
 8.1 Introduction

Computer graphics are stored and processed as either vector or raster data.
Most of the data types that were encountered in the previous chapter were
vector data, i.e., points, lines and polygons. Drainage networks, the outlines
of geologic units, sampling locations, and topographic contours are all
examples of vector data. In Chapter 7, coastlines are stored in a vector format
while bathymetric and topographic data are saved in a raster format. Vector
and raster data are oft en combined in a single data set, for instance to display
the course of a river on a satellite image. Raster data are oft en converted to
vector data by digitizing points, lines or polygons. Conversely, vector data
are sometimes transformed to raster data.

Images are generally represented as raster data, i.e., as a 2D array of color
intensities. Images are everywhere in geosciences. Field geologists use aerial
photos and satellite images to identify lithologic units, tectonic structures,
landslides and other features within a study area. Geomorphologists use
such images to analyze drainage networks, river catchments, and vegetation
or soil types. Th e analysis of images from thin sections, the automated
identifi cation of objects, and the measurement of varve thicknesses all make

 8 Image Processing

 Pollen grains, mostly Asteraceae and less
abundant Caesalpiniaceae and Lamiaceae
pollen, in a microscope image of Argentine
honey. The methods of image processing have
been used to enhance the quality of the image.
Image analysis is then used to determine the
number of pollen grains in such an image.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_8

315

use of a great variety of image processing methods.
Th is chapter is concerned with the analysis and display of image data. Th e

various ways that raster data can be stored on the computer are fi rst explained
(Section 8.2). Th e main tools for importing, manipulating and exporting
image data are then presented in Section 8.3. Th is knowledge is then used
to process and to georeference satellite images (Sections 8.4 to 8.6). On-
screen digitization techniques are discussed in Section 8.7. Sections 8.8 and
8.9 deal with importing, enhancing, and analyzing images from laminated
lake sediments, including color-intensity measurements on transects across
the laminae. Finally, Sections 8.10 to 8.12 deal with automated grain size
analysis, charcoal quantifi cation in microscope images, and the detection
of objects in microscope images on the basis of their shapes. Th e Image
Processing Toolbox is used for the specifi c examples throughout this chapter
(MathWorks 2014). While the MATLAB User’s Guide to the Image Processing
Toolbox provides an excellent general introduction to the analysis of images,
this chapter provides an overview of typical applications in earth sciences.

 8.2 Data Storage

Vector and raster graphics are the two fundamental methods for storing
pictures. Th e typical format for storing vector data has already been introduced
in the previous chapter. In the following example the two columns in the fi le
coastline.txt represent the longitudes and latitudes of the points of a polygon.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

Th e NaNs help to identify break points in the data (Section 7.2).
Th e raster data are stored as 2D arrays. Th e elements of these arrays

represent variables such as the altitude of a grid point above sea level, the
annual rainfall or, in the case of an image, the color intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181

316 8 IMAGE PROCESSING

189 190 190 188 186 183

Raster data can be visualized as 3D plots. Th e x and y fi gures are the indices
of the 2D array or any other reference frame, and z is the numerical value
of the elements of the array (see also Chapter 7). Th e numerical values
contained in the 2D array can be displayed as a pseudocolor plot, which is a
rectangular array of cells with colors determined by a colormap. A colormap
is an m-by-3 array of real numbers between 0.0 and 1.0. Each row defi nes a
red, green, or blue (RGB) color. An example is the above array, which could
be interpreted as grayscale intensities ranging from 0 (black) to 255 (white).
More complex examples include satellite images that are stored in 3D arrays.

As previously discussed, a computer stores data as bits that have one of
two states, represented by either a one or a zero (Chapter 2). If the elements
of the 2D array represent the color intensity values of the pixels (short for
picture elements) of an image, 1-bit arrays contain only ones and zeros.

0 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0

Th is 2D array of ones and zeros can be simply interpreted as a black-and-
white image, where the value of one represents white and zero corresponds
to black. Alternatively, the 1-bit array could be used to store an image
consisting of any two diff erent colors, such as red and blue.

In order to store more complex types of data, the bits are joined together
to form larger groups, such as bytes consisting of eight bits. Since the earliest
computers could only process eight bits at a time, early computer code was
written in sets of eight bits, which came to be called bytes. Each element of
the 2D array or pixel therefore contains a vector of eight ones or zeros.

 1 0 1 0 0 0 0 1

Th ese 8 bits (or 1 byte) allow 28=256 possible combinations of the eight
ones or zeros, and are therefore able to represent 256 diff erent intensities,
such as grayscales. Th e 8 bits can be read in the following way, reading from
right to left : a single bit represents two numbers, two bits represent four
numbers, three bits represent eight numbers, and so forth up to a byte (or
eight bits), which represents 256 numbers. Each added bit doubles the count
of numbers. Here is a comparison of binary and decimal representations of
the number 161:

8.2 DATA STORAGE 317

128 64 32 16 8 4 2 1 (value of the bit)
 1 0 1 0 0 0 0 1 (binary)

128 + 0 + 32 + 0 + 0 + 0 + 0 + 1 = 161 (decimal)

Th e end members of the binary representation of grayscales are

 0 0 0 0 0 0 0 0

which is black, and

 1 1 1 1 1 1 1 1

which is pure white. In contrast to the above 1-bit array, the 1-byte array
allows a grayscale image of 256 diff erent levels to be stored. Alternatively,
the 256 numbers could be interpreted as 256 discrete colors. In either case,
the display of such an image requires an additional source of information
concerning how the 256 intensity values are converted into colors. Numerous
global colormaps for the interpretation of 8-bit color images exist that allow
the cross-platform exchange of raster images, while local colormaps are
oft en embedded in a graphics fi le.

Th e disadvantage of 8-bit color images is that the 256 discrete colorsteps
are not enough to simulate smooth transitions for the human eye. A 24-bit
system is therefore used in many applications, with 8 bits of data for each
RGB channel giving a total of 2563=16,777,216 colors. Such a 24-bit image
is stored in three 2D arrays, or one 3D array, of intensity values between 0
and 255.

195 189 203 217 217 221
218 209 187 192 204 206
207 219 212 198 188 190
203 205 202 202 191 201
190 192 193 191 184 190
186 179 178 182 180 169

209 203 217 232 232 236
234 225 203 208 220 220
224 235 229 214 204 205
223 222 222 219 208 216
209 212 213 211 203 206
206 199 199 203 201 187

174 168 182 199 199 203
198 189 167 172 184 185
188 199 193 178 168 172
186 186 185 183 174 185
177 177 178 176 171 177
179 171 168 170 170 163

318 8 IMAGE PROCESSING

Compared to the 1-bit and 8-bit representations of raster data, 24-bit storage
certainly requires a lot more computer memory. In the case of very large
data sets such as satellite images and digital elevation models the user should
therefore think carefully about the most suitable way to store the data. Th e
default data type in MATLAB is the 64-bit array, which allows storage of
the sign of a number (bit 63), the exponent (bits 62 to 52) and roughly 16
signifi cant decimal digits between approximately 10-308 and 10+308 (bits 51 to
0). However, MATLAB also works with other data types such as 1-bit, 8-bit
and 24-bit raster data, to save memory.

Th e amount of memory required for storing a raster image depends on the
data type and the image’s dimensions. Th e dimensions of an image can be
described by the number of pixels, which is the number of rows multiplied
by the number of columns of the 2D array. Let us assume an image of 729-
by-713 pixels, such as the one we will use in the following section. If each
pixel needs 8 bits to store a grayscale value, the memory required by the data
is 729∙713∙8=4,158,216 bits or 4,158,216/8=519,777 bytes. Th is number is
exactly what we obtain by typing whos in the command window. Common
prefi xes for bytes are kilo-, mega-, giga- and so forth.

bit = 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 kilobyte (KB)
1024 kilobytes = 1 megabyte (MB)
1024 megabytes = 1 gigabyte (GB)
1024 gigabytes = 1 terabyte (TB)

Note that in data communication 1 kilobit=1,000 bits, while in data storage 1
kilobyte=1,024 bytes. A 24-bit or true color image then requires three times the
memory required to store an 8-bit image, or 1,559,331 bytes=1,559,331/1,024
kilobytes (KB)≈1,523 KB≈1,559,331/1,0242=1.487 megabytes (MB).

However, the dimensions of an image are oft en given, not by the
total number of pixels, but by the length and height of the image and its
resolution. Th e resolution of an image is the number of pixels per inch (ppi)
or dots per inch (dpi). Th e standard resolution of a computer monitor is 72
dpi although modern monitors oft en have a higher resolution such as 96
dpi. For instance, a 17 inch monitor with 72 dpi resolution displays 1,024-
by-768 pixels. If the monitor is used to display images at a diff erent (lower,
higher) resolution, the image is resampled to match the monitor’s resolution.
For scanning and printing, a resolution of 300 or 600 dpi is enough in most
applications. However, scanned images are oft en scaled for large printouts
and therefore have higher resolutions such as 2,400 dpi. Th e image used in
the next section has a width of 25.2 cm (or 9.92 inches) and a height of 25.7
cm (10.12 inches). Th e resolution of the image is 72 dpi. Th e total number of

8.2 DATA STORAGE 319

pixels is therefore 72∙9.92≈713 in a horizontal direction, and 72∙10.12≈729
in a vertical direction.

Numerous formats are available for saving vector and raster data into a
fi le, each with their own particular advantages and disadvantages. Choosing
one format over another in an application depends on the way the images
are to be used in a project and whether or not the images are to be analyzed
quantitatively. Th e most popular formats for storing vector and raster data
are:

• Compuserve Graphics Interchange Format (GIF) – Th is format was
developed in 1987 for raster images using a fi xed 8-bit colormap of 256
colors. Th e GIF format uses compression without loss of data. It was
designed for fast transfer rates over the Internet. Th e limited number of
colors means that it is not the right format for the smooth color transitions
that occur in aerial photos or satellite images. It is, however, oft en used for
line art, maps, cartoons and logos (http://www.compuserve.com).

• Portable Network Graphics (PNG) – Th is is an image format developed in
1994 that is used as an alternative to the GIF. It is similar to the GIF in that
it also uses a fi xed 8-bit colormap of 256 colors. Alternatively, grayscale
images of 1 to 16 bits can be stored, as well as 24 and 48 bit color images.
Th e PNG format uses compression without loss of data, with the method
employed being better than that used for GIF images.

• Microsoft Windows Bitmap Format (BMP) – Th is is the default image
format for computers running Microsoft Windows as the operating
system. However, numerous converters also exist to read and write BMP
fi les on other platforms. Various modifi cations of the BMP format are
available, some of them without compression and others with eff ective
and fast compression (http://www.microsoft .com).

• Tagged Image File Format (TIFF) – Th is format was designed by the Aldus
Corporation and Microsoft in 1986 to become an industry standard for
image-fi le exchange. A TIFF fi le includes an image fi le header, a directory,
and the data in all available graphics and image fi le formats. Some TIFF
fi les even contain vector and raster versions of the same picture, as well
as images at diff erent resolutions and with diff erent colormaps. Th e main
advantage of TIFF fi les was originally their portability. A TIFF should
perform on all computer platforms; unfortunately, however, numerous
modifi cations of the TIFF have evolved in subsequent years, resulting in
incompatibilities. Th e TIFF is therefore now oft en called the Th ousands of
Incompatible File Formats.

320 8 IMAGE PROCESSING

• PostScript (PS) and Encapsulated PostScript (EPS) – Th e PS format was
developed by John Warnock at PARC, the Xerox research institute.
Warnock was also co-founder of Adobe Systems, where the EPS format
was created. Th e PostScript vector format would never have become an
industry standard without Apple Computers. In 1985 Apple needed a
typesetter-quality controller for the new Apple LaserWriter printer and
the Macintosh operating system and adopted the PostScript format. Th e
third partner in the history of PostScript was the company Aldus, the
developer of the soft ware PageMaker and now a part of Adobe Systems.
Th e combination of Aldus PageMaker soft ware, the PS format and the
Apple LaserWriter printer led to the creation of Desktop Publishing.
Th e EPS format was then developed by Adobe Systems as a standard fi le
format for importing and exporting PS fi les. Whereas a PS fi le is generally
a single-page format containing either an illustration or a text, the purpose
of an EPS fi le is to also allow the inclusion of other pages, i.e., a fi le that
can contain any combination of text, graphics and images (http://www.
adobe.com).

• In 1986 the Joint Photographic Experts Group (JPEG) was founded for
the purpose of developing various standards for image compression.
Although JPEG stands for the committee, it is now widely used as the
name for an image compression and a fi le format. Th is compression
involves grouping pixel values into 8-by-8 blocks and transforming each
block with a discrete cosine transform. As a result, all unnecessary high-
frequency information is deleted, which makes this compression method
irreversible. Th e advantage of the JPEG format is the availability of a
three-channel, 24-bit, true color version. Th is allows images with smooth
color transitions to be stored. Th e new JPEG-2000 format uses a wavelet
transform instead of the cosine transform (Section 5.8) (http://www.jpeg.
org).

• Portable Document Format (PDF) – Th e PDF designed by Adobe Systems
is now a true self-contained cross-platform document. PDF fi les contain
the complete formatting of vector illustrations, raster images and text, or
a combination of all these, including all necessary fonts. Th ese fi les are
highly compressed, allowing a fast internet download. Adobe Systems
provides the free-of-charge Acrobat Reader for all computer platforms to
read PDF fi les (http://www.adobe.com).

8.2 DATA STORAGE 321

 8.3 Importing, Processing and Exporting Images

We fi rst need to learn how to read an image from a graphics fi le into the
workspace. As an example we use a satellite image showing a 10.5 km by 11
km subarea in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

Th e fi le unconform.jpg is a processed TERRA-ASTER satellite image that can
be downloaded free-of-charge from the NASA web page. We save this image
in the working directory. Th e command

clear

I1 = imread('unconform.jpg');

reads and decompresses the JPEG fi le, imports the data as a 24-bit RGB
image array and stores it in a variable I1. Th e command

whos

shows how the RGB array is stored in the workspace:

Name Size Bytes Class Attributes
I1 729x713x3 1559331 uint8

Th e details indicate that the image is stored as a 729-by-713-by-3 array,
representing a 729-by-713 array for each of the colors red, green and blue. Th e
listing of the current variables in the workspace also gives the information
uint8 array, i.e., each array element representing one pixel contains 8-bit
integers. Th ese integers represent intensity values between 0 (minimum
intensity) and 255 (maximum). As an example, here is a sector in the upper-
left corner of the data array for red:

I1(50:55,50:55,1)

ans =
 174 177 180 182 182 182
 165 169 170 168 168 170
 171 174 173 168 167 170
 184 186 183 177 174 176
 191 192 190 185 181 181
 189 190 190 188 186 183

We can now view the image using the command

imshow(I1)

322 8 IMAGE PROCESSING

which opens a new Figure Window showing an RGB composite of the image
(Fig. 8.1). In contrast to the RGB image, a grayscale image needs only a single
array to store all the necessary information. We therefore convert the RGB
image into a grayscale image using the command rgb2gray (RGB to gray):

I2 = rgb2gray(I1);

Th e new workspace listing now reads

Name Size Bytes Class Attributes
I1 729x713x3 1559331 uint8

Fig. 8.1 RGB true color image contained in the fi le unconform.jpg. Aft er decompressing and
reading the JPEG fi le into a 729-by-713-by-3 array, MATLAB interprets and displays the RGB
composite using the function imshow. See detailed description of the image on the NASA
TERRA-ASTER webpage: http://asterweb.jpl.nasa.gov. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

8.3 IMPORTING, PROCESSING AND EXPORTING IMAGES 323

I2 729x713 519777 uint8
ans 6x6 36 uint8

in which the diff erence between the 24-bit RGB and the 8-bit grayscale arrays
can be observed. Th e variable ans for Most recent answer was created above
using I1(50:55,50:55,1), without assigning the output to another variable.
Th e commands

imshow(I2)

display the result. It is easy to see the diff erence between the two images in
separate Figure Windows. Let us now process the grayscale image. First, we
compute a histogram of the distribution of intensity values.

imhist(I2)

A simple technique to enhance the contrast in such an image is to transform
this histogram to obtain an equal distribution of grayscales.

I3 = histeq(I2);

We can view the diff erence again using

imshow(I3)

and save the results in a new fi le.

imwrite(I3,'unconform_gray.jpg')

We can read the header of the new fi le by typing

imfinfo('unconform_gray.jpg')

which yields

ans =
 Filename: [1x40 char]
 FileModDate: '18-Dec-2013 11:26:53'
 FileSize: 138419
 Format: 'jpg'
 FormatVersion: ''
 Width: 713
 Height: 729
 BitDepth: 8
 ColorType: 'grayscale'
 FormatSignature: ''
 NumberOfSamples: 1
 CodingMethod: 'Huffman'
 CodingProcess: 'Sequential'
 Comment: {}

324 8 IMAGE PROCESSING

Hence, the command imfinfo can be used to obtain useful information
(name, size, format, and color type) concerning the newly-created image fi le.

Th ere are many ways of transforming the original satellite image into
a practical fi le format. Th e image data could, for instance, be stored as an
indexed color image, which consists of two parts: a colormap array and a
data array. Th e colormap array is an m-by-3 array containing fl oating-point
values between 0 and 1. Each column specifi es the intensity of the red, green
and blue colors. Th e data array is an x-by-y array containing integer elements
corresponding to the lines m of the colormap array, i.e., the specifi c RGB
representation of a certain color. Let us transfer the above RGB image into
an indexed image. Th e colormap of the image should contain 16 diff erent
colors. Th e result of

[I4,map] = rgb2ind(I1,16);
imshow(I1), figure, imshow(I4,map)

saved as another JPEG fi le using

imwrite(I4,map,'unconform_ind.jpg')

clearly shows the diff erence between the original 24-bit RGB image (2563 or
about 16.7 million diff erent colors) and a color image of only 16 diff erent
colors. Th e display of the image uses the default colormap of MATLAB.
Typing

imshow(I4,map)
cmap = colormap

actually retrieves the 16-by-3 array of the current colormap

cmap =
 0.0588 0.0275 0.0745
 0.5490 0.5255 0.4588
 0.7373 0.7922 0.7020
 0.3216 0.2706 0.2667
 0.6471 0.6784 0.6157
 0.7961 0.8549 0.9176
 0.4510 0.3922 0.3333
 0.2000 0.1451 0.1451
 0.4824 0.5412 0.5843
 0.4039 0.4078 0.4784
 0.6667 0.7020 0.7451
 0.8980 0.8745 0.7255
 0.2824 0.2902 0.4039
 0.9569 0.9647 0.9608
 0.1765 0.1686 0.2902
 0.5843 0.5843 0.6078

8.3 IMPORTING, PROCESSING AND EXPORTING IMAGES 325

Gallery
8.1

We can replace the default colormap by any other built-in colormap. Typing

help graph3d

lists the available colormaps. As an example we can use

imshow(I4,map)
colormap(hot)

to display the image with a black-red-yellow-white colormap. Typing

edit hot

reveals that hot is a function creating the m-by-3 array containing fl oating-
point values between 0 and 1. We can also design our own colormaps, either
by manually creating an m-by-3 array or by creating another function similar
to hot. As an example the colormap precip.m (which is a yellow-blue colormap
included in the book’s fi le collection) was created to display precipitation
data, with yellow representing low rainfall and blue representing high
rainfall. Alternatively, we can also use random numbers

rng(0)
map = rand(16,3);
imshow(I4,map)

to display the image with random colors. Finally, we can create an indexed
color image of three diff erent colors, displayed with a simple colormap of full
intensity red, green and blue.

[I5,map] = rgb2ind(I1,3);
imshow(I5,[1 0 0;0 1 0;0 0 1])

Typing

imwrite(I4,map,'unconform_rgb.jpg')

saves the result as another JPEG fi le.

 8.4 Importing, Processing and Exporting LANDSAT Images

Th e Landsat project is a satellite remote sensing program jointly managed
by the US National Aeronautics and Space Administration (NASA) and the
US Geological Survey (USGS), which began with the launch of the Landsat 1
satellite (originally known as the Earth Resources Technology Satellite 1) on
23rd July 1972. Th e latest in a series of successors is the Landsat 8 satellite,
launched on 11th February 2013 (Ochs et al. 2009, Irons et al. 2011). It has
two sensors, the Operational Land Imager (OLI) and the Th ermal Infrared

326 8 IMAGE PROCESSING

Sensor (TIRS). Th ese two sensors provide coverage of the global landmass at
spatial resolutions of 30 meters (visible, NIR, SWIR), 100 meters (thermal),
and 15 meters (panchromatic) (Ochs et al. 2009, Irons et al. 2011). General
information concerning the Landsat program can be obtained from the
webpage

http://landsat.gsfc.nasa.gov/?page_id=7195

Landsat data, together with data from other NASA satellites, can be obtained
from the webpage

http://earthexplorer.usgs.gov

On this webpage we fi rst select the desired map section in the Search Criteria,
either by entering the coordinates of the four corners of the map or by
zooming into the area of interest and selecting Use Map. As an example we
enter the coordinates 4°42'40.72"N 36°51'10.47"E of the Chew Bahir Basin in
the Southern Ethiopian Rift . We then choose L8 OLI/TIRS from the Landsat
Archive as the Data Set and click Results. Clicking Results produces a list
of records, together with a toolbar for previewing and downloading data.
By clicking the Show Browse Overlay button we can examine the images for
cloud cover. We fi nd the cloud-free image

Entity ID: LC81690572013358LGN00
Coordinates: 4.33915,36.76225
Acquisition Date: 24-DEC-13
Path: 169
Row: 57

taken on 24th December 2013. We need to register with the USGS website,
log on, and then download the Level 1 GeoTIFF Data Product (897.5 MB),
which is then stored on the hard drive in the fi le LC81690572013358LGN00.
tar.gz. Th e .tar.gz archive contains separate fi les for each spectral band as
well as a metadata fi le containing information about the data. We use band 4
(Red, 640–670 nm), band 3 (Green, 530–590 nm) and band 2 (Blue, 450–510
nm), each of which has a 30 m resolution. We can import the 118.4 MB TIFF
fi les using

clear

I1 = imread('LC81690602013150LGN00_B4.TIF');
I2 = imread('LC81690602013150LGN00_B3.TIF');
I3 = imread('LC81690602013150LGN00_B2.TIF');

Typing

8.4 IMPORTING, PROCESSING AND EXPORTING LANDSAT IMAGES 327

whos

reveals that the data are in a unsigned 16-bit format uint16, i.e., the maximum
range of the data is from 0 to 216=65,536.

 I1 7771x7611 118290162 uint16
 I2 7771x7611 118290162 uint16
 I3 7771x7611 118290162 uint16

For quantitative analyses these digital number (DN) values need to be
converted to radiance and refl ectance values, which is beyond the scope of
the book. Th e radiance is the power density scattered from the earth in a
particular direction and has the units of watts per square meter per steradian
(Wm-2 sr-1) (Richards 2013). Th e radiance values need to be corrected for
atmospheric and topographic eff ects to obtain earth surface refl ectance
percentages. Th e Landsat 8 Handbook provides the necessary information
on these conversions:

https://landsat.usgs.gov/Landsat8_Using_Product.php

We will instead use the Landsat 8 data to create an RGB composite of bands
4, 3, and 2 to be used for fi eldwork. Since the image has a relatively low
level of contrast, we use adapthisteq to perform a contrast-limited adaptive
histogram equalization (CLAHE) (Zuiderveld 1994). Unlike histeq used in
the previous section, the adapthisteq algorithm works on small regions (or
tiles) of the image, rather than on the entire image. Th e neighboring tiles are
then combined using bilinear interpolation to eliminate edge eff ects.

I1 = adapthisteq(I1,'ClipLimit',0.1,'Distribution','Rayleigh');
I2 = adapthisteq(I2,'ClipLimit',0.1,'Distribution','Rayleigh');
I3 = adapthisteq(I3,'ClipLimit',0.1,'Distribution','Rayleigh');

Using ClipLimit with a real scalar between 0 and 1 limits the contrast
enhancement, while higher numbers result in increased contrast; the default
value is 0.01. Th e Distribution parameter sets the desired histogram shape
for the tiles by specifying a distribution type, such as Uniform, Rayleigh, or
Exponential. Using a ClipLimit of 0.1 and a Rayleigh distribution yields good
results. Th e three bands are concatenated to a 24-bit RGB images using cat.

I = cat(3,I1,I2,I3);

We only display that section of the image containing the Chew Bahir Basin
(using axes limits) and hide the coordinate axes. We scale the images to 10%
of the original size to fi t the computer screen.

axes('XLim',[3000 5000],'YLim',[1000 4000],'Visible','Off'), hold on

328 8 IMAGE PROCESSING

imshow(I,'InitialMagnification',10)

Exporting the processed image from the Figure Window, we only save the
image at the monitor’s resolution. To obtain an image of the basins at a higher
resolution, we use the command

imwrite(I(1000:4000,3000:5000,:),'chewbahirbasin.tif','tif')

Th is command saves the RGB composite as a TIFF-fi le chewbahirbasin.tif
(about 36.3 MB) in the working directory, which can then be processed
using other soft ware such as Adobe Photoshop.

According to the USGS Landsat webpage, Landsat data are amongst
the most geometrically and radiometrically corrected data available. Data
anomalies do occasionally occur, however, of which the most common types
are listed on the USGS webpage:

http://landsat.usgs.gov/science_an_anomalies.php

We explore one of these types of anomaly as an example, i.e., artifacts
known as Single Event Upsets (SEUs) that cause anomalously high values in
the image, similar to the Impulse Noise (IN) that is also described on the
same webpage. Th ese anomalies occur in some, but not all, Landsat images
and similarly anomalous high or low values can also occur in other satellite
images. We therefore use a part of a Landsat 7 image covering an area in
the southern Ethiopian Rift , acquired by the Enhanced Th ematic Mapper
(ETM+) instrument of that satellite. We can load and display the image using

clear

I1 = imread('ethiopianrift_blue.tif');
imshow(I1,'InitialMagnification',200), title('Original Image')

Th e parameter InitialMagnification is a numeric scalar that scales the
image to, as an example, 200% magnifi cation. Th e image I1 shows numerous
randomly-distributed anomalously high or low values, as well as a parallel
track of paired anomalies in the right half of the image. We fi rst apply a 10-
by-10 pixel median fi lter to the image (see Section 8.8):

I2 = medfilt2(I1,[10,10],'symmetric');
imshow(I2,'InitialMagnification',200)
title('Median Filtered Image')

Using the option symmetric with the function medfilt2 extends I2
symmetrically at the image boundaries by refl ecting it across its boundaries,
instead of padding the image with zeros at the boundaries (by default). Th e

8.4 IMPORTING, PROCESSING AND EXPORTING LANDSAT IMAGES 329

median-fi ltered version of the I2 image is, of course, very smooth compared
to the original I1 image. We would, however, lose a lot of detail if we used
this version of the image. We next subtract the median-fi ltered image I2
from original image I1, which yields the image I3.

I3 = imsubtract(I1,I2);
imshow(I3,'InitialMagnification',200)
title('I1-I2')

We then subtract the original image I1 from the median-fi ltered image I2,
which yields the image I4.

I4 = imsubtract(I2,I1);
imshow(I4,'InitialMagnification',200)
title('I2-I1')

We next replace the original pixels with their median-fi ltered versions if the
diff erence between the median-fi ltered image I2 and the original image I1 is
great than 10 in both directions (as it is in our example).

I5 = I1;
I5(I3>10 | I4>10) = I2(I3>10 | I4>10);
imshow(I5,'InitialMagnification',200)
title('Despeckled Image')

Th e image I5 obtained using this approach is the despeckled version of the
image I1. We can also explore the pixel values of both versions of the image
(I1 and I5) in a 3D surface plot, using

subplot(1,2,1)
I1S = im2double(I1);
surface(I1S), colormap jet, caxis([0 1])
shading interp, view(120,33), axis off
axis([1 size(I1,1) 1 size(I1,2) min(I1S(:)) max(I1S(:))])

subplot(1,2,2)
I5S = im2double(I5);
surface(I5S), colormap jet, caxis([0 1])
shading interp, view(120,33), axis off
axis([1 size(I1,1) 1 size(I1,2) min(I1S(:)) max(I1S(:))])

We need convert the image data to class double using im2double in order to be
able to display the data using surface. Finally, we can display both images in
the same fi gure window

subplot(1,2,1), imshow(I1), title('Original Image')
subplot(1,2,2), imshow(I5), title('Despeckled Image')

to see the result of despeckling the image I1 (Fig. 8.2).

330 8 IMAGE PROCESSING

 8.5 Importing and Georeferencing TERRA ASTER Images

In Section 8.3 we used a processed ASTER image that we downloaded from
the ASTER webpage. In this section we will use raw data from this sensor.
Th e ASTER sensor is mounted on the TERRA satellite launched in 1999,
part of the Earth Observing System (EOS) series of multi-national NASA
satellites (Abrams and Hook 2002). ASTER stands for Advanced Spaceborne
Th ermal Emission and Refl ection Radiometer, providing high-resolution (15
to 90 meter) images of the earth in 14 bands, including three visible to near
infrared bands (VNIR bands 1 to 3), six short-wave infrared bands (SWIR
bands 4 to 9), and fi ve thermal (or long-wave) infrared bands (TIR bands 10
to 14). ASTER images are used to map the surface temperature, emissivity,
and refl ectance of the earth’s surface. Th e 3rd near infrared band is recorded
twice: once with the sensor pointing directly downwards (band 3N, where

Fig. 8.2 Despeckled section of the blue band of a Landsat image covering the Chew Bahir
catchment in Southern Ethiopia; a original image, b despeckled image, c surface plots of the
original image, and d surface plot of the image aft er despeckling. Original image courtesy of
the Landsat Program of the US National Aeronautics and Space Administration (NASA) and
the US Geological Survey (USGS).

ba

c d

8.5 IMPORTING AND GEOREFERENCING TERRA ASTER IMAGES 331

N stands for nadir from the Arabic word for opposite), as it does for all other
channels, and a second time with the sensor angled backwards at 27.6° (band
3B, where B stands for backward looking). Th ese two bands are used to
generate ASTER digital elevation models (DEMs).

Th e ASTER instrument produces two types of data: Level-1A (L1A) and
Level-1B (L1B) data (Abrams and Hook 2002). Whereas the L1A data are
reconstructed, unprocessed instrument data, the L1B data are radiometrically
and geometrically corrected. Any data that ASTER has already acquired are
available; they can be located by searching the Japan Space Systems GDS
ASTER/PALSAR Unifi ed Search Site and can be ordered from

http://gds.ersdac.jspacesystems.or.jp/?lang=en

or from NASA Reverb

http://reverb.echo.nasa.gov/reverb/

As an example we process an image from an area in Kenya showing Lake
Naivasha (0°46'31.38"S 36°22'17.31"E). Th e Level-1A data are stored in two
fi les

AST_L1A_003_03082003080706_03242003202838.hdf
AST_L1A_003_03082003080706_03242003202838.hdf.met

Th e fi rst fi le (116 MB) contains the actual raw data, whereas the second fi le
(102 KB) contains the header, together with all sorts of information about
the data. We save both fi les in our working directory. Since the fi le name
is very long, we fi rst save it in the filename variable and then use filename
instead of the long fi le name. We then need to modify only this single line of
MATLAB code if we want to import and process other satellite images.

filename = 'AST_L1A_003_03082003080706_03242003202838.hdf';

Th e Image Processing Toolbox contains various tools for importing and
processing fi les stored in the hierarchical data format (HDF). Th e graphical
user interface (GUI) based import tool for importing certain parts of the raw
data is

hdftool('filename')

Th is command opens a GUI that allows us to browse the content of the
HDF-fi le naivasha.hdf, obtains all information on the contents, and imports
certain frequency bands of the satellite image. Alternatively, the command
hdfread can be used as a quicker way of accessing image data. Th e vnir_
Band3n, vnir_Band2, and vnir_Band1 typically contain much information

332 8 IMAGE PROCESSING

about lithology (including soils), vegetation and water on the earth’s surface.
Th ese bands are therefore usually combined into 24-bit RGB images. We fi rst
read the data

I1 = hdfread(filename,'VNIR_Band3N','Fields','ImageData');
I2 = hdfread(filename,'VNIR_Band2','Fields','ImageData');
I3 = hdfread(filename,'VNIR_Band1','Fields','ImageData');

Th ese commands generate three 8-bit image arrays, each representing the
intensity within a certain infrared (IR) frequency band of a 4200-by-4100
pixel image. We are not using the data for quantitative analyses and therefore
do not need to convert the digital number (DN) values into radiance and
refl ectance values. Th e ASTER User Handbook provides the necessary
information on these conversions (Abrams and Hook 2002). Instead, we will
process the ASTER image to create a georeferenced RGB composite of bands
3N, 2 and 1, to be used in fi eldwork. We fi rst use a contrast-limited adaptive
histogram equalization method to enhance the contrast in the image by
typing

I1 = adapthisteq(I1);
I2 = adapthisteq(I2);
I3 = adapthisteq(I3);

and then concatenate the result to a 24-bit RGB image using cat.

naivasha_rgb = cat(3,I1,I2,I3);

As with the previous examples, the 4200-by-4100-by-3 array can now be
displayed using

imshow(naivasha_rgb,'InitialMagnification',10)

We set the initial magnifi cation of this very large image to 10%. MATLAB
scales images to fi t the computer screen. Exporting the processed image
from the Figure Window, we only save the image at the monitor’s resolution.
To obtain an image at a higher resolution, we use the command

imwrite(naivasha_rgb,'naivasha.tif','tif')

Th is command saves the RGB composite as a TIFF-fi le naivasha.tif (ca. 52
MB) in the working directory, which can then be processed using other
soft ware such as Adobe Photoshop. Th e processed ASTER image does not
yet have a coordinate system and therefore needs to be tied to a geographical
reference frame (georeferencing). Th e HDF browser

hdftool('naivasha.hdf')

8.5 IMPORTING AND GEOREFERENCING TERRA ASTER IMAGES 333

can be used to extract the geodetic coordinates of the four corners of the
image. Th is information is contained in the header of the HDF fi le. Having
launched the HDF tool, we select on the uppermost directory called
naivasha.hdf and fi nd a long list of fi le attributes in the upper right panel of
the GUI, one of which is productmetadata.0, which includes the attribute
scenefourcorners. We collect the coordinates of the four scene corners into a
single array inputpoints:

inputpoints(1,:) = [36.214332 -0.319922]; % upper left corner
inputpoints(2,:) = [36.096003 -0.878267]; % lower left corner
inputpoints(3,:) = [36.770406 -0.400443]; % upper right corner
inputpoints(4,:) = [36.652213 -0.958743]; % lower right corner

It is important to note that the coordinates contained in productmetadata.0
need to be fl ipped in order to have x=longitudes and y=latitudes. Th e four
corners of the image correspond to the pixels in the four corners of the
image, which we store in a variable named basepoints.

basepoints(1,:) = [1,1]; % upper left pixel
basepoints(2,:) = [1,4200]; % lower left pixel
basepoints(3,:) = [4100,1]; % upper right pixel
basepoints(4,:) = [4100,4200]; % lower right pixel

Th e function fitgeotrans now takes the pairs of control points, inputpoints
and basepoints, and uses them to infer a spatial transformation matrix tform.

tform = fitgeotrans(inputpoints,basepoints,'affine');

We next determine the limits of the input for georeferencing (i.e., of
the original image naivasha_rgb) using size, which yields xLimitsIn and
yLimitsIn. Adding a value of 0.5 to both xLimitsIn and yLimitsIn prevents the
edges of the image from being truncated during the affi ne transformation.
We then determine the limits of the output (i.e. of the georeferenced image,
which is subsequently called newnaivasha_rgb) using outputLimits, which
yields XBounds and YBounds.

xLimitsIn = 0.5 + [0 size(naivasha_rgb,2)];
yLimitsIn = 0.5 + [0 size(naivasha_rgb,1)];
[XBounds,YBounds] = outputLimits(tform,xLimitsIn,yLimitsIn);

We then use imref2d to reference the image to a world (or global) coordinate
system.

Rout = imref2d(size(naivasha_rgb),XBounds,YBounds);

An imref2d object encapsulates the relationship between the intrinsic
coordinates anchored to the rows and columns of the image, and the spatial

334 8 IMAGE PROCESSING

Fig. 8.3 Geoferenced RGB composite of a TERRA-ASTER image using the infrared bands
vnir_Band3n, 2 and 1. Th e result is displayed using imshow. Original image courtesy of
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

location of the same row and column locations within a world coordinate
system. Finally, the affi ne transformation can be applied to the original RGB
composite naivasha_rgb in order to obtain a georeferenced version of the
satellite image newnaivasha_rgb with the same size as naivasha_rgb.

newnaivasha_rgb = imwarp(naivasha_rgb,tform,'OutputView',Rout);

An appropriate grid for the image can now be computed. Th e grid is
typically defi ned by the minimum and maximum values for the longitude
and latitude. Th e vector increments are then obtained by dividing the ranges
of the longitude and latitude by the array’s dimensions and then subtracting
one from the results. Note the diff erence between the MATLAB numbering
convention and the common coding of maps used in published literature.
Th e north/south suffi x is generally replaced by a negative sign for south,

8.5 IMPORTING AND GEOREFERENCING TERRA ASTER IMAGES 335

whereas MATLAB coding conventions require negative signs for north.

X = 36.096003 : (36.770406 - 36.096003)/4100 : 36.770406;
Y = -0.958743 : (0.958743 - 0.319922)/4200 : -0.319922;

Th e georeferenced image is displayed with coordinates on the axes and a
superimposed grid (Fig. 8.3). By default, the function imshow inverts the
latitude axis when images are displayed by setting the YDir property to
Reverse. To invert the latitude axis direction back to normal, we need to set
the YDir property to Normal by typing

imshow(newnaivasha_rgb,'XData',X,'YData',Y,'InitialMagnification',10)
axis on, grid on, set(gca,'YDir','Normal')
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')

Exporting the image is possible in many diff erent ways, for example using

print -djpeg70 -r600 naivasha_georef.jpg

to export it as a JPEG fi le naivasha_georef.jpg, compressed to 70% and with
a resolution of 600 dpi.

In the previous example we used the geodetic coordinates of the four
corners to georeference the ASTER image. Th e Image Processing Toolbox
also includes functions to automatically align two images that are shift ed
and/or rotated with respect to each other, cover slightly diff erent areas, or
have a diff erent resolutions. We use two ASTER images of the Suguta Valley
in the Northern Kenya Rift as an example. Th e images have been processed
in the same way as described for the image of Lake Naivasha and exported
as TIFF fi les using imwrite. Th e image in the fi le sugutavalley_1.tif was taken
on 20th February 2003 and the second image in sugutavalley_2.tif was taken
on 31st August 2003, both just aft er 8 o’clock in the morning. Lake Logipi,
in the center of the images, is much larger in the second image than in the
fi rst image. Th e original images are otherwise almost identical, except for
the second image being shift ed slightly towards the east. To demonstrate
the automatic alignment of the images, the second image has been rotated
counterclockwise by fi ve degrees. Furthermore, both images have been
cropped to the area of the Suguta Valley, including a small section of the rift
shoulders to the west and to the east. We import both images using

clear

image1 = imread('sugutavalley_1.tif');
image2 = imread('sugutavalley_2.tif');

336 8 IMAGE PROCESSING

Fig. 8.4 Automatically aligned TERRA-ASTER images of the Suguta Valley in the Northern
Kenya Rift ; a fi rst image taken on 20th February 2003, b second image taken on 31st August
2003, and c overlay of the second image aligned with the fi rst image. Original image courtesy
of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

Th e size of image1 is 666-by-329-by-3, while image2 is slightly smaller: 614-by-
270-by-3. We display the images by typing

subplot(1,2,1), imshow(image1)
subplot(1,2,2), imshow(image2)

Th e function imregconfig creates optimizer and metric confi gurations that
we transfer into imregister to perform intensity-based image registration,

[optimizer, metric] = imregconfig('monomodal');

where monomodal assumes that the images were captured by the same sensor.
We can use this confi gurations to calculate the spatial transformation matrix
tform using the transformation type affine, as in the previous example.

tform = imregtform(image2(:,:,1),image1(:,:,1), ...
 'affine',optimizer,metric);

Th is transformation can be applied to image2 in order to automatically align
it with image1.

a b c

8.5 IMPORTING AND GEOREFERENCING TERRA ASTER IMAGES 337

image2_reg = imwarp(image2,tform,'OutputView', ...
 imref2d(size(image1)));

We can compare the result with the original images using

subplot(1,3,1), imshow(image1)
subplot(1,3,2), imshow(image2)
subplot(1,3,3), imshowpair(image1,image2_reg,'blend')

print -djpeg70 -r600 sugutavalley_aligned.jpg

As we can see, the second image is now nicely aligned with the fi rst image
(Fig. 8.4). Th e two images can now be used to map changes in the area (e.g.,
in the size of the lake) between 20th February and 31st August 2003. Th is
script can also be used to automatically align other images, in particular
those captured by diff erent sensors.

 8.6 Processing and Exporting EO-1 Hyperion Images

Th e Earth Observing-1 Mission (EO-1) satellite is part of the New Millennium
Program of the US National Aeronautics and Space Administration (NASA)
and the US Geological Survey (USGS), which began with the launch of this
satellite on 21st November 2000. EO-1 has two sensors: the Advanced Land
Image (ALI) has nine multispectral bands with a 30 m spatial resolution and
a panchromatic band with a 10-m resolution, and the hyperspectral sensor
(Hyperion) has 220 bands between 430 and 2,400 nm (Mandl et al. 2002,
Line 2012). General information about the EO-1 program can be obtained
from the webpage

http://eo1.gsfc.nasa.gov

Hyperion data (together with data from of other NASA satellites) are freely
available from the webpage

http://earthexplorer.usgs.gov

On this webpage we fi rst select the desired map section in the Search
Criteria, either by entering the coordinates of the four corners of the map or
by zooming into the area of interest and selecting Use Map. As an example
we enter the coordinates 2°8'37.58"N 36°33'47.06"E of the Suguta Valley in
the Northern Kenya Rift . We then choose Hyperion from the EO-1 collection
as the Data Set and click Results. Clicking Results produces a list of records,
together with a toolbar for previewing and downloading data. Clicking the
Show Browse Overlay button allows us to examine the images for cloud cover.
We fi nd the cloud-free image

338 8 IMAGE PROCESSING

 Entity ID: EO1H1690582013197110KF_PF2_01
 Acquisition Date: 16-JUL-13
 Target Path: 169
 Target Row: 58

taken on 16th July 2013. As before, we need to register with the USGS
website, log on, and then download the radiometrically corrected (but not
geometrically corrected) Level 1R (L1R) product (215.3 MB), which is then
stored on the hard drive in the fi le LEO1H1690582013197110KF_1R.ZIP.
Th e .ZIP archive consists of a metadata fi le (.MET), a Federal Geographic
Data Committee (FGDC) metadata fi le (.fgdc), an HDF data set fi le (.L1R),
and multiple auxiliary fi les. Th e EO-1 User’s Guides provides some useful
information on the data formats of these fi les (Barry 2001, Beck 2003). We
can import the data from the EO1H1690582013197110KF.L1R fi le using

clear

HYP = hdfread('EO1H1690582013197110KF.L1R',...
 '/EO1H1690582013197110KF.L1R', ...
 'Index', {[1 1 1],[1 1 1],[3189 242 256]});

Th e parameter Index is a three-element cell array, {start,stride,edge},
specifying the location, range, and values to be read from the data set.
Th e value of start specifi es the position in the fi le to begin reading. In our
example it starts reading at the beginning of the fi le, i.e., starting from the [1
1 1] element. Th e value of stride defi nes the interval between the values to
be read, which in our example is [1 1 1], i.e., every element of the data set
is to be read. Th e value of edge specifi es the size of the data in the fi le; in our
example the dimensions of the data are 3,189-by-242-by-256. Typing

whos

shows how the hyperspectral image is stored in the workspace:

HYP 3189x242x256 395129856 int16

Th e details indicate that the image is stored as a 3,189-by-242-by-256 array,
representing a 3,189-by-256 array for each of the 242 spectral bands. Th e
listing of the current variables in the workspace also gives the information
int16 array, i.e., each array element representing one pixel contains signed
16-bit integers. We need to permute the array to move the bands to the third
dimension by typing

HYP = permute(HYP,[1 3 2]);

We next need to determine the radiance values from the digital number

8.6 PROCESSING AND EXPORTING EO-1 HYPERION IMAGES 339

(DN) values in HYP. Th e radiance is the power density scattered from the
earth in a particular direction and has the units of watts per square meter
per steradian (Wm-2 sr-1) (Richards 2013). Th e EO-1 User Guide (v. 2.3)
provides the necessary information on these conversions in its Frequently
Asked Questions (FAQ) section (Beck 2003). According to this document,
the radiance HYPR for the visible and near-infrared (VNIR) bands (bands 1
to 70) is calculated by dividing the digital number in HYP by 40. Th e radiance
for the shortwave infrared (SWIR) bands (bands 71 to 242) is calculated by
dividing HYP by 80.

HYPR(:,:,1:70) = HYP(:,:,1:70)/40;
HYPR(:,:,71:242) = HYP(:,:,71:242)/80;

For quantitative analyses, the radiance values HYPR need to be corrected for
atmospheric and topographic eff ects. Th is correction, which yields earth
surface refl ectance values (in percentages), is beyond the scope of the book.
Th e EO-1 User Guide (v. 2.3) again explains several methods to convert
radiance to refl ectance values (Beck 2003). A simple way to convert radiance
to refl ectance for relatively clear Hyperion images is given in

https://eo1.usgs.gov/faq/question?id=21

We will instead process the Hyperion image to create a georeferenced RGB
composite of bands 29, 23 and 16, to be used in fi eldwork. Th e header
fi le O1H1690582013197110KF.HDR contains (among other things) the
wavelengths corresponding to the 242 spectral bands. We can read the
wavelengths from the fi le using textscan:

fid = fopen('EO1H1690582013197110KF.hdr');
C = textscan(fid,'%f %f %f %f %f %f %f %f',...
 'Delimiter',',','Headerlines',257,'CollectOutput',1)
fclose(fid);

Th is script opens the header fi le for read only access using fopen and defi nes
the fi le identifi er fid, which is then used to read the text from the fi le with
textscan, and to write it into the array C. Th e character string %f %f %f %f
%f %f %f %f defi nes the conversion specifi ers enclosed in single quotation
marks, where %f stands for the double-precision fl oating-point 64-bit output
class. Th e parameter Headerlines is set to 257, which means that the fi rst 257
lines are ignored when reading the fi le. If the parameter CollectOutput is 1
(true), textscan concatenates output cells of the same data type into a single
array. Function fclose closes the fi le defi ned by the fi le identifi er fid. Th e
array C is a cell array, which is a data type with indexed containers called
cells. We can easily obtain the wavelengths from C using

340 8 IMAGE PROCESSING

wavelengths = C{1};
wavelengths = wavelengths';
wavelengths = wavelengths(isnan(wavelengths(:))==0);

We can now plot the radiance HYPR of the VNIR bands (blue) and SWIR
bands (in red) in a single plot.

plot(wavelengths(1:60),squeeze(HYPR(536,136,1:60)),'b',...
 wavelengths(71:242),squeeze(HYPR(536,136,71:242)),'r')

According to v. 2.3 of the EO-1 User Guide (Beck 2003), Hyperion records
220 unique spectral channels collected from a complete spectrum covering
357 to 2,576 nm. Th e L1R product has 242 bands but 198 bands are calibrated.
Because of an overlap between the VNIR and SWIR focal planes, there are
only 196 unique channels. Calibrated channels are 8–57 for the VNIR, and
77–224 for the SWIR. Th e bands that are not calibrated are set to zero in
those channels.

In order to create an RGB composite of bands 29, 23 and 16, we can extract
the bands from the radiance values data HYPR by typing

HYP1 = HYPR(:,:,29);
HYP2 = HYPR(:,:,23);
HYP3 = HYPR(:,:,16);

To display the data with imshow we need convert the signed integer 16-bit
(int16) data to unsigned integer 8-bit data (uint8). For this purpose, we fi rst
obtain an overview of the range of the data using a histogram plot with 100
classes.

subplot(1,3,1), histogram(double(HYP1(:)),100), title('Band 29')
subplot(1,3,2), histogram(double(HYP2(:)),100), title('Band 23')
subplot(1,3,3), histogram(double(HYP3(:)),100), title('Band 16')

As we see, the radiance values of most pixels from the spectral bands 29, 23
and 16 lie between 0 and 200 Wm-2 sr-1. Several functions are available for
converting the data from int16 to uint8. Th e function im2uint8 rescales the
data to the range [0,255] and off sets it if necessary. Th e function uint8 simply
rounds all values in the range [0,255] to the nearest integer; all values less
than 0 are set to 0 and all values greater than 255 are set to 255. Th e function
mat2gray(A,[AMIN AMAX]) converts an arbitrary array A to an intensity image
I containing values in the range 0 (black) to 1.0 (full intensity or white),
where [AMIN AMAX] can be used to limit the range of the original data, which
is scaled to the range [0,1]. Since most of our radiance values are within the
range [0,255], we use uint8 to convert our data to the uint8 data type without
losing much information.

8.6 PROCESSING AND EXPORTING EO-1 HYPERION IMAGES 341

Fig. 8.5 RGB composite of an EO-1 Hyperion image using VNIR bands 29, 23 and 16, showing
the Barrier Volcanic Complex in the Suguta Valley of the Northern Kenya Rift . Th e image was
acquired on 16th July 2013. Original image courtesy of NASA EO-1 Mission.

HYP1 = uint8(HYP1);
HYP2 = uint8(HYP2);
HYP3 = uint8(HYP3);

Again, displaying the radiance values of the three bands in a histogram using

subplot(1,3,1), histogram(single(HYP1(:)),30), title('Band 29')
subplot(1,3,2), histogram(single(HYP2(:)),30), title('Band 23')
subplot(1,3,3), histogram(single(HYP3(:)),30), title('Band 16')

reveals that most radiance values are actually within the range [20,80].
Instead of using histogram we can also use imhist to display the uint8 data.

subplot(1,3,1), imhist(HYP1(:)), title('Band 29')
subplot(1,3,2), imhist(HYP2(:)), title('Band 23')
subplot(1,3,3), imhist(HYP3(:)), title('Band 16')

We then use histeq to enhance the contrast in the image and concatenate the
three bands to a 3,189-by-242-by-3 array.

HYP1 = histeq(HYP1);
HYP2 = histeq(HYP2);
HYP3 = histeq(HYP3);

subplot(1,3,1), imhist(HYP1(:)), title('Band 29')
subplot(1,3,2), imhist(HYP2(:)), title('Band 23')
subplot(1,3,3), imhist(HYP3(:)), title('Band 16')

HYPC = cat(3,HYP1,HYP2,HYP3);

342 8 IMAGE PROCESSING

Finally, we can display the entire image using

imshow(HYPC)

or, as an alternative, that part of the image showing the Barrier Volcanic
Complex in the northern Suguta Valley (Fig. 8.5).

imshow(HYPC(900:1100,:,:))

Exporting the image is possible in many diff erent ways, for example using

print -r600 -dtiff barrier.tif

to export it as a TIFF fi le barrier.tif with a resolution of 600 dpi.

 8.7 Digitizing from the Screen

On-screen digitizing is a widely-used image processing technique. While
practical digitizer tablets exist in all formats and sizes, most people prefer
digitizing vector data from the screen. Examples of this type of application
include the digitizing of river networks and catchment areas on topographic
maps, of the outlines of lithologic units on geological maps, of landslide
distributions on satellite images, and of mineral grain distributions in
microscope images. Th e digitizing procedure consists of the following
steps. Th e image is fi rst imported into the workspace. A coordinate system
is then defi ned, allowing the objects of interest to be entered by moving a
cursor or cross hair onto it and clicking the mouse button. Th e result is a
two-dimensional array of xy data, such as longitudes and latitudes of the
corner points of a polygon, or the coordinates of the objects of interest in a
particular area.

Th e function ginput included in the standard MATLAB toolbox allows
graphical input from the screen, using a mouse. It is generally used to
select points, such as specifi c data points, from a fi gure created by an
arbitrary graphics function such as plot. Th e function ginput is oft en used
for interactive plotting, i.e., the digitized points appear on the screen aft er
they have been selected. Th e disadvantage of the function is that it does not
provide coordinate referencing on an image. We therefore use a modifi ed
version of the function, which allows an image to be referenced to an
arbitrary rectangular coordinate system. Save the following code for this
modifi ed version of the function ginput in a text fi le minput.m.

function data = minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');

8.7 DIGITIZING FROM THE SCREEN 343

xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');

% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B);

% Define lower left and upper right corner of image
disp('Click on lower left and upper right corner, then <return>')
[xcr,ycr] = ginput;
XMIN = xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX = xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN = ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX = ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata/size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata/size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;

Th e function minput has four stages. In the fi rst stage the user enters the limits
of the coordinate axes as reference points for the image. Th e image is then
imported into the workspace and displayed on the screen. Th e third stage
uses ginput to defi ne the upper left and lower right corners of the image. In
the fourth stage the relationship between the coordinates of the two corners
on the fi gure window and the reference coordinate system is then used to
compute the transformation for all of the digitized points.

As an example we use the image stored in the fi le naivasha_georef.jpg and
digitize the outline of Lake Naivasha in the center of the image. We activate
the new function minput from the Command Window using the commands

clear

data = minput('naivasha_georef.jpg')

Th e function fi rst asks for the coordinates of the limits of the x-axis and the
y-axis, for the reference frame. We enter the corresponding numbers and
press return aft er each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

Th e function then reads the fi le naivasha_georef.jpg and displays the image.
We ignore the warning

344 8 IMAGE PROCESSING

Warning: Image is too big to fit on screen; displaying at 33%

and wait for the next response

Click on lower left and upper right corner, then <return>

Th e image window can be scaled according to user preference. Clicking on
the lower left and upper right corners defi nes the dimensions of the image.
Th ese changes are registered by pressing return. Th e routine then references
the image to the coordinate system and waits for the input of the points we
wish to digitize from the image.

Click on data points to digitize, then <return>

We fi nish the input by again pressing return. Th e xy coordinates of our
digitized points are now stored in the variable data. We can now use these
vector data for other applications.

 8.8 Image Enhancement, Correction and Rectifi cation

Th is section introduces some fundamental tools for image enhancement,
correction and rectifi cation. As an example we use an image of varved
sediments deposited around 33 kyrs ago in a landslide-dammed lake in the
Quebrada de Cafayate of Argentina (25°58.900'S 65°45.676'W) (Trauth et al.
1999, 2003). Th e diapositive was taken on 1st October 1996 with a fi lm-based
single-lens refl ex (SLR) camera. A 30-by-20 cm print was made from the
slide, which has been scanned using a fl atbed scanner and saved as a 394 KB
JPEG fi le. We use this as an example because it demonstrates some problems
that we can solve with the help of image enhancement (Fig. 8.6). We then use
the image to demonstrate how to measure color-intensity transects for use in
time series analysis (Section 8.9).

We can read and decompress the fi le varves_original.jpg by typing

clear

I1 = imread('varves_original.jpg');

which yields a 24-bit RGB image array I1 in the MATLAB workspace. Typing

whos

yields

Name Size Bytes Class Attributes
I1 1096x1674x3 5504112 uint8

8.8 IMAGE ENHANCEMENT, CORRECTION AND RECTIFICATION 345

a b

c d

revealing that the image is stored as an uint8 array of the size 1,096-by-1,674-
by-3, i.e., 1,096-by-1,674 arrays for each color (red, green and blue). We can
display the image using the command

imshow(I1)

which opens a new Figure Window showing an RGB composite of the image.
As we see, the image has a low level of contrast and very pale colors, and the
sediment layers are not exactly horizontal. Th ese are characteristics of the
image that we want to improve in the following steps.

First, we adjust the image intensity values or colormap. Th e function
imadjust(I1,[li; hi],[lo ho]) maps the values of the image I1 to new values
in I2, such that values between li and hi are adjusted to values between
lo and ho. Values below li and above hi are clipped, i.e., these values are
adjusted to lo and ho, respectively. We can determine the range of the pixel

Fig. 8.6 Results of image enhancements; a original image, b image with intensity values
adjusted using imadjust, Gamma=1.5, c image with contrast enhanced using adapthisteq,
d image aft er fi ltering with a 20-by-20 pixel fi lter with the shape of a Gaussian probability
density function with a mean of zero and a standard deviation of 10, using fspecial and
imfilter.

346 8 IMAGE PROCESSING

values using

lh = stretchlim(I1)

which yields

lh =
 0.3255 0.2627 0.2784
 0.7020 0.7216 0.7020

indicating that the red color ranges from 0.3255 to 0.7020, green ranges from
0.2627 to 0.7216, and blue ranges from 0.2784 to 0.7020. We can utilize this
information to automatically adjust the image with imadjust by typing

I2 = imadjust(I1,lh,[]);

which adjusts the ranges to the full range of [0,1], and then display the result.

imshow(I2)

We can clearly see the diff erence between the very pale image I1 and the more
saturated image I2. Th e parameter gamma in imadjust(I1,[li;hi],[lo;ho],
gamma) specifi es the shape of the curve describing the relationship between I1
and I2. If gamma<1 the mapping is weighted toward higher (brighter) output
values. If gamma>1 the mapping is weighted toward lower (darker) output
values. Th e default value of gamma=1 causes linear mapping of the values in I1
to new values in I2.

I3 = imadjust(I1,lh,[],0.5);
I4 = imadjust(I1,lh,[],1.5);

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,2), imshow(I2), title('Adjusted Image, Gamma=1.0')
subplot(2,2,3), imshow(I3), title('Adjusted Image, Gamma=0.5')
subplot(2,2,4), imshow(I4), title('Adjusted Image, Gamma=1.5')

We can use imhist to display a histogram showing the distribution of intensity
values for the image. Since imhist only works for two-dimensional images,
we examine the histogram of the red color only.

subplot(2,2,1), imhist(I1(:,:,1)), title('Original Image')
subplot(2,2,2), imhist(I2(:,:,1)), title('Adjusted Image, Gamma=1.0')
subplot(2,2,3), imhist(I3(:,:,1)), title('Adjusted Image, Gamma=0.5')
subplot(2,2,4), imhist(I4(:,:,1)), title('Adjusted Image, Gamma=1.5')

Th e result obtained using imadjust diff ers from that obtained using histeq
(which we used in Section 8.3 to enhance the contrast in the image). Th e
function histeq(I1,n) transforms the intensity of image I1, returning in

8.8 IMAGE ENHANCEMENT, CORRECTION AND RECTIFICATION 347

I5 an intensity image with n discrete levels. A roughly equal number of
pixels is ascribed to each of the n levels in I5, so that the histogram of I5
is approximately fl at. Histogram equalization using histeq has to carried
out separately for each color, since histeq only works for two-dimensional
images. We use n=50 in our exercise, which is slightly below the default value
of n=64.

I5(:,:,1) = histeq(I1(:,:,1),50);
I5(:,:,2) = histeq(I1(:,:,2),50);
I5(:,:,3) = histeq(I1(:,:,3),50);

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,3), imhist(I1(:,:,1)), title('Original Image')
subplot(2,2,2), imshow(I5), title('Enhanced Image')
subplot(2,2,4), imhist(I5(:,:,1)), title('Enhanced Image')

Th e resulting image looks quite disappointing and we therefore use the
improved function adapthisteq instead of histeq. Th is function uses the
contrast-limited adaptive histogram equalization (CLAHE) by Zuiderveld
(1994). Unlike histeq and imadjust, the algorithm works on small regions (or
tiles) of the image, rather than on the entire image. Th e neighboring tiles are
then combined using bilinear interpolation to eliminate edge eff ects.

I6(:,:,1) = adapthisteq(I1(:,:,1));
I6(:,:,2) = adapthisteq(I1(:,:,2));
I6(:,:,3) = adapthisteq(I1(:,:,3));

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,3), imhist(I1(:,:,1)), title('Original Image')
subplot(2,2,2), imshow(I6), title('Enhanced Image')
subplot(2,2,4), imhist(I6(:,:,1)), title('Enhanced Image')

Th e result looks slightly better than that obtained using histeq. However, all
three functions for image enhancement, imadjust, histeq and adapthisteq,
provide numerous ways to manipulate the fi nal outcome. Th e Image
Processing Toolbox – User’s Guide (MathWorks 2014) and the excellent book
by Gonzalez and others (2009) provide more detailed introductions to the
use of the various parameters available and the corresponding values of the
image enhancement functions.

Th e Image Processing Toolbox also includes numerous functions for 2D
fi ltering of images. Many of the methods we have looked at in Chapter 6
for one-dimensional data also work with two-dimensional data, as we have
already seen in Chapter 7 when fi ltering digital terrain models. Th e most
popular 2D fi lters for images are Gaussian fi lters and median fi lters, as well
as fi lters for image sharpening. Both Gaussian and median fi lters are used
to smooth an image, mostly with the aim of reducing the amount of noise.

348 8 IMAGE PROCESSING

In most examples the signal-to-noise ratio is unknown and adaptive fi lters
(similar to those introduced in Section 6.10) are therefore used for noise
reduction. A Gaussian fi lter can be designed using

h = fspecial('gaussian',20,10);
I7 = imfilter(I1,h);

where fspecial creates predefi ned 2D fi lters, such as moving average,
disk, or Gaussian fi lters. Th e Gaussian fi lter weights h are calculated using
fspecial('gaussian',20,10), where 20 corresponds the size of a 20-by-20
pixel fi lter following the shape of a Gaussian probability density function
with a standard devation of 10. Next, we calculate I8, which is a median-
fi ltered version of I1.

I8(:,:,1) = medfilt2(I1(:,:,1),[20 20]);
I8(:,:,2) = medfilt2(I1(:,:,2),[20 20]);
I8(:,:,3) = medfilt2(I1(:,:,3),[20 20]);

Since medfilt2 only works for two-dimensional data, we again apply the fi lter
separately to each color (red, green and blue). Th e fi lter output pixels are the
medians of the 20-by-20 neighborhoods around the corresponding pixels in
the input image.

Th e third fi lter example deals with sharpening an image using imsharpen.

I9 = imsharpen(I1);

Th is function calculates the Gaussian lowpass fi ltered version of the image
that is used as an unsharp mask, i.e., the sharpened version of the image is
calculated by subtracting the blurred fi ltered version from the original image.
Th e function comes with several parameters that control the ability of the
Gaussian fi lter to blur the image and the strength of the sharpening eff ect,
and a threshold specifying the minimum contrast required for a pixel to be
considered an edge pixel and sharpened by unsharp masking. Comparing
the results of the three fi ltering exercises with the original image

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,2), imshow(I7), title('Gaussian Filter')
subplot(2,2,3), imshow(I8), title('Median Filter')
subplot(2,2,4), imshow(I9), title('Sharpening Filter')

clearly demonstrates the eff ect of the 2D fi lters. As an alternative to these
time-domain fi lters, we can also design 2D fi lters with a specifi c frequency
response, such as the 1D fi lters described in Section 6.9. Again, the book by
Gonzalez and others (2009) provides an overview of 2D frequency-selective
fi ltering for images, including functions used to generate such fi lters. Th e
authors also demonstrate the use of a 2D Butterworth lowpass fi lter in image

8.8 IMAGE ENHANCEMENT, CORRECTION AND RECTIFICATION 349

processing applications.
We next rectify the image, i.e., we correct the image distortion by

transforming it to a rectangular coordinate system using a script that is
similar to that used for georeferencing satellite images in Section 8.5. Th is
we achieve by defi ning four points within the image, which are actually at the
corners of a rectangular area (which is our reference area). We fi rst defi ne the
upper left , lower left , upper right, and lower right corners of the reference area,
and then press return. Note that it is important to pick the coordinates of the
corners in this particular order. In this instance we use the original image
I1, but we could also use any other enhanced version of the image from the
previous exercises. As an example we can click the left side of the ruler at 1.5
cm and at 4.5 cm, where two thin white sediment layers cross the ruler, for
use as the upper-left and lower-left corners. We then choose the upper-right
and lower-right corners, further to the right of the ruler but also lying on the
same two white sediment layers,

imshow(I1)
basepoints = ginput

and click return which yields

basepoints =
 517.0644 508.9059
 511.5396 733.5792
 863.2822 519.9554
 859.5990 739.1040

or any similar values. Th e image and the reference points are then displayed
in the same fi gure window.

close all
imshow(I1)
hold on
line(basepoints(:,1),basepoints(:,2),...
 'LineStyle','none',...
 'Marker','+',...
 'MarkerSize',48,...
 'Color','b')
hold off

We arbitrarily choose new coordinates for the four reference points, which
are now on the corners of a rectangle. To preserve the aspect ratio of the
image, we select numbers that are the means of the diff erences between the
x- and y-values of the reference points in basepoints.

dx = (basepoints(3,1)+basepoints(4,1))/2- ...
 (basepoints(1,1)+basepoints(2,1))/2

350 8 IMAGE PROCESSING

dy = (basepoints(2,2)+basepoints(4,2))/2- ...
 (basepoints(1,2)+basepoints(3,2))/2

which yields

dx =
 347.1386

dy =
 221.9109

We therefore choose

inputpoints(1,:) = [0 0];
inputpoints(2,:) = [0 dy];
inputpoints(3,:) = [dx 0];
inputpoints(4,:) = [dx dy];

Th e function fitgeotrans now takes the pairs of control points, inputpoints
and basepoints, and uses them to infer a spatial transformation matrix tform
using the transformation type projective.

tform = fitgeotrans(inputpoints,basepoints,'projective');

We next need to estimate the spatial limits for the output, XBounds and
YBounds, corresponding to the projective transformation tform, and a set of
spatial limits for the input xLimitsIn and yLimitsIn.

xLimitsIn = 0.5 + [0 size(I1,2)]
yLimitsIn = 0.5 + [0 size(I1,1)]

[XBounds,YBounds] = outputLimits(tform,xLimitsIn,yLimitsIn)

Th en we use imref2d to reference the image to world coordinates.

Rout = imref2d(size(I1),XBounds,YBounds)

An imref2d object Rout encapsulates the relationship between the intrinsic
coordinates anchored to the rows and columns of the image and the spatial
location of the same row and column locations in a world coordinate system.
Finally, the projective transformation can be applied to the original RGB
composite I1 in order to obtain a rectifi ed version of the image (I10).

I10 = imwarp(I1,tform,'OutputView',Rout);

We now compare the original image I1 with the rectifi ed version I10.

subplot(2,1,1), imshow(I1), title('Original Image')
subplot(2,1,2), imshow(I10), title('Rectified Image')

8.8 IMAGE ENHANCEMENT, CORRECTION AND RECTIFICATION 351

We see that the rectifi ed image has black areas at the corners. We can remove
these black areas by cropping the image using imcrop.

I11 = imcrop(I10);

subplot(2,1,1), imshow(I1), title('Original Image')
subplot(2,1,2), imshow(I11), title('Rectified and Cropped Image')

Th e function imcrop creates displays of the image with a resizable rectangular
tool that can be interactively positioned and manipulated using the mouse.
Aft er manipulating the tool into the desired position, the image is cropped
by either double clicking on the tool or choosing Crop Image from the tool’s
context menu. Th e result of our image enhancement experiment can now be
used in the next section to analyze the colors of individual sediment layers.

 8.9 Color-Intensity Transects Across Varved Sediments

High-resolution core logging has, since the early 1990s, become popular as
an inexpensive tool for investigating the physical and chemical properties of
marine and lacustrine sediments. During the early days of nondestructive
core logging, magnetic susceptibility and grayscale intensity transects were
measured on board research vessels to generate a preliminary stratigraphy
of marine cores, since the cyclic recurrence of light and dark layers seemed
to refl ect glacial-interglacial cycles during the Pleistocene. Paleolimnologists
adopted these techniques to analyze annually-layered (varved) lake sediments
and to statistically detect short-term variabilities such as the 11 year sunspot
cycle, the 3-7 year El Niño cycle, or the 78 year Gleissberg cycle. Modern
multi-sensor core loggers are now designed to log a great variety of physical
and chemical properties using optical scanners, radiograph imaging, and
x-ray fl uorescence elemental analyzers.

As an example we explore varved sediments deposited around 33 kyrs
ago in a landslide-dammed lake in the Quebrada de Cafayate of Argentina
(Trauth et al. 1999, 2003). Th ese lake sediments have been intensively studied
for paleoclimate reconstructions since they document episodes of a wetter
and more variable climate that eventually fostered mass movements in the
NW Argentine Andes during the Late Pleistocene and Holocene. Aside from
various sedimentological, geochemical and micropaleontological analyses,
the colors of the sediments have been studied as a proxy for rainfall intensities
at the time of deposition. Color-intensity transects were analyzed to detect
interannual variations in precipitation caused by the El Niño/Southern
Oscillation (ENSO, 3–7 year cycles) and the Tropical Atlantic Sea-Surface
Temperature Variability (TAV, 10–15 year cycles) using linear and nonlinear

352 8 IMAGE PROCESSING

methods of time-series analysis (e.g., Trauth et al. 2000, Marwan et al. 2003).
Th e El Paso section in the Quebrada de Cafayate contains well-developed

annual layers in most parts of the profile (Fig. 8.7). Th e base of each of these
mixed clastic and biogenic varves consists of reddish silt and clay, with a
sharp lower boundary. Towards the top of the varves, reddish clay and silt are
gradually replaced by light-brown to greenish clay. Th e change from reddish
hues correlates with a slight decrease in grain size. Th is clastic portion of
the varves is capped by a thin layer of pure white diatomite. Diatomites are
sediments comprised mainly of porous siliceous skeletons of single-cell
algae, i.e. diatoms. Th is internal structure of the laminae is typical of annual-
layered sediments. Th e recurrence of these layers and the distribution of
diatoms, together with the sediment coloration and provenance, all provide
additional evidence that rhythmic sedimentation in this region was controlled
by a well-defi ned annual cycle. Th e provenance of the sediments contained
in the varved layers can be traced using index minerals characteristic of the
various possible source areas within the catchment. A comparison of the
mineral assemblages in the sediments with those of potential source rocks
within the catchment area indicates that Fe-rich Tertiary sedimentary rocks

Fig. 8.7 Photograph of varved lake sediments from the Quebrada de Cafayate in the Santa
Maria Basin, with cyclic occurrences of intense dark-red coloration refl ecting enhanced
precipitation and sediment input during ENSO- and TAV-type periodicities (350 cm above
the base of the El Paso section). Th e solid blue line denotes the course of the digitized color-
intensity transect. Th e red circles note the position of the diatomite layers, representing
annual layers.

8.9 COLOR-INTENSITY TRANSECTS ACROSS VARVED SEDIMENTS 353

exposed in the Santa Maria Basin were the source of the red-colored basal
portion of the varves. In contrast, metamorphic rocks in the mountainous
parts of the catchment area were the most likely source of the drab-colored
upper part of the varves.

In nearly every second to fift h, and every tenth to fourteenth varve,
the varve thickness increases by a factor of 1.5 to 2 and the basal reddish
coloration is more intense, suggesting a greater fluvial input of Fe-rich Tertiary
material. Exceptionally well-preserved sections containing 70–250 varves
were used for more detailed statistical analysis of the observed cyclicities
(see Chapter 5). High-quality photographs from these sections were scanned
and subjected to standardized color and illumination corrections. Pixel-
wide representative red-color intensities were subsequently extracted from
transects across the images of these varves. Th e resolution of these time
series was of the order of ten intensity values per varve.

We will now analyze a 22-year package of varved lake sediments from the
Quebrada de Cafayate as an example (Fig. 8.6). Th e photo was taking during
a fi eld expedition in the late 1990s using an analog camera. It was then
scanned and the contrast levels adjusted to heighten details using standard
photo processing soft ware. We import the image from the fi le varves_original.
tif as a 24-bit RGB image array and store the data in a variable I.

clear

I = imread('varves_original');

We display the image using imshow and turn the axis labeling, tick marks and
background back on.

imshow(I), axis on

Th e image is scaled to pixel indices or coordinates, so we fi rst need to scale
the image to a centimeter scale. While keeping the fi gure window open we
use ginput to count the number of pixels per centimeter. Th e function ginput
provides a crosshair with which to gather an unlimited number of points
forming a polygon, until the return key is pressed. We place the crosshair
at 1 cm and 6 cm on the scale in the image and click to gather the pixel
coordinates of the 5-cm interval.

[x,y] = ginput;

Th e image is size(I,2)=1830 pixels wide and size(I,1)=1159 pixels high. We
convert the width and the height of the image into centimeters using the
conversion 5/sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2), where 5 corres-

354 8 IMAGE PROCESSING

ponds to the 5 cm interval equivalent to the sqrt((y(2,1)-y(1,1))^2+(x(2,1)
-x(1,1))^2) pixels gathered using ginput.

ix = 5 * size(I,2) / sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2);
iy = 5 * size(I,1) / sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2);

We can now display the image using the new coordinate system where ix and
iy are the width and height of the image, respectively (in centimeters).

imshow(I,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')

We now digitize the color-intensity transect from the top of the image to
bottom. Th e function improfile determines the RGB pixel values C along line
segments defi ned by the coordinates [CX,CY].

[CX,CY,C] = improfile;

Th e scaled image and the polygon are displayed in the same fi gure window.
Th e three color-intensity curves are plotted in a separate window.

imshow(I,'XData',[0 ix],'YData',[0 iy]), hold on
plot(CX,CY), hold off

figure
plot(CY,C(:,1),'r',CY,C(:,2),'g',CY,C(:,3),'b')
xlabel('Centimeters'), ylabel('Intensity')

Th e image and the color-intensity profi les are on a centimeter scale. To detect
the interannual precipitation variability, as recorded in the color intensity of
the sediments, we need to convert the length scale to a time scale. We use the
22 white diatomite layers as time markers to defi ne individual years in the
sedimentary history. We again use ginput to mark the diatomite layers from
top to bottom along the color-intensity transect and store the coordinates of
the laminae in the new variable laminae.

imshow(I,'XData',[0 ix],'YData',[0 iy]), hold on
plot(CX,CY), hold off
laminae = ginput;

To inspect the quality of the age model we plot the image, together with the
polygon and the marked diatomite layers.

imshow(I,'XData',[0 ix],'YData',[0 iy])
hold on
plot(CX,CY)
plot(laminae(:,1),laminae(:,2),'ro')
xlabel('Centimeters'), ylabel('Centimeters')
hold off

8.9 COLOR-INTENSITY TRANSECTS ACROSS VARVED SEDIMENTS 355

We defi ne a new variable newlaminae that contains the vertical y-component
of laminae as the fi rst column and the years 1 to 22 (counting backwards
in time) as the second colum. Th e 22 years are equivalent to the length
of laminae. Th e function interp1 is used to interpolate the color-intensity
transects over an evenly-spaced time axis stored in the variable age.

newlaminae(:,1) = laminae(:,2);
newlaminae(:,2) = 1 : length(laminae(:,2));
age = interp1(newlaminae(:,1),newlaminae(:,2),CY);

We complete the analysis by plotting the color-intensity curves on both a
length and a time scale for comparison (Fig. 8.8).

subplot(2,1,1), plot(CY,C(:,1),CY,C(:,2),CY,C(:,3))
xlabel('Centimeters'), ylabel('Intensity'), title('Color vs. Length')
subplot(2,1,2), plot(age,C(:,1),age,C(:,2),age,C(:,3))
xlabel('Years'), ylabel('Intensity'), title('Color vs. Age')

Th e interpolated color-intensity transects can now be further analyzed
using the time-series analysis tools. Th e analysis of a representative red-
color intensity transect across 70–250 varves during the project described

Fig. 8.8 Color-intensity curves (red, green and blue) plotted against a depth and b age.

a

b

356 8 IMAGE PROCESSING

above revealed significant peaks at about 13.1, 3.2, 2.2 and 1.0 yrs, suggesting
both ENSO and TAV infl uences in the area at around 33,000 years ago (see
Chapter 5 and Fig. 5.1).

 8.10 Grain Size Analysis from Microscope Images

Identifying, measuring and counting particles in an image are the classic
applications of image analysis. Examples from the geosciences include
grain size analysis, counting pollen grains, and determining the mineral
composition of rocks from thin sections. For grain size analysis the task is to
identify individual particles, measure their sizes, and then count the number
of particles per size class. Th e motivation to use image analysis is the ability to
perform automated analyses of large sets of samples in a short period of time
and at relatively low costs. Th ree diff erent approaches are commonly used to
identify and count objects in an image: (1) region-based segmentation using
the watershed segmentation algorithm, (2) object detection using the Hough
transform, and (3) thresholding using color diff erences to separate objects.
Gonzalez, Woods and Eddins (2009) describe these methods in great detail
in the 2nd edition of their excellent book, which also provides numerous
MATLAB recipes for image processing. Th e book has a companion webpage
at

http://www.imageprocessingplace.com/

that off ers additional support in a number of important areas (including
classroom presentations, M-fi les, and sample images) as well as providing
numerous links to other educational resources. We will use two examples
to demonstrate the use of image processing for identifying, measuring, and
counting particles. In this section we will demonstrate an application of
watershed segmentation in grain size analysis and then in Section 8.9 we will
introduce thresholding as a method for quantifying charcoal in microscope
images. Both applications are implemented in the MATLAB-based RADIUS
soft ware developed by Klemens Seelos from the University of Mainz (Seelos
and Sirocko 2005). RADIUS is a particle-size measurement technique, based
on the evaluation of digital images from thin sections that off ers a sub-mm
sample resolution and allows sedimentation processes to be studied within
the medium silt to coarse sand size range. It is coupled with an automatic
pattern recognition system for identifying sedimentation processes within
undisturbed samples. Th e MATLAB code for RADIUS can be downloaded
from

http://www.particle-analysis.info/

8.10 GRAIN SIZE ANALYSIS FROM MICROSCOPE IMAGES 357

Th e following example for object segmentation illustrates the segmentation,
measuring, and counting of objects using the watershed segmentation
algorithm (Fig. 8.9). We fi rst read an image of coarse lithic grains of diff erent
sizes and store it in the variable I1. Th e size of the image is 284-by-367 pixels
and, since the width is 3 cm, the height is 3 cm∙284/367=2.32 cm.

clear

I1 = imread('grainsize.tif');
ix = 3; iy = 284 * 3 / 367;
imshow(I1,'XData',[0 ix],'YData',[0 iy])
title('Original Image')

Here, ix and iy denote the coordinate axes used to calibrate the image I1 to
a centimeter scale. Th e true number of objects counted in this image is 236,
including three grains that overlap the borders of the image and will therefore
be ignored in the following exercise. We reject the color information of the
image and convert I1 to grayscale using the function rgb2gray.

I2 = rgb2gray(I1);
imshow(I2,'XData',[0 ix],'YData',[0 iy])
title('Grayscale Image')

Th is grayscale image I2 has a relatively low level of contrast. We therefore
use the function imadjust to adjust the image intensity values. Th e function
imadjust maps the values in the intensity image I2 to new values in I3, such
that 1% of the data is saturated at low and high intensities. Th is increases the
contrast in the new image I3.

I3 = imadjust(I2);
imshow(I3,'XData',[0 ix],'YData',[0 iy])
title('Adjusted Intensity Values')

We next determine the background of the I3 image, which means basically
the texture of the black foil on which the grains are located. Th e function
imopen(im,se) determines objects in an image im with a specifi c shape se
(a fl at structuring element such as a circular disk) and size (expressed as a
specifi c number of pixels), as defi ned by the function strel. We then produce
a background-free image, I4.

I4 = imopen(I3,strel('disk',1));
imshow(I4,'XData',[0 ix],'YData',[0 iy])
title('No Background')

We subtract the background-free image I4 from the original grayscale image
I3 to observe the background I5 that has been eliminated.

358 8 IMAGE PROCESSING

Fig. 8.9 Results from automated grain size analysis of a microscope image; a original
grayscale image, b image aft er removal of background, c image aft er conversion to binary
image, d image aft er eliminating objects overlapping the image border, e image with objects
detected by tracing the boundaries of connected pixels, and f image with objects detected
using a watershed segmentation algorithm.

a b

c

e f

d

8.10 GRAIN SIZE ANALYSIS FROM MICROSCOPE IMAGES 359

I5 = imsubtract(I3,I4);
imshow(I5,'XData',[0 ix],'YData',[0 iy])
title('Background')

Th e function im2bw converts the background-free image I4 to a binary
image I6 by thresholding. If the threshold is 1.0 the image is all black,
corresponding to the pixel value of 0. If the threshold is 0.0 the image is all
white, corresponding to a pixel value of 1. We manually change the threshold
value until we get a reasonable result and fi nd 0.2 to be a suitable threshold.

I6 = im2bw(I4,0.2);
imshow(I6,'XData',[0 ix],'YData',[0 iy])
title('Binary Image')

We next eliminate objects in I6 that overlap the image border, since they are
actually larger than shown in the image and will result in false estimates. We
eliminate these using imclearborder and generate image I7.

I7 = imclearborder(I6);
himage1 = imshow(I6,'XData',[0 ix],'YData',[0 iy]); hold on
set(himage1, 'AlphaData', 0.7);
himage2 = imshow(imsubtract(I6,I7),'XData',[0 ix],'YData',[0 iy]);
set(himage2, 'AlphaData', 0.4);
title('Image Border'), hold off

We then trace the boundaries using bwboundaries in a binary image where
non-zero pixels belong to an object and zero pixels are background. By
default, the function also traces the boundaries of holes in the I7 image.
We therefore choose the option noholes to suppress the tracing of the holes.
Function label2grb converts the label matrix L resulting from bwboundaries
to an RGB image. We use the colormap jet, the zerocolor w for white,
and the color order shuffle (which simply shuffl es the colors of jet in a
pseudorandom manner).

[B,L] = bwboundaries(I7,'noholes');
imshow(label2rgb(L,@jet,'w','shuffle'),...
 'XData',[0 ix],'YData',[0 iy])
title('Define Objects')

Th e function bwlabeln is used to obtain the number of connected objects
found in the binary image. Th e integer 8 defi nes the desired connectivity,
which can be either 4 or 8 in two-dimensional neighborhoods. Th e elements
of L are integer values greater than or equal to 0. Th e pixels labeled 0 are the
background. Th e pixels labeled 1 make up one object, the pixels labeled 2
make up a second object, and so on.

[labeled,numObjects] = bwlabeln(I7,8);

360 8 IMAGE PROCESSING

numObjects

In our example the method identifi ed 192 grains, which is signifi cantly less
than the 236 grains counted manually, reduced by the three objects that
overlap the borders of the image. Visual inspection of the color-coded image
generated by bwboundaries reveals the reason for the underestimated number
of grains. Two large grains in the middle of the image have been observed as
being connected, giving a single, very large grain in the fi nal result. Reducing
the disk size with strel from disk=1 to disk=5 can help separate connected
grains. Larger disks, on the other hand, reduce the number of grains because
smaller grains are lost by fi ltering. We now determine the areas of each of
the grains.

graindata = regionprops(labeled,'basic');
grainareas= [graindata(:).Area];
objectareas = 3^2 * grainareas * 367^(-2);

We then fi nd the maximum, minimum and mean areas for all grains in the
image, in cm2.

max_area = max(objectareas)
min_area = min(objectareas)
mean_area = mean(objectareas)

Th e connected grain in the middle of the image has a size of 0.16 cm2, which
represents the maximum size of all grains in the image. Finally, we plot the
histogram of all the grain areas.

clf
e = 0 : 0.0005 : 0.15;
histogram(objectareas,e)
xlabel('Grain Size in Millimeters^2')
ylabel('Number of Grains')
axis([0 0.1 0 30])

Several methods exist that partly overcome the artifact of connected
grains in grain size analyses. Th e most popular technique for region-based
segmentation is the watershed segmentation algorithm. Watersheds in
geomorphology are ridges that divide areas contributing to the hydrological
budget of adjacent catchments (see Section 7.10). Watershed segmentation
applies to grayscale images the same methods used to separate catchments
in digital elevation models. In this application, the grayscale values are
interpreted as elevations in a digital elevation model, where the watershed
then separates the two objects of interest.

Th e criterion commonly used to identify pixels that belong to one object
is the nearest-neighbor distance. We use the distance transform performed

8.10 GRAIN SIZE ANALYSIS FROM MICROSCOPE IMAGES 361

by bwdist, which assigns to each pixel a number that is the distance between
a pixel and the nearest non-zero pixel in I7. In an image in which objects
are identifi ed by pixel values of zero and the background by pixel values of
one, the distance transform has zeros in the background areas and non-zero
values that increase progressively with increasing distances from the edges
of the objects. In our example however, the objects have pixel values of one
and the background has pixels with with values of zero. We therefore have
to apply bwdist to the complement of the binary image I7 instead of to the
image itself.

D = bwdist(~I7,'cityblock');

Th e function bwdist provides several methods for computing the nearest-
neighbor distances, including Euclidean distances, cityblock distances,
chessboard distances and quasi-Euclidean distances. We choose the cityblock
option in this particular example, but other methods might be more
appropriate for separating objects in other images. Th e distance matrix now
contains positive non-zero values in the object pixels and zeros elsewhere.
We then complement the distance transform, and ascribe a value of -Inf to
each pixel that does not belong to an object.

D = -D;
D(~I7) = -Inf;

We compute the watershed transform for the distance matrix, and display
the resulting label matrix.

L2 = watershed(D);
imshow(label2rgb(L2,@jet,'w','shuffle'),...
 'XData',[0 ix],'YData',[0 iy])
title('Watershed Segmentation')

Aft er having displayed the results from watershed segmentation, we
determine the number of pixels for each object using the recipe from above,
except for index i running from 2 to max(objects) since the value 1 denotes
the background and 0 denotes the boundaries of the objects. Th e fi rst true
object is therefore marked by the value of 2.

objects = sortrows(L2(:),1);
max(objects)
clear objectsizes
for i = 2 : max(objects)
 clear individualobject
 individualobject = objects(objects == i);
 objectsizes(i) = length(individualobject);
end
objectsizes = objectsizes';

362 8 IMAGE PROCESSING

objectsizes = sortrows(objectsizes,1);
objectsizes = objectsizes(objectsizes~=0);

We have now recognized 205 objects, i.e., more objects than were identifi ed
in the previous exercise without watershed segmentation. Visual inspection
of the result, however, reveals some oversegmentation (due to noise or other
irregularities in the image) in which larger grains are divided into smaller
pieces. On the other hand, very small grains have been eliminated by fi ltering
the image with the morphological structuring element strel. We scale the
object sizes. Th e area of one pixel is (3 cm/367)2.

objectareas = 3^2 * objectsizes * 367^(-2);

We now determine the areas for each of the grains. We again fi nd the
maximum, minimum and mean areas for all grains in the image, in cm2.

max_area = max(objectareas)
min_area = min(objectareas)
mean_area = mean(objectareas)

Th e largest grain in the center of the image has a size of 0.09 cm2, which
represents the maximum size of all grains in the image. Finally, we plot the
histogram of all the grain areas.

clf
e = 0 : 0.0005 : 0.15;
histogram(objectareas,e)
xlabel('Grain Size in Millimeters^2'),...
 ylabel('Number of Grains')
axis([0 0.1 0 70])

As a check of the fi nal result we digitize the outline of one of the larger grains
and store the polygon in the variable data.

figure
imshow(I1,'XData',[0 ix],'YData',[0 iy])
data = ginput;

We close the polygon by copying the fi rst row of coordinates to the end of the
array. We then display the polygon on the original image.

data(end+1,:) = data(1,:)

imshow(I1,'XData',[0 ix],'YData',[0 iy]), hold on
plot(data(:,1),data(:,2)), hold off

Th e function polyarea yields the area of the large grain.

polyarea(data(:,1),data(:,2))

8.10 GRAIN SIZE ANALYSIS FROM MICROSCOPE IMAGES 363

ans =
 0.0951

Th e calculated area corresponds approximately to the result from the
grain size analysis. If oversegmentation is a major problem when using
segmentation to count objects in an image, the reader is referred to the book
by Gonzalez, Woods and Eddins (2009) that describes marker-controlled
watershed segmentation as an alternative method to avoid oversegmentation.

 8.11 Quantifying Charcoal in Microscope Images

Quantifying the composition of substances in geosciences, such as the
mineral composition of a rock in thin sections, or the amount of charcoal
in sieved sediment samples, is facilitated by the use of image processing
methods. Th resholding provides a simple solution to segmenting objects
within an image that have diff erent coloration or grayscale values. During the
thresholding process, pixels with an intensity value greater than a threshold
value are marked as object pixels (e.g., pixels representing charcoal in an
image) and the rest as background pixels (e.g., all other substances). Th e
threshold value is usually defi ned manually through visual inspection of the
image histogram, but numerous automated algorithms are also available.

As an example we analyze an image of a sieved lake-sediment sample
from Lake Nakuru, Kenya (Fig. 8.10). Th e image shows abundant light-gray
oval ostracod shells and some mineral grains, as well as gray plant remains
and black charcoal fragments. We use thresholding to separate the dark
charcoal particles and count the pixels of these particles aft er segmentation.
Aft er having determined the number of pixels for all objects distinguished
from the background by thresholding, we use a lower threshhold value to
determine the ratio of the number of pixels representing charcoal to the
number of pixels representing all particles in the sample, i.e., to determine
the percentage of charcoal in the sample.

We read the image of size 1500-by-1500 pixels and assume that the width
and the height of the square image are both one centimeter.

clear

I1 = imread('lakesediment.jpg');
ix = 1; iy = 1;
imshow(I1,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeter'), ylabel('Centimeter')
title('Original Image')

Th e RGB color image is then converted to a grayscale image using the
function rgb2gray.

364 8 IMAGE PROCESSING

I2 = rgb2gray(I1);
imshow(I2,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Grayscale')

Since the image contrast is relatively low, we use the function imadjust to
adjust the image intensity values. Th e function imadjust maps the values
in the intensity image I1 to new values in I2, such that 1% of the data is
saturated at low and high intensities of I2. Th is increases the contrast in the
new image I2.

I3 = imadjust(I2);
imshow(I3,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Better Contrast')

We next determine the background of the lithic grains, which basically
means the texture of the black foil on which the grains are located. Th e
function imopen(im,se) determines objects in an image im below a certain
pixel size and a fl at structuring element se, such as a disk with a radius of 5
pixels generated by the function strel. Th e variable I4 is the background-
free image resulting from this operation.

I4 = imopen(I3,strel('disk',5));
imshow(I4,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('W/O Background')

We subtract the background-free image I4 from the original grayscale image
I3 to observe the background I5 that has been eliminated.

I5 = imsubtract(I3,I4);
imshow(I5,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Background')

Th e function im2bw converts the I4 image to a binary image (I6) by
thresholding. If the threshold is 1.0 the image is all black, corresponding to
a pixel value of 0. If the threshold is 0.0 the image is all white, corresponding
to a pixel value of 1. We manually change the threshold value until we get a
reasonable result. In our example a threshold of 0.03 gives good results for
identifying charcoal fragments.

I6 = im2bw(I4,0.03);
imshow(I6,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Only Charcoal')

8.11 QUANTIFYING CHARCOAL IN MICROSCOPE IMAGES 365

Fig. 8.10 Display of results from automatic quantifi cation of charcoal in a microscope image;
a original color image, b grayscale image, c image aft er enhancement of contrast, d image aft er
removal of background, e image aft er thresholding to separate charcoal particles, and f image
aft er thresholding to separate all objects.

a b

c

e f

d

366 8 IMAGE PROCESSING

Since we know the size of a pixel we can now simply count the number of
pixels to estimate the total amount of charcoal in the image. Finally, we
compute the area of all objects, including charcoal.

I7 = im2bw(I4,0.6);
imshow(I7,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('All Objects')

We are not interested in the absolute areas of charcoal in the image but in the
percentage of charcoal in the sample.

100*sum(sum(I6==0))/sum(sum(I7==0))

ans =
 13.4063

Th e result suggests that approximately 13% of the sieved sample is charcoal.
As a next step, we could quantify the other components in the sample, such
as ostracods or mineral grains, by choosing diff erent threshold values.

 8.12 Shape-Based Object Detection in Images

Th e counting of objects within images on the basis of their shapes is a very
time-consuming task. Examples of where this is carried out for round objects
include the counting of planktonic foraminifera shells to infer past sea-
surface temperatures, of diatom frustules to infer past chemical composition
of lake water, and of pollen grains to determine assemblages that can be used
to reconstruct regional air temperature and precipitation. Linear objects that
are determined include faults in aerial photos and satellite images (to derive
the present-day stress fi eld of an area) and annual layers (varves) in thin
sections (to establish an annually-resolved sedimentary history).

Th e Hough transform, named aft er the related 1962 patent of Paul VC
Hough, is a popular technique with which to detect objects within images,
based on their shapes. Th e Hough transform was orginally used to detect
linear features, but soon aft er being patented it was generalized to identify
objects of any shape (Duda and Hart 1972, Ballard 1981). Th e book by
Gonzalez and others (2009) contains a comprehensive introduction to the
Hough transform and its applications for detecting objects within images.
According to their introduction to the method, the Hough transform is
performed in two steps. In the fi rst step an edge detector is used to extract
edge features, such as distinct sediment layers or the outlines of pollen grains,
from an image (Fig. 8.13). In the second step lines (or objects of any other
shape) that trace these edge features are identifi ed. Th e Image Processing

8.12 SHAPE-BASED OBJECT DETECTION IN IMAGES 367

Toolbox (MathWorks 2014) contains functions that use the Hough transform
to detect lines or circular objects.

Th e classic Hough transform is used to detect lines in images. Aft er
applying an edge detector of any kind we end up with a binary image that
has black pixels on the edges and white pixels in between. We next describe
the lines through a given black pixel by the Euklidean distance ρ between the
line and the origin, and by the angle θ of the vector from the origin to the
closest point on the line (Fig. 8.11 a):

Th e family of all lines passing through this particular pixel (xi,yi) of an edge
feature are displayed as a sinusoidal curve in the (θ,ρ) parameter space
(Fig. 8.11 b). Th e intersection point (θ',ρ') of two such sinusoidal curves
corresponds to the line that passes through two diff erent pixels, (x1,y1) and
(x2,y2), of an edge feature. Next, we search for n points (xi,yi) in the Hough
transform where many lines intersect, since these are points defi ning the line
tracing an edge feature. Detecting circles instead of lines works in a similar
manner, using the coordinates of the center of the circle and its radius instead
of ρ and θ.

For our a fi rst example we use these functions to detect the thin layers of
pure white diatomite within varved sediments exposed in the Quebrada de
Cafayate of Argentina, which have already been used as examples in previous
sections (Trauth et al. 1999, 2003) (Fig. 8.12). Th e quality of the image is not
perfect, which is why we can not expect optimal results. We fi rst read the
cropped version of the laminated sediment from Section 8.8 and store it in
the variable I1. Th e size of the image is 1,047-by-1,691 pixels, consisting of
three colors (red, green and blue).

clear

I1 = imread('varves_cropped.tif');
imshow(I1,'InitialMagnification',30)

We reject the color information of the image and convert I1 to grayscale
using the function rgb2gray.

I2 = rgb2gray(I1);
imshow(I2,'InitialMagnification',30)

We then use adapthisteq to perform a contrast-limited adaptive histogram
equalization (CLAHE), in order to enhance the contrast in the image
(Zuiderveld 1994).

368 8 IMAGE PROCESSING

Fig. 8.11 Th e concept of the Hough transform: a parametrization of lines in the xy-plane, and
b sinusoidal curves in the pθ parameter space, with the point of intersection corresponding to
the line that passes through two diff erent pixels of an edge feature (modifi ed from Gonzales
et al. 2009).

a b

I3 = adapthisteq(I2,'ClipLimit',0.1,'Distribution','Rayleigh');
imshow(I3,'InitialMagnification',30)

Here, ClipLimit limits the contrast enhancement using a real scalar from 0 to
1, with higher numbers resulting in greater contrast; the default value is 0.01.
Th e Distribution parameter defi nes the desired histogram shape for the tiles
by specifying a distribution type, such as Uniform, Rayleigh and Exponential.
Using a ClipLimit of 0.1 and a Rayleigh distribution yields good results.
Using the function im2bw then converts the I3 image to a binary image (I4) by
thresholding. If the threshold is 1.0 the image is all black, corresponding to
the pixel value of 0. If the threshold is 0.0 the image is all white, corresponding
to a pixel value of 1. We manually change the threshold value until we get a
reasonable result and fi nd 0.55 to be a suitable threshold.

I4 = im2bw(I3, 0.55);
imshow(I4,'InitialMagnification',30)

Th e function hough implements the Hough transform, houghpeaks fi nds
the high-count accumulator cells in the Hough transform, and houghlines
extracts lines in the original image, based on the other two functions. We
determine the n=15 lines corresponding to the fi rst 15 maxima of the Hough
transform and store fi ft een of the lines (lines 1 to 5, 6 to 10, and 11 to 15) in
three separate variables lines1, lines2 and lines3.

[H,theta,rho] = hough(I4);
peaks = houghpeaks(H,15);

8.12 SHAPE-BASED OBJECT DETECTION IN IMAGES 369

a b

c

e

d

Fig. 8.12 Automated detection of thin layers of pure white diatomite within varved sediments
exposed in the Quebrada de Cafayate of Argentina, using houghlines (Trauth et al. 1999,
2003); a grayscale image, b enhanced image, c binary image, d image with diatomite layers
marked by red lines, and e Hough transform of the image.

370 8 IMAGE PROCESSING

lines1 = houghlines(I4,theta,rho,peaks(1:5,:));
lines2 = houghlines(I4,theta,rho,peaks(6:10,:));
lines3 = houghlines(I4,theta,rho,peaks(11:15,:));

We then display the Hough transform and mark the 15 maxima of the Hough
transform with blue squares.

imshow(imadjust(mat2gray(H)),[], ...
 'XData',theta, ...
 'YData',rho, ...
 'InitialMagnification','fit')
colormap(hot), axis square, hold on
plot(theta(peaks(:,2)),rho(peaks(:,1)), ...
 'LineStyle','none', ...
 'Marker','s', ...
 'Color','b')
xlabel('\theta')
ylabel('\rho')
title('Hough Transform')

Th e variables lines1, lines2 and lines3 can now be used to display the
lines on the image, with the line thickness decreasing from lines3 to lines1
depending on the rank of the lines in the Hough transform.

imshow(I1,'InitialMagnification',30), hold on
for k = 1:length(lines1)
xy = [lines1(k).point1; lines1(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',3,'Color',[1 0 0]);
end
hold on
for k = 1:length(lines2)
xy = [lines2(k).point1; lines2(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color',[1 0 0]);
end
for k = 1:length(lines3)
xy = [lines3(k).point1; lines3(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',1,'Color',[1 0 0]);
end

Th e result shows that the clearly recognizable white layers are well detected
whereas the less pronounced layers are not identifi ed. Th e method also
mistakenly marks non-existing lines on the image because of the low
quality of the image. Using a better quality image and carefully adjusting the
parameters used with the Hough transform will yield better results.

In the second example the Hough transform is used to automatically
count pollen grains in a microscope image of Argentine honey (Fig. 8.13).
Th e quality of the image is again not perfect, which is why we can not expect
optimum results. In particular, the image of three-dimensional objects was
taken with a very large magnifi cation, so it is slightly blurred. We fi rst read
the pollen image and store it in the variable I1. Th e size of the image is 968-

8.12 SHAPE-BASED OBJECT DETECTION IN IMAGES 371

by-1,060 pixels of three colors (red, green and blue). Since the image is
relatively large, we reduce the image size by a factor of two.

clear

I1 = imread('pollen.jpg');
I1 = I1(1:2:end,1:2:end,:);
imshow(I1,'InitialMagnification',100)

We reject the color information of the image and use the red color only.

I2 = I1(:,:,1);
imshow(I2,'InitialMagnification',100)

Next, we use adapthisteq to perform a contrast-limited adaptive histogram
equalization (CLAHE) in order to enhance the contrast in the image
(Zuiderveld 1994).

I3 = adapthisteq(I2);
imshow(I3,'InitialMagnification',100)

Th e function imfindcircles implements the Hough transform and extracts
circles from the original image.

[centers,radii] = imfindcircles(I3,[12 20],...
 'Method','TwoStage',...
 'ObjectPolarity','Bright',...
 'Sensitivity',0.92,...
 'EdgeThreshold',0.20);
num = length(centers);
nstr = ['Number of Pollen Grains: ',num2str(num)];

Herein we use the TwoStage detection method for a two-stage circular Hough
transform, following the procedure described by Yuen et al. (1990) and
Davies (2005). Th e object polarity is set to bright as we are looking for bright
rather than dark objects in our image. Th e sensitivity of 0.92 and the edge
threshold of 0.20 are found by trial and error. We then use viscircles to
display the circles on the grayscale image I2

imshow(I2,'InitialMagnification',100)
viscircles(centers, radii,'EdgeColor','b')
title(nstr)

using the output centers and radii from imfindcircles. Th e edge color of
the circles in the graphics is set to b for blue. Th e result shows that we have
counted 884 pollen grains with the method. Th e algorithm identifi es the
majority of the objects, but some are not recognized and some of the larger
objects are mistakenly identifi ed as two or more pollen grains. Using a better

372 8 IMAGE PROCESSING

quality image and carefully adjusting the parameters used with the Hough
transform will yield better results. Plotting the histogram of the pollen radii
using histogram

histogram(radii)

reveals that most of the grains have a radius of around 15 pixels.

 Recommended Reading

Abrams M, Hook S (2002) ASTER User Handbook – Version 2. Jet Propulsion Laboratory
and EROS Data Center, Sioux Falls

Ballard DH (1981) Generalizing the Houghtransform to detectarbitraryshapes. Pattern
Recognition 13:111–122

Barry P (2001) EO-1/Hyperion Science Data User’s Guide. TRW Space, Defense & Information
Systems, Redondo Beach, CA

Beck R (2003) EO-1 User Guide. USGS Earth Resources Observation Systems Data Center
(EDC), Sioux Falls, SD

Campbell JB (2002) Introduction to Remote Sensing. Taylor & Francis, London
Davies ER (2005) Machine Vision: Th eory, Algorithms, Practicalities – 3rd Edition. Morgan

Kauff man Publishers, Burlington MA
Duda RO, Hart PE (1972) Use of the Hough transform to Detect Lines and Curves in Pictures.

Communications of the ACM 15:11–15
Francus P (2005) Image Analysis, Sediments and Paleoenvironments – Developments in

Paleoenvironmental Research. Springer, Berlin Heidelberg New York

a b

Fig. 8.13 Automated detection of pollen grains (mostly Asteraceae and less abundant
Caesalpiniaceae and Lamiaceae pollen) in a microscope image of Argentine honey, using
imfindcircles (original image courtesy K Schittek and F Flores); a original RGB image, b
pollen grains detected using the Hough transform.

RECOMMENDED READING 373

Gonzalez RC, Woods RE, Eddins SL (2009) Digital Image Processing Using MATLAB – 2nd
Edition. Gatesmark Publishing, LLC

Hough PVC (1962) Method and Means for Recognizing Complex Patterns. US Patent No.
3069654

Irons J, Riebeek H, Loveland T (2011) Landsat Data Continuity Mission – Continuously
Observing Your World. NASA and USGS (available online)

Jensen JR (2013) Remote Sensing of the Environment: Pearson New International Edition.
Pearson, London

Lein JK (2012) Environmental Sensing – Analytical Techniques for Earth Observation.
Springer, Berlin Heidelberg New York

Mandl D, P Cruz, S Frye, Howard, J (2002) A NASA/USGS Collaboration to Transform Earth
Observing-1 Into a Commercially Viable Mission to Maximize Technology Infusion.
SpaceOps 2002, Houston, TX, October 9–12, 2002

Marwan N, Trauth MH, Vuille M, Kurths J (2003) Nonlinear time-series analysis on present-
day and Pleistocene precipitation data from the NW Argentine Andes. Climate Dynamics
21:317–326

MathWorks (2014) Image Processing Toolbox – User’s Guide. Th e MathWorks, Inc., Natick,
MA

Ochs B., Hair D, Irons J, Loveland T (2009) Landsat Data Continuity Mission, NASA and
USGS (available online)

Richards JA (2013) Remote Sensing Digital Image Analysis – 4th Edition. Springer, Berlin
Heidelberg New York

Seelos K, Sirocko F (2005) RADIUS – Rapid Particle Analysis of digital images by ultra-high-
resolution scanning of thin sections. Sedimentology 52:669–681

Trauth MH, Bookhagen B, Marwan N, Strecker MR (2003) Multiple landslide clusters
record Quaternary climate changes in the NW Argentine Andes. Palaeogeography
Palaeoclimatology Palaeoecology 194:109–121

Trauth MH, Alonso RA, Haselton KR, Hermanns RL, Strecker MR (2000) Climate change
and mass movements in the northwest Argentine Andes. Earth and Planetary Science
Letters 179:243–256

Trauth MH, Strecker MR (1999) Formation of landslide-dammed lakes during a wet
period between 40,000–25,000 yr B.P. in northwestern Argentina. Palaeogeography
Palaeoclimatology Palaeoecology 153:277–287

Yuen HK, Princen J, Illingworth J, Kittler J (1990) Comparative study of Hough transform
methods for circle fi nding. Image and Vision Computing 8:71–77

Zuiderveld K (1994) Contrast Limited Adaptive Histograph Equalization. Graphic Gems IV.
San Diego: Academic Press Professional, 474–485

374 8 IMAGE PROCESSING

	8 Image Processing
	8.1 Introduction
	8.2 Data Storage
	8.3 Importing, Processing and Exporting Images
	8.4 Importing, Processing and Exporting LANDSAT Images
	8.5 Importing and Georeferencing TERRA ASTER Images
	8.6 Processing and Exporting EO-1 Hyperion Images
	8.7 Digitizing from the Screen
	8.8 Image Enhancement, Correction and Rectification
	8.9 Color-Intensity Transects Across Varved Sediments
	8.10 Grain Size Analysis from Microscope Images
	8.11 Quantifying Charcoal in Microscope Images
	8.12 Shape-Based Object Detection in Images
	Recommended Reading

