
6 Differentiation
6.1 Differentiation of Functions ofOneVariable
6.1.1 Differential Quotient

1. Differential Quotient or Derivative of a Function

The differential quotient of a function y = f(x) at x0 is equal to lim
Δx→0

f(x0 +Δx)− f(x0)

Δx
if this limit

exists and is finite. The derivative function of a function y = f(x) with respect to the variable x is

another function of x denoted by the symbols y′, ẏ, Dy,
dy

dx
, f ′(x), Df(x), or

df(x)

dx
, and its value for

every x is equal to the limit of the quotient of the increment of the function Δy and the corresponding
increment Δx for Δx → 0, if this limit exists:
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f ′(x) = lim
Δx→0

f(x+Δx)− f(x)

Δx
. (6.1)

2. Geometric Representation of the Derivative
If y = f(x) is represented as a curve in a Cartesian coordinate
system as in Fig. 6.1, and if the x-axis and the y-axis have the
same unit, then

f ′(x) = tanα (6.2)

is valid. The angle α between the x-axis and the tangent line of
the curve at the considered point defines the angular coefficient or
slope of the tangent (see 3.6.1.2, 2., p. 245). The angle is measured
from the positive x-axis to the tangent in a counterclockwise di-
rection, and it is called the angle of slope or angle of inclination.

3. Differentiability
From the definition of the derivative it obviously follows that f(x) is differentiable with respect to x
for the values of x where the differential quotient (6.1) has a finite value. The domain of the derivative
function is a subset (proper or trivial) of the domain of the original function. If the function is contin-
uous at x but the derivative does not exist, then perhaps there is no determined tangent line at that
point, or the tangent line is perpendicular to the x-axis. In this last case the limit in (6.1) is infinity.
For this case is used the notation f ′(x) = +∞ or −∞.

y

x0

y

x0

y

0 x

a) b) c)

Figure 6.2

A: f(x) = 3
√
x : f ′(x) =

1

3
3
√
x2

, f ′(0) = ∞. At the point 0 the limit (6.1) tends to infinity, so the

derivative does not exist at the point 0 (Fig. 6.2a).

B: f(x) = x sin
1

x
for x �= 0. At the point x = 0 the function f(x) is not defined, but it has zero

limit, so one writes f(0) = 0. However the limit (6.1) does not exist at x = 0 (Fig. 6.2b).
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4. Left-Hand and Right-Hand Differentiability
If the limit (6.1) does not exist for a value x = a, but the left-hand
limit or the right-hand limit exists, this limit is called the left-hand
derivative or right-hand derivative respectively. If both exist, the
curve has two tangents here:

f ′(a− 0) = tanα1, f ′(a+ 0) = tanα2. (6.3)

Geometrically this means that the curve has a knee (Fig. 6.2c,
Fig. 6.3).

f(x) =
x

1 + e
1
x

for x �= 0. For x = 0 the function is not defined,

but it has zero limit at x = 0, so one writes f(x) = 0. At the point

x = 0 there is no limit of type (6.1), but there is a left-hand and a right-hand limit f ′(−0) = 1 and
f ′(+0) = 0, i.e., the curve has a knee here (Fig. 6.2c).

6.1.2 Rules ofDifferentiation for Functions ofOneVariable

6.1.2.1 Derivatives of the Elementary Functions
The elementary functions have a derivative on all their domains except perhaps some points, as repre-
sented in Fig. 6.2.

A summary of the derivatives of elementary functions can be found in Table 6.1. Further derivatives
of elementary functions can be found by reversing the results of the indefinite integrals in Table 8.1.

Remark: In practice, it is often useful to transform the function into a more convenient form to per-
form differentiation, e.g., to transform it into a sum where parentheses are removed (see 1.1.6.1, p. 11)
or to separate the integral rational part of the expression (see 1.1.7, p. 14) or to take the logarithm of
the expression (see 1.1.4.3, p. 9).

A: y =
2− 3

√
x+ 4 3

√
x+ x2

x
=

2

x
− 3x

−
1

2 + 4x
−
2

3 + x ;
dy

dx
= −2x−2 +

3

2
x
−
3

2 − 8

3
x
−
5

3 + 1 .

B: y = ln

√
x2 + 1

x2 − 1
=

1

2
ln(x2 + 1)− 1

2
ln(x2 − 1) ;

dy

dx
=

1

2

(
2x

x2 + 1

)
− 1

2

(
2x

x2 − 1

)
= − 2x

x4 − 1
.

6.1.2.2 Basic Rules of Differentiation
Assume u, v, w, and y are functions of the independent variable x, and u′, v′, w′, and y′ are the deriva-
tives with respect to x. The differential is denoted by du, dv, dw, and dy (see 6.2.1.3, p. 446). The basic
rules of differentiation, which are explained separately, are summarized in Table 6.2, p. 439.

1. Derivative of a Constant Function
The derivative of a constant function c is the zero function:

c′ = 0. (6.4)

2. Derivative of a Scalar Multiple
A constant factor c can be factored out from the differential sign:

(c u)′ = c u′, d(c u) = c du. (6.5)

3. Derivative of a Sum
If the functions u, v, w, etc. are differentiable one by one, their sum and difference is also differentiable,
and equal to the sum or difference of the derivatives:

(u+ v − w)′ = u′ + v′ − w′, (6.6a)

d(u+ v − w) = du+ dv − dw. (6.6b)
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It is possible that the summands are not differentiable separately, but their sum or difference is. Then
the derivative must be calculated by definition formula (6.1).

Table 6.1 Derivatives of elementary functions in the intervals on which they are defined and the
occurring numerators are not equal to zero

Function Derivative Function Derivative

C (constant) 0 secx
sin x

cos2 x

x 1 cosec x
− cos x

sin2 x

xn (n ∈ IR) nxn−1 arcsin x (|x| < 1)
1√

1− x2

1

x
(x �= 0) − 1

x2
(x �= 0) arccosx (|x| < 1) − 1√

1− x2

1

xn
(x �= 0) − n

xn+1
arctanx

1

1 + x2

√
x (x > 0)

1

2
√
x

arccot x − 1

1 + x2

n
√
x (n ∈ IR, n �= 0, x > 0)

1

n
n
√
xn−1

arcsec x (x > 1)
1

x
√
x2 − 1

ex ex arccosec x (x > 1) − 1

x
√
x2 − 1

ebx (b ∈ IR) bebx sinh x cosh x

ax (a > 0) ax ln a cosh x sinh x

abx (b ∈ IR, a > 0) babx ln a tanhx
1

cosh2 x

ln x (x > 0)
1

x
cothx (x �= 0) − 1

sinh2 x

loga x (a > 0, a �= 1, x > 0)
1

x
loga e =

1

x ln a
Arsinhx

1√
1 + x2

lg x (x > 0)
1

x
lg e ≈ 0.4343

x
Arcosh x (x > 1)

1√
x2 − 1

sin x cosx Artanhx (|x| < 1)
1

1− x2

cos x − sin x Arcothx (|x| > 1) − 1

x2 − 1

tan x (x �= (2k+1)
π

2
, k ∈ Z)

1

cos2 x
= sec2 x [f(x)]n (n ∈ IR) n[f(x)]n−1f ′(x)

cot x (x �= kπ, k ∈ Z)
−1

sin2 x
= − cosec2 x ln f(x) (f(x) > 0)

f ′(x)
f(x)

4. Derivative of a Product
If two, three, or n functions are differentiable one by one, then their product is differentiable, and can
be calculated as follows:

a) Derivative of the Product of Two Functions:

(u v)′ = u′ v + u v′, d(u v) = v du+ u dv. (6.7a)



6.1 Differentiation of Functions of One Variable 435

It is possible that the terms are not differentiable separately, but their product is. Then the derivative
must be calculated by definition formula (6.1).

b) Derivative of the Product of Three Functions:

(u v w)′ = u′ v w + u v′ w + u v w′, d(u v w) = v w du+ uw dv + u v dw. (6.7b)

c) Derivative of the Product of n Functions:

(u1 u2 · · · un)
′ =

n∑
i=1

u1 u2 · · · u′
i · · · un. (6.7c)

A: y = x3 cos x, y′ = 3x2 cos x− x3 sin x.

B: y = x3ex cos x, y′ = 3x2ex cosx+ x3ex cos x− x3ex sin x.

5. Derivative of a Quotient
If both u and v are differentiable, and v(x) �= 0, their ratio is also differentiable:(

u

v

)′
=

v u′ − u v′

v2
, d

(
u

v

)
=

v du− u dv

v2
. (6.8)

y = tan x =
sin x

cosx
, y′ =

(cosx)(sin x)′ − (sin x)(cosx)′

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
.

6. Chain Rule
The composite function (see 2.1.5.5, 2., p. 61) y = u(v(x)) has the derivative

dy

dx
= u′(v) v′(x) =

du

dv

dv

dx
, (6.9)

where the functions u = u(v) and v = v(x) must be differentiable functions with respect to their own
variables. u(v) is called the exterior function, and v(x) is called the interior function. According to

this,
du

dv
is the exterior derivative and

dv

dx
is the interior derivative. It is possible that the functions u

and v are not differentiable separately, but the composite function is. Then one gets the derivative by
the definition formula (6.1).

Similarly one has to proceed if there is a longer “chain”, i.e., in the case of a composite function of
several intermediate variables. For example for y = u(v(w(x))):

y′ =
dy

dx
=

du

dv

dv

dw

dw

dx
. (6.10)

A: y = esin
2 x,

dy

dx
=

d
(
esin

2 x
)

d
(
sin2 x

) d
(
sin2 x

)
d (sin x)

d (sin x)

dx
= esin

2 x 2 sin x cosx.

B: y = etan
√
x;

dy

dx
=

d
(
etan

√
x
)

d (tan
√
x)

d (tan
√
x)

d (
√
x)

d(
√
x)

dx
= etan

√
x 1

cos2
√
x

1

2
√
x
.

7. Logarithmic Differentiation
If y(x) > 0 holds, one can calculate the derivative y′ starting with the function ln y(x), whose derivative
(considering the chain rule) is

d(ln y(x))

dx
=

1

y(x)
y′ . (6.11)

From this rule

y′ = y(x)
d(ln y(x))

dx
(6.12)
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follows.
Remark 1: With the help of logarithmic differentiation it is possible to simplify some differentiation
problems, and there are functions such that this is the only way to calculate the derivative, for instance,
when the function has the form

y = u(x)v(x) with u(x) > 0. (6.13)

The logarithmic differentiation of this equality follows from the formula (6.12)

y′ = y
d (ln uv)

dx
= y

d(v ln u)

dx
= uv

(
v′ ln u+

vu′

u

)
. (6.14)

y = (2x+ 1)3x, ln y = 3x ln(2x+ 1),
y′

y
= 3 ln(2x+ 1) +

3x · 2
2x+ 1

;

y′ = 3 (2x+ 1)3x
(
ln(2x+ 1) +

2x

2x+ 1

)
.

Remark 2: Logarithmic differentiation is often used in the case to differentiate a product of several
functions.

A: y =
√
x3e4x sin x, ln y =

1

2
(3 ln x+ 4x+ ln sin x),

y′

y
=

1

2

(
3

x
+ 4 +

cos x

sin x

)
, y′ =

1

2

√
x3e4x sin x

(
3

x
+ 4 + cotx

)
.

B: y = u v, ln y = ln u + ln v,
y′

y
=

1

u
u′ +

1

v
v′. From this identity it follows that y′ = (u v)′ =

v u′+u v′, so one gets the formula for the derivative of a product (6.7a) (under the assumption u, v > 0).

C: y =
u

v
, ln y = ln u − ln v,

y′

y
=

1

u
u′ − 1

v
v′. From this identity it follows that y′ =

(
u

v

)′
=

u′

v
− uv′

v2
=

v u′ − u v′

v2
, which is the formula for the derivative of a quotient (6.8) (under the assumption

u, v > 0).

8. Derivative of the Inverse Function
If y = ϕ(x) is the inverse function of the original function y = f(x), then both forms y = f(x) and
x = ϕ(y) are equivalent. For every corresponding value of x and y such that f is differentiable with
respect to x, and ϕ is differentiable with respect to y, e.g., none of the derivatives is equal to zero,
between the derivatives of f and its inverse function ϕ is valid the following relation:

f ′(x) =
1

ϕ′(y)
or

dy

dx
=

1
dx

dy

. (6.15)

The function y = f(x) = arcsin x for −1 < x < 1 is equivalent to the function x = ϕ(y) = sin y for
−π/2 < y < π/2. From (6.15) it follows that

(arcsin x)′ =
1

(sin y)′
=

1

cos y
=

1√
1− sin2 y

=
1√

1− x2
, because cos y �= 0 for −π/2 < y < π/2.

9. Derivative of an Implicit Function
Suppose the function y = f(x) is given in implicit form by the equation F (x, y) = 0. Considering the
rules of differentiation for functions of several variables (see 6.2, p. 445) calculating the derivative with
respect to x gives

∂F

∂x
+

∂F

∂y
y′ = 0 and so y′ = −Fx

Fy

, (6.16)

if the partial derivative Fy differs from zero.
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The equation
x2

a2
+

y2

b2
= 1 of an ellipse with semi-axes a and b can be written in the form F (x, y) =

x2

a2
+

y2

b2
− 1 = 0. For the slope of the tangent line at the point of the ellipse (x, y) one gets according

to (6.16)

y′ = −2x

a2

/2y

b2
= − b2

a2
x

y
.

10. Derivative of a Function Given in Parametric Form
If a function y = f(x) is given in parametric form x = x(t), y = y(t), then the derivative y′ can be
calculated by the formula

dy

dx
= f ′(x) =

ẏ

ẋ
(6.17)

with the help of the derivatives ẏ(t) =
dy

dt
and ẋ(t) =

dx

dt
with respect to the variable t, if of course

ẋ(t) �= 0 holds.

Polar Coordinate Representation: If a function is given with polar coordinates (see 3.5.2.2, 3.,
p. 192) ρ = ρ(ϕ), then the parametric form is

x = ρ(ϕ) cosϕ, y = ρ(ϕ) sinϕ (6.18)

with the angle ϕ as a parameter. For the slope y′ of the tangent of the curve (see 3.6.1.2, 2., p. 245 or
6.1.1, 2., p. 432) one gets from (6.17)

y′ =
ρ̇ sinϕ+ ρ cosϕ

ρ̇ cosϕ− ρ sinϕ
where ρ̇ =

dρ

dϕ
. (6.19)

Remarks:

1. The derivatives ẋ, ẏ are the components of the tangent vector at the point (x(t), y(t)) of the curve.

2. It is often useful to consider the complex relation:

x(t) + i y(t) = z(t), ẋ(t) + i ẏ(t) = ż(t). (6.20)

Circular Movement: z(t) = reiωt (r, ω const), ż(t) = riωeiωt = rωei(ωt+
π
2
). The tangent

vector runs ahead by a phase-shift π/2 with respect to the position vector.

11. Graphical Differentiation
If a differentiable function y = f(x) is represented by its curve Γ in the
Cartesian coordinate system in an interval a < x < b, then the curve Γ′

of its derivative can be constructed approximately. The construction of a
tangent estimated by eye is pretty inaccurate. However, if the direction
of the tangentMN (Fig. 6.4) is given, then one can determine the point
of contact A more precisely.

1. Construction of the Point of Contact of a Tangent
One draws two secantsM1N1 andM2N2 parallel to the directionMN of
the tangent so that the curve is intersected in points being not far from
each other. Then there are to be determine the midpoints of the secants,
and a straight line through them must be drawn. This line PQ intersects
the curve at the pointA, which is approximately the point, where the tan-

N

M

N
1

N
2

A
P

QR
2 R

1

M
2

M
1

Figure 6.4
gent has the given directionMN . To check the accuracy, one draws a third line close to and parallel to
the first two lines, and the line PQ should intersect it at the midpoint.

2. Construction of the Derivative Curve

a) Choose some directions l1, l2, . . . , ln which could be the directions of some tangents of the curve



438 6. Differentiation

y = f(x) in the considered interval as in Fig. 6.5, and determine the corresponding points of contact
A1, A2, . . . , An, where the tangents themselves must not be constructed.

b) Choose a point P , a “pole”, on the negative side of
the x-axis, where the longer the segment PO = a, the
flatter the curve is.

c) Draw the lines through the pole P parallel to the di-
rections l1, l2, . . . ln, and denote their intersection points
with the y-axis by B1, B2, . . . Bn.

d) Construct the horizontal lines B1C1, B2C2, . . . , BnCn

through the points B1, B2, . . . , Bn to the intersection
points C1, C2, . . . , Cn with the orthogonal lines from the
points A1, A2, . . . , An.

e) Connect the points C1, C2, . . . , Cn with the help of a
curved ruler. The resulting curve satisfies the equation
y = af ′(x). If the segment a is chosen so that it cor-
responds to the unit length on the y-axis, then the curve
one gets is the curve of the derivative. Otherwise, one has
to multiply the ordinates of C1, C2, . . . , Cn by the factor
1/a. The points D1, D2, . . . , Dn given in Fig. 6.5 are on
the correctly scaled curve Γ′ of the derivative.
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Figure 6.5

6.1.3 Derivatives ofHigherOrder

6.1.3.1 Definition of Derivatives of Higher Order

The derivative of y′ = f ′(x), which means (y′)′ or
d

dx

(
dy

dx

)
, is called the second derivative of the

function y = f(x) and it is denoted by y′′, ÿ,
d2y

dx2
, f ′′(x) or

d2f(x)

dx2
. Higher derivatives can be defined

analogously. The notation for the n-th derivative of the function y = f(x) is:

y(n) =
dny

dxn
= f (n)(x) =

dnf(x)

dxn

(
n = 0, 1, . . . ; y(0)(x) = f (0)(x) = f(x)

)
. (6.21)

6.1.3.2 Derivatives of Higher Order of some Elementary Functions
The n-th derivatives of the simplest functions are collected in Table 6.3.

6.1.3.3 Leibniz’s Formula
To calculate the n-th-order derivative of a product of two functions, the Leibniz formula can be used:

Dn(uv) = uDnv +
n

1!
DuDn−1v +

n(n− 1)

2!
D2uDn−2v + · · ·

+
n(n− 1) . . . (n−m+ 1)

m!
DmuDn−mv + · · ·+Dnu v (6.22)

Here the notation Dn =
dn

dxn
is used. If D0u is replaced by u and D0v by v, then one gets the formula

(6.23) whose structure corresponds to the binomial formula (see 1.1.6.4, p. 12):

Dn(uv) =
n∑

m=0

(
n

m

)
DmuDn−mv . (6.23)
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Table 6.2 Differentiation rules

Expression Formula for the derivative

Constant function c′ = 0 (c const)

Constant multiple (cu)′ = cu′ (c const)

Sum (u± v)′ = u′ ± v′

Product of two functions (uv)′ = u′v + uv′

Product of n functions (u1u2 · · · un)
′ =

n∑
i=1

u1 · · · u′
i · · · un

Quotient
(
u

v

)′
=

vu′ − uv′

v2
(v �= 0)

Chain rule for
two functions

y = u(v(x)) : y′ =
du

dv

dv

dx

Chain rule for
three functions

y = u(v(w(x))) : y′ =
du

dv

dv

dw

dw

dx

Power
(uα)′ = αuα−1u′ (α ∈ IR , α �= 0)

specially :
(
1

u

)′
= − u′

u2
(u �= 0)

Logarithmic
differentiation

d(ln y(x))

dx
=

1

y
y′ =⇒ y′ = y

d(ln y)

dx

special : (uv)′ = uv

(
v′ lnu+

vu′

u

)
(u > 0)

Differentiation of the
inverse function

ϕ inverse function of f, i.e. y = f(x) ⇐⇒ x = ϕ(y) :

f ′(x) =
1

ϕ′(y)
or

dy

dx
=

1
dx

dy

Implicit
differentiation

F (x, y) = 0: Fx + Fy y
′ = 0 or

y′ = −Fx

Fy

(
Fx =

∂F

∂x
, Fy =

∂F

∂y
; Fy �= 0

)

Derivative in
parameter form

x = x(t) , y = y(t) (t parameter) :

y′ =
dy

dx
=

ẏ

ẋ

(
ẋ =

dx

dt
, ẏ =

dy

dt

)

Derivative in
polar coordinates

r = r(ϕ) :
x = ρ(ϕ) cosϕ
y = ρ(ϕ) sinϕ

(angle ϕ as parameter)

y′ =
dy

dx
=

ρ̇ sinϕ+ ρ cosϕ

ρ̇ cosϕ− r sinϕ

(
ρ̇ =

dx

dϕ

)

A: (x2 cos ax)(50): If v = x2, u = cos ax are substituted, then follows u(k) = ak cos
(
ax+ k π

2

)
, v′ =

2x, v′′ = 2, v′′′ = v(4) = · · · = 0 . Except the first three cases, all the summands are equal to zero, so

(uv)(50) = x2a50 cos
(
ax+ 50π

2

)
+

50

1
· 2xa49 cos

(
ax+ 49

π

2

)
+

50 · 49
1 · 2 · 2a48 cos

(
ax+ 48

π

2

)
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= a48[(2450− a2x2) cos ax− 100ax sin ax] .

B: (x3ex)(6) =

(
6

0

)
· x3ex +

(
6

1

)
· 3x2ex +

(
6

2

)
· 6xex +

(
6

3

)
· 6ex = ex(x3 + 18x2 + 90y + 120).

Table 6.3 Derivatives of higher order of some elementary functions

Function n-th-order derivative

xm m(m− 1)(m− 2) . . . (m− n+ 1)xm−n

(for integer m and n > m the n-th derivative is 0)

ln x (x > 0) (−1)n−1(n− 1)!
1

xn

loga x (x > 0) (−1)n−1 (n− 1)!

ln a

1

xn

ekx knekx

ax (ln a)nax

akx (k ln a)nakx

sin x sin(x+
nπ

2
)

cos x cos(x+
nπ

2
)

sin kx kn sin(kx+
nπ

2
)

cos kx kn cos(kx+
nπ

2
)

sinh x sinhx for even n, cosh x for odd n

cosh x cosh x for even n, sinh x for odd n

6.1.3.4 Higher Derivatives of Functions Given in Parametric Form

If a function y = f(x) is given in the parametric form x = x(t), y = y(t), then its higher derivatives

(y′′, y′′′, etc.) can be calculated by the following formulas, where ẏ(t) =
dy

dt
, ẋ(t) =

dx

dt
, ÿ(t) =

d2y

dt2
, ẍ =

d2x

dt2
, etc., denote the derivatives with respect to the parameter t:

d2y

dx2
=

ẋÿ − ẏẍ

ẋ3
,

d3y

dx3
=

ẋ2 ẏ̇̇ − 3ẋẍÿ + 3ẏẍ2 − ẋẏẋ̇̇

ẋ5
, . . . (ẋ(t) �= 0). (6.24)

6.1.3.5 Derivatives of Higher Order of the Inverse Function

If y = ϕ(x) is the inverse function of the original function y = f(x), then both forms y = f(x) and
x = ϕ(y) are equivalent. Supposing ϕ′(y) �= 0 holds, the relation (6.15) is valid for the derivatives of
the function f and its inverse function ϕ. For higher derivatives (y′′, y′′′, etc.) one gets

d2y

dx2
= − ϕ′′(y)

[ϕ′(y)]3
,

d3y

dx3
=

3[ϕ′′(y)]2 − ϕ′(y)ϕ′′′(y)
[ϕ′(y)]5

, . . . . (6.25)
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6.1.4 Fundamental Theorems ofDifferential Calculus

6.1.4.1 Monotonicity
If a function f(x) is defined and continuous in a connected interval, and if it is differentiable at every
interior point of this interval, then the relations

f ′(x) ≥ 0 for a monotone increasing function, (6.26a)

f ′(x) ≤ 0 for a monotone decreasing function (6.26b)

are necessary and sufficient. If the function is strictly monotone increasing or decreasing, then the
derivative function f ′(x) must not be identically zero on any subinterval of the given interval. In

Fig. 6.6b this condition is not fulfilled on the segment BC.

The geometrical meaning of monotonicity is that the curve of an increasing function never falls for
increasing values of the argument, i.e., it either rises or runs horizontally (Fig. 6.6a). Therefore the
tangent line at any point of the curve forms an acute angle with the positive x-axis or it is parallel to
it. For monotonically decreasing functions (Fig. 6.6b) analogous statements are valid. If the function
is strictly monotone, then the tangent can be parallel to the x-axis only at some single points, e.g., at
the point A in Fig. 6.6a, i.e., not on a subinterval such as BC in Fig. 6.6b.
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6.1.4.2 Fermat’s Theorem
If a function y = f(x) is defined on a connected interval, and it has a maximum or a minimum value at
an interior point x = c of this interval (Fig. 6.7), i.e., if for every x in this interval

f(c) > f(x) (6.27a) or f(c) < f(x), (6.27b)

holds, and if the derivative exists at the point c, then the derivative must be equal to zero there:

f ′(c) = 0. (6.27c)

The geometrical meaning of the Fermat theorem is that if a function satisfies the assumptions of the
theorem, then its curve has tangents parallel to the x-axis at A and B (Fig. 6.7).
The Fermat theorem gives only a necessary condition for the existence of a maximum orminimum value
at a point. FromFig. 6.6a it is obvious that having a zero derivative is not sufficient to give an extreme
value: At the point A, f ′(x) = 0 holds, but there is no maximum or minimum here.
To have an extreme value differentiability is not a necessary condition. The function in Fig. 6.8d has
a maximum at e, but the derivative does not exist here.

6.1.4.3 Rolle’s Theorem
If a function y = f(x) is continuous on the closed interval [a, b], and differentiable on the open interval
(a, b), and

f(a) = 0, f(b) = 0 (a < b) (6.28a)

hold, then there exists at least one point c between a and b such that

f ′(c) = 0 (a < c < b) (6.28b)

holds. The geometrical meaning of Rolle’s theorem is that if the graph of a function y = f(x) which is
continuous on the interval (a, b) intersects the x-axis at two points A and B, and it has a non-vertical
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tangent at every point, then there is at least one point C between A and B such that the tangent is
parallel to the x-axis here (Fig. 6.8a). It is possible, that there are several such points in this inter-
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val, e.g., the points C, D, and E in Fig. 6.8b. The properties of continuity and differentiability are
important in the theorem: in Fig. 6.8c the function is not continuous at x = d, and in Fig. 6.8d the
function is not differentiable at x = e. In both cases f ′(x) �= 0 holds everywhere where the derivative
exists.

6.1.4.4 MeanValue Theorem of Differential Calculus
If a function y = f(x) is continuous on the closed interval [a, b] and differentiable on the open interval
(a, b), then there is at least one point c between a and b which satisfies the following relation:

0 c

A

C

B
y

b xa

�

Figure 6.9

f(b)− f(a)

b− a
= f ′(c) (a < c < b) (6.29a)

holds. Substituting b = a+ h, and Θ means a number between 0
and 1, then the theorem can be written in the form

f(a+ h) = f(a) + h f ′(a+Θh) (0 < Θ < 1). (6.29b)

1. Geometrical Meaning The geometrical meaning of the
theorem is that if a function y = f(x) satisfies the conditions of
the theorem, then its graph has at least one point C between A
and B such that the tangent line at this point is parallel to the
line segment between A and B (Fig. 6.9). There can be several
such points (Fig. 6.8b).

That the properties of continuity and differentiability are important can be shown in examples and also
as can be observed in Fig. 6.8c,d.

2. Applications The mean value theorem has several useful applications.

A: This theorem can be used to prove some inequalities in the form

|f(b)− f(a)| < K|b− a|, (6.30)

where K is an upper bound of |f ′(x)| for every x in the interval [a, b].

B: How accurate is the value of f(π) =
1

1 + π2
if π is replaced by the approximate value π = 3.14?

We have: |f(π) − f(π̄)| =
∣∣∣∣∣ 2c

(1 + c2)2

∣∣∣∣∣ |π − π̄| ≤ 0.053 · 0.0016 = 0.000 085, which means 1
1 + π2 is

between 0.092 084± 0.000 085.

6.1.4.5 Taylor’s Theorem of Functions of One Variable
If a function y = f(x) is continuously differentiable (it has continuous derivatives) n− 1 times on the
interval [a, a + h], and if also the n-th derivative exists in the interior of the interval, then the Taylor
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formula or Taylor expansion is

f(a+ h) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(a+Θh) (6.31)

with 0 < Θ < 1. The quantity h can be positive or negative. The mean value theorem (6.29b) is a
special case of the Taylor formula for n = 1.

6.1.4.6 GeneralizedMeanValue Theorem of Differential Calculus
(Cauchy’s Theorem)

If two functions y = f(x) and y = ϕ(x) are continuous on the closed interval [a, b] and they are dif-
ferentiable at least in the interior of the interval, and ϕ′(x) is never equal to zero in this interval, then
there exists at least one value c between a and b such that

f(b)− f(a)

ϕ(b)− ϕ(a)
=

f ′(c)
ϕ′(c)

(a < c < b). (6.32)

The geometrical meaning of the generalized mean value theorem corresponds to that of the first mean
value theorem. Supposing, e.g., that the curve in Fig.6.9 is given in parametric form x = ϕ(t), y =
f(t), where the points A and B belong to the parameter values t = a and t = b respectively. Then for
the point C

tanα =
f(b)− f(a)

ϕ(b)− ϕ(a)
=

f ′(c)
ϕ′(c)

(6.33)

is valid. For ϕ(x) = x the generalized mean value theorem is simplified into the first mean value
theorem.

6.1.5 Determination of the ExtremeValues and InflectionPoints
6.1.5.1 Maxima andMinima
The substitution value f(x0) of a function f(x) is called the relative maximum (M) or relative minimum
(m) if one of the inequalities

f(x0 + h) < f(x0) (for maximum), (6.34a)

f(x0 + h) > f(x0) (for minimum) (6.34b)

holds for arbitrary positive or negative values of h small enough. At a relative maximum the value
f(x0) is greater than the values in the neighborhood, and similarly, at a minimum it is smaller. The
relative maxima and minima are called relative or local extrema. The greatest or the smallest value of
a function in an interval is called the global or absolute maximum or global or absolute minimum in this
interval.
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6.1.5.2 Necessary Conditions for the Existence of a Relative
ExtremeValue

A function can have a relative maximum or minimum only at the points where its derivative is equal
to zero or does not exist. That is: At the points of the graph of the function corresponding to the
relative extrema the tangent line is whether parallel to the x-axis (Fig. 6.10a) or parallel to the y-axis
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(Fig. 6.10b) or does not exist (Fig. 6.10c). Anyway, these are not sufficient conditions, e.g., at the
points A,B,C in Fig. 6.11 these conditions are obviously fulfilled, but there are no extreme values of
the function.
If a continuous function has relative extreme values, then maxima and minima follow alternately, that
means, between two neighboring maxima there is a minimum, and conversely.

6.1.5.3 Determination of the Relative Extreme Values and the Inflection
Points of a Differentiable Explicit Function y = f(x)

y

0 x

A B

C

Figure 6.11

Since f ′(x) = 0 is a necessary condition where the deriva-
tive exists, after determining the derivative f ′(x), first
one calculates all the real roots x1, x2, . . . , xi, . . . , xn of
the equation f ′(x) = 0. Then each of them has to be
checked , e.g., xi with one of the following methods.

1. Method of Sign Change
For values x− and x+ , which are slightly smaller and
greater than xi, and for which between xi and x− and x+

nomore roots or points of discontinuity of f ′(x) exist, one

checks the sign of f ′(x). When during the transition from f ′(x−) to f ′(x+) the sign of f ′(x) changes
from “+” to “−”, then there is a relative maximum of the function f(x) at x = xi (Fig. 6.12a); if it
changes from “−” to “+”, then there is a relative minimum there (Fig. 6.12b). If the derivative does
not change its sign (Fig. 6.12c,d), then there is no extremum at x = xi, but it has an inflection point
with a tangent parallel to the x-axis.

2. Method of Higher Derivatives
If a function has higher derivatives at x = xi, then one can substitute, e.g., the root xi into the second
derivative f ′′(x). If f ′′(xi) < 0 holds, then there is a relative maximum at xi, and if f ′′(xi) > 0 holds,
a relative minimum. If f ′′(xi) = 0 holds, then xi must be substituted into the third derivative f ′′′(x).
If f ′′′(xi) �= 0 holds, then there is no extremum at x = xi but an inflection point. If still f ′′′(xi) = 0
holds, then one substitutes it into the forth derivative, etc. If the first non-zero derivative at x = xi is
an even one, then f(x) has an extremum here: If the derivative is positive, then there is minimum, if
it is negative, then there is a maximum. If the first non-zero derivative is an odd one, then there is no
extremum there (actually, there is an inflection point).
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3. Further Conditions for Extreme Points and Determination of Inflection Points
If a continuous function is increasing below x0 and decreasing after, then it has a maximum there; if it
is decreasing below and increasing after, then it has a minimum there. Checking the sign change of the
derivative is a useful method even if the derivative does not exist at certain points as in Fig. 6.10b,c
and Fig. 6.11. If the first derivative exists at a point where the function has an inflection point, then
the first derivative has an extremum there. So, to find the inflection points with the help of derivatives,
one has to do the same investigation for the derivative function as one has done for the original function
to find its extrema.

Remark: For non-continuous functions, and sometimes also for certain differentiable functions the
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determination of extrema needs individual ideas. It is possible that a function has an extremum so
that the first derivative exists and it is equal to zero, but the second derivative does not exist, and
the first one has infinitely many roots in an arbitrary neighborhood of the considered point, so it is
meaningless to say it changes its sign there. For instance f(x) = x2(2 + sin (1/x)) for x �= 0 and
f(0) = 0.

6.1.5.4 Determination of Absolute Extrema
The considered interval of the independent variable is divided into subintervals such that in these in-
tervals the function has a continuous derivative. The absolute extreme values are among the relative
extreme values, or at the endpoints of the subintervals, if their endpoints belong to them. For non-
continuous functions or for non-closed intervals it is possible that no maximum or minimum exists on
the considered interval.

Examples of the Determination of Extrema:

A: y = e−x2
, interval [−1,+1]. Greatest value at x = 0, smallest at the endpoints (Fig. 6.13a).

B: y = x3 − x2, interval [−1,+2]. Greatest value at x = +2, smallest at x = −1, at the ends of the
interval (Fig. 6.13b).

C: y =
1

1 + e
1
x

, interval [−3,+3], x �= 0. There is no maximum or minimum. Relative minimum

at x = −3, relative maximum at x = 3. If one defines y = 1 for x = 0, then there will be an absolute
maximum at x = 0 (Fig. 6.13c).

D: y = 2− x
2
3 , interval [−1,+1]. Greatest value at x = 0 (Fig. 6.13d, the derivative is not finite).

6.1.5.5 Determination of the Extrema of Implicit Functions
If the function is given in the implicit form F (x, y) = 0, and the function F itself and also its partial
derivatives Fx, Fy are continuous, then its maxima and minima can be determined in the following way:

1. Solution of the Equation System F (x, y) = 0, Fx(x, y) = 0 and substitution of the resulting
values (x1, y1), (x2, y2), . . . , (xi, yi), . . . in Fy and Fxx.

2. Sign Comparison for Fy and Fxx at the Point (xi, yi): When they have different signs, the
function y = f(x) has a minimum at xi; when Fy and Fxx have the same sign, then it has a maximum at
xi. If either Fy or Fxx vanishes at (xi, yi), then one needs further and rather complicated investigation.
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6.2 Differentiation of Functions of SeveralVariables
6.2.1 Partial Derivatives
6.2.1.1 Partial Derivative of a Function
The partial derivative of a function u = f(x1, x2, . . . , xi, . . . , xn) with respect to one of its n variables,
e.g., with respect to x1 is defined by

∂u

∂x1

= lim
Δx1→0

f(x1 +Δx1, x2, x3, . . . , xn)− f(x1, x2, x3, . . . , xn)

Δx1

, (6.35)
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so only one of the n variables is changing, the other n − 1 are considered as constants. The symbols

for the partial derivatives are
∂u

∂x
, u′

x,
∂f

∂x
, f ′

x. A function of n variables can have n first-order partial

derivatives:
∂u

∂x1

,
∂u

∂x2

,
∂u

∂x3

, . . . ,
∂u

∂xn

. The calculation of the partial derivatives can be done following

the same rules as there are for the functions of one variable.

u =
x2y

z
,

∂u

∂x
=

2xy

z
,

∂u

∂y
=

x2

z
,

∂u

∂z
= −x2y

z2
.

6.2.1.2 GeometricalMeaning for Functions of TwoVariables
If a function u = f(x, y) is represented as a surface in a Cartesian coordinate system, and this surface
is intersected through its point P by a plane parallel to the x, u plane (Fig. 6.14), then holds

∂u

∂x
= tanα, (6.36a)

where α is the angle between the positive x-axis and the tangent line of the intersection curve at P ,
which is the same as the angle between the positive x-axis and the perpendicular projection of the
tangent line into the x, u plane. Here, α is measured starting at the x-axis, and the positive direction is
counterclockwise if looking toward the positive half of the y-axis. Analogously to α, β is defined with
a plane parallel to the y, u plane:

∂u

∂y
= tan β. (6.36b)

The derivative with respect to a given direction, the so-called directional derivative, and derivative with
respect to volume, will be discussed in vector analysis (see 13.2.1, p. 708 and p. 709).
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6.2.1.3 Differentials of x and f(x)

1. The Differential dx of an Independent Variable x
is equal to the increment Δx, i.e.,

dx = Δx (6.37a)

for an arbitrary value of Δx.

2. The Differential dy of a Function y = f(x) of One Variable x
is defined for a given value of x and for a given value of the differential dx as the product

dy = f ′(x) dx. (6.37b)
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3. The Increment of a Function y = f(x) for x + Δx
is the difference

Δy = f(x+Δx)− f(x). (6.37c)

4. Geometrical Meaning of the Differential
If the function is represented by a curve in a Cartesian coordinate system, then dy is the increment of
the ordinate of the tangent line for the change of x by a given increment dx (Fig. 6.1). In an analogous
way Δy is the increment of the ordinate of the curve.

6.2.1.4 Basic Properties of the Differential

1. Invariance
Independently of whether x is an independent variable or a function of a further variable t

dy = f ′(x) dx (6.38)

is valid.

2. Order of Magnitude
If dx is an arbitrarily small value, then dy and Δy = y(x+Δx)− y(x) are also arbitrarily small, but of

equivalent amounts, i.e., lim
Δx→0

Δy

dy
= 1. Consequently, the difference between them is also arbitrarily

small, but of higher order than dx, dy and Δx (except if dy = 0 holds). Therefore, one gets the relation

lim
Δx→0

Δy

dy
= 1, Δy ≈ dy = f ′(x) dx, (6.39)

which allows to reduce the calculation of a small increment to the calculation of its differential. This
formula is frequently used for approximate calculations (see 6.1.4.4, p. 442 and 16.4.2.1, 2., p. 855).

6.2.1.5 Partial Differential
For a function of several variables u = f(x, y, . . .) one can form the partial differential with respect to
one of its variables, e.g., with respect to x, which is defined by the equality

dxu = dxf =
∂u

∂x
dx. (6.40)

6.2.2 TotalDifferential andDifferentials of HigherOrder
6.2.2.1 Notion of Total Differential of a Function of Several Variables

(Complete Differential)

1. Differentiability
The function of several variable u = f(x1, x2, . . . , xi, . . . , xn) is called differentiable at the point
P0(x10, x20, . . . , xi0, . . . , xn0) if at a transition to an arbitrarily close pointP (x10+Δx1, x20+Δx2, . . . , xi0

+Δxi, . . . , xn0 +Δxn) with the arbitrarily small quantities Δx1,Δx2, . . . ,Δxi, . . . ,Δxn the complete
increment

Δu = f(x10 +Δx1, x20 +Δx2, . . . , xi0 +Δxi, . . . , xn0 +Δxn)

−f(x10, x20, . . . , xi0, . . . , xn0) (6.41a)

of the function differs from the sum of the partial differentials of all variables

(
∂u

∂x1

dx1 +
∂u

∂x2

dx2 + . . .+
∂u

∂xn

dxn)x10,x20,...,xn0 (6.41b)

by an arbitrarily small amount in higher order than the distance

P0P =
√
Δx2

1 +Δx2
2 + . . .+Δx2

n =
√
dx2

1 + dx2
2 + . . .+ dx2

n . (6.41c)

A continuous function of several variables is differentiable at a point if its partial derivatives, as func-
tions of several variables, are continuous in a neighborhood of this point. This is a sufficient but not a
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necessary condition, while the simple existence of the partial derivatives at the considered point is not
sufficient even for the continuity of the function.

2. Total Differential
If u is a differentiable function, then the sum (6.41b)

du =
∂u

∂x1

dx1 +
∂u

∂x2

dx2 + . . .+
∂u

∂xn

dxn (6.42a)

is called the total differential of the function. With the n-dimensional vectors

gradu =

(
∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xn

)T

, (6.42b) dr = (dx1, dx2, . . . , dxn)
T (6.42c)

the total differential can be expressed as the scalar product

du = (gradu)T · dr. (6.42d)

In (6.42b), there is the gradient, defined in 13.2.2, p. 710, for n independent variables.

3. Geometrical Representation
The geometrical meaning of the total differential of a function of two variables u = f(x, y), represented
in a Cartesian coordinate system as a surface (Fig. 6.15), is that du is the same as the increment of the
applicate (see 3.5.3.1, 3., p. 210) of the tangent plane (at the same point) if dx and dy are the increments
of x and y.
From the Taylor formula (see 6.2.2.3, 1., p. 449) it follows for functions of two variables that

f(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) +R1. (6.43a)

Ignoring the remainder R1, holds that

u = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) (6.43b)

gives the equation of the tangent plane of the surface u = f(x, y) at the point P0(x0, y0, u0).

4. The Fundamental Property of the Total Differential
is the invariance with respect to the variables as formulated in (6.38) for the one-variable case.

5. Application in Error Calculations
In error calculations one uses the total differential du for an estimation of the error Δu (see (6.41a))
(see, e.g., 16.4.1.3, 5., p. 852). From the Taylor formula (see 6.2.2.3, 1., p. 449) follows

|Δu| = |du+R1| ≤ |du|+ |R1| ≈ |du|, (6.44)

i.e., the absolute error |Δu| can be replaced by |du| as a first approximation. It follows that du is a
linear approximation for Δu.

6.2.2.2 Derivatives andDifferentials of Higher Order

1. Partial Derivatives of Second Order, Schwarz’s Exchange Theorem
The second-order partial derivative of a function u = f(x1 , x2 , . . . , xi, . . . , xn) can be calculated

with respect to the same variable as the first one was, i.e.,
∂2u

∂x2
1

,
∂2u

∂x2
2

, . . . , or with respect to another

variable, i.e.
∂2u

∂x1∂x2

,
∂2u

∂x2∂x3

,
∂2u

∂x3∂x1

, . . . . In this second case one talks about mixed derivatives.

If at the considered point the mixed derivatives are continuous, then

∂2u

∂x1∂x2

=
∂2u

∂x2∂x1

(6.45)
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holds for given x1 and x2 independently of the order of sequence of the differentiation (Schwarz’s ex-
change theorem).

Partial derivatives of higher order such as, e.g.,
∂3u

∂x3
,

∂3u

∂x∂y2
, . . . are defined analogously.

2. Second-Order Differential of a Function of One Variable y = f(x)
The second-order differential of a function y = f(x) of one variable, denoted by the symbols d2y, d2f(x),
is the differential of the first differential: d2y = d(dy) = f ′′(x)dx2. These symbols are appropriate only
if x is an independent variable, and they are not appropriate if x is given, e.g., in the form x = z(v). Dif-
ferentials of higher order are defined analogously. If the variables x1, x2, . . . , xi, . . . , xn are themselves
functions of other variables, then one gets more complicated formulas (see 6.2.4, p. 452).

3. Total Differential of Second Order of a Function of Two Variables u = f(x, y)

d2u = d(du) =
∂2u

∂x2
dx2 + 2

∂2u

∂x∂y
dx dy +

∂2u

∂y2
dy2 (6.46a)

or symbolically

d2u =

(
∂

∂x
dx+

∂

∂y
dy

)2

u. (6.46b)

4. Total Differential of n-th Order of a Function of Two Variables

dnu =

(
∂

∂x
dx+

∂

∂y
dy

)n

u. (6.47)

5. Total Differential of n-th Order of a Function u = f(x1, x2, . . . , xm) of m Vari-
ables

dnu =

(
∂

∂x1

dx1 +
∂

∂x2

dx2 + . . .+
∂

∂xm

dxm

)n

u. (6.48)

6.2.2.3 Taylor’s Theorem for Functions of Several Variables

1. Taylor’s Formula for Functions of Two Variables

a) First Form of Representation:

f(x, y) = f(a, b) +
∂f(x, y)

∂x

∣∣∣∣
(x,y)=(a,b)

(x− a) +
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(a,b)

(y − b)

+
1

2!

{
∂2f(x, y)

∂x2

∣∣∣∣
(x,y)=(a,b)

(x− a)2 + 2
∂2f(x, y)

∂x∂y

∣∣∣∣
(x,y)=(a,b)

(x− a)(y − b)

+
∂2f(x, y)

∂y2

∣∣∣∣
(x,y)=(a,b)

(y − b)2
}
+

1

3!
{. . .}+ · · ·+ 1

n!
{. . .}+Rn. (6.49a)

Here (a, b) is the center of expansion and Rn is the remainder. Sometimes one writes, e.g., instead of
∂f(x, y)

∂x

∣∣∣∣
(x,y)=(x0,y0)

the shorter expression
∂f

∂x
(x0, y0) .

The terms of higher order in (6.49a) can be represented in a clear way with the help of operators:

f(x, y) = f(a, b) +
1

1!

{
(x− a)

∂

∂x
+ (y − b)

∂

∂y

}
f(x, y)

∣∣∣∣
(x,y)=(a,b)

+
1

2!

{
(x− a)

∂

∂x
+ (y − b)

∂

∂y

}2

f(x, y)
∣∣∣∣
(x,y)=(a,b)
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+
1

3!
{. . .}3f(x, y)

∣∣∣
(x,y)=(a,b)

+ · · ·+ 1

n!
{. . .}nf(x, y)

∣∣∣
(x,y)=(a,b)

+Rn . (6.49b)

This symbolic formmeans that after using the binomial theorem the powers of the differential operators
∂

∂x
and

∂

∂y
represent the higher-order derivatives of the function f(x, y). Then the derivatives must

be taken at the point (a, b).

b) Second Form of the Representation:

f(x+ h, y + k) = f(x, y) +
1

1!

(
∂

∂x
h+

∂

∂y
k

)
f(x, y) +

1

2!

(
∂

∂x
h+

∂

∂y
k

)2

f(x, y)

+
1

3!

(
∂

∂x
h+

∂

∂y
k

)3

f(x, y) + · · ·+ 1

n!

(
∂

∂x
h+

∂

∂y
k

)n

f(x, y) +Rn. (6.49c)

c) Remainder: The expression for the remainder is

Rn =
1

(n+ 1)!

(
∂

∂x
h+

∂

∂y
k

)n+1

f(x+Θh, y +Θk) (0 < Θ < 1). (6.49d)

2. Taylor Formula for Functions of m Variables
The analogous representation with differential operators is

f(x+ h, y +k, . . . , t+ l)

= f(x, y, . . . , t) +
n∑

i=1

1

i!

(
∂

∂x
h+

∂

∂y
k + · · ·+ ∂

∂t
l

)i

f(x, y, . . . , t) +Rn, (6.50a)

where the remainder can be calculated by the expression

Rn =
1

(n+ 1)!

(
∂

∂x
h+

∂

∂y
k + · · ·+ ∂

∂t
l

)n+1

f(x+Θh , y +Θ k , . . . , t+Θ l)

(0 < Θ < 1). (6.50b)

6.2.3 Rules ofDifferentiation for Functions of Several Variables
6.2.3.1 Differentiation of Composite Functions

1. Composite Function of One Independent Variable
u = f(x1, x2, . . . , xn) , x1 = x1(ξ), x2 = x2(ξ) , . . . , xn = xn(ξ) (6.51a)

∂u

∂ξ
=

∂u

∂x1

dx1

dξ
+

∂u

∂x2

dx2

dξ
+ . . .+

∂u

∂xn

dxn

dξ
. (6.51b)

2. Composite Function of Several Independent Variables

u = f(x1, x2, . . . , xn),

x1 = x1(ξ, η, . . . , τ), x2 = x2(ξ, η, . . . , τ), . . . , xn = xn(ξ, η, . . . , τ) (6.52a)

∂u

∂ξ
=

∂u

∂x1

∂x1

∂ξ
+

∂u

∂x2

∂x2

∂ξ
+ · · ·+ ∂u

∂xn

∂xn

∂ξ
,

∂u

∂η
=

∂u

∂x1

∂x1

∂η
+

∂u

∂x2

∂x2

∂η
+ · · ·+ ∂u

∂xn

∂xn

∂η
,

... =
... +

... +
... +

...
∂u

∂τ
=

∂u

∂x1

∂x1

∂τ
+

∂u

∂x2

∂x2

∂τ
+ · · ·+ ∂u

∂xn

∂xn

∂τ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.52b)
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6.2.3.2 Differentiation of Implicit Functions

1. A Function y = f(x) of One Variable is given by the equation

F (x, y) = 0. (6.53a)

Differentiating (6.53a) with respect to x with the help of (6.51b) one gets

Fx + Fyy
′ = 0 (6.53b) and y′ = −Fx

Fy

(Fy �= 0). (6.53c)

Differentiation of (6.53b) yields in the same way

Fxx + 2Fxyy
′ + Fyy(y

′)2 + Fyy
′′ = 0, (6.53d)

so considering (6.53b) one has

y′′ =
2FxFyFxy − (Fy)

2Fxx − (Fx)
2Fyy

(Fy)3
. (6.53e)

In an analogous way one can calculate the third derivative

Fxxx + 3Fxxyy
′ + 3Fxyy(y

′)2 + Fyyy(y
′)3 + 3Fxyy

′′ + 3Fyyy
′y′′ + Fyy

′′′ = 0, (6.53f)

from which y′′′ can be expressed.

2. A Function u = f(x1, x2, . . . , xi, . . . , xn) of Several Variables is given by the equation

F (x1, x2, . . . , xi, . . . , xn, u) = 0. (6.54a)

The partial derivatives

∂u

∂x1

= −Fx1

Fu

,
∂u

∂x2

= −Fx2

Fu

, . . . ,
∂u

∂xn

= −Fxn

Fu

(6.54b)

can be calculated similarly as it has been shown above but here the formulas (6.52b) are to be used.
The higher-order derivatives can be calculated in the same way.

3. Two Functions y = f(x) and z = ϕ(x) of One Variable are given by the system of
equations

F (x, y, z) = 0 and Φ(x, y, z) = 0. (6.55a)

Then differentiation of (6.55a) according to (6.51b) results in

Fx + Fyy
′ + Fzz

′ = 0, Φx + Φyy
′ + Φzz

′ = 0, (6.55b)

y′ =
FzΦx − ΦzFx

FyΦz − FzΦy

, z′ =
FxΦy − FyΦx

FyΦz − FzΦy

. (6.55c)

The second derivatives y′′ and z′′ are calculated in the sameway by differentiation of (6.55b) considering
y′ and z′.
4. n Functions of One Variable Let the functions y1 = f(x), y2 = ϕ(x), . . . , yn = ψ(x) be given
by a system

F (x, y1, y2, . . . , yn) = 0, Φ(x, y1, y2, . . . , yn) = 0, . . . , Ψ(x, y1, y2, . . . , yn) = 0 (6.56a)

of n equations. Differentiation of (6.56a) using (6.51b) results in

Fx + Fy1y
′
1 + Fy2y

′
2 + · · ·+ Fyny

′
n = 0,

Φx + Φy1y
′
1 + Φy2y

′
2 + · · ·+ Φyny

′
n = 0,

... +
... +

... +
... +

... = 0,

Ψx + Ψy1y
′
1 + Ψy2y

′
2 + · · ·+ Ψyny

′
n = 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(6.56b)

Solving (6.56b) yields the derivatives y′1, y
′
2, . . . , y

′
n, which are to be looking for. In the same way one

can calculate the higher-order derivatives.
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5. Two Functions u = f(x, y), v = ϕ(x, y) of Two Variables are given by the system of
equations

F (x, y, u, v) = 0 and Φ(x, y, u, v) = 0. (6.57a)

Then differentiation of (6.57a) with respect to x and y with the help of (6.52b) results in

∂F

∂x
+

∂F

∂u

∂u

∂x
+

∂F

∂v

∂v

∂x
= 0,

∂Φ

∂x
+

∂Φ

∂u

∂u

∂x
+

∂Φ

∂v

∂v

∂x
= 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.57b)

∂F

∂y
+

∂F

∂u

∂u

∂y
+

∂F

∂v

∂v

∂y
= 0,

∂Φ

∂y
+

∂Φ

∂u

∂u

∂y
+

∂Φ

∂v

∂v

∂y
= 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.57c)

Solving the system (6.57b) for
∂u

∂x
,
∂v

∂x
and the system (6.57c) for

∂u

∂y
,
∂v

∂y
give the first-order partial

derivatives. The higher-order derivatives should be calculated in the same way.
6. n Functions of m Variables Given by a System of n Equations The first-order and
higher-order partial derivatives can be calculated in the same way as in the previous cases.

6.2.4 Substitution ofVariables inDifferential Expressions and

CoordinateTransformations
6.2.4.1 Function of One Variable
Suppose, given a function y(x) and a differential expression F containing the independent variable, the
function, and its derivatives:

y = f(x), (6.58a) F = F

(
x, y,

dy

dx
,
d2y

dx2
,
d3y

dx3
, . . .

)
. (6.58b)

If the variables are substituted, then the derivatives can be calculated in the following way:

Case 1a: The variable x is replaced by the variable t, and they have the relation

x = ϕ(t). (6.59a)

Then holds

dy

dx
=

1

ϕ′(t)
dy

dt
,

d2y

dx2
=

1

[ϕ′(t)]3

{
ϕ′(t)

d2y

dt2
− ϕ′′(t)

dy

dt

}
, (6.59b)

d3y

dx3
=

1

[ϕ′(t)]5

{
[ϕ′(t)]2

d3y

dt3
− 3 ϕ′(t) ϕ′′(t)

d2y

dt2
+ [3[ϕ′′(t)]2 − ϕ′(t) ϕ′′′(t)]

dy

dx

}
, . . . . (6.59c)

Case 1b: If the relation between the variables is not explicit but it is given in implicit form

Φ(x, t) = 0, (6.60)

then the derivatives
dy

dx
,
d2y

dx2
,
d3y

dx3
are calculated by the same formulas, but the derivativesϕ′(t), ϕ′′(t),

ϕ′′′(t) must be calculated according to the rules for implicit functions. In this case it can happen that
the relation (6.58b) contains the variable x. To eliminate x, the relation (6.60) is used.

Case 2: If the function y is replaced by a function u(x), and the relation between them is

y = ϕ(u), (6.61a)

then the calculation of the derivatives can be performed using the following formulas:

dy

dx
= ϕ′(u)

du

dx
,

d2y

dx2
= ϕ′(u)

d2u

dx2
+ ϕ′′(u)

(
du

dx

)2

, (6.61b)

d3y

dx3
= ϕ′(u)

d3u

dx3
+ 3ϕ′′(u)

du

dx

d2u

dx2
+ ϕ′′′(u)

(
du

dx

)3

, . . . . (6.61c)
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Case 3: The variables x and y are replaced by the new variables t and u, and the relations between
them are given by

x = ϕ(t, u), y = ψ(t, u). (6.62a)

For the calculation of the derivatives the following formulas are used:

dy

dx
=

∂ψ

∂t
+

∂ψ

∂u

du

dt
∂ϕ

∂t
+

∂ϕ

∂u

du

dt

, (6.62b)

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

⎡⎢⎢⎣
∂ψ

∂t
+

∂ψ

∂u

du

dt
∂ϕ

∂t
+

∂ϕ

∂u

du

dt

⎤⎥⎥⎦ =
1

∂ϕ

∂t
+

∂ϕ

∂u

du

dt

d

dt

⎡⎢⎢⎣
∂ψ

∂t
+

∂ψ

∂u

du

dt
∂ϕ

∂t
+

∂ϕ

∂u

du

dt

⎤⎥⎥⎦ , (6.62c)

1

B

d

dt

(
A

B

)
=

1

B3

(
B
dA

dt
− A

dB

dt

)
, (6.62d)

with A =
∂ψ

∂t
+

∂ψ

∂u

du

dt
(6.62e) and B =

∂ϕ

∂t
+

∂ϕ

∂u

du

dt
. (6.62f)

The determination of the third derivative
d3y

dx3 can be done in an analogous way.

For the transformation from Cartesian coordinates into polar coordinates according to

x = ρ cosϕ, y = ρ sinϕ (6.63a)

the first and second derivatives should be calculated as follows:

dy

dx
=

ρ′ sinϕ+ ρ cosϕ

ρ′ cosϕ− ρ sinϕ
, (6.63b)

d2y

dx2
=

ρ2 + 2ρ′2 − ρρ′′

(ρ′ cosϕ− ρ sinϕ)3
. (6.63c)

6.2.4.2 Function of TwoVariables
Suppose given a function ω(x, y) and a differential expression F containing the independent variables,
the function and its partial derivatives:

ω = f(x, y), (6.64a) F = F

(
x, y, ω,

∂ω

∂x
,
∂ω

∂y
,
∂2ω

∂x2
,
∂2ω

∂x∂y
,
∂2ω

∂y2
, . . .

)
. (6.64b)

If x and y are replaced by the new variables u and v given by the relations

x = ϕ(u, v), y = ψ(u, v), (6.65a)

then the first-order partial derivatives can be expressed from the system of equations

∂ω

∂u
=

∂ω

∂x

∂ϕ

∂u
+

∂ω

∂y

∂ψ

∂u
,

∂ω

∂v
=

∂ω

∂x

∂ϕ

∂v
+

∂ω

∂y

∂ψ

∂v
(6.65b)

with the new functions A,B,C, and D of the new variables u and v

∂ω

∂x
= A

∂ω

∂u
+B

∂ω

∂v
,

∂ω

∂y
= C

∂ω

∂u
+D

∂ω

∂v
. (6.65c)

The second-order partial derivatives are calculated with the same formulas, only without using ω in

them but its partial derivatives
∂ω

∂x
and

∂ω

∂y
, e.g.,

∂2ω

∂x2
=

∂

∂x

(
∂ω

∂x

)
=

∂

∂x

(
A
∂ω

∂u
+ B

∂ω

∂v

)
= A

(
A
∂2ω

∂u2
+B

∂2ω

∂u∂v
+

∂A

∂u

∂ω

∂u
+

∂B

∂u

∂ω

∂v

)
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+B

(
A

∂2ω

∂u∂v
+B

∂2ω

∂v2
+

∂A

∂v

∂ω

∂u
+

∂B

∂v

∂ω

∂v

)
. (6.66)

The higher partial derivatives can be calculated in the same way.

The Laplace operator (see 13.2.6.5, p. 716) is to be expressed in polar coordinates (see 3.5.2.1, 2.,
p. 191):

Δω =
∂2ω

∂x2
+

∂2ω

∂y2
, (6.67a) x = ρ cosϕ, y = ρ sinϕ. (6.67b)

The calculations are:

∂ω

∂ρ
=

∂ω

∂x
cosϕ+

∂ω

∂y
sinϕ,

∂ω

∂ϕ
= −∂ω

∂x
ρ sinϕ+

∂ω

∂y
ρ cosϕ,

∂ω

∂x
= cosϕ

∂ω

∂ρ
− sinϕ

ρ

∂ω

∂ϕ
,

∂ω

∂y
= sinϕ

∂ω

∂ρ
+

cosϕ

ρ

∂ω

∂ϕ
,

∂2ω

∂x2
= cosϕ

∂

∂ρ

(
cosϕ

∂ω

∂ρ
− sinϕ

ρ

∂ω

∂ϕ

)
− sinϕ

ρ

∂

∂ϕ

(
cosϕ

∂ω

∂ρ
− sinϕ

ρ

∂ω

∂ϕ

)
.

Similarly,
∂2ω

∂y2
is calculated, so finally:

Δω =
∂2ω

∂ρ2
+

1

ρ2
∂2ω

∂ϕ2
+

1

ρ

∂ω

∂ρ
. (6.67c)

Remark: If functions of more than two variables should be substituted, then similar substitution
formulas can be derived.

6.2.5 ExtremeValues of Functions of SeveralVariables

6.2.5.1 Definition of a Relative ExtremeValue

A function u = f(x1, x2, . . . , xi, . . . , xn) has a relative extreme value at a point P0(x10, x20, . . . , xi0, . . . ,
xn0), if there is a number ε such that for every point P (x1, x2, . . . , xn) belonging to the domain x10−ε <
x1 < x10 + ε, x20 − ε < x2 < x20 + ε, . . . , xn0 − ε < xn < xn0 + ε and to the domain of the function but
different from P0, then for a maximum the inequality

f(x1, x2, . . . , xn) < f(x10, x20, . . . , xn0) (6.68a)

holds, and for a minimum the inequality

f(x1, x2, . . . , xn) > f(x10, x20, . . . , xn0) (6.68b)

holds. Using the terminology of several dimensional spaces (see 2.18.1, p. 118) a function has a relative
maximum or a relative minimum at a point if it is greater or smaller there than at the neighboring
points.

6.2.5.2 Geometric Representation

In the case of a function of two variables, represented in a Cartesian coordinate system as a surface
(see 2.18.1.2, p. 119), the relative extreme value geometrically means that the applicate (see 3.5.3.1, 3.,
p. 210) of the surface in the point A is greater or smaller than the applicate of the surface in any other
point in a sufficiently small neighborhood of A (Fig. 6.16).
If the surface has a relative extremum at the point P0 which is an interior point of its domain, and
if the surface has a tangent plane at this point, then the tangent plane is parallel to the x, y plane
(Fig. 6.16a,b). This property is necessary but not sufficient for a maximum or minimum at a point
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Figure 6.16

P0. For example Fig. 6.16c shows a surface having a horizontal tangent plane at P0, but there is a
saddle point here and not an extremum.

6.2.5.3 Determination of ExtremeValues of Differentiable Functions of
TwoVariables

If u = f(x, y) is given, then one solves the system of equations fx = 0, fy = 0. The resulting pairs of
values (x1, y1), (x2, y2), . . . can be substituted into the second derivatives

A =
∂2f

∂x2
, B =

∂2f

∂x∂y
, C =

∂2f

∂y2
. (6.69)

Depending on the expression

Δ =
∣∣∣∣A B
B C

∣∣∣∣ = AC − B2 = [fxxfyy − (fxy)
2]x=xi,y=yi (i = 1, 2, . . .) (6.70)

it can be decided whether an extreme value exists and of what kind it is:

1. In the case Δ > 0 the function f(x, y) has an extreme value at (xi, yi), and for fxx < 0 it is a
maximum, for fxx > 0 it is a minimum (sufficient condition).

2. In the case Δ < 0 the function f(x, y) does not have an extremum.

3. In the case Δ = 0, one needs further investigation.

6.2.5.4 Determination of the ExtremeValues of a Function of n Variables
If u = f(x1, x2, . . . , xn) is given, then first it is to find a solution (x10, x20, . . . , xn0) of the system of the
n equations

fx1 = 0, fx2 = 0, . . . , fxn = 0, (6.71)

because it is a necessary condition for an extreme value. (6.71) is not a sufficient condition. Therefore

one prepares a matrix of the second-order partial derivatives such that aij =
∂2f

∂xi∂xj

. Then it is to

substitute a solution of the system of equations (6.71) into the terms, and to prepare the sequence of
left upper subdeterminants (a11, a11a22 − a12a21, . . .). Then there are the following cases:

1. The signs of the subdeterminants follow the rule −,+,−,+, . . ., then there is a maximum there.

2. The signs of the subdeterminants follow the rule +,+,+,+, . . ., then there is a minimum there.

3. There are some zero values among the subdeterminants, but the signs of the non-zero subdetermi-
nants coincide with the signs of the corresponding positions of one of the first two cases. Then fur-
ther investigation is required: Usually one checks the values of the function in a close neighborhood of
x10, x20, . . . , xn0.

4. The signs of the subdeterminants does not follow the rules given in cases 1. and 2.: There is no
extremum at that point.
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The case of two variables is of course a special case of the case of n variables, (see [6.4]).

6.2.5.5 Solution of Approximation Problems
Several different approximation problems can be solved with the help of the determination of the ex-
treme values of functions of several variables, e.g., fitting problems or mean squares problems.

Problems to solve:

• Determination of Fourier coefficients (see 7.4.1.2, p. 475, 19.6.4.1, p. 992).

• Determination of the coefficients and parameters of approximation functions (see 19.6.2, p. 984 ff).

•Determination of an approximate solution of an overdetermined linear system of equations (see 19.2.1.3,
p. 958).

Methods: For these problems the following methods are used:

• Gaussian least squares method (see, e.g., 19.6.2, p. 984).

• Least squares method (see 19.6.2.2, p. 985).

• Approximation in mean square (continuous and discrete) (see, e.g., 19.6.2, p.984).

• Calculus of observations (or fitting) (see 19.6.2, p. 984) and regression (see 16.3.4.2, 1., p. 841).

6.2.5.6 ExtremeValue Problemwith Side Conditions
To determine are the extreme values of a function u = f(x1, x2, . . . , xn) of n variables with the side
conditions

ϕ(x1, x2, . . . , xn) = 0, ψ(x1, x2, . . . , xn) = 0, . . . , χ(x1, x2, . . . , xn) = 0. (6.72a)

Because of the conditions, the variables are not independent, and if the number of conditions is k,
obviously k < nmust hold. One possibility to determine the extreme values of u is to express k variables
with the others from the system of equations of the conditions, to substitute them into the original
function. Then the result is an extreme value problem without conditions for n−k variables. The other
way is the Lagrange multiplier method. Introducing k undefined multipliers λ, μ, . . . , κ, and composing
the Lagrange function (Lagrangian) of n+ k variables x1, x2, . . . , xn, λ, μ, . . . , κ gives:

Φ (x1, x2, . . . , xn, λ, μ, . . . , κ)

= f(x1, x2, . . . , xn) + λϕ(x1, x2, . . . , xn) + μψ(x1, x2, . . . , xn) + · · ·
+κχ(x1, x2, . . . , xn). (6.72b)

The necessary condition for an extremum of the function Φ is a system of n + k equations (6.71) with
the unknowns x1, x2, . . . , xn, λ, μ, . . . , κ:

ϕ = 0, ψ = 0, . . . , χ = 0, Φx1 = 0, Φx2 = 0 , . . . , Φxn = 0 (6.72c)

The necessary condition for an extremum of the function f at the point P0(x10, x20, . . . , xn0) with the
side conditions (6.72a) is that the system of values x10, x20, . . . , xn0 must fulfill the equations (6.72c).
So it is to look for the extremum points of f among the solutions x10, x20, . . . , xn0 of the system of
equations (6.72c). To determine whether there are really extreme values at these points fulfilling the
necessary conditions requires further investigations, for which the general rules are fairly complicated.
Usually one uses some appropriate and individual calculations depending on the function f to prove if
there is an extremum, or not. Often approximation calculations are helpful, i.e., the comparison with
values of the function in the neighborhood of P0.

The extreme value of the function u = f(x, y) with the side condition ϕ(x, y) = 0 will be determined
from the three equations

ϕ(x, y) = 0,
∂

∂x
[f(x, y) + λϕ(x, y)] = 0,

∂

∂y
[f(x, y) + λϕ(x, y)] = 0. (6.73)

There are three unknowns, x, y, λ. Since the three equations (6.73) are only necessary but not suffi-
cient conditions for the existence of an extremum, further investigation is needed whether there is an
extremum at the solution of this system. A mathematical criterion is rather complicated (see [6.3],
[6.8]); comparisons of the values of the function at points in the close neighborhood are often useful.
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