
19 NumericalAnalysis
The most important principles of numerical analysis will be the subject of this chapter. The solution
of practical problems usually requires the application of a professional numerical library of numerical
methods, developed for computers. Some of them will be introduced at the end of Section 19.8.3. The
special computer algebra systemMathematicawill be discussed with its numerical programs in Chapter
20, p. 1023 and in Section 19.8.4.2, p. 1016. Error propagation and computation errors will be examined
in Section 19.8.2, p. 1004.

19.1 Numerical Solution ofNon-LinearEquations in a Single
Unknown

Every equation with one unknown can be transformed into one of the normal forms:

Zero form: f(x) = 0. (19.1)

Fixed point form: x = ϕ(x). (19.2)

Suppose equations (19.1) and (19.2) can be solved. The solutions are denoted by x∗. To get a first
approximation of x∗, we can try to transfom the equation into the form f1(x) = f2(x), where the
curves of the functions y = f1(x) and y = f2(x) are more or less simple to sketch.

f(x) = x2− sin x = 0. From the shapes of the curves y = x2 and y = sin x it can be seen that x∗
1 = 0

and x∗
2 ≈ 0.87 are roots (Fig. 19.1).

y

x

4

3

2

1

−2 −1 1 2 30

y=x
2

y=sin x

x* =0 x* 0.87
1 2~~

Figure 19.1

y

y=(x)

0 x* x

y= (x)�

Figure 19.2

19.1.1 IterationMethod
The general idea of iterative methods is that starting with known initial approximations xk (k =
0, 1, . . . , n) a sequence of further and better approximations is formed, step by step, hence the solu-
tion of the given equation is approached by iteration, by a convergent sequence. A sequence is tried to
be created with convergence as fast as possible.

19.1.1.1 Ordinary IterationMethod
To solve an equation given in or transformed into the fixed point form x = ϕ(x), the iteration rule

xn+1 = ϕ(xn) (n = 0, 1, 2, . . . ; x0 given) (19.3)

is used which is called the ordinary iteration method. It converges to a solution x∗ if there is a neigh-
borhood of x∗ (Fig. 19.2) such that∣∣∣∣∣ϕ(x)− ϕ(x∗)

x− x∗

∣∣∣∣∣ ≤ K < 1 (K const) (19.4)

� Springer-Verlag Berlin Heidelberg 2015
I.N. Bronshtein et al., Handbook of Mathematics,
DOI 10.1007/978-3-662-46221-8_19

949

950 19. Numerical Analysis

holds, and the initial approximation x0 is in this neighborhood. If ϕ(x) is differentiable, then the cor-
responding condition is

|ϕ′(x)| ≤ K < 1. (19.5)

The convergence of the ordinary iteration method becomes faster with smaller values of K.

x2 = sin x, i.e.,

xn+1 =
√
sin xn.

n 0 1 2 3 4 5

xn 0.87 0.8742 0.8758 0.8764 0.8766 0.8767

sin xn 0.7643 0.7670 0.7681 0.7684 0.7686 0.7686

Remark 1: In the case of complex solutions, x = u + iv is substituted. Separating the real and the
imaginary part, a system of two equations is obtained for the real unknowns u and v.

Remark 2: The iterative solution of non-linear equation systems can be found in 19.2.2, p. 961.

19.1.1.2 Newton’sMethod

1. Formula of the NewtonMethod
To solve an equation given in the form f(x) = 0, mostly the Newton method is used which has the
formula

xn+1 = xn −
f(xn)

f ′(xn)
(n = 0, 1, 2, . . . ; x0 is given), (19.6)

i.e., to get a new approximation xn+1, the values of the function f(x) and its first derivative f ′(x) at xn

are needed.

2. Convergence of the NewtonMethod
The condition

f ′(x) �= 0 (19.7a)

is necessary for convergence of the Newton method, and the condition∣∣∣∣∣f(x)f ′′(x)
f ′2(x)

∣∣∣∣∣ ≤ K < 1 (K const) (19.7b)

is sufficient. The conditions (19.7a,b) must be fulfilled in a neighborhood of x∗ such that it contains all
the points xn and x∗ itself. If the Newton method is convergent, it converges very fast. It has quadratic
convergence, which means that the error of the (n+1)-st approximation is less than a constant multiple
of the square of the error of the n-th approximation. In the decimal system, this means that after a
while the number of exact digits will double step by step.

The solution of the equation f(x) = x2 − a = 0, i.e., the calculation of x =
√
a (a > 0 is given),

with the Newton method results in the iteration formula

xn+1 =
1

2

(
xn +

a

xn

)
. (19.8)

We get for a = 2:
n 0 1 2 3

xn 1.5 1.416 666 6 1.414 215 7 1.414 213 6

3. Geometric Interpretation
The geometric interpretation of the Newton method is represented in Fig. 19.3. The basic idea of the
Newton method is the local approximation of the curve y = f(x) by its tangent line.

4. Modified NewtonMethod
If the values of f ′(xn) barely change during the iteration, it can be kept as constant for a while, and the
so-called modified Newton method can be used:

xn+1 = xn −
f(xn)

f ′(xm)
(m fixed, m < n). (19.9)

19.1 Numerical Solution of Non-Linear Equations in a Single Unknown 951

0 xxnxn+1x*

y
=

f(
x

)y

Figure 19.3

0
xn

xn+1 x* xm x

y=f(x)

y

Figure 19.4

The goodness of the convergence is hardly modified by this simplification.

5. Differentiable Functions with Complex Argument
The Newton method also works for differentiable functions with complex arguments.

19.1.1.3 Regula Falsi

1. Formula for Regula Falsi
To solve the equation f(x) = 0, the regula falsi method has the rule:

xn+1 = xn −
xn − xm

f(xn)− f(xm)
f(xn) (n = 1, 2, . . . ; m < n ; x0, x1 are given). (19.10)

Only the function values are calculated. Themethod follows from theNewtonmethod (19.6) by approx-
imating the derivative f ′(xn) by the finite difference of f(x) between xn and a previous approximation
xm (m < n).

2. Geometric Interpretation
The geometric interpretation of the regula falsi method is represented in Fig. 19.4. The basic idea of
the regula falsi method is the local approximation of the curve y = f(x) by a secant line.

3. Convergence
The method (19.10) is convergent if m is chosen so that f(xm) and f(xn) always have different signs.
If the convergence already seems to be fast enough during the process, it will speed up if one ignores
the change of sign, and substitutes xm = xn−1.

f(x) = x2 − sin x = 0.

n Δxn = xn − xn−1 xn f(xn) Δyn = f(xn)− f(xn−1)
Δxn

Δyn

0 0.9 0.0267
1 −0.3 0.87 −0.0074 −0.0341 0.8798
2 0.0065 0.8765 −0.000252 0.007148 0.9093
3 0.000229 0.876729 0.000003 0.000255 0.8980
4 −0.000003 0.876726

If during the process the value of Δxn/Δyn only barely changes, one does not need to recalculate it
again and again.

4. SteffensenMethod
Applying the regula falsi method with xm = xn−1 for the equation f(x) = x−ϕ(x) = 0 the convergence
often can be sped up, especially in the case ϕ′(x) < −1. This algorithm is known as the Steffensen
method.

To solve the equation x2 = sin xwith the Steffensen method, the form f(x) = x−
√
sin x = 0 should

be used.

952 19. Numerical Analysis

n Δxn = xn − xn−1 xn f(xn) Δy = f(xn)− f(xn−1)
Δxn

Δyn

0 0.9 0.014942
1 −0.03 0.87 −0.004259 −0.019201 1.562419
2 0.006654 0.876654 −0.000046 0.004213 1.579397
3 0.876727 0.000001

19.1.2 Solution of Polynomial Equations

Polynomial equations of n-th degree have the form

f(x) = pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0. (19.11)

For their effective solution efficient methods are needed to calculate the function values and the deriva-
tive values of the function pn(x) and an initial estimate of the positions of the roots.

19.1.2.1 Horner’s Scheme

1. Real Arguments
To determine the value of a polynomial pn(x) of n-th degree at the point x = x0 from its coefficients,
first the decomposition

pn(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 = (x− x0)pn−1(x) + pn(x0) (19.12)

is considered where pn−1(x) is a polynomial of (n− 1)-st degree:

pn−1(x) = a′n−1x
n−1 + a′n−2x

n−2 + · · ·+ a′1x+ a′0. (19.13)

The recursion formula

a′k−1 = x0a
′
k + ak, (k = n, n− 1, . . . , 0; a′n = 0, a′−1 = pn(x0)) (19.14)

is obtained by coefficient comparison in (19.12) with respect to xk. (Note that a′n−1 = an.) In this
way, the coefficients a′k of pn−1(x) and the value pn(x0) are determined from the coefficients ak of pn(x).
Furthermore fewer multiplications are required than by the “traditional” way. By repeating this pro-
cedure, a decomposition of the polynomial pn−1(x) with the polynomial pn−2(x) is obtained,

pn−1(x) = (x− x0)pn−2(x) + pn−1(x0) (19.15)

etc., and a sequence of polynomials pn(x), pn−1(x) . . . , p1(x), p0(x) is resulted. The calculations of the
coefficients and the values of the polynomial is represented in (19.16).

an an−1 an−2 . . . a3 a2 a1 a0
x0 x0a

′
n−1 x0a

′
n−2 . . . x0a

′
3 x0a

′
2 x0a

′
1 x0a

′
0

a′n−1 a′n−2 a′n−3 . . . a′2 a′1 a′0 pn(x0)

x0 x0a
′′
n−2 x0a

′′
n−3 . . . x0a

′′
2 x0a

′′
1 x0a

′′
0

a′′n−2 a′′n−3 a′′n−4 . . . a′′1 a′′0 pn−1(x0)

. .

x0 x0a
(n−1)
0

a
(n−1)
1 p1(x0)

x0

a
(n)
0 = p0(x0)

(19.16)

From scheme (19.16) the value pn(x0), and derivatives p(k)n (x0) are as:

p′n(x0) = 1!pn−1(x0), p′′n(x0) = 2!pn−2(x0), . . . , p
(n)
n (x0) = n!p0(x0). (19.17)

19.1 Numerical Solution of Non-Linear Equations in a Single Unknown 953

p4(x) = x4 + 2x3 − 3x2 − 7.
The substitution value and
derivatives of p4(x) are cal-
culated at x0 = 2 according
to (19.16).

1 2 −3 0 −7
2 2 8 10 20

1 4 5 10 13
2 2 12 34

1 6 17 44
2 2 16

1 8 33
2 2

1 10
2

1

We see:
p4(2) = 13,
p′4(2) = 44,
p′′4(2) = 66,
p′′′4 (2) = 60,

p
(4)
4 (2) = 24.

Remarks:

1. The polynomial pn(x) can be rearranged with respect to the powers of x − x0, e.g., in the example
above there is p4(x) = (x− 2)4 + 10(x− 2)3 + 33(x− 2)2 + 44(x− 2) + 13.

2. The Horner scheme can also be used for complex coefficients ak. In this case for every coefficient we
have to compute a real and an imaginary column according to (19.16).

2. Complex Arguments
If the coefficients ak in (19.11) are real, then the calculation of pn(x0) for complex values x0 = u0 + iv0
can be made real. In order to show this, pn(x) is decomposed as follows:

pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

= (x2 − px− q)(a′n−2x
n−2 + · · ·+ a′0) + r1x+ r0 with (19.18a)

x2 − px− q = (x− x0)(x− x0), i.e., p = 2u0, q = −(u0
2 + v0

2). (19.18b)

Then,

pn(x0) = r1x+ r0 = (r1u0 + r0) + ir1v0. (19.18c)

To find (19.18a) the so-called two-row Horner scheme introduced by Collatz can be constructed:

an an−1 an−2 . . . a3 a2 a1 a0
q qa′n−2 . . . qa′3 qa′2 qa′1 qa′0
p pa′n−2 pa′n−3 . . . pa′2 pa′1 pa′0

a′n−2 a′n−3 a′n−4 . . . a′1 a′0 r1 r0
= an

(19.18d)

p4(x) = x4 + 2x3 − 3x2 − 7. Calculate the value of p4 at x0 = 2− i, i.e., for p = 4 and q = −5.

1 2 −3 0 −7
−5 −5 −30 −80
4 4 24 64

1 6 16 34 −87

It results in:

p4(x0) = 34x0 − 87 = −19− 34i.

19.1.2.2 Positions of the Roots

1. Real Roots, Sturm Sequence
TheCartesian rule of signs gives a first idea of whether the polynomial equation (19.11) has a real root,
or not.

a) The number of positive roots is equal to the number of sign changes in the sequence of the cooeffi-
cients

an, an−1, . . . , a1, a0 (19.19a)

or it is less by an even number.

954 19. Numerical Analysis

b) The number of negative roots is equal to the number of sign changes in the coefficient sequence

a0, −a1, a2, . . . , (−1)nan (19.19b)

or it is less by an even number.

p5(x) = x5 − 6x4 + 10x3 + 13x2 − 15x− 16 has 1 or 3 positive roots and 0 or 2 negative roots.
To determine the number of real roots in any given interval (a, b), Sturm sequences are used (see 1.6.3.2,
2., p. 44).
After computing the function values yν = pn(xν) at a uniformly distributed set of nodes xν = x0+ ν ·h
(h constant, ν = 0, 1, . . .) (which can be easily performed by using the Horner scheme) a good guess
of the graph of the function and the locations of roots are obtained. If pn(c) and pn(d) have different
signs, there is at least one real root between c and d.

2. Complex Roots
In order to localize the real or complex roots into a bounded region of the complex plane the following
polynomial equation is considered which is a simple consequence of (19.11):

f ∗(x) = |an−1|rn−1 + |an−2|rn−2 + · · ·+ |a1|r + |a0| = |an|rn (19.20)

and an upper bound r0 is determined for the positive roots of (19.20), e.g., by systematic repeated trial
and error. Then, for all roots x∗

k (k = 1, 2, . . . , n) of (19.11),

|x∗
k| ≤ r0. (19.21)

f(x) = p4(x) = x4+4.4x3−20.01x2−50.12x+29.45 = 0, f ∗(x) = 4.4r3+20.01r2+50.12r+29.45 =
r4. Some trials are

r = 6: f ∗(6) = 2000.93 > 1296 = r4,
r = 7: f ∗(7) = 2869.98 > 2401 = r4,
r = 8: f ∗(8) = 3963.85 < 4096 = r4.

From this it follows that |x∗
k| < 8 (k = 1, 2, 3, 4). Actually, for the root x∗

1 with maximal absolute value
−7 < x∗

1 < −6 holds.

Remark: A special method has been developed in electrotechnics in the so-called root locus theory
for the determination of the number of complex roots with negative real parts. It is used to examine
stability (see [19.11], [19.31]).

19.1.2.3 NumericalMethods

1. General Methods
The methods discussed in Section 19.1.1, p. 949, can be used to find real roots of polynomial equations.
The Newton method is well suited for polynomial equations because of its fast convergence, and the
fact that the values of f(xn) and f ′(xn) can be easily computed by using Horner’s rule. By assuming
that an approximation xn of the root x∗ of a polynomial equation f(x) = 0 is sufficiently good, then
the correction term δ = x∗ − xn can be iteratively improved by using the fixed-point equation

δ = − 1

f ′(xn)

[
f(xn) +

1

2!
f ′′(xn)δ

2 + · · ·
]
= ϕ(δ). (19.22)

2. Special Methods
The Bairstow method is well applicable to find root pairs, especially complex conjugate pairs of roots.
It starts with finding a quadratic factor of the given polynomial like the Horner scheme (19.18a–d) by
determinung the coefficients p and q which make the coefficients of the linear remainder r0 and r1 equal
to zero (see [19.30], [19.11], [19.31]).
If the computation of the root with largest or smallest absolute value is required, then the Bernoulli
method is the choice (see [19.19]).
TheGraeffemethod has some historical importance. It gives all roots simultaneously including complex
conjugate roots; however the computation costs are tremendous (see [19.11], [19.31]).

19.2 Numerical Solution of Systems of Equations 955

19.2 Numerical Solution of Systems of Equations
In several practical problems, there arem conditions for the n unknown quantities xi (i = 1, 2, . . . , n)
in the form of equations:

F1(x1, x2, . . . , xn) = 0,
F2(x1, x2, . . . , xn) = 0,
...

...
Fm(x1, x2, . . . , xn) = 0.

(19.23)

The unknowns xi are to be determined so that they form a solution of the system of equations (19.23).
Mostly m = n holds, i.e., the number of unknowns and the number of equations are equal to each
other. In the case of m > n, (19.23) is called an over-determined system; in the case of m < n it is an
under-determined system.
Over-determined systems usually have no solutions. Then one looks for the “best” solution of (19.23),
in the Euclidean metric with the least squares method

m∑
i=1

F 2
i (x1, x2, . . . , xn) = min! (19.24)

or in other metrics as another extreme value problem. Usually, the values of n−m variables of an under-
determined problem can be chosen freely, so the solution of (19.23) depends on n −m parameters. It
is called an (n−m)-dimensional manifold of solutions.
Linear and non-linear systems of equations are distinguished, depending on whether the equations are
only linear or also non-linear in the unknowns.

19.2.1 Systems of Linear Equations
Consider the linear system of equations

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
...

an1x1 + an2x2 + · · · + annxn = bn.

(19.25)

The system (19.25) can be written in matrix form

Ax = b (19.26a)

with

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...
an1 an2 · · · ann

⎞⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎝
b1,
b2,
...
bn

⎞⎟⎟⎟⎠ , x =

⎛⎜⎜⎜⎝
x1,
x2,
...
xn

⎞⎟⎟⎟⎠ . (19.26b)

Suppose the quadratic matrix A = (aik) (i, k = 1, 2, . . . , n) is regular, so system (19.25) has a unique
solution (see 4.5.2.1, 2., p. 309). In the practical solution of (19.25) two types of solution methods are
distinguished:
1. DirectMethods are based on elementary transformations, fromwhich the solution can be obtained
immediately. These are the pivoting techniques (see 4.5.1.2, p. 307) and the methods given in 19.2.1.1–
19.2.1.3.
2. Iteration methods start with a known initial approximation of the solution, and form a sequence
of approximations that converges to the solution of (19.25) (see 19.2.1.4, p. 960).

19.2.1.1 Triangular Decomposition of aMatrix

1. Principle of the Gauss EliminationMethod
By elementary transformations

956 19. Numerical Analysis

1. interchanging rows,

2. multiplying a row by a non-zero number and

3. adding a multiple of a row to another row,

the system Ax = b is transformed into the so-called row echelon form

Rx = c with R =

⎛⎜⎜⎜⎜⎜⎜⎝
r11 r12 r13 . . . r1n

r22 r23 . . . r2n
r33 . . . r3n

0
. . .

...
rnn

⎞⎟⎟⎟⎟⎟⎟⎠ . (19.27)

Since only equivalent transformations were made, the system of equations Rx = c has the same solu-
tions as Ax = b. From (19.27) it follows:

xn =
cn
rnn

, xi =
1

rii

⎛⎝ci − n∑
k=i+1

rikxk

⎞⎠ (i = n− 1, n− 2, . . . , 1) . (19.28)

The rule given in (19.28) is called backward substitution, since the equations of (19.27) are used in the
opposite order as they follow each other.
The transition fromA toR is made by n− 1 so-called elimination steps, whose procedure is shown by
the first step. This step transforms matrix A into matrix A1:

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 a12 . . . a1n
a21 a22 . . . a2n
a31 a32 . . . a3n
...

an1 an2 . . . ann

⎞⎟⎟⎟⎟⎟⎟⎠ , A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(1)
11 a

(1)
12 . . . a

(1)
1n

0

0
...

0

a
(1)
22 . . . a

(1)
2n

a
(1)
32 . . . a

(1)
3n

...

a
(1)
n2 . . . a

(1)
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19.29)

Then:

1. An ar1 �= 0 is chosen (according to (19.33)). If there is none, stop: A is singular. Otherwise ar1 is
called the pivot.

2. The first and the r-th row of A are interchanged. The result is A.

3. The li1 (i = 2, 3, . . . , n) multiple of the first row is subtracted from the i-th row of the matrix A.

The result is the matrix A1 and analogously the new right-hand side b1 with the elements

a
(1)
ik = aik − li1a1k with li1 =

ai1
a11

,

b
(1)
i = bi − li1b1 (i, k = 2, 3, . . . , n). (19.30)

The framed submatrix in A1 (see (19.29)) is of type (n − 1, n − 1) and it will be handled analogously
to A, etc. This method is called the Gaussian elimination method or the Gauss algorithm (see 4.5.2.4,
p. 312).

2. Triangular Decomposition

The result of the Gauss elimination method can be formulated as follows: To every regular matrix A
there exists a so-called triangular decomposition or LU factorization of the form

PA = LR (19.31)

19.2 Numerical Solution of Systems of Equations 957

with

R =

⎛⎜⎜⎜⎜⎜⎜⎝
r11 r12 r13 . . . r1n

r22 r23 . . . r2n
r33 . . . r3n

0
. . .

...
rnn

⎞⎟⎟⎟⎟⎟⎟⎠ , L =

⎛⎜⎜⎜⎜⎜⎜⎝
1
l21 1 0
l31 l32 1
...

...
. . .

ln1 ln2 . . . ln,n−1 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (19.32)

Here R is called an upper triangular matrix, L is a lower triangular matrix and P is a so-called permu-
tation matrix. A permutation matrix is a quadratic matrix which has exactly one 1 in every row and
every column, and the other elements are zeros. The multiplication PA results in row interchanges in
A, which comes from the choices of the pivot elements during the elimination procedure.

The Gauss elimination method should be used for the system

⎛⎝ 3 1 6
2 1 3
1 1 1

⎞⎠⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝ 2
7
4

⎞⎠. In

schematic form, where the coefficient matrix and the vector from the right-hand side are written next
to each other (into the so-called extended coefficient matrix), the calculations are:

(A,b) =

⎛⎜⎜⎝ 3 1 6
2 1 3
1 1 1

2
7
4

⎞⎟⎟⎠ ⇒

⎛⎜⎜⎝
3

2/3

1/3

1 6

1/3 −1

2/3 −1

2

17/3

10/3

⎞⎟⎟⎠ ⇒

⎛⎜⎝ 3 1 6 2
1/3 2/3 −1 10/3

2/3 1/2 −1/2 4

⎞⎟⎠, i.e.,

P =

⎛⎝ 1 0 0
0 0 1
0 1 0

⎞⎠ ⇒ PA =

⎛⎝ 3 1 6
1 1 1
2 1 3

⎞⎠ ,L =

⎛⎝ 1 0 0
1/3 1 0
2/3 1/2 1

⎞⎠ ,R =

⎛⎝ 3 1 6
0 2/3 −1
0 0 −1/2

⎞⎠.
In the extended coefficient matrices, the matricesA,A1 andA2, and also the pivots are shown in boxes.
Solution: x3 = −8, x2 = −7, x1 = 19.

3. Application of Triangular Decomposition

With the help of triangular decomposition, the solution of the linear system of equations Ax = b can
be described in three steps:

1. PA = LR: Determination of the triangular decomposition and substitution Rx = c.

2. L c = Pb: Determination of the auxiliary vector c by forward substitution.

3. Rx = c: Determination of the solution x by backward substitution.

If the solution of a system of linear equations is handled by the expanded coefficient matrix (A,b),
as in the above example, by the Gauss elimination method, then the lower triangular matrix L is not
needed explicitly. This can be especially useful if several systems of linear equations are to be solved
after each other with the same coefficient matrix, with different right-hand sides.

4. Choice of the Pivot Elements

Theoretically, every non-zero element a
(k−1)
i1 of the first column of the matrix Ak−1 could be used as a

pivot element at the k-th elimination step. In order to improve the accuracy of solution (to decrease
the accumulated rounding errors of the operations), the following strategies are recommended.

1. Diagonal Strategy The diagonal elements are chosen successively as pivot elements if possible,
i.e., there is no row interchange. This kind of choice of the pivot element makes sense if the absolute
value of the elements of the main diagonal are fairly large compared to the others in the same row.

2. Column Pivoting To perform the k-th elimination step, such row index r is chosen for which:

|a(k−1)
rk | = max

i≥k
|a(k−1)

ik |. (19.33)

958 19. Numerical Analysis

If r �= k, then the r-th and the k-th rows will be interchanged. It can be proven that this strategy makes
the accumulated rounding errors smaller.

19.2.1.2 Cholesky’sMethod for a Symmetric CoefficientMatrix
In several cases, the coefficient matrix A in (19.26a) is not only symmetric, but also positive definite,
i.e., for the corresponding quadratic form Q(x) holds

Q(x) = xTAx =
n∑

i=1

n∑
k=1

aikxixk > 0 (19.34)

for every x ∈ IRn, x �= 0. Since for every symmetric positive definite matrix A there exists a unique
triangular decomposition

A = LLT (19.35)

with

L =

⎛⎜⎜⎜⎜⎜⎜⎝
l11
l21 l22 0
l31 l32 l33
...

. . .
ln1 ln2 ln3 . . . lnn

⎞⎟⎟⎟⎟⎟⎟⎠ , (19.36a)

lkk =
√
a
(k−1)
kk , lik =

a
(k−1)
ik

lkk
(i = k, k + 1, . . . , n) ; (19.36b)

a
(k)
ij = a

(k−1)
ij − likljk (i, j = k + 1, k + 2, . . . , n), (19.36c)

the solution of the corresponding linear system of equationsAx = b can be determined by theCholesky
method by the following steps:

1. A = LLT: Determination of the so-called Cholesky decomposition and substitution LTx = c.

2. L c = b: Determination of the auxiliary vector c by forward substitution.

3. LTx = c: Determination of the solution x by backward substitution.
For large values of n the computation cost of the Cholesky method is approximately half of that of the
LU decomposition given in (19.31), p. 956.

19.2.1.3 OrthogonalizationMethod

1. Linear Fitting Problem
Suppose an over-determined linear system of equations

n∑
k=1

aikxk = bi (i = 1, 2, . . . ,m; m > n), (19.37)

is given in matrix form

Ax = b. (19.38)

Suppose the coefficient matrixA = (aik) with size (m×n) has full rank n, i.e., its columns are linearly
independent. Since an over-determined linear system of equations usually has no solution, instead of
(19.37) the so-called error equations are considered

ri =
n∑

k=1

aikxk − bi (i = 1, 2, . . . ,m; m > n) (19.39)

with residues ri, and the sum of their squares should be minimalized:

m∑
i=1

ri
2 =

m∑
i=1

[
n∑

k=1

aikxk − bi

]2
= F (x1, x2, . . . , xn) = min! (19.40)

19.2 Numerical Solution of Systems of Equations 959

The problem (19.40) is called a linear fitting problem or a linear least squares problem (see also 6.2.5.5,
p. 456). The necessary condition for the relative minimum of the sum of residual squares F (x1, x2, . . . ,
xn) is

∂F

∂xk

= 0 (k = 1, 2, . . . , n) (19.41)

and it leads to the linear system of equations

ATAx = ATb. (19.42)

The transition from (19.38) to (19.42) is called a Gauss transformation, since the system (19.42) arises
by applying the Gaussian least squares method (see 6.2.5.5, p. 456) for (19.38). Since A is supposed
to be of full rank, ATA is a positive definite matrix of size (n× n), and the so-called normal equations
(19.42) can be solved numerically by the Cholesky method (see 19.2.1.2, p. 958).
One can have numerical difficulties with the solution of the normal equations (19.42) if the condition
number (see [19.24]) of the matrix ATA is too large. The solution x can then have a large relative
error. Because of this problem, it is better to use the orthogonalization method for solving numerically
linear fitting problems.

2. OrthogonalizationMethod
The following facts are the basis of the following orthogonalization method for solving a linear least
squares problem (19.40):

1. The length of a vector does not change during an orthogonal transformation, i.e., the vectors x and
x̃ = Q0x with

QT
0Q0 = E (19.43)

have the same length.

2. For every matrix A of size (m,n) with maximal rank n (n < m) there exists an orthogonal matrix
Q of size (m,m) such that

A = QR̂ (19.44) with QTQ = E and R̂ =

(
R

O

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11 r12 . . . r1n
r22 . . . r2n

. . .
...

rnn

O

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19.45)

Here R is an upper triangular matrix of size (n, n), and O is a zero matrix of size (m− n, n).
The factored form (19.44) of matrixA is called the QR decomposition. So, the error equations (19.39)
can be transformed into the equivalent system

r11x1 + r12x2 + . . .+ r1nxn −b̂1 = r̂1,

r22x2 + . . .+ r2nxn −b̂2 = r̂2,
. . .

...
... =

...

rnnxn −b̂n = r̂n,

−b̂n+1 = r̂n+1,
...

...

−b̂m = r̂m

(19.46)

without changing the sum of the squares of the residuals. From (19.46) it follows that the sum of the
squares is minimal for r̂1 = r̂2 = · · · = r̂n = 0 and the minimum value is equal to the sum of the squares
of r̂n+1 to r̂m. The required solution x can be got by backward substitution

Rx = b̂0, (19.47)

960 19. Numerical Analysis

where b̂0 is the vector with components b̂1, b̂2, . . . , b̂n obtained from (19.46).
There are two methods most often used for a stepwise transition of (19.39) into (19.46):

1. Givens transformation,

2. Householder transformation.

The first one results in the QR decomposition of matrix A by rotations, the other one by reflections.
The numerical implementations can be found in [19.23].

Practical problems in linear least squares approximations are solved mostly by the Householder trans-
formation, where the frequently occurring special band structure of the coefficient matrix A can be
used.

19.2.1.4 IterationMethods

1. Jacobi Method
Suppose in the coefficient matrix of the linear system of equations (19.25) every diagonal element aii
(i = 1, 2, . . . , n) is different from zero. Then the i-th row can be solved for the unknown xi, and it
immediately results the following iteration rule, where μ is the iteration index:

x
(μ+1)
i =

bi
aii

−
n∑

k=1
(k �=i)

aik
aii

x
(μ)
k (i = 1, 2, . . . , n) (19.48)

(μ = 0, 1, 2, . . . ; x
(0)
1 , x

(0)
2 , . . . , x(0)

n are given initial values).

Formula (19.48) is called the Jacobi method. Every component of the new vector x(μ+1) is calculated

from the components of x(μ). If at least one of the conditions

max
k

n∑
i=1
(i �=k)

∣∣∣∣aikaii
∣∣∣∣ < 1 column sum criterion (19.49)

or

max
i

n∑
k=1
(k �=i)

∣∣∣∣aikaii
∣∣∣∣ < 1 row sum criterion (19.50)

holds, then the Jacobi method is convergent for any initial vector x(0).

2. Gauss-Seidel Method
If the first component x

(μ+1)
1 is calculated by the Jacobi method, then this value can be used in the

calculation of x
(μ+1)
2 . While proceeding similarly in the calculation of the further components, the

following iteration formula is obtained:

x
(μ+1)
i =

bi
aii

−
i−1∑
k=1

aik
aii

x
(μ+1)
k −

n∑
k=i+1

aik
aii

x
(μ)
k (19.51)

(i = 1, 2, . . . , n; x
(0)
1 , x

(0)
2 , . . . , x(0)

n given initial value; μ = 0, 1, 2, . . .) .

Formula (19.51) is called the Gauss-Seidel method. The Gauss-Seidel method usually converges faster
than the Jacobi method, but its convergence criterion is more complicated.

10x1 − 3x2 − 4x3 + 2x4 = 14,
−3x1 + 26x2 + 5x3 − x4 = 22,
−4x1 + 5x2 + 16x3 + 5x4 = 17,
2x1 + 3x2 − 4x3 − 12x4 = −20.

The corresponding iteration formula according to (19.51) is:

19.2 Numerical Solution of Systems of Equations 961

x
(μ+1)
1 =

1

10

(
14 + 3x

(μ)
2 + 4x

(μ)
3 − 2x

(μ)
4

)
,

x
(μ+1)
2 =

1

26

(
22 + 3x

(μ+1)
1 − 5x

(μ)
3 + x

(μ)
4

)
,

x
(μ+1)
3 =

1

16

(
17 + 4x

(μ+1)
1 − 5x

(μ+1)
2 − 5x

(μ)
4

)
,

x
(μ+1)
4 =

1

12

(
−20 + 2x

(μ+1)
1 + 3x

(μ+1)
2 − 4x

(μ+1)
3

)
.

Some approximations and the solution
are given here:

x(0) x(1) x(4) x(5) x

0 1.4 1.5053 1.5012 1.5
0 1.0077 0.9946 0.9989 1
0 1.0976 0.5059 0.5014 0.5
0 1.7861 1.9976 1.9995 2

3. RelaxationMethod
The iteration formula of the Gauss-Seidel method (19.51) can be written in the so-called correction
form

x
(μ+1)
i = x

(μ)
i +

(
bi
aii

−
i−1∑
k=1

aik
aii

x
(μ+1)
k −

n∑
k=i

aik
aii

x
(μ)
k

)
, i.e.,

x
(μ+1)
i = x

(μ)
i + d

(μ)
i (i = 1, 2, . . . , n; μ = 0, 1, 2, . . .). (19.52)

By an appropriate choice of a relaxation parameter ω and rewriting (19.52) in the form

x
(μ+1)
i = x

(μ)
i + ωd

(μ)
i (i = 1, 2, . . . , n; μ = 0, 1, 2, . . .), (19.53)

one can try to improve the speed of convergence. It can be shown that convergence is possible only for

0 < ω < 2. (19.54)

For ω = 1 we retrieve the Gauss-Seidel method. In the case of ω > 1, which is called over-relaxation,
the corresponding iteration method is called the SOR method (successive overrelaxation). The deter-
mination of an optimal relaxation parameter is possible only for some special types of matrices.
Iterative methods are applied to solve linear systems of equations in the first place when the main diag-
onal elements aii of the coefficient matrix have an absolute value much larger than the other elements
aik (i �= k) (in the same row or column), or when the rows of the system of equations can be rearranged
in a certain way to get such a form.

19.2.2 SystemofNon-Linear Equations
Suppose the system of n non-linear equations

Fi(x1, x2, . . . , xn) = 0 (i = 1, 2, . . . , n) (19.55)

for the n unknowns x1, x2, . . . , xn has a solution. Usually, a numerical solution can be given only by
an iteration method.

19.2.2.1 Ordinary IterationMethod
The ordinary iteration method can be used if the equations (19.55) can be transformed into a fixed-
point form

xi = fi(x1, x2, . . . , xn) (i = 1, 2, . . . , n). (19.56)

Then, starting from estimated approximations x
(0)
1 , x

(0)
2 ,. . . , x(0)

n , the improved values are obtained
either by
1. iteration with simultaneous steps

x
(μ+1)
i = fi

(
x
(μ)
1 , x

(μ)
2 , . . . , x(μ)

n

)
(i = 1, 2, . . . , n; μ = 0, 1, 2, . . .) (19.57)

or by
2. iteration with sequential steps

x
(μ+1)
i = fi

(
x
(μ+1)
1 , . . . , x

(μ+1)
i−1 , x

(μ)
i , x

(μ)
i+1, . . . , x

(μ)
n

)
(i = 1, 2, . . . , n; μ = 0, 1, 2, . . .). (19.58)

962 19. Numerical Analysis

It is of crucial importance for the convergence of this method that in the neighborhood of the solution
the functions fi should depend only weakly on the unknowns, i.e., if fi are differentiable, the absolute
values of the partial derivatives must be rather small. We get as a convergence condition

K < 1 with K = max
i

(
n∑

k=1

max

∣∣∣∣∣ ∂fi∂xk

∣∣∣∣∣
)
. (19.59)

With this quantity K, the error estimation is the following:

max
i

∣∣∣x(μ+1)
i − xi

∣∣∣ ≤ K

1−K
max

i

∣∣∣x(μ+1)
i − x

(μ)
i

∣∣∣ . (19.60)

Here, xi is the component of the required solution, x
(μ)
i and x

(μ+1)
i are the corresponding μ-th and

(μ+ 1)-th approximations.

19.2.2.2 Newton’sMethod

The Newton method is used for the problem given in the form (19.55). After finding the initial ap-

proximation values x
(0)
1 , x

(0)
2 , . . . , x(0)

n , the functions Fi are expanded in Taylor form as functions of n
independent variables x1, x2, . . . , xn (see p. 471). Terminating the expansion after the linear terms,
from (19.55) a linear system of equations is obtained, and iterative improvements can be got by the
following formula:

Fi

(
x
(μ)
1 , x

(μ)
2 , . . . , x(μ)

n

)
+

n∑
k=1

∂Fi

∂xk

(
x
(μ)
1 , . . . , x(μ)

n

) (
x
(μ+1)
k − x

(μ)
k

)
= 0 (19.61)

(i = 1, 2, . . . , n; μ = 0, 1, 2, . . .).

The coefficientmatrix of the linear system of equations (19.61), which should be solved in every iteration
step, is

F′(x(μ)) =

(
∂Fi

∂xk

(
x
(μ)
1 , x

(μ)
2 , . . . , x(μ)

n

))
(i, k = 1, 2, . . . , n) (19.62)

and it is called the Jacobian matrix. If the Jacobian matrix is invertible in the neighborhood of the so-
lution, the Newton method is locally quadratically convergent, i.e., its convergence essentially depends

on how good the initial approximations are. If x
(μ+1)
k − x

(μ)
k = d

(μ)
k are substituted in (19.61), then the

Newton method can be written in the correction form

x
(μ+1)
k = x

(μ)
k + d

(μ)
k (i = 1, 2, . . . , n; μ = 0, 1, 2, . . .). (19.63)

To reduce the sensitivity to the initial values, analogously to the relaxationmethod, a so-called damping
or step length parameter γ can be introduced (damping method):

x
(μ+1)
k = x

(μ)
k + γd

(μ)
k (i = 1, 2, . . . , n; μ = 0, 1, 2, . . . ; γ > 0). (19.64)

Methods to determine γ can be found in [19.24].

19.2.2.3 Derivative-Free Gauss-NewtonMethod

To solve the least squares problem (19.24), one proceeds iteratively in the non-linear case as follows:

1. Starting from a suitable initial approximation x
(0)
1 , x

(0)
2 , . . . , x(0)

n , the non-linear functions Fi(x1, x2,
. . . , xn) (i = 1, 2, . . . ,m;m > n) are approximated as in the Newton method (see (19.61)) by linear

approximations F̃i(x1, x2, . . . , xn), which are calculated in every iteration step according to

F̃i(x1, . . . , xn) = Fi

(
x
(μ)
1 , x

(μ)
2 , . . . , x(μ)

n

)
+

n∑
k=1

∂Fi

∂xk

(
x
(μ)
1 , . . . , x(μ)

n

) (
xk − x

(μ)
k

)
(i = 1, 2, . . . ,m; μ = 0, 1, 2, . . .). (19.65)

19.3 Numerical Integration 963

2. d
(μ)
k = xk − x

(μ)
k are substituted in (19.65) and the corrections d

(μ)
k are determined by using the

Gaussian least squares method, i.e., by the solution of the linear least squares problem
m∑
i=1

F̃ 2
i (x1, . . . , xn) = min, (19.66)

e.g., with the help of the normal equations (see (19.42)), or the Householder method (see 19.6.2.2,
p. 985).

3. The approximations for the required solution are given by the formulas

x
(μ+1)
k = x

(μ)
k + d

(μ)
k or (19.67a)

x
(μ+1)
k = x

(μ)
k + γd

(μ)
k (k = 1, 2, . . . , n), (19.67b)

where γ (γ > 0) is a step length parameter similar to the Newton method.

By repeating steps 2 and 3 with x
(μ+1)
k instead of x

(μ)
k one gets the Gauss-Newton method. It results in

a sequence of approximation values, whose convergence strongly depends on the accuracy of the initial
approximation. The sum of the error squares can be reduced by introducing a length parameter γ.

If the evaluation of the partial derivatives
∂Fi

∂xk

(
x
(μ)
1 , . . . , x(μ)

n

)
(i = 1, 2, . . . ,m; k = 1, 2, . . . , n) requires

too much work, the partial derivatives can be approximated by difference quotients :

∂Fi

∂xk

(
x
(μ)
1 , . . . , x

(μ)
k , . . . , x(μ)

n

)
≈ 1

h
(μ)
k

[
Fi

(
x
(μ)
1 , . . . , x

(μ)
k−1, x

(μ)
k + h

(μ)
k , x

(μ)
k+1, . . . , x

(μ)
n

)
−Fi

(
x
(μ)
1 , . . . , x

(μ)
k , . . . , x(μ)

n

)]
(i = 1, 2, . . . ,m; k = 1, 2, . . . , n; μ = 0, 1, 2, . . .). (19.68)

The so-called discretization step sizes h
(μ)
k may depend on the iteration steps and the values of the vari-

ables.
If the approximations (19.68) are used, then only function values Fi are to be calculated while perform-
ing the Gauss-Newton method, i.e., the method is derivative free.

19.3 Numerical Integration

19.3.1 General Quadrature Formulas
The numerical evaluation of the definite integral

I(f) =

b∫
a

f(x) dx (19.69)

must be done only approximately if the integrand f(x) cannot be integrated by elementary calculus,
or it is too complicated, or when the function is known only at certain points xν , at the so-called inter-
polation nodes from the integration interval [a, b]. The so-called quadrature formulas are used for the
approximate calculation of (19.69). They have the general form

Q(f) =
n∑

ν=0

c0νyν +
n∑

ν=0

c1νy
(1)
ν + · · ·+

n∑
ν=0

cpνy
(p)
ν (19.70)

with y(μ)ν = f (μ)(xν) (μ = 1, 2, . . . , p; ν = 1, 2, . . . , n), yν = f(xν), and constant values of cμν . Obvi-
ously,

I(f) = Q(f) +R, (19.71)

whereR is the error of the quadrature formula. In the application of quadrature formulas it is supposed
that the required values of the integrand f(x) and its derivatives at the interpolation nodes are known

964 19. Numerical Analysis

as numerical values. Formulas using only the values of the function are called mean value formulas;
formulas using also the derivatives are called Hermite quadrature formulas.

19.3.2 InterpolationQuadratures

The following formulas represent so-called interpolation quadratures. Here, the integrand f(x) is in-
terpolated at certain interpolation nodes (possibly the least number of them) by a polynomial p(x) of
corresponding degree, and the integral of f(x) is replaced by that of p(x). The formula for the integral
over the entire interval is given by summation. Here the formulas are given for the most practical cases.
The interpolation nodes are equidistant:

xν = x0 + νh (ν = 0, 1, 2, . . . , n), x0 = a, xn = b, h =
b− a

n
. (19.72)

An upper bound for the magnitude of the error |R| is given for every quadrature formula. Here, Mμ

means an upper bound of |f (μ)(x)| on the entire domain.

19.3.2.1 Rectangular Formula

In the interval [x0, x0+h], f(x) is replaced by the constant function y = y0 = f(x0), which interpolates
f(x) at the interpolation node x0, which is the left endpoint of the integration interval. In this way the
simple rectangular formula is obtained:

x0+h∫
x0

f(x) dx ≈ h · y0, |R| ≤ h2

2
M1. (19.73a)

The left-sided rectangular formula by summation is

b∫
a

f(x) dx ≈ h(y0 + y1 + y2 + · · ·+ yn−1), |R| ≤ (b− a)h

2
M1. (19.73b)

M1 denotes an upper bound of |f ′(x)| on the entire domain of integration.
One gets analogously the right-sided rectangular sum, if one replaces y0 by y1 in (19.73a). The formula
is

b∫
a

f(x) dx ≈ h(y1 + y2 + · · ·+ yn), |R| ≤ (b− a)h

2
M1. (19.74)

19.3.2.2 Trapezoidal Formula

f(x) is replaced by a polynomial of first degree in the interval [x0, x0 + h], which interpolates f(x) at
the interpolation nodes x0 and x1 = x0 + h. The approximation is

x0+h∫
x0

f(x) dx ≈ h

2
(y0 + y1), |R| ≤ h3

12
M2. (19.75)

The so-called trapezoidal formula can be obtained by summation:

b∫
a

f(x) dx ≈ h
(
y0
2

+ y1 + y2 + · · ·+ yn−1 +
yn
2

)
, |R| ≤ (b− a)h2

12
M2. (19.76)

M2 denotes an upper bound of |f ′′(x)| on the entire integration domain. The error of the trapezoidal
formula is proportional to h2, i.e., the trapezoidal sumhas an error of order 2. It follows that it converges

19.3 Numerical Integration 965

to the definite integral for h → 0 (hence, n → ∞), if rounding errors are not considered.

19.3.2.3 Simpson’s Formula
f(x) is replaced by a polynomial of second degree in the interval [x0, x0 + 2h], which interpolates f(x)
at the interpolation nodes x0, x1 = x0 + h and x2 = x0 + 2h:

x0+2h∫
x0

f(x) dx ≈ h

3
(y0 + 4y1 + y2), |R| ≤ h5

90
M4. (19.77)

n must be an even number for a complete Simpson formula. The approximation is
b∫

a

f(x) dx ≈ h

3
(y0 + 4y1 + 2y2 + 4y3 + · · ·+ 2yn−2 + 4yn−1 + yn), (19.78)

|R| ≤ (b− a)h4

180
M4.

M4 is an upper bound for |f (4)(x)| on the entire integration domain. The Simpson formula has an error
of order 4 and it is exact for polynomials up to third degree.

19.3.2.4 Hermite’s Trapezoidal Formula
f(x) is replaced by a polynomial of third degree in the interval [x0, x0+h], which interpolates f(x) and
f ′(x) at the interplation nodes x0 and x1 = x0 + h:

x0+h∫
x0

f(x) dx ≈ h

2
(y0 + y1) +

h2

12
(y′0 − y′1), |R| ≤ h5

720
M4. (19.79)

The Hermite trapezoidal formula is obtained by summation:
b∫

a

f(x) dx ≈ h
(
y0
2

+ y1 + y2 + · · ·+ yn−1 +
yn
2

)
+

h2

12
(y′0 − y′n), |R| ≤ (b− a)h4

720
M4. (19.80)

M4 denotes an upper bound for |f (4)(x)| on the entire integration domain. The Hermite trapezoidal
formula has an error of order 4 and it is exact for polynomials up to third degree.

19.3.3 Quadrature Formulas ofGauss
Quadrature formulas of Gauss have the general form

b∫
a

f(x) dx ≈
n∑

ν=0

cνyν with yν = f(xν) (19.81)

where not only the coefficients cν are considered as parameters but also the interpolation nodes xν .
These parameters are determined in order to make the formula (19.81) exact for polynomials of the
highest possible degree.
The quadrature formulas of Gauss result in very accurate approximations, but the interpolation nodes
must be chosen in a very special way.

19.3.3.1 Gauss Quadrature Formulas
If the integration interval in (19.81) is chosen as [a, b] = [−1, 1], and the interpolation nodes are chosen
as the roots of the Legendre polynomials (see 9.1.2.6, 3., p. 566, 21.12, p. 1108), then the coefficients
cν can be determined so that the formula (19.81) gives the exact value for polynomials up to degree
2n+ 1. The roots of the Legendre polynomials are symmetric with respect to the origin. For the cases
n = 1, 2 and 3 they are:

966 19. Numerical Analysis

n = 1: x0 = −x1, c0 = 1,

x1 =
1√
3
= 0.577 350 269 . . . , c1 = 1.

n = 2: x0 = −x2, c0 =
5

9
,

x1 = 0, c1 =
8

9
,

x2 =

√
3

5
= 0.774 596 669 . . . , c2 = c0.

n = 3: x0 = −x3, c0 = 0.347 854 854 . . . ,
x1 = −x2, c1 = 0.652 145 154 . . . ,
x2 = 0.339 981 043 . . . , c2 = c1,
x3 = 0.861 136 311 . . . , c3 = c0.

(19.82)

Remark: A general integration interval [a, b] can be transformed into [−1, 1] by the transformation

t =
b− a

2
x+

a+ b

2
(t ∈ [a, b], x ∈ [−1, 1]). Then

b∫
a

f(t) dt ≈ b− a

2

n∑
ν=0

cνf

(
b− a

2
xν +

a+ b

2

)
(19.83)

with the values xν and cν given above for the interval [−1, 1].

19.3.3.2 Lobatto’s Quadrature Formulas
In some cases it is reasonable also to choose the endpoints of the subintervals as interpolation nodes.
Then, there are 2nmore free parameters in (19.81). These values can be determined so that polynomials
up to degree 2n− 1 can be integrated exactly. In the cases n = 2 and n = 3:

n = 2:

x0 = −1, c0 =
1

3
,

x1 = 0, c1 =
4

3
,

x2 = 1, c2 = c0.

(19.84a)

n = 3:

x0 = −1, c0 =
1

6
,

x1 = −x2, c1 =
5

6
,

x2 =
1√
5
= 0.447 213 595 . . . , c2 = c1,

x3 = 1, c3 = c0.

(19.84b)

The case n = 2 represents the Simpson formula.

19.3.4 Method ofRomberg
To increase the accuracy of numerical integration the method of Romberg can be recommended, where
one starts with a sequence of trapezoid sums, which is obtained by repeated halving of the integration
step size.

19.3.4.1 Algorithm of the RombergMethod
The method consists of the following steps:

1. Trapezoid sums determination
The trapezoid sum T (hi) according to (19.76) in 19.3.2.2, p. 964 is determined as an approximation of

the integral
∫ b

a
f(x) dx with the step sizes

hi =
b− a

2i
(i = 0, 1, 2, . . . ,m). (19.85)

19.3 Numerical Integration 967

Here, the recursive relation

T (hi) = T

(
hi−1

2

)
=

hi−1

2

[
1

2
f(a) + f

(
a+

hi−1

2

)
+ f(a+ hi−1) + f

(
a+

3

2
hi−1

)

+f(a+ 2hi−1) + · · ·+ f
(
a+

2n− 1

2
hi−1

)
+

1

2
f(b)

]
(19.86)

=
1

2
T (hi−1) +

hi−1

2

n−1∑
j=0

f

(
a+

hi−1

2
+ jhi−1

)
(i = 1, 2, . . . ,m; n = 2i−1)

is considered. Recursion formula (19.86) tells that for the calculation of T (hi) from T (hi−1) the function
values must be calculated only at the new interpolation nodes.

2. Triangular Scheme
T0i = T (hi) (i = 0, 1, 2, . . .) is substituted and the values

Tki = Tk−1,i +
Tk−1,i − Tk−1,i−1

4k − 1
(k = 1, 2, . . . ,m; i = k, k + 1, . . .) (19.87)

are calculated recursively. The arrangement of the values calculated according to (19.87) is most prac-
tical in a triangular scheme, whose elements are calculated in a column-wise manner:

T (h0)= T00

T (h1)= T01 T11

T (h2)= T02 T12 T22

T (h3)=T03 T13 T23 T33

. .

(19.88)

The scheme will be continued downwards (with a fixed number of columns) until the lower values at
the right are almost the same. The values T1i (i = 1, 2, . . .) of the second column correspond to those
calculated by the Simpson formula.

19.3.4.2 Extrapolation Principle
The Romberg method represents an application of the so-called extrapolation principle. This will be
demonstrated by deriving the formula (19.87) for the case k = 1. The required integral is denoted by I,
the corresponding trapezoid sum (19.76) by T (h). If the integrand of I is (2m+ 2) times continuously
differentiable in the integration interval, then it can be shown that an asymptotical expansion with
respect to h is valid for the error R of the quadrature formula, and it has the form

R(h) = I − T (h) = a1h
2 + a2h

4 + · · ·+ amh
2m +O(h2m+2) (19.89a)

or

T (h) = I − a1h
2 − a2h

4 − · · · − amh
2m +O(h2m+2). (19.89b)

The coefficients a1, a2,. . . ,am are constants and independent of h.

T (h) and T

(
h

2

)
are formed according to (19.89b) and the linear combination

T1(h) = α1T (h) + α2T

(
h

2

)
= (α1 + α2)I − a1

(
α1 +

α2

4

)
h2 − a2

(
α1 +

α2

16

)
h4 − · · · (19.90)

is considered. If α1+α2 = 1 and α1+
α2

4
= 0 are substituted, then T1(h) has an error of order 4, while

T (h) and T (h/2) both have errors of order only 2. The formula is

T1(h) = −1

3
T (h) +

4

3
T

(
h

2

)
= T

(
h

2

)
+

T

(
h

2

)
− T (h)

3
. (19.91)

968 19. Numerical Analysis

This is the formula (19.87) for k = 1. Repeated application of the above procedure results in the
approximation Tki according to (19.87) and

Tki = I +O(h2k+2
i). (19.92)

The definite integral I =
∫ 1

0

sin x

x
dx (integral sine, see 8.2.5, 1., p. 513) cannot be obtained in an

elementary way. Calculate the approximate values of this integral (calculating for 8 digits).

1. Romberg method:

k = 0 k = 1 k = 2 k = 3

0.92073549
0.93979328 0.94614588
0.94451352 0.94608693 0.94608300
0.94569086 0.94608331 0.94608307 0.94608307.

The Romberg method results in the approximation value 0.94608307. The value calculated for 10 digits

is 0.9460830704. The order O
(
(1/8)8

)
≈ 6 · 10−8 of the error according to (19.92) is verified.

2. Trapezoidal and Simpson Formulas: From the scheme of the Romberg method it can be got
directly that for h3 = 1/8 the trapezoid formula has the approximation value 0.94569086 and the
Simpson formula gives the value 0.94608331.
The correction of the trapezoidal formula by Hermite according to (19.79) results in the value I ≈
0.94569086 +

0.30116868

64 · 12 = 0.94608301.

3. Gauss Formula: By the formula (19.83) we get for

n = 1: I ≈ 1

2

[
c0f

(
1

2
x0 +

1

2

)
+ c1f

(
1

2
x1 +

1

2

)]
= 0.94604113;

n = 2: I ≈ 1

2

[
c0f

(
1

2
x0 +

1

2

)
+ c1f

(
1

2
x1 +

1

2

)
+ c2f

(
1

2
x2 +

1

2

)]
= 0.94608313;

n = 3: I ≈ 1

2

[
c0f

(
1

2
x0 +

1

2

)
+ · · ·+ c3f

(
1

2
x3 +

1

2

)]
= 0.94608307.

It can be observed that the Gauss formula results in an 8-digit exact approximation value for n = 3,
i.e., with only four function values. With the trapezoidal rule this accuracy would need a very large
number (> 1000) of function values.

Remarks:
1. Fourier analysis has an important role in integrating periodic functions (see 7.4.1.1, 1., p. 474). The
details of numerical realizations can be found under the title of harmonic analysis (see 19.6.4, p. 992).
The actual computations are based on the so-called Fast Fourier Transformation FFT (see 19.6.4.2,
p. 993).

2. In many applications it is useful to take the special properties of the integrands under consideration.
Further integration routines can be developed for such special cases. A large variety of convergence
properties, error analysis, and optimal integration formulas is discussed in the literature (see, e.g.,
[19.4]).

3. Numerical methods to find the values of multiple integrals are discussed in the literature (see, e.g.,
[19.26]).

19.4 Approximate Integration of Ordinary Differential Equations 969

19.4 Approximate Integration ofOrdinaryDifferential
Equations

In many cases, the solution of an ordinary differential equation cannot be given in closed form as an
expression of known elementary functions. The solution, which still exists under rather general circum-
stances (see 9.1.1.1, p. 540), must be determined by numerical methods. These result only in particular
solutions, but it is possible to reach high accuracy. Since differential equations of higher order than one
can be either initial value problems or boundary value problems, numerical methods were developed
for both types of problems.

19.4.1 Initial ValueProblems
The principle of the methods presented in the following discussion to solve initial value problems

y′ = f(x, y), y(x0) = y0 (19.93)

is to give approximate values yi for the unknown function y(x) at a chosen set of interpolation points
xi. Usually, equidistant interpolation nodes are considered with a previously given step size h:

xi = x0 + ih (i = 0, 1, 2, . . .). (19.94)

19.4.1.1 Euler PolygonalMethod
An integral representation of the initial value problem (19.93) is given by integration

y(x) = y0 +

x∫
x0

f(x, y(x)) dx. (19.95)

This is the starting point for the approximation

y(x1) = y0 +

x0+h∫
x0

f(x, y(x)) dx ≈ y0 + hf(x0, y0) = y1, (19.96)

which is generalized as the Euler broken line method or Euler polygonal method :

yi+1 = yi + hf(xi, yi) (i = 0, 1, 2, . . . ; y(x0) = y0). (19.97)

For a geometric interpretation see Fig. 19.5. Comparison of (19.96) with the Taylor expansion

y
0

y
1

y
2

y
3

x
0

x
1

x
2

x
3

y

0 x

h h h

y(x)

Figure 19.5

y(x1) = y(x0 + h)

= y0 + f(x0, y0)h+
y′′(ξ)
2

h2 (19.98)

with x0 < ξ < x0 + h shows that the approx-
imation y1 has an error of order h2. The ac-
curacy can be improved by reducing the step
size h. Practical calculations show that halv-
ing the step size h results in halving the error
of the approximations yi.
A quick overview of the approximate shape of
the solution curve can be got by using the Eu-
ler method.

19.4.1.2 Runge-KuttaMethods

1. Calculation Scheme
The equation y′(x) = f(x, y) determines at every point (x0, y0) a direction, the direction of the tangent
line of the solution curve passing through the point (x0, y0). The Euler method follows this direction
until the next interpolation node. The Runge-Kutta methods consider more points “between” (x0, y0)

970 19. Numerical Analysis

and the possible next point (x0+h, y1) of the curve, and depending on the appropriate choice of these ad-
ditional points more accurate values are obtained for y1. There exist Runge-Kutta methods of different
orders depending on the number and the arrangements of these ”auxiliary” points. Here a fourth-order
method (see 19.4.1.5, 1., p. 972) is shown. (The Euler method is a first-order Runge-Kutta method.)

The calculation scheme of fourth order
for the step from x0 to x1 = x0 + h
to get an approximate value for y1 of
(19.93) is given in (19.99). The further
steps follow the same scheme.

The error of this Runge-Kutta method
has order h5 (at every step) accord-
ing to (19.99), so with an appropriate
choice of the step size high accuracy
can be obtained.

x y k = h · f(x, y)
x0 y0 k1
x0 + h/2 y0 + k1/2 k2
x0 + h/2 y0 + k2/2 k3
x0 + h y0 + k3 k4

x1 = x0 + h y1 = y0 +
1

6
(k1 + 2k2 + 2k3 + k4)

(19.99)

y′ =
1

4
(x2 + y2) with y(0) = 0. y(0.5) is determined

in one step, i.e. h = 0.5 (see the table on the right). The
exact value for 8 digits is 0.01041860.

2. Remarks
1. For the special differential equation y′ = f(x), this
Runge-Kutta method becomes the Simpson formula (see
19.3.2.3, p. 965).

x y k =
1

8
(x2 + y2)

0 0 0
0.25 0 0.00781250
0.25 0.00390625 0.00781441
0.5 0.00781441 0.03125763

0.5 0.01041858

2. For a large number of integration steps, a change of step size is possible or sometimes necessary. The
change of step size can be decided by checking the accuracy so that the step is repeated with a double
step size 2h. If, e.g., the approximate value is y2(h) for y(x0+2h) (calculated by the single step size) and
y2(2h) (calculated by the doubled step size), then the estimation for the errorR2(h) = y(x0+2h)−y2(h)
is

R2(h) ≈
1

15
[y2(h)− y2(2h)]. (19.100)

Information about the implementation of the step size changes can be found in the literature (see
[19.24]).

3. Runge-Kutta methods can easily be used also for higher-order differential equations, see [19.24].
Higher-order differential equations can be rewritten in a first-order differential equation system (see
p. 550). Then, the approximation methods are performed as parallel calculations according to (19.99),
as the differential equations are connected to each other.

19.4.1.3 Multi-StepMethods

The Euler method (19.97) and the Runge-Kutta method (19.99) are so-called single-step methods, since
we start only from yi in the calculation of yi+1. In general, linear multi-step methods have the form

yi+k + αk−1yi+k−1 + αk−2yi+k−2 + · · ·+ α1yi+1 + α0yi
= h(βkfi+k + βk−1fi+k−1 + · · ·+ β1fi+1 + β0fi) (19.101)

with appropriately chosen constants αj and βj (j = 0, 1, . . . , k; αk = 1). The formula (19.101) is
called a k-step method if |α0| + |β0| �= 0. It is called explicit, if βk = 0, since in this case the values
fi+j = f(xi+j, yi+j) on the right-hand side of (19.101) only contain the already known approximation
values yi, yi+1, . . . , yi+k−1. If βk �= 0 holds, the method is called implicit, since then the required new
value yi+k occurs on both sides of (19.101).
The k initial values y0, y1, . . . , yk−1 must be known in the application of a k-step method. These initial
values can be got, e.g., by one-step methods.

A special multi-step method to solve the initial value problem (19.93) can be derived if the derivative

19.4 Approximate Integration of Ordinary Differential Equations 971

y′(xi) in (19.93) is replaced by a difference formula (see 9.1.1.5, 1., p. 549) or if the integral in (19.95)
is approximated by a quadrature formula (see 19.3.1, p. 963).

Examples of special multi-step methods are:
1. MidpointRule The derivative y′(xi+1) in (19.93) is replaced by the slope of the secant line between
the interpolation nodes xi and xi+2, i.e.:

yi+2 − yi = 2hfi+1. (19.102)

2. Rule of Milne The integral in (19.95) is approximated by the Simpson formula:

yi+2 − yi =
h

3
(fi + 4fi+1 + fi+2). (19.103)

3. Rule of Adams and Bashforth The integrand in (19.95) is replaced by the interpolation poly-
nomial of Lagrange (see 19.6.1.2, p. 983) based on the k interpolation nodes xi, xi+1,. . . , xi+k−1. Inte-
grating between xi+k−1 and xi+k results in

yi+k − yi+k−1 =
k−1∑
j=0

⎡⎢⎣ xi+k∫
xi+k−1

Lj(x) dx

⎤⎥⎦ f(xi+j, yi+j) = h
k−1∑
j=0

βjf(xi+j, yi+j). (19.104)

The method (19.104) is explicit for yi+k. For the calculation of the coefficients βj see [19.2].

19.4.1.4 Predictor-CorrectorMethod
In practice, implicit multi-step methods have a great advantage compared to explicit ones in that they
allow much larger step sizes with the same accuracy. But, an implicit multi-step method usually re-
quires the solution of a non-linear equation to get the approximation value yi+k. This follows from
(19.101) and has the form

yi+k = h
k∑

j=0

βjfi+j −
k−1∑
j=0

αjyi+j = F (yi+k). (19.105)

The solution of (19.105) is an iterative one. The procedure is the following: An initial value y
(0)
i+k is

determined by an explicit formula, the so-called predictor. Then it will be corrected by an iteration
rule

y
(μ+1)
i+k = F (y

(μ)
i+k) (μ = 0, 1, 2, . . .), (19.106)

which is called the corrector coming from the implicit method. Special predictor–corrector formulas
are:

1. y
(0)
i+1 = yi +

h

12
(5fi−2 − 16fi−1 + 23fi), (19.107a)

y
(μ+1)
i+1 = yi +

h

12
(−fi−1 + 8fi + 5f

(μ)
i+1) (μ = 0, 1, . . .); (19.107b)

2. y
(0)
i+1 = yi−2 + 9yi−1 − 9yi + 6h(fi−1 + fi), (19.108a)

y
(μ+1)
i+1 = yi−1 +

h

3
(fi−1 + 4fi + f

(μ)
i+1) (μ = 0, 1, . . .). (19.108b)

The Simpson formula as the corrector in (19.108b) is numerically unstable and it can be replaced, e.g.,
by

y
(μ+1)
i+1 = 0.9yi−1 + 0.1yi +

h

24
(0.1fi−2 + 6.7fi−1 + 30.7fi + 8.1f

(μ)
i+1). (19.109)

972 19. Numerical Analysis

19.4.1.5 Convergence, Consistency, Stability

1. Global Discretization Error and Convergence
Single-step methods can be written generally in the form:

yi+1 = yi + hF (xi, yi, h) (i = 0, 1, 2, . . . ; y0 given). (19.110)

Here F (x, y, h) is called the increment function or progressive direction of the single-step method. The
approximating solution obtained by (19.110) depends on the step size h and it should be denoted by
y(x, h). Its difference from the exact solution y(x) of the initial value problem (19.93) is called the global
discretization error g(x, h) (see (19.111)), and we say: The single-step method (19.110) is convergent
with order p if p is the largest natural number such that

g(x, h) = y(x, h)− y(x) = O(hp) (19.111)

holds. Formula (19.111) says that the approximation y(x, h) determined with the step size h =
x− x0

n
converges to the exact solution y(x) for every x from the domain of the initial value problem if h → 0.

The Euler method (19.97) has order of convergence p = 1. For the Runge-Kutta method (19.99)
p = 4 holds.

2. Local Discretization Error and Consistency
The order of convergence according to (19.111) shows how well the approximating solution y(x, h) ap-
proximates the exact solution y(x). Beside this, it is an interesting question of how well the increment
function F (x, y, h) approximates the derivative y′ = f(x, y). For this purpose the so-called local dis-
cretization error l(x, h) (see (19.112)) is introduced. The single-step method (19.110) is consistent with
order p, if p is the largest natural number with

l(x, h) =
y(x+ h)− y(x)

h
− F (x, y, h) = O(hp). (19.112)

It follows directly from (19.112) that for a consistent single-step method

lim
h→0

F (x, y, h) = f(x, y). (19.113)

The Euler method has order of consistency p = 1, the Runge-Kutta method in (19.99) has order of
consistency p = 4.

3. Stability with Respect to Perturbation of the Initial Values
In the practical performance of a single-step method, a rounding error O(1/h) adds to the global dis-
cretization error O(hp). Consequently, we have to select a not too small, finite step size h > 0. It is
also an important question of how the numerical solution yi behaves under perturbations of the initial
values or in the case xi → ∞.
In the theory of ordinary differential equations, an initial value problem (19.93) is called stable with
respect to perturbations of its initial values if:

|ỹ(x)− y(x)| ≤ |ỹ0 − y0|. (19.114)

Here ỹ(x) is the solution of (19.93) with the perturbed initial value ỹ(x0) = ỹ0 instead of y0. Estimation
(19.114) tells that the absolute value of the difference of the solutions is not larger than the perturbation
of the initial values.

In general, it is hard to check (19.114). Therefore the linear test problem

y′ = λy with y(x0) = y0 (λ constant, λ ≤ 0) (19.115)

is considered which is stable, and a single-step method is applied to this special initial value problem.
A consistent method is called absolutely stable with step size h > 0 with respect to perturbed initial
values if the approximating solution yi of the above linear test problem (19.115) obtained by using the
method satisfies the condition

|yi| ≤ |y0|. (19.116)

19.4 Approximate Integration of Ordinary Differential Equations 973

Applying the Euler polygon method for equation (19.115) results in the solution yi+1 = (1 + λh)yi
(i = 0, 1, . . .). Obviously, (19.116) holds if |1+λh| ≤ 1, and so the step size must satisfy−2 ≤ λh ≤ 0.

4. Stiff Differential Equations
Many application problems, including those in chemical kinetics, can be modeled by differential equa-
tions whose solutions consist of terms converging to zero exponentially but in a high different kind of
exponential decreasing. These equations are called stiff differential equations. For example:

y(x) = C1e
λ1x + C2e

λ2x (C1, C2, λ1, λ2 const) (19.117)

with λ1 < 0, λ2 < 0 and |λ1| 1 |λ2|, e.g., λ1 = −1, λ2 = −1000. The term with λ2 does not have a
significant affect on the solution function, but it does in selecting the step size h for a numerical method.
In such cases the choice of the most appropriate numerical method has special importance (see [19.23]).

19.4.2 BoundaryValueProblems
The most important methods for solving boundary value problems of ordinary differential equations
will be demonstrated on the following simple linear boundary value problem for a differential equation
of the second order:

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x) (a ≤ x ≤ b) with y(a) = α, y(b) = β. (19.118)

The functions p(x), q(x) and f(x) and also the constants α and β are given.
The given method can also be adapted for boundary value problems of higher-order differential equa-
tions.

19.4.2.1 DifferenceMethod
The interval [a, b] is subdivided by equidistant interpolation points xν = x0 + νh (ν = 0, 1, 2, . . . , n;
x0 = a, xn = b) and the values of the derivatives are substituted into the differential equation at the
interior interpolation points

y′′(xν) + p(xν)y
′(xν) + q(xν)y(xν) = f(xν) (ν = 1, 2, . . . , n− 1) (19.119)

by so-called finite divided differences, e.g.:

y′(xν) ≈ y′ν =
yν+1 − yν−1

2h
, (19.120a)

y′′(xν) ≈ y′′ν =
yν+1 − 2yν + yν−1

h2
. (19.120b)

In this way n − 1 linear equations are obtained for the n − 1 approximation values yν ≈ y(xν) in the
interior of the integration interval [a, b], considering the conditions y0 = α and yn = β. If the boundary
conditions also contain derivatives, they must also be replaced by finite expressions.

Eigenvalue problems of differential equations (see 9.1.3.2, p. 569) are handled analogously. The ap-
plication of the difference method, described by (19.119) and (19.120a,b), leads to a matrix eigenvalue
problem (see 4.6, p. 314).

The solution of the homogeneous differential equation y′′ + λ2y = 0 with boundary conditions
y(0) = y(1) = 0 leads to a matrix eigenvalue problem. The difference method transforms the dif-
ferential equation into the difference equation yν+1 − 2yν + yν−1 + h2λ2yν = 0. If three interior points
are chosen, hence h = 1/4, then considering y0 = y(0) = 0, y4 = y(1) = 0 the discrete system is(
−2 +

λ2

16

)
y1 + y2 = 0,

y1 +

(
−2 +

λ2

16

)
y2 + y3 = 0,

y2 +

(
−2 +

λ2

16

)
y3 = 0.

This homogeneous system of equations has a non-trivial solution only when the coefficient determinant

974 19. Numerical Analysis

is zero. This condition results in the eigenvalues λ1
2 = 9.37, λ2

2 = 32 and λ3
2 = 54.63. Among them

only the smallest one is close to its corresponding true value 9.87.

Remark: The accuracy of the difference method can be improved by

1. decreasing the step size h,

2. application of a derivative approximation of higher order (approximations as (19.120a,b) have an
error of order O(h2)),

3. application of multi-step methods (see 19.4.1.3, p. 970).

If the problem is a non-linear boundary value problem, then the difference method leads to a system of
non-linear equations of the unknown approximation values yν (see 19.2.2, p. 961).

19.4.2.2 Approximation byUsing Given Functions
The approximate solution of the boundary value problem (19.118) is a linear combination of suitably
chosen functions gi(x), which are linearly independent and each one satisfies the boundary value con-
ditions:

y(x) ≈ g(x) =
n∑

i=1

aigi(x). (19.121)

Substituting g(x) into the differential equation (19.118) results in an error, the so-called defect

ε(x; a1, a2, . . . , an) = g′′(x) + p(x)g′(x) + q(x)g(x)− f(x). (19.122)

To determine the coefficients ai the following principles (see also p. 978) can be used:

1. Collocation Method The defect has to be zero at n given points xν , the so-called collocation
points. The conditions

ε(xν ; a1, a2, . . . , an) = 0 (ν = 1, 2, . . . , n), a < x1 < x2 < . . . < xn < b (19.123)

result in a linear system of equations for the unknown coefficients.

2. Least Squares Method The integral

F (a1, a2, . . . , an) =

b∫
a

ε2(x; a1, a2, . . . , an) dx, (19.124)

depending on the coefficients, should be minimal. The necessary conditions

∂F

∂ai
= 0 (i = 1, 2, . . . , n) (19.125)

give a linear system of equations for the coefficients ai.

3. Galerkin Method The requirement is that the so-called error orthogonality is satisfied, i.e.,

b∫
a

ε(x; a1, a2, . . . , an)gi(x) dx = 0 (i = 1, 2, . . . , n), (19.126)

and in this way a linear system of equations is obtained for the unknown coefficients.

4. RitzMethod The solution y(x) often has the property that it minimizes the variational integral,

I[y] =

b∫
a

H(x, y, y′) dx (19.127)

(see (10.4), p. 610). If the function H(x, y, y′) is known, then y(x) is replaced by the approximation
g(x) as in (19.121) and I[y] = I(a1, a2, . . . , an) is minimized. The necessary conditions

∂I

∂ai
= 0 (i = 1, 2, . . . , n) (19.128)

result in n equation for the coefficients ai.

19.4 Approximate Integration of Ordinary Differential Equations 975

Under certain conditions on the functions p, q, f and y, the boundary value problem

−[p(x)y′(x)]′ + q(x)y(x) = f(x) with y(a) = α, y(b) = β (19.129)

and the variational problem

I[y] =
∫ b

a
[p(x)y′2(x) + q(x)y2(x)− 2f(x)y(x)] dx = min! with y(a) = α, y(b) = β (19.130)

are equivalent, so H(x, y, y′) can be got immediately from (19.130) for the boundary value problem of
the form (19.129).
Instead of the approximation (19.121), one often considers

g(x) = g0(x) +
n∑

i=1

aigi(x), (19.131)

where g0(x) satisfies the boundary values and the functions gi(x) satisfy the conditions

gi(a) = gi(b) = 0 (i = 1, 2, . . . , n). (19.132)

For the problem (19.118), an appropriate choice is, e.g.,

g0(x) = α +
β − α

b− a
(x− a). (19.133)

Remark: In a linear boundary value problem, the forms (19.121) and (19.131) result in a linear system
of equations for the coefficients. In the case of non-linear boundary value problems non-linear systems
of equations are obtained, which can be solved by the methods given in Section 19.2.2, p. 961.

19.4.2.3 ShootingMethod
With the shooting method, the solution of a boundary value problem is reduced to the solution of an
initial value problem. The basic idea of the method is described below as the single-target method.

1. Single-Target Method
The initial value problem

y′′ + p(x)y′ + q(x)y = f(x) with y(a) = α, y′(a) = s (19.134)

is associated to the boundary value problem (19.118). Here s is a parameter, from which the solution
y of the initial-value problem (19.134) depends on, i.e., y = y(x, s) holds. The function y(x, s) satisfies
the first boundary condition y(a, s) = α according to (19.134). The parameter s should be determined
so that y(x, s) satisfies the second boundary condition y(b, s) = β. Therefore, one has to solve the
equation

F (s) = y(b, s)− β, (19.135)

and the regula falsi (or secant) method is an appropriate method to do this. It needs only the values of
the function F (s), but the computation of every function value requires the solution of an initial value
problem (19.134) until x = b for the special parameter value s with one of the methods given in 19.4.1.

2. Multiple-Target Method
In a so-called multiple-target method, the integration interval [a, b] is divided into subintervals, and we
use the single-target method on every subinterval. Then, the required solution is composed from the
solutions of the subintervals, where the continuous transition at the endpoints of the subintervals must
be ensured.
This requirement results in further conditions. For the numerical implementation of themultiple-target
method, which is used mostly for non-linear boundary value problems, see. [19.24].

976 19. Numerical Analysis

19.5 Approximate Integration ofPartialDifferential
Equations

In this section only the principles of numerical solutions of partial differential equations are discussed
using the example of linear second-order partial differential equations with two independent variables
with the corresponding boundary or/and initial conditions.

19.5.1 DifferenceMethod
A regular grid is considered on the integration domain by the chosen points (xμ, yν). Usually, this grid
is chosen to be rectangular and equally spaced:

xμ = x0 + μh, yν = y0 + νl (μ, ν = 1, 2, . . .). (19.136)

It results in squares for l = h. If the required solution is denoted by u(x, y), then the partial derivatives
occurring in the differential equation and in the boundary or initial conditions are replaced by finite
divided differences in the following way, where uμν denotes an approximate value for the function value
u(xμ, yν):

Partial Derivative Finite Divided Difference Order of Error

∂u

∂x
(xμ, yν)

1

h
(uμ+1,ν − uμ,ν) or

1

2h
(uμ+1,ν − uμ−1,ν) O(h) or O(h2)

∂u

∂y
(xμ, yν)

1

l
(uμ,ν+1 − uμ,ν) or

1

2l
(uμ,ν+1 − uμ,ν−1) O(l) or O(l2)

∂2u

∂x∂y
(xμ, yν)

1

4hl
(uμ+1,ν+1 − uμ+1,ν−1 − uμ−1,ν+1 + uμ−1,ν−1) O(hl)

∂2u

∂x2
(xμ, yν)

1

h2
(uμ+1,ν − 2uμ,ν + uμ−1,ν) O(h2)

∂2u

∂y2
(xμ, yν)

1

l2
(uμ,ν+1 − 2uμ,ν + uμ,ν−1) O(l2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19.137)

The error order in (19.137) is given by using the Landau symbol O.
In some cases, it is more practical to apply the approximation

∂2u

∂x2
(xμ, yν) ≈ σ

uμ+1,ν+1 − 2uμ,ν+1 + uμ−1,ν+1

h2
+ (1− σ)

uμ+1,ν − 2uμ,ν + uμ−1,ν

h2
(19.138)

with a fixed parameter σ (0 ≤ σ ≤ 1). Formula (19.138) represents a convex linear combination of two
finite expressions obtained from the corresponding formula (19.137) for the values y = yν and y = yν+1.

A partial differential equation can be rewritten as a difference equation at every interior point of the
grid by the formulas (19.137), where the boundary and initial conditions are considered, as well. This
system of equations for the approximation values uμ,ν has a large dimension for small step sizes h and
l, so usually, it is solved by an iteration method (see 19.2.1.4, p. 960).

y

x10−1

2

−2

u =0
1, 1

u =0
1, 0

u
0, 1

u
0, 0

u =0
0, 2

u =0
−1, 1

u =0
−1, 0

u
0, 1−

Figure 19.6

A: The function u(x, y) should be the solution of the differential
equationΔu = uxx+uyy = −1 for the points (x, y) with |x| < 1, |y| < 2 ,
i.e., in the interior of a rectangle, and it should satisfy the boundary
conditions u = 0 for |x| = 1 and |y| = 2. The difference equation corre-
sponding to the differential equation for a square grid with step size h
is: 4uμ,ν = uμ+1,ν + uμ,ν+1 + uμ−1,ν + uμ,ν−1 + h2. The step size h = 1
(Fig. 19.6) results in a first rough approximation for the function val-
ues at the three interior points: 4u0,1 = 0 + 0 + 0 + u0,0 + 1, 4u0,0 =
0 + u0,1 + 0 + u0,−1 + 1, 4u0,−1 = 0 + u0,0 + 0 + 0 + 1.

The solution is u0,0 =
3

7
≈ 0.429, u0,1 = u0,−1 =

5

14
≈ 0.357.

19.5 Approximate Integration of Partial Differential Equations 977

B: The system of equations arising in the application of the difference method for partial differential
equations has a very special structure. It is demonstrated by the following example which is a more
general boundary value problem. The integration domain is the square G: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
A function u(x, y) should be determined for which Δu = uxx + uyy = f(x, y) in the interior of G,
u(x, y) = g(x, y) on the boundary of G. The functions f and g are given. The difference equation
associated to this differential equation is, for h = l = 1/n:

uμ+1,ν + uμ,ν+1 + uμ−1,ν + uμ,ν−1 − 4uμ,ν =
1

n2
f(xμ, yν) (μ, ν = 1, 2, . . . , n− 1).

In the case of n = 5, the left-hand side of this system of difference equations for the approximation
values uμ,ν in the 4× 4 interior points has the form (19.139)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 1 0 0
1 −4 1 0
0 1 −4 1
0 0 1 −4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

O

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−4 1 0 0
1 −4 1 0
0 1 −4 1
0 0 1 −4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−4 1 0 0
1 −4 1 0
0 1 −4 1
0 0 1 −4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

O

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−4 1 0 0
1 −4 1 0
0 1 −4 1
0 0 1 −4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11

u21

u31

u41

u12

u22

u32

u42

u13

u23

u33

u43

u14

u24

u34

u44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19.139)

if the grid is considered row-wise from left to right, and considering that the values of the function are
given on the boundary. The coefficient matrix is symmetric and is a sparse matrix. This form is called
block-tridiagonal. It is obvious that the form of the matrix depends on how the grid-points are selected.
For different classes of partial differential equations of second order, such as elliptic, parabolic and
hyperbolic differential equations, more effectivemethods have been developed, and also the convergence
and stability conditions have been investigated. There is a huge number of books about this topic (see,
e.g., [19.22], [19.24]).

19.5.2 Approximation byGivenFunctions
The solution u(x, y) is approximated by a function in the form

u(x, y) ≈ v(x, y) = v0(x, y) +
n∑

i=1

aivi(x, y). (19.140)

Here, two cases are distinguished:

1. v0(x, y) satisfies the given inhomogeneous differential equation, and the further functions vi(x, y) (i =
1, 2, . . . , n) satisfy the corresponding homogeneous differential equation (then the linear combination
has to be found which approximates the given boundary conditions as well as possible).

2. v0(x, y) satisfies the inhomogeneous boundary conditions and the other functions vi(x, y) (i =
1, 2, . . . , n) satisfy the homogeneous boundary conditions (then the linear combination has to be found
which approximates the solution of the differential equation on the considered domain as well as pos-
sible).

978 19. Numerical Analysis

In both cases substituting the approximating function v(x, y) from (19.140) in the first case into the
boundary conditions, in the second case into the differential equation results in an error term, the so-
called defect:

ε = ε(x, y; a1, a2, . . . , an). (19.141)

To determine the unknown coefficients ai one of the following methods can be applied.

1. CollocationMethod
The defect ε should be zero in n reasonably distributed points, at the collocation points (xν , yν) (ν =
1, 2, . . . , n):

ε(xν , yν ; a1, a2, . . . , an) = 0 (ν = 1, 2, . . . , n). (19.142)

The collocation points in the first case are boundary points (it is called boundary collocation), in the
second case they are interior points of the integration domain (it is called domain collocation).
From (19.142) are obtained n equations for the coefficients. Boundary collocation is usually preferred
to domain collocation.

This method is applied to the example solved in 19.5.1 by the difference method, with the functions
satisfying the differential equation:
v(x, y; a1, a2, a3) = −1

4
(x2 + y2) + a1 + a2(x

2 − y2) + a3(x
4 − 6x2y2 + y4).

The coefficients are determined to satisfy the boundary conditions at the points (x1, y1) = (1, 0.5),
(x2, y2) = (1, 1.5) and (x3, y3) = (0.5, 2) (boundary collocation). The linear system of equations

−0.3125 + a1 + 0.75a2 − 0.4375a3 = 0,
−0.8125 + a1 − 1.25a2 − 7.4375a3 = 0,
−1.0625 + a1 − 3.75a2 + 10.0625a3 = 0

has the solution a1 = 0.4562, a2 = −0.2000, a3 = −0.0143. The approximate values of the solution can
be calculated at arbitrary points with the approximating function. To compare the values with those
obtained by the difference method: v(0, 1) = 0.3919 and v(0, 0) = 0.4562.

2. Least Squares Method
Depending on whether the approximation function (19.140) satisfies the differential equation or the
boundary conditions, it is required
1. either the line integral over the boundary C

I =
∫
(C)

ε2(x(t), y(t) ; a1, . . . , an) dt = min, (19.143a)

where the boundary curve C is given by a parametric representation x = x(t), y = y(t),
2. or the double integral over the domain G

I =
∫∫
(G)

ε2(x, y; a1, . . . , an) dx dy = min. (19.143b)

From the necessary conditions,
∂I

∂ai
= 0 (i = 1, 2, . . . , n), n equations are obtained for computing the

parameters a1, a2,. . . , an.

19.5.3 Finite ElementMethod (FEM)
After the appearance of modern computers the finite element methods became the most important
technique for solving partial differential equations. These powerful methods give results which are
easy to interpret.
Depending on the types of various applications, the FEM is implemented in very different ways, so
here only the basic idea is given. It is similar to those used in the Ritz method (see 19.4.2.2, p. 974)
for numerical solution of boundary value problems for ordinary differential equations and is related to
spline approximations (see 19.7, p. 996).
The finite element method has the following steps:

19.5 Approximate Integration of Partial Differential Equations 979

1. Defining a Variational Problem A variational problem is formulated to the given boundary
value problem. The process is demonstrated on the following boundary value problem:

Δu = uxx + uyy = f in the interior of G, u = 0 on the boundary of G. (19.144)

The differential equation in (19.144) is multiplied by an appropriate smooth function v(x, y) vanishing
on the boundary of G, and it is integrated over the entire G to get∫∫

(G)

(
∂2u

∂x2
+

∂2u

∂y2

)
v dx dy =

∫∫
(G)

fv dx dy. (19.145)

Applying the Gauss integral formula (see 13.3.3.1, 2., p. 725), whereP (x, y) = −vuy andQ(x, y) = vux

are substituted in (13.121), the variational equation from (19.145)

a(u, v) = b(v) (19.146a)

is obtained with

a(u, v) = −
∫∫
(G)

(
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

)
dx dy, b(v) =

∫∫
(G)

fv dx dy. (19.146b)

y

x

G

0

Figure 19.7

1

2

3

4

5

6

G
�#

y
#

1

0 1 x

y

x
�

Figure 19.8

2. Triangularization The domain of integrationG is decomposed into simple subdomains. Usually,
a triangularization is used, where G is covered by triangles so that the neighboring triangles have a
complete side or only a single vertex in common. Every domain bounded by curves can be approximated
quite well by a union of triangles (Fig. 19.7).

Remark: To avoid numerical difficulties, the triangularization should not contain obtuse-angled tri-
angles.

A triangularization of the unit square could be performed as shown in Fig. 19.8. Here one starts
from the grid points with coordinates xμ = μh, yν = νh (μ, ν = 0, 1, 2, . . . , N ; h = 1/N). There are
(N−1)2 interior points. Considering the choice of the solution functions, it is always useful to consider
the surface elements Gμν composed of the six triangles having the common point (xμ, yν). (In other
cases, the number of triangles may differ from six. These surface elements are obviously not mutually
exclusive.)
3. Solution A supposed approximating solution is defined for the required function u(x, y) in every
triangle. A triangle with the corresponding supposed solution is called a finite element. Polynomials
in x and y are the most suitable choices. In many cases, the linear approximation

ũ(x, y) = a1 + a2x+ a3y (19.147)

is sufficient. The supposed approximating function must be continuous under the transition from one
triangle to neighboring ones, so a continuous final solution arises.
The coefficients a1, a2 and a3 in (19.147) are uniquely defined by the values of the functions u1, u2

and u3 at the three vertices of the triangle. The continuous transition to the neighboring triangles is

980 19. Numerical Analysis

ensured by this at the same time. The supposed solution (19.147) contains the approximating values
ui of the required function as unknown parameters. For the supposed solution, which is applied as an
approximation in the entire domain G for the required solution u(x, y),

ũ(x, y) =
N−1∑
μ=1

N−1∑
ν=1

αμνuμν(x, y). (19.148)

is chosen. The appropriate coefficients αμν are determined. The following must be valid for the func-
tions uμν(x, y): They represent a linear function over every triangle of Gμν according to (19.147) with
the following conditions:

1. uμν(xk, yl) =
{
1 for k = μ, l = ν,
0 at any other grid point of Gμν .

(19.149a)

2. uμν(x, y) ≡ 0 for (x, y) �∈ Gμν . (19.149b)

G
�#

x
�

y
#

1

Figure 19.9

The representation of uμν(x, y) over Gμν is shown in
Fig. 19.9.
The calculation of uμν over Gμν , i.e., over all triangles 1
to 6 in Fig. 19.8 is shown here only for triangle 1:

uμν(x, y) = a1 + a2x+ a3 with (19.150)

uμν(x, y) =

⎧⎨⎩
1 for x = xμ, y = yν ,
0 for x = xμ−1, y = yν−1,
0 for x = xμ, y = yν−1.

(19.151)

From (19.151) a1 = 1 − ν, a2 = 0, a3 = 1/h, follow and
so for triangle 1

uμν(x, y) = 1 +
(
y

h
− ν

)
. (19.152)

Analogously, there is:

uμν(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−
(
x

h
− μ

)
+
(
y

h
− ν

)
for triangle 2,

1−
(
x

h
− μ

)
for triangle 3,

1−
(
y

h
− ν

)
for triangle 4,

1 +
(
x

h
− μ

)
+
(
y

h
− ν

)
for triangle 5,

1 +
(
x

h
− μ

)
for triangle 6.

(19.153)

4. Calculation of the Solution Coefficients The solution coefficients αμν are determined by the
requirements that the solution (19.148) satisfies the variational problem (19.146a) for every solution
function uμν , i.e., ũ(x, y) is substituted for u(x, y) and uμν(x, y) for v(x, y) in (19.146a). In this way, a
linear system of equations

N−1∑
μ=1

N−1∑
ν=1

αμνa(uμν , ukl) = b(ukl) (k, l = 1, 2, . . . , N − 1) (19.154)

is obtained for the unknown coefficients, where

a(uμν , ukl) =
∫∫
Gkl

(
∂uμν

∂x

∂ukl

∂x
+

∂uμν

∂y

∂ukl

∂y

)
dx dy, b(ukl) =

∫∫
Gkl

fukl dx dy. (19.155)

19.5 Approximate Integration of Partial Differential Equations 981

In the calculation of a(uμν , ukl) the fact must be kept in mind that integration is needed only in the
cases of domains Gμν and Gkl with non-empty intersection. These domains are denoted by shadowing
in Table 19.1.

Table 19.1 Auxiliary table for FEM

Surface
region

Graphical
representation

Triangle of
Gkl Gμν

∂ukl

∂x

∂uμν

∂x

∑ ∂ukl

∂x

∂uμν

∂x

1.
μ = k
ν = l

1
2

4
35

6

1 1
2 2
3 3
4 4
5 5
6 6

0
−1/h
−1/h

0
1/h
1/h

0
−1/h
−1/h

0
1/h
1/h

4

h2

2.
μ = k
ν = l − 1

1
2

1 5
2 4

0
−1/h

1/h
0

0

3.
μ = k + 1
ν = l 2

3 2 6
3 5

−1/h
−1/h

1/h
1/h

− 2

h2

4.
μ = k + 1
ν = l + 1

4
3 3 1

4 6
−1/h

0
0

1/h
0

5.
μ = k
ν = l + 1

4
5 4 2

5 1
0

−1/h
1/h

0
0

6.
μ = k − 1
ν = l

5

6

5 3
6 2

1/h
1/h

−1/h
−1/h

− 2

h2

7.
μ = k − 1
ν = l − 1 6

1

6 4
1 3

1/h
0

0
−1/h

0

The integration is always performed over a triangle with an area h2/2, so for the partial derivatives
with respect to x :

1

h2
(4αkl − 2αk+1,l − 2αk−1,l)

h2

2
(19.156a)

is obtained. Analogously, for the partial derivatives with respect to y the corresponding term is

1

h2
(4αkl − 2αk,l+1 − 2αk,l−1)

h2

2
. (19.156b)

982 19. Numerical Analysis

The calculation of the right-hand side b(ukl) of (19.154) gives:

b(ukl) =
∫∫
Gkl

f(x, y)ukl(x, y) dx dy ≈ fklVP , (19.157a)

where VP is the volume of the pyramid over Gkl with height 1, determined by ukl(x, y) (Fig. 19.9).
Since

VP =
1

3
· 6 · 1

2
h2 , the approximation is b(ukl) ≈ fklh

2. (19.157b)

So, the variational equations (19.154) result in the linear system of equations

4αkl − αk+1,l − αk−1,l − αk,l+1 − αk,l−1 = h2fkl (k, l = 1, 2, . . . , N − 1) (19.158)

for the determination of the solution coefficients.

Remarks:
1. If the solution coefficients are determined by (19.158), then ũ(x, y) from (19.148) represents an
explicit approximating solution, whose values can be calculated for an arbitrary point (x, y) from G.

2. If the integration domainmust be covered by an irregular triangular grid then it is useful to introduce
triangular coordinates (also called barycentric coordinates). In this way, the position of a point can
be easily determined with respect to the triangular grid, and the calculation of the multidimensional
integral is made easier as in (19.155), because every triangle can be easily transformed into the unit
triangle with vertices (0, 0), (0, 1), (1, 0).

3. If accuracy must be improved or also the differentiability of the solution is required, then piecewise
quadratic or cubic functions must be applied to obtain the supposed approximation (see, e.g., [19.22]).

4. In practical applications, usually systems of huge dimensions are obtained. This is the reason why
so many special methods have been developed, e.g., for automatic triangularization and for practical
enumeration of the elements (the structure of the system of equations depends on it). For detailed
discussion of FEM see [19.13], [19.7], [19.22].

19.6 Approximation,Computation ofAdjustment,Harmonic
Analysis

19.6.1 Polynomial Interpolation
The basic problem of interpolation is to fit a curve through a sequence of points (xν , yν) (ν = 0, 1,
. . . , n). This can happen graphically by any curve-fitting gadget, or numerically by a function g(x),
which takes given values yν at the points xν , at the so-called interpolation points. That is g(x) satisfies
the interpolation conditions

g(xν) = yν (ν = 0, 1, 2, . . . , n). (19.159)

In the first place, polynomials are used as interpolation functions, or for periodic functions so-called
trigonometric polynomials. In this last case one talks about trigonometric interpolation (see 19.6.4.1,
2., p. 992). There are n + 1 interpolation points, the order of the interpolation is n, and the highest
degree of the interpolation polynomial is at most n. Since with increasing degree of the polynomials,
strong oscillation may occur, which is usually not required, the interpolation interval can be decom-
posed into subintervals and a spline interpolation (see 19.7, p. 996) can be performed.

19.6.1.1 Newton’s Interpolation Formula
To solve the interpolation problem (19.159) a polynomial of degree n is considered in the following form:

g(x) = pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·
+an(x− x0)(x− x1) . . . (x− xn−1). (19.160)

This is called the Newton interpolation formula, and it gives an easy calculation of the coefficients
ai (i = 0, 1, . . . , n), since the interpolation conditions (19.159) result in a linear system of equations

19.6 Approximation, Computation of Adjustment, Harmonic Analysis 983

with a triangular matrix.

For n = 2 one gets the annexed sys-
tem of equations from (19.159). The inter-
polation polynomial pn(x) is uniquely de-
termined by the interpolation conditions
(19.159).

p2(x0) = a0 = y0
p2(x1) = a0 + a1(x1 − x0) = y1
p2(x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1) = y2

The calculation of the function values can be simplified by the Horner schema (see 19.1.2.1, p. 952).

19.6.1.2 Lagrange’s Interpolation Formula
A polynomial of n-th degree can be fitted through n + 1 points (xν , yν) (ν = 0, 1, . . . , n), with the
Lagrange formula:

g(x) = pn(x) =
n∑

μ=0

yμLμ(x). (19.161)

Here Lμ(x) (μ = 0, 1, . . . , n) are the Lagrange interpolation polynomials. Equation (19.161) satisfies
the interpolation conditions (19.159), since

Lμ(xν) = δμν =
{
1 for μ = ν,
0 for μ �= ν.

(19.162)

Here δμν is the Kronecker symbol. The Lagrange interpolation polynomials are defined by the formula

Lμ =
(x− x0)(x− x1) · · · (x− xμ−1)(x− xμ+1) · · · (x− xn)

(xμ − x0)(xμ − x1) · · · (xμ − xμ−1)(xμ − xμ+1) · · · (xμ − xn)
=

n∏
ν=0
ν �=μ

x− xν

xμ − xν

. (19.163)

A polynomial is fitted through the points given by the table
x 0 1 3
y 1 3 2

.

The Lagrange interpolation formula (19.161) is used:

L0(x) =
(x− 1)(x− 3)

(0− 1)(0− 3)
=

1

3
(x− 1)(x− 3),

L1(x) =
(x− 0)(x− 3)

(1− 0)(1− 3)
= −1

2
x(x− 3),

L2(x) =
(x− 0)(x− 1)

(3− 0)(3− 1)
=

1

6
x(x− 1);

p2(x) = 1 · L0(x) + 3 · L1(x) + 2 · L2(x) = −5

6
x2 +

17

6
x+ 1.

The Lagrange interpolation formula depends explicitly and linearly on the given values yμ of the func-
tion. This is its theoretical importance (see, e.g., the rule of Adams-Bashforth, 19.4.1.3, 3., p. 971).
For practical calculation the Lagrange interpolation formula is rarely reasonable.

19.6.1.3 Aitken-Neville Interpolation
In several practical cases, the explicit form of the polynomial pn(x) is not needed, but only its value at
a given location x of the interpolation domain. These function values can be obtained in a recursive
way developed by Aitken and Neville. The useful notation

pn(x) = p0,1,...,n(x), (19.164)

is applied in which the interpolation points x0, x1, . . . , xn and the degree n of the polynomial are de-
noted. Notice that

p0,1,...,n(x) =
(x− x0)p1,2,...,n(x)− (x− xn)p0,1,2,...,n−1(x)

xn − x0

, (19.165)

984 19. Numerical Analysis

i.e., the function value p0,1,...,n(x) can be obtained by linear interpolation of the function values of
p1,2,...,n(x) and p0,1,2,...,n−1(x), two interpolation polynomials of degree≤ n− 1. Application of (19.165)
leads to a scheme which is given here for the case of n = 4:

x0 y0 = p0
x1 y1 = p1 p01
x2 y2 = p2 p12 p012
x3 y3 = p3 p23 p123 p0123
x4 y4 = p4 p34 p234 p1234 p01234 = p4(x).

(19.166)

The elements of (19.166) are calculated column-wise. A new value in the scheme is obtained from its
west and north-west neighbors

p23 =
(x− x2)p3 − (x− x3)p2

x3 − x2

= p3 +
x− x3

x3 − x2

(p3 − p2), (19.167a)

p123 =
(x− x1)p23 − (x− x3)p12

x3 − x1

= p23 +
x− x3

x3 − x1

(p23 − p12), (19.167b)

p1234 =
(x− x1)p234 − (x− x4)p123

x4 − x1

= p234 +
x− x4

x4 − x1

(p234 − p123). (19.167c)

For performing theAitken-Neville algorithm on a computer only a vector pwith n+1 components (see

[19.4]) is introduced, which takes the values of the columns in (19.166) after each other according to
the rule that the value pi−k,i−k+1,...,i (i = k, k+1, . . . , n) of the k-th column will be the i-th component
pi of p. The columns of (19.166) must be calculated from down to the top, so p contains all necessary
values. The algorithm has the following two steps:

1. For i = 0, 1, . . . , n set pi = yi. (19.168a)

2. For k = 1, 2, . . . , n and for i = n, n− 1, . . . , k compute pi = pi +
x− xi

xi − xi−k

(pi − pi−1).(19.168b)

After finishing (19.168b) we have the required function value pn(x) at x in element pn.

19.6.2 Approximation inMean
The principle of approximation in mean is known as the Gauss least squares method. In calculations
continuous and discrete cases are distinguished.

19.6.2.1 Continuous Problems, Normal Equations
The function f(x) is approximated by a function g(x) on the interval [a, b] so that the expression

F =

b∫
a

ω(x)[f(x)− g(x)]2 dx, (19.169)

depending on the parameters contained by g(x), should be minimal. ω(x) denotes a given weight func-
tion, such that ω(x) > 0 in the integration interval.
If the best approximation g(x) is supposed to have the form

g(x) =
n∑

i=0

aigi(x) (19.170)

with suitable linearly independent functions g0(x), g1(x), . . . , gn(x), then the necessary conditions

∂F

∂ai
= 0 (i = 0, 1, . . . , n) (19.171)

for an extreme value of (19.169) result in the so-called normal system of equations

19.6 Approximation, Computation of Adjustment, Harmonic Analysis 985

n∑
i=0

ai(gi, gk) = (f, gk) (k = 0, 1, . . . , n) (19.172)

to determine the unknown coefficients ai. Here the brief notations

(gi, gk) =

b∫
a

ω(x)gi(x)gk(x) dx, (19.173a)

(f, gk) =

b∫
a

ω(x)f(x)gk(x) dx (i, k = 0, 1, . . . , n) (19.173b)

are used, which are considered as the scalar products of the two indicated functions.
The system of normal equations can be solved uniquely, since the functions g0(x), g1(x), . . . , gn(x)
are linearly independent. The coefficient matrix of the system (19.172) is symmetric, so the Cholesky
method (see 19.2.1.2, p. 958) can be applied. The coefficients ai can be determined directly, without
solving the system of equations, if the system of functions gi(x) is orthogonal , that is, if

(gi, gk) = 0 for i �= k. (19.174)

It is called an orthonormal system, if

(gi, gk) =
{
0 for i �= k,
1 for i = k

(i, k = 0, 1, . . . , n). (19.175)

With (19.175), the normal equations (19.172) are reduced to

ai = (f, gi) (i = 0, 1, . . . , n). (19.176)

Linearly independent function systems can be orthogonalized. From the power functions gi(x) = xi

(i = 0, 1, . . . , n), depending on the weight function and on the interval, the orthogonal polynomials in
Table 19.2 can be obtained.

Table 19.2 Orthogonal polynomials

[a, b] ω(x) Name of the polynomials see p.

[−1, 1] 1 Legendre polynomial Pn(x) 566

[−1, 1]
1√

1− x2
Chebysev polynomial Tn(x) 989

[0,∞) e−x Laguerre polynomial Ln(x) 568
(−∞,∞) e−x2/2 Hermite polynomial Hn(x) 568

(19.177)

These polynomial systems can be used on arbitrary intervals:
1. Finite approximation interval.
2. Approximation interval infinite at one end, e.g., in time-dependent problems.
3. Approximation interval infinite at both ends, e.g., in stream problems.
Every finite interval [a, b] can be transformed by the substitution

x =
b+ a

2
+

b− a

2
t (x ∈ [a, b], t ∈ [−1, 1]) (19.178)

into the interval [−1, 1].

19.6.2.2 Discrete Problems, Normal Equations, Householder’sMethod
LetN pairs of values (xν , yν) be given, e.g., by measured values. A function g(x) has to be determined,
whose values g(xν) differ from the given values yν in such a way that the quadratic expression

F =
N∑
ν=1

[yν − g(xν)]
2 (19.179)

986 19. Numerical Analysis

is minimal. The value ofF depends on the parameters contained in the function g(x). Formula (19.179)
represents the classical sumof residual squares. Theminimization of the sum of residual squares is called

the least squares method. From the assumption (19.170) and the necessary conditions
∂F

∂ai
= 0 (i =

0, 1, . . . , n) for a relative minimum of (19.179) for the coefficients the normal system of equations is
obtained:

n∑
i=0

ai[gigk] = [ygk] (k = 0, 1, . . . , n). (19.180)

Here the Gaussean sum symbols are used in the following notation:

[gigk] =
N∑
ν=1

gi(xν)gk(xν), (19.181a)

[ygk] =
N∑
ν=1

yνgk(xν) (i, k = 0, 1, . . . , n). (19.181b)

Usually, n 1 N .

For the polynomial g(x) = a0 + a1x+ · · ·+ anx
n, the normal equations are a0[x

k] + a1[x
k+1] + · · ·+

an[x
k+n] = [xky] (k = 0, 1, . . . , n) with [xk] =

∑N
ν=1 xν

k, [x0] = N, [xky] =
∑N

ν=1 xν
kyν , [y] =∑N

ν=1 yν . The coefficient matrix of the normal system of equations (19.180) is symmetric, so for the
numerical solution the Cholesky method can be applied.

The normal equations (19.180) and the residue sum square (19.179) have the following compact form:

GTGa = GTy, F = (y −Ga)T(y −Ga) with (19.182a)

G =

⎛⎜⎜⎜⎜⎜⎜⎝
g0(x1) g1(x1) g2(x1) . . . gn(x1)
g0(x2) g1(x2) g2(x2) . . . gn(x2)
g0(x3) g1(x3) g2(x3) . . . gn(x3)

...
g0(xN) g1(xN) g2(xN) . . . gn(xN)

⎞⎟⎟⎟⎟⎟⎟⎠ , y =

⎛⎜⎜⎜⎜⎜⎜⎝
y1
y2
y3
...
yN

⎞⎟⎟⎟⎟⎟⎟⎠ , a =

⎛⎜⎜⎜⎜⎜⎜⎝
a0
a1
a2
...
an

⎞⎟⎟⎟⎟⎟⎟⎠ . (19.182b)

If, instead of the minimalization of the sum of residual squares, one wants to solve the interpolation
problem for the N points (xν , yν), then the following system of equations should be solved:

Ga = y. (19.183)

This system of equations is over-determined in the case of n < N − 1, and usually it does not have any
solution. The equations (19.180) or (19.182a) are obtained by multiplying (19.183) byGT.
From a numerical viewpoint, the Householder method (see 4.5.3.2, 2., p. 314) is recommended to solve
equation (19.183), and this solution results in the minimal sum of residual squares (19.179).

19.6.2.3 Multidimensional Problems

1. Computation of Adjustments

Suppose that there is a function f(x1, x2, . . . , xn) of n indepen-
dent variables x1, x2, . . . , xn. Its explicit form is not known;
only N substitution values fν are given, which are, in general,
measured values. These data can be written in a table (see
(19.184)).
The formulation of the adjustment problem is clearer by intro-
ducing the following vectors:

x1 x
(1)
1 x

(2)
1 . . . x

(N)
1

x2 x
(1)
2 x

(2)
2 . . . x

(N)
2

...
...

...
...

xn x(1)
n x(2)

n . . . x(N)
n

f f1 f2 . . . fN

(19.184)

19.6 Approximation, Computation of Adjustment, Harmonic Analysis 987

x = (x1, x2, . . . , xn)
T : Vector of n independent variables,

x(ν) = (x
(ν)
1 , x

(ν)
2 , . . . , x(ν)

n)T : Vector of the ν-th interpolation node (ν = 1, . . . , N),

f = (f1, f2, . . . fN)
T : Vector of the N function values at the N interpolation nodes.

f(x1, x2, . . . , xn) = f(x) is approximated by a function of the form

g(x1, x2, . . . , xn) =
m∑
i=0

aigi(x1, x2, . . . , xn). (19.185)

Here, the m+ 1 functions gi(x1, x2, . . . , xn) = gi(x) are suitable, selected functions.

A: Linear approximation by n variables: g(x1, x2, . . . , xn) = a0 + a1x1 + a2x2 + · · ·+ anxn.

B: Complete quadratic approximation with three variables:
g(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x3 + a4x1

2 + a5x2
2 + a6x3

2 + a7x1x2 + a8x1x3 + a9x2x3.

The coefficients are chosen to minimize
∑N

ν=1

[
fν − g

(
x
(ν)
1 , x

(ν)
2 , . . . , x(ν)

n

)]2
.

2. Normal System of Equations
Analogously to (19.182b) the matrix G is formed in which the interpolation nodes xν are replaced by

vectorial interpolation nodes x(ν) (ν = 1, 2, . . . , N). To determine the coefficients, the normal system
of equations

GTGa = GTf (19.186)

can be used or the over-determined system of equations

Ga = f . (19.187)

For an example of multidimensional regression see 16.3.4.3, 3., p. 842.

19.6.2.4 Non-Linear Least Squares Problems
The main idea is discussed for a one-dimensional discrete case. The approximation function g(x) de-
pends non-linearly on certain parameters.

A: g(x) = a0e
a1x + a2e

a3x. This expression does not depend linearly on the parameters a1 and a3.

B: g(x) = a0e
a1x cos a2x. This function does not depend linearly on the parameters a1 and a2.

The fact that the approximation function g(x) depends on a parameter vector a = (a0, a1, . . . , an)
T is

indicated by the notation

g = g(x, a) = g(x; a0, a1, . . . , an). (19.188)

Suppose,N pairs of values (xν , yν) (ν = 1, 2, . . . , N) are given. Tominimize the sum of residual squares

N∑
ν=1

[yν − g(xν ; a0, a1, . . . , an)]
2 = F (a0, a1, . . . , an) (19.189)

the necessary conditions
∂F

∂ai
= 0 (i = 0, 1, . . . , n) lead to a non-linear normal equation system which

must be solved by an iterative method, e.g., by the Newton method (see 19.2.2.2, p. 962).
Another way to solve the problem, which is usually used in practical problems, is the application of
the Gauss-Newton method (see 19.2.2.3, p. 962) given for the solution of the non-linear least squares
problem (19.24). The following steps are needed to apply it for this non-linear approximation problem
(19.189):

1. Linearization of the approximating function g(x, a) with the help of the Taylor formula with respect

to ai. To do this, the approximation values a
(0)
i (i = 0, 1, . . . , n) are needed:

g(x, a) ≈ g̃(x, a) = g(x, a(0)) +
n∑

i=0

∂g

∂ai
(x, a(0))(ai − a

(0)
i). (19.190)

988 19. Numerical Analysis

2. Solution of the linear minimum problem

N∑
ν=1

[yν − g̃(xν , a)]
2 = min! (19.191)

with the help of the normal equation system

G̃TG̃Δa = G̃TΔy (19.192)

or by the Householder method. In (19.192) the components of the vectors Δa and Δy are given as

Δai = ai − a
(0)
i (i = 0, 1, 2, . . . , n) and (19.193a)

Δyν = yν − g(xν , a
(0)) (ν = 1, 2, . . . , N). (19.193b)

The matrix G̃ can be determined analogously to G in (19.182b), where gi(xν) are replaced by
∂g

∂ai
(xν , a

(0)
1) (i = 0, 1, . . . , n; ν = 1, 2, . . . , N).

3. Calculation of a new approximation

a
(1)
i = a

(0)
i +Δai or a

(1)
i = a

(0)
i + γΔai (i = 0, 1, 2, . . . , n), (19.194)

where γ > 0 is a step length parameter.

By repeating steps 2 and 3 with a
(1)
i instead of a

(0)
i , etc. a sequence of approximation values is ob-

tained for the required parameters, whose convergence strongly depends on the accuracy of the initial
approximations. The value of the sum of residual squares can be reduced with the introduction of the
multiplier γ .

19.6.3 ChebyshevApproximation

19.6.3.1 ProblemDefinition and the Alternating Point Theorem

1. Principle of Chebyshev Approximation
Chebyshev approximation or uniform approximation in the continuous case is the following: The func-
tion f(x) has to be approximated in an interval a ≤ x ≤ b by the approximation function g(x) =
g(x; a0, a1, . . . , an) so that the error defined by

max
a≤x≤b

|f(x)− g(x; a0, a1, . . . , an)| = Φ(a0, a1, . . . , an) (19.195)

should be as small as possible for the appropriate choice of the unknown parameters ai (i = 0, 1, . . . , n).
If there exists such an approximating function for f(x), then the maximum of the absolute error value
will be taken at least at n+2 points xν of the interval, at the so-called alternating points, with changing
signs (Fig. 19.10). This is actually the meaning of the alternating point theorem for the characteriza-
tion of the solution of a Chebyshev approximation problem.

y

0 a b

g(x)

f(x)

y

0
x

a b

f(x)-g(x)

a) b)

x

Figure 19.10

If the function f(x) = xn is approximated on the interval [−1, 1] by a polynomial of degree ≤ n− 1
in the Chebyshev sense, then the Chebyshev polynomial Tn(x) is obtained as an error function whose

19.6 Approximation, Computation of Adjustment, Harmonic Analysis 989

maximum is normed to one. The alternating points, being at the endpoints and at exactly n−1 points
in the interior of the interval, correspond to the extreme points of Tn(x) (Fig. 19.11a–f).

T1(x) 1

x
1-1

-1

0

a)

0
x

1-1

-1

1T2(x)

b)

0
x

1-1

-1

1T3(x)

c)

x
10-1

-1

1T4(x)

d)

-1 0 1
x

-1

1T5(x)

e)

-1 0 1
x

1T6(x)

-1
f)

Figure 19.11

19.6.3.2 Properties of the Chebyshev Polynomials

1. Representation

Tn(x) = cos(n arccos x), (19.196a)

Tn(x) =
1

2

[(
x+

√
x2 − 1

)n
+
(
x−

√
x2 − 1

)n]
, (19.196b)

Tn(x) =
{
cosnt, x = cos t for |x| < 1,
coshnt, x = cosh t for |x| > 1

(n = 1, 2, . . .). (19.196c)

2. Roots of Tn(x)

xμ = cos
(2μ− 1)π

2n
(μ = 1, 2, . . . , n). (19.197)

3. Position of the extreme values of Tn(x) for x ∈ [−1, 1]

xν = cos
νπ

n
(ν = 0, 1, 2, . . . , n). (19.198)

4. Recursion Formula

Tn+1 = 2xTn(x)− Tn−1(x) (n = 1, 2, . . . ; T0(x) = 1, T1(x) = x). (19.199)

This recursion results in e.g.

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, (19.200a)

990 19. Numerical Analysis

T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x, (19.200b)

T6(x) = 32x6 − 48x4 + 18x2 − 1, (19.200c)

T7(x) = 64x7 − 112x5 + 56x3 − 7x, (19.200d)

T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1, (19.200e)

T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x, (19.200f)

T10(x) = 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1. (19.200g)

19.6.3.3 Remes Algorithm

1. Consequences of the Alternating Point Theorem
The numerical solution of the continuous Chebyshev approximation problem originates from the alter-
nating point theorem. The approximating function is chosen as

g(x) =
n∑

i=0

aigi(x) (19.201)

with n+1 linearly independent known functions, and the coefficients of the solution of the Chebyshev
problem are denoted by ai

∗ (i = 0, 1, . . . , n) and the minimal deviation according to (19.195) by � =
Φ(a0

∗, a1∗, . . . , an∗). In the case when the functions f and gi (i = 0, 1, . . . , n) are differentiable, from
the alternating point theorem one has

n∑
i=0

ai
∗gi(xν) + (−1)ν� = f(xν),

n∑
i=0

ai
∗g′i(xν) = f ′(xν) (ν = 1, 2, . . . , n+ 2). (19.202)

The nodes xν are the alternating points with

a ≤ x1 < x2 < . . . < xn+2 ≤ b. (19.203)

The equations (19.202) give 2n + 4 conditions for the 2n + 4 unknown quantities of the Chebyshev
approximation problem: n + 1 coefficients, n + 2 alternating points and the minimal deviation �. If
the endpoints of the interval belong to the alternating points, then the conditions for the derivatives
are not necessarily valid there.

2. Determination of theMinimal Solution according to Remes
According to Remes, one proceeds with the numerical determination of the minimal solution as follows:

1. An approximation of the alternating points xν
(0) (ν = 1, 2, . . . , n+2) are determined according to

(19.203), e.g., equidistant or as the positions of the extrema of Tn+1(x) (see 19.6.3.2, p. 988).

2. The linear system of equations
n∑

i=0

aigi(xν
(0)) + (−1)ν� = f(xν

(0)) (ν = 1, 2, . . . , n+ 2)

is solved and the solutions are the approximations ai
(0) (i = 0, 1, . . . , n) and �0.

3. A new approximation of the alternating points xν
(1) (ν = 1, 2, . . . , n + 2) is determined, e.g., as

positions of the extrema of the error function f(x) −
n∑

i=0
ai

(0)gi(x). Now, it is sufficient to apply only

approximations of these points.

By repeating steps 2 and 3 with xν
(1) and ai

(1) instead of xν
(0) and ai

(0), etc. a sequence of approx-
imations is obtained for the coefficients and the alternating points, whose convergence is guaranteed
under certain conditions, which can be given (see [19.25]). The calculations are stopped if, e.g., from
a certain iteration index μ

|�μ| = max
a≤x≤b

∣∣∣∣∣f(x)−
n∑

i=0

ai
(μ)gi(x)

∣∣∣∣∣ (19.204)

19.6 Approximation, Computation of Adjustment, Harmonic Analysis 991

holds with a sufficient accuracy.

19.6.3.4 Discrete Chebyshev Approximation andOptimization
From the continuous Chebyshev approximation problem

max
a≤x≤b

∣∣∣∣∣f(x)−
n∑

i=0

aigi(x)

∣∣∣∣∣ = min! (19.205)

the corresponding discrete problem can be got, if requiring N nodes xν (ν = 1, 2, . . . , N ; N ≥ n + 2)
are chosen with the property a ≤ x1 < x2 · · · < xN ≤ b and requiring

max
ν=1,2,...,N

∣∣∣∣∣f(xν)−
n∑

i=0

aigi(xν)

∣∣∣∣∣ = min! . (19.206)

The substitution

γ = max
ν=1,2,...,N

∣∣∣∣∣f(xν)−
n∑

i=0

aigi(xν)

∣∣∣∣∣ , (19.207)

has obviously the consequence∣∣∣∣∣f(xν)−
n∑

i=0

aigi(xν)

∣∣∣∣∣ ≤ γ (ν = 1, 2, . . . , N). (19.208)

Eliminating the absolute values from (19.208) a linear system of inequalities is obtained for the coeffi-
cients ai and γ, so the problem (19.206) becomes a linear programming problem (see 18.1.1.1, p. 909):

γ = min! subject to

⎧⎪⎪⎨⎪⎪⎩
γ +

n∑
i=0

aigi(xν) ≥ f(xν),

γ −
n∑

i=0
aigi(xν) ≥ −f(xν)

(ν = 1, 2, . . . , N). (19.209)

Equation (19.209) has a minimal solution with γ > 0. For a sufficiently large number N of nodes and
with some further conditions the solution of the discrete problem can be considered as the solution of
the continuous problem.

If instead of the linear approximation function g(x) =
n∑

i=0
aigi(x) a non-linear approximation function

g(x) = g(x; a0, a1, . . . , an) is used, which does not depend linearly on the parameters a0, a1, . . . , an,
then analogously a non-linear optimization problem is obtained. It is usually non-convex even in the
cases of simple function forms. This essentially reduces the number of numerical solution methods for
non-linear optimization problems (see 18.2.2.1, p. 926).

992 19. Numerical Analysis

19.6.4 HarmonicAnalysis

Aperiodic function f(x) with period 2π, which is given formally or empirically, should be approximated
by a trigonometric polynomial or a Fourier sum of the form

g(x) =
a0
2

+
n∑

k=1

(ak cos kx+ bk sin kx), (19.210)

where the coefficients a0, ak and bk are unknown real numbers. The determination of the coefficients is
the topic of harmonic analysis.

19.6.4.1 Formulas for Trigonometric Interpolation

1. Formulas for the Fourier Coefficients
Since the function system 1, cos kx, sin kx (k = 1, 2, . . . , n) is orthogonal in the interval [0, 2π] with
respect to the weight function ω ≡ 1, the formulas for the coefficients are obtained as

ak =
1

π

2π∫
0

f(x) cos kx dx, bk =
1

π

2π∫
0

f(x) sin kx dx (k = 0, 1, 2, . . . , n) (19.211)

by applying the continuous least squares method according to (19.172). The coefficients ak and bk
calculated by formulas (19.211) are called Fourier coefficients of the periodic function f(x) (see 7.4,
p. 474).

If the integrals in (19.211) are complicated or the function f(x) is known only at discrete points, then
the Fourier coefficients can be determined only approximately by numerical integration.

Using the trapezoidal formula (see 19.3.2.2, p. 964) with N + 1 equidistant nodes

xν = νh (ν = 0, 1, . . . , N), h =
2π

N
(19.212)

the approximation formula

ak ≈ ãk =
2

N

N∑
ν=1

f(xν) cos kxν , bk ≈ b̃k =
2

N

N∑
ν=1

f(xν) sin kxν (k = 0, 1, 2, . . . , n) (19.213)

is obtained. The trapezoidal formula becomes the very simple rectangular formula in the case of peri-
odic functions. It has higher accuracy here as a consequence of the following fact: If f(x) is periodic
and (2m+ 2) times differentiable, then the trapezoidal formula has an error of order O(h2m+2).

2. Trigonometric Interpolation

Some special trigonometric polynomials formed with the approximation coefficients ãk and b̃k have
important properties. Two of them are mentioned here:

1. Interpolation Suppose N = 2n holds. The special trigonometric polynomial

g̃1(x) =
1

2
ã0 +

n−1∑
k=1

(ãk cos kx+ b̃k sin kx) +
1

2
ãn cosnx (19.214)

with coefficients (19.213) satisfies the interpolation conditions

g̃1(xν) = f(xν) (ν = 1, 2, . . . , N) (19.215)

at the interpolation nodes xν (19.212). Because of the perodicity of f(x) f(x0) = f(xN) holds.

2. Approximation in Mean Suppose N = 2n. The special trigonometric polynomial

g̃2(x) =
1

2
ã0 +

m∑
k=1

(ãk cos kx+ b̃k sin kx) (19.216)

19.6 Approximation, Computation of Adjustment, Harmonic Analysis 993

form < n and with the coefficients (19.213) approximates the function f(x) in discrete quadratic mean
with respect to the N nodes xν (19.212), that is, the residual sum of squares

F =
N∑
ν=1

[f(xν)− g̃2(xν)]
2 (19.217)

is minimal. The formulas (19.213) are the originating point for the different ways of effective calculation
of Fourier coefficients.

19.6.4.2 Fast Fourier Transformation (FFT)

1. Computation costs of computing Fourier coefficients
The sums in the formulas (19.213) also occur in connection with discrete Fourier transformation, e.g.,
in electrotechnics, in impulse and picture processing. Here N can be very large, so the occurring sums
must be calculated in a rational way, since the calculation of the N approximating values (19.213) of
the Fourier coefficients requires about N2 additions and multiplications.
For the special case of N = 2p, the number of multiplications can
be largely reduced from N2(= 22p) to pN(= p2p) with the help of
the so-called fast Fourier transformation FFT. The magnitude of
this reduction is demonstrated on the example on the right-hand
side.

p N2 pN

10 ∼ 106 ∼ 104

20 ∼ 1012 ∼ 107
(19.218)

By this method, the computation costs and computation time are reduced so effectively that in some
important application fields even a smaller computer is sufficient.
The FFT uses the properties of theN -th unit roots, i.e., the solutions of equation zN = 1 to a successive
sum up in (19.213).

2. Complex Representation of the Fourier Sum
The principle of FFT can be described fairly easily if the Fourier sum (19.210) is rewritten with the
formulas

cos kx =
1

2

(
eikx + e−ikx

)
, sin kx =

i

2

(
e−ikx − eikx

)
(19.219)

into the complex form

g(x) =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx) =
1

2
a0 +

n∑
k=1

(
ak − ibk

2
eikx +

ak + ibk
2

e−ikx

)
. (19.220)

By substitution

ck =
ak − ibk

2
, (19.221a) because of (19.211) ck =

1

2π

∫ 2π

0
f(x)e−ikx dx, (19.221b)

so (19.220) becomes the complex representation of the Fourier sum:

g(x) =
n∑

k=−n

cke
ikx with c−k = c̄k. (19.222)

If the complex coefficients ck are known, then the required real Fourier coefficients can be got in the
following simple way:

a0 = 2c0, ak = 2Re(ck), bk = −2Im(ck) (k = 1, 2, . . . , n). (19.223)

3. Numerical Calculation of the Complex Fourier Coefficients
For the numerical determination of ck the trapezoidal formula can be applied for (19.221b) analogously
to (19.212) and (19.213), and the discrete complex Fourier coefficients c̃k are obtained:

c̃k =
1

N

N−1∑
ν=0

f(xν)e
−ikxν =

N−1∑
ν=0

fνω
kν
N (k = 0, 1, 2, . . . , n) with (19.224a)

994 19. Numerical Analysis

fν =
1

N
f(xν), xν =

2πν

N
(ν = 0, 1, 2, . . . , N − 1), ωN = e−

2πi
N . (19.224b)

Relation (19.224a) with the quantities (19.224b) is called the discrete complex Fourier transformation
of length N of the values fν (ν = 0, 1, 2, . . . , N − 1).

The powers ων
N = z (ν = 0, 1, 2, . . . , N − 1) satisfy equation zN = 1. So, they are called the N-th unit

roots. Since e−2πi = 1,

ωN
N = 1, ωN+1

N = ω1
N , ω

N+2
N = ω2

N , (19.225)

The effective calculation of the sum (19.224a) uses the fact that a discrete complex Fourier transfor-

mation of length N = 2n can be reduced to two transformations with length
N

2
= n in the following

way:

a) For every coefficient c̃k with an even index, i.e., k = 2l,

c̃2l =
2n−1∑
ν=0

fνω
2lν
N =

n−1∑
ν=0

[
fνω

2lν
N + fn+νω

2l(n+ν)
N

]
=

n−1∑
ν=0

[fν + fn+ν]ω
2lν
N (19.226)

holds. Here the equality ω
2l(n+ν)
N = ω2ln

N ω2lν
N = ω2lν

N is used.

Substituting

yν = fν + fn+ν (ν = 0, 1, 2, . . . , n− 1) (19.227)

and considering that ω2
N = ωn, the sum

c̃2l =
n−1∑
ν=0

yνω
lν
n (ν = 0, 1, 2, . . . , n− 1) (19.228)

is the discrete complex Fourier transformation of the values yν (ν = 0, 1, 2, . . . , n − 1) with length

n =
N

2
.

b) For every coefficient c̃k with an odd index, i.e., with k = 2l + 1

c̃2l+1 =
2n−1∑
ν=0

fνω
(2l+1)ν
N =

n−1∑
ν=0

[(fν − fn+ν)ω
ν
N]ω

2lν
N (19.229)

is obtained analogously. Substituting

yn+ν = (fν − fn+ν)ω
ν
N (ν = 0, 1, 2, . . . , n− 1) (19.230)

and considering that ω2
N = ωn, the sum

c̃2l+1 =
n−1∑
ν=0

yn+νω
lν
n (ν = 0, 1, 2, . . . , n− 1) (19.231)

is the discrete complex Fourier transformation of the values yn+ν (ν = 0, 1, 2, . . . , n − 1) with length

n =
N

2
.

The reduction according to a) and b), i.e., the reduction of a discrete complex Fourier transformation
to two discrete complex Fourier transformations of half the length, can be continued ifN is a power of 2,
i.e., ifN = 2p (p is a natural number). The application of the reduction after p times is called the FFT.

Since every reduction step requires
N

2
complex multiplications because of (19.230), the computation

cost of the FFT method is

N

2
p =

N

2
log2 N. (19.232)

19.6 Approximation, Computation of Adjustment, Harmonic Analysis 995

4. Scheme for FFT
For the special case N = 8 = 23, the three corresponding reduction steps of the FFT according to
(19.227) and (19.230) are demonstrated in the following Scheme 1:
Scheme 1:

Step 1 Step 2 Step 3

f0 y0 = f0 + f4 y0 := y0 + y2 y0 := y0 + y1 = c̃0

f1 y1 = f1 + f5 y1 := y1 + y3 y1 := (y0 − y1)ω
0
2 = c̃4

f2 y2 = f2 + f6 y2 := (y0 − y2)ω
0
4 y2 := y2 + y3 = c̃2

f3 y3 = f3 + f7 y3 := (y1 − y3)ω
1
4 y3 := (y2 − y3)ω

0
2 = c̃6

f4 y4 = (f0 − f4)ω
0
8 y4 := y4 + y6 y4 := y4 + y5 = c̃1

f5 y5 = (f1 − f5)ω
1
8 y5 := y5 + y7 y5 := (y4 − y5)ω

0
2 = c̃5

f6 y6 = (f2 − f6)ω
2
8 y6 := (y4 − y6)ω

0
4 y6 := y6 + y7 = c̃3

f7 y7 = (f3 − f7)ω
3
8 y7 := (y5 − y7)ω

1
4 y7 := (y6 − y7)ω

0
2 = c̃7

N = 8, n := 4, ω8 = e−
2πi
8 N := 4, n := 2, ω4 = ω2

8 N := 2, n := 1, ω2 = ω2
4

It can be observed how terms with even and odd indices appear. In Scheme 2 (19.233) the structure
of the method is illustrated.
Scheme 2:

c̃k ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃2k ⇒

⎧⎪⎪⎨⎪⎪⎩
c̃4k ⇒

{
c̃8k
c̃8k+4

c̃4k+2 ⇒
{
c̃8k+2

c̃8k+6

c̃2k+1 ⇒

⎧⎪⎪⎨⎪⎪⎩
c̃4k+1 ⇒

{
c̃8k+1

c̃8k+5

c̃4k+3 ⇒
{
c̃8k+3

c̃8k+7

(19.233)

(k = 0, 1, . . . , 7) (k = 0, 1, 2, 3) (k = 0, 1) (k = 0).

If the coefficients c̃k are substi-
tuted into Scheme 1 and one
considers the binary forms of
the indices before step 1 and
after step 3, then it is easy to
recognize that the order of the
required coefficients can be ob-
tained by simply reversing the
order of the bits of the binary
form of their indices. This is
shown in Scheme 3.

Scheme 3: Index Step 1 Step 2 Step 3 Index

c̃0 000 c̃0 c̃0 c̃0 000

c̃1 00L c̃2 c̃4 c̃4 L00

c̃2 0L0 c̃4 c̃2 c̃2 0L0

c̃3 0LL c̃6 c̃6 c̃6 LL0

c̃4 L00 c̃1 c̃1 c̃1 00L

c̃5 L0L c̃3 c̃5 c̃5 L0L

c̃6 LL0 c̃5 c̃3 c̃3 0LL

c̃7 LLL c̃7 c̃7 c̃7 LLL

In the case of the function f(x) =
{
2π2 for x = 0,
x2 for 0 < x < 2π,

with period 2π, the FFT is used for the dis-

crete Fourier transformation. N = 8 is chosen. With xν =
2π

8
, fν =

1

8
f(xν) (ν = 0, 1, 2, . . . , 7), ω8 =

e−
2πi
8 = 0.707107(1− i), ω2

8 = −i, ω3
8 = −0.707107(1 + i) Scheme 4 is got:

996 19. Numerical Analysis

Scheme 4: Step 1 Step 2 Step 3

f0 = 2.467401 y0 = 3.701102 y0 = 6.785353 y0 = 13.262281 = c̃0

f1 = 0.077106 y1 = 2.004763 y1 = 6.476928 y1 = 0.308425 = c̃4

f2 = 0.308425 y2 = 3.084251 y2 = 0.616851 y2 = 0.616851 + 2.467402 i = c̃2

f3 = 0.693957 y3 = 4.472165 y3 = 2.467402 i y3 = 0.616851− 2.467402 i = c̃6

f4 = 1.233701 y4 = 1.233700 y4 = 1.233700 y4 = 2.106058 + 5.956833 i = c̃1

+2.467401 i

f5 = 1.927657 y5 = −1.308537(1− i) y5 = 0.872358 y5 = 0.361342− 1.022031 i = c̃5

+3.489432 i

f6 = 2.775826 y6 = 2.467401 i y6 = 1.233700 y6 = 0.361342 + 1.022031 i = c̃3

−2.467401 i

f7 = 3.778208 y7 = 2.180895(1 + i) y7 = −0.872358 y7 = 2.106058− 5.956833 i = c̃7

+3.489432 i

From the third (last) reduction step the required real
Fourier coefficients are obtained according to (19.223).
(See the right-hand side.)
In this example, the general property

a0 = 26.524 562
a1 = 4.212 116 b1 = −11.913 666
a2 = 1.233 702 b2 = − 4.934 804
a3 = 0.722 684 b3 = − 2.044 062
a4 = 0.616 850 b4 = 0

c̃N−k = ¯̃ck (19.234)

of the discrete complex Fourier coefficients can be observed. For k = 1, 2, 3, it can be observed that
c̃7 = ¯̃c1, c̃6 = ¯̃c2, c̃5 = ¯̃c3.

19.7 Representation ofCurves andSurfaceswith Splines

19.7.1 Cubic Splines

Since interpolation and approximation polynomials of higher degree usually have unwanted oscillations,
it is useful to divide the approximation interval into subintervals by the so-called nodes and to consider
a relatively simple approximation function on every subinterval. In practice, cubic polynomials are
mostly used. A smooth transition is required at the nodes of this piecewise approximation.

19.7.1.1 Interpolation Splines

1. Definition of the Cubic Interpolation Splines, Properties
Suppose there are given N interpolation points (xi, fi) (i = 1, 2, . . . , N ; x1 < x2 < . . . xN). The cubic
interpolation spline S(x) is determined uniquely by the following properties:

1. S(x) satisfies the interpolation conditions S(xi) = fi (i = 1, 2, . . . , N).

2. S(x) is a polynomial of degree ≤ 3 in any subinterval [xi, xi+1] (i = 1, 2, . . . , N − 1).

3. S(x) is twice continuously differentiable in the entire approximation interval [x1, xN].

4. S(x) satisfies the special boundary conditions:

a) S ′′(x1) = S ′′(xN) = 0 (we call them natural splines) or

b) S ′(x1) = f1
′, S ′(xN) = fN

′ (f1
′ and fN

′ are given values) or

c) S(x1) = S(xN), in the case of f1 = fN , S
′(x1) = S ′(xN) and S ′′(x1) = S ′′(xN) (they are called

periodic splines).

19.7 Representation of Curves and Surfaces with Splines 997

It follows from these properties that for all twice continuously differentiable functions g(x) satisfying
the interpolation conditions g(xi) = fi (i = 1, 2, . . . , N)

xN∫
x1

[S ′′(x)]2 dx ≤
xN∫
x1

[g′′(x)]2 dx (19.235)

is valid (Holladay’s Theorem). Based on (19.235) one can say that S(x) has minimal total curvature,
since for the curvature κ of a given curve, in a first approximation, κ ≈ S ′′ (see 3.6.1.2, 4., p. 246).
It can be shown that if a thin elastic ruler (its name is spline) is led through the points (xi, fi) (i =
1, 2, . . . , N), its bending line follows the cubic spline S(x).

2. Determination of the Spline Coefficients
The cubic interpolation spline S(x) for x ∈ [xi, xi+1] has the form:

S(x) = Si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 (i = 1, 2, . . . , N − 1). (19.236)

The length of the subinterval is denoted by hi = xi+1 − xi. The coefficients of the natural spline can
be determined in the following way:

1. From the interpolation conditions we get

ai = fi (i = 1, 2, . . . , N − 1). (19.237)

It is reasonable to introduce the additional coefficient aN = fN , which does not occur in the polynomi-
als.

2. The continuity of S ′′(x) at the interior nodes requires that

di−1 =
ci − ci−1

3hi−1

(i = 2, 3, . . . , N − 1). (19.238)

The natural conditions result in c1 = 0, and (19.238) still holds for i = N , if cN = 0 is introduced.

3. The continuity of S(x) at the interior nodes results in the relation

bi−1 =
ai − ai−1

hi−1

− 2ci−1 + ci
3

hi−1 (i = 2, 3, . . . , N). (19.239)

4. The continuity of S ′(x) at the interior nodes requires that

ci−1hi−1 + 2(hi−1 + hi)ci + ci+1hi = 3

(
ai+1 − ai

hi

− ai − ai−1

hi−1

)
(i = 2, 3, . . . , N − 1). (19.240)

Because of (19.237), the right-hand side of the linear equation system (19.240) to determine the coef-
ficients ci (i = 2, 3, . . . , N − 1; c1 = cN = 0) is known. The left hand-side has the following form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(h1 + h2) h2

h2 2(h2 + h3) h3 O
h3 2(h3 + h4) h4

.
O hN−2

hN−2 2(hN−2 + hN−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2
c3
c4
...

cN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19.241)

The coefficient matrix is tridiagonal, so the system of equations (19.240) can be solved numerically
very easily by an LR decomposition (see 19.2.1.1, 2., p. 956). Then all other coefficients in (19.239)
and (19.238) can be determined with these values ci.

19.7.1.2 Smoothing Splines
The given function values fi are usually measured values in practical applications so they have some
error. In this case, the interpolation requirement is not reasonable. This is the reasonwhy cubic smooth-
ing splines are introduced. This spline is obtained if in the cubic interpolation splines the interpolation

998 19. Numerical Analysis

requirements are replaced by

N∑
i=1

[
fi − S(xi)

σi

]2
+ λ

xN∫
x1

[S ′′(x)]2 dx = min!. (19.242)

The requirements of continuity of S, S ′ and S ′′ are kept, so the determination of the coefficients is a con-
strained optimization problem with conditions given in equation form. The solution can be obtained
by using a Lagrange function (see 6.2.5.6, p. 456). For details see [19.26].

In (19.242) λ (λ ≥ 0) represents a smoothing parameter , which must be given previously. For λ = 0
the result is the cubic interpolation spline, as a special case. For “large” λ the result is a smooth ap-
proximation curve, but it returns the measured values inaccurately, and for λ = ∞ the result is the
approximating regression line as another special case. A suitable choice of λ can be made, e.g., by
computer-screen dialog. The parameter σi (σi > 0) in (19.242) represents the standard deviation (see
16.4.1.3, 2., p. 851) of the measurement errors, of the values fi (i = 1, 2, . . . , N).

Until now, the abscissae of the interpolation points and the measurement points were the same as the
nodes of the spline function. For largeN this method results in a spline containing a large number of cu-
bic functions (19.236). A possible solution is to choose the number and the position of the nodes freely,
because in many practical applications only a few spline segments are satisfactory. It is reasonable also
from a numerical viewpoint to replace (19.236) by a spline of the form

S(x) =
r+2∑
i=1

aiNi,4(x). (19.243)

Here r is the number of freely chosen nodes, and the functions Ni,4(x) are the so-called normalized B-
splines (basis splines) of order 4, i.e., polynomials of degree three, with respect to the i-th node. For
details see [19.5].

19.7.2 Bicubic Splines

19.7.2.1 Use of Bicubic Splines
Bicubic splines are used for the following problem: A rectangle R of the x, y plane, given by a ≤ x ≤ b,
c ≤ y ≤ d, is decomposed by the grid points (xi, yj) (i = 0, 1, . . . , n; j = 0, 1, . . . ,m) with

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < ym = d (19.244)

into subdomains Rij, where the subdomain Rij contains the points (x, y) with xi ≤ x ≤ xi+1, yj ≤ y ≤
yj+1 (i = 0, 1, . . . , n− 1; j = 0, 1, . . . ,m− 1). The values of the function f(x, y) are given at the grid
points

f(xi, yj) = fij (i = 0, 1, . . . , n; j = 0, 1, . . . ,m). (19.245)

A possible simple, smooth surface over R is required which approximates the points (19.245).

19.7.2.2 Bicubic Interpolation Splines

1. Properties
The bicubic interpolation spline S(x, y) is defined uniquely by the following properties:

1. S(x, y) satisfies the interpolation conditions

S(xi, yj) = fij (i = 0, 1, . . . , n; j = 0, 1, . . . ,m). (19.246)

2. S(x, y) is identical to a bicubic polynomial on every Rij of the rectangle R, that is,

S(x, y) = Sij(x, y) =
3∑

k=0

3∑
l=0

aijkl(x− xi)
k(y − yj)

l (19.247)

on Rij. So, Sij(x, y) is determined by 16 coefficients, and for the determination of S(x, y) 16 · m · n
coefficients are needed.

19.7 Representation of Curves and Surfaces with Splines 999

3. The derivatives

∂S

∂x
,

∂S

∂y
,

∂2S

∂x∂y
(19.248)

are continuous on R. So, a certain smoothness is ensured for the entire surface.

4. S(x, y) satisfies the special boundary conditions:

∂S

∂x
(xi, yj) = pij for i = 0, n; j = 0, 1, . . . ,m,

∂S

∂y
(xi, yj) = qij for i = 0, 1, . . . , n; j = 0,m, (19.249)

∂2S

∂x∂y
(xi, yj) = rij for i = 0, n; j = 0,m.

Here pij, qij and rij are previously given values.
The results of one-dimensional cubic spline interpolation can be used for the determination of the co-
efficients aijkl.

1. There is a very large number (2n+m+ 3) of linear systems of equations but only with tridiagonal
coefficient matrices.

2. The linear systems of equations differ from each other only on their right-hand sides.

In general, it can be said that bicubic interpolation splines are useful with respect to computation cost
and accuracy, and so they are appropriate procedures for practical applications. For practical methods
of computing the coefficients see the literature.

2. Tensor Product Approach
The bicubic spline approach (19.247) is an example of the so-called tensor product approach having the
form

S(x, y) =
n∑

i=0

m∑
j=0

aijgi(x)hj(y) (19.250)

and which is especially suitable for approximations over a rectangular grid. The functions gi(x) (i =
0, 1, . . . , n) and hj(y) (j = 0, 1, . . . ,m) form two linearly independent function systems. The tensor
product approach has the big advantage, from numerical viewpoint, that, e.g., the solution of a two-
dimensional interpolation problem (19.246) can be reduced to a one-dimensional one. Furthermore,
the two-dimensional interpolation problem (19.246) is uniquely solvable with the approach (19.250) if

1. the one-dimensional interpolation problem with functions gi(x) with respect to the interpolation
nodes x0, x1, . . . , xn and

2. the one-dimensional interpolation problem with functions hj(y) with respect to the interpolation
nodes y0, y1, . . . , ym
are uniquely solvable.

An important tensor product approach is that with the cubic B-splines:

S(x, y) =
r+2∑
i=1

p+2∑
j=1

aijNi,4(x)Nj,4(y). (19.251)

Here, the functions Ni,4(x) and Nj,4(y) are normalized B-splines of order four. Here r denotes the
number of nodes with respect to x, p denotes the number of nodes with respect to y. The nodes can be
chosen freely but their positions must satisfy certain conditions for the solvability of the interpolation
problem.

The B-spline approach results in a system of equations with a band structured coefficient matrix, which
is a numerically useful structure.

1000 19. Numerical Analysis

For solutions of different interpolation problems using bicubic B-splines see the literature.

19.7.2.3 Bicubic Smoothing Splines
The one-dimensional cubic approximation spline is mainly characterized by the optimality condition
(19.242). For the two-dimensional case there could be determined a whole sequence of corresponding
optimality conditions, however only a few special cases make the existence of a unique solution possible.
For appropriate optimality conditions and algorithms for solution of the approximation problem with
bicubic B-splines see the literature.

19.7.3 Bernstein–BézierRepresentation of Curves and Surfaces
1. Bernstein Basis Polynomials
The Bernstein–Bézier representation (briefly B–B representation) of curves and surfaces applies the
Bernstein polynomials

Bi,n(t) =
(
n
i

)
ti(1− t)n−i (i = 0, 1, . . . , n) (19.252)

and uses the following fundamental properties:

1. 0 ≤ Bi,n(t) ≤ 1 for 0 ≤ t ≤ 1, (19.253)

2.
n∑

i=0

Bi,n(t) = 1. (19.254)

Formula (19.254) follows directly from the binomial theorem (see 1.1.6.4, p. 12).

A: B01(t) = 1− t , B1,1(t) = t (Fig. 19.12).

B: B03(t) = (1− t)3 , B1,3(t) = 3t(1− t)2 , B2,3(t) = 3t2(1− t) B3,3(t) = t3 (Fig. 19.13).

0 1 t

i=0
i=1

1
B (t)i

1

Figure 19.12

0 1 t

i=0

i=1

1
B (t)i

3

4
9

1
3

2
3

i=2

i=3

Figure 19.13

2. Vector Representation
Now, a space curve, whose parametric representation is x = x(t), y = y(t), z = z(t), will be denoted
in vector form by

�r = �r(t) = x(t)�ex + y(t)�ey + z(t)�ez. (19.255)

Here t is the parameter of the curve. The corresponding representation of a surface is

�r = �r(u, v) = x(u, v)�ex + y(u, v)�ey + z(u, v)�ez. (19.256)

Here, u and v are the surface parameters.

19.7.3.1 Principle of the B–BCurve Representation
Suppose there are given n + 1 vertices Pi (i = 0, 1, . . . , n) of a three-dimensional polygon with the

position vectors �Pi. Introducing the vector-valued function

�r(t) =
n∑

i=0

Bi,n(t)�Pi (19.257)

19.8 Using the Computer 1001

a space curve is assigned to these points, which is called the B–B curve. Because of (19.254) for-
mula (19.257) can be considered as a “variable convex combination” of the given points. The three-
dimensional curve (19.257) has the following important properties:

P
0

P
1 P

2

P
3

P
4

P
5

Figure 19.14

1. The points P0 and Pn are interpolated.

2. Vectors
−→
P0P1 and

−→
Pn−1Pn are tangents to �r(t) at points P0

and Pn.
The relation between a polygon and a B–B curve is shown in
Fig. 19.14.
The B–B representation is considered as a design of the curve,
since it is easy to influence the shape of the curve by changing
the polygon vertices.
Often normalized B-splines are used instead of Bernstein poly-
nomials.

The corresponding space curves are called the B-spline curves. Their shape corresponds basically to
the B–B curves with the following advantages:

1. The polygon is better approximated.

2. The B-spline curve changes only locally if the polygon vertices are changed.

3. In addition to the local changes of the shape of the curve the differentiability can also be influenced.
So, it is possible to produce break points and line segments for example.

19.7.3.2 B–B Surface Representation

Suppose there are given the points Pij (i = 0, 1, . . . , n; j = 0, 1, . . . ,m) with the position vectors �Pij,
which can be considered as the nodes of a grid along the parameter curves of a surface. Analogously to
the B–B curves (19.257), a surface is assigned to the grid points by

�r(u, v) =
n∑

i=0

m∑
j=0

Bi,n(u)Bj,m(v)�Pij. (19.258)

Representation (19.258) is useful for surface design, since by changing the grid points the surface can be
changed. Anyway, the influence of every grid point is global, so one should change from the Bernstein
polynomials to the B-splines in (19.258).

19.8 Using theComputer

19.8.1 Internal SymbolRepresentation
Computers aremachines that work with symbols. The interpretation and processing of these symbols is
determined and controlled by the software. The external symbols, letters, cyphers and special symbols
are internally represented in binary code by a form of bit sequence. A bit (binary digit) is the smallest
representable information unit with values 0 and 1. Eight bits form the next unit, the byte. In a byte
one can distinguish between 28 bit combinations, so 256 symbols can be assigned to them. Such an
assignment is called a code. There are different codes; one of the most widespread isASCII (American
Standard Code for Information Interchange).

19.8.1.1 Number Systems

1. Law of Representation
Numbers are represented in computers in a sequence of consecutive bytes. The basis for the internal
representation is the binary system, which belongs to the polyadic systems, similarly to the decimal
system.

1002 19. Numerical Analysis

The law of representation for a polyadic number system is

a =
n∑

i=−m

ziB
i (m > 0, n ≥ 0; m,n integer) (19.259)

with B as basis and zi (0 ≤ zi < B) as a digit of the number system. The positions i ≥ 0 form the
integers, those with i < 0 the fractional part of the number.

The decimal number representation, i.e., B = 10, of the decimal number 139.8125 has the form
139.8125 = 1 · 102 + 3 · 101 + 9 · 100 + 8 · 10−1 + 1 · 10−2 + 2 · 10−3 + 5 · 10−4.

The number systems occurring most often in computers are shown in Table 19.3.

Table 19.3 Number systems

Number system Basis Corresponding digits

Binary system 2 0, 1

Octal system 8 0, 1, 2, 3, 4, 5, 6, 7

Hexadecimal system 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C,D,E,F
(The letters A–F are for the values 10–15.)

Decimal system 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

2. Conversion
The transition from one number system to another is called conversion. If different number systems
are used in the same time, in order to avoid confusion the basis is denoted as an index.

The decimal number 139.8125 is in different systems: 139.812510 = 10001011.11012 = 213.648 =
8B.D16.
1. Conversion of Binary Numbers into Octal or Hexadecimal Numbers The conversion of
binary numbers into octal or hexadecimal numbers is simple. Groups of three or four bits are formed
starting at the binary point to the left and to the right, and their values are determined. These values
are the digits of the octal or hexadecimal systems.
2. Conversion of Decimal Numbers into Binary, Octal or Hexadecimal Numbers For the
conversion of a decimal numbers into another system, the following rules are applied for the integer and
for the fractional part separately:

a) Integer Part: If G is an integer in the decimal system, then for the number system with basis B
the law of formation (19.259) is:

G =
n∑

i=0

ziB
i (n ≥ 0). (19.260)

If G is divided by B, then an integer part (the sum) is obtained and a residue:

G

B
=

n∑
i=1

ziB
i−1 +

z0
B

. (19.261)

Here, z0 can have the values 0, 1, . . . , B − 1, and it is the lowest valued digit of the required number. If
this method is repeated for the quotients, further digits can be got.

b) Fractional Part: If g is a proper fraction, then the method to convert it into the number system
with basis B is

gB = z−1 +
m∑
i=2

z−iB
−i+1, (19.262)

i.e., the next digit is obtained as the integer part of the product gB. The values z−2, z−3, . . . can be
obtained in the same way.

19.8 Using the Computer 1003

A: Conversion of the decimal number
139 into a binary number.
139 : 2 = 69 residue 1 (1 = z0)
69 : 2 = 34 residue 1 (1 = z1)
34 : 2 = 17 residue 0 (0 = z2)
17 : 2 = 8 residue 1 :
8 : 2 = 4 residue 0 :
4 : 2 = 2 residue 0 :
2 : 2 = 1 residue 0 :
1 : 2 = 0 residue 1 (1 = z7)

13910 = 100010112

B: Conversion of a decimal fraction
0.8125 into a binary fraction.
0.8125 · 2 = 1.625 (1 = z−1)
0.625 · 2 = 1.25 (1 = z−2)
0.25 · 2 = 0.5 (0 = z−3)
0.5 · 2 = 1.0 (1 = z−4)
0.0 · 2 = 0.0

0.812510 = 0.11012

3. Conversion of Binary, Octal, and Hexadecimal Numbers into a Decimal Number The
algorithm for the conversion of a value from the binary, octal, or hexadecimal system into the decimal
system is the following, where the decimal point is after z0:

a =
n∑

i=−m

ziB
i (m > 0, n ≥ 0, integer). (19.263)

The calculation is convenient with the Horner rule (see 19.1.2.1, p. 952).

LLLOL = 1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 29.

The corresponding Horner scheme is shown on the right.

19.8.1.2 Internal Number Representation INR

1 1 1 0 1
2 2 6 14 28

1 3 7 14 29

Binary numbers are represented in computers in one or more bytes. Two types of form of representation
are distinguished, the fixed-point numbers and the floating-point numbers. In the first case, the decimal
point is at a fixed place, in the second case it is “floating” with the change of the exponent.

1. Fixed-Point Numbers
The range for fixed-point numbers with the
given parameters is

0 ≤ | a | ≤ 2t − 1. (19.264)

Fixed-point numbers can be represented in the
form of Fig. 19.15.

2. Floating-Point Numbers
Basically, two different forms are in

binary number (bits)t

sign v of the fixed-point number

Figure 19.15

use for the representation of floating-point numbers, where the internal implementation can vary in
detail.

mantissa M

(t bits)

exponent E

(p bits)

sign v

of the mantissa
M

sign v

of the exponent
E

Figure 19.16

1. Normalized Semilogarithmic Form
In the first form, the signs of the exponent
E and the mantissa M of the number a are
stored separately

a = ±MB±E. (19.265a)

Here the exponent E is chosen so that for the
mantissa

1/B ≤ M < 1 (19.265b)

holds. It is called the normalized semiloga-
rithmic form (Fig. 19.16).

1004 19. Numerical Analysis

The range of the absolute value of the floating-point numbers with the given parameters is:

2−2p ≤ | a | ≤
(
1− 2−t

)
· 2(2p−1). (19.266)

2. IEEE Standard The second (nowadays used) form of floating-point numbers corresponds to the
IEEE (Institute of Electrical and Electronics Engineers) standard accepted in 1985. It deals with the
requirements of computer arithmetic, roundoff behavior, arithmetical operators, conversion of num-
bers, comparison operators and handling of exceptional cases such as over- and underflow.

The floating-point number representations are
shown in Fig. 19.17.

The characteristic C comes from the exponent
E by addition of a suitable constant K. This is
chosen so that only positive numbers occur in the
characteristic. The representable number is

a = (−1)v · 2E · 1.b1b2 . . . bt−1

with E = C −K. (19.267)

mantissa Mcharacteristic C

sign v of the floating point number

Figure 19.17

Here: Cmin = 1, Cmax = 254, since C = 0 andC = 255 are reserved.
The standard gives two basic forms of representation (single-precision and double-precision floating-
point numbers), but other representations are also possible. Table 19.4 contains the parameters for
the basic forms.

Table 19.4 Parameters for the basic forms

Parameter Single precision Double precision

Word length in bits 32 64
Maximal exponent Emax +127 +1023
Minimal exponent Emin −126 −1022
Constant K +127 +1023
Number of bits in exponent 8 11
Number of bits in mantissa 24 53

19.8.2 Numerical Problems inCalculationswithComputers

19.8.2.1 Introduction, Error Types
The general properties of calculations with a computer are basically the same as those of calculations
done by hand, however some of them need special attention, because the accuracy comes from the rep-
resentation of the numbers, and from the missing judgement with respect to the errors of the computer.
Furthermore, computers perform many more calculation steps than human can do manually.

So, there is the problem of how to influence and control the errors, e.g., by choosing themost appropriate
numerical method among the mathematically equivalent methods.

In further discussions, the following notation is used, where x denotes the exact value of a quantity,
which is mostly unknown, and x̃ is an approximation value of x:

Absolute error: |Δx| = |x− x̃|. (19.268) Relative error:
∣∣∣∣Δx

x

∣∣∣∣ = ∣∣∣∣x− x̃

x

∣∣∣∣ . (19.269)

The notations

ε(x) = x− x̃ and εrel(x) =
x− x̃

x
(19.270)

are also often used.

19.8 Using the Computer 1005

19.8.2.2 Normalized Decimal Numbers andRound-Off

1. Normalized Decimal Numbers
Every real number x �= 0 can be expressed as a decimal number in the form

x = ±0.b1b2 . . . · 10E (b1 �= 0). (19.271)

Here 0, b1b2 . . . is called the mantissa formed with the digits bi ∈ {0, 1, 2, . . . , 9}. The number E is an
integer, the so-called exponent with respect to the base 10. Since b1 �= 0, (19.271) is called a normalized
decimal number.
Since only finitely many digits can be handled by a real computer, one has to restrict himself to a fixed
number t of mantissa digits and to a fixed range of the exponent E. So, from the number x given in
(19.271) the number

x̃ =

{
±0.b1b2 · · · bt · 10E for bt+1 ≤ 5 (round-down),
±(0.b1b2 · · · bt + 10−t)10E for bt+1 > 5 (round-up),

(19.272)

is obtained by round-off (as it is usual in practical calculations). The absolute error caused by round-off

|Δx| = |x− x̃| ≤ 0.5 · 10−t10E. (19.273)

2. Basic Operations and Numerical Calculations
Every numerical process is a sequence of basic calculation operations. Problems arise especially with
the finite number of positions in the floating-point representation. Here a short overview is given. It is
supposed that x and y are normalized error-free floating-point numbers with the same sign and with a
non-zero value:

x = m1B
E1 , y = m2B

E2 with (19.274a)

mi =
t∑

k=1

a
(i)
−kB

−k, a
(i)
−1 �= 0, and (19.274b)

a
(i)
−k = 0 or 1 or . . . or B − 1 for k > 1 (i = 1, 2). (19.274c)

1. Addition If E1 > E2, then the common exponent becomes E1, since normalization allows us to
make only a left-shift. The mantissas are then added.

If B−1 ≤| m1 +m2B
−(E1−E2) |< 2 (19.275a) and | m1 +m2B

−(E1−E2) |≥ 1, (19.275b)

then shifting the decimal point by one position to the left results in an increase of the exponent by one.

0.9604 · 103 + 0.5873 · 102 = 0.9604 · 103 + 0.05873 · 103 = 1.01913 · 103 = 0.1019 · 104.
2. Subtraction The exponents are equalized as in the case of addition, the mantissas are then sub-
tracted. If

| m1 −m2B
−(E1−E2) |< 1− B−t (19.276a) and | m1 −m2B

−(E1−E2) |< B−1, (19.276b)

shifting the decimal point to the right by amaximum of t positions results in the corresponding decrease
of the exponent.

0.1004 · 103− 0.9988 · 102 = 0.1004 · 103− 0.09988 · 103 = 0.00052 · 103 = 0.5200 · 100. This example
shows the critical case of subtractive cancellation. Because of the limited number of positions (here
four), zeros are carried in from the right instead of the correct characters.
3. Multiplication The exponents are added and the mantissas are multiplied. If

m1m2 < B−1, (19.277)

then the decimal point is shifted to the right by one position, and the exponent is decreased by one.

(0.3176 · 103) · (0.2504 · 105) = 0.07952704 · 108 = 0.7953 · 107.
4. Division The exponents are subtracted and the mantissas are divided. If

m1

m2

≥ B−1, (19.278)

1006 19. Numerical Analysis

then the decimal point is shifted to the left by one position, and the exponent is increased by one.

(0.3176 · 103)/(0.2504 · 105) = 1.2683706 . . . 10−2 = 0.1268 · 10−1.

5. Error of the Result The error of the result in the four basic operations with terms that are
supposed to be error-free is a consequence of round-off. For the relative error with number of positions
t and the base B, the limit is

B

2
B−t. (19.279)

6. Subtractive cancelation As it was mentioned above, the critical operation is the subtraction
of nearly equal floating-point numbers. If it is possible, one should avoid this by changing the order of
operations, or by using certain identities.

x =
√
1985 −

√
1984 = 0.4455 · 102 − 0.4454 · 102 = 0.1 · 10−1 or x =

√
1985 −

√
1984 =

1985− 1984√
1985 +

√
1984

= 0.1122 · 10−1

19.8.2.3 Accuracy in Numerical Calculations

1. Types of Errors
Numerical methods have errors. There are several types of errors, from which the total error of the final
result is accumulated (Fig. 19.18).

Total error

Input error Error of method Round-off error

Truncation error Discretization error

Figure 19.18
2. Input Error
1. Notion of Input Error Input error is the error of the result caused by inaccurate input data.
Slight inaccuracies of input data are also called perturbations. The determination of the error of the
input data is called the direct problem of error calculus. The inverse problem is the following: How
large an error the input data may have such that the final input error does not exceed an acceptable
tolerance value. The estimation of the input error in rather complex problems is very difficult and is
usually hardly possible. In general, for a real-valued function y = f(x) with x = (x1, x2, . . . , xn)

T the
absolute value of the input error is

|Δy| = |f(x1, x2, . . . , xn)− f(x̃1, x̃2, . . . , x̃n)|

= |
n∑

i=1

∂f

∂xi

(ξ1, ξ2, . . . , ξn)(xi − x̃i)| ≤
n∑

i=1

(
max

x
| ∂f
∂xi

(x)|
)
|Δxi|, (19.280)

if the Taylor formula (see 7.3.3.3, p. 471) is used for y = f(x) = f(x1, x2, . . . , xn) with a linear residue.
ξ1, ξ2, . . . , ξn denote the intermediate values, x̃1, x̃2, . . . , x̃n denote the approximating values of x1, x2,
. . . , xn. The approximating values are the perturbed input data. Here, also theGauss error propagation
law (see 16.4.2.1, p. 855) is considered.

2. Input Error of Simple Arithmetic Operations The input error is known for simple arith-
metical operations. With the notation of (19.268)–(19.270) for the four basic operations:

19.8 Using the Computer 1007

ε(x± y) = ε(x)± ε(y), (19.281) ε(xy) = yε(x) + xε(y) + ε(x)ε(y), (19.282)

ε

(
x

y

)
=

1

y
ε(x)− x

y2
ε(y) + terms of higher order in ε, (19.283)

εrel(x± y) =
xεrel(x)± yεrel(y)

x± y
, (19.284) εrel(xy) = εrel(x) + εrel(y) + εrel(x)εrel(y), (19.285)

εrel

(
x

y

)
= εrel(x)− εrel(y) + terms of higher order in ε. (19.286)

The formulas show: Small relative errors of the input data result in small relative errors of the result
on multiplication and division. For addition and subtraction, the relative error can be very large if
|x± y| 1 |x|+ |y|.
3. Error of theMethod
1. Notion of the Error of the Method The error of the method comes from the fact that theoret-
ically continuous phenomena are numerically approximated in many different ways as limits. Hence,
there are truncation errors in limiting processes (as, e.g., in iteration methods) and discretization er-
rors in the approximation of continuous phenomena by a finite discrete system (as, e.g., in numerical
integration). Errors of methods exist independently of the input and round-off errors; consequently,
they can be investigated only in connection with the applied solution methodology.

2. Applying Iteration Methods If an iteration method is used, then both cases may occur: A
correct solution or also a false solution of the problem can be obtained. It is also possible that no
solution is obtained by an iteration method although there exists one.
To make an iteration method clearer and safer, the following advices should be considered:

a) To avoid “infinite” iterations, count the number of steps and stop the process if this number exceeds
a previously given value (i.e., stop without reaching the required accuracy).

b)The location of the intermediate result should be tracked on the screen by a numerical or a graphical
representation of the intermediate results.

c) All known properties of the solution should be used such as gradient, monotonicity, etc.

d) The possibilities of scaling the variables and functions should be investigated.

e) Several tests should be performed by varying the step size, truncation conditions, initial values, etc.

4. Round-off Errors
Round-off errors occur because the intermediate results should be rounded. So, they have an essential
importance in judging mathematical methods with respect to the required accuracy. They determine
together with the errors of input and the error of the method, whether a given numerical method is
strongly stable, weakly stable or unstable. Strong stability, weak stability, or instability occur if the
total error, at an increasing number of steps, decreases, has the same order, or increases, respectively.
At the instability one distinguishes between the sensitivity with respect to round-off errors and dis-
cretization errors (numerical instability) and with respect to the error in the initial data at a theo-
retically exact calculation (natural instability). A calculation process is appropriate if the numerical
instability is not greater than the natural instability.

For the local error propagation of round-off errors, i.e., errors at the transition from a calculation step
to the next one, the same estimation process can be used as the one applied at the input error.

5. Examples of Numerical Calculations
Some of the problems mentioned above are illustrated by numerical examples.

A: Roots of a Quadratic Equation:
ax2 + bx+ c = 0 with real coefficients a, b, c and D = b2 − 4ac ≥ 0 (real roots). Critical situations are
the cases a) | 4ac |1 b2 and b) 4ac ≈ b2. Recommended proceeding:

1008 19. Numerical Analysis

a) x1 = −b+ sign(b)
√
D

2a
, x2 =

c

ax1

(Vieta root theorem, see 1.6.3.1, 3., p. 44).

b) The vanishing ofD cannot be avoided by a direct method. Subtractive cancellation occurs but the

error in (b+ sign(b
√
D) is not too large since |b| 6

√
D holds.

B: Volume of a Thin Conical Shell for h 1 r

V = 4π
(r + h)3 − r3

3
because of (r+h) ≈ r there is a case of subtractive cancellation. However in the

equation V = 4π
3r2h+ 3rh2 + h3

3
there is no such problem.

C: Determining the Sum S =
∞∑
k=1

1

k2 + 1
(S = 1.07667 . . .) with an accuracy of three signif-

icant digits. Performing the calculations with 8 digits, about 6000 terms should be added. After the

identical transformation
1

k2 + 1
=

1

k2
− 1

k2(k2 + 1)

S =
∞∑
k=1

1

k2
−

∞∑
k=1

1

k2(k2 + 1)
and S =

π2

6
−

∞∑
k=1

1

k2(k2 + 1)
hold. By this transformation only

eight terms are considered.

D: Avoiding the
0

0
Situation in the function z = (1 −

√
1 + x2 + y2)

x2 − y2

x2 + y2
for x = y = 0.

Multiplying the numerator and the denominator by (1 +
√
1 + x2 + y2) one avoids this situation.

E: Example for an Unstable Recursive Process. Algorithms with the general form yn+1 =

ayn + byn−1 (n = 1, 2, . . .) are stable if the condition

∣∣∣∣∣∣a2 ±
√
a2

4
+ b

∣∣∣∣∣∣ < 1 is satisfied. The special

case yn+1 = −3yn + 4yn−1 (n = 1, 2, . . .) is unstable. If y0 and y1 have errors ε and −ε, then for
y2, y3, y4, y5, y6, . . . the errors are 7ε, −25ε, 103ε, −409ε, 1639ε, The process is instable for the pa-
rameters a = −3 and b = 4.

F: Numerical Integration of a Differential Equation. The numerical solution for the first-
order ordinary differential equation

y′ = f(x, y) with f(x, y) = ay (19.287)

and the initial value y(x0) = y0 will be represented.

a) Natural Instability. Together with the exact solution y(x) for the exact initial values y(x0) = y0
let u(x) be the solution for a perturbed initial value. Without loss of generality, it may be assumed that
the perturbed solution has the form

u(x) = y(x) + ε η(x), (19.288a)

where ε is a parameter with 0 < ε < 1 and η(x) is the so-called perturbation function. Considering
that u′(x) = f(x, u) one gets from the Taylor expansion (see 7.3.3.3, p. 471)

u′(x) = f(x, y(x) + ε η(x)) = f(x, y) + ε η(x) fy(x, y) + terms of higher order (19.288b)

which implies the so-called differential variation equation

η′(x) = fy(x, y)η(x). (19.288c)

The solution of the problem with f(x, y) = ay is

η(x) = η0 e
a(x−x0) with η0 = η(x0). (19.288d)

For a > 0 even a small initial perturbation η0 results in an unboundedly increasing perturbation η(x).
So, there is a natural instability.

19.8 Using the Computer 1009

b) Investigation of the Error of theMethod in the Trapezoidal Rule. With a = −1, the stable
differential equation y′(x) = −y(x) has the exact solution

y(x) = y0e
−(x−x0), where y0 = y(x0). (19.289a)

The trapezoidal rule is
xi+1∫
x1

y(x)dx ≈ yi + yi+1

2
h with h = xi+1 − xi. (19.289b)

By using this formula for the given differential equation

ỹi+1 = ỹi +

xi+1∫
xi

(−y)dx = ỹi −
ỹi + ỹi+1

2
h or ỹi+1 =

2− h

2 + h
ỹi or

ỹi =

(
2− h

2 + h

)i

ỹ0 (19.289c)

is valid. With xi = x0 + ih, i.e., with i = (xi − x0/h for 0 ≤ h < 2

ỹi =

(
2− h

2 + h

)(xi−x0)/h

ỹ0 = ỹ0e
c(h)(xi−x0) with c(h) =

ln

(
2− h

2 + h

)
h

= −1− h2

12
− h4

80
− · · ·

(19.289d)

is obtained. If ỹ0 = y0, then ỹi < yi, and so for h → 0, ỹi also tends to the exact solution y0e
−(xi−x0).

c) Input Error In b) it is supposed that the exact and the approximate initial values coincide. Now,
the behavior is investigated when y0 �= ỹ0 with | ỹ0 − y0 |< ε0.

Since (ỹi+1 − yi+1) ≤
2− h

2 + h
(ỹi − yi) there is (ỹi+1 − yi+1) ≤

(
2− h

2 + h

)i+1

(ỹ0 − y0). (19.290a)

So, εi+1 is at most of the same order as ε0, and the method is stable with respect to the initial values.
It has to be mentioned that in solving the above differential equation with the Simpson method an
artificial instability is introduced. In this case, for h → 0, the general solution is obtained as

ỹi = C1e
−xi + C2(−1)iexi/3. (19.290b)

The problem is that the numerical solution method uses higher-order differences than those to which
the order of the differential equation corresponds.

19.8.3 Libraries ofNumericalMethods
Over time, libraries of functions and procedures have been developed independently of each other for
numerical methods in different programming languages. An enormous amount of computer experimen-
tation was considered in their development, so in solutions of practical numerical problems one should
use the programs from one of these program libraries. Programs are available for current operating
systems like WINDOWS, UNIX and LINUX and mostly for every computation problem type and they
keep certain conventions, so it is more or less easy to use them.

The application of methods from program libraries does not relieve the user of the necessity of thinking
about the expected results. This is a warning that the user should be informed about the advantages
and also about the disadvantages and weaknesses of the mathematical method he/she is going to use.

19.8.3.1 NAGLibrary
The NAG library (NumericalAlgorithmsGroup) is a rich collection of numerical methods in the form
of functions and subroutines/procedures in the programming languages FORTRAN 77, FORTRAN 90

1010 19. Numerical Analysis

and C. Here is a contents overview:

1. Complex arithmetic 14. Eigenvalues and eigenvectors
2. Roots of polynomials 15. Determinants
3. Roots of transcendental equations 16. Simultaneous linear equations
4. Series 17. Orthogonalization
5. Integration 18. Linear algebra
6. Ordinary differential equations 19. Simple calculations with statistical data
7. Partial differential equations 20. Correlation and regression analysis
8. Numeric differentiation 21. Random number generators
9. Integral equations 22. Non-parametric statistics

10. Interpolation 23. Time series analysis
11. Approximation of curves and surfaces from data 24. Operations research
12. Minimum/maximum of a function 25. Special functions
13. Matrix operations, inversion 26. Mathematical and computer constants

Furthermore the NAG library contains extensive software concerning statistics and financial mathe-
matics.

19.8.3.2 IMSL Library
The IMSL library (International Mathematical and Statistical Library) consists of three synchro-
nized parts:
General mathematical methods,
Statistical problems,
Special functions.

The sublibraries contain functions and subroutines in FORTRAN 77, FORTRAN 90 and C. Here is a
contents overview:

General Mathematical Methods
1. Linear systems 6. Transformations
2. Eigenvalues 7. Non-linear equations
3. Interpolation and approximation 8. Optimization
4. Integration and differentiation 9. Vector and matrix operations
5. Differential equations 10. Auxiliary functions

Statistical Problems
1. Elementary statistics 12. Random sampling
2. Regression 13. Life time distributions and reliability
3. Correlation 14. Multidimensional scaling
4. Variance analysis 15. Estimation of reliability function,
5. Categorization and discrete data analysis hazard rate and risk function
6. Non-parametric statistics 16. Line-printer graphics
7. Test of goodness of fit and test of randomness 17. Probability distributions
8. Analysis of time series and forecasting 18. Random number generators
9. Covariance and factor analysis 19. Auxiliary algorithms
10. Discriminance analysis 20. Auxiliary mathematical tools
11. Cluster analysis

Special Functions
1. Elementary functions 6. Bessel functions
2. Trigonometric and hyperbolic 7. Kelvin functions

functions 8. Bessel functions with fractional orders
3. Exponential and related functions 9. Weierstrass elliptic integrals and
4. Gamma function and relatives related functions
5. Error functions and relatives 10. Different functions

19.8 Using the Computer 1011

19.8.3.3 Aachen Library
The Aachen library is based on the collection of formulas for numerical mathematics of G. Engeln–
Müllges (Fachhochschule Aachen) and F. Reutter (Rheinisch–Westfälische Technische Hochschule Aa-
chen). It exists in the programming languages BASIC, QUICKBASIC, FORTRAN 77, FORTRAN 90, C,
MODULA 2 and TURBO PASCAL. Here is an overview:

1. Numerical methods to solve non-linear and special algebraic equations
2. Direct and iterative methods to solve systems of linear equations
3. Systems of non-linear equations
4. Eigenvalues and eigenvectors of matrices
5. Linear and non-linear approximation
6. Polynomial and rational interpolation, polynomial splines
7. Numerical differentiation
8. Numerical quadrature
9. Initial value problems of ordinary differential equations

10. Boundary value problems of ordinary differential equations

The programs of the Aachen library are especially suitable for the investigation of individual algorithms
of numerical mathematics.

19.8.4 Application of InteractiveProgramSystems
andComputeralgebra Systems

19.8.4.1 Matlab
The commercial program system Matlab Matlab (Matrix Laboratory) is an interactive environment
for solving mathematically formulated problems and in the same time it is a high level script language
for scientific technical computations. The set up priorities are the problems and algorithms of linear
algebra. Matlab unifies the convenient well developed implementations of numerical procedures with
advanced graphical representation of the results and data. The computations are processed mostly
with double precision floating point numbers according to IEEE–standards (see Table19.4, p. 1004).
As further alternatives which are compatible to Matlab are the systems Scilab and Octave with free
downloads.

1. Functions Survey
There is a short survey of the procedures and functions available in Matlab:

General Mathematical Functions
1. Trigonometry 5. Coordinate transformations
2. Exponential functions, Logarithms 6. Round-off and fractions
3. Special functions 7. Discrete mathematics
4. Complex arithmetic 8. Mathematical constants

Numerical Linear Algebra
1. Manipulation of fields and matrices 5. Eigenvalues and singular values
2. Special matrices 6. Matrix factorization
3. Matrix analyzes (norms, condition) 7. Matrix functions
4. Systems of linear equations 8. Methods for sparse matrices

Numerical Methods
1. Calculation of statistical data 7. Determination of the convex closures
2. Correlation and regression 8. Numerical integration
3. Discrete Fourier transformation 9. Ordinary differential equations
4. Polynomials and splines 10. Partial differential equations
5. One- and more-dimensional interpolation 11. Non-linear equations
6. Triangulations and decompositions 12. Minimization of functions

1012 19. Numerical Analysis

In addition there are several program packages ofMatlab, the so called toolbooxes, which can be applied
in the cases of special mathematical classis of problems. As some examples can be mentioned here the
curve fitting, filtering, business mathematics, time series analysis, signal and pattern processing, neural
networks, optimization, partial differential equations, splines, statistics and wavelets.
In the following paragraphs the possibilities ofMatlab are demonstrated by simple examples. The same
problems are partially discussed here as in the paragraphs of numerical applications ofMathematica and
Maple.

2. Numerical Linear Algebra
After starting with Matlab the command prompt >> appears in the command window to indicate the
readiness to accept commands. If a command is not closed by a semicolon, then the result appears in
the command window. The basic command to solve a system of linear equations Ax = b (see 19.2.1,
p. 955) is the backslash operator \.

Given matrix A =

⎛⎝ 1 0 3
2 1 1
1 2 3

⎞⎠ and vector b = (−2, 3, 2)T . For the input

>> A = [1 0 3; 2 1 1; 1 2 3], b = [−2; 3; 2], x = A\b, norm(A ∗ x− b)

the output is

A =
1 0 3
2 1 1
1 2 3

b =
−2
3
2

x =
1.0000
2.0000

−1.0000
ans = 8.8818e− 016

As the Euclidean norm of the residual shows the obtained solution x (for which not all the digits are
shown) satisfies the system of equations with an accuracy allowed by the mashine floating point repre-
sentation.
If the matrix A is quadratic and nonsingular, then the linear system has a unique solution. By the
backslash operator \ ordinary the Gaussian elimination is used with column pivoting, i.e., a triangle
decomposition PA = LR is obtained (see 19.2.1.1, p. 955).

The triangle decomposition of A can be realized also with the input

>> [L, R, P] = lu(A)

giving the output

L =

⎛⎝ 1.0000 0 0
0.5000 1.0000 0
0.5000 −0.3333 1.0000

⎞⎠ R =

⎛⎝ 2.0000 1.0000 1.0000
0 1.5000 2.5000
0 0 3.3333

⎞⎠ P =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠
(Here the matrices are given in brackets in order to avoid confusion).
The backslash operator first tests the properties of the coefficient matrix A. If A is a permutation
of a triangle matrix, then the corresponding echelon form is solved. For a symmetric A the Cholesky
method is applied (see 19.2.1.2, p. 958).
If the condition number of the coefficient matrix A is too high, then numerical problems can occure
during the solution. Because of this problem, during the procedure Matlab calculates an estimation of
the reciprocal value of the condition number, and gives a warning if it is too small.

The Hilbert matrix H = (hik) of order n = 13 can serve as an example, where hik = 1/(i+ k − 1).

>> x = hilb(13)\ones(13, 1);
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.409320e-017.

In the case of overdetermined linear systems the corresponding linear fitting problem is handled by an
orthogonalization procedure, i.e. by orthogonal transformations into a QR-decomposition A = QR

19.8 Using the Computer 1013

(see 19.2.1.3, p. 958).

>> A = [1 0 3; 2 1 1; 1 2 3; 1 1 − 1]; b = [−2; 3; 2; 1]; x = A\b, norm(A ∗ x− b)

x =
0.4673
1.4393

−0.4953
ans = 2.0508

>> [Q, R] = qr(A)

Q =

⎛⎜⎜⎝
−0.3780 −0.4583 0.6466 0.4785
−0.7559 −0.2750 −0.2321 −0.5469
−0.3780 0.8250 0.4145 −0.0684
−0.3780 0.1833 −0.5969 0.6836

⎞⎟⎟⎠ R =

⎛⎜⎜⎝
−2.6458 −1.8898 −2.6458

0 1.5584 0.6417
0 0 3.5480
0 0 0

⎞⎟⎟⎠
The backslash operator also gives meaningful results in the cases of underdetermined and rank deficient
linear systems of equations. The details of these cases with the ways how to handle large sparsematrices
can be found in the corresponding documentation of Matlab and in the introductions [19.20], [19.29].

3. Numerical Solution of Equations
A polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0
is in Matlab represented by the row vector (an, an−1, . . . , a1, a0) of the coefficients. Several functions
are available to handle polynomials.

As an example the polynomial value at 1, the derivative (i.e. the coefficient vector of the derivative
polynomial) and the roots are determined for the polynomial p(x) = x6 + 3x2 − 5.

>> p = [1 0 0 0 3 0 − 5];

>> polyval(p, 1) ans = −1

>> polyder(p) ans = 6 0 0 0 6 0

>> roots(p) ans = 0.8673+ 1.1529i, 0.8673− 1.1529i, 1.0743,

−0.8673+ 1.1529i,−0.8673− 1.1529i,−1.0743

The roots are determined as the eigenvalues of the corresponding companion matrix.

The command fzero is used to find the approximate solutions of nonlinear scalar equations.

Calculation of three solutions of equation e−x3 − 4x2 = 0.

>> fzero(@(x)exp(−x∧3)− 4 ∗ x∧2, 1) ans = 0.4741

>> fzero(@(x)exp(−x∧3)− 4 ∗ x∧2, 0) ans = −0.5413

>> fzero(@(x)exp(−x∧3)− 4 ∗ x∧2,−1) ans = −1.2085

The input of the equation for the command fzero is made as an unnamed function. As it is obvi-
ous, it depends on the given initial value in the second argument, which solution is approximated. A
combination of the bisection method with regula falsi (see 19.1.1.3, p. 951) is used for the iteration
process.

4. Interpolation
Function fitting based on a given data set can be done either by interpolation (see 19.6.1, p. 982 or
19.7.1.1, p. 996) or by best approximating functions (see 19.6.2.2, p. 985). InMatlab the command plot
is the most simple way to represent the data set graphically. The menu in the selfopening graphical
window contains tools for editing the figure (linetypes, symbols, titles and legends), for exporting and
printing Basic Fitting under Tools.

1014 19. Numerical Analysis

The Basic Fitting is a subroutine of Tools by which a variety of interpolation methods and best ap-
proximating polynomials of different degrees are offered. It is realized by the functions interp1 and
polyfit.

By the input

>> plot([1.70045, 1.2523, 0.638803, 0.423479, 0.249091, 0.160321, 0.0883432, 0.0570776,

0.0302744, 0.0212794]);

the data values are located at the data positions 1, 2, . . . , 10 and are graphically represented. Fig.19.19a
shows the data set, the corresponding cubic interpolation spline and the best approximating polynomial
of degree four.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Cubic spline interpolant

y = − 2.194e− 005*x
4
− 0.0037135*x

3
+ 0.099896*x

2
− 0.85348*x +

2.4892

data 1

spline

4th degree

− 2

− 1

0

1

2

− 2

− 1

0

1

2
0

0.2

0.4

0.6

0.8

1

1.2

Figure 19.19 a) and b)

The Function interp2 offers appropriate methods to interpolate the data given over a two dimensional
rectangular grid (see 19.7.2.1, p. 998). To interpolate irregularly distributed data is served by calling
griddata.

The command sequence

>> [X, Y] = meshgrid(−2 : 1 : 2); F = 4− sqrt(16− X.∧2− Y.∧2);

>> [Xe, Ye] = meshgrid(−2 : 0.1 : 2); S = interp2(X, Y, F, Xe, Ye,′ spline′);

>> surf(Xe, Ye, S)

>> hold on; stem3(X, Y, F,′ fill′)

realizes the bivariable cubic spline interpolation of the function f(x, y) =
√
16− x2 − y2 given on a

grid. The interpolation spline is evaluated on a finer rectangular grid. Fig.19.19b represents the
interpolation function where the data points are also shown.

5. Numerical Integration
Numerical integration is available in Matlab by the procedures quad and quadl. Both procedures are
based on the recursive application of interpolation quadratures with adaptive step-size selection. quad
is based on the Simpson formula, and in quadl the Lobatto formulas of higher order are applied (see
19.3.2, p. 964). In the case of sufficiently smooth integrand and higher accuracy requirements quadl
works more effectively than quad.

As the first example the approximation of the definite integral I =
∫ 1

0

sin x

x
dx (Integral sine see

8.2.5,1. p. 513) is considered.

>> format long; [I, fwerte] = quad(@(x)(sin(x)./x), 0, 1)

19.8 Using the Computer 1015

Warning: Divide by zero. > In @(x)(sin(x)./x) In quad at 62

I = 0.94608307007653 fwerte = 14

>> format long; [I, fwerte] = quadl(@(x)(sin(x)./x), 0, 1)

Warning: Divide by zero. > In @(x)(sin(x)./x) In quadl at 64

I = 0.94608307036718 fwerte = 19

Both procedures obviously recognize the discontinuity of the integrand at the left endpoint of the in-
terval, but the approximated value of the integral can be obtained without any difficulty. Based on the
results of the same example in 19.3.4.2, p. 968 the number of function evaluations seems to be high but
it is determined for the adaptive recursion.

>> format long; [I, fwerte] = quad(@(x)(sin(x)./x), 0, 1, 1e− 14)

I = 0.94608307036718 fwerte = 258

>> format long; [I, fwerte] = quadl(@(x)(sin(x)./x), 0, 1, 1e− 14)

I = 0.94608307036718 fwerte = 19

(The warning messages are not repeated here.) The determination of the accuracy of 10−14, which is
given as a further argument (the default is a 10−6 tolerance), makes the advantages of quadl obvious
in this case.

The definite integral I =
∫ 1000

−1000
e−x2

dx is to be determined.

>> format long; [I, fwerte] = quad(@(x)(exp(−x.∧2)),−1000, 1000, 1e− 10)

I = 1.77245385094233 fwerte = 585

>> format long; [I, fwerte] = quadl(@(x)(exp(−x.∧2)),−1000, 1000, 1e− 10)

I = 1.77245385090571 fwerte = 768

The flat shape of the integrand in a very wide part of the integration interval and the relatively steep
peak at x = 0 make quad better in this case.

6. Numerical Solution of Differential Equations
Matlab offers several procedures to determine the numerical solutions of initial value problems of sys-
tems of first order ordinary differential equations. A standard procedure is ode45, in which Runge-
Kutta methods of 4-th and 5-th order are applied with adaptive step-size selection (see 19.4.1.2, p. 969).
To achieve higher accuracy the program ode113 is more effective with implemented linear multi-step
methods of predictor-corrector type (see 19.4.1.4, p. 971). Besides there are procedures which are es-
pecially effective for stiff systems of differential equations (see 19.4.1.5,4., p. 973).

To solve the problem y′ =
1

4
(x2+ y2), y(0) = 0, by the Runge-Kutta method (see 19.4.1.2, p. 970)

in the interval [0, 1] the input is

>> [x, y] = ode45(@(x, y)((x.2 + y.2)./4), [0 1], 0); plot(x, y)

The shape of the resulted solution is represented in Fig.19.20a.

To solve the special Lorenz-system (see in 17.2.4.3, p. 887)

x′
1 = 10(x2 − x1), x′

2 = 28x1 − x2 − x1x3, x′
3 = x1x2 −

8

3
x3

in the interval 0 ≤ t ≤ 50 with initial conditions x(0) = (0, 1, 0)T the following commands are used:

>> [t, x] = ode45(@(t, x)([10 ∗ (x(2)− x(1));

28 ∗ x(1)− x(2)− x(1) ∗ x(3); x(1) ∗ x(2)− 8 ∗ x(3)/3]), [0 50], [0; 1; 0]);

>> plot(x(:, 1), x(:, 3))

1016 19. Numerical Analysis

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

− 20 − 15 − 10 − 5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Figure 19.20 a) and b)

The last command creates a phase-diagram in the x1, x3 plane (see Fig.19.20b).

19.8.4.2 Mathematica

1. Tools for the Solution of Numerical Problems
The computer algebra systemMathematica offers a very effective tool that can be used to solve a large
variety of numerical mathematical problems. The numerical procedures ofMathematica are totally dif-
ferent from symbolic calculations. Mathematica determines a table of values of the considered function
according to certain previously given principles, similarly to the case of graphical representations, and
it determines the solution using these values. Since the number of points must be finite, this could be
a problem with “ badly ” behaving functions. Although Mathematica tries to choose more nodes in
problematic regions, we have to suppose a certain continuity on the considered domain. This can be
the cause of errors in the final result. It is advised to use as much information as possible about the
problem under consideration, and if it is possible, then to perform calculations in symbolic form, even
if this is possible only for subproblems.
In Table 19.5, we represent the operations for numerical computations:

Table 19.5 Numerical operations

NIntegrate calculates definite integrals

NSum calculates sums
n∑

i=1
f(i)

NProduct calculates products
NSolve numerically solves algebraic equations
NDSolve numerically solves differential equations

After starting Mathematica the “ Prompt ” In[1] := is shown; it indicates that the system is ready to
except an input. Mathematica denotes the output of the corresponding result by Out[1]. In general:
The text in the rows denoted by In[n] := is the input. The rows with the sign Out[n] are given back
by Mathematica as answers. The arrow −> in the expressions means, e.g., replace x by the value a.

2. Curve Fitting and Interpolation

1. Curve Fitting Mathematica can perform the fitting of chosen functions to a set of data using the
least squares method (see 6.2.5, p. 454ff.) and the approximation in mean to discrete problems (see
19.6.2.2, p. 986). The general instruction is:

Fit[{y1, y2, . . .}, funkt, x]. (19.291)

19.8 Using the Computer 1017

Here the values yi form the list of data, funkt is the list of the chosen functions, by which the fitting
should be performed, and x denotes the corresponding domain of the independent variables. If funkt
is chosen, e.g., as Table[x∧i, {i, 0, n}] , then the fitting will be made by a polynomial of degree n.

Let the following list of data be given:

In[1] := l = {1.70045, 1.2523, 0.638803, 0.423479, 0.249091, 0.160321, 0.0883432, 0.0570776,
0.0302744, 0.0212794}

With the input

In[2] := f1 = Fit[l, {1, x, x∧2, x∧3, x∧4}, x]
it is supposed that the elements of l are assigned to the values 1, 2, . . . , 10 of x. The result is the following
approximation polynomial of degree four:

Out[2] = 2.48918− 0.853487x+ 0.0998996x2 − 0.00371393x3 − 0.0000219224x4

With the command

In[3] := Plot[ListPlot[l, {x, 10}], f1, {x, 1, 10}, AxesOrigin−> {0, 0}]
a representation of the data and the approximation curve given in Fig. 19.21a can be obtained.

2 4 6 8 10

0.25

0.5

0.75

1

1.25

1.5

1.75

2 4 6 8 10

0.25

0.5

0.75

1

1.25

1.5

a) b)

Figure 19.21

For the given data this is completely satisfactory. The terms are the first four terms of the series ex-
pansion of e1−0.5x.
2. Interpolation Mathematica offers special algorithms for the determination of interpolation func-
tions. They are represented as so-called interpolating function objects, which are formed similarly
to pure functions. The directions for using them are in Table 19.6. Instead of the single function
values yi a list of function values and values of specified derivatives can be given at the given points.

With In[3] := Plot[Interpolation[l][x], {x, 1, 10}] one gets Fig. 19.21b. Obviously Mathemat-
ica gives a precise correspondence to the data list.

Table 19.6 Commands for interpolation

Interpolation[{y1, y2, . . .}] gives an approximation function with the values yi for the
values xi = i as integers

Interpolation[{{x1, y1}, {x2, y2}, . . .}] gives an approximation function for the point–sequence
(xi, yi)

3. Numerical Solution of Polynomial Equations
As shown in 20.3.2.1, p. 1038 Mathematica can determine the roots of polynomials numerically. The
command is NSolve[p[x] == 0, x, n], where n prescribes the accuracy by which the calculations should
be done. If n is omitted, then the calculations are made to machine accuracy. The complete solution
is got, i.e., m roots, if the input polynomial is of degree m.

In[1] := NSolve[x∧6 + 3x∧2− 5 == 0]

Out[1] = {x−> −1.07432}, {x−> −0.867262− 1.15292I}, {x−> −0.867262 + 1.15292I},

1018 19. Numerical Analysis

{x−> 0.867262− 1.15292I}, {x−> 0.867262 + 1.15292I}, {x−> 1.07432}}.

4. Numerical Integration
For numerical integrationMathematica offers the procedure NIntegrate. Differently from the symboli-
cal method, here it works with a table of values of the integrand. Two improper integrals are considered
(see 8.2.3, p. 506) as examples.

A: In[1] := NIntegrate[Exp[−x∧2], {x,−Infinity, Infinity}] Out[1] = 1.77245.

B: In[2] := NIntegrate[1/x∧2, {x,−1, 1}]

Power::infy: Infinite expression
1

0
encountered.

NIntegrate::inum: Integrand ComplexInfinity is not numerical at{x} = {0}.
Mathematica recognizes the discontinuity of the integrand at x = 0 in example B and gives a warning.
Mathematica applies a table of values with a higher number of nodes in the problematic domain, and it
recognizes the pole. However, the answer can be still wrong.

Mathematica applies certain previously specified options for numerical integration, and in some spe-
cial cases they are not sufficient. The minimal and the maximal number of recursion steps, by which
Mathematica works in a problematic domain, can be determined with parameters MinRecursion and
MaxRecursion. The default options are always 0 and 6. If these values are increased, then although
Mathematica works slower, it gives a better result.

In[3] := NIntegrate[Exp[−x∧2], {x,−1000, 1000}] Mathematica cannot find the peak at x = 0,
since the integration domain is too large, and the answers is:

NIntegrate::ploss:
Numerical integration stopping due to loss of precision. Achieved neither the requested
PrecisionGoal nor AccuracyGoal; suspect one of the following: highly oscillatory integrand
or the true value of the integral is 0.
Out[3] = 1.34946 · 10−26

If the requirement is

In[4] := NIntegrate[Exp[−x∧2], {x,−1000, 1000}, MinRecursion−> 3, MaxRecursion−> 10],

then the result is

Out[4] = 1.77245

Similarly, a result closer to the actual value of the integral can be got with the command:

NIntegrate[fun, {x, xa, x1, x2, . . . , xe}]. (19.292)

One can give the points of singularities xi between the lower and upper limit of the integral to force
Mathematica to evaluate more accurately.

5. Numerical Solution of Differential Equations
In the numerical solution of ordinary differential equations and also in the solution of systems of differ-
ential equationsMathematica represents the result by an InterpolatingFunction. It allows us to get
the numerical values of the solution at any point of the given interval and also to sketch the graphical
representation of the solution function. The most often used commands are represented inTable 19.7.

Table 19.7 Commands for numerical solution of differential equations

NDSolve[dgl, y, {x, xa, xe}] computes the numerical solution of the differential equation
in the domain between xa and xe

InterpolatingFunction[liste][x] gives the solution at the point x
Plot[Evaluate[y[x]/. lös]], {x, xa, xe}] scetches the graphical representation

19.8 Using the Computer 1019

Solution of a differential equation describing the motion of a heavy object in a medium with friction.
The equations of motion in two dimensions are

ẍ = −γ
√
ẋ2 + ẏ2 · ẋ, ÿ = −g − γ

√
ẋ2 + ẏ2 · ẏ.

The friction is supposed to be proportional to the velocity. If g = 10, γ = 0.1 are substituted, then the
following command can be given to solve the equations of motion with initial values x(0) = y(0) = 0
and ẋ(0) = 100, ẏ(0) = 200:

In[1] := dg = NDSolve[{x′′[t] == −0.1Sqrt[x′[t]∧2 + y′[t]∧2] x′[t], y′′[t] == −10

−0.1Sqrt[x′[t]∧2 + y′[t]∧2] y′[t], x[0] == y[0] == 0, x′[0] == 100, y′[0] == 200},
{x, y}, {t, 15}]

Mathematica gives the answer by the interpolating function:

Out[1] = {{x−> InterpolatingFunction[{0., 15.}, <>],

y−> InterpolatingFunction[{0., 15.}, <>]}}
The solution

In[2] := ParametricPlot[{x[t], y[t]}/.dg, {t, 0, 2}, PlotRange−> All]

is represented as a parametric curve (Fig. 19.22a).

NDSolve accepts several options which affect the accuracy of the result.
The accuracy of the calculations can be given by the command AccuracyGoal. The command
PrecisionGoal works similarly. During calculations, Mathematica works according to the so-called
WorkingPre cision, which should be increased by five units in calculations requiring higher accuracy.

The numbers of steps by which Mathematica works in the considered domain is prescribed as 500. In
general, Mathematica increases the number of nodes in the neighborhood of the problematic domain.
In the neighborhood of singularities it can exhaust the step limit. In such cases, it is possible to increase
the number of steps by MaxSteps. It is also possible the prescribe Infinity for MaxSteps.

The equations for the Foucault pendulum are:

ẍ(t) + ω2x(t) = 2Ωẏ(t), ÿ(t) + ω2y(t) = −2Ωẋ(t).

With ω = 1, Ω = 0.025 and the initial conditions x(0) = 0, y(0) = 10, ẋ(0) = ẏ(0) = 0 the solution is:

In[3] := dg3 = NDSolve[{x′′[t] == −x[t] + 0.05y′[t], y′′[t] == −y[t]− 0.05x′[t],

x[0] == 0, y[0] == 10, x′[0] == y′[0] == 0}, {x, y}, {t, 0, 40}]
Out[3] = {{x−> InterpolatingFunction[{0., 40.}, <>],

y−> InterpolatingFunction[{0., 40.}, <>]}}
With

In[4] := ParametricPlot[{x[t], y[t]}/.dg3, {t, 0, 40}, AspectRatio−> 1]

one gets Fig. 19.22b.

19.8.4.3 Maple
The computer algebra systemMaple can solve several problems of numerical mathematics with the use
of built-in approximation methods. The number of nodes, which is required by the calculations, can
be determined by specifying the value of the global variable Digits as an arbitrary n. But it should be
kept in mind that selecting a higher n than the prescribed value results in a lower speed of calculation.

1. Numerical Calculation of Expressions and Functions
After starting Maple, the symbol “ Prompt ” > is shown, which denotes the readyness for input. Con-
nected in- and outputs are often represented in one row, separated by the arrow operator −→ .

1020 19. Numerical Analysis

0.5 1 1.5 2 2.5

5

10

15

20

25

30

-7.5 -5 -2.5 2.5 5 7.5

-10

-5

5

10

a) b)

Figure 19.22

1. Operator evalf Numerical values of expressions containing built-in and user-defined functions
which can be evaluated as a real number, can be calculated with the command

evalf(expr, n). (19.293)

expr is the expression whose value should be determined; the argument n is optional, it is for evaluation
to n digits accuracy. Default accuracy is set by the global variable Digits.

Prepare a table of values of the function y = f(x) =
√
x+ ln x.

First, the function is defined by the arrow operator:

> f := z −> sqrt(z) + ln(z);−→ f := z −>
√
x+ ln x.

Then the required values of the function can be got with the command evalf(f(x)); , where a numerical
value should be substituted for x.

A table of values of the function with steps size 0.2 between 1 and 4 can be obtained by

> for x from 1 by 0.2 to 4 do print(f [x] = evalf(f(x), 12)) od;

Here, it is required to work with twelve digits.
Maple gives the result in the form of a one-column tablewith elements in the form f[3.2] = 2.95200519181.

2. Operator evalhf(expr): Beside evalf there is the operator evalhf. It can be used in a similar
way to evalf. Its argument is also an expression which has a real value. It evaluates the symbolic
expression numerically, using the hardware floating-point double-precision calculations available on
the computer. A Maple floating-point value is returned. Using evalhf speeds up your calculations in
most cases, but you lose the definiable accuracy of using evalf and Digits together. For instance in
the problem in 19.8.2, p. 1004, it can produce a considerable error.

2. Numerical Solution of Equations
By using Maple equations or systems of equations can be solved numerically in many cases.
The command to do this is fsolve. It has the syntax

fsolve(eqn, var, option). (19.294)

This command determines real solutions. If eqn is in polynomial form, the result is all the real roots.
If eqn is not in polynomial form, it is likely that fsolve will return only one solution. The available
options are given in Table 19.8.

Table 19.8 Options for the command fsolve

complex determines a complex root (or all roots of a polynomial)
maxsols = n determines at least the n roots (only for polynomial equations)
fulldigits ensures that fsolve does not lower the number of digits used during computations
intervall looks for roots in the given interval

19.8 Using the Computer 1021

A: Determination of all solutions of a polynomial equation x6 + 3x2 − 5 = 0. With

> eq := x∧6 + 3 ∗ x∧2− 5 = 0 :

the result is

> fsolve(eq, x);−→ −1.074323739, 1.074323739

Maple determined only the two real roots. With the option complex, also the complex roots are ob-
tained:

> fsolve(eq, x, complex);

−1.074323739,−0.8672620244− 1.152922012I,−0.8672620244 + 1.152922012I,

0.8672620244− 1.152922012I, 0.8672620244 + 1.152922012I, 1.074323739

B: Determination of both solutions of the transcendental equation e−x3 − 4x2 = 0.
After defining the equation

> eq := exp(−x∧3)− 4 ∗ x∧2 = 0

the result is

> fsolve(eq, x);−→ 0.4740623572

as the positive solution. With

> fsolve(eq, x, x = −2..0);−→ −0.5412548544

Maple also determines the second (negative) root.

3. Numerical Integration
The determination of definite integrals is often possible only numerically. This is the case when the
integrand is too complicated, or if the primitive function cannot be expressed by elementary functions.
The command to determine a definite integral in Maple is evalf:

evalf(int(f(x), x = a..b), n). (19.295)

Maple calculates the integral by using an approximation formula.

Calculation of the definite integral
∫ 2

−2
e−x3

dx. Since the primitive function is not known, for the

integral command the following answer is got

> int(exp(−x∧3), x = −2..2);−→
∫ 2

−2
e−x3

dx.

If

> evalf(int(exp(−x∧3), x = −2..2), 15);

is typed,then the answer is 277.745841695583.
Maple used the built-in approximation method for numerical integration with 15 digits.

In certain cases this method fails, especially if the integration interval is too large. Then, another
approximation procedure can be tried with the call to a library

readlib(`evalf/int`) :

which applies an adaptive Newton method.

The input

> evalf(int(exp(−x∧2), x = −1000..1000));

results in an error message. With

> readlib(`evalf/int`) :

> `evalf/int`(exp(−x∧2), x = −1000..1000, 10, NCrule);

1.772453851

the correct result is obtained. The third argument specifies the accuracy and the last one specifies the
internal notation of the approximation method.

1022 19. Numerical Analysis

4. Numerical Solution of Differential Equations
Ordinary differential equations can be solved with theMaple operation dsolve. However, in most cases
it is not possible to determine the solution in closed form. In these cases, it can be solved numerically,
where the corresponding initial conditions have to be given.
In order to do this, the command dsolve is used in the form

dsolve(deqn, var, numeric) (19.296)

with the option numeric as a third argument. Here, the argument deqn contains the actual differential
equation and the initial conditions. The result of this operation is a procedure, and if it is denoted, e.g.,
by f , for using the command f(t), the value of the solution function at the value t of the independent
variable is returned.
Maple applies the Runge-Kutta method to get this result (see 19.4.1.2, p. 969). The default accuracy for
the relative and for the absolute error is 10−Digits+3. The user can modify these default error tolerances
with the global symbols RELERR and ABSERR. If there are some problems during calculations, then
Maple gives different error messages.

At solving the problem given in the Runge-Kutta methods in 19.4.1.2, p. 970, Maple gives:

> r := dsolve({diff(y(x), x) = (1/4) ∗ (x∧2 + y(x)∧2), y(0) = 0}, y(x), numeric);
r := proc `dsolve/numeric/result2` (x, 1592392, [1]) end

With

> r(0.5);−→ {x(.5) = 0.5000000000, y(x)(.5) = 0.01041860472}
we can determine the value of the solution, e.g., at x = 0.5.

	19 Numerical Analysis
	19.1 Numerical Solution of Non-Linear Equations in a Single Unknown
	19.1.1 Iteration Method
	19.1.1.1 Ordinary Iteration Method
	19.1.1.2 Newton’s Method
	19.1.1.3 Regula Falsi

	19.1.2 Solution of Polynomial Equations
	19.1.2.1 Horner’s Scheme
	19.1.2.2 Positions of the Roots
	19.1.2.3 Numerical Methods

	19.2 Numerical Solution of Systems of Equations
	19.2.1 Systems of Linear Equations
	19.2.1.1 Triangular Decomposition of aMatrix
	19.2.1.2 Cholesky’s Method for a Symmetric CoefficientMatrix
	19.2.1.3 Orthogonalization Method
	19.2.1.4 Iteration Methods

	19.2.2 System of Non-Linear Equations
	19.2.2.1 Ordinary Iteration Method
	19.2.2.2 Newton’s Method
	19.2.2.3 Derivative-Free Gauss-Newton Method

	19.3 Numerical Integration
	19.3.1 General Quadrature Formulas
	19.3.2 Interpolation Quadratures
	19.3.2.1 Rectangular Formula
	19.3.2.2 Trapezoidal Formula
	19.3.2.3 Simpson’s Formula
	19.3.2.4 Hermite’s Trapezoidal Formula

	19.3.3 Quadrature Formulas of Gauss
	19.3.3.1 Gauss Quadrature Formulas
	19.3.3.2 Lobatto’s Quadrature Formulas

	19.3.4 Method of Romberg
	19.3.4.1 Algorithm of the Romberg Method
	19.3.4.2 Extrapolation Principle

	19.4 Approximate Integration of Ordinary Differential Equations
	19.4.1 Initial Value Problems
	19.4.1.1 Euler Polygonal Method
	19.4.1.2 Runge-Kutta Methods
	19.4.1.3 Multi-Step Methods
	19.4.1.4 Predictor-Corrector Method
	19.4.1.5 Convergence, Consistency, Stability

	19.4.2 Boundary Value Problems
	19.4.2.1 Difference Method
	19.4.2.2 Approximation by Using Given Functions
	19.4.2.3 Shooting Method

	19.5 Approximate Integration of Partial Differential Equations
	19.5.1 Difference Method
	19.5.2 Approximation by Given Functions
	19.5.3 Finite Element Method (FEM)

	19.6 Approximation, Computation of Adjustment, Harmonic Analysis
	19.6.1 Polynomial Interpolation
	19.6.1.1 Newton’s Interpolation Formula
	19.6.1.2 Lagrange’s Interpolation Formula
	19.6.1.3 Aitken-Neville Interpolation

	19.6.2 Approximation in Mean
	19.6.2.1 Continuous Problems, Normal Equations
	19.6.2.2 Discrete Problems, Normal Equations, Householder’s Method
	19.6.2.3 Multidimensional Problems
	19.6.2.4 Non-Linear Least Squares Problems

	19.6.3 Chebyshev Approximation
	19.6.3.1 Problem Definition and the Alternating Point Theorem
	19.6.3.2 Properties of the Chebyshev Polynomials
	19.6.3.3 Remes Algorithm
	19.6.3.4 Discrete Chebyshev Approximation and Optimization

	19.6.4 Harmonic Analysis
	19.6.4.1 Formulas for Trigonometric Interpolation
	19.6.4.2 Fast Fourier Transformation (FFT)

	19.7 Representation of Curves and Surfaces with Splines
	19.7.1 Cubic Splines
	19.7.1.1 Interpolation Splines
	19.7.1.2 Smoothing Splines

	19.7.2 Bicubic Splines
	19.7.2.1 Use of Bicubic Splines
	19.7.2.2 Bicubic Interpolation Splines
	19.7.2.3 Bicubic Smoothing Splines

	19.7.3 Bernstein–B´ezier Representation of Curves and Surfaces
	19.7.3.1 Principle of the B–B Curve Representation
	19.7.3.2 B–B Surface Representation

	19.8 Using the Computer
	19.8.1 Internal Symbol Representation
	19.8.1.1 Number Systems
	19.8.1.2 Internal Number Representation INR

	19.8.2 Numerical Problems in Calculations with Computers
	19.8.2.1 Introduction, Error Types
	19.8.2.2 Normalized Decimal Numbers and Round-Off
	19.8.2.3 Accuracy in Numerical Calculations

	19.8.3 Libraries of Numerical Methods
	19.8.3.1 NAGLibrary
	19.8.3.2 IMSL Library
	19.8.3.3 Aachen Library

	19.8.4 Application of Interactive Program Systems and Computeralgebra Systems
	19.8.4.1 Matlab
	19.8.4.2 Mathematica
	19.8.4.3 Maple

