
9 DifferentialEquations
1. A Differential Equation is an equation, in which one or more variables, one or more functions
of these variables, and also the derivatives of these functions with respect to these variables occur. The
order of a differential equation is equal to the order of the highest occurring derivative.
2. Ordinary and Partial Differential Equations differ from each other in the number of their
independent variables; in the first case there is only one, in the second case there are several.
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9.1 OrdinaryDifferential Equations
1. General Ordinary Differential Equation of Order n
in implicit form has the equation

F
[
x, y(x), y′(x), . . . , y(n)(x)

]
= 0. (9.1)

If this equation is solved for y(n)(x), then it is the explicit form of an ordinary differential equation of
order n.

2. Solution or Integral
of a differential equation is every function satisfying the equation in an interval a ≤ x ≤ b which can be
also infinite. A solution, which contains n arbitrary constants c1, c2, . . . , cn, is called the general solution
or general integral. If the values of these constants are fixed, a particular integral or a particular solution
is obtained. The value of these constants can be determined by n further conditions. If the values of
y and its derivatives up to order n − 1 are prescribed at one of the endpoints of the interval, then the
problem is called an initial value problem. If there are given values at both endpoints of the interval,
then the problem is called a boundary value problem.

The differential equation −y′ sin x+ y cosx = 1 has the general solution y = cos x+ c sin x. For the
condition c = 0 one gets the particular solution y = cos x.

3. Initial Value Problem
If the n values y(x0), y

′(x0), . . . , y
(n−1)(x0) are given at x0 for the solution y = y(x) of an n-th order

ordinary differential equation, then an initial value problem is given. The numbers are called the initial
values or initial conditions. They form a system of n equations for the unknown constants c1, c2, . . . , cn
of the general solution of the n-th order ordinary differential equation.

The harmonic motion of a special elastic spring-mass system can be modeled by the initial value
problem y′′ + y = 0 with y(0) = y0, y

′(0) = 0. The solution is y = y0 cos x.

4. Boundery Value Problem
If the solution of an ordinary differential equation and/or its derivatives are given at several points of
its domain, then these values are called the boundary conditions. A differential equation with boundary
conditions is called a boundary value problem.

The bending line of a bar with fixed endpoints and uniform load is described by the differential
equation y′′ = x − x2 with the boundary conditions y(0) = 0, y(1) = 0 (0 ≤ x ≤ 1). The solution is

y =
x3

6
− x4

12
− x

12
.

9.1.1 First-OrderDifferential Equations

9.1.1.1 Existence Theorems, Direction Field

1. Existence of a Solution
In accordance with the Cauchy existence theorem the differential equation

y′ = f(x, y) (9.2)
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9.1 Ordinary Differential Equations 541

has at least one solution in a neighborhood of x0 such that it takes the value y0 at x = x0 if the function
f(x, y) is continuous in a neighborhood G of the point (x0, y0). For example, G can be selected as the
region given by |x− x0| < a and |y − y0| < b with some a and b.

2. Lipschitz Condition
The Lipschitz condition with respect to y is satisfied by f(x, y) if

|f(x, y1)− f(x, y2)| ≤ N |y1 − y2| (9.3)

holds for all (x, y1) and (x, y2) from G, where N is independent of x, y1, and y2. If this condition is
satisfied, then the differential equation (9.2) has a unique solution through (x0, y0). The Lipschitz
condition is obviously satisfied if f(x, y) has a bounded partial derivative ∂f/∂y in this neighborhood.
In 9.1.1.4, p. 546 there are examples in which the assumptions of the Cauchy existence theorem are not
satisfied.

3. Direction Field
If the graph of a solution y = ϕ(x) of the differential equation y′ = f(x, y) goes through the point
P (x, y), then the slope dy/dx of the tangent line of the graph at this point can be determined from
the differential equation. So, at every point (x, y) the differential equation defines the slope of the
tangent line of the solution passing through the considered point. The collection of these directions
(Fig. 9.1) forms the direction field. An element of the direction field is a point together with the direc-
tion associated to it. Integration of a first-order differential equation geometrically means to connect
the elements of a direction field into an integral curve, whose tangents have the same slopes at all points
as the corresponding elements of the direction field.
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4. Vertical Directions
If a vertical direction can be found in a direction field, e.a., if the function f(x, y) has a pole, then one
can change the role of the independent and dependent variables and consider the differential equation

dx

dy
=

1

f(x, y)
(9.4)

as an equivalent equation to (9.2). In the region where the conditions of the existence theorems are
fulfilled for the differential equations (9.2) or (9.4), there exists a unique integral curve (Fig. 9.2)
through every point P (x0, y0).

5. General Solution
The set of all integral curves of (9.2) can be characterized by one parameter and it can be given by the
equation

F (x, y, C) = 0 (9.5a)

of the corresponding one-parameter family of curves. The parameter C, an arbitrary constant, can be
chosen freely and it is a necessary part of the general solution of every first-order differential equation.
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A particular solution y = ϕ(x), which satisfies the condition y0 = ϕ(x0), can be obtained from the
general solution (9.5a) if C is expressed from the equation

F (x0, y0, C) = 0. (9.5b)

9.1.1.2 Important SolutionMethods

1. Separation of Variables
If a differential equation can be transformed into the form

M(x)N(y)dx+ P (x)Q(y)dy = 0, (9.6a)

then it can be rewritten as

R(x)dx+ S(y)dy = 0, (9.6b)

where the variables x and y are separated into two terms. To get this form, equation (9.6a) is divided
by P (x)N(y). The general solution of (9.6a) is∫ M(x)

P (x)
dx+

∫ Q(y)

N(y)
dy = C. (9.7)

If for some values x = x or y = y, the functions P (x) or N(y) or both are equal to zero, then the
constant functions x = x or/and y = y are also solutions of the differential equation. They are called
singular solutions.

xdy+ ydx = 0;
∫ dy

y
+
∫ dx

x
= C; ln |y|+ ln |x| = C = ln |c|; yx = c. If one allows also c = 0

in this final equation, then one has the singular solutions y ≡ 0 and x ≡ 0.

2. Homogeneous Equations
If M(x, y) and N(x, y) are homogeneous functions of the same order (see 2.18.2.6, 1., p. 122), then in
the equation

M(x, y)dx+N(x, y)dy = 0 (9.8)

the variables can be separated by substitution of u = y/x.

x(x− y)y′ + y2 = 0 with y = u(x)x, gives (1− u)u′ + u/x = 0, then by separation of the variables

holds
∫ (1− u)

u
du = −

∫ 1

x
dx. After integration: ln |x|+ln |u−u| = C = ln |c|, ux = ceu, y = cey/x.

As can be seen in the preceding paragraph, Separation of Variables, the line x = 0 is also an integral
curve.

3. Exact Differential Equations
An exact differential equation is an equation of the form

M(x, y)dx+N(x, y)dy = 0 or N(x, y)y′ +M(x, y) = 0, (9.9a)

if there exists a function Φ(x, y) of two variables such that

M(x, y)dx+N(x, y)dy ≡ dΦ(x, y), (9.9b)

i.e., if the left side of (9.9a) is the total differential of a function Φ(x, y) (see 6.2.2.1, p. 447). If functions
M(x, y) and N(x, y) and their first-order partial derivatives are continuous on a connected domain G,
then the equality

∂M

∂y
=

∂N

∂x
(9.9c)

is a necessary and sufficient condition for equation (9.9a) to be exact. In this case the general solution
of (9.9a) is the function

Φ(x, y) = C (C = const), (9.9d)
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which can be calculated according to (8.3.4), 8.3.4.4, p. 522 as the integral

Φ(x, y) =

x∫
x0

M(ξ, y) dξ +

y∫
y0

N(x0, η) dη, (9.9e)

where x0 and y0 can be chosen arbitrarily from G.

Examples will be given later.

4. Integrating Factor
A function μ(x, y) is called an integrating factor or a multiplier if the equation

Mdx+Ndy = 0 (9.10a)

multiplied by μ(x, y) becomes an exact differential equation. The integrating factor satisfies the differ-
ential equation

N
∂ lnμ

∂x
−M

∂ lnμ

∂y
=

∂M

∂y
− ∂N

∂x
. (9.10b)

Every particular solution μ of this equation is an integrating factor. To give a general solution of this
partial differential equation is much more complicated than to solve the original equation, so usually
one is looking for the solution μ(x, y) in a special form, e.g., μ(x), μ(y), μ(xy) or μ(x2 + y2).

To solve the differential equation (x2 + y) dx − x dy = 0, the equation for the integrating factor is

−x
∂ lnμ

∂x
− (x2 + y)

∂ lnμ

∂y
= 2. An integrating factor which is independent of y must satisfy x

∂ lnμ

∂x
=

−2, so μ =
1

x2
. Multiplication of the given differential equation by μ yields

(
1 +

y

x2

)
dx − 1

x
dy = 0.

The general solution according to (9.9e) with the selection of x0 = 1, y0 = 0 is then:

Φ(x, y) ≡
∫ x

1

(
1 +

y

ξ2

)
dξ −

∫ y

0
dη = C or x− y

x
= C1.

5. First-Order Linear Differential Equations
A first-order linear differential equation has the form

y′ + P (x)y = Q(x), (9.11a)

where the unknown function and its derivative occur only in first degree, and P (x) and Q(x) are given
functions. If P (x) and Q(x) are continuous functions on a finite, closed interval, then the differential
equation satisfies the conditions of the Picard-Lindelöf theorem (see 12.2.2.4,4., p. 668) in this region.
An integrating factor is here

μ = exp
(∫

P dx
)
, (9.11b)

the general solution is

y = exp
(
−
∫

P dx
) [∫

Q exp
(∫

P dx
)
dx+ C

]
. (9.11c)

Replacing the indefinite integrals by definite ones with lower bound x0 and upper bound x in this
formula, then for the solution y(x0) = C (see 8.2.1.2, 1., p. 495). If y1 is any particular solution of the
differential equation, then the general solution of the differential equation is given by the formula

y = y1 + C exp
(
−
∫
P dx

)
. (9.11d)

If y1(x) and y2(x) are two linearly independent particular solutions (see 9.1.2.3, 2., p. 553), then one
can get the general solution without any integration as

y = y1 + C(y2 − y1). (9.11e)
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To solve the differential equation y′ − y tan x = cos x with the initial condition x0 = 0, y0 = 0.

Calculating exp
(
−
∫ x

0
tan x dx

)
= cos x one gets the solution according to (9.11c):

y =
1

cos x

∫ x

0
cos2 x dx =

1

cosx

[
sin x cosx+ x

2

]
=

sin x

2
+

x

2 cos x
.

6. Bernoulli Differential Equations
The Bernoulli differential equation is an equation of the form

y′ + P (x)y = Q(x)yn (n �= 0, n �= 1), (9.12)

which can be reduced to a linear differential equation if it is divided by yn and the new variable z =
y−n+1 is introduced.

Solution of the differential equation y′− 4y

x
= x

√
y . Since n = 1/2, dividing by

√
y and introducing

the new variable z =
√
y leads to the equation

dz

dx
− 2z

x
=

x

2
. By using the formulas for the solution of a

linear differential equation there is exp(
∫
P dx) =

1

x2
and z = x2

[∫ x

2

1

x2
dx+ C

]
= x2

[
1

2
ln |x|+ C

]
.

So, finally, y = x4
(
1

2
ln |x|+ C

)2

.

7. Riccati Differential Equations
The Riccati differential equation

y′ = P (x)y2 +Q(x)y +R(x), (9.13a)

usually cannot be solved by elementary integration, i.e., not by using a final number of successive ele-
mentary integrations. However it is possible to transform it by suitable substitutions into differential
equations for which solutions often can be found.

Method 1: By the substitution

y =
u(x)

P (x)
+ β(x) (9.13b)

the Riccati differential equation can be transformed into the normal form

du

dx
= u2 +R0(x) (9.13c) with R0(x) = P 2β2 +QPβ + PR− Pβ′ . (9.13d)

Therefore β(x) is determined so that terms with the factor u(x) disappear.
If a particular solution u1(x) of (9.13c) is known, which can be found, e.g., by a suitable approach, then
by the help of the substitution

u =
1

z(x)
+ u1(x) (9.13e)

(9.13c) is to be transformed into the linear differential equation for z(x):

z′ + 2u1(x)z − 1 = 0 . (9.13f)

From the solution of (9.13f) the solution of (9.13a) is obtained by using (9.13e) and (9.13b).

Method 2: By the substitution

y = − v′

P (x)v(x)
(9.13g)

(9.13a) is transformed into a linear differential equation of second order (see 9.1.2.6,1., p. 560):

Pv′′ − (P ′ + PQ)v′ + P 2Rv = 0 . (9.13h)
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To solve the differential equation y′ + y2 +
1

x
y − 4

x2
= 0, i.e. for P = −1, Q = −1

x
,R =

4

x2
.

Method 1: One gets β(x) = − 1

2x
and with the help of y = −u(x) − 1

2x
one gets the normal form

u′ = u2 − 15

4x2
. Particular solutions of the normal form can be got, e.g., with the approach u =

a

x
:

u1(x) =
3

2x
, u2(x) = − 5

2x
. After substituting u =

1

z(x)
+

3

2x
the differential equation z′+

3

x
z+1 = 0

follows with the solution z(x) = −x

4
+

K

x3
=

4K − x4

4x3
(K const). The inverse transformation gives

y =
2x4 + 2C

x5 − Cx
(C = 4K) .

Method 2: According to (9.13h) the Euler differential equation x2v′′+xv′−4v = 0 is obtained with the

general solution v(x) = C1x
2+C2

1

x2
(see concerning the Euler differential equation, p. 557). One of

the constants C1 and C2 can be chosen freely, e.g. C2 = −1 then from (9.13h) follows y =
2x4 + 2C1

x5 − C1x
.

9.1.1.3 Implicit Differential Equations

1. Solution in Parametric Form
Given a differential equation in implicit form

F (x, y, y′) = 0. (9.14)

There are n integral curves passing through a point P (x0, y0) if the following conditions hold:

a) The equation F (x0, y0, p) = 0 (p = dy/dx) has n real roots p1, . . . , pn at the point P (x0, y0).

b) The function F (x, y, p) and its first partial derivatives are continuous at x = x0, y = y0, p = pi;
furthermore ∂F/∂p �= 0.

If the original equation can be solved with respect to y′, then it yields n equations of the explicit forms
discussed above. Solving these equations one gets n families of integral curves. If the equation can be
written in the form x = ϕ(y, y′) or y = ψ(x, y′), then putting y′ = p and considering p as an auxiliary
variable, after differentiation with respect to y or x one obtains an equation for dp/dy or dp/dx which
is solved with respect to the derivative. A solution of this equation together with the original equation
(9.14) determines a desired solution in parametric form.

To get the solution of the differential equation x = yy′ + y′2, one substitutes y′ = p and gets x =

py + p2. Differentiation with respect to y and substituting
dx

dy
=

1

p
results in

1

p
= p + (y + 2p)

dp

dy
or

dy

dp
− py

1− p2
=

2p2

1− p2
. Solving this equation for y one obtains y = −p +

C + arcsin p√
1− p2

(C const).

Substitution into the initial equation gives the solution for x in parametric form.

2. Lagrange Differential Equation
The Lagrange differential equation is the equation

a(y′)x+ b(y′)y + c(y′) = 0. (9.15a)

The solution can be determined by the method given above. If for p = p0 holds

a(p) + b(p)p = 0, (9.15b) then a(p0)x+ b(p0)y + c(p0) = 0 (9.15c)

is a singular solution of (9.15a).
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3. Clairaut Differential Equation
The Clairaut differential equation is the special case of the Lagrange differential equation if

a(p) + b(p)p ≡ 0, (9.16a)

and so it can be transformed into the form

y = y′x+ f(y′). (9.16b)

The general solution is

y = Cx+ f(C). (9.16c)

Besides the general solution, the Clairaut differential equation also has a singular solution, which can
be obtained by eliminating the constant C from the equations

y = Cx+ f(C) (9.16d) and 0 = x+ f ′(C), (9.16e)

The second equation can be obtained by differentiating the first one with respect to C. Geometrically,
the singular solution is the envelope (see 3.6.1.7, p. 255) of the solution family of lines (Fig. 9.3).

Solution of the differential equation y = xy′+y′2. The general solution is y = Cx+C2 . The singular
solution one gets with the help of the equation x + 2C = 0 to eliminate C, and hence x2 + 4y = 0.
Fig. 9.3 shows this case.

y

x0

Figure 9.3

y

0
x

x-y
=0

x-y
=
4
27

Figure 9.4

9.1.1.4 Singular Integrals and Singular Points

1. Singular element
An element (x0, y0, y

′
0) is called a singular element of the differential equation, if in addition to the

differential equation

F (x, y, y′) = 0 (9.17a)

it also satisfies the equation

∂F

∂y′
= 0. (9.17b)

2. Singular Integral
An integral curve from singular elements is called a singular integral curve; the equation

ϕ(x, y) = 0 (9.17c)

of a singular integral curve is called a singular integral. The envelopes of the integral curves are singular
integral curves (Fig. 9.3); they consist of the singular elements.
The uniqueness of the solution (see 9.1.1.1, 1., p. 540) usually fails at the points of a singular integral
curve.

3. Determination of Singular Integrals
Usually one cannot obtain singular integrals for any values of the arbitrary constants of the general
solution. To determine the singular solution of a differential equation (9.17a) with p = y′ one has to
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introduce the equation

∂F

∂p
= 0 (9.17d)

and to eliminate p. If the obtained relation is a solution of the given differential equation, then it is
a singular solution. The equation of this solution should be transformed into a form which does not
contain multiple-valued functions, in particular no radicals where the complex values should also be
considered.

Radicals are expressions obtained by nesting algebraic equations (see 2.2.1, p. 62). If the equation of the
family of integral curves is known, i.e., the general solution of the given differential equation is known,
then one can determine the envelope of the family of curves, the singular integral, with the methods of
differential geometry (see 3.6.1.7, p. 255).

Solution of the differential equation x− y− 4

9
y′2 +

8

27
y′3 = 0. Substituting y′ = p, the calculation

of the additional equation with (9.17d) yields −8

9
p +

8

9
p2 = 0. Elimination of p results in equation a)

x− y = 0 and b) x− y =
4

27
, where a) is not a solution, b) is a solution, a special case of the general

solution (y − C)2 = (x− C)3. The integral curves of a) and b) are shown in Fig. 9.4.

4. Singular Points of a Differential Equation
Singular points of a differential equation are the points where the right side of the differential equation

y′ = f(x, y) (9.18a)

is not defined. This is the case, e.g., in the differential equations of the following forms:

1. Differential Equation with a Fraction of Linear Functions

dy

dx
=

ax+ by

cx+ ey
(ae− bc �= 0) (9.18b)

has an isolated singular point at (0, 0), since the assumptions of the existence theorem are fulfilled almost
at every point arbitrarily close to (0, 0) but not at this point itself. The conditions are not fulfilled at
the points where cx+ey = 0. One can force the fulfillment of the conditions at these points exchanging
the role of the variables and considering the equation

dx

dy
=

cx+ ey

ax+ by
. (9.18c)

The behavior of the integral curve in the neighborhood of a singular point depends on the roots of the
characteristic equation

λ2 − (b+ c)λ+ bc− ae = 0. (9.18d)

The following cases can be distinguished:

Case 1: If the roots are real and they have the same sign, then the singular point is a branch point. The
integral curves in a neighborhood of the singular point pass through it and if the roots of the character-
istic equation do not coincide, they have a common tangent except for one. If the roots coincide, then
either all integral curves have the same tangent, or there is a unique integral curve passing through the
singular point in each direction.

A: For the differential equation
dy

dx
=

2y

x
the characteristic equation is λ2 − 3λ + 2 = 0, λ1 = 2,

λ2 = 1. The integral curves have the equation y = C x2 (Fig. 9.5). The general solution also contains
the line x = 0 considering the form x2 = C1 y.

B: The characteristic equation for
dy

dx
=

x+ y

x
is λ2−2λ+1 = 0, λ1 = λ2 = 1. The integral curves
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are y = x ln |x|+ Cx (Fig. 9.6). The singular point is a so-called node.

C: The characteristic equation for
dy

dx
=

y

x
is λ2 − 2λ + 1 = 0, λ1 = λ2 = 1. The integral curves

are y = C x (Fig. 9.7). The singular point is a so-called ray point.

y

x

Figure 9.5

y

x

Figure 9.6

y

x

Figure 9.7

Case 2: If the roots are real and they have different signs, the singular point is a saddle point, and
two of the integral curves pass through it.

D: The characteristic equation for
dy

dx
= −y

x
is λ2 − 1 = 0, λ1 = +1, λ2 = −1. The integral curves

are x y = C (Fig. 9.8). For C = 0 the particular solutions x = 0, y = 0 hold.

Case 3: If the roots are conjugate complex numbers with a non-zero real part (Re(λ) �= 0), then the
singular point is a spiral point which is also called a focal point, and the integral curves wind about this
singular point.

E: The characteristic equation for
dy

dx
=

x+ y

x− y
is λ2 − 2λ + 2 = 0, λ1 = 1 + i, λ2 = 1 − i. The

integral curves in polar coordinates are r = C eϕ (Fig. 9.9).

y

x0

Figure 9.8

y

x

Figure 9.9

y

x0

Figure 9.10

Case 4: If the roots are pure imaginary numbers, then the singular point is a central point, or center,
which is surrounded by the closed integral curves.

F: The characteristic equation for
dy

dx
= −x

y
is λ2 +1 = 0, λ1 = i, λ2 = −i. The integral curves are

x2 + y2 = C (Fig. 9.10).
2. Differential Equation with the Ratio of Two Arbitrary Functions

dy

dx
=

P (x, y)

Q(x, y)
(9.19a)
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has the singular points for the values of the variables where

P (x, y) = Q(x, y) = 0. (9.19b)

IfP andQ are continuous functions and they have continuous partial derivatives, (9.19a) can be written
in the form

dy

dx
=

a(x− x0) + b(y − y0) + P1(x, y)

c(x− x0) + e(y − y0) +Q1(x, y)
. (9.19c)

Here x0 and y0 are the coordinates of the singular point and P1(x, y) andQ1(x, y) are infinitesimals of a
higher order than the distance of the point (x, y) from the singular point (x0, y0). With these assump-
tions the type of a singular point of the given differential equation is the same as that of the approximate
equation obtained by omitting the terms P1 and Q1, with the following exceptions:

a) If the singular point of the approximate equation is a center, the singular point of the original equa-
tion is either a center or a focal point.

b) If a e − b c = 0, i.e.,
a

c
=

b

e
or a = c = 0 or a = b = 0, then the type of singular point should be

determined by examining the terms of higher order.

9.1.1.5 ApproximationMethods for Solution of First-Order Differential
Equations

1. Successive ApproximationMethod of Picard
The integration of the differential equation

y′ = f(x, y) (9.20a)

with the initial condition y = y0 for x = x0 results in the fixed-point problem

y = y0 +

x∫
x0

f(x, y) dx. (9.20b)

Substituting another function y1(x) instead of y into the right-hand side of (9.20b), then the result will
be a new function y2(x), which is different from y1(x), if y1(x) is not already a solution of (9.20a). Sub-
stituting y2(x) instead of y into the right-hand side of (9.20b) gives a function y3(x). If the conditions
of the existence theorem are fulfilled (see 9.1.1.1, 1., p. 540), the sequence of functions y1, y2, y3, . . .
converges to the desired solution in a certain interval containing the point x0.
This Picard method of successive approximation is an iteration method (see 19.1.1, p. 949).

Solve the differential equation y′ = ex − y2 with initial values x0 = 0, y0 = 0. Rewriting the equa-
tion in integral form and using the successive approximation method with an initial approximation

y0(x) ≡ 0 gives: y1 =
∫ x

0
ex dx = ex − 1, y2 =

∫ x

0

[
ex − (ex − 1)2

]
dx = 3ex − 1

2
e2x − x− 5

2
, etc.

2. Solution by Series Expansion
The Taylor series expansion of the solution of a differential equation (see 7.3.3.3, 1., p. 471) can be
given in the form

y = y0 + (x− x0)y0
′ +

(x− x0)
2

2
y0

′′ + · · ·+ (x− x0)
n

n!
y0

(n) + · · · (9.21)

if the values y0
′, y0′′, . . . , y0(n), . . . of all derivatives of the solution function are known at the initial

value x0 of the independent variable. The values of the derivatives can be determined by successively
differentiating the original equation and substituting the initial conditions. If the differential equation
can be differentiated infinitely many times, the obtained series will be convergent in a certain neigh-
borhood of the initial value of the independent variable. This method can be used also for n-th order
differential equations.
Remark: The above result is the Taylor series of the function, which may not represent the function
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itself (see 7.3.3.3, 1., p. 471).

It is often useful to substitute the solution by an infinite series with unknown coefficients, and to de-
termine them by comparing coefficients.

A: To solve the differential equation y′ = ex − y2, x0 = 0, y0 = 0 one can consider the series
y = a1x+ a2x

2 + a3x
3 + · · ·+ anx

n + · · ·. Substituting this into the equation considering the formula
(7.88), p. 470 for the square of the series gives

a1 + 2a2x+ 3a3x
2 + · · ·+ [a1

2x2 + 2a1a2x
3 + (a2

2 + 2a1a3)x
4 + · · ·] = 1 + x+

x2

2
+

x3

6
+ · · · .

Comparing coefficients gives: a1 = 1, 2a2 = 1, 3a3 + a1
2 =

1

2
, 4a4 + 2a1a2 =

1

6
, etc. Solving

these equations successively and substituting the coefficient values into the series representation yields

y = x+
x2

2
− x3

6
− 5

24
x4 + · · ·.

B: The same differential equation with the same initial conditions can also be solved in the fol-
lowing way: Substituting x = 0 into the equation, gives y0

′ = 1 and successive differentiation yields

y′′ = ex − 2yy′, y0′′ = 1, y′′′ = ex − 2y′2 − 2yy′′, y0′′′ = −1, y(4) = ex − 6y′y′′ − 2yy′′′, y0(4) = −5, etc.

From the Taylor theorem (see 7.3.3.3, 1., p. 471) follows the solution y = x+
x2

2!
− x3

3!
− 5x4

4!
+ · · ·.

y

0 x

y0

x0

Figure 9.11

3. Graphical Solution of Differential Equations
The graphical integration of a differential equation is a method, which is
based on the direction field (see 9.1.1.1, 3., p. 541). The integral curve
in Fig. 9.11 is represented by a broken line which starts at the given
initial point and is composed of short line segments. The directions of
the line segments are always the same as the direction of the direction
field at the starting point of the line segment. This is also the endpoint
of the previous line segment.

4. Numerical Solution of Differential Equations
The numerical solutions of differential equations will be discussed in detail in 19.4, p. 969. Numerical
methods are used to determine a solution of a differential equation, if the equation y′ = f(x, y) does
not belong to the special cases discussed above whose analytic solutions are known, or if the function
f(x, y) is too complicated. This can happen if f(x, y) is non-linear in y.

9.1.2 Differential Equations ofHigherOrder and Systems of

Differential Equations

9.1.2.1 Basic Results

1. Existence of a Solution

1. Reduction to a System of Differential Equations Every explicit n-th order differential equa-
tion

y(n) = f
(
x, y, y′, . . . , y(n−1)

)
(9.22a)

by introducing the new variables

y1 = y′, y2 = y′′, . . . , yn−1 = y(n−1) (9.22b)

can be reduced to a system of n first-order differential equations

dy

dx
= y1,

dy1
dx

= y2, . . . ,
dyn−1

dx
= f(x, y, y1, . . . , yn−1). (9.22c)
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2. Existence of a System of Solutions The system of n differential equations

dyi
dx

= fi(x, y1, y2, . . . , yn) (i = 1, 2, . . . , n), (9.23a)

which is more general than system (9.22c), has a unique system of solutions

yi = yi(x) (i = 1, 2, . . . , n), (9.23b)

which is defined in an interval x0 − h ≤ x ≤ x0 + h and for x = x0 takes the previously given initial
values yi(x0) = yi

0 (i = 1, 2, . . . , n), if the functions fi(x, y1, y2, . . . , yn) are continuous with respect to
all variables and satisfy the following Lipschitz condition.

3. Lipschitz condition For the values x, yi and yi + Δyi, which are in a certain neighborhood of
the given initial values, the functions fi satisfy the following inequalities:

|fi(x, y1 +Δy1, y2 +Δy2, . . . , yn +Δyn) − fi(x, y1, y2, . . . , yn)|
≤ K (|Δy1|+ |Δy2|+ · · ·+ |Δyn|) (9.24a)

with a common constant K (see also 9.1.1.1, 2., p. 541).

This fact implies that if the function f(x, y, y′, . . . , y(n−1)) is continuous and satisfies the Lipschitz con-
dition (9.24a), then the equation

y(n) = f
(
x, y, y′, . . . , y(n−1)

)
(9.24b)

has a unique solution with the initial values y(x0) = y0, y
′(x0) = y0

′, . . . , y(n−1)(x0) = y0
(n−1), and it

is (n− 1) times continuously differentiable.

2. General Solution

1. The general solution of the differential equation (9.24b) contains n independent arbitrary con-
stants:

y = y(x,C1, C2, . . . , Cn). (9.25a)

2. In the geometrical interpretation the equation (9.25a) defines a family of curves depending on n
parameters. Every single one of these integral curves, i.e., the graph of the corresponding particular
solution, can be obtained by a suitable choice of the constants C1, C2, . . . , Cn. If the solution has to
satisfy the above initial conditions, then the values C1, C2, . . . , Cn are determined from the following
equations:

y(x0, C1, . . . , Cn) = y0,[
d

dx
y(x,C1, . . . , Cn)

]
x=x0

= y0
′, (9.25b)

. . . . . . . . . . . . . . . . . . . . . . . . . . .[
dn−1

dxn−1
y(x,C1, . . . , Cn)

]
x=x0

= y0
(n−1).

If these equations are inconsistent for any initial values in a certain domain, then the solution is not
general in this domain, i.e., the arbitrary constants cannot be chosen independently.

3. The general solution of system (9.23a) also contains n arbitrary constants. This general solution
can be represented in two different ways: Either it is given in a form which is solved for the unknown
functions

y1 = F1(x,C1, . . . , Cn), y2 = F2(x,C1, . . . , Cn), . . . , yn = Fn(x,C1, . . . , Cn) (9.26a)

or in the form which is solved for the constants

ϕ1(x, y1, . . . , yn) = C1, ϕ2(x, y1, . . . , yn) = C2, . . . , ϕn(x, y1, . . . , yn) = Cn. (9.26b)

In the case of (9.26b) each relation

ϕi(x, y1, . . . , yn) = Ci (9.26c)
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is a first integral of the system (9.23a). The first integral can be defined independently of the general
solution as a relation (9.26c). That is, (9.26c) will be an identity replacing y1, y2, . . . , yn by any partic-
ular solution of the given system and replacing the constant by the arbitrary constant Ci determined
by this particular solution.
If any first integral is known in the form (9.26c), then the function ϕi(x, y1, . . . , yn) satisfies the partial
different equation

∂ϕi

∂x
+ f1(x, y1, . . . , yn)

∂ϕi

∂y1
+ · · ·+ fn(x, y1, . . . , yn)

∂ϕi

∂yn
= 0. (9.26d)

Conversely, each solution ϕi(x, y1, . . . , yn) of the partial differential equation (9.26d) defines a first inte-
gral of the system (9.23a) in the form (9.26c). The general solution of the system (9.23a) can be repre-
sented as a system of n first integrals of system (9.23a), if the corresponding functions ϕi(x, y1, . . . , yn)
(i = 1, 2, . . . , n) are linearly independent (see 9.1.2.3, 2., p. 553).

9.1.2.2 Lowering the Order
One of the most important solution methods for n-th order differential equations

f
(
x, y, y′, . . . , y(n)

)
= 0 (9.27)

is the substitution of variables in order to obtain a simpler differential equation, especially one of lower
order. Different cases can be distinguished.

1. f = f(y, y′, . . . , y(n)), i.e., x does not appear explicitly:

f
(
y, y′, . . . , y(n)

)
= 0. (9.28a)

By substitution

dy

dx
= p,

d2y

dx2
= p

dp

dy
, . . . (9.28b)

the order of the differential equation can be reduced from n to (n− 1).

Reducing the order of the differential equation yy′′ − y′2 = 0 to one, with the substitution y′ =
p, p dp/dy = y′′ it becomes a first-order differential equation y p dp/dy − p2 = 0, and y dp/dy − p = 0
results in p = C y = dy/dx, y = C1e

Cx. Canceling p does not result in a loss of a solution, since p = 0
gives the solution y = C1, which is included in the general solution with C = 0.

2. f = f(x, y′, . . . , y(n)), i.e., y does not appear explicitly:

f
(
x, y′, ..., y(n)

)
= 0. (9.29a)

The order of the differential equation can be reduced from n to (n− 1) by the substitution

y′ = p. (9.29b)

If the first k derivatives are missing in the initial equation, then a suitable substitution is

y(k+1) = p. (9.29c)

The order of the differential equation y′′ − xy′′′ + (y′′′)3 = 0 will be reduced by the substitution

y′′ = p, so one gets a Clairaut differential equation p − x
dp

dx
+

(
dp

dx

)3

= 0 whose general solution

is p = C1 x + C1
3. Therefore, y =

C1x
3

6
− C1

3x2

2
+ C2x + C3. From the singular solution of the

Clairaut differential equation p =
2
√
3

9
x3/2 one gets the singular solution of the original equation:

y =
8
√
3

315
x7/2 + C1x+ C2.
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3. f
(
x, y, y′, . . . , y(n)

)
is a homogeneous function (see 2.18.2.4, 4., p. 122)

in y, y′, y′′, . . . , y(n):

f
(
x, y, y′, . . . , y(n)

)
= 0. (9.30a)

One can reduce the order by the substitution

z =
y′

y
, i.e., y = e

∫
z dx. (9.30b)

Transforming the differential equation yy′′ − y′2 = 0 by the substitution z = y′/y, results in
dz

dx
=

yy′′ − y′2

y2
= 0 so the order is reduced by one. One gets z = C1, therefore, ln |y| = C1x + C2, or

y = CeC1x with ln |C| = C2.

4. f = f(x, y, y′, . . . , y(n)) is a function of only x:

y(n) = f(x). (9.31a)

One gets the general solution by n repeated integrations. It has the form

y = C1 + C2x+ C3x
2 + · · ·+ Cnx

n−1 + ψ(x) (9.31b)

with

ψ(x) =
∫∫

· · ·
∫

f(x) (dx)n =
1

(n− 1)!

x∫
x0

f(t)(x− t)n−1 dt. (9.31c)

It has to bementioned here that x0 is not an additional arbitrary constant, since the change in x0 results
in the change of Ck because of the relation

Ck =
1

(k − 1)!
y(k−1)(x0). (9.31d)

9.1.2.3 Linearn-th Order Differential Equations

1. Classification
A differential equation of the form

y(n) + a1y
(n−1) + a2y

(n−2) + · · ·+ an−1y
′ + any = F (9.32)

is called an n-th order linear differential equation. Here F and the coefficients ai are functions of x,
which are supposed to be continuous in a certain interval. If a1, a2, . . . , an are constants, it is called
a differential equation with constant coefficients . If F ≡ 0, then the linear differential equation is
homogeneous, and if F �≡ 0, then it is inhomogeneous.

2. Fundamental System of Solutions
A system of n solutions y1, y2, . . . , yn of a homogeneous linear differential equation is called a funda-
mental system if these functions are linearly independent on the considered interval, i.e., their linear
combination C1 y1 +C2 y2 + · · ·+Cn yn is not identically zero for any system of values C1, C2, . . . , Cn,
except for the values C1 = C2 = · · · = Cn = 0. The solutions y1, y2, . . . , yn of a linear homogeneous dif-
ferential equation form a fundamental system on the considered interval if and only if theirWronskian
determinant

W =

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
y1

′ y2
′ · · · yn′

. . . . . . . . . . . . . . . . . . . . . . . .
y1

(n−1) y2
(n−1) · · · yn(n−1)

∣∣∣∣∣∣∣∣∣ (9.33)
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is non-zero. For every solution system of a homogeneous linear differential equation the formula of
Liouville is valid:

W (x) = W (x0) exp

⎛⎝− x∫
x0

an−1(x) dx

⎞⎠ . (9.34)

It follows from (9.34) that if the Wronskian determinant is zero somewhere in the solution interval,
then it can be only identically zero. This means: The n solutions y1, y2, . . . , yn of the homogeneous
linear differential equation are linearly dependent if even for a single point x0 of the considered interval
W (x0) = 0. If the solutions y1, y2, . . . , yn form a fundamental system of the differential equation, then
the general solution of the linear homogeneous differential equation (9.32) is given as

y = C1 y1 + C2 y2 + · · ·+ Cn yn. (9.35)

A linear n-th order homogeneous differential equation has exactly n linearly independent solutions on
an interval, where the coefficient functions ai(x) are continuous.

3. Lowering the Order
If a particular solution y1 of a homogeneous differential equation is known, by assuming

y = y1(x)u(x) (9.36)

one can determine further solutions from a homogeneous linear differential equation of order n− 1 for
u′(x).

4. Superposition Principle
If y1 and y2 are two solutions of the differential equation (9.32) for different right-hand sides F1 and
F2, then their sum y = y1 + y2 is a solution of the same differential equation with the right-hand side
F = F1 + F2. From this observation it follows that to get the general solution of an inhomogeneous
differential equation it is sufficient to add any particular solution of the inhomogeneous differential
equation to the general solution of the corresponding homogeneous differential equation.

5. Decomposition Theorem
If an inhomogeneous differential equation (9.32) has real coefficients and its right-hand side is complex
in the form F = F1 + iF2 with some real functions F1 and F2, then the solution y = y1 + iy2 is also
complex, where y1 and y2 are the two solutions of the two inhomogeneous differential equations (9.32)
with the corresponding right-hand sides F1 and F2.

6. Solution of Inhomogeneous Differential Equations (9.32) byMeans
of Quadratures

If the fundamental system of the corresponding homogeneous differential equation is already known,
there are the following two solution methods to continue the calculations:

1. Method of Variation of Constants Looking for the solution in the form

y = C1y1 + C2y2 + · · ·+ Cnyn (9.37a)

where C1, C2, . . . , Cn, here treated as functions of x. There are infinitely many such functions, but
requiring that they satisfy the equations

C1
′y1 + C2

′y2 + · · ·+ Cn
′yn = 0,

C1
′y1′ + C2

′y2′ + · · ·+ Cn
′yn′ = 0, (9.37b)

. . . . . . . . . . . . . . .

C1
′y1(n−2) + C2

′y2(n−2) + · · ·+ Cn
′yn(n−2) = 0

and substituting y into (9.32) with these equalities follows

C1
′y1(n−1) + C2

′y2(n−1) + · · ·+ Cn
′yn(n−1) = F. (9.37c)

Because the Wronskian determinant of the coefficients in the linear system of equations (9.37b) and
(9.37c) is different from zero, one gets a unique solution for the unknown functions C1

′, C2
′, . . . , Cn

′,
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and their integrals give the functions C1, C2, . . . , Cn.

y′′ +
x

1− x
y′ − 1

1− x
y = x− 1. (9.37d)

In the interval x > 1 or x < 1 all assumptions on the coefficients are fulfilled. First the homogeneous

equation y′′ +
x

1− x
y′ − 1

1− x
y = 0 is solved. A particular solution is ϕ1 = ex. Then one looks for

a second one in the form ϕ2 = exu(x), and with the notation u′(x) = v(x) one gets the first-order

differential equation v′ +
(
1 +

1

1− x

)
v = 0. A solution of this equation is v(x) = (1 − x)e−x, and

therefore, u(x) =
∫
v(x) dx =

∫
(1 − x)e−x dx = xe−x. With this result ϕ2 = x is obtained for

the second element of the fundamental system. The general solution of the homogeneous equation is
y(x) = C1e

x+C2x. The variation of constants with u1(x) and u2(x) instead of C1(x) and C2(x) is now:

y(x) = u1(x)e
x + u2(x)x,

y′(x) = u1(x)e
x + u2(x) + u1

′(x)ex + u2
′(x)x, u1

′(x)ex + u2
′(x)x = 0,

y′′(x) = u1(x)e
x + u1

′(x)ex + u2
′(x), u1

′(x)ex + u2
′(x) = x− 1, so

u1
′(x) = xe−x, u2

′(x) = −1, i.e., u1(x) = −(1 + x)e−x + C1, u2(x) = −x+ C2.

With this result the general solution of the inhomogeneous differential equation is:

y(x) = −(1 + x2) + C1e
x + (C2 − 1)x = −(1 + x2) + C1

∗ex + C2
∗x. (9.37e)

2. Method of Cauchy In the general solution

y = C1y1 + C2y2 + · · ·+ Cnyn (9.38a)

of the homogeneous differential equation associated to (9.32) one determines the constants such that

for an arbitrary parameter α the equations y = 0, y′ = 0, . . . , y(n−2) = 0, y(n−1) = F (α) are satisfied.
In this way one gets a particular solution of the homogeneous equation, denoted by ϕ(x, α), and then

y =

x∫
x0

ϕ(x, α) dα (9.38b)

is a particular solution of the inhomogeneous differential equation (9.32). This solution and their deriva-
tives up to order (n− 1) are equal to zero at the point x = x0.

The general solution of the homogeneous equation associated to the differential equation (9.37d)
which has been solved by the method variation of constants is y = C1e

x + C2x. From this result
follows y(α) = C1e

α + C2α = 0, y′(α) = C1e
α + C2 = α − 1 and ϕ(x, α) = αe−αex − x, so that

the particular solution y(x) of the inhomogeneous differential equation with y(x0) = y′(x0) = 0 is:

y(x) =
∫ x

x0

(αe−αex − x) dα = (x0 + 1)ex−x0 + (x0 − 1)x − x2 − 1. With this result one can get the

general solution y(x) = C1
∗ex + C2

∗x− (x2 + 1) of the inhomogeneous differential equation.

9.1.2.4 Solution of Linear Differential Equations with Constant
Coefficients

1. Operational Notation
The differential equation (9.32) can be written symbolically in the form

Pn(D)y ≡
(
Dn + a1D

n−1 + a2D
n−2 + · · ·+ an−1D + an

)
y = F, (9.39a)

where D is a differential operator:

Dy =
dy

dx
, Dky =

dky

dxk
. (9.39b)
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If the coefficients ai are constants, then Pn(D) is a usual polynomial in the operator D of degree n.

2. Solution of theHomogeneousDifferential Equationwith Constant Coefficients
To determine the general solution of the homogeneous differential equation (9.39a) with F = 0, i.e.,

Pn(D)y = 0 (9.40a)

one has to find the roots r1, r2, . . . , rn of the characteristic equation

Pn(r) = rn + a1r
n−1 + a2r

n−2 + · · ·+ an−1r + an = 0. (9.40b)

Every root ri determines a solution erix of the equationPn(D)y = 0. If a root ri has a higher multiplicity
k, then xerix, x2erix, . . . , xk−1erix are also solutions. The linear combination of all these solutions is the
general solution of the homogeneous differential equation:

y = C1e
r1x + C2e

r2x + · · ·+ erix
(
Ci + Ci+1x+ · · ·+ Ci+k−1x

k−1
)
+ · · · . (9.40c)

If the coefficients ai are all real, then the complex roots of the characteristic equation are pairwise
conjugate with the same multiplicity. In this case, for r1 = α+ iβ and r2 = α− iβ one can replace the
corresponding complex solution functions er1x and er2x by the real functions eαx cos βx and eαx sin βx.
The resulting expression C1 cos βx + C2 sin βx can be written in the form A cos(βx + ϕ) with some
constants A and ϕ.

In the case of the differential equation y(6) + y(4) − y′′ − y = 0, the characteristic equation is r6 +
r4 − r2 − 1 = 0 with roots r1 = 1, r2 = −1, r3,4 = i, r5,6 = −i. The general solution can be given in
two forms:

y = C1e
x + C2e

−x + (C3 + C4x) cos x+ (C5 + C6x) sin x, or

y = C1e
x + C2e

−x + A1 cos(x+ ϕ1) + xA2 cos(x+ ϕ2).

3. Hurwitz Theorem
In different applications, e.g., in vibration theory, it is important to know whether a solution of a given
homogeneous differential equation with constant coefficients tend to zero for x → +∞ or not. It tends
to zero, obviously, if the real parts of the roots of the characteristic equation (9.40b) are negative.
According to the Hurwitz theorem an equation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0 (9.41a)

has only roots with negative real part if and only if all the determinants

D1 = a1, D2 =
∣∣∣∣ a1 a0
a3 a2

∣∣∣∣ , D3 =

∣∣∣∣∣∣
a1 a0 0
a3 a2 a1
a5 a4 a3

∣∣∣∣∣∣ , . . . , Dn =

∣∣∣∣∣∣∣∣
a1 a0 0 . . . 0
a3 a2 a1 . . . 0
. . . . . . . . . . . . . .
0 0 0 . . . an

∣∣∣∣∣∣∣∣
(with am = 0 for m > n) (9.41b)

are positive. The determinantsDk have on their diagonal the coefficients a1, a2, . . . , ak (k = 1, 2, . . . , n),
and the coefficient-indices are decreasing from left to right. Coefficients with negative indices and also
with indices larger than n are all put to 0.

For a cubic polynomial the determinants have in accordance to (9.41b) the following form:

D1 = a1, D2 =
∣∣∣∣ a1 a2
a3 a2

∣∣∣∣ , D3 =

∣∣∣∣∣∣
a1 a0 0
a3 a2 a1
0 0 a3

∣∣∣∣∣∣ .
4. Solution of Inhomogeneous Differential Equations with Constant Coefficients
These differential equations can be solved by the method variation of constants, or by the method of
Cauchy, or with the operator method (see 9.2.2.3, 5., p. 588). If the right-hand side of the inhomo-
geneous differential equation (9.32) has a special form, then a particular solution can be determined
easily.

1. Form: F (x) = Aeαx, Pn(α) �= 0 (9.42a)
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A particular solution is

y =
Aeαx

Pn(α)
. (9.42b)

If α is a root of the characteristic equation of multiplicity m, i.e., if

Pn(α) = Pn
′(α) = . . . = Pn

(m−1)(α) = 0, (9.42c)

then y =
Axmeαx

Pn
(m)(α)

is a particular solution. These formulas can also be used by applying the decompo-

sition theorem, if the right side is

F (x) = Aeαx cosωx or Aeαx sinωx. (9.42d)

The corresponding particular solutions are the real or the imaginary part of the solution of the same
differential equation for

F (x) = Aeαx(cosωx+ i sinωx) = Ae(α+iω)x (9.42e)

on the right-hand side.

A: For the differential equation y′′ − 6y′ + 8y = e2x, the characteristic polynomial is P (D) =
D2−6D+8 with P (2) = 0 and P ′(D) = 2D−6 with P ′(2) = 2 ·2−6 = −2, so the particular solution

is y = −xe2x

2
.

B: The differential equation y′′ + y′ + y = ex sin x results in the equation (D2 +D + 1)y = e(1+i)x.

From its solution y =
e(1+i)x

(1 + i)2 + (1 + i) + 1
=

ex(cosx+ i sin x)

2 + 3i
one gets a particular solution y1 =

ex

13
(2 sin x− 3 cosx). Here y1 is the imaginary part of y.

2. Form: F (x) = Qn(x)e
αx, Qn(x) is a polynomial of degree n (9.43)

A particular solution can always be found in the same form, i.e., as an expression y = R(x)eαx. R(x) is
a polynomial of degree nmultiplied by xm if α is a root of the characteristic equation with a multiplicity
m. Considering the coefficients of the polynomial R(x) as unknowns and substituting the expression
into the inhomogeneous differential equation a linear system of equations is obtained for the coeffi-
cients, and this system of equations always has a unique solution.

Thismethod is very useful especially in the cases ofF (x) = Qn(x) forα = 0 andF (x) = Qn(x)e
rx cosωx

or F (x) = Qn(x)e
rx sinωx for α = r ± iω. There is a solution in the form y = xmerx[Mn(x) cosωx +

Nn(x) sinωx].

The roots of the characteristic equation associated to the differential equation y(4) + 2y′′′ + y′′ =
6x + 2x sin x are k1 = k2 = 0, k3 = k4 = −1. Because of the superposition principle (see 9.1.2.3, 4.,
p. 554), one can calculate the particular solutions of the inhomogeneous differential equation for the
summands of the right-hand side separately. For the first summand the substitution of the given form
y1 = x2(ax+b) results in a right-hand side 12a+2b+6ax = 6x, and so: a = 1 and b = −6. For the sec-
ond summand one substitutes y2 = (cx+d) sin x+(fx+g) cos x. One gets the coefficients by coefficient
comparison from (2g+2f−6c+2fx) sin x−(2c+2d+6f+2cx) cos x = 2x sin x, so c = 0, d = −3, f =
1, g = −1. Therefore, the general solution is y = c1+c2x−6x2+x3+(c3x+c4)e

−x−3 sin x+(x−1) cos x.

3. Euler Differential Equation
The Euler differential equation

n∑
k=0

ak(cx+ d)ky(k) = F (x) (9.44a)

can be transformed with the substitution

cx+ d = et (9.44b)
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into a linear differential equation with constant coefficients.

The differential equation x2y′′ − 5xy′ + 8y = x2 is a special case of the Euler differential equation
for n = 2. With the substitution x = et it becomes the differential equation discussed earlier in A,

p. 557:
d2y

dt2
−6

dy

dt
+8y = e2t. The general solution is y = C1e

2t+C2e
4t− t

2
e2t = C1x

2+C2x
4− x2

2
ln |x|.

9.1.2.5 Systems of Linear Differential Equations with Constant
Coefficients

1. Normal Form

The following simple case of a system of first-order linear differential equations with constant coeffi-
cients is called a normal system or a normal form:

y1
′ = a11y1 + a12y2 + · · ·+ a1nyn,

y2
′ = a21y1 + a22y2 + · · ·+ a2nyn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
yn

′ = an1y1 + an2y2 + · · ·+ annyn.

⎫⎪⎪⎬⎪⎪⎭ (9.45a)

To find the general solution of such a system, one has to find first the roots of the characteristic equation∣∣∣∣∣∣∣∣
a11 − r a12 . . . a1n
a21 a22 − r . . . a2n
. . . . . . . . . . . . . . . . . . . . . . . . .
an1 an2 . . . ann − r

∣∣∣∣∣∣∣∣ = 0. (9.45b)

To every single root ri of this equation there is a system of particular solutions

y1 = A1e
rix, y2 = A2e

rix, . . . , yn = Ane
rix, (9.45c)

whose coefficients Ak (k = 1, 2, . . . , n) are determined from the homogeneous linear equation system

(a11 − ri)A1 + a12A2 + · · ·+ a1nAn = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1A1 + an2A2 + · · ·+ (ann − ri)An = 0.

(9.45d)

This system gives the relations between the values of the coefficients Ak (see Trivial Solution and Fun-
damental System in 4.5.2.1, 2., p. 309). For every ri, the particular solutions determined this way will
contain an arbitrary constant. If all the roots of the characteristic equation are different, the sum of
these particular solutions contains n independent arbitrary constants, so in this way one gets the gen-
eral solution. If a root ri has a multiplicity m in the characteristic equation, the system of particular
solutions corresponding to this root has the form

y1 = A1(x)e
rix, y2 = A2(x)e

rix, . . . , yn = An(x)e
rix, (9.45e)

where A1(x), . . . , An(x) are polynomials of degree at mostm− 1. After substituting these expressions
with unknown coefficients of the polynomials Ak(x) into the differential equation system one first can
cancel the factor erix, then one compares the coefficients of the different powers of x to have linear
equations for the unknown coefficients of the polynomials, and among themm can be chosen freely. In
this way, one gets a part of the solution withm arbitrary constants. The degree of the polynomials can
be less than m− 1.
In the special case when the system (9.45a) is symmetric, i.e., when aik = aki, then it is sufficient to
substitute Ai(x) = const. For complex roots of the characteristic equation, the general solution can be
transformed into a real form in the same way as has been shown for the case of a differential equation
with constant coefficients (see 9.1.2.4, p. 555).

For the system y1
′ = 2y1+2y2−y3, y2

′ = −2y1+4y2+y3, y3
′ = −3y1+8y2+2y3 the characteristic
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equation has the form∣∣∣∣∣∣
2− r 2 −1
−2 4− r 1
−3 8 2− r

∣∣∣∣∣∣ = −(r − 6)(r − 1)2 = 0.

For the simple root r1 = 6 one gets−4A1+2A2−A3 = 0,−2A1−2A2+A3 = 0,−3A1+8A2−4A3 = 0.

From this system one has A1 = 0, A2 =
1

2
A3 = C1, y1 = 0, y2 = C1e

6x, y3 = 2C1e
6x. For the multiple

root r2 = 1 one gets y1 = (P1x+Q1)e
x, y2 = (P2x+Q2)e

x, y3 = (P3x+Q3)e
x. Substitution into the

differential equations yields

P1x+ (P1 +Q1) = (2P1 + 2P2 − P3)x+ (2Q1 + 2Q2 −Q3),

P2x+ (P2 +Q2) = (−2P1 + 4P2 + P3)x+ (−2Q1 + 4Q2 +Q3),

P3x+ (P3 +Q3) = (−3P1 + 8P2 + 2P3)x+ (−3Q1 + 8Q2 + 2Q3),

which implies that P1 = 5C2, P2 = C2, P3 = 7C2, Q1 = 5C3 − 6C2, Q2 = C3, Q3 = 7C3 − 11C2. The
general solution is y1 = (5C2x + 5C3 − 6C2)e

x, y2 = C1e
6x + (C2x + C3)e

x, y3 = 2C1e
6x + (7C2x +

7C3 − 11C2)e
x.

2. Homogeneous Systems of First-Order Linear Differential Equations
with Constant Coefficients

have the general form
n∑

k=1

aikyk
′ +

n∑
k=1

bikyk = 0 (i = 1, 2, . . . , n). (9.46a)

If the determinant det(aik) does not disappear, i.e.,

det(aik) �= 0, (9.46b)

then the system (9.46a) can be transformed into the normal form (9.45a).
In the case of det(aik) = 0 further investigations are necessary (see [9.15]).
The solution can be determined from the general form in the same way as shown for the normal form.
The characteristic equation has the form

det(aikr + bik) = 0. (9.46c)

The coefficients Ai in the solution (9.45c) corresponding to a single root rj are determined from the
equation system

n∑
k=1

(aikrj + bik)Ak = 0 (i = 1, 2, . . . , n). (9.46d)

Otherwise the solution method follows the same ideas as in the case of the normal form.

The characteristic equation of the two differential equations 5y1
′+4y1−2y2

′−y2 = 0, y1
′+8y1−3y2 =

0 is: ∣∣∣∣ 5r + 4 −2r − 1
r + 8 −3

∣∣∣∣ = 2r2 + 2r − 4 = 0, r1 = 1, r2 = −2.

The coefficients A1 and A2 for r1 = 1 can be got from the equations 9A1 − 3A2 = 0, 9A1 − 3A2 = 0
so A2 = 3A1 = 3C1. For r2 = −2 one gets analogously A2 = 2A1 = 2C2. The general solution is
y1 = C1e

x + C2e
−2x, y2 = 3C1e

x + 2C2e
−2x.

3. Inhomogeneous Systems of First-Order Linear Differential Equations
have the general form

n∑
k=1

aikyk
′ +

n∑
k=1

bikyk = Fi(x) (i = 1, 2, . . . , n). (9.47)
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1. Superposition Principle If yj
(1) and yj

(2) (j = 1, 2, . . . , n) are solutions of inhomogeneous sys-

tems which differ from each other only in their right-hand sides Fi
(1) and Fi

(2), then the sum yj = yj
(1)+

yj
(2) (j = 1, 2, . . . , n) is a solution of this system with the right-hand side Fi(x) = Fi

(1)(x) + Fi
(2)(x).

Because of this, to get the general solution of an inhomogeneous system it is enough to add a particular
solution to the general solution of the corresponding homogeneous system.

2. The Variation of Constants can be used to get a particular solution of the inhomogeneous
differential equation system. To do this one uses the general solution of the homogeneous system, and
considers the constants C1, C2, . . . , Cn as unknown functions C1(x), C2(x), . . . , Cn(x). Then it is to
be substituted into the inhomogeneous system. In the expressions of the derivatives of yk

′ there is the
derivative of the new unknown functionsCk(x). Because y1, y2, . . . , yn are solutions of the homogeneous
system, the terms containing the new unknown functions will be canceled; only their derivatives remain
in the equations. This gives for the functionsCk

′(x) an inhomogeneous linear algebraic equation system
which always has a unique solution. After n integrations one gets the functionsC1(x), C2(x), . . . , Cn(x).
Substituting them into the solution of the homogeneous system instead of the constants results in the
particular solution of the inhomogeneous system.

For the system of two inhomogeneous differential equations 5y1
′ + 4y1 − 2y2

′ − y2 = e−x, y1
′ +

8y1 − 3y2 = 5e−x the general solution of the homogeneous system is (see p. 559) y1 = C1e
x + C2e

−2x,
y2 = 3C1e

x + 2C2e
−2x. Considering the constants C1 and C2 as functions of x and substituting into

the original equations gives 5C1
′ex + 5C2

′e−2x − 6C1
′ex − 4C2

′e−2x = e−x, C1
′ex + C2

′e−2x = 5e−x or
C2

′e−2x − C1
′e−x = e−x, C1

′ex + C2
′e−2x = 5e−x. Therefore, 2C1

′ex = 4e−x, C1 = −e−2x + const,
2C2

′e−2x = 6e−x, C2 = 3ex + const. Since a particular solution is searched for, one can replace every
constant by zero and the result is y1 = 2e−x, y2 = 3e−x. The general solution is finally y1 = 2e−x +
C1e

x + C2e
−2x, y2 = 3e−x + 3C1e

x + 2C2e
−2x.

3. The Method of Unknown Coefficients is especially useful if on the right-hand side there
are special functions in the form Qn(x)e

αx. The application is similar to the one, used for differential
equations of n-th order (see 9.1.2.5, p. 558).

4. Second-Order Systems
The methods introduced above can also be used for differential equations of higher order. For the
system

n∑
k=1

aikyk
′′ +

n∑
k=1

bikyk
′ +

n∑
k=1

cikyk = 0 (i = 1, 2, . . . , n) (9.48)

one can determine particular solutions in the form yi = Aie
rix. To do this, one gets ri from the char-

acteristic equation det(aikr
2 + bikr + cik) = 0, and Ai from the corresponding linear homogeneous

algebraic equations.

9.1.2.6 Linear Second-Order Differential Equations
Many special differential equations belong to this class, which often occur in practical applications.
Several of them are discussed in this paragraph. For more details of representation, properties and
solution methods see [9.15].

1. General Methods
1. Solving the Inhomogeneous Differential Equation by the Help of the Superposition
Principle

y′′ + p(x)y′ + q(x)y = F (x). (9.49a)

To get the general solution of an inhomogeneous differential equation it is enough to add a particu-
lar solution of the inhomogeneous equation to the general solution of the corresponding homogeneous
equation.

a) The general solution of the corresponding homogeneous differential equation, i.e., with F (x) ≡ 0, is

y = C1y1 + C2y2. (9.49b)
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Here y1 and y2 are two linearly independent particular solutions of (9.49a) (see 9.1.2.3, 2., p. 553). If
a particular solution y1 is already known, then the second one y2 can be determined by the equation
(9.34) of Liouville. From (9.34) follows:∣∣∣∣ y1 y2

y1
′ y2′

∣∣∣∣ = y1y2
′ − y1

′y2 = y21
y1y2

′ − y1
′y2

y21
= y21

(
y2
y1

)′
= A exp

(
−
∫

p(x) dx
)

(9.49c)

giving

y2 = Ay1

∫ exp (− ∫
p dx)

y12
dx (9.49d)

where A can be chosen arbitrarily.

b) A particular solution of the inhomogeneous equation can be determined by the formula

y =
1

A

x∫
x0

F (ξ) exp
(∫

p(ξ) dξ
)
[y2(x)y1(ξ)− y1(x)y2(ξ)] dξ, (9.49e)

where y1 and y2 are two particular solutions of the corresponding homogeneous differential equation.

c)A particular solution of the inhomogeneous differential equation can be determined also by variation
of constants (see 9.1.2.3, 6., p. 554).

2. Solving the InhomogeneousDifferential Equation by theMethod ofUndeterminedCo-
efficients

s(x)y′′ + p(x)y′ + q(x)y = F (x) (9.50a)

If the functions s(x), p(x), q(x) and F (x) are polynomials or functions which can be expanded into a
convergent power series around x0 in a certain domain, where s(x0) �= 0, then the solutions of this dif-
ferential equation can also be expanded into a similar series, and these series are convergent in the same
domain. Here they should be determined by the method of undetermined coefficients: The solution to
be looking for as a series has the form

y = a0 + a1(x− x0) + a2(x− x0)
2 + · · · , (9.50b)

and it has to be substituted into the differential equation (9.50a). Equating corresponding coefficients
(of the same powers of (x− x0)) results in equations to determine the coefficients a0, a1, a2, . . . .

To solve the differential equation y′′ + xy = 0 one substitutes y = a0 + a1x + a2x
2 + a3x

3 + · · · ,
y′ = a1 + 2a2x + 3a3x

2 + · · · , and y′′ = 2a2 + 6a3x + · · · getting 2a2 = 0, 6a3 + a0 = 0, . . . .

The solution of these equations is a2 = 0, a3 = − a0
2 · 3 , a4 = − a1

3 · 4 , a5 = 0, . . . , so the solution is

y = a0

(
1− x3

2 · 3 +
x6

2 · 3 · 5 · 6 − · · ·
)
+ a1

(
x− x4

3 · 4 +
x7

3 · 4 · 6 · 7 − · · ·
)
.

3. The Homogeneous Differential Equation

x2y′′ + xp(x)y′ + q(x)y = 0 (9.51a)

can be solved by themethod of undetermined coefficients if the functions p(x) and q(x) can be expanded
as a convergent power series of x. The solutions have the form

y = xr(a0 + a1x+ a2x
2 + · · ·), (9.51b)

whose exponent r can be determined from the defining equation

r(r − 1) + p(0)r + q(0) = 0. (9.51c)

If the roots of this equation are different and their difference is not an integer number, then one gets two
linearly independent solutions of (9.51a). Otherwise the method of undetermined coefficients results
only one solution. Then with the help of (9.49b) one can get a second solution or at least one can find
a form which gives a second solution with the method of undetermined coefficients.

For the Bessel differential equation (9.52a) one gets only one solution with the method of the un-
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determined coefficients in the form y1 =
∞∑
k=0

akx
n+2k (a0 �= 0), which coincides with Jn(x) up to a

constant factor. Since exp
(
−
∫
p dx

)
=

1

x
one finds a second solution by using formula (9.49d)

y2 = Ay1

∫ dx

x · x2n (
∑

akx2k)2
= Ay1

∫ ∞∑
k=0

ckx
2k

x2n+1
dx = By1 ln x+ x−n

∞∑
k=0

dkx
2k.

The determination of the unknown coefficients ck and dk is difficult from the ak’s. But this last expres-
sion can be used to get the solution with the method of undetermined coefficients. Obviously this form
is a series expansion of the function Yn(x) (9.53c).

2. Bessel Differential Equation
x2y′′ + xy′ + (x2 − n2)y = 0. (9.52a)

1. The Defining Equation is in this case

r(r − 1) + r − n2 ≡ r2 − n2 = 0, (9.52b)

so, r = ±n. Substituting

y = xn(a0 + a1x+ · · ·) (9.52c)

into this equation and equating the coefficients of xn+k to zero gives

k(2n+ k)ak + ak−2 = 0. (9.52d)

For k = 1 follows (2n+ 1)a1 = 0. For the values k = 2, 3, . . . one obtains

a2m+1 = 0 (m = 1, 2, . . .), a2 = − a0
2(2n+ 2)

,

a4 =
a0

2 · 4 · (2n+ 2)(2n+ 4)
, . . . , a0 is arbitrary. (9.52e)

2. Bessel or Cylindrical Functions The series obtained above for a0 =
1

2nΓ (n+ 1)
, where Γ is

the gamma function (see 8.2.5, 6., p. 514), is a particular solution of the Bessel differential equation
(9.52a) for integer values of n. It defines the Bessel or cylindrical function of the first kind of index n

Jn(x) =
xn

2nΓ (n+ 1)

(
1− x2

2(2n+ 2)
+

x4

2 · 4 · (2n+ 2)(2n+ 4)
− · · ·

)

=
∞∑
k=0

(−1)k
(
x

2

)n+2k

k!Γ (n+ k + 1)
. (9.53a)

The graphs of functions J0 and J1 are shown in Fig. 9.12.
The general solution of the Bessel differential equation for non-integer n has the form

y = C1Jn(x) + C2J−n(x), (9.53b)

where J−n(x) is defined by the infinite series obtained from the series representation of Jn(x) by replac-
ing n with −n. For integer n, holds J−n(x) = (−1)nJn(x). In this case, the term J−n(x) in the general
solution should be replaced with the Bessel function of the second kind

Yn(x) = lim
m→n

Jm(x) cosmπ − J−m(x)

sinmπ
, (9.53c)

which is also called theWeber function. For the series expansion of Yn(x) see, e.g., [9.15]. The graphs
of the functions Y0 and Y1 are shown in Fig. 9.13.
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3. Bessel Functions with Imaginary Variables In some applications one uses Bessel functions
with pure imaginary variables. In this case it is to be considered the product i−nJn(ix) which will be
denoted by In(x):

In(x) = i−nJn(ix) =

(
x

2

)n

Γ (n+ 1)
+

(
x

2

)n+2

1!Γ (n+ 2)
+

(
x

2

)n+4

2!Γ (n+ 3)
+ · · · . (9.54a)

The functions In(x) are solutions of the differential equation

x2y′′ + xy′ − (x2 + n2)y = 0. (9.54b)

A second solution of this differential equation is the MacDonald function

Kn(x) =
π

2

I−n(x)− In(x)

sinnπ
. (9.54c)

If n converges to an integer number, this expression also converges.

The functions In(x) and Kn(x) are called modified Bessel functions. The graphs of functions I0 and I1
are shown in Fig. 9.14; the graphs of functions K0 and K1 are illustrated in Fig. 9.15. The values of
functions J0(x), J1(x), Y0(x), Y1(x), I0(x), I1(x), K0(x), K1(x) are given in Table 21.11, p. 1106.
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4. Important Formulas for the Bessel Functions Jn(x)

Jn−1(x) + Jn+1(x) =
2n

x
Jn(x) ,

dJn(x)

dx
= −n

x
Jn(x) + Jn−1(x). (9.55a)



564 9. Differential Equations

The formulas (9.55a) are also valid for the Weber functions Yn(x).

In−1(x)− In+1(x) =
2nIn(x)

x
,

dIn(x)

dx
= In−1(x)−

n

x
In(x), (9.55b)

Kn+1(x)−Kn−1(x) =
2nKn(x)

x
,

dKn(x)

dx
= −Kn−1(x)−

n

x
Kn(x). (9.55c)

For integer numbers n the following formulas are valid:

J2n(x) =
2

π

π/2∫
0

cos(x sinϕ) cos 2nϕdϕ, (9.55d)

J2n+1(x) =
2

π

π/2∫
0

sin(x sinϕ) sin(2n+ 1)ϕdϕ (9.55e)

or, in complex form,

Jn(x) =
−(i)n

π

π∫
0

eix cosϕ cosnϕdϕ. (9.55f)

The functions Jn+1/2(x) can be expressed by using elementary functions. In particular,

J1/2(x) =

√
2

πx
sin x, (9.56a) J−1/2(x) =

√
2

πx
cosx. (9.56b)

By applying the recursion formulas (9.55a)–(9.55f) the expression for Jn+1/2(x) for arbitrary integer n
can be given. For large values of x the following asymptotic formulas are valid:

Jn(x) =

√
2

πx

[
cos

(
x− nπ

2
− π

4

)
+O

(
1

x

)]
, (9.57a)

In(x) =
ex√
2πx

[
1 +O

(
1

x

)]
, (9.57b)

Yn(x) =

√
2

πx

[
sin

(
x− nπ

2
− π

4

)
+O

(
1

x

)]
, (9.57c)

Kn(x) =

√
π

2x
e−x

[
1 +O

(
1

x

)]
. (9.57d)

The expressionO
(
1

x

)
means an infinitesimal quantity of the same order as

1

x
(see the Landau symbol,

2.1.4.9, p. 57).
For further properties of the Bessel functions see [21.1].

5. Important Formulas for the Spherical Bessel Functions Spherical Bessel functions of
the first and second kind jl(z) and nl(z) follow from the Bessel functions of the first and second kind

Jn(z) (9.53a)and Yn(z) (9.53c) for half odd order index n =
1

2
,
3

2
, . . . as in jl(z) =

√
π

2z
Jl+ 1

2
(z) and

nl(z) =

√
π

2z
Yl+ 1

2
(z) with l = 0, 1, 2, . . . . They occur as regular or singular solutions of the potential
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free radial Schroedinger equation (see 9.2.4.6,3., (9.137b), p. 599) with V (r) = 0, E =
h̄2k2

2m
, z = kr

and sl(z) = Rl(r):

z
d 2

dz2
[z sl(z)] + [z2 − l(l + 1)]sl(z) = 0 , sl(z) = jl(z) or nl(z). (9.58a)

They also occur in the quantum mechanical scattering theory, where the nl(z) are called the spherical
von Neumann functions. By the help of the Rayleigh formulas

jl(z) = (−z)l
(

d

zdz

)l
sin z

z
, nl(z) = (−z)l

(
d

zdz

)l

(−1)
cos z

z
(9.58b)

follows, so

j0(z) =
sin z

z
, j1(z) =

sin z − z cos z

z2
, · · · , (9.58c)

n0(z) = −cos z

z
, n1(z) = −cos z + z sin z

z2
, · · · . (9.58d)

Complex spherical functions are used with Φm(ϕ) = eimϕ in the form YL(�e) = Θm
l (ϑ)Φm(ϕ), e.g. in

9.2.4.6, (9.136e), p. 599. In the combined indexL = (l,m) l = 0, 1, 2, . . . denotes the quantum number
of the orbital angular momentum. The magnetic quantum number m is restricted to the 2l + 1 values
m = −l,−l + 1, · · · ,+l. With the abbreviations

jL(k�r) = jl(kr)YL(�er) , nL(k�r) = nl(kr)YL(�er), �er =
�r

r
(9.59a)

one gets the Kasterinian formulas

iljL(k�r) = YL

(∇
ik

)
sin kr

kr
, ilnL(k�r) = YL

(∇
ik

)
(−1)

cos kr

kr
, (9.59b)

where ∇ denotes the nabla operator (s. 13.2.6.1, S. 715). The expansion of a plane wave in terms of
spherical or Bessel functions gives

ei
�k�r = 4π

∑
L

iljL(k�r)Y
∗
L (�ek), �ek =

�k

k
,

∑
L

· · · =
∞∑
l=0

+l∑
m=−l

· · · . (9.59c)

There are the following addition theorems

iljL(k(�r1 +�r2)) = 4π
∑
L1,L2

CLL1L2 i
l1+l2jL1(k�r1)j

∗
L2
(k�r2) , r1,2 = arbitrarily, (9.59d)

ilnL(k(�r1 +�r2)) = 4π
∑
L1,L2

CLL1L2 i
l1+l2nL1(k�r1)j

∗
L2
(k�r2) , r1 > r2 (9.59e)

with the Clebsch-Gordan coefficients (see 5.3.4.7, p. 345)

CLL1L2 =
∫
d 2e YL(�e)Y

∗
L1
(�e)Y ∗

L2
(�e) . (9.59f)

For further details see [21.1], [9.28] until [9.31].

3. Legendre Differential Equation
Restricting the investigations in this book to the case of real variables and integer parameters n =
0, 1, 2, . . . the Legendre differential equation has the form

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0 or ((1− x2)y′)′ + n(n+ 1)y = 0. (9.60a)
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1. Legendre Polynomials or Spherical Harmonics of the First Kind are the particular solu-
tions of the Legendre differential equation for integer n, which can be expanded into the power series

y =
∞∑
ν=0

aνx
ν . The method of undetermined coefficients yields the polynomials

Pn(x) =
(2n)!

2n(n!)2

[
xn − n(n− 1)

2(2n− 1)
xn−2 +

n(n− 1)(n− 2)(n− 3)

2 · 4(2n− 1)(2n− 3)
xn−4 − + · · ·

]
,

(|x| < ∞;n = 0, 1, 2, . . .). (9.60b)

Pn(x) = F
(
n+ 1,−n, 1;

1− x

2

)
=

1

2nn!

dn(x2 − 1)n

dxn
, (9.60c)

where F denotes the hypergeometric series (see 4., p. 567). The first eight polynomials have the fol-
lowing simple form (see 21.12, p. 1108):

P0(x) = 1 , (9.60d) P1(x) = x , (9.60e)

P2(x) =
1

2
(3x2 − 1) , (9.60f) P3(x) =

1

2
(5x3 − 3x) , (9.60g)

P4(x) =
1

8
(35x4 − 30x2 + 3) , (9.60h) P5(x) =

1

8
(63x5 − 70x3 + 15x) , (9.60i)

P6(x) =
1

16
(231x6−315x4+105x2−5) ,(9.60j) P7(x) =

1

16
(429x7−693x5+315x3−35x) .(9.60k)

The graphs of Pn(x) for the values from n = 1 to n = 7 are represented in Fig. 9.16. The numerical
values can be calculated easily by pocket calculators or from function tables.

2. Properties of the Legendre Polynomials of the First Kind
a) Integral Representation:

Pn(x) =
1

π

π∫
0

(x± cosϕ
√
x2 − 1)n dϕ =

1

π

π∫
0

dϕ

(x± cosϕ
√
x2 − 1)n+1

. (9.61a)

The signs can be chosen arbitrarily in both equations.

b) Recursion Formulas:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (n ≥ 1;P0(x) = 1, P1(x) = x), (9.61b)

(x2 − 1)
dPn(x)

dx
= n[xPn(x)− Pn−1(x)] (n ≥ 1). (9.61c)

c) Orthogonality Relation:

1∫
−1

Pn(x)Pm(x) dx =

⎧⎨⎩
0 for m �= n,

2

2n+ 1
for m = n.

(9.61d)

d) Root Theorem: All the n roots of Pn(x) are real and single and are in the interval (−1, 1).

e) Generating Function: The Legendre polynomial of the first kind can be represented as the power
series expansion of the function

1√
1− 2rx+ r2

=
∞∑
n=0

Pn(x)r
n. (9.61e)

For further properties of the Legendre polynomials of the first kind see [21.1].
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3. Legendre Functions or Spherical Harmonics of the Second Kind A second particular
solution Qn(x) can be got, which is valid for |x| > 1 and linearly independent of Pn(x), see (9.61a), by

the power series expansion
−(n+1)∑
ν=−∞

bνx
ν :

Qn(x) =
2n(n!)2

(2n+ 1)!
x−(n+1)F

(
n+ 1

2
,
n+ 2

2
,
2n+ 3

2
;
1

x2

)

=
2n(n!)2

(2n+ 1)!

[
x−(n+1) +

(n+ 1)(n+ 2)

2(2n+ 3)
x−(n+3)

+
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

2 · 4 · (2n+ 3)(2n+ 5)
x−(n+5) + · · ·

]
. (9.62a)

The representation of Qn(x) valid for |x| < 1 is:

Qn(x) =
1

2
Pn(x) ln

1 + x

1− x
−

n∑
k=1

1

k
Pk−1(x)Pn−k(x). (9.62b)

The spherical harmonics of the first and second kind are also called the associated Legendre functions
(see also 9.2.4.6, 4., (9.138c), p. 600).

4. Hypergeometric Differential Equation
The hypergeometric differential equation is the equation

x(1− x)
d2y

dx2
+ [γ − (α + β + 1)x]

dy

dx
− αβy = 0, (9.63a)

where α, β, γ are parameters. It contains several important special cases.

a) For α = n+ 1, β = −n, γ = 1, and x =
1− z

2
it is the Legendre differential equation.

b) If γ �= 0 or γ is not a negative integer, it has the hypergeometric series or hypergeometric function
as a particular solution :

F (α, β, γ; x) = 1 +
α · β
1 · γ x+

α(α + 1)β(β + 1)

1 · 2 · γ(γ + 1)
x2 + · · ·

+
α(α + 1) . . . (α + n)β(β + 1) . . . (β + n)

1 · 2 . . . (n+ 1) · γ(γ + 1) . . . (γ + n)
xn+1 + · · · , (9.63b)

which is absolutely convergent for |x| < 1. The convergence for x = ±1 depends on the value of
δ = γ − α − β. For x = 1 it is convergent if δ > 0, it is divergent if δ ≤ 0. For x = −1 it is absolutely
convergent if δ < 0, it is conditionally convergent for −1 < δ ≤ 0, and it is divergent for δ ≤ −1.

c) For 2− γ �= 0 or not equal to a negative integer it has a particular solution

y = x1−γF (α + 1− γ, β + 1− γ, 2− γ, x). (9.63c)

d) In some special cases the hypergeometric series can be reduced to elementary functions, e.g.,

F (1, β, β; x) = F (α, 1, α; x) =
1

1− x
, (9.64a) F (−n, β, β;−x) = (1 + x)n, (9.64b)

F (1, 1, 2;−x) =
ln(1 + x)

x
, (9.64c) F

(
1

2
,
1

2
,
3

2
; x2

)
=

arcsin x

x
, (9.64d)

lim
β→∞

F

(
1, β, 1;

x

β

)
= ex. (9.64e)
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5. Laguerre Differential Equation
Restricting the investigation to integer parameters (n = 0, 1, 2, . . .) and real variables, the Laguerre
differential equation has the form

xy′′ + (α + 1− x)y′ + ny = 0. (9.65a)

Particular solutions are the Laguerre polynomials

L(α)
n (x) =

exx−α

n!

dn

dxn
(e−xxn+α) =

n∑
k=0

(
n+ α

n− k

)
(−x)k

k!
. (9.65b)

The recursion formula for n ≥ 1 is:

(n+ 1)L
(α)
n+1(x) = (−x+ 2n+ α + 1)L(α)

n (x)− (n+ α)L
(α)
n−1(x), (9.65c)

L
(α)
0 (x) = 1, L

(α)
1 = 1 + α− x. (9.65d)

An orthogonality relation for α > −1 holds:

∞∫
0

e−xxαL(α)
m (x)L(α)

n (x) dx =

⎧⎪⎨⎪⎩
0 for m �= n,(
n+ α

n

)
Γ (1 + α) for m = n.

(9.65e)

Γ denotes the gamma function (see 8.2.5, 6., p. 514).

6. Hermite Differential Equation
Two defining equations are often used in the literature:

a) Defining Equation of Type 1:

y′′ − xy′ + ny = 0 (n = 0, 1, 2, . . .). (9.66a)

b) Defining Equation of Type 2:

y′′ − 2xy′ + ny = 0 (n = 0, 1, 2, . . .). (9.66b)

Particular solutions are theHermite polynomials,Hen(x) for the defining equation of type 1, andHn(x)
for the defining equation of type 2.

a) Hermite Polynomials for Defining Equation of Type 1:

Hen(x) = (−1)n exp

(
x2

2

)
dn

dxn
exp

(
−x2

2

)

= xn −
(
n

2

)
xn−2 + 1 · 3

(
n

4

)
xn−4 − 1 · 3 · 5

(
n

6

)
xn−6 + · · · (n ∈ IN). (9.66c)

For n ≥ 1 the following recursion formulas are valid:

Hen+1(x) = xHen(x)− nHen−1(x), (9.66d) He0(x) = 1, He1(x) = x. (9.66e)

The orthogonality relation is:
+∞∫

−∞
exp

(
−x2

2

)
Hem(x)Hen(x) dx =

{
0 for m �= n,

n!
√
2π for m = n.

(9.66f)

b) Hermite Polynomials for Defining Equation of Type 2:

Hn(x) = (−1)n exp
(
x2
) dn

dxn
exp

(
−x2

)
(n ∈ IN). (9.66g)

The relation with the Hermite polynomials for defining equation of type 1 is the following:

Hen(x) = 2−n/2Hn

(
x√
2

)
(n ∈ IN). (9.66h)
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9.1.3 BoundaryValueProblems

9.1.3.1 Problem Formulation

1. Notion of the Boundary Value Problem
In different applications, e.g., in mathematical physics, differential equations must be solved as so-
called boundary value problems (see 9.2.3, p. 589), where the required solution must satisfy previously
given relations at the endpoints of an interval of the independent variable. A special case is the linear
boundary value problem, where a solution of a linear differential equation should satisfy linear boundary
value conditions. In the following section the discussion is restricted to second-order linear differential
equations with linear boundary values.

2. Self-Adjoint Differential Equation
Self-adjoint differential equations are important special second-order differential equations of the form

[py′]′ − qy + λ�y = f. (9.67a)

The linear boundary values are the homogeneous conditions

A0y(a) +B0y
′(a) = 0, A1y(b) +B1y

′(b) = 0. (9.67b)

The functions p(x), p′(x), q(x), �(x), and f(x) are supposed to be continuous in the finite interval
a ≤ x ≤ b. In the case of an infinite interval the results change considerably (see [9.5]). Furthermore,
it is supposed that p(x) > p0 > 0, �(x) > �0 > 0. The quantity λ, a parameter of the differential
equation, is a constant. For f = 0, it is called the homogeneous boundary value problem associated to
the inhomogeneous boundary value problem.
Every second-order differential equation of the form

Ay′′ +By′ + Cy + λRy = F (9.67c)

can be reduced to the self-adjoint equation (9.67a) by multiplying it by p/A if in [a, b], A �= 0, and
performing the following substitutions

p = exp
(∫ R

A
dx
)
, q = −pC

A
, � =

pR

A
. (9.67d)

To find a solution satisfying the inhomogeneous conditions

A0y(a) +B0y
′(a) = C0, A1y(b) + B1y

′(b) = C1 (9.67e)

one returns to the problem with homogeneous boundary conditions, but the right-hand side f(x)
changes and y = z + u is substituted where u is an arbitrary twice differentiable function satisfying
the inhomogeneous boundary conditions and z is a new unknown function satisfying the corresponding
homogeneous conditions.

3. Sturm-Liouville Problem
For a given value of the parameter λ there are two cases:
1. Either the inhomogeneous boundary value problem has a unique solution for arbitrary f(x), while
the corresponding homogeneous problem has only the trivial, identically zero solution, or,
2. The corresponding homogeneous problem also has non-trivial, i.e., not identically zero solutions,
but in this case the inhomogeneous problem does not have a solution for arbitrary right-hand side; and
if a solution exists, it is not unique.

The values of the parameter λ, for which the second case occurs, i.e., the homogeneous problem has a
non-trivial solution, are called the eigenvalues of the boundary value problem, the corresponding non-
trivial solutions are called the eigenfunctions. The problem of determining the eigenvalues and eigen-
functions of a differential equation (9.67a) is called the Sturm-Liouville problem.

9.1.3.2 Fundamental Properties of Eigenfunctions and Eigenvalues

1. The eigenvalues of a boundary value problem form a monotone increasing sequence of real numbers

λ0 < λ1 < λ2 < · · · < λn < · · · , (9.68a)

tending to infinity.
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2. The eigenfunction associated to the eigenvalue λn has exactly n roots in the interval a < x < b.
3. If y(x) and z(x) are two eigenfunctions belonging to the same eigenvalue λ, they differ only in a
constant multiplier c, i.e.,

z(x) = cy(x). (9.68b)

4. Two eigenfunctions y1(x) and y2(x), associated to different eigenvalues λ1 and λ2, are orthogonal to
each other with the weight function �(x)

b∫
a

y1(x) y2(x) �(x) dx = 0. (9.68c)

5. If in (9.67a) the coefficients p(x) and q(x) are replaced by p̃(x) ≥ p(x) and q̃(x) ≥ q(x), then the

eigenvalues will not decrease, i.e., λ̃n ≥ λn, where λ̃n and λn are the n-th eigenvalues of the modified
and the original equations respectively. But if the coefficient �(x) is replaced by �̃(x) ≥ �(x), then

the eigenvalues will not increase, i.e., λ̃n ≤ λn. The n-th eigenvalue depends continuously on the
coefficients of the equation, i.e., small changes in the coefficients will result in small variations of the
n-th eigenvalue.
6. Reduction of the interval [a, b] into a smaller one does not result in smaller eigenvalues.

9.1.3.3 Expansion in Eigenfunctions

1. Normalization of the Eigenfunction
For every λn an eigenfunction ϕn(x) is chosen such that

b∫
a

[ϕn(x)]
2�(x) dx = 1. (9.69a)

It is called a normalized eigenfunction.

2. Fourier Expansion
To every function g(x) defined in the interval [a, b], one can assign its Fourier series

g(x) ∼
∞∑
n=0

cnϕn(x), cn =

b∫
a

g(x)ϕn(x) �(x) dx (9.69b)

with the eigenfunctions of the corresponding boundary value problem, if the integrals in (9.69b) exist.

3. Expansion Theorem
If the function g(x) has a continuous derivative and satisfies the boundary conditions of the given prob-
lem, then the Fourier series of g(x) (in the eigenfunctions of this boundary value problem) is absolutely
and uniformly convergent to g(x).

4. Parseval Equation
If the integral on the left-hand side exists, then

b∫
a

[g(x)]2�(x) dx =
∞∑
n=0

cn
2 (9.69c)

is always valid. The Fourier series of the function g(x) converges in this case to g(x) in mean, that is

lim
N→∞

b∫
a

[
g(x)−

N∑
n=0

cnϕn(x)

]2
�(x) dx = 0. (9.69d)

9.1.3.4 Singular Cases
Boundary value problems of the above type occur very often in solving problems of theoretical physics
by the Fourier method, however at the endpoints of the interval [a, b] some singularities of the differen-
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tial equation may occur, e.g., p(x) vanishes. At such singular points some restrictions are imposed on
the solutions, e.g., continuity or being finite or unlimited growth with a bounded order. These condi-
tions play the role of homogeneous boundary conditions (see 9.2.3.3, p. 591). In addition, often occurs
the case where in certain boundary value problems homogeneous boundary conditions should be con-
sidered, such that they connect the values of the function or its derivative at different endpoints of the
interval. Often occur the relations

y(a) = y(b), p(a)y′(a) = p(b)y′(b), (9.70)

which represent periodicity in the case of p(a) = p(b). For such boundary value problems everything
being introduced above remains valid, except statement (9.68b). For further discussion of this topic
see [9.5].

9.2 PartialDifferential Equations

9.2.1 First-OrderPartial Differential Equations

9.2.1.1 Linear First-Order Partial Differential Equations

1. Linear and Quasilinear Partial Differential Equations
The equation

X1
∂z

∂x1

+X2
∂z

∂x2

+ · · ·+Xn
∂z

∂xn

= Y (9.71a)

is called a linear first-order partial differential equation. Here z is an unknown function of the inde-
pendent variables x1, . . . , xn, and X1, . . . , Xn, Y are given functions of these variables. If functions
X1, . . . , Xn, Y depend also on z, the equation is called a quasilinear partial differential equation. In the
case of

Y ≡ 0, (9.71b)

the equation is called homogeneous.

2. Solution of a Homogeneous Partial Linear Differential Equation
The solution of a homogeneous partial linear differential equation and the solution of the so-called
characteristic system

dx1

X1

=
dx2

X2

= · · · = dxn

Xn

(9.72a)

are equivalent. This system can be solved in two different ways:
1. Any xk, for which Xk �= 0, can be chosen as an independent variable, so the system is transformed
into the form

dxj

dxk

=
Xj

Xk

(j = 1, . . . , n). (9.72b)

2. A more convenient way is to keep symmetry and to introduce a new variable t getting

dxj

dt
= Xj (j = 1, 2, . . . , n). (9.72c)

Every first integral of the system (9.72a) is a solution of the homogeneous linear partial differential
equation (9.72a,b), and conversely, every solution of (9.72a,b) is a first integral of (9.72a) (see 9.1.2.1,
2., p. 551). If the n− 1 first integrals

ϕi(x1, . . . , xn) = 0 (i = 1, 2, . . . , n− 1) (9.72d)

are independent (see 9.1.2.3, 2., p. 553), then the general solution is

z = Φ(ϕ1, . . . , ϕn−1). (9.72e)

Here Φ is an arbitrary function of the n − 1 arguments ϕi and a general solution of the homogeneous
linear differential equation.
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3. Solution of Inhomogeneous Linear and Quasilinear
Partial Differential Equations

To solve an inhomogeneous linear and quasilinear partial differential equation (9.71a) one can try to
find the solution z in the implicit form V (x1, . . . , xn, z) = C. The function V is a solution of the
homogeneous linear differential equation with n+ 1 independent variables

X1
∂V

∂x1

+X2
∂V

∂x2

+ · · ·+Xn
∂V

∂xn

+ Y
∂V

∂z
= 0, (9.73a)

whose characteristic system

dx1

X1

=
dx2

X2

= · · · = dxn

Xn

=
dz

Y
(9.73b)

is called the characteristic system of the original equation (9.71a).

4. Geometrical Representation and Characteristics of the System
In the case of the equation

P (x, y, z)
∂z

∂x
+Q(x, y, z)

∂z

∂y
= R(x, y, z) (9.74a)

with two independent variables x1 = x and x2 = y, a solution z = f(x, y) is a surface in x, y, z space,
and it is called the integral surface of the differential equation. Equation (9.74a) means that at every

point of the integral surface z = f(x, y) the normal vector

(
∂z

∂x
,
∂z

∂y
,−1

)
is orthogonal to the vector

(P,Q,R) given at that point. Here the system (9.73b) has the form

dx

P (x, y, z)
=

dy

Q(x, y, z)
=

dz

R(x, y, z)
. (9.74b)

It follows (see 13.1.3.5, p. 708) that the integral curves of this system, the so-called characteristics, are
tangent to the vector (P,Q,R). Therefore, a characteristic having a common point with the integral
surface z = f(x, y) lies completely on this surface. Since the conditions for the existence theorem
13.1.3.5, 1., p. 551 hold, there is an integral curve of the characteristic system passing through every
point of space, so the integral surface consists of characteristics.

5. Cauchy Problem
There are given n functions of n− 1 independent variables t1, t2, . . . , tn−1:

x1 = x1(t1, t2, . . . , tn−1), x2 = x2(t1, t2, . . . , tn−1), . . . , xn = xn(t1, t2, . . . , tn−1). (9.75a)

The Cauchy problem for the differential equation (9.71a) is to find a solution

z = ϕ(x1, x2, . . . , xn) (9.75b)

such that if one substitutes (9.75a), the result is a previously given function ψ(t1, t2, . . . , tn−1):

ϕ[x1(t1, t2, . . . , tn−1), x2(t1, t2, . . . , tn−1), . . . , xn(t1, t2, . . . , tn−1)] = ψ(t1, t2, . . . , tn−1). (9.75c)

In the case of two independent variables, the problem reduces to find an integral surface passing through
the given curve. If this curve has a tangent depending continuously on a point and it is not tangent to the
characteristics at any point, then the Cauchy problem has a unique solution in a certain neighborhood
of this curve. Here the integral surface consists of the set of all characteristics intersecting the given
curve. For more mathematical discussion on theorems about the existence of the solution of the Cauchy
problem see [9.15].

A: For the linear first-order inhomogeneous partial differential equation (mz − ny)
∂z

∂x
+ (nx −

lz)
∂z

∂y
= ly−mx (l,m, n are constants), the equations of the characteristics are

dx

mz − ny
=

dy

nx− lz
=
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dz

ly −mx
. The integrals of this system are lx + my + nz = C1, x

2 + y2 + z2 = C2. One gets circles

as characteristics, whose centers are on a line passing through the origin, and this line has direction
cosines proportional to l,m, n. The integral surfaces are rotation surfaces with this line as an axis.

B: Determine the integral surface of the first-order linear inhomogeneous differential equation
∂z

∂x
+

∂z

∂y
= z, which passes through the curve x = 0, z = ϕ(y). The equations of characteristics are

dx

1
=

dy

1
=

dz

z
. The characteristics passing through the point (x0, y0, z0) are y = x− x0 + y0, z = z0e

x−x0 .

A parametric representation of the required integral surface is y = x+ y0, z = exϕ(y0), if we substitute
x0 = 0, z0 = ϕ(y0). The elimination of y0 results in z = exϕ(y − x).

9.2.1.2 Non-Linear First-Order Partial Differential Equations

1. General Form of First-Order Partial Differential Equation
is the implicit equation

F

(
x1, . . . , xn, z,

∂z

∂x1

, . . . ,
∂z

∂xn

)
= 0. (9.76a)

1. Complete Integral is the solution

z = ϕ(x1, . . . , xn; a1, . . . , an), (9.76b)

depending on n parameters a1, . . . , an if at the considered values of x1, . . . , xn, z the functional deter-
minant (or Jacobian determinant, see 2.18.2.6, 3., p. 123) is non-zero:

∂ (ϕx1 , . . . , ϕxn)

∂(a1, . . . , an)
�= 0. (9.76c)

2. Characteristic Strip The solution of (9.76a) is reduced to the solution of the characteristic
system

dx1

P1

= · · · = dxn

Pn

=
dz

p1P1 + · · ·+ pnPn

=
−dp1

X1 + p1Z
= · · · = −dpn

Xn + pnZ
(9.76d)

with

Z =
∂F

∂z
, Xi =

∂F

∂xi

, pi =
∂z

∂xi

, Pi =
∂F

∂pi
(i = 1, . . . , n). (9.76e)

The solutions of the characteristic system satisfying the additional condition

F (x1, . . . , xn, z, p1, . . . , pn) = 0 (9.76f)

are called the characteristic strips .

2. Canonical Systems of Differential Equations
Sometimes it is more convenient to consider an equation not involving explicitly the unknown function
z. Such an equation can be obtained by introducing an additional independent variable xn+1 = z
and an unknown function V (x1, . . . , xn, xn+1), which defines the function z(x1, x2, . . . , xn) with the
equation

V (x1, . . . , xn, z) = C. (9.77a)

At the same time, one substitutes the functions −∂V

∂xi

/
∂V

∂xn+1

(i = 1, . . . , n) for
∂z

∂xi

in (9.76a).

Then one solves the differential equation (9.76a) for an arbitrary partial derivative of the function V .
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The corresponding independent variable will be denoted by x after a suitable renumbering of the other
variables. Finally, one gets the equation (9.76a) in the form

p+H(x1, . . . , xn, x, p1, . . . , pn) = 0, p =
∂V

∂x
, pi =

∂V

∂xi

(i = 1, . . . , n). (9.77b)

The system of characteristic differential equations is transformed into the system

dxi

dx
=

∂H

∂pi
,

dpi
dx

= −∂H

∂xi

(i = 1, . . . , n) and (9.77c)

dV

dx
= p1

∂H

∂p1
+ · · ·+ pn

∂H

∂pn
−H,

dp

dx
= −∂H

∂x
. (9.77d)

Equations (9.77c) represent a system of 2n ordinary differential equations, which corresponds to an
arbitrary function H(x1, . . . , xn, x, p1, . . . , pn) with 2n + 1 variables. It is called a canonical system or
a normal system of differential equations.

Many problems ofmechanics and theoretical physics lead to equations of this form. Knowing a complete
integral

V = ϕ(x1, . . . , xn, x, a1, . . . , an) + a (9.77e)

of the equation (9.77b) one can find the general solution of the canonical system (9.77c), since the

equations
∂ϕ

∂ai
= bi,

∂ϕ

∂xi

= pi (i = 1, 2, . . . , n) with 2n arbitrary parameters ai and bi determine a

2n-parameter solution of the canonical system (9.77c).

3. Clairaut Differential Equation
If the given differential equation can be transformed into the form

z = x1p1 + x2p2 + · · ·+ xnpn + f(p1, p2, . . . , pn), pi =
∂z

∂xi

(i = 1, . . . , n), (9.78a)

it is called a Clairaut differential equation. The determination of the complete integral is particularly
simple, because a complete integral with the arbitrary parameters a1, a2, . . . , an is

z = a1x1 + a2x2 + · · ·+ anxn + f(a1, a2, . . . , an). (9.78b)

Two-BodyProblemwithHamiltonFunction: Consider two particles moving in a plane under
their mutual gravitational attraction according to the Newton field (see also 13.4.3.2, p. 728). Choosing
the origin as the initial position of one of the particles, the equations of motion have the form

d2x

dt2
=

∂V

∂x
,

d2y

dt2
=

∂V

∂y
; V =

k2

√
x2 + y2

. (9.79a)

Introducing the Hamiltonian function

H =
1

2
(p2 + q2)− k2

√
x2 + y2

, (9.79b)

the system (9.79a) is transformed into the normal system (into the system of canonical differential
equations)

dx

dt
=

∂H

∂p
,

dy

dt
=

∂H

∂q
,

dp

dt
= −∂H

∂x
,

dq

dt
= −∂H

∂y
(9.79c)

with variables

x, y, p =
dx

dt
, q =

dy

dt
. (9.79d)
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Now, the partial differential equation has the form

∂z

∂t
+

1

2

⎡⎣(∂z

∂x

)2

+

(
∂z

∂y

)2
⎤⎦− k2

√
x2 + y2

= 0. (9.79e)

Introducing the polar coordinates ρ, ϕ in (9.79e) one obtains a new differential equation having the
solution

z = −at− bϕ+ c−
∫ ρ

ρ0

√
2a+

2k2

r
− b2

r2
dr (9.79f)

with the parameters a, b, c. The general solution of the system (9.79c) follows from the equations

∂z

∂a
= −t0,

∂z

∂b
= −ϕ0. (9.79g)

4. First-Order Differential Equation in Two Independent Variables
For x1 = x, x2 = y, p1 = p, p2 = q the characteristic strip (see 9.2.1.2, 1., p. 573) can be geometrically
interpreted as a curve at every point (x, y, z) of which a plane p(ξ−x)+ q(η−y) = ζ− z being tangent
to the curve is prescribed. So, the problem of finding an integral surface of the equation

F

(
x, y, z,

∂z

∂x
,
∂z

∂y

)
= 0 (9.80)

passing through a given curve, i.e., to solve the Cauchy problem (see 9.2.1.1, 5., p. 572), is transformed
into another problem: To find the characteristic strips passing through the points of the initial curve
such that the corresponding tangent plane to each strip is tangent to that curve. One gets the values
p and q at the points of the initial curve from the equations F (x, y, z, p, q) = 0 and pdx + qdy = dz.
There can be several solutions in the case of non-linear differential equations.

Therefore, under the formulation of the Cauchy problem, in order to obtain a unique solution one can
assume two continuous functions p and q satisfying the above relations along the initial curve.
For the existence of solutions of the Cauchy problem see [9.15].

For the partial differential equation p q = 1 and the initial curve y = x3, z = 2x2, one can choose
p = x and q = 1/x along the curve. The characteristic system has the form

dx

dt
= q,

dy

dt
= p,

dz

dt
= 2p q,

dp

dt
= 0,

dq

dt
= 0.

The characteristic strip with initial values x0, y0, z0, p0 and q0 for t = 0 satisfies the equations x =
x0 + q0t, y = y0 + p0t, z = 2p0q0t+ z0, p = p0, q = q0. For the case of p0 = x0, q0 = 1/x0 the equation
of the curve belonging to the characteristic strip that passes through the point (x0, y0, z0) of the initial
curve is

x = x0 +
t

x0

, y = x0
3 + tx0, z = 2t+ 2x0

2.

Eliminating the parameters x0 and t gives z2 = 4xy. For other chosen values of p and q along the initial
curve one can get different solutions.

Remark: The envelope of a one-parameter family of integral surfaces is also an integral surface. Con-
sidering this fact one can solve the Cauchy problemwith a complete integral. One finds a one-parameter
family of solutions tangent to the planes given at the points of the initial curve. Then one determines
the envelope of this family.

Determine the integral surface for the Clairaut differential equation z − px − qy + pq = 0 passing
through the curve y = x, z = x2. The complete integral of the differential equation is z = ax+ by−ab.
Since along the initial curve p = q = x, one determines the one-parameter family of integral surfaces

by the condition a = b. When the envelope of this family is found then one gets z =
1

4
(x+ y)2.
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5. Linear First-Order Partial Differential Equations in Total Differentials
Equations of this kind have the form

dz = f1dx1 + f2dx2 + · · ·+ fndxn, (9.81a)

where f1, f2, . . . , fn are given functions of the variables x1, x2, . . . , xn, z. The equation is called a com-
pletely integrable or exact differential equationwhen there exists a unique relation betweenx1, x2, . . . , xn,
z with one arbitrary constant, which leads to equation (9.81a). Then there exists a unique solution
z = z(x1, x2, . . . , xn) of (9.81a), which has a given value z0 for the initial values x1

0, . . . , xn
0 of the

independent variables. Therefore, for n = 2, x1 = x, x2 = y a unique integral surface passes through
every point of space.

The differential equation (9.81a) is completely integrable if and only if the
n(n− 1)

2
equalities

∂fi
∂xk

+ fk
∂fi
∂z

=
∂fk
∂xi

+ fi
∂fk
∂z

(i, k = 1, . . . , n) (9.81b)

in all variables x1, x2, . . . , xn, z are identically satisfied.
If the differential equation is given in symmetric form

f1dx1 + · · ·+ fndxn = 0, (9.81c)

then the condition for complete integrability is

fi

(
∂fk
∂xj

− ∂fj
∂xk

)
+ fj

(
∂fi
∂xk

− ∂fk
∂xi

)
+ fk

(
∂fj
∂xi

− ∂fi
∂xj

)
= 0 (9.81d)

for all possible combinations of the indices i, j, k. If the equation is completely integrable, then the
solution of the differential equation (9.81a) can be reduced to the solution of an ordinary differential
equation with n− 1 parameters.

9.2.2 Linear Second-OrderPartial Differential Equations

9.2.2.1 Classification and Properties of Second-Order Differential
Equations with Two Independent Variables

1. General Form
of a linear second-order partial differential equation with two independent variables x, y and an un-
known function u is an equation in the form

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ a

∂u

∂x
+ b

∂u

∂y
+ cu = f, (9.82a)

where the coefficients A,B,C, a, b, c and f on the right-hand side are known functions of x and y.
The form of the solution of this differential equation depends on the sign of the discriminant

δ = AC − B2 (9.82b)

in a considered domain. The following cases should be distinguished.

1. δ < 0: Hyperbolic type.

2. δ = 0: Parabolic type.

3. δ > 0: Elliptic type.

4. δ changes its sign: Mixed type.
An important property of the discriminant δ is that its sign is invariant with respect to arbitrary trans-
formation of the independent variables, e.g., to introduction new coordinates in the x, y plane. There-
fore, the type of the differential equation is invariant with respect to the choice of the independent
variables.
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2. Characteristics
of linear second-order partial differential equations are the integral curves of the differential equation

Ady2 − 2Bdxdy + Cdx2 = 0 or
dy

dx
=

B ±
√
−δ

A
. (9.83)

For the characteristics of the above three types of differential equations the following statements are
valid:

1. Hyperbolic type: There exist two families of real characteristics.

2. Parabolic type: There exists only one family of real characteristics.

3. Elliptic type: There exists no real characteristic.

4. A differential equation obtained by coordinate transformation from (9.82a) has the same character-
istics as (9.82a).

5. If a family of characteristics coincides with a family of coordinate lines, then the term with the
second derivative of the unknown function with respect to the corresponding independent variable is
missing in (9.82a). In the case of a parabolic differential equation, the mixed derivative term is also
missing.

3. Normal Form or Canonical Form
One has the following possibilities to transform (9.82a) into the normal form of linear second-order
partial differential equations.

1. Transformation intoNormal Form: The differential equation (9.82a) can be transformed into
normal form by introducing the new independent variables

ξ = ϕ(x, y) and η = ψ(x, y) , (9.84a)

which according to the sign of the discriminant (9.82b) belongs to one of the three considered types:

∂2u

∂ξ2
− ∂2u

∂η2
+ · · · = 0 , δ < 0, hyperbolic type; (9.84b)

∂2u

∂η2
+ · · · = 0, δ = 0, parabolic type; (9.84c)

∂2u

∂ξ2
+

∂2u

∂η2
+ · · · = 0 , δ > 0, elliptic type. (9.84d)

The terms not containing second-order partial derivatives of the unknown function are denoted by dots.

2. Reduction of a Hyperbolic Type Equation to Canonical Form (9.84b): If, in the hyper-
bolic case, one chooses two families of characteristics as the coordinate lines of the new coordinate
system (9.84a), i.e., if substituting ξ1 = ϕ(x, y), η1 = ψ(x, y), where ϕ(x, y) = constant, ψ(x, y) =
constant are the equations of the characteristics, then (9.82a) becomes the form

∂2u

∂ξ1∂η1
+ · · · = 0. (9.84e)

This form is also called the canonical form of a hyperbolic type differential equation. From here one gets
the canonical form (9.84b) by the substitution

ξ = ξ1 + η1, η = ξ1 − η1. (9.84f)

3. Reduction of a Parabolic Type Equation to Canonical Form (9.84c): The only family of
characteristics given in this case is selected for the family ξ = const, where an arbitrary function of x
and y can be chosen for η, which must not be dependent on ξ.

4. Reduction of an Elliptic Type Equation to Canonical Form (9.84d): If the coefficients
A(x, y), B(x, y), C(x, y) are analytic functions (see 14.1.2.1, p. 732) in the elliptic case, then the char-
acteristics define two complex conjugate families of curves ϕ(x, y) = constant, ψ(x, y) = constant. By
substituting ξ = ϕ+ ψ and η = i(ϕ− ψ), the equation becomes of the form (9.84d).
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4. Generalized Form
Every statement for the classification and reduction to canonical forms remains valid for equations
given in a more general form

A(x, y)
∂2u

∂x2
+ 2B(x, y)

∂2u

∂x∂y
+ C(x, y)

∂2u

∂y2
+ F

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0, (9.85)

where F is a non-linear function of the unknown function u and its first-order partial derivatives ∂u/∂x
and ∂u/∂y, in contrast to (9.82a).

9.2.2.2 Classification and Properties of Linear Second-Order Differential
Equations withMore than Two Independent Variables

1. General Form
A differential equation of this kind for u = u(x1, x2, . . . , xn) has the form∑

i,k

aik
∂2u

∂xi∂xk

+ · · · = 0, (9.86)

where aik are given functions of the independent variables and the dots in (9.86) mean terms not con-
taining second-order derivatives of the unknown function.
In general, the differential equation (9.86) cannot be reduced to a simple canonical form by transforming
the independent variables. However, there is an important classification, similar to the one introduced
above in 9.2.2.1, p. 576 (see [9.5]).

2. Linear Second-OrderPartialDifferential EquationswithConstantCoefficients
If all coefficients aik in (9.86) are constants, then the equation can be reduced by a linear homogeneous
transformation of the independent variables into a simpler canonical form∑

i

κi
∂2u

∂xi
2
+ · · · = 0, (9.87)

where the coefficients κi are ±1 or 0. Several characteristic cases have to be distinguished.

1. Elliptic Differential Equation If all coefficients κi are different from zero, and they have the same
sign, then it is the case of an elliptic differential equation.

2. Hyperbolic and Ultra-Hyperbolic Differential Equation If all coefficients κi are different
from zero, but one has a sign different from the other’s, then it is the case of a hyperbolic differential
equation. If both types of signs occur at least twice, then it is an ultra-hyperbolic differential equation.

3. Parabolic Differential Equation If one of the coefficients κi is equal to zero, the others are dif-
ferent from zero and they have the same sign, then it is the case of a parabolic differential equation.

4. Simple Case for Elliptic and Hyperbolic Differential Equations If not only the coefficients
of the second order derivatives of the unknown function are constants, but also those of the first order
derivatives, then it is possible to eliminate the terms of the first order derivatives, for which κi �= 0, by
substitution. For this purpose is

u = v exp

(
−1

2

∑ bk
κk

xk

)
, (9.88)

substituted where bk is the coefficient of
∂u

∂xk

in (9.87) and the summation is performed for all κi �= 0.

In this way, every elliptic and hyperbolic differential equation with constant coefficients can be reduced
to a simple form:

a) Elliptic Case: Δv + kv = g. (9.89) b) Hyperbolic Case:
∂2v

∂t2
−Δv + kv = g. (9.90)
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Here Δ denotes the Laplace operator (see 13.2.6.5, p. 716).

9.2.2.3 IntegrationMethods for Linear Second-Order Partial Differential
Equations

1. Method of Separation of Variables
Certain solutions of several differential equations of physics can be determined by special substitutions,
and although these are not general solutions, one gets a family of solutions depending on arbitrary
parameters. Linear differential equations, especially those of second order, can often be solved if looking
for a solution in the form of a product

u(x1, . . . , xn) = ϕ1(x1)ϕ2(x2) . . . ϕn(xn). (9.91)

Next, one tries to separate the functions ϕk(xk), i.e., for each of them one wants to determine an or-
dinary differential equation containing only one variable xk. This separation of variables is successful
in many cases when the trial solution in the form of a product (9.91) is substituted into the given
differential equation. In order to guarantee that the solution of the original equation satisfies the re-
quired homogeneous boundary conditions, it may appear to be sufficient that some of functions ϕ1(x1),
ϕ2(x2), . . . , ϕn(xn) satisfy certain boundary conditions.
By means of summation, differentiation and integration, new solutions can be acquired from the ob-
tained ones; the parameters should be chosen so that the remaining boundary and initial conditions
are satisfied (see examples).
Finally, don’t forget that the solutions obtained in this way, often infinite series and improper inte-
grals, are only formal solutions. That is, one has to check whether the solution makes a physical sense,
e.g., whether it is convergent, satisfies the original differential equation and the boundary conditions,
whether it is differentiable termwise and whether the limit at the boundary exists.

The infinite series and improper integrals in the examples of this paragraph are convergent if the func-
tions defining the boundary conditions satisfy the required conditions, e.g., the continuity assumption
for the second derivatives in the first and the second examples.

A: Equation of the Vibrating String is a linear second-order partial differential equation of
hyperbolic type

∂2u

∂t2
= a2

∂2u

∂x2
. (9.92a)

It describes the vibration of a spanned string. The boundary and the initial conditions are:

u
∣∣∣∣
t=0

= f(x),
∂u

∂t

∣∣∣∣
t=0

= ϕ(x), u|x=0 = 0, u|x=l = 0. (9.92b)

Seeking a solution in the form

u = X(x)T (t), (9.92c)

and after substituting it into the given equation (9.92a) follows

T ′′

a2T
=

X ′′

X
. (9.92d)

The variables are separated, the right side depends on only x and the left side depends on only t, so
each of them is a constant quantity. The constant must be negative, otherwise the boundary conditions
cannot be satisfied, i.e., non-negative values give the trivial solution u(x, t) = 0. This negative constant
is denoted by −λ2. The result is an ordinary linear second-order differential equation with constant
coefficients for both variables. For the general solution see 9.1.2.4, p. 555. The results are the linear
differential equations

X ′′ + λ2X = 0, (9.92e) and T ′′ + a2λ2T = 0. (9.92f)

From the boundary conditions follows X(0) = X(l) = 0. Hence X(x) is an eigenfunction of the



580 9. Differential Equations

Sturm-Liouville boundary value problem and λ2 is the corresponding eigenvalue (see 9.1.3.1, 3., p. 569).
Solving the differential equation (9.92e) for X with the corresponding boundary conditions one gets

X(x) = C sinλx with sinλl = 0, i.e., with λ =
nπ

l
= λn (n = 1, 2, . . .). (9.92g)

Solving equation (9.92f) for T yields a particular solution of the original differential equation (9.92a)
for every eigenvalue λn:

un(x, t) =
(
an cos

naπ

l
t+ bn sin

naπ

l
t
)
sin

nπ

l
x. (9.92h)

Requiring that for t = 0,

u

∣∣∣∣
t=0

=
∞∑
n=1

un(x, 0) is equal to f(x) , and (9.92i)

∂u

∂t

∣∣∣∣∣
t=0

=
∞∑
n=1

∂un

∂t
(x, 0) is equal to ϕ(x) , (9.92j)

one gets with a Fourier series expansion in sines (see 7.4.1.1, 1., p. 474)

an =
2

l

∫ l

0
f(x) sin

nπx

l
dx, bn =

2

naπ

∫ l

0
ϕ(x) sin

nπx

l
dx. (9.92k)

B: Equation of Longitudinal Vibration of a Bar is a linear second-order partial differential
equation of hyperbolic type, which describes the longitudinal vibration of a bar with one end free and a
constant force p affecting the fixed end. Here is to solve the same differential equation as in A (p. 579),
i.e.,

∂2u

∂t2
= a2

∂2u

∂x2
, (9.93a)

with the same initial but different boundary conditions:

u
∣∣∣∣
t=0

= f(x),
∂u

∂t

∣∣∣∣
t=0

= ϕ(x), (9.93b)
∂u

∂x

∣∣∣∣∣
x=0

= 0 (free end), (9.93c)

∂u

∂x

∣∣∣∣∣
x=l

= kp . (9.93d)

The conditions (9.93c,d) can be replaced by the homogeneous conditions

∂z

∂x

∣∣∣∣
x=0

=
∂z

∂x

∣∣∣∣
x=l

= 0 (9.93e)

where instead of u is introduced a new unknown function

z = u− kpx2

2l
. (9.93f)

The differential equation becomes inhomogeneous:

∂2z

∂t2
= a2

∂2z

∂x2
+

a2kp

l
. (9.93g)

Looking for the solution in the form z = v+w, where v satisfies the homogeneous differential equation
with the initial and boundary conditions for z, i.e.,

z

∣∣∣∣
t=0

= f(x)− kpx2

2
,

∂z

∂t

∣∣∣∣
t=0

= ϕ(x), (9.93h)



9.2 Partial Differential Equations 581

andw satisfies the inhomogeneous differential equation with zero initial and boundary conditions. This

gives w =
ka2pt2

2l
. Substituting the product form of the unknown function v(x, t) into the differential

equation (9.93a)

v = X(x)T (t) (9.93i)

gives the separated ordinary differential equations as in A (p. 579)

X ′′

X
=

T ′′

a2T
= −λ2. (9.93j)

Integrating the differential equation for X with the boundary conditions X ′(0) = X ′(l) = 0 one finds
the eigenfunctions

Xn = cos
nπx

l
(9.93k)

and the corresponding eigenvalues

λn
2 =

n2π2

l2
(n = 0, 1, 2, . . .). (9.93l)

Proceeding as in A (p. 579) one finally obtains

u =
ka2pt2

2l
+

kpx2

2l
+ a0 +

aπ

l
b0t+

∞∑
n=1

(
an cos

anπt

l
+

bn
n

sin
anπt

l

)
cos

nπx

l
, (9.93m)

where an and bn (n = 0, 1, 2, . . .) are the coefficients of the Fourier series expansion in cosines of the

functions f(x)− kpx2

2
and

l

aπ
ϕ(x) in the interval (0, l) (see 7.4.1.1, 1., p. 474).

C: Equation of a Vibrating Round Membrane fixed along the boundary:
The differential equation is linear, partial and it is of hyperbolic type. It has the form in Cartesian and
in polar coordinates (see 3.5.3.2,3., p. 211)

∂2u

∂x2
+

∂2u

∂y2
=

1

a2
∂2u

∂t2
, (9.94a)

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂ϕ2
=

1

a2
∂2u

∂t2
. (9.94b)

The initial and boundary conditions are

u|t=0 = f(ρ, ϕ), (9.94c)
∂u

∂t

∣∣∣∣∣
t=0

= F (ρ, ϕ), (9.94d) u|ρ=R = 0. (9.94e)

The substitution of the product form

u = U(ρ)Φ(ϕ)T (t) (9.94f)

with three variables into the differential equation in polar coordinates yields

U ′′

U
+

U ′

ρU
+

Φ′′

ρ2Φ
=

1

a2
T ′′

T
= −λ2. (9.94g)

Three ordinary differential equations are obtained for the separated variables analogously to examples
A (p. 579) and B (p. 580):

T ′′ + a2λ2T = 0, (9.94h)
ρ2U ′′ + ρU ′

U
+ λ2ρ2 = −Φ′′

Φ
= ν2, (9.94i)

Φ′′ + ν2Φ = 0. (9.94j)

From the conditions Φ(0) = Φ(2π), Φ′(0) = Φ′(2π) it follows that:

Φ(ϕ) = an cosnϕ+ bn sinnϕ, ν2 = n2 (n = 0, 1, 2, . . .). (9.94k)
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U and λ will be determined from the equations [ρU ′]′ − n2

ρ
U = −λ2ρU and U(R) = 0. Considering

the obvious condition of boundedness of U(ρ) at ρ = 0 and substituting λρ = z gives

z2U ′′ + zU ′ + (z2 − n2)U = 0, i.e., U(ρ) = Jn(z) = Jn

(
μ
ρ

R

)
, (9.94l)

where Jn are the Bessel functions (see 9.1.2.6, 2., p. 562) with λ =
μ

R
and Jn(μ) = 0. The system of

functions

Unk(ρ) = Jn

(
μnk

ρ

R

)
(k = 1, 2, . . .) (9.94m)

with μnk as the k-th positive root of the function Jn(z) is a complete system of eigenfunctions of the
self-adjoint Sturm-Liouville problem which are orthogonal with the weight function ρ.
The solution of the problem can have the form of a double series:

U =
∞∑
n=0

∞∑
k=1

[
(ank cosnϕ+ bnk sinnϕ) cos

aμnkt

R

+(cnk cosnϕ+ dnk sinnϕ) sin
aμnkt

R

]
Jn

(
μnk

ρ

R

)
. (9.94n)

From the initial conditions at t = 0 one obtains

f(ρ, ϕ) =
∞∑
n=0

∞∑
k=1

(ank cosnϕ+ bnk sinnϕ)Jn

(
μnk

ρ

R

)
, (9.94o)

F (ρ, ϕ) =
∞∑
n=0

∞∑
k=1

aμnk

R
(cnk cosnϕ+ dnk sinnϕ)Jn

(
μnk

ρ

R

)
, (9.94p)

where

ank =
2

πR2J2
n−1(μnk)

∫ 2π

0
dϕ

∫ R

0
f(ρ, ϕ) cosnϕJn

(
μnk

ρ

R

)
ρ dρ, (9.94q)

bnk =
2

πR2J2
n−1(μnk)

∫ 2π

0
dϕ

∫ R

0
f(ρ, ϕ) sinnϕJn

(
μnk

ρ

R

)
ρ dρ. (9.94r)

In the case of n = 0, the numerator 2 should be changed to 1. To determine the coefficients cnk and dnk
the function f(ρ, ϕ) is replaced by F (ρ, ϕ) in the formulas for ank and bnk and finely it is multiplied by
R

aμnk

.

D: Dirichlet Problem (see 13.5.1, p. 729) for the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b (Fig. 9.17):

y

b

0 xa

Figure 9.17

Find a function u(x, y) satisfying the elliptic type Laplace differen-
tial equation

Δu = 0 (9.95a)

and the boundary conditions

u(0, y) = ϕ1(y), u(a, y) = ϕ2(y),

u(x, 0) = ψ1(x), u(x, b) = ψ2(x). (9.95b)

First there is to determine a particular solution for the boundary
conditions ϕ1(y) = ϕ2(y) = 0. Substituting the product form

u = X(x)Y (y) (9.95c)
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into (9.95a) gives the separated differential equations

X ′′

X
= −Y ′′

Y
= −λ2 (9.95d)

with the eigenvalue λ analogously to examplesA (p. 579) throughC (p. 581). SinceX(0) = X(a) = 0,

X = C sinλx, λ =
nπ

a
= λn (n = 1, 2, . . .). (9.95e)

In the second step the general solution of the differential equation is obtained:

Y ′′ − n2π2

a2
Y = 0 (9.95f) in the form Y = an sinh

nπ

a
(b− y) + bn sinh

nπ

a
y . (9.95g)

From these equations one gets a particular solution of (9.95a) satisfying the boundary conditionsu(0, y) =
u(a, y) = 0, which has the form

un =
[
an sinh

nπ

a
(b− y) + bn sinh

nπ

a
y
]
sin

nπ

a
x . (9.95h)

In the third step one considers the general solution as a series

u =
∞∑
n=1

un, (9.95i)

so from the boundary conditions for y = 0 and y = b

u =
∞∑
n=1

(
an sinh

nπ

a
(b− y) + bn sinh

nπ

a
y
)
sin

nπ

a
x (9.95j)

follows with the coefficients

an =
2

a sinh
nπb

a

∫ a

0
ψ1(x) sin

nπ

a
x dx, bn =

2

a sinh
nπb

a

∫ a

0
ψ2(x) sin

nπ

a
x dx. (9.95k)

The problem with the boundary conditions ψ1(x) = ψ2(x) = 0 can be solved in a similar manner, and
taking the series (9.95j) one gets the general solution of (9.95a) and (9.95b).

E: Heat Conduction Equation Heat conduction in a homogeneous bar with one end at infin-
ity and the other end kept at a constant temperature is described by the linear second-order partial
differential equation of parabolic type

∂u

∂t
= a2

∂2u

∂x2
, (9.96a)

which satisfies the initial and boundary conditions

u|t=0 = f(x), u|x=0 = 0 (9.96b)

in the domain 0 ≤ x < +∞, t ≥ 0. It is also to be supposed that the temperature tends to zero at
infinity. Substituting

u = X(x)T (t) (9.96c)

into (9.96a) one obtains the ordinary differential equations

T ′

a2T
=

X ′′

X
= −λ2, (9.96d)

whose parameter λ is introduced analogously to the previous examplesA (p. 579) throughD (p. 582).
One gets

T (t) = Cλe
−λ2a2t (9.96e)
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as a solution for T (t). Using the boundary condition X(0) = 0, gives

X(x) = C sinλx (9.96f) and so uλ = Cλe
−λ2a2t sinλx, (9.96g)

where λ is an arbitrary real number. The solution can be obtained in the form

u(x, t) =
∫ ∞

0
C(λ)e−λ2a2t sinλx dλ. (9.96h)

From the initial condition u|t=0 = f(x) follows (9.96i) with (9.96j) for the constant (see 7.4.1.1, 1.,

p. 474).
f(x) =

∫ ∞

0
C(λ) sinλx dλ , (9.96i) C(λ) =

2

π

∫ ∞

0
f(s) sinλs ds . (9.96j)

Combining (9.96j) and (9.96h) gives

u(x, t) =
2

π

∫ ∞

0
f(s)

(∫ ∞

0
e−λ2a2t sinλs sinλx dλ

)
ds (9.96k)

or after replacing the product of the two sines with one half of the difference of two cosines ((2.122),
p. 83) and using formula (21.27), in Table 21.8.2, p. 1100, it follows that

u(x, t) =
∫ ∞

0
f(s)

1

2a
√
πt

[
exp

(
−(x− s)2

4a2t

)
− exp

(
−(x+ s)2

4a2t

)]
ds. (9.96l)

2. RiemannMethod for Solving Cauchy’s Problem for the Hyperbolic
Differential Equation
∂2u

∂x∂y
+ a

∂u

∂x
+ b

∂u

∂y
+ cu = F (9.97a)

1. Riemann Function is a function v(x, y; ξ, η), where ξ and η are considered as parameters, sat-
isfying the homogeneous equation

∂2v

∂x∂y
− ∂(av)

∂x
− ∂(bv)

∂y
+ cv = 0 (9.97b)

which is the adjoint of (9.97a) and the conditions

v(x, η; ξ, η) = exp

⎛⎜⎝ x∫
ξ

b(s, η) ds

⎞⎟⎠ , v(ξ, y; ξ, η) = exp

⎛⎝ y∫
η

a(ξ, s) ds

⎞⎠ . (9.97c)

In general, linear second-order differential equations and their adjoint differential equations have the
form ∑

i,k

aik
∂2u

∂xi∂xk

+
∑
i

bi
∂u

∂xi

+ cu = f (9.97d) and
∑
i,k

∂2(aikv)

∂xi∂xk

−
∑
i

∂(biv)

∂xi

+ cv = 0. (9.97e)

y

0 x

P

QM( , )���

#

Figure 9.18

2. Riemann Formula is the integral formula which is used to
determine function u(ξ, η) satisfying the given differential equation
(9.97a) and taking the previously given values along the previously
given curve Γ (Fig. 9.18) together with its derivative in the direc-
tion of the curve normal (see 3.6.1.2, 2., p. 244):

u(ξ, η) =
1

2
(uv)P +

1

2
(uv)Q −

∫
�
QP

[
buv +

1

2

(
v
∂u

∂x
− u

∂v

∂x

)]
dx
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−
[
auv +

1

2

(
v
∂u

∂y
− u

∂v

∂y

)]
dy +

∫ ∫
PMQ

Fv dx dy. (9.97f)

The smooth curve Γ (Fig. 9.18)must not have tangents parallel to the coordinate axes, i.e., the curve
must not be tangent to the characteristics. The line integral in this formula can be calculated, since the
values of both partial derivatives can be determined from the function values and from its derivatives
in a non-tangential direction along the curve arc.

In the Cauchy problem, the values of the partial derivatives of the unknown function, e.g.,
∂u

∂y
are often

given instead of the normal derivative along the curve. Then another form of the Riemann formula is
used:

u(ξ, η) = (uv)P −
∫
�
QP

(
buv − u

∂v

∂x

)
dx−

(
auv + v

∂u

∂y

)
dy +

∫ ∫
PMQ

Fv dx dy. (9.97g)

TelegraphEquation (Telegrapher’s Equation) is a linear second-order partial differential equation
of hyperbolic type

a
∂2u

∂t2
+ 2b

∂u

∂t
+ cu =

∂2u

∂x2
(9.98a)

where a > 0, b, and c are constants. The equation describes the current flow in wires. It is a general-
ization of the differential equation of a vibrating string.
Replacing the unknown function u(x, t) by u = z exp(−(b/a)t), so (9.98a) is reduced to the form

∂2z

∂t2
= m2 ∂

2z

∂x2
+ n2z

(
m2 =

1

a
, n2 =

b2 − ac

a2

)
. (9.98b)

Replacing the independent variables by

ξ =
n

m
(mt+ x), η =

n

m
(mt− x) (9.98c)

finally one gets the canonical form

∂2z

∂ξ∂η
− z

4
= 0 (9.98d)

of a hyperbolic type linear partial differential equation (see 9.2.2.1, 1., p. 577). The Riemann function
v(ξ, η; ξ0, η0) should satisfy this equation with unit value at ξ = ξ0 and η = η0. Choosing the form

w = (ξ − ξ0)(η − η0) (9.98e)

for w in v = f(w), then f(w) is a solution of the differential equation

w
d2f

dw2
+

df

dw
− 1

4
f = 0 (9.98f)

with initial condition f(0) = 1. The substitution w = α2 reduces this differential equation to Bessel’s
differential equation of order zero (see 9.1.2.6, 2., p. 562)

d2f

dα2
+

1

α

df

dα
− f = 0, (9.98g)

hence the solution is

v = I0

[√
(ξ − ξ0)(η − η0)

]
. (9.98h)
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A solution of the original differential equation (9.98a) satisfying the boundary conditions

z
∣∣∣∣
t=0

= f(x),
∂z

∂t

∣∣∣∣
t=0

= g(x) (9.98i)

can be obtained substituting the found value of v into the Riemann formula and then returning to the
original variables:

z(x, t) =
1

2
[f(x−mt) + f(x+mt)]

+
1

2

x+mt∫
x−mt

⎡⎢⎢⎣g(s)I0
(
n

m

√
m2t2 − (s− x)2

)
m

− f(s)
ntI1

(
n

m

√
m2t2 − (s− x)2

)
√
m2t2 − (s− x)2

⎤⎥⎥⎦ ds. (9.98j)

3. Green’s Method of Solving the Boundary Value Problem for Elliptic
Differential Equations with Two Independent Variables

This method is very similar to the Riemann method of solving the Cauchy problem for hyperbolic dif-
ferential equations.
If one wants to find a function u(x, y) satisfying the elliptic type of linear second-order partial differen-
tial equation

∂2u

∂x2
+

∂2u

∂y2
+ a

∂u

∂x
+ b

∂u

∂y
+ c u = f (9.99a)

in a given domain and taking the prescribed values on its boundary, first theGreen function G(x, y, ξ, η)
has to be determined for this domain, where ξ and η are regarded as parameters. The Green function
must satisfy the following conditions:

1. The function G(x, y; ξ, η) satisfies the homogeneous adjoint differential equation

∂2G

∂x2
+

∂2G

∂y2
− ∂(aG)

∂x
− ∂(bG)

∂y
+ cG = 0 (9.99b)

everywhere in the given domain except at the point x = ξ, y = η.

2. The function G(x, y; ξ, η) has the form

U ln
1

r
+ V (9.99c) with r =

√
(x− ξ)2 + (y − η)2 , (9.99d)

where U has unit value at the point x = ξ, y = η and U and V are continuous functions in the entire
domain together with their second derivatives.

3. The function G(x, y; ξ, η) is equal to zero on the boundary of the given domain.
The second step is to give the solution of the boundary value problem with the Green function by the
formula

u(ξ, η) =
1

2π

∫
S

u(x, y)
∂

∂n
G(x, y; ξ, η) ds− 1

2π

∫∫
D

f(x, y)G(x, y; ξ, η) dx dy, (9.99e)

whereD is the considered domain, S is its boundary on which the function is assumed to be known and
∂

∂n
denotes the normal derivative directed toward the interior of D.

Condition 3 depends on the formulation of the problem. For instance, if instead of the function values
the values of the derivative of the unknown function are given in the direction normal to the boundary
of the domain, then in 3 the condition

∂G

∂n
− (a cosα + b cos β)G = 0 (9.99f)
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holds on the boundary. α and β denote here the angles between the interior normal to the boundary of
the domain and the coordinate axes. In this case, the solution is given by the formula

u(ξ, η) = − 1

2π

∫
S

∂u

∂n
Gds− 1

2π

∫∫
D

fGdx dy. (9.99g)

4. Green’s Method for the Solution of Boundary Value Problems with Three
Independent Variables

The solution of the differential equation

Δu+ a
∂u

∂x
+ b

∂u

∂y
+ c

∂u

∂z
+ e u = f (9.100a)

should take the given values on the boundary of the considered domain. As the first step, one constructs
again the Green function, but now it depends on three parameters ξ, η, and ζ. The adjoint differential
equation satisfied by the Green function has the form

ΔG− ∂(aG)

∂x
− ∂(bG)

∂y
− ∂(cG)

∂z
+ eG = 0. (9.100b)

As in condition 2, the function G(x, y, z; ξ, η, ζ) has the form

U
1

r
+ V (9.100c) with r =

√
(x− ξ)2 + (y − η)2 + (z − ζ)2. (9.100d)

The solution of the problem is:

u(ξ, η, ζ) =
1

4π

∫∫
S

u
∂G

∂n
ds− 1

4π

∫∫∫
D

fGdx dy dz. (9.100e)

Bothmethods, Riemann’s andGreen’s, have the common idea first to determine a special solution of the
differential equation, which can then be used to obtain a solution with arbitrary boundary conditions.
An essential difference between the Riemann and the Green function is that the first one depends only
on the form of the left-hand side of the differential equation, while the second one depends also on the
considered domain. Finding the Green function is, in practice, an extremely difficult problem, even if
it is known to exist; therefore, Green’s method is used mostly in theoretical research.

M( , )ξ η

M1

r1

P

x
r

0
ϕ
ρ

y

Figure 9.19

A: Construction of theGreen function for the Dirichlet problem
of the Laplace differential equation (see 13.5.1, p. 729)

Δu = 0 (9.101a)

for the case, when the considered domain is a circle (Fig. 9.19).
The Green function is

G(x, y; ξ, η) = ln
1

r
+ ln

r1ρ

R
, (9.101b)

where r = MP, ρ = OM , r1 = M1P and R is the radius of the
considered circle (Fig. 9.19). The points M and M1 are symmet-
ric with respect to the circle, i.e., both points are on the same ray
starting from the center and

OM ·OM1 = R2. (9.101c)

The formula (9.99e) for a solution of Dirichlet’s problem, after sub-
stituting the normal derivative of the Green function and after cer-
tain calculations, yields the so-called Poisson integral

u(ξ, η) =
1

2π

∫ 2π

0

R2 − ρ2

R2 + ρ2 − 2Rρ cos(ψ − ϕ)
u(ϕ) dϕ. (9.101d)
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The notation is the same as above. The known values of u are given on the boundary of the circle by
u(ϕ). For the coordinates of the point M(ξ, η) follows ξ = ρ cosψ, η = ρ sinψ.

B: Construction of the Green function for the Dirichlet problem of the Laplace differential equation
(see 13.5.1, p. 729)

Δu = 0, (9.102a)

for the case when the considered domain is a sphere with radius R. The Green function now has the
form

G(x, y, z; ξ, η, ζ) =
1

r
− R

r1ρ
, (9.102b)

with ρ =
√
ξ2 + η2 + ζ2 as the distance of the point (ξ, η, ζ) from the center, r as the distance between

the points (x, y, z) and (ξ, η, ζ), and r1 as the distance of the point (x, y, z) from the symmetric point

of (ξ, η, ζ) according to (9.101c), i.e., from the point

(
Rξ

ρ
,
Rη

ρ
,
Rζ

ρ

)
. In this case, the Poisson integral

has the form (with the same notation as in A (p. 587))

u(ξ, η, ζ) =
1

4π

∫∫
S

R2 − ρ2

Rr3
u ds. (9.102c)

5. Operational Method
Operational methods can be used not only to solve ordinary differential equations but also for partial
differential equations (see 15.1.6, p. 769). They are based on transition from the unknown function
to its transform (see 15.1, p. 767). In this process the unknown function is regarded as a function of
only one variable and the transformation is performed with respect to this variable. The remaining
variables are considered as parameters. The differential equation to determine the transform of the
unknown function contains one less independent variable than the original equation. In particular, if
the original equation is a partial differential equation of two independent variables, then one obtains
an ordinary differential equation for the transform. If the transform of the unknown function can be
found from the obtained equation, then the original function is obtained either from the formula for
the inverse function or from the table of transforms.

6. ApproximationMethods
In order to solve practical problemswith partial differential equations, different approximationmethods
are used. They can be divided into analytical and numerical methods.
1. AnalyticalMethods make possible the determination of approximate analytical expressions for
the unknown function.
2. Numerical Methods result in approximate values of the unknown function for certain values of
the independent variables. Here the following methods (see 19.5, p. 976) are used:

a) Finite DifferenceMethod, or Lattice-Point Method: The derivatives are replaced by divided dif-
ferences, so the differential equation including the initial and boundary conditions becomes an algebraic
equation system. A linear differential equation with linear initial and boundary conditions becomes a
linear equation system.

b) Finite ElementMethod, or brieflyFEM (see 19.5.3, p. 978), for boundary value problems: Here
a variational problem is assigned to the boundary value problem. The approximation of the unknown
function is performed by a spline approach, whose coefficients should be chosen to get the best possible
solution. The domain of the boundary value problem is decomposed into regular sub-domains. The
coefficients are determined by solving an extreme value problem.

c) IntegralEquationMethod (along aClosedCurve) for special boundary problems: The bound-
ary value problem is formulated as an equivalent integral equation problem along the boundary of the
domain of the boundary value problem. To do this, one applies the theorems of vector analysis (see
13.3.3, p. 724, and followings), e.g., Green formulas. The remaining integrals along the closed curve
are to be determined numerically by a suitable quadrature formula.
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3. Physical Solutions of differential equations can be given by experimental methods. This is based
on the fact that various physical phenomena can be described by the same differential equation. To
solve a given equation, first a model is constructed by which the given problem is simulated and the
values of the unknown function are obtained directly from this model. Since such models are often
known and can be constructed by varying the parameters in a wide range, the differential equation can
also be applied in a wide domain of the variables.

9.2.3 Some furtherPartial Differential Equations fromNatural

Sciences andEngineering

9.2.3.1 Formulation of the Problem and the Boundary Conditions

1. Problem Formulation
The modeling and the mathematical treatment of different physical phenomena in classical theoretical
physics, especially in modeling media considered structureless or continuously changing, such as gases,
fluids, solids, the fields of classical physics, leads to the introduction of partial differential equations.
Examples are the wave (see 9.2.3.2, p. 590) and the heat equations (see 9.2.3.3, p. 591). Many problems
in non-classical theoretical physics are also governed by partial differential equations. An important
area is quantum mechanics, which is based on the recognition that media and fields are discontinu-
ous. The most famous relation is the Schroedinger equation. Linear second-order partial differential
equations occur most frequently and they have special importance in today’s natural sciences.

2. Initial and Boundary Conditions
The solution of the problems of physics, engineering, and the natural sciences must usually fulfill two
basic requirements:

1. The solution must satisfy not only the differential equation, but also certain initial and/or boundary
conditions. There are problems with only initial condition or only with boundary conditions or with
both. All the conditions together must determine the unique solution of the differential equation.

2. The solution must be stable with respect to small changes in the initial and boundary conditions,
i.e., its change should be arbitrarily small if the perturbations of these conditions are small enough.
Then a correct problem formulation is given.
One can assume that the mathematical model of the given problem to describe the real situation is
adequate only in cases when these conditions are fulfilled.
For instance, the Cauchy problem (see 9.2.1.1, 5., p. 572) is correctly definedwith a differential equation
of hyperbolic type for investigating vibration processes in continuousmedia. Thismeans that the values
of the required function, and the values of its derivatives in a non-tangential (mostly in a normal)
direction are given on an initial manifold, i.e., on a curve or on a surface.

In the case of differential equations of elliptic type, which occur in investigations of steady state and
equilibrium problems in continuous media, the formulation of the boundary value problem is correct. If
the considered domain is unbounded, then the unknown function must satisfy certain given properties
with unlimited increase of the independent variables.

3. Inhomogeneous Conditions and Inhomogeneous Differential Equations
The solution of homogeneous or inhomogeneous linear partial differential equations with inhomoge-
neous initial or boundary conditions can be reduced to the solution of an equation which differs from
the original one only by a free term not containing the unknown function, and which has homogeneous
conditions. It is sufficient to replace the original function by its difference from an arbitrary twice dif-
ferentiable function satisfying the given inhomogeneous conditions.

In general, one uses the fact that the solution of a linear inhomogeneous partial differential equation
with given inhomogeneous initial or boundary conditions is the sum of the solutions of the same dif-
ferential equation with zero conditions and the solution of the corresponding homogeneous differential
equation with the given conditions.
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To reduce the solution of the linear inhomogeneous partial differential equation

∂2u

∂t2
− L[u] = g(x, t) (9.103a)

with homogeneous initial conditions

u
∣∣∣∣
t=0

= 0,
∂u

∂t

∣∣∣∣
t=0

= 0 (9.103b)

to the solution of the Cauchy problem for the corresponding homogeneous differential equation, one
substitutes

u =

t∫
0

ϕ(x, t; τ) dτ. (9.103c)

Here ϕ(x, t; τ) is the solution of the differential equation

∂2u

∂t2
− L[u] = 0, (9.103d)

which satisfies the boundary conditions

u

∣∣∣∣
t=τ

= 0,
∂u

∂t

∣∣∣∣
t=τ

= g(x, τ). (9.103e)

In this equation, x represents symbolically all the n variables x1, x2, . . . , xn of the n-dimensional prob-

lem. L[u] denotes a linear differential expression, which may contain the derivative
∂u

∂t
, but not higher-

order derivatives with respect to t.

9.2.3.2 Wave Equation
The extension of oscillations in a homogeneous media is described by the wave equation

∂2u

∂t2
− a2Δu = Q(x, t), (9.104a)

whose right-hand side Q(x, t) vanishes when there is no perturbation. The symbol x represents the n
variables x1, . . . , xn of the n-dimensional problem. The Laplace operator Δ (see also 13.2.6.5, 716,) is
defined in the following way:

Δu =
∂2u

∂x1
2
+

∂2u

∂x2
2
+ · · ·+ ∂2u

∂xn
2
. (9.104b)

The solution of the wave equation is the wave function u. The differential equation (9.104a) is of hy-
perbolic type.

1. Homogeneous Problem
The solution of the homogeneous problem with Q(x, t) = 0 and with the initial conditions

u
∣∣∣∣
t=0

= ϕ(x),
∂u

∂t

∣∣∣∣
t=0

= ψ(x) (9.105)

is given for the cases n = 1, 2, 3 by the following integrals.

Case n = 3 (Kirchhoff Formula):

u(x1, x2, x3, t) =
1

4πa2

⎡⎢⎢⎣ ∫∫
(Sat)

ψ(α1, α2, α3)

t
dσ +

∂

∂t

∫ ∫
(Sat)

ϕ(α1, α2, α3)

t
dσ

⎤⎥⎥⎦ , (9.106a)

where the integration is performed over the spherical surface Sat given by the equation (α1 − x1)
2 +

(α2 − x2)
2 + (α3 − x3)

2 = a2t2.
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Case n = 2 (Poisson Formula):

u(x1, x2, t) =
1

2πa

[ ∫ ∫
(Cat)

ψ(α1, α2) dα1dα2√
a2t2 − (α1 − x1)2 − (α2 − x2)2

+
∂

∂t

∫ ∫
(Cat)

ϕ(α1, α2) dα1dα2√
a2t2 − (α1 − x1)2 − (α2 − x2)2

]
, (9.106b)

where the integration is performed along the circle Cat given by the equation (α1−x1)
2+(α2−x2)

2 ≤
a2t2.

Case n = 1 (d’Alembert formula):

u(x1, t) =
ϕ(x1 + at) + ϕ(x1 − at)

2
+

1

2a

x1+at∫
x1−at

ψ(α) dα. (9.106c)

2. Inhomogeneous Problem
In the case, when Q(x, t) �= 0, one has to add to the right-hand sides of (9.106a,b,c) the correcting
terms:

Case n = 3 (Retarded Potential): For a domain K given by r ≤ at with

r =
√
(ξ1 − x1)2 + (ξ2 − x2)2 + (ξ3 − x3)2, the correction term is

1

4πa2

∫∫∫
(K)

Q
(
ξ1, ξ2, ξ3, t−

r

a

)
r

dξ1dξ2dξ3 . (9.107a)

Case n = 2:
1

2πa

∫∫∫
(K)

Q(ξ1, ξ2, τ) dξ1dξ2dτ√
a2(t− τ)2 − (ξ1 − x1)2 − (ξ2 − x2)2

, (9.107b)

where K is a domain of ξ1, ξ2, τ space defined by the inequalities 0 ≤ τ ≤ t, (ξ1 − x1)
2 + (ξ2 − x2)

2 ≤
a2(t− τ)2.

Case n = 1:
1

2a

∫∫
(T )

Q(ξ, τ) dξdτ, (9.107c)

where T is the triangle 0 ≤ τ ≤ t, |ξ − x1| ≤ a|t− τ |. a denotes the wave velocity of the perturbation.

9.2.3.3 Heat Conduction andDiffusion Equation for HomogeneousMedia

1. Three-Dimensional Heat Conduction Equation
The propagation of heat in a homogeneous medium is described by a linear second-order partial differ-
ential equation of parabolic type

∂u

∂t
− a2Δu = Q(x, t), (9.108a)

where Δ is the three-dimensional Laplace operator defined in three directions of propagation x1, x2,
x3, determined by the position vector�r. If the heat flow has neither source nor sink, the right-hand side
vanishes since Q(x, t) = 0.
The Cauchy problem can be posed in the following way: It is to determine a bounded solution u(x, t) for
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t > 0, where u|t=0 = f(x). The requirement of boundedness guarantees the uniqueness of the solution.
For the homogeneous differential equation with Q(x, t) = 0, one gets the wave function

u(x1, x2, x3, t) =
1

(2a
√
πt)n

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

f(α1, α2, α3)

· exp
(
−(x1 − α1)

2 + (x2 − α2)
2 + (x3 − α3)

2

4a2t

)
dα1dα2dα3. (9.108b)

In the case of an inhomogeneous differential equation withQ(x, t) �= 0, one has to add to the right-hand
side of (9.108b) the following expression:

t∫
0

⎡⎣ +∞∫
−∞

+∞∫
−∞

+∞∫
−∞

Q(α1, α2, α3)

[2a
√
π(t− τ)]n

· exp
(
−(x1 − α1)

2 + (x2 − α2)
2 + (x3 − α3)

2

4a2(t− τ)

)
dα1dα2dα3

]
dτ. (9.108c)

The problem of determining u(x, t) for t < 0, if the values u(x, 0) are given, cannot be solved in this
way, since the Cauchy problem is not correctly formulated in this case.
Since the temperature difference is proportional to the heat, one often introduces u = T (�r, t) (temper-
ature field) and a2 = DW (heat diffusion constant or thermal conductivity) to get

∂T

∂t
−DWΔT = QW (�r, t). (9.108d)

2. Three-Dimensional Diffusion Equation
In analogy to the heat equation, the propagation of a concentration C in a homogeneous medium is
described by the same linear partial differential equation (9.108a) and (9.108d), whereDW is replaced
by the three-dimensional diffusion coefficient DC . The diffusion equation is:

∂C

∂t
−DCΔC = QC(�r, t). (9.109)

One gets the solutions by changing the symbols in the wave equations (9.108b) and (9.108c).

9.2.3.4 Potential Equation
The linear second-order partial differential equation

Δu = −4π� (9.110a)

is called the potential equation or Poisson differential equation (see 13.5.2, p. 729), which makes the
determination of the potential u(x) of a scalar field determined by a scalar point function �(x) possible,
where x has the coordinates x1, x2, x3 and Δ is the Laplace operator. The solution, the potential
uM(x1, x2, x3) at the point M , is discussed in 13.5.2, p. 729.
One gets the Laplace differential equation (see 13.5.1, p. 729) for the homogeneous differential equation
with � ≡ 0:

Δu = 0. (9.110b)

The differential equations (9.110a) and (9.110b) are of elliptic type.

9.2.4 Schroedinger’s Equation

9.2.4.1 Notion of the Schroedinger Equation

1. Determination and Dependencies
The solutions of the Schroedinger equation, the wave functions ψ, describe the properties of a quantum
mechanical system, i.e., the properties of the states of a particle. The Schroedinger equation is a second-
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order partial differential equation with the second-order derivatives of the wave function with respect
to the space coordinates and first-order with respect to the time coordinate:

i h̄
∂ψ

∂t
= − h̄2

2m
Δψ + U(x1, x2, x3, t)ψ = Ĥ ψ (9.111a)

Ĥ ≡ p̂2

2m
+ U(�r, t) , p̂ ≡ h̄

i

∂

∂�r
≡ h̄

i
∇. (9.111b)

Here, Δ is the Laplace operator, h̄ =
h

2π
is the reduced Planck’s constant, i is the imaginary unit and

∇ is the nabla operator. The relation between the impulse p of a free particle with mass m and wave
length λ is λ = h/p.

2. Remarks:
a) In quantum mechanics, an operator is assigned to every measurable quantity. The operator occur-

ring in (9.111a) and (9.111b) is called the Hamilton operator Ĥ (“Hamiltonian”) . It has the same role
as the Hamilton function of classical mechanical systems (see, e.g., the example on Two-Body Problem
on p. 574). It represents the total energy of the system which is divided into kinetic and potential en-

ergy. The first term in Ĥ is the operator for the kinetic energy, the second one for the potential energy.

b) The imaginary unit appears explicitly in the Schroedinger equation. Consequently, the wave func-

tions are complex functions. Both real functions occurring in ψ(1) + iψ(2) are needed to calculate the
observable quantities. The square |Ψ |2 of the wave function, describing the probability dw of the par-
ticle being in an arbitrary volume element dV of the observed domain, must satisfy special further
conditions.

c) Besides the potential of the interaction, every special solution depends also on the initial and bound-
ary conditions of the given problem. In general, there is a linear second-order boundary value problem,
whose solutions have physical meaning only for the eigenvalues. The squares of the absolute value of
meaningful solutions are everywhere unique and regular, and tend to zero at infinity.

d) The micro-particles also have wave and particle properties based on the wave–particle duality, so
the Schroedinger equation is a wave equation (see 9.2.3.2, p. 590) for the De Broglie matter waves.

e) The restriction to the non-relativistic case means that the velocity v of the particle is very small
with respect to the velocity of light c (v 1 c).

The application of the Schroedinger equations is discussed in detail in the literature of theoretical
physics (see, e.g., [9.15], [9.7],[9.10], [22.15]). In this chapter only some most important examples are
demonstrated.

9.2.4.2 Time-Dependent Schroedinger Equation
The time-dependent Schroedinger equation (9.111a) describes the general non-relativistic case of a
spin-less particle withmassm in a position-dependent and time-dependent potential fieldU(x1, x2, x3, t).
The special conditions, which must be satisfied by the wave function, are:
a) The function ψ must be bounded and continuous.
b) The partial derivatives ∂ψ/∂x1, ∂ψ/∂x2, and ∂ψ/∂x3 must be continuous.
c) The function |ψ|2 must be integrable, i.e.,∫∫∫

V

|ψ(x1, x2, x3, t)|2 dV < ∞. (9.112a)

According to the normalization condition, the probability that the particle is in the considered domain
must be equal to one. (9.112a) is sufficient to guarantee the condition, since multiplying ψ by an ap-
propriate constant the value of the integral becomes one.
A solution of the time-dependent Schroedinger equation has the form

ψ(x1, x2, x3, t) = Ψ(x1, x2, x3) exp
(
−iE

h̄
t
)
. (9.112b)



594 9. Differential Equations

The state of the particle is described by a periodic function of time with angular frequency ω = E/h̄. If
the energy of the particle has the fixed value E = const, then the probability dw of finding the particle
in a space element dV is independent of time:

dω = |ψ|2 dV = ψψ∗ dV. (9.112c)

Then one speaks about a stationary state of the particle.

9.2.4.3 Time-Independent Schroedinger Equation

If the potential U does not depend on time, i.e., U = U(x1, x2, x3), then it is the time-independent
Schroedinger equation and the wave function Ψ(x1, x2, x3) is sufficient to describe the state. Reducing
it from the time-dependent Schroedinger equation (9.111a) with the solution (9.112b) gives

ΔΨ +
2m

h̄2 (E − U)Ψ = 0. (9.113a)

In this non-relativistic case, the energy of the particle is

E =
p2

2m
(p =

h

λ
, h = 2πh̄) . (9.113b)

The wave functions Ψ satisfying this differential equation are the eigenfunctions; they exist only for
certain energy valuesE, which are given for the considered problem of the special boundary conditions.
The union of the eigenvalues forms the energy spectrum of the particle. If U is a potential of finite depth
and it tends to zero at infinity, then the negative eigenvalues form a discrete spectrum.

If the considered domain is the entire space, then it can be required as a boundary condition that Ψ is
quadratically integrable in the entire space in the Lebesgue sense (see 12.9.3.2, p. 696 and [8.5]). If the
domain is finite, e.g., a sphere or a cylinder, then one can require, e.g., Ψ = 0 for the boundary as the
first boundary condition problem.
This gives the Helmholtz differential equation in the special case of U(x) = 0:

ΔΨ + λΨ = 0 (9.114a) with the eigenvalue λ =
2mE

h̄2 . (9.114b)

Ψ = 0 is often required here as a boundary condition. (9.114a) represents the initial mathematical
equation for acoustic oscillation in a finite domain.

9.2.4.4 Statistical Interpretation of theWave Function

The quantum mechanics postulates that the complete description of a regarded single-particle system
in the time t is to be performed by the complex wave function ψ(�r, t) as a state function and normalized
solution of the Schroedinger equation. So, the wave function contains all possible experimental infor-
mation, which can be got by measurements on this system. There exist no hidden sub-structures of the
theory and no hidden parameters which could eliminate the principal statistical character of quantum
mechanics, as it contains the connection of state function and ψ and measurement results.

1. Observable and Probability Amplitude
A physical expression (position, momentum, angular momentum, energy), which can be determined
by a suitable measuring instrument, is called an observable. In quantum mechanics every observable A

is represented by a linear, hermitian operator Â with Â+ = Â, which interacts on the wave function.
At the same time the operator of the quantum mechanics takes over the structure of the classical ex-
pression.

For the operator �̂l of the angular momentum, where �̂r is the position operator �̂p the momentum
operator:

�̂l = (l̂x, l̂y, l̂z) = �̂r× �̂p i.e., l̂x = ŷp̂z − ẑp̂y =
h̄

i

(
y
∂

∂ z
− z

∂

∂ y

)
, (9.115a)
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l̂y = ẑp̂x − x̂p̂z =
h̄

i

(
z
∂

∂ x
− x

∂

∂ z

)
, l̂z = x̂p̂y − ŷp̂x =

h̄

i

(
x
∂

∂ y
− y

∂

∂ x

)
. (9.115b)

In general, it is not possible to assign a certain numerical value to an observable by determining the
wave function, but first only as the result of a measurement. The only possible measurement values A

are the real eigenvalues ai of Â; the associated eigenfunctions ϕi form a complete orthogonal system:

Âϕi = ai ϕi (i, k = 1, 2, . . . ),
∫∫
V

∫
ϕ∗
iϕk dV = δi,k . (9.116)

If the system is in an arbitrarily general state ψ, the result of a single experiment, i.e. the occurrence
of a certain measure value ai in a single measurement can not be predicted. If imaging to perform the
measurement on N → ∞ identical systems being in the same state ψ, then among the measurement
results every possible result ai can be found with a frequency Ni. The probability Wi to find the value
ai in a single measurement can be determined:

Wi = lim
N→∞

Ni

N
,

∑
i

Ni = N . (9.117)

To determine this probability from the wave function ψ, one performs an expansion of ψ as a series of
eigenfunctions ϕi:

ψ =
∑
i

ci ϕi , ci =
∫∫
V

∫
ϕ∗
iψ dV . (9.118)

The coefficient of expansion ci is the probability to find the system ψ in its characteristic state ϕi, i.e.,
to obtain the measuring value ai. From the absolute square of ci one gets the probability Wi for the
measuring value ai:

Wi = |ci|2 ,
∑
i

Wi =
∫∫
V

∫
ψ∗ψ dV = 1 . (9.119)

Because in every measurement it is sure to find one of the possible measuring values ai, the sum of the
probabilities Wi fulfills the condition of normalization for the wave function ψ .

If two states ψ1, ψ2 of a physical system are known, then from the linearity of the Schroedinger equation
follows, that the superposition

ψ = ψ1 + ψ2 (9.120)

also represents a possible physical state. This fundamental superposition principle of quantummechan-
ics is the reason why at the determination of probabilities with the state function ψ, e.g.,

|ψ|2 = |ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + 2Re(ψ1 ψ
∗
2) (9.121)

besides the single probabilities |ψ1|2 , |ψ2|2 occurs an additional term with sign. This explains the sur-
prising interference effects of quantum mechanics, e.g. (wave-particle duality).

2. Expectation Value and Uncertainty
The quantum mechanical expectation value A is defined as the mean value of the measurement results
obtained from measurements with N → ∞ identical systems:

A = lim
N→∞

1

N

∑
i

ai Ni =
∑
i

ai Wi =
∫∫
V

∫
ψ∗ Â ψ dV . (9.122)

The expectation value usually is not identical to a possible measurement result.

The calculation of the expectation value�r = (x, y, z) of a position measurement for a particle in the
state ψ(�r, t) , e.g.

x =
∫∫
V

∫
x|ψ(�r, t)|2 d V
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shows, that the wave function ψ(�r, t) is to be interpreted as a probability amplitude. The absolute
square |ψ|2 then is a probability density. The expression

dW = |ψ(�r, t)|2 dV ,
∫

dW =
∫∫
V

∫
|ψ(�r, t)|2 dV = 1

is to be understood as a probability, to find the particle at the time t in the volume element dV in the
position �r (probability of the position).

As a measure of the distribution of the measured results for an observableA, given for a general state in
some measurements, can be defined by the help of the so-called uncertainty ΔA near the expectation
value A, which is to be introduced via the standard error:

(ΔA)2 = lim
N→∞

1

N

∑
i

Ni (ai − A)2 =
∑
i

Wi (ai − A)2 . (9.123)

By the help of the wave functionψ one can determine the uncertaintyΔA of a observable as expectation
value of the quadratic deviation from the mean value A:

(ΔA)2 = (A− A)2 = A2 − A
2
=
∫∫
V

∫
ψ∗(Â− A)2ψ dV . (9.124)

If the system is in an eigenstate ϕi of Â , then all measurements give the same measuring value ai:

A = ai, ΔA = 0 . (9.125)

A distribution near the expectation value A does not appear.

3. Uncertainty Relation
Considering two observable A ,B , whose operators commutate (see Lie brackets in 5.3.6.4, 2., p. 356),

Ĉ = [Â , B̂] = ÂB̂ − B̂Â = 0, (9.126)

then (and only then) exists a simultaneous system of eigenfunctions ϕi,ν (i, ν = 1, 2, . . .)

Âϕi,ν = ai ϕi,ν B̂ϕi,ν = bν ϕi,ν . (9.127)

In this case exist physical states, in which the expected values of both operators are eigenvalues, so that
the uncertainties ΔA,ΔB simultaneously disappear:

A = ai , B = bν , ΔA = ΔB = 0. (9.128)

Performing in this system a measurement of the observable A, which leads with the measured value ai
to the state ϕi,ν , then a following measurement of B gives the measured value bν , without interfering
the state generated in the first measurement (compatible observable, tolerance measurement).

For two observableA andB , which are represented by non-commutative operators there does not exist
a simultaneous system of eigenfunctions. In this case it is impossible to find a physical state, for which
the uncertaintiesΔA,ΔB can be simultaneously arbitrarily small. For the product of the uncertainties

exists a lower bound, defined by the expectation value of the commutator Ĉ:

ΔAΔB ≥
∣∣∣∣ 12i [Â, B̂]

∣∣∣∣ . (9.129)

This relation is called the uncertainty relation. The commutation relation (9.130) (see also 5.3.6.4,
2., p. 356) between the components, e.g., of the position and the momentum operator into the same
direction

[p̂x , x̂] =
h̄

i
(9.130) Δ px Δ x ≥ h̄

2
. (9.131)

leads to the Heisenberg uncertainty relation (9.131). In other words: there is a fundamental limitation
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on how precisely both the position and the momentum of a particle can be simultaneously known.

9.2.4.5 Force-FreeMotion of a Particle in a Block

1. Formulation of the Problem
A particle with a mass m is moving freely in a block with impenetrable walls of edge lengths a, b, c,
therefore, it is in a potential box which is infinitely high in all three directions because of the impene-
trability of the walls. That is, the probability of the presence of the particle, and also the wave function
Ψ , vanishes outside the box. The Schroedinger equation and the boundary conditions for this problem
are

∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂2Ψ

∂z2
+

2m

h̄2 EΨ = 0, (9.132a) Ψ = 0 for

⎧⎨⎩
x = 0, x = a,
y = 0, y = b,
z = 0, z = c.

(9.132b)

2. Solution Approach
Separating the variables

Ψ(x, y, z) = Ψx(x)Ψy(y)Ψz(z) (9.133a)

and substituting into (9.132a) gives

1

Ψx

d2Ψx

dx2
+

1

Ψy

d2Ψy

dy2
+

1

Ψz

d2Ψz

dz2
= −2m

h̄2 E = −B. (9.133b)

Every term on the left-hand side depends only on one independent variable. Their sum can be a constant
−B for arbitrary x, y, z only if every single term is a constant. In this case the partial differential
equation is reduced to three ordinary differential equations:

d2Ψx

dx2
= −kx

2Ψx,
d2Ψy

dy2
= −ky

2Ψy,
d2Ψz

dz2
= −kz

2Ψz. (9.133c)

The relation for the separation constants −kx
2, −ky

2, −kz
2 is

kx
2 + ky

2 + kz
2 = B, (9.133d) consequently E =

h̄2

2m
(kx

2 + ky
2 + kz

2). (9.133e)

3. Solutions
of the three equations (9.133c) are the functions

Ψx = Ax sin kx x, Ψy = Ay sin ky y, Ψz = Az sin kz z (9.134a)

with the constants Ax, Ay, Az. With these functions Ψ satisfies the boundary conditions Ψ = 0 for
x = 0, y = 0 and z = 0.

sin kx a = sin ky b = sin kz c = 0 (9.134b)

must be valid to satisfy also the relation Ψ = 0 for x = a, y = b and z = c, i.e., the relations

kx =
πnx

a
, ky =

πny

b
, kz =

πnz

c
(9.134c)

must be satisfied, where nx, ny, and nz are integers.
One gets for the total energy

Enx,ny ,nz =
h̄2

2m

[(
nx

a

)2

+
(
ny

b

)2

+
(
nz

c

)2
]

(nx, ny, nz = ±1,±2, . . .). (9.134d)

It follows from this formula that the changes of energy of a particle by interchange with the neigh-
borhood is not continuous, which is possible only in quantum systems. The numbers nx, ny, and nz,
belonging to the eigenvalues of the energy, are called the quantum numbers.
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After calculating the product of constants AxAyAz from the normalization condition

(AxAyAz)
2

a∫
0

b∫
0

c∫
0

sin2 πnxx

a
sin2 πnyy

b
sin2 πnzz

c
dx dy dz = 1 (9.134e)

one gets the complete eigenfunctions of the states characterized by the three quantum numbers

Ψnx,ny ,nz =

√
8

abc
sin

πnxx

a
sin

πnyy

b
sin

πnzz

c
. (9.134f)

The eigenfunctions vanish at the walls since one of the three sine functions is equal to zero. This is
always the case outside the walls if the following relations are valid

x =
a

nx

,
2a

nx

, . . . ,
(nx − 1)a

nx

, y =
b

ny

,
2b

ny

, . . . ,
(ny − 1)b

ny

, z =
c

nz

,
2c

nz

, . . . ,
(nz − 1)c

nz

. (9.134g)

So, there are nx − 1 and ny − 1 and nz − 1 planes perpendicular to the x- or y- or z-axis, in which Ψ
vanishes. These planes are called the nodal planes.

4. Special Case of a Cube, Degeneracy
In the special case of a cube with a = b = c, a particle can be in different states which are described
by different linearly independent eigenfunctions and they have the same energy. This is the case when
the sum nx

2 + ny
2 + nz

2 has the same value in different states. They are called degenerate states, and
if there are i states with the same energy, they are called i-fold degeneracy.
The quantum numbers nx, ny and nz can run through all real numbers, except zero. This last case
would mean that the wave function is identically zero, i.e., the particle does not exist at any place in
the box. The particle energy must remain finite, even if the temperature reaches absolute zero. This
zero-point translational energy for a block is

E0 =
h̄2

2m

(
1

a2
+

1

b2
+

1

c2

)
. (9.134h)

9.2.4.6 ParticleMovement in a SymmetricCentral Field (see 13.1.2.2, p. 702)

1. Formulation of the Problem
The considered particle moves in a central symmetric potential V (r). This model reproduces the move-
ment of an electron in the electrostatic field of a positively charged nucleus. Since this is a spherically
symmetric problem, it is reasonable to use spherical coordinates (Fig. 9.20). The following relations
hold:

r
0

�

�

x

y

z

Figure 9.20

r =
√
x2 + y2 + z2 , x = r sinϑ cosϕ,

ϑ = arccos
z

r
, y = r sinϑ sinϕ,

ϕ = arctan
y

x
, z = r cosϑ,

(9.135a)

where r is the absolute value of the radius vector, ϑ is the angle be-
tween the radius vector and the z-axis (polar angle) and ϕ is the
angle between the projection of the radius vector onto the x, y plane
and the x-axis (azimuthal angle). For the Laplace operator

ΔΨ =
∂2Ψ

∂r2
+

2

r

∂Ψ

∂r
+

1

r2
∂2Ψ

∂ϑ2
+

cosϑ

r2 sinϑ

∂Ψ

∂ϑ
+

1

r2 sin2 ϑ

∂2Ψ

∂ϕ2
, (9.135b)

holds, so the time-independent Schroedinger equation is:

1

r2
∂

∂r

(
r2
∂Ψ

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂Ψ

∂ϑ

)
+

1

r2 sin2 ϑ

∂2Ψ

∂ϕ2
+

2m

h̄2 [E − V (r)]Ψ = 0. (9.135c)
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2. Solution
Looking for a solution in the form

Ψ(r, ϑ, ϕ) = Rl(r)Y
m
l (ϑ, ϕ), (9.136a)

whereRl is the radial wave function depending only on r, and Y m
l (ϑ, ϕ) is the wave function depending

on both angles. Substituting (9.136a) in (9.135c) gives

1

r2
∂

∂r

(
r2
∂Rl

∂r

)
Y m
l +

2m

h̄2 [E − V (r)]RlY
m
l

= −
{

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂Y m
l

∂ϑ

)
Rl +

1

r2 sin2 ϑ

∂2Y m
L

∂ϕ2
Rl

}
. (9.136b)

Dividing by RlY
m
l and multiplying by r2 gives

1

Rl

d

dr

(
r2
dRl

dr

)
+

2mr2

h̄2 [E − V (r)] = − 1

Y m
l

{
1

sinϑ

∂

∂ϑ

(
sinϑ

∂Y m
l

∂ϑ

)
+

1

sin2 ϑ

∂2Y m
l

∂ϕ2

}
. (9.136c)

Equation (9.136c) can be satisfied if the expression on the left-hand side depending only on r and
expression on the right-hand side depending only on ϑ and ϕ are equal to a constant, i.e., both sides
being independent of each other are equal to the same constant. From the partial differential equation
two ordinary differential equations follow. If the constant is chosen equal to l(l+1), then the so-called
radial equation results depending only on r and the potential V (r):

1

Rlr2
d

dr

(
r2
dRl

dr

)
+

2m

h̄2

[
E − V (r)− l(l + 1)h̄2

2mr2

]
= 0. (9.136d)

To find a solution for the angle-dependent part also in the separated form

Y m
l (ϑ, ϕ) = Θ(ϑ)Φ(ϕ) (9.136e)

one substitutes (9.136e) into (9.136c) giving

sin2 ϑ

{
1

Θ sinϑ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+ l(l + 1)

}
= − 1

Φ

d2Φ

dϕ2
. (9.136f)

If the separation constant is chosen as m2 in a reasonable way, then the so-called polar equation is

1

Θ sinϑ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+ l(l + 1)− m2

sin2 ϑ
= 0 (9.136g)

and the azimuthal equation is

d2Φ

dϕ2
+m2Φ = 0. (9.136h)

Both equations are potential-independent, so they are valid for every central symmetric potential.
There are three requirements for (9.136a): It should tend to zero for r → ∞, it should be one-valued
and quadratically integrable on the surface of the sphere.

3. Solution of the Radial Equation
Beside the potential V (r) the radial equation (9.136d) also contains the separation constant l(l + 1).
Substituting

ul(r) = r ·Rl(r), (9.137a)

since the square of the function ul(r) gives the last required probability |ul(r)|2dr = |Rl(r)|2r2dr of
the presence of the particle in a spherical shell between r and r + dr. The substitution leads to the
one-dimensional Schroedinger equation

d2ul(r)

dr2
+

2m

h̄2

[
E − V (r)− l(l + 1)h̄2

2mr2

]
ul(r) = 0. (9.137b)
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This one contains the effective potential

Veff = V (r) + Vl(l), (9.137c)

which has two parts. The rotation energy

Vl(l) = Vrot(l) =
l(l + 1)h̄2

2mr2
(9.137d)

is called the centrifugal potential.
The physical meaning of l as the orbital angular momentum follows from analogy with the classical
rotation energy

Erot =
1

2
Θ�ω2 =

(Θ�ω)2

2Θ
=

�l
2

2Θ
=

�l
2

2mr2
(9.137e)

a rotating particle with moment of inertia Θ = μr2 and orbital angular momentum �l = Θ�ω:

�l
2
= l(l + 1)h̄2,

∣∣∣�l 2
∣∣∣ = h̄

√
l(l + 1) . (9.137f)

4. Solution of the polar equation
The polar equation (9.136g), containing both separation constants l(l+1) andm2, is a Legendre differ-
ential equation (9.60a), p. 565. Its solution is denoted by Θm

l (ϑ), and it can be determined by a power
series expansion. Finite, single-valued and continuous solutions exist only for l(l+ 1) = 0, 2, 6, 12, . . . .
One gets for l and m:

l = 0, 1, 2, . . . , |m| ≤ l. (9.138a)

So, m can take the (2l + 1) values

−l, (−l + 1), (−l + 2), . . . , (l − 2), (l − 1), l. (9.138b)

For m �= 0 one gets the corresponding Legendre polynomials, which are defined in the following way:

Pm
l (cosϑ) =

(−1)m

2ll!
(1− cos2 ϑ)m/2d

l+m(cos2 ϑ− 1)l

(d cosϑ)l+m
. (9.138c)

As a special case (l = 0, m = n, cosϑ = x) follow the Legendre polynomials of the first kind (9.60c),
p. 566. Their normalization results in the equation

Θm
l (ϑ) =

√√√√2l + 1

2
· (l −m)!

(l +m)!
· Pm

l (cosϑ) = Nm
l Pm

l (cosϑ). (9.138d)

5. Solution of the Azimuthal Equation
Since the motion of the particle in the potential field V (r) is independent of the azimuthal angle even
in the case of the physical assignment of a space direction, e.g., by a magnetic field, the general solution
Φ = αeimϕ + βe−imϕ can be specified by fixing

Φm(ϕ) = Ae±imϕ, (9.139a)

because in this case |Φm|2 is independent of ϕ. The requirement for uniqueness is

Φm(ϕ+ 2π) = Φm(ϕ), (9.139b)

so m can take on only the values 0,±1,±2, . . ..
It follows from the normalization

2π∫
0

|Φ|2 dϕ = 1 = |A|2
∫ 2π

0
dϕ = 2π|A|2 (9.139c)

that

Φm(ϕ) =
1√
2π

eimϕ (m = 0,±1,±2, . . .). (9.139d)
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The quantum number m is called the magnetic quantum number.

6. Complete Solution for the Dependency of the Angles
In accordance with (9.136e), the solutions for the polar and the azimuthal equations should be multi-
plied by each other:

Y m
l (ϑ, ϕ) = Θ(ϑ)Φ(ϕ) =

1√
2π

Nm
l Pm

l (cosϑ)eimϕ. (9.140a)

The functions Y m
l (ϑ, ϕ) are the so-called surface spherical harmonics.

When the radius vector �r is reflected with respect to the origin (�r → �−r), the angle ϑ becomes π − ϑ
and ϕ becomes ϕ+ π, so the sign of Y m

l may change:

Y m
l (π − ϑ, ϕ+ π) = (−1)lY m

l (ϑ, ϕ). (9.140b)

Then for the parity of the considered wave function holds

P = (−1)l. (9.141a)

7. Parity
The parity property serves the characterization of the behavior of the wave function under space in-
version �r → −�r (see 4.3.5.1, 1., p. 287). It is performed by the inversion or parity operator P:
PΨ(�r, t) = Ψ(−�r, t). Denoting the eigenvalue of the operator by P , then applying P twice it must
yield PPΨ(�r, t) = P P Ψ(�r, t) = Ψ(�r, t), the original wave function. So:

P 2 = 1, P = ±1. (9.141b)

It is called an even wave function if its sign does not change under space inversion, and it is called an
odd wave function if its sign changes.

9.2.4.7 Linear Harmonic Oscillator

1. Formulation of the Problem
Harmonic oscillation occurs when the drag forces in the oscillator satisfy Hooke’s law F = −kx. For
the frequency of the oscillation, for the frequency of the oscillation circuit and for the potential energy
the following formulas are valid:

ν =
1

2π

√
k

m
, (9.142a) ω =

√
k

m
, (9.142b) Epot =

1

2
kx2 =

ω2

2
x2. (9.142c)

Substituting into (9.114a), the Schroedinger equation becomes

d2Ψ

dx2
+

2m

h̄2

[
E − ω2

2
mx2

]
Ψ = 0. (9.143a)

With the substitutions

y = x

√
mω

h̄
, (9.143b) λ =

2E

h̄ω
, (9.143c)

where λ is a parameter and not the wavelength, (9.143a) can be transformed into the simpler form of
the Weber differential equation

d2Ψ

dy2
+ (λ− y2)Ψ = 0. (9.143d)

2. Solution
A solution of the Weber differential equation can be got in the form

Ψ(y) = e−y2/2H(y). (9.144a)
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Differentiation shows that

d2Ψ

dy2
= e−y2/2

[
d2H

dy2
− 2y

dH

dy
+ (y2 − 1)H

]
. (9.144b)

Substitution into (9.143d) yields

d2H

dy2
− 2y

dH

dy
+ (λ− 1)H = 0. (9.144c)

The determination of a solution is convenient in the form of a series:

H =
∞∑
i=0

aiy
i with

dH

dy
=

∞∑
i=1

iaiy
i−1,

d2H

dy2
=

∞∑
i=2

i(i− 1)aiy
i−2. (9.145a)

Substitution of (9.145a) into (9.144c) results in
∞∑
i=2

i(i− 1)aiy
i−2 −

∞∑
i=1

2iaiy
i +

∞∑
i=0

i(λ− 1)aiy
i = 0. (9.145b)

Comparing the coefficients of yj leads to the recursion formula

(j + 2)(j + 1)aj+2 = [2j − (λ− 1)]aj (j = 0, 1, 2, . . .). (9.145c)

The coefficients aj for even powers of y begin from a0, the coefficients for odd powers begin from a1.
So, a0 and a1 can be chosen arbitrarily.

3. Physical Solutions
The determination of the probability of the presence of a particle in the different states can be performed
by a quadratically integrable wave function Ψ(x) and by an eigenfunction which has physical meaning,
i.e., normalizable and for large values of y it tends to zero.
The exponential function exp(−y2/2) in (9.144a) guarantees that the solution Ψ(y) tends to zero for
y → ∞ if the function H(y) is a polynomial. To get a polynomial, the coefficients aj in (9.145a),
starting from a certain n, must vanish for every j > n: an �= 0, an+1 = an+2 = an+3 = . . . = 0. The
recursion formula (9.145c) with j = n is

an+2 =
2n− (λ− 1)

(n+ 2)(n+ 1)
an. (9.146a)

an+2 = 0 can be satisfied for an �= 0 only if

2n− (λ− 1) = 0, λ =
2E

h̄ω
= 2n+ 1. (9.146b)

The coefficients an+2, an+4, . . . vanish for this choice of λ. Also an−1 = 0 must hold to make the coeffi-
cients an+1, an+3, . . . equal to zero.

One gets the Hermite polynomials from the second defining equation (see 9.1.2.6, 6., p. 568) for the
special choice of an = 2n, an−1 = 0. The first six of them are:

H0(y) = 1, H3(y) = −12y + 8y3,

H1(y) = 2y, H4(y) = 12− 48y2 + 16y4,

H2(y) = −2 + 4y2, H5(y) = 120y − 160y3 + 32y5.

(9.146c)

The solution Ψ(y) for the vibration quantum number n is

Ψn = Nne
−y2/2Hn(y), (9.147a)

where Nn is the normalizing factor. One gets it from the normalization condition
∫
Ψn

2 dy = 1 as

Nn
2 =

1

2nn!

√
α

π
with

√
α =

y

x
=

√
mω

h̄
(see (9.143b), p. 601). (9.147b)
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From the terminating condition of the series (9.143c)

En = h̄ω
(
n+

1

2

)
(n = 0, 1, 2, . . .) (9.147c)

follows for the eigenvalues of the vibration energy. The spectrum of the energy levels is equidistant.
The sum-
mand +1/2 in the parentheses means that in contrast to the
classical case the quantum mechanical oscillator has energy
even in the deepest energetic level with n = 0, which is known
as the zero-point vibration energy.

Fig. 9.21 shows a graphical representation of the equidistant
spectra of the energy states, the corresponding wave functions
from Ψ0 to Ψ5 and also the function of the potential energy
(9.142c). The points of the parabola of the potential energy
represent the reversal points of the classical oscillator, which

are calculated from the energy E =
1

2
mω2a2 as the amplitude

a =
1

ω

√
2E

m
. The quantum mechanical probability of finding a

particle in the interval (x, x+dx) is given by dwqu = |Ψ(x)|2 dx.
It is different from zero also outside of these points. So for, e.g.,

x

0

1

2

3

4

5

V(x) E(x)

"(x)

h#

Figure 9.21

n = 1, hence for E = (3/2)h̄ω, according to dwqu = 2

√
λ

π
e−λx2

dx, the maximum of the probability of

presence is at

xmax,qu =
±1√
λ
= ±

√
h̄

mω
. (9.147d)

For a corresponding classical oscillator, this is

xmax,kl = ±a = ±
√

2E

mω2
= ±

√
3h̄

mω
. (9.147e)

For large quantum numbers n the quantum mechanical probability density function approaches the
classical one in its mean value.

9.2.5 Non-LinearPartialDifferentialEquations: Solitons,Periodic

Patterns andChaos
9.2.5.1 Formulation of the Physical-Mathematical Problem

1. Notion of Solitons
Solitons, also called solitary waves, from the viewpoint of physics, are pulses, or also localized distur-
bances of a non-linear medium or field; the energy related to such propagating pulses or disturbances
is concentrated in a narrow spatial region. They occur:
• in solids, e.g., in inharmonic lattices, in Josephson contacts, in glass fibres and in quasi-one-dimensional
conductors,
• in fluids as surface waves or spin waves,
• in plasmas as Langmuir solitons,
• in linear molecules,
• in classical and quantum field theory.
Solitons have both particle and wave properties; they are localized during their evolution, and the do-
main of the localization, or the point around which the wave is localized, travels as a free particle; in
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particular it can also be at rest. A soliton has a permanent wave structure: based on a balance between
nonlinearity and dispersion, the form of this structure does not change.
Mathematically, solitons are special solutions of certain non-linear partial differential equations occur-
ring in physics, engineering and applied mathematics. Their special features are the absence of any
dissipation and also that the non-linear terms cannot be handled by perturbation theory. Dissipative
solitons are in non-conservative systems.

2. Important Examples of Equations with Soliton Solutions
a) Korteweg de Vries (KdV) Equation ut + 6uux + uxxx = 0, (9.148)

b) Non-Linear Schroedinger (NLS) Equation i ut + uxx ± 2|u|2u = 0, (9.149)

c) Sine-Gordon (SG) Equation utt − uxx + sin u = 0. (9.150)

The subscripts x and t denote partial derivatives, e.g., uxx = ∂2u/∂x2.
In these equations the one-dimensional case is considered, i.e., u has the form u = u(x, t), where x is the
spatial coordinate and t is the time. The equations are given in a scaled form, i.e., the two independent
variables x and t are here dimensionless quantities. In practical applications, they must be multiplied
by quantities having the corresponding dimensions and being characteristic of the given problem. The
same holds for the velocity.

3. Interaction between Solitons
If two solitons, moving with different velocities, collide, they appear again after the interaction as if
they had not collided. Every soliton asymptotically keeps its form and velocity; there is only a phase
shift. Two solitons can interact without disturbing each other asymptotically. This is called an elastic
interaction which is equivalent to the existence of an N -soliton solution, where N (N = 1, 2, 3, . . .) is
the number of solitons. Solving an initial value problem with a given initial pulse u(x, 0) that disag-
gregate into solitons, the number of solitons does not depend on the shape of the pulse but on its total
amount

∫+∞
−∞ u(x, 0) dx.

4. Periodic Patterns and Non-LinearWaves
Such non-linear phenomena occur in several classic dissipative systems (i.e. friction or damping sys-
tems), when an external impact or force is sufficiently large. E.g., if there is a layer of fluid in the
gravitational field, and it is heated from below, the difference of temperature between the upper and
lower surface corresponds to an external force. The higher temperature of the lower layer reduces its
density and makes it lighter than the upper part, so the layering becomes unstable. At a sufficiently
large temperature difference this unstable layering turns spontaneously into periodically arranged con-
vection cells. It is called the bifurcation from the state of thermal conductivity (without convection)
into the well ordered Rayleigh-Bénard convection. Taking away the external force results because of
dissipation into damping of the waves (here the cellular convection). Strengthening of the external
force drives the ordered convection into a turbulent convection and into chaos (see 17.3, p. 892). Also
in chemical reactions similar phenomena can occur. Important examples for equations describing such
phenomena are:

a) Ginsburg-Landau (GL) Equation ut − u− (1 + ib)uxx + (1 + ic)|u|2u = 0, (9.151)

b) Kuramoto-Sivashinsky (KS) Equation ut + uxx + uxxxx + u2
x = 0. (9.152)

In contrast to the dissipation-less KdV, NLS, SG, equations, the equations (9.151) and (9.152) are non-
linear dissipative equations, which have, besides spatiotemporal periodic solutions, also spatiotemporal
disordered (chaotic) solutions. Appearance of spatiotemporal patterns or structures is characteristic
which turn into chaos.

5. Dissipative Solitons
Solitary (isolated) wave phenomena in non-conservative systems often are called dissipative solitons.
Contrary to the conservative systems, in which the solitons usually form families of solutions with at
least one continuously changing parameter, dissipative solitons can be found at single points of the
parameter space, at which a balance is formed between dispersion and nonlinearity from one side and
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energy or particle flow and dissipation from the other side. This property leads to a special kind of sta-
bility of dissipative solitons, although they are not solutions of integrable wave equations. Dissipative
solitons are described among others by the complex Ginsburg-Landau equation. They occur ,e.g., in
non-linear optic cavitations, in optic semiconductor amplifiers and in reaction-diffusion systems (see
also [9.16]).

6. Non-Linear Evolution Equations
Evolution equations describe the evolution of a physical quantity in time. Examples are the wave equa-
tion (see 9.2.3.2, p. 590), the heat equation (see 9.2.3.3, p. 591) and the Schroedinger equation (see
9.2.4.1, 1., p. 592). The solutions of the evolution equations are called evolution functions.
In contrast to linear evolution equations, the non-linear evolution equations (9.148), (9.149), and (9.150)
contain non-linear terms like u∂u/∂x, |u|2u, sin u and u2

x. These equations are (with the exception of
(9.151)) parameter-free. From the viewpoint of physics non-linear evolution equations describe struc-
ture formations like solitons (dispersive structures) as well as periodic patterns and non-linear waves
(dissipative structures).

9.2.5.2 Korteweg de Vries Equation
(KdV)

1. Occurrence
The KdV equation is used in the discussion of
• surface waves in shallow water,
• inharmonic vibrations in non-linear lattices,
• problems of plasma physics and
• non-linear electric networks.

2. Equation and Solutions
The KdV equation for the evolution function u is

ut + 6uux + uxxx = 0. (9.153)

It has the soliton solution

u(x, t) =
v

2 cosh2
[
1
2

√
v(x− vt− ϕ)

] . (9.154)
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Figure 9.22

This KdV soliton is uniquely defined by the two dimensionless parameters v (v > 0) and ϕ. In Fig.
9.22 v = 1 is chosen. A typical non-linear effect is that the velocity of the soliton v determines the
amplitude and the width of the soliton: KdV solitons with larger amplitude and smaller width move
faster than those with smaller amplitude and larger width (taller waves travel faster than shorter ones).
The soliton phase ϕ describes the position of the maximum of the soliton at time t = 0.

Equation (9.153) also has N -solitons solutions. Such an N -soliton solution can be represented asymp-
totically for t → ±∞ by the linear superposition of one-soliton solutions:

u(x, t) ∼
N∑

n=1

un(x, t). (9.155)

Here every evolution function un(x, t) is characterized by a velocity vn and a phase ϕ±
n . The initial

phases ϕ−
n before the interaction or collision differ from the final phases after the collision ϕ+

n , while the
velocities v1, v2, . . . , vN have no changes, i.e., it is an elastic interaction.

For N = 2, (9.153) has a two-soliton solution. It cannot be represented for a finite time by a linear

superposition, and with kn =
1

2

√
vn and αn =

1

2

√
vn(x− vnt− ϕn) (n = 1, 2) it has the form:
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u(x, t) = 8

k2
1e

α1 + k2
2e

α2 + (k1 − k2)
2e(α1+α2)

[
2 +

1

(k1 + k2)2

(
k2
1e

α1 + k2
2e

α2

)]
⎡⎣1 + eα1 + eα2 +

(
k1 − k2
k1 + k2

)2

e(α1+α2)

⎤⎦2
. (9.156)

Equation (9.156) describes two non-interacting solitons for t → −∞ asymptotically with velocities
v1 = 4k2

1 and v2 = 4k2
2, which transform after their mutual interaction again into two non-interacting

solitons with the same velocities for t → +∞ asymptotically.
The non-linear evolution equation

wt + 6(wx)
2 + wxxx = 0 (9.157a)

where w =
Fx

F
has the following properties:

a) For F (x, t) = 1 + eα, α =
1

2

√
v(x− vt− ϕ) (9.157b)

it has a soliton solution and

b) for F (x, t) = 1 + eα1 + eα2 +

(
k1 − k2
k1 + k2

)2

e(α1+α2) (9.157c)

it has a two-soliton solution. With 2wx = u the KdV equation (9.153) follows from (9.157a). Equation
(9.156) and the expression w following from (9.157c) are examples of a non-linear superposition.

If the term +6uux is replaced by −6uux in (9.153), then the right-hand side of (9.154) has to be multi-
plied by (−1). In this case the notation antisoliton is used.

9.2.5.3 Non-Linear Schroedinger Equation (NLS)

1. Occurrence
The NLS equation occurs

• in non-linear optics, where the refractive index n depends on the electric field strength �E, as, e.g., for

the Kerr effect, where n(�E) = n0 + n2|�E|2 with n0, n2 = constant holds, and
• in the hydrodynamics of self-gravitating discs which allow us to describe galactic spiral arms.

2. Equation and Solution
The NLS equation for the evolution function u and its solution are:

i ut + uxx ± 2|u|2u = 0, (9.158) u(x, t) = 2η
exp (−i[2ξx+ 4(ξ2 − η2)t− χ])

cosh[2η(x+ 4ξt− ϕ)]
. (9.159)

Here u(x, t) is complex. The NLS soliton is characterized by the four dimensionless parameters η, ξ, ϕ,

andχ. The envelope of the wave packetmoves
with the velocity v = −4ξ; the phase velocity
of the wave packet is 2(η2 − ξ2)/ξ.
In contrast to the KdV soliton (9.154), the
amplitude and the velocity can be chosen in-
dependently of each other. Fig. 9.23 displays
the real part of (9.159) with η = 1/2 and
ξ = 4.

The solutions of the form (9.159) often are
called light solitons; they solve the focusing
NLS equation (9.158) for the case ”+”. The
defocusing NLS equation (case ”−”) gives
solitons, for which |u|2 at the position of the

6 4 2 2 4 6

1

-1

Re u(x,t)

x-vt-�

Figure 9.23
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solitons is reduced in comparison to a constant background |u(x → ±∞)| = η. Such dark solitons have
the form

u(x, t) =

⎛⎝iv
2
+

√
η2 − v2

4
tanh

⎡⎣√η2 − v2

4
(x− vt)

⎤⎦⎞⎠ · exp
[
−i

(
2η2t+ χ

)]
. (9.160)

They depend on the three parameters η , v and χ and propagate with the velocity v < 2η on a back-
ground with trivial (flat) phase (see [9.26], [9.23]).

A general solution has in addition a phase gradient, which can be interpreted as velocity c of the back-
ground, relative to which the soliton is moving. Then the solution has the following form:

u(x, t) =

⎛⎝iv
2
+

√
η2 − v2

4

⎞⎠ tanh

⎡⎣√η2 − v2

4
(x− vt− ct)

⎤⎦ exp [−i

(
2η2t+ χ− c

2
x+

c2

4
t

)]
.

(9.161)

Beside of these exponential positioned soliton waves also periodic solutions of the NLS equation exist,
which can be interpreted as wave packets of solitons. Such solutions can be find demanding stationarity
and by integration of the remaining ordinary differential equation. Generally such solutions are elliptic
Jacobian-functions (see 14.6.2, p. 763). Some relevant solutions see [9.17].

In the case of N interacting solitons, one can characterize them by 4N arbitrary chosen parameters:
ηn, ξn, ϕn, χn (n = 1, 2, . . . , N) .
If the solitons have different velocities, the N -soliton solution splits asymptotically for t → ±∞ into a
sum of N individual solitons of the form (9.159).

9.2.5.4 Sine-Gordon Equation (SG)
1. Occurrence
The SG equation is obtained from the Bloch equation for spatially inhomogeneous quantum mechani-
cal two-level systems. It describes the propagation of
• ultra-short pulses in resonant laser media (self-induced transparency),
• the magnetic flux in large surface Josephson contacts, i.e., in tunnel contacts between two supercon-
ductors and
• spin waves in superfluid helium 3 (3He).
The soliton solution of the SG equation can be illustrated by amechanicalmodel of pendula and springs.
The evolution function goes continuously from 0 to a constant value c. The SG solitons are often called
kink solitons. If the evolution function changes from the constant value c to 0, it describes a so-called
antikink soliton. Walls of domain structures can be described with this type of solutions.

2. Equation and Solution
The SG equation for the evolution function u is

utt − uxx + sin u = 0. (9.162)

It has the following soliton solutions:
1. Kink Soliton

u(x, t) = 4 arctan eγ(x−x0−vt), (9.163)

where γ =
1√

1− v2
and −1 < v < +1.

The kink soliton (9.163) for v = 1/2 is given inFig. 9.24.
The kink soliton is determined by two dimensionless pa-
rameters v and x0. The velocity is independent of the am-
plitude. The time and the position derivatives are ordi-

0

u(x,t)

-5-10 5 10

2

4

6

x-x -vt0

�

��

Figure 9.24



608 9. Differential Equations

nary localized solitons:

−ut

v
= ux =

2γ

cosh γ(x− x0 − vt)
. (9.164)

2. Antikink Soliton

u(x, t) = 4 arctan e−γ(x−x0−vt). (9.165)

3. Kink-Antikink Soliton One gets a static kink-antikink soliton from (9.163, 9.165) with v = 0:

u(x, t) = 4 arctan e±(x−x0). (9.166)

Further solutions of (9.162) are:

4. Kink-Kink Collision

u(x, t) = 4 arctan

[
v
sinh γx

cosh γvt

]
. (9.167)

5. Kink-Antikink Collision

u(x, t) = 4 arctan

[
1

v

sinh γvt

cosh γx

]
. (9.168)

6. Double or Breather Soliton, also called Kink-Antikink Doublet

u(x, t) = 4 arctan

[√
1− ω2

ω

sinωt

cosh
√
1− ω2x

]
. (9.169)

Equation (9.169) represents a stationary wave, whose envelope is modulated by the frequency ω.

7. Local Periodic Kink Lattice

u(x, t) = 2 arcsin

[
±sn

(
x− vt

k
√
1− v2

, k

)]
+ π. (9.170a)

The relation between the wavelength λ and the lattice constant k is

λ = 4K(k)k
√
1− v2. (9.170b)

For k = 1, i.e., for λ → ∞, one gets

u(x, t) = 4 arctan e±γ(x−vt), (9.170c)

which is the kink soliton (9.163) and the antikink soliton (9.165) again, with x0 = 0.

Remark: sn x is a Jacobian elliptic function with parameter k and quarter-period K (see 14.6.2,
p. 763):

snx = sinϕ(x, k), (9.171a)

x =

sinϕ(x,k)∫
0

dq√
(1− q2)(1− k2q2)

, (9.171b) K(k) =

π/2∫
0

dΘ√
1− k2 sin2 Θ

. (9.171c)

Equation (9.171b) comes from (14.104a), p. 763, by the substitution of sinψ = q. The series expansion
of the complete elliptic integral is given as equation (8.104), in 8.2.5, 7., p. 515.

9.2.5.5 Further Non-linear Evolution Equations with Soliton Solutions

1. Modified KdV Equation
ut ± 6u2ux + uxxx = 0. (9.172)

The even more general equation (9.173) has the soliton (9.174) as solution.
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ut + upux + uxxx = 0 , (9.173) u(x, t) =

⎡⎢⎢⎣
1

2
|v|(p+ 1)(p+ 2)

cosh2
(
1

2
p
√
|v|(x− vt− ϕ)

]
⎤⎥⎥⎦
1
p

. (9.174)

2. Sinh-Gordon Equation
utt − uxx + sinh u = 0. (9.175)

3. Boussinesq Equation
uxx − utt + (u2)xx + uxxxx = 0. (9.176)

This equation occurs in the description of non-linear electric networks as a continuous approximation
of the charge-voltage relation.

4. Hirota Equation
ut + i3α|u|2ux + βuxx + iσuxxx + δ|u|2u = 0, αβ = σδ. (9.177)

5. Burgers Equation
ut − uxx + uux = 0. (9.178)

This equation occurs when modeling turbulence. With the Hopf-Cole transformation it is transformed
into the diffusion equation, i.e., into a linear differential equation.

6. Kadomzev-Pedviashwili Equation
The equation

(ut + 6uux + uxxx)x = uyy (9.179a)

has the soliton

u(x, y, t) = 2
∂2

∂x2
ln
[
1

k2
+
∣∣∣x+ iky − 3k2t

∣∣∣2] (9.179b)

as its solution. The equation (9.179a) is an example of a soliton equation with a higher number of in-
dependent variables, e.g., with two spatial variables.

Remark: The CD-ROM to the 7th, 8th and 9th German editions of this handbook (see [22.8]) con-
tains more non-linear evolution equations. Furthermore there is shown the application of the Fourier
transformation and of the inverse scattering theory to solve linear partial differential equations.
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