
5 AlgebraandDiscreteMathematics

5.1 Logic

5.1.1 Propositional Calculus

1. Propositions
A proposition is the mental reflection of a fact, expressed as a sentence in a natural or artificial language.
Every proposition is considered to be true or false. This is the principle of two-valuedness (in contrast
to many-valued or fuzzy logic, see 5.9.1, p. 413). “True” and “false” are called the truth value of the
proposition and they are denoted by T (or 1) and F (or 0), respectively. The truth values can be
considered as propositional constants.

2. Propositional Connectives
Propositional logic investigates the truth of compositions of propositions depending on the truth of the
components. Only the extensions of the sentences corresponding to propositions are considered. Thus
the truth of a composition depends only on that of the components and on the operations applied. So
in particular, the truth of the result of the propositional operations

“NOT A” (¬A), (5.1) “A AND B” (A ∧ B), (5.2)

“A OR B” (A ∨ B), (5.3) “IF A, THEN B” (A ⇒ B) (5.4)

and

“A IF AND ONLY IF B”(A ⇔ B) (5.5)

are determined by the truth of the components. Here “logical OR” always means “inclusive OR”, i.e.,
“AND/OR”. In the case of implication, for A ⇒ B also the following verbal forms are in use:

A implies B, B is necessary for A, A is sufficient for B.

3. Truth Tables
In propositional calculus, the propositionsA andB are considered as variables (propositional variables)
which can have only the values F and T. Then the truth tables inTable 5.1 contain the truth functions
defining the propositional operations.

Table 5.1 Truth tables of propositional calculus

Negation

A ¬A
F T
T F

Conjunction

A B A ∧ B

F F F
F T F
T F F
T T T

Disjunction

A B A ∨B

F F F
F T T
T F T
T T T

Implication

A B A ⇒ B

F F T
F T T
T F F
T T T

Equivalence

A B A ⇔ B

F F T
F T F
T F F
T T T

4. Formulas in Propositional Calculus
Compound expressions (formulas) of propositional calculus can be composed from the propositional
variables in terms of a unary operation (negation) and binary operations (conjunction, disjunction,
implication and equivalence). These expressions, i.e., the formulas, are defined in an inductive way:

1. Propositional variables and the constants T, F are formulas. (5.6)

2. If A and B are formulas, then (¬A)
,
(A ∧ B)

,
(A ∨B)

,
(A ⇒ B)

,
(A ⇔ B) (5.7)
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324 5. Algebra and Discrete Mathematics

are also formulas.
To simplify formulas parentheses are omitted after introducing precedence rules. In the following se-
quence every propositional operation binds more strongly than the next one in the sequence:

¬, ∧, ∨, ⇒, ⇔ .

Often the notation A instead of “¬A” is used, and the symbol ∧ is omitted. By these simplifications,
for instance the formula ((A ∨ (¬B)) ⇒ ((A ∧B) ∨ C)) can be rewritten more briefly in the form:

A ∨ B ⇒ AB ∨ C.

5. Truth Functions
Assigning a truth value to every propositional variable of a formula, the assignment is called an inter-
pretation of the propositional variables. Using the definitions (truth tables) of propositional operations

A B C A ∨ B AB ∨ C A ∨ B ⇒ AB ∨ C

F F F T F F
F F T T T T
F T F F F T
F T T F T T
T F F T F F
T F T T T T
T T F T T T
T T T T T T

a truth value can be assigned to a formula for
every possible interpretation of the variables.
Thus for instance the formula given above de-
termines a truth function of three variables (a
Boolean function see 5.7.5, p. 413).

In this way, every formula with n proposi-
tional variables determines an n place (or n
ary) truth function, i.e., a function which as-
signs a truth value to every n tuple of truth
values. There are 22

n
n ary truth functions,

in particular these are 16 binary ones.

6. Elementary Laws in Propositional Calculus
Two propositional formulas A and B are called logically equivalent or semantically equivalent, denoted
by A = B, if they determine the same truth function. Consequently, the logical equivalence of propo-
sitional formulas can be checked in terms of truth tables. So there is , e.g., A∨B ⇒ AB ∨C = B ∨C,
i.e., the formula A ∨B ⇒ AB ∨C does not in fact depend on A, as follows from its truth table above.
In particular, there are the following elementary laws of propositional calculus:

1. Associative Laws

(A ∧ B) ∧ C = A ∧ (B ∧ C), (5.8a) (A ∨B) ∨ C = A ∨ (B ∨ C). (5.8b)

2. Commutative Laws

A ∧ B = B ∧ A, (5.9a) A ∨B = B ∨ A. (5.9b)

3. Distributive Laws

(A ∨ B)C = AC ∨ BC, (5.10a) AB ∨ C = (A ∨ C)(B ∨ C). (5.10b)

4. Absorption Laws

A(A ∨ B) = A, (5.11a) A ∨ AB = A. (5.11b)

5. Idempotence Laws

AA = A, (5.12a) A ∨ A = A. (5.12b)

6. Excluded Middle

AA = F, (5.13a) A ∨ A = T. (5.13b)

7. De Morgan Rules

AB = A ∨ B, (5.14a) A ∨B = AB. (5.14b)
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8. Laws for T and F

AT = A, (5.15a) A ∨ F = A, (5.15b)

AF = F, (5.15c) A ∨ T = T, (5.15d)

T = F, (5.15e) F = T. (5.15f)

9. Double Negation

A = A. (5.16)

Using the truth tables for implication and equivalence, gives the identities

A ⇒ B = A ∨B (5.17a) and A ⇔ B = AB ∨ AB. (5.17b)

Therefore implication and equivalence can be expressed in terms of other propositional operations.
Laws (5.17a), (5.17b) are applied to reformulate propositional formulas.

The identity A ∨ B ⇒ AB ∨ C = B ∨ C can be verified in the following way: A ∨ B ⇒ AB ∨ C =

A ∨B ∨ AB ∨ C = AB ∨ AB ∨ C = AB ∨ AB ∨ C = (A ∨ A)B ∨ C = TB ∨ C = B ∨ C.

10. Further Transformations

A(A ∨ B) = AB, (5.18a) A ∨ AB = A ∨ B, (5.18b)

(A ∨ C)(B ∨ C)(A ∨ B) = (A ∨ C)(B ∨ C), (5.18c) AC ∨ BC ∨ AB = AC ∨ BC. (5.18d)

11. NANDFunction andNORFunction As it is known, every propositional formula determines
a truth function. Checking the following converse of this statement: Every truth function can be rep-
resented as a truth table of a suitable formula in propositional logic. Because of (5.17a) and (5.17b)
implication and equivalence can be eliminated from formulas (see also 5.7, p. 395). This fact and the
De Morgan rules (5.14a) and (5.14b) imply that one can express every formula, therefore every truth
function, in terms of negation and disjunction only, or in terms of negation and conjunction. There are
two further binary truth functions of two variables which are suitable to express all the truth functions.

Table 5.2 NAND function

A B A|B
F F T
F T T
T F T
T T F

Table 5.3 NOR function

A B A ↓ B

F F T
F T F
T F F
T T F

They are called theNAND function or Shef-
fer function (notation “ | ”) and the NOR
function or Peirce function (notation “ ↓ ”),
with the truth tables given in Tables 5.2
and 5.3. Comparison of the truth tables
for these operations with the truth tables
of conjunction and disjunction makes the
terminologies NAND function (NOTAND)
and NOR function (NOT OR) clear.

7. Tautologies, Inferences inMathematics
A formula in propositional calculus is called a tautology if the value of its truth function is identically
the value T. Consequently, two formulas A and B are called logically equivalent if the formula A ⇔ B
is a tautology. Laws of propositional calculus often reflect inference methods used in mathematics. As
an example, consider the law of contraposition, i.e., the tautology

A ⇒ B ⇔ B ⇒ A. (5.19a)

This law, which also has the form

A ⇒ B = B ⇒ A, (5.19b)

can be interpreted in this way: To show that B is a consequence of A is the same as showing that A is a
consequence ofB. The Indirect proof (see also 1.1.2.2, p. 5) is based on the following principle: To show
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that B is a consequence of A, one supposes B to be false, and under the assumption that A is true, one
derives a contradiction. This principle can be formalized in propositional calculus in several ways:

A ⇒ B = AB ⇒ A (5.20a) or A ⇒ B = AB ⇒ B or (5.20b)

A ⇒ B = AB ⇒ F. (5.20c)

5.1.2 Formulas inPredicateCalculus
For developing the logical foundations of mathematics one needs a logic which has a stronger expressive
power than propositional calculus. To describe the properties of most of the objects in mathematics
and the relations between these objects the predicate calculus is needed.

1. Predicates
The objects to be investigated are included into a set, i.e., into the domain X of individuals (or uni-
verse), e.g., this domain could be the set IN of the natural numbers. The properties of the individuals, as,
e.g., “ n is a prime ”, and the relations between individuals, e.g., “m is smaller than n ”, are considered
as predicates. An n place predicate over the domainX of individual is an assignment P : Xn → {F,W},
which assigns a truth value to every n tuple of the individuals. So the predicates introduced above on
natural numbers are a one-place (or unary) predicate and a two-place (or binary) predicate.

2. Quantifiers
A characteristic feature of predicate logic is the use of quantifiers, i.e., that of a universal quantifier or
“for every” quantifier ∀ and existential quantifier or “for some” quantifier ∃. If P is a unary predicate,
then the sentence “P (x) is true for every x inX” is denoted by ∀ xP (x) and the sentence“ There exists
an x in X for which P (x) is true ”is denoted by ∃ x P (x). Applying a quantifier to the unary predicate
P , gives a sentence. If for instance IN is the domain of individual of the natural numbers and P denotes
the (unary) predicate “n is a prime”, then ∀n P (n) is a false sentence and ∃n P (n) is a true sentence.

3. Formulas in Predicate Calculus
The formulas in predicate calculus are defined in an inductive way:

1. If x1, . . . , xn are individual variables (variables running over the domain of individual variables) and
P is an n-place predicate symbol, then

P (x1, . . . , xn) is a formula (elementary formula). (5.21)

2. If A and B are formulas, then

(¬A), (A ∧ B), (A ∨B), (A ⇒ B), (A ⇔ B), (∀ x A) and (∃ x A) (5.22)

are also formulas.

Considering a propositional variable to be a null-place predicate, the propositional calculus can be
considered as a part of predicate calculus. An occurrence of an individual variable x is bound in a
formula if x is a variable in ∀ x or in ∃ x or the occurrence of x is in the scope of these types of quantifiers;
otherwise an occurrence of x is free in this formula. A formula of predicate logic which does not contain
any free occurrences of individual variables is called a closed formula.

4. Interpretation of Predicate Calculus Formulas
An interpretation of predicate calculus is a pair of

• a set (domain of individuals) and

• an assignment, which assigns an n-place predicate to every n-ary predicate symbol.

For every prefixed value of free variables the concept of the truth evaluation of a formula is similar to
the propositional case. The truth value of a closed formula is T or F. In the case of a formula containing
free variables, one can associate the values of individuals for which the truth evaluation of the formula
is true; these values constitute a relation (see 5.2.3, 1., p. 331) on the universe (domain of individuals).

Let P denote the two-place relation ≤ on the domain IN of individuals, where IN is the set of the
natural numbers then
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• P (x, y) characterizes the set of all the pairs (x, y) of natural numbers with x ≤ y (two-place or binary
relation on IN); here x, y are free variables;
• ∀ y P (x, y) characterizes the subset of IN (unary relation) consisting of the element 0 only; here x is
a free variable, y is a bound variable;
• ∃ x ∀ y P (x, y) corresponds to the sentence “ There is a smallest natural number ”; the truth value is
true; here x and y are bound variables.

5. Logically Valid Formulas
A formula is called logically valid (or a tautology) if it is true for every interpretation. The negation of
formulas is characterized by the identities below:

¬∀x P (x) = ∃ x ¬P (x) or ¬∃ x P (x) = ∀ x ¬P (x). (5.23)

Using (5.23) the quantifiers ∀ and ∃ can be expressed in terms of each other:

∀ x P (x) = ¬∃x ¬P (x) or ∃ x P (x) = ¬∀ x ¬P (x). (5.24)

Further identities of the predicate calculus are:

∀ x ∀ y P (x, y) = ∀ y ∀ x P (x, y), (5.25)

∃ x ∃ y P (x, y) = ∃ y ∃ x P (x, y), (5.26)

∀ x P (x) ∧ ∀ x Q(x) = ∀ x (P (x) ∧Q(x)), (5.27)

∃ x P (x) ∨ ∃ x Q(x) = ∃ x (P (x) ∨Q(x)). (5.28)

The following implications are also valid:

∀ x P (x) ∨ ∀ x Q(x) ⇒ ∀ x (P (x) ∨Q(x)), (5.29)

∃ x (P (x) ∧Q(x)) ⇒ ∃ x P (x) ∧ ∃ x Q(x), (5.30)

∀ x (P (x) ⇒ Q(x)) ⇒ (∀ x P (x) ⇒ ∀ x Q(x)), (5.31)

∀ x (P (x) ⇔ Q(x)) ⇒ (∀ x P (x) ⇔ ∀ x Q(x)), (5.32)

∃ x ∀ y P (x, y) ⇒ ∀ y ∃ x P (x, y). (5.33)

The converses of these implications are not valid, in particular, one has to be careful with the fact that
the quantifiers ∀ and ∃ do not commute (the converse of the last implication is false).

6. Restricted Quantification
Often it is useful to restrict quantification to a subset of a given set. So, there is considered

∀ x ∈ X P (x) as a short notation of ∀ x (x ∈ X ⇒ P (x)) and (5.34)

∃ x ∈ X P (x) as a short notation of ∃ x (x ∈ X ∧ P (x)). (5.35)

5.2 SetTheory

5.2.1 Concept of Set, Special Sets
The founder of set theory is Georg Cantor (1845–1918). The importance of the notion introduced by
him became well known only later. Set theory has a decisive role in all branches of mathematics, and
today it is an essential tool of mathematics and its applications.

1. Membership Relation
1. Sets and their Elements The fundamental notion of set theory is the membership relation. A
set A is a collection of certain different things a (objects, ideas, etc.) that belong together for certain
reasons. These objects are called the elements of the set. One writes “a ∈ A” or “a /∈ A” to denote “a
is an element of A” or “a is not an element of A”, respectively. Sets can be given by enumerating their
elements in braces, e.g., M = {a, b, c} or U = {1, 3, 5, . . .}, or by a defining property possessed exactly
by the elements of the set. For instance the set U of the odd natural numbers is defined and denoted by
U = {x | x is an odd natural number}. For number domains the following notation is generally used:



328 5. Algebra and Discrete Mathematics

IN = {0, 1, 2, . . .} set of the natural numbers,
Z = {0, 1,−1, 2,−2, . . .} set of the integers,

Q =

{
p

q

∣∣∣ p, q ∈ Z ∧ q �= 0

}
set of the rational numbers,

IR set of the real numbers,
C set of the complex numbers.

2. Principle of Extensionality for Sets Two sets A and B are identical if and only if they have
exactly the same elements, i.e.,

A = B ⇔ ∀ x (x ∈ A ⇔ x ∈ B). (5.36)

The sets {3, 1, 3, 7, 2} and {1, 2, 3, 7} are the same.
A set contains every element only “once”, even if it is enumerated several times.

2. Subsets
1. Subset If A and B are sets and

∀ x (x ∈ A ⇒ x ∈ B) (5.37)

holds, then A is called a subset of B, and this is denoted by A ⊆ B. In other words: A is a subset of B,
if all elements of A also belong to B. If for A ⊆ B there are some further elements in B such that they
are not in A, then A is called a proper subset of B, and it is denoted by A ⊂ B (Fig. 5.1). Obviously,
every set is a subset of itself A ⊆ A.

Suppose A = {2, 4, 6, 8, 10} is a set of even numbers and B = {1, 2, 3, . . . , 10} is a set of natural
numbers. Since the set A does not contain odd numbers, A is a proper subset of B.

2. Empty Set or Void Set It is important and useful to introduce the notion of empty set or void
set, ∅, which has no element. Because of the principle of extensionality, there exists only one empty set.

A: The set {x|x ∈ IR ∧ x2 + 2x+ 2 = 0} is empty.

B: ∅ ⊆ M for every set M , i.e., the empty set is a subset of every set M .
For a set A the empty set and A itself are called the trivial subsets of A.

3. Equality of Sets Two sets are equal if and only if both are subsets of each other:

A = B ⇔ A ⊆ B ∧ B ⊆ A. (5.38)

This fact is very often used to prove that two sets are identical.

4. Power Set The set of all subsets A of a set M is called the power set of M and it is denoted by
IP(M), i.e., IP(M) = {A | A ⊆ M}.

For the set M = {a, b, c} the power set is
IP(M) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

It is true that:
a) If a set M has m elements, its power set IP(M) has 2m elements.

b) For every set M there are M, ∅ ∈ IP(M), i.e., M itself and the empty set are elements of the power
set of M .

5. Cardinal number The number of elements of a finite set M is called the cardinal number of M
and it is denoted by cardM or sometimes by |M |.
For the the cardinal number of sets with infinitely many elements see 5.2.5, p. 335.

5.2.2 Operationswith Sets

1. Venn diagram
The graphical representations of sets and set operations are the so-called Venn diagrams, when repre-
senting sets by plane figures. So, Fig. 5.1, represents the subset relation A ⊆ B.

2. Union, Intersection, Complement
By set operations new sets can be formed from the given sets in different ways:
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B

A

Figure 5.1

A B

Figure 5.2

A B

Figure 5.3

1. Union Let A and B be two sets. The union set or the union (denoted by A ∪B) is defined by

A ∪ B = {x | x ∈ A ∨ x ∈ B}, (5.39)

in words “A unionB” or “A cupB”. IfA andB are given by the properties E1 and E2 respectively, the
union setA∪B has the elements possessing at least one of these properties, i.e., the elements belonging
to at least one of the sets. In Fig. 5.2 the union set is represented by the shaded region.

{1, 2, 3} ∪ {2, 3, 5, 6} = {1, 2, 3, 5, 6}.
2. Intersection Let A and B be two sets. The intersection set, intersection, cut or cut set (denoted
by A ∩ B) is defined by

A ∩ B = {x | x ∈ A ∧ x ∈ B}, (5.40)

in words “A intersected by B” or “A cap B”. If A and B are given by the properties E1 and E2 respec-
tively, the intersection A∩B has the elements possessing both properties E1 and E2, i.e., the elements
belonging to both sets. In Fig. 5.3 the intersection is represented by the shaded region.

With the intersection of the sets of divisors T (a) and T (b) of two numbers a and b one can define the
greatest common divisor (see 5.4.1.4, p. 373). For a = 12 and b = 18 holds T (a) = {1, 2, 3, 4, 6, 12} and
T (b) = {1, 2, 3, 6, 9, 18 }, so T (12) ∩ T (18) contains the common divisors, and the greatest common
divisor is g.c.d. (12, 18) = 6.

3. Disjoint Sets Two sets A and B are called disjoint if they have no common element; for them

A ∩ B = ∅ (5.41)

holds, i.e., their intersection is the empty set.

The set of odd numbers and the set of even numbers are disjoint; their intersection is the empty set,
i.e.,

{odd numbers} ∩ {even numbers} = ∅.
4. Complement Considering only the subsets of a given set M , then the complementary set or the
complement CM(A) of A with respect to M contains all the elements of M not belonging to A:

CM(A) = {x | x ∈ M ∧ x /∈ A}, (5.42)

in words “complement of A with respect toM”, andM is called the fundamental set or sometimes the
universal set. If the fundamental set M is obvious from the considered problem, then the notation A
is also used for the complementary set. In Fig. 5.4 the complement A is represented by the shaded
region.

M

A

Figure 5.4

A B

Figure 5.5

A B

Figure 5.6

3. Fundamental Laws of Set Algebra
These set operations have analoguous properties to the operations in logic. The fundamental laws of
set algebra are:
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1. Associative Laws

(A ∩ B) ∩ C = A ∩ (B ∩ C), (5.43) (A ∪ B) ∪ C = A ∪ (B ∪ C). (5.44)

2. Commutative Laws

A ∩ B = B ∩ A, (5.45) A ∪ B = B ∪ A. (5.46)

3. Distributive Laws

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), (5.47) (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C). (5.48)

4. Absorption Laws

A ∩ (A ∪ B) = A, (5.49) A ∪ (A ∩ B) = A. (5.50)

5. Idempotence Laws

A ∩ A = A, (5.51) A ∪ A = A. (5.52)

6. De Morgan Laws

A ∩ B = A ∪ B, (5.53) A ∪ B = A ∩ B. (5.54)

7. Some Further Laws

A ∩ A = ∅, (5.55) A ∪ A = M (M fundamental set), (5.56)

A ∩M = A, (5.57) A ∪ ∅ = A, (5.58)

A ∩ ∅ = ∅, (5.59) A ∪M = M, (5.60)

M = ∅, (5.61) ∅ = M. (5.62)

A = A. (5.63)

This table can also be obtained from the fundamental laws of propositional calculus (see 5.1.1, p. 323)
using the following substitutions: ∧ by ∩, ∨ by ∪, T by M , and F by ∅. This coincidence is not acci-
dental; it will be discussed in 5.7, p. 395.

4. Further Set Operations
In addition to the operations defined above there are defined some further operations between two sets
A and B: the difference set or difference A \ B, the symmetric difference A%B and the Cartesian
product A×B.

1. Difference of Two Sets The set of the elements of A, not belonging to B is the difference set or
difference of A and B:

A \B = {x | x ∈ A ∧ x /∈ B}. (5.64a)

If A is defined by the property E1 and B by the property E2, then A \B contains the elements having
the property E1 but not having property E2.
In Fig. 5.5 the difference is represented by the shaded region.

{1, 2, 3, 4} \ {3, 4, 5} = {1, 2}.
2. Symmetric Difference of Two Sets The symmetric difference A%B is the set of all elements
belonging to exactly one of the sets A and B:

A%B = {x | (x ∈ A ∧ x /∈ B) ∨ (x ∈ B ∧ x /∈ A)}. (5.64b)

It follows from the definition that

A%B = (A \B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B), (5.64c)
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i.e., the symmetric difference contains the elements which have exactly one of the defining properties
E1 (for A) and E2 (for B).

In Fig. 5.6 the symmetric difference is represented by the shaded region.

{1, 2, 3, 4}%{3, 4, 5} = {1, 2, 5}.
3. Cartesian Product of Two Sets The Cartesian product of two sets A× B is defined by

A× B = {(a, b) | a ∈ A ∧ b ∈ B}. (5.65a)

The elements (a, b) of A× B are called ordered pairs and they are characterized by

(a, b) = (c, d) ⇔ a = c ∧ b = d. (5.65b)

The number of the elements of a Cartesian product of two finite sets is equal to

card (A×B) = (cardA)(cardB). (5.65c)

A: For A = {1, 2, 3} and B = {2, 3} one gets A × B = {(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)}
and B × A = {(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)} with cardA = 3 , cardB = 2, card(A × B) =
card(B × A) = 6.

B: Every point of the x, y plane can be defined with the Cartesian product IR× IR (IR is the set of
real numbers). The set of the coordinates x, y is represented by IR× IR, so:

IR2 = IR× IR = {(x, y) | x ∈ IR, y ∈ IR}.
4. Cartesian Product of n Sets
From n elements, by fixing an order of sequence (first element, second element, . . . , n-th element) an
ordered n tuple is defined. If ai ∈ Ai (i = 1, 2, . . . , n) are the elements, the n tuple is denoted by
(a1, a2, . . . , an), where ai is called the i-th component.
For n = 3, 4, 5 these n tuples are called triples, quadruples, and quintuples.
The Cartesian product of n terms A1 × A2 × · · · × An is the set of all ordered n tuples (a1, a2, . . . , an)
with ai ∈ Ai :

A1 × . . .× An = {(a1, . . . , an) | ai ∈ Ai (i = 1, . . . , n)}. (5.66a)

If every Ai is a finite set, the number of ordered n tuples is

card(A1 × A2 × · · · × An) = cardA1 cardA2 · · · cardAn. (5.66b)

Remark: The n times Cartesian product of a set A with itself is denoted by An.

5.2.3 Relations andMappings

1. n ary Relations
Relations define correspondences between the elements of one or different sets. An n ary relation or
n-place relation R between the sets A1, . . . , An is a subset of the Cartesian product of these sets, i.e.,
R ⊆ A1 × . . . × An. If the sets Ai, i = 1, . . . , n, are all the same set A, then R ⊆ An holds and it is
called an n ary relation in the set A.

2. Binary Relations
1. Notion of Binary Relations of a Set The two-place (binary) relations in a set have special
importance.
In the case of a binary relation the notation aRb is also very common instead of (a, b) ∈ R.

As an example, the divisibility relation in the set A = {1, 2, 3, 4} is considered, i.e., the binary
relation

T = {(a, b) | a, b ∈ A ∧ a is a divisor of b} (5.67a)

= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}. (5.67b)

2. ArrowDiagram orMapping Function Finite binary relationsR in a setA can be represented
by arrow functions or arrow diagrams or by relation matrices. The elements of A are represented as
points of the plane and an arrow goes from a to b if aRb holds.
Fig. 5.7 shows the arrow diagram of the relation T in A = {1, 2, 3, 4}.
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1 2

3 4

Figure 5.7

1 2 3 4

1 1 1 1 1
2 0 1 0 1
3 0 0 1 0
4 0 0 0 1

Scheme: Relation matrix

3. Relation Matrix The elements of A are used as row and column entries of a matrix (see 4.1.1,
1., p. 269). At the intersection point of the row of a ∈ A with the column of b ∈ B there is an entry
1 if aRb holds, otherwise there is an entry 0. The above scheme shows the relation matrix for T in
A = {1, 2, 3, 4}.
3. Relation Product, Inverse Relation

Relations are special sets, so the usual set operations (see 5.2.2, p. 328) can be performed between
relations. Besides them, for binary relations, the relation product and the inverse relation also have
special importance.
Let R ⊆ A × B and S ⊆ B × C be two binary relations. The product R ◦ S of the relations R, S is
defined by

R ◦ S = {(a, c) | ∃ b (b ∈ B ∧ aRb ∧ bSc)}. (5.68)

The relation product is associative, but not commutative.

The inverse relation R−1 of a relation R is defined by

R−1 = {(b, a) | (a, b) ∈ R}. (5.69)

For binary relations in a set A the following relations are valid:

(R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T ), (5.70a) (R ∩ S) ◦ T ⊆ (R ◦ T ) ∩ (S ◦ T ), (5.70b)

(R ∪ S)−1 = R−1 ∪ S−1, (5.70c) (R ∩ S)−1 = R−1 ∩ S−1, (5.70d)

(R ◦ S)−1 = S−1 ◦R−1. (5.70e)

4. Properties of Binary Relations

A binary relation in a set A can have special important properties:
R is called

reflexive, if ∀ a ∈ A aRa, (5.71a)

irreflexive, if ∀ a ∈ A ¬aRa, (5.71b)

symmetric, if ∀ a, b ∈ A (aRb ⇒ bRa), (5.71c)

antisymmetric, if ∀ a, b ∈ A (aRb ∧ bRa ⇒ a = b), (5.71d)

transitive, if ∀ a, b, c ∈ A (aRb ∧ bRc ⇒ aRc), (5.71e)

linear, if ∀ a, b ∈ A (aRb ∨ bRa). (5.71f)

These relations can also be described by the relation product. For instance: a binary relation is transi-
tive if R ◦ R ⊆ R holds. Especially interesting is the transitive closure tra(R) of a relation R. It is the
smallest (with respect to the subset relation) transitive relation which contains R. In fact

tra(R) =
⋃
n≥1

Rn = R1 ∪R2 ∪R3 ∪ · · · , (5.72)

where Rn is the n times relation product of R with itself.

Let a binary relation R on the set {1, 2, 3, 4, 5} be given by its relation matrix M :
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M 1 2 3 4 5

1 1 0 0 1 0
2 0 0 0 1 0
3 0 0 1 0 1
4 0 1 0 0 1
5 0 1 0 0 0

M2 1 2 3 4 5

1 1 1 0 1 1
2 0 1 0 0 1
3 0 1 1 0 1
4 0 1 0 1 0
5 0 0 0 1 0

M3 1 2 3 4 5

1 1 1 0 1 1
2 0 1 0 1 0
3 0 1 1 1 1
4 0 1 0 1 1
5 0 1 0 0 1

Calculating M2 by matrix multiplication where the values 0 and 1 are treated as truth values and
instead of multiplication and addition one performs the logical operations conjunction and disjunction,
then,M2 is the relation matrix belonging to R2. The relation matrices of R3, R4 etc. can be calculated
similarly.

M ∨M2 ∨M3 1 2 3 4 5

1 1 1 0 1 1
2 0 1 0 1 1
3 0 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1

The relation matrix of R∪R2∪R3 (the matrix on the left) can
be get by calculating the disjunction elementwise of the matri-
ces M,M2 and M3. Since the higher powers of M contains no
new 1-s, this matrix already coincides with the relation matrix
of tra(R).

The relation matrix and relation product have important ap-
plications in search of path length in graph theory (see 5.8.2.1,
p. 404).

In the case of finite binary relations, one can easily recognize the above properties from the arrow
diagrams or from the relation matrices. For instance one can recognize the reflexivity from “self-loops”
in the arrow diagram, and from the main diagonal elements 1 in the relation matrix. Symmetry is
obvious in the arrow diagram if to every arrow there belongs another one in the opposite direction, or
if the relation matrix is a symmetric matrix (see 5.2.3, 2., p. 331). Easy to see from the arrow diagram
or from the relation matrix that the divisibility T is a reflexive but not symmetric relation.

5. Mappings

A mapping or function f (see 2.1.1.1, p. 48) from a set A to a set B with the notation f : A → B is a
rule to assign to every element a ∈ A exactly one element b ∈ B, which is called f(a).
A mapping f can be considered as a subset of A×B and so as a binary relation:

f = {(a, f(a))|a ∈ A} ⊆ A×B . (5.73)

a) f is called a injective or one to one mapping, if to every b ∈ B at most one a ∈ A with f(a) = b
exists.
b) f is called a surjective mapping from A to B, if to every b ∈ B at least one a ∈ A with f(a) = b
exists.
c) f is called bijective, if f is both injective and surjective.

If A and B are finite sets, between which exists a bijective mapping, then A and B possess the same
number of elements (see also 5.2.5, p. 335).
For a bijective mapping f : A → B exists the inverse relation f−1: B → A, the so-called inverse
mapping of f .
The relation product of mappings is used for the one after the other composition of mappings: If f :
A → B and g: B → C are mappings, then f ◦ g is also a mapping from A to C, and is defined by

(f ◦ g)(a) = g(f(a)) . (5.74)

Remark: Be careful with the order of f and g in this equation (it is treated differently in the literature!).

5.2.4 Equivalence andOrderRelations

The most important classes of binary relations with respect to a set A are the equivalence and order
relations.
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1. Equivalence Relations
A binary relation R with respect to a set A is called an equivalence relation if R is reflexive, symmetric,
and transitive. For aRb also the notations a ∼R b or a ∼ b are used, if the equivalence relation R is
already known, in words a is equivalent to b (with respect to R).

Examples of Equivalence Relations:
A: A = Z,m ∈ IN \ {0}. a ∼R b holds exactly if a and b have the same remainder when divided by

m (they are congruent modulo m).

B: Equality relation in different domains, e.g., in the set Q of rational numbers:
p1
q1

=
p2
q2

⇔ p1q2 =

p2q1 (p1, p2, q1, q2 integer; q1, q2 �= 0), where the first equality sign defines an equality in Q, while the
second one denotes an equality in Z.

C: Similarity or congruence of geometric figures.

D: Logical equivalence of expressions of propositional calculus (see 5.1.1, 6., p. 324).

2. Equivalence Classes, Partitions
1. Equivalence Classes An equivalence relation in a set A defines a partition of A into non-empty
pairwise disjoint subsets, into equivalence classes.

[a]R := {b | b ∈ A ∧ a ∼R b} (5.75)

is called an equivalence class of a with respect to R. For equivalence classes the following is valid:

[a]R �= ∅, a ∼R b ⇔ [a]R = [b]R , and a �∼R b ⇔ [a]R ∩ [b]R = ∅. (5.76)

These equivalence classes form a new set, the quotient set A/R:

A/R = {[a]R | a ∈ A}. (5.77)

A subset Z ⊆ IP(A) of the power set IP(A) is called a partition of A if

∅ /∈ Z, X, Y ∈ Z ∧X �= Y ⇒ X ∩ Y = ∅ ,
⋃

X∈Z
X = A. (5.78)

2. Decomposition Theorem Every equivalence relation R in a set A defines a partition Z of A,
namely Z = A/R. Conversely, every partition Z of a set A defines an equivalence relation R in A:

a ∼R b ⇔ ∃X ∈ Z (a ∈ X ∧ b ∈ X). (5.79)

An equivalence relation in a set A can be considered as a generalization of the equality, where “ in-
significant ” properties of the elements of A are neglected, and the elements, which do not differ with
respect to a certain property, belong to the same equivalence class.

3. Ordering Relations
A binary relationR in a setA is called a partial ordering ifR is reflexive, antisymmetric, and transitive.
If in addition R is linear, then R is called a linear ordering or a chain. The set A is called ordered or
linearly ordered by R. In a linearly ordered set any two elements are comparable. Instead of aRb also
the notation a ≤R b or a ≤ b is used, if the ordering relation R is known from the problem.

Examples of Ordering Relations:

A: The sets of numbers IN, Z, Q, IR are completely ordered by the usual ≤ relation.

B: The subset relation is also an ordering, but only a partial ordering.

C: The lexicographical order of the English words is a chain.

Remark: If Z = {A,B} is a partition of Q with the property a ∈ A ∧ b ∈ B ⇒ a < b, then (A,B) is
called aDedekind cut. If neitherA has a greatest element norB has a smallest element, so an irrational
number is uniquely determined by this cut. Besides the nest of intervals (see 1.1.1.2, p. 2) the notion
of Dedekind cuts is another way to introduce irrational numbers.

4. Hasse Diagram
Finite ordered sets can be represented by the Hasse diagram: Let an ordering relation ≤ be given on a
finite set A. The elements of A are represented as points of the plane, where the point b ∈ A is placed
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above the point a ∈ A if a < b holds. If there is no c ∈ A for which a < c < b, one says a and b are
neighbors or consecutive members. Then one connects a and b by a line segment.

A Hasse diagram is a “simplified” arrow diagram, where all the loops, arrow-
heads, and the arrows following from the transitivity of the relation are elimi-
nated. The arrow diagram of the divisibility relation T of the setA = {1, 2, 3, 4}
is given in Fig. 5.7. T also denotes an ordering relation, which is represented
by the Hasse diagram in Fig. 5.8.

5.2.5 Cardinality of Sets
In 5.2.1, p. 327 the number of elements of a finite set was called the cardinality
of the set. This notion of cardinality can be extended to infinite sets.

1

2 3

4

Figure 5.8

1. Cardinal Numbers
Two setsA andB are called equinumerous if there is a bijective mapping between them. To every setA
a cardinal number |A| or cardA is assigned, so that equinumerous sets have the same cardinal number.
A set and its power set are never equinumerous, so no “ greatest ” cardinal number exists.

2. Infinite Sets
Infinite sets can be characterized by the property that they have proper subsets equinumerous to the
set itself. The “smallest” infinite cardinal number is the cardinal number of the set IN of the natural
numbers. This is denoted by ℵ0 (aleph 0).

A set is called enumerable or countable if it is equinumerous to IN. This means that its elements can be
enumerated or written as an infinite sequence a1, a2, . . ..

A set is called non-countable if it is infinite but it is not equinumerous to IN. Consequently every infinite
set which is not enumerable is non-countable.

A: The set Z of integers and the set Q of the rational numbers are countable sets.

B: The set IR of the real numbers and the set C of the complex numbers are non-countable sets.
These sets are equinumerous to IP(IN), the power set of the natural numbers, and their cardinality is
called the continuum.

5.3 ClassicalAlgebraic Structures

5.3.1 Operations

1. n ary Operations
The notion of structure has a central role in mathematics and its applications. Next to investigate are
algebraic structures, i.e., sets on which operations are defined. An n ary operation ϕ on a set A is a
mapping ϕ: An → A, which assigns an element of A to every n tuple of elements of A.

2. Properties of Binary Operations
Especially important is the case n = 2, which is called a binary operation, e.g., addition and multipli-
cation of numbers or matrices, or union and intersection of sets. A binary operation can be considered
as a mapping ∗ : A × A → A, where instead of the notation “∗(a, b)” in this chapter mostly the infix
form “a ∗ b” will be used. A binary operation ∗ in A is called associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c), (5.80)

and commutative if

a ∗ b = b ∗ a (5.81)

holds for every a, b, c ∈ A.
An element e ∈ A is called a neutral element with respect to a binary operation ∗ in A if

a ∗ e = e ∗ a = a holds for every a ∈ A. (5.82)
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3. Exterior Operations
Sometimes exterior operations are to be considered. That are the mappings from K × A to K, where
K is an “exterior” and mostly already structured set (see 5.3.8, p. 365).

5.3.2 Semigroups
The most frequently occurring algebraic structures have their own names. A setH having one associa-
tive binary operation ∗ , is called a semigroup. The notation: is H = (H, ∗).
Examples of Semigroups:

A: Number domains with respect to addition or multiplication.

B: Power sets with respect to union or intersection.

C: Matrices with respect to addition or multiplication.

D: The set A∗ of all “ words ” (strings) over an “ alphabet ” A with respect to concatenation (free
semigroup).

Remark: Except for multiplication of matrices and concatenation of words, all operations in these
examples are also commutative; in this case one talks about a commutative semigroup.

5.3.3 Groups

5.3.3.1 Definition and Basic Properties

1. Definition, Abelian Group
A set G with a binary operation ∗ is called a group if

• ∗ is associative,
• ∗ has a neutral element e, and for every element a ∈ G there exists an inverse element a−1 such that

a ∗ a−1 = a−1 ∗ a = e. (5.83)

A group is a special semigroup.

The neutral element of a group is unique, i.e., there exists only one. Furthermore, every element of the
group has exactly one inverse. If the operation ∗ is commutative, then the group is called an Abelian
group. If the group operation is written as addition, +, then the neutral element is denoted by 0 and
the inverse of an element a by −a.

The number of elements of a finite group is called the order of the group (see 5.3.3.2,3., p. 338).

Examples of Groups:
A: The number of domains (except IN) with respect to addition.

B: Q \ {0}, IR \ {0}, and C \ {0} with respect to multiplication.

C: SM := {f : M → M∧fbijective}with respect to composition of mappings. This group is called
symmetric. If M is finite having n elements, then Sn is written instead of SM . Sn has n! elements.

The symmetric group Sn and its subgroups are called permutation groups. So, the dieder groups Dn

are permutation groups and subgroups of Sn.

D: The set Dn of all covering transformations of a regular n-gon in the plane is considered. Here a
covering transformation is the transition between two symmetric positions of the n-gon, i.e., themoving
of the n-gon into a superposable position. Denoting by d a rotation by the angle 2π/n and by σ the
reflection with respect to an axis, then Dn has 2n elements:

Dn = {e, d, d2, . . . , dn−1, σ, dσ, . . . , dn−1σ}.
With respect to the composition of mappings Dn is a group, the dihedral group. Here the equalities
dn = σ2 = e and σd = dn−1σ hold.

E: All the regular matrices (see 4.1.4, p. 272) over the real or complex numbers with respect to
multiplication.
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Remark: Matrices have a very important role in applications, especially in representation of linear
transformations. Linear transformations can be classified by matrix groups.

2. Group Tables or Cayley’s Tables
For the representation of finite groups Cayley’s tables or group tables are used: The elements of the
group are denoted at the row and column headings. The element a ∗ b is the intersection of the row of
the element a and the column of the element b.

IfM = {1, 2, 3}, then the symmetric group SM is also denoted by S3. S3 consists of all the bijective
mappings (permutations) of the set {1, 2, 3} and consequently it has 3! = 6 elements (see 16.1.1, p. 805).
Permutations are mostly represented in two rows, where in the first row there are the elements of M
and under each of them there is its image. So one gets the six elements of S3 as follows:

ε =
(
1 2 3
1 2 3

)
, p1 =

(
1 2 3
1 3 2

)
, p2 =

(
1 2 3
3 2 1

)
,

p3 =
(
1 2 3
2 1 3

)
, p4 =

(
1 2 3
2 3 1

)
, p5 =

(
1 2 3
3 1 2

)
.

(5.84)

With the successive application of these mappings (binary operations) the following group table is
obtained for S3:

◦ ε p1 p2 p3 p4 p5

ε ε p1 p2 p3 p4 p5
p1 p1 ε p5 p4 p3 p2
p2 p2 p4 ε p5 p1 p3
p3 p3 p5 p4 ε p2 p1
p4 p4 p2 p3 p1 p5 ε
p5 p5 p3 p1 p2 ε p4

(5.85)

• From the group table it can be seen that the identity per-
mutation ε is the neutral element of the group.

• In the group table every element appears exactly once in
every row and in every column.

• It is easy to recognize the inverse of any group element in
the table, i.e., the inverse of p4 in S3 is the permutation p5,
because at the intersection of the row of p4 with the column
of p5 is the neutral element ε.

• If the group operation is commutative (Abelian group), then the table is symmetric with respect to
the “main diagonal”; S3 is not commutative, since, e.g., p1 ◦ p2 �= p2 ◦ p1.
• The associative property cannot be easily recognized from the table.

5.3.3.2 Subgroups andDirect Products

1. Subgroups
Let G = (G, ∗) be a group and U ⊆ G. If U is also a group with respect to ∗, then U = (U, ∗) is called
a subgroup of G.
A non-empty subset U of a group (G, ∗) is a subgroup ofG if and only if for every a, b ∈ U , the elements
a ∗ b and a−1 are also in U (subgroup criterion).
1. Cyclic Subgroups The group G itself and E = {e} are subgroups of G, the so-called trivial
subgroups. Furthermore, a subgroup corresponds to every element a ∈ G, the so-called cyclic subgroup
generated by a:

< a > = {. . . , a−2, a−1, e, a, a2, . . .}. (5.86)

If the group operation is addition, then one writes the integer multiple ka as a shorthand notation of
the k times addition of a with itself instead of the power ak, i.e., as a shorthand notation of the k times
operation of a by itself,

< a > = {. . . , (−2)a,−a, 0, a, 2a, . . .}. (5.87)

Here < a > is the smallest subgroup of G containing a. If < a > = G holds for an element a of G,
then G is called cyclic.
There are infinite cyclic groups, e.g., Z with respect to addition, and finite cyclic groups, e.g., the set
Zm the residue class modulo m with residue class addition (see 5.4.3, 3., p. 377).

If the number of elements of a finite G group is a prime, then G is always cyclic.
2. Generalization The notion of cyclic groups can be generalized as follows: If M is a non-empty
subset of a group G, then the subgroup of G whose elements can be written in the form of a product
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of finitely many elements of M and their inverses, is denoted by < M >. The subset M is called the
system of generators of < M >. If M contains only one element, then < M > is cyclic.
3. Order of a Group, Left and Right Cosets In group theory the number of elements of a finite
group is denoted by ord G. If the cyclic subgroup < a > generated by one element a is finite, then this
order is also called the order of the element a, i.e., ord < a >= ord a.
If U is a subgroup of a group (G, ∗) and a ∈ G, then the subsets

aU := {a ∗ u|u ∈ U} and Ua := {u ∗ a|u ∈ U} (5.88)

of G are called left co-sets and right co-sets of U in G. The left or right co-sets form a partition of G,
respectively (see 5.2.4, 2., p. 334).

All the left or right co-sets of a subgroup U in a group G have the same number of elements, namely
ordU . From this it follows that the number of left co-sets is equal to the number of right co-sets. This
number is called the index of U in G. The Lagrange theorem follows from these facts.
4. Lagrange Theorem The order of a subgroup is a divisor of the order of the group.
In general it is difficult to determine all the subgroups of a group. In the case of finite groups the
Lagrange theorem as a necessary condition for the existence of a subgroup is useful.

2. Normal Subgroup or Invariant Subgroup
For a subgroup U , in general, aU is different from Ua (however |aU | = |Ua| is valid). If aU = Ua for all
a ∈ G holds, then U is called a normal subgroup or invariant subgroup of G. These special subgroups
are the basis of forming factor groups (see 5.3.3.3, 3., p. 339).
In Abelian groups, obviously, every subgroup is a normal subgroup.

Examples of Subgroups and Normal Subgroups:

A: IR \ {0}, Q \ {0} form subgroups of C \ {0} with respect to multiplication.

B: The even integers form a subgroup of Z with respect to addition.

C: Subgroups of S3: According to the Lagrange theorem the group S3 having six elements can have
subgroups only with two or three elements (besides the trivial subgroups). In fact, the group S3 has
the following subgroups: E = {ε}, U1 = {ε, p1}, U2 = {ε, p2}, U3 = {ε, p3}, U4 = {ε, p4, p5}, S3.
The non-trivial subgroups U1, U2, U3, and U4 are cyclic, since the numbers of their elements are primes.
But the group S3 is not cyclic. The group S3 has only U4 as a normal subgroup, except the trivial
normal subgroups.
Anyway, every subgroup U of a group G with |U | = |G|/2 is a normal subgroup of G.
Every symmetric group SIM and their subgroups are called permutation groups.

D: Special subgroups of the groupGL(n) of all regular matrices of type (n, n) with respect to matrix
multiplication:

SL(n) group of all matrices A with determinant 1,
O(n) group of all orthogonal matrices,
SO(n) group of all orthogonal matrices with determinant 1.

The groupSL(n) is a normal subgroup ofGL(n) (see 5.3.3.3, 3., p. 339) andSO(n) is a normal subgroup
of O(n).

E: As subgroups of all complex matrices of type (n, n) (see 4.1.4, p. 272):

U(n) group of all unitary matrices,
SU(n) group of all unitary matrices with determinant 1.

3. Direct Product
1. Definition SupposeA andB are groups, whose group operation (e.g., addition or multiplication)
is denoted by ·. In the Cartesian product (see 5.2.2, 4., p. 331) A × B (5.65a) an operation ∗ can be
introduced in the following way:

(a1, b1) ∗ (a2, b2) = (a1 · a2, b1 · b2). (5.89a)

A×B becomes a group with this operation and it is called the direct product of A and B.
(e, e) denotes the unit element of A×B, (a−1, b−1) is the inverse element of (a, b).
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For finite groups A,B

ord (A× B) = ordA · ordB (5.89b)

holds. The groupsA′ := {(a, e)|a ∈ A} andB′ := {(e, b)|b ∈ B} are normal subsets ofA×B isomorphic
to A and B, respectively.
The direct product of Abelian groups is again an Abelian group.
The direct product of two cyclic groups A,B is cyclic if and only if the greatest common divisor of the
orders of the groups is equal to 1.

A: WithZ2 = {e, a} andZ3 = {e, b, b2}, the direct productZ2×Z3 = {(e, e), (e, b), (e, b2), (a, e), (a,
b), (a, b2)}, is a group isomorphic to Z6 (see 5.3.3.3, 2., p. 339) generated by (a, b).

B: On the other hand Z2 × Z2 = {(e, e), (e, b), (a, e), (a, b)} is not cyclic. This group has order 4
and it is also called Klein’s four group, and it describes the covering operations of a rectangle.

2. Fundamental Theorem of Abelian Groups Because the direct product is a construction
which enables to make “larger” groups from “smaller” groups, the question can be reversed: When is
it possible to consider a larger group G as a direct product of smaller groups A,B, i.e., when will G be
isomorphic to A× B ? For Abelian groups, there exists the so-called fundamental theorem:
Every finite Abelian group can be represented as a direct product of cyclic groups with orders of prime
powers.

5.3.3.3 Mappings BetweenGroups

1. Homomorphism and Isomorphism
1. GroupHomomorphism Between algebraic structures, not arbitrarymappings, but only “struc-
ture keeping” mappings are considered:
Let G1 = (G1, ∗) and G2 = (G2, ◦) are two groups. A mapping h: G1 → G2 is called a group homo-
morphism, if for all a, b ∈ G1 holds:

h(a ∗ b) = h(a) ◦ h(b) (“image of product = product of images”) (5.90)

As an example, consider the multiplication law for determinants (see 4.2.2, 7., p. 279):

det(AB) = (detA)(detB). (5.91)

Here on the right-hand side there is the product of non-zero numbers, on the left-hand side there is the
product of regular matrices.
If h: G1 → G2 is a group homomorphism, then the set of elements of G1, whose image is the neutral
element of G2, is called the kernel of h, and it is denoted by kerh. The kernel of h is a normal subgroup
of G1.

2. Group Isomorphism If a group homomorphism h is also bijective, then h is called a group iso-
morphism, and the groups G1 and G2 are called isomorphic to each other (notation: G1

∼= G2). Then
ker h = E is valid.
Isomorphic groups have the same structure, i.e., they differ only by the notation of their elements.

The symmetric group S3 and the dihedral group D3 are isomorphic groups of order 6 and describe
the covering mappings of an equilateral triangle.

2. Cayley’s Theorem
The Cayley theorem says that every group can be interpreted as a permutation group (see 5.3.3.2, 2.,
p. 338):
Every group is isomorphic to a permutation group.
The permutation group P , whose elements are the permutations πg (g ∈ G) mapping a to G, ∗g, is a
subgroup of SG isomorphic to (G, ∗).
3. Homomorphism Theorem for Groups
The set of co-sets of a normal subgroup N in a group G is also a group with respect to the operation

aN ◦ bN = abN. (5.92)

It is called the factor group of G with respect to N , and it is denoted by G/N .
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The following theorem gives the correspondence between homomorphic images and factor groups of a
group, because of what it is called the homomorphism theorem for groups:
A group homomorphism h: G1 → G2 defines a normal subgroup ofG1, namely kerh = {a ∈ G1|h(a) =
e}. The factor groupG1/ kerh is isomorphic to the homomorphic image h(G1) = {h(a)|a ∈ G1}. Con-
versely, every normal subgroup N of G1 defines a homomorphic mapping natN : G1 → G1/N with
natN(a) = aN . This mapping natN is called a natural homomorphism.

Since the determinant construction det: GL(n) → IR \ {0} is a group homomorphism with ker-
nel SL(n), SL(n) is a normal subgroup of GL(n) and (according to the homomorphism theorem):
GL(n)/SL(n) is isomorphic to themultiplicative group IR\{0} of real numbers (for notation see 5.3.3.2,
2., p. 338).

5.3.4 GroupRepresentations
5.3.4.1 Definitions

1. Representation
A representation D(G) of the group G is a map (homomorphism) of G onto the group of non-singular
linear transformations D on an n-dimensional (real or complex) vector space Vn:

D(G) : a → D(a), a ∈ G. (5.93)

The vector space Vn is called the representation space; n is the dimension of the representation (see
also 12.1.3, 2., p. 657). Introducing the basis {ei} (i = 1, 2, . . . , n) in Vn every vector x can be written
as a linear combination of the basis vectors:

x =
n∑

i=1

xiei, x ∈ Vn. (5.94)

The action of the linear transformation D(a), a ∈ G, on x can be defined by the quadratic matrix
D(a) = (Dik(a)) (i, k = 1, 2, . . . , n), which provides the coordinates of the transformed vector x′

within the basis {ei}:

x′ = D(a)x =
n∑

i=1

x′
iei, x′

i =
n∑

k=1

Dik(a)xk. (5.95)

This transformation may also be considered as a transformation of the basis {ei} → {e′i}:

e′i = eiD(a) =
n∑

k=1

Dki(a)ek. (5.96)

Thus, every element a of the group is assigned to the representation matrix D = (Dik(a)):

D(G) : a → D = (Dik(a)) (i, k = 1, 2, . . . , n), a ∈ G. (5.97)

The representation matrix depends on the choice of basis.

A: Abelian Point Group Cn. A regular polygon (see 3.1.5, p. 138) with n sides has a symmetry

such that rotating it around an axis, which is perpendicular to the
plane of the figure and goes through its centerM (Fig.5.9) by an an-
gle ϕk = 2πk/n , k = 0, 1, . . . , n−1 the resulted polygon is identical
to the original one (invariance of the system under certain rotations).
The rotations Rk(ϕk) form the Abelian group of points Cn. Cn is a
cyclic group (see 5.3.3.2, p. 337), i.e. every element of the group can
be represented as a power of a single element R1, whose n-th power
is the unit element e = R0:

Cn = {e, R1, R
2
1, . . . , R

n−1
1 } , Rn

1 = e . (5.98a)

Let the center of an equilateral triangle (n = 3) be the origin (see
Fig.5.9), then the angles of rotations and the rotations are in accor-

M

B

x

C

A
y

Figure 5.9
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dance with (5.98b).

k = 0, ϕ0 = 0 or 2π,
k = 1, ϕ1 = 2π/3,
k = 2, ϕ2 = 4π/3.

(5.98b)

R0 : A → A,B → B,C → C,
R1 : A → B,B → C,C → A,
R2 : A → C,B → A,C → B .

(5.98c)

The rotations (5.98c) satisfy the relations

R2 = R2
1, R1 ·R2 = R3

1 = R0 = e . (5.98d)

They form the cyclic group C3.
The matrix of rotation (see (3.432), p. 230)

R(ϕ) =
(
cosϕ −sinϕ
sinϕ cosϕ

)
(5.98e)

of a geometric transformation of this triangle (for rotation of this figure in a fixed coordinate system see
3.5.3.3,3., p. 213) gives the representation of group C3 if ϕ is substituted by the angles given in (5.98b):

D(e) = R(0) =
(
1 0
0 1

)
, D(R1) = R(2π/3) =

(
−1/2 −

√
3/2√

3/2 −1/2

)
, (5.98f)

D(R2) = R(4π/3) =

(
−1/2

√
3/2

−
√
3/2 −1/2

)
. (5.98g)

The same relations hold for the matrices of this representation given in (5.98f) and (5.98g) as for the
group elements Rk (5.98d):

D(R2) = D(R1R1) = D(R1)D(R1), D(R1)D(R2) = D(e). (5.98h)

B: Dihedral GroupD3. The equilateral triangle is invariant with
respect to rotations by angle π about its bisectors (see Fig.5.10).
These rotations correspond to reflections SA, SB, SC with respect to
a plane being perpendicular to the plane of the triangle and containing
one of the rotation axes.

SA : Rotations A → A,B → C,C → B;

SB : Rotations A → C,B → B,C → A; (5.99a)

SC : Rotations A → B,B → A,C → C.

For the reflections there is:

SσSσ = e (σ = A,B,C). (5.99b)

M

�

�

C

Figure 5.10

The product SσSτ (σ �= τ) results in one of the rotations R1, R2, e.g. using SA SB for the triangle
ΔABC:

SA SB(ΔABC) = SA(ΔCBA) = ΔCAB = R1(ΔABC) , (5.99c)

consequently SA SB = R1. Here SA, SB, SC correspond to the outcomes on Fig.5.10.
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The cyclic group C3 and the reflections SA, SB, SC together
form the dihedral group D3. The reflections do not form a
subgroup because of (5.99c). A summary of relations is rep-
resented in group-table (5.99d).
Only the signs of the x-coordinates of points B and C are
changed at reflection SA (see Fig.5.9). This coordinate
transformation is given by the matrix

e R1 R2 SA SB SC

e e R1 R2 SA SB SC

R1 R1 R2 e SC SA SB

R2 R2 e R1 SB SC SA

SA SA SB SC e R1 R2

SB SB SC SA R2 e R1

SC SC SA SB R1 R2 e

(5.99d)

D(SA) =
(−1 0

0 1

)
. (5.99e)

The matrices representing reflections SB and SC can be found in the group-table (5.99d) and from the
matrices of representation in (5.98f) and (5.98g)

D(SB) = D(R2)D(SA) =

(
−1/2

√
3/2√

3/2 −1/2

)(−1 0
0 1

)
=

(
−1/2

√
3/2√

3/2 −1/2

)
, (5.99f)

D(SC) = D(R1)D(SA) =

(
−1/2

√
3/2√

3/2 −1/2

)(−1 0
0 1

)
=

(
1/2 −

√
3/2

−
√
3/2 −1/2

)
. (5.99g)

Matrices (5.98f) and (5.98g) together with matrices (5.99f) and (5.99g) form a representation of the
dihedral group D3.

2. Faithful Representation
A representation is called faithful if G → D(G) is an isomorphism, i.e., the assignment of the element
of the group to the representation matrix is a one-to-one mapping.

3. Properties of the Representations
A representation with the representation matrices D(a) has the following properties (a, b ∈ G, I unit
matrix):

D(a ∗ b) = D(a) ·D(b), D(a−1) = D−1(a), D(e) = I. (5.100)

5.3.4.2 Particular Representations

1. Identity Representation
Any group G has a trivial one-dimensional representation (identity representation), for which every
element of the group is mapped to the unit matrix I: a → I for all a ∈ G.

2. Adjoint Representation
The representation D+(G) is called adjoint to D(G) if the corresponding representation matrices are
related by complex conjugation and reflection in the main diagonal:

D+(G) = D̃∗(G). (5.101)

3. Unitary Representation
For a unitary representation all representation matrices are unitary matrices:

D(G) ·D+(G) = I, (5.102)

where E is the unit matrix.

4. Equivalent Representations
Two representations D(G) and D′(G) are called equivalent if for each element a of the group the cor-
responding representation matrices are related by the same similarity transformation with the non-
singular matrix T = (Ti,j):

D′(a) = T−1 ·D(a) ·T, D′
ik(a) =

n∑
j,l=1

T−1
ij ·Djl(a) · Tlk, (5.103)
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where T−1
i,j denotes the elements of the inverse matrix T−1 of T. If such a relation does not hold two

representations are called non-equivalent. The transition fromD(G) toD′(G) corresponds to the trans-
formation T : {e1, e2, . . . , en} → {e′1, e′2, . . . , e′n} of the basis in the representation space Vn:

e′ = eT, e′i =
n∑

k=1

Tkiek (i = 1, 2, . . . , n). (5.104)

Any representation of a finite group is equivalent to a unitary representation.

5. Character of a Group Element
In the representation D(G) the character χ(a) of the group element a is defined as the trace of the
representation matrix D(a) (sum of the main diagonal elements of the matrix):

χ(a) = Tr (D) =
n∑

i=1

Dii(a). (5.105)

The character of the unit element e is given by the dimension n of the representation: χ(e) = n. Since
the trace of a matrix is invariant under similarity transformations, the group element a has the same
character for equivalent representations.

Within the shell model of atomic or nuclear physics two out of three particles with space coordinates
�ri (i = 1, 2, 3) can be described by the wave function ϕα(�r) while the third particle has the wave
function ϕβ(�r) (configuration α2β(�r)). The wave function ψ of the system is a product of the three one-
particle wave functions: ψ = ϕαϕαϕβ . In accordance with the possible distributions of the particles
1, 2, 3 to the wave functions one gets the three functions

ψ1 = ϕα(�r1)ϕα(�r2)ϕβ(�r3) , ψ2 = ϕα(�r1)ϕβ(�r2)ϕα(�r3) , ψ3 = ϕβ(�r1)ϕα(�r2)ϕα(�r3) , (5.106a)

which, when realizing permutations, transform among one another according to 5.3.3.1, 2., p. 337. This
way one gets for the functions ψ1ψ2ψ3 a three dimensional representation of the symmetric group S3.
According to (5.93) thematrix elements of the representationmatrices can be found by investigating the
action of the group elements (5.84) on the coordinate subscripts in the basis elements ei. For example:

p1ψ1 = p1ϕα(�r1)ϕα(�r2)ϕβ(�r3) = ϕα(�r1)ϕβ(�r2)ϕα(�r3) = D21(p1)ψ2,

p1ψ2 = p1ϕα(�r1)ϕβ(�r2)ϕα(�r3) = ϕα(�r1)ϕα(�r2)ϕβ(�r3) = D12(p1)ψ1,

p1ψ3 = p1ϕβ(�r1)ϕα(�r2)ϕα(�r3) = ϕβ(�r1)ϕα(�r2)ϕα(�r3) = D33(p1)ψ3. (5.106b)

Altogether one finds:

D(e) =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ , D(p1) =

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠ , D(p2) =

⎛⎝ 0 0 1
0 1 0
1 0 0

⎞⎠ ,

D(p3) =

⎛⎝ 1 0 0
0 0 1
0 1 0

⎞⎠ , D(p4) =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠ , D(p5) =

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠ .

(5.106c)

For the characters one has:

χ(e) = 3, χ(p1) = χ(p2) = χ(p3) = 1, χ(p4) = χ(p5) = 0. (5.106d)

5.3.4.3 Direct Sum of Representations

The representations D(1)(G), D(2)(G) of dimension n1 and n2 can be composed to create a new repre-
sentation D(G) of dimension n = n1 + n2 by forming the direct sum of the representation matrices:

D(a) = D(1)(a)⊕D(2)(a) =

(
D(1)(a) 0

0 D(2)(a)

)
. (5.107)

The block-diagonal form of the representation matrix implies that the representation space Vn is the
direct sum of two invariant subspaces Vn1 ,Vn2 :

Vn = Vn1 ⊕ Vn2 , n = n1 + n2. (5.108)
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A subspaceVm (m < n) of Vn is called an invariant subspace if for any linear transformationD(a), a ∈
G, every vector x ∈ Vm is mapped onto an element of Vm again:

x′ = D(a)x with x,x′ ∈ Vm. (5.109)

The character of the representation (5.107) is the sum of the characters of the single representations:

χ(a) = χ(1)(a) + χ(2)(a). (5.110)

5.3.4.4 Direct Product of Representations
If ei (i = 1, 2, . . . , n1) and e′k (k = 1, 2, . . . , n2) are the basis vectors of the representation spaces Vn1

and Vn2 , respectively, then the tensor product

eik = {eiek} (i = 1, 2, . . . , n1; k = 1, 2, . . . , n2) (5.111)

forms a basis in the product space Vn1 ⊗ Vn2 of dimension n1 · n2. With the representations D(1)(G)

and D(2)(G) in Vn1 and Vn2 , respectively an n1 · n2-dimensional representation D(G) in the product
space can be constructed by forming the direct or (inner) Kronecker product (see 4.1.5,9., p. 276) of
the representation matrices:

D(G) = D(1)(G)⊗D(2)(G), (D(G))ik,jl = D
(1)
ik (a) ·D(2)

jl (a)

with i, k = 1, 2, . . . , n1; j, l = 1, 2, . . . , n2. (5.112)

The character of the Kronecker product of two representations is equal to the product of the characters
of the factors

χ(1×2)(a) = χ(1)(a) · χ(2)(a). (5.113)

5.3.4.5 Reducible and Irreducible Representations
If the representation space Vn possesses a subspace Vm (m < n) invariant under the group operations
the representation matrices can be decomposed according to

T−1 ·D(a) ·T =
(
D1(a) A
0 D2(a)

) { m rows
{ n−m rows

(5.114)

by a suitable transformation T of the basis in Vn. D1(a) andD2(a) themselves are matrix representa-
tions of a ∈ G of dimension m and n−m, respectively.

A representationD(G) is called irreducible if there is no proper (non-trivial) invariant subspace in Vn.
The number of non-equivalent irreducible representations of a finite group is finite. If a transformation
T of a basis can be found which makes Vn to a direct sum of invariant subspaces, i.e.,

Vn = V1 ⊕ · · · ⊕ Vnj
, (5.115)

then for every a ∈ G the representation matrix D(a) can be transformed into the block-diagonal form
(A = 0 in (5.114)):

T−1 ·D(a) ·T = D(1)(a)⊕ · · · ⊕D(nj)(a) =

⎛⎜⎜⎝
D(1)(a) 0

. . .

0 D(nj)(a)

⎞⎟⎟⎠ . (5.116)

by a similarity transformation with T. Such a representation is called completely reducible.

Remark: For the application of group theory in natural sciences a fundamental task consists in the
classification of all non-equivalent irreducible representations of a given group.

The representation of the symmetric group S3 given in (5.106c), p. 343, is reducible. For example,
in the basis transformation {e1, e2, e3} −→ {e′1 = e1 + e2 + e3, e′2 = e2, e′3 = e3} one obtains for the
representation matrix of the permutation p3 (with ψ1 = e1, ψ2 = e2, ψ3 = e3):

D(p3) =

⎛⎝ 1 0 0
0 0 1
0 1 0

⎞⎠ =
(
D1(p3) 0

A D2(p3)

)
(5.117)
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with A =
(
0
0

)
, D1(p3) = 1 as the identity representation of S3 and D2(p3) =

(
0 1
1 0

)
.

5.3.4.6 Schur’s Lemma 1
If C is an operator commuting with all transformations of an irreducible representation D of a group
[C,D(a)] = C ·D(a)−D(a) ·C = 0, a ∈ G, and the representation space Vn is an invariant subspace
of C, then C is a multiple of the unit operator, i.e., a matrix (cik) which commutates with all matrices
of an irreducible representation is a multiple of the matrix I, C = λ · I, λ ∈ C.

5.3.4.7 Clebsch-Gordan Series
In general, the Kronecker product of two irreducible representationsD(1)(G), D(2)(G) is reducible. By

a suitable basis transformation in the product space D(1)(G) ⊗ D(2)(G) can be decomposed into the

direct sum of its irreducible parts D(α) (α = 1, 2, . . . , n) (Clebsch–Gordan theorem). This expansion
is called the Clebsch–Gordan series:

D(1)(G)⊗D(2)(a) =
n∑

α=1

⊕mαD
(α)(G). (5.118)

Here, mα is the multiplicity with which the irreducible representation D(α)(G) occurs in the Clebsch–
Gordan series.
The matrix elements of the basis transformation in the product space causing the reduction of the
Kronecker product into its irreducible components are called Clebsch–Gordan coefficients.

5.3.4.8 Irreducible Representations of the Symmetric Group SM

1. Symmetric Group SM

The non-equivalent irreducible representations of the symmetric group SM are characterized uniquely
by the partitions of M , i.e., by the splitting of M into integers according to

[λ] = [λ1, λ2, . . . , λM ], λ1 + λ2 + · · ·+ λM = M, λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0. (5.119)

The graphic representation of the partitions is done by arranging boxes in Young diagrams.

For the group S4 one obtains five Young diagrams
as shown in the figure.

The dimension of the representation [λ] is given by

n[λ] = M !

∏
i<j≤k

(λi − λj + j − i)

Πk
i=1(λi + k − i)!

. (5.120)
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The Young diagram [λ̃] conjugated to [λ] is constructed by the interchange of rows and columns.
In general, the irreducible representation of SM is reducible if one restricts to one of the subgroups
SM−1, SM−2, · · ·.

In quantum mechanics for a system of identical particles the Pauli principle demands the construc-
tion of many-body wave functions that are antisymmetric with respect to the interchange of all coordi-
nates of two arbitrary particles. Often, the wave function is given as the product of a function in space
coordinates and a function in spin variables. If for such a case due to particle permutations the spatial
part of the wave function transforms according to the irreducible representation [λ] of the symmetric

group, then it has to be combined with a spin function transforming according to [λ̃] in order to get a
total wave function which is antisymmetric if two particles are interchanged.

5.3.5 Applications ofGroups
In chemistry and in physics, groups are applied to describe the “symmetry” of the corresponding
objects. Such objects are, for instance, molecules, crystals, solid structures or quantum mechanical
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systems. The basic idea of these applications is the von Neumann principle:
If a system has a certain group of symmetry operations, then every physical observational quantity of
this system must have the same symmetry.

5.3.5.1 Symmetry Operations, Symmetry Elements

A symmetry operation s of a space object is a mapping of the space into itself such that the length of
line segments remains unchanged and the object goes into a covering position to itself. The set of fixed
points of the symmetry operation s is denoted by Fix s, i.e., the set of all points of space which remain
unchanged for s. The set Fix s is called the symmetry element of s. The Schoenflies symbolism is used
to denote the symmetry operation.
Two types of symmetry operations are distinguished: Operations without a fixed point and operations
with at least one fixed point.

1. Symmetry Operations without a Fixed Point, for which no point of the space stays un-
changed, cannot occur for bounded space objects, but now only such objects are considered. A sym-
metry operation without a fixed point is for instance a parallel translation.

2. Symmetry Operations with at least One Fixed Point are for instance rotations and reflec-
tions. The following operations belong to them.

a) Rotations Around an Axis by an Angle ϕ: The axis of rotation and also the rotation itself is
denoted by Cn for ϕ = 2π/n. The axis of rotation is then called of n-th order.

b) Reflection with Respect to a Plane: Both the plane of reflection and the reflection itself are
denoted by σ. If additionally there is a principal rotation axis, then one draws it perpendicularly and
denote the planes of reflections which are perpendicular to this axis by σh (h from horizontal) and the
planes of reflections passing through the rotational axis are denoted by σv (v from vertical) or σd (d
means dihedral, if certain angles are halved).

c) Improper Orthogonal Mappings: An operation such that after a rotation Cn a reflection σh

follows, is called an improper orthogonal mapping and it is denoted by Sn. Rotation and reflection
commute. The axis of rotation is then called an improper rotational axis of n-th order and it is also
denoted by Sn. This axis is called the corresponding symmetry element, although only the symme-
try center stays fixed under the application of the operation Sn. For n = 2, an improper orthogonal
mapping is also called a point reflection or inversion (see 4.3.5.1, p. 287) and it is denoted by i.

5.3.5.2 Symmetry Groups or Point Groups

For every symmetry operation S, there is an inverse operation S−1, which reverses S “back”, i.e.,

SS−1 = S−1S = ε. (5.121)

Here ε denotes the identity operation, which leaves the whole space unchanged. The family of symmetry
operations of a space object forms a group with respect to the successive application, which is in general
a non-commutative symmetry group of the objects. The following relations hold:

a) Every rotation is the product of two reflections. The intersection line of the two reflection planes is
the rotation axis.

b) For two reflections σ and σ′

σσ′ = σ′σ (5.122)

if and only if the corresponding reflection planes are identical or they are perpendicular to each other.
In the first case the product is the identity ε, in the second one the rotation C2.

c) The product of two rotations with intersecting rotational axes is again a rotation whose axis goes
through the intersection point of the given rotational axes.

d) For two rotations C2 and C ′
2 around the same axis or around axes perpendicular to each other:

C2C
′
2 = C ′

2C2. (5.123)
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The product is again a rotation. In the first case the corresponding rotational axis is the given one, in
the second one the rotational axis is perpendicular to the given ones.

5.3.5.3 Symmetry Operations withMolecules
It requires a lot of work to recognize every symmetry element of an object. In the literature, for instance
in [5.10], [5.13], it is discussed in detail how to find the symmetry groups of molecules if all the symmetry
elements are known. The following notation is used for the interpretation of a molecule in space: The
symbols above C in Fig. 5.11mean that the OH group lies above the plane of the drawing, the symbol
to the right-hand side of C means that the group OC2H5 is under C.
The determination of the symmetry group can be made by the following method.

1. No Rotational Axis

a) If no symmetry element exists, then G = {ε} holds, i.e., the molecule does not have any symmetry
operation but the identity ε.

The molecule hemiacetal (Fig.5.11) is not planar and it has four different atom groups.

b) If σ is a reflection or i is an inversion, then G = {ε, σ} =: Cs or G = {ε, i} = Ci hold, and with this
it is isomorphic to Z2.

The molecule of tartaric acid (Fig.5.12) can be reflected in the center P (inversion).
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2. There is Exactly One Rotational Axis C
a) If the rotation can have any angle, i.e., C = C∞, then the molecule is linear, and the symmetry
group is infinite.

A: For the molecule of sodium chloride (common salt) NaCl there is no horizontal reflection. The
corresponding symmetry group of all the rotations around C is denoted by C∞v.

B: The molecule O2 has one horizontal reflection. The corresponding symmetry group is generated
by the rotations and by this reflection, and it is denoted by D∞h.

b) The rotation axis is of n-th order, C = Cn , but it is not an improper rotational axis of order 2n.
If there is no further symmetry element, then G is generated by a rotation d by an angle π/n around
Cn, i.e., G =< d >∼= Zn . In this case G is also denoted by Cn.
If there is a further vertical reflection σv, then G =< d, σv >∼= Dn holds (see 5.3.3.1, p. 336), and G is
denoted by Cnv.
If there exists an additional horizontal reflection σh, thenG =< d, σv >∼= Zn×Z2 holds. G is denoted
by Cnh and it is cyclic for odd n (see 5.3.3.2, p. 337).

A: For hydrogen peroxide (Fig.5.13) these three cases occur in the order given above for 0 < δ <
π/2, δ = 0 and δ = π/2.

B: Themolecule of water H2O has a rotational axis of second order and a vertical plane of reflection,
as symmetry elements. Consequently, the symmetry group of water is isomorphic to the group D2,
which is isomorphic to the Klein four-group V4 (see 5.3.3.2, 3., p. 338).

c) The rotational axis is of order n and at the same time it is also an improper rotational axis of order
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2n. We have to distinguish two cases.
α) There is no further vertical reflection, so G ∼= Z2n holds, and G is denoted also by S2n.

An example is the molecule of tetrahydroxy allene with formula C3(OH)4 (Fig.5.14).

β) If there is a vertical reflection, then G is a group of order 4n, which is denoted by D2n.

n = 2 gives G ∼= D4, i.e., the dihedral group of order eight. An example is the allene molecule
(Fig.5.15).
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3. Several Rotational Axes If there are several rotational axes, then one has to distinguish further
cases. In particular, if several rotational axes have an order n ≥ 3, then the following groups are the
corresponding symmetry groups.

a) Tetrahedral group Td: Isomorphic to S4, ordTd = 24.

b) Octahedral group Oh: Isomorphic to S4 × Z2, ordOh = 48.

c) Icosahedral group Ih: ordIh = 120.
These groups are the symmetry groups of the regular polyhedron discussed in 3.3.3,Table 3.7, p. 155,
(Fig.3.63).

The methane molecule (Fig.5.16) has the tetrahedral group Td as a symmetry group.

5.3.5.4 Symmetry Groups in Crystallography
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Figure 5.17

1. Lattice Structures
In crystallography the parallelepiped represents, independently of
the arrangement of specific atoms or ions, the elementary (unit) cell
of the crystal lattice. It is determined by three non-coplanar ba-
sis vectors �ai starting from one lattice point (Fig. 5.17). The infi-
nite geometric lattice structure is created by performing all primitive

translations �tn:
�tn = n1�a1 + n2�a2 + n3�a3, n = (n1, n2, n3) ni ∈ Z. (5.124)

Here, the coefficients ni (i = 1, 2, . . .) are integers.

All the translations �tn fixing the space points of the lattice L = {�tn} in terms of lattice vectors form

the translation group T with the group element T (�tn), the inverse element T−1(�tn) = T (−�tn), and

the composition law T (�tn) ∗ T ( �tm) = T (�tn + �tm). The application of the group element T (�tn) to the
position vector �r is described by:

T (�tn)�r = �r+ �tn. (5.125)
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2. Bravais Lattices

Taking into account the possible combinations of the relative lengths of the basis vectors �ai and the pair-
wise related angles between them (particularly angles 90◦ and 120◦) one obtains seven different types
of elementary cells with the corresponding lattices, the Bravais lattices (see Fig. 5.17, andTable 5.4).
This classification can be extended by seven non-primitive elementary cells and their corresponding
lattices by adding additional lattice points at the intersection points of the face or body diagonals, pre-
serving the symmetry of the elementary cell. In this way one may distinguish one-side face-centered
lattices, body-centered lattices, and all-face centered lattices.

Tabelle 5.4 Primitive Bravais lattice

Elementary cell Relative lengths Angles between
of basis vectors basis vectors

triclinic a1 �= a2 �= a3 α �= β �= γ �= 90◦

monoclinic a1 �= a2 �= a3 α = γ = 90◦ �= β

rhombic a1 �= a2 �= a3 α = β = γ = 90◦

trigonal a1 = a2 = a3 α = β = γ < 120◦( �= 90◦)

hexagonal a1 = a2 �= a3 α = β = 90◦, γ = 120◦

tetragonal a1 = a2 �= a3 α = β = γ = 90◦

cubic a1 = a2 = a3 α = β = γ = 90◦

3. Symmetry Operations in Crystal Lattice Structures

Among the symmetry operations transforming the space lattice to equivalent positions there are point
group operations such as certain rotations, improper rotations, and reflections in planes or points. But
not all point groups are also crystallographic point groups. The requirement that the application of a

group element to a lattice vector �tn leads to a lattice vector �t′n ∈ L (L is the set of all lattice points)
again restricts the allowed point groups P with the group elements P (R) according to:

P = {R : R�tn ∈ L} , �tn ∈ L. (5.126)

Here, R denotes a proper (R ∈ SO(3)) or improper rotation operator (R = IR′ ∈ O(3), R′ ∈
SO(3), I is the inversion operator with I�r = −�r, �r is a position vector). For example, only n-fold
rotation axes with n = 1, 2, 3, 4 or 6 are compatible with a lattice structure. Altogether, there are 32
crystallographic point groups P .

The symmetry group of a space lattice may also contain operators representing simultaneous applica-
tions of rotations and primitive translations. In this way one gets gliding reflections, i.e., reflections in
a plane and translations parallel to the plane, and screws, i.e., rotations through 2π/n and translations
by m�a/n (m = 1, 2, . . . , n − 1, �a are basis translations). Such operations are called non-primitive

translations �V(R), because they correspond to “fractional” translations. For a gliding reflection R is
a reflection and for a screw R is a proper rotation.

The elements of the space group G, for which the crystal lattice is invariant are composed of elements

P of the crystallographic point group P , primitive translations T (�tn) and non-primitive translations
�V(R):

G = {{R|�V(R) + �tn : R ∈ P, �tn ∈ L}}. (5.127)

The unit element of the space group is {e|0} where e is the unit element of R. The element {e|�tn}
means a primitive translation, {R|0} represents a rotation or reflection. Applying the group element
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{R|�tn} to the position vector �r one obtains:

{R|�tn}�r = R�r+ �tn. (5.128)

4. Crystal Systems (Holohedry)

From the 14 Bravais lattices, L = {�tn} , the 32 crystallographic point groups P = {R} and the allowed

non-primitive translations �V(R) one can construct 230 space groups G = {R|�V(R) + �tn}. The point
groups correspond to 32 crystallographic classes. Among the point groups there are seven groups that
are not a subgroup of another point group but contain further point groups as a subgroup. Each of
these seven point groups form a crystal system (holohedry). The symmetry of the seven crystal systems
is reflected in the symmetry of the seven Bravais lattices. The relation of the 32 crystallographic classes
to the seven crystal systems is given in Table 5.5 using the notation of Schoenflies.

Remark: The space group G (5.127) is the symmetry group of the “empty” lattice. The real crystal
is obtained by arranging certain atoms or ions at the lattice sites. The arrangement of these crystal
constituents exhibits its own symmetry. Therefore, the symmetry groupG0 of the real crystal possesses
a lower symmetry than G (G ⊃ G0), in general.

Table 5.5 Bravais lattice, crystal systems, and crystallographic classes
Notation: Cn – rotation about an n-fold rotation axis, Dn – dihedral group, Tn – tetrahedral group,

On – octahedral group, Sn – mirror rotations with an n-fold axis.

Lattice type Crystal system Crystallographic class
(holohedry)

triclinic Ci C1, Ci

monoclinic C2h C2, Ch, C2h

rhombic D2h C2v, D2, D2h

tetragonal D4h C4, S4, C4h, D4, C4v, D2d, D4h

hexagonal D6h C6, C3h, C6h, D6, C6v, D3h, D6h

trigonal D3d C3, S6, D3, C3v, D3d

cubic Oh T, Th, Td, O,Oh

5.3.5.5 Symmetry Groups in QuantumMechanics

Linear coordinate transformations that leave the Hamiltonian Ĥ of a quantum mechanical system (see

9.2.4, 2., p. 593) invariant represent a symmetry group G, whose elements g commute with Ĥ:

[g, Ĥ] = gĤ − Ĥg = 0, g ∈ G. (5.129)

The commutation property of g and Ĥ implies that in the application of the product of the operators

g and Ĥ to a state ϕ the sequence of the action of the operators is arbitrary:

g(Ĥϕ) = Ĥ(gϕ). (5.130)

Hence, one has: If ϕEα (α = 1, 2, . . . , n) are the eigenstates of Ĥ with energy eigenvalue E of degener-
acy n, i.e.,

ĤϕEα = EϕEα (α = 1, 2, . . . , n), (5.131)

then the transformed states gϕEα are also eigenstates belonging to the same eigenvalue E:

gĤϕEα = ĤgϕEα = EgϕEα. (5.132)
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The transformed states gϕEα can be written as a linear combination of the eigenstates ϕEα:

gϕEα =
n∑

β=1

Dβα(g)ϕEβ. (5.133)

Hence, the eigenstates ϕEα form the basis of an n-dimensional representation space for the representa-

tionD(G) of the symmetry group G of the Hamiltonian Ĥ with the representation matrices (Dαβ(g)) .
This representation is irreducible if there are no “hidden” symmetries. One can state that the energy
eigenstates of a quantum mechanical system can be labeled by the signatures of the irreducible repre-
sentations of the symmetry group of the Hamiltonian.

Thus, the representation theory of groups allows for qualitative statements on such patterns of the en-
ergy spectrum of a quantummechanical system which are established by the outer or inner symmetries
of the system only. Also the splitting of degenerate energy levels under the influence of a perturbation
which breaks the symmetry or the selection rules for the matrix elements of transitions between energy
eigenstates follows from the investigation of representations according to which the participating states
and operators transform under group operations.

The application of group theory in quantum mechanics is presented extensively in the literature (see,
e.g., [5.6], [5.7], [5.8], [5.10], [5.11]).

5.3.5.6 Further Applications of Group Theory in Physics
Further examples of the application of particular continuous groups in physics can only be mentioned
here (see, e.g., [5.6], [5.10]).

U(1): Gauge transformations in electrodynamics.

SU(2): Spin and isospin multiplets in particle physics.

SU(3): Classification of the baryons and mesons in particle physics. Many-body problem in nuclear
physics.

SO(3): Angular momentum algebra in quantummechanics. Atomic and nuclear many-body problems.

SO(4): Degeneracy of the hydrogen spectrum.

SU(4): Wigner super-multiplets in the nuclear shell model due to the unification of spin and isospin
degrees of freedom. Description of flavor multiplets in the quark model including the charm degree of
freedom.

SU(6): Multiplets in the quark model due to the combination of flavor and spin degrees of freedom.
Nuclear structure models.

U(n): Shell models in atomic and nuclear physics.

SU(n), SO(n): Many-body problems in nuclear physics.

SU(2)⊗ U(1): Standard model of the electro weak interaction.

SU(5) ⊃ SU(3)⊗ SU(2)⊗ U(1): Unification of fundamental interactions (GUT).

Remark: The groups SU(n) and SO(n) are Lie groups, i.e. continuous groups (see, 5.3.6, p. 351 and
e.g., [5.6]).

5.3.6 LieGroups andLieAlgebras

5.3.6.1 Introduction
Lie groups and Lie algebras are named after the Norwegian mathematician Sophus Lie (1842-1899). In
this chapter only Lie groups of matrices are considered since they are most important in applications.
Main examples of matrix-Lie groups are:

• the group O(n) of orthogonal matrices,

• the subgroup SO(n) of orthogonal matrices of determinants +1, i.e. the orthogonal matrices de-
scribing rotations in IRn,



352 5. Algebra and Discrete Mathematics

• the Euclidean group SE(n), which describes rigid-body motions.

These groups have many applications in computer graphics and in robotics.

The most important relation between a Lie group and the corresponding Lie algebra will be described
by the exponential mapping. This relation is explained by the following example.

The solution of initial value problems of first order differential equations or of a system of differential
equations can be determined with the help of the exponential function.
The initial value problem (5.134a) for y = y(t) has the following solution (5.134b):

dy

dt
= x y (x const) with y(0) = y0 , (5.134a) y(t) = exty0 . (5.134b)

Similarly, for the system of first order differential equations with unknown vector �y = �y(t) and with
the constant coefficient matrix X the initial value problem (5.135a)

d�y

dt
=

(
dy1
dt

,
dy2
dt

, . . . ,
dyn
dt

)T

= X�y (matrix X const) with �y(0) = �y0, (5.135a)

has the solution (5.135b) with the matrix-exponential function etX:

�y(t) = eX t�y0 , etX :=
∞∑
k=0

1

k!
tkXk = In×n +

∞∑
k=1

1

k!
tkXk . (5.135b)

The special matrix-exponential function etX for a given quadratic n × n matrix X has the following
properties:

• e0X = In×n , where In×n denotes the unit matrix.

• etX is invertible, because det etX = et·SpurX �= 0.

• et1Xet2X = e(t1+t2)X = et2Xet1X for every t1, t2 ∈ IR , but in general is eX1eX2 �= eX2eX1 �= eX1+X2 .

• In particular e−tXetX = etXe−tX = In×n .

• d

dt
etX

∣∣∣∣∣
t=0

= X etX
∣∣∣
t=0

= X .

Consequently, the elements etX (for a fixed X) form a multiplicative group with respect to matrix
multiplication. Since t ∈ IR, the matrices etX form a one dimensional group. At the same time it is one
of the simplest examples of Lie groups. It will be shown that matricesX and tX are elements of the Lie
algebra belonging to this Lie group (see 5.3.6.4, p. 356). In this way the exponential function generates
the Lie group from the elements of the Lie algebra.

5.3.6.2 Matrix-Lie Groups
For matrix-Lie groups it is not necessary to define Lie groups in general. For general Lie groups there
should be introduced the notion of differentiable manifolds, which is not needed here. For matrix-Lie
groups the following definitions are important, while in further discussions the main topic will be the
general linear group.

1. General Linear Group
1. Group A group (see 5.3.3, p. 336) is a set G with a map

G×G → G , (g, h) �→ g ∗ h , (5.136a)

which is the so called group operation or group multiplication with the following properties:

• Associativity: for every g, h, k ∈ G

g ∗ (h ∗ k) = (g ∗ h) ∗ k , (5.136b)

• Existence of identity: There is an element e ∈ G , such that for every g ∈ G

g ∗ e = e ∗ g = g , (5.136c)
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• Existence of an inverse: For every g ∈ G there is an element h ∈ G such that

g ∗ h = h ∗ g = e . (5.136d)

Remark 1: If g ∗ h = h ∗ g for everyg, h ∈ G, then the group is called commutative. The matrix
groups considered here are not commutative. It follows obviously from the definition, that the product
of two elements of the group also belongs to the group, so the group is closed with respect to group
multiplication.

Remark 2: Let Mn(IR) the vector space of all n × n matrices with real entries. Mn(IR) is obviously
not a group with respect to matrix multiplication, since not every n× n matrix is invertible.
2. Definition of the General Linear Group The set of all real, invertible, n × n matrices, which
obviously form a group with respect to matrix multiplication, is called the general linear group and is
denoted by GL(n, IR).

2. Matrix-Lie Groups

1. Convergence of Matrices A sequence {Am}∞m=1 of matrices Am = (a
(m)
kl )nk,l=1 where Am ∈

Mn(IR) converges to the n × n matrix A, if every sequence of entries {(a(m)
kl )}∞m=1 converges to the

corresponding matrix entry akl in the sense of convergence of real numbers.
2. Definition of the Matrix-Lie Groups A matrix-Lie group is a subgroup G of GL(n, IR) with
the property: Let {Am}∞m=1 be an arbitrary sequence of matrices from G converging to a matrix A ∈
Mn(IR) in the sense of convergence in Mn(IR). Then either A ∈ G or A is not invertible.

This definition can be also formulated in the following way: A matrix-Lie group is a subgroup which is
also a closed subset of GL(n , IR). (It does not mean, that G must be closed in Mn(IR)).
3. Dimension of the Matrix-Lie Group The dimension of a matrix-Lie group is defined as the
dimension of the corresponding Lie algebra (see 5.3.6.4, p. 356). The matrix-Lie group GL(n , IR) has
dimension n2.

3. Continuous Groups
Matrix-Lie groups can be introduced also with the help of continuous groups (see [22.22], [5.9], [5.7]).
1. Definition A continuous group is a special infinite group whose elements are given uniquely by
a continuous parameter vector ϕ = (ϕ1, ϕ2, . . . , ϕn):

a = a(ϕ) . (5.137)

Group of rotation matrices in IR2 (see (3.432), p. 230):

D =
(
cosϕ −sinϕ
sinϕ cosϕ

)
= a(ϕ) mit 0 ≤ ϕ ≤ 2π . (5.138)

The group elements depend only on one real parameter ϕ.
2. Product The product of two elements a1 = a(ϕ

1
), a2 = a(ϕ

2
) of a continuous groupwith elements

a = a(ϕ) is given by

a1 ∗ a2 = a3 = a(ϕ3) with (5.139a)

ϕ3 = f(ϕ1, ϕ2) , (5.139b)

where the components of f(ϕ1, ϕ2) are continuously differentiable functions.

The product of two rotation matrices a = a(ϕ1) and a = a(ϕ2) with 0 ≤ ϕ1, ϕ2 ≤ 2π (a(ϕ) as in
(5.138), is a3 = a(ϕ1) ∗ a(ϕ2) = a(ϕ3) with ϕ3 = f(ϕ1, ϕ2) = ϕ1 + ϕ2. Using the Falk’s scheme (see
4.1.4, 5., p. 273) and addition theorems one gets:
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a(ϕ2)
a(ϕ1) a(ϕ3) = a(ϕ1 + ϕ2)

or detailed

cosϕ2 − sinϕ2

sinϕ2 cosϕ2

cosϕ1 − sinϕ1

sinϕ1 cosϕ1

cosϕ1 cosϕ2 − sinϕ1 sinϕ2 − cosϕ1 sinϕ2 − sinϕ1 cosϕ2

sinϕ1 cosϕ2 + cosϕ1 sinϕ2 − sinϕ1 sinϕ2 + cosϕ1 cosϕ2

.

3. Dimension The parameter vectors ϕ are elements of a vector space which is called parameter
space. In this parameter space there is a domain which is given as the domain of the continuous group,
and it is called the group space. The dimension of this group space is considered as the dimension of
the continuous group.

A: The group of the real quadratic n×n invertible matrices has the dimension n2, since every entry
can be considered as a parameter.

B: The group of the rotation matrices (with respect to matrix multiplication) D in (5.138) has
dimension 1. The rotationmatrices are of type 2×2, but their four entries depend only on one parameter
ϕ (0 ≤ ϕ ≤ 2π).

4. Lie Groups

1. Definition of the Lie Group A Lie group is a continuous group where all elements of the group
are given as continuous functions of the parameters.

2. Special Matrix-Lie Groups and their Dimension

A Group SO(n) of Rotations R: The group SO(n) of rotationsR acts on the elements �x ∈ IRn

with matrix multiplication as �x ′ = R�x ∈ IRn . SO(n) is an n(n− 1)/2-dimensional Lie group.

B Special Euclidean Group SE(n) : The special Euclidian group SE(n) consists of elements

g = (R, �b) withR ∈ SO(n) and �b ∈ IRn and with group multiplication g1 ◦ g2 = (R1 R2, R1
�b2 + �b1).

It acts on the elements of Euclidean spaces IRn as

�x ′ = R�x+ �b . (5.140)

SE(n) is the group of rigid-bodymotions ofn-dimensional Euclidean space, it is ann(n+1)/2-dimensional
Lie group. Discrete subgroups of SE(n) are e.g. the crystallographic space groups, i.e. the symmetry
group of a regular crystal-lattice.

C Scaled Euclidean Group SIM(n): The scaled Euclidian group SIM(n) consists of all pairs

(eaR, �b) with a ∈ IR, R ∈ SO(n), �b ∈ IRn, with group multiplication g1 ◦ g2 = (ea1+a2R1R2, R1
�b2 +

�b1). It acts on the elements of IRn by translation, rotation and dilatation (=stretching or shrinking):

�x ′ = eaR�x+ �b . (5.141)

The scaled Euclidean group has the dimension 1 + n(n+ 1)/2.

DReal Special LinearGroupSL(n , IR): The real special linear group consists of all (real) n×n
matrices with determinant +1. It acts on the elements of IRn with �x ′ = L�x by rotation, distortion and
shearing so that the volume remains the same and parallel lines remain parallel. The dimension is
n2 − 1.

E Special Affine Group: The special affine groups of IRn, which consists of all pairs (ea L, �b)

with L ∈ SL(n) and �b ∈ IRn , acts on the objects in IRn as rotation, translation, shearing, distortion
and dilatation. This Lie group is the most general group of deformations in Euclidean spaces mapping
parallel lines into parallel lines; it has dimension n(n+ 1).

F Group SO(2): The group SO(2) describes all rotations about the origin in IR2:

SO(2) =
{(

cosϕ − sinϕ
sinϕ cosϕ

)
, ϕ ∈ IR

}
(5.142)
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G Group SL(2): Every element of SL(2) can be represented as(
cos θ − sin θ
sin θ cos θ

)(
et 0
0 e−t

)(
1 ξ
0 1

)
. (5.143)

H Group SE(2): The elements of the group SE(2) can be represented as 3× 3 matrices:⎛⎝ cos θ − sin θ x1

sin θ cos θ x2

0 0 1

⎞⎠ with θ ∈ IR and �x =
(
x1

x2

)
∈ IR2 . (5.144)

Remark: Beside real matrix-Lie groups complex matrix-Lie groups also can be considered. So, e.g.
SL(n,C) is the Lie group of all complex n × n matrices with determinant +1. Similarly there are
matrix-Lie groups whose entries are quaternions.

5.3.6.3 Important Applications

1. Rigid BodyMovement
1. The group SE(3) is the group of rigid-body motions in the Euclidean space IR3. That is why it is so
often applied in control of robots. The 6 independent transformations are defined usually as follows:

1. Translation in x-direction,
2. Translation in y-direction,
3. Translation in z-direction,

4. Rotation about the x-axis,
5. Rotation about the y-axis,
6. Rotation about the z-axis.

These transformations can be represented by 4× 4 matrices applied to homogeneous coordinates (see

3.5.4.2, p. 231) in 3 dimensions, i.e. (x, y, z)T ∈ IR3 is represented as a vector (x, y, z, 1)T with four
coordinates (see 3.5.4.2, p. 231).
Matrices corresponding to the transformations 1 until 6 are:

M1 =

⎛⎜⎜⎝
1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , M2 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 b
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , M3 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1

⎞⎟⎟⎠ , (5.145a)

M4 =

⎛⎜⎜⎝
1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

⎞⎟⎟⎠ , M5 =

⎛⎜⎜⎝
cos β 0 sin β 0
0 1 0 0

− sin β 0 cos β 0
0 0 0 1

⎞⎟⎟⎠ , M6 =

⎛⎜⎜⎝
cos γ − sin γ 0 0
sin γ cos γ 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .(5.145b)

The matrices M4, M5, M6 describe the rotations in IR3, consequently SO(3) is a subgroup of SE(3).

The group SE(3) acts on �x = (x, y, z)T ∈ IR3 with homogeneous coordinates (�x, 1)T as follows:(
�x ′

1

)
=

(
R �v
0 1

)(
�x
1

)
=

(
R�x+ �v

1

)
(5.146)

where R ∈ SO(3) is a rotation, and �v = (a, b, c)T is a translation vector.

2. Affine Transformations of 2-Dimensional Space
The group GA(2) of affine transformations of the 2-dimensional space is a 6-dimensional matrix Lie
group with the following 6 dimensions:

1. Translation in x-direction,
2. Translation in y-direction,
3. Rotation about the origin,

4. Stretching or shrinking with respect to the origin,
5. Shearing (stretching with resp. to y, with resp. to x),
6. 45◦-shearing with respect to 5.

Also these transformations are described bymatrices in homogeneous coordinates (x, y, 1)T for (x, y)T ∈
IR2:

M1 =

⎛⎝ 1 0 a
0 1 0
0 0 1

⎞⎠ , M2 =

⎛⎝ 1 0 0
0 1 b
0 0 1

⎞⎠ , M3 =

⎛⎝ cosα − sinα 0
sinα cosα 0
0 0 1

⎞⎠ , (5.147a)
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M4 =

⎛⎝ eτ 0 0
0 eτ 0
0 0 1

⎞⎠ , M5 =

⎛⎝ eμ 0 0
0 e−μ 0
0 0 1

⎞⎠ , M6 =

⎛⎝ cosh ν sinh ν 0
sinh ν cosh ν 0
0 0 1

⎞⎠ . (5.147b)

This group has as essential subgroups the translation group, given byM1 andM2, the Euclidean group
SE(2), given by M1, M2 and M3, the similarity group, given by M1, M2, M3, M4.

Application: The group GA(2) can be applied to describe all transformations of a planar object
which is recorded under slight angle modifications by a camera moving in the 3 dimensional space.
If also large changes in angles of perspectivity can occur, then group P (2) the group of all transforma-
tions of projective spaces can be used. The matrix-Lie group is generated by the matricesM1 untilM6

and by the two further matrices

M7 =

⎛⎝ 1 0 0
0 1 0
β 0 1

⎞⎠ , M8 =

⎛⎝ 1 0 0
0 1 0
0 γ 1

⎞⎠ . (5.147c)

These two additional matrices correspond to a change of the horizon or vanishing of an edge of the plane
picture.

5.3.6.4 Lie Algebra

1. Real Lie algebra
A real Lie algebra A is a real vector space with an operation

[· , ·] : A×A → A, (5.148)

which is called the Lie bracket and for which the following properties are valid for all a, b, c ∈ A:

• [. , .] is bilinear,

• [a , b] = −[b , a], i.e. the operation is skew-symmetric or anticommutative,

• the so called Jacobi identity is valid (as a replacement of the missing associativity)

[a , [b , c]] + [c , [a , b]] + [b , [c, a]] = 0. (5.149)

Obviously [a , a] = 0 holds.

2. Lie Bracket
For (real) n× n matrices X and Y a Lie bracket is given by the commutator, i.e.

[X, Y] := XY −YX. (5.150)

3. Special Lie-Algebras
There are associated Lie algebras to matrix-Lie groups.

1. A function g : IR → GL(n) is a one-parameter subgroup of GL(n), if

• g is continuous,

• g(0) = In×n,

• g(t+ s) = g(t)g(s) for every t, s ∈ IR.

In particular:
2. If g is a one-parameter subgroup of GL(n), then there exists a uniquely defined matrixX such that

g(t) = etX (see 5.3.6.1, p. 351). (5.151)

3. For every n× n matrix A the logarithm logA is defined by

logA =
∞∑

m=1

(−1)m+1

m
(A− I)m , (5.152)

if this series is convergent. In particular, the series converges if ||A− I|| < 1.

4. Correspondence between Lie Group and Lie Algebra
The correspondence between a matrix-Lie group and the associated Lie algebra is as follows.
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1. Let G be a matrix-Lie group. The Lie algebra of G, which is denoted by g, is the set of all matrices
X such that etX ∈ G holds for all real numbers t.

In a given matrix-Lie group the elements close to the unit matrix can be represented as g(t) = etX with
X ∈ g, and t close to zero. If the exponential map is surjective, as in the case of SO(n) and SE(n),
then the elements of the group can be parameterized with the help of the matrix-exponential function

by elements of the corresponding Lie algebra. The matrices
dg

dt
g−1 and g−1dg

dt
respectively are called

tangent vectors or tangent elements to g ∈ G. Calculating these elements for t = 0, one gets X itself,
i.e. g is the tangent space TIG at the identity matrix I.

2. It can be shown that the Lie algebra assigned to a Lie group in this way is a Lie algebra also in the
abstract sense.

Let G be a matrix-Lie group with the associated matrix-Lie algebra g and X and Y elements of g.
Then:

• sX ∈ g for any real numbers s ,

• X+Y ∈ g,

• [X, Y] = XY −YX ∈ g.

A: The Lie algebra so(2) associated to the Lie group SO(2) is calculated from the representation

of the elements g(θ) =
(
cos θ − sin θ
sin θ cos θ

)
by SO(2) with the help of the tangential elements

dg

dθ
g−1

∣∣∣∣∣
θ=0

=
(− sin θ − cos θ

cos θ − sin θ

)(
cos θ sin θ
− sin θ cos θ

)∣∣∣∣
θ=0

=
(
0 −1
1 0

)
. (5.153a)

Consequently

so(2) =
{
s
(
0 −1
1 0

)
, s ∈ IR

}
. (5.153b)

Conversely, from

X =
(
0 −1
1 0

)
comes esX = cos s

(
1 0
0 1

)
+ sin s

(
0 −1
1 0

)
=

(
cos s − sin s
sin s cos s

)
. (5.153c)

B: The following matrices form a basis for the Lie algebra so(3):

X1 =

⎛⎝ 0 0 0
0 0 −1
0 1 0

⎞⎠ , X2 =

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠ , X3 =

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠ . (5.154)

Remark: The surjectivity of the exponential mappings so(3) → SO(3) and se(3) → SE(3) implies
the existence of a (many-valued) logarithmic function. Nevertheless this logarithm function can be
applied to interpolation.

E.g. if rigid-body motions B1, B2 ∈ SE(3) are given, then logB1, logB2 can be calculated which are
elements of the Lie algebra so(3). Then between these logarithms linear interpolation (1− t) logB1 +
t logB2 can be taken and then the exponential map can be applied in order to get an interpolation
between the rigid-body motions B1 and B2 by

exp ((1− t) logB1 + t logB2) . (5.155)

C: The matrix-Lie algebra se(3) associated to the matrix-Lie group SE(3) is generated by the
matrices:

E1 =

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , E2 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , E3 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ , (5.156a)
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E4 =

⎛⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ , E5 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞⎟⎟⎠ , E6 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ . (5.156b)

5. Inner Product
For a given finite dimensional matrix-Lie group it is always possible to find an orthonormal basis for
the associated Lie algebra if a suitable inner product (scalar product) is defined. In this case from any
basis of the Lie algebra an orthonormal basis can be obtained by the Gram-Schmidt orthogonalization
process (see 4.6.2.2, 4. p. 316).

In the case of a real matrix-Lie group the Lie algebra consists of real matrices and so an inner product
is given by

(X, Y) =
1

2
Spur (XWYT) (5.157)

with a positive definite real symmetric matrix W.

A: The group of rigid-body motions SE(2) can be parametrized as

g(x1, x2, θ) = ex1X1+x2X2 eθX3 =

⎛⎝ cos θ − sin θ x1

sin θ cos θ x2

0 0 1

⎞⎠ with (5.158a)

X1 =

⎛⎝ 0 0 1
0 0 0
0 0 0

⎞⎠ , X2 =

⎛⎝ 0 0 0
0 0 1
0 0 0

⎞⎠ , X3 =

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠ . (5.158b)

HereX1, X2, X3 form an orthonormal basis of Lie algebra se(2) with respect to an inner product given
by the weight matrix

W =

⎛⎝ 1 0 0
0 1 0
0 0 2

⎞⎠ (5.158c)

B: A basis of Lie algebra sl(2, IR) is

X1 =
(
0 −1
1 0

)
, X2 =

(
1 0
0 −1

)
and X3 =

(
0 1
1 0

)
. (5.159)

These elements form an orthonormal basis with respect to the weight matrix W = I2×2 =
(
1 0
0 1

)
.

5.3.6.5 Applications in Robotics

1. Rigid BodyMotion
The special Euclidean group SE(3), which describes the rigid-body motions in IR3, is the semidirect

product of group SO(3) (rotation about the origin) and IR3 (translations):

SE(3) = SO(3)× IR3 . (5.160)

In a direct product the factors have no interaction, but this is a semidirect product since rotations act
on translations as it is clear from matrix multiplication:(

R2
�t2

0 1

)(
R1

�t1
0 1

)
=

(
R2 R1 R2

�t1 +�t2
0 1

)
, (5.161)

i.e. the first translation vector is rotated before the second translation vector is added.
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2. Theorem of Chasles
This theorem tells that every rigid-body motion which is not a pure translation can be described as a
(finite) screw motion. A (finite) screwing motion along an axis through the origin has the form

A(θ) =

⎛⎝R
θ p

2π
�x

0 1

⎞⎠ , (5.162a)

where �x is a unit vector in the direction of the axis of rotation, θ is the angle of rotation and p is the
angular coefficient. Since �x is the axis of rotationR�x = �x, i.e. �x is an eigenvector of matrixR belonging
to unit eigenvalue 1 .
When the axis of rotation does not go through the origin, then a point �u of the axis of rotation is chosen
which is shifted into the origin, then after the screwing it is shifted back:(

I �u
0 1

)⎛⎝R
θ p

2π
�x

0 1

⎞⎠(
I −�u
0 1

)
=

⎛⎝R
θ p

2π
�x+ (I−R)�u

0 1

⎞⎠ . (5.162b)

The theorem of Chasles tells that an arbitrary rigid-body motion can be given in the above form, i.e.(
R �t
0 1

)
=

⎛⎝R
θ p

2π
�x+ (I−R)�u

0 1

⎞⎠ (5.163)

for givenR , �t and appropriate p and �u . Assuming that the angle of rotation θ and the axis of rotation
�x are already known from R

θ p

2π
= �x ·�t (5.164)

is valid, so the angular coefficient p can be calculated. Then the solution of a linear system of equations
gives �u:

(I−R)�u =
θ p

2π
�x−�t . (5.165)

This is a singular system of equations, where �x is in its kernel. Therefore the solution �u is unique except
to a manyfold of �x. In order to determine �u it is reasonable to require that �u is perpendicular to �x.
When the rigid body motion is a pure rotation, then it is not possible to determine an appropriate
vector �u.

3. Mechanical Joints
Joints with one degree of freedom can be represented by a one-parameter subgroup of the group SE(3).
For the general case of screw joints the corresponding subgroup is

A(θ) =

⎛⎝R
θ p

2π
�x+ (I−R)�u

0 1

⎞⎠ , (5.166)

where �x is the axis of rotation, θ is the angle of rotation, p gives the angular coefficient and �u is an
arbitrary point on the axis of rotation.

Themost often occurring types of joints are the rotational joints which can be described by the following
subgroup:

A(θ) =
(
R (I−R)�u
0 1

)
. (5.167)

The subgroup corresponding the shift joints is

A(θ) =

(
I θ�t
0 1

)
, (5.168)
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where �t describes the direction of the shifting.

4. Forward Kinematics
The goal in the case of industrial robots is the moving and control of the end effectors, which is done
by joints in a kinematic chain. If all joints are of one parameter and the robot consists e.g. of 6 joints,

then every position of the robot can be described by the joint-variables �θ T = (θ1, θ2, θ3, θ4, θ5, θ6).
The output state of the robot is described by the null vector. Then the motions of the robot can be
described so that first the farest joint together the end effector are moved and this motion is given by
the matrix A(θ6). Then the 5-th joint is moved. Since the axis of this joint should not be influenced
by the motion of the last joint, this motion is given by the matrix A(θ5). In this way all the joints are
moved, and the complete motion of the end effector is given by

K(�θ) = A1(θ1)A2(θ2)A3(θ3)A4(θ4)A5(θ5)A6(θ6). (5.169)

5. Vector Product and Lie Algebra
A screw is given by

A(θ) =

⎛⎝R
θ p

2π
�x+ (I−R)�u

0 1

⎞⎠ ; (5.170)

and it represents rigid body motions parameterized by the angle θ. Obviously, θ = 0 gives the identity
transformation. If the derivative is calculated at θ = 0, i.e. the derivative at the identity, then the
general element of the Lie algebra is the following:

S =
dA

dθ

∣∣∣∣∣
θ=0

=

⎛⎝ dR

dθ

p

2π
�x− dR

dθ
�u

0 0

⎞⎠∣∣∣∣∣∣
θ=0

=

⎛⎝Ω
p

2π
�x−Ω�u

0 0

⎞⎠ , (5.171a)

where Ω =
dR

dθ
(0) is a skew symmetric matrix. It can be shown that R is an orthogonal matrix, so

RRT = I and RRT = I holds and therefore

d

dθ
(RRT) =

dR

dθ
RT +R

dRT

dθ
=

dI

dθ
= 0 . (5.171b)

Since R = I for θ = 0

dR

dθ
(0) +

dRT

dθ
(0) = 0 . (5.171c)

So every skew symmetric matrix

Ω =

⎛⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞⎠ (5.171d)

can be identified with a vector −→ω T = (ωx, ωy, ωz). In this way the multiplication of any three dimen-
sional vector �p by matrix Ω corresponds to the vector product with vector −→ω :

Ω �p = −→ω × �p . (5.171e)

Consequently −→ω is the angular velocity of the rigid body with an amplitude ω.
Hence a general element of the Lie algebra se(3) has the form

=
(
Ω �v
0 0

)
. (5.171f)

These matrices form a 6-dimensional vector space which is often identified with the 6-dimensional vec-
tors of the form

�s =
(−→ω

�v

)
. (5.172)
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5.3.7 Rings andFields
In this section, there are discussed algebraic structures with two binary operations.

5.3.7.1 Definitions
1. Rings
A set R with two binary operations + and ∗ is called a ring (notation: (R ,+ , ∗)), if
• (R,+) is an Abelian group,

• (R, ∗) is a semigroup, and

• the distributive laws hold:

a ∗ (b+ c) = (a ∗ b) + (a ∗ c), (b+ c) ∗ a = (b ∗ a) + (c ∗ a). (5.173)

If (R, ∗) is commutative or if (R, ∗) has a neutral element, then (R,+, ∗) is called a commutative ring
or a ring with identity (ring with unit element), respectively.
A commutative ring with a unit element and without zero divisor is called the domain of integrity .
A nonzero element of a ring is called zero divisor or singular element if there is a nonzero element of the
ring such that their product is equal to zero.
In a ring with zero divisor the following implication is generally false: a ∗ b = 0 =⇒ (a = 0 ∨ b = 0).

If R is a ring with a unit element, then the characteristic of the ring R is the smallest natural number k
such that k1 = 1 + 1 + . . .+ 1 = 0 (k times 1 equals to zero), and it is denoted by char R = k. If such
a k does not exist, then char R = 0.
char R = k means that the cyclic subgroup 〈1〉 of the additive group (R,+) generated by 1 has order
k, so the order of every element is a divisor of k.
If char R = k and for all r ∈ R, then r + r + . . . + r (k times)is equal to zero. The characteristic of a
domain of integrity is zero or a prime.

2. Division Ring, Field
A ring is called division ring or skew field if (R \ {0}, ∗) is a group .
If (R\{0}, ∗) is commutative, thenR is a field. So, every field is a domain of integrity and also a division
ring. Reversed, every finite domain of integrity and every finite division ring is a field. This statement
is a theorem of Wedderburn.

Examples of rings and fields

A: The number domains Z, Q, IR, and C are commutative rings with identity with respect to ad-
dition and multiplication; Q , IR, and C are also fields. The set of even integers is an example of a ring
without identity.

B: The setMn of all squarematrices of ordernwith real (or complex) elements is a non-commutative
ring with respect to matrix addition and multiplication. It has a unit element which is the identity ma-

trix. Mn has zero divisors, e.g. for n = 2,
(
1 0
1 0

)(
0 0
1 1

)
=

(
0 0
0 0

)
, i.e. both matrices

(
1 0
1 0

)
and(

0 0
1 1

)
are zero divisors in M2.

C: The set of real polynomials p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 forms a ring with respect
to the usual addition and multiplication of polynomials, the polynomial ring IR[x].
More generally, instead of polynomials over IR, polynomial rings over arbitrary commutative rings with
identity element can be considered.

D: Examples of finite rings are the residue class rings Zn modulo n. Zn consists of all the classes
[a]n of integers having the same residue on division by n. ([a]n is the equivalence class defined by the
natural number a with respect to the relation ∼R introduced in 5.2.4, 1., p. 334.) The ring operations
⊕ , * on Zn are defined by

[a]n ⊕ [b]n = [a+ b]n and [a]n * [b]n = [a · b]n. (5.174)

If the natural number n is a prime, then (Zn ,⊕ ,*) is a field. Otherwise Zn has zero divisors, e.g. in
Z6 (numbers modulo 6) [3]6 · [2]6 = [0]6. Usually Zn is considered as Zn = {0, 1, . . . , n − 1}, i.e. the
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residue classes are replaced by representatives(see 5.4.3,3., S. 377).

3. Field Extensions
If K and L are fields and K ⊆ L, then L is an extension field or an over-field of K. In this case L can
be considered as a vector space over K.

If L is a finite dimensional space overK, then L is called a finite extension field. If this dimension is n,
then L is called also an extension of degree n of K (Notation: [L : K] = n).

E.g. C is a finite extension of IR. C is two-dimensional over IR, and {1, i} is a basis. IR is an infinite-
dimensional space over Q.

For a set M ⊆ L, K(M) denotes the smallest field (an over-field of K) which contains the field K and
the set M .

Especially important are the simple algebraic extensions K(α), where α ∈ L is a root of a polynomial
fromK[x]. The polynomial of lowest degree with a leading coefficient 1 having α as a root is called the
minimal polynomial of α over K. If the degree of the minimal polynomials of α ∈ L is n, then K(α) is
an extension of degree n, i.e. the degree of the minimal polynomials is equal to the dimension of L as
a vector space over K.
E.g. C = IR(i) and i ∈ C is the root of the polynomial x2 + 1 ∈ IR[x], i.e. C is a simple algebraic
extension and [C : IR] = 2.

A field, which does not have any proper subfield, is called a prime field.
Every field K contains a smallest subfield, the prime field of K.
Out of isomorphism, Q (for fields of characteristic 0) and Zp (p prime, for fields of characteristic p) are
the single prime fields.

5.3.7.2 Subrings, Ideals

1. Subring
SupposeR = (R,+, ∗) is a ring andU ⊆ R. IfU with respect to+ and ∗ is also a ring, thenU = (U,+, ∗)
is called a subring of R.
A non-empty subset U of a ring (R,+, ∗) forms a subring ofR if and only if for all a, b ∈ U also a+(−b)
and a ∗ b are in U (subring criterion).

2. Ideal
A subring I is called an ideal if for all r ∈ R and a ∈ I also r ∗ a and a ∗ r are in I. These special
subrings are the basis for the formation of factor rings (see 5.3.7.3, p. 363).
The trivial subrings {0} and R are always ideals of R. Fields have only trivial ideals.

3. Principal Ideal
If all the elements of an ideal can be generated by one element according to the subring criterion, then
it is called a principal ideal. All ideals of Z are principal ideals. They can be written in the form
mZ = {mg|g ∈ Z} and they are denoted by (m).

5.3.7.3 Homomorphism, Isomorphism, HomomorphismTheorem

1. Ring Homomorphism and Ring Isomorphism
1. Ring Homomorphism: Let R1 = (R1,+, ∗) and R2 = (R2, ◦+, ◦∗) be two rings. A mapping
h: R1 → R2 is called a ring homomorphism if for all a, b ∈ R1

h(a+ b) = h(a) ◦+ h(b) and h(a ∗ b) = h(a) ◦∗ h(b) (5.175)

hold.
2. Kernel: The kernel of h is the set of elements of R1 whose image by h is the neutral element 0 of
(R2,+), and it is denoted by kerh:

kerh = {a ∈ R1|h(a) = 0}. (5.176)

Here kerh is an ideal of R1.
3. Ring Isomorphism: If h is also bijective, then h is called a ring isomorphism, and the rings R1

and R2 are called isomorphic.
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4. Factor Ring: If I is an ideal of a ring (R,+, ∗), then the sets of co-sets {a+ I|a ∈ R} of I in the
additive group (R,+) of the ring R (see 5.3.3, 1., p. 337) form a ring with respect to the operations

(a+ I) ◦+ (b+ I) = (a+ b) + I and (a+ I) ◦∗ (b+ I) = (a ∗ b) + I. (5.177)

This ring is called the factor ring of R by I, and it is denoted by R/I.
The factor ring of Z by a principal ideal (m) is the residue class ring Zm = Z/(m) (see examples of rings
and fields on p. 361).

2. Homomorphism Theorem for Rings
If the notion of a normal subgroup is replaced by the notion of an ideal in the homomorphism theorem
for groups, then the homomorphism theorem for rings is obtained: A ring homomorphism h: R1 → R2

defines an ideal ofR1, namely kerh = {a ∈ R1|h(a) = 0}. The factor ringR1/ kerh is isomorphic to the
homomorphic image h(R1) = {h(a)|a ∈ R1}. Conversely, every ideal I of R1 defines a homomorphic
mapping natI : R1 → R2/I with natI(a) = a+I. This mapping natI is called a natural homomorphism.

5.3.7.4 Finite Fields and Shift Registers

1. Finite Fields
The following statements give an overview of the structure of finite fields.

1. Galois Field GF For every power of primes pn there exits a unique field with pn elements (out
of an isomorphism), and every finite field has pn elements. The fields with pn elements are denoted by
GF(pn) (Galois field).
Note: For n > 1 GF(pn) and Zpn are different.

In constructing finite fields with pn elements (p is prime, n > 1), the ring of polynomials over Zp (see
5.3.7,2., p. 361, C) and irreducible polynomials are needed: Zp[x] consists of all polynomials with
coefficients from Zp . The coefficients are calculated modulo p.

2. Algorithm of Division and Euclidean Algorithm In a ring of polynomialsK[x] the division
algorithm is applicable (dividing polynomials with a remainder), i.e. for f(x), g(x) ∈ K[x], degf(x) ≤
degg(x) there exist q(x), r(x) ∈ K[x] such that

g(x) = q(x) · f(x) + r(x) and deg r(x) < deg f(x) . (5.178)

This relation is denoted by r(x) = g(x)(modf(x)). Repeatedly performed division with remainders is
known as the Euclidean algorithm for rings of polynomials and the last nonzero remainder gives the
greatest common divisor of f(x) and g(x).

3. Irreducible Polynomials A polynomial f(x) ∈ K[x] is irreducible if it can not be represented
as a product of polynomials of lower degrees, i.e. (analogously to the prime numbers in Z) f(x) is a
prime in K[x]. E.g. for polynomials of second or third degree irreducibility means, that they do not
have roots in K.

It can be shown that there are irreducible polynomials of arbitrary degree in K[x]. If f(x) ∈ K[x] is
an irreducible polynomial, then

K[x]/f(x) := {p(x) ∈ K[x] | deg p(x) < deg f(x)} (5.179)

is a field, where addition and multiplication are performed modulo f(x), i.e. g(x) ∗ h(x) = g(x) ·
h(x) (mod f(x)).

IfK = Zp and deg f(x) = n, thenK[x]/f(x) has pn elements, i.e. GF(pn) = Zp[x]/f(x), where f(x) is
an irreducible polynomial of degree n.

4. Calculation Rule in GF(pn) In GF(pn) the following useful rule is valid:

(a+ b)p
r

= ap
r

+ bp
r

, r ∈ IN . (5.180)

So, in GF(pn) =Zp[x]/f(x) there is an element α = x, a root of the polynomial f(x) irreducible in
Zp(x), and GF(pn) = Zp[x]/f(x) = Zp(α). It can be proven that Zp(α) is the splitting field of f(x).
The splitting field of a polynomial from Zp[x] is the smallest extension field of Zp which contains all
roots of f(x).
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5. Algebraic Closure, Fundamental Theorem of Algebra A field K is algebraically closed if
all roots of the polynomials fromK[x] are inK. The fundamental theorem of algebra tells that the field
C of complex numbers is algebraically closed. An algebraic extension L of K is called the algebraic
closure of K if L is algebraically closed. The algebraic closure of a finite field is not finite. So there are
infinite fields with characteristic p.

6. Cyclic and Multiplicative Group The multiplicative group K∗ = K \ {0} of a finite field
K is cyclic, i.e. there is an element a ∈ K such that every element of K∗ is a power of a: K∗ =
{1, a, a2, . . . , aq−2}, if K has q elements.

An irreducible polynomial f(x) ∈ K[x] is called primitive, if the powers of x represents all nonzero
elements of L := K[x]/f(x), i.e. the multiplicative group L∗ of L can be generated by x.
With a primitive polynomial f(x) of degree n it is possible to construct a ,,Table of logarithm” for
GF(pn) from GF(p)[x], which makes calculations easier.

Construction of field GF(23) and its table of logarithm.
f(x) = 1 + x+ x3 is irreducible over Z[x], since neither 0 nor 1 are roots of it:

GF(23) = Z2[x]/f(x) = {a0 + a1x+ a2x
2 | a0, a1, a2 ∈ Z2 ∧ x3 = 1 + x} . (5.181)

f(x) is primitive, so a table of logarithm can be created for GF(23):

Two expressions are assigned to every polynomial a0 + a1x + a2x
2 from Z2[x]/f(x). The coefficient

vector a0, a1, a2 and the so called logarithm which is a natural number i such that xi = a0+ a1x+ a2x
2

modulo 1 + x+ x3. The table of logarithm is:

KE KV Log.
1 1 0 0 0
x 0 1 0 1
x2 0 0 1 2
x3 1 1 0 3
x4 0 1 1 4
x5 1 1 1 5
x6 1 0 1 6

• Addition of the field elements (KE) in GF(8):
• Addition of the coordinate vectors (KV) componentwise mod 2

(in general mod p).
• Multiplication of the field elements (KE) in GF(8):
• Addition of logarithms (Log) mod 7 (in general mod (pn − 1)).

Example:
x2 + x4

x3 + x4
=

x

x6
= x−5 = x2

Remark: Finite fields are extremely important in coding theory as linear codes, where vector spaces
in form (GF(q))n are considered. A subspace of such a vector space is called linear code (see 5.4.6.2,3.,
p. 385). The elements (code words) of a linear code are also n-tuples with elements from a finite field
GF(qn). In applications in code theory it is important to know the divisors of Xn − 1.
The splitting field of Xn − 1 ∈ K[X] is called the n-th cyclotomic field over K.

If the characteristic of K is not a divisor of n and α is a primitive n-th unit root, then:

a) The extension field K(α) is the splitting field of Xn − 1 over K.
b) InK(α), the fieldXn−1 has exactly n pairwise different roots which form a cyclic group, and among
them there are ϕ(n) primitive n-th unit roots, where ϕ(n) denotes the Euler function (5.4.4,1., p. 381).
By the k-th powers (k < n, g.c.d.(k,n)=1) of a primitive n-th unit root α all unit roots can be got.

2. Applications of Shift Registers

Calculations with polynomials can be performed well by a linear feedback shift register (see Fig.5.18).
With a linear feedback shift register based on the feedback polynomial f(x) = f0+f1x+· · ·+fr−1x

r−1+
xr and from the state polynomial s(x) = s0 + s1x + · · · + sr−1x

r−1 one gets the state polynomial
s(x) · x− sr−1 · f(x) = s(x) · x (mod f(x)).
Especially, if s(x) = 1, after i steps (i-times applications) the state polynomial is xi (mod f(x)).

Demonstration with the example from page 364: The primitive polynomial f(x) = 1+x+x3 ∈ Z2[x]
is chosen as feedback polynomial. Then the shift register with lengh 3 has the following sequence of
states:
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Figure 5.18

From the initial state: 1 0 0 =̂ 1 (mod f(x))

the states follow as: 0 1 0 =̂ x (mod f(x))
0 0 1 =̂ x2 (modf(x))
1 1 0 =̂ x3 ≡ 1 + x (mod f(x))
0 1 1 =̂ x4 ≡ x+ x2 (mod f(x))
1 1 1 =̂ x5 ≡ 1 + x+ x2 (mod f(x))
1 0 1 =̂ x6 ≡ 1 + x2 (mod f(x))

1 0 0 =̂ x7 ≡ 1 (mod f(x))

The states are considered as coefficient vectors of a state polynomial s0 + s1x+ s2x
2.

In general: A linear feedback shift register with length r gives a sequence of states of maximal length
with period 2r − 1 if and only if the feedback polynomial is a primitive polynomial of degree r.

5.3.8 Vector Spaces ∗

5.3.8.1 Definition

A vector space over a field F consists of an Abelian group V = (V,+) of “ vectors ” written in additive
form, of a field F = (F,+, ∗) of “ scalars ” and an exterior multiplication F × V → V , which assigns
to every ordered pair (k, v) for k ∈ F and v ∈ V a vector kv ∈ V . These operations have the following
properties:

(V1) (u+ v) + w = u+ (v + w) for all u, v, w ∈ V. (5.182)

(V2) There is a vector 0 ∈ V such that v + 0 = v for every v ∈ V. (5.183)

(V3) To every vector v there is a vector − v such that v + (−v) = 0. (5.184)

(V4) v + w = w + v for every v, w ∈ V. (5.185)

(V5) 1v = v for every v ∈ V, 1 denotes the unit element of F. (5.186)

(V6) r(sv) = (rs)v for every r, s ∈ F and every v ∈ V. (5.187)

(V7) (r + s)v = rv + sv for every r, s ∈ F and every v ∈ V. (5.188)

(V8) r(v + w) = rv + rw for every r ∈ F and every v, w ∈ V. (5.189)

If F = IR holds, then it is called a real vector space.

Examples of vector spaces:
A: Single-column or single-row real matrices of type (n, 1) and (1, n), respectively, with respect to

matrix addition and exterior multiplication with real numbers form real vector spaces IRn (the vector
space of column or row vectors; see also 4.1.3, p. 271).

B: All real matrices of type (m,n) form a real vector space.

C: All real functions continuous on an interval [a, b] with the operations

(f + g)(x) = f(x) + g(x) and (kf)(x) = k · f(x) (5.190)

∗In this paragraph, generally, vectors are not printed in bold face.
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form a real vector space.
Function spaces have a fundamental role in functional analysis (see Ch. 12, p. 654). For further exam-
ples see 12.1.2, p. 655.

5.3.8.2 Linear Dependence
Let V be a vector space over F . The vectors v1, v2, . . ., vm ∈ V are called linearly dependent if there
are k1, k2, . . ., km ∈ K not all of them equal to zero such that 0 = k1v1 + k2v2 + · · · + kmvm holds.
Otherwise they are linearly independent. Linear dependence of at least two vectors means that one of
them is a multiple of the other.

If there is a maximal number n of linearly independent vectors in a vector space V , then the vector
space V is called n dimensional. This number n is uniquely defined and it is called the dimension.
Every n linearly independent vectors of V form a basis. If such a maximal number does not exist, then
the vector space is called infinite dimensional. The vector spaces in the above examples are n, m · n,
and infinite dimensional.
In the vector space IRn, n vectors are independent if and only if the determinant of the matrix, whose
columns or rows are these vectors, is not equal to zero.
If {v1, v2, . . . , vn} form a basis of an n-dimensional vector space over F , then every vector v ∈ V has a
unique representation v = k1v1 + k2v2 + · · ·+ knvn with k1, k2 . . . , kn ∈ F .
Every set of linearly independent vectors can be completed into a basis of the vector space.

5.3.8.3 Linear Operators

1. Definition of Linear Operators
Let V and W be two real vector spaces. A mapping f : V −→ W from V into W is called a linear
mapping or linear transformation or linear operator (see also 12.1.5.2, p. 658) from V into W if

f(u+ v) = fu+ fv for all u, v ∈ V, (5.191)

f(λu) = λfu for all u ∈ V and all real λ. (5.192)

A: The mapping fu :=
β∫
α
u(t) dt, which transforms the space C[α, β] of continuous real functions

into the space of real numbers is linear.

In the special case when W = IR1, as in the previous example, linear transformations are called linear
functionals.

B: Let V = IRn and let W be the space of all real polynomials of degree at most n − 1. Then the
mapping f(a0, a1, . . . , an−1) := a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 is linear. In this case each n-element

vector corresponds to a polynomial of degree ≤ n− 1.

C: If V = IRn and W = IRm, then all linear operators f from V into W (f : IRn −→ IRm) can
be characterized by a real matrix A = (aik) of type (m,n). The relation Ax = y corresponds to the

system of linear equations (4.174a)⎛⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...
am1 am2 · · · amn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
x1

x2
...
xn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
y1
y2
...
ym

⎞⎟⎟⎟⎠.
2. Sum and Product of Two Linear Operators
Let f : V −→ W , g: V −→ W and h: W −→ U be linear operators. Then the

sum f + g: V −→ W is defined as (f + g)u = fu+ gu for all u ∈ V and the (5.193)

product hf : V −→ U is defined as (hf)u = h(fu) for all u ∈ V. (5.194)

Remarks:
1. If f, g and h are linear, then f + g and fh are also linear operators.
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2. The product (5.194) of two linear operators represents the consecutive application of these operators
f and h.

3. The product of two linear operators is usually non-commutative even if the products exist:

hf �= fh . (5.195a)

Commutability exists, if

hf − fh = 0 (5.195b)

holds. In quantum mechanics the left-hand side of this equation hf − fh is called the commutator. In
the case (5.195a) the operators f and h do not commutate, therefore we have to be very careful about
the order.

As a particular example of sums and products of linear operators onemay think of sums and products
of the corresponding real matrices.

5.3.8.4 Subspaces, Dimension Formula
1. Subspace: Let V be a vector space and U a subset of V . If U is also a vector space with respect to
the operations of V , then U is called a subspace of V .
A non-empty subset U of V is a subspace if and only if for every u1, u2 ∈ U and every k ∈ F also u1+u2

and k · u1 are in U (subspace criterion).

2. Kernel, Image: Let V1, V2 be vector spaces over F . If f : V1 → V2 is a linear mapping, then the
linear subspaces kernel (notation: ker f) and image (notation: im f) are defined in the following way:

ker f = {v ∈ V |f(v) = 0}, im f = {f(v)|v ∈ V }. (5.196)

So, for example, the solution set of a homogeneous linear equation system Ax = 0 is the kernel of the
linear mapping defined by the coefficient matrix A.

3. Dimension: The dimension dim ker f and dim im f are called the defect f and rank f , respectively.
For these dimensions the equality

defect f + rank f = dimV, (5.197)

is valid and is called the dimension formula. In particular, if the defect f = 0, i.e., ker f = {0}, then
the linear mapping f is injective, and conversely. Injective linear mappings are called regular.

5.3.8.5 Euclidean Vector Spaces, EuclideanNorm
In order to be able to use notions such as length, angle, orthogonality in abstract vector spaces we
introduce Euclidean vector spaces.

1. Euclidean Vector Space
Let V be a real vector space. If ϕ: V × V → IR is a mapping with the following properties (instead of
ϕ(v, w) one writes v · w) for every u, v, w ∈ V and for every r ∈ IR

(S1) v · w = w · v, (5.198)

(S2) (u+ v) · w = u · w + v · w, (5.199)

(S3) r(v · w) = (rv) · w = v · (rw), (5.200)

(S4) v · v > 0 if and only if v �= 0, (5.201)

then ϕ is called a scalar product on V . If there is a scalar product defined on V , then V is called a
Euclidean vector space.

These properties are used to define a scalar product with similar properties on more general spaces, too
(see 12.4.1.1, p. 673).

2. Euclidean Norm
The value

‖v‖ =
√
v · v (5.202)
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denotes the Euclidean norm (length) of v. The angle α between v, w from V is defined by the formula

cosα =
v · w

‖v‖ · ‖w‖ . (5.203)

If v · w = 0 holds, then v and w are called orthogonal to each other.

Orthogonality of Trigonometric Functions: In the theory of Fourier series (see 7.4.1.1, p. 474),
there are functions of the form sin kx and cos kx. Theses fubctions can be considered as elements of
C[0, 2π]. In the function space C[a, b] the formula

f · g =
∫ b

a
f(x)g(x) dx (5.204)

defines a scalar product. Since∫ 2π

0
sin kx · sin lx dx = 0 (k �= l), (5.205)

∫ 2π

0
cos kx · cos lx dx = 0 (k �= l), (5.206)

∫ 2π

0
sin kx · cos lx dx = 0, (5.207)

the functions sin kx ∈ C[0, 2π] and cos lx ∈ C[0, 2π] for every k, l ∈ IN are pairwise orthogonal to each
other. This orthogonality of trigonometric functions is used in the calculation of Fourier coefficients in
harmonic analysis (see 7.4.1.1, p. 474).

5.3.8.6 BilinearMappings, Bilinear Forms
Bilinear mappings can be considered as generalizations of different products between vectors. In that
case bilinearity uses the distributivity of the corresponding product with respect to vector addition.

1. Definition
Let U , V , W be vector spaces over the same field K. A mapping f : U × V −→ W is called bilinear if

for every u ∈ U the mapping v �→ f(u, v) is a linear mapping of V into W and

for every v ∈ V the mapping u �→ f(u, v) is a linear mapping of U into W. (5.208)

It means that a mapping f : U ×V −→ W is bilinear, if for every k ∈ K, u, u′ ∈ U , and v, v′ ∈ V holds:

f(u+ u′, v) = f(u, v) + f(u′, v) , f(ku, v) = kf(u, v) and

f(u, v + v′) = f(u, v) + f(u, v′) , f(u, kv) = kf(u, v) . (5.209)

If f is replaced by the dot product or vector product or by a multiplication in a field, these relations
describe the left sided and right sided distributivity of this multiplication with respect to vector addi-
tion.
Especially, if U = V , andW = K which is the underlying field, then f is called a bilinear form. In this
book only the real (K = IR) or complex (K = C) cases are considered.

Examles of Bilinearforms

A: U = V = IRn, W = IR, f is the dot product in IRn: f(u, v) = uTv =
∑n

i=1 uivi , where ui and vi
(i = 1, 2, . . . , n) denote the Cartesian coordinates of u and v.

B: U = V = W = IR3 , f is the cross product in IR3:
f(u, v) = u× v = (u2v3 − v2u3 , v1u3 − u1v3 , u1v2 − v1u2)

T .

2. Special Bilinear Forms
A bilinear form f : V × V −→ IR is called
• symmetric, if f(v, v′) = f(v′, v) for every v, v′ ∈ V ,
• skew-symmetric, if f(v, v′) = −f(v′, v) for every v, v′ ∈ V and
• positive definite, if f(v, v) > 0 for every v ∈ V v �= 0.
So an Euclidean dot product in V (see 5.3.8.5, p. 367) can be characterized as a symmetric, positive
definite bilinear form. The canonical Euclidean dot product in IRn is defined as f(u, v) = uTv.
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In finite dimensional spaces V a bilinear form can be represented by a matrix: If f := V × V −→ IR is
a bilinear form, and B = (b1, b2, . . . , bn) is a basis of V , then the matrix

AB(f) = (f(bi, bj)i,j) (5.210)

is the representation matrix of f with respect to basis B. The bilinear form then can be written in
matrix product form:

f(v, v′) = vTAB(f)v
′ , (5.211)

where v and v′ are given with respect to basis B.
The representation matrix is symmetric, if the bilinear form is symmetric. In complex vector spaces
(because z2 can be a negative number) symmetric, positive definite bilinear forms do not have much
sense. To define an unitary dot product and also distances and angles with it instead of bilinear form
the concept of the so called sesquilinear form is used [5.6], [5.12].

3. Sesquilinear Form
A mapping f : V × V −→ C is called sesquilinear form if for every v, v′ ∈ V and k ∈ C:

f(u+ u′, v) = f(u, v) + f(u′, v) , f(ku, v) = kf(u, v) and

f(u, v + v′) = f(u, v) + f(u, v′) , f(u, kv) = k∗f(u, v) . (5.212)

where k∗ denotes the complex conjugate of k. The function is linear in the first argument and ,,semi-
linear” in the second argument. Analogously to the real case ,,symmetry” is defined in the following
way:
A sesquilinear form f : V × V −→ C is called hermitian if f(v, v′) = f(v′, v)∗ for every v, v′ ∈ V .
In this way a (unitary) dot product is characterized by an hermitian, positive definite sesquilinear form.
The canonical unitary dot product in Cn is defined as f(u, v) = uTv∗.
If V is finite dimensional, then a sesquilinear form can be represented by a matrix (like in the real
case):
If f : V × V −→ C is a sesquilinear form, and B = (b1, b2, . . . , bn) is a basis of V , then the matrix
AB(f) = (f(bi, bj))i,j is the representation matrix of f with respect to basis B. The sesquilinear form
can be written in matrix product form:

f(v, v′) = vTAB(f)v
′ , (5.213)

where v and v′ are given with respect to basis B. A representation matrix is hermitian if and only if
the sesquilinear form is hermitian.
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5.4 ElementaryNumberTheory
Elementary number theory investigates divisibility properties of integers.

5.4.1 Divisibility

5.4.1.1 Divisibility and Elementary Divisibility Rules

1. Divisor
An integer b ∈ Z is divisible by an integer a without remainder iff ∗ there is an integer q such that

qa = b (5.214)

holds. Here a is a divisor of b in Z, and q is the complementary divisor with respect to a; b is a multiple
of a. For “a divides b” we write also a|b. For “a does not divide b” we can write a/|b. The divisibility
relation (5.214) is a binary relation in Z (see 5.2.3, 2., p. 331). Analogously, divisibility is defined in
the set of natural numbers.

2. Elementary Divisibility Rules
(DR1) For every a ∈ Z we have 1|a, a|a and a|0. (5.215)

(DR2) If a|b, then (−a)|b and a|(−b). (5.216)

(DR3) a|b and b|a implies a = b or a = −b. (5.217)

(DR4) a|1 implies a = 1 or a = −1. (5.218)

(DR5) a|b and b �= 0 imply |a| ≤ |b|. (5.219)

(DR6) a|b implies a|zb for every z ∈ Z. (5.220)

(DR7) a|b implies az|bz for every z ∈ Z. (5.221)

(DR8) az|bz and z �= 0 implies a|b for every z ∈ Z. (5.222)

(DR9) a|b and b|c imply a|c. (5.223)

(DR10) a|b and c|d imply ac|bd. (5.224)

(DR11) a|b and a|c imply a|(z1b+ z2c) for arbitrary z1, z2 ∈ Z. (5.225)

(DR12) a|b and a|(b+ c) imply a|c. (5.226)

5.4.1.2 PrimeNumbers

1. Definition and Properties of Prime Numbers
A positive integer p (p > 1) is called a prime number iff 1 and p are its only divisors in the set IN of
positive integers. Positive integers which are not prime numbers are called composite numbers.
For every integer, the smallest positive divisor different from 1 is a prime number. There are infinitely
many prime numbers.
A positive integer p (p > 1) is a prime number iff for arbitrary positive integers a, b, p|(ab) implies p|a
or p|b.
2. Sieve of Eratosthenes
By the method of the “Sieve of Eratosthenes”, every prime number smaller than a given positive integer
n can be determined:

a) Write down the list of all positive integers from 2 to n.

b) Underline 2 and delete every subsequent multiple of 2.

c) If p is the first non-deleted and non-underlined number, then underline p and delete every p-th
number (beginning with 2p and counting the numbers of the original list).

d) Repeat step c) for every p (p ≤ √
n) and stop the algorithm.

∗if and only if
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Every underlined and non-deleted number is a prime number. In this way, all prime numbers ≤ n are
obtained.
The prime numbers are called prime elements of the set of integers.

3. Prime Pairs
Prime numbers with a difference of 2 form prime pairs (twin primes).

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103) are prime pairs.

4. Prime Triplets
Prime triplets consist of three prime numbers occuring among four consecutive odd numbers.

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43) are prime triplets.

5. Prime Quadruplets
If the first two and the last two of five consecutive odd numbers are prime pairs, then they are called a
prime quadruplet.

(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199) are prime quadruplets.

The conjecture that there exist infinitely many prime pairs, prime triplets, and prime quadruplets, is
not proved still.

6. Mersenne Primes
If 2k − 1, k ∈ IN, is a prime number, then k is also a prime number. The numbers 2p − 1 (p prime)
are called Mersenne numbers. A Mersenne prime is a Mersenne number 2p − 1 which is itself a prime
number.

2p − 1 is a prime number for the first ten values of p: 2, 3, 5, 7, 13,17, 19, 31, 61, 89, 107, etc.

Remark: Since a few years the largest known prime is always a Mersenne prime, e.g. 243112609 − 1 in
2008, 257885161 − 1 in 2013. In contrary to other natural numbers the numbers of the form 2k − 1 can
be tested in a relatively simple way whether they are primes: Let p > 2 be a prime and a sequence of
natural numbers is defined by s1 = 4, si+1 := s2i − 2 (i ≥ 1). The number 2p − 1 is a prime if and only
if the term of the sequence sp−1 is divisible by 2p − 1.
The prime test based on this statement is called Lucas-Lehmer test .

7. Fermat Primes
If a number 2k+1, k ∈ IN, is an odd prime number, then k is a power of 2. The numbers 2k+1, k ∈ IN,
are called Fermat numbers. If a Fermat number is a prime number, then it is called a Fermat prime.

For k = 0, 1, 2, 3, 4 the corresponding Fermat numbers 3, 5, 17, 257, 65537 are prime numbers. It is
conjectured that there are no further Fermat primes.

8. Fundamental Theorem of Elementary Number Theory
Every positive integer n > 1 can be represented as a product of primes. This representation is unique
except for the order of the factors. Therefore n is called to have exactly one prime factorization.

360 = 2 · 2 · 2 · 3 · 3 · 5 = 23 · 32 · 5.
Remark: Analogously, the integers (except−1, 0, 1) can be represented as products of prime elements,
unique apart from the order and the sign of the factors.

9. Canonical Prime Factorization
It is usual to arrange the factors of the prime factorization of a positive integer according to their size,
and to combine equal factors to powers. If every non-occurring prime is assigned exponent 0, then every
positive integer is uniquely determined by the sequence of the exponents of its prime factorization.

To 1 533 312 = 27 · 32 · 113 belongs the sequence of exponents (7, 2, 0, 0, 3, 0, 0, . . .).
For a positive integer n, let p1, p2, . . . pm be the pairwise distinct primes divisors of n, and let αk denote
the exponent of a prime number pk in the prime factorization of n. Then

n =
m∏
k=1

pαk
k , (5.227a)
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and this representation is called the canonical prime factorization of n. It is often denoted by

n =
∏
p

pνp(n), (5.227b)

where the product applies to all prime numbers p, and where νp(n) is the multiplicity of p as a divisor
of n. It always means a finite product because only finitely many of the exponents νp(n) differ from 0.

10. Positive Divisors
If a positive integer n ≥ 1 is given by its canonical prime factorization (5.227a), then every positive
divisor t of n can be written in the form

t =
m∏
k=1

pτkk with τk ∈ {0, 1, 2, . . . , αk} for k = 1, 2, . . . ,m. (5.228a)

The number τ(n) of all positive divisors of n is

τ(n) =
m∏
k=1

(αk + 1). (5.228b)

A: τ(5040) = τ(24 · 32 · 5 · 7) = (4 + 1)(2 + 1)(1 + 1)(1 + 1) = 60.

B: τ(p1p2 · · · pr) = 2r, if p1, p2, . . . , pr are pairwise distinct prime numbers.

The product P (n) of all positive divisors of n is given by

P (n) = n
1
2
τ(n). (5.228c)

A: P (20) = 203 = 8000. B: P (p3) = p6, if p is a prime number.

C: P (pq) = p2q2, if p and q are different prime numbers.

The sum σ(n) of all positive divisors of n is

σ(n) =
m∏
k=1

pαk+1
k − 1

pk − 1
. (5.228d)

A: σ(120) = σ(23 · 3 · 5) = 15 · 4 · 6 = 360. B: σ(p) = p+ 1, if p is a prime number.

5.4.1.3 Criteria for Divisibility

1. Notation
Consider a positive integer given in decimal form:

n = (akak−1 · · · a2a1a0)10 = ak10
k + ak−110

k−1 + · · ·+ a210
2 + a110 + a0. (5.229a)

Then

Q1(n) = a0 + a1 + a2 + · · ·+ ak (5.229b)

and

Q′
1(n) = a0 − a1 + a2 −+ · · ·+ (−1)kak (5.229c)

are called the sum of the digits (of first order) and the alternating sum of the digits (of first order) of n,
respectively. Furthermore,

Q2(n) = (a1a0)10 + (a3a2)10 + (a5a4)10 + · · · and (5.229d)

Q′
2(n) = (a1a0)10 − (a3a2)10 + (a5a4)10 −+ · · · (5.229e)

are called the sum of the digits and the alternating sum of the digits, respectively, of second order and

Q3(n) = (a2a1a0)10 + (a5a4a3)10 + (a8a7a6)10 + · · · (5.229f)

and

Q′
3(n) = (a2a1a0)10 − (a5a4a3)10 + (a8a7a6)10 −+ · · · (5.229g)

are called the sum of the digits and alternating sum of the digits, respectively, of third order .
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The number 123 456 789 has the following sum of the digits: Q1 = 9+8+7+6+5+4+3+2+1 = 45,
Q′

1 = 9−8+7−6+5−4+3−2+1 = 5, Q2 = 89+67+45+23+1 = 225, Q′
2 = 89−67+45−23+1 = 45,

Q3 = 789 + 456 + 123 = 1368 and Q′
3 = 789− 456 + 123 = 456.

2. Criteria for Divisibility
There are the following criteria for divisibility:

DC-1: 3|n ⇔ 3|Q1(n), (5.230a) DC-2: 7|n ⇔ 7|Q′
3(n), (5.230b)

DC-3: 9|n ⇔ 9|Q1(n), (5.230c) DC-4: 11|n ⇔ 11|Q′
1(n), (5.230d)

DC-5: 13|n ⇔ 13|Q′
3(n) (5.230e) DC-6: 37|n ⇔ 37|Q3(n), (5.230f)

DC-7: 101|n ⇔ 101|Q′
2(n), (5.230g) DC-8: 2|n ⇔ 2|a0, (5.230h)

DC-9: 5|n ⇔ 5|a0, (5.230i) DC-10: 2k|n ⇔ 2k|(ak−1ak−2 · · · a1a0)10, (5.230j)

DC-11: 5k|n ⇔ 5k|(ak−1ak−2 · · · a1a0)10. (5.230k)

A: a = 123 456 789 is divisible by 9 since Q1(a) = 45 and 9|45, but it is not divisible by 7 since
Q′

3(a) = 456 and 7/|456.
B: 91 619 is divisible by 11 since Q′

1(91 619) = 22 and 11|22.
C: 99 994 096 is divisible by 24 since 24|4 096.

5.4.1.4 Greatest CommonDivisor and Least CommonMultiple

1. Greatest Common Divisor
For integers a1, a2, . . . , an, which are not all equal to zero, the largest number in the set of common
divisors of a1, a2, . . . , an is called the greatest common divisor of a1, a2, . . . , an, and it is denoted by
gcd(a1, a2, . . . , an). If gcd(a1, a2, . . . , an) = 1, then the numbers a1, a2, . . . , an are called coprimes.
To determine the greatest common divisor, it is sufficient to consider the positive common divisors. If
the canonical prime factorizations

ai =
∏
p

pνp(ai) (5.231a)

of a1, a2, . . . , an are given, then

gcd(a1, a2, . . . , an) =
∏
p

p

{
min [νp(ai)]

i

}
. (5.231b)

For the numbers a1 = 15 400 = 23 · 52 · 7 · 11, a2 = 7 875 = 32 · 53 · 7, a3 = 3 850 = 2 · 52 · 7 · 11, the
greatest common divisor is gcd(a1, a2, a3) = 52 · 7 = 175.

2. Euclidean Algorithm
The greatest common divisor of two integers a, b can be determined by the Euclidean algorithmwithout
using their prime factorization. To do this, a sequence of divisions with remainder, according to the
following scheme, is performed. For a > b let a0 = a, a1 = b. Then:

a0 = q1a1 + a2, 0 < a2 < a1,

a1 = q2a2 + a3, 0 < a3 < a2,

...
...

... (5.232a)

an−2 = qn−1an−1 + an, 0 < an < an−1,

an−1 = qnan.
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The division algorithm stops after a finite number of steps, since the sequence a2, a3, . . . is a strictly
monotone decreasing sequence of positive integers. The last remainder an, different from 0 is the great-
est common divisor of a0 and a1.

gcd(38, 105) = 1, as can be seen by the help of the table to the right.

By the recursion formula

gcd(a1, a2, . . . , an) = gcd(gcd(a1, a2, . . . , an−1), an), (5.232b)

the greatest common divisor of n positive integers with n > 2 can be de-
termined by repeated use of the Euclidean algorithm.

105 = 2 · 38 + 29
38 = 1 · 29 + 9
29 = 3 · 9 + 2
9 = 4 · 2 + 1
2 = 2 · 1

gcd(150, 105, 56) = gcd(gcd(150, 105), 56) = gcd(15, 56) = 1.

The Euclidean algorithm to determine the gcd (see also 1.1.1.4, 1.,
p. 3) of two numbers has especially many steps, if the numbers are adja-
cent numbers in the sequence of Fibonacci numbers (see 5.4.1.5, p. 375).
The annexed calculation shows an example where all quotients are al-
ways equal to 1.

3. Theorem for the Euclidean Algorithm
For two natural numbers a, b with a > b > 0, let λ(a, b) denote the
number of divisions with remainder in the Euclidean algorithm, and let
κ(b) denote the number of digits of b in the decimal system. Then

55 = 1 · 34 + 21
34 = 1 · 21 + 13
21 = 1 · 13 + 8
13 = 1 · 8 + 5
8 = 1 · 5 + 3
5 = 1 · 3 + 2
3 = 1 · 2 + 1
2 = 1 · 1 + 1
1 = 1 · 1.

λ(a, b) ≤ 5 · κ(b). (5.233)

4. Greatest Common Divisor as a Linear Combination

It follows from the Euclidean algorithm that

a2 = a0 − q1a1 = c0a0 + d0a1,

a3 = a1 − q2a2 = c1a0 + d1a1,

...
... (5.234a)

an = an−2 − qn−1an−1 = cn−2a0 + dn−2a1.

Here cn−2 and dn−2 are integers. Thus the gcd(a0, a1) can be represented as a linear combination of a0
and a1 with integer coefficients:

gcd(a0, a1) = cn−2a0 + dn−2a1. (5.234b)

Moreover gcd(a1, a2, . . . , an) can be represented as a linear combination of a1, a2, . . . , an, since:

gcd(a1, a2, . . . , an) = gcd(gcd(a1, a2, . . . , an−1), an) = c · gcd(a1, a2, . . . , an−1) + dan. (5.234c)

gcd(150, 105, 56) = gcd(gcd(150, 105), 56) = gcd(15, 56) = 1 with 15 = (−2) · 150 + 3 · 105 and
1 = 15 · 15 + (−4) · 56), thus gcd(150, 105, 56) = (−30) · 150 + 45 · 105 + (−4) · 56.
5. Least CommonMultiple

For integers a1, a2, . . . , an, among which there is no zero, the smallest number in the set of positive
commonmultiples of a1, a2, . . . , an is called the least commonmultiple of a1, a2, . . . , an, and it is denoted
by lcm(a1, a2, . . . , an).
If the canonical prime factorizations (5.231a) of a1, a2, . . . , an are given, then:

lcm(a1, a2, . . . , an) =
∏
p

p

{
max [νp(ai)]

i

}
. (5.235)

For the numbers a1 = 15 400 = 23 · 52 · 7 · 11, a2 = 7 875 = 32 · 53 · 7, a3 = 3 850 = 2 · 52 · 7 · 11 the
least common multiple is lcm(a1, a2, a3) = 23 · 32 · 53 · 7 · 11 = 693 000.
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6. Relation between gcd and lcm
For arbitrary integers a, b:

|ab| = gcd(a, b) · lcm(a, b). (5.236)

Therefore, the lcm(a, b) can be determined with the help of the Euclidean algorithm without using the
prime factorizations of a and b.

5.4.1.5 Fibonacci Numbers

1. Recursion Formula
The sequence

(Fn)n∈IN with F1 = F2 = 1 and Fn+2 = Fn + Fn+1 (5.237)

is called Fibonacci sequence. It starts with the elements 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
233, 377, . . .

The consideration of this sequence goes back to the question posed by Fibonacci in 1202: Howmany
pairs of descendants has a pair of rabbits at the end of a year, if every pair in every month produces a
new pair, which beginning with the second month itself produces new descended pairs? The answer is
F14 = 377.

2. Explicit Formula
Besides the recursive definition (5.237) there is an explicit formula for the Fibonacci numbers:

Fn =
1√
5

([
1 +

√
5

2

]n
−

[
1−

√
5

2

]n)
. (5.238)

Some important properties of Fibonacci numbers are the followings. For m,n ∈ IN:

(1) Fm+n = Fm−1Fn + FmFn+1 (m > 1). (5.239a) (2) Fm|Fmn. (5.239b)

(3) gcd(m,n) = d implies gcd(Fm, Fn) = Fd. (5.239c) (4) gcd(Fn, Fn+1) = 1. (5.239d)

(5) Fm|Fk holds iff m|k holds. (5.239e) (6)
n∑

i=1

F 2
i = FnFn+1. (5.239f)

(7) gcd(m,n) = 1 implies FmFn|Fmn. (5.239g) (8)
n∑

i=1

Fi = Fn+2 − 1. (5.239h)

(9) FnFn+2 − F 2
n+1 = (−1)n+1. (5.239i) (10) F 2

n + F 2
n+1 = F2n+1. (5.239j)

(11) F 2
n+2 − F 2

n = F2n+2. (5.239k)

5.4.2 LinearDiophantine Equations

1. Diophantine Equations
An equation f(x1, x2, . . . , xn) = b is called a Diophantine equation in n unknowns iff f(x1, x2, . . . , xn)
is a polynomial in x1, x2, . . . , xn with coefficients in the set Z of integers, b is an integer constant and
only integer solutions are of interest. The name “Diophantine” reminds of the Greek mathematician
Diophantus, who lived around 250 AD.
In practice, Diophantine equations occur for instance, if relations between quantities are described.
Until now, only general solutions of Diophantine equations of at most second degree with two variables
are known. Solutions of Diophantine equations of higher degrees are only known in special cases.
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2. Linear Diophantine Equations in nUnknowns
A linear Diophantine equation in n unknowns is an equation of the form

a1x1 + a2x2 + · · · anxn = b (ai ∈ Z, b ∈ Z), (5.240)

where only integer solutions are searched for. A solution method is described in the following.

3. Conditions of Solvability
If not all the coefficients ai are equal to zero, then the Diophantine equation (5.240) is solvable iff
gcd(a1, a2, . . . , an) is a divisor of b.

114x+ 315y = 3 is solvable, since gcd(114, 315) = 3.

If a linear Diophantine equation in n unknowns (n > 1) has a solution and Z is the domain of variables,
then the equation has infinitelymany solutions. Then in the set of solutions there aren−1 free variables.
For subsets of Z, this statement is not true.

4. SolutionMethod for n = 2
Let

a1x1 + a2x2 = b (a1, a2) �= (0, 0) (5.241a)

be a solvable Diophantine equation, i.e., gcd(a1, a2)|b. To find a special solution of the equation, the
equation is divided by gcd(a1, a2) and one obtains a′1x

′
1 + a′2x

′
2 = b′ with gcd(a′1, a

′
2) = 1.

As described in 5.4.1, 4., p. 374, gcd(a′1, a
′
2) is determined to obtain finally a linear combination of a′1

and a′2: a
′
1c

′
1 + a′2c

′
2 = 1.

Substitution in the given equation demonstrates that the ordered pair (c′1b
′, c′2b

′) of integers is a solution
of the given Diophantine equation.

114x+315y = 6. The equation is divided by 3, since 3 = gcd(114, 315). That implies 38x+105y = 2
and 38 · 47 + 105 · (−17) = 1 (see 5.4.1, 4., p. 374). The ordered pair (47 · 2, (−17) · 2) = (94,−34) is
a special solution of the equation 114x+ 315y = 6.

The family of solutions of (5.241a) can be obtained as follows: If (x0
1, x

0
2) is an arbitrary special solution,

which could also be obtained by trial and error, then

{(x0
1 + t · a′2, x0

2 − t · a′1)|t ∈ Z} (5.241b)

is the set of all solutions.

The set of solutions of the equation 114x+ 315y = 6 is {(94 + 315t,−34− 114t)|t ∈ Z}.
5. ReductionMethod for n > 2
Suppose a solvable Diophantine equation

a1x1 + a2x2 + · · ·+ anxn = b (5.242a)

with (a1, a2, . . . , an) �= (0, 0, . . . , 0) and gcd(a1, a2, . . . , an) = 1 is given. If gcd(a1, a2, . . . , an) �= 1, then
the equation should be divided by gcd(a1, a2, . . . , an). After the transformation

a1x1 + a2x2 + · · ·+ an−1xn−1 = b− anxn (5.242b)

xn is considered as an integer constant and a linear Diophantine equation in n−1 unknowns is obtained,
and it is solvable iff gcd(a1, a2, . . . , an−1) is a divisor of b− anxn.
The condition

gcd(a1, a2, . . . , an−1)|b− anxn (5.242c)

is satisfied iff there are integers c, cn such that:

gcd(a1, a2, . . . , an−1) · c+ ancn = b. (5.242d)

This is a linear Diophantine equation in two unknowns, and it can be solved as shown in 5.4.2,4., p. 376.
If its solution is determined, then it remains to solve a Diophantine equation in only n− 1 unknowns.
This procedure can be continued until a Diophantine equation in two unknowns is obtained, which can
be solved with the method given in 5.4.2, 4., p. 376.
Finally, the solution of the given equation is constructed from the set of solutions obtained in this way.
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Solve the Diophantine equation

2x+ 4y + 3z = 3. (5.243a)

This is solvable since gcd(2, 4, 3) is a divisor of 3.
The Diophantine equation

2x+ 4y = 3− 3z (5.243b)

in the unknowns x, y is solvable iff gcd(2, 4) is a divisor of 3 − 3z. The corresponding Diophantine
equation 2z′ + 3z = 3 has the set of solutions {(−3 + 3t, 3− 2t)|t ∈ Z}. This implies, z = 3− 2t, and
now the set of solutions of the solvable Diophantine equation 2x+ 4y = 3− 3(3− 2t) or

x+ 2y = −3 + 3t (5.243c)

is sought for every t ∈ Z.
The equation (5.243c) is solvable since gcd(1, 2) = 1|(−3 + 3t). Now 1 · (−1) + 2 · 1 = 1 and 1 · (3 −
3t)+2 · (−3+3t) = −3+3t. The set of solution is {((3−3t)+2s, (−3+3t)− s)|s ∈ Z} . That implies
x = (3 − 3t) + 2s, y = (−3 + 3t) − s, and {(3 − 3t + 2s,−3 + 3t − s, 3 − 2t)|s, t ∈ Z} so obtained is
the set of solutions of (5.243a).

5.4.3 Congruences andResidueClasses

1. Congruences
Let m be a positive integer m, m > 1. If two integers a and b have the same remainder, when divided
by m, then a and b are called congruent modulo m, denoted by a ≡ b mod m or a ≡ b(m).

3 ≡ 13 mod 5, 38 ≡ 13 mod 5, 3 ≡ −2 mod 5.

Remark: Obviously, a ≡ b mod m holds iff m is a divisor of the difference a− b. Congruence modulo
m is an equivalence relation (see 5.2.4, 1., p. 334) in the set of integers. Note the following properties:

a ≡ a mod m for every a ∈ Z, (5.244a)

a ≡ b mod m ⇒ b ≡ a mod m, (5.244b)

a ≡ b mod m ∧ b ≡ c mod m ⇒ a ≡ c mod m. (5.244c)

2. Calculating Rules
a ≡ b mod m ∧ c ≡ d mod m ⇒ a+ c ≡ b+ d mod m, (5.245a)

a ≡ b mod m ∧ c ≡ d mod m ⇒ a · c ≡ b · d mod m, (5.245b)

a · c ≡ b · c mod m ∧ gcd(c,m) = 1 ⇒ a ≡ b mod m, (5.245c)

a · c ≡ b · c mod m ∧ c �= 0 ⇒ a ≡ b mod
m

gcd(c,m)
. (5.245d)

3. Residue Classes, Residue Class Ring
Since congruence modulo m is an equivalence relation in Z, this relation induces a partition of Z into
residue classes modulo m:

[a]m = {x|x ∈ Z ∧ x ≡ a mod m}. (5.246)

The residue class “ a modulo m ” consists of all integers having equal remainder if divided by m. Now
[a]m = [b]m iff a ≡ b mod m.
There are exactly m residue classes modulo m, and normally they are represented by their smallest
non-negative representatives:

[0]m, [1]m, . . . , [m− 1]m. (5.247)

In the set Zm of residue classes modulo m, residue class addition and residue class multiplication are
defined by

[a]m ⊕ [b]m := [a+ b]m, (5.248)

[a]m * [b]m := [a · b]m. (5.249)
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These residue class operations are independent of the chosen representatives, i.e.,

[a]m = [a′]m and [b]m = [b′]m imply

[a]m ⊕ [b]m = [a′]m ⊕ [b′]m and [a]m * [b]m = [a′]m * [b′]m. (5.250)

The residue classes modulo m form a ring with unit element, with respect to residue class addition
and residue class multiplication (see 5.4.3, 1., p. 377), the residue class ring modulo m. If p is a prime
number, then the residue class ring modulo p is a field (see 5.3.7, 2., p. 361).

4. Residue Classes Relatively Prime tom
A residue class [a]m with gcd(a,m) = 1 is called a residue class relatively prime to m. If p is a prime
number, then all residue classes different from [0]p are residue classes relatively prime to p .
The residue classes relatively prime to m form an Abelian group (5.3.3.1,1., p. 336) with respect to
residue class multiplication, the so-called group of residue classes relatively prime to m. The order of
this group is ϕ(m), where ϕ is the Euler function (see 5.4.4, 1., p. 381).

A: [1]8, [3]8, [5]8, [7]8 are residue classes relatively prime to 8.

B: [1]5, [2]5, [3]5, [4]5 are residue classes relatively prime to 5.

C: ϕ(8) = ϕ(5) = 4 is valid.

5. Primitive Residue Classes
A residue class [a]m relatively prime to m is called a primitive residue class if it has order ϕ(m) in the
group of residue classes relatively prime to m.

A: [2]5 is a primitive residue class modulo 5, since ([2]5)
2 = [4]5, ([2]5)

3 = [3]5, ([2]5)
4 = [1]5.

B: There is no primitive residue class modulo 8, since [1]8 has order 1, and [3]8, [5]8, [7]8 have order
2 in the group of residue classes relatively prime to m.

Remark: There is a primitive residue class modulo m, iff m = 2,m = 4,m = pk or m = 2pk, where p
is an odd prime number and k is a positive integer.
If there is a primitive residue class modulo m, then the group of residue classes relatively prime to m
forms a cyclic group.

6. Linear Congruences
1. Definition If a, b and m > 0 are integers, then

ax ≡ b(m) (5.251)

is called a linear congruence (in the unknown x).
2. Solutions An integer x∗ satisfying ax∗ ≡ b(m) is a solution of this congruence. Every integer,
which is congruent to x∗ modulo m, is also a solution. In finding all solutions of (5.251) it is sufficient
to find the integers pairwise incongruent modulo m which satisfy the congruence.
The congruence (5.251) is solvable iff gcd(a,m) is a divisor of b. In this case, the number of solutions
modulo m is equal to gcd(a,m).
In particular, if gcd(a,m) = 1 holds, the congruence modulo m has a unique solution.
3. Solution Method There are different solution methods for linear congruences. It is possible to
transform the congruence ax ≡ b(m) into the Diophantine equation ax + my = b, and to determine
a special solution (x0, y0) of the Diophantine equation a′x + m′y = b′ with a′ = a/gcd(a,m),m′ =
m/gcd(a,m), b′ = b/gcd(a,m) (see 5.4.2, 1., p. 375).
The congruence a′x ≡ b′(m′) has a unique solution since gcd(a′,m′) = 1 modulo m′, and

x ≡ x0(m′). (5.252a)

The congruence ax ≡ b(m) has exactly gcd(a,m) solutions modulo m:

x0, x0 +m,x0 + 2m, . . . , x0 + (gcd(a,m)− 1)m. (5.252b)

114x ≡ 6 mod 315 is solvable, since gcd(114, 315) is a divisor of 6; there are three solutions modulo
315.
38x ≡ 2 mod 105 has a unique solution: x ≡ 94 mod 105 (see 5.4.2, 4., p. 376). 94, 199, and 304 are
the solutions of 114x ≡ 3 mod 315.
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7. Simultaneous Linear Congruences
If finitely many congruences

x ≡ b1(m1), x ≡ b2(m2), . . . , x ≡ bt(mt) (5.253)

are given, then (5.253) is called a system of simultaneous linear congruences. A result on the set of
solutions is the Chinese remainder theorem: Consider a given system x ≡ b1(m1), x ≡ b2(m2), . . . , x ≡
bt(mt), where m1,m2, . . . ,mt are pairwise coprime numbers. If

m = m1 ·m2 · · ·mt, a1 =
m

m1

, a2 =
m

m2

, . . . , at =
m

mt

(5.254a)

and xj is chosen such that ajxj ≡ bj(mj) for j = 1, 2, . . . , t, then

x′ = a1x1 + a2x2 + · · ·+ atxt (5.254b)

is a solution of the system. The system has a unique solution modulom, i.e., if x′ is a solution, then x′′

is a solution, too, iff x′′ ≡ x′(m).

Solve the system x ≡ 1 (2), x ≡ 2 (3), x ≡ 4 (5), where 2, 3, 5 are pairwise coprime numbers.
Then m = 30, a1 = 15, a2 = 10, a3 = 6. The congruences 15x1 ≡ 1 (2), 10x2 ≡ 2 (3), 6x3 ≡ 4 (5)
have the special solutions x1 = 1, x2 = 2, x3 = 4. The given system has a unique solution modulo m:
x ≡ 15 · 1 + 10 · 2 + 6 · 4 (30), i.e., x ≡ 29 (30).

Remark: Systems of simultaneous linear congruences can be used to reduce the problem of solving
non-linear congruences modulom to the problem of solving congruences modulo prime number powers
(see 5.4.3, 9., p. 380).

8. Quadratic Congruences

1. Quadratic Residues Modulo m One can solve every congruence ax2 + bx + c ≡ 0(m) if one
can solve every congruence x2 ≡ a(m):

ax2 + bx+ c ≡ 0(m) ⇔ (2ax+ b)2 ≡ b2 − 4ac(m). (5.255)

First quadratic residues modulo m are considered: Let m ∈ IN,m > 1 and a ∈ Z, gcd(a,m) = 1. The
number a is called a quadratic residue modulo m iff there is an x ∈ Z with x2 ≡ a(m).

If the canonical prime factorization of m is given, i.e.,

m =
∞∏
i=1

pαi
i , (5.256)

then r is a quadratic residue modulo m iff r is a quadratic residue modulo pαi
i for i = 1, 2, 3, . . . .

If a is a quadratic residue modulo a prime number p, then this is denoted by

(
a

p

)
= 1; if a is a quadratic

non-residue modulo p, then it is denoted by

(
a

p

)
= −1 (Legendre symbol).

The numbers 1, 4, 7 are quadratic residues modulo 9.

2. Properties of Quadratic Congruences

(E1) p|/ab and a ≡ b(p) imply

(
a

p

)
=

(
b

p

)
. (5.257a)

(E2)

(
1

p

)
= 1. (5.257b)

(E3)

(
−1

p

)
= (−1)

p−1
2 . (5.257c)



380 5. Algebra and Discrete Mathematics

(E4)

(
ab

p

)
=

(
a

p

)
·
(
b

p

)
in particular

(
ab2

p

)
=

(
a

p

)
. (5.257d)

(E5)

(
2

p

)
= (−1)

p2−1
8 . (5.257e)

(E6) Quadratic reciprocity law: If p and q are distinct odd prime numbers,

then

(
p

q

)
·
(
q

p

)
= (−1)

p−1
2

q−1
2 . (5.257f)

(
65

307

)
=

(
5

307

)
·
(
13

307

)
=

(
307

5

)
·
(
307

13

)
=

(
2

5

)
·
(
8

13

)
= (−1)

52−1
8

(
23

13

)
= −

(
2

13

)
=

−(−1)
132−1

8 = 1.

In General: A congruence x2 ≡ a(2α), gcd(a, 2) = 1, is solvable iff a ≡ 1(4) for α = 2 and a ≡ 1(8)
for α ≥ 3. If these conditions are satisfied, then modulo 2α there is one solution for α = 1, there are
two solutions for α = 2 and four solutions for α ≥ 3.
A necessary condition for solvability of congruences of the general form

x2 ≡ a(m), m = 2αpα1
1 pα2

2 · · · pαt
t , gcd(a,m) = 1, (5.258a)

is the solvability of the congruences

a ≡ 1(4) for α = 2, a ≡ 1(8) for α ≥ 3,

(
a

p1

)
= 1,

(
a

p2

)
= 1, . . . ,

(
a

pt

)
= 1. (5.258b)

If all these conditions are satisfied, then the number of solutions is equal to 2t for α = 0 and α = 1,
equal to 2t+1 for α = 2 and equal to 2t+2 for α ≥ 3.

9. Polynomial Congruences
If m1,m2, . . . ,mt are pairwise coprime numbers, then the congruence

f(x) ≡ anx
n + an−1x

n−1 + · · ·+ a0 ≡ 0(m1m2 · · ·mt) (5.259a)

is equivalent to the system

f(x) ≡ 0(m1), f(x) ≡ 0(m2), . . . , f(x) ≡ 0(mt). (5.259b)

If kj is the number of solutions of f(x) ≡ 0(mj) for j = 1, 2, . . . , t, then k1k2 · · · kt is the number of
solutions of f(x) ≡ 0(m1m2 · · ·mt). This means that the solution of the congruence

f(x) ≡ 0 (pα1
1 pα2

2 · · · pαt
t ), (5.259c)

where p1, p2, . . . , pt are primes, can be reduced to the solution of congruences f(x) ≡ 0(pα). Moreover,
these congruences can be reduced to congruences f(x) ≡ 0(p) modulo prime numbers in the following
way:

a) A solution of f(x) ≡ 0(pα) is a solution of f(x) ≡ 0(p), too.

b) A solution x ≡ x1(p) of f(x) ≡ 0(p) defines a unique solution modulo pα iff f ′(x1) is not divisible
by p:
Suppose f(x1) ≡ 0(p). Let x = x1 + pt1 and determine the unique solution t′1 of the linear congruence

f(x1)

p
+ f ′(x1)t1 ≡ 0(p). (5.260a)

Substitute t1 = t′1 + pt2 into x = x1 + pt1, then x = x2 + p2t2 is obtained. Now, the solution t′2 of the
linear congruence

f(x2)

p2
+ f ′(x2)t2 ≡ 0(p) (5.260b)
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has to be determined modulo p2. By substitution of t2 = t′2 + pt3 into x = x2 + p2t2 the result
x = x3 + p3t3 is obtained. Continuing this process yields the solution of the congruence f(x) ≡ 0 (pα).

Solve the congruence f(x) = x4 + 7x + 4 ≡ 0 (27). f(x) = x4 + 7x + 4 ≡ 0 (3) implies x ≡
1 (3), i.e., x = 1 + 3t1. Because of f ′(x) = 4x3 + 7 and 3|/f ′(1) now the solution of the congruence
f(1)/3 + f ′(1) · t1 ≡ 4 + 11t1 ≡ 0 (3) is searched for: t1 ≡ 1 (3), i.e., t1 = 1 + 3t2 and x = 4 + 9t2.
Then consider f(4)/9 + f ′(4) · t2 ≡ 0 (3) and the solution t2 ≡ 2 (3) is obtained, i.e., t2 = 2 + 3t3 and
x = 22+ 27t3. Therefore, 22 is the solution of x4 +7x+4 ≡ 0 (27), uniquely determined modulo 27.

5.4.4 Theorems of Fermat, Euler, andWilson

1. Euler Function
For every positive integer m with m > 0 one can determine the number of coprimes x with respect to
m for 1 ≤ x ≤ m. The corresponding function ϕ is called the Euler function. The value of the function
ϕ(m) is the number of residue classes relatively prime to m (s. 5.4.3, 4., p. 378).
For instance, ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2, ϕ(7) = 6, ϕ(8) = 4, etc.
In general, ϕ(p) = p−1 holds for every prime number p and ϕ(pα) = pα−pα−1 for every prime number
power pα. If m is an arbitrary positive integer, then ϕ(m) can be determined in the following way:

ϕ(m) = m
∏
p|m

(
1− 1

p

)
, (5.261a)

where the product applies to all prime divisors p of m.

ϕ(360) = ϕ(23 · 32 · 5) = 360 · (1− 1
2
) · (1− 1

3
) · (1− 1

5
) = 96.

Furthermore∑
d|m

ϕ(d) = m (5.261b)

is valid. If gcd(m,n) = 1 holds, then we get ϕ(mn) = ϕ(m)ϕ(n).

ϕ(360) = ϕ(23 · 32 · 5) = ϕ(23) · ϕ(32) · ϕ(5) = 4 · 6 · 4 = 96.

2. Fermat-Euler Theorem
The Fermat-Euler theorem is one of the most important theorems of elementary number theory. If a
and m are coprime positive numbers, then

aϕ(m) ≡ 1(m). (5.262)

Determine the last three digits of 99
9
in decimal notation. This means, determine x with x ≡

99
9
(1000) and 0 ≤ x ≤ 999. Now ϕ(1000) = 400, and according to Fermats theorem 9400 ≡ 1 (1000).

Furthermore 99 = (80 + 1)4 · 9 ≡
((

4
0

)
800 · 14 +

(
4
1

)
801 · 13

)
· 9 = (1 + 4 · 80) · 9 ≡ −79 · 9 ≡ 89 (400).

From that it follows that 99
9 ≡ 989 = (10−1)89 ≡

(
89
0

)
100 ·(−1)89+

(
89
1

)
101 ·(−1)88+

(
89
2

)
102 ·(−1)87 =

−1 + 89 · 10 − 3916 · 100 ≡ −1 − 110 + 400 = 289(1000). The decimal notation of 99
9
ends with the

digits 289.

Remark: The theorem above form = p, i.e., ϕ(p) = p−1 was proved by Fermat; the general form was
proved by Euler. This theorem forms the basis for encoding schemes (see 5.4.6). It contains a necessary
criterion for the prime number property of a positive integer: If p is a prime, then ap−1 ≡ 1(p) holds for
every integer a with p |/a.
3. Wilson’s Theorem
There is a further prime number criterion, called the Wilson theorem:
Every prime number p satisfies (p− 1)! ≡ −1(p).
The inverse proposition is also true; and therefore:
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The number p is a prime number iff (p− 1)! ≡ −1(p).

5.4.5 PrimeNumberTests

In the followings two stochastic prime tests will be presented which are useful at large numbers to test
the prime property with a sufficiently small probability of mistakes. With these tests it is possible to
show that a number is not a prime, without knowing its prime factors.

1. Fermat-Prime Number Test
Let n be an odd natural number and a an integer such that gcd(a, n) = 1 and an−1 ≡ 1 (mod n).. Then
n is called a pseudoprime to base a.

A: 341 is a pseudo prime to basis 2; 341 is not a pseudo prime to basis 3.

Test: Let an odd natural number n > 1 be given. Choose a ∈ Zn \ {0}.

• If the gcd (a, n) > 1, then n is not prime.

• If the gcd (a, n) = 1 and

{
an−1 ≡ 1 (mod n)
an−1 �≡ 1 (mod n)

}
, then n

{
did pass

did not pass

}
the test to base a. If n did

not pass the test, then n is not a prime. If n did pass the test, then it may be a prime, but more tests
are needed with other base, i.e. tests with further values of a.

B: n = 15: The test with a = 4 gives 414 ≡ 1 (mod 15). The test with a = 7 gives 714 ≡ 4 �≡
1 (mod 15). Hence 15 is not a prime.

C: n = 561: The test with arbitrary a ∈ Z561 \ {0} with gcd(a, 561) = 1 results in a560 ≡
1 (mod 561). But 561 = 3 · 11 · 17 is not a prime.

Remark: A composite number n for which an−1 ≡ 1 (modn) for all a ∈ Zn \ {0} with gcd(a, n) = 1 is
called a Carmichael number.

If n is not a prime and not a Carmichael number, then one can show that the level of error of the first
kind to get a false result using k numbers with gcd(a, n) =1 is at most 1/2k . At least for the half of the
numbers in Zn \ {0} with gcd(a, n) =1 the relation an−1 �≡ 1 (modn) holds.

2. Rabin-Miller Prim Number Test
The Rabin-Miller primality test is based on the following statement (∗):
Let n > 2 be a prime, n− 1 = 2tu (u is odd), g.c.d(a, n) =1. Then:

au ≡ 1(modn) or a2
ju ≡ −1 (modn) for some j ∈ {0, 1, . . . , t− 1}. (∗)

Every odd natural number n > 1 can be tested about prime property in the following way:
Test: Choose a ∈ Zn \ {0} and find the representation n− 1 = 2tu (u is odd).
• If g.c.d(a, n) > 1, then n is not a prime.

• If g.c.d(a, n) =1, then the sequence au (modn), a2u(modn), . . . , a2
t−1u(mod n) is calculated until a

value is found which satisfies (∗). These elements are calculated by repeated squaring modn. If there
is no such value, then n is not a prime. Otherwise n did pass the test to basis a.

A: n = 561, and should be tested by different values of a:

n− 1 = 24 · 35, a = 2:

235 ≡ 263 �≡ ±1 (mod 561),
270 ≡ 166 �≡ −1 (mod 561),
2140 ≡ 67 �≡ −1 (mod 561),
2280 ≡ 421 �≡ −1 (mod 561).

561 is not a prime.

If choosing k different values randomly and independently and n passes the test to basis a for each,
then the error rate of the first kind that n is not a prime is ≤ 1/4k. In the practice k = 25 is chosen.

B: There is only one number ≤ 2, 5 · 1010 such that it passes the test to basis a = 2, 3, 5, 7 and it is
not a prime.
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3. AKS Prime Number Test
The AKS primality test is based on a polynomial algorithm to determine whether a number is prime or
composite. Published by Agrawal, Kayal, and Saxena, in 2002, meanwhile it is evident that the prime
property can be tested efficiently for any natural number.

The test is based on the following statements:
If n > 1 is a natural number and r is a prime satisfying the assumtions
• n is not divisible by primes ≤ r,
• ri �≡ 1 (mod n) for i = 1, 2, . . . , +(log2 n)2,∗,
• (x+ a)n ≡ xn + a (mod xr − 1, n) for every 1 ≤ a ≤ √

r log n,
Then n is a power of a prime.

Let n > 1 be an odd natural number whose prime characteristic is to be tested, and m := +(log2 n)5,.
If n < 5690034, then it is tested by comparing it to a list of known prime numbers whether n is a prime.
For n > 5690034 holds n > m:

Test:
• Check, whether n can be divided by a natural number from the interval [3,m]. If yes, then n is not
a prime.
• Otherwise take a prime r < m, such that ri �≡ 1( modn) for i = 1, 2, . . . , +(log2 n)2,. (It can be
proven, that such a prime r exists.)
• Check, whether the congruence (x + a)n = xn + a( mod xr − 1, n) for a = 1, 2,

√
r+(log2 n), holds.

If not, then n is not a prime. If yes, then n is a power of a prime. In this case it is to be tested, whether
natural numbers q and k > 1 exist, for which n = qk. If not, then n is a prime.

Different to the known and efficient stochastic algorithms, the result of the test can be trusted without
even a negligible small error probability of mistakes. However in cryptography the Rabin-Miller test is
preferred.

5.4.6 Codes

5.4.6.1 Control Digits
In the information theorymethods are provided to recognize and to correct errors in data combinations.
Some of the simplest methods are represented in the form of the following control digits.

1. International Standard Book Number ISBN-10
A simple application of the congruence of numbers is the use of control digits with the International
Standard Book Number ISBN. A combination of 10 digits of the form

ISBN a− bcd− efghi− p. (5.263a)

is assigned to a book. The digits have the following meaning: a is the group number (for example, a = 3
tells us that the book originates from Austria, Germany, or Switzerland), bcd is the publisher’s number,
and efghi is the title number of the book by this publisher. A control digit p will be added to detect
erroneous book orders and thus help reduce expenses. The control digit p is the smallest non-negative
digit that fulfils the following congruence:

10a+ 9b+ 8c+ 7d+ 6e+ 5f + 4g + 3h+ 2i+ p ≡ 0(11). (5.263b)

If the control digit p is 10, a unary symbol such as X is used (see also 5.4.6, 3., p. 384). A presented
ISBN can now be checked for a match of the control digit contained in the ISBN and the control digit
determined from all the other digits. In case of no match an error is certain. The ISBN control digit
method permits the detection of the following errors:

1. Single digit error and

2. interchange of two digits.

Statistical investigations showed that by thismethodmore than 90% of all actual errors can be detected.
All other observed error types have a relative frequency of less than 1%. In the majority of the cases

∗+x, is symbol for “greatest integer ≤ x”.
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the described method will detect the interchange of two digits or the interchange of two complete digit
blocks.

2. Central Codes for Drugs andMedicines

In pharmacy, a similar numerical system with control digits is employed for identifying medicaments.
In Germany, each medicament is assigned a seven digit control code:

abcdefp. (5.264a)

The last digit is the control digit p. It is the smallest, non-negative number that fulfils the congruence

2a+ 3b+ 4c+ 5d+ 6e+ 7f ≡ p(11). (5.264b)

Here too, the single digit error or the interchange of two digits can always be detected.

3. Account Numbers

Banks and saving banks use a uniform account number system with a maximum of 10 digits (depending
on the business volume). The first (at most four) digits serve the classification of the account. The
remaining six digits represent the actual account number including a control digit in the last position.
The individual banks and saving banks tend to apply different control digit methods, for example:

a) The digits are multiplied alternately by 2 and by 1, beginning with the rightmost digit. A control
digit p will then be added to the sum of these products such that the new total is the next number
divisible by 10. Given the account number abcd efghi p with control digit p, then the congruence

2i+ h+ 2g + f + 2e+ d+ 2c+ b+ 2a+ p ≡ 0 (mod 10). (5.265)

holds.

b) As in method a), however, any two-digit product is first replaced by the sum of its two digits and
then the total sum will be calculated.

In case a) all errors caused by the interchange of adjacent digits and almost all single-digit errors will
be detected.
In case b), however, all errors caused by the change of one digit and almost all errors caused by the
interchange of two adjacent digits will be discovered. Errors due to the interchange of non-adjacent
digits and the change of two digits will often not be detected.

The reason for not using the more powerful control digit method modulo 11 is of a non-mathematical
nature. The non-numerical sign X (instead of the control digit 10 (see 5.4.6, 1., p. 383)) would require
an extension of the numerical keyboard. However, renouncing those account numbers whose control
digit has the value of 10 would have barred the smooth extension of the original account number in a
considerable number of cases.

4. European Article Number EAN

EAN stands for European Article Number. It can be found on most articles as a bar code or as a string
of 13 or 8 digits. The bar code can be read by means of a scanner at the counter.
In the case of 13-digit strings the first two digits identify the country of origin, e.g., 40, 41, 42 and
43 stand for Germany. The next five digits identify the producer, the following five digits identify a
particular product. The last digit is the control digit p.

This control digit will be obtained by first multiplying all 12 digits of the string alternately by 1 and
3 starting with the left-most digit, by then totalling all values, and by finally adding a p such that the
next number divisible by 10 is obtained. Given the article number abcdefghikmn p with control digit
p, then the congruence

a+ 3b+ c+ 3d+ e+ 3f + g + 3h+ i+ 3k +m+ 3n+ p ≡ 0 (mod 10). (5.266)

holds.

This control digit method always permits the detection of single digit errors in the EAN and often the
detection of the interchange of two adjacent digits. The interchange of two non-adjacent digits and the
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change of two digits will often not be detected.

5.4.6.2 Error correcting codes

1. Model of Data Transmission and Error Correction
At transmission of messages through noisy channels the correction of errors is often possible. The mes-
sage is coded first, then after transmission the usually biased codes are corrected into the right ones,
so after decoding them the original message can be recovered. That case is considered now, when the
length of the words of the message is k, and the length of the coded words is n, and both of them consist
of only zeros and ones. Then k is the number of information positions and n−k is the number of redun-
dant positions. Every word of the message is an element of GF(2)k (see 5.3.7.4 p. 363) and every word
of the code is an element of GF(2)n. To simplify the notation the words of the message are written in
the form a1, a2, . . . , ak, and the words of the code in the form c1, c2, . . . , cn. The words of the message
are not transmitted, only the words of the code are.
An often used idea of error correction is to convert the transmitted word d1, d2, . . . , dn first into a valid
codeword c1, c2, . . . , cn which differs from it in the least number of digits (decoding MLD). It depends
on the properties of coding and the transmission channels that how many errors can be detected and
corrected in this way.

At digit repeating codes the message word 0 is represented by the codeword 0000. If after trans-
mission the receiver gets the word 0010, then he assumes that the original codeword was 0000, and
it is decoded as message word 0. But if the received word is 1010, then similar assumption can not
be applied, since the message word 1 is coded as 1111, so the difference is similar. At least it can be
recognized that there is some error in the received word.

2. t-Error Correcting Codes
The set of all codewords is called code C. The distance of two codewords is the number of digits (po-
sitions) in which the two words differ from each other. The minimal distance dmin(C) of codes is the
smallest distance which occurs between the codewords of C.

For C1 = {0000, 1111}, dmin(C)1 = 4. For C2 = {000, 011, 101, 110}, dmin(C2) = 2, since there are
codewords which have distance 2. For C3 = {00000, 01101, 10111, 11010}, dmin(C3) = 3, there are code-
words in C3 whose distance is 3.
If the minimal distance dmin(C) of a code C is known, then it is easy to recognize how many transmis-
sion errors can be corrected. Codes, correcting t errors, are called t-error correcting. A code C is t-error
correcting if dmin(C) ≥ 2t+ 1.

(Continuation) C1 is 1-error correcting, C2 is 0-error correcting (it means, that no error can be cor-
rected), C3 is 1-error correcting.
For every t-error correcting code C ⊆ GM(2)n holds

t∑
i=0

(
c
n

)
· |C| ≤ 2n . If equality holds, then C is called

t-perfect.

The digit repeating code C = {00 . . . 0, 11 . . . 1} ⊆ GF(2)2t+1 is t-perfect.

3. Linear Codes
A non-empty subset C ⊆ GF(2)n is called (binary) linear code, if C is a sub-vector space of GF(2)n. If
a linear code C ⊆ GF(2)n has dimension k, then it is called an (n, k) linear code.

(Continuation) C1 is a (4,1) linear code, C2 is a (3,2) linear code, C3 is a (5,2) linear code. In the case
of linear codes the minimal distance (and as a consequence the number of correctible errors) is easy
to determine: The minimal distance of such a code is the smallest distance of a non-zero vector from
the zero vector of the vector space. The minimal distance can be found if the minimal number of ones,
except with all zeros, in the codewords is given.
For every (n, k) linear code there is a generating matrix G for which C = {aG | a ∈ GF(2)k}:

G =

⎛⎜⎝ g11 . . . g1n
...

...
...

gk1 . . . gkn

⎞⎟⎠
k×n

=

⎛⎜⎝ g1
...
gk

⎞⎟⎠ . (5.267)
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The code is uniquely defined by the generating matrix; the codeword of the message word a1a2 . . . ak is
determined in the following way:

a1a2 . . . ak �→ a1g1 + a2g2 + . . .+ akgk︸ ︷︷ ︸
aG

. (5.268)

In the case of an (n, k) linear code C a check matrix is needed for decoding:

H =

⎛⎜⎝ h11 . . . h1n
...

...
...

hn−k,1 . . . hn−k,n

⎞⎟⎠
(n−k)×n

. (5.269)

The (binary) linear code C is 1-error correcting, if the columns ofH are pairwise different and non-zero
vectors. If the result of the transmission is the word d = d1d2 . . . dn, then HdT is calculated. If the
result is the zero vector, then d is a codeword. Otherwise ifHdT is the i-th column of the check matrix
H, then the corresponding codeword is d + ei, where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) and the 1 is on the
i-th position.

4. Cyclic Codes
Cyclic codes are the most investigated linear codes. They provide efficient coding and decoding.
A (binary) (n, k) linear code is called cyclic if for every codeword c1c2 . . . cn the codeword obtained by
a cyclic right shift of the components is also a codeword, i.e. c0c1 . . . cn−1 ∈ C ⇒ cn−1c0c1 . . . cn−2 ∈ C

C = {000, 110, 101, 011} is a cyclic (3,2) linear code.
To have an efficient work with cyclic codes, the codewords are represented by polynomials of degree
≤ n− 1 with coefficients from GF(2): C = {000, 110, 101, 011} is a cyclic (3, 2)-linear code.
A (binary) (n, k) linear code C is cyclic if and only if for every c(x)

c(x) ∈ C ⇒ c(x) · x(mod xn -1) ∈ C (5.270)

A cyclic (n, k) linear code can be described by a generating polynomial and a control polynomial as
follows: The generating polynomial g(x) of degree n − k (k ∈ {1, 2, . . . , n − 1}) is a divisor of xn − 1.
The polynomial h(x) of degree k for which g(x)h(x) = xn − 1 is called the control polynomial . Coding
of a1a2 . . . ak in polynomial representation a(x) is given by

a(x) �→ a(x) · g(x) . (5.271)

Polynomial d(x) is an element of the code, if the generator polynomial g(x) is a divisor of d(x), or the
control polynomial h(x) satisfies the relation d(x)h(x) ≡ 0mod xn − 1.

An important class of cyclic codes are the BCH-codes. Here a lower bound δ of the minimal distance
and with it a lower bound for the number of errors can be required for which code should be corrected.
Here δ is called the design distance of the code.
A (binary) (n, k) linear code C is a BCH-code with design distance δ if for the generating polynomial
g(x):

g(x) = lcm(mαb(x),mαb+1(x), . . . ,mαb+δ−2(x)) , (5.272)

where α is a primitive n-th unit root and b is an integer. The polynomialsmαj(x) are minimal polyno-
mials of αj.
For a BCH-code C with design distance δ the relation dmin(C) ≥ δ must hold.

5.5 Cryptology

5.5.1 ProblemofCryptology
Cryptology is the science of hiding information by the transformation of data.

The idea of protecting data from unauthorized access is rather old. During the 1970s together with the
introduction of cryptosystems on the basis of public keys, cryptology became an independent branch of
science. Today, the subject of cryptological research is how to protect data from unauthorized access
and against tampering.



5.5 Cryptology 387

Beside the classical military applications, the needs of the information society gain more and more in
importance. Examples are the guarantee of secure message transfer via email, electronic funds transfer
(home-banking), the PIN of EC-cards, etc.

Today, the fields of cryptography and cryptanalysis are subsumed under the notion of cryptology. Cryp-
tography is concerned with the development of cryptosystems whose cryptographic strengths can be
assessed by applying the methods of cryptanalysis for breaking cryptosystems.

5.5.2 Cryptosystems

An abstract cryptosystem consists of the following sets: a set M of messages, a set C of ciphertexts,
sets K and K ′ of keys, and sets IE and ID of functions. A message m ∈ M will be encrypted into a
ciphertext c ∈ C by applying a function E ∈ IE together with a key k ∈ K, and will be transmitted via
a communication channel. The recipient can reproduce the original message m from c if he knows an
appropriate functionD ∈ ID and the corresponding key k′ ∈ K ′. There are two types of cryptosystems:

1. Symmetric Cryptosystems: The conventional symmetric cryptosystem uses the same key k for
encryption of the message and for decryption of the ciphertext. The user has complete freedom in
setting up his conventional cryptosystem. Encryption and decryption should, however, not become
too complex. In any case, a trustworthy transmission between the two communication partners is
mandatory.

2. Asymmetric Cryptosystems: The asymmetric cryptosystem (see 5.5.7.1, p. 391) uses two keys,
one private key (to be kept secret) and a public key. The public key can be transmitted along the same
path as the ciphertext. The security of the communication is warranted by the use of so-called one-way
functions (see 5.5.7.2, p. 391), which makes it practically impossible for the unauthorized listener to
deduce the plaintext from the ciphertext.

5.5.3 Mathematical Foundation

An alphabet A = {a0, a1, . . . , an−1} is a finite non-empty totally ordered set, whose elements ai are
called letters. |A| is the length of the alphabet. A sequence of letters w = a′1a

′
2 . . . a

′
n of length n ∈ IN

and ai ∈ A is called a word of length n over the alphabet A. An denotes the set of all words of length
n over A. Let n,m ∈ IN, let A,B be alphabets, and let S be a finite set.

A cryptofunction is a mapping t: An × S → Bm such that the mappings ts: A
n → Bm : w → t(w, s)

are injective for all s ∈ S. The functions ts and t−1
s are called the encryption and decryption function,

respectively. w is called plaintext, ts(w) is the ciphertext.

Given a cryptofunction t, then the one-parameter family {ts}s∈S is a cryptosystem TS. The term cryp-
tosystem will be applied if in addition to the mapping t, the structure and the size of the set of keys is
significant. The set S of all the keys belonging to a cryptosystem is called the key space. Then

TS = {ts: An → An|s ∈ S} (5.273)

is called a cryptosystem on An.

If TS is a cryptosystem over An and n = 1, then ts is called a stream cipher; otherwise ts is called a
block cipher.

Cryptofunctions of a cryptosystem over An are suited for the encryption of plaintext of any length.
The plaintext will be split into blocks of length n prior to applying the function to each individual
block. The last block may need padding with filler characters to obtain a block of length n. The filler
characters must not distort the plaintext.

There is a distinction between context-free encryption, where the ciphertext block is only a function of
the corresponding plaintext block and the key, and context sensitive encryption, where the ciphertext
block depends on other blocks of the message. Ideally, each ciphertext digit of a block depends on all
digits of the corresponding plaintext block and all digits of the key. Small changes to the plaintext or
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to the key cause extended changes to the ciphertext (avalanche effect).

5.5.4 Security of Cryptosystems
Cryptanalysis is concerned with the development of methods for deducing from the ciphertext as much
information about the plaintext as possible without knowing the key. According to A. Kerkhoff the
security of a cryptosystem rests solely in the difficulty of detecting the key or, more precisely, the de-
cryption function. The security must not be based on the assumption that the encryption algorithm is
kept secret. There are different approaches to assess the security of a cryptosystem:

1. Absolutely Secure Cryptosystems: There is only one absolutely secure cryptosystem based on
substitution ciphers, which is the one-time pad. This was proved by Shannon as part of his information
theory.

2. Analytically Secure Cryptosystems: No method exists to break a cryptosystem systematically.
The proof of the non-existence of such a method follows from the proof of the non-computability of a
decryption function.

3. Secure Cryptosystems according to Criteria of Complexity Theory: There is no algorithm
which can break a cryptosystem in polynomial time (with regard to the length of the text).

4. Practically Secure Cryptosystems: No method is known which can break the cryptosystem
with available resources and with justified costs.

Cryptanalysis often applies statistical methods such as determining the frequency of letters and words.
Other methods are an exhaustive search, the trial-and-error method and a structural analysis of the
cryptosystem (solving of equation systems).

In order to attack a cryptosystem one can benefit from frequent flaws in encryption such as using stereo-
type phrases, repeated transmissions of slightly modified text, an improper and predictable selection
of keys, and the use of filler characters.

5.5.4.1 Methods of Conventional Cryptography
In addition to the application of a cryptofunction it is possible to encrypt a plaintext by means of cryp-
tological codes. A code is a bijective mapping of some subset A′ of the set of all words over an alphabet
A onto the subset B′ of the set of all words over the alphabet B. The set of all source-target pairs of
such a mapping is called a code book.

today evening 0815
tomorrow evening 1113

The advantage of replacing long plaintexts by short ciphertexts is contrasted with the disadvantage
that the same plaintext will always be replaced by the same ciphertext. Another disadvantage of code
books is the need for a complete and costly replacement of all books should the code be compromised
even partially.

In the following only encryption by means of cryptofunctions will be considered. Cryptofunctions have
the additional advantage that they do not require any arrangement about the contents of the messages
prior to their exchange.

Transposition and substitution constitute conventional cryptoalgorithms. In cryptography, a transpo-
sition is a special permutation defined over geometric patterns. The substitutions will now be discussed
in detail. There is a distinction betweenmonoalphabetic and polyalphabetic substitutions according to
how many alphabets are used for presenting the ciphertext. Generally, a substitution is termed polyal-
phabetic even if only one alphabet is used, but the encryption of the individual plaintext letter depends
on its position within the plaintext.

A further, useful classification is the distinction between monographic and polygraphic substitutions.
In the first case, single letters will be substituted, in the latter case, strings of letters of a fixed length
> 1.
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5.5.4.2 Linear Substitution Ciphers
Let A = {a0, a1, . . . , an−1} be an alphabet and k, s ∈ {0, 1, . . . , n − 1} with gcd(k, n) = 1. The
permutation tks , which maps each letter ai to t

k
s(ai) = aki+s, is called a linear substitution cipher. There

exist nϕ(n) linear substitution ciphers on A.

Shift ciphers are linear substituting ciphers with k = 1. The shift cipher with s = 3 was already used
by Julius Caesar (100 to 44 BC) and, therefore, it is called the Caesar cipher.

5.5.4.3 Vigenère Cipher
An encryption called the Vigenère cipher is based on the periodic application of a key word whose
letters are pairwise distinct. The encryption of a plaintext letter is determined by the key letter that
has the same position in the key as the plaintext letter in the plaintext. This requires a key that is as
long as the plaintext. Shorter keys are repeated to match the length of the plaintext.

A version of theVigenère cipher attributed to L. Carroll utilizes
the so-called Vigenère tableau (see picture) for encryption and
decryption. Each row represents the cipher for the key letter
to its very left. The alphabet for the plaintext runs across the
top. The encryption step is as follows: Given a key letter D and
a plaintext letter C, then the ciphertext letter is found at the
intersection of the row labeled D and the column labeled C; the
ciphertext is F. Decryption is the inverse of this process.

A B C D E F . . .

A A B C D E F . . .
B B C D E F G . . .
C C D E F G H . . .
D D E F G H I . . .
E E F G H I J . . .
F F G H I J K . . .
...

...
...

...
...

...
...

. . .

Let the key be “ HUT ”.
Plaintext: O N C E U P O N A T I M E
Key: H U T H U T H U T H U T H
Ciphertext: V H V L O I V H T A C F L

Formally, the Vigenère cipher can be written in the following way: let ai be the plaintext letter and aj be
the corresponding key letter, then k = i+ j determines the ciphertext letter ak. In the above example,
the first plaintext letter is O = a14. The 15-th position of the key is taken by the letterH = a7. Hence,
k = i+ j = 14 + 7 = 21 yields the ciphertext letter a21 = V .

5.5.4.4 Matrix Substitution
Let A = {a0, a1, . . . , an−1} be an alphabet and S = (sij), sij ∈ {0, 1, . . . ,m − 1}, be a non-singular
matrix of type (m,m) with gcd(detS, n)= 1. The mapping which maps the block of plaintext at(1),
at(2), . . . , at(m) to the ciphertext determined by the vector (all arithmetic modulo n, vectors transposed
as required)⎛⎜⎜⎜⎝S ·

⎛⎜⎜⎜⎝
at(1)
at(2)
...

at(m)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

T

(5.274)

is called the Hill cipher. This represents a monoalphabetic matrix substitution.

S =

⎛⎝ 14 8 3
8 5 2
3 2 1

⎞⎠ .
Let the letters of the alphabet be enumerated a0 =A, a1 =B, . . . , a25 =
Z. For m = 3 and the plaintext AUTUMN, the strings AUT and UMN
correspond to the vectors (0, 20, 19) and (20, 12, 13).

Then S · (0, 20, 19) = (217, 138, 59) ≡ (9, 8, 7)(mod26) and S · (20, 12, 13) = (415, 246, 97) ≡
(25, 12, 19)(mod26). Thus, the plaintext AUTUMN is mapped to the ciphertext JIHZMT.

5.5.5 Methods of Classical Cryptanalysis
The purpose of cryptanalytical investigations is to deduce from the ciphertext an optimum of infor-
mation about the corresponding plaintext without knowing the key. These analyses are of interest not



390 5. Algebra and Discrete Mathematics

only to an unauthorized “eavesdropper” but also help assess the security of cryptosystems from the
user’s point of view.

5.5.5.1 Statistical Analysis
Each natural language shows a typical frequency distribution of the individual letters, two-letter com-
binations, words, etc. For example, in English the letter e is used most frequently:

Letter Relative frequency
E, 12.7 %
T, A, O, I, N, S, H, R 56.9 %
D, L 8.3 %
C, U, M, W, F, G, Y, P, B 19.9 %
V, K, J, X, Q, Z 2.2 %

Given sufficiently long ciphertexts it is possible to break a monoalphabetic, monographic substitution
on the basis of the frequency distribution of letters.

5.5.5.2 Kasiski-Friedman Test
Combining the methods of Kasiski and Friedman it is possible to break the Vignère cipher. The attack
benefits from the fact that the encryption algorithm applies the key periodically. If the same string
of plaintext letters is encrypted with the same portion of the key then the same string of ciphertext
letters will be produced. A length > 2 of the distance of such identical strings in the ciphertext must
be a multiple of the key length. In the case of several reoccurring strings of ciphertext the key length
is a divisor of the greatest common divisor of all distances. This reasoning is called the Kasiski test.
One should, however, be aware of erroneous conclusions due to the possibility that matches may occur
accidentally.

TheKasiski test permits the determination of the key length atmost as amultiple of the true key length.
The Friedman test yields the magnitude of the key length. Let n be the length of the ciphertext of some
English plaintext encrypted by means of the Vignère method. Then the key length l is determined by

l =
0.027n

(n− 1)IC− 0.038n + 0.065
. (5.275a)

Here IC denotes the coincidence index of the ciphertext. This index can be deduced from the number
ni of occurrences of the letter ai (i ∈ {0, 1, . . . , 25}) in the ciphertext:

IC =

26∑
i=1

ni(ni − 1)

n(n− 1)
. (5.275b)

In order to determine the key, the ciphertext of length n is split into l columns. Since the Vignère cipher
produces the contents of each column by means of a shift cipher, it suffices to determine the equivalence
of E on a column base. Should V be the most frequent letter within a column, then the Vignère tableau
points to the letter R

E
...

R. . .V

(5.275c)

of the key. The methods described so far will not be successful if the Vignère cipher employs very long
keys (e.g., as long as the plaintext). It is, however, possible to deduce whether the applied cipher is
monoalphabetic, polyalphabetic with short period or polyalphabetic with long period.

5.5.6 One-TimePad
The one-time pad is the only substitution cipher that is considered theoretically secure. The encryption
adheres to the principle of the Vignère cipher, where the key is a random string of letters as long as the
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plaintext.

Usually, one-time pads are applied as binary Vignère ciphers: Plaintext and ciphertext are represented
as binary numbers with addition modulo 2. In this particular case the cipher is involutory, which means
that the twofold application of the cipher restores the original plaintext. A concrete implementation
of the binary Vignère cipher is based on shift register circuits. These circuits combine switches and
storage elements, whose states are 0 or 1, according to special rules.

5.5.7 PublicKeyMethods
Although themethods of conventional encryption can have efficient implementations with today’s com-
puters, and although only a single key is needed for bidirectional communication, there are a number
of drawbacks:

1. The security of encryption solely depends on keeping the next key secret.

2. Prior to any communication, the key must be exchanged via a sufficiently secured channel; sponta-
neous communication is ruled out.

3. Furthermore, no means exist to prove to a third party that a specific message was sent by an iden-
tified sender.

5.5.7.1 Diffie-HellmanKey Exchange
The concept of encryption with public keys was developed by Diffie and Hellman in 1976. Each partic-
ipant owns two keys: a public key that is published in a generally accessible register, and a private key
that is solely known to the participant and kept absolutely secret. Methods with these properties are
called asymmetric ciphers (see 5.5.2, p. 387).

The public key KPi of the i-th participant controls the encryption step Ei, his private key KSi the
decryption step Di. The following conditions must be fulfilled:

1. Di ◦ Ei constitutes the identity.

2. Efficient implementations for Ei and Di are known.

3. The private key KSi cannot be deduced from the public key KPi with the means available in the
foreseeable future. If in addition

4. also Ei ◦Di yields the identity,

then the encryption algorithm qualifies as an electronic signature method with public keys. The elec-
tronic signature method permits the sender to attach a tamperproof signature to a message.

IfAwants to send an encrypted messagem toB, thenA retrievesB′s public keyKPB from the register,
applies the encryption algorithmEB, and calculatesEB(m) = c. A sends the ciphertext c via the public
network toB who will regain the plaintext of the message by decrypting c using his private keyKSB in
the decryption functionDB: DB(c) = DB(EB(m)) = m. In order to prevent tampering of messages, A
can electronically sign his messagem to B by complying with an electronic signature method with the
public key in the following way: A encrypts themessagemwith his private key: DA(m) = d. A attaches
to d his signature “A” and encrypts the total using the public key of B: EB(DA(m), “A”) = EB(d,
“A”) = e. The text thus signed and encrypted is sent from A to B.

The participant B decrypts the message with his private key and obtains DB(e) = DB(EB(d, “A”))
= (d, “A”). Based on this text B can identify A as the sender and can now decrypt d using the public
key of A : EA(d) = EA(DA(m)) = m.

5.5.7.2 One-Way Function
The encryption algorithms of amethod with public keymust constitute a one-way function with a “trap
door”. A trap door in this context is some special, additional information that must be kept secret. An
injective function f : X −→ Y is called a one-way function with a trap door, if the following conditions
hold:

1. There is an efficient method to compute both f and f−1.
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2. The calculation of f−1 cannot be deduced from f without the knowledge of the secret additional
information.

The efficient method to get f−1 from f cannot be made without the secret additional information.

5.5.7.3 RSACodes andRSAMethod

1. RSA Codes
Rivest, Shamir and Adleman (see [5.16]) developed an encryption scheme for secret messages on the
basis of the Euler-Fermat theorem (see 5.4.4, 2., p. 381). The scheme is called the RSA algorithm after
the initials of their last names. Part of the key required for decryption can be made public without
endangering the confidentiality of the message; for this reason, the term public key code is used in this
context as well.
In order to apply the RSA algorithm the recipient B chooses two very large prime numbers p and q,
calculatesm = pq and selects a number r relatively prime to ϕ(m) = (p− 1)(q− 1) and 1 < r < ϕ(m).
B publishes the numbers m and r because they are needed for decryption.
For transmitting a secret message from sender A to recipient B the text of the message must be con-
verted first to a string of digits that will be split intoN blocks of the same length of less than 100 decimal
positions. Now A calculates the remainder R of N r divided by m.

N r ≡ R(m). (5.276a)

Sender A calculates the number R for each of the blocks N that were derived from the original text
and sends the number to B. The recipient can decipher the message R if he has a solution of the linear
congruence rs ≡ 1 (ϕ(m)). The number N is the remainder of Rs divided by m:

Rs ≡ (N r)s ≡ N1+kϕ(m) ≡ N · (Nϕ(m))k ≡ N(m). (5.276b)

Here, the Euler-Fermat theorem (see 5.4.4, 2., p. 381) with Nϕ(m) ≡ 1(m) has been applied. Eventu-
ally, B converts the sequence of numbers into text.

A recipient B who expects a secret message from sender A chooses the prime numbers p = 29 and
q = 37 (actually too small for practical purposes), calculates m = 29 · 37 = 1073 (and ϕ(1073) =
ϕ(29) · ϕ(37) = 1008)), and chooses r = 5 (it satisfies the requirement of gcd(1008, 5) = 1). B passes
the values m = 1073 and r = 5 to A.
A intends to send the secret messageN = 8 to B. A encryptsN intoR = 578 by calculatingN r = 85 ≡
578 (1073), and just sends the value R = 578 to B. B solves the congruence 5 · s ≡ 1 (1008), arrives at
the solution s = 605, and thus determines Rs = 578605 ≡ 8 = N (1073).

Remark: The security of the RSA code correlates with the time needed by an unauthorized listener
to factorize m. Assuming the speed of today’s computers, a user of the RSA algorithm should choose
the two prime numbers p and q with at least a length of 100 decimal positions in order to impose a
decryption effort of approximately 74 years on the unauthorized listener. The effort for the authorized
user, however, to determine an r relatively prime to ϕ(pq) = (p− 1)(q − 1) is comparatively small.

2. RSAMethod
The RSA method is the most popular asymmetric encryption method.

1. Assumptions Let p and q be two large prime numbers with pq ≈ 102048 and n = pq. The number
of decimal positions of p and q should differ by a small number; yet, the difference between p and q
should not be too large. Furthermore, the numbers p − 1 and q − 1 should contain rather big prime
factors, while the greatest common divisor of p − 1 and q − 1 should be rather small. Let e > 1 be
relatively prime to (p− 1)(q− 1) and let d satisfy d · e ≡ 1 (mod(p− 1)(q− 1)). Now n and e represent
the public key and d the private key.

2. Encryption Algorithm

E: {0, 1, . . . , n− 1} → {0, 1, . . . , n− 1} E(x) := xe modn. (5.277a)

3. Decyphering Operations

D: {0, 1, . . . , n− 1} → {0, 1, . . . , n− 1} D(x) := xd modn. (5.277b)
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Thus D(E(m)) = E(D(m) = m for message m.

The function in this encryption method with n > 10200 constitutes a candidate for a one-way function
with trap door (see 5.5.7.2, p. 391). The required additional information is the knowledge of how to
factor n. Without this knowledge it is infeasible to solve the congruence d·e ≡ 1 (modulo (p−1)(q−1)).

The RSA method is considered practically secure as long as the above conditions are met. A disadvan-
tage in comparison with other methods is the relatively large key size and the fact that RSA is 1000
times slower than DES.

5.5.8 DESAlgorithm (DataEncryption Standard)
The DES method was adopted in 1976 by the National Bureau of Standards (now NIST) as the official
US encryption standard. The algorithm belongs to the class of symmetric encryption methods (see
5.5.2, p. 387) and still plays a predominant role among cryptographicmethods. Themethod is, however,
no longer suited for the encryption of top secret information because today’s technical means permit
an attack by an exhaustive test trying all keys.

The DES algorithm combines permutations and non-linear substitutions. The algorithm requires a
56-bit key. Actually, a 64-bit key is used, however, only 56 bits can freely be chosen; the remaining
eight bits serve as parity bits, one for each of the seven-bit blocks to yield odd parity.

The plaintext is split into blocks of 64 bits each. DES transforms each 64-bit plaintext block into a
ciphertext block of 64 bits. First, the plaintext block will be subject to an initial permutation and is
then encrypted in 16 rounds, each operating with a different subkey K1, K2, . . . , K16. The encryption
completes with a final permutation that is the inverse of the initial permutation.

Decryption uses the same algorithm with the difference that the subkeys are employed in reverse order
K16, K15, . . . , K1.

The strength of the cipher rests on the nature of the mappings that are part of each round. It can be
shown that each bit of the ciphertext block depends on each bit of the corresponding plaintext and on
each bit of the key.

Although the DES algorithm has been disclosed in full detail, no attack has been published so far that
can break the algorithm without an exhaustive test of all 256 keys.

5.5.9 IDEAAlgorithm
(InternationalDataEncryptionAlgorithm)

The IDEA algorithm was developed by LAI and MASSAY and patented 1991. It is a symmetric en-
cryption method similar to the DES algorithm and constitutes a potential successor to DES. IDEA
became known as part of the reputed software package PGP (Pretty Good Privacy) for the encryption
of emails. In contrast to DES not only was the algorithm published but even its basic design criteria.
The objective was the use of particularly simple operations (addition modulo 2, addition modulo 216,
multiplication modulo 216+1).

IDEA works with keys of 128 bits length. IDEA encrypts plaintext blocks of 64 bits each. The algo-
rithm splits a block into four subblocks of 16 bits each. From the 128-bit key 52 subkeys are derived,
each 16 bits long. Each of the eight encryption rounds employs six subkeys; the remaining four subkeys
are used in the final transformation which constructs the resulting 64-bit ciphertext. Decryption uses
the same algorithm with the subkeys in reverse order.

IDEA is twice as fast as DES, its implementation in hardware, however, is more difficult. No successful
attack against IDEA is known. Exhaustive attacks trying all 256 keys are infeasible considering the
length of the keys.
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5.6 UniversalAlgebra
A universal algebra consists of a set, the underlying set, and operations on this set. Simple examples are
semigroups, groups, rings, and fields discussed in sections 5.3.2, p. 336; 5.3.3, p. 336 and 5.3.7, p. 361.
Universal algebras (mostly many-sorted, i.e., with several underlying sets) are handled especially in
theoretical informatics. There they form the basis of algebraic specifications of abstract data types
and systems and of term-rewriting systems.

5.6.1 Definition

Let Ω be a set of operation symbols divided into pairwise disjoint subsets Ωn, n ∈ IN. Ω0 contains the
constants, Ωn, n > 0, contain the n-ary operation symbols. The family (Ωn)n∈IN is called the type or
signature. If A is a set, and if to every n-ary operation symbol ω ∈ Ωn an n-ary operation ωA in A is
assigned, then A = (A, {ωA|ω ∈ Ω}) is called an Ω algebra or algebra of type (or of signature) Ω.
If Ω is finite, Ω = {ω1, . . . , ωk}, then one also writes A = (A, ωA

1 , . . . , ω
A
k ) for A.

If a ring (see 5.3.7, p. 361) is considered as an Ω algebra, then Ω is partitioned Ω0 = {ω1}, Ω1 = {ω2},
Ω2 = {ω3, ω4}, where to the operation symbols ω1, ω2, ω3, ω4 the constant 0, taking the inverse with
respect to addition, addition and multiplication are assigned.

Let A and B be Ω algebras. B is called an Ω subalgebra of A, if B ⊆ A holds and the operations ωB are
the restrictions of the operations ωA (ω ∈ Ω) to the subset B.

5.6.2 CongruenceRelations, FactorAlgebras

In constructing factor structures for universal algebras, the notion of congruence relation is needed. A
congruence relation is an equivalence relation compatible with the structure: LetA = (A, {ωA|ω ∈ Ω})
be an Ω algebra and R be an equivalence relation in A. R is called a congruence relation in A, if for all
ω ∈ Ωn (n ∈ IN) and all ai, bi ∈ A with aiRbi (i = 1, . . . , n):

ωA(a1, . . . , an) R ωA(b1, . . . , bn). (5.278)

The set of equivalence classes (factor set) with respect to a congruence relation also form an Ω algebra
with respect to representative-wise calculations: Let A = (A, {ωA|ω ∈ Ω}) be an Ω algebra and R be
a congruence relation in A. The factor set A/R (see 5.2.4, 2., p. 334) is an Ω algebra A/R with the

following operations ωA/R (ω ∈ Ωn, n ∈ IN) with

ωA/R([a1]R, . . . , [an]R) = [ωA(a1, . . . , an)]R (5.279)

and it is called the factor algebra of A with respect to R.

The congruence relations of groups and rings can be defined by special substructures – normal sub-
groups (see 5.3.3.2, 2. p. 338) and ideals (see 5.3.7.2, p. 362), respectively. In general, e.g., in semi-
groups, such a characterization of congruence relations is not possible.

5.6.3 Homomorphism

Just as with classical algebraic structures, the homomorphism theorem gives a connection between the
homomorphisms and congruence relations.
Let A and B be Ω algebras. A mapping h: A → B is called a homomorphism, if for every ω ∈ Ωn and
all a1, . . . , an ∈ A:

h(ωA(a1, . . . , an)) = ωB(h(a1), . . . , h(an)). (5.280)

If, in addition, h is bijective, then h is called an isomorphism; the algebras A and B are called isomor-
phic. The homomorphic image h(A) of an Ω algebraA is an Ω subalgebra ofB. Under a homomorphism
h, the decomposition of A into subsets of elements with the same image corresponds to a congruence
relation which is called the kernel of h:

ker h = {(a, b) ∈ A× A|h(a) = h(b)}. (5.281)



5.7 Boolean Algebras and Switch Algebra 395

5.6.4 HomomorphismTheorem
Let A and B be Ω algebras and h: A → B a homomorphism. h defines a congruence relation ker h in
A. The factor algebra A/ ker h is isomorphic to the homomorphic image h(A).
Conversely, every congruence relationR defines a homomorphicmappingnatR: A → A/RwithnatR(a)
= [a]R. Fig. 5.19 illustrates the homomorphism theorem.

a
h(a)

hA h(A)

nat ker h

A/ker h

[a]ker h

Figure 5.19

5.6.5 Varieties
A variety V is a class of Ω algebras, which is closed
under forming direct products, subalgebras, and
homomorphic images, i.e., these formations do not
lead out of V . Here the direct products are defined
in the following way:

Considering the operations corresponding to Ω
componentwise on the Cartesian product of the un-
derlying sets of Ω algebras, an Ω algebra, the direct
product of these algebras is obtained. The theorem
of Birkhoff (see 5.6.6, p. 395) characterizes the va-
rieties as those classes of Ω algebras, which can be
equationally defined.

5.6.6 TermAlgebras, FreeAlgebras
Let (Ωn)n∈IN be a type (signature) and X a countable set of variables. The set TΩ(X) of Ω terms over
X is defined inductively in the following way:

1. X ∪ Ω0 ⊆ TΩ(X).

2. If t1, . . . , tn ∈ TΩ(X) and ω ∈ Ωn hold, then also ωt1 . . . tn ∈ TΩ(X) holds.

The set TΩ(X) defined in this way is an underlying set of an Ω algebra, the term algebra TΩ(X) of type

Ω overX, with the following operations: If t1, . . . , tn ∈ TΩ(X) and ω ∈ Ωn hold, then ωTΩ(X) is defined
by

ωTΩ(X)(t1, . . . , tn) = ωt1 . . . tn. (5.282)

Term algebras are the “most general” algebras in the class of all Ω algebras, i.e., no “identities” are
valid in term algebras. These algebras are called free algebras.
An identity is a pair (s(x1, . . . , xn), t(x1, . . . , xn)) of Ω terms in the variables x1, . . . , xn. An Ω algebra
A satisfies such an equation, if for every a1, . . . , an ∈ A holds:

sA(a1, . . . , an) = tA(a1, . . . , an). (5.283)

A class of Ω algebras defined by identities is a class of Ω algebras satisfying a given set of identities.

Theorem of Birkhoff: The classes defined by identities are exactly the varieties.

Varieties are for example the classes of all semigroups, groups, Abelian groups, and rings. But, e.g.,
the direct product of cyclic groups is not a cyclic group, and the direct product of fields is not a field.
Therefore cyclic groups or fields do not form a variety, and cannot be defined by equations.

5.7 BooleanAlgebras andSwitchAlgebra
Calculating rules, similar to the rules established in 5.2.2, 3., p. 329 for set algebra and propositional
calculus (5.1.1, 6., p. 324), can be found for other objects in mathematics too. The investigation of
these rules yields the notion of Boolean algebra.

5.7.1 Definition
A set B, together with two binary operations - (“conjunction”) and . (“disjunction”), and a unary
operation (“negation”), and two distinguished (neutral) elements 0 and 1 from B, is called a Boolean
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algebra B = (B, -, ., , 0, 1) if the following properties are valid:

(1) Associative Laws:

(a - b) - c = a - (b - c), (5.284) (a . b) . c = a . (b . c). (5.285)

(2) Commutative Laws:

a - b = b - a, (5.286) a . b = b . a. (5.287)

(3) Absorption Laws:

a - (a . b) = a, (5.288) a . (a - b) = a. (5.289)

(4) Distributive Laws:

(a . b) - c = (a - c) . (b - c), (5.290) (a - b) . c = (a . c) - (b . c). (5.291)

(5) Neutral Elements:

a - 1 = a, (5.292) a . 0 = a, (5.293)

a - 0 = 0, (5.294) a . 1 = 1, (5.295)

(6) Complement:

a - a = 0, (5.296) a . a = 1. (5.297)

A structure with the associative laws, commutative laws, and absorption laws is called a lattice. If the
distributive laws also hold, then the lattice is called a distributive lattice. So a Boolean algebra is a
special distributive lattice.

Remark: The notation used for Boolean algebras is not necessarily identical to the notation for the
operations in propositional calculus.

5.7.2 DualityPrinciple

1. Dualizing
In the “axioms” of a Boolean algebra is included the following duality: Replacing - by ., . by -, 0
by 1, and 1 by 0 in an axiom gives always the other axiom in the same row. The axioms in a row are
dual to each other, and the substitution process is called dualization. The dual statement follows from
a statement of the Boolean algebra by dualization.

2. Duality Principle for Boolean Algebras
The dual statement of a true statement for a Boolean algebra is also a true statement for the Boolean
algebra, i.e., with every proved proposition, the dual proposition is also proved.

3. Properties
One gets, e.g., the following properties for Boolean algebras from the axioms.

(E1) The Operations - and . are Idempotent:

a - a = a, (5.298) a . a = a. (5.299)

(E2) De Morgan Rules:

a - b = a . b , (5.300) a . b = a - b , (5.301)

(E3) A further Property:

a = a. (5.302)
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It is enough to prove only one of the two properties in any line above, because the other one is the dual
property. The last property is self-dual.

5.7.3 FiniteBooleanAlgebras
All finite Boolean algebras can be described easily up to “isomorphism”. Let B1, B2 be two Boolean
algebras and f : B1 → B2 a bijective mapping. f is called an isomorphism if

f(a - b) = f(a) - f(b), f(a . b) = f(a) . f(b) and f(a) = f(a) (5.303)

hold. Every finite Boolean algebra is isomorphic to the Boolean algebra of the power set of a finite set.
In particular every finite Boolean algebra has 2n elements, and every two finite Boolean algebras with
the same number of elements are isomorphic.

Hereafter B denotes the Boolean algebra with two elements {0, 1} and with the operations

- 0 1

0 0 0
1 0 1

. 0 1

0 0 1
1 1 1

−
0 1
1 0

Defining the operations -, ., and componentwise on the n-times Cartesian product Bn = {0, 1} ×
· · · × {0, 1}, then Bn will be a Boolean algebra with 0 = (0, . . . , 0) and 1 = (1, . . . , 1). Bn is called
the n times direct product of B. Because Bn contains 2n elements, this way one gets all finite Boolean
algebras (out of isomorphism).

5.7.4 BooleanAlgebras asOrderings
An order relation can be assigned to every Boolean algebra B: Here a ≤ b holds if a- b = a is valid (or
equivalently, if a . b = b holds).
So every finite Boolean algebra can be represented by a Hasse diagram (see 5.2.4, 4., p. 334).

Suppose B is the set {1, 2, 3, 5, 6, 10, 15, 30} of the divisors of 30. Then, the
least common multiple and the greatest common divisor can be defined as bi-
nary operations and the complement as unary operation. The numbers 1 and
30 correspond to the distinguished elements 0 and 1. The corresponding Hasse
diagram is shown in Fig. 5.20.

5.7.5 BooleanFunctions, BooleanExpressions

1. Boolean Functions
Denoting by B the Boolean algebra with two elements as in 5.7.3, p. 397, then
an n-ary Boolean function f is a mapping from Bn into B. There are 22

n
n-ary

Boolean functions. The set of all n-ary Boolean functions with the operations

30

15106

2 3

1

5

Figure 5.20

(f - g)(b) = f(b) - g(b), (5.304) (f . g)(b) = f(b) . g(b), (5.305)

f(b) = f(b), (5.306)

is a Boolean algebra. Here b always means an n tuple of the elements of B = {0, 1}, and on the right-
hand side of the equations the operations are performed in B. The distinguished elements 0 and 1
correspond to the functions f0 and f1 with

f0(b) = 0, f1(b) = 1 for all b ∈ Bn. (5.307)

A: In the case n = 1, i.e., for only one Boolean variable b, there are four Boolean functions:

Identity f(b) = b, Negation f(b) = b,
Tautology f(b) = 1, Contradiction f(b) = 0.

(5.308)

B: In the case n = 2, i.e., for two Boolean variables a and b, there are 16 different Boolean functions,
among which the most important ones have their own names and notation. They are shown in Table
5.6.
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Table 5.6 Some Boolean functions with two variables a and b

Name of the
function

Different
notation

Different
symbols

Value table for(
a

b

)
=

(
0

0

)
,

(
0

1

)
,

(
1

0

)
,

(
1

1

)

Sheffer
or
NAND

a · b
a | b
NAND (a, b)

& 1 , 1 , 1 , 0

Peirce
or
NOR

a+ b
a ↓ b
NOR a, b

>_1 1 , 0 , 0 , 0

Antivalence
or
XOR

a b + a b
aXOR b
a �≡ b
a ⊕ b

=1 +
0 , 1 , 1 , 0

Equivalence
a b+ a b
a ≡ b
a ↔ b

=1 +
1 , 0 , 0 , 1

Implication a+ b
a → b

1 , 1 , 0 , 1

2. Boolean Expressions
Boolean expressions are defined in an inductive way: Let X = {x, y, z, . . .} be a (countable) set of
Boolean variables (which can take values only from {0, 1}):

1. The constants 0 and 1 just as the Boolean variables from X are

Boolean expressions. (5.309)

2. If S and T are Boolean expressions, so are T , (S - T ), and (S . T ), as well. (5.310)

If a Boolean expression contains the variables x1, . . . , xn, then it represents an n-ary Boolean function
fT :
Let b be a “valuation” of the Boolean variables x1, . . . , xn, i.e., b = (b1, . . . , bn) ∈ Bn.
Assigning a Boolean function to the expression T in the following way gives:

1. If T = 0, then fT = f0; if T = 1 , then fT = f1. (5.311a)

2. If T = xi, then fT (b) = bi; if T = S, then fT (b) = fS(b). (5.311b)

3. If T = R - S, then fT (b) = fR(b) - fS(b). (5.311c)

4. If T = R . S, then fT (b) = fR(b) . fS(b). (5.311d)

On the other hand, every Boolean function f can be represented by a Boolean expression T (see 5.7.6,
p. 399).

3. Concurrent or Semantically Equivalent Boolean Expressions
The Boolean expressions S and T are called concurrent or semantically equivalent if they represent the
same Boolean function. Boolean expressions are equal if and only if they can be transformed into each
other according to the axioms of a Boolean algebra.
Under transformations of a Boolean expression here are considered especially two aspects:

• Transformation in a possible “simple” form (see 5.7.7, p. 399).

• Transformation in a “normal form”.
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5.7.6 Normal Forms

1. Elementary Conjunction, Elementary Disjunction
Let B = (B,-,., , 0, 1) be a Boolean algebra and {x1, . . . , xn} a set of Boolean variables. Every
conjunction or disjunction in which every variable or its negation occurs exactly once is called an ele-
mentary conjunction or an elementary disjunction respectively (in the variables x1, . . . , xn).
Let T (x1, . . . , xn) be a Boolean expression. A disjunctionD of elementary conjunctions withD = T is
called a principal disjunctive normal form (PDNF) of T . A conjunction C of elementary disjunctions
with C = T is called a principal conjunctive normal form (PCNF) of T .

Part 1: In order to show that every Boolean function f can be represented as a Boolean expression,
the PDNF form of the function f given in the annexed table is to be constructed:

x y z f(x, y, z)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

The PDNF of the Boolean function f contains the elementary conjunc-
tions x- y - z, x- y - z, x- y - z. These elementary conjunctions belong
to the valuations b of the variables where the function f has the value 1.
If a variable v has the value 1 in b, then v is to put in the elementary con-
junction, otherwise v.

Part 2: The PDNF for the example of Part 1 is:

(x - y - z) . (x - y - z) . (x - y - z). (5.312)

The “dual” form for PDNF is the PCNF: The elementary disjunctions be-
long to the valuations b of the variables for which f has the value 0.

If a variable v has the value 0 in b, then v is to put in the elementary disjunction, otherwise v. So the
PCNF is:

(x . y . z) - (x . y . z) - (x . y . z) - (x . y . z) - (x . y . z). (5.313)

The PDNF and the PCNF of f are uniquely determined, if the ordering of the variables and the ordering
of the valuations is given, e.g., if considering the valuations as binary numbers and arranging them in
increasing order.

2. Principal Normal Forms
The principal normal form of a Boolean function fT is considered as the principal normal form of the
corresponding Boolean expression T .
Checking the equivalence of two Boolean expressions by transformations is often difficult. The prin-
cipal normal forms are useful: Two Boolean expressions are semantically equivalent exactly if their
corresponding uniquely determined principal normal forms are identical letter by letter.

Part 3: In the considered example (see Part 1 and 2) the expressions (y - z) . (x - y - z) and
(x . ((y . z) - (y . z) - (y . z))) - (x . ((y . z) - (y . z))) are semantically equivalent because the
principal disjunctive (or conjunctive) normal forms of both are the same.

5.7.7 SwitchAlgebra
A typical application of Boolean algebra is the simplification of series–parallel connections (SPC).
Therefore a Boolean expression is to be assigned to a SPC (transformation). This expression will be
“simplified” with the transformation rules of the Boolean algebra. Finally a SPC is to be assigned to
this expression (inverse transformation). The result is a simplified SPC which produces the same be-
havior as the initial connection system (Fig. 5.21).

A SPC has two types of contact points: the so-called “make contacts” and “break contacts”, and both
types have two states; namely open or closed. The usual symbolism is: When the equipment is put on,
the make contacts close and the break contacts open. With Boolean variables assigned to the contacts
of the switch equipment follows:
The position “off” or “on” of the equipment corresponds to the value 0 or 1 of the Boolean variables.
The contacts being switched by the same equipment are denoted by the same symbol, the Boolean
variable belonging to this equipment. The contact value of a SPC is 0 or 1, according to whether the
switch is electrically non-conducting or conducting. The contact value depends on the position of the
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contacts, so it is a Boolean function S (switch function) of the variables assigned to the switch equip-
ment. Contacts, connections, symbols, and the corresponding Boolean expressions are represented in
Fig. 5.22.

Boolean
expression

SPC
simplified
SPC

simplified
Boolean
expression

simplification by
Boolean algebra

electrically equivalent

inverse
transformation

transformation
(modelling)

Figure 5.21

(symbol: )(symbol: )

S = a

break contact parallel connection

b

S = a b

S = a b

a ba

make contact series connection

(symbol: ) (symbol: )

a

S = a

a

Figure 5.22

b

c

a b

a b c

a

Figure 5.23

a c

b c

Figure 5.24

The Boolean expressions, which represent switch functions of SPC, have the special property that the
negation sign can occur only above variables (never over subexpressions).

Simplification of the SPC Fig. 5.23. This connection corresponds to the Boolean expression

S = (a - b) . (a - b - c) . (a - (b . c)) (5.314)

as switch function. According to the transformation formulas of Boolean algebra holds:

S = (b - (a . (a - c))) . (a - (b . c))

= (b - (a . c)) . (a - (b . c))

= (a - b) . (b - c) . (a - c)

= (a - b - c) . (a - b - c) . (b - c) . (a - b - c) . (a - c) . (a - b - c)

= (a - c) . (b - c). (5.315)

Here one gets a- c from (a- b- c). (a- c). (a- b- c), and b- c from (a- b- c). (b- c). (a- b- c).
The finally simplified result SPC is shown in Fig. 5.24.
This example shows that usually it is not so easy to get the simplest Boolean expression by transfor-
mations. In the literature one can find different methods for this procedure.
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5.8 Algorithms ofGraphTheory
Graph theory is a field in discrete mathematics having special importance for informatics, e.g., for rep-
resenting data structures, finite automata, communication networks, derivatives in formal languages,
etc. There are also applications in physics, chemistry, electrotechnics, biology and psychology. More-
over, flows can be applied in transport networks and in network analysis in operations research and in
combinatorial optimization.

5.8.1 BasicNotions andNotation

1. Undirected and Directed Graphs
A graph G is an ordered pair (V,E) of a set V of vertices and a set E of edges. There is a mapping,
defined on E, the incidence function, which uniquely assigns to every element of E an ordered or non-
ordered pair of (not necessarily distinct) elements of V . If a non-ordered pair is assigned then G is
called an undirected graph (Fig. 5.25). If an ordered pair is assigned to every element of E, then the
graph is called a directed graph (Fig. 5.26), and the elements of E are called arcs or directed edges. All
other graphs are called mixed graphs.
In the graphical representation, the vertices of a graph are denoted by points, the directed edges by
arrows, and undirected edges by non-directed lines.
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A: For the graph G in Fig. 5.27: V = {v1, v2, v3, v4, v5}, E = {e1, e2, e3, e4, e5, e6, e7},
f1(e1) = {v1, v2}, f1(e2) = {v1, v2}, f1(e3) = (v2, v3), f1(e4) = (v3, v4), f1(e5) = (v3, v4),
f1(e6) = (v4, v2), f1(e7) = (v5, v5).

B: For the graph G in Fig. 5.26: V = {v1, v2, v3, v4, v5}, E ′ = {e′1, e′2, e′3, e′4}
f2(e

′
1) = (v2, v3), f2(e

′
2) = (v4, v3), f2(e

′
3) = (v4, v2), f2(e

′
4) = (v5, v5).

C: For the graph G in Fig. 5.25: V = {v1, v2, v3, v4, v5}, E ′′ = {e′′1, e′′2, e′′3, e′′4},
f3(e

′′
1) = {v2, v3}, f3(e′′2) = {v4, v3}, f3(e′′3) = {v4, v2}, f3(e′′4) = {v5, v5}.

2. Adjacency
If (v, w) ∈ E, then the vertex v is called adjacent to the vertex w. Vertex v is called the initial point of
(v, w), w is called the terminal point of (v, w), and v and w are called the endpoints of (v, w).
Adjacency in undirected graphs and the endpoints of undirected edges are defined analogously.

3. Simple Graphs
If several edges or arcs are assigned to the same ordered or non-ordered pairs of vertices, then they
are called multiple edges. An edge with identical endpoints is called a loop. Graphs without loops and
multiple edges and multiple arcs, respectively, are called simple graphs.

4. Degrees of Vertices
The number of edges or arcs incident to a vertex v is called the degree dG(v) of the vertex v. Loops are
counted twice. Vertices of degree zero are called isolated vertices.
For every vertex v of a directed graphG, the out-degree d+G(v) and in-degree d−G(v) of v are distinguished
as follows:

d+G(v) = |{w|(v, w) ∈ E}|, (5.316a) d−G(v) = |{w|(w, v) ∈ E}|. (5.316b)



402 5. Algebra and Discrete Mathematics

5. Special Classes of Graphs
Finite graphs have a finite set of vertices and a finite set of edges. Otherwise the graph is called infinite.
In regular graphs of degree r every vertex has degree r.
An undirected simple graph with vertex set V is called a complete graph if any two different vertices in
V are connected by an edge. A complete graph with an n element set of vertices is denoted by Kn.

If the set of vertices of an undirected simple graphG can be partitioned into two disjoint classesX and
Y such that every edge of G joins a vertex of X and a vertex of Y , then G is called a bipartite graph.
A bipartite graph is called a complete bipartite graph, if every vertex of X is joined by an edge with
every vertex of Y . If X has n elements and Y has m elements, then the graph is denoted by Kn,m.

Fig. 5.28 shows a complete graph with five vertices.

Fig. 5.29 shows a complete bipartite graph with a two-element set X and a three-element set Y .
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Further special classes of graphs are plane graphs, trees and transport networks. Their properties will
be discussed in later paragraphs.

6. Representation of Graphs
Finite graphs can be visualized by assigning to every vertex a point in the plane and connecting two
points by a directed or undirected curve, if the graph has the corresponding edge. There are examples
in Fig. 5.30–5.33. Fig. 5.33 shows the Petersen graph, which is a well-known counterexample for
several graph-theoretic conjectures, which could not be proved in general.

Figure 5.30 Figure 5.31 Figure 5.32 Figure 5.33

7. Isomorphism of Graphs
A graph G1 = (V1, E1) is called isomorphic to a graph G2 = (V2, E2) iff there are bijective mappings
ϕ from V1 onto V2 and ψ from E1 onto E2 being compatible with the incidence function, i.e., if u, v
are the endpoints of an edge or u is the initial point of an arc and v is its terminal point, then ϕ(u)
and ϕ(v) are the endpoints of an edge and ϕ(u) is the initial point and ϕ(v) the terminal point of
an arc, respectively. Fig. 5.34 and Fig. 5.35 show two isomorphic graphs. The mapping ϕ with
ϕ(1) = a, ϕ(2) = b, ϕ(3) = c, ϕ(4) = d is an isomorphism. In this case, every bijective mapping of
{1, 2, 3, 4} onto {a, b, c, d} is an isomorphism, since both graphs are complete graphs with equal number
of vertices.

8. Subgraphs, Factors
If G = (V,E) is a graph, then the graph G′ = (V ′, E ′) is called a subgraph of G, if V ′ ⊆ V and E ′ ⊆ E.
If E ′ contains exactly those edges of E which connect vertices of V ′, then G′ is called the subgraph of G
induced by V ′ (induced subgraph).
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A subgraph G′ = (V ′, E ′) of G = (V,E) with V ′ = V is called a partial graph of G.
A factor F of a graph G is a regular subgraph of G containing all vertices of G.

9. AdjacencyMatrix
Finite graphs can be described by matrices: Let G = (V,E) be a graph with V = {v1, v2, . . . , vn} and
E = {e1, e2, . . . , em}. Let m(vi, vj) denote the number of edges from vi to vj. For undirected graphs,
loops are counted twice; for directed graphs loops are counted once. The matrix A of type (n, n) with
A = (m(vi, vj)) is called an adjacency matrix. If in addition the graph is simple, then the adjacency
matrix has the following form:

A = (aij) =
{
1, for (vi, vj) ∈ E,
0, for (vi, vj) �∈ E;

(5.317)

i.e., in the matrix A there is a 1 in the i-th row and j-th column iff there is an edge from vi to vj.
The adjacency matrix of undirected graphs is symmetric.

A: Beside Fig. 5.36 there is the adjacency matrix A1 = A(G1) of the directed graph G1.

B: Beside Fig. 5.37 there is the adjacency matrixA2 = A(G2) of the undirected simple graph G2.
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A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

10. IncidenceMatrix
For an undirected graph G = (V,E) with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, the matrix I
of type (n,m) given by

I = (bij) with bij =

⎧⎨⎩
0, vi is not incident with ej,
1, vi is incident with ej and ej is not a loop,
2, vi is incident with ej and ej is a loop

(5.318)

is called the incidence matrix.
For a directed graph G = (V,E) with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, the incidence
matrix I is the matrix of type (n,m), defined by

I = (bij) with bij =

⎧⎪⎪⎨⎪⎪⎩
0, vi is not incident with ej,
1, vi is the initial point of ej and ej is not a loop,

−1, vi is the terminal point of ej and ej is not a loop,
−0, vi is incident to ej and ej is a loop.

(5.319)

11. Weighted Graphs
If G = (V,E) is a graph and f is a mapping assigning a real number to every edge, then (V,E, f) is
called a weighted graph, and f(e) is the weight or length of the edge e.
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In applications, these weights of the edges represent costs resulting from the construction, maintenance
or use of the connections.

5.8.2 Traverse ofUndirectedGraphs

5.8.2.1 Edge Sequences or Paths

1. Edge Sequences or Paths
In an undirected graph G = (V,E) every sequence F = ({v1, v2}, {v2, v3}, . . . , {vs, vs+1}) of the ele-
ments of E is called an edge sequence of length s.
If v1 = vs+1, then the sequence is called a cycle, otherwise it is an open edge
sequence. An edge sequence F is called a path iff v1, v2, . . . , vs are pairwise
distinct vertices. A closed path is a circuit. A trail is a sequence of edges with-
out repeated edges.

In the graphs in Fig. 5.38, F1 = ({1, 2}, {2, 3}, {3, 5}, {5, 2}, {2, 4}) is
an edge sequence of length 5, F2 = ({1, 2}, {2, 3}, {3, 4}, {4, 2}, {2, 1}) is
a cycle of length 5, F3 = ({2, 3}, {3, 5}, {5, 2}, {2, 1}) is a path, F4 =
({1, 2}, {2, 3}, {3, 4}) is a path. An elementary cycle is given by F5 =
({1, 2}, {2, 5}, {5, 1}).

4 3
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Figure 5.38

2. Connected Graphs, Components
If there is at least one path between every pair of distinct vertices v, w in a graph G, then G is called
connected. If a graph G is not connected, it can be decomposed into components, i.e., into induced
connected subgraphs with maximal number of vertices.

3. Distance Between Vertices
The distance δ(v, w) between two vertices v, w of an undirected graph is the length of a path with
minimum number of edges connecting v and w. If such a path does not exist, then let δ(v, w) = ∞.

4. Problem of Shortest Paths
Let G = (V,E, f) be a weighted simple graph with f(e) > 0 for every e ∈ E. Determine the shortest
path from v to w for two vertices v, w of G, i.e., a path from v to w having minimum sum of weights of
edges and arcs, respectively.
There is an efficient algorithm of Dantzig to solve this problem, which is formulated for directed graphs
and can be used for undirected graphs (see 5.8.6, p. 410) in a similar way.

Every graph G = (V,E, f) with V = {v1, v2, . . . , vn} has a distance matrix D of type (n, n):

D = (dij) with dij = δ(vi, vj) (i, j = 1, 2, . . . , n). (5.320)

In the case that every edge has weight 1, i.e., the distance between v and w is equal to the minimum
number of edges which have to be traversed in the graph to get from v to w, then the distance between
two vertices can be determined using the adjacency matrix: Let v1, v2, . . . , vn be the vertices ofG. The
adjacency matrix of G is A = (aij), and the powers of the adjacency matrix with respect to the usual
multiplication of matrices (see 4.1.4, 5., p. 272) are denoted by Am = (amij ), m ∈ IN.

There is a shortest path of length k from the vertex vi to the vertex vj (i �= j) iff:

akij �= 0 and asij = 0 (s = 1, 2, . . . , k − 1). (5.321)

The weighted graph represented in Fig. 5.39 has the distance matrix D beside it.

The graph represented in Fig. 5.40 has the adjacency matrix A beside it, and for m = 2 or m = 3
the matricesA2 andA3 are obtained. Shortest paths of length 2 connect the vertices 1 and 3, 1 and 4,
1 and 5, 2 and 6, 3 and 4, 3 and 5, 4 and 5. Furthermore the shortest paths between the vertices 1 and
6, 3 and 6, and finally 4 and 6 are of length 3.
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D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2 3 5 6 ∞
2 0 1 3 4 ∞
3 1 0 2 3 ∞
5 3 2 0 1 ∞
6 4 3 1 0 ∞
∞ ∞ ∞ ∞ ∞ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 5.40

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 1
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0
1 5 1 1 1 1
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 2 0
0 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 5 1 1 1 1
5 9 5 5 6 1
1 5 1 1 1 1
1 5 1 1 1 1
1 6 1 1 1 2
1 1 1 1 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

5.8.2.2 Euler Trails

1. Euler Trail, Euler Graph
A trail containing every edge of a graph G is called an open or closed Euler trail of G.
A connected graph containing a closed Euler trail is an Euler graph.

The graph G1 (Fig. 5.41) has no Euler trail. The graph G2 (Fig. 5.42) has an Euler trail, but it
is not an Euler graph. The graph G3 (Fig. 5.43) has a closed Euler trail, but it is not an Euler graph.
The graph G4 (Fig. 5.44) is an Euler graph.

G1

Figure 5.41

G2

Figure 5.42

G3

Figure 5.43

G4

Figure 5.44

2. Theorem of Euler-Hierholzer
A finite connected graph is an Euler graph iff all vertices have positive even degrees.

3. Construction of a Closed Euler Trail
IfG is anEuler graph, then one chooses an arbitrary vertex v1 ofG and constructs a trailF1 by traversing
a path, starting at v1 and proceeding until it cannot be continued. If F1 does not yet contain all edges of
G, then one constructs another path F2 containing the edges not in F1, but starting at a vertex v2 ∈ F1

and proceeds until it cannot be continued. Then one composes a closed trail in G using F1 and F2:
Starting to traverse F1 at v1 until v2 is reached, then continuing to traverse F2, and finishing at the
edges of F1 not used before. Repeating this method a closed Euler trail is obtained in finitely many
steps.

4. Open Euler Trails
There is an open Euler trail in a graph G iff there are exactly two vertices in G with odd degrees.
Fig. 5.45 shows a graph which has no closed Euler trail, but it has an open Euler trail. The edges are
consecutively enumerated with respect to an Euler trail. In Fig. 5.46 there is a graph with a closed
Euler trail.
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5. Chinese Postman Problem
The problem, that a postman should pass through all streets in his service area at least once and return
to the initial point and use a trail as short as possible, can be formulated in graph theoretical terms as
follows: LetG = (V,E, f) be a weighted graph with f(e) ≥ 0 for every edge e ∈ E. Determine an edge
sequence F with minimum total length

L =
∑
e∈F

f(e). (5.322)

The name of the problem refers to the Chinese mathematician Kuan, who studied this problem first.
To solve it two cases are distinguished:

1. G is an Euler graph – then every closed Euler trail is optimal – and

2. G has no closed Euler trail.

An effective algorithm solving this problem is given by Edmonds and Johnson (see [5.25]).

5.8.2.3 Hamiltonian Cycles

1. Hamiltonian Cycle
A Hamiltonian cycle is an elementary cycle in a graph covering all of the vertices.

In Fig. 5.47, lines in bold face show a Hamiltonian cycle.
The idea of a game to construct Hamiltonian cycles in the graph of a pentagondodecaeder, goes back
to Sir W. Hamilton.

Remark: The problem of characterizing graphs with Hamiltonian cycles leads to one of the classical
NP-complete problems. Therefore, an efficient algorithm to determine the Hamilton cycles cannot be
given here.

2. Theorem of Dirac
If a simple graph G = (V,E) has at least three vertices, and dG(v) ≥ |V |/2 holds for every vertex v of
G, then G has a Hamiltonian cycle. This is a sufficient but not a necessary condition for the existence
of Hamiltonian cycles. The following theorems with more general assumptions give only sufficient but
not necessary conditions for the existence of Hamilton cycles, too.

Figure 5.48

Fig. 5.48 shows a graph which has a Hamiltonian cycle, but does
not satisfy the assumptions of the following theorem of Ore.

3. Theorem of Ore
If a simple graph G = (V,E) has at least three vertices, and dG(v) +
dG(w) ≥ |V | holds for every pair of non-adjacent vertices v, w, then G
contains a Hamiltonian cycle.

4. Theorem of Posa
Let G = (V,E) be a simple graph with at least three vertices. There is
a Hamiltonian cycle in G if the following conditions are satisfied:

1. For 1 ≤ k < (|V | − 1)/2, the number of vertices of degree not exceeding k is less than k.

2. If |V | is odd, then the number of vertices of degree not exceeding (|V | − 1)/2 is less than or equal to
(|V | − 1)/2.
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Figure 5.51

5.8.3 Trees and SpanningTrees

5.8.3.1 Trees

1. Trees
An undirected connected graph without cycles is called a tree. Every tree with at least two vertices has
at least two vertices of degree 1. Every tree with n vertices has exactly n− 1 edges.
A directed graph is called a tree if G is connected and does not contain any circuit (see 5.8.6, p. 410).

Fig. 5.49 and Fig. 5.50 represent two non-isomorphic trees with 14 vertices. They demonstrate
the chemical structure of butane and iso-butane.

2. Rooted Trees
A tree with a distinguished vertex is called a rooted tree, and the distinguished vertex is called the
root. In diagrams, the root is usually on the top, and the edges are directed downwards from the root
(see Fig. 5.51). Rooted trees are used to represent hierarchic structures, as for instance hierarchies in
factories, family trees, grammatical structures.

Fig. 5.51 shows the genealogy of a family in the form of a rooted tree. The root is the vertex assigned
to the father.

3. Regular Binary Trees
If a tree has exactly one vertex of degree 2 and otherwise only vertices of degree 1 or 3, then it is called
a regular binary tree.
The number of vertices of a regular binary tree is odd. Regular trees with n vertices have (n + 1)/2
vertices of degree 1. The level of a vertex is its distance from the root. The maximal level occurring
in a tree is the height of the tree. There are several applications of regular binary rooted trees, e.g., in
informatics.

4. Ordered Binary Trees
Arithmetical expressions can be represented by binary trees. Here, the numbers and variables are as-
signed vertices of degree 1, the operations “+”,“−”, “·” correspond to vertices of degree > 1, and the
left and right subtree, respectively, represents the first and second operand, respectively, which is, in
general, also an expression. These trees are called ordered binary trees.
The traverse of an ordered binary tree can be performed in three different ways, which are defined in a
recursive way (see also Fig. 5.52):

Inorder traverse: Traverse the left subtree of the root (in inorder traverse),
visit the root,
traverse the right subtree of the root (in inorder traverse).

Preorder traverse: Visit the root,
traverse the left subtree (in preorder traverse),
traverse the right subtree of the root (in preorder traverse).

Postorder traverse: Traverse the left subtree of the root (in postorder traverse),
traverse the right subtree of the root (in postorder traverse),
visit the root.
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Using inorder traverse the order of the terms does not change in comparison with the given expression.
The term obtained by postorder traverse is called postfix notation PN or Polish notation. Analogously,
the term obtained by preorder traverse is called prefix notation or reversed Polish notation.
Prefix and postfix expressions uniquely describe the tree. This fact can
be used for the implementation of trees.

InFig. 5.52 the term a ·(b−c)+d is represented by a graph. Inorder
traverse yields a · b − c + d, preorder traverse yields + · −bcad, and
postorder traversal yields abc− ·d+.

5.8.3.2 Spanning Trees

1. Spanning Trees
A tree, being a subgraph of an undirected graph G, and containing all
vertices ofG, is called a spanning tree ofG. Every finite connected graph
G contains a spanning tree H:

+

d

a −

b c

.

Figure 5.52

If G contains a cycle, then delete an edge of this cycle.
The remaining graph G1 is still connected and can be
transformed into a connected graph G2 by deleting a fur-
ther edge of a cycle ofG1, if there exists such an edge. Af-
ter finitely many steps a spanning tree of G is obtained.

Fig. 5.54 shows a spanning tree H of the graph G
shown in Fig. 5.53.

1

2
3 4

Figure 5.53

1

2
3 4

Figure 5.54

2. Theorem of Cayley
Every complete graph with n vertices (n > 1) has exactly nn−2 spanning trees.

3. Matrix Spanning Tree Theorem
LetG = (V,E) be a graph with V = {v1, v2, . . . , vn} (n > 1) andE = {e1, e2, . . . , em}. Define a matrix
D = (dij) of type (n, n):

dij =
{

0 for i �= j,
dG(vi) for i = j,

(5.323a)

which is called the degree matrix. The difference between the degree matrix and the adjacency matrix
is the admittance matrix L of G:

L = D−A. (5.323b)

Deleting the i-th row and the i-th column of L the matrix Li is obtained. The determinant of Li is
equal to the number of spanning trees of the graph G.

The adjacency matrix, the degree matrix and the admittance matrix of the graph in Fig. 5.53 are:

A =

⎛⎜⎜⎝
2 1 1 0
1 0 2 0
1 2 0 1
0 0 1 0

⎞⎟⎟⎠ , D =

⎛⎜⎜⎝
4 0 0 0
0 3 0 0
0 0 4 0
0 0 0 1

⎞⎟⎟⎠ , L =

⎛⎜⎜⎝
2 −1 −1 0

−1 3 −2 0
−1 −2 4 −1
0 0 −1 1

⎞⎟⎟⎠ .

Since detL3 = 5, the graph has five spanning trees.

4. Minimal Spanning Trees
LetG = (V,E, f) be a connected weighted graph. A spanning treeH ofG is called aminimum spanning
tree if its total length f(H) is minimum:

f(H) =
∑
e∈H

f(e). (5.324)

Minimum spanning trees are searched for, e.g., if the edge weights represent costs, and one is interested
in minimum costs. A method to find a minimum spanning tree is the Kruskal algorithm:

a) Choose an edge with the least weight.
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b) Continue, as long as it is possible, choosing a further edge having least weight and not forming a
cycle with the edges already chosen, and add such an edge to the tree.

In step b) the choice of the admissible edges can be made easier by the following labeling algorithm:
• Let the vertices of the graph be labeled pairwise differently.
• At every step, an edge can be added only in the case that it connects vertices with different labels.
• After adding an edge, the label of the endpoint with the larger label is changed to the value of the
smaller endpoint label.

5.8.4 Matchings

1. Matchings
A setM of edges of a graph G is called a matching in G, iffM contains no loop and two different edges
of M do not have common endpoints.
A matchingM∗ ofG is called a saturated matching, if there is no matchingM inG such thatM∗ ⊂ M .
A matching M∗∗ of G is called a maximum matching, if there is no matching M in G such that |M | >
|M∗∗|.
If M is a matching of G such that every vertex of G is an endpoint of an edge of M , then M is called a

1

2

3

4

5

6

Figure 5.55

perfect matching.

In the graph in Fig. 5.55 M1 = {{2, 3}, {5, 6}} is a saturated
matching and M2 = {{1, 2}, {3, 4}, {5, 6}} is a maximum matching
which is also perfect.

Remark: In graphs with an odd number of edges there is no perfect
matching.

2. Theorem of Tutte
Let q(G− S) denote the number of the components of G− S with an odd number of vertices. A graph
G = (V,E) has a perfect matching iff |V | is even and for every subset S of the vertex set q(G−S) ≤ |S|.
HereG−S denotes the graph obtained fromG by deleting the vertices of S and the edges incident with
these vertices.
Perfect machings exist for example in complete graphs with an even number of vertices, in complete
bipartite graphs Kn,n and in arbitrary regular bipartite graphs of degree r > 0.

3. Alternating Paths
Let G be a graph with a matching M . A path W in G is called an alternating path iff in W every edge
e with e ∈ M (or e �∈ M) is followed by an edge e′ with e′ �∈ M (or e ∈ M).
An open alternating path is called an increasing path iff none of the endpoints of the path is incident
with an edge of M .

4. Theorem of Berge
A matching M in a graph G is maximum iff there is no increasing alternating path in G.
If W is an increasing alternating path in G with corresponding set E(W ) of traversed edges, then
M ′ = (M \ E(W )) ∪ (E(W ) \M) forms a matching in G with |M ′| = |M |+ 1.

In the graph of Fig. 5.55 ({1, 2}, {2, 3}, {3, 4}) is an increasing alternating path with respect to
matching M1. Matching M2 with |M2| = |M1|+ 1 is obtained as described above.

5. Determination of MaximumMatchings
Let G be a graph with a matching M .

a) First form a saturated matching M∗ with M ⊆ M∗.
b) Chose a vertex v in G, which is not incident with an edge of M∗, and determine an increasing
alternating path in G starting at v.

c) If such a path exists, then the method described above results in a matching M ′ with |M ′| > |M∗|.
If there is no such path, then delete vertex v and all edges incident with v in G, and repeat step b).
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There is an algorithm of Edmonds, which is an effective method to search for maximummatchings, but
it is rather complicated to describe (see [5.24]).

5.8.5 PlanarGraphs
Here, the considerations are restricted to undirected graphs, since a directed graph is planar iff the
corresponding undirected graph is a planar one.

Figure 5.56 Figure 5.57

1. Planar Graph
A graph is called a plane graph iff G can be drawn in the plane
with its edges intersecting only in vertices of G. A graph iso-
morphic with a plane graph is called a planar graph.

Fig. 5.56 shows a plane graph G1. The graph G2 in Fig. 5.57
is isomorphic to G1, it is not a plane graph but a planar graph,
since it is isomorphic with G1.

2. Non-Planar Graphs
The complete graphK5 and the complete bipartite graphK3,3

are non-planar graphs (see 5.8.1, 5., p. 402).

3. Subdivisions
A subdivision of a graph G is obtained if vertices
of degree 2 are inserted into edges of G. Every
graph is a subdivision of itself. Certain subdivi-
sions of K5 and K3,3 are represented in Fig. 5.58
and Fig. 5.59.

4. Kuratowski’s Theorem
A graph is non-planar iff it contains a subgraph
which is a subdivision either of the complete bipar-
tite graph K3,3 or of the complete graph K5.

Figure 5.58 Figure 5.59

5.8.6 Paths inDirectedGraphs

1. Arc Sequences
A sequence F = (e1, e2, . . . , es) of arcs in a directed graph is called a chain of length s, iff F does not
contain any arc twice and one of the endpoints of every arc ei for i = 2, 3, . . . , s − 1 is an endpoint of
the arc ei−1 and the other one an endpoint of ei+1.

A chain is called a directed chain iff for i = 1, 2, . . . , s− 1 the terminal point of the arc ei coincides with
the initial point of ei+1.
Chains or directed chains traversing every vertex at most once are called elementary chains and ele-
mentary directed chains, respectively.
A closed chain is called a cycle. A closed directed path, with every vertex being the endpoint of exactly
two arcs, is called a circuit.

Fig. 5.60 contains examples for various kinds of arc sequences.

2. Connected and Strongly Connected Graphs
A directed graphG is called connected iff for any two vertices there is a chain connecting these vertices.
The graph G is called strongly connected iff to every two vertices v, w there is is assigned a directed
chain connecting these vertices.

3. Algorithm of Dantzig
Let G = (V,E, f) be a weighted simple directed graph with f(e) > 0 for every arc e. The following
algorithmyields all vertices ofG, which are connectedwith a fixed vertex v1 by a directed chain, together
with their distances from v1:

a) Vertex v1 gets the label t(v1) = 0. Let S1 = {v1}.
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cycle circuitdirected
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Figure 5.60

b) The set of the labeled vertices is Sm.

c) If Um = {e|e = (vi, vj) ∈ E, vi ∈ Sm, vj �∈ Sm} = ∅, then one finishes the algorithm.

d) Otherwise one chooses an arc e∗ = (x∗, y∗) with minimum t(x∗) + f(e∗). One labels e∗ and y∗ and
puts t(y∗) = t(x∗) + f(e∗) and also Sm+1 = Sm ∪ {y∗} and repeats b) with m := m+ 1.

(If all arcs have weight 1, then the length of a shortest directed chain from a vertex v to a vertex w can
be found using the adjacency matrix (see 5.8.2.1, 4., p. 404)).
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If a vertex v of G is not labeled, then there is no di-
rected path from v1 to v.

If v has label t(v), then t(v) is the length of such a
directed chain. A shortest directed path from v1 to
v can be found in the tree given by the labeled arcs
and vertices, the distance tree with respect to v1.

In Fig. 5.61, the labeled arcs and vertices rep-
resent the distance tree with respect to v1 in the
graph. The lengths of the shortest directed chains
are:

from v1 to v3 : 2 from v1 to v6 : 7
from v1 to v7 : 3 from v1 to v8 : 7
from v1 to v9 : 3 from v1 to v14 : 8
from v1 to v2 : 4 from v1 to v5 : 8
from v1 to v10 : 5 from v1 to v12 : 9
from v1 to v4 : 6 from v1 to v13 : 10
from v1 to v11 : 6.

Remark: There is also a modified algorithm to
find the shortest directed chains in the case that
G = (V,E, f) has arcs with negative weights.

5.8.7 TransportNetworks

1. Transport Network
A connected directed graph is called a transport network if it has two labeled vertices, called the source
Q and sink S which have the following properties:

a) There is an arc u1 from S to Q, where u1 is the only arc with initial point S and the only arc with
terminal point Q.

b) Every arc ui different from u1 is assigned a real number c(ui) ≥ 0. This number is called its capacity.
The arc u1 has capacity∞.

A function ϕ, which assigns a real number to every arc, is called a flow on G, if the equality∑
(u,v)∈G

ϕ(u, v) =
∑

(v,w)∈G
ϕ(v, w) (5.325a)
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holds for every vertex v. The sum∑
(Q,v)∈G

ϕ(Q, v) (5.325b)

is called the intensity of the flow. A flow ϕ is called compatible to the capacities, if for every arc ui of G
0 ≤ ϕ(ui) ≤ c(ui) holds.

For an example of a transport network see p. 412.

2. Maximum Flow Algorithm of Ford and Fulkerson
Using the maximum flow algorithm one can recognize whether a given flow ϕ is maximal.
LetG be a transport network andϕ a flow of intensity v1 compatible with the capacities. The algorithm
given below contains the following steps for labeling the vertices, and after finishing this procedure one
can realize how much the intensity of the flow could be improved depending on the chosen labeling
steps.

a) One labels the source Q and sets ε(Q) = ∞.

b) If there is an arc ui = (x, y) with labeled x and unlabeled y and ϕ(ui) < c(ui), then one labels y and
(x, y), and sets ε(y) = min{ε(x), c(ui)− ϕ(ui)}, then one repeats step b), otherwise follows step c).

c) If there is an arc ui = (x, y) with unlabeled x and labeled y, ϕ(ui) > 0 and ui �= u1, then one labels
x and (x, y), substitutes ε(x) = min{ε(y), ϕ(ui)} and returns to continue step b) if it is possible.
Otherwise one finishs the algorithm.
If the sink S of G is labeled, then the flow in G can be improved by an amount of ε(S). If the sink is
not labeled, then the flow is maximal.

Maximum flow: For the graph in Fig. 5.62 the weights are written next to the edges. A flow with
intensity 13, compatible to these capacities, is represented in the weighted graph in Fig. 5.63. It is a
maximum flow.
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Transport network: A product is produced
by p firms F1, F2, . . . , Fp. There are q users
V1, V2, . . . , Vq. During a certain period there will be
si units produced by Fi and tj units required by Vj.
cij units can be transported from Fi to Vj during
the given period. Is it possible to satisfy all the re-
quirements during this period? The corresponding
graph is shown in Fig. 5.64.
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5.9 FuzzyLogic

5.9.1 BasicNotions of Fuzzy Logic

5.9.1.1 Interpretation of Fuzzy Sets
Real situations are very often uncertain or vague in a number of ways. The word “fuzzy” also means
some uncertainty, and the name of fuzzy logic is based on this meaning. Basically there are to distin-
guish two types of fuzziness: vagueness and uncertainty. There are two concepts belonging here: The
theory of fuzzy sets and the theory of fuzzy measure. In the following practice-oriented introduction
the notions, methods, and concepts of fuzzy sets are discussed, which are the basic mathematical tools
of multi-valued logic.

1. Notions of Classical and Fuzzy Sets
The classical notion of (crisp) set is two-valued, and the classical Boolean set algebra is isomorphic to
two-valued propositional logic. LetX be a fundamental set named the universe. Then for everyA ⊆ X
there exists a function

fA : X → {0, 1}, (5.326a)

such that it says for every x ∈ X whether this element x belongs to the set A or not:

fA(x) = 1 ⇔ x ∈ A and fA(x) = 0 ⇔ x �∈ A. (5.326b)

The concept of fuzzy sets is based on the idea of considering themembership of an element of the set as a
statement, the truth value of which is characterized by a value from the interval [0, 1]. Formathematical
modeling of a fuzzy set A a function is necessary whose range is the interval [0, 1] instead of {0,1}, i.e.:

μA : X → [0, 1]. (5.327)

In other words: To every element x ∈ X is to assign a number μA(x) from the interval [0, 1], which
represents the grade of membership of x in A. The mapping μA is called themembership function. The
value of the function μA(x) at the point x is called the grade of membership. The fuzzy sets A,B,C,
etc. over X are also called fuzzy subsets of X. The set of all fuzzy sets over X is denoted by F (X).

2. Properties of Fuzzy Sets and Further Definitions
The properties below follow directly from the definition:

(E1) Crisp sets can be interpreted as fuzzy sets with grade of membership 0 and 1.

(E2) The set of the arguments x, whose grade of membership is greater than zero, i.e., μA(x) > 0, is
called the support of the fuzzy set A:

supp(A) = {x ∈ X | μA(x) > 0} . (5.328)

The set ker(A) = {x ∈ X : μA(x) = 1} is called the kernel or core of A.

(E3) Two fuzzy sets A and B over the universeX are equal if the values of their membership functions
are equal:

A = B, if μA(x) = μB(x) holds for everyx ∈ X. (5.329)

(E4) Discrete representation or ordered pair representation: If the universe X is finite, i.e.,

X = {x1, x2, . . . , xn} it is reasonable to define the membership
function of the fuzzy set with a table of values. The tabular
representation of the fuzzy set A is seen in Table 5.7.

Also it is possible to write

Table 5.7 Tabular representation of a
fuzzy set
x1 x2 . . . xn

μA(x1) μA(x2) . . . μA(xn)

A := μA(x1)/x1 + · · ·+ μA(xn)/xn =
n∑

i=1

μA(xi)/xi. (5.330)

In (5.330) the fraction bars and addition signs have only symbolic meaning.

(E5)Ultra-fuzzy set: A fuzzy set, whose membership function itself is a fuzzy set, is called, after Zadeh,
an ultra-fuzzy set.
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3. Fuzzy Linguistics
Assigning linguistic values, e.g., “small”, “medium” or “big”, to a quantity then it is called a linguistic
quantity or linguistic variable. Every linguistic value can be described by a fuzzy set, for example, by
the graph of a membership function (5.9.1.2) with a given support (5.328). The number of fuzzy sets
(in the case of “small”, “medium”, “big” they are three) depends on the problem.
In 5.9.1.2 the linguistic variable is denoted by x. For example, x can have linguistic values for temper-
ature, pressure, volume, frequency, velocity, brightness, age, wearing, etc., and also medical, electrical,
chemical, ecological, etc. variables.

By the membership function μA(x) of a linguistic variable, the membership degree of a fixed (crisp)
value can be determined in the fuzzy set represented by μA(x). Namely, the modeling of a “high”
quantity, e.g., the temperature, as a linguistic variable given by a trapezoidal membership function
(Fig. 5.65)means that the given temperature α belongs to the fuzzy set “high temperature” with the
degree of membership β (also degree of compatibility or degree of truth).

5.9.1.2 Membership Functions on the Real Line
The membership functions can be modeled by functions with values between 0 and 1. They represent
the different grade of membership for the points of the universe being in the given set.

1. Trapezoidal Membership Functions
Trapezoidal membership functions are widespread. Piecewise (continuously differentiable) member-
ship functions and their special cases, e.g., the triangle shape membership functions described in the
following examples, are very often used. Connecting fuzzy quantities gives smoother output functions
if the fuzzy quantities were represented by continuous or piecewise continuous membership functions.

A: Trapezoidal function (Fig. 5.65) corresponding to (5.331).
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μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ a1 ,

x− a1
a2 − a1

a1 < x < a2 ,

1 a2 ≤ x ≤ a3 ,

a4 − x

a4 − a3
a3 < x < a4 ,

0 x ≥ a4.

(5.331)

The graph of this function
turns into a triangle function
if a2 = a3 = a and a1 <
a < a4. Choosing differ-
ent values for a1, . . . , a4 gives
symmetrical or asymmetri-
cal trapezoidal functions, a
symmetrical triangle func-
tion (a2 = a3 = a and |a −
a1| = |a4 − a|) or asymmet-
rical triangle function (a2 =
a3 = a and |a − a1| �= |a4 −
a|).

B: Membership function bounded to the left and to the right (Fig. 5.66) corresponding to (5.332):
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μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x ≤ a1,

a2 − x

a2 − a1
a1 < x < a2,

0 a2 ≤ x ≤ a3,

x− a3
a4 − a3

a3 < x < a4,

1 a4 ≤ x.

(5.332)
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C: Generalized trapezoidal function (Fig. 5.67) corresponding to (5.333).
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μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ a1,

b2(x− a1)

a2 − a1
a1 < x < a2,

(b3 − b2)(x− a2)

a3 − a2
+ b2 a2 ≤ x ≤ a3,

b3 = b4 = 1 a3 < x < a4,

(b4 − b5)(a4 − x)

a5 − a4
+ b5 a4 < x ≤ a5,

b5(a6 − x)

a6 − a5
a5 < x < a6,

0 a6 ≤ x.

(5.333)

2. Bell-ShapedMembership Functions
A: A class of bell-shaped, differentiable membership

functions is given by the function f(x) from (5.334) by
choosing an appropriate p(x):
For p(x) = k(x − a)(b − x) and, e.g., k = 10 or k = 1 or
k = 0.1, there is a family of symmetrical curves of different

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x ≤ a,

e−1/p(x) a < x < b,

0 x ≥ b.

(5.334)

width with the membership function μA(x) = f(x)

/
f

(
a+ b

2

)
, where 1

/
f

(
a+ b

2

)
is the normal-

izing factor (Fig. 5.68). The exterior curve follows with the value k = 10 and the interior one with
k = 0.1.
Asymmetrical membership functions in [0, 1] follow e.g. for p(x) = x(1 − x)(2 − x) or for p(x) =
x(1−x)(x+1) (Fig. 5.69), using appropriate normalizing factors. The factor (2−x) in the first poly-
nomial results in the shifting of the maximum to the left and it yields an asymmetrical curve shape.
Similarly, the factor (x+ 1) in the second polynomial results in a shifting to the right and in an asym-
metric form.
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B: A more flexible class of membership functions can be got by the formula

Ft(x) =

∫ x

a
f (t(u)) du∫ b

a
f (t(u)) du

, (5.335)
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where f is defined by (5.334) with p(x) = (x − a)(b − x) and t is a transformation on [a, b]. If t is
a smooth transformation on [a, b], i.e., if t is differentiable infinitely many times in the interval [a, b] ,
then Ft is also smooth, since f is smooth. Requiring t to be either increasing or decreasing and to be
smooth, then the transformation t allows to change the shape of the curve of the membership function.
In practice, polynomials are especially suitable for transformations. The simplest polynomial is the
identity t(x) = x on the interval [a, b] = [0, 1].

The next simplest polynomial with the given properties is t(x) = −2
3
cx3 + cx2 +

(
1− c

3

)
x with a

constant c ∈ [−6, 3]. The choice c = −6 results in the polynomial of maximum curvature, its equation
is q(x) = 4x3 − 6x2 + 3x . Choosing for q0 the identity function, i.e., q0(x) = x , then can be got
recursively further polynomials q by the formula qi = q◦qi−1 for i ∈ IN. Substituting the corresponding
polynomial transformations q0, q1, . . . into (5.335) for t, gives a sequence of smooth functions Fq0 , Fq1

and Fq2 (Fig. 5.70), which can be considered as membership functions μA(x), where Fqn converges to
a line. The trapezoidal membership function can be approximated by differentiable functions using the
function Fq2 , its reflection and a horizontal line (Fig. 5.71).
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Summary: Imprecise and non-crisp information can be described by fuzzy sets and represented by
membership functions μ(x).

5.9.1.3 Fuzzy Sets
1. Empty and Universal Fuzzy Sets
a) Empty fuzzy set: A set A over X is called empty if μA(x) = 0 ∀ x ∈ X holds.

b) Universal fuzzy set: A set is called universal if μA(x) = 1 ∀ x ∈ X holds.

2. Fuzzy Subset
If μB(x) ≤ μA(x) ∀ x ∈ X, then B is called a fuzzy subset of A (one writes: B ⊆ A).

3. Tolerance Interval and Spread of a Fuzzy Set on the Real Line
If A is a fuzzy set on the real line, then the interval

[a, b] = {x ∈ X|μA(x) = 1} (a, b const, a < b) (5.336)

is called the tolerance interval of the fuzzy set A, and the interval [c, d] = cl(suppA) (c, d const,c < d)
is called the spread of A, where cl denotes the closure of the set. (The tolerance interval is sometimes
also called the peak of set A.) The tolerance interval and the kernel coincide only if the kernel contains
more then one point.

A: In Fig. 5.65 [a2, a3] is the tolerance interval, and [a1, a4] is the spread.

B: a2 = a3 = a (Fig. 5.65), gives a triangle-shaped membership function μ. In that case the
triangular fuzzy set has no tolerance, but its kernel is the set {a}. If additionally a1 = a = a4 holds,
too, then a crisp value follows; it is called a singleton. A singleton A has no tolerance, but ker(A) =
supp(A) = {a}.
4. Conversion of Fuzzy Sets on a Continuous and Discrete Universe
Let the universe be continuous, and let a fuzzy set be given on it by its membership function. Discretiz-
ing the universe, every discrete point together with its membership value determines a fuzzy singleton.
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Conversely, a fuzzy set given on a discrete universe can be converted into a fuzzy set on the continuous
universe by interpolating the membership value between the discrete points of the universe.

5. Normal and Subnormal Fuzzy Sets

If A is a fuzzy subset of X, then its height is defined by

H(A) := max {μA(x)|x ∈ X}. (5.337)

A is called a normal fuzzy set if H(A) = 1, otherwise it is subnormal.
The notions and methods represented in this paragraph are limited to normal fuzzy sets, but it easy to
extend them also to subnormal fuzzy sets.

6. Cut of a Fuzzy Set

The α cut A>α or the strong α cut A≥α of a fuzzy set A are the subsets of X defined by

A>α = {x ∈ X|μA(x) > α}, A≥α = {x ∈ X|μA(x) ≥ α}, α ∈ (0, 1]. (5.338)

and A≥0 = cl (A>0). The α cut and strong α cut are also called α-level set and strong α-level set,
respectively.

1. Properties
a) The α cuts of fuzzy sets are crisp sets.

b) The support supp(A) is a special α cut: supp(A) = A>0.

c) The crisp 1 cut A≥1 = {x ∈ X|μA(x) = 1} is called the kernel of A.

2. Representation Theorem
To every fuzzy subset A of X can be assigned uniquely the families of its α cuts (A>α)α∈[0,1) and its

strong α cuts
(
A≥α

)
α∈(0,1]. The α cuts and strong α cuts are monotone families of subsets from X,

since:

α < β ⇒ A>α ⊇ A>β and A≥α ⊇ A≥β. (5.339a)

Conversely, if there exist the monotone families (Uα)α∈[0,1) or (Vα)α∈(0,1] of subsets from X, then there

are uniquely defined fuzzy sets U and V such that U>α = Uα and V ≥α = Vα and moreover

μU(x) = sup{α ∈ [0, 1))|x ∈ Uα}, μV (x) = sup{α ∈ (0, 1]|x ∈ Vα}. (5.339b)

7. Similarity of the Fuzzy Sets A and B

1. The fuzzy sets A,B with membership functions μA, μB : X → [0, 1] are called fuzzy similar if for
every α ∈ (0, 1] there exist numbers αi with αi ∈ (0, 1]; (i = 1, 2) such that:

supp(α1μA)α ⊆ supp(μB)α, supp(α2μB)α ⊆ supp(μA)α. (5.340)

(μC)α represents a fuzzy set with the membership function (μC)α =
{
μC(x) if μC(x) > α
0 otherwise

and (βμC)

represents a fuzzy set with the membership function (βμC) =
{
β if μC(x) > β
0 otherwise.

2. Theorem: Two fuzzy sets A,B with membership functions μA, μB : X → [0, 1] are fuzzy-similar if
they have the same kernel:

supp(μA)1 = supp(μB)1, (5.341a)

since the kernel is equal to the 1 cut, i.e.

supp(μA)1 = {x ∈ X|μA(x) = 1}. (5.341b)

3. A,B with μA, μB : X → [0, 1] are called strongly fuzzy-similar if they have the same support and
the same kernel:
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supp(μA)1 = supp(μB)1, (5.342a) supp(μA)0 = supp(μB)0. (5.342b)

5.9.2 Connections (Aggregations) of Fuzzy Sets
Fuzzy sets can be aggregated by operators. There are several different suggestions of how to generalize
the usual set operations, such as union, intersection, and complement of fuzzy sets.

5.9.2.1 Concepts for Aggregations of Fuzzy Sets

1. Fuzzy Set Union, Fuzzy Set Intersection
The grade of membership of an arbitrary element x ∈ X in the sets A ∪ B and A ∩ B should depend
only on the grades of membership μA(x) and μB(x) of the element in the two fuzzy sets A and B. The
union and intersection of fuzzy sets is defined with the help of two functions

s, t: [0, 1]× [0, 1] → [0, 1], (5.343)

and they are defined in the following way:

μA∪B(x) := s (μA(x), μB(x)) , (5.344) μA∩B(x) := t (μA(x), μB(x)) . (5.345)

The grades of membership μA(x) and μB(x) are mapped in a new grade of membership. The functions
t and s are called the t norm and t conorm; this last one is also called the s norm.

Interpretation: The functions μA∪B and μA∩B represent the truth values of membership, which is
resulted by the aggregation of the truth values of memberships μA(x) and μB(x).

2. Definition of the tNorm:
The t norm is a binary operation t in [0, 1]:

t: [0, 1]× [0, 1] → [0, 1]. (5.346)

It is symmetric, associative, monotone increasing, it has 0 as the zero element and 1 as the neutral
element. For x, y, z, v, w ∈ [0, 1] the following properties are valid:

(E1) Commutativity: t(x, y) = t(y, x). (5.347a)

(E2) Associativity: t(x, t(y, z)) = t(t(x, y), z). (5.347b)

(E3) Special Operations with Neutral and Zero Elements:

t(x, 1) = x and because of (E1): t(1, x) = x; t(x, 0) = t(0, x) = 0. (5.347c)

(E4) Monotony: If x ≤ v and y ≤ w, then t(x, y) ≤ t(v, w) is valid. (5.347d)

3. Definition of the sNorm:
The s norm is a binary function in [0, 1]:

s: [0, 1]× [0, 1] → [0, 1]. (5.348)

It has the following properties:

(E1) Commutativity: s(x, y) = s(y, x). (5.349a)

(E2) Associativity: s(x, s(y, z)) = s(s(x, y), z). (5.349b)

(E3) Special Operations with Zero and Neutral Elements:

s(x, 0) = s(0, x) = x; s(x, 1) = s(1, x) = 1. (5.349c)

(E4) Monotony: If x ≤ v and y ≤ w, then s(x, y) ≤ s(v, w) is valid. (5.349d)

With the help of these properties a class T of t norms and a class S of s norms can be introduced.
Detailed investigations proved that the following relations hold:

min{x, y} ≥ t(x, y) ∀ t ∈ T, ∀ x, y ∈ [0, 1] and (5.349e)

max{x, y} ≤ s(x, y) ∀ s ∈ S, ∀ x, y ∈ [0, 1]. (5.349f)
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5.9.2.2 Practical Aggregation Operations of Fuzzy Sets

1. Intersection of Two Fuzzy Sets
The intersection A ∩ B of two fuzzy sets A and B is defined by the minimum operation min(., .) on
their membership functions μA(x) and μB(x). Based on the previous requirements there is:

C := A ∩ B and μC(x) := min (μA(x), μB(x)) ∀ x ∈ X, where: (5.350a)

min(a, b) :=
{
a, if a ≤ b,
b, if a > b.

(5.350b)

The intersection operation corresponds to theANDoperation of twomembership functions (Fig.5.72).
The membership function μC(x) is defined as the minimum value of μA(x) and μB(x).

2. Union of Two Fuzzy Sets
The union A∪B of two fuzzy sets is defined by the maximum operation max(., .) on their membership
functions μA(x) and μB(x):

C := A ∪ B and μC(x) := max (μA(x), μB(x)) ∀ x ∈ X, where: (5.351a)

max(a, b) :=
{
a , if a ≥ b,
b, if a < b.

(5.351b)

The union corresponds to the logical OR operation. Fig.5.73 illustrates μC(x) as the maximum value
of the membership functions μA(x) and μB(x).

The t norm t(x, y) = min{x, y} and the s norm s(x, y) = max{x, y} define the intersection and the
union of two fuzzy sets, respectively (see (Fig.5.74) and (Fig.5.75)).
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3. Further Aggregations
Further aggregations are the bounded, the algebraic, and the drastic sum and also the bounded difference,
the algebraic and the drastic product (see Table 5.8).
The algebraic sum, e.g., is defined by

C := A+B and μC(x) := μA(x) + μB(x)− μA(x) · μB(x) for every x ∈ X. (5.352a)

Similarly to the union (5.351a,b), this sum also belongs to the class of s norms. They are included in
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Table 5.8 t and s norms, p ∈ IR

Author t norm s norm

Zadeh intersection: t(x, y) = min{x, y} union: s(x, y) = max{x, y}
Lukasiewicz bounded difference bounded sum

tb(x, y) = max{0, x+ y − 1} sb(x, y) = min{1, x+ y}
algebraic product algebraic sum
ta(x, y) = xy sa(x, y) = x+ y − xy

drastic product drastic sum

tdp(x, y) =

⎧⎨⎩min{x, y}, whether x = 1
or y = 1

0 otherwise
sds(x, y) =

⎧⎨⎩max{x, y}, whether x = 0
or y = 0

1 otherwise

Hamacher

(p ≥ 0) th(x, y) =
xy

p+ (1− p)(x+ y − xy)
sh(x, y) =

x+ y − xy − (1− p)xy

1− (1− p)xy

Einstein te(x, y) =
xy

1 + (1− x)(1− y)
se(x, y) =

x+ y

1 + xy

Frank tf (x, y) = sf (x, y) = 1−

(p > 0, p �= 1) logp

[
1 +

(px − 1)(py − 1)

p− 1

]
logp

[
1 +

(p1−x − 1)(p1−y − 1)

p− 1

]

Yager tya(x, y) = 1− sya(x, y) = min
(
1, (xp + yp)1/p

)
(p > 0) min

(
1, ((1− x)p + (1− y)p)1/p

)
Schweizer ts(x, y) = max(0, x−p + y−p − 1)−1/p ss(x, y) = 1−
(p > 0) max (0, (1− x)−p + (1− y)−p − 1)

−1/p

Dombi tdo(x, y) = sdo(x, y) = 1−

(p > 0)

⎧⎨⎩1 +

[(
1− x

x

)p

+

(
1− y

y

)p]1/p⎫⎬⎭
−1 ⎧⎨⎩1 +

[(
x

1− x

)p

+

(
y

1− y

)p]1/p⎫⎬⎭
−1

Weber tw(x, y) = max(0, (1 + p) sw(x, y) = min(1, x+ y + pxy)

(p ≥ −1) ·(x+ y − 1)− pxy)

Dubois tdu(x, y) =
xy

max(x, y, p)
sdu(x, y) =

(0 ≤ p ≤ 1)
x+ y − xy − min(x, y, (1− p))

max((1− x), (1− y), p)

Remark: For the values of the t and s norms listed in the table, the following ordering is valid:
tdp ≤ tb ≤ te ≤ ta ≤ th ≤ t ≤ s ≤ sh ≤ sa ≤ se ≤ sb ≤ sds.

the right-hand column ofTable 5.8. InTable 5.9 is given a comparision of operations in Boolean logic
and fuzzy logic.

Analogously to the notion of the extended sum as a union operation, the intersection can also be ex-
tended for example by the bounded, the algebraic, and the drastic product. So, e.g., the algebraic
product is defined in the following way:

C := A · B and μC(x) := μA(x) · μB(x) for every x ∈ X. (5.352b)
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It also belongs to the class of t norms, similarly to the intersection (5.350a,b), and it can be found in
the middle column of Table 5.8.

5.9.2.3 Compensatory Operators

Sometimes operators are necessary lying between the t and the s norms; they are called compensatory
operators. Examples for compensatory operators are the lambda and the gamma operator.

1. Lambda Operator

μAλB(x) = λ [μA(x)μB(x)] + (1− λ) [μA(x) + μB(x)− μA(x)μB(x)] with λ ∈ [0, 1]. (5.353)

Case λ = 0 : Equation (5.353) results in a form known as the algebraic sum (Table 5.8, s norms); it
belongs to the OR operators.

Case λ = 1: Equation (5.353) results in the form known as the algebraic product (Table 5.8, t norms);
it belongs to the AND operators.

2. Gamma Operator

μAγB(x) = [μA(x)μB(x)]
1−γ [1− (1− μA(x)) (1− μB(x))]

γ with γ ∈ [0, 1]. (5.354)

Case γ= 1: Equation (5.354) results in the representation of the algebraic sum.

Case γ= 0: Equation (5.354) results in the representation of the algebraic product.

The application of the gamma operator on fuzzy sets of any numbers is given by

μ(x) =

[
n∏

i=1

μi(x)

]1−γ [
1−

n∏
i=1

(1− μi(x))

]γ
, (5.355)

and with weights δi:

μ(x) =

[
n∏

i=1

μi(x)
δi

]1−γ [
1−

n∏
i=1

(1− μi(x))
δi

]γ
with x ∈ X,

n∑
i=1

δi = 1, γ ∈ [0, 1]. (5.356)

5.9.2.4 Extension Principle

In the previous paragraph there are discussed the possibilities of generalizing the basic set operations
for fuzzy sets. Now, the notion of mapping is extended on fuzzy domains. The basis of the concept is the
acceptance grade of vague statements. The classical mapping Φ: Xn → Y assigns a crisp function value
Φ(x1, . . . , xn) ∈ Y to the point (x1, . . . , xn) ∈ Xn. This mapping can be extended for fuzzy variables as

follows: The fuzzy mapping is Φ̂: F (X)n → F (Y ), which assigns a fuzzy function value Φ̂(μ1, . . . , μn)
to the fuzzy vector variables (x1, . . . , xn) given by the membership functions (μ1, . . . , μn) ∈ F (X)n.

5.9.2.5 Fuzzy Complement

A function c : [0, 1] → [0, 1] is called a complement function if the following properties are fulfilled for
∀ x, y ∈ [0, 1]:

(EK1) Boundary Conditions: c(0) = 1 and c(1) = 0. (5.357a)

(EK2) Monotony: x < y ⇒ c(x) ≥ c(y). (5.357b)

(EK3) Involutivity: c(c(x)) = x. (5.357c)

(EK4) Continuity: c(x) should be continuous for every x ∈ [0, 1]. (5.357d)

A: The most often used complement function is (continuous and involutive):

c(x) := 1− x. (5.358)

B: Other continuous and involutive complements are the Sugeno complement cλ(x) := (1−x)(1+

λx)−1 with λ ∈ (−1,∞) and the Yager complement cp(x) := (1− xp)1/p with p ∈ (0,∞).
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Table 5.9 Comparison of operations in Boolean logic and in fuzzy logic

Operator Boolean logic Fuzzy logic (μA, μB ∈ [0, 1])

AND C = A ∧ B μA∩B = min(μA, μB)

OR C = A ∨ B μA∪B = max(μA, μB)

NOT C = ¬A μC
A = 1− μA (μC

A as complement of μA)

5.9.3 Fuzzy-ValuedRelations

5.9.3.1 Fuzzy Relations

1. Modeling Fuzzy-Valued Relations
Uncertain or fuzzy-valued relations, as e.g. “approximately equal”, “practically larger than”, or “prac-
tically smaller than”, etc., have an important role in practical applications. A relation between numbers
is interpreted as a subsets of IR2. So, the equality “=” is defined as the set

A =
{
(x, y) ∈ IR2|x = y

}
, (5.359)

i.e., by a straight line y = x in IR2.
Modeling the relation “approximately equal” denoted by R1, can be used a fuzzy subset on IR2, the
kernel of which is A. Furthermore it is to require that the membership function should decrease and
tend to zero getting far from the line A. A linear decreasing membership function can be modeled by

μR1(x, y) = max{0, 1− a|x− y|} with a ∈ IR, a > 0. (5.360)

For modeling the relation R2 “practically larger than”, it is useful to start with the crisp relation “≥”.
The corresponding set of values is given by{

(x, y) ∈ IR2|x ≤ y
}
. (5.361)

It describes the crisp domain above the line x = y.
The modifier “practically” means that a thin zone under the half-space in (5.361) is still acceptable
with some grade. So, the model of R2 is

μR2(x, y) =
{
max{0, 1− a|x− y|} for y < x
1 for y ≥ x

}
with a ∈ IR, a > 0. (5.362)

If the value of one of the variables is fixed, e.g., y = y0, then R2 can be interpreted as a region with
uncertain boundaries for the other variable.
Handling the uncertain boundaries by fuzzy relations has practical importance in fuzzy optimization,
qualitative data analysis and pattern classification.

The foregoing discussion shows that the concept of fuzzy relations, i.e., fuzzy relations between several
objects, can be described by fuzzy sets. In the following section the basic properties of binary relations
are discussed over a universe which consists of ordered pairs.

2. Cartesian Product
Let X and Y be two universes. Their “cross product” X × Y , or Cartesian product, is a universe G:

G = X × Y = {(x, y)|x ∈ X ∧ y ∈ Y }. (5.363)

Then, a fuzzy set on G is a fuzzy relation, analogously to classical set theory, if it consists of the valued
pair of universesX and Y . A fuzzy relationR inG is a fuzzy subsetR ∈ F (G), where F (G) denotes the
set of all the fuzzy sets over X × Y . R can be given by a membership function μR(x, y) which assigns
a membership degree μR(x, y) from [0, 1] to every element of (x, y) ∈ G.

3. Properties of Fuzzy-Valued Relations
(E1) Since the fuzzy relations are special fuzzy sets, all propositions stated for fuzzy sets will also be
valid for fuzzy relations.

(E2) All aggregations defined for fuzzy sets can be defined also for fuzzy relations; they yield a fuzzy
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relation again.

(E3) The notion of α cut defined above can be transmitted without difficulties to fuzzy relations.

(E4) The 0 cut (the closure of the support) of a fuzzy relation R ∈ F (G) is a usual relation on G.

(E5) Denoting the membership value by μR(x, y), i.e., the degree by which the relation R between the
pair (x, y) holds. The value μR(x, y) = 1 means that R holds perfectly for the pair (x, y), and the value
μR(x, y) = 0 means that R does not at all hold for the pair (x, y).

(E6) Let R ∈ F (G) be a fuzzy relation. Then the fuzzy relation S := R−1, the inverse of R, is defined
by

μS(x, y) = μR(y, x) for every (x, y) ∈ G. (5.364)

The inverse relationR−1
2 means “practically smaller than” (see 5.9.3.1, 1., p. 422); the unionR1∪R−1

2

can be determined as “practically smaller or approximately equal”.

4. n-Fold Cartesian Product
Let n be the number of universal sets. Their cross product is an n-fold Cartesian product. A fuzzy set
on an n-fold Cartesian product represents an n-fold fuzzy relation.

Consequences: The fuzzy sets, considered until now, are unary fuzzy relations, i.e., in the sense of the
analysis they are curves above a universal set. A binary fuzzy relation can be considered as a surface
over the universal set G. A binary fuzzy relation on a finite discrete support can be represented by a
fuzzy relation matrix.

Colour-ripe grade relation: The well-known correspondence between the colour x and the ripe grade
y of a friut is modeled in the form of a binary relation matrix with elements {0, 1}. The possible colours
are X = {green, yellow, red} and the ripe grades are Y = {unripe, half-ripe, ripe}. The relation
matrix (5.365) belongs to the table:

unripe half-ripe ripe
green 1 0 0
yellow 0 1 0
red 0 0 1

R =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ . (5.365)

Interpretation of this relation matrix: IF a fruit is green, THEN it is unripe. IF a fruit is yellow,
THEN it is half-ripe. IF a fruit is red, THEN it is ripe. Green is uniquely assigned to unripe, yellow to
half-ripe and red to ripe. If beyond it should be formalized that a green fruit can be considered half-ripe
in a certain percentage, then the following table with discrete membership values can be arranged:
μR (green, unripe) = 1.0, μR (green, half-ripe) = 0.5,
μR (green, ripe) = 0.0, μR (yellow, unripe) = 0.25,
μR (yellow, half-ripe) = 1.0, μR (yellow, ripe) = 0.25,
μR (red, unripe) = 0.0, μR (red, half-ripe) = 0.5,
μR (red, ripe) = 1.0.

The relation matrix with μR ∈ [0, 1]
is:

R =

⎛⎝ 1.0 0.5 0.0
0.25 1.0 0.25
0.0 0.5 1.0

⎞⎠ . (5.366)

5. Rules of Calculations
The AND-type aggregation of fuzzy sets, e.g. μ1 : X → [0, 1] and μ2 : Y → [0, 1] given on different
universes is formulated by the min operation as follows:

μR(x, y) = min(μ1(x), μ2(y)) or (μ1 × μ2)(x, y) = min(μ1(x), μ2(y)) with (5.367a)

μ1 × μ2 : G → [0, 1], where G = X × Y. (5.367b)

The result of this aggregation is a fuzzy relationR on the cross product set (Cartesian product universe
of fuzzy sets)Gwith (x, y) ∈ G. IfX and Y are discrete finite sets and soμ1(x), μ2(y) can be represented
as vectors, then holds:

μ1 × μ2 = μ1 ◦ μT2 and μR−1(x, y) := μR(y, x) ∀ (x, y) ∈ G. (5.368)

The aggregation operator ◦ does not denote here the usual matrix product. The product is calculated
here by the componentwise min operation and addition by the componentwise max operation.
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The validity grade of an inverse relation R−1 for the pair (x, y) is always equal to the validity grade of
R for the pair (y, x).

If the fuzzy relations are given on the same Cartesian product universe, then the rules of their aggre-
gations can be given as follows: Let R1, R2 : X × Y → [0, 1] be binary fuzzy relations. The evaluation
rule of their AND-type aggregation uses the min operator, namely for ∀(x, y) ∈ G:

μR1∩R2(x, y) = min(μR1(x, y), μR2(x, y)). (5.369)

A corresponding evaluation rule for the OR-type aggregation is given by the max operation:

μR1∪R2(x, y) = max(μR1(x, y), μR2(x, y)). (5.370)

5.9.3.2 Fuzzy Product RelationR ◦ S

1. Composition or Product Relation
Suppose R ∈ F (X × Y ) and S ∈ F (Y × Z) are two relations, and it is additionally assumed that
R, S ∈ F (G) with G ⊆ X × Z. Then the composition or the fuzzy product relation R ◦ S is:

μR◦S(x, z) := supy∈Y {min(μR(x, y), μS(y, z))} ∀ (x, z) ∈ X × Z. (5.371)

If a matrix representation is used for a finite universal set analogously to (5.366), then the composition
R ◦ S is motivated as follows: Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}, Z = {z1, . . . , zl} and R ∈
F (X × Y ), S ∈ F (Y × Z) and let the matrix representations R, S be in the form R = (rij) and
S = (sjk) for i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , l, where

rij = μR(xi, yj) and sjk = μS(yj, zk). (5.372)

If the composition T = R ◦ S has the matrix representation tik, then

tik = sup
j

min{rij, sjk}. (5.373)

The final result is not a usual matrix product, since instead of the summation operation there is the
least upper bound (supremum) operation and instead of the product there is the minimum operator.

With the representations for rij and sjk and with (5.371), the inverse relation R−1(ri,j)
T, can also

be computed taking into consideration that R−1 can be represented by the transpose matrix, i.e.,
R−1 = (rij)

T.

Interpretation: LetR be a relation fromX to Y and S be a relation from Y to Z. Then the following
compositions are possible:

a) If the compositionR◦S ofR and S is defined as a max-min product, then the resulted fuzzy compo-
sition is called a max-min composition. The symbol sup stands for supremum and denotes the largest
value, if no maximum exists.

b) If the product composition is defined as the usual matrix multiplication, then the max-prod com-
position is obtained.

c) For max-average composition, “multiplication” is replaced by the average.

2. Rules of Composition
The following rules are valid for the composition of fuzzy relations R, S, T ∈ F (G):
(E1) Associative Law:

(R ◦ S) ◦ T = R ◦ (S ◦ T ). (5.374)

(E2) Distributive Law for Composition with Respect to the Union:

R ◦ (S ∪ T ) = (R ◦ S) ∪ (R ◦ T ). (5.375)

(E3) Distributive Law in a Weaker Form for Composition with Respect to Intersection:

R ◦ (S ∩ T ) ⊆ (R ◦ S) ∩ (R ◦ T ). (5.376)

(E4) Inverse Operations:

(R ◦ S)−1 = S−1 ◦R−1, (R ∪ S)−1 = R−1 ∪ S−1 and (R ∩ S)−1 = R−1 ∩ S−1. (5.377)
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(E5) Complement and Inverse:(
R−1

)−1
= R,

(
RC

)−1
=

(
R−1

)C
. (5.378)

(E6) Monotonic Properties:

R ⊆ S ⇒ R ◦ T ⊆ S ◦ T und T ◦R ⊆ T ◦ S. (5.379)

A: Equation (5.371) for the product relation R ◦S is defined by the min operation as we have done
for intersection formation. In general, any t norm can be used instead of the min operation.

B: The α cuts with respect to the union, intersection, and complement are: (A∪B)>α = A>α∪B>α,
(A ∩ B)>α = A>α ∩ B>α, (AC)>α = A≤1−α = {x ∈ X|μA(x) ≤ 1 − α}. Corresponding statements
are valid for strong α cuts.

3. Fuzzy Logical Inferences
It is possible to make a fuzzy inference, e.g., with the IF THEN rule by the composition rule μ2 = μ1◦R.
The detailed formulation for the conclusion μ2 is given by

μ2(y) = maxx∈X
(
min(μ1(x), μR(x, y))

)
(5.380)

with y ∈ Y, μ1 : X → [0, 1], μ2 : Y → [0, 1], R: G → [0, 1] und G = X × Y .

5.9.4 Fuzzy Inference (ApproximateReasoning)
Fuzzy inference is an application of fuzzy relations with the goal of getting fuzzy logical conclusions with
respect to vague information (see 5.9.6.3, p. 428). Vague information means here fuzzy information
but not uncertain information. Fuzzy inference, also called implication, contains one or more rules, a
fact and a consequence. Fuzzy inference, which is called by Zadeh, approximate reasoning, cannot be
described by classical logic.

1. Fuzzy Implication, IF THENRule
The fuzzy implication contains one IF THEN rule in the simplest case. The IF part is called the premise
and it represents the condition. The THEN part is the conclusion. Evaluation happens by μ2 = μ1 ◦R
and (5.380).

Interpretation: μ2 is the fuzzy inference image of μ1 under the fuzzy relation R, i.e., a calculation
prescription for the IF THEN rule or for a group of rules.

2. Generalized Fuzzy Inference Scheme
The rule IF A1 AND A2 AND A3 . . . AND An THEN B with Ai : μi : Xi → [0, 1] (i = 1, 2, . . . , n) and
the membership function of the conclusion B : μ: Y → [0, 1] is described by an (n+1)-valued relation

R: X1 ×X2 × · · ·Xn × Y → [0, 1]. (5.381a)

For the actual input with crisp values x′
1, x

′
2, . . . , x

′
n the rule (5.381a) defines the actual fuzzy output

by

μB′(y) = μR(x
′
1, x

′
2, . . . , x

′
n, y) = min(μ1(x

′
1), μ2(x

′
2), . . . , μn(x

′
n), μB(y)) where y ∈ Y. (5.381b)

Remark: The quantity min(μ1(x
′
1), μ2(x

′
2), . . . μn(x

′
n)) is called the degree of fulfillment, and the

quantities {μ1(x
′
1), μ2(x

′
2), . . . , μn(x

′
n)} represent the fuzzy-valued input quantities.

Forming the fuzzy relations for a connection between the quantities “medium” pressure and “high”
temperature (Fig. 5.76): μ̃1(p, T ) = μ1(p) ∀T ∈ X2 with μ1 : X1 → [0, 1] is a cylindrical extension
(Fig. 5.76c) of the fuzzy set medium pressure (Fig. 5.76a). Analogously, μ̃2(p, T ) = μ2(T ) ∀ p ∈
X1 with μ2 : X2 → [0, 1] is a cylindrical extension (Fig. 5.76d) of the fuzzy set high temperature
(Fig. 5.76b), where μ̃1, μ̃2 : G = X1 ×X2 → [0, 1].

Fig. 5.77a shows the graphic result of the formation of fuzzy relations: In Fig. 5.77b the result of the
composition medium pressure AND high temperature with the min operator μR(p, T ) = min(μ1(p),
μ2(T )) is represented, and (Fig. 5.77b) shows the result of the composition OR with the max operator
μR(p, T ) = max(μ1(p), μ2(T )).
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5.9.5 DefuzzificationMethods
One has to get a crisp set from a fuzz-valued set in many cases. This process is called defuzzification.
There are different methods available for this task.

1.Maximum-CriterionMethod
An arbitrary value η ∈ Y is selected from the domain where the fuzzy set μOutput

x1,...,xn
has the maximal

membership degree.

2.Mean-of-MaximumMethod (MOM)
The output value is the mean value of the maximal membership values:

sup
(
μOutput
μx1,...,xn

)
:=

{y ∈ Y |μx1,...,xn(y) ≥ μx1,...,xn(y
∗) ∀ y∗ ∈ Y } ; (5.382)

i.e., the set Y is an interval, which should not be empty and
it is characterized by (5.382), from which follows (5.383).

ηMOM =

∫
y∈sup(μOutput

x1,...,xn)
y dy∫

y∈sup(μOutput
x1,...,xn)

dy
.(5.383)

3. Center of GravityMethod (COG)
In the center of gravity method, one takes the abscissa
value of the center of gravity of a surface with a fictitious
homogeneous density of value 1.

ηCOG =

∫ ysup

yinf

μ(y)y dy∫ ysup

yinf

μ(y) dy
. (5.384)
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4. Parametrized Center of Gravity Method
(PCOG)
The parametrizedmethodworkswith the exponent γ ∈ IR.
From (5.385) it follows for γ = 1, ηPCOG = ηCOG and for
γ → 0, ηPCOG = ηMOM.

ηPCOG =

∫ ysup

yinf

μ(y)γy dy∫ ysup

yinf

μ(y)γ dy
. (5.385)

5. Generalized Center of GravityMethod
(GCOG)
The exponent γ is considered as a function of y in the
PCOG method. Then (5.386) follows obviously. The
GCOG method is a generalization of the PCOG method,
where μ(y) can be changed by the special weight γ depend-
ing itself on y.

ηGCOG =

∫ ysup

yinf

μ(y)γ(y)y dy∫ ysup

yinf

μ(y)γ(y) dy
. (5.386)

6. Center of Area (COA)Method
One calculates a line parallel to the ordinate axis so that
the area under the membership function is the same on the
left- and on the right-hand side of it.

∫ η

yinf

μ(y) dy =
∫ ysup

η
μ(y) dy. (5.387)

7. Parametrized Center of Area (PCOA)
Method

∫ ηPB

yinf

μ(y)γ dy =
∫ ysup

ηPF

μ(y)γ dy. (5.388)

8.Method of the Largest Area (LA)
The significant subset is selected and one of the methods defined above, e.g., the method of center of
gravity (COG) or center of area (COA) is used for this subset.

5.9.6 Knowledge-BasedFuzzy Systems
There are several application possibilities of multi-valued fuzzy logic, based on the unit interval, both
in technical and non-technical life. The general concept consists in the fuzzification of quantities and
characteristic numbers, in the aggregation them in an appropriate knowledge base with operators, and
if necessary, in the defuzzification of the possibly fuzzy result set.

5.9.6.1 Method ofMamdani
The following steps are applied for a fuzzy control process:
1. Rule Base Suppose, for example, for the i-th rule

Ri : If e is Ei AND ė is ΔEi THEN u is U i. (5.389)

Here e characterizes the error, ė the change of the error and u the change of the (not fuzzy valued) output
value. Every quantity is defined on its domain E,ΔE and U . Let the entire domain be E ×ΔE × U .
The error and the change of the error will be fuzzified on this domain, i.e., they will be represented by
fuzzy sets, where linguistic description is used.
2. Fuzzifying Algorithm In general, the error e and its change ė are not fuzzy-valued, so they must
be fuzzified by a linguistic description. The fuzzy values will be compared with the premisses of the
IF THEN rule from the rule base. From this it follows, which rules are active and how large are their
weights.
3. Aggregation Module The active rules with their different weights will be combined with an
algebraic operation and applied to the defuzzification.
4. Decision Module In the defuzzification process a crisp value should be given for the control
quantity. With a defuzzification operation, a non-fuzzy-valued quantity is determined from the set of
possible values, i.e., a crisp quantity. This quantity expresses how the control parameters of the system
should be set up to keep the deviation minimal.
Fuzzy control means that the steps from 1. to 4. are repeated until the goal, the smallest deviation e
and its change ė, is reached.
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5.9.6.2 Method of Sugeno
The Sugeno method is also used for planning of a fuzzy control process. It differs from the Mamdani
concept in the rule base and in the defuzzification method. It has the following steps:

1. Rule Base: The rule base consists of rules of the following form:

Ri : IF x1 is A
i
1 AND . . . AND xk is A

i
k,THEN ui = pi0 + pi1x1 + pi2x2 + · · ·+ pikxk. (5.390)

The notations mean:
Aj: fuzzy sets, which can be determined by membership functions;
xj: crisp input values as, e.g., the error e and the change of the error ė, which tell us something about

the dynamics of the system;
pij: weights of xj (j = 1, 2, . . . , k);

ui: the output value belonging to the i-th rule (i = 1, 2, . . . , n).

2. Fuzzifying Algorithm: A μi ∈ [0, 1] is calculated for every rule Ri.

3. DecisionModule: A non-fuzzy-valued quantity is calculated from the weighted mean of ui, where
the weights are μi from the fuzzification:

u =
n∑

i=1

μiui

(
n∑

i=1

μi

)−1

. (5.391)

Here u is a crisp value.

The defuzzification of the Mamdani method does not work here. The problem is to get the weight
parameters pij available. These parameters can be determined by a mechanical learning method, e.g.,

by an artificial neuronetwork (ANN).

5.9.6.3 Cognitive Systems
To clarify the method, the following known example will be investigated with the Mamdami method:
The regulation of a pendulum that is perpendicular to its moving base (Fig. 5.78). The aim of the
control process is to keep a pendulum in balance so that the pendulum rod should stand vertical, i.e.,
the angular displacement from the vertical direction and the angular velocity should be zero. It must
be done by a force F acting at the lower end of the pendulum. This force is the control quantity. The
model is based on the activity of a human “control expert” (cognitive problem). The expert formulates
its knowledge in linguistic rules. Linguistic rules consist, in general, of a premise, i.e., a specification of
the measured values, and a conclusion which gives the appropriate control value.

For every set of valuesX1, X2, . . . , Xn for the measured values and Y for the control quantity the appro-
priate linguistic terms are defined as “approximately zero”, “small positive”, etc. Here “approximately
zero” with respect to the measured value ξ1 can have a different meaning as for the measured value ξ2.

Inverse Pendulum on a Moving Base (Fig. 5.78)
1. Modeling For the set X1 (values of angle) and analogously for the input
quantityX2 (values of the angular velocity) the seven linguistic terms, negative
large (nl), negative medium (nm), negative small (ns), zero (z), positive small
(ps), positive medium (pm) and positive large (pl) are chosen.

For themathematical modeling, a fuzzy setmust be assigned by graphs to every
one of these linguistic terms (Fig. 5.77), as was shown for fuzzy inference (see
5.9.4, p. 425).

F

 

Figure 5.78

2. Choice of the Domain of Values
• Values of angles: Θ(−90◦ < Θ < 90◦) : X1 := [−90◦, 90◦].
• Values of angular velocity: Θ̇(−45◦ s−1 ≤ Θ̇ ≤ 45◦ s−1) : X2 := [−45◦ s−1, 45◦ s−1].
• Values of force F : (−10N ≤ F ≤ 10N): Y := [−10N, 10N].
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The partitioning of the input quantitiesX1 andX2 and the output quantity Y is represented graphically

in Fig. 5.79. Usually, the initial values are actual measured values, e.g., Θ = 36◦, Θ̇ = −2.25◦ s−1.
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Figure 5.79

3. Choice of Rules Considering the following table, there are 49 possible rules (7× 7) but there are
only 19 important in practice, so the following two are to be discussed: R1 and R2.

R1: IfΘ is positive small (ps) and Θ̇ zero (z), then F is positive small (ps). For the degree of fulfillment

(also called the weight of the rules) of the premise with α = min
{
μ(1)(Θ);μ(1)(Θ̇)

}
= min{0.4; 0.8} =

0.4 one gets the output set (5.392) by an α cut, hence the output fuzzy set is positive small (ps) in the
height α = 0.4 (Fig. 5.80c).

Table: Rule base with 19 practically meaning-
ful rules
Θ̇\Θ nl nm ns z ps pm pl
nl ps pl
nm pm
ns nm ns ps
z nl nm ns z ps pm pl
ps ns ps pm
pm nm
pl nl ns

μ
Output (R1)
36;−2.25 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

5
y 0 ≤ y < 1,

0.4 1 ≤ y ≤ 4,

2− 2

5
y 4 < y ≤ 5,

0 otherwise.

(5.392)

R2: If Θ is positive medium (pm) and Θ̇ is
zero (z), then F is positive medium (pm).
For the performance score of the premise fol-

lows α = min
{
μ(2)(Θ);μ(2)Θ̇

}
= min{0.6;

0.8} = 0.6, the output set (5.393) analogously
to rule R1 (Fig. 5.80f).

μ
Output (R2)
36;−2.25 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

5
y − 1 2.5 ≤ y < 4,

0.6 4 ≤ y ≤ 6,

3− 2

5
y 6 < y ≤ 7.5,

0 otherwise.

(5.393)

4. Decision Logic The evaluation of rule R1 with the min operation results in the fuzzy set in
Figs. 5.80a–c. The corresponding evaluation for the rule R2 is shown in Figs. 5.80d–f. The control
quantity is calculated finally by a defuzzification method from the fuzzy proposition set (Fig. 5.80g).
The result is the fuzzy set (Fig. 5.80g) by using the max operation and taking into account the fuzzy
sets (Fig. 5.80c) and (Fig. 5.80f).

a) Evaluation of the fuzzy set obtained in this way, which is aggregated by operators (see max-min
composition 5.9.3.2, 1., p. 424). The decision logic yields:

μOutput
x1,...,xn

: Y → [0, 1] ; y → maxr∈{1,...,k}
{
min

{
μ
(1)
il,r

(x1), . . . , μ
(n)
il,r

(xn), μir(y)
}}

. (5.394)
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b) After taking the maximum (5.395) is ob-
tained for the function graph of the fuzzy set.

c) For the other 17 rules results a degree of ful-
fillment equal to zero for the premise, i.e., it re-
sults in fuzzy sets, which are zeros themselves.
5. Defuzzification The decision logic yields
no crisp value for the control quantity, but
a fuzzy set. That means, by this method,
one gets a mapping, which assigns a fuzzy set
μOutput
x1,...,xn

of Y to every tuple (x1, . . . , xn) ∈ X1×
X2 × · · · ×Xn of the measured values.

μOutput
36;−2.25(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

5
y for 0 ≤ y < 1,

0.4 for 1 ≤ y < 3.5,

2

5
y − 1 for 3.5 ≤ y < 4,

0.6 for 4 ≤ y < 6,

3− 2

5
y for 6 ≤ y ≤ 7.5,

0 for otherwise.

(5.395)

Defuzzification means that there is to determine a control quantity using defuzzification methods.

The center of gravitymethod and themaximum criterionmethod result in the value for control quantity
F = 3.95 or F = 5.0 .
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Figure 5.806. Remarks
1. The “knowledge-based” trajectories should lie in the rule base so that the endpoint is in the center
of the smallest rule deviation.

2. By defuzzification an iteration process is introduced, which leads finally to the center of the partition
space, i.e., which results in a zero control quantity.

3. Every non-linear domain of characteristics can be approximated with arbitrary accuracy by the
choice of appropriate parameters on a compact domain.

5.9.6.4 Knowledge-Based Interpolation Systems

1. InterpolationMechanism
Interpolation mechanisms can be built up with the help of fuzzy logic. Fuzzy systems are systems
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to process fuzzy information. With them it is possible to approximate and interpolate functions. A
simple fuzzy system, by which this property can be investigated , is the Sugeno controller. It has n
input variables ξ1, . . . , ξn and defines the value of the output variable y by rules R1, . . . ,Rn in the form

Ri : IF ξ1 is A
(i)
1 and · · · and ξn is A(i)

n ,THEN is y = fi(ξ1, . . . , ξn) (i = 1, 2, . . . , n). (5.396)

The fuzzy sets A
(1)
j , . . . , A

(k)
j always partition the input sets Xj. The conclusions fi(ξ1, . . . , ξn) of the

rules are singletons, which can depend on the input variables ξ1, . . . , ξn.

By a simple choice of the conclusions the expensive defuzzification can be omitted and the output value
y will be calculated as a weighted sum. To do this, the controller calculates a degree of fulfillment αi

for every rule Ri with a t norm from the membership grades of the single inputs and determines the
output value

y =

∑N
i=1 αifi(ξ1, . . . , ξn)∑N

i=1 αi

. (5.397)

2. Restriction to the One-Dimensional Case
For fuzzy systems with only one input x = ξ1, fuzzy sets represented by triangular functions are often
used which are cut at the height 0.5. Such fuzzy sets satisfy the following three conditions:

1. For every rule Ri there is an input xi, for which only one rule is fulfilled. For this input xi, the output
is calculated by fi. By this, the output of the fuzzy system is fixed at N nodes x1, . . . , xN . Actually,
the fuzzy system interpolates the nodes x1, . . . , xN . The requirement that at the node xi only one rule
Ri holds, is sufficient for an exact interpolation, but it is not necessary. For two rules R1 and R2, as
they will be considered below, this requirement means that α1(x2) = α2(x1) = 0 holds. To fulfill the
first condition, α1(x2) = α2(x1) = 0 must hold. This is a sufficient condition for an exact interpolation
of the nodes.

2. There are at most two rules fulfilled between two consecutive nodes. If x1 and x2 are two such nodes
with rules R1 and R2, then for inputs x ∈ [x1, x2] the output y is

y =
α1(x)f1(x) + α2(x)f2(x)

α1(x) + α2(x)
= f1(x) + g(x) [f2(x)− f1(x)] with g :=

α2(x)

α1(x) + α2(x)
. (5.398)

The actual shape of the interpolation curve between x1 and x2 is determined by the function g. The
shape depends only on the satisfaction grades α1 and α2, which are the values of the membership func-
tions μ

A
(1)
i

and μ
A

(2)
i

at the point x, i.e., α1 = μA(1)(x) and α2 = μA(2)(x) are valid, or in short form

α1 = μ1(x) and α2 = μ2(x). The shape of the curve depends only on the relation μ1/μ2 of the mem-
bership functions.

3. The membership functions are positive, so the output y is a convex combination of the conclusions
fi. For the given and for the general case hold (5.399) and (5.400), respectively:

min(f1, f2) ≤ y ≤ max(f1, f2), (5.399) min
iε{1,2,...,N}

fi ≤ y ≤ max
iε{1,2,...,N}

fi. (5.400)

For constant conclusions, the terms f1 and f2 cause only a translation and stretching of the shape of
the curve g. If the conclusions are dependent on the input variables, then the shape of the curve is
differently perturbed in different sections. Consequently, another output function can be found.

Applying linearly dependent conclusions and membership functions with constant sum for the input

x, then the output is y = c
N∑
i=1

αi(x)fi(x) with αi depending on x and a constant c, so that the interpo-

lation functions are polynomials of second degree. These polynomials can be used for the construction
of an interpolation method with polynomials of second degree.

In general, choosing polynomials of n-th degree, an interpolation polynomial of (n + 1)-th degree is
obtained as a conclusion. In this sense fuzzy systems are rule-based interpolation systems besides con-
ventional interpolation methods interpolating locally by polynomials, e.g., with splines.
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