4 Linear Algebra

4.1 Matrices
4.1.1 Notion of Matrix
1. Matrices A of Size (m, n) or Briefly A,

are systems of m times n elements, e.g., real or complex numbers, or functions, derivatives, vectors,
arranged in m rows and n columns:

ay; iz cc Qi < lstrow
A (ay) - asy a‘.zz a?n — 21.1d row ()
fl;nl (17.n2 . (17'7171, — 77i—th row
) )
1st 2nd n-th column.

With the notion size of a matriz matrices are classified according to their number of rows m and number
of columns n: A of size (m, n). A matrix is called a square matriz if the number of rows and columns is
equal, otherwise it is a rectangular matriz.

2. Real and Complex Matrices

Real matrices have real elements, complex matrices have complex elements. If a matrix has complex
elements

a;w + ib;w (42&)
it can be decomposed into the form
A+iB (4.2b)

where A and B have real elements only (arithmetical operations see 4.1.4, p. 272).
If a matrix A has complex elements, then its conjugate complex matriz A* has the elements

ay, = Re(a,) —ilm(a,,). (4.2¢)

3. Transposed Matrices AT
Changing the rows and columns of a matrix A of size (m, n) gives the transposed matriz A*. This has
the size (n,m) and

<"'W)T = (aw) (4.3)
is valid.
4. Adjoint Matrices
The adjoint matriz A" of a complex matrix A is the transpose of its conjugate complex matrix A*
(which can not be confused with the adjoint matrix A,q, see 4.2.2, p. 278):

Al = (AT (4.4)
5. Zero Matrix
A matrix 0 is called a zero matriz if it has only zero elements:

00---0
00---0

o=|.. .. (4.5)
00---0
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4.1.2 Square Matrices
1. Definition
Square matrices have the same number of rows and columns, i.e., m = n:
ap -0 Qin
A= A(mn) = S . (4.6)
Apy *** Qpp

The elements ay,, of a matrix A in the diagonal from the left upper corner to the right lower one are
the elements of the main diagonal. They are denoted by aq1, ass, . . ., Gnn, i.€., they are all the elements
ay With 1 =v.

2. Diagonal Matrices

A square matrix D is called a diagonal matriz if all of the non-diagonal elements are equal to zero:

ap 0 -+ 0 ayy O
0 azp--- 0 a:;

a,, =0 for p#v: D=| . :22 .= ZZA‘ . (4.7)
0 0 - ap o Qnn

3. Scalar Matrix
A diagonal matrix S is called a scalar matriz if all the diagonal elements are the same real or complex
number c:

c0---0
Oc---0

S = N E (4.8)
00---¢

4. Trace or Spur of a Matrix
For a square matrix, the trace or spurof the matrix is defined as the sum of the main diagonal elements:

Tr(A)=an+apn—+...+a,, = Z Q- (4.9)
p=1

5. Symmetric Matrices
A square matrix A is symmetric if it is equal to its own transpose:

A=AT (4.10)
For the elements lying in symmetric positions with respect to the main diagonal

Ay = Qyp (4.11)
is valid.

6. Normal Matrices
satisfy the equality
APA = AAH (4.12)
(For the product of matrices see 4.1.4, p. 272.)
7. Antisymmetric or Skew-Symmetric Matrices
are the square matrices A with the property:

A=-AT (4.13a)
For the elements a,, of an antisymmetric matrix the equalities
Qv = =y, Gy =0 (4.13b)

are valid, so the trace of an antisymmetric matrix vanishes:

Tr(A) =0. (4.13¢)
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The elements lying in symmetric positions with respect to the main diagonal differ from each other only
in sign.
Every square matrix A can be decomposed into the sum of a symmetric matrix Ag and an antisymmetric
matrix Agg:
1 1

A=A+A, with As = §(A + AT Ay = §(A — AT, (4.13d)
8. Hermitian Matrices or Self-Adjoint Matrices
are square matrices A equal to their own adjoints :

A= (AT = Al (4.14)
Over the real numbers the concepts of symmetric and Hermitian matrices are the same. The determi-
nant of a Hermitian matrix is real.
9. Anti-Hermitian or Skew-Hermitian Matrices
are the square matrices equal to their negative adjoints:

A=—(A)T = -A" (4.15a)
For the elements a,, and the trace of an anti-Hermitian matrix the equalities
Gy =~y = 0; Tr (A) =0 (4.15b)

are valid. Every square matrix A can be decomposed into a sum of a Hermitian matrix A}, and an
anti-Hermitian matrix A,p:

A=A,+A, with A,= %(A + AH), A= %(A — AH)4 (415(‘)
10. Identity Matrix I

is a diagonal matrix such that every diagonal element is equal to 1 and all of the non-diagonal elements
are equal to zero:

100
0L1---0 . 0 for pu # v,

T= | 6w wih = {Y T (4.16)
001

The symbol 6, is called the Kronecker symbol.
11. Triangular Matrix

1. Upper Triangular Matrix, U, is a square matrix such that all the elements under the main
diagonal are equal to zero:

R=(r,) with 7, =0 for pu>wv (4.17)

2. Lower Triangular Matrix, L, is a square matrix such that all the elements above the main
diagonal are equal to zero:

L=(,) with [, =0 for p<uw. (4.18)

4.1.3 Vectors

Matrices of size (n, 1) are one-column matrices or column vectors of dimension n. Matrices of size (1,n)
are one-row matrices or row vectors of dimension n:

ay
as

Column Vector: a = :z , (4.192) Row Vector: a' = (ay,as,...,a,). (4.19b)
Ay

By transposing, a column vector is changed into a row vector and conversely. A row or column vector
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of dimension n can determine a point in the n dimensional Euclidean space R".
The zero vector is denoted by 0 or o respectively.

4.1.4 Arithmetical Operations with Matrices

1. Equality of Matrices
Two matrices A = (q,,) and B = (b,,) are equal if they have the same size and the corresponding
elements are equal:

A =B, when a, =0, for p=1,... mv=1... n (4.20)
2. Addition and Subtraction

Matrices can be added or subtracted only if they have the same size. The sum/difference of two matrices
is done by adding/subtracting the corresponding elements:

A£B = () £ (buw) = (G £ bu). (4.21a)

1 37 3-50 1-27
.<2—14>+<2 14>:<4 08)‘

For the addition of matrices the commutative law and the associative law are valid:
a) Commutative Law: A+ B=B+ A. (4.21Db)

b) Associative Law: (A+B)+C=A+ (B+C). (4.21¢)
3. Multiplication of a Matrix by a Number

A matrix A of size (m,n) is multiplied by a real or complex number « by multiplying every element of
A by a:

aA = a(a,) = (aay,). (4.22a)

1 37 3 921
u 3(0 -1 4) = (o -3 12)'
From (4.22a) it is obvious that one can factor out a constant multiplier contained by every element of

a matrix. For the multiplication of a matrix by a scalar the commutative, associative and distributive
laws for multiplication are valid:

a) Commutative Law: aA = Aq; (4.22b)
b) Associative Law: a(fA) = (af)A; (4.22¢)
c) Distributive Law: (a+ $)A = A+ A; «o(A+B)=aA+aB. (4.22d)

4. Division of a Matrix by a Number

The division of a matriz by a scalar v # 0 is the same as multiplication by o = 1/~.

5. Multiplication of Two Matrices

1. The Product A B of two matrices A and B can be calculated only if the number of columns of
the factor A on the left-hand side is equal to the number of rows of the factor B on the right-hand side.
If A is a matrix of size (m, n), then the matrix B must have size (n, p), and the product A B is a matrix
C = (cpn) of size (m, p). The element ¢, is equal to the scalar product of the y-th row of the factor A
on the left with the A-th column of the factor B on the right:

AB = (Y aub,y) = (c)=C (p=1,2,....m; A=1,2,...,p). (4.23)
v=1
137 3 [2
H A= ,B=| -5 |1 . The element c99 of the product matrix C'in accordance with
10 1 013

(4.23)is o =2-2—1-1+4-3=15.
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2. Inequality of Matrix Products Even if both products A B and B A exist, usually AB # B A,
i.e., in general the commutative law for multiplication is not valid. If the equality AB = B A holds,
then one says that the matrices A and B are commutable or commute with each other.

3. Falk Scheme Multiplication of matrices A B = C can be performed using the Falk scheme (Fig.
4.1). The element ¢, of the product matrix C appears exactly at the intersection point of the y-th
row of A with the A-th column of B.

B Multiplication of the matrices A3 3y and By 9) is shown in Fig. 4.2 using the Falk scheme.

p 3 |2
5 1B
.| B 0 [3
Y 7 | -12 26
m A |AB A [2-14]| 1115 AB
101 301
Figure 4.1 Figure 4.2

4. Multiplication of the Matrices K; and K, with Complex Elements For multiplication of
two matrices with complex elements can be used their decompositions into real and imaginary parts
according to (4.2b): K; = A; +1By, Ky = Ay + iBs. Here Aj, A, By, Bs are real matrices. After
this decomposition, the multiplication results in a sum of matrices whose terms are products of real
matrices.

B (A+ iB)(A— iB)=A?+B? + i(BA — AB) (Powers of Matricessee 4.1.5,8., p. 276). Of course
when multiplying these matrices it must be considered that the commutative law for multiplication is
not valid in general, i.e., the matrices A and B do not usually commute with each other.

6. Scalar and Dyadic Product of Two Vectors

If the vectors a and b are considered as one-row and one-column matrices, respectively, then there are
two possibilities to multiply them according to the rules of matrix multiplication:

If a has size (1,n) and b has size (n, 1) then their product has size (1, 1), i.e. it is a number. It is called
the scalar product of two vectors. If conversely, a has size (n, 1) and b has size (1, m), then the product
has size (n,m), i.e., it is a matrix. This matrix is called the dyadic product of the two vectors.

1. Scalar Product of Two Vectors The scalar product of a row vector a = (ay, ay, . . ., a,) with
a column vector b = (by, by, ..., b,)" — both having n elements — is defined as the number
n
a'b=b"a=ab +asby+ -+ anby = D auby. (4.24)
pn=1

The commutative law for multiplication is not valid for a product of vectors in general, so one must
keep the exact order of aT and b. If the order of multiplication is reversed, then the product ba™ is a
dyadic product.

2. Dyadic Product or Tensor Product of Two Vectors The dyadic product of a column vector
a = (ay,ay,...,a,)" of dimension n with a row vector b™ = (by, by, ..., b,) of dimension m is defined
as the following matrix:

aiby aiby -+ aib,,
T asby azby -+ azby,
ab’ = . . .

(4.25)

anby anbs -+ anbp,
of size (n,m). Also here the commutative law for multiplication is not valid in general.

3. Hints on the Notion of Vector Products of Two Vectors In the domain of multi-vectors
or alternating tensors there is a so-called outer product whose three-dimensional version is the well-
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known wvector product or cross product (see 3.5.1.5, 2., p. 184 ff). In this book the outer product of
multi-vectors of higher rank is not discussed.

7. Rank of a Matrix

1. Definition In amatrix A the maximum number r of linearly independent column vectors is equal
to the maximum number of linearly independent row vectors. This number r is called the rank of the
matriz and it is denoted by rank (A) = r.

2. Statements about the Rank of a Matrix

a) Because in a vector space of dimension m there exist no more than m linearly independent m-
dimensional row or column vectors (see 5.3.8.2, p. 366), the rank r of a matrix A of size (m,n) cannot
be greater, than the smaller of m and n:

rank (A (n ) = 7 < min (m, n). (4.26a)
b) A square matrix Ay, is called a regular matriz if
rank (A n)) =7 = n. (4.26b)

A square matrix of size (n, n) is regular if and only if its determinant differs from zero, i.e., det A # 0
(see 4.2.2, 3., p. 279). Otherwise it is a singular matriz.

c) Consequently for the rank of a singular square matrix A, ), i.c., det A =0

rank (Agny) =7 <n (4.26¢)
is valid.
d) The rank of the zero matrix 0 is equal to zero:

rank (0) =7 = 0. (4.26d)
e) The rank of the sum and product of matrices satisfies the relations

[rank(A) — rank(B)| < rank(A + B) < rank(A) + rank(B), (4.26¢)

rank(AB) < min(rank(A), rank(B)). (4.26t)

3. Rules to Determine the Rank Elementary transformations do not change the rank of matrices.
Elementary transformations in this relation are:

a) Interchanging two columns or two rows.

b) Multiplication of a row or column by a number.

c) Addition of a row to another row or a column to an other column.

In order to determine their ranks every matrix can be transformed by appropriate linear combinations
of rows into a form such that in the p-throw (u = 2,3, ..., m), at least the first u — 1 elements are equal
to zero (the principle of Gauss algorithm, see 4.5.2.4, p. 312). The number of row vectors different from
the zero vector in the transformed matrix is equal to the rank r of the matrix.

8. Inverse Matrix

For a regular matrix A = (a,,) there is always an inverse matriz A~" (with respect to multiplication),
i.e., the multiplication of a matrix by its inverse yields the identity matrix:

AA—l _ AflA =1 (427&)
The elements of A~1 = (ﬁuu) are
A
g, = 4.27b
TR det A ( )

where A, is the cofactor belonging to the a,,, element of the matrix A (see 4.2.1, 1., p. 278). For a
practical calculation of A~ the method given in 4.2.2, 2., p. 278 should be used. In the case of a matrix
of size (2,2) holds:

lab L1 (d b
A_<Cd>7 A _adfbc<*ca>' (4.28)
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Remark: Why not define division among matrices but instead use the inverse for calculations? This
is connected to the fact that division cannot be defined uniquely. The solutions of the equations

BX; =A (B Jar) X, =B A

regular),

X,B = A s X, = AB
are in general different.
9. Orthogonal Matrices
If the relation

AT=A"1 or AAT=ATA=1 (4.30)
holds for a square matrix A, then it is called an orthogonal matriz, i.e., the scalar product of a row and
the transpose of another one, or the scalar product of the transpose of a column and another one are
zero, while the scalar product of a row with its own transpose or of the transpose of a column with itself
are equal to one.
Orthogonal matrices have the following properties:

a) The transpose and the inverse of an orthogonal matrix A are also orthogonal; furthermore, the
determinant is

det A = +1. (4.31)
b) Products of orthogonal matrices are also orthogonal.

(4.29)

B The rotation matriz D, which is used to describe the rotation of a coordinate system, and whose
elements are the direction cosines of the new direction of axes (see 3.5.3.3,2. p. 212), is also an orthogonal
matrix.

10. Unitary Matrix
If for a matrix A with complex elements

(AT =A"1 or AAHYT = (A)TA =1 (4.32)
holds it is called a unitary matriz. In the real case unitary and orthogonal matrices are the same.

4.1.5 Rules of Calculation for Matrices

The following rules are valid of course only in the case when the operations can be performed, for in-
stance the identity matrix I always has a size corresponding to the requirements of the given operation.
1. Multiplication of a Matrix by the Identity Matrix

is also called the identical transformation:

ATl =TA =A. (4.33)
(This does not mean that the commutative law is valid in general, because the sizes of the matrix I on
the left- and on the right-hand side may be different.)

2. Multiplication of a Square Matrix A by a Scalar Matrix S
or by the identity matrix I is commutative

AS =SA =cA with S givenin (4.8), (4.34a) AI=TA =A. (4.34b)
3. Multiplication of a Matrix A by the Zero Matrix 0

results in the zero matrix:

A0=0, 0A =0. (4.35)
(The zero matrices above may have different sizes.) The converse statement is not true in general, i.e.,
from AB = 0 it does not follow that A = 0 or B = 0.

4. Vanishing Product of Two Matrices
The product of two matrices A and B can be the zero matrix even if neither of
them is a zero matrix:

AB =0 or BA =0 orboth, although A # 0, B # 0. (4.36)

11
0 0
.0100'
0 1/0 0
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5. Multiplication of Three Matrices

(AB)C=A(BC) (4.37)
i.e., the associative law of multiplication is valid.
6. Transposing of a Sum or a Product of Two Matrices

(A+B)T=A" + BT, (AB)T =BT AT, (ATT = A. (4.38a)
For square invertible matrices A, ;)
(A7)t =" (4.38b)
holds.
7. Inverse of a Product of Two Matrices
(AB)'=B'A L (4.39)
8. Powers of Matrices
AP =AA ... A with p> 0, integer, (4.40a)
Q-
p factors
A°=T1  (detA #£0), (4.40b)
A7 =AY (p>0, integer;det A # 0), (4.40¢)
APTT = APA?  (p,q integer). (4.40d)

9. Kronecker Product
The Kronecker product of two matrices A = (ay,,) of the type (m,n) and B = (b,,) of the type (p,r) is
defined as the rule

A ® B=(q,B). (4.41)
The result is a new matrix of type (m - p, n - ), arising from the multiplication of every element of A
by the matrix B .

3-50 ; 13
H A= (2 1 3> of type (2,3), B = (2 _1> of type (2,2).
3.(1 3 5. (L 3Y . (L3 39 -5 -150 0
2 -1 2 -1 2 -1 6 -3 -10 5 0 0
A®B=2_13 1_133_13:261339’
2 —1 2 -1 2 -1 4 -2 2 -1 6 -3
gives a matrix of type (4,6) .
For the transpose and the trace are valid the equalities:
(A ®B)"=AT ® BT, (4.42)
Tr(A @ B)=Tr(A) - Tr(B). (4.43)

10. Differentiation of a Matrix
If a matrix A = A(t) = (a,,(t)) has differentiable elements a,, (t) of a parameter ¢ then its derivative
with respect to t is given as

dA (daw(t)> — (a1 (4.44)

dt dt "

4.1.6 Vector and Matrix Norms

The norm of a vector or of a matrix can be considered as a generalization of the absolute value (mag-
nitude) of numbers. Therefore a real number is assigned as ||z|| (Norm x) to the vector x or as [|Al]
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(Norm A) to a matrix A. These numbers must satisfy the norm axioms (see 12.3.1.1, p. 669). For
vectors x € R" they are:

1. ||x|| > 0 forevery x; ||x||=0 ifandonlyifx=0. (4.45)

2. || Ax|| = |A|||x]| for every x and every real number . (4.46)

3. |[x+yll < [Ix|| + |ly]| for every x and y (triangle inequality) (see also 3.5.1.1, 1., p. 182). (4.47)

There are many different ways to define norms for vectors and matrices. But for practical reasons it is

better to define a matrix norm ||A|| and a vector norm ||x|| so that they might satisfy the inequality
lAx]| < [|A[f]]x]] (4.48)

This inequality is very useful for error estimations. If the matrix and vector norms satisfy this inequality,
then one says that they are consistent with each other. If there is a non-zero vector x for every A such
that the equality holds in (4.48), then one says the matriz norm ||Al| is the subordinate to the vector
norm ||x]].

4.1.6.1 Vector Norms

Ifx = (w1, 7,...,2,)" is a real vector of n dimensions, i.e., x € R", then the most often used vector
norms are:

1. Euclidean Norm

x| =[]z = (4.49)
2. Supremum or Uniform Norm
[xl] = [[xlloo := max]a;]|. (4.50)
1<i<n
3. Sum Norm
lxl = [1xlh = > il (4.51)

i=1

B In R? in elementary vector calculus ||x||, is considered as the magnitude of the vector x. The
magnitude |z| = [|x||2 gives the length of the vector x.

4.1.6.2 Matrix Norms
1. Spectral Norm for Real Matrices

||A|| = HAH2 =y )\max<ATA>' (452)

Here Apmax(ATA) denotes the greatest eigenvalue (see 4.6.1, p. 314) of the matrix ATA.
2. Row-Sum Norm

n
Al =[|Allec := max 3 ay]. (4.53)
1<i<n 5

3. Column-Sum Norm

[|A]] = ||A]|, == mf(1<X > Jag). (4.54)
S

1<j
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It can be proved that the matrix norm (4.52) is the subordinate norm to the vector norm (4.49). The
same is true for (4.53) and (4.50), and for (4.54) and (4.51).

4.2 Determinants
4.2.1 Definitions

1. Determinants
Determinants are real or complex numbers uniquely associated with square matrices. The determinant
of order n associated with the (n,n) matrix A = (a,,),

app Giz * - Qip
D=det A =det(ap) = | 2 P, (4.55)
Qn1 a;LQ av.m
is calculated in a recursive way using the Laplace expansion rule:
det A = i Ay Ay (4 fixed, expansion along the p-th row), (4.56a)
V=1
det A = i: Ay (v fixed, expansion along the v-th column). (4.56Db)
p=1

Here A, is the subdeterminant belonging to the element a,, multiplied by the sign factor (—1)#*.
A, is called the cofactor or algebraic complement.

2. Subdeterminants

The subdeterminant of order (n — 1) belonging to the element a,,, of a determinant of order n is the
determinant obtained by deleting the p-th row and the v-th column.

B Expansion of a determinant of order four along the third row:

Ay G12 Q13 A4

Qg1 Qg2 Qg3 Qog 2 s (4 a1 (g G1g (11 Q12 G14 a1y @12 13
azy aso (L';‘g agy | = 98t (22 (23 (24| — G32|0G21 (23 (24| + Gg3|A21 (22 (o4 | — A3 | (21 (22 (23 | .
3 3 33 43 g2 (43 44 ayq1 (43 (44 (41 Q49 (ay (41 Qo Gy

(41 Q42 A43 Q44

4.2.2 Rules of Calculation for Determinants

Because of the Laplace expansion the following statements about rows are valid also for columns.

1. Independence of the Value of a Determinant

The value of a determinant does not depend on which row was chosen.

2. Substitution of Cofactors

If during the expansion of a determinant the cofactors of a row are replaced by the cofactors of another
one, then one gets zero:

S auwAnw =0 (ixed; A # pu). (4.57)
v=1

This relation and the Laplace expansion result in
Aadj A = A Aadj = (det A) I. (458)

The adjoint matriz of A, which is the transpose of the matrix made from the cofactors of A, is denoted
by A.gj. There must not be a confusion of this adjoint matrix with the transposed conjugate of a

complex matrix A (see (4.4), p. 269). From the previous equality one gets the inverse matriz
1
-1

= mAadj , (4.59)
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3. Zero Value of a Determinant
A determinant is equal to zero if
a) arow contains zero elements only, or
b) two rows are equal to each other, or
c) arow is a linear combination of the others.
4. Changes and Additions
The value of the determinant does not change if
a) its rows are exchanged for its columns, i.e., reflection in the main diagonal does not affect the value
of it:
det A = det AT, (4.60)
b) any row is added to or subtracted from another one, or .
c) a multiple of any row is added to or subtracted from another one, or
d) alinear combination of other rows is added to any row.
5. Sign on Changing Rows
If two rows are interchanged in a determinant, then the sign of the determinant changes.
6. Multiplication of a Determinant by a Number
The value of a determinant will be multiplied by «v if the elements of a row are multiplied by this number.

The next formula shows the difference between this and the multiplication of a matrix A of size (n,n)
by a number a

det (vA) = a""det A . (4.61)

7. Multiplication of Two Determinants
The multiplication of two determinants can be reduced to the multiplication of their matrices:

(det A)(det B) = det (AB). (4.62)
Since det A = det A" (see (4.60)), we have the equalities
(det A)(det B) = det (AB) = det (AB") = det (A"B) = det (A"B"), (4.63)

e., it is permissible to take the scalar product of rows with columns, rows with rows, columns with
rows or columns with columns.
8. Differentiation of a Determinant
Suppose the elements of a determinant of order n are differentiable functions of a parameter ¢, i.e.,
@y, = a,y(t) . In order to differentiate the determinant with respect to ¢, one differentiates one row at
one time and finally one adds the n determinants.

B For a determinant of size (3, 3) follows:

! ! ’
apn iz 413 aqq Q9 Qyg apy @iz a13 ap a2 a3
L ! ! !
df | @21 @22 Q23| = | a2 A2 A23 + | Agy Qoo Qg3 | + | Q21 Q22 Qo3| .
LU / ’ !
asy Gz as3 asy a3z (33 azy Az A3 a3y G3p A3z

4.2.3 Evaluation of Determinants

1. Value of a Determinant of Second Order
a1y A12

= 11099 — A91A19. 4.64
g1 a2 ( )

2. Value of a Determinant of Third Order
The Sarrus rule gives a convenient scheme for the calculations, but it is valid only for determinants of
order three. It is the following:
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(ln\al 1311 _.-A12
G212~ (234 21\ 022 = (11022033 + 12023031 + Q13021032
a3 azx’ a3l Az asz

—(az1a22013 + 32093011 + azzaz1a12). (4.65)

The first two columns are copied after the determinant, then the sum of the products of the elements
along the redrawn declining segments is calculated, then the sum of the products of the elements along
the dotted inclining segments is subtracted.
3. Value of a Determinant of n-th Order
By the expansion rule the calculation of the value of a determinant of order n is reduced to the evalu-
ation of n determinants of order (n — 1). But for practical reasons (to reduce the number of required
operations), first one transforms the determinant with the help of the rules discussed above into a form
such that it contains as many zeros as possible.

2 99 4 2 59 4 2 53 4

24 8| (23 4
2-312 8 |2-712 8| . |2-74 8
Wl 83571 035731 015 =311 T8
1 26 4 |1 06 4 1 02 4 112 4
(rule 4) (rule 6) =0 (rule 3)
11 0 .
~ 21 41%:-21(‘%‘2-%‘2):147.
12 4
(rule 4)

Remark: An especially efficient method to determine the value of a determinant of order n can be
obtained by transforming it in the same way as it is done in order to determine the rank of a matrix
(see 4.1.4, 7., p. 274), i.e., all the elements under the diagonal ay1, s, . . ., @y, are equal to zero. Then
the value of the determinant is the product of the diagonal elements of the transformed determinant.

4.3 Tensors

4.3.1 Transformation of Coordinate Systems
1. Linear Transformation

By the linear transformation

1 = an® + apr; + a13r3
= Ax or To = A1T1 + A92To + Az3T3 (4.66)
T3 = a3121 + 3272 + as3r3

[

a coordinate transformation is defined in the three-dimensional space. Here 2, and Z,, (1 = 1,2, 3) are
the coordinates of the same point but in different coordinate systems K and K .

2. Einstein’s Summation Convention
Instead of (4.66) one can write

3
= au, (n=1,2,3) (4.67a)
v=1

or briefly by Einstein

Ty = Ay, (4.67b)
i.e., it is to calculate the sum with respect to the repeated index v and put down the result for p = 1,2, 3.
In general, the summation convention means that if an index appears twice in an expression, then the
expression is added for all values of this index. If an index appears only once in the expressions of an
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equation, for instance p in (4.67b), then it means that the equality is valid for all possible values of this
index.

3. Rotation of a Coordinate System

If the Cartesian coordinate system K is given by rotation of the system K, then for the transformation
matrix in (4.66) A = D is valid. Here D = (d,,,) is the orthogonal rotation matriz. The orthogonal
rotation matrix D has the property

D' =D" (4.68)
The elements d,,,, of D are the direction cosines of the angles between the old and new coordinate axes.
From the orthogonality of D, i.e., from

DDT=1 and D'D=1, (4.68b)
it follows that

3 3
> dyidyi = 0y, > iy =0 (v =1,2,3). (4.68¢)
i=1

k=1
The equalities in (4.68c) show that the row and column vectors of the matrix D are orthonormalized,
because 4, is the Kronecker symbol (see 4.1.2, 10., p. 271).

The elements d,,, of the rotation matrix can be determined by the Cardan angles (see 3.5.3.5, p. 214)
or Euler angles (see 3.5.3.6, p. 215). For rotation in the plane see 3.5.2.2,2., p. 191; in space see 3.5.3.3,
p. 213.

4.3.2 Tensors in Cartesian Coordinates

1. Definition

A mathematical or a physical quantity T' can be described in a Cartesian coordinate system K by 3"
elements t;...,, the so-called translation invariants. Here the number of indices i, j, ..., m is exactly
equal to n (n > 0). The indices are ordered, and every of them takes the values 1,2 and 3.

If under a coordinate transformation from K to K for the elements ;;..., according to (4.66)

3 3 3
tup = Z Z s Z iy Apmbijem (4.69)

i=1j=1 m=1
is valid, then T is called a tensor of rank n, and the elements ;;...n, (mostly numbers) with ordered
indices are the components of the tensor T'.

2. Tensor of Rank 0

A tensor of rank zero has only one component, i.e., it is a scalar. Because its value is the same in every
coordinate system, one talks about the invariance of scalars or about an invariant scalar.

3. Tensor of Rank 1
A tensor of rank 1 has three components ¢y, t> and ¢3. The transformation law (4.69) is now

w

t, =) aut; (n=1,2,3). (4.70)

i=1

It is the transformation law for vectors, i.e., a vector is a tensor of rank 1.

4. Tensor of Rank 2
If n = 2, then the tensor T' has nine components ¢;;, which can be arranged in a matrix

t11 t2 ti3
T =T = (to tos tas | . (4.71a)
t31 t3o ta3
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The transformation law (4.70) is now:

3 3
L = D> apiayjti; (u,v =1,2,3). (4.71b)
i=1j=1

So, a tensor of rank 2 can be represented as a matrix.
B A: The moment of inertia @ of a solid with respect to the line g, which goes through the origin
and has direction vector a = a™, can be represented in the form

O, —Ouy —O,,
0, =a’Oa (4.72a) with @ =(6;) = (sz O, Qyz) , (4.72b)
7(—1)30.2 76yz @z

the so-called inertia tensor. Here O,, ©, and O, are the moments of inertia with respect to the coordi-
nate axes, and 6,,, 0. and O, are the deviation moments with respect to the coordinate axes.

B B: The load-up conditions of an elastically deformed body can be given by the tension tensor
011 012 013
o = TJ91 0922 023 . (473)
031 032 033
The elements oy, (i, k = 1,2, 3) are determined in the following way: At a point P of the elastic body
a small plane surface element is chosen whose normal vector points to the direction of the z-axis of
a right-angle Cartesian coordinate system. The power per surface unit on this element, depending on
the material, is a vector with coordinates o1, 015 and o13. The other components can be explained
similarly.
5. Rules of Calculation
1. Elementary Algebraic Operations The multiplication of a tensor by a number, and addition
and subtraction of tensors of the same rank are defined componentwise, similarly to the corresponding
operations for vectors and matrices.
2. Tensor Product Suppose there are given a tensor A of rank m and a tensor B of rank n with
components a;;... and by,... respectively. Then the 3™*" scalars
Cijorse = QD (4.74a)
give the components of a tensor C of rank m + n . It is denoted by C = AB and it is called the tensor
product of A and B. The associative and distributive laws are valid:
(AB)C=A(BC), A(B +C)=AB + AC. (4.74b)

3. Dyadic Product The product of two tensors of rank 1 A = (ay,as,a3) and B = (by, by, b3)
gives a tensor of rank 2 with the elements

cij = ab; (1,7 =1,2,3), (4.75a)
i.e., the tensor product results in the matrix
arby arby arbs
CLle a2b2 (Zgbg . (475b)
azby azby asby

This will be denoted as the dyadic product of the two vectors A and B.

4. Contraction Setting two indices equal to each other in a tensor of rank m (m > 2), and summing
with respect to them, then one gets a tensor of rank m — 2, which is called the contraction of the tensor.
B The tensor C' of rank 2 of (4.75a) with ¢;; = a;b; , which is the tensor product of the vectors A =
(a1, az,az) and B = (by, by, b3), can be contracted by the indices ¢ and j,

(I,ibz = ay b] + (lzbz + a3b3 (476)
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giving a scalar, which is a tensor of rank 0. This gives the scalar product of vectors A and B.

4.3.3 Tensors with Special Properties
4.3.3.1 Tensors of Rank 2

1. Rules of Calculation

For tensors of rank 2 the same rules are valid as for matrices. In particular, every tensor T' can be
decomposed into the sum of a symmetric and a skew-symmetric tensor:

T = % (T+71") +%<T -T"). (4.77a)
A tensor T = (t;;) is called symmetric if

tij =t for all 7 and j (4.77b)
holds. In the case

tij = —tj; for all 7 and j (4.77c)

it is called skew- or antisymmetric. Obviously the elements t1; , t29 and ¢33 of a skew-symmetric tensor
are equal to zero. The notion of symmetry and antisymmetry can be extended for tensors of higher
rank if refering to certain pairs of elements.

2. Transformation of Principal Axes

For a symmetric tensor T, i.e., if ¢, = t,,, holds, there is always an orthogonal transformation D such
that after the transformation the tensor has a diagonal form:

i tn 0 0
0 0 t33

The elements #,; , f9 and £33 are called the eigenvalues of the tensor T. They are equal to the roots Ay,
A2 and A3 of the algebraic equation of third degree in A:
tin— At 3F]

tz] tzz - A t23 =0. (478b)

31 gtz — A
The column vectors d; , d, and dj of the transformation matrix D are called the eigenvectors corre-
sponding to the eigenvalues, and they satisfy the equations

Td, =\ d, (v=1,2,3). (4.78¢)

Their directions are called the directions of the principal azes, and the transformation T to diagonal
form is called the transformation of the principal axes.

4.3.3.2 Invariant Tensors

1. Definition

A Cartesian tensor is called invariant if its components are the same in all Cartesian coordinate sys-
tems. Physical quantities such as scalars and vectors, which are special tensors, do not depend on the
coordinate system in which they are determined; they must not change their value either under trans-
lation of the origin or rotation of a coordinate system K. One talks about translation invariance and
about rotation invariance or in general about transformation invariance.

2. Generalized Kronecker Delta or Delta Tensor

If the elements t;; of a tensor of rank 2 are the Kronecker symbols, i.e.,

o 1 fori=yj, )
by = 0y = { 0 otherwise, (4.79a)
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then from the transformation law (4.71b) in the case of a rotation of the coordinate system considering
(4.68¢) follows

b = dyidy; = Oy (4.79b)
i.e., the elements are rotation invariant. Putting them into a coordinate system so that they are inde-
pendent of the choice of the origin, i.e., they will be translation invariant, then the numbers d;; form a
tensor of rank 2, the so-called generalized Kronecker delta or delta tensor.
3. Alternating Tensor
If &, €; and €}, are unit vectors in the directions of the axes of a right-angle coordinate system, then for
the mixed product (see 3.5.1.6, 2., p. 185) holds
1, if4, 7,k cyclic (right-hand rule),
eijp = € (€5 x €,) = ¢ —1, if4, j, k anticyclic, (4.80a)
0, otherwise.
Altogether there are 3% = 27 elements, which are the elements of a tensor of rank 3. In the case of a
rotation of the coordinate system from the transformation law (4.69) it follows that

dul dul dpl
dyz dy2 dp2
du:s dys dp:s

i.e., the elements are rotation invariant. Putting them into a coordinate system so that they are in-
dependent of the choice of the origin, i.e., they are translation invariant, then the numbers ¢, form a
tensor of rank 3, the so-called alternating tensor.

4. Tensor Invariants

There must not be a confusion between tensor invariants and invariant tensors. Tensor invariants are
functions of the components of tensors whose forms and values do not change during the rotation of
the coordinate system.

tw’ﬂ = dm'd,,jdpkfijk = = Ew,p, (4801’))

B A: If for instance the tensor T' = (t;;) is transformed in T = (£;;) by a rotation, then the trace
(spur) of it does not change:

Te(T) = ti + ton + tsg = 11 + foo + T35 (4.81)
The trace of the tensor T' is equal to the sum of the eigenvalues (see 4.1.2, 4., p. 270).
H B: For the determinant of the tensor T' = (t;;)

tn tlf_) t13 t:ll {12 1313
Lo Lo oz | = | a1 t2p o3 (4.82)
t31 t32 t33 t31 tao tas

is valid. The determinant of the tensor is equal to the product of the eigenvalues.

4.3.4 Tensors in Curvilinear Coordinate Systems
4.3.4.1 Covariant and Contravariant Basis Vectors
1. Covariant Basis
By the help of the variable position vector are introduced the general curvilinear coordinates u, v, w:

7 =7 (u,v,w) = z(u,v,w)e + y(u,v,w)é + z(u,v,w)e.. (4.83a)
The coordinate surfaces corresponding to this system can be got by fixing the independent variables
w, v, w in 7 (u, v, w), one at a time. There are three coordinate surfaces passing through every point of

the considered region of space, and any two of them intersect each other in a coordinate line, and of
course these curves pass through the considered point, too. The three vectors

oF  or  oF

T e B (4.83b)
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point along the directions of the coordinate lines in the considered point. They form the covariant basis
of the curvilinear coordinate system.

2. Contravariant Basis

The three vectors

L(or or\ 1 (o oF\ 1 (oF oF (454a)
D\dv " dw)’ D\ow du)’ D\du  dv o

with the functional determinant (Jacobian determinant see 2.18.2.6,3., p. 123)

Dix.u. Ty Ty Ty
D= M =\ Yu Yo Yu (4.84Db)
D(u,v,w) A

are always perpendicular to the coordinate surfaces at the considered surface element and they form
the so-called contravariant basis of the curvilinear coordinate system.

Remark: In the case of orthogonal curvilinear coordinates, i.e., if

) to t th o tis| 92 A [ Lo
D(x,y,z 11 112 Y13 M2 28 9F OF or  or or  or
W: tntnbn|=\ninin) 55,20 5 5,=0 55, =0 (489
T t31 f?l t33 tgl t32 t33

then the directions of the covariant and contravariant basis are coincident.

4.3.4.2 Covariant and Contravariant Coordinates of Tensors of Rank 1

In order to be able to apply the summation convention of Einstein the following notation is introduced
for the covariant and contravariant basis:

@ =7 0—F =g E =g and
- T G 186
L(or OF\ _ o L (oF ory_ ., 1 (0F oF\_ (4.86)
D\ov " ow) ™Y D\ow o)~ D\ow™a0) 7"
Then the following representations hold for v-
T=Vg + V25 + V3=V o @=Wg5"'+Veg?+ V35> (4.87)

The components V* are the contravariant coordinates, the components V}, are the covariant coordinates
of the vector . For these coordinates the equalities

VE=¢"V  and V=gV (4.88a)
are valid, where

gkt = Gk = G - G and M =g% =gk g (4.88b)

respectively. Furthermore using the Kronecker symbol the equality

Gi G = Ou, (4.89a)
holds, and consequently
gklglm = 6km- (489]))

The transition from V* to V}, or from V; to V* according to (4.88b) is described by raising or lowering
the indices by oversliding.

Remark: In Cartesian coordinate systems covariant and contravariant coordinates are equal to each
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other.

4.3.4.3 IC{?ov:ilcriant, Contravariant and Mixed Coordinates of Tensors of
ank 2

1. Coordinate Transformation

In a Cartesian coordinate system with basis vectors €7 , € and €3 a tensor T of rank 2 can be represented
as a matrix

t11 T2 i3
a1 32 33
To introduce curvilinear coordinates uy, us, uz the following vector is used:
7= x1(uq, ug, ug)ey + wo(ug, ug, uz)€s + x3(ur, u, u3)es . (4.91)
The new basis is denoted by the vectors ¢;, g and g3. Now it holds:

or  O0xy., Oxry., Oxs _ oxy,

g = P = 0—1“61 8—1”62 Bu €3 = %ek. (4.92)
Substituting ¢; = ¢', then follows g; and §' as covariant and contravariant basis vectors.
2. Linear Vector Function
In a fixed coordinate system with the tensor T' given as in (4.90) by the equality

w=Tv (4.93a)
the following vector representations

T=Vgk =V*g, o&=W.g"=Wwkg, (4.93b)

define a linear relation between the vectors ¢ and w. So (4.93a) is to be considered as a linear vector
Sfunction.

3. Mixed Coordinates
Changing the coordinate system, the equality (4.93a) will have the form

o =T3. (4.94a)
The relation between the components of T and T is the following:
- Ouy Oxy
kl = = - mn -
de’m dul
Introducing the notation
t = T4 (4.94c)

one talks about mized coordinates of the tensor; k contravariant index, [ covariant index. For the com-
ponents of vectors ¢ and @ holds

wk=T1hvt (4.94d)
If the covariant basis g, is replaced by the contravariant basis §*, then one gets similarly to (4.94b) and
(4.94¢)

(4.94b)

0y, Ou
1 m 1
= o lmn; 4.95a
ke Ouy, Oz, (4.952)
and (4.94d) is transformed into

Wy, =T;'W,. (4.95b)

For the mixed coordinates Tk” and T{C, holds the formula

T4 = 9" g T, (4.95¢)
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4. Pure Covariant and Pure Contravariant Coordinates
Substituting in (4.95b) for V; the relation V; = g;,, V™, then one gets

Wk = Tk.lglmvm = Tkmvm ’ (496&)
also considering that
T g = T - (4.96b)

The Ty, are called the covariant coordinates of the tensor T', because both indices are covariant. Sim-
ilarly one gets the contravariant coordinates

T}km _ gsz.kl . (497)
The explicit forms are:
0, ma n 3 9 0
Ty = om % (4.982)  TH =W (4.98b)

T Ou O ™M

Oz Oz,

4.3.4.4 Rules of Calculation

In addition to the rules described on 4.3.2, 5., p. 283, the following rules of calculations are valid:

1. Addition, Subtraction Tensors of the same rank whose corresponding indices are both covariant
or contravariant can be added or subtracted elementwise, and the result is a tensor of the same rank.
2. Multiplication The multiplication of the coordinates of a tensor of rank n by the coordinates of
a tensor of rank m results in a tensor of rank m +n.

3. Contraction If making the indices of a covariant and a contravariant coordinates of a tensor of
rank n (n > 2) equal, then can be used the Einstein summation convention for this index, and one gets
a tensor of rank n — 2. This operation is called contraction.

4. Oversliding Oversliding of two tensors is the following operation: Multiply both, then making a
contraction so that the indices by which the contraction is made belong to different factors.

5. Symmetry A tensor is called symmetric with respect to two covariant or two contravariant stand-
ing indices if when exchanging them the tensor does not change.

6. Skew-Symmety A tensor is called skew-symmetric with respect to two covariant or two con-
travariant standing indices if when exchanging them the tensor is multiplied by —1.

B The alternating tensor (see 4.3.3.2, 3.,p. 284) is skew-symmetric with respect to two arbitrary co-
variant or contravariant indices.

4.3.5 Pseudotensors

The reflection of a tensor plays a special role in physics. Because of their different behavior with respect
to reflection polar and azial vectors are distinguished (see 3.5.1.1, 2., p. 181), although mathematically
they can be handled in the same way. Axial and polar vectors differ from each other in their determi-
nation, because axial vectors can be represented by an orientation in addition to length and direction.
Axial vectors are also called pseudovectors. Since vectors can be considered as tensors, the general
notion of pseudotensors is introduced.

4.3.5.1 Symmetry with Respect to the Origin

1. Behavior of Tensors under Space Inversion
1. Notion of Space Inversion The reflection of the position coordinates of points in space with
respect to the origin is called space inversion or coordinate inversion. In a three-dimensional Cartesian
coordinate system space inversion means the change of the sign of the coordinates:

(z,y,2) = (=x,—y, —2). (4.99)
By this a right-hand coordinate system becomes a left-hand system. Similar rules are valid for other
coordinate systems. In the spherical coordinate system holds:

(7’7 "97 99) - (7T7 m—= 197 ®+ ﬂ-)' (4100)
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Under this type of reflection the length of the vectors and the angles between them do not change. The
transition can be given by a linear transformation.

2. Transformation Matrix According to (4.66), the transformation matrix A = (a,, ) of a linear
transformation of three-dimensional space has the following properties in the case of space inversion:

G = —0, det A =—1. (4.101a)
For the components of a tensor of rank n (4.69)
tuvep = (= 1) "tp (4.101b)

holds. That is: In the case of point symmetry with respect to the origin a tensor of rank 0 remains a
scalar, unchanged; a tensor of rank 1 remains a vector with a change of sign; a tensor of

rank 2 remains unchanged, etc.
I ilL
]

Figure 4.3

2. Geometric Representation

The inversion of space in a three-dimensional Cartesian coordinate system can be realized in two steps
(Fig.4.3):

1. By reflection with respect to the coordinate plane, for instance the z, z plane, the coordinate system
x,y, z turns into the coordinate system x, —y, z. A right-hand system becomes a left-hand system (see
3.5.3.1,2., p. 209).

2. By arotation of the system z, y, z around the y-axis by 180° we have the complete coordinate system
x,y, z reflected with respect to the origin. This coordinate system stays left-handed, as it was after the
first step.

Conclusion: Space inversion changes the orientation of a polar vector by 180°, while an axial vector
keeps its orientation.

4.3.5.2 Introduction to the Notion of Pseudotensors

1. Vector Product under Space Inversion Under space inversion two polar vectors a and b
are transformed into the vectors —a and —b, i.e., their components satisfy the transformation formula
(4.101Db) for tensors of rank 1. However, if considering the vector product ¢ = a x b as an example
of an axial vector, then one gets ¢ = ¢ under reflection with respect to the origin. This is a violation
of the transformation formula (4.101a) for tensors of rank 1. Therefore the axial vector ¢ is called a
pseudovector or generally a pseudotensor.

B The vector products 77 x ¥/, ¥ X ﬁ V x ¥ = rot ¥ with the position vector 7, the speed vector v, the

power vector F and the nabla operator V are examples of axial vectors, which have “false” behavior
under reflection.

2. Scalar Product under Space Inversion If using space inversion for a scalar product of a
polar and an axial vector, then again there is a case of violation of the transformation formula (4.101b)
for tensors of rank 1. Because the result of a scalar product is a scalar, and a scalar should be the
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same in every coordinate system, here it is a very special scalar, which is called a pseudoscalar. 1t has
the property that it changes its sign under space inversion. Pseudoscalars do not have the rotation
invariance property of scalars.

B The scalar product of the polar vectors i (position vector) and ¥ (speed vector) by the axial vector
& (angular velocity vector) results in the scalars - & and ¢ - &, which have the “false” behavior under
reflection, so they are pseudoscalars.

3. Mixed Product under Space Inversion The mixed product (a x b)-c (see 3.5.1.6, 2., p. 185)
of polar vectors a, b, and ¢ is a pseudoscalar according to (2.), because the factor (a x b) is an axial
vector. The sign of the mixed product changes under space inversion.

4. Pseudovector and Skew-Symmetric Tensor of Rank 2 The tensor product of axial vectors
a = (a1, a2,a3)" and b = (by, ba, b3)T results in a tensor of rank 2 with components ¢;; = a;b; (i,j =
1,2,3) according to (4.74a). Since every tensor of rank 2 can be decomposed into a sum of a symmetric
and a skew-symmetric tensor of rank 2, according to (4.81)

1 1
ti; = 3 (a;b; + a;b;) + 3 (abj —azb;)  (i,5=1,2,3) (4.102)

holds. The skew-symmetric part of (4.102) contains exactly the components of the vector product
(a x b) multiplied by %, so the axial vector ¢ = (a x b) with components ¢y, ¢2, ¢3 can be considered
as a skew-symmetric tensor of rank 2

0 c s Ca3 = Q2b3 — azby = ¢y,

C = Cc = (C]z 0 C23) (4103&) where C31 = (13b1 — (11b3 = C2, (41031’))
—c13 —Co3 0 C1o = ayby — asbhy = 3,

whose components satisfy the transformation formula (4.101b) for tensors of rank 2.

Consequently every axial vector (pseudovector or pseudotensor of rank 1) ¢ = (cy, ¢, ¢3)" can be con-

sidered as a skew-symmetric tensor C' of rank 2:

0 e —c
C =C= —C3 0 C1 . (4104)

g —cp 0

5. Pseudotensors of Rank n The generalization of the notion of pseudoscalar and pseudovector
is a pseudotensor of rank n. It has the same property under rotation as a tensor of rank n (rotation
matrix D with det D = 1) but it has a (—1) factor under reflection through the origin. Examples of
pseudotensors of higher rank can be found in the literature, e.g., [4.1].

4.4 Quaternions and Applications

Quaternions were defined by Sir William Rowan Hamilton in 1843. The basic question which resulted
the discovering of quaternions was that how could division of vectors in the three dimensional Euclidian
space be defined. Tt is possible by embedding them into R*, and introducing the quaternion multipli-
cation, what leads to the division ring of quaternions.

Quaternions, like complex numbers, both are special cases of a Clifford-algebra of order n, with 2"
generalized numbers as basis (see [4.5], [22.22]):

on
A=Y "ija; (i hyper-complex elements, ¢; complex numbers). (4.105a)
=1

The following special cases have practical importance:
n = 1: 2-dimensional complex numbers with

i; = 1,1, =1 (i imaginary unit), a;,ay (real numbers). (4.105Db)
n = 2: Quaternions as 4-dimensional numbers with hyper-complex elements

i1 =1, ip =1, i3 = j, iy = k (hyper-complex elements) , a1, as, as,as (real numbers) (4.105¢)
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and the rules of multiplication (4.107). In physics the PAULI’s spin matrices and spinors are represented
as quaternions.

n = 3: Biquaternions (s. 4.4.3.6, 1., p. 306)

n = 4: Clifford-numbers are known in physics as DIRAC-matrices.

Quaternions are used most often to describe rotations. The advantages of the quaternions are:

e the rotation is performed directly around the required axis,

e the gimbal-lock problem does not occur. Gimbal is a pivoted support allowing the rotation around
a single axis (e.g. gyrocompass), and gimbal lock means that the axes of two of the three gimbals are
driven into parallel configuration.

The disadvantage of quaternions is that only rotations can be described with them. To represent trans-
lations, scaling or projections matrices are needed. This disadvantage can be overcome by biquater-
nions, by which every motion of rigid bodies can be represented.

Quaternion are used in computer-graphics, satellite-navigation, in vector analysis, in physics and in
mechanics.

4.4.1 Quaternions
4.4.1.1 Definition and Representation
1. Imaginary Units

Quaternions are generalized complex numbers in the form

w iz + jy + ke, (4.106)
where w, x, y, z are real numbers, and the generalized imaginary units are i, j,k, which satisfy the
following rules of multiplication:

iP=j =K =-1, ij=k=-ji, jk=i=-kj, ki=j=-ik. (4.107)
iljlk k The multiplication of the generalized units is shown in
i|—1lk|—j the accompanying table of multiplication. Alternatively
jl-k[-1] i the multiplication rules can be represented by the cycle
k|l j|—-i|-1 . . : shown in Fig.4.4. Multiplication in the direction of an
1 >) arrow results in a positive sign, opposite to the arrow di-

Multiplication table Figure 4.4 rection results in a negative sign.

Consequently, the multiplication is not commutative but associative. The four-dimensional Euclidian
vector space R? provided with quaternion-multiplication is denoted by H in honour of R.W. HAMIL-
TON. Quaternions form an algebra, namely the division ring of quaternions.

2. Representation of Quaternions

There are different representation of quaternions:

e as hyper-complex numbers ¢ = w + iz + jy + kz = qo + q with scalar part ¢y = Scq and vector part
q = Vecg,

e as four dimensional vector ¢ = (w, z,y, 2)T = (qo, Q)T consisting of the number w € R and the vector
(z,y,2)" € R,

e in trigonometric form ¢ = r(cos ¢ + ngsinp), where r = [q| = Vw? + 22 + 32 + 22 is the length of

(z,9,2)". g4 is a unit vector

. . . w
the four dimensional vector in R*, and cos ¢ = —, and n, = W
- z, Y,z -

lq|
in R?, depending on ¢.
Remark: The multiplication rules for quaternions differ from the usually introduced rules in R® and
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R* (see (4.109b), (4.114), (4.115)).

3. Relation between Hyper-complex Number and Trigonometric Form

q || )
7=q+9=lq| (‘(1| |‘1‘> =lq| (\q| |q\ \ql) =r(cosp +1ng4sin ©), (4.108a)
if [g| # 0. If |g| = 0, then there is
9] = |gol cos O for qo > 0,
4.108b
=00 = oo = Ll L om0, (4.108b)

ifgo #0.

4. Pure Quaternions

A pure quaternion has a zero scalar part: gy = 0. The set of pure quatermons 1% denoted by Hy. It is
often useful to identify the pure quaternions q with the geometric vector q € R?,

0=+ { q, if q represents a pure quaternion, (4.109)

q, if g is interpreted as a geometric vector.
The multiplication rule for p, q € Hy is
P9=-B-G+Pxd, (4.109Db)

where - and x denote the dot-product and cross-product in R?, respectively. The result of (4.109b) is
to interpret as a quaternion.

0z 0 8 -
W Let V= a—i + — o 6 —K be the nabla-operator (see 13.2.6.1, p. 715), and let ¥ = vy (2, y, 2)i +
v J
va(, Yy, z);+ vs(z,y, z)k be a vector-field. Here i l,_], K are unit-vectors being parallel to the coordinate
axes in a Cartesian coordinate system. If V and v are interpreted as pure quaternions then according
to (4.107) their product is:

vyo du On Ou g (%7&’2)5(%7%)%(&’ 0@')

or Ody 0z dy 0z 0z  Ox dx Oy
This quaternion can be written in vector interpretation:
Vv = —divv 4+ rot v,

but the result should be considered as a quaternion.

5. Unit Quaternions
A quaternion ¢ is a unit quaternion if |¢| = 1. The set of unit quaternions is denoted by H;. H; is

a so-called multiplicative Lie-group. The set H; can be identified with the three dimensional sphere
P ={xeR": x| =1}.

4.4.1.2 Matrix Representation of Quaternions

1. Real Matrices
If the number 1 is identified with the identity matrix
1000

14 (4.110a)

S oo

100
010
001

furthermore
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0-100 00-10 0001
HITE A R o
00 —-10 010 0 -10 00
then a quaternion ¢ = w + ix + jy + kz can be represented as a matrix
w o—r -y z
N B (4.110¢)

Yy z o ow x
-z Yy —r w

2. Complex Matrices
Quaternions can be represented by complex matrices:

LA (0 =i A (01 A (=10
1:(_10), J:(l 0), kz(Oi)' (4.111a)

_ . . A w—iz —ilr-—y
g=w+ir+jy+kz= (—151:—0—31 w4 i > . (4.111b)

So

Remarks:

1. On the right hand side of equations (4.111a,b) i represents the imaginary unit of complex numbers.
2. Matrix representation of quaternions is not unique, i.e. it is possible to give representations different
from the ones in (4.110b,c) and (4.111a,b).

3. Conjugate and inverse Element

The conjugate of quaternion ¢ = w + ix + jy + kz is the quaternion

g=w—ir —jy—kz. (4.112a)
Obviously
Consequently every quaternion ¢ € H \ {0} has an inverse element
-1 q
¢ = (4.112¢)
la?

4.4.1.3 Calculation Rules
1. Addition and Subtraction

Addition and subtraction of two or more quaternions are defined as
Q1 tg2— g3+ ...
= (wy +izy +jyr +k21) + (wa + 2o + jys + kzo) — (w3 + o + jys + kes) + ...
=(w+wy—wz+...)+i(r1+aa—as+..)+jyi +y2—ys +...)
+k(z +2m—23+...). (4.113)
Quaternions are added and subtracted as vectors in R, or as matrices.
2. Multiplication
The multiplication is associative, so
t1g2 = (wr + i1 + jyr + k21)(we + ivg + jyo + Kzo)
= (wywy — X122 — Y1y — 2122) + 1(wW1Ty + Wory + Y120 — 21Y2) +
+ j(wiys + ways + 2129 — 2971) + k(w122 + wezy + T1Y2 — T2y1). (4.114)
Using the usual vector products in R? (see 3.5.1.5, p. 184) it can be written in the form
q192 = (g1 +9,)(qo2 +d,) = qo1 o2 — G1 - o + d1 X qa, (4.115)
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where q; - is the dot-product, and q; % §» is the cross-product of the vectors g1, G» € R®. Next
is to identify the R® with the space Hy of the pure quaternions.

Remark: Multiplication of quaternions is not commutative!
The product q,q» corresponds to the matrix multiplication of matrix L4, with vector ¢, and it is equal

to the product of matrix R,, with ¢;:
wy —r1 =Y —2 W2 Wy =Tz —Y2 —22 wq
T W —z1 N To Ty Wo Zy —Ya Ty
7192 =Lgq2 = o =Repq=| " __ ~ . (4.116)
Y1z W —Iy Y2 Y2 —Z2 Wy T2 h
21~ 1wy 22 Z2 Y2 —T2 Wy 21

3. Division
The definition of division of two quaternions is based on the multiplication: ¢, ¢ € H, g2 # 0,
i [P}

—1
Dot = 4117
@ T VpP (4.117)
The order of the factors is important.
1
W lctq=1+], = %(1 —k), then [g2| = 1,7, = —=(1 + k) and so

]

[P

q q- 1 P
s = IR 2 e = s

e Mel V2
4. Generalized Moivre Formula

(1—itj+k).

Let ¢ € H, whrer ¢ = g0 + q = 7(cosp + ngsing) with r = [g| and ¢ = arccos%, cosp = ‘q—o|7
- - q q
sing = %‘, then for arbitrary k € IN :
q
kK _ kBqke _ k(. (1. :

¢ =r"e 7 =7r"(cos(k ) +ngsin(ke)). (4.118)
5. Exponential Function
For ¢ = qo + g € H its exponential expression is defined as

ook
q .

el = ;; 0= e®(cos || +n4sin|ql). (4.119)
Properties of the exponential function:
For any ¢ € H holds:

e %=1, (4.120a) e’ #0, (4.120b) el = e = gWed (4.120c)

e"™ = —1, especially €™ = T = kT = 1. (4.120d)

Unit quaternion u and 9 € R : ¢”* = cost) + usind . (4.120e)
If 1 ¢ = g2 ¢1 then €917 = e ¢% . But it does not follow from e? 7% = e % that q; ¢ = ¢2 q1-
B Since (ir)(jm) = kn? # —kn? = (jn)(ir) therefore also holds

in jm _ N (1Y) — irtjr _ : i+j

e = (cosm)(cosm) = (—1)(=1) =1, but e = (cos (\/iﬂ) + 7 sin (ﬂﬂ)) #1.
6. Trigonometric Functions
For g € Hlet

1 n —n . n —n,
cosq = 3 (zﬁ*ﬂq +e *Sq) , sing = —ngy (z al _ ¢ ﬂq) (4.121)
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cos ¢ is an even function, against which sin ¢ is an odd function.
Addition formula: It is valid for any ¢ = qo + g € H

€08 q = cosqpcosq —singpsing, sing = singycosq+ cosgpsing. (4.122)
7. Hyperbolic Functions
For g € H let
1
shg = - (e7 1 ¢ i N ot
coshq := 5 (e +e ), sinhg = —nq4 (c e ) . (4.123)

cosh ¢ is an even function, against which sinh ¢ is an odd function.
Addition formula: It is valid for any ¢ = g0 + q € H

cosh ¢ = cosh gp cos q — sinh g sinh q,  sinh ¢ = sinh ¢o cos g + cosh gy sinh q .. (4.124)

8. Logarithmic Function
Forq = qo+q = r(cosp +ngsing) € Hand k € Z the k-th branch of the logarithmic function is
defined as

_fWr+ng(p+2kT), |/ #0 or [g]=0andg >0,
logy.q := { not defined for g/ =0 and ¢y <O. (4.125)
Properties of the logarithmic function:
elo8v 4 = ¢ for any ¢ € H, for which log,, ¢is defined (4.126a)
logye? = q for any ¢ € H with [q| # (2l + )7, 1 € Z, (4.126Db)
log,1=0, (4.126¢) logyi = gi, logy j = gJ logy k = gk. (4.126d)

In the case when log ¢; and log ¢ or ¢; and ¢, commute, then, if k is suitable defined, the following
known equality (4.127) holds:

log(q1 ¢2) = logqi +loggs . (4.127)
For the unit quaternions ¢ € H; holds |g| = 1 and ¢ = cos ¢ + ng sin ¢ and so

log g :=logyq = n, ¢ for ¢ # —1, (4.128)
9. Power function

Let ¢ € Hand o € R, then
qa = eal()gq' (4129)

4.4.2 Representation of Rotations in R?

Spatial rotations are performed around an axis, the so-called rotation axis. It goes through the origin.

It is oriented by a direction vector & # 0 (on the axis). The positive direction on this axis is chosen
by &. The positive rotation (rotation angle ¢ > 0) is a counterclockwise rotation with respect to the
positive direction. The direction vector is usually given normed, i.e. |&] = 1.

The equality

w =RV, (4.130a)
means vector w arises from vector v by the rotation matrix R, i.e., the rotation matriz R transforms
vector V into w. Since rotation matrices are orthogonal matrices holds

R'=R" (4.130b)
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and (4.130a) is equivalent to

v=R'w=R"W. (4.130c)
Remark: At spatial transformations it is necessary to distinguish between the followings:
a) geometric transformations, i.e. when geometric objects are transformed with respect to a fixed co-
ordinate system, and
b) coordinate transformations, i.e. the object is fixed while the coordinate system is transformed with
respect to the object (see 3.5.4, p. 229).
Now, geometric transformations are handled with quaternions.

4.4.2.1 Rotations of an Object About the Coordinate Axes

In a Cartesian coordinate system the axes are oriented by the basis vectors. The rotation around the
2 axis is given by matrix R,, around the y axis by R, and around the z axis by R.. , where:

10 0 cosf 0sinf cosy —siny 0
R.(a):=| 0cosa —sina |, Ry(f) := 0 1 0 |, R.(y):=(siny cosy 0. (4.131)
0 sina cosa —sinf 0 cos 8 0 0 1

The relation between a rotation of an object and the rotation of the coordinate system (see 3.5.3.3,3.,
p. 213)) is

R.(a) = D;(a),Ry(8) = Dy (6) . R.(y) = DI (7). (4.132)
Remark: Therepresentation of the rotation matrices in homogenous coordinates is given in 3.5.4.5,1.,2.,
p- 234.

4.4.2.2 Cardan-Angles

Every rotation R around an axis passing through the origin can be given as a sequence of rotations
around the coordinate axes in a given coordinate system (see also 3.5.3.5, p. 214), where here

e the first rotation is around the z axis by an angle a¢, then

e the second rotation is around the y axis by an angle ¢, then

e the third rotation is around the z axis by an angle 7.

The angles ac¢, B¢, Yo are called Cardan-angles. Then the rotation matrix is

R= RC = RZ(WC>Ry(5C>R:I:(aC) (4133a)

cos B cos e sinae sin e cos Yo — cos ac sinqye  cos ac sin Be cos e + sin ac sin ye
cos fesinye  sin o sin fo sin e + cos ac cosye  €os ac sin fe sinye — sinac cosye | .(4.133b)
—sin g sin o cos fe €Os Qe €os fo

Adventages:
e very popular representation of rotations,
o clear structure.
Disadventages:
e the order of rotations is important i.e. in general holds

Ro(ac)Ry(Sc)R:(1c) # R:(v¢)Ry(Be)Ra(ac) , (4.133c¢)
e the representation is not unique since R(ac, e, 7¢) = R(—ac £ 180°, fc + 180°, y¢ £ 180°)
e not suitable for rotations after each other (e.g. at animations),
e gimbal lock can happen (rotation of an axis by 90° goes into an other axis)
B Gimbal Lock case: rotation around the y axis by 90°

0 sin(ac —7c) cqs(ozc - )
R(ac,90°7¢) = | 0 cos(ac —7c) —sin(ac —7c) |-
1 0 0

(4.133d)

It can be seen that one degree of freedom is lost. In practical applications it can lead to unpredictable
motions.
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Remark: It can be realized that Cardan-angles are called sometimes as Euler-angles, in the literature
however their definitions can be different (see 3.5.3.6, p. 215).

4.4.2.3 Euler Angles

The Euler-angles ¢, 9, ¢ are often introduced as follows (see 3.5.3.6, p. 215):
e the first rotation around the z axis by angle 1,

e the second rotation around the image of z axis by angle ¥,

e the third rotation around the image of z axis by angle .

The rotation matrix is

R = Ry := R.(¢)R, () R.() (4.134a)

cos 1 cos —siny cos¥sing  —cossing —siny cosv cosy  siny sind
sint cos ¢ + cosy cosUsing —sintsing + costhcoscosp —cosysind | .(4.134b)
sin ¥ sin sin o cos ¢ cos v

4.4.2.4 Rotation Around an Arbitrary Zero Point Axis

The counterclockwise rotation around a normed vector & = (a,, a,, a.) with |&] = 1 by an angle ¢ is
made in 5 steps:

1. Rotation of & around the y axis until reaching the x,y plane: a’ = Rja using R; according to
(4.135a). The result: vector &’ is in the z, y plane.

2. Rotation of &’ around the z axis until becoming parallel to the z axis &’' = R,a’ by Ry according
to (4.135b). The result: vector &” is parallel to the x axis.

Ay a,

0
\/a§+a§ \/aiJraf Vai+a2 ooa, 0
R, = lez (1) (?I . (4.135a) R, = —(()z,y /,,%O+ a2 ? . (4.135D)
Va2 + a? Va2 +a?
3. Rotation around the x axis by an angle ¢ by Ra:
1 0 0
R; =R,(¢)=(0 cosp —sing |. (4.135¢)
0 sinp cosyp

Rotations R and R4 are inverted in the following two steps.
4. Inverse rotation of Ry, i.e. rotation around the z axis by the angle # where sin 8 = a,, cos § =

/a2 + a2 according to (4.135d).

5. Inverse rotation of Ry, i.e. rotation around the y axis by —a where

sin(—a) = R cos(—a) = % around the y axis according to (4.135¢).

2 2’ /a2 2
ay + az az +az;

Qg —a,

0 2
Vai+ai  —ay 0 a2+ a? Va2 +a?
R;'= a, Je+ao|, (4135d) Ri'= R - (4.135e)
0 0 1 z i

\/af. +a? \/ag +a?
Finally the composition matrix is:
R(a, ¢) = R'R;'R3RuR,; = (4.135f)
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cosp + a(1 — cos @) azay (1 —cosp) —a,sing aza.(l—cosy)+ a,sing
ayaz(1 — cosp) +a.sing  cosp +aZ(l — cosp) aya.(1 —cosg) —a,sing | . (4.135g)
a,a,(1—cosp) — aysing  a,a,(1 —cosp) +azsing cosp + a’(1 — cos p)

Matrix R(&, ) is an orthogonal matrix, i.e. its inverse is equal to its transpose: R™1(&, ¢) = RT(&, ).
The following formulas are also valid:

- -

. sin ¢
& " ol

= (cos )X 4 (1 —cosp) axx (4.136a)

= (cos )X + (1 — cos )Xz + (sinp)— x X. (4.136Db)

In these formulas the vector X is decomposed into two components, one is parallel, the other is perpen-
. - Lo, Xed . e oo
dicular to a. The parallel part is Xz = Wa, the perpendicular part is r = X — Xg. The orthogonal
a
part is in a plane whose normal vector is &, so its image is cos T + sin ¢r*, where r'* is obtained from

- I e e 1. . . . . .
T by a 90° rotation in positive direction: r* = —a x r'. The result of the rotation of vector X is

‘H‘

- - 1

Xz + Cos pF + sin pr™ = %5 + (cos ) (i - Tﬂ‘zaé‘) + (sin :p)ﬁﬁ X T (4.136¢)
a a a

with axr=ax (X—X,) =axX. (4.136d)

Advantages:

e  Standard representation” in computer-graphics,
e CARDAN-angles should not be determined,

e 10 gimbal lock.

Disadvantage: Not suitable for animation, i.e. for interpolation of rotations.

4.4.2.5 Rotation and Quaternions
If the unit vector a in (4.135f) is identified as the pure quaternion a (while the angle of rotation ¢
remains the same), then one gets:
@+ a— a5 — a5 20142 — 240as 2q1q3 + 2q0q2
Rla¢) = | 2012 +2000s & — i +6 — 45 2003 - 200 | = R(g) (4.137a)
2q1q3 — 2qo42 242q3 + 2qoq B~ "~ hta
)T

where ¢y = cosg andq = (q1, q2, q3)" = (ax, ay, a.)t sing ,1.e. ¢is the unit quaternion ¢ = g(a, p) =

Cosg + asin g € H, . If vector X is considered as R* 3 X = x1i + x2j + 23k € Hy, then

R(a,¢)x =R(q)x = ¢xq. (4.137b)
Especially the columns of the rotation matrix are vectors e q:

1 0 0
R(a,s@)=(q<0)q (1<1>(1 (1<0>(1)=(qu qj7 qkq) . (4.137c)
0 0 1

COHSGQIIGHCGSI

e The matrix of rotation can be determined with the help of quaternion ¢ = cos g + asin %
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e For the rotated vector R(a, ¢)x holds R(a, ¢)x = ¢x7 in the sense of quaternion multiplication
and identifying R® with the set of pure quaternions Hy .

For every unit quaternion ¢ € H; ¢ and —¢ determine the same rotation, so H; is a double covering
of SO(3). Performing rotations one after the other corresponds to multiplication of quaternions, i.e.

R(g) R(q1) = R(g2 q1) ; (4.138)
and the conjugate quaternion corresponds to the inverse rotation:
R™'(q) = R(). (4.139)

B Rotation by 60° around the axis defined by (1, . First the direction vector should be normed:

w\s
OD\_/

1
a = %(17 1,1)T. Then with sinp = sin60° = and cosp = cos60° = 3 the rotation matrix

becomes

1 . 1/2-12
R|{—=(1,1,1)",60° | =5 2 2 —1].
(\/3 oty ) 3 12 2
The quaternion describing the rotation is:
1 1
=q|—=(1,1,1)T, 60° | = cos30° + —=(i + j + k) sin 30°
1=q ( ALY ) li+itk)
Va1 V3B

:7+ﬁ(iﬂ+k) 7—+—( +j+k).
Furthermore
1
q<8>q (?Jr?(ﬂrjwtk)l(?f%(ﬂrwrk))

0 : -1
_ V3 VB, (V3 OVBL o .. Al
1 =|—+—0 k ———( k)| ==(-i k== 2 |,
q<>q < +——(+j+ )3( (i+j+ )) 3( +2j + 2k) 3(2),

)5 Ferp2-ro-bomci )

1 2
1 (1 1 0 0 2 -1 2
R|{—=(1],60°|=1¢q(0]7 q{1|T ¢q[0]7 2 2 -1
V31 0 0 1 12 2
The rotation matrix in Cardan angles (see (4.133a,b), p. 295) is exactly a matrix of rotation with a unit

4.4.2.6 Quaternions and Cardan Angles
quaternion ¢ € H; .

Re(ac, Be, 10) = Ra(70)Ry(Be)Ra(ac) (4.140a)

C»J\»—l
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cos B cosye  sinaesin fe cosye — cos acsinye  cos ac sin e cos e + sin ac sin ye
= | cos fesinye  sinagsin fesinye + cosaccosye  cos acsin fesinye — sinac cosye | (4.140b)

— sin g sin ag cos fo cos a cos o
2@ — @ — @ 20100 — 2q00: 2145 + 2
Qo 41 — 492 — 93 241G2 q043 Q193 qoq2
= [rijli o1 = | 20182 + 29003 w—G+6-a 2;1243 5 2%;]1 ] = R(q) (4.140¢)
2q193 — 2qoq2 2¢2q3 + 2qoq B~ — % +a

()

Comparing the matrix elements one gets
721 ; 732
tanyc = —, sinfc = —r3;, tanac=—. (4.141a)
[a%] 733

In general, the solution is not unique, which is typical in trigonometric problems. However the unique-
ness of angles can be reached by discussion of the defined domains.

Reversed, it is easy to get the unit quaternion from the rotation matrix.
dgoqr = 132 — r23,  Aqoqz =113 — 131, 4qogs =21 — T2, (4.141b)
A0 =1 =4q5 — g0 — 4t — 43 — 5 = 111 + T2 + 7. (4.141c)
Since ¢ and —¢q define the same rotation, ¢y can be determined as

1
tI(]:i\/T11+7’22+T33+1. (4141(1)

The other components are

_ 32— T3 _M3 "
dq0 dq0
B Let the rotation matrix be the following:

1 1
VRSN N

=212 (4.141¢)

q2
4q0

¢

R=3 |y Vo V3
0 1 V3
1. Determination of the Cardan angles: Based on the above formulas sin Sc = —r3; = 0, so ¢ = km,
k € Z. Furthermore tany¢ = % =1,s07 = g + km, k € Z, and from tan ac = :—:z = % it follows

that ac = % + km, k € Z. The angles are unique, if they are determined as the ,,possible smallest”

™
ones, i.e. the rotation whose angles have an absolute value < 5 So the angles are

™ ™
=T Bo=0, =1
ac =&, Be o=
2. Determination of the unit quaternion which results this rotation:
1 1 1 1 1 ¢
1g-1=3 (\/§+ SVo+ \/3) also o — 5\/1 + (V24 V64 V/3) 0,892 = (:osg.

The (possible smallest) angle is ¢ = 53.6474°, so sing = 0.4512.

3. Determination of the further components of ¢ and the direction of the axis of rotation
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a= (a, a,, a,)":

1 1
o ()
=212 4 009301 w0 a, = —2 ~0,5299,
4qo 4qo sin £
11 5
r3—T3 9 9 02
= ——— === 0,091 S0 a, = =~ 0,2195
2 4qq 4qq ’ 50y sin £ ’ ’
1 1
21 — 712 2 (ﬂ * 5\/6> q3
@3 = = ~0,3696 so a. = —— ~0,8192.
4qo 4q0 sin £

Remark: At the calculation of the components in (4.141e) it can be a problem when ¢q is zero or
close to zero. In this case the unit quaternion can not be determined by the formulas in (4.141e). To
understand this situation one discusses the trace of the rotation matrix:

TR =71y + 790 + 133 = 43 — 1. (4.142a)

1
IfTrR > 0, then gy = 5\/ TrR + 1 > 0, and the formulas (4.141e) can be used without any problem.

If TrR < 0, then ¢g can be close to zero. In this case the greatest element of the main diagonal is
considered. Assume, it is 711. Then |¢]| is greater than |ga| or |g3|. The components ¢1, g2, g3 also can
be determined from the elements of the main diagonal of the rotation matrix. Choosing the positive
sign for the square-roots follows:

1 1 1
Q1:§\/1+T11—T22—T337 QQ:§V1+T22—T11—T337 Q3:§v1+r33—r11—T22-(4-142b)

Calculation rules: From this facts the following calculation rules are derived:

o If TrR < 0and ry; > re and 717 > 133, then ¢y has the greatest absolute value, so

732 — T'23 721 + T12 T3+ a1
Go=—7""> @©= q3 = . 4.142¢
g 4 4q ( )
o If TrR < 0and r9y > 717 and 199 > 733, then g has the greatest absolute value, so
713 — T31 ro1 + 712 T93 + 132
Go=—7"5 @1 = 3= . 4.142d
4¢e 4¢e 4¢o ( )
o If TrR < 0and rg3 > ryy and r33 > 1o, then g has the greatest absolute value, so
T21 — T2 31+ 713 ra3 + 732
o="2"12 g~ = : (4.142¢)

dqz 4q3 dqs

Since the CARDAN-angles define the rotations around the corresponding axes, one can find the assign-
ments given in the following table. Then the rotation

R(a, 8, 7) = R((0,0, )T, /)R((0,1,0)*, AR((1,0,0), a) (4.142f)

corresponds to the unit quaternion

q= Qz Qy Qr . (41423,)
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rotation Cardan angle | around quaternion
Rc((1,0,0)T, ac) ac x axis | @y = cos % +1isin %
T . Be ﬁc
Rc((0,1,0)%, Bc) Bc yaxis | Q, = cos > + jsin —
T : e “rc
Re((0,0, 1), vc) Ve zaxis | Q. := cos > + ksin >

T
B Knowing the Cardan angles ac = —, fc = 0, 7¢ = R the quaternion describing this rotation can

be determined in the following way:

QI:0057+1511176700512+1sm%
B 3

Qy:cos§+jsin§:cosUJrjsinO:l7
c Tc

2. = — 4+ ksin— = —+ ksin—

Q. = cos 9 + ksin ) coser smS

The final result coincides with that given on page 299:
™ .
q:=Q.QyQ, = (cos§ + ksmg) 1 (COS 12 + isin 12)
™ T
= cos§-co 12 Jrlcos8 sin — +_]%1118 sml +ks1118 cosﬁ

0,8924 + 0, 2391i + 0, 0991j + 0,3696k .

4.4.2.7 Efficiency of the Algorithms

To estimate the efficiency of the algorithms standard operations are defined from which the more com-
plex operations are originated. For complicated comparisons with other methods see [4.12].

Let

e M: number of multiplications,

e A: number of additions and subtractions,

e D: number of divisions,

e S: number of standard functions calls, e.g. trigonometric functions, which are composed of a consid-
erable number of multiplications, divisions and additions,

o C: number of comparisons of expressions, which increase the computing time by interrupting the al-
gorithm.

Operation A|M|D|S|C

Quaternion into Matrix 12 | 12
Matrix into Quaternion (TrR >0) | 6 | 5

Matrix into Quaternion (TrR <0) | 6 | 5 | 1 | 1| 3

Rotation of a vector | A | M Remarks
with rotation matrix | 6 | 9
with unit quaternion | 24 | 32 | normal quaternion multiplication
with unit quaternion | 17 | 24 | fast quaternion multiplication
with unit quaternion | 18 | 21 changing into rotation matrix
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Rotation of n vectors A M Remarks

with rotation matrix 6n In

with unit quaternion 24n 32n | normal quaternion multiplication
with unit quaternion | 17n 24n fast quaternion multiplication
with unit quaternion | 12+6n | 12+9n changing into rotation matrix

composition of two rotations | A | M

with rotation matrix 18 | 27

with unit quaternion 12| 16

Summary: An algorithm based on quaternions is faster only when rotations are performed after each
other. It occurs mainly in computer graphics at animations, i.e. at approximations of rotations.

4.4.3 Applications of Quaternions
4.4.3.1 3D Rotations in Computer Graphics

To describe motion flows interpolation of rotations are used. Since the 3D-rotations can be represented
by unit quaternions, algorithms are developed for interpolation of rotations in computer graphics. The
casiest idea is to start analogously to the definition of linear interpolation in Euclidian-spaces. Basic
algorithms are Lerp, Slerp and Squad.
1. Lerp (linear interpolation)
Let p,q € Hy and ¢ € [0,1], then

Lerp(p, ¢, t) = p(1 —1t) +qt. (4.143)
e This is a linear segment in R*, connecting p € H; ~ S* ¢ R* with ¢ € H; ~ $% ¢ R%.
o This segment is inside of the unit sphere in R*, and does not represent any connecting curve on the

unit sphere % ~ H;.
e Therefore the rotation is determined by normalizing the found quaternion.

This simple algorithm is almost perfect. The only problem is that after finding the interpolation points
on the secant between the given points and normalizing the found quaternions, the resulted unit quater-
nions are not equidistant quaternions. This problem is solved by the following algorithm.

2. Slerp (Spherical linear interpolation)
Let p,q € Hy, t € [0, 1] and ¢ (0 < ¢ < 7) the angle between p and ¢. Then

sin((1 — t)go)] L [sin(t 99)} ' (4.144)

Slerp(p, ¢, t) = p(pq)' = p''¢" = p [ — -
s @ sm @

e Interpolation along the great circle on the unit
sphere S* € R?, p and ¢ are connected;
e The shortest connection is chosen, —Sc(pq) =
(p, ¢) > Omust hold (where (, ) denotes the dot prod-
uct of p and ¢ in RY).

a) b) In Fig.4.5 the interpolations according to Lerp(a)
and Slerp(b) are compared.

Figure 4.5

Special case p = 1: Let p=1= (1,0, 0, 0)" and ¢ = cos p + n,singp, then
Slerp(p, g, t) = cos(t ) +nysin(tp). (4.145)
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Special case equidistant grids: Let ¢ = f, then
n

k 1
qr == Slerp(p, ¢, —) = —— (sin(p — kY)p+sin(k)q), k=0,1,...,n. (4.146)
n sin
Interpretation of the Slerp interpolation: To show the equivalence of the two expressions in
(4.144) first Q = p~lqg = %q = pq is calculated. Since p, g € H; the scalar part is
P

Qo=5¢Q =Sc(Fg) = (p. g) = cosp. (4.147)
Since p = p- 1, and ¢ = pp~'q = pQ, the interpolation between 1 and @ is multiplied by p to keep the
interpolation between p and ¢ .

sin((1 — %) sin(tg sin((1 —1¢ sin (g _, sin(#
Q) = 000 | sintte) _sn(1=0g) | sinG) | sint)
sin sin sin sin sin
sin ¢ cos(te) — sin(te) cos ¢ + sin(tp) cos ¢ i sin(tp) sin ¢
= fis
sin ¢ @ sinp
= cos(ty) +1igsin(ty) = ¢!a? = (s @ — (9t (4.148)

Tt follows that

sin((1 —t)p sin(tp _ _
q(t) =pQ(t) =p (( )¢) +4q ( - ) =pQ ' =plplg) =p' ¢ (4.149)
sin sin ¢
3. Squad (spherical and quadrangle)
For ¢i, ¢iv1 € Hy and t € [0, 1] the rule is
Squad(qi qit1, iy Siv1, t) = Slerp(Slerp(qi, gir1, t), Slerp(si, sit1, t), 2¢(1 — 1)) (4.150)
log(q; 'q: log(q; "qi-
with s = g exp (7 0g(4; " gi+1) Z 0g(g; 4 1)) '
e The resulted curve is similar to a Bézier curve, but it keeps the spherical instead of the linear inter-
polation.
e The algorithm produces an interpolation curve for a sequence of quaternions qo, ¢, ..., gn-

e The expression is not defined in the first and last interval, since g_; is necessary to calculate sy and
qn+1 to calculate sy . A possible way out is to choose sy = go and sy = g, (or to define ¢_; and gn+1).
There are additional algorithms based on quaternions: nlerp, log-lerp, islerp, quaternion de Casteljau-
splines.

4.4.3.2 Interpolation by Rotation matrices
The Slerp-algorithm can be described completely analogously with the help of rotation matrices. The
logarithm of a 3 x 3 rotation matrix R is needed (i.e. an element of group SO(3)) and it is defined by a
group-theoretical context as the skew-symmetric matrix r (i.e. an element of the Lie group so(3)), for
which e* = R.. Then the Slerp-algorithm can be used to interpolate between rotation matrices Ry and
R, which is described as

R(t) = Ro(Ry 'Ry)" = Ry exp(tlog(Ry 'Ry)) . (4.151)
In general it is more simple to use the quaternions based algorithm and to determine R(¢) from ¢(t)
according to the calculations of the rotation matrix representing the unit quaternion.

4.4.3.3 Stereographic Projection

If 1 € H; ~ S?is taken as the North pole of the three dimensional sphere S? , then unit quaternions
or elements of the three dimensional sphere can be mapped by the stereographic projection Hy > ¢ —
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(1+¢)(1—¢) ' eHy~ R? into pure quaternions or into R? respectively. The corresponding inverse
mapping is

RP~Hyop— (p—-Dp+1)eH ~5. (4.152)
4.4.3.4 Satellite navigation

The orientation of an artificial satellite
circulating around the Earth is to be de-
termined. The fixed stars are consid-
ered to be infinitely far away, so their
direction with respect to the Earth and
the satellite are identical (see Fig.4.6).
satellite Any difference in measurements can be
deduced from the different coordinate
systems and so from the relative rota-

Figure 4.6 tion of the coordinate systems.

fixed coordinate
system

i-th fixed star, infinitely
far away

>
a4

Let &; be the unit vector pointing into the direction of the i-th fixed star from in the Earth’s fixed
coordinate system, and Bl be the unit vector pointing into the direction of the i-th fixed star in the
satellite’s fixed coordinate system. The relative rotation of both coordinate systems can be described
by a unit quaternion h € H:

b, =ha;h. (4.153)
If more fixed stars are considered, and the data are overlapped by measuring errors, then the solution
is determined by the least squares method, i.e. as the minimum of (4.154), where h is a unit quaternion

and a, = a; and b; = b; are unit vectors:

= Zn;i —ha;h]>=> (b, — hd;h)- (b, — ha;h)

Z (b; —ha;h)(b, —ha;h) = 2(2 —b,ha;h—ha;hb;). (4.154)
i=1 i=1

Since the group H; of the unit quaternions form a Lie group, the critical points of Q% can be determined
by the help of derivative

9 v

Oyh = 11913(1) % =vh (v, h quaternions, ¥ real) (4.155)
from
9,Q% = — Z (b;vhah+b ha,(vh) +vha,hb;+ha;(vh)b,) =0. (4.156)
i=1
Here v,b; and ha; h are pure quaternions, so ¥V = —v, and therefore (4.156) can be simplified:
0Q? = —dv - (Z h&;h x hi) =0. (4.157)
i—1
Since here v is arbitrary, this expression vanishes if
ihaiﬁxhizgi (4.158)
i=1

Let R be the rotation matrix represented by the unit quaternion h, i.e. ha;h = Ra,;. With the 3 x 3
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matrix
0 —a. ay
K@=|a 0 —a (4.159)
—ay a; 0

defined by vector & = (a,, a,, a,) € R* for any vector b € R?® one gets:

K@b=axb, KK(@&b)=baT-ab". (4.160)
From this relation the critical points of the minimum problems are determined:

S K(Rd; xb;)=0 < Y (b;a'R" ~R&,;b!) =0 <= RP=P'R" (4.161)

i1 i=1
where P = Y27 &; bY. If P is decomposed into the product P = RS, where matrix S is symmetric
and P = R, is a rotation matrix, then from (4.161) follows

RR)S =SR,R", (4.162)
and

R=R, (4.163)
is obviously a solution, since in this case R,,R;FS =S= SRPRE, because ng = E. However there
are three other solutions, namely

R=R/R, (j=1,23), (4.164)
where R; denotes the rotation by 7 around the j-th eigenvector of S, i.e., there is R;SR; = S. That
R = R;R, is a solution of (4.162) which can be seen from R;R,RIS = SR,RIR] <= R;S =
SR} <= R;SR; =S.
The solution for which ? is minimal is

R— R,, falls detP >0,

TR, R, falls detP <0,

where Ry, is the rotation by 7 around the eigenvector of S associated with the eigenvalue of the smallest
absolute value.
4.4.3.5 Vector Analysis

If the V operator (see (13.67), 13.2.6.1, p. 715) and a vector ¥ (see 13.1.3, p. 704) are identified with
V¢ and v in quaternion calculus, i.e.

(4.165)

.0 .0 0
Vo =g +ig, +kg, (4.166)
v(w, y, z) = vil@, y. 2)i+ vz, y, 2)j +vs(z, y, 2)k (4.167)

with i,j,k (according to (4.107), p. 290), then the multiplication rule for quaternions (see (4.109b),
p. 291) gives

Vov=-V -V4+V xV=—divV+rot v, (4.168)
(see also @ in4.4.1.1, 4. p. 291).
Substituting
0 15} d 13}
D=_—+4+i—+j—+k=— and 4.169
o o Tigy TR M (4.1692)

w(t, z, y, 2) = wo(t, x, y, 2) +wi(t, v, y, 2)i+wa(t, 2, y, 2)j +ws(t, z, y, 2)k
=wo(t, z, y, z) + w(t, 7, y, 2), (4.169b)
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then
Dw = %'wo — divw + rot w + grad wy . (4.169c¢)
Especially, for an arbitrary twice continuously differentiable function f(t, z,y, z)
= , = . OMf O f O f
VQVQf 7VQVQf7VVf 7@*?6,7!!24’@7A3f und (41703)
2f  9f O
VoVof = vV - -0t OS_OF_n, (4.170b)

ox?  oy? 02?2
where Ay denotes the Laplace operator in R? (see (13.75) in 13.2.6.5, p. 716).
= _ 7 >Prrr of  9f
DDf=DDf=-5+-5++5+-5=4A 4.170,
! F = Tt ap T o =8 (4.170c)
where A, denotes the Laplace-operator in R*. Vo, just as D is often called the Dirac- or Cauchy-
Riemann operator.

4.4.3.6 Normalized Quaternions and Rigid Body Motion

1. Biquaternions
A biquaternion % has the form
h=ho+ehy, with ho, hy € H (4.171)

Here € is the dual unit, that commutes with every quaternion, furthermore € = 0. The multiplication
is the usual quaternion multiplication (see 4.115, p. 292).

2. Rigid Body Motion

By the help of unit biquaternions, i.e. biquaternions with
Choho=1,

ho hl -+ hlho = 07

ho=(ho + eh)(ho + ehy) = 1 <> { (4.172)

rigid-body motion (rotation and translation after each other) can be described in R?.

Table 4.1 Rigid body motions with biquaternions

Element Representation by
point p = (pz, Py, P-) in space p=1l+pewithp=p,i+p,j+p.k

rotations r € H; unit quaternions

1
translations t = (t,, t,, t.) 1+ 526 witht =¢,i+¢,j+t.k

The unit biquaternions
. 1 1
h=hy+he= (1+§§e) r:7'+§y>f, teH,, reH, (4.173)

give a double covering over the group SE(3) of the rigid-body motion in R? since i and —h describe
the same rigid-body motion.



4.5 Systems of Linear Equations 307
4.5 Systems of Linear Equations
4.5.1 Linear Systems, Pivoting
4.5.1.1 Linear Systems
A linear system contains m linear forms
Y1 = 01T + QT + 0 A ATy + Ay
Y2 = G171 + ATz + -+ ApTn + a2 or y=Ax+a (4.174a)
Ym = Qn1%1 + Amala + - + QunTn + A
with
aip Qiz - Qi ay, L1, Y1,
Q1 Gz --+ A2 as T2 Y2
A=, " a=| .|, x=|"7|. y=|7" (4.174b)
Gm1 Gm2 *** Amn [ L Ym
The elements a,,, of the matrix A of size (m, n) and the components a,, (¢ = 1,2, ..., m) of the column
vector a are constants. The components z,, (m = 1,2,...,n) of the column vector x are the independent
variables, the components g, (1 = 1,2,...,m) of the column vector y are the dependent variables.

4.5.1.2 Pivoting

1. Scheme of Pivoting

If an element gy, is not equal to zero in (4.174a), the variable y; can be exchanged for an independent one
and the variable x;, for a dependent one in a so-called pivoting step. The pivoting step is the basic ele-
ment of pivoting, the method by which for instance systems of linear equations and linear optimization
problems can be solved. The pivoting step is achieved by the schemes

Ty Ty v Ty e o, 1
- ‘3»'1 Lo Y T, 1
Yi|au @iz 00 Qi ot Qi @y -
a Yr|ur gz s Qg ottt Qp
Y2 | Q21 Q22 A2k Qop Q2
. Y2 | Q21 Q2 Qof + 0 Qgp Q2
Yi| ai1 Qg e Qin @i 0 |t , (4.175)
Tl Q1 Qo Qg Qip
Yon |Gt Gom2 ++ Gom G a
Ym|Cm1 Om2 Qmk Qmn, Oy
Tg | Qi Qg -0 Qg Qip O

where the left scheme corresponds to the system (4.174a).

2. Pivoting Rules

The framed element in the scheme a;, (a; # 0) is called the pivot element; it is at the intersection of
the pivot column and pivot row. The elements «, and «,, of the new scheme on the right-hand side
will be calculated by the following pivoting rules:

Ak .
1. ay=—, (4.176a) 2.  au = G (=1, ....m;p #1), (4.176b)
[ ik
Ay @;
3. oy =—, a;=— (v=1,2,...,nv #k), (4.176¢)
Aik ik
Ay
4. o =au — Ok = Ay +aupiy, 0y = ay + aurey
ik
(for every pu # i and every v # k). (4.176d)
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To make the calculations easier (rule 4) one writes the elements «;, in the (m+1)-th row of the pivoting
scheme (cellar row). With this pivoting rule one can change further variables.

4.5.1.3 Linear Dependence

The linear forms (4.174a) are linearly independent (see 9.1.2.3, 2., p. 553), if all y,, can be changed for
an independent variable z,, . The linear independence will be used, for instance to determine the rank
of a matrix. Otherwise, the dependence relation can be found directly from the scheme.

After three pivoting steps
(for instance yy — xy4,

Y2 — T1, Y1 — x3) the
table becomes:

No further change is possible because agy = 0, and one can see the dependence relation y3 = 2y; —
3y2 + 10. Also for another sequence of pivoting, there remains one pair of not exchangeable variables.

4.5.1.4 Calculation of the Inverse of a Matrix

If A is a regular matrix of size (n, n), then the inverse matrix A~! can be obtained after n steps using
the pivoting procedure for the system y = Ax.

T Ty T3 \yg Ly T3
351 ‘

y1l 3 51 y1] 3 —1 =5
BA=(245
A (12§> = Ya| 2 450 4| 2 g7

yg 22 x| 1 —

2 8-21
After rearranging the elements one gets A~! = ( -1 -5 13) . (The columns are to be arranged with
0 1 -2

respect to the indices of y;, the rows with respect to the indices of z.)

4.5.2 Solution of Systems of Linear Equations
4.5.2.1 Definition and Solvability

1. System of Linear Equations
A system of m linear equations with n unknowns 1, xs, . .., z,

apry + appry + 0+ AT, = ap

101 + AT + -+ ATn = @
. 1 e e : or briefly Ax =a, (4.177a)

A1 1 + Amals &+ + QpnTn = Gy

is called a linear equation system. Here the following designations are used:

a1 Qi2 - din ay, Ty,
Qg1 Qg2 - -+ d2p Az, L2,

A=, a= , X = (4.177b)
Am1 Am2 *** Amn Am Tn

If the column vector a is the zero vector (a = 0), then the system of equations is called a homogeneous
system, otherwise (a # 0) it is called an inhomogeneous system of equations. The coefficients a,,, of the
system are the elements of the so-called matriz of coefficients A, and the components a,, of the column
vector a are the constant terms (absolute terms).
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2. Solvability of a Linear System of Equations
A linear system of equations is called solvable or consistent or compatible if it has a solution, i.e., there
exists at least one vector x = a such that (4.177a) is an identity. Otherwise, it is called inconsistent.
The existence and uniqueness of the solution depend on the rank of the augmented matriz (A, a). One
gets the augmented matrix by attaching the vector a to the matrix A as its (n + 1)-th column.
1. General Rules for Inhomogeneous Linear Systems of Equations An inhomogeneous linear
system of equations Ax = a has at least one solution if

rank (A) = rank (A, a), (4.178a)
is valid. Furthermore, if r denotes the rank of A i.e., r = rank (A), then

a) for r = n the system has a unique solution, (4.178Db)

b) for r < n the system has infinitely many solutions, (4.178c)

i.e., the values of n — r unknowns as parameters can be chosen freely.

H A:
Ty — 2%y + 313 — x4 + 2m5 = 2 The rank of A is 2, the rank of the augmented matriz of co-
3ry — X9 + bry — 3wy — x5=06 efficients (A, a) is 3, i.e., the system is inconsistent.
21 + xp + 2x3 — 214 — 375 = 8
H B: .
_ Both the matrices A and (A, a) have rank equal to 3. Be-
Ty — @y +2r3= 1 h .
o _ cause r = n = 3 the system has a unique solution: z; =
Ty — 209 — w3 = 2 K
- 10 1 2
311 — w9 +5x3= 3 = ry=—2, x3=—-.
—2x1 + 229 + 313 = —4 7 7 7
Both the matrices A and (A, a) have rank equal to 2. The
H C: system is consistent but because r < n it does not have
T — o+ a3 — 4= 1 a unique solution. Therefore n — r = 2 unknowns can
Ty —Te— Tzt Ty = ? be considered as free parameters: z, = x; — %, T3 =
.'1:1—1;2—2:1;3—&-2:1;4:—§ 1
T4+ > (21, 24 arbitrary values).
H D:
1+ 2x9 — w3+ w4y =1 There is the same number of equations as unknowns but
201 — To + 2x3 + 214 = 2 the system has no solution because rank (A) = 2, and
31y + a9+ w3+ 314 =3 rank (A a) = 3.

Ty — 3y + 33+ x4=0
2. Trivial Solution and Fundamental System of Homogeneous Systems

a) The homogeneous system of equations Ax = 0 always has a solution, the so-called trivial solution

Ty =x9=...=x, =0. (4.179a)
(The equality rank (A) = rank (A , 0) always holds.)
b) If the homogeneous system has the non-trivial solutions & = (a1, s, ..., ay) and B = (B, fa. .. .,

Bn),ie,a #0and 8 # 0, then x = s a +t B is also a solution with arbitrary constants s and ¢,
i.e., any linear combination of the solutions is a solution as well.
Suppose, the system has exactly [ non-trivial linearly independent solutions a1, c,. . ., ;. Then these
solutions form a so-called fundamental system of solutions (see 9.1.2.3, 2., p. 553), and the general
solution of the homogeneous system of equations has the form

x = ko + koay + -+ + ki (K1, ko, . . ., ky arbitrary constants). (4.179b)
If the rank r of the coefficient matrix A of the homogeneous system of equations is less than the number
of unknowns n, i.e., 7 < n, then the system of equations has [ = n — r linearly independent non-trivial
solutions. If r = n, then the solution is unique, i.e., the homogeneous system has only the trivial
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solution.

To determine a fundamental system in the case r < n one chooses n — r unknowns as free parameters,
and expresses the remaining unknowns in terms of them. If reordering the equations and the unknowns
so that the subdeterminant of order r in the left upper corner is not equal to zero, then one gets for
instance:

T = -’1/‘1(1'7-“, LTpy2y .- 7l‘n)
Iy = IQ(ZT+1,LE,+2,...,I”) (4 180)
Ty = Tp(Tpp1s Trgas oo Tn)-

Then one can get a fundamental system of solutions choosing the free parameters, for instance in the
following way:

Lry1 Tpg2 Tpq3 * - Ty

1. fundamental solution: 1 0 0 ---0
2. fundamental solution: o 1 0 ---0, (4.181)
(n — r)-th fundamental solution: 0 0 0 --- 1
HE: The rank of the matrix A is equal to 2. The system can be
r1 — Tg 4+ dryg — x4=0 3
;1 + ;; i— ;;; + 3;;1 -0 solved for x7 and x5 resulting to: x; = —§x3 — X4, Ty =
3y — w9+ 8wz + x4 =0 . .
2y + 329 — 91y + Tay = 0 51"5 — 214 (23, x4 arbitrary). Fundamental solutions are oy =
37
(—5, 3 1,0)" and @z = (—1,-2,0,1)".

4.5.2.2 Application of Pivoting

1. System of Linear Functions Corresponding to a Linear System of Equations
In order to solve (4.177a), a system of linear functions y = Ax—ais assigned to the system of equations
Ax = aso the use of pivoting (see 4.5.1.2, p. 307) is possible:

Ax = (4.182a) s equivalent to y=Ax—-a=0. (4.182b)

]

The matrix A is of size (m, n), ais a column vector with m components, i.e., the number of equations
m must not be equal to the number of unknowns n. After finishing the pivoting one substitutes y = 0.
The existence and uniqueness of the solution of Ax = a can be seen directly from the last pivoting
scheme.
2. Solvability of Linear Systems of Equations
The linear system of equations (4.182a) has a solution if one of the following two cases holds for the
corresponding linear functions (4.182b):
Case 1: Ally, (u=1,2,...,m) can be exchanged for some z,. This means the corresponding system
of linear functions is linearly independent.
Case 2: At least one y, cannot be exchanged for any z,, i.e.,

Yo = My1 + Aoya 4+ -+ At + Ao (4.183)
holds and also Ag = 0. This means the corresponding system of linear functions is linearly dependent.
3. Inconsistency of Linear Systems of Equations

The linear system of equations has no solution if in case 2 above A\ # 0 holds. In this case the system
has contradictory equations.
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T — 2wy + 4wz — 3y =
—3x1 + 3y — w3 + 4y
2.’1}1 — 3[[72 + 5.L3 — 3[[74 = —

Il
— W N
<
S
<
S
]
&
<
w
—_

After three pivoting steps
m ‘ (for instance y; — 1,
‘ Ty Ty Ty x4 1 Ys — T4, Yo — ) fol-
yi| 1 -2 4-1-2 lows:
y2|—3 3-3 4-3
ys| 2-3 5-3 1
This calculation ends with case 1: yy, yo, y3 and x5 are independent variables. Substituting y; = y, =
ys = 0,and x3 = t (—oo < ¢ < oo is a parameter) consequently, the solution is: x; = 2t+1, xy = 3t —2,
r3=1t, x4 =3.

4.5.2.3 Cramer’s Rule

There is the very important special case when the number of equations is equal to the number of un-
knowns

—_

)
V)
| B
DGO D= DoICo
|
D= D= pojeo
o W N
| B
DI D= DU e
|
o

bad

8
&

a2y + appty + o+ Aty = 4

2171 + A22%9 + -+ + A2, Ty, = Q2 (4.184a)
. . . .184a

Ap1T1 + Ao + -+ - + Ay = ap
and the determinant of the coefficients does not vanish, i.e.,
D=detA #0. (4.184Db)

In this case the unique solution of the system of equations (4.184a) can be given in an explicit and
unique form:
D D,

Dy
T =—=, To= S e, Tp = 4.184c¢

1 D 2 D’ n D ( )
D, denotes the determinant, which is obtained from D by replacing the elements a,,, of the v-th column
of D by the constant terms a,, for instance

apy ap a3 - Qip
Qg1 G2 Q23 - -+ A2p

D, = J . (4.184d)
(py Ap Ap3 * " Opn

If D = 0 and there is at least one D,, # 0, then the system (4.184a) has no solution.
In the case D = 0 and D, = 0 for all » = 1,2, ..., n, then it is possible that the system has a solution
but it is not unique. (see Remark p. 311).

201 + x93+ 3x3= 9 2 13
| ] LL’172Z2+ I3:72 D= 1721:13,
3xry + 219 + 203 = 7. 3 22
9 13 2 93 2 1 9
Di=|-2-21|=-13, Dy=|1-21|=26, D3=|1-2-2|=30.
7T 22 3 72 3 2 7
. . D D D
The system has the unique solution x; = 31 =—1,29= 62 =2 13 = 63 =3.

Remark: From practical consideration the Cramer rule is not useful for higher-dimensional problems.
As the dimension of the problem increases, the number of required operations increases very fast, so,
for numerical solutions of linear systems of equations one uses the Gauss algorithm or pivoting or an
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iteration procedure (see 19.1.1, p. 949).

4.5.2.4 Gauss’s Algorithm

1. Gauss Elimination Method In order to solve the linear system of equations Ax = a (4.177a) of
m equations with n unknowns one can use the Gauss elimination method. With the help of an equation
one unknown is to be eliminated from all the other equations. So one gets a system of m — 1 equations
and n — 1 unknowns. This method will be repeated until the result is a system of equations in row
echelon form, and from this form one can determine the existence and uniqueness of the solution easily,
and the solution itself can be found if it exists.

2. Gauss Steps The first Gauss step is to be demonstrated on the augmented matrix of coefficients
(A, a) (see examples on p. 309):

Supposing ay; # 0, otherwise exchanging the first equation for another one. In the matrix

a1 Q12 - A1p |G

Qg1 Qg * - Q2p | G2

A (4.185a)
Um1 Am2 *** Amn |Am

the appropriate multiple of the first row is to be added to the others in order to make the coefficients of

. . a a a
z7 equal to zero, i.e., multiply the first row by — i, - ﬂ, e, = =ML then add them to the second,
aiy ary arn

third,. .., m~th row. The transformed matrix has the form

app @iz - Qip | Q1
0 daby -+ dby, |al
122 lon | (g
R (4.185b)
! ! !
0 Ao~ Oy | Aoy
After applying this Gauss step (r — 1) times the result is a matrix in row echelon form
a1 a2 a1z ... Ayprq41 --- A1pn ay
/ ’ ! ! !
(a2 dz3 .- g1 -+ Qo az
1" 1" " 1"
0 (33 A3rp1 oo A3 as
(4.186)
(r—1) =1 (r—1) (r—1)
0 ar,r e R Ay
(r=1)
0o o0 ... .. 0 0 . 0 [
(r=1)
o 0 ... .. 0 0 o 0 ay,

3. Existence and Uniqueness of the Solution The Gauss steps are elementary row operations
so they do not affect the rank of the matrix (A, a), consequently the existence and uniqueness of the
solution and the solution itself do not change. Formula (4.186) implies that the following cases may
occure concerning the solutions of the inhomogeneous linear system of equations:

Case 1: The system has no solution if any of the numbers agf]l), agle), ..., alr=1 differs from zero.
Case 2: The system has a solution if aS:ll) = a(,C:Ql) = ... =al"Y = 0is valid. Then there are two

cases:

a) r = n: The solution is unique.
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b) r < n: The solution is not unique; n — r unknowns can be chosen as free parameters.

If the system has a solution, then the unknowns are to be determined in a successive way starting with
the last row of the system of equations with the matrix in row echelon form (4.186).

W A: z; + 200 + 323 + 4oy = =2 1 2 3 4] =2

20y + 3wy + duy + 14 = 2 After three Gauss steps [ 0_1_2_7 ¢

3uy + dry + w4 + 24 = 2 the z}u_gmontcd matrix of 0 0-4 4 —4

Ary + w9 + 2w + 31y — —p  coefficients has the form  \ 5 5 40|40
The solution is unique and from the corresponding system of equations with a triangular matrix follows:
ry=—1,23=0,290=1 2, =0.

B B: —2 — 31y — 1223 = —5 1 -3 -12|-5
—z1 + 2wy + Swx3= 2 After two Gauss steps the 0 5 17} 7
dry + 17x3 = 7  augmented matrix of coeffi- 0 0 070
31 — 22+ 2x3 = 1 cients has the form 0 0 00
Try — 4dxe — 13 = 0 0 0] 0
There is a solution but it is not unique. Choosing one unknown as a free parameter, for instance x3 = ¢
717 4 9
(=00 <t < o00),and one gets w3 = t, v = - — —t, 11 = = — L.
5 5 5

4.5.3 Overdetermined Linear Systems of Equations

4.5.3.1 Overdetermined Linear Systems of Equations and Linear
Least Squares Problems

1. Overdetermined System of Equations
Consider the linear system of equations

Ax=b (4.187)
with the rectangular matrix of coefficients A = (a;;) (1 = 1,2,...,m; j = 1,2,...,n; m > n).
The matrix A and the vector b = (b1, bs, ..., b,)T on the right-hand side are given, and the vector
x = (x1,29,...,2,)" is unknown. Because m > n holds this system is called an over-determined

system. One can tell the existence and uniqueness of the solution and sometimes also the solution, for
instance by pivoting.

2. Linear Least Squares Problem

If (4.187) is the mathematical model representing a practical problem (i.e., A, b, x are reals), then
because of measuring or other errors it is impossible to find an exact solution of (4 187) such that it sat-

isfies all of the equations. Substituting any vector x there will be a residual vectorr = (11,72, ..., 7m)"
given as
r=Ax—b, r#0. (4.188)

In this case x is to be determined to make the norm of the residual vector r as small as possible. Suppose
now A, b, x are real. If considering the Euclidean norm, then

m

Z r; =r'r= (Ax — b)T(AX —b) = min (4.189)

must bc valid, i.e., the residual sum of squares must be minimal. Gauss already had this idea. The
formula (4.189) is called a linear least squares problem. The norm ||r|| = v/rTr of the residual vector r
is called the residue.

3. Gauss Transformation

The vector x is the solution of (4.189) if the residual vector r is orthogonal to every column of A. That
is:

ATr=AT(Ax-b)=0 or ATAx=A"b. (4.190)
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Equation (4.190) is actually a linear system of equations with a square matrix of coefficients. One refers
to it as the system of normal equations. It has dimension n. The transition from (4.187) to (4.190) is
called Gauss transformation. The matrix AT A is symmetric.

If the matrix A has the rank n (because m > n all columns of A are independent), then the matrix
ATA is positive definite and also regular, i.e., the system of normal equations has a unique solution if
the rank of A is equal to the number of unknowns.

4.5.3.2 Suggestions for Numerical Solutions of Least Squares Problems
1. Cholesky Method

Because the matrix AT A is symmetric and positive definite in the case rank (A) = n, in order to solve
the normal system of equations one can use the Cholesky method (see 19.2.1.2, p. 958). Unfortunately
this algorithm is numerically fairly unstable although it works fairly well in the cases of a “big” residue
[|lz|| and a “small” solution ||x]|.

2. Householder Method

Numerically useful procedures in order to solve the least squares problem are the orthogonalization
methods which are based on the decomposition A = QR. Especially useful is the Householder method,
where Q is an orthogonal matrix of size (m, m) and R is a triangular matrix of size (m,n) (see 4.1.2,
11., p. 271).

3. Regularized Problem

In the case of rank deficiency, i.e., if rank (A) < n holds, then the normal system of equations no longer
has a unique solution, and the orthogonalization method gives useless results. Then instead of (4.189)
the so-called regularized problem is considered:

r'r + ax’'x = min! (4.191)
Here o > 0 is a regularization parameter. The normal equations for (4.191) are:
(ATA +al)x = A"b. (4.192)

The matrix of coefficients of this linear system of equations is positive definite and regular for a > 0,
but the appropriate choice of the regularization parameter « is a difficult problem (see [4.7]).

4.6 Eigenvalue Problems for Matrices

4.6.1 General Eigenvalue Problem

Let A and B be two square matrices of size (n,n). Their elements can be real or complex numbers.
The general eigenvalue problem is to determine the numbers A and the corresponding vectors x # 0
satisfying the equation

Ax = \Bx. (4.193)
The number A is called an eigenvalue, the vector x an eigenvector corresponding to A. An eigenvector
is determined up to a constant factor, because if x is an eigenvector corresponding to A, so is ¢x (¢ =
constant) as well. In the special case when B = I holds, where I is the unit matrix of order n, i.e.,

Ax = \x or (A = A)x =0, (4.194)
the problem is called the special eigenvalue problem. It occures very often in practical problems, espe-
cially with a symmetric matrix A, and so it is to be discussed later in detail. More information about
the general eigenvalue problem can be found in the literature (see [4.16]).
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4.6.2 Special Eigenvalue Problem
4.6.2.1 Characteristic Polynomial

The eigenvalue equation (4.194) yields a homogeneous system of equations which has non-trivial solu-
tions x # 0 only if

det (A — AI) = 0. (4.195a)
By the expansion of det (A — A1) one gets

a11 = A axp Q13 - Gin
det (A — \I) = a?1 ?22 = A fm e Qg

a'm ;1n2 ;lns ;lnn )
=Py(N) = (=1)"\" +ap A"+ ad ag =0, (4.195Db)

So the determination of the eigenvalues is equivalent to the solution of a polynomial equation. This
equation is called the characteristic equation; the polynomial P, (\) is the characteristic polynomial. Its
roots are the eigenvalues of the matrix A. For an arbitrary square matrix A of size (n, n) the following
statements hold:

Case 1: The matrix A, , has exactly n eigenvalues i, Ay, ..., A, because a polynomial of degree n
has n roots if they are considered with their multiplicity. The eigenvalues of a real symmetric matrix
are real numbers, in other cases the eigenvalues can also be complex.

Case 2: If all the n eigenvalues are different, then the matrix A, ) has exactly n linearly independent
eigenvectors x; as the solutions of the equation system (4.194) with A = ;.

Case 3: If \; has multiplicity n, among the eigenvalues, and the rank of the matrix A,y — A1 is
equal to 7, then the number of linearly independent eigenvectors corresponding to J\; is equal to the
so-called nullity n — r; of the matrix of coefficients. The inequality 1 < n —r; < n; holds, i.e., for a
real or complex quadratic matrix A, ) there are at least one and at most n real or complex linearly
independent eigenvectors.

2-3 1 2—X =3 1
H A: 3 1 3], det(A—\)= 31—-A 3l =N = A2+ 20 =0.
-5 2 -4 -5 2 —4—-)
The eigenvalues are Ay = 0, Ay = 1, A\3 = —2. The eigenvectors are determined from the corresponding
homogeneous linear system of equations.
e\ =0: 221 —3x3+ 23=0
3371 + T9 + 31}3 =0
*5$1 + 2.’[2 — 4$3 =0.
. L . 3 11 .
One gets for instance by pivoting: x; arbitrary, x5 = E$1,$3 = —2x1 + 315 = 7E1‘1. Choosing
10
21 = 10 the eigenvector is x; = Cy 3 |, where C # 0 is an arbitrary constant.
—11
e )\, = 1: The corresponding homogeneous system yields: w3 is arbitrary, zo = 0,21 = 3z2—x3 = —x3.
-1
Choosing x5 = 1 the eigenvector is xg = Cy ( 0) , where Cy # 0 is an arbitrary constant.
1
. . . . 4
e \3 = —2: The corresponding homogeneous system yields: x9 is arbitrary, x; = 551;2, r3 = —4x] +

4
7
31y = —3%2 Choosing z = 3 the eigenvector is xg3 = Cj ( §>’ where C3 # 0 is an arbitrary
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constant.
30-—1 3—X 0 -1
H B: ( 14 1), det (A — AI) = 14—\ 1) ==X\ +10\2 - 32\ + 32 = 0.
—-10 3 -1 03—\
The eigenvalues are A\ = 2, \y = A3 = 4.
e )\; = 2: One obtains x3 is arbitrary, x9 = —x3,2; = w3 and chooses for instance x3 = 1. So the

1
corresponding eigenvector is x; = C} (1) , where C} # 0 is an arbitrary constant.
1

e )y = A3 = 4: One obtains x,, x3 are arbitrary, x;1 = —x3. There are two linearly independent
2 3 2,3 Y, L1 3 y p

0 -1
eigenvectors, e.g., for zo = 1,23 = O and 2y = 0, 23 = 1: x9 = C (1), x3 = (4 ( 0), where
0 1
Cy # 0, C3 # 0 are arbitrary constants.

4.6.2.2 Real Symmetric Matrices, Similarity Transformations

In the case of the special eigenvalue problem (4.194) for a real symmetric matrix A the following state-
ments hold:

1. Properties Concerning the Eigenvalue Problem

1. Number of Eigenvalues The matrix A has exactly n real eigenvalues \; (i = 1,2,...,n), count-
ing them by their multiplicity.

2. Orthogonality of the Eigenvectors The eigenvectors x; and x; corresponding to different eigen-
values \; # \; are orthogonal to each other, i.e., for the scalar product of x; and x;

X! x; = (x;,%;) =0 (4.196)
is valid.

3. Matrix with an Eigenvalue of Multiplicity p For an eigenvalue which has multiplicity p (A =
AL =Xy =...=),), there exist p linearly independent eigenvectors x;,X,, ..., X,. Because of (4.194)
all the non-trivial linear combinations of them are also eigenvectors corresponding to A. Using the
Gram-Schmidt orthogonalization process one can choose p of them such that they are orthogonal to
each other.

Summarizing: The matrix A has exactly n real orthogonal eigenvectors.

011

H A= (1 0 1) , det (A — AI) = =A% + 3)\ + 2 = 0. The eigenvalues are \; = Ay = —1 and \3 = 2.
110

e )\; = \y = —1: From the corresponding homogenous system of equations one gets: x; is arbitrary,

T is arbitrary, x3 = —x1 — x9. Choosing first 21 = 1, 19 = 0 then 27 = 0, 25 = 1 one gets the linearly

1 0
independent eigenvectors x; = Cy ( 0) and x, = Cy ( 1) , where C7 # 0 and Cy # 0 are arbitrary
-1

-1
constants.
e \3 = 2: One gets: x; is arbitrary, xs = x1, 3 = 21, and choosing for instance x; = 1 one gets the
1
eigenvector x3 = Cj (1) , where C3 # 0 is an arbitrary constant. The matrix A is symmetric, so the
1

eigenvectors corresponding to different eigenvalues are orthogonal.

4. Gram-Schmidt Orthogonalization Process Let V,, be an arbitrary n-dimensional Euclidean
vector space. Let the vectors x,X,,...,X, € V, be linearly independent. Then there exists an or-
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thogonal system of vectors y ., y,....,y €V, which can be obtained by the vectors x; as follows:
Y, =X, Y, =X i X) (k=2,3,...,n). (4.197)
- N Shy)”

Remarks:

1. Here (x4, Xi) = X};Xl is the scalar product of the vectors x;, and Y,

2. Corresponding to the orthogonal system of the vectors y |,y ,....,y,  one gets the orthonormal

system X, %5, ..., X, with %, = 21, %, = 22 % = 2o wheely|| = /y,y, is

Iy, [y, Il Iy, = e

the Euclidean norm of the vector Y,

(l) From here it follows:
1 2
X, 1
(2 Xl)y =|-1/2 |andxy,=—= | -1 |;
vy 1/2 1

2. Transformation of Principal Axes, Similarity Transformation
For every real symmetric matrix A, there is an orthogonal matrix U and a diagonal matrix D such that
A =UDU". (4.198)
The diagonal elements of D are the eigenvalues of A, and the columns of U are the corresponding
normed eigenvectors. From (4.198) it is obvious that
D =UTAU. (4.199)
Transformation (4.199) is called the transformation of principal azes. In this way A is reduced to a
diagonal matrix (see also 4.1.2, 2., p. 270).

If the square matrix A (not necessarily symmetric) is transformed by a square regular matrix G such
a way that

G'AG=A (4.200)

then it is called a similarity transformation. The matrices A and A are called similar and they have
the following properties:

1. The matrices A and A have the same eigenvalues, i.c., the similarity transformation does not affect
the eigenvalues.

2. If A is symmetric and G is orthogonal, then Ais symmetric, too:
A=G'AG with G'G=L (4.201)

The relation (4.201) is called an orthogonal-similarity transformation. In this context (4.199) means
that a real symmetric matrix A can be transformed orthogonally similar to a real diagonal form D.

4.6.2.3 Transformation of Principal Axes of Quadratic Forms
1. Real Quadratic Form, Definition

A real quadratic form @ of variables x1, za,. .., x, has the form

Q=>> aymz;= x"Ax, (4.202)

i=1j=1
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where x = (21,23, ..., 2,)" is the vector of real variables and the matrix A = (a;;) is a real symmetric
matrix.

The form @ is called positive definite or negative definite, if it takes only positive or only negative values
respectively, and it takes the zero value only in the case v1 =29 = ... = 2, = 0.

The form @ is called positive or negative semidefinite, if it takes non-zero values only with the sign
according to its name, but it can take the zero value for non-zero vectors, too.
A real quadratic form is called indefinite if it takes both positive and negative values. According to the
behavior of () the associated real symmetric matrix A is called positive or negative definite, semidefinite
or indefinite.
2. Real Positive Definite Quadratic Form, Properties
1. In a real positive definite quadratic form @ all elements of the main diagonal of the corresponding
real symmetric matrix A are positive, i.e.,

a; >0 (i=1,2,...,n) (4.203)
holds. (4.203) represents a very important property of positive definite matrices.
2. A real quadratic form () is positive definite if and only if all eigenvalues of the corresponding matrix
A are positive.

3. Suppose the rank of the matrix A corresponding to the real quadratic form @ = x"Ax is equal to
r. Then the quadratic form can be transformed by a linear transformation

x=C% (4.204)
into a sum of pure quadratic terms, into the so-called normal form

,
Q=x"Kx=> pi (4.205)
=1
where p; = (sign \;)k; and ky, ko, ...k, are arbitrary, previously given, positive constants.

Remark: Regardless of the non-singular transformation (4.204) that transforms the real quadratic
form of rank 7 into the normal form (4.205), the number p of positive coefficients and the number
q = r — p of negative coefficients among the p; of the normal form are invariant (the inertia theorem of
Sylvester). The value p is called the index of inertia of the quadratic form.

3. Generation of the Normal Form

A practical method to use the transformation (4.205) follows from the transformation of principal axes
(4.199). First it is to perform a rotation on the coordinate system by the orthogonal matrix U, whose
columns are the eigenvectors of A (i.e., the directions of the axes of the new coordinate system are the
directions of the eigenvectors). This gives the form

Q=%"Lx =Y Ni (4.206)
i=1

Here L is a diagonal matrix with the eigenvalues of A in the diagonal. Then a dilatation is performed

k;

by the diagonal matrix D whose diagonal elements are d; = N The whole transformation is now
7

given by the matrix
C=UD, (4.207)
and one gets:
Q = x"Ax = (UDx)"A(UD%) = x"(D"UTAUD)x
=3x"D"LDx = x"Kx. (4.208)
Remark: The transformation of principal axes of quadratic forms plays an essential role at the classi-
fication of curves and surfaces of second order (see 3.5.2.11, p. 206 and 3.5.3.14, p. 228).
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4. Jordan Normal Form
Let A be an arbitrary real or complex (n,n) matrix. Then there exists a non-singular matrix T such
that

T AT =1J (4.209)
holds, where J is called the Jordan matriz or Jordan normal formof A. The Jordan matrix has a block
diagonal structure of the form (4.210), where the elemnts J; of J are called Jordan blocks:

Jl )\1
JQ O /\2 (0]
J= . (4.210) J= . (4.211)
(0] Jio1 (6] An1
Ji An
They have the following structure:
1. If A has only single eigenvalues \;, then J; = A; and k = n, i.e., J is a diagonal matrix (4.211).

2. If ); is an eigenvalue of multiplicity p;, then there are A1

one or more blocks of the form (4.212) where the sum of / A1 o

the sizes of all such blocks is equal to p; and Z;‘-‘Zl pi=n  J. _ R ) (4.212)
holds. The exact structure of a Jordan block depends on ! ' /\" 1 '

the structure of the elementary divisors of the character- J

_— . o Aj

istic matrix A — AL Jj

For further information see [4.15], [19.16] vol. 1.

4.6.2.4 Suggestions for the Numerical Calculations of Eigenvalues

1. Eigenvalues can be calculated as the roots of the characteristic equation (4.195b) (see examples on
p. 315). In order to get them the coefficients a; (i = 0,1,2,...,n — 1) of the characteristic polynomial
of the matrix A must be determined. However, one should avoid this method of calculation, because
this procedure is extremely unstable, i.e., small changes in the coefficients a; of the polynomial result
in big changes in the roots A;.

2. There are many algorithms for the solution of the eigenvalue problem of symmetric matrices. Two
types can be distinguished (see [4.7]):

a) Transformation methods, for instance the Jacobi method, Householder tridiagonalization, QR algo-
rithm.

b) Iterative methods, for instance vector iteration, the Rayleigh-Ritz algorithm, inverse iteration, the
Lanczos method, the bisection method. As an example the power method of Mises is discussed here.
3. The Power Method of Mises Assume that A is real and symmetric and has a unique dominant
eigenvalue. This iteration method determines this eigenvalue and the associated eigenvector. Let the
dominant eigenvalue be denoted by A;, that is,

Dl > Pal > gl > o0 > [l (4.213)
Let x,Xo,...,X,, be the associated linearly independent eigenvectors. Then:
1. Ax; = \x; (i=1,2,...,n). (4.214)
2. Each element x € R" can be expressed as a linear combination of these eigenvectors x;:
X=X+ 0Xg+ -+ X, (¢const; i =1,2,...,n). (4.215)
Multiplying both sides of (4.215) by A k times, then using (4.214) follows
A\ A\E
AFx = e Mx F e, + - e x, = Mex, F e (f) Xy (ﬁ) x,].

(4.216)
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From this relation and (4.213) one can see that
Arx , ke vk
E —x,;ask — 0o, thatis, A"x ~ c;A\x;.
This is the basis of the following iteration procedure:
Step 1: Select an arbitrary starting vector x(¥ € R".
Step 2: Iterative computation of
xFD = Ax® (k=0,1,2,...;x? is given).
From (4.218) and keeping in mind (4.217) follows:
Z(k) — Ak§<0> ~ C1/\’fz1~
Step 3: From (4.218) and (4.219) it follows that
x*+) = Ax® = A(AFx©),
AAXO) ~ A(eMx ) = e\ (Ax)),
a(MAx,) = M(aMx,) = \x®)| therefore
xFH &\ x®),

(4.217)

(4.218)

(4.219)

(4.220)

that is, for large values of k the consecutive vectors x**1) and x(®) differ approximately by a factor \;.

Step 4: Relations (4.219) and (4.220) imply for x, and A;:
(X(k-) , X(k,+1))
), xM)

k+1)
)

x, ~x PYRS

B For example, let

223 —1.15 1.77 1
A=|-115 925-213), xO=1{0].

1.77 —2.13 1.56 0
X(")‘ <) x®@ x®)| normalization x@ x| normalization
1 3.23  14.89 88.27 1 7.58 67.75 1
0 |—1.15 —18.12 —208.03 —2.36 |—24.93 —256.85 —3.79
0 1.77 10.93 82.00 0.93 8.24 79.37 1.17
A1 9.964 10.177
x© x| normalization x® x) normalization
9.66  96.40 1 10.09 102.33 1
— 38.78 —394.09 —4.09 |—41.58 —422.49|| —4.129 | = x,
11.67 11778 122 | 1238 12573\ 1.229
10.16 10.161 =~ A\
Remarks:

(4.221)

1. Since eigenvectors are unique only up to a constant multiplier, it is preferable to normalize the

vectors ") as shown in the example.

2. The eigenvalue with the smallest absolute value and the associated eigenvector can be obtained by
using the power method of Mises for A~!. If A~! does not exist, then 0 is this eigenvalue and any vector

from the null-space of A can be selected as an associated eigenvector.

3. The other eigenvalues and the associated eigenvectors of A can be obtained by repeated application
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of the following idea. Select a starting vector which is orthogonal to the known vector x, and in this
subspace Ay becomes the dominant eigenvalue that can be obtained by using the power method. In order
to obtain A3, the starting vector has to be orthogonal to both x; and x,, and so on. This procedure is
known as matriz deflation.

4. Based on (4.218) the power method is sometimes called vector iteration.

4.6.3 Singular Value Decomposition

1. Singular Values and Singular Vectors Let A be a real matrix of size (m, n) and its rank be
equal to r. The matrices AAT and ATA have r non-zero eigenvalues \,, and they are the same for
both of the matrices. The positive square roots d, = /A, (v = 1,2,...,r) of the eigenvalues A, of
the matrix ATA are called the singular values of the matrix A. The corresponding eigenvectors u,,
of ATA are called right-singular vectors of A, the corresponding eigenvectors v, of AA™" left-singular
vectors:

ATAu, = \u,, AATv, =)y, (¥=1,2,...,7). (4.222a)
The relations between the right and left-singular vectors are:

Au, =dyv, A'v,=du, (4.222b)
A matrix A of size (m, n) with rank r has r positive-singular values d, (v =1,2,...,7). There exist r
orthonormalized right-singular vectors u,, and r orthonormalized left-singular vectors v,,. Furthermore,
there exist to the zero-singular value n — r orthonormalized right-singular vectors u, (v =r+1,...,n)
and m — r orthonormalized left-singular vectors v, (v = r + 1,...,m). Consequently, a matrix of

size (m,n) has n right-singular vectors and m left-singular vectors, and two orthogonal matrices can
be made from them (see 4.1.4, 9., p. 275):

U= (ug,ug,....uy), V=(Vy,Va,..., V). (4.223)

2. Singular-Value Decomposition The representation

G0 0 - 000
0 ds olo
N .. M T TOWS
0
) o - 0400
A=VAUT (4.2240) with A= |00 = 0000 (4.224D)
0 0l:
. m — T TOWS
00 0lo---0

r columns n — r columns

is called the singular-value decomposition of the matrix A. The matrix A, as the matrix A, is of size
(m,n) and has only zero elements except the first » diagonal elements a,, = d, (v =1,2,...,7). The
values d, are the singular values of A.

Remark: If substituting A instead of AT and consider unitary matrices U and V instead of orthogo-
nals, then all the statements about singular-value decomposition are valid also for matrices with com-
plex elements.

3. Application Singular-value decomposition can be used to determine the rank of the matrix A
of size (m,n) and to calculate an approximate solution of the over-determined system of equations
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Ax = b (see 4.5.3.1, p. 313) with the so-called regularization method, i.e., to solve the problem

m [ n 2 n
[[Ax — b[]* + of|x|* =3 {Z iy — bl] +ad ;= min!, (4.225)

i=1 Lk=1 k=1
where o > 0 is a regularization parameter.
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