5 Algebraand Discrete Mathematics

5.1 Logic

5.1.1 Propositional Calculus

1. Propositions

A proposition is the mental reflection of a fact, expressed as a sentence in a natural or artificial language.
Every proposition is considered to be true or false. This is the principle of two-valuedness (in contrast
to many-valued or fuzzy logic, see 5.9.1, p. 413). “True” and “false” are called the truth value of the
proposition and they are denoted by T (or 1) and F (or 0), respectively. The truth values can be
considered as propositional constants.

2. Propositional Connectives

Propositional logic investigates the truth of compositions of propositions depending on the truth of the
components. Only the extensions of the sentences corresponding to propositions are considered. Thus
the truth of a composition depends only on that of the components and on the operations applied. So
in particular, the truth of the result of the propositional operations

“NOT A7 (-A), (5.1) “AAND B” (AN B), (5.2)

“AOR B” (AV B), (5.3) “IF A, THEN B” (A= B) (5.4)
and

“AIF AND ONLY IF B”(A < B) (5.5)

are determined by the truth of the components. Here “logical OR” always means “inclusive OR”, i.e.,
“AND/OR”. In the case of implication, for A = B also the following verbal forms are in use:

A implies B, B is necessary for A, A is sufficient for B.
3. Truth Tables
In propositional calculus, the propositions A and B are considered as variables ( propositional variables)

which can have only the values F and T. Then the truth tables in Table 5.1 contain the truth functions
defining the propositional operations.

Table 5.1 Truth tables of propositional calculus

Negation Conjunction Disjunction Implication Equivalence
AHﬁA A‘BHA/\B A‘BHA\/B A‘BHAéB A‘BHA@B
F| T F|F F F|F F F|F T F|F T
T| F FI|T F F|T T F|T T F|T F

T|F F T|F T T|F F T|F F
T|T T T|T T T|T T T|T T

4. Formulas in Propositional Calculus

Compound expressions (formulas) of propositional calculus can be composed from the propositional
variables in terms of a unary operation (negation) and binary operations (conjunction, disjunction,
implication and equivalence). These expressions, i.e., the formulas, are defined in an inductive way:

1. Propositional variables and the constants T, F are formulas. (5.6)
2. If A and B are formulas, then (wA) (AAB) (AVB) (A= B) (A< B) (5.7)
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324 5. Algebra and Discrete Mathematics

are also formulas.
To simplify formulas parentheses are omitted after introducing precedence rules. In the following se-
quence every propositional operation binds more strongly than the next one in the sequence:

- AV, =, e

Often the notation A instead of “=A” is used, and the symbol A is omitted. By these simplifications,
for instance the formula ((AV (=B)) = ((A A B) v C)) can be rewritten more briefly in the form:

AVB= ABVC.

5. Truth Functions

Assigning a truth value to every propositional variable of a formula, the assignment is called an inter-
pretation of the propositional variables. Using the definitions (truth tables) of propositional operations
a truth value can be assigned to a formula for
every possible interpretation of the variables.
Thus for instance the formula given above de-
termines a truth function of three variables (a
Boolean function see 5.7.5, p. 413).

B In this way, every formula with n proposi-
tional variables determines an n place (or n
ary) truth function, i.e., a function which as-
signs a truth value to every n tuple of truth
values. There are 22" n ary truth functions,
in particular these are 16 binary ones.
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6. Elementary Laws in Propositional Calculus

Two propositional formulas A and B are called logically equivalent or semantically equivalent, denoted
by A = B, if they determine the same truth function. Consequently, the logical equivalence of propo-
sitional formulas can be checked in terms of truth tables. So thereis , e.g., AV B = ABVC = BV C,
i.e., the formula AV B = AB V C does not in fact depend on A, as follows from its truth table above.
In particular, there are the following elementary laws of propositional calculus:

1. Associative Laws

(ANB)AC =AN(BAC), (5.8a) (AVB)VC =AV(BVC). (5.8b)
2. Commutative Laws

ANB=DBAA, (5.9a) AVB=DBVA. (5.9b)
3. Distributive Laws

(AV B)C = ACV BC, (5.10a) ABVC=(AvC)(BVC). (5.10b)
4. Absorption Laws

A(AV B) = A, (5.11a) AV AB = A. (5.11b)
5. Idempotence Laws

AA=A, (5.12a) AVA=A (5.12b)
6. Excluded Middle

AA=F, (5.13a) AVA=T. (5.13b)

7. De Morgan Rules
AB = AV B, (5.14a) AVB=AB. (5.14b)
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8. Laws for T and F

AT = A, (5.15a) AVF=A, (5.15b)

AF =F, (5.15¢) AvT=T, (5.15d)

T=F, (5.15¢) F=T (5.15f)
9. Double Negation

A=A (5.16)
Using the truth tables for implication and equivalence, gives the identities

A=B=AVBEB (5.17a) and A< B=ABV AB. (5.17b)

Therefore implication and equivalence can be expressed in terms of other propositional operations.
Laws (5.17a), (5.17b) are applied to reformulate propositional formulas.

W The identity AV B = ABV C = BV C can be verified in the following way: AV B = ABV C =
AVBVABVC=ABVABVC=ABVABVC=(AVABVC=TBVC=DBVC.

10. Further Transformations
A(AV B) = AB, (5.18a) AVAB = AV B, (5.18b)

(AVO)BVC)AVB)=(AvO)(BVC(C), (518) ACV BCVAB=ACV BC. (5.18d)

11. NAND Function and NOR Function Asit is known, every propositional formula determines
a truth function. Checking the following converse of this statement: Every truth function can be rep-
resented as a truth table of a suitable formula in propositional logic. Because of (5.17a) and (5.17b)
implication and equivalence can be eliminated from formulas (see also 5.7, p. 395). This fact and the
De Morgan rules (5.14a) and (5.14b) imply that one can express every formula, therefore every truth
function, in terms of negation and disjunction only, or in terms of negation and conjunction. There are
two further binary truth functions of two variables which are suitable to express all the truth functions.

They are called the NAND function or Shef-
2 NAND function ~ Table 5.3 NOR function fer function (notation “|”) and the NOR
AlB function or Peirce function (notation “]7),
with the truth tables given in Tables 5.2
and 5.3. Comparison of the truth tables
for these operations with the truth tables
of conjunction and disjunction makes the
terminologies NAND function (NOT AND)
and NOR function (NOT OR) clear.

Table

5.
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T
F
T
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7. Tautologies, Inferences in Mathematics

A formula in propositional calculus is called a tautology if the value of its truth function is identically
the value T. Consequently, two formulas A and B are called logically equivalent if the formula A < B
is a tautology. Laws of propositional calculus often reflect inference methods used in mathematics. As
an example, consider the law of contraposition, i.e., the tautology

A= B& B= A (5.19a)
This law, which also has the form
A= B=DB= A4, (5.19b)

can be interpreted in this way: To show that B is a consequence of A is the same as showing that Ais a
consequence of B. The Indirect proof (see also 1.1.2.2, p. 5) is based on the following principle: To show
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that B is a consequence of A, one supposes B to be false, and under the assumption that A is true, one
derives a contradiction. This principle can be formalized in propositional calculus in several ways:

A=B=AB=A (5.20a) oo A=B=AB=DB or (5.20b)

A= B=AB=TF. (5.20c)

5.1.2 Formulas in Predicate Calculus

For developing the logical foundations of mathematics one needs a logic which has a stronger expressive
power than propositional calculus. To describe the properties of most of the objects in mathematics
and the relations between these objects the predicate calculus is needed.

1. Predicates

The objects to be investigated are included into a set, i.e., into the domain X of individuals (or uni-
verse), e.g., this domain could be the set N of the natural numbers. The properties of the individuals, as,
e.g., “nisaprime”, and the relations between individuals, e.g., “ m is smaller than n 7, are considered
as predicates. Ann place predicate over the domain X of individual is an assignment P: X™ — {F,W},
which assigns a truth value to every n tuple of the individuals. So the predicates introduced above on
natural numbers are a one-place (or unary) predicate and a two-place (or binary) predicate.

2. Quantifiers

A characteristic feature of predicate logic is the use of quantifiers, i.e., that of a universal quantifier or
“for every” quantifierV and existential quantifier or “for some” quantifier 3. If P is a unary predicate,
then the sentence “P(x) is true for every z in X” is denoted by V & P(z) and the sentence “ There exists
an x in X for which P(z) is true ”is denoted by 32 P(x). Applying a quantifier to the unary predicate
P, gives a sentence. If for instance IN is the domain of individual of the natural numbers and P denotes
the (unary) predicate “n is a prime”, then Vn P(n) is a false sentence and 3n P(n) is a true sentence.

3. Formulas in Predicate Calculus
The formulas in predicate calculus are defined in an inductive way:

1. If 2y, ..., x, are individual variables (variables running over the domain of individual variables) and
P is an n-place predicate symbol, then

P(xy,...,x,) is a formula (elementary formula). (5.21)
2. If A and B are formulas, then

(mA), (AAB), (AVB), (A= DB),(A< B), (Vz A) and (Fz A) (5.22)

are also formulas.

Considering a propositional variable to be a null-place predicate, the propositional calculus can be
considered as a part of predicate calculus. An occurrence of an individual variable x is bound in a
formula if x is a variable in V z or in 3 x or the occurrence of x is in the scope of these types of quantifiers;
otherwise an occurrence of  is free in this formula. A formula of predicate logic which does not contain
any free occurrences of individual variables is called a closed formula.

4. Interpretation of Predicate Calculus Formulas

An interpretation of predicate calculus is a pair of

e a set (domain of individuals) and

e an assignment, which assigns an n-place predicate to every n-ary predicate symbol.

For every prefixed value of free variables the concept of the truth evaluation of a formula is similar to
the propositional case. The truth value of a closed formula is T or F. In the case of a formula containing
free variables, one can associate the values of individuals for which the truth evaluation of the formula
is true; these values constitute a relation (see 5.2.3, 1., p. 331) on the universe (domain of individuals).
B Let P denote the two-place relation < on the domain IN of individuals, where IN is the set of the
natural numbers then
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e P(z,y) characterizes the set of all the pairs (z, y) of natural numbers with 2 < y (two-place or binary
relation on IN); here z, y are free variables;

e Vy P(z,y) characterizes the subset of N (unary relation) consisting of the element 0 only; here z is
a free variable, y is a bound variable;

e JuVy P(z,y) corresponds to the sentence “ There is a smallest natural number ”; the truth value is
true; here x and y are bound variables.

5. Logically Valid Formulas
A formula is called logically valid (or a tautology) if it is true for every interpretation. The negation of
formulas is characterized by the identities below:

Vo P(x) =3z -P(x) or -3z P(x)=VYz-P(x). (5.23)
Using (5.23) the quantifiers V and 3 can be expressed in terms of each other:

Vo P(x) =-3z-P(x) or 3FzP(x)=-Va-P(x). (5.24)
Further identities of the predicate calculus are:

VaVyP(x,y) =VyVa P(z,y), (5.25)

Jz3y P(x,y) =3y 3z P(x,y), (5.26)

Vo Px) A\Va Q(x) =Yz (P(z) AQ(x)), (5.27)

Jz P(x)V Iz Q(zx) =3z (Plx) vV Q(x)). (5.28)
The following implications are also valid:

Vo P(z)VVa Qx) =V (Plx)VQ(z)), (5.29)

Jz (P(z) AQ(z)) = Fx P(z) Az Q(z), (5.30)

Vo (Pa) > Q) = (Va P(a) = Yz Q(a)), (5.31)

Va (P(x) & Qx)) = (Vo P(r) &V Q(z)), (5.32)

JaVy P(z,y) = Vy Iz P(z,y). (5.33)

The converses of these implications are not valid, in particular, one has to be careful with the fact that
the quantifiers V and 3 do not commute (the converse of the last implication is false).

6. Restricted Quantification

Often it is useful to restrict quantification to a subset of a given set. So, there is considered

Va € X P(z) asashort notation of V& (z € X = P(z)) and (5.34)
Jz € X P(z) asashort notation of Jx (x € X A P(z)). (5.35)

5.2 Set Theory

5.2.1 Concept of Set, Special Sets

The founder of set theory is Georg Cantor (1845-1918). The importance of the notion introduced by
him became well known only later. Set theory has a decisive role in all branches of mathematics, and
today it is an essential tool of mathematics and its applications.

1. Membership Relation

1. Sets and their Elements The fundamental notion of set theory is the membership relation. A
set A is a collection of certain different things a (objects, ideas, etc.) that belong together for certain
reasons. These objects are called the elements of the set. One writes “a € A” or “a ¢ A” to denote “a
is an element of A” or “a is not an element of A”, respectively. Sets can be given by enumerating their
elements in braces, e.g., M = {a,b,c} or U = {1,3,5,.. .}, or by a defining property possessed exactly
by the elements of the set. For instance the set U of the odd natural numbers is defined and denoted by
U = {z | « is an odd natural number}. For number domains the following notation is generally used:
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N={0,1,2,...} set of the natural numbers,

Z ={0,1,-1,2,-2,...} set of the integers,

Q= {‘B ‘ PD.qELNGF# 0} set of the rational numbers,
q

R set of the real numbers,

C set of the complex numbers.

2. Principle of Extensionality for Sets Two sets A and B are identical if and only if they have
exactly the same elements, i.e.,

A=B&Vr(re A& e B). (5.36)
B The sets {3,1,3,7,2} and {1,2,3, 7} are the same.
A set contains every element only “once”, even if it is enumerated several times.
2. Subsets
1. Subset If A and B are sets and

Vae(zre A=z € B) (5.37)
holds, then A is called a subset of B, and this is denoted by A C B. In other words: A is a subset of B,
if all elements of A also belong to B. If for A C B there are some further elements in B such that they
are not in A, then A is called a proper subset of B, and it is denoted by A C B (Fig. 5.1). Obviously,
every set is a subset of itself A C A.
B Suppose A = {2,4,6,8,10} is a set of even numbers and B = {1,2,3,...,10} is a set of natural
numbers. Since the set A does not contain odd numbers, A is a proper subset of B.
2. Empty Set or Void Set It is important and useful to introduce the notion of empty set or void
set, (), which has no element. Because of the principle of extensionality, there exists only one empty set.
B A: Theset {z|z € RA 2%+ 2z + 2 = 0} is empty.
B B: () C M for every set M, i.c., the empty set is a subset of every set M.
For a set A the empty set and A itself are called the trivial subsets of A.
3. Equality of Sets Two sets are equal if and only if both are subsets of each other:

A=B< ACBABCA. (5.38)
This fact is very often used to prove that two sets are identical.
4. Power Set The set of all subsets A of a set M is called the power set of M and it is denoted by
P(M),ie,P(M)={A| AC M}.
B For the set M = {a,b, ¢} the power set is

P(M) = {0, {a}, {b}.{c}, {a,b}. {a,c}, {b,c}. {a, b, c}}.
It is true that:
a) If a set M has m elements, its power set P(M) has 2™ elements.
b) For every set M there are M, () € P(M), i.e., M itself and the empty set are elements of the power
set of M.
5. Cardinal number The number of elements of a finite set M is called the cardinal number of M
and it is denoted by card M or sometimes by |M
For the the cardinal number of sets with infinitely many elements see 5.2.5, p. 335.

5.2.2 Operations with Sets

1. Venn diagram

The graphical representations of sets and set operations are the so-called Venn diagrams, when repre-
senting sets by plane figures. So, Fig. 5.1, represents the subset relation A C B.

2. Union, Intersection, Complement

By set operations new sets can be formed from the given sets in different ways:
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S D

Figure 5.1 Figure 5.2 Figure 5.3

1. Union Let A and B be two sets. The union set or the union (denoted by A U B) is defined by
AUB={z|ze€ AVze B}, (5.39)
in words “A union B” or “A cup B”. If A and B are given by the properties F; and E, respectively, the
union set AU B has the elements possessing at least one of these properties, i.e., the elements belonging
to at least one of the sets. In Fig. 5.2 the union set is represented by the shaded region.
W {1,2,3} U{2,3,5,6} ={1,2,3,5,6}.
2. Intersection Let A and B be two sets. The intersection set, intersection, cut or cut set (denoted
by AN B) is defined by
ANB={z|xe€ ANz € B}, (5.40)
in words “A intersected by B” or “A cap B”. If A and B are given by the properties E; and E, respec-
tively, the intersection AN B has the elements possessing both properties £ and Es, i.e., the elements
belonging to both sets. In Fig. 5.3 the intersection is represented by the shaded region.
B With the intersection of the sets of divisors T'(a) and T'(b) of two numbers a and b one can define the
greatest common divisor (see 5.4.1.4, p. 373). Fora = 12 and b = 18 holds T'(a) = {1, 2,3,4,6,12} and
T(b) = {1,2,3,6,9,18 }, so T(12) N T'(18) contains the common divisors, and the greatest common
divisor is g.c.d. (12,18) = 6.
3. Disjoint Sets Two sets A and B are called disjoint if they have no common element; for them
ANB=10 (5.41)
holds, i.e., their intersection is the empty set.
B The set of odd numbers and the set of even numbers are disjoint; their intersection is the empty set,
ie.,
{odd numbers} N {even numbers} = .
4. Complement Considering only the subsets of a given set M, then the complementary set or the
complement Cy;(A) of A with respect to M contains all the elements of M not belonging to A:
Cu(A)={z|zeMnx¢ A}, (5.42)
in words “complement of A with respect to M”, and M is called the fundamental set or sometimes the
universal set. If the fundamental set M is obvious from the considered problem, then the notation A

is also used for the complementary set. In Fig. 5.4 the complement A is represented by the shaded
region.

M

S | G0 @O

Figure 5.4 Figure 5.5 Figure 5.6

3. Fundamental Laws of Set Algebra
These set operations have analoguous properties to the operations in logic. The fundamental laws of
set algebra are:
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1. Associative Laws

(AnNB)NC=An(BNC), (5.43) (AUB)UC =AU (BUCQC). (5.44)
2. Commutative Laws

ANB=DBNA, (5.45) AUB=DBUA. (5.46)
3. Distributive Laws

(AUB)NC =(ANC)U(BNCO), (5.47) (ANB)UC =(AUC)N(BUCQC). (5.48)
4. Absorption Laws

AN(AUB) = A, (5.49) AU(ANB)=A. (5.50)
5. Idempotence Laws

ANA=A, (5.51) AUA=A. (5.52)
6. De Morgan Laws

ANB=AUB, (5.53) AUB=ANB. (5.54)
7. Some Further Laws

ANA=0, (5.55) AUA =M (M fundamental set), (5.56)

ANM = A, (5.57) AUd=A, (5.58)

AND =0, (5.59) AUM =M, (5.60)

M =0, (5.61) 0=M. (5.62)

A=A (5.63)

This table can also be obtained from the fundamental laws of propositional calculus (see 5.1.1, p. 323)
using the following substitutions: A by N, V by U, T by M, and F by (). This coincidence is not acci-
dental; it will be discussed in 5.7, p. 395.
4. Further Set Operations
In addition to the operations defined above there are defined some further operations between two sets
A and B: the difference set or difference A\ B, the symmetric difference AAB and the Cartesian
product A X B.
1. Difference of Two Sets The set of the elements of A, not belonging to B is the difference set or
difference of A and B:

A\B={z |z € ANz ¢ B}. (5.64a)
If A is defined by the property E; and B by the property Es, then A\ B contains the elements having
the property E; but not having property Fs.
In Fig. 5.5 the difference is represented by the shaded region.
W {1,2,3,4}\ {3,4,5} = {1,2}.
2. Symmetric Difference of Two Sets The symmetric difference AA B is the set of all elements
belonging to exactly one of the sets A and B:

AAB={z|(re AN ¢ B)V(re BAhxz ¢ A)}. (5.64b)
It follows from the definition that

AAB = (A\B)U(B\ A)=(AUB)\ (AN B), (5.64c)



5.2 Set Theory 331

i.e., the symmetric difference contains the elements which have exactly one of the defining properties
E; (for A) and E» (for B).

In Fig. 5.6 the symmetric difference is represented by the shaded region.

W {1,2,3,4}A{3,4,5} ={1,2,5}.

3. Cartesian Product of Two Sets The Cartesian product of two sets A x B is defined by

Ax B={(a,b)|]ac ANbe B}. (5.65a)
The elements (a,b) of A x B are called ordered pairs and they are characterized by

(a,0) = (c,d) & a=cAb=d. (5.65b)
The number of the elements of a Cartesian product of two finite sets is equal to

card (A x B) = (cardA)(cardB). (5.65¢)

B A: For A = {1,2,3} and B = {2,3} one gets A x B = {(1,2),(1,3),(2,2),(2,3),(3,2),(3,3)}
and B x A = {(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)} with cardA = 3, cardB = 2, card(A x B) =
card(B x A) = 6.
B B: Every point of the ., y plane can be defined with the Cartesian product R x R (R is the set of
real numbers). The set of the coordinates x, y is represented by R x R, so:

R2=RxR={(z,y) |2 € R,y € R}.

4. Cartesian Product of n Sets

From n elements, by fixing an order of sequence (first element, second element, . .., n-th element) an
ordered n tuple is defined. If a; € A; (i = 1,2,...,n) are the elements, the n tuple is denoted by
(a1, az,...,a,), where a; is called the i-th component.
For n = 3,4, 5 these n tuples are called triples, quadruples, and quintuples.
The Cartesian product of n terms A; X Ay x --+ x A, is the set of all ordered n tuples (a1, as, . . ., ay)
with a; € A; :

A xooox Ay ={(ar,...,an) e, € A; (i=1,...,n)}. (5.66a)
If every A, is a finite set, the number of ordered n tuples is

card(A; X Ay x --+ x A,) = cardA; card Ay - - - cardA,,. (5.66b)

Remark: The n times Cartesian product of a set A with itself is denoted by A™.
5.2.3 Relations and Mappings

1. nary Relations
Relations define correspondences between the elements of one or different sets. An n ary relation or
n-place relation R between the sets Ay, ..., A, is a subset of the Cartesian product of these sets, i.e.,
RC A x...x A, Ifthesets A;, 7 = 1,...,n, are all the same set A, then R C A" holds and it is
called an n ary relation in the set A.
2. Binary Relations
1. Notion of Binary Relations of a Set The two-place (binary) relations in a set have special
importance.
In the case of a binary relation the notation aRb is also very common instead of (a,b) € R.
B As an example, the divisibility relation in the set A = {1,2,3,4} is considered, i.e., the binary
relation

T ={(a,b) | a,b € AN aisadivisor of b} (5.67a)

= {(1,1), (1,2), (1,3), (1,4), (2,2), (2.4), (3,9), (4,4)}. (5.67D)

2. Arrow Diagram or Mapping Function Finite binary relations R in a set A can be represented
by arrow functions or arrow diagrams or by relation matrices. The elements of A are represented as
points of the plane and an arrow goes from a to b if aRb holds.
Fig. 5.7 shows the arrow diagram of the relation 7" in A = {1, 2, 3,4}.
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—
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Figure 5.7 Scheme: Relation matrix

3. Relation Matrix The elements of A are used as row and column entries of a matrix (see 4.1.1,
1., p. 269). At the intersection point of the row of @ € A with the column of b € B there is an entry
1 if aRb holds, otherwise there is an entry 0. The above scheme shows the relation matrix for 7" in

A={1,2,34}.
3. Relation Product, Inverse Relation

Relations are special sets, so the usual set operations (see 5.2.2, p. 328) can be performed between
relations. Besides them, for binary relations, the relation product and the inverse relation also have
special importance.

Let RC Ax Band S C B x C be two binary relations. The product R o S of the relations R, S is
defined by

RoS ={(a,c)|3Ib(be BAaRbADSC)}. (5.68)
The relation product is associative, but not commutative.

The inverse relation R~! of a relation R is defined by

R ={(b,a)| (a,b) € R}. (5.69)
For binary relations in a set A the following relations are valid:

(RUS)oT =(RoT)U(SoT), (5.70a) (RNS)oT C(RoT)N(SoT), (5.70b)

(RUS)t=R1TUsS™ (5.70c) (RNS)t=R1'ns™, (5.70d)

(RoS) ' =8"1toR™ (5.70e)

4. Properties of Binary Relations
A binary relation in a set A can have special important properties:

R is called
reflexive, if Va € AaRa, (5.71a)
irreflexive, if Va € A —aRa, (5.71b)
symmetric, if Va,b e A (aRb= bRa), (5.71c)
antisymmetric, if Va,b € A (aRb ANbRa = a =), (5.71d)
transitive, if Va,b,c € A (aRb A bRc = aRc), (5.71e)
linear, ifVa,b e A (aRbV bRa). (5.711)

These relations can also be described by the relation product. For instance: a binary relation is transi-
tive if R o R C R holds. Especially interesting is the transitive closure tra(R) of a relation R. It is the
smallest (with respect to the subset relation) transitive relation which contains R. In fact

tra(R)= JR"=R'URPUR*U---, (5.72)
n>1
where R" is the n times relation product of R with itself.
W Let a binary relation R on the set {1,2,3,4,5} be given by its relation matrix M:
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M|l 2 3 45 M?2|1 2 3 4 5 M3|1 2 3 4 5
1410 0 1 0 111 1 0 11 11110 11
210 0 0 1 0 210 1 0 0 1 210 1 0 10
310 0 1 0 1 3]0 1 1 01 3101 1 11
410 1 0 0 1 410 1 0 10 4101 0 11
5/0 1 0 0 0 510 0 0 1 0 510 1 0 0 1

Calculating M? by matrix multiplication where the values 0 and 1 are treated as truth values and
instead of multiplication and addition one performs the logical operations conjunction and disjunction,
then, M? is the relation matrix belonging to R?. The relation matrices of R*, R* etc. can be calculated
similarly.

The relation matrix of RU R? U R? (the matrix on the left) can

MvMVM?*|1 2 3 45 be get by calculating the disjunction elementwise of the matri-
1 110 1 1 ces M, M? and M?. Since the higher powers of M contains no
9 010 11 new 1-s, this matrix already coincides with the relation matrix
3 001 1 1 1 of tra(R).
4 010 1 1 The relation matrix and relation product have important ap-
5 010 1 1 plications in search of path length in graph theory (see 5.8.2.1,

p. 404).

In the case of finite binary relations, one can easily recognize the above properties from the arrow
diagrams or from the relation matrices. For instance one can recognize the reflexivity from “self-loops”
in the arrow diagram, and from the main diagonal elements 1 in the relation matrix. Symmetry is
obvious in the arrow diagram if to every arrow there belongs another one in the opposite direction, or
if the relation matrix is a symmetric matrix (see 5.2.3, 2., p. 331). Easy to see from the arrow diagram
or from the relation matrix that the divisibility 7" is a reflexive but not symmetric relation.

5. Mappings
A mapping or function f (see 2.1.1.1, p. 48) from a set A to a set B with the notation f: A — Bisa

rule to assign to every element a € A exactly one element b € B, which is called f(a).
A mapping f can be considered as a subset of A x B and so as a binary relation:

f={(a,fla)ac A} CAxB. (5.73

)
a) f is called a injective or one to one mapping, if to every b € B at most one a € A with f(a) = b
exists.
b) [ is called a surjective mapping from A to B, if to every b € B at least one a € A with f(a) = b
exists.
c) [ is called bijective, if f is both injective and surjective.
If A and B are finite sets, between which exists a bijective mapping, then A and B possess the same
number of elements (see also 5.2.5, p. 335).
For a bijective mapping f: A — B exists the inverse relation f~': B — A, the so-called inverse
mapping of f.
The relation product of mappings is used for the one after the other composition of mappings: If f:
A — Band g: B — C are mappings, then f o g is also a mapping from A to C, and is defined by

(fog)(a) =g(f(a)). (5.74)

Remark: Be careful with the order of f and ¢ in this equation (it is treated differently in the literature!).

5.2.4 Equivalence and Order Relations

The most important classes of binary relations with respect to a set A are the equivalence and order
relations.
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1. Equivalence Relations

A binary relation R with respect to a set A is called an equivalence relation if R is reflexive, symmetric,
and transitive. For aRb also the notations a ~p b or a ~ b are used, if the equivalence relation R is
already known, in words a is equivalent to b (with respect to R).

Examples of Equivalence Relations:

B A: A=17,meN\{0}. a~pbholds exactly if a and b have the same remainder when divided by
m (they are congruent modulo m).

B B: Equality relation in different domains, e.g., in the set Q of rational numbers: pr_p2 S Piga =
Q1 q2

paqi (1, P2, q1, g2 integer; g1, g2 # 0), where the first equality sign defines an equality in @, while the
second one denotes an equality in Z.

B C: Similarity or congruence of geometric figures.
B D: Logical equivalence of expressions of propositional calculus (see 5.1.1, 6., p. 324).
2. Equivalence Classes, Partitions

1. Equivalence Classes An equivalence relation in a set A defines a partition of A into non-empty
pairwise disjoint subsets, into equivalence classes.

l[alg :={b|be ANa~pgb} (5.75)
is called an equivalence class of a with respect to R. For equivalence classes the following is valid:

lalr #0, a~pb<lalg=[blgr, and axpb< [algn[blg=0. (5.76)
These equivalence classes form a new set, the quotient set A/R:

A/R={lalg | a € A}. (5.77)
A subset Z C P(A) of the power set P(A) is called a partition of A if

D¢z, XYEZAX#Y=>XnNY=0, [JX=A (5.78)

Xez

2. Decomposition Theorem Every equivalence relation R in a set A defines a partition Z of A,

namely Z = A/R. Conversely, every partition Z of a set A defines an equivalence relation R in A:
a~pbeIXeZ(ae XNbeX). (5.79)

An equivalence relation in a set A can be considered as a generalization of the equality, where ¢ in-

significant ” properties of the elements of A are neglected, and the elements, which do not differ with

respect to a certain property, belong to the same equivalence class.

3. Ordering Relations

A binary relation R in a set A is called a partial orderingif R is reflexive, antisymmetric, and transitive.

If in addition R is linear, then R is called a linear ordering or a chain. The set A is called ordered or

linearly ordered by R. In a linearly ordered set any two elements are comparable. Instead of aRb also

the notation a <g b or a < b is used, if the ordering relation R is known from the problem.

Examples of Ordering Relations:

B A: The sets of numbers N, Z, @, R are completely ordered by the usual < relation.

B B: The subset relation is also an ordering, but only a partial ordering.

B C: The lexicographical order of the English words is a chain.

Remark: If Z = {A, B} is a partition of @ with the property a € AANb € B = a < b, then (A, B) is

called a Dedekind cut. If neither A has a greatest element nor B has a smallest element, so an irrational

number is uniquely determined by this cut. Besides the nest of intervals (see 1.1.1.2, p. 2) the notion

of Dedekind cuts is another way to introduce irrational numbers.

4. Hasse Diagram

Finite ordered sets can be represented by the Hasse diagram: Let an ordering relation < be given on a

finite set A. The elements of A are represented as points of the plane, where the point b € A is placed
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above the point @ € A if @ < b holds. If there is no ¢ € A for which a < ¢ < b, one says a and b are
neighbors or consecutive members. Then one connects a and b by a line segment.

A Hasse diagram is a “simplified” arrow diagram, where all the loops, arrow- 4e
heads, and the arrows following from the transitivity of the relation are elimi-
nated. The arrow diagram of the divisibility relation T of the set A = {1,2,3,4}
is given in Fig. 5.7. T also denotes an ordering relation, which is represented 2e 3

by the Hasse diagram in Fig. 5.8.
5.2.5 Cardinality of Sets 1

In 5.2.1, p. 327 the number of elements of a finite set was called the cardinality
of the set. This notion of cardinality can be extended to infinite sets. Figure 5.8

1. Cardinal Numbers

Two sets A and B are called equinumerous if there is a bijective mapping between them. To every set A
a cardinal number | A| or card A is assigned, so that equinumerous sets have the same cardinal number.
A set and its power set are never equinumerous, so no “ greatest ” cardinal number exists.

2. Infinite Sets

Infinite sets can be characterized by the property that they have proper subsets equinumerous to the
set itself. The “smallest” infinite cardinal number is the cardinal number of the set IN of the natural
numbers. This is denoted by Rq (aleph 0).

A set is called enumerable or countable if it is equinumerous to IN. This means that its elements can be
enumerated or written as an infinite sequence aq, as, . . ..

A set is called non-countableif it is infinite but it is not equinumerous to IN. Consequently every infinite
set which is not enumerable is non-countable.

B A: The set Z of integers and the set Q of the rational numbers are countable sets.

B B: The set R of the real numbers and the set C of the complex numbers are non-countable sets.
These sets are equinumerous to P(IN), the power set of the natural numbers, and their cardinality is
called the continuum.

5.3 Classical Algebraic Structures
5.3.1 Operations

1. nary Operations

The notion of structure has a central role in mathematics and its applications. Next to investigate are
algebraic structures, i.e., sets on which operations are defined. An n ary operation ¢ on a set A is a
mapping ¢: A" — A, which assigns an element of A to every n tuple of elements of A.

2. Properties of Binary Operations

Especially important is the case n = 2, which is called a binary operation, e.g., addition and multipli-
cation of numbers or matrices, or union and intersection of sets. A binary operation can be considered
as a mapping * : A x A — A, where instead of the notation “x(a,b)” in this chapter mostly the infiz
form “a % b” will be used. A binary operation * in A is called associative if

(axb)xc=ax(bxc), (5.80)
and commutative if
axb=bxa (5.81)

holds for every a,b,c € A.
An element e € A is called a neutral element with respect to a binary operation * in A if

axe=exa=a holdsforevery ac A. (5.82)
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3. Exterior Operations
Sometimes exterior operations are to be considered. That are the mappings from K x A to K, where
K is an “exterior” and mostly already structured set (see 5.3.8, p. 365).

5.3.2 Semigroups

The most frequently occurring algebraic structures have their own names. A set H having one associa-
tive binary operation x , is called a semigroup. The notation: is H = (H, ).

Examples of Semigroups:

B A: Number domains with respect to addition or multiplication.

B B: Power sets with respect to union or intersection.
B C: Matrices with respect to addition or multiplication.

B D: Theset A* of all “words” (strings) over an “ alphabet 7 A with respect to concatenation (free
semigroup).

Remark: Except for multiplication of matrices and concatenation of words, all operations in these
examples are also commutative; in this case one talks about a commutative semigroup.

5.3.3 Groups

5.3.3.1 Definition and Basic Properties

1. Definition, Abelian Group

A set G with a binary operation * is called a group if

e x is associative,

e x has a neutral element e, and for every element a € G there exists an inverse element a~! such that
l=alsa=e (5.83)
A group is a special semigroup.

a*xa -

The neutral element of a group is unique, i.e., there exists only one. Furthermore, every element of the
group has exactly one inverse. If the operation * is commutative, then the group is called an Abelian
group. If the group operation is written as addition, +, then the neutral element is denoted by 0 and
the inverse of an element a by —a.

The number of elements of a finite group is called the order of the group (see 5.3.3.2,3., p. 338).

Examples of Groups:

B A: The number of domains (except IN) with respect to addition.

B B: Q\ {0}, R\ {0}, and C\ {0} with respect to multiplication.

B C: Sy :={f: M — MA fbijective} with respect to composition of mappings. This group is called
symmetric. If M is finite having n elements, then S, is written instead of Sy;. S, has n! elements.
The symmetric group S, and its subgroups are called permutation groups. So, the dieder groups D,
are permutation groups and subgroups of S,,.

B D: The set D, of all covering transformations of a regular n-gon in the plane is considered. Here a
covering transformation is the transition between two symmetric positions of the n-gon, i.e., the moving
of the n-gon into a superposable position. Denoting by d a rotation by the angle 27/n and by o the
reflection with respect to an axis, then D,, has 2n elements:

D, ={ed,d ....d" " o,do,... d" o}
With respect to the composition of mappings D,, is a group, the dihedral group. Here the equalities
d" = 0% =eand od = d" ' hold.
B E: All the regular matrices (see 4.1.4, p. 272) over the real or complex numbers with respect to
multiplication.
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Remark: Matrices have a very important role in applications, especially in representation of linear
transformations. Linear transformations can be classified by matrix groups.

2. Group Tables or Cayley’s Tables

For the representation of finite groups Cayley’s tables or group tables are used: The elements of the
group are denoted at the row and column headings. The element a % b is the intersection of the row of
the element a and the column of the element b.

W If M = {1,2,3}, then the symmetric group Sy is also denoted by Ss. S consists of all the bijective
mappings (permutations) of the set {1, 2, 3} and consequently it has 3! = 6 elements (see 16.1.1, p. 805).
Permutations are mostly represented in two rows, where in the first row there are the elements of M
and under each of them there is its image. So one gets the six elements of S as follows:

/1 23\ /123y (123
=1 2 3) =1 3 2) =3 2 1)

/1 2 3 (1 2 3 (1 2 3
pf3*213ap4*2317po*312-

With the successive application of these mappings (binary operations) the following group table is
obtained for Ss:

(5.84)

e From the group table it can be seen that the identity per-
mutation ¢ is the neutral element of the group.

€ | € P1P2P3 PsPs e In the group table every element appears exactly once in

o ‘5 P1P2P3P4Ds

P1 | P1 € PsPaDP3 P2 (5.85) every row and in every column.

D2 | P2Ps € P5DP1Ds ' e It is easy to recognize the inverse of any group element in
P3| P3Ps P1E P2 fl the table, i.e., the inverse of py in S is the permutation ps,
D4 P4 D2 Ps P1Ds € because at the intersection of the row of p, with the column
D5 | P5 Ps PrP2 € P4 of ps is the neutral element ¢.

o If the group operation is commutative (Abelian group), then the table is symmetric with respect to
the “main diagonal”; S is not commutative, since, e.g., p1 © py # P2 © py.
e The associative property cannot be easily recognized from the table.

5.3.3.2 Subgroups and Direct Products

1. Subgroups
Let G = (G, *) be a group and U C G. If U is also a group with respect to %, then U = (U, %) is called
a subgroup of G.
A non-empty subset U of a group (G, ) is a subgroup of G if and only if for every a,b € U, the elements
axband o' are also in U (subgroup criterion).
1. Cyclic Subgroups The group G itself and E = {e} are subgroups of G, the so-called trivial
subgroups. Furthermore, a subgroup corresponds to every element a € G, the so-called cyclic subgroup
generated by a:

<a>={..,a%a  ea,d?. . }. (5.86)
If the group operation is addition, then one writes the integer multiple ka as a shorthand notation of
the & times addition of a with itself instead of the power a*, i.e., as a shorthand notation of the  times
operation of a by itself,

<a>={...,(-2)a,—a,0,a,2a,...}. (5.87)
Here < a > is the smallest subgroup of G containing a. If < @ > = G holds for an element a of G,
then G is called cyclic.
There are infinite cyclic groups, e.g., Z with respect to addition, and finite cyclic groups, e.g., the set
Zm the residue class modulo m with residue class addition (see 5.4.3, 3., p. 377).
B If the number of elements of a finite G group is a prime, then G is always cyclic.
2. Generalization The notion of cyclic groups can be generalized as follows: If M is a non-empty
subset of a group G, then the subgroup of G whose elements can be written in the form of a product

2
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of finitely many elements of M and their inverses, is denoted by < M >. The subset M is called the
system of generators of < M >. If M contains only one element, then < M > is cyclic.

3. Order of a Group, Left and Right Cosets In group theory the number of elements of a finite
group is denoted by ord G. If the cyclic subgroup < a > generated by one element a is finite, then this
order is also called the order of the element a, i.e., ord < a >= orda.

If U is a subgroup of a group (G, %) and a € G, then the subsets

aU:={axulue U} and Ua:={uxalueU} (5.88)

of G are called left co-sets and right co-sets of U in G. The left or right co-sets form a partition of G,
respectively (see 5.2.4, 2., p. 334).

All the left or right co-sets of a subgroup U in a group G have the same number of elements, namely
ordU. From this it follows that the number of left co-sets is equal to the number of right co-sets. This
number is called the indez of U in G. The Lagrange theorem follows from these facts.

4. Lagrange Theorem The order of a subgroup is a divisor of the order of the group.

In general it is difficult to determine all the subgroups of a group. In the case of finite groups the
Lagrange theorem as a necessary condition for the existence of a subgroup is useful.

2. Normal Subgroup or Invariant Subgroup

For a subgroup U, in general, aU is different from Ua (however |aU| = |Ual|is valid). If aU = Ua for all
a € G holds, then U is called a normal subgroup or invariant subgroup of G. These special subgroups
are the basis of forming factor groups (see 5.3.3.3, 3., p. 339).

In Abelian groups, obviously, every subgroup is a normal subgroup.

Examples of Subgroups and Normal Subgroups:

B A: R\ {0}, Q\ {0} form subgroups of C \ {0} with respect to multiplication.

B B: The even integers form a subgroup of Z with respect to addition.

B C: Subgroups of S5: According to the Lagrange theorem the group S having six elements can have
subgroups only with two or three elements (besides the trivial subgroups). In fact, the group S; has
the following subgroups: E = {¢}, Uy = {e,p1}, U> = {e,p2}, Us = {&, p3}, Us = {€,p1, 5}, S3-

The non-trivial subgroups Uy, Us, Us, and Uy are cyclic, since the numbers of their elements are primes.
But the group Sz is not cyclic. The group Sz has only U, as a normal subgroup, except the trivial
normal subgroups.

Anyway, every subgroup U of a group G with |U| = |G|/2 is a normal subgroup of G.

Every symmetric group Sy and their subgroups are called permutation groups.

B D: Special subgroups of the group G L(n) of all regular matrices of type (n, n) with respect to matrix
multiplication:

SL(n) group of all matrices A with determinant 1,

O(n)  group of all orthogonal matrices,

SO(n) group of all orthogonal matrices with determinant 1.

The group SL(n) is anormal subgroup of GL(n) (see 5.3.3.3, 3., p. 339) and SO(n) is a normal subgroup
of O(n).

B E: Assubgroups of all complex matrices of type (n,n) (see 4.1.4, p. 272):

U(n)  group of all unitary matrices,

SU(n) group of all unitary matrices with determinant 1.

3. Direct Product
1. Definition Suppose A and B are groups, whose group operation (e.g., addition or multiplication)

is denoted by -. In the Cartesian product (see 5.2.2, 4., p. 331) A x B (5.65a) an operation * can be
introduced in the following way:

(a1,b1) * (ag, ba) = (ay - az, by - by). (5.89a)
A X B becomes a group with this operation and it is called the direct product of A and B.
(e, €) denotes the unit element of A x B, (a=,b71) is the inverse element of (a, b).
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For finite groups A, B

ord (A x B) = ord A - ord B (5.89b)
holds. The groups A" := {(a,e)|a € A} and B" := {(e, b)|b € B} are normal subsets of Ax B isomorphic
to A and B, respectively.
The direct product of Abelian groups is again an Abelian group.
The direct product of two cyclic groups A, B is cyclic if and only if the greatest common divisor of the
orders of the groups is equal to 1.
B A: With Z, = {e,a} and Z3 = {¢, b, b*}, the direct product Z, x Zz = {(e, e), (e, b), (e, b?), (a, €), (a,
b), (a,b*)}, is a group isomorphic to Zg (see 5.3.3.3, 2., p. 339) generated by (a, b).
B B: On the other hand Z, x Z> = {(e, e), (e,b), (a, €), (a,b)} is not cyclic. This group has order 4
and it is also called Klein’s four group, and it describes the covering operations of a rectangle.
2. Fundamental Theorem of Abelian Groups Because the direct product is a construction
which enables to make “larger” groups from “smaller” groups, the question can be reversed: When is
it possible to consider a larger group G as a direct product of smaller groups A, B, i.e., when will G be
isomorphic to A x B? For Abelian groups, there exists the so-called fundamental theorem:
Every finite Abelian group can be represented as a direct product of cyclic groups with orders of prime
powers.

5.3.3.3 Mappings Between Groups

1. Homomorphism and Isomorphism

1. Group Homomorphism Between algebraic structures, not arbitrary mappings, but only “struc-
ture keeping” mappings are considered:

Let Gy = (Gy, *) and Gy = (G2, 0) are two groups. A mapping h: G; — G is called a group homo-
morphism, if for all a,b € G holds:

h(a+b) = h(a) o h(b) (“image of product = product of images”) (5.90)
B As an example, consider the multiplication law for determinants (see 4.2.2, 7., p. 279):
det(AB) = (det A)(det B). (5.91)

Here on the right-hand side there is the product of non-zero numbers, on the left-hand side there is the
product of regular matrices.

If h: G4 — G is a group homomorphism, then the set of elements of GGy, whose image is the neutral
element of Gy, is called the kernel of h, and it is denoted by ker h. The kernel of & is a normal subgroup
of Gy.

2. Group Isomorphism If a group homomorphism £ is also bijective, then h is called a group iso-
morphism, and the groups G and Gy are called isomorphic to each other (notation: G; = G5). Then
ker h = E is valid.

Isomorphic groups have the same structure, i.e., they differ only by the notation of their elements.

B The symmetric group Sz and the dihedral group Ds are isomorphic groups of order 6 and describe
the covering mappings of an equilateral triangle.

2. Cayley’s Theorem
The Cayley theorem says that every group can be interpreted as a permutation group (see 5.3.3.2, 2.,
. 338):

Iévery{group is isomorphic to a permutation group.

The permutation group P, whose elements are the permutations 7, (¢ € G) mapping a to G, *g, is a

subgroup of S¢ isomorphic to (G, ).

3. Homomorphism Theorem for Groups

The set of co-sets of a normal subgroup N in a group G is also a group with respect to the operation
aN o bN = abN. (5.92)

Tt is called the factor group of G with respect to N, and it is denoted by G//N.
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The following theorem gives the correspondence between homomorphic images and factor groups of a
group, because of what it is called the homomorphism theorem for groups:

A group homomorphism h: G — G5 defines a normal subgroup of G1, namely ker h = {a € G1|h(a) =
e}. The factor group G,/ ker h is isomorphic to the homomorphic image h(G;) = {h(a)|a € G,}. Con-
versely, every normal subgroup N of Gy defines a homomorphic mapping naty: G; — G1/N with
naty(a) = aN. This mapping nat y is called a natural homomorphism.

B Since the determinant construction det: GL(n) — R\ {0} is a group homomorphism with ker-
nel SL(n), SL(n) is a normal subgroup of GL(n) and (according to the homomorphism theorem):
GL(n)/SL(n)is isomorphic to the multiplicative group R\ {0} of real numbers (for notation see 5.3.3.2,
2., p. 338).

5.3.4 Group Representations
5.3.4.1 Definitions

1. Representation
A representation D(G) of the group G is a map (homomorphism) of G onto the group of non-singular
linear transformations D on an n-dimensional (real or complex) vector space V,:

D(G):a— D(a), acd. (5.93)
The vector space V,, is called the representation space; n is the dimension of the representation (see
also 12.1.3, 2., p. 657). Introducing the basis {e;} (i =1,2,...,n)in V, every vector x can be written
as a linear combination of the basis vectors:

n
x= re, Xx€V, (5.94)
i=1
The action of the linear transformation D(a), a € G, on x can be defined by the quadratic matrix

D(a) = (Di(a)) (i,k = 1,2,...,n), which provides the coordinates of the transformed vector x’
within the basis {e; }:

M=

n
x'=D(a)x =) rje;, )=
i=1 k

Dy(a)wy. (5.95)

Il
—

This transformation may also be considered as a transformation of the basis {e;} — {€}}:
n
e, =¢eD(a) =} Dyi(a)e. (5.96)
k=1

Thus, every element a of the group is assigned to the representation matriz D = (Dy.(a)):
D(G):a— D= (Dyg(a)) (i,k=1,2,...,n),a€G. (5.97)

The representation matrix depends on the choice of basis.

B A: Abelian Point Group C,,. A regular polygon (see 3.1.5, p. 138) with n sides has a symmetry

such that rotating it around an axis, which is perpendicular to the y
plane of the figure and goes through its center M (Fig.5.9) by an an-
gle ), = 27k/n k =0,1,...,n—1 theresulted polygon is identical
to the original one (invariance of the system under certain rotations).
The rotations Ry (gx) form the Abelian group of points C,. C,, is a
cyclic group (see 5.3.3.2, p. 337), i.e. every element of the group can
be represented as a power of a single element Ry, whose n-th power
is the unit element e = Ry: X

C,={e,R,Ri,...,RI""}, Ri=c. (5.98a)
Let the center of an equilateral triangle (n = 3) be the origin (see B " ¢
Fig.5.9), then the angles of rotations and the rotations are in accor- Figure 5.9

A
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dance with (5.98b).

k=0, ¢ =0 or 2m,
k=1, ¢ =21/3, (5.98b)

Ry:A— A B— B,C—C,
R :A— B,B—C,C— A, (5.98¢)
Ry:A—=C,B—=AC—DB.

The rotations (5.98¢) satisfy the relations

Ry=R? R -Ry=R}=Ry=c¢. (5.98d)

They form the cyclic group Cs.
The matrix of rotation (see (3.432), p. 230)

_ [cosp —singp
Rip) = (sinap cosgo) (5.98e)

of a geometric transformation of this triangle (for rotation of this figure in a fixed coordinate system see
3.5.3.3,3., p. 213) gives the representation of group Cj if ¢ is substituted by the angles given in (5.98b):

D(e) = R(0) = (é [1’) D(Ry) = R(27/3) — (\*/%g j{%z) : (5.98)

D(R,) = R(4r/3) = (:\}52 \fﬁ) : (5.98g)

The same relations hold for the matrices of this representation given in (5.98f) and (5.98g) as for the
group elements Ry, (5.98d):

D(R,) = D(I1 /1) = D(£1)D(2:1), D(R1)D(f:) = D(e). (5.98h)

B B: Dihedral Group Dj3. The equilateral triangle is invariant with
respect to rotations by angle 7 about its bisectors (see Fig.5.10).
These rotations correspond to reflections S, Sg, Sc with respect to
a plane being perpendicular to the plane of the triangle and containing
one of the rotation axes.

Sa: Rotations A - A, B — C,C — B;

Sp : Rotations A — C, B — B,C — A; (5.99a)

Sc : Rotations A — B,B — A,C — C.
For the reflections there is:

SsS,=¢ (0=A,B,0). (5.99b)

Figure 5.10

The product S,S; (o # 7) results in one of the rotations Ry, Rs, e.g. using S4 Sp for the triangle
AABC:

S4 Sp(AABC) = So(ACBA) = ACAB = Ry (AABC) (5.99¢)

consequently Sy Sp = Ry. Here Sy, Sp, Sc correspond to the outcomes on Fig.5.10.
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. . ‘6 RlRQSASBSC
The cyclic group C and the reflections Sy, Sp, Sc together el e R Ry Sy SpSc
form the dihedral group Ds. The reflections do not forma R IR, R, ¢ So S4 Sp
subgroup because of (5.99¢). A summary of relations is rep- Ro|Ry e Ry Sp 5;0 Sy (5.99d)
resented in group-table (5.99d). Sa4lS4 Sg Sc e Ry Ro
Only the signs of the z-coordinates of points B and C' are S‘B Sp So S4 Ry ¢ Ry
changed at reflection Sy (see Fig.5.9). This coordinate Sc|Sc Sa Sp Ry Ry e
transformation is given by the matrix

D(S,) = (’01 ?) . (5.99¢)

The matrices representing reflections Sg and Sc can be found in the group-table (5.99d) and from the
matrices of representation in (5.98f) and (5.98g)

D(Ss) = D(R)D(S,) = (*1/2 ﬁ”) GE (*1/2 WQ) , (5.990)

V3/2 —1/2 01 V3/2 —1/2

pise) = prpesn - (2 ) (319) = (e %) (5.99%)

Matrices (5.98f) and (5.98g) together with matrices (5.99f) and (5.99g) form a representation of the
dihedral group Ds.
2. Faithful Representation
A representation is called faithful if G — D(G) is an isomorphism, i.e., the assignment of the element
of the group to the representation matrix is a one-to-one mapping.
3. Properties of the Representations
A representation with the representation matrices D(a) has the following properties (a,b € G, T unit
matrix):

D(a*b) =D(a) - D), D(@')=D'(a), D(e)=1 (5.100)
5.3.4.2 Particular Representations

1. Identity Representation

Any group G has a trivial one-dimensional representation (identity representation), for which every
element of the group is mapped to the unit matrix I @ — I for alla € G.

2. Adjoint Representation

The representation DT (G) is called adjoint to D(G) if the corresponding representation matrices are
related by complex conjugation and reflection in the main diagonal:

D*(G) = DY(@). (5.101)

3. Unitary Representation
For a unitary representation all representation matrices are unitary matrices:

D(G)-DT(G) =1, (5.102)
where E is the unit matrix.
4. Equivalent Representations
Two representations D(G) and D'(G) are called equivalent if for each element a of the group the cor-
responding representation matrices are related by the same similarity transformation with the non-
singular matrix T = (T; ;):

n
D'(a) =T -D(a)- T, Dj(a)= > T; - Dyla) Ty, (5.103)

ij
Jil=1
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where Ti,’]l denotes the elements of the inverse matrix T~! of T. If such a relation does not hold two

representations are called non-equivalent. The transition from D(G) to D'(G) corresponds to the trans-
formation 7" : {e,es,...,e,} — {e],€), ..., e} of the basis in the representation space V,,:

e =eT, €=> Tye, (i=12,...,n). (5.104)

Any representation of a finite group is equivalent to a unitary representation.

5. Character of a Group Element
In the representation D(G) the character x(a) of the group element a is defined as the trace of the
representation matrix D(a) (sum of the main diagonal elements of the matrix):

X(a) =Tr(D) = ZD“ a (5.105)

The character of the unit olcment e is given by the dimension n of the representation: x(e) = n. Since
the trace of a matrix is invariant under similarity transformations, the group element a has the same
character for equivalent representations.

B Within the shell model of atomic or nuclear physics two out of three particles with space coordinates
r; (i = 1,2,3) can be described by the wave function ¢, (F) while the third particle has the wave
function ps(r) (configuration o*3(T)). The wave function 9 of the system is a product of the three one-
particle wave functions: ¥ = ... In accordance with the possible distributions of the particles

1,2, 3 to the wave functions one gets the three functions

1 = Qa (Fl)(p,, (FQ)W[?(FB) S = 99(,(1?1)99/3 (FZ)#%, (Fii) 3 = g (Fl)gju (F2>50a(?3) 5 <5-1063‘)
which, when realizing permutations, transform among one another according to 5.3.3.1, 2., p. 337. This
way one gets for the functions 1,13 a three dimensional representation of the symmetric group Ss.
According to (5.93) the matrix elements of the representation matrices can be found by investigating the
action of the group elements (5.84) on the coordinate subscripts in the basis elements e;. For example:

P11 = P1¢Pa(T1)@a(T2)0s(Fs) = a(F1)ps(T2)Pa(s) = Dar(p1)¢a,

P12 = P19a (1) Ps(F2)a( ©a(T1)a(T2)05(Ts) = Dia(p1)dn,

P13 = Prpa(Te)pa(rs)ea( ©5(T1)Pa(l2)pa(ls) = Das(p1)ys. (5.106b)
Altogether one finds:

)=
3) =
)

T
T

3

100 010 001
D(e) = (010), D(p) = (100)7 D(p) = (010),

001 001 100

100 010 001 (5.106c)
D(ps) <001)7 D(ps) (001)7 D(ps) (100)

010 100 010

For the characters one has:

x(€) =3, x(p1) = x(p2) = x(ps) = 1, x(ps) = x(ps) = 0. (5.106d)
5.3.4.3 Direct Sum of Representations
The representations DM (G), D@ (G) of dimension n; and ny can be composed to create a new repre-

sentation D(G) of dimension n = n; + ny by forming the direct sum of the representation matrices:

1)
_pW @y (DY@ o0
D(a) = D" (a) ® D¥(a) ( 0 D)) (5.107)
The block-diagonal form of the representation matrix implies that the representation space V,, is the
direct sum of two invariant subspaces V,,,, V,,:

V.=V, @&V,,, n=n+ns. (5.108)
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A subspace V,,, (m < n)ofV, is called an invariant subspace if for any linear transformation D(a), a €
G, every vector x € V,,, is mapped onto an element of V,,, again:

x'=D(a)x with x,x €V,,. (5.109)
The character of the representation (5.107) is the sum of the characters of the single representations:

x(a) = x(a) + x?(a). (5.110)
5.3.4.4 Direct Product of Representations
Ife; (i=1,2,...,n1)and €, (k=1,2,...,n) are the basis vectors of the representation spaces V,,
and V,,,, respectively, then the tensor product

er=1eey} (i=1,2,....n5; k=1,2,...,n9) (5.111)

forms a basis in the product space V,,, ® V,,, of dimension n; - no. With the representations DM (G)
and D@ (G) in V,,, and V,,, respectively an n, - no-dimensional representation D(G) in the product
space can be constructed by forming the direct or (inner) Kronecker product (see 4.1.5,9., p. 276) of
the representation matrices:

D(G) = DV(@) @DP(G), (D(G))y; = D (@) - D (a)
with 4, k=1,2,...,n1; j,l=1,2,... n. (5.112)
The character of the Kronecker product of two representations is equal to the product of the characters
of the factors

v (a) = xV(a) - x?(a). (5.113)

5.3.4.5 Reducible and Irreducible Representations

If the representation space V,, possesses a subspace V,, (m < n) invariant under the group operations
the representation matrices can be decomposed according to

_ Di(a) A {m rows
1, T 1 .

T" Do) T ( 0 DQ(a)) { n—m rows (5.114)
by a suitable transformation T of the basis in V,,. D;(a) and Ds(a) themselves are matrix representa-
tions of a € G of dimension m and n — m, respectively.

A representation D(G) is called irreducible if there is no proper (non-trivial) invariant subspace in V,,.
The number of non-equivalent irreducible representations of a finite group is finite. If a transformation
T of a basis can be found which makes V,, to a direct sum of invariant subspaces, i.e.,

Vo=Vi®: - & Vy, (5.115)
then for every a € G the representation matrix D(a) can be transformed into the block-diagonal form
(A =0in(5.114)):

DW(a) 0
T' - D(a)- T=DY(a)® - - @D (a) = . (5.116)
0 D™ (a)
by a similarity transformation with T. Such a representation is called completely reducible.

Remark: For the application of group theory in natural sciences a fundamental task consists in the
classification of all non-equivalent irreducible representations of a given group.
B The representation of the symmetric group S3 given in (5.106¢), p. 343, is reducible. For example,
in the basis transformation {e;, e;, e} — {€] =€, +e,+e;, €, =e,, €} = e;} oneobtains for the
representation matrix of the permutation ps (with ¢ = e, 12 = €5,1)3 = e3):

bl Di(ps) O 5
o= (391) = (P ) o
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with A = (8) , Di(ps) = 1 as the identity representation of S5 and Do(p3) = <(1) é)

5.3.4.6 Schur’s Lemma 1

If C is an operator commuting with all transformations of an irreducible representation D of a group
[C,D(a)] = C-D(a) —D(a)-C =0, a € G,and the representation space V,, is an invariant subspace
of C, then C is a multiple of the unit operator, i.e., a matrix (¢;;) which commutates with all matrices
of an irreducible representation is a multiple of the matrix I, C=X-1I, A € C.

5.3.4.7 Clebsch-Gordan Series

In general, the Kronecker product of two irreducible representations DM (G), D@(G) is reducible. By
a suitable basis transformation in the product space DM (G) @ D®(G) can be decomposed into the

direct sum of its irreducible parts D) (o = 1,2,...,n) (Clebsch-Gordan theorem). This expansion
is called the Clebsch—Gordan series:
DY(G)®DP(a) = Y &m,D(G). (5.118)
a=1

Here, m,, is the multiplicity with which the irreducible representation D(®) (@) occurs in the Clebsch—
Gordan series.

The matrix elements of the basis transformation in the product space causing the reduction of the
Kronecker product into its irreducible components are called Clebsch—Gordan coefficients.

5.3.4.8 Irreducible Representations of the Symmetric Group Sy,

1. Symmetric Group Sy,
The non-equivalent irreducible representations of the symmetric group Sy, are characterized uniquely
by the partitions of M, i.e., by the splitting of M into integers according to

[/\]:[)\17)\27-“-,)\M]7 MAX+FAy=M, N> X>--->Ay>0. (5.119)
The graphic representation of the partitions is done by arranging boxes in Young diagrams.

B For the group Sy one obtains five Young diagrams 4
as shown in the figure. (A= [4] (3,11 (2.2] (2111 [1]
The dimension of the representation [\ is given by [ [ T T 1 [ 1] H:l ]
IO =+ ) U -
nP = s (5.120) -

(N +k—i)

The Young diagram [A] conjugated to [A] is constructed by the interchange of rows and columns.
In general, the irreducible representation of Sy, is reducible if one restricts to one of the subgroups
Snr—1, Sm—2,

B In quantum mechanics for a system of identical particles the Pauli principle demands the construc-
tion of many-body wave functions that are antisymmetric with respect to the interchange of all coordi-
nates of two arbitrary particles. Often, the wave function is given as the product of a function in space
coordinates and a function in spin variables. If for such a case due to particle permutations the spatial
part of the wave function transforms according to the irreducible representation [A] of the symmetric

group, then it has to be combined with a spin function transforming according to [5\] in order to get a
total wave function which is antisymmetric if two particles are interchanged.

5.3.5 Applications of Groups

In chemistry and in physics, groups are applied to describe the “symmetry” of the corresponding
objects. Such objects are, for instance, molecules, crystals, solid structures or quantum mechanical
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systems. The basic idea of these applications is the von Neumann principle:
If a system has a certain group of symmetry operations, then every physical observational quantity of
this system must have the same symmetry.

5.3.5.1 Symmetry Operations, Symmetry Elements

A symmetry operation s of a space object is a mapping of the space into itself such that the length of
line segments remains unchanged and the object goes into a covering position to itself. The set of fixed
points of the symmetry operation s is denoted by Fix s, i.e., the set of all points of space which remain
unchanged for s. The set Fix s is called the symmetry element of s. The Schoenflies symbolism is used
to denote the symmetry operation.

Two types of symmetry operations are distinguished: Operations without a fixed point and operations
with at least one fixed point.

1. Symmetry Operations without a Fixed Point, for which no point of the space stays un-
changed, cannot occur for bounded space objects, but now only such objects are considered. A sym-
metry operation without a fixed point is for instance a parallel translation.

2. Symmetry Operations with at least One Fixed Point are for instance rotations and reflec-
tions. The following operations belong to them.

a) Rotations Around an Axis by an Angle ¢: The axis of rotation and also the rotation itself is
denoted by C,, for ¢ = 27/n. The axis of rotation is then called of n-th order.

b) Reflection with Respect to a Plane: Both the plane of reflection and the reflection itself are
denoted by o. If additionally there is a principal rotation axis, then one draws it perpendicularly and
denote the planes of reflections which are perpendicular to this axis by oy, (h from horizontal) and the
planes of reflections passing through the rotational axis are denoted by o, (v from vertical) or o4 (d
means dihedral, if certain angles are halved).

¢) Improper Orthogonal Mappings: An operation such that after a rotation C,, a reflection oy,
follows, is called an improper orthogonal mapping and it is denoted by S,,. Rotation and reflection
commute. The axis of rotation is then called an improper rotational axis of n-th order and it is also
denoted by S,,. This axis is called the corresponding symmetry element, although only the symme-
try center stays fixed under the application of the operation S,,. For n = 2, an improper orthogonal
mapping is also called a point reflection or inversion (see 4.3.5.1, p. 287) and it is denoted by 1.

5.3.5.2 Symmetry Groups or Point Groups
For every symmetry operation S, there is an inverse operation S~', which reverses S “back”, i.e.,
SSt=8"19=e (5.121)

Here e denotes the identity operation, which leaves the whole space unchanged. The family of symmetry
operations of a space object forms a group with respect to the successive application, which is in general
a non-commutative symmetry group of the objects. The following relations hold:

a) Every rotation is the product of two reflections. The intersection line of the two reflection planes is
the rotation axis.

b) For two reflections o and o’

oo’ =d'o (5.122)
if and only if the corresponding reflection planes are identical or they are perpendicular to each other.
In the first case the product is the identity €, in the second one the rotation C.

¢) The product of two rotations with intersecting rotational axes is again a rotation whose axis goes
through the intersection point of the given rotational axes.

d) For two rotations Cy and C% around the same axis or around axes perpendicular to each other:
CoCh = C4Cs. (5.123)
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The product is again a rotation. In the first case the corresponding rotational axis is the given one, in
the second one the rotational axis is perpendicular to the given ones.

5.3.5.3 Symmetry Operations with Molecules

It requires a lot of work to recognize every symmetry element of an object. In the literature, for instance
in [5.10], [5.13], it is discussed in detail how to find the symmetry groups of molecules if all the symmetry
elements are known. The following notation is used for the interpretation of a molecule in space: The
symbols above C in Fig. 5.11 mean that the OH group lies above the plane of the drawing, the symbol
to the right-hand side of C means that the group OCsyHj is under C.

The determination of the symmetry group can be made by the following method.

1. No Rotational Axis

a) If no symmetry element exists, then G = {e} holds, i.e., the molecule does not have any symmetry
operation but the identity e.

B The molecule hemiacetal (Fig.5.11) is not planar and it has four different atom groups.

b) If o is a reflection or ¢ is an inversion, then G = {¢,0} =: Cs or G = {¢,i} = C; hold, and with this
it is isomorphic to Zs.

B The molecule of tartaric acid (Fig.5.12) can be reflected in the center P (inversion).

H
OH
' HO——Cll- COF
P
CH,—— C|[l1- Ot
: | ! CO,HB»C——OH
H H
Figure 5.11 Figure 5.12 Figure 5.13

2. There is Exactly One Rotational Axis C

a) If the rotation can have any angle, i.e., C' = C, then the molecule is linear, and the symmetry
group is infinite.

B A: For the molecule of sodium chloride (common salt) NaCl there is no horizontal reflection. The
corresponding symmetry group of all the rotations around C'is denoted by Co, .

B B: The molecule O3 has one horizontal reflection. The corresponding symmetry group is generated
by the rotations and by this reflection, and it is denoted by Do,

b) The rotation axis is of n-th order, C'= C,,, but it is not an improper rotational axis of order 2n.

If there is no further symmetry element, then G is generated by a rotation d by an angle 7 /n around
Cp,ie., G=<d>=Z,. In this case G is also denoted by C,,.

If there is a further vertical reflection o, then G = < d, 0, >= D, holds (see 5.3.3.1, p. 336), and G is
denoted by Cp,.

If there exists an additional horizontal reflection o, then G = < d, 0, > = Z,, x Z5 holds. G is denoted
by C.,, and it is cyclic for odd n (see 5.3.3.2, p. 337).

B A: For hydrogen peroxide (Fig.5.13) these three cases occur in the order given above for 0 < § <
/2,6 =0and § = 7/2.

B B: The molecule of water H,O has a rotational axis of second order and a vertical plane of reflection,
as symmetry elements. Consequently, the symmetry group of water is isomorphic to the group D,
which is isomorphic to the Klein four-group V; (see 5.3.3.2, 3., p. 338).

¢) The rotational axis is of order n and at the same time it is also an improper rotational axis of order
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2n. We have to distinguish two cases.
a) There is no further vertical reflection, so G = Zs, holds, and G is denoted also by Sa,.

B An example is the molecule of tetrahydroxy allene with formula C3(OH)4 (Fig.5.14).
) If there is a vertical reflection, then G is a group of order 4n, which is denoted by Ds,,.

B n = 2gives G = Dy, i.e., the dihedral group of order eight. An example is the allene molecule
(Fig.5.15).

Figure 5.14 Figure 5.15 Figure 5.16

3. Several Rotational Axes If there are several rotational axes, then one has to distinguish further
cases. In particular, if several rotational axes have an order n > 3, then the following groups are the
corresponding symmetry groups.

a) Tetrahedral group T: Isomorphic to Sy, ordT, = 24.

b) Octahedral group Op: Isomorphic to Sy x Z,, ordO;, = 48.

c) Icosahedral group I: ordl, = 120.

These groups are the symmetry groups of the regular polyhedron discussed in 3.3.3, Table 3.7, p. 155,
(Fig.3.63).

B The methane molecule (Fig.5.16) has the tetrahedral group T, as a symmetry group.

5.3.5.4 Symmetry Groups in Crystallography

1. Lattice Structures

In crystallography the parallelepiped represents, independently of
the arrangement of specific atoms or ions, the elementary (unit) cell
of the crystal lattice. Tt is determined by three non-coplanar ba-
sis vectors a; starting from one lattice point (Fig. 5.17). The infi-
nite geometric lattice structure is created by performing all primitive
translations E,Z:

tn = 181 + Nody + nsds, n = (ny,ng, ns) n; € Z. (5.124)
Here, the coefficients n; (i =1,2,...) are integers.

Figure 5.17

All the translations t,, fixing the space points of the lattice L = {t,} in terms of lattice vectors form
the translation group 7" with the group element 7'(t,,), the inverse element 7' (t,) = T(—t,), and
the composition law T'(t,) # T(tm) = T(tn + tm). The application of the group element T(t,,) to the
position vector r is described by:

T(tn)F =T+ tn. (5.125)
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2. Bravais Lattices

Taking into account the possible combinations of the relative lengths of the basis vectors a; and the pair-
wise related angles between them (particularly angles 90° and 120°) one obtains seven different types
of elementary cells with the corresponding lattices, the Bravais lattices (see Fig. 5.17, and Table 5.4).
This classification can be extended by seven non-primitive elementary cells and their corresponding
lattices by adding additional lattice points at the intersection points of the face or body diagonals, pre-
serving the symmetry of the elementary cell. In this way one may distinguish one-side face-centered
lattices, body-centered lattices, and all-face centered lattices.

Tabelle 5.4 Primitive Bravais lattice

Elementary cell | Relative lengths | Angles between

of basis vectors | basis vectors
triclinic ay # ay # ag a# B #y#£90°
monoclinic ay # as # ag a=7=90°#f
rhombic a) # ay # as a=p=v=090°
trigonal ay = as = as a == <120°(# 90°)
hexagonal a) = as # as a=[F=90°vy=120°
tetragonal a) = ay # ag a=f=v=90°
cubic ay = as = az a=[F=~v=90°

3. Symmetry Operations in Crystal Lattice Structures

Among the symmetry operations transforming the space lattice to equivalent positions there are point
group operations such as certain rotations, improper rotations, and reflections in planes or points. But
not all point groups are also crystallographic point groups. The requirement that the application of a
group element to a lattice vector t, leads to a lattice vector t_’r; € L (L is the set of all lattice points)
again restricts the allowed point groups P with the group elements P(R) according to:

P={R:RtncL}, tnclL. (5.126)
Here, R denotes a proper (R € SO(3)) or improper rotation operator (R = IR € O(3),R €
SO(3),1 is the inversion operator with I = —F, T is a position vector). For example, only n-fold

rotation axes with n = 1,2,3,4 or 6 are compatible with a lattice structure. Altogether, there are 32
crystallographic point groups P.

The symmetry group of a space lattice may also contain operators representing simultaneous applica-
tions of rotations and primitive translations. In this way one gets gliding reflections, i.e., reflections in
a plane and translations parallel to the plane, and screws, i.e., rotations through 27 /n and translations
by ma/n (m = 1,2,...,n — 1, & are basis translations). Such operations are called non-primitive

translations \7(R), because they correspond to “fractional” translations. For a gliding reflection R is
a reflection and for a screw R is a proper rotation.

The elements of the space group G, for which the crystal lattice is invariant are composed of elements
P of the crystallographic point group P, primitive translations T(t;) and non-primitive translations

V(R):
G={{RIV(R)+ta: Re P, t,ecL}} (5.127)

The unit element of the space group is {e[0} where e is the unit element of R. The element {e[tn}
means a primitive translation, { R|0} represents a rotation or reflection. Applying the group element
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{R|t,} to the position vector T one obtains:

{Rl|ta}¥ = RT + t,,. (5.128)
4. Crystal Systems (Holohedry)
From the 14 Bravais lattices, L = {t:,} , the 32 crystallographic point groups P = { R} and the allowed
non-primitive translations V(R) one can construct 230 space groups G = {R|V(R) + t»}. The point
groups correspond to 32 crystallographic classes. Among the point groups there are seven groups that
are not a subgroup of another point group but contain further point groups as a subgroup. Each of
these seven point groups form a crystal system (holohedry). The symmetry of the seven crystal systems
is reflected in the symmetry of the seven Bravais lattices. The relation of the 32 crystallographic classes
to the seven crystal systems is given in Table 5.5 using the notation of Schoenflies.
Remark: The space group G (5.127) is the symmetry group of the “empty” lattice. The real crystal
is obtained by arranging certain atoms or ions at the lattice sites. The arrangement of these crystal

constituents exhibits its own symmetry. Therefore, the symmetry group Gy of the real crystal possesses
a lower symmetry than G (G D Gy), in general.

Table 5.5 Bravais lattice, crystal systems, and crystallographic classes
Notation: (), — rotation about an n-fold rotation axis, D,, — dihedral group, T,, — tetrahedral group,
O,, — octahedral group, S,, — mirror rotations with an n-fold axis.

Lattice type | Crystal system | Crystallographic class
(holohedry)

triclinic C; Cy, G

monoclinic Cop Cs, Ch, Cap,

rhombic Doy, Cay, Do, Dy,

tetragonal Dy, Cy, S4, Cun, Dy, Cuyy Dag, Dayy

hexagonal Den Cs, Csn, Con, Dg, Cou, Dan, Den

trigonal D3y Cs, Se, D3, Csy, D3a

cubic Oy, T, Ty, Ty, 0,0

5.3.5.5 Symmetry Groups in Quantum Mechanics

Linear coordinate transformations that leave the Hamiltonian H of a quantum mechanical system (see

9.2.4, 2., p. 593) invariant represent a symmetry group G, whose elements g commute with H:
lg.H)=gH —Hg=0, gedG. (5.129)

The commutation property of g and H implies that in the application of the product of the operators

g and H to a state ¢ the sequence of the action of the operators is arbitrary:

9(He) = H(gy). (5.130)
Hence, one has: If g, (@ =1,2,...,n) are the eigenstates of H with energy eigenvalue E of degener-
acy n, i.e.,

Hop, = Bopa (a=1,2,...,n), (5.131)

then the transformed states gog, are also eigenstates belonging to the same eigenvalue £:

9H g = Hgppa = Egppa- (5.132)
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The transformed states gpg, can be written as a linear combination of the eigenstates ¢gq:
n
9950 = 2 Dpalg)pms. (5.133)
p=1

Hence, the eigenstates ¢ g, form the basis of an n-dimensional representation space for the representa-

tion D(G) of the symmetry group G of the Hamiltonian H with the representation matrices (Dqg(g)) .
This representation is irreducible if there are no “hidden” symmetries. One can state that the energy
eigenstates of a quantum mechanical system can be labeled by the signatures of the irreducible repre-
sentations of the symmetry group of the Hamiltonian.

Thus, the representation theory of groups allows for qualitative statements on such patterns of the en-
ergy spectrum of a quantum mechanical system which are established by the outer or inner symmetries
of the system only. Also the splitting of degenerate energy levels under the influence of a perturbation
which breaks the symmetry or the selection rules for the matrix elements of transitions between energy
eigenstates follows from the investigation of representations according to which the participating states
and operators transform under group operations.

The application of group theory in quantum mechanics is presented extensively in the literature (see,
e.g., [5.6], [5.7], [5.8], [5.10], [5.11]).
5.3.5.6 Further Applications of Group Theory in Physics

Further examples of the application of particular continuous groups in physics can only be mentioned
here (see, e.g., [5.6], [5.10]).

U(1): Gauge transformations in electrodynamics.

SU(2): Spin and isospin multiplets in particle physics.

SU(3): Classification of the baryons and mesons in particle physics. Many-body problem in nuclear
physics.

SO(3): Angular momentum algebra in quantum mechanics. Atomic and nuclear many-body problems.
SO(4): Degeneracy of the hydrogen spectrum.

SU(4): Wigner super-multiplets in the nuclear shell model due to the unification of spin and isospin
degrees of freedom. Description of flavor multiplets in the quark model including the charm degree of
freedom.

SU(6): Multiplets in the quark model due to the combination of flavor and spin degrees of freedom.
Nuclear structure models.

U(n): Shell models in atomic and nuclear physics.

SU(n), SO(n): Many-body problems in nuclear physics.

SU(2) ® U(1): Standard model of the electro weak interaction.

SU(5) D SU(3) ® SU(2) ® U(1): Unification of fundamental interactions (GUT).

Remark: The groups SU(n) and SO(n) are Lie groups, i.e. continuous groups (see, 5.3.6, p. 351 and
e.g., [5.6]).

5.3.6 Lie Groups and Lie Algebras

5.3.6.1 Introduction

Lie groups and Lie algebras are named after the Norwegian mathematician Sophus Lie (1842-1899). In
this chapter only Lie groups of matrices are considered since they are most important in applications.
Main examples of matrix-Lie groups are:

e the group O(n) of orthogonal matrices,

e the subgroup SO(n) of orthogonal matrices of determinants +1, i.e. the orthogonal matrices de-
scribing rotations in R",
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e the Euclidean group SE(n), which describes rigid-body motions.
These groups have many applications in computer graphics and in robotics.
The most important relation between a Lie group and the corresponding Lie algebra will be described
by the exponential mapping. This relation is explained by the following example.
B The solution of initial value problems of first order differential equations or of a system of differential
equations can be determined with the help of the exponential function.
The initial value problem (5.134a) for y = y(t) has the following solution (5.134b):
dy
dt
Similarly, for the system of first order differential equations with unknown vector y = y(¢) and with
the constant coefficient matrix X the initial value problem (5.135a)

dy (dyl dy  dy,

=xy (zconst) with y(0) = yo, (5.134a) y(t) = e"yp . (5.134b)

T
ax \ e a T a ) =Xy (matrix X const) with y(0) = ¥o, (5.135a)

has the solution (5.135b) with the matrix-exponential function !X

0
- - 1
y(t) = X'y, X=3y i s G S Z kak (5.135b)
k=0
The special matrix-exponential function e* for a given quadratic n x n matrix X has the following
properties:
0X _ I

° ¢ nxn s where I, denotes the unit matrix.

o X isinvertible, because det X = e!SPurX £ ().

o chiXet2X — (itt2)X — Xt X for every ¢, t, € R, but in general is eX1eX2 £ X2eXi o£ XatXe |

XX _ XX _

e In particular e nxn -

d

o X =XeX| =X

=0
=0
Consequently, the elements !X (for a fixed X) form a multiplicative group with respect to matrix
multiplication. Since ¢ € R, the matrices X form a one dimensional group. At the same time it is one
of the simplest examples of Lie groups. It will be shown that matrices X and ¢X are elements of the Lie
algebra belonging to this Lie group (see 5.3.6.4, p. 356). In this way the exponential function generates
the Lie group from the elements of the Lie algebra.

5.3.6.2 Matrix-Lie Groups
For matrix-Lie groups it is not necessary to define Lie groups in general. For general Lie groups there
should be introduced the notion of differentiable manifolds, which is not needed here. For matrix-Lie
groups the following definitions are important, while in further discussions the main topic will be the
general linear group.
1. General Linear Group
1. Group A group (see 5.3.3, p. 336) is a set G with a map

GxG—G, (g,h)—gxh, (5.136a)
which is the so called group operation or group multiplication with the following properties:

e Associativity: for every g, h, k € G
x(hxk)=(gxh)*k, (5.136b)
e Existence of identity: There is an element e € GG, such that for every g € G
grxe=cxg=g, (5.136¢)
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o Existence of an inverse: For every ¢g € G there is an element h € G such that

gxh=hxg=e. (5.136d)
Remark 1: If g x h = h * g for everyg,h € G, then the group is called commutative. The matrix
groups considered here are not commutative. It follows obviously from the definition, that the product
of two elements of the group also belongs to the group, so the group is closed with respect to group
multiplication.

Remark 2: Let M, (R) the vector space of all n x n matrices with real entries. M, (R) is obviously
not a group with respect to matrix multiplication, since not every n x n matrix is invertible.

2. Definition of the General Linear Group The set of all real, invertible, n x n matrices, which
obviously form a group with respect to matrix multiplication, is called the general linear group and is
denoted by GL(n, R).

2. Matrix-Lie Groups

1. Convergence of Matrices A sequence {A,,}>°_; of matrices A, = ((I,IET)>2'J:1 where A, €

oo
m=

M, (R) converges to the n x n matrix A, if every sequence of entries {(a\")
corresponding matrix entry ay in the sense of convergence of real numbers.

2. Definition of the Matrix-Lie Groups A matrix-Lie group is a subgroup G of GL(n, R) with
the property: Let {A,,}2°_; be an arbitrary sequence of matrices from G converging to a matrix A €
M, (R) in the sense of convergence in M, (R). Then either A € G or A is not invertible.

This definition can be also formulated in the following way: A matrix-Lie group is a subgroup which is
also a closed subset of GL(n, R). (It does not mean, that G must be closed in M, (R)).

3. Dimension of the Matrix-Lie Group The dimension of a matrix-Lie group is defined as the
dimension of the corresponding Lie algebra (see 5.3.6.4, p. 356). The matrix-Lie group GL(n,R) has
dimension n?.

3. Continuous Groups

Matrix-Lie groups can be introduced also with the help of continuous groups (see [22.22], [5.9], [5.7]).
1. Definition A continuous group is a special infinite group whose elements are given uniquely by
a continuous parameter vector ¢ = (@1, @2, ..., @n):

, converges to the

a=a(yp). (5.137)
B Group of rotation matrices in R? (see (3.432), p. 230):
_ [cosp —sinp\ _ . -
D= <sintp cosp) =a(p) mit 0 <p <27. (5.138)
The group elements depend only on one real parameter ¢.
2. Product Theproduct of two elements a; = a(p,), a2 = a(y,) of a continuous group with elements
a = a(yp) is given by
ay % a; = ag = a(yps) with (5.139a)
03 = fp1.02), (5.139D)
where the components of f(¢1, p2) are continuously differentiable functions.

B The product of two rotation matrices a = a(p;) and a = a(p2) with 0 < ¢y, 02 < 27 (a(yp) as in
(5.138), is ag = a(p1) * a(p2) = alps) with p3 = f(p1,¢2) = 1 + 2. Using the Falk’s scheme (see
4.1.4, 5., p. 273) and addition theorems one gets:
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| alps)
alpr)|alps) = alpr + ¢2)

or detailed

COS P2 — sin g

sin o COS P2
COS 1 — sin 1 | cos 1 €oSs g — sin g sin Yy — COS (P71 SIN (g — Sin Yy COS Py~
sin €OS (1 | SIN Q7 COS g + COSs 1 8o — sin g Sin Yy + oS Y1 COS Py

3. Dimension The parameter vectors ¢ are elements of a vector space which is called parameter
space. In this parameter space there is a domain which is given as the domain of the continuous group,
and it is called the group space. The dimension of this group space is considered as the dimension of
the continuous group.

B A: The group of the real quadratic n x n invertible matrices has the dimension n?, since every entry
can be considered as a parameter.

B B: The group of the rotation matrices (with respect to matrix multiplication) D in (5.138) has
dimension 1. The rotation matrices are of type 2 x 2, but their four entries depend only on one parameter
¢ (0<¢<2m).

4. Lie Groups

1. Definition of the Lie Group A Lie group is a continuous group where all elements of the group
are given as continuous functions of the parameters.

2. Special Matrix-Lie Groups and their Dimension

B A Group SO(n) of Rotations R: The group SO(n) of rotations R acts on the elements X € R"
with matrix multiplication as X’ = RX € R". SO(n) is an n(n — 1)/2-dimensional Lie group.

B B Special Euclidean Group SE(n): The special Euclidian group SE(n) consists of elements
g = (R,b) with R € SO(n) and b € R" and with group multiplication g; o g» = (R; Ry, Riby + by).
It acts on the elements of Euclidean spaces R" as

X' =RZ+b. (5.140)
SE(n) is the group of rigid-body motions of n-dimensional Euclidean space, it is an n(n+1) /2-dimensional

Lie group. Discrete subgroups of SE(n) are e.g. the crystallographic space groups, i.e. the symmetry
group of a regular crystal-lattice.

B C Scaled Euclidean Group SIM (n): The scaled Euclidian group STM (n) consists of all pairs
(e“R, 5) witha € R, R € SO(n), b € R”, with group multiplication g; 0 go = (¢*T*2R; Ro, Rib, +

Bl). It acts on the elements of R" by translation, rotation and dilatation (=stretching or shrinking):

X' = "RX+Db. (5.141)
The scaled Euclidean group has the dimension 1+ n(n + 1)/2.
B D Real Special Linear Group SL(n ,IR): The real special linear group consists of all (real) nxn
matrices with determinant +1. It acts on the elements of R" with X’ = LX by rotation, distortion and
shearing so that the volume remains the same and parallel lines remain parallel. The dimension is

2

n®— 1.
B E Special Affine Group: The special affine groups of R", which consists of all pairs (e® L, B)

with L € SL(n) and be R", acts on the objects in R" as rotation, translation, shearing, distortion
and dilatation. This Lie group is the most general group of deformations in Euclidean spaces mapping
parallel lines into parallel lines; it has dimension n(n + 1).

B F Group SO(2): The group SO(2) describes all rotations about the origin in R*:
S0(2) = {(“‘W _S‘W> o€ JR} (5.142)

siny cosy



5.8 Classical Algebraic Structures 355

B G Group SL(2): Every element of SL(2) can be represented as

cosf —sinf\ (et 0 1 ¢
(sin@ cosf )(0 e’t) (0 1) : (5.143)

B H Group SE(2): The elements of the group SE(2) can be represented as 3 x 3 matrices:
cosf —sinf ¥
sinf cosf with # € R and X = (zl) eR*. (5.144)
0 0 1 2
Remark: Beside real matrix-Lie groups complex matrix-Lie groups also can be considered. So, e.g.
SL(n,C) is the Lie group of all complex n x n matrices with determinant +1. Similarly there are
matrix-Lie groups whose entries are quaternions.

5.3.6.3 Important Applications

1. Rigid Body Movement _
1. The group SE(3) is the group of rigid-body motions in the Euclidean space R?. That is why it is so
often applied in control of robots. The 6 independent transformations are defined usually as follows:

1. Translation in z-direction, 4. Rotation about the z-axis,
2. Translation in y-direction, 5. Rotation about the y-axis,
3. Translation in z-direction, 6. Rotation about the z-axis.

These transformations can be represented by 4 x 4 matrices applied to homogeneous coordinates (see
3.5.4.2, p. 231) in 3 dimensions, i.e. (z, y, 2)T € R? is represented as a vector (z, y, z, 1)T with four
coordinates (see 3.5.4.2, p. 231).

Matrices corresponding to the transformations 1 until 6 are:

100a 1000 1000
0100 010b 0100
Mi=1loo010] M =loo10|" Ms=|o01c] (5-1452)
0001 0001 0001
1 0 0 0 cosff 0sinf 0 cosy —siny 00
| Ocosa —sina 0 o 0 1 0 O | siny cosy 00| -, -
Mi=10sna cosa 0] M= sin/ﬁ’()cosﬁO)’Mﬁ_ 0 0 10 -(5.145b)
0 0 0 1 0O 0 0 1 0 0 01

The matrices My, M5, Mg describe the rotations in R?, consequently SO(3) is a subgroup of SE(3).
The group SE(3) acts on X = (z, y, 2)T € R? with homogeneous coordinates (%, 1)T as follows:

X’ RV (X RX +V .
(1)=(01) ()= (") (140
where R € SO(3) is a rotation, and V = (a, b, ¢)T is a translation vector.
2. Affine Transformations of 2-Dimensional Space

The group GA(2) of affine transformations of the 2-dimensional space is a 6-dimensional matrix Lie
group with the following 6 dimensions:

1. Translation in z-direction, 4. Stretching or shrinking with respect to the origin,
2. Translation in y-direction, 5. Shearing (stretching with resp. to y, with resp. to x),
3. Rotation about the origin, 6. 45°-shearing with respect to 5.

Also these transformations are described by matrices in homogeneous coordinates (z, y, 1) for (2, y)" €

R
10a 100 cosa —sina 0
M;=(010], My=(01b], Mz=|sina cosa 0], (5.147a)
001

001 0 0 1
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e 00 et 0 0 coshv sinhv 0
My={(0e" 0|, Ms=[0e*0]|, Mg=|sinhv coshv0 |. (5.147Db)
0 1 0 01 0 0 1

This group has as essential subgroups the translation group, given by M; and Ms, the Euclidean group
SE(2), given by My, My and M3, the similarity group, given by My, My, M3, M.

Application: The group GA(2) can be applied to describe all transformations of a planar object
which is recorded under slight angle modifications by a camera moving in the 3 dimensional space.

If also large changes in angles of perspectivity can occur, then group P(2) the group of all transforma-
tions of projective spaces can be used. The matrix-Lie group is generated by the matrices M; until Mg
and by the two further matrices

100 100
M.—(010], Ms=[010]. (5.147¢)
501 01

These two additional matrices correspond to a change of the horizon or vanishing of an edge of the plane
picture.

5.3.6.4 Lie Algebra

1. Real Lie algebra
A real Lie algebra A is a real vector space with an operation
[]: AxA— A, (5.148)
which is called the Lie bracket and for which the following properties are valid for all a, b, ¢ € A:
e [., ]is bilinear,
o [a, b = —[b, a],ic. the operation is skew-symmetric or anticommutative,
e the so called Jacobi identity is valid (as a replacement of the missing associativity)
la,[b,c]]+[c, [a,b]]+ b, [c, a]] = 0. (5.149)
Obviously [a, a] = 0 holds.
2. Lie Bracket
For (real) n x n matrices X and Y a Lie bracket is given by the commutator, i.e.
X, Y]:=XY - YX. (5.150)
3. Special Lie-Algebras
There are associated Lie algebras to matrix-Lie groups.
1. A function g : R — GL(n) is a one-parameter subgroup of GL(n), if
e ¢ is continuous,
® g (0) = Lyxn,
o g(t+s)=g(t)g(s) for every t,s € R.
In particular:
2. If g is a one-parameter subgroup of GL(n), then there exists a uniquely defined matrix X such that
g(t) = ™™ (see 5.3.6.1, p. 351). (5.151)
3. For every n x n matrix A the logarithm log A is defined by
m+1

= (1)
logA=> ~——(A-1I)", (5.152)
m=1 m
if this series is convergent. In particular, the series converges if ||A —I|| < 1.

4. Correspondence between Lie Group and Lie Algebra

The correspondence between a matrix-Lie group and the associated Lie algebra is as follows.
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1. Let G be a matrix-Lie group. The Lie algebra of G, which is denoted by g, is the set of all matrices
X such that X € G holds for all real numbers ¢.

In a given matrix-Lie group the elements close to the unit matrix can be represented as g(t) = X with
X € g, and t close to zero. If the exponential map is surjective, as in the case of SO(n) and SE(n),
then the elements of the group can be parameterized with the help of the matrix-exponential function

1

d d
by elements of the corresponding Lie algebra. The matrices d—g g tand g~ d—g respectively are called

tangent vectors or tangent elements to g € G. Calculating these elements for t = 0, one gets X itself,
i.e. g is the tangent space 1T1G at the identity matrix I.

2. It can be shown that the Lie algebra assigned to a Lie group in this way is a Lie algebra also in the
abstract sense.

Let G be a matrix-Lie group with the associated matrix-Lie algebra g and X and Y elements of g.
Then:

e sX € g for any real numbers s,

e X+Yeg,

e X, Y]=XY-YXeg.

B A: The Lie algebra so(2) associated to the Lie group SO(2) is calculated from the representation
cosf —sinf

of the elements g(0) = (sin 0 cosf

) by SO(2) with the help of the tangential elements

dg |  (—sinf —cosf cosf sinf _(0-1 .

do o < cos 7sin€> <7sin€ cos€> 0o (1 0 ) (5.153a)
Consequently

so(2) = {s ((1) ’01) , SE€ R}. (5.153b)
Conversely, from

X = <0 _01> comes X = coss <(1) (1]> +sins <(1] _01> = (2?;5 _C;lnss) . (5.153¢)

B B: The following matrices form a basis for the Lie algebra so(3):

00 0 001 0-10
X1—<00—1>, X2—<0 00), X3—<1 0 0). (5.154)
~100 000

Remark: The surjectivity of the exponential mappings so(3) — SO(3) and se(3) — SE(3) implies
the existence of a (many-valued) logarithmic function. Nevertheless this logarithm function can be
applied to interpolation.

E.g. if rigid-body motions By, By € SE(3) are given, then log By, log By can be calculated which are
elements of the Lie algebra so(3). Then between these logarithms linear interpolation (1 —¢)log By +
tlog By can be taken and then the exponential map can be applied in order to get an interpolation
between the rigid-body motions B; and By by

exp ((1 —t)log By +tlogB,). (5.155)

B C: The matrix-Lie algebra se(3) associated to the matrix-Lie group SE(3) is generated by the
matrices:

000 0000 0000
000 0001 0000

Ei=1000 E:=10000]" B=|o0001]" (5.156a)
000 0000 0000
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00 0 0 0010 0-100
00-10 0000 1000

Ei=1010 0 Es=1 1000 B=|0 000 (5.156b)
00 00 0000 0000

5. Inner Product

For a given finite dimensional matrix-Lie group it is always possible to find an orthonormal basis for
the associated Lie algebra if a suitable inner product (scalar product) is defined. In this case from any
basis of the Lie algebra an orthonormal basis can be obtained by the Gram-Schmidt orthogonalization
process (see 4.6.2.2, 4. p. 316).

In the case of a real matrix-Lie group the Lie algebra consists of real matrices and so an inner product
is given by

(X,Y) = %Spur (XWYT) (5.157)

with a positive definite real symmetric matrix W.
B A: The group of rigid-body motions SE(2) can be parametrized as

cosf —sinf z;
g1, 9, ) = e XiteaXe 0Xs (sin@ cos ) :1;2> with (5.158a)
0 0 1
001 000 0-10
X1:<000>, x2=(001), X3=<1 0 0). (5.158b)
000 000 000

Here X, X5, X3 form an orthonormal basis of Lie algebra se(2) with respect to an inner product given
by the weight matrix

100
W=/{010 (5.158¢)
002
B B: A basis of Lie algebra sl(2, R) is
0-1 10 01
X1:<1 0), X2:<O_1> and X3:<10>. (5.159)

These elements form an orthonormal basis with respect to the weight matrix W = Ioyo = ( (1) (1)>

5.3.6.5 Applications in Robotics
1. Rigid Body Motion

The special Euclidean group SFE(3), which describes the rigid-body motions in R?, is the semidirect
product of group SO(3) (rotation about the origin) and R? (translations):

SE(3) = SO(3) x R?. (5.160)
In a direct product the factors have no interaction, but this is a semidirect product since rotations act
on translations as it is clear from matrix multiplication:

Roth) (Rit;)  (ReR; Roty+t»
(o 1)(0 1>*( 0 1 > (5.161)

i.e. the first translation vector is rotated before the second translation vector is added.
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2. Theorem of Chasles

This theorem tells that every rigid-body motion which is not a pure translation can be described as a
(finite) screw motion. A (finite) screwing motion along an axis through the origin has the form

9p.,
A0) = (R Q:X) (5.162a)
0 1

where X is a unit vector in the direction of the axis of rotation, # is the angle of rotation and p is the
angular coefficient. Since X is the axis of rotation RX = X, i.e. X is an eigenvector of matrix R belonging
to unit eigenvalue 1.

When the axis of rotation does not go through the origin, then a point u of the axis of rotation is chosen
which is shifted into the origin, then after the screwing it is shifted back:

_ Op_ = Op_ N
(éw R % (5 1u): R o X+ (I-Rji| (5.162b)
0 1 0 1
The theorem of Chasles tells that an arbitrary rigid-body motion can be given in the above form, i.e.
e Op_ .
R t)_[R gxﬂ—(I—R)u (5.163)
01 0 1

for given R, t and appropriate p and @ . Assuming that the angle of rotation 6 and the axis of rotation
X are already known from R

Op _g.¢ (5.164)
2

is valid, so the angular coefficient p can be calculated. Then the solution of a linear system of equations
gives u:

(I-R)i= Org ¢ (5.165)

o . .

This is a singular system of equations, where X is in its kernel. Therefore the solution u is unique except
to a manyfold of X. In order to determine U it is reasonable to require that u is perpendicular to X.
When the rigid body motion is a pure rotation, then it is not possible to determine an appropriate
vector u.
3. Mechanical Joints
Joints with one degree of freedom can be represented by a one-parameter subgroup of the group SE(3).
For the general case of screw joints the corresponding subgroup is

9p B}
A(9) = (f; £x+(I‘R>“), (5.166)

where X is the axis of rotation, 6 is the angle of rotation, p gives the angular coefficient and d is an
arbitrary point on the axis of rotation.

The most often occurring types of joints are the rotational joints which can be described by the following
subgroup:

R (I- R)ﬁ) . (5.167)

A<9)=< 0 1

The subgroup corresponding the shift joints is

A(0) = (IO 65) ; (5.168)
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where t describes the direction of the shifting.

4. Forward Kinematics

The goal in the case of industrial robots is the moving and control of the end effectors, which is done
by joints in a kinematic chain. If all joints are of one parameter and the robot consists e.g. of 6 joints,
then every position of the robot can be described by the joint-variables g7 = (01, 02, O3, 04, 05, b5).
The output state of the robot is described by the null vector. Then the motions of the robot can be
described so that first the farest joint together the end effector are moved and this motion is given by
the matrix A(f). Then the 5-th joint is moved. Since the axis of this joint should not be influenced
by the motion of the last joint, this motion is given by the matrix A(65). In this way all the joints are
moved, and the complete motion of the end effector is given by

K(6) = Ay(01) Ax(02) A3(83) A4 (04) A5 (05) Ag (65). (5.169)
5. Vector Product and Lie Algebra
A screw is given by

Op o
A(9) = (12 e (11_R>u); (5.170)

and it represents rigid body motions parameterized by the angle 6. Obviously, § = 0 gives the identity
transformation. If the derivative is calculated at @ = 0, i.e. the derivative at the identity, then the
general element of the Lie algebra is the following:

dR p dR J2. ~
dA b S ST Q —xX-Qu
= = ( a0 20 do “) = ( 21 ) : (5.171a)
0 0

S 0 o
dRrR, . . . . .
where Q = %(0) is a skew symmetric matrix. It can be shown that R is an orthogonal matrix, so

RR" =T and RRT = I holds and therefore

0=0 6—=0

d T dR _ ¢ dRY dlI
—(RR") = —R"+R——=—=0. 171b
g BR) = g R R =55 =0 (5.171b)
Since R =T1for 0 =0
dR dR"
- — [ L
70 0) + a0 (0)=0. (5.171c)
So every skew symmetric matrix
0 —w. wy
Q= ( w, 0 wx> (5.171d)
—wy w, 0

can be identified with a vector @ = (wg, wy, w,). In this way the multiplication of any three dimen-
sional vector p by matrix € corresponds to the vector product with vector @ :

Qp=7o xp. (5.171e)
Consequently @ is the angular velocity of the rigid body with an amplitude w.
Hence a general element of the Lie algebra se(3) has the form

- (So)g) (5.171f)
These matrices form a 6-dimensional vector space which is often identified with the 6-dimensional vec-
tors of the form

5= (Ef) (5.172)

v
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5.3.7 Rings and Fields
In this section, there are discussed algebraic structures with two binary operations.
5.3.7.1 Definitions
1. Rings
A set R with two binary operations + and x is called a ring (notation: (R, 4+, %)), if
e (R,+) is an Abelian group,
e (R, %) is a semigroup, and
o the distributive laws hold:

ax(b+c)=(axb)+(axc), (b+c)*xa=(bxa)+ (cxa). (5.173)
If (R, %) is commutative or if (R, ) has a neutral element, then (R, +, %) is called a commutative ring
or a ring with identity (ring with unit element), respectively.
A commutative ring with a unit element and without zero divisor is called the domain of integrity.
A nonzero element of a ring is called zero divisor or singular element if there is a nonzero element of the
ring such that their product is equal to zero.
In a ring with zero divisor the following implication is generally false: axb =0 = (a =0 V b =0).
If R is aring with a unit element, then the characteristic of the ring R is the smallest natural number k&
such that k1 =1+ 1+...4 1 =0 (k times 1 equals to zero), and it is denoted by char R = k. If such
a k does not exist, then char R = 0.
char R = k means that the cyclic subgroup (1) of the additive group (R, +) generated by 1 has order
k, so the order of every element is a divisor of k.
If char R = k and for all » € R, then r 4+ r + ... 4+ r (k times)is equal to zero. The characteristic of a
domain of integrity is zero or a prime.
2. Division Ring, Field
A ring is called division ring or skew field if (R \ {0}, *) is a group .
If (R\{0}, ) is commutative, then Ris a field. So, every field is a domain of integrity and also a division
ring. Reversed, every finite domain of integrity and every finite division ring is a field. This statement
is a theorem of Wedderburn.
Examples of rings and fields
B A: The number domains Z, @, R, and C are commutative rings with identity with respect to ad-
dition and multiplication;  , R, and C are also fields. The set of even integers is an example of a ring
without identity.
B B: Theset M, of all square matrices of order n with real (or complex) elements is a non-commutative
ring with respect to matrix addition and multiplication. It has a unit element which is the identity ma-

trix. M,, has zero divisors, e.g. for n = 2, (} 8) (? ?) = (8 8) i.e. both matrices (1 8) and

((1) (1)) are zero divisors in M.

B C: The set of real polynomials p(z) = a,2" + @, 12" + - -+ + a12 + ao forms a ring with respect
to the usual addition and multiplication of polynomials, the polynomial ring R|z].
More generally, instead of polynomials over R, polynomial rings over arbitrary commutative rings with
identity element can be considered.
B D: Examples of finite rings are the residue class rings Z,, modulo n. Z, consists of all the classes
[a],, of integers having the same residue on division by n. ([al, is the equivalence class defined by the
natural number a with respect to the relation ~g introduced in 5.2.4, 1., p. 334.) The ring operations
&, ® on Z, are defined by

lal, @ [b], = [a+ D], and [a], ® [b], = [a - b]. (5.174)
If the natural number n is a prime, then (Z, ,®,®) is a field. Otherwise Z, has zero divisors, e.g. in
Zs (numbers modulo 6) [3]g - [2]¢ = [0]s. Usually Z,, is considered as Z, = {0,1,...,n — 1}, i.e. the
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residue classes are replaced by representatives(see 5.4.3,3., S. 377).

3. Field Extensions

If K and L are fields and K C L, then L is an extension field or an over-field of . In this case L can
be considered as a vector space over K.

If L is a finite dimensional space over K, then L is called a finite extension field. If this dimension is n,
then L is called also an eztension of degree n of K (Notation: [L : K] =n).

E.g. C is a finite extension of R. C is two-dimensional over R, and {1,i} is a basis. R is an infinite-
dimensional space over Q.

For aset M C L, K (M) denotes the smallest field (an over-field of K') which contains the field K and
the set M.

Especially important are the simple algebraic extensions K («), where a € L is a root of a polynomial
from K[z]. The polynomial of lowest degree with a leading coefficient 1 having v as a root is called the
minimal polynomial of a over K. If the degree of the minimal polynomials of & € L is n, then K («) is
an extension of degree n, i.e. the degree of the minimal polynomials is equal to the dimension of L as
a vector space over K.

E.g. C = R(i) and i € C is the root of the polynomial 2> + 1 € R[z], i.e. C is a simple algebraic
extension and [C : R] = 2.

A field, which does not have any proper subfield, is called a prime field.

Every field K contains a smallest subfield, the prime field of K.

Out of isomorphism, Q (for fields of characteristic 0) and Z, (p prime, for fields of characteristic p) are
the single prime fields.

5.3.7.2 Subrings, Ideals

1. Subring

Suppose R = (R, +, *)isaringand U C R. If U with respect to + and = is also aring, then U = (U, +, )
is called a subring of R.

A non-empty subset U of aring (R, +, *) forms a subring of R if and only if for all a,b € U also a+ (—b)
and a * b are in U (subring criterion).

2. Ideal

A subring [ is called an ideal if for all r € R and @ € I also 7 * @ and a * r are in /. These special
subrings are the basis for the formation of factor rings (see 5.3.7.3, p. 363).

The trivial subrings {0} and R are always ideals of R. Fields have only trivial ideals.

3. Principal Ideal

If all the elements of an ideal can be generated by one element according to the subring criterion, then
it is called a principal ideal. All ideals of Z are principal ideals. They can be written in the form
mZ = {mglg € Z} and they are denoted by (m).

5.3.7.3 Homomorphism, Isomorphism, Homomorphism Theorem

1. Ring Homomorphism and Ring Isomorphism
1. Ring Homomorphism: Let R, = (Ry,+,*) and Ry = (Ra, 04, 0,) be two rings. A mapping
h: Ry — R is called a ring homomorphism if for all a, b € R,

h(a+0b)=h(a)o, h(b) and h(a*b)= h(a)o,h(b) (5.175)
hold.
2. Kernel: The kernelof h is the set of elements of R; whose image by h is the neutral element 0 of
(R, +), and it is denoted by ker h:

kerh = {a € Ry|h(a) = 0}. (5.176)
Here ker h is an ideal of R;.
3. Ring Isomorphism: If h is also bijective, then A is called a ring isomorphism, and the rings R,
and Ry are called isomorphic.
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4. Factor Ring: If I is an ideal of a ring (R, +, ), then the sets of co-sets {a + Ila € R} of I in the
additive group (R, +) of the ring R (see 5.3.3, 1., p. 337) form a ring with respect to the operations

(a+1)or (b+I)=(a+b)+I and (a+1)o,(b+1I)=(axb)+1I. (5.177)
This ring is called the factor ring of R by I, and it is denoted by R/I.

The factor ring of Z by a principal ideal (m) is the residue class ring Z,, = Z; () (see examples of rings
and fields on p. 361).

2. Homomorphism Theorem for Rings

If the notion of a normal subgroup is replaced by the notion of an ideal in the homomorphism theorem
for groups, then the homomorphism theorem for rings is obtained: A ring homomorphism h: Ry — Rs
defines an ideal of Ry, namely ker b = {a € R;|h(a) = 0}. The factor ring R,/ ker h is isomorphic to the
homomorphic image h(R1) = {h(a)|la € Ri}. Conversely, every ideal I of R; defines a homomorphic
mapping nat;: Ry — Ry/I with nat;(a) = a+I. This mapping nat; is called a natural homomorphism.

5.3.7.4 Finite Fields and Shift Registers

1. Finite Fields
The following statements give an overview of the structure of finite fields.
1. Galois Field GF For every power of primes p” there exits a unique field with p" elements (out
of an isomorphism), and every finite field has p™ elements. The fields with p” elements are denoted by
GF(p") (Galois field).
Note: For n > 1 GF(p") and Z,» are different.
In constructing finite fields with p™ elements (p is prime, n > 1), the ring of polynomials over Z, (see
5.3.7,2., p. 361, @ C) and irreducible polynomials are needed: Z,[z] consists of all polynomials with
coefficients from Z, . The coefficients are calculated modulo p.
2. Algorithm of Division and Euclidean Algorithm In aring of polynomials K [z] the division
algorithm is applicable (dividing polynomials with a remainder), i.e. for f(z), g(x) € K|xz], degf(x) <
degg(x) there exist ¢(z),r(z) € K[z] such that

g(z) = q(z) - f(z) +r(z) and degr(z) < deg f(x). (5.178)
This relation is denoted by r(x) = g(z)(modf(x)). Repeatedly performed division with remainders is
known as the Euclidean algorithm for rings of polynomials and the last nonzero remainder gives the
greatest common divisor of f(z) and g(z).
3. Irreducible Polynomials A polynomial f(z) € Klx| is irreducible if it can not be represented
as a product of polynomials of lower degrees, i.e. (analogously to the prime numbers in Z) f(z) is a
prime in K[z]. E.g. for polynomials of second or third degree irreducibility means, that they do not
have roots in K.
It can be shown that there are irreducible polynomials of arbitrary degree in Kz]. If f(z) € K] is
an irreducible polynomial, then

Kla)/ () = {p(w) € K[o] | degp(x) < deg f(z)} (5.179)
is a field, where addition and multiplication are performed modulo f(x), i.e. g(x) * h(z) = g(z) -
h(z) (mod f(x)).
If K = Z, and deg f(z) = n, then K[z]/f(z) has p" elements, i.e. GF(p") = Z,[z]/ f(x), where f(x) is
an irreducible polynomial of degree n.
4. Calculation Rule in GF(p™) In GF(p") the following useful rule is valid:

(a+b)f =a” +07 recN. (5.180)
So, in GF(p") =Z,[x]/f(x) there is an element o = z, a root of the polynomial f(x) irreducible in
Zy(x), and GF(p") = Z,[z]/ f(x) = Z,(«). It can be proven that Z,(«) is the splitting field of f(z).
The splitting field of a polynomial from Z,[z] is the smallest extension field of Z, which contains all
roots of f(z).
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5. Algebraic Closure, Fundamental Theorem of Algebra A field K is algebraically closed if
all roots of the polynomials from K[z] are in K. The fundamental theorem of algebra tells that the field
C of complex numbers is algebraically closed. An algebraic extension L of K is called the algebraic
closure of K if L is algebraically closed. The algebraic closure of a finite field is not finite. So there are
infinite fields with characteristic p.

6. Cyclic and Multiplicative Group The multiplicative group K* = K \ {0} of a finite field
K is cyclic, i.e. there is an element @ € K such that every element of K* is a power of a: K* =
{1,a,a% ...,a972},if K has q elements.

An irreducible polynomial f(z) € Klx] is called primitive, if the powers of = represents all nonzero
elements of L := K|z|/f(x), i.e. the multiplicative group L* of L can be generated by x.

With a primitive polynomial f(x) of degree n it is possible to construct a ,,Table of logarithm” for
GF(p") from GF(p)[z], which makes calculations easier.

B Construction of field GF(2%) and its table of logarithm.

f(z) =1+ 2 + 2% is irreducible over Z[z], since neither 0 nor 1 are roots of it:

GF(2%) = Zo[z])/ f(z) = {ap + a1x + agx® | ag,a1,a9 € Ty A 2° =1+ a}. (5.181)
f(z) is primitive, so a table of logarithm can be created for GF(2?):

Two expressions are assigned to every polynomial ag + a1@ + agz? from Zy[z]/ f (ac) The coefﬁment
vector ag, a1, as and the so called logarithm which is a natural number i such that % = ag + a2z + ayz?
modulo 1 + x + 2. The table of lotrarlthm is:

o Addition of the field elements (KE) in GF(8):
e Addition of the coordinate vectors (KV) componentwise mod 2
(in general mod p).
o Multiplication of the field elements (KE) in GF(8):
e Addition of logarithms (Log) mod 7 (in general mod (p™ — 1)).
42t —
Example: I =5= =z

Remark: Finite fields are extremely important in coding theory as linear codes, where vector spaces
in form (GF(g))"™ are considered. A subspace of such a vector space is called linear code (see 5.4.6.2,3.,
p. 385). The elements (code words) of a linear code are also n-tuples with elements from a finite field
GF(q™). In applications in code theory it is important to know the divisors of X" — 1.

The splitting field of X™ — 1 € K[X] is called the n-th cyclotomic field over K.

If the characteristic of K is not a divisor of n and « is a primitive n-th unit root, then:

a) The extension field K («) is the splitting field of X™ — 1 over K.

b) In K (), the field X" —1 has exactly n pairwise different roots which form a cyclic group, and among
them there are p(n) primitive n-th unit roots, where ¢(n) denotes the Euler function (5.4.4,1., p. 381).
By the k-th powers (k < n, g.c.d.(k,n)=1) of a primitive n-th unit root « all unit roots can be got.

2. Applications of Shift Registers

Calculations with polynomials can be performed well by a linear feedback shift register (see Fig.5.18).
With a linear feedback shift register based on the feedback polynomial f(z) = fo+ fiz+- -+ f,_12" 1+
2" and from the state polynomial s(z) = sg + s12@ + -+ + s,_12" ' one gets the state polynomial
s(x) -z — 5,1 - f(x) = s(z) -z (mod f(z)).

Especially, if s(z) = 1, after i steps (i-times applications) the state polynomial is z* (mod f(x)).

B Demonstration with the example from page 364: The primitive polynomial f(z) = 1+ 2 +23 € Zs[2]
is chosen as feedback polynomial. Then the shift register with lengh 3 has the following sequence of
states:
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From the initial state: 100=1 (mod f(z))
the states follow as: 010=x (mod f(x))
001=2? (modf(x))

110=2° =1+z (mod f(z))

0l11=2! =a+a? (mod f(z))

11122 =14z+2> (modf(z))

101=2% =1+2? (mod f(x))

100=2"7 = (mod f(z))

The states are considered as coefficient vectors of a state polynomial so + s17 + sp%.
In general: A linear feedback shift register with length r gives a sequence of states of maximal length
with period 2" — 1 if and only if the feedback polynomial is a primitive polynomial of degree r.

5.3.8 Vector Spaces*
5.3.8.1 Definition

A wector space over a field F' consists of an Abelian group V = (V, +) of “ vectors 7 written in additive
form, of a field F' = (F,+, %) of “scalars” and an exterior multiplication F' x V' — V', which assigns
to every ordered pair (k,v) for k € F and v € V a vector kv € V. These operations have the following
properties:

(V1) (u+v)+w=u+ (v+w)forall u,v,w e V. (5.182
(V2) Thereisavector 0 € V suchthat v+ 0= v forevery v e V. (5.183
(V3) To every vector v there is a vector — v such that v+ (—v) = 0. (5.184
(V4) v+w=w+v forevery v,we V. (5.185
(V5) 1v=w forevery v eV, 1 denotes the unit element of F. (5.186
(V6) r(sv) = (rs)v forevery r,s € F' and every v € V. (5.187
(V7) (r+s)v=rv+sv forevery r,s € F and every v € V. (5.188
(V8) r(v+w)=rv+rw forevery r € F and every v,w € V. (5.189

If F' = R holds, then it is called a real vector space.

Examples of vector spaces:

B A: Single-column or single-row real matrices of type (n, 1) and (1, n), respectively, with respect to
matrix addition and exterior multiplication with real numbers form real vector spaces R™ (the vector
space of column or row vectors; see also 4.1.3, p. 271).

B B: All real matrices of type (m,n) form a real vector space.
B C: All real functions continuous on an interval [a, b] with the operations

(f+9)(z) = f&) +g(x) and (kf)(z)=k- f(z) (5.190)

*In this paragraph, generally, vectors are not printed in bold face.
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form a real vector space.
Function spaces have a fundamental role in functional analysis (see Ch. 12, p. 654). For further exam-
ples see 12.1.2, p. 655.

5.3.8.2 Linear Dependence

Let V be a vector space over F. The vectors vy, v, ..., v, € V are called linearly dependent if there
are ky, ko, ..., ky € K not all of them equal to zero such that 0 = kyvy + kyvy + -+ - + kv, holds.
Otherwise they are linearly independent. Linear dependence of at least two vectors means that one of
them is a multiple of the other.

If there is a maximal number n of linearly independent vectors in a vector space V', then the vector
space V' is called n dimensional. This number n is uniquely defined and it is called the dimension.
Every n linearly independent vectors of V' form a basis. If such a maximal number does not exist, then
the vector space is called infinite dimensional. The vector spaces in the above examples are n, m - n,
and infinite dimensional.

In the vector space R", n vectors are independent if and only if the determinant of the matrix, whose
columns or rows are these vectors, is not equal to zero.

If {v1, vg, ..., v,} form a basis of an n-dimensional vector space over F, then every vector v € V has a
unique representation v = kyvy + kv + -+ - + kv, with ky ko .. k, € FL

Every set of linearly independent vectors can be completed into a basis of the vector space.

5.3.8.3 Linear Operators

1. Definition of Linear Operators
Let V and W be two real vector spaces. A mapping f : V. — W from V into W is called a linear
mapping or linear transformation or linear operator (see also 12.1.5.2, p. 658) from V' into W' if

flu+v)= fu+ fo foral u,veV, (5.191)
f(Au) =Afu forall ueV andall real . (5.192)

8
B A: The mapping fu := [w(t)dt, which transforms the space Cla, 8] of continuous real functions
«

into the space of real numbers is linear.

In the special case when W = R!, as in the previous example, linear transformations are called linear
Sfunctionals.

B B: Let V = R" and let IV be the space of all real polynomials of degree at most n — 1. Then the
mapping f(ao, a,...,a,_1) = ao + a1x + agx® + - - - + a,_12" "' is linear. In this case each n-element
vector corresponds to a polynomial of degree < n — 1.

B C: IfV = R"and W = R™, then all linear operators f from V into W (f: R" — R™) can
be characterized by a real matrix A = (a;,) of type (m,n). The relation Ax = y corresponds to the

system of linear equations (4.174a)

app @iz - Qi i Y1
Qg1 Gz -+ d2p T2 Y2
Um1 Am2 " Amn T Ym

2. Sum and Product of Two Linear Operators
Let f: V— W,g:V — W and h: W — U be linear operators. Then the

sum f+g:V — W isdefined as (f + g)u = fu+ gu forall u € V and the (5.193)
product hf:V — U is defined as (hf)u = h(fu) forall ue V. (5.194)
Remarks:

1. If f, g and h are linear, then f 4 g and fh are also linear operators.
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2. The product (5.194) of two linear operators represents the consecutive application of these operators
fand h.

3. The product of two linear operators is usually non-commutative even if the products exist:

hf # fh. (5.195a)
Commutability exists, if
hf—fh=0 (5.195b)

holds. In quantum mechanics the left-hand side of this equation hf — fh is called the commutator. In
the case (5.195a) the operators f and h do not commutate, therefore we have to be very careful about
the order.

B Asaparticular example of sums and products of linear operators one may think of sums and products
of the corresponding real matrices.

5.3.8.4 Subspaces, Dimension Formula
1. Subspace: Let V be a vector space and U a subset of V. If U is also a vector space with respect to
the operations of V', then U is called a subspace of V.
A non-empty subset U of V' is a subspace if and only if for every uy, ups € U and every k € F also uy +us
and k - uy are in U (subspace criterion).
2. Kernel, Image: Let Vi, V5 be vector spaces over F. If f: V; — V5 is a linear mapping, then the
linear subspaces kernel (notation: ker f) and image (notation: im f) are defined in the following way:
ker f ={v e V|f(v)=0}, im f={f(v)lveV}. (5.196)
So, for example, the solution set of a homogeneous linear equation system Ax = 0 is the kernel of the
linear mapping defined by the coefficient matrix A.
3. Dimension: The dimension dimker f and dim im f are called the defect f and rank f, respectively.
For these dimensions the equality
defect f + rank f = dimV, (5.197)

is valid and is called the dimension formula. In particular, if the defect f = 0, i.e., ker f = {0}, then
the linear mapping f is injective, and conversely. Injective linear mappings are called regular.

5.3.8.5 Euclidean Vector Spaces, Euclidean Norm

In order to be able to use notions such as length, angle, orthogonality in abstract vector spaces we
introduce Euclidean vector spaces.
1. Euclidean Vector Space

Let V be a real vector space. If o: V x V' — R is a mapping with the following properties (instead of
(v, w) one writes v - w) for every u, v, w € V and for every r € R

(S1) v-w=w-v, (5.198)
(82) (u+v) - w=u-w+v-w, (5.199)
(83) r(v-w)=(rv) - w=wv-(rw), (5.200)
(S4) wv-v>0ifandonlyifwv #0, (5.201)

then ¢ is called a scalar product on V. If there is a scalar product defined on V, then V is called a
FEuclidean vector space.

These properties are used to define a scalar product with similar properties on more general spaces, too
(see 12.4.1.1, p. 673).

2. Euclidean Norm
The value

o]l = Voo (5.202)
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denotes the Euclidean norm (length) of v. The angle o between v, w from V' is defined by the formula
v-w
cos = ———r. (5.203)
lloll - fJawll

If v - w = 0 holds, then v and w are called orthogonal to each other.
B Orthogonality of Trigonometric Functions: In the theory of Fourier series (see 7.4.1.1, p. 474),
there are functions of the form sin kz and cos kz. Theses fubctions can be considered as elements of
C[0, 27]. In the function space Ca, b] the formula

b
9= /a f(z)g()dx (5.204)

defines a scalar product. Since

27 27
/ sinka - sinlede =0 (k #1), (5.205) / coskz -cosledr =0 (k#1), (5.206)
0 0

27
/ sinka - coslz dz =0, (5.207)
0

the functions sin kz € C|0, 27] and cos lz € C[0, 27] for every k,l € N are pairwise orthogonal to each
other. This orthogonality of trigonometric functions is used in the calculation of Fourier coefficients in
harmonic analysis (see 7.4.1.1, p. 474).

5.3.8.6 Bilinear Mappings, Bilinear Forms
Bilinear mappings can be considered as generalizations of different products between vectors. In that
case bilinearity uses the distributivity of the corresponding product with respect to vector addition.
1. Definition
Let U, V', W be vector spaces over the same field K. A mapping f: U x V' — W is called bilinear if
for every w € U the mapping v — f(u,v) is a linear mapping of V into W and
for every v € V' the mapping u — f(u,v) is a linear mapping of U into . (5.208)
It means that a mapping f: U x V' — W is bilinear, if for every k € K, u,u’ € U, and v,v" € V holds:
flu+u,v) = flu,v) + fu/,v), flku,v) =kf(u,v) and
flu,v+0) = f(u,0) + fu, o), fu,kv) =kf(u,v). (5.209)
If f is replaced by the dot product or vector product or by a multiplication in a field, these relations
describe the left sided and right sided distributivity of this multiplication with respect to vector addi-
tion.
Especially, if U = V', and W = K which is the underlying field, then f is called a bilinear form. In this
book only the real (K = R) or complex (K = C) cases are considered.
Examles of Bilinearforms
B A: U=V=R"W=R, fis the dot product in R™: f(u,v) = u v = 31" wv; , where u; and v;
(i=1,2,...,n) denote the Cartesian coordinates of u and v.
B B: U=V=W=R?, f is the cross product in R*:
flu,v) = u x v = (ugv3 — Vouz , ViU — UIV3 , UV — V1Ug) T .
2. Special Bilinear Forms
A bilinear form f: V x V' — R is called
e symmetric, if f(v,v) = f(v',v) for every v,v' € V|
o skew-symmetric, if f(v,v") = —f(v', v) for every v,v" € V and
e positive definite, if f(v,v) > 0 for every v € V v # 0.
So an Euclidean dot product in V' (see 5.3.8.5, p. 367) can be characterized as a symmetric, positive
definite bilinear form. The canonical Euclidean dot product in R" is defined as f(u,v) = uTv.
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In finite dimensional spaces V' a bilinear form can be represented by a matrix: If f:=V xV — R is
a bilinear form, and B = (by, ba, ..., b,) is a basis of V| then the matrix

Ap(f) = (f(bi; b))i;) (5.210)
is the representation matriz of f with respect to basis B. The bilinear form then can be written in
matrix product form:

fv, ") =0T Ap(f), (5.211)
where v and v’ are given with respect to basis B.

The representation matrix is symmetric, if the bilinear form is symmetric. In complex vector spaces
(because 22 can be a negative number) symmetric, positive definite bilinear forms do not have much
sense. To define an unitary dot product and also distances and angles with it instead of bilinear form
the concept of the so called sesquilinear form is used [5.6], [5.12].

3. Sesquilinear Form

A mapping f: V x V — C s called sesquilinear form if for every v,v' € V and k € C:

flu+u,v) = flu,v) + fu/',v), flku,v) =kf(u,v) and

Fluv+v) = flu,0) + Fuv), flu, ko) = K f(u,0). (5.212)
where £* denotes the complex conjugate of k. The function is linear in the first argument and ,,semi-
linear” in the second argument. Analogously to the real case ,,symmetry” is defined in the following
way:

A sesquilinear form f: V' x V' — C s called hermitian if f(v,v") = f(v',v)* for every v,v' € V.

In this way a (unitary) dot product is characterized by an hermitian, positive definite sesquilinear form.
The canonical unitary dot product in C" is defined as f(u,v) = u"v*.

If V is finite dimensional, then a sesquilinear form can be represented by a matrix (like in the real
case):

If f: V xV — Cis a sesquilinear form, and B = (by,bs,...,b,) is a basis of V, then the matrix
Ai(f) = (f(bi,b)));; is the representation matriz of f with respect to basis B. The sesquilinear form
can be written in matrix product form:

v, ") =0T Ap(f), (5.213)
where v and v’ are given with respect to basis B. A representation matrix is hermitian if and only if
the sesquilinear form is hermitian.




370 5. Algebra and Discrete Mathematics

5.4 Elementary Number Theory

Elementary number theory investigates divisibility properties of integers.
5.4.1 Divisibility
5.4.1.1 Divisibility and Elementary Divisibility Rules

1. Divisor

An integer b € Z is divisible by an integer a without remainder iff * there is an integer ¢ such that
qga=> (5.214)

holds. Here a is a divisor of b in Z, and ¢ is the complementary divisor with respect to a; b is a multiple

of a. For “a divides b” we write also alb. For “a does not divide b” we can write afb. The divisibility

relation (5.214) is a binary relation in Z (see 5.2.3, 2., p. 331). Analogously, divisibility is defined in

the set of natural numbers.

2. Elementary Divisibility Rules

(DR1)  For every a € Z we have 1|a, ala and a|0. (5.215
(DR2) Ifalb, then (—a)|b and a|(—b). (5.216
(DR3)  alband bla implies a = b or a = —b. (5.217
(DR4) a|limpliesa=1ora=—1. (5.218
(DR5)  alband b # 0 imply |a| < |b]. (5.219
(DR6)  a|bimplies alzb for every z € Z. (5.220

5.221
DR8)  az|bz and z # 0 implies a|b for every z € Z. 5.222

(DR7)  albimplies az|bz for every z € Z. (
( (
(DR9)  alb and b|c imply alc. (5.223
( (
( (

DR10) alb and ¢|d imply ac|bd. 5.224

DR11) alb and alc imply a|(z1b + z2¢) for arbitrary zy, z, € Z. 5.225
(DR12) alband a|(b+ ¢) imply alc. (5.226
5.4.1.2 Prime Numbers

1. Definition and Properties of Prime Numbers

A positive integer p (p > 1) is called a prime number iff 1 and p are its only divisors in the set IN of
positive integers. Positive integers which are not prime numbers are called composite numbers.

For every integer, the smallest positive divisor different from 1 is a prime number. There are infinitely
many prime numbers.

A positive integer p (p > 1) is a prime number iff for arbitrary positive integers a, b, p|(ab) implies p|a
or plb.

2. Sieve of Eratosthenes

By the method of the “Sieve of Eratosthenes”, every prime number smaller than a given positive integer
n can be determined:

)
)
)
)
)
)
)
)
)
)
)
)

a) Write down the list of all positive integers from 2 to n.
b) Underline 2 and delete every subsequent multiple of 2.

c) If p is the first non-deleted and non-underlined number, then underline p and delete every p-th
number (beginning with 2p and counting the numbers of the original list).

d) Repeat step ¢) for every p (p < y/n) and stop the algorithm.

*if and only if
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Every underlined and non-deleted number is a prime number. In this way, all prime numbers < n are
obtained.

The prime numbers are called prime elements of the set of integers.

3. Prime Pairs

Prime numbers with a difference of 2 form prime pairs (twin primes).

W (3,5),(5,7),(11,13),(17,19), (29, 31), (41, 43),(59,61), (71, 73), (101, 103) are prime pairs.

4. Prime Triplets

Prime triplets consist of three prime numbers occuring among four consecutive odd numbers.

W (5,7,11),(7,11,13),(11,13,17),(13,17,19), (17,19, 23), (37,41, 43) are prime triplets.

5. Prime Quadruplets

If the first two and the last two of five consecutive odd numbers are prime pairs, then they are called a
prime quadruplet.

W (5,7,11,13),(11,13,17,19), (101, 103,107, 109), (191, 193, 197, 199) are prime quadruplets.

The conjecture that there exist infinitely many prime pairs, prime triplets, and prime quadruplets, is
not proved still.

6. Mersenne Primes

If 28 — 1, k € N, is a prime number, then k is also a prime number. The numbers 2P — 1 (p prime)
are called Mersenne numbers. A Mersenne prime is a Mersenne number 27 — 1 which is itself a prime
number.

B 2” — 1 is a prime number for the first ten values of p: 2, 3, 5, 7, 13,17, 19, 31, 61, 89, 107, etc.
Remark: Since a few years the largest known prime is always a Mersenne prime, e.g. 243112609 — 1 in
2008, 2°78%5161 _ 1 in 2013. In contrary to other natural numbers the numbers of the form 2% — 1 can
be tested in a relatively simple way whether they are primes: Let p > 2 be a prime and a sequence of
natural numbers is defined by s; = 4, s;41 := s? — 2 (i > 1). The number 2” — 1 is a prime if and only
if the term of the sequence s,_; is divisible by 27 — 1.

The prime test based on this statement is called Lucas-Lehmer test .

7. Fermat Primes

If anumber 25 +1, k € IN, is an odd prime number, then k is a power of 2. The numbers 28 +1, k € N,
are called Fermat numbers. If a Fermat number is a prime number, then it is called a Fermat prime.
B For k = 0,1,2,3,4 the corresponding Fermat numbers 3, 5, 17,257, 65537 are prime numbers. It is
conjectured that there are no further Fermat primes.

8. Fundamental Theorem of Elementary Number Theory

Every positive integer n > 1 can be represented as a product of primes. This representation is unique
except for the order of the factors. Therefore n is called to have exactly one prime factorization.
W360=2-2-2-3-3-5=2%.32.5.

Remark: Analogously, the integers (except —1, 0, 1) can be represented as products of prime elements,
unique apart from the order and the sign of the factors.

9. Canonical Prime Factorization

It is usual to arrange the factors of the prime factorization of a positive integer according to their size,
and to combine equal factors to powers. If every non-occurring prime is assigned exponent 0, then every
positive integer is uniquely determined by the sequence of the exponents of its prime factorization.

B To 1533312 = 27 - 3% - 113 belongs the sequence of exponents (7,2,0,0,3,0,0,...).

For a positive integer n, let py, pa, . .. p,, be the pairwise distinct primes divisors of n, and let a, denote
the exponent of a prime number pj, in the prime factorization of n. Then

m
n =TI (5.227a)
k=1
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and this representation is called the canonical prime factorization of n. It is often denoted by

n=[p"™, (5.227b)
p

where the product applies to all prime numbers p, and where v,(n) is the multiplicity of p as a divisor
of n. It always means a finite product because only finitely many of the exponents v,(n) differ from 0.
10. Positive Divisors

If a positive integer n > 1 is given by its canonical prime factorization (5.227a), then every positive
divisor ¢ of n can be written in the form

t=1[py withme{0,1.2,... ap}fork=1,2,...,m. (5.228a)
k=1
The number 7(n) of all positive divisors of n is
7(n) = [[ (o +1). (5.228b)
k=1

W A: 7(5040) =7(2*-3-5-7) = (4+ )2+ 1)(1+1)(1 + 1) = 60.
B B: 7(pipa---pr) =27, if p1,pa, ..., p, are pairwise distinct prime numbers.
The product P(n) of all positive divisors of n is given by
P(n) = n27m (5.228c¢)
B A: P(20) = 20% = 8000. B B: P(p*) = p% if p is a prime number.
B C: P(pq) = p*¢?, if p and q are different prime numbers.
The sum o (n) of all positive divisors of n is

m o +1
P =1

wo Pl
B A: 0(120) =0(2%-3-5) =15-4-6 = 360. B B: o(p) =p+ 1,if pis a prime number.

o(n) = (5.228d)

5.4.1.3 Criteria for Divisibility

1. Notation
Consider a positive integer given in decimal form:

n = (apap_1 -~ asa1ap) 1o = ax10" + ap_1 107" + - 4+ ay10% + a1 10 + ap. (5.229a)
Then

Qi(n) =ap+a; +as+ -+ a (5.229b)
and

Qi(n) =ap—a; +ag — +-- + (=1)*ay (5.229¢)

are called the sum of the digits (of first order) and the alternating sum of the digits (of first order) of n,
respectively. Furthermore,

Q2(n) = (a1ao)10 + (azaz)10 + (asas)io + - and (5.229d)

Q5(n) = (a1a0)10 — (azaz)io + (asas)io =+ (5.229¢)
are called the sum of the digits and the alternating sum of the digits, respectively, of second order and

Qs3(n) = (aza1a0)10 + (asasaz)io + (asazag)io + -+ (5.229f)
and

Q5(n) = (aga1a9)10 — (asasaz)io + (asazag)ip — + -+ (5.229¢)

are called the sum of the digits and alternating sum of the digits, respectively, of third order .
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B The number 123 456 789 has the following sum of the digits: @1 = 9+8+7+6+5+4+3+2+1 = 45,
Q) = 9—8+T—G+5—4+3—2+1 = 5, Qs = 89+67+45+23+1 = 225, Q) = 89— 67+45—23+1 = 45,
Q3 = 789 + 456 + 123 = 1368 and Q) = 789 — 456 + 123 = 450.

2. Criteria for Divisibility

There are the following criteria for divisibility:

DC-1: 3|n & 3|Q:1(n), (5.230a) DC-2: 7|n < 7|Q5(n), (5.230b)
DC-3: 9n < 9|Q:1(n), (5.230¢) DC-4: 1l|n & 11]Q(n), (5.230d)
DC-5: 13|n < 13|Q4(n) (5.230¢) DC-6: 37|n < 37|Qs(n), (5.230f)
DC-7: 101jn < 101|Q4(n), (5.230g) DC-8: 2[n < 2lay, (5.230L)
DC-9: 5n < 5lag, (5.2301) DC-10: 28|n & 2¥|(ap_1ap—2 - - - arag)10, (5.230j)

DC-11: 5%|n & 5*|(ap_1a_2 - - - azag)1o. (5.230Kk)

B A: o = 123456789 is divisible by 9 since Q1(a) = 45 and 9|45, but it is not divisible by 7 since
Q% (a) = 456 and 7 [456.

B B: 91619 is divisible by 11 since Q] (91 619) = 22 and 11]22.

B C: 99994096 is divisible by 2 since 2|4 096.

5.4.1.4 Greatest Common Divisor and Least Common Multiple

1. Greatest Common Divisor

For integers aq,as, ..., a,, which are not all equal to zero, the largest number in the set of common
divisors of ay,as, ..., a, is called the greatest common divisor of ay,as, ..., a,, and it is denoted by
ged(ay, as, ..., ay). If ged(aq, as, . .., a,) = 1, then the numbers ay, as, . . ., a, are called coprimes.

To determine the greatest common divisor, it is sufficient to consider the positive common divisors. If
the canonical prime factorizations

a; = [[ o) (5.231a)
P

of ay,as, ..., a, are given, then

{min [vp(as)] }
ged(ar, ag, ... a,) = Hp ! . (5.231b)
P

B For the numbers a; = 15400 = 23-52-7-11,ay = 7875 = 3%-5% - 7, a3 = 3850 = 2- 5% . 7- 11, the
greatest common divisor is ged(ay, az, az) = 5% - 7 = 175.
2. Euclidean Algorithm
The greatest common divisor of two integers a, b can be determined by the Fuclidean algorithm without
using their prime factorization. To do this, a sequence of divisions with remainder, according to the
following scheme, is performed. For a > b let ay = a,a; = b. Then:

ag = qray + as, 0<as <ay,

a; = qza3 + as, 0 < az < as,

Do (5.232a)
(p—2 = Qn—10p—1 + n, 0<a, < Ap—1,

ap—1 = {nQn-
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The division algorithm stops after a finite number of steps, since the sequence as, as, ... is a strictly
monotone decreasing sequence of positive integers. The last remainder a,,, different from 0 is the great-
est common divisor of ag and a;.

W gcd(38, 105) = 1, as can be seen by the help of the table to the right.

By the recursion formula 105 =2-38+29

. 383=1-29+49

ged(ay, ag, . . ., an) = ged(ged(ay, ag, - - an-1), an), (5.232b) 290 —=3.94+2
the greatest common divisor of n positive integers with n > 2 can be de- 9=4-2+1
termined by repeated use of the Euclidean algorithm. 2=92.1
W gcd(150,105,56) = ged(ged(150,105),56) = ged(15,56) = 1.
B The Euclidean algorithm to determine the ged (see also 1.1.1.4, 1., 55 =1-344+21
p. 3) of two numbers has especially many steps, if the numbers are adja- 34=1-21+13
cent numbers in the sequence of Fibonacci numbers (see 5.4.1.5, p. 375). 21 =1-13+8
The annexed calculation shows an example where all quotients are al- 13=1-845
ways equal to 1. 8§8=1-5+3
3. Theorem for the Euclidean Algorithm 5=1-3+2
For two natural numbers a,b with @ > b > 0, let A(a,b) denote the 3=1-2+1
number of divisions with remainder in the Euclidean algorithm, and let 2=1-1+1
(b) denote the number of digits of b in the decimal system. Then I=1-1L

Ma,b) <5 k(D). (5.233)
4. Greatest Common Divisor as a Linear Combination
It follows from the Euclidean algorithm that
ay = ap — quay = coap + doay,
a3 = a1 — (203 = c1a9 + diay,
(5.234a)
A = Qp9 = Qn-10p—1 = Cp_20g + dy_2a1.

Here ¢,_» and d,,_5 are integers. Thus the ged(ag, a;) can be represented as a linear combination of ag
and a; with integer coefficients:

ged(ag, ar) = ¢p_sao + d,—2as. (5.234b)
Moreover ged(ay, as, . . ., a,) can be represented as a linear combination of ay, ag, . . . , a,, since:
ged(ay, ag, . .., a,) = ged(ged(ay, ag, ..., an_1),a,) = ¢~ ged(ag, ag, ..., an_1) + da,.  (5.234c)

B gcd(150,105,56) = ged(ged(150, 105),56) = ged(15,56) = 1 with 15 = (—2) - 150 4 3 - 105 and
1=15-15+ (—4) - 56), thus ged (150, 105, 56) = (—30) - 150 + 45 - 105 + (—4) - 56.

5. Least Common Multiple

For integers ay, as, . .., a,, among which there is no zero, the smallest number in the set of positive
common multiples of ay, as, . . ., a, is called the least common multiple of ay, as, .. ., a,, and it is denoted
by lem(ay, as, . . ., ay,).

If the canonical prime factorizations (5.231a) of a1, as, . . ., a, are given, then:

{max [vp(a)] }

lem(ay, az,....a,) = [[p\ . (5.235)
»

B For the numbers a; = 15400 = 2% -5%-7-11,a9 = 7875 = 32 - 5% -7, a3 = 3850 = 2- 52 . 7. 11 the

least common multiple is lem(ay, as, az) = 2% - 32 - 5% - 7- 11 = 693 000.
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6. Relation between gcd and lem
For arbitrary integers a, b:

|ab| = ged(a, b) - lem(a, b). (5.236)
Therefore, the lem(a, b) can be determined with the help of the Euclidean algorithm without using the
prime factorizations of a and b.

5.4.1.5 Fibonacci Numbers

1. Recursion Formula
The sequence

(Fp)nen with Fy = Fy =1 and F,0 = F, + F, 4 (5.237)
is called Fibonacci sequence. It starts with the elements 1, 1,2, 3,5,8, 13,21, 34,55, 89, 144,
233,377, ...
B The consideration of this sequence goes back to the question posed by Fibonacci in 1202: How many
pairs of descendants has a pair of rabbits at the end of a year, if every pair in every month produces a
new pair, which beginning with the second month itself produces new descended pairs? The answer is
Fiy = 377.
2. Explicit Formula
Besides the recursive definition (5.237) there is an explicit formula for the Fibonacci numbers:

Some important properties of Fibonacci numbers are the followings. For m,n € IN:

(1) Fuin = Fo i Fy + FFyyy (m>1). (5.239a) (2) Fon|Fpon. (5.239b)

(8) ged(m,n) = dimplies ged(Fy,, ) = Fy. (5.239¢) (4) ged(Fy, Fryr) = 1. (5.239d)

(5) Fyu|Fy, holds iff m|k holds. (5.239¢) (6) > F? = F,Fo. (5.239f)
i=1

(7) ged(m,n) = 1 implies F,,, Fy| Fp- (5.239¢) (8) Y Fi=Fu2— 1. (5.239h)
i=1

(9) FuFpyo — F2, = (—1)™™ (5.2391) (10) F2+ F2,, = Foppr. (5.239j)

(11) F2,, — F? = Fyu . (5.239K)

5.4.2 Linear Diophantine Equations

1. Diophantine Equations

An equation f(z1,29,...,x,) = bis called a Diophantine equation in n unknowns iff f(xy, za,..., ;)
is a polynomial in 21, xs, . .., , with coefficients in the set Z of integers, b is an integer constant and
only integer solutions are of interest. The name “Diophantine” reminds of the Greek mathematician
Diophantus, who lived around 250 AD.

In practice, Diophantine equations occur for instance, if relations between quantities are described.
Until now, only general solutions of Diophantine equations of at most second degree with two variables
are known. Solutions of Diophantine equations of higher degrees are only known in special cases.



376 5. Algebra and Discrete Mathematics

2. Linear Diophantine Equations in n Unknowns
A linear Diophantine equation in n unknowns is an equation of the form

a1 + asxg + - apry, = b (a; €7, b€ Z), (5.240)
where only integer solutions are searched for. A solution method is described in the following.
3. Conditions of Solvability
If not all the coefficients a; are equal to zero, then the Diophantine equation (5.240) is solvable iff
ged(aq, ag, . .., a,) is a divisor of b.
B 1142 + 315y = 3 is solvable, since ged(114, 315) = 3.
If a linear Diophantine equation in n unknowns (n > 1) has a solution and Z is the domain of variables,
then the equation has infinitely many solutions. Then in the set of solutions there are n—1 free variables.
For subsets of Z, this statement is not true.
4. Solution Method for n = 2
Let

a1y + agra = b (ag,as) # (0,0) (5.241a)
be a solvable Diophantine equation, i.e., ged(ap, az)|b. To find a special solution of the equation, the
equation is divided by ged(ay, a2) and one obtains a} @} + ayal, = b with ged(a), ay) = 1.
As described in 5.4.1, 4., p. 374, ged(a), ab) is determined to obtain finally a linear combination of a}
and ay: ajc) +aheh = 1.
Substitution in the given equation demonstrates that the ordered pair (¢ b', 4') of integers is a solution
of the given Diophantine equation.
B 1142+315y = 6. The equation is divided by 3, since 3 = ged(114, 315). That implies 382+ 105y = 2
and 38 - 47 4 105 - (—=17) =1 (see 5.4.1, 4., p. 374). The ordered pair (47 - 2,(—17) - 2) = (94, —34) is
a special solution of the equation 1142 + 315y = 6.
The family of solutions of (5.241a) can be obtained as follows: If (29, 239) is an arbitrary special solution,
which could also be obtained by trial and error, then

{2+ t-ah,ay —t-a))|t € Z} (5.241b)
is the set of all solutions.
B The set of solutions of the equation 114z + 315y = 6 is {(94 + 315¢, —34 — 114¢)|t € Z}.

5. Reduction Method for n > 2
Suppose a solvable Diophantine equation

a1y + asTy + -+ apxr, = b (5.242a)
with (a1, as, ..., a,) # (0,0,...,0) and ged(aq, as, . . ., a,) = 1is given. If ged(ay, as, . .., a,) # 1, then
the equation should be divided by ged(aq, as, ..., a,). After the transformation

1Ty + Xy + - F Ay 1Ty = b— ApTy (5242b)

Z,, 1s considered as an integer constant and a linear Diophantine equation in n— 1 unknowns is obtained,
and it is solvable iff ged(ay, as, . .., an—1) is a divisor of b — a,,z,.
The condition

ged(ay, az, ... an_1)|b — anx, (5.242¢)
is satisfied iff there are integers c, ¢, such that:
ged(ay, ag, ... an_1) - ¢+ anc, =b. (5.242d)

This is a linear Diophantine equation in two unknowns, and it can be solved as shown in 5.4.2,4., p. 376.
If its solution is determined, then it remains to solve a Diophantine equation in only n — 1 unknowns.
This procedure can be continued until a Diophantine equation in two unknowns is obtained, which can
be solved with the method given in 5.4.2, 4., p. 376.

Finally, the solution of the given equation is constructed from the set of solutions obtained in this way.
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B Solve the Diophantine equation

2x 44y + 32 = 3. (5.243a)
This is solvable since ged(2, 4, 3) is a divisor of 3.
The Diophantine equation

2r+4y =3 —3z (5.243b)
in the unknowns z, y is solvable iff ged(2,4) is a divisor of 3 — 3z. The corresponding Diophantine
equation 22" 4+ 3z = 3 has the set of solutions {(—3 + 3t,3 — 2¢)|t € Z}. This implies, z = 3 — 2t, and
now the set of solutions of the solvable Diophantine equation 2z + 4y = 3 — 3(3 — 2t) or

T +2y=—-3+3t (5.243c¢)
is sought for every t € Z.
The equation (5.243c) is solvable since ged(1,2) = 1|(=3+3t). Now 1- (1) +2-1=1and1- (3 —
3t)+2-(—3+3t) = =3+ 3t. The set of solution is {((3 — 3t) +2s, (—3+3t) — s)|s € Z} . That implies
x=(3—-3t)+2s,y = (—3+3t) — s, and {(3 — 3t +2s, =3 + 3t — 5,3 — 2t)|s,t € Z} so obtained is
the set of solutions of (5.243a).

5.4.3 Congruences and Residue Classes

1. Congruences

Let m be a positive integer m, m > 1. If two integers a and b have the same remainder, when divided
by m, then a and b are called congruent modulo m, denoted by a = b mod m or a = b(m).

B 3=13mod5 38=13modb, 3= -2modb>.

Remark: Obviously, a« = b mod m holds iff m is a divisor of the difference a — b. Congruence modulo
m is an equivalence relation (see 5.2.4, 1., p. 334) in the set of integers. Note the following properties:

a = a mod m for every a € Z, (5.244a)
a=bmod m= b=amodm, (5.244b)
a=bmod mAb=cmodm = a=cmodm. (5.244c)

2. Calculating Rules

a=bmodmAc=dmodm = a+c=0b+dmodm, (5.245a)

a=bmodmAc=dmodm=a-c=0b-dmodm, (5.245b)

a-c=b-cmodmA ged(e,m) =1 = a=bmodm, (5.245¢)

a-c=b-cmodmA c#0= a=bmod— . (5.245d)
ged(c, m)

3. Residue Classes, Residue Class Ring
Since congruence modulo m is an equivalence relation in Z, this relation induces a partition of Z into
residue classes modulo m:

laly = {z]|z € ZA 2z = amod m}. (5.246)
The residue class “ @ modulo m ” consists of all integers having equal remainder if divided by m. Now
[a]m = [b]m iff @ = b mod m.
There are exactly m residue classes modulo m, and normally they are represented by their smallest
non-negative representatives:

[O]Tm [1]m> LR} [m - 1]771» (5'247)
In the set Z,, of residue classes modulo m, residue class addition and residue class multiplication are
defined by

(@] @ [b]im = [a + blm, (5.248)

(@] ® [B]m = [a - D] (5.249)
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These residue class operations are independent of the chosen representatives, i.e.,
[a]y = [@],n and [b],, = [0'],n imply

[alin @ bl = [a'in @ (V] and [aly © [Blm = (@] © [0]m. (5.250)
The residue classes modulo m form a ring with unit element, with respect to residue class addition
and residue class multiplication (see 5.4.3, 1., p. 377), the residue class ring modulo m. If p is a prime
number, then the residue class ring modulo p is a field (see 5.3.7, 2., p. 361).
4. Residue Classes Relatively Prime to m
A residue class [a],,, with ged(a,m) = 1 is called a residue class relatively prime to m. If p is a prime
number, then all residue classes different from [0],, are residue classes relatively prime to p.
The residue classes relatively prime to m form an Abelian group (5.3.3.1,1., p. 336) with respect to
residue class multiplication, the so-called group of residue classes relatively prime to m. The order of
this group is p(m), where ¢ is the Euler function (see 5.4.4, 1., p. 381).
W A: [1]s, [3]s, [5]s, [7]s are residue classes relatively prime to 8.
B B: (15, [2]5, [3]5, [4]5 are residue classes relatively prime to 5.
B C: ¢(8) = p(h) =4 is valid.
5. Primitive Residue Classes
A residue class [a],,, relatively prime to m is called a primitive residue class if it has order ¢(m) in the
group of residue classes relatively prime to m.
B A: [2]; is a primitive residue class modulo 5, since ([2]5)% = [4]5, ([2]5)% = [3]5, ([2]5)* = [1]s.
B B: There is no primitive residue class modulo 8, since [1]s has order 1, and [3]s, [5]s, [7]s have order
2 in the group of residue classes relatively prime to m.
Remark: There is a primitive residue class modulo m, iff m = 2,m = 4, m = p* or m = 2p*, where p
is an odd prime number and k is a positive integer.
If there is a primitive residue class modulo m, then the group of residue classes relatively prime to m
forms a cyclic group.
6. Linear Congruences
1. Definition If a,b and m > 0 are integers, then

ax = b(m) (5.251)
is called a linear congruence (in the unknown ).
2. Solutions An integer z* satisfying ax* = b(m) is a solution of this congruence. Every integer,

which is congruent to 2* modulo m, is also a solution. In finding all solutions of (5.251) it is sufficient
to find the integers pairwise incongruent modulo m which satisfy the congruence.

The congruence (5.251) is solvable iff ged(a, m) is a divisor of b. In this case, the number of solutions
modulo m is equal to ged(a, m).

In particular, if ged(a, m) = 1 holds, the congruence modulo m has a unique solution.

3. Solution Method There are different solution methods for linear congruences. It is possible to
transform the congruence ax = b(m) into the Diophantine equation axz + my = b, and to determine
a special solution (z2°,4°) of the Diophantine equation o’z + m'y = ¥ with ¢’ = a/ged(a, m),m’ =
m/ged(a,m), b’ = b/ged(a, m) (see 5.4.2, 1., p. 375).

The congruence o’z = b'(m') has a unique solution since ged(a’, m’) = 1 modulo m’, and

= a(m). (5.252a)
The congruence ax = b(m) has exactly ged(a, m) solutions modulo m:
2% 2% +m, 2%+ 2m, . 2 4 (ged(a, m) — 1)m. (5.252Db)

B 1142 = 6 mod 315 is solvable, since ged(114, 315) is a divisor of 6; there are three solutions modulo
315.

38z = 2 mod 105 has a unique solution: 2 = 94 mod 105 (see 5.4.2, 4., p. 376). 94, 199, and 304 are
the solutions of 114z = 3 mod 315.
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7. Simultaneous Linear Congruences
If finitely many congruences

x = bi(my),x = by(ma),. ..,z = b(my) (5.253)
are given, then (5.253) is called a system of simultaneous linear congruences. A result on the set of
solutions is the Chinese remainder theorem: Consider a given system x = by(my), z = bay(ma), ...,z =
by(my), where my, ma, ..., m; are pairwise coprime numbers. If

m m m
M= My My, A = —, 0y = —, ..., 0 = — (5.254a)
my my my
and x; is chosen such that a;z; = b;(m;) for j = 1,2,...,¢, then
2= a1 + aswo + -+ ayy (5.254b)

is a solution of the system. The system has a unique solution modulo m, i.e., if 2’ is a solution, then z”

is a solution, too, iff 2" = 2/(m).

B Solve the system z = 1(2), 2« = 2(3), x = 4(5), where 2, 3,5 are pairwise coprime numbers.
Then m = 30,a; = 15,a2 = 10,a3 = 6. The congruences 1521 = 1(2), 10z, = 2(3), 6z3 = 4(5)
have the special solutions z; = 1, x5 = 2, w3 = 4. The given system has a unique solution modulo m:
2=15-1410-2+6-4(30), ie., z = 29 (30).

Remark: Systems of simultaneous linear congruences can be used to reduce the problem of solving
non-linear congruences modulo m to the problem of solving congruences modulo prime number powers
(see 5.4.3, 9., p. 380).

8. Quadratic Congruences

1. Quadratic Residues Modulo m One can solve every congruence ax? + bz + ¢ = 0(m) if one
can solve every congruence z2 = a(m):

ar® +bx 4+ c=0(m) < (2ax +b)* = b* — dac(m). (5.255)

First quadratic residues modulo m are considered: Let m € IN;m > 1 and a € Z, ged(a,m) = 1. The
number a is called a quadratic residue modulo m iff there is an x € Z with 22 = a(m).

If the canonical prime factorization of m is given, i.e.,
oo
m=[]p", (5.256)
i=1

then r is a quadratic residue modulo m iff 7 is a quadratic residue modulo p$ for i = 1,2,3,....
If a is a quadratic residue modulo a prime number p, then this is denoted by <E> = 1;if a is a quadratic
p

non-residue modulo p, then it is denoted by <£> = —1 (Legendre symbol).
P
B The numbers 1,4, 7 are quadratic residues modulo 9.

2. Properties of Quadratic Congruences

(B1)  pfaband a = b(p) imply (%) _ (9> (5.257)

p

(E2) (%) — 1 (5.257b)

(E3) (%) N (5.257¢)
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(E4) <%’> = (%) : (g) in particular (‘%’2) = <%> . (5.257d)

(E5) @) = (-1)" o (5.257¢)

(E6) Quadratic reciprocity law: If p and ¢ are distinet odd prime numbers,

] —1¢-1
then (g)(%) (-7 7. (5.257f)

® (i) = (o) () = (5 () = ) () = 0™ (5) = - (3) -

307/ \307/) \307) ~ \ 5 13/ \5 13) 1) \13)

1321
—(-1)" 8 =1.
In General: A congruence ¥ = a(2%), ged(a,2) = 1, is solvable iff a = 1(4) for @ = 2 and a = 1(8)
for a > 3. If these conditions are satisfied, then modulo 2% there is one solution for @ = 1, there are
two solutions for @ = 2 and four solutions for av > 3.
A necessary condition for solvability of congruences of the general form
22 =a(m), m=2pYrpsz - p,  ged(a,m) = 1, (5.258a)

is the solvability of the congruences

a=14)fora=2, a=1(8)fora >3, <3) =1, <i> =1, ..., (5> =1 (5.258b)

P P2 Pt
If all these conditions are satisfied, then the number of solutions is equal to 2! for a = 0 and o = 1,
equal to 27! for o = 2 and equal to 2t*2 for a > 3.
9. Polynomial Congruences
If mq, ma, ..., my; are pairwise coprime numbers, then the congruence

F(2) = apz™ + an 12" 4+ ag = 0(mymy - - - my) (5.259a)
is equivalent to the system

F(&) = 00my), f(@) = 0(ma), ... fla) = 0(m). (5.250b)
If k; is the number of solutions of f(x) = 0(m;) for j = 1,2,...,¢, then kyk, - - - k; is the number of
solutions of f(x) = 0(myms - --my). This means that the solution of the congruence

f@) =0y ), (5.259¢)
where py, pa, . .., p are primes, can be reduced to the solution of congruences f(x) = 0(p®). Moreover,
these congruences can be reduced to congruences f(z) = 0(p) modulo prime numbers in the following
way:

a) A solution of f(z) = 0(p*) is a solution of f(z) = 0(p), too.

b) A solution z = z(p) of f(x) = 0(p) defines a unique solution modulo p* iff f'(z;) is not divisible

by p:

Suppose f(x1) = 0(p). Let = 21 + pt; and determine the unique solution #; of the linear congruence
x .

)4 i = 0) (5.260a)
Substitute t; = ¢} + pty into x = z; + pty, then & = x5 + p*ty is obtained. Now, the solution #} of the
linear congruence

flz2)

=t f'(@2)t: = 0(p) (5.260b)
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has to be determined modulo p*>. By substitution of t, = t, + pt3 into x = w9 + p°ty the result
2 = a3 + p3t; is obtained. Continuing this process yields the solution of the congruence f(z) = 0 (p®).
B Solve the congruence f(z) = z* + 7o +4 = 0(27). f(z) = 2 + 7o + 4 = 0(3) implies z =
1(3), i.e., z = 1+ 3t;. Because of f'(x) = 4a® + 7 and 3/ f/(1) now the solution of the congruence
F()/3+ /(1) -ty =4+ 114, = 0(3) is searched for: ¢, = 1(3), i.e., t; =1+ 3ty and & = 4 + 9i».
Then consider f(4)/9+ f'(4) - t2 = 0(3) and the solution ¢, = 2 (3) is obtained, i.e., to = 2 + 3t3 and
x = 22 + 27t3. Therefore, 22 is the solution of # + 7z + 4 = 0 (27), uniquely determined modulo 27.

5.4.4 Theorems of Fermat, Euler, and Wilson

1. Euler Function

For every positive integer m with m > 0 one can determine the number of coprimes x with respect to
m for 1 < a < m. The corresponding function ¢ is called the Euler function. The value of the function
©(m) is the number of residue classes relatively prime to m (s. 5.4.3, 4., p. 378).

For instance, (1) = 1, ¢(2) = 1, ¢(3) = 2, p(4) =2, ¢(5) =4, (6) =2, p(7) =6, ¢(8) = 4, etc.
In general, ¢(p) = p— 1 holds for every prime number p and p(p®) = p* — p*~! for every prime number
power p®. If m is an arbitrary positive integer, then ¢(m) can be determined in the following way:

1
p(m) = ’m,pl‘:[n <1 - ;) , (5.261a)

where the product applies to all prime divisors p of m.

W o(360) = (2*-32-5) =360 (1 1) - (1— 1)~ (1 1) = 96.

Furthermore
> p(d)=m (5.261b)
djm

is valid. If ged(m, n) = 1 holds, then we get p(mn) = o(m)e(n).

W p(360) = (23 -3%-5) = p(23) - 0(3%) - p(5) =4 -6 - 4 = 96.

2. Fermat-Euler Theorem

The Fermat-Euler theorem is one of the most important theorems of elementary number theory. If a

and m are coprime positive numbers, then

a?™ = 1(m). (5.262

g

B Determine the last three digits of 9% in decimal notation. This means, determine z with z =
9% (1000) and 0 < & < 999. Now ©(1000) = 400, and according to Fermats theorem 9% = 1(1000).
Furthermore 9 = (80 + 1) -9 = ((5)80° - 14+ (})80" - 1%) - 9 = (1 +4-80) - 9 = —79 - 9 = 89 (400).
From that it follows that 9% = 9%9 = (10—-1)% = (8(?) 100 (1) + (819) 10t (—1)%+ (829) 102-(—1)% =
—1+489-10 — 3916 - 100 = —1 — 110 + 400 = 289(1000). The decimal notation of 9% ends with the
digits 289.

Remark: The theorem above for m = p, i.e., ¢(p) = p— 1 was proved by Fermat; the general form was
proved by Euler. This theorem forms the basis for encoding schemes (see 5.4.6). It contains a necessary
criterion for the prime number property of a positive integer: If p is a prime, then a?~! = 1(p) holds for
every integer a with p fa.

3. Wilson’s Theorem

There is a further prime number criterion, called the Wilson theorem:
Every prime number p satisfies (p — 1)! = —1(p).
The inverse proposition is also true; and therefore:
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The number p is a prime number iff (p — 1)! = —1(p).

5.4.5 Prime Number Tests

In the followings two stochastic prime tests will be presented which are useful at large numbers to test
the prime property with a sufficiently small probability of mistakes. With these tests it is possible to
show that a number is not a prime, without knowing its prime factors.

1. Fermat-Prime Number Test

Let n be an odd natural number and @ an integer such that ged(a, n) = 1 and a®~! = 1 (mod n).. Then
n is called a pseudoprime to base a.

B A: 341 is a pseudo prime to basis 2; 341 is not a pseudo prime to basis 3.

Test: Let an odd natural number n > 1 be given. Choose a € Z, \ {0}.

o If the ged (a,n) > 1, then n is not prime.

o If the ged (a,n) = 1 and " =1 (modn) then n did pass the test to base a. If n did
& ’ a"'#1 (modn) [’ did not pass :

not pass the test, then n is not a prime. If n did pass the test, then it may be a prime, but more tests

are needed with other base, i.e. tests with further values of a.

B B: n = 15: The test with a = 4 gives 4% = 1(mod 15). The test with a = 7 gives 71 = 4 #

1 (mod 15). Hence 15 is not a prime.

B C: n = 561: The test with arbitrary a € Zss \ {0} with ged(a,561) = 1 results in ¢®® =

1 (mod561). But 561 = 3 - 11 - 17 is not a prime.

Remark: A composite number n for which a”~! = 1 (modn) for all a € Z,, \ {0} with ged(a,n) = 1is

called a Carmichael number.

If n is not a prime and not a Carmichael number, then one can show that the level of error of the first

kind to get a false result using & numbers with ged(a, n) =1 is at most 1/2F . At least for the half of the

numbers in Z, \ {0} with ged(a, n) =1 the relation a"~! # 1 (mod n) holds.

2. Rabin-Miller Prim Number Test
The Rabin-Miller primality test is based on the following statement (x):
Let n > 2 be a prime, n — 1 = 2'u (u is odd), g.c.d(a,n) =1. Then:
a" = 1(mod n) or a** = —1 (modn) for some j € {0,1,...,¢t —1}. (%)
Every odd natural number n > 1 can be tested about prime property in the following way:
Test: Choose a € Z, \ {0} and find the representation n — 1 = 2y (u is odd).
e If g.c.d(a,n) > 1, then n is not a prime.
o If g.c.d(a,n) =1, then the sequence a* (modn), a®(modn), ..., a® "“(mod n) is calculated until a
value is found which satisfies (). These elements are calculated by repeated squaring mod n. If there
is no such value, then n is not a prime. Otherwise n did pass the test to basis a.
B A: n = 561, and should be tested by different values of a:

2% =263# +1 (mod 561)

7

210 =166 % —1 (mod 561), . .
_ o4, _ 9. ) ! .
n—1=2-35, a=2 9140 67 1 (mod 561), 561 is not a prime.
2280 =421 # —1  (mod 561).

If choosing k different values randomly and independently and n passes the test to basis a for each,
then the error rate of the first kind that n is not a prime is < 1/4*. In the practice k = 25 is chosen.
B B: There is only one number < 2,5 - 10'Y such that it passes the test to basis a = 2,3,5, 7 and it is
not a prime.
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3. AKS Prime Number Test

The AKS primality test is based on a polynomial algorithm to determine whether a number is prime or
composite. Published by Agrawal, Kayal, and Saxena, in 2002, meanwhile it is evident that the prime
property can be tested efficiently for any natural number.

The test is based on the following statements:

If n > 1is a natural number and r is a prime satistying the assumtions

e 1 is not divisible by primes < r,

o 7' % 1 (modn)fori=12,...,[(log,n)?]*,

o (z+a)"=2"+a(modz" —1,n)forevery 1 < a < /rlogn,

Then n is a power of a prime.

Let n > 1 be an odd natural number whose prime characteristic is to be tested, and m := | (log, n)®].
If n < 5690034, then it is tested by comparing it to a list of known prime numbers whether n is a prime.
For n > 5690034 holds n > m:

Test:

e Check, whether n can be divided by a natural number from the interval [3,m]. If yes, then n is not
a prime.

e Otherwise take a prime r < m, such that r* # 1(modn) for i = 1,2,...,|(logyn)?|. (It can be
proven, that such a prime 7 exists.)

e Check, whether the congruence (z + a)" = 2" + a( mod 2" — 1,n) for a = 1,2, /7| (log, n)] holds.
If not, then n is not a prime. If yes, then n is a power of a prime. In this case it is to be tested, whether
natural numbers ¢ and k > 1 exist, for which n = ¢*. If not, then n is a prime.

Different to the known and efficient stochastic algorithms, the result of the test can be trusted without
even a negligible small error probability of mistakes. However in cryptography the Rabin-Miller test is
preferred.

5.4.6 Codes
5.4.6.1 Control Digits

In the information theory methods are provided to recognize and to correct errors in data combinations.
Some of the simplest methods are represented in the form of the following control digits.
1. International Standard Book Number ISBN-10
A simple application of the congruence of numbers is the use of control digits with the International
Standard Book Number ISBN. A combination of 10 digits of the form

ISBN a — bed — ef ghi — p. (5.263a)
is assigned to a book. The digits have the following meaning: a is the group number (for example, a = 3
tells us that the book originates from Austria, Germany, or Switzerland), bed is the publisher’s number,
and e fghi is the title number of the book by this publisher. A control digit p will be added to detect
erroneous book orders and thus help reduce expenses. The control digit p is the smallest non-negative
digit that fulfils the following congruence:

10a + 9b + 8¢+ Td + 6e + 5f + 4g + 3h + 2i + p = 0(11). (5.263b)
If the control digit p is 10, a unary symbol such as X is used (see also 5.4.6, 3., p. 384). A presented
ISBN can now be checked for a match of the control digit contained in the ISBN and the control digit
determined from all the other digits. In case of no match an error is certain. The ISBN control digit
method permits the detection of the following errors:
1. Single digit error and
2. interchange of two digits.
Statistical investigations showed that by this method more than 90% of all actual errors can be detected.
All other observed error types have a relative frequency of less than 1%. In the majority of the cases

*|2] is symbol for “greatest integer < a7.




384 5. Algebra and Discrete Mathematics

the described method will detect the interchange of two digits or the interchange of two complete digit
blocks.

2. Central Codes for Drugs and Medicines

In pharmacy, a similar numerical system with control digits is employed for identifying medicaments.
In Germany, each medicament is assigned a seven digit control code:

abede fp. (5.264a)
The last digit is the control digit p. It is the smallest, non-negative number that fulfils the congruence
2a 4+ 3b+4c+5d+6e + 7f = p(11). (5.264b)

Here too, the single digit error or the interchange of two digits can always be detected.

3. Account Numbers

Banks and saving banks use a uniform account number system with a maximum of 10 digits (depending
on the business volume). The first (at most four) digits serve the classification of the account. The
remaining six digits represent the actual account number including a control digit in the last position.
The individual banks and saving banks tend to apply different control digit methods, for example:

a) The digits are multiplied alternately by 2 and by 1, beginning with the rightmost digit. A control
digit p will then be added to the sum of these products such that the new total is the next number
divisible by 10. Given the account number abed e fghi p with control digit p, then the congruence

2i+h+29+ f+2e+d+2c+b+2a+p=0 (mod10). (5.265)
holds.

b) As in method a), however, any two-digit product is first replaced by the sum of its two digits and
then the total sum will be calculated.

In case a) all errors caused by the interchange of adjacent digits and almost all single-digit errors will
be detected.

In case b), however, all errors caused by the change of one digit and almost all errors caused by the
interchange of two adjacent digits will be discovered. Errors due to the interchange of non-adjacent
digits and the change of two digits will often not be detected.

The reason for not using the more powerful control digit method modulo 11 is of a non-mathematical
nature. The non-numerical sign X (instead of the control digit 10 (see 5.4.6, 1., p. 383)) would require
an extension of the numerical keyboard. However, renouncing those account numbers whose control
digit has the value of 10 would have barred the smooth extension of the original account number in a
considerable number of cases.

4. European Article Number EAN

EAN stands for Furopean Article Number. 1t can be found on most articles as a bar code or as a string
of 13 or 8 digits. The bar code can be read by means of a scanner at the counter.

In the case of 13-digit strings the first two digits identify the country of origin, e.g., 40,41,42 and
43 stand for Germany. The next five digits identify the producer, the following five digits identify a
particular product. The last digit is the control digit p.

This control digit will be obtained by first multiplying all 12 digits of the string alternately by 1 and
3 starting with the left-most digit, by then totalling all values, and by finally adding a p such that the
next number divisible by 10 is obtained. Given the article number abede f ghikmn p with control digit
p, then the congruence

a+3b+c+3d+e+3f+g+3h+i+3k+m+3n+p=0(mod1l0). (5.266)
holds.

This control digit method always permits the detection of single digit errors in the EAN and often the
detection of the interchange of two adjacent digits. The interchange of two non-adjacent digits and the
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change of two digits will often not be detected.

5.4.6.2 Error correcting codes

1. Model of Data Transmission and Error Correction

At transmission of messages through noisy channels the correction of errors is often possible. The mes-
sage is coded first, then after transmission the usually biased codes are corrected into the right ones,
so after decoding them the original message can be recovered. That case is considered now, when the
length of the words of the message is k, and the length of the coded words is n, and both of them consist
of only zeros and ones. Then £k is the number of information positions and n— k is the number of redun-
dant positions. Every word of the message is an element of GF(2)" (see 5.3.7.4 p. 363) and every word
of the code is an element of GF(2)". To simplify the notation the words of the message are written in
the form ay, as, . . ., aj, and the words of the code in the form ¢y, cs, ..., ¢,. The words of the message
are not transmitted, only the words of the code are.

An often used idea of error correction is to convert the transmitted word dy, ds, . . . , d, first into a valid
codeword ¢, ¢, .. ., ¢, which differs from it in the least number of digits (decoding MLD). It depends
on the properties of coding and the transmission channels that how many errors can be detected and
corrected in this way.

B At digit repeating codes the message word 0 is represented by the codeword 0000. If after trans-
mission the receiver gets the word 0010, then he assumes that the original codeword was 0000, and
it is decoded as message word 0. But if the received word is 1010, then similar assumption can not
be applied, since the message word 1 is coded as 1111, so the difference is similar. At least it can be
recognized that there is some error in the received word.

2. t-Error Correcting Codes

The set of all codewords is called code C. The distance of two codewords is the number of digits (po-
sitions) in which the two words differ from each other. The minimal distance duin(C) of codes is the
smallest distance which occurs between the codewords of C.

B For C; = {0000,1111}, dpin(C); = 4. For Co = {000,011,101,110}, dpin(C2) = 2, since there are
codewords which have distance 2. For C3 = {00000,01101, 10111, 11010}, dyin(Cs) = 3, there are code-
words in C3 whose distance is 3.

If the minimal distance dyin (C) of a code C is known, then it is easy to recognize how many transmis-
sion errors can be corrected. Codes, correcting ¢ errors, are called t-error correcting. A code C is t-error
correcting if dp, (C) > 2t + 1.

B (Continuation) C; is 1-error correcting, Cs is O-error correcting (it means, that no error can be cor-
rected), Cs is 1-error correcting.

t
For every t-error correcting code C € GM(2)" holds 37 (;L) -|C] < 2. If equality holds, then C is called
=0

t-perfect.

B The digit repeating code C = {00...0,11...1} C GF(2)**! is t-perfect.

3. Linear Codes

A non-empty subset C C GF(2)" is called (binary) linear code, if C is a sub-vector space of GF(2)". If
a linear code C C GF(2)" has dimension k, then it is called an (n, k) linear code.

B (Continuation) C; is a (4,1) linear code, Cy is a (3,2) linear code, C3 is a (5,2) linear code. In the case
of linear codes the minimal distance (and as a consequence the number of correctible errors) is easy
to determine: The minimal distance of such a code is the smallest distance of a non-zero vector from
the zero vector of the vector space. The minimal distance can be found if the minimal number of ones,
except with all zeros, in the codewords is given.

For every (n, k) linear code there is a generating matriz G for which C = {aG | a € GF(2)*}:

g1t - Gin 1
G=1|: : : =1l (5.267)

Gkt - Gkn /) pyp Gk
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The code is uniquely defined by the generating matrix; the codeword of the message word ajas . . . ay is
determined in the following way:

a1ay ... ap > a g1 + asga + . .. + apgr - (5.268)
aG

In the case of an (n, k) linear code C a check matriz is needed for decoding:

hir ... hin
H= : : : . (5.269)
hn—k,l e hn—k.n (n—k)xn

The (binary) linear code C is 1-error correcting, if the columns of H are pairwise different and non-zero
vectors. If the result of the transmission is the word d = dyd .. .d,, then Hd" is calculated. If the
result is the zero vector, then d is a codeword. Otherwise if Hd" is the i-th column of the check matrix
H, then the corresponding codeword is d + ¢;, where ¢; = (0,0,...,0,1,0,...,0) and the 1 is on the
i-th position.

4. Cyclic Codes

Cyclic codes are the most investigated linear codes. They provide efficient coding and decoding.

A (binary) (n, k) linear code is called cyclic if for every codeword ¢ics . .. ¢, the codeword obtained by
a cyclic right shift of the components is also a codeword, i.e. ¢oc; ...cpm1 € C = ¢_1¢0C1 ... Ch2 €C
W C = {000,110,101,011} is a cyclic (3,2) linear code.

To have an efficient work with cyclic codes, the codewords are represented by polynomials of degree
< n — 1 with coefficients from GF(2): C = {000, 110, 101, 011} is a cyclic (3, 2)-linear code.

A (binary) (n, k) linear code C is cyclic if and only if for every ¢(z)

c(z) € C = c(z) - x(mod 2" -1) € C (5.270)
A cyclic (n, k) linear code can be described by a generating polynomial and a control polynomial as
follows: The generating polynomial g(x) of degree n — k (k € {1,2,...,n — 1}) is a divisor of 2 — 1.

The polynomial h(z) of degree k for which g(z)h(z) = 2™ — 1 1is called the control polynomial . Coding
of ajasy . .. ay in polynomial representation a(x) is given by

a(z) = a(z) - g(z). (5.271)
Polynomial d(z) is an element of the code, if the generator polynomial g(z) is a divisor of d(x), or the
control polynomial h(x) satisfies the relation d(x)h(z) = 0mod 2™ — 1.

An important class of cyclic codes are the BCH-codes. Here a lower bound § of the minimal distance
and with it a lower bound for the number of errors can be required for which code should be corrected.
Here § is called the design distance of the code.

A (binary) (n, k) linear code C is a BCH-code with design distance 0 if for the generating polynomial
g(x):

g(z) = lem(mas (), mgv+1 (), . .., Mgprs—2(2)) (5.272)
where o is a primitive n-th unit root and b is an integer. The polynomials 1, () are minimal polyno-
mials of a/.

For a BCH-code C with design distance § the relation dy;,(C) > § must hold.

5.5 Cryptology
5.5.1 Problem of Cryptology

Cryptology is the science of hiding information by the transformation of data.

The idea of protecting data from unauthorized access is rather old. During the 1970s together with the
introduction of cryptosystems on the basis of public keys, cryptology became an independent branch of
science. Today, the subject of cryptological research is how to protect data from unauthorized access
and against tampering.
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Beside the classical military applications, the needs of the information society gain more and more in
importance. Examples are the guarantee of secure message transfer via email, electronic funds transfer
(home-banking), the PIN of EC-cards, etc.

Today, the fields of cryptography and cryptanalysis are subsumed under the notion of cryptology. Cryp-
tography is concerned with the development of cryptosystems whose cryptographic strengths can be
assessed by applying the methods of cryptanalysis for breaking cryptosystems.

5.5.2 Cryptosystems

An abstract cryptosystem consists of the following sets: a set A/ of messages, a set C' of ciphertexts,
sets K and K’ of keys, and sets E and D of functions. A message m € M will be encrypted into a
ciphertext ¢ € C' by applying a function ' € E together with a key k € K, and will be transmitted via
a communication channel. The recipient can reproduce the original message m from ¢ if he knows an
appropriate function D € D and the corresponding key k' € K’. There are two types of cryptosystems:

1. Symmetric Cryptosystems: The conventional symmetric cryptosystem uses the same key & for
encryption of the message and for decryption of the ciphertext. The user has complete freedom in
setting up his conventional cryptosystem. Encryption and decryption should, however, not become
too complex. In any case, a trustworthy transmission between the two communication partners is
mandatory.

2. Asymmetric Cryptosystems: The asymmetric cryptosystem (see 5.5.7.1, p. 391) uses two keys,
one private key (to be kept secret) and a public key. The public key can be transmitted along the same
path as the ciphertext. The security of the communication is warranted by the use of so-called one-way
Sfunctions (see 5.5.7.2, p. 391), which makes it practically impossible for the unauthorized listener to
deduce the plaintext from the ciphertext.

5.5.3 Mathematical Foundation

An alphabet A = {ag,ay,...,a,_1} is a finite non-empty totally ordered set, whose elements a; are
called letters. |A] is the length of the alphabet. A sequence of letters w = a{dj ... a], of length n € IN
and a; € A is called a word of length n over the alphabet A. A™ denotes the set of all words of length
nover A. Let n,m € IN, let A, B be alphabets, and let S be a finite set.
A cryptofunction is a mapping t: A" x S — B™ such that the mappings t,: A» — B™: w — t(w,s)
are injective for all s € S. The functions . and ¢; ! are called the encryption and decryption function,
respectively. w is called plaintext, ¢s(w) is the ciphertext.
Given a cryptofunction ¢, then the one-parameter family {¢;}scs is a cryptosystem Ts. The term cryp-
tosystem will be applied if in addition to the mapping ¢, the structure and the size of the set of keys is
significant. The set S of all the keys belonging to a cryptosystem is called the key space. Then

Ts = {ts: A" — A"|s € S} (5.273)
is called a cryptosystem on A™.
If T is a cryptosystem over A" and n = 1, then ¢, is called a stream cipher; otherwise ¢, is called a
block cipher.
Cryptofunctions of a cryptosystem over A™ are suited for the encryption of plaintext of any length.
The plaintext will be split into blocks of length n prior to applying the function to each individual
block. The last block may need padding with filler characters to obtain a block of length n. The filler
characters must not distort the plaintext.
There is a distinction between context-free encryption, where the ciphertext block is only a function of
the corresponding plaintext block and the key, and context sensitive encryption, where the ciphertext
block depends on other blocks of the message. Ideally, each ciphertext digit of a block depends on all
digits of the corresponding plaintext block and all digits of the key. Small changes to the plaintext or
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to the key cause extended changes to the ciphertext (avalanche effect).

5.5.4 Security of Cryptosystems

Cryptanalysis is concerned with the development of methods for deducing from the ciphertext as much
information about the plaintext as possible without knowing the key. According to A. Kerkhoff the
security of a cryptosystem rests solely in the difficulty of detecting the key or, more precisely, the de-
cryption function. The security must not be based on the assumption that the encryption algorithm is
kept secret. There are different approaches to assess the security of a cryptosystem:

1. Absolutely Secure Cryptosystems: There is only one absolutely secure cryptosystem based on
substitution ciphers, which is the one-time pad. This was proved by Shannon as part of his information
theory.

2. Analytically Secure Cryptosystems: No method exists to break a cryptosystem systematically.
The proof of the non-existence of such a method follows from the proof of the non-computability of a
decryption function.

3. Secure Cryptosystems according to Criteria of Complexity Theory: There is no algorithm
which can break a cryptosystem in polynomial time (with regard to the length of the text).

4. Practically Secure Cryptosystems: No method is known which can break the cryptosystem
with available resources and with justified costs.

Cryptanalysis often applies statistical methods such as determining the frequency of letters and words.
Other methods are an exhaustive search, the trial-and-error method and a structural analysis of the
cryptosystem (solving of equation systems).

In order to attack a cryptosystem one can benefit from frequent flaws in encryption such as using stereo-
type phrases, repeated transmissions of slightly modified text, an improper and predictable selection
of keys, and the use of filler characters.

5.5.4.1 Methods of Conventional Cryptography

In addition to the application of a cryptofunction it is possible to encrypt a plaintext by means of c¢ryp-
tological codes. A code is a bijective mapping of some subset A’ of the set of all words over an alphabet
A onto the subset B’ of the set of all words over the alphabet B. The set of all source-target pairs of
such a mapping is called a code book.

today evening 0815

u tomorrow evening 1113

The advantage of replacing long plaintexts by short ciphertexts is contrasted with the disadvantage
that the same plaintext will always be replaced by the same ciphertext. Another disadvantage of code
books is the need for a complete and costly replacement of all books should the code be compromised
even partially.

In the following only encryption by means of cryptofunctions will be considered. Cryptofunctions have
the additional advantage that they do not require any arrangement about the contents of the messages
prior to their exchange.

Transposition and substitution constitute conventional cryptoalgorithms. In cryptography, a transpo-
sition is a special permutation defined over geometric patterns. The substitutions will now be discussed
in detail. There is a distinction between monoalphabetic and polyalphabetic substitutions according to
how many alphabets are used for presenting the ciphertext. Generally, a substitution is termed polyal-
phabetic even if only one alphabet is used, but the encryption of the individual plaintext letter depends
on its position within the plaintext.

A further, useful classification is the distinction between monographic and polygraphic substitutions.
In the first case, single letters will be substituted, in the latter case, strings of letters of a fixed length
> 1.
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5.5.4.2 Linear Substitution Ciphers

Let A = {ag,a1,...,a,-1} be an alphabet and k,s € {0,1,...,n — 1} with ged(k,n) = 1. The
permutation t*, which maps each letter a; to t*(a;) = ajis, is called a linear substitution cipher. There
exist n p(n) linear substitution ciphers on A.

Shift ciphers are linear substituting ciphers with k& = 1. The shift cipher with s = 3 was already used
by Julius Caesar (100 to 44 BC) and, therefore, it is called the Caesar cipher.

5.5.4.3 Vigeneére Cipher

An encryption called the Vigenere cipher is based on the periodic application of a key word whose
letters are pairwise distinct. The encryption of a plaintext letter is determined by the key letter that
has the same position in the key as the plaintext letter in the plaintext. This requires a key that is as
long as the plaintext. Shorter keys are repeated to match the length of the plaintext.

. L . - A B C D
A version of the Vigenere cipher attributed to L. Carroll utilizes

the so-called Vigenere tableau (see picture) for encryption and
decryption. Each row represents the cipher for the key letter
to its very left. The alphabet for the plaintext runs across the
top. The encryption step is as follows: Given a key letter D and
a plaintext letter C, then the ciphertext letter is found at the
intersection of the row labeled D and the column labeled C; the
ciphertext is F. Decryption is the inverse of this process.

S HEggaQwe
HTEOQW >
S QTETQW
SEQEEHgOAQ
=D QTEET
eI QEE o
A= EQm =

] Let the key be “HUT ”.

Plaintext: O N C E U P O N A T I M E
Key: HUTHUTHUTHUTH
Ciphertext: V. H V. L O I V H T A C F L

Formally, the Vigenere cipher can be written in the following way: let a; be the plaintext letter and a; be
the corresponding key letter, then k& = i + j determines the ciphertext letter a. In the above example,
the first plaintext letter is O = ay4. The 15-th position of the key is taken by the letter H = a;. Hence,
k =i+ j =14+ 7 = 21 yields the ciphertext letter as; = V.

5.5.4.4 Matrix Substitution

Let A = {ag,a1,...,a,—1} be an alphabet and S = (s;;),s;; € {0,1,...,m — 1}, be a non-singular
matrix of type (m,m) with ged(detS,n)= 1. The mapping which maps the block of plaintext a),
y(2), - - -, Ag(my to the ciphertext determined by the vector (all arithmetic modulo 7, vectors transposed
as required)
T
Qy(1)
a
s (5.274)
Qt(m)

is called the Hill cipher. This represents a monoalphabetic matrix substitution.

1483 Let the letters of the alphabet be enumerated ag = A, a; =B, ..., a5 =

| S=| 852|. Z. For m = 3 and the plaintext AUTUMN, the strings AUT and UMN
321 correspond to the vectors (0, 20, 19) and (20, 12,13).

Then S - (0,20,19)7 = (217,138,59)" = (9,8,7) " (mod26) and S - (20,12,13)" = (415,246,97)T =

(25,12,19) " (mod26). Thus, the plaintext AUTUMN is mapped to the ciphertext JIHZMT.

5.5.5 Methods of Classical Cryptanalysis

The purpose of cryptanalytical investigations is to deduce from the ciphertext an optimum of infor-
mation about the corresponding plaintext without knowing the key. These analyses are of interest not
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only to an unauthorized “eavesdropper” but also help assess the security of cryptosystems from the
user’s point of view.
5.5.5.1 Statistical Analysis

Each natural language shows a typical frequency distribution of the individual letters, two-letter com-
binations, words, etc. For example, in English the letter e is used most frequently:

Letter | Relative frequency
E, 127 %
T.,A,0,I,N,S,H, R 56.9 %

D, L 83 %

C, UMW, F GY,PB|19.9%

V. K, J,X, Q. Z 2.2%

Given sufficiently long ciphertexts it is possible to break a monoalphabetic, monographic substitution
on the basis of the frequency distribution of letters.

5.5.5.2 Kasiski-Friedman Test

Combining the methods of Kasiski and Friedman it is possible to break the Vignere cipher. The attack
benefits from the fact that the encryption algorithm applies the key periodically. If the same string
of plaintext letters is encrypted with the same portion of the key then the same string of ciphertext
letters will be produced. A length > 2 of the distance of such identical strings in the ciphertext must
be a multiple of the key length. In the case of several reoccurring strings of ciphertext the key length
is a divisor of the greatest common divisor of all distances. This reasoning is called the Kasiski test.
One should, however, be aware of erroneous conclusions due to the possibility that matches may occur
accidentally.

The Kasiski test permits the determination of the key length at most as a multiple of the true key length.
The Friedman test yields the magnitude of the key length. Let n be the length of the ciphertext of some
English plaintext encrypted by means of the Vignere method. Then the key length [ is determined by

B 0.027n
"~ (n— 1)IC — 0.038n + 0.065
Here IC denotes the coincidence index of the ciphertext. This index can be deduced from the number

(5.275a)

n; of occurrences of the letter a; (¢ € {0,1,...,25}) in the ciphertext:
26
> oni(n — 1)
C== 5.275b
nn—1) (5:275b)

In order to determine the key, the ciphertext of length n is split into I columns. Since the Vignere cipher
produces the contents of each column by means of a shift cipher, it suffices to determine the equivalence
of E on a column base. Should V be the most frequent letter within a column, then the Vignere tableau
points to the letter R

E

: (5.275¢)
R...V
of the key. The methods described so far will not be successful if the Vignere cipher employs very long
keys (e.g., as long as the plaintext). It is, however, possible to deduce whether the applied cipher is
monoalphabetic, polyalphabetic with short period or polyalphabetic with long period.

5.5.6 One-Time Pad

The one-time pad is the only substitution cipher that is considered theoretically secure. The encryption
adheres to the principle of the Vignere cipher, where the key is a random string of letters as long as the
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plaintext.

Usually, one-time pads are applied as binary Vignere ciphers: Plaintext and ciphertext are represented
as binary numbers with addition modulo 2. In this particular case the cipher is involutory, which means
that the twofold application of the cipher restores the original plaintext. A concrete implementation
of the binary Vignere cipher is based on shift register circuits. These circuits combine switches and
storage elements, whose states are 0 or 1, according to special rules.

5.5.7 Public Key Methods

Although the methods of conventional encryption can have efficient implementations with today’s com-
puters, and although only a single key is needed for bidirectional communication, there are a number
of drawbacks:

1. The security of encryption solely depends on keeping the next key secret.

2. Prior to any communication, the key must be exchanged via a sufficiently secured channel; sponta-
neous communication is ruled out.

3. Furthermore, no means exist to prove to a third party that a specific message was sent by an iden-
tified sender.

5.5.7.1 Diffie-Hellman Key Exchange

The concept of encryption with public keys was developed by Diffie and Hellman in 1976. Each partic-
ipant owns two keys: a public key that is published in a generally accessible register, and a private key
that is solely known to the participant and kept absolutely secret. Methods with these properties are
called asymmetric ciphers (see 5.5.2, p. 387).

The public key K P; of the i-th participant controls the encryption step F;, his private key K.S; the
decryption step D;. The following conditions must be fulfilled:

1. D; o E; constitutes the identity.
2. Efficient implementations for F; and D; are known.

3. The private key K.S; cannot be deduced from the public key K P; with the means available in the
foreseeable future. If in addition

4. also E; o D; yields the identity,

then the encryption algorithm qualifies as an electronic signature method with public keys. The elec-
tronic signature method permits the sender to attach a tamperproof signature to a message.

If A wants to send an encrypted message m to B, then A retrieves B's public key K Pp from the register,
applies the encryption algorithm Eg, and calculates E(m) = ¢. A sends the ciphertext ¢ via the public
network to B who will regain the plaintext of the message by decrypting ¢ using his private key K S in
the decryption function Dg: Dg(c¢) = Dg(Eg(m)) = m. In order to prevent tampering of messages, A
can electronically sign his message m to B by complying with an electronic signature method with the
public key in the following way: A encrypts the message m with his private key: D4(m) = d. A attaches
to d his signature “A” and encrypts the total using the public key of B: Ep(Da(m), “A”) = Egp(d,
“A”) = e. The text thus signed and encrypted is sent from A to B.

The participant B decrypts the message with his private key and obtains Dp(e) = Dp(Ep(d, “A”))
= (d, “A”). Based on this text B can identify A as the sender and can now decrypt d using the public
key of A: Ex(d) = Ea(Da(m)) =m.

5.5.7.2 One-Way Function

The encryption algorithms of a method with public key must constitute a one-way function with a “trap
door”. A trap door in this context is some special, additional information that must be kept secret. An
injective function f: X — Y is called a one-way function with a trap door, if the following conditions
hold:

1. There is an efficient method to compute both f and f~'.
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2. The calculation of f~! cannot be deduced from f without the knowledge of the secret additional
information.

The efficient method to get £~ from f cannot be made without the secret additional information.
5.5.7.3 RSA Codes and RSA Method
1. RSA Codes

Rivest, Shamir and Adleman (see [5.16]) developed an encryption scheme for secret messages on the
basis of the Euler-Fermat theorem (see 5.4.4, 2., p. 381). The scheme is called the RSA algorithm after
the initials of their last names. Part of the key required for decryption can be made public without
endangering the confidentiality of the message; for this reason, the term public key code is used in this
context as well.
In order to apply the RSA algorithm the recipient B chooses two very large prime numbers p and ¢,
calculates m = pg and selects a number r relatively prime to o(m) = (p—1)(¢—1) and 1 < r < p(m).
B publishes the numbers m and r because they are needed for decryption.
For transmitting a secret message from sender A to recipient B the text of the message must be con-
verted first to a string of digits that will be split into NV blocks of the same length of less than 100 decimal
positions. Now A calculates the remainder R of N divided by m.

N" = R(m). (5.276a)
Sender A calculates the number R for each of the blocks N that were derived from the original text

and sends the number to B. The recipient can decipher the message R if he has a solution of the linear
congruence rs = 1 (¢(m)). The number N is the remainder of R® divided by m:

R = (N")" = Nl = N - (N#mE = N(m). (5.276b)

Here, the Buler-Fermat theorem (see 5.4.4, 2., p. 381) with N¥(™ = 1(m) has been applied. Eventu-
ally, B converts the sequence of numbers into text.
B A recipient B who expects a secret message from sender A chooses the prime numbers p = 29 and
q = 37 (actually too small for practical purposes), calculates m = 29 - 37 = 1073 (and ¢(1073) =
©(29) - ¢(37) = 1008)), and chooses r = 5 (it satisfies the requirement of ged(1008,5) = 1). B passes
the values m = 1073 and r = 5 to A.
A intends to send the secret message N = 8 to B. A encrypts N into R = 578 by calculating N = 8° =
578 (1073), and just sends the value R = 578 to B. B solves the congruence 5 - s = 1 (1008), arrives at
the solution s = 605, and thus determines R* = 578%% = 8 = N (1073).
Remark: The security of the RSA code correlates with the time needed by an unauthorized listener
to factorize m. Assuming the speed of today’s computers, a user of the RSA algorithm should choose
the two prime numbers p and ¢ with at least a length of 100 decimal positions in order to impose a
decryption effort of approximately 74 years on the unauthorized listener. The effort for the authorized
user, however, to determine an r relatively prime to ¢(pg) = (p — 1)(¢ — 1) is comparatively small.
2. RSA Method
The RSA method is the most popular asymmetric encryption method.
1. Assumptions Let p and ¢ be two large prime numbers with pg ~ 10°*® and n = pg. The number
of decimal positions of p and ¢ should differ by a small number; yet, the difference between p and ¢
should not be too large. Furthermore, the numbers p — 1 and ¢ — 1 should contain rather big prime
factors, while the greatest common divisor of p — 1 and ¢ — 1 should be rather small. Let e > 1 be
relatively prime to (p — 1)(¢ — 1) and let d satisfy d - ¢ = 1 (mod(p — 1)(¢ — 1)). Now n and e represent
the public key and d the private key.
2. Encryption Algorithm

E:-{0,1,....n—1} - {0,1,...,n — 1} E(x):=z°modn. (5.277a)
3. Decyphering Operations

D:{0,1,...,n—1} = {0,1,...,n — 1} D(x) := z*modn. (5.277Db)
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Thus D(E(m)) = E(D(m) = m for message m.

The function in this encryption method with n > 102’ constitutes a candidate for a one-way function
with trap door (see 5.5.7.2, p. 391). The required additional information is the knowledge of how to
factor n. Without this knowledge it is infeasible to solve the congruence d-e = 1 (modulo (p—1)(g—1)).
The RSA method is considered practically secure as long as the above conditions are met. A disadvan-
tage in comparison with other methods is the relatively large key size and the fact that RSA is 1000
times slower than DES.

5.5.8 DES Algorithm (Data Encryption Standard)

The DES method was adopted in 1976 by the National Bureau of Standards (now NIST) as the official
US encryption standard. The algorithm belongs to the class of symmetric encryption methods (see
5.5.2, p. 387) and still plays a predominant role among cryptographic methods. The method is, however,
no longer suited for the encryption of top secret information because today’s technical means permit
an attack by an exhaustive test trying all keys.

The DES algorithm combines permutations and non-linear substitutions. The algorithm requires a
56-bit key. Actually, a 64-bit key is used, however, only 56 bits can freely be chosen; the remaining
eight bits serve as parity bits, one for each of the seven-bit blocks to yield odd parity.

The plaintext is split into blocks of 64 bits each. DES transforms each 64-bit plaintext block into a
ciphertext block of 64 bits. First, the plaintext block will be subject to an initial permutation and is
then encrypted in 16 rounds, each operating with a different subkey K, Ky, ..., Ki6. The encryption
completes with a final permutation that is the inverse of the initial permutation.

Decryption uses the same algorithm with the difference that the subkeys are employed in reverse order
K, Ki5, ..., K.

The strength of the cipher rests on the nature of the mappings that are part of each round. It can be
shown that each bit of the ciphertext block depends on each bit of the corresponding plaintext and on
each bit of the key.

Although the DES algorithm has been disclosed in full detail, no attack has been published so far that
can break the algorithm without an exhaustive test of all 256 keys.

5.5.9 IDEA Algorithm
(International Data Encryption Algorithm)

The IDEA algorithm was developed by LAT and MASSAY and patented 1991. It is a symmetric en-
cryption method similar to the DES algorithm and constitutes a potential successor to DES. IDEA
became known as part of the reputed software package PGP (Pretty Good Privacy) for the encryption
of emails. In contrast to DES not only was the algorithm published but even its basic design criteria.
The objective was the use of particularly simple operations (addition modulo 2, addition modulo 2'6,
multiplication modulo 2'6+1).

IDEA works with keys of 128 bits length. IDEA encrypts plaintext blocks of 64 bits each. The algo-
rithm splits a block into four subblocks of 16 bits each. From the 128-bit key 52 subkeys are derived,
each 16 bits long. Each of the eight encryption rounds employs six subkeys; the remaining four subkeys
are used in the final transformation which constructs the resulting 64-bit ciphertext. Decryption uses
the same algorithm with the subkeys in reverse order.

IDEA is twice as fast as DES, its implementation in hardware, however, is more difficult. No successful
attack against IDEA is known. Exhaustive attacks trying all 2°° keys are infeasible considering the
length of the keys.
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5.6 Universal Algebra

A universal algebra consists of a set, the underlying set, and operations on this set. Simple examples are
semigroups, groups, rings, and fields discussed in sections 5.3.2, p. 336; 5.3.3, p. 336 and 5.3.7, p. 361.
Universal algebras (mostly many-sorted, i.e., with several underlying sets) are handled especially in
theoretical informatics. There they form the basis of algebraic specifications of abstract data types
and systems and of term-rewriting systems.

5.6.1 Definition

Let Q be a set of operation symbols divided into pairwise disjoint subsets €2,,, n € IN. € contains the
constants, €,, n > 0, contain the n-ary operation symbols. The family (€2,),en is called the type or
signature. If A is a set, and if to every n-ary operation symbol w € €, an n-ary operation w? in A is
assigned, then A = (A, {w!|w € Q}) is called an Q algebra or algebra of type (or of signature) (2.

If Q is finite, Q = {wy, ..., ws}, then one also writes A = (A, wf!, ..., wil) for A.

If a ring (see 5.3.7, p. 361) is considered as an (2 algebra, then Q is partitioned Qy = {w; }, Q1 = {w»},
Qs = {ws,ws}, where to the operation symbols wy, wa, w3, wy the constant 0, taking the inverse with
respect to addition, addition and multiplication are assigned.

Let A and B be Q algebras. B is called an Q subalgebra of A, if B C A holds and the operations w” are
the restrictions of the operations w” (w € ) to the subset B.

5.6.2 Congruence Relations, Factor Algebras

In constructing factor structures for universal algebras, the notion of congruence relation is needed. A
congruence relation is an equivalence relation compatible with the structure: Let A = (4, {w?|w € Q})
be an € algebra and R be an equivalence relation in A. R is called a congruence relation in A, if for all
weQ, (neN)andall a;,b; € Awith a;Rb; (i = 1,...,n):

wi(an, ..., ay) Rw(by, ... by). (5.278)
The set of equivalence classes (factor set) with respect to a congruence relation also form an 2 algebra

with respect to representative-wise calculations: Let A = (A, {w?|w € Q}) be an  algebra and R be
a congruence relation in A. The factor set A/R (see 5.2.4, 2., p. 334) is an Q algebra A/R with the

following operations w/® (w € Q,,, n € N) with

WY ([arlr, - Jan]r) = W, an)]R (5.279)
and it is called the factor algebra of A with respect to R.
The congruence relations of groups and rings can be defined by special substructures — normal sub-

groups (see 5.3.3.2, 2. p. 338) and ideals (see 5.3.7.2, p. 362), respectively. In general, e.g., in semi-
groups, such a characterization of congruence relations is not possible.

5.6.3 Homomorphism

Just as with classical algebraic structures, the homomorphism theorem gives a connection between the
homomorphisms and congruence relations.
Let A and B be Q algebras. A mapping h: A — B is called a homomorphism, if for every w € €, and
all ay,...,a, € A:

h(w?(ar, ..., a,)) = wB(h(ar),. .. h(ay)). (5.280)
If, in addition, A is bijective, then h is called an isomorphism; the algebras A and B are called isomor-
phic. The homomorphic image h(A) of an 2 algebra A is an Q) subalgebra of B. Under a homomorphism

h, the decomposition of A into subsets of elements with the same image corresponds to a congruence
relation which is called the kernel of h:

ker h = {(a,b) € A x A|h(a) = h(b)}. (5.281)
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5.6.4 Homomorphism Theorem

Let A and B be Q algebras and h: A — B a homomorphism. h defines a congruence relation ker h in
A. The factor algebra A/ ker h is isomorphic to the homomorphic image h(A).

Conversely, every congruence relation R defines a homomorphic mapping natg: A — A/R withnatg(a)
= [a]g. Fig. 5.19 illustrates the homomorphism theorem.

. h@
2 5.6.5 Varieties
A h o o oh(A) ) . .

A variety V is a class of € algebras, which is closed
o o o under forming direct products, subalgebras, and
[alier 1 e homomorphic images, i.e., these formations do not
|:| |:| |:| lead out of V. Here the direct products are defined

in the following way:
nat ker h |:| |:| |:| Considering the operations corresponding to €2
componentwise on the Cartesian product of the un-
|:| |:| |:| derlying sets of Q algebras, an (2 algebra, the direct
product of these algebras is obtained. The theorem
A/ker h of Birkhoff (see 5.6.6, p. 395) characterizes the va-
rieties as those classes of ) algebras, which can be

Figure 5.19 equationally defined.

5.6.6 Term Algebras, Free Algebras

Let (2,)nen be a type (signature) and X a countable set of variables. The set T (X) of € terms over
X is defined inductively in the following way:

1. X UQy C To(X).
2. Ifty, ... 1, € To(X) and w € Q,, hold, then also wt; ... t, € To(X) holds.
The set To(X) defined in this way is an underlying set of an € algebra, the term algebra To(X) of type
Q over X, with the following operations: If ¢y, ...,t, € To(X) and w € €, hold, then w™X) is defined
by

W () = wiy .ty (5.282)
Term algebras are the “most general” algebras in the class of all Q algebras, i.e., no “identities” are
valid in term algebras. These algebras are called free algebras.

An identity is a pair (s(x1,...,x,), t(z1,...,2,)) of Q terms in the variables a1, ..., x,. An Q) algebra
A satisfies such an equation, if for every aq, ..., a, € A holds:
sMa, .. an) =1 a, . an). (5.283)

A class of Q2 algebras defined by identities is a class of {2 algebras satisfying a given set of identities.
Theorem of Birkhoff: The classes defined by identities are exactly the varieties.

B Varieties are for example the classes of all semigroups, groups, Abelian groups, and rings. But, e.g.,
the direct product of cyclic groups is not a cyclic group, and the direct product of fields is not a field.
Therefore cyclic groups or fields do not form a variety, and cannot be defined by equations.

5.7 Boolean Algebras and Switch Algebra

Calculating rules, similar to the rules established in 5.2.2, 3., p. 329 for set algebra and propositional
calculus (5.1.1, 6., p. 324), can be found for other objects in mathematics too. The investigation of
these rules yields the notion of Boolean algebra.

5.7.1 Definition

A set B, together with two binary operations M (“conjunction”) and Ll (“disjunction”), and a unary
operation (“negation”), and two distinguished (neutral) elements 0 and 1 from B, is called a Boolean
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algebra B = (B, 1, U, ~, 0, 1) if the following properties are valid:
(1) Associative Laws:

(amb)Ne=an(bne), (5.284) (aUdb)Uc=al(bUc). (5.285)
(2) Commutative Laws:

aflb=>bMa, (5.286) alb=>bUa. (5.287)
(3) Absorption Laws:

afN(alUb) =a, (5.288) al(amlb) = a. (5.289)
(4) Distributive Laws:

(aUb)Me=(aMe)U(bMe), (5.290) (amb)Ue=(alUe)n(bUc). (5.291)
(5) Neutral Elements:

anl=a, (5.292) all0=a, (5.293)

an0=0, (5.294) all=1, (5.295)
(6) Complement:
ana=0, (5.296) ala=1. (5.297)

A structure with the associative laws, commutative laws, and absorption laws is called a lattice. If the
distributive laws also hold, then the lattice is called a distributive lattice. So a Boolean algebra is a
special distributive lattice.

Remark: The notation used for Boolean algebras is not necessarily identical to the notation for the
operations in propositional calculus.

5.7.2 Duality Principle

1. Dualizing

In the “axioms” of a Boolean algebra is included the following duality: Replacing M by L, LI by 1, 0
by 1, and 1 by 0 in an axiom gives always the other axiom in the same row. The axioms in a row are
dual to each other, and the substitution process is called dualization. The dual statement follows from
a statement of the Boolean algebra by dualization.

2. Duality Principle for Boolean Algebras

The dual statement of a true statement for a Boolean algebra is also a true statement for the Boolean
algebra, i.e., with every proved proposition, the dual proposition is also proved.

3. Properties

One gets, e.g., the following properties for Boolean algebras from the axioms.

(E1) The Operations M and LI are Idempotent:

ala=a, (5.298) alla=a. (5.299)
(E2) De Morgan Rules:

afllb=aub, (5.300) aUb=anb, (5.301)

(E3) A further Property:
=a. (5.302)
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It is enough to prove only one of the two properties in any line above, because the other one is the dual
property. The last property is self-dual.

5.7.3 Finite Boolean Algebras
All finite Boolean algebras can be described easily up to “isomorphism”. Let B;, By be two Boolean
algebras and f: By — Bs a bijective mapping. f is called an isomorphism if

f@ny) = f@ynf6), flaub) = f@)UfE) and f(@) = fla) (5.303)
hold. Every finite Boolean algebra is isomorphic to the Boolean algebra of the power set of a finite set.

In particular every finite Boolean algebra has 2" elements, and every two finite Boolean algebras with
the same number of elements are isomorphic.

Hereafter B denotes the Boolean algebra with two elements {0, 1} and with the operations

mnio 1 ulo 1 -
010 0 0]0 1 0] 1
110 1 171 1 10

Defining the operations M, U, and ~ componentwise on the n-times Cartesian product B* = {0,1} x
-+ x {0,1}, then B™ will be a Boolean algebra with 0 = (0,...,0) and 1 = (1,...,
the n times direct product of B. Because B™ contains 2" elements, this way one gets all finite Boolean
algebras (out of isomorphism).

5.7.4 Boolean Algebras as Orderings

An order relation can be assigned to every Boolean algebra B: Here a < bholds if aMb = a is valid (or
equivalently, if a b = b holds).

So every finite Boolean algebra can be represented by a Hasse diagram (see 5.2.4, 4., p. 334).

B Suppose B is the set {1,2,3,5,6,10, 15,30} of the divisors of 30. Then, the
least common multiple and the greatest common divisor can be defined as bi-
nary operations and the complement as unary operation. The numbers 1 and
30 correspond to the distinguished elements 0 and 1. The corresponding Hasse ¢ °
diagram is shown in Fig. 5.20.

5.7.5 Boolean Functions, Boolean Expressions \ /'5

*30

0 N5

1. Boolean Functions

Denoting by B the Boolean algebra with two elements as in 5.7.3, p. 397, then .1

an n-ary Boolean function f is a mapping from B" into B. There are 22" n-ary )

Boolean functions. The set of all n-ary Boolean functions with the operations Figure 5.20
(Frig)(b) = f(b) 1 g(b), (5.304) (fUg)b) = f(b) LU g(b), (5.305)
F(o) = fb), (5.306)

is a Boolean algebra. Here b always means an n tuple of the elements of B = {0, 1}, and on the right-
hand side of the equations the operations are performed in B. The distinguished elements 0 and 1
correspond to the functions fy and fi with

fob) =0, fi(b)=1 forall be B". (5.307)
B A: Inthecasen =1, i.e., for only one Boolean variable b, there are four Boolean functions:
Identity  f(b) =b, Negation f(b) =0,

Tautology f(b) =1, Contradiction f(b) = 0. (5.308)
B B: Inthecasen = 2, i.e., for two Boolean variables a and b, there are 16 different Boolean functions,
among which the most important ones have their own names and notation. They are shown in Table
5.6.
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Table 5.6 Some Boolean functions with two variables a and b

Value table for

Name of the | Different Different “ 0 0
function notation symbols <b> = <0> ) (1> )

Sheffer a-b O
or alb 4§; :D 1, 1, 1, 0
NAND NAND (a,b)

Peirce a+b a1 7

or alb — — 1, 0, 0, 0

NOR NOR a,b

oo ab + ab| _| |

Antivalence 4 XORb S ] ®> 0 . . 0

or a ﬁé b ) )

XOR a®b
ab +ab =1 ] ®

Equivalence a=b — — 1, 0, 0, 1
a < b

Implication ZJr_l; b 1, 1, 0, 1

2. Boolean Expressions

Boolean expressions are defined in an inductive way: Let X = {z,y,z2,...} be a (countable) set of
Boolean variables (which can take values only from {0, 1}):

1. The constants 0 and 1 just as the Boolean variables from X are

Boolean expressions. (5.309)
2. If S and T are Boolean expressions, so are T, (ST, and (S UT), as well. (5.310)
If a Boolean expression contains the variables x1, ..., x,, then it represents an n-ary Boolean function
fr
Let b be a “valuation” of the Boolean variables z1, ..., z,, i.e., b = (by,...,b,) € B".
Assigning a Boolean function to the expression 7" in the following way gives:
1. If T'=0, then fr = fo; if T'=1, then fr = fi. (5.311a)
2. If T = 2y, then fr(b) = b;; it T =S, then fr(b) = fs(b). (5.311b)
3. If T=RnMS, then fr(b) = fr(b) N fs(b). (5.311c)
4. If T=RUS, then fr(b) = fr(b) U fs(b). (5.311d)

On the other hand, every Boolean function f can be represented by a Boolean expression T' (see 5.7.6,
p. 399).

3. Concurrent or Semantically Equivalent Boolean Expressions

The Boolean expressions S and T are called concurrent or semantically equivalent if they represent the
same Boolean function. Boolean expressions are equal if and only if they can be transformed into each
other according to the axioms of a Boolean algebra.

Under transformations of a Boolean expression here are considered especially two aspects:

e Transformation in a possible “simple” form (see 5.7.7, p. 399).

e Transformation in a “normal form”.
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5.7.6 Normal Forms

1. Elementary Conjunction, Elementary Disjunction

Let B = (B,,U, ,0,1) be a Boolean algebra and {z1,...,z,} a set of Boolean variables. Every
conjunction or disjunction in which every variable or its negation occurs exactly once is called an ele-
mentary conjunction or an elementary disjunction respectively (in the variables 1, ..., zy,).

Let T'(z1, ..., x,) be a Boolean expression. A disjunction D of elementary conjunctions with D = T'is
called a principal disjunctive normal form (PDNF) of T. A conjunction C' of elementary disjunctions
with C' = T is called a principal conjunctive normal form (PCNF) of T

B Part 1: In order to show that every Boolean function f can be represented as a Boolean expression,
the PDNF form of the function f given in the annexed table is to be constructed:

r oy z| fley,z) The PDNF of the Boolean function f contains the elementary conjunc-
tions TMy Mz, xMyMz, xMyMZz. These elementary conjunctions belong

0 00 0 to the valuations b of the variables where the function f has the value 1.

0 01 L If a variable v has the value 1 in b, then v is to put in the elementary con-

8 i (1) g junction, otherwise v.

10 0 0 B Part 2: The PDNF for the example of Part 1 is:

1 0 1 1 Nynz)U(znygnz)U(znNynz). (5.312)

1 10 1 The “dual” form for PDNF is the PCNF: The elementary disjunctions be-

1 1 1 0 long to the valuations b of the variables for which f has the value 0.

If a variable v has the value 0 in b, then v is to put in the elementary disjunction, otherwise 7. So the
PCNF is:

(zUyUz)MN(zUyU2)MN(zUyUz)N(zUyUz)N(zUyUZ). (5.313)
The PDNF and the PCNF of f are uniquely determined, if the ordering of the variables and the ordering
of the valuations is given, e.g., if considering the valuations as binary numbers and arranging them in
increasing order.
2. Principal Normal Forms
The principal normal form of a Boolean function fr is considered as the principal normal form of the
corresponding Boolean expression 7.
Checking the equivalence of two Boolean expressions by transformations is often difficult. The prin-
cipal normal forms are useful: Two Boolean expressions are semantically equivalent exactly if their
corresponding uniquely determined principal normal forms are identical letter by letter.
B Part 3: In the considered example (see Part 1 and 2) the expressions (g M z) U (z My Mz) and
(zU((yU2)N@U2z)N(mUz))n(zU((yU=z)N(gU=2))) are semantically equivalent because the
principal disjunctive (or conjunctive) normal forms of both are the same.

5.7.7 Switch Algebra

A typical application of Boolean algebra is the simplification of series—parallel connections (SPC).
Therefore a Boolean expression is to be assigned to a SPC (transformation). This expression will be
“simplified” with the transformation rules of the Boolean algebra. Finally a SPC is to be assigned to
this expression (inverse transformation). The result is a simplified SPC which produces the same be-
havior as the initial connection system (Fig. 5.21).

A SPC has two types of contact points: the so-called “make contacts” and “break contacts”, and both
types have two states; namely open or closed. The usual symbolism is: When the equipment is put on,
the make contacts close and the break contacts open. With Boolean variables assigned to the contacts
of the switch equipment follows:

The position “off” or “on” of the equipment corresponds to the value 0 or 1 of the Boolean variables.
The contacts being switched by the same equipment are denoted by the same symbol, the Boolean
variable belonging to this equipment. The contact value of a SPC is 0 or 1, according to whether the
switch is electrically non-conducting or conducting. The contact value depends on the position of the
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contacts, so it is a Boolean function S (switch function) of the variables assigned to the switch equip-
ment. Contacts, connections, symbols, and the corresponding Boolean expressions are represented in
Fig. 5.22.

simplified
SPC| electrically equivalent SPC
transformation inverse
(modelling) transformation
simplification by 1
Boolean Boolean algebra simplified
expression Boolean
expression
Figure 5.21
make contact series connection
(symbol: —{I— ) (symbol: b L)
S=a S=arb
break contact parallel connection
(symbol: —ojf— ) (symbol: > j—)
B b
S=a S=alb
Figure 5.22
o— L L
a b
a c
a b c
s
——L b ‘
a
c
Figure 5.23 Figure 5.24

The Boolean expressions, which represent switch functions of SPC, have the special property that the
negation sign can occur only above variables (never over subexpressions).
B Simplification of the SPC Fig. 5.23. This connection corresponds to the Boolean expression
S=(@nbyu(anbne)u(@nduc)) (5.314)
as switch function. According to the transformation formulas of Boolean algebra holds:
S=@®n(@u(ane))U(@n(duUc)
=@OnN(@uUe)U(@n(duc)
=(@nb)u(dneU(anc)
=(@nbne)U@nbre)u (bne)U(enbrie)U(@nc)U(@nbne)
= (anec)u(bne). (5.315)
Here one gets @M ¢ from (@MbMe) U (@Me) U (@nbrc), and bMe from (@MbMe) U (bMNe) U (aMbME).
The finally simplified result SPC is shown in Fig. 5.24.

This example shows that usually it is not so easy to get the simplest Boolean expression by transfor-
mations. In the literature one can find different methods for this procedure.
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5.8 Algorithms of Graph Theory

Graph theory is a field in discrete mathematics having special importance for informatics, e.g., for rep-
resenting data structures, finite automata, communication networks, derivatives in formal languages,
etc. There are also applications in physics, chemistry, electrotechnics, biology and psychology. More-
over, flows can be applied in transport networks and in network analysis in operations research and in
combinatorial optimization.

5.8.1 Basic Notions and Notation

1. Undirected and Directed Graphs

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges. There is a mapping,
defined on E, the incidence function, which uniquely assigns to every element of £ an ordered or non-
ordered pair of (not necessarily distinct) elements of V. If a non-ordered pair is assigned then G is
called an undirected graph (Fig. 5.25). If an ordered pair is assigned to every element of £, then the
graph is called a directed graph (Fig. 5.26), and the elements of E are called arcs or directed edges. All
other graphs are called mized graphs.

In the graphical representation, the vertices of a graph are denoted by points, the directed edges by
arrows, and undirected edges by non-directed lines.

el Vy Ovs e Vy st

" 0 .
Vs & e Vs & e

€ v, € -V,

Figure 5.25 Figure 5.26 Figure 5.27

B A: For the graph G in Fig. 5.27: V = {v, v, v3,v4, 05}, E = {e1, €9, €3, €4, €5, €6, €7},
filer) = {vi, 02}, filea) = {v1,v2}, fi(es) = (vo,v3), fi(es) = (vs,va), files) = (vs,va),
fi(es) = (va,v2), fi(er) = (vs,v5).
W B: For the graph G in Fig. 5.26: V = {v1, 00, v3, 04,05}, E' = {€}, €}, €}, ¢}
faleh) = (va,v3), faley) = (va,v3), fa(eh) = (v4,v2), falel) = (vs,v5).
B C: For the graph G in Fig. 5.25: V = {vy, 02, v3, 04,05}, E” = {e], e, ¢4, e},
f3(el) = {va,vs}, fs(eh) = {va,v3}, f3(€h) = {va,va}, f3(el) = {vs,v5}.
2. Adjacency
If (v,w) € E, then the vertex v is called adjacent to the vertex w. Vertex v is called the initial point of
(v, w), w is called the terminal point of (v, w), and v and w are called the endpoints of (v,w).
Adjacency in undirected graphs and the endpoints of undirected edges are defined analogously.
3. Simple Graphs
If several edges or arcs are assigned to the same ordered or non-ordered pairs of vertices, then they
are called multiple edges. An edge with identical endpoints is called a loop. Graphs without loops and
multiple edges and multiple arcs, respectively, are called simple graphs.
4. Degrees of Vertices
The number of edges or arcs incident to a vertex v is called the degree dg(v) of the vertex v. Loops are
counted twice. Vertices of degree zero are called isolated vertices.
For every vertex v of a directed graph G, the out-degree df,(v) and in-degree dg,(v) of v are distinguished
as follows:
d&(v) = [{w|(v,w) € E}, (5.316a) dg(v) = {w|(w,v) € E}|. (5.316b)
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5. Special Classes of Graphs

Finite graphs have a finite set of vertices and a finite set of edges. Otherwise the graph is called infinite.
In reqular graphs of degree r every vertex has degree r.

An undirected simple graph with vertex set V' is called a complete graph if any two different vertices in
V' are connected by an edge. A complete graph with an n element set of vertices is denoted by K.

If the set of vertices of an undirected simple graph G can be partitioned into two disjoint classes X and
Y such that every edge of G joins a vertex of X and a vertex of Y, then G is called a bipartite graph.
A bipartite graph is called a complete bipartite graph, if every vertex of X is joined by an edge with
every vertex of Y. If X has n elements and Y has m elements, then the graph is denoted by K, .

B Fig. 5.28 shows a complete graph with five vertices.

B Fig. 5.29 shows a complete bipartite graph with a two-element set X and a three-element set Y.

1
5 2 X, .
K, o X, v
4 3 Ys
Figure 5.28 Figure 5.29

Further special classes of graphs are plane graphs, trees and transport networks. Their properties will
be discussed in later paragraphs.

6. Representation of Graphs

Finite graphs can be visualized by assigning to every vertex a point in the plane and connecting two
points by a directed or undirected curve, if the graph has the corresponding edge. There are examples
in Fig. 5.30-5.33. Fig. 5.33 shows the Petersen graph, which is a well-known counterexample for
several graph-theoretic conjectures, which could not be proved in general.

W - ﬂ%@

Figure 5. Figure 5. Figure 5.32 Figure 5.

7. Isomorphism of Graphs

A graph G; = (W4, Ey) is called isomorphic to a graph Gy = (Va, E») iff there are bijective mappings
o from Vi onto V5 and ¢ from E; onto Fy being compatible with the incidence function, i.e., if u,v
are the endpoints of an edge or w is the initial point of an arc and v is its terminal point, then ¢(u)
and ¢(v) are the endpoints of an edge and ¢(u) is the initial point and p(v) the terminal point of
an arc, respectively. Fig. 5.34 and Fig. 5.35 show two isomorphic graphs. The mapping ¢ with
o(1) =a, p(2) =b, ¢(3) = ¢, ¢(4) = d is an isomorphism. In this case, every bijective mapping of
{1,2,3,4} onto {a, b, ¢, d} is an isomorphism, since both graphs are complete graphs with equal number
of vertices.

8. Subgraphs, Factors

If G = (V, E) is a graph, then the graph G' = (V’, E’) is called a subgraphof G,if V' C V and E' C E.
If £’ contains exactly those edges of E which connect vertices of V', then G’ is called the subgraph of G
induced by V' (induced subgraph).
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1 2 a b

Figure 5.34 Figure 5.35

A subgraph G' = (V', E') of G = (V, E) with V' = V is called a partial graph of G.
A factor F' of a graph G is a regular subgraph of G containing all vertices of G.
9. Adjacency Matrix
Finite graphs can be described by matrices: Let G = (V, E) be a graph with V' = {vy, v, ..., v, } and
E = {e1,es,...,€n}. Let m(v;,v;) denote the number of edges from v; to v;. For undirected graphs,
loops are counted twice; for directed graphs loops are counted once. The matrix A of type (n, n) with
A = (m(v;,v;)) is called an adjacency matriz. If in addition the graph is simple, then the adjacency
matrix has the following form:
- _f1, for (v;,v) € E,

A = (ay) = {O for (v;,v;) € E; (5.317)
i.e., in the matrix A thereis a 1 in the i-th row and j-th column iff there is an edge from v; to v;.
The adjacency matrix of undirected graphs is symmetric.
B A: Beside Fig. 5.36 there is the adjacency matrix A; = A(G,) of the directed graph Gj.
B B: Beside Fig. 5.37 there is the adjacency matrix Ay = A(G2) of the undirected simple graph Gs.

Vl
v, v, 010101
g;;% 0100 v, v, 101010
] 0000 010101
“T Ar=10103 v. v, A2=1101010
v, 0100 010101
v, 101010

Fi > 5.
igure 5.36 Figure 5.37

10. Incidence Matrix

For an undirected graph G = (V, E) with V' = {v1,va,...,v,} and E = {ey,€a,..., €5}, the matrix I

of type (n,m) given by
0, wv;is not incident withe;,

I = (by)withb;; = ¢ 1, wjisincident with e; and e; is not a loop, (5.318)

2, w;is incident with e; and e; is a loop

is called the incidence matrix.

For a directed graph G = (V, E) with V' = {vy,v,...,v,} and E = {eq,ea,..., €5}, the incidence

matrix I'is the matrix of type (n,m), defined by

,  v;is not incident withe;,
, ;s the initial point of e; and e; is not a loop,

0

L uii ! i : (5.319)
—1, w;is the terminal point of ¢; and e; is not a loop, :
-0

I = (b;;)withb;; =

; v; is incident to e;j and e; is a loop.
11. Weighted Graphs
If G = (V,E) is a graph and f is a mapping assigning a real number to every edge, then (V) E, f) is
called a weighted graph, and f(e) is the weight or length of the edge e.
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In applications, these weights of the edges represent costs resulting from the construction, maintenance
or use of the connections.

5.8.2 Traverse of Undirected Graphs

5.8.2.1 Edge Sequences or Paths

1. Edge Sequences or Paths
In an undirected graph G = (V, E) every sequence F' = ({v1,va}, {v2, 03}, ..., {vs, vs41}) of the ele-

ments of E is called an edge sequence of length s. 1

If v; = vs41, then the sequence is called a cycle, otherwise it is an open edge

sequence. An edge sequence F' is called a path iff vy, vs, ..., v, are pairwise

distinct vertices. A closed pathis a circuit. A trailis a sequence of edges with- 5 2
out repeated edges.

B In the graphs in Fig. 5.38, F1 = ({1,2},{2,3},{3,5},{5,2},{2,4}) is
an edge sequence of length 5, Fy = ({1,2},{2,3},{3,4}.{4,2},{2,1}) i

s
a cycle of length 5, Fy = ({2,3}.{3,5},{5.2},{2,1}) is a path, F} = 4 3
({1,2},{2,3},{3,4}) is a path. An elementary cycle is given by Fy = )

({1,2},{2,5}, {5,1}). Figure 5.38

2. Connected Graphs, Components

If there is at least one path between every pair of distinct vertices v, w in a graph G, then G is called
connected. If a graph G is not connected, it can be decomposed into components, i.e., into induced
connected subgraphs with maximal number of vertices.

3. Distance Between Vertices

The distance §(v, w) between two vertices v,w of an undirected graph is the length of a path with
minimum number of edges connecting v and w. If such a path does not exist, then let (v, w) = oo.

4. Problem of Shortest Paths

Let G = (V, E, f) be a weighted simple graph with f(e) > 0 for every e € E. Determine the shortest
path from v to w for two vertices v, w of G, i.e., a path from v to w having minimum sum of weights of
edges and arcs, respectively.
There is an efficient algorithm of Dantzig to solve this problem, which is formulated for directed graphs
and can be used for undirected graphs (see 5.8.6, p. 410) in a similar way.
Every graph G = (V, E, f) with V = {v1, va, ..., v,} has a distance matriz D of type (n,n):

D= (di]’) with dij B (5(@1, ’U]’) (L,] B 1, 2, e ,77,). (5320)
In the case that every edge has weight 1, i.e., the distance between v and w is equal to the minimum
number of edges which have to be traversed in the graph to get from v to w, then the distance between
two vertices can be determined using the adjacency matrix: Let vy, v, ..., v, be the vertices of G. The
adjacency matrix of G is A = (a;;), and the powers of the adjacency matrix with respect to the usual

m

multiplication of matrices (see 4.1.4, 5., p. 272) are denoted by A™ = (aj}), m € N.
There is a shortest path of length % from the vertex v; to the vertex v; (7 # j) iff:

af; #0 and a; =0 (s=1,2,....,k—1). (5.321)

B The weighted graph represented in Fig. 5.39 has the distance matrix D beside it.

B The graph represented in Fig. 5.40 has the adjacency matrix A beside it, and for m = 2 or m = 3
the matrices A% and A? are obtained. Shortest paths of length 2 connect the vertices 1 and 3, 1 and 4,
1land 5, 2 and 6, 3 and 4, 3 and 5, 4 and 5. Furthermore the shortest paths between the vertices 1 and
6, 3 and 6, and finally 4 and 6 are of length 3.
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Figure 5.40 .

5.8.2.2 Euler Trails

1. Euler Trail, Euler Graph

A trail containing every edge of a graph G is called an open or closed Euler trail of G.
A connected graph containing a closed Euler trail is an Euler graph.

B The graph G; (Fig. 5.41) has no Euler trail. The graph Go (Fig. 5.42) has an Euler trail, but it
is not an Euler graph. The graph G (Fig. 5.43) has a closed Euler trail, but it is not an Euler graph.
The graph G4 (Fig. 5.44) is an Euler graph.

Y A W

Figure 5.41 Figure 5.42 Figure 5.43 Figure 5.44

G

2. Theorem of Euler-Hierholzer
A finite connected graph is an Euler graph iff all vertices have positive even degrees.

3. Construction of a Closed Euler Trail

If G is an Euler graph, then one chooses an arbitrary vertex v1 of G and constructs a trail 7 by traversing
a path, starting at v; and proceeding until it cannot be continued. If F7 does not yet contain all edges of
G, then one constructs another path F5 containing the edges not in Fi, but starting at a vertex vy € Fj
and proceeds until it cannot be continued. Then one composes a closed trail in G using F; and Fy:
Starting to traverse Fj at v, until v, is reached, then continuing to traverse F, and finishing at the
edges of F; not used before. Repeating this method a closed Euler trail is obtained in finitely many
steps.

4. Open Euler Trails

There is an open Euler trail in a graph G iff there are exactly two vertices in G with odd degrees.
Fig. 5.45 shows a graph which has no closed Euler trail, but it has an open Euler trail. The edges are
consecutively enumerated with respect to an Euler trail. In Fig. 5.46 there is a graph with a closed
Euler trail.
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Figure 5.45 Figure 5.46 Figure 5.47

5. Chinese Postman Problem
The problem, that a postman should pass through all streets in his service area at least once and return
to the initial point and use a trail as short as possible, can be formulated in graph theoretical terms as
follows: Let G = (V, E, f) be a weighted graph with f(e) > 0 for every edge e € E. Determine an edge
sequence F’ with minimum total length

L=Y fle). (5.322)

eceF

The name of the problem refers to the Chinese mathematician Kuan, who studied this problem first.
To solve it two cases are distinguished:
1. G is an Euler graph — then every closed Euler trail is optimal — and
2. G has no closed Euler trail.
An effective algorithm solving this problem is given by Edmonds and Johnson (see [5.25]).

5.8.2.3 Hamiltonian Cycles

1. Hamiltonian Cycle

A Hamiltonian cycle is an elementary cycle in a graph covering all of the vertices.

B In Fig. 5.47, lines in bold face show a Hamiltonian cycle.

The idea of a game to construct Hamiltonian cycles in the graph of a pentagondodecaeder, goes back
to Sir W. Hamilton.

Remark: The problem of characterizing graphs with Hamiltonian cycles leads to one of the classical
NP-complete problems. Therefore, an efficient algorithm to determine the Hamilton cycles cannot be
given here.

2. Theorem of Dirac

If a simple graph G = (V, F)) has at least three vertices, and dg(v) > |V|/2 holds for every vertex v of
G, then G has a Hamiltonian cycle. This is a sufficient but not a necessary condition for the existence
of Hamiltonian cycles. The following theorems with more general assumptions give only sufficient but
not necessary conditions for the existence of Hamilton cycles, too.

B Fig. 5.48 shows a graph which has a Hamiltonian cycle, but does

not satisfy the assumptions of the following theorem of Ore.

3. Theorem of Ore

If a simple graph G = (V, E) has at least three vertices, and dg(v) +

de(w) > |V holds for every pair of non-adjacent vertices v, w, then G

contains a Hamiltonian cycle.

4. Theorem of Posa

Let G = (V, E) be a simple graph with at least three vertices. There is
Figure 5.48 a Hamiltonian cycle in G if the following conditions are satisfied:

1. For 1 <k < (|V] — 1)/2, the number of vertices of degree not exceeding k is less than k.

2. If |V] is odd, then the number of vertices of degree not exceeding (|V'| —1)/2 is less than or equal to

(Vi=1)/2.
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5.8.3 Trees and Spanning Trees
5.8.3.1 Trees

1. Trees

An undirected connected graph without cycles is called a tree. Every tree with at least two vertices has
at least two vertices of degree 1. Every tree with n vertices has exactly n — 1 edges.

A directed graph is called a tree if G is connected and does not contain any circuit (see 5.8.6, p. 410).

B Fig. 5.49 and Fig. 5.50 represent two non-isomorphic trees with 14 vertices. They demonstrate
the chemical structure of butane and iso-butane.

2. Rooted Trees

A tree with a distinguished vertex is called a rooted tree, and the distinguished vertex is called the
root. In diagrams, the root is usually on the top, and the edges are directed downwards from the root
(see Fig. 5.51). Rooted trees are used to represent hierarchic structures, as for instance hierarchies in
factories, family trees, grammatical structures.

B Fig. 5.51 shows the genealogy of a family in the form of arooted tree. The root is the vertex assigned
to the father.

3. Regular Binary Trees

If a tree has exactly one vertex of degree 2 and otherwise only vertices of degree 1 or 3, then it is called
a reqular binary tree.

The number of vertices of a regular binary tree is odd. Regular trees with n vertices have (n + 1)/2
vertices of degree 1. The level of a vertex is its distance from the root. The maximal level occurring
in a tree is the height of the tree. There are several applications of regular binary rooted trees, e.g., in
informatics.

4. Ordered Binary Trees

Arithmetical expressions can be represented by binary trees. Here, the numbers and variables are as-
signed vertices of degree 1, the operations “+”,“~" “” correspond to vertices of degree > 1, and the
left and right subtree, respectively, represents the first and second operand, respectively, which is, in
general, also an expression. These trees are called ordered binary trees.

The traverse of an ordered binary tree can be performed in three different ways, which are defined in a
recursive way (sce also Fig. 5.52):

Inorder traverse: Traverse the left subtree of the root (in inorder traverse)
visit the root,
traverse the right subtree of the root (in inorder traverse).
Preorder traverse: Visit the root,
traverse the left subtree (in preorder traverse),
traverse the right subtree of the root (in preorder traverse).
Postorder traverse: ~ Traverse the left subtree of the root (in postorder traverse),
traverse the right subtree of the root (in postorder traverse),
visit the root.
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Using inorder traverse the order of the terms does not change in comparison with the given expression.
The term obtained by postorder traverse is called postfiz notation PN or Polish notation. Analogously,
the term obtained by preorder traverse is called prefiz notation or reversed Polish notation.

Prefix and postfix expressions uniquely describe the tree. This fact can

be used for the implementation of trees. e

B In Fig. 5.52 the term a- (b—c¢)+d is represented by a graph. Inorder

traverse yields a - b — ¢ + d, preorder traverse yields + - —bcad, and ‘ @
postorder traversal yields abc — -d+-.

5.8.3.2 Spanning Trees @ S

1. Spanning Trees (b (©
A tree, being a subgraph of an undirected graph G, and containing all

vertices of G, is called a spanning tree of G. Every finite connected graph Figure 5.52

G contains a spanning tree H:

If G contains a cycle, then delete an edge of this cycle.

The remaining graph G is still connected and can be 7 1

transformed into a connected graph G5 by deleting a fur- N
ther edge of a cycle of Gy, if there exists such an edge. Af- 2 2

ter finitely many steps a spanning tree of G is obtained. 3 4 3 4

B Fig. 5.54 shows a spanning tree H of the graph G
shown in Fig. 5.53.
2. Theorem of Cayley
Every complete graph with n vertices (n > 1) has exactly n"~? spanning trees.
3. Matrix Spanning Tree Theorem
Let G = (V, E) beagraph with V = {v1, v, ..., v, } (n > 1) and E = {ey, €9, ..., €, }. Define a matrix
D = (d;;) of type (n,n):
B 0 for i # j,
dij = {d(;(v,) fori = j, (5.323a)

which is called the degree matriz. The difference between the degree matrix and the adjacency matrix
is the admittance matrix L of G:

L=D-A. (5.323b)
Deleting the i-th row and the i-th column of L the matrix L; is obtained. The determinant of L; is
equal to the number of spanning trees of the graph G.

B The adjacency matrix, the degree matrix and the admittance matrix of the graph in Fig. 5.53 are:

Figure 5.53 Figure 5.54

2110 4000 2-1-1 0
1020 0300 -1 3-2 0
A=1l1901] D=15040 L=|_1.2 14
0010 0001 0 0-1 1

Since detLs = 5, the graph has five spanning trees.

4. Minimal Spanning Trees

Let G = (V, E, f) be a connected weighted graph. A spanning tree H of G is called a minimum spanning
treeif its total length f(H) is minimum:

fU) = T f(e) (5.324)

Minimum spanning trees are searched for, e.g., if the edge weights represent costs, and one is interested
in minimum costs. A method to find a minimum spanning tree is the Kruskal algorithm:

a) Choose an edge with the least weight.
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b) Continue, as long as it is possible, choosing a further edge having least weight and not forming a
cycle with the edges already chosen, and add such an edge to the tree.

In step b) the choice of the admissible edges can be made easier by the following labeling algorithm:
e Let the vertices of the graph be labeled pairwise differently.

e At every step, an edge can be added only in the case that it connects vertices with different labels.

o After adding an edge, the label of the endpoint with the larger label is changed to the value of the
smaller endpoint label.

5.8.4 Matchings

1. Matchings

A set M of edges of a graph G is called a matching in G, iff M contains no loop and two different edges

of M do not have common endpoints.

A matching M* of G is called a saturated matching, if there is no matching M in G such that M* C M.

A matching M** of G is called a maximum matching, if there is no matching M in G such that |M| >

M*|.

If M is a matching of G such that every vertex of G is an endpoint of an edge of M, then M is called a
1 perfect matching.

6 5 W In the graph in Fig. 5.55 M, = {{2,3},{5,6}} is a saturated
4 matching and M, = {{1,2}, {3,4},{5,6}} is a maximum matching
5 3 which is also perfect.

Remark: In graphs with an odd number of edges there is no perfect
Figure 5.55 matching.

2. Theorem of Tutte
Let ¢(G — S) denote the number of the components of G — S with an odd number of vertices. A graph
G = (V, E) has a perfect matching iff |V | is even and for every subset S of the vertex set ¢(G —.S) < [S].
Here G — S denotes the graph obtained from G by deleting the vertices of S and the edges incident with
these vertices.
Perfect machings exist for example in complete graphs with an even number of vertices, in complete
bipartite graphs K, , and in arbitrary regular bipartite graphs of degree r > 0.
3. Alternating Paths
Let G be a graph with a matching M. A path W in G is called an alternating path iff in W every edge
ewith e € M (or e ¢ M) is followed by an edge ¢’ with ¢’ ¢ M (or e € M).
An open alternating path is called an increasing path iff none of the endpoints of the path is incident
with an edge of M.
4. Theorem of Berge
A matching M in a graph G is maximum iff there is no increasing alternating path in G.
If W is an increasing alternating path in G with corresponding set E(W) of traversed edges, then
M = (M\ E(W))U(E(W)\ M) forms a matching in G with |M'| = |M| + 1.
B In the graph of Fig. 5.55 ({1,2},{2,3},{3,4}) is an increasing alternating path with respect to
matching M;. Matching My with |Ms| = [M;| + 1 is obtained as described above.
5. Determination of Maximum Matchings
Let G be a graph with a matching M.
a) First form a saturated matching M* with M C M*.
b) Chose a vertex v in G, which is not incident with an edge of M*, and determine an increasing
alternating path in G starting at v.
¢) If such a path exists, then the method described above results in a matching M’ with |M'| > |M*
If there is no such path, then delete vertex v and all edges incident with v in G, and repeat step b).
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There is an algorithm of Edmonds, which is an effective method to search for maximum matchings, but
it is rather complicated to describe (see [5.24]).

5.8.5 Planar Graphs

Here, the considerations are restricted to undirected graphs, since a directed graph is planar iff the
corresponding undirected graph is a planar one.

1. Planar Graph

A graph is called a plane graph iff G can be drawn in the plane

with its edges intersecting only in vertices of G. A graph iso-

morphic with a plane graph is called a planar graph.

Fig. 5.56 shows a plane graph (. The graph G, in Fig. 5.57

is isomorphic to Gy, it is not a plane graph but a planar graph,

since it is isomorphic with G.

2. Non-Planar Graphs

Figure 5.56 Figure 5.57 The complete graph K5 and the complete bipartite graph K3
are non-planar graphs (see 5.8.1, 5., p. 402).

3. Subdivisions

A subdivision of a graph G is obtained if vertices m

of degree 2 are inserted into edges of G. Every

graph is a subdivision of itself. Certain subdivi-

sions of K5 and K33 are represented in Fig. 5.58

and Fig. 5.59.

4. Kuratowski’s Theorem

A graph is non-planar iff it contains a subgraph

which is a subdivision either of the complete bipar- Figure 5.58 Figure 5.59
tite graph K5 3 or of the complete graph K.

5.8.6 Pathsin Directed Graphs

1. Arc Sequences

contain any arc twice and one of the endpoints of every arc e; for i = 2,3,...,s — 1 is an endpoint of
the arc e;_; and the other one an endpoint of e; .

A chain is called a directed chainiff fori = 1,2,...,s— 1 the terminal point of the arc e; coincides with
the initial point of €;;.

Chains or directed chains traversing every vertex at most once are called elementary chains and ele-
mentary directed chains, respectively.

A closed chain is called a cycle. A closed directed path, with every vertex being the endpoint of exactly
two arcs, is called a circuit.

B Fig. 5.60 contains examples for various kinds of arc sequences.

2. Connected and Strongly Connected Graphs

A directed graph G is called connected iff for any two vertices there is a chain connecting these vertices.
The graph G is called strongly connected iff to every two vertices v, w there is is assigned a directed
chain connecting these vertices.

3. Algorithm of Dantzig

Let G = (V, E, f) be a weighted simple directed graph with f(e) > 0 for every arc e. The following
algorithm yields all vertices of G, which are connected with a fixed vertex v; by a directed chain, together
with their distances from vy:

a) Vertex vy gets the label ¢(v;) = 0. Let Sy = {v;}.
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Figure 5.60

b) The set of the labeled vertices is Sy,.

c) If U, = {e|le = (v;,vj) € E, v; € Sy, v; & Sin} = 0, then one finishes the algorithm.

d) Otherwise one chooses an arc ¢* = (z*,y*) with minimum ¢(z*) + f(e*). One labels ¢* and y* and
puts t(y*) = t(z*) + f(e*) and also Sy,41 = S, U {y*} and repeats b) with m := m + 1.

(If all arcs have weight 1, then the length of a shortest directed chain from a vertex v to a vertex w can
be found using the adjacency matrix (see 5.8.2.1, 4., p. 404)).

If a vertex v of G is not labeled, then there is no di-
rected path from v; to v.

If v has label ¢(v), then ¢(v) is the length of such a
directed chain. A shortest directed path from vy to
v can be found in the tree given by the labeled arcs
and vertices, the distance tree with respect to v;.
B In Fig. 5.61, the labeled arcs and vertices rep-
resent the distance tree with respect to vy in the
graph. The lengths of the shortest directed chains
are:

from vy to vg : 2 from vy to vg : 7
fromwvy tovy: 3 from vy to vy : 7
from vy to vy : 3 fromuwv; towvyy : 8
from vy to vy : 4 from vy to vy : 8
from vy tovyg: 5 from vy to vyg : 9
from vy to vy : 6 fromwv;toviz: 10

from vy towy; @ 6.

Remark: There is also a modified algorithm to
Figure 5.61 find the shortest directed chains in the case that
G = (V, E, f) has arcs with negative weights.

5.8.7 Transport Networks
1. Transport Network

A connected directed graph is called a transport network if it has two labeled vertices, called the source
@ and sink S which have the following properties:

a) There is an arc uy from S to @, where u; is the only arc with initial point S and the only arc with
terminal point Q.

b) Every arc u; different from u, is assigned a real number ¢(u;) > 0. This number is called its capacity.
The arc u; has capacity co.
A function ¢, which assigns a real number to every arc, is called a flow on G, if the equality

S oeuv)= Y olv,w) (5.325a)

(u,v)eG (v,w)eG
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holds for every vertex v. The sum

Y w(@Qu) (5.325b)
(Qu)e&
is called the intensity of the flow. A flow ¢ is called compatible to the capacities, if for every arc w; of G

0 < o(u;) < e(u;) holds.
B For an example of a transport network see p. 412.
2. Maximum Flow Algorithm of Ford and Fulkerson

Using the maximum flow algorithm one can recognize whether a given flow ¢ is maximal.

Let G be a transport network and ¢ a flow of intensity v; compatible with the capacities. The algorithm
given below contains the following steps for labeling the vertices, and after finishing this procedure one
can realize how much the intensity of the flow could be improved depending on the chosen labeling
steps.

a) One labels the source @ and sets £(Q)) = oo.

b) If there is an arc u; = (z,y) with labeled  and unlabeled y and p(u;) < ¢(u;), then one labels y and
(2,y), and sets e(y) = min{e(z), c(u;) — ¢(w;)}, then one repeats step b), otherwise follows step c).
c) If there is an arc u; = (2, y) with unlabeled x and labeled y, p(u;) > 0 and u; # uy, then one labels
x and (x,y), substitutes e(x) = min{e(y), p(u;)} and returns to continue step b) if it is possible.
Otherwise one finishs the algorithm.

If the sink S of G is labeled, then the flow in G can be improved by an amount of £(5). If the sink is
not labeled, then the flow is maximal.

B Maximum flow: For the graph in Fig. 5.62 the weights are written next to the edges. A flow with
intensity 13, compatible to these capacities, is represented in the weighted graph in Fig. 5.63. It is a
maximum flow.

Figure 5.62

B Transport network: A product is produced
by p firms Fi,F5, ..., F,.  There are ¢ users
V1, Va, ..., V4. During a certain period there will be
s; units produced by F; and ¢; units required by V;.
¢;j units can be transported from Fj to V; during
the given period. Is it possible to satisfy all the re-
quirements during this period? The corresponding
graph is shown in Fig. 5.64.

Figure 5.64
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5.9 Fuzzy Logic

5.9.1 Basic Notions of Fuzzy Logic
5.9.1.1 Interpretation of Fuzzy Sets

Real situations are very often uncertain or vague in a number of ways. The word “fuzzy” also means
some uncertainty, and the name of fuzzy logic is based on this meaning. Basically there are to distin-
guish two types of fuzziness: vagueness and uncertainty. There are two concepts belonging here: The
theory of fuzzy sets and the theory of fuzzy measure. In the following practice-oriented introduction
the notions, methods, and concepts of fuzzy sets are discussed, which are the basic mathematical tools
of multi-valued logic.

1. Notions of Classical and Fuzzy Sets

The classical notion of (crisp) set is two-valued, and the classical Boolean set algebra is isomorphic to
two-valued propositional logic. Let X be a fundamental set named the universe. Then for every A C X
there exists a function

far X —{0,1}, (5.326a)
such that it says for every z € X whether this element = belongs to the set A or not:
falz)=1loze A and fa(z)=0&ax¢ A (5.326b)

The concept of fuzzy sets is based on the idea of considering the membership of an element of the set as a
statement, the truth value of which is characterized by a value from the interval [0, 1]. For mathematical
modeling of a fuzzy set A a function is necessary whose range is the interval [0, 1] instead of {0,1}, i.e.:
pa: X — [0,1]. (5.327)
In other words: To every element z € X is to assign a number p4(x) from the interval [0, 1], which
represents the grade of membership of 2 in A. The mapping 14 is called the membership function. The
value of the function p4(z) at the point x is called the grade of membership. The fuzzy sets A, B, C,
ete. over X are also called fuzzy subsets of X. The set of all fuzzy sets over X is denoted by F(X).

2. Properties of Fuzzy Sets and Further Definitions
The properties below follow directly from the definition:
(E1) Crisp sets can be interpreted as fuzzy sets with grade of membership 0 and 1.

(E2) The set of the arguments z, whose grade of membership is greater than zero, i.e., pa(z) > 0, is
called the support of the fuzzy set A:

supp(4) = {z € X | pa(z) > 0}. (5.328)
The set ker(A) = {z € X : pa(x) = 1} is called the kernel or core of A.
(E3) Two fuzzy sets A and B over the universe X are equal if the values of their membership functions
are equal:

A = B, if pa(z) = pp(x) holds for every z € X. (5.329)
(E4) Discrete representation or ordered pair representation: If the universe X is finite, i.e.,

X = {x1,2y,...,2,} it is reasonable to define the membership  Tuhle 5.7 Tabular representation of a
function of the fuzzy set with a table of values. The tabular fuzzy set
representation of the fuzzy set A is seen in Table 5.7. - - e .
1 2 e | T
Also it is possible to write palzy) | pa(@s) | ... | palz,)
n
A= pa(en) /oy + -+ palan) /e, =D pala) )z, (5.330)
i=1

In (5.330) the fraction bars and addition signs have only symbolic meaning.
(E5) Ultra-fuzzy set: A fuzzy set, whose membership function itself is a fuzzy set, is called, after Zadeh,
an ultra-fuzzy set.
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3. Fuzzy Linguistics

Assigning linguistic values, e.g., “small”, “medium” or “big”, to a quantity then it is called a linguistic
quantity or linguistic variable. Every linguistic value can be described by a fuzzy set, for example, by
the graph of a membership function (5.9.1.2) with a given support (5.328). The number of fuzzy sets
(in the case of “small”, “medium”, “big” they are three) depends on the problem.

In 5.9.1.2 the linguistic variable is denoted by x. For example, = can have linguistic values for temper-
ature, pressure, volume, frequency, velocity, brightness, age, wearing, etc., and also medical, electrical,
chemical, ecological, etc. variables.

B By the membership function p14(2) of a linguistic variable, the membership degree of a fixed (crisp)
value can be determined in the fuzzy set represented by pa(z). Namely, the modeling of a “high”
quantity, e.g., the temperature, as a linguistic variable given by a trapezoidal membership function
(Fig. 5.65) means that the given temperature o belongs to the fuzzy set “high temperature” with the
degree of membership 5 (also degree of compatibility or degree of truth).

5.9.1.2 Membership Functions on the Real Line

The membership functions can be modeled by functions with values between 0 and 1. They represent
the different grade of membership for the points of the universe being in the given set.

1. Trapezoidal Membership Functions

Trapezoidal membership functions are widespread. Piecewise (continuously differentiable) member-
ship functions and their special cases, e.g., the triangle shape membership functions described in the
following examples, are very often used. Connecting fuzzy quantities gives smoother output functions
if the fuzzy quantities were represented by continuous or piecewise continuous membership functions.

B A: Trapezoidal function (Fig. 5.65) corresponding to (5.331). The graph of this function
turns into a triangle function
Ua(X) ifay, = a3 = a and a; <
0 r<a, a < ay. Choosing differ-
1 i ent values for aq, . .. , ay gives
i a <7 <ay, symmetrical or asymmetri-
05 az —ay ' cal trapezoidal functions, a
Br---- ) =41 as <z < ay, (5.331) symmetrical triangle func-
tion (ay = a3 = a and |a —
‘ a4 — T a5 <1< ay ay| = |ag — a|) or asymmet-
0 as — as ’ rical triangle function (ay =
0 > ay a3 = aand |a — a1| # |aq —

Figure 5.65 al).

B B: Membership function bounded to the left and to the right (Fig. 5.66) corresponding to (5.332):

X
W (x) 1 v <a,
L e S as — T
ap < r < ag,
a9 — ay
pua(z) =<0 az <z < as, (5.332)
S <x<
as T Qy
0 a, a, a; a, ay —as ’
1 ay < x.

Figure 5.66
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B C: Generalized trapezoidal function (Fig. 5.67) corresponding to (5.333).

0 T < ap,
71)2(17_@1) a; < x < as,
az — a1
bs=b)w—a) W<
as — ag
pa(z) = bs =0y =1 ag < T < ag, (5.333)
by — bS o
Ga=bs)aa=2) W<
0 a, a, a; a, a as — a4
bs(as — x)
Figure 5.67 ag — as I == s
0 ag < .
2. Bell-Shaped Membership Functions 0 z<a,

Bl A: A class of bell-shaped, differentiable membership

functions is given by the function f(z) from (5.334) by  f(z) = { e /P a<x<b, (5.334)
choosing an appropriate p(x):

For p(z) = k(z —a)(b— ) and, e.g., k = 10 or k = 1 or 0 x> b.

k = 0.1, there is a family of symmetrical curves of different

b b
width with the membership function pa(z) = f(x) / f (%) where 1 / f (%) is the normal-

izing factor (Fig. 5.68). The exterior curve follows with the value k& = 10 and the interior one with
k=0.1.

Asymmetrical membership functions in [0, 1] follow e.g. for p(z) = z(1 — z)(2 — x) or for p(x) =
z(1—z)(z+1) (Fig. 5.69), using appropriate normalizing factors. The factor (2 —z) in the first poly-
nomial results in the shifting of the maximum to the left and it yields an asymmetrical curve shape.
Similarly, the factor (x 4+ 1) in the second polynomial results in a shifting to the right and in an asym-
metric form.

1 fHal) RO
0.5 05
0 ‘ .
a e b x % 05 1 x
Figure 5.68 Figure 5.69

B B: A more flexible class of membership functions can be got by the formula

[ ftw) du
L " F () du

) =
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where f is defined by (5.334) with p(xz) = (z — a)(b — z) and ¢t is a transformation on [a,b]. If ¢ is
a smooth transformation on [a, ], i.e., if ¢ is differentiable infinitely many times in the interval [a, b],
then F} is also smooth, since f is smooth. Requiring ¢ to be either increasing or decreasing and to be
smooth, then the transformation ¢ allows to change the shape of the curve of the membership function.
In practice, polynomials are especially suitable for transformations. The simplest polynomial is the
identity t(z) = x on the interval [a, b] = [0, 1].

The next simplest polynomial with the given properties is t(z) = —%CIS + cx? + (1 — %) r with a

constant ¢ € [—6,3]. The choice ¢ = —6 results in the polynomial of maximum curvature, its equation
is q(z) = 42 — 62% + 3z. Choosing for gy the identity function, i.e., go(z) = x, then can be got
recursively further polynomials ¢ by the formula ¢; = gog;_ for i € IN. Substituting the corresponding
polynomial transformations go, q1, . . . into (5.335) for ¢, gives a sequence of smooth functions F,, I,
and F,, (Fig. 5.70), which can be considered as membership functions y4(z), where F,, converges to
aline. The trapezoidal membership function can be approximated by differentiable functions using the

function F,, its reflection and a horizontal line (Fig. 5.71).

HA() HA09)
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Figure 5.70 Figure 5.71

Summary: Imprecise and non-crisp information can be described by fuzzy sets and represented by
membership functions ().

5.9.1.3 Fuzzy Sets
1. Empty and Universal Fuzzy Sets
a) Empty fuzzy set: A set A over X is called empty if pa(z) = 0 Va2 € X holds.
b) Universal fuzzy set: A set is called universalif pa(z) = 1 V2 € X holds.
2. Fuzzy Subset
If pp(z) < pa(z) Vo € X, then B is called a fuzzy subset of A (one writes: B C A).
3. Tolerance Interval and Spread of a Fuzzy Set on the Real Line
If A is a fuzzy set on the real line, then the interval

[a,b] = {z € X|pa(x) =1} (a,bconst, a <b) (5.336)
is called the tolerance interval of the fuzzy set A, and the interval [¢, d] = cl(suppA) (¢, d const,c < d)
is called the spread of A, where cl denotes the closure of the set. (The tolerance interval is sometimes
also called the peak of set A.) The tolerance interval and the kernel coincide only if the kernel contains
more then one point.
B A: In Fig. 5.65 [as, a3] is the tolerance interval, and [ay, a4] is the spread.
B B: a = a3 = a (Fig. 5.65), gives a triangle-shaped membership function p. In that case the
triangular fuzzy set has no tolerance, but its kernel is the set {a}. If additionally a; = a = a4 holds,
too, then a crisp value follows; it is called a singleton. A singleton A has no tolerance, but ker(A) =
supp(4) — {a}.
4. Conversion of Fuzzy Sets on a Continuous and Discrete Universe
Let the universe be continuous, and let a fuzzy set be given on it by its membership function. Discretiz-
ing the universe, every discrete point together with its membership value determines a fuzzy singleton.
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Conversely, a fuzzy set given on a discrete universe can be converted into a fuzzy set on the continuous
universe by interpolating the membership value between the discrete points of the universe.
5. Normal and Subnormal Fuzzy Sets
If A is a fuzzy subset of X, then its height is defined by
H(A) := max {pa(z)|z € X}. (5.337)

Ais called a normal fuzzy setif H(A) = 1, otherwise it is subnormal.
The notions and methods represented in this paragraph are limited to normal fuzzy sets, but it easy to
extend them also to subnormal fuzzy sets.

6. Cut of a Fuzzy Set
The a cut A>® or the strong o cut A= of a fuzzy set A are the subsets of X defined by
A7 ={x € X|pa(z) > o}, A2 = {2 € X|pa(z) > o}, a€(0,1]. (5.338)
and AZ% = ¢l (A7%). The « cut and strong o cut are also called a-level set and strong a-level set,
respectively.
1. Properties
a) The « cuts of fuzzy sets are crisp sets.
b) The support supp(A) is a special « cut: supp(A) = A>°.
¢) The crisp 1 cut A2 = {z € X|ua(z) = 1} is called the kernel of A.
2. Representation Theorem
To every fuzzy subset A of X' can be assigned uniquely the families of its o cuts (A7), ;) and its

strong « cuts (AZ“) The « cuts and strong « cuts are monotone families of subsets from X,

ae(0,1]”
since:

a<f= A2 A and A% D A% (5.339a)
Conversely, if there exist the monotone families (Uu>ae[0,1) or (Vu)ae(o,l] of subsets from X, then there
are uniquely defined fuzzy sets U and V such that U>® = U, and V=* = V,, and moreover

po(z) = sup{a € [0,1))|z € Uy}, py(z) = sup{a € (0,1]|z € V. }. (5.339b)

7. Similarity of the Fuzzy Sets A and B
1. The fuzzy sets A, B with membership functions 4, pig: X — [0,1] are called fuzzy similar if for
every « € (0, 1] there exist numbers «; with a; € (0, 1]; (i = 1,2) such that:

supp(aifta)a C supp(pip)a;  supp(aasin)e C sUpp(fa)a- (5.340)

(f1c) represents a fuzzy set with the membership function (pc)o = { ;Ozc(:r) :)ftﬁgr(xil)s: @ and (Bc)
B it pe(x) > 8

represents a fuzzy set with the membership function (Buc) = { 0 otherwise

2. Theorem: Two fuzzy sets A, B with membership functions pia, p: X — [0, 1] are fuzzy-similar if
they have the same kernel:

supp(pa)1 = supp(pp), (5.341a)
since the kernel is equal to the 1 cut, i.e.
supp(pa)i = {z € X|pa(z) = 1}. (5.341b)

3. A, B with pa, pp: X — [0,1] are called strongly fuzzy-similar if they have the same support and
the same kernel:
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supp(fa)1 = supp(p)1, (5.342a) supp(f1a)o = supp(pz)o- (5.342b)

5.9.2 Connections (Aggregations) of Fuzzy Sets

Fuzzy sets can be aggregated by operators. There are several different suggestions of how to generalize
the usual set operations, such as union, intersection, and complement of fuzzy sets.

5.9.2.1 Concepts for Aggregations of Fuzzy Sets

1. Fuzzy Set Union, Fuzzy Set Intersection

The grade of membership of an arbitrary element € X in the sets A U B and A N B should depend
only on the grades of membership 14 (x) and pp(x) of the element in the two fuzzy sets A and B. The
union and intersection of fuzzy sets is defined with the help of two functions

s,t:0,1] x [0,1] — [0, 1], (5.343)
and they are defined in the following way:
taup (@) = s (pa(@), pp(x)),  (5.344) panp (@) =t (pa(x), pp()) . (5.345)

The grades of membership pi4(z) and pp(x) are mapped in a new grade of membership. The functions
t and s are called the ¢ norm and ¢ conorm; this last one is also called the s norm.
Interpretation: The functions paup and panp represent the truth values of membership, which is
resulted by the aggregation of the truth values of memberships pia(z) and pp(x).
2. Definition of the tNorm:
The ¢ norm is a binary operation ¢ in [0, 1]:

t:[0,1] x [0,1] — [0,1]. (5.346)
It is symmetric, associative, monotone increasing, it has 0 as the zero element and 1 as the neutral
element. For z,y, z,v,w € [0,1] the following properties are valid:

(E1) Commutativity: ¢(z,y) =t(y,z). (5.347a)
(E2) Associativity: ¢(z,t(y, z)) = t(t(z,y), ). (5.347Db)
(E3) Special Operations with Neutral and Zero Elements:

t(z,1) = xand because of (E1):  #(1,2) =; t(z,0) =1(0,2) = 0. (5.347¢)
(E4) Monotony: Ifz <wvandy <w, then #(z,y) < t(v,w)is valid. (5.347d)

3. Definition of the sNorm:
The s norm is a binary function in [0, 1]:

$:00,1] % [0,1] — [0, 1]. (5.348)
It has the following properties:
(E1) Commutativity: s(z,y) = s(y, z). (5.349a)
(E2) Associativity: s(z, s(y, z)) = s(s(z,y), 2). (5.349Db)
(E3) Special Operations with Zero and Neutral Elements:

s(x,0) = s(0,2) = x; s(x,1) =s(1,2) = 1. (5.349c¢)
(E4) Monotony: Ifz <wvandy < w, then s(z,y) < s(v,w)is valid. (5.349d)

With the help of these properties a class 7" of ¢ norms and a class S of s norms can be introduced.
Detailed investigations proved that the following relations hold:

min{z,y} > t(z,y) Vt e T, Vz,y € [0,1] and (5.349¢)
max{z,y} < s(z,y) Vs € S, Va,y € [0,1]. (5.349f)
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5.9.2.2 Practical Aggregation Operations of Fuzzy Sets

1. Intersection of Two Fuzzy Sets
The intersection A N B of two fuzzy sets A and B is defined by the minimum operation min(.,.) on
their membership functions pa(z) and pp(x). Based on the previous requirements there is:

C:=ANBand puc(z) = min (pa(z), pp(xz)) VaeX, where: (5.350a)
min(a, b) = { Z’ :ffs f é)’ (5.350Db)

The intersection operation corresponds to the AND operation of two membership functions (Fig.5.72).
The membership function pc(z) is defined as the minimum value of p4(z) and pg(x).

2. Union of Two Fuzzy Sets

The union AU B of two fuzzy sets is defined by the maximum operation max(., .) on their membership
functions pa(x) and pp(x):

C:=AUB and pc(z) == max (pua(z),pp(z)) VaeX, where: (5.351a)
cifa>b, .
max(a,b) == { Z" ilf aagb. (5.351b)

The union corresponds to the logical OR operation. Fig.5.73 illustrates pic(z) as the maximum value
of the membership functions i (z) and pp(z).

B The ¢ norm ¢(z,y) = min{z,y} and the s norm s(x,y) = max{z, y} define the intersection and the
union of two fuzzy sets, respectively (see (Fig.5.74) and (Fig.5.75)).
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3. Further Aggregations
Further aggregations are the bounded, the algebraic, and the drastic sumand also the bounded difference,
the algebraic and the drastic product (see Table 5.8).
The algebraic sum, e.g., is defined by

C:=A+ Band pe(z) = pa(z) + pp(x) — pa(z) - pp(x) forevery z € X. (5.352a)
Similarly to the union (5.351a,b), this sum also belongs to the class of s norms. They are included in
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Table 5.8 t and s norms, p € R

Author t norm s norm
Zadeh intersection: ¢(z,y) = min{z, y} union: s(x,y) = max{z,y}
Lukasiewicz | bounded difference bounded sum

ty(z,y) = max{0,z +y — 1} sp(@,y) = min{l, z + y}

algebraic product algebraic sum

tu(z,y) = 2y sa(T,y) =r+y -1y

drastic product drastic sum

min{z, y}, whether z =1 max{z,y}, whether z =0
tap(x,y) = { cory=1 sas(x,y) = { Cory=0
0 otherwise 1 otherwise
Hamacher
T r+y—azy—(1-p
20 e =ty e = S
Einstein te(z,y) = ﬁ se(w,y) = iT:xyy
Frank tr(z,y) = sp(w,y) =1—
(p>0,p#1) |log, [1 + v 71)1%p1y - 1)} log,, [1 + (Va 7;)_(])117;1 - 1)}
Yager tya(z,y) = 1— Sya(x,y) = min (1, (2P + yp)l/p)
(p>0) min (1, (1—z)pP+(1- y)P)l/p)
Schweizer ty(z,y) = max(0,a7P +y7P — 1)7HP ss(z,y) =1—
(p>0) max (0, (1 —2) 7 + (1 —y) 7 —1)"/*
Dombi Lao(x,y) = sd0(2,y) = 1—
1/p) 1 1/p) !

(p>0) {1+ [(%)p+<1;—y>p} /p} {1+[<1x$>"+(1yy>? /p}
Weber ty(z,y) = max(0, (1 +p) Sw(z,y) = min(1,z + y + pay)
(p=-1) (z+y—1) —pay)
Dubois tau(z,y) = Y Sau(,y) =

max(z,y,p)
z+y—xy — min(z,y, (1 —p))
max((1 —x), (1 —y),p)
Remark: For the values of the ¢ and s norms listed in the table, the following ordering is valid:
tdpétbgteétagthStSSSShSSaSsegsbgsd5~

(0<p<1)

the right-hand column of Table 5.8. In Table 5.9 is given a comparision of operations in Boolean logic
and fuzzy logic.

Analogously to the notion of the extended sum as a union operation, the intersection can also be ex-
tended for example by the bounded, the algebraic, and the drastic product. So, e.g., the algebraic
product is defined in the following way:

C:=A-Band uc(z) := pa(z) - pp(zx) forevery x € X. (5.352b)
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It also belongs to the class of ¢ norms, similarly to the intersection (5.350a,b), and it can be found in
the middle column of Table 5.8.

5.9.2.3 Compensatory Operators
Sometimes operators are necessary lying between the ¢ and the s norms; they are called compensatory
operators. Examples for compensatory operators are the lambda and the gamma operator.
1. Lambda Operator

paxp(®) = Apa(@)ps ()] + (1= A) [na(@) + pp(e) — pa(@)ps(@)]  with A€ [0,1]. (5.353)
Case A = 0: Equation (5.353) results in a form known as the algebraic sum (Table 5.8, s norms); it
belongs to the OR operators.

Case \ = 1: Equation (5.353) results in the form known as the algebraic product (Table 5.8, ¢ norms);
it belongs to the AND operators.

2. Gamma Operator

pay8(x) = [a(@)pp(@)] 7 [L = (1= pa(z)) (1 = pp())]" withy € [0, 1]. (5.354)
Case y= 1: Equation (5.354) results in the representation of the algebraic sum.
Case y= 0: Equation (5.354) results in the representation of the algebraic product.
The application of the gamma operator on fuzzy sets of any numbers is given by

n

)= [T to) =TT - o] (5.355)

i=1

and with weights ;:

n 1—y n ki n

w(z) = [H u,(a:)‘s"] [1 - JI - ui(z))‘”] withz € X, Y 6 =1, y€[0,1]. (5.356)
=1 i=1 i=1

5.9.2.4 Extension Principle

In the previous paragraph there are discussed the possibilities of generalizing the basic set operations
for fuzzy sets. Now, the notion of mapping is extended on fuzzy domains. The basis of the concept is the
acceptance grade of vague statements. The classical mapping @: X" — Y assigns a crisp function value
&(z1,...,x,) €Y tothe point (z1,...,2,) € X" This mapping can be extended for fuzzy variables as
follows: The fuzzy mapping is #: F(X)* — F(Y), which assigns a fuzzy function value &(piy, . . ., i)
to the fuzzy vector variables (z1,. .., z,) given by the membership functions (p1, ..., pu,) € F(X)".

5.9.2.5 Fuzzy Complement

A function ¢: [0,1] — [0,1] is called a complement function if the following properties are fulfilled for
Va,y e [0,1]:

(EK1) Boundary Conditions: ¢(0) =1 and ¢(1) = 0. (5.357a)
(EK2) Monotony: x<y=c(z)>cly). (5.357b)
(EK3) Involutivity: c(e(x)) = . (5.357¢)
(EK4) Continuity: ¢(x) should be continuous for every = € [0, 1]. (5.357d)

B A: The most often used complement function is (continuous and involutive):

c(z):=1—u. (5.358)
B B: Other continuous and involutive complements are the Sugeno complement ¢y (x) := (1 —2)(1+
Az)~t with A € (—1, 00) and the Yager complement c,(z) := (1 — 2")? with p € (0, 00).
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Table 5.9 Comparison of operations in Boolean logic and in fuzzy logic

Operator | Boolean logic | Fuzzy logic  (pa, pus € [0,1])
AND C=ANB fanp = min(ja, ip)

OR C=AVB HAUB
NOT C=-A 4G =1—pa (1§ as complement of 1)

max(fia, f1p)

5.9.3 Fuzzy-Valued Relations
5.9.3.1 Fuzzy Relations
1. Modeling Fuzzy-Valued Relations

Uncertain or fuzzy-valued relations, as e.g. “approximately equal”, “practically larger than”, or “prac-
tically smaller than”, etc., have an important role in practical applications. A relation between numbers
is interpreted as a subsets of R%. So, the equality “=" is defined as the set

A={(z,y) e Rz =y}, (5.359)

i.e., by a straight line y = « in R?.

Modeling the relation “approximately equal” denoted by Ry, can be used a fuzzy subset on R? the

kernel of which is A. Furthermore it is to require that the membership function should decrease and

tend to zero getting far from the line A. A linear decreasing membership function can be modeled by
pr(z,y) = max{0,1 —alz —y|} with a€R, a>0. (5.360)

For modeling the relation Ry “practically larger than”, it is useful to start with the crisp relation “>”.

The corresponding set of values is given by

{(,y) e Rz <y} (5.361)

It describes the crisp domain above the line z = y.
The modifier “practically” means that a thin zone under the half-space in (5.361) is still acceptable
with some grade. So, the model of Ry is
ooy [ max{0,1 —alz —y|} fory<uz . -

1, (T,y) = { 1 fory > with a€R, a>0. (5.362)
If the value of one of the variables is fixed, e.g., y = yo, then R, can be interpreted as a region with
uncertain boundaries for the other variable.
Handling the uncertain boundaries by fuzzy relations has practical importance in fuzzy optimization,
qualitative data analysis and pattern classification.
The foregoing discussion shows that the concept of fuzzy relations, i.e., fuzzy relations between several
objects, can be described by fuzzy sets. In the following section the basic properties of binary relations
are discussed over a universe which consists of ordered pairs.
2. Cartesian Product
Let X and Y be two universes. Their “cross product” X x Y, or Cartesian product, is a universe G:

G=XxY={(zr,y)lre XAyeY}. (5.363)
Then, a fuzzy set on G is a fuzzy relation, analogously to classical set theory, if it consists of the valued
pair of universes X and Y. A fuzzy relation R in G is a fuzzy subset R € F(G), where F/(G) denotes the
set of all the fuzzy sets over X x Y. R can be given by a membership function pz(z,y) which assigns
a membership degree pg(z,y) from [0, 1] to every element of (z,y) € G.
3. Properties of Fuzzy-Valued Relations
(E1) Since the fuzzy relations are special fuzzy sets, all propositions stated for fuzzy sets will also be
valid for fuzzy relations.
(E2) All aggregations defined for fuzzy sets can be defined also for fuzzy relations; they yield a fuzzy
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relation again.
(E3) The notion of « cut defined above can be transmitted without difficulties to fuzzy relations.
(E4) The 0 cut (the closure of the support) of a fuzzy relation R € F/(G) is a usual relation on G.
(E5) Denoting the membership value by pg(z,y), i.e., the degree by which the relation R between the
pair (z,y) holds. The value pir(z,y) = 1 means that R holds perfectly for the pair (x,y), and the value
1r(x,y) = 0 means that R does not at all hold for the pair (z,y).
(E6) Let R € F(G) be a fuzzy relation. Then the fuzzy relation S := R~!, the inverse of R, is defined
by

is(e,y) = pn(y,2) for every (z,y) € G. (5.364)

B Theinverse relation Ry ! means “practically smaller than” (see 5.9.3.1, 1., p. 422); the union Ry UR; "
can be determined as “practically smaller or approximately equal”.

4. n-Fold Cartesian Product
Let n be the number of universal sets. Their cross product is an n-fold Cartesian product. A fuzzy set
on an n-fold Cartesian product represents an n-fold fuzzy relation.

Consequences: The fuzzy sets, considered until now, are unary fuzzy relations, i.e., in the sense of the
analysis they are curves above a universal set. A binary fuzzy relation can be considered as a surface
over the universal set G. A binary fuzzy relation on a finite discrete support can be represented by a
fuzzy relation matriz.

B Colour-ripe grade relation: The well-known correspondence between the colour 2 and the ripe grade
y of a friut is modeled in the form of a binary relation matrix with elements {0, 1}. The possible colours
are X = {green, yellow, red} and the ripe grades are Y = {unripe, half-ripe, ripe}. The relation
matrix (5.365) belongs to the table:

| unripe  half-ripe ripe

green | 1 0 0 _ (1) (1) 8 rane
yellow | 0 1 0 = 001 : (5.365)
red 0 0 1

Interpretation of this relation matrix: IF a fruit is green, THEN it is unripe. IF a fruit is yellow,
THEN it is half-ripe. IF a fruit is red, THEN it is ripe. Green is uniquely assigned to unripe, yellow to
half-ripe and red to ripe. If beyond it should be formalized that a green fruit can be considered half-ripe
in a certain percentage, then the following table with discrete membership values can be arranged:

/i (green, unripe) = 1.0, pg (green, half-ripe) = 0.5, The relation matrix with pg € [0, 1]
i (green, ripe) =0.0, pug (yellow, unripe) =0.25, is:

1r (vellow, half-ripe) = 1.0, pug (yellow, ripe) = 0.25, L0 05 0.0

pr (red, unripe) =0.0, pg (red, half-ripe) = 0.5, R=102510 025 ]. (5.366)
IR (red7 rjpe) =1.0. 0.0 0.5 1.0

5. Rules of Calculations
The AND-type aggregation of fuzzy sets, e.g. p1: X — [0,1] and po: Y — [0,1] given on different
universes is formulated by the min operation as follows:

pr(z,y) = min(u (), p2(y)) or (1 X po)(x,y) = min(u (), p2(y))  with (5.367a)
p1 X pio: G — [0, 1], where G =X xY. (5.367b)
The result of this aggregation is a fuzzy relation R on the cross product set (Cartesian product universe

of fuzzy sets) G with (z,y) € G. If X and Y are discrete finite sets and so 1 (), p2(y) can be represented
as vectors, then holds:

X pp=popy and pgoi(z,y) = pr(y.z) ¥(z,y) € G. (5.368)
The aggregation operator o does not denote here the usual matrix product. The product is calculated
here by the componentwise min operation and addition by the componentwise max operation.
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The validity grade of an inverse relation R~ for the pair (z,y) is always equal to the validity grade of
R for the pair (y, x).

If the fuzzy relations are given on the same Cartesian product universe, then the rules of their aggre-
gations can be given as follows: Let Ry, Ry: X X Y — [0, 1] be binary fuzzy relations. The evaluation
rule of their AND-type aggregation uses the min operator, namely for V(z,y) € G-

Hringy (@, y) = min(ug, (2,9), ir,y (2, 9))- (5.369)
A corresponding evaluation rule for the OR-type aggregation is given by the max operation:
MR, (T, y) = max(pp, (T, Y), 1ry (2,Y))- (5.370)

5.9.3.2 Fuzzy Product Relation Ro S

1. Composition or Product Relation
Suppose R € F(X xY)and S € F(Y x Z) are two relations, and it is additionally assumed that
R,S € F(G) with G C X x Z. Then the composition or the fuzzy product relation R o S is:
Bros(@,2) = sup ey {min(ur(z,y), ps(y, 2))} ¥ (z,2) € X x Z. (5.371)
If a matrix representation is used for a finite universal set analogously to (5.366), then the composition
R o S is motivated as follows: Let X = {z1,...,2,},Y = {y1,.. ., yn}, Z = {z1,...,z1} and R €
F(X xY), S € F(Y x Z) and let the matrix representations R, S be in the form R = (r;;) and
S=(sjp)fori=1,....,n;5=1,...,m;k=1,...,1, where

ri; = pr(ziy;) and  sji = ps(yj. zx)- (5.372)
If the composition 7' = R o S has the matrix representation ¢;;, then
ti, = sup min{r;, s, }. (5.373)
J

The final result is not a usual matrix product, since instead of the summation operation there is the
least upper bound (supremum) operation and instead of the product there is the minimum operator.
B With the representations for 7;; and s, and with (5.371), the inverse relation R~(r;;)", can also
be computed taking into consideration that R~ can be represented by the transpose matrix, i.e.,
R = ()"

Interpretation: Let R be arelation from X to Y and S be arelation from Y to Z. Then the following
compositions are possible:

a) If the composition Ro S of R and S is defined as a max-min product, then the resulted fuzzy compo-
sition is called a max-min composition. The symbol sup stands for supremum and denotes the largest
value, if no maximum exists.

b) If the product composition is defined as the usual matrix multiplication, then the max-prod com-
position is obtained.

¢) For max-average composition, “multiplication” is replaced by the average.

2. Rules of Composition

The following rules are valid for the composition of fuzzy relations R, S,T € F(G):

(E1) Associative Law:

(RoS)oT =Ro(SoT). (5.374)
(E2) Distributive Law for Composition with Respect to the Union:

Ro(SUT)=(RoS)U(RoT). (5.375)
(E3) Distributive Law in a Weaker Form for Composition with Respect to Intersection:

Ro(SNT)C (RoS)N(RT). (5.376)

(E4) Inverse Operations:
(RoS)'=85"1oR™? (RUS)'=R'US! and (RNS)'=R'nst (5.377)
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(E5) Complement and Inverse:
(R) =R (rRO) " =(r). (5.378)

(E6) Monotonic Properties:
RCS=RoTCSoT undToRCToS. (5.379)

B A: Equation (5.371) for the product relation Ro S is defined by the min operation as we have done
for intersection formation. In general, any ¢ norm can be used instead of the min operation.

B B: The o« cuts with respect to the union, intersection, and complement are: (AUB)~* = AZ*UB~>*,
(AN B)y>™ = A>*n B>, (A% = AS172 = {2 € X|pa(z) < 1 — a}. Corresponding statements
are valid for strong a cuts.

3. Fuzzy Logical Inferences

It is possible to make a fuzzy inference, e.g., with the IF THEN rule by the composition rule 1 = g0 R.
The detailed formulation for the conclusion ps is given by

H2(y) = maxgex (min(yl(x), NR(x,y))) (5.380)
withy € Y, p1: X = [0,1], po: Y = [0,1], R: G —[0,1]]und G = X x Y.

5.9.4 Fuzzy Inference (Approximate Reasoning)

Fuzzy inferenceis an application of fuzzy relations with the goal of getting fuzzy logical conclusions with
respect to vague information (see 5.9.6.3, p. 428). Vague information means here fuzzy information
but not uncertain information. Fuzzy inference, also called implication, contains one or more rules, a
fact and a consequence. Fuzzy inference, which is called by Zadeh, approximate reasoning, cannot be
described by classical logic.

1. Fuzzy Implication, IF THEN Rule
The fuzzy implication contains one IF THEN rule in the simplest case. The IF part is called the premise
and it represents the condition. The THEN part is the conclusion. Evaluation happens by s = pi3 0 R
and (5.380).
Interpretation: pu, is the fuzzy inference image of y; under the fuzzy relation R, i.e., a calculation
prescription for the IF THEN rule or for a group of rules.
2. Generalized Fuzzy Inference Scheme
The rule IF A; AND Ay AND A;... AND A, THEN B with 4;: p;: X; — [0,1] (i =1,2,...,n) and
the membership function of the conclusion B: p: Y — [0, 1] is described by an (n + 1)-valued relation
R: XixXox - X, xY —[0,1]. (5.381a)
For the actual input with crisp values 2, 5, ..., 2}, the rule (5.381a) defines the actual fuzzy output
by
i (y) = pr(ay, @y, . an,y) = min(p (2h), pa(2h), - pa(a7,), 1 (y)) where y €Y. (5.381D)
Remark: The quantity min(u (), p2(2h), ... pn(al)) is called the degree of fulfillment, and the
quantities {p (), p2(ah), ..., pa(al)} represent the fuzzy-valued input quantities.

B Forming the fuzzy relations for a connection between the quantities “medium” pressure and “high”
temperature (Fig. 5.76): fu(p,T) = pi(p) VT € X, with 0 X; — [0,1] is a cylindrical extension
(Fig. 5.76c) of the fuzzy set medium pressure (Fig. 5.76a). Analogously, fi2(p,T) = (T) Vp €
X with po @ Xy — [0,1] is a cylindrical extension (Fig. 5.76d) of the fuzzy set high temperature
(Fig. 5.76b), where fi1, jis: G = X1 x Xy — [0,1].

Fig. 5.77a shows the graphic result of the formation of fuzzy relations: In Fig. 5.77b the result of the
composition medium pressure AND high temperature with the min operator pg(p,T) = min(u(p),
12(T)) is represented, and (Fig. 5.77b) shows the result of the composition OR with the max operator
pr(p, T) = max(p(p), pa(T))-
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5.9.5 Defuzzification Methods

One has to get a crisp set from a fuzz-valued set in many cases. This process is called defuzzification.
There are different methods available for this task.

1. Maximum Criterion Method

membershlp degree

2. Mean-of-Maximum Method (MOM)

The output value is the mean value of the maximal membership values:

Output L .
sup (H ) T /yesup( Output )de

{ye Yy, n(Y) 2 oy (V) VY € Y} (5.382) MoM = e .(5.383)
i.e., theset Y is an interval, which should not be empty and /yesup( Ot ) dy
it is characterized by (5.382), from which follows (5.383).
3. Center of Gravity Method (COG) " uy)y dy
In the center of gravity method, one takes the abscissa Noog = Yt ) ) (5.384)
value of the center of gravity of a surface with a fictitious / sou 1(y) dy
homogeneous density of value 1. Yin o
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4. Parametrized Center of Gravity Method
(PCOG)

The parametrized method works with the exponent v € R.
From (5.385) it follows for v = 1, npcoc = noog and for
7 =0, 7necoc = Miom-

5. Generalized Center of Gravity Method
(GCOG)

The exponent 7 is considered as a function of y in the
PCOG method. Then (5.386) follows obviously. The
GCOG method is a generalization of the PCOG method,
where pi(y) can be changed by the special weight v depend-

Ysup

wy) 'y dy
Y Yinf

PCOG = ~ fyswp -
/ nly)" dy
Y

inf

Ysup o
/ 1(y) Wy dy
Yi

inf

p(y)' ™ dy

(5.386)

Nacoc = /ysup

ing itself on y. Yint

6. Center of Area (COA) Method

One calculates a line parallel to the ordinate axis so that
the area under the membership function is the same on the
left- and on the right-hand side of it.

7.Parametrized Center of Area (PCOA)
Method

8. Method of the Largest Area (LA)
The significant subset is selected and one of the methods defined above, e.g., the method of center of
gravity (COG) or center of area (COA) is used for this subset.

U Ysup
L u(y)dy:/ wy)dy. (5.387)
Yinf

n

[ty dy = /] "uly) dy. (5.388)

Yinf PF

5.9.6 Knowledge-Based Fuzzy Systems

There are several application possibilities of multi-valued fuzzy logic, based on the unit interval, both
in technical and non-technical life. The general concept consists in the fuzzification of quantities and
characteristic numbers, in the aggregation them in an appropriate knowledge base with operators, and
if necessary, in the defuzzification of the possibly fuzzy result set.

5.9.6.1 Method of Mamdani
The following steps are applied for a fuzzy control process:
1. Rule Base Suppose, for example, for the i-th rule

R': Ifeis E' AND ¢ is AE' THEN w is U". (5.389)
Here e characterizes the error, é the change of the error and u the change of the (not fuzzy valued) output
value. Every quantity is defined on its domain E; AE and U. Let the entire domain be £ x AE x U.
The error and the change of the error will be fuzzified on this domain, i.e., they will be represented by
fuzzy sets, where linguistic description is used.
2. Fuzzifying Algorithm In general, the error e and its change é are not fuzzy-valued, so they must
be fuzzified by a linguistic description. The fuzzy values will be compared with the premisses of the
IF THEN rule from the rule base. From this it follows, which rules are active and how large are their
weights.
3. Aggregation Module The active rules with their different weights will be combined with an
algebraic operation and applied to the defuzzification.
4. Decision Module In the defuzzification process a crisp value should be given for the control
quantity. With a defuzzification operation, a non-fuzzy-valued quantity is determined from the set of
possible values, i.e., a crisp quantity. This quantity expresses how the control parameters of the system
should be set up to keep the deviation minimal.
Fuzzy control means that the steps from 1. to 4. are repeated until the goal, the smallest deviation e
and its change é, is reached.
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5.9.6.2 Method of Sugeno

The Sugeno method is also used for planning of a fuzzy control process. It differs from the Mamdani
concept in the rule base and in the defuzzification method. It has the following steps:
1. Rule Base: The rule base consists of rules of the following form:
R': TF x, is AL AND ... ANDay, is A, THEN w; = p)) + play + phas + - -+ + phay. (5.390)
The notations mean:
Aj: fuzzy sets, which can be determined by membership functions;
x;: crisp input values as, e.g., the error e and the change of the error é, which tell us something about
~ the dynamics of the system;
pj weightsof z;  (j =1,2,...,k);
u;: the output value belonging to the i-th rule (: = 1,2,...,n).
2. Fuzzifying Algorithm: A y; € [0, 1] is calculated for every rule R,

3. Decision Module: A non-fuzzy-valued quantity is calculated from the weighted mean of u;, where
the weights are p; from the fuzzification:

n n -1
U= ZMW (Z ,u,,i) . (5.391)
i=1 i=1

Here u is a crisp value.
The defuzzification of the Mamdani method does not work here. The problem is to get the weight
parameters p} available. These parameters can be determined by a mechanical learning method, e.g.,

by an artificial neuronetwork (ANN).

5.9.6.3 Cognitive Systems

To clarify the method, the following known example will be investigated with the Mamdami method:
The regulation of a pendulum that is perpendicular to its moving base (Fig. 5.78). The aim of the
control process is to keep a pendulum in balance so that the pendulum rod should stand vertical, i.e.,
the angular displacement from the vertical direction and the angular velocity should be zero. It must
be done by a force F' acting at the lower end of the pendulum. This force is the control quantity. The
model is based on the activity of a human “control expert” (cognitive problem). The expert formulates
its knowledge in linguistic rules. Linguistic rules consist, in general, of a premise, i.e., a specification of
the measured values, and a conclusion which gives the appropriate control value.

For every set of values X1, Xs, ..., X, for the measured values and Y for the control quantity the appro-
priate linguistic terms are defined as “approximately zero”, “small positive”, etc. Here “approximately
zero” with respect to the measured value & can have a different meaning as for the measured value &,.

B Inverse Pendulum on a Moving Base (Fig. 5.78)
1. Modeling For the set X (values of angle) and analogously for the input
quantity X, (values of the angular velocity) the seven linguistic terms, negative
large (nl), negative medium (nm), negative small (ns), zero (z), positive small
(ps), positive medium (pm) and positive large (pl) are chosen. ; F
For the mathematical modeling, a fuzzy set must be assigned by graphs to every

one of these linguistic terms (Fig. 5.77), as was shown for fuzzy inference (see
5.9.4, p. 425). Figure 5.78

2. Choice of the Domain of Values

e Values of angles: ©(—90° < © < 90°): X, := [-90°,90°].

o Values of angular velocity: ©(—45°s™1 < O < 45°s71): X, := [—45°s71, 45°571].
e Values of force F: (—=10N < FF < 10N):Y :=[-10N,10N].
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The partitioning of the input quantities X; and X, and the output quantity Y is represented graphically

in Fig. 5.79. Usually, the initial values are actual measured values, e.g., © = 36°, 0 = —2.25° s L.
u®) u® W)
1 1 1
f \ = ! it \ >
nl nm ‘44—5J pm pl 0 nl LZT.SJ pl 6 nl LTJ pl F
a) b) c)

Figure 5.79
3. Choice of Rules Considering the following table, there are 49 possible rules (7 x 7) but there are .
only 19 important in practice, so the following two are to be discussed: R1 and R2.

R1: If O is positive small (ps) and © zero (z), then F is positive small (ps). For the degree of fulfillment
(also called the weight of the rules) of the premise with o = min {,u,(l)(@); /1,(1)(9)} = min{0.4;0.8} =

0.4 one gets the output set (5.392) by an « cut, hence the output fuzzy set is positive small (ps) in the
height a = 0.4 (Fig. 5.80c).

Table: Rule base with 19 practically meaning-

ful rules 2 < 1
O\@ |nl | nm |ns|z ps | pm | pl gy O=y<l,
nl ps | pl 0.4 1<y<4,
- pm Output (R
ns nm ns | ps /136:2.;,% U(i‘/) = 2 (5.392)
7 nl |nm |ns|z ps | pm | pl 2- 5Y 4 <y <o,
ps ns | ps pm .
pm nm 0 otherwise.
pl nl | ns
2
~ — — =4
R2: If © is positive medium (pm) and O is 5y 1 25=y<y,
zero (z), then F is positive medium (pm) 0.6 1<y<6,
For the performance score of the premise fol- Output (RZ)( ) (5.303)
i : @200 = i . H3p—2.25 \Y) = .
lows @ = min {,U(Z)(@),/L(Z)O} = min{0.6; 36;—2.2 3_ gy 6<y<T75,
0.8} = 0.6, the output set (5.393) analogously 2
to rule R1 (Fig. 5.80f). 0 otherwise.

4. Decision Logic The evaluation of rule Ry with the min operation results in the fuzzy set in
Figs. 5.80a—c. The corresponding evaluation for the rule Ry is shown in Figs. 5.80d—f. The control
quantity is calculated finally by a defuzzification method from the fuzzy proposition set (Fig. 5.80g).
The result is the fuzzy set (Fig. 5.80g) by using the max operation and taking into account the fuzzy
sets (Fig. 5.80c) and (Fig. 5.80f).
a) Evaluation of the fuzzy set obtained in this way, which is aggregated by operators (see max-min
composition 5.9.3.2, 1., p. 424). The decision logic yields:

PSP Y 5 [0,1] 5y — maXeeqr, kg {min {[LEii(Il), e ,uﬁf_f(z,,,)-m,_(y)}} . (5.394)

..... T
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b) After taking the maximum (5.395) is ob-
tained for the function graph of the fuzzy set.
c¢) For the other 17 rules results a degree of ful-
fillment equal to zero for the premise, i.e., it re-
sults in fuzzy sets, which are zeros themselves.
5. Defuzzification The decision logic yields
no crisp value for the control quantity, but
a fuzzy set. That means, by this method,
one gets a mapping, which assigns a fuzzy set
Output ,Ty,) € X1 %

Pt of Y to every tuple (2, . . .
Xy x --- x X, of the measured values.

2
v for
0.4 for
2 .
utpu 7y - 1 for
MS{;;EQ.;,S(CU) =45
0.6 for
2
3— =Y for
0 for

0<y<1,

1<y<35,

3.5 <y<d4,
=Y=% (5.305)

4 <y <6,

6<y<T5,

otherwise.

Defuzzification means that there is to determine a control quantity using defuzzification methods.
The center of gravity method and the maximum criterion method result in the value for control quantity

F=390rF=5.0.

4116 4 e 4 (F
10TH® o) 1ol HE)
0.8
\ min operation
—
0.4 \ \
22536 6 15,0115 25 F
a) positive small b) c) positive small
y 0 4 9 4 (F
10tH® C) 1ol H®
0.8
0.6 \ - r )
min operation t
gperatio max operation
36 45 0 205 0 50 F
d) positive medium €  zero f) positive medium
6. Remarks Figure 5.80

1(E)

F

g) control quantity

1. The “knowledge-based” trajectories should lie in the rule base so that the endpoint is in the center

of the smallest rule deviation.

2. By defuzzification an iteration process is introduced, which leads finally to the center of the partition
space, i.e., which results in a zero control quantity.

3. Every non-linear domain of characteristics can be approximated with arbitrary accuracy by the
choice of appropriate parameters on a compact domain.

5.9.6.4 Knowledge-Based Interpolation Systems

1. Interpolation Mechanism

Interpolation mechanisms can be built up with the help of fuzzy logic. Fuzzy systems are systems
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to process fuzzy information. With them it is possible to approximate and interpolate functions. A
simple fuzzy system, by which this property can be investigated , is the Sugeno controller. It has n

input variables {1, . . ., &, and defines the value of the output variable y by rules Ry, ..., R, in the form

Ri: IF & is AV and - and &, is AY, THEN is y = fi(¢1,...,&) (i=1,2,....n). (5.396)
The fuzzy sets A;l), .. ,A;- always partition the input sets X;. The conclusions f;(&1....,&,) of the
rules are singletons, which can depend on the input variables &, ..., &,.

By asimple choice of the conclusions the expensive defuzzification can be omitted and the output value
y will be calculated as a weighted sum. To do this, the controller calculates a degree of fulfillment «;
for every rule R; with a ¢ norm from the membership grades of the single inputs and determines the
output value

_ Ef\:l avﬁfi(flv cee ﬁfn)
Zi]\il Q; .

2. Restriction to the One-Dimensional Case

For fuzzy systems with only one input x = &, fuzzy sets represented by triangular functions are often
used which are cut at the height 0.5. Such fuzzy sets satisfy the following three conditions:

1. For every rule R; there is an input z;, for which only one rule is fulfilled. For this input x;, the output
is calculated by f;. By this, the output of the fuzzy system is fixed at N nodes x1,...,zy. Actually,
the fuzzy system interpolates the nodes x, . .., xzy. The requirement that at the nodo x; only one rule
R; holds, is sufficient for an exact 1nterpolat10n but it is not necessary. For two rules R; and Ry, as
they Will be considered below, this requirement means that ay(22) = as(2z1) = 0 holds. To fulfill the
first condition, o (x2) = aa(z1) = 0 must hold. This is a sufficient condition for an exact interpolation
of the nodes.

(5.397)

2. There are at most two rules fulfilled between two consecutive nodes. If z; and x4 are two such nodes

with rules Ry and Ry, then for inputs = € [z, 2] the output y is
() fi(x) + o) folx) . . . as(x)

= = fi(z) +g(z z) — fi(z)] with g .= ——————. (5.398

y - D e 7o)+ 9(0) [a(a) = F(o)] with g = —SED . (5.305)

The actual shape of the interpolation curve between x; and x5 is determined by the function g. The

shape depends only on the satisfaction grades o and aw, which are the values of the membership func-

tions pu,0) and f1, at the point z, i.e., a1 = pam (z) and g = pye (x) are valid, or in short form

ap = pn(x) and ag = pg(x). The shape of the curve depends only on the relation 1 /ps of the mem-
bership functions.

3. The membership functions are positive, so the output y is a convex combination of the conclusions
fi. For the given and for the general case hold (5.399) and (5.400), respectively:

min(fi, fo) <y < max(fi, o), (5:399) 0, fisvs max fi (5:400)

For constant conclusions, the terms f; and f, cause only a translation and stretching of the shape of
the curve g. If the conclusions are dependent on the input variables, then the shape of the curve is
differently perturbed in different sections. Consequently, another output function can be found.

Applying linearly dependent conclusions and membership functions with constant sum for the input
z, then the output isy = ¢ Z a;(z) fi(x) with a; depending on z and a constant ¢, so that the interpo-

lation functions are polynommh of second degree. These polynomials can be used for the construction
of an interpolation method with polynomials of second degree.

In general, choosing polynomials of n-th degree, an interpolation polynomial of (n + 1)-th degree is
obtained as a conclusion. In this sense fuzzy systems are rule-based interpolation systems besides con-
ventional interpolation methods interpolating locally by polynomials, e.g., with splines.
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