
Efficient Processing of Multi-way Joins

Using MapReduce

Linlin Ding, Siping Liu, Yu Liu, Aili Liu, and Baoyan Song�

School of Information, Liaoning University, Shenyang Liaoning, P.R. China
{dinglinlin,bysong}@lnu.edu.cn,

{spliu,dearboll23,aili07liu}@gmail.com

Abstract. Multi-way join is critical for many big data applications such
as data mining and knowledge discovery. Even though lots of research
have been devoted to processing multi-way joins using MapReduce, there
are still several problems in general to be further improved, such as
transferring numerous unpromising intermediate data and lacking of bet-
ter coordination mechanisms. This work proposes an efficient multi-way
joins processing model using MapReduce, named Sharing-Coordination-
MapReduce (SC-MapReduce), which has the functions of sharing and
coordination. Our SC-MapReduce model can filter the unpromising in-
termediate data largely by using the sharing mechanism and optimize the
multiple tasks coordination of multi-way joins. Extensive experiments
show that the proposed model is efficient, robust and scalable.

Keywords: MapReduce, multi-way joins, sharing and coordination.

1 Introduction

Multi-way join is an important and frequently used operation for many big data
applications including data mining and knowledge discovery. Since join process-
ing is expensive, especially for large data sets, multi-way join is a costly opera-
tion. When processing multi-way joins of big data, a natural solution to ensure
the reasonable response time is parallel processing. As a parallel programming
model, MapReduce [1] becomes the popular big data programming model for its
simplicity, flexibility, fault-tolerance and scalability.

MapReduce is designed to process a single input data set, so multi-way join is
not directly supported by MapReduce framework. Although lots of research have
been devoted to processing join using MapReduce[2–6], the existing works still
have several problems to be further researched. For instance, there are numerous
intermediate data to be transferred from Map phase to Reduce phase. When the
final output is much smaller than the original input, the numerous unpromising
intermediate data would waste the bandwith and I/O. In addition, when pro-
cessing multi-way joins using several passes MapReduce, the next MapReduce
computation cannot start until the previous computation is over.

� Corresponding author.

H. Wang et al. (Eds.): ICYCSEE 2015, CCIS 503, pp. 73–80, 2015.
c© Springer-Verlag Berlin Heidelberg 2015



74 L. Ding et al.

In this work, we investigate the problems of multi-way join query processing
in MapReduce and analyze the performance and bottlenecks of the existing so-
lutions. An efficient multi-way join query processing model using MapReduce,
named Sharing-Coordination-MapReduce (SC-MapReduce) is designed. By us-
ing the mechanisms of sharing and coordination, SC-MapReduce can enhance
the parallelism and reduce the network cost. In SC-MapReduce, first, a sharing
mechanism is proposed to filter the unpromising intermediate data and reduce
the network and I/O cost. Then, We design a multi-tasks coordination mech-
anism for processing multi-way joins. Using this coordination mechanism, the
next task do not need to wait for the completion of the previous to start its
processing, which will save the waiting time and enhance the parallelism..

The remainder of this paper is organized as follows. Section 2 introduces
the related work. Section 3 presents our SC-MapReduce model. The sharing
and coordination mechanisms of SC-MapReduce model are given in Section 4.
Section 5 reports the experimental results. Section 6 concludes the paper.

2 Related Work

2.1 Problem Statement

Definition 1. (Two-way Join) Given two data sets R1(A1, S1) and R2(A1, S2)
on a common attribute A1. S1 and S2 can be the single attribute or the array of
multiple attributes, as shown R1(A1, S1) �� R2(A1, S2) = (A1, S1, S2).

Definition 2. (Multi-way Same Attribute Join) Given n (n>2) data sets
Ri(A1, Si)(i=1,2,...,n) on a common attribute A1. Si can be the single attribute
or the array of multiple attributes, as shown R1(A1, S1) �� R2(A1, S2) ��, ..., ��
Rn(A1, Sn) = (A1, S1, S2, ..., Sn)

Definition 3. (Multi-way Different Attributes Join) Given n (n>2) data
sets Ri(Ai−1, Si, Ai+1)(i=1,2,...,n) on common attributes Ai. Si can be the sin-
gle attribute or the array of multiple attributes, as shown R1(A0, S1, A1) ��
R2(A1, S2, A2) ��, ..., �� Rn(An−1, Sn, An) = (A0, ..., An, S1, ..., Sn)

2.2 Join of MapReduce

There are many existing works of processing joins using MapReduce [4–12].
MapReduce online [5] proposes a pipelined job interaction mechanism to avoid
intermediate data materialization. Map-Join-Reduce [9] improves MapReduce
runtime to process complex data analysis tasks on large clusters. Paper [7] studies
and optimizes multi-way equi-join in MapReduce by selecting a query plan with
the lowest input replication cost. Paper [6] is the first one to study all theta-joins
and explores optimality properties for them in MapReduce-based systems. Paper
[4] studies the problem of processing multi-way theta-joins using MapReduce
from a cost-effective perspective. Vernica et al. [8] present an in-depth study of
a special type of similarity join in MapReduce.



Efficient Processing of Multi-way Joins Using MapReduce 75

2.3 Multi-way Joins of MapReduce

The multi-way join contains two types, multi-way same attribute join and multi-
way different attributes join. The two-way join is the special case of multi-way
join. Processing multi-way join using MapReduce can be implemented by one
pass MapReduce computation and multiple MapReduce computations in se-
quential. Paper [2] analyzes the efficiency of multi-way join from the view of
network communication cost. Foto N.Afrati [3] discusses how to identify one
pass MapReduce or multiple MapReduce computations.

For one pass MapReduce processing multi-way same attribute or two-way
join, Map phase is mainly responsible for labeling the join tuples and identifying
the relation of the tuples. The real join operations are implemented in Reduce
phase. However, in Shuffle phase, it can transfer the corresponding unpromising
intermediate data many times which would increase the I/O and communication
cost. For the multiple MapReduce computations processing multi-way different
attributes join, each MapReduce computation completes two-way join until all
the data sets are processed in sequential. The next MapReduce computation
waits for the completion of the previous MapReduce computation, and then
starts its computation.

3 SC-MapReduce Framework

3.1 SC-MapReduce Overview

join management module

sharing and coordination module……

Task sheduler

Sharing space

Data node Data node Data node……
share

client

request

communicate

Fig. 1. Architecture of SC-MapReduce Framework

In order to enhance the performance of multi-way joins, in this paper, we pro-
pose SC-MapReduce, a Sharing-Coordination-MapReduce framework. Figure 1
shows the whole architecture of SC-MapReduce which briefly inherits the orig-
inal MapReduce framework, containing the Master node and the Slave nodes.
The Master node is mainly responsible for managing the whole system, schedul-
ing and distributing the computation jobs. Furthermore, the join management



76 L. Ding et al.

module and the sharing and coordination module are added in the Master node.
The sharing and coordination module contains the sharing mechanism and the
coordination mechanism. The real computation is done by the Slave nodes.

Join Management Module. The join management module is in charge of
receiving the connecting request from clients and designing the join order of the
multi-way join, then generates the execution queue of multi-way join.

Sharing Mechanism. The sharing mechanism mainly processes the commu-
nications in one computation course. Each Slave node has a share space to save
the sharing information to filter the unpromising intermediate data.

Coordination Mechanism. The coordination mechanism designs for the
parallelism of multiple MapReduce computations of multi-way join. When pro-
cessing multi-way joins, the SC-MapReduce framework can first complete pro-
cessing a part of join data and wait for the completion of the remaining part from
the previous computations, so as to enhance the parallelism of SC-MapReduce.

As shown in Figure 1, when a client submits a multi-way join to the Master
node, it first designs the join order of the multi-way join by the join management
module. Then, the sharing and coordination module of Master node can obtain
the sharing information of the multi-way join and design the implementation
of multiple MapReduce computations. Then, the Map and Reduce tasks can
use the sharing information to filter the unpromising intermediate data. The
multiple computations can also start early to process parts of the inputs. The
details of sharing and coordination mechanisms are illustrated in Section 4.

3.2 Availability and Scalability

Availability. The SC-MapReduce only adds some new functions in MapReduce,
so it only analyzes whether the new modules influence the whole availability
of SC-MapReduce. For the fault-tolerance of sharing information, the sharing
information of each Map task is sent to the JobTracker by heartbeat mechanism,
so it is simultaneous to the implementation of Map tasks. The fault-tolerance of
sharing information is the same to the Map tasks in MapReduce. For the fault-
tolerance of coordination mechanism, if the previous MapReduce computation
fails, the next computation will wait endlessly. We set a threshold t, when the
waiting time exceeds the threshold t, then the next computation will stop and
the failed one will restart.

Scalability. The SC-MapReduce follows the scalability of the MapReduce.
First, the new sharing and coordination mechanisms do not modify HDFS, so
the users can add new Slave nodes naturally. Second, although the new modules
are added to the Master node, the sharing mechanism can be realized by only
following the implementations of Map tasks. The coordination mechanism only
occupies few resource, so the performance of the Master node is not influenced.

4 Sharing and Coordination Module

The sharing and coordination module mainly contains the sharing mechanism
and the coordination mechanism. The sharing mechanism is mainly charge of



Efficient Processing of Multi-way Joins Using MapReduce 77

identifying the sharing information to filter the unpromising intermediate data
during one MapReduce computation course. The coordination mechanism can
generate the parallel implementation of multiple MapReduce computations.

4.1 Sharing Mechanism

In the traditional MapReduce, the implementations of Mappers and Reducers are
independent without communication among Mappers, neither among Reducers.
Each Mapper has no processing information of the other ones, the same as
the Reducers. When the amount of multi-way joins final results is much smaller
than the original data, processing the unpromising data would waste the running
time and increase the network and I/O cost. Therefore, if the Master node can
share some useful sharing information among the Map and Reduce tasks, the
unpromising data can be filtered by the sharing information so as to enhance
the performance of multi-way joins.

The main course of sharing mechanism is as follows. First, for the input join
data sets, the Map tasks process the first few tables according to the join queue
obtained by the join management module. Second, each Map task gains and
saves its local join attributes, and then sends them to the Master node. Then,
after receiving the local sharing information of the Map tasks, the Master node
generates the global sharing information and sends it to the other tables. After
the Map tasks receiving the global sharing information, they can use it to filter
the unpromising intermediate data when processing the other join tables.

However, MapReduce is suit for the single file input. When processing mul-
tiple files, the JobTracker will split all the files, then generates the default job
queue of Map tasks and distributes the Map tasks to the free nodes. Therefore,
we modify some functions of the original MapReduce. SC-MapReduce modifies
the scheduling and constructing mechanisms of Map tasks so as to scan the
tables according to the join queue. After scanning one join table, the sharing
information can be sent, received and distributed among Map tasks and the
Master node. The Master node and the Slave nodes all have sharing space to
send and receive the sharing information. The JobTracker is in charge of starting
and stopping the scheduling queue according to the join queue order.

4.2 Coordination Module

As we know, there are multiple MapReduce computations to complete the multi-
way join. The previous MapReduce computation may be the input of the next
MapReduce computation, so each MapReduce computation should wait for the
completion of the previous computation. However, for the next computation,
there are parts of input data which can be processed first without affecting the
following data. For example, multi-way join R1 �� R2 �� R3, the first MapReduce
computation completes the join of R1 �� R2. The next job realizes join of R3 and
the output of R1 and R2. We can beforehand process the Map tasks of R3 and
wait for the completion of R1 �� R2, and then gain the final results. Therefore,
the parallelism of system can be enhanced by optimal coordination mechanisms.



78 L. Ding et al.

Map1 Reduce 1

Map2(part 
processing)

Reduce 2

Map m(part 
processing)

Reduce m

Map n(part 
processing)

Reduce n

MR 1

MR 2

MR m

MR n

...
...

...

...

Fig. 2. Coordination Mechanism of SC-MapReduce

The coordination mechanism can coordinate the MapReduce computations.
For the multi-way join with n MapReduce jobs, the concurrency is m when
there are m MapReduce jobs running at the same time as shown in Figure 2.
The processing course is as follows.

(1) Start m MapReduce computations in order and construct task queue for the
part of the input data.

(2) For the i MapReduce computation, if its input is completed, then it imple-
ments normally. If it needs to wait for the output of the previous MapReduce,
it designs the dormant state of task queue after completing the following Map
tasks, and then communicates with the Master node.

(3) The Master node restarts the i MapReduce computation when the input of
i MapReduce completes according to the implementation of the tasks, and
then refreshes the task queue and implements the tasks.

(4) After some MapReduce computations complete, the concurrency is smaller
than m. If there are tasks that have not start, the SC-MapReduce adds them
into the task queue and starts the new tasks following step 1 to step 3.

5 Experimental Evaluation

5.1 Experimental Setup

The experimental setup is as follows. The experimental setup is a Hadoop cluster
running on 9 nodes in a high speed Gigabit network, with one node as the Master
node and the Coordinator node, the others as the Slave nodes. Each node has
an Intel Quad Core 2.66GHZ CPU, 4GB memory and CentOS Linux 5.6. We
use Hadoop 0.20.2 and compile the source codes under JDK 1.6.

We take three tables join as an example to evaluate the SC-MapReduce by
comparing with MapReduce in two distributions, uniform and zipf. The data
in our experiments are synthetic data of network logs. Each record has 100B-
10000B and the join attribute is 1B-10B. The log files come from different parts
of the network. The percentages of join attributes are 5%, 10%, 65% and 75%,
with 10% as the default value. The size of the three tables join is 1G, 5G, 10G
and 20G, with 10G as the default value.



Efficient Processing of Multi-way Joins Using MapReduce 79

5.2 Experimental Results

Figure 3(a) shows the performance of multi-way join running time with chang-
ing the join attributes percentage in uniform distribution. We can see that the
performance of SC-MapReduce is better than MapReduce. The running time of
MapReduce is relative stable for no filtering mechanism and uniform distribu-
tion. In SC-MapReduce, the join attributes of 5% and 10% are few, so the global
sharing information is small and can filter more unpromising intermediate data.
Therefore, the running time is relative short.

Figure 3(b) shows the performance of multi-way join running time with chang-
ing the join attributes percentage in zipf distribution. In zipf distribution, there
will be one or few Reduce tasks to process much intermediate data, so the per-
formance in zipf distribution is not as well as the uniform distribution. However,
the sharing information of SC-MapReduce can also filter numerous unpromising
intermediate data.

 0

 400

 800

 1200

5 10 65 75

T
im

e 
(s

)

Percentage (%)

SC-MapReduce
MapReduce

(a) Uniform Distribution

 0

 400

 800

 1200

5 10 65 75

T
im

e 
(s

)

Percentage (%)

SC-MapReduce
MapReduce

(b) zipf Distribution

Fig. 3. Running Time with Changing Percentage

Figure 4(a) shows the performance of multi-way join running time with chang-
ing the data size in uniform distribution. With the increasing of data size,
the running time of MapReduce and SC-MapReduce both increase, but SC-
MapReduce is optimal to MapReduce. The global sharing information of SC-
MapReduce can filter large scale of join data which are not the final results.

Figure 4(b) shows the performance of running time with changing the data size
in zipf distribution. The running time increases with the increasing of the data
size in SC-MapReduce and MapReduce. The performance of SC-MapReduce is
also better than MapReduce. In zipf, the sharing information of SC-MapReduce
can be used to filter the unpromising intermediate data too.

6 Conclusions

In this paper, we research the problem of multi-way join query processing based
on MapReduce framework. First, we propose an efficient multi-way join query
processing model with the functions of sharing and coordination, SC-MapReduce.



80 L. Ding et al.

 0

 5000

 10000

 15000

 20000

1 5 10 20

T
im

e 
(s

)

Data Size (G)

SC-MapReduce
MapReduce

(a) Uniform Distribution

 0

 5000

 10000

 15000

 20000

1 5 10 20

T
im

e 
(s

)

Data Size (G)

SC-MapReduce
MapReduce

(b) zipf Distribution

Fig. 4. Running Time with Changing Data Size

Then, the sharing and coordination module is illustrated in detail. Finally, ex-
tensive experiments show the efficiency, scalability of our proposed model.

Acknowledgement. This work was supported by the National Natural Sci-
ence Foundation of China under Grant No.60873068,61472169; the Program for
Excellent Talents in Liaoning Province under Grant No.LR201017.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM (CACM) 51(1), 107–113 (2008)

2. Okcan, A., Riedewald, M.: Processing theta-joins using MapReduce. In: SIGMOD,
pp. 949–960 (2011)

3. Afrati, F.N., Ullman, J.D.: Optimizing Multiway Joins in a Map-Reduce Environ-
ment. IEEE Trans. Knowl. Data Eng (TKDE) 23(9), 1282–1298 (2011)

4. Zhang, X., Chen, L., Wang, M.: Efficient Multi-way Theta-Join Processing Using
MapReduce. PVLDB 5(11), 1184–1195 (2012)

5. Pansare, N., Borkar, V.R., Jermaine, C., Condie, T.: Online Aggregation for Large
MapReduce Jobs. PVLDB 4(11), 1135–1145 (2011)

6. Okcan, A., Riedewald, M.: Processing theta-joins using MapReduce. In: SIGMOD,
pp. 949–960 (2011)

7. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In:
EDBT, pp. 99–110 (2010)

8. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapRe-
duce. In: SIGMOD, pp. 495–506 (2010)

9. Jiang, D., Tung, A.K.H., Chen, G.: MAP-JOIN-REDUCE: Toward Scalable
and Efficient Data Analysis on Large Clusters. IEEE Trans. Knowl. Data Eng
(TKDE) 23(9), 1299–1311 (2011)

10. Fries, S., Boden, B., et al.: PHiDJ: Parallel similarity self-join for high-dimensional
vector data with MapReduce. In: ICDE, pp. 796–807 (2014)

11. Ma, Y., Meng, X.: Set similarity join on massive probabilistic data using
MapReduce. Distributed and Parallel Databases (DPD) 32(3), 447–464 (2014)

12. Lee, T., Bae, H.-C., et al.: Join processing with threshold-based filtering in
MapReduce. The Journal of Supercomputing (TJS) 69(2), 793–813 (2014)


	Efficient Processing of Multi-way Joins Using MapReduce
	1 Introduction
	2 Related Work
	2.1 Problem Statement
	2.2 Join of MapReduce
	2.3 Multi-way Joins of MapReduce

	3 SC-MapReduce Framework
	3.1 SC-MapReduce Overview
	3.2 Availability and Scalability

	4 Sharing and Coordination Module
	4.1 Sharing Mechanism
	4.2 Coordination Module

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions
	References




