
18 Optimization

18.1 LinearProgramming

18.1.1 Formulation of theProblem andGeometrical
Representation

18.1.1.1 The Form of a Linear Programming Problem

1. The Subject
of linear programming is theminimization ormaximization of a linear objective function (OF) of finitely
many variables subject to a finite number of constraints (CT), which are given as linear equations or
inequalities.
Many practical problems can be directly formulated as a linear programming problem, or they can be
modeled approximately by a linear programming problem.

2. General Form
A linear programming problem has the following general form:

OF: f(x) = c1x1 + · · ·+ crxr + cr+1xr+1 + · · ·+ cnxn = max! (18.1a)

CT: a1,1x1 + · · ·+ a1,rxr + a1,r+1xr+1 + · · ·+ a1,nxn ≤ b1,
...

...
...

...
...

as,1x1 + · · ·+ as,rxr + as,r+1xr+1 + · · ·+ as,nxn ≤ bs,
as+1,1x1 + · · ·+ as+1,rxr + as+1,r+1xr+1 + · · ·+ as+1,nxn = bs+1,

...
...

...
...

...
am,1x1 + · · ·+ am,rxr + am,r+1xr+1 + · · ·+ am,nxn = bm,

x1 ≥ 0, . . . , xr ≥ 0; xr+1, . . . , xn free.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18.1b)

In a more compact vector notation this problem becomes:

OF : f(x) = c1
T
x1 + c2

T
x2 = max! (18.2a) CT : A11x

1 + A12x
2 ≤ b1,

A21x
1 + A22x

2 = b2,

x1 ≥ 0, x2 free.

⎫⎪⎪⎬⎪⎪⎭ (18.2b)

Here, the following notations are used:

c1 =

⎛⎜⎜⎜⎝
c1
c2
...
cr

⎞⎟⎟⎟⎠ , c2 =

⎛⎜⎜⎜⎝
cr+1

cr+2
...
cn

⎞⎟⎟⎟⎠ , x1 =

⎛⎜⎜⎜⎝
x1

x2
...
xr

⎞⎟⎟⎟⎠ , x2 =

⎛⎜⎜⎜⎝
xr+1

xr+2
...
xn

⎞⎟⎟⎟⎠ , (18.2c)

A11 =

⎛⎜⎜⎜⎝
a11 a12 · · · a1,r
a21 a22 · · · a2,r
...
as,1 as,2 · · · as,r

⎞⎟⎟⎟⎠ , A12 =

⎛⎜⎜⎜⎝
a1,r+1 a1,r+2 · · · a1,n
a2,r+1 a2,r+2 · · · a2,n
...
as,r+1 as,r+2 · · · as,n

⎞⎟⎟⎟⎠ , (18.2d)

A21 =

⎛⎜⎜⎜⎝
as+1,1 as+1,2 · · · as+1,r

as+2,1 as+2,2 · · · as+2,r
...
am,1 am,2 · · · am,r

⎞⎟⎟⎟⎠ , A22 =

⎛⎜⎜⎜⎝
as+1,r+1 as+1,r+2 · · · as+1,n

as+2,r+1 as+2,r+2 · · · as+2,n
...
am,r+1 am,r+2 · · · am,n

⎞⎟⎟⎟⎠ . (18.2e)

3. Constraints
with the inequality sign “ ≥ ” will have the above form if they are multiplied by (−1).

� Springer-Verlag Berlin Heidelberg 2015
I.N. Bronshtein et al., Handbook of Mathematics,
DOI 10.1007/978-3-662-46221-8_18

909

910 18. Optimization

4. Minimum Problem
A minimum problem f(x) = min! becomes an equivalent maximum problem by multiplying the ob-
jective function by (−1)

−f(x) = max! (18.3)

5. Integer Programming
Sometimes certain variables are restricted to be only integers. This discrete problem is not discussed
here.

6. Formulation with only Non-Negative Variables and Slack Variables
In applying certain solutionmethods, only non-negative variables are considered, and constraints (18.1b),
(18.2b) given in equality form.

Every free variable xk must be decomposed into the
difference of two non-negative variables xk = x1

k −
x2
k. The inequalities become equalities by adding

non-negative variables; they are called slack vari-
ables. That is, the problem is considered in the
form as given in (18.4a,b), where n is the increased
number of variables. In vector form:

OF : f(x) = c1x1 + · · ·+ cnxn = max! (18.4a)

CT : a1,1x1 + · · ·+ a1,nxn = b1,
...

...
...

am,1x1 + · · ·+ am,nxn = bm,

x1 ≥ 0, . . . , xn ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(18.4b)

OF: f(x) = cTx = max! (18.5a) CT: Ax = b , x ≥ 0 . (18.5b)

The relation m ≤ n can be supposed, otherwise the system of equations contains linearly dependent
or contradictory equations.

7. Feasible Set
The set of all vectors x satisfying constraints (18.2b) is called the feasible set of the original problem.
If the free variables are rewritten as above, and every inequality of the form “≤” into an equation as in
(18.4a) and (18.4b), then the set of all non-negative vectors x ≥ 0 satisfying the constraints is called
the feasible set M :

M = {x ∈ IRn : x ≥ 0, Ax = b}. (18.6a)

A point x∗ ∈ M with the property

f(x∗) ≥ f(x) for every x ∈ M (18.6b)

is called the maximum point or the solution point of the linear programming problem. Obviously, the
components of x not belonging to slack variables form the solution of the original problem.

18.1.1.2 Examples andGraphical Solutions
1. Example of the Production of Two Products
Suppose primary materials R1, R2, and R3 are needed to produce two products E1 and E2. Scheme
18.1 shows how many units of primary materials are needed to produce each unit of the products E1

and E2, and there are given also the available amount of the primary materials.
Selling one unit of the products E1 or E2 results
in 20 or 60 units of profit, respectively (PR).
Determine a production program which yields
maximum profit, if at least 10 units must be pro-
duced from product E1.
Denoting by x1 and x2 the number of units pro-
duced from E1 and E2, the problem is:

Scheme 18.1 R1 / Ei R2 /Ei R3 /Ei

E1 12 8 0

E2 6 12 10

Amount 630 620 350

OF: f(x) = 20x1 + 60x2 = max!

CT: 12x1 + 6x2 ≤ 630,
8x1 + 12x2 ≤ 620,

10x2 ≤ 350,

x1 ≥ 10.

18.1 Linear Programming 911

Introducing the slack variables x3, x4, x5, x6, one gets:

OF : f(x) = 20x1 + 60x2 + 0 · x3 + 0 · x4 + 0 · x5 + 0 · x6 = max!

CT : 12x1 + 6x2 + x3 = 630,
8x1 + 12x2 + x4 = 620,

10x2 + x5 = 350,

−x1 + x6 = −10.

2. Properties of a Linear Programming Problem
On the basis of this example, some properties of the linear pro-
gramming problem can be demonstrated by graphical representa-
tion. Here the slack variables are not considered; only the original
two variables are used.
a)A line a1x1+a2x2 = b divides the x1, x2 plane into two half-planes.
The points (x1, x2) satisfying the inequality a1x1+a2x2 ≤ b are in one
of these half-planes. The graphical representation of this set of points
in a Cartesian coordinate system can be made by a line, and the half-
plane containing the solutions of the inequalities is denoted by an ar-
row. The set of feasible solutions M , i.e., the set of points satisfying
all inequalities is the intersection of these half-planes (Fig. 18.1).

x2

0 10 40 x1

M

35

25

Figure 18.1
In this example the points of M form a polygonal domain. It may happen that M is unbounded or
empty. If more then two boundary lines go through a vertex of the polygon, this vertex is called a
degenerate vertex (Fig. 18.2).

M

P

x2

0

x2

0 x1 0 x1

x2

x1

Figure 18.2

b) Every point in the x1, x2 plane satisfying the equality f(x) = 20x1 + 60x2 = c0 is on one line, on
the level line associated to the value c0. With different choices of c0, a family of parallel lines is defined,
on each of which the value of the objective function is constant. Geometrically, those points are the
solutions of the programming problem, which belong to the feasible set M and also to the level line
20x1 + 60x2 = c0 with maximal value of c0. In this example, the solution point is (x1, x2) = (25, 35)
on the line 20x1 + 60x2 = 2600. The level lines are represented in Fig. 18.3, where the arrows point
in the direction of increasing values of the objective function.
Obviously, if the feasible set M is bounded, then there is at least one vertex such that the objective
function takes itsmaximum. If the feasible setM is unbounded, it is possible that the objective function
is unbounded, as well.

18.1.2 BasicNotions of LinearProgramming,Normal Form
Now, the problem (18.5a,b) is considered with the feasible set M .

18.1.2.1 Extreme Points and Basis

1. Definition of the Extreme Point
A point x ∈ M is called an extreme point or vertex of M , if for all x1,x2 ∈ M with x1 �= x2:

912 18. Optimization

x �= λx1 + (1− λ)x2, 0 < λ < 1, (18.7)

i.e., x is not on any line segment connecting two different points of M.

2. Theorem about Extreme Points
The point x ∈ M is an extreme point of M if the columns of matrix A associated to the positive
components of x are linearly independent.
If the rank of A is m, then the maximal number of independent columns in A is m. So, an extreme
point can have at most m positive components. The other components, at least n − m, are equal to
zero. In the usual case, there are exactlym positive components. If the number of positive components
is less then m, it is called a degenerate extreme point.

M

x1

x2

2510

25

35

c =00

c =24000

c =26000

0

Figure 18.3

x1

P =(4,2,0)4

x2

x3

P =(0,2,1)6
P =(2,2,2)5

P =(0,1,0)2

P =(0,2,0)7

P =(0,0,1)3

P =(1,0,0)1

Figure 18.4

3. Basis
To every extreme point m linearly independent column vectors of the matrix A can be assigned, the
columns belonging to the positive components. This system of linearly independent column vectors is
called the basis of the extreme point . Usually, exactly one basis belongs to every extreme point. However

several bases can be assigned to a degenerate extreme point. There are at most
(
n
m

)
possibilities to

choose m linearly independent vectors from n columns of A. Consequently, the number of different

bases, and therefore the number of different extreme points is
(
n
m

)
. IfM is not empty, thenM has at

least one extreme point.

OF: f(x) = 2x1 + 3x2 + 4x3 = max!

CT: x1 + x2 + x3 ≥ 1,
x2 ≤ 2,

−x1 + 2x3 ≤ 2,
2x1 − 3x2 + 2x3 ≤ 2.

(18.8)

The feasible set M determined by the constraints is represented in Fig. 18.4. Introduction of slack
variables x4, x5, x6, x7 leads to:

CT : x1 + x2 + x3 − x4 = 1,
x2 + x5 = 2,

−x1 + 2x3 + x6 = 2,
2x1 − 3x2 + 2x3 + x7 = 2.

The extreme point P2 = (0, 1, 0) of the polyhedron corresponds to the point x = (x1, x2, x3, x4, x5, x6,
x7) = (0, 1, 0, 0, 1, 2, 5) of the extended system. The columns 2, 5, 6 and 7 ofA form the corresponding
basis. The degenerated extreme point P1 corresponds to (1, 0, 0, 0, 2, 3, 0). A basis of this extreme point
contains the columns 1, 5, 6 and one of the columns 2, 4 or 7.

18.1 Linear Programming 913

Remark: Here, the first inequality was a “≥” inequality and x4 was not added but subtracted. Fre-
quently these types of additional variables both with a negative sign and a corresponding bi > 0 are
called surplus variables, rather than slack variables. As will be seen in 18.1.3.3, p. 916, the occurrence
of surplus variables requires additional effort in the solution procedure.

4. Extreme Point with aMaximal Value of the Objective Function
Theorem: If M is not empty, and the objective function f(x) = cTx is bounded from above on M ,
then there is at least one extreme point of M where it has its maximum.
A linear programming problem can be solved by determining at least one of the extreme points with
maximum value of the objective function. Usually, the number of extreme points of M is very large
in practical problems, so a method is needed by which the solution can be found in a reasonable time.
Such a method is the simplex method which is also called the simplex algorithm or simplex procedure.

18.1.2.2 Normal Form of the Linear Programming Problem

1. Normal Form and Basic Solution
The linear programming problem (18.4a,b) can always be transformed to the following form with a
suitable renumbering of the variables:

OF: f(x) = c1x1 + · · ·+ cn−mxn−m + c0 = max! (18.9a)

CT: a1,1x1 + · · ·+ a1,n−mxn−m + xn−m+1 = b1 ,
...

...
. . .

...
am,1x1 + · · ·+ am,n−mxn−m + xn = bm ,

x1, . . . , xn−m, xn−m+1, . . . , xn ≥ 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(18.9b)

The last m columns of the coefficient matrix are obviously independent, and they form a basis. The
basic solution (x1, x2, . . . , xn−m, xn−m+1, . . . , xn) = (0, . . . , 0, b1, . . . , bm) can be determined directly
from the system of equations, but if b ≥ 0 does not hold, it is not a feasible solution.

If b ≥ 0, then (18.9a,b) is called a normal form or canonical form of the linear programming problem.
In this case, the basic solution is a feasible solution, as well, i.e., x ≥ 0, and it is an extreme point ofM .
The variables x1, . . . , xn−m are called non-basic variables and xn−m+1, . . . , xn are called basic variables.
The objective function has the value c0 at this extreme point, since the non-basic variables are equal
to zero.

2. Determination of the Normal Form
If an extreme point of M is known, then a normal form of the linear programming problem (18.5a,b)
can be obtained in the following way. A basis is chosen from the columns of A corresponding to the
extreme point. Usually, these columns are determined by the positive components of the extreme point.
Suppose the basic variables are collected into the vector xB and the non-basic variables are in xN . The
columns associated to the basis form the basis matrix AB, the other columns form the matrix AN .
Then,

Ax = ANxN +ABxB = b. (18.10)

The matrix AB is non-singular and it has an inverse A−1
B , the so-called basis inverse. Multiplying

(18.10) byA−1
B and changing the objective function according to the non-basic variables results in the

canonical form of the linear programming problem:

OF : f(x) = cTNxN + c0, (18.11a)

CT : A−1
B ANxN + xB = A−1

B b with xN ≥ 0, xB ≥ 0. (18.11b)

Remark: If the original system (18.1b) has only constraints of type “≤” and simultaneously b ≥ 0,
then the extended system (18.4b) contains no surplus variables (see 18.1.2.1, p. 911). In this case a
normal form is immediately known. Selecting all slack variables as basic variables xB the result is
AB = I and xB = b and xN = 0 is a feasible extreme point.

914 18. Optimization

In the above example x = (0, 1, 0, 0, 1, 2, 5) is an extreme point. Consequently:

AB =

⎛⎜⎜⎝
1 0 0 0
1 1 0 0
0 0 1 0

−3 0 0 1

⎞⎟⎟⎠ ,

x2 x5 x6 x7

A−1
B =

⎛⎜⎜⎝
1 0 0 0

−1 1 0 0
0 0 1 0
3 0 0 1

⎞⎟⎟⎠ , AN =

⎛⎜⎜⎝
1 1 −1
0 0 0

−1 2 0
2 2 0

⎞⎟⎟⎠ ,

x1 x3 x4

(18.12a)

A−1
B AN =

⎛⎜⎜⎝
1 1 −1

−1 −1 1
−1 2 0
5 5 −3

⎞⎟⎟⎠
x1 x3 x4

, A−1
B b =

⎛⎜⎜⎝
1
1
2
5

⎞⎟⎟⎠ . (18.12b)

x1 + x2 + x3 − x4 = 1,
−x1 − x3 + x4 + x5 = 1,
−x1 + 2x3 + x6 = 2,
5x1 + 5x3 − 3x4 + x7 = 5.

⎫⎪⎪⎬⎪⎪⎭ (18.13)

From f(x) = 2x1 + 3x2 + 4x3 the transformed objective function

f(x) = −x1 + x3 + 3x4 + 3 (18.14)

is obtained, if the triple of the first constraint is subtracted.

18.1.3 SimplexMethod

18.1.3.1 Simplex Tableau
The simplex method is used to produce a sequence of extreme points of the feasible set with increasing
values of the objective function. The transition to the new extreme point is performed starting from the
normal form corresponding to the given extreme point, and arriving at the normal form corresponding
to the new extreme point. In order to get a clear arrangement, and easier numerical performance, the
normal form (18.9a,b) is represented in the simplex tableau (Scheme 18.2a, 18.2b):

Scheme 18.2a

x1 · · · xn−m

xn−m+1 a1,1 · · · a1,n−m b1
...

...
...

...
xn am,1 · · · am,n−m bm

c1 · · · cn−m −c0

or briefly

Scheme 18.2b

xN

xB AN b

c −c0

The k-th row of the tableau corresponds to the constraint

xn−m+k + ak,1x1 + · · ·+ ak,n−mxn−m = bk. (18.15a)

The objective function is

c1x1 + · · ·+ cn−mxn−m = f(x)− c0. (18.15b)

From this simplex tableau, the extreme point (xN ,xB) = (0,b) can be found. The value of the objective
function at this point is f(x) = c0. To put down −c0 into the right below vertex of the tableau is
advantageous for carrying out the simplex method. In every tableau always exactly one of the following
three cases can be found:
a) cj ≤ 0, j = 1, . . . , n−m: The tableau is optimal. The point (xN ,xB) = (0,b) is a maximal point.
If all the cj are positive, then this vertex is the only maximal point.

b) There exists at least one j such that cj > 0 and aij ≤ 0, i = 1, . . . ,m: The linear programming
problem has no solution, since the objective function is not bounded on the feasible set; for increasing

18.1 Linear Programming 915

values of xj it increases without a bound.

c) For every j with cj > 0 there exists at least one i with aij > 0: It is possible to move from the
extreme point x to a neighboring extreme point x̃ with f(x̃) ≥ f(x). In the case of a non-degenerate
extreme point x, the “>” sign always holds.

18.1.3.2 Transition to the New Simplex Tableau

1. Non-Degenerate Case
If a tableau is not in final form (case c)), then a new tableau (Scheme 18.3) is determined. A basic
variable xp and a non-basic variable xq are interchanged by the following calculations:

a) ãpq =
1

apq
. (18.16a)

b) ãpj = apj · ãpq, j �= q, b̃p = bp · ãpq. (18.16b)

c) ãiq = −aiq · ãpq, i �= p, c̃q = −cq · ãpq. (18.16c)

d) ãij = aij + apj · ãiq, i �= p, j �= q,

b̃i = bi + bp · ãiq, i �= p, c̃j = cj + apj · c̃q, j �= q,−c̃0 = −c0 + bp · c̃q. (18.16d)

The element apq is called the pivot element , the p-th row is the pivot row, and the q-th column is the
pivot column . For the choice of a pivot element the following two requirements are to be considered:
a) c̃0 ≥ c0 should hold;

b) the new tableau must also correspond to a feasible solution, i.e., b̃ ≥ 0 must hold.

Then, (x̃N , x̃B) = (0, b̃) is a new extreme point at which the value of the objective function f(x̃) = c̃0
is not smaller than it was previously. These conditions are satisfied if the pivot element is chosen in the
following way:

a) To increase the value of the objective function, a column with cq > 0 can be chosen for a pivot
column;

b) to get a feasible solution, the pivot row must be chosen as

bp
apq

= min
1≤i≤m

aiq>0

{
bi
aiq

}
. (18.17)

If the extreme points of the feasible set are not degenerate, then the simplex method terminates in a
finite number of steps (case a) or case b)).

The normal form in 18.1.2, p. 911ff can be written in a simplex tableau (Scheme 18.4a). This
tableau is not optimal, since the objective function has a positive coefficient in the third column. The
third column is assigned as the pivot column (the second column could also be taken under considera-
tion). The quotients bi/aiq are calculated with every positive element of the pivot column (there is only
one of them). The quotients are denoted behind the last column. The smallest quotient determines the
pivot row.

Scheme 18.3

x̃N

x̃B ÃN b̃

c̃ −c̃0

Scheme 18.4a

x1 x3 x4

x2 1 1 −1 1

x5 −1 −1 1 1 1 : 1

x6 −1 2 0 2

x7 5 5 −3 5

− 1 1 3 −3

Scheme 18.4b

x1 x3 x5

x2 0 0 1 2

x4 −1 −1 1 1

x6 −1 2 0 2 2 : 2

x7 2 2 3 8 8 : 2

2 4 −3 −6

If it is not unique, then the extreme point corresponding to the new tableau is degenerate. After per-

916 18. Optimization

forming the steps of (18.16a)–(18.16d) the tableau in Scheme 18.4b is obtained. This tableau deter-
mines the extreme point (0, 2, 0, 1, 0, 2, 8), which corresponds to the point P7 in Fig. 18.4. Since this
new tableau is still not optimal, x6 and x3 are interchanged (Scheme 18.4c). The extreme point of the
third tableau corresponds to the point P6 in Fig. 18.4. After an additional change an optimal tableau
is obtained (Scheme 18.4d) with the maximal point x∗ = (2, 2, 2, 5, 0, 0, 0), which corresponds to the
point P5, and the objective function has a maximal value here: f(x∗) = 18.

Scheme 18.4c

x1 x6 x5

x2 0 0 1 2

x4 −3

2

1

2
1 2

x3 −1

2

1

2
0 1

x7 3 −1 3 6 6 : 3

4 −2 −3 −10

Scheme 18.4d

x7 x6 x5

x2 0 0 1 2

x4
1

2
0

5

2
5

x3
1

6

1

3

1

2
2

x1
1

3
−1

3
1 2

− 4

3
−2

3
−7 −18

Scheme 18.5

x1 · · · xn

y1 a1,1 · · · a1,n b1
...

...
...

...
ym am,1 · · · am,n bm

OF c1 · · · cn 0

OF∗ m∑
j=1

aj,1 · · ·
m∑
j=1

aj,n
m∑
j=1

bj = −g(0,b)

2. Degenerate Case
If the next pivot element cannot be chosen uniquely in a simplex tableau, then the new tableau rep-
resents a degenerate extreme point. A degenerate extreme point can be interpreted geometrically as
the coincident vertices of the convex polyhedron of the feasible solutions. There are several bases for
such a vertex. In this case, it can therefore happen that some steps are performed without reaching a
new extreme point. It is also possible that one gets a tableau that has occurred already before, so an
infinite cycle may occur.

In the case of a degenerate extreme point, one possibility is to perturb the constants bi by adding εi

(with a suitable εi > 0) such that the resulting extreme points are no longer degenerate. The solution
can be got from the solution of the perturbed problem, if ε = 0 is substituted.

If the pivot column is chosen “randomly” in the non-uniquely determined case, then the occurrence of
an infinite cycle is unlikely in practical cases.

18.1.3.3 Determination of an Initial Simplex Tableau

1. Secondary Program, Artificial Variables
If there are equalities among the original constraints (18.1b) or inequalities with negative bi, then it is
not easy to find a feasible solution to start the simplex method. In this case, one starts with a secondary
program to produce a feasible solution, which can be a starting point for a simplex procedure for the
original problem. The system Ax = b is modified by multiplying some of the equations with (−1) in
order to satisfy the condition b ≥ 0. Now, an artificial variable yk ≥ 0 (k = 1, 2, . . . ,m) is added to
every left-hand side of Ax = b with b ≥ 0, and the secondary program is considered:

OF∗: g(x,y) = −y1 − · · · − ym = max! (18.18a)

CT∗:

a1,1x1 + · · ·+ a1,nxn + y1 = b1,
...

...
. . .

...
am,1x1 + · · ·+ am,nxn + ym = bm,

x1, . . . , xn ≥ 0; y1, . . . , ym ≥ 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(18.18b)

18.1 Linear Programming 917

For this problem, the variables y1, . . . , ym are basic variables, and one can start the first simplex tableau
(Scheme 18.5). The last row of the tableau contains the sums of the coefficients of the non-basic
variables , and these sums are the coefficients of the new secondary objective functionOF∗. Obviously,
g(x,y) ≤ 0 always. If g(x∗,y∗) = 0 for a maximal point (x∗,y∗) of the secondary problem, then

obviously y∗ = 0, and consequently x∗ is a solution ofAx = b. If g(x∗,y∗) < 0, thenAx = b does not
have any solution.

2. Solution of the Secondary Program
Our goal is to eliminate the artificial variables from the basis. A scheme is prepared not only for the
secondary program separately. The original tableau is completed by columns of the artificial variables
and the row of the secondary objective function. The secondary objective function now contains the
sums of the corresponding coefficients from the rows corresponding to the equalities, as shown below.
If an artificial variable becomes a non-basic variable, its column can be omitted, since it will be never
chosen again as a basis variable. If a maximal point (x∗,y∗) is determined, then two cases are distin-
guished:
1. g(x∗,y∗) < 0: The system Ax = b has no solution, the linear programming problem does not have
any feasible solution.

2. g(x∗,y∗) = 0: If there are no artificial variables among the basic variables, this tableau is an ini-
tial tableau for the original problem. Otherwise all artificial variables among the basic variables are
removed by additional steps of the simplex method.

By introducing the artificial variables, the size of the problem can be increased considerably. It is not
necessary to introduce artificial variables for every equation. If the system of constraints before in-
troducing the slack and surplus variables (see Remark in 18.1.2, 3., p. 913) has the form A1x ≥ b1,
A2x = b2, A3x ≤ b3 with b1,b2,b3 ≥ 0, then artificial variables must be introduced only for the first
two systems. For the third system the slack variables can be chosen as basic variables.

In the example of 18.1.2, p. 912, only the first equation requires an artificial variable:

OF∗: g(x,y) = − y1 = max!

CT∗: x1 + x2 + x3 − x4 + y1 = 1,
x2 + x5 = 2,

−x1 + 2x3 + x6 = 2,
2x1 − 3x2 + 2x3 + x7 = 2.

The tableau (Scheme 18.6b) is optimal with g(x∗,y∗) = 0. After omitting the second column the
first tableau of the original problem is obtained.

Scheme 18.6a

x1 x2 x3 x4

y1 1 1 1 −1 1 1 : 1

x5 0 1 0 0 2 2 : 1

x6 −1 0 2 0 2

x7 2 −3 2 0 2

OF 2 3 4 0 0

OF∗ 1 1 1 −1 1

Scheme 18.6b

x1 y1 x3 x4 1

x2 1 1 1 −1 1

x5 −1 −1 −1 1 1

x6 −1 0 2 0 2

x7 5 3 5 −3 5

OF − 1 −3 1 3 −3

OF∗ 0 −1 0 0 0

18.1.3.4 Revised SimplexMethod

1. Revised Simplex Tableau
Suppose the linear programming problem is given in normal form:

OF: f(x) = c1x1 + · · ·+ cn−mxn−m + c0 = max! (18.19a)

918 18. Optimization

CT: α1,1x1 + · · ·+ α1,n−mxn−m + xn−m+1 = β1,
...

...
. . .

...
αm,1x1 + · · ·+ αm,n−mxn−m + xn = βm,

x1 ≥ 0, . . . , xn ≥ 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(18.19b)

Obviously, the coefficient vectors αn−m+i (i = 1, . . . , n) are the i-th unit vectors.
In order to change into another normal form and therefore to reach another extreme point, it is suffi-
cient to multiply the system of equations (18.19b) by the corresponding basis inverse. (Recall the fact
that if AB denotes a new basis, then the coordinates of a vector x can be expressed in this new basis
as A−1

B x. If the inverse of the new basis is known, then any column as well as the objective function
from the very first tableau can be got by simple multiplication.) The simplex method can be modified
so that only the basis inverse is determined in every step instead of a new tableau. From every tableau
only those elements are calculated which are
required to find the new pivot element. If
the number of variables is considerably larger
than the number of constraints (n > 3m),
then the revised simplex method requires
considerably less computing cost and there-
fore has better accuracy.
The general form of a revised simplex tableau
is shown in Scheme 18.7.

Scheme 18.7

x1 · · · xn−m xn−m+1 · · · xn xq

xB1 a1,n−m+1 · · · a1,n b1 r1
...

...
...

...
...

xBm am,n−m+1 · · · am,n bm rm

c1 · · · cn−m cn−m+1 · · · cn −c0 cq

The quantities of the scheme have the following meaning:

xB1 , . . . , x
B
m : Actual basic variables (in the first step the same as xn−m+1 · · · xn).

c1, . . . , cn : Coefficients of the objective function (the coefficients associated to the basic variables
are zeros).

b1, . . . , bm : Right-hand side of the actual normal form.
c0 : Value of the objective function at the extreme point (xB1 , . . . , x

B
m) = (b1, . . . , bm).

A∗ =

⎛⎜⎝ a1,n−m+1 · · · a1,n
...

...
am,n−m+1 · · · am,n

⎞⎟⎠: Actual basis inverse, where the columns of A∗ are the columns of
xn−m+1, . . . , xn corresponding to the actual normal form;

r = (r1, . . . , rm)
T: Actual pivot column.

2. Revised Simplex Step

a) The tableau is not optimal when at least one of the coefficients cj (j = 1, 2, . . . , n) is positiv. A
pivot column q is chosen for a cq > 0.
b) One calculates the pivot column r by multiplying the q-th column of the original coefficient matrix
(18.19b) by A∗ and introduces the new vector as the last vector of the tableau.
The pivot row k is determined in the same way as in the simplex algorithm (18.17).
c) The new tableau is calculated by the pivoting step (18.16a–d), where aiq is formally replaced by ri
and the indices are restricted for n − m + 1 ≤ j ≤ n. The column r̃ is omitted. xq becomes a basic

variable. For j = 1, . . . , n −m, the results are c̃j = cj + αT
j c̃, where c̃ = (c̃n−m+1, . . . , c̃n)

T, and αj is

the j-th column of the coefficient matrix of (18.19b).

Consider the normal form of the example in 18.1.2, p. 912. One wants to bring x4 into the basis.
The corresponding pivot column r = α4 is placed into the last column of the tableau (Scheme 18.8a)
(initially A∗ is the unit matrix).

For j = 1, 3, 4 one gets c̃j = cj − 3α2j: (c1, c3, c4) = (2, 4, 0).
The determined extreme point x = (0, 2, 0, 1, 0, 2, 8) corresponds to the point P7 in Fig. 18.4, p. 912.
The next pivot column can be chosen for j = 3 = q.

18.1 Linear Programming 919

Scheme 18.8a

x1 x3 x4 x2 x5 x6 x7 x4

x2 1 0 0 0 1 −1

x5 0 1 0 0 1 1 1 : 1

x6 0 0 1 0 2 0

x7 0 0 0 1 5 −3

− 1 1 3 0 0 0 0 −3 3

Scheme 18.8b

x1 x3 x4 x2 x5 x6 x7 x3

x2 1 1 0 0 2 0

x4 0 1 0 0 1 −1

x6 0 0 1 0 2 2 2 : 2

x7 0 3 0 1 8 2 8 : 2

2 4 −3 0 −3 0 0 −6 4

The vector r is determined by

r = (r1, . . . , rm) = A∗α3 =

⎛⎜⎜⎝
1 1 0 0
0 1 0 0
0 0 1 0
0 3 0 1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
1

−1
2
5

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0

−1
2
2

⎞⎟⎟⎠
and it is placed into the very last column of the second tableau (Scheme 18.8b). One proceedes
as above analogously to the method shown in 18.1.3.2, p. 915. If one wants to return to the original
method, then the matrix of the original columns of the non-basic variables must be multiplied by A∗

and only these columns will be kept.

18.1.3.5 Duality in Linear Programming

1. Correspondence

To any linear programming problem (primal problem) an other unique linear programming problem
can be assigned (dual problem):

Primal problem Dual problem

OF: f(x) = cT1 x1 + cT2 x2 = max! (18.20a) OF∗: g(u) = bT
1 u1 + bT

2 u2 = min! (18.21a)

CT: A1,1x1 + A1,2x2 ≤ b1,

A2,1x1 + A2,2x2 = b2,

x1 ≥ 0, x2 free. (18.20b)

CT∗: AT
1,1u1 + AT

2,1u2 ≥ c1,

AT
1,2u1 + AT

2,2u2 = c2,

u1 ≥ 0, u2 free. (18.21b)

The coefficients of the objective function of one of the problems form the right-hand side vector of the
constraints of the other problem. Every free variable corresponds to an equation, and every variable
with restricted sign corresponds to an inequality of the other problem.

2. Duality Theorems

a) If both problems have feasible solutions, i.e.,M �= ∅,M∗ �= ∅ (whereM andM∗ denote the feasible
sets of the primal and dual problems respectively), then

f(x) ≤ g(u) for all x ∈ M, u ∈ M∗, (18.22a)

and both problems have optimal solutions.

b) The points x ∈ M and u ∈ M∗ are optimal solutions for the corresponding problem, if and only if

f(x) = g(u). (18.22b)

c) If f(x) has no upper bound on M or g(u) has no lower bound on M∗, then M∗ = ∅ or M = ∅, i.e.,
the dual problem has no feasible solution.

d) The points x ∈ M and u ∈ M∗ are optimal points of the corresponding problems if and only if:

uT
1 (A1,1x1 +A1,2x2 − b1) = 0 and xT

1 (A
T
1,1u1 +AT

2,1u2 − c1) = 0. (18.22c)

920 18. Optimization

Using these last equations, a solution x of the primal problem can be found from a non-degenerate
optimal solution u of the dual problem by solving the following linear system of equations:

A2,1x1 +A2,2x2 − b2 = 0, (18.23a)

(A1,1x1 +A1,2x2 − b1)i = 0 for ui > 0, (18.23b)

xi = 0 for (AT
1,1u1 +AT

2,1u2 − c1)i �= 0. (18.23c)

The dual problem also can be solved by the simplex method.

3. Application of the Dual Problem
Working with the dual problem may have some advantages in the following cases:
a) If it is simple to find a normal form for the dual problem, one switches from the primal problem to
the dual.
b) If the primal problem has a large number of constraints compared to the number of variables, then
the revised simplex method can be used for the dual problem.

Consider the original problem of the example of 18.1.2, p. 912.

Primal problem Dual problem

OF: f(x) = 2x1 + 3x2 + 4x3 = max! OF∗: g(u) = −u1 + 2u2 + 2u3 + 2u4 = min!

CT: −x1 − x2 − x3 ≤ −1,
x2 ≤ 2,

−x1 + 2x3 ≤ 2,
2x1 − 3x2 + 2x3 ≤ 2,

x1, x2, x3 ≥ 0.

CT∗: −u1 − u3 + 2u4 ≥ 2,
−u1 + u2 − 3u4 ≥ 3,
−u1 + 2u3 + 2u4 ≥ 4,

u1, u2, u3, u4 ≥ 0.

If the dual problem is solved by the simplex method after introducing the slack variables, then the
optimal solution u∗ = (u1, u2, u3, u4) = (0, 7, 2/3, 4/3) with g(u) = 18 is got. A solution x∗ of the
primal problem can be got by solving the system (Ax−b)i = 0 for ui > 0, i.e., x2 = 2, −x1+2x3 = 2,
2x1 − 3x2 + 2x3 = 2, therefore: x∗ = (2, 2, 2) with f(x) = 18.

18.1.4 Special LinearProgrammingProblems

18.1.4.1 Transportation Problem

1. Modeling
A certain product, produced bym producers E1, E2, . . . , Em in quantities a1, a2, . . . , am, is to be trans-
ported to n consumers V1, V2, . . . , Vn with demands b1, b2, . . . , bn. Transportation cost of a unit product
of producer Ei to consumer Vj is cij. The amount of the product transported from Ei to Vj is xij units.
An optimal transportation plan is to be determined with minimum total transportation cost. The
system is supposed to be balanced, i.e., supply equals demand:

m∑
i=1

ai =
n∑

j=1

bj. (18.24)

The matrix of costs C and the distribution matrix X are constructed:

C =

E :⎛⎜⎝ c1,1 · · · c1,n
...

...
cm,1 · · · cm,n

⎞⎟⎠ E1
...

Em

,

V : V1 · · · Vn

(18.25a) X =

∑
:⎛⎜⎝ x1,1 · · · x1,n

...
...

xm,1 · · · xm,n

⎞⎟⎠ a1
...
am

.

∑
: b1 · · · bn

(18.25b)

If condition (18.24) is not fulfilled, then two cases are distinguished:
a) If

∑
ai >

∑
bj, then a fictitious consumer Vn+1 is introduced with demand bn+1 =

∑
ai −

∑
bj and

with transportation costs ci,n+1 = 0.
b) If

∑
ai <

∑
bj, then introduce a fictitious producer Em+1 is introduced with capacity am+1 =

18.1 Linear Programming 921

∑
bj −

∑
ai and with transportation costs cm+1,j = 0.

In order to determine an optimal program, the following programming problem should be solved:

OF : f(X) =
m∑
i=1

n∑
j=1

cijxij = min! (18.26a)

CT :
n∑

j=1

xij = ai (i = 1, . . . ,m),
m∑
i=1

xij = bj (j = 1, . . . , n), xij ≥ 0). (18.26b)

The minimum of the problem occurs at a vertex of the feasible set. There are m + n − 1 linearly
independent constraints among the m + n original constraints, so, in the non-degenerate case, the
solution contains m + n − 1 positive components xij. To determine an optimal solution the following
algorithm is used, which is called the transportation algorithm.

2. Determination of a Basic Feasible Solution
With the Northwest corner rule an initial basic feasible solution can be determined:

a) Choose x11 = min(a1, b1). (18.27a)

b) If a1 < b1, the first row of X is omitted. (18.27b)

If a1 > b1, the first column of X is omitted. (18.27c)

If a1 = b1, either the first row or the first remaining column of X is omitted. (18.27d)

If there are only one row but several columns, then one column is cancelled. The same applies for the
rows.

c) a1 is replaced by a1 − x11 and b1 by b1 − x11 and the procedure in repeated in the left upper vertex
of the reduced distribution matrix X.

The variables obtained in step a) are the basic variables, all the others are non-basic variables with zero
values.

C =

E :⎛⎝ 5 3 2 7
8 2 1 1
9 2 6 3

⎞⎠ E1

E2

E3

,

V : V1 V2 V3 V4

X =

∑
:⎛⎝ x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

⎞⎠ a1 = 9
a2 = 10
a3 = 3

.∑
: b1 = 4 b2 = 6 b3 = 5 b4 = 7

The determination of an initial extreme point with the Northwest corner rule gives

first step second step further steps

X =

⎛⎝ 4∣∣∣∣
⎞⎠ /9 5

10
3

,

/4 6 5 7
0

X =

⎛⎝ 4 5∣∣∣∣
⎞⎠ /5 0

10
3

,

0 /6 5 7
/1

X =

⎛⎝ 4 5∣∣∣∣ 1 5 4
| | 3

⎞⎠ 0
10/ /9 /4 0
3

.

0 /5 /7
/1 0 3
0

There are alternative methods to find an initial basic solution which also takes the transportation costs
into consideration (see, e.g., the Vogel approximation method in [18.13]) and they usually result in a
better initial solution.

3. Solution of the Transportation Problem with the SimplexMethod
If the usual simplex tableau is prepared for this problem, then it results in a huge tableau ((m+n)×(m·
n)) with a large number of zeros: In each column, only two elements are equal to 1. So, a reduced tableau
is constructed, and the following steps correspond to the simplex steps working only with the non-zero
elements of the theoretical simplex tableau. The matrix of the cost data contains the coefficients of

922 18. Optimization

the objective function. The basic variables are exchanged for non-basic variables iteratively, while the
corresponding elements of the cost matrix are modified in each step. The procedure is explained by an
example.

a) Determination of the modified cost matrix C̃ from C by

c̃ij = cij + pi + qj (i = 1, . . . ,m, j = 1, . . . , n), (18.28a)

with the conditions

c̃ij = 0 for (i, j) if xij is an actual basic variable. (18.28b)

The elements of C belonging to basic variables are marked and p1 = 0 is substituted. The other
quantities pi and qj, also called potentials or simplex multiplicators, are determined so that the sum of
pi, qj and the marked costs cij should be 0:

C =

⎛⎜⎜⎝
(5) (3) 2 7

8 (2) (1) (1)

9 2 6 (3)

⎞⎟⎟⎠
p1 = 0

p2 = 1

p3 = −1
q1 = −5 q2 = −3 q3 = −2 q4 = −2

=⇒ C̃ =

⎛⎜⎝ 0 0 0 5
4 0 0 0

3 -2 3 0

⎞⎟⎠ . (18.28c)

b) The value

c̃pq = min
i,j

{c̃ij} (18.28d)

must be determined. If c̃pq ≥ 0, then the given distribution X is optimal; otherwise xpq is chosen as a
new basic variable. In our example: c̃pq = c̃32 = −2.

c) In C̃, c̃pq and the costs associated to the basic variables are marked. If C̃ contains rows or columns
with at most one marked element, then these rows or columns will be omitted. This procedure is
repeated with the remaining matrix, until no further cancellation is possible.

C̃ =

⎛⎜⎝ (0) (0) 0 5

4 (0) (0) (0)

3 (−2) 3 (0)

⎞⎟⎠ . (18.28e)

d) The elements xij associated to the remaining marked elements c̃ij form a cycle. The new basic
variable x̃pq is to be set to a positive value δ. The other variables x̃ij associated to the marked elements
c̃ij are determined by the constraints. In practice, δ is subtracted and added from or to every second
element of the cycle. To keep the variables non-negative, the amount δ must be chosen as

δ = xrs = min{xij : x̃ij = xij − δ}, (18.28f)

where xrs will be the non-basic variable. In the example δ = min{1, 3} = 1.

X̃ =

∑⎛⎜⎜⎜⎜⎜⎝
4 5

←−
1− δ 5 4 + δ
↓ ↑
δ −→ 3− δ

⎞⎟⎟⎟⎟⎟⎠
9

10

3∑
4 6 5 7

=⇒ X̃ =

⎛⎝ 4 5
5 5

1 2

⎞⎠ , f(x) = 53. (18.28g)

Then, this procedure is repeated with X = X̃.

C =

⎛⎜⎜⎝
(5) (3) 2 7

8 2 (1) (1)

9 (2) 6 (3)

⎞⎟⎟⎠
p1 = 0

p2 = 3

p3 = 1
q1 = −5 q2 = −3 q3 = −4 q4 = −4

=⇒ C̃ =

⎛⎜⎜⎝
(0) (0) (−2) 3

6 2 (0) (0)

5 (0) 3 (0)

⎞⎟⎟⎠ , (18.28h)

18.1 Linear Programming 923

X̃ =

⎛⎜⎜⎜⎜⎜⎝
4 5− δ ← δ

↑
↓ 5− δ ← 5 + δ

↑
1 + δ −→ 2− δ

⎞⎟⎟⎟⎟⎟⎠
δ = 2
=⇒ X̃ =

⎛⎝ 4 3 2
3 7

3

⎞⎠ , f(X) = 49. (18.28i)

The next matrix C̃ does not contain any negative element. So, X̃ is an optimal solution.

18.1.4.2 Assignment Problem
The representation is made by an example.

n shipping contracts should be given to n shipping companies so that each company receives exactly
one contract. The assignment has to be determined whichminimizes the total costs, if the i-th company
charges cij for the j-th contract.
An assignment problem is a special transportation problem with m = n and ai = bj = 1 for all i, j:

OF : f(x) =
n∑
i=1

n∑
j=1

cijxij = min! (18.29a)

CT :
n∑

j=1

xij = 1 (i = 1, . . . , n),
n∑
i=1

xij = 1 (j = 1, . . . , n), xij ∈ {0, 1}. (18.29b)

Every feasible distribution matrix contains exactly one 1 in every row and every column, all other
elements are equal to zero. In a general transportation problem of this dimension, however, a non-
degenerate basic solution would have 2n − 1 positive variables. Thus, basic feasible solutions to the
assignment problem are highly degenerate, with n − 1 basic variables equal to zero. Starting with
a feasible distribution matrix X, the assignment problem can be solved by the general transportation
algorithm. It is time consuming to do so. However, because of the highly degenerate nature of the basic
feasible solutions, the assignment problem can be solved with the highly efficient Hungarian method
(see [18.9]).

18.1.4.3 Distribution Problem
The problem is represented by an example.

m products E1, E2, . . . , Em should be produced in quantities a1, a2, . . . , am. Every product can be
produced on any of n machines M1,M2, . . . ,Mn. The production of a unit of product Ei on machine
Mj needs processing time bij and cost cij. The time capacity of machineMj is bj. Denote the quantity
produced by machine Mj from product Ei by xij. The total production costs should be minimized.
This distribution problem has the following general model:

OF : f(x) =
m∑
i=1

n∑
j=1

cijxij = min! (18.30a)

CT :
m∑
j=1

xij = ai (i = 1, . . . ,m),
n∑
i=1

bijxij ≤ bj (j = 1, . . . , n), xij ≥ 0 for all i, j. (18.30b)

The distribution problem is a generalization of the transportation problem and it can be solved by
the simplex method. If all bij = 1, then the more effective transportation algorithm can be used (see
18.1.4.1, p. 921) after introducing a fictitious product Em+1 (see 18.1.4.1, p. 920).

18.1.4.4 Travelling Salesman
Suppose there are n places O1, O2, . . . , On. The travelling time from Oi to Oj is cij. Here, cij �= cji is
possible.
One wants to determine the shortest route such that the traveller passes through every place exactly
once, and returns to the starting point.
Similarly to the assignment problem, exactly one element is chosen in every row and column of the time

924 18. Optimization

matrixC so that the sum of the chosen elements is minimal. The difficulty of the numerical solution of
this problem is the restriction that the marked elements cij should be arranged in order of the following
form:

ci1,i2 , ci2,i3 , . . . , cin,in+1 with ik �= il for k �= l and in+1 = i1. (18.31)

The travelling salesman problem can be solved by the branch and bound methods.

18.1.4.5 Scheduling Problem
n different products are processed onm different machines in a product-dependent order. At any time
only one product can be processed on a machine. The processing time of each product on each machine
is assumed to be known. Waiting times, when a given product is not in process, and machine idle times
are also possible.
An optimal scheduling of the processing jobs is determined where the objective function is selected
as the time when all jobs are finished, or the total waiting time of jobs, or total machine idle time.
Sometimes the sum of the finishing times for all jobs is chosen as the objective function when no waiting
time or idle time is allowed.

18.2 Non-linearOptimization

18.2.1 Formulation of theProblem,Theoretical Basis
18.2.1.1 Formulation of the Problem

1. Non-linear Optimization Problem
A non-linear optimization problem has the general form

f(x) = min! subject to x ∈ IRn with (18.32a)

gi(x) ≤ 0, i ∈ I = {1, . . . ,m}, hj(x) = 0, j ∈ J = {1, . . . , r} (18.32b)

where at least one of the functions f , gi, hj is non-linear. The set of feasible solutions is denoted by

M = {x ∈ IRn : gi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J}. (18.33)

The problem is to determine the minimum points.

2. Minimum Points
A point x∗ ∈ M is called the global minimum point if f(x∗) ≤ f(x) holds for every x ∈ M . If this
relation holds for only the points x of a neighborhood U of x∗, then x∗ is called a local minimum point.
Since the equality constraints hj(x) = 0 can be expressed by two inequalities,

−hj(x) ≤ 0, hj(x) ≤ 0, (18.34)

it can be supposed that the set J is empty, J = ∅.
18.2.1.2 Optimality Conditions

1. Special Directions
a) The Cone of the Feasible Directions at x ∈ M is defined by

Z(x) = {d ∈ IRn : ∃ᾱ > 0 : x+ αd ∈ M, 0 ≤ α ≤ ᾱ}, x ∈ M, (18.35)

where the directions are denoted by d. If d ∈ Z(x), then every point of the ray x + αd belongs to M
for sufficient small values of α.

b) A Descent Direction at a point x is a vector d ∈ IRn for which there exists an ᾱ > 0 such that

f(x+ αd) < f(x) ∀α ∈ (0, ᾱ). (18.36)

There exists no feasible descent direction at a minimum point.
If f is differentiable, then d is a descent direction when ∇f(x)Td < 0. Here, ∇ denotes the nabla
operator, so ∇f(x) represents the gradient of the scalar-valued function f at x.

2. Necessary Optimality Conditions
If f is differentiable and x∗ is a local minimum point, then

∇f(x∗)Td ≥ 0 for every d ∈ Z(x∗). (18.37a)

18.2 Non-linear Optimization 925

In particular, if x∗ is an interior point of M , then

∇f(x∗) = 0. (18.37b)

3. Lagrange Function and Saddle Point
Optimality conditions (18.37a,b) should be transformed into a more practical form including the con-
straints. The so-called Lagrange function or Lagrangian is constructed:

L(x,u) = f(x) +
m∑
i=1

uigi(x) = f(x) + uTg(x), x ∈ IR, u ∈ IRm
+ , (18.38)

according to the Lagrange multiplier method (see 6.2.5.6, p. 456) for problems with equality constraints.
A point (x∗,u∗) ∈ IRn × IRm

+ is called a saddle point of L, if

L(x∗,u) ≤ L(x∗,u∗) ≤ L(x,u∗) for every x ∈ IRn, u ∈ IRm
+ . (18.39)

4. Global Kuhn-Tucker Conditions
A point x∗ ∈ IRn satisfies the global Kuhn-Tucker conditions if there is an u∗ ∈ IRm

+ , i.e., u
∗ ≥ 0 such

that (x∗,u∗) is a saddle point of L.
For the proof of the Kuhn-Tucker conditions see 12.5.6, p. 683.

5. Sufficient Optimality Condition
If (x∗,u∗) ∈ IRn × IRm

+ is a saddle point of L, then x∗ is a global minimum point of (18.32a,b).
If the functions f and gi are differentiable, then local optimality conditions can be deduced.

6. Local Kuhn-Tucker Conditions
A point x∗ ∈ M satisfies the local Kuhn–Tucker conditions if there are numbers ui ≥ 0, i ∈ I0(x

∗) such
that

−∇f(x∗) =
∑

i∈I0(x∗)
ui∇gi(x

∗), where (18.40a)

I0(x) = {i ∈ {1, . . . ,m} : gi(x) = 0} (18.40b)

is the index set of the active constraints at x. The point x∗ is also called a Kuhn-Tucker stationary
point.

This means geometrically that a point x∗ ∈
M satisfies the local Kuhn-Tucker condi-
tions, if the negative gradient −∇f(x∗) lies
in the cone spanned by the gradients ∇gi(x

∗)
i ∈ I0(x

∗) of the constraints active at x∗

(Fig. 18.5).
The following equivalent formulation for
(18.40a,b) is also often used: x∗ ∈ IRn satis-
fies the local Kuhn-Tucker conditions, if there
is a u∗ ∈ IRm

+ such that

g(x∗) ≤ 0, (18.41a)

uigi(x
∗) = 0, i = 1, . . . ,m, (18.41b)

∇f(x∗) +
m∑
i=1

ui∇gi(x
∗) = 0. (18.41c)

M

g (x)=0
1

g (x)=0
2

x*

g (x*)
1

�

f(x*)

�-

g (x*)
2

�

level lines

f(x) = const

Figure 18.5

7. Necessary Optimality Conditions and Kuhn-Tucker Conditions
If x∗ ∈ M is a local minimum point of (18.32a,b) and the feasible set satisfies the regularity condition at
x∗ : ∃d ∈ IRn such that ∇gi(x

∗)Td < 0 for every i ∈ I0(x
∗), then x∗ satisfies the local Kuhn-Tucker

conditions.

926 18. Optimization

18.2.1.3 Duality in Optimization

1. Dual Problem
With the associated Lagrangian (18.38) themaximumproblem is formed, the so-called dual of (18.32a,b):

L(x,u) = max! subject to (x,u) ∈ M∗ with (18.42a)

M∗ = {(x,u) ∈ IRn × IRm
+ : L(x,u) = min

z∈IRn
L(z,u)}. (18.42b)

2. Duality Theorems
If x1 ∈ M and (x2,u2) ∈ M∗, then
a) L(x2,u2) ≤ f(x1).

b) If L(x2,u2) = f(x1), then x1 is a minimum point of (18.32a,b) and (x2,u2) is a maximum point of
(18.42a,b).

18.2.2 SpecialNon-linearOptimizationProblems

18.2.2.1 Convex Optimization

1. Convex Problem
The optimization problem

f(x) = min! subject to gi(x) ≤ 0 (i = 1, . . . ,m) (18.43)

is called a convex problem if the functions f and gi are convex. In particular, f and gi can be linear
functions. The following statements are valid for convex problems:
a) Every local minimum of f over M is also a global minimum.
b) If M is not empty and bounded, then there exists at least one solution of (18.43).
c) If f is strictly convex, then there is at most one solution of (18.43).
1. Optimality Conditions
a) If f has continuous partial derivatives, then x∗ ∈ M is a solution of (18.43), if

(x− x∗)T∇f(x∗) ≥ 0 for every x ∈ M. (18.44)

b) The Slater condition is a regularity condition for the feasible set M . It is satisfied if there exists an
x ∈ M such that gi(x) < 0 for every non-affine linear functions gi.
c) If the Slater condition is satisfied, then x∗ is a minimum point of (18.43) if and only if there exists a
u∗ ≥ 0 such that (x∗,u∗) is a saddle point of the Lagrangian. Moreover, if functions f and gi are dif-
ferentiable, then x∗ is a solution of (18.43) if and only if x∗ satisfies the local Kuhn-Tucker conditions.
d) The dual problem (18.42a,b) can be formulated easily for a convex optimization problem with dif-
ferentiable functions f and gi:

L(x,u) = max!, subject to (x,u) ∈ M∗ with (18.45a)

M∗ = {(x,u) ∈ IRn × IRm
+ : ∇xL(x,u) = 0}. (18.45b)

The gradient of L is calculated here only with respect to x.
e) For convex optimization problems, the strong duality theorem also holds:
If M satisfies the Slater condition and if x∗ ∈ M is a solution of (18.43), then there exists a u∗ ∈ IRm

+ ,
such that (x∗,u∗) is a solution of the dual problem (18.45a,b), and

f(x∗) = min
x∈M

f(x) = max
(x,u)∈M∗

L(x,u) = L(x∗,u∗). (18.46)

18.2.2.2 Quadratic Optimization

1. Formulation of the Problem
Quadratic optimization problems have the form

f(x) = xTCx+ pTx = min! , subject to x ∈ M ⊂ IRn with (18.47a)

M = MI : M = {x ∈ IRn : Ax ≤ b, x ≥ 0}. (18.47b)

18.2 Non-linear Optimization 927

Here, C is a symmetric (n, n) matrix, p ∈ IRn, A is an (m,n) matrix, and b ∈ IRm.
The feasible set M can be written alternatively in the following way:

M = MII : M = {x : Ax = b, x ≥ 0}, (18.48a)

M = MIII : M = {x : Ax ≤ b}. (18.48b)

2. Lagrangian and Kuhn-Tucker Conditions
The Lagrangian to the problem (18.47a,b) is

L(x,u) = xTCx+ pTx+ uT(Ax− b). (18.49)

By introducing the notation

v =
∂L

∂x
= p+ 2Cx+ATu and y = −∂L

∂u
= −Ax+ b (18.50)

the Kuhn-Tucker conditions are as follows:

Case I: Case II: Case III:

a) Ax+ y = b, a) Ax = b, a) Ax+ y = b, (18.51a)

b) 2Cx− v +ATu = −p, b) 2Cx− v +ATu = −p, b) 2Cx+ATu = −p, (18.51b)

c) x ≥ 0, v ≥ 0, y ≥ 0, u ≥ 0, c) x ≥ 0, v ≥ 0, c) u ≥ 0, y ≥ 0, (18.51c)

d) xTv + yTu = 0. d) xTv = 0. d) yTu = 0. (18.51d)

3. Convexity
The function f(x) is convex (strictly convex) if and only if the matrix C is positive semidefinite (posi-
tive definite). Every result on convex optimization problems can be used for quadratic problems with
a positive semidefinite matrix C; in particular, the Slater condition always holds, so it is necessary
and sufficient for the optimality of a point x∗ that there exists a point (x∗,y,u,v), which satisfies the
corresponding system of local Kuhn-Tucker conditions.

4. Dual Problem
If C is positive definite, then the dual problem (18.45a,b) of (18.47a,b) can be expressed explicitly:

L(x,u) = max!, subject to (x,u) ∈ M∗, where (18.52a)

M∗ = {(x,u) ∈ IRn × IRm
+ : x = −1

2
C−1(ATu+ p)}. (18.52b)

If the expression x = −1

2
C−1(ATu + p) is substituted into the dual objective function L(x,u), then

the equivalent problem is

ϕ(u) = −1

4
uTAC−1ATu−

(
1

2
AC−1p+ b

)T

u− 1

4
pTC−1p = max!, u ≥ 0. (18.53)

Hence: If x∗ ∈ M is a solution of (18.47a,b), then (18.53) has a solution u∗ ≥ 0, and

f(x∗) = ϕ(u∗). (18.54)

Problem (18.53) can be replaced by an equivalent formulation:

ψ(u) = uTEu+ hTu = min! , subject to u ≥ 0 where (18.55a)

E =
1

4
AC−1AT and h =

1

2
AC−1p+ b . (18.55b)

928 18. Optimization

18.2.3 SolutionMethods forQuadraticOptimizationProblems

18.2.3.1 Wolfe’sMethod

1. Formulation of the Problem and Solution Principle
The method of Wolfe is to solve quadratic problems of the special form:

f(x) = xTCx+ pTx = min! , subject to Ax = b, x ≥ 0. (18.56)

C is supposed to be positive definite. The basic idea is the determination of a solution (x∗,u∗,v∗) of
the corresponding system of Kuhn-Tucker conditions, associated to problem (18.56):

Ax = b, (18.57a)

2Cx− v +ATu = −p, (18.57b)

x ≥ 0, v≥0; (18.57c)

xTv = 0. (18.58)

Relations (18.57a,b,c) represent a linear equation system with m+ n equations and 2n+m variables.
Because of relation (18.58), either xi = 0 or vi = 0 (i = 1, 2, . . . , n) must hold. Therefore, every solution
of (18.57a,b,c), (18.58) contains at mostm+n non-zero components. Hence, it must be a basic solution
of (18.57a,b,c).

2. Solution Process
First, a feasible basic solution (vertex) x̄ of the system Ax = b is determined. The indices belonging
to the basis variables of x̄ form the set IB. In order to find a solution of system (18.57a,b,c), which also
satisfies (18.58), the problem is formulated as

−μ = min! , (μ ∈ IR); (18.59)

Ax = b, (18.60a)

2Cx− v +ATu− μq = −p with q = 2Cx̄+ p, (18.60b)

x ≥ 0, v ≥ 0, μ≥0; (18.60c)

xTv = 0. (18.61)

If (x,v,u, μ) is a solution of this problem also satisfying (18.57a,b,c) and (18.58), then μ = 0.
The vector (x,v,u, μ) = (x̄,0,0, 1) is a known feasible solution of the system (18.60a,b,c), and it
satisfies the relation (18.61), too. A basis associated to this basic solution is formed from the columns
of the coefficient matrix⎛⎝ A 0 0 0

2C −I AT −q

⎞⎠ ,
I denotes the unit matrix, 0 the zero matrix and 0
is the zero vector of the corresponding dimension,

(18.62)

in the following way:
a) m columns belonging to xi with i ∈ IB,
b) n−m columns belonging to vi with i /∈ IB,
c) all m columns belonging to ui,
d) the last column, but then a suitable column determined in b) or c) will be dropped.
If q = 0, then the interchange according to d) is not possible. Then x̄ is already a solution.
Now, a first simplex tableau can be constructed. The minimization of the objective function is per-
formed by the simplex method with an additional rule that guarantees that the relation xTv = 0 is
satisfied:
The variables xi and vi (i = 1, 2, . . . , n) must not be simultaneously basic variables.
In the case of a positive definite C, considering this additional rule the simplex method provides a so-
lution of problem (18.59), (18.60a,b,c), (18.61) satisfying μ = 0. For a positive semi-definite matrixC,
because of the restricted pivot choice, it may happen that although μ > 0, no more exchange-step can
be made without violating the additional rules. In this case μ cannot be reduced any further.

18.2 Non-linear Optimization 929

f(x) = x2
1 + 4x2

2 − 10x1 − 32x2 = min! with x1 + 2x2 + x3 = 7, 2x1 + x2 + x4 = 8.

A =
(
1 2 1 0
2 1 0 1

)
, b =

(
7
8

)
, C =

⎛⎜⎜⎝
1 0 0 0
0 4 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , p =

⎛⎜⎜⎝
−10
−32
0
0

⎞⎟⎟⎠ .

In this case C is positive semi-definite. A feasible basic solution of Ax = b is x̄ = (0, 0, 7, 8)T, q =

2Cx̄ + p = (−10,−32, 0, 0)T. The choices for the basis vectors are: a) columns 3 and 4 of
(

A
2C

)
,

b) columns 1 and 2 of
(

0
−I

)
, c) the columns of

(
0
AT

)
and d) column

(
0
−q

)
instead of the first

column of
(

0
−I

)
. The basis matrix is formed from

these columns, and the basis inverse is calculated
(see 18.1, p. 909). Multiplying matrix (18.62) and

the vectors

(
b
−p

)
by the basis inverse, the first

simplex tableau (Scheme 18.9) is obtained.
Only x1 can be interchanged with v2 in this tableau
according to the complementary constraints. Af-
ter a few steps, we get the solution x∗ =

(2, 5/2, 0, 3/2)T is obtained. The last two equations

of 2Cx−v+ATu−μq = −p are: v3 = u1, v4 = u2.
Therefore, by eliminating u1 and u2 the dimension
of the problem can be reduced.

Scheme 18.9

x1 x2 v1 v3 v4

x3 1 2 0 0 0 7
x4 2 1 0 0 0 8

v2
64

10
− 8 − 32

10

12

10

54

10
0

u1 0 0 0 − 1 0 0
u2 0 0 0 0 − 1 0

μ
2

10
0 − 1

10

1

10

2

10
1

− 2

10
0

1

10
− 1

10
− 2

10
− 1

18.2.3.2 Hildreth-d’EsopoMethod

1. Principle
The strictly convex optimization problem

f(x) = xTCx+ pTx = min! , Ax ≤ b (18.63)

has the dual problem (see 1., p. 926)

ψ(u) = uTEu+ hTu = min! u ≥ 0 with (18.64a)

E =
1

4
AC−1AT, h =

1

2
AC−1p+ b. (18.64b)

Matrix E is positive definite and it has positive diagonal elements eii > 0, (i = 1, 2, . . . ,m). The
variables x and u satisfy the following relation:

x = −1

2
C−1(ATu+ p). (18.65)

2. Solution by Iteration
The dual problem (18.64a), which contains only the condition u ≥ 0, can be solved by the following
simple iteration method:
a) Substitute u1 ≥ 0, (e.g., u1 = 0), k = 1.

b) Calculate uk+1
i for i = 1, 2, . . . ,m according to

wk+1
i = − 1

eii

⎛⎝i−1∑
j=1

eiju
k+1
j +

hi
2
+

m∑
j=i+1

eiju
k
j

⎞⎠ ,(18.66a) uk+1
i = max

{
0, wk+1

i

}
. (18.66b)

930 18. Optimization

c) Repeat step b) with k+1 instead of k until a stopping rule is satisfied, e.g.,
∣∣∣ψ(uk+1)− ψ(uk)

∣∣∣ < ε,

ε > 0.
Under the assumption that there is an x such that Ax < b, the sequence {ψ(uk)} converges to the
minimum value ψmin and sequence {xk} given by (18.65) converges to the solution x∗ of the original
problem. The sequence {uk} is not always convergent.

18.2.4 Numerical SearchProcedures
By using non-linear optimization procedures acceptable approximate solutions can be found with rea-
sonable computing costs for several types of optimization problems. They are based on the principle
of comparison of function values.

18.2.4.1 One-Dimensional Search
Several optimization methods contain the subproblem of finding the minimum of a real function f(x)
for x ∈ [a, b]. It is often sufficient to find an approximation x of the minimum point x∗.
1. Formulation of the Problem
A function f(x), x ∈ IR, is called unimodal in [a, b] if it has exactly one local minimum point on every
closed subinterval J ⊆ [a, b]. Let f be a unimodal function on [a, b] and x∗ the global minimum point.
Then an interval [c, d] ⊆ [a, b] should be found with x∗ ∈ [c, d] such that d− c < ε, ε > 0.

2. Uniform Search
A positive integer n is chosen such that δ =

b− a

n+ 1
<

ε

2
, and the values f(xk) for xk = a + kδ (k =

1, . . . , n) are calculated. If f(x) is the smallest value among these function values, then the minimum
point x∗ is in the interval [x− δ, x+ δ]. The number of required function values for the given accuracy
can be estimated by

n >
2(b− a)

ε
− 1 . (18.67)

3. Golden SectionMethod, Fibonacci Method
The interval [a, b] = [a1, b1] will be reduced step by step so that the new subinterval always contains
the minimum point x∗. The points λ1, μ1 are determined in the interval [a1, b1] as

λ1 = a1 + (1− τ)(b1 − a1), μ1 = a1 + τ(b1 − a1) with (18.68a)

τ =
1

2
(
√
5− 1) ≈ 0.618. (18.68b)

This corresponds to the golden section. Two cases are distinguished:

a) If f(λ1) < f(μ1) , then a2 = a1, b2 = μ1 and μ2 = λ1 are substituted. (18.69a)

b) If f(λ1) ≥ f(μ1) , then a2 = λ1, b2 = b1 and λ2 = μ1 are substituted. (18.69b)

If b2 − a2 ≥ ε, then the procedure is repeated with the interval [a2, b2], where one value is already
known, f(λ2) in case a) and f(μ2) in caseb), from the first step. To determine an interval [an, bn], which
contains the minimum point x∗, altogether n function values are calculated. From the requirement

ε > bn − an = τn−1(b1 − a1) (18.70)

the necessary number of steps n can be estimated.
By using the golden sectionmethod, atmost onemore function value should be determined compared to
the Fibonacci method. Instead of subdividing the interval according to the golden section, the interval
is subdivided according to the Fibonacci numbers (see 5.4.1.5, p. 375, and 17.3.2.4, 4., p. 908).

18.2.4.2 Minimum Search inn-Dimensional Euclidean Vector Space
The search for an approximation of the minimum point x∗ of the problem f(x) = min!, x ∈ IRn, can
be reduced to the solution of a sequence of one-dimensional optimization problems.
One takes

a) x = x1, k = 1, where x1 is an appropriate initial approximation of x∗. (18.71a)

18.2 Non-linear Optimization 931

b) The one-dimensional problems

ϕ(αr) = f(xk+1
1 , . . . , xk+1

r−1 , x
k
r + αr, x

k
r+1, . . . , x

k
n) = min! with αr ∈ IR (18.71b)

are solved for r = 1, 2, . . . , n. If ᾱr is an exact or approximating minimum point of the r-th problem,
then xk+1

r = xkr + ᾱr are substituted.
c) If two consecutive approximations are close enough to each other, i.e., with some vector norm,

||xk+1 − xk|| < ε1 or |f(xk+1)− f(xk)| < ε2, (18.71c)

then xk+1 is an approximation of x∗. Otherwise step b) is repeated with k + 1 instead of k. The one-
dimensional problem in b) can be solved, by using the methods given in 18.2.4.1, p. 930.

18.2.5 Methods forUnconstrainedProblems
The general optimization problem

f(x) = min! for x ∈ IRn (18.72)

is considered with a continuously differentiable function f . Each method described in this section con-
structs, in general, an infinite sequence of points {xk} ∈ IRn, whose accumulation point is a stationary
point. The sequence of points will be determined starting with a point x1 ∈ IRn and according to the
formula

xk+1 = xk + αkd
k (k = 1, 2, . . .), (18.73)

i.e., first a direction dk ∈ IRn is determined at xk and the step size αk ∈ IR indicates how far xk+1 is

from xk in the direction dk. Such a method is called a descent method, if

f(xk+1) < f(xk) (k = 1, 2, . . .). (18.74)

The equality∇f(x) = 0, where∇ is the nabla operator (see 13.2.6.1, p. 715), characterizes a stationary
point and can be used as a stopping rule for the iteration method.

18.2.5.1 Method of Steepest Descent

Starting from an actual point xk, the direction dk in which the function has its steepest descent is

dk = −∇f(xk) (18.75a) and consequently xk+1 = xk − αk∇f(xk). (18.75b)

A schematic representation of the steepest descent method with level lines f(x) = f(xi) is shown in
Fig. 18.6.

x*x
3

x
2

x
1

f(x)
1�

f(x)=f(x)
1

level lines

Figure 18.6

The step size αk is determined by a line search, i.e.,
αk is the solution of the one-dimensional problem:

f(xk + αdk) = min! , α ≥ 0. (18.76)

This problem can be solved by the methods given
in 18.2.4, p. 930.
The steepest descent method (18.75b) converges
relatively slowly. For every accumulation point x∗

of the sequence {xk}, ∇f(x∗) = 0. In the case of a
quadratic objective function, i.e., f(x) = xTCx +
pTx, the method has the special form:

xk+1 = xk + αkd
k (18.77a) with dk = −(2Cxk + p) and αk =

dkTdk

2dkTCdk
. (18.77b)

18.2.5.2 Application of the NewtonMethod
Suppose that at the actual approximation point xk the function f is approximated by a quadratic
function:

q(x) = f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)TH(xk)(x− xk). (18.78)

932 18. Optimization

Here H(xk) is the Hessian matrix, i.e., the matrix of second partial derivatives of f at the point xk. If
H(xk) is positive definite, then q(x) has an absolute minimum at xk+1 with ∇q(xk+1) = 0, therefore
one gets the Newton method:

xk+1 = xk −H−1(xk)∇f(xk) (k = 1, 2, . . .) , i.e., (18.79a)

dk = −H−1(xk)∇f(xk) and αk in (18.73). (18.79b)

The Newton method converges fast but it has the following disadvantages:
a) The matrix H(xk) must be positive definite.
b) The method converges only for sufficiently good initial points.
c) The step size can not influenced.
d) The method is not a descent method.

e) The computational cost of computing the inverse of H−1(xk) is fairly high.
Some of these disadvantages can be reduced by the following version of the damped Newton method (see
also 19.2.2.2, p. 962):

xk+1 = xk − αkH
−1(xk)∇f(xk) (k = 1, 2, . . .) . (18.80)

The relaxation factor αk can be determined, for example, by the principle given earlier (see 18.2.5.1,
p. 931).

18.2.5.3 Conjugate GradientMethods

Two vectors d1,d2 ∈ IRn are called conjugate vectors with respect to a symmetric, positive definite
matrix C, if

d1TCd2 = 0. (18.81)

If d1,d2, . . . ,dn are pairwise conjugate vectors with respect to a matrix C, then the convex quadratic

problem q(x) = xTCx + pTx, x ∈ IRn, can be solved in n steps if a sequence xk+1 = xk + αkd
k

starting from x1 is constructed, where αk is the optimal step size. Under the assumption that f(x)

is approximately quadratic in the neighborhood of x∗, i.e., C ≈ 1

2
H(x∗), the method developed for

quadratic objective functions can also be applied for more general functions f(x), without the explicit
use of the matrix H(x∗).
The conjugate gradient method has the following steps:

a) x1 ∈ IRn, d1 = −∇f(x1), (18.82)

where x1 is an appropriate initial approximation for x∗.

b) xk+1 = xk + αkd
k (k = 1, . . . , n) with αk ≥ 0 so that f(xk + αdk) will be minimized. (18.83a)

dk+1 = −∇f(xk+1) + μkd
k (k = 1, . . . , n− 1) with (18.83b)

μk =
∇f(xk+1)

T∇f(xk+1)

∇f(xk)T∇f(xk)
and dn+1 = −∇f(xn+1). (18.83c)

c) Repeating steps b) with xn+1 and dn+1 instead of x1 and d1.

18.2.5.4 Method of Davidon, Fletcher and Powell (DFP)

With the DFP method, a sequence of points starting from x1 ∈ IRn is determined according to the
formula

xk+1 = xk − αkMk∇f(xk) (k = 1, 2, . . .). (18.84)

Here,Mk is a symmetric, positive definite matrix. The idea of the method is a stepwise approximation
of the inverse Hessian matrix by matrices Mk in the case when f(x) is a quadratic function. Starting

18.2 Non-linear Optimization 933

with a symmetric, positive definite matrix M1, e.g., M1 = I (I is the unit matrix), the matrix Mk is
determined from Mk−1 by adding a correction matrix of rank two

Mk = Mk−1 +
vkvkT

vkTvk
− (Mk−1w

k)(Mk−1w
k)

T

wkTMkwk
(18.85)

with vk = xk − xk−1 and wk = ∇f(xk)−∇f(xk−1) (k = 2, 3, . . .). The step size αk is obtained from

f(xk − αMk∇f(xk)) = min! , α ≥ 0. (18.86)

If f(x) is a quadratic function, then the DFP method becomes the conjugate gradient method with
M1 = I.

18.2.6 Evolution Strategies

18.2.6.1 Evolution Principles
Evolution strategies are examples of stochastic optimization processes imitating natural evolution.
They are based on the principles of mutation, recombination and selection.

1. Mutation
From a parent point xP a offspring (descendant) xO = xP+d is formed by applying a random variation
d. The components of d are (0, σ2

i) normally distributed random variables Z(0, σ2
i) determined newly

at every mutation:

d =

⎛⎜⎜⎜⎝
d1
d2
...
dn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Z(0, σ2

1)
Z(0, σ2

2)
...

Z(0, σ2
n)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Z(0, 1) · σ1

Z(0, 1) · σ2
...

Z(0, 1) · σn

⎞⎟⎟⎟⎠ . (18.87)

With a normally distributed d small changes have high probabilities while large changes occur very
rarely. The changes are controlled by the standard deviation σi.

2. Recombination
From the population of μ parents offspring can be obtained bymixing the information from two or more
parents, which are randomly selected. The recombination can follow two types of changes.
At intermediate recombination a offspring becomes as weighted average of � randomly chosen parents:

xO =
 ∑

i=1

αi xPi
,

 ∑
i=1

αi = 1, 2 ≤ � ≤ μ . (18.88)

At a discrete recombination of � parents the i-th component of a offspring xO is determined by the i-th
component of a randomly chosen parent:

xiO = xiPj
, j ∈ {1, . . . , �}, i = 1, . . . , n. (18.89)

3. Selection
By using mutation and recombination, a set of offspring is formed randomly. In a subsequent selection
process the objective function f(x) serves as a measure to compare the fitness of the individuals. The
fittest individuals are selected for the next generation. At certain strategies only the offspring take part
in the selection. Other strategies consider also the parents (see also [18.12]).

18.2.6.2 Evolution Algorithms
Every evolution strategy is based on the following algorithm:
a) Determination of an appropriate starting population consisting of μ individuals. These are the

first generation of parents. X 1
P = {x 1

P1
, . . . ,x 1

Pμ
}.

b) In the k-th step the creation of λ offspring X k
O = {x k

O1
, . . . ,x k

Oλ
} by mutation and recombination

of parents of the actual generation X k
P = {x k

P1
, . . . ,x k

Pλ
}.

934 18. Optimization

c) Application of selection to get the best μ individuals for the next parent generation X k+1
P =

{x k+1
P1

, . . . ,x k+1
Pμ

}.
d) Repeating steps b) and c) until stopping rule is satisfied. It can be fulfilling an optimal criterium of

the optimization problem, or to reach a given number of generations, or exceeding a given computer
time, etc.

18.2.6.3 Classification of Evolution Strategies
Every evolution strategy is characterized by a sequence of parameters. Essential parameters are the size
of the population μ, the number of the offspring λ, the number of parents � taking part in recombination
and rules of making mutation, recombination and selection. To distinguish different types of strategies
a special notation is commonly used. For the strategies using only mutation in producing offspring
the (μ + λ), or (μ, λ) strategy notation is used. Strategies (μ + λ) and (μ, λ) differ from each other in
the type of selection. At strategy (μ, λ) the selection of the new generation is made only among the
offspring, while at strategy (μ+ λ) the parents are also involved.
For strategies using recombination the number � of the parents, which are involved, is seen in the
notation (μ/�+ λ)- and (μ/�, λ)-strategy.

18.2.6.4 Generating RandomNumbers
For the numerical evaluation of evolution procedures uniformly and normally distributed random vari-
ables are needed. Values of uniformly distributed variables can be got by themethods given in subchap-
ter 16.3.5.2, p. 843. Normally distributed random variables can be produced from uniform variables in
the following way:
Box-Muller Method: If G1 and G2 are uniformly distributed random numbers in the interval [0, 1],
then the following two equations give two statistically independent normally distributed (0, σ2) random
numbers Z1(0, σ

2) and Z2(0, σ
2):

Z1(0, σ
2) = σ

√
−2 lnG1 cos(2πG2) and Z2(0, σ

2) = σ
√
−2 lnG1 sin(2πG2) . (18.90)

18.2.6.5 Application of Evolution Strategies
In the practice optimization problems have usually high complexity. Here the conventional optimiza-
tion processes described in 18.2.5, p. 931 are often not appropriate. Evolution strategies belong to the
differentiation-free solution methods, which are based on comparisons of the values of the objective
function. They have simple conditions on the structure of the objective function. The objective func-
tion does not need to be differentiable or continuous. So the evolution strategies are appropriate for a
wide spectrum of optimization problems.

The application of evolution strategies is not restricted to unconstrained continuous optimization prob-
lems. Optimization problems with constraints can also be handled, where the constraints are enforced
by penalty terms in the objective function (see Penalty and Barrier Methods in 18.2.8, p. 940).
Another field of application is the discrete optimization, where some or all components of x can take
their values from a discrete set. One possible mutation mechanism is to replace the value of a discrete
component by one of its neighboring values with the same probability.

18.2.6.6 (1 + 1)-Mutation-Selection Strategy
This method is similar to the gradient method discussed in 18.2.5, p. 931 with the difference that the

direction d k is a normally distributed random vector. The population consists of a single individual
which produces one offspring at every generation.

1. Mutation Step
In generation k a offspring is obtained from a parent by adding a normally distributed random vector:

x k
O = x k

P + αd k . (18.91)

18.2 Non-linear Optimization 935

The factor α is a parameter by which the speed of the convergence can be affected. α is considered as
the step size of the mutation.

2. Selection Step
The new parent of the next generation (k + 1) is selected by comparing the objective function values
of both individuals, i.e., from the parent with the formula:

xk+1
P =

{
x k
O if f(x k

O) < f(x k
P) ,

x k
P otherwise .

(18.92)

The procedure stops if no better offspring arrives over a given number of generations. The step size α
can be increased if the mutation results mostly in improved offspring. At small improvements the value
of α should be decreased.

3. Step Size Control
The choice of the mutation step size α is of important influence to the convergence properties of the
evolutionmethod. While large step sizes are recommended in order to have fast convergence, small step
size is required in the close neighborhood of the optimum or in regions of fast changing or oscillating
of the objective function. The optimal step size depends on the problem. Too small steps lead to
stagnation, too large steps may result in overshooting of the evolution process.

1. 1/5-Success rule: The ratio of the number of successful mutations and the total number of
mutations in the last step defines the rate of success q. If q > 1/5 , then the step size can be increased.
For smaller success rate, α should be decreased:

αk+1 =

⎧⎪⎪⎨⎪⎪⎩
c · αk, q <

1

5
,

1

c
· αk, q >

1

5

with c = 0, 8 . . . 0, 85. (18.93)

2. Mutative Step Size Determination: The rule of 1/5 is a rough choice, and considering any
concrete problem it is not always satisfactory. In an extended model the step size α and the standard
deviations σi, i = 1, 2 . . . , n are in correlation. Here α and σi are multiplied with equal probability by
one of the factors c, 1, 1/c, where c = 1, 1 . . . 1, 5. Further information see [18.12].

18.2.6.7 Population Strategies
The (1+1) strategy presented in the preceding paragraph reflects the principles of the natural evolu-
tion only in a very simplified form. With the extension to population models further properties of the
evolution process can be considered. A large number of individuals in an evolution process assures that
different regions of the solution space will be searched.

1. (μ + λ)-Evolution Strategy
The (μ + λ) strategy is a generalization of the (1 + 1) strategy. From the μ parents of the cur-
rent generation X k

P = {x k
P1
, . . . ,x k

Pμ
} a set of λ parents is chosen randomly with equal probability.

Repeated choices are allowed and even necessary in the case if μ < λ. By mutation, λ offspring
X k

O = {x k
O1
, . . . ,x k

Oλ
} are produced. From the selection set X k

O ∪ X k
P the best μ individuals are

chosen to take over into the next generation.

Since the parents are also taken in the selection, the quality of the population from a generation to
the next one cannot be worse. The (μ + λ) strategy has the property that it keeps an already found
local optimum, since large mutation steps, which are required to leave the optimal point, have very
small probability. It means, that an individual can have an infinite life. This behavior can be avoided
by adding penalty terms to the objective function values of parents that increase from generation to
generation. In this way the aging of individuals can be simulated.

2. (μ , λ)-Evolution Strategy
In contrary to the (μ+ λ) strategy the selection step is now made among the λ offspring, to choose the
μ individuals for the next generation, i.e., in this strategy the parents do not survive. Therefore λ > μ

936 18. Optimization

must hold. The values of the objective function for the offspring can be larger than that for the parents.
This procedure can depart from local optima.
Selection Pressure: The ratio of the individuals taking part in the selection and the size of the pop-
ulation defines the selection pressure S:

S =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ+ λ

μ
for (μ+ λ)-strategy ,

λ

μ
for (μ , λ)-strategy

with 1 ≤ S < ∞. (18.94)

If the selection pressure is close to 1, then the selection step has almost no impact. A large number of
offspring λ 6 μ results in a strong selection pressure, since from the set of the present individuals only
few will survive into the next generation.

3. (μ/� + λ)- and (μ/� , λ)-Evolution Strategies with Recombination
With the concept of recombination some relations are built between the individuals of a population, so
the information of several parents are mixed in a offspring.
In order to get a offspring, � parents are chosen from the set of parents X k

P with the same probability.
It is assumed that for every member of the λ offspring a separate choice of � parents is taken. The
offspring is a discrete or an intermediate recombination of the chosen parents. The offspring produced
in this way will be mutated and enters the selection process.

In the previously described (μ + λ) and (μ, λ) strategies each individual is the result of a series of mu-
tations applied to one individual of the first generation of parents. So, a wider evolution step is possible
only through many generations. Wider evolution steps are possible with recombination. Especially,
when the parents have large distances among each other, the offspring are formed with completely new
properties.

4. Evolution Strategies with more Populations
The principles of evolution can be expanded formally to the dimension of populations. Instead of indi-
viduals now populations are in competition. So, the evolution process has two steps. It is shown in the
expanded notation: [μ2/�2 +, λ2(μ1/�1 +, λ1)].
From a set of μ2 parent populations a set of λ2 offspring populations is created by recombination of �2
populations that are chosen randomly for each offspring population. In these λ2 offspring populations
the optimization is performed using a (μ1/�1 + λ1) or (μ1/�1 , λ1) strategy. After a given number of
generations the best populations are chosen based on an appropriate criterium. The comparison of
populations can be done by considering the values of the objective function of the best individual or by
the population mean.

18.2.7 GradientMethod for Problemswith Inequality
TypeConstraints

If the problem

f(x) = min! subject to the constraints gi(x) ≤ 0 (i = 1, . . . ,m) (18.95)

has to be solved by an iteration method of the type

xk+1 = xk + αkd
k (k = 1, 2, . . .) (18.96)

then two additional rules must be considered because of the bounded feasible set:

1. The direction dk must be a feasible descent direction at xk.

2. The step size αk must be determined so that xk+1 is in M .

The different methods based on the formula (18.96) differ from each other only in the construction of

the direction dk. To ensure the feasibility of the sequence {xk} ⊂ M , α′
k and α′′

k are determined in the
following way:

α′
k from f(xk + αdk) = min! , α ≥ 0

18.2 Non-linear Optimization 937

α′′
k = max{α ∈ IR : xk + αdk ∈ M}. (18.97)

Then

αk = min{α′
k, α

′′
k }. (18.98)

If there is no feasible descent direction dk in a certain step k, then xk is a stationary point.

18.2.7.1 Method of Feasible Directions

1. Direction Search Program

A feasible descent direction dk at point xk can be determined by the solution of the following optimiza-
tion problem:

σ = min!, (18.99)

∇gi(x
k)

T
d ≤ σ, i ∈ I0(x

k), (18.100a) ∇f(xk)
T
d ≤ σ, (18.100b) ||d|| ≤ 1. (18.100c)

If σ < 0 for the result d = dk of this direction search program, then (18.100a) ensures feasibility and

(18.100b) ensures the descending property of dk. The feasible set for the direction search program is
bounded by the normalizing condition (18.100c). If σ = 0, then xk is a stationary point, since there is
no feasible descent direction at xk.
A direction search program, defined by (18.100a,b,c), can result in a zig-zag behavior of the sequence
xk, which can be avoided if the index set I0(x

k) is replaced by the index set

Iεk(x
k) = {i ∈ {1, . . . ,m} : −εk ≤ gi(x

k) ≤ 0}, εk ≥ 0 (18.101)

which are the so-called εk active constraints in xk. Thus, local directions of descent are excluded
which are going from xk and lead closer to the boundaries of M consisting of the εk active constraints
(Fig. 18.7).

x
1

g (x)=0
1

g (x)=0
2

x
1

g (x)=0
1

g (x)=
1

−�

g (x)=
2

−�

g (x)=0
2

Figure 18.7

If σ = 0 is a solution of (18.100a,b,c) after these modifications, then xk is a stationary point only if
I0(x

k) = Iεk(x
k). Otherwise εk must be decreased and the direction search program must be repeated.

f(x)
k�-

d
k

x
k

x
k

d
k

M

f(x)
k�-

Ma) b)

Figure 18.8

2. Special Case of Linear Constraints
If the functions gi(x) are linear, i.e., gi(x) =
ai

Tx−bi, then a simpler direction searchmethod
can be established:

σ = ∇f(xk)
T
d = min! with (18.102)

ai
Td ≤ 0, i ∈ I0(x

k) or i ∈ Iεk(x
k), (18.103a)

||d|| ≤ 1. (18.103b)

The effect of the choice of different norms ||d|| =
max{|di|} ≤ 1 or ||d|| =

√
dTd ≤ 1 is shown in

Fig. 18.8a,b.

In a certain sense, the best choice is the norm ||d|| = ||d||2 =
√
dTd, since by the direction search

program the direction dk is obtained, which forms the smallest angle with −∇f(xk). In this case the

938 18. Optimization

direction search program is not linear and requires higher computational costs. With the choice ||d|| =
||d||∞ = max{|di|} ≤ 1 a system of linear constraints −1 ≤ di ≤ 1, (i = 1, . . . , n) is obtained, so the
direction search program can be solved, e.g., by the simplex method.
In order to ensure that the method of feasible directions for a quadratic optimization problem f(x) =
xTCx + pTx = min! with Ax ≤ b results in a solution in finitely many steps, the direction search

program is completed by the following conjugate requirements: If αk−1 = α′
k−1 holds in a step, i.e., xk

is an “interior” point, then the condition

dk−1TCd = 0 (18.104)

is added to the direction search program. Furthermore the corresponding conditions are kept from the
previous steps. If in a later step αk = α′′

k then the condition (18.104) is removed.

f(x) = x2
1 + 4x2

2 − 10x1 − 32x2 = min! g1(x) = −x1 ≤ 0, g2(x) = −x2 ≤ 0,
g3(x) = x1 + 2x2 − 7 ≤ 0, g4(x) = 2x1 + x2 − 8 ≤ 0.

Step 1: Starting with x1 = (3, 0)T, ∇f(x1) = (−4,−32)T, I0(x
1) = {2}.

Direction search program:

{−4d1 − 32d2 = min!

−d2 ≤ 0, ||d||∞ ≤ 1

}
=⇒ d1 = (1, 1)T.

Minimizing constant: α′
k = −dkT∇f(xk)

2dkTCdk
with C =

(
1 0
0 4

)
.

Maximal feasible step size: α′′
k = min

{
−gi(x

k)

aiTd
k : for i such that ai

Tdk > 0

}
, α′

1 =
18

5
, α′′

1 =
2

3
=⇒

α1 = min
{
18

5
,
2

3

}
=

2

3
, x2 =

(
11

3
,
2

3

)T

.

Step 2: ∇f(x2) =
(
−8

3
,−80

3

)T

, I0(x
2) = {4}.

Direction search program:

⎧⎨⎩−8

3
d1 −

80

3
d2 = min!

2d1 + d2 ≤ 0, ||d||∞ ≤ 1

⎫⎬⎭ =⇒ d2 =
(
−1

2
, 1

)T

, α′
2 =

152

51
, α′′

2 =
4

3
=⇒

α2 =
4

3
, x3 = (3, 2)T.

Step 3: ∇f(x3) = (−4,−16)T, I0 = (x3) = {3, 4}.
Direction search program:{−4d1 − 16d2 = min!

d1 + 2d2 ≤ 0, 2d1 + d2 ≤ 0, ||d||∞ ≤ 1

}
=⇒ d3 =

(
−1,

1

2

)T

, α′
3 = 1, α′′

3 = 3 =⇒ α3 = 1, x4 =
(
2,

5

2

)T

.

The next direction search program results in σ = 0. Here
the minimum point is x∗ = x4 (Fig. 18.9).

M

x
2

0

1

2

3

1 2 3 4 x
1

d
1

d
2

d
3

x
1 x

2

x
3

x
4

Figure 18.9

18.2.7.2 Gradient ProjectionMethod

1. Formulation of the Problem and Solution Principle
Suppose the convex optimization problem

f(x) = min! with ai
Tx ≤ bi, (18.105)

for i = 1, . . . ,m is given. A feasible descent direction dk at the point xk ∈ M is determined in the
following way:

If −∇f(xk) is a feasible direction, then dk = −∇f(xk) is selected. Otherwise xk is on the boundary

18.2 Non-linear Optimization 939

of M and −∇f(xk) points outward from M . The vector −∇f(xk) is projected by a linear mapping
Pk into a linear submanifold of the boundary of M defined by a subset of active constraints of xk.
Fig. 18.10a shows a projection into an edge, Fig. 18.10b shows a projection into a face. Supposing
non-degeneracy, i.e., if the vectors ai, i ∈ I0(x) are linearly independent for every x ∈ IRn, such a
projection is given by

dk = −Pk∇f(xk) = −
(
I−Ak

T(AkAk
T)

−1
Ak

)
∇f(xk). (18.106)

Here,Ak consists of all vectors ai
T, whose corresponding constraints form the sub-manifold, into which

−∇f(xk) should be projected.

f(x)
k�-

d
k

x
k f(x)

k�-

d
k

x
k

a) b)

Figure 18.10

2. Algorithm
The gradient projection method consists of the following steps, starting with x1 ∈ M and substituting
k = 1 and proceeding in accordance to the following scheme:

I: If −∇f(xk) is a feasible direction, then dk = −∇f(xk) is substituted, and continued with III.
Otherwise Ak is constructed from the vectors ai

T with i ∈ I0(x
k) and continued with II.

II: dk = −
(
I−Ak

T(AkAk
T)

−1
Ak

)
∇f(xk) is sunstituted. If dk �= 0, then continued with III. If

dk = 0 and u = −(AkAk
T)

−1
Ak∇f(xk) ≥ 0, then xk is a minimum point. The local Kuhn-Tucker

conditions −∇f(xk) =
∑

i∈I0(xk)

uiai = Ak
Tu are obviously satisfied.

If u ≥/ 0, then an i with ui < 0 is chosen, the i-th row from Ak is deleted and II is repeated.

III: Calculation of αk and xk+1 = xk + αkd
k and returning to I with k = k + 1.

3. Remarks on the Algorithm
If −∇f(xk) is not feasible, then this vector is mapped onto the sub-manifold of the smallest dimension

which contains xk. If dk = 0, then −∇f(xk) is perpendicular to this sub-manifold. If u ≥ 0 does
not hold, then the dimension of the sub-manifold is increased by one by omitting one of the active

constraints, so maybe dk �= 0 can occur (Fig. 18.10b) (with projection onto a (lateral) face). SinceAk

is often obtained fromAk−1 by adding or erasing a row, the calculation of (AkAk
T)

−1
can be simplified

by the use of (Ak−1Ak−1
T)

−1
.

Solution of the problem of the previous example on p. 938.

Step 1: x1 = (3, 0)T,

I: ∇f(x1) = (−4,−32)T, −∇f(x1) is feasible, d1 = (4, 32)T.

III: The step size is determined as in the previous example: α1 =
1

20
, x2 =

(
16

5
,
8

5

)T

.

Step 2:

I: ∇f(x2) =
(
−18

5
,−96

5

)T

(not feasible), I0(x
2) = {4}, A2 = (2 1).

II: P2 =
1

5

(
1 −2
−2 4

)
, d2 =

(
− 8

25
,
16

25

)T

�= 0.

940 18. Optimization

III: α2 =
5

8
, x3 = (3, 2)T.

Step 3:

I: ∇f(x3) = (−4,−16)T (not feasible), I0(x
3) = {3, 4}, A3 =

(
1 2
2 1

)
.

II: P3 =
(
0 0
0 0

)
, d3 = (0, 0)T,u =

(
28

3
,−8

3

)T

u2 < 0 : A3 = (1 2).

II: P3 =
1

5

(
4 −2
−2 1

)
, d3 =

(
−16

5
,
8

5

)T

.

III: α3 =
5

16
, x4 =

(
2,

5

2

)T

.

Step 4:

I: ∇f(x4) = (−6,−12)T (not feasible), I0(x
4) = {3}, A4 = A3.

II: P4 = P3, d4 = (0, 0)T, u = 6 ≥ 0.

It follows that x4 is a minimum point.

18.2.8 Penalty Function andBarrierMethods
The basic principle of these methods is that a constrained optimization problem is transformed into
a sequence of optimization problems without constraints by modifying the objective function. The
modified problem can be solved, e.g., by the methods given in Section 18.2.5. With an appropriate
construction of the modified objective functions, every accumulation point of the sequence of the solu-
tion points of this modified problem is a solution of the original problem.

18.2.8.1 Penalty FunctionMethod
The problem

f(x) = min! subject to gi(x) ≤ 0 (i = 1, 2, . . . ,m) (18.107)

is replaced by the sequence of unconstrained problems

H(x, pk) = f(x) + pkS(x) = min! with x ∈ IRn, pk > 0 (k = 1, 2, . . .). (18.108)

Here, pk is a positive parameter, and for S(x)

S(x) =
{
= 0 x ∈ M ,
> 0 x /∈ M ,

(18.109)

holds, i.e., leaving the feasible setM is punished with a “penalty” term pkS(x). The problem (18.108)
is solved with a sequence of penalty parameters pk tending to∞. Then

lim
k→∞

H(x, pk) = f(x), x ∈ M. (18.110)

If xk is the solution of the k-th penalty problem, then:

H(xk, pk) ≥ H(xk−1, pk−1), f(xk) ≥ f(xk−1), (18.111)

and every accumulation point x∗ of the sequence {xk} is a solution of (18.107). If xk ∈ M , then xk is
a solution of the original problem.
For instance, the following functions are appropriate realizations of S(x):

S(x) = maxr{0, g1(x), . . . , gm(x)} (r = 1, 2, . . .) or (18.112a)

S(x) =
m∑
i=1

maxr{0, gi(x)} (r = 1, 2, . . .). (18.112b)

If functions f(x) and gi(x) are differentiable, then in the case r > 1, the penalty function H(x, pk)
is also differentiable on the boundary of M , so analytic solutions can be used to solve the auxiliary
problem (18.108).
Fig. 18.11 shows a representation of the penalty function method.

18.2 Non-linear Optimization 941

M x* x
1

x

H(x,p)
1

x
2

H(x,p)
2

f(x)

Figure 18.11

x

M x
1

x*x
2

f(x)

H(x,q)
1

H(x,q)
2

Figure 18.12

f(x) = x2
1 + x2

2 = min! for x1 + x2 ≥ 1, H(x, pk) = x2
1 + x2

2 + pk max2{0, 1− x1 − x2}.
The necessary optimality condition is:

∇H(x, pk) =
(
2x1 − 2pk max{0, 1− x1 − x2}
2x2 − 2pk max{0, 1− x1 − x2}

)
=

(
0
0

)
.

The gradient of H is evaluated here with respect to x. By subtracting the equations we have x1 = x2.

The equation 2x1 − 2pk max{0, 1 − 2x1} = 0 has a unique solution xk1 = xk2 =
pk

1 + 2pk
. We get the

solution x∗
1 = x∗

2 = lim
k→∞

pk
1 + 2pk

=
1

2
by letting k →∞.

18.2.8.2 BarrierMethod
A sequence of modified problems is considered in the form

H(x, qk) = f(x) + qkB(x) = min! , qk > 0 . (18.113)

The term qkB(x) prevents the solution leaving the feasible setM , since the objective function increases
unboundedly on approaching the boundary of M . The regularity condition

M0 = {x ∈ M : gi(x) < 0 (i = 1, 2, . . . ,m)} �= ∅ and M0 = M (18.114)

must be satisfied, i.e., the interior of M must be non-empty and it is possible to get to any boundary
point by approaching it from the interior, i.e., the closure of M0 is M .
The function B(x) is defined to be continuous on M0. It increases to ∞ at the boundary of M . The
modified problem (18.113) is solved by a sequence of barrier parameters qk tending to zero. For the
solution xk of the k-th problem (18.113)

f(xk) ≤ f(xk−1), (18.115)

holds and every accumulation point x∗ of the sequence {xk} is a solution of (18.107).
Fig. 18.12 shows a representation of the barrier method.
The functions, e.g.,

B(x) = −
m∑
i=1

− ln(−gi(x)), x ∈ M0 or (18.116a)

B(x) =
m∑
i=1

1

[−gi(x)]
r (r = 1, 2, . . .), x ∈ M0 (18.116b)

are appropriate realizations of B(x).

942 18. Optimization

f(x) = x2
1 + x2

2 = min! subject to x1 + x2 ≥ 1, H(x, qk) = x2
1 + x2

2 + qk(− ln(x1 + x2 − 1)),

x1+x2 > 1,∇H(x, qk) =

⎛⎜⎜⎜⎝
2x1 − qk

1

x1 − x2 − 1

2x2 − qk
1

x1 + x2 − 1

⎞⎟⎟⎟⎠ =
(
0
0

)
, x1+x2 > 1. The gradient ofH is given

with respect to x.

Subtracting the equations results in x1 = x2, 2x1 − qk
1

2x1 − 1
= 0, x1 >

1

2
, =⇒ x2

1 −
x1

2
− qk

4
=

0, x1 >
1

2
, xk1 = xk2 =

1

4
+

√
1

16
+

1

4
qk, k →∞, qk → 0: x∗

1 = x∗
2 =

1

2
.

The solutions of problems (18.108) and (18.113) at the k-th step do not depend on the solutions of the
previous steps. The application of higher penalty or smaller barrier parameters often leads to conver-
gence problems with numerical solutions of (18.108) and (18.113), e.g., in the method of (18.2.4), in
particular, if no good initial approximation is available. Using the result of the k-th problem as the
initial solution for the (k + 1)-th problem the convergence behavior can be improved.

18.2.9 CuttingPlaneMethods

1. Formulation of the Problem and Principle of Solution
Let consider the problem

f(x) = cTx = min!, c ∈ IRn (18.117)

over the bounded regionM ⊂ IRn given by convex functions gi(x) (i = 1, 2, . . . ,m) in the form gi(x) ≤
0. A problem with a non-linear but convex objective function f(x) is transformed into this form, if

f(x)− xn+1 ≤ 0, xn+1 ∈ IR (18.118)

is considered as a further constraint and

f(x) = xn+1 = min! for all x = (x, xn+1) ∈ IRn+1 (18.119)

is solved with gi(x) = gi(x) ≤ 0.
The basic idea of the method is the iterative linear approximation ofM by a convex polyhedron in the

H2
x

2

x
1

x
3

H1

x*

f(x)

f(x)=const.

�-

M

Figure 18.13

neighborhood of the minimum point x∗, and therefore
the original program is reduced to a sequence of linear
programming problems.
First, a polyhedron is determined:

P1 = {x ∈ IRn : ai
Tx ≤ bi, i = 1, . . . , s}. (18.120)

From the linear program

f(x) = min! with x ∈ P1 (18.121)

an optimal extreme point x1 of P1 is determined with re-
spect to f(x). If x1 ∈ M holds, then the optimal solu-
tion of the original problem is found. Otherwise, a hy-
perplane is determined:

H1 = {x : as+1
Tx = bs+1, as+1

Tx1 > bs+1}, which separates the point x1 fromM , so the new polyhe-
dron contains

P2 = {x ∈ P1 : as+1
Tx ≤ bs+1}. (18.122)

Fig. 18.13 shows a schematic representation of the cutting plane method.

2. KelleyMethod
The different methods differ from each other in the choice of the separating planes Hk. In the case of
the Kelley method Hk is chosen in the following way: A jk is chosen so that

gjk(x
k) = max{gi(xk) (i = 1, . . . ,m)}. (18.123)

18.3 Discrete Dynamic Programming 943

At the point x = xk, the function gjk(x) has the tangent plane

T (x) = gjk(x
k) + (x− xk)

T∇gjk(x
k). (18.124)

The hyperplane Hk = {x ∈ IRn : T (x) = 0} separates the point xk from all points x with gjk(x) ≤ 0.
So, for the (k + 1)-th linear program, T (x) ≤ 0 is added as a further constraint. Every accumulation
point x∗ of the sequence {xk} is a minimum point of the original problem.
In practical applications this method shows a low speed of convergence. Furthermore, the number of
constraints is always increasing.

18.3 DiscreteDynamicProgramming

18.3.1 DiscreteDynamicDecisionModels
A wide class of optimization problems can be solved by the methods of dynamic programming. The
problem is considered as a process proceeding naturally or formally in time, and it is controlled by
time-dependent decisions. If the process can be decomposed into a finite or countably infinite number
of steps, then it is called discrete dynamic programming, otherwise it is a continuous dynamic program-
ming. In this section, only n-stage discrete processes are discussed.

18.3.1.1 n-Stage Decision Processes
An n-stage process P starts at stage 0 with an initial state xa = x0 and proceeds through the interme-
diate states x1, x2, . . . , xn−1 into a final state xn = xe ∈ Xe ⊆ IRm. The state vectors xj are in the
state space Xj ⊆ IRm. To drive a state xj−1 into the state xj, a decision uj is required. All possible

decision vectors uj in the state xj−1 form the decision space Uj(xj−1) ⊆ IRs. From xj−1 the consecutive

state xj can be obtained by the transformation (Fig. 18.14)

xj = gj(xj−1,uj), j = 1(1)n. (18.125)

x = x
a 0 g (x , u)

1 0 1

x
1 g (x , u)

2 1 2

x
2

x
n-1

u U (x)
1 1 0
+ u U (x)

2 2 1
+ u U (x)

n n n-1
+

g (x , u)
n n 1 n-

x = x
n e

Figure 18.14

18.3.1.2 Dynamic Programming Problem
Our goal is to determine a policy (u1, . . . ,un) which drives the process from the initial state xa into
the state xe considering all constraints so that it minimizes an objective function or cost function
f(f1(x0,u1), . . . , fn(xn−1,un)). The functions fj(xj−1,uj) are called stage costs. The standard form
of the dynamic programming problem is

OF: f(f1(x0,u1), . . . , fn(xn−1,un)) −→ min! (18.126a)

CT: xj = gj(xj−1,uj), j = 1(1)n,
x0 = xa, xn = xe ∈ Xe, xj ∈ Xj ⊆ IRm, j = 1(1)n,
uj ∈ Uj(xj−1) ⊆ IRm, j = 1(1)n.

⎫⎬⎭ (18.126b)

The first type of constraints xj are called dynamic and the others x0,uj are called static. Similarly to

(18.126a), a maximum problem can also be considered. A policy (u1, . . . ,un) satisfying all constraints
is called feasible. The methods of dynamic programming can be applied if the objective function satis-
fies certain additional requirements (see 18.3.3, p. 944).

944 18. Optimization

18.3.2 Examples ofDiscreteDecisionModels

18.3.2.1 Purchasing Problem

In the j-th period of a time interval which can be divided into n periods, a workshop needs vj units
of a certain primary material. The available amount of this material at the beginning of period j is
denoted by xj−1, in particular, x0 = xa is given. The amounts uj are to be determined for a unit price
cj, which should be purchased by the workshop at the end of each period. The given storage capacity
K must not be exceeded, i.e., xj−1 + uj ≤ K. A purchase policy (u1, . . . , un) should be determined,
which minimizes the total cost. This problem leads to the following dynamic programming problem:

OF: f(u1, . . . , un) =
n∑

j=1

fj(uj) =
n∑

j=1

cjuj −→ min! (18.127a)

CT: xj = xj−1 + uj − vj , j = 1(1)n,
x0 = xa , 0 ≤ xj ≤ K , j = 1(1)n,
Uj(xj−1) = {uj : max{0, vj − xj−1} ≤ uj ≤ K − xj−1} , j = 1(1)n.

⎫⎬⎭ (18.127b)

In (18.127b) it is ensured that demands are satisfied and the storage capacity is not exceeded. If there is
also a storage cost l per unit per period, then intermediate cost in the j-th period is (xj−1+uj−vj/2)l,
and the modified cost function is

f(x0, u1, . . . , xn−1, un) =
n∑

j=1

(cjuj + (xj−1 + uj − vj/2) · l). (18.128)

18.3.2.2 Knapsack Problem

One has to select some of the items A1, . . . , An with weights w1, . . . , wn and with values c1, . . . , cn so
that the total weight does not exceed a given bound W , and the total value is maximal. This problem
does not depend on time. It will be reformulated in the following way: At every stage a decision uj
about the selection of item Aj is made. Here, uj = 1 holds if Aj is selected, otherwise uj = 0. The
capacity still available at the beginning of a stage is denoted by xj−1, so the following dynamic problem
arises:

OF: f(u1, . . . , un) =
n∑

j=1

cjuj −→ max! (18.129a)

CT: xj = xj−1 − wjuj, j = 1(1)n,
x0 = W , 0 ≤ xj ≤ W, j = 1(1)n,
uj ∈ {0, 1}, falls xj−1 ≥ wj,
uj = 0 , falls xj−1 < wj,

}
j = 1(1)n.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (18.129b)

18.3.3 BellmanFunctional Equations

18.3.3.1 Properties of the Cost Function

In order to state the Bellman functional equations, the cost function must satisfy two requirements:

1. Separability
The function f(f1(x0,u1), . . . , fn(xn−1,un)) is called separable, if it can be given by binary functions
H1, . . . , Hn−1 and by functions F1, . . . , Fn in the following way:

f(f1(x0,u1), . . . , fn(xn−1,un)) = F1(f1(x0,u1), . . . , fn(xn−1,un)),

F1(f1(x0,u1), . . . , fn(xn−1,un)) = H1 (f1(x0,u1), F2(f2(x1,u2), . . . , fn(xn−1,un))) ,

. .

Fn−1(fn−1(xn−2,un−1), fn(xn−1,un)) = Hn−1 (fn−1(xn−2,un−1), Fn(fn(xn−1,un))) ,

Fn(fn(xn−1,un)) = fn(xn−1,un).

(18.130)

18.3 Discrete Dynamic Programming 945

2. Minimum Interchangeability

A function H(f̃(a), F̃ (b)) is called minimum interchangeable, if:

min
(a,b)∈A×B

H
(
f̃(a), F̃ (b)

)
= min

a∈A
H

(
f̃(a),min

b∈B
F̃ (b)

)
. (18.131)

This property is satisfied, for example, ifH is monotone increasing with respect to its second argument
for every a ∈ A, i.e., if for every a ∈ A,

H
(
f̃(a), F̃ (b1)

)
≤ H

(
f̃(a), F̃ (b2)

)
for F̃ (b1) ≤ F̃ (b2). (18.132)

Now, for the cost function of the dynamic programming problem, the separability of f and theminimum
interchangeability of all functions Hj, j = 1(1)n− 1 are required. The following often occurring type
of cost function satisfies both requirements:

f sum =
n∑

j=1

fj(xj−1,uj) or fmax = max
j=1(1)n

fj(xj−1,uj). (18.133)

The functions Hj are

Hsum
j = fj(xj−1,uj) +

n∑
k=j+1

fk(xk−1,uk) and (18.134)

Hmax
j = max

{
fj(xj−1,uj), max

k=j+1(1)n
fk(xk−1,uk)

}
. (18.135)

18.3.3.2 Formulation of the Functional Equations

The following functions are defined:

φj(xj−1) = min
uk∈Uk(xk−1)

k=j(1)n

Fj(fj(xj−1,uj), . . . , fn(xn−1,un)), j = 1(1)n, (18.136)

φn+1(xn) = 0. (18.137)

If there is no policy (u1, . . . ,un) driving the state xj−1 into a final state xe ∈ Xe, then we substitute

φj(xj−1) = ∞. Using the separability and minimum interchangeability conditions and the dynamic

constraints for j = 1(1)n we get:

φj(xj−1) = min
uj∈Uj(xj−1)

Hj(fj(xj−1,uj), min
uk∈Uk(xk−1)

k=j+1(1)n

Fj+1(fj+1(xj,uj+1), . . . , fn(xn−1,un))),

= min
uj∈Uj(xj−1)

Hj

(
fj(xj−1,uj), φj+1(xj)

)
φj(xj−1) = min

uj∈Uj(xj−1)
Hj

(
fj(xj−1,uj), φj+1(gj(xj−1,uj))

)
. (18.138)

Equations (18.138) and (18.137) are called the Bellman functional equations. φ1(x0) is the optimal
value of the cost function f .

18.3.4 BellmanOptimalityPrinciple

The evaluation of the functional equation

φj(xj−1) = min
uj∈Uj(xj−1)

Hj

(
fj(xj−1,uj), φj+1(xj)

)
(18.139)

946 18. Optimization

corresponds to the determination of an optimal policy (u∗
j , . . . ,u

∗
n) for which the subprocess Pj starting

at state xj−1 and consisting of the last n−j+1 stages of the total processP minimizes the cost function,
i.e.,

Fj(fj(xj−1,uj), . . . , fn(xn−1,un)) −→ min!. (18.140)

The optimal policy of the process Pj with the initial state xj−1 is independent of the decisions u1, . . . ,

uj−1 of the first j − 1 stages of P which have driven P to the state xj−1. To determine φj(xj−1) the

value φj+1(xj) is needed to know. Now, if (u∗
j , . . . ,u

∗
n) is an optimal policy for Pj, then, obviously,

(u∗
j+1, . . . ,u

∗
n) is an optimal policy for the subprocess Pj+1 starting at xj = gj(xj−1,u

∗
j). This state-

ment is generalized in the Bellman optimality principle.

Bellman Principle: If (u∗
1, . . . ,u

∗
n) is an optimal policy of the process P and (x∗

0, . . . ,x
∗
n) is the corre-

sponding sequence of states, then for every subprocess Pj, j = 1(1)n, with initial state x∗
j−1 the policy

(u∗
j , . . . ,u

∗
n) is also optimal.

18.3.5 BellmanFunctional EquationMethod

18.3.5.1 Determination ofMinimal Costs
With the functional equations (18.137), (18.138) and starting with φn+1(xn) = 0 every value φj(xj−1)
with xj−1 ∈ Xj−1 is determined in decreasing order of j. It requires the solution of an optimum problem

over the decision spaceUj(xj−1) for everyxj−1 ∈ Xj−1. For everyxj−1 there is aminimumpointuj ∈ Uj

as an optimal decision for the first stage of a subprocess Pj starting at xj−1. If the setsXj are not finite
or they are too large, then the values φj can be calculated for a set of selected nodes xj−1 ∈ Xj−1.

The intermediate values can be calculated by a certain interpolation method. φ1(x0) is the optimal
value of the cost function of process P . The optimal policy (u∗

1, . . . ,u
∗
n) and the corresponding states

(x∗
0, . . . ,x

∗
n) can be determined by one of the following two methods.

18.3.5.2 Determination of the Optimal Policy
1. Variant 1: During the evaluation of the functional equations, the computed uj is also saved

for every xj−1 ∈ Xj−1. After the calculation of φ1(x0), an optimal policy is got if x∗
1 = g1(x

∗
0,u

∗
1) is

determined from x0 = x∗
0 and the saved u1 = u∗

1. From x∗
1 and the saved decision u∗

2 follows x
∗
2, etc.

2. Variant 2: For every xj−1 ∈ Xj−1 only φj(xj−1) is saved. After every φj(xj−1) is known, a
forward calculation is made. Starting with j = 1 and x0 = x∗

0 one determines u∗
j in increasing order of

j by the evaluation of the functional equation

φj(x
∗
j−1) = min

uj∈Uj(x∗
j−1)

Hj

(
fj(x

∗
j−1,uj), φj+1(gj(x

∗
j−1,uj))

)
. (18.141)

x∗
j = gj(x

∗
j−1,u

∗
j) is obtained. During the forward calculation, an optimization problemmust be solved

again at every stage.
3. Comparison of the two Variants: The computation costs of variant 1 are less than variant 2
requires because of the forward calculations. However decision uj is saved for every state xj−1, which

may require very large memory in the case of a higher dimensional decision space Uj(xj−1), while in

the case of variant 2, only the values φj(xj−1) must be saved. Therefore, sometimes variant 2 is used
on computers.

18.3.6 Examples forApplications of the Functional Equation
Method

18.3.6.1 Optimal Purchasing Policy

1. Formulation of the Problem
The problem from 18.3.2.1, p. 944, to determine an optimal purchasing policy

18.3 Discrete Dynamic Programming 947

OF f(u1, . . . , un) =
n∑

j=1

cjuj −→ min! (18.142a)

CT xj = xj−1 + uj − vj, j = 1(1)n,

x0 = xa, 0 ≤ xj ≤ K, j = 1(1)n, (18.142b)

Uj(xj−1) = {uj : max{0, vj − xj−1} ≤ uj ≤ K − xj−1} , j = 1(1)n

leads to the functional equations

φn+1(xn) = 0, (18.143)

φj(xj−1) = min
uj∈Uj(xj−1)

(cjuj + φj+1(xj−1 + uj − vj)) , j = 1(1)n. (18.144)

2. Numerical Example

n = 6 , K = 10 , xa = 2 .
c1 = 4, c2 = 3, c3 = 5, c4 = 3, c5 = 4, c6 = 2,
v1 = 6, v2 = 7, v3 = 4, v4 = 2, v5 = 4, v6 = 3.

Backward Calculation: The function values φj(xj−1) will be determined for the states xj−1 =
0, 1, . . . , 10. Now, it is enough to make the minimum search only for integer values of uj.

j = 6: φ6(x5) = min
u6∈U6(x5)

c6u6 = c6 max{0, v6 − x5} = 2max{0, 3− x5}.

According to variant 2 of the Bellman functional equation method, only the values of φ6(x5) are written
in the last row. For example, φ4(0) is determined.

φ4(0) = min
2≤u4≤10

(3u4 + φ5(u4 − 2))

= min(28, 27, 26, 25, 24, 25, 26, 27, 30) = 24.

xj=0 1 2 3 4 5 6 7 8 9 10
j=1 75

2 59 56 53 50 47 44 41 38 35 32 29
3 44 39 34 29 24 21 18 15 12 9 6
4 24 21 18 15 12 9 6 4 2 0 0
5 22 18 14 10 6 4 2 0 0 0 0
6 6 4 2 0 0 0 0 0 0 0 0

Forward Calculation:

φ1(2) = 75 = min
4≤u1≤8

(4u1 + φ2(u1 − 4)).

One gets u∗
1 = 4 as the minimum point, therefore x∗

1 = x∗
0 + u∗

1 − v1 = 0. This method is repeated for
φ2(0) and for all later stages. The optimal policy is:

(u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5, u

∗
6) = (4, 10, 1, 6, 0, 3).

18.3.6.2 Knapsack Problem

1. Formulation of the Problem
Consider the problem given in 18.3.2.2, p. 944

OF :f(u1, . . . , un) =
n∑

j=1

cjuj −→ max! (18.145a)

CT: xj = xj−1 − wjuj, j = 1(1)n,
x0 = W, 0 ≤ xj ≤ W, j = 1(1)n,
uj ∈ {0, 1}, if xj−1 ≥ wj,
uj = 0 , if xj−1 < wj,

}
j = 1(1)n.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (18.145b)

Since this is a maximum problem, the Bellman functional equations are now

φn+1(xn) = 0,

948 18. Optimization

φj(xj−1) = max
uj∈Uj(xj−1)

(cjuj + φj+1(xj−1 − wjuj)), j = 1(1)n.

The decisions can be only 0 and 1, so it is practical to apply variant 1 of the functional equationmethod.
For j = n, n− 1, . . . , 1:

φj(xj−1) =
{
cj + φj+1(xj−1 − wj) if xj−1 ≥ wj and cj + φj+1(xj−1 − wj) > φj+1(xj−1),
φj+1(xj−1) otherwise,

uj(xj−1) =
{
1 if xj−1 ≥ wj and cj + φj+1(xj−1 − wj) > φj+1(xj−1),
0 otherwise.

2. Numerical Example

W = 10, n = 6.
c1 = 1, c2 = 2, c3 = 3, c4 = 1, c5 = 5, c6 = 4,
w1 = 2, w2 = 4, w3 = 6, w4 = 3, w5 = 7, w6 = 6.

Since the weightswj are integers, the possible values for xj are xj ∈ {0, 1, . . . , 10}, j = 1(1)n, and x0 =
10. The table contains the function values φj(xj−1) and the actual decision uj(xj−1) for every stage and
for every state xj−1. For example, the values of φ6(x5), φ3(2), φ3(6), and φ3(8) are calculated:

φ6(x5) =
{
0, if x5 < w6 = 4,
c6 = 6, otherwise,

u6(x5) =
{
0, if x5 < 4,
0, otherwise.

φ3(2) : x2 = 2 < w3 = 3: φ3(2) = φ4(2) = 3, u3(2) = 0.

φ3(6) : x2 > w3 and c3 + φ3(x2 − w3) = 6 + 3 < φ4(x2) = 10: φ3(6) = 10, u3(6) = 0.

φ3(8) : x2 > w3 and c3 + φ3(x2 − w3) = 6 + 9 > φ4(x2) = 10: φ3(8) = 15, u3(8) = 1.

The optimal policy is

(u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5, u

∗
6) = (0, 1, 1, 1, 0, 1), φ1(10) = 19.

xj = 0 1 2 3 4 5 6 7 8 9 10
j = 1 19; 0

2 0; 0 3; 0 4; 1 7; 1 9; 0 10; 1 13; 1 13; 1 15; 0 16; 0 19; 1
3 0; 0 3; 0 3; 0 6; 1 9; 1 9; 0 10; 0 12; 1 15; 1 16; 1 16; 0
4 0; 0 3; 1 3; 1 3; 1 6; 0 9; 1 10; 1 10; 1 10; 1 13; 0 16; 1
5 0; 0 0; 0 0; 0 0; 0 6; 0 7; 1 7; 1 7; 1 7; 1 13; 1 13; 1
6 0; 0 0; 0 0; 0 0; 0 6; 1 6; 1 6; 1 6; 1 6; 1 6; 1 6; 1

	18 Optimization
	18.1 LinearProgramming
	18.1.1 Formulation of the Problem and Geometrical Representation
	18.1.1.1 The Form of a Linear Programming Problem
	18.1.1.2 Examples and Graphical Solutions

	18.1.2 Basic Notions of Linear Programming, Normal Form
	18.1.2.1 Extreme Points and Basis
	18.1.2.2 Normal Form of the Linear Programming Problem

	18.1.3 Simplex Method
	18.1.3.1 Simplex Tableau
	18.1.3.2 Transition to the New Simplex Tableau
	18.1.3.3 Determination of an Initial Simplex Tableau
	18.1.3.4 Revised Simplex Method
	18.1.3.5 Duality in Linear Programming

	18.1.4 Special Linear Programming Problems
	18.1.4.1 Transportation Problem
	18.1.4.2 Assignment Problem
	18.1.4.3 Distribution Problem
	18.1.4.4 Travelling Salesman
	18.1.4.5 Scheduling Problem

	18.2 Non-linear Optimization
	18.2.1 Formulation of the Problem, Theoretical Basis
	18.2.1.1 Formulation of the Problem
	18.2.1.2 Optimality Conditions
	18.2.1.3 Duality in Optimization

	18.2.2 Special Non-linear Optimization Problems
	18.2.2.1 Convex Optimization
	18.2.2.2 Quadratic Optimization

	18.2.3 Solution Methods for Quadratic Optimization Problems
	18.2.3.1 Wolfe’s Method
	18.2.3.2 Hildreth-d’Esopo Method

	18.2.4 Numerical Search Procedures
	18.2.4.1 One-Dimensional Search
	18.2.4.2 Minimum Search in n-Dimensional Euclidean Vector Space
	Dimensional Euclidean Vector Space

	18.2.5 Methods for Unconstrained Problems
	18.2.5.1 Method of Steepest Descent
	18.2.5.2 Application of the Newton Method
	18.2.5.3 Conjugate Gradient Methods
	18.2.5.4 Method of Davidon, Fletcher and Powell (DFP)

	18.2.6 Evolution Strategies
	18.2.6.1 Evolution Principles
	18.2.6.2 Evolution Algorithms
	18.2.6.3 Classification of Evolution Strategies
	18.2.6.4 Generating Random Numbers
	18.2.6.5 Application of Evolution Strategies
	18.2.6.6 (1 + 1)- Mutation-Selection Strategy
	18.2.6.7 Population Strategies

	18.2.7 Gradient Method for Problems with Inequality Type Constraints
	18.2.7.1 Method of Feasible Directions
	18.2.7.2 Gradient Projection Method

	18.2.8 Penalty Function and Barrier Methods
	18.2.8.1 Penalty Function Method
	18.2.8.2 Barrier Method

	18.2.9 Cutting Plane Methods

	18.3 Discrete Dynamic Programming
	18.3.1 Discrete Dynamic DecisionModels
	18.3.1.1 n-Stage Decision Processes
	18.3.1.2 Dynamic Programming Problem

	18.3.2 Examples of Discrete Decision Models
	18.3.2.1 Purchasing Problem
	18.3.2.2 Knapsack Problem

	18.3.3 Bellman Functional Equations
	18.3.3.1 Properties of the Cost Function
	18.3.3.2 Formulation of the Functional Equations

	18.3.4 Bellman Optimality Principle
	18.3.5 Bellman Functional Equation Method
	18.3.5.1 Determination of Minimal Costs
	18.3.5.2 Determination of the Optimal Policy

	18.3.6 Examples for Applications of the Functional Equation Method
	18.3.6.1 Optimal Purchasing Policy
	18.3.6.2 Knapsack Problem

