
 5.1 Introduction

Time-series analysis aims to investigate the temporal behavior of a variable 
x(t). Examples include the investigation of long-term records of mountain 
uplift , sea-level fl uctuations, orbitally-induced insolation variations and 
their infl uence on the ice-age cycles, millennium-scale variations in the 
atmosphere-ocean system, the eff ect of the El Niño/Southern Oscillation on 
tropical rainfall and sedimentation (Fig. 5.1), and tidal infl uences on noble 
gas emissions from bore holes. Th e temporal pattern of a sequence of events 
can be random, clustered, cyclic, or chaotic. Time-series analysis provides 
various tools with which to detect these temporal patterns. Understanding 
the underlying processes that produced the observed data allows us to 
predict future values of the variable. We use the Signal Processing and 
Wavelet Toolboxes, which contain all the necessary routines for time-series 
analysis (MathWorks 2014a and b).

Section 5.2 discusses signals in general and contains a technical 
description of how to generate synthetic signals for time-series analysis. 
Th e use of spectral analysis to detect cyclicities in a single time series (auto-
spectral analysis) and to determine the relationship between two time series 
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 Alternations of clayey and silty layers in the 
Upper Triassic sediments near Heilbronn 
in Germany, indicating cyclic changes in 
environmental conditions. Time-series analysis 
aims to investigate the temporal behavior of 
a variable such as grainsize. Together with 
age determinations, this method can be used 
to determine the period of the cycles and to 
speculate about the mechanism that caused 
the rhythmic changes in grain size.
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as a function of frequency (cross-spectral analysis) is then demonstrated in 
Sections 5.3 and 5.4. Since most time series in earth sciences have uneven 
time intervals, various interpolation techniques and subsequent methods 
of spectral analysis are required, and these are introduced in Section 5.5. 
Evolutionary power spectra to map changes in cyclicity through time 
are demonstrated in Section 5.6. An alternative technique for analyzing 
unevenly-spaced data is explained in Section 5.7. Section 5.8 introduces 
the very popular wavelet power spectrum, which is able to map temporal 
variations in the spectra in a similar way to the method demonstrated in 
Section 5.6. Section 5.9 then introduces a non-parametric method to detect 
abrupt transitions in central tendency and dispersion within time series. 
Th is chapter closes with an overview of nonlinear techniques, in particular 
the method of recurrence plots (Section 5.10).

 5.2 Generating Signals

A time series is an ordered sequence of values of a variable x(t) at certain 
times tk.

a b

Fig. 5.1 a Photograph of ca. 30 kyr-old varved sediments from a lake in the Andes of 
Northwest Argentina. Th e distribution of the source rocks and the interannual precipitation 
pattern in the area suggest that the reddish-brown layers refl ect cyclic recurrences of enhanced 
precipitation, erosion, and sediment input into the lake. b Th e power spectrum of a red-
color intensity transect across 70 varves is dominated by signifi cant peaks at frequencies of 
ca. 0.076, 0.313, 0.455 and 1.0 yrs-1. Th ese cyclicities suggest a strong infl uence of the tropical 
Atlantic sea-surface temperature (SST) variability, the El Niño/Southern Oscillation (ENSO), 
and the annual cycle that occurred 30 kyrs ago, similar to today’s cyclicities (Trauth et al. 
2003).
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If the time interval between any two successive observations x(tk) and x(tk+1) 
is constant, the time series is said to be equally spaced and the sampling 
interval is

Th e sampling frequency fs is the inverse of the sampling interval Δt. We 
generally try to sample at regular time intervals or constant sampling 
frequencies, but in many earth science examples this is not possible. As an 
example, imagine deep-sea sediments sampled at fi ve-centimeter intervals 
along a sediment core. Radiometric age determinations at certain levels in 
the sediment core revealed signifi cant fl uctuations in the sedimentation 
rates. Despite the samples being evenly spaced along the sediment core they 
are not equally spaced on the time axis. Here, the quantity

where T is the full length of the time series and N is the number of data 
points, represents only an average sampling interval. In general, a time series 
x(tk) can be represented as the linear sum of a periodic component xp(tk), a 
long-term component or trend xtr(tk), and random noise xn(tk).

Th e long-term component is a linear or higher-degree trend that can be 
extracted by fi tting a polynomial of a certain degree and subtracting the 
values of this polynomial from the data (see Chapter 4). Noise removal will 
be described in Chapter 6. Th e periodic – or cyclic in a mathematically less 
rigorous sense – component can be approximated by a linear combination of 
sine (or cosine) waves that have diff erent amplitudes Ai, frequencies fi, and 
phase angles ψi.

Th e phase angle ψ helps to detect temporal shift s between signals of the same 
frequency. Two signals x and y with the same period are out of phase unless 
the diff erence between ψx and ψy is equal to zero (Fig. 5.2).

Th e frequency f of a periodic signal is the inverse of the period τ. Th e 
Nyquist frequency fnyq is half the sampling frequency fs and represents the 
maximum frequency the data can produce. As an example audio compact 

5.2 GENERATING SIGNALS  153



disks (CDs) are sampled at frequencies of 44,100 Hz (Hertz, where 1 Hz=1 
cycle per second), but the corresponding Nyquist frequency is 22,050 Hz, 
which is the highest frequency a CD player can theoretically produce. Th e 
performance limitations of anti-alias fi lters used by CD players further 
reduce the frequency band and result in a cutoff  frequency of around 20,050 
Hz, which is the true upper frequency limit of a CD player.

We can now generate synthetic signals to illustrate the use of time-series 
analysis tools. When using synthetic data we know in advance which features 
the time series contains, such as periodic or random components, and we can 
introduce a linear trend or gaps in the time series. Th e user will encounter 
plenty of examples of the possible eff ects of varying the parameter settings, 
as well as potential artifacts and errors that can result from the application 
of spectral analysis tools. We will start with simple data and then apply the 

a

b

Fig. 5.2 a Periodic signal x a function of time t defi ned by the amplitude A, and the period 
τ which is the inverse of the frequency f. b Two signals x and y of the same period are out of 
phase if the diff erence between ψx and ψy is not equal to zero.
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methods to more complex time series. Th e fi rst example illustrates how to 
generate a basic synthetic data series that is characteristic of earth science 
data. First, we create a time axis t running from 1 to 1000 in steps of one unit, 
i.e., the sampling frequency is also one. We then generate a simple periodic 
signal y: a sine wave with a period of fi ve and an amplitude of two by typing

clear

t = 1 : 1000;
x = 2*sin(2*pi*t/5);

plot(t,x), axis([0 200 -4 4])

Th e period of τ=5 corresponds to a frequency of f=1/5=0.2. Natural data 
series, however, are more complex than a simple periodic signal. Th e slightly 
more complicated signal can be generated by superimposing several periodic 
components with diff erent periods. As an example we compute such a signal 
by adding three sine waves with the periods τ1=50 (f1=0.02), τ2=15 (f2≈0.07) 
and τ3=5 (f3=0.2). Th e corresponding amplitudes are A1=2, A2=1 and A3=0.5.

t = 1 : 1000;
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 200 -4 4])

By restricting the t-axis to the interval [0,200], only one fi ft h of the original 
data series is displayed (Fig. 5.3 a). It is, however, recommended that long 
data series be generated, as in the example, in order to avoid edge eff ects 
when applying spectral analysis tools for the fi rst time.

In contrast to our synthetic time series, real data also contain various 
disturbances, such as random noise and fi rst or higher-order trends. In order 
to reproduce the eff ects of noise, a random-number generator can be used to 
compute Gaussian noise with mean of zero and standard deviation of one. 
Th e seed of the algorithm should be set to zero using rng(0). One thousand 
random numbers are then generated using the function randn.

rng(0)
n = randn(1,1000);

We add this noise to the original data, i.e., we generate a signal containing 
additive noise (Fig. 5.3 b). Displaying the data illustrates the eff ect of noise 
on a periodic signal. Since in reality no record is totally free of noise it is 
important to familiarize oneself with the infl uence of noise on power spectra.

xn = x + n;

plot(t,x,'b-',t,xn,'r-'), axis([0 200 -4 4])
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Fig. 5.3 a Synthetic signal with the periodicities τ1=50, τ2=15 and τ3=5, with diff erent 
amplitudes, and b the same signal overprinted with Gaussian noise. c Th e time series shows 
a signifi cant linear trend.
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Signal processing methods are oft en applied to remove a major part of 
the noise, although many fi ltering methods make arbitrary assumptions 
concerning the signal-to-noise ratio. Moreover, fi ltering introduces artifacts 
and statistical dependencies into the data, which may have a profound 
infl uence on the resulting power spectra.

Finally, we introduce a linear long-term trend to the data by adding a 
straight line with a slope of 0.005 and an intercept with the y-axis of zero (Fig. 
5.3 c). Such trends are common in earth sciences. As an example, consider 
the glacial-interglacial cycles observed in marine oxygen isotope records, 
overprinted on a long-term cooling trend over the last six million years.

xt = x + 0.005*t;

plot(t,x,'b-',t,xt,'r-'), axis([0 200 -4 4])

In reality, more complex trends exist, such as higher-order trends or trends 
characterized by variations in gradient. In practice, it is recommended that 
such trends be eliminated by fi tting polynomials to the data and subtracting 
the corresponding values. Our synthetic time series now contains many 
characteristics of a typical earth science data set. It can be used to illustrate 
the use of the spectral analysis tools that are introduced in the next section.

 5.3 Auto-Spectral and Cross-Spectral Analysis

Auto-spectral analysis aims to describe the distribution of variance contained 
in a single signal x(t) as a function of frequency or wavelength. A simple 
way to describe the variance in a signal over a time lag k is by means of 
the autocovariance. An unbiased estimator of the autocovariance covxx of the 
signal x(t) with N data points sampled at constant time intervals Δt is

Th e autocovariance series clearly depends on the amplitude of x(t). 
Normalizing the covariance by the variance σ2 of x(t) yields the autocorrelation 
sequence. Autocorrelation involves correlating a series of data with itself as 
a function of a time lag k.
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A popular method used to compute power spectra in earth sciences is the 
method introduced by Blackman and Tukey (1958). Th e Blackman-Tukey 
method uses the complex Fourier transform Xxx(f) of the autocorrelation 
sequence corrxx(k),

where M is the maximum lag and fs the sampling frequency. Th e Blackman-
Tukey auto-spectrum is the absolute value of the Fourier transform of the 
autocorrelation function. In some fi elds, the power spectral density is used 
as an alternative way of describing the auto-spectrum. Th e Blackman-Tukey 
power spectral density PSD is estimated by

where X*xx(f) is the conjugate complex of the Fourier transform of the 
autocorrelation function Xxx(f) and fs is the sampling frequency. Th e actual 
computation of the power spectrum can only be performed at a fi nite 
number of diff erent frequencies by employing a Fast Fourier Transformation 
(FFT). Th e FFT is a method of computing a discrete Fourier transform with 
reduced execution time. Most FFT algorithms divide the transform into 
two portions of size N/2 at each step of the transformation. Th e transform 
is therefore limited to blocks with dimensions equal to a power of two. In 
practice, the spectrum is computed by using a number of frequencies that is 
close to the number of data points in the original signal x(t).

Th e discrete Fourier transform is an approximation of the continuous 
Fourier transform. Th e continuous Fourier transform assumes an infi nite 
signal but discrete real data are limited at both ends, i.e., the signal amplitude 
is zero beyond either end of the time series. In the time domain, a fi nite signal 
corresponds to an infi nite signal multiplied by a rectangular window that has 
a value of one within the limits of the signal and a value of zero elsewhere. In 
the frequency domain, the multiplication of the time series by this window 
is equivalent to a convolution of the power spectrum of the signal with the 
spectrum of the rectangular window (see Section 6.4 for a defi nition of 
convolution). Th e spectrum of the window, however, is a sin(x)/x function, 
which has a main lobe and numerous side lobes on either side of the main 
peak, and hence all maxima in a power spectrum leak, i.e., they lose power 
on either side of the peaks (Fig. 5.4).
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A popular way to overcome the problem of spectral leakage is by 
windowing, in which the sequence of data is simply multiplied by a smooth 
bell-shaped curve with positive values. Several window shapes are available, 
e.g., Bartlett (triangular), Hamming (cosinusoidal) and Hanning (slightly 
diff erent cosinusoidal) (Fig. 5.4). Th e use of these windows slightly modifi es 
the equation for the Blackman-Tukey auto-spectrum to

where w(k) is the windowing function. Th e Blackman-Tukey method 
therefore performs auto-spectral analysis in three steps: calculation of the 
autocorrelation sequence corrxx(k), windowing and, fi nally, computation of 
the discrete Fourier transform. MATLAB allows power spectral analysis to be 
performed with a number of modifi cations to the above method. One useful 
modifi cation is the Welch method (Welch 1967) (Fig. 5.5). Th is method 
involves dividing the time series into overlapping segments, computing the 
power spectrum for each segment, and then averaging the power spectra. 
Th e advantage of averaging the spectra is obvious: it simply improves the 
signal-to-noise ratio of a spectrum. Th e disadvantage is a loss of resolution 
in the spectra.

Cross-spectral analysis correlates two time series in the frequency domain. 

a b
Fig. 5.4 Spectral leakage. a Th e amplitudes of the side lobes relative to that of the main lobe 
are reduced by multiplying the corresponding time series by b a smooth bell-shaped window 
function. A number of diff erent windows with advantages and disadvantages are available for 
use instead of the default rectangular window, including Bartlett (triangular) and Hanning 
(cosinusoidal) windows. Graph generated using the function wvtool.

5.3 AUTO-SPECTRAL AND CROSS-SPECTRAL ANALYSIS  159



Th e cross-covariance is a measure of the variance between two signals over a 
time lag k. An unbiased estimator of the cross-covariance covxy of two signals, 
x(t) and y(t), with N data points sampled at constant time intervals Δt, is

Fig. 5.5 Principle of Welch’s power spectral analysis. Th e time series is fi rst divided into 
overlapping segments; the power spectrum for each segment is then computed and all spectra 
are averaged to improve the signal-to-noise ratio of the power spectrum.
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Th e cross-covariance series again depends on the amplitudes of x(t) and y(t). 
Normalizing the covariance by the standard deviations of x(t) and y(t) yields 
the cross-correlation sequence.

Th e Blackman-Tukey method uses the complex Fourier transform Xxy(f) of 
the cross-correlation sequence corrxy(k) 

where M is the maximum lag and fs the sampling frequency. Th e absolute 
value of the complex Fourier transform Xxy(f) is the cross-spectrum while 
the angle of Xxy(f) represents the phase spectrum. Th e phase diff erence is 
important in calculating leads and lags between two signals, a parameter 
oft en used to propose causalities between two processes documented by the 
signals. Th e correlation between two spectra can be calculated by means of 
the coherence:

Th e coherence is a real number between 0 and 1, where 0 indicates no 
correlation and 1 indicates maximum correlation between x(t) and y(t) at the 
frequency f. A signifi cant degree of coherence is an important precondition 
for computing phase shift s between two signals.

 5.4 Examples of Auto-Spectral and Cross-Spectral Analysis

Th e Signal Processing Toolbox provides numerous methods for computing 
spectral estimators for time series. Th e introduction of object-oriented 
programming with MATLAB has led to the launch of a new set of functions 
performing spectral analyses. Type help spectrum for more information 
about object-oriented spectral analysis. Th e non-object-oriented functions 
to perform spectral analyses, however, are still available. One of the oldest 
functions in this toolbox is periodogram(x,window,nfft,fs) which computes 
the power spectral density Pxx of a time series x(t) using the periodogram 
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method. Th is method was invented by Arthur Schuster in 1898 for studying 
the climate and calculates the power spectrum by performing a Fourier 
transform directly on a sequence without requiring prior calculation of 
the autocorrelation sequence. Th e periodogram method can therefore be 
considered a special case of the Blackman and Tukey (1958) method, applied 
with the time lag k set to unity (Muller and Macdonald 2000). At the time 
of its introduction in 1958, the indirect computation of the power spectrum 
via an autocorrelation sequence was faster than calculating the Fourier 
transformation for the full data series x(t) directly. Aft er the introduction 
of the Fast Fourier Transform (FFT) by Cooley and Tukey (1965), and 
subsequent faster computer hardware, the higher computing speed of the 
Blackman-Tukey approach compared to the periodogram method became 
relatively unimportant.

For this next example we again use the synthetic time series x, xn and xt 
generated in Section 5.2 as the input:

clear

t = 1 : 1000; t = t';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

randn('seed',0)
n = randn(1000,1);
xn = x + n;

xt = x + 0.005*t;

We then compute the periodogram by calculating the Fourier transform of 
the sequence x. Th e fastest possible Fourier transform using fft computes 
the Fourier transform for nfft frequencies, where nfft is the next power of 
two closest to the number of data points n in the original signal x. Since the 
length of the data series is n=1000, the Fourier transform is computed for 
nfft=1024 frequencies, while the signal is padded with nfft-n=24 zeros. 

Xxx = fft(x,1024);

If nfft is even, as in our example, then Xxx is symmetric. For example, as the fi rst 
(1+nfft/2) points in Xxx are unique, the remaining points are symmetrically 
redundant. Th e power spectral density is defi ned as Pxx2=(abs(Xxx).^2)/Fs, 
where Fs is the sampling frequency. Th e function periodogram also scales the 
power spectral density by the length of the data series, i.e., it divides by Fs=1 
and length(x)=1000.

Pxx2 = abs(Xxx).^2/1000;
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We now drop the redundant part in the power spectrum and use only the 
fi rst (1+nfft/2) points. We also multiply the power spectral density by two 
to keep the same energy as in the symmetric spectrum, except for the fi rst 
data point.

Pxx = [Pxx2(1); 2*Pxx2(2:512)];

Th e corresponding frequency axis runs from 0 to Fs/2 in Fs/(nfft-1) steps, 
where Fs/2 is the Nyquist frequency. Since Fs=1 in our example, the frequency 
axis is

f = 0 : 1/(1024-1) : 1/2;

We then plot the power spectral density Pxx in the Nyquist frequency range 
from 0 to Fs/2, which in our example is from 0 to 1/2. Th e Nyquist frequency 
range corresponds to the fi rst 512 or nfft/2 data points. We can plot the 
power spectral density over the frequency by typing

plot(f,Pxx), grid

Th e graphical output shows that there are three signifi cant peaks at the 
positions of the original frequencies of the three sine waves (1/50, 1/15, 
and 1/5). Alternatively, we can also plot the power spectral density over the 
period by typing

plot(1./f,Pxx), axis([0 100 0 1000]), grid

where we observe the three periods 50, 15, and 5, as expected. Since the 
values on the x-axis of this plot are not evenly spaced (in constrast to those 
on the frequency axis), we fi nd the long periods poorly resolved and a broad 
peak at a period of 50 in this graphics. Th e code for the power spectral 
density can be rewritten to make it independent of the sampling frequency,

Fs = 1;

t = 1/Fs :1/Fs : 1000/Fs; t = t';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

nfft = 2^nextpow2(length(t));
Xxx = fft(x,nfft);

Pxx2 = abs(Xxx).^2 /Fs /length(x);
Pxx = [Pxx2(1); 2*Pxx2(2:512)];
f = 0 : Fs/(nfft-1) : Fs/2;

plot(f,Pxx), grid
axis([0 0.5 0 max(Pxx)])
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where the function nextpow2 computes the next power of two closest to 
the length of the time series x(t). Th is code allows the sampling frequency 
to be modifi ed and the diff erences in the results to be explored. We 
can now compare the results with those obtained using the function 
periodogram(x,window,nfft,fs).

[Pxx,f] = periodogram(x,[],1024,1);

Th is function allows the windowing of the signals with various window 
shapes to overcome spectral leakage. However, we use the default rectangular 
window by choosing an empty vector [] for window to compare the results 
with the above experiment. Th e power spectrum Pxx is computed using an 
FFT of length nfft=1024, which is the next power of two closest to the length 
of the series x(t) and which is padded with zeros to make up the number 
of data points to the value of nfft. A sampling frequency fs of one is used 
within the function in order to obtain the correct frequency scaling for the 
f-axis. We display the results by typing

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

or alternatively 

plot(1./f,Pxx), axis([0 100 0 1000]), grid
xlabel('Period')
ylabel('Power')
title('Auto-Spectrum')

Th e graphical output is almost identical to our Blackman-Tukey plot and 
again shows that there are three signifi cant peaks at the positions of the 
original frequencies (or periods) of the three sine waves. Th e same procedure 
can also be applied to the noisy data:

[Pxx,f] = periodogram(xn,[],1024,1);

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Let us now increase the noise level by introducing Gaussian noise with a 
mean of zero and a standard deviation of fi ve.

rng(0)
n = 5 * randn(size(x));
xn = x + n;
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[Pxx,f] = periodogram(xn,[],1024,1);

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Th is spectrum now resembles a real data spectrum in the earth sciences and 
the spectral peaks are set against a signifi cant background noise level. Th e 
peak of the highest frequency even disappears into the noise and cannot be 
distinguished from maxima that are attributed to noise. Both spectra can be 
compared on the same plot (Fig. 5.6):

[Pxx,f] = periodogram(x,[],1024,1);
[Pxxn,f] = periodogram(xn,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxn), grid
xlabel('Frequency')
ylabel('Power')

Next, we explore the infl uence of a linear trend on a spectrum. Long-term 
trends are common features in earth science data. We will see that this trend 
is misinterpreted as a very long period by the FFT, producing a large peak 

a b

Fig. 5.6 Comparison of the auto-spectra for a the noise-free, and b the noisy synthetic signals 
with the periods τ1=50 (f1=0.02), τ2=15 (f2≈0.07) and τ3=5 (f3=0.2). Th e highest frequency 
peak disappears completely into the background noise and cannot be distinguished from 
peaks attributed to the Gaussian noise.
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with a frequency close to zero (Fig. 5.7).

[Pxx,f] = periodogram(x,[],1024,1);
[Pxxt,f] = periodogram(xt,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxt), grid
xlabel('Frequency')
ylabel('Power')

To eliminate the long-term trend, we use the function detrend. Th is function 
removes linear trends, defi ned as either a single straight-line fi t from the 
vector x, or a continuous, piecewise linear trend from x with one or more 
breakpoints defi ned by the user.

xdt = detrend(xt);

subplot(2,1,1)
plot(t,x,'b-',t,xt,'r-'), grid
axis([0 200 -4 4])

subplot(2,1,2)
plot(t,x,'b-',t,xdt,'r-'), grid
axis([0 200 -4 4])

Fig. 5.7 Comparison of the auto-spectra for a the original noise-free signal with the periods 
τ1=50 (f1=0.02), τ2=15 (f2≈0.07) and τ3=5 (f3=0.2), and b the same signal overprinted on a 
linear trend. Th e linear trend is misinterpreted by the FFT as a very long period with a high 
amplitude.
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Th e resulting spectrum no longer shows the low-frequency peak.

[Pxxt,f] = periodogram(xt,[],1024,1);
[Pxxdt,f] = periodogram(xdt,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxdt), grid
xlabel('Frequency')
ylabel('Power')

Some data contain a high-order trend that can be removed by fi tting a higher-
order polynomial to the data and subtracting the corresponding x(t) values.

We now use two sine waves with identical periodicities τ=5 (equivalent 
to f=0.2) and amplitudes equal to two to compute the cross-spectrum of two 
time series. Th e sine waves show a relative phase shift  of t=1. In the argument 
of the second sine wave this corresponds to 2π/5, which is one fi ft h of the full 
wavelength of τ=5.

clear

t = 1 : 1000;
x = 2*sin(2*pi*t/5);
y = 2*sin(2*pi*t/5 + 2*pi/5);

plot(t,x,'b-',t,y,'r-')
axis([0 50 -2 2]), grid

Th e cross-spectrum is computed by using the function cpsd, which uses 
Welch’s method for computing power spectra (Fig. 5.8). Pxy is complex and 
contains both amplitude and phase information.

[Pxy,f] = cpsd(x,y,[],0,1024,1);

plot(f,abs(Pxy)), grid
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e function cpsd(x,y,window,noverlap,nfft,fs) specifi es the number of 
FFT points nfft used to calculate the cross power spectral density, which is 
1024 in our example. Th e parameter window is empty in our example and the 
default rectangular window is therefore used to obtain eight sections of x and 
y. Th e parameter noverlap defi nes the number of overlapping samples, which 
is zero in our example. Th e sampling frequency fs is 1 in this example. Th e 
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coherence of the two signals is one for all frequencies, since we are working 
with noise-free data.

[Cxy,f] = mscohere(x,y,[],0,1024,1);

plot(f,Cxy), grid
xlabel('Frequency')
ylabel('Coherence')
title('Coherence')

We use the function mscohere(x,y,window,noverlap,nfft,fs) which specifi es 
the number of FFT points nfft=1024, the default rectangular window 
(window=[]), and no overlapping data points (noverlap=0). Th e complex part 
of Pxy is required for computing the phase shift  between the two signals 
using the function angle.

phase = angle(Pxy);

plot(f,phase), grid
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase Spectrum')

Th e phase shift  at a frequency of f=0.2 (period τ=5) can be interpolated from 
the phase spectrum

interp1(f,phase,0.2)

Fig. 5.8 Cross-spectrum of two sine waves with identical periodicities of τ=5 (equivalent to 
f=0.2) and amplitudes of 2. Th e sine waves show a relative phase shift  of t=1. In the argument 
of the second sine wave this corresponds to 2π/5, which is one fi ft h of the full wavelength of 
τ=5. a Th e magnitude shows the expected peak at f=0.2. b Th e corresponding phase diff erence 
in radians at this frequency is 1.2566, which equals (1.2566.5)/(2.π) = 1.0000, which is the 
phase shift  of 1 that we introduced initially.
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which produces the output

ans =
  -1.2566

Th e phase spectrum is normalized to one full period τ=2π and the phase 
shift  of –1.2566 therefore equals (–1.2566.5)/(2.π)=–1.0000, which is the 
phase shift  of one that we introduced initially.

We now use two sine waves with diff erent periodicities to illustrate cross-
spectral analysis. Both signals, x and y, have a periodicity of 5 but a phase 
shift  of 1.

clear

t = 1 : 1000;
x = sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
y = 2*sin(2*pi*t/50) + 0.5*sin(2*pi*t/5+2*pi/5);

plot(t,x,'b-',t,y,'r-')
axis([0 100 -3 3]), grid

We can now compute the cross-spectrum Pxy, which clearly shows the 
common period of τ=5 (or frequency of f=0.2).

[Pxy,f] = cpsd(x,y,[],0,1024,1);

plot(f, abs(Pxy)), grid
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e coherence shows a high value that is close to one at f=0.2.

[Cxy,f] = mscohere(x,y,[],0,1024,1);

plot(f,Cxy), grid
xlabel('Frequency')
ylabel('Coherence')
title('Coherence')

Th e complex part of the cross-spectrum Pxy is required for calculating the 
phase shift  between the two sine waves.

[Pxy,f] = cpsd(x,y,[],0,1024,1);
phase = angle(Pxy);

plot(f,phase), grid

Th e phase shift  at a frequency of f=0.2 (period τ=5) is

interp1(f,phase,0.2)
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which produces the output of

ans =
  -1.2572

Th e phase spectrum is normalized to one full period τ=2π and the phase 
shift  of –1.2572 therefore equals (–1.2572.5)/(2.π)=–1.0004, which is again 
the phase shift  of one that we introduced initially.

 5.5 Interpolating and Analyzing Unevenly-Spaced Data

We can now use our experience in analyzing evenly-spaced data to run a 
spectral analysis on unevenly-spaced data. Such data are very common in 
earth sciences, for example in the fi eld of paleoceanography, where deep-sea 
cores are typically sampled at constant depth intervals. Th e transformation 
of evenly-spaced length-parameter data to time-parameter data in an 
environment with changing length-time ratios results in unevenly-spaced 
time series. Numerous methods exist for interpolating unevenly-spaced 
sequences of data or time series. Th e aim of these interpolation techniques for 
x(t) data is to estimate the x-values for an equally-spaced t vector from the 
irregularly-spaced x(t) actual measurements. Linear interpolation predicts 
the x-values by eff ectively drawing a straight line between two neighboring 
measurements and by calculating the x-value at the appropriate point 
along that line. However, this method has its limitations. It assumes linear 
transitions in the data, which introduces a number of artifacts including the 
loss of high-frequency components of the signal and the limiting of the data 
range to that of the original measurements. 

Cubic-spline interpolation is another method for interpolating data that are 
unevenly spaced. Cubic splines are piecewise continuous curves requiring at 
least four data points for each step. Th e method has the advantage that it 
preserves the high-frequency information contained in the data. However, 
steep gradients in the data sequence, which typically occur adjacent to 
extreme minima and maxima, could cause spurious amplitudes in the 
interpolated time series. Since all these (and other) interpolation techniques 
might introduce artifacts into the data, it is always advisable to (1) keep the 
total number of data points constant before and aft er interpolation, (2) report 
the method employed for estimating the evenly-spaced data sequence, and 
(3) explore the eff ect of interpolation on the variance of the data.

Following this brief introduction to interpolation techniques we can 
apply the most popular linear and cubic spline interpolation techniques 
to unevenly-spaced data. Having interpolated the data we can then use 
the spectral tools that have previously been applied to evenly-spaced data 
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(Sections 5.3 and 5.4). We must fi rst load the two time series:

clear

series1 = load('series1.txt');
series2 = load('series2.txt');

Both synthetic data sets contain a two-column matrix with 339 rows. Th e fi rst 
column contains ages in kiloyears, which are unevenly spaced. Th e second 
column contains oxygen-isotope values measured on calcareous micro-
fossils (foraminifera). Th e data sets contain 100, 40 and 20 kyr cyclicities 
and they are overlain by Gaussian noise. In the 100 kyr frequency band, the 
second data series has shift ed by 5 kyrs with respect to the fi rst data series. 
To plot the data we type

plot(series1(:,1),series1(:,2))
figure
plot(series2(:,1),series2(:,2))

Th e statistics for the spacing of the fi rst data series can be computed by

intv1 = diff(series1(:,1));

plot(intv1)

Th e plot shows that the spacing varies around a mean interval of 3 kyrs, with 
a standard deviation of ca. 1 kyr. Th e minimum and maximum values for the 
time axis

min(series1(:,1))
max(series1(:,1))

of tmin=0 and tmax=997 kyrs provide some information about the temporal 
range of the data. Th e second data series

intv2 = diff(series2(:,1));

plot(intv2)

min(series2(:,1))
max(series2(:,1))

has a similar range, from 0 to 997 kyrs. We see that both series have a mean 
spacing of 3 kyrs and range from 0 to ca. 1000 kyrs. We now interpolate the 
data to an evenly-spaced time axis. While doing this, we follow the rule that 
the number of data points should not be increased. Th e new time axis runs 
from 0 to 996 kyrs, with 3 kyr intervals.

t = 0 : 3 : 996;
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We can now interpolate the two time series to this axis with linear and spline 
interpolation methods, using the function interp1.

series1L = interp1(series1(:,1),series1(:,2),t,'linear');
series1S = interp1(series1(:,1),series1(:,2),t,'spline');

series2L = interp1(series2(:,1),series2(:,2),t,'linear');
series2S = interp1(series2(:,1),series2(:,2),t,'spline');

In the linear interpolation method the linear interpolant is the straight line 
between neighboring data points. In the spline interpolation the interpolant 
is a piecewise polynomial (the spline) between these data points. Th e 
method spline with interp1 uses a piecewise cubic spline interpolation, i.e., 
the interpolant is a third-degree polynomial. Th e results are compared by 
plotting the fi rst series before and aft er interpolation.

plot(series1(:,1),series1(:,2),'ko'), hold on
plot(t,series1L,'b-',t,series1S,'r-'), hold off

We can already observe some signifi cant artifacts at ca. 370 kyrs. Whereas 
the linearly-interpolated points are always within the range of the original 
data, the spline interpolation method produces values that are unrealistically 
high or low (Fig. 5.9). Th e results can be compared by plotting the second 
data series.

plot(series2(:,1),series2(:,2),'ko'), hold on
plot(t,series2L,'b-',t,series2S,'r-'), hold off

In this series, only a few artifacts can be observed. Th e function interp1 also 
provides an alternative to spline, which is pchip. Th e name pchip stands for 

Fig. 5.9 Interpolation artifacts. Whereas the linearly interpolated points are always within 
the range of the original data, the spline interpolation method results in unrealistic high and 
low values.
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Piecewise Cubic Hermite Interpolating Polynomial and this method performs 
a shape-preserving piecewise cubic interpolation. Th e function avoids 
the typical artifacts of the splines as it preserves the original shape of the 
data series. We can apply the function used above to calculate the power 
spectrum, computing the FFT for 256 data points with a sampling frequency 
of 1/3 kyr–1.

[Pxx,f] = periodogram(series1L,[],256,1/3);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Signifi cant peaks occur at frequencies of approximately 0.01, 0.025 and 0.05, 
corresponding approximately to the 100, 40 and 20 kyr cycles. Analysis of 
the second time series

[Pxx,f] = periodogram(series2L,[],256,1/3);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

also yields signifi cant peaks at frequencies of 0.01, 0.025 and 0.05 (Fig. 5.10). 
We now compute the cross-spectrum for both data series.

[Pxy,f] = cpsd(series1L,series2L,[],128,256,1/3);

plot(f,abs(Pxy))
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e correlation, as indicated by the high value for the coherence, is quite 
convincing.

[Cxy,f] = mscohere(series1L,series2L,[],128,256,1/3);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')

We can observe a fairly high coherence at frequencies of 0.01, 0.025 and 0.05. 
Th e complex part of Pxy is required for calculating the phase diff erence for 
each frequency.

phase = angle(Pxy);
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plot(f,phase)
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase spectrum')

Th e phase shift  at a frequency of f=0.01 is calculated using

interp1(f,phase,0.01)

which produces the output of

ans = 
  -0.2796

Th e phase spectrum is normalized to a full period τ=2π and the phase 

Fig. 5.10 Result from cross-spectral analysis of the two linearly-interpolated signals: a signals 
in the time domain, b cross-spectrum of both signals, c coherence of the signals in the 
frequency domain, and d phase spectrum in radians.
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shift  of –0.2796 therefore equals (–0.2796.100 kyrs)/(2.π)=–4.45 kyrs. Th is 
corresponds roughly to the phase shift  of 5 kyrs introduced to the second 
data series with respect to the fi rst series.

Th e Signal Processing Toolbox also contains a GUI function named sptool 
(for Signal Processing Tool), which is a more convenient tool for spectral 
analysis but is not described in any detail herein.

 5.6 Evolutionary Power Spectrum

Th e amplitude of spectral peaks usually varies with time. Th is is particularly 
true for paleoclimate time series. Paleoclimate records usually show trends, 
not only in the mean and variance but also in the relative contributions of 
rhythmic components such as the Milankovitch cycles in marine oxygen-
isotope records. Evolutionary power spectra have the ability to map such 
changes in the frequency domain. Th e evolutionary or windowed power 
spectrum is a modifi cation of the method introduced in Section 5.3, which 
computes the spectrum of overlapping segments of the time series. Th ese 
overlapping segments are relatively short compared to the windowed 
segments used by the Welch method (Section 5.3), which is used to increase 
the signal-to-noise ratio of power spectra. Th e evolutionary power spectrum 
method therefore uses the Short-Time Fourier Transform (STFT) instead of 
the Fast Fourier Transformation (FFT). Th e output from the evolutionary 
power spectrum is the short-term, time-localized frequency content of the 
signal. Th ere are various methods to display the results. For instance, time 
and frequency can be plotted on the x- and y-axes, respectively, or vice versa, 
with the color of the plot being dependent on the height of the spectral peaks.

As an example we use a data set that is similar to those used in Section 
5.5. Th e data series contains three main periodicities of 100, 40 and 20 kyrs 
and additive Gaussian noise. Th e amplitudes, however, change through 
time and this example can therefore be used to illustrate the advantage of 
the evolutionary power spectrum method. In our example the 40 kyr cycle 
appears only aft er ca. 450 kyrs, whereas the 100 and 20 kyr cycles are present 
throughout the time series. We fi rst load from the fi le series3.txt and display 
the data (Fig. 5.11).

clear

series3 = load('series3.txt');
plot(series3(:,1),series3(:,2))
xlabel('Time (kyr)')
ylabel('d18O (permille)')
title('Signal with Varying Cyclicities')
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Since both the standard and the evolutionary power spectrum methods 
require evenly-spaced data, we interpolate the data to an evenly-spaced time 
vector t, as demonstrated in Section 5.5.

t = 0 : 3 : 1000;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');

We then compute a non-evolutionary power spectrum for the full length of 
the time series (Fig. 5.12). Th is exercise helps us to compare the diff erences 
between the results of the standard and the evolutionary power spectrum 
methods.

[Pxx,f] = periodogram(series3L,[],1024,1/3);
plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Power Spectrum')

Th e auto-spectrum shows signifi cant peaks at 100, 40 and 20 kyr cyclicities, 
as well as some noise. Th e power spectrum, however, does not provide any 

Fig. 5.11 Synthetic data set containing three main periodicities of 100, 40, and 20 kyrs and 
additive Gaussian noise. Whereas the 100 and 20 kyr cycles are present throughout the time 
series, the 40 kyr cycle only appears at around 450 kyrs before present.
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information about fl uctuations in the amplitudes of these peaks. Th e non-
evolutionary power spectrum simply represents an average of the spectral 
information contained in the data.

We now use the function spectrogram to map the changes in the power 
spectrum with time. By default, the time series is divided into eight segments 
with a 50% overlap. Each segment is windowed with a Hamming window 
to suppress spectral leakage (Section 5.3). Th e function spectrogram uses 
similar input parameters to those used in periodogram in Section 5.3. We then 
compute the evolutionary power spectrum for a window of 64 data points 
with a 50 data point overlap. Th e STFT is computed for nfft=256. Since the 
spacing of the interpolated time vector is 3 kyrs, the sampling frequency is 
1/3 kyr–1.

spectrogram(series3L,64,50,256,1/3)
title('Evolutionary Power Spectrum')
xlabel('Frequency (1/kyr)')
ylabel('Time (kyr)')
colormap(jet)

Fig. 5.12 Power spectrum for the complete time series. showing signifi cant peaks at 100, 40 
and 20 kyrs. Th e plot, however, does not provide any information on the temporal behavior 
of the cyclicities.
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Fig. 5.13 Evolutionary power spectrum using spectrogram, which computes the short-time 
Fourier transform STFT of overlapping segments of the time series. We use a Hamming 
window of 64 data points and 50 data points overlap. Th e STFT is computed for  nfft=256. 
Since the spacing of the interpolated time vector is 3 kyrs the sampling frequency is 1/3 kyr-1. 
Th e plot shows the onset of the 40 kyr cycle at around 450 kyrs before present.

Th e output from spectrogram is a color plot (Fig. 5.13) that displays red ver-
tical stripes representing signifi cant maxima at frequencies of 0.01 and 0.05 
kyr–1 (i.e., every 100 and 20 kyrs). Th ere is also a 40 kyr cycle (corresponding 
to a frequency of 0.025 kyr–1), but this only occurs aft er ca. 450 kyrs, as 
documented by the vertical red stripe in the lower half of the graph.

To improve the visibility of the signifi cant cycles, the colors used in the 
graph can be modifi ed using the colormap editor.

colormapeditor

Th e colormap editor displays the colormap of the fi gure as a strip of 
rectangular cells. Th e nodes that separate regions of uniform slope in the RGB 
colormap can be shift ed by using the mouse, which introduces distortions 
in the colormap and results in modifi cation of the spectrogram colors. For 
example shift ing the yellow node towards the right increases the contrast 
between the vertical peak areas at 100, 40 and 20 kyrs, and the background.
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 5.7 Lomb-Scargle Power Spectrum

Th e power spectrum methods introduced in the previous sections require 
evenly-spaced data. In earth sciences, however, time series are oft en unevenly 
spaced. Although interpolating the unevenly-spaced data to a grid of evenly-
spaced times is one way to overcome this problem (Section 5.5), interpolation 
introduces numerous artifacts into the data, in both the time and frequency 
domains. For this reason an alternative method of time-series analysis has 
become increasingly popular in earth sciences, the Lomb-Scargle algorithm 
(e.g., Scargle 1981, 1982, 1989, 1990, Press et al. 1992, Schulz et al. 1998).

Th e Lomb-Scargle algorithm only evaluates the data of the time series 
at the times ti that are actually measured. Assuming a series y(t) of N data 
points, the Lomb-Scargle normalized periodogram Px, as a function of 
angular frequency ω=2πf > 0, is given by

where

and

are the arithmetic mean and the variance of the data (Section 3.2). Th e 
constant τ, which is defi ned by the relationship

is an off set that makes Px(ω) independent of shift ing the ti values by any 
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constant amount. Scargle (1982) showed that this particular choice of the 
off set τ has the consequence that the solution for Px(ω) is identical to a least-
squares fi t of sine and cosine functions to the data series y(t): 

Th e least-squares fi t of harmonic functions to data series in conjunction 
with spectral analysis had previously been investigated by Lomb (1976), and 
hence the method is called the normalized Lomb-Scargle Fourier transform. 
Th e term normalized refers to the factor s2 in the dominator of the equation 
for the periodogram.

Scargle (1982) has shown that the Lomb-Scargle periodogram has an 
exponential probability distribution with a mean equal to one, assuming that 
the noise is Gaussian distributed. Th e probability that Px(ω) will be between 
some positive quantity z and z+dz is exp(–z)dz. If we scan M independent 
frequencies, the probability of none of them having a value larger than z is 
(1–exp(–z))M. We can therefore compute the false-alarm probability of the 
null hypothesis (i.e., the probability that a given peak in the periodogram is 
not signifi cant) using

Press et al. (1992) suggested using the Nyquist criterion (Section 5.2) to 
determine the number of independent frequencies M, assuming that the 
data were evenly spaced. In this case, the appropriate value for the number of 
independent frequencies is M=2N, where N is the length of the time series.

More detailed discussions of the Lomb-Scargle method are given in Scargle 
(1989) and Press et al. (1992). An excellent summary of the method and a 
TURBO PASCAL program to compute the normalized Lomb-Scargle power 
spectrum of paleoclimatic data have been published by Schulz and Stattegger 
(1998). A convenient MATLAB algorithm lombscargle for computing the 
Lomb-Scargle periodogram has been published by Brett Shoelson (Th e 
MathWorks, Inc.) and can be downloaded from File Exchange at

http://www.mathworks.de/matlabcentral/fileexchange/993-lombscargle-m

Th e following MATLAB code is based on the original FORTRAN code 
published by Scargle (1989). Signifi cance testing uses the methods proposed 
by Press et al. (1992) explained above.

We fi rst load the synthetic data that were generated to illustrate the use 
of the evolutionary or windowed power spectrum method in Section 5.6. 
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Th e data contain periodicities of 100, 40 and 20 kyrs, as well as additive 
Gaussian noise, and are unevenly spaced about the time axis. We defi ne two 
new vectors t and x that contain the original time vector and the synthetic 
oxygen-isotope data sampled at times t.

clear

series3 = load('series3.txt');
t = series3(:,1);
x = series3(:,2);

We then generate a frequency axis f. Since the Lomb-Scargle method is not 
able to deal with the frequency of zero (i.e., with an infi nite period) we start 
at a frequency value that is equivalent to the spacing of the frequency vector. 
Th e variable ofac is the oversampling parameter that infl uences the resolution 
of the frequency axis about the N(frequencies)=N(datapoints) case. We also 
need the highest frequency fhi that can be analyzed by the Lomb-Scargle 
algorithm: the Nyquist frequency fnyq that would be obtained if the N data 
points were evenly spaced over the same time interval is commonly used for 
fhi. Th e following code uses the input parameter hifac, which is defi ned by 
Press et al. (1992) as hifac=fhi/fnyq.

int = mean(diff(t));
ofac = 4; hifac = 1;
f = ((2*int)^(-1))/(length(x)*ofac): ...
    ((2*int)^(-1))/(length(x)*ofac): ...
    hifac*(2*int)^(-1);

where int is the mean sampling interval. We normalize the data by subtracting 
the mean.

x = x - mean(x);

We can now compute the normalized Lomb-Scargle periodogram px as a 
function of the angular frequency wrun using the translation of Scargle’s 
FORTRAN code into MATLAB code.

for k = 1:length(f)
    wrun = 2*pi*f(k);
    px(k) = 1/(2*var(x)) * ...
       ((sum(x.*cos(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
       /(sum((cos(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2)) + ...
       ((sum(x.*sin(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
       /(sum((sin(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2));
end
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Th e signifi cance level for any peak in the power spectrum px can now be 
computed. Th e variable prob indicates the false-alarm probability for the null 
hypothesis: a low prob therefore indicates a highly signifi cant peak in the 
power spectrum.

prob = 1-(1-exp(-px)).^(2*length(x));

We now plot the power spectrum and the probabilities (Fig. 5.14):

plot(f,px)
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Power Spectrum')

figure
plot(f,prob)
xlabel('Frequency')
ylabel('Probability')
title('Probabilities')

Th e two plots suggest that all three peaks are highly signifi cant since the 
errors are extremely low at the cyclicities of 100, 40 and 20 kyrs.

An alternative way of displaying the signifi cance levels was suggested by 
Press et al. (1992). In this method the equation for the false-alarm probability 
of the null hypothesis is inverted to compute the corresponding power of 
the signifi cance levels. As an example we choose a signifi cance level of 95%. 
However, this number can also be replaced by a vector of several signifi cance 
levels such as signif=[0.90 0.95 0.99]. We can now type

m = floor(0.5*ofac*hifac*length(x));
effm = 2*m/ofac;
signif = 0.95;
levels = log((1-signif.^(1/effm)).^(-1));

where m is the true number of independent frequencies and effm is the 
eff ective number of frequencies using the oversampling factor ofac. Th e 
second plot displays the spectral peaks and the corresponding probabilities.

plot(f,px)
hold on
for k = 1:length(signif)
    line(f,levels(:,k)*ones(size(f)),'LineStyle','--')
end
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Power Spectrum')
hold off

All three spectral peaks at frequencies of 0.01, 0.025 and 0.05 kyr–1 exceed the 
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Fig. 5.14 a Lomb-Scargle power spectrum and b the false-alarm probability of the null 
hypothesis. Th e plot suggests that the 100, 40 and 20 kyr cycles are highly signifi cant.

a

b
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95% signifi cant level, suggesting that they represent signifi cant cyclicities. 
We have therefore obtained similar results to those obtained using the 
periodogram method. However, the Lomb-Scargle method has the advantage 
that is does not require any interpolation of unevenly-spaced data, as well as 
permitting quantitative signifi cance testing.

 5.8 Wavelet Power Spectrum

Section 5.6 demonstrated the use of a modifi cation to the power spectrum 
method for mapping changes in cyclicity through time. A similar modifi cation 
could, in theory, be applied to the Lomb-Scargle method, which would have 
the advantage that it could then be applied to unevenly-spaced data. Both 
methods, however, assume that the data are composites of sine and cosine 
waves that are globally uniform in time and have infi nite time spans. Th e 
evolutionary power spectrum method divides the time series into overlapping 
segments and computes the Fourier transform of these segments. To avoid 
spectral leakage, the data are multiplied by windows that are smooth bell-
shaped curves with positive values (Section 5.3). Th e higher the temporal 
resolution of the evolutionary power spectrum the lower the accuracy of 
the result. Moreover, short time windows contain a large number of high-
frequency cycles whereas the low-frequency cycles are underrepresented.

In contrast to the Fourier transform, the wavelet transform uses base 
functions (wavelets) that have smooth ends per se (Lau and Weng 1995, 
Mackenzie et al. 2001). Wavelets are small packets of waves; they are defi ned 
by a specifi c frequency and decay towards either end. Since wavelets can 
be stretched and translated in both frequency and time, with a fl exible 
resolution, they can easily map changes in the time-frequency domain. 
We use the functions for wavelet analysis that are included in the Wavelet 
Toolbox (MathWorks 2014b). Th ere is also, however, a very popular wavelet 
toolbox produced by Christopher Torrence and Gilbert P. Compo (1998), 
which is freely available online from

http://paos.colorado.edu/research/wavelets/

A wavelet transformation mathematically decomposes a signal y(t) into 
elementary functions ψa,b(t) derived from a mother wavelet ψ(t), by dilation 
and translation,
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where b denotes the position (translation) and a (>0) the scale (dilation) of 
the wavelet (Lau and Weng 1995). Th e wavelet transform of the signal y(t) 
about the mother wavelet ψ(t) is defi ned as the convolution integral

where ψ* is the complex conjugate of ψ. Th ere are many mother wavelets 
available in the literature, such as the classic Haar wavelet, the Morlet wavelet, 
or the Daubechies wavelet. Th e most popular wavelet in geosciences is the 
Morlet wavelet introduced by French geophysicist Jean Morlet (1931–2007), 
which is defi ned by

where η is the time and ω0 is the wave number (Torrence and Compo 
1998). Th e wave number is the number of oscillations within the wavelet 
itself. We can easily compute a discrete version of the Morlet wavelet wave 
by translating the above equation into MATLAB code, where eta is the non-
dimensional time and w0 is the wave number. Changing w0 produces wavelets 
with diff erent wave numbers. Note that it is important not to use i for index 
in for loops, since it is used here for imaginary unit (Fig. 5.15).

clear

eta = -10 : 0.1 : 10;
w0 = 6;
wave = pi.^(-1/4) .* exp(i*w0*eta) .* exp(-eta.^2/2);

plot(eta,wave)
xlabel('Position')
ylabel('Scale')
title('Morlet Mother Wavelet')

In order to familiarize ourselves with wavelet power spectra, we use a pure 
sine wave with a period fi ve and additive Gaussian noise.

clear

rng(0)
t = 0 : 0.5 : 50;
x = sin(2*pi*t/5) + randn(size(t));

As a fi rst step, we need to defi ne the mother wavelet and its wave number w0.

mother = 'morl';
w0 = 6;
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We then need to defi ne the values of the scales for which the wavelet 
transform will be computed. Th ese values defi ne how much a wavelet is 
stretched or compressed to map the variability of the time series at diff erent 
wavelengths. Scales with smaller values correspond to higher frequencies 
and can therefore map rapidly-changing details, whereas those with higher 
values can map the long-term variations. Th e defi nition of the scales fi rst 
requires the sampling interval dt of our time series x. We then use the 
default spacing ds of 0.4875 for a Morlet wavelet, following the instructions 
contained in the Wavelet Toolbox manual (MathWorks 2014b). Th e smallest 
value for the scales s0 is usually chosen to be twice the sampling interval, i.e., 
2*dt. We next calculate the number of scales nb, which depends on the length 
of the time series and the spacing of the scales. Finally, we calculate the scales 
scales themselves depending on the smallest scale, the number of scales, and 
the spacing of the scales, using equations provided in the Wavelet Toolbox 
manual (MathWorks 2014b).

dt = 0.5;
ds = 0.4875;
s0 = 2*dt;
nb = fix(log2(length(x))/ds)+1;
scales = s0*2.^((0:nb-1)*ds);

Fig. 5.15 Morlet mother wavelet with wave number 6.
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In the next step we compute the real or complex continuous wavelet 
coeffi  cients using the function cwt contained in the Wavelet Toolbox.

coefs = cwt(x,scales,mother);

Th e function scal2frq converts scales scales to pseudo-frequencies, using 
the mother wavelet mother and the sampling period dt.

f = scal2frq(scales,mother,dt);

We use a fi lled contour plot to portray the power spectrum, i.e., the absolute 
value of the wavelet coeffi  cients (Fig. 5.16 a).

contour(t,f,abs(coefs),...
   'LineStyle','none',...
   'LineColor',[0 0 0],...
   'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.9],...
   'XGrid','On',...
   'YGrid','On')

Alternatively, we can compute the wavelet transform using the fast Fourier 
transform (FFT) algorithm implemented in the function cwtft. Th is approach 
is used in the freely available wavelet toolbox produced by Torrence and 
Compo (1998). We fi rst defi ne the scales using the values for the smallest 
scales s0, the sampling interval ds of the scales, and the number of scales nb 
from above, merged into a structure array sc.

sc.s0 = s0;
sc.ds = ds;
sc.nb = nb;

Th en, we create a structure array sig that contains the signal x, the sampling 
interval (or period) dt, the mother wavelet mother, and the scales sc.

sig = struct('val',x,...
    'period',dt,...
    'wavelet',mother,...
    'scales',sc);

Th e output from cwtft is a structure array cwtstruct that includes the wavelet 
coeffi  cients cfs and the scales scales. Th e default mother wavelet is the 
Morlet wavelet.

cwtstruct = cwtft(sig);

5.8 WAVELET POWER SPECTRUM  187



We convert the scales to pseudo-frequencies using the equation for the 
Morlet wavelet, which we fi nd in the wavelet defi nitions in the cwtft help 
section.

f = 1./(4*pi*cwtstruct.scales/(w0+sqrt(2+w0^2)));

Fig. 5.16 Wavelet power spectrum showing a signifi cant period at 5 cycles that persists 
throughout the full length of the time vector.  Th e wavelet power spectrum has been calculated 
using a the continuous 1D wavelet transform cwt and b the continuous wavelet transform 
using the FFT algorithm cwtft.

a

b
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We again use a fi lled contour plot to portray the power spectrum, i.e., the 
absolute value of the wavelet coeffi  cients (Fig. 5.16 b).

contour(t,f,abs(cwtstruct.cfs),...
    'LineStyle','none',...
    'LineColor',[0 0 0],...
    'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum Using FFT Algorithm')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.9],...
    'XGrid','On',...
    'YGrid','On')

As we can see, the wavelet power spectrum derived using cwtft is much 
smoother than that computed with cwt, since cwtft uses sinusoids to smooth 
the coeffi  cients. However, the smoothing causes a signifi cant loss of detail in 
the contour plot.

We now apply this concept to the synthetic data from the example to 
demonstrate the windowed power spectrum method and load the synthetic 
data contained in fi le series3.txt, remembering that the data contain 
periodicities of 100, 40, and 20 kyrs as well as additive Gaussian noise, and 
that they are unevenly spaced about the time axis.

clear

series3 = load('series3.txt');

As for the Fourier transform and in contrast to the Lomb-Scargle algorithm, 
the wavelet transform requires evenly-spaced data, and we therefore 
interpolate the data using interp1.

t = 0 : 3 : 1000;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');

Again, we fi rst need to defi ne the mother wavelet and its wave number w0.

mother = 'morl';
w0 = 6;

We then defi ne the scales, as demonstrated in the fi rst example. Unlike the 
previous example the sampling interval dt of our time series is now 3. 

dt = 3;
ds = 0.4875;
s0 = 2*dt;
nb = fix(log2(length(series3L))/ds)+1;
scales = s0*2.^((0:nb-1)*ds);
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We compute the wavelet coeffi  cients using cwt.

coefs = cwt(series3L,scales,mother);

We convert the scales scales to pseudo-frequencies using the mother wavelet 
mother and the sampling period dt.

f = scal2frq(scales,mother,dt);

We use a fi lled contour plot to portray the power spectrum (Fig. 5.17 a).

contour(t,f,abs(coefs),...
   'LineStyle','none',...
   'LineColor',[0 0 0],...
   'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.04],...
   'XGrid','On',...
   'YGrid','On')

Th e graph shows horizontal clusters of peaks at around 0.01 and 0.025 kyr–1, 
corresponding to 100 and 40 kyr cycles. Th e 40 kyr cycle (a frequency of 
0.025 kyr–1) only appears at ca. 450 kyrs before present. Using cwtft instead 
of cwt again creates a much smoother result (Fig. 5.17 b).

sc.s0 = s0;
sc.ds = ds;
sc.nb = nb;
sig = struct('val',series3L,...
    'period',dt,...
    'wavelet',mother,...
    'scales',sc);
cwtstruct = cwtft(sig);
scales = cwtstruct.scales

f = 1./(4*pi*cwtstruct.scales/(w0+sqrt(2+w0^2)));

contour(t,f,abs(cwtstruct.cfs),...
    'LineStyle','none',...
    'LineColor',[0 0 0],...
    'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum Using FFT Algorithm')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.04],...
    'XGrid','On',...
    'YGrid','On')

Compared to the windowed power spectrum method, the wavelet power 
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Fig. 5.17 Wavelet power spectrum for the synthetic data series contained in series_3.txt. 
Th e plot clearly shows signifi cant periodicities at frequencies of 0.01, 0.025, and 0.05 kyr-1 
corresponding to the 100, 40, and 20 kyr cycles. Th e 100 kyr cycle is present throughout the 
entire time series, whereas the 40 kyr cycle only appears at around 450 kyrs before present. 
Th e 20 kyr cycle is relatively weak but is probably present throughout the entire time series. 
Th e wavelet power spectrum has been calculated using a the continuous 1D wavelet transform 
cwt and b the continuous wavelet transform using FFT algorithm cwtft.
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spectrum clearly shows a much higher resolution on both the time and 
the frequency axes. Instead of dividing the time series into overlapping 
segments and computing the power spectrum for each segment, the wavelet 
transform uses short packets of waves that better map temporal changes 
in the cyclicities. Th e disadvantage of both the windowed power spectrum 
and the wavelet power spectrum is, however, the requirement for evenly-
spaced data. Th e Lomb-Scargle method overcomes this problem but (as with 
the power spectrum method) has limitations in its ability to map temporal 
changes in the frequency domain.

 5.9 Detecting Abrupt Transitions in Time Series

A number of methods are available to detect abrupt changes in time series in 
the time domain. An example of such such methods for use in climate time 
series is the rampfi t method (Mudelsee and Stattegger 1997, Mudelsee 2000), 
and examples suitable for use in the frequency domain are the evolutionary 
power spectrum and the wavelet power spectrum (e.g., Lau and Weng 1995, 
Mackenzie et al. 2001). In most cases, trends and events in both time and 
frequency domains are detected by computing the statistical parameters of 
the data (e.g., measures of central tendency and dispersion) contained in 
a sliding window of length L. Th e precision of these parameters depends 
on the length of the window, i.e., an accurate value for the mean and the 
variance is obtained if L is large. However, a larger window reduces the 
accuracy of the estimated changes in these parameters. Th is problem is 
oft en referred to as Grenander’s uncertainty principle of statistics (Grenander 
1958). Performing a statistical test to assess diff erences in central tendency 
and dispersion between two diff erent sliding windows, however, partly 
overcomes this problem, provided only the location of a sharp transition in 
statistical parameters is required.

Th e classic t-test and F-test statistics are oft en used to compare the means 
and variances of two sets of measurements and could therefore be used to 
detect changes in the location and dispersion between two sliding windows. 
Th ese two tests, however, make the basic assumption that the samples came 
from a population with a Gaussian distribution (Sections 3.7 and 3.8). Th e 
non-parametric Mann-Whitney and Ansari-Bradley tests provide a solution 
to this problem that is independent of the distribution (Sections 3.11 and 
3.12). Th e Mann-Whitney test (Mann and Whitney 1947, Lepage 1971) 
performs a two-sided rank sum test of the null hypothesis that two samples 
come from identical continuous distributions with identical medians, against 
the alternative that they do not have identical medians. Th e Ansari-Bradley 
test performs a two-sided test that two independent samples come from the 
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same distribution, against the alternative that they come from distributions 
that have the same median and shapes but diff erent dispersions (Ansari and 
Bradley 1960, Lepage 1971).

Th e example below demonstrates the Mann-Whitney and Ansari-Bradley 
tests on two synthetic records that contain signifi cant changes in the central 
tendency (mean, median, mode) and dispersion (range, variance, quantiles) 
in the middle of the time series (Fig. 5.18). Th e time axis runs from 0.1 to 500 
kyr at sampling intervals of 0.1 kyr. At 250 kyr the mean of the log-normal 
distributed data changes abruptly from 1.0 to 1.5 and the standard deviation 
changes from 0.5 to 1.3 (Fig. 5.18 a).

clear
rng(0)
t = 0.1 : 0.1 : 500;
y1 = 0.1 * random('logn',1,   0.5, 1, length(t),1);
y2 = 0.1 * random('logn',1.5, 1.3, 1, length(t),1);
y = y1(1:length(t)/2);
y(length(t)/2+1:length(t)) = y2(length(t)/2+1:length(t));

We fi rst use a Mann-Whitney test with paired sliding windows of three 
diff erent lengths, in order to detect any abrupt change in the mean. We 
choose sliding window lengths of 300, 500, and 1,000 data points, i.e., in each 
step we apply the Mann-Whitney test to two samples of 150 data points, two 
samples of 250 data points, and two samples of 500 data points. Note that 
when running a Mann-Whitney test on diff erent sets of data the length of 
the window needs to be adjusted to the length of the time series, and to the 
required accuracy with which the transition in the mean is to be identifi ed.

w = [300 500 1000];

We use the function ranksum introduced in Section 3.11 to perform the 
Mann-Whitney test.

for j = 1:length(w)
na = w(j);
nb = w(j);
for i = w(j)/2+1:length(y)-w(j)/2
    [p,h] = ranksum(y(i-w(j)/2:i-1),y(i+1:i+w(j)/2));
    mwreal(j,i) = p;
end
mwreal(j,1:w(j)/2) = mwreal(j,w(j)/2+1) * ones(1,w(j)/2);
mwreal(j,length(y)-w(j)/2+1:length(y)) = ...
        mwreal(j,length(y)-w(j)/2) * ones(1,w(j)/2);
end

We then display the results.

subplot(2,1,1)
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Fig. 5.18 Mann-Whitney and Ansari-Bradley tests on synthetic dust fl ux record. a Lognormal 
distributed noise. Aft er 250 kyrs the mean and variance of the data shift s towards a lower 
value. b Result of a Mann-Whitney test for three diff erent lengths of the paired sliding 
windows (150, 250 and 500 data points, equivalent to 15, 25 and 50 kyrs). Th e length of the 
window clearly infl uences the amplitudes and widths of the parameter maxima, whereas the 
location of the transition in the mean is well defi ned. c Result of a Ansari-Bradley test for 
three diff erent lengths of the paired sliding windows (150, 250 and 500 data points, equivalent 
to 15, 25 and 50 kyrs). Th e length of the window clearly infl uences the amplitudes and widths 
of the parameter maxima, and the location of the transition in the dispersion is well defi ned.
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plot(t,y)
title('Synthetic signal of lognormal distributed noise')
subplot(2,1,2)
plot(t,log(mwreal))
title('Results from Mann-Whitney U-test')

Th e result from the Mann-Whitney test reveals that the length of the window 
infl uences the amplitudes and widths of the maxima of the test parameter, 
whereas the location of the transition in the means is well defi ned (Fig. 
5.18  b). We next use an Ansari-Bradley test for the same three diff erent 
lengths of paired sliding windows (150, 250 and 500 data points) to detect any 
abrupt change in the standard deviation. We use the function ansaribradley 
introduced in Section 3.12 to perform the Ansari-Bradley test.

for j = 1:length(w)
df1 = w(j) - 1;
df2 = w(j) - 1;
for i = w(j)/2+1:length(y)-w(j)/2
    [h,p] = ansaribradley(y(i-w(j)/2:i-1),y(i+1:i+w(j)/2));
    abreal(j,i) = p;
end
abreal(j,1:w(j)/2) = abreal(j,w(j)/2+1) * ones(1,w(j)/2);
abreal(j,length(y)-w(j)/2+1:length(y)) = ...
    abreal(j,length(y)-w(j)/2) * ones(1,w(j)/2);
end

We then display the results.

subplot(2,1,1)
plot(t,y)
title('Synthetic signal of lognormal distributed noise')
subplot(2,1,2)
plot(t,log(abreal))
title('Results from Ansari-Bradley test')

Th e length of the window again clearly infl uences the amplitudes and widths 
of the maxima of the test parameters, and the location of the transition in 
the dispersion is again well defi ned (Fig. 5.18 c). Th is method has been 
successfully applied to records of terrigenous dust fl ux preserved in marine 
sediments off shore subtropical West Africa, the eastern Mediterranean Sea, 
and the Arabian Sea, in order to detect trends, rhythms and events in the 
African Plio-Pleistocene climate (Trauth et al. 2009).

 5.10 Nonlinear Time-Series Analysis (by N. Marwan)

Th e methods described in the previous sections detect linear relationships 
in the data. However, natural processes on the earth oft en show a more 
complex and chaotic behavior, and methods based on linear techniques may 
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therefore yield unsatisfactory results. In recent decades, new techniques for 
nonlinear data analysis derived from chaos theory have become increasingly 
popular. Such methods have been employed to describe nonlinear behavior 
by, for example, defi ning the scaling laws and fractal dimensions of natural 
processes (Turcotte 1997, Kantz and Schreiber 1997). However, most 
methods of nonlinear data analysis require either long or stationary data 
series and these requirements are rarely satisfi ed in the earth sciences. While 
most nonlinear techniques work well on synthetic data, these methods are 
unable to describe nonlinear behavior in real data. 

During the last decades, recurrence plots have become very popular 
in science and engineering as a new method of nonlinear data analysis 
(Eckmann 1987, Marwan 2007). Recurrence is a fundamental property of 
dissipative dynamical systems. Although small disturbances in such systems 
can cause exponential divergence in their states, aft er some time the systems 
will return to a state that is close to a former state and then pass again 
through a similar evolution. Recurrence plots allow such recurrent behavior 
of dynamical systems to be visually portrayed. Th e method is now widely 
accepted as a useful tool for the nonlinear analysis of short and nonstationary 
data sets.

 Phase Space Portrait

Th e starting point for most nonlinear data analyses is the construction of a 
phase space portrait for a system. Th e state of a system can be described by its 
state variables x1(t), x2(t), …, xd(t). As an example, suppose the two variables 
temperature and pressure are used to describe the thermodynamic state of 
the earth’s mantle as a complex system. Th e d state variables at time t form 
a vector in a d-dimensional space, which is known as the phase space. Th e 
state of a system typically changes with time and the vector in the phase space 
therefore describes a trajectory representing the temporal evolution (i.e., the 
dynamics) of the system. Th e trajectory provides essential information on 
the dynamics of the system, such as whether systems are periodic or chaotic.

In many applications the observation of a natural process does not yield 
all possible state variables, either because they are not known or because 
they cannot be measured. However, due to coupling between the system’s 
components, we can reconstruct a phase space trajectory from a single 
observation ui:

where m is the embedding dimension and τ is the time delay (index based; 
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the real time delay is τ=Δt). Th is reconstruction of the phase space is called 
time delay embedding. Th e reconstruction of the phase space is not exactly the 
same as the original phase space, but its topological properties are preserved 
provided that the embedding dimension is suffi  ciently large. In practice, 
the embedding dimension must be more than twice the dimension of the 
attractor (i.e., m>2d+1). Th e reconstructed trajectory is then suffi  ciently 
accurate for subsequent data analysis.

As an example we now explore the phase space portrait of a harmonic 
oscillator such as an undamped pendulum. We fi rst create the position 
vector x1 and the velocity vector x2

clear

t = 0 : pi/10 : 3*pi;
x1 = sin(t);
x2 = cos(t);

Th e phase space portrait

plot(x1,x2)
xlabel('x_1') 
ylabel('x_2')

is a circle, suggesting an exact recurrence of each state aft er one complete 
cycle (Fig. 5.19). Using the time delay embedding we can reconstruct this 
phase space portrait using only a single observation, e.g., the velocity vector, 
and a time delay of fi ve, which corresponds to a quarter of the period of our 
pendulum.

tau = 5;
plot(x2(1:end-tau),x2(1+tau:end))
xlabel('x_1')
ylabel('x_2')

As we can see, the reconstructed phase space is almost the same as the 
original phase space. Next, we compare this phase space portrait with one 
for a typical nonlinear system, the Lorenz system (Lorenz 1963). Weather 
patterns oft en to not change in a predictable manner. In 1963, Edward 
Lorenz introduced a simple three-dimensional model to describe the 
chaotic behavior exhibited by turbulence in the atmosphere. Th e variables 
defi ning the Lorenz system are the intensity of atmospheric convection, the 
temperature diff erence between ascending and descending currents, and the 
distortion of the vertical temperature profi les from linearity. Small variations 
in the initial conditions can cause dramatically divergent weather patterns, a 
behavior oft en referred to as the butterfl y eff ect. Th e dynamics of the Lorenz 
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Fig. 5.19 a Original, and b reconstructed phase space portrait for a periodic system. Th e 
reconstructed phase space is almost the same as the original phase space. 

system are described by three coupled nonlinear diff erential equations:

Integrating the diff erential equation yields a simple MATLAB code for 
computing the xyz triplets of the Lorenz system. As system parameters 
controlling the chaotic behavior we use s=10, r=28 and b=8/3; the time delay 
is dt=0.01. Th e initial values for the position vectors are x1=8, x2=9 and x3=25. 
Th ese values, however, can be changed to any other values, which of course 
will then change the behavior of the system.

clear

dt = .01; 
s = 10; 
r = 28; 
b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 
for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end

a b
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Typical traces of a variable (such as the fi rst variable) can be viewed by 
plotting x(:,1) over time (Fig. 5.20).

t = 0.01 : 0.01 : 50;
plot(t,x(:,1))
xlabel('Time')
ylabel('Temperature')

We next plot the phase space portrait for the Lorenz system (Fig. 5.21).

plot3(x(:,1),x(:,2),x(:,3))
grid, view(70,30)
xlabel('x_1') 
ylabel('x_2') 
zlabel('x_3')

In contrast to the simple periodic system described above, the trajectories of 
the Lorenz system obviously do not precisely follow the previous course, but 
recur very close to it. Moreover, if we follow two very close segments of the 
trajectory, we see that they run into diff erent regions of the phase space with 
time. Th e trajectory is obviously circling around a fi xed point in the phase 
space and then, aft er a random time period, circling around another. Th e 
curious orbit of the phase states around fi xed points is known as the Lorenz 
attractor.

Th ese observed properties are typical of chaotic systems. While small 
disturbances in such a system cause exponential divergences in its state, the 
system returns approximately to a previous state through a similar course. 
Th e reconstruction of the phase space portrait using only the fi rst state and 
a time delay of six

Fig. 5.20 Th e Lorenz system. As system parameters we use s=10, r=28 and b=8/3;  the time 
delay is dt=0.01.
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Movie 
5.3

tau = 6; 
plot3(x(1:end-2*tau,1),x(1+tau:end-tau,1),x(1+2*tau:end,1)) 
grid, view([100 60])
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')

reveals a similar phase portrait with the two typical ears (Fig. 5.21). Th e 
characteristic properties of chaotic systems can also be observed in this 
reconstruction.

Th e time delay and embedding dimension need to be chosen from a 
previous analysis of the data. Th e delay can be estimated with the help of the 
autocovariance or autocorrelation function. For our example of a periodic 
oscillation,

clear

t = 0 : pi/10 : 3*pi;
x = sin(t);

we compute and plot the autocorrelation function

for i = 1 : length(x) - 2
    r = corrcoef(x(1:end-i),x(1+i:end));
    C(i) = r(1,2);
end

plot(C)

Fig. 5.21 a Th e phase space portrait for the Lorenz system. In contrast to the simple periodic 
system, the trajectories of the Lorenz system obviously do not follow precisely the previous 
course, but recur very close to it. b Th e reconstruction of the phase space portrait using only 
the fi rst state and a time delay of 6 reveals a topologically similar phase portrait to a, with the 
two typical ears.

a b
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xlabel('Delay'), ylabel('Autocorrelation')
grid on

We now choose a delay such that the autocorrelation function for the fi rst 
time period equals zero. In our case this is fi ve, which is the value that we have 
already used in our example of phase space reconstruction. Th e appropriate 
embedding dimension can be estimated using the false nearest neighbors 
method, or more simple, using recurrence plots, which are introduced in the 
next subsection. Th e embedding dimension is gradually increased until the 
majority of the diagonal lines are parallel to the line of identity.

Th e phase space trajectory or its reconstruction is the basis of several 
measures defined in nonlinear data analysis, such as Lyapunov exponents, 
Rényi entropies, or dimensions. Th e book on nonlinear data analysis by Kantz 
and Schreiber (1997) is recommended for more detailed information on 
these methods. Phase space trajectories or their reconstructions are also 
necessary for constructing recurrence plots.

 Recurrence Plots

Th e phase space trajectories of dynamic systems that have more than three 
dimensions are diffi  cult to portray visually. Recurrence plots provide a way 
of analyzing systems with higher dimensions. Th ey can be used, e.g., to 
detect transitions between diff erent regimes, or to detect interrelationships 
or synchronisations between diff erent systems (Marwan 2007). Th e method 
was fi rst introduced by Eckmann and others (1987). Th e recurrence plot is a 
tool that displays the recurrences of states in the phase space through a two-
dimensional plot.

If the distance between two states, i and j , on the trajectory is smaller than 
a given threshold ε, the value of the recurrence matrix R is one; otherwise it 
is zero. Th is analysis is therefore a pairwise test of all states. For N states we 
compute N2 tests. Th e recurrence plot is then the two-dimensional display 
of the N-by-N matrix, where black pixels represent Ri,j=1 and white pixels 
indicate Ri,j=0, with a coordinate system representing two time axes. Such 
recurrence plots can help to fi nd a preliminary characterization of the 
dynamics of a system or to fi nd transitions and interrelationships within a 
system (cf. Fig. 5.22).
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As a fi rst example we load the synthetic time series containing 100 kyr, 40 
kyr and 20 kyr cycles already used in the previous sections. Since the data are 
unevenly spaced, we need to linearly interpolate the data to an evenly-spaced 
time axis.

clear

series1 = load('series1.txt');
t = 0 : 3 : 996;
series1L = interp1(series1(:,1),series1(:,2),t,'linear');

We start with the assumption that the phase space is only one-dimensional. 
Calculating the distances between all points of the phase space trajectory 
produces the distance matrix S.

N = length(series1L);

Fig. 5.22 Recurrence plots representing typical dynamical behaviors: a stationary uncorrelated 
data (white noise), b periodic oscillation, c chaotic data (Roessler system), and d non-
stationary data with abrupt changes.

a

c

b

d
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S = zeros(N, N);

for i = 1 : N,
    S(:,i) = abs(repmat(series1L(i), N, 1 ) - series1L(:));
end

We can now plot the distance matrix

imagesc(t,t,S)
colormap jet
colorbar
xlabel('Time'), ylabel('Time')
axis xy

for the data set, where a colorbar provides a quantitative measure of the 
distances between states (Fig. 5.23). We now apply a threshold ε to the 
distance matrix to generate the black/white recurrence plot (Fig. 5.24).

imagesc(t,t,S<1)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
axis xy

Both plots reveal periodically recurring patterns. Th e distances between 
these periodically recurring patterns represent the cycles contained in the 
time series. Th e most signifi cant periodic patterns have periods of 200 
and 100 kyrs. Th e 200 kyr period is the most signifi cant because of the 
superposition of the 100 and 40 kyr cycles, which are common divisors of 
200 kyrs. Moreover, there are smaller substructures within the recurrence 
plot that have periods of 40 and 20 kyrs.

As a second example we now apply the method of recurrence plots to the 
Lorenz system. We again generate xyz triplets from the coupled diff erential 
equations.

clear

dt = .01; 
s = 10; 
r = 28; 
b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 
for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end

We then choose the resampled fi rst component of this system and reconstruct 
a phase space trajectory by using an embedding of m=3 and τ=2.
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Fig. 5.23 Display of the distance matrix from the synthetic data, providing a quantitative 
measure for the distances between states at particular times; blue colors indicate small 
distances and red colors represent large distances.

t = 0.01 : 0.05 : 50;
y = x(1:5:5000,1);
m = 3; tau = 2;

N = length(y);
N2 = N - tau*(m - 1);

Th e original data series had a length of 5,000 data points, reduced to 1,000 
data points (equivalent to 50 seconds), but because of the time delay method 
the reconstructed phase space trajectory has a length of 996 data points. We 
can create the phase space trajectory with

for mi = 1:m
   xe(:,mi) = y([1:N2] + tau*(mi-1));
end

We can accelerate the pair-wise test between each pairs of points on the 
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Fig. 5.24 Th e recurrence plot for the synthetic data derived from the distance matrix, as 
shown in Fig. 5.23, aft er applying a threshold of ε=1.

trajectory with a fully vectorized algorithm supported by MATLAB. For this 
we need to transfer the trajectory vector into two test vectors whose element-
wise test will provide the pair-wise test of the trajectory vector:

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

From these vectors we calculate the recurrence plot using the Euclidean norm 
without any FOR loop (see Section 9.4 for details on Euclidean distances).

S = sqrt(sum((x1 - x2).^ 2,2 ));
S = reshape(S,N2,N2);

imagesc(t(1:N2),t(1:N2),S<10)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
axis xy

Th is recurrence plot reveals many short diagonal lines (Fig. 5.25). Th ese 
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Movie 
5.4

Fig. 5.25 Th e recurrence plot for the Lorenz system using a threshold of ε=2. Th e regions with 
regular diagonal lines reveal unstable periodic orbits, typical of chaotic systems.

lines represent periods of time during which the phase space trajectory runs 
parallel to earlier or later sequences in this trajectory, i.e., periods of times 
during which the states and dynamics were similar. Th e distances between 
these diagonal lines represent the periods of the cycles, which vary and are 
not constant, in contrast to those for a harmonic oscillation (Fig. 5.22).

 Recurrence Quantifi cation

Th e structure of recurrence plots can also be described by a suite of 
quantitative measures. Several measures are based on the distribution of 
the lengths of diagonal or vertical lines, as well as on the local proximity 
confi guration. Th ese measures can be used to trace hidden transitions within 
a process. As an example we will consider two measures: the recurrence 
rate and the transitivity coeffi  cient. Th e recurrence rate is the density of 
points in the recurrence plot and corresponds to the recurrence probability 
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Fig. 5.26 Time series of the synthetic data used in the example of quantitative measures of 
recurrence plots.

of the system. Th e transitivity coeffi  cient has its roots in graph theory and 
characterizes the regularity or complexity of the system.

We load the synthetic time from the fi le series3.txt, interpolate the data 
to an annual time axis, and reconstruct its phase space trajectory using an 
embedding dimension of 5 and a time delay of 3 (Fig. 5.26).

clear

series3 = load('series3.txt');

t = 0 : 1 : 996;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');
plot(t,series3L)
xlabel('Time')

N = length(series3L);
tau = 3; m=5;
N2 = N - tau*(m - 1);

xe = zeros(N2,m);
for mi = 1:m
   xe(:,mi) = series3L([1:N2] + tau*(mi-1));
end

Using the vectorized approach we calculate the recurrence plot by applying 
a threshold of 1.2 to the distance matrix (Fig. 5.27).

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

S = sqrt(sum((x1 - x2).^ 2,2));
S = reshape(S,N2,N2);
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R = S<1.2;

imagesc(t(1:N2),t(1:N2),R)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
axis square xy

To calculate the recurrence rate we can simply compute the mean of the 
matrix R

RR = mean(R(:))

which yields

RR = 
  0.1399

Th e probability that the system returns to a randomly selected previous state 
is therefore about 14%.

Th e transitivity coeffi  cient is a graph-theoretical measure of the probability 
that three connected network nodes (triples) are completely interconnected, 

Fig. 5.27 Recurrence plot for the synthetic data in Fig. 5.26, using an embedding of m=5 and 
τ = 3 and applying a threshold of ε=1.2.
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i.e., that they form a closed triangle:

Th is measure can be intuitively understood with respect to recurrences in 
the phase space. We identify a recurrence of states by a network link: close 
points on the phase space trajectory are connected by a link. Th ree connected 
points form a triple, but only if all three points recur closely to each other, 
thus forming a triangle. Such a triangular confi guration will remain along 
the phase space trajectory if the dynamic is very regular (recurring states 
remain recurring over a long period of time). However, if the dynamic is 
chaotic, then parts of the phase space trajectory that were initially close 
will subsequently diverge and the triangular confi guration will break down, 
although the corresponding triple nodes might remain interconnected for 
some time. Th e probability of fi nding triangles is therefore higher for regular 
dynamics but lower for chaotic dynamics. Th is explanation is, of course, 
rather simplifi ed but a theoretically substantiated explanation can be found 
in Donner et al. (2011). 

In order to calculate the probability that triples also form triangles we need 
to compute the number of connected triples and the number of triangles, 
which can be achieved directly from the recurrence plot but excluding the 
main diagonal.

A = R - eye(size(R));

Th e number of triangles and triples is then 

numTripl = sum(sum(A * A));
numTria = trace(A * A * A);

and fi nally, the transitivity coeffi  cient is the fraction

Trans = numTria/numTripl

which yields

Trans = 
   0.5930

Th is number means that the system does not have regular dynamics (which 
would yield a transitivity coeffi  cient close to one).

Changes in the dynamics, such as transition points and regime changes, 
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Movie 
5.5

Fig. 5.28 Recurrence rate and transitivity coeffi  cient for the synthetic data in Fig. 5.26, using 
a moving window of 150 data points and an overlap of 20%.

are oft en of interest. Recurrence analysis can be used to detect diff erent types 
of such transitions. Applying moving windows along the main diagonal of 
the recurrence plot, we divide it into sub-recurrence plots and calculate the 
recurrence measures of these sub-plots. In our example we choose a moving 
window length of 150 and an overlap of 20%

w = 150;

We then calculate the recurrence rate and transitivity coeffi  cient within these 
moving windows (Fig. 5.28).

w = 150;
Trans = zeros(length(R)-w,1);
RR = zeros(length(R)-w,1);
for i = 1:w/5:length(R)-w
   subR = R(i:i+w,i:i+w);
   RR(i) = mean(subR(:));
   subA = A(i:i+w,i:i+w);
   numTripl = sum(sum(subA * subA));
   numClosTria = trace(subA * subA * subA);
   Trans(i) = numClosTria/numTripl;
end

plot(t(round(w/2) + (1:w/5:length(RR))), RR(1:w/5:end),... 
  t(round(w/2) + (1:w/5:length(RR))), Trans(1:w/5:end))
xlabel('Time')
legend('recurrence rate','transitivity coeff',4)

Th e results suggest slight changes in the dynamics with respect to recurrence 
probability (due to the visible amplitude variations in the time series) and 
regularity. For a reliable interpretation of the variations in the recurrence 
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measures, a statistical test should be applied (Marwan 2011). Other more 
complex measures that quantify other aspects of the dynamics (e.g., 
predictability, or laminar phases) are included in the Cross Recurrence Plot 
Toolbox for MATLAB, available from

http://tocsy.pik-potsdam.de/CRPtoolbox/

Bivariate and multivariate extensions of recurrence plots allow nonlinear 
correlation tests and synchronization analyses to be carried out. A detailed 
introduction to methods based on recurrence plots can be found on the 
following web site:

http://www.recurrence-plot.tk

Th e analysis of recurrence plots has already been applied to many problems 
in earth sciences. Th e comparison of the dynamics of modern precipitation 
data with paleo-rainfall data inferred from annual-layered lake sediments in 
the northwestern Argentine Andes provides a good example of such analyses 
(Marwan et al. 2003). In this instance the recurrence plot method was applied 
to red-color intensity transects across varved lake sediments that were 
approximately 30 kyrs old (Section 8.7). Comparing the recurrence plots 
from the sediments with those from modern precipitation data revealed that 
the reddish layers document the more intense rainy seasons that occurred 
during La Niña years. Th e application of linear techniques was, however, 
not able to link the increased fl ux of reddish clays with either the El Niño or 
La Niña phase of the El Niño/Southern Oscillation. Moreover, recurrence 
plots helped to prove the hypothesis that longer rainy seasons, enhanced 
precipitation, and the stronger infl uence of the El Niño/Southern Oscillation 
caused an increase in the number of landslides 30 kyrs ago (Marwan et al. 
2003, Trauth et al. 2003).

 Recommended Reading

Ansari AR, Bradley RA (1960) Rank-Sum Tests for Dispersion. Annals of Mathematical 
Statistics, 31:1174–1189. [Open access]

Blackman, RB, Tukey, JW (1958) Th e Measurement of Power Spectra. Dover NY
Cooley JW, Tukey JW (1965) An Algorithm for the Machine Calculation of Complex Fourier 

Series. Mathematics of Computation 19(90):297–301.
Donner RV, Heitzig J, Donges JF, Zou Y, Marwan N, Kurths J (2011) Th e Geometry of Chaotic 

Dynamics – A Complex Network Perspective. European Physical Journal B, 84:653–672
Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence Plots of Dynamical Systems. 

Europhysics Letters 5:973–977
Grenander U (1958) Bandwidth and variance in estimation of the spectrum. Journal of the 

Royal Statistical Society Series B 20:152–157

RECOMMENDED READING  211



Holschneider M (1995) Wavelets, an Analysis Tool. Oxford University Press, Oxford
Kantz H, Schreiber T (1997) Nonlinear Time Series Analysis. Cambridge University Press, 

Cambridge
Lau KM, Weng H (1995) Climate Signal Detection Using Wavelet Transform: How to make a 

Time Series Sing. Bulletin of the American Meteorological Society 76:2391–2402
Lepage Y (1971) A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika 

58:213–271
Lomb NR (1972) Least-Squared Frequency Analysis of Unequally Spaced Data. Astro-physics 

and Space Sciences 39:447–462
Lorenz EN (1963) Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences 20:130–

141
Mackenzie D, Daubechies I, Kleppner D, Mallat S, Meyer Y, Ruskai MB, Weiss G (2001) 

Wavelets: Seeing the Forest and the Trees. Beyond Discovery, National Academy of 
Sciences, December 2001, available online at http://www.beyonddiscovery.org

Mann, HB, Whitney, DR (1947) On a Test of Whether one of Two Random Variables is 
Stochastically Larger than the Other. Annals of Mathematical Statistics 18:50–60

Marwan N, Th iel M, Nowaczyk NR (2002) Cross Recurrence Plot Based Synchronization of 
Time Series. Nonlinear Processes in Geophysics 9(3/4):325–331

Marwan N, Trauth MH, Vuille M, Kurths J (2003) Nonlinear Time-Series Analysis on 
Present-Day and Pleistocene Precipitation Data from the NW Argentine Andes. Climate 
Dynamics 21:317–332

Marwan N, Romano MC, Th iel M, Kurths J (2007) Recurrence Plots for the Analysis of 
Complex Systems. Physics Reports, 438: 237–329

Marwan N (2011) How to avoid potential pitfalls in recurrence plot based data analysis. 
International Journal of Bifurcation and Chaos 21:1003–1017

MathWorks (2014a) Signal Processing Toolbox – User’s Guide. Th e MathWorks, Inc., Natick, 
MA

MathWorks (2014b) Wavelet Toolbox – User’s Guide. Th e MathWorks, Inc., Natick, MA
Mudelsee M, Stattegger M (1997) Exploring the structure of the mid-Pleistocene revolution 

with advanced methods of time-series analysis. International Journal of Earth Sciences 
86:499–511

Mudelsee M (2000) Ramp function regression: A tool for quantifying climate transitions. 
Computers and Geosciences 26:293–307

Muller RA, MacDonald GJ (2000) Ice Ages and Astronomical Causes – Data, Spectral 
Analysis and Mechanisms. Springer Verlag, Berlin Heidelberg New York

Press WH, Teukolsky SA, Vetterling WT (2007) Numerical Recipes: Th e Art of Scientifi c 
Computing – Th ird Edition. Cambridge University Press, Cambridge

Romano M, Th iel M, Kurths J, von Bloh W (2004) Multivariate Recurrence Plots. Physics 
Letters A 330(3–4):214–223

Scargle JD (1981) Studies in Astronomical Time Series Analysis. I. Modeling Random 
Processes in the Time Domain. Th e Astrophysical Journal Supplement Series 45:1–71

Scargle JD (1982) Studies in Astronomical Time Series Analysis. II. Statistical Aspects of 
Spectral Analysis of Unevenly Spaced Data. Th e Astrophysical Journal 263:835–853

Scargle JD (1989) Studies in Astronomical Time Series Analysis. III. Fourier Transforms, 
Autocorrelation Functions, and Cross-Correlation Functions of Unevenly Spaced Data. 
Th e Astrophysical Journal 343:874–887

Schulz M, Stattegger K (1998) SPECTRUM: Spectral Analysis of Unevenly Spaced 
Paleoclimatic Time Series. Computers & Geosciences 23:929–945

Schuster A (1898) On the investigation of hidden periodicities with application to a supposed 

212  5 TIME-SERIES ANALYSIS



26 day period of meteorological phenomena. Terrestrial Magmetism and Atmospheric 
Electricity 3:13–41

Takens F (1981) Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics, 
898:366–381

Torrence C, Compo GP (1998) A Practical Guide to Wavelet Analysis. Bulletin of the 
American Meteorological Society 79:61–78

Trulla LL, Giuliani A, Zbilut JP,  Webber Jr CL (1996) Recurrence Quantifi cation Analysis of 
the Logistic Equation with Transients. Physics Letters A 223(4):255–260

Turcotte DL (1992) Fractals and Chaos in Geology and Geophysics. Cambridge University 
Press, Cambridge

Trauth MH, Bookhagen B, Marwan N, Strecker MR (2003) Multiple Landslide Clusters 
Record Quaternary Climate Changes in the NW Argentine Andes. Palaeogeography 
Palaeoclimatology Palaeoecology 194:109–121

Trauth MH, Larrasoaña JC, Mudelsee M (2009) Trends, rhythms and events in Plio-
Pleistocene African climate. Quaternary Science Reviews 28:399–411

Weedon G (2003) Time-Series Analysis and Cyclostratigraphy – Examining Stratigraphic 
Records of Environmental Change. Cambridge University Press, Cambridge

Welch PD (1967) Th e Use of Fast Fourier Transform for the Estimation of Power Spectra: 
A Method Based on Time Averaging over Short, Modifi ed Periodograms. IEEE Trans. 
Audio Electroacoustics AU-15:70–73

RECOMMENDED READING  213


	5 Time-Series Analysis
	5.1 Introduction
	5.2 Generating Signals
	5.3 Auto-Spectral and Cross-Spectral Analysis
	5.4 Examples of Auto-Spectral and Cross-Spectral Analysis
	5.5 Interpolating and Analyzing Unevenly-Spaced Data
	5.6 Evolutionary Power Spectrum
	5.7 Lomb-Scargle Power Spectrum
	5.8 Wavelet Power Spectrum
	5.9 Detecting Abrupt Transitions in Time Series
	5.10 Nonlinear Time-Series Analysis (by N. Marwan)
	Phase Space Portrait
	Recurrence Plots
	Recurrence Quantification

	Recommended Reading




