus RNAseq

Microarrays containing a large number of probes
and RNA sequencing (RNAseq) are the two
approaches that are now being used to charac-
terize gene expression on a whole genome basis.
Older methods, such as quantitative PCR, con-
tinue to be used as well, but they are limited to
specific genes rather than assess the entire gen-
ome at once. Microarray and RNAseq technolo-
gies both have advantages and disadvantages.
For a review, see (Majewski and Pastinen 2011).
Some of the pros and cons of both approaches
are the following: The drawbacks of microarrays
are that they are limited to known transcripts;
they assess only the expression level of a short
stretch of RNA and generally cannot distinguish
between alternative transcripts; they are suscep-
tible to polymorphisms in the sequence targeted

by a probe; they require many copies of RNA
molecule for robust expression detection and
quantification; they are somewhat susceptible to
batch effects. On the plus side, however, micro-
array studies are fairly cheap, fast, and require
limited annotation work by the investigators.

In contrast, RNAseq is (at least conceptually)
able to identify all transcripts, including alterna-
tive transcripts of a gene; RNAseq is much better
suited for the study of RNA editing; since there is
no probe per se, RNAseq is less susceptible to
polymorphisms in specific transcript regions
(though the presence of polymorphisms may
interfere with alignment); and RNAseq is much
more sensitive in the detection of low frequency
(even single copy?) RNA molecules. Downsides
of the technology include its substantial cost, and
the substantial annotation work that is required.
Also, RNAseq is sensitive to sequencing prob-
lems and artifacts, and it is not clear whether low
copy transcripts have biological function (even if
they are reproducible).

Previously, most studies used microarrays, but
increasingly thefield is transitioning toRNAseq as
the preferred choice of technology. As the cost of
sequencing comes downmore, and as the length of
sequencing reads and sequence accuracy improves
further, the benefits of RNAseq compared to
microarrays will become more pronounced.

5.7 Allele-Specific Expression
Analysis

Most eQTL studies conducted to date have
searched for association between the genotype of
a genetic variant and the overall expression level
of a gene, exon, or particular transcript. In many
cases, transcripts themselves include polymor-
phic sites, and the allele present in a given
transcript molecule tells which of the two sister
chromosome produced the transcript. It is thus
possible to estimate the expression level sepa-
rately for each chromosome. Each “allele’s”
expression level can then be genetically analyzed
separately. It is particularly useful to analyze the
proportion of transcripts of a given gene derived
from one of the two sister chromosomes, to
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search for eQTLs, which is referred to as allele-
specific expression (ASE) analysis (Almlöf et al.
2012; Pastinen 2010). The reason why allele-
specific expression analysis is so useful is that
there is a built-in internal control for many fac-
tors, including most environmental influences on
gene expression and also trans eQTLs. In gen-
eral, these factors will equally influence the
expression of both copies of a gene, assuming
there is no interaction between the factors and
proximal eQTLs. (And the very meaning of the
term trans refers to the fact that trans eQTLs
impact the expression of both chromosomes). By
taking the relative proportions of transcripts
derived from one chromosome compared to its
sister chromosome, one automatically controls
for these chromosome-non-specific factors. For
this reason, ASE studies are extremely powerful
for the detection of cis eQTLs. It seems likely
that many more ASE studies will be conducted in
the future, and there is opportunity to refine the
analytical methods and to combine ASE analyses
with conventional eQTL studies.

5.8 Exposome Studies
and Intervention Studies

This chapter has focused on the utility of tran-
scriptional profile studies to investigate the eti-
ology and pathophysiology of complex diseases
and to study the genetic regulation of gene
expression. More generally, gene expression
profiles are one kind of “deep cellular pheno-
type”, providing a highly detailed characteriza-
tion of the state of a given cell type or tissue type
from a study subject at the time of sample col-
lection. Therefore, gene expression profiling is a
very general tool that can be used to address
many different research questions.

One area of great interest is to use transcrip-
tional profiles for investigating the influence of
environmental factors. The totality of the envi-
ronmental factors to which we are exposed is
sometimes referred to as the exposome (Wild
2005). Therefore, one can attempt to correlate
gene expression data to measured environmental

exposures to search for significant transcriptional
correlates of the exposure. This can provide
information how the exposure influences cellular
biology. For example, one may contrast smokers
to nonsmokers. Significant differences in tran-
scriptional profiles may conceptually include
genes that influence the probability that someone
is a smoker (these genes would therefore be
involved in the etiology of the smoking trait). Or
the differences may reflect the consequences of
smoke inhalation on cellular processes, which
may be useful for understanding how smoking
influences our body and what the pathophysio-
logical consequences may be. We have con-
ducted a transcriptomic study of smoking and
found substantial differences between smokers
and nonsmokers in the transcriptional profiles
from PBMCs (Charlesworth et al. 2010). Our
interpretation was that these differences largely
reflect the consequences of smoking behavior
rather than modulate the probability of smoking.
An example of a transcriptomic study to inves-
tigate environmental pollutants is described in a
recent manuscript (De Coster et al. 2013).

Intervention studies involving transcriptional
profiling are a useful way to investigate the
physiological consequences of an exposure. For
example, one may measure gene expression in a
relevant tissue in patients with a particular dis-
ease before and after administering a relevant
drug. Such an investigation may provide infor-
mation about the means of drug action. In addi-
tion, it may be possible to screen the patient pool
for those individuals for whom the drug is likely
to be effective and for those people in whom the
drug may not work. Perturbation studies can also
be conducted in cell lines and fresh tissue sam-
ples, in which case gene expression levels are
measured before and after the perturbation has
been administered to the samples. As an example
from my own research (unpublished), we are
currently conducting a study in which we expose
lymphoblastoid cell lines derived from schizo-
phrenics and controls to the neurotransmitter
dopamine and measure the gene expression lev-
els before and after exposure via RNAseq, with
the goal of understanding the relationship of
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dopamine to the disease. This type of study
provides a very high level of experimental con-
trol and permits the administration of highly
topical perturbations. It seems likely that
expression profiling will become a more com-
mon component of such studies, in order to
assess the impact of an intervention on cellular
activity and processes.

5.9 Concluding Remarks

Transcriptional profile data is now generated as
part of many different types of studies. This
chapter has mainly focused on using gene
expression data to identify genes connected to
the trait of inference (either etiologically or
physiologically) and for examining the genetic
regulation of gene expression in detail. Com-
prehensive genome-wide assessment of gene
expression has only been possible for less than a
decade or so, and transcriptional profile studies
have quickly become part of the standard reper-
toire of investigative tools available to research-
ers and clinicians. Given the enormous range of
studies involving gene expression profiling, it is
difficult to give a comprehensive overview. I
have purposefully not focused on details of the
methodology (both on the laboratory side and on
the analytical side). Instead, I have sought to
highlight some of the basic concepts and how
transcriptional profiling studies fit into the wider
context of human genetic epidemiological
investigations of complex diseases. This area of
research has proven to be very fruitful, and it is
clear that transcriptional profiling studies will
become more common in the future.
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6Copy Number Variations and Chronic
Diseases
August N. Blackburn and Donna M. Lehman

6.1 An Introduction to Copy
Number Variation

Genetic variation ranges from single nucleotide
changes to large chromosome level events. The
most well characterized form of variation is sin-
gle nucleotide variants with a minor allele fre-
quency (MAF) > 1 %, referred to as single
nucleotide polymorphisms (SNP). SNPs have
been a workhorse of human genetics due to ease
and reproducibility of genotyping. In contrast,
structural variation encompasses variants with a
broad range of sizes and complexity and has
historically lagged behind the progress achieved
using SNPs due to difficulty of genotyping.
Structural variation is generally defined by 5
groups of variants: deletions, insertions, dupli-
cations, translocations, and inversions. In this
chapter we focus on a subset of structural vari-
ation comprised of deletions and duplications,
colloquially termed copy number variation
(CNV).

Deletions are simply the absence of sequence
when compared to a reference genome. When
compared to a reference, the sequences flanking a
deletion of reference sequence are continuous
and juxtaposed in direct orientation. Deletions
are unambiguous, having a single genomic
location, although in some cases exact breakpoint
locations are ambiguous if there is high sequence
similarity, such as repetitive DNA, at the sights
flanking the deletion. Duplication refers to
sequences which share high sequence homology
(>90 %) that are found in greater than two copies
in the genome. Duplications are often broken
into tandem and dispersed categories. Dispersed
duplications are often further broken down into
inter-chromosomal and intra-chromosomal cate-
gories. Intra-chromosomal duplications are fur-
ther distinguished as being either in direct or
inverted orientation with respect to each other.

Originally copy number variation referred
only to variation larger than 1 Kb. However this
size limitation has largely been disregarded due
to its arbitrary nature when compared to the
observed spectrum of variant sizes. Very small
duplications and deletions (<50 bp) are often
referred to as INDELs. Although they are part of
a continuous spectrum of sizes of CNVs, these
smaller variants are often distinguished from
larger variants because they are almost exclu-
sively identified using sequencing. Generally, the
term copy number variation is reserved for sub-
microscopic events, therefore excluding mono-
somy and trisomy, but does include variants on
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the scale of 1–5 Mb even though these are
assessable by microscopic techniques such as
fluorescent in situ hybridization (FISH).

6.2 The Brief History of Copy
Number Variation
in the Human Genome

The account of the role of CNV in human disease
is appropriately centered on the publication of
the human genome. Access to a reference
sequence enabled new technologies which sub-
sequently powered the discoveries described
below. Examples of CNV and human disease
were present prior to the availability of the ref-
erence sequence. However, the extent of CNV
was unknown, and global investigation of CNVs
contribution to human disease was not feasible.
Thus, the publication and availability of the ref-
erence human genome represents a major
inflection point in the rate which new discoveries
regarding CNVs were made.

6.2.1 Prior to an Available Reference
Human Genome

In Tajima’s description of the use of the D sta-
tistic to test the Neutral Theory of molecular
evolution, he postulates that insertions and
deletions may be common in the genome of
Drosophila melanogaster (Tajima 1989). If this
observation is extended to reflect our under-
standing of genomes as a group at the time, it can
be viewed as an early prediction that CNV, albeit
small CNVs, would be common in the human
genome. Twenty years later we are reaching a
consensus understanding of the catalog of human
genetic variation at the population level, and
discovering that CNV is yet even more common
than had been anticipated. The functional effects
of these variants at all levels of biology, from
cellular processes to disease susceptibility, are
still being determined. However, even prior to an

available reference sequence we could draw from
known examples that CNV plays an important
role in human disease.

Prior to the publication of the human genome,
examples of CNVs in human disease etiology were
known for single gene disorders. The role of dele-
tions at the alpha gene locus in α-thalassemias was
known since the 1970s (Ottolenghi et al. 1974;
Higgs et al. 1979). In the early 1990s we learned
that reciprocal deletions and duplications at
17p11.2 are involved in hereditary neuropathywith
liability to pressure palsies (HNPP) and Charcot-
Marie-Tooth neuropathy type 1A (CMT1A)
respectively (Lupski et al. 1991; Chance et al.
1993). Examples such as these provided early evi-
dence that CNV plays a role in human disease, yet
there was no basic reference sequence for the
human genome, and the extent of CNV between
human genomes remained unknown.

6.2.2 Publication of the Human
Genome

The publication of the first drafts of the human
genome was a milestone event in human history
(Lander et al. 2001; Venter et al. 2001). These
first drafts were known to be incomplete because
structural variation such as large segmental
duplications, a course definition including both
polymorphic and evolutionarily fixed duplication
events generally defined as sequences
with ≥90 % homology, complicated the process
of sequencing and assembly. However, the next
draft of the human reference sequence, published
in 2004 by the International Human Genome
Sequencing Consortium (IHGSC), drastically
reduced the number of gaps in the human refer-
ence sequence (IHGSC 2004). A major discov-
ery during the process of completing the human
reference sequence was that an abundance of
insertions and deletions, identified by observing
length differences when using paired-end fosmid
reads, appeared to represent polymorphisms
(IHGSC 2004).
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6.2.3 Early Discoveries of Genome-
Wide Copy Number Variation

In 2002, Bailey et al. used computational methods
and available data from sequencing efforts by
IHGSC and Celera Genomics to identify seg-
mental duplications in the human genome (Bailey
et al. 2002). Interestingly, they observed patterns
of both interchromosomal and intrachromosomal
segmental duplications, and showed that unan-
notated segmental duplications created falsely
identified SNPs in the public SNP database
(dbSNP) (Bailey et al. 2002). Although this work
showed that segmental duplications were present,
what remained unclear is whether these segmental
duplications were polymorphic or fixed in the
human population. In the months prior to the
2004 publication by the IHGSC, two independent
groups reported observing large-scale copy
number variation which appeared to represent
polymorphisms (Iafrate et al. 2004; IHGSC 2004;
Sebat et al. 2004). Sebat et al. (2004) identified
221 copy number changes representing 76 copy
number polymorphisms (CNP) in 20 individuals
of geographically diverse ancestry using repre-
sentational oligonucleotide microarray analysis
(ROMA) (Sebat et al. 2004). Iafrate et al. (2004)
identified 255 loci which appeared to be poly-
morphic in 55 unrelated individuals using array-
based comparative genomic hybridization (array
CGH). These regions were significantly enriched
for overlapping segmental duplications and
regions of gaps in the human genome sequence
(Iafrate et al. 2004). These early studies, taken
together with observations from the 2004 publi-
cation by the IHGSC provided evidence that
structural variation, namely copy number varia-
tion (CNV), was common in the human genome.

Using 60 trios from the International HapMap
Project (International HapMap 3 Consortium
(IHM3C) et al. 2003) (30 European trios and 30
Yoruba trios) Conrad et al. (2006) identified 586
regions which had observed SNP genotypes
consistent with genotyping artifacts caused by
deletions. Concurrently, McCarroll and his col-
legues reported identifying 541 deletion variants
in 269 HapMap individuals by identifying in SNP
genotyping data the footprints of segregating

deletions, such as Hardy-Weinberg disequilib-
rium, Mendelian inconsistency, and clusters of
null genotypes (McCarroll et al. 2006). The SNPs
that produce such errors are commonly disre-
garded in human genetic studies, so this study
group performed additional molecular assays to
confirm the presence of many of these deletion
variants. Interestingly, they observed that com-
mon deletions were often in linkage disequilib-
rium with nearby SNPs, which was an early
indication that CNVs could be tagged and indi-
rectly assayed in genome wide association studies
using SNPs (McCarroll et al. 2006).

In 2005, Tuzun et al. applied the paired-end
mapping strategy developed for finishing the
human genome sequence to a fosmid library
from a second genome and discovered 139
insertions, 102 deletions, and 56 inversions when
compared to the reference sequence (IHGSC
2004; Tuzun et al. 2005). Although most of the
variants they identified were novel, they repli-
cated the observation that CNVs were enriched
for regions of segmental duplication. The
approach used by Tuzun et al. (2005) was a
significant advancement that was able to detect
variants with a higher resolution than the CNVs
discovered by Iafrate et al. (2004) and Sebat et al.
(2004). Subsequently, Korbel et al. (2007)
applied the paired-end sequencing approach to
massively parallel shotgun sequencing on the
454 platform (Korbel et al. 2007). Using con-
servative thresholds for variant calling, they
identified 1,297 Structural Variants (SV) events,
the majority of which are CNVs, with an esti-
mated breakpoint resolution of 644 base pairs
(bp). The combination of paired-end sequencing
and massively parallel sequencing technologies
was a major contribution that set the foundation
for future studies to move from identifying
CNVs by comparing a handful of genomes to
characterizing CNV at the population level.

With the exception of being enriched in
regions of segmental duplication, poor consis-
tency was observed between various methodo-
logical techniques for CNV identification,
suggesting either high rates of Type I or Type II
errors. Since many of these studies had per-
formed conformational assays and estimated
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false discovery rates (FDR), it could be deduced
that many variants remained undiscovered, likely
due to methodological biases and conservative
interpretation of results. Using a custom high-
resolution array based comparative genomic
hybridization (aCGH) approach to target previ-
ously identified CNV regions at *1 Kb resolu-
tion, Perry et al. (2008) observed that all previous
studies they investigated had overestimated the
actual size of a substantial portion of the CNVs.
Nonetheless, the methods developed for these
early studies, and the results of the studies
themselves, set the foundation for building a
comprehensive understanding of structural vari-
ation at the population level, identifying mecha-
nisms of formation, and discovering the role of
CNVs in human disease.

6.3 High-Throughput Methods
for Discovery and Genotyping
of Copy Number Variation

Two general groups of technologies have pri-
marily been used for CNV discovery and geno-
typing: array-based hybridization, and high-
throughput sequencing. Array-based hybridiza-
tion methods are affordable and are often superior
for detecting very large deletions and duplications.
However, array-based hybridization often misses
smaller variants. High throughput sequencing is
much more expensive than array-based hybrid-
ization, but is superior for detecting smaller vari-
ants, defining CNV boundaries, and for
determining absolute copy number of high copy
number duplications. Despite improvements in the
methods which are currently available, the field is
still in need of more comprehensive methods for
CNV discovery and genotyping, and more accu-
rate methods for CNV imputation in samples for
which these technologies cannot be applied.

6.3.1 Array Based Methods

Microarrays are a group of technologies which
rely on hybridization of prepared DNA samples
to oligonucleotides designed to represent specific

locations of the genome. Therefore, microarrays
are a technology enabled by the availability of
the reference sequence. There are two basic types
of microarrays which are commonly used for
CNV discovery and genotyping, aCGH and SNP
genotyping microarrays (Alkan et al. 2011).

In aCGH two samples are fluorescently
labeled and competitively hybridized to oligo-
nucleotide arrays (Pinkel et al. 1998). Copy
number variable regions are represented by
imbalance in fluorescent intensity. As a QC
measure the experiments are often repeated with
swapped dyes. Since either of the two samples
can carry copy number differences, well charac-
terized reference genomes are preferred for
comparison. Oligonucleotides are designed to
uniquely identify specific locations along the
genome. Signal intensities are normalized and
converted to log2 ratio, a measurement repre-
sentative of copy number. To identify CNVs,
various algorithms can be applied that segment
the genome into regions which appear to differ
from the average, which is presumed to represent
a copy number of 2. Deletions and duplications
are detected as multiple consecutive probes
which present similar decreases or increases in
log2 ratio, respectively.

SNP-arrays also produce a measurement of
signal intensity by comparing the hybridization
intensities across samples (Peiffer et al. 2006).
This measurement is known to have a lower signal
to noise ratio than aCGH, but is still powerful
enough to be useful. The relative intensity of each
allele is informative for identifying copy number
variation (Peiffer et al. 2006). If the SNP alleles are
arbitrarily labeled A and B, the ratio of signal
intensity of B to the sum of intensities of A and B,
termed B-allele ratio, is informative of copy
number. In the normal copy number state of 2,
B-allele ratio will fall into three clusters: 0, 0.5,
and 1, representing homozygous AA, heterozy-
gous AB, and homozygous BB respectively.
However, in the case of deletion the cluster at 0.5
will be lost indicating a loss of heterozygosity
(LOH). Similarly, when there is copy number gain
the cluster at 0.5 will split into two clusters of 0.33
and 0.66 representing the AAB and ABB geno-
types respectively (Peiffer et al. 2006). Additional
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patterns of B-allele ratios are apparent for somatic
copy number variation and other defined copy
number states (Alkan et al. 2011). SNP arrays can
also detect copy-neutral loss of heterozygosity,
which is indicative of uniparental disomy or
identity by descent (Alkan et al. 2011). Further,
the application of SNP arrays to CNV calling
benefits from the availability of SNP genotypes
which can be used for phasing, tagging, and other
imputation directed purposes which we will cover
in Sect. 6.3.4.

Multiple statistical approaches have been
implemented to identify CNVs from aCGH and
SNP arrays, the most popular of which have been
versions of circular binary segmentation and
hidden Markov models (Olshen et al. 2004;
Colella et al. 2007; Venkatraman and Olshen
2007; Wang et al. 2007; Coin et al. 2010).
Comparative analyses of these algorithms indi-
cate that using multiple algorithms to identify
CNVs should be the preferred approach (Win-
chester et al. 2009; Dellinger et al. 2010; Pinto
et al. 2011). Array-based approaches are known
to be subject to variation in local DNA concen-
tration that is correlated with GC content, which
is often observed as “waviness” of log2 ratios for
markers along the chromosome, and generally
requires additional normalization procedures
(Diskin et al. 2008). In a recent review, Pinto
et al. (2011) showed that newer arrays tended to
perform much better than legacy versions, that
algorithms tended to perform best on the plat-
forms they were designed for, and that current
approaches generally underestimate CNV size,
which is a shift from the observation of size
overestimation reported by Perry et al. (2008).
Overall, this suggests that many of the technical
artifacts of CNV discovery have been addressed
on newer chips and software pipelines.

CNVdiscovery differs fromCNVgenotyping in
that in the discovery phase there is no a priori
knowledge of the location of CNVs. Once copy
number variable regions have been identified,
common CNVs can often be genotyped more
accurately by comparing marker intensities
between samples within the region of interest. This
approach has been implemented to perform

association testing (Barnes et al. 2008; Welcome
Trust Case Control Consortium (WTCCC) et al.
2010). Haplotype structure, determined from SNP
genotypes, has also been used to improve CNV
genotyping procedures (Coin et al. 2010). Taken
together, these implementations indicate that, when
available, added information available across
samples improves CNV genotyping accuracy.

6.3.2 Sequencing Based Methods

Sequencing approaches to CNV discovery can be
summarized into 4 approaches: split read, paired-
end read, read depth, and de novo assembly
approaches (Alkan et al. 2011). For the purpose of
this chapter we will describe the benefits of de
novo assembly in Sect. 6.3.3. Split-read approa-
ches seek to identify variation that is captured
within a single contiguous sequence read. By
computationally “splitting” the alignment of a read
to a reference sequence, split read approaches can
find small deletions, insertions, and duplications.
For split read approaches the upper bound on the
size of sequence insertions and duplications that
can be identified is the length of the read minus the
sequence needed to map the read uniquely to a
position in the genome, because the inserted or
duplicated sequence must be contained within the
length of the read. Given that most whole genome
sequencing (WGS) approaches produce small
reads, split read approaches are generally only able
to detect very small insertions and duplications. In
theory, split read approaches could detect very
large deletions as long as there is a read that gaps
the deletion breakpoints. However, in practice
split read approaches are more effective for small
deletions. In 2006, Mills et al. used a split read
approach to identify 415,436 INDEL polymor-
phisms ranging in length between 1 and 9,989 base
pairs using sequencing reads from 36 individuals
(Mills et al. 2006). The overwhelming majority of
these variants were 1–10 base pairs in length, and
they observed little overlap with deletions identi-
fied by Conrad et al. (2006) and McCarroll et al.
(2006), consistent with the observation of poor
overlap between studies at the time.
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For the paired-end read sequencing method, a
DNA library is prepared such that the length of
the DNA fragments to be sequenced fit into a
tight distribution. Various approaches are avail-
able to produce libraries of different size distri-
butions. Each DNA fragment is then sequenced
from both ends. Each read, one from each end of
the fragment, are then mapped back to the gen-
ome. The distance between read-pairs for regions
not carrying large CNVs will fall into a tight
distribution indicative of the distribution of sizes
of the DNA fragments in the library prep. Dele-
tions and duplications can be identified by
abnormalities in the distance between read-pairs
when they are mapped back to the reference.
Deletions will create read-pairs that map further
apart, and insertions will create read-pairs that
map closer together than expected based on the
distribution of the DNA library. As with a split-
read approach there is an upper bound on the size
of insertion/duplication that can be detected
because the duplication has to be carried by the
DNA molecule being sequenced. It is worth
noting that paired-end sequencing can also detect
inversion and novel sequence insertions by using
one read as an anchor. As mentioned earlier, in
the discovery of germ-line CNV, the paired-end
read approach was first applied to fosmid
libraries (Tuzun et al. 2005), and was later
combined with WGS (Korbel et al. 2007).

In the read-depth approach, the coverage of
the genome by sequencing reads is assumed to be
uniformly distributed. Therefore regions with a
loss or gain of genetic material are represented by
loss or gain in the number of sequence reads.
This approach was first applied to germ-line
variants by Yoon et al. (2009). This approach is
more effective and accurate with higher read-
depth and is superior to split-read and paired-end
read approaches for identifying large duplication
events. Additionally, this method is superior to
array based technologies for determining abso-
lute copy number of high copy number duplica-
tions. However, similar to aCGH this approach
requires correction for genomic “waviness” due
to local GC content (Yoon et al. 2009). A com-
prehensive assessment of the platforms and
computational strategies currently available

using the read depth approach has recently been
conducted (Magi et al. 2012).

6.3.3 Comprehensive Discovery
and Genotyping

The methods described in Sects. 6.3.1 and 6.3.2
are not comprehensive. Identifying variants using
array based hybridization is dependent on probe
hybridization at the locus of the variant. Thus
arrays with lower probe densities generally do
not detect smaller variants. Arrays have poorer
breakpoint definition than sequencing methods.
All of the sequencing based approaches pre-
sented are powerful, but each is dependent on
aligning reads to a reference sequence. There are
situations where aligning reads to a reference
sequence is not sufficient, such as the identifi-
cation of unique sequence insertions, or variant
calling in regions where short reads cannot be
uniquely mapped. This suggests that an alterna-
tive approach may be necessary to genotype
some CNVs.

De novo assembly followed by genome
comparison is argued to be the most likely route
to a comprehensive approach for variant dis-
covery and genotyping because this approach is
not dependent on aligning reads to a reference
sequence (Alkan et al. 2011). This argument is
very compelling, but current technologies pro-
duce short reads which limit the feasibility of this
approach. However, this is a promising route to a
truly comprehensive discovery and genotyping
assuming technologies can be developed which
produce extremely long reads, in the area of 100–
200 Kb, with high accuracy.

In 2010, Pang et al. used and compared
multiple approaches, including de novo assembly
and comparison of genomes to identify CNVs in
HuRef (Venter et al. 2001) DNA (Pang et al.
2010). Overall, de novo assembly was the most
comprehensive method for CNV identification,
but did miss known CNVs identified using other
techniques. Each method used had its own dis-
tribution of sizes of variants in which it per-
formed best, as expected based on the methods
described above. CNVs between 1 and 10 Kb
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had the highest proportion of overlap of variants
detected between technologies (Pang et al. 2010).

In the absence of a technology which pro-
duces long reads with high accuracy, there is
growing momentum toward considering various
forms of data in combined models. By combin-
ing read-depth with high resolution aCGH
developed a method for correcting the reference
copy number biases in aCGH alluded to in
Sect. 6.3.1 (Ju et al. 2010). This approach was
then applied to identify common Asian copy
number variants with high accuracy (Park et al.
2010). The 1000 genomes project has also taken
the approach of combining multiple lines of
evidence for CNV identification (Mills et al.
2011). More specifically, Mills et al. combined
results from multiple algorithms representing
split read, read-pair, read-depth, assembly, and a
combination read-pair/read-depth approach to
identify CNVs in low coverage sequencing and
trio sequencing data generated using three dif-
ferent sequencing platforms.

6.3.4 Imputation of CNVs

Comprehensive variant discovery through WGS
is currently prohibitively expensive, which has
motivated the development of methods to impute
unobserved genotypes in samples using a frame-
work of known genotypes (Howie et al. 2012).
The feasibility of imputing di-allelic CNVs was
demonstrated using data generated with SNP
genotyping platforms and HapMap samples
(International HapMap 3 Consortium (IHM3C)
et al. 2010; Surakka et al. 2010). Not surprisingly,
imputation performs more effectively with pop-
ulation-specific reference panels, especially for
polymorphisms with lower Minor Allele Fre-
quencies (MAFs) (IHM3C et al. 2010; Surakka
et al. 2010). Since 2010, major strides have been
made toward better computational approaches for
imputation (Li et al. 2010; Howie et al. 2011,
2012), and toward more comprehensive reference
panels (Mills et al. 2011; 1000 Genomes Project
Consortium et al. 2012). In population samplings,
imputation is currently limited to simple forms of
CNV with higher MAFs. However, examples are

beginning to indicate that complex regions of the
genome containing CNV may be amenable to
imputation as well (Boettger et al. 2012). Addi-
tionally, in pedigrees, where phase can be deter-
mined with high accuracy for entire
chromosomes, imputation of complex regions
should also be achievable.

6.4 Mechanisms of CNV Formation
and Mutation Rates

Mechanisms of CNV formation can be broken
into two broad categories: those which involve
long homologous sequences, such as non-allelic
homologous recombination (NAHR), and those
which involve non-homologous repair (NHR),
which often entail micro-homology at the
breakpoint sites (Hastings et al. 2009).

NAHR between segmental duplications and
Variable Number of Tandem Repeats (VNTR)
shrinkage/expansion produce copy number vari-
ants with overlapping, but distinct, size distri-
butions (Conrad et al. 2010). Using arrayCGH
data with highly accurate breakpoint resolution,
Conrad et al. (2010) investigated mechanisms of
formation for CNVs genotyped in 450 individu-
als and determined that NAHR between seg-
mental duplications contributed more frequency
for larger variants than VNTR shrinkage/expan-
sion, which had a greater relative contribution to
formation of smaller CNVs. Interestingly, for-
mation of duplications appeared more likely to
be sequence dependent than formation of dele-
tions, yet without knowledge of the exact
sequence at the breakpoints the precise mecha-
nisms of formation for those which could not be
attributed to one of these two mechanisms
remained unclear (Conrad et al. 2010).

WGS has provided information for those
mechanisms of formation that requires knowl-
edge of the exact sequence at CNV breakpoints.
Mills et al. (2011) investigated sequencing data
generated during the pilot phase of the 1000
genomes project observed that micro-homology/
homology between 2 and 376 bases were present
in the sequence flanking 70.8 and 89.6 % of
deletions and insertion/duplications respectively.
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Interestingly, for tandem duplications, duplica-
tion size was linearly correlated with the length
of homologous sequence flanking the duplica-
tion. Mobile element insertions (MEI) were the
predominant mechanisms of formation of inser-
tion/duplications, while non-homologous repair
(NHR) mechanisms such as micro-homology
mediated break induced repair (MMBIR) were
the predominant mechanism of deletion forma-
tion. NAHR was the second most predominant
mechanism of formation for both insertion/
duplications and deletions, making up a sub-
stantial portion of both. NAHR and NHR con-
tribute to variants across the spectrum of CNV
sizes, yet VNTR-mediated events were enriched
for smaller events, which was consistent with the
aCGH study by Conrad et al. (2010). Among
MEI mediated duplications, there are enrich-
ments of variants at 300 bp and 6 Kb, repre-
senting Alu and long interspersed elements
(LINEs). It is important to note that very large
duplications and deletions, greater than 100 Kb
for deletions and 10 Kb for duplications are
likely underrepresented in this study due to dif-
ficulty detecting CNVs beyond these limits using
sequencing methods.

Among mechanisms of formation, NAHR
between segmental duplications is of high clini-
cal relevance. Through this mechanism, a large
portion (*10 %) of the genome is predisposed to
recurrent mutational events (Mefford and Eichler
2009). Recurrent copy number variants resulting
from this mechanism are often large enough with
sufficient shared genetic material that they can be
presumed to exert similar effects on phenotypes
of interest. Although NAHR is an important
mechanism for recurrent mutation the effect of
other mechanisms of formation should not be
discounted. There are examples of Mendelian
disorders which show that additional mecha-
nisms, which normally mediate non-recurrent
CNV mutations, produce similar phenotypic
effects as the observed CNVs generated through
NAHR between segmental duplications. For
example, NAHR between segmental duplications
is recognized to contribute to 99 % of CMT1A
and HNPP cases, yet Zhang et al. (2010) iden-
tified 17 unique CNVs in this same region

formed by additional mechanisms that produced
phenotypic effects consistent with CMT1A and
HNPP (Zhang et al. 2010).

6.5 Common CNVs and Disease

In recent years there has been much discussion
over the role of common and rare variants in
complex trait variation, with strong arguments
being presented in support of both (Gibson
2011). The common disease common variant
(CDCV) hypothesis has been tested through
GWAS, the hallmark of which was published by
the Wellcome Trust Case Control Consortium
(WTCCC) in 2007. GWASs have identified over
1,000 SNPs which are associated with human
disease-related phenotypes (Hindorff et al. 2009).
However, these associations only explain a small
portion of the additive heritability of the majority
of traits investigated (Gibson 2011).

Given this observation, one may hypothesize
that common CNVs, which we will refer to as
copy number polymorphisms (CNPs), accounts
for a portion of this “missing heritability”.
However, as discussed above CNPs are generally
well tagged by SNPs, and therefore have already
been indirectly interrogated through GWAS and
are unlikely to explain the observed “missing
heritability” (Hinds et al. 2006; McCarroll et al.
2006; Conrad et al. 2010). This observation was
confirmed through direct interrogation of 3,432
CNPs in eight disease traits by the WTCCC, in
which all significantly associated CNPs were
tagged by SNPs already detected in GWAS
(WTCCC et al. 2010). CNPs generally make
more compelling candidates for functional alleles
than SNPs because of their size and increased
likelihood to overlap genes. Yet due to LD, proof
of functionality requires additional information in
the form of biological assays. In addition, asso-
ciated CNPs are also subject to the possibility of
synthetic association similar to those observed
with GWAS using SNPs (Dickson et al. 2010).

Despite the observation that common CNVs
do not appear to account for a large portion of the
missing additive heritability of common complex
disorders, there are common structural variants
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which are associated with complex disease
phenotypes. A hallmark example is a study in
which the authors hypothesized and confirmed
that copy number variation at the gene CCL3L1
is associated with risk for HIV/AIDS suscepti-
bility (Gonzalez et al. 2005). Further they
showed that CCL3L1 copy number is highly
population differentiated with higher CCL3L1
being more prevalent in Africans than non-Afri-
cans (Gonzalez et al. 2005). Among CNVs
investigated by Conrad et al. (2010) this variant
was the most highly population differentiated
CNV overlapping gene exons.

A second hallmark example comes from age-
related macular degeneration. In 2005, three
groups independently identified a common SNP
coding variant, Y402H, in complement factor H
(CFH) which was strongly associated with risk
for age-related macular degeneration (AMD)
(Edwards et al. 2005; Haines et al. 2005; Klein
et al. 2005). The population attributable risk of
this variant to AMD was independently esti-
mated to be 43 and 50 % (Edwards et al. 2005;
Haines et al. 2005). This work strongly impli-
cated the complement system in age-related
macular degeneration. The following year,
Hughes et al. was investigating SNPs in the
complex region containing CFH and the related
receptor genes CFHR1, CFHR2, CFHR3,
CFHR4, and CFHR5. During their investigation
they discovered a deletion of CFHR1 and
CFHR3 on a common haplotype in Europeans
that conferred reduced risk (odds ratio of 0.4) for
age-related macular degeneration. Using multiple
techniques they found that the deletion was
84,682 bases and flanked by two nearly identical
29 Kb segmental duplications implicating NAHR
as the mechanism of formation.

A compelling, largely untested mechanism
which fits into the CDCV hypothesis is the role
of CNPs in mediating recurrent mutational
events. As described above, segmental duplica-
tion predisposes *10 % of the genome to
recurrent mutation. As we just described, there
are known examples in which complex disease
risk CNVs were formed by NAHR between
segmental duplications. Further as will be pre-
sented in Sect. 6.6, there are known examples in

which complex disorders are caused by NAHR
between segmental duplications which are poly-
morphic. It is therefore possible, depending on
the size of the gap between the duplicated
sequences, and the haplotype structure of the
population, for these duplications to be carried on
separate haplotype blocks. If both locations are
polymorphic, this mechanism represents a form
of potential epistatic interaction which has not
yet been tested.

6.6 De Novo and Low MAF
Variants

De novo and low MAF CNVs are known to play
a role in multiple complex disorders. Large rare
CNVs are enriched in patients with schizophre-
nia (Malhotra et al. 2011; Walsh et al. 2008; Xu
et al. 2008), bipolar disorder (Malhotra et al.
2011), autism spectrum disorders (Sebat et al.
2007; Mefford and Eichler 2009; Pinto et al.
2010; Levy et al. 2011; Sanders et al. 2011),
congenital heart disease (Soemedi et al. 2012),
and developmental delay (Cooper et al. 2011).
NAHR between segmental duplications is known
to be a major driving force of de novo and low
MAF CNVs across the size spectrum of CNVs,
including those identified in these enrichments.
Recurrent deletions mediated by NAHR between
segmental duplications are hypothesized to pre-
dispose to disease (Sharp et al. 2006; Cooper
et al. 2011). Micro-deletion syndromes can pro-
vide an example through which NAHR derived
rare CNVs affect human disease. They are clin-
ically heterogeneous phenotypes which are
associated with specific recurrent deletions
mediated by NAHR between segmental dupli-
cations. In general there is a correlation between
the size of deletions and the severity of the
phenotypes observed in individuals carrying
these deletions due to increased likelihood for
large deletions to overlap genes or create effects
on gene expression, as discussed in Sect. 6.8.
Since currently known micro-deletion syndromes
are caused by very large deletions, it is likely that
the micro-deletion syndromes represent the tail-
end of a continuous distribution of phenotypic
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effects that are caused by deletions resulting from
NAHR between segmental duplications.

A well-known micro-deletion syndrome is
Koolen syndrome involving chromosome
17q21.31, for which carriers present with mental
retardation, hypotonia, recognizable facial char-
acteristics, and other heterogeneous phenotypes
(Koolen et al. 2006, 2008; Sharp et al. 2006).
Flanking segmental duplications predisposing to
deletion fall on an inversion polymorphism
shown to be under positive selection in Europe-
ans (Stefansson et al. 2005), and has been shown
to be a genetic determinate of meiotic recombi-
nation rates (Stefansson et al. 2005; Chowdhury
et al. 2009; Fledel-Alon et al. 2011). Further
investigation of this region has delineated at least
9 unique common haplotypes determined by
inversion and duplication status of two unique
sequences (Boettger et al. 2012; Steinberg et al.
2012). Segmental duplications containing the
gene KANSL1 have independently derived and
risen to high population frequencies in two
unique instances suggesting positive selective
pressure for increased copy number of KANSL1
(Boettger et al. 2012; Steinberg et al. 2012). The
duplicated sequences are in direct orientation in
only one of these two distinct segmental dupli-
cations events, and therefore only one of the two
segmental duplication events predisposes to
17q21.31 micro-deletion syndrome. The haplo-
type carrying this segmental duplication is only
observed at an appreciable frequency in Cauca-
sian individuals (Boettger et al. 2012; Steinberg
et al. 2012). This example and others, such as the
complexity of the regions harboring CFH,
CFHR1, and CFHR3 genes, suggest that similar
complexity can be expected to underlie currently
unidentified regions responsible for the heritable
component of complex disease.

Taken together with the enrichment of large
de novo and low MAF CNVs in complex dis-
orders it is likely that additional micro-deletions
will account for a portion of the apparent missing
heritability of complex traits. As much as 5 % of
schizophrenia and autism have been attributed to
rare copy number variation at only a half dozen
genomic locations (Gibson 2011). The strong
known role of rare and de novo copy number

variation is cited as support of rare variation
in the etiology of common complex diseases
(Gibson 2011).

As an example, micro-deletion at the 17q12
locus causes renal cyst and diabetes syndrome,
also referred to as maturity onset diabetes of the
young 5 (MODY5) (Nagamani et al. 2010). The
effect of this deletion is sufficiently strong such
that we were able to predict diabetes status in 2
of 3 related women carrying a *1.44 Mb dele-
tion in this region (Blackburn et al. 2013).
Interestingly, the age of onset of the women with
diabetes were 17 and 22.4 years respectively,
representing the tail end of the distribution, while
one woman was diabetes free at age 31, indi-
cating incomplete penetrance (Blackburn et al.
2013). This observation fits the described sce-
nario in which currently identified micro-deletion
syndromes represent the tail-end of a continuous
distribution of phenotypic effects, and supports
the hypothesis that recurrent micro-deletions
account for a portion of the observed phenotypic
variation in complex disorders.

6.7 Population Studies of CNV

CNV has been investigated in multiple popula-
tions including Caucasians (Conrad et al. 2010;
International HapMap 3 Consortium (IHM3C)
et al. 2010; Mills et al. 2006, 2011), Asians
(IHM3C et al. 2010; Ku et al. 2010; Park et al.
2010; Lou et al. 2011; Mills et al. 2011), Afri-
cans (IHM3C et al. 2010; Mills et al. 2011;
Wineinger et al. 2011), and admixed populations
such as Mexican Americans (IHM3C et al. 2010;
Itsara et al. 2010; Mills et al. 2011; Blackburn
et al. 2013). Following expected results accord-
ing to population genetics theory, populations
which have undergone bottlenecking carry the
lowest number of polymorphisms, followed by
admixed populations and populations which have
not undergone recent bottlenecking such as
Africans. Smaller CNVs are more frequent in
individual genomes than larger CNVs, which
may be attributable to selective forces, but may
also be a byproduct of the mechanisms of for-
mation. Deletions overlapping genes are enriched
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for lower minor allele frequencies (Conrad et al.
2010; Mills et al. 2011). Additionally, there is an
inverse relationship between the size of deletions
and their individual minor allele frequencies,
which suggests that large deletions are under
stronger purifying selection (Blackburn et al.
2013). Interestingly, CNPs in segmental dupli-
cation regions appear to be more population
differentiated than CNPs in unique regions, and
biallelic CNPs show greater population stratifi-
cation than frequency matched SNPs (Campbell
et al. 2011). Taken together these observations
suggest that large deletions in regions of seg-
mental duplication generally produce stronger
effects and are under stronger selective pressure
than SNPs, smaller deletions, and less complex
regions of the genome. It is also observed that
low MAF CNVs are more likely to be population
specific (Mills et al. 2011) which is consistent
with an enrichment of rare variants due to recent
population expansion. These low MAF variants
may contribute significantly to heritability of and
ethnic differences in complex disorders. In sum-
mary, population genetic studies of CNVs pro-
vide evidence that suggest that large deletions
and regions of segmental duplication may be
especially deleterious and that these are good
candidate regions to affect complex disease.
Their low MAF may explain why their role has
remained undiscovered to date.

6.8 CNV and Gene Expression

The role of gene expression in gene mapping is
extensively covered in Chap. 5. Briefly, a
mechanism through which disease variants can
exert their effect is by affecting gene transcript
abundance. Further, the expression quantitative
trait loci (eQTL) with the strongest effect sizes
have been observed to act primarily in cis
(Göring et al. 2007). As a result, transcript
abundances are of great interest as highly map
able endophenotypes, and as a model of disease
gene mapping. Given this, it is important to
briefly address the role of CNVs in heritable gene
expression.

Currently there are only a few comprehensive
reports regarding investigating the role of copy
number variation in heritable variation in gene
expression. Schlattl et al. (2011), used Bacterial
Artificial Chromosomes (BAC) arrays and 500 k
SNP arrays to ascertain CNVs in 210 unrelated
HapMap individuals, and attempted to identify a
relative contribution of CNVs and SNPs to gene
expression (Stranger et al. 2007). They deter-
mined that there was little overlap between eQTL
associated with SNPs and those associated with
CNVs (Stranger et al. 2007). However, a more
comprehensive study by Schlattl et al. used CNV
calls from the 1000 genomes project data, and
equally high quality gene expression data and
concluded that *48 % of CNV-associated eQTL
genes are also identified using SNPs (Schlattl
et al. 2011), an observation that is consistent with
LD between common CNVs and SNPs. As with
SNP associations from GWAS, it often remains
unclear whether the CNVs identified are causally
related to the expression phenotypes of interest
because they could simply be tagging truly cau-
sal variants through LD. Schlattl et al. (2011)
showed that significant CNV-gene pairs in which
the CNV and gene overlap were enriched for
positive correlations, strongly suggesting cau-
sality. Further, Gamazon et al. (2011) found that
SNPs tagging CNVs are significantly enriched
for cis eQTLs, and are overrepresented in the
National Human Genome Research Institute
(NHGRI) catalog of GWAS SNPs. Taken toge-
ther; this evidence suggests that CNVs overlap-
ping genes make very compelling candidate
variants in eQTL, QTL, and GWAS regions.

The authors of this book chapter, and others,
have reported that larger CNVs appear at lower
frequencies, which suggest purifying selection
(Blackburn et al. 2013). Similarly, it is observed
that larger CNVs are more likely to influence the
expression of nearby genes, which provides a
mechanism through which larger CNVs could be
under stronger purifying selection (Schlattl et al.
2011). Currently there remain many aspects of
the relationship between CNV, heritable gene
expression, and complex disease that remain
undetermined. Presumably there is a plethora of
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unidentified CNV-associated eQTL to be
discovered. Further, we don’t know the contri-
bution of dispersed duplications to heritable gene
expression at their insertion sites since, for some
duplications, the insertion sites currently remain
unknown. We also do not know if CNVs which
affect the expression of a gene are more likely to
affect the expression of a second non-overlap-
ping gene, and if so, what the predominant
mechanisms for this effect are. The relative
contribution of common and rare variants on
gene expression in most human tissues is also
unknown at this time.

6.9 Somatic CNVs, Aging,
and Cancer

Somatic mosaicism of copy number variation is
an understudied aspect of the heritable compo-
nent of human disease. Initially, these two areas
seemed divorced from each other, as somatic
events were thought to be stochastic. However,
elucidations of the mechanisms which determine
copy number mutational events suggest these
may be related to each other. As we discussed,
some regions of the genome are predisposed to
recurrent mutational events. One can now image
a scenario in which CNVs predispose a region of
the genome harboring a tumor suppressor or
oncogene to deletion or duplication through
mechanisms outlined in Sect. 6.4 above, the end
result being predisposition to the specific recur-
rent somatic mutational events observed in can-
cer. Multiple lines of evidence already strongly
suggest that mutations in genes regulating DNA
repair predispose to cancer phenotypes. How-
ever, little work has been done to identify whe-
ther the somatic events observed in cancer are
themselves heritable, and if so what the genetic
determinates of this heritable component are. The
high heritability estimates of some cancers and
the observed recurrent causal mutation events
might suggest that the recurrent mutational
events themselves are heritable, although to our
knowledge this hypothesis has not been directly
tested.

In 2008, two studies reported results indicating
somatic mosaicism of copy number variation.
Bruder et al. (2008) reported observing discordant
CNVs between monozygotic twins, a clear indi-
cation of somatic mosaicism. Piotrowski et al.
(2008) reported observing copy number differ-
ences between otherwise healthy differentiated
tissues. However, three sets of twins studied
using WGS did not appear to harbor discordant
copy number variation (Baranzini et al. 2010).
These observations seemed to be at odds.
However, improved methods for detection of
somatic mosaicism from SNP array and array-
CGH data have been developed (Gonzalez et al.
2011), which is beginning to lead to a more
refined understanding of somatic structural
changes (Forsberg et al. 2012). The primary
observations thus far are that somatic structural
changes increase with age and that there appears
to be self-removal of these aberrant cells in blood
(Forsberg et al. 2012). Both of these observations
may potentially explain the apparent discrepan-
cies observed in the previous studies. Interest-
ingly, these observations are consistent with late
age of onset somatic diseases such as cancer.

6.10 Final Remarks

Technological advances following the publica-
tion of the human genome have allowed us to
begin to investigate copy number variation in
human populations in a genome-wide fashion.
Early studies investigating copy number varia-
tion showed poor overlap of identified variants
between studies, but provided important methods
which are now commonly used in the field.
Comprehensive methods for CNV discovery and
genotyping are a necessity for thorough investi-
gation, and these methods are still in develop-
ment. Genome wide association studies of copy
number variation have provided examples of
variants that fit the CDCV hypothesis; however
the observed associations are not sufficient to
account for the estimated additive heritability of
complex disorders. Rare and de novo CNVs have
been strongly associated with multiple complex
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disorders, and have provided evidence for
recurrent mutation as a mechanism of disease.
Although little work has been done to elucidate
the relationship between CNV and heritable gene
expression, early investigations from this area of
research indicate that CNVs which overlap genes
make especially enticing functional variant can-
didates in complex disease loci. The role of
heritable predisposition to somatic mosaicism of
CNV in complex disease is a wholly unstudied
research area which is empirically promising
based on observations from studies in cancer and
the mechanisms of formation of CNVs. Initial
studies indicate that somatic mosaicism of CNV
is likely ripe with undiscovered disease mecha-
nisms. In summary, the field of investigation of
the role of CNV in common complex disorders is
immature, yet early work indicating that CNV is
a major source of genetic and heritable pheno-
typic variation between individuals suggests that
those willing to investigate these more compli-
cated regions of the genome in complex diseases
should be prepared for interesting discoveries.
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7Applications of Genomic Methods
to Studies of Wild Primate Populations
Mary A. Kelaita

7.1 Introduction: Molecular Tools
for Field Primatology

Nonhuman primates have been instrumental
subjects of research intended to investigate the
genetic basis of human health and diseases, given
that many of their similarities with humans were
inherited from a recently shared ancestor. Recent
genomic technological advances have facilitated
biomedical research conducted on captive non-
human primates. Therefore, genomic efforts have
focused on key nonhuman primate taxa consid-
ered to be the model species for biomedical
research, such as macaques (Gibbs et al. 2007)
and baboons (Rogers et al. 2009). For example,
the use of the baboon as a model to determine
how genetic variation influences a complex dis-
ease is discussed in this volume (e.g., Chap. 16;
Comuzzie’s chapter). In addition, special atten-
tion has also been given to apes owing to their
status as our closest relatives (Stone and Verrelli
2006), which contributes to the understanding of
what makes humans unique.

This chapter, however, is dedicated to studies
of wild primate populations. Field studies of wild
primates can be equally important, offering
answers to ecological and evolutionary questions

that cannot be addressed with data from captive
populations. For example, the extent of genotypic
and phenotypic variation both within and among
populations can often only be observed in thewild.
In addition, an evolutionary framework often
requires the relevant ecological and environmental
factors that shape primate lineage diversity (Tung
et al. 2010). Wild population studies allow
researchers to determine the effects of different
environmental factors on an individual’s pheno-
type. Some phenotypic variation may only be
observed in the presence of specific genotype-by-
environment interactions, and could suggest the
need for the investigation of gene regulating
mechanisms in that developmental pathway (Tung
et al. 2011). It is also possible to test hypotheses
about how some genotypes influence survival and
reproduction (and therefore fitness) in wild popu-
lations given that they are under natural selective
pressures (Bradley and Lawler 2011).

Apart from providing an ecological and
evolutionary context, the diversity of wild pri-
mate populations suggests that phylogenetic
comparisons within the primate order (including
model and nonmodel species and their subpopu-
lations) can shed light on when and how unique
human adaptations evolved and what processes
resulted in the observed current human-wide
genomic variation. Phylogenetic relationships can
be more accurately ascertained when samples are
obtained with special considerations for the
geographic distribution of and the extent of var-
iation within wild populations (Luikart et al.
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2003; Thalmann et al. 2007). In these cases,
genomic data can inform debates regarding the
taxonomic placement of certain populations.
Primate phylogenomics is a field that is already
well underway in taking advantage of genomic
tools (Moulin et al. 2008; Siepel 2009; Ting and
Sterner 2013).

Bradley and Lawler (2011) present a com-
prehensive review on how field primatologists
can take advantage of genomic tools to uncover
genetic variation underlying primate adaptations,
including candidate gene approaches, genome-
wide association studies, and expression analy-
ses. Additionally, Ting and Sterner (2013)
recently reviewed the status of primate molecular
phylogenetics after the introduction of genomic
tools. This chapter will build on this existing
body of knowledge by providing a brief back-
ground on genomic methods but will focus on
other tools and applications of relevance to field
primatologists that center on detecting variation
in wild populations. Population genetics methods
can inform studies of primate conservation
(Chaves et al. 2011), hybridization (Kelaita and
Cortés-Ortiz 2013), behavior and social organi-
zation (Di Fiore 2003), and demographic history
(Lawler 2011). DNA can now be obtained
through noninvansive sampling methods, which
are preferred by many primatologists knowing
the potential harm that could result during cap-
ture. Many primates cannot be habituated to
human presence, leaving DNA as the only viable
method for identifying individuals and measur-
ing real and effective population sizes (Vigilant
2009). To that effect, molecular biology has
already revolutionized the field of primatology,
providing tools such as gel electrophoresis,
restriction enzyme mapping, polymerase chain
reaction (PCR), and finally DNA sequencing
(Charlesworth 2010; Di Fiore 2003).

Thus far, the majority of the methods utilized
by field primatologists have for the most part
relied on inferences made from a few loci dis-
covered through inefficient methods (Raveendran
et al. 2006). This could result in inaccurate
measures of variation, inability to discern rela-
tionships in parentage analysis, or unreliable
estimates of divergence, given that various parts

of the genome may have been under different
evolutionary pressures. The most significant
promise of the genomic revolution is the poten-
tial to acquire massive amounts of genetic data.
Now, with the ability to study thousands to
millions of genetic markers, field primatologists
will be able to answer questions that they have
been unable to with only a limited number of
loci. Indeed, the decreasing costs of new tech-
nologies and the discovery of novel methods
have generated a great deal of interest in deter-
mining how genomics can benefit wildlife biol-
ogy and ecology studies (Thomas and Klaper
2004; Ryder 2005; Primmer 2009; Allendorf
et al. 2010; Avise 2010; Ouborg et al. 2010;
Steiner et al. 2013). While primates have been at
the forefront of genomic sequencing efforts rel-
ative to other organisms (Tung et al. 2010), wild
primate studies have been slow to incorporate
many of the methods reviewed in the ecological
genomics literature.

Neutral markers are used to generate estimates
of parameters such as effective population size
(Ne) and migration rate (m) (Allendorf et al.
2010) as well as nucleotide diversity and recom-
bination rates (Steiner et al. 2013); therefore, the
inclusion of a large number of markers from
across the entire genome is necessary for accurate
parameter estimation. For example, sequencing of
the Sumatran and Bornean orangutan genomes
revealed a much larger effective population size
and greater genetic diversity in the Sumatran
species and a divergence time that is more recent
than those proposed by previous studies (Locke
et al. 2011). Larger data sets enable researchers to
test for outlier loci before estimating population
parameters, thereby testing assumptions of neu-
trality (Luikart et al. 2003). Larger data sets also
have the potential to uncover historical events
such as population bottlenecks and expansions
(Ryder 2005), especially given the “mosaic”
nature of the genome, different regions of which
may have undergone recombination and been
subject to different selective pressures (Degnan
and Rosenberg 2009). A greater number of
markers would reveal linked loci and can improve
haplotype inference in order to detect the extent
and directionality of migration (Allendorf et al.
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2010). With whole genome data, comparisons of
the entire genome can be made across taxa which
can shed light on the processes generating
diversity in primate lineages (Hudson 2008).

7.2 Making the Transition
from Genetics to Genomics

Primatologists who plan on taking advantage of
the genomic revolution may find it difficult to
make the transition, considering that overall few
eukaryote species have received attention for
genomic resource development (Hudson et al.
2008). When the first genome of a species is
assembled and published, it serves as a reference
map for assembling genomes of other individuals
from the same species (Baker 2012). In addition,
it can be scanned for the identification of poly-
morphic markers, as has been done for rhesus
macaques (Raveendran et al. 2006). Many non-
model primate species lack a fully assembled
reference genome. Obtaining a fully sequenced
genome in the absence of a reference genome
requires a great investment in time and resources
for de novo genome assembly. This is the case
even despite recent advances in assembling
genomes on a massively parallel scale (Wheeler
2008). Primatologists interested in using geno-
mic tools currently have two options: either work
with model organisms that already have signifi-
cant genomic resources available or use the
resources available from a closely related species
for which a reference genome exists and apply
them to a species of interest (Thomas and Klaper
2004).

Recently, after the sequencing of the first
complete human genome, efforts have been in full
force to sequence whole genomes of nonhuman
primates, beginning with some species identified
as sequencing targets for various reasons. Some
were assigned the highest priority, owing to their
taxonomic placement as index species in the pri-
mate phylogeny, their use in biomedical research
(Marques-Bonet et al. 2009), or their conservation
status (Ryder 2005). Currently, there are 32
ongoing primate genome projects (reviewed in

Bradley and Lawler 2011, and listed on http://
www.genome.gov/10002154). Field primatolo-
gists can begin to take advantage of published
data by accessing a number of available online
databases with built-in alignment search tools.
Some researchers are conducting partial genome
sequencing projects in an effort to provide more
sequence data resources for nonmodel primate
species for which no whole genome sequencing is
currently planned. For example, Jameson et al.
(2012) developed and annotated sequence reads
from three platyrrhine species from genomic
shotgun libraries of 3,000 individual sequences.
These data can provide a resource for marker
discovery in other related New World taxa.

Once a genome project is completed, the
assembled and annotated genomes can be used as
reference sequences in what is termed “massively
parallel” or “next generation sequencing (NGS)
technology”, allowing for millions of simulta-
neous reads in each run. For some nonmodel
species, an assembled genome of a closely related
species can serve as a scaffold. These “genome-
enabled” species studies can benefit from many of
the currently available resources (Thompson et al.
2010), but must factor in genome assembly errors
that result from low coverage and actual variation
between the two species (Bradley and Lawler
2011). There remains a number of nonhuman
primate species which have been ecologically
well characterized but have not received much
attention in sequencing projects (e.g., howler
monkeys), possibly due to the perceived lack of
their research’s direct implications for under-
standing human health and evolution as well as
their conservation status. Given the predicted
reductions in costs and effort needed to assemble
new genomes, this may change in the near future.
Until then, primatologists can take steps toward
making the transition from the genetic to the
genomic era.

The first step for many primatologists is rec-
ognizing the different types of newly developed
genomic technologies. This can be daunting
given the accelerated rate at which new tech-
nologies are being introduced and utilized. The
traditional Sanger technology provided sequence
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data of up to 2 kilobases through the detection of
labeled nucleotides as they are incorporated
during DNA synthesis (Zhang et al. 2011). Given
the sequence length limitations, “shotgun”
sequencing was introduced, so-called because
DNA was sheared and inserted into cloning
vectors, which were randomly fragmented and
sequenced to produce short reads. Whole gen-
omes were originally acquired in this manner,
through the assembly of these reads into larger
fragments, thereby generating sequence data for
the entire genome of the individual. The chal-
lenge with assembling the first genome for any
species is therefore the correct spatial mapping of
reads in the absence of a fully mapped genome
that can serve as a comparative reference. This is
by no means a simple task; the assembly of a
draft genome requires considerable bioinformat-
ics know-how and computing resources. The task
is further complicated by the presence of struc-
tural variation in the genome, including gene
duplication (Davey et al. 2011).

NGS technology similarly accomplishes
sequencing of the entire genome through the
random fragmentation of DNA followed by their
sequencing. The use of cloning is eliminated, and
sequences are instead bound to adapters (Zhang
et al. 2011). However, NGS technology actually
comprises several types including Roche 454
pyrosequencing Illumina sequencing by synthe-
sis, ABI SOLiD sequencing by ligation, and
Helicos tSMS single-molecule sequencing,
whose advantages and disadvantages have been
compared (Hudson 2008; Ekblom and Galindo
2011). These technologies have a number of
different applications which will be discussed
below, but all come with their own set of chal-
lenges (Pool et al. 2010). When a reference
genome is available, sequencing other individu-
als of the same species to uncover variation in the
population is referred to as “resequencing”
(Bentley 2008). This is most preferable given
that complete genomic information for each
individual is obtained, including coding and
noncoding regions, allowing for inferences to be
made about the evolutionary pressures that
shaped genomes of extant species and uncover-
ing sequence as well as structural variation. For

some nonhuman primate species, de novo whole
genome assembly remains impractical consider-
ing the amount of time, funding, expertise, and
infrastructure necessary. An additional challenge
is that the NGS instruments’ data analysis soft-
ware is usually designed to assemble and anno-
tate human, rat, and mouse sequences. Working
with other species requires further development
of sequence assembly and annotation pipelines
even when a fully assembled reference genome is
available. Finally, analyzing a large number of
individuals is essential for addressing population
genetics questions, but obtaining whole genome
sequences for each individual in a sample
remains an unfeasible and costly endeavor.

A useful tool for nonmodel species research is
expressed sequence tags (ESTs), which are short
sequences produced by translating mRNA tran-
scripts into complementary DNA, and represents
only protein coding regions (Rudd 2003). ESTs
are relatively inexpensive to produce and have
been used extensively by molecular ecologists
(Bouck and Vision 2007). Therefore, an alter-
native to genomics involves an analysis of the
transcriptome, the mRNA obtained from different
tissues at different life stages (Vera et al. 2008).
Assembly of a species’ transcriptome can be
more feasible than that of the genome, given that
it only involves mapping of coding sequences.
This approach is often recommended for ecolo-
gists who plan to begin genomics projects for
species that lack a reference genome (Cahais
et al. 2012). Transcriptome characterization can
be carried out on model organisms with available
reference genomes or EST data, but can also
involve de novo assembly (Cahais et al. 2012;
Vera et al. 2008). In fact, Perry et al. (2012)
developed a method for de novo transcriptome
assembly and assembled thousands of sequences
for 16 mammalian species, including 11 primate
species. Interestingly, RNA comparisons
revealed that endangered lemur populations
exhibit considerable genetic variation, likely
since factors that have impacted lemur popula-
tions occurred too recently to be reflected in
observed genetic diversity measures. Such com-
parisons can now be made by accessing pub-
licly available data. For example, Pipes et al.
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(2012) developed a nonhuman primate reference
transcriptome resource (http://nhprtr.org) pres-
ently hosting RNA sequence data for 13 primate
species.

Random-primed cDNA libraries can be cre-
ated and used to analyze nucleotide variation or
they can provide information on whether and to
what degree genes are expressed. In addition to
the potential for massive, parallel investigations
of gene expression, NGS can be used to produce
the actual mRNA sequences for later assembly
(Hudson 2008). Once a transcriptome is assem-
bled, it can be used as a template for further
resequencing or the development of markers and
constructions of microarrays for expression pro-
filing (Ekblom and Galindo 2011). The tran-
scriptome, therefore, can be a viable method for
generating genetic markers for wild population
studies.

NGS technologies can be used to generate
large amounts of sequence data even without
assembling them into a full genome, and these
data can be further interrogated for marker dis-
covery. Also, given the difficulty in obtaining
whole genome data for many individuals, there
are a number of methods utilizing NGS technol-
ogies that sample some of the overall variation
present in a population, sometimes referred to as
genome complexity reduction (GCR) methods
(Davey et al. 2011; Dou et al. 2012). For example,
a number of known loci can be targeted through
the selective capture of DNA prior to sequencing
but high coverage sequencing of these regions
provides intraspecific variation information that
can be useful for population genetics analyses
(Ekblom and Galindo 2011). Bi et al. (2012)
performed an exon capture in chipmunks relying
on a low-coverage draft genome of the ground
squirrel that is 30 mya divergent from the
chipmunk. They developed transcripts from
different tissues and identified*12,000 exons for
capture from these transcripts. Unfortunately, this
approach is limited to functional regions,
although “exon-primed intron-crossing” (EPIC)
markers were developed which can also span
intron regions. EPIC markers have the unique
property of being variable but also generally
conserved across a broad range of species

(Thompson et al. 2010). Finally, targeted
sequencing of variable parts of the genome can be
used as a barcoding approach as well (Ekblom
and Galindo 2011), a method that can be of use
for identifying plant and bacterial species from
fecal samples.

Yet another GCR method ideal for population
genetics analyses is called restriction site-asso-
ciated DNA sequencing (RADSeq, Davey and
Blaxter 2010). After genomic DNA is sheared
with restriction enzymes, adapters with unique
molecular identifiers for each individual are
ligated to the fragments, allowing them to bind to
the Ilumina flow cell. These fragments are then
pooled, randomly sheared, and ligated to a sec-
ond adapter with a divergent end that can only be
amplified upon the amplification of the first
adapter containing the molecular identifier. The
resulting library is sequenced, generating
sequence data of the adapters and the DNA
flanking the restriction site, where polymor-
phisms can be found (Davey and Blaxter 2010).
A similar method involves RNA sequencing
(RNASeq) where cDNA libraries are used
instead of genomic DNA (Wang et al. 2009).

Single nucleotide polymorphisms (SNPs) are
especially suited for measuring genetic diversity,
a large number of which can be discovered
through resequencing (Hudson 2008). SNPs can
be utilized as neutral markers for measuring
genetic diversity but can also occur in coding or
regulatory regions. SNPs can be employed in
genome-wide association studies in pedigreed
populations which are designed to discover sta-
tistically significant correlations between partic-
ular regions of the genome and the phenotype in
question (Slate et al. 2009). The most feasible
high-throughput method for SNP discovery is
likely to be through transcriptome sequencing
and resequencing (Hudson 2008) or through
capture of sequences using EPIC markers, so that
SNPs can be identified in a number of species
related to the focal organism even without
existing sequence data (Slate et al. 2009). Central
to many population genetics analyses are mea-
sures of linkage disequilibrium (LD), which
provides information about historical and demo-
graphic events, and can be determined from SNP
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data through the construction of linkage maps,
which incidentally also aid in locating genes
under selection (Thompson et al. 2011).

Recently, Bergey et al. (2013) applied the
RADSeq technique to five primate species,
including humans, representing major lineages
within the primate order. They were able to
detect a large number of SNPs that can be
compared across closely related species at a rel-
atively low cost. Therefore, the method can be
adopted to search for SNPs that exhibit intra-
specific variation, but also SNPs that can be used
in phylogenetic analyses of relatively shallow
trees. The RADSeq method requires high-quality
DNA, preferably obtained from tissue or blood
samples. However, there are promising methods
for extracting DNA from fecal samples for
genomic analyses (Perry et al. 2010), and toge-
ther these studies show real promise for the
ability of primatologists to work with large-scale
genomic data when resources are scarce.

It is important to note that while using a
subset of the genome through GCR methods for
marker discovery is more feasible, whole gen-
ome sequences could still be more advantageous
for demographic analyses given the presence of
rare variants and could provide a more complete
picture of allele frequencies (Pool et al. 2010).

7.3 Further Applications for Wild
Primate Populations

7.3.1 Pedigree Reconstruction

To date, a large number of wild primate popu-
lation studies lack pedigree information. Long-
term studies of wild primate populations tracking
several generations are rare. Knowing relatedness
among individuals is important for identifying
quantitative trait loci and measuring heritability
(Pemberton 2008), as well as for measuring
reproductive skew and for studying kin-directed
behaviors (Di Fiore 2009). Many wild population
studies have relied on microsatellite markers,
which are highly variable, to infer relationships
among individuals (Di Fiore 2009). However,
the power to accurately determine pedigree

relationships not only depends on how poly-
morphic a marker is but also the number of
markers employed (Blouin 2003). SNP markers,
while having lower power than microsatellites
for resolving relationships, can be identified
using high-throughput methods, providing ample
numbers of markers for parentage analysis, and
are less prone to genotyping errors (Hauser et al.
2011). For example, large numbers of SNPs have
helped to determine relatedness among individ-
uals in a zebra fish population (Santure et al.
2010). SNPs can potentially provide power for
determining different categories of kinship
beyond those of parent–offspring pairs or full
sibs (Avise 2010). Microsatellites have so far
remained the marker of choice for wild primate
relatedness inference but with the availability of
SNP discovery methods, primatologists can
begin to construct accurate and specific rela-
tionships in natural populations.

7.3.2 Metagenomics

The field of metagenomics has allowed compar-
isons of microbial ecosystems across primate
taxa, encompassing gastrointestinal and vaginal
microbiomes. Microbial ecosystems reflect dif-
ferent species’ phylogenetic history, dietary
quality and availability, and even health out-
comes in response to their respective environ-
ments (Amato et al. 2013). Gut microbes are
thought to influence the evolution of their host,
given their role in metabolizing certain nutri-
tional components. Metagenomics studies have
thus far provided evidence that microbial com-
munity composition is often not only species-
specific but can also reflect habitat differences.
Given that gut bacteria are largely parentally
inherited, gut microbiota evolutionary history
should coincide with that of their hosts (Ochman
et al. 2010). Yildirim et al. (2010) utilized py-
rosequencing technology of the small subunit
rRNA (a region of the 16S rRNA gene) of dif-
ferent nonhuman primate species. They found
greater similarity in microbial community com-
position within species than between species, and
that gastrointenstinal microbiomes are highly
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associated with their host taxa. Overall, gut
microbiota among great ape species was found to
be phylogentically conserved (Ochman et al.
2010). However, a number of factors including
ecological differences among the hosts’ envi-
ronments may shape gut microbial composition.
The role of habitat differences (and further, die-
tary differences) was further confirmed by Amato
and colleagues (2013), who assessed microbial
community composition from howler monkey
fecal samples by sequencing the same region of
the rRNA gene. They found habitat specific
microbial taxa composition, diversity, and rich-
ness, which is predicted by habitat type and
shaped by the availability of plants in the diet.

7.3.3 Hybridization

Hybridization in primates has been garnering a
great deal of attention recently as molecular tools
have made it possible to detect more instances of
gene flow across established taxonomically dis-
tinct primate taxa (Cortés et al. 2007). Debate
regarding the importance of the role of hybrid-
ization in primate evolution continues (Zinner
et al. 2011), and is receiving renewed interest
given the finding that a number of genes have
introgressed from Neanderthals into modern
humans (Green et al. 2010). So far, researchers
have been able to detect hybrid primate individ-
uals using relatively few diagnostic microsatellite
loci (Cortés-Ortiz et al. 2007; Tung et al. 2008;
Kelaita and Cortés-Ortiz 2013). Yet, initial
identification of these loci and subsequent testing
is time consuming and cumbersome. Not only
must loci successfully amplify and be highly
variable, they must also possess fixed allelic
differences between the parental species. SNPs,
which instead can be identified with high-
throughput methods, can also serve as diagnostic
loci in hybridization studies (Finger et al. 2009;
Hohenlohe et al. 2011).

Further, while few microsatellite loci can aid in
the detection of hybrids, understanding the
dynamics of gene flow and introgression across
the hybrid zone is important for determining
mechanisms of reproductive isolation and barriers

to gene flow. Such an endeavor requires the use of
a much greater number of loci (Allendorf et al.
2010). Teeter et al. (2009) discovered selection
against hybrid genotypes and for some introgres-
sed genotypes in a mouse hybrid zone using 41
SNPs. Whole genome data could potentially
address the role of the number of loci and the size
of their effects, dominance, epistasis, or chromo-
somal rearrangements in causing outbreeding
depression. Hybridization has been shown to
produce highly variable morphological charac-
teristics in nonhuman primates (Ackermann et al.
2010; Kelaita and Cortés-Ortiz 2013) and it
remains unclear what genetic interactions are the
cause of this variability. Genomic approaches
could also produce more accurate estimates of
each hybrid’s proportion of admixture (Allendorf
et al. 2010; Steiner et al. 2013). With this infor-
mation, morphology, behavior, and fitness can be
compared across individuals of varying genomic
background. Finally, genomic data promises to
uncover past hybridization events that could have
led to the formation of new species and the
emergence of novel adaptations (Keller et al.
2012).

7.4 Concluding Remarks

It is likely that the number of genome-enabled
nonhuman primate species will increase in the
near future. This chapter has outlined a number
of approaches that are feasible for wild popula-
tion studies, some of which are relatively inex-
pensive and require little effort. These methods
enable making evolutionary and functional
inferences for a broader range of species,
including nonmodel primate species that have
generally received less attention in genomic
resource development. However, field primatol-
ogists are likely to still face a number of obsta-
cles to fully engaging in this type of research. A
consistent concern in wild primate population
studies is access to high-quality DNA, which is
harder to obtain from noninvasive sampling
methods. In addition, as Tung et al. (2010) rec-
ommend, considerable statistical and program-
ming skill is required to undertake genome-scale
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analyses. Successful genomic endeavors often
involve collaborations with researchers who have
access to the infrastructure (both laboratory and
computing) necessary or who possess expertise
in these areas, but building on these skills as
more resources become available is necessary
given that technological discoveries are enabling
investigators to conduct genomic studies with the
budget and equipment of a small laboratory.
Finally, while primatologists may be eager to
acquire massive amounts of genetic data for a
seemingly unlimited potential to answer impor-
tant evolutionary and ecological questions, a
well-designed project can help identify the min-
imum number of loci necessary for the analysis,
the ideal sequencing technologies with the least
amount of error produced, and the most time-
and cost-efficient approaches for achieving one’s
goals.

References

Allendorf FW, Hohenlohe PA, Luikart G (2010) Genom-
ics and the future of conservation genetics. Nat Rev
Genet 11:697–709

Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F,
Estrada A, Gaskins HR, Stumpf RM, Yildirim S,
Torralba M, Gillis M, Wilson BA, Nelson KE, White
BA, Leigh SR (2013) Habitat degradation impacts
black howler monkey (Alouatta pigra) gastrointestinal
microbiomes. Int Soc Microb Ecol 7:1344–1353

Avise J (2010) Perspective: conservation genetics enters
the genomics era. Conserv Genet 11:665–669

Baker M (2012) De novo genome assembly: what every
biologist should know. Nat Methods 9:333–337

Bentley DR (2008) Whole-genome re-sequencing. Curr
Opin Genet Dev 16:545–552

Bergey CM, Pozzi L, Disotell TR, Burrell AS (2013) A
new method for genome-wide marker development
and genotyping holds great promise for molecular
primatology. Int J Primatol 34:303–314

Bi K, Vanderpool D, Singhal S, Linderoth T, Moritz C,
Good JM (2012) Transcriptome-based exon capture
enables highly cost-effective comparative genomic
data collection at moderate evolutionary scales. BMC
Genom 13:403–417

Blouin MS (2003) DNA-based methods for pedigree
reconstruction and kinship analysis in natural popula-
tions. Trends Ecol Evol 18:503–511

Bouck A, Vision T (2007) The molecular ecologist’s
guide to expressed sequence tags. Mol Ecol 16:907–
924

Bradley BJ, Lawler RR (2011) Linking genotypes,
phenotypes, and fitness in wild primate populations.
Evol Anthropol 20:104–119

Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J,
Ballenghien M, Weinert L, Chiari Y, Belkhir K,
Ranwez V, Galtier N (2012) Reference-free transcrip-
tome assembly in non-model animals from next-
generation sequencing data. Mol Eco Res 12:834–845

Charlesworth B (2010) Molecular population genomics: a
short history. Genet Res 92:397–411

Chaves PB, Alvarenga CS, Possamai CB, Dias LG,
Boubli JP, Strier KB, Mendes SL, Fagundes V (2011)
Genetic diversity and population history of a critically
endangered primate, the Northern muriqui (Brachy-
teles hypoxanthus). PLoS ONE 6:e20722

Cortés-Ortiz L, Duda TF, Canales-Espinosa D, García-
Orduña F, Rodríguez-Luna E, Bermingham E (2007)
Hybridization in large-bodied New World primates.
Genetics 176:2421–2425

Davey JW, Blaxter ML (2010) RADSeq: next generation
population genetics. Brief Funct Genomics 9:416–423

Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen
JM, Blaxter ML (2011) Genome-wide genetic marker
discovery and genotyping using next-generation
sequencing. Nat Rev Genet 12:499–510

Degnan JH, Rosenberg NA (2009) Gene tree discordance,
phylogenetic inference and the multispecies coales-
cent. Trends Ecol Evol 24(6):332–340

Di Fiore A (2003) Molecular genetic approaches to the
study of primate behavior, social organization, and
reproduction. Yearb Phys Anthropol 46:62–99

Di Fiore A (2009) Genetic approaches to the study of
dispersal and kinship in New World primates. In:
Garber PA, Estrada A, Bicca-Marques JC, Heymann
EW, Strier KB (eds) South American primates,
comparative perspectives in the study of behavior,
ecology, and conservation, series: developments in
primatology: progress and prospects. Springer, Hei-
delberg, pp 211–250

Dou J, Zhao X, Fu X, Jiao W, Wang N, Zhang L, Hu X,
Wang S, Bao Z (2012) Reference-free SNP calling:
improved accuracy by preventing incorrect calls from
repetitive genomic regions. Biol Direct 7:17–26

Ekblom R, Galindo J (2011) Applications of next
generation sequencing in molecular ecology of non-
model organisms. Heredity 107:1–15

Finger AJ, Stephens MR, Clipperton NW, May B (2009)
Six diagnostic single nucleotide polymorphism mark-
ers for detecting introgression between cutthroat and
rainbow trouts. Mol Ecol Resour 9:759–763

Green R, Krause J, Briggs A, Maricic T, Stenzel U,
Kircher M, Patterson N, Li H, Zhai W, Fritz M (2010)
A draft sequence of the Neandertal genome. Science
328:710–722

Gibbs RA, Rogers J, Katze MG, Bumgarner R, Wein-
stock GM, Mardis ER, Remington KA, Strausberg
RL, Venter JC (2007) Evolutionary and biomedical
insights from the rhesus macaque genome. Science
316:222–234

110 M.A. Kelaita



Hauser L, Baird M, Hildborn R, Seeb LW, Seeb JS (2011)
An empirical comparison of SNPs and microsatellites
for parentage and kinship assignment in a wild
sockeye salmon (Oncorhynchus nerka) population.
Mol Ecol Resour 11(S1):150–161

Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW,
Luikart G (2011) Next-generation RAD sequencing
identifies thousands of SNPs for assessing hybridiza-
tion between rainbow and westslope cutthroat trout.
Mol Ecol Resour 11(S1):117–122

Hudson ME (2008) Sequencing breakthroughs for geno-
mic ecology and evolutionary biology. Mol Ecol
Resour 8:3–17

Jameson NM, Xu K, Yi SV, Wildman DE (2012)
Development and annotation of shotgun sequence
libraries from New World monkeys. Mol Ecol Resour
12:950–955

Kelaita MA, Cortés-Ortiz L (2013) Morphological Var-
iation of Genetically Confirmed Alouatta pigra x A.
palliata hybrids from a natural hybrid zone in Tabasco
Mexico. Am J Phys Anth 150:223–234

Keller I, Wagner CE, Greuter L, Mwaiko S, Selz OM,
Sivasundar A, Wittwer S, Seehausen O (2012)
Population genomic signatures of divergent adapta-
tion, gene flow and hybrid speciation in the rapid
radiation of Lake Victoria cichlid fishes. Mol Ecol
22:2848–2863

Lawler RR (2011) Demographic concepts and research
pertaining to the study of wild primate populations.
Yearb Phys Anthropol 54:63–85

Locke DP, Hillier LW, Warren WC, Worley KC,
Nazareth LV et al (2011) Comparative and demo-
graphic analysis of orangutan genomes. Nature
469:529–533

Luikart G, England PR, Tallmon D, Jordan S, Taberlet P
(2003) The power and promise of population genom-
ics: from genotyping to genome typing. Nat Rev
4:981–994

Marques-Bonet T, Ryder OA, Eichler EE (2009)
Sequencing primate genomes: what have we learned?
Annu Rev Genomics Hum Genet 10:355–386

Moulin S, Gerbault-Seureau M, Dutrillaux B, Richard FA
(2008) Phylogenomics of African guenon. Chrom Res
16:783–799

Ochman H, Worobey M, Kuo C, Ndjango JN, Peeters M,
Hahn BH, Hugenholtz P (2010) Evolutionary rela-
tionships of wild hominids recapitulated by gut
microbial communities. PLOS Biol 8:e1000546

Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma R, Hedrick
PW (2010) Conservation genetics in transition to
conservation genomics. Trends Genet 26:177–187

Pemberton JM (2008) Wild pedigrees: the way forward.
Proc R Soc B 275:613–621

Perry GH, Marioni J, Pall M, Gilad Y (2010) Genomic-
scale capture and sequencing of endogenous DNA
from feces. Mol Ecol 19:5328–5331

Perry GH, Melsted P, Marioni J, Wang Y, Bainer R,
Pickrell JK, Michelini K, Zehr S, Yoder AD, Stephens
M, Pritchard JK, Gilad Y (2012) Comparative RNA

sequencing reveals substantial genetic variation in
endangered primates. Genome Res 22:602–610

Pipes L, Li S, Bozinoski M, Palermo R, Peng X, Blood P,
Kelly S, Weiss JM, Thierry-Mieg J, Thierry-Mieg D,
Zumbo P, Chen R, Schroth GP, Mason CE, Katze
MG (2012) The non-human primate reference
transcriptome resource (NHPRTR) for comparative
functional genomics. Nucleic Acids Res 41:
D906–D914

Pool JE, Hellmann I, Jensen JD, Nielsen R (2010)
Population genetic inference from genomic sequence
variation. Genome Res 20:291–300

Primmer CR (2009) From conservation genetics to
conservation genomics. Ann N Y Acad Sci
1162:357–368

Raveendran M, Harris RA, Milosavljevic A, Johnson Z,
Shelledy W, Cameron J, Rogers J (2006) Designing
new microsatellite markers for linkage and population
genetic analyses in rhesus macaques and other non-
human primates. Genomics 88:706–710

Rogers J, Mahaney MC, Cox LA (2009) The develop-
ment and status of the baboon genetic linkage map. In:
Barrett L (ed) The baboon in biomedical research.
Developments.in primatology: progress and prospects.
Springer, New York

Rudd S (2003) Expressed sequence tags: alternative or
complement to whole genome sequences? Trends
Plant Sci 8:321–329

Ryder OA (2005) Conservation genomics: applying
whole genome studies to species conservation efforts.
Gytogenet Genome Res 108:6–15

Santure AW, Stapley J, Ball AD, Birkhead TR, Burke T,
Slate J (2010) On the use of large marker panels
to estimate inbreeding and relatedness: empirical
and simulation studies of a pedigreed zebra finch
population typed at 771 SNPs. Mol Ecol 19:1439–
1451

Siepel A (2009) Phylogenomics of primates and their
ancestral populations. Genome Res 19:1929–1941

Slate J, Gratten J, Beraldi D, Stapley J, Hale M,
Pemberton J (2009) Gene mapping in the wild with
SNPs: guidelines and future directions. Genetica
136:97–107

Steiner CC, Putnam AS, Hoeck PEA, Ryder OA (2013)
Conservation genomics of threatened animal species.
Annu Rev Anim Biosci 1:261–281

Stone A, Verrelli B (2006) Focusing on comparative ape
population genetics in the postgenomic age. Curr Opin
Genet Dev 16:586–591

Thalmann O, Fischer A, Lankester F, Pääbo S, Vigilant L
(2007) The complex evolutionary history of gorillas:
Insights from genomic data. Mol Biol Evol 24:146–
158

Thomas MA, Klaper R (2004) Genomics for the ecolog-
ical toolbox. Trends Ecol Evol 19:441–445

Thompson RC, Wang IJ, Johnson JR (2010) Genome-
enabled development of DNA markers for ecology,
evolution and conservation. Mol Ecol 19:2184–
2195

7 Applications of Genomic Methods to Studies … 111



Ting N, Sterner KN (2012) Primate molecular phyloge-
netics in a genomic era. Mol Phylogenet Evol
66:565–568

Tung J, Charpentier MJ, Garfield DA, Altmann J, Alberts
SC (2008) Genetic evidence reveals temporal change
in hybridization patterns in a wild baboon population.
Mol Ecol 17:1998–2011

Tung J, Alberts S, Wray G (2010) Evolutionary genetics
in wild primates: combining genetic approaches with
field studies of natural populations. Trends Genet
26:353–362

Tung J, Akinyi MY, Mutura S, Altmann J, Wray GA,
Alberts SC (2011) Allele-specific gene expression in a
wild nonhuman primate population. Mol Ecol
20:725–739

Vera JC, Wheat CW, Fescemyer HW, Frilander MJ,
Crawford DL, Hanski I, Marden JH (2008) Rapid
transcriptome characterization for a nonmodel organ-
ism using 454 pyrosequencing. Mol Ecol 17:
1636–1647

Vigilant L, Guschanski K (2009) Using genetics to
understand the dynamics of wild primate populations.
Primates 50:105–120

Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a
revolutionary tool for transcriptomics. Nat Rev Genet
10:57–63

Wheeler DA,Wheeler DA, SrinivasanM, EgholmM, Shen
Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V,
Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL,
Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y,
Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M,
Weinstock GM, Gibbs RA, Rothberg JM (2008) The
complete genome of an individual by massively
parallel DNA sequencing. Nature 452:872–876

Yildirim S, Yeoman CJ, Sipos M, Torralba M, Wilson
BA, Goldberg TL, Stumpf RM, Leigh SR, White BA,
Nelson KE (2010) Characterization of the fecal
microbiome from non-human wild primates reveals
species specific microbial communities. PLoS ONE 5:
e13963

Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact
of next-generation sequencing on genomics. J Gene
Genomics 38:95–109

Zinner D, Arnold ML, Roos C (2011) The strange blood:
natural hybridization in primates. Evol Anthropol
20:96–103

112 M.A. Kelaita



8Comparative Genomics: Tools for Study
of Complex Diseases
Laura A. Cox

8.1 Introduction

Comparative genomics is a research approach
that uses bioinformatics tools to integrate data
from multiple genomes for numerous types of
information from each genome and is used to
address questions ranging from the role played
by gene x environment interactions in human
health and disease to evolutionary relationships
of species using phylogenetic analysis methods.
The identification of genomic similarities and/or
genomic differences can be used to build models
or “systems” to develop a better understanding of
specific biological systems. Completion of each
successive mammalian genome sequence, each
sequence assembly, each whole genome expres-
sion study, and each whole genome polymor-
phism study has exponentially increased the
information available and the bioinformatics
tools available that support comparative genomic
analyses. The databases from which data are
drawn for comparative analyses include low-
resolution physical maps, high-resolution physi-
cal maps, statistical genomic maps, genomic
assembly maps, restriction enzyme maps,
recombination maps, gene expression profile
data, noncoding RNA annotation, alternative

gene structure annotation, conserved coding and
noncoding elements, insertion/deletion elements,
orthologous chromosomal regions, polymor-
phisms, and structural variants (Fig. 8.1).
Different types of tools have been developed that
use assembled genomes as frameworks for
mapping disease-related quantitative trait loci
and mapping genetic associations with human
diseases and model organisms, for predicting
expressed genes, noncoding RNAs, protein-DNA
binding sites, RNA-DNA binding sites, and for
aligning genomic regions from multiple species
for phylogenetic analysis such as phylogenetic
shadowing. Furthermore, these publicly available
databases link to other websites that provide
detailed information on each data point (e.g.,
gene, protein, single nucleotide polymorphism,
etc.). Consequently, initial investigation of a
genetic element (chromosome, gene, promoter,
etc.,) using basic bioinformatics tools will typi-
cally reveal extensive information about the
system of interest before a single laboratory
experiment has begun.

In this chapter, I will discuss comparative
genomic tools used for the study of gene x envi-
ronment interactions underlying complex dis-
eases by comparison of a model organism
genome with the human genome. In studies of
pedigreed baboons, my colleagues and I are
using comparative genomic tools combined with
classical genetic tools to identify genes that
influence variation in complex disease. I will
present examples of the use of these new tools
for the identification of concordant quantitative
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trait loci, regulatory elements, conserved gene
domains, gene expression profiles, and gene
networks relevant to cardiovascular disease. In
addition, I will present how these tools can be
used for identification of specific polymorphic
nucleotides that influence variation in a cardio-
vascular disease-related quantitative trait in a
nonhuman primate. I will also show how these
results can be used for identification of poly-
morphisms that are likely to influence human
quantitative trait variation and complex disease.
The marked reduction in sequencing costs will
soon provide additional data on numerous indi-
viduals in multiple species that will again sig-
nificantly expand the information gained using
comparative genomics tools. This information
will provide greater power to predict the genes
and the polymorphisms in these genes that
influence quantitative traits, which will decrease
discovery time for the identification of these
genes, and their functional polymorphisms.

Our laboratory is using the baboon as a model
to determine how genetic variation influences
atherogenesis. Central to these studies is the
identification of genes underlying variation in
cholesterol metabolism. The commonly used
methods for positionally cloning novel genes are
labor- and time-intensive. In addition, these
methods are complicated when localizing and
identifying genes regulating multigenic traits. In

order to identify novel genes encoding QTLs, we
have developed an efficient strategy to identify
candidate genes. This strategy uses information
from the baboon linkage map, the human gen-
ome sequence, including annotated and predicted
genes, the pedigreed baboon colony at the
Southwest National Primate Research Center
(SNPRC), the quantitative measures for athero-
sclerosis-related traits, and the human genome
database in concert with gene expression array
methods. Using this approach we identified the
gene and variants within the gene that influence
variation in a size fraction of high-density lipo-
protein cholesterol (HDL1-C) (Cox et al. 2007).

To identify novel cardiovascular related genes,
that is, genes not previously known to contribute to
atherogenesis or dyslipidemia, we initially used
classical genetic methods to identify chromosomal
regions containing loci that influence the trait of
interest. The foundation resource for these studies
is a baboon genetic linkage map that we con-
structed using 284 random microsatellite markers
from the human linkage map (Cox et al. 2007). In
addition to the linkage map, scientists in the
Department of Genetics at the Texas Biomedical
Research Institute have collected quantitative trait
data on more than 150 lipid and lipoprotein
quantitative traits in the same 951 pedigreed
baboons that were used to construct the linkage
map. Genome scans were performed for each
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quantitative trait to identify quantitative trait loci
(QTL) influencing each atherosclerosis-related
trait (e.g., Cox et al. 2002; Kammerer et al. 2001,
2003; Rainwater et al. 2003; Vinson et al. 2007;
Voruganti et al. 2007). After QTL identification,
QTL regions of interest were fine mapped to
reduce the chromosomal region of interest (e.g.,
Cox et al. 2007). After identifying and refining the
QTL region of interest, we used a modified
genomic expression profiling method integrated
with bioinformatics analyses to prioritize candidate
genes in the QTL region of interest. The evaluation
of candidate genes in the QTL region of interest is
all-inclusive, with analysis of both annotated and
predicted genes. Prioritized candidate genes were
then analyzed in detail by identification and
genotyping of polymorphisms that may regulate
variation in the quantitative trait. Functional
polymorphisms were identified by statistical
functional analyses and validated by molecular
functional analyses (Cox et al. 2007). Furthermore,
we used transcriptome profiling data analyzed
using bioinformatics tools to identify genetic
pathways and networks underlying each pheno-
type. In this chapter, I will describe the methods
used for each of these steps and provide examples
from our work studying genes underlying variation
in atherosclerosis-related traits.

8.2 QTL Identification and Fine
Mapping

As with many model organisms, no physical map
for baboon exists and the genome sequence map
is currently in draft form with numerous gaps. In
the absence of a well-annotated baboon reference
genome, we use comparative genomic methods
to: (1) decrease the QTL region of interest by fine
mapping (Sect. 8.2.3) and (2) determine known
and predicted genes in the reduced region of
interest for each QTL (Sect. 8.3.1). When we
began our QTL gene identification projects, the
rhesus genome had not yet been sequenced;
therefore, we performed the comparative geno-
mic examples presented here using the human
genome map as the reference genome. These
methods, however, can be used for any species

with a nonsequenced genome (target) against a
species with a sequenced genome (reference). To
identify gene(s) encoding QTLs, the closer the
two species are related evolutionarily the more
informative the comparison.

8.2.1 QTL Identification

As mentioned above, data were collected from
the SNPRC pedigreed baboons for quantitative
traits related to atherosclerosis. Genome scans
were performed for these quantitative traits using
the baboon linkage map and a number of QTLs
were identified. In this chapter, we use results
from our work on two QTLs identified from the
genome scans as examples, one QTL influencing
HDL1-C (a size fraction of HDL-C) (Cheng et al.
1988) on baboon chromosome 18 (Mahaney
et al. 1998) and one QTL influencing the
hypertension trait sodium lithium counter trans-
port (SLC) activity on baboon chromosome 5
(Kammerer et al. 2001). For the HDL1-C QTL on
baboon chromosome 18, the two-point linkage
analysis showed a peak LOD score of 7.32 at
marker D18S72. We defined the region of
interest for the QTL, which is the chromosomal
region most likely to include the gene(s) influ-
encing HDL1-C variation, as the two LOD sup-
port interval, i.e., the region included in the area
under the QTL curve from the peak out to the
two LOD drop in the curve (Cox et al. 2002). For
the SLC QTL on baboon chromosome 5, we
obtained evidence for an SLC QTL with a peak
LOD score of 9.3 located near marker D4S1645
(human chromosome 4 is the orthologue of
baboon chromosome 5). This QTL accounts for
approximately two thirds of the total additive
genetic variation in SLC activity in baboons.

8.2.2 Sequence Alignment for Fine
Mapping Chromosomal Regions

DNA sequence alignment of the target and ref-
erence genomes is necessary for the identification
of repetitive elements that can be used to fine map
the region of interest and reduce the number of
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candidate genes that must be analyzed. By
genotyping microsatellite markers and repetitive
elements common to both the target and reference
genomes it is possible to align the target and
reference linkage maps (e.g., Fig 8.2). Because
the reference genome has both a linkage map and
whole genome sequence, the alignment of the
reference genome syntenic block with the target
genome provides a physical map for the target
species’ QTL region of interest. The underlying
assumption is that for conserved syntenic regions,
repetitive elements, encoded genes, noncoding
RNAs, regulatory elements, etc., are conserved
between target and reference genomes. Multiple
species’ genome sequences can be aligned (Vista
Genome Browser; http://pipeline.lbl.gov/cgi-bin/
gateway2) (Frazer et al. 2004; Shah et al. 2004)
for the region of interest to test the extent of
element conservation between reference and

target syntenic regions. Based on our work using
human, rhesus, and baboon microsatellite mark-
ers in the baboon genome and the human genome,
we know that repetitive elements common to two
species may be polymorphic in one species but
not the other. Therefore, sequence alignment will
provide a list of repetitive elements that are good
candidates for microsatellite markers based on
repeat length; however, variation in a repetitive
element length must be tested empirically (e.g.,
Cox 2002; Cox et al. 2007).

8.2.3 Fine Mapping a QTL Region
of Interest

To fine map a QTL region of interest, we must
identify microsatellite markers that are amplifi-
able and polymorphic in our target (baboon)

Fig. 8.2 Alignment of
baboon chromosome 18
(left) HDL QTL region of
interest (hashed lines) with
human chromosome 18
(right) using genotyped
microsatellite markers for
baboon (modified from
http://baboon.
txbiomedgenetics.org/Bab_
Results/GraphicMaps/
chrom18.php)
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species. When we first began fine mapping
baboon QTLs, we screened human microsatellite
markers in baboon that were included in the
human genome linkage maps (Cox et al. 2006a;
Rogers et al. 2000). Although this strategy was
successful identifying new markers for the
baboon linkage map, it was extremely inefficient
with less than a 25 % success rate for marker
identification. In addition, some of these markers
did not yield clean PCR products making geno-
typing difficult and some markers were not very
polymorphic. Therefore, we devised a compara-
tive genomics approach to identify and test
putative baboon microsatellite markers. First we
defined the genomic sequence included in our
region of interest by identifying the physical map
location of microsatellite markers flanking the
region of interest using the reference genome. We
entered the microsatellite identifiers into the
University of California Santa Cruz (UCSC)
Genome Bioinformatics browser (http://genome.
ucsc.edu/); (Kent et al. 2002) query box and
retrieved the genomic locations delimiting the
QTL region of interest. We then scanned human
genomic DNA sequence in the region of interest
at 1 million basepair (Mbp) blocks in 5 Mbp
intervals for repetitive elements of 12 or more di,
tri, or tetra repeats using the UCSC Genome
Bioinformatics, Table Browser function (http://
genome.ucsc.edu/cgi-bin/hgTables) (Karolchik
et al. 2004) to list all microsatellite and simple
repetitive elements in the region of interest
including 300 bp offlanking sequence 5′ and 3′ of
each repeat. After excluding 1 Mbp regions that
already contained microsatellite markers in the
baboon linkage map, putative markers were pri-
oritized by proximity to annotated genes, pro-
viding another link to the reference genome map.
Because we know there are sequence differences
between human and baboon but we don’t know
what nucleotides differ, we designed two pairs of
PCR primers for amplification of each repetitive
element (Oligo v6.89, Molecular Biology
Insights, Inc.). Parameters for primer design
included PCR product length from 150 to 300 bp,
PCR primer length of 24 nucleotides (nt), GC
content greater than 55 %, and a Tm of 55–68 °C
Also, the stability (DG) of primer-template

duplexes must be less than 10 °C difference
between the Tm of each primer and no primer/
dimer pair formation is allowed. We used the
BLAT alignment tool (http://genome.ucsc.edu/
cgi-bin/hgBlat; Kent 2002) with the human gen-
ome to ensure primer specificity (Cox et al. 2009).

With the recent availability of baboon genomic
sequence in the NCBI Trace Archive (http://www.
ncbi.nlm.nih.gov/Traces/trace.cgi?), we have
added an additional step to this procedure. After
repetitive element identification, we use the
BLAST tool (http://www.ncbi.nlm.nih.gov/BLA
ST/Blast.cgi?PAGE=Nucleotides&PROGRAM=
blastn&BLAST_SPEC=TraceArchive&BLAST_
PROGRAMS=megaBlast&PAGE_TYPE=Blast
Search; Altschul et al. 1990) with the predicted
PCR product sequence from the human genome
against the baboon Trace Archive to determine the
repetitive element repeat number in baboon and to
identify baboon flanking sequence for primer
design. Since many species now have genomic
sequence data available in the NCBI Trace
Archive, but the genomes have not yet been
assembled, this tool is also useful as a second
reference sequence when the first reference
sequence is not as evolutionarily close to the target
as the second “Trace Archive” reference.

To optimize the chances of identifying poly-
morphic baboon microsatellite markers for the
pedigreed baboon colony, we used a panel of 12
baboons that represent a large portion of the
genetic diversity in the pedigreed colony. Geno-
mic DNA was amplified by PCR for each target
region using a fluorescently labeled forward pri-
mer and unlabeled reverse primer. PCR products
were size-fractionated in an automated sequencer
Applied Biosystems, Inc. (ABI) and genotyped
using Genotyper software. Heritability was tested
for each polymorphic marker by genotyping 2–3
baboon nuclear families (i.e., sire, dam, 2–3 off-
spring). If multiple polymorphic, heritable
markers were identified for a chromosomal
interval, the most polymorphic marker was
selected for genotyping. Selected microsatellite
markers were genotyped for the phenotyped,
pedigreed baboons. The new markers were then
included in the linkage map and the genome scan
for the quantitative trait repeated.
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8.3 Characterizing the Refined
Region of Interest

8.3.1 Sequence Alignment

After refining the QTL region of interest, the
chromosomes must be aligned and the genomic
sequence in the region of interest must be retrieved
for the reference sequence. Although microsatel-
lite markers from the linkage map were used to
align the chromosomes before fine mapping the
region of interest, the same analysis must be per-
formed including the new markers. It is possible
that small chromosomal rearrangements not
apparent with the original alignment are apparent
with the new markers. As described in Sect. 8.2.2,
microsatellite markers common to both target and
reference genomes were used to align the target
and reference genomic regions. If repetitive ele-
ments were used for genotyping the target gen-
ome, these contain physical map “addresses” in
the reference genome that can also be used to tie
the target genome to the framework of the refer-
ence genome. To do so, the microsatellite
sequence including flanking region sequence was
entered into the reference genome BLAT search
tool in the UCSC Genome Bioinformatics brow-
ser (http://genome.ucsc.edu/cgi-bin/hgBlat; Kent
2002). Output from this search will include the
sequence alignment and physical map location in
the reference genome. Once the reference genome
region of interest has been defined, it is possible to
identify all known and predicted genes in the
interval as well as noncoding RNAs and regula-
tory elements. In addition, it is possible to deter-
mine if other scientists have mapped QTLs (Rapp
2000) or genetic disease associations (Becker
et al. 2004) with that chromosomal interval.

8.3.2 Sequence Alignment
for Rearranged Chromosomal
Regions

It is not unusual to find chromosomal rear-
rangements such as inversions when comparing
target and reference linkage maps. In addition, it
is not unusual to find QTL regions of interest that

include areas of rearrangement between target
and reference chromosomes. A central element in
the identification of genes encoding QTLs is to
include all possible candidate genes in the initial
screening process. Therefore, chromosomal
rearrangements and the portions of chromosome
that overlap with QTL regions of interest must be
defined as clearly as possible for inclusion and
exclusion of candidate genes. That is, all possible
genes that can be excluded should be excluded in
order to reduce the number of genes that must be
interrogated; however, because one does not
want to exclude a candidate gene that lays in the
region of interest the region must be defined as
clearly as possible.

With this in mind, we often see rearranged
regions with inadequate linkage map data (i.e.,
number of microsatellite markers in the linkage
map) to precisely identify the chromosomal
regions of interest in the reference chromosome.
An example of this is shown in Fig. 8.3a, where
the QTL region of interest includes baboon
chromosome 5 from D4S414 to D4S2365. This
QTL region of interest spans a chromosomal
inversion when comparing baboon against
human. Using the mapped microsatellite mark-
ers, the region of the orthologous human chro-
mosome (chromosome 4) for the region from
D4S414 to D4S1645 is clear; all the markers
included between these markers are the same for
baboon and human with the order from p to q
reversed. Whereas, the DNA that should be
included in the region from D4S1645 to
D4S2365 is not as clear. D4S2365 borders the
baboon region of interest and D4S413 is outside
the region of interest for baboon and this is
consistent in human. So, the conserved chromo-
somal region should be p-ter to D4S2365; how-
ever, D4S414 is outside the region of interest in
baboon but flanks the region likely to include
QTL region of interest DNA. In this case, the
investigator has 2 choices: (1) fine map addi-
tional markers between D4S2365 and D4S414 or
(2) include all genes and expressed genes as
candidates for the D4S2365–D4S414 region
knowing that some genes are likely to be outside
the region of interest. Due to the required time
and resources for candidate gene interrogation
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and prioritization, the first option is usually worth
the time invested.

In the example of a QTL mapping to baboon
chromosome 5, we chose to fine map the region
of interest and more clearly define the region of
rearrangement as described in Sect. 8.2.3. Fig-
ure 8.3b shows the QTL region of interest after
including additional markers in the linkage
map. Markers that were identified specifically
from baboon genomic sequence as described in
Sect. 8.2.3 are indicated by the “PHA” identifier;
all of these sequences can be assigned locations
relative to the mapped human microsatellite
markers using the human genome sequence for
the human orthologous chromosome using the
UCSC Genome Browser BLAT alignment tool.
Addition of the new markers more narrowly
defines the chromosomal breakpoint between the
human and baboon orthologous chromosomes,
shown by the dashed line PHA5S7 and narrows
the QTL region of interest more than 11 Mbp by
moving the p-ter border of the QTL from
D4S414 to D4S400 and based on the March
2006 human genome assembly (http://genome.
ucsc.edu/staff.html) reduces the number of

candidate annotated genes by 78 and predicted
genes by 38.

8.3.2.1 Identifying Known
and Predicted Genes in Region
of Interest

The UCSC Genome Browser (Kent et al. 2002)
tool is used to identify the physical map location
of genes and predicted genes within a QTL
region of interest. To do so, the microsatellite
identifiers for the two markers delimiting the
borders of the QTL region of interest are entered
into the UCSC Genome Browser query box and
the genomic locations retrieved. These two
locations define physical map location of the
QTL region of interest on the reference genome.
When both of these locations are entered into the
query box together, the UCSC Genome Browser
window will display the entire genomic region of
interest.

To list all genes in the defined region, select
the “Tables” link in the top bar in Fig. 8.4 to load
the Table Browser tool (Fig. 8.5). This new
window defaults to selecting a positional table

PHA5S7 

PHA5S1 

D4S2456 

D4S414 
PHA5S5 
PHA5S4 
D4S236

5 

D4S1636 
D4S243 

D4S2374 
D4S1554 

(b)(a)

Fig. 8.3 Identification of target DNA in region of interest
with rearranged reference chromosome. Human chromo-
some 4 (Hsa 4) is on the left, baboon chromosome 5 (Pha),
the ortholog to Hsa 4 is on the right. Lines between the
chromosomes show marker order. Boxes show chromo-
some segment conservation. Arrows indicate relative

directions. a shows chromosome comparison by mapped
microsatellite markers with region of interest in bold boxes
and chromosome direction indicated by arrows. b shows
reduced region of interest with inclusion of additional
microsatellite markers in the linkage map
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for the region of interest viewed in the Genome
Browser (Fig. 8.4). The Table Browser tool can
be used to provide tabular data on any tracks
included in the UCSC genome browser and can
be used for defined chromosomal regions as
positional data, can be used for non-positional
data, or can be used to retrieve data for the entire
genome. In this example, the Table Browser is

used to download in tabular form all annotated
genes for the region of interest. In addition, using
the gene predicted tracks combined with
Expressed Sequence Tag (EST) and spliced EST
tracks, all high confidence predicted genes can be
listed. The gene array tracks, indicating expres-
sed genes detected by whole genome expression
profiling, may also be included to gain additional

Fig. 8.4 UCSC Genome browser showing annotated
gene and predicted gene tracks for the HDL1-C QTL
region of interest. From top to bottom, genome browser
function links, the genome assembly version, navigational
tools, chromosome position numerically, and graphically

on the chromosome diagram. The browser window shows
the base number, the track name, and the contents of the
track for annotated genes (UCSC based on RefSeq,
UniProt, and GenBank) and predicted gene (N scan)

Fig. 8.5 UCSC Table browser function. This tool can be
used to provide tabular data on any tracks included in the
UCSC genome browser and can be used for defined
chromosomal regions or for the entire genome. In this

figure, the table browser has been selected to generate lists
of genes and predicted genes for the QTL chromosomal
region of interest
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information regarding expression levels and tis-
sue type expression of genes in the region of
interest. The output data for the RefSeq gene
track and the Gene Scan Prediction track
includes GenBank ID number, exon start site and
exon stop site for each exon in the annotated or
predicted gene and gene sequence. The UCSC
Table Browser webpage includes links to
descriptions of all table functions and links to
tutorials for use of the Table Browser features
including merging, filtering, and intersecting data
from multiple tracks for output of data in tabular
form (http://genome.ucsc.edu/cgi-bin/hgTables).

8.4 Prioritizing Candidate Genes
Using Expression Profiling

Central to our strategy for the identification of
genes encoding QTLs is based on the premise
that the gene regulating the QTL must be enco-
ded within the region of the QTL signal and the
gene must be expressed in the relevant tissue.
Consequently, we developed a Chromosomal
Region Expression Array (CREA) strategy that
allows us to evaluate all DNA sequences in the
region of interest that may encode the gene
influencing the QTL We do not limit our
approach to the analysis of known genes; the
CREA is inclusive for all genes, ESTs and pre-
dicted genes within the QTL region of interest.
To interrogate the arrays, we use heterologous
RNA from the tissue most likely to be relevant to
the quantitative trait. In addition, we collect tis-
sues from sibling baboons discordant for the
quantitative trait in order to minimize genetic
variation due to genetic background and to
maximize genetic differences for the gene(s)
encoding the QTL. Using this approach, we can
significantly reduce the number of candidate
genes in the QTL region of interest (Cox et al.
2002).

Since developing the custom arrays we have
moved to using current sequencing methods to
analyze gene expression in QTL intervals. The
advantage of RNA Seq methods (Illumina GA
IIx platform) is that we are able to identify and
quantify all transcripts expressed in a sample. In

addition, quantification of each transcript is not
dependent on knowing the precise gene or non-
coding RNA sequence beforehand, as is the case
when designing primers for array-based methods.
For candidate gene prioritization, only those
genes in the QTL interval are used from the RNA
Seq data. However, with the use of network
analysis, it is possible to strengthen candidate
gene priority by inclusion or exclusion of the
candidate genes in networks constructed from the
entire transcriptome.

8.4.1 Discordant Sibs CREA Analysis

To identify baboons for the positional cloning of
the gene encoding the HDL1-C QTL study, we
performed phenotypic and genotypic analysis of
the pedigreed baboon population and identified
baboon sib-pairs discordant for HDL1-C serum
concentrations. The sib-pairs differed by at least
one standard deviation for HDL1-C values. In
addition, members of each selected sib-pair did
not share IBD (identical-by-descent) alleles, or
for some markers shared only one IBD allele, in
the chromosomal region of interest. For details of
sib-pair HDL1-C phenotype data see Cox et al.
(2002). Because the QTL peak LOD score is
greater for the high cholesterol high fat diet than
the chow diet, we predicted that the gene influ-
encing HDL1-C would be differentially expres-
sed between the two diets. Therefore, we
collected liver biopsies from baboons before and
after a 7-week, high cholesterol, high fat (HCHF)
diet challenge. RNA was extracted from the liver
biopsies and used to measure expression of all
known and predicted genes in the QTL region of
interest. In addition, gene expression was com-
pared between the chow and the high cholesterol,
high fat diets (Cox et al. 2002).

8.4.2 Designing a CREA

The CREA approach can be achieved by either
constructing a custom array or by analyzing
RNA Seq data for the chromosomal region of
interest. The CREA method is less expensive but
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may miss a gene or noncoding RNA due to probe
mismatches or may miss novel genes or non-
coding RNAs not predicted in the reference
genome. Both of these methods are consistent
with a conservative approach to positionally
cloning the gene encoding a QTL where one
evaluates all genes, noncoding RNAs and pre-
dicted genes in a QTL region of interest. The
analysis relies on an annotated reference genome
such as the human genome.

For the CREA method, after defining the
physical map locations of the markers delimiting
the QTL region of interest, we use the UCSC
Table Browser to identify all genes and predicted
genes in the QTL region of interest and use the
Table Function to download all exon sequences
for each of these genes and predicted genes. The
exon sequence of each gene is then used to
design 65-mer oligonucleotides specific for each
gene. The oligonucleotides are then arrayed and
used for chromosome region specific expression
profiling. To design gene specific primers for a
list of genes for which the cDNA sequence has
not yet been determined, we use a comparative
genomics approach. First we align the human
cDNA sequence with the rat and or mouse cDNA
sequence (USCS Genome Browser, NCBI-
Search Nucleotide, GeneLynx and Rat Genome
Database). We assume that nucleotides con-
served between human and rodent will be con-
served between human and baboon. We then
import both sequences into Sequencer (Gene
Codes, Inc.), align the cDNAs, and design oli-
gonucleotides for the gene based on conserved
coding regions using Oligo Primer Analysis
Software (Molecular Biology Insights, Inc).
Oligonucleotide design constraints include: (1)
oligonucleotide ≥ 65 nucleotides long; (2) less
than 8 mismatches between species; (3) 45–55 %
GC content; (4) no tetranucleotide repeats; (5) no
significant hairpin loops (less than 7 bonds in a
hairpin); and (6) optimal probe with highest Tm

and the highest negative DG value for GC
clamp. After oligonucleotide design, sequence
specificity is confirmed by performing an NCBI-
BLAST search and uniqueness of the oligonu-
cleotide is confirmed allowing less than 90 %

maximum identity with nontarget sequences.
After gene orientation is confirmed, oligonucle-
otides are synthesized and nylon-based arrays
printed with oligonucleotides spotted in triplicate
(Northcott et al. 2012).

Some investigators use a modified CREA
approach where they perform whole genome
expression profiling using a commercial gene
array and analyze genes in the QTL region of
interest. For species that do not have a com-
mercial array available, this presents a problem
for QTL candidate gene prioritization. If the
investigator uses an array from a different spe-
cies, such as a human gene array for baboon gene
expression, there are likely to be sequence dif-
ferences between human and baboon for some
genes resulting in some array probes that do not
cross react with baboon sequence. In these
instances, the lack of signal for a specific gene
may be because the gene is not expressed but it
may also be because the gene probe does not
cross react. Another limitation of some com-
mercial arrays is that they include only annotated
genes and not predicted genes. We know from
previous experience that some “predicted genes”
in one assembly of the human genome can
become annotated genes in later assemblies.
Therefore, if a commercial array is used, an
investigator should supplement those data with a
custom array that includes all predicted genes in
the QTL interval and includes all genes that did
not give a signal using the commercial array.

The Next Gen sequencing platforms provide a
means to sequence and determine abundance of
all transcripts (cDNAs) expressed in a tissue.
Using the RNA Seq method, genomic DNA in
the QTL region of interest is used to map all
expressed transcripts. Genome annotations are
used to annotate known and predicted genes and
noncoding RNAs. In addition, because transcript
abundance is measured using this method it is
possible to identify differentially expressed tran-
scripts in response to a challenge or that differ
among groups with variation in the phenotype of
interest. Using this method, we have identified
novel baboon transcripts that were not known or
predicted in human (Cox et al. unpublished data).
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8.4.3 Prioritizing Genes in Region
of Interest

Regardless of the method used in Sect. 8.4.2, to
quantify expression of genes in the QTL region
of interest, genes are prioritized based on
expression profiles, proximity to the peak LOD
score, biological relevance to the trait of interest,
and association with cardiovascular disease
QTLs from other studies. A positional table is
generated using the UCSC table browser that
includes annotated genes, expressed genes, and
QTLs. The QTL track includes human, mouse,
and rat QTL data annotated as a component of
the rat genome database project (Rapp 2000).
The table is then filtered to retain all CREA
expressed genes. Mean values for both groups
(e.g., low and high HDL1-C from chow and
HCHF diets) are added to the table for each
CREA expressed gene. In addition, GeneCards
(http://www.genecards.org/; Rebhan and Prilu-
sky 1997) and Online Mendelian Inheritance in
Man (OMIM) (http://www.ncbi.nlm.nih.gov/
omim; OMIM 2008) databases are accessed for
known function(s) of each annotated gene.

Genes are then ranked first by consistency of
each gene expression profiles with the QTL
signal. In this example, the QTL signal was
observed for the HCHF diet but not the chow
diet. Because these baboons were selected based
on their contribution to the QTL signal and
because these baboons are discordant for HDL1-
C, we predicted that the gene influencing HDL1-
C would be differentially expressed between low
and high responders on the HCHF diet, but not
the chow diet. Therefore, in this case the highest
priority genes were differentially expressed
between low and high responders on the HCHF
diet and showed either no differences between
low and high responders on the chow diet or no
differences in expression for the low responders
comparing chow and HCHF diets. Genes inclu-
ded in this group were further prioritized based
on biological relevance to the genes’ known
function with the quantitative trait and proximity
to the peak LOD score. Predicted genes cannot
be prioritized based on known function and are
therefore prioritized by expression profiles and

location relevant to related QTLs mapped to the
QTL region of interest. Using this approach for
the chromosome 18 QTL influencing HDL1-C,
we began with 354 genes and predicted genes in
the region of interest and reduced the number of
candidates to 3 genes (Cox et al. 2005).

8.5 Functional Polymorphism
Identification

After prioritization of candidate genes, functional
polymorphism(s) in the gene, that is, the poly-
morphisms that influence variation in the quan-
titative trait must be identified. To date, there are
no good prediction tools for the identification of
functional polymorphisms. In our baboon HDL1-
C QTL candidate gene study of endothelial lipase
(LIPG), we evaluated the orthologous human
gene for conserved noncoding sequences (Vista
Genome Browser, http://pipeline.lbl.gov/cgi-bin/
gateway2). These analyses showed conservation
from mouse to human for two regions in the 5′
flanking region of LIPG One region was imme-
diately upstream to the 5′ untranslated region and
the other region was located −2,446 bp from the
transcription start site. No polymorphisms were
identified in the conserved region proximal to the
5′ untranslated region and none of the polymor-
phisms located in the upstream conserved region
influenced LIPG expression of HDL1-C variation.
Furthermore, our study of LIPG revealed two
functional single nucleotide polymorphisms
(SNPs) and one deletion-insertion polymorphism
(DIP). SiteSeer (Boardman et al. 2003) was used
to determine predicted transcription factor bind-
ing to the LIPG promoter binding for the func-
tional DIP and SNPs in the 5′ flanking region.
One SNP was located in a predicted transcription
factor binding site and the insertion for the DIP
included a predicted transcription binding site;
however, the second SNP was not located in any
predicted or annotated regulatory element (Cox
et al. 2007). Therefore, traditional methods must
still be used to identify polymorphisms in each
candidate gene, all polymorphisms must be gen-
otyped in the population from which the QTL was
detected, and quantitative trait nucleotide

8 Comparative Genomics: Tools for Study of Complex Diseases 123

http://www.genecards.org/
http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
http://pipeline.lbl.gov/cgi-bin/gateway2
http://pipeline.lbl.gov/cgi-bin/gateway2


analyses must be performed on each polymor-
phism to identify functional polymorphisms. In
cases where candidate genes are predicted to be
differentially expressed and the variation in gene
expression influences variation in the quantitative
trait of interest, polymorphisms in potential reg-
ulatory regions as well as the coding regions must
be identified (Curran et al. 2005). In addition,
resequencing is most likely to reveal informative
polymorphisms if animals representative of vari-
ation in the quantitative trait of interest are re-
sequenced for polymorphism identification.

To limit the number of polymorphisms that
must be genotyped, we used the panel of dis-
cordant baboons for resequencing. Because these
baboons differ by at least one standard deviation
for the quantitative trait of interest and each
selected sib-pair in the panel does not share
identical-by-descent (IBD) alleles in the chro-
mosomal region of interest, then polymorphisms
that may influence variation in the gene encoding
the QTL will be present in this group of animals.

8.5.1 Sequencing Candidate Genes

In our baboon HDL1-C QTL example, the
baboon candidate genes in the QTL region of
interest had not yet been sequenced. Therefore,
we used gene and genome sequence information
from the human reference genome to isolate and
sequence the baboon gene. To sequence each
candidate gene for which no gene sequence
exists, we first isolated Bacterial artificial Chro-
mosome (BAC) clones containing the gene from
a baboon BAC library (BACPAC Resources;
BACPACorders@chori.org). We used the
human DNA sequence to design primers for
amplification of a fragment from each candidate
gene using Oligo software (Molecular Biology
Insights, Inc). The gene fragment was amplified
using these primers and the fragment was then
used as a probe to isolate a baboon BAC clone
containing the gene. The baboon gene of interest
was then sequenced from the BAC clone using
sequencing primers based on the reference
sequence gene data. To download the human
gene sequence, we used the Genome Browser

“get DNA” feature (http://genome.ucsc.edu/cgi-
bin/hgc?hgsid=107910572&o=33557438&g=
getDna&i=mixed&c=chr18&l=33557438&r=
49123308&db=hg18&hgsid=107910572; Kent
et al. 2002). To do so, we first entered the gene
name or GenBank ID number into the “position/
search” box in the Browser window (Fig. 8.4).
The Browser displays a link for that gene. After
activating the link, the Browser displays the gene
from the transcription start site to the end of the
3′UTR and shows intron–exon structure of the
gene. The genomic location was indicated in the
“position/search” box. The lower number in the
“position/search” box could be changed to
4,000 bp less than the number displayed and the
“jump” button used to display the gene including
4,000 bp of promoter (Fig. 8.4).

Clicking on the “DNA” link along the top of the
page loaded a new page asking for display pref-
erences; the gene position was auto filled into the
“position” box (Fig. 8.6). If there was a preference
for DNA display such as lower case for noncoding
and upper case for coding sequences, this can be
selected using the “extended case/color options”
feature. Selecting “get DNA” will prompt the
browser to display the DNA sequence for the gene
or region of interest (Fig. 8.7). The DNA sequence
was copied from the display and pasted into the
Oligo software program for design of sequencing
primers. In addition, the DNA sequence could be
pasted into Sequencher software (GeneCodes,
Inc., Ann Arbor, MI) for alignment and distribu-
tion analysis of sequencing primers. Each exon for
the reference gene was acquired in the same
manner and included in the Sequencher alignment
as landmarks of coding regions in the candidate
gene. For the top priority candidate genes, we
sequenced the introns, exons, untranslated
regions, and *4,000 bp of the promoter. We
chose to sequence beyond the traditional 1,000 bp
of promoter sequence because strong enhancer
elements have frequently been found in gene
promoters between −4,000 and −1,000 bp from
the transcription start site.

If RNA Seq methods are used to sequence and
quantify gene expression in a relevant panel of
animals, then resequencing will only need to be
done for the introns and promoter regions. In
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addition, the exon sequences from the RNA Seq
can be used to design primers for intron
sequencing.

8.5.2 Resequencing Candidate Genes

Sequence data from Sect. 8.5.1 is used to design
sequencing primers for resequencing the gene.
Sequence polymorphisms are identified by

sequencing the candidate gene in a panel of ani-
mals discordant for the quantitative trait of
interest. To ensure that polymorphisms are iden-
tified, resequencing is performed on single
alleles; all genomic DNA fragments that will be
sequenced from the panel of discordant animals
are subcloned and 8 clones for each animal in the
panel are sequenced. Briefly, genomic DNA
(50 ng) is amplified using species specific gene
primers, PCR buffer, and Taq DNA Polymerase.

Fig. 8.6 The “Get DNA” feature in the UCSC genome
browser can be used to download sequences from any
track. This tool allows the user to define the chromosomal

interval from which the sequence will be retrieved and
annotation of the retrieved sequence

Fig. 8.7 Output from genomic DNA sequence retrieval
from the “get DNA” feature in the UCSC Genome
Browser. The top line describes the chosen parameters.

Sequence can be copied and pasted into any sequence
analysis program or word processing file
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PCR products are subcloned into pTOPO (Invit-
rogen) and transfected into competent cells
(Invitrogen). Plasmid DNA is purified (Qiagen)
and sequenced (Applied Biosystems, Inc. (ABI)).
Sequencing products are purified using Exonu-
clease I (USB) and Shrimp Alkaline Phosphatase
(USB) and size fractionated. Sequence data are
imported into Sequencher, Gene Codes, Inc.
(GCI) for alignment and identification of poly-
morphisms. Nucleotides and insertion/deletions
are considered polymorphic if they are validated
by their presence in either (1) two or more
baboons in the sib-pair panel and data are con-
sistent using primers from both directions, or (2)
one baboon and the data were consistent for
sequence data from multiple clones, i.e., 4 clones
with one variant and 4 clones for a second variant.

8.6 Cross Species Use of Whole
Genome Expression Arrays

We use whole genome expression profiling (from
gene arrays or RNA Seq) to provide additional
data for QTL candidate genes. Ontological path-
way (http://www.geneontology.org/) (Ashburner
et al. 2000) and KEGG Pathway (www.genome.
jp/kegg/) (Kanehisa et al. 2004) analysis of whole
genome expression data provide detailed data on
individual genes in the context of that gene’s role
in described biological/biochemical pathways and
may reveal insights into molecular mechanisms
by which a gene influences a QTL. Cross species
use of whole genome expression arrays provides a
list of genes that provide quality signal for the
RNA samples of interest. These experiments
provide extensive information about expression of
many genes regardless of the species specificity of
the array. One caveat of the cross species use of
gene arrays is that the lack of signal for a gene
could be due to either low gene expression or lack
of cross species hybridization for that gene. From
the perspective of simply studying expressed
genes, this is not a problem. However, if the
investigator wishes to perform pathway analyses
for the dataset then the issue of “no-signal” genes
becomes an issue. Z-score calculations defining
significant gene categories and pathways are

based on the total number of genes on the array
that could give a signal (Doniger et al. 2003).
Thus, to accurately calculate z-scores, the array of
baboon genes for which expression was detected
on the human gene chip must be defined. There-
fore, for our baboon gene expression studies, we
evaluated both human Affymetrix (Affymetrix
U133A 2.0) and human Illumina (Illumina
Human WG-6 v2) gene arrays for whole genome
expression profiling of baboon RNA samples.

To evaluate each human whole genome
expression array, we used baboon RNA from 12
baboons for 13 different tissues including liver,
kidney, lymphocytes, fat, placenta, 0.5 gestation
(G) and 0.9G fetal liver, 0.5G and 0.9G fetal
frontal cortex, 0.5G and 0.9G fetal kidney, and
0.5G and 0.9G fetal adrenal. Whole genome
expression profiling was performed for each
sample and the samples were quality filtered
based on 0.5 for Affymetrix (for details see Cox
et al. 2006b) and 0.95 for Illumina gene arrays.
Because Affymetrix and Illumina use different
types of probes and different measures to assess
signal quality, the quality filter setting differs for
these two platforms. The lists of quality genes
from each tissue were merged for each array to
generate a list of genes providing a quality signal
for baboon RNA on that array platform. Using
this method, 16,186 of the 22,227 genes on the
Affymetrix GeneChip and 17,231 of 25,538
annotated genes and 4,916 of 20,658 predicted
genes on the Illumina BeadChip were detected
with quality signal. The merged list for each
array platform is the virtual “custom” baboon
array for that platform. After determining the
genes included in each custom array, the list is
uploaded into Genesifter (VizX Labs, Seattle,
WA) as the “custom” baboon array and used to
perform pathway analyses on the whole genome
expression profiling datasets.

8.7 Conclusion

Comparative genomic methods provide a wealth
of data for many genetic questions before the first
laboratory experiment begins. A basic knowledge
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of the central data repositories, available dat-
abases, and basic analytical tools will help
determine what is known about a system, what
can be inferred using data from multiple species,
and generate specific hypotheses and questions to
address the hypotheses. The UCSC Genome
Browser has become a central repository for
annotated genome data. In addition, the Genome
Browser links out to more detailed information
for all included data types. The database is con-
tinually updated and new tools are continually
developed and added to the Genome Browser.
With that said, information in the UCSC Genome
Browser depends on data that are provided by
other investigators. For example, baboon genome
sequence is routinely downloaded to the NCBI
trace archive (http://www.ncbi.nlm.nih.gov/
Traces/trace.cgi?) from the Genome Sequencing
Center (Baylor Genome Sequencing Center for
baboon) as the data are generated. However, these
data will not be downloaded to the UCSC Gen-
ome Browser until the baboon genome has been
assembled. Consequently, species-specific gen-
ome sequence data may be found prior to release
to the UCSC Genome Browser. This is the case
for bottlenose dolphin, kangaroo rat, and echinoid
genome sequences to name just a few. A list of
ongoing genome sequencing projects can be
found at the NCBI Entrez Genome Project
website (http://www.ncbi.nlm.nih.gov/genomes/
leuks.cgi). In addition, early genome sequence
data may be found at different websites (different
databases) than cDNA databases with the two
datasets generated by laboratories independent
from each other. Scientists involved in sequenc-
ing a species’ genome may not be part of the
community of scientists who routinely use that
species as a model system. For this reason, often
scientists who use a particular model organism
may not be aware that the genome sequencing for
that organism is underway. The search for
sequences specific to your species of interest,
even if they are unassembled and unannotated,
will add confidence to your comparative genomic
analyses and are worth the time spent searching to
see if they exist.
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9Genetic Structure and Its Implications
for Genetic Epidemiology: Aleutian
Island Populations
Michael H. Crawford

9.1 Introduction

The concept of genetic population structure
has been defined a number of different ways
(Crawford 1998):
1. The relationship between elements (genes,

genotypes, phenotypes, and individuals) that
comprise populations (Workman and Jorde
1980).

2. Corrections of ideal population (Hardy-
Weinberg-Castle equilibrium) with properties
such as panmixis, infinite size, and equal
genetic contributions of genotypes (Cavalli-
Sforza and Bodmer 1971).

3. All demographic and genetic attributes or
parameters of a population (Schull and
MacCluer 1968).

4. Population subdivision by geography, religion,
language, and ethnicity (Jorde 1980). Roughly,
population genetic structure can be character-
ized as the distribution of genes within popu-
lations and/or among subpopulations.
Although the majority of the observed varia-

tion in humans is found within populations, rather
than between geographical entities, the genes are
not distributed randomly and there is “structure”
in the arrangement and distribution of the genes

within populations. Based on blood groups and
protein variation, Lewontin (1972) through an
analysis of variance determined that most of the
variation (*85 %) occurs within populations,
while a small amount of variation is between
larger entities—such as continental populations.
These results, based on standard genetic markers,
were further substantiated by Barbujani et al.
(1997) using AMOVA on short tandem repeats
(STRs). However, the use of single nucleotide
polymorphisms (SNPs), particularly those located
on the Y chromosome, for AMOVA analysis
indicates that there is higher variance when
comparing continental populations. These results
reflect the smaller effective population sizes (Ne)
using nonrecombining Y-chromosome markers
(NRY; with three of the four sex chromosomes in
a breeding pair being X) and the genetic infor-
mation contained in SNP distributions.

Documented social and geographic factors that
impact on the distribution of genes include: (1)
geographical distances being correlated to genetic
distances (both standard markers and mtDNA
sequences) in Siberia and Aleutian Islands
(Crawford 2007); (2) language and geography in
Siberian and native American populations
(Crawford et al. 1997); (3) religion, geography,
and economics in small fishing villages (outports)
of Newfoundland and agricultural communities
of Tiszahat, Hungary (Koertvelyessy et al. 1993;
Martin et al. 2000); (4) the establishment of new
political boundaries in the Tiszahat region of
Hungary after World War II, which separated the
traditional Hungarian villages from their relatives
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across the former Soviet border, thus modifying
the migration patterns and altering the predicted
genetic structure (Crawford et al. 1999); (5) the
genetic repercussions of the subdivision of an
Altai population of Central Asia into patrilineal
clans as revealed by discriminant function anal-
yses of frequencies of variable number tandem
repeat (VNTR) markers (Crawford et al. 2002);
and (6) gene flow as a result of unique historical
events in northern Mexico and the Caribbean
(Crawford 1976, 1978, 1984). Beuten et al.
(2011) demonstrated using 64 ancestry informa-
tive markers (AIMs) that those significant differ-
ences in substructure were present in two cohorts
of Mexican American subjects from the San
Antonio area of Texas. Substantial differences in
admixture proportions were observed between
706 participants of the San Antonio Family Dia-
betes Study (SAFDS) and 586 male samples from
San Antonio Center for Biomarkers of Risk of
Prostate Cancer (SABOR), although the partici-
pants from these studies are from the same geo-
graphic region.

The genetic structure of populations, sculpted
by the actions of the forces of evolution, deter-
mines the presence of specific genotypes, which
interact with the environment to produce complex
phenotypes such as chronic diseases like athero-
sclerosis, diabetes, hypertension, gall bladder
disease, alcoholism, and osteoporosis. This
interaction of environment, genotype, mutation,
genetic structure, and complex phenotype is a
basic model utilized in genetic epidemiology and
diagrammatically represented in Fig. 9.1.

The complex interactions among geography,
unique historical events, environmental and
demographic factors, and the genes are difficult to
document in large, continuously distributed
human populations because of the underlying
genetic structure. However, island populations
offer geographically discrete aggregates, isolated
by physical barriers that limit population migra-
tion and result in genetic differentiation. Complex
populations are often stratified by ethnic or racial
groups that differ genetically from surrounding
subpopulations. Turakulov and Esteal (2003),
based on SNP distributions across the entire
genome and different populations, posed the

question: How many SNPs are required to detect
population structure? They concluded that for a
U.S. population more than 65 random SNPs are
necessary to detect distinct geographically sepa-
rated populations. A total of 100 SNPs raises the
probability of correct assignment to over 90 %.
Using autosomal STRs, Jorde et al. (1997) dem-
onstrated that at least 50 STRs are necessary to
statistically detect genetic structure based on the
major U.S. ethnic groups.

Nonrecombining Y-chromosome markers
have been used to detect population structure in
the United States. Hammer et al. (2006) using a
set of 61 Y-chromosome SNPs on 2,517 indi-
viduals from 38 U.S. regional and ethnic samples
found considerable interethnic admixture in these
regional samples. They noted that “continental
origin rather than current location in the U.S.
determines major patterns of Y-chromosome
variation for most ethnic groups” (Hammer et al.
2006). They also observed that despite inter-
marriage among the ethnic groups, which would
“erode” population structure, only a small pro-
portion of all participants were derived from two
or more “racial” groups. Thus, despite admixture,
population structure persists in U.S. regional
groups.

9.1.1 Population Structure and Its
Relevance to Mapping Genes
for Complex Traits

In recent years, the genome-wide association
study (GWAS) method has become a popular

MODEL FOR GENETIC EPIDEMIOLOGY

Complex PhenotypeGenotype

Genetic Structure of Populations

Environment

Mutation

Fig. 9.1 Schematic representation of the relationship
among the genetic structure of human populations,
environment, and the complex phenotype
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design with increased successes in localizing
susceptibility genes/variants for common, com-
plex diseases such as diabetes (Manolio et al.
2009; Prokopenko et al. 2008). This approach is
based on the common variant/common disease
hypothesis, and generally uses data from large
samples of unrelated cases and controls.
Although most of the GWAS’s have involved
populations of European ancestry, there have
been efforts to examine additional populations,
including recently admixed populations such as
African Americans and Hispanics and isolated or
founder populations such as the Old Order
Amish, given attention to the potential issues
such as allele frequency and linkage disequilib-
rium (LD) differences among diverse populations
(Cooper et al. 2008; Pasaniuc et al. 2011;
Rosenberg et al. 2010; Shen et al. 2010). Because
hidden population structure can potentially lead
to spurious findings in genetic association stud-
ies, it is necessary to adjust for population
structure to avoid bias in association findings.
The advent of high-throughput genotyping tech-
nologies has made it possible to adjust for the
effects of population stratification using infor-
mation from thousands of unselected SNPs
across the genome or selected sets of AIMs (Tian
et al. 2008; Kosoy et al. 2009). In consideration
of the genome as a mosaic of chromosomal
segments originating from different ancestral
populations, a number of approaches including
genomic control (GC) method or use of the
principal components (PCs) of the observed SNP
variation as covariates in an association analysis
have been used to account for population sub-
structure by paying attention to the issues of
“global ancestry” and “local ancestry” (Baran
et al. 2012; Hao et al. 2010; Pääbo 2003; Qin
et al. 2010).

The purpose of this chapter is to provide the
genetic substructure of the Aleutian Island pop-
ulations which are molded by historical founder
effects and one-way gene flow from the Euro-
pean males to the Aleutian females. This infor-
mation should aid in any future genetic
investigations of complex diseases in the Aleu-
tian Island populations, given the current burden
of diseases such as hypertension and diabetes in

the Alaskan populations (please see Chap. 11 by
MacCluer et al. in this volume regarding genetics
of complex diseases in Eskimos) including the
Aleuts (Torrey et al. 1979; Schraer et al. 1988;
Naylor et al. 2003; Amparo et al. 2011).

9.1.2 Population Structure
of the Aleutian Islands

9.1.2.1 Geography and Subsistence
Background

There are more than 200 Aleutian Islands
stretching westward from Alaska almost
2,000 km toward Siberia (Fig. 9.2, a map of the
Aleutian Archipelago). The estimated size of the
pre-Contact Aleutian population is between
15,000 and 20,000 inhabitants. The Aleut form
of subsistence depended almost entirely on
marine resources, including sea mammals, fish,
and invertebrates. They fished, hunted in the sea,
and collected sea urchins and mussels on reefs
off the coasts of the islands. The Aleuts built
swift seagoing kayaks (baidarkas) for hunting
seals and other sea mammals. They lived in
subterranean complexes to protect themselves
from the harsh island environments, high winds,
cold, and high humidity.

9.1.2.2 Archeological Background
The earliest evidence for human habitation in the
Aleutian Islands is in the eastern Fox Islands at
Anagula and Hog Island, located off the larger
island Unalaska, dating approximately 9,000–
8,000 years before present. Archeological sites in
the Central Islands occur significantly later,
beginning with those on the Andreanof Islands at
approximately 5,000 years ago. The western
islands were not settled until approximately
3,500 years before present (Rat Islands) with
evidence for the occupation of Attu 2,210 years
ago and Shemya 3,255 years ago. Apparently,
the earliest Aleuts crossed the Bering land bridge
more than 9,000 years ago and colonized
(through kin-structured expansion) the islands
from the Alaska Peninsula in a westward
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direction, reaching the Far Islands only
3,500 years ago (West et al. 2007). The early
Aleut populations apparently failed to reach the
most westerly islands of the Archipelago, the
Commander Islands (Bering and Medni), since
there is no archeological evidence of Aleut set-
tlements on these island off the coast of Kam-
chatka. The initial expansion of the Aleuts into
the Archipelago was followed by regional dia-
lectic differentiation, unique archeological
assemblages, and distinctive cultural innovations
in the Eastern, Central, and Western Islands.
Alternative hypotheses have been generated by
Russian archeologists claiming that some island-
hopping Paleo-Aleuts originated from Kam-
chatka and island-hopped to the Western
Aleutian Islands. However, neither the archeo-
logical nor molecular data support these suppo-
sitions (Rubicz et al. 2007).

9.1.2.3 Russian Contact
Russian contact with Aleutian Native popula-
tions dates back to the eighteenth century, with
voyages of exploration by Vitus Bering and
Aleksei Cherikov. Disease epidemics (smallpox,

tuberculosis, measles, and influenza) and warfare
reduced the Aleutian Native population from an
estimated 15,000–20,000 persons to 2,000 per-
sons. In addition, Aleut males and some families
from the surrounding islands were forcibly relo-
cated by the Russians to previously uninhabited
islands containing breeding grounds for seal
populations. These relocations to the Com-
mander Islands (consisting of Medni and Bering
Islands) in 1825–1828 and to the Pribilof Islands
(St. George and St. Paul) in 1825–1830 estab-
lished settlements involved in harvesting seal
furs and provisioning expeditions into the
Americas (Rubicz et al. 2010).

9.1.2.4 Disruption During World War II
The original population structure of the Aleutian
Islands was further disrupted by: (1) the purchase
of Alaska by the United States from Russia and
the political separation of the Aleuts of the
Commander Islands from their kin distributed
along the remainder of the Archipelago; (2) the
occupation of Attu during World War II by the
Japanese army, which rounded up the inhabitants
and transported them to a camp in Japan

Fig. 9.2 Map of the Aleutian Archipelago
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(few who survived the detention in Japan returned
to the Aleutian Islands); and (3) ongoing war in
the Aleutian Archipelago, which also forced the
relocation of Aleuts from the western and central
islands to camps in mainland Alaska. Most of the
Aleuts returned to their home islands with the
cessation of wartime activities in the islands.

9.2 Methodology

9.2.1 Sampling

A total of 11 island populations (Akutan, Atka,
Bering—Commander Islands, False Pass, King
Cove, Nelson Lagoon, Nikolski on Umnak, Sand
Point, St. George, St. Paul—Pribilof Islands, and
Unalaska) were sampled from 1999 to 2007
(Fig. 9.2). In addition, Aleut volunteers residing
in Anchorage were sampled and their DNA was
assigned on the basis of their villages of birth.
Samples were collected from indigenous popu-
lations of Kamchatka (Koryaks, Evens, and
Itel’men) for comparative purposes to test a
Russian hypothesis concerning origins of Aleuts
from Kamchatka.

9.2.2 DNA Collection and Analysis

Buccal swabs, sputum samples, and blood spec-
imens were collected from participants and DNA
was extracted using standard phenol chloroform
extraction methods (Chomczynski and Sacchi
1987) and Chelex-based extraction method in the
field (Walsh et al. 1991). Type restriction frag-
ment length polymorphism (RFLP) cut site
analyses in the coding region were conducted for
mitochondrial DNA haplotype assignment. The
A haplogroup was defined by the presence of
+HaeIII 663, haplogroup B by the presence of
9 bp deletion; C was characterized by the
absence of HincII 13259 and the presence of AluI
13262, and D was defined by the absence of AluI
5176 (Rubicz 2001). MtDNA samples were
sequenced using Sanger dideoxy cycle protocols

on a Beckman CEQ 8,000 autoanalyzer for the
hypervariable region HVS-I.

Y-chromosome haplogroups and haplotypes
were constructed using single nucleotide poly-
morphisms (SNPs) and short tandem repeats
(STRs). A total of 10 of the following SNPs were
amplified and identified: Q (P36); Q3 (M3); C
(RPS4Y); I (M170); I1a (M253); J (12f2); N
(M231); R1a (SRY1038); R1b (M269); and E3
(P2). The following STRs were genotyped: DYS
19; DYS 3891; DYS 38911; DYS 390;
DYS 391; DYS 392; DYS 393; DYS 385a,b;
DYS 438; and DYS 439 (for a description of the
methodology, see Zlojutro 2008).

9.2.3 Analytical Methods

Genetic discontinuity was detected using spatial
analysis of molecular variance (SAMOVA) for
defining population groupings that are geo-
graphically homogeneous and maximally differ-
entiated from each other (Dupanloup et al. 2002).
In addition, Delaunay triangulation methods of
Monmonier (1973) and the BARRIER computer
program ver. 2.2 (Manni and Guérard 2004;
Manni et al. 2004) were utilized to construct a
geographic network of sampling locations.
Voronoi tessalation was used to derive Delaunay
triangulation. Based on this triangulation con-
nectivity network, Monmonier’s algorithm was
used to identify genetic boundaries, i.e., those
geographic zones that have the greatest differ-
ences between populations. SAMOVA analysis
was performed on DA distances based on HVS-I
with 2–7 population groups selected a priori. The
highest UCT value (greatest genetic variance
between the K number of groups) was used to
determine K number of groups.

9.3 Results

Based on RFLP analyses and hypervariable
segment (HVS-I) sequences of Aleut samples
from the western and central islands, Aleut
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mtDNA haplogroups belong to two of the five
New World founding haplogroups, 71.5 % D and
28.5 % A (Rubicz 2001, 2007; Rubicz et al.
2003; Zlojutro et al. 2006). The eastern Aleutian
Islands and the Alaska Peninsula Aleut popula-
tions contain a higher incidence of A haplo-
groups; plus, there is greater admixture with
females of European ancestry (Zlojutro 2008).

The results from the Y-chromosome analyses
differ significantly from the observed mtDNA
patterns. The majority of the Y-chromosome
haplogroups identified in the Aleut samples
represent European lineages (85 %), whereas
mtDNA haplogroups A and D are two of the four
major Native American matrilineages believed to
have been associated with the original peopling of
the New World. In Fig. 9.3, the Y-chromosome
haplogroup frequencies for the sampled Aleut
communities are presented. Overall, haplogroups
R1a (25.5 %) and R1b (21.9 %) have the highest
frequencies. In Europe, haplogroup R1a is pre-
dominantly found in Eastern European and Rus-
sian populations, while haplogroup R1b is most
common in Western Europe and the British Isles.

Haplogroup I1a has the third highest frequency
(13.9 %) in the Aleuts and is common in Scan-
dinavian populations (Karlsson et al. 2006). Of
the remaining haplogroups identified in the Ale-
uts, only Q* and Q3 are believed to be Native
American lineages. Thus, 85 % of the total male
sample has non-Aleut Y-chromosomes, of Euro-
pean origin (primarily Russian, Scandinavian,
and England).

Figure 9.4 illustrates the east–west distribu-
tion of mtDNA haplogroups in the Aleutian
Archipelago and the surrounding circumpolar
region. On the western edge of this continuum,
haplogroup D reaches fixation on Bering Island,
a population aggregated by the Russians in the
1825–1828 period, while the higher frequencies
of the A haplogroup are seen in the eastern
region (Rubicz et al. 2010). The higher incidence
of A haplogroup (observed in both Alaskan
Yupik and the Athapaskans of the Alaskan
mainland) apparently reflects gene flow from
groups across the Alaskan boundary into the
eastern Aleut populations. Archeological evi-
dence supports this interpretation because of the

Fig. 9.3 Y-chromosome
haplotypes based on SNPs
for the Aleutian Islands
(Zlojutro et al. 2008)
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similarities of trade objects, suggesting cultural
exchanges (Dumond 2001).

An exceptionally high correlation was
observed between genetic and geographic dis-
tance matrices in the Aleutian Islands. Mantel
tests of matrices based on intermatch mtDNA D
sequences and geographic distances (as the crow
flies) among 11 Aleutian Islands yielded a cor-
relation r = 0.72; p < 0.000. The relationship
between genetics and geography is highly sig-
nificant, indicating the preservation of the genetic
structure along the maternal lineages. By con-
trast, there is no significant correlation between
Y-chromosome haplotype based distances and
geographical distances in kilometers between the
islands. Mantel test for intermatch mtDNA D
versus Y STR–based distances (Nei’s Da) = 0.26
(p = 0.164) n.s. It is surprising that the maternal
pre-Contact population structure has been main-
tained, despite depopulation, relocation of pop-
ulations, admixture with Russians in the eastern

islands and with English and Scandinavians in
the western islands (Crawford et al. 2010).

Figure 9.5 displays a plot of autocorrelation
indices on the ordinate and geographic distances
in kilometers on the abscissa. The plot indicates
that a highly significant p < 0.000 relationship
exists between geographic distance and mtDNA
sequences. However, the negative correlations in
the autocorrelation results do not support an
isolation-by-distance model. As the geographic
distances become of greater magnitude, the
autocorrelations become negative. The most
parsimonious explanation is that the demic
expansion of the Aleuts was kin-selected, fol-
lowed by founder effect, genetic drift, and sub-
population differentiation (Crawford et al. 2010).

The highest UCT (variance among groups
relative to total variance in the sample) was
obtained when K was set to four groups (0.326;
p = 0.000). The SAMOVA analysis reveals that
the Kamchatkan populations (Itelmen and

Fig. 9.4 MtDNA haplogroup east–west gradient in the Aleutian Archipelago represented by pie charts
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Koryaks) and Alaskan Yupik show genetic dis-
continuity from the other circumpolar popula-
tions (Fig. 9.6). The aggregate populations,
Bering, St. George and St. Paul, cluster with
Atka—an island that forcibly contributed sub-
stantially to the founding of these aggregates.
Surprisingly, in the SAMOVA analysis, the
Athapaskans, Chukchi, and Siberian Yupik are
included in the fourth group and do not warrant
the separation observed in the Delaunay trian-
gulation method.

The genetic barriers revealed by the Delaunay
triangulation method (Fig. 9.7; Manni and
Guérard 2004) are: (1) Alaskan Yupik from
Chukchi, Siberian Yupik, and Aleut populations;

(2) between Kamchatkan populations and the
remainder of the circumpolar groups; (3) Aleuts
from Alaskan Eskimo populations; and (4) east-
ern Aleuts from central and western island pop-
ulations. These barriers clearly reflect the
evolutionary history of the circumpolar popula-
tions on both sides of the Bering Strait. The
Athapaskans cluster with the populations of the
Chukchi Peninsula and a barrier exists between
them and the Alaskan Yupik and the Aleut
populations. The barrier between the easternmost
Aleuts and the western groups reflects the tem-
poral pause (until climatic change) by ancestral
Aleutian populations in their westward expan-
sion (West et al. 2007). The genetic discontinuity

Fig. 9.5 Spatial patterns
of mtDNA sequence
diversity in the Aleutian
Islands, following the
methods of Bertorelle and
Barbujani (1995)

Fig. 9.6 Multidimensional
scaling plot of mismatch–
intermatch distances based
on mtDNA sequences
(HVS-I). SAMOVA
groupings (K = 4) are
indicated in the MSD plot
by arcs separating
population aggregates.
Stress is a measure of
goodness-of-fit between the
distances in the projected
MDS to the function of the
original distances

136 M.H. Crawford



reflects the high frequency of haplogroup D in
Atka and the aggregated Aleut settlements. This
study documents regional genetic microdifferen-
tiation, following the expansion from the eastern
and central regions to the western islands,
resulting in the founder effect and the action of
other stochastic processes (Crawford et al. 2010).

9.4 Conclusions

The genetic structure of the indigenous popula-
tions of the Aleutian Islands is preserved in the
maternal lineage—characterized by mitochon-
drial DNA sequences. In the western islands,
women with known Aleut ancestry display
only the A and D mitochondrial haplogroups.
European mtDNA haplogroups were not detected
in the western and central islands, but a low
frequency was observed in the eastern islands
from non-Aleut women marrying into the com-
munities. In contrast, the Y-chromosome markers

reveal a predominantly east European haplo-
group (85 %) and only 15 % of Aleut males
exhibited Native American Q or Q3 haplogroups.
Thus, the gene flow from Russian colonialists
was primarily in one direction, Russian males
marrying Aleut females. Therefore, to accurately
detect admixture and population structure of the
Aleutian Islands, both NRY and mtDNA markers
are required to detect the asymmetry of the gene
flow. Autosomal, recombining STRs provide an
intermediate picture of the relationships among
the population subdivisions.

How can we be certain that the genetic
structure revealed by mtDNA sequences is
indeed the result of the original settlement of the
Aleutian Islands and subsequent genetic micro-
differentiation? Mantel tests indicate that an
intimate and statistically significant relationship
(r = 0.7 p < 0.000) still persists between the
geography of the archipelago (as measured in
kilometers as the crow flies between the islands)
and the genetic distances (measured as

Fig. 9.7 Delaunay triangulation method for genetic barriers based on mtDNA sequences (HVS-I) among Aleutian
Island residents and other circumpolar populations
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intermatch distances using mtDNA sequences).
On the other hand, there is no indication of a
statistically significant relationship between
genetic distances measured by NRY markers and
geographical distances. History plays a promi-
nent role in explaining the distribution of genes
throughout the Aleutian Archipelago. Russian Y
chromosomes and surnames occur in the western
and central islands, while Scandinavian and
English Y chromosomes are distributed
throughout the eastern islands. The western
European incursion into the eastern Aleutian
Islands and the Alaska Peninsula reflect the
purchase of Alaska in the nineteenth century
from Russia by the United States, followed by
settlement of west European fishermen on spe-
cific eastern islands. Thus, it is essential in dis-
ease association studies that an adequate number
of randomly selected SNPs, distributed through-
out the genome, be used to measure and reflect
the actual genetic structure of the population and
its subdivisions. In addition, nonrecombining
portions of the genome are useful to elucidate the
history and chronology of the observed popula-
tion structure.
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10Mapping Genes in Isolated Populations:
Lessons from the Old Order Amish
Braxton D. Mitchell, Alejandro A. Schäffer, Toni I. Pollin,
Elizabeth A. Streeten, Richard B. Horenstein,
Nanette I. Steinle, Laura Yerges-Armstrong,
Alan R. Shuldiner, and Jeffrey R. O’Connell

10.1 Introduction

The application of high throughput “–omics”
technologies (e.g., genomics, transcriptomics, and
proteomics) to human and medical genetics in
recent years has led to numerous gene discoveries
for a variety of complex diseases and traits. Many
of the studies utilizing these technologies have
used samples obtained from large population-
based (or in some cases family-based) studies to
identify DNA sequence variants and gene
expression and protein profiles associated with the
trait of interest. Insights about the genetic under-
pinnings of trait variation and disease suscepti-
bility have come from studies of different
populations. The goal of this review is to describe
how unique insights can be provided through
studies carried out in isolated populations, that is,
populations that are relatively genetically homo-
geneous because they descend from a relatively
small number of ancestors (founders) and thus the
individuals in the population are genetically sim-
ilar. To illustrate this point, we provide in this
chapter: (1) a brief description of the OOA com-
munity in Lancaster County, PA, an isolated
population whom our group at the University of
Maryland School of Medicine has been studying
since 1993 with the help of scientists at the NIH;
(2) a description of several genetic discoveries we
have made in this population by virtue of the fact
that it is an isolated population; and (3) the rele-
vance of these discoveries to our understanding of
health and biology.
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10.2 Old Order Amish of Lancaster
County, PA: History
and Background

Amish are Anabaptists, meaning that they
believe in adult baptism by choice. The Ana-
baptist movement was started in the 1520s in
Germany and the cantons of Switzerland by Ja-
kob Hutter (after whom the Anabaptist Hutterites
are named), Conrad Grebel, Felix Manz and
Blaurock (Gingerich and Kreider 2002). The
founders of Anabaptism were contemporaries in
both time and place of Martin Luther (1483–
1546) and John Calvin (1509–1564), who are
prominent among the founders of the more
mainstream Protestant (Reformation) movement.
Among the central tenets of the Anabaptists were
pacifism, separation of church and state, and
adult baptism. These were radical views (inter-
esting to contrast with the modern perception that
Anabaptists are traditionalists) for war-torn six-
teenth-century Europe and caused the Anabap-
tists to be persecuted and socially isolated. The
social and religious isolation had the side effect
of creating a genetic bottleneck, which is one of
the reasons that genetic studies in Anabaptist
societies have proven so fruitful centuries later.

The Amish community takes its name from
the founder Jakob Ammann (ca. 1644–1730).
Ammann was a leader in the Swiss Anabaptist
(often called Swiss Brethren) church who felt
that adherence to church rules was being
enforced too loosely. Ammann instituted a
practice of strict “shunning” by which his fol-
lowers were to reject socially those who did not
strictly practice the church rules. Ammann also
introduced a practice of plain dress, which is
followed rigidly by the OOA to this day.

Because of persecution, Anabaptists began to
escape from Europe by boat to the British colo-
nies (later to become the United States) begin-
ning in the early eighteenth century (Gingerich
and Kreider 2002). In 1737, there was a large
group of unambiguously Amish immigrants to
what is now Lancaster County, Pennsylvania;
some earlier Anabaptist immigrants may have
also been Amish (Gingerich and Kreider 2002).
In the late seventeenth century, Eastern

Pennsylvania had been opened for settlement by
the efforts of William Penn (1644–1718), for
whom Pennsylvania was named. This area may
have been particularly attractive to the Anabap-
tist immigrants because Lancaster has some of
the most fertile land in the eastern United States
and because Penn was a (pacifist) Quaker, sug-
gesting correctly that the Anabaptists’ religious
views would be more tolerated in their new land.
Hundreds of Amish immigrants settled in this
area during an approximately 100-year period
beginning in the early eighteenth century
(Gingerich and Kreider 2002). There was another
burst of Amish immigration from Europe after
the war of 1812 approximately coinciding with a
Pennsylvania Amish migration westward to
newer states, especially Ohio and Indiana
(Gingerich and Kreider 2002). These states were
newly attractive because of policies by the Uni-
ted States government that increasingly excluded
the Native American residents and encouraged
new settlement of western areas of the rapidly
growing country.

There are no longer any Amish in Europe.
Since their relocation to the United States, there
have been several divisions within the Amish. A
defining characteristic of the different Amish
groups and their offshoots remains their belief in
adult baptism and a humble lifestyle. For the
purpose of genetic studies of complex traits, this
aspect of the Amish culture may be useful
because confounding environmental factors such
as diet and socioeconomic status are relatively
homogeneous in the Amish. Furthermore, rates
of alcohol drinking and tobacco usage (two
environmental risk factors for many complex
diseases) are much lower among the Amish than
in the United States as a whole (Ferketich et al.
2008). Several excellent histories and descrip-
tions of the Amish have been written, including
one by Kraybill (2001).

Amish culture is unique among most Western
cultures in that its core beliefs in church, com-
munity and social cohesiveness, and selflessness
permeate daily life. Amish society has been tra-
ditionally agrarian, but with dwindling avail-
ability of farmland and large family sizes, many
have taken on other occupations, including
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carpentry and shop-keeping. Compared to non-
Amish, Amish are very physically active; they
maintain a traditional lifestyle, still utilizing the
horse and buggy as their main mode of trans-
portation, and do not use electricity in their
homes.

Another aspect of Anabaptist culture that
makes these groups especially suited to genetic
studies is that, like the Mormons, they are fas-
cinated with knowing and recording their gene-
alogies. Hundreds, if not thousands, of
Anabaptist genealogy books have been pub-
lished, and there are libraries in Pennsylvania and
Indiana focused on housing these books. The
Swiss Anabaptist Genealogical Association
(SAGA) actively maintains a website of geneal-
ogies and holds annual meetings. To make these
resources more directly useful in genetic studies,
we have systematically (removing many errors
and duplicates) combined several of these gene-
alogy sources into the Anabaptist Genealogy
Database (AGDB) (Agarwala et al. 2003). The
present AGDB version 5 includes over 530,000
distinct individuals, including all the approxi-
mately 106,000 individuals in the 2009 edition of
the Descendants and History of Christian Fisher
(Beiler 2009), which is generally considered the
most comprehensive genealogy book for the
Lancaster County OOA. We have also developed
a software package, PedHunter (Agarwala et al.
1998; Lee et al. 2010), that makes it possible to
automatically construct pedigrees in various
ways and answer a variety of queries that medi-
cal genetics researchers find useful. PedHunter is
formally separate from AGDB, so that PedHun-
ter can be and has been used in genetic studies of
other groups with available genealogic records.
Unlike the SAGA databases, the development,
maintenance and usage of AGDB is considered
human subjects research and has been covered
since 1997 by an IRB-approved protocol at the
National Institutes of Health. Access to AGDB is
granted to researchers at other institutions (e.g.,
University of Maryland, Medical School) who
have their own IRB-approved human subjects’
protocols for such studies.

Based on the publication of the 2002 Church
Directory of the Lancaster County Amish

(Gallagher and Beiler 2002), which enumerates
households within the OOA Lancaster County
church districts, we have estimated the popula-
tion size of the Lancaster County Amish com-
munity at that time to be*21,900 individuals, of
whom *7,500 are age 25 years or older (Tolea
2007). Due to the high birth rates within the
OOA community, the population size had likely
increased to 34,000–36,000 by 2010.

10.3 The Genetic Architecture
of the Old Order Amish

In addition to being geographically localized, the
OOA offer particular advantages for genetic
studies because of their unique ancestral history.
From a population genetics perspective, the three
major forces shaping the genetic variation in the
present Amish population are genetic drift,
recombination, and mutation. Genetic drift
increases or decreases the population frequency
of any particular allele, recombination shuffles
haplotypes across each chromosome, and muta-
tion introduces new alleles. Each of our chro-
mosomes is a mosaic of ancestral chromosomes,
and the resolution of the mosaic depends on the
number of ancestral generations insofar as this
shapes the forces influencing genetic variation.
One useful metric of that mosaic is the average
kinship coefficient between founders and living
descendants. For the OOA, we have developed
simulation and analysis tools to investigate how
genetic drift shapes the founder and allelic
architecture of our study subjects in greater
detail. Founder architecture refers to the distri-
bution of founder alleles in the present-day
population and thus represents identity-by-des-
cent. Because we know the identities of the
founders via the genealogy, we can measure
founder architecture (i.e., identity-by-descent
relationships throughout the population) by
assigning to each founder two distinct alleles,
randomly dropping them through the pedigree
many times, and then computing frequencies for
which particular founder alleles are observed and
the numbers of different founder alleles present
in the present-day population at a particular

10 Mapping Genes in Isolated Populations: Lessons … 143



locus. In particular, these simulations provide
insight as to how the genealogical relationships
shape the frequency of rare population alleles.

Based on 3,480 adult Amish subjects who
have participated in one or more of our Amish
studies (representing nearly one-third of the total
number of Amish adults projected to be in the
community as of 2002) and their known ances-
tors dating back to the initial Amish founders of
the Lancaster County settlement, we estimated
the number of founders contributing to allelic
variation at a single locus. These subjects can be
connected into a single 10,124 subject pedigree
with 364 founders, thus generating 728 founder
alleles. Analysis of 1,000 replicates in which
unique founder alleles are assigned and dropped
down through the pedigree revealed that at a
single locus there are on average 129.5 distinct
founder alleles with a minimum of 114 and
maximum of 148; this average can be regarded as
the effective sample size of the 3,480 subjects.
Thus, for any specified locus, on average 600
founder alleles (*728–129), or 82 % of the
genetic variation, are lost. While this sounds
high, recall that 50 % is lost from parent-to-child
transmission. Figure 10.1 shows the frequency
spectrum of the variation that survives in the top

ten ranked founder alleles averaged over each
replicate.

Because some founders have more descen-
dants than others, the contribution of each to
genetic variation in the current population is
unequal. In fact, only 128 founders (78 females
and 50 males) accounted for over 95 % of the
mean relative founder contribution among living
OOA descendants (Lee et al. 2010). Fifty percent
of the total genetic variation is accounted for by
only 10 distinct founders; however, the actual
number of founders that account for that variation
varies across replicates. Across the 1,000 repli-
cates, 19 distinct individuals assumed the role of
highest contributing founder, with a maximum
contribution of 12 % and an average contribution
of 9.6 %. If that founder allele having a non-
negligible frequency in the Amish genealogy
represents a variant that is rare in the general
population, then these results highlight how
genetic drift can shape the rare and low-fre-
quency allele spectrum present in the isolated
population of known genealogy. It is also antic-
ipated that the number of rare-disease alleles will
be smaller in the founder population compared to
large outbred populations, but any rare allele that
survives into the living descendants of the
founders of the isolated population will be pres-
ent in many carriers, unless it is very deleterious
to fitness, in the heterozygous state. For example,
the founder allele APOB R3500Q, described
below, has a 6 % frequency in our population,
versus <1 % in the general population.

Another important result of the simulation is
that the remaining 50 % of the variation not
shown in Fig. 10.1 is accounted for on average
by 120 founder alleles (129.5 − 10) in decreasing
frequency, down to a handful of copies of an
allele. For example, we have found in our sample
of 3,480 Amish subjects only 7 copies of a
mutation (rs121918387, allele frequency 0.1 %)
in the APOB gene leading to a truncated species
(apoB67) that has been previously reported in an
Amish community from the Midwest (Welty
et al. 1991). Thus, founder rare-allele frequency
in the current population can range from >10 %
down to <0.1 %, which impacts the statistical
power to detect them. Finally, another important

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 3 4 5 6 7 8 9 10

C
um

ul
at

iv
e 

F
ou

nd
er

 C
on

tr
ib

ut
io

n

Number of Founders

Fig. 10.1 Mean founder contribution to the present-day
OOA gene pool

144 B.D. Mitchell et al.



result of the simulation shows that most low-
frequency alleles in the current population
(<3 %) will be founder effects; that is, of the few
copies that might have been present in different
founders all but one is lost or only one reaches
high frequency. Thus, low-frequency population
alleles on single nucleotide polymorphism (SNP)
chips that are not monomorphic in the Amish
tend to track founder chromosome segments and
as a consequence any rare causal variant on that
segment. Precisely because rare alleles in the
OOA generally represent founder alleles, there
tends to be long-range linkage disequilibrium
(LD) among low-frequency alleles in the OOA,
although the same is not true for common alleles
that have entered the population in multiple
founders (Van Hout et al. 2009). The long-range
LD between low-frequency alleles in the Amish
has facilitated detection of both major genes for
triglycerides (APOC3 R19X) and low density
lipoprotein (LDL) levels (APOB R3500Q) in the
Amish, where the most associated SNPs
were >300 kb from the gene, respectively. Thus,
in essence one is detecting linkage with the
nearest genotyped, polymorphic SNP, i.e., a
within-Amish association, not a population
association.

10.4 Approaches for Mapping
Genes in the Old Order Amish

From the above discussion, it should be evident
that isolated populations such as the Amish can
be invaluable resources for identifying variants
that may be rare in the general population, but
whose frequencies are increased due to such
forces as genetic drift. While the frequencies of
numerous rare variants may be increased in the
Amish, many others will be lost. In contrast,
most variants that are common in European
Caucasian populations are also likely to be
common in the Amish (Van-Hout et al. 2009).

One might expect that among the rare variants
over-represented in the OOA will be some hav-
ing high penetrance and large effect sizes, pro-
vided that the associated phenotype is not
deleterious to childbearing directly or indirectly.

Within the OOA and other isolated populations,
identifying carriers of these types of variants may
be important for clinical or risk prediction pur-
poses. But equally important, however, such rare
variant discovery may provide exciting insights
about biology extending far beyond the OOA
population alone, for example, by implicating the
involvement of a gene in a novel biological
pathway.

A variety of approaches are amenable for
mapping rare strong-effect variants in isolated
populations such as the OOA. Candidate gene
approaches can be fruitful for investigating
extreme phenotypes since the genetic variants
involved may be exonic mutations that disrupt
gene function and the causative mutations may
be more easily identifiable because of their pre-
dictive effects on gene function. Conventional
model-based genetic linkage analysis of large
pedigrees is also an attractive approach and is
facilitated in the OOA by the genealogy resour-
ces described in Sect. 10.2. Other pedigree-based
approaches are also well-suited for gene mapping
in isolated populations. For example, because of
the relatively small number of founders, hus-
bands and wives typically share common
ancestors, making it possible to utilize homozy-
gosity by descent mapping (Lander and Botstein
1987) to map genes for very rare recessively
inherited traits. This approach, which involves
identifying stretches of homozygosity within
affected individuals, has been used to find the
causative genes for several monogenic, recessive
disorders in the OOA [reviewed in Strauss and
Puffenberger (2009)], and we have used an
extension of this approach for complex traits to
map genes for blood pressure variation in the
OOA (McArdle et al. 2007).

One of the known pitfalls of homozygosity
mapping is allelic heterogeneity, meaning that
there are multiple deleterious variants of the
same gene in the population and hence affected
individuals may be compound heterozygotes for
two mutations (Miano et al. 2000). Indeed, allelic
heterogeneity has been documented for at least
two disorders prevalent in the OOA: phenylala-
nine hydroxylase deficiency (Wang et al. 2007)
and Cohen syndrome (Taban et al. 2007); in the
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case of Cohen syndrome, there are affected OOA
individuals who are compound heterozygotes for
two mutations of the causative gene, VPS13B
(Taban et al. 2007). If one wants to avoid the
allelic heterogeneity pitfall, one can use Ped-
Hunter (Agarwala et al. 1998; Lee et al. 2010) to
automatically and systematically extract from
AGDB (Agarwala et al. 2003) pedigrees that
connect all the obligate carriers and affected
individuals. Then, one can compute conventional
model-based LOD scores to find evidence of
linkage, as was done for example, for the disor-
der Amish microcephaly (Rosenberg et al. 2002).

For complex traits, some statistical geneticists
have argued that model-free (a.k.a. nonparamet-
ric) test statistics such as NPL scores (Whitte-
more and Halpern 1994; Kruglyak et al. 1996)
are preferable to model-based LOD scores.
However, this statistical preference creates a
computational problem because the software
packages that compute NPL scores, e.g.,
(Kruglyak et al. 1996) use the Lander-Green
method of pedigree analysis, which can handle
many markers, but only pedigrees of very limited
size. OOA pedigrees are not of limited size. For
this purpose, the size is measured as the number
of “bits,” which is twice the number of non-
founders minus the number of founders. One
solution, which has been used in some OOA
studies of complex traits, e.g., (Cummings et al.
2012), is to partition the large AGDB-derived
pedigrees using the software PedCut (Liu et al.
2008). PedCut uses the criterion of bits explic-
itly, so that the output pedigrees fit just within the
bit constraint of whichever linkage analysis
software package will be used to compute the
model-free linkage test statistics.

Some case studies we describe below show by
example that variants of large effect but low
frequency can also be mapped using genome-
wide association (GWA) analysis provided that
the frequencies of the variants are high enough to
be in linkage disequilibrium with SNPs repre-
sented on the genotyping chip used in the
GWAS. Through genetic drift and/or other
mechanisms variants entering the OOA popula-
tion through only a single or small number of

founders have, in fact, increased in frequency
sufficiently such that they have been mapped to
disease traits using the GWAS approach. But
regardless of how they have been mapped, the
identification of highly penetrant variants can
provide important insights into biology. In the
section below, we briefly describe four highly
penetrant variants that have been mapped to
cardiovascular or bone-related traits in the OOA
and describe some lessons learned from these
exciting discoveries.

10.5 Highly Penetrant Variants
Present in the Old Order Amish
and Some Lessons Learned

10.5.1 ABCG8 Gly574Arg
and Cardiovascular Risk

Sitosterolemia is an autosomal recessive disorder
characterized by excess accumulation of dietary
plant sterols in the circulation. The disease was
initially described in 1974 in two Amish-Men-
nonite sisters (Bhattacharyya and Connor 1974)
and was later identified in other members of the
Amish community including a 13-year-old boy
who died of coronary artery disease (Kwiterovich
et al. 1981). As of 2001, only 45 sitosterolemia
cases have been reported worldwide in the liter-
ature (Lee et al. 2001b). The disease is caused by
a defect in the transport of plant sterols from cells
in the intestinal mucosa and liver into the gut
lumen for excretion from the body. The molec-
ular defect arises from biallelic mutations in
either of two genomically adjacent transporter
genes (ABCG5 or ABCG8) that mediate this
process. At least 18 different mutations causing
sitosterolemia have been identified in these two
genes (Berge et al. 2000; Lee et al. 2001a). Si-
tosterolemia leads to excessively high concen-
trations of sitosterol in the blood, mild to
significant elevation in cholesterol levels, and
development of early atherosclerotic heart
disease.

The cause of the increased cardiovascular risk
in sitosterolemia is thought to be related to the
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direct effects of sitosterol or its metabolites on
vessel walls or on lipoprotein cholesterol trans-
port, but exact mechanisms have yet to be fully
elucidated. This has prompted a debate about
whether modest elevation of sitosterol levels is
associated with increased cardiovascular risk at
the population level. Associations have been
reported between elevated phytosterol levels and
cardiovascular disease in some (Assmann et al.
2006; Glueck et al. 1991; Miettinen et al. 1998),
but not other (Silbernagel et al. 2009; Wilund
et al. 2004) studies. While individuals heterozy-
gous for one of the sitosterol-causing mutations
do not have the sitosterol disease, they do have
markedly elevated plasma levels of sitosterol.
Taking advantage of the relatively high fre-
quency of the ABCG8 sitosterol-causing muta-
tion in the Amish (a glycine to arginine
substitution at position 574, Gly574Arg) afforded
us the opportunity to assess the relation of ele-
vated sitosterol levels to cardiovascular risk in a
homogeneous population with high variation in
plasma sitosterol levels.

We initially identified 15 G574R carriers from
our Amish biobank (from which we calculated an
allele frequency of 0.8 % in the OOA) and then
recruited 99 additional carriers who were close
relatives of the initial 15. Compared to age-and
sex-matched non-carriers, carriers had 35 %
higher plasma levels of plant sterols, including
sitosterol, but no difference in body mass index
or cholesterol and triglyceride levels. Moreover,
carriers had slightly lower values of carotid wall
thickness, corresponding to lower, not higher,
levels of subclinical atherosclerosis (Horenstein
et al. 2013). This sitosterol example demonstrates
not only the enrichment of a variant in an isolated
population that in its homozygous state can have
clinically significant consequences, but also how
study of the heterozygous state can provide
important insights into epidemiological issues—
in this case whether modestly elevated plant
sterol levels increase cardiovascular risk.

10.5.2 APOB R3500Q: Isolated High LDL
and Subclinical Atherosclerosis

Elevated low density lipoprotein cholesterol
(LDL-C) level is a major cardiovascular disease
(CVD) risk factor. To identify genes influencing
variation in plasma LDL-C levels, we carried out
a genome-wide association study on LDL-C in
841 relatively healthy Amish adults. We identi-
fied a cluster of SNPs highly associated
(p < 10−68) with variation in LDL-C levels on
chromosome 2 in the region of the APOB gene, a
strong positional candidate gene because of its
role in lipid metabolism (Shen et al. 2010).
Sequencing of this gene revealed the presence of
a nonsynonymous mutation (R3500Q), a previ-
ously known mutation that is responsible for
familial defective apolipoprotein B-100 (Soria
et al. 1989). This mutation interferes with the
folding of the apoB protein, thus impairing its
ability to bind with the LDL particle and
impeding LDL-C clearance (Borén et al. 2001).
While the frequency of this mutation is <0.5 % in
European Caucasians (Austin et al. 2004), its
frequency in the Lancaster county OOA
is *6 %, translating into an overall carrier fre-
quency of *12 %. All carriers of the R3500Q
mutation shared a common haplotype surround-
ing the variant that extended for *300 kbp,
suggesting that the variant entered the population
on a single founder (or perhaps multiple related
founders), where it has been passed down
through generations. In the Amish, each copy of
the variant allele is associated with a 58 mg/dL
increase in LDL-C level and overall the variant
accounts for 26 % of the variation in LDL-C
levels. Those Amish homozygous for the variant
(of whom we have identified 5) have *115 mg/
dl higher LDL-C levels compared to those with
no copies of this allele.

In the general population, elevated LDL-C
rarely occurs in isolation; rather it occurs against
the backdrop of other metabolic disturbances that
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may include obesity, hypertension, low HDL-C
and high triglycerides, and inflammation. These
concomitant conditions have made it difficult to
quantify the effects of individual components of
this metabolic cluster on cardiovascular risk. One
of the unique features of the R3500Q mutation is
that it causes high LDL-C levels in the absence
of any of these metabolic abnormalities. Indeed,
Amish carriers of the R3500Q variant did not
differ from non-carriers in terms of body mass
index, blood pressure, or any other lipid com-
ponent that we measured, including LDL-C
subclass particle patterns or appreciably with
HDL-C levels. This provided us with the unique
opportunity to evaluate the association of this
LDL-C-elevating variant on development of
subclinical atherosclerosis in the absence of other
complicating metabolic factors. We therefore
compared extent of coronary artery calcification,
previously measured by electron beam computed
tomography, between R3500Q carriers and non-
carriers. R3500Q carriers were significantly more
likely to have both detectable (odds ratio = 4.4)
and extensive (odds ratio = 9.3) coronary artery
calcification compared to non-carriers (Shen
et al. 2010). These results highlight in a direct
way the strong atherogenic role of elevated LDL-
C levels.

The relatively high frequency of R3500Q
carriers among the Amish also afforded us the
opportunity to evaluate the effects of this muta-
tion on other traits. In particular, multiple studies
have reported associations between osteoporosis
and cardiovascular disease, leading to the spec-
ulation that hyperlipidemia may predispose to
both atherosclerotic heart disease and accelerated
bone turnover. To evaluate this hypothesis, we
compared bone mineral density (BMD) measured
by dual-energy X-ray absorptiometry between
subjects with and without the R3500Q mutation.
We observed a 1.7–2.3 % lower BMD at the
femoral neck, lumbar spine, and total body
skeletal sites in carriers of the R3500Q variant
than in noncarriers, implying a causal relation-
ship between prolonged, high LDL-C and low
BMD (Yerges-Armstrong et al. 2013). While a
similar study of pleiotropy could be envisioned

where one recruited participants with high LDL-
C mutations from lipid clinics, this investigation
was greatly facilitated by working with the OOA
because of (1) the relatively high frequency of
individuals with the same mutation and (2) the
ability to screen efficiently for a mutation at a
population level as opposed to only ascertaining
participants with severe enough clinical mani-
festations to be referred for specialized care.

10.5.3 APOC3 R19X: Cardioprotection
from a Loss of Function
Mutation

The features of the Amish discussed here have
enabled the discovery and characterization of a
unique mutation in the APOC3 gene, R19X,
which in turn is providing access to biological
insights previously unavailable. The Heredity
and Phenotype Intervention (HAPI) Heart Study
was begun in 2002 to evaluate the role of genetic
and non-genetic risk factors in the response to
four short-term interventions affecting cardio-
vascular risk factors (Mitchell et al. 2008). These
interventions included: a single high-fat meal, a
cold pressor stress test, a dietary intervention
altering salt intake, and short-term aspirin
therapy.

As part of the HAPI Heart Study, we carried
out a GWAS of triglyceride (TG) response to the
single high-fat meal and found a single SNP to
be associated after Bonferroni correction with
both fasting (p = 4 × 10−14) and postprandial
(p = 3 × 10−10) TG levels (Pollin et al. 2008).
The SNP itself was located in an intron of a gene
called DSCAML1 but was also 800 kbp away
from a cluster of genes playing a key role in lipid
metabolism, the APOA1/C3/A4/A5 region. These
genes were considered to be viable positional
candidate genes in the Amish because the relat-
edness of the subjects through recent founders
was expected to lead to longer regions of allele
sharing than would be expected in a population
sample. The minor allele (frequency = 0.028) of
the SNP was associated with considerably lower
TG levels and postprandial response, mimicking
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the effect previously shown of knocking out the
APOC3 gene in the mouse (Maeda et al. 1994).
Sequencing the coding region of the APOC3
gene led to the finding that the GWAS-associated
SNP was tagging a founder mutation (APOC3
R19X) that resulted in an insertion of a pre-
mature stop codon within the signal peptide
region of the gene, effectively serving as a human
APOC3 knockout allele. So far, only heterozy-
gotes have been observed, but in these individ-
uals, in addition to hypotriglyceridemia, we
observed an overall favorable lipid profile,
including increased HDL cholesterol (not seen in
the mouse due to species differences in lipopro-
tein biology) as well as reduced prevalence of
subclinical cardiovascular disease as measured
by reduced coronary calcification in comparison
to Amish individuals without the mutation.

Prior to the discovery of this mutation, only a
few coding mutations in APOC3 had been
reported, in only a handful of individuals each
(Karathanasis et al. 1983, 1987; Liu et al. 2000;
Norum et al. 1982; Ordovas et al. 1989; von
Eckardstein et al. 1991). Some evidence that
these mutations could produce cardioprotective
lipid profiles was observed, but the numbers
were too small to be conclusive, and assessment
of association with an actual disease phenotype
was not possible. Notably, the R19X mutation
could be traced back in the OOA to a single
couple and the resulting pedigree could be used
to identify and recruit living individuals who had
a high probability of being carriers. Because of
the limited gene pool in the Amish and conse-
quent founder effect, we were thus able to study
an adequate sample size of mutation carriers to
obtain conclusive evidence of favorable effects of
lowering apoC-III in humans. This finding has
enhanced interest in developing pharmaceutical
agents that directly lower apoC-III production
(Visser et al. 2012) as therapy for dyslipidemia in
those not lucky enough to carry an apoC-III
lowering mutation, making the finding of this
otherwise rare mutation of great interest to the
general population.

10.5.4 COL1A2 G610C: Characterization
of Variable Disease Penetrance

Osteogenesis imperfecta (OI) is a heritable form
of bone disease characterized by high fracture
risk. Additional characteristics that are variably
present include short stature, dentinogenesis
imperfect (tooth malformation resulting from
defects in dentin), blue sclerae and hearing loss.
The disease is typically associated with muta-
tions in one of the genes encoding the α chains of
the type I procollagen molecules, COL1A1 or
COL1A2. Over 1,000 mutations in these genes
have been identified in OI patients to date, and
there is marked variability in the clinical
expression of the disease ranging from mild to
severe.

As part of our Amish complex disease
research program, we measured bone mineral
density in a large number of subjects to screen
for osteoporosis. From this screen, one subject
was identified with particularly low BMD and a
history of multiple fragility fractures and short
stature suggestive of OI. We screened this sub-
ject’s DNA for mutations in COL1A1 and
COL1A2 and identified a variant in COL1A2 that
alters the glycine-610 codon (GGT) to a cysteine
(TGT) codon. This mutation has not been
reported in patients with OI outside of our kin-
dred. From other COL1A2 OI mutations that
have been characterized, it has been established
that amino acid substitutions at invariant glycine
residues typically result in clinically apparent
phenotypes (Marini et al. 2007). Recruitment of
family members of our index patient with OI led
to the identification of 63 additional carriers of
this mutation (for a total of 64). Using the Ped-
Hunter tool described above, ancestors of the 64
carriers were tracked through AGDB and their
relationships established. This exercise revealed
the pattern of inheritance to be consistent with a
de novo mutation that occurred over 150 years
ago (Daley et al. 2009).

OI is characterized by considerable pheno-
typic variability with the disease graded from
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type 1 (mild) to 4 (most extreme), based on
clinical presentation, radiography, and mode of
inheritance (van Dijk et al. 2011). The G610C
mutation in the Amish represents the largest
reported collection of OI patients with an iden-
tical collagen mutation. This has provided par-
ticular insights into the degree of phenotypic
variability among a large group of subjects hav-
ing the same OI-causing mutation and also hav-
ing a relatively homogenous lifestyle. Compared
to Amish without the OI mutation, those with OI
had shorter stature and lower bone mineral den-
sity (*2 ½ standard deviation, SD, units lower
BMD at the spine and *1 SD unit lower at the
hip), although there was considerable overlap
between those with the OI mutation and those
without. Moreover, even among those with OI,
there was substantial variation in BMD, with
some subjects having near normal levels of spine
BMD and others whose BMD was up to 5 SD
units lower than unaffected subjects. Overall,
73 % of those with the OI mutation were judged
to have moderate to severe disease (spine
BMD <2 SD units below that of the general
population), 23 % were judged to have mild
disease (1–2 SD units lower than that of the
general population), and 4 % had BMDs in the
unaffected range (BMD > −1 SD below that of
the general population).

Identification of the G610C mutation in this
population has furthered our understanding of
phenotypic variation within OI to a degree not
previously appreciated. All carriers had the exact
same mutation and this mutational homogeneity
combined with their similar lifestyle underscores
the involvement of multiple factors in determin-
ing phenotype. Further study of this collection of
subjects offers opportunities for additional
mechanistic insights, as for example, through
efforts to identify genes that modify the effects of
the G610C mutation.

10.6 Conclusion

The OOA of Lancaster County have been active
participants in medical genetics studies since the
1960s, beginning with the studies of Dr. Victor

McKusick, a pioneer of medical genetics
(McKusick 1978). Dr. Charles Eugene “Gene”
Jackson, another pioneer of medical genetics,
did early studies in the Indiana Amish com-
munity, e.g., (Jackson et al. 1974). Amish
genetic studies have led to many discoveries
and the development of new research methods
for genealogic studies over the past five dec-
ades. Insight has been gained into the role
specific genes play in the pathophysiology of
cardiovascular and bone disease and provided
molecular targets for diagnosis and treatment. In
more recent decades, the pioneering clinical
efforts of Dr. Holmes Morton among the
Pennsylvania Amish, and in the past decade of
Dr. Heng Wang among the Ohio Amish and Dr.
Amy Shapiro among the Indiana Amish have
led to the establishment of Amish clinics. At
these clinics, Amish patients can receive spe-
cialized medical attention, including genetic
diagnoses and for a few disorders, individual-
ized therapies. An overarching goal of medical
genetic studies since McKusick’s early work
has been to enable personalized medicine,
informed by genetic and genomic understand-
ing. It is fitting that since the Lancaster County
OOA were participants in those early studies,
they are also among the early patients in the US
to receive personalized genomic medical care.

Because of their unique ancestral history, a
modest number of founders account for all
genetic variation present in the current OOA
population. As a consequence, while many rare
variants entering the population on only a
single founder chromosome have become lost,
others have increased in frequency through
genetic drift and can be found at appreciable
frequencies in the current population. Once a
rare variant of interest is found, the genealogy
makes it feasible to rapidly identify other likely
carriers. The phenomenon of founder alleles of
high frequency and strong effect has made the
OOA a very rich population for genetic study.
Some of the rare variant discoveries made to
date have provided important biologic insights
underscoring the overall importance to the
broader scientific community of studying rare
variants in the OOA.
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11Genetics of Cardiovascular Disease
in Minority Populations
Jean W. MacCluer, John Blangero, Anthony G. Comuzzie,
Sven O.E. Ebbesson, Barbara V. Howard,
and Shelley A. Cole

11.1 Introduction

Cardiovascular disease (CVD) is the leading
cause of mortality in the United States and an
important contributor to morbidity worldwide.
Both genetic and environmental factors are gen-
erally recognized to influence susceptibility
to CVD. Much research has been directed at
identification of the genes involved in suscepti-
bility and their interactions with environment.

However, most of the genetic research on CVD
and its risk factors has been done in populations
of Northern European ancestry. In the United
States and elsewhere, less attention has been paid
to identifying genetic contributors to CVD in
minority populations. Here we describe large-
scale family studies of Mexican Americans,
American Indians, and Alaskan Eskimos being
conducted by geneticists at the Texas Biomedical
Research Institute (Texas Biomed) in collabora-
tion with investigators throughout the country.
The San Antonio Family Heart Study (SAFHS)
is examining the risk of CVD, diabetes, and
obesity in >1,400 members of 42 large Mexican
American families in San Antonio; the Strong
Heart Family Study (SHFS) involves >3,800
individuals in 13 American Indian communities
in Arizona, Oklahoma, and the Dakotas, mem-
bers of 94 families; and the newest of the three
studies, Genetics of Coronary Artery Disease in
Alaska Natives (GOCADAN), includes >1,200
Alaskan Eskimos in the Norton Sound region of
Alaska, who are primarily members of a single
extended family. All three studies were approved
by the institutional review boards of all collab-
orating institutions. In addition, the Strong Heart
Family Study was approved by the Indian Health
Service Institutional Review Board and by the 13
participating American Indian communities, and
GOCADAN was approved by the Science
Advisory Board of the Norton Sound Health
Corporation. All participants in the three studies
gave informed consent.
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11.2 Study Design and Collection
of Family Data

The studies of Mexican Americans, American
Indians, and Alaskan Eskimos all involve
extended families that were recruited without
regard to disease status. This strategy was pos-
sible because CVD and related disorders (dia-
betes and obesity) are common in these
populations, thus assuring that the families
recruited would exhibit substantial variability in
CVD risk factors and would provide ample var-
iation for genetic analysis. However, the
recruitment strategy differed between populations
because of their different environments, ranging
from an urban setting (San Antonio Mexican
Americans) to small towns, rural areas, and res-
ervations (American Indians), to small, isolated
villages (Alaskan Eskimos).

11.2.1 The San Antonio Family Heart
Study

The San Antonio Family Heart Study (SAFHS)
began in 1991 as a collaborative effort of
geneticists and epidemiologists at Texas Biomed
and at the University of Texas Health Science
Center at San Antonio (UTHSCSA). We selected
a predominantly Mexican American census tract
on the west side of San Antonio and used the
Polk Directory (Polk 1989) to obtain a complete
listing of all addresses in the census tract. We
created a computer file containing, for each
address, the street name, street number, apart-
ment number if applicable, name of head of
household, and telephone number if available.
We then randomized the list of addresses so that
households could be contacted by field staff in
random order. Recruitment letters were mailed to
the heads of household and any other adult res-
idents identified during the verification process.
A few days later, a field worker went to the
selected address and ascertained whether an eli-
gible proband resided there. Each previously
verified household on the randomly ordered
address list was approached and enumerated.

Enumeration consisted of a listing of all persons
living in the household with their complete
names, dates of birth, age, sex, and relationship
to other household members.

Once an eligible proband agreed to participate
in the study, the interviewer administered a home
interview, which included pedigree information
on all first, second, and third degree relatives
known to the proband. Full names, addresses, and
phone numbers of these relatives were recorded to
facilitate future contact with them. After com-
pletion of the home interview, the proband was
scheduled for a clinic examination and the inter-
viewer began contacting other relatives in the
pedigree. These other family members were
administered a home (or in some cases, a tele-
phone) interview and scheduled for a clinic
examination. A graphic representation of each
pedigree was reviewed with the proband at the
clinic examination and revised if needed. This
information also was reviewed with each family
member subsequently contacted and was revised
and/or expanded as needed. This procedure
assured that all pedigree information was cross-
checked and verified by multiple family members.

We recruited more than 1,400 members of
large Mexican American families living in San
Antonio, ascertained through a randomly chosen
40- to 60-year-old resident of the selected census
tract. Probands were Mexican Americans with a
spouse and at least six offspring and/or siblings
who were at least 16 years old and living in San
Antonio. Our pedigrees included the proband, his
or her spouse, and all first, second, and third
degree relatives of both, as well as spouses who
had married into the family. Participants are
members of 42 families, ranging in size from 3 to
102 examined individuals.

In a recall of more than 850 family members
beginning in 1997, we repeated many of the
clinic measures and also did ultrasound mea-
surement of carotid artery wall thickness. We
again obtained information on lifestyle variables.
In a second recall begun in 2002, we examined
950 of the family members. Thus we obtained
longitudinal data spanning a period of approxi-
mately 10 years.
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11.2.2 The Strong Heart Family Study

The Strong Heart Study (SHS) was begun in
1989 as a traditional epidemiologic study, with
the goal of estimating CVD mortality and mor-
bidity rates and the prevalence of known or
suspected CVD risk factors in American Indians.
Approximately 1,500 American Indians aged
45–74 were recruited at each of the three field
centers in Arizona (Pima/Maricopa and Tohono
O’odham), North and South Dakota (Lakota and
Oglala Sioux), and Oklahoma (Kiowa, Apache,
Caddo, Comanche, Delaware, Fort Sill Apache,
and Wichita). The participating communities are
representative of the diverse environments in
which nonurban American Indians live: The
tribes in Arizona and the Dakotas live on reser-
vations, and those in Oklahoma live among the
general population. Lists of eligible persons were
obtained from tribal rolls and verified by local
residents. In Arizona and Oklahoma, every eli-
gible person was invited personally or by letter to
participate. In the Dakotas, a cluster sampling
technique was used to obtain the 1,500 subjects
needed. Participants were recruited from 13
communities: three in Arizona, three in the
Dakotas, and seven in Oklahoma, where the
majority of participants were in Kiowa. As in
SAFHS, participants were recruited at random,
without regard to disease status.

In 1996, we began a genetic study of the fam-
ilies of Strong Heart participants. When partici-
pants were recruited into the Strong Heart Study
beginning in 1989, each filled out a family history
form listing the names of their parents, offspring,
and full and half siblings. The information on
these family history forms provided the basis for
our recruitment of families in the Strong Heart
Family Study (SHFS). We matched names across
the computerized records—for example, identi-
fying a person who is an offspring in one record
and a parent in another. In this way, we con-
structed large families, with each person named.

Because there were so many large families,
we restricted our recruitment to those that had (a)
a total of at least 5 sibs, of whom ≥3 were
members of the original Strong Heart cohort, and

(b) ≥12 age-eligible offspring of the cohort
members. In two phases, we recruited ≥1,200
family members from each field center: approx-
imately, 300 from each center beginning in 1995,
and another ≥900 from each center beginning in
2000. Recruited family members were at least
15 years old. Across the three field centers, we
recruited 94 extended families, ranging in size
from 5 to 110 examined individuals. A reexam-
ination of all of the 3,812 family members began
in 2005. The information collected for each
participant included birth date, sex, and tribal
affiliation, as well as the lifestyle variables and
CVD risk factors as described below.

11.2.3 GOCADAN

GOCADAN was initiated in the year 2000 by a
group of Strong Heart Study investigators in
collaboration with Dr. Sven Ebbesson of the
University of Alaska—Fairbanks, to study the
determinants of CVD, diabetes, and obesity in a
group of primarily Inupiat Eskimos in the Norton
Sound region of Alaska. Eskimos in this region
live in isolated villages of 200–600 inhabitants
and in the population center of Nome, with
approximately 3,000 inhabitants. Each village
includes residents who have relatives in other
villages and/or in Nome. Because of the small size
and isolation of the villages and the interrelated-
ness among villages, the approach used to identify
and recruit participants differed from that used in
the Mexican American and American Indian
studies. Each village was visited by two investi-
gators, who first described the study to the village
leaders and at a community meeting. With the
approval of the leaders and the community, every
household in each village was visited. Every
member of each household was enumerated and
the names and addresses of parents, siblings, and
offspring of each household member were recor-
ded and later computerized. This approach was
not used in Nome, where the only individuals
recruited were relatives of participants who lived
in the villages. Matching of names and birthdates
on the records from different households enabled
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us to link household members from all of the
villages into larger family units; most household
members were ultimately linked into a single large
pedigree. Between 2000 and 2004, we recruited a
total of 1,214 participants at least 18 years of age
from eight villages and Nome. Age eligibility was
determined from U.S. census records. With one
exception, at least 73 % of age-eligible residents
were recruited in each village. The exception was
a village in which recruitment was attempted
during the summer hunting and fishing period
when most residents were not available.

For all interested family members who were
recruited into GOCADAN, informed consent
was obtained, a questionnaire was administered,
a physical exam was done in a clinic located in
the village, and blood was drawn for assessment
of CVD and associated risk factors and extrac-
tion of DNA for genetic studies (Ebbesson et al.
2006; Howard et al. 2005). A second round of
examinations of each family member was com-
pleted in 2010.

11.3 Methods

11.3.1 Collection of Demographic,
Lifestyle, and Phenotypic Data

The studies differed in the types of clinic sites used
for participant examinations. In the SAFHS, in
which participants were examined three times over
a period of 10 years, clinic exams were done in a
mobile clinic situated on the campus of UT-
HSCSA; in a neighborhood clinic near the census
tract where most participants lived; and at the
General Clinical Research Center (GCRC) in the
Audie Murphy VA Hospital near UTHSCSA.
Transportation to clinic exams was provided for
participants who needed it. In the SHFS, tempo-
rary clinics (sometimes amobile clinic)were set up
at each field site; three in Arizona, two in Okla-
homa, and two in the Dakotas. The GOCADAN
study required that a temporary clinic be set up in
each village for the period during which clinical
exams were being done in the village. Ingenuity
was required in identifying clinic sites in villages
that may have had no more than 200 residents.

In each study a monetary incentive was pro-
vided. In all three studies, each family member
was invited to the clinic, where he or she was
given a physical examination and a questionnaire
was administered. Information obtained in all of
the studies is shown in Table 11.1. Informed
consent was obtained either before the clinic visit
or at its beginning. From the personal interview,
information was obtained on demographic char-
acteristics, pedigree relationships, acculturation
and socioeconomic status, medical history,
reproductive history, and environmental risk
factors: diet, smoking, alcohol use, physical

Table 11.1 Information gathered in all three studies

Verification and consent Lipids and
lipoproteins

Informed consent Total cholesterol

Demographic information HDL-C

Family information LDL-C

Interview and medical history Lipoprotein size
classes

Chronic illnesses Triglyceride

Rose questionnaire Apo-AI

Medications Apo-B

Reproductive history (women) Apo-E

Pregnancy history Lp(a)

Menstrual history Glucose and
hormones

Hormone medications Fasting glucose

Lifestyle and behaviors 2-h glucose

Diet food frequency questionnaire Fasting insulin

Alcohol consumption 2-h insulin

Vitamin usage Adiposity
measures

Smoking habits Weight

Dietary instrument Height

Physical activity instrument Body mass
index

Inflammatory markers Waist/hip ratio

Fibrinogen Fat mass
(bioimpedance)

Cardiac measures Fat free mass

EKG Blood pressure

Carotid intima media thickness
(near and far walls)

Systolic blood
pressure

Carotid lumen diameters (CCA
and ICA)

Diastolic blood
pressure
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activity, and medication use. For all three studies,
we assessed diet using food frequency ques-
tionnaires (Block 1998; Nobmann et al. 2005)
specifically validated for the populations being
studied. From the dietary surveys, we derived
measures of total calories, saturated fat, choles-
terol, the polyunsaturated/saturated fat ratio, and
several other macro- and micronutrients, includ-
ing alcohol.

A blood sample was collected under fasting
conditions for measurement of glucose, insulin,
lipids, and lipoproteins. A 2-h glucose tolerance
test was administered. Total cholesterol, high and
low density lipoprotein cholesterol (HDL-C and
LDL-C), triglyceride (TG) levels, and apolipo-
proteins also were measured. Anthropometric
measurements included height, waist and hip
circumferences, and weight. Fat mass was
determined by bioimpedance. Sitting blood
pressure was measured three times following a 5-
min rest, and the mean of the second and third
measurements was used for analysis. Cardiac
phenotypes were obtained from an electrocar-
diogram and by carotid ultrasound. Some ques-
tionnaire items were included in early phases but
not later ones (e.g., family relationships and birth
dates), and some phenotypes were not measured
in every phase. Protocols for the SAFHS are
described in Mitchell et al. (1996) and MacCluer
et al. (1999); for the SHFS, in Lee et al. (1990),
Howard et al. (1995), and North et al. (2003a);
and for GOCADAN, in Howard et al. (2005).

Because of unique characteristics of each
study population, special interests of the inves-
tigators involved, or special financial resources
available, each study also has collected unique
information. Investigators in the SAFHS were
particularly interested in measures of oxidative
stress and inflammation (Diego et al. 2007). They
also had private funding that enabled them to
generate microarray expression profiles (expres-
sion levels of RNA transcripts derived from
lymphocytes) for 1,240 SAFHS participants,
yielding data for more than 20,000 phenotypes
for each individual (Göring et al. 2007). Asso-
ciation analyses have identified multiple tran-
scripts that are significantly correlated with CVD
risk factors (Charlesworth et al. 2010). For the

SHFS, we recorded tribal enrollment and self-
reported degree of Indian heritage. Both SHFS
and GOCADAN measured HbA1c, and used
pedometers to measure physical activity. The
SHFS has cardiac and popliteal ultrasound mea-
sures. Both GOCADAN and SHFS have
inflammatory markers and GOCADAN has
measures of pathogen burden. Fatty acid mea-
sures are particularly important in GOCADAN
(Ebbesson et al. 2008; Nobmann et al. 2005)
because Alaskan Eskimos are changing from a
traditional diet emphasizing fish and sea mam-
mals to a Western diet with greater emphasis on
processed foods (Nobmann et al. 1998).

For all three studies, management of pedigree,
demographic, phenotypic, and genotypic data is
accomplished using the computer package Ped-
Sys (Dyke 1992).

11.3.2 Genotyping

For all three studies, all family members were
initially typed for approximately 400 microsat-
ellite markers distributed across the autosomes,
on average 10 centimorgans apart. These geno-
typic data have been used in linkage analyses as
described below, to localize QTLs that influence
CVD risk factors.

Fasting blood samples were collected at the
clinics established for each study. Buffy coats
were stored at the clinics at −80 °C and trans-
ported on dry ice to Texas Biomed for DNA
isolation. To genotype SHFS and GOCADAN
participants, we used the ABI PRISM Linkage
Mapping Set-MD10 (version 2.5; Applied Bio-
systems, Foster City, CA), which consists of
fluorescently-labeled PCR primer pairs that
amplify dinucleotide repeat microsatellite loci
(short tandem repeats) selected from the Gene-
thon human linkage map (Dib et al. 1996).
Genotyping for SAFHS used primer pairs from
the MapPairs 6 and 8 Linkage Screening Set
(Research Genetics Inc., Huntsville, AL). PCR
amplification of DNA from study participants
was performed in Applied Biosystems 9,700
thermocyclers. The products of separate PCRs
for each individual were pooled, and a labeled
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size standard was added to each pool. The pooled
PCR products were loaded into an ABI PRISM
377 or 3,100 Genetic Analyzer for laser-based
automated detection and quantification, and
genotypes were scored using the Genotyper
software package (Applied Biosystems).

With the development of faster and less
expensive methods, we moved from microsatel-
lites to single nucleotide polymorphism (SNP)
genotyping. In work aimed at identifying func-
tional polymorphisms, single nucleotide poly-
morphisms (SNPs) are being typed in the regions
of linkage signals. With the identification of
hundreds of thousands of SNPs throughout the
genome, there has been interest in performing
genome-wide association studies, searching for
associations between disease risk factors and
specific chromosomal regions. The National
Institutes of Health accepts applications to fund
the generation of genome-wide SNP data, but
only for projects for which the data are shared
with other investigators. The American Indian
communities in the SHFS and the Alaskan
Eskimo communities in GOCADAN are not
willing to have their genetic information broadly
shared with investigators outside these two
studies. Therefore, genome-wide SNP typing is
not being done in SHFS or GOCADAN,
although dense SNP typing is being done in
regions of interest. For the SAFHS, we have used
primarily private funding to generate 1 million
SNPs for all family members. These data are
being used for both linkage and association
analyses. Whole genome sequence data also have
been generated for >700 SAFHS participants.

11.3.3 Statistical Genetic Analysis

11.3.3.1 Data Cleaning
The first step in statistical genetic analysis of data
for SAFHS, SHFS, and GOCADAN is the
elimination of Mendelian and pedigree errors.
We finalize on the pedigrees that are most sup-
ported by the genotype data, as inferred from
PREST (Sun et al. 2002) statistics. Using Sim-
walk II (Sobel et al. 2002), we eliminated

mistyping errors at blanking rates of 1.37
(SAFHS), 0.93 (SHFS), and 0.58 % (GOCA-
DAN) of the total number of genotypes. Using
Loki (Heath 1997), we computed matrices of
empirical estimates of identity-by-descent allele
sharing, required for our linkage analyses, at
points throughout the genome for every relative
pair. PREST, Simwalk II, and Loki require
chromosomal maps of genotyped markers for all
22 autosomes. Across populations, we use the
same sex-averaged chromosomal maps, provided
by deCODE Genetics (Kong et al. 2002).

11.3.3.2 Quantitative Genetic Analysis
We obtain the estimates of heritability of CVD
risk factors using maximum likelihood variance
decomposition methods (e.g., Amos 1994)
implemented in SOLAR (Blangero and Almasy
1997; Almasy and Blangero 1998). Among the
variance terms that can be included in these
analyses are the additive genetic variance, the
variance due to shared household effects, random
environmental variance, and additional (or alter-
native) components (shared spouse or sibling
environments, dominance genetic effects, mito-
chondrial effects). Our initial heritability analyses
often are done in batch mode across many phe-
notypes and include only a basic set of covari-
ates: age, sex, and their higher order terms and
interactions. Subsequent analyses of individual
phenotypes include additional covariates that are
specific for the phenotype being analyzed. These
analyses enable us to estimate the relative
importance of genetic, shared environmental, and
random environmental effects on CVD risk fac-
tors. Phenotypes with significant heritabilities are
targeted for subsequent linkage and association
analyses using genotypic data, as described
below.

Variance decomposition techniques, using
maximum likelihood methods and implemented
in SOLAR, also can be used to estimate the
genetic and environmental correlations between
pairs of traits (Hopper and Mathews 1982; Lange
and Boehnke 1983). The genetic correlation
represents the effect of shared genes (pleiotropy),
and the environmental correlation, the effect of
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shared residual (unmeasured) environment on the
phenotypic variance of two traits. Additive
genetic correlations that are significantly different
from zero provide evidence consistent with
pleiotropy. If significant shared genetic effects
are found for multiple traits, hypotheses can be
generated concerning the genetic regulation of
complex phenotypes.

11.3.3.3 Linkage Analysis
For phenotypes that have significant heritabili-
ties, we perform multipoint variance component
linkage analysis using SOLAR (Almasy and
Blangero 1998) to determine the chromosomal
locations of QTLs that influence the traits. The
first analyses used approximately 400 microsat-
ellite markers distributed across the autosomes at
approximately 10 centimorgan intervals. For the
SHFS and GOCADAN, we began with a
screening linkage analysis of all available phe-
notypes, adjusted only for age, sex, and their
higher order terms and interactions. As in our
heritability analyses, subsequent linkage analyses
of phenotypes that yield significant linkage sig-
nals include additional relevant covariates. In the
SHFS, linkage analyses were conducted sepa-
rately for each of the three centers and also by
combining data for the three centers into a single
analysis. Combined analyses included center
covariates to allow for different mean trait levels
in the three centers.

11.3.4 Fine Mapping and Identification
of Disease-Related Variants

The initial localization of a QTL by linkage
analysis tends to encompass a large genomic
region, typically 10–20 centimorgans. This
interval can be reduced by using methods that are
based upon linkage disequilibrium, but the
genomic region may still be 100 kb or greater, and
the identification of functional variants can remain
difficult. Because the functional polymorphism
likely will not segregate in every family, we
attempt to identify these polymorphisms by test-
ing for disequilibrium in the same families in

which the linkage was originally discovered.
These families also are valuable for testing whe-
ther a specific set of SNPs can completely account
for the linkage signal.

Using resequencing technologies, our strategy
is to identify all polymorphisms within a posi-
tional candidate region by resequencing large
numbers of individuals from the sample in which
the linkage signal was found. Prior evidence for
particular candidate genes in a linkage region
may be used to prioritize the sequencing/poly-
morphism discovery effort. After the polymor-
phisms are enumerated, they are typed in the
original linkage dataset using high-throughput
SNP typing methods. Then they must be priori-
tized for molecular functional characterization.
Because its large variance makes linkage dis-
equilibrium relatively unpredictable (Abecasis
et al. 2001; Terwilliger 2001), standard associa-
tion methods (which exploit linkage disequilib-
rium) are not optimal for identifying functional
polymorphic variants. We therefore use a method
that effectively eliminates the correlation
between a marker and a QTL that is due to
linkage disequilibrium. Unfortunately, there are
relatively few statistical approaches to find the
main functional effects in high-dimensional SNP
data (Bader 2001; Nelson et al. 2001). We are
employing a Bayesian method for statistically
assessing the potential functionality of observed
allelic variants (Blangero et al. 2005). By using
this statistical approach, we minimize the
daunting task of searching through a chromo-
somal region using molecular techniques.

11.4 Results

Genetic studies of extended families require
many years, from initial planning, to identifying
and recruiting participating families, generating
phenotypic data, carrying out marker genotyping,
performing genetic analyses, and following up
on promising leads. This is especially true in
studies that are conducted in remote locations or
in which identification of family members is
difficult. Thus, the first quantitative genetic
analyses from GOCADAN were presented at a
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scientific meeting in 2005, and the first publica-
tion of genetic results was in 2006. Presentation
of significant linkage results began in 2006. In
the SHFS, publication of quantitative genetic
analyses began in 2002, and the first significant
linkages were published in 2006. Although the
SAFHS began much earlier (1991) and the first
quantitative genetic analyses were published in
1993, the initial focus of linkage analyses was on
candidate genes. It was not until 1996 that
genotyping of microsatellites began, and the first
QTL (for leptin on chromosome 2) was reported
on by Comuzzie et al. in 1997.

The power of extended families for genetic
analysis derives from the large number of relative
pairs that they contain. Table 11.2 indicates the
numbers of relative pairs in the SAFHS, the three
field centers in the SHFS, and GOCADAN.
Although the number of sib pairs is just 721–
1,577, the total number of relative pairs ranges
from 16,950 to 28,586. Below we summarize
results of quantitative genetic analyses and link-
age analyses, focusing on published papers, and
with an emphasis on SAFHS, the oldest of the
three studies.

11.4.1 Quantitative Genetic Analysis
of CVD Risk Factors

An extensive set of phenotypes has been collected
on participants in each study, from basic anthro-
pometrics to measures related to obesity, diabetes,
lipids, hormones, clotting, inflammation, oxida-
tive stress, and the carotid arteries. As a first step
in determining the chromosomal locations and
identities of the genes that influence these traits,
we have estimated heritabilities, i.e., the propor-
tion of phenotypic variance that is attributable to
the additive effects of genes. Correction for age,
sex, and their higher order terms and interactions
is done routinely, and further covariate effects
often are included. The heritabilities reported here
are residual heritabilities, after the effects of
covariates are taken into account.

Table 11.3 lists the heritabilities for selected
phenotypes in the SAFHS. The great majority of
these are highly significant, indicating that a

search for specific functional genes is warranted.
For some phenotypes, genotype by environment
interaction and/or genetic correlations with other
phenotypes were detected. For example, Czer-
winski et al. (2004) reported that the same gene
or suite of genes affects phenotypic variation in
triglycerides, LDL mean particle diameter, and to
some extent, HDL-C level, and that their effects
are different in smokers and nonsmokers.
Bivariate analyses (Warren et al. 2005) suggest
possible pleiotropic effects of genes influencing
type 2 diabetes and several hemostasis-related
traits. Kent et al. (2004) reported that ICAM-1
level was significantly genetically correlated with
phenotypes related to obesity and to glucose
homeostasis. Comuzzie et al. (2007) found sig-
nificant evidence of pleiotropy between plasma
levels of adiponectin and established risk factors
for the metabolic syndrome and type 2 diabetes.
Voruganti et al. (2008) found that a common set
of genes regulating insulin resistance also regu-
lates BMI, waist circumference, HDL choles-
terol, and pulse pressure. Likewise, Voruganti
et al. (2009a) found pleiotropy of genes influ-
encing serum uric acid with waist circumference
and total body fat.

Heritabilities for selected phenotypes in the
SHFS are given in Table 11.4. As in SAFHS, the
majority of these are highly significant. Genotype
by environment interactions and genetic corre-
lations also have been reported. For example,
North and colleagues found significant genetic
correlations between diabetes status and eight
CVD risk factors (North et al. 2003c) and also
between diabetics and nondiabetics for several
obesity and lipid phenotypes (North et al.
2003b). Mosher et al. (2008) detected sex-spe-
cific genotype by diet effects on HDL-C. Mottl
et al. (2009) reported genotype by diabetes and
genotype by hypertension interaction for urinary
albumin creatinine ratio (UACR). Franceschini
et al. (2009) detected evidence for differences in
genetic effects on blood pressure as a function of
smoking status, alcohol intake, physical activity,
and education. Melton et al. (2010) found
bivariate association of a single locus on chro-
mosome 9p21 with heart rate as measured from
both echocardiogram and echocardiograph
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Doppler recordings. Wilmot et al. (2012), in
analyses of serum sodium concentration in
American Indians and other ethnic groups,
demonstrated sex- and ethnicity-specific effects.

Table 11.5 lists published heritabilities for
phenotypes in GOCADAN. The heritabilities for
all but insulin and small HDL are significant at
p < 0.0001. Pleiotropic and epistatic effects of
multiple QTLs on multiple risk factors have been
found. For example, SNPs in three chromosomal

regions appear to have functional effects on sat-
urated, monounsaturated, and polyunsaturated
plasma fatty acids (Voruganti et al. 2010).
Likewise, significant genetic correlations were
found between size classes of HDL and a variety
of CVD risk factors (Tejero et al. 2010).

It should be noted that comparisons of herit-
abilities between populations are not very
meaningful: heritability measures the proportion
of phenotypic variance attributed to the additive

Table 11.2 Numbers of examined relative pairs among participants in SAFHS, SHFS, and GOCADAN

Degree
of relationship

Coefficient of
relationship

Relationship Number of relative pairs

SAFHS SHFS-AZ SHFS-DK SHFS-OK GOCADAN

First 1/2 Sibs 1,577 1,446 1,525 1,522 721

Parent–offspring 1,333 1,320 1,256 1,205 609

Second 1/4 Avuncular 2,984 3,197 3,528 3,220 1,597

Grandparent-
grandchild

497 825 571 533 224

Half-sibs 201 416 421 415 254

Double first
cousins

24 25 67 11 10

Third 1/8 First cousins 3,369 3,609 4,192 3,302 2,548

Grand
avuncular

798 1,711 2,058 1,609 693

Half-avuncular 436 640 579 759 654

Great
grandparent-
grandchild

34 66 22 50 10

Other third
degree

73 55 276 32 122

Fourth 1/16 First cousins
once removed

3,190 4,871 6,149 4,274 4,353

Half-first
cousins

496 608 473 587 740

Great grand
avuncular

36 209 99 172 84

Other fourth
degree

91 281 473 330 394

Fifth 1/32 Second cousins 1,080 2,512 3,779 1,932 3,118

First cousins,
twice removed

359 558 509 797 1,049

Other fifth
degree

36 907 381 829 1,042

Sixth 1/64 336 1,474 1,292 1,296 3,143

Other 289 936 613 2,131

Total 16,950 25,019 28,586 23,488 23,496

Number of
Participants

1,458 1,295 1,242 1,230 1,214
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Table 11.3 Heritabilities of CVD risk factors: San Antonio Family Heart Study

Trait h2 Covariatesa References

Lipid-related phenotypes

HDL2a-unesterified cholesterol 0.62 ± 0.09 Diabetes status, menopausal status,
smoking, alcohol consumption,
diabetes meds, lipid-altering meds,
exogenous sex hormones

Almasy et al.
(1999)

HDL2a-unesterified cholesterol 0.62 ± 0.09 Diabetes status, menopausal status,
smoking, alcohol consumption,
diabetes meds, lipid-altering meds,
exogenous sex hormones

Almasy et al.
(1999)

HDL-C 0.54 ± 0.09 Arya et al. (2002)

HDL-C 0.42 ± 0.10 Plasma ApoA-I, TG, exogenous sex
hormones, menopausal status

Mahaney et al.
(2003)

β-lipoprotein phenotypes 0.41 ± 0.07 Diabetes status, diabetic meds,
menopausal status, contraception,
alcohol consumption, smoking

Rainwater et al.
(2004)

Lipoprotein size phenotypes 0.30–0.45 Almasy et al.
(2005)

Adiposity-Related Phenotypes

Fat mass (bioimpedance) 0.63 Comuzzie et al.
(1997)

Serum leptin level 0.71 Comuzzie et al.
(1997)

Serum leptin level 0.50 ± 0.10 Diabetes status, testosterone Martin et al.
(2002)

BMI 0.54 Mitchell et al.
(1999)

Abdominal skinfold average 0.38 ± 0.07 Cai et al. (2004b)

Acylation-stimulating protein 0.26 ± 0.10 Martin et al.
(2004)

Diabetes-related phenotypes

Serum insulin concentration 0.53 ± 0.09 Mitchell et al.
(2000)

Insulin response to glucose
index

0.13 ± 0.08 Cai et al. (2004b)

Metabolic syndrome risk

Corrected insulin response 0.30 ± 0.07 Cai et al. (2004b)

(Lipid factor) 0.64 ± 0.09 Cai et al. (2004c)

(Adiposity factor) 0.49 ± 0.09 Cai et al. (2004c)

(Insulin–glucose factor) 0.42 ± 0.09 Cai et al. (2004c)

(BP factor) 0.26 ± 0.08 Cai et al. (2004c)

HOMA-IR 0.33 Waist circumference Voruganti et al.
(2008)

Blood pressure

Systolic BP 0.18 Mitchell et al.
(1996)

Diastolic BP 0.28 Mitchell et al.
(1996)

Pulse pressure 0.21 BMI Atwood et al.
(2001b)

(continued)
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effects of genes within a population, and the
sources, nature, and magnitude of phenotypic
variance differ between populations.

11.4.2 Mapping of Quantitative Trait
Loci

11.4.2.1 San Antonio Family Heart Study
We have performed linkage screens of all quan-
titative phenotypes collected during the clinic
visits in the SAFHS to identify loci contributing
to CVD risk factors. Our application of a sys-
tematic, semi-automated approach to linkage
analyses of 343 phenotypes yielded significant
evidence (LOD ≥ 3.0) for 40 QTLs, far
exceeding the number that would be expected by
chance. Therefore, we have confidence that a

substantial proportion of the significant QTLs
detected in the SAFHS are reflective of genes
with true, biologically important effects on our
focal phenotypes. For many of these linkage
signals, more extensive analyses have been done
including additional covariates (see Table 11.6).

11.4.2.2 Strong Heart Family Study
We have performed a linkage screen of 125
CVD-related phenotypes in the SHFS. In analy-
ses incorporating all three field centers, we
obtained significant evidence of linkage
(LOD ≥ 3.0) for 16 QTLs, again exceeding the
number expected by chance. More extensive
analyses of several of these signals have been
published (Table 11.7). We also have significant
linkage signals for heart rate, left ventricular
mass, bilirubin, neutrophil cell count, and

Table 11.3 (continued)

Trait h2 Covariatesa References

Inflammation/oxidative stress

Intercellular adhesion molecule-
1

0.50 ± 0.06 Waist, smoking, diabetes Kent et al. (2007)

Paraoxonase 1 0.77(f), 0.95
(m)b

Winnier et al.
(2007)

C-reactive protein 0.17 Voruganti et al.
(2008)

Hemostasis-related phenotypes 0.20–0.60 Warren et al.
(2005)

Blood coagulation

Plasminogen 0.43 ± 0.08 Smoking, contraception, alcohol,
menopausal status, diabetes, diabetes
Meds, lipid-altering meds, BMI, TC,
HDL-C

Santamaria et al.
(2007)

D-dimer 0.23 ± 0.07 Contraception, menopausal status Diego et al. (2010)

Kidney function

Urine albumin/creatinine ratio 0.24 ± 0.10 BMI, triglycerides, systolic BP Arar et al. (2007)

Serum uric acid 0.42 ± 2 × 10−7 BMI, waist, SBP, pulse pressure Nath et al. (2007)

Serum uric acid 0.39 Waist/hip ratio, SBP, triglycerides,
HDL-C, serum creatinine, BP meds,
alcohol, smoking, diabetes status

Voruganti et al.
(2009a, b)

Lifestyle

Macronutrient intakes 0.09–0.21 (Household effects) Cai et al. (2004a)

Cigarette and alcohol
consumption (bivariate)

0.52, 0.39 Education Viel et al. (2008)

a In addition to age, sex, and their higher order terms and interactions
b f females, m males [] included as variance component
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Table 11.4 Heritabilities of CVD risk factors: Strong Heart Family Study

Trait h2 Covariatesa References

Lipid-related phenotypes

LDL-C 0.39 ± 0.06 Estrogen, center, alcohol North et al. (2003a)

HDL-C 0.50 ± 0.07 Estrogen, center, alcohol North et al. (2003a)

Total cholesterol 0.39 ± 0.06 Estrogen, center North et al. (2003a)

Ln triglyceride 0.40 ± 0.07 North et al. (2003a)

ApoA-I 0.39 ± 0.07 Estrogen, center, alcohol North et al. (2003a)

ApoB 0.34 ± 0.07 Smoking North et al. (2003a)

Lp(a) 0.51 ± 0.09 Center North et al. (2003a)

VLDL-C 0.45 ± 0.09 North et al. (2003a)

VLDL-TG 0.41 ± 0.10 Smoking North et al. (2003a)

Adiposity-related phenotypes

Weight 0.51 ± 0.07 Center, alcohol, smoking North et al. (2003a)

BMI 0.44 ± 0.07 Estrogen, center, alcohol,
smoking

North et al. (2003a)

WHR 0.54 ± 0.07 Estrogen, center, smoking North et al. (2003a)

Fat mass 0.52 ± 0.06 Alcohol, smoking North et al. (2003a)

Fat free mass 0.53 ± 0.07 Alcohol, smoking North et al. (2003a)

Diabetes-related phenotypes

Fasting glucose 0.29 ± 0.08 Estrogen, center, alcohol North et al. (2003a)

Ln insulin 0.44 ± 0.08 Center North et al. (2003a

Diabetes status 0.41 ± 0.09 North et al. (2003c)

Insulin resistance syndrome factors 0.33–0.67 BP meds, lipid-lowering meds North et al. (2003d)

Blood pressure and Heart Rate (HR)

Systolic BP 0.23 ± 0.06 North et al. (2003a)

Diastolic BP 0.34 ± 0.07 Center North et al. (2003a)

Echo HR 0.28 ± 0.03 Melton et al. (2010)

ECG HR 0.30 ± 0.05 Melton et al. (2010)

Inflammation/oxidative stress

C-reactive protein 0.46 ± 0.07 Center, CVD history, physical
activity,

Best et al. (2004)

Fibrinogen 0.34 ± 0.07 % Indian heritage, % body fat,
BMI,

Best et al. (2004)

Paraoxonase 1 0.24 ± 0.07 Waist-hip ratio, SBP, hypertension
status, alcohol, smoking, diabetes
status, IGT status, TG, LDL-C,
HDL-C

Best et al. (2004)

Bilirubin 0.42 ± 0.03 Center, hematocrit, SGOT, serum
abumin, smoking

Melton et al. (2011)

Blood coagulation

Ln fibrinogen 0.23 ± 0.07 Center, alcohol, smoking North et al. (2003a)

PAI-1 0.26 ± 0.06 Center North et al. (2003a)
(continued)
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lymphocyte cell count. In an analysis of diabetes-
specific effects on weight, we identified a QTL
that is a good candidate for susceptibility to fat
deposition in diabetics (Franceschini et al.
2008a).

11.4.2.3 GOCADAN
Only a few of the GOCADAN linkage signals
have been published (Table 11.8). We obtained
significant LOD scores (≥3.0) for all adiposity-
related phenotypes in women. Our linkage
screens also reveal significant LOD scores for
diabetes, HDL-C, mean arterial pressure, apoB,
and ferritin. Suggestive LOD scores
(1.9 ≤ LOD < 3.0) were obtained for LDL size,
HDL size, LDL-C, total cholesterol, apoA1, fat
mass, fat-free mass, and weight.

11.5 Follow-up

The ultimate goal of our gene mapping efforts is
to identify the causative functional variants
responsible for our QTLs. We have begun this
process in all three projects. The most extensive

analyses have focused on SAFHS, the oldest of
the three studies.

For the SAFHS, we have approached fine
mapping in two ways. First, we have used SNP
identification in strong positional candidate genes
and genotyping of these novel SNPs and addi-
tional known SNPs for Bayesian quantitative
trait nucleotide (BQTN) analysis (Blangero et al.
2005). For instance, we are genotyping 88 SNPs
(70 novel) in the β3-adrenergic receptor gene,
ADRB3, to follow-up our QTL for BMI on
chromosome 8 (Mitchell et al. 1999) and more
than 600 SNPs (250 novel) in the hepatic lipase
gene, LIPC, for follow-up of our QTL for lipo-
protein size phenotypes (Almasy et al. 2005).
With the availability and practicality of whole
genome SNP typing, we have turned to whole
genome SNP chips to augment the fine mapping
of our QTLs identified for traditional quantitative
phenotypes as well as expression QTLs across
the genome.

We are using gene expression analysis, bio-
informatic and transcriptomic analysis, and
functional analysis in SAFHS in our search for
functional variants. For example, Curran et al.
(2007) identified two QTLs (one nuclear and one

Table 11.4 (continued)

Trait h2 Covariatesa References

Carotid artery measures

Lumen diameter 0.44 ± 0.07 Center, diabetes, impaired glucose North et al. (2002)

Intimal–medial wall thickness 0.21 ± 0.06 Tolerance, smoking, cholesterol, North et al. (2002)

Vascular mass 0.27 ± 0.07 Hypertension status, body surface
area

North et al. (2002)

Arterial stiffness 0.23 ± 0.07 North et al. (2002)

Augmentation index 0.18 ± 0.06 North et al. (2002)

Aortic root size 0.51 ± 0.08 Center Bella et al. (2002)

0.44 ± 0.08 Center, height, weight, SBP, DBP Bella et al. (2002)

Left ventricular dimensions and
massb

Left ventricular mass 0.27 ± 0.08 Center Bella et al. (2004)

LV end-diastolic chamber diameter 0.36 ± 0.08 Center Bella et al. (2004)

Interventricular septal wall thickness 0.26 ± 0.07 Center Bella et al. (2004)

LV posterior wall thickness 0.19 ± 0.08 Center Bella et al. (2004)

Relative wall thickness 0.22 ± 0.07 Center Bella et al. (2004)
a In addition to age, sex, and their higher order terms and interactions
b Further adjustment for body weight, height, SBP, heart rate, medications, and diabetes reduced heritabilities
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mitochondrial) that influence mitochondrial
content, and through bioinformatic and tran-
scriptomic analyses, have identified several
plausible candidates. Rutherford et al. (2007)
have fine mapped a QTL influencing longitudinal
change in blood pressure using SNP-association
analysis within candidate genes identified from a
bioinformatic search and from whole genome
transcriptional expression data. Functional anal-
yses have identified SEPS1 as a new candidate
mediator of inflammatory response (Curran et al.
2005). Using a quantitative trait linkage dis-
equilibrium test, Bozaoglu et al. (2006) provided
evidence consistent with a functional role for the
UBL5 (ubiquitin-like 5) gene in influencing traits
related to metabolic syndrome. Studies such as
these are allowing us to narrow in on causative
functional genes. The previously mentioned
whole genome sequence data also are providing
new opportunities for gene identification.

In the SHFS, we have completed our linkage
screen in the entire Family Study cohort. We are
using panels of gene-centric SNPs to explore our
QTL regions and identify candidate genes for
further characterization and BQTN analyses. For
our chromosome 4 obesity-related QTL (Almasy
et al. 2007), we observed strong evidence of
association of BMI and weight with multiple
markers in two genes in the chromosome 4 region.
In order to confirm our initial findings, SNPs in
these two genes were genotyped in a larger sample
from all three study centers. For our heart rate
QTL on chromosome 9p21 (Melton et al. 2010),
we observed association between SNPs in a gene
encoding a hypothetical protein, KIAA1797.
Through cross-collaboration, we subsequently
showed that expression levels of the KIAA1797
transcript were significantly associated with heart
rate in SAFHS participants. We are pursuing
QTLs for left ventricular mass, heart rate, pres-
ence or absence of plaque, and body composition
phenotypes using the same strategy. We also have
shown that the association of MYH9 polymor-
phisms with kidney disease phenotypes found in
African Americans does not apply to American
Indians (Franceschini et al. 2010).

For GOCADAN, association analysis using
1,536 gene-centric SNPs in the region of a QTL

for HDL-C levels and suggestive evidence for
linkage of HDL and LDL size (Cole et al. 2005)
has led us to replicate several previous reports of
association between SNPs and lipid levels within
a 500 kb region on chromosome 19. We geno-
typed SNPs in candidate genes in 8p12-p21
where we have localized linkage for unsaturated
fatty acids and found significant associations
between fatty acids and SNPs in apolipoprotein J
(APOJ), lipoprotein lipase (LPL), macrophage
scavenger receptor1 (MSR1), and tumor necrosis
factor receptor superfamily, member 10b
(TNFRSF10B). A Bayesian association analysis
based on a measured genotype model showed
that SNPs in LPL, TNFRSF10B, and APOJ
yielded strong statistical evidence for a func-
tional effect on the variation in plasma fatty acid
distribution (Voruganti et al. 2010).

11.6 Discussion and Conclusion

Disparities in the resources devoted to research on
the causes of disease in minority populations tend
to echo the inequalities in access to health care in
these populations. There is an effort at the national
level to address these discrepancies. Much can be
learned by studying multiple racial and ethnic
groups. Some genes may be more important
contributors to disease susceptibility in one ethnic
group than another. There may be genes that are
important in all racial and ethnic groups, but
because of different genetic backgrounds, envi-
ronmental exposures, and lifestyles, some genes
may be easier to detect in one group than another.
Moreover, different ethnic groups, because of
these genetic and environmental differences, may
require different preventive measures and differ-
ent therapies. In addition, cultural differences may
mean that some preventive measures are more
acceptable to the communities than others.

There are substantial similarities among the
three studies. All of our study populations have a
high prevalence of cardiovascular disease and are
characterized by rather low physical activity
levels and a high prevalence of smoking. In
SAFHS and SHFS, rates of diabetes and obesity
are very high. (However, in GOCADAN
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Table 11.5 Heritabilities of CVD risk factors: GOCADAN

Phenotype h2 a Covariates References Covariate effects

Lipid-related phenotypes

HDL-C (mg/dl) 0.51 ± 0.07 Sex, sex-specific
age, age2

Voruganti et al. (2006) 0.117

Triglycerides (mg/dl) 0.31 ± 0.08 Sex, sex-specific
age, age2

Voruganti et al. (2006) 0.020

LDL concentration (mg/dl) Voruganti et al. (2006)

Small 0.20 ± 0.06 Sex, sex-specific
age, age2

Voruganti et al. (2006) 0.039

Medium 0.31 ± 0.08 Sex, sex-specific
age, age2

Voruganti et al. (2006) 0.026

Large 0.30 ± 0.07 Sex, sex-specific
age, age2

Voruganti et al. (2006) 0.058

Total 0.36 ± 0.07 Sex, sex-specific
age, age2

Voruganti et al. (2006)

Mean LDL size (nm) 0.45 ± 0.09 Sex, sex-specific
age, age2

Voruganti et al. (2006) 0.075

HDL concentration

Small 0.20 ± 0.10 Age, sex,
interactions,

Tejero et al. (2010)

Medium 0.43 ± 0.10 Smoking, lipid-
lowering meds

Tejero et al. (2010)

Large 0.39 ± 0.10 Smoking, lipid-
lowering meds

Tejero et al. (2010)

Mean HDL size 0.89 ± 0.07 Smoking, lipid-
lowering meds

Tejero et al. (2010)

Lp(a) 0.89 ± 0.08 Smoking, lipid-
lowering meds

Tejero et al. (2010)

Total cholesterol 0.45 ± 0.09 Smoking, lipid-
lowering meds

Tejero et al. (2010)

Adiposity-related phenotypes

Weight (kg) 0.64 ± 0.06 Sex, sex-specific
age, age2

Voruganti et al. (2006) 0.044

BMI (kg/m2) 0.57 ± 0.07 Sex, sex-specific
age, age2

Voruganti et al. (2006) 0.037

Waist circumference (cm) 0.55 ± 0.07 Sex, sex-specific
age, age2

Voruganti et al. (2006) 0.030

Skinfold (mm) Sex, sex-specific
age, age2

Voruganti et al. (2006)

Subscapular 0.53 ± 0.07 Sex, sex-specific
age, age2

Voruganti et al. (2006)

Triceps 0.47 ± 0.07 Sex, sex-specific
age, age2

Voruganti et al. (2006)

Waist/height 0.53 ± 0.08 Sex, sex-specific
age, age2

Voruganti et al. (2011)

Body fat (%) 0.56 ± 0.07 Sex, sex-specific
age, age2

Voruganti et al. (2011)

Diabetes-related phenotypes

Fasting glucose 0.31 ± 0.09 Age, sex, age x
sex, lipid

Tejero et al. (2010)

Insulin 0.24 ± 0.09 Meds, smoking Tejero et al. (2010)

HbA1c 0.47 ± 0.09 Meds, smoking Tejero et al. (2010)
(continued)
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compared to U.S. whites, the prevalence of dia-
betes is lower in both men and women. Preva-
lence of obesity is lower in men, and equal to U.
S. whites in women.) All three populations are of
mixed Asian and European ancestry, in varying
degrees. Although each study collected unique
risk factor data, a basic set of phenotypes was
common to all studies. The designs of all three
studies involved extended families recruited
without regard to disease status. Extended fami-
lies are much more powerful for statistical
genetic analysis than are sib pairs or nuclear
families, and the ascertainment strategy allows us
to analyze multiple traits without the complica-
tions introduced by ascertainment correction.

There also are numerous differences among
the three study populations. Perhaps most strik-
ing are the differences in environment and cli-
mate. The diets in the three populations are in
various stages of transition from traditional to
westernized. Moreover, the approaches to iden-
tifying and recruiting families differed substan-
tially between studies because of the differing
histories of the studies and the diverse environ-
ments of the populations. In identifying and
recruiting families in the San Antonio Family
Heart Study, we started “from scratch,” but had
the advantages of a circumscribed geographic
area and access to city directories. The Strong
Heart Family Study grew from an existing
epidemiologic study (SHS) that already had

recruited more than 4,500 participants in three
geographic areas. Although only limited family
data were available in SHS, these data provided
an excellent basis for identifying extended fam-
ilies. GOCADAN recruitment was not focused
specifically on families but rather on entire vil-
lages. A census of household members and their
relationships, together with the interrelatedness
of the villages, enabled us to link nearly all of the
1,200+ participants into a single large pedigree.

Genetic analyses have progressed to different
degrees in the three studies, as a function of their
duration and the resources available. All three
studies have demonstrated significant heritabili-
ties for a variety of CVD risk factors. Linkage
analyses have revealed many significant LOD
scores in the San Antonio Family Heart Study
and the Strong Heart Family Study, and several
in the newer GOCADAN study. In all three
studies, promising signals are being followed up
in an attempt to identify relevant functional
polymorphisms.

As mentioned above, a growing challenge has
been created by the mismatch between the cul-
tural beliefs of some minority populations and
new federal regulations concerning data sharing.
We honor the conviction of the American Indians
and Alaskan Eskimos in our studies that their
genetic information belongs to them and must
not be shared broadly (for example, by making
it available through NIH). Therefore, federal

Table 11.5 (continued)

Phenotype h2 a Covariates References Covariate effects

Fatty acids

Saturated FAs 0.38 ± 0.11 Age, sex, age2,
interactions

Voruganti et al. (2010)

Monounsaturated FAs 0.48 ± 0.12 Age, sex, age2,
interactions

Voruganti et al. (2010)

Polyunsaturated FAs 0.42 ± 0.12 Age, sex, age2,
interactions

Voruganti et al. (2010)

Total FAs 0.55 ± 0.12 Age, sex, age2,
interactions

Voruganti et al. (2010)

Blood pressure

Systolic BP 0.46 ± 0.09 Age, sex, age x
sex, lipid

Tejero et al. (2010)

Diastolic BP 0.45 ± 0.09 Meds, smoking Tejero et al. (2010)
a All p values <0.0001 except for insulin (p = 0.002) and small HDL (p = 0.007)
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Table 11.6 San Antonio Family Heart Study selected linkage results

Trait QTL Location LOD Covariatesa References

Lipid-related phenotypes

HDL2a-unesterified cholesterol 8 (150 cm) 4.87 Diabetic status, postmenopausal
status, smoking, alcohol
consumption, diabetes meds, lipid-
altering meds, exogenous sex
hormones

Almasy et al. (1999)

HDL2a-unesterified cholesterol 15 (62 cm) 3.26 Diabetic status, postmenopausal
status, smoking, alcohol
consumption, diabetes meds, lipid-
altering meds, exogenous sex
hormones

Almasy et al. (1999)

HDL-C 9p (41 cm) 3.4 Arya et al. (2002)

HDL-C 16q (92 cm) 4.33 Plasma ApoA-I, TG, exogenous sex Mahaney et al.
(2003)

β-lipoprotein phenotypes 15 3.0 Diabetes status, diabetic meds,
menopausal status, contraception,
alcohol consumption, smoking

Rainwater et al.
(2004)

Lipoprotein size phenotypes 15 (LIPC
region)

1.78-
3.79

Almasy et al. (2005)

HDL-EC size 5p 3.5 Almasy et al. (2005)

Adiposity-related phenotypes

Fat mass (bioimpedance) 2p (78.3 cm) 2.75 Comuzzie et al.
(1997)

Serum leptin level 2p (74.2 cm) 4.95 Comuzzie et al.
(1997)

Serum leptin level 22 (D22S1685) 3.44 Diabetes status, testosterone Martin et al. (2002)

BMI 8 (63 cm) 3.21 Mitchell et al.
(1999)

Acylation-stimulating protein 17 (D17S1303) 2.7 Martin et al. (2004)

ASP and BMI (bivariate) 17 4.7 Martin et al. (2004)

ASP and HDL2a-C (bivariate) 15 3.2 Martin et al. (2004)

LpPLA2 (interacts with adiposity) 1 (153 cm) 3.39 Oral contraceptive use, menopausal Diego et al. (2007)

Status

Blood pressure

Diastolic BP 2 (D2S1790) 3.92 Systolic BP, BMI Atwood et al.
(2001a)

Systolic BP 2 (D2S1790) 1.31 Diastolic BP, BMI Atwood et al.
(2001a)

Pulse pressure 21 (D21S1440) 2.78 BMI Atwood et al.
(2001b)

ACE activity 17 4.57 BMI, menopausal status, I/D
genotypes

Kammerer et al.
(2004)

ACE activity 4 (D4S1548) 3.34b BMI, menopausal status, I/D
genotypes

Kammerer et al.
(2004)

SBP rate of change 11q24.1 4.15 BMI rate of change Rutherford et al.
(2007)

(continued)
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Table 11.6 (continued)

Trait QTL Location LOD Covariatesa References

Mean arterial pressure rate of
change

11q24.1 3.94 BMI rate of change Rutherford et al.
(2007)

Diabetes-related phenotypes

Serum insulin concentration 3p (109 cm) 3.07 Mitchell et al.
(2000)

Insulin response to glucose index 8 (22–26 cm) 3.09 Cai et al. (2004b)

Corrected insulin response 13q 2.98 Cai et al. (2004b)

Metabolic syndrome risk

(lipid factor) 4p (26 cm) 3.52 Cai et al. (2004c)

(adiposity factor) 1 (30 cm) 2.53 Cai et al. (2004c)

(insulin-glucose factor) 3 (112 cm) 2.20 Cai et al. (2004c)

HOMA-IR 12 (118 cm) 3.01 Waist circumference Voruganti et al.
(2008)

Inflammation/oxidative stress

Intercellular adhesion molecule-1 19p (33 cm) 4.95 Waist circumference, smoking,
diabetes, diabetes meds

Kent et al. (2007)

Paraoxonase 1 7q (PON1
region)

31.4 Winnier et al. (2006,
2007)

Paraoxonase 1 12 (26 cm) 3.56 Winnier et al. (2006,
2007)

Plasminogen 12q14.1 2.73 Smoking, contraception, alcohol,
menopausal status, diabetes,
diabetes meds, lipid-altering meds,
BMI, TC, HDL-C

Santamaria et al.
(2007)

Kidney function

Serum creatinine 9 (D9S922) 2.62 Arar et al. (2008)

Creatinine clearance 2 (D2S1780) 2.05 Arar et al. (2008)

Glomerular filtration rate (eGFR) 9 (D9S1122) 3.87 Arar et al. (2008)

Serum uric acid 6q (133 cm) 3.3 BMI, waist circumference, SBP,
pulse pressure

Nath et al. (2007)

Serum uric acid 3p26
(D3S2387)

4.72 Waist/hip ratio, SBP, triglycerides,
HDL-C, serum creatinine, BP meds,
alcohol consumption, smoking,
diabetes status

Voruganti et al.
(2009a ,b)

Blood coagulation

TAFI antigen 13q (D13S788) 3.09 Warren et al. (2006)

D-dimer 5p15.32-p15.2 3.32 Contraception, menopausal status Diego et al. (2010)

Lifestyle

Macronutrient intakes 2p22
(D2S1346)

1.0–
2.62

Alcohol, smoking, diabetes status
(household effects-variance
component)

Cai et al. (2004a)

Cigarette and alcohol
consumption (bivariate)

10 (151 cm) 3.82 Education Viel et al. (2008)

a In addition to age, sex, and their higher order terms and interactions; b Conditional on chr 17 locus; + f = females, m = males
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Table 11.7 Strong Heart Family Study selected linkage results

Trait QTL location LOD Covariatesa References

Lipid-related phenotypes

LDL-C (DK) 19q13.41 (93 cm) 4.3 North et al. (2006)

LDL-C (DK) 19q13.41 (93 cm) 2.7 Metabolic equiv, smoking North et al. (2006)

HDL-C (AZ) 6p22.3-p24.3 4.4 Li et al. (2009)

Apolipoprotein A-1 (AZ) 6p22.3-p24.3 3.2 Li et al. (2009)

Apolipoprotein A-1 (DK) 9q22.2 3 Li et al. (2009)

Triglycerides (DK) 15q22.1-q22.31 3.8 Li et al. (2009)

Adiposity-related
phenotypes

BMI (DK) 2 (45 cm) 1.12 Diego et al. (2006)

Fat mass (FM) (DK) 11 (66 cm) 2.23 Diego et al. (2006)

Log FI and FM (bivariate)
(DK)

2 (48 cm) 3.43 Diego et al. (2006)

Log FI and BMI (bivariate)
(DK)

2 (52 cm) 2.91 Diego et al. (2006)

Weight% 1 (242 cm) 3.7 Franceschini et al.
(2008a)

Weight 4q35 5.17 Center Almasy et al. (2007)

BMI 4q35 5.08 Center Almasy et al. (2007)

Diabetes-related
phenotypes

Insulin resistance factor
scoresb

Center North et al. (2005)

Dyslipidemia factor 12q24.1-3
(141 cm)

2.7 Center North et al. (2005)

Glucose-insulin-obesity
factor

4q34.3 (205 cm) 2.2 Center North et al. (2005)

Blood pressure factor 1 (237 cm) 1.6 Center North et al. (2005)

Log fasting insulin (FI)
(Dakotas)

2 (51 cm) 3.42 Diego et al. (2006)

Blood pressure and Heart
Rate

Systolic blood pressure ^
(g × sex)

17 (136 cm) 3.25 Hypertension meds Franceschini et al.
(2006)

Pulse pressure 7p15.3 (37 cm) 3.3 Center Franceschini et al.
(2008b)

Echo HR (Oklahoma) 9p21 3.67 Melton et al. (2010)

ECG HR (Oklahoma) 9p21 4.83 Melton et al. (2010)

Heart rate (EKG) 9p21 (39 cm) 3.3 Rutherford et al.
(2008)

Inflammation/oxidative
stress

Bilirubin 2q37.1 6.61 Center, hematocrit,
SGOT, serum albumin,
smoking

Melton et al. (2011)

Blood coagulation

Fibrinogen (DK) 7 (76 cm) 3.02 Waist circumference,
diabetes status,
menopausal status

Best et al. (2008)

(continued)
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funding for future gene identification efforts
using NIH-funded genome-wide SNP typing or
sequencing may not be an option. We will
approach this problem by seeking private fund-
ing, as was done with the San Antonio Family
Heart Study. (We were unsuccessful in petition-
ing NIH for exceptions to their broad data-shar-
ing requirements.) We also will discuss with the
study populations the sharing of data with
selected researchers who are approved by them.
Given the increasing importance of cardiovas-
cular disease and related disorders in minority
populations, and the promise of new genetic

approaches for revealing underlying mecha-
nisms, resolution of this issue has the highest
priority.
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Table 11.7 (continued)

Trait QTL location LOD Covariatesa References

Kidney function

Glomerular filtration rate
(AZ)

12p12.2 (39 cm) 3.5 Mottl et al. (2008)

eGFR in nonhypertensives
(AZ)

12p12.2 (39 cm) 4.6

Albumin/creatinine ratio 1q32.2 (D1S249) 2 Mottl et al. (2009)

Albumin/creatinine ratio
(AZ)

1q32.2 (D1S249) 2.5 Mottl et al. (2009)

Serum uric acid 11 (71 cm) 3.56 Center, BMI, eGFR,
diabetes

Voruganti et al.
(2009b)

Serum uric acid 1p36 (39 cm) 3.51 Status, alcohol,
medications

Voruganti et al.
(2009b)

a In addition to age, sex, and their higher order terms and interactions; b females only
c nondiabetics only
d diabetes-specific

Table 11.8 GOCADAN selected linkage results

Trait QTL location LOD Covariates References

Adiposity-related phenotypes,
women

Age, sex, age2, interactions Voruganti et al. (2011)

BMI (kg/m2) chr19, 61 cm 4.5 Age, sex, age2, interactions Voruganti et al. (2011)

Waist (inches) chr19, 63 cm 4.8 Age, sex, age2, interactions Voruganti et al. (2011)

Waist/height chr19, 65 cm 3.8 Age, sex ,age2, interactions Voruganti et al. (2011)

Body fat (%) chr19, 61 cm 5.0 Age, sex, age2, interactions Voruganti et al. (2011)

Subscapular skinfold (cm)* chr19, 61 cm 3.3 Age, sex ,age2, interactions Voruganti et al. (2011)

Triceps skinfold chr19, 61 cm 4.0 Age, sex, age2, interactions Voruganti et al. (2011)

Fatty acids Age, sex, age2, interactions Voruganti et al. (2010)

Saturated FAs chr12, 146 cm 1.68 Age, sex, age2, interactions Voruganti et al. (2010)

Monounsaturated FAs chr8, 50 cm 3.82 Age, sex, age2, interactions Voruganti et al. (2010)

Polyunsaturated FAs chr6, 170 cm 2.93 Age, sex, age2, interactions Voruganti et al. (2010)

Total FAs chr10, 97 cm 1.94 Age, sex, age2, interactions Voruganti et al. (2010)
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12Mapping of Susceptibility Genes
for Obesity, Type 2 Diabetes,
and the Metabolic Syndrome in Human
Populations
Rector Arya, Sobha Puppala, Vidya S. Farook,
Geetha Chittoor, Christopher P. Jenkinson,
John Blangero, Daniel E. Hale, Ravindranath Duggirala,
and Laura Almasy

12.1 Introduction

The epidemics of obesity, type 2 diabetes, and
metabolic syndrome have become pandemics
with profound public health impact worldwide,
including the United States (US). The prevalence
rates of these disease conditions have been
increasing disturbingly in recent decades, and are
associated with increased morbidity and mortal-
ity worldwide. Added to this burden, obesity,
T2D, and MS prevalence rates have also
increased dramatically among children and ado-
lescents within the last few decades. In the US,
these disease conditions disproportionately affect
ethnic minorities, including African Americans
and Mexican Americans. The disparities in
children are particularly troubling because obes-
ity is a major risk factor for future development
of chronic diseases. Obesity, T2D, and MS are
common complex diseases influenced by genetic,
environmental factors and their interactions. The
genetic contribution to obesity (Stunkard et al.
1986a; Duggirala et al. 1996, 2000; Comuzzie
et al. 2001; Pankow et al. 2001; Loos and Bou-
chard 2003; Saunders et al. 2007), T2D (Elbein
and Hasstedt 2002; Stern et al. 2002; Diamond
2003; Frayling et al. 2007), and MS and its
individual components (Groop 2000; Lin et al.
2005; Biro and Wien 2010; Hinney et al. 2010)
has been well established through family, twin,
and adoption studies. However, progress in
identification of the actual causal variants and
genes contributing to these metabolic diseases
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has been very limited. Three genetic mapping
approaches have been widely used to localize
susceptibility variants and genes that underlie the
phenotypic expressions of these complex dis-
eases, each of which has unique advantages and
disadvantages (Altmuller et al. 2001; Tabor et al.
2002; Altshuler et al. 2008; Marian and Belmont
2011; Lewis and Knight 2012); please refer to
the chapters on linkage and association by
Almasy et al. and Hanson and Malhotra,
respectively, for methodological details). The
candidate gene approach examines specific genes
with a potential functional role in disease path-
ophysiology; however, a major issue associated
with this approach is nonreplication of original
findings. Genome-wide linkage studies have
been very successful in identifying the causal
variants for single-gene disorders, but their suc-
cesses in identifying genetic variants influencing
complex diseases are very limited.

In recent years, however, as an alternative gene
localization tool, the genome-wide association
study (GWAS) method using information from
common genetic variants has become a popular
design. Pursuing a common disease-common
variant hypothesis, GWASs have demonstrated
remarkable success in localization of novel sus-
ceptibility loci for various common, complex
diseases. With the advancements of the Interna-
tional HapMap Project and the Human Genome
Project and rapid developments in high-through-
put genotyping technologies, GWASs have been
very successful in identifying a large number of
loci for several complex diseases including obes-
ity and T2D, implicating both known and
unknown genes and new biological pathways
(Frayling et al. 2007; Lango and Weedon 2008;
Billings and Florez 2010; Vimaleswaran and Loos
2010; Day and Loos 2011; Fall and Ingelsson
2012). There have been efforts to replicate the
original association findings or to find new asso-
ciation signals (e.g., SLC16A11 [solute carrier
family 16, member 11] sequence variants and T2D
in Mexicans and other Latin Americans, SIGMA
T2D Consortium 2014 (Williams et al. 2014)) in
ethnically diverse populations, since most of the
GWASs were conducted using large population-
and case-control-based datasets from Europeans

or populations with European ancestry (Sanghera
and Blackett 2012; Saxena et al. 2012; Ng et al.
2013). One limitation of the GWAS approach is
that, like linkage, it implicates a general region
and an association may be due to any of a number
of variants in linkage disequilibrium with a gen-
otyped marker showing association with the
phenotype of interest. Few of the GWAS signals
noted above have been followed through to
identification of specific functional variants.

Another drawback of these studies is that
GWAS-identified common variants explain only a
modest fraction of the total heritability, which is
about 10 % for T2D, and less than 5 % for obesity
andMS traits, suggesting that a large proportion of
heritability is still unexplained (i.e., missing heri-
tability). Therefore, there has been an increased
interest in the potential role of rare variants in
common complex diseases (common disease-rare
variant hypothesis), which are likely to have larger
effect sizes with potential functional consequences
and could contribute to missing heritability (Ma-
nolio 2009; Cirulli and Goldstein 2010; Gibson
et al. 2012; Agarwala et al. 2013; Zuk et al. 2014).
Recent advances in next-generation sequencing
technologies have made it possible to obtain
complete information on rare and common
sequence variants across the whole exome or
genome (please refer to the chapter byCurran et al.
in this volume). It is conceivable that both com-
mon and rare variants could be important con-
tributors to complex disease risk (Gibson et al.
2012; Agarwala et al. 2013; Zuk et al. 2014).
Several new collaborative national and
international consortia such as the Type 2Diabetes
(T2D) Genetic Exploration by Next-generation
sequencing in Ethnic Samples (T2D-GENES) and
the Genetics of Type-2 Diabetes (Go-T2D) have
been employing the sequencing technologies to
understand the genetic architectures of complex
diseases such asT2D (Flannick et al. 2014).Whole
exome and whole genome sequencing studies
using population-based and large pedigree-based
datasets are expected to facilitate the discovery of
rare and low frequency variants that influence
complex phenotypes. Identification of causal
variantswill have great clinical significance for the
development of novel preventive strategies and
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drug therapies for obesity, T2D, andMS, and may
eventually lead to personalized medicine in the
near future.

12.2 The Epidemics: Obesity, Type 2
Diabetes, and Metabolic
Syndrome

12.2.1 Obesity

Obesity is a chronic disease which results from
long-term positive energy balance (i.e., energy
intake exceeds energy expenditure), and can be
defined as an excess of body fat (Grundy 2004;
Lau et al. 2007). The prevalence rates of over-
weight and obesity have been rapidly increasing
in both developed and developing countries, and
such a dramatic rise in its prevalence is attributed
to overnutrition and sedentary lifestyles (Must
et al. 1999; Caterson and Gill 2002; Chopra et al.
2002; Caprio 2003; Grundy 2004; Lau et al.
2007; WHO 2013). According to World Health
Organization (WHO 2013) estimates, more than
1.4 billion adults (20 years and above) were
estimated to be overweight in 2008; of these,
over 200 million men and about 300 million
women were obese. In the US, according to the
National Health and Nutrition Examination Sur-
vey (NHANES) 2011–2012 data from adults
aged 20 years or older, more than one-third
(34.9 %) of adults were obese; and obesity rates
were strikingly higher among the US minority
populations: non-Hispanic (NH) European
Americans [NH-EAs] = 32.6 %, NH-Asians
[NH-As] = 10.8 %, Hispanics = 42.5 %, and NH-
African Americans [NH-AAs] = 47.8 %] (Ogden
et al. 2014). It is estimated that, by the year 2015,
the occurrence of overweight and obesity in
adults will be 75 % and about 44 % will be
obese; with minority groups disproportionately
affected (Wang and Beydoun 2007; Flegal et al.
2010). The total annual economic costs due to
overweight and obesity in the US and Canada
combined were estimated to be approximately
$300 billion in 2009, and approximately 90 % of
these total costs were related to the US (Behan
and Cox 2010). Added to this burden, obesity

and overweight are major risk factors for various
chronic diseases such as T2D, cardiovascular
disease (CVD), hypertension, MS, and certain
types of cancers, leading to increased morbidity,
mortality, and impaired lifestyle (Must et al.
1999; Mokdad et al. 2001; Guh et al. 2009;
Schienkiewitz et al. 2012).

12.2.2 Type 2 Diabetes

Type 2 diabetes (T2D) is a complex blood glu-
cose homeostasis disorder characterized by both
insulin resistance and pancreatic β-cell dysfunc-
tion (DeFronzo 2004). The increasing prevalence
of obesity parallels the increasing prevalence of
T2D. Indeed, as Grubb (2002) remarks, “where
obesity goes, so goes diabetes”. The term “dia-
besity” is often used to refer to the co-occurrence
of the epidemics of T2D and obesity (Caprio
2003; Kaufman 2005). Although the molecular
mechanisms that underlie the association
between obesity and T2D are unclear, a major
feature of the pathophysiology of both obesity
and T2D is insulin resistance, which manifests
itself in adipose, hepatic, and skeletal muscle
tissues (Goldstein 2003; DeFronzo 2004). The
compound burden of an increasing global obesity
epidemic together with its comorbid conditions
including T2D, hypertension, and related car-
diovascular complications is expected to become
a major global public health problem (Sorensen
2000; Friedrich 2002; Grubbs and Brundage
2002; Zimmet 2003; Francischetti and Genelhu
2007; Apovian 2010). According to WHO
(2013) estimates, globally, 347 million people
have diabetes. It is estimated that about 366
million people will be afflicted with T2D by the
year 2030, and the countries with the largest
number of people with diabetes will be India,
China, and the US by the year 2030 (Wild et al.
2004). In the US, following the Centers for
Disease Control and Prevention (CDC 2011)
estimates, in 2010, approximately 25.8 million
people are afflicted with diabetes including about
215,000 individuals younger than 20 years (type
1 or type 2); of which, about 18.8 million have
diagnosed diabetes, whereas the remaining 7
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million with diabetes are unaware of their disease
(see also, Cowie et al. 2009, 2010). The esti-
mated prevalence of diagnosed diabetes based on
age-adjusted data for individuals aged 20 years
or older (2007–2009 National Survey Data)
exhibits notable ethnic disparities (CDC 2011):
NH-EAs = 7.1 %, NH-AAs = 12.6 %, NH-
As = 8.4 %, and Hispanics = 11.8 % (e.g.,
Mexican Americans (MAs) = 13.3 %). In addi-
tion, the estimated occurrence of prediabetes in
US adults aged 20 years or older is 79 million
people in 2010 (CDC 2011). Using NHANES
2005–2006 data of US adults aged 20 years or
older, the age and sex standardized prevalence of
prediabetes [either impaired fasting glucose
(IFG) or impaired glucose tolerance (IGT)] was
found to be 32.0 % in MAs, compared to 25.4 %
in AAs and 27.7 % in EAs (Cowie et al. 2009).
Also, longstanding T2D is associated with both
macrovascular (e.g., CVD) and microvascular
complications such as nephropathy, neuropathy,
and retinopathy and US minority populations are
found to have higher rates of such complications
compared to the general population (Goldstein
2003; Hunt et al. 2003; Lutale et al. 2007; Peek
and Reddy 2007; Hillis et al. 2012). In the US,
the estimated total economic cost of diagnosed
diabetes in 2012 was $245 billion (ADA 2013).

12.2.3 Metabolic Syndrome

The clustering of cardiometabolic abnormalities
such as obesity, insulin resistance, impaired glu-
cose tolerance, dyslipidemia [elevated triglyceride
and decreased high-density lipoprotein (HDL)
cholesterol levels], and hypertension has been
referred to as the Insulin Resistance Syndrome
(IRS) or the Metabolic Syndrome (MS) (Reaven
1988; DeFronzo and Goodman 1995; Grundy
2007). The increasing prevalence of MS in global
populations is mainly attributable to the rising
prevalence of overweight and obesity (Grundy
2004; Deboer 2011). Obesity, insulin resistance,
and their associated inflammatory processes are
considered to be the major underlying mecha-
nisms ofMS (Reaven 1988; DeFronzo 1995; Cruz
et al. 2005; Yang and Ming 2011). MS is

associated with an increased risk for CVD, coro-
nary heart disease (CHD), T2D, and total mor-
tality (Lempiainen et al. 1999; Goldstein 2003;
Lorenzo et al. 2006, 2007; Taylor et al. 2008).
Several other metabolic disturbances have also
been considered as components of MS including
abnormalities of fibrinolysis, hyperuricemia, mi-
croalbuminuria, elevated markers of chronic
inflammation, endothelial dysfunction, acanthosis
nigricans, polycystic ovary syndrome (PCOS),
and nonalcoholic fatty liver disease (NAFLD)
(Isomaa 2003; Opie 2007; Brickman et al. 2010;
Brown et al. 2010; Henneman et al. 2010; Deboer
2011; Lerman and Lerman 2011). A number of
studies have examined the underlying structure of
the MS using MS-related traits and factor analysis
(Meigs 2000; Hanson et al. 2002; Arya et al.
2002a; North et al. 2003; Monda et al. 2010;
Fowler et al. 2013). In general, such studies have
found more than one underlying factor to explain
the structure of the MS-related multivariate data,
suggesting the possibility of multiple distinct or
separate biological processes underlying MS. In
consideration of such findings together with the
fact that a large number of traits may constitute the
MS, it has become difficult to precisely defineMS.
However, several diagnostic criteria have been
proposed by expert groups to define a composite
dichotomous MS phenotype in adults, using
information from similar core components of MS,
primarily including measures such as obesity,
glucose, lipids, and blood pressure.

Aside from the debate on its clinical utility
(Gordon 1998; Simmons et al. 2010; Tenenbaum
and Fisman 2011; Golden et al. 2012), some
commonly used MS definitions are based on
guidelines proposed by the WHO, the European
Group for the Study of Insulin Resistance (EGIR),
the National Cholesterol Education Program—
Third Adult Treatment Panel (NCEP/ATP III), the
American Association of Clinical Endocrinology
(AACE), the American Heart Association and
National Heart, Lung and Blood Institute (AHA/
NHLBI), and the International Diabetes Federa-
tion (IDF), as reviewed elsewhere (Lin et al. 2005;
Ford and Li 2008; Alberti et al. 2009; Monda et al.
2010; Ford et al. 2010b; Kassi et al. 2011). How-
ever, such definitions differ in the number of traits
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and the population-based thresholds or cutoffs
required for the diagnosis. Also, definitions of the
WHO, AACE, EGIR are focused on insulin
resistance, whereas the IDF focuses on waist cir-
cumference as a measure of central obesity
(Monda et al. 2010; Kassi et al. 2011). Several
studies have used the NCEP/ATPIII (2001) defi-
nition for its simplicity (Cruz and Goran 2004;
Sung et al. 2009; Simmons et al. 2010; Henneman
et al. 2010; Farook et al. 2012), since it avoids
emphasis on a single cause (Grundy et al. 2005;
Grundy 2005). The NCEP/ATPIII definition
requires the presence of at least 3 of the following 5
factors: increased waist circumference, hypertri-
glyceridemia, lowHDL cholesterol, hypertension,
and high fasting glucose. Recently, a Joint Scien-
tific Statement was proposed to harmonize theMS
definition (Alberti et al. 2009). Using these
guidelines and the NHANES 2003–2006 data, the
age-adjusted prevalence of MS in US adults aged
20 years and older was estimated to range from
34.3 % (males = 36.1 % [NH-EAs = 38.4 %, NH-
AAs = 25.5 %, MAs = 34.4 %], females = 32.4 %
[NH-EAs = 31.3 %, NH-AAs = 38.2 %,
MAs = 41.9 %]) to 38.5 % (males = 41.9 % [NH-
EAs = 43.2%,NH-AAs = 32.5%,MAs = 44.5%],
females = 35.0 % [NH-EAs = 33.8 %, NH-
AAs = 41.1 %, MAs = 44.1 %]), which corre-
sponds to about 77 to 86million people (Ford et al.
2010a). It is estimated that the average annual total
health care costs spent by individuals with MS
($5,732) differed from those without MS ($3,581)
by a magnitude of 1.6 and that the total costs
increased by an average of 24% per additional risk
factor (Boudreau et al. 2009).

12.2.4 The Epidemics of Obesity, Type 2
Diabetes, and the Metabolic
Syndrome in Children
and Adolescents

Disturbingly, the prevalence rates of overweight
and obesity among children and adolescents have
also been increasing worldwide in recent decades,
including in US pediatric populations, wherein
certain minority ethnic groups including MAs are

affected disproportionately (Mehta et al. 2007;
Crocker and Yanovski 2009; Ogden and Cle-
menti 2010; Fowler et al. 2013). Globally, more
than 42 million children under the age of 5 years
were overweight in 2010 (WHO 2013). In the
US, based on NHANES 2011–2012 data, among
children and adolescents aged 2–19 years, the
rate of obesity was 16.9 % (Ogden et al. 2014).
There are significant ethnic disparities in child-
hood obesity prevalence: NH-EAs = 14.1 %,
NH-AAs = 20.2 %, NH-As = 8.6 %, and His-
panics = 22.4 %. Childhood MS-related risk
factors such as obesity have been shown to be
strong predictors of development of various dis-
ease conditions in adulthood including T2D,
CVD, and MS (Must et al. 1999; Berenson 2002;
Virdis et al. 2009; Deboer 2011). Importantly,
the increasing occurrence of obesity parallels
increased prevalence of MS and its correlates
including T2D in children and adolescents (ADA
2000; Goran et al. 2003; Cruz et al. 2005; Pi-
nhas-Hamiel and Zeitler 2005; Caceres et al.
2008; Deboer 2011; May et al. 2012). In the US,
individuals under 20 years of age, 215,000 are
affected with diabetes (type 1 or type 2) (CDC
2011). Regarding prediabetes, the unadjusted
prevalences of IFG, IGT, and prediabetes in the
NHANES 2005–2006 data for adolescents aged
12–19 years were 13.1, 3.4, and 16.1 %,
respectively (Li et al. 2009).

There has been no fully validated definition of
MS in children and adolescents, and there are
concerns about pediatric MS diagnostic criteria
since MS prevalence estimates vary in accor-
dance with the definitions used (Ford and Li
2008; Huang 2008; Sumner 2009; Deboer 2011;
Kassi et al. 2011). However, definitions of MS in
children tend to use a similar approach to those in
adults, usually the NCEP/ATPIII criteria (Ford
and Li 2008). Using the NHANES 2001–2006
sample of adolescents aged 12–19 years, an
estimated 8.6 % of adolescents were found to
have MS, which extrapolates to approximately
2.5 million adolescents in the US population
(Johnson et al. 2009). The overall prevalence was
highest in Hispanic adolescents (11.2 %),
followed by NH-EAs (8.9 %) and NH-AAs
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(4.0 %). Several studies reported high occurrence
of MS among obese children and adolescents,
especially in ethnic minority groups, and MS
prevalence increased with worsening obesity
(Cruz et al. 2004; Weiss et al. 2004; Butte et al.
2005; Messiah et al. 2010). Cruz et al. (2004)
found an inverse association between insulin
sensitivity and the number of components of MS,
and concluded that insulin resistance is central to
the MS profile in Hispanic children with a family
history of T2D. Numerous studies have identified
a strong relationship between a positive parental
history and/or family history of T2D and the co-
occurrence of obesity and T2D related traits in
children (ADA 2000; Cruz et al. 2002; Goran
et al. 2003; Valdez et al. 2007). Aside from the
issue of MS definition, there have been sugges-
tions to focus on individual MS risk factors in
children as they relate to obesity, insulin resis-
tance, glucose intolerance, inflammation, endo-
thelial dysfunction, and hypertension and their
correlations (Steinberger et al. 2009; Schutte
et al. 2009; Hoffman 2009).

12.2.4.1 Cardiometabolic Risk in Mexican
American Children: The SAFARI
Study

To address the issue of metabolic syndrome or
clustering of cardiometabolic risk in MA children
and adolescents, we designed the San Antonio
Family Assessment of Metabolic Risk Indicators
in Youth (SAFARI) study to identify signs of MS
and future disease risk in MA children and ado-
lescents in San Antonio, Texas and surrounding
areas, and to examine their genetic basis. We
examined 673 children and youth, aged 6–
17 years old (mean age = 11.5 years and
girls = 49.5 %), from large, predominantly lower
income MA families at increased risk of diabetes,
whose adult members had previously participated
in one of three community-based genetic epide-
miologic studies in San Antonio. Thus, these
children represent the youngest of multiple gen-
erations from their families to have taken part in
our studies. An extensive battery of clinical tests
and interviews was administered to SAFARI
participants to collect biomedical endpoint and

covariate data on family history, demographic,
phenotypic, genotypic, and environmental factors
related to MS. Three of 673 children were found
to have T2D, based on our clinic examinations;
these children were excluded from the analyses
reported here. So, our results relate to the 670
nondiabetic children and adolescents who partic-
ipated in SAFARI, which were published recently
(Fowler et al. 2013), and are summarized below.
We definedMS as the presence of three or more of
six cardiometabolic risk factors, including
increased waist circumference (abdominal obes-
ity), hyperinsulinemia, glucose intolerance (i.e.,
prediabetes: either impaired fasting glucose
(IFG), impaired glucose tolerance (IGT), or both),
hypertriglyceridemia, low HDL cholesterol
(HDL-C), and elevated systolic [SBP] and/or
diastolic [DBP] blood pressure. Using this defi-
nition, 18.7 % of the young people in SAFARI
exhibited MS. Even very young children were
affected with MS: one-third of the children with
MS were less than 10 years old including three
6 year olds. While the overall prevalence of pre-
diabetes in SAFARI children was 13.2 %, it was
about 31 % in children affected with MS. In line
with previous studies, the prevalence of MS
increased with obesity level. In the SAFARI
study, 52.7 % of children were either overweight
or obese, and 33.6 %were either obese or severely
obese. In SAFARI children, only about 1 % of
normal-weight children had MS, but among the
65 young people in the study who were severely
obese, over two-thirds had already developedMS.
Since SAFARI participants came from extended
families, we were able to identify strong evidence
of heritability for the metabolic syndrome, its six
cardiometabolic components, and MS-related risk
factors. MS itself exhibited 68 % heritability,
which means that 68 % of variation in the
occurrence of MS is attributable to genetic fac-
tors. In addition, we found evidence for pleiot-
ropy: genetic factors that simultaneously
influence multiple, related MS traits. These find-
ings provide insight into the complex genetic
architecture underlying MS risk in these children.
Insights gained through this approach may help to
tailor effective dietary, physical activity, and other
interventions for high-risk children and youth.
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12.3 Approaches to Localize
Susceptibility Genes
for Obesity, Type 2 Diabetes,
and Metabolic Syndrome

Obesity, T2D, MS and their related quantitative
traits such as body mass index (BMI), glucose
levels, and cholesterol levels have strong genetic
components as revealed by twin, family, and
adoption studies (Stunkard et al. 1986a, 1990;
Allison et al. 1996; Edwards et al. 1997; Maes
et al. 1997; Comuzzie and Allison 1998; Dug-
girala et al. 1999; Poulsen et al. 1999; Hanson
et al. 2002; Arya et al. 2002a; North et al. 2003;
Arya et al. 2004). For example, heritability esti-
mates for obesity vary from a low of *25 % in
adoption studies (Stunkard et al. 1986b) to a
medium of *40 % in family studies (Maes et al.
1997; Duggirala et al. 1999; Poulsen et al. 1999;
Arya et al. 2002a, 2004) to a high of *70 % in
twin studies (Stunkard et al. 1986a, 1990; Allison
et al. 1996). The heritability of T2Dwas 53%, and
it was *46 % for age at onset of T2D (Duggirala
et al. 1999). Using the NCEP/ATPIII definition,
the heritability of MS was found to be 51 % (Fa-
rook et al. 2012). There have been continued
attempts to localize specific genetic determinants
of variation in obesity, T2D, and MS and its
component traits, using a variety of genetic map-
ping techniques including candidate gene, gen-
ome-wide linkage, and GWAS approaches
(Lander and Schork 1994; Collins 1995; Lander
and Kruglyak 1995; Risch and Merikangas 1996;
Risch 2000; Cardon and Bell 2001; Hirschhorn
and Daly 2005; Laird and Lange 2006; McCarthy
2010; Marian 2012). Earlier genetic studies of
complex diseases were primarily based on a priori
knowledge of potential role of a gene in the
pathogenesis of a phenotype of interest, com-
monly known as candidate gene approach (Daly
and Day 2001; Tabor et al. 2002). Subsequently,
in contrast to the candidate gene approach, gen-
ome-wide linkage and association approaches
have been employed as unbiased tools to screen
the entire genome using information from evenly
spaced genetic markers for localizing suscepti-
bility variants/genes for a given phenotype

without any consideration to the function of such
markers (Goldgar 1990; Schork 1993; Kruglyak
1999; Cardon and Bell 2001; Daly and Day 2001;
Tabor et al. 2002; Blangero 2004; Hirschhorn and
Daly 2005; Laird and Lange 2006;McCarthy et al.
2008;Marian and Belmont 2011). A discussion on
each one of the genetic mapping approaches and
the corresponding findings related to obesity,
T2D, andMS and its component traits is presented
in the following sections.

12.3.1 Candidate Gene Association
Studies

The traditional candidate gene association
approach is a hypothesis-driven technique based
on current understanding of the biology and
pathophysiology of a disease of interest (Daly
and Day 2001; Tabor et al. 2002; Bell et al. 2005;
Farooqi and O’Rahilly 2005; Zhu and Zhao
2007). Candidate genes are those with known
chromosomal locations and that specify mole-
cules such as receptors, hormones, transporters,
and other proteins that are part of a biochemical
pathway related to the phenotype under study.
This technique examines a correlation between a
phenotype (a disease condition such as T2D or a
quantitative trait such as insulin or glucose lev-
els) and a genotype, using appropriate methods
to deal with a discrete trait (such as differences in
allele frequencies between cases and controls) or
a quantitative trait (such as differences in trait
mean values in accordance with different geno-
types) (Almasy and MacCluer 2002; Lewis and
Knight 2012). Candidate genes can be divided
into two types: functional and positional (Daly
and Day 2001; Bell et al. 2005; Doria et al.
2008). Functional candidates are genes that are
involved in the pathogenesis of disease of inter-
est (e.g., obesity) with a known function or role
in body weight regulation and regulation of
energy balance or adipose tissue biology
(Clement et al. 1996; Bell et al. 2005; Choquet
and Meyre 2011a). Positional candidates are
genes that lie within genomic regions that have
been shown to be genetically important in
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linkage or association studies (Bell et al. 2005;
Doria et al. 2008; Choquet and Meyre 2011a).
For example, signaling molecules such as the
proopiomelanocortin (POMC) and melanocortin
4 receptor (MC4R) genes have been associated
with obesity, and were identified through posi-
tional cloning of mouse obesity genes (Bell et al.
2005; Cai et al. 2006; Benzinou et al. 2008;
Choquet and Meyre 2011a, b). Positional candi-
dates are discussed in detail later as part of the
genome-wide approaches. This approach has
been effective in identifying genes responsible
for extreme early-onset forms of diseases segre-
gating as single-gene Mendelian disorders [e.g.,
maturity onset diabetes of the young (MODY),
insulin resistance syndrome, and Wolfram syn-
drome] (Barroso 2005; Hansen and Pedersen
2005; Vaxillaire and Froguel 2008). However, to
date, this approach has yielded disappointing
results in identifying genes with measurable
effects on normal variation, for example, as seen
in human adiposity levels. Major reasons for the
failure of traditional candidate gene studies per-
haps are due to poor understanding of the path-
ophysiology of a phenotype of interest (e.g.,
obesity) (Gloyn 2003; Hansen and Pedersen
2005; Doria et al. 2008), small sample sizes, lack
of replication of findings, and limitations on their
ability to include all possible causative genes and
polymorphisms (Daly and Day 2001; Tabor et al.
2002; Rankinen et al. 2006).

The candidate gene approach has identified
several potential candidate genes for human
obesity (Perusse et al. 2001; Rankinen et al.
2006). Several genes implicated in rodent models
of severe or monogenic obesity have also been
shown to be contributors to rare forms of early-
onset obesity in humans, particularly those
involved in the leptin melanocortin pathway such
as leptin (LEP), leptin receptor (LEPR), POMC,
prohormone convertase 1 (PCSK1), and MC4R
(Bouatia-Naji et al. 2006; Wilson et al. 2006).
Leptin plays a critical role in the regulation of
body fat and body weight and leptin receptor
mediates the effects of leptin; mutations in LEP
and LEPR have been shown to lead to rare forms
of human early-onset obesity (Tartaglia et al.
1995; Farooqi et al. 1999). The melanocortin 4

receptor plays a major role in the regulation of
food intake and energy homeostasis metabolism,
and mutations in the MC4R gene have been
identified in subpopulations of morbidly obese
individuals (Hinney et al. 2000, 2010); (Farooqi
et al. 2003). Proopiomelanocortin is involved in
feeding and pigmentation pathways and muta-
tions in POMC have been reported in a few
individuals with marked obesity (Krude et al.
2003). Other genes implicated in monogenic
obesity in humans include PCSK1 (i.e., regulation
of energy metabolism) (Jackson et al. 1997; Far-
ooqi et al. 2007) and brain-derived neurotrophic
factor (BDNF) with relevance to eating behavior,
body weight regulation, and hyperactivity (Rios
et al. 2001; Rios 2011). Additional genes studied
to identify variants influencing obesity and its
related traits include: dopamine receptor D4
(DRD4) (Nothen et al. 1994); peroxisome prolif-
erator-activated receptor gamma 2 (PPARγ2)
(Ristow et al. 1998); β3-adrenoreceptors (ADRB3)
(Walston et al. 1995; Widen et al. 1995; Clement
et al. 1996; Kurokawa et al. 2008); uncoupling
protein (UCP) 1, 2, and 3 (Oppert et al. 1994;
Norman et al. 1997; Cassell et al. 2000; Yanovski
et al. 2000; Rosmond 2003); and endocannabi-
noid receptor 1 (CNR1) (Benzinou et al. 2008).
Other candidate genes controlling important
functions in glucose metabolism have been
explored to assess their contribution to obesity.
For example, a polymorphism in the tumor
necrosis factor-alpha (TNFα) gene (G-308A)
appears to improve insulin sensitivity and
decrease adipocyte apoptosis. Polymorphisms in
the PPARγ-2 gene are associated with BMI,
Pro115Gln with increased BMI, and Pro12Ala
with decreased BMI and increased adipocyte
differentiation (Fernandez-Real et al. 1997; Ri-
stow et al. 1998; Rosmond et al. 2003). Some of
the candidate genes discussed above (e.g.,MC4R,
BDNF, and POMC) have also been identified by
GWASs to influence variation in common forms
of obesity (see below).

Numerous candidate genes have been studied
to assess their relevance to T2D risk (Gloyn 2003;
Hansen and Pedersen 2005; Doria et al. 2008).
For example, PPARγ is a strong candidate for
T2D, and a common polymorphism (Pro12Ala) in
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PPARγ has been associated with T2D in several
European populations (Altshuler et al. 2000). The
potassium inwardly rectifying channel, subfamily
J, member 11 (KCNJ11) gene is implicated in the
regulation of glucose-induced insulin secretion,
and the KCNJ11 E23 K polymorphism has been
associated with T2D (Gloyn et al. 2003; Vi-
maleswaran and Loos 2010). These two genes
harbor missense variants that are associated with
T2D and encode proteins that act as targets for
antidiabetes medications and management
(Imamura and Maeda 2011). Insulin receptor
substrate 1 (IRS1) is an important component of
insulin action in skeletal muscle, adipose tissue,
and pancreatic β-cells. IRS1 G972R is one of the
most extensively studied polymorphisms of T2D,
but its association findings have been inconsistent
(Kovacs et al. 2003; van Dam et al. 2004). Genetic
variation at the ectonucleotide pyrophosphate
phosphodiesterase (ENPP1) gene is associated
with obesity and T2D-related traits (Jenkinson
et al. 2008). Some other examples of T2D, obes-
ity, and MS candidate genes include: Wolfram
syndrome 1 (WFS1) (Riggs et al. 2005; Yamada
et al. 2006) and adiponectin (APM1) (Ouchi et al.
1999; McCarthy and Froguel 2002; Arita et al.
2012). Several susceptibility genes for monogenic
forms of diabetes [i.e., maturity onset diabetes of
the young (MODY)] have been identified (Bell
et al. 1991; Winckler et al. 2007; Vaxillaire and
Froguel 2008), and recent GWASs have revealed
overlap between certain loci implicated in mono-
genic and common forms of T2D such as hepa-
tocyte nuclear factor 1-alpha (HNF1A) and
HNF4A (Lehman et al. 2007; Voight et al. 2010;
Kooner et al. 2011; Gardner and Tai 2012). Thus,
despite its limitations, the candidate gene
approach has contributed to an overall under-
standing of the mechanisms underlying the phe-
notypic expressions of complex diseases such as
obesity, T2D, and MS.

12.3.2 Genome-Wide Linkage Studies

An alternative gene identification method is
genome-wide linkage screening, discussed in
detail in the Chapter by Almasy et al. This

method differs from the conventional candidate
gene approach in that it does not require a priori
assumptions concerning the potential importance
of genes or chromosomal regions and it facili-
tates a true search for genetic effects across the
entire genome (Schork 1993; Blangero 2004). It
is a hypothesis-free approach in which the entire
genome is scanned to test whether certain chro-
mosomal regions co-segregate with a trait or
disease locus of interest. This approach requires
related individuals such as siblings or other
family members. Linkage analysis is of two
types: parametric and nonparametric. Parametric,
or model-based, linkage analysis involves spec-
ifying a model of inheritance for the disease
(typically dominant or recessive) (Morton 1955;
Elston 1992; Easton et al. 1993; Schork et al.
1993; Kruglyak et al. 1996). Nonparametric, or
model-free, linkage is based on correlations
between degree of allele sharing and degree of
phenotypic similarity (Haseman and Elston
1972; Goldgar 1990; Schork et al. 1993; Amos
1994; Fulker et al. 1995; Kruglyak et al. 1996;
Blangero and Almasy 1997; Almasy and
Blangero 1998; Hauser and Boehnke 1998;
Almasy et al. 1999b; Blangero et al. 2001). The
parametric linkage method is more powerful
when the underlying genetic model is correctly
specified (Bailey-Wilson and Wilson 2011). On
the other hand, given the multifactorial nature of
complex traits it is difficult or impossible to
specify all the required parameters of a Mende-
lian model of inheritance for such phenotypes.
As such it has been more difficult to unravel the
genetic component of complex traits using link-
age approaches compared to monogenic traits
(Almasy and Blangero 2008, 2009; Bailey-Wil-
son and Wilson 2011). However, several com-
mon disease-predisposing variants were
identified in early linkage findings, for example,
a widely replicated human QTL linkage for
obesity-related traits (leptin) with a LOD score of
4.95 (Comuzzie et al. 1997).

Genomic regions showing statistically signif-
icant linkage are assumed to be harboring sus-
ceptibility genes. However, model-free linkage
results in identification of broad chromosomal
regions that harbor dozens or hundreds of genes
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and it is often difficult to identify a specific
variant linked with the disease or phenotype of
interest (Norman et al. 1997). Thus, linkage
scans yield candidate chromosomal regions in
which positional candidate genes are identified
for further analyses. Follow-up and fine-mapping
studies including combined linkage/disequilib-
rium analysis (Almasy et al. 1999b), are usually
performed to test for association between disease
phenotypes and genetic variants in the positional
candidate genes. The results of linkage studies
are expressed as LOD scores which are defined
as the logarithm of odds (LOD) that the disease
or trait locus and the genotyped marker locus are
linked on the chromosome versus unlinked. An
LOD score greater than 3 indicates that the null
hypothesis of independent assortment (i.e., no
linkage) is rejected and that there is significant
evidence for linkage between the trait locus and
the marker locus (Bailey-Wilson and Wilson
2011). The most important chromosomal regions
exhibiting significant linkages (LOD > 3.0) with
obesity, T2D, and MS-related phenotypes are
presented in the following section.

12.3.2.1 Obesity Linkage Findings
The vast body of literature covering linkage and
association studies of obesity and related phe-
notypes has been extensively reviewed (Ranki-
nen et al. 2006). Based on five sources of
evidence, i.e., single-gene mutations, Mendelian
disorders, quantitative trait loci from animal
studies, association and linkage studies, a human
obesity gene map has been created and updated
each year up to 2005 (Rankinen et al. 2006).
According to this map, the number of genes,
markers, and chromosomal regions that have
been linked or associated with obesity-related
phenotypes is currently *253 human quantita-
tive trait loci (single genes with large effects)
from 61 genome scans (Rankinen et al. 2006). In
addition, 176 human obesity cases due to single-
gene mutations in 11 different genes have been
reported, and 50 loci related to Mendelian syn-
dromes relevant to obesity have been mapped to
a genomic region (Rankinen et al. 2006). A few
important findings from genome scans of

obesity-related traits in different populations are
briefly reviewed here.

The San Antonio Family Diabetes Study found
evidence for linkage (LOD = 3.1) of the OB gene
region (7q31.3) with the sum of five extremity
skinfolds suggesting that the OB gene or a gene
nearby on chromosome 7 might be involved in
obesity (Duggirala et al. 1996). Strong evidence of
linkage for a QTL influencing variation in plasma
leptin levels in Mexican Americans on chromo-
some 2p21 (LOD = 5.0) comes from the San
Antonio Family Heart Study (Comuzzie et al.
1997). The evidence of linkage was substantially
increased (LOD = 7.5) through saturation map-
ping (Hixson et al. 1999). This linkage has been
replicated in African-American families (Rotimi
et al. 1999) and in Paris-Lille families (Hager et al.
1998). In another linkage study in Mexican
Americans, significant evidence of linkage
(LOD = 3.2) between the ADRB3 locus and BMI
was found on chromosome 8 (D8S1121 and
ADRB3 gene Trp64Arg polymorphism) (Mitchell
et al. 1999). Strong evidence of linkage with
obesity, defined as BMI > 27 kg/m2, was found on
chromosome 10p (LOD = 4.9) between markers
D10S197 and D10S611, and suggestive evidence
of linkage was found with plasma leptin levels on
2p21 (LOD 2.7) and 5q (LOD = 2.9) in Paris-Lille
families (Hager et al. 1998). Lee et al. (Lee et al.
1999) reported evidence of linkage between
markers on chromosome 20q13 and obesity phe-
notypes using both quantitative (BMI and per-
centage body fat) and qualitative traits (BMI ≥ 30
and percentage of body fat≥40%) in families with
white ancestry. Strong evidence of linkage was
found on chromosome 20 (LOD = 3.2) using BMI
as a discrete trait in an affected sibpair test, while a
parametric, affecteds-only analysis yielded a LOD
of 3.1 (p = 0.00009) (Lee et al. 1999).

Genome scan results on Pima Indians include
several obesity-related phenotypes such as BMI,
percentage body fat, the ratio of waist-to-thigh
circumference, 24-h metabolic rate, sleeping
metabolic rate, 24-h respiratory quotient, and
leptin levels. The strongest evidence for a QTL
for BMI in the Pima was on chromosome 11q
(LOD = 3.6), with suggestive evidence for link-
age with other phenotypes including percentage
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body fat (LOD = 2.8), 24-h energy expenditure
(LOD = 2.0) and diabetes status (LOD = 1.5)
(Norman et al. 1997, 1998), and a bivariate LOD
of 5.0 for BMI and diabetes status reported in the
same region (Hanson et al. 1998). In addition,
significant evidence for linkage with 24-h respi-
ratory quotient (RQ, LOD = 3.0) was found on
chromosome 20q11.2 in this population (Norman
et al. 1998). Also, Walder et al. (2000) found a
locus on chromosome 6p (LOD = 2.1) influenc-
ing plasma leptin concentrations in the Pimas.
Importantly, Hunt et al. (2001) showed evidence
for the presence of a predisposition locus with a
multipoint heterogeneity LOD score of 3.5 at
D20S438 for BMI on chromosome 20 in mor-
bidly obese women from Utah pedigrees, and
this region overlaps with the RQ linkage region
on 20q11 in Pima Indians. In 2004, Arya et al.
identified a major susceptibility locus for BMI on
chromosome 4p15 in Mexican Americans (Arya
et al. 2004). This 4p linkage region harbors two
important positional candidate genes for obesity,
PPARGC1, and CCKAR. This 4p linkage region
was previously reported to be significantly linked
to severe obesity in White American females
(Stone et al. 2002). So far, about 10 genomic
regions (chromosomes 2p, 3q, 4p, 5cen-q, 6q, 7q,
10p, 11q, 17p, and 20q) have been identified
(with subsequent replications) to contain poten-
tial genes that influence obesity-related traits
with measurable effects (Duggirala et al. 1996;
Comuzzie et al. 2001; Duggirala et al. 2001;
Loos and Bouchard 2003; Arya et al. 2004;
Saunders et al. 2007). Thus, linkage studies have
yielded several positive findings out of which
only a few (15 QTLs) have been replicated in
independent studies. Fine-mapping studies were
not that successful to identify the functional
variants that likely underlie these linkage signals.
Based on these results from human studies, it is
apparent that numerous genes are involved in
influencing energy balance and fat accumulation.
However, to date, the genome-wide linkage
approach has shown a limited success in identi-
fying loci for common forms of obesity. There is
also very limited knowledge in regard to the
genome-wide linkage screens for obesity or its
related traits in children. A major locus was

found on chromosome 6q that influences child-
hood obesity-related traits in French families
(Meyre et al. 2004). Recently, major loci were
identified for obesity and its related traits such as
adiponectin and ghrelin in Hispanic children
(Tejero et al. 2007; Voruganti et al. 2007).

12.3.2.2 Type 2 Diabetes Linkage
Findings

In the past 15 years, family-based data have been
examined to localize T2D susceptibility genes
using genome-wide linkage or positional cloning
approaches. Despite the fact that several causal
mutations for the monogenic forms of diabetes,
such as maturity onset diabetes of the young
(MODY), have been identified using this
approach, it has had limited success in mapping
genes related to the common forms of T2D due
to: (a) the non-Mendelian mode of inheritance of
human T2D, and (b) the large chromosomal areas
identified. However, based on such findings, it is
increasingly apparent that T2D and related con-
ditions are influenced by at least a few relatively
common genes (i.e., oligogenes) (Duggirala et al.
1999; Comuzzie 2002). Major susceptibility loci
have been identified for T2D and related phe-
notypes at the following chromosomal regions
with claims for replication: 1q, 2q, 3q, 5q, 6q, 8p,
9q, 10q, 11q, 12q, and 20q (Stern et al. 1996;
Hanis et al. 1996; Duggirala et al. 1999; Elbein
and Hasstedt 2002; McCarthy and Froguel 2002;
Arya et al. 2002a). Additionally, a meta-analysis
of 23 T2D linkage studies from the International
T2D Linkage Analysis Consortium found modest
evidence for T2D susceptibility loci on chromo-
somes 4, 10, 14, and 16 (Guan et al. 2008).

Although several T2D linkage studies have
been following up their findings with further
gene discovery activities, so far, successes from
such efforts have been limited to a couple of T2D
studies. The localization of the NIDDM1 sus-
ceptibility gene to chromosome 2q with a LOD
of 4.1 in Mexican Americans (Hanis et al. 1996),
subsequently led to the discovery of Calpain 10
(CAPN10) on chromosome 2q37.3 as a T2D
susceptibility gene (Horikawa et al. 2000).
This finding was expected to provide more
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information toward the link between insulin
resistance and insulin secretion, but could not be
robustly replicated in other populations. HNF4α
on chromosome 20 was identified via linkage
analysis as a second putative T2D susceptibility
gene (Love-Gregory et al. 2004; Silander et al.
2004a, b). Subsequently, in an Icelandic popu-
lation, Reynisdottir et al. (Reynisdottir et al.
2003) identified a region on chromosome 5
(LOD = 2.9–3.4) and a region on 10 (LOD = 2.8)
with suggestive linkage to T2D, and showed that
the chromosome 10 region harbored the tran-
scription factor 7-like 2 (TCF7L2) gene, involved
in the Wnt-signaling pathway (Grant et al. 2006).
The discovery of TCF7L2 became the first major
success in T2D genetics. This 10q chromosomal
region was previously implicated by linkage
studies (LOD: T2D = 2.9 and age at onset of
T2D = 3.8) in Mexican Americans (Duggirala
et al. 1999) and subsequent GWASs have shown
that a linkage disequilibrium-dependent approach
also would have ultimately pointed to this gene
(Saxena et al. 2007; WTCCC 2007). With an
overall allelic relative risk of 1.56 (Florez 2008),
TCF7L2 currently represents the best-supported
T2D risk gene.

12.3.2.3 Metabolic Syndrome Linkage
Findings

Genome-wide linkage analysis is a widely used
approach to map susceptibility loci for metabolic
syndrome and its components. A number of
studies have been performed using individual
components of metabolic syndrome such as T2D
and obesity-related traits, dyslipidemic traits, and
hypertension. Bivariate linkage analysis using
combinations of these traits and linkage analyses
of phenotypes derived from factor analysis ofMS-
related traits have also been performed (Meigs
2000; Duggirala et al. 2001; Arya et al. 2002a;
Monda et al. 2010; Edwards et al. 2011; Kraja
et al. 2011; Farook et al. 2012). Additionally, a
few genome-wide linkage studies have been per-
formed using yes/no definitions of metabolic
syndrome as the focal phenotype. The literature on
shared genetic variants for the components of
metabolic syndrome is limited. Some of the

interesting MS linkage findings are presented in
the following discussion. Kissebah et al. (2000)
performed genome-wide linkage analysis in 507
nuclear Caucasian families and found signals for
two QTLs for MS-related traits. One QTL was
found on chromosome 3q27 for six quantitative
phenotypes related to the abdominal obesity-
metabolic syndrome (LOD scores ranging from
2.4 to 3.5), in regions harboring the solute carrier
family 2 of the glucose transporter (GLUT2) gene
and the adiponectin locus.While a second QTL on
17p12 was found for plasma leptin levels
[LOD = 5.0] (Kissebah et al. 2000). A German
genome-wide linkage study with 250 families
identified a link between MS and a locus on
chromosome 1p36.13 (Hoffmann et al. 2007).
This region was previously linked to gallbladder
disease in Mexican Americans (Puppala et al.
2007), and also associated with an increase in
body size to adipose ratio as estimated by bio-
electric impedance analysis (Cai et al. 2004). In
addition, this region was linked to hypertension in
a Sydney sib-ship study (Benjafield et al. 2005).
Bosse et al. (2007) examined 707 subjects from
264 Quebec nuclear families that showed signifi-
cant evidence for linkage for MS on chromosome
15 (LOD = 3.2). Another study involving 977
Caucasians from 358 families showed that regions
on chromosomes 3, 4q, and 14p were strongly
linked to T2D, MS, and measures of CVD
(Bowden et al. 2006). A study in African Ameri-
cans showed evidence of linkage with compo-
nents of metabolic syndrome: chromosomes
11q24, 13p12 for lipids and obesity, respectively,
while another study on Caucasian Americans
demonstrated evidence for linkage between mul-
tiple regions and various MS-related traits: 8p23
(LOD = 2.4) and lipids, 14q24 (LOD = 2.4) and
obesity, and 15q15 (LOD = 3.2) and blood pres-
sure (Kraja et al. 2005a, b). There is also evidence
in Mexican Americans for major loci influencing
MS-related phenotypes such as lipoprotein
metabolism (Rainwater et al. 1999; Almasy et al.
1999a; Duggirala et al. 2000; Hegele 2001; Arya
et al. 2002a), blood pressure (Krushkal et al. 1999;
Levy et al. 2000; Rice et al. 2002), and diabetic
nephropathy-related phenotypes (e.g., Krolewski
et al. 2006; Arar et al. 2007; Puppala et al. 2007).
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12.3.2.4 Genome-Wide Linkage Studies
of Obesity, Type 2 Diabetes,
and Metabolic Syndrome
in Mexican Americans: Results
from the San Antonio Family
Diabetes/Gallbladder Study
(SAFDGS)

The San Antonio Family Diabetes/Gallbladder
Study (SAFDGS), an important genetic study of
obesity, T2D, and MS in Mexican American
families, began as the San Antonio Family Dia-
betes Study (SAFDS), a family-based genetic
study with the primary goal of mapping suscep-
tibility genes for type 2 diabetes and related
phenotypes. The SAFDS is an extended pedigree
study of 32 low-income Mexican American
families ascertained on a diabetic proband. All
first, second, and third degree relatives of the
proband who were age 18 years or above were
considered eligible for the baseline SAFDS
exam, which recruited and examined 579 indi-
viduals between 1991 and 1994. Subsequently, a

second follow-up and an extension of the SAF-
DS, called the San Antonio Family Gallbladder
Study (SAFGS), examined 741 original and new
individuals from 39 extended families, including
8 new families. In total, so far, 905 SAFDGS
(SAFDS and SAFGS combined) participants
from 40 families have taken part in at least one of
the three examinations. To date, we have iden-
tified several susceptibility loci influencing
obesity, T2D, and cardiovascular disease and/or
its risk factors using variance components link-
age analyses (Table 12.1). These include loci
relating to glucose concentrations [chromosome
11, (Stern et al. 1996)], and insulin precursors
and obesity-related traits [chromosome 7, (Dug-
girala et al. 1996)], T2D and age of diabetes
onset [chromosome 10, (Duggirala et al. 1999)],
fasting specific insulin concentrations, insulin
resistance, and other components of the meta-
bolic syndrome [chromosome 6, (Duggirala et al.
2001), (Arya et al. 2002a)], triglyceride levels
[chromosome 15, (Duggirala et al. 2000)],

Table 12.1 SAFDGS linkage findings in Mexican Americans

Phenotype Chromosomal
location

Marker region Position in
cM

LOD References

2-h glucose 11p D11S899-
D11S1324

62 3.4 Stern et al. 1996

32,33—split proinsulin 7q HCPA1 163 4.2 Duggirala et al. 1996

Proinsulin 7q HCPA1 163 3.2 Duggirala et al. 1996

Extremity skinfolds 7q D7S514 130 3.1 Duggirala et al. 1996

T2D/age at onset 10q D10S587 148 2.9/3.8 Duggirala et al. 1999

Triglycerides 15q GABRB3-
D15S165

25 3.9 Duggirala et al. 2000

Fasting insulin levels and
insulin resistance

6q D6S403 150 4.1
3.5

Duggirala et al. 2001

Adipo-insulin factor 6q D6S264 179 4.9 Arya et al. 2002a, b

Adipo-insulin factor 6q D6S403 143 4.2 Arya et al. 2002a, b

Lipid factor 7q D7S479-
D7S471

130 3.2 Arya et al. 2002a, b

HDL cholesterol 9p D9S925-
D9S741

41 3.4 Arya et al. 2002a, b

BMI 4p D4S2912 48 4.1 Arya et al. 2004

Quantitative Martingale
residual

3p D3S2406 114 3.8 Hunt et al. 2005

GFR-CGc 2q D2S1363 227 3.3 Puppala et al. 2007

Metabolic syndrome 7q D7S2212-
D7S821

102 3.6 Farook et al. 2012
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HDL-C levels [chromosome 9, (Arya et al.
2002b)], obesity-related phenotypes [chromo-
some 4, (Arya et al. 2004)], Quantitative Mar-
tingale Residuals for T2D (Hunt et al. 2005), and
diabetic nephropathy-related phenotypes (chro-
mosomes 2 and 9; Puppala et al. 2007).

12.3.3 Genome-Wide Association
Studies (GWASs) of Complex
Disease Phenotypes

The GWAS approach is an unbiased tool to
detect disease susceptibility loci, designed to
identify common genetic variants with small to
moderate effect sizes (e.g., Frayling et al. 2007;
McCarthy and Hirschhorn 2008; Perry and
Frayling 2008; Visscher et al. 2008; Manolio
2010; Grarup et al. 2014). It is an increasingly
popular alternative to genome-wide linkage.
Unlike linkage, GWAS does not require related
individuals, making it easier to obtain large
sample sizes. Most GWASs utilize case-control
samples or population-based cohorts. The gen-
ome-wide association approach scans the entire
genome of many hundreds to thousands of indi-
viduals using >500,000 single nucleotide poly-
morphisms (SNPs). This screens the whole
genome at a high resolution thereby narrowing
down the associated locus more precisely
(Frayling and McCarthy 2007; McCarthy and
Zeggini 2009). A major advantage of the GWAS
approach is that it reduces the genomic area of
interest to approximately 500–1,000 kb versus
the 10–15 Mb usually observed in linkage
screens for human disease susceptibility loci
(Frayling and McCarthy 2007; McCarthy and
Zeggini 2009). A simple association analysis is
performed between a phenotype and each of the
SNPs to identify genetic markers associated to
the phenotype with a certain statistical signifi-
cance. Markers used for GWAS generally have
minor allele frequencies of >0.01–0.05 and are
selected to tag the most common haplotypes
observed in European populations followed by
East Asian populations and African populations
due to inherent differences in their LD patterns

(Marian and Belmont 2011). Furthermore,
GWAS assumes the genetic marker to be directly
causal for the phenotype of interest or the marker
to be in linkage disequilibrium with the causal
variant elsewhere in the identified region. Cor-
recting for the estimated number of LD blocks in
the human genome and the large number of
association tests in a GWAS, a p-value
of <5 × 10−8 (0.05/1000000) is currently con-
sidered genome-wide significant or more strin-
gently p < 1 × 10−8 is considered evidence of a
strong association (Hoggart et al. 2008; McCar-
thy et al. 2008; Marian and Belmont 2011).
Replication of results is considered essential for
establishing the credibility of GWAS findings
and a National Human Genome Research Insti-
tute (NHGRI) working group has outlined crite-
ria for establishing a positive replication
(Chanock et al. 2007). Results or data from
multiple GWASs in different samples or popu-
lations may also be combined via meta-analysis,
which provides additional statistical power to
detect subtle genetic effects (Zeggini et al. 2008;
Kraft et al. 2009; Bush and Moore 2012). More
details on association analysis approaches and
GWAS can be found in the Chapter by Hanson
et al. GWA studies have been extremely suc-
cessful for identifying susceptibility loci for
various complex diseases and traits (see www.
genome.gov/GWAstudies for an overview). To
date, more than 150 genetic loci have been
implicated in the development of monogenic,
syndromic, or common forms of obesity or T2D
(McCarthy 2010; Drong et al. 2012).

12.3.3.1 The GWA Studies for Obesity
In 2007, during the first wave of GWASs, the fat
mass and obesity-associated (FTO) gene was the
first novel susceptibility locus for common forms
of childhood and adult obesity identified by this
approach (Dina 2008; Loos and Bouchard 2008).
This finding was subsequently replicated in 13
cohorts comprising more than 38,000 individu-
als. Each FTO risk allele increased BMI by 0.10–
0.13 SD units, risk of overweight by 1.18-fold,
and risk of obesity by 1.32-fold. Individuals who
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were homozygous for the risk allele weighed
about 3 kg more and had a 1.67-fold increased
risk for obesity than those who did not inherit a
risk allele (Frayling et al. 2007; Scuteri et al.
2007). FTO is thought to influence T2D risk
through its effects on obesity; however, there is
also evidence for more direct effects. FTO is
associated with insulin levels and insulin resis-
tance in children even after adjustment for BMI
levels (Jacobsson et al. 2008). Other genes
implicated in GWASs of obesity include: insulin-
induced gene 2 (INSIG2) (Lyon et al. 2007),
melanocortin 4 receptor (MC4R) (Loos et al.
2008), platelet type phosphofructokinase (PFKP)
(Andreasen et al. 2008a), catenin (cadherin-
associated protein), and β-like 1 (CTNNBLI) (Liu
et al. 2008). Of these, FTO and MC4R are the
best supported and findings for INSIG2 and
PFKP have been inconsistent and have failed to
replicate in other studies (e.g., (Andreasen et al.
2008a). There is evidence that common genetic
variation near MC4R is associated with risk of
both adiposity and insulin resistance (Chambers
et al. 2008). In addition, new loci influencing
common forms of obesity have been reported
(Meyre et al. 2009; Thorleifsson et al. 2009).

In the second wave of obesity GWA studies,
individual GWA studies were combined through
collaborative efforts to increase sample size and
thus power to identify additional common vari-
ants with smaller effects. For example, the
Genomic Investigation of Anthropometric Traits
(GIANT) consortium is such an international
collaborative initiative, which brought together
several research groups focusing on anthropo-
metric traits from across Europe and the USA.
Data from seven GWASs for BMI (n = 16,876)
were combined in the first meta-analysis (Loos
et al. 2008).

As part of the third wave of studies, a larger
meta-analysis of GWA studies grew out of the
GIANT consortium which consisted of 15
cohorts with an increased sample size of 32,387
adults of European ancestry yielded 35 loci
(Willer et al. 2009). Of the 35 loci identified in
the first GIANT meta-analysis, eight loci were
strongly replicated by a series of independent
studies. Important findings in this wave included

two already identified loci: FTO and SNPs near
MC4R and 6 other new loci: near NEGRI1
(neuronal growth regulator 1), TMEM18 (trans-
membrane protein 18), SH2B1 (SH2B adapter
protein1), near KCTD15 (potassium channel
tetramerisation domain containing 15), near
GNPDA2 (glucosamine-6-phosphate deami-
nase2), and MTCH2 (mitochondrial carrier
homologue 2). Simultaneously, deCODE
Genetics performed a meta-analysis of four
GWASs for BMI with 34,416 individuals
including Europeans and African Americans
(Thorleifsson et al. 2009). About 43 SNPs in 19
chromosomal regions were found to be associ-
ated and were subsequently replicated in 5,586
Danish individuals and confirmed in the GIANT
consortium. Of the 10 loci that reached genome-
wide significance, along with FTO and near-
MC4R, four loci were already identified by the
GIANT consortium while four more were novel
and located in or near SEC16B, BAT2, between
ETV5 and DGKG, BDNF, and between
BCDUN3D and FAIM2. However, variation in
BAT2 was associated with weight, but not BMI,
suggesting that this locus might contribute to
overall size rather than adiposity. In a recent
study, Li et al. (2010a) genotyped the 12 obesity
susceptibility variants identified by the GIANT
consortium and deCode genetics group in 20,431
individuals in a population-based study of white
Europeans. These variants showed a cumulative
effect on BMI with each additional allele
increasing BMI by 0.149 units, or weight by
444 g (Li et al. 2010b). However, overall, these
12 obesity susceptibility loci accounted for only
1 % of the variation in BMI, and have a very
limited predictive value for obesity. GWASs
exploring associations with other obesity-related
traits have successfully identified 7 additional
loci. For example, Meyre et al. (2009) examined
association with the risk of early-onset and
morbid adult obesity in 1,380 European cases
and 1,416 controls. Of the 38 loci showing
association with binary traits of obesity, three
new risk loci in NPC1, near MAF, and near
PTER in addition to FTO and MC4R genes, were
identified and replicated in 14,186 adults and
children.
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Subsequently, a study involving a meta-anal-
ysis of 16 GWASs (N = 38,580) from the
GIANT consortium and a follow-up in 70,580
individuals for adult waist circumference (WC)
and waist–hip ratio (WHR) discovered two novel
loci (TFAP2B and MSRA) associated with WC
and one locus LYPLA1 associated with WHR in
females (Lindgren et al. 2009). Another study of
WC from the CHARGE consortium by Heard-
Costa et al. (Heard-Costa et al. 2009) identified a
novel locus called neurexin 3 (NRXN3) in addi-
tion to FTO and MC4R based on a sample of
31,373 individuals of Caucasian descent from
eight cohort studies in the stage 1 and 38,641
individuals in the stage 2 analysis.

The fourth wave of obesity GWASs was
dominated by two major meta-analyses from the
GIANT consortium: the Speliotes et al. (2010)
study was the largest BMI GWAS undertaken to
date. This study examined *2.8 million SNPs
in *124,000 individuals with targeted follow-up
of 42 SNPs in *126,000 additional individuals.
They found evidence for association with 14
known obesity susceptibility loci and identified 18
new loci showing significant (p < 5 × 10−8)
association with BMI. As shown in Table 12.2,
some loci at MC4R, POMC, SH2B1, and BDNF
map near key hypothalamic regulators of energy
balance, while one of these loci maps close to
GIPRwhich is an incretin receptor. These findings
including other newly associated genes provide
new insights into body weight regulation. Another
meta-analysis performed by Heid et al. (2010)
using WC as a focal phenotype yielded 13 novel
loci as listed in Table 12.2. Scherag et al. (2010)
reported two new loci SDCCAG8 and TNKS for
body weight regulation in a joint analysis of
GWASs for extreme obesity in French and Ger-
man children and adolescents, and one locus
(KCNMA1) found to be strongly associated in an
adult population (Jiao et al. 2011). In addition,
findings from a few other independent GWA
studies for obesity in Europeans are summarized
in Table 12.2.

Obesity GWAS in Other Ethnic Populations
Two GWASs for obesity were performed in 2012
from South Asia. In the first study, Wen et al.

(2012) included 27,715 East Asians (Chinese,
Korean and Indonesians) in their discovery sam-
ple, which was followed by in silico and de novo
replication in 37,691 and 17,642 additional East
Asians, respectively. They identified three novel
loci in or near the CDKAL1, PCSK1, and GP2
genes, and replicated seven previously identified
loci: FTO, SEC16B, MC4R, GIPR-QPCTL,
ADCY3-DNAJC27, BDNF, and MAP2K5 at gen-
ome-wide significance levels. In the second study,
Okada et al. (2012) included a discovery sample
of 26,620 Japanese individuals with replication in
the East Asian sample fromWen et al. (2012) plus
an additional 7,900 Japanese individuals. Asso-
ciation results have achieved genome-wide sig-
nificance levels for five previously reported loci:
SEC16B, BDNF, FTO, MC4R, GIPR including
CDKAL1 and a novel locus KLF9. In sum, two
studies jointly identified four novel loci and rep-
licated 7 previously reported loci. In addition,
several independent GWAS studies for obesity
were performed in different ethnic groups as
summarized in Table 12.2.

Thus far, GWASs have successfully localized
about 80 susceptibility loci associated with
obesity traits (Grarup et al. 2014), hence proving
that this approach has been successful in unrav-
eling the genetic architecture of obesity and its
related traits. Some of the obesity susceptibility
loci so far reported that are novel, met genome-
wide significance level, and replicated are sum-
marized in Table 12.2 and Fig. 12.1. So far, of all
identified loci, the genetic variation in FTO has
the largest effect on obesity susceptibility.

12.3.3.2 The GWA Studies for Type 2
Diabetes

In the past 7 years, GWASs have greatly
enhanced our understanding of the genetic
architecture of complex diseases in general and
T2D in particular (Frayling and McCarthy 2007;
Florez 2008; McCarthy and Hirschhorn 2008;
Perry and Frayling 2008; Prokopenko et al. 2008;
Ridderstrale and Groop 2009). To date, three
waves of T2D GWASs have been performed and
several novel susceptibility genes/variants for
T2D have been identified, many with subsequent
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replications (e.g., (Saxena et al. 2007; WTCCC
2007; Scott et al. 2007; Sladek et al. 2007;
Steinthorsdottir et al. 2007; Zeggini et al. 2008).
T2D genes so far reported that met genome-wide
significance level and were replicated are sum-
marized in Table 12.3. The majority of these
studies have focused on the identification of
association signals due to common variants
(minor allele frequency >5 %).

The first wave of T2D GWA studies was
marked by a study from France, composed of
661 cases and 614 controls, covering 392,935
SNPs (Sladek et al. 2007). This study identified
four novel association signals at SLC30A8 (sol-
ute carrier family 30 (zinc transporter), member
8), LOC387761, HHEX (hematopoietically
expressed homeobox), and EXT2 (exostoses 2).
The first locus revealed a nonsynonymous poly-
morphism (R325W, rs13266634) in SLC30A8
that is expressed only in insulin-producing beta
cells. Two other loci contain genes that are
involved in either beta-cell development or
function, IDE-KIF11-HHEX (insulin-degrading
enzyme, kinesin family member 11, and hemat-
opoietically expressed homeobox) and EXT2-
ALX4 (exostoses 2 and ALX homeobox 4). In
addition, this study confirmed the previously
identified association at TCF7L2 that was origi-
nally identified through linkage studies.

The second wave of T2DGWA studies include
three major studies by the Wellcome Trust Case
Control Consortium (WTCCC 2007), Diabetes
Genetics Initiative [(DGI) (Saxena et al. 2007)],
and Finland-United States Investigation of NID-
DMGenetics [FUSION, (Scott et al. 2007)]. These
studies published their independently discovered
novel T2D associations at CDKAL1 (CDK5 reg-
ulatory subunit associated protein 1-like 1),
IGF2BP2 (insulin-like growth factor 2 mRNA
binding protein 2), and CDKN2A/B (cyclin-
dependent kinase inhibitor 2A/2B) as well as
replications of earlier associations of SCL30A8
and HHEX with T2D (Saxena et al. 2007; Scott
et al. 2007; Zeggini et al. 2008). Further replication
studies confirmed associations with SLC30A8,
HHEX, CDKAL1, IGF2BP2, and CDKN2A/B and
three loci previously identified through linkage
and candidate gene studies,PPARG,KCNJ11, and

TCF7L2 in both European and non-European
populations. In another GWA study with 1,399
cases and 5,275 controls from Iceland, the
deCODE genetics group identified an intronic
variant (rs7756992) in the CDKAL1 gene as a
novel T2D locus (Steinthorsdottir et al. 2007).
Furthermore, this study showed that the insulin
response for rs7756992 homozygotes was*20%
lower than for heterozygotes suggesting that this
variant confers risk of T2D through reduced
insulin secretion. Thus this second wave of T2D
GWASs confirmed 8 T2D susceptibility loci:
TCF7L2, PPARG, KCNJ11, SCL30A8, HHEX,
CDKAL1,CDKN2A/B, and IGF2BP2. In addition,
the WTCCC study identified a strong association
between FTO variants and T2D, though the effect
is modulated through obesity (Frayling et al.
2007).

The third wave of T2D studies was based on
European GWAS with larger sample sizes so that
common variants with lower effect sizes would
be identified—WTCCC, FUSION, and DGI were
combined to form the Diabetes Genetics Repli-
cation And Meta-analysis (DIAGRAM) consor-
tium. Mainly, a large collaborative meta-analysis
of GWA studies including previously published
WTCCC, FUSION, and DG scans with a sub-
stantial sample of 4,549 cases and 5,579 controls,
was performed (Zeggini et al. 2008). In the dis-
covery stage 69 variants showed associations
with T2D at p < 10−4. In an initial attempt at
replication in a sample of 22,426 individuals, of
the 69 variants only 11 reached the desired sig-
nificance level threshold. A subsequent replica-
tion study of these 11 variants in a larger sample
of 57,366 individuals resulted in only 6 variants
that reached a p-value of 5 × 10−8 for association
with T2D. These six additional novel genes were
JAZF1, CDC123/CAMK1D, TSPAN8-LGR5,
THADA, NOTCH2, and ADAMSTS9. Following
this study, several additional T2D genetics
cohorts have been combined to form DIAGRAM
+ with an effective sample size of more than
22,000 European subjects. In a study conducted
by Voight et al. (2010), 2,426,886 imputed and
genotyped autosomal SNPs with additional
interrogation of the X chromosome were exam-
ined for association with T2D as a categorical

12 Mapping of Susceptibility Genes for Obesity, Type 2 Diabetes … 201
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phenotype. As shown in Table 12.4, twelve loci
were associated with T2D at genome-wide sig-
nificance (p < 5 × 10−8). This meta-analysis
confirmed associations for nine novel loci and
three loci previously associated with T2D
including IRS1, MTNR1B, and KCNQ1 (Pro-
kopenko et al. 2008; Bouatia-Naji et al. 2009;
Lyssenko et al. 2009).

In 2009, three GWA studies for fasting glu-
cose as a quantitative trait simultaneously iden-
tified MTNR1B as a locus influencing fasting
hyperglycemia and T2D risk (Prokopenko et al.
2008; Bouatia-Naji et al. 2009; Lyssenko et al.
2009). GWAS for continuous glycemic traits
particularly fasting glucose levels showed sig-
nificant associations with G6PC2 and MTNR1B
(Prokopenko et al. 2008; Bouatia-Naji et al.
2009; Lyssenko et al. 2009). The Meta-Analysis
of Glucose and Insulin-related traits Consortium
(MAGIC) study examined 21 GWAS to identify
loci associating with fasting glucose, fasting
insulin, HOMA-beta, and HOMA-IR (Dupuis
et al. 2010). In this study, following replication
among 76,558 individuals from 34 additional
studies, nine new loci including SNPs in or near
ADCY5, MADD, CRY2, ADRA2A, FADS1,
PROX1, SLC2A2, GLIS3, and C2CD4B were
significantly associated with fasting glucose and
one SNP near IGF1 found to be associated with
fasting insulin and HOMA-IR. This study also
confirmed associations between glycemic traits
and previously identified SNPs in or near DGKB-
TMEM195, GCKR, G6PC2, MTNR1B, and
GCK.

Thus, GWA studies of T2D and related gly-
cemic traits have identified several candidate
genes/genomic regions. As reported in
Table 12.3, TCF7L2, KCNJ11, HHEX/IDE,
SLC30A8, CDKAL1, CDKN2A/2B, IGF2BP2,
FTO, MC4R, PPARG, TCF2, WFS1, JAZF1,
CDC123/CAMK1D, TSPAN8/LGR5, THADA,
ADAMTS9, NOTCH2, KCNQ1 contain the SNPs
most strongly associated with T2D (Grant et al.
2006; Salonen et al. 2007; Saxena et al. 2007;
Scott et al. 2007; Sladek et al. 2007; Stein-
thorsdottir et al. 2007; WTCCC 2007; McCarthy
and Hirschhorn 2008; Perry and Frayling 2008;
Prokopenko et al. 2008; Unoki et al. 2008;

Yasuda et al. 2008; Zeggini et al. 2008; Ridd-
erstrale and Groop 2009). Most of these associ-
ations have been confirmed either by initial
replication studies or by subsequent studies in
other populations. It is evident from these studies
that identification of common risk variants for
diseases like T2D depends on large-scale geno-
typing of large samples of cases and controls,
and that the effect sizes of most of the identified
risk variants fall between 1.1 and 1.4 (Bodmer
and Bonilla 2008). In fact, as detailed in
Table 12.3, with an exception of TCF7L2, the
per-allele effect sizes corresponding to most of
the risk variants fall between 1.1 and 1.2. As
pointed by Prokopenko et al. (2008), the T2D
GWAs thus far have been concentrated on
European populations, and the contribution of
these genetic findings to the total phenotypic
variance in susceptibility to T2D appears to be
less than 10 %.

Of the identified loci, by far the strongest
association with T2D has been with the TCF7L2
gene [e.g., rs7901695] (Grant et al. 2006;
Goodarzi and Rotter 2007; McCarthy and Hir-
schhorn 2008; Perry and Frayling 2008; Pro-
kopenko et al. 2008; Ridderstrale and Groop
2009). Its influence on susceptibility to T2D is
larger (i.e., a per-allele effect size of *1.4)
compared to those for other loci (Table 12.3).
Lyssenko et al. (2007) examined the potential
mechanisms by which genetic variants in
TCF7L2 increase susceptibility to T2D, con-
cluding that they are associated with impaired
insulin secretion, incretin effects and enhanced
rate of hepatic glucose production, and that
increased expression of TCF7L2 in human islets
reduced glucose-stimulated insulin secretion.
Indeed, several of the susceptibility loci reported
in Table 12.3 appear to be involved in insulin
secretion, highlighting the potential prominent
role of pancreatic beta-cell dysfunction compared
to that of insulin resistance mechanisms in T2D
pathogenesis (Florez 2008). Although some of
the implicated loci seem to be potential biologi-
cal candidates with roles in T2D pathogenesis
(e.g., IDE), the functional relevance of them is
not yet clear (see, Prokopenko et al. 2008;
Ridderstrale and Groop 2009). An exception to
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Table 12.4 Major genome-wide association study results for metabolic syndrome and its components

Study/
references

Population/
ethnicity

Sample size
(DP/RP)

Trait Chr.
loc.

Gene or nearest SNP Effect
size

p-value

gene

Zabaneh and
Balding
(2010)

Indian
Asians

2,700/2,300 Log HDL-C 16q13 CETP rs3764261 0.07 1.3 × 10−48

16q13 CETP rs9989419 −0.05 1.4 × 10−20

8p21.3 LPL rs2083637 0.04 1.9 × 10−10

8p21.3 LPL rs4523270 0.03 1.0 × 10−07

21q22.3 FLJ41733 rs496300 0.03 3.9 × 10−07

11q12.2 FADS1 rs174546 −0.03 6.0 × 10−07

11q12.2 FADS2 rs1535 −0.03 6.5 × 10−07

T2D 10q25.2 TCF7L2 rs7903146 1.33 6.6 × 10−07

DBP 9q34.11 ENG rs7865146 −1.19 1.0 × 10−06

Avery et al.
(2011)

European
Americans

19,486 Metabolic
syndrome
trait
dimensions

2 APOB rs1713222 NA 6.1 × 10−13

2 GCKR rs1260326 8.1 × 10−16

2 ABCB11 rs579060 2.4 × 10−10

8 LPL rs301 9.5 × 10−20

8 TRIB1 rs2954021 1.3 × 10−10

9 ABCA1 rs2575876 6.2 × 10−08

9 ABO rs687621 1.0 x10−300

11 ZNF259 rs964184 5.5 × 10−22

12 VWF rs216318 1.6 × 10−07

12 BRAP rs11065987 2.9 × 10−10

12 HNF1A rs7979473 1.1 × 10−09

13 F7 rs510335 1.0 × 10−35

15 LIPC rs397923 1.6 × 10−15

16 FTO rs9923233 4.9 × 10−10

16 CETP rs247616 8.3 × 10−72

19 LDLR rs6511720 8.3 × 10−28

19 SUGP1 rs10401969 1.1 × 10−10

19 APOC1 rs4420638 1.7 × 10−57

20 PLCG1 rs753381 4.3 × 10−08

Avery et al.
(2011)

African
Americans

6,287 Metabolic
syndrome
trait
dimension

1 CELSR rs12740374 NA 3.6 × 10−13

1 CRP rs2592887 8.4 × 10−8

7 CD36 rs3211938 4.8 × 10−10

8 LPL rs10096633 1.8 × 10−12

9 ABO rs8176693 6.1 × 10−75

12 VWF rs2229446 9.0x 10−9

16 CETP rs247616 1.9 × 10−23

19 LDLR rs6511720 2.5 × 10−10

19 PVRL2 rs7254892 1.3 × 10−10

(continued)
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Table 12.4 (continued)
Study/
references

Population/
ethnicity

Sample size
(DP/RP)

Trait Chr.
loc.

Gene or nearest SNP Effect
size

p-value

gene

Kraja et al.
(2011)

Europeans 22,161
STAMPEED
b-meta

TG-BP 2 GCKR rs780093 0.18 3.0 × 10−10

WC-TG 2 GCKR rs780093 0.19 1.9 × 10−12

WC-TG 2 C2orf16 rs1919128 −0.18 2.0 × 10−09

WC-TG 2 ZNF512 rs13022873 −0.17 5.0 × 10−09

WC-TG 2 CCDC121 rs3749147 −0.18 1.4 × 10−09

HDLC-
GLUC

2 ABCB11 rs569805 0.16 8.5 × 10−08

WC-GLUC 6 TFAP2B rs2206277 0.17 1.3 × 10−07

HDLC-WC 8 LPL rs301 -0.22 3.2 × 10−11

MS 8 LPL rs295 0.17 1.7 × 10−09

HDLC-TG 8 LPL rs13702 0.29 1.0 × 10−16

TG-BP 8 LPL rs15285 −0.27 1.3 × 10−10

TG-GLUC 8 LPL rs2197089 0.18 1.6 × 10−09

BP-HDLC 8 LPL rs1441756 −0.18 2.7 × 10−08

HDLC-WC 8 LOC100129150 rs9987289 0.24 3.7 × 10−08

HDLC-TG 8 LOC100129150 rs9987289 0.25 1.1 × 10−08

HDLC-TG 8 TRIB1 rs2954026 −0.16 7.9 × 10−09

TG-BP 8 TRIB1 rs2954033 0.17 8.5 × 10−09

BP-GLUC 11 LOC100128354 rs1387153 −0.19 8.1 × 10−09

HDLC-
GLUC

11 LOC100128354 rs1387153 −0.21 2.4 × 10−09

TG-GLUC 11 LOC100128354 rs10830956 −0.2 4.8 × 10−11

TG-BP 11 BUD13 rs11825181 0.32 3.0 × 10−09

TG-GLUC 11 BUD13 rs11820589 0.32 5.5 × 10−09

HDLC-TG 11 BUD13 rs10790162 0.38 2.8 × 10−15

MS 11 BUD13 rs10790162 0.25 5.4 × 10−09

WC-TG 11 BUD13 rs10790162 0.39 6.6 × 10−16

TG-BP 11 ZNF259 rs11823543 0.35 2.5 × 10−09

TG-GLUC 11 ZNF259 rs12286037 −0.32 1.1 × 10−08

HDLC-TG 11 ZNF259 rs2075290 0.39 1.5 × 10−14

MS 11 ZNF259 rs2075290 0.26 2.1 × 10−09

WC-TG 11 ZNF259 rs2075290 0.41 1.1 × 10−16

HDLC-TG 11 APOA5 rs2266788 0.39 4.6 × 10−13

MS 11 APOA5 rs2266788 0.26 1.9 × 10−09

TG-BP 11 APOA5 rs2266788 0.37 3.5 × 10−08

WC-TG 11 APOA5 rs2266788 0.41 2.2 × 10−16

HDLC-WC 15 LIPC rs10468017 0.16 5.5 × 10−08

HDLC-
GLUC

15 LIPC rs2043085 −0.17 1.3 × 10−08

HDLC-TG 16 CETP rs173539 0.26 4.5 × 10−16

HDLC-WC 16 CETP rs173539 0.29 1.0 × 10−16

MS 16 CETP rs173539 0.16 9.1 × 10−09

BP-HDLC 16 CETP rs3764261 0.29 3.3 × 10−13

HDLC-
GLUC

16 CETP rs9939224 −0.31 6.9 × 10−12

HDLC-TG 19 LOC100129500 rs439401 0.24 1.0 × 10−08

(continued)
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this overall statement, for example, is the iden-
tification of a nonsynonymous SNP (i.e.,
rs13266634, Arg325Trp) at SLC30A8 as a sig-
nificant T2D risk variant (Sladek et al. 2007).
SLC30A8 gene encodes an islet-specific zinc
transporter protein member 8 (ZnT-8), and vari-
ation in ZnT-8 could potentially result in pan-
creatic β-cell dysfunction (Boesgaard et al.
2008). To help interpret the phenotypic effects of
risk alleles, there also have been continued
attempts to examine association between several
of the T2D risk variants and other T2D related
traits such as size at birth and gestational diabetes
(Watanabe et al. 2007; Clausen et al. 2009;
Freathy et al. 2009; Lauenborg et al. 2009).

GWAS of T2D in Non-European Populations
Independent GWA studies in the Japanese pop-
ulation consisting of *3,000 individuals identi-
fied KCNQ1 as a novel T2D susceptibility locus,

in addition to the CDKAL1 and IGF2BP2 loci
(Unoki et al. 2008; Yasuda et al. 2008). A SNP
in intron 15 of KCNQ1, rs2237892 was found to
be significantly associated with T2D in a Japa-
nese population (Yasuda et al. 2008). Another
Japanese group also independently found a
strong association of a SNP in KCNQ1
(rs2283228) with T2D in Japanese (Unoki et al.
2008). Further studies of KCNQ1 confirmed
these associations of rs2237892 in Korean, Chi-
nese, and Europeans (Unoki et al. 2008; Hu et al.
2009; Liu et al. 2009; Qi et al. 2009), which was
subsequently confirmed in Asian Indians (Been
et al. 2011). Also, another SNP (rs231362)
located in an intron of KCNQ1 on chromosome
11 showed significant association with T2D in a
GWAS meta-analysis in European populations
(Voight et al. 2010). This intronic variant over-
laps the KCNQ1OT1 transcript, which regulates
B-cell development (Been et al. 2011). These

Table 12.4 (continued)
Study/
references

Population/
ethnicity

Sample size
(DP/RP)

Trait Chr.
loc.

Gene or nearest SNP Effect
size

p-value

gene

Kristiansson
et al. (2012)

Finnish
populations

11,616 GLUC 2 G6PC2 rs560887 0.15 4.8 × 10−26

GLUC 7 TMEM195,
DGKB

rs6947830 0.1 1.4 × 10−13

GLUC 7 GCK rs3757840 0.1 4.4 × 10−13

GLUC 7 CAMK2B rs1127065 0.08 8.9 × 10−11

GLUC 11 MTNR1B rs10830962 0.12 5.0 × 10−16

HDL 1 GALNT2 rs4846922 −0.08 3.4 × 10−08

HDL 2 APOB rs673548 −0.11 1.4 × 10−10

HDL 6 HCG26, MICB rs3099844 −0.15 1.7 × 10−08

HDL 8 LPL rs268 −0.38 1.9 × 10−12

HDL 9 ABCA1 rs1883025 −0.1 5.9 × 10−10

HDL 11 NR1H3 rs10838681 −0.08 1.3 × 10−09

HDL 15 LIPC rs1532085 −0.13 4.7 × 10−24

HDL 16 CETP rs247617 −0.25 9.3 × 10−60

HDL 16 EDC4 rs8060686 −0.11 2.4 x10−10

SBP 2 SMEK2 rs782590 0.09 4.0 × 10−08

TG 2 APOB rs6711016 0.08 4.0 × 10−08

TG 2 GCKR rs780094 0.13 5.9 × 10−20

TG 7 MLXIPL rs13226650 0.12 1.9 × 10−11

TG 8 LPL rs7841189 0.18 9.7 × 10−15

TG 11 ZNF259 rs964184 0.23 2.6 × 10−31

TG 19 TOMM40,
APOE

rs157582 0.1 1.4 × 10−08

WC 16 FTO rs9940128 0.09 1.7 × 10−09

HDL-C = High-density lipoprotein—cholesterol, T2D = Type 2 diabetes, DBP = Diastolic blood pressure, SBP = Systolic blood pressure,
TG = Triglycerides, BP = Blood pressure, WC = Waist circumference; GLUC = Glucose, MS = Metabolic syndrome, NA = Not available
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findings confirm KCNQ1 as a T2D susceptibility
gene in multiethnic populations. Following these
genome-wide studies, a replication study in
3,210 unrelated Han Chinese has confirmed the
associations of 17 previously identified common
variants from genome-wide studies with T2D.
Furthermore, this study indicated that common
variants in CDKAL1, CDKN2A/2B IGFBP2,
SLC30A8 loci contribute to T2D risk indepen-
dently or additively (Wu et al. 2008). In Han
Chinese, the risk alleles of the CDKAL1 and
CDKN2A/2B genes increased diabetes risk
by *1.4-fold and *1.3-fold, respectively. The
allele frequencies of these risk-associated vari-
ants were also higher in the Han Chinese popu-
lation compared to Europeans (Wu et al. 2008).
Han Chinese are at higher risk of T2D than

Europeans (WTCCC 2007; Zeggini et al. 2008).
As shown in Table 12.3, a larger meta-analysis of
GWAS-identified eight new loci: GLIS3, FITM2-
R3HDML-HNF4A, KCNK16, MAEA, GCC1-
PAX4, PSMD6, and ZFAND3 for T2D in East
Asians (Cho et al. 2012).

Another GWAS by Kooner et al. (2011)
reported six additional new loci: GRB14,
ST6GAL1, VPS26A, HMG20A, AP3S2, and
HNF4A for T2D in individuals from South Asian
ancestry. In addition, two T2D risk loci [SGCG
gene, (Saxena et al. 2013) and TMEM163,
(Tabassum et al. 2013)] were reported in Indian
populations. Recently, investigators of the
SIGMA consortium identified a novel locus
associated with T2D in the region covering the
SLC16A11 gene (p = 3.9 × 10−13) on

GWAS-T2D-GenesGWAS-Obesity-Genes GWAS-MS-Genes

XHHE
SLC30A8
CDKAL1
CDKN2A
IGF2BP2
NOTCH2
THADA
ADAMTS9
JAZF1
CDC123
TSPAN8
KCNQ1
IRS1
MTNR1B
ADCY5
PROX1
GCK
DGKB
SRR
PTPRD
RBMS1
TCF7L2

FTO
MC4R
PCSK1
CNR1
C12orf51
NEGR1
TMEM18
GNPDA2
MTCH2
SH2B1
KCTD15
SEC16B
ETV5
BDNF
FAIM2
SH2B1
PTER
MAF
PRKD1
NUTDT3
RSP03
VEGFA
TBX15/
WARS2
GRB14
DNM3
ITPR2
LY86
HOXC13

NPC1
TFAP2B
MSRA
NRXN3
SDCCAG8
TNKS
RBJ
POMC
GPRC5B
MAP2KB
QPCTL
GIPR
TNN13K
SLC39AB
FLI35779
HMGCR
LRRN6C
TMEM160
FANCL
CADM2
LRP1B
PTBP2
MTIF3
ZNF608
RPL27A
GP2/PAX6
NISCH/
STAB1
CPEB4

ITGB6
BCL11A
ZBED3
KLF14
TP53INP1
CHCHD9
CENTD2
KCNQ1
HMGA2
PRC1
ZFAND6
DUSP9
LARP6
SGSM2
TMEM163
MAEA
GCC1
PAX4
PSMD6
ZFAND3
KCNK16
SGCG

CCDC121
ABO
ZNF259
TFAP2B
VWF
BUD13
BRAP
APOA5
HNF1A
G6PC2
F7
CAMK2B
LIPC
MTNR1B
FTO
GALNT2
HCG26
EDC4

CETP
LDLR
LPL
SUGP1
FLJ41733
APOC1
FADS1
FADS2
PLCG1
CELSR
ENG
CRP
APOB
CD36
PVRL2
TRIB1
GCKR
C2orf16
ABCA1
ZNF512

Candidate Genes
PPARG IRS1 KCNJ11 ADRB1 ADRB2 ADRB3 WFS1LEP
UCP1 UCP2 UCP3 HNF1A HNF1B POMC MC4R PCSK1 LEPR

Linkage Genes 
CAPN10 POMC TCF7L2 ENPP1
TBC1D1

Fig. 12.1 Summary of loci identified by three mapping approaches for obesity, T2D, and MS
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chromosome 17 in Mexican and other Latin
Americans in addition to replicating TCF7L2 and
KCNQ1 association signals (SIGMA T2D Con-
sortium; Williams et al. 2014). T2D risk loci of
interest in Mexican Americans have been repor-
ted previously (Below et al. 2011; Parra et al.
2011). Recently, Ng et al. (2014) found evidence
for two novel T2D loci (i.e., HLA-B and INS-
IGF2) in African Americans. So far, GWAS
including meta-analyses for T2D and related
glycemic traits have identified more than 90
susceptibility loci for T2D (Grarup et al. 2014),
and some of those variants that achieved gen-
ome-wide significance and were well replicated
in multiple populations are shown in Table 12.3
and Fig. 12.1.

Replication of T2D Susceptibility Loci
Identified by GWASs in Independent
Populations
Given that most T2D GWASs thus far have been
in European populations, there have been a
plethora of subsequent association studies across
other populations to replicate the original find-
ings from these studies, either with the same SNP
or with other markers in the same genes,
although results have not always been consistent
across different populations, possibly due to
issues such as allele frequency and LD differ-
ences. For example, as remarked by Florez
(2008), association with TCF7L2 sequence vari-
ants has been replicated in almost every popu-
lation examined, with the main focus on
rs7903146 and SNPs in LD with it (Goodarzi and
Rotter 2007; Cauchi and Froguel 2008; Tong
et al. 2009). In regard to the US populations, in
addition to the ethnic groups discussed above,
there were T2D GWASs performed using data
from populations such as Pima Indians and Old
Order Amish with limited successes (e.g., Han-
son et al. 2007; Meigs et al. 2007; Rampersaud
et al. 2007). But, there have been numerous
studies that aimed to replicate the findings
reported in Table 12.3. For example, some evi-
dence for association between variants in

TCF7L2 and T2D or related traits has been
reported in the Amish, European Americans,
Mexican Americans, and African Americans
[despite some inconsistent findings] (Damcott
et al. 2006; Florez et al. 2006; Zhang et al. 2006;
Elbein et al. 2007; Lehman et al. 2007; Sale et al.
2007; Stolerman et al. 2009; Yan et al. 2009). On
the other hand, a thorough search of this gene to
assess association between its variants and T2D
in Pima Indians led to the conclusion that it was
not a major gene for T2D in this population (Guo
et al. 2007). In the same population, a search for
T2D-related variants in 8 additional genes
implicated by GWASs failed to exhibit associa-
tion with T2D, but variation at FTO was found to
influence BMI (Rong et al. 2009).

Numerous datasets across the globe have been
explored to assess association between polymor-
phisms from T2D GWASs, some with positive
replication findings, at least involving certain risk
variants (Grarup et al. 2007; Cauchi and Froguel
2008; Herder et al. 2008; Ng et al. 2008; Sanghera
et al. 2008; van Hoek et al. 2008; Wu et al. 2008).
After failing to find association between a number
of such genetic risk variants and T2D in African
Americans (with the exception of certain variants
in the TCF7L2 gene), Lewis et al. (2008) con-
cluded that the T2D susceptibility genes in Afri-
can Americans may, in part, be different from
those identified in the European-derived popula-
tions. However, Palmer et al. (2008) found
modest evidence for association between variants
in such genes such as CDKAL1 and SLC30A8 and
glucose homeostasis traits in Hispanic Americans
and African Americans. In recent years, there
have been continued efforts to examine the
transferability of the established GWAS T2D and/
or glycemic trait loci in the US multiethnic pop-
ulations with considerable affirmations (Chen
et al. 2012; Haiman et al. 2012; Fesinmeyer et al.
2013; Ng et al. 2013). A recent international T2D
trans-ethnic meta-analysis has shown the advan-
tages of combining results from multiple ancestral
groups to further understand the genetic archi-
tecture of T2D (Mahajan et al. 2014).
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12.3.3.3 The GWAS of Metabolic
Syndrome and Its Related Traits

Several studies have been conducted to map
variants associated with components of MS, for
example, examining associations with hyperten-
sion (Ehret et al. 2011), glycemic traits (Dupuis
et al. 2010), and plasma lipid levels (Teslovich
et al. 2010). Here we focus on studies using MS
as a composite trait or studies jointly analyzing
multiple MS-related traits using bivariate or
multivariate approaches. GWAS findings for MS
and its components that met genome-wide sig-
nificance level and were replicated are summa-
rized in Table 12.4. Zabaneh and Balding (2010)
conducted a two-stage GWAS to identify com-
mon genetic variation altering risk of the MS as a
composite trait, and its related traits: HDL cho-
lesterol, plasma glucose and type 2 diabetes,
abdominal obesity measured by waist-to-hip
ratio, and diastolic and blood pressure in Asian
Indian men, who have a high prevalence of these
traits. In the discovery phase, they geno-
typed *317,000 SNPs in 2,700 individuals,
from which 1,500 SNPs were selected for
genotyping in an additional 2,300 individuals
and performed association analyses with MS
(Zabaneh and Balding 2010). They found four
previously reported SNPs in the genes CETP and
LPL, which were associated with HDL-C
(p < 5 × 10−7). Furthermore, they found five
additional loci with SNPs that were associated
with HDL-C, T2D, or DBP (p < 10−6). Although
limited number of common SNPs were found to
be associated with MS traits in these Asian
Indian men, they have shown high concordance
with those known to be important in Europeans
(Zabaneh and Balding 2010).

GWAS-based findings for MS and its related
traits in European populations have been repor-
ted by Kraja et al. (2011). In this study, seven
studies from the STAMPEED consortium com-
prising 22,161 individuals of European ancestry
were subjected to bivariate GWA analyses of MS
traits. MS traits were combined in all possible
combinations, and individuals exceeding the
thresholds for both traits were considered affec-
ted and association analyses performed. A total
of 28 SNPs were associated with MS trait pairs,

and these variants were located in and near fif-
teen genes associated with MS traits at genome-
wide significance level. Since most of these
bivariate associations were observed with lipid
traits, the authors have concluded that these
results indicate that genetic effects on lipid levels
are more pronounced than for other traits (Kraja
et al. 2011). The most prominent associations
were in or near LPL, CETP, APOA5, ZNF259,
BUD13, TRIB1, LOC100129500, and
LOC100128154, of which LPL, CETP, and
APOA5-ZNF259-BUD13 were already known to
influence lipid metabolism (Kraja et al. 2011).

Another major MS association study was
conducted by Avery et al. (2011) using data from
19,486 European Americans and 6287 African
Americans to identify loci associated with the
clustering of metabolic phenotypes. Six pheno-
type domains: atherogenic dyslipidemia, vascular
dysfunction, vascular inflammation, prothrom-
botic state, central obesity, and elevated plasma
glucose, based on nineteen quantitative traits
were subjected to principal component factor
analysis, a data reduction approach, and eight
factors were derived from the six domains.
Association analysis was performed using 50 K
SNP array for genotyping 49,320 SNPs and
250,000 imputed SNPs, and an additive genetic
model. In European Americans, they identified
SNPs reaching genome-wide significance levels
(p < 10−8) in 15 loci. Many of these were asso-
ciated with one trait domain and five exhibited
similar associations in African Americans. The
majority of these associations were already
known, for example, the association between
central obesity and FTO. However, three new
loci were identified in or near APOC1, BRAP,
and PLCG1 that were associated with multiple
MS phenotype domains. In European Americans,
rs4420638, located near APOC1, was associated
with a factor phenotype (p = 1.7 × 10−57) and
with elevated plasma glucose (p = 8.7 × 10−4),
atherogenic dyslipidemia (p = 1 × 10−31), vas-
cular inflammation (p = 5 × 10−12), and central
obesity (p = 1.2 × 10−6). However, replication is
needed to validate these findings. If these pleio-
tropic loci are confirmed in an independent
population they may help characterize metabolic
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dysregulation and identify targets for interven-
tion (Avery et al. 2011).

Recently, Kristiansson et al. (2012) performed
a GWAS on MS and its components in four
Finnish cohorts consisting of 2,637 MS cases and
7,927 controls, both with no diabetes, and also
conducted a follow-up study in an independent
sample with data on transcriptome and nuclear
magnetic resonance-based metabolomics. In
addition, they tested for loci associated with MS
and its components using factor analysis. As
shown in Table 12.4, twenty-two previously
identified susceptibility loci for individual MS
traits were replicated in their GWAS and factor
analyses, and a majority of them were associated
with lipid phenotypes. Importantly, a known
lipid locus, the APOA1/C3/A4/A5 gene cluster
marked by the SNP rs964184, was strongly
associated with MS in all four Finnish cohorts at
genome-wide significance (p = 7.23 × 10−9)
(Kristiansson et al. 2012). In a serum metabolite
analysis, the same SNP rs964184 was also
associated (p = 0.024–1.88 × 10−5) with various
very low density lipoprotein, triglyceride, and
high-density lipoprotein metabolites. They also
found a strong association between a genetic risk
score, calculated based on the number of risk
alleles in loci associated with individual MS
traits, and MS status in these cohorts. So far,
GWAS have identified about 50 susceptibility
loci for MS and its components, and those vari-
ants that achieved genome-wide significance and
were well replicated in multiple studies are
shown in Table 12.4 and Fig. 12.1.

GWA Replication Studies of MS and
Multiethnic Populations
Most GWA studies of MS and/or its component
phenotypes have been conducted using large
datasets from Europeans or populations with
European ancestry. Some exceptions include
screens for some obesity traits, blood pressure,
hypertension, renal function, and incident coro-
nary heart disease in African Americans (AAs)
(Adeyemo et al. 2009; Barbalic et al. 2011; Liu
et al. 2011; Ng et al. 2012) and screens for T2D
and its complications in Hispanics/Mexican

Americans (MAs) (Fu et al. 2010; Parra et al.
2011), although some of the findings from these
studies were only suggestive in nature partly due
to the modest sample sizes available. Given such
limitations, numerous studies have attempted to
replicate the European-oriented GWAS findings
for specific loci in non-European populations
including AAs and MAs. Results have not
always been consistent across different popula-
tions, possibly due to potential issues such as
allele frequency and linkage disequilibrium (LD)
differences across populations. Some evidence of
replication for association of variants in genes
such as TCF7L2 (T2D), KCNQ1 (T2D), and
FTO and MC4R (obesity) has been reported in
AAs and MAs (Lehman et al. 2007; Lewis et al.
2008; Palmer et al. 2011; Hester et al. 2012; Ng
et al. 2014; Williams et al. 2014). In contrast,
replication efforts for lipid and lipoprotein traits
related to MS have been more encouraging
(Chang et al. 2011; Dumitrescu et al. 2011). For
example, using data from the NHANES 1991–
1994 survey, Chang et al. (2011) examined
association for 57 GWAS-identified or well-
established susceptibility loci for lipid traits (e.g.,
HDL-C and triglycerides) in a multiethnic US
sample. Among the examined lipid-related vari-
ants, the proportion of associations replicated in
EAs (67 %) was higher than in AAs (44 %) and
MAs (44 %). The search for genes that com-
monly influence MS-related traits is being con-
tinued. Recently, using information from 14
large epidemiological studies, several loci with
pleiotropic influences on metabolic syndrome-
related traits were found (Kraja et al. 2014).

12.3.3.4 GWASs and Replication Studies
in Children and Youth

Thus far, a fewGWA studies have been conducted
for early-onset extreme obesity and other obesity-
related traits in European children and adolescents
(Hinney et al. 2007; Meyre et al. 2009; Scherag
et al. 2010; Bradfield et al. 2012; Cousminer et al.
2013). Some of these studies found appreciable
overlap of association results between children
and adults, reporting associations with variants in
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or near genes such as FTO,MC4R, TMEM18, and
SDCCAG8, for example. A GWAS of lipid traits,
albeit with a very modest sample size including
EA, AA, and MA children, was conducted that
found some evidence for associations (e.g., a
variant in SGSM2 is associated with LDL-C levels
in AAs) (Dumitrescu et al. 2011). Numerous
studies have examined the relevance of GWAS-
identified findings from European populations to
the US pediatric or youth populations to find at
least nominal evidence for association. Some
examples include the replications of obesity sus-
ceptibility variants/genes in EAs (e.g., FTO,
TMEM18, MC4R, and BDNF) (Zhao et al. 2011)
and AAs (FTO) [(Bollepalli et al. 2010), but see
(Klimentidis et al. 2011)]; T2D susceptibility loci
(TCF7L2) in EAs and AAs (Dabelea et al. 2011);
lipid susceptibility loci (SORT1) in a young EA
population (Devaney et al. 2011); and, the con-
tribution of T2D susceptibility loci (HHEX-IDE)
to childhood obesity (Zhao et al. 2010). Some
studies have examined potential genotype-by-
environment (G x E) interaction influences [e.g.,
potential genetic influences on response to life-
style (dietary intake and physical activity) modi-
fications] on MS-related traits in children
(Scherag et al. 2010; Garver 2011).

12.3.3.5 What Have We Learned
from Genome-Wide Association
Studies?

It is now well established that obesity, T2D and
MS-related traits are heritable showing moderate
to high heritabilities (40–70 %). Underlying
causative variants are being explored using three
major genetic approaches: candidate gene asso-
ciation, genome-wide linkage, and genome-wide
association studies. As shown in Fig. 12.1, the
candidate gene association approach and gen-
ome-wide linkage approach yielded a small
number of common genetic variants with con-
sistent associations for obesity, T2D, and MS.
With the advent of GWASs, a new era has begun
in the study of the genetic basis of common,
complex diseases. To date, significant advances
have been made, in particular through GWASs,
in the understanding of genetic underpinnings of

obesity, T2D and MS with the discovery of* 80
genetic loci for obesity, *90 loci for T2D,
and *50 loci for MS and/or its components
(Choquet and Meyre 2011a; Drong et al. 2012;
Sandholt et al. 2012; Sanghera and Blackett
2012; Grarup et al. 2014). Most of the genetic
variants identified for T2D appear to be related to
B-cell dysfunction and to some extent to insulin
resistance. Many of the variants for obesity
appear to be involved in pathways related to
energy homeostasis, and several of the identified
genes appear to show associations with obesity,
T2D and MS, which is suggestive of potential
pleiotropic effects (Fig. 12.1). Of all identified
GWAS loci for obesity, the genetic variation in
FTO has the largest effect on obesity suscepti-
bility. Furthermore, for most of these variants/
genes, the identity of the causal genes and the
functional relevance of the implicated genetic
variants have yet to be established to examine
their potential translation into clinical practice. In
general, very few GWAS localizations have
resulted in successful identification of one or
more functional variants, because alleles identi-
fied in GWAS are seldom the true causative
alleles but are likely in LD with them (Frazer
et al. 2009). As a result, additional studies are
critical to complement the results of GWAS with
mechanistic studies to elucidate the biological
mechanisms responsible for an observed genetic
association and to identify the disease-predis-
posing alleles (Marian and Belmont 2011).

The effect sizes of common variants identified
by GWA studies are rather small or modest. For
example, the contribution of variants identified in
T2D GWASs so far to the total phenotypic var-
iance in susceptibility to T2D appears to be small
(*10 %) (Billings and Florez 2010; Imamura
and Maeda 2011; Drong et al. 2012). In the case
of obesity, the current GWA studies account for
less than 5 % of the total phenotypic variance for
BMI (Drong et al. 2012). Thus, GWA studies of
obesity, T2D and MS have explained only a
small or modest proportion of trait specific her-
itabilities (i.e., missing heritability, (Manolio
et al. 2009). One possibility for this is that rare
variants with potentially stronger effects could be
a potential source of the missing heritability, and
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that such variants are poorly detected by avail-
able genotyping arrays that focus on common
variants (Manolio et al. 2009). Several new
approaches have been proposed to identify more
genetic loci, to pinpoint causal variants, and to
explore the physiological mechanisms and path-
ways that underlie the observed associations.
Furthermore, several susceptibility genes/vari-
ants have been localized by these studies for
several complex diseases, and the translation of
this knowledge to the prognosis and treatment of
complex disease phenotype and its correlates still
remains a challenge. There have been sugges-
tions that epigenetic effects (i.e., methylation)
that track underlying sequence variation could be
potential contributors to heritability (McCarthy
and Hirschhorn 2008; Meaburn et al. 2010; Ty-
cko 2010). Furthermore, most GWASs have
focused on studies of unrelated individuals, so
there is a growing awareness that for localizing
genes, family-based studies are likely to be a
superior design (Thornton and McPeek 2007;
Kent et al. 2007; Visscher et al. 2008).

12.4 Beyond GWA Studies, Current
Research Efforts, and Future
Directions

Most of the above discussed findings are associ-
ation signals, and for most cases the identity of the
causal genes and the functional relevance of the
implicated genetic variants have yet to be estab-
lished. A few exceptions, for example, include
T2D associations, some involving nonsynony-
mous variants in the coding regions and the others
involving intronic variants with potential regula-
tory relationships pursued through follow-up
studies, related to such genes as GCKR, TCF7L2,
SLC30A8, KCNJ11, and KCNQ1 (reviews: Kato
2013; Ng and Gloyn 2013; Grarup et al. 2014;
Sun et al. 2014; Thomsen and Gloyn 2014).
Interestingly, we have recently shown that certain
loss-of-function mutations in SLC30A8 gene,
which encodes an islet zinc transporter (ZnT8)
and harbors a common variant associated with
T2D risk, glucose, and proinsulin levels, are
associated with T2D protection and encode

unstable ZnT8 proteins (Flannick et al. 2014).
Aside from these observations, the majority of
GWAS-identified variants including T2D fall in
noncoding regions (intronic or intergenic) of the
genome, in turn highlighting their potential role in
gene regulation and the associated mechanisms
including transcriptional regulation, noncoding
RNA function and epigenetic regulation (Elbein
et al. 2012; Edwards et al. 2013; Kato 2013;
Hrdličková et al. 2014).

To bridge the gap between genetic associa-
tions and disease-promoting molecular mecha-
nisms, there have been enhanced/accelerated
efforts in recent years to identify the potential
molecular and biological mechanisms corre-
sponding to the noncoding common variant T2D
signals using both experimental and bioinfor-
matic approaches. For example, a locus near
IRS1 gene was found to be associated with
reduced body fat percentage and IRS1 expres-
sion in adipose tissue in men, which was also
correlated with adverse metabolic profile (e.g.,
increased IR and T2D risk]) (Kilpelainen et al.
2011). Using adult islet and fetal pancreas
samples, Travers et al. (2013) assessed the
influence of variants at the KCNQ1 locus on
regional DNA methylation and gene expression.
By mapping sequence variants to open chro-
matin sites, Gaulton et al. (2010) found an
intronic variant (rs7903146) in TCF7L2 gene to
be located in islet-selective open chromatin,
suggesting its potential impact on local chro-
matin structure and regulatory changes. Numer-
ous studies have been benefiting from the
emerging knowledge on pancreatic islet genome
regulatory mechanisms (Gaulton et al. 2010;
Stitzel et al. 2010; Moran et al. 2012; Nica et al.
2013; Pasquali et al. 2014) and the publicly
available databases such as ENCODE, Roadmap
Epigenomics Project, and RegulomeDB for
functional annotations of noncoding variants
(Zhou et al. 2011; Boyle et al. 2012; Edwards
et al. 2013; Fogarty et al. 2013; Lo et al. 2014).
Other research activities relating to complex
diseases such as obesity and T2D include:
common and rare structural variation including
copy number variations (CNVs) such as inser-
tions and deletions and copy neutral variation
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(Manolio et al. 2009); gene x gene interactions
(Kooperberg et al. 2009); parental origin of
sequence variants (Kong et al. 2009); epigenetic
modifications (Gallou-Kabani and Junien 2005;
Gluckman and Hanson 2008); ethnic-specific
disease loci (Cho et al. 2009); and disease-
associated haplotypes (Tregouet et al. 2009). In
addition, the use of additional and/or refined
phenotypes, both endophenotypes and interme-
diate phenotypes, omic-metrics (e.g., transcri-
ptomics and metabolomics), and next-generation
sequencing approaches is likely to enhance our
knowledge on molecular mechanisms underlying
the phenotypic expression of a disease such as
T2D (Lanktree et al. 2010; Haring and Wa-
llaschofski 2012; Robinson 2012).

12.4.1 Rare Variants and Complex
Disease Phenotypes

There has been an increased interest in the
potential role of “rare” variants in common
complex diseases such as obesity and T2D,
which are not detectable with the use of the
GWAS related technologies that only focus on
common variants (Cirulli and Goldstein 2010;
Gibson 2011). Typically, common variants are
defined as those with a minor allele fre-
quency >5 % whereas rare variants are those with
frequencies <1 % and the intermediate territory
of 1–5 % frequency is often categorized as
uncommon. Rare or less frequent variants with
larger effects may have not been detected as the
present genome-wide association scans have
only limited potential to capture rarer variants.
Alternatively, it is also possible that variants less
common than the associated one may create
“synthetic associations” by occurring more often
in association with one of the alleles at the
common site compared to the other (Dickson
et al. 2010). In other words, synthetic association
refers to a situation in which the association of a
common variant with a disease is due to linkage
disequilibrium between the common variant and
multiple rare variants that segregate on the same
haplotype (Dickson et al. 2010; Gibson 2011).

However, in the absence of empirical evidence,
the importance of these synthetic associations
cannot be evaluated (Wray et al. 2011; Anderson
et al. 2011; Goldstein 2011). In consideration of
the importance of rare and low frequency vari-
ants, the data generated by projects such as the
1000 Genomes with the use of sequencing data
have contributed to the development of newer
arrays of SNP-chip design to include rarer
(MAF ≥ 1 %) variants such as the ExomeChip
[1,000 Genomes Project Consortium, (Abecasis
et al. 2010; Peloso et al. 2014)].

12.4.2 The New Era of Sequencing
Studies: Whole Exome
Sequencing (WES) and Whole
Genome Sequencing (WGS)

A new era of genome-wide sequencing has
begun where we are able to generate a catalog of
variants present in a DNA sequence without
relying on markers and LD patterns. Using the
next-generation sequencing (NGS) technologies,
now it is possible to obtain complete information
on rare and common sequence variants across the
whole exome (WES) or genome (WGS) or a
targeted region (e.g., 1,000 Genomes Project,
Abecasis et al. 2010, 2012). New information on
low frequency or rare variants that are associated
with traits such as T2D using such technologies
is emerging (Cornes et al. 2014; Estrada et al.
2014; Flannick et al. 2014; Steinthorsdottir et al.
2014). Thus genome-wide sequencing will
facilitate large-scale sequence studies that will
lead to identification of sequence variations, that
are common, less common and rare variants that
influence obesity, T2D, and MS. The limitations
of the results of GWAS in explaining the heri-
tability of complex diseases or traits may be in
part due to the fact that a large number of the
genetic variants in each genome are rare and
private that cannot be identified using the
existing technologies. Therefore, the focus has
shifted toward the rare variant-common disease
(RV-CD) hypothesis that implies rare and infre-
quent variants exert larger effect sizes (Bodmer
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and Bonilla 2008). Accordingly, there is a para-
digm shift in genetic studies of complex traits
from “common disease-common variant (CD-
CV) hypothesis to rare variant-common disease
hypothesis” for the identification of uncommon
and rare variants with large effects. The shift has
been in part accelerated by the availability of the
next-generation sequencing platforms (i.e., WES
and WGS) that will enable identification of the
uncommon and rare variants. It is conceivable
that both common and rare variants could be
important contributors to complex disease risk
(Gibson 2011; Agarwala et al. 2013; Zuk et al.
2014).

Next-generation sequencing (NGS) technol-
ogy (Bentley et al. 2008; Wheeler et al. 2008;
Metzker 2010) represents a powerful approach
for studying genetic variants in the human gen-
ome or exome including rare genetic variants,
efficiently. Next generation sequencing tech-
niques, discussed in detail in the Curran et al.
chapter, are emerging tools for the discovery of
novel mutations underlying complex diseases or
phenotypes including obesity, T2D and MS
(Bamshad et al. 2011; Kilpinen and Barrett
2013). WGS enables comprehensive sequencing
of the entire genome, including intronic areas
that may harbor deleterious mutations while
WES facilitates deeper coverage of coding
regions that are important for protein function
(Bamshad et al. 2011). Since there are a large
number of genetic variants found in each gen-
ome, it is useful to limit multiple testing by uti-
lizing information such as results of linkage or
GWA analyses, computational predictions of the
effect of a mutation on protein function, and
databases of known polymorphisms to distin-
guish deleterious from benign variants (Chou
et al. 2012). However, it is important to note that
functional studies will be needed to prove the
biologic effect of a variant. Thus WGS and WES
are powerful screening tools with great potential
to identify disease-causing mutations or variants
for research and clinical applications. As
sequencing costs come down, we anticipate that
whole exome and whole genome sequencing will
dominate genetic studies of complex diseases or
traits in the near future. For example, as noted

above, new information on low frequency or rare
variants that are associated with T2D using such
technologies has been emerging (Cornes et al.
2014; Estrada et al. 2014; Flannick et al. 2014;
Steinthorsdottir et al. 2014).

12.5 Gene-by-Environment
Interaction Effects on Obesity,
T2D, and MS

It is well demonstrated that susceptibility to
common complex diseases is determined by
genetic and environmental factors and their
interactions. The rapid rise in the occurrence of
obesity, T2D, and MS in recent decades is
attributable to changing environmental factors
including socioeconomic and life style factors
(e.g., poor diet and low physical activity) and the
rise of obesogenic environments (e.g., fast food
restaurants and television viewing time) (Trevino
et al. 1999; Dehghan et al. 2005; Harper 2006;
Biro and Wien 2010). However, these environ-
mental factors do not affect all groups equally.
For example, white Americans with different
genetic backgrounds but living in a similar
obesogenic environment are less susceptible to
developing obesity (*32 %) or T2D (*8 %)
compared to Pima Indians living in Arizona
(Vimaleswaran and Loos 2010; Choquet and
Meyre 2011a). A strong interaction between the
PPARγ gene and nutrient environment provides a
convincing example of gene–environment
interaction effects on obesity and T2D. Several
studies demonstrated that genetic variation in
PPARγ is a strong modulator of physiological
response to dietary fat in humans (genotype x
dietary fat intake interaction), modifying lifestyle
effects on obesity (Memisoglu et al. 2003;
Ylonen et al. 2008; Ridderstrale and Groop
2009).

Various studies have focused on the identifi-
cation of specific environmental factors affecting
obesity, T2D, and MS that may interact with
genetic disposition (McAllister et al. 2009). For
example, using data from the Early Childhood
Longitudinal Study, childhood weight status was
found to be influenced by more television
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watching, eating fewer family meals, and unsafe
neighborhoods for outdoor play (Gable et al.
2007; Steffen et al. 2009). In a sample of 422
children aged 5–10 years, an inverse association
was found between sleep duration and the risk of
developing overweight/obesity (Chaput et al.
2006). It has been reported that children attend-
ing public schools tend to be overweight and that
the free or reduced cost food programs at private
schools is positively associated with BMI levels
of children (Li and Hooker 2010). In addition to
behavioral traits, certain metabolic traits (e.g.,
insulin and leptin) have been identified to be
positive predictors of weight gain (Butte et al.
2007). Another potential contributor to insulin
resistance/hyperinsulinemia or to the develop-
ment of T2D in children is puberty (ADA 2000;
Goran et al. 2003). In Indian populations, geno-
type-by-diet interactions appear to play a major
role in increasing the risk for diabetes (Mohan
et al. 2007). It is well known that increased
physical activity/exercise training is associated
with favorable lipid profiles and with improve-
ment in insulin sensitivity (Isomaa 2003; Cruz
et al. 2004). Furthermore, there is strong evi-
dence that genetic susceptibility to obesity can be
altered through physical activity (Choquet and
Meyre 2011a). Several studies showed a strong
interaction between the FTO genotype and
physical activity on obesity risk in adults and
adolescents (Andreasen et al. 2008b; Sonestedt
et al. 2009; Ahmad et al. 2011).

There is substantial evidence that dietary
intake interacts with genes to modulate predis-
position to complex diseases or traits. Indeed,
researchers have examined gene-by-lifestyle
(G × LS) interaction influences on obesity and
T2D using the findings from GWA studies of
T2D [e.g., TCF7L2] and obesity [FTO] (Reinehr
et al. 2008; Timpson et al. 2008; Wardle et al.
2008). In European populations, gene–environ-
ment studies have reported that the association
between the FTO gene and BMI is attenuated by
physical activity levels (Rampersaud et al. 2008;
Andreasen et al. 2008b; Vimaleswaran and Loos
2010). In the Old Order Amish population,
physical activity was found to be inversely
associated with BMI (Rampersaud et al. 2008).

Although such association was only observed in
individuals homozygous for a FTO risk allele, it
was not observed in individuals with the pro-
tective allele (Rampersaud et al. 2008). There is
substantial interaction between common variants
in the TCF7L2 gene and lifestyle modification in
the risk of progression to T2D. For example, as
seen in the Diabetes Prevention Program and the
Finnish Diabetes Prevention, there was no effect
of the TCF7L2 risk allele on the progression to
T2D in the lifestyle intervention groups, but such
an effect was found in the placebo control groups
(Florez et al. 2006; Wang et al. 2007). Thus
gene–environment studies show that changes in
lifestyle can moderate effects of genetic suscep-
tibility, as demonstrated by the FTO and physical
activity and TCF7L2 and lifestyle intervention
studies. A few studies have examined the link
between nutritional environment during prenatal
and postnatal states and the risk to develop
obesity, T2D, and MS-related traits in both
childhood and adulthood (Reusens et al. 2007;
Mayer-Davis 2008; Taveras et al. 2010; Dabelea
and Crume 2011). In addition, intrauterine
environment has been associated with the
development of complex diseases in adulthood
(Barker 2003; Bruce and Hanson 2010; Xita and
Tsatsoulis 2010). The modification of epigenetic
programming during the fetal/postnatal develop-
ment due to maternal nutrition and metabolic
disturbances could influence susceptibility to
obesity, T2D, and MS in adulthood (Gallou-
Kabani and Junien 2005; Junien and Nathanielsz
2007; Gluckman and Hanson 2008; Gluckman
et al. 2008; Lusis et al. 2008; Nuyt and Alex-
ander 2009; Dabelea and Crume 2011).

12.6 Conclusions

Obesity, type 2 diabetes, and metabolic syn-
drome are common complex diseases that often
cluster in families and appear as comorbidities.
Progression of these diseases is strongly associ-
ated with a variety of risk factors such as
advancing age, genetic background, other meta-
bolic factors such as insulin resistance, and
behavioral factors (smoking, overeating, and
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inactivity). Genetic and environmental factors
and their interactions determine the risk of
developing obesity, T2D, and MS and contribute
to the variation in risk profiles of various popu-
lations. To date, three major approaches have
been used to identify genes influencing these
diseases, better understand the disease patho-
genesis, and find new therapeutic targets. How-
ever, deciphering the genetic architecture of these
complex diseases or traits has been a challenging
task. The candidate gene approach was largely
successful in identifying variants influencing
monogenic or rare disorders. But this approach
has yielded disappointing results in identifying
genes with measurable effects on common forms
of obesity, T2D, and MS. A major limitation of
the candidate gene approach is that it relies on
our current knowledge of pathophysiology of a
disease, though studies with larger sample sizes
and meta-analyses have confirmed associations
between several candidate genes and obesity,
T2D, and MS-related traits.

Genome-wide linkage studies were very suc-
cessful in identifying genes responsible for
monogenic diseases, but few linkage studies of
diseases with polygenic inheritance patterns have
yielded positive findings and only a subset of
these findings have been replicated in indepen-
dent studies. Furthermore, fine-mapping studies
were not that successful to identify the variants
that likely underlie the linkage signal, partly due
to limitations on follow-up of these signals from
the high cost of dense genotyping and sequenc-
ing studies during this era. However, the gen-
ome-wide linkage approach has been successful
to identify a small number of loci for common
obesity, T2D, and MS. More recently, there have
been a number of high-profile successes using
the GWAS approach. So far, four waves of large-
scale high-density GWAS have been conducted,
which led to a series of discoveries in the fields
of obesity, diabetes, and metabolic syndrome.
The current number of loci reaching genome-
wide significance is*80 for obesity, whereas for
T2D, the current number of T2D risk loci
is *90, and for MS the number of loci is about
50, and many of them were discovered through
GWAS. However, most of these loci have not

resulted in identification of functional variants
and collectively they account for only a small
fraction of the overall heritable risk for obesity,
T2D, and MS. As such comprehensive re-
sequencing and fine-mapping efforts are needed
to uncover potential sources of missing herita-
bility and unambiguously identify causal variants
to start exploring the functional relevance of
these loci. Next-generation sequencing technol-
ogies may lead to the discovery of rare and pri-
vate variants with large effects that may yield
important insights into the genetic architecture
and pathophysiology of complex diseases to be
utilized in clinical practice. Identification of
causal variants may provide new avenues for
novel therapeutic and preventive approaches for
better treatment and prevention of obesity, T2D,
and MS, and eventually facilitate the develop-
ment of pharmacogenetics and personalized
medicine.
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13Genetic Influence on the Human Brain

D. Reese McKay, Anderson M. Winkler, Peter Kochunov,
Emma E.M. Knowles, Emma Sprooten, Peter T. Fox,
John Blangero, and David C. Glahn

The current form of a species reflects advanta-
geous behaviors ingrained and selected by the
interaction of genes and environment. That the
human mind is the apex of this process is a
principle stated and restated by philosophers and
scientists throughout history. Now more than
ever science is on the cusp of directly linking
genes to human brain function.

Imaging genetics––the combination of imag-
ing and genetic information to map gene effects in
the brain––enjoys an embarrassment of data
riches and equally abundant unrealized discovery.
In the late 1980s, the field of human genetics was
revolutionized by the discovery of copious
molecular markers, advances in fast and cost-
effective genotyping methods, and the develop-
ment of powerful statistical methods. The emer-
gence of human brain mapping nearly paralleled
this timeline. Functional magnetic resonance
imaging (FMRI) in the 1990s, on the heels of
discoveries spawned by positron emission
tomography (PET) in the 1980s, pushed knowl-
edge of the brain’s inner workings to unprece-
dented levels. That these frontiers of scientific
discovery could inform one another was demon-
strated in 2001 (Thompson et al. 2001), just
months after the completion of the first working
drafts of the human genome sequence were
published (Venter et al. 2001; Lander et al. 2001).

Today, we are in the midst of another chapter
in the genomic revolution, driven by the devel-
opment of massively parallel gene sequencing
technology that is capable of rapidly genotyping
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hundreds of thousands of polymorphic markers
per sample. As a result, the power of whole
genome sequence data is outstripping biometric
image-based discovery. Defining brain pheno-
types that represent the action of genes is the
challenge of our time. In particular, there is urgent
need for programmatic criteria to extract mean-
ingful phenotypes from neuroimages. Research to
properly define traits from an endless possibility
of image-based metrics has been shortsighted.
This represents a fundamental dilemma that must
be overcome. In turn, a systematic program for
discovery will be established and our under-
standing of gene-brain interaction will embrace
topics that we cannot yet envision. Indeed, the
time is now and the potential for discovery is ripe!

13.1 Traits and Subjects

To date, an over-reliance on obsolete study
designs has limited the progress of imaging-
genetics and led to a minefield of inconsistent
findings. As research of complex brain pathology
progressed into the genomic age, investigators
naturally gravitated toward methods that were
successful for studying affected populations;
notably, phenotype and subject criteria related to
diagnostic status. Because the degree of impair-
ment and presentation of symptoms in brain-
related disorders vary widely among affected
individuals (including subclinical impairment),
diagnostic categorizations are problematic. This
has motivated a more powerful alternative strat-
egy, namely the use of quantitative traits as phe-
notypes (Blangero 2004; Gottesman and Gould
2003). To date, quantitative traits are applied in
three general study design classes: Case-control,
twin/sibling pair, and extended pedigree.

Studies utilizing large extended pedigrees
have multiple benefits compared to twin designs,
including increased power to detect heritable
effects, less confounding of genetic effects with
shared environmental effects because of the
inclusion of multiple households within pedi-
grees, and greater mathematical power to localize
and identify causal quantitative trait loci, and far
more power to examine the effects of rare

variation (Blangero 2004; for in depth discussion
of the rare variation strategy, see Chap. 16 by
Curran et al. this volume). However, these
advantages are not without added burden.
Familial studies typically require more partici-
pants than twin studies. Recruiting large families
to participate in imaging-genetics studies
requires that many family members live in close
proximity. As is the case in all quantitative
genetic studies, extremely reliable, nonlabile,
phenotypes are required. An added benefit of
focusing on randomly selected large extended
pedigrees is that many different image-based
phenotypes can be analyzed in a single study.

13.1.1 Normal Brain Variation

Early large-scale brain-imaging research focused
on young, healthy, normal adult subjects (Maz-
ziotta et al. 1995). In the past decade, normative
studies of brain structure and function have been
extended to the entire human lifespan, from
childhood through senescence (Biswal et al. 2010;
Glahn et al. 2010; Gogtay et al. 2004; Mazziotta
et al. 2001; Sowell et al. 2003; Thompson et al.
2005). Going forward, these streams of research
should be the foundation for image-based gene
discovery instead of unfounded metrics in clinical
populations. Additionally, it is highly likely that
the genes involved in normal phenotypic variation
are also involved in pathological variation. This
further mandates research of genetic influence on
normal brain structure and function, as truly
understanding pathology may require a better
understanding of normal variation.

In vivo MRI data is inherently quantitative
and is capable of depicting an immense number
of potential phenotypes. Image-based metrics can
be drawn from any source of contrast including
tissue type, anisotropy level, blood flow, and
oxygenation level, among many others. Brain
volume, total gray matter, and other global
measurements were shown to be highly heritable
(Bartley et al. 1997), lobar measurements fol-
lowed (Geschwind et al. 2002), then measure-
ments of Brodmann areas and specific gyri
(Peper et al. 2007; Winkler et al. 2010), and most
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recently voxelwise analysis of the whole image
space (Stein et al. 2010). Unfortunately, the
power to choose has been a double-edged sword.

Phenotypes are often tested in abundance, as
there is no established method for selecting
phenotypes and data driven techniques provide
un-biased perspective. Yet, mapping genes or
sets of genes to structure–function relationships
has remained elusive. An alternative approach is
selecting, modeling, and evaluating potential
phenotypes based on our ability to test neuro-
science driven hypotheses. Though seemingly
apparent, this notion is a drastic deviation from
modern high-profile methods, such as testing
every voxel in an image for genome-wide asso-
ciation. Not only does such a broad net increase
type 1 error, but it also undermines decades of
neuroscience-imaging research with a moot
question: Do genetic variants influence voxels in
MR images? Instead of addressing an arbitrary
aspect of image processing (voxels), phenotypes
used for gene identification analyses should
reflect our understanding of the brain.

Herein, we share the results and conclusions
drawn from testing and applying candidate phe-
notypic measurements in an extended pedigree
MRI study. Subjects were randomly ascertained
and phenotypes represent normal variation.
Extended pedigree designs are more powerful
than twin designs for localizing the effects of
genes, but also require automated, quantitative,
and robust metrics. Because the actions of genes
are unknown, phenotypes should represent
image-based neuroscientific truth, as we presume.
We place focus on basic neuroanatomy. This will
develop a foundation for understanding how
genetic influence is reflected in the brain structure
and function that we quantify using MRI.

While many genetic studies of mental disor-
ders focus on the presence of a particular disease,
this diagnostic endpoint is often distant from
determinant etiology (Plomin et al. 2009). Con-
versely, quantitative phenotypes that are geneti-
cally correlated with disease liability can be
measured in all individuals (both affected and
unaffected) and provide greater power to detect
disease-related genetic factors than affection sta-
tus alone (Blangero 2004; Glahn et al. 2012;

Gottesman and Gould 2003). Extended pedigrees
provide an ideal framework to exploit these
advantages, amongst others. Keeping with this
strategy, MRI data was obtained from participants
in the “Genetics of Brain Structure and Function”
(GOBS) study. GOBS is a pseudorandom ascer-
tainment of extended Mexican–American fami-
lies in the San Antonio area. In 1991, initial
investigations were designed to identify risk fac-
tors for diabetes, hypertension, and obesity. Since
then, first, second, and third degree relatives of
original probands and spouses have been recrui-
ted. The diversity of biological relationships and
large number of informative pairs is indicative of
the multigenerational depth and expanse of these
large pedigrees (Table 13.1).

13.2 Background and Significance

13.2.1 Why Is Structural MRI
Appropriate for Studying
Genetic Underpinnings
of the Brain?

Statistical genetics quantifies covariance between
phenotypic and genetic variability. The statistical
power of such analysis is strongly dependent on the
precision of phenotypic measurements. Modern
MRI technology is capable of providing phenotypic
measurements with both high precision and repro-
ducibility. The intersession, scan–rescan variability
of MRI-based phenotypes such as global brain
volume is less than 1 % (Lemieux et al. 1999). The
intersession variability of more localized structural
phenotypes such as hemispheric, lobar, and tissue
volumes or gray matter thickness is estimated to be
in the 3–10 % range (Agartz et al. 2001; Julin et al.
1997; Lerch and Evans 2005).

13.2.2 Is a Trait Influenced by Genetic
Factors?

Quantitative genetic analysis partitions trait
covariance among related individuals into genetic
and environmental components. For the univari-
ate case (a single trait, such as total brain volume),
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the covariance matrix (Ω) in a family (pedigree)
of n members can be modeled as X ¼
2Ur2a þ Inr2e , where Φ is the n × n kinship matrix
for the pedigree (Table 13.1), r2a is the variance in
the trait due to additive genetic effects, In is an
n × n identity matrix, and r2e is the variance due to
random environmental effects. The most funda-
mental genetic parameter is the heritability (h2) of
a trait h2 ¼ r2a=ðr2a þ r2eÞ. While this model is for
the simplest case of only two variance compo-
nents (additive genetic and environmental), it is
readily extendable via the addition of variance
terms in the denominator to allow for additional
variance components such as those including
dominance genetic variance, X-linked genetic

variance, mitochondrial effects, and maternal
effects (Almasy and Blangero 1998). Covariates
such as sex, age, and their interaction (age × sex)
are routinely included in these genetic models.
Regression terms are estimated for each covariate,
and the likelihood of a model in which the
covariate effect is estimated is compared to the
likelihood of a model in which the covariate
effects are constrained to zero.

13.2.3 Are Two Traits Influenced
by the Same Genes?

Using the information contained in the kinship
matrix and maximum likelihood variance
decomposition techniques, the phenotypic cor-
relation between any two traits can be partitioned
into additive genetic and random environmental
components. This is often referred to as multi-
variate genetic analysis. The phenotypic corre-
lation (ρp) between two traits (x and y), the
additive genetic (ρa) and random environmental
correlations (ρe) between the two traits, and their
heritabilities (denoted as h2x and h2y) are related as
follows:

qp x; yð Þ ¼ h2xh
2
y

h i1=2
qa x; yð Þ

þ 1� h2x
� �

1� h2y

� �h i1=2
qe x; yð Þ

ð13:1Þ
The additive genetic correlation ranges from

−1 to 1 and is a measure of the shared genetic
basis of the two traits. An absolute additive
genetic correlation of 1.0 indicates complete
pleiotropy, where the same genes or sets of genes
affect both traits (Almasy et al. 1997). Alterna-
tively, a genetic correlation between 1 and 0
indicates incomplete pleiotropy, meaning that the
two traits are influenced to some extent by the
same genes, but each trait also has a unique
genetic basis. A genetic correlation between −1
and 0 indicates a slightly more complicated cir-
cumstance where the two phenotypes are diver-
gent. Similarly, the random environmental
correlation is estimated and serves as a measure

Table 13.1 A sample of the pair–wise relationships
within Mexican–American pedigrees of participants in the
GOBS study

Number of
relative pairs

Familial
relationship

Coefficient of
relationship

2 Monozygotic
twins

1

1,004 Parent-offspring 1/2

1,192 Siblings 1/2

352 Grandparent-
grandchild

1/4

2,407 Avuncular 1/4

175 Half-siblings 1/4

7 Great
grandparent-
grandchild

1/8

675 Grand-avuncular 1/8

361 Half-avuncular 1/8

2,783 1st cousins 1/8

34 Great grand-
avuncular

1/16

19 Half grand-
avuncular

1/16

2,797 1st cousins, once
removed

1/16

402 Half 1st cousins 1/32

343 1st cousins, twice
removed

1/32

10 Half 1st cousins,
once removed

1/32

955 2nd cousins 1/32

321 2nd cousins, once
removed

1/64
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of the strength of the correlated response of the
traits to nongenetic factors. In the maximum
likelihood framework, the likelihoods of models
that constrain the genetic correlation (or envi-
ronmental correlation) between the traits to zero
are compared to the likelihood of models that
allow the genetic correlation (or environmental
correlation) between the traits to be estimated.

This method of genetic correlation analysis
allows the determination of (prior to gene map-
ping or QTL studies) whether two or more brain-
related phenotypes are: (1) Influenced by the
same sets of genes, (2) by partly overlapping sets
of genes, or (3) have no genetic effects in com-
mon. These analyses can be used to test a wide
variety of hypotheses concerning the genetic
architecture of brain-related phenotypes. For
example, a series of tests can evaluate whether
genes that influence brain structure also influence
brain function (as measured by neurocognitive
testing).

13.3 Genetic Analysis of Brain-
Based Phenotypes

13.3.1 Heritability of the Human
and Nonhuman Primate Brain

The size, shape, and internal structure of the
primate brain vary considerably between indi-
viduals within a species and a significant portion
of this intrasubject variability is influenced by
genetic factors. While very early stages of pri-
mate brain development are predominately
mediated by genetic programs (Rubenstein et al.
1999; Rubenstein and Rakic 1999), later stages
of development, organization, and brain matura-
tion result from a complex interaction of genetic
and environmental influences (Rakic 1988).
Studies in nonhuman primates have provided
heritability estimates for brain weight ranging
between 0.42 and 0.75 (Cheverud et al. 1990a, b;
Rogers et al. 2007). Human imaging studies have
expanded upon these initial findings. Phenotypes
based on lobar measurements are less heritable
than global phenotypes and have been shown to

vary by lobe (Geschwind et al. 2002). Brodmann
areas or specific gyri, though widely variable, are
slightly less heritable than lobar phenotypes
(Winkler et al. 2010; Wright et al. 2002). Toge-
ther, these reports demonstrate an indirect rela-
tionship between estimated genetic influence and
phenotype spatial resolution. Reduced heritabil-
ity estimates for smaller structures might be
associated with the reliability of image analyses
rather than an intrinsic reduction in the genetic
influences of these regions. However, it is more
likely that whole brain phenotypes reflect the
action of many genes and are more readily
transmitted. Therefore, high heritability values
do not convey gene-finding feasibility.

13.3.2 Genetic Influence on Gray
Matter

Gray matter primarily consists of neuronal cell
bodies. Gray matter is distributed across the
surface of the cerebral hemispheres (cerebral
cortex) and of the cerebellum (cerebellar cortex).
Large collections of gray matter are also present
in the thalamic nuclei and basal ganglia and
cerebellar nuclei.

The most thorough demonstration of genetic
influence on gray matter was provided indepen-
dently by Panizzon et al. (2009) and Winkler
et al. (2010). Specifically, these efforts sought the
fundamental actions of genes by investigating the
relationship between gray matter volume, surface
area and thickness in brain regions similar to
Brodmann Areas. Using different samples and
designs, both studies concluded that variability of
both cortical surface area and thickness were
influenced by independent genetic factors, indi-
cating that measurements of gray matter volume
confound these effects. Furthermore, focusing on
cortical surface area or thickness rather than
volume places the investigator closer to the the-
oretical action of genes.

Since these studies, investigators have
increased the resolution of genetic investigations
of gray matter by moving from Brodmann Areas
to pointwise cortical reconstructions (Figs. 13.1
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and 13.2, Winkler et al. 2012). Doing so, alle-
viates any undue influence of assuming the
genetic underpinnings of the cortex correspond
to Brodmann Areas.

The conscientious student may draw similar-
ities between this pointwise approach and the
voxelwise genome-wide association approach
that was criticized in Sect. 13.1. It is important to
note that the goal of the analytic techniques used
to create Figs. 13.1 and 13.2 is not to identify
genes, but to identify heritable traits (i.e. brain
regions) that cluster genetically and will there-
fore have more power for subsequent gene dis-
covery. Such a pointwise approach contributed to
the search for genetic roots of the brain by pro-
viding phenotypes for the first cortical atlas
constructed entirely from genetic information
(Chen et al. 2012). In this extremely elegant
work, Chen and colleagues used a fuzzy clus-
tering technique in 406 twins to parcel cortical
surface area into genetic subdivisions. Bound-
aries of the cortical map corresponded to mean-
ingful structural and functional organization.
Therefore, the Chen subdivisions represent traits
that will have greater statistical power for gene

identification studies than phenotypes that are
nothing more than products of image processing
(e.g., individual voxels or vertices).

13.3.3 Genetic Influence on White
Matter

Cerebral white matter tracts, or fasciculi, consist
primarily of glial cells, myelin, and axons that
transmit signals from one region of the cerebrum
to another and between the cerebrum and lower
brain centers.

Kochunov et al. (2010) demonstrated a sig-
nificant genetic influence on cerebral white matter
in 467 subjects from extended pedigrees. White
matter heritability for fractional anisotropy [FA, a
measure of white matter integrity (Beaulieu
2002)] averaged across the whole brain was 0.53,
p = 2 × 10−7. Figure 13.3 depicts voxel-level
heritability estimates projected onto the white
matter skeleton. Evidence for genetic control was
relatively higher in the inferior fronto-occipital
fasciculus (h2 = 0.74), the anterior corona radiate
(h2 = 0.84), genu (h2 = 0.73), and the superior
longitudinal fasciculus (h2 = 0.81). Heritability
estimates were consistently higher for left hemi-
sphere regions than their contralateral area, inline
with observations that left hemisphere FA-values
are less variable than those on the right (Hua et al.
2009).

Fig. 13.1 Heritability of pointwise cortical surface area.
Phenotypes were defined by parceling each hemisphere
into 40,962 vertices using the Freesurfer image analysis
suite, which is documented and freely available (Dale
et al. 1999; Fischl et al. 1999, http://surfer.nmr.mgh.
harvard.edu/). Genetic analyses were performed using the
SOLAR software package, which is also freely available
(Almasy and Blangero 1998, http://www.txbiomed.org/
departments/genetics/genetics-detail?p=37)

Fig. 13.2 Heritability of pointwise cortical thickness.
Image and genetic analyses were performed analogously
to those of Fig. 13.1
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Genetic correlations for analogous tracts in
left and right hemispheres were high, indicating
that common genes influence contralateral tracts.
Genetic correlations between the corpus callo-
sum and the other white matter tracts were sig-
nificant, with the exception of the internal
capsule and the cingulum. However, the internal
capsule and the cingulum were genetically cor-
related with each other and other tracts, provid-
ing evidence for pleiotropy between different
tracts.

This data suggests that voxel-level FA-values
are influenced by genetic factors, the micro-
structure of the major white matter tracts is her-
itable and that partially overlapping, but not
completely common, genetic factors control
axonal anatomy of these tracts. These findings
are consistent with the notion that a relatively
large set of genes influence white matter micro-
structure and that these genes are not common to
all observed white matter tracts. Rather, some
tracts are influenced by relatively unique genetic
factors. These findings imply that diffusion-based
genetic studies of brain-related illnesses should
focus on the tract or tracts implicated in

disorders, rather than genes that may influence
white matter more generally.

13.3.4 Genetic Influence on Functional
Connectivity in the Default-
Mode Network

When the brain is not engaged in specific tasks,
spontaneous fluctuations in neuronal activity give
rise to coherent and structured connectivity net-
works (Biswal et al. 1995; Fox and Raichle 2007,
Beckmann et al. 2005), as identified through
connectivity analyses with functional MRI and
PET. One network, termed the default mode
(Raichle et al. 2001), is believed to support self-
referential or nondirected cognitive processing
(Gusnard et al. 2001) and thought to characterize
basal neural activity. Aberrant default-mode
connectivity has been reported in individuals with
a host of neurological and psychiatric illnesses,
suggesting that this intrinsic network is sensitive
to pathophysiologic alterations in brain function
and structure (Broyd et al. 2009).

Glahn et al. (2010) demonstrated significant
genetic influence (h2 = 0.42, p = 4.6 × 10−3) over
default-mode functional connectivity indepen-
dent of genetic influence on regional gray matter
density in 333 subjects from extended pedigrees
(Glahn et al. 2010). Establishing the heritability
of default-mode functional connectivity autho-
rizes the use of resting-state networks as pheno-
types in the search for the genetic roots of
illnesses that have been associated with altered
default-mode connectivity. Furthermore, identi-
fication of the genes that influence the intrinsic
functional architecture of the human brain would
represent a significant advance for basic neuro-
science, independent of the ramifications for
brain disorders.

Because the default-mode reflects a “baseline”
system, it is plausible that the genes that influ-
ence default-mode connectivity also contribute to
general regulation of brain metabolism, cerebral
blood flow, or other aspects of basic neuronal
activity. Identification of these genes will provide
an important vantage point for understanding the
brain’s intrinsic architecture and the influence

Fig. 13.3 Voxel-level heritability estimates of white
matter tract microstructure are presented in standard brain
space. Heritability estimates varied from 0 to 0.80 and
indicate genetic control of FA-values throughout cortex
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that those systems have on a host of neurological
and psychiatric illnesses. Future studies mapping
and identifying the actual quantitative trait loci
will provide insight into the genes that influence
default-mode functional connectivity.

13.3.5 Cognitive Ability: Genetic
Influence on Intelligence

Evidence in favor of pleiotropic effects on vari-
ous anatomic phenotypes and neurocognitive
function has been reported, however, there is
little work examining pleiotropic influences on
brain morphology, network activity, and neuro-
cognitive variation in triad. Thompson et al.
(2001) provided preliminary evidence that pre-
frontal gray matter density and general cognitive
ability covary in healthy twins. These findings
were extended by Posthuma et al. (2002) who
applied a formal bivariate correlational analysis,
concluding that gray and white volume matter
and intelligence are mediated by a common set of
genes. Since, this same group reported that a
single underlying genetic factor mediates work-
ing memory ability and global gray and white
matter volumes. In contrast processing speed was
genetically related only to white matter volume
(Posthuma et al. 2003). More recently, perfor-
mance on a spatial delayed response task and
integrity of the superior longitudinal fasciculus
were found to share common genetic factors
(Karlsgodt et al. 2010). Together, these reports
provide strong evidence for overlap between
neurocognitive and neuroanatomic phenotypes.

13.4 Initial Conclusions

A decade after the decade of the brain and a
decade after the sequencing of the human gen-
ome, many thought more would have been dis-
covered. The most glaring nonevent, given the
emphasis and allocation of resources, is the
general lack of early diagnosis, treatment or
prevention of complex disorders. Indeed, the
density and combinatorial nature of the two fields
has proven immense. Yet and still, many efforts

are underway to define measurements from cor-
tex, subcortical nuclei, white matter, and func-
tional connectivity for use as phenotypes in
imaging-genetics studies. In time, a systematic
program for discovery will yield genetic roots of
neuroanatomy and basic brain function.

The remainder of the chapter includes our
prospective on the directions that imaging
genomics should move in the next decade,
pointing out several pitfalls and limitations of the
current field.

13.4.1 Over-Reliance on Association
and Dysfunction

Human brain mapping relied solely on associa-
tion of lesion location and neurological deficit for
a century after Broca (and others) first made clear
associations between structure and function in
the 1860s. Investigators observed behavioral
deficits, formed hypotheses, and awaited a post-
mortem autopsy to hunt for lesions in the brain.
Due to over-reliance on this method, brain
mapping lapsed into a scientific backwater, last-
ing well into the 1900s. Swapping the brain of
that era with the genome of the 2000s, the fields
of brain mapping and imaging-genetics
employed similar strategies: associations were
drawn between dichotomous behavioral traits
and a poorly understood entity. Often, a genome
wide association study from thousands of case-
control subjects was used to nominate candidate
genes. Thereafter, functional imaging was used
to associate brain traits with a specific variant of
those candidate genes. Such a “double associa-
tion” approach has failed to establish a founda-
tion for further discovery and frequently caused
more muddle than clarity in attempted replication
studies.

13.4.2 Under-Reliance on Quantitative
Traits and Function

Priority and focus must sway from categories of
illness toward indices of normal variation.
Understanding the genetic influences that
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determine variation in neuroanatomic structure
and connectivity among normal healthy subjects
are likely to elucidate how those processes are
disrupted in brain illnesses. Because brain mea-
sures vary within the normal population, it is
possible to localize influential genes in samples
of healthy individuals. Such samples could sig-
nificantly improve our ability to find genes
associated with neuroanatomic variability. Iden-
tifying such genes would constitute a significant
step forward in understanding the biological
mechanisms that govern brain anatomy, provid-
ing prospective a priori hypotheses for testing in
clinical populations. With properly defined
quantitative traits, this will lead to superior gene
discovery efforts.

13.4.3 Relation to Gene Discovery

Most of the studies discussed herein do not
provide information concerning the identity of
causal genes. However, they do provide sub-
stantial evidence that there are genes involved in
the variability of brain structure and function,
and that image-based biometrics are sensitive to
genetic mediation. Identification of the underly-
ing genes will provide an important vantage
point for understanding the brain’s intrinsic
structural architecture and the influence that it
has on other domains of neuroscience, including
clinical impairment.

Showing significant heritability provides crit-
ical information necessary before these methods
can be appropriately used in studies designed to
identify or functionally characterize genes. The
identification of one or more genes that influence
gross anatomy should provide a causal point in
the biological chain that governs variation in
anatomical features across individuals. The dis-
covery of such genes could dramatically improve
our understanding of how molecular processes
influence structure–function relationships
throughout the brain. This, in turn, should pro-
vide important leads for how these processes are
disrupted in illnesses associated with aberrant

anatomical traits. The characterization of normal
genetic influence in phenotypes relevant to fun-
damental neuroscience is the initial step toward
this vast discovery process (Glahn et al. 2007).

13.5 Implications for the Immediate
Future

13.5.1 Lessons Learnt

Some parallels between the fields of brain map-
ping and imaging-genetics are unavoidable.
Others, particularly those that have proven det-
rimental for brain mapping, should be avoided at
all costs by imaging-genetics researchers.
Already discussed was an over-reliance on dys-
function, and the lesion method in particular;
unfortunately, it is too late to avoid this wave of
influence. Another parallel is over-localization of
function. Neuroscientists, to some degree, still
suffer from the “Grandmother cell” dogma where
the sole function of a hypothetical neuron
was theorized to identify one’s grandmother
(Konorski 1967). More fashionably, recent
reports have adopted the term “Jennifer Aniston
neuron” (Quiroga 2012). From this unfounded
line of thought, imaging-geneticists must take
caution in implicating single genes or SNPs for
highly complex (and conceptualized) function.
Rather, the field should take note of the break-
through that has taken place in many fields and
embrace the network-of-genes concept over the
single-gene concept.

13.5.2 FMRI

FMRI is slowly becoming a one-stop-shop in
brain mapping research. Limitations for use in
imaging-genetics research must be considered.
As our goal is to characterize phenotypes that
will eventually lead to the discovery of causal
gene sets, the extraction of highly stable traits is a
prime directive. Paradigm-based FMRI is intrin-
sically state-dependent and less stable than
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structural and resting-state MRI. Typically,
functional imaging data is averaged across sub-
jects to improve signal to noise ratio because
individual subject data can be sporadic. Fur-
thermore, each block of FMRI data is only
indicative of a single paradigm, meaning separate
scans would have to be acquired in every subject
for every task of interest. To guide gene dis-
covery with task-based FMRI, it will become
obligatory to model results from published acti-
vation studies to identify the most stable and
consistent paradigm-induced activation patterns.

13.5.3 Meta-Analysis

Meta-analytic uses of functional imaging data are
more reliable. Recently, the BrainMap database
(www.brainmap.org) was used to guide a study
seeking genetic influence of general cognitive
ability. Specifically, regions corresponding to
activations induced by working memory tasks
were defined meta-analytically. The boundaries
of these regions were then exported to a separate
cohort for subsequent analyses (Karlsgodt et al.
2010). This work provides proof-of-concept that
the spatial extent of paradigm task activations
predicted by models of published results can be
used to lessen the search space in studies con-
ducted in independent populations. However, it
remains to be seen whether the results of Karls-
godt and colleagues would have been improved
had FMRI data been acquired on a per subject
basis.

Recently, independent component analysis on
the entire BrainMap database was used to extract
functional connectivity networks (FCNs). The
same FCNs were then shown to closely corre-
spond to resting-state networks extracted from
thirty subjects, entirely independent of BrainMap
(Smith et al. 2009). This groundbreaking finding
provides compelling evidence for the coherence
of FCNs extracted from resting state data and
networks activated by behavioral and cognitive
challenges. Because meta-analytic results pool
information from many studies, they can be used

to guide genetic analysis of structural MRI per-
haps with more stability and power than tradi-
tional functional MRI. Furthermore, using resting
state data in conjunction with meta-analytic
results to investigate genetic influence of net-
works that correspond to task activations is a
powerful, cutting edge construct.

13.6 Implications for the Distant
Future

13.6.1 Epigenetics

Neuroplasticity is partially modulated by genetic
factors and partially modulated by epigenetics,
which are dynamic changes that influence the
expression of genes without changing the DNA
sequence. Epigenetic processes are of particular
clinical interest because their external triggers
(e.g., diet, drug abuse, and stress) can affect a
person’s vulnerability to many diseases, includ-
ing psychiatric disorders. This fledgling field is a
natural progression of genetic and environment
influence that will gain momentum as our
knowledge of gene function improves.

13.6.2 Social Science

The human brain is particularly sensitive to
social stimuli. Some feel this has accelerated the
rate of human brain evolution in that humans
have complex neuronal circuitry for processing
interactive social information (i.e. predicting
others’ reactions and emotions and responding
appropriately). Research has revealed that par-
enting style and early-life stress can epigeneti-
cally modify the expression of genes that
influence brain morphology and function (Wea-
ver et al. 2004). Such findings may seem far-
fetched, considering we do not fully understand
the function(s) of genes whose expression levels
are reportedly influenced. However, we should
not expect the diversity of implications to have
bounds.
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14Variation, Genetics, and Evolution
of the Primate Craniofacial Complex
Richard J. Sherwood and Dana L. Duren

14.1 Introduction

A remarkable discovery was recently announced
regarding the genetic influence on the vertebrate
craniofacial complex (Abzhanov et al. 2006;
Campas et al. 2010). The subject of the study
was the genus Geospiza, better known as Dar-
win’s finches, the poster genus for evolutionary
adaptation. It is well known that the beaks of the
various species of these finches vary in depth,
width, and length, and that the resulting shapes
correspond with the ecological niche of the par-
ticular bird. In 2006, Abzhanov and colleagues
described how different levels of expression of
calmodulin (CaM), a calcium mediator, account
for the variation in beak length (Abzhanov et al.
2006). Following previous work demonstrating
that variance in beak depth and width was sim-
ilarly described by levels of bone morphogenetic

proteins-4 (BMP4) (Abzhanov et al. 2004), this
work provides an elegant description of the
genetic mechanism of morphological differenti-
ation of craniofacial structures. While, in one
sense, a beak is a discrete anatomical unit, it is
also true that it is a complex of multiple hard and
soft tissues with geometric properties extending
beyond length, depth, and width. The signifi-
cance of this work lies in the identification of the
relationship between, and relative independent
action of, CaM and BMP4 with respect to spe-
cific metric traits.

In contrast to the advances in avian cranial
genetics, the genetic mechanisms responsible for
variation of the primate craniofacial complex are
still poorly understood. The current understand-
ing of the genetic underpinnings of the primate
craniofacial complex comes primarily from three
sources, extrapolation from developmental stud-
ies of fish or avian animal models, analysis of
dysmorphic syndromes in humans, or from the
application of modern quantitative genetic
approaches including genome-wide linkage
analyses. In this chapter, we explore the genetic
influences on primate craniofacial morphology
and examine the relevance to diverse fields from
evolutionary biology to biomedicine.

14.2 Primate Craniofacial Diversity

The order Primates is represented by roughly
400 species exhibiting great diversity in body
size, locomotor habit, and environmental
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adaptation. Craniofacial trends in primate evo-
lution have included changes in orbital mor-
phology and orientation related to an increased
emphasis on visual cues, and a relative increase
in cranial capacity (Ross and Ravosa 1993; Ross
1996). Figure 14.1 provides examples of cra-
niofacial form in two cercopithecoid primates
(vervet monkey and baboon), a ceboid (spider
monkey), and a prosimian (indri). Most primates
exhibit a generalized mammalian cranial form,
although there are interesting exceptions such as
the beaver-like aye–aye (Daubentonia).

Some of the most dramatic evolutionary
changes in primate craniofacial form are seen
among the Hominini, the tribe including humans
and their ancestors. These include significant
changes in each of the craniofacial components,
most notably the dramatic expansion of the brain

and neurocranium, the concomitant increase in
flexion of the basicranium at the pituitary fossa
(the craniometric point known as sella), and a
reduction in dimensions of the splanchnocranium
with a resulting orthognathic disposition of the
face. Figure 14.2 presents a comparison of
bisected human and chimpanzee crania where
these differences are readily apparent.

14.3 Background

14.3.1 Structure and Development

The skull (cranium and mandible) is a complex
anatomical structure,with a developmental history
that includes osteogenic precursors derived from
both neural crest cells and mesoderm, and a

Fig. 14.1 CT
reconstructions of the
internal aspect of four
primate taxa. All images
are scaled to the distance
from sella (the pituitary
fossa) to nasion (the
intersection of the nasal and
frontal bones)
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functional constituency including the housing of a
diverse array of sensory and mechanical compo-
nents. The craniofacial complex is frequently
discussed in terms of developmental and func-
tional components. The basicranium, which
includes the sphenoid, ethmoid, and portions of
the occipital and temporal bones, is phylogeneti-
cally the oldest component and is dominated by
endochondral ossification during development.
The neurocranium is identified as those bones
surrounding the brain, such as the parietals and the
squamous portions of the frontal, temporal,
and occipital bones. The splanchnocranium is

dominated by the zygomatics, maxillae, and
mandible but also includes numerous small bones
such as the nasals, the lacrimals, and the unpaired
midline vomer. Of these components, the basic-
ranium largely undergoes endochondral ossifica-
tion; the neurocranium and splanchnocranium are
predominately formed through intramembranous
ossification, although several bones of the
splanchnocranium demonstrate both forms of
ossification (e.g., the mandible). It has been sug-
gested that growth of bones derived from these two
processes differs, with intramembranous bone
largely governed by the surrounding mechanical
environment, and endochondral bone regulated by
the intrinsic genetic program within cartilaginous
precursors (Enlow 1990; Lieberman et al. 2000).
This suggested dichotomy, however, was prob-
lematic from the start because several cranial
bones, such as the sphenoid, occipital, and man-
dible, utilize both forms of ossification for specific
regions (Langille and Hall 1993).

The functional environment of the skull and
surrounding soft tissues are also complex. Exter-
nally, the bones of the skull are subjected to bio-
mechanical stresses imposed by nuchal,
masticatory, and facial musculature and their
associated tendons and fasciae. Internally, neur-
ocranial growth has been hypothesized to be
directed by brain size as well as fiber orientation of
the meninges (Moss and Young 1960). In addi-
tion, the epithelium of the paranasal sinuses and
the air spaces of the temporal bone may ultimately
play a role in configuration of the associated bones
and the distribution of mechanical strains within
them (Sherwood 1999; Witmer 1997).

14.3.2 Paradigms for Genetic Research
of Craniofacial Morphology

The past two decades have seen a considerable
transition in the biological sciences largely as a
result of the advances in genomic research.
Craniofacial research, and most notably research
into craniofacial anomalies, has moved from
categorization of syndromes based on phenotypic
patterns to the identification of specific gene
mutations responsible for these syndromes.

Fig. 14.2 Internal aspect of bisected human (top) and
chimpanzee crania. Crania are aligned at sella (the
pituitary fossa indicated by vertical line) and scaled to
the distance from sella to nasion (horizontal line).
Superior margin of basicranium is outlined in black
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While crude surgical approaches to the cra-
nium and intracranial structures appear as early
as 6500 BC, systematic interest in the anatomy of
the craniofacial complex more likely began with
the work of Herophilos (third century BC) or
with the comparative anatomical approach of
Galen (second century BC). The descriptive
nature of anatomical observation was the domi-
nant paradigm well into the nineteenth century,
when quantitative analysis of cranial form began
with the work of anatomists such as Blumen-
bach, Retzius, Broca, Morton, and Lombroso.
This quantitative work was largely designed to
describe differences between racial groups or, as
with the case of the biological determinism of
Lombroso, to predict potential criminal tenden-
cies in individuals. The first studies in hereditary
transmission of craniofacial features began with
the pioneering work of Sir Francis Galton in
1875 (e.g., Galton 1885, 1876a, b), who was able
to demonstrate heritable aspects of craniofacial
form by examining sets of twins. Investigation of
the growth of basicranial and intracranial struc-
tures began in 1931 with the application of the
Bolton method standardizing radiographic tech-
nique allowing for consistent quantification of
internal cranial structures (Broadbent 1931).

The descriptive paradigm that had dominated
craniofacial research began to shift with the
landmark paper of Moss and Young (1960),
describing a functional approach to craniofacial
biology (craniology in their terminology). This
approach considered that cranial form closely
reflects the functional demands of the associated
hard and soft tissues and focused on the physical
constraints placed upon the growing cranium.
Importantly, functional craniology formalized the
concept of the skull as a complex of both inte-
grated and independent components.

As genetic methodology improved, the
genetic basis for craniofacial form began to
emerge as the dominant research topic. By the
early 1980s Slavkin (1983) described the
“genetic paradigm,” as forming the basis for
research into congenital defects. He defines this
paradigm as recognizing the interaction between
the gene and the environment in producing a
phenotype.

Importantly he stressed that

not all traits that appear multiple times in the same
family or pedigree are “genetic” in origin, and
possible contributions from “non-genetic” factors
(like mutagens, carcinogens, teratogens, nutritional
status, environmental insults) must always be
considered Slavkin 2001, p. 466).

Not surprisingly, with the rapid growth in
genetic data, the perceived role of the environment
began to diminish shortly thereafter. By the late
1990s, Moss (1997a), the father of functional
craniology, was clearly concerned by the lack of
consideration of nongenetic influences on cranio-
facial growth, identifying the “genomic thesis” as
the dominant paradigm of morphogenesis. He
suggested that the role of the environment was
being overlooked in favor of genetic deterministic
models, despite significant evidence for epige-
netic/genomic interactions throughout develop-
ment. Such decided shifts in thought are not
uncommon following significant technological
advances and, over time, there is typically a return
to more synthetic approaches incorporating all
available lines of evidence. This is currently evi-
dent in the increased attempts at a systems biology
approach (Ideker et al. 2001a, b; Ideker and Kro-
gan 2012), which is again advocating a more
holistic approach integrating environmental, gene,
and gene network data to provide a comprehensive
view of the system under investigation.

The application of, and the need for, a systems
biology approach to craniofacial biology was
described in a recent review of gene discovery
advances in craniofacial biology. Handrigan
et al. (2007, p. 110) noted that current research is
characterized by a piecemeal approach “focusing
on one stage of development, one part of the
face, or on just a few signaling pathways.” The
multifactorial basis of many syndromes, ranging
from craniosynostosis to tooth agenesis, is
becoming clear with new genetic components
identified on a regular basis. Handrigan et al.
note, “These manifold etiologies reflect the
overriding integration and complexity of molec-
ular regulation in craniofacial development and
emphasize the need for exhaustive surveying of
the involved genes and gene pathways.”
(Handrigan et al. 2007, p. 109–110).
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The systems biology approach stresses the
hierarchical nature of biological information and
prioritizes the elucidation of gene networks to
characterize the system under investigation. With
regard to craniofacial biology, a well-developed
pathway model has been developed relative to
the disorder holoprosencephaly (HPE)
(Fig. 14.3). This disorder had been characterized
as genetically heterogeneous with at least eight
genes being identified as etiologic factors.
Additional research has identified the signaling
pathways linking these genes, thus identifying
the basis for the range of phenotypes seen and
the genetic heterogeneity (Gripp et al. 2000;
Ming et al. 2002; Ming and Muenke 2002; Orioli
et al. 2001; Roessler et al. 2003). Identification of
additional such signaling pathways and gene
networks is critical for a complete understanding
of normal craniofacial development and the eti-
ology of dysmorphologies.

14.4 Genetics of the Craniofacial
Complex

14.4.1 Developmental Genetics
of the Craniofacial Complex

The genetic contributions to early craniofacial
development have been the subject of study for
many decades and significant findings are fre-
quent. Not surprisingly, as much of craniofacial
development relies upon the proper formation of
the underlying skeletal substructure, many of the
genes involved in craniofacial development are
those that contribute to general skeletal develop-
ment throughout the body. These include a num-
ber of fibroblast growth factors or their receptors
(Fgf orFgfr), bonemorphogenetic proteins (Bmp),
or signaling molecules such as sonic hedgehog
(Shh) or the Wnt family (Handrigan et al. 2007;

Fig. 14.3 Signaling pathway associated with Holoprosencephaly (HPE). Genes in black have been implicated in HPE
in humans (after Ming and Muenke 2002)
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Havens et al. 2008;Helms andSchneider 2003;Hu
and Helms 1999). Craniofacial anomalies associ-
ated with mutations in these genes frequently
occur alongside other skeletal anomalies. For
instance, mutations in fibroblast growth factor
receptors are the cause of several craniosynostotic
disorders (Apert syndrome, Crouzon syndrome),
which along with the craniofacial symptoms of
premature suture closure, are also characterized by
limb anomalies such as syndactyly. Even a rela-
tively discrete craniofacial disorder, such as cleft
lip and palate, may be part of a syndrome with
multiple postcranial skeletal and soft-tissue
symptoms. Phenotypes within the cleft lip and
palate spectrum have been associated with Bmp
signaling, specifically Bmp4 deficiency, which is
also linked to other alterations in facial form
(particularly in mandibular morphology) and
postcranial dysmorphologies such as syndactyly
and polydactyly (Bonilla-Claudio et al. 2012,
Murray and Schutte 2004; Naruse et al. 2007;
Zhang et al. 2002).

The question then becomes, if the genes
above are responsible for large-scale skeletal
morphogenesis, what are the factors dictating the
intricate details of craniofacial morphogenesis?
Part of the answer lies in the action of these
genes along spatial or temporal gradients. For
instance, variation in Bmp4 expression has been
shown to correlate with variation in beak mor-
phology in Geospiza as noted above, and also
with differences in cichlid jaw morphology
(Albertson et al. 2003; Albertson and Kocher
2006, reviewed in Helms et al. 2005) and in tooth
and palate development in mice (Feng et al.
2002; Gong and Guo 2003). The other part of the
answer may lie in additional, currently unknown,
genes with smaller, more localized effects.

14.4.2 Genetic Heterogeneity
in Dysmorphic Syndromes

When examining the current literature one cannot
help but be impressed by the wealth of detailed
genetic information that is rapidly becoming
available for cranial disorders (e.g., Cohen 2002;
Hennekam et al. 2010; Mulliken 2002). It is also

clear, however, that the advances made in the
genetics of craniofacial disorders do not provide
unambiguous answers to questions of causation.
For instance, Cohen (2002) lists at least six dis-
orders resulting from mutations in the FGFR3
gene, at least five disorders associated with
mutations in FGFR2, and at least nine separate
mutations associated with holoprosencephaly
(Ming and Muenke 2002). In other words, dis-
orders such as Crouzon or Pfeiffer syndromes,
along with other craniosynostotic syndromes, are
not distinct entities but rather variable manifes-
tations along a continuous scale. This heteroge-
neity has made some researchers suggest that,
instead of numerous individual distinct syn-
dromes, there are only a handful of syndromes
each with considerable variation along a contin-
uum. This idea has largely been rejected, as
syndromes do tend to present a definable set of
symptoms that breed true in families. Cohen and
MacLean (1999) suggest several ways to inte-
grate phenotypic and genotypic nomenclature
that are likely to become standard practice as we
continue to elucidate these relationships. While
their system may be a bit cumbersome (e.g., the
simple Crouzon syndrome would be replaced by
“Crouzon syndrome, FGFR2, Cys278Phe”), such
a system may become necessary for clarity.

In discussing the problems associated with
this genetic heterogeneity, Cohen (2002, p. 9)
states that “other factors are involved that are not
understood at the present time.” There are two
clear candidates for these other factors: (1) the
environment; or (2) other, currently unknown,
genes. Environmental insults resulting in growth
perturbation or gross anatomical deformities are
relatively commonly encountered in utero and
range from mechanical disruptions, such as
amniotic bands, to complications based on pla-
cental-cord insufficiencies, to the introduction of
teratogenic substances (Cohen 1990; Cox 2004;
Moss 1997b; Sherwood et al. 1992, 1997). The
subtle effects of a “normal” environment
(acknowledging the extreme heterogeneity of any
individual’s environment) on variability are less
easily characterized.

The other potential confounding factor in
understanding the genetics of dysmorphology is
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the relationship of mutated genes with other
genes. While it is readily acknowledged that
complex traits are often oligogenic in nature (i.e.,
a few genes with pronounced and identifiable
effects of varying degrees are together responsi-
ble for most of the genetic contribution to the
phenotypic variance of a trait), there still persists
an expectation that a given mutation will produce
a singular outcome. Even if the (nongenetic)
environment were held constant, this expectation
would not be warranted. The cumulative pleio-
tropic effects of genes and gene-by-gene inter-
actions would be expected to produce a wide
range of phenotypes proportional to the number
of genes involved. In other words, variability
among normal genes would be expected to pro-
duce variable phenotypes when acting in concert
with a mutated gene. The basic genetics under-
lying normal variation of the craniofacial com-
plex are not well defined but clearly important
for continued progress.

14.4.3 Animal Models for Human
Craniofacial Genetics

A number of animal models have been used to
explore the genetic underpinnings of craniofacial
structures. Zebrafish and chicks have been used
extensively to study the genetics influencing
early development of important structures such
as the pharyngeal arch system (Helms and
Schneider 2003; Yelick et al. 1996; Yelick and
Schilling 2002). Murine models have also proven
important especially for understanding the
genetics of the dentition and palate (Jernvall et al.
1998; Jernvall and Thesleff 2000; Miettinen et al.
1999; Vaahtokari et al. 1996). Mammalian
models are important for understanding aspects
of human craniofacial genetics such as the inte-
gration or modularity of the cranium (e.g.,
Cheverud 1995).

Nonhuman primates, given their phylogenetic
proximity to humans, would serve as the best
model. The craniofacial complex of nonhuman
primates has been the subject of numerous ana-
tomical studies (e.g., Hylander 1979, 1986;

Ravosa et al. 2000; Ross and Hylander 2000;
Ross 2001; Vinyard et al. 2003; Washburn
1947). Much of this research has been aimed at
elucidating the evolutionary history of the order
by understanding how craniofacial components,
the basicranium, neurocranium, and splanchno-
cranium, are integrated in both a developmental
and evolutionary sense. Within primates, a
number of associations between the basicranium
and other structures have been suggested. As the
basicranium serves as the floor to the neurocra-
nium, the most obvious association is between
the skeletal elements of the base and the brain.
Scientists have long considered brain size and the
extent of basicranial flexion to be related in pri-
mates. Humans possess both a large brain (rela-
tive to body mass) and a strongly flexed cranial
base (Lieberman et al. 2000). Within non-human
primates, a significant correlation between rela-
tive encephalization and cranial base angle has
also been demonstrated (Ross and Ravosa 1993).
However, not all brain/base relationships are
consistent throughout primates. For example,
Lieberman et al. (2000) report significant corre-
lations between brain stem volume and cranial
base flexion in strepsirrhines (lemurs and lorises)
but not in haplorhines (tarsiers, monkeys, apes,
and humans).

Associations have also been suggested
between basicranial and facial structures such as
the orientation of the orbits and the anterior cranial
base (Ravosa 1991; Ross and Ravosa 1993).
Again, a difference exists in correlations between
haplorhines and strepsirrhines with the former
being characterized by significant correlations
between orbit orientation and the anterior cranial
base, most likely due to the close approximation
of the orbits below the olfactory tract (Lieberman
et al. 2000); McCarthy and Lieberman (2001)
have also identified an integrated region they term
the “facial block” defined by the superoposterior
portions of the face. The facial block is said to
rotate about an axis loosely defined by the greater
wings of the sphenoid bone during ontogeny. In
haplorhines, the orientation of the block is corre-
lated with the cranial base angle. Strepsirrhines do
not show this correlation.
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14.4.4 Quantitative Genetic Studies
of the Craniofacial Complex
in Animals

Despite these acknowledged correlations
between craniofacial components, it is not clear
what elements are the primary determinants
driving craniofacial variation in primates. While
experimental approaches to primate craniofacial
morphology are not practical, quantitative
genetic techniques are proving fruitful in eluci-
dating the genetic architecture underlying cra-
niofacial variation. Quantitative genetic analysis
of craniofacial traits has primarily focused on
two families of primates: Callitrichidae repre-
sented by the saddle-back tamarin (Saguinus
fuscicollis) (Cheverud 1995), and Cercopitheci-
dae represented by the rhesus macaque (Macaca
mulatta) (Cheverud and Buikstra 1981a, b, 1982;
Cheverud 1982; Cheverud et al. 1990a, b;
McGrath et al. 1984) and baboon (Papio hama-
dryas ssp.) (Hlusko et al. 2002; Hlusko and
Mahaney 2003). These studies focused on facial,
mandibular, and dental traits. Sherwood et al.
(2006a, b, c, 2008c, d, 2011) broadened this
perspective and included internal measures of the
basicranium along with neurocranial and
splanchnocranial phenotypes in the baboon.

The first step in quantitative genetic analysis
of complex traits is to establish the relative
genetic influence on traits. Narrow-sense herita-
bility provides such a measure. Narrow-sense
heritability is expressed as

h2 ¼ r2A=r
2
P ð14:1Þ

where r2A refers to the additive genetic variance
and r2P refers to the total phenotypic variance. In
a study by Cheverud (1982) of macaque facial
metrics, heritability estimates, calculated using
mother-offspring pairs, were moderate (*0.33).
The sample available for this study was drawn
from 297 positively identified individuals con-
taining 51 mother–offspring sets with a total of
134 mother–offspring pairs. While the analysis
resulted in a number of significant heritabilities,
the small sample size may explain why approx-
imately 52 % of the estimates were not

significant. A similar study of craniofacial traits
in tamarins found heritabilities averaging 0.37
with a range of 0.04–0.94. While the number of
related individuals, 134 animals, was slightly less
than in the macaque study, extended genealogies
were available and the heritabilities were calcu-
lated using a maximum-likelihood approach with
pedigree data. With this methodology, the num-
ber of significant heritabilities increased to 67 %.
In a study of dental metrics, using the pedigreed
population of baboons at the Texas Biomedical
Research Institute (formerly the Southwest
Foundation for Biomedical Research), Hlusko
and colleagues (Hlusko et al. 2002; Hlusko and
Mahaney 2003) report heritabilities ranging from
0.38 to 0.85 for dental metrics of baboons (Pa-
pio) with all heritabilities significant.

Genetic correlations (ρG) provide a means to
examine the shared effects of genes on traits. As
noted, a number of associations have been
described for the primate craniofacial complex at
the phenotypic level and these have been further
explored at the genetic level using the concept of
morphological integration. The concept of mor-
phological integration was formalized in 1958
(Olson and Miller 1958) and is used to describe
how the interdependent nature of traits relates to
the total complex form of an organism.

In several classic papers Cheverud explored
the integration of the primate cranium from
phenotypic and genetic perspectives (Cheverud
1982, 1995). In an analysis of the macaque skull,
56 measures were partitioned into function sets
(F-sets) based on existing research. Two primary
functional matrices, neurocranial and orofacial,
were identified with three and four submatrices,
respectively (frontal, parietal, occipital in the
neurocranial matrix, orbital, nasal, oral, and
masticatory in the orofacial matrix). Theoreti-
cally, there would be a hierarchical pattern of
correlations with the measures in each submatrix
and matrix being more correlated than measures
spanning submatrices or matrices.

Phenotypically, the expectation of a hierar-
chical relationship is met. That is, Cheverud
reports that the average coefficient of determi-
nation (r2) for traits within the same F-set is more
than five times higher than average r2 values
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among traits from different F-sets (Cheverud
1982). The relationship was somewhat different,
however, when the genetic correlations were
examined. The average r2 for traits within and
among F-sets was more similar than that seen
with phenotypic correlations, indicating that “F-
sets are not necessarily independently evolving
entities” (Cheverud 1982, p. 508). When ana-
lyzed separately there was a difference between
the neurocranial and orofacial sets. Neurocranial
traits showed greater correlations within subma-
trices than between neurocranial submatrices. In
contrast, traits within orofacial submatrices ten-
ded to show roughly equivalent correlations
independent of whether they were within or
among other orofacial submatrices.

Using a slightly different design where traits
were assigned to one of six sets (oral, nasal,
cranial vault, orbit, zygomatic, cranial base), a
similar study was conducted on a small New
World monkey, the saddle-back tamarin
(Cheverud 1995). In this study, cranial vault and
oral traits showed higher average levels of
genetic correlation (0.49 and 0.66, respectively)
to traits within their respective sets than with
traits in other sets. Nasal, orbital, cranial base,
and zygomatic traits showed no tendency for
higher genetic correlations within sets relative to
those between sets.

14.4.4.1 Dentition
Within comparative and evolutionary anatomy,
the dentition has frequently served as the focus of
much research. The reasons for this are multiple.
First, teeth are essential to the procurement and
mastication of food, as well as for inter- and
intraspecific communication. Teeth are discrete
elements that are relatively easy to examine in
living animals (high-resolution dental casting
methods are readily available). The morphology
of the teeth varies greatly within primates.
Finally, teeth are among the most durable of
biological structures and are, therefore, more
prone to fossilization than many other elements.
As a result, the dentition and jaws provide an
excellent source of information regarding adap-
tations to a given environment and may even

provide detailed information on the niche occu-
pied by an animal or even behavioral aspects. It
is true that many primate taxa are known largely,
if not entirely, by dentition alone.

Primates are heterodontic animals with up to
four different tooth types with each type having
been described as evolving as “largely indepen-
dent units” (Weiss et al. 1998, p. 369). Primitive
mammalian dental formulas, seen in early pri-
mates, consisted of three incisors, one canine,
four premolars, and three molars in each quad-
rant of the jaw. Most modern mammals have
reduced the number of teeth within each jaw,
with many eliminating some types (e.g., the lack
of canines and premolars in rodents).

The development of the dentition is complex
with precursors derived from ectoderm (amelo-
blasts) and neural crest cells (odontoblasts,
cementum). The dentition begins development as
a series of epithelial ingrowths into the subjacent
ectomesenchyme. The presumptive tooth pro-
gresses through three well-characterized phases,
the bud, cap, and bell stages. It is during the last
of these stages, the bell stage, where substantial
histo- and morphodifferentiation occurs. By late
bell stage, the hard tissue components of the
tooth, dentin, and enamel have begun to form
and the nerve and vascular supply are beginning
to develop (Ten Cate 1989). Permanent dentition
begins as successional tooth germs arising from
the dental lamina adjacent to the dental organ of
the incisors through premolars. Permanent
molars have no deciduous precursors and arise
from a posterior extension of the dental lamina.
Within each stage a number of genes have been
identified, which, when disrupted, can result in
dental agenesis (e.g., PAX9 or MSX1), dentin
dysgenesis (e.g., COL1A1, COL1A2), or amelo-
genesis imperfecta (e.g., AMELX, ENAM) (Hu
and Simmer 2007).

Morphogenesis of individual teeth has been
studied in the mouse and is largely directed by
two signaling centers, the primary and secondary
enamel knots (Jernvall et al. 1994; Jernvall and
Thesleff 2000; Vaahtokari et al. 1996). The pri-
mary enamel knot develops during the transition
from the bud to cap stage at the point where
epithelial folding begins to define tooth shape
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(Cho et al. 2007; Jernvall and Thesleff 2000). In
multicusped teeth, the primary enamel knot is
removed apoptotically and the secondary enamel
knots appear at the site of individual cusps. As
noted, the enamel knots are signaling centers and
Jernvall and Thesleff (2000) have identified
reiterative patterns of expression, particularly in
reciprocal FGF signaling between the primary
and secondary knots and the underlying
mesenchyme.

14.4.4.2 Quantitative Genetic Studies
of Primate Dentition

In an effort to elucidate the genetic architecture
of primate dentition, Hlusko and colleagues have
explored the quantitative genetics of dentition in
the baboon (Hlusko et al. 2004a, b, 2006). In an
analysis of genetic correlations among dental
traits there is an expectation of hierarchical
relationships similar to those discussed for cra-
nial components. For the dentition, it is hypoth-
esized that antimeric teeth (e.g., left and right first
molars) will show a high degree of genetic cor-
relation (with ρG approaching or equaling 1.00
indicating complete pleiotropy). Because of the
developmental relationship, serial pairs of teeth
(e.g., M1, M2, etc.) would also be expected to
exhibit high levels of genetic correlation, fol-
lowed by occluding pairs of teeth with slightly
lower expectations for genetic correlations.

On examination of molar cusp patterning and
cingular remnant expression, the expectations of
complete pleiotropy for traits from antimeric
teeth were met (Hlusko et al. 2004a; Hlusko and
Mahaney 2003). Genetic correlations for cingular
remnant traits also showed the expected pattern
with a reduction in magnitude from antimeric
pairs, to serial pairs, to occluding pairs. Molar
cusp patterning showed a slight deviation from
the expected patterns wherein many of the seri-
ally homologous traits in mandibular molars
demonstrated genetic correlations equal to one,
the same traits in serial maxillary molars dem-
onstrate incomplete pleiotropy (genetic correla-
tions different from one).

14.4.4.3 Current Work
on the Quantitative Genetics
of the Human and Nonhuman
Craniofacial Complex

We have undertaken three studies designed to
elucidate the genetic architecture of the cranio-
facial complex. Two of these studies are
designed to be parallel complementary studies:
one examining craniofacial structure in humans
(Sherwood et al. 2005, 2008a, 2011), the other in
a nonhuman primate, the baboon (Sherwood
et al. 2006a, 2008b, c). The third study focuses
on the dentognathic complex in humans (Duren
et al. 2006, Sherwood et al. 2007). In the first
studies, each craniofacial developmental com-
ponent is characterized by a series of metric traits
derived from lateral cephalographs, while the
third study uses high-resolution dental casts.

The first study involves participants in the
Fels Longitudinal Study (Roche 1992), the larg-
est and longest running study of human growth
and development. Throughout the study there has
been a concentration on aspects of skeletal
growth, most notably on methods of assessing
skeletal maturation from hand-wrist and knee
radiographs (Roche et al. 1988a, b; Roche 1989;
Xi and Roche 1990). Cranial radiography of Fels
Longitudinal Study participants was conducted
between 1931 and 1982. In keeping with the
general focus of the study, primary attention has
been on growth and development of cranial
components in participants. Several key papers
focused on the growth of specific bones or ana-
tomical units, for example, early work by Young
(1957) on the frontal and parietal bones, or Garn
and Lewis’ work on the mandible (Garn et al.
1963; Lewis et al. 1982, 1985). A series of
papers also detailed growth of cranial base
structures (Lewis and Roche 1972; Lewis et al.
1985) including a classic paper investigating
changes in basicranial flexion (i.e., saddle angle)
(Lewis and Roche 1977). Significant findings
from this work include the identification of subtle
but distinct pubertal spurts in basicranial
dimensions in both males and females. Most
growth studies restrict analysis to ages 18 years
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or below. Because of the unique quality of the
Fels Longitudinal Study data, some studies have
investigated the changes that continue through-
out the lifetime (Garn et al. 1967; Lewis and
Roche 1988). Both of these studies note a small,
but significant, growth in skull dimensions past
attainment of adulthood.

Recent work using the original craniofacial
data collected from the Fels Longitudinal Study
examined the genetic architecture of 80 traits
based on 47 craniometric points (Fig. 14.4)
derived from lateral cephalographs. All traits
were significantly heritable (Table 14.1 provides
data for basicranial traits as an example).
Examination of genetic correlations between
traits identified a subset of traits exhibiting
shared genetic effects. While our initial work
revolved around analysis of the original data
collected by Lewis (Sherwood et al. 2008a),
subsequent efforts focused on reanalysis of the
entire lateral cephalographic collection have
recently been published (Sherwood et al. 2011;
Sherwood and McNulty 2011). This collection of
numerous phenotypes drawn from standard cra-
niometric or orthodontic analyses allows a full
characterization of all components of the cra-
niofacial complex.

The parallel study of the baboon craniofacial
complex uses the pedigreed population from the
Texas Biomedical Research Institute/Southwest
National Primate Research Center, San Antonio,
Texas. These animals are a mixture of two sub-
species, Papio hamadryas anubis and Papio
hamadryas cynocephalus and their hybrids.
Following the protocol established in the Fels
Longitudinal Cranial Study, lateral cephalo-
graphs were taken of 830 baboons. These were
phenotyped in the same manner as the human
cephalographs although a portion of the pheno-
types do not translate onto the shape of the
baboon skull; therefore, there are fewer traits
measured in this sample. Recent work (Sherwood
et al. 2008c, 2011) has shown that the craniofa-
cial traits in the baboon, similar to those in the
human study, are all significantly heritable.

Both the human and baboon studies success-
fully identified QTLs influencing variation in
craniofacial traits. Ten significant QTLs were
identified for human craniofacial traits (Sher-
wood et al. 2004, 2011), and 14 QTLs were
identified for baboon craniofacial traits (Sher-
wood et al. 2008c). Many of the regions identi-
fied in both species contain genes known to
influence craniofacial features (e.g., SIX3, OTCS,
BMP6, or several members of the WNT family).
Future work will seek to systematically interro-
gate the QTLs, prioritize the genes within, and
conduct functional assessment of sequence vari-
ation in those candidate genes. The goal of this
work is not only to identify genes with a poten-
tial to result in dysmorphologies when mutated,
but to better characterize the variation in the
background genetic matrix with which mutated
genes interact.

14.5 Implications

As with Geospiza, the Darwin’s finches descri-
bed at the start of this chapter, the diversity of
craniofacial forms across primate species raises
questions of the interplay between genetic con-
trol, functional adaptation, and architectural
byproducts of those processes (i.e., spandrels,
Gould and Lewontin 1979). The magnitude of

Fig. 14.4 Lateral cephalograph showing the 47 cranio-
metric points used for measurements (For details of
methodology, see Sherwood et al. 2011)
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these interactions, and the effect on evolutionary
trajectories, will be increasingly understood as
the genetic influences on primate craniofacial
variation are revealed. Clinical applications, in
the form of tissue engineering and gene thera-
pies, will benefit from detailed analysis of the
genetic underpinnings for craniofacial variation
in humans and in closely related animal species.

14.5.1 Evolutionary Implications

The evolutionary history of the order Primates is
of great interest for a variety of reasons, not the
least of which is that humans belong to the order.
Phylogenetic reconstruction of fossil primates,
and notably the Hominoidea (apes and humans),
have relied almost exclusively on analyses of
craniofacial remains. These analyses often
incorporate extensive trait lists enumerating

hundreds of characters that are frequently treated
as independent.

Phylogenetic analyses can benefit from genetic
research in three ways. First, identification of a
heritable component to craniofacial morphology
is necessary to demonstrate that traits have evo-
lutionary relevance. While, to some, it may seem
obvious that traits of the craniofacial complex are
under genetic influence, it is important to point out
that previous studies failed to identify significant
heritabilities for craniofacial traits in humans and
nonhuman primates. It is also reasonable to sug-
gest that, for some traits, there are significant
environmental influences (in the largest sense)
that may limit the ability to detect the genetic
influences on variation.

Second, characterization of the levels of inte-
gration and modularity in the cranium will help
determine the levels of independence between
traits used in phylogenetic analyses. Given the

Table 14.1 Heritability estimates (h2) and standard errors for basicranial traits

Covariates

Variable N h2 a S.E. p Sex Age Sex × Age Age2 Sex × Age2 %
Varb

Sella to
sphenoethmoidal
junction (mm)

975 0.32 0.07 2.51E-08 ● ● 7.3

Sella to posterior
nasal spine (mm)

969 0.42 0.06 9.87E-17 ● ● ● ● ● 31.5

Sella to nasion
(mm)

974 0.45 0.06 6.49E-19 ● ● 27.3

Posterior
condylion to S–N
(mm)

974 0.47 0.06 1.39E-18 ● 4.0

Porion location
(mm)

953 0.22 0.07 4.75E-05 ● ● 10.9

Nasion to sella to
basion (degrees)

964 0.58 0.06 4.47E-25 ● 2.2

Cranial deflection
(degrees)

946 0.16 0.06 5.43E-04 ● ● 2.0

Basion to sella
(mm)

965 0.43 0.06 1.30E-13 ● 28.7

Basion to
posterior nasal
spine (mm)

962 0.36 0.06 2.16E-15 ● ● 10.6

Basion to nasion
(mm)

965 0.42 0.06 5.41E-16 ● ● 31.0

Significant covariates, and the percent variance explained by those covariates, are indicated
a h0: h

2 = 0
b Percent variation of trait explained by significant covariate effects
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complex three-dimensional architecture of the
primate skull, it is difficult to imagine that chan-
ges in one structure will not be associated with
concomitant changes in other structures. Pheno-
typic integration of the craniofacial complex has
been discussed. Numerous studies have also
demonstrated levels of pleiotropy between traits,
including traits from different developmental
components. As phylogenetic analyses of fossil
remains essentially employ morphological traits
as surrogate measures of underlying genetic
similarity and differences, the use of genetically
correlated traits may bias phylogenetic assess-
ments by effectively reducing the genetic signal
being analyzed (Sherwood et al. 2008a).

Finally, the localization of QTL and genes
influencing variation in the craniofacial complex
allows us to begin to identify the true traits upon
which evolutionary forces act. This enables the
expansion of current genetic techniques aimed at
determining the timing of evolutionary events
and may answer some long-standing questions
within paleoanthropology, such as the rapid
expansion of the hominin brain approximately 2
million years ago.

14.5.2 Biomedical Implications

Few modern scientific endeavors have enjoyed
the publicity, and concomitant controversies, as
has the explosion of genetic research in the past
two decades. While many people are familiar
with the Human Genome Project, they may not
realize that genome maps for a wide variety of
animals and plants ranging from beetles to pigs
to the platypus are becoming available. Harold
Slavkin, the former director of the National
Institute of Dental and Craniofacial Research,
described the potential impact of this research as
including “understanding fundamental basics of
diseases and disorders, targeting research to the
fundamental root causes of disease processes,
risk assessment for preclinical interventions,
diagnostics, and tailoring treatment and thera-
peutics to individual risk and responses” (Slavkin
2001, p. 476). In the decade since that statement
was written, a number of advances have been

made into the research and application of clini-
cally relevant genetic techniques.

The craniofacial and dentognathic complexes
comprise one of the primary foci for research into
areas of gene therapy and tissue engineering (Wan
et al. 2006). The clinical reasons for this focus are
numerous; even small craniofacial defects (whe-
ther congenital or acquired) can influencemultiple
aspects of physical and mental health. Addition-
ally, for the dentition, discrete elements such as
the teeth provide an easily managed object for
manipulation, and the “normality” of the engi-
neered structures is relatively easy to assess.
Current approaches to regenerative medicine are
examining the potential of restoring specific tis-
sues in the pulp chamber of teeth (Murray et al.
2007; Nakashima 2005), periodontal ligaments
(Jin et al. 2004; Nakahara 2006), complete teeth
(Duailibi et al. 2006; Hu et al. 2006), or the sup-
porting bone (Dunn et al. 2005; Nussenbaum and
Krebsbach 2006, Rutherford et al. 2003; Young
et al. 2005a, b). Gene therapy has even been
investigated as a means to accelerate orthodontic
treatment (Kanzaki et al. 2006). Increased char-
acterization of the genetic architecture of the
human craniofacial and dentognathic complexes
will facilitate application of gene therapy and tis-
sue engineering approaches.

14.6 Conclusions

Significant advances to understanding craniofa-
cial biology have been made since the days of
pure descriptive anatomy. Just as the formaliza-
tion of functional craniology opened new ave-
nues of research resulting in a new understanding
of craniofacial form, the genomic revolution is
providing new insights on a regular basis. While
bird and rodent models have proven extremely
valuable in elucidating developmental determi-
nants, use of an animal in close phylogenetic
proximity to humans, such as the baboon or other
nonhuman primates, will become increasingly
important, most notably in development of new
therapeutic techniques. New approaches in
quantitative genetics may prove particularly
valuable in these endeavors.
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15Genetic Influences on Behavior
in Nonhuman Primates
Julia N. Bailey, Christopher Patterson,
and Lynn A. Fairbanks

15.1 Introduction

The genetic basis for behaviors has been shown
in a wide range of species, from singular cellular
protozoans to human beings. The development of
behaviors is driven by both nature and nurture:
behavioral phenotypes are caused by the
expression of genes within environments, and
these genes change their expression patterns
throughout the life of the organism in response to
environmental stimuli. Experiences (especially
during early ontogenic stages of life) can have
long-lasting effects on the behavior patterns of
that organism (Breed and Sanchez 2012).

Nonhuman primates are useful for the study
of genetic influences of behavior because they
have complex behaviors and social structures
comparable to humans since they are closely
related genetically (Blomquist and Brent 2013).
Pedigreed populations have the added advantage
in that confounding effects which might obscure
the genetic control of behaviors such as diet and
environment can be tightly controlled. Another

advantage of working with nonhuman primates is
that biological samples can be collected more
frequently, and from tissues that can be difficult
to collect from human subjects (e.g., spinal fluid)
(Jasinska et al. 2012). Because of their genetic
similarities to humans, nonhuman primates act as
model organisms for studying human diseases,
many of which—like anxiety, alcoholism and
drug addiction—fall within the purview of
behavioral genetics.

However, there are major difficulties inhibit-
ing the study of behavior genetics in nonhuman
primates. There are few suitable populations of
captive or semi-captive animals which have
known genetic relations. The majority of
behavioral genetic investigations in nonhuman
primates have involved studying a very limited
set of species such as rhesus macaques (Macaca
mulatta), baboons (Papio hamadryas and Papio
anubis), vervets (Chlorocebus aethiops sabaeus),
and chimpanzees (Pan troglodytes). These spe-
cies mimic many aspects of human behavior in
that they live in complex societies with defined
social roles. They experience frequent social
stressors; hence, biological adaptive measures
have evolved, many of which mirror the adaptive
measures that have evolved in humans. However,
this focus on a limited number of species may
have contributed to significant bias when
attempting to generalize behavioral similarities
and differences across all nonhuman primates.
This is particularly affected by the fact that two
phylogenic branches of the primate evolutionary
tree (the prosimians and New World monkeys)
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have been broadly ignored. Thus, the research
presented is limited to the species studied, which
do not include representatives from all species
available for comparison.

This chapter begins with a discussion of her-
itability in some of the published genes that have
been demonstrated to have an effect on the
behavior of nonhuman primates, and the mech-
anisms (if understood) by which the variants
within those genes produce observable differ-
ences in primate behaviors. While this chapter is
focused specifically on the genetic control of
nonhuman primate behavior, evidence from other
animal models such as mice and humans will be
discussed to provide evolutionary context to the
discussion. The chapter includes guidelines and
recommendations to improve behavioral genetic
research, and provides new tools and methods
that will take the field into the future.

This is an exciting time for behavioral
genetics on nonhuman primates, as the field is in
its infancy and there is still much to discover.

15.2 Heritability: Is It Genetic?

Heritability (h2) is a measure of the amount of a
trait that may be genetic, and it is often used to
determine whether there is sufficient genetic sig-
nal to be used to localize genes. A measure with a
larger heritability score may give a higher chance
of success of localizing a gene for that trait in that
particular population. However, the number of
genes involved, the trait architecture, and the
effect size of each gene on the behavioral measure
are important factors in determining the locus of
the genes responsible for the behavioral variation.
Linkage-based mapping techniques may have
difficulty mapping the genetic loci of a trait, even
if that trait has a large h2, especially if the trait has
a polygenic or oligogenic genetic architecture,
and those genes each carry only a small effect size
(Anderson et al. 2010; Göring et al. 2007).

More specifically, heritability is the propor-
tion of variation attributed to genetics compared
to the total variation seen in the phenotypic trait.
The remainder of the variation in a given trait can

then be explained by individual differences, and
by differences in unique and shared environ-
ments. Heritability can be quantifiably estimated
by decomposing the phenotypic variation using
statistical methods such as variance component
analyses. There are currently only a few nonhu-
man primate populations that have been studied
for heritability of behavioral traits, due to the
requirement of knowing the relatedness or the
pedigree status of individuals. There are few
‘pedigreed’ colonies suitable for studies on the
genetic effect of behaviors, so each population is
studied for specific behavioral traits of interest to
the researchers, using different methods and
study populations for each study. Heritability
results must be taken in context of the cohort
under study, the complexity of the pedigree, and
the number of individuals.

One of the colonies that has been studied for
genetic inheritance on behavior in nonhuman
primates is the Vervet Research Colony (VRC).
The VRC pedigree consists of a 16 mutigenera-
tional pedigree, matrilineal colony of vervet
monkeys (C. aethiops sabaeus). All subjects are
raised in social groups that are managed to reflect
the natural social composition of vervet groups in
the wild. Variance component analyses utilizing
the genetic relatedness of each colony member
has been used in this population to estimate her-
itability of several behavioral traits. Novelty-
seeking was measured by using a novel (but
unthreatening) object in the home enclosure, and
is significantly heritable (h2 = 0.47 ± 0.01,
p < 0.0001) implying that 47 % of the variation of
the trait is under genetic control. (Bailey et al.
2007) Impulsivity and impulsive aggression,
measured using the intruder challenge test
developed at the VRC, uses the resident-intruder
paradigm to assess the behavioral response of an
individual to an unfamiliar conspecific on the
periphery of the subjects’ home enclosure. This
challenge elicits species-typical reactions of
interest, arousal, and aggression toward a social
stranger (the ‘intruder’) for both males and
females, and it amplifies individual differences in
characteristic reaction tendencies. Animals scor-
ing high on social impulsivity rush over to the
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intruder immediately without taking the time to
assess the situation. Social impulsivity is also
found to be significantly heritable, (h2 = 0.35 ±
0.11, p < 0.0001) (Fairbanks 2001). Subscales of
the index are independently heritable: both
impulsive approaching (h2 = 0.25 ± 0.10,
p = 0.0008) and aggressiveness (0.61 ± 0.12,
p < 0.0001) (Fairbanks et al. 2004).

At the Harlow Primate Laboratory, alcohol
consumption was studied using animals drawn
from a large ongoing longitudinal study investi-
gating genetic and environmental factors affect-
ing neurobiology, including the behavior of
alcohol consumption. In one study of 156 rhesus
macaques belonging to a single pedigree who
receive identical early rearing backgrounds, the
heritability to consume alcohol was also signifi-
cant, and 19.8 % of the variance was attributable
to additive genetic effects (Lorenz et al. 2006).

Two hundred and eighty-five pedigreed rhesus
monkeys (Macaca mulatta) from both the Harlow
Primate Laboratory and the Wisconsin National
Primate Research Center (Madison, WI) were
studied for heritability of specific behavioral
traits. Of the five behaviors studied, two were
significant ‘freezing duration’ (behavioral inhi-
bition) (h2 = 0.38, p = 0.0120) and ‘orienting to
the intruder’ (vigilance) (h2 = 0.91, p < 0.0001).
The other traits—‘duration of locomotion’,
‘hostility’, and ‘frequency of cooing’—were not
significantly heritable (Rogers et al. 2008).

Responses to novel and stressful environments
were studied in 85 rhesus monkeys (M.mulatta) at
the Oregon National Primate Research Center,
which has a standard matriarchal colony (Wil-
liamson et al. 2006). The traits were tested using a
set of temperament-testing paradigms, and herit-
abilities were estimated using variance compo-
nent-based quantitative genetic analyses with
much of the genetic information arising from
paternal half-sibs. Significant heritabilities include
latency to leave the mother during the initial 5-min
observation period (h2 = 1.00, p ≤ 0.05), explore
(h2 = 1.00, p ≤ 0.01, and movement (h2 = 1.00,
p ≤ 0.05) during the alone-1 period and movement
during the alone-2 period (h2 = 1.00, p ≤ 0.05).
A factor analysis was also performed on the

behaviors and seven factors emerged from the
analyses. The only one statistically significant was
factor 2, which consisted of movement during the
test, and it was highly heritable (h2 = 1.00,
p≤ 0.01). Other factors (Factor 7, explore novelty)
reached a heritability of 1 but were not significant.
Nonsignificant factors included factor 1—distress
vocalization, factor 3—distress cues, factor 4—
delayed independence, factor 5—early indepen-
dence, and factor 6—explore familiar environ-
ment. The nonsignificance of the higher
heritabilities may be a reflection of the small
sample size not being large enough for power,
resulting in imprecise estimates.

Zoo populations were used to study the heri-
tability of personality on 145 chimpanzees from
13 zoos that participated in the ChimpanZoo
Program of the Jane Goodall Institute. Herita-
bility was estimated using the symmetric differ-
ences squared (SDS) technique (Weiss et al.
2000). SDS incorporates phenotypic differences
among all possible pairs of subjects in the sam-
ple, whether related or unrelated of all the traits
studied. Only dominance showed significant
heritability (h2 = 0.63, p = 0.0000). Shared zoo
effects accounted for only a negligible proportion
of the variance for all factors.

Genetic origins of social networks and social
behaviors were studied in 107 of the free-ranging
rhesus macaques on the island of Cayo Santiago
(Brent et al. 2013). The animals were assessed
for relatedness, and variance component analyses
methods were used to assess heritability. When
controlling for age, sex, dominance, rank, and
social household effects, a significant heritability
(h2 = 0.84, p = 0.0250) was found with grooming
betweenness, which is an index of affiliate social
positioning (Brent et al. 2013).

Though calculated with different measures in
different populations, these heritabilities show us
that many of the behaviors have strong heritable
genetic underpinnings and are under genetic
control. These results also demonstrate that for
many traits, the genetics is not the most impor-
tant factor driving the variance, and that the
environment is also significant. This would make
gene detection difficult.

15 Genetic Influences on Behavior in Nonhuman Primates 279



15.3 Understanding the Genetic
Control of Behaviors

Genes that control behavioral traits adaptively
tend to have broad systemic similarities: they
tend to belong to diverse multigene families; they
are expressed in the cells of the brain, sensory
organs, or other nervous tissue; and they are
involved in either the processing of environ-
mental stimuli, the mediation of internal states
such as hunger, affiliation, and emotions, or are
associated with neuronal development and neu-
roplasticity necessary for learning (reviewed in
Bendesky and Bargmann 2011). Since there are
so many genes that participate in each pathway,
polymorphisms or variants in several genes can
be associated with similar phenotypes and can
contribute additively to their severity. It is also
probable that different polymorphisms or variants
in the same gene can have differing effects on
phenotypes. While an exhaustive list of these
signaling molecules and the host of genes that
interact with them is beyond the scope of this
chapter, these three classes of genes neurore-
ceptors, and transporters will be discussed in the
context of two neurotransmitters well-studied in
nonhuman primates (dopamine and serotonin)
and how they relate to behaviors in nonhuman
primates.

15.3.1 The Dopamine and Serotonin
System

Both dopamine (DA) and serotonin (5-HT or
5-hydroxytryptophan) are in a class of neuro-
transmitters called monoamines, which are sim-
ple organic molecules synthesized via enzymatic
action from amino acids (tyrosine and trypto-
phan, respectively). These molecules conduct the
action potential of the neuron across the synapse
to other connected neurons, exciting or inhibiting
their own potential to fire.

Dopamine has been broadly conserved in its
role coordinating motor function and reward-
based learning across most phyla of the animal
kingdom (the arthropods appear to be the sole

exemption to this rule). In vertebrates, dopami-
nergic neurons connect regions of the brain
associated with reward-based learning, such as
the ventral tegmental area and the nucleus ac-
cumbens. In response to primary rewards or
stimuli that have become associated with rewards
through conditioned learning, these neurons
experience phasic activation (increased bursts of
action potentials). Dopamine appears to encode a
reward prediction error: dopamine release and
the phasic activation of dopaminergic neurons
strongly increase in respect to rewards that
exceed expectation, and drop below the baseline
level of activity if the expectations of rewards are
not met. Furthermore the release of dopamine
drives reward-seeking behavior, increasing the
likelihood that the individual will repeat behav-
iors that have become associated with greater
reward expectations (reviewed in Barron et al.
2010).

Increased dopamine signaling is associated
with many interrelated behaviors, including
reward-seeking, conditioned learning, social
dominance and extroversion, aggression, volun-
tary physical activity and motor control, working
memory and focus, and addictive and compul-
sive behaviors. Many stimulants, such as cocaine
and amphetamines, act by increasing the level of
dopamine available for signaling in the synaptic
cleft, hence why the psychoactive effects of these
drugs (arousal, confidence, extroversion,
aggression, etc.) are similar to the effects of
dopamine signaling. Meanwhile, drugs that
reduce dopamine activity, such as neuroleptics,
impair concentration, reduce motivation, and
cause anhedonia (the inability to experience
pleasure).

While dopamine is highly associated with the
rewards centers of the brain, serotonergic projec-
tions are especially dense in the limbic system, a
set of structures that are responsible for the reg-
ulation of mood, emotional learning, memory and
fear response. Serotonin also plays an important
role in development, and many studies into early-
life adversity and stress have demonstrated
long lasting effects on serotonin signaling in the
brain (reviewed in Nordquist and Oreland 2010).
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It is also an important modulator of appetite and
sleep cycles, mood, and inhibitory control. Low
levels of serotonin are associated with depression,
anxiety, stress-reactivity, and aggression, as well
as increased risk-taking in gambling tasks. All of
these conditions share components of increased
emotional-reactivity and impulse-control.

Cerebrospinal fluid (CSF) concentrations of
the terminal metabolites of dopamine (HVA,
homovanillic acid) and serotonin (5-HIAA, 5-
hydroxyindoleacetic acid) have been used as
proxy biomarkers (endophenotypes) of overall
levels of dopaminergic and serotonergic metab-
olism. These studies have demonstrated that the
variance observed in the concentration of these
metabolites are highly heritable and are stable
over time and across environment (Freimer et al.
2007; Kaplan et al. 2002).

15.3.2 Neuroreceptor Proteins

Neuroreceptor genes play an especially important
role in the modification of behavior. This family
of proteins localizes at the synapse of the neuron,
and when they bind to their target ligands (e.g., a
neurotransmitter, or an odor molecule), they
stimulate a molecular cascade, exciting or
inhibiting the action potential of the neuron.
Most of these receptors are coupled to similar
complexes of G-Proteins, and it is through this
shared mechanism that both serotonin and
dopamine activate or inhibit the activity of the
neuron (reviewed in Barnes and Sharp 1999;
Bendesky and Bargmann 2011; Callier et al.
2003). However, in the presence of too much of
their specific ligand, the receptors can become
desensitized to the synaptic signal. Over exten-
ded periods, this can lead to a long-term down-
regulation of neuroreceptors available at the
synapse and a significant decrease in synaptic
efficiency, especially with the serotonin recep-
tors, as we will see with the examples of early-
life adversity models.

There are five known receptor proteins that
bind to dopamine and translate the dopaminergic

signal into neural activity, however only two of
them, DRD1 (dopamine receptor D1) and DRD4
(dopamine receptor D4) have been studied in
respect to nonhuman primate behavior.

DRD1 is the most highly expressed of the five
dopamine receptors, and upon binding with its
agonist, acts to increase the action potential of
the neuron (reviewed in Callier et al. 2003). A
single nucleotide polymorphism (SNP) in the 5′
UTR of DRD1 has been associated with the
alcohol consumption of adolescent, male rhesus
macaques that had been maternally deprived and
peer-reared (Newman et al. 2005). Maternal
deprivation is frequently used as a model con-
dition for early-life stress and adversity, and
tends to produce anxious and impulsive behav-
iors during adolescence. Female rhesus maca-
ques and maternally-reared male carriers of this
allele did not show increased propensity to con-
sume alcohol, and this allele exemplifies the
effect confounding factors such as gender and
early rearing experience have on behavior
(Newman et al. 2005).

While DRD1 excites the neuron, DRD4 is an
inhibitory receptor. Its expression throughout the
brain is much lower than DRD1, but its binding
affinity and selectivity to dopamine is much
higher (reviewed in Callier et al. 2003). A VNTR
(variable number of tandem repeats) in exon III
of the DRD4 gene has been linked to novelty-
seeking behavior in vervet monkeys (C. aethiops
sabaeus). Carriers of the rare, 5-repeat variant
displayed significantly shorter latencies to
approach a large and potentially threatening
object with which they had no prior experience
than were carriers of the more common 6-repeat
variant. The variance observed was consistent
across age-groups, the only other demographic
factor that was shown to significantly account for
the variance in observed novelty-seeking scores
(Bailey et al. 2007). In addition, juvenile carriers
of the 5-repeat variant also scored higher on the
Social Impulsivity Index, as measured by the
shortness of latency to approach an unfamiliar
conspecific with risky, assertive, and aggressive
behavior. Social-impulsivity scores were also
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influenced by age and sex factors, but also by the
genotype of the juvenile’s mother, finding that
the highest scores occurred in variant-carrying
juveniles with variant-carrying mothers (Fair-
banks et al. 2012). This illustrates two points: (1)
the DRD4 variant is a risk factor that is influ-
enced by the developmental environment, and
(2) almost everyone with any risk genotype also
has one or both parents with the risk genotype, so
they are likely to have both genetic and envi-
ronmental influences operating. Similar repeat
variations have been detected in humans, dogs,
horses, and chimpanzees. In humans, variants
have been associated with novelty seeking, risk
taking behavior, and Attention Deficit Hyperac-
tivity Disorder (Ptácek et al. 2011).

While the other dopamine receptors have not
been fully investigated in the behaviors of non-
human primates, they have been studied in
respect to other mammalian species. Polymor-
phisms in DRD2 (dopamine receptor D2, also an
inhibitory receptor) have been associated with
increased risk for alcoholism (Noble et al. 1998),
pathological gambling (Lobo et al. 2010), and
other addictive/impulse-control behaviors in
humans (Ariza et al. 2012).

While dopamine has five known neurorecep-
tors in primates, serotonin has fourteen. The sheer
number demonstrates the complexity of studying
candidate genes. All but one of the receptors
operate through the samemolecular mechanism of
G-protein complexes as the dopamine receptors
(reviewed in Barnes and Sharp 1999).

A couple of studies have investigated the
impact that rearing-history has on the expression
of these receptors in both rhesus macaques
(Macaca mulatta) and marmoset monkeys (Cal-
lithrix jacchus). Parental deprivation during
infancy in marmosets produces a pro-depressive
state, increased stress-reactivity, and general
anhedonia that can persist until adolescence.
(Law et al. 2009) That same study found that
peer-reared marmosets had decreased 5-HTR1A
mRNA (serotonin receptor 1A, as measured by
in situ hybridization—ISH—and real-time poly-
merase chain reaction—RT-PCR–) and binding
(via positron emission tomography—PET—
imaging techniques) in the hippocampus, a

region associated with memory formation that is
disproportionately affected by long-term stress,
and that 5-HTR1A mRNA was correlated with
cerebrospinal fluid (CSF) concentrations of cor-
tisol, a biomarker for stress-response. Another
study (Spinelli et al. 2010) duplicated the same
study using rhesus macaques with both magnetic
resonance imaging (MRI) and PET scans. They
found that peer-reared monkeys had an overall
decrease of 5-HTR1A density and binding
throughout the brain. In females, the receptor
density in the dorso-medial prefrontal cortex
(associated with cognitive decision-making and
emotional control) was significantly higher in
peer-reared subjects versus their maternally-
reared counterparts.

15.3.3 Transporter Proteins

Another important category of neuromodular
genes that affect behavior is a class of solute
carrier proteins (SLC) or transporter genes asso-
ciated with each neurotransmitter. These proteins
moderate the signal transmission by reuptaking
excess dopamine back into the presynaptic neu-
ron and repackaging the neurotransmitter into
synaptic vesicles, functionally terminating the
neurotransmitter signal and resetting the neuron
for the next time it needs to fire. These proteins
are the target of several drugs, both therapeutic
and illicit. Cocaine competitively binds with the
dopamine transporter (DAT), preventing the re-
uptake of dopamine into the presynaptic neuron,
while amphetamines reverse DAT activity,
pumping dopamine back out into the synaptic
cleft. Likewise, the serotonin transporter (5-HTT
or SERT) is the target of a class of antidepres-
sants called SSRIs (selective serotonin reuptake
inhibitors), which functionally increases the
amount of serotonin available for signaling. In
macaques, both the genes that encode both the
dopamine (DAT) and serotonin (5-HTT or SERT)
transporters have alleles that differentially alter
the pattern of expression in the brain.

In the 5′UTR promoter region of SLC6A3 (the
gene that encodes the DAT protein), two single
nucleotide polymorphisms (SNPs) associated
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with transcription factor binding sites have been
associated with social rank in cynomolgus
macaques (Miller-Butterworth et al. 2007). One
of those SNPs was also found in rhesus maca-
ques, and is also associated with social domi-
nance behaviors. While it is not clear how these
variants alter the expression of the dopamine
transporter, the reduced transcription of DAT
mRNA correspondingly reduces the density of
DAT within dopaminergic neurons. This would
presumptively increase the concentration of
synaptic dopamine available for signaling.

The serotonin transporter (5-HTT, encoded by
the SLC6A4 gene [Solute Carrier, family 6,
member 4]) together with its linked polymorphic
region (5-HTTLPR) is probably the most studied
gene in nonhuman primate behavior. In both
humans and rhesus macaques, there is an analo-
gous 21 bp length variant rh5-HTTLPR which is
located in the same region as the serotonin
transporter gene promoter polymorphism identi-
fied in humans. However, it is not in the same
precise location. Therefore, two major alleles
segregate in both species, descriptively called
Long (L) and Short (S) for their relative sizes.
The core sequence is similar, (C)7 AGCAT(C)6,
but there is difference in the variation in allele
length for the L allele that is usually attributed to
the association with human behaviors; humans
have 17 repeat units while rhesus macaques have
24 repeat units (Trefilov et al. 2000). Functional
studies show similar effects between humans and
rhesus polymorphisms in that the S-allele results
in decreased transcriptional efficiency of the
serotonin transporter. Variation in the serotonin
transporter gene promoter has been shown to be
related to several behavioral traits in humans
including anxiety and depression (Goenjian et al.
2012).

In nonhuman primates, these two variants have
been associated with observable differences in
development and reproductive timing. Studies
performed on the free-ranging macaques of Cayo
Santiago in Puerto Rico, found that the number of
S-alleles carried by eachmonkeywas predictive of
the age at which male macaques left their natal
group. Homozygous S-carriers dispersed approx-
imately 6 months earlier than heterozygotes and

14 months earlier than homozygous L-carriers
(Krawczak et al. 2005; Trefilov et al. 2000).

The serotonin transporter has also been
implicated in several social behaviors, notably
the construction of social dominance hierarchies.
Social dominance hierarchies represent a collec-
tion of behaviors observed in many species of
captive and free-ranging nonhuman primates.
Dominant individuals tend to be more aggres-
sive, initiate agonistic encounters, display attack
gestures and vocalizations, and consistently
defeat lower ranking conspecifics. Subordinates
display gestures and vocalizations associated
with submission and flight, and tended to flee or
cower when placed in agonist encounters with a
dominant individual (Miller-Butterworth et al.
2007). While many factors can influence social
dominance hierarchies such as personality, early-
life history, physiological traits such as size, and
the immediate social environment, both male and
female macaques tended to retain the same rel-
ative dominance status even when assigned to
different social groups (reviewed in Miller-But-
terworth et al. 2008). As stated before, CSF 5-
HIAA concentrations (a biomarker of overall
serotonin metabolism) have been positively
associated with increased social status in female
cynomolgus macaques and negatively associated
with social status in males, and 5-HTTLPR
genotypes and early-rearing experience have
been shown to affect CSF 5-HIAA concentra-
tions. (Bennett et al. 2002) In a study of psy-
chosocial stress in the form of social
reorganization and subordinate social status, 40
females were drawn from middle ranking gene-
alogies of several large social grounds and reor-
ganized into groups: those dependent on 5-
HTTLPR genotypes; those with only LL-homo-
zygote individuals; and those in which all indi-
viduals had at least one S allele. Most of the
measures (morning cortisol concentrations, glu-
cocorticoid negative feedback, weight loss, and
abdominal fat loss) were not significantly asso-
ciated with genotype. There appeared to be an
interaction with social status, genotype, and
changes in serum concentrations of leptin and
triiodiothyronine. Dominant LL-homozygote
females had the highest levels while subordinate
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S-variant females had the lowest level (Jarrell
et al. 2008).

Watson et al. (2009) found that male rhesus S-
allele carriers spent less time looking at the eye
region of faces, and had larger pupil diameter
when gazing at photographs of familiar high-
status males from the same cohort. They also
experienced higher risk-aversion on gambling
tasks when presented in conjunction with another
high-status individual. In the same activity, LL-
homozygotes demonstrated increased risk-seek-
ing behavior.

In the study of social networks in free-ranging
rhesus macaques on the island of Cayo Santiago
(Brent et al. 2013), one measure of sociality was
associated with serotonergic genes profiles.
Specifically the ‘grooming eigenvector’, which
represented the tendency of individuals to spend
a lot of time in grooming behaviors, was asso-
ciated with an interaction of the 5-HTTLPR and
TPH2 genotypes (tryptophan hydroxylase 2 is
the rate-limiting enzyme required for serotonin
biosynthesis in the brain).

A study on the prevalence of social dominance
behaviors in respect to seven different species of
macaque showed that the relation to social orga-
nizationmay bemore controlled by genetic factors
than by environmental ones. They found that
species which displayed relaxed patterns of
dominance, open relationships, and higher levels
of conciliatory behavior tended to be monomor-
phic in the upstream promoter region of the rh5-
HTT gene. Rhesus macaques (Macaca mulatta),
the most stratified species of macaques, had three
variants. This relationship of hierarchical social
dominance to the amount of allelic variation was
also linked to the polymorphic region in the
monoamine oxidase A (MAO-A) gene, an
enzyme required for the degradation of several
monoamine neurotransmitters including both
dopamine and serotonin (Wendland et al. 2006).

The last group of related behavioral traits
associated with the serotonin transporter has to
do with stress-reactivity and anxiety, two traits
which show a strong gene-environment interac-
tion between the 5-HTTLPR and the prior expe-
rience of stress (usually modeled in experiments

by maternal-deprivation and peer-rearing) (Barr
et al. 2003, 2004). The limbic-hypothalamus-
pituitary-adrenal (LHPA) axis is the central
mechanism by which the nervous system and
endocrine system modulate the reaction to stress
and the fight-or-flight response. Because the
LHPA axis is so well understood, studies fre-
quently use serum concentrations of many of the
hormones described above as endophenotypes
for these behaviors. The reaction to stress is
quantified by a baseline (nonstressed) measure,
and by another reading following the exposure to
stress. Researchers have used several methods to
model ethologically-relevant stressors including
social separation, threat (usually introducing a
plastic snake or a fake predator), intrusion by an
unknown conspecific, intrusion by a human
researcher (nonthreatening), and relocation. Each
of these stressors produce distinct behavioral
responses organized through different parts of the
limbic system, and produce similar interactions
with the LHPA axis.

The 5-HTTLPR variants have been associated
with differences in the serum concentrations of
the stress hormones, and this interacted with a
history of environmental stressors (peer-reared
vs. mother-reared). Rhesus macaques with the
LS-genotype and peer-reared macaques each
showed increased adrenocorticotropic hormone
(ACTH) release in response to stress, and toge-
ther these conditions increased the release of
ACTH synergistically. (Barr et al. 2004) Another
study found that mother macaques with the LL-
genotype had consistent serum cortisol levels
over the course of 6 months of study, while
mothers with the LS-genotype showed signifi-
cantly greater fluctuations in this trait over the
same period. These LS mothers were also found
to be more likely to be abusive to their infants
(McCormack et al. 2009).

In addition, studies using PET scans and fMRI
(functional magnetic resonance imaging) have
found that rh5-HTTLPR S-carriers demonstrated
increased limbic reactivity in response to specific
aversive stimuli. For example, S-carriers displayed
increased metabolic activity (measured using
fluorodeoxyglucose PET imaging) in the
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amygdala in response to relocation stress, and the
bed nucleus of the stria terminalis (BNST) in
response to threat (Kalin et al. 2008). The meta-
bolic activity of the BNST has been shown to be
highly predictive of the “freezing” response of
monkeys in response to threats (Oler et al. 2010;
Rogers et al. 2008). Oler et al. (2009) used PET
imaging to demonstrate that 5-HTT availability (an
index of its density and binding affinity) in the
amygdala, hippocampal, and BNST regions cor-
related positively with several behavioral and
neuroendocrine measures of anxious
temperaments.

15.3.4 Interaction of Dopamine
and Serotonin Signaling

The story becomes even more complex when
considering the fact that many genes affect both
dopamine and serotonin. There are many other
genes important in the dopamine pathway, such
as COMT (catechol-O-methyl transferase), DBH
(dopamine β hydroxylase), and Tyrosine
hydroxylase (TH), which is an enzyme respon-
sible for catalyzing the rate-controlling step in
dopamine biosynthesis. Most genes and variants
have not been thoroughly studied in humans,
let alone in nonhuman primates.

In cynomolgus macaques (Macaca fascicu-
laris), social dominance rank illustrates the
interaction between these two system. Both
dominant males and females had significantly
higher HVA concentrations than subordinates.
Dominant males (but not females) had signifi-
cantly lower CSF 5-HIAA concentrations (Kap-
lan et al. 2002; Riddick et al. 2009). In a study of
free-ranging rhesus macaques, low CSF 5-HIAA
concentrations early in life were associated with
delayed migration from the natal group, and
increased aggression and premature death, but
the individuals who survived were more likely to
attain higher social ranks (Howell et al. 2007).

15.3.5 Caveats and Guidelines

While studying genetic influences on behaviors
in nonhuman primates is very promising, there

are several caveats of which we must be aware.
Primary among them is the question of whether
the comparison of phenotypes between species is
valid and meaningful.

There are issues with cross-species analyses
and analogous behavioral traits. Some traits, such
as aggression, dominance, and extroversion, may
be more comparable than others like anxiety. It is
unclear if the anxieties found amongst different
nonhuman primates are comparable. Is the anx-
iety of a social primate the same as the anxiety of
a nonsocial primate? Does it matter if the trait is
measured directly or is a composite or endo-
phenotype? It is not inconceivable to think there
would be differences at least in the manifestation
of social anxiety. In a genetic sense, these traits
are phenocopies of each other, and have different
genetic mechanisms. So this leads us to question
whether we can expect replication in genetics of
primate behaviors if the phenotypes under study
are not similar.

Many of these traits are obviously present in
humans; however, it is unclear exactly how to
map them back for specific comparison. This
would be necessary to detect similar genetic
mechanisms. For example, there are several types
of anxiety defined by psychiatrists in the DSM
(Diagnostic and Statistical Manual): generalized
anxiety; social anxiety; and ‘anxiety disorders’
such as posttraumatic stress disorder (PTSD) and
obsessive compulsive disorder (OCD). It is sus-
pected that in humans, these anxieties have unique
and shared genes (Domschke and Deckert 2012),
though it is unclear how to map or to correlate the
excitability/anxiety found in nonhuman primates
to any or all of these anxiety disorders.

As mentioned previously, the current results
in this field are biased because of species and
phenotypes studied. Species bias is an issue
because most research is performed on a very
small subset of primate species, as there are few
controlled populations where genetic relations
between individuals are known.

Associated with this is another issue of variant
detection bias. Most variants that are tested are
genotyped using specific PCR primers, such as
for the 5-HTTLPR variants that have already
been associated with some easily quantified

15 Genetic Influences on Behavior in Nonhuman Primates 285



behavioral phenotype. This is the “low-hanging
fruit”, and it only tests for one particular variant
within a given gene of interest, ignoring other
variants that might also contribute to the pheno-
type. Also the PCR’d genotype does not neces-
sarily mean that the specific variant that was
studied is disease-causing. It could be possible
that the PCR’d genotype and the actual-disease
causing variant are close together and are in high
degree of linkage disequilibrium.

Association studies require large, out-bred
populations (such as humans) to detect possibly
causal variants. Most of the primate populations
used for research are controlled, and are thus at
least somewhat inbred, which can dramatically
reduce the power of the method to detect phe-
notype affecting variants, unless methods such as
linkage analysis that exploit the relatedness in
pedigrees are used.

Another way to discover genes is to perform
linkage analyses, either of specific genes or chro-
mosomal regions or a ‘genome scan’ that searches
markers over all the chromosomes. An advantage
of a ‘genome scan’ over candidate gene studies is
that it allows for the discovery of novel genes,
since in a candidate gene study one has tofirst have
a candidate gene. In a genome scan one can detect
new candidate genes. In order to do linkage gen-
ome scans, however, one needs a genetic marker
map of the species under study.

15.4 Conclusions and Future
Directions

The study of Genetic Influences on Behavior in
Nonhuman Primates is in its infancy, and there is
much room to grow. Up to this point, most of the
work has been in calculation of determining
traits, and in calculation of heritabilities, and in
examining a limited number of candidate genes.
In order for the field to develop, there is a need to
have reliable, valid phenotypes, and to thor-
oughly test each gene hypothesis, including all
potential variants. Researchers in the field need
to be cognizant that the phenotypes and geno-
types may not be comparable between species (or

even subspecies) and that this problem is prob-
ably even more complex than hypothesized.

There are many new tools emerging from the
human genome project (as described elsewhere in
this volume) which will prove to be very useful in
the study of the genetic influences on behaviors in
nonhuman primates. Chief among these are the
databases of comparative genomics, of proteo-
mics, and of all the sequenced species. New maps
will be developed, including new sequencedmaps.
New techniques like Next Generation or Deep
Sequencing will allow us to study the genomes in
depth and to more exactly determine genetic
variants responsible for observable behavioral
variation in nonhuman primates.
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16Genomic Studies of Human
Populations: Resequencing
Approaches to the Identification
of Human Quantitative Loci
Joanne E. Curran, Claire Bellis, Laura Almasy,
and John Blangero

16.1 Introduction

The primary goal of the complex disease genomics
field is to identify loci influencing disease suscep-
tibility. The field has progressed substantially in
recent years with the development of new meth-
odologies for genome-wide assessmentof sequence
variation. Data is rapidly accumulating that rare
variants have a large cumulative effect on normal
phenotypicvariation and are extremely important to
disease (Blangero 2004; De La Vega et al. 2011; Li
and Leal 2008; Pelak et al. 2010). Pedigree-based
studies represent an implicit enrichment strategy for
identifying such rare variants. Mendelian trans-
missions from parents to offspring maximize the
chance that multiple copies of rare variants exist in
the pedigree. These variants can then be identified
by direct resequencing and statistical tests that
minimize the influence of spurious linkage dis-
equilibrium (Blangero et al. 2005;Kent et al. 2007).
The key factor in the identification of rare variants

then becomes resequencing sufficient numbers of
chromosomes to capture all existing sequence var-
iation.Given the likely importanceof rare variation,
a comprehensive sequencing strategy is the best
means for detecting all such variants with sufficient
copies. Whole genome sequence represents the
“holy grail” for genetic studies. Prior approaches
have only sampled partial variation from the gen-
ome. Unlike most other sciences, the causal state
space for genetics is finite and we now
have the tools available to comprehensively
examine it.

16.2 Rationale for Next-Generation
Sequencing Studies

16.2.1 Human Genetic Variation

Human genetic variation manifests itself in all
aspects of human phenotypic variation, and has
direct implications for the discovery of the
underlying genes responsible for the observed
heritability (the proportion of the total variance
of a phenotype that is attributable to the additive
effects of alleles) of any given trait. Localization
and identification of these causal genes is the
main goal of any genetic study of human disease.
The heritability of a given trait tells us how
important a role genetic variation is likely to play
in the causation of variation. For many complex
traits, known genetic variants only account for a
small proportion of the total heritability (using
plasma HDL-C levels as an example, known
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variants account for less than 10 % of its total
heritability) (Chasman et al. 2009), indicating
that most of the genes/genetic variants have yet
to be identified. This problem, termed “missing
heritability”, holds for many other complex
human traits (Manolio et al. 2009).

What is the biological source of heritability in
humans? Ultimately, it comes from observable
functional genetic variation at the sequence level.
A functional variant is one that influences the
focal phenotype via some molecular mechanism.
Thus, functional variants can be considered to be
phenotype-specific in this context. It is the pri-
mary goal of complex disease genetics to identify
such directly functional variants since they also
will directly implicate the causal genes involved
in the disease process.

16.2.2 Identification of Human
Genetic Variation

For a given trait with significant heritability, how
does one go about localizing and identifying
these causal genetic factors that ultimately
determine heritability?

Many recent advances in analysis of human
quantitative traits have been made in the context
of genetically complex diseases (Blangero 2004).
In the absence of complete sequence information
for all study participants, gene localization
depends either on the random effect of known
genetic markers assessed via linkage (for details,
see the Chap. 3 by Almasy et al., in this volume),
or the main effect of the markers via association
(for details, see the Chapter by Hanson and
Malhotra in this volume).

16.2.2.1 Gene Localization by Linkage
Before the era of high-throughput genotyping
and next-generation sequencing, complex disease
genetics in pedigrees was concentrated on gen-
ome scanning using a high-density map of
genetic markers evenly distributed throughout
the genome. Such genome scan, or linkage,
information was used to identify chromosomal

regions that contain variants influencing disease
risk factors. Classical penetrance model-free
linkage analysis is biased against rare functional
variants. This bias is the result of the usual
practice of estimating a single residual heritabil-
ity and single quantitative trait loci (QTL)-spe-
cific heritability for the entire set of pedigrees
examined. However, if rare functional variation
is important, we would expect the magnitude of
correlation between relatives to vary across
pedigrees reflecting variance in pedigree-specific
heritability. In fact, evidence of heterogeneity in
heritabilities across pedigrees is expected under a
model in which there are rare variants of mod-
erate effect segregating. The assumption of
heritability (both total and QTL-specific) homo-
geneity will lead to many missed QTL signals if
rare variation is important.

To better search for QTLs due to rare func-
tional variation, pedigree- and lineage-specific
linkage analyses are required. These analyses
may be done using a simple extension of the
variance component model and simultaneously
accounting for potential covariates. One
approach for pedigree-specific linkage analysis is
analogous to that long utilized for Mendelian
disorders of dichotomous diseases. Basically, a
search for linkage within each pedigree is per-
formed using the usual variance component
model (for details, please refer to Chap. 3 by
Almasy et al., in this volume) with the added
constraint that mean parameters must be held
constant to that estimated from all of the data.
This constraint is conceptually similar to ascer-
tainment correction and guarantees that all phe-
notype deviations are referenced to the total
population rather than to the specific pedigree
being considered. Although each pedigree can be
argued to represent a set of unique localization
hypotheses, it may also be prudent to address the
increased number of parameters being investi-
gated (one additional QTN-specific heritability
for each pedigree). Therefore, a mixture model
analogous to heterogeneity logarithm of odds
(LOD) testing performed in parametric linkage
analysis, such as that being implemented in our
computer package, SOLAR should also be
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employed. Some of the pedigrees may segregate
functional variants at a given location, while
others will not. All testing should be performed
in the standard variance component framework.
Using this approach in an example and
performing a formal test of heritability hetero-
geneity, we determined that about 15 % of lipid-
related traits in the San Antonio Family Study
show strong evidence for differences in total
heritability across pedigrees that is consistent
with the presence of rare functional variants; and
pedigree-specific linkage analyses revealed
additional genome-wide significant QTLs for
140 traits that were missed using conventional
linkage analysis, suggesting a large underlying
source of rare functional variation (Unpublished
data). These results highlight the importance of
such an approach for the identification of QTLs
due to rare variation.

16.2.2.2 Gene Localization
by Association

Association studies are limited to detecting the
effects of relatively common (with allele fre-
quencies greater than 0.10) genetic variants and
largely have not led to causal gene identification.
Genome-wide association studies (GWAS)
exploit correlations between closely spaced
markers that are a function of linkage disequi-
librium. These correlations are limited by the
differences in the allele frequencies of the
markers. Thus, common variants cannot be
strongly correlated with rare ones. GWAS panels
of single nucleotide polymorphisms (SNPs) are
selected to represent common variation across
the genome with modern human GWAS panels
including a million or more markers that are
correlated with a large portion of SNPs with
allele frequencies of 0.05 or greater at an r2 of at
least 0.8. Each SNP on the panel represents not
only itself but also serves as a proxy for some
number of ungenotyped markers. An association
signal could be due to any of the variants in
disequilibrium with the genotyped SNP.
Although widely misunderstood, these associa-
tions do not represent gene identifications but are
bona fide QTL localizations that must be deeply

sequenced in order to identify the underlying
causal genes and followed up with functional
work. Unfortunately, to date, few causal genes
have resulted from these types of studies and the
ones that have been identified were generally
known as prior candidate genes. Most functional
genetic variation is likely to be much less fre-
quent. Thus, these classical localization approa-
ches will miss most of the functional genetic
signal, resulting in the missing heritability
problem described above. Therefore, in order to
be able to detect the effects of rare functional
variants, a high-throughput next-generation
sequencing approach needs to be employed to
exhaustively search for variants.

16.2.2.3 Gene Localization
by Sequencing

The identification of causal genes, using a gen-
ome sequencing approach, will obligately gen-
erate information on the pathways of these genes
and will directly identify novel drug targets.
Unlike epidemiological approaches, causal
inference is possible using genetic strategies.
Because DNA sequence variation is not influ-
enced by other biological or environmental fac-
tors, genetic variation that correlates with disease
risk must obligately reflect causation. Of course,
identifying the exact causal sequence variants is
difficult and represents one of the main chal-
lenges of modern human genetics. The ability to
identify genes that are causally involved with
disease risk provides an unparalleled opportunity
to quickly determine biological pathways that are
involved in pathology. Modern genomic tech-
nologies that allow the unbiased examination of
all genes simultaneously can be exploited to
rapidly identify genes involved in disease sus-
ceptibility. Given this information, each gene in
an empirically identified molecular network that
is proven to be involved in disease risk becomes
a potential drug target. Whole genome sequenc-
ing allows a comprehensive search for functional
sequence variation, to identify novel genes with
alterations that have a substantially higher like-
lihood of representing functional variants of rel-
evance for human physiological variation.
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More recently, rare variants have been receiv-
ing increased attention in an attempt to explain the
“missing heritability” problem observed from
GWAS for many common traits. Rare variants are
likely to have larger effect sizes and could con-
tribute significantly to missing heritability; and it
is postulated that these variants are also likely to
have obvious functional consequences (Cirulli
and Goldstein 2010; Manolio et al. 2009; Pelak
et al. 2010). The primary technology for identi-
fying rare variants is sequencing, either of target
regions or entire genomes; however the sample set
selected for sequencing will be of particular
importance. These topics will be addressed in the
following sections.

16.3 Next-Generation Sequencing
Applications

16.3.1 Targeted Sequencing

16.3.1.1 Promoter Sequencing
Gene transcription in complex organisms is
controlled by the intricate balance of proteins
binding to promoter, enhancer and repressor sites
within DNA sequences, and is regulated by both
cis-acting factors in the flanking gene sequence
and trans-acting external modulators regulated by
other cellular characteristics. In recent years,
there has been considerable interest in the effect
of cis-acting variants on gene transcription.
Several cis-acting elements exist that are
involved in regulating gene expression; however
the simplest and potentially most important is the
5′ promoter region. Promoter sequences are the
most precisely defined of the many cis-acting
regulatory regions of a gene and are of critical
importance for their role in initiating gene tran-
scription (Buckland et al. 2005; Coleman et al.
2002a, b; Rockman and Wray 2002). The role of
promoters in initiating gene transcription high-
lights them as a potential source of genetic var-
iation that may affect the expression level of a
gene, and given their fixed location, promoters
are also an ideal region for both genomic and
functional analyses of genetic variation.

Several studies have investigated the func-
tional relevance of variants within promoter
regions. Buckland et al. (2005) performed a
meta-analysis of approximately 700 gene pro-
moters, interrogating the first 500 bp upstream of
the transcription start site. Of the variants
investigated, their results showed strong bias
towards a promoter location for functional SNPs.
Of all SNPs, 50 % were within the first 100 bp
and 75 % within 200 bp of the transcription start
site (Buckland et al. 2005). A second study
performed by Rockman and Wray (2002)
investigated 141 promoter variants involved in
regulating over 100 genes, spread over the
autosomes and X chromosome. They found that
63 % of the 107 genes studied had allelic dif-
ferences of twofold or greater in their rates of
transcription. Similar to the study of Buckland
et al. as described above, 58.9 % of the func-
tional variants were located within the first
500 bp upstream of the transcription start site. An
additional 12.8 % fell 3′ to the start of tran-
scription and another 12.8 % were more than
1 kb upstream of the transcription start. Only
1.4 % of functional variants were more than
10 kb upstream of their start sites (Rockman and
Wray 2002). A more recent study by Sinnett
et al. (2006) analyzed the promoter region
(defined as 2 kb upstream of transcription initi-
ation) of 197 genes in a multi-ethnic panel of 40
individuals. Their analysis identified 1,838 pro-
moter variants for assessment and results showed
that 75 % of the variants predicted functional
roles, modifying putative transcription factor
binding sites (Sinnett et al. 2006). A number of
specific functional genes influencing complex
phenotypes in humans have been successfully
identified, and in our own work, we identified
functional promoter variants in selenoprotein S
(SELS), a gene involved in inflammation and in
presenilins-associated rhomboid-like (PARL), a
gene involved in mitochondrial integrity (Curran
et al. 2005, 2010).

16.3.1.2 Candidate Gene Sequencing
Traditionally candidate genes have been identi-
fied through a variety of different methods
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including the comprehensive searching of the
publicly available genomic databases, dense SNP
mapping or genome-wide transcriptional profil-
ing in the sample population. No matter the
method of identification, the next step for a
positional candidate gene is to comprehensively
resequence the gene in sufficient individuals to
maximize the probability of identifying all
genetic variation. Selection of the most infor-
mative sample set for sequencing is highly
dependent on the population being assessed (i.e.,
families or unrelated individuals). In a large
extended pedigree, key members, such as foun-
ders, will impart the most information. For
samples of unrelated individuals, it will be
impossible to capture all variation, though the
use of phenotypic extremes for sequencing will
likely identify variants of larger effect sizes. The
relative position of the variant to the gene’s
structure strongly influences the probability that
the variation affects the function of the gene
product. Thus, for resequencing in the sample,
the most comprehensive strategy is to include all
exons, intronic regions shown to be evolution-
arily conserved as identified by comparative
genomics (if the total intronic region is too
large), 2 kb of the 3′UTR region and up to 5 kb
of the putative promoter region, for each gene.
Sanger sequencing, the most common method
for such sequencing is now too costly and is
being surpassed by next-generation sequencing
applications on the smaller instruments including
the Illumina MiSeq and the Life Technologies
Ion Torrent.

16.3.1.3 QTL Sequencing
Linkage analyses identify chromosomal regions,
of varying size, that contain QTLs influencing
disease risk factors. This information signifi-
cantly reduces the genomic search space, but still
requires further effort to localize the specific
genes and variants contributing to the signal. In
comparison to a QTL region identified by asso-
ciation (*500 kb), a QTL region identified by
linkage is typically 10–15 megabases (Mb) in
size. To identify the underlying genes influenc-
ing this linkage signal, deep comprehensive

sequencing is required. Many studies have per-
formed fine mapping, with SNP markers, across
linkage regions to try and narrow the search
space, however this has been met with limited
success as the variants assessed have only been
common. Until recently, the sequencing of a
QTL region by Sanger sequencing has been too
costly, though with the release of the small scale
next-generation sequencing instruments men-
tioned above, such sequencing is rapid and
relatively inexpensive.

16.3.2 Exome Sequencing

Traditional complex phenotype research has
focused on the analysis of protein coding variants
that directly impact the protein structure and
function, often dominant in simple disorders. We
are now able to do this on a genome-wide scale,
using a whole exome sequencing approach.
Whole exome sequencing represents a currently
accessible technology that enables the rapid
identification of functional protein coding varia-
tion influencing phenotypic variation. The exome
constitutes approximately 1 % of the human
genome. This represents roughly 30 Mb that is
split across 200,000 exons. Exome sequencing
allows the identification of all coding variants,
including those non-synonymous variants that
alter protein sequence, which are most likely to
have direct functional consequences. Modern
sequencing technology allows us to entertain
such a comprehensive approach.

Recent studies suggest that exome sequencing
can be very powerful and that many rare poten-
tially functional coding variants are likely to be
found (Choi et al. 2009; Ng et al. 2010). Using
targeted whole exome sequencing of 12 indi-
viduals, Ng et al. (2009) found approximately
6,000 non-synonymous variants per individual
and predicted that it would have been about
8,500 with better sequencing coverage. These
variants also were primarily rare (Ng et al. 2009).
Using a less sensitive technique, Hedges et al.
(2009) sequenced 8 independent exomes and
found an average of 3,847 non-synonymous
variants per individual with 683 being novel
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(Hedges et al. 2009). All of these sequencing
studies suggest a large number of relatively rare
protein coding variants lurk within human pop-
ulations. A recent study by Bowden et al. (2010)
identified a rare variant (of *1 % frequency) that
accounts for 17 % of the variance in plasma
adiponectin in a large Hispanic American
sample, using a family-based whole exome
sequencing approach (Bowden et al. 2010).

16.3.3 Whole Genome Sequencing

Whole genome sequencing (WGS) allows a
comprehensive search for functional sequence
variation, to identify novel genes with alterations
that have a substantially higher likelihood of
representing functional variants of relevance for
human physiological variation. While identifying
the exact causal variants influencing a trait rep-
resents one of the main challenges of human
genetics, the potential to identify such variants
using WGS is significantly increased and pro-
vides an unparalleled opportunity to quickly
determine biological pathways involved. Each
gene in an empirically identified network
becomes a potential drug target. WGS represents
the “holy grail” for genetic studies. Prior
approaches have only sampled partial variation
from the genome. However, the first studies
employing WGS are now being performed in
sufficiently large samples to likely produce ben-
efit. One of the earliest applications of WGS in
human gene identification has been to severe
disorders that are thought to be possible single
gene, Mendelian conditions. Sequencing in small
samples of such patients has identified putative
functional mutations in a large proportion of
cases. WGS in a sample of six patients with
severe early onset epilepsy and their parents was
successful in all six cases, identifying de novo
mutations in four individuals, parental isodisomy
in one, and a recessive mutation in another
(Martin et al. 2014). Among the first published
WGS studies for a complex human phenotype is
an examination of bipolar disorder in a large Old
Order Amish pedigree (Georgi et al. 2014). This
study identified multiple chromosomal regions

shared among affected family members, each
with multiple potential deleterious variants, sug-
gesting a complex and potentially heterogeneous
genetic architecture underlying bipolar disorder
even in this population isolate.

16.3.4 Other Sequencing Applications

16.3.4.1 RNA Sequencing (RNA-Seq)
The transcriptome is defined as the complement
of RNA molecules (transcripts) in a cell. Using
modern genomic technology, it is now possible
to discover, profile and quantify RNA transcripts
(for details, please refer to Chap. 5 by Göring in
this volume). Characterization of the transcrip-
tome is essential for identifying and interpreting
functional elements of the genome, and under-
standing disease development. Compared to
array based transcript analyses, RNA-Seq pro-
vides several advantages over array based assays
including a more precise quantification of tran-
scripts and their isoforms than other methods; it
is not limited to detecting transcripts that corre-
spond to known genomic sequences; junctions
between exons can be assayed; allele-specific
expression differences and alternative splicing
events can be detected. RNA profiling tools have
been around for decades, though tremendous
progress has been made in advancing the tech-
nology. From the days of Northern blots and
serial analysis of gene expression (SAGE) anal-
ysis we have moved to gene-expression micro-
arrays and now deep sequencing. With these
tremendous advances in technology, the infor-
mation content obtained from RNA analysis has
also significantly increased, and like that of
genome sequence, a substantial computational
framework is essential.

16.3.4.2 Methylation Sequencing
The methylation pattern of DNA has been shown
to influence gene expression patterns.

The implementation of next-generation
sequencing has made it possible to study meth-
ylation patterns on a genome wide scale, rather
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than on a gene by gene basis. There are two
common forms of methylation sequencing:
whole genome bisulfite sequencing and MeDIP-
Seq. In whole genome bisulfite sequencing,
genomic DNA is bisulfite treated and all unme-
thylated cytosine bases are converted to uracil.
Methylated cytosine bases (those containing a 5′
methyl group; 5′-methylcytosine) are not affected
and once sequenced, the methylation status of
each allele can be determined (Callinan and
Feinberg 2006; Pomraning et al. 2009). This
requires whole genome sequencing and is still
somewhat cost prohibitive. The second method,
MeDIP-Seq is an attempt to reduce the
sequenced material, increasing throughput and
reducing the cost. In this method, methylated
DNA is selected for prior to sequencing using an
antibody against 5′-methylcytosine. The unme-
thylated DNA is then washed away, leaving only
the highly enriched methylated material for
sequencing (Down et al. 2008; Pomraning et al.
2009). Both of these methods have their own
benefits and one best suited to the study design
should be chosen.

16.3.4.3 Mitochondrial Sequencing
The mitochondria are essential to life, being the
major cellular site of energy production and
respiration. A great deal of research has impli-
cated mitochondrial dysfunction in a variety of
human diseases including cancer, obesity, mul-
tiple sclerosis, several psychiatric disorders and a
wide range of age related disorders (Begriche
et al. 2006; Dakubo et al. 2006; Dutta et al. 2006;
Fattal et al. 2006; Wallace 2005; Weissig et al.
2004). The mitochondrial genome is very small,
consisting of about 16.5 kb and encodes genes
for the biochemical reactions of respiration, and
specific molecules involved in protein synthesis.
The genome however only encodes a small
number of mitochondrial functioning proteins;
most of the proteins found in the mitochondria
are nuclear encoded.

Mitochondrial sequencing is very popular
among anthropologists and genealogists to
investigate human evolution and diversity;
however it has been gaining more interest from

geneticists given the essential role of the mito-
chondria in maintaining cellular homeostasis.
Given the small size of the mitochondrial gen-
ome, Sanger sequencing methods are still feasi-
ble; though sequencing is also possible using
next-generation sequencing technology and
mitochondrial variant information is captured
when performing whole genome sequencing.

16.4 Next-Generation Sequencing
Study Design

16.4.1 Return of the Family Study

Given the cumulative effect of rare variants on
normal phenotypic variation and their importance
to disease, different strategies are required to
identify such variants than those that have been
employed to assess common genetic variation.
Most obvious, optimal capture and detection of
rare functional variants will require a return to
pedigree-based studies. Pedigree studies are one
of these implicit designs that provide several
advantages to the identification of rare variation,
the main advantage being that rarer variants will
be present at a much higher frequency than in the
general population. Mendelian transmissions
from parents to offspring maximize the chance
that multiple copies of rare variants exist in the
pedigree. These variants can then be identified by
direct resequencing and statistical tests that
minimize the influence of spurious linkage dis-
equilibrium (Blangero et al. 2005; Kent et al.
2007). The key factor in the identification of rare
variants then becomes resequencing sufficient
numbers of chromosomes to capture all existing
sequence variation. Given the likely importance
of rare variation, a comprehensive sequencing
strategy is the best means for detecting all such
variants with sufficient copies.

Deep sequencing for functional variation in
large pedigrees offers many benefits over studies
of unrelated individuals, predominantly a greater
number of copies of private variants. Addition-
ally, for rare but non-private variants, extended
pedigrees lead to substantially increased variance
in allele frequency which permits a much wider
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potential for large variant-specific heritabilities
(genetic signals). Given the growing awareness
that rare functional variation appears to be
responsible for observable phenotypic genetic
variation, it is clear that individual pedigrees can
provide significant evidence for gene identifica-
tion for even complex quantitative phenotypes
such as lipids. With the vast extent of private
functional variation, any pedigree may hold an
overt key to a disease-relevant gene. A pedigree-
specific rare functional variant with small relative
effect size (in relation to population attributable
risk or QTN-specific heritability), but with a
larger absolute effect size that is further enriched
by Mendelian statistical mechanics within an
extended pedigree, can be sufficient to verify that
a given gene is involved in endophenotype
variation.

16.4.2 Unrelated Individual Study
Designs

Much of this chapter has focused on the impor-
tance of pedigree-based study designs for the
identification of rare variation, but what options
are possible for unrelated individuals?

For less rare, but still uncommon, variants
with minor allele frequencies greater than 0.005,
large studies of highly selected unrelated indi-
viduals such as those employed in the pioneering
work by the research group at the University of
Texas Southwestern Medical Center (Cohen
et al. 2004, 2005, 2006) have led to the identi-
fication of rarer functional variants influencing
lipids. However, such studies are inefficient and
not suited to the largest functional class involv-
ing effectively private functional variants. By
definition, any set of unrelated individuals could
never capture more than a single copy of such a
variant. However, due to the large case/control
samples accumulated in various biorepositories
during the era of GWAS studies, it is likely that
interest in gene discovery in samples of unrelated
individuals will continue and these sample
collections may prove useful in generaliz-
ing family-based gene identification results to

population-based samples. In particular, it may
be useful to examine genes nominated by family
studies in large collections of unrelated individ-
uals to identify and characterize other functional
variants in these genes.

16.5 Next-Generation Sequencing
(NGS) Technologies

NGS approaches presently available, and that
have been implemented in the new wave of
sequencing projects, provide DNA read data
generated using a high-throughput methodology
that employs substantially different underlying
chemistry dynamics. While there are several dif-
ferent technologies on the market, in this review
we focus on the three companies that have led the
revolution: Illumina, Life Technologies (previ-
ously Applied Biosystems) and Roche.

16.5.1 Illumina

Illumina recently added the HiSeq 2,500 plat-
form to its family of sequencing instruments,
which also includes the HiSeq 2,000, the
Genome Analyzer IIx and the MiSeq. The
HiSeq 2,500 incorporates the HiSeq 2,000
architecture with the onboard cluster generation
of the MiSeq to switch between high output run
mode and a rapid turnaround run mode. The
rapid run mode is capable of sequencing a 30x
genome in a day or fast multiplexed applications,
such as exomes or RNA-Seq. Up to 120 Gb of
sequence (1.2 billion reads), using 2 × 150 bp
read lengths, is generated in *27 h during this
rapid run phase. In high output mode, the
HiSeq 2,000 & 2,500 are identical with 600 Gb
output (6 billion paired-end reads) in *11 days
for a 2 × 100 bp read length. Given their output,
the HiSeq systems are most widely used for
whole genome and whole exome sequencing.
Additional applications include de novo
sequencing, RNA-Seq, small RNA discovery,
DNA methylation sequencing and cytogenetic
analysis.
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The Genome Analyzer (GA) IIx is the most
widely published and adopted next-generation
sequencing technology. The GAIIx is capable of
outputting 95 Gb of data per run (640 million
paired-end reads) in *14 days at a 2 × 150 bp
read length. The GAIIx is most widely used for
RNA-seq, ChIP-Seq for gene regulation analysis,
small genome sequencing, targeted resequencing,
de novo sequencing, and amplicon sequencing.

The MiSeq is a fully integrated sequencing
system that performs cluster generation,
sequencing and data analysis all onboard the
instrument within a 24 h period for 2 × 150 bp
paired-end reads. The MiSeq platform is capable
of outputting up to 5 Gb of sequence per 27 h
run, for 2 × 150 bp reads and up to 8.5 Gb of data
in 39 h for 2 × 250 bp runs. Applications of the
MiSeq include highly multiplexed amplicon
sequencing, targeted sequencing, small genome
sequencing, ChIP-Seq and small RNA
sequencing.

16.5.2 Life Technologies

The Life Technologies Support Oligonucleotide
Ligation Detection (SOLiD) system performs
massively parallel sequencing by stepwise liga-
tion (all DNA is sequenced at the same time).
The unique assay uses a 2 base encoding to
distinguish between SNPs and errors. The
SOLiD 4 instrument can generate 100 Gb of
sequence data, or 1.4 billion reads per 16 day
run, with 2 × 50 bp mate-paired reads. As with
the other instruments, the SOLiD 4 can be used
for whole genome sequencing, de novo
sequencing, targeted sequencing, methylation
sequencing, ChIP-Seq, small RNA sequencing
and transcriptome sequencing.

The Ion Torrent system is a single instrument
that uses semiconductor chips and semiconductor
technology for a variety of sequencing through-
puts. The Chip is the machine and can scale in
density for pretty much any application. The
throughput of the instrument is fast with a 2 h

sequencing run for 200–400 bp reads, generating
a between 10 Mb and 1 Gb of sequencing
depending on the Chip selected. The Ion Torrent
is best suited to small genome sequencing, tar-
geted sequencing, target capture, RNA-Seq and
miRNA-Seq, library assessment and ChIP-Seq.

16.5.3 Roche

The Roche 454 GS FLX+ is an ultra high-
throughput automated DNA sequencing system.

The major advantage of the GS FLX
+ approach to sequencing besides the throughput
is its ability to achieve read lengths in the order
of 1,000 bp, the longest of any of the NGS
technologies. The technology is also flexible
enough to combine both long shotgun reads and
paired end reads for complex genomes. The
instrument can generate 700 Mb of sequence, 1
million shotgun reads, per 23 h instrument run.
Applications of the GS FLX+ include genome
sequencing, de novo sequencing, targeted
sequencing, and transcriptome sequencing.

The Roche 454 GS Junior, like the MiSeq, is a
compact integrated system capable of sample
prep to analysis in a single run. The instrument
generates 35 Mb of sequence (100,000 shotgun
or 70,000 amplicon reads at an average of
400 bp) per 10 h run. The GS Junior is best
suited to amplicon sequencing, genome and de
novo sequencing of microbes, and transcriptome
sequencing.

16.5.4 Genetic Analysis Services

It is not always feasible or possible for labora-
tories to perform sequencing in-house, and for
this situation, there are many companies avail-
able that will perform sequencing, alignment and
some data interpretation services. A web search
of sequencing services will alert you to the many
companies that are available, but here are some
better known services.
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16.6 Illumina and Certified Service
Providers

The Illumina Genome Network is a network of
sequencing teams at different institutions using
Illumina sequencing platforms and providing
whole genome sequencing services.

Illumina FastTrack Services provides whole
genome sequencing services performed at Illu-
mina by their scientists.

16.7 Complete Genomics

CGI provides a complete end-to-end sequencing
service for human genomes, from sample prep-
aration to analysis, providing ready called
sequence data. The turnaround time is 3–
4 months and a minimum 40x mapper coverage
is guaranteed, sequenced on their own proprie-
tary technology.

Other service providers include the National
Center for Genome Resources, Beckman Coulter
Genomics, BGI, SeqWright, HudsonAlpha and
CIDR. Data interpretation services are provided
by Knome, DNASTAR, Broad Institute and the
Sanger Institute.

16.8 Conclusion

Looking back to the advent of the Human Gen-
ome Project back in 1990, it then took 13 years to
complete the sequencing of 8 human genomes
and cost billions of dollars. If we look at the
technological advances that have occurred since
then and assume this is the way of the future, we
can only imagine that we will be able to obtain
sequence information much more rapidly than we
do now and the price will continue to decrease.
The field of human genetics will be dominated by
complete genome sequencing. In light of these
times, we now need to think ahead and pay some
focus to the computational burden that these
projects will pose and furthermore, look towards
biology and making sense of the genetic infor-
mation we will soon be overwhelmed with.
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