
13 VectorAnalysisandVectorFields

13.1 BasicNotions of theTheory ofVectorFields

13.1.1 Vector Functions of a ScalarVariable

13.1.1.1 Definitions

1. Vector Function of a Scalar Variable t
A vector function of a scalar variable is a vector �a whose components are real functions of t:

�a = �a(t) = ax(t)�ex + ay(t)�ey + az(t)�ez. (13.1)

The notions of limit, continuity, differentiability are defined componentwise for the vector �a(t).

2. Hodograph of a Vector Function
Considering the vector function �a(t) as a position or radius vector �r = �r(t) of a point P , then this
function describes a space curve while t varies (Fig. 13.1). This space curve is called the hodograph of
the vector function �a(t).
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13.1.1.2 Derivative of a Vector Function
The derivative of (13.1) with respect to t is also a vector function of t:

d�a

dt
= lim

Δt→0

�a(t+Δt)− �a(t)

Δt
=

dax(t)

dt
�ex +

day(t)

dt
�ey +

daz(t)

dt
�ez. (13.2)

The geometric representation of the derivative
d�r

dt
of the radius vector is a vector pointing in the direc-

tion of the tangent of the hodograph at the point P (Fig. 13.2). Its length depends on the choice of
the parameter t. If t is the time, then the vector �r(t) describes the motion of a point P in space (the

space curve is its path), and
d�r

dt
has the direction and magnitude of the velocity of this motion. If t = s

is the arclength of this space curve, measured from a certain point, then obviously

∣∣∣∣∣d�rds
∣∣∣∣∣ = 1.

13.1.1.3 Rules of Differentiation for Vectors

d

dt
(�a± �b± �c) =

d�a

dt
± d�b

dt
± d�c

dt
, (13.3a)

d

dt
(ϕ�a) =

dϕ

dt
�a+ ϕ

d�a

dt
(ϕ is a scalar function of t), (13.3b)

d

dt
(�a�b) =

d�a

dt
�b+ �a

d�b

dt
, (13.3c)
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702 13. Vector Analysis and Vector Fields

d

dt
(�a× �b) =

d�a

dt
× �b+ �a× d�b

dt
(the factors must not be interchanged), (13.3d)

d

dt
�a[ϕ(t)] =

d�a

dϕ
· dϕ
dt

(chain rule). (13.3e)

If |�a(t)| = const, i.e., �a2(t) = �a(t) · �a(t) = const, then it follows from (13.3c) that �a · d�a
dt

= 0, i.e.,
d�a

dt
and �a are perpendicular to each other. Examples of this fact:

A: Radius and tangent vectors of a circle in the plane and

B: position and tangent vectors of a curve on the sphere. Then the hodograph is a spherical curve.

13.1.1.4 Taylor Expansion for Vector Functions

�a(t+ h) = �a(t) + h
d�a

dt
+

h2

2!

d2�a

dt2
+ · · ·+ hn

n!

dn�a

dtn
+ · · · . (13.4)

The expansion of a vector function in a Taylor series makes sense only if it is convergent. Because the
limit is defined componentwise, the convergence can be checked componentwise, so the convergence
of this series with vector terms can be determined exactly by the same methods as the convergence of
a series with complex terms (see 14.3.2, p. 751). So the convergence of a series with vector terms is
reduced to the convergence of a series with scalar terms.
The differential of a vector function �a(t) is defined by:

d�a =
d�a

dt
Δt. (13.5)

13.1.2 Scalar Fields

13.1.2.1 Scalar Field or Scalar Point Function
If a number (scalar value) U is assigned to every point P of a subset of space, then one writes

U = U(P ) (13.6a)

and one calls (13.6a) a scalar field (or scalar function).

Examples of scalar fields are temperature, density, potential, etc., of solids.

A scalar field U = U(P ) can also be considered as

U = U(�r), (13.6b)

where �r is the position vector of the point P with a given pole 0 (see 3.5.1.1, 6., p. 182).

13.1.2.2 Important Special Cases of Scalar Fields

1. Plane Field
One speaks of a plane field, if the function is defined only for the points of a plane in space.

2. Central Field
If a function has the same value at all points P lying at the same distance from a fixed point C(�r1),
called the center, then it is called a central symmetric field or also a central or spherical field . The
function U depends only on the distance CP = |�r|:

U = f( �| r |). (13.7a)

The field of the intensity of a point-like source, e.g., the field of brightness of a point-like source of
light at the pole, can be described with |�r| = r as the distance from the light source:

U =
c

r2
(c const) . (13.7b)
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3. Axial Field
If the function U has the same value at all points lying at an equal distance from a certain straight line
(axis of the field) then the field is called cylindrically symmetric or an axially symmetric field , or briefly
an axial field .

13.1.2.3 Coordinate Representation of Scalar Fields
If the points of a subset of space are given by their coordinates, e.g., by Cartesian, cylindrical, or spher-
ical coordinates, then the corresponding scalar field (13.6a) is represented, in general, by a function of
three variables:

U = Φ(x, y, z), U = Ψ(ρ, ϕ, z) or U = χ(r, ϑ, ϕ). (13.8a)

In the case of a plane field, a function with two variables is sufficient. It has the form in Cartesian and
polar coordinates:

U = Φ(x, y) or U = Ψ(ρ, ϕ). (13.8b)

The functions in (13.8a) and (13.8b), in general, are assumed to be continuous, except, maybe, at some
points, curves or surfaces of discontinuity. The functions have the form

a) for a central field: U = U(
√
x2 + y2 + z2) = U(

√
ρ2 + z2) = U(r) (13.9a)

with the origin of the coordinate system as the pole of the field,

b) for an axial field: U = U(
√
x2 + y2) = U(ρ) = U(r sinϑ) (13.9b)

with the z-axis as the axis of the field.
Dealing with central fields is easiest using spherical coordinates, with axial fields using cylindrical co-
ordinates.

13.1.2.4 Level Surfaces and Level Lines of a Field

1. Level Surface
A level surface is the union of all points P in space where the function (13.6a) has a constant value

U = U(P ) = const. (13.10a)

Different constantsU0, U1, U2, . . . define different level surfaces. There is a level surface passing through
every point except the points where the function is not defined. The level surface equations in the three
coordinate systems used so far are:

U = Φ(x, y, z) = const, U = Ψ(ρ, ϕ, z) = const, U = χ(r, ϑ, ϕ) = const. (13.10b)

Examples of level surfaces of different fields:

A: U = �c�r = cxx+ cyy + czz: Parallel planes.

B: U = x2 + 2y2 + 4z2: Similar ellipsoids in similar positions.

C: Central field: Concentric spheres.

D: Axial field: Coaxial cylinders.

2. Level Lines
Level lines replace level surfaces in plane fields. They satisfy the equation

U = const. (13.11)

Level lines are usually drawn for equal intervals of U and each of them is marked by the corresponding
value of U (Fig. 13.3).

Well-known examples are the isobaric lines on a synoptic map or the contour lines on topographic
maps.

In particular cases, level surfaces degenerate into points or lines, and level lines degenerate into separate
points.
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The level lines of the fields a) U = xy, b) U =
y

x2
, c) U = x2 + y2 = ρ2, d) U =

1

ρ
are represented

in Fig. 13.4.
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13.1.3 Vector Fields

13.1.3.1 Vector Field or Vector Point Function

If a vector �V is assigned to every point P of a subset of space, then it is denoted by

�V = �V(P ) (13.12a)

and calls (13.12a) a vector field .

Examples of vector fields are the velocity field of a fluid in motion, a field of force, and a magnetic
or electric intensity field.

A vector field �V = �V(P ) can be regarded as a vector function

�V = �V(�r), (13.12b)
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where �r is the position vector of the point P with a given pole 0. If all values of �r as well as �V lie in a
plane, then the field is called a plane vector field (see 3.5.2, p. 190).

13.1.3.2 Important Cases of Vector Fields

1. Central Vector Field
In a central vector field all vectors �V lie on straight lines passing through a fixed point called the center
(Fig. 13.5a).
Locating the pole at the center, then the field is defined by the formula

�V = f(�r)�r, (13.13a)

where all the vectors have the same direction as the radius vector �r. It often has some advantage to
define the field by the formula

�V = ϕ(�r)
�r

r
(r = |�r|), (13.13b)

where |ϕ(�r)| is the length of the vector �V and
�r

r
is a unit vector into the direction of �r.

c

a) c)b)

Figure 13.5

2. Spherical Vector Field

A spherical vector field is a special case of a central vector field, where the length of the vector �V depends
only on the distance |�r| (Fig. 13.5b).

Examples are the Newton and the Coulomb force field of a point-like mass or of a point-like electric
charge:

�V =
c

r3
�r =

c

r2
�r

r
(c const) . (13.14)

The special case of a plane spherical vector field is called a circular field .

3. Cylindrical Vector Field

a) All vectors �V lie on straight lines intersecting a certain line (called the axis) and perpendicular to
it, and

b) all vectors �V at the points lying at the same distance from the axis have equal length, and they are
directed either toward the axis or away from it (Fig. 13.5c).

Locating the pole on the axis parallel to the unit vector �c, then the field has the form

�V = ϕ(ρ)
�r∗

ρ
, (13.15a)
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where �r∗ is the projection of �r on a plane perpendicular to the axis:

�r∗ = �c× (�r× �c). (13.15b)

By intersecting this field with planes perpendicular to the axis, one always gets equal circular fields.

13.1.3.3 Coordinate Representation of Vector Fields

1. Vector Field in Cartesian Coordinates
The vector field (13.12a) can be defined by scalar fields V1(�r), V2(�r), and V3(�r) which are the coordinate

functions of �V, i.e., the coefficients of its decomposition into any three non-coplanar base vectors �e1,
�e2, and �e3:

�V = V1�e1 + V2�e2 + V3�e3. (13.16a)

With the coordinate unit vectors �i,�j, �k as base vectors and expressing the coefficients V1, V2, V3 in
Cartesian coordinates one gets

�V = Vx(x, y, z)�i+ Vy(x, y, z)�j+ Vz(x, y, z)�k. (13.16b)

So, the vector field can be defined with the help of three scalar functions of three scalar variables.

2. Vector Field in Cylindrical and Spherical Coordinates
In cylindrical and spherical coordinates, the coordinate unit vectors

�eρ, �eϕ, �ez (= �k), and �er (=
�r

r
), �eϑ, �eϕ (13.17a)

are tangents to the coordinate lines at each point (Fig. 13.6, 13.7). In this order they always form a
right-handed system. The coefficients are expressed as functions of the corresponding coordinates:

�V = Vρ(ρ, ϕ, z)�eρ + Vϕ(ρ, ϕ, z)�eϕ + Vz(ρ, ϕ, z)�ez , (13.17b)

�V = Vr(r, ϑ, ϕ)�er + Vϕ(r, ϑ, ϕ)�eϕ + Vϑ(r, ϑ, ϕ)�eϑ. (13.17c)

At transition from one point to the other, the coordinate unit vectors change their directions, but
remain mutually perpendicular.
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13.1.3.4 Transformation of Coordinate Systems
See also Table 13.1.

1. Cartesian Coordinates in Terms of Cylindrical Coordinates

Vx = Vρ cosϕ− Vϕ sinϕ, Vy = Vρ sinϕ+ Vϕ cosϕ, Vz = Vz. (13.18)
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2. Cylindrical Coordinates in Terms of Cartesian Coordinates

Vρ = Vx cosϕ+ Vy sinϕ, Vϕ = −Vx sinϕ+ Vy cosϕ, Vz = Vz. (13.19)

3. Cartesian Coordinates in Terms of Spherical Coordinates

Vx = Vr sinϑ cosϕ− Vϕ sinϕ+ Vϑ cosϕ cosϑ,

Vy = Vr sinϑ sinϕ+ Vϕ cosϕ+ Vϑ sinϕ cosϑ,

Vz = Vr cosϑ− Vϑ sinϑ. (13.20)

4. Spherical Coordinates in Terms of Cartesian Coordinates

Vr = Vx sinϑ cosϕ+ Vy sinϑ sinϕ+ Vz cosϑ,

Vϑ = Vx cosϑ cosϕ+ Vy cosϑ sinϕ− Vz sinϑ, (13.21)

Vϕ = − Vx sinϕ+ Vy cosϕ.

5. Expression of a Spherical Vector Field in Cartesian Coordinates

�V = ϕ(
√
x2 + y2 + z2)(x�i+ y�j+ z�k). (13.22)

6. Expression of a Cylindrical Vector Field in Cartesian Coordinates

�V = ϕ(
√
x2 + y2)(x�i+ y�j). (13.23)

In the case of a spherical vector field, spherical coordinates are most convenient for investigations,

i.e., the form �V = V (r)�er; and for investigations in cylindrical fields, cylindrical coordinates are most

convenient, i.e., the form �V = V (ϕ)�eϕ. In the case of a plane field (Fig. 13.8)

�V = Vx(x, y)�i+ Vy(x, y)�j = Vρ(ρ, ϕ)�eρ + Vϕ(ρ, ϕ)�eϕ, (13.24)

holds and for a circular field

�V = ϕ(
√
x2 + y2)(x�i+ y�j) = ϕ(ρ)�eρ. (13.25)

Table 13.1 Relations between the components of a vector in Cartesian, cylindrical, and spherical
coordinates

Cartesian coordinates Cylindrical coord. Spherical coordinates

�V = Vx�ex + Vy�ey + Vz�ez Vρ�eρ + Vϕ�eϕ + Vz�ez Vr�er + Vϑ�eϑ + Vϕ�eϕ

Vx = Vρ cosϕ− Vϕ sinϕ = Vr sinϑ cosϕ+ Vϑ cosϑ cosϕ

− Vϕ sinϕ

Vy = Vρ sinϕ+ Vϕ cosϕ = Vr sinϑ sinϕ+ Vϑ cosϑ sinϕ

+ Vϕ cosϕ

Vz = Vz = Vr cosϑ− Vϑ sinϑ

Vx cosϕ+ Vy sinϕ = Vρ = Vr sinϑ+ Vϑ cosϑ

−Vx sinϕ+ Vy cosϕ = Vϕ = Vϕ

Vz = Vz = Vr cosϑ− Vϑ sinϑ

Vx sinϑ cosϕ+ Vy sinϑ sinϕ+ Vz cosϑ = Vρ sinϑ+ Vz cosϑ = Vr

Vx cosϑ cosϕ+ Vy cosϑ sinϕ− Vz sinϕ = Vρ cosϑ− Vz sinϑ = Vϑ

−Vx sinϕ+ Vy cosϕ = Vϕ = Vϕ
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13.1.3.5 Vector Lines
A curve C is called a line of a vector or a vector line of the vector field
�V(�r) (Fig. 13.9) if the vector �V(�r) is a tangent vector of the curve
at every point P . There is a vector line passing through every point
of the field. Vector lines do not intersect each other, except, maybe,

at points where the function �V is not defined, or where it is the zero
vector. The differential equations of the vector lines of a vector field
�V given in Cartesian coordinates are

Figure 13.9

a) in general:
dx

Vx

=
dy

Vy

=
dz

Vz

, (13.26a) b) for a plane field:
dx

Vx

=
dy

Vy

. (13.26b)

To solve these differential equations see 9.1.1.2, p. 542 or 9.2.1.1, p. 571.

A: The vector lines of a central field are rays starting at the center of the vector field.

B: The vector lines of the vector field �V = �c × �r are circles lying in planes perpendicular to the
vector �c. Their centers are on the axis parallel to �c.

13.2 DifferentialOperators of Space

13.2.1 Directional and SpaceDerivatives

13.2.1.1 Directional Derivative of a Scalar Field
The directional derivative of a scalar field U = U(�r) at a point P with position vector�r in the direction
�c (Fig. 13.10) is defined as the limit of the quotient

∂U

∂�c
= lim

ε→0

U(�r+ ε�c)− U(�r)

ε
. (13.27)

If the derivative of the field U = U(�r) at a point �r in the direction of the unit vector �c 0 of �c is denoted

by
∂U

∂�c 0
, then the relation between the derivative of the function with respect to the vector �c and with

respect to its unit vector �c 0 at the same point is

∂U

∂�c
= |�c| ∂U

∂�c 0
. (13.28)

The derivative
∂U

∂�c 0
with respect to the unit vector represents the speed of increase of the function U in

the direction of the vector �c 0 at the point �r. If �n is the normal unit vector to the level surface passing

through the point �r, and �n is pointing in the direction of increasing U , then
∂U

∂�n
has the greatest value

among all the derivatives at the point with respect to the unit vectors in different directions. Between
the directional derivatives with respect to �n and with respect to any direction �c 0 holds the relation

∂U

∂�c 0
=

∂U

∂�n
cos(�c 0, �n) =

∂U

∂�n
cosϕ = �c 0 · gradU (see (13.34), p. 710) . (13.29)

Hereafter, directional derivatives always mean the directional derivative with respect to a unit vector.

13.2.1.2 Directional Derivative of a Vector Field
The directional derivative of a vector field is defined analogously to the directional derivative of a scalar

field. The directional derivative of the vector field �V = �V(�r) at a point P with position vector �r
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(Fig. 13.11) with respect to the vector �a is defined as the limit of the quotient

∂ �V

∂�a
= lim

ε→0

�V(�r+ ε�a)− �V(�r)

ε
. (13.30)

If the derivative of the vector field �V = �V(�r) at a point �r in the direction of the unit vector �a 0 of �a is

denoted by
∂ �V

∂�a 0
, then

∂ �V

∂�a
= |�a| ∂

�V

∂�a 0
. (13.31)

In Cartesian coordinates, i.e., for �V = Vx�ex + Vy�ey + Vz�ez , �a = ax�ex + ay�ey + az�ez , holds:

(�a · grad )�V = (�a · gradVx) �ex + (�a · gradVy) �ey + (�a · gradVz)�ez , (13.32a)

in general coordinates:

(�a · grad )�V =
1

2
(rot (�V × �a) + grad (�a · �V) + �adiv �V − �Vdiv�a− �a× rot �V − �V × rot�a .

(13.32b)

13.2.1.3 VolumeDerivative
Volume derivatives of a scalar field U = U(�r) or a vector field �V at a point �r are quantities of three
forms, which are obtained as follows:

1. Surrounding the point�r of the scalar field or of the vector field by a closed surface Σ. This surface can
be represented in parametric form�r = �r(u, v) = x(u, v)�ex+y(u, v)�ey+z(u, v)�ez , so the corresponding
vectorial surface element is

d�S =
∂�r

∂u
× ∂�r

∂v
du dv . (13.33a)

2. Evaluating the surface integral over the closed surface Σ . Here, the following three types of integrals
can be considered:∫∫

(Σ)

© U d�S ,
∫∫
(Σ)

© �V · d�S ,
∫∫
(Σ)

© �V × d�S . (13.33b)

3. Determining the limits (if they exist)

lim
V→0

1

V

∫∫
(Σ)

© U d�S , lim
V→0

1

V

∫∫
(Σ)

© �V · d�S , lim
V→0

1

V

∫∫
(Σ)

© �V × d�S . (13.33c)

Here V denotes the volume of the region of space that contains the point with the position vector �r
inside, and which is bounded by the considered closed surface Σ .
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The limits (13.33c) are called volume derivatives. The gradient of a scalar field and the divergence and
the rotation of a vector field can be derived from them in the given order. In the following paragraphs,
these notions will be discussed in details (even defining them again.)

13.2.2 Gradient of a Scalar Field
The gradient of a scalar field can be defined in different ways.

13.2.2.1 Definition of the Gradient
The gradient of a function U is a vector gradU , which can be assigned to every point P with the vector
�r of a scalar field U = U(�r), having the following properties:

1. The direction of gradU is always perpendicular to the direction of the level surface U = const,
passing through the considered points P ,

2. gradU points always into the direction in which the function U is increasing,

3. |gradU | = ∂U

∂�n
, i.e., the magnitude of gradU is equal to the directional derivative of U in the normal

direction.

If the gradient is defined in another way, e.g., as a volume derivative or by the differential operator,
then the previous defining properties became consequences of the definition.

13.2.2.2 Gradient andDirectional Derivative
The directional derivative of the scalar field U with respect to the unit vector �c 0 is equal to the projec-
tion of gradU onto the direction of the unit vector �c 0:

∂U

∂�c 0
= �c 0 · gradU, (13.34)

i.e., the directional derivative can be calculated as the dot product of the gradient and the unit vector
pointing into the required direction.

Remark: The directional derivative at certain points in certain directions may also exist if the gradient
does not exist there.

13.2.2.3 Gradient andVolumeDerivative
The gradient U of the scalar field U = U(�r) at a point �r can be defined as its volume derivative. If the
following limit exists, then it is called the gradient of U at �r:

gradU = lim
V→0

∫∫
(Σ)

© U d�S

V
. (13.35)

Here V is the volume of the region of space containing the point belonging to �r inside and bounded by
the closed surface Σ. (If the independent variable is not a three-dimensional vector, then the gradient
is defined by the differential operator.)

13.2.2.4 Further Properties of the Gradient
1. The absolute value of the gradient is greater if the level lines or level surfaces drawn as mentioned
in 13.1.2.4, 2., p. 703, are more dense.

2. The gradient is the zero vector (gradU = �0) if U has a maximum or minimum at the considered
point. The level lines or surfaces degenerate to a point there.

13.2.2.5 Gradient of the Scalar Field in Different Coordinates

1. Gradient in Cartesian Coordinates

gradU =
∂U(x, y, z)

∂x
�i+

∂U(x, y, z)

∂y
�j+

∂U(x, y, z)

∂z
�k. (13.36)
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2. Gradient in Cylindrical Coordinates (x = ρ cos ϕ, y = ρ sin ϕ, z = z)
gradU = gradρ U�eρ + gradϕ U�eϕ + gradz U�ez with (13.37a)

gradρU =
∂U

∂ρ
, gradϕU =

1

ρ

∂U

∂ϕ
, gradzU =

∂U

∂z
. (13.37b)

3. Gradient in Spherical Coordinates (x = r sin ϑ cos ϕ, y = r sin ϑ sin ϕ, z =

r cos ϑ)
gradU = gradr U�er + gradϑ U�eϑ + gradϕ U�eϕ with (13.38a)

gradrU =
∂U

∂r
, gradϑU =

1

r

∂U

∂ϑ
, gradϕU =

1

r sinϑ

∂U

∂ϕ
. (13.38b)

4. Gradient in General Orthogonal Coordinates (ξ, η, ζ)

For �r(ξ, η, ζ) = x(ξ, η, ζ)�i+ y(ξ, η, ζ)�j+ z(ξ, η, ζ)�k :

gradU = gradξ U�eξ + gradη U�eη + gradζ U�eζ , where (13.39a)

gradξ U =
1∣∣∣∣∣∂�r∂ξ
∣∣∣∣∣
∂U

∂ξ
, gradηU =

1∣∣∣∣∣∂�r∂η
∣∣∣∣∣
∂U

∂η
, gradζU =

1∣∣∣∣∣∂�r∂ζ
∣∣∣∣∣
∂U

∂ζ
. (13.39b)

13.2.2.6 Rules of Calculations
Assuming in the followings that �c and c are constant, the following equalities hold:

grad c = 0, grad (U1 + U2) = gradU1 + gradU2, grad (c U) = c gradU. (13.40)

grad (U1U2) = U1gradU2 + U2gradU1, gradϕ(U) =
dϕ

dU
gradU. (13.41)

grad (�V1 · �V2) = (�V1 · grad )�V2 + (�V2 · grad )�V1 + �V1 × rot �V2 + �V2 × rot �V1. (13.42)

grad (�r · �c) = �c. (13.43)

1. Differential of a Scalar Field as the Total Differential of the Function U

dU = gradU · d�r = ∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz. (13.44)

2. Derivative of a Function U along a Space Curve�r(t)
dU

dt
=

∂U

∂x

dx

dt
+

∂U

∂y

dy

dt
+

∂U

∂z

dz

dt
. (13.45)

3. Gradient of a Central Field

gradU(r) = U
′
(r)

�r

r
(spherical field), (13.46a) grad r =

�r

r
(field of unit vectors). (13.46b)

13.2.3 VectorGradient
The relation (13.32a) inspires the notation

∂ �V

∂�a
= �a · grad (Vx�ex + Vy�ey + Vz�ez) = �a · grad �V (13.47a)
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where grad �V is called the vector gradient. It follows from the matrix notation of (13.47a) that the
vector gradient, as a tensor, can be represented by a matrix:

(�a ·grad )�V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Vx

∂x

∂Vx

∂y

∂Vx

∂z

∂Vy

∂x

∂Vy

∂y

∂Vy

∂z

∂Vz

∂x

∂Vz

∂y

∂Vz

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎝ ax
ay
az

⎞⎠ ,(13.47b) grad �V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Vx

∂x

∂Vx

∂y

∂Vx

∂z

∂Vy

∂x

∂Vy

∂y

∂Vy

∂z

∂Vz

∂x

∂Vz

∂y

∂Vz

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13.47c)

These types of tensors have a very important role in engineering sciences, e.g., for the description of
tension and elasticity (see 4.3.2, 4., p. 282.

13.2.4 Divergence ofVector Fields
13.2.4.1 Definition of Divergence

To a vector field �V(�r) a scalar field can be assigned which is called its divergence. The divergence is
defined as a space derivative of the vector field at a point �r:

div �V = lim
V→0

∫∫
(Σ)

© �V · d�S

V
. (13.48)

If the vector field �V is considered as a stream field, then the divergence can be considered as the fluid
output or source, because it gives the amount of fluid given in a unit of volume during a unit of time

flowing by the considered point of the vector field �V. In the case div �V > 0 the point is called a source,

in the case div �V < 0 it is called a sink.

13.2.4.2 Divergence in Different Coordinates

1. Divergence in Cartesian Coordinates

div �V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
(13.49a) with �V(x, y, z) = Vx

�i+ Vy
�j+ Vz

�k. (13.49b)

The scalar field div �V can be represented as the dot product of the nabla operator∇ and the vector �V
as

div �V = ∇ · �V (13.49c)

and it is translation and rotation invariant, i.e., scalar invariant (see 4.3.3.2, p. 283).

2. Divergence in Cylindrical Coordinates

div �V =
1

ρ

∂(ρVρ)

∂ρ
+

1

ρ

∂Vϕ

∂ϕ
+

∂Vz

∂z
(13.50a) with �V(ρ, ϕ, z) = Vρ�eρ + Vϕ�eϕ + Vz�ez. (13.50b)

3. Divergence in Spherical Coordinates

div �V =
1

r2
∂(r2Vr)

∂r
+

1

r sinϑ

∂(sinϑVϑ)

∂ϑ
+

1

r sinϑ

∂Vϕ

∂ϕ
(13.51a)

with �V(r, ϑ, ϕ) = Vr�er + Vϑ�eϑ + Vϕ�eϕ. (13.51b)

4. Divergence in General Orthogonal Coordinates

div �V =
1

D

{
∂

∂ξ

(∣∣∣∣∣∂�r∂η
∣∣∣∣∣
∣∣∣∣∣∂�r∂ζ

∣∣∣∣∣Vξ

)
+

∂

∂η

(∣∣∣∣∣∂�r∂ζ
∣∣∣∣∣
∣∣∣∣∣∂�r∂ξ

∣∣∣∣∣Vη

)
+

∂

∂ζ

(∣∣∣∣∣∂�r∂ξ
∣∣∣∣∣
∣∣∣∣∣∂�r∂η

∣∣∣∣∣Vζ

)}
(13.52a)
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with �r(ξ, η, ζ) = x(ξ, η, ζ)�i+ y(ξ, η, ζ)�j+ z(ξ, η, ζ)�k, (13.52b)

D =

∣∣∣∣∣
(
∂�r

∂ξ

∂�r

∂η

∂�r

∂ζ

)∣∣∣∣∣ =
∣∣∣∣∣∂�r∂ξ

∣∣∣∣∣ ·
∣∣∣∣∣∂�r∂η

∣∣∣∣∣ ·
∣∣∣∣∣∂�r∂ζ

∣∣∣∣∣ (13.52c) and �V(ξ, η, ζ) = Vξ�eξ + Vη�eη + Vζ�eζ . (13.52d)

13.2.4.3 Rules for Evaluation of the Divergence

div�c = 0, div (�V1 + �V2) = div �V1 + div �V2, div (c�V) = c div �V. (13.53)

div (U �V) = U div �V + �V · gradU
(
especially div( r�c) =

�r · �c
r

)
. (13.54)

div (�V1 × �V2) = �V2 · rot �V1 − �V1 · rot �V2 . (13.55)

13.2.4.4 Divergence of a Central Field

div�r = 3, divϕ(r)�r = 3ϕ(r) + rϕ
′
(r). (13.56)

13.2.5 Rotation ofVector Fields
13.2.5.1 Definitions of the Rotation

1. Definition
The rotation or curl of a vector field �V at the point �r is a vector denoted by rot �V, curl �V or with the

nabla operator ∇× �V, and defined as the negative space derivative of the vector field:

rot �V = − lim
V→0

∫∫
(Σ)

© �V × d�S

V
= lim

V→0

∫∫
(Σ)

© d�S× �V

V
. (13.57)

2. Definition
The vector field of the rotation of the vector field �V(�r) can be defined in the following way:

proj rot =limn V

r

Ss 0

K

KmaxSmax

rot V

S

n

0

K

90
o

V rd

P

Figure 13.12

a) Putting a small surface sheet S (Fig. 13.12)
through the point �r and describing this surface sheet

by a vector �S whose direction is the direction of the
surface normal �n and its absolute value is equal to the
area of this surface region. The boundary of this sur-
face is denoted by C.

b) Evaluating the integral
∮
(C)

�V · d�r along the closed

boundary curveC of the surface (the sense of the curve
is positive looking to the surface from the direction of
the surface normal (see Fig. 13.12).

c) Determining the limit (if it exists) lim
S→0

1

S

∮
(C)

�V · d�r,

while the position of the surface sheet remains un-
changed.

d) Changing the position of the surface sheet in order to get a maximum value of the limit. The surface
area in this position is Smax and the corresponding boundary curve is Cmax.
e) Determining the vector rot�r at the point �r, whose absolute value is equal to the maximum value
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found above and its direction coincides with the direction of the surface normal of the corresponding
surface. Then one gets:

∣∣∣rot �V∣∣∣ = lim
Smax→0

∮
(Cmax)

�V · d�r

Smax

. (13.58a)

The projection of rot �V onto the surface normal �n of a surface with area S, i.e., the component of the

vector rot �V in an arbitrary direction �n =�l is

�l · rot �V = rot l
�V = lim

S→0

∮
(C)

�V · d�r

S
. (13.58b)

The vector lines of the field rot �V are called the curl lines of the vector field �V.

13.2.5.2 Rotation in Different Coordinates

1. Rotation in Cartesian Coordinates

rot �V =�i

(
∂Vz

∂y
− ∂Vy

∂z

)
+�j

(
∂Vx

∂z
− ∂Vz

∂x

)
+ �k

(
∂Vy

∂x
− ∂Vx

∂y

)
=

∣∣∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
Vx Vy Vz

∣∣∣∣∣∣∣∣∣∣
. (13.59a)

The vector field rot �V can be represented as the cross product of the nabla operator ∇ and the vector
�V:

rot �V = ∇× �V. (13.59b)

2. Rotation in Cylindrical Coordinates

rot �V = rot ρ
�V�eρ + rot ϕ

�V�eϕ + rot z
�V�ez with (13.60a)

rot ρ
�V =

1

ρ

∂Vz

∂ϕ
− ∂Vϕ

∂z
, rot ϕ

�V =
∂Vρ

∂z
− ∂Vz

∂ρ
, rot z

�V =
1

ρ

{
∂

∂ρ
(ρVϕ)−

∂Vρ

∂ϕ

}
. (13.60b)

3. Rotation in Spherical Coordinates

rot �V = rot r
�V�er + rot ϑ

�V�eϑ + rot ϕ
�V�eϕ with (13.61a)

rot r
�V =

1

r sinϑ

{
∂

∂ϑ
(sinϑVϕ)−

∂Vϑ

∂ϕ

}
,

rot ϑ
�V =

1

r sinϑ

∂Vr

∂ϕ
− 1

r

∂

∂r
(rVϕ),

rot ϕ
�V =

1

r

{
∂

∂r
(rVϑ)−

∂Vr

∂ϑ

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13.61b)

4. Rotation in General Orthogonal Coordinates

rot �V = rot ξ
�V�eξ + rot η

�V�eη + rot ζ
�V�eζ with (13.62a)
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rot ξ
�V =

1

D

∣∣∣∣∣∂�r∂ξ
∣∣∣∣∣
[
∂

∂η

(∣∣∣∣∣∂�r∂ζ
∣∣∣∣∣Vζ

)
− ∂

∂ζ

(∣∣∣∣∣∂�r∂η
∣∣∣∣∣Vη

)]
,

rot η
�V =

1

D

∣∣∣∣∣∂�r∂η
∣∣∣∣∣
[
∂

∂ζ

(∣∣∣∣∣∂�r∂ξ
∣∣∣∣∣Vξ

)
− ∂

∂ξ

(∣∣∣∣∣∂�r∂ζ
∣∣∣∣∣Vζ

)]
,

rot ζ
�V =

1

D

∣∣∣∣∣∂�r∂ζ
∣∣∣∣∣
[
∂

∂ξ

(∣∣∣∣∣∂�r∂η
∣∣∣∣∣Vη

)
− ∂

∂η

(∣∣∣∣∣∂�r∂ξ
∣∣∣∣∣Vξ

)]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13.62b)

�r(ξ, η, ζ) = x(ξ, η, ζ)�i+ y(ξ, η, ζ)�j+ z(ξ, η, ζ)�k; D =

∣∣∣∣∣∂�r∂ξ
∣∣∣∣∣ ·
∣∣∣∣∣∂�r∂η

∣∣∣∣∣ ·
∣∣∣∣∣∂�r∂ζ

∣∣∣∣∣ . (13.62c)

13.2.5.3 Rules for Evaluating the Rotation

rot ( �V1 + �V2) = rot �V1 + rot �V2, rot (c�V) = c rot �V. (13.63)

rot (U �V) = U rot �V + gradU × �V. (13.64)

rot ( �V1 × �V2) = ( �V2 · grad ) �V1 − ( �V1 · grad ) �V2 + �V1 div �V2 − �V2 div �V1. (13.65)

13.2.5.4 Rotation of a Potential Field
This also follows from the Stokes theorem (see 13.3.3.2, p. 725) that the rotation of a potential field is
identically zero:

rot �V = rot (grad U) = �0. (13.66)

This also follows from (13.59a) for �V = gradU , if the assumptions of the Schwarz interchanging theo-
rem are fulfilled (see 6.2.2.2, 1., p. 448).

For �r = x�i + y�j + z�k with r = |�r| =
√
x2 + y2 + z2 holds: rot �r = �0 and rot (ϕ(r)�r) = �0, where

ϕ(r) is a differentiable function of r.

13.2.6 NablaOperator, LaplaceOperator
13.2.6.1 Nabla Operator
The symbolic vector ∇ is called the nabla operator. Its use simplifies the representation of and calcu-
lations with space differential operators. In Cartesian coordinates holds

∇ =
∂

∂x
�i+

∂

∂y
�j+

∂

∂z
�k. (13.67)

The components of the nabla operator are considered as partial differential operators, i.e., the symbol
∂

∂x
means partial differentiation with respect to x, where the other variables are considered as con-

stants.

The formulas for spatial differential operators in Cartesian coordinates can be obtained by formal mul-

tiplication of this vector operator by the scalar U or by the vector �V. For instance, in the case of the
operators gradient, vector gradient, divergence, and rotation:

grad U = ∇U (gradient of U (see 13.2.2, p. 710)), (13.68a)

grad �V = ∇ �V (vector gradient of �V (see 13.2.3, p. 711)), (13.68b)

div �V = ∇ · �V (divergence of �V (see 13.2.4, p. 712)), (13.68c)

rot �V = ∇× �V (rotation or curl of �V (see 13.2.5, p. 713)). (13.68d)
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13.2.6.2 Rules for Calculations with the Nabla Operator

1. If ∇ stands in front of a linear combination
∑

aiXi with constants ai and with point functions Xi,
then, independently of whether they are scalar or vector functions, we have the formula:

∇(
∑

aiXi) =
∑

ai∇Xi. (13.69)

2. If ∇ is applied to a product of scalar or vector functions, then it has to be applied to each of these
functions after each other and the results are to be added. There is a ↓ above the symbol of the function
submitted to the operation

∇(XY Z) = ∇(
↓
X Y Z) +∇(X

↓
Y Z) +∇(XY

↓
Z ), i.e., (13.70)

∇(XY Z) = (∇X)Y Z +X(∇Y )Z) +XY (∇Z).

Then the products have to be transformed according to vector algebra so as the operator ∇ is applied
to only one factor with the sign ↓. Having performed the computation one omits that sign.

A: div (U �V) = ∇(U �V) = ∇(
↓
U �V) +∇(U

↓
�V ) = �V · ∇U + U∇ · �V = �V · gradU + U div �V.

B: grad (�V1
�V2) = ∇(�V1

�V2) = ∇(

↓
�V1

�V2) + ∇(�V1

↓
�V2 ). Because �b(�a�c) = (�a�b)�c + �a × (�b × �c)

follows: grad (�V1
�V2) = (�V2∇)�V1 + �V2 × (∇× �V1) + (�V1∇)�V2 + �V1 × (∇× �V2)

= (�V2grad )�V1 + �V2 × rot �V1 + (�V1grad )�V2 + �V1 × rot �V2.

13.2.6.3 Vector Gradient
The vector gradient grad �V is represented by the nabla operator as

grad �V = ∇�V. (13.71a)

The expression occurring in the vector gradient (�a · ∇)�V (see (13.32b), p. 709) has the form:

2(�a · ∇)�V = rot (�V × �a) + grad (�a�V) + �adiv �V − �Vdiv�a− �a× rot �V − �V × rot�a. (13.71b)

In particular one gets for �r = x�i+ y�j+ z�k:

(�a · ∇)�r = �a. (13.71c)

13.2.6.4 Nabla Operator Applied Twice

For every field �V:

∇(∇× �V) = div rot �V ≡ 0, (13.72) ∇× (∇U) = rot gradU ≡ �0, (13.73)

∇(∇U) = div gradU = ΔU. (13.74)

13.2.6.5 Laplace Operator

1. Definition
The dot product of the nabla operator with itself is called the Laplace operator:

Δ = ∇ · ∇ = ∇2. (13.75)

The Laplace operator is not a vector. It prescribes the summation of the second partial derivatives. It
can be applied to scalar functions as well as to vector functions. The application to a vector function,
componentwise, results in a vector.
The Laplace operator is an invariant, i.e., it does not change during translation and/or rotation of the
coordinate system.
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2. Formulas for the Laplace Operator in Different Coordinates
Here the Laplace operator is applied to the scalar point function U(�r). Then the result is a scalar. The

application of it for vector functions �V(�r) results in a vector Δ�V with components ΔVx, ΔVy, ΔVz.

1. Laplace Operator in Cartesian Coordinates

ΔU(x, y, z) =
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
. (13.76)

2. Laplace Operator in Cylindrical Coordinates

ΔU(ρ, ϕ, z) =
1

ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+

1

ρ2
∂2U

∂ϕ2
+

∂2U

∂z2
. (13.77)

3. Laplace Operator in Spherical Coordinates

ΔU(r, ϑ, ϕ) =
1

r2
∂

∂r

(
r2
∂U

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂U

∂ϑ

)
+

1

r2 sin2 ϑ

∂2U

∂ϕ2
. (13.78)

4. Laplace Operator in General Orthogonal Coordinates

ΔU(ξ, η, ζ) =
1

D

⎡⎢⎢⎢⎢⎢⎣
∂

∂ξ

⎛⎜⎜⎜⎜⎜⎝
D∣∣∣∣∣∂�r∂ξ
∣∣∣∣∣
2

∂U

∂ξ

⎞⎟⎟⎟⎟⎟⎠+
∂

∂η

⎛⎜⎜⎜⎜⎜⎝
D∣∣∣∣∣∂�r∂η
∣∣∣∣∣
2

∂U

∂η

⎞⎟⎟⎟⎟⎟⎠+
∂

∂ζ

⎛⎜⎜⎜⎜⎜⎝
D∣∣∣∣∣∂�r∂ζ
∣∣∣∣∣
2

∂U

∂ζ

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ with (13.79a)

�r(ξ, η, ζ) = x(ξ, η, ζ)�i+ y(ξ, η, ζ)�j+ z(ξ, η, ζ)�k, (13.79b) D =

∣∣∣∣∣∂�r∂ξ
∣∣∣∣∣ ·
∣∣∣∣∣∂�r∂η

∣∣∣∣∣ ·
∣∣∣∣∣∂�r∂ζ

∣∣∣∣∣ . (13.79c)

3. Special Relations between the Nabla Operator and Laplace Operator

∇(∇ · �V) = grad div �V, (13.80)

∇× (∇× �V) = rot rot �V, (13.81)

∇(∇ · �V)−∇× (∇× �V) = Δ�V, where (13.82)

Δ�V = (∇ · ∇)�V = ΔVx
�i+ΔVy

�j+ΔVz
�k =

(
∂2Vx

∂x2
+

∂2Vx

∂y2
+

∂2Vx

∂z2

)
�i

+

(
∂2Vy

∂x2
+

∂2Vy

∂y2
+

∂2Vy

∂z2

)
�j+

(
∂2Vz

∂x2
+

∂2Vz

∂y2
+

∂2Vz

∂z2

)
�k. (13.83)

13.2.7 Review of Spatial Differential Operations

13.2.7.1 Rules of Calculation for Spatial Differential Operators

U,U1, U2 and F are scalar functions; c is a constant; �V, �V1, �V2 are vector functions:

grad (U1 + U2) = gradU1 + gradU2. (13.84) grad (cU) = c gradU. (13.85)

grad (U1U2) = U1 gradU2+U2 gradU1.(13.86) gradF (U) = F ′(U) gradU. (13.87)

div (�V1 + �V2) = div �V1 + div �V2. (13.88) div (c�V) = c div �V. (13.89)
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div (U �V) = �V · gradU + U div �V. (13.90) rot (�V1 + �V2) = rot �V1 + rot �V2. (13.91)

rot (c�V) = c rot �V. (13.92) rot (U �V) = U rot �V − �V × gradU. (13.93)

div rot �V ≡ 0. (13.94) rot gradU ≡ �0 (zero vector). (13.95)

div gradU = ΔU. (13.96) rot rot �V = grad div �V −Δ�V. (13.97)

div (�V1×�V2) = �V2·rot �V1−�V1·rot �V2.(13.98)

13.2.7.2 Expressions of Vector Analysis in Cartesian, Cylindrical, and

Spherical Coordinates (see Table 13.2)

Table 13.2 Expressions of vector analysis in Cartesian, cylindrical, and spherical coordinates

Cartesian coordinates Cylindrical coordinates Spherical coordinates

d�s = d�r �exdx+ �eydy + �ezdz �eρdρ+ �eϕρdϕ+ �ezdz �erdr + �eϑrdϑ+ �eϕr sinϑdϕ

gradU �ex
∂U

∂x
+ �ey

∂U

∂y
+ �ez

∂U

∂z
�eρ

∂U

∂ρ
+ �eϕ

1

ρ

∂U

∂ϕ
+ �ez

∂U

∂z
�er

∂U

∂r
+ �eϑ

1

r

∂U

∂ϑ
+ �eϕ

1

r sinϑ

∂U

∂ϕ

div�V
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z

1

ρ

∂

∂ρ
(ρVρ) +

1

ρ

∂Vϕ

∂ϕ
+

∂Vz

∂z

1

r2
∂

∂r
(r2Vr) +

1

r sinϑ

∂

∂ϑ
(Vϑ sinϑ)

+
1

r sinϑ

∂Vϕ

∂ϕ

rot�V �ex

(
∂Vz

∂y
− ∂Vy

∂z

)
�eρ

(
1

ρ

∂Vz

∂ϕ
− ∂Vϕ

∂z

)
�er

1

r sinϑ

[
∂

∂ϑ
(Vϕ sinϑ)−

∂Vϑ

∂ϕ

]

+�ey

(
∂Vx

∂z
− ∂Vz

∂x

)
+�eϕ

(
∂Vρ

∂z
− ∂Vz

∂ρ

)
+�eϑ

1

r

[
1

sinϑ

∂Vr

∂ϕ
− ∂

∂r
(rVϕ)

]

+�ez

(
∂Vy

∂x
− ∂Vx

∂y

)
+�ez

(
1

ρ

∂

∂ρ
(ρVϕ)−

1

ρ

∂Vρ

∂ϕ

)
+�eϕ

1

r

[
∂

∂r
(rVϑ)−

∂Vr

∂ϑ

]

ΔU
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
1

ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+

1

ρ2
∂2U

∂ϕ2

1

r2
∂

∂r

(
r2
∂U

∂r

)

+
∂2U

∂z2
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂U

∂ϑ

)

+
1

r2 sin2 ϑ

∂2U

∂ϕ2
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13.2.7.3 Fundamental Relations andResults (see Table 13.3)

Table 13.3 Fundamental relations for spatial differential operators

Operator Symbol Relation Argument Result Meaning

Gradient gradU ∇U scalar vector maximal increase

Vector gradient grad �V ∇�V vector tensor second order

Divergence div �V ∇ · �V vector scalar source, sink

Rotation rot �V ∇× �V vector vector curl

Laplace operator ΔU (∇ · ∇)U scalar scalar potential field source

Laplace operator Δ�V (∇ · ∇)�V vector vector

13.3 Integration inVectorFields
Integration in vector fields is usually performed in Cartesian, cylindrical or in spherical coordinate
systems. Usually one integrates along curves, surfaces, or volumes. The line, surface, and volume
elements needed for these calculations are collected in Table 13.4.

Table 13.4 Line, surface, and volume elements in Cartesian, cylindrical, and spherical coordinates

Cartesian coordinates Cylindrical coordinates Spherical coordinates

d�r �exdx+ �eydy + �ezdz �eρdρ+ �eϕρdϕ+ �ezdz �erdr + �eϑrdϑ+ �eϕr sinϑdϕ

d�S �exdydz + �eydxdz + �ezdxdy �eρρdϕdz + �eϕdρdz + �ezρdρdϕ �err
2 sinϑdϑdϕ

+�eϑr sinϑdrdϕ

+�eϕrdrdϑdϕ

dv∗ dxdydz ρdρdϕdz r2 sinϑdrdϑdϕ

�ex = �ey × �ez �eρ = �eϕ × �ez �er = �eϑ × �eϕ

�ey = �ez × �ex �eϕ = �ez × �eρ �eϑ = �eϕ × �er

�ez = �ex × �ey �ez = �eρ × �eϕ �eϕ = �er × �eϑ

�ei · �ej =
{
0 i �= j
1 i = j

�ei · �ej =
{
0 i �= j
1 i = j

�ei · �ej =
{
0 i �= j
1 i = j

The indices i and j take the place of x, y, z or ρ, ϕ, z or r, ϑ, ϕ.

* The volume is denoted here by v to avoid confusion with the absolute value of the vector

function |�V| = V.

13.3.1 Line Integral andPotential inVector Fields
13.3.1.1 Line Integral in Vector Fields

1. Definition The scalar-valued curvilinear integral or line integral of a vector function �V(�r) along

a rectificable curve
�
AB (Fig. 13.13) is the scalar value

P =
∫
�
AB

�V(�r) · d�r. (13.99a)
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A=A0
r0

P1

�r0

A1

P2

r1

�r1

A2

r2

P3

A3

�r2

r3

rn-1

An-1

Pn

rn

�rn-1 B=An

0

Figure 13.13

2. Evaluation of this Integral in Five Steps

a)Dividing the path
�
AB (Fig. 13.13) by division points

A1(�r1), A2(�r2), . . . , An−1(�rn−1) (A = A0, B = An)
into n small arcs which are approximated by the vectors
�ri −�ri−1 = Δ�ri−1.

b) Choosing arbitrarily the points Pi with position vec-

tors �ξi lying inside or at the boundary of each small arc.

c) Calculating the dot product of the value of the func-

tion �V(�ξi) at these chosen points with the corresponding
Δ�ri−1.

d) Taking the sum of all the n products.

e) Calculating the limit of the sums got in this way
n∑

i=1

�̃V(�ξi) · Δ�ri−1 for |Δ�ri−1| → 0, while n → ∞ obvi-

ously.

If this limit exists independently of the choice of the points Ai and Pi, then it is called the line integral∫
�
AB

�V · d�r = lim
|Δ�ri−1|→0

n→∞

n∑
i=1

�̃V(�ξi) ·Δ�ri−1. (13.99b)

A sufficient condition for the existence of the line integral (13.99a,b) is that the vector function �V(�r)

A

B

C

Figure 13.14

and the curve
�
AB are continuous and the curve has a tangent varying continuously.

A vector function �V(�r) is continuous if its components, the three scalar functions,
are continuous.

13.3.1.2 Interpretation of the Line Integral inMechanics

If �V(�r) is a field of force, i.e., �V(�r) = �F(�r), then the line integral (13.99a)

represents the work done by �F while a particle m moves along the path
�
AB

(Fig. 13.13,13.14).

13.3.1.3 Properties of the Line Integral

∫
�

ABC

�V(�r) · d�r =
∫
�
AB

�V(�r) · d�r+
∫
�
BC

�V(�r) · d�r (Fig. 13.14). (13.100)

∫
�
AB

�V(�r) · d�r = −
∫
�
BA

�V(�r) · d�r. (13.101)

∫
�
AB

[
�V(�r) + �W(�r)

]
· d�r =

∫
�
AB

�V(�r) · d�r+
∫
�
AB

�W(�r) · d�r. (13.102)

∫
�
AB

c�V(�r) · d�r = c
∫
�
AB

�V(�r) · d�r (c const). (13.103)
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13.3.1.4 Line Integral in Cartesian Coordinates
In Cartesian coordinates the following formula holds:∫

�
AB

�V(�r) · d�r =
∫
�
AB

(Vx dx+ Vy dy + Vz dz) . (13.104)

13.3.1.5 Integral Along a Closed Curve in a Vector Field
A line integral is called a contour integral if the path of integration is a closed curve. If the scalar value
of the integral is denoted by P and the closed curve is denoted byC, then the following notation is used:

P =
∮
(C)

�V(�r) · d�r. (13.105)

13.3.1.6 Conservative Field or Potential Field

1. Definition
If the value P of the line integral (13.99a) in a vector field depends only on the initial point A and the
endpoint B, and is independent of the path between them, then this field is called a conservative field
or a potential field.

The value of the contour integral in a conservative field is always equal to zero:∫
(C)

�V(�r) · d�r = 0. (13.106)

A conservative field is always irrotational:

rot �V = �0, (13.107)

and conversely, this equality is a sufficient condition for a vector field to be conservative. Of course, it

is to be supposed that the partial derivatives of the field function �V are continuous with respect to the

corresponding coordinates, and the domain of �V is simply connected. This condition, also called the
integrability condition (see 8.3.4.2, p. 521), has the following form in Cartesian coordinates

∂Vx

∂y
=

∂Vy

∂x
,

∂Vy

∂z
=

∂Vz

∂y
,

∂Vz

∂x
=

∂Vx

∂z
. (13.108)

2. Potential of a Conservative Field,
or its potential function or briefly its potential is the scalar function

U(�r) =

�r∫
�r0

�V(�r) · d�r. (13.109a)

In a conservative field it is calculated with a fixed initial point A(�r0) and a variable endpoint B(�r) as
the line integral

U(�r) =
∫
�
AB

�V(�r) · d�r. (13.109b)

Remark: In physics, the potential U∗(�r) of a function �V(�r) at the point�r is often considered with the
opposite sign:

U∗(�r) = −
�r∫

�r0

�V(�r) · d�r = −U(�r). (13.110)
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3. Relations between Gradient, Line Integral, and Potential

If the relation �V(�r) = gradU(�r) holds, thenU(�r) is the potential of the field �V(�r), and conversely, �V(�r)
is a conservative or potential field. In physics often the negative sign is used corresponding to (13.110).

4. Calculation of the Potential in a Conservative Field
If the function �V(�r) is given in Cartesian coordinates �V = Vx

�i+ Vy
�j+ Vz

�k, then for the total differen-

z B( r )

A( r )o

y
x

0

Figure 13.15

tial of its potential function U

dU = Vx dx+ Vy dy + Vz dz (13.111a)

holds. Here, the coefficients Vx, Vy, Vz must fulfill the integrability
condition (13.108). The determination of U follows from the equa-
tion system

∂U

∂x
= Vx,

∂U

∂y
= Vy,

∂U

∂z
= Vz. (13.111b)

In practice, the calculation of the potential can be done by perform-
ing the integration along three straight line segments parallel to the
coordinate axes and connected to each other (Fig. 13.15):

U =

�r∫
�r0

�V · d�r = U(x0, y0, z0) +
∫ x

x0

Vx(x, y0, z0) dx+
∫ y

y0
Vy(x, y, z0) dy +

∫ z

z0
Vz(x, y, z) dz . (13.112)

13.3.2 Surface Integrals

13.3.2.1 Vector of a Plane Sheet
The vector representation of the surface integral of general type (see 8.3.4.2, p. 537) requires to assign

a vector �S to a plane surface region S, which is perpendicular to this region and its absolute value is
equal to the area of S. Fig. 13.16a shows the case of a plane sheet. The positive direction in S is
given by defining the positive sense along a closed curve C according to the right-hand law (also called
right-screw rule): Looking from the initial point of the vector into the direction of its final point, then
the positive sense is the clockwise direction. By this choice of orientation of the boundary curve one
fixes the exterior side of this surface region, i.e., the side on which the vector lies. This definition works
in the case of any surface region bounded by a closed curve (Fig. 13.16b,c).

a)

S

exterior side

interior side

c) C

C

Cb)

interior side

exterior side

Figure 13.16

13.3.2.2 Evaluation of the Surface Integral
The evaluation of a surface integral in scalar or vector fields is independent of whether the surface S is
bounded by a closed curve or is itself a closed surface. The evaluation is performed in five steps:

a) Dividing the surface region S on the exterior side defined by the orientation of the boundary curve
(Fig. 13.17) into n arbitrary elementary surfaces ΔSi so that each of these surface elements can be

approximated by a plane surface element. Assigning the vector Δ�Si to every surface element ΔSi as
given in (13.33a). In the case of a closed surface, the positive direction is defined so that the exterior
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side is where Δ�Si should start.

b) Choosing an arbitrary point Pi with the position vector �ri inside or on the boundary of each surface
element.

c) Producing the products U(�ri)Δ�Si in the case of a scalar field and the product �V(�ri) ·Δ�Si or �V(�ri)×
Δ�Si in the case of a vector field.

d) Taking the sum of all these products.

e) Evaluating the limit while the diameters of ΔSi tend to zero, i.e., |Δ�Si| → 0 for n → ∞. So, the
surface elements tend to zero in the sense given in 8.4.1, 1., p. 524, for double integrals.
If this limit exists independently of the partition and of the choice of the points �ri, then one calls it the

surface integral of �V on the given surface.

r
i

�S
i

�S
i V( r )

i

0

P
i

Figure 13.17

S

Syz

Szx

x
Sxy

y

z

0

Figure 13.18

13.3.2.3 Surface Integrals and Flow of Fields

1. Vector Flow of a Scalar Field

�P = lim
|Δ�Si|→0

n→∞

n∑
i=1

U(�ri)Δ�Si =
∫
(S)

U(�r) d�S. (13.113)

2. Scalar Flow of a Vector Field

Q = lim
|Δ�Si|→0

n→∞

n∑
i=1

�V(�ri) ·Δ�Si =
∫
(S)

�V(�r) · d�S. (13.114)

3. Vector Flow of a Vector Field

�R = lim
|Δ�Si|→0

n→∞

n∑
i=1

�V(�ri)×Δ�Si =
∫
(S)

�V(�r)× d�S. (13.115)

13.3.2.4 Surface Integral in Cartesian Coordinates as
Surface Integrals of Second Type∫

(S)

U d�S =
∫

(Syz)

∫
U dy dz�i+

∫
(Szx)

∫
U dz dx�j+

∫
(Sxy)

∫
U dx dy �k. (13.116)

∫
(S)

�V · d�S =
∫

(Syz)

∫
Vx dy dz +

∫
(Szx)

∫
Vy dz dx+

∫
(Sxy)

∫
Vz dx dy. (13.117)
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∫
(S)

�V× d�S =
∫

(Syz)

∫
(Vz

�j− Vy
�k) dy dz +

∫
(Szx)

∫
(Vx

�k− Vz
�i) dz dx+

∫
(Sxy)

∫
(Vy

�i− Vx
�j) dx dy.(13.118)

The existence theorems for these integrals can be given similarly to those in 8.5.2, 4., p. 537.
In the formulas above, each of the integrals is taken over the projection S on the corresponding coor-
dinate plane (Fig. 13.18), where one of the variables x, y or z should be expressed by the others from
the equation of S.

Remark: Integrals over a closed surface are denoted by∮
(S)

U d�S =
∫∫
(S)

©U d�S,
∮
(S)

�V · d�S =
∫∫
(S)

©�V · d�S,
∮
(S)

�V × d�S =
∫∫
(S)

©�V × d�S. (13.119)

A: Calculate the integral �P =
∫
(S)

xyz d�S, where the surface is the plane region x+y+z = 1 bounded

by the coordinate planes. The upward side is the positive side:

�P =
∫

(Syz)

∫
(1− y − z)yz dy dz�i+

∫
(Szx)

∫
(1− x− z)xz dz dx�j+

∫
(Sxy)

∫
(1− x− y)xy dx dy �k;

∫
(Syz)

∫
(1 − y − z)yz dy dz =

∫ 1

0

∫ 1−z

0
(1 − y − z)yz dy dz =

1

120
. We get the two further integrals

analogously. The result is: �P =
1

120
(�i+�j+ �k).

B: Calculate the integral Q =
∫
(S)

�r · d�S =
∫

(Syz)

∫
x dy dz +

∫
(Szx)

∫
y dz dx +

∫
(Sxy)

∫
z dx dy over the

same plane region as in A:
∫

(Syz)

∫
x dy dz =

∫ 1

0

∫ 1−z

0
(1 − y − z) dy dz =

1

6
. Both other integrals are

calculated similarly. The result is: Q =
1

6
+

1

6
+

1

6
=

1

2
.

C: Calculate the integral �R =
∫
(S)

�r× d�S =
∫
(S)

(x�i+ y�j+ z�k)× (dy dz�i+ dz dx�j+ dx dy �k), where

the surface region is the same as in A: Performing the computations gives �R = �0.

13.3.3 Integral Theorems

13.3.3.1 Integral Theorem and Integral Formula of Gauss

1. Integral Theorem of Gauss or the Divergence Theorem

The integral theorem of Gauss gives the relation between a volume integral of the divergence of �V over
a volume v, and a surface integral over the surface S surrounding this volume. The orientation of the
surface (see 8.5.2.1, p. 535) is defined so that the exterior side is the positive one. The vector function
�V should be continuous, their first partial derivatives should exist and be continuous. The integral
theorem of Gauss reads as follows:∫∫

(S)

© �V · d�S =
∫∫
(v)

∫
div �V dv, (13.120a)
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i.e., the scalar flow of the field �V through a closed surface S is equal to the integral of divergence of �V
over the volume v bounded by S. In Cartesian coordinates one gets:∫∫

(S)

©(Vx dy dz + Vy dz dx+ Vz dx dy) =
∫∫
(v)

∫ (
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z

)
dx dy dz . (13.120b)

2. Integral Formula of Gauss
In the planar case, the integral theorem of Gauss restricted to the x, y plane becomes the integral for-
mula of Gauss. It represents the correspondence between a line integral and the corresponding surface
integral. The integral formula of Gauss reads as follows:∫

(B)

∫ [
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

]
dx dy =

∮
(C)

[P (x, y) dx+Q(x, y) dy] . (13.121)

B denotes a plane region which is bounded by C. P and Q are continuous functions with continuous
first partial derivatives.

3. Sector Formula
The sector formula is an important special case of the Gauss integral formula to calculate the area of
plane regions. For Q = x, P = −y it follows that

F =
∫
(B)

∫
dx dy =

1

2

∮
(C)

[x dy − y dx]. (13.122)

13.3.3.2 Integral Theorem of Stokes
The integral theorem of Stokes gives the relation between a surface integral over an oriented surface

region S, in which the vector field �V is defined, and the integral along the closed boundary curve C of
the surface S. The sense of the curve C is chosen so that the sense of traverse forms a right-screw with

the surface normal (see 13.3.2.1, p. 722). The vector function �V should be continuous and it should
have continuous first partial derivatives. The integral theorem of Stokes reads as follows:∫

(S)

∫
rot �V · d�S =

∮
(C)

�V · d�r, (13.123a)

i.e., the vector flow of the rotation through a surface S bounded by the closed curve C is equal to the

contour integral of the vector field �V along the curve C.
In Cartesian coordinates∫

(S)

∫ [ (
∂Vz

∂y
− ∂Vy

∂z

)
dy dz +

(
∂Vx

∂z
− ∂Vz

∂x

)
dz dx+

(
∂Vy

∂x
− ∂Vx

∂y

)
dx dy

]

=
∮
(C)

(Vx dx+ Vy dy + Vz dz) (13.123b)

holds. In the planar case, the integral theorem of Stokes, just as that of Gauss, becomes into the integral
formula (13.121) of Gauss.

13.3.3.3 Integral Theorems of Green
TheGreen integral theorems give relations between volume and surface integrals. They are the applica-

tions of the Gauss theorem for the function �V = U1 gradU2, where U1 and U2 are scalar field functions
and v is the volume surrounded by the surface S. The following theorems hold:

1.
∫∫
(v)

∫
(U1ΔU2 + gradU2 · gradU1) dv =

∫∫
(S)

©U1 gradU2 · d�S, (13.124)
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2.
∫∫
(v)

∫
(U1ΔU2 − U2ΔU1) dv =

∫∫
(S)

©(U1 gradU2 − U2 gradU1) · d�S. (13.125)

In particular for U1 = 1, U2 = U

3.
∫∫
(v)

∫
ΔU dv =

∫∫
(S)

©gradU · d�S (13.126)

holds. In Cartesian coordinates the third Green theorem has the following form (compare (13.120b)):∫∫
(v)

∫ (
∂2U

∂x2 +
∂2U

∂y2
+

∂2U

∂z2

)
dv =

∫∫
(S)

©
(
∂U

∂x
dy dz +

∂U

∂y
dz dx+

∂U

∂z
dx dy

)
. (13.127)

A: Calculating the line integral I =
∮
(C)

(x2y3 dx+dy+z dz) with a circle C as the intersection curve

of the cylinder x2 + y2 = a2 and the plane z = 0. With the Stokes theorem (13.123a) one gets:

I =
∮
(C)

�V · d�r =
∫
(S)

∫
rot �V · d�S = −

∫
(S∗)

∫
3x2y2 dx dy = −3

2π∫
ϕ=0

a∫
r=0

r5 cos2 ϕ sin2 ϕdr dϕ= −a6

8
π with

rot �V = −3x2y2�k, d�S = �k dx dy and the circle S∗: x2 + y2 ≤ a2.

B: Determine the flux I =
∮
(S)

�V · d�S in the drift space �V = x3�i+ y3�j + z3�k through the surface S

of the sphere x2 + y2 + z2 = a2. The theorem of Gauss yields:

I =
∮
(S)

�V· d�S =
∫∫
(v)

∫
div �V dv = 3

∫∫
(v)

∫
(x2+y2+z2) dx dy dz = 3

2π∫
ϕ=0

π∫
ϑ=0

a∫
r=0

r4 sinϑ dr dϑ dϕ =
12

5
a5π.

C: Heat conduction equation: The change in time of the heat Q of a space region v containing

no heat source is given by
dQ

dt
=

∫∫
(v)

∫
c�

∂T

∂t
dv (specific heat-capacity c, density �, temperature T ),

while the corresponding time-dependent change of the heat flow through the surface S of v is given

by
dQ

dt
=

∫
(S)

∫
©λ gradT · d�S (thermal conductivity λ). Applying the theorem of Gauss for the surface

integral (13.120a) one gets from
∫∫
(v)

∫ [
c�

∂T

∂t
− div (λ gradT )

]
dv = 0 the heat conduction equation

cλ
∂T

∂t
= div (λ gradT ), which has the form

∂T

∂t
= a2ΔT in the case of a homogeneous solid (c, �, λ

constants).

13.4 Evaluation of Fields

13.4.1 Pure Source Fields

A field �V1 is called a pure source field or an irrotational source field when its rotation is equal to zero
everywhere. If the divergence is q(�r), then

div �V1 = q(�r), rot �V1 ≡ �0 (13.128)
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holds. In this case, the field has a potential U , which is defined at every point P by the Poisson differ-
ential equation (see 13.5.2, p. 729)

�V1 = gradU, div gradU = ΔU = q(�r), (13.129a)

where �r is the position vector of P . (In physics most often �V1 = −gradU is used.) The evaluation of
U comes from

U(�r) = − 1

4π

∫∫∫ div �V(�r∗) dv(�r∗)
|�r−�r∗| . (13.129b)

The integration is taken over the whole of space (Fig. 13.19). The divergence of �V must be differen-
tiable and be decreasing sufficiently rapidly for large distances.

P

r

0

r

r - r

dv( r )

*

* *

Figure 13.19

Coulomb or
gravitational field

(symbolically)
er

m or q2 2m or q1 1

Figure 13.20

13.4.2 PureRotation Field or Zero-Divergence Field

A pure rotation (or curl) field or a solenoidal field is a vector field �V2 whose divergence is equal to zero
everywhere; this field is free of sources. With �w(�r) as the rotation density

div �V2 ≡ 0, rot �V2 = �w(�r) (13.130a)

hold. The rotation density �w(�r) cannot be arbitrary; it must satisfy the equation div �w = 0 . With the
approach

�V2(�r) = rot �A(�r), div �A = 0, i.e., rot rot �A = �w (13.130b)

follows according to (13.97)

grad div �A−Δ�A = �w, i.e., Δ�A = −�w. (13.130c)

So, �A(�r) formally satisfies the Poisson differential equation (see (13.135a), p. 729) just as the potential

U of an irrotational field �V1 and that is why it is called a vector potential. For every point P , then

�V2 = rot �A holds with �A =
1

4π

∫∫∫ �w(�r∗)
|�r−�r∗| dv(�r

∗) . (13.130d)

The meaning of �r is the same as in (13.129b); the integration is taken over the whole of space.

13.4.3 Vector FieldswithPoint-Like Sources
13.4.3.1 Coulomb Field of a Point-Like Charge
The Coulomb field is an example of an irrotational field, which is also solenoidal, except at the location
of the point charge q, the point source (Fig. 13.20). For the Coulomb force

�FC =
1

4πε0

q1q2
r2

�er =
q1

4πε0
q2

�r

r3
= eq2

�r

r3
, e =

q1
4πε0

(13.131a)

holds. This force affects attractively for electric charges q1, q2 with different signs and repulsively for
charges with equal signs. ε0 is the electric constant (see Table 21.2, p. 1053), e is the intensity or
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source strength of the source. The electric field strength and the electrostatic potential, generated in
the space around the charge q1 and affecting to the charge q2 are given as

�EC =
�FC

q2
=

e

r3
�r = −gradU , U =

e

r
. (13.131b)

U denotes the electrostatic potential of the field. The scalar flow in accordance with the theorem of
Gauss (see (13.120a), p. 724) is equal to 4πe or 0, depending on whether the surface S encloses the
point source or not:∮

(S)

�E · d�S =
{
4πe, if S encloses the point source,
0, otherwise.

(13.131c)

Because of the irrotationality of the electrostatic field

rot �EC ≡ �0 . (13.131d)

13.4.3.2 Gravitational Field of a PointMass
The field of gravity of a point mass or the Newton field is a second example of an irrotational and at the
same time solenoidal field, except at the point of the center of mass. For the Newton mass attraction

�FN = γ
m1m2

r2
�er (13.132)

holds, where γ is the gravitational constant (see Table 21.2, p. 1053). Every relation valid for the
Coulomb field is valid analogously also for the Newton field.

13.4.4 Superposition of Fields

13.4.4.1 Discrete Source Distribution
Analogously to superposition of fields in physics, vector fields superpose each other. The superposition

law is: If the vector fields �Vν have the potentials Uν , then the vector field

�V = Σ�Vν has the potential U = ΣUν . (13.133a)

For n discrete point sources with source strength eν (ν = 1, 2, . . . , n), whose fields are superposed, the
resulting field can be determined by the algebraic sum of the potentials Uν :

�V(�r) = −grad
n∑

ν=1

Uν with Uν =
eν

|�r−�rν |
. (13.133b)

Here, the vector �r is again the position vector of the point under consideration, �rν are the position
vectors of the sources.

If there is an irrotational field �V1 and a zero-divergence field �V2 together and they are everywhere
continuous, then

�V = �V1 + �V2 = − 1

4π

[
grad

∫∫∫ q(�r∗)
|�r−�r∗| dv(�r

∗)− rot
∫∫∫ �w(�r∗)

|�r−�r∗| dv(�r
∗)

]
. (13.133c)

If the vector field is extended to infinity, then the decomposition of �V(�r) is unique if |�V(�r)| decreases
sufficient rapidly for r = |�r| → ∞. The integration is taken over the whole of space.

13.4.4.2 Continuous Source Distribution
If the sources are distributed continuously along lines, surfaces, or in domains of space, then, instead of
the finite source strength eν , there are infinitesimals corresponding to the density of the source distri-
butions, and instead of the sums, we have integrals over the domain. In the case of a continuous space

distribution of source strength, the divergence is q(�r) = div �V.
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Similar statements are valid for the potential of a field defined by rotation. In the case of a continuous

space rotation distribution, the “ rotation density ” is defined by �w(�r) = rot �V.

13.4.4.3 Conclusion
A vector field is determined uniquely by its sources and rotations in space if all these sources and rota-
tions located inside a finite space.

13.5 Differential Equations ofVectorFieldTheory

13.5.1 LaplaceDifferential Equation

The problem to determine the potential U of a vector field �V1 = gradU containing no sources, leads
to the equation according to (13.128) with q(�r) = 0

div �V1 = div gradU = ΔU = 0, (13.134a)

i.e., to the Laplace differential equation. In Cartesian coordinates holds:

ΔU =
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
= 0. (13.134b)

Every function satisfying this differential equation and which is continuous and possesses continuous
first and second order partial derivatives is called a Laplace or harmonic function (see also 14.1.2.2,2.,
p. 732).
There are to distinguish three basic types of boundary value problems:

1. Boundary value problem (for an interior domain) or Dirichlet problem: A function U(x, y, z) is
determined, which is harmonic inside a given space or plane domain and takes the given values at the
boundary of this domain.

2. Boundary value problem (for an interior domain) or Neumann problem: A function U(x, y, z) is

determined, which is harmonic inside a given domain and whose normal derivative
∂U

∂n
takes the given

values at the boundary of this domain.

3. Boundary value problem (for an interior domain): A function U(x, y, z) is determined, which is

harmonic inside a given domain and the expression αU + β
∂U

∂n
(α, β const, α2 + β2 �= 0) takes the

given values at the boundary of this domain.

13.5.2 PoissonDifferential Equation

The problem to determine the potential U of a vector field �V1 = gradU with given divergence, leads
to the equation according to (13.128) with q(�r) �= 0

div �V1 = div gradU = ΔU = q(�r) �= 0, (13.135a)

i.e., to the Poisson differential equation. Since in Cartesian coordinates:

ΔU =
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
, (13.135b)

the Laplace differential equation (13.134b) is a special case of thePoisson differential equation (13.135b).
The solution is the Newton potential (for point masses) or the Coulomb potential (for point charges)

U = − 1

4π

∫∫∫ q(�r∗) dv(�r∗)
|�r−�r∗| . (13.135c)

The integration is taken over the whole of space. U(�r) tends to zero sufficiently rapidly for increasing
|�r| values.
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One can discuss the same three boundary value problems for the Poisson differential equation as for the
solution of the Laplace differential equation in 13.5.1. The first and the third boundary value problems
can be solved uniquely; for the second one there are to prescribe further special conditions (see [9.5]).
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