
4 LinearAlgebra

4.1 Matrices
4.1.1 Notion ofMatrix

1. Matrices A of Size (m,n) or Briefly A(m,n)

are systems of m times n elements, e.g., real or complex numbers, or functions, derivatives, vectors,
arranged in m rows and n columns:

A = (aij) =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

⎞⎟⎟⎟⎠
← 1st row
← 2nd row

...
← m-th row

(4.1)

↑ ↑ ↑
1st 2nd n-th column.

With the notion size of a matrix matrices are classified according to their number of rowsm and number
of columns n: A of size (m,n). A matrix is called a square matrix if the number of rows and columns is
equal, otherwise it is a rectangular matrix .

2. Real and ComplexMatrices
Real matrices have real elements, complex matrices have complex elements. If a matrix has complex
elements

aμν + ibμν (4.2a)

it can be decomposed into the form

A+ iB (4.2b)

where A and B have real elements only (arithmetical operations see 4.1.4, p. 272).
If a matrix A has complex elements, then its conjugate complex matrix A∗ has the elements

a∗μν = Re (aμν)− i Im (aμν). (4.2c)

3. TransposedMatrices AT

Changing the rows and columns of a matrixA of size (m,n) gives the transposed matrix AT. This has
the size (n,m) and

(aνμ)
T = (aμν) (4.3)

is valid.

4. Adjoint Matrices
The adjoint matrix AH of a complex matrix A is the transpose of its conjugate complex matrix A∗

(which can not be confused with the adjoint matrix Aadj, see 4.2.2, p. 278):

AH = (A∗)T. (4.4)

5. ZeroMatrix
A matrix 0 is called a zero matrix if it has only zero elements:

0 =

⎛⎜⎜⎜⎝
0 0 · · · 0
0 0 · · · 0
...
...

...
...

0 0 · · · 0

⎞⎟⎟⎟⎠ . (4.5)
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270 4. Linear Algebra

4.1.2 SquareMatrices

1. Definition
Square matrices have the same number of rows and columns, i.e., m = n:

A = A(n,n) =

⎛⎜⎝ a11 · · · a1n
...

. . .
...

an1 · · · ann

⎞⎟⎠ . (4.6)

The elements aμν of a matrix A in the diagonal from the left upper corner to the right lower one are
the elements of the main diagonal. They are denoted by a11, a22, . . . , ann, i.e., they are all the elements
aμν with μ = ν.

2. Diagonal Matrices
A square matrix D is called a diagonal matrix if all of the non-diagonal elements are equal to zero:

aμν = 0 for μ �= ν : D =

⎛⎜⎜⎜⎝
a11 0 · · · 0
0 a22 · · · 0
...

...
...

...
0 0 · · · ann

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
a11 O

a22
. . .

O ann

⎞⎟⎟⎟⎠ . (4.7)

3. Scalar Matrix
A diagonal matrix S is called a scalar matrix if all the diagonal elements are the same real or complex
number c:

S =

⎛⎜⎜⎜⎝
c 0 · · · 0
0 c · · · 0
...
...

...
...

0 0 · · · c

⎞⎟⎟⎟⎠ . (4.8)

4. Trace or Spur of a Matrix
For a square matrix, the trace or spur of the matrix is defined as the sum of the main diagonal elements:

Tr (A) = a11 + a22 + . . .+ ann =
n∑

μ=1

aμμ. (4.9)

5. Symmetric Matrices
A square matrix A is symmetric if it is equal to its own transpose:

A = AT. (4.10)

For the elements lying in symmetric positions with respect to the main diagonal

aμν = aνμ (4.11)

is valid.

6. Normal Matrices
satisfy the equality

AHA = AAH. (4.12)

(For the product of matrices see 4.1.4, p. 272.)

7. Antisymmetric or Skew-Symmetric Matrices
are the square matrices A with the property:

A = −AT. (4.13a)

For the elements aμν of an antisymmetric matrix the equalities

aμν = −aνμ, aμμ = 0 (4.13b)

are valid, so the trace of an antisymmetric matrix vanishes:

Tr (A) = 0. (4.13c)
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The elements lying in symmetric positions with respect to the main diagonal differ from each other only
in sign.
Every squarematrixA can be decomposed into the sumof a symmetricmatrixAs and an antisymmetric
matrix Aas:

A = As +Aas with As =
1

2
(A+AT); Aas =

1

2
(A−AT). (4.13d)

8. HermitianMatrices or Self-Adjoint Matrices
are square matrices A equal to their own adjoints :

A = (A∗)T = AH. (4.14)

Over the real numbers the concepts of symmetric and Hermitian matrices are the same. The determi-
nant of a Hermitian matrix is real.

9. Anti-Hermitian or Skew-HermitianMatrices
are the square matrices equal to their negative adjoints:

A = −(A∗)T = −AH. (4.15a)

For the elements aμν and the trace of an anti-Hermitian matrix the equalities

aμν = −a∗μν , aμμ = 0; Tr (A) = 0 (4.15b)

are valid. Every square matrix A can be decomposed into a sum of a Hermitian matrix Ah and an
anti-Hermitian matrix Aah:

A = Ah +Aah with Ah =
1

2
(A+AH), Aah =

1

2
(A−AH). (4.15c)

10. IdentityMatrix I
is a diagonal matrix such that every diagonal element is equal to 1 and all of the non-diagonal elements
are equal to zero:

I =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...
...

...
...

0 0 · · · 1

⎞⎟⎟⎟⎠ = (δμν) with δμν =
{
0 for μ �= ν,
1 for μ = ν.

(4.16)

The symbol δμν is called the Kronecker symbol .

11. Triangular Matrix
1. Upper Triangular Matrix, U, is a square matrix such that all the elements under the main
diagonal are equal to zero:

R = (rμν) with rμν = 0 for μ > ν. (4.17)

2. Lower Triangular Matrix, L, is a square matrix such that all the elements above the main
diagonal are equal to zero:

L = (lμν) with lμν = 0 for μ < ν. (4.18)

4.1.3 Vectors
Matrices of size (n, 1) are one-columnmatrices or column vectors of dimension n. Matrices of size (1, n)
are one-row matrices or row vectors of dimension n:

Column Vector: a =

⎛⎜⎜⎜⎝
a1
a2
...
an

⎞⎟⎟⎟⎠ , (4.19a) Row Vector: aT = (a1, a2, . . . , an). (4.19b)

By transposing, a column vector is changed into a row vector and conversely. A row or column vector
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of dimension n can determine a point in the n dimensional Euclidean space IRn.
The zero vector is denoted by 0 or 0T respectively.

4.1.4 Arithmetical OperationswithMatrices

1. Equality of Matrices
Two matrices A = (aμν) and B = (bμν) are equal if they have the same size and the corresponding
elements are equal:

A = B, when aμν = bμν for μ = 1, . . . ,m; ν = 1, . . . , n. (4.20)

2. Addition and Subtraction
Matrices can be added or subtracted only if they have the same size. The sum/difference of twomatrices
is done by adding/subtracting the corresponding elements:

A±B = (aμν)± (bμν) = (aμν ± bμν). (4.21a)(
1 3 7
2 −1 4

)
+

(
3 −5 0
2 1 4

)
=

(
4 −2 7
4 0 8

)
.

For the addition of matrices the commutative law and the associative law are valid:

a) Commutative Law: A+B = B+A. (4.21b)

b) Associative Law: (A+B) +C = A+ (B+C). (4.21c)

3. Multiplication of a Matrix by a Number
A matrixA of size (m,n) is multiplied by a real or complex number α by multiplying every element of
A by α:

αA = α (aμν) = (αaμν). (4.22a)

3
(
1 3 7
0 −1 4

)
=

(
3 9 21
0 −3 12

)
.

From (4.22a) it is obvious that one can factor out a constant multiplier contained by every element of
a matrix. For the multiplication of a matrix by a scalar the commutative, associative and distributive
laws for multiplication are valid:

a) Commutative Law: αA = Aα; (4.22b)

b) Associative Law: α(βA) = (αβ)A; (4.22c)

c) Distributive Law: (α± β)A = αA± βA; α(A±B) = αA± αB. (4.22d)

4. Division of a Matrix by a Number
The division of a matrix by a scalar γ �= 0 is the same as multiplication by α = 1/γ.

5. Multiplication of TwoMatrices
1. The Product AB of two matrices A and B can be calculated only if the number of columns of
the factorA on the left-hand side is equal to the number of rows of the factorB on the right-hand side.
IfA is a matrix of size (m,n), then the matrixBmust have size (n, p), and the productAB is a matrix
C = (cμλ) of size (m, p). The element cμλ is equal to the scalar product of the μ-th row of the factorA
on the left with the λ-th column of the factor B on the right:

AB = (
n∑

ν=1

aμνbνλ) = (cμλ) = C (μ = 1, 2, . . . ,m; λ = 1, 2, . . . , p). (4.23)

A =

⎛⎜⎜⎝
1 3 7

2 −1 4

−1 0 1

⎞⎟⎟⎠ ,B =

⎛⎜⎝ 3
−5
0

2
1
3

⎞⎟⎠ . The element c22 of the product matrixC in accordance with

(4.23) is c22 = 2 · 2− 1 · 1 + 4 · 3 = 15 .
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2. Inequality ofMatrix Products Even if both productsAB andBA exist, usuallyAB �= BA,
i.e., in general the commutative law for multiplication is not valid. If the equality AB = BA holds,
then one says that the matrices A and B are commutable or commute with each other.

3. Falk Scheme Multiplication of matricesAB = C can be performed using the Falk scheme (Fig.
4.1). The element cμλ of the product matrix C appears exactly at the intersection point of the μ-th
row of A with the λ-th column of B.

Multiplication of the matrices A(3,3) and B(3,2) is shown in Fig. 4.2 using the Falk scheme.

p

n
n

m
A A B

B

Figure 4.1

B

ABA

23

1-5

30

1

15

26

-3

11

-12

10-1

4-12 4

731

Figure 4.2

4. Multiplication of the Matrices K1 and K2 with Complex Elements For multiplication of
two matrices with complex elements can be used their decompositions into real and imaginary parts
according to (4.2b): K1 = A1 + iB1, K2 = A2 + iB2. Here A1,A2,B1,B2 are real matrices. After
this decomposition, the multiplication results in a sum of matrices whose terms are products of real
matrices.

(A+ iB)(A− iB) = A2 +B2 + i (BA−AB) (Powers ofMatrices see 4.1.5,8., p. 276). Of course
when multiplying these matrices it must be considered that the commutative law for multiplication is
not valid in general, i.e., the matrices A and B do not usually commute with each other.

6. Scalar and Dyadic Product of Two Vectors
If the vectors a and b are considered as one-row and one-column matrices, respectively, then there are
two possibilities to multiply them according to the rules of matrix multiplication:
If a has size (1, n) and b has size (n, 1) then their product has size (1, 1), i.e. it is a number. It is called
the scalar product of two vectors. If conversely, a has size (n, 1) and b has size (1,m), then the product
has size (n,m), i.e., it is a matrix. This matrix is called the dyadic product of the two vectors.

1. Scalar Product of Two Vectors The scalar product of a row vector aT = (a1, a2, . . . , an) with
a column vector b = (b1, b2, . . . , bn)

T – both having n elements – is defined as the number

aTb = bTa = a1b1 + a2b2 + · · ·+ anbn =
n∑

μ=1

aμbμ. (4.24)

The commutative law for multiplication is not valid for a product of vectors in general, so one must
keep the exact order of aT and b. If the order of multiplication is reversed, then the product baT is a
dyadic product.

2. Dyadic Product or Tensor Product of Two Vectors The dyadic product of a column vector
a = (a1, a2, . . . , an)

T of dimension n with a row vector bT = (b1, b2, . . . , bm) of dimension m is defined
as the following matrix:

abT =

⎛⎜⎜⎜⎝
a1b1 a1b2 · · · a1bm
a2b1 a2b2 · · · a2bm
...

...
...

...
anb1 anb2 · · · anbm

⎞⎟⎟⎟⎠ (4.25)

of size (n,m). Also here the commutative law for multiplication is not valid in general.

3. Hints on the Notion of Vector Products of Two Vectors In the domain of multi-vectors
or alternating tensors there is a so-called outer product whose three-dimensional version is the well-
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known vector product or cross product (see 3.5.1.5, 2., p. 184 ff). In this book the outer product of
multi-vectors of higher rank is not discussed.

7. Rank of a Matrix

1. Definition In a matrixA the maximum number r of linearly independent column vectors is equal
to the maximum number of linearly independent row vectors. This number r is called the rank of the
matrix and it is denoted by rank (A) = r.

2. Statements about the Rank of a Matrix
a) Because in a vector space of dimension m there exist no more than m linearly independent m-
dimensional row or column vectors (see 5.3.8.2, p. 366), the rank r of a matrix A of size (m,n) cannot
be greater, than the smaller of m and n:

rank (A(m,n)) = r ≤ min (m,n). (4.26a)

b) A square matrix A(n,n) is called a regular matrix if

rank (A(n,n)) = r = n. (4.26b)

A square matrix of size (n, n) is regular if and only if its determinant differs from zero, i.e., detA �= 0
(see 4.2.2, 3., p. 279). Otherwise it is a singular matrix .

c) Consequently for the rank of a singular square matrix A(n,n), i.e., detA = 0

rank (A(n,n)) = r < n (4.26c)

is valid.

d) The rank of the zero matrix 0 is equal to zero:

rank (0) = r = 0. (4.26d)

e) The rank of the sum and product of matrices satisfies the relations

|rank(A)− rank(B)| ≤ rank(A+B) ≤ rank(A) + rank(B), (4.26e)

rank(AB) ≤ min(rank(A), rank(B)). (4.26f)

3. Rules toDetermine theRank Elementary transformations do not change the rank of matrices.
Elementary transformations in this relation are:

a) Interchanging two columns or two rows.

b) Multiplication of a row or column by a number.

c) Addition of a row to another row or a column to an other column.

In order to determine their ranks every matrix can be transformed by appropriate linear combinations
of rows into a form such that in the μ-th row (μ = 2, 3, . . . ,m), at least the first μ−1 elements are equal
to zero (the principle of Gauss algorithm, see 4.5.2.4, p. 312). The number of row vectors different from
the zero vector in the transformed matrix is equal to the rank r of the matrix.

8. Inverse Matrix
For a regular matrixA = (aμν) there is always an inverse matrix A−1 (with respect to multiplication),
i.e., the multiplication of a matrix by its inverse yields the identity matrix:

AA−1 = A−1A = I. (4.27a)

The elements of A−1 = (βμν) are

βμν =
Aνμ

detA
, (4.27b)

where Aνμ is the cofactor belonging to the aνμ element of the matrix A (see 4.2.1, 1., p. 278). For a
practical calculation ofA−1 the method given in 4.2.2, 2., p. 278 should be used. In the case of a matrix
of size (2, 2) holds:

A =
(
a b
c d

)
, A−1 =

1

ad− bc

(
d −b
−c a

)
. (4.28)
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Remark: Why not define division among matrices but instead use the inverse for calculations? This
is connected to the fact that division cannot be defined uniquely. The solutions of the equations

BX1 = A

X2B = A
(B regular),

X1 = B−1A

X2 = AB−1
(4.29)

are in general different.

9. Orthogonal Matrices
If the relation

AT = A−1 or AAT = ATA = I (4.30)

holds for a square matrixA, then it is called an orthogonal matrix , i.e., the scalar product of a row and
the transpose of another one, or the scalar product of the transpose of a column and another one are
zero, while the scalar product of a row with its own transpose or of the transpose of a column with itself
are equal to one.
Orthogonal matrices have the following properties:

a) The transpose and the inverse of an orthogonal matrix A are also orthogonal; furthermore, the
determinant is

detA = ±1. (4.31)

b) Products of orthogonal matrices are also orthogonal.

The rotation matrix D, which is used to describe the rotation of a coordinate system, and whose
elements are the direction cosines of the newdirection of axes (see 3.5.3.3,2. p. 212), is also an orthogonal
matrix.

10. UnitaryMatrix
If for a matrix A with complex elements

(A∗)T = A−1 or A(A∗)T = (A∗)TA = I (4.32)

holds it is called a unitary matrix . In the real case unitary and orthogonal matrices are the same.

4.1.5 Rules of Calculation forMatrices
The following rules are valid of course only in the case when the operations can be performed, for in-
stance the identity matrix I always has a size corresponding to the requirements of the given operation.

1. Multiplication of a Matrix by the IdentityMatrix
is also called the identical transformation:

AI = IA = A. (4.33)

(This does not mean that the commutative law is valid in general, because the sizes of the matrix I on
the left- and on the right-hand side may be different.)

2. Multiplication of a SquareMatrix A by a Scalar Matrix S
or by the identity matrix I is commutative

AS = SA = cA with S given in (4.8), (4.34a) AI = IA = A. (4.34b)

3. Multiplication of a Matrix A by the ZeroMatrix 0
results in the zero matrix:

A0 = 0 , 0A = 0. (4.35)

(The zero matrices above may have different sizes.) The converse statement is not true in general, i.e.,
from AB = 0 it does not follow that A = 0 or B = 0.

4. Vanishing Product of TwoMatrices
The product of two matrices A and B can be the zero matrix even if neither of
them is a zero matrix:

AB = 0 or BA = 0 or both, although A �= 0, B �= 0. (4.36)

1 1
0 0

0 1 0 0
0 1 0 0

.
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5. Multiplication of ThreeMatrices

(AB)C = A (BC) (4.37)

i.e., the associative law of multiplication is valid.

6. Transposing of a Sum or a Product of TwoMatrices

(A+B)T = AT +BT, (AB)T = BT AT, (AT)T = A. (4.38a)

For square invertible matrices A(n,n):

(AT)−1 = (A−1)T (4.38b)

holds.

7. Inverse of a Product of TwoMatrices

(AB)−1 = B−1 A−1. (4.39)

8. Powers of Matrices
Ap = AA . . .A︸ ︷︷ ︸

p factors

with p > 0, integer, (4.40a)

A0 = I (detA �= 0) , (4.40b)

A−p = (A−1)p (p > 0, integer; detA �= 0), (4.40c)

Ap+q = ApAq (p, q integer). (4.40d)

9. Kronecker Product
The Kronecker product of two matricesA = (aμν) of the type (m,n) and B = (bμν) of the type (p, r) is
defined as the rule

A ⊗ B = (aμν B) . (4.41)

The result is a new matrix of type (m · p , n · r) , arising from the multiplication of every element of A
by the matrix B .

A =
(
3 −5 0
2 1 3

)
of type (2, 3), B =

(
1 3
2 −1

)
of type (2, 2).

A
⊗

B =

⎛⎜⎜⎜⎝
3 ·

(
1 3
2 −1

)
−5 ·

(
1 3
2 −1

)
0 ·

(
1 3
2 −1

)
2 ·

(
1 3
2 −1

)
1 ·

(
1 3
2 −1

)
3 ·

(
1 3
2 −1

)
⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
3 9 −5 −15 0 0
6 −3 −10 5 0 0
2 6 1 3 3 9
4 −2 2 −1 6 −3

⎞⎟⎟⎠ ,

gives a matrix of type (4, 6) .

For the transpose and the trace are valid the equalities:

(A ⊗ B)T = AT ⊗ BT , (4.42)

Tr (A ⊗ B) = Tr (A) · Tr(B) . (4.43)

10. Differentiation of a Matrix
If a matrix A = A(t) = (aμν(t)) has differentiable elements aμν(t) of a parameter t then its derivative
with respect to t is given as

dA

dt
=

(
daμν(t)

dt

)
= (a′μν(t)) . (4.44)

4.1.6 Vector andMatrixNorms
The norm of a vector or of a matrix can be considered as a generalization of the absolute value (mag-
nitude) of numbers. Therefore a real number is assigned as ||x|| (Norm x) to the vector x or as ||A||
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(Norm A) to a matrix A. These numbers must satisfy the norm axioms (see 12.3.1.1, p. 669). For
vectors x ∈ IRn they are:

1. ||x|| ≥ 0 for every x ; ||x|| = 0 if and only if x = 0. (4.45)

2. ||λx|| = |λ| ||x|| for every x and every real number λ. (4.46)

3. ||x+ y|| ≤ ||x||+ ||y|| for every x and y (triangle inequality) (see also 3.5.1.1, 1., p. 182). (4.47)

There are many different ways to define norms for vectors and matrices. But for practical reasons it is
better to define a matrix norm ||A|| and a vector norm ||x|| so that they might satisfy the inequality

||Ax|| ≤ ||A|| ||x||. (4.48)

This inequality is very useful for error estimations. If thematrix and vector norms satisfy this inequality,
then one says that they are consistent with each other. If there is a non-zero vector x for every A such
that the equality holds in (4.48), then one says the matrix norm ||A|| is the subordinate to the vector
norm ||x||.

4.1.6.1 Vector Norms

If x = (x1, x2, . . . , xn)
T is a real vector of n dimensions, i.e., x ∈ IRn , then the most often used vector

norms are:

1. Euclidean Norm

||x|| = ||x||2 :=
√√√√ n∑

i=1

x2
i . (4.49)

2. Supremum or UniformNorm
||x|| = ||x||∞ := max

1≤i≤n
|xi|. (4.50)

3. SumNorm

||x|| = ||x||1 :=
n∑

i=1

|xi|. (4.51)

In IR3, in elementary vector calculus ||x||2 is considered as the magnitude of the vector x. The
magnitude |x| = ||x||2 gives the length of the vector x.

4.1.6.2 Matrix Norms

1. Spectral Norm for Real Matrices

||A|| = ||A||2 :=
√
λmax(ATA). (4.52)

Here λmax(A
TA) denotes the greatest eigenvalue (see 4.6.1, p. 314) of the matrix ATA.

2. Row-SumNorm

||A|| = ||A||∞ := max
1≤i≤n

n∑
j=1

|aij|. (4.53)

3. Column-SumNorm

||A|| = ||A||1 := max
1≤j≤n

n∑
i=1

|aij|. (4.54)
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It can be proved that the matrix norm (4.52) is the subordinate norm to the vector norm (4.49). The
same is true for (4.53) and (4.50), and for (4.54) and (4.51).

4.2 Determinants
4.2.1 Definitions
1. Determinants
Determinants are real or complex numbers uniquely associated with square matrices. The determinant
of order n associated with the (n, n) matrix A = (aμν),

D = detA = det (aμν) =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ , (4.55)

is calculated in a recursive way using the Laplace expansion rule:

detA =
n∑

ν=1

aμνAμν (μ fixed, expansion along the μ-th row), (4.56a)

detA =
n∑

μ=1

aμνAμν (ν fixed, expansion along the ν-th column). (4.56b)

Here Aμν is the subdeterminant belonging to the element aμν multiplied by the sign factor (−1)μ+ν .
Aμν is called the cofactor or algebraic complement .

2. Subdeterminants
The subdeterminant of order (n − 1) belonging to the element aμν of a determinant of order n is the
determinant obtained by deleting the μ-th row and the ν-th column.

Expansion of a determinant of order four along the third row:∣∣∣∣∣∣∣∣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣ = a31

∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a42 a43 a44

∣∣∣∣∣∣ − a32

∣∣∣∣∣∣
a11 a13 a14
a21 a23 a24
a41 a43 a44

∣∣∣∣∣∣ + a33

∣∣∣∣∣∣
a11 a12 a14
a21 a22 a24
a41 a42 a44

∣∣∣∣∣∣− a34

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a41 a42 a43

∣∣∣∣∣∣ .

4.2.2 Rules of Calculation forDeterminants
Because of the Laplace expansion the following statements about rows are valid also for columns.

1. Independence of the Value of a Determinant
The value of a determinant does not depend on which row was chosen.

2. Substitution of Cofactors
If during the expansion of a determinant the cofactors of a row are replaced by the cofactors of another
one, then one gets zero:

n∑
ν=1

aμνAλν = 0 (μ, λ fixed; λ �= μ) . (4.57)

This relation and the Laplace expansion result in

Aadj A = AAadj = (detA) I . (4.58)

The adjoint matrix ofA, which is the transpose of the matrix made from the cofactors ofA, is denoted
by Aadj. There must not be a confusion of this adjoint matrix with the transposed conjugate of a

complex matrix AH (see (4.4), p. 269). From the previous equality one gets the inverse matrix

A−1 =
1

detA
Aadj , (4.59)
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3. Zero Value of a Determinant
A determinant is equal to zero if

a) a row contains zero elements only, or

b) two rows are equal to each other, or

c) a row is a linear combination of the others.

4. Changes and Additions
The value of the determinant does not change if

a) its rows are exchanged for its columns, i.e., reflection in the main diagonal does not affect the value
of it:

detA = detAT, (4.60)

b) any row is added to or subtracted from another one, or

c) a multiple of any row is added to or subtracted from another one, or

d) a linear combination of other rows is added to any row.

5. Sign on Changing Rows
If two rows are interchanged in a determinant, then the sign of the determinant changes.

6. Multiplication of a Determinant by a Number
The value of a determinant will bemultiplied byα if the elements of a row aremultiplied by this number.
The next formula shows the difference between this and the multiplication of a matrix A of size (n, n)
by a number α

det (αA) = αndetA . (4.61)

7. Multiplication of Two Determinants
The multiplication of two determinants can be reduced to the multiplication of their matrices:

(detA)(detB) = det (AB). (4.62)

Since detA = detAT (see (4.60)), we have the equalities

(detA)(detB) = det (AB) = det (ABT) = det (ATB) = det (ATBT), (4.63)

i.e., it is permissible to take the scalar product of rows with columns, rows with rows, columns with
rows or columns with columns.

8. Differentiation of a Determinant
Suppose the elements of a determinant of order n are differentiable functions of a parameter t, i.e.,
aμν = aμν(t) . In order to differentiate the determinant with respect to t, one differentiates one row at
one time and finally one adds the n determinants.

For a determinant of size (3, 3) follows:

d
dt

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a′11 a′12 a′13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
a′21 a′22 a′23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a′31 a′32 a′33

∣∣∣∣∣∣ .

4.2.3 Evaluation ofDeterminants

1. Value of a Determinant of Second Order∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12. (4.64)

2. Value of a Determinant of Third Order
The Sarrus rule gives a convenient scheme for the calculations, but it is valid only for determinants of
order three. It is the following:
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∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
a11 a12
a21 a22
a31 a32

= a11a22a33 + a12a23a31 + a13a21a32

−(a31a22a13 + a32a23a11 + a33a21a12). (4.65)
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The first two columns are copied after the determinant, then the sum of the products of the elements
along the redrawn declining segments is calculated, then the sum of the products of the elements along
the dotted inclining segments is subtracted.

3. Value of a Determinant of n-th Order
By the expansion rule the calculation of the value of a determinant of order n is reduced to the evalu-
ation of n determinants of order (n − 1). But for practical reasons (to reduce the number of required
operations), first one transforms the determinant with the help of the rules discussed above into a form
such that it contains as many zeros as possible.∣∣∣∣∣∣∣∣

2 9 9 4
2 −3 12 8
4 8 3 −5
1 2 6 4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
2 5 9 4
2 −7 12 8
4 0 3 −5
1 0 6 4

∣∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣∣∣
2 5 3 4
2 −7 4 8
4 0 1 −5
1 0 2 4

∣∣∣∣∣∣∣∣ = 3

⎛⎜⎜⎜⎝−5

∣∣∣∣∣∣
2 4 8
4 1 −5
1 2 4

∣∣∣∣∣∣︸ ︷︷ ︸
−7

∣∣∣∣∣∣
2 3 4
4 1 −5
1 2 4

∣∣∣∣∣∣
⎞⎟⎟⎟⎠

(rule 4) (rule 6) = 0 (rule 3)

= −21

∣∣∣∣∣∣
1 1 0
4 1 −5
1 2 4

∣∣∣∣∣∣ = −21
(∣∣∣∣ 1 −5

2 4

∣∣∣∣− ∣∣∣∣ 4 −5
1 4

∣∣∣∣) = 147.

(rule 4)

Remark: An especially efficient method to determine the value of a determinant of order n can be
obtained by transforming it in the same way as it is done in order to determine the rank of a matrix
(see 4.1.4, 7., p. 274), i.e., all the elements under the diagonal a11, a22, . . . , ann are equal to zero. Then
the value of the determinant is the product of the diagonal elements of the transformed determinant.

4.3 Tensors
4.3.1 Transformation of Coordinate Systems

1. Linear Transformation
By the linear transformation

x̃ = Ax or
x̃1 = a11x1 + a12x2 + a13x3

x̃2 = a21x1 + a22x2 + a23x3

x̃3 = a31x1 + a32x2 + a33x3

(4.66)

a coordinate transformation is defined in the three-dimensional space. Here xμ and x̃μ (μ = 1, 2, 3) are

the coordinates of the same point but in different coordinate systems K and K̃ .

2. Einstein’s Summation Convention
Instead of (4.66) one can write

x̃μ =
3∑

ν=1

aμνxν (μ = 1, 2, 3) (4.67a)

or briefly by Einstein

xμ = aμνxν , (4.67b)

i.e., it is to calculate the sumwith respect to the repeated index ν and put down the result for μ = 1, 2, 3.
In general, the summation convention means that if an index appears twice in an expression, then the
expression is added for all values of this index. If an index appears only once in the expressions of an
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equation, for instance μ in (4.67b), then it means that the equality is valid for all possible values of this
index.

3. Rotation of a Coordinate System

If the Cartesian coordinate system K̃ is given by rotation of the systemK, then for the transformation
matrix in (4.66) A = D is valid. Here D = (dμν) is the orthogonal rotation matrix. The orthogonal
rotation matrix D has the property

D−1 = DT. (4.68a)

The elements dμν ofD are the direction cosines of the angles between the old and new coordinate axes.
From the orthogonality of D, i.e., from

DDT = I and DTD = I, (4.68b)

it follows that
3∑

i=1

dμidνi = δμν ,
3∑

k=1

dkμdkν = δμν (μ, ν = 1, 2, 3). (4.68c)

The equalities in (4.68c) show that the row and column vectors of the matrix D are orthonormalized,
because δμν is the Kronecker symbol (see 4.1.2, 10., p. 271).
The elements dμν of the rotation matrix can be determined by the Cardan angles (see 3.5.3.5, p. 214)
or Euler angles (see 3.5.3.6, p. 215). For rotation in the plane see 3.5.2.2,2., p. 191; in space see 3.5.3.3,
p. 213.

4.3.2 Tensors inCartesianCoordinates

1. Definition
A mathematical or a physical quantity T can be described in a Cartesian coordinate system K by 3n

elements tij···m, the so-called translation invariants. Here the number of indices i, j, . . . ,m is exactly
equal to n (n ≥ 0) . The indices are ordered, and every of them takes the values 1, 2 and 3.

If under a coordinate transformation from K to K̃ for the elements tij···m according to (4.66)

t̃μν···ρ =
3∑

i=1

3∑
j=1

· · ·
3∑

m=1

aμiaνj · · · aρmtij···m , (4.69)

is valid, then T is called a tensor of rank n, and the elements tij···m (mostly numbers) with ordered
indices are the components of the tensor T.

2. Tensor of Rank 0
A tensor of rank zero has only one component, i.e., it is a scalar. Because its value is the same in every
coordinate system, one talks about the invariance of scalars or about an invariant scalar.

3. Tensor of Rank 1
A tensor of rank 1 has three components t1, t2 and t3. The transformation law (4.69) is now

t̃μ =
3∑

i=1

aμiti (μ = 1, 2, 3). (4.70)

It is the transformation law for vectors, i.e., a vector is a tensor of rank 1.

4. Tensor of Rank 2
If n = 2 , then the tensor T has nine components tij, which can be arranged in a matrix

T = T =

⎛⎝ t11 t12 t13
t21 t22 t23
t31 t32 t33

⎞⎠ . (4.71a)
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The transformation law (4.70) is now:

t̃μν =
3∑

i=1

3∑
j=1

aμiaνjtij (μ, ν = 1, 2, 3). (4.71b)

So, a tensor of rank 2 can be represented as a matrix.

A: The moment of inertia Θg of a solid with respect to the line g, which goes through the origin

and has direction vector �a = aT, can be represented in the form

Θg = aTΘa (4.72a) with Θ = (Θij) =

⎛⎝ Θx −Θxy −Θxz

−Θxy Θy −Θyz

−Θxz −Θyz Θz

⎞⎠ , (4.72b)

the so-called inertia tensor. Here Θx, Θy and Θz are the moments of inertia with respect to the coordi-
nate axes, and Θxy, Θxz and Θyz are the deviation moments with respect to the coordinate axes.

B: The load-up conditions of an elastically deformed body can be given by the tension tensor

σ =

⎛⎝σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞⎠ . (4.73)

The elements σik (i, k = 1, 2, 3) are determined in the following way: At a point P of the elastic body
a small plane surface element is chosen whose normal vector points to the direction of the x1-axis of
a right-angle Cartesian coordinate system. The power per surface unit on this element, depending on
the material, is a vector with coordinates σ11, σ12 and σ13. The other components can be explained
similarly.

5. Rules of Calculation

1. Elementary Algebraic Operations The multiplication of a tensor by a number, and addition
and subtraction of tensors of the same rank are defined componentwise, similarly to the corresponding
operations for vectors and matrices.

2. Tensor Product Suppose there are given a tensor A of rank m and a tensor B of rank n with
components aij··· and brs··· respectively. Then the 3m+n scalars

cij···rs··· = aij···brs··· (4.74a)

give the components of a tensorC of rankm+n . It is denoted byC = AB and it is called the tensor
product of A and B. The associative and distributive laws are valid:

(AB ) C = A (BC ), A (B +C ) = AB +AC. (4.74b)

3. Dyadic Product The product of two tensors of rank 1 A = (a1, a2, a3) and B = (b1, b2, b3)
gives a tensor of rank 2 with the elements

cij = aibj (i, j = 1, 2, 3) , (4.75a)

i.e., the tensor product results in the matrix⎛⎝ a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎞⎠ . (4.75b)

This will be denoted as the dyadic product of the two vectors A and B.

4. Contraction Setting two indices equal to each other in a tensor of rankm (m ≥ 2), and summing
with respect to them, then one gets a tensor of rankm−2, which is called the contraction of the tensor.

The tensor C of rank 2 of (4.75a) with cij = aibj , which is the tensor product of the vectors A =
(a1, a2, a3) and B = (b1, b2, b3), can be contracted by the indices i and j,

aibi = a1b1 + a2b2 + a3b3 (4.76)
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giving a scalar, which is a tensor of rank 0. This gives the scalar product of vectorsA and B.

4.3.3 Tensorswith Special Properties

4.3.3.1 Tensors of Rank 2

1. Rules of Calculation
For tensors of rank 2 the same rules are valid as for matrices. In particular, every tensor T can be
decomposed into the sum of a symmetric and a skew-symmetric tensor:

T =
1

2

(
T + T T

)
+

1

2

(
T − T T

)
. (4.77a)

A tensor T = (tij) is called symmetric if

tij = tji for all i and j (4.77b)

holds. In the case

tij = −tji for all i and j (4.77c)

it is called skew- or antisymmetric. Obviously the elements t11 , t22 and t33 of a skew-symmetric tensor
are equal to zero. The notion of symmetry and antisymmetry can be extended for tensors of higher
rank if refering to certain pairs of elements.

2. Transformation of Principal Axes
For a symmetric tensor T , i.e., if tμν = tνμ holds, there is always an orthogonal transformationD such
that after the transformation the tensor has a diagonal form:

T̃ =

⎛⎜⎝ t̃11 0 0
0 t̃22 0
0 0 t̃33

⎞⎟⎠ . (4.78a)

The elements t̃11 , t̃22 and t̃33 are called the eigenvalues of the tensor T. They are equal to the roots λ1,
λ2 and λ3 of the algebraic equation of third degree in λ:∣∣∣∣∣∣

t11 − λ t12 t13
t21 t22 − λ t23
t31 t32 t33 − λ

∣∣∣∣∣∣ = 0. (4.78b)

The column vectors d1 , d2 and d3 of the transformation matrix D are called the eigenvectors corre-
sponding to the eigenvalues, and they satisfy the equations

Tdν = λνdν (ν = 1, 2, 3). (4.78c)

Their directions are called the directions of the principal axes, and the transformation T to diagonal
form is called the transformation of the principal axes.

4.3.3.2 Invariant Tensors

1. Definition
A Cartesian tensor is called invariant if its components are the same in all Cartesian coordinate sys-
tems. Physical quantities such as scalars and vectors, which are special tensors, do not depend on the
coordinate system in which they are determined; they must not change their value either under trans-
lation of the origin or rotation of a coordinate system K. One talks about translation invariance and
about rotation invariance or in general about transformation invariance.

2. Generalized Kronecker Delta or Delta Tensor
If the elements tij of a tensor of rank 2 are the Kronecker symbols, i.e.,

tij = δij =
{

1 for i = j,
0 otherwise,

(4.79a)
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then from the transformation law (4.71b) in the case of a rotation of the coordinate system considering
(4.68c) follows

t̃μν = dμidνj = δμν , (4.79b)

i.e., the elements are rotation invariant. Putting them into a coordinate system so that they are inde-
pendent of the choice of the origin, i.e., they will be translation invariant, then the numbers δij form a
tensor of rank 2, the so-called generalized Kronecker delta or delta tensor.

3. Alternating Tensor
If �ei, �ej and �ek are unit vectors in the directions of the axes of a right-angle coordinate system, then for
the mixed product (see 3.5.1.6, 2., p. 185) holds

εijk = �ei (�ej × �ek) =

⎧⎨⎩
1, if i, j, k cyclic (right-hand rule),

−1, if i, j, k anticyclic,
0, otherwise .

(4.80a)

Altogether there are 33 = 27 elements, which are the elements of a tensor of rank 3. In the case of a
rotation of the coordinate system from the transformation law (4.69) it follows that

t̃μνρ = dμidνjdρkεijk =

∣∣∣∣∣∣
dμ1 dν1 dρ1
dμ2 dν2 dρ2
dμ3 dν3 dρ3

∣∣∣∣∣∣ = εμνρ, (4.80b)

i.e., the elements are rotation invariant. Putting them into a coordinate system so that they are in-
dependent of the choice of the origin, i.e., they are translation invariant, then the numbers εijk form a
tensor of rank 3, the so-called alternating tensor.

4. Tensor Invariants
There must not be a confusion between tensor invariants and invariant tensors. Tensor invariants are
functions of the components of tensors whose forms and values do not change during the rotation of
the coordinate system.

A: If for instance the tensor T = (tij) is transformed in T̃ = (t̃ij) by a rotation, then the trace
(spur) of it does not change:

Tr(T ) = t11 + t22 + t33 = t̃11 + t̃22 + t̃33 . (4.81)

The trace of the tensor T is equal to the sum of the eigenvalues (see 4.1.2, 4., p. 270).

B: For the determinant of the tensor T = (tij)∣∣∣∣∣∣
t11 t12 t13
t21 t22 t23
t31 t32 t33

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
t̃11 t̃12 t̃13
t̃21 t̃22 t̃23
t̃31 t̃32 t̃33

∣∣∣∣∣∣∣ (4.82)

is valid. The determinant of the tensor is equal to the product of the eigenvalues.

4.3.4 Tensors inCurvilinearCoordinate Systems

4.3.4.1 Covariant and Contravariant Basis Vectors

1. Covariant Basis
By the help of the variable position vector are introduced the general curvilinear coordinates u, v, w:

�r = �r (u, v, w) = x(u, v, w)�ex + y(u, v, w)�ey + z(u, v, w)�ez. (4.83a)

The coordinate surfaces corresponding to this system can be got by fixing the independent variables
u, v, w in �r (u, v, w), one at a time. There are three coordinate surfaces passing through every point of
the considered region of space, and any two of them intersect each other in a coordinate line, and of
course these curves pass through the considered point, too. The three vectors

∂�r

∂u
,

∂�r

∂v
,

∂�r

∂w
(4.83b)
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point along the directions of the coordinate lines in the considered point. They form the covariant basis
of the curvilinear coordinate system.

2. Contravariant Basis

The three vectors

1

D

(
∂�r

∂v
× ∂�r

∂w

)
,

1

D

(
∂�r

∂w
× ∂�r

∂u

)
,

1

D

(
∂�r

∂u
× ∂�r

∂v

)
(4.84a)

with the functional determinant (Jacobian determinant see 2.18.2.6,3., p. 123)

D =
D(x, y, z)

D(u, v, w)
=

∣∣∣∣∣∣
xu xv xw

yu yv yw
zu zv zw

∣∣∣∣∣∣ (4.84b)

are always perpendicular to the coordinate surfaces at the considered surface element and they form
the so-called contravariant basis of the curvilinear coordinate system.

Remark: In the case of orthogonal curvilinear coordinates, i.e., if

D(x, y, z)

D(u, v, w)
=

∣∣∣∣∣∣
t11 t12 t13
t21 t22 t23
t31 t32 t33

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
t̃11 t̃12 t̃13
t̃21 t̃22 t̃23
t̃31 t̃32 t̃33

∣∣∣∣∣∣∣
∂�r

∂u
· ∂�r
∂v

= 0,
∂�r

∂u
· ∂�r
∂w

= 0,
∂�r

∂v
· ∂�r
∂w

= 0, (4.85)

then the directions of the covariant and contravariant basis are coincident.

4.3.4.2 Covariant and Contravariant Coordinates of Tensors of Rank 1

In order to be able to apply the summation convention of Einstein the following notation is introduced
for the covariant and contravariant basis:

∂�r

∂u
= �g1,

∂�r

∂v
= �g2,

∂�r

∂w
= �g3 and

1

D

(
∂�r

∂v
× ∂�r

∂w

)
= �g 1,

1

D

(
∂�r

∂w
× ∂�r

∂u

)
= �g 2,

1

D

(
∂�r

∂u
× ∂�r

∂v

)
= �g 3.

(4.86)

Then the following representations hold for �v:

�v = V 1�g1 + V 2�g2 + V 3�g3 = V k�gk or �v = V1�g
1 + V2�g

2 + V3�g
3. (4.87)

The components V k are the contravariant coordinates, the components Vk are the covariant coordinates
of the vector �v. For these coordinates the equalities

V k = gklVl and Vk = gklV
l (4.88a)

are valid, where

gkl = glk = �gk · �gl and gkl = glk = �g k · �g l (4.88b)

respectively. Furthermore using the Kronecker symbol the equality

�gk · �g l = δkl, (4.89a)

holds, and consequently

gklglm = δkm. (4.89b)

The transition from V k to Vk or from Vk to V
k according to (4.88b) is described by raising or lowering

the indices by oversliding.

Remark: In Cartesian coordinate systems covariant and contravariant coordinates are equal to each
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other.

4.3.4.3 Covariant, Contravariant andMixed Coordinates of Tensors of
Rank 2

1. Coordinate Transformation
In a Cartesian coordinate systemwith basis vectors�e1 , �e2 and �e3 a tensorT of rank 2 can be represented
as a matrix

T =

⎛⎝ t11 t12 t13
t21 t22 t23
t31 t32 t33

⎞⎠ . (4.90)

To introduce curvilinear coordinates u1, u2, u3 the following vector is used:

�r = x1(u1, u2, u3)�e1 + x2(u1, u2, u3)�e2 + x3(u1, u2, u3)�e3 . (4.91)

The new basis is denoted by the vectors �g1, �g2 and �g3. Now it holds:

�gl =
∂�r

∂ul

=
∂x1

∂ul

�e1 +
∂x2

∂ul

�e2 +
∂x3

∂ul

�e3 =
∂xk

∂ul

�ek. (4.92)

Substituting �el = �g l , then follows �gl and �g l as covariant and contravariant basis vectors.

2. Linear Vector Function
In a fixed coordinate system with the tensor T given as in (4.90) by the equality

�w = T�v (4.93a)

the following vector representations

�v = Vk�g
k = V k�gk, �w = Wk�g

k = W k�gk (4.93b)

define a linear relation between the vectors �v and �w. So (4.93a) is to be considered as a linear vector
function.

3. Mixed Coordinates
Changing the coordinate system, the equality (4.93a) will have the form

�̃w = T̃ �̃v . (4.94a)

The relation between the components of T and T̃ is the following:

t̃kl =
∂uk

∂xm

∂xn

∂ul

tmn . (4.94b)

Introducing the notation

t̃kl = T k
· l (4.94c)

one talks about mixed coordinates of the tensor; k contravariant index, l covariant index. For the com-
ponents of vectors �v and �w holds

W k = T k
· lV

l . (4.94d)

If the covariant basis �gk is replaced by the contravariant basis �g k, then one gets similarly to (4.94b) and
(4.94c)

T · l
k =

∂xm

∂uk

∂ul

∂xn

tmn , (4.95a)

and (4.94d) is transformed into

Wk = T · l
k Vl. (4.95b)

For the mixed coordinates T · l
k and T k

· l holds the formula

T k
· l = gkmglnT

·n
m . (4.95c)
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4. Pure Covariant and Pure Contravariant Coordinates
Substituting in (4.95b) for Vl the relation Vl = glmV

m, then one gets

Wk = T · l
k glmV

m = TkmV
m , (4.96a)

also considering that

T · l
k glm = Tkm . (4.96b)

The Tkm are called the covariant coordinates of the tensor T , because both indices are covariant. Sim-
ilarly one gets the contravariant coordinates

T km
l = gmlT k

· l . (4.97)

The explicit forms are:

Tkl =
∂xm

∂uk

∂xn

∂ul

tmn , (4.98a) T kl =
∂uk

∂xm

∂ul

∂xn

tmn . (4.98b)

4.3.4.4 Rules of Calculation
In addition to the rules described on 4.3.2, 5., p. 283, the following rules of calculations are valid:
1. Addition, Subtraction Tensors of the same rank whose corresponding indices are both covariant
or contravariant can be added or subtracted elementwise, and the result is a tensor of the same rank.
2. Multiplication The multiplication of the coordinates of a tensor of rank n by the coordinates of
a tensor of rank m results in a tensor of rank m+ n .
3. Contraction If making the indices of a covariant and a contravariant coordinates of a tensor of
rank n (n ≥ 2) equal, then can be used the Einstein summation convention for this index, and one gets
a tensor of rank n− 2 . This operation is called contraction.
4. Oversliding Oversliding of two tensors is the following operation: Multiply both, then making a
contraction so that the indices by which the contraction is made belong to different factors.
5. Symmetry A tensor is called symmetric with respect to two covariant or two contravariant stand-
ing indices if when exchanging them the tensor does not change.
6. Skew-Symmety A tensor is called skew-symmetric with respect to two covariant or two con-
travariant standing indices if when exchanging them the tensor is multiplied by −1.

The alternating tensor (see 4.3.3.2, 3.,p. 284) is skew-symmetric with respect to two arbitrary co-
variant or contravariant indices.

4.3.5 Pseudotensors
The reflection of a tensor plays a special role in physics. Because of their different behavior with respect
to reflection polar and axial vectors are distinguished (see 3.5.1.1, 2., p. 181), although mathematically
they can be handled in the same way. Axial and polar vectors differ from each other in their determi-
nation, because axial vectors can be represented by an orientation in addition to length and direction.
Axial vectors are also called pseudovectors. Since vectors can be considered as tensors, the general
notion of pseudotensors is introduced.

4.3.5.1 Symmetry with Respect to the Origin

1. Behavior of Tensors under Space Inversion
1. Notion of Space Inversion The reflection of the position coordinates of points in space with
respect to the origin is called space inversion or coordinate inversion. In a three-dimensional Cartesian
coordinate system space inversion means the change of the sign of the coordinates:

(x, y, z) → (−x,−y,−z). (4.99)

By this a right-hand coordinate system becomes a left-hand system. Similar rules are valid for other
coordinate systems. In the spherical coordinate system holds:

(r, ϑ, ϕ) → (−r, π − ϑ, ϕ+ π). (4.100)
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Under this type of reflection the length of the vectors and the angles between them do not change. The
transition can be given by a linear transformation.

2. Transformation Matrix According to (4.66), the transformation matrix A = (aμν) of a linear
transformation of three-dimensional space has the following properties in the case of space inversion:

aμν = −δμν , detA = −1. (4.101a)

For the components of a tensor of rank n (4.69)

t̃μν···ρ = (−1)ntμν···ρ (4.101b)

holds. That is: In the case of point symmetry with respect to the origin a tensor of rank 0 remains a
scalar, unchanged; a tensor of rank 1 remains a vector with a change of sign; a tensor of
rank 2 remains unchanged, etc.

x

z

y

M

y'

x

z

y'

z'

x'

180
0

Figure 4.3

2. Geometric Representation
The inversion of space in a three-dimensional Cartesian coordinate system can be realized in two steps
(Fig.4.3):

1. By reflection with respect to the coordinate plane, for instance the x, z plane, the coordinate system
x, y, z turns into the coordinate system x,−y, z. A right-hand system becomes a left-hand system (see
3.5.3.1,2., p. 209).

2. By a rotation of the system x, y, z around the y-axis by 180◦ we have the complete coordinate system
x, y, z reflected with respect to the origin. This coordinate system stays left-handed, as it was after the
first step.

Conclusion: Space inversion changes the orientation of a polar vector by 180◦, while an axial vector
keeps its orientation.

4.3.5.2 Introduction to the Notion of Pseudotensors

1. Vector Product under Space Inversion Under space inversion two polar vectors a and b
are transformed into the vectors −a and −b, i.e., their components satisfy the transformation formula
(4.101b) for tensors of rank 1. However, if considering the vector product c = a × b as an example
of an axial vector, then one gets c = c under reflection with respect to the origin. This is a violation
of the transformation formula (4.101a) for tensors of rank 1. Therefore the axial vector c is called a
pseudovector or generally a pseudotensor.

The vector products �r × �v , �r × �F , ∇× �v = rot�v with the position vector �r, the speed vector �v, the

power vector �F and the nabla operator ∇ are examples of axial vectors, which have “false” behavior
under reflection.

2. Scalar Product under Space Inversion If using space inversion for a scalar product of a
polar and an axial vector, then again there is a case of violation of the transformation formula (4.101b)
for tensors of rank 1. Because the result of a scalar product is a scalar, and a scalar should be the
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same in every coordinate system, here it is a very special scalar, which is called a pseudoscalar. It has
the property that it changes its sign under space inversion. Pseudoscalars do not have the rotation
invariance property of scalars.

The scalar product of the polar vectors �r (position vector) and �v (speed vector) by the axial vector
�ω (angular velocity vector) results in the scalars �r · �ω and �v · �ω, which have the “false” behavior under
reflection, so they are pseudoscalars.
3. Mixed Product under Space Inversion The mixed product (a×b) ·c (see 3.5.1.6, 2., p. 185)
of polar vectors a , b, and c is a pseudoscalar according to (2.), because the factor (a × b) is an axial
vector. The sign of the mixed product changes under space inversion.
4. Pseudovector and Skew-Symmetric Tensor of Rank 2 The tensor product of axial vectors
a = (a1, a2, a3)

T and b = (b1, b2, b3)
T results in a tensor of rank 2 with components tij = aibj (i, j =

1, 2, 3) according to (4.74a). Since every tensor of rank 2 can be decomposed into a sum of a symmetric
and a skew-symmetric tensor of rank 2, according to (4.81)

tij =
1

2
(aibj + ajbi) +

1

2
(aibj − ajbi) (i, j = 1, 2, 3) (4.102)

holds. The skew-symmetric part of (4.102) contains exactly the components of the vector product

(a × b) multiplied by 1
2, so the axial vector c = (a × b) with components c1, c2, c3 can be considered

as a skew-symmetric tensor of rank 2

C = c =

⎛⎝ 0 c12 c13
−c12 0 c23
−c13 −c23 0

⎞⎠ (4.103a) where
c23 = a2b3 − a3b2 = c1,
c31 = a3b1 − a1b3 = c2,
c12 = a1b2 − a2b1 = c3,

(4.103b)

whose components satisfy the transformation formula (4.101b) for tensors of rank 2.
Consequently every axial vector (pseudovector or pseudotensor of rank 1) c = (c1, c2, c3)

T can be con-
sidered as a skew-symmetric tensor C of rank 2:

C = c =

⎛⎝ 0 c3 −c2
−c3 0 c1
c2 −c1 0

⎞⎠ . (4.104)

5. Pseudotensors of Rank n The generalization of the notion of pseudoscalar and pseudovector
is a pseudotensor of rank n. It has the same property under rotation as a tensor of rank n (rotation
matrix D with detD = 1) but it has a (−1) factor under reflection through the origin. Examples of
pseudotensors of higher rank can be found in the literature, e.g., [4.1].

4.4 Quaternions andApplications
Quaternions were defined by Sir William Rowan Hamilton in 1843. The basic question which resulted
the discovering of quaternions was that how could division of vectors in the three dimensional Euclidian
space be defined. It is possible by embedding them into IR4, and introducing the quaternion multipli-
cation, what leads to the division ring of quaternions.

Quaternions, like complex numbers, both are special cases of a Clifford-algebra of order n, with 2n

generalized numbers as basis (see [4.5], [22.22]):

A =
2n∑
l=1

il al (il hyper-complex elements, al complex numbers). (4.105a)

The following special cases have practical importance:

n = 1 : 2-dimensional complex numbers with

i1 = 1, i2 = i (i imaginary unit), a1, a2 (real numbers). (4.105b)

n = 2 : Quaternions as 4-dimensional numbers with hyper-complex elements

i1 = 1, i2 = i, i3 = j, i4 = k (hyper-complex elements) , a1, a2, a3, a4 (real numbers) (4.105c)
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and the rules of multiplication (4.107). In physics thePauli’s spinmatrices and spinors are represented
as quaternions.

n = 3 : Biquaternions (s. 4.4.3.6, 1., p. 306)

n = 4 : Clifford-numbers are known in physics as Dirac-matrices.

Quaternions are used most often to describe rotations. The advantages of the quaternions are:
• the rotation is performed directly around the required axis,
• the gimbal-lock problem does not occur. Gimbal is a pivoted support allowing the rotation around
a single axis (e.g. gyrocompass), and gimbal lock means that the axes of two of the three gimbals are
driven into parallel configuration.

The disadvantage of quaternions is that only rotations can be described with them. To represent trans-
lations, scaling or projections matrices are needed. This disadvantage can be overcome by biquater-
nions, by which every motion of rigid bodies can be represented.

Quaternion are used in computer-graphics, satellite-navigation, in vector analysis, in physics and in
mechanics.

4.4.1 Quaternions

4.4.1.1 Definition andRepresentation

1. Imaginary Units
Quaternions are generalized complex numbers in the form

w + ix+ jy + kz, (4.106)

where w, x, y, z are real numbers, and the generalized imaginary units are i, j,k, which satisfy the
following rules of multiplication:

i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik. (4.107)

i j k
i −1 k −j
j −k −1 i
k j −i −1

Multiplication table

i j

k

Figure 4.4

The multiplication of the generalized units is shown in
the accompanying table of multiplication. Alternatively
the multiplication rules can be represented by the cycle
shown in Fig.4.4. Multiplication in the direction of an
arrow results in a positive sign, opposite to the arrow di-
rection results in a negative sign.

Consequently, the multiplication is not commutative but associative. The four-dimensional Euclidian
vector space IR4 provided with quaternion-multiplication is denoted by IH in honour of R.W. Hamil-

ton. Quaternions form an algebra, namely the division ring of quaternions. .

2. Representation of Quaternions
There are different representation of quaternions:

• as hyper-complex numbers q = w + ix+ jy + kz = q0 + q with scalar part q0 = Scq and vector part
q = Vecq,

• as four dimensional vector q = (w, x, y, z)T = (q0,q)
T consisting of the number w ∈ IR and the vector

(x, y, z)T ∈ IR3,

• in trigonometric form q = r(cosϕ + nq sinϕ), where r = |q| =
√
w2 + x2 + y2 + z2 is the length of

the four dimensional vector in IR4, and cosϕ =
w

|q| , and nq =
1

|(x, y, z)T |(x, y, z)
T . nq is a unit vector

in IR3, depending on q.

Remark: The multiplication rules for quaternions differ from the usually introduced rules in IR3 and



4.4 Quaternions and Applications 291

IR4 (see (4.109b), (4.114), (4.115)).

3. Relation between Hyper-complex Number and Trigonometric Form

q = q0 + q = |q|
(
q0
|q| +

q

|q|

)
= |q|

(
q0
|q| +

q

|q|
|q|
|q|

)
= r(cosϕ+ nq sinϕ) , (4.108a)

if |q| �= 0 . If |q| = 0 , then there is

q = q0 = |q0|
q0
|q0|

=

{
|q0| = |q0| cos 0 for q0 > 0,

|q0|(−1) = |q0| cos π for q0 < 0,
(4.108b)

if q0 �= 0 .

4. Pure Quaternions
A pure quaternion has a zero scalar part: q0 = 0. The set of pure quaternions is denoted by IH0. It is
often useful to identify the pure quaternions q with the geometric vector �q ∈ IR3, i.e.

q = q0 +

{
q, if q represents a pure quaternion,
�q, if q is interpreted as a geometric vector.

(4.109a)

The multiplication rule for p, q ∈ IH0 is

pq = −�p · �q+ �p× �q , (4.109b)

where · and × denote the dot-product and cross-product in IR3, respectively. The result of (4.109b) is
to interpret as a quaternion.

Let ∇ =
∂

∂x
�i +

∂

∂y
�j +

∂

∂z
�k be the nabla-operator (see 13.2.6.1, p. 715), and let �v = v1(x, y, z)�i +

v2(x, y, z)�j+ v3(x, y, z)�k be a vector-field. Here�i,�j, �k are unit-vectors being parallel to the coordinate
axes in a Cartesian coordinate system. If ∇ and �v are interpreted as pure quaternions then according
to (4.107) their product is:

∇�v = −∂v1
∂x

− ∂v2
∂y

− ∂v3
∂z

+�i

(
∂v3
∂y

− ∂v2
∂z

)
+�j

(
∂v1
∂z

− ∂v3
∂x

)
+ �k

(
∂v2
∂x

− ∂v1
∂y

)
.

This quaternion can be written in vector interpretation:

∇�v = −div �v + rot �v ,

but the result should be considered as a quaternion.

5. Unit Quaternions
A quaternion q is a unit quaternion if |q| = 1 . The set of unit quaternions is denoted by IH1. IH1 is
a so-called multiplicative Lie-group. The set IH1 can be identified with the three dimensional sphere
S3 = {x ∈ IR4 : |x| = 1} .
4.4.1.2 Matrix Representation of Quaternions

1. Real Matrices
If the number 1 is identified with the identity matrix

1
∧
=

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ (4.110a)

furthermore
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i
∧
=

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , j
∧
=

⎛⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , k
∧
=

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ , (4.110b)

then a quaternion q = w + ix+ jy + kz can be represented as a matrix

q
∧
=

⎛⎜⎜⎝
w −x −y z
x w −z −y
y z w x
−z y −x w

⎞⎟⎟⎠ . (4.110c)

2. ComplexMatrices
Quaternions can be represented by complex matrices:

i
∧
=

(
0 −i
−i 0

)
, j

∧
=

(
0 −1
1 0

)
, k

∧
=

(−i 0
0 i

)
. (4.111a)

So

q = w + ix+ jy + kz
∧
=

(
w − iz −ix− y
−ix+ y w + iz

)
. (4.111b)

Remarks:
1. On the right hand side of equations (4.111a,b) i represents the imaginary unit of complex numbers.
2. Matrix representation of quaternions is not unique, i.e. it is possible to give representations different
from the ones in (4.110b,c) and (4.111a,b).

3. Conjugate and inverse Element
The conjugate of quaternion q = w + ix+ jy + kz is the quaternion

q̄ = w − ix− jy − kz . (4.112a)

Obviously

|q|2 = q q̄ = q̄ q = w2 + x2 + y2 + z2 . (4.112b)

Consequently every quaternion q ∈ IH \ {0} has an inverse element

q−1 =
q̄

|q|2 . (4.112c)

4.4.1.3 Calculation Rules

1. Addition and Subtraction
Addition and subtraction of two or more quaternions are defined as

q1 +q2 − q3 + . . .

= (w1 + ix1 + jy1 + kz1) + (w2 + ix2 + jy2 + kz2)− (w3 + ix3 + jy3 + kz3) + . . .

= (w1 + w2 − w3 + . . .) + i(x1 + x2 − x3 + . . .) + j(y1 + y2 − y3 + . . .)

+k(z1 + z2 − z3 + . . .) . (4.113)

Quaternions are added and subtracted as vectors in IR4, or as matrices.

2. Multiplication
The multiplication is associative, so

q1q2 = ( w1 + ix1 + jy1 + kz1)(w2 + ix2 + jy2 + kz2)

= (w1w2 − x1x2 − y1y2 − z1z2) + i(w1x2 + w2x1 + y1z2 − z1y2) +

+ j(w1y2 + w2y1 + z1x2 − z2x1) + k(w1z2 + w2z1 + x1y2 − x2y1). (4.114)

Using the usual vector products in IR3 (see 3.5.1.5, p. 184) it can be written in the form

q 1 q 2 = (q 01 + q
1
)(q 02 + q

2
) = q 01 q 02 − �q 1 · �q 2 + �q 1 × �q 2 , (4.115)
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where �q 1 · �q 2 is the dot-product, and �q 1 × �q 2 is the cross-product of the vectors �q 1, �q 2 ∈ IR3. Next
is to identify the IR3 with the space IH0 of the pure quaternions.

Remark: Multiplication of quaternions is not commutative!

The product q 1q 2 corresponds to the matrix multiplication of matrix L q1 with vector q 2, and it is equal
to the product of matrix Rq 2 with q 1:

q 1q 2 =L q1q 2 =

⎛⎜⎜⎝
w1 −x1 −y1 −z1
x1 w1 −z1 y1
y1 z1 w1 −x1

z1 −y1 x1 w1

⎞⎟⎟⎠
⎛⎜⎜⎝
w2

x2

y2
z2

⎞⎟⎟⎠ =R q2q 1 =

⎛⎜⎜⎝
w2 −x2 −y2 −z2
x2 w2 z2 −y2
y2 −z2 w2 x2

z2 y2 −x2 w2

⎞⎟⎟⎠
⎛⎜⎜⎝
w1

x1

y1
z1

⎞⎟⎟⎠ . (4.116)

3. Division
The definition of division of two quaternions is based on the multiplication: q1, q2 ∈ IH, q2 �= 0,

q1
q2

:= q1 q
−1
2 = q1

q̄2
|q2|2

. (4.117)

The order of the factors is important.

Let q1 = 1 + j, q2 =
1√
2
(1− k) , then |q2| = 1 , q2 =

1√
2
(1 + k) and so

q1
q2

:= q1
q2
|q2|2

=
1√
2
(1 + i+ j+ k) �= q2

|q2|2
q1 =

1√
2
(1− i+ j+ k) .

4. GeneralizedMoivre Formula

Let q ∈ IH , whrer q = q0 + q = r(cosϕ + nq sinϕ) with r = |q| and ϕ = arccos
q0
|q| , cosϕ =

q0
|q| ,

sinϕ =
|q|
|q| , then for arbitrary k ∈ IN :

qk = rke
nqk ϕ

= rk(cos(k ϕ) + nq sin(k ϕ)) . (4.118)

5. Exponential Function
For q = q0 + q ∈ IH its exponential expression is defined as

eq =
∞∑
k=0

qk

k!
= eq0(cos |q|+ nq sin |q|). (4.119)

Properties of the exponential function:
For any q ∈ IH holds:

e−qeq = 1 , (4.120a) eq �= 0 , (4.120b) eq = eq0+q = eq0eq , (4.120c)

e
nq π

= −1, especially eiπ = ejπ = ekπ = −1 . (4.120d)

Unit quaternion u and ϑ ∈ IR : eϑu = cosϑ+ u sinϑ . (4.120e)

If q1 q2 = q2 q1 then eq1+q2 = eq1 eq2 . But it does not follow from eq1+q2 = eq1 eq2 that q1 q2 = q2 q1.

Since (iπ)(jπ) = kπ2 �= −kπ2 = (jπ)(iπ) therefore also holds

eiπejπ = (cosπ)(cosπ) = (−1)(−1) = 1 , but eiπ+jπ =

(
cos

(√
2π

)
+

i+ j√
2

sin
(√

2π
))

�= 1 .

6. Trigonometric Functions
For q ∈ IH let

cos q :=
1

2

(
e
nqq + e

−nqq
)
, sin q := −nq

(
e
nqq − e

−nqq
)
. (4.121)
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cos q is an even function, against which sin q is an odd function.

Addition formula: It is valid for any q = q0 + q ∈ IH

cos q = cos q0 cosq− sin q0 sinq , sin q = sin q0 cosq+ cos q0 sinq . (4.122)

7. Hyperbolic Functions
For q ∈ IH let

cosh q :=
1

2

(
eq + e−q

)
, sinh q := −nq

(
eq − e−q

)
. (4.123)

cosh q is an even function, against which sinh q is an odd function.

Addition formula: It is valid for any q = q0 + q ∈ IH

cosh q = cosh q0 cosq− sinh q0 sinhq , sinh q = sinh q0 cosq+ cosh q0 sinhq . (4.124)

8. Logarithmic Function
For q = q0 + q = r(cosϕ + nq sinϕ) ∈ IH and k ∈ Z the k-th branch of the logarithmic function is

defined as

logk q :=

{
ln r + nq(ϕ+ 2kπ), |q| �= 0 or |q| = 0 and q0 > 0 ,

not defined for |q| = 0 and q0 < 0.
(4.125)

Properties of the logarithmic function:

elogk q = q for any q ∈ IH , for which logk q is defined , (4.126a)

log0 e
q = q for any q ∈ IH with |q| �= (2l + 1)π , l ∈ Z , (4.126b)

logk 1 = 0 , (4.126c) log0 i =
π

2
i , log0 j =

π

2
j, log0 k =

π

2
k . (4.126d)

In the case when log q1 and log q2 or q1 and q2 commute, then, if k is suitable defined, the following
known equality (4.127) holds:

log(q1 q2) = log q1 + log q2 . (4.127)

For the unit quaternions q ∈ IH1 holds |q| = 1 and q = cosϕ+ nq sinϕ and so

log q := log0 q = nq ϕ for q �= −1 , (4.128)

9. Power function
Let q ∈ IH and α ∈ IR , then

qα := eα log q. (4.129)

4.4.2 Representation ofRotations in IR3

Spatial rotations are performed around an axis, the so-called rotation axis. It goes through the origin.

It is oriented by a direction vector �a �= �0 (on the axis). The positive direction on this axis is chosen
by �a. The positive rotation (rotation angle ϕ ≥ 0) is a counterclockwise rotation with respect to the
positive direction. The direction vector is usually given normed, i.e. |�a| = 1 .

The equality

�w = R�v , (4.130a)

means vector �w arises from vector �v by the rotation matrix R, i.e., the rotation matrix R transforms
vector �v into �w. Since rotation matrices are orthogonal matrices holds

R−1 = RT (4.130b)
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and (4.130a) is equivalent to

�v = R−1�w = RT�w. (4.130c)

Remark: At spatial transformations it is necessary to distinguish between the followings:
a) geometric transformations, i.e. when geometric objects are transformed with respect to a fixed co-
ordinate system, and
b) coordinate transformations, i.e. the object is fixed while the coordinate system is transformed with
respect to the object (see 3.5.4, p. 229).
Now, geometric transformations are handled with quaternions.

4.4.2.1 Rotations of an Object About the Coordinate Axes
In a Cartesian coordinate system the axes are oriented by the basis vectors. The rotation around the
x axis is given by matrix Rx, around the y axis by Ry and around the z axis by Rz , where:

Rx(α) :=

⎛⎝ 1 0 0
0 cosα − sinα
0 sinα cosα

⎞⎠ , Ry(β) :=

⎛⎝ cos β 0 sin β
0 1 0

− sin β 0 cos β

⎞⎠ , Rz(γ) :=

⎛⎝ cos γ − sin γ 0
sin γ cos γ 0
0 0 1

⎞⎠ . (4.131)

The relation between a rotation of an object and the rotation of the coordinate system (see 3.5.3.3,3.,
p. 213)) is

Rx(α) = DT
x (α) ,Ry(β) = DT

y (β) ,Rz(γ) = DT
z (γ) . (4.132)

Remark: The representation of the rotationmatrices in homogenous coordinates is given in 3.5.4.5,1.,2.,
p. 234.

4.4.2.2 Cardan-Angles
Every rotation R around an axis passing through the origin can be given as a sequence of rotations
around the coordinate axes in a given coordinate system (see also 3.5.3.5, p. 214), where here
• the first rotation is around the x axis by an angle αC , then
• the second rotation is around the y axis by an angle βC , then
• the third rotation is around the z axis by an angle γC .
The angles αC , βC , γC are called Cardan-angles. Then the rotation matrix is

R = RC := Rz(γC)Ry(βC)Rx(αC) (4.133a)

=

⎛⎝ cos βC cos γC sinαC sin βC cos γC − cosαC sin γC cosαC sin βC cos γC + sinαC sin γC
cos βC sin γC sinαC sin βC sin γC + cosαC cos γC cosαC sin βC sin γC − sinαC cos γC
− sin βC sinαC cos βC cosαC cos βC

⎞⎠ .(4.133b)

Adventages:
• very popular representation of rotations,
• clear structure.

Disadventages:
• the order of rotations is important i.e. in general holds

Rx(αC)Ry(βC)Rz(γC) �= Rz(γC)Ry(βC)Rx(αC) , (4.133c)

• the representation is not unique since R(αC, βC, γC) = R(−αC ± 180◦, βC ± 180◦, γC ± 180◦) ,
• not suitable for rotations after each other (e.g. at animations),
• gimbal lock can happen (rotation of an axis by 90◦ goes into an other axis)

Gimbal Lock case: rotation around the y axis by 90◦

R(αC, 90
◦, γC) =

⎛⎝ 0 sin(αC − γC) cos(αC − γC)
0 cos(αC − γC) − sin(αC − γC)
−1 0 0

⎞⎠ . (4.133d)

It can be seen that one degree of freedom is lost. In practical applications it can lead to unpredictable
motions.
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Remark: It can be realized that Cardan-angles are called sometimes as Euler-angles, in the literature
however their definitions can be different (see 3.5.3.6, p. 215).

4.4.2.3 Euler Angles

The Euler-angles ψ, ϑ, ϕ are often introduced as follows (see 3.5.3.6, p. 215):
• the first rotation around the z axis by angle ψ,
• the second rotation around the image of x axis by angle ϑ,
• the third rotation around the image of z axis by angle ϕ.
The rotation matrix is

R = RE := Rz(ϕ)Rx(ϑ)Rz(ψ) (4.134a)

=

⎛⎝ cosψ cosϕ− sinψ cosϑ sinϕ − cosψ sinϕ− sinψ cosϑ cosϕ sinψ sinϑ
sinψ cosϕ+ cosψ cosϑ sinϕ − sinψ sinϕ+ cosψ cosϑ cosϕ − cosψ sinϑ
sinϑ sinϕ sinϑ cosϕ cosϑ

⎞⎠ .(4.134b)

4.4.2.4 Rotation Around anArbitrary Zero Point Axis

The counterclockwise rotation around a normed vector �a = (ax, ay, az) with |�a| = 1 by an angle ϕ is
made in 5 steps:

1. Rotation of �a around the y axis until reaching the x, y plane: �a ′ = R1�a using R1 according to
(4.135a). The result: vector �a ′ is in the x, y plane.
2. Rotation of �a ′ around the z axis until becoming parallel to the x axis �a ′ ′ = R2�a

′ by R2 according
to (4.135b). The result: vector �a ′ ′ is parallel to the x axis.

R1 =

⎛⎜⎜⎜⎜⎜⎜⎝

ax√
a2x + a2z

0
az√

a2x + a2z
0 1 0

−az√
a2x + a2z

0
ax√

a2x + a2z

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.135a) R2 =

⎛⎜⎜⎝
√
a2x + a2z ay 0

−ay
√
a2x + a2z 0

0 0 1

⎞⎟⎟⎠ . (4.135b)

3. Rotation around the x axis by an angle ϕ by R3:

R3 = Rx(ϕ) =

⎛⎝ 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

⎞⎠ . (4.135c)

Rotations R1 and R2 are inverted in the following two steps.
4. Inverse rotation of R2, i.e. rotation around the z axis by the angle β where sin β = ay, cos β =√
a2x + a2z according to (4.135d).

5. Inverse rotation of R1, i.e. rotation around the y axis by −α where

sin(−α) =
−az√
a2x + a2z

, cos(−α) =
ax√

a2x + a2z
around the y axis according to (4.135e).

R−1
2 =

⎛⎜⎜⎝
√
a2x + a2z −ay 0

ay
√
a2x + a2z 0

0 0 1

⎞⎟⎟⎠ , (4.135d) R−1
1 =

⎛⎜⎜⎜⎜⎜⎜⎝

ax√
a2x + a2z

0
−az√
a2x + a2z

0 1 0
az√

a2x + a2z
0

ax√
a2x + a2z

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.135e)

Finally the composition matrix is:

R(�a, ϕ) = R−1
1 R−1

2 R3R2R1 = (4.135f)
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⎛⎜⎝ cosϕ+ a2x(1− cosϕ) axay(1− cosϕ)− az sinϕ axaz(1− cosϕ) + ay sinϕ
ayax(1− cosϕ) + az sinϕ cosϕ+ a2y(1− cosϕ) ayaz(1− cosϕ)− ax sinϕ
azax(1− cosϕ)− ay sinϕ azay(1− cosϕ) + ax sinϕ cosϕ+ a2z(1− cosϕ)

⎞⎟⎠ . (4.135g)

MatrixR(�a, ϕ) is an orthogonalmatrix, i.e. its inverse is equal to its transpose: R−1(�a, ϕ) = RT(�a, ϕ).
The following formulas are also valid:

R�x = R(�a, ϕ)�x

= (cosϕ)�x+ (1− cosϕ)
�x · �a
|�a|2 �a+

sinϕ

|a| �a× �x (4.136a)

= (cosϕ)�x+ (1− cosϕ)�x�a + (sinϕ)
�a

|�a| × �x. (4.136b)

In these formulas the vector �x is decomposed into two components, one is parallel, the other is perpen-

dicular to �a . The parallel part is �x�a =
�x · �a
|�a|2 �a, the perpendicular part is �r = �x − �x�a. The orthogonal

part is in a plane whose normal vector is �a, so its image is cosϕ�r + sinϕ�r ∗, where �r ∗ is obtained from

�r by a 90◦ rotation in positive direction: �r ∗ =
1

|�a|�a×�r . The result of the rotation of vector �x is

�x�a + cosϕ�r+ sinϕ�r ∗ =
�x · �a
|�a|2 �a+ (cosϕ)

(
�x− �x · �a

|�a|2 �a
)
+ (sinϕ)

1

|�a|�a×�r (4.136c)

with �a×�r = �a× (�x− �xa) = �a× �x . (4.136d)

Advantages:
• ,,Standard representation” in computer-graphics,
• Cardan-angles should not be determined,
• no gimbal lock.

Disadvantage: Not suitable for animation, i.e. for interpolation of rotations.

4.4.2.5 Rotation andQuaternions
If the unit vector �a in (4.135f) is identified as the pure quaternion a (while the angle of rotation ϕ
remains the same), then one gets:

R(a, ϕ) =

⎛⎜⎝ q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23

⎞⎟⎠ =: R(q) (4.137a)

where q0 = cos
ϕ

2
and q = (q1, q2, q3)

T = (ax, ay, az)
T sin

ϕ

2
, i.e. q is the unit quaternion q = q(a, ϕ) =

cos
ϕ

2
+ a sin

ϕ

2
∈ IH1 . If vector �x is considered as IR3 � �x = x1i+ x2j+ x3k ∈ IH0 , then

R(a, ϕ)x = R(q)x = q x q̄ . (4.137b)

Especially the columns of the rotation matrix are vectors q ek q̄ :

R (a, ϕ) =

⎛⎝ q

⎛⎝ 1
0
0

⎞⎠ q q

⎛⎝ 0
1
0

⎞⎠ q q

⎛⎝ 0
0
1

⎞⎠ q

⎞⎠ = ( q i q q j q q k q ) . (4.137c)

Consequences:

• The matrix of rotation can be determined with the help of quaternion q = cos
ϕ

2
+ a sin

ϕ

2
.
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• For the rotated vector R(a, ϕ)x holds R(a, ϕ)x = q x q in the sense of quaternion multiplication

and identifying IR3 with the set of pure quaternions IH0 .

For every unit quaternion q ∈ IH1 q and −q determine the same rotation, so IH1 is a double covering
of SO(3). Performing rotations one after the other corresponds to multiplication of quaternions, i.e.

R(q2)R(q1) = R(q2 q1) ; (4.138)

and the conjugate quaternion corresponds to the inverse rotation:

R−1(q) = R(q). (4.139)

Rotation by 60◦ around the axis defined by (1, 1, 1)T. First the direction vector should be normed:

a =
1√
3
(1, 1, 1)T. Then with sinϕ = sin 60◦ =

√
3

2
and cosϕ = cos 60◦ =

1

2
the rotation matrix

becomes

R

(
1√
3
(1, 1, 1)T, 60◦

)
=

1

3

⎛⎝ 2 −1 2
2 2 −1
−1 2 2

⎞⎠ .

The quaternion describing the rotation is:

q = q

(
1√
3
(1, 1, 1)T, 60◦

)
= cos 30◦ +

1√
3
(i+ j+ k) sin 30◦

=

√
3

2
+

1√
3
(i+ j+ k)

1

2
=

√
3

2
+

√
3

6
(i+ j+ k) .

Furthermore

q

⎛⎝ 1
0
0

⎞⎠ q =

(√
3

2
+

√
3

6
(i+ j+ k

)
i

(√
3

2
−

√
3

6
(i+ j+ k)

)

=

(√
3

2
+

√
3

6
(i+ j+ k)

)(√
3

2
i+

√
3

6
−

√
3

6
k+

√
3

6
j

)

=
24

36
i+

24

36
j− 12

36
k =

1

3
(2i+ 2j− k)

∧
=

1

3

⎛⎝ 2
2
−1

⎞⎠ .

The two other columns are determined analogously:

q

⎛⎝ 0
1
0

⎞⎠ q =

(√
3

2
+

√
3

6
(i+ j+ k

)
j

(√
3

2
−

√
3

6
(i+ j+ k)

)
=

1

3
(−i+ 2j+ 2k)

∧
=

1

3

⎛⎝−1
2
2

⎞⎠ ,

q

⎛⎝ 0
0
1

⎞⎠ q =

(√
3

2
+

√
3

6
(i+ j+ k

)
k

(√
3

2
−

√
3

6
(i+ j+ k)

)
=

1

3
(2i− j+ 2k)

∧
=

1

3

⎛⎝ 2
−1
2

⎞⎠ ,

R

⎛⎝ 1√
3

⎛⎝ 1
1
1

⎞⎠ , 60◦
⎞⎠ =

⎛⎝ q

⎛⎝ 1
0
0

⎞⎠ q q

⎛⎝ 0
1
0

⎞⎠ q q

⎛⎝ 0
0
1

⎞⎠ q

⎞⎠ =
1

3

⎛⎝ 2 −1 2
2 2 −1
−1 2 2

⎞⎠ .

4.4.2.6 Quaternions and CardanAngles
The rotation matrix in Cardan angles (see (4.133a,b), p. 295) is exactly a matrix of rotation with a unit
quaternion q ∈ IH1 .

RC(αC, βC, γC) = Rz(γC)Ry(βC)Rx(αC) (4.140a)
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=

⎛⎝ cos βC cos γC sinαC sin βC cos γC − cosαC sin γC cosαC sin βC cos γC + sinαC sin γC
cos βC sin γC sinαC sin βC sin γC + cosαC cos γC cosαC sin βC sin γC − sinαC cos γC
− sin βC sinαC cos βC cosαC cos βC

⎞⎠ (4.140b)

= [rij]
3
i,j=1 =

⎛⎜⎝ q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23

⎞⎟⎠ = R(q) (4.140c)

=

⎛⎝ q

⎛⎝ 1
0
0

⎞⎠ q q

⎛⎝ 0
1
0

⎞⎠ q q

⎛⎝ 0
0
1

⎞⎠ q

⎞⎠ . (4.140d)

Comparing the matrix elements one gets

tan γC =
r21
r11

, sin βC = −r31, tanαC =
r32
r33

. (4.141a)

In general, the solution is not unique, which is typical in trigonometric problems. However the unique-
ness of angles can be reached by discussion of the defined domains.

Reversed, it is easy to get the unit quaternion from the rotation matrix.

4q0q1 = r32 − r23, 4q0q2 = r13 − r31, 4q0q3 = r21 − r12 , (4.141b)

4q20 − 1 = 4q20 − q20 − q21 − q22 − q23 = r11 + r22 + r33. (4.141c)

Since q and −q define the same rotation, q0 can be determined as

q0 =
1

2

√
r11 + r22 + r33 + 1 . (4.141d)

The other components are

q1 =
r32 − r23

4q0
, q2 =

r13 − r31
4q0

, q3 =
r21 − r12

4q0
. (4.141e)

Let the rotation matrix be the following:

R =
1

2

⎛⎜⎜⎜⎜⎜⎝
√
2 −1

2

√
6

1

2

√
2

√
2

1

2

√
6 −1

2

√
2

0 1
√
3

⎞⎟⎟⎟⎟⎟⎠ .

1. Determination of the Cardan angles: Based on the above formulas sinβC = −r31 = 0, so βC = kπ,

k ∈ Z. Furthermore tan γC =
r21
r11

= 1, so γC =
π

4
+ kπ, k ∈ Z, and from tanαC =

r32
r33

=
1√
3
it follows

that αC =
π

6
+ kπ, k ∈ Z. The angles are unique, if they are determined as the ,,possible smallest”

ones, i.e. the rotation whose angles have an absolute value ≤ π

2
. So the angles are

αC =
π

6
, βC = 0, γC =

π

4
.

2. Determination of the unit quaternion which results this rotation:

4q20 − 1 =
1

2

(√
2 +

1

2

√
6 +

√
3
)

also q0 =
1

2

√
1 +

1

2
(
√
2 +

1

2

√
6 +

√
3) ≈ 0, 8924 = cos

ϕ

2
.

The (possible smallest) angle is ϕ = 53.6474◦, so sin
ϕ

2
= 0.4512.

3. Determination of the further components of q and the direction of the axis of rotation
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a = (ax, ay, az)
T:

q1 =
r32 − r23

4q0
=

(
1

2
+

1

4

√
2
)

4q0
≈ 0, 2391 so ax =

q1
sin ϕ

2

≈ 0, 5299,

q2 =
r13 − r31

4q0
=

1

2
· 1
2

√
2

4q0
≈ 0, 0991 so ay =

q2
sin ϕ

2

≈ 0, 2195,

q3 =
r21 − r12

4q0
=

1

2

(√
2 +

1

2

√
6
)

4q0
≈ 0, 3696 so az =

q3
sin ϕ

2

≈ 0, 8192.

Remark: At the calculation of the components in (4.141e) it can be a problem when q0 is zero or
close to zero. In this case the unit quaternion can not be determined by the formulas in (4.141e). To
understand this situation one discusses the trace of the rotation matrix:

TrR = r11 + r22 + r33 = 4q20 − 1 . (4.142a)

If TrR > 0, then q0 =
1

2

√
TrR+ 1 > 0 , and the formulas (4.141e) can be used without any problem.

If TrR ≤ 0, then q0 can be close to zero. In this case the greatest element of the main diagonal is
considered. Assume, it is r11. Then |q1| is greater than |q2| or |q3|. The components q1, q2, q3 also can
be determined from the elements of the main diagonal of the rotation matrix. Choosing the positive
sign for the square-roots follows:

q1 =
1

2

√
1 + r11 − r22 − r33 , q2 =

1

2

√
1 + r22 − r11 − r33 , q3 =

1

2

√
1 + r33 − r11 − r22 .(4.142b)

Calculation rules: From this facts the following calculation rules are derived:

• If TrR ≤ 0 and r11 ≥ r22 and r11 ≥ r33, then q1 has the greatest absolute value, so

q0 =
r32 − r23

4q1
, q2 =

r21 + r12
4q1

, q3 =
r13 + r31

4q1
. (4.142c)

• If TrR ≤ 0 and r22 ≥ r11 and r22 ≥ r33 , then q2 has the greatest absolute value, so

q0 =
r13 − r31

4q2
, q1 =

r21 + r12
4q2

, q3 =
r23 + r32

4q2
. (4.142d)

• If TrR ≤ 0 and r33 ≥ r11 and r33 ≥ r22 , then q3 has the greatest absolute value, so

q0 =
r21 − r12

4q3
, q1 =

r31 + r13
4q3

, q2 =
r23 + r32

4q3
. (4.142e)

Since the Cardan-angles define the rotations around the corresponding axes, one can find the assign-
ments given in the following table. Then the rotation

R(α, β, γ) = R((0, 0, 1)T, γ)R((0, 1, 0)T, β)R((1, 0, 0)T, α) (4.142f)

corresponds to the unit quaternion

q = Qz Qy Qx . (4.142g)
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rotation Cardan angle around quaternion

RC((1, 0, 0)
T, αC) αC x axis Qx := cos

αC

2
+ i sin

αC

2

RC((0, 1, 0)
T, βC) βC y axis Qy := cos

βC

2
+ j sin

βC

2

RC((0, 0, 1)
T, γC) γC z axis Qz := cos

γC
2

+ k sin
γC
2

Knowing the Cardan angles αC =
π

6
, βC = 0, γC =

π

4
, the quaternion describing this rotation can

be determined in the following way:

Qx = cos
αC

2
+ i sin

αC

2
= cos

π

12
+ i sin

π

12
,

Qy = cos
βC

2
+ j sin

βC

2
= cos 0 + j sin 0 = 1 ,

Qz = cos
γC
2

+ k sin
γC
2

= cos
π

8
+ k sin

π

8
.

The final result coincides with that given on page 299:

q := Qz Qy Qx =
(
cos

π

8
+ k sin

π

8

)
1
(
cos

π

12
+ i sin

π

12

)
= cos

π

8
· cos π

12
+ i cos

π

8
· sin π

12
+ j sin

π

8
· sin π

12
+ k sin

π

8
· cos π

12
= 0, 8924 + 0, 2391i+ 0, 0991j+ 0, 3696k .

4.4.2.7 Efficiency of the Algorithms

To estimate the efficiency of the algorithms standard operations are defined from which the more com-
plex operations are originated. For complicated comparisons with other methods see [4.12].

Let
• M: number of multiplications,
• A: number of additions and subtractions,
• D: number of divisions,
• S: number of standard functions calls, e.g. trigonometric functions, which are composed of a consid-
erable number of multiplications, divisions and additions,
• C: number of comparisons of expressions, which increase the computing time by interrupting the al-
gorithm.

Operation A M D S C

Quaternion into Matrix 12 12

Matrix into Quaternion (TrR > 0) 6 5 1 1 1

Matrix into Quaternion (TrR ≤ 0) 6 5 1 1 3

Rotation of a vector A M Remarks

with rotation matrix 6 9

with unit quaternion 24 32 normal quaternion multiplication

with unit quaternion 17 24 fast quaternion multiplication

with unit quaternion 18 21 changing into rotation matrix
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Rotation of n vectors A M Remarks

with rotation matrix 6n 9n

with unit quaternion 24n 32n normal quaternion multiplication

with unit quaternion 17n 24n fast quaternion multiplication
with unit quaternion 12+6n 12+9n changing into rotation matrix

composition of two rotations A M

with rotation matrix 18 27

with unit quaternion 12 16

Summary: An algorithm based on quaternions is faster only when rotations are performed after each
other. It occurs mainly in computer graphics at animations, i.e. at approximations of rotations.

4.4.3 Applications ofQuaternions

4.4.3.1 3DRotations in Computer Graphics
To describe motion flows interpolation of rotations are used. Since the 3D-rotations can be represented
by unit quaternions, algorithms are developed for interpolation of rotations in computer graphics. The
easiest idea is to start analogously to the definition of linear interpolation in Euclidian-spaces. Basic
algorithms are Lerp, Slerp and Squad.

1. Lerp (linear interpolation)

Let p, q ∈ IH1 and t ∈ [0, 1], then

Lerp(p, q, t) = p(1− t) + q t . (4.143)

• This is a linear segment in IR4 , connecting p ∈ IH1 ∼ S3 ⊂ IR4 with q ∈ IH1 ∼ S3 ⊂ IR4.
• This segment is inside of the unit sphere in IR4, and does not represent any connecting curve on the
unit sphere S3 ∼ IH1.
• Therefore the rotation is determined by normalizing the found quaternion.

This simple algorithm is almost perfect. The only problem is that after finding the interpolation points
on the secant between the given points and normalizing the found quaternions, the resulted unit quater-
nions are not equidistant quaternions. This problem is solved by the following algorithm.

2. Slerp (Spherical linear interpolation)

Let p, q ∈ IH1, t ∈ [0, 1] and ϕ (0 < ϕ < π) the angle between p and q . Then

Slerp(p, q, t) = p(p q)t = p1−tqt = p

[
sin((1− t)ϕ)

sinϕ

]
+ q

[
sin(t ϕ)

sinϕ

]
. (4.144)

a) b)

Figure 4.5

• Interpolation along the great circle on the unit
sphere S3 ⊂ IR4, p and q are connected;
• The shortest connection is chosen, −Sc (p q) =
〈p, q〉 > 0must hold (where 〈 , 〉 denotes the dot prod-
uct of p and q in IR4).
In Fig.4.5 the interpolations according to Lerp(a)
and Slerp(b) are compared.

Special case p = 1: Let p = 1 = (1, 0, 0, 0)T and q = cosϕ+ nq sinϕ , then

Slerp(p, q, t) = cos(t ϕ) + nq sin(t ϕ) . (4.145)
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Special case equidistant grids: Let ψ =
ϕ

n
, then

qk := Slerp(p, q,
k

n
) =

1

sinϕ
(sin(ϕ− k ψ) p+ sin(k ψ)q) , k = 0, 1, . . . , n . (4.146)

Interpretation of the Slerp interpolation: To show the equivalence of the two expressions in

(4.144) first Q = p−1q =
p

|p|2 q = p q is calculated. Since p, q ∈ IH1 the scalar part is

Q0 = ScQ = Sc (p q) = 〈p, q〉 = cosϕ . (4.147)

Since p = p · 1, and q = p p−1q = pQ, the interpolation between 1 and Q is multiplied by p to keep the
interpolation between p and q .

Q(t) =
sin((1− t)ϕ)

sinϕ
+Q

sin(tϕ)

sinϕ
=

sin((1− t)ϕ)

sinϕ
+ cosϕ

sin(tϕ)

sinϕ
+ �n �Q

sin(tϕ)

sinϕ

=
sinϕ cos(tϕ)− sin(tϕ) cosϕ+ sin(tϕ) cosϕ

sinϕ
+ �n �Q

sin(tϕ) sinϕ

sinϕ

= cos(tϕ) + �n �Q sin(tϕ) = et �n�Q
ϕ = et logQ = Qt . (4.148)

It follows that

q(t) = pQ(t) = p
sin((1− t)ϕ)

sinϕ
+ q

sin(tϕ)

sinϕ
= pQt = p(p−1q)t = p1−tqt . (4.149)

3. Squad (spherical and quadrangle)

For qi, qi+1 ∈ IH1 and t ∈ [0, 1] the rule is

Squad(q i q i+1, s i, s i+1, t) = Slerp(Slerp(qi, qi+1, t), Slerp(si, si+1, t), 2t(1− t)) (4.150)

with si = qi exp

(
− log(q−1

i qi+1) + log(q−1
i qi−1)

4

)
.

• The resulted curve is similar to a Bézier curve, but it keeps the spherical instead of the linear inter-
polation.
• The algorithm produces an interpolation curve for a sequence of quaternions q0, q1, . . . , qN .
• The expression is not defined in the first and last interval, since q−1 is necessary to calculate s0 and
qN+1 to calculate sN . A possible way out is to choose s0 = q0 and sN = qN , (or to define q−1 and qN+1).

There are additional algorithms based on quaternions: nlerp, log-lerp, islerp, quaternion de Casteljau-
splines.

4.4.3.2 Interpolation by Rotationmatrices
The Slerp-algorithm can be described completely analogously with the help of rotation matrices. The
logarithm of a 3× 3 rotation matrixR is needed (i.e. an element of group SO(3)) and it is defined by a
group-theoretical context as the skew-symmetric matrix r (i.e. an element of the Lie group so(3)), for
which er = R. Then the Slerp-algorithm can be used to interpolate between rotation matricesR0 and
R1,which is described as

R(t) = R0(R
−1
0 R1)

t = R0 exp(t log(R
−1
0 R1)) . (4.151)

In general it is more simple to use the quaternions based algorithm and to determine R(t) from q(t)
according to the calculations of the rotation matrix representing the unit quaternion.

4.4.3.3 Stereographic Projection
If 1 ∈ IH1 ∼ S3 is taken as the North pole of the three dimensional sphere S3 , then unit quaternions
or elements of the three dimensional sphere can be mapped by the stereographic projection IH1 � q �→



304 4. Linear Algebra

(1 + q)(1− q)−1 ∈ IH0 ∼ IR3 into pure quaternions or into IR3 respectively. The corresponding inverse
mapping is

IR3 ∼ IH0 � p �→ (p− 1)(p+ 1)−1 ∈ IH1 ∼ S3 . (4.152)

4.4.3.4 Satellite navigation

Earth

i-th fixed star, infinitely

far away

satellite

bi

ai

fixed coordinate

system

Figure 4.6

The orientation of an artificial satellite
circulating around the Earth is to be de-
termined. The fixed stars are consid-
ered to be infinitely far away, so their
direction with respect to the Earth and
the satellite are identical (see Fig.4.6).
Any difference in measurements can be
deduced from the different coordinate
systems and so from the relative rota-
tion of the coordinate systems.

Let �a i be the unit vector pointing into the direction of the i-th fixed star from in the Earth’s fixed

coordinate system, and �b i be the unit vector pointing into the direction of the i-th fixed star in the
satellite’s fixed coordinate system. The relative rotation of both coordinate systems can be described
by a unit quaternion h ∈ IH1:

�b i = h�a i h . (4.153)

If more fixed stars are considered, and the data are overlapped by measuring errors, then the solution
is determined by the least squares method, i.e. as the minimum of (4.154), where h is a unit quaternion

and a i = �a i and b i = �b i are unit vectors:

Q2 =
n∑

i=1

|�b i − h�a i h|2 =
n∑

i=1

(�b i − h�a i h) · (�b i − h�a i
�h)

=
n∑

i=1

(b i − h a i h)(b i − h a i h) =
n∑

i=1

(2− b i h a i h− h a i hb i) . (4.154)

Since the group IH1 of the unit quaternions form a Lie group, the critical points ofQ2 can be determined
by the help of derivative

∂vh = lim
ϑ→0

eϑ vh− h

ϑ
= vh (v, h quaternions, ϑ real) (4.155)

from

∂vQ
2 = −

n∑
i=1

(
b i v h a i h+ b i h a i (vh) + v h a i hb i + h a i(v h)b i

)
= 0 . (4.156)

Here v ,b i and h a i h are pure quaternions, so v = −v, and therefore (4.156) can be simplified:

∂vQ
2 = −4v ·

(
n∑

i=1

h�a i h× b i

)
= 0 . (4.157)

Since here v is arbitrary, this expression vanishes if

n∑
i=1

h�a i h× b i = 0 . (4.158)

Let R be the rotation matrix represented by the unit quaternion h, i.e. h�a ih = R�a i . With the 3× 3
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matrix

K(�a) =

⎛⎝ 0 −az ay
az 0 −ax
−ay ax 0

⎞⎠ (4.159)

defined by vector �a = (ax, ay, az) ∈ IR3 for any vector �b ∈ IR3 one gets:

K(�a) �b = �a× �b, K(K(�a) �b) = �b�aT − �a �bT. (4.160)

From this relation the critical points of the minimum problems are determined:
n∑

i=1

K (R�a i × �b i) = O ⇐⇒
n∑

i=1

(�b i �a
T
i R

T −R�a i
�bT

i ) = O ⇐⇒ RP = PTRT (4.161)

where P =
∑n

i=1 �a i
�bT

i . If P is decomposed into the product P = RT
p S, where matrix S is symmetric

and P = Rp is a rotation matrix, then from (4.161) follows

RRT
p S = SRpR

T , (4.162)

and

R = Rp (4.163)

is obviously a solution, since in this case RpR
T
p S = S = SRpR

T
p , because RpR

T
p = E. However there

are three other solutions, namely

R = RjRp (j = 1, 2, 3) , (4.164)

where Rj denotes the rotation by π around the j-th eigenvector of S , i.e., there is RjSRj = S . That

R = RjRν is a solution of (4.162) which can be seen from RjRpR
T
p S = SRpR

T
pR

T
j ⇐⇒ RjS =

SRT
j ⇐⇒ RjSRj = S .

The solution for which Q2 is minimal is

R =
{

R p , falls detP > 0 ,
Rj0 R p , falls detP < 0 ,

(4.165)

whereRj0 is the rotation by π around the eigenvector of S associated with the eigenvalue of the smallest
absolute value.

4.4.3.5 Vector Analysis
If the ∇ operator (see (13.67), 13.2.6.1, p. 715) and a vector �v (see 13.1.3, p. 704) are identified with
∇Q and v in quaternion calculus, i.e.

∇Q = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (4.166)

v(x, y, z) = v1(x, y, z)i+ v2(x, y, z)j+ v3(x, y, z)k (4.167)

with i , j ,k (according to (4.107), p. 290), then the multiplication rule for quaternions (see (4.109b),
p. 291) gives

∇Qv = −∇ · �v +∇× �v = −div �v + rot �v, (4.168)

(see also in 4.4.1.1, 4. p. 291).
Substituting

D =
∂

∂t
+ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z
and (4.169a)

w(t, x, y, z) = w0(t, x, y, z) + w1(t, x, y, z)i+ w2(t, x, y, z)j+ w3(t, x, y, z)k

= w0(t, x, y, z) +w(t, x, y, z), (4.169b)
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then

Dw =
∂

∂t
w0 − divw + rot w + grad w0 . (4.169c)

Especially, for an arbitrary twice continuously differentiable function f(t, x, y, z)

∇Q∇Q f = ∇Q∇Q f = ∇∇ f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= Δ3 f und (4.170a)

∇Q∇Q f = −∇∇ f = −∂2f

∂x2
− ∂2f

∂y2
− ∂2f

∂z2
= −Δ3 f , (4.170b)

where Δ3 denotes the Laplace operator in IR3 (see (13.75) in 13.2.6.5, p. 716).

DDf = DDf =
∂2f

∂t2
+

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= Δ4f (4.170c)

where Δ4 denotes the Laplace-operator in IR4. ∇Q, just as D is often called the Dirac- or Cauchy-
Riemann operator.

4.4.3.6 Normalized Quaternions andRigid BodyMotion

1. Biquaternions

A biquaternion ȟ has the form

ȟ = h0 + ε h1, with h0, h1 ∈ IH (4.171)

Here ε is the dual unit, that commutes with every quaternion, furthermore ε2 = 0. The multiplication
is the usual quaternion multiplication (see 4.115, p. 292).

2. Rigid BodyMotion
By the help of unit biquaternions, i.e. biquaternions with

ȟȟ = (h0 + εh1)(h0 + εh1) = 1 ⇐⇒
{

h0 h0 = 1 ,
h0 h1 + h1h0 = 0 ,

(4.172)

rigid-body motion (rotation and translation after each other) can be described in IR3.

Table 4.1 Rigid body motions with biquaternions

Element Representation by

point p = (px, py, pz) in space p̌ = 1 + p ε with p = px i+ py j+ pz k

rotations r ∈ IH1 unit quaternions

translations t = (tx, ty, tz) 1 +
1

2
t ε with t = tx i+ ty j+ tz k

The unit biquaternions

ȟ = h0 + h1 ε =
(
1 +

1

2
t ε

)
r = r +

1

2
t r ε, t ∈ IH0 , r ∈ IH1 , (4.173)

give a double covering over the group SE(3) of the rigid-body motion in IR3 since ȟ and −ȟ describe
the same rigid-body motion.
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4.5 Systems of LinearEquations

4.5.1 Linear Systems, Pivoting

4.5.1.1 Linear Systems
A linear system contains m linear forms

y1 = a11x1 + a12x2 + · · · + a1nxn + a1
y2 = a21x1 + a22x2 + · · · + a2nxn + a2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ym = am1x1 + am2x2 + · · · + amnxn + am

or y = Ax+ a (4.174a)

with

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...
am1 am2 · · · amn

⎞⎟⎟⎟⎠ , a =

⎛⎜⎜⎜⎝
a1,
a2,
...
am

⎞⎟⎟⎟⎠ , x =

⎛⎜⎜⎜⎝
x1,
x2,
...
xn

⎞⎟⎟⎟⎠ , y =

⎛⎜⎜⎜⎝
y1,
y2,
...
ym

⎞⎟⎟⎟⎠ . (4.174b)

The elements aμν of the matrixA of size (m,n) and the components aμ (μ = 1, 2, . . . ,m) of the column
vector a are constants. The components xν (m = 1, 2, . . . , n) of the column vectorx are the independent
variables , the components yμ (μ = 1, 2, . . . ,m) of the column vector y are the dependent variables .

4.5.1.2 Pivoting

1. Scheme of Pivoting
If an element aik is not equal to zero in (4.174a), the variable yi can be exchanged for an independent one
and the variable xk for a dependent one in a so-called pivoting step. The pivoting step is the basic ele-
ment of pivoting, the method by which for instance systems of linear equations and linear optimization
problems can be solved. The pivoting step is achieved by the schemes

x1 x2 · · · xk · · · xn 1
y1 a11 a12 · · · a1k · · · a1n a1
y2 a21 a22 · · · a2k · · · a2n a2
... . . . . . . . . . . . . . . . . . . . . . . . . . . .
yi ai1 ai2 · · · aik · · · ain ai
... . . . . . . . . . . . . . . . . . . . . . . . . . . .
ym am1 am2 · · · amk · · · amn am
xk αi1 αi2 · · · αik · · · αin αi

,

x1 x2 · · · yi · · · xn 1
y1 α11 α12 · · · α1k · · · α1n α1

y2 α21 α22 · · · α2k · · · α2n α2
... . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xk αi1 αi2 · · · αik · · · αin αi
... . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ym αm1 αm2 · · · αmk · · · αmn αm

, (4.175)

where the left scheme corresponds to the system (4.174a).

2. Pivoting Rules
The framed element in the scheme aik (aik �= 0) is called the pivot element ; it is at the intersection of
the pivot column and pivot row . The elements αμν and αμ of the new scheme on the right-hand side
will be calculated by the following pivoting rules:

1. αik =
1

aik
, (4.176a) 2. αμk =

aμk
aik

(μ = 1, . . . ,m;μ �= i), (4.176b)

3. αiν = −aiν
aik

, αi = − ai
aik

(ν = 1, 2, . . . , n; ν �= k), (4.176c)

4. αμν = aμν − aμk
aiν
aik

= aμν + aμkαiν , αμ = aμ + aμkαi

(for every μ �= i and every ν �= k). (4.176d)
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Tomake the calculations easier (rule 4) one writes the elements αiν in the (m+1)-th row of the pivoting
scheme (cellar row). With this pivoting rule one can change further variables.

4.5.1.3 Linear Dependence
The linear forms (4.174a) are linearly independent (see 9.1.2.3, 2., p. 553), if all yμ can be changed for
an independent variable xν . The linear independence will be used, for instance to determine the rank
of a matrix. Otherwise, the dependence relation can be found directly from the scheme.

x1 x2 x3 x4 1
y1 2 1 1 0 −2
y2 1 −1 0 0 2
y3 1 5 2 0 0
y4 0 2 0 1 0

After three pivoting steps
(for instance y4 → x4,
y2 → x1, y1 → x3) the
table becomes:

y2 x2 y1 y4 1
x3 −2 −3 1 0 6
x1 1 1 0 0 −2

y3 −3 0 2 0 10
x4 0 −2 0 1 0

No further change is possible because α32 = 0, and one can see the dependence relation y3 = 2y1 −
3y2 + 10. Also for another sequence of pivoting, there remains one pair of not exchangeable variables.

4.5.1.4 Calculation of the Inverse of aMatrix
If A is a regular matrix of size (n, n), then the inverse matrix A−1 can be obtained after n steps using
the pivoting procedure for the system y = Ax.

A =

⎛⎝ 3 5 1
2 4 5
1 2 2

⎞⎠ =⇒
x1 x2 x3

y1 3 5 1
y2 2 4 5

y3 1 2 2

,

y3 x2 x3

y1 3 −1 −5

y2 2 0 1
x1 1 −2 −2

,

y3 x2 y2
y1 13 −1 −5
x3 −2 0 1
x1 5 −2 −2

,

y3 y1 y2
x2 13 −1 −5
x3 −2 0 1
x1 −21 2 8

.

After rearranging the elements one getsA−1 =

⎛⎝ 2 8 −21
−1 −5 13
0 1 −2

⎞⎠. (The columns are to be arranged with

respect to the indices of yi, the rows with respect to the indices of xk.)

4.5.2 Solution of Systems of Linear Equations

4.5.2.1 Definition and Solvability

1. System of Linear Equations
A system of m linear equations with n unknowns x1, x2, . . . , xn

a11x1 + a12x2 + · · · + a1nxn = a1
a21x1 + a22x2 + · · · + a2nxn = a2

...
am1x1 + am2x2 + · · · + amnxn = am

or briefly Ax = a, (4.177a)

is called a linear equation system. Here the following designations are used:

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...
am1 am2 · · · amn

⎞⎟⎟⎟⎠ , a =

⎛⎜⎜⎜⎝
a1,
a2,
...
am

⎞⎟⎟⎟⎠, x =

⎛⎜⎜⎜⎝
x1,
x2,
...
xn

⎞⎟⎟⎟⎠. (4.177b)

If the column vector a is the zero vector (a = 0), then the system of equations is called a homogeneous
system, otherwise (a �= 0) it is called an inhomogeneous system of equations. The coefficients aμν of the
system are the elements of the so-calledmatrix of coefficients A, and the components aμ of the column
vector a are the constant terms (absolute terms).
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2. Solvability of a Linear System of Equations
A linear system of equations is called solvable or consistent or compatible if it has a solution, i.e., there
exists at least one vector x = α such that (4.177a) is an identity. Otherwise, it is called inconsistent.
The existence and uniqueness of the solution depend on the rank of the augmented matrix (A, a). One
gets the augmented matrix by attaching the vector a to the matrix A as its (n+ 1)-th column.

1. General Rules for Inhomogeneous Linear Systems of EquationsAn inhomogeneous linear
system of equations Ax = a has at least one solution if

rank (A) = rank (A, a) , (4.178a)

is valid. Furthermore, if r denotes the rank of A, i.e., r = rank (A), then

a) for r = n the system has a unique solution, (4.178b)

b) for r < n the system has infinitely many solutions, (4.178c)

i.e., the values of n− r unknowns as parameters can be chosen freely.

A:
x1 − 2x2 + 3x3 − x4 + 2x5 = 2
3x1 − x2 + 5x3 − 3x4 − x5 = 6
2x1 + x2 + 2x3 − 2x4 − 3x5 = 8

The rank of A is 2, the rank of the augmented matrix of co-
efficients (A, a) is 3, i.e., the system is inconsistent.

B:
x1 − x2 + 2x3 = 1
x1 − 2x2 − x3 = 2
3x1 − x2 + 5x3 = 3

−2x1 + 2x2 + 3x3 = −4

Both the matrices A and (A, a) have rank equal to 3. Be-
cause r = n = 3 the system has a unique solution: x1 =
10

7
, x2 = −1

7
, x3 = −2

7
.

C:
x1 − x2 + x3 − x4 = 1
x1 − x2 − x3 + x4 = 0

x1 − x2 − 2x3 + 2x4 = −1
2

Both the matrices A and (A, a) have rank equal to 2. The
system is consistent but because r < n it does not have
a unique solution. Therefore n − r = 2 unknowns can

be considered as free parameters: x2 = x1 − 1
2 , x3 =

x4 +
1

2
, (x1, x4 arbitrary values).

D:
x1 + 2x2 − x3 + x4 = 1
2x1 − x2 + 2x3 + 2x4 = 2
3x1 + x2 + x3 + 3x4 = 3
x1 − 3x2 + 3x3 + x4 = 0

There is the same number of equations as unknowns but
the system has no solution because rank (A) = 2, and
rank (A , a) = 3.

2. Trivial Solution and Fundamental System of Homogeneous Systems

a) The homogeneous system of equations Ax = 0 always has a solution, the so-called trivial solution

x1 = x2 = . . . = xn = 0. (4.179a)

(The equality rank (A) = rank (A ,0) always holds.)

b) If the homogeneous system has the non-trivial solutions α = (α1, α2, . . . , αn) and β = (β1, β2, . . .,

βn), i.e., α �= 0 and β �= 0, then x = s α +t β is also a solution with arbitrary constants s and t,
i.e., any linear combination of the solutions is a solution as well.
Suppose, the system has exactly l non-trivial linearly independent solutionsα1,α2,. . . ,αl. Then these
solutions form a so-called fundamental system of solutions (see 9.1.2.3, 2., p. 553), and the general
solution of the homogeneous system of equations has the form

x = k1α1 + k2α2 + · · ·+ klαl (k1, k2, . . . , kl arbitrary constants). (4.179b)

If the rank r of the coefficient matrixA of the homogeneous system of equations is less than the number
of unknowns n, i.e., r < n , then the system of equations has l = n− r linearly independent non-trivial
solutions. If r = n, then the solution is unique, i.e., the homogeneous system has only the trivial
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solution.

To determine a fundamental system in the case r < n one chooses n− r unknowns as free parameters,
and expresses the remaining unknowns in terms of them. If reordering the equations and the unknowns
so that the subdeterminant of order r in the left upper corner is not equal to zero, then one gets for
instance:

x1 = x1(xr+1, xr+2, . . . , xn)
x2 = x2(xr+1, xr+2, . . . , xn)
...

...
...

xr = xr(xr+1, xr+2, . . . , xn).

(4.180)

Then one can get a fundamental system of solutions choosing the free parameters, for instance in the
following way:

xr+1 xr+2 xr+3 · · · xn

1. fundamental solution: 1 0 0 · · · 0
2. fundamental solution: 0 1 0 · · · 0

...
...

...
...

...
...

(n− r)-th fundamental solution: 0 0 0 · · · 1

. (4.181)

E:
x1 − x2 + 5x3 − x4 = 0
x1 + x2 − 2x3 + 3x4 = 0
3x1 − x2 + 8x3 + x4 = 0
x1 + 3x2 − 9x3 + 7x4 = 0

The rank of the matrix A is equal to 2. The system can be

solved for x1 and x2 resulting to: x1 = −3

2
x3 − x4, x2 =

7

2
x3 − 2x4 (x3, x4 arbitrary). Fundamental solutions are α1=

(−3

2
,
7

2
, 1, 0)T and α2 = (−1,−2, 0, 1)T.

4.5.2.2 Application of Pivoting

1. System of Linear Functions Corresponding to a Linear System of Equations
In order to solve (4.177a), a system of linear functions y = Ax−a is assigned to the system of equations

Ax = a so the use of pivoting (see 4.5.1.2, p. 307) is possible:

Ax = a (4.182a) is equivalent to y = Ax− a = 0. (4.182b)

The matrix A is of size (m,n), a is a column vector with m components, i.e., the number of equations
mmust not be equal to the number of unknowns n. After finishing the pivoting one substitutes y = 0.
The existence and uniqueness of the solution of Ax = a can be seen directly from the last pivoting
scheme.

2. Solvability of Linear Systems of Equations
The linear system of equations (4.182a) has a solution if one of the following two cases holds for the
corresponding linear functions (4.182b):

Case 1: All yμ (μ = 1, 2, . . . ,m) can be exchanged for some xν . This means the corresponding system
of linear functions is linearly independent.

Case 2: At least one yσ cannot be exchanged for any xν , i.e.,

yσ = λ1y1 + λ2y2 + · · ·+ λmym + λ0 (4.183)

holds and also λ0 = 0. This means the corresponding system of linear functions is linearly dependent.

3. Inconsistency of Linear Systems of Equations
The linear system of equations has no solution if in case 2 above λ0 �= 0 holds. In this case the system
has contradictory equations.
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x1 − 2x2 + 4x3 − x4 = 2
−3x1 + 3x2 − 3x3 + 4x4 = 3
2x1 − 3x2 + 5x3 − 3x4 = −1

x1 x2 x3 x4 1

y1 1 −2 4 −1 −2
y2 −3 3 −3 4 −3
y3 2 −3 5 −3 1

After three pivoting steps
(for instance y1 → x1,
y3 → x4, y2 → x2) fol-
lows:

y1 y2 x3 y3 1

x1
3
2 −3

2 2 −5
2 1

x2 −1
2 −1

2 3 −1
2 −2

x4
3
2 −1

2 0 −3
2 3.

This calculation ends with case 1: y1, y2, y3 and x3 are independent variables. Substituting y1 = y2 =
y3 = 0, and x3 = t (−∞ < t < ∞ is a parameter) consequently, the solution is: x1 = 2t+1, x2 = 3t−2,
x3 = t, x4 = 3.

4.5.2.3 Cramer’s Rule

There is the very important special case when the number of equations is equal to the number of un-
knowns

a11x1 + a12x2 + · · ·+ a1nxn = a1
a21x1 + a22x2 + · · ·+ a2nxn = a2

...
...

...
...

an1x1 + an2x2 + · · ·+ annxn = an

(4.184a)

and the determinant of the coefficients does not vanish, i.e.,

D = detA �= 0 . (4.184b)

In this case the unique solution of the system of equations (4.184a) can be given in an explicit and
unique form:

x1 =
D1

D
, x2 =

D2

D
, . . . , xn =

Dn

D
. (4.184c)

Dν denotes the determinant, which is obtained from D by replacing the elements aμν of the ν-th column
of D by the constant terms aμ, for instance

D2 =

∣∣∣∣∣∣∣∣∣
a11 a1 a13 · · · a1n
a21 a2 a23 · · · a2n
...

...
...

...
...

an1 an an3 · · · ann

∣∣∣∣∣∣∣∣∣ . (4.184d)

If D = 0 and there is at least one Dν �= 0, then the system (4.184a) has no solution.
In the case D = 0 and Dν = 0 for all ν = 1, 2, . . . , n, then it is possible that the system has a solution
but it is not unique. (see Remark p. 311).

2x1 + x2 + 3x3 = 9
x1 − 2x2 + x3 = −2
3x1 + 2x2 + 2x3 = 7.

D =

∣∣∣∣∣∣
2 1 3
1 −2 1
3 2 2

∣∣∣∣∣∣ = 13,

D1 =

∣∣∣∣∣∣
9 1 3

−2 −2 1
7 2 2

∣∣∣∣∣∣ = −13, D2 =

∣∣∣∣∣∣
2 9 3
1 −2 1
3 7 2

∣∣∣∣∣∣ = 26, D3 =

∣∣∣∣∣∣
2 1 9
1 −2 −2
3 2 7

∣∣∣∣∣∣ = 39.

The system has the unique solution x1 =
D1

D
= −1, x2 =

D2

D
= 2, x3 =

D3

D
= 3.

Remark: From practical consideration the Cramer rule is not useful for higher-dimensional problems.
As the dimension of the problem increases, the number of required operations increases very fast, so,
for numerical solutions of linear systems of equations one uses the Gauss algorithm or pivoting or an
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iteration procedure (see 19.1.1, p. 949).

4.5.2.4 Gauss’s Algorithm

1. Gauss EliminationMethod In order to solve the linear system of equationsAx = a (4.177a) of
m equations with n unknowns one can use theGauss elimination method . With the help of an equation
one unknown is to be eliminated from all the other equations. So one gets a system ofm− 1 equations
and n − 1 unknowns. This method will be repeated until the result is a system of equations in row
echelon form, and from this form one can determine the existence and uniqueness of the solution easily,
and the solution itself can be found if it exists.

2. Gauss Steps The first Gauss step is to be demonstrated on the augmented matrix of coefficients
(A, a) (see examples on p. 309):

Supposing a11 �= 0, otherwise exchanging the first equation for another one. In the matrix⎛⎜⎜⎜⎝
a11 a12 · · · a1n a1
a21 a22 · · · a2n a2
...

...
...

...
...

am1 am2 · · · amn am

⎞⎟⎟⎟⎠ (4.185a)

the appropriate multiple of the first row is to be added to the others in order to make the coefficients of

x1 equal to zero, i.e., multiply the first row by − a21
a11

, − a31
a11

, . . . , − am1

a11
then add them to the second,

third,. . . , m-th row. The transformed matrix has the form⎛⎜⎜⎜⎝
a11 a12 · · · a1n a1
0 a′22 · · · a′2n a′2
...

...
...

...
...

0 a′m2 · · · a′mn a′m

⎞⎟⎟⎟⎠ . (4.185b)

After applying this Gauss step (r − 1) times the result is a matrix in row echelon form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1,r+1 . . . a1n a1

0 a′22 a′23 . . . a′2,r+1 . . . a′2n a′2
0 0 a′′33 . . . a′′3,r+1 . . . a′′3n a′′3
. . . . . . . . . . . . . . . . . . . . .

0 0 . . . a(r−1)
r,r a

(r−1)
r,r+1 . . . a(r−1)

rn a(r−1)
r

0 0 . . . . . . 0 0 . . . 0 a
(r−1)
r+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . . 0 0 . . . 0 a(r−1)
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.186)

�
�

�
�

�
�

�
�

��

3. Existence and Uniqueness of the Solution The Gauss steps are elementary row operations
so they do not affect the rank of the matrix (A, a), consequently the existence and uniqueness of the
solution and the solution itself do not change. Formula (4.186) implies that the following cases may
occure concerning the solutions of the inhomogeneous linear system of equations:

Case 1: The system has no solution if any of the numbers a
(r−1)
r+1 , a

(r−1)
r+2 , . . . , a(r−1)

m differs from zero.

Case 2: The system has a solution if a
(r−1)
r+1 = a

(r−1)
r+2 = . . . = a(r−1)

m = 0 is valid. Then there are two
cases:

a) r = n: The solution is unique.
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b) r < n: The solution is not unique; n− r unknowns can be chosen as free parameters.

If the system has a solution, then the unknowns are to be determined in a successive way starting with
the last row of the system of equations with the matrix in row echelon form (4.186).

A: x1 + 2x2 + 3x3 + 4x4 = −2
2x1 + 3x2 + 4x3 + x4 = 2
3x1 + 4x2 + x3 + 2x4 = 2
4x1 + x2 + 2x3 + 3x4 = −2

After three Gauss steps
the augmented matrix of
coefficients has the form

⎛⎜⎜⎝
1 2 3 4 −2
0 −1 −2 −7 6
0 0 −4 4 −4
0 0 0 40 −40

⎞⎟⎟⎠.
The solution is unique and from the corresponding system of equations with a triangular matrix follows:
x4 = −1, x3 = 0, x2 = 1, x1 = 0.

B: −x1 − 3x2 − 12x3 = −5
−x1 + 2x2 + 5x3 = 2

5x2 + 17x3 = 7
3x1 − x2 + 2x3 = 1
7x1 − 4x2 − x3 = 0

After two Gauss steps the
augmented matrix of coeffi-
cients has the form

⎛⎜⎜⎜⎜⎜⎝
−1 −3 −12 −5
0 5 17 7
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠.

There is a solution but it is not unique. Choosing one unknown as a free parameter, for instance x3 = t

(−∞ < t < ∞), and one gets x3 = t, x2 =
7

5
− 17

5
t, x1 =

4

5
− 9

5
t.

4.5.3 OverdeterminedLinear Systems of Equations

4.5.3.1 Overdetermined Linear Systems of Equations and Linear
Least Squares Problems

1. Overdetermined System of Equations
Consider the linear system of equations

Ax = b (4.187)

with the rectangular matrix of coefficients A = (aij) (i = 1, 2, . . . ,m; j = 1, 2, . . . , n ; m > n).

The matrix A and the vector b = (b1, b2, . . . , bm)
T on the right-hand side are given, and the vector

x = (x1, x2, . . . , xn)
T is unknown. Because m > n holds this system is called an over-determined

system. One can tell the existence and uniqueness of the solution and sometimes also the solution, for
instance by pivoting.

2. Linear Least Squares Problem
If (4.187) is the mathematical model representing a practical problem (i.e., A, b, x are reals), then
because of measuring or other errors it is impossible to find an exact solution of (4.187) such that it sat-
isfies all of the equations. Substituting any vector x there will be a residual vector r = (r1, r2, . . . , rm)

T

given as

r = Ax− b, r �= 0. (4.188)

In this case x is to be determined tomake the norm of the residual vector r as small as possible. Suppose
now A, b, x are real. If considering the Euclidean norm, then

m∑
i=1

r2i = rTr = (Ax− b)T(Ax− b) = min (4.189)

must be valid, i.e., the residual sum of squares must be minimal. Gauss already had this idea. The
formula (4.189) is called a linear least squares problem. The norm ||r|| =

√
rTr of the residual vector r

is called the residue.

3. Gauss Transformation
The vector x is the solution of (4.189) if the residual vector r is orthogonal to every column ofA. That
is:

ATr = AT(Ax− b) = 0 or ATAx = ATb. (4.190)



314 4. Linear Algebra

Equation (4.190) is actually a linear system of equations with a square matrix of coefficients. One refers
to it as the system of normal equations . It has dimension n. The transition from (4.187) to (4.190) is
called Gauss transformation. The matrix ATA is symmetric.

If the matrix A has the rank n (because m > n all columns of A are independent), then the matrix
ATA is positive definite and also regular, i.e., the system of normal equations has a unique solution if
the rank of A is equal to the number of unknowns.

4.5.3.2 Suggestions for Numerical Solutions of Least Squares Problems

1. CholeskyMethod
Because the matrixATA is symmetric and positive definite in the case rank (A) = n, in order to solve
the normal system of equations one can use the Cholesky method (see 19.2.1.2, p. 958). Unfortunately
this algorithm is numerically fairly unstable although it works fairly well in the cases of a “big” residue
||r|| and a “small” solution ||x||.
2. Householder Method
Numerically useful procedures in order to solve the least squares problem are the orthogonalization
methods which are based on the decompositionA = QR. Especially useful is the Householder method ,
where Q is an orthogonal matrix of size (m,m) and R is a triangular matrix of size (m,n) (see 4.1.2,
11., p. 271).

3. Regularized Problem
In the case of rank deficiency , i.e., if rank (A) < n holds, then the normal system of equations no longer
has a unique solution, and the orthogonalization method gives useless results. Then instead of (4.189)
the so-called regularized problem is considered:

rTr+ αxTx = min! (4.191)

Here α > 0 is a regularization parameter . The normal equations for (4.191) are:

(ATA+ αI)x = ATb. (4.192)

The matrix of coefficients of this linear system of equations is positive definite and regular for α > 0,
but the appropriate choice of the regularization parameter α is a difficult problem (see [4.7]).

4.6 EigenvalueProblems forMatrices

4.6.1 General EigenvalueProblem
Let A and B be two square matrices of size (n, n). Their elements can be real or complex numbers.
The general eigenvalue problem is to determine the numbers λ and the corresponding vectors x �= 0
satisfying the equation

Ax = λBx. (4.193)

The number λ is called an eigenvalue, the vector x an eigenvector corresponding to λ. An eigenvector
is determined up to a constant factor, because if x is an eigenvector corresponding to λ, so is cx (c =
constant) as well. In the special case when B = I holds, where I is the unit matrix of order n, i.e.,

Ax = λx or (A− λI)x = 0, (4.194)

the problem is called the special eigenvalue problem. It occures very often in practical problems, espe-
cially with a symmetric matrix A, and so it is to be discussed later in detail. More information about
the general eigenvalue problem can be found in the literature (see [4.16]).
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4.6.2 Special EigenvalueProblem

4.6.2.1 Characteristic Polynomial
The eigenvalue equation (4.194) yields a homogeneous system of equations which has non-trivial solu-
tions x �= 0 only if

det (A− λI) = 0. (4.195a)

By the expansion of det (A− λ I) one gets

det (A− λI) =

∣∣∣∣∣∣∣∣∣
a11 − λ a12 a13 · · · a1n
a21 a22 − λ a23 · · · a2n
...

...
...

...
...

an1 an2 an3 · · · ann − λ

∣∣∣∣∣∣∣∣∣
= Pn(λ) = (−1)nλn + an−1λ

n−1 + · · ·+ a1λ+ a0 = 0. (4.195b)

So the determination of the eigenvalues is equivalent to the solution of a polynomial equation. This
equation is called the characteristic equation; the polynomial Pn(λ) is the characteristic polynomial . Its
roots are the eigenvalues of the matrixA. For an arbitrary square matrixA of size (n, n) the following
statements hold:

Case 1: The matrix A(n,n) has exactly n eigenvalues λ1, λ2, . . . , λn, because a polynomial of degree n
has n roots if they are considered with their multiplicity. The eigenvalues of a real symmetric matrix
are real numbers, in other cases the eigenvalues can also be complex.

Case 2: If all the n eigenvalues are different, then the matrixA(n,n) has exactly n linearly independent
eigenvectors xi as the solutions of the equation system (4.194) with λ = λi.

Case 3: If λi has multiplicity ni among the eigenvalues, and the rank of the matrix A(n,n) − λiI is
equal to ri , then the number of linearly independent eigenvectors corresponding to λi is equal to the
so-called nullity n − ri of the matrix of coefficients. The inequality 1 ≤ n − ri ≤ ni holds, i.e., for a
real or complex quadratic matrix A(n,n) there are at least one and at most n real or complex linearly
independent eigenvectors.

A:

⎛⎝ 2 −3 1
3 1 3

−5 2 −4

⎞⎠ , det (A− λI) =

∣∣∣∣∣∣
2− λ −3 1

3 1− λ 3
−5 2 −4− λ

∣∣∣∣∣∣ = −λ3 − λ2 + 2λ = 0.

The eigenvalues are λ1 = 0, λ2 = 1, λ3 = −2. The eigenvectors are determined from the corresponding
homogeneous linear system of equations.
• λ1 = 0: 2x1 − 3x2 + x3 = 0

3x1 + x2 + 3x3 = 0
−5x1 + 2x2 − 4x3 = 0.

One gets for instance by pivoting: x1 arbitrary, x2 =
3

10
x1, x3 = −2x1 + 3x2 = −11

10
x1. Choosing

x1 = 10 the eigenvector is x1 = C1

⎛⎝ 10
3

−11

⎞⎠, where C1 �= 0 is an arbitrary constant.

• λ2 = 1: The corresponding homogeneous system yields: x3 is arbitrary, x2 = 0, x1 = 3x2−x3 = −x3 .

Choosing x3 = 1 the eigenvector is x2 = C2

⎛⎝−1
0
1

⎞⎠ , where C2 �= 0 is an arbitrary constant.

• λ3 = −2: The corresponding homogeneous system yields: x2 is arbitrary, x1 =
4

3
x2, x3 = −4x1 +

3x2 = −7

3
x2. Choosing x2 = 3 the eigenvector is x3 = C3

⎛⎝ 4
3

−7

⎞⎠, where C3 �= 0 is an arbitrary
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constant.

B:

⎛⎝ 3 0 −1
1 4 1

−1 0 3

⎞⎠ , det (A− λI) =

∣∣∣∣∣∣
3− λ 0 −1

1 4− λ 1
−1 0 3− λ

∣∣∣∣∣∣ = −λ3 + 10λ2 − 32λ+ 32 = 0.

The eigenvalues are λ1 = 2, λ2 = λ3 = 4.
• λ1 = 2: One obtains x3 is arbitrary, x2 = −x3, x1 = x3 and chooses for instance x3 = 1. So the

corresponding eigenvector is x1 = C1

⎛⎝ 1
−1
1

⎞⎠, where C1 �= 0 is an arbitrary constant.

• λ2 = λ3 = 4: One obtains x2, x3 are arbitrary, x1 = −x3. There are two linearly independent

eigenvectors, e.g., for x2 = 1, x3 = 0 and x2 = 0, x3 = 1: x2 = C2

⎛⎝ 0
1
0

⎞⎠, x3 = C3

⎛⎝−1
0
1

⎞⎠, where
C2 �= 0, C3 �= 0 are arbitrary constants.

4.6.2.2 Real SymmetricMatrices, Similarity Transformations

In the case of the special eigenvalue problem (4.194) for a real symmetric matrixA the following state-
ments hold:

1. Properties Concerning the Eigenvalue Problem

1. Number of Eigenvalues The matrixA has exactly n real eigenvalues λi (i = 1, 2, . . . , n), count-
ing them by their multiplicity.

2. Orthogonality of theEigenvectors The eigenvectorsxi andxj corresponding to different eigen-
values λi �= λj are orthogonal to each other, i.e., for the scalar product of xi and xj

xT
i xj = (xi,xj) = 0 (4.196)

is valid.

3. Matrixwith anEigenvalue ofMultiplicity p For an eigenvalue which has multiplicity p (λ =
λ1 = λ2 = . . . = λp), there exist p linearly independent eigenvectors x1,x2, . . . ,xp. Because of (4.194)
all the non-trivial linear combinations of them are also eigenvectors corresponding to λ. Using the
Gram–Schmidt orthogonalization process one can choose p of them such that they are orthogonal to
each other.
Summarizing: The matrix A has exactly n real orthogonal eigenvectors.

A =

⎛⎝ 0 1 1
1 0 1
1 1 0

⎞⎠ , det (A− λ I) = −λ3 + 3λ+ 2 = 0. The eigenvalues are λ1 = λ2 = −1 and λ3 = 2.

• λ1 = λ2 = −1: From the corresponding homogenous system of equations one gets: x1 is arbitrary,
x2 is arbitrary, x3 = −x1 − x2. Choosing first x1 = 1, x2 = 0 then x1 = 0, x2 = 1 one gets the linearly

independent eigenvectors x1 = C1

⎛⎝ 1
0

−1

⎞⎠ and x2 = C2

⎛⎝ 0
1

−1

⎞⎠, where C1 �= 0 and C2 �= 0 are arbitrary

constants.

• λ3 = 2: One gets: x1 is arbitrary, x2 = x1, x3 = x1, and choosing for instance x1 = 1 one gets the

eigenvector x3 = C3

⎛⎝ 1
1
1

⎞⎠, where C3 �= 0 is an arbitrary constant. The matrix A is symmetric, so the

eigenvectors corresponding to different eigenvalues are orthogonal.

4. Gram-Schmidt Orthogonalization Process Let Vn be an arbitrary n-dimensional Euclidean
vector space. Let the vectors x 1,x 2, . . . ,xn ∈ Vn be linearly independent. Then there exists an or-
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thogonal system of vectors y
1
,y

2
, . . . ,y

n
∈ Vn which can be obtained by the vectors x i as follows:

y
1
= x 1, y k

= x k −
k−1∑
i=1

(x k,y i
)

(y
i
,y

i
)
y

i
(k = 2, 3, . . . , n). (4.197)

Remarks:
1. Here (x k, y i

) = xT
k y i

is the scalar product of the vectors x k and y
i
.

2. Corresponding to the orthogonal system of the vectors y
1
,y

2
, . . . ,y

n
one gets the orthonormal

system x̃ 1, x̃ 2, . . . , x̃n with x̃ 1 =
y

1

||y
1
|| , x̃ 2 =

y
2

||y
2
|| , . . . , x̃n =

y
n

||y
n
|| , where ||y i

|| =
√
(y

i
,y

i
) is

the Euclidean norm of the vector y
i
.

x 1 =

⎛⎝ 0
1
1

⎞⎠ , x 2 =

⎛⎝ 1
0
1

⎞⎠ , x 3 =

⎛⎝ 1
1
0

⎞⎠. From here it follows:

y
1
= x 1 =

⎛⎝ 0
1
1

⎞⎠ and x̃ 1 =
1√
2

⎛⎝ 0
1
1

⎞⎠; y
2
= x 2 −

(
x 2 , y 1

)
(
y

1
, y

1

) y
1
=

⎛⎝ 1
−1/2
1/2

⎞⎠ and x̃ 2 =
1√
6

⎛⎝ 2
−1
1

⎞⎠;

y
3
= x3 −

(x 3,y 1
)

(y
1
,y

1
)
y

1
−

(x 3,y 2
)

(y
2
,y

2
)
y

2
=

⎛⎝ 2/3
2/3

−2/3

⎞⎠ and x̃ 3 =
1√
3

⎛⎝ 1
1

−1

⎞⎠.

2. Transformation of Principal Axes, Similarity Transformation
For every real symmetric matrixA, there is an orthogonal matrixU and a diagonal matrixD such that

A = UDUT. (4.198)

The diagonal elements of D are the eigenvalues of A, and the columns of U are the corresponding
normed eigenvectors. From (4.198) it is obvious that

D = UTAU. (4.199)

Transformation (4.199) is called the transformation of principal axes . In this way A is reduced to a
diagonal matrix (see also 4.1.2, 2., p. 270).
If the square matrix A (not necessarily symmetric) is transformed by a square regular matrix G such
a way that

G−1AG = Ã (4.200)

then it is called a similarity transformation. The matrices A and Ã are called similar and they have
the following properties:

1. The matricesA and Ã have the same eigenvalues, i.e., the similarity transformation does not affect
the eigenvalues.

2. If A is symmetric and G is orthogonal, then Ã is symmetric, too:

Ã = GTAG with GTG = I. (4.201)

The relation (4.201) is called an orthogonal-similarity transformation. In this context (4.199) means
that a real symmetric matrix A can be transformed orthogonally similar to a real diagonal form D.

4.6.2.3 Transformation of Principal Axes of Quadratic Forms

1. Real Quadratic Form, Definition
A real quadratic form Q of variables x1, x2,. . . , xn has the form

Q =
n∑

i=1

n∑
j=1

aijxixj = xTAx, (4.202)
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where x = (x1, x2, . . . , xn)
T is the vector of real variables and the matrixA = (aij) is a real symmetric

matrix.
The formQ is called positive definite or negative definite, if it takes only positive or only negative values
respectively, and it takes the zero value only in the case x1 = x2 = . . . = xn = 0.
The form Q is called positive or negative semidefinite, if it takes non-zero values only with the sign
according to its name, but it can take the zero value for non-zero vectors, too.
A real quadratic form is called indefinite if it takes both positive and negative values. According to the
behavior ofQ the associated real symmetricmatrixA is called positive or negative definite, semidefinite
or indefinite.

2. Real Positive Definite Quadratic Form, Properties
1. In a real positive definite quadratic form Q all elements of the main diagonal of the corresponding
real symmetric matrix A are positive, i.e.,

aii > 0 (i = 1, 2, . . . , n) (4.203)

holds. (4.203) represents a very important property of positive definite matrices.

2. A real quadratic formQ is positive definite if and only if all eigenvalues of the corresponding matrix
A are positive.

3. Suppose the rank of the matrix A corresponding to the real quadratic form Q = xTAx is equal to
r. Then the quadratic form can be transformed by a linear transformation

x = Cx̃ (4.204)

into a sum of pure quadratic terms, into the so-called normal form

Q = x̃TKx̃ =
r∑

i=1

pix̃i
2 (4.205)

where pi = (signλi)ki and k1, k2, . . . ,kr are arbitrary, previously given, positive constants.

Remark: Regardless of the non-singular transformation (4.204) that transforms the real quadratic
form of rank r into the normal form (4.205), the number p of positive coefficients and the number
q = r− p of negative coefficients among the pi of the normal form are invariant (the inertia theorem of
Sylvester). The value p is called the index of inertia of the quadratic form.

3. Generation of the Normal Form
A practical method to use the transformation (4.205) follows from the transformation of principal axes
(4.199). First it is to perform a rotation on the coordinate system by the orthogonal matrix U, whose
columns are the eigenvectors ofA (i.e., the directions of the axes of the new coordinate system are the
directions of the eigenvectors). This gives the form

Q = x̃TLx̃ =
r∑

i=1

λix̃i
2. (4.206)

Here L is a diagonal matrix with the eigenvalues of A in the diagonal. Then a dilatation is performed

by the diagonal matrix D whose diagonal elements are di =

√
ki
|λi| . The whole transformation is now

given by the matrix

C = UD, (4.207)

and one gets:

Q = x̃TAx̃ = (UDx̃)TA(UDx̃) = x̃T(DTUTAUD)x̃

= x̃TDTLDx̃ = x̃TKx̃. (4.208)

Remark: The transformation of principal axes of quadratic forms plays an essential role at the classi-
fication of curves and surfaces of second order (see 3.5.2.11, p. 206 and 3.5.3.14, p. 228).
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4. Jordan Normal Form
Let A be an arbitrary real or complex (n, n) matrix. Then there exists a non-singular matrix T such
that

T−1AT = J (4.209)

holds, where J is called the Jordan matrix or Jordan normal form ofA. The Jordan matrix has a block
diagonal structure of the form (4.210), where the elemnts Jj of J are called Jordan blocks:

J =

⎛⎜⎜⎜⎜⎜⎜⎝
J1

J2 O
. . .

O Jk−1

Jk

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.210) J =

⎛⎜⎜⎜⎜⎜⎜⎝
λ1

λ2 O
. . .

O λn−1

λn

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.211)

They have the following structure:

1. If A has only single eigenvalues λj, then Jj = λj and k = n, i.e., J is a diagonal matrix (4.211).

2. If λj is an eigenvalue of multiplicity pj, then there are
one or more blocks of the form (4.212) where the sum of

the sizes of all such blocks is equal to pj and
∑k

j=1 pj = n
holds. The exact structure of a Jordan block depends on
the structure of the elementary divisors of the character-
istic matrix A− λI.

Jj =

⎛⎜⎜⎜⎜⎜⎜⎝
λj 1

λj 1 O
. . . . . .

λj 1
O λj

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.212)

For further information see [4.15], [19.16] vol. 1.

4.6.2.4 Suggestions for the Numerical Calculations of Eigenvalues

1. Eigenvalues can be calculated as the roots of the characteristic equation (4.195b) (see examples on
p. 315). In order to get them the coefficients ai (i = 0, 1, 2, . . . , n− 1) of the characteristic polynomial
of the matrix A must be determined. However, one should avoid this method of calculation, because
this procedure is extremely unstable, i.e., small changes in the coefficients ai of the polynomial result
in big changes in the roots λj.

2. There are many algorithms for the solution of the eigenvalue problem of symmetric matrices. Two
types can be distinguished (see [4.7]):

a) Transformation methods, for instance the Jacobi method, Householder tridiagonalization, QR algo-
rithm.

b) Iterative methods, for instance vector iteration, the Rayleigh-Ritz algorithm, inverse iteration, the
Lanczos method, the bisection method. As an example the power method of Mises is discussed here.

3. The Power Method of Mises Assume that A is real and symmetric and has a unique dominant
eigenvalue. This iteration method determines this eigenvalue and the associated eigenvector. Let the
dominant eigenvalue be denoted by λ1, that is,

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. (4.213)

Let x 1,x 2, . . . ,xn be the associated linearly independent eigenvectors. Then:

1. Ax i = λix i (i = 1, 2, . . . , n). (4.214)

2. Each element x ∈ IRn can be expressed as a linear combination of these eigenvectors x i:

x = c1x 1 + c2x 2 + · · ·+ cnxn (ci const; i = 1, 2, . . . , n). (4.215)

Multiplying both sides of (4.215) by A k times, then using (4.214) follows

Akx = c1λ
k
1x 1 + c2λ

k
2x 2 + · · ·+ cnλ

k
nxn = λk

1[c1x1 + c2

(
λ2

λ1

)k

x 2 + · · ·+ cn

(
λn

λ1

)k

xn].

(4.216)
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From this relation and (4.213) one can see that

Akx

λk
1c1

−→ x 1 as k → ∞ , that is, Akx ≈ c1λ
k
1x 1. (4.217)

This is the basis of the following iteration procedure:
Step 1: Select an arbitrary starting vector x(0) ∈ IRn.

Step 2: Iterative computation of

x(k+1) = Ax(k) (k = 0, 1, 2, . . . ;x(0) is given). (4.218)

From (4.218) and keeping in mind (4.217) follows:

x(k) = Akx(0) ≈ c1λ
k
1x 1. (4.219)

Step 3: From (4.218) and (4.219) it follows that

x(k+1) = Ax(k) = A(Akx(0)),

A(Akx(0)) ≈ A(c1λ
k
1x 1) = c1λ

k
1(Ax 1),

c1(λ
k
1Ax 1) = λ1(c1λ

k
1x 1) ≈ λ1x

(k), therefore

x(k+1) ≈ λ1x
(k), (4.220)

that is, for large values of k the consecutive vectors x(k+1) and x(k) differ approximately by a factor λ1.

Step 4: Relations (4.219) and (4.220) imply for x 1 and λ1:

x 1 ≈ x(k+1), λ1 ≈
(
x(k),x(k+1)

)
(x(k),x(k))

. (4.221)

For example, let

A =

⎛⎝ 2.23 −1.15 1.77
−1.15 9.25 −2.13
1.77 −2.13 1.56

⎞⎠ , x(0) =

⎛⎝ 1
0
0

⎞⎠.
x(0) x(1) x(2) x(3) normalization x(4) x(5) normalization

1 3.23 14.89 88.27 1 7.58 67.75 1

0 −1.15 −18.12 −208.03 −2.36 −24.93 −256.85 −3.79

0 1.77 10.93 82.00 0.93 8.24 79.37 1.17

λ1 9.964 10.177

x(6) x(7) normalization x(8) x(9) normalization

9.66 96.40 1 10.09 102.33

− 38.78 −394.09 −4.09 −41.58 −422.49

11.67 117.78 1.22 12.38 125.73

10.16 10.161 ≈ λ1

⎛⎜⎜⎝
1

−4.129

1.229

⎞⎟⎟⎠ ≈ x 1

Remarks:

1. Since eigenvectors are unique only up to a constant multiplier, it is preferable to normalize the
vectors x(k) as shown in the example.

2. The eigenvalue with the smallest absolute value and the associated eigenvector can be obtained by
using the power method of Mises forA−1. IfA−1 does not exist, then 0 is this eigenvalue and any vector
from the null-space of A can be selected as an associated eigenvector.

3. The other eigenvalues and the associated eigenvectors ofA can be obtained by repeated application
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of the following idea. Select a starting vector which is orthogonal to the known vector x 1, and in this
subspaceλ2 becomes the dominant eigenvalue that can be obtained by using the powermethod. In order
to obtain λ3, the starting vector has to be orthogonal to both x 1 and x 2, and so on. This procedure is
known as matrix deflation.

4. Based on (4.218) the power method is sometimes called vector iteration.

4.6.3 SingularValueDecomposition

1. Singular Values and Singular Vectors Let A be a real matrix of size (m,n) and its rank be
equal to r. The matrices AAT and ATA have r non-zero eigenvalues λν , and they are the same for
both of the matrices. The positive square roots dν =

√
λν (ν = 1, 2, . . . , r) of the eigenvalues λν of

the matrix ATA are called the singular values of the matrix A. The corresponding eigenvectors uν

of ATA are called right-singular vectors of A, the corresponding eigenvectors vν of AAT left-singular
vectors:

ATAuν = λνuν , AATvν = λνvν (ν = 1, 2, . . . , r). (4.222a)

The relations between the right and left-singular vectors are:

Auν = dνvν , ATvν = dνuν . (4.222b)

A matrixA of size (m,n) with rank r has r positive-singular values dν (ν = 1, 2, . . . , r). There exist r
orthonormalized right-singular vectorsuν and r orthonormalized left-singular vectorsvν . Furthermore,
there exist to the zero-singular value n− r orthonormalized right-singular vectors uν(ν = r+1, . . . , n)
and m − r orthonormalized left-singular vectors vν (ν = r + 1, . . . ,m). Consequently, a matrix of
size (m,n) has n right-singular vectors and m left-singular vectors, and two orthogonal matrices can
be made from them (see 4.1.4, 9., p. 275):

U = (u1,u2, . . . ,un), V = (v1,v2, . . . ,vm). (4.223)

2. Singular-Value Decomposition The representation

A = VÂUT (4.224a) with Â =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 0 · · · 0 0 · · · 0
0 d2 0 0

...
...

. . .
...

...
0

0 · · · 0 dr 0 · · · 0
0 0 · · · 0 0 · · · 0
0 0

...
...

...
0 0 · · · 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
r rows

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭m− r rows

︸ ︷︷ ︸ ︸ ︷︷ ︸
r columns n− r columns

(4.224b)

is called the singular-value decomposition of the matrix A. The matrix Â, as the matrix A, is of size
(m,n) and has only zero elements except the first r diagonal elements aνν = dν (ν = 1, 2, . . . , r). The
values dν are the singular values of A.

Remark: If substituting AH instead of AT and consider unitary matrices U and V instead of orthogo-
nals, then all the statements about singular-value decomposition are valid also for matrices with com-
plex elements.

3. Application Singular-value decomposition can be used to determine the rank of the matrix A
of size (m,n) and to calculate an approximate solution of the over-determined system of equations
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Ax = b (see 4.5.3.1, p. 313) with the so-called regularization method, i.e., to solve the problem

||Ax− b||2 + α||x||2 =
m∑
i=1

[
n∑

k=1

aikxk − bi

]2
+ α

n∑
k=1

x2
k = min! , (4.225)

where α > 0 is a regularization parameter.
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