
20 ComputerAlgebraSystems-Example
Mathematica
20.1 Introduction
20.1.1 Brief Characterization of ComputerAlgebra Systems

20.1.1.1 General Purpose of Computer Algebra Systems
The development of computers has made possible the introduction of computer algebra systems for
“doing mathematics”. They are software systems able to perform mathematical operations formally.
These systems, such as Macsyma, Reduce, Derive, Maple, Mathematica, Matlab, Sage, can also be used
on relatively small computers (PC), and with their help, we can transform complicated expressions,
calculate derivatives and integrals, solve systems of equations, represent functions of one and of sev-
eral variables variables graphically, etc. They can manipulate mathematical expressions, i.e., they can
transform and simplify mathematical expressions according to mathematical rules if this is possible in
closed form. They also provide a wide range of numerical solutions to required accuracy, and they can
represent functional dependence between data sets graphically.

Most computer algebra systems can import and export data. Besides a basic offer of definitions and
procedures which are activated at every start of the system, most systems provide a large variety of
libraries and program packages from special fields of mathematics, which can be loaded and activated
on request (see [20.15],[20.16]). Computer algebra systems allow users to build up their own packages
[20.11]–[20.14].

However, the possibilities of computer algebra systems should not be overestimated. They spare us
the trouble of boring, time-demanding, and mechanical computations and transformations, but they
do not save us from thinking.
For frequent errors see 19.8.2, p. 1004.

20.1.1.2 Restriction toMathematica
The systems are under perpetual developing. Therefore, every concrete representation reflects only a
momentary state. Here we introduce the basic idea and applications of these systems for the most im-
portant fields of mathematics. This introduction will help for the first steps in working with computer
algebra systems. In particular, we discussMathematica compatible until Version 10. This system seems
to be very popular among users, and the basic structures of the other systems are similar.

In this book, we do not discuss how computer algebra systems are installed on computers. It is assumed
that the computer algebra system has already been started by a command, and it is ready to commu-
nicate by command lines or in a Windows-like graphical environment.

The input and output is always represented for Mathematica (see 19.8.4.2, 1., p. 1016) in rows which
are distinguished from other text parts, e.g., in the form

In[1] := Solve[3 x− 5 == 0, x] (20.1)

System specific symbols (commands, type notation, etc.) will be represented in typewriter style.

In order to save space, we often write the input and the output in the same row in this book, and we
separate them by the symbol −→.

20.1.1.3 Two Introducing Examples of Basic Application Fields

1. Manipulation of Formulas
Formula manipulationmeans here the transformation of mathematical expressions in the widest sense,
e.g., simplification or transformation into a useful form, representation of the solution of equations or
systems of equations by algebraic expressions, differentiation of functions or determination of indefinite
integrals, solution of differential equations, formation of infinite series, etc.
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Solution of the following quadratic equation:

x2 + ax+ b = 0 with a, b ∈ IR. (20.2a)

In Mathematica, one types:

Solve[x2 + a x+ b == 0, x] . (20.2b)

After pressing the corresponding input key/keys (ENTER or SHIFT+RETURN, depending on the
operation system), Mathematica replaces this row by

In[1] := Solve[x2 + a x+ b == 0, x] (20.2c)

and starts the evaluation process. In a moment, the answer appears in a new row

Out[1] = {{x−> 1

2

(
−a−

√
a2 − 4b

)
}, {x−> 1

2

(
−a+

√
a2 − 4b

)
}}. (20.2d)

Mathematica has solved the equation and both solutions are represented in the form of a list consisting
of two sublists.

2. Numerical Calculations
Computer algebra systems provide many procedures to handle numerical problems of mathematics.
These are solutions of algebraic equations, linear systems of equations, the solutions of transcendental
equations, calculation of definite integrals, numerical solutions of differential equations, interpolation
problems, etc.

Problem: Solution of the equation

x6 − 2x5 − 30x4 + 36x3 + 190x2 − 36x− 150 = 0. (20.3a)

Although this equation of degree six cannot be solved in closed form, it has six real roots, which are to
be determined numerically.

In Mathematica the input is:

In[1] := NSolve[x6 − 2x5 − 30x4 + 36x3 + 190x2 − 36x− 150 == 0, x] (20.3b)

It results in the answer:

Out[1] = {{x−> −4.42228}, {x−> −2.14285}, {x−> −0.937347}, {x−> 0.972291},
{x−> 3.35802}, {x−> 5.17217}} (20.3c)

This is a list of the six solutions with a certain accuracy which will be discussed later.

20.2 Important StructureElements ofMathematica
Mathematica is a computer algebra system, developed byWolframResearch Inc. A detailed description
ofMathematica can be found in [20.11]–[20.16]. For the current version 10 see the Virtual Book in the
online Help.

20.2.1 Basic Structure Elements ofMathematica
In Mathematica the basic structure elements are called expressions. Their syntax is (it is emphasized
again, that the current objects are given by their corresponding symbol, by their names):

obj0[obj1, obj2, . . . , objn] (20.4)

obj0 is called the head of the expression; the number 0 is assigned to it. The parts obji (i = 1, . . . , n)
are the elements or arguments of the expression, and one can refer to them by their numbers 1, . . . , n.
In many cases the head of the expression is an operator or a function, the elements are the operands or
variables on which the head acts.
Also the head, as an element of an expression, can be an expression, too. Square brackets are reserved
in Mathematica for the representation of an expression, and they can be applied only in this relation.
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The term x∧2+2∗x+1, which can also be entered in this infix form (and also in the nicer, preferred
form x2 + 2x+ 1) in Mathematica, has the complete form (FullForm)

Plus[1, Times[2, x], Power[x, 2]]

which is also an expression. Plus, Power and Times denote the corresponding arithmetical operations.

The example shows that all simple mathematical operators exist in prefix form in the internal repre-
sentation, and the term notation is only a facility in Mathematica.
Parts of expressions can be separated. This can be done with Part[expr, i], where i is the number of
the corresponding element. In particular, i = 0 gives back the head of the expression.

If entering in Mathematica

In[1] := x2 + 2x+ 1,

then after the SHIFT and ENTER keys together are pressed, Mathematica answers

Out[1] = 1 + 2x+ x2

Mathematica analyzed the input and returned it in mathematical standard form. If the input had been
terminated by a semicolon, then the output would have been suppressed.
If entering

In[2] := FullForm[%]

then the answer is

Out[2] = Plus[1, Times[2, x], Power[x, 2]]

The sign % in the square brackets tellsMathematica that the argument of this input is the last output.
From this expression it is possible to get, e.g., the third element

In[3] := Part[%, 3] as Out[3] = x2

which is again an expression in this case.

Symbols in Mathematica are the notation of the basic objects; they can be any sequence of letters and
numbers but they must not begin with a number. The special sign is also allowed. Upper-case and
lower-case letters are distinguished. Reserved symbols begin either with a capital letter, or with the
sign , and in compound words also the second word begins with a capital letter, if it has a separate
meaning. Users are advised to create their own symbols starting with lower-case letters.

20.2.2 Types ofNumbers inMathematica

20.2.2.1 Basic Types of Numbers
Mathematica knows four types of numbers represented in Table 20.1.

Table 20.1 Types of numbers in Mathematica

Type of number Head Characteristic Input

Integers Integer exact integer, arbitrarily long nnnnn
Rational numbers Rational fraction of coprimes in form Integer/Integer pppp/qqqq
Real numbers Real floating-point number, arbitrary given precision nnnn.mmmm
Complex numbers Complex complex number in the form number+number ∗I

Real numbers, i.e., floating-point numbers, can be arbitrarily long. If an integer nnn is written in the
form nnn., then Mathematica considers it as a floating-point number, that is, of type Real.
The type of a number x can be determined with the command Head[x]. Hence, In[1] := Head[51]
results in Out[1] = Integer, while In[2] := Head[51.] Out[2] = Real. The real and imaginary
components of a complex number can belong to any type of numbers. A number such as 5.731 + 0 I is
considered as a Real type by Mathematica, while 5.731 + 0. I is of type Complex, since 0. is considered
as a floating-point approximation of 0.
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There are some further operations, which give information about numbers. So,

In[3] := NumberQ[51] results in Out[3] = True, (20.5a)

Otherwise, if x is manifestly not a number, as e.g. x = π, then the output is Out[3]=False. However,
NumericQ[π] gives True. Here, True and False are the symbols for Boolean constants.
IntegerQ[x] tests if x is an integer, or not, so

In[4] := IntegerQ[2.] −→ Out[4] = False (20.5b)

Similar tests can be performed for numbers with heads EvenQ, OddQ and PrimeQ. Their meanings are
obvious. So, one gets

In[5] := PrimeQ[1075643] −→ Out[5] = True (20.5c)

while

In[6] := PrimeQ[1075641] −→ Out[6] = False (20.5d)

These last tests belong to a group of test operators, called predicates or criteria, which all end by Q and
always answer True or False in the sense of a logical test (including a type check).

20.2.2.2 Special Numbers
In Mathematica, there are some special numbers which are often needed, and they can be called with

arbitrary accuracy. They include πwith the symbol Pi, ewith the symbol E,
π

180◦
as the transformation

factor from degree measure into radian measure with the constant Degree, Infinity as the symbol for
∞ and the imaginary unit I.

20.2.2.3 Representation and Conversion of Numbers
Numbers can be represented in different forms which can be converted into each other. So, every real
number x can be represented by a floating-point number N[x, n] with an n-digit precision.

IN[1] := N[E, 20] yields −→ Out[1] = 2.7182818284590452354 (20.6a)

With Rationalize[x, dx], the number x with an accuracy dx can be converted into a rational number,
i.e., into the fraction of two integers.

In[2] := Rationalize[%, 10−5] −→ Out[2] =
1071

394
(20.6b)

With 0 accuracy, Mathematica gives the possible best approximation of the number x by a rational
number.
Numbers of different number systems can be converted into each other. With BaseForm[x, b], the num-
ber x given in the decimal system is converted into the corresponding number in the number system
with base b ≤ 36. If b > 10, then the consecutive letters of the alphabet a, b, c, . . . are used for the
further digits having a meaning greater than ten.

A: In[1] := BaseForm[255, 16] −→ Out[1] = ff1 (20.7a)

In[2] := BaseForm[N[E, 10], 8] −→ Out[2] = 2.55760521318 (20.7b)

The reversed transformation can be performed by b∧∧mmmm.

B: In[1] := 8 ∧∧735 −→ Out[1] = 477 (20.7c)

Numbers can be represented with arbitrary precision (the default here is the hardware precision), and
for large numbers so-called scientific form is used, i.e., the form n.mmmm10∧ ± qq.

20.2.3 ImportantOperators
Several basic operators can be written in infix form (as in the classical form in mathematics)
< symb1 op symb2 > . However, in every case, the complete form of this simplified notation is the
expression op[symb1, symb2]. The most often occurring operators and their complete form are col-
lected in Table 20.2. Most symbols in Table 20.2 are obvious. For multiplication in the form a b, the
space between the factors is very important.
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Table 20.2 Important Operators in Mathematica

a + b Plus[a, b] u == v Equal[u, v]
a b or a ∗ b Times[a, b] w != v Unequal[w, v]
a∧b ore ab Power[a, b] r > t Greater[r, t]
a/b Times[a, Power[b, −1]] r ≥ t GreaterEqual[r, t]
u−> v Rule[u, v] s < t Less[s, t]
r = s Set[r, s] s ≤ t LessEqual[s, t]

The expressions with the heads Rule and Set will be explained. Set assigns the value of the expression
s on the right-hand side, e.g., a number, to the expression r on the left-hand side, e.g., a variable.
From here on, r is represented by this value until this assignment is changed. The change can be done
either by a new assignment or by x = . or by Clear[x], i.e., by releasing every assignment so far. The
construction Rule should be considered as a transformation rule. It occurs together with /. which is
the substitution operator.

Replace[t, u−> v] or t/. u−> v means that every occurance u in the expression t will be replaced by
the expression v.

In[1] := x+ y2 /. y−> a+ b −→ Out[1] = (a+ b)2 + x

It is typical in the case of both operators that the right-hand side is evaluated immediately after the
assignment or transformation rule. So, the left-hand side will be replaced by this evaluated right-hand
side at every later call.

Here, two further operators have to be mentioned with delayed evaluation.

The FullForm of u := v is SetDelayed[u, v] and (20.8a)

the FullForm of u : − > v is RuleDelayed[u, v] (20.8b)

The assignment or the transformation rule are also valid here until it is changed. Although the left-
hand side is always replaced by the right side, the right-hand side is evaluated for the first time only at
the moment when the left one is called.

The expression u == v or Equal[u, v] returns True if u and v are identical. Equal is used, e.g., in
manipulation of equations.

20.2.4 Lists
20.2.4.1 Notions
Lists are important tools inMathematica for the manipulation of whole groups of quantities, which are
important in higher-dimensional algebra and analysis.

A list is a collection of several objects into a new object. In the list, each object is distinguished only
by its place in the list. The construction of a list is made either by the command

List[a1, a2, a3, . . .] or by {a1, a2, a3, . . .} (20.9)

if the elements can be simply enumerated. To explain the work with lists, a particular list is used,
denoted by l1:

In[1] := l1 = List[a1, a2, a3, a4, a5, a6] −→ Out[1] = {a1, a2, a3, a4, a5, a6} (20.10)

Mathematica applies a short form to the output of the list: It is enclosed in curly braces.

Table 20.3 represents commands which choose one or more elements from a list, and the output is a
“sublist”.

For the list l1 in (20.9) one gets, e.g.,

In[2] := First[l1] −→ Out[2] = a1 In[3] := l1[[3]] −→ Out[3] = a3

In[4] := l1[[{2, 4, 6}]] −→ Out[4] = {a2, a4, a6}
In[5] := Take[l1, 2] −→ Out[5] = {a1, a2}
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Table 20.3 Commands for the choice of list elements

First[l], Last[l] selects the first/last element
Most[l], Rest[l] selects the elements except the last/first one
Part[l, n] or l[[n]] selects the n-th element
Part[l, {n1, n2, . . .}] gives a list of the elements with the given numbers
l[[{n1, n2, . . .}]] equivalent to the previous operation
Take[l, m] gives the list of the first m elements of l
Take[l, {m, n}] gives the list of the elements from m through n
Drop[l, n] gives the list without the first n elements
Drop[l, {m, n}] gives the list without the elements from m through n

20.2.4.2 Nested Lists
The elements of lists can also be lists, so nested lists can be obtained. If entering, e.g., for the elements
of the previous list l1 (20.10)

In[1] := a1 = {b11, b12, b13, b14, b15}
In[2] := a2 = {b21, b22, b23, b24, b25}
In[3] := a3 = {b31, b32, b33, b34, b35}

and analogously for a4, a5 and a6, then because of (20.10) a nested list (an array) is obtained which
is not shown here explicitly. One can refer to the j-th element of the i-th sublist with the command
Part[l, i, j]. The expression l[[i, j]] has the same result. In the above example (p. 1027), e.g.,

In[4] := l1[[3, 4]] yields Out[4] = b34

Furthermore, Part[l, {i1, i2 . . .}, {j1, j2 . . .}] or l[[{i1, i2, . . .}, {j1, j2, . . .}]] results in a list con-
sisting of the elements numbered with j1, j2 . . . from the lists numbered with i1, i2, . . ..

For the above example in 20.2.4.1, p. 1027

In[1] := l1[[{3, 5}, {2, 3, 4}]] −→ Out[1] = {{b32, b33, b34}, {b52, b53, b54}}
The idea of nesting lists is obvious from these examples. It is easy to create lists of three or higher
dimensions, and it is easy to refer to the corresponding elements.

20.2.4.3 Operations with Lists
Mathematica provides several further operations by which lists can be monitored, enlarged or shortened
(Table 20.4).

Table 20.4 Operations with lists

Position[l, a] gives a list of the positions where a occurs in the list
MemberQ[l, a] checks whether a is an element of the list
Select[l, crit] picks out all elements of the list for which crit holds
Cases[l, pattern] gives a list of elements which match the pattern
FreeQ[l, a] checks if a does not occur in the list
Prepend[l, a] changes the list by adding a to the front
Append[l, a] changes the list by appending a to the end
Insert[l, a, i] inserts a at position i in the list
Delete[l, {i, j, . . .}] delete the elements at positions i, j, . . . from the list
ReplacePart[l, a, i] replace the element at position i by a

With Delete, the original list l1 (20.10) can be shortened by the term a6:

In[1] := l2 = Delete[l1, 6] −→ Out[1] = {a1, a2, a3, a4, a5},
where in the output the ai are shown by their values – they are lists themselves.
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20.2.4.4 Tables
In Mathematica, several operations are available to create lists. One of them, which often occurs in
working with mathematical functions, is the command Table shown in Table 20.5.

Table 20.5 Operation Table

Table[f, {imax}] creates a list with imax values of f :f(1), f(2), . . . , f(imax)
Table[f, {i, imin, imax}] creates a list with values of f from imin to imax
Table[f, {i, imin, imax, di}] the same as the last one, but by steps di

Table of binomial coefficients for n = 7:

In[1] := Table[Binomial[7, i], {i, 0, 7}]] −→ Out[1] = {1, 7, 21, 35, 35, 21, 7, 1}
With Table, also higher-dimensional arrays can be created. With the expression

Table[f, {i, i1, i2}, {j, j1, j2}, . . .]
a higher-dimensional, multiple nested table is obtained, i.e., entering

In[2] := Table[Binomial[i, j], {i, 1, 7}, {j, 0, i}]
the binomial coefficients are got up to degree 7:

Out[2] = {{1, 1}, {1, 2, 1}, {1, 3, 3, 1}, {1, 4, 6, 4, 1},
{1, 5, 10, 10, 5, 1}, {1, 6, 15, 20, 15, 6, 1}, {1, 7, 21, 35, 35, 21, 7, 1}}

The operation Range produces a list of consecutive numbers or equally spaced numbers:

Range[n] yields the list {1, 2, . . . , n}
Similarly, Range[n1, n2] and Range[n1, n2, dn] produce lists of numbers (arithmetic sequences) from
n1 to n2 with step-size 1 or dn respectively. The command Array uses functions (as opposed to function
values used by Table) to create lists. Array[Exp,5] yields {e, e2, e3, e4, e5}.

20.2.5 Vectors andMatrices as Lists

20.2.5.1 Creating Appropriate Lists
Several special (list) commands are available for defining vectors and matrices. A one-dimensional list
of the form

v = {v1, v2, . . . , vn} (20.11)

can always be considered as a vector in n-dimensional space with components v1, v2, . . . , vn. The spe-
cial operation Array[v, n] produces the list (the vector) {v[1], v[2], . . . , v[n]}. Symbolic vector opera-
tions can be performed with vectors defined in this way.

The two-dimensional lists l1 (see 20.2.4.2, p. 1028) and l2 (see 20.2.4.3, p. 1028) can be considered as
matrices with rows i and columns j. In this case bij would be the element of the matrix in the i-th row
and the j-th column. A rectangular matrix of type (6,5) is defined by l1, and a square matrix of type
(5, 5) by l2.

With the operation Array[b, {n, m}] a matrix of type (n,m) is generated, whose elements are denoted
by b[i, j]. The rows are numbered by i, i changes from 1 to n; by j the columns are numbered from 1
to m. In this symbolic form l1 can be created as

l1 = Array[b, {6, 5}], (20.12a) where b[i, j] = bij (i = 1, . . . , 6; j = 1, . . . , 5). (20.12b)

Summarizing, lists can be created either by enumeration or by using the functions Array, Range,
Table. Note that lists are different from sets in mathematics.
The operation IdentityMatrix[n] produces the n-dimensional unit matrix.

With the operation DiagonalMatrix[list] a diagonal matrix is produced with the elements of the list
in its main diagonal.
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The operation Dimension[list] gives the size (number of rows, columns, . . . ) of a matrix, whose struc-
ture is given by a list. Finally, with the command MatrixForm[list], one gets a matrix-type represen-
tation of the list. A further possibility to define matrices is the following: Let f(i, j) be a function
of integers i and j. Then, the operation Table[f [i j], {i, n}, {j, m}] defines a matrix of type (n,m),
whose elements are the corresponding f(i, j).

20.2.5.2 Operations withMatrices andVectors
Mathematica allows formal manipulation of matrices and vectors. The operations given in Table 20.6
can be applied.

Table 20.6 Operations with matrices

c a matrix a is multiplied by the scalar c
a . b the product of matrices a and b
Det[a] the determinant of matrix a
Inverse[a] the inverse of matrix a
Transpose[a] the transpose of matrix a
MatrixExp[a] the exponential function of matrix a
MatrixPower[a, n] the n-th power of matrix a
Eigenvalues[a] the eigenvalues of matrix a
Eigenvectors[a] the eigenvectors of matrix a

A : In[1] := r = Array[a, {4, 4}] −→ Out[1] = { { a[1, 1], a[1, 2], a[1, 3], a[1, 4] },
{ a[2, 1], a[2, 2], a[2, 3], a[2, 4] },
{ a[3, 1], a[3, 2], a[3, 3], a[3, 4] },
{ a[4, 1], a[4, 2], a[4, 3], a[4, 4] }}

In[2] := Transpose[r] −→ Out[2] = { { a[1, 1], a[2, 1], a[3, 1], a[4, 1] },
{ a[1, 2], a[2, 2], a[3, 2], a[4, 2] },
{ a[1, 3], a[2, 3], a[3, 3], a[4, 3] },
{ a[1, 4], a[2, 4], a[3, 4], a[4, 4] }}

Here, the transpose matrix r of r is produced.

Let the general four-dimensional vector v be defined by

In[3] := v = Array[u, 4] −→ Out[3] = {u[1], u[2], u[3], u[4]}
Now, the product of the matrix r and the vector v is again a vector (see Calculations with Matrices,
4.1.4, p. 272).

In[4] := r. v −→ Out [4] = { a[1, 1]u[1] + a[1, 2] u[2] + a[1, 3] u[3] + a[1, 4]u[4] ,
a[2, 1]u[1] + a[2, 2] u[2] + a[2, 3] u[3] + a[2, 4]u[4] ,
a[3, 1]u[1] + a[3, 2] u[2] + a[3, 3] u[3] + a[3, 4]u[4] ,
a[4, 1]u[1] + a[4, 2] u[2] + a[4, 3] u[3] + a[4, 4]u[4] }.

There is no difference between row and column vectors in Mathematica. In general, matrix multiplica-
tion is not commutative (see Calculations with Matrices 4.1.4, p. 272). The expression r. v corresponds
to the product in linear algebra when a matrix is multiplied by a column vector from the right, while
v. r means a multiplication by a row vector from the left.

B: In the section on Cramer’s rule (4.5.2.3, p. 311) the linear system of equations pt = b is solved
with the matrix

In[1] := MatrixForm[p = {{2, 1, 3}, {1, −2, 1}, {3, 2, 2}}] −→ Out[1] =

⎛⎝ 2 1 3
1 −2 1
3 2 2

⎞⎠
and vectors

In[2] := t = Array[x, 3] −→ Out[2] = {x[1], x[2], x[3]}
In[3] := b = {9, −2, 7} −→ Out[3] = {9, −2, 7}.
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Since in this case Det[p]==13 �= 0 holds, the system can be solved by t = p−1b. This can be done by

In[4] := Inverse[p]. b with the output of the solution vector Out[4] = {−1, 2, 3}.
Note that a b calculates the componentwise product and Exp[a] gives the matrix containing the exp
of the components of the matrix a.

20.2.6 Functions

20.2.6.1 Standard Functions
Mathematica knows several standard mathematical functions, which are listed in Table 20.7.

Table 20.7 A few standard functions

Exponential function Exp[x]
Logarithmic functions Log[x], Log[b,x]
Trigonometric functions Sin[x], Cos[x], Tan[x], Cot[x], Sec[x], Csc[x]
Arc functions ArcSin[x], ArcCos[x], ArcTan[x], ArcCot[x], ArcSec[x], ArcCsc[x]
Hyperbolic functions Sinh[x], Cosh[x], Tanh[x], Coth[x], Sech[x], Csch[x]
Area functions ArcSinh[x], ArcCosh[x], ArcTanh[x], ArcCoth[x], ArcSech[x], ArcCsch[x]

All these functions can be applied even with complex arguments.

In every case must be considered the single-valuedness of the functions. For real functions one branch
of the function has to be chosen (if it is needed); for functions with complex arguments the principal
value (see 14.5, p. 758) should be chosen.

20.2.6.2 Special Functions
Mathematica knows several special functions, which are not standard functions. Table 20.8 lists some
of these functions.

Table 20.8 Special functions

Bessel functions Jn(z) and Yn(z) BesselJ[n,z], BesselY[n,z]
Modified Bessel functions In(z) and Kn(z) BesselI[n,z], BesselK[n,z]
Legendre polynomials Pn(x) LegendreP[n,x]
Spherical harmonic Y m

l (ϑ, φ) SphericalHarmonicY[l,m, θ, φ]

Further functions can be loaded with the corresponding special packages of Mathematica

20.2.6.3 Pure Functions
Mathematica supports the use of so-called pure functions. A pure function is an anonymous function,
an operation with no name assigned to it. They are denoted by Function[x, body]. The first argument
specifies the formal parameters and the second one is the body of the function, i.e., body is an expression
for the function of the variable x.

In[1] := Function[x, x3 + x2] −→ Out[1] = Function[x, x3 + x2] (20.13)

and so

In[2] := Function[x, x3 + x2][c] gives Out[2] = c2 + c3. (20.14)

We can use a simplified version of this command. It has the form body&, where the variable is denoted
by # . Instead of the previous two rows one can also write

In[3] := (#3 + #2)& [c] Out[3] = c2 + c3. (20.15)

It is also possible to define pure functions of several variables:
Function[ {x1, x2, . . .}, body] or in short form body&, where the variables in body are denoted by the
elements #1,#2, . . .. The sign & is very important for closing the expression, since it can be seen from
this sign that the previous expression should be considered as a pure function. Let us remark that the
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pure function #& is nothing else than the identity function: to any argument x it assigns x. Similarly,
#1& corresponds to the projection onto the first coordinate axis.

20.2.7 Patterns
Mathematica allows users to define their own functions and to use them in calculations. With the
command

In[1] := f[x ] := Polynomial[x] (20.16)

with Polynomial(x) as an arbitrary polynomial of variable x, a special function is defined by the user.

In the definition of the function f, there is no simple x, but x (pronounced x-blank) with a symbol
for the blank. The symbol x means “something with the name x”. From here on, every time when
the expression f[something] occurs,Mathematica replaces it by its definition given above. This type of
definition is called a pattern. The symbol blank denotes the basic element of a pattern; y stands for
y as a pattern. It is also possible to apply in the corresponding definition only a “ ”, that is y∧ . This
pattern stands for an arbitrary power of y with any exponent, thus, for an entire class of expressions
with the same structure.

The essence of a pattern is that it defines a structure. When Mathematica checks an expression with
respect to a pattern, it compares the structure of the elements of the expression to the elements of
the pattern, Mathematica does not check mathematical equality! This is important in the following
example: Let l be the list

In[2] := l = {1, y, ya, y
√
x, {f[yr/q], 2y}} (20.17)

If one writes

In[3] := l /. y∧ −> yes (20.18)

then Mathematica returns the list

Out[3] = {1, y, yes, yes, {f[yes], 2y}} (20.19)

Mathematica checked the elements of the list with respect to its structural identity to its pattern y∧

and in every case when it determined coincidence it replaced the corresponding element by yes. The
elements 1 and y were not replaced, since they have not the given structure, even though y0 = 1, y1 = y
holds.

Remark: Pattern comparison always happens in FullForm. If

In[4] := b/y /. y∧ −> yes is examined then Out[4] = b yes (20.20)

This is a consequence of the fact that FullForm of b/y is Times[b, Power[y, −1] ], and for structure
comparison the second argument of Times is identified as the structure of the pattern.

With the definition

In[5] := f[x ] := x3 (20.21a)

Mathematica replaces, corresponding to the given pattern,

In[6] = f[r] by Out[6] = r3 etc. (20.21b)

In[7] := f[a] + f[x] yields Out[7] = a3 + x3 (20.21c)

If however,

In[8] := f[x] := x3, then for the same input In[9] := f[a] + f[x] (20.21d)

the output would be

Out[9] = f[a] + x3 (20.21e)

In this case only the (fixed, single) input x corresponds to the definition.

20.2.8 FunctionalOperations
Functions operate on numbers and expressions. Mathematica can also perform operations with func-
tions, since the names of functions are handled as expressions so they can bemanipulated as expressions.
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1. Inverse Function, Inverse Series The determination of the inverse function of a given function
f can be made by the functional operation InverseFunction or InverseSeries.

A: In[1] := InverseFunction[f ] [x] −→ Out[1] = f−1 [x]

B: In[1] := InverseFunction[Exp] −→ Out[1] = Log

C: In[1] := InverseSeries[Series[g[x], {x, 0, 2}]]

Out[1] =
x− g[0]

g′[0]
− g′′[0](x− g[0])2

2g′[0]3
+O[x− g[0]]3

2. Differentiation Mathematica uses the possibility that the differentiation of functions can be
considered as a mapping in the space of functions. In Mathematica, the differentiation operator is
Derivative[1][f ] or in short form f′. If the function f is defined, then its derivative can be got by f′.

In[1] := f[x ] := Sin[x] Cos[x] With

In[2] := f′ follows Out[2] = Cos[#1]2 − Sin[#1]2 & ,

hence f′ is represented as a pure function and it evaluates to

In[3] := % [x] −→ Out[3] = Cos[x]2 − Sin[x]2

3. Nest The command Nest[f, x, n] means that the function f nested n times into itself should be
applied on x. The result is f[f[. . . f[x]] . . .].
4. NestList By NestList[f, x, n] a list {x, f[x], f[f[x]], . . .}will be shown, where finally f is nested
n times. FoldList[f, x, list] iterates a two-variable function.
5. FixedPoint For FixedPoint[f, x], the function is applied repeatedly until the result does not
change.
6. FixedPointList The functional operation FixedPointList[f, x] shows the continued list with
the results after f is applied, until the value no longer changes.

As an example for this type of functional operation the NestList operation will be used for the
approximation of a root of an equation f(x) = 0 with Newton’s method (see 19.1.1.2, p. 950). A root
of the equation x cos x = sin x is needed in the neighborhood of 3π/2:

In[1] := f[x ] := x − Tan[x] In[2] := f′[x] −→ Out[2] = 1 − Sec[x]2

In[3] = g[x ] := x − f[x]/f′[x]

In[4] := NestList[g, 4.6, 4] −→ Out[4] = {4.6, 4.54573, 4.50615, 4.49417, 4.49341}
In[5] := FixedPoint[g, 4.6] −→ Out[5] = 4.49341

A higher precision of the result can also be achieved.
7. Apply Let f be a function which is considered in connection with a list {a, b, c, . . .}. Then

Apply[f, {a, b, c, . . .}] f [a, b, c, . . .] (20.22)

In[1] := Apply[Plus, {u, v, w}] −→ Out[1] = u+ v + w

In[2] := Apply[List, a+ b+ c] −→ Out[2] = {a, b, c}
Here, the general scheme of how Mathematica handles expressions of expressions can be easily recog-
nized. The FullForm of the last operation is:

In[3] := FullForm[Apply[List, Plus[a, b, c]]] −→ Out[3] = List[a, b, c]

The functional operation Apply obviously replaces the Head of the considered expression Plus by the
required List.
8. Map With a defined function f the operation Map gives:

Map[f, {a, b, c, . . .}] −→ {f [a], f [b], f [c], . . .} (20.23)

Map generates a list whose elements are the values when f is applied to the original list.

Let f be the function f(x) = x2. It is defined by

In[1] := f[x ] := x2 With this f one gets
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In[2] := Map[f, {u, v, w}] −→ Out[2] = {u2, v2, w2}
Map can be applied for more general expressions:

In[3] := Map[f, Plus[a, b, c]] −→ Out[3] = a2 + b2 + c2

20.2.9 Programming
Mathematica can handle the loop constructions known from other languages for procedural program-
ming. The two basic commands are

Do[expr, {i, i1, i2, di}] and (20.24a)

While[test, expr] (20.24b)

The first command evaluates the expression expr, where i runs over the values from i1 to i2 in steps di.
If di is omitted, the step size is one. If i1 is also missing, then it starts from 1.
The second command evaluates the expression so far as test has the value True.

In order to determine an approximate value of e2, the series expansion of the exponential function
is used:

In[1] := sum = 1.0;
Do[sum = sum+ (2∧i/i!), {i, 1, 10}];
sum

Out[1] = 7.38899

(20.25)

The Do loop evaluates its argument a previously given number of times, while the While loop evaluates
as far as a previously given condition becomes false.

Among other things, Mathematica provides the possibility of defining and using local variables. This
can be done by the command

Module[{t1, t2, . . .}, procedure] (20.26)

The variables or constants enclosed in the list are locally usable in the module; their values assigned
here are not valid outside of this module.

A: A procedure is to be defined which calculates the sum of the square roots of the integers from 1
to n.

In[1] := sumq[n ] :=
Module[{sum = 1.},

Do[sum = sum+N [Sqrt[i]], {i, 2, n}];
sum ];

(20.27)

The call sumq[30] results in 112.083.

The real power of the programming capabilities of Mathematica is, first of all, the use of functional
methods in programming, which are made possible by the operations Nest, NestWhile, Apply, Map,
MapThread, Distribute and by some further ones.

B: ExampleA can be written in a functional manner for the case when an accuracy of ten digits is
required:

sumq[n ] := N[Apply[Plus, Table[Sqrt[i], {i, 1, n}]], 10],
sumq[30] results in 112.0828452. Total[

√
N[Range[n], 10]] gives the same result without using an index,

increasing its value continuously, without needing the variable sum and its initial value.

For the details, see [20.16].
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20.2.10 Supplement about Syntax, Information,Messages

20.2.10.1 Contexts, Attributes
Mathematica must handle several symbols; among them there are those which are used in further pro-
gram modules loaded on request. To avoid many-valuedness, the names of symbols in Mathematica
consist of two parts, the context and the short name.

Short names mean here the names (see 20.2, p. 1024) of heads and elements of the expressions. In
addition, in order to name a symbolMathematica needs the determination of the program part to which
the symbol belongs. This is given by the context, which holds the name of the corresponding program
part. The complete name of a symbol consists of the context and the short name, which are connected
by the ’ sign.

When Mathematica starts, then there are always two contexts present: System’ and Global’. Informa-
tion about other available program modules can be obtained by the command Contexts[ ].

All built-in functions ofMathematica belong to the context System’, while the functions defined by the
user belong to the context Global’.

If a context is actual, thus, the corresponding program part is loaded, then the symbols can be referred
to by their short names.
For the input of a furtherMathematica program module by << NamePackage, the corresponding con-
text is opened and introduced into the previous list. It can happen that a symbol has already been
introduced with a certain name before this module is loaded, and in this newly opened context the
same name occurs with another definition. In this caseMathematica gives a warning to the user. Then
the previously defined name can be erased by the command Remove[Global‘name], or the complete
name for the newly loaded symbol can be applied.

Besides the properties that the symbols have per definition, it is possible to assign to them some other
general properties, called attributes, like Orderless, i.e., unordered or commutative, Protected, i.e.,
values cannot be changed, or Locked, i.e, attributes cannot be changed, etc. Informations about the
already existing attributes of the considered object can be obtained by Attributes[f ].

Some symbols can be protected by Protect[somesymbol]; then no other definition can be introduced
for this symbol. This attribute can be erased with the command Unprotect.

20.2.10.2 Information
Information can be obtained about the fundamental properties of objects by the commands
?symbol information about the object given by the name symbol,
??symbol detailed information about the object,
?B∗ information about all Mathematica objects, whose names begin with B.

It is also possible to get information about special operators, e.g., by ? := about the SetDelay operator.

However, the most useful possibility is to put the cursor anywhere in the cell containing the symbol of
the object in question and press the key F1.

20.2.10.3 Messages
Mathematica has a message system which can be activated and used for different reasons. The messages
are generated and shown during the calculations. Their presentation has a uniform form: symbol : :
tag, providing the possibility to refer to them later. (Such messages can also be created by the user.)
Consider the following examples as illustrations.

A: In[1] := f[x ] := 1/x; In[2] := f[0]

Power: :infy:Infinite expression
1

0
encountered.

Out[2] = ComplexInfinity

B: In[1] := Log[3, 16, 25]
Log: :argt:Log called with 3 arguments; 1 or 2 arguments are expected.
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Out[1] =Log[3, 16, 25]

In exampleA,Mathematicawarns us that during the evaluation of an expression it got the value∞. The
calculation itself can be performed. In exampleB the call of logarithm contains three arguments, which
is not allowed according to the definition. Calculations cannot be performed. Mathematica cannot do
anything with the expression. The user can switch off a message with Off[s : : tag]. With On the

message will appear again. Quiet switches off all the messages.
With Messages[symbol] all messages associated to the symbol with the name symbol can be recalled.

20.3 ImportantApplicationswithMathematica
This section describes how to handle mathematical problems with computer algebra systems. The
choice of the considered problems is organized according to their frequency in practice and also accord-
ing to the possibilities of solving them with a computer algebra system. Examples will be given for
functions, commands, operations and supplementary syntax. When it is important, the corresponding
special package is also discussed briefly.

20.3.1 Manipulation ofAlgebraic Expressions
In practice, further operations must usually be performed with the occurring algebraic expressions (see
1.1.5, p. 10) such as differentiation, integration, series representation, limiting or numerical evaluation,
transformations, etc. In general, these expressions are considered over the ring of integers (see 5.3.7,
p. 361) or over the field (see 5.3.7.1, 2., p. 361) of real numbers. Computer algebra systems can handle,
e.g., polynomials also over finite fields or over extension fields (see 5.3.7.1, 3., p. 362) of the rational
numbers. Interested people should study the special literature. The algebraic operations with polyno-
mials over the field of rational numbers have special importance. Mathematica provides the functions
and operations represented in Table 20.9 for transformation of algebraic expressions. See also the
menu item Palettes|Other|Algebraic Manipulation.

Table 20.9 Commands for manipulation of algebraic expressions

Expand[p] expands the powers and products in a polynomial p by multiplication
Expand[p, r] multiplies only the parts in p, which contain r
PowerExpand[a] expands also the powers of products and powers of powers
Factor[p] factorizes a polynomial completely
Collect[p, x] orders the polynomial with respect the powers of x
Collect[p, {x, y, . . .}] the same as the previous one, with several variables
ExpandNumerator[r] expands only the numerator of a rational expression
ExpandDenominator[r] expands only the denominator
ExpandAll[r] expands both numerator and denominator completely
Together[r] combines the terms in the expression over a common denominator
Apart[r] represents the expression in partial fractions
Cancel[r] cancels the common factors in the fraction

20.3.1.1 Multiplication of Expressions
The operation of multiplication of algebraic expressions can always be performed. The coefficients can
also be undefined expressions.

In[1] : = Expand[(x+ y − z)4] gives

Out[1] = x4 + 4 x3 y + 6 x2 y2 + 4 x y3 + y4 − 4x3 z − 12 x2 y z − 12 x y2 z − 4 y3 z
+6x2 z2 + 12x y z2 + 6 y2 z2 − 4x z3 − 4 y z3 + z4

Similarly,

In[3] : = Expand[(a x+ b y2)(c x3 − d y2)]

Out[3] = a c x4 − a d x y2 + b c x3 y2 − b d y4
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20.3.1.2 Factorization of Polynomials
Mathematica performs factorization over the integer or rational numbers if it is possible. Otherwise the
original expression is returned.

In[1] := p = x6 + 7x5 + 12x4 + 6x3 − 25x2 − 30x− 25;

In[2] := Factor[p] , gives

Out[2] = (5 + x) (1 + x+ x2) (−5 + x2 + x3)

Mathematica decomposes the polynomial into three factors which are irreducible over the rational num-
bers.

If a polynomial can be completely decomposed over the complex rational numbers, then this can be
obtained by the option GaussianIntegers.

In[1] := Factor[x2 − 2x+ 5] −→ Out[1] = 5− 2x+ x2 , but

In[2] := FactorGaussianIntegers−> True]

Out[2] = ((−1− 2I) + x)((−1 + 2I) + x)

20.3.1.3 Operations with Polynomials
Table 20.10 contains a collection of operations by which polynomials can be algebraically manipulated
over the field of rational numbers.

Table 20.10 Algebraic polynomial operations

PolynomialGCD[p1, p2] determines the greatest common divisor of p1 and p2
PolynomialLCM[p1, p2] determines the least common multiple of p1 and p2
PolynomialQuotient[p1, p2, x] divides p1 (as a function of x) by p2, the residue

is omitted
PolynomialRemainder[p1, p2, x] determines the residue on dividing p1 by p2
MonomialList[p] gives the list of all monomials in the polynomial p

Two polynomials are defined:

In[1] := p = x6 + 7x5 + 12x4 + 6x3 − 25x2 − 30x− 25;

q = x4 + x3 − 6x2 − 7x− 7;

With these polynomials the following operations are performed:

In[2] := PolynomialGCD[p, q] −→ Out[2] = 1 + x+ x2

In[3] := PolynomialLCM[p, q]//Factor

Out[3] = (5 + x)(−7 + x2)(1 + x+ x2)(−5 + x2 + x3)

In[4] := PolynomialQuotient[p, q, x] −→ Out[4] = 12 + 6x+ x2

In[5] := PolynomialRemainder[p, q, x] −→ Out[5] = 59 + 96x+ 96x2 + 37x3

With the two last results one gets

x6 + 7x5 + 12x4 + 6x3 − 25x2 − 30x− 25

x4 + x3 − 6x2 − 7x− 7
= x2 + 6x+ 12 +

37x3 + 96x2 + 96x+ 59

x4 + x3 − 6x2 − 7x− 7
.

20.3.1.4 Partial Fraction Decomposition
Mathematica can decompose a fraction of two polynomials into partial fractions, of course, over the
field of rational numbers. The degree of the numerator of any part is always less than the degree of the
denominator.

Using the polynomials p and q from the previous example one gets

In[1] := Apart[q/p] −→ Out[1] = − 6

35 (5 + x)
+

−55 + 11x+ 6 x2

35 (−5 + x2 + x3)
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20.3.1.5 Manipulation of Non-Polynomial Expressions
Complicated expressions, not necessarily polynomials, can often be simplified by the help of the com-
mand Simplify. Mathematica will always try to manipulate algebraic expressions, independently of
the nature of the symbolic quantities. Here, certain built-in knowledge is used. Mathematica knows the
rules of powers (see 1.1.4.1, p. 7):

In[1] := Simplify[an/am)] −→ Out[1] = a−m+n (20.28)

With the option Trig −> True, the commands Expand and Factor can express powers of trigono-
metric functions by trigonometric functions with multiple arguments, and conversely. Alternatively,
TrigExpand, TrigFactor, TrigFactorList, TrigReduce, ExpToTrig, TrigToExp can be applied.

In[1] := TrigExpand[Sin[2x]Cos[2y]]

Out[1] = 2Cos[x]Cos[y]2Sin[x]-2Cos[x]Sin[x]Sin[y]2

In[2] := Factor[Sin[4x], Trig−> True]− 8Cos[x]3Sin[x]+ 4Cos[x] Sin[x])

Out[2] = 0

In[3] := Factor[Cos[5x], Trig−> True]

Out[3] = Cos[x] (1− 2 Cos[2x]+ 2 Cos[4x]) .

Remark: The command ComplexExpand[expr] assumes a real variable expr, while in the command
ComplexExpand[expr, {x1, x2, . . .}] the variables xi are supposed to be complex.

In[1] := ComplexExpand[Sin[2 x],{x}]
Out[1] = Cosh[2 Im[x]] Sin[2 Re[x]]+I Cos[2 Re[x]] Sinh[2 Im[x]]

20.3.2 Solution of Equations and Systems of Equations
Computer algebra systems know procedures to solve equations and systems of equations. If the equa-
tion can be solved explicitly in the domain of algebraic numbers, then the solution will be represented
with the help of radicals. If it is not possible to give the solution in closed form, then at least numerical
solutions can be found with a given accuracy. In the following some basic commands will be introduced.
The solution of systems of linear equations (see 4.5.2, p. 308) is discussed here in a special section (see
20.3.2.4, p. 1040).

20.3.2.1 Equations as Logical Expressions
Mathematica allows the manipulation and solution of equations within a wide range. In Mathematica,
an equation is considered as a logical expression. If one writes

In[1] := g = x2 + 2x− 9 == 0, (20.29a)

then Mathematica considers it as a definition of a function with Boolean values. Giving the input

In[2] := %/. x−> 2, yields Out[2] = False, (20.29b)

since with this value of x the left-hand side and right-hand side are not equal.
The command Roots[g, x] transforms the above identity into a form which contains x explicitly. Math-
ematica represents the result with the help of the logical OR in the form of a logical statement:

In[3] := Roots[g, x] −→ Out[3] = x == −1−
√
10||x == −1 +

√
10 (20.29c)

In this sense, logical operations can be performed with equations.
With the operation ToRules, the last logical type equations can be transformed as follows:

In[4] : = {ToRules[%]}
Out[4] = {{x−> −1−

√
10}, {x−> −1 +

√
10}} (20.29d)
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20.3.2.2 Solution of Polynomial Equations
Mathematica provides the command Solve to solve equations. In a certain sense, Solve perform the
operations Roots and ToRules after each other.

Mathematica solves polynomial equations in symbolic form up to fourth degree, since for these equations
solutions can be given in the form of algebraic expressions. However, if equations of higher degree can be
transformed into a simpler form by algebraic transformations, such as factorization, thenMathematica
provides symbolic solutions. In these cases, Solve tries to apply the built-in operations Expand and
Decompose.

In Mathematica numerical solutions are also available.

The general solution of an equation of third degree:

In[1] := Solve[x3 + a x2 + b x+ c == 0, x]

Mathematica gives

Out[1] = {{x−> −a

3

− 21/3 (−a2 + 3 b)

3
(
−2 a3 + 9 a b− 27 c+ 33/2

√
− (a2 b2) + 4 b3 + 4 a3 c− 18 a b c+ 27 c2

)1/3
+

(
−2 a3 + 9 a b− 27 c+ 33/2

√
− (a2 b2) + 4 b3 + 4 a3 c− 18 a b c+ 27 c2

)1/3
321/3

},
. . .}

The solution list here shows only the first term explicitly because of the length of their terms. If an
equation with given coefficients a, b, c has to be solved, then it is better to handle the equation itself
with Solve than to substitute a, b, c into the solution formula.

A: For the cubic equation (see 1.6.2.3, p. 40) x3 + 6x+ 2 = 0 one gets:

In[1] : = Solve[x3 + 6 x+ 2 == 0, x]

Out[1] = {{x−> 21/3 − 22/3}, {x−> 1− I
√
3

21/3
− 1 + I

√
3

22/3
}, {x−> −1− I

√
3

22/3
+

1 + I
√
3

21/3
}}

B: Solution of an equation of sixth degree:

In[2] : = Solve[x6 − 6x5 + 6x4 − 4x3 + 65x2 − 38x− 120 == 0, x]

Out[2] = {{x−> −1}, {x−> −1− 2 I}, {x−> −1 + 2 I}, {x−> 2}, {x−> 3}, {x−> 4}}
Mathematica succeeded in factorizing the equation in B with internal tools; then it is solved without
difficulty.

If numerical solutions are required, then the command NSolve can be used.

The following equation is solved by NSolve:

In[3] : = NSolve[x6 − 4x5 + 6x4 − 5x3 + 3x2 − 4x+ 2 == 0, x]

Out[3] = {{x−> −0.379567− 0.76948 I}, {x−> −0.379567 + 0.76948 I},
{x−> 0.641445}, {x−> 1.− 1. I}, {x−> 1.+ 1. I}, {x−> 2.11769}}

20.3.2.3 Solution of Transcendental Equations
Mathematica can solve transcendental equations, as well. In general, this is not possible symbolically,
and these equations often have infinitely many solutions. In these cases, an estimate of the domain
should be given, where Mathematica has to find the solutions. This is possible with the command
FindRoot[g, {x, xs}], where xs is the initial value for the search of the root.

In[1] : = FindRoot[x+ ArcCoth[x]− 4 == 0, {x, 1.1}]
Out[1] = {x−> 1.00502} and
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In[2] : = FindRoot[x+ ArcCoth[x]− 4 == 0, {x, 5}] −→ Out[2] = {x−> 3.72478}

20.3.2.4 Solution of Systems of Equations
Mathematica can solve simultaneous equations. The operations, built-in for this purpose, are repre-
sented in Table 20.11, and they present the symbolical solutions, not the numerical ones.
Similarly to the case of one unknown, the command NSolve gives the numerical solution(s). The solu-
tion of systems of linear equations is discussed in 20.3.3, p. 1040.

Table 20.11 Operations to solve systems of equations

Solve[{l1 == r1, l2 == r2, . . .}, vars] solves the given system of equations with respect to
vars

Eliminate[{l1 == r1, . . .}, vars] eliminates vars from the system of equations
Reduce[{l1 == r1, . . .}, vars] simplifies the system of equations and gives the possi-

ble solutions
FindInstance[expr, vars] finds an instance of vars that make expr true

20.3.3 Linear Systems of Equations andEigenvalueProblems
In 20.2.4, p. 1027, the notion of matrix and several operations with matrices were defined on the basis
of lists. Mathematica applies these notions in the theory of systems of linear equations. In the following
command m,n denote given integers, not variables.

P = Array[p, {m,n}] (20.30)

defines a matrix of type (m,n) with elements pij = p[[i, j]]. Furthermore

X = Array[x, {n}] und B = Array[b, {m}] (20.31)

are n- or m-dimensional vectors. With these definitions the general system of linear homogeneous or
inhomogeneous equations can be written in the form (see 4.5.2, p. 308)

P .X == B P .X == 0 or Thread[P . X == B] Thread[P . X == 0] (20.32)

1. Special Case n = m, detP �= 0
In the special case n = m, detP �= 0, the system of inhomogeneous equations has a unique solution,
which can be determined directly by

X = Inverse[P ]. B (20.33)

Mathematica can handle such systems of up to ca. 5000 unknowns in a reasonable time, depending on
the computer system. An equivalent, but much faster solution is obtained by LinearSolve[P,B].

2. General Case
With the commands LinearSolve and NullSpace, all the possible cases can be handled as discussed
in 4.5.2, p. 308, i.e., it can be determined first if any solution exists, and if it does, then it is calculated.
Now, some of the examples from 4.5.2, p. 308ff. will be discussed.

A: The example in 4.5.2.1, 2., p. 310, is a system of homogeneous equations

x1 − x2 + 5x3 − x4 = 0
x1 + x2 − 2x3 + 3x4 = 0
3x1 − x2 + 8x3 + x4 = 0
x1 + 3x2 − 9x3 + 7x4 = 0

which has non-trivial solutions. These solutions are the linear combinations of the basis vectors of the
null space of matrix p. It is the subspace of the n-dimensional vector space which is mapped into the
zero by the transformation p. A basis for this space can be generated by the command NullSpace[p].
With the input

In[1] := p = {{1,−1, 5,−1}, {1, 1,−2, 3}, {3,−1, 8, 1}, {1, 3,−9, 7}}
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a matrix, whose determinant is actually zero is defined (check it by calculating Det[p]). Now

In[2] := NullSpace[p] and Out[2] = {{−1,−2, 0, 1}, {−3, 7, 2, 0}}
is displayed, a list of two linearly independent vectors of four-dimensional space, which form a basis for
the two-dimensional null-space of matrix p. An arbitrary linear combination of these vectors is also in
the null-space, so it is a solution of the system of homogeneous equations. This solution coincides with
the solution found in 4.5.2.1, 2., p. 310.

B: Consider the example A in 4.5.2.1, 2., p. 309,

x1 − 2x2 + 3x3 − x4 + 2x5 = 2
3x1 − x2 + 5x3 − 3x4 − x5 = 6
2x1 + x2 + 2x3 − 2x4 − 3x5 = 8

with matrix m1 of type (3, 5), and vector b1

In[1] := m1 = {{1,−2, 3,−1, 2}, {3,−1, 5,−3,−1}, {2, 1, 2,−2,−3}};
In[2] := b1 = {2, 6, 8};

For the command

In[3] := LinearSolve[m1, b1] the response is

LinearSolve : : nosol: Linear equation encountered which has no solution.

The input appears as output.

C: According to example B from 4.5.2.1, 1., p. 309,

x1 − x2 + 2x3 = 1
x1 − 2x2 − x3 = 2
3x1 − x2 + 5x3 = 3

−2x1 + 2x2 + 3x3 = −4

the input is

In[1] := m2 = {{1,−1, 2}, {1,−2,−1}, {3,−1, 5}, {−2, 2, 3}};
In[2] := b2 = {1, 2, 3,−4};

To learn how many equations have independent left-hand sides, one calls

In[3] := RowReduce[m2];−→ Out[3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0}}
Then the input is

In[4] := LinearSolve[m2, b2];−→ Out[4] = {10
7
,−1

7
,−2

7
}

The answer is the known solution.

3. Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors of matrices are defined in 4.6, p. 314. Mathematica provides the possibility
of determining eigenvalues and eigenvectors by special commands. So, the command Eigenvalues[m]
produces a list of eigenvalues of a squarematrixm, Eigenvectors[m] creates a list of the eigenvectors of
m, whereas Eigensystem[m] gives both. If N[m] is substituted instead ofm, then one gets the numerical
eigenvalues. In general, if the order of the matrix is greater than four (n > 4), then no algebraic
expression can be obtained, since the characteristic polynomial has degree higher than four. In this
case, one should ask for numerical values.

In[1] := h = Table[1/(i+ j − 1), {i, 5}, {j, 5}]
This generates a five-dimensional so-called Hilbert matrix.

Out[1] = {{1, 1
2
,
1

3
,
1

4
,
1

5
}, {1

2
,
1

3
,
1

4
,
1

5
,
1

6
}, {1

3
,
1

4
,
1

5
,
1

6
,
1

7
}, {1

4
,
1

5
,
1

6
,
1

7
,
1

8
}, {1

5
,
1

6
,
1

7
,
1

8
,
1

9
}}
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With the command

In[2] := Eigenvalues[h]

the answer (which may be not useful) is

{Root[-1 + 307505 #1 - 1022881200 #12 + . . .}
But with the command

In[3] := Eigenvalues[N[h]] one gets

Out[3] = {1.56705, 0.208534, 0.0114075, 0.000305898, 3.28793× 10−6}

20.3.4 Differential and Integral Calculus

The notation of the derivative as a functional operator was introduced in 20.2.8, p. 1032. Mathematica
provides several possibilities to apply the operations of analysis, e.g., determination of the derivative
of arbitrarily high order, of partial derivatives, of the complete differential, determination of indefinite
and definite integrals, series expansion of functions, and also solutions of differential equations.

20.3.4.1 Calculation of Derivatives

1. Differentiation Operator
The differentiation operator (see 20.2.8, p. 1032) is Derivative. Its complete form is

Derivative[n1, n2, . . .] (20.34)

The arguments say how many times the function is to be differentiated with respect to the current
variables. In this sense, it is an operator of partial differentiation. Mathematica tries to represent the
result as a pure function.

2. Differentiation of Functions
The differentiation of a given function can be performed in a simplified manner with the operator D.
With D[f [x], x], the derivative of the function f at the argument x will be determined.
D belongs to a group of differential operations, which are enumerated in Table 20.12.

Table 20.12 Operations of differentiation

D[f [x], {x, n}] yields the n-th derivative of function f(x) with respect to x
D[f, {x1, n1}, {x2, n2}, · · ·] multiple derivatives, ni-th derivative with respect to xi (i = 1, 2, · · ·)
Dt[f ] the complete differential of the function f

Dt[f, x] the complete differential
df

dx
of the function f

Dt[f, x1, x2, . . .] the complete differential of a function of several variables

A : In[1] : = D[Sqrt[x3 Exp[4x] Sin[x]], x]

Out[1] =
E4x x3 Cos[x] + 3 E4x x2Sin[x] + 4E4x x3 Sin[x]

2
√
E4x x3 Sin[x]

B : In[1] := D[(2x+ 1)3x, x] −→ Out[1] = (1 + 2x)3x
(

6x

1 + 2 x
+ 3Log[1+2 x]

)
The command Dt results in the complete derivative or complete differential.

C : In[1] := Dt[x3 + y3] −→ Out[1] = 3x2Dt[x] + 3y2 Dt[y]

D : In[1] := Dt[x3 + y3, x] −→ Out[1] = 3x2 + 3y2Dt[y, x]
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In this last example,Mathematica supposes y to be a function of x, which is not known, so it writes the
second part of the derivative in a symbolic way. The preferable forms of writing are: D[x[t3] + y[t]3, t]
and D[x3 + y[x]3, x] showing explicitly the independent variables.

IfMathematica finds a symbolic function while calculating a derivative, it leaves it in this general form,
and expresses its derivative by f ′.

E : In[1] := D[x f[x]3, x] −→ Out[1] = f[x]3 + 3xf[x]2f’[x]

Mathematica knows the rules for differentiation of products and quotients, it knows the chain rule, and
it can apply these rules formally:

F : In[1] := D[f[u[x]], x] −→ Out[1] = f′[u[x]] u′[x]

G : In[1] := D[u[x]/v[x], x] −→ Out[1] =
u′[x]
v[x]

− u[x] v′[x]
v[x]2

20.3.4.2 Indefinite Integrals

With the command Integrate[f, x], Mathematica tries to determine the indefinite integral
∫
f(x) dx.

If Mathematica knows the integral, it gives it without the integration constant. Mathematica supposes
that every expression not containing the integration variable does not depend on it.
In general,Mathematica finds an indefinite integral, if there exists one which can be expressed in closed
formby elementary functions, such as rational functions, exponential and logarithmic functions, trigono-
metric and their inverse functions, etc. IfMathematica cannot find the integral, then it returns the orig-
inal input. Mathematica knows some special functions which are defined by non-elementary integrals,
such as the elliptic functions, and some others.

To demonstrate the possibilities of Mathematica, some examples will be shown, which are discussed in
8.1, p. 480ff.

1. Integration of Rational Functions
(see also 8.1.3.3, p. 485ff.)

A : In[1] : = Integrate[(2x+ 3)/(x3 + x2 − 2x), x]

Out[1] =
5

3
Log[−1 + x]− 3 Log[x]

2
− 1

6
Log[2 + x]

B : In[1] : = Integrate[(x3 + 1)/(x(x− 1)3), x]

Out[1] = − 1

(−1 + x)2
− 1

−1 + x
+ 2 Log[−1 + x]− Log[x] (20.35)

On the monitor can be seen in the left corner of the next cell a plus sign. Clicking on it one may choose
either the free-from input or the Wolfram-Alpha query. If one types the integral into one of these then
there is given the possibility to have a look at all the details of the process of integration.

2. Integration of Trigonometric Functions
(see also 8.1.5, p. 491ff.)

A: The example A in 8.1.5.2, p. 492, with the integral
∫

sin2 x cos5 x dx is calculated (substitution

is done by the program automatically, if needed):

In[1] : = Integrate[Sin[x]2Cos[x]5, x]

Out[1] =
5 Sin[x]

64
− 1

192
Sin[3 x]− 3

320
Sin[5 x]− 1

448
Sin[7 x]
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B: The example B in 8.1.5.2, p. 492, with the integral
∫ sin x√

cos x
dx is calculated:

In[1] := Integrate[Sin[x]/Sqrt[Cos[x]], x] −→ Out[1] = −2
√
Cos[x]

Remark: In the case of non-elementary integrals Mathematica may do nothing.

In[1] :=
∫

xxdx −→ Out[1] =
∫

xxdx

20.3.4.3 Definite Integrals andMultiple Integrals

1. Definite Integrals
With the command Integrate[f, {x, xa, xe}], Mathematica can evaluate the definite integral of the
function f(x) with a lower limit xa and upper limit xe.

A : In[1] := Integrate[Exp[−x2], {x, 0, Infinity}] −→ Out[1] =

√
π

2

(see Table 21.8, p. 1098, No. 25 for a = 1).

B: If the input is

In[1] := Integrate[
1

x2
, {x,−1, 1}] one gets

Out[1] = Integrate::idiv: ”Integral of
1

x2
does not converge on {-1,1}. ”

In the calculation of definite integrals one should be careful. If the properties of the integrand are not
known, then it is recommended to ask for a graphical representation of the function in the considered
domain before integration.

2. Multiple Integrals
Definite double integrals can be called by the command

Integrate[f[x, y], {x, xa, xe}, {y, ya, ye}] (20.36)

The evaluation is performed from right to left, so, first the integration is evaluated with respect to y.
The limits ya and ye can be functions of x, which are substituted into the primitive function. Then the
integral is evaluated with respect to x.

For the integral A, which calculates the area between a parabola and a line intersecting it twice, in
8.4.1.2, p. 524, one gets

In[1] := Integrate[x y2, {x, 0, 2}, {y, x2, 2x}] −→ Out[1] =
32

5
.

Also in this case, it is important to be careful with the discontinuities of the integrand. The domain of in-
tegration can also be specifiedwith inequalities: Integrate[Boole[x2+y2 ≤ 1, {x,−1, 1}, {y,−1, 1}]]
gives π.

20.3.4.4 Solution of Differential Equations
Mathematica can handle ordinary differential equations symbolically if the solution can be given in
closed form. In this case,Mathematica gives the solution in general. The commands discussed here are
listed in Table 20.13.
The solutions (see 9.1, p. 540) are represented as general solutions with the arbitrary constants C[i].
Initial values and boundary conditions can be introduced in the part of the list which contains the equa-
tion or equations. In this case a special solution is returned. As examples, two differential equations
are solved here from 9.1.1.2, p. 542.

A: The solution of the differential equation y′(x)− y(x) tan x = cos x is to be determined.

In[1] := DSolve[y′[x]− y[x] Tan[x] == Cos[x], y, x]
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Mathematica solves this equation, and gives the solution as a pure function with the integrations con-
stant C[1].

Table 20.13 Commands to solve differential equations

DSolve[deq, y[x], x] solves the differential equation for y[x] (if it is possible); y[x]
may be given in implicit form

DSolve[deq, y, x] gives the solution of the differential equation in the form of a
pure function

DSolve[{deq1, deq2, . . .}, y, x] solves a system of ordinary differential equations

Out[1] =
{{

y → Function[x, C[1] Sec[x] + Sec[x]

(
x

2
+

1

4
Sin[2 x]

)
]
}}

If it is required to get the solution value y[x], then Mathematica gives

In[2] := y[x]/. %1 −→ Out[2] =
{
C[1]Sec[x] + Sec[x]

(
x

2
+

1

4
Sin[2 x]

)}
One also could make the substitution for other quantities, e.g., for y′[x] or y[1]. The advantage of using
pure functions is obvious here.

B: The solution of the differential equation y′(x)x(x− y(x)) + y2(x) = 0 (see 9.1.1.2, 2., p. 542) is
to be determined.

In[1] := DSolve[y′[x] x(x− y[x]) + y[x]∧2 == 0, y[x], x]

Out[1] =

{{
y[x] −→ -x ProductLog[−E−C[1]

x
]

}}

Here ProductLog[z] gives the principal solution for w in z = wew. The solution of this differential
equation was given in implicit form (see 9.1.1.2, 2., p. 542).

If Mathematica cannot solve a differential equation it returns the input without any comment. In such
cases, or also, if the symbolic solution is too complicated, the solutions can be found by numerical
solutions (see 19.8.4.2, 5., p. 1018). Also in the case of symbolic solutions of differential equations, like
in the evaluation of indefinite integrals, the efficiency of Mathematica should not be overestimated. If
the result cannot be expressed as an algebraic expression of elementary functions, the only way is to
find a numerical solution.

Remark:Mathematica can solve some partial differential equations both symbolically and numerically,

as well, even on complicated multidimensional domains.

20.4 GraphicswithMathematica
By providing routines for graphical representation of mathematical relations such as the graphs of func-
tions, space curves, and surfaces in three-dimensional space, modern computer algebra systems provide
extensive possibilities for combining and manipulating formulas, especially in analysis, vector calculus,
and differential geometry, and they provide immeasurable help in engineering designing. Graphics is a
special strength of Mathematica.

20.4.1 Basic Elements ofGraphics
Mathematica builds graphical objects from built-in graphics primitives. These are objects such as points
(Point), lines (Line) and polygons (Polygon) and properties of these objects such as thickness and
color.

Mathematica has several options to specify the environment for graphics and how the graphical objects
should be represented.
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With the command Graphics[list], where list is a list of graphics primitives, Mathematica is called
to generate a graphic from the listed objects. The object list can follow a list of options about the
appearance of the representation.
With the input

In[1] := g = Graphics[{Line[{{0, 0}, {5, 5}, {10, 3}}], Circle[{5, 5}, 4], (20.37a)

Text[Style[“Example”,“Helvetica”,Bold,25], {5, 6}]}, AspectRatio−> Automatic] (20.37b)

a graphic is built from the following elements:

example

Figure 20.1

a) Broken line of two line segments starting at the point (0, 0) through
the point (5, 5) to the point (10, 3).

b) Circle with the center at (5, 5) and radius 4.

c)Text with the content “Example”, written in Helvetica font, boldface
(the text appears centered with respect to the reference point (5, 6)).
With the call Show[g], Mathematica displays the figure (Fig. 20.1).

Certain options might be previously specified. Here the option
AspectRatio is set to Automatic.

By default Mathematica makes the ratio of the height to the width of the graph 1 : GoldenRatio (see
e.g. 3.5.2.3,3., p. 194). It corresponds to a relation between the extension in the x direction to the one
in 1 : 1/1.618 = 1 : 0.618. With this option the circle would be deformed into an ellipse. The value of
the option Automatic ensures that the representation is not deformed.

20.4.2 Graphics Primitives
Mathematica provides the two-dimensional graphic objects enumerated in Table 20.14.
Besides these objects Mathematica provides further primitives to control the appearance of the rep-
resentation, the graphics commands. They specify how graphic objects should be represented. The
commands are listed in Table 20.15.
There is a wide scale of colors to choose from but their definitions are not discussed here.

Table 20.14 Two-dimensional graphic objects

Point[{x, y}] point at position x, y
Line[{{x1, y1}, {x2, y2}, . . .}] broken line through the given points
Rectangle[{xlu, ylu}, {xro, yro}] shaded rectangle with the given coordinates left-down, right-up
Polygon[{{x1, y1}, {x2, y2}, . . .}] shaded polygon with the given vertices
Circle[{x, y}, r] circle with radius r around the center x, y
Circle[{x, y}, r, {α1, α2}] circular arc with the given angles as limits
Circle[{x, y}, {a, b}] ellipse with half-axes a and b
Circle[{x, y}, {a, b}, {α1, α2}] elliptic arc
Disk[{x, y}, r], Disk[{x, y}, {a, b}] shaded circle or ellipse
Text[text, {x, y}] writes text centered to the point x, y

Table 20.15 Graphics commands

PointSize[a] a dot is drawn with radius a as a fraction of the total picture
AbsolutePointSize[b] denotes the absolute radius b of the dot (measured in American

pt (0.3515 mm))
Thickness[a] draws lines with relative thickness a
AbsoluteThickness[b] draws lines with absolute thickness b (also in pt)
Dashing[{a1, a2, a3, . . .}] draws a line as a sequence of stripes with the given length (in

relative measure)
AbsoluteDashing[{b1, b2, . . .}] the same as the previous one but in absolute measure
GrayLevel[p] specifies the level of shade (p = 0 is for black, p = 1 is for white)
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20.4.3 Graphical Options
Mathematica provides several graphical options which have an influence on the appearance of the entire
picture. Table 20.16 gives a selection of the most important commands. For a detailed explanation,
see [20.16].

Table 20.16 Some graphical options

AspectRatio −> w sets the ratiow of height and width. Automatic determines
w from the absolute coordinates; the default setting is
w = 1 : GoldenRatio

Axes −> True draws coordinate axes
Axes −> False does not draw coordinate axes
Axes −> {True, False} shows only the x-axis
Frame −> True shows frames
GridLines −> Automatic shows grid lines
AxesLabel −> {xsymbol, ysymbol} denotes axes with the given symbols
Ticks −> Automatic denotes scalingmarks automatically; with None they can be

suppressed
Ticks −> {{x1, x2, . . .}, {y1, y2, . . .}} scaling marks are placed at the given nodes

20.4.4 Syntax ofGraphical Representation

20.4.4.1 Building Graphic Objects
If a graphic object is to be built from primitives, then first a list of the corresponding objects with their
global definition should be given in the form

{object1, object2, . . .}, (20.38a)

where the objects themselves can be lists of graphic objects. Let object1 be, e.g.,

In[1] := o1 = {Circle[{5, 5}, {5, 3}], Line[{{0, 5}, {10, 5}}]}
and corresponding to it

In[2] := o2 = {Circle[{5, 5}, 3]}
as in Fig.20.1. If a graphic object, e.g., o2, is to be provided with certain graphical commands, then
it should be written into one list with the corresponding command

In[3] := o3 = {Thickness[0.01], o2}
This command is valid for all objects in the corresponding braces, and also for nested ones, but not for
the objects outside of the braces of the list.
From the generated objects two different graphic lists are defined:

In[4] := g1 = Graphics[{o1, o2}] ; g2 = Graphics[{o1, o3}]
which differs only in the second object by the thickness of the circle. The call

Show[g1] and Show[g2, Axes −> True] (20.38b)

givs the pictures represented in Fig. 20.2.

In the call of the picture in Fig. 20.2b, the option Axes −> True was activated. This results in the
representation of the axes with marks on them chosen by Mathematica and with the corresponding
scaling.

20.4.4.2 Graphical Representation of Functions
Mathematica has special commands for the graphical representation of functions. With

Plot[f[x], {x, xmin, xmax}] (20.39)

the function f is represented graphically in the domain between x = xmin and x = xmax. Mathematica
produces a function table by internal algorithms and reproduces the graphics following from this table
by graphics primitives.
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If the function x �→ sin 2x is to be graphically represented in the domain between −2π and 2π, then
the input is

In[1] := Plot[Sin[2x], {x,−2Pi, 2Pi}].
Mathematica produces the curve shown in Fig. 20.3.

It is obvious that Mathematica uses certain default graphical options in the representation as men-
tioned in 20.4.1, p. 1045. So, the axes are automatically drawn, they are scaled and denoted by the
corresponding x and y values. In this example, the influence of the default AspectRatio can be seen.
The ratio of the total width to the total height is 1 : 0.618.

With the command InputForm[%] the whole representation of the graphic objects can be shown. For
the previous example one gets:

Graphics[{{{}, {}, {Directive[Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798],

AbsoluteThickness[1.6]], Line[{{-6.283185050723043, 2.5645654335783057*
−7},

..., {6.283185050723043, -2.5645654335783057*
−7} }], {DisplayFunction -> Identity,

AspectRatio -> GoldenRatio(−1), Axes -> {True, True}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction :> Identity,

Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None},
{None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[GrayLevel[0.5, 0.4]],

Method -> {"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange -> {{-2*Pi, 2*Pi}, {-0.9999996654606427, 0.9999993654113022}},
PlotRangeClipping -> True, PlotRangePadding -> {{Scaled[0.02], Scaled[0.02]},
{Scaled[0.05], Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}]

Consequently, the graphic object consists of a few sublists. The first one contains the graphics primitive
Line (slightly modified), with which the internal algorithm connects the calculated points of the curve
by lines. The second sublist contains the options needed by the given graphic. These are the default
options. If the picture is to be altered at certain positions, then the new settings in the Plot command
must be set after the main input. With

In[2] := Plot[Sin[2x], {x,−2Pi, 2Pi}, AspectRatio−> 1] (20.40)

the representation would be done with equal length of axes x and y.
It is possible to give several options at the same time after each other.With the input

Plot[{f1[x], f2[x], . . .}, {x, xmin, xmax}] (20.41)

several functions are shown in the same graphic. With the command

Show[plot, options] (20.42)



20.4 Graphics with Mathematica 1049

an earlier picture can be renewed with other options.With

Show[GraphicsArray[list]], (20.43)

(with list as lists of graphic objects) pictures can be placed next to each other, under each other, or
they can be arranged in matrix form.

20.4.5 Two-Dimensional Curves
A series of curves from the chapter on functions and their representations (see 2.1, p. 48ff.) is shown as
examples.

20.4.5.1 Exponential Functions
A family of curves with several exponential functions (see 2.6.1, p. 72) is generated by Mathematica
(Fig. 20.4a) with the following input:

In[1] := f[x ] := 2∧x; g[x ] := 10∧x;

In[2] := h[x ] := (1/2)∧x; j[x ] := (1/E)∧x; k[x ] := (1/10)∧x;

These are the definitions of the considered functions. There is no need to define the function ex, since
it is built into Mathematica. In the second step the following graphics are generated:

In[3] := p1 = Plot[{f[x], h[x]}, {x,−4, 4}, P lotStyle−> Dashing[{0.01, 0.02}]]
In[4] := p2 = Plot[{Exp[x], j[x]}, {x,−4, 4}]
In[5] := p3 = Plot[{g[x], k[x]}, {x,−4, 4}, PlotStyle−> Dashing[{0.005, 0.02, 0.01, 0.02}]]

The whole picture (Fig. 20.4a) can be obtained by:

In[6] := Show[{p1, p2, p3}, PlotRange−> {0, 18}, AspectRatio−> 1.2]

The question of how to write text on the curves is not discussed here. This is possible with the graphics
primitive Text.
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Figure 20.4

20.4.5.2 Function y = x + Arcothx
Considering the properties of the function Arcothx discussed in 2.10, p. 93, the function y = x +
Arcoth x can be graphically represented in the following way:

In[1] := f1 = Plot[x+ ArcCoth[x], {x, 1.000000000005, 7}]
In[2] := f2 = Plot[x+ ArcCoth[x], {x,−7,−1.000000000005}]
In[3] := Show[{f1, f2}, PlotRange−> {−10, 10}, AspectRatio−> 1.2, Ticks−>

{{{−6,−6}, {−1,−1}, {1, 1}, {6, 6}}, {{2.5, 2.5}, {10, 10}}}, AxesOrigin− > 0, 0]

The high precision of the x values in the close neighborhood of 1 and −1 was chosen to get sufficiently
large function values for the required domain of y. The result is shown in Fig. 20.4b.



1050 20. Computer Algebra Systems- Example Mathematica

20.4.5.3 Bessel Functions (see 9.1.2.6, 2., p. 562)

With the calls

In[1] := bj0 = Plot[{BesselJ[0, z], BesselJ[2, z], BesselJ[4, z]}], {z, 0, 10}, PlotLabel−>
TraditionalForm[{BesselJ[0, z], BesselJ[2, z], BesselJ[4, z]}] (20.44a)

In[2] := bj1 = Plot[{BesselJ[1, z], BesselJ[3, z], BesselJ[5, z]}, {z, 0, 10}, PlotLabel−>
TraditionalForm[{BesselJ[1, z], BesselJ[3, z], BesselJ[5, z]}]] (20.44b)

the graphics of the Bessel function Jn(z) for n = 0, 2, 4 and n = 1, 3, 5 are generated, which are then
represented by the call

In[3] := GraphicsRow[{bj0, bj1}]]
next to each other in Fig. 20.5.
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Figure 20.5

20.4.6 ParametricRepresentation of Curves
Mathematica has a special graphics command, with which curves given in parametric form can be graph-
ically represented. This command is:

ParametricPlot[{fx(t), fy(t)}, {t, t1, t2}]. (20.45)

It provides the possibility of showing several curves in one graphic. A list of several curves must be
given in the command. With the option AspectRatio−> Automatic, Mathematica shows the curves
in their natural forms.
The parametric curves in Fig. 20.6 are the Archimedean spiral (see 2.14.1, p. 105) and the logarithmic
spiral (see 2.14.3, p. 106). They are represented with the input

In[1] := ParametricPlot[{t Cos[t], t Sin[t]}, {t, 0, 3Pi}, AspectRatio−> Automatic]

and

In[2] := ParametricPlot[{Exp[0.1t] Cos[t], Exp[0.1t] Sin[t]}, {t, 0, 3Pi},
AspectRatio−> Automatic]

With

In[3] := ParametricPlot[{t− 2 Sin[t], 1− 2 Cos[t]}, {t,−Pi, 11Pi}, AspectRatio−> 0.3]

a trochoid (see 2.13.2, p. 102) is generated (Fig. 20.7).
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20.4.7 Representation of Surfaces and SpaceCurves

Mathematica provides the possibility of representing three-dimensional graphics primitives.
Similarly to the two-dimensional case, three-dimensional graphics can be generated by applying differ-
ent options. The objects can be represented and observed from different viewpoints and from different
perspectives. Also the representation of curved surfaces in three-dimensional space, i.e., the graphical
representation of functions of two variables, is possible. Furthermore it is possible to represent curves
in three-dimensional space, e.g., if they are given in parametric form. For a detailed description of
three-dimensional graphics primitives see [20.5], [20.16]. The introduction of these representations is
similar to the two-dimensional case.

20.4.7.1 Graphical Representation of Surfaces

The command Plot3D in its basic form requires the definition of a function of two variables and the
domain of these two variables:

Plot3D[f[x, y], {x, xa, xe}, {y, ya, ye}] (20.46)

All options have the default setting.

For the function z = x2 + y2, with the input

In[1] := Plot3D[x2 + y2, {x,−5, 5}, {y,−5, 5}, PlotRange−> {0, 25}]
we get Fig. 20.8a, while Fig. 20.8b is generated by the command

In[2] := Plot3D[(1− Sin[x]) (2− Cos[2 y]), {x,−2, 2}, {y,−2, 2}]
For the paraboloid, the option PlotRange is given with the required z values, because the solid is cut
at z = 25.

20.4.7.2 Options for 3DGraphics

The number of options for 3D graphics is large. In Table 20.17, only a few are enumerated, where
options known from 2D graphics are not included. They can be applied in a similar sense. The option
ViewPoint has special importance, by which very different observational perspectives can be chosen.
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Figure 20.8

20.4.7.3 Three-Dimensional Objects in Parametric Representation

Similarly to 2D graphics, three-dimensional objects given in parametric representation can also be
represented. With

ParametricPlot3D[{fx[t, u], fy[t, u], fz[t, u]}, {t, ta, te}, {u, ua, ue}] (20.47)

a parametrically given surface is represented, with

ParametricPlot3D[{fx[t], fy[t], fz[t]}, {t, ta, te}] (20.48)
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a three-dimensional curve is generated parametrically.

Table 20.17 Options for 3D graphics

Boxed default setting is True; it draws a three-dimensional frame around the surface
HiddenSurface sets the non-transparency of the surface; default setting is True
ViewPoint specifies the point (x, y, z) in space, from where the surface is observed. De-

fault values are {1.3,−2.4, 2}
Shading default setting is True; the surface is shaded; False yields white surfaces
PlotRange {za, ze}, {{xa, xe}, {ya, ye}, {za, ze}} can be chosen for the values All. De-

fault is Automatic
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The objects in Fig. 20.9a and Fig. 20.9b are represented with the commands

In[3] := ParametricPlot3D[{Cos[t] Cos[u], Sin[t] Cos[u], Sin[u]}, {t, 0, 2Pi}
{u,−Pi/2, Pi/2}] (20.49a)

In[4] := ParametricPlot3D[{Cos[t], Sin[t], t/4}, {t, 0, 20}] (20.49b)

Mathematica provides further commands by which density, and contour diagrams, bar charts and sector
diagrams, and also a combination of different types of diagrams, can be generated.

The representation of the Lorenz attractor (see 17.2.4.3, p. 887) can easily be generated by Mathe-
matica.
There is a series of recent developments most of which are not to be shown in a book. One can eas-
ily build a GUI (graphical user interface) to utilize interactive properties of the program. Most of
the calculations are parallelized automatically, but functions such as Parallelize and ParallelMap
provides the user to create his/her own parallel programs. The extremely fast graphic cards can be
programmed at a very high level (as opposed to other languages) using such functions as CUDALink,
OpenCLFunctionLoad etc. An extremely useful example of dynamic interactivity tool is Manipulate
which in the simplest case shows you the parameter dependence of a family of curves. Working in the
cloud or using the computer Raspberry Pi (which comes a freeMathematica license) should also not be
unmentioned.
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