
15 IntegralTransformations

15.1 Notion of IntegralTransformation

15.1.1 GeneralDefinition of Integral Transformations
AnIntegral transformation is a correspondence between two functions f(t) and F (p) in the form

F (p) =

+∞∫
−∞

K(p, t)f(t) dt. (15.1a)

The function f(t) is called the original function, its domain is the original space. The function F (p) is
called the transform, its domain is the image space.
The function K(p, t) is called the kernel of the transformation. In general, t is a real variable, and
p = σ + iω is a complex variable.
The shorter notation can be used by introducing the symbol T for the integral transformation with
kernel K(p, t):

F (p) = T {f(t)}. (15.1b)

Then, (15.1b) is called T transformation.

15.1.2 Special Integral Transformations
Different kernelsK(p, t) and different original spaces yield different integral transformations. Themost
widely known transformations are the Laplace transformation, the Laplace-Carson transformation,
and the Fourier transformation. In this book an overview is given about the integral transformations
of functions of one variable (see also Table 15.1). More recently, some additional transformations
have been introduced for use in pattern recognition and in characterizing signals, such as the Wavelet
transformation, the Gabor transformation and the Walsh transformation (see 15.6, p. 800ff.).

15.1.3 InverseTransformations
The inverse transformation of a transform into the original function has special importance in applica-
tions. With the symbol T −1 the inverse integral transformation of (15.1a) is

f(t) = T −1{F (p)}. (15.2a)

The operator T −1 is called the inverse operator of T , so

T −1{T {f(t)}} = f(t). (15.2b)

The determination of the inverse transformation means the solution of the integral equation (15.1a),
where the function F (p) is given and function f(t) is to be determined. If there is a solution, then it
can be written in the form

f(t) = T −1{F (p)}. (15.2c)

The explicit determination of inverse operators for different integral transformations, i.e., for different
kernels K(p, t), belongs to the fundamental problems of the theory of integral transformations. The
user can solve practical problems by using the given correspondences between transforms and original
functions in the corresponding tables (Table 21.13, p. 1109, Table 21.14, p. 1114, andTable 21.15,
p. 1128).

15.1.4 Linearity of Integral Transformations
If f1(t) and f2(t) are transformable functions, then

T {k1f1(t) + k2f2(t)} = k1T {f1(t)}+ k2T {f2(t)}, (15.3)

where k1 and k2 are arbitrary numbers. That is, an integral transformation represents a linear operation
on the set T of the T -transformable functions.
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768 15. Integral Transformations

Table 15.1 Overview of integral transformations of functions of one variable

Transformation Kernel K(p, t) Symbol Remark

Laplace
transformation

{
0 for t < 0
e−pt for t > 0

L{f(t)} =

∞∫
0

e−ptf(t)dt p = σ + iω

Two-sided
Laplace
transformation

e−pt LII{f(t)} =

+∞∫
−∞

e−ptf(t)dt

LII{f(t)1(t)} = L{f(t)}
where

1(t) =
{
0 for t < 0
1 for t > 0

Finite
Laplace
transformation

⎧⎨⎩
0 for t < 0
e−pt for 0 < t < a
0 for t > a

La{f(t)} =

a∫
0

e−ptf(t)dt

Laplace-Carson
transformation

{
0 for t < 0
pe−pt for t > 0

C{f(t)} =

∞∫
0

pe−ptf(t)dt

The Carson transforma-
tion can also be a two-
sided and finite transfor-
mation.

Fourier
transformation

e−iωt F{f(t)} =

+∞∫
−∞

e−iωtf(t)dt p = σ + iω σ = 0

One-sided
Fourier
transformation

{
0 for t < 0
e−iωt for t > 0

FI{f(t)} =

∞∫
0

e−iωtf(t)dt p = σ + iω σ = 0

Finite
Fourier
transformation

⎧⎨⎩
0 for t < 0
e−iωt for 0 < t < a
0 for t > a

Fa{f(t)} =

a∫
0

e−iωtf(t)dt p = σ + iω σ = 0

Fourier cosine
transformation

{
0 for t < 0
Re [eiωt] for t > 0 Fc{f(t)} =

∞∫
0

f(t) cosωt dt p = σ + iω σ = 0

Fourier sine
transformation

{
0 for t < 0
Im [eiωt] for t > 0 Fs{f(t)} =

∞∫
0

f(t) sinωt dt p = σ + iω σ = 0

Mellin
transformation

{
0 for t < 0
t p−1 for t > 0

M{f(t)} =

∞∫
0

t p−1f(t)dt

Hankel
transformation
of order ν

{
0 for t < 0
tJν(σt) for t > 0

Hν{f(t)} =

∞∫
0

tJν(σt)f(t)dt

p = σ + iω ω = 0
Jν(σt) is the ν-th or-
der Bessel function of the
first kind.

Stieltjes
transformation

⎧⎨⎩
0 for t < 0
1

p+ t
for t > 0

S{f(t)} =

∞∫
0

f(t)

p+ t
dt
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15.1.5 IntegralTransformations forFunctionsofSeveralVariables

Integral transformations for functions of several variables are also called multiple integral transforma-
tions (see [15.13]). The best-known ones are the double Laplace transformation, i.e., the Laplace trans-
formation for functions of two variables, the double Laplace-Carson transformation and the double
Fourier transformation. The definition of the double Laplace transformation is

F (p, q) = L2{f(x, y)} ≡
∞∫

x=0

∞∫
y=0

e−px−qyf(x, y) dx dy. (15.4)

The symbol L denotes the Laplace transformation for functions of one variable (see Table 15.1).

15.1.6 Applications of Integral Transformations

1. Fields of Applications
Besides the great theoretical importance that integral transformations have in such basic fields of math-
ematics as the theory of integral equations and the theory of linear operators, they have a large field of
applications in the solutions of practical problems in physics and engineering. Methods with applica-
tions of integral transformations are often called operator methods. They are suitable to solve ordinary
and partial differential equations, integral equations and difference equations.

2. Scheme of the Operator Method
The general scheme to the use of an operator method with an integral transformation is represented
in Fig. 15.1. One gets the solution of a problem not directly from the original defining equation; first
an integral transformation is applied. The inverse transformation of the solution of the transformed
equation gives the solution of the original problem.

Problem
Equation of

the problem

Solution of

the equation
Result

Transformed

equation

Solution of

the transformed

equation

Transformation Inverse transformation

Solution by using

the transformation

Figure 15.1

The application of the operator method to solve ordinary differential equations consists of the following
three steps:

1. Transition from a differential equation of an unknown function to an equation of its transform.

2. Solution of the transformed equation in the image space. The transformed equation is usually no
longer a differential equation, but an algebraic equation.

3. Inverse transformation of the transform with help of T −1 into the original space, i.e., determination
of the solution of the original problem.

The major difficulty of the operator method is usually not the solution of the transformed equation,
but the transformation of the function and the inverse transformation.
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15.2 LaplaceTransformation

15.2.1 Properties of the LaplaceTransformation

15.2.1.1 Laplace Transformation, Original and Image Space

1. Definition of the Laplace Transformation
The Laplace transformation

L{f(t)} =

∞∫
0

e−ptf(t) dt = F (p) (15.5)

assigns a function F (p) of a complex variable p to a function f(t) of a real variable t, if the given
improper integral exists. f(t) is called the original function, F (p) is called the transform of f(t). In
the further discussion it is assumed that the improper integral exists if the original function f(t) is
piecewise smooth in its domain t ≥ 0, in the so called original space, and for t → ∞, |f(t)| ≤ Keαt

holds with certain constants K > 0, α > 0. The domain of the transform F (p) is called the image
space.
In the literature the Laplace transformation is often found also in the Wagner or Laplace-Carson form

LW{f(t)} = p

∞∫
0

e−ptf(t) dt = pF (p). (15.6)

2. Convergence
The Laplace integral L{f(t)} converges in the half-plane Re p > α (Fig. 15.2). The transform F (p)
is an analytic function with the properties:

1. lim
Re p→∞

F (p) = 0. (15.7a)

This property is a necessary condition for F (p) to be a transform.

2. lim
p→0

(p→∞)

pF (p) = A, (15.7b)

if the original function f(t) has a finite limit lim
t→∞
(t→0)

f(t) = A.

0

Im p

Re p
α

Figure 15.2

f(t)=sin t

1

0

b)a)

t 0 t

a

f(t)=sin(at)

1

2�
2�

Figure 15.3

3. Inverse Laplace Transformation
One can retrieve the original function from the transform with the formula

L−1{F (p)} =
1

2πi

c+i∞∫
c−i∞

e ptF (p) dp =
{
f(t) for t > 0,
0 for t < 0.

(15.8)
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The path of integration of this complex integral is a line Re p = c parallel to the imaginary axis, where
Re p = c > α. If the function f(t) has a jump at t = 0, i.e., lim

t→+0
f(t) �= 0, then the integral has the

value
1

2
f(+0) there.

15.2.1.2 Rules for the Evaluation of the Laplace Transformation
The rules for evaluation are the mappings of operations in the original domain into operations in the
transform space.
Hereafter the original functions will be denoted by lowercase letters, the transforms are denoted by the
corresponding capital letters.

1. Addition or Linearity Law
The Laplace transform of a linear combination of functions is the same linear combination of the
Laplace transforms, if they exist. With constants λ1, . . . , λn that is

L{λ1f1(t) + λ2f2(t) + · · ·+ λnfn(t)} = λ1F1(p) + λ2F2(p) + · · ·+ λnFn(p). (15.9)

2. Similarity Laws
The Laplace transform of f(at) (a > 0, a real) is the Laplace transform of the original function divided
by a and with the argument p/a:

L{f(at)} =
1

a
F
(
p

a

)
(a > 0, real). (15.10a)

Analogously for the inverse transformation

L−1{F (ap)} =
1

a
f
(
t

a

)
(a > 0). (15.10b)

Fig. 15.3 shows the application of the similarity laws for a sine function.

Determination of the Laplace transform of f(t) = sin(ωt). The transform of the sine function is

L{sin(t)} = F (p) = 1/(p2 + 1). Application of the similarity law gives L{sin(ωt)} =
1

ω
F (p/ω) =

1

ω

1

(p/ω)2 + 1
=

ω

p2 + ω2
.

3. Translation Laws

1. Shifting to the Right The Laplace transform of an original function shifted to the right by a
(a > 0) is equal to the Laplace transform of the non-shifted original function multiplied by the factor
e−ap:

L{f(t− a)} = e−ap F (p). (15.11a)

2. Shifting to the Left The Laplace transform of an original function shifted to the left by a is
equal to eap multiplied by the difference of the transform of the non-shifted function and the integral∫ a
0 f(t) e−pt dt:

L{f(t+ a)} = e ap

⎡⎣F (p)−
a∫

0

e−pt f(t) dt

⎤⎦ . (15.11b)

Figs. 15.4 and 15.5 show the cosine function shifted to the right and a line shifted to the left.

4. Frequency Shift Theorem
The Laplace transform of an original function multiplied by e−bt is equal to the Laplace transform with
the argument p+ b ( b is an arbitrary complex number):

L{e−btf(t)} = F (p+ b). (15.12)
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f(t) f(t)
1 1

0 0 tt 3 3+2π

2π

Figure 15.4

f(t)f(t)

0 t -3 0 t

Figure 15.5

5. Differentiation in the Original Space
If the derivatives f ′(t), f ′′(t), . . . , f (n)(t) exist for t > 0 and the highest derivative of f(t) has a trans-
form, then the lower derivatives of f(t) and also f(t) have a transform, and:

L{f ′(t)} = pF (p)− f(+0),

L{f ′′(t)} = p2 F (p)− f(+0) p− f ′(+0),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L{f (n)(t)} = pn F (p)− f(+0) pn−1 − f ′(+0) pn−2 − · · ·
− f (n−2)(+0) p− f (n−1)(+0) with

f (ν)(+0) = lim
t→+0

f (ν)(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.13)

Equation (15.13) gives the following representation of the Laplace integral, which can be used for ap-
proximating the Laplace integral:

L{f(t)} =
f(+0)

p
+

f ′(+0)

p2
+

f ′′(+0)

p3
+ · · ·+ f (n−1)(+0)

pn−1
+

1

pn
L{f (n)(t)}. (15.14)

6. Differentiation in the Image Space

L{tnf(t)} = (−1)nF (n)(p). (15.15)

The n-th derivative of the transform is equal to the Laplace transform of the (−t)n-th multiple of the
original function f(t):

L{(−1)n tn f(t)} = F (n)(p) (n = 1, 2, . . .) . (15.16)

7. Integration in the Original Space
The transform of an integral of the original function is equal to 1/pn (n > 0) multiplied by the trans-
form of the original function:

L
⎧⎨⎩

t∫
0

dτ1

τ1∫
0

dτ2 . . .

τn−1∫
0

f(τn) dτn

⎫⎬⎭ =
1

(n− 1) !
L
⎧⎨⎩

t∫
0

(t− τ)(n−1) f(τ) dτ

⎫⎬⎭ =
1

pn
F (p). (15.17a)

In the special case of the ordinary simple integral

L
⎧⎨⎩

t∫
0

f(τ) dτ

⎫⎬⎭ =
1

p
F (p) (15.17b)

holds. In the original space, differentiation and integration act in converse ways if the initial values are
zeros.

8. Integration in the Image Space

L
{
f(t)

tn

}
=

∞∫
p

dp1

∞∫
p1

dp2 . . .

∞∫
pn−1

F (pn) dpn =
1

(n− 1) !

∞∫
p

(z − p)n−1F (z) dz. (15.18)
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This formula is valid only if f(t)/tn has a Laplace transform. For this purpose, f(x) must tend to zero
fast enough as t → 0. The path of integration can be any ray starting at p, which forms an acute angle
with the positive half of the real axis.

9. Division Law

In the special case of n = 1 of (15.18)

L
{
f(t)

t

}
=

∞∫
p

F (z) dz (15.19)

holds. For the existence of the integral (15.19), the limit lim
t→0

f(t)

t
must also exist.

10. Differentiation and Integration with Respect to a Parameter

L
{
∂f(t, α)

∂α

}
=

∂F (p, α)

∂α
, (15.20a) L

⎧⎨⎩
α2∫

α1

f(t, α) dα

⎫⎬⎭ =

α2∫
α1

F (p, α) dα. (15.20b)

Sometimes one can calculate Laplace integrals from known integrals with the help of these formulas.

11. Convolution

1. Convolution in the Original Space The convolution of two functions f1(t) and f2(t) is the
integral

f1 ∗ f2 =

t∫
0

f1(τ) · f2(t− τ) dτ . (15.21)

Equation (15.21) is also called the one-sided convolution in the interval (0, t). A two-sided convolution
occurs for the Fourier transformation (convolution in the interval (−∞,∞) see 15.3.1.3, 9., p. 789).
The convolution (15.21) has the properties

a) Commutative law: f1 ∗ f2 = f2 ∗ f1. (15.22a)

b) Associative law: (f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3). (15.22b)

c) Distributive law: (f1 + f2) ∗ f3 = f1 ∗ f3 + f2 ∗ f3. (15.22c)

g(t)

f(t)

(f  g)(t)*
t

t

t

Figure 15.6

In the image domain, the usual multiplication
corresponds to the convolution:

L{f1 ∗ f2} = F1(p) · F2(p). (15.23)

The convolution of two functions is shown in
Fig. 15.6. One can apply the convolution theo-
rem to determine the original function:

a) Factoring the transform

F (p) = F1(p) · F2(p).

b) Determining the original functions f1(t) and
f2(t) of the transforms F1(p) and F2(p) (from a
table).

c) Determining the original function associated
to F (p) by convolution of f1(t) and f2(t) in the
original space (f(t) = f1(t) ∗ f2(t)).
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2. Convolution in the Image Space (Complex Convolution)

L{f1(t) · f2(t)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

2πi

x1+i∞∫
x1−i∞

F1(z) · F2(p− z) dz,

1

2πi

x2+i∞∫
x2−i∞

F1(p− z) · F2(z) dz.

(15.24)

The integration is performed along a line parallel to the imaginary axis. In the first integral, x1 and p
must be chosen so that z is in the half plane of convergence of L{f1} and p − z is in the half plane of
convergence of L{f2}. The corresponding requirements must be valid for the second integral.

15.2.1.3 Transforms of Special Functions

1. Step Function
The unit jump at t = t0 is called a step function (Fig. 15.7) (see also 14.4.3.2, 3., p. 757); it is also
called the Heaviside unit step function:

u(t− t0) =
{
1 for t > t0,
0 for t < t0

(t0 > 0). (15.25)

A: f(t) = u(t− t0) sinωt, F (p) = e−t0p
ω cosω t0 + p sinω t0

p2 + ω2
(Fig. 15.8).

B: f(t) = u(t− t0) sinω (t− t0), F (p) = e−t0p
ω

p2 + ω2
(Fig. 15.9).

f(t)

1

0 tt0

u(t-t0)

Figure 15.7

1

� tt0

u(t-t ) sin t0 %

f(t)

Figure 15.8

f(t)
1

0 tt0

u(t-t ) sin (t-t )0 0%

Figure 15.9

2. Rectangular Impulse
A rectangular impulse of height 1 and width T (Fig. 15.10) is composed by the superposition of two
step functions in the form

uT (t− t0) = u(t− t0)− u(t− t0 − T ) =

⎧⎨⎩
0 for t < t0,
1 for t0 < t < t0 + T,
0 for t > t0 + T ;

(15.26)

L{uT (t− t0)} =
e−t0p(1− e−Tp)

p
. (15.27)

3. Impulse Function (Dirac δ Function)
(See also 12.9.5.4, p. 700.) The impulse function δ(t − t0) can obviously be interpreted as a limit of
the rectangular impulse of width T and height 1/T at the point t = t0 (Fig. 15.11):

δ(t− t0) = lim
T → 0

1

T
[ u(t− t0)− u(t− t0 − T ) ]. (15.28)
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f(t)

1

0 tt0 t0+T

uT(t-t0)

Figure 15.10

f(t)

1
T

0 tt0 t0+T

Figure 15.11

For a continuous function h(t),

b∫
a

h(t) δ(t− t0) dt =
{
h(t0), if t0 is inside (a, b),
0, if t0 is outside (a, b).

(15.29)

Relations such as

δ(t− t0) =
du(t− t0)

dt
, L{ δ(t− t0)} = e−t0p (t0 ≥ 0) (15.30)

are investigated generally in distribution theory (see 12.9.5.3, p. 699).

4. Piecewise Differentiable Functions

The transform of a piecewise differentiable function can be determined easily with the help of the δ
function: If f(t) is piecewise differentiable and at the points tν (ν = 1, 2, . . . , n) it has jumps aν , then
its first derivative can be represented in the form

df(t)

dt
= f ′

s(t) + a1δ(t− t1) + a2δ(t− t2) + · · ·+ anδ(t− tn) (15.31)

where f ′
s(t) is the usual derivative of f(t), where it is differentiable.

If jumps occur first in the derivative, then similar formulas are valid. In this way, one can easily de-
termine the transform of functions which correspond to curves composed of parabolic arcs of arbitrarily
high degree, e.g., curves found empirically. In formal application of (15.13), the values f(+0), f ′(+0), . . .
should be replaced by zero in the case of a jump.

A:

f(t) =
{
at+ b for 0 < t < t0,
0 otherwise,

(Fig. 15.12); f ′(t) = a ut0(t) + b δ(t) − (at0 + b) δ(t− t0); L{f ′(t)} =

a

p
(1− e−t0p) + b− (at0 + b) e−t0p; L{f(t)} =

1

p

[
a

p
+ b− e−t0p

(
a

p
+ at0 + b

)]
.

B:

f(t) =

⎧⎨⎩
t for 0 < t < t0,
2t0 − t for t0 < t < 2t0,
0 for t > 2t0,

(Fig. 15.13); f ′(t) =

⎧⎨⎩
1 for 0 < t < t0,
−1 for t0 < t < 2t0,
0 for t > 2t0,

(Fig. 15.14);

f ′′(t) = δ(t)−δ(t−t0)−δ(t−t0)+δ(t−2t0); L{f ′′(t)} = 1−2e−t0p+e−2t0p; L{f(t)} =
( 1− e−t0p )2

p2
.

C: f(t) =

⎧⎪⎪⎨⎪⎪⎩
E t/t0 for 0 < t < t0,
E for t0 < t < T − t0,
−E(t− T )/t0 for T − t0 < t < T,
0 otherwise,

(Fig. 15.15);
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f(t)

tt00

b

Figure 15.12

f(t)

0 tt0 2t0

Figure 15.13

f’(t)
1

0 t
t0 2t0

Figure 15.14

f ′(t) =

⎧⎪⎪⎨⎪⎪⎩
E/t0 for 0 < t < t0,
0 for t0 < t < T − t0, (t > T ),
−E/t0 for T − t0 < t < T,
0 otherwise,

(Fig. 15.16);

f ′′(t) =
E

t0
δ(t)−E

t0
δ(t−t0)−

E

t0
δ(t−T+t0)+

E

t0
δ(t−T ); L{f ′′(t)} =

E

t0

[
1− e−t0p − e−(T−t0)p + e−Tp

]
;

L{f(t)} =
E

t0

( 1− e−t0p )( 1− e−(T−t0)p )

p2
.

f(t)

E

0 tt0 T-t0 T

Figure 15.15

f’(t)
E
t0

0 t
t0 T-t0 T

Figure 15.16

D:

f(t) =
{
t− t2 for 0 < t < 1,
0 otherwise,

(Fig. 15.17); f ′(t) =
{
1− 2t for 0 < t < 1,
0 otherwise,

(Fig. 15.18);

f ′′(t) = −2u1(t) + δ(t) + δ(t− 1);

L{f ′′(t)} = −2

p
(1− e−p) + 1 + e−p; L{f(t)} =

1 + e−p

p2
− 2 (1− e−p)

p3
.

f(t)

1/4

0 1/2 1 t

Figure 15.17

f’(t)
1

0
1/2 1

t

Figure 15.18

5. Periodic Functions
The transform of a periodic function f ∗(t) with period T , which is a periodic continuation of a function
f(t), can be obtained from the Laplace transform of f(t) multiplied by the periodization factor

(1− e−Tp)−1. (15.32)
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A: The periodic continuation of f(t) from exampleB (see above) with period T = 2t0 is f
∗(t) with

L{f ∗(t)} =
(1− e−t0p)2

p2
· 1

1− e−2t0p
=

1− e−t0p

p2(1 + e−t0p)
.

B: The periodic continuation of f(t) from example C (see above) with period T is f ∗(t) with

L{f ∗(t)} =
E (1− e−t0p) (1− e−(T−t0)p)

t0 p2 (1− e−Tp)
.

15.2.1.4 Dirac δ Function andDistributions
In describing certain technical systems by linear differential equations, functions u(t) and δ(t) often
occur as perturbation or input functions, although the conditions required in 15.2.1.1, 1. p. 770, are
not satisfied: u(t) is discontinuous, and δ(t) cannot be defined in the sense of classical analysis.
Distribution theory offers a solution by introducing so-called generalized functions (distributions), so
that with the known continuous real functions δ(t) can also be examined, where the necessary differen-
tiability is also guaranteed. Distributions can be represented in different ways. One of the best known
representations is the continuous real linear form, introduced by L. Schwartz (see 12.9.5, p. 698).
Fourier coefficients and Fourier series can be associated uniquely to periodic distributions, analogously
to real functions (see 7.4, p. 474).

1. Approximations of the δ Function
Analogously to (15.28), the impulse function δ(t) can be approximated by a rectangular impulse of
width ε and height 1/ε (ε > 0):

f(t, ε) =
{
1/ε for |t| < ε/2,
0 for |t| ≥ ε/2.

(15.33a)

Further examples of the approximation of δ(t) are the error curve (see 2.6.3, p. 73) and Lorentz function
(see 2.11.2, p. 95):

f(t, ε) =
1

ε
√
2π

e−
t2

2ε2 (ε > 0), (15.33b)

f(t, ε) =
ε/π

t2 + ε2
(ε > 0). (15.33c)

These functions have the common properties:

1.

∞∫
−∞

f(t, ε) dt = 1. (15.34a)

2. f(−t, ε) = f(t, ε), i.e., they are even functions. (15.34b)

3. lim
ε→0

f(t, ε) =
{∞ for t = 0,
0 for t �= 0.

(15.34c)

2. Properties of the δ Function
Important properties of the δ function are:

1.

x+a∫
x−a

f(t)δ(x− t) dt = f(x) (f is continuous, a > 0). (15.35)

2. δ(αx) =
1

α
δ(x) (α > 0). (15.36)

3. δ (g(x)) =
n∑

i=1

1

|g′(xi)|
δ(x− xi) with g(xi) = 0 and g′(xi) �= 0 (i = 1, 2, . . . , n). (15.37)
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Here all roots of g(x) are considered and they must be simple.

4. n-th Derivative of the δ Function: After n repeated partial integrations of

f (n)(x) =

x+a∫
x−a

f (n)(t) δ(x− t) dt, (15.38a)

a rule is obtained for the n-th derivative of the δ function:

(−1)nf (n)(x) =

x+a∫
x−a

f(t) δ(n)(x− t) dt. (15.38b)

15.2.2 InverseTransformation into theOriginal Space

To perform an inverse transformation, there are the following possibilities:
1. Using a table of correspondences, i.e., a table with the corresponding original functions and trans-
forms (see Table 21.13, p. 1109).

2. Reducing to known correspondences by using some properties of the transformation (see 15.2.2.2,
p. 778, and 15.2.2.3, p. 779).

3. Evaluating the inverse formula (see 15.2.2.4, p. 780).

15.2.2.1 Inverse Transformation with the Help of Tables

The use of a table is shown here by an example with Table 21.13, p. 1109.

Further tables can be found, e.g., in [15.3].

F (p) =
1

(p2 + ω2)(p+ c)
= F1(p) · F2(p), L−1{F1(p)} = L−1

{
1

p2 + ω2

}
=

1

ω
sinωt = f1(t),

L−1{F2(p)} = L−1

{
1

p+ c

}
= e−ct = f2(t). Applying the convolution theorem (15.23) yields:

f(t) = L−1{F1(p) · F2(p)}

=
∫ t

0
f1(τ) · f2(t− τ) dτ =

∫ t

0
e−c(t−τ) sinωτ

ω
dτ =

1

c2 + ω2

(
c sinωt− ω cosωt

ω
+ e−ct

)
.

15.2.2.2 Partial Fraction Decomposition

1. Principle
In many applications, there are transforms in the form F (p) = H(p)/G(p), whereG(p) is a polynomial
of p. If the original functions forH(p) and 1/G(p) are already known, then the required original function
of F (p) can be got by applying the convolution theorem.

2. Simple Real Roots ofG(p)

If the transform 1/G(p) has only simple poles pν (ν = 1, 2, . . . , n), then it has the following partial
fraction decomposition:

1

G(p)
=

n∑
ν=1

1

G′(pν)(p− pν)
. (15.39)

The corresponding original function is

q(t) = L−1

{
1

G(p)

}
=

n∑
ν=1

1

G′(pν)
epν t. (15.40)
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3. The Heaviside Expansion Theorem
If the numerator H(p) is also a polynomial of p with a lower degree than G(p), then we can obtain the
original function of F (p) with the help of the Heaviside formula

f(t) =
n∑

ν=1

H(pν)

G′(pν)
epνt. (15.41)

4. Complex Roots
Even in cases when the denominator has simple complex roots, the Heaviside expansion theorem can
be used in the same way. The terms belonging to complex conjugate roots can be collected into one
quadratic expression, whose inverse transformation can be found in tables also in the case of roots of
higher multiplicity.

F (p) =
1

(p+ c)(p2 + ω2)
, i.e., H(p) = 1, G(p) = (p + c)(p2 + ω2), G′(p) = 3p2 + 2pc + ω2. The

zeroes ofG(p) p1 = −c, p2 = iω, p3 = −iω are all simple. According to the Heaviside theorem one gets

f(t) =
1

ω2 + c2
e−ct − 1

2ω(ω − ic)
eiωt − 1

2ω(ω + ic)
e−iωt or by using partial fraction decomposition and

the table F (p) =
1

ω2 + c2

[
1

p+ c
+

c− p

p2 + ω2

]
, f(t) =

1

ω2 + c2

[
e−ct +

c

ω
sinωt− cosωt

]
. These

expressions for f(t) are identical.

15.2.2.3 Series Expansion

In order to obtain f(t) from F (p) one can try to expand F (p) into a series F (p) =
∞∑
n=0

Fn(p), whose

terms Fn(p) are transforms of known functions, i.e., Fn(p) = L{fn(t)}.
1. F (p) is an Absolutely Convergent Series
If F (p) has an absolutely convergent series

F (p) =
∞∑
n=0

an
pλn

, (15.42)

for |p| > R, where the values λn form an arbitrary increasing sequences of numbers 0 < λ0 < λ1 <
· · · < λn < · · · < · · · → ∞, then a termwise inverse transformation is possible:

f(t) =
∞∑
n=0

an
tλn−1

Γ (λn)
. (15.43)

Γ denotes the gamma function (see 8.2.5, 6., p. 514). In particular, for λn = n + 1, i.e., for F (p) =
∞∑
n=0

an+1

pn+1
the series f(t) =

∞∑
n=0

an+1

n !
tn is obtained, which is convergent for every real and complex t.

Furthermore, one can have an estimation in the form |f(t)| < C ec|t| (C, c real constants).

F (p) =
1√

1 + p2
=

1

p

(
1 +

1

p2

)−1/2

=
∞∑
n=0

⎛⎝−1

2
n

⎞⎠ 1

p2n+1
. After a termwise transformation into the

original space the result is f(t) =
∞∑
n=0

⎛⎝−1

2
n

⎞⎠ t2n

(2n) !
=

∞∑
n=0

(−1)n

(n ! )2

(
t

2

)2n

= J0(t) (Bessel function of

0 order).

2. F (p) is a Meromorphic Function
If F (p) is a meromorphic function, which can be represented as the quotient of two integer functions
(of two functions having everywhere convergent power series expansions) which do not have common
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roots, and so can be rewritten as the sum of an integer function and infinitely many partial fractions,
then the equality

1

2πi

c+iyn∫
c−iyn

etp F (p) dp =
n∑

ν=1

bνe
pνt − 1

2πi

∫
(Kn)

etpF (p) dp (15.44)

is obtained. Here pν (ν = 1, 2, . . . , n) are the first-order poles of the function F (p), bν are the corre-
sponding residues (see 14.3.5.4, p. 753), yν are certain values and Kν are certain curves, for example,
half circles in the sense represented in Fig. 15.19. The solution f(t) has the form

f(t) =
∞∑
ν=1

bνe
pνt, if

1

2πi

∫
(Kn)

etpF (p) dp → 0 (15.45)

as y → ∞, what is often not easy to verify.

yn

y3

y2

y1

x
-y1
-y2
-y3
-yn

K1K2K3Kn

pn
p3

p2
p1

Figure 15.19

ε
E

FC x
B

jω

-jω

D -yn

y ynA

Figure 15.20

In certain cases, e.g., when the rational part of the meromorphic function F (p) is identically zero, the
above result is a formal application of the Heaviside expansion theorem to meromorphic functions.

15.2.2.4 Inverse Integral
The inverse formula

f(t) = lim
yn→∞

1

2πi

c+iyn∫
c−iyn

etp F (p) dp (15.46)

represents a complex integral of a function analytic in a certain domain. The usual methods of inte-
gration for complex functions can be used, e.g., the residue calculation or certain changes of the path
of integration according to the Cauchy integral theorem.

F (p) =
p

p2 + ω2
e−

√
pα is double valued because of

√
p. Therefore, we chose the following path of inte-

gration (Fig. 15.20):
1

2πi

∮
(K)

etp
p

p2 + ω2
e−

√
pα dp =

∫
�
AB

· · ·+
∫
�
CD

· · ·+
∫
�
EF

· · ·+
∫

DA

· · ·+
∫
BE

· · ·+
∫
FC

· · · =

∑
Res etpF (p) = e−α

√
ω/2 cos(ωt − α

√
ω/2). According to the Jordan lemma (see 14.4.3, p. 755), the

integral part over
�
AB and

�
CD vanishes as yn → ∞. The integrand remains bounded on the circular

arc
�
EF (radius ε), and the length of the path of integration tends to zero for ε → 0; so this term of the

integral also vanishes. There are to investigate the integrals on the two horizontal segments BE and
FC, where it is to consider the upper side (p = reiπ) and the lower side (p = re−iπ) of the negative real
axis:
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∫ 0

−∞
F (p)etp dp = −

∫ ∞

0
e−tr r

r2 + ω2
e−iα

√
r dr,

∫ −∞

0
F (p)etp dp =

∫ ∞

0
e−tr r

r2 + ω2
e iα

√
r dr.

Finally one gets:

f(t) = e−α
√

ω/2 cos
(
ω t− α

√
ω

2

)
− 1

π

∫ ∞

0
e−tr r sinα

√
r

r2 + ω2
dr.

15.2.3 Solution ofDifferential Equations using Laplace
Transformation

It has been noticed already from the rules of calculation of the Laplace transformation (see 15.2.1.2,
p. 771), that complicated operations, such as differentiation or integration in the original space, can be
replaced by simple algebraic operations in the image space using the Laplace transform. Here, some
additional conditions are considered, such as initial conditions in using the differentiation rule. These
conditions are necessary for the solution of differential equations.

15.2.3.1 OrdinaryLinearDifferentialEquationswithConstantCoefficients

1. Principle
The n-th order differential equation of the form

y(n)(t) + cn−1 y
(n−1)(t) + · · ·+ c1 y

′(t) + c0 y(t) = f(t) (15.47a)

with the initial values y(+0) = y0, y
′(+0) = y′0, . . . , y

(n−1)(+0) = y
(n−1)
0 can be transformed by Laplace

transformation into the equation

n∑
k=0

ckp
kY (p)−

n∑
k=1

ck
k−1∑
ν=0

pk−ν−1y
(ν)
0 = F (p) (cn = 1). (15.47b)

HereG(p) =
n∑

k=0
ckp

k = 0 is the characteristic equation of the differential equation (see 4.6.2.1, p. 315).

2. First-Order Differential Equations
The original and the transformed equations are:

y′(t) + c0y(t) = f(t), y(+0) = y0, (15.48a) (p+ c0)Y (p)− y0 = F (p), (15.48b)

where c0 = const. The solution for Y (p) results in

Y (p) =
F (p) + y0
p+ c0

. (15.48c)

Special case: For f(t) = λ eμt with F (p) =
λ

p− μ
, (λ, μ const) : (15.49a)

Y (p) =
λ

(p− μ)(p+ c0)
+

y0
p+ c0

, (15.49b)

y(t) =
λ

μ+ c0
eμt +

(
y0 −

λ

μ+ c0

)
e−c0t. (15.49c)

3. Second-Order Differential Equations
The original and transformed equations are:

y′′(t) + 2ay′(t) + by(t) = f(t), y(+0) = y0, y′(+0) = y′0. (15.50a)

(p2 + 2ap+ b)Y (p)− 2ay0 − (py0 + y′0) = F (p). (15.50b)
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The solution for Y (p) results in

Y (p) =
F (p) + (2a+ p) y0 + y′0

p2 + 2ap+ b
. (15.50c)

Distinction of Cases:

a) b < a2 : G(p) = (p− α1)(p− α2) (α1, α2 real; α1 �= α2), (15.51a)

q(t) = L−1

{
1

G(p)

}
=

1

α1 − α2

(eα1t − eα2t). (15.51b)

b) b = a2 : G(p) = (p− α)2, (15.52a) q(t) = t eαt. (15.52b)

c) b > a2 : G(p) has complex roots, (15.53a)

q(t) = L−1

{
1

G(p)

}
=

1√
b− a2

e−at sin
√
b− a2t. (15.53b)

The solution y(t) can be obtained as the convolution of the original function of the numerator of Y (p)
and q(t). The application of the convolution can be avoided if a direct transformation of the right-hand
side can be found.

The transformed equation for the differential equation y′′(t) + 2y′(t) + 10y(t) = 37 cos 3t + 9e−t

with y0 = 1 and y′0 = 0 is Y (p) =
p+ 2

p2 + 2p+ 10
+

37p

(p2 + 9)(p2 + 2p+ 10)
+

9

(p+ 1)(p2 + 2p+ 10)
. The

representation Y (p) =
−p

p2 + 2p+ 10
− 19

(p2 + 2p+ 10)
+

p

(p2 + 9)
+

18

(p2 + 9)
+

1

(p+ 1)
follows from

partial fraction decomposition of the second and third terms of the right-hand side but not separating
the second-order terms into linear ones. The solution after termwise transformation is (see Table
21.13, p. 1109) y(t) = (− cos 3t− 6 sin 3t)e−t + cos 3t+ 6 sin 3t+ e−t.

4. n-th Order Differential Equations
The characteristic equation G(p) = 0 of this differential equation (see (15.47a)) has only simple roots
α1, α2, . . . , αn, and none of them is equal to zero. Two cases are distinguished for the perturbation
function f(t).

1. If the perturbation function f(t) is the jump function u(t) which often occurs in practical problems,
then the solution is:

u(t) =
{
1 for t > 0,
0 for t < 0,

(15.54a) y(t) =
1

G(0)
+

n∑
ν=1

1

ανG′(αν)
eανt. (15.54b)

2. For a general perturbation function f(t), one gets the solution ỹ(t) from (15.54b) in the form of the
Duhamel formula which uses the convolution (see 15.2.1.2, 11., p. 773):

ỹ(t) =
d

dt

t∫
0

y(t− τ)f(τ) dτ =
d

dt
[ y ∗ f ]. (15.55)

15.2.3.2 Ordinary Linear Differential Equations with Coefficients
Depending on the Variable

Differential equations whose coefficients are polynomials in t can also be solved by Laplace transfor-
mation. Applying (15.16), in the image space yields a differential equation, whose order can be lower
than the original one.
If the coefficients are first-order polynomials, then the differential equation in the image space is a first-
order differential equation and may be it can be solved more easily.
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Bessel differential equation of 0 order: t
d2f

dt2
+

d f

dt
+ tf = 0 (see (9.52a, p. 562) for n = 0). The

transformation into the image space results in

− d

dp
[ p2F (p)− pf(0)− f ′(0) ] + pF (p)− f(0)− dF (p)

dp
= 0 or

dF

dp
= − p

p2 + 1
F (p) .

Separation of the variables and integration yields logF (p) = −
∫ p dp

p2 + 1
= − log

√
p2 + 1 + logC,

F (p) =
C√
p2 + 1

(C is the integration constant), f(t) = CJ0(t) (see in 15.2.2.3,1., p. 779 with

the Bessel function of 0 order).

15.2.3.3 Partial Differential Equations

1. General Introduction
The solution of a partial differential equation is a function of at least two variables: u = u(x, t). Since
the Laplace transformation represents an integration with respect to only one variable, the other vari-
able should be considered as a constant in the transformation:

L{u(x, t)} =

∞∫
0

e−ptu(x, t) dt = U(x, p). (15.56)

x also remains fixed in the transformation of derivatives:

L
{
∂u(x, t)

∂t

}
= pL{u(x, t)} − u(x,+0),

L
{
∂2u(x, t)

∂t2

}
= p2L{u(x, t)} − u(x,+0)p− ut(x,+0).

(15.57)

The differentiation with respect to x is supposed to be interchangeable with the Laplace integral:

L
{
∂u(x, t)

∂x

}
=

∂

∂x
L{u(x, t)} =

∂

∂x
U(x, p). (15.58)

In this way, an ordinary differential equation is obtained in the image space. Furthermore, the boundary
and initial conditions are to be transformed into the image space.

2. Solution of the One-Dimensional Heat Conduction Equation for a

HomogeneousMedium
1. Formulation of the Problem Suppose the one-dimensional heat conduction equation with van-
ishing perturbation and for a homogeneous medium is given in the form

uxx − a−2ut = uxx − uy = 0 (15.59a)

in the original space 0 < t < ∞, 0 < x < l and with the initial and boundary conditions

u(x,+0) = u0(x), u(+0, t) = a0(t), u(l − 0, t) = a1(t). (15.59b)

The time coordinate is replaced by y = at. (15.59a) is also a parabolic type equation, just as the
three-dimensional heat conduction equation (see 9.2.3.3, p. 591).
2. Laplace Transformation The transformed equation is

d2U

dx2
= pU − u0(x), (15.60a)

and the boundary conditions are

U(+0, p) = A0(p), U(l − 0, p) = A1(p). (15.60b)

The solution of the transformed equation for zero starting temperature u0(x) = 0 is

U(x, p) = c1e
x
√
p + c2e

−x
√
p. (15.60c)
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It is a good idea to produce two particular solutions U1 and U2 with the properties

U1(0, p) = 1, U1(l, p) = 0, (15.61a) U2(0, p) = 0, U2(l, p) = 1, i.e., (15.61b)

U1(x, p) =
e(l−x)

√
p − e−(l−x)

√
p

e l
√
p − e−l

√
p

, (15.61c) U2(x, p) =
ex

√
p − e−x

√
p

e l
√
p − e−l

√
p
. (15.61d)

The required solution of the transformed equation has the form

U(x, p) = A0(p)U1(x, p) + A1(p)U2(x, p). (15.62)

3. Inverse Transformation The inverse transformation is especially easy in the case of l → ∞:

U(x, p) = a0(p)e
−x

√
p, (15.63a) u(x, t) =

x

2
√
π

t∫
0

a0(t− τ)

τ 3/2
exp

(
−x2

4τ

)
dτ. (15.63b)

15.3 FourierTransformation

15.3.1 Properties of the Fourier Transformation

15.3.1.1 Fourier Integral

1. Fourier Integral in Complex Representation
The basis of the Fourier transformation is the Fourier integral, also called the integral formula of
Fourier: If a non-periodic function f(t) satisfies the Dirichlet conditions (see 7.4.1.2, 3., p. 475) in
an arbitrary finite interval, and furthermore the integral

+∞∫
−∞

|f(t)| dt (15.64a) is convergent, then f(t) =
1

2π

+∞∫
−∞

+∞∫
−∞

eiω(t−τ)f(τ) dω dτ (15.64b)

at every point where the function f(t) is continuous, and

f(t+ 0) + f(t− 0)

2
=

1

π

∞∫
0

dω

+∞∫
−∞

f(τ) cos ω (t− τ) dτ (15.64c)

at the points of discontinuity.

2. Equivalent Representations
Other equivalent forms for the Fourier integral (15.64b) are:

1. f(t) =
1

2π

+∞∫
−∞

+∞∫
−∞

f(τ) cos [ω (t− τ) ] dω dτ. (15.65a)

2. f(t) =

∞∫
0

[ a(ω) cosωt+ b(ω) sinωt ] dω with the coefficients (15.65b)

a(ω) =
1

π

+∞∫
−∞

f(t) cosωt dt (15.65c) b(ω) =
1

π

+∞∫
−∞

f(t) sinωt dt. (15.65d)

3. f(t) =

∞∫
0

A(ω) cos [ωt+ ψ(ω) ] dω. (15.66)
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4. f(t) =

∞∫
0

A(ω) sin [ωt+ ϕ(ω) ] dω. (15.67)

The following relations are valid here:

A(ω) =
√
a2(ω) + b2(ω) , (15.68a) ϕ(ω) = ψ(ω) +

π

2
, (15.68b)

cosψ(ω) =
a(ω)

A(ω)
, (15.68c) sinψ(ω) =

b(ω)

A(ω)
, (15.68d)

cosϕ(ω) =
b(ω)

A(ω)
, (15.68e) sinϕ(ω) =

a(ω)

A(ω)
. (15.68f)

15.3.1.2 Fourier Transformation and Inverse Transformation

1. Definition of the Fourier Transformation
The Fourier transformation is an integral transformation of the form (15.1a), which comes from the
Fourier integral (15.64b) by substituting

F (ω) =

+∞∫
−∞

e−iωτf(τ) dτ. (15.69)

The following relation is valid between the real original function f(t) and the usually complex transform
F (ω):

f(t) =
1

2π

+∞∫
−∞

eiω tF (ω) dω. (15.70)

In the brief notation one uses F :

F (ω) = F{ f(t) } =

+∞∫
−∞

e−iω tf(t) dt. (15.71)

The original function f(t) is Fourier transformable if the integral (15.69), i.e., an improper integral with
the parameter ω, exists. If the Fourier integral does not exist as an ordinary improper integral, then it
is considered as the Cauchy principal value (see 8.2.3.3, 1., p. 510). The transform F (ω) is also called
the Fourier transform; it is bounded, continuous, and it tends to zero for |ω| → ∞:

lim
|ω|→∞

F (ω) = 0. (15.72)

The existence and boundedness of F (ω) follow directly from the obvious inequality

|F (ω)| ≤
+∞∫

−∞
|e−iω tf(t)| dt ≤

+∞∫
−∞

|f(t)| dt. (15.73)

The existence of the Fourier transform is a sufficient condition for the continuity of F (ω) and for the
properties F (ω) → 0 for |ω| → ∞. This statement is often used in the following form: If the function
f(t) in (−∞, ∞) is absolutely integrable, then its Fourier transform is a continuous function of ω, and
(15.72) holds.

The following functions are not Fourier transformable: Constant functions, arbitrary periodic func-
tions (e.g., sin ω t, cos ω t), power functions, polynomials, exponential functions (e.g., eαt , hyperbolic
functions).
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2. Fourier Cosine and Fourier Sine Transformation
In the Fourier transformation (15.71), the integrand can be decomposed into a sine and a cosine part.
So, one gets the sine and the cosine Fourier transformation.

1. Fourier Sine Transformation

Fs(ω) = Fs{ f(t) } =

∞∫
0

f(t) sin (ωt) dt. (15.74a)

2. Fourier Cosine Transformation

Fc(ω) = Fc{ f(t) } =

∞∫
0

f(t) cos (ω t) dt. (15.74b)

3. Conversion Formulas Between the Fourier sine (15.74a) and the Fourier cosine transformation
(15.74b) on one hand, and the Fourier transformation (15.71) on the other hand, the following relations
are valid:

F (ω) = F{ f(t) } = Fc{ f(t) + f(−t) } − iFs{ f(t)− f(−t) }, (15.75a)

Fs(ω) =
i

2
F{ f(|t|)sign t }, (15.75b) Fc(ω) =

1

2
F{ f(|t|) }. (15.75c)

For an even or for an odd function f(t) the following representations hold:

f(t) even: F{ f(t) } = 2Fc{ f(t) },
f(t) odd: F{ f(t) } = −2iFs{ f(t) }.

(15.75d)

3. Exponential Fourier Transformation
Differently from the definition of F (ω) in (15.71), the transform

Fe(ω) = Fe{f(t)} =
1

2

+∞∫
−∞

eiωtf(t) dt (15.76)

is called the exponential Fourier transformation, so that

F (ω) = 2Fe(−ω). (15.77)

4. Tables of the Fourier Transformation
Based on formulas (15.75a,b,c) one either does not need special tables for the corresponding Fourier
sine and Fourier cosine transformations, or one uses tables for Fourier sine and Fourier cosine transfor-
mations and calculates F(ω) with the help of (15.75a,b,c). In Table 21.14.1 (see p. 1114) and Table
21.14.2 (see p. 1120) the Fourier sine transforms Fs(ω), the Fourier cosine transforms Fc(ω) respec-
tively, in Table 21.14.3 (see p. 1125) for some functions the Fourier transform F(ω) and in Table
21.14.4 (see p. 1127) the exponential transform Fe(ω) are given.

The function of the unipolar rectangular impulse f(t) = 1 for |t| < t0, f(t) = 0 for |t| > t0 (A.1)
(Fig. 15.21) satisfies the assumptions of the existence of the Fourier integral (15.64a). According to

(15.65c,d) the coefficients are a(ω) =
1

π

∫ +t0

−t0
cos ω t dt =

2

πω
sin ω t0 and b(ω) =

1

π

∫ +t0

−t0
sin ω t dt = 0

(A.2) and so from (15.65b) follows f(t) =
2

π

∫ ∞

0

sin ω t0 cos ω t

ω
dω (A.3).

5. Spectral Interpretation of the Fourier Transformation
Analogously to the Fourier series of a periodic function, the Fourier integral for a non-periodic function
has a simple physical interpretation. A function f(t), for which the Fourier integral exists, can be rep-
resented according to (15.66) and (15.67) as a sum of sinusoidal vibrations with continuously changing
frequency ω in the form
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A(ω) dω sin [ω t+ ϕ(ω) ], (15.78a) A(ω) dω cos [ω t+ ψ(ω) ]. (15.78b)

The expressionA(ω) dω gives the amplitude of the wave components and ϕ(ω) and ψ(ω) are the phases.
The same interpretation holds for the complex formulation: The function f(t) is a sum (or integral) of
summands depending on ω of the form

1

2π
F (ω) dω eiω t, (15.79)

where the quantity
1

2π
F (ω) also determines the amplitude and the phase of all the parts.

This spectral interpretation of the Fourier integral and the Fourier transformation has a big advantage
in applications in physics and engineering. The transform

F (ω) = |F (ω)| eiψ(ω) or F (ω) = |F (ω)| eiϕ(ω) (15.80a)

is called the spectrum or frequency spectrum of the function f(t), the quantity

|F (ω)| = π A(ω) (15.80b)

is the amplitude spectrum and ϕ(ω) and ψ(ω) are the phase spectra of the function f(t). The relation
between the spectrum F (ω) and the coefficients (15.65c,d) is

F (ω) = π[ a(ω)− ib(ω) ], (15.81)

from which one gets the following statements:

1. If f(t) is a real function, then the amplitude spectrum |F (ω)| is an even function of ω, and the phase
spectrum is an odd function of ω.

2. If f(t) is a real and even function, then its spectrum F (ω) is real, and if f(t) is real and odd, then
the spectrum F (ω) is imaginary.

f(t)

1

0 tt0-t0

Figure 15.21

2
ω

2t0

F(ω)

ωt0π 2π 3π0-π-2π-3π

Figure 15.22

Substituting the result (A.2) for the unipolar rectangular impulse function on p. 786 into (15.81),
then one gets for the transform F (ω) and for the amplitude spectrum |F (ω)| (Fig. 15.22)
F (ω) = F{ f(t) } = πa(ω) = 2

sin ω t0
ω

(A.3), |F (ω)| = 2
∣∣∣∣sin ω t0

ω

∣∣∣∣ (A.4). The points of contact of

the amplitude spectrum |F (ω)| with the hyperbola
2

ω
are at ωt0 = ±(2n+ 1)

π

2
(n = 0, 1, 2, . . .) .

15.3.1.3 Rules of Calculation with the Fourier Transformation
As it has been already pointed out for the Laplace transformation, the rules of calculation with integral
transformations mean the mappings of certain operations in the original space into operations in the
image space. Supposing that both functions f(t) and g(t) are absolutely integrable in the interval
(−∞, ∞) and their Fourier transforms are

F (ω) = F{ f(t) } and G(ω) = F{ g(t) } (15.82)

then the following rules are valid.
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1. Addition or Linearity Laws
If α and β are two coefficients from (−∞,∞), then:

F{αf(t) + βg(t) } = αF (ω) + βG(ω). (15.83)

2. Similarity Law
For real α �= 0,

F{ f(t/α) } = |α|F (αω). (15.84)

3. Shifting Theorem
For real α �= 0 and real β,

F{ f(αt+ β) } = (1/|α|) eiβω/αF (ω/α) or (15.85a)

F{ f(t− t0) } = e−iωt0F (ω). (15.85b)

If t0 is replaced by −t0 in (15.85b), then

F{ f(t+ t0) } = eiωt0F (ω). (15.85c)

4. Frequency-Shift Theorem
For real α > 0 and β ∈ (−∞,∞),

F{ eiβtf(αt) } = (1/α)F ((ω − β)/α) or (15.86a)

F{ eiω0tf(t) } = F (ω − ω0). (15.86b)

5. Differentiation in the Image Space
If the function tnf(t) is absolutely integrable in (−∞,∞), then the Fourier transform of the function
f(t) has n continuous derivatives, which can be determined for k = 1, 2, . . . , n as

dkF (ω)

dωk
=

+∞∫
−∞

∂k

∂ωk

[
e−iωtf(t)

]
dt = (−1)k

+∞∫
−∞

e−iωttkf(t) dt, (15.87a)

where

lim
ω→±∞

dkF (ω)

dωk
= 0. (15.87b)

With the above assumptions these relations imply that

F{ tnf(t) } = in
dnF (ω)

dωn
. (15.87c)

6. Differentiation in the Original Space

1. First Derivative If a function f(t) is continuous and absolutely integrable in (−∞,∞) and it
tends to zero for t → ±∞, and the derivative f ′(t) exists everywhere except, maybe, at certain points,
and this derivative is absolutely integrable in (−∞,∞), then

F{ f ′(t) } = iωF{ f(t) }. (15.88a)

2. n-th Derivative If the requirements of the theorem for the first derivative are valid for all deriva-
tives up to f (n−1), then

F{ f (n)(t) } = (iω)nF{ f(t) }. (15.88b)

These rules of differentiation will be used in the solution of differential equations (see 15.3.2, p. 791).

7. Integration in the Image Space
α2∫

α1

F (ω) dω = i[G(α2)−G(α1)] with G(ω) = F{g(t)} and g(t) =
f(t)

t
. (15.89)
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8. Integration in the Original Space and the Parseval Formula

1. Integration Theorem If the assumption

+∞∫
−∞

f(t) dt = 0 (15.90a) is fulfilled, then F
⎧⎨⎩

t∫
−∞

f(t) dt

⎫⎬⎭ =
1

iω
F (ω). (15.90b)

2. Parseval Formula If the function f(t) and its square are integrable in the interval (−∞,∞),
then

+∞∫
−∞

|f(t)|2 dt = 1

2π

+∞∫
−∞

|F (ω)|2 dω. (15.91)

9. Convolution
The two-sided convolution

f1(t) ∗ f2(t) =

+∞∫
−∞

f1(τ)f2(t− τ) dτ (15.92)

is considered in the interval (−∞,∞) and it exists under the assumptions that the functions f1(t) and
f2(t) are absolutely integrable in the interval (−∞,∞). If f1(t) and f2(t) both vanish for t < 0, then
one gets the one-sided convolution from (15.92)

f1(t) ∗ f2(t) =

⎧⎪⎪⎨⎪⎪⎩
t∫

0

f1(τ)f2(t− τ) dτ for t ≥ 0,

0 for t < 0.

(15.93)

So, it is a special case of the two-sided convolution. While the Fourier transformation uses the two-
sided convolution, the Laplace transformation uses the one-sided convolution.

For the Fourier transformation of a two-sided convolution

F{ f1(t) ∗ f2(t) } = F{ f1(t) } · F{ f2(t) } (15.94)

holds, if both integrals

+∞∫
−∞

|f1(t)|2 dt and

+∞∫
−∞

|f2(t)|2 dt (15.95)

exist, i.e., the functions and their squares are integrable in the interval (−∞,∞).

Calculation of the two-sided convolution ψ(t) = f(t) ∗ f(t) =
∫ +∞

−∞
f(τ)f(t − τ) dτ (A.1) for the

function of the unipolar rectangular impulse function (A.1) in 15.3.1.2, 4., p. 786.

Since ψ(t) =
∫ t0

−t0
f(t − τ) dτ =

∫ t+t0

t−t0
f(τ) dτ (A.2) one gets for t < −2t0 and t > 2t0, ψ(t) = 0 and

for −2t0 ≤ t ≤ 0, ψ(t) =
∫ t+t0

−t0
dτ = t+ 2t0. (A.3)

Analogously, for 0 < t ≤ 2t0: ψ(t) =
∫ t0

t−t0
dτ = −t+ 2t0 (A.4) holds.

Altogether, for this convolution (Fig. 15.23)

ψ(t) = f(t) ∗ f(t) =

⎧⎨⎩
t+ 2t0 for −2t0 ≤ t ≤ 0,
−t+ 2t0 for 0 < t ≤ 2t0,
0 for |t| > 2t0

(A.5)

follows. For the Fourier transform F (ω) of the unipolar rectangular impulse (A.1) (see p. 786 and
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Fig. 15.21) Ψ(ω) = F{ψ(t) } = F{ f(t) ∗ f(t)} = [F (ω) ]2 = 4
sin2 ω t0

ω2
(A.6) follows and for the

amplitude spectrum of the function f(t) |F (ω)| = 2
∣∣∣∣sin ω t0

ω

∣∣∣∣ (A.7) holds.

0 t2t0-2t0

ψ(t)

Figure 15.23

ϕ(t)

1

0 t2t0

-1
-2t0

Figure 15.24

10. Comparing the Fourier and Laplace Transformations
There is a strong relation between the Fourier and Laplace transformation, since the Fourier trans-
formation is a special case of the Laplace transformation with p = iω. Consequently, every Fourier
transformable function is also Laplace transformable, while the reverse statement is not valid for every
f(t). Table 15.2 contains comparisons of several properties of both integral transformations.

Table 15.2 Comparison of the properties of the Fourier and the Laplace transformation

Fourier transformation Laplace transformation

F (ω) = F{ f(t) } =
+∞∫
−∞

e−iω tf(t) dt F (p) = L{ f(t), p } =
∞∫
0
e−ptf(t) dt

ω is real, it has a physical meaning, e.g., p is complex, p = r + ix.
frequency.

One shifting theorem. Two shifting theorems.

interval: (−∞,+∞) interval: [ 0,∞)
Solution of differential equations, problems de-
scribed by two-sided domain, e.g., the wave
equation.

Solution of differential equations, problems de-
scribed by one-sided domain, e.g., the heat con-
duction equation.

Differentiation law contains no initial values. Differentiation law contains initial values.

Convergence of the Fourier integral depends only
on f(t).

Convergence of the Laplace integral can be im-
proved by the factor e−pt.

It satisfies the two-sided convolution law. It satisfies the one-sided convolution law.

15.3.1.4 Transforms of Special Functions

A: Which image function belongs to the original function f(t) = e−a|t|, Re a > 0 (A.1)? Con-

sidering that |t| = −t for t < 0 and |t| = t for t > 0 with (15.71) one gets:
∫ +A

−A
e−iω t−a|t|dt =

∫ 0

−A
e−(iω−a)t dt+

∫ +A

0
e−(iω+a)t dt = −e−(iω−a)t

iω − a

∣∣∣∣∣
0

−A

− e−(iω+a)t

iω + a

∣∣∣∣∣
+A

0

=
−1 + e(iω−a)A

iω − a
+
1− e−(iω+a)A

iω + a
(A.2).

Since |e−aA| = e−ARe a and Re a > 0, the limit of (A2) exists for A → ∞, so that F (ω) = F{ e−a|t| } =
2a

a2 + ω2
(A.3).

B: Which image function belongs to the original function f(t) = e−at, Re a > 0? The function is
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not Fourier transformable, since the limit of
∫ A

−A
e−iωt−atdt does not exist for A → ∞ .

C: Determination of the Fourier transform of the bipolar rectangular impulse function (Fig. 15.24)

ϕ(t) =

⎧⎨⎩
1 for −2t0 < t < 0,
−1 for 0 < t < 2t0,
0 for |t| > 2t0 ,

(C.1)

where ϕ(t) can be expressed by using equation (A.1) given for the unipolar rectangular impulse on
p. 786. There is ϕ(t) = f(t + t0) − f(t − t0) (C.2). With the Fourier transformation according to
(15.85b, 15.85c) one getsΦ(ω) = F{ϕ(t) } = eiω t0F (ω)−e−iω t0F (ω), (C.3) fromwhich, using (A.1),

φ(ω) = (eiω t0 − e−iω t0)
2 sin ω t0

ω
= 4i

sin2 ω t0
ω

(C.4) follows.

D: Image function of a damped oscillation: The damped oscillation represented in Fig. 15.25a is

given by the function f(t) =
{

0 for t < 0,
e−αt cos ω0t for t ≥ 0.

To simplify the calculations, the Fourier transformation is calculatedwith the complex function f ∗ (t) =
e(−α+iω0)t, with f(t) = Re (f ∗ (t)). The Fourier transformation gives

F{ f ∗ (t) } =
∫ ∞

0
e−iω te(−α+iω0)t dt =

∫ ∞

0
e(−α+(ω−ω0)i t dt =

e−αtei(ω−ω0)t

−α + i(ω0 − ω)

∣∣∣∣∣
∞

0

=
1

α− iω0 − ω)
=

α + i(ω0 − ω)

α2 + (ω − ω0)2
. The result is the Lorentz or Breit-Wigner curve (see also 2.11.2, p. 95)

F{ f(t) } =
α

α2 + (ω − ω0)2
(Fig. 15.25b). A damped oscillation in the time domain corresponds to

a unique peak in the frequency domain.

2�
�

0

f(t)

1

-1

0 t

a)

F(ω)
1
α

0 ω0 ω
b)

Figure 15.25

y(t)

0 t
0

t-t
0

Figure 15.26

15.3.2 Solution ofDifferential Equations using the Fourier

Transformation
Analogously to Laplace transformation, an important field of application of the Fourier transformation
is the solution of differential equations, since these equations can be transformed by the integral trans-
formation into a simple form. In the case of ordinary differential equations one gets algebraic equations,
in the case of partial differential equations one gets ordinary differential equations.
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15.3.2.1 Ordinary Linear Differential Equations
The differential equation

y′(t) + a y(t) = f(t) with f(t) =

{
1 for |t| < t0,

0 for |t| ≥ t0,
(15.96a)

i.e., with the function f(t) of Fig. 15.21, is transformed by the Fourier transformation

F{ y(t) } = Y (ω) (15.96b)

into the algebraic equation

iω Y + aY =
2 sin ω t0

ω
, (15.96c) giving Y (ω) = 2

sin ωt0
ω(a+ iω)

. (15.96d)

The inverse transformation gives

y(t) = F−1{Y (ω) } = F−1

{
2

sin ωt0
ω(a+ iω)

}
=

1

π

+∞∫
−∞

eiωt sin ωt0
ω(a+ iω)

dω (15.96e)

and

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for −∞ < t < −t0,
1

a

[
1− e−a(t+t0)

]
for −t0 ≤ t ≤ +t0,

1

a

[
e−a(t−t0) − e−a(t−t0)

]
for t0 < t < ∞ .

(15.96f)

Function (15.96f) is represented graphically in Fig. 15.26.

15.3.2.2 Partial Differential Equations

1. General Remarks
The solution of a partial differential equation is a function of at least two variables: u = u(x, t). As the
Fourier transformation is an integration with respect to only one variable, the other variable is consid-
ered a constant during the transformation. Here the variable x is kept constant and the transformation
is to be performed with respect to t:

F{u(x, t) } =

+∞∫
−∞

e−iω tu(x, t) dt = U(x, ω). (15.97)

During the transformation of the derivatives the variable x is again kept constant:

F
{
∂(n)u(x, t)

∂tn

}
= (iω)nF{u(x, t) } = (iω)nU(x, ω). (15.98)

The differentiation with respect to x is supposed to be interchangeable with the Fourier integral:

F
{
∂u(x, t)

∂x

}
=

∂

∂x
F{ u(x, t) } =

∂

∂x
U(x, ω) . (15.99)

In this way an ordinary differential equation is obtained in the image space. Furthermore the boundary
and initial conditions are to be transformed into the image space.

2. Solution of the One-DimensionalWave Equation for a HomogeneousMedium

1. Formulation of the Problem The one-dimensional wave equation with vanishing perturbation
term and for a homogeneous medium is:

uxx − utt = 0. (15.100a)
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Like the three-dimensional wave equation (see 9.2.3.2,p. 590), the equation (15.100a) is a partial dif-
ferential equation of hyperbolic type. The Cauchy problem is correctly defined by the following initial
conditions

u(x, 0) = f(x) (−∞ < x < ∞), ut(x, 0) = g(x) (0 ≤ t < ∞). (15.100b)

2. Fourier Transformation The Fourier transformation is to be performed with respect to xwhere
the time coordinate is kept constant:

F{u(x, t) } = U(ω, t). (15.101a)

One gets:

(iω)2U(ω, t) − d2U(ω, t)

dt2
= 0 with (15.101b)

F{ u(x, 0) } = U(ω, 0) = F{ f(x) } = F (ω), (15.101c)

F{ut(x, 0) } = U ′(ω, 0) = F{ g(x) } = G(ω). (15.101d)

ω2U + U ′′ = 0. (15.101e)

The result is an ordinary differential equation with respect to t with the parameter ω of the transform.
The general solution of this known differential equation with constant coefficients is

U(ω, t) = C1e
iω t + C2e

−iω t. (15.102a)

Determining the constants C1 and C2 from the initial values

U(ω, 0) = C1 + C2 = F (ω) , U ′(ω, 0) = iω C1 − iω C2 = G(ω) , (15.102b)

gives

C1 =
1

2
[F (ω) +

1

iω
G(ω) ], C2 =

1

2
[F (ω)− 1

iω
G(ω) ]. (15.102c)

The solution is therefore

U(ω, t) =
1

2
[F (ω) +

1

iω
G(ω) ]eiω t +

1

2
[F (ω)− 1

iω
G(ω) ]e−iω t. (15.102d)

3. Inverse Transformation Using the shifting theorem

F{ f(ax+ b) } = 1/a · eibω/aF (ω/a), (15.103a)

for the inverse transformation of F (ω), yields

F−1{ eiω tF (ω) } = f(x+ t), F−1[ e−iω tF (ω) ] = f(x− t) . (15.103b)

Applying the integration rule

F
⎧⎨⎩

x∫
−∞

f(τ) dτ

⎫⎬⎭ =
1

iω
F (ω) gives (15.103c)

F−1
{
1

iω
G(ω)eiω t

}
=

x∫
−∞

F−1{G(ω)eiω t} dτ =

x∫
−∞

g (τ + t) dτ =

x+t∫
−∞

g (z) dz (15.103d)

after substituting τ + t = z . Analogously to the previous integral

F−1
{
− 1

iω
G(ω)e−iω t

}
= −

x−t∫
−∞

g (z) dz (15.103e)

follows. Finally, the solution in the original space is

u(x, t) =
1

2
f(x+ t) +

1

2
f(x− t) +

x+t∫
x−t

g (z) dz . (15.104)
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15.4 Z-Transformation
In natural sciences and also in engineering one often has to distinguish between continuous and discrete
processes. While continuous processes can be described by differential equations, the discrete pro-
cesses result mostly in difference equations. The solution of differential equations mostly uses Fourier
and Laplace transformations, however, to solve difference equations other operator methods have been
developed. The best known method is the z-transformation, which is closely related to the Laplace
transformation.

15.4.1 Properties of the Z-Transformation

15.4.1.1 Discrete Functions

f(t)

0 T 3T t2T

f0
f1

f2

f3

Figure 15.27

If a function f(t) (0 ≤ t < ∞) is known only at discrete values
tn = nT (n = 0, 1, 2, . . . ; T > 0 is a constant) of the argu-
ment, then one writes f(nT ) = fn and forms the sequence
{fn}. Such a sequence is produced, e.g., in electrotechnics by
“scanning” a function f(t) at discrete time periods tn. Its rep-
resentation results in a step function (Fig. 15.27).
The sequence {fn} and the function f(nT ) defined only at dis-
crete points of the argument, which is called a discrete func-
tion, are equivalent.

15.4.1.2 Definition of the Z-Transformation

1. Original Sequence and Transform
The infinite series

F (z) =
∞∑
n=0

fn

(
1

z

)n

(15.105)

is assigned to the sequence {fn}. If this series is convergent, then the sequence {fn} is called z-transfor-
mable, and it is denoted by

F (z) = Z{fn} . (15.106)

{fn} is called the original sequence, F (z) is the transform, z denotes a complex variable and F (z) is a
complex-valued function.

fn = 1 (n = 0, 1, 2, . . .) . The corresponding infinite series is

F (z) =
∞∑
n=0

(
1

z

)n

. (15.107)

It represents a geometric series with common ratio 1/z, which is convergent if
∣∣∣∣1z
∣∣∣∣ < 1 and its sum is

F (z) =
z

z − 1
. It is divergent for

∣∣∣∣1z
∣∣∣∣ ≥ 1. Therefore, the sequence {1} is z-transformable for

∣∣∣∣1z
∣∣∣∣ < 1,

i.e., for every exterior point of the unit circle |z| = 1 in the z plane.

2. Properties
Since the transform F (z) according to (15.105) is a power series of the complex variable 1/z, the prop-
erties of the complex power series (see 14.3.1.3, p. 750) imply the following results:

a) For a z-transformable sequence {fn}, there exists a real number R such that the series (15.105) is
absolutely convergent for |z| > 1/R and divergent for |z| < 1/R. The series is uniformly convergent
for |z| ≥ 1/R0 > 1/R. R is the radius of convergence of the power series (15.105) of 1/z. If the series
is convergent for every |z| > 0, then R = ∞. For non z-transformable sequences there is R = 0.

b) If {fn} is z-transformable for |z| > 1/R, then the corresponding transform F (z) is an analytic func-
tion for |z| > 1/R and it is the unique transform of {fn}. Conversely, if F (z) is an analytic function
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for |z| > 1/R and is regular also at z = ∞, then there is a unique original sequence {fn} for F (z).
Here, F (z) is called regular at z = ∞, if F (z) has a power series expansion in the form (15.105) and
F (∞) = f0.

3. Limit Theorems
Analogously to the limit properties of the Laplace transformation ((15.7b), p. 770), the following limit
theorems are valid for the z-transformation:

a) If F (z) = Z{fn} exists, then

f0 = lim
z→∞F (z). (15.108)

Here z can tend to infinity along the real axis or along any other path. Since the series

z{F (z)− f0} = f1 + f2
1

z
+ f3

1

z2
+ · · · , (15.109)

z2
{
F (z)− f0 − f1

1

z

}
= f2 + f3

1

z
+ f4

1

z2
+ · · · , (15.110)

...
...

...

are obviously z transforms, analogously to (15.108) one gets

f1 = lim
z→∞ z{F (z)− f0}, f2 = lim

z→∞ z2
{
F (z)− f0 − f1

1

z

}
, . . . . (15.111)

The original sequence {fn} can be determined from its transform F (z) in this way.

b) If lim
n→∞ fn exists, then

lim
n→∞ fn = lim

z→1+0
(z − 1)F (z). (15.112)

However the value lim
n→∞ fn from (15.112) can be determined only if its existence is guaranteed, since the

above statement is not reversible.

fn = (−1)n (n = 0, 1, 2, . . .) . ThenZ{fn} =
z

z + 1
and lim

z→1+0
(z−1)

z

z + 1
= 0, but lim

n→∞(−1)n does

not exist.

15.4.1.3 Rules of Calculations

In applications of the z-transformation it is very important to know how certain operations defined on
the original sequences affect the transforms, and conversely. For the sake of simplicity here the notation
F (z) = Z{fn} for |z| > 1/R is used.

1. Translation
Forward and backward translations are distinguished.

1. First Shifting Theorem: Z{fn−k} = z−kF (z) (k = 0, 1, 2, . . .) , (15.113)

here fn−k = 0 is defined for n− k < 0.

2. Second Shifting Theorem: Z{fn+k} = zk
[
F (z)−

k−1∑
ν=0

fν

(
1

z

)ν
]

(k = 1, 2, . . .) . (15.114)

2. Summation

For |z| > max
(
1,

1

R

)

Z
{

n−1∑
ν=0

fν

}
=

1

z − 1
F (z) . (15.115)
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3. Differences
For the differences

Δfn = fn+1 − fn, Δmfn = Δ(Δm−1fn) (m = 1, 2, . . . ; Δ0fn = fn) (15.116)

the following equalities hold

Z{Δfn} = (z − 1)F (z)− zf0,
Z{Δ2fn} = (z − 1)2F (z)− z(z − 1)f0 − zΔf0,

... =
...

Z{Δkfn} = (z − 1)kF (z)− z
k−1∑
ν=0

(z − 1)k−ν−1Δνf0.

(15.117)

4. Damping
For an arbitrary complex number λ �= 0 and |z| > |λ|

R
:

Z{λnfn} = F
(
z

λ

)
. (15.118)

5. Convolution
The convolution of two sequences {fn} and {gn} is the operation

fn ∗ gn =
n∑

ν=0

fν gn−ν . (15.119)

If the z-transformed functions Z{fn} = F (z) for |z| > 1/R1 and Z{gn} = G(z) for |z| > 1/R2 exist,
then

Z{fn ∗ gn} = F (z)G(z) (15.120)

for |z| > max
(

1

R1

,
1

R2

)
. Relation (15.120) is called the convolution theorem of the z-transformation.

It corresponds to the rules of multiplying two power series.

6. Differentiation of the Transform

Z{nfn} = −z
dF (z)

dz
. (15.121)

Higher-order derivatives of F (z) can be determined by the repeated application of (15.121).

7. Integration of the Transform
Under the assumption f0 = 0,

Z
{
fn
n

}
=

∞∫
z

F (ξ)

ξ
dξ. (15.122)

15.4.1.4 Relation to the Laplace Transformation
Describing a discrete function f(t) (see 15.4.1.1, p. 794) as a step function, then

f(t) = f(nT ) = fn for nT ≤ t < (n+ 1)T (n = 0, 1, 2, . . . ; T > 0, T const) (15.123)

holds. Using the Laplace transformation (see 15.2.1.1, 1., p. 770) for this piecewise constant function,
for T = 1 yields:

L{f(t)} = F (p) =
∞∑
n=0

n+1∫
n

fne
−pt dt =

∞∑
n=0

fn
e−np − e−(n+1)p

p
=

1− e−p

p

∞∑
n=0

fne
−np. (15.124)

The infinite series in (15.124) is called the discrete Laplace transformation and is denoted by D:

D{f(t)} = D{fn} =
∞∑
n=0

fne
−np. (15.125)
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After the substitution of ep = z in (15.125) D{fn} represents a series with powers of 1/z, which is
a so-called Laurent series (see 14.3.4, p. 752). The substitution ep = z suggested the name of the z
transformation. With this substitution from (15.124) one finally gets the following relations between
the Laplace and z-transformation in the case of step functions:

pF (p) =
(
1− 1

z

)
F (z) (15.126a) or pL{f(t)} =

(
1− 1

z

)
Z{fn}. (15.126b)

In this way the relations of z-transforms of step functions (seeTable 21.15, p. 1128) can be transformed
into relations of Laplace transforms of step functions (see Table 21.13, p. 1109), and conversely.

15.4.1.5 Inverse of the Z-Transformation
The inverse of the z-transformation is to find the corresponding unique original sequence {fn} from its
transform F (z):

Z−1{F (z)} = {fn}. (15.127)

There are different possibilities for the inverse transformation.

1. Using Tables

If the function F (z) is not given in tables, then one can try to transform it to a function which is given
in Table 21.15.

2. Laurent Series of F (z)

Using the definition (15.105), p. 794 the inverse transform can be determined directly if a series expan-
sion of F (z) with respect to 1/z is known or if it can be determined.

3. Taylor Series of F

(
1

z

)
Since F

(
1

z

)
is a series of increasing powers of z, from (15.105) and using the Taylor formula follows

fn =
1

n !

dn

dzn
F
(
1

z

)∣∣∣∣
z=0

(n = 0, 1, 2, . . .). (15.128)

4. Application of Limit Theorems

Using the limits (15.108) and (15.111), p. 795, the original sequence {fn} can be directly determined
from its transform F (z).

F (z) =
2z

(z − 2)(z − 1)2
. Using the previous four methods:

1. Partial fraction decomposition (see 1.1.7.3, p. 15) of F (z)/z yields functions which are contained in
Table 21.15.

F (z)

z
=

2

(z − 2)(z − 1)2
=

A

z − 2
+

B

(z − 1)2
+

C

z − 1
. So

F (z) =
2z

z − 2
− 2z

(z − 1)2
− 2z

z − 1
and therefore fn = 2(2n − n− 1) for n ≥ 0.

2. By division F (z) gets a series with decreasing powers of z:

F (z) =
2z

z3 − 4z2 + 5z − 2
= 2

1

z2
+ 8

1

z3
+ 22

1

z4
+ 52

1

z5
+ 114

1

z6
+ . . . . (15.129)

From this expression one gets f0 = f1 = 0, f2 = 2, f3 = 8, f4 = 22, f5 = 52, f6 = 114, . . ., but not a
closed expression is obtained for the general term fn.

3. For formulating F
(
1

z

)
and its required derivatives, (see (15.128)) it is advisable to consider the
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partial fraction decomposition of F (z)

F
(
1

z

)
=

2

1− 2z
− 2z

(1− z)2
− 2

1− z
, i.e. F

(
1

z

)
= 0 for z = 0 ,

dF
(
1

z

)
dz

=
4

(1− 2z)2
− 4z

(1− z)3
− 4

(1− z)2
, i.e.

dF
(
1

z

)
dz

= 0 for z = 0 ,

d2F
(
1

z

)
dz2

=
16

(1− 2z)3
− 12z

(1− z)4
− 12

(1− z)3
, i.e.

d2F
(
1

z

)
dz2

= 4 for z = 0 ,

d3F
(
1

z

)
dz3

=
96

(1− 2z)4
− 48z

(1− z)5
− 48

(1− z)4
, i.e.

d3F
(
1

z

)
dz3

= 48 for z = 0 ,

...
...

...
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.130)

from which f0, f1, f2, f3, . . . are easily obtained considering (15.128).

4. Application of the limit theorems (see 15.4.1.2, 3., p. 795) gives:

f0 = lim
z→∞F (z) = lim

z→∞
2z

z3 − 4z2 + 5z − 2
= 0 , (15.131a)

f1 = lim
z→∞ z(F (z)− f0) = lim

z→∞
2z2

z3 − 4z2 + 5z − 2
= 0 , (15.131b)

f2 = lim
z→∞ z2

(
F (z)− f0 − f1

1

z

)
= lim

z→∞
2z3

z3 − 4z2 + 5z − 2
= 2 , (15.131c)

f3 = lim
z→∞ z3

(
F (z)− f0 − f1

1

z
− f2

1

z2

)
= lim

z→∞ z3
(

2z

z3 − 4z2 + 5z − 2
− 2

z2

)
= 8 , . . . (15.131d)

where the Bernoulli–l’Hospital rule is applied (see 2.1.4.8, 2., p. 56). The original sequence {fn} can
be determined successively.

15.4.2 Applications of the Z-Transformation

15.4.2.1 General Solution of Linear Difference Equations

A linear difference equation of order k with constant coefficients has the form

akyn+k + ak−1yn+k−1 + · · ·+ a2yn+2 + a1yn+1 + a0yn = gn (n = 0, 1, 2 . . .). (15.132)

Here k is a natural number. The coefficients ai (i = 0, 1, . . . , k) are given real or complex numbers and
they do not depend on n. Here a0 and ak are non-zero numbers. The sequence {gn} is given, and the
sequence {yn} is to be determined.

To determine a particular solution of (15.132) the values y0, y1, . . . , yk−1 have to be previously given.
Then the next value yk can be determined for n = 0 from (15.132). Next one gets yk+1 for n = 1 from
y1, y2, . . . , yk and from (15.132). In this way all values yn can be calculated recursively. However
a general solution can be given for the values yn with the z-transformation, using the second shifting
theorem (15.114) applied for (15.132):

akz
k
[
Y (z)− y0 − y1z

−1 − · · · − yk−1z
−(k−1)

]
+ · · ·+ a1z[Y (z)− y0] + a0Y (z) = G(z).(15.133)

Here one denotes Y (z) = Z{yn} and G(z) = Z{gn}. Substituting akzk + ak−1z
k−1 + · · ·+ a1z + a0 =

p(z), the solution of the so-called transformed equation (15.133) is

Y (z) =
1

p(z)
G(z) +

1

p(z)

k−1∑
i=0

yi
k∑

j=i+1

ajz
j−i. (15.134)
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As in the case of solving linear differential equations with the Laplace transformation, there is the
similar advantage of the z-transformation that initial values are included in the transformed equation,
so the solution contains them automatically. The required solution {yn} = Z−1{Y (z)} follows from
(15.134) by the inverse transformation discussed in 15.4.1.5, p. 797.

15.4.2.2 Second-Order Difference Equations (Initial Value Problem)

The linear second-order difference equation has the form

yn+2 + a1yn+1 + a0yn = gn , (15.135)

where y0 and y1 are given as initial values. Using the second shifting theorem for (15.135) the trans-
formed equation is

z2
[
Y (z)− y0 − y1

1

z

]
+ a1z[Y (z)− y0] + a0Y (z) = G(z). (15.136)

Substituting z2 + a1z + a0 = p(z), the transform is

Y (z) =
1

p(z)
G(z) + y0

z(z + a1)

p(z)
+ y1

z

p(z)
. (15.137)

If the roots of the polynomial p(z) are α1 and α2, then α1 �= 0 and α2 �= 0, otherwise a0 is zero, and
then the difference equation could be reduced to a first-order one. By partial fraction decomposition
and applying Table 21.15 for the z-transformation one gets from

z

p(z)
=

⎧⎪⎪⎨⎪⎪⎩
1

α1 − α2

(
z

z − α1

− z

z − α2

)
for α1 �= α2,

z

(z − α1)2
for α1 = α2,

Z−1

{
z

p(z)

}
= {pn} =

⎧⎪⎨⎪⎩
αn
1 − αn

2

α1 − α2

for α1 �= α2,

nαn−1
1 for α1 = α2.

(15.138a)

Since p0 = 0, by the second shifting theorem there is

Z−1

{
z2

p(z)

}
= Z−1

{
z

z

p(z)

}
= {pn+1} (15.138b)

and by the first shifting theorem

Z−1

{
1

p(z)

}
= Z−1

{
1

z

z

p(z)

}
= {pn−1}. (15.138c)

Substituting here p−1 = 0 , based on the convolution theorem one gets the original sequence with

yn =
n∑

ν=0

pν−1gn−ν + y0(pn+1 + a1pn) + y1pn . (15.138d)

Since p−1 = p0 = 0, this relation and (15.138a) imply that in the case of α1 �= α2 it follows

yn =
n∑

ν=2

gn−ν
αν−1
1 − αν−1

2

α1 − α2

+ y0

(
αn+1
1 − αn+1

2

α1 − α2

+ a1
αn
1 − αn

2

α1 − α2

)
+ y1

αn
1 − αn

2

α1 − α2

. (15.138e)

This form can be further simplified, since a1 = −(α1 + α2) and a0 = α1α2 (see the root theorems of
Vieta, 1.6.3.1, 3., p. 44), so

yn =
n∑

ν=2

gn−ν
αν−1
1 − αν−1

2

α1 − α2

− y0a0
αn−1
1 − αn−1

2

α1 − α2

+ y1
αn
1 − αn

2

α1 − α2

. (15.138f)
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In the case of α1 = α2 similarly

yn =
n∑

ν=2

gn−ν(ν − 1)αν−2
1 − y0a0(n− 1)αn−2

1 + y1nα
n−1
1 . (15.138g)

In the case of second-order difference equations the inverse transformation of the transform Y (z) can
be performed without partial fraction decomposition using correspondences such as, e.g.,

Z−1
{

z

z2 − 2az cosh b+ a2

}
= an−1 sinh bn

sinhn
(15.139)

and the second shifting theorem. By substituting a1 = −2a cosh b, and a0 = a2 the original sequence
of (15.137) becomes:

yn =
1

sinh b

[
n∑

ν=2

gn−νa
ν−2 sinh(ν − 1)b− y0a

n sinh(n− 1)b+ y1a
n−1 sinhnb

]
. (15.140)

This formula is useful in numerical computations especially if a0 and a1 are complex numbers.

Remark: Notice that the hyperbolic functions are also defined for complex variables.

15.4.2.3 Second-Order Difference Equations (Boundary Value Problem)
It often happens in applications that the values yn of a difference equation are needed only for a finite
number of indices 0 ≤ n ≤ N . In the case of a second-order difference equation (15.135) both boundary
values y0 and yN are usually given. To solve this boundary value problem one starts with the solution
(15.138f) of the corresponding initial value problem, where instead of the unknown value y1 it is to
introduce yN . Substituting n = N into (15.138f), y1 can be obtained which depends on y0 and yN :

y1 =
1

αN
1 − αN

2

[
y0a0(α

N−1
1 − αN−1

2 ) + yN(α1 − α2)−
N∑
ν=2

(αν−1
1 − αν−1

2 )gN−ν

]
. (15.141)

Substituting this value into (15.138f)

yn =
1

α1 − α2

n∑
ν=2

(αν−1
1 − αν−1

2 )gn−ν −
1

α1 − α2

αn
1 − αn

2

αN
1 − αN

2

N∑
ν=2

(αν−1
1 − αν−1

2 )gN−ν

+
1

αN
1 − αN

2

[ y0(α
N
1 α

n
2 − αn

1α
N
2 ) + yN(α

n
1 − αn

2 )]. (15.142)

The solution (15.142) makes sense only if αN
1 − αN

2 �= 0 holds. Otherwise, the boundary value prob-
lem has no general solution, but analogously to the boundary value problems of differential equations
eigenvalues and eigenfunctions emerge.

15.5 WaveletTransformation
15.5.1 Signals
If a physical object emits an effect which spreads out and can be described mathematically, e.g., by a
function or a number sequence, then it is called a signal .
Signal analysis means to characterize a signal by a quantity that is typical for the signal. This means
mathematically: The function or the number sequence, which describes the signal, will be mapped into
another function or number sequence, from which the typical properties of the signal can be clearly
seen. For such mappings, of course, some informations can also be lost.
The reverse operation of signal analysis, i.e., the reconstruction of the original signal, is called signal
synthesis.

The connection between signal analysis and signal synthesis can be well represented by an example
of Fourier transformation: A signal f(t) (t denotes time) is characterized by the frequency ω. Then,
formula (15.143a) describes the signal analysis, and formula (15.143b) describes the signal synthesis:
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F (ω) =

∞∫
−∞

e−iωtf(t) dt (15.143a) and f(t) =
1

2π

∞∫
−∞

eiωtF (ω) dω. (15.143b)

15.5.2 Wavelets
The Fourier transformation has no localization property, i.e., if a signal changes at one position, then
the transform changes everywhere without the possibility that the position of the change could be
recognized “at a glance”. The basis of this fact is that the Fourier transformation decomposes a signal
into plane waves. These are described by trigonometric functions, which oscillate with the same period
for arbitrary long time. However, for wavelet transformations there is an almost freely chosen function
ψ, the wavelet (small localized wave), that is shifted and compressed for analysing a signal.

Examples are the Haar wavelet (Fig. 15.28a) and the Mexican hat (Fig. 15.28b).

A Haar wavelet:

ψ =

⎧⎪⎨⎪⎩
1 if 0 ≤ x < 1

2
,

−1 if 1
2
≤ x ≤ 1 ,

0 otherwise.
(15.144)

B Mexican hat:

ψ(x) = − d2

dx2
e−x2/2 (15.145)

= (1− x2)e−x2/2. (15.146)

�(t)

0 t

1

1

�(t)

-1

0 t½

1

1

a) b)

Figure 15.28

Generally, it holds that every function ψ comes into consideration as a wavelet if it is quadratically
integrable and its Fourier transform Ψ(ω) according to (15.143a) results in a positive finite integral

∞∫
−∞

|Ψ(ω)|
|ω| dω. (15.147)

Concerning wavelets, the following properties and definitions are essential:
1. For the mean value of the wavelet:

∞∫
−∞

ψ(t) dt = 0. (15.148)

2. The following integral is called the k-th moment of a wavelet ψ:

μk =

∞∫
−∞

tkψ(t) dt. (15.149)

The smallest positive integer n such that μn �= 0, is called the order of the wavelet ψ.

For the Haar wavelet (15.144), n = 1, and for the Mexican hat (15.146), n = 2.
3. When μk = 0 for every k, ψ has infinite order. Wavelets with bounded support always have finite
order.
4. A wavelet of order n is orthogonal to every polynomial of degree ≤ n− 1.

15.5.3 Wavelet Transformation
For a wavelet ψ(t) a family of curves can be formed with parameter a:

ψa(t) =
1√
|a|

ψ
(
t

a

)
(a �= 0). (15.150)
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In the case of |a| > 0 the initial function ψ(t) is compressed. In the case of a < 0 there is an additional

reflection. The factor 1/
√
|a| is a scaling factor.

The functions ψa(t) can also be shifted by a second parameter b. Then a two-parameter family of curves
arises:

ψa,b =
1√
|a|

ψ

(
t− b

a

)
(a, b real; a �= 0). (15.151)

The real shifting parameter b characterizes the first moment, while parameter a gives the deviation of
the function ψa,b(t). The function ψa,b(t) is called a basis function in connection to the wavelet trans-
formation.

The wavelet transformation of a function f(t) is defined as:

Lψf(a, b) = c

∞∫
−∞

f(t)ψa,b(t) dt =
c√
|a|

∞∫
−∞

f(t)ψ

(
t− b

a

)
dt. (15.152a)

For the inverse transformation:

f(t) = c

∞∫
−∞

∞∫
−∞

Lψf(t)ψa,b(t)
1

a2
da db. (15.152b)

Here c is a constant dependent on the special wavelet ψ.

Using the Haar wavelets (15.146) gives

ψ

(
t− b

a

)
=

⎧⎨⎩
1 if b ≤ t < b+ a/2,
−1 if b+ a/2 ≤ t < b+ a,
0 otherwise

and therefore

Lψf(a, b) =
1√
|a|

(∫ b+a/2

b
f(t) dt−

∫ b+a

b+a/2
f(t) dt

)

=

√
|a|
2

(
2

a

∫ b+a/2

b
f(t) dt− 2

a

∫ b+a

b+a/2
f(t) dt

)
. (15.153)

The value Lψf(a, b) given in (15.153) represents the difference of the mean values of a function f(t)

over two neighboring intervals of length
|a|
2
, connected at the point b.

Remarks:

1. The dyadic wavelet transformation has an important role in applications. As basis functions are
used the functions

ψi,j(t) =
1√
2i
ψ

(
t− 2ij

2i

)
, (15.154)

i.e., different basis functions can be generated from one wavelet ψ(t) by doubling or halving the width
and shifting by an integer multiple of the width.

2. A wavelet ψ(t) is called an orthogonal wavelet, if the basis functions given in (15.154) form an
orthogonal system.

3. The Daubechies wavelets have especially good numerical properties. They are orthogonal wavelets
with compact support, i.e., they are different from zero only on a bounded subset of the time scale.
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They do not have a closed form representation (see [15.9]).

15.5.4 DiscreteWavelet Transformation

15.5.4.1 FastWavelet Transformation
The integral representation (15.152b) is very redundant, and so the double integral can be replaced
by a double sum without loss of information. Considering this idea at the concrete application of the
wavelet transformation one needs

1. an efficient algorithm of the transformation, which leads to the concept ofmulti-scale analysis, and

2. an efficient algorithm of the inverse transformation, i.e., an efficient way to reconstruct signals from
their wavelet transformations, which leads to the concept of frames.

For more details about these concepts see [15.9], [15.1].

Remark: The great success of wavelets in many different applications, such as
• calculation of physical quantities from measured sequences
• pattern and voice recognition
• data compression in news transmission
is based on “fast algorithms”. Analogously to the FFT (Fast Fourier Transformation, see 19.6.4.2,
p. 993) one talks here about FWT (Fast Wavelet Transformation).

15.5.4.2 Discrete HaarWavelet Transformation
An example of a discrete wavelet transformation is the Haar wavelet transformation: The values fi (i =
1, 2, . . . , N) are given from a signal. The detailed values di (i = 1, 2, . . . , N/2) are calculated as:

si =
1√
2
(f2i−1 + f2i), di =

1√
2
(f2i−1 − f2i). (15.155)

The values di are to be stored while the rule (15.155) is applied to the values si, i.e., in (15.155) the
values fi are replaced by the values si. This procedure is continued, sequentially so that finally from

s
(n+1)
i =

1√
2

(
s
(n)
2i−1 + s

(n)
2i

)
, d

(n+1)
i =

1√
2

(
s
(n)
2i−1 − s

(n)
2i

)
(15.156)

a sequence of detailed vectors is formed with components d
(n)
i . Every detailed vector contains infor-

mation about the properties of the signals.

Remark: For large values of N the discrete wavelet transformation converges to the integral wavelet
transformation (15.152a).

15.5.5 GaborTransformation
Time-frequency analysis is the characterization of a signal with respect to the contained frequencies
and time periods when these frequencies appear. Therefore, the signal is divided into time segments
(windows) and a Fourier transform is used. It is called aWindowed Fourier Transformation (WFT).

g(t)

0

t30

0.04

0-30
-0.04

Figure 15.29

The window function should be chosen so that a signal is con-
sidered only in thewindow. Gabor applied thewindow function

g(t) =
1√
2πσ

e
−

t2

2σ2 (15.157)

(Fig. 15.29). This choice can be explained as g(t), with the
“total unit mass”, is concentrated at the point t = 0 and the
width of the window can be considered as a constant (about
2σ).
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The Gabor transformation of a function f(t) then has the form

Gf(ω, s) =
∞∫

−∞
f(t)g(t− s)e−iω t dt. (15.158)

This determines, with which complex amplitude the dominant wave (fundamental harmonic) eiω t oc-
curs during the time interval [s − σ, s + σ] in f , i.e., if the frequency ω occurs in this interval, then it
has the amplitude |Gf(ω, s)|.

15.6 WalshFunctions
15.6.1 StepFunctions
Orthogonal systems of functions have an important role in the approximation theory of functions. For
instance, special polynomials or trigonometric functions are used since they are smooth, i.e., they are
differentiable sufficiently many times in the considered interval. However, there are problems, e.g., the
transition of points of a rough picture, when smooth functions are not suitable for the mathematical
description, but step functions, piecewise constant functions are more appropriate. Walsh functions
are very simple step functions. They take only two function values +1 and −1. These two function
values correspond to two states, so the Walsh functions can be implemented by computers very easily.

15.6.2 Walsh Systems
Analogously to trigonometric functions also periodic step functions can be considered. The interval
I = [0, 1) is used as a period interval and it is divided into 2n equally long subintervals. Suppose Sn

is the set of periodic step functions with period 1 over such an interval. The different step functions
belonging to Sn can be considered as vectors of a finite dimensional vector space, since every function
g ∈ Sn is defined by its values g0, g1, g2, . . . , g2n−1 in the subintervals and it can be considered as a
vector:

gT = (g0, g1, g2, . . . , g2n−1). (15.159)

TheWalsh functions belonging to Sn form an orthogonal basis with respect to a suitable scalar product
in this space. The basis vectors can be enumerated inmany different ways, so one can get many different
Walsh systems, which actually contain the same functions. There are three of them which should be
mentioned: Walsh–Kronecker functions, Walsh–Kaczmarz functions and Walsh–Paley functions.

The Walsh transformation is constructed analogously to the Fourier transformation, where the role
of the trigonometric functions is taken by the Walsh functions. One gets, e.g., Walsh series, Walsh
polynomials, Walsh sine andWalsh cosine transformations, Walsh integral, and analogously to the fast
Fourier transformation there is a Fast Walsh Transformation. For an introduction in the theory and
applications of Walsh functions see [15.6].
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