
12 FunctionalAnalysis

1. Functional Analysis
Functional analysis arose after the recognition of a common structure in different disciplines such as
the sciences, engineering and economics. General principles were discovered that resulted in a common
and unified approach in calculus, linear algebra, geometry, and other mathematical fields, showing their
interrelations.

2. Infinite Dimensional Spaces
There are many problems, the mathematical modeling of which requires the introduction of infinite
systems of equations or inequalities. Differential or integral equations, approximation, variational or
optimization problems could not be treated by using only finite dimensional spaces.

3. Linear and Non-Linear Operators
In the first phase of applying functional analysis – mainly in the first half of the twentieth century
– linear or linearized problems were thoroughly examined, which resulted in the development of the
theory of linear operators. More recently the application of functional analysis in practical problems
required the development of the theory of non-linear operators, since more and more problems had
to be solved that could be described only by non-linear methods. Functional analysis is increasingly
used in solving differential equations, in numerical analysis and in optimization, and its principles and
methods became a necessary tool in engineering and other applied sciences.

4. Basic Structures
In this chapter only the basic structures will be introduced, and only the most important types of
abstract spaces and some special classes of operators in these spaces will be discussed. The abstract
notion will be demonstrated by some examples, which are discussed in detail in other chapters of this
book, and the existence and uniqueness theorems of the solutions of such problems are stated and
proved there. Because of its abstract and general nature it is clear that functional analysis offers a large
range of general relations in the form of mathematical theorems that can be directly used in solving a
wide variety of practical problems.

12.1 Vector Spaces

12.1.1 Notion of aVector Space
A non-empty set V is called a vector space or linear space over the field IF of scalars if there exist two
operations on V – addition of the elements and multiplication by scalars from IF – such that they have
the following properties:

1. for any two elements x, y ∈ V, there exists an element z = x+ y ∈ V, which is called their sum.

2. For every x ∈ V and every scalar (number) α ∈ IF there exists an element αx ∈ V, the product of x
and the scalar α so that the following properties, the axioms of vector spaces (see also 5.3.8.1, p. 365),
are satisfied for arbitrary elements x, y, z ∈ V and scalars α, β ∈ IF:

(V1) x+ (y + z) = (x+ y) + z. (12.1)

(V2) There exists an element 0 ∈ V, the zero element, such that x+ 0 = x. (12.2)

(V3) To every vector x there is a vector − x such that x+ (−x) = 0. (12.3)

(V4) x+ y = y + x. (12.4)

(V5) 1 · x = x, 0 · x = 0. (12.5)

(V6) α(βx) = (αβ)x. (12.6)

(V7) (α + β)x = αx+ βx. (12.7)

(V8) α(x+ y) = αx+ αy. (12.8)
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V is called a real or complex vector space, depending on whether IF is the field IR of real numbers or
the field C of complex numbers. The elements of V are also called either points or, according to linear
algebra, vectors. The vector notation �x or x is not used in functional analysis.

The difference x − y of two arbitrary vectors x, y ∈ V also can be defined in V as x − y = x + (−y).
From the previous definition, it follows that the equation x+y = z can be solved uniquely for arbitrary
elements y and z. The solution is x = z − y. Further properties follow from axioms (V1)–(V8):

• the zero element is uniquely defined,

• αx = βx and x �= 0, imply α = β,

• αx = αy and α �= 0, imply x = y,

• −(αx) = α · (−x).

12.1.2 Linear andAffineLinear Subsets

1. Linear Subsets
Anon-empty subset V0 of a vector space V is called a linear subspace or a linear manifold of V if together
with two arbitrary elements x, y ∈ V0 and two arbitrary scalars α, β ∈ IF, their linear combination
αx + βy is also in V0. V0 is a vector space in its own right, and therefore satisfies the axioms (V1)–
(V8). The subspace V0 can be V itself or only the zero point. In these cases the subspace is called
trivial.

2. Affine Subspaces
A subset of a vector space V is called an affine linear subspace or an affine manifold if it has the form

{x0 + y : y ∈ V0}, (12.9)

where x0 ∈ V is a given element and V0 is a linear subspace. It can be considered (in the case x0 �= 0)

as the generalization of the lines or planes not passing through the origin in IR3.

3. The Linear Hull
The intersection of an arbitrary number of subspaces in V is also a subspace. Consequently, for every
non-empty subset E ⊂ V, there exists a smallest linear subset lin(E) or [E] in V containing E, namely
the intersection of all the linear subspaces, which contain E. The set lin(E) is called the linear hull of
the set E, or the linear subspace generated by the set E. It coincides with the set of all (finite) linear
combinations

α1x1 + α2x2 + . . .+ αnxn, (12.10)

comprised of elements x1, x2, . . . , xn ∈ E and scalars α1, α2, . . . , αn ∈ IF.

4. Examples for Vector Spaces of Sequences

A Vector Space IFn: Let n be a given natural number and V the set of all n-tuples, i.e., all finite
sequences consisting of n scalar terms {(ξ1, . . . , ξn) : ξi ∈ IF, i = 1, . . . , n}. The operations will be
defined componentwise or termwise, i.e., if x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn) are two arbitrary ele-
ments from V and α is an arbitrary scalar, α ∈ IF, then

x+ y = (ξ1 + η1, . . . , ξn + ηn), (12.11a) α · x = (αξ1, . . . , αξn). (12.11b)

In this way, the vector space IFn is defined. The linear spaces IR or C are special cases for n = 1.
This example can be generalized in two different ways (see examples B and C).

BVector Space s of all Sequences: Considering the infinite sequences as elements x = {ξn}∞n=1,
ξn ∈ IF and defining the operations componentwise, similar to (12.11a) and (12.11b), the vector space
s of all sequences are obtained.

C Vector Space ϕ(also c00) of all Finite Sequences: Let V be the subset of all elements of
s containing only a finite number of non-zero components, where the number of non-zero components
depends on the element. This vector space – the operations are again introduced termwise – is denoted
by ϕ or also by c00, and it is called the space of all finite sequences of numbers.
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D Vector Space m (also l∞) of all Bounded Sequences: A sequence x = {ξn}∞n=1 belongs
tom if and only if there exists Cx > 0 with |ξn| ≤ Cx, ∀n = 1, 2, . . . . This vector space is also denoted
by l∞.

E Vector Space c of all Convergent Sequences: A sequence x = {ξn}∞n=1 belongs to c if and
only if there exists a number ξ0 ∈ IF such that for ∀ ε > 0 there exists an index n0 = n0(ε) such that
for all n > n0 one has |ξn − ξ0| < ε (see 7.1.2, p. 458).

F Vector Space c0 of all Null Sequences: The vector space c0 of all null sequences, i.e., the
subspace of c consisting of all sequences converging to zero (ξ0 = 0).

GVector Space lp: The vector space of all sequences x = {ξn}∞n=1 such that
∑∞

n=1 |ξn|p is conver-
gent, is denoted by lp (1 ≤ p <∞).
It can be shown by the Minkowski inequality that the sum of two sequences from lp also belongs to lp,
(see 1.4.2.13, p. 32).

Remark: For the vector spaces introduced in examples A–G, the following inclusions hold:

ϕ ⊂ c0 ⊂ c ⊂ m ⊂ s and ϕ ⊂ lp ⊂ lq ⊂ c0, where 1 ≤ p < q <∞. (12.12)

5. Examples of Vector Spaces of Functions

A Vector Space F(T ): Let V be the set of all real or complex valued functions defined on a given
set T , where the operations are defined point-wise, i.e., if x = x(t) and y = y(t) are two arbitrary
elements of V and α ∈ IF is an arbitrary scalar, then we define the elements (functions) x+ y and α · x
by the rules

(x+ y)(t) = x(t) + y(t) ∀ t ∈ T, (12.13a)

(αx)(t) = α · x(t) ∀ t ∈ T. (12.13b)

This vector space is denoted by F(T ).
Some of the subspaces are introduced in the following examples.

BVector Space B(T ) orM(T ): The space B(T ) is the space of all functions bounded on T . This
vector space is often denoted by M(T ). In the case of T = IN, one gets the space M(IN) = m from
example D of the previous paragraph.

C Vector Space C([a, b]): The set C([a, b]) of all functions continuous on the interval [a, b] (see
2.1.5.1, p. 58).

D Vector Space C(k)([a, b]): Let k ∈ IN, k ≥ 1. The set C(k)([a, b]) of all functions k-times
continuously differentiable on [a, b] (see 6.1, p. 432–437) is a vector space. At the endpoints a and
b of the interval [a, b], the derivatives have to be considered as right-hand and left-hand derivatives,
respectively.

Remark: For the vector spaces of examples A–D of this paragraph, and T = [a, b] the following
subspace relations hold:

C(k)([a, b]) ⊂ C([a, b]) ⊂ B([a, b]) ⊂ F([a, b]). (12.14)

E Vector Subspace of C([a, b]): For any given point t0 ∈ [a, b], the set {x ∈ C([a, b]): x(t0) = 0}
forms a linear subspace of C([a, b]).

12.1.3 Linearly Independent Elements

1. Linear Independence
A finite subset {x1, . . . , xn} of a vector space V is called linearly independent if

α1x1 + · · ·+ αnxn = 0 implies α1 = · · · = αn = 0. (12.15)

Otherwise, it is called linearly dependent. If α1 = · · · = αn = 0, then for arbitrary vectors x1, . . . , xn
from V, the vector α1x1 + · · · + αnxn is trivially the zero element of V. Linear independence of the
vectors x1, . . . , xn means that the only way to produce the zero element 0 = α1x1 + · · ·+αnxn is when
all coefficients are equal to zero α1 = · · · = αn = 0. This important notion is well known from linear



12.1 Vector Spaces 657

algebra (see 5.3.8.2, p. 366) and was used e.g. for the definition of a fundamental system of solutions of
linear homogeneous differential equations (see 9.1.2.3, 2., p. 553). An infinite subset E ⊂ V is called
linearly independent if every finite subset of E is linearly independent. Otherwise, E is called linearly
dependent.

If the sequence whose k-th term is equal to 1 and all the others are 0 is denoted by ek , then belongs ek
to the space ϕ and consequently to any space of sequences. The set {e1, e2, . . .} is linearly independent
in every one of these spaces. In the space C([0, π]), e.g., the system of functions

1, sinnt, cosnt (n = 1, 2, 3, . . .)

is linearly independent, but the functions 1, cos 2t, cos2 t are linearly dependent (see (2.97), p. 81).

2. Basis and Dimension of a Vector Space
A linearly independent subset B from V, which generates the whole space V, i.e., lin(B) = V holds, is
called an algebraic basis or a Hamel basis of the vector space V (see 5.3.8.2, p. 366). B = {xξ : ξ ∈ Ξ}
is a basis of V if and only if every vector x ∈ V can be written in the form x =

∑
ξ∈Ξ
αξxξ, where the

coefficients αξ are uniquely determined by x and only a finite number of them (depending on x) can be
different from zero. Every non-trivial vector space V, i.e., V �= {0}, has at least one algebraic basis,
and for every linearly independent subset E of V, there exists at least one algebraic basis of V, which
contains this subset of E.

A vector space V is m-dimensional if it possesses a basis consisting of m vectors. That is, there exist
m linearly independent vectors in V, and every system of m+ 1 vectors is linearly dependent.

A vector space is infinite dimensional if it has no finite basis, i.e., if for every natural number m there
are m linearly independent vectors in V.

The space IFn is n-dimensional, and all the other spaces in examplesB–E are infinite dimensional. The
subspace lin({1, t, t2}) ⊂ C([a, b]) is three-dimensional.

In the finite dimensional case, every two bases of the same vector space have the same number of ele-
ments. Also in an infinite dimensional vector space any two bases have the same cardinality, which is
denoted by dim(V). The dimension is an invariant quantity of the vector space, it does not depend on
the particular choice of an algebraic basis.

12.1.4 Convex Subsets and theConvexHull

12.1.4.1 Convex Sets
A subset C of a real vector space V is called convex if for every pair of vectors x, y ∈ C all vectors of
the form λx + (1 − λ)y, 0 ≤ λ ≤ 1, also belong to C. In other words, the set C is convex, if for any
two elements x and y, the whole line segment

{λx+ (1− λ)y : 0 ≤ λ ≤ 1}, (12.16)

(which is also called an interval), belongs to C. (For examples of convex sets in IR2 see the sets denoted
by A and B in Fig. 12.5, p. 684.)

The intersection of an arbitrary number of convex sets is also a convex set, where the empty set is agreed
to be convex. Consequently, for every subset E ⊂ V there exists a smallest convex set which contains
E, namely, the intersection of all convex subsets of V containing E. It is called the convex hull of the
set E and it is denoted by co (E). co (E) is identical to the set of all finite convex linear combinations
of elements from E, i.e., co (E) consists of all elements of the form λ1x1 + · · ·+ λnxn, where x1, . . . , xn
are arbitrary elements from E and λi ∈ [0, 1] satisfy the equality λ1 + · · · + λn = 1. Linear and affine
subspaces are always convex.

12.1.4.2 Cones
A non-empty subset C of a (real) vector space V is called a convex cone if it satisfies the following
properties:
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1. C is a convex set.

2. From x ∈ C and λ ≥ 0, it follows that λx ∈ C.
3. From x ∈ C and −x ∈ C, it follows that x = 0.

A cone can be characterized also by 3. together with

x, y ∈ C and λ, μ ≥ 0 imply λx+ μy ∈ C. (12.17)

A: The set IRn
+ of all vectors x = (ξ1, . . . , ξn) with non-negative components is a cone in IRn.

B: The set C+ of all real continuous functions on [a, b] with only non-negative values is a cone in the
space C([a, b]).

C: The set of all sequences of real numbers {ξn}∞n=1 with only non-negative terms, i.e., ξn ≥ 0, ∀n,
is a cone in s. Analogously, cones are obtained in the spaces of examples C–G in 12.1.2, p. 655, if the
sets of non-negative sequences are considered in these spaces.

D: The set C ⊂ lp (1 ≤ p <∞), consisting of all sequences {ξn}∞n=1, such that for some a > 0
∞∑
n=1

|ξn|p ≤ a (12.18)

is a convex set in lp, but obviously, not a cone.

E: Examples from IR2 see Fig. 12.1: a) convex set, not a cone, b) not convex, c) convex hull.
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Figure 12.1

12.1.5 LinearOperators andFunctionals
12.1.5.1 Mappings
A mapping T : D −→ Y from the set D ⊂ X into the set Y is called

• injective, if
T (x) = T (y) =⇒ x = y, (12.19)

• surjective, if for
∀ y ∈ Y there exists an element x ∈ D such that T (x) = y, (12.20)

• bijective, if T is both injective and surjective.

D is called the domain of the mapping T and is denoted by DT or D(T ), while the subset {y ∈ Y :
∃ x ∈ DT with T (x) = y} of Y is called the range of the mapping T and is denoted byR(T ) or Im(T ).

12.1.5.2 Homomorphism and Endomorphism
Let X and Y be two vector spaces over the same field IF and D a linear subset of X. A mapping T :
D −→ Y is called linear (or a linear transformation, linear operator or homomorphism), if for arbitrary
x, y ∈ D and α, β ∈ IF,

T (αx+ βy) = αTx+ βTy. (12.21)

For a linear operator T the notation Tx is preferred, which is similarly used for linear functions, while
the notation T (x) is used for general operators.
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The range R(T ) is the set of all y ∈ Y such that the equation Tx = y has at least one solution.
N(T ) = {x ∈ X : Tx = 0} is the null space or kernel of the operator T and is also denoted by ker(T ).

A mapping of the vector space X into itself is called an endomorphism. If T is an injective linear
mapping, then the mapping defined on R(T ) by

y �−→ x, such that Tx = y, y ∈ R(T ) (12.22)

is linear. It is denoted by T−1 : R(T ) −→ X and is called the inverse of T . If Y is the vector space IF,
then a linear mapping f: X −→ IF is called a linear functional or a linear form.

12.1.5.3 Isomorphic Vector Spaces
A bijective linear mapping T : X −→ Y is called an isomorphism of the vector spaces X and Y. Two
vector spaces are called isomorphic provided an isomorphism exists.

12.1.6 Complexification ofRealVector Spaces

Every real vector space V can be extended to a complex vector space Ṽ. The set Ṽ consists of all pairs
(x, y) with x, y ∈ V. The operations (addition and multiplication by a complex number a + ib ∈ C)
are defined as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), (12.23a) (a+ib)(x, y) = (ax− by, bx+ay).(12.23b)
Since the special relations

(x, y) = (x, 0) + (0, y) and i(y, 0) = (0 + i1)(y, 0) = (0 · y − 1 · 0, 1y + 0 · 0) = (0, y) (12.24)

hold, the pair (x, y) can also be written as x + iy. The set Ṽ is a complex vector space, where the set

V is identified with the linear subspace Ṽ0 = {(x, 0): x ∈ V}, i.e., x ∈ V is considered as (x, 0) or as
x+ i0.
This procedure is called the complexification of the vector space V. A linearly independent subset in V

is also linearly independent in Ṽ. The same statement is valid for a basis in V, so dim(V) = dim(Ṽ).

12.1.7 OrderedVector Spaces

12.1.7.1 Cone and Partial Ordering
If a cone C is fixed in a vector space V, then an order can be introduced for certain pairs of vectors in
V. Namely, if x − y ∈ C for some x, y ∈ V then one writes x ≥ y or y ≤ x and say x is greater than
or equal to y or y is smaller than or equal to x. The pair (V, C) is called an ordered vector space or a
vector space partially ordered by the cone C. An element x is called positive, if x ≥ 0 or, which means
the same, if x ∈ C holds. Moreover

C = {x ∈ V: x ≥ 0}. (12.25)

If the vector space IR2 ordered by its first quadrant as the cone C(= IR2
+) is under consideration, then a

typical phenomenon of ordered vector spaces will be seen. This is referred to as “partially ordered” or
sometimes as “semi-ordered”. Namely, only certain pairs of two vectors are comparable. Considering
the vectors x = (1,−1) and y = (0, 2), neither the vector x− y = (1,−3) nor y − x = (−1, 3) is in C,
so neither x ≥ y nor x ≤ y holds. An ordering in a vector space, generated by a cone, is always only a
partial ordering.

It can be shown that the binary relation ≥ has the following properties:

(O1) x ≥ x ∀ x ∈ V (reflexivity). (12.26)

(O2) x ≥ y and y ≥ z imply x ≥ z (transitivity). (12.27)

(O3) x ≥ y and α ≥ 0, α ∈ IR, imply αx ≥ αy. (12.28)

(O4) x1 ≥ y1 and x2 ≥ y2 imply x1 + x2 ≥ y1 + y2. (12.29)
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Conversely, if in a vector space V there exists an ordering relation, i.e., a binary relation ≥ is defined
for certain pairs of elements and satisfies axioms (O1)–(O4), and if one puts

V+ = {x ∈ V: x ≥ 0}, (12.30)

then it can be shown that V+ is a cone. The order ≥V+ in V induced by V+ is identical to the original
order ≥; consequently, the two possibilities of introducing an order in a vector space are equivalent.
A cone C ⊂ V is called generating or reproducing if every element x ∈ V can be represented as x =
u− v with u, v ∈ C. It can be written in the form V = C–C.

A: An obvious order in the space s (see example B, p. 655) is induced by means of the cone

C = {x = {ξn}∞n=1 : ξn ≥ 0 ∀ n} (12.31)

(see example C, p. 658).

In the spaces of sequences (see (12.12), p 656) usually the natural coordinate-wise order is considered.
This is defined by the cone obtained as the intersection of the considered space with C (see (12.31),
p. 660). The positive elements in these ordered vector spaces are then the sequences with non-negative
terms. It is clear that other orders can be defined by other cones, as well. Then orderings different from
the natural ordering can be obtained (see [12.17], [12.19]).

B: In the real spaces of functions F(T ), B(T ), C([a, b]) and C(k)([a, b]) (see 12.1.2, 5., p. 656), the
natural order x ≥ y for two functions x and y is defined by x(t) ≥ y(t), ∀ t ∈ T, or ∀ t ∈ [a, b].
Then x ≥ 0 if and only if x is a non-negative function in T . The corresponding cones are denoted by
F+(T ), B+(T ), etc. Also C+ = C+(T ) = F+(T ) ∩ C(T ) can be obtained if T = [a, b].

12.1.7.2 Order Bounded Sets
Let E be an arbitrary non-empty subset of an ordered vector space V. An element z ∈ V is called
an upper bound of the set E if for every x ∈ E, x ≤ z. An element u ∈ V is a lower bound of E if
u ≤ x, ∀ x ∈ E. For any two elements x, y ∈ V with x ≤ y, the set

[x, y] = {v ∈ V: x ≤ v ≤ y} (12.32)

is called an order interval or (o)-interval.

Obviously, the elements x and y are a lower bound and an upper bound of the set [x, y], respectively,
where they even belong to the set. A set E ⊂ V is called order bounded or simply (o) bounded, if E is a
subset of an order interval, i.e., if there exist two elements u, z ∈ V such that u ≤ x ≤ z, ∀ x ∈ E or,
equivalently, E ⊂ [u, z]. A set is called bounded above or bounded below if it has an upper bound, or a
lower bound, respectively.

12.1.7.3 Positive Operators
A linear operator (see [12.2], [12.17]) T : X −→ Y from an ordered vector space X = (X,X+) into an
ordered vector space Y = (Y,Y+) is called positive, if

T (X+) ⊂ Y+, i.e., Tx ≥ 0 for all x ≥ 0. (12.33)

12.1.7.4 Vector Lattices

1. Vector Lattices
In the vector space IR1 of the real numbers the notions of (o)-boundedness and boundedness (in the
usual sense) are identical. It is known that every set of real numbers which is bounded from above
has a supremum: the smallest of its upper bounds (or the least upper bound, sometimes denoted by
lub). Analogously, if a set of reals is bounded from below, then it has an infimum, the greatest lower
bound, sometimes denoted by glb. In a general ordered vector space, the existence of the supremum
and infimum cannot be guaranteed even for finite sets. They must be given by axioms. An ordered
vector space V is called a vector lattice or a linear lattice or a Riesz space, if for two arbitrary elements
x, y ∈ V there exists an element z ∈ V with the following properties:

1. x ≤ z and y ≤ z,
2. if u ∈ V with x ≤ u and y ≤ u, then z ≤ u.
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Such an element z is uniquely determined, it is denoted by x ∨ y, and it is called the supremum of x
and y (more precisely: supremum of the set consisting of the elements x and y). In a vector lattice,
there also exists the infimum for any x and y, which is denoted by x ∧ y. For applications of positive
operators in vector lattices see, e.g., [12.2], [12.3] [12.15].

A vector lattice is calledDedekind complete or aK-space (Kantorovich space) if every non-empty subset
E that is order bounded from above has a supremum lub(E) (equivalently, if every non-empty subset
that is order bounded from below has an infimum glb(E)).
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Figure 12.2

A: In the vector lattice F([a, b]) (see 12.1.2, 5., p. 656), the
supremum of two functions x, y is calculated pointwise by the for-
mula

(x ∨ y)(t) = max{x(t), y(t)} ∀ t ∈ [a, b]. (12.34)

In the case of [a, b] = [0, 1], x(t) = 1− 3
2
t and y(t) = t2 (Fig. 12.2),

(x ∨ y)(t) =
{
1− 3

2
t, if 0 ≤ t ≤ 1

2
,

t2, if 1
2
≤ t ≤ 1

(12.35)

is obtained.
B: The spaces C([a, b]) and B([a, b]) (see 12.1.2, 5., p. 656) are

also vector lattices, while the ordered vector space C(1)([a, b]) is not
a vector lattice, since theminimumormaximumof two differentiable
functions may not be differentiable on [a, b], in general.

A linear operator T : X −→ Y from a vector lattice X into a vector
lattice Y is called a vector lattice homomorphism or homomorphism
of the vector lattice, if for all x, y ∈ X

T (x ∨ y) = Tx ∨ Ty and T (x ∧ y) = Tx ∧ Ty. (12.36)

2. Positive and Negative Parts, Modulus of an Element
For an arbitrary element x of a vector lattice V, the elements

x+ = x ∨ 0, x− = (−x) ∨ 0 and |x| = x+ + x− (12.37)

are called the positive part, negative part, andmodulus of the element x, respectively. For every element
x ∈ V, the three elements x+, x−, |x| are positive, where for x, y ∈ V the following relations are valid:

x ≤ x+ ≤ |x|, x = x+ − x−, x+ ∧ x− = 0, |x| = x ∨ (−x), (12.38a)

(x+ y)+ ≤ x+ + y+, (x+ y)− ≤ x− + y−, |x+ y| ≤ |x|+ |y|, (12.38b)

x ≤ y implies x+ ≤ y+ and x− ≥ y− (12.38c)

and for arbitrary α ≥ 0

(αx)+ = αx+, (αx)− = αx−, |αx| = α|x|. (12.38d)

a

0 bx(t)

a

0 bx (t)
+ a0 b a0 bx (t)

-
|x|(t)

Figure 12.3

In the vector spaces F([a, b]) and C([a, b]), the positive part, the negative part, and the modulus of a
function x(t) can be got by means of the following formulas (Fig. 12.3):



662 12. Functional Analysis

x+(t) =
{
x(t), if x(t) ≥ 0,

0, if x(t) < 0,
(12.39a)

x−(t) =
{

0, if x(t) > 0,
−x(t), if x(t) ≤ 0,

(12.39b) |x|(t) = |x(t)| ∀ t ∈ [a, b]. (12.39c)

12.2 Metric Spaces

12.2.1 Notion of aMetric Space
Let X be a set, and suppose a real, non-negative function ρ(x, y) (x, y ∈ X) is defined on X × X. If

this function ρ : X × X → IR1
+ satisfies the following properties (M1)–(M3) for arbitrary elements

x, y, z ∈ X, then it is called a metric or distance in the set X, and the pair X = (X, ρ) is called a metric
space. The axioms of metric spaces are:

(M1) ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y (non-negativity), (12.40)

(M2) ρ(x, y) = ρ(y, x) (symmetry), (12.41)

(M3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (triangle inequality). (12.42)

A metric can be defined on every subset Y of a metric space X = (X, ρ) in a natural way if the metric
ρ of the space X is restricted to the set Y, i.e., if ρ is considered only on the subset Y × Y. The space
(Y, ρ) of X× X is called a subspace of the metric space X.

A: The sets IRn and Cn are metric spaces with the Euclidean metric defined for points
x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn) as

ρ(x, y) =

√√√√ n∑
k=1

|ξk − ηk|2. (12.43)

B: The function

ρ(x, y) = max
1≤k≤n

|ξk − ηk| (12.44)

for vectors x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn) also defines a metric in IRn and Cn, the so-called

maximum metric. If x̃ = (ξ̃1, . . . , ξ̃n) is an approximation of the vector x, then it is of interest to know

how much is the maximal deviation between the coordinates: max
1≤k≤n

|ξk − ξ̃k|.

The function

ρ(x, y) =
n∑

k=1

|ξk − ηk| (12.45)

for vectors x, y ∈ IRn (or Cn) defines a metric in IRn and Cn, the so-called absolute value metric. The
metrics (12.43), (12.44) and (12.45) are reduced in the case of n = 1 to the absolute value |x− y| in the
spaces IR and C (the sets of real and complex numbers).

C: Finite 0-1 sequences, e.g., 1110 and 010110, are called words in coding theory. If the num-
ber of positions is counted where two words of the same length n have different digits, i.e., for x =
(ξ1, . . . , ξn), y = (η1, . . . , ηn), ξk, ηk ∈ {0, 1}, �(x, y) is defined as the number of the k ∈ {1, . . . , n}
values such that ξk �= ηk, then the set of words with a given length n is a metric space, and the metric
is the so-called Hamming distance, e.g., �((1110), (0100)) = 2.

D: In the set m and in its subsets c and c0 (see (12.12), p. 656) a metric is defined by

ρ(x, y) = sup
k
|ξk − ηk|, (x = (ξ1, ξ2, . . .), y = η1, η2, . . .)). (12.46)
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E: In the set lp (1 ≤ p <∞) of sequences x = (ξ1, ξ2, . . .) with absolutely convergent series
∞∑
n=1

|ξn|p

a metric is defined by

ρ(x, y) = p

√√√√ ∞∑
n=1

|ξn − ηn|p, (x, y ∈ lp). (12.47)

F: In the set C([a, b]) a metric is defined by

ρ(x, y) = max
t∈[a,b]

|x(t)− y(t)|. (12.48)

G: In the set C(k)([a, b]) a metric is defined by

ρ(x, y) =
k∑

l=0

max
t∈[a,b]

|x(l)(t)− y(l)(t)|, (12.49)

where (see (12.14) C(0)([a, b]) is understood as C([a, b])).
H: Consider the setLp(Ω) (1 ≤ p <∞) of the equivalence classes of Lebesguemeasurable functions

which are defined almost everywhere on a bounded domain Ω ⊂ IRn and
∫
Ω

|x(t)|p dμ < ∞ (see also

12.9, p. 693). A metric in this set is defined by

ρ(x, y) = p

√√√√∫
Ω

|x(t)− y(t)|p dμ. (12.50)

12.2.1.1 Balls, Neighborhoods andOpen Sets
In a metric space X = (X, ρ), whose elements are also called points, the following sets

B(x0; r) = {x ∈ X : ρ(x, x0) < r}, (12.51) B(x0; r) = {x ∈ X : ρ(x, x0) ≤ r} (12.52)

defined by means of a real number r > 0 and a fixed point x0, are called an open and closed ball with
radius r and center at x0, respectively.
The balls (circles) defined by the metrics (12.43) and (12.44) and (12.45) in the vector space IR2 are
represented in Fig. 12.4a,b with x0 = 0 and r = 1.
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(0,1)

(1,0)
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Figure 12.4

A subsetU of a metric space X = (X, ρ) is called a neighborhood of the point x0 ifU contains x0 together
with an open ball centered at x0, in other words, if there exists an r > 0 such that B(x0; r) ⊂ U . A
neighborhood U of the point x is also denoted by U(x). Obviously, every ball is a neighborhood of its
center; an open ball is a neighborhood of all of its points. A point x0 is called an interior point of a set
A ⊂ X if x0 belongs to A together with some of its neighborhood, i.e., there is a neighborhood U of x0
such that x0 ∈ U ⊂ A. A subset of a metric space is called open if all of its points are interior points.
Obviously, X is an open set.
The open balls in every metric space, especially the open intervals in IR, are the prototypes of open sets.
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The set of all open sets satisfies the following axioms of open sets:

• If Gα is open for ∀α ∈ I, then the set
⋃
α∈I
Gα is also open.

• If G1, G2, . . . , Gn are finitely many arbitrary open sets, then the set
n⋂

k=1
Gk is also open.

• The empty set ∅ is open by definition.

A subset A of a metric space is bounded if for a certain element x0 (which does not necessarily belong
to A) and a real number R > 0 the set A is in the ball B(x0;R), i.e., ρ(x, x0) < R for all x ∈ A.
12.2.1.2 Convergence of Sequences inMetric Spaces
Let X = (X, ρ) be a metric space, x0 ∈ X and {xn}∞n=1, xn ∈ X a sequence of elements of X.
The sequence {xn}∞n=1 is called convergent to the point x0 if for every neighborhood U(x0) there is an
index n0 = n0(U(x0)) such that for all n > n0, xn ∈ U(x0). The usual notation

xn −→ x0 (n→∞) or lim
n→∞ xn = x0 (12.53)

is used and the point x0 is called the limit of the sequence {xn}∞n=1. The limit of a sequence is uniquely
determined. Instead of an arbitrary neighborhood of the point x0, it is sufficient to consider only open
balls with arbitrary radii, so (12.53) is equivalent to the following: ∀ ε > 0 (now thinking about the
open ball B(x0; ε)), there is an index n0 = n0(ε), such that if n > n0, then ρ(xn, x0) < ε. Notice that
(12.53) means ρ(xn, x0) −→ 0.

With these notions introduced in special metric spaces the distance between points can be calculated
and the convergence of point sequences can be investigated. This has a great importance in numerical
methods and in approximating functions by certain classes of functions (see, e.g., 19.6, p. 982).
In the space IRn, equipped with one of the metrics given above, convergence always means coordinate-
wise convergence.
In the spaces B([a, b]) and C([a, b]), the convergence introduced by (12.48) means uniform convergence
of the function sequence on the set [a, b] (see 7.3.2, p. 468).
In the spaceL2(Ω) convergence with respect to the metric (12.50) means convergence in the (quadratic)
mean, i.e., xn → x0 if∫

Ω

|xn − x0|2 dμ −→ 0 for n→∞ . (12.54)

12.2.1.3 Closed Sets and Closure

1. Closed Sets
A subset F of a metric space X is called closed if X \ F is an open set. Every closed ball in a metric
space, especially every interval of the form [a, b], [a,∞), (−∞, a] in IR, is a closed set.
Corresponding to the axioms of open sets, the collection of all closed sets of a metric space has the
following properties:

• If Fα are closed for ∀α ∈ I, then the set
⋂
α∈I
Fα is closed.

• If F1, . . . , Fn are finitely many closed sets, then the set
n⋃

k=1
Fk is closed.

• The empty set ∅ is a closed set by definition.
The sets ∅ and X are open and closed at the same time.
A point x0 of a metric space X is called a limit point of the subset A ⊂ X if for every neighborhood
U(x0),

U(x0) ∩ A �= ∅. (12.55)

If this intersection always contains at least one point different from x0, then x0 is called an accumulation
point of the set A. A limit point, which is not an accumulation point, is called an isolated point.
An accumulation point of A does not need to belong to the set A, e.g., the point a with respect to the
set A = (a, b], while an isolated point of A must belong to the set A.
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A point x0 is a limit point of the setA if there exists a sequence {xn}∞n=1 with elements xn fromA, which
converges to x0. If x0 is an isolated point, then xn = x0, ∀ n ≥ n0 for some index n0.

2. The Closure of a Set
Every subset A of a metric space X obviously lies in the closed set X. Therefore, there always exists a
smallest closed set containing A, namely the intersection of all closed sets of X, which contain A. This
set is called the closure of the set A and it is usually denoted by A. A is identical to the set of all limit
points of A; A is obtained from the set A by adding all of its accumulation points to it. A is a closed
set if and only if A = A. Consequently, closed sets can be characterized by sequences in the following
way: A is closed if and only if for every sequence {xn}∞n=1 of elements of A, which converges in X to an
element x0(∈ X), the limit x0 also belongs to A.

Boundary points of A are defined as follows: x0 is a boundary point of A if for every neighborhood
U(x0), U(x0) ∩ A �= ∅ and also U(x0) ∩ (X \ A) �= ∅. x0 itself does not need to belong to A. Another
characterization of a closed set is the following: A is closed if it contains all of its boundary points. (The
set of boundary points of the metric space X is the empty set.)

12.2.1.4 Dense Subsets and SeparableMetric Spaces
A subset A of a metric space X is called everywhere dense if A = X, i.e., each point x ∈ X is a limit
point of the set A. That is, for each x ∈ X, there is a sequence {xn} xn ∈ A such that xn −→ x.

A: According to the Weierstrass approximation theorem, every continuous function on a bounded
closed interval [a, b] can be approximated arbitrarily well by polynomials in the metric space of the
space C([a, b]), i.e., uniformly. This theorem can now be formulated as follows: The set of polynomials
on the interval [a, b] is everywhere dense in C([a, b]).

B: Further examples for everywhere dense subsets are the set of rational numbers Q and the set of
irrational numbers in the space of the real numbers IR .

A metric space X is called separable if there exists a countable everywhere dense subset in X. A count-
able everywhere dense subset in IRn is, e.g., the set of all vectors with rational components. The space
l = l1 is also separable, since a countable everywhere dense subset is formed, for example, by the set of
its elements of the form x = (r1, r2, . . . , rN , 0, 0, . . .) , where ri are rational numbers and N = N(x) is
an arbitrary natural number. The space m is not separable.

12.2.2 CompleteMetric Spaces

12.2.2.1 Cauchy Sequences
Let X = (X, ρ) be a metric space. A sequence {xn}∞n=1 with xn ∈ X is called a Cauchy sequence if for
∀ ε > 0 there is an index n0 = n0(ε) such that for ∀ n,m > n0 there holds the inequality

ρ(xn, xm) < ε. (12.56)

Every Cauchy sequence is a bounded set. Furthermore, every convergent sequence is a Cauchy se-
quence. In general, the converse statement is not true, as is shown in the following example.

Consider the space l1 with the metric (12.46) of the space m. Obviously, the elements x(n) =(
1,

1

2
,
1

3
, . . . ,

1

n
, 0, 0, . . .

)
belong to l1 for every n = 1, 2, . . . and the sequence {x(n)}∞n=1 is a Cauchy

sequence in this space. If the sequence (of sequences) {x(n)}∞n=1 converges, then it has to be convergent

also coordinate-wise to the element x(0) =
(
1,

1

2
,
1

3
, . . . ,

1

n
,

1

n+ 1
, . . .

)
. However, x(0) does not belong

to l1, since
∞∑
n=1

1

n
= +∞ (see 7.2.1.1, 2., p. 459, harmonic series).
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12.2.2.2 CompleteMetric Spaces
A metric space X is called complete if every Cauchy sequence converges in X. Hence, complete metric
spaces are the spaces for which the Cauchy principle, known from real calculus, is valid: A sequence
is convergent if and only if it is a Cauchy sequence. Every closed subspace of a complete metric space
(considered as a metric space on its own) is complete. The converse statement is valid in a certain way:
If a subspace Y of a (not necessary complete) metric space X is complete, then the set Y is closed in X.

Complete metric spaces are, e.g., the spaces: m, lp (1 ≤ p <∞), c, B(T ), C([a, b]), C(k)([a, b]),
Lp(a, b) (1 ≤ p <∞).

12.2.2.3 Some Fundamental Theorems in CompleteMetric Spaces
The importance of complete metric spaces can be illustrated by a series of theorems and principles,
which are known and used in real calculus, and which are to be applied even in the case of infinite
dimensional spaces.

1. Theorem on Nested Balls
Let X be a complete metric space. If

B(x1; r1) ⊃ B(x2; r2) ⊃ · · · ⊃ B(xn; rn) ⊃ · · · (12.57)

is a sequence of nested closed balls with rn −→ 0, then the intersection of all of those balls is non-
empty and consists of only a single point. If this property is valid in some metric space for any sequence
satisfying the assumptions, then the metric space is complete.

2. Baire Category Theorem

Let X be a complete metric space and {Fk}∞k=1 a sequence of closed sets in X with
∞⋃
k=1
Fk = X. Then

there exists at least one index k0 such that the set Fk0 has an interior point.

3. Banach Fixed-Point Theorem
Let F be a non-empty closed subset of a complete metric space (X, ρ). Let T: X −→ X be a contracting
operator on F , i.e., there exists a constant q ∈ [0, 1) such that

ρ(Tx, Ty) ≤ q ρ(x, y) for all x, y ∈ F. (12.58)

Suppose, if x ∈ F , then Tx ∈ F . Then the following statements are valid:

a) For an arbitrary initial point x0 ∈ F the iteration

xn+1 := Txn (n = 0, 1, 2, . . .) (12.59)

is well defined, i.e., xn ∈ F for every n.

b) The iteration sequence {xn}∞n=0 converges to an element x∗ ∈ F .
c) Tx∗ = x∗, i.e., x∗ is a fixed point of the operator T. (12.60)

d) The only fixed point of T in F is x∗.
e) The following error estimation is valid:

ρ(x∗, xn) ≤
qn

1− qρ(x1, x0). (12.61)

The Banach fixed-point theorem is sometimes called the contraction mapping principle.

12.2.2.4 SomeApplications of the ContractionMapping Principle

1. IterationMethod for Solving a System of Linear Equations
The given linear (n, n) system of equations

a11x1 +a12x2 + . . .+ a1nx1 = b1,
a21x1 +a22x2 + . . .+ a2nxn = b2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x1 +an2x2 + . . .+ annxn = bn

(12.62a)
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can be transformed according to 19.2.1, p. 955, into the equivalent system

x1 −(1− a11)x1 +a12x2 + · · · +a1nxn = b1,
x2 +a21x1 −(1− a22)x2 + · · · +a2nxn = b2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xn +an1x1 +an2x2 + · · · −(1− ann)xn = bn.

(12.62b)

If the operator T : IFn → IFn is defined by

Tx =

(
x1 −

n∑
k=1

a1kxk + b1, . . . , xn −
n∑

k=1

ankxk + bn

)T

, (12.63)

then the last system is transformed into the fixed-point problem

x = Tx (12.64)

in the metric space IFn, where an appropriate metric is considered: The Euclidean (12.43), the maxi-

mum (12.44) or the absolute value metric ρ(x, y) =
n∑

k=1
|xk − yk| (compare with (12.45)). If one of the

numbers√√√√ n∑
j,k=1

|ajk|2, max
1≤j≤n

n∑
k=1

|ajk|, max
1≤k≤n

n∑
j=1

|ajk| (12.65)

is smaller than one, then T turns out to be a contracting operator. It has exactly one fixed point
according to theBanach fixed-point theorem, which is the componentwise limit of the iteration sequence
started from an arbitrary point of IFn.

2. Fredholm Integral Equations
The Fredholm integral equation of second kind (see also 11.2, p. 622)

ϕ(x)−
b∫

a

K(x, y)ϕ(y) dy = f(x), x ∈ [a, b] (12.66)

with a continuous kernel K(x, y) and continuous right-hand side f(x) can be solved by iteration. By
means of the operator T : C([a, b]) −→ C([a, b]) defined as

Tϕ(x) =

b∫
a

K(x, y)ϕ(y) dy + f(x) ∀ ϕ ∈ C([a, b]), (12.67)

it is transformed into a fixed-point problem Tϕ = ϕ in the metric space C([a, b]) (see example A in

12.1.2, 4., p. 655). If max
a≤x≤b

∫ b

a
|K(x, y)| dy < 1, then T is a contracting operator and the fixed-point

theorem can be applied. The unique solution is now obtained as the uniform limit of the iteration
sequence {ϕn}∞n=1, where ϕn = Tϕn−1, starting with an arbitrary function ϕ0(x) ∈ C([a, b]). It is clear
that ϕn = T nϕ0 and the iteration sequence is {T nϕ0}∞n=1.

3. Volterra Integral Equations
The Volterra integral equation of second kind (see 11.4, p. 643)

ϕ(x)−
x∫

a

K(x, y)ϕ(y) dy = f(x), x ∈ [a, b] (12.68)

with a continuous kernel and a continuous right-hand side can be solved by means of the Volterra
integral operator

(V ϕ)(x) :=

x∫
a

K(x, y)ϕ(y) dy ∀ ϕ ∈ C([a, b]) (12.69)
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and Tϕ = f + V ϕ as the fixed-point problem Tϕ = ϕ in the space C([a, b]).
4. Picard-Lindelöf Theorem
Consider the differential equation

ẋ = f(t, x) (12.70)

with a continuous mapping f : I×G −→ IRn, where I is an open interval of IR andG is an open domain
of IRn. Suppose the function f satisfies a Lipschitz condition with respect to x (see 9.1.1.1, 2. p. 541),
i.e., there is a positive constant L such that

�(f(t, x1), f(t, x2)) ≤ L�(x1, x2) ∀ (t, x1), (t, x2) ∈ I ×G, (12.71)

where � is the Euclidean metric in IRn. (Using the norm (see 12.3.1, p. 669) and the formula (12.81)
�(x, y) = ‖x− y‖ (12.71) can be written as ‖f(t, x1)− f(t, x2)‖ ≤ L · ‖x1− x2‖.) Let (t0, x0) ∈ I ×G.
Then there are numbers β > 0 and r > 0 such that the set Ω = {(t, x) ∈ IR×IRn : |t−t0| ≤ β, �(x, x0) ≤
r} lies in I ×G. LetM = maxΩ �(f(t, x), 0) and α = min{β, r

M
}. Then there is a number b > 0 such

that for each x̃ ∈ B = {x ∈ IRn : �(x, x0) ≤ b}, the initial value problem
ẋ = f(t, x), x(t0) = x̃ (12.72)

has exactly one solutionϕ(t, x̃), i.e., ϕ̇(t, x̃) = f(t, ϕ(t, x̃)) for ∀t satisfying |t−t0| ≤ α andϕ(t0, x̃) = x̃.
The solution of this initial value problem is equivalent to the solution of the integral equation

ϕ(t, x̃) = x̃+

t∫
t0

f(s, ϕ(s, x̃)) ds, t ∈ [t0 − α, t0 + α]. (12.73)

If X denotes the closed ball {ϕ(t, x) : d(ϕ(t, x), x0) ≤ r} in the complete metric space C([t0 − α, t0 +
α]× B; IRn) with metric

d(ϕ, ψ) = max
(t,x)∈{|t−t0|≤α}×B

�(ϕ(t, x), ψ(t, x)), (12.74)

then X is a complete metric space with the induced metric. If the operator T : X −→ X is defined by

Tϕ(t, x) = x̃+

t∫
t0

f(s, ϕ(s, x̃)) ds (12.75)

then T is a contracting operator and the solution of the integral equation (12.73) is the unique fixed
point of T which can be calculated by iteration.

12.2.2.5 Completion of aMetric Space

Every (non-complete) metric space X can be completed; more precisely, there exists a metric space X̃
with the following properties:

a) X̃ contains a subspace Y isometric to X (see 12.2.3, 2., p. 669).

b) Y is everywhere dense in X̃.

c) X̃ is a complete metric space.

d) If Z is any metric space with the properties a)–c), then Z and X̃ are isometric.

The complete metric space, defined uniquely in this way up to isometry, is called the completion of the
space X.

12.2.3 ContinuousOperators

1. Continuous Operators
Let T : X −→ Y be a mapping of the metric space X = (X, ρ) into the metric space Y = (Y, �). T
is called continuous at the point x0 ∈ X if for every neighborhood V = V (y0) of the point y0 = T (x0)
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there is a neighborhood U = U(x0) such that:

T (x) ∈ V for all x ∈ U. (12.76)

T is called continuous on the set A ⊂ X if T is continuous at every point of A. Equivalent properties
for T to be continuous on X are:

a) For any point x ∈ X and any arbitrary sequence {xn}∞n=1, xn ∈ X with xn −→ x there always holds
T (xn) −→ T (x). Hence ρ(xn, x) → 0 implies �(T (xn), T (x)) → 0.

b) For any open subset G ⊂ Y the inverse image T−1(G) is an open subset in X.

c) For any closed subset F ⊂ Y the inverse image T−1(F ) is a closed subset in X.

d) For any subset A ⊂ X one has T (A) ⊂ T (A).
2. Isometric Spaces
If there is a bijective mapping T : X −→ Y for two metric spaces X = (X, ρ) and Y = (Y, �) such that

ρ(x, y) = �(T (x), T (y)) ∀ x, y ∈ X, (12.77)

then the spaces X and Y are called isometric, and T is called an isometry.

12.3 NormedSpaces

12.3.1 Notion of aNormed Space

12.3.1.1 Axioms of a Normed Space
Let X be a vector space over the field IF. A function ‖ · ‖ : X −→ IR1

+ is called a norm on the vector
space X and the pair X = (X, ‖ · ‖) is called a normed space over the field IF, if for arbitrary elements
x, y ∈ X and for any scalar α ∈ IF the following properties, the so-called axioms of a normed space, are
fulfilled:

(N1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0, (12.78)

(N2) ‖αx‖ = |α| · ‖x‖ (homogenity), (12.79)

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality). (12.80)

A metric can be introduced by means of

ρ(x, y) = ‖x− y‖, x, y ∈ X, (12.81)

in any normed space. The metric (12.81) has the following additional properties which are compatible
with the structure of the vector space:

ρ(x+ z, y + z) = ρ(x, y), z ∈ X (12.82a)

ρ(αx, αy) = |α|ρ(x, y), α ∈ IF. (12.82b)

So, in a normed space there are available both the properties of a vector space and the properties of a
metric space. These properties are compatible in the sense of (12.82a) and (12.82b). The advantage is
that most of the local investigations can be restricted to the unit ball

B(0; 1) = {x ∈ X : ‖x‖ < 1} or B(0; 1) = {x ∈ X : ‖x‖ ≤ 1} (12.83)

since

B(x; r) = {y ∈ X : ‖y − x‖ < r} = x+ rB(0; 1), ∀ x ∈ X and ∀ r > 0. (12.84)

Moreover, the algebraic operations in a vector space are continuous, i.e.,

xn → x, yn → y, αn → α imply

xn + yn → x+ y, αnxn → αx, ‖xn‖ → ‖x‖. (12.85)

In normed spaces instead of (12.53) one may write for convergent sequences

‖xn − x0‖ −→ 0 (n→∞). (12.86)
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12.3.1.2 Some Properties of Normed Spaces
Among the linear metric spaces, those spaces are normable (i.e., a norm can be introduced by means
of the metric, if one defines ‖x‖ = ρ(x, 0)) whose metric satisfies the conditions (12.82a) and (12.82b).

Two normed spaces X and Y are called norm isomorphic if there is a bijective linear mapping T : X −→
Y with ‖Tx‖ = ‖x‖ for all x ∈ X. Let ‖ · ‖1 and ‖ · ‖2 be two norms on the vector space X, and denote
the corresponding normed spaces by X1 and X2, i.e., X1 = (X, ‖ · ‖1) and X2 = (X, ‖ · ‖2).
The norm ‖ · ‖1 is stronger than the norm ‖ · ‖2, if there is a number γ > 0 such that ‖x‖2 ≤ γ‖x‖1,
for all x ∈ X. In this case, the convergence of a sequence {xn}∞n=1 to x with respect to the stronger
norm ‖ · ‖1, i.e., ‖xn − x‖1 −→ 0, implies the convergence to x with respect to the norm ‖ · ‖2, i.e.,
‖xn − x‖2 −→ 0.

Two norms ‖·‖ and ‖·‖1 are called equivalent if there are two numbers γ1 > 0, γ2 > 0 such that ∀x ∈ X
there holds γ1‖x‖ ≤ ‖x‖1 ≤ γ2‖x‖. In a finite dimensional vector space all norms are equivalent to
each other.

A subspace of a normed space is a closed linear subspace of the space.

12.3.2 Banach Spaces
A complete normed space is called a Banach space. Every normed space X can be completed into a

Banach space X̃ by the completion procedure given in 12.2.2.5, p. 668, and by the natural extension of

its algebraic operations and the norm to X̃.

12.3.2.1 Series in Normed Spaces
In a normed space X infinite series can be considered. That means for a given sequence {xn}∞n=1 of
elements xn ∈ X a new sequence {sk}∞k=1 is constructed by

s1 = x1, s2 = x1 + x2, . . . , sk = x1 + · · ·+ xk = sk−1 + xk, . . . . (12.87)

If the sequence {sk}∞k=1 is convergent, i.e., ‖sk − s‖ −→ 0 (k →∞) for some s ∈ X, then a convergent
series is defined. The elements s1, s2, . . . , sk, . . . are called the partial sums of the series. The limit

s = lim
k→∞

k∑
n=1

xn (12.88)

is the sum of the series, and it is denoted by s =
∞∑
n=1
xn. A series

∞∑
n=1
xn is called absolutely convergent

if the number series
∞∑
n=1

‖xn‖ is convergent. In a Banach space every absolutely convergent series is

convergent, and ‖s‖ ≤
∞∑
n=1

‖xn‖ holds for its sum s.

12.3.2.2 Examples of Banach Spaces

A : IFn with ‖x‖ =

(
n∑

k=1

|ξk|p
) 1

p

, if 1 ≤ p <∞; ‖x‖ = max
1≤k≤n

|ξk|, if p = ∞. (12.89a)

These normed spaces over the same vector space IFn are often denoted by lp(n) (1 ≤ p ≤ ∞). For
1 ≤ p < ∞, they are called Euclidean spaces in the case of IF = IR, and unitary spaces in the case of
IF = C.

B : m with ‖x‖ = sup
k
|ξk|. (12.89b)

C : c and c0 with the norm from m. (12.89c)

D : lp with ‖x‖ = ‖x‖p =
( ∞∑
n=1

|ξn|p
) 1

p

(1 ≤ p <∞). (12.89d)
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E : C([a, b]) with ‖x‖ = max
t∈[a,b]

|x(t)|. (12.89e)

F : Lp((a, b)) (1 ≤ p <∞) with ‖x‖ = ‖x‖p =
⎛⎝ b∫

a

|x(t)|p dt
⎞⎠

1
p

. (12.89f)

G : C(k)([a, b]) with ‖x‖ =
k∑

l=0

max
t∈[a,b]

|x(l)(t)|, where x(0)(t) stands for x(t). (12.89g)

12.3.2.3 Sobolev Spaces
Let Ω ⊂ IRn be a bounded domain, i.e., an open connected set, with a sufficiently smooth boundary
∂Ω. For n = 1 or n = 2, 3 one can imagine Ω being something similar to an interval (a, b) or a bounded
convex set.
A function f : Ω −→ IR is k-times continuously differentiable on the closed domain Ω if f is k-times
continuously differentiable on Ω and each of its partial derivatives has a finite limit on the boundary,
i.e., if x approaches an arbitrary point of ∂Ω. In other words, all partial derivatives can be continuously
extended on the boundary of Ω, i.e., each partial derivative is a continuous function on Ω. In this vector
space (for p ∈ [1,∞)) and with the Lebesgue measure λ in IRn (see exampleC in 12.9.1, 2., p. 695) the
following norm is defined:

‖f‖k,p = ‖f‖ =

⎛⎜⎝∫
Ω

|f(x)|p dλ+
∑

1≤|α|≤k

∫
Ω

|Dαf |p dλ

⎞⎟⎠
1
p

. (12.90)

The resulting normed space is denoted by W̃ k,p(Ω) or also by W̃ k
p (Ω) (in contrast to the space C(k)([a, b])

which has a quite different norm). Here α means a multi-index, i.e., an ordered n-tuple (α1, . . . , αn) of
non-negative integers, where the sum of the components of α is denoted by |α| = α1 + α2 + · · · + αn.
For a function f(x) = f(ξ1, . . . , ξn) with x = (ξ1, . . . , ξn) ∈ Ω the brief notation is used as in (12.90):

Dαf =
∂|α|f

∂ξα1
1 · · · ∂ξαn

n

. (12.91)

The normed space W̃ k,p(Ω) is not complete. Its completion is denoted by W k,p(Ω) or in the case of

p = 2 by IHk(Ω) and it is called a Sobolev space.

12.3.3 OrderedNormed Spaces

1. Cones in a Normed Space
Let X be a real normed space with the norm ‖ · ‖. A cone X+ ⊂ X (see 12.1.4.2, p. 657) is called solid,
if X+ contains a ball (with positive radius), or equivalently, X+ contains at least one interior point.

The usual cones are solid in the spaces IR, C([a, b]), c, but in the spacesLp((a, b)) and lp (1 ≤ p <∞)
they are not solid.

A cone X+ is called normal if the norm in X is semi-monotonic, i.e., there exists a constantM > 0 such
that

0 ≤ x ≤ y =⇒ ‖x‖ ≤M‖y‖. (12.92)

If X is a Banach space ordered by a cone X+, then every (o)-interval is bounded with respect to the
norm if and only if the cone X+ is normal.

The cones of the vectors with non-negative components and of the non-negative functions in the
spaces IRn, m, c, c0, C, lp and Lp, respectively, are normal.

A cone is called regular if every monotonically increasing sequence which is bounded above,

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ z (12.93)
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is a Cauchy sequence in X. In a Banach space every closed regular cone is normal.

The cones in IRn, lp and Lp for 1 ≤ p <∞ are regular, but in C and m they are not.

2. Normed Vector Lattices and Banach Lattices
Let X be a vector lattice, which is a normed space at the same time. X is called a normed lattice or
normed vector lattice (see [12.15], [12.19], [12.22], [12.23]), if the norm satisfies the condition

|x| ≤ |y| implies ‖x‖ ≤ ‖y‖ ∀ x, y ∈ X (monotonicity of the norm). (12.94)

A complete (with respect to the norm) normed lattice is called a Banach lattice.

The spaces C([a, b]), Lp, lp, B([a, b]) are Banach lattices.

12.3.4 NormedAlgebras
A vector space X over IF is called an algebra, if in addition to the operations defined in the vector space
X and satisfying the axioms (V1)–(V8) (see 12.1.1, p. 654), a product x ·y ∈ X is defined for every two
elements x, y ∈ X (or with a simplified notation by a product xy), such that for arbitrary x, y, z ∈ X
and α ∈ IF the following conditions are satisfied:

(A1) x(yz) = (xy)z, (12.95)

(A2) x(y + z) = xy + xz, (12.96)

(A3) (x+ y)z = xz + yz, (12.97)

(A4) α(xy) = (αx)y = x(αy). (12.98)

An algebra is commutative if xy = yx holds for two arbitrary elements x, y. A linear operator (see
(12.21), p. 658) T : X −→ Y of the algebra X into the algebra Y is called an algebra homomorphism if
for any x1, x2 ∈ X:

T (x1 · x2) = Tx1 · Tx2. (12.99)

An algebra X is called a normed algebra or a Banach algebra if it is a normed vector space or a Banach
space and the norm has the additional property

‖x · y‖ ≤ ‖x‖ · ‖y‖. (12.100)

In a normed algebra all the operations are continuous, i.e., additionally to (12.85), if xn −→ x and
yn −→ y, then also xnyn −→ xy (see [12.20]).

Every normed algebra can be completed to a Banach algebra, where the product is extended to the
norm completion with respect to (12.100).

A: C([a, b]) with the norm (12.89e) and the usual (pointwise) product of continuous functions.

B: The vector spaceW ([0, 2π]) of all complex-valued functions x(t) continuous on [0, 2π] and having
an absolutely convergent Fourier series expansion, i.e.,

x(t) =
∞∑

n=−∞
cne

int, (12.101)

with the norm ‖x‖ =
∞∑

n=−∞
|cn| and the usual multiplication.

C: The space L(X) of all bounded linear operators on the normed space X with the operator norm
and the usual algebraic operations (see 12.5.1.2, p. 677), where the product T S of two operators is
defined as the sequential application, i.e., TS(x) = T (S(x)), x ∈ X.

D: The space L1(−∞,∞) of all measurable and absolutely integrable functions on the real axis (see
12.9, p. 693) with the norm

‖x‖ =
∫ ∞

−∞
|x(t)| dt (12.102)

is a Banach algebra if the multiplication is defined as the convolution (x ∗ y)(t) =
∫ ∞

−∞
x(t− s)y(s) ds.
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12.4 Hilbert Spaces

12.4.1 Notion of aHilbert Space
12.4.1.1 Scalar Product
A vector space V over a field IF (mostly IF = C) is called a space with scalar product or an inner product
space or pre-Hilbert space if to every pair of elements x, y ∈ V there is assigned a number (x, y) ∈ IF (the
scalar product of x and y), such that the axioms of the scalar product are satisfied, i.e., for arbitrary
x, y, z ∈ V and α ∈ IF:

(H1) (x, x) ≥ 0, (i.e., (x, x) is real), and (x, x) = 0 if and only if x = 0, (12.103)

(H2) (αx, y) = α(x, y), (12.104)

(H3) (x+ y, z) = (x, z) + (y, z), (12.105)

(H4) (x, y) = (y, x). (12.106)

(Here ω denotes the conjugate of the complex number ω, which is denoted by ω∗ in (1.133c). Sometimes
the notation of a scalar product is 〈x, y〉.)
In the case of IF = IR, i.e., in a real vector space, (H4)means the commutativity of the scalar product.
Some further properties follow from the axioms:

(x, αy) = ᾱ(x, y) and (x, y + z) = (x, y) + (x, z). (12.107)

12.4.1.2 Unitary Spaces and Some of their Properties
In a pre-Hilbert space IH a norm can be introduced by means of the scalar product as follows:

‖x‖ =
√
(x, x) (x ∈ IH). (12.108)

A normed space IH = (IH, ‖·‖) is called unitary if there is a scalar product satisfying (12.108). Based on
the previous properties of scalar products and (12.108) in unitary spaces the following facts are valid:

a) Triangle Inequality:

‖x+ y‖ ≤ ‖x‖+ ‖y‖. (12.109)

b) Cauchy-Schwarz Inequality or Schwarz-Buniakowski Inequality (see also 1.4.2.9, p. 31):

|(x, y)| ≤
√
(x, x)

√
(y, y) . (12.110)

c) Parallelogram Identity: This characterizes the unitary spaces among the normed spaces:

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
. (12.111)

d) Continuity of the Scalar Product:

xn → x, yn → y imply (xn, yn) → (x, y). (12.112)

12.4.1.3 Hilbert Space
A complete unitary space is called a Hilbert space. Since Hilbert spaces are also Banach spaces, they
possess their properties (see 12.3.1, p. 669; 12.3.1.2, p. 670; 12.3.2, p. 670). In addition they have the
properties of unitary spaces 12.4.1.2, p. 673. A subspace of a Hilbert space is a closed linear subspace.

A: l2(n), l2 and L2((a, b)) with the scalar products

(x, y) =
n∑

k=1

ξkηk, (x, y) =
∞∑
k=1

ξkηk and (x, y) =
∫ b

a
x(t)y(t) dt. (12.113)

B: The space IH2(Ω) with the scalar product

(f, g) =
∫
Ω

f(x)g(x) dx+
∑

1≤|α|≤k

∫
Ω

Dαf(x)Dαg(x) dx. (12.114)
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C: Let ϕ(t) be a measurable positive function on [a, b]. The complex space L2((a, b), ϕ) of all mea-
surable functions, which are quadratically integrable with the weight function ϕ on (a, b), is a Hilbert
space if the scalar product is defined as

(x, y) =
∫ b

a
x(t)y(t)ϕ(t) dt. (12.115)

12.4.2 Orthogonality
Two elements x, y of aHilbert space IH are called orthogonal (denoted by x ⊥ y) if (x, y) = 0 (the notions
of this paragraph also make sense in pre-Hilbert spaces and in unitary spaces). For an arbitrary subset
A ⊂ IH, the set

A⊥ = {x ∈ IH: (x, y) = 0 ∀ y ∈ A} (12.116)

of all vectors which are orthogonal to each vector in A is a (closed linear) subspace of IH and it is called
the orthogonal space toA or the orthogonal complement ofA. The notationA ⊥ Bmeans that (x, y) = 0
for all x ∈ A and y ∈ B. If A consists of a single element x, then the notation x ⊥ B is used.

12.4.2.1 Properties of Orthogonality
The zero vector is orthogonal to every vector of IH. The following statements hold:

a) x ⊥ y and x ⊥ z imply x ⊥ (αy + βz) for any α, β ∈ C.

b) From x ⊥ yn and yn → y it follows that x ⊥ y.
c) x ⊥ A if and only if x ⊥ lin(A), where lin(A) denotes the closed linear hull of the set A.

d) If x ⊥ A and A is a fundamental set, i.e., lin(A) is everywhere dense in IH, then x = 0.

e) Pythagoras Theorem: If the elements x1, . . . , xn are pairwise orthogonal, that is xk ⊥ xl for all
k �= l, then

‖
n∑

k=1

xk‖2 =
n∑

k=1

‖xk‖2. (12.117)

f) Projection Theorem: If IH0 is a subspace of IH, then each vector x ∈ IH can be written uniquely
as

x = x′ + x′′, x′ ∈ IH0, x
′′ ⊥ IH0. (12.118)

g) Approximation Problem: Furthermore, the equation ‖x′‖ = ρ(x, IH0) = infy∈IH0{‖x−y‖} holds,
and so the problem

‖x− y‖ → inf, y ∈ IH0 (12.119)

has the unique solution x′ in IH0. In this statement IH0 can be replaced by a convex closed non-empty
subset of IH.
The element x′ is called the projection of the element x on IH0. It has the smallest distance from x (to

IH0), and the space IH can be decomposed: IH = IH0 ⊕ IH⊥
0 .

12.4.2.2 Orthogonal Systems
A set {xξ : ξ ∈ Ξ} of vectors from IH is called an orthogonal system if it does not contain the zero vector
and xξ ⊥ xη, ξ �= η, hence (xξ, xη) = δξη holds, where

δξη =
{
1 for ξ = η,
0 for ξ �= η (12.120)

denotes the Kronecker symbol (see 4.1.2, 10., p. 271). An orthogonal system is called orthonormal if
in addition ‖xξ‖ = 1 ∀ ξ.
In a separable Hilbert space an orthogonal system may contain at most countably many elements.
Therefore Ξ = IN is assumed from now on.
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A: The system

1√
2π
,

1√
π
cos t,

1√
π
sin t,

1√
π
cos 2t,

1√
π
sin 2t, . . . (12.121)

in the real space L2((−π, π)) and the system

1√
2π
eint (n = 0,±1,±2, . . .) (12.122)

in the complex space L2((−π, π)) are orthonormal systems. Both of these systems are called trigono-
metric.

B: The Legendre polynomials of the first kind (see 9.1.2.6, 2., p. 566)

Pn(t) =
dn

d tn
[(t2 − 1)n] (n = 0, 1, . . .) (12.123)

form an orthogonal system of elements in the spaceL2((−1, 1)). The corresponding orthonormal system
is

P̃n(t) =

√
n+

1

2

1

(2n)!!
Pn(t). (12.124)

C: The Hermite polynomials (see 9.1.2.6, 6., p. 568 and 9.2.4, 3., 602) according to the second
definition of the Hermite differential equation (9.66b)

Hn(t) = e
t2 d

n

dtn
e−t2 (n = 0, 1, . . .) (12.125)

form an orthogonal system in the space L2((−∞,∞)).

D: The Laguerre polynomials form an orthogonal system (see 9.1.2.6, 5., p. 568) in the space
L2((0,∞)).
Every orthogonal system is linearly independent, since the zero vector was excluded. Conversely, if
x1, x2, . . . xn, . . . is a system of linearly independent elements in a Hilbert space IH, then there exist vec-
tors e1, e2, . . . , en, . . ., obtained by theGram–Schmidt orthogonalization method (see 4.6.2.2, 1., p. 316)
which form an orthonormal system. They span the same subspace, and by the method they are deter-
mined up to a scalar factor with modulus 1.

12.4.3 Fourier Series inHilbert Spaces

12.4.3.1 Best Approximation

Let IH be a separable Hilbert space and

{en : n = 1, 2, . . .} (12.126)

a fixed orthonormal system in IH. For an element x ∈ IH the numbers cn = (x, en) are called the Fourier
coefficients of x with respect to the system (12.126). The (formal) series

∞∑
n=1

cnen (12.127)

is called the Fourier series of the element x with respect to the system (12.126) (see 7.4.1.1, 1., p. 474).
The n-th partial sum of the Fourier series of an element x has the property of the best approximation,
i.e., for fixed n, the n-th partial sum of the Fourier series

σn =
n∑

k=1

(x, ek)ek (12.128)
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gives the smallest value of ‖x −
n∑

k=1
αkek‖ among all vectors of IHn = lin({e1, . . . , en}). Furthermore,

x− σn is orthogonal to IHn, and there holds the Bessel inequality:
∞∑
n=1

|cn|2 ≤ ‖x‖2, cn = (x, en) (n = 1, 2, . . .). (12.129)

12.4.3.2 Parseval Equation, Riesz-Fischer Theorem
The Fourier series of an arbitrary element x ∈ IH is always convergent. Its sum is the projection of

the element x onto the subspace IH0 = lin({en}∞n=1). If an element x ∈ IH has the representation

x =
∞∑
n=1
αnen, then αn are the Fourier coefficients of x (n = 1, 2, . . .). If {αn}∞n=1 is an arbitrary

sequence of numbers with the property
∞∑
n=1

|αn|2 < ∞, then there is a unique element x in IH, whose

Fourier coefficients are equal to αn and for which the Parseval equation holds:
∞∑
n=1

|(x, en)|2 =
∞∑
n=1

|αn|2 = ‖x‖2 (Riesz–Fischer theorem). (12.130)

An orthonormal system {en} in IH is called complete if there is no non-zero vector y orthogonal to every

en; it is called a basis if every vector x ∈ IH has the representation x =
∞∑
n=1
αnen, i.e., αn = (x, en) and x

is equal to the sum of its Fourier series. In this case, one also says that x has a Fourier expansion. The
following statements are equivalent:

a) {en} is a fundamental set in IH.

b) {en} is complete in IH.

c) {en} is a basis in IH.

d) For ∀ x, y ∈ IH with the corresponding Fourier coefficients cn and dn (n = 1, 2, . . .) there holds

(x, y) =
∞∑
n=1

cndn. (12.131)

e) For every vector x ∈ IH, the Parseval equation (12.130) holds.

A: The trigonometric system (12.121) is a basis in the space L2((−π, π)).
B: The system of the normalized Legendre polynomials (12.124) P̃n(t) (n = 0, 1, . . .) is complete

and consequently a basis in the space L2((−1, 1)).

12.4.4 Existence of aBasis, IsomorphicHilbert Spaces
In every separable Hilbert space there exits a basis. From this fact it follows that every orthonormal
system can be completed to a basis.
Two Hilbert spaces IH1 and IH2 are called isometric or isomorphic as Hilbert spaces if there is a linear
bijective mapping T : IH1 −→ IH2 with the property (Tx, Ty)IH2 = (x, y)IH1 (that is, it preserves the
scalar product and because of (12.108) also the norm). Any two arbitrary infinite dimensional separable
Hilbert spaces are isometric, in particular every such space is isometric to the separable space l2.
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12.5 ContinuousLinearOperators andFunctionals

12.5.1 Boundedness,NormandContinuity of LinearOperators

12.5.1.1 Boundedness and the Norm of Linear Operators
Let X = (X, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spaces. In the following discussion the index X in
the notation ‖ · ‖X , which emphasizes being in the space X , is omitted, because from the text it will
be always clear, which norms and spaces are considered. An arbitrary operator T : X −→ Y is called
bounded if there is a real number λ > 0 such that

‖T (x)‖ ≤ λ‖x‖ ∀ x ∈ X. (12.132)

A bounded operator with a constant λ “stretches” every vector at most λ times and it transforms every
bounded set of X into a bounded set of Y, in particular the image of the unit ball of X is bounded in Y.
This last property is characteristic of bounded linear operators. A linear operator is continuous (see
12.2.3, p. 668) if and only if it is bounded.
The smallest constant λ, for which (12.132) still holds, is called the norm of the operator T and it is
denoted by ‖T‖, i.e.,

‖T‖ := inf{λ > 0 : ‖Tx‖ ≤ λ‖x‖, x ∈ X}. (12.133)

For a continuous linear operator the following equalities hold:

‖T‖ = sup
‖x‖≤1

‖Tx‖ = sup
‖x‖<1

‖Tx‖ = sup
‖x‖=1

‖Tx‖ (12.134)

and, furthermore, the following estimation holds

‖Tx‖ ≤ ‖T‖ · ‖x‖ ∀ x ∈ X. (12.135)

Let T be the operator in the space C([a, b]) with the norm (12.89e), defined by the integral

(Tx)(s) = y(s) =
∫ b

a
K(s, t)x(t) dt (s ∈ [a, b]), (12.136)

where K(s, t) is a (complex-valued) continuous function on the rectangle {a ≤ s, t ≤ b}. Then T is a
bounded linear operator, which maps C([a, b]) into C([a, b]). Its norm is

‖T‖ = max
s∈[a,b]

∫ b

a
|K(s, t)| dt. (12.137)

12.5.1.2 The Space of Linear Continuous Operators
The sum U = S + T and the multiple αT of two linear (continuous) operators S, T : X −→ Y are
defined point-wise:

U(x) = S(x) + T (x), (αT )(x) = α · T (x), ∀ x ∈ X and ∀ α ∈ IF. (12.138)

The setL(X,Y), often denoted byB(X,Y), of all linear continuous operators T fromX into Y equipped
with the operations (12.138) is a vector space, where ‖T‖ (12.133) turns out to be a norm on it. So,
L(X,Y) is a normed space and even a Banach space if Y is a Banach space. So the axioms (V1)–(V8)
and (N1)–(N3) are satisfied (see 12.1.1, p. 654, 12.3.1, p. 669).

If Y = X, then a product can be defined for two arbitrary elements S, T ∈ L(X,X) = L(X) = B(X) as
(ST )(x) = S(Tx) (∀ x ∈ X), (12.139)

which satisfies the axioms (A1)–(A4) from 12.3.4, p. 672, and also the compatibility condition (12.100)
with the norm. L(X) is in general a non-commutative normed algebra, and if X is a Banach space, then
it is a Banach algebra. Then for every operator T ∈ L(X) its powers are defined by

T 0 = I, T n = T n−1T (n = 1, 2, . . .), (12.140)

where I is the identity operator Ix = x, ∀ x ∈ X. Then

‖T n‖ ≤ ‖T‖n (n = 0, 1, . . .), (12.141)
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and furthermore there always exists the (finite) limit

r(T ) = lim
n→∞

n

√
‖T n‖ , (12.142)

which is called the spectral radius of the operator T and satisfies the relations

r(T ) ≤ ‖T‖, r(T n) = [r(T )]n, r(αT ) = |α|r(T ), r(T ) = r(T ∗), (12.143)

where T ∗ is the adjoint operator to T (see 12.6, p. 684, and (12.159)). If L(X) is complete, then for
|λ| > r(T ), the operator (λI − T )−1 has the representation in the form of a Neumann series

(λI − T )−1 = λ−1I + λ−2T + . . .+ λ−nT n−1 + . . . , (12.144)

which is convergent for |λ| > r(T ) in the operator norm on L(X).

12.5.1.3 Convergence of Operator Sequences

1. Point-wise Convergence
of a sequence of linear continuous operators Tn : X −→ Y to an operator T : X −→ Y means that:

Tnx −→ Tx inY for each x ∈ X. (12.145)

2. Uniform Convergence
The usual norm-convergence of a sequence of operators {Tn}∞n=1 in a space L(X,Y) to T , i.e.,

‖Tn − T‖ = sup
‖x‖≤1

‖Tnx− Tx‖ −→ 0 (n→ ∞) (12.146)

is the uniform convergence on the unit ball of X. It implies point-wise convergence, while the converse
statement is not true in general.

3. Applications
The convergence of quadrature formulas when the number n of interpolation nodes tends to ∞, the
performance principle of summation, limiting methods, etc.

12.5.2 LinearContinuousOperators inBanach Spaces
Now X and Y are supposed to be Banach spaces.

1. Banach-Steinhaus Theorem (Uniform Boundedness Principle)
The theorem characterizes the point-wise convergence of a sequence {Tn} of linear continuous operators
Tn to some linear continuous operator by the conditions:

a) For every element from an everywhere dense subset D ⊂ X, the sequence {Tnx} has a limit in Y,

b) there is a constant C such that ‖Tn‖ ≤ C, ∀ n.
2. OpenMappings Theorem
The theorem tells us that a linear continuous operator mapping from X onto Y is open, i.e., the image
T (G) of every open set G from X is an open set in Y.

3. Closed Graph Theorem
An operator T : DT −→ Y with DT ⊂ X is called closed if xn ∈ DT , xn → x0 in X and Txn → y0 in Y
imply x0 ∈ DT and y0 = Tx0. A necessary and sufficient condition is that the graph of the operator T
in the space X× Y, i.e., the set

ΓT = {(x, Tx): x ∈ DT} (12.147)

is closed, where here (x, y) denotes an element of the set X× Y.
If T is a closed operator with a closed domain DT , then T is continuous.

4. Hellinger-Toeplitz Theorem
Let T be a linear operator in a Hilbert space IH. If (x, Ty) = (Tx, y) for every x, y ∈ IH, then T is
continuous (here (x, Ty) denotes the scalar product in IH).
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5. Krein-Losanovskij Theorem on the Continuity of Positive Linear
Operators

If X = (X,X+, ‖ · ‖) and Y = (Y,Y+, ‖ · ‖) are ordered normed spaces, where X+ is a generating
cone, then the set L+(X,Y) of all positive linear and continuous operators T , i.e., T (X+) ⊂ Y+, is a
cone in L(X,Y). The theorem of Krein and Losanovskij asserts (see [12.17]): If X and Y are ordered
Banach spaces with closed cones X+ and Y+, and X+ is a generating cone, then the positivity of a linear
operator implies its continuity.

6. Inverse Operator
Let X and Y be arbitrary normed spaces and let T : X −→ Y be a linear, not necessarily continuous
operator. T has a continuous inverse T−1 : Y −→ X, if T (X) = Y and there exists a constant m > 0

such that ‖Tx‖ ≥ m‖x‖ for each x ∈ X. Then ‖T−1‖ ≤ 1

m
. The situation considered here is less

general than that in (12.22) (see 12.1.5.2, p. 659), since there may be D �= X and R(T ) �= Y .
In the case of Banach spaces X,Y the following theorem is valid:

7. Banach Theorem on the Continuity of the Inverse Operator
If T is a linear continuous bijective operator from X onto Y, then the inverse operator T−1 is also
continuous.

An important application is, e.g., the continuity of (λI − T )−1 given the injectivity and surjectivity of
λI − T . This fact has importance in investigating the spectrum of an operator (see 12.5.3.2, p. 680).
It also applies to the

8. Continuous Dependence of the Solution
on the right-hand side and also on the initial data of initial value problems for linear differential equa-
tions. This fact is demonstrated by the following example.

The initial value problem

ẍ(t) + p1(t)ẋ(t) + p2(t)x(t) = q(t), t ∈ [a, b], x(t0) = ξ, ẋ(t0) = ξ̇, t0 ∈ [a, b] (12.148a)

with coefficients p1(t), p2(t) ∈ C([a, b]) has exactly one solution x from C2([a, b]) for every right-hand

side q(t) ∈ C([a, b]) and for every pair of numbers ξ, ξ̇. The solution x depends continuously on q(t), ξ

and ξ̇ in the following sense. If qn(t) ∈ C([a, b]), ξn, ξ̇n ∈ IR1 are given and xn ∈ C([a, b]) denotes the
solution of

ẍn(t) + p1(t)ẋn(t) + p2(t)xn(t) = qn(t), xn(a) = ξn, ẋn(a) = ξ̇n, (12.148b)

for n = 1, 2, . . ., then:

qn(t) → q(t) in C([a, b]),
ξn → ξ,
ξ̇n → ξ̇,

⎫⎪⎬⎪⎭ implies xn → x in the space C2([a, b]). (12.148c)

9. Method of Successive Approximation
to solve an equation of the form

x− Tx = y (12.149)

with a continuous linear operator T in a Banach space X for a given y. This method starts with an
arbitrary initial element x0, and constructs a sequence {xn} of approximating solutions by the formula

xn+1 = y + Txn (n = 0, 1, . . .) . (12.150)

This sequence converges to the solution x∗ in X of (12.149). The convergence of the method, i.e.,
xn → x∗, is based on the convergence of the series (12.144) with λ = 1.
Let ‖T‖ ≤ q < 1. Then the following statements are valid:

a) The operator I − T has a continuous inverse with ‖(I − T )−1‖ ≤ 1

1− q , and (12.149) has exactly

one solution for each y.
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b) The series (12.144) converges and its sum is the operator (I − T )−1.

c) The method (12.150) converges to the unique solution x∗ of (12.149) for any initial element x0, if
the series (12.144) converges. Then the following estimation holds:

‖xn − x∗‖ ≤
qn

1− q‖Tx0 − x0‖ (n = 1, 2, . . .). (12.151)

Equations of the type

x− μTx = y, λx− Tx = y, μ, λ ∈ IF (12.152)

can be handled in an analogous way (see 11.2.2, p. 625, and [12.8]).

12.5.3 Elements of the Spectral Theory of LinearOperators

12.5.3.1 Resolvent Set and the Resolvent of an Operator
For an investigation of the solvability of equations one tries to rewrite the problem in the form

(I − T )x = y (12.153)

with some operator T having a possible small norm. This is especially convenient for using a functional
analytic method because of (12.143) and (12.144). In order to handle large values of ‖T‖ as well, it is
necessary to investigate the whole family of equations

(λI − T )x = y x ∈ X, with λ ∈ C (12.154)

in a complex Banach space X. Let T be a linear, but in general not a bounded operator in a Banach
space X. The set �(T ) of all complex numbers λ such that (λI − T )−1 ∈ B(X) = L(X) is called the
resolvent set and the operator Rλ = Rλ(T ) = (λI − T )−1 is called the resolvent. Let T now be a
bounded linear operator in a complex Banach space X. Then the following statements are valid:

a) The set �(T ) is open. More precisely, if λ0 ∈ �(T ) and λ ∈ C satisfy the inequality

|λ− λ0| <
1

‖Rλ0‖
, (12.155)

then Rλ exists and

Rλ = Rλ0 + (λ− λ0)R2
λ0

+ (λ− λ0)2R3
λ0

+ . . . =
∞∑
k=1

(λ− λ0)k−1Rk
λ0
. (12.156)

b) {λ ∈ C : |λ| > ‖T‖} ⊂ �(T ). More precisely, ∀ λ ∈ C with |λ| > ‖T‖, the operator Rλ exists and

Rλ = − I
λ
− T
λ2

− T
2

λ3
− . . . . (12.157)

c) ‖Rλ −Rλ0‖ → 0, if λ→ λ0 (λ, λ0 ∈ �(T )), and ‖Rλ‖ → 0, if λ→∞ (λ ∈ �(T )).

d)
∥∥∥∥Rλ −Rλ0

λ− λ0
−R2

λ0

∥∥∥∥ −→ 0, if λ→ λ0.

e) For an arbitrary functional f ∈ X∗ (see 12.5.4.1, p. 681) and arbitrary x ∈ X the function F (λ) =
f(Rλ(x)) is holomorphic on �(T ).

f) For arbitrary λ, μ ∈ �(T ), and λ �= μ one has:

RλRμ = RμRλ =
Rλ −Rμ

λ− μ . (12.158)

12.5.3.2 Spectrum of an Operator

1. Definition of the Spectrum
The set σ(T ) = C \ �(T ) is called the spectrum of the operator T . Since I − T has a continuous inverse
(and consequently (12.153) has a solution, which continuously depends on the right-hand side) if and
only if 1 ∈ �(T ), the spectrum σ(T ) must be known as well as possible. From the properties of the
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resolvent set it follows immediately that the spectrum σ(T ) is a closed set of C which lies in the disk
{λ ∈ C: |λ| ≤ ‖T‖}, however, in many cases σ(T ) is much smaller than this disk. The spectrum of any
linear continuous operator on a complex Banach space is never empty and

r(T ) = sup
λ∈σ(T )

|λ|. (12.159)

It is possible to say more about the spectrum in the cases of different special classes of operators.
If T is an operator in a finite dimensional space X and if the equation (λI−T )x = 0 has only the trivial
solution (i.e., λI − T is injective), then λ ∈ �(T ) (i.e., λI − T is surjective). If this equation has a
non-trivial solution in some Banach space, then the operator λI − T is not injective and (λI − T )−1 is
in general not defined.

The number λ ∈ C is called an eigenvalue of the linear operator T , if the equation λx = Tx has a non-
trivial solution. All those solutions are called eigenvectors, or in the case when X is a function space
(which occurs very often in applications), they are called eigenfunctions of the operator T associated
to λ. The subspace spanned by them is called the eigenspace (or characteristic space) associated to λ.
The set σp(T ) of all eigenvalues of T is called the point spectrum of the operator T .

2. Comparison to Linear Algebra, Residual Spectrum
An essential difference between the finite dimensional case which is considered in linear algebra and the
infinite dimensional case discussed in functional analysis is that in the first case σ(T ) = σp(T ) always
holds, while in the second case the spectrum usually also contains points which are not eigenvalues of
T . If λI − T is injective and surjective as well, then λ ∈ �(T ) due to the theorem on the continuity
of the inverse (see 12.5.2, 7., p. 679). In contrast to the finite dimensional case where the surjectivity
follows automatically from the injectivity, the infinite dimensional case has to be dealt with in a very
different way.

The set σc(T ) of all λ ∈ σ(T ), for which λI − T is injective and Im(λI − T ) is dense in X, is called
the continuous spectrum and the set σr(T ) of all λ with an injective λI − T and a non-dense image, is
called the residual spectrum of operator T .

For a bounded linear operator T in a complex Banach space X

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ), (12.160)

where the terms of the right-hand side are mutually disjoint.

12.5.4 Continuous Linear Functionals

12.5.4.1 Definition

For Y = IF a linear mapping is called a linear functional or a linear form. In the following discussions,
for a Hilbert space the complex case is considered; in other situations almost every times the real case
is considered. The Banach space L(X, IF) of all continuous linear functionals is called the adjoint space
or the dual space of X and it is denoted by X∗ (sometimes also by X′). The value (in IF) of a linear
continuous functional f ∈ X∗ on an element x ∈ X is denoted by f(x), often also by (x, f) – emphasizing
the bilinear relation of X and X∗ – (compare also with the Riesz theorem (see 12.5.4.2, p. 682).

A: Let t1, t2, . . . , tn be fixed points of the interval [a, b] and c1, c2, . . . , cn real numbers. By the
formula

f(x) =
n∑

k=1

ckx(tk) (12.161)

a linear continuous functional is defined on the space C([a, b]); the norm of f is ‖f‖ =
n∑

k=1
|ck|. A special

case of (12.161) for a fixed t ∈ [a, b] is the δ functional

δt(x) = x(t) (x ∈ C([a, b])). (12.162)
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B: With an integrable function ϕ(t) (see 12.9.3.1, p. 696) on [a, b]

f(x) =
∫ b

a
ϕ(t)x(t) dt (12.163)

is a linear continuous functional on C([a, b]) and also on B([a, b]) in each case with the norm ‖f‖ =∫ b

a
|ϕ(t)| dt.

12.5.4.2 Continuous Linear Functionals in Hilbert Spaces.
Riesz Representation Theorem

In a Hilbert space IH equipped with the scalar product (·, ·) every element y ∈ IH defines a linear
continuous functional by the formula f(x) = (x, y), where its norm is ‖f‖ = ‖y‖. Conversely, if f is a
linear continuous functional on IH, then there exists a unique element y ∈ IH such that

f(x) = (x, y) ∀ x ∈ IH, (12.164)

where ‖f‖ = ‖y‖. According to this theorem the spaces IH and IH∗ are isomorphic and might be iden-
tified.

The Riesz representation theorem contains a hint on how to introduce the notion of orthogonality in
an arbitrary normed space. Let A ⊂ X and A∗ ⊂ X∗. The sets

A⊥ = {f ∈ X: f(x) = 0 ∀ x ∈ A} and A∗⊥ = {x ∈ X: f(x) = 0 ∀ f ∈ A∗} (12.165)

are called the orthogonal complement or the annulator of A and A∗, respectively.

12.5.4.3 Continuous Linear Functionals inLp

Let p ≥ 1. The number q is called the conjugate exponent to p if
1

p
+

1

q
= 1, where it is assumed that

q = ∞ in the case of p = 1.

Based on the Hölder integral inequality (see 1.4.2.12, p. 32) the functional (12.163) can be considered

also in the spaces Lp([a, b]) (1 ≤ p ≤ ∞) (see 12.9.4, p. 697) if ϕ ∈ Lq([a, b]) and
1

p
+

1

q
= 1. Its norm

is then

‖f‖ = ‖ϕ‖ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∫ b

a
|ϕ(t)|qdt

) 1
q

, if 1 < p ≤ ∞,
ess. sup

t∈[a,b]
|ϕ(t)|, if p = 1

(12.166)

(with respect to the definition of ess. sup |ϕ| see (12.221), p. 698). To every linear continuous functional
f in the space Lp([a, b]) there is a uniquely (up to its equivalence class) defined element y ∈ Lq([a, b])
such that

f(x) = (x, y) =

b∫
a

x(t)y(t)dt, x ∈ Lp and ‖f‖ = ‖y‖q =
⎛⎝ b∫

a

|y(t)|qdt
⎞⎠

1
q

. (12.167)

For the case of p = ∞ see [12.15].

12.5.5 Extension of a Linear Functional

1. Semi-Norm
Amapping p: X −→ IR of a vector space X is called a semi-norm or pseudonorm, if it has the following
properties:

(HN1) p(x) ≥ 0, (12.168)

(HN2) p(αx) = |α|p(x), (12.169)

(HN3) p(x+ y) ≤ p(x) + p(y). (12.170)
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Comparison with 12.3.1, p. 669, shows that a semi-norm is a norm if and only if p(x) = 0 holds only
for x = 0.

Both for theoretical mathematical questions and for practical reasons in applications of mathematics,
the problem of the extension of a linear functional given on a linear subspace X0 ⊂ X to the entire
space (and, in order to avoid trivial and uninteresting cases) with preserving certain “ good” properties
became a fundamental question. The solution of this problem is guaranteed by

2. Analytic Form of the Hahn-Banach Extension Theorem
Let X be a vector space over IF and p a pseudonorm on X. Let X0 be a linear (complex in the case of
IF = C and real in the case of IF = IR) subspace of X, and let f0 be a (complex-valued in the case of
IF = C and real-valued in the case of IF = IR) linear functional on X0 satisfying the relation

|f0(x)| ≤ p(x) ∀ x ∈ X0. (12.171)

Then there exists a linear functional f on X with the following properties:

f(x) = f0(x) ∀ x ∈ X0, |f(x)| ≤ p(x) ∀ x ∈ X. (12.172)

So, f is an extension of the functional f0 onto the whole space X preserving the relation (12.171).

If X0 is a linear subspace of a normed space X and f0 is a continuous linear functional on X0, then
p(x) = ‖f0‖ · ‖x‖ is a pseudonorm on X satisfying (12.171), so the Hahn-Banach extension theorem for
continuous linear functionals is obtained.

Two important consequences are:

1. For every element x �= 0 there is a functional f ∈ X∗ with f(x) = ‖x‖ and ‖f‖ = 1.

2. For every linear subspace X0 ⊂ X and x0 /∈ X0 with the positive distance d = infx∈X0 ‖x− x0‖ > 0
there is an f ∈ X∗ such that

f(x) = 0 ∀ x ∈ X0, f(x0) = 1 and ‖f‖ =
1

d
. (12.173)

12.5.6 Separation of Convex Sets

1. Hyperplanes
A linear subset L of the real vector space X, L �= X, is called a hypersubspace or hyperplane through 0
if there exists an x0 ∈ X such that X = lin(x0, L). Sets of the form x+L (L a linear subset) are affine-
linear manifolds (see 12.1.2, p. 655). If L is a hypersubspace, these manifolds are called hyperplanes.

There exist the following close relations between hypersubspaces, hyperplanes and linear functionals:

a) The kernel f−1(0) = {x ∈ X: f(x) = 0} of a linear functional f on X is a hypersubspace in X, and
for each number λ ∈ IR there exists an element xλ ∈ X with f(xλ) = λ and f

−1(λ) = xλ + f
−1(0).

b) For any given hypersubspace L ⊂ X and each x0 /∈ L and λ �= 0 (λ ∈ IR) there always exists a
uniquely determined linear functional f on X with f−1(0) = L and f(x0) = λ.

The closedness of f−1(0) in the case of a normed space X is equivalent to the continuity of the functional
f .

2. Geometric Form of the Hahn–Banach Extension Theorem
Let X be a normed space, x0 ∈ X and L a linear subspace of X. Then for every non-empty convex open
setK which does not intersect the affine-linear manifold x0+L, there exists a closed hypersubspaceH
such that x0 + L ⊂ H and H ∩K = ∅.
3. Separation of Convex Sets
Two subsets A,B of a real normed space X are called separated by a hyperplane if there is a functional
f ∈ X∗ such that:

sup
x∈A
f(x) ≤ inf

y∈B
f(y). (12.174)

The separating hyperplane is then given by f−1(α) with α = supx∈A f(x), which means that the two
sets are contained in the different half-spaces
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A ⊂ {x ∈ X: f(x) ≤ α} and B ⊂ {x ∈ X: f(x) ≥ α}. (12.175)

In Fig. 12.5b,c two cases of the separation by a hyperplane are shown.
Their disjointness is less decisive for the separation of two sets. In fact, Fig. 12.5a shows two sets E
and B, which are not separated although E and B are disjoint and B is convex. The convexity of both
sets is the intrinsic property for separating them. In this case it is possible that the sets have common
points which are contained in the hyperplane.

E

B

A

B

$ �
-1
( )

b) c)

$ �

-1
( )

A

B
a)

Figure 12.5

If A is a convex set of a normed space X with a non-empty interior Int(A) and B ⊂ X is a non-empty
convex set with Int(A) ∩ B = ∅, then A and B can be separated. The hypothesis Int(A) �= ∅ in that
statement cannot be dropped (see [12.3], example 4.47). A (real linear) functional f ∈ X∗ is called
a supporting functional of the set A at the point x0 ∈ A, if there is a real number λ ∈ IR such that
f(x0) = λ, and A ⊂ {x ∈ X : f(x) ≤ λ}. f−1(λ) is called the supporting hyperplane at the point x0.
For a convex setK with a non-empty interior, there exists a supporting functional at each of its bound-
ary points.

Remark: The famous Kuhn-Tucker theorem (see 18.2, p. 925) which yields practical methods to de-
termine the minimum of convex optimization problems (see [12.5]), is also based on the separation of
convex sets.

12.5.7 SecondAdjoint Space andReflexive Spaces
The adjoint space X∗ of a normed space X is also a normed space if it is equipped with the norm ‖f‖ =
sup
‖x‖≤1

|f(x)|, so (X∗)∗ = X∗∗ – the second adjoint space to X can also be considered. The canonical

embedding

J : X −→ X∗∗ with Jx = Fx, where Fx(f) = f(x) ∀ f ∈ X∗ (12.176)

is a norm isomorphism (see 12.3.1, p. 669), hence X is identified with the subset J(X) ⊂ X∗∗. A Banach
space X is called reflexive if J(X) = X∗∗. Hence the canonical embedding is then a surjective norm
isomorphism.

Every finite dimensional Banach space and every Hilbert space is reflexive, as well as the spaces
Lp (1 ≤ p <∞), however C([a, b]), L1([0, 1]), c0 are examples of non-reflexive spaces.

12.6 AdjointOperators inNormedSpaces

12.6.1 Adjoint of aBoundedOperator
For a given linear continuous operator T : X −→ Y (X,Y are normed spaces) to every g ∈ Y∗ there
is assigned a functional f ∈ X∗ by f(x) = g(Tx), ∀ x ∈ X. In this way, a linear continuous operator

T ∗ : Y∗ −→ X∗, (T ∗g)(x) = g(Tx), ∀ g ∈ Y∗ and ∀ x ∈ X (12.177)

is obtained which is called the adjoint operator of T and has the following properties:

(T +S)∗ = T ∗+S∗, (ST )∗ = S∗T ∗, ‖T ∗‖ = ‖T‖, where for the linear continuous operators T : X → Y
and S : Y → Z (X,Y,Z normed spaces), the operator ST : X → Z is defined in the natural way
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as ST (x) = S(T (x)) (see 12.3.4, C, p. 672). With the notation introduced in 12.1.5, p. 658, and
12.5.4.2, p. 682, the following identities are valid for an operator T ∈ B(X,Y):

Im(T ) = ker(T ∗)⊥, Im(T ∗) = ker(T )⊥, (12.178)

where the closedness of Im(T ) implies the closedness of Im(T ∗).
The operator T ∗∗ : X∗∗ → Y∗∗, obtained as (T ∗)∗ from T ∗, is called the second adjoint of T . Due to
(T ∗∗(Fx))g = Fx(T ∗g) = (T ∗g)(x) = g(Tx) = FTx(g) the operator T

∗∗ has the following property: If
Fx ∈ X∗∗, then T ∗∗Fx = FTx ∈ Y∗∗. Hence, the operator T ∗∗ : X∗∗ → Y∗∗ is an extension of T .

In a Hilbert space IH the adjoint operator can also be introduced by means of the scalar product
(Tx, y) = (x, T ∗y), x, y ∈ IH. This is based on the Riesz representation theorem, where the iden-

tification of IH and IH∗∗ implies (λT )∗ = λT ∗, I∗ = I and even T ∗∗ = T . If T is bijective, then the same
holds for T ∗, and also (T ∗)−1 = (T−1)∗. For the resolvents of T and T ∗ there holds

[Rλ(T )]
∗ = Rλ(T

∗), (12.179)

from which σ(T ∗) = {λ: λ ∈ σ(T )} follows for the spectrum of the adjoint operator.

A: Let T be an integral operator in the space Lp([a, b]) (1 < p <∞)

(Tx)(s) =
∫ b

a
K(s, t)x(t) dt (12.180)

with a continuous kernel K(s, t). The adjoint operator of T is also an integral operator, namely

(T ∗g)(t) =
∫ b

a
K∗(t, s)yg(s) ds (12.181)

with the kernel K∗(s, t) = K(t, s), where yg is the element from Lq associated to g ∈ (Lp)∗ according
to (12.167).

B: In a finite dimensional complex vector space the adjoint of an operator represented by the matrix
A = (aij) is defined by the matrix A∗ with a∗ij = aji.

12.6.2 AdjointOperator of anUnboundedOperator
Let X and Y be real normed spaces and T a (not necessarily bounded) linear operator with a (linear)
domain D(T ) ⊂ X and values in Y. For a given g ∈ Y∗, the expression g(Tx), depending obviously
linearly on x, is meaningful. Now the question is: Does there exist a well-defined functional f ∈ X∗

such that

f(x) = g(Tx) ∀ x ∈ D(T ). (12.182)

Let D∗ ⊂ Y∗ be the set of all those g ∈ Y∗ for which the representation (12.182) holds for a certain

f ∈ X∗. If D(T ) = X, then for given g the functional f is uniquely defined. So a linear operator T ∗ is
defined by f = T ∗g with D(T ∗) = D∗. Then for arbitrary x ∈ D(T ) and g ∈ D(T ∗)

g(Tx) = (T ∗g)(x). (12.183)

The operator T ∗ turns out to be closed and is called the adjoint of T . The naturalness of this general
procedure stems from the fact thatD(T ∗) = Y∗ holds if and only if T is bounded onD(T ). In this case
T ∗ ∈ B(Y∗,X∗) and ‖T ∗‖ = ‖T‖ hold.

12.6.3 Self-AdjointOperators
An operator T ∈ B(IH) (IH is a Hilbert space) is called self-adjoint if T ∗ = T . In this case

(Tx, y) = (x, Ty), x, y ∈ IH (12.184a)

is valid and the number (Tx, x) is real for each x ∈ IH. Then the equality

‖T‖ = sup
‖x‖=1

|(Tx, x)| (12.184b)
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holds and with m = m(T ) = inf
‖x‖=1

(Tx, x) andM =M(T ) = sup
‖x‖=1

(Tx, x) also the relations

m(T )‖x‖2 ≤ (Tx, x) ≤M(T )‖x‖2 and ‖T‖ = r(T ) = max{|m|,M} (12.185)

are valid. The equality (12.184a) characterizes the self-adjoint operators. The spectrum of a self-adjoint
(bounded) operator lies in the interval [m,M ] and m,M ∈ σ(T ) holds.
12.6.3.1 Positive Definite Operators
A partial ordering can be introduced in the set of all self-adjoint operators of B(IH) by defining

T ≥ 0 if and only if (Tx, x) ≥ 0 ∀ x ∈ IH. (12.186)

An operator T with T ≥ 0 is called positive (or, more exactly positive definite). For any self-adjoint
operator T (with (H1) from 12.4.1.1, p. 673), (T 2x, x) = (Tx, Tx) ≥ 0, so T 2 is positive definite.
Every positive definite operator T possesses a square root, i.e., there exists a unique positive definite
operator W such that W 2 = T . Moreover, the vector space of all self-adjoint operators is a K-space
(Kantorovich space, see 12.1.7.4, p. 660), where the operators

|T | =
√
T 2, T+ =

1

2
(|T |+ T ), T− =

1

2
(|T | − T ) (12.187)

are the corresponding elements with respect to (12.37). They are of particular importance for the
spectral decomposition and spectral and integral representations of self-adjoint operators by means of
some Stieltjes integral (see 8.2.3.1, 2., p. 506, and [12.1], [12.11], [12.12], [12.15], [12.18]).

12.6.3.2 Projectors in a Hilbert Space
Let IH0 be a subspace of a Hilbert space IH. Then every element x ∈ IH has its projection x′ onto IH0

according to the projection theorem (see 12.4.2, p. 674), and therefore, an operator P with Px = x′ is
defined on IH with values in IH0. P is called a projector onto IH0. Obviously, P is linear, continuous, and
‖P‖ = 1. A continuous linear operator P in IH is a projector (onto a certain subspace) if and only if:

a) P = P ∗, i.e., P is self-adjoint, and

b) P 2 = P , i.e., P is idempotent.

12.7 Compact Sets andCompactOperators

12.7.1 Compact Subsets of aNormed Space
A subset A of a normed space† X is called

• compact, if every sequence of elements from A contains a convergent subsequence whose limit lies in
A,

• relatively compact or precompact if its closure (see 12.2.1.3, p. 664) is compact, i.e., every sequence of
elements from A contains a convergent subsequence (whose limit does not necessarily belong to A).

This is the Bolzano–Weierstrass theorem in real calculus for bounded sequences in IRn, and one says
that such a set has the Bolzano–Weierstrass property.
Every compact set is closed and bounded. Conversely, if the space X is finite dimensional, then every
such set is compact. The closed unit ball in a normed space X is compact if and only if X is finite
dimensional.
For some characterizations of relatively compact subsets in metric spaces (the Hausdorff theorem on
the existence of a finite ε-net) and in the spaces s, C (Arzela–Ascoli theorem) and in the spacesLp(1 <
p <∞) see [12.15].

12.7.2 CompactOperators
12.7.2.1 Definition of Compact Operator
An arbitrary operator T : X −→ Y of a normed space X into a normed space Y is called compact if the

†It is enough that X is a metric (or an even more general) space. This generality is not used in what follows.
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image T (A) of every bounded set A ⊂ X is a relatively compact set in Y. If, in addition the operator
T is also continuous, then it is called completely continuous. Every compact linear operator is bounded
and consequently completely continuous. For a linear operator to be compact it is sufficient to require
that it transforms the unit ball of X into a relatively compact set in Y.

12.7.2.2 Properties of Linear Compact Operators
A characterization by sequences of the compactness of an operator from B(X,Y) is the following: For
every bounded sequence {xn}∞n=1 from X the sequence {Txn}∞n=1 contains a convergent subsequence.
A linear combination of compact operators is also compact. If one of the operators U ∈ B(W,X), T ∈
B(X,Y), S ∈ B(Y,Z) in each of the following products is compact, then the operators TU and ST are
also compact. If Y is a Banach space, then the following important statements are valid.

a) Convergence: If a sequence of compact operators {Tn}∞n=1 is convergent in the spaceB(X,Y), then
its limit is a compact operator, too.

b) Schauder Theorem: If T is a linear continuous operator, then either both T and T ∗ are compact
or both are not.

c) Spectral Properties of a Compact Operator T in an (Infinite Dimensional)
Banach Space X: The zero belongs to the spectrum. Every non-zero point of the spectrum σ(T )

is an eigenvalue with a finite dimensional eigenspace Xλ = {x ∈ X : (λI − T )x = 0}, and ∀ ε > 0
there is always only a finite number of eigenvalues of T outside the circle {|λ| ≤ ε}, where only the zero
can be an accumulation point of the set of eigenvalues. If λ = 0 is not an eigenvalue of T , then T−1 is
unbounded if it exists.

12.7.2.3 Weak Convergence of Elements
A sequence {xn}∞n=1 of elements of a normed space X is called weakly convergent to an element x0 if for

each f ∈ X∗ the relation f(xn) → f(x0) holds (written as: xn ⇀ x0 or as xn
w→ x0).

Obviously: xn → x0 implies xn ⇀ x0. If Y is another normed space and T : X −→ Y is a continuous
linear operator, then:

a) xn ⇀ x0 implies Txn ⇀ Tx0,

b) if T is compact, then xn ⇀ x0 implies Txn → Tx0.
A: Every finite dimensional operator is compact. From this fact it follows that the identity operator

in an infinite dimensional space cannot be compact (see 12.7.1, p. 686).

B: Suppose X = l2, and let T be the operator in l2 given by the infinite matrix⎛⎜⎜⎜⎜⎜⎝
t11 t12 t13 · · ·
t21 t22 t23 · · ·
t31 · · · · ·
· · · · · ·
· · · · · ·

⎞⎟⎟⎟⎟⎟⎠ with Tx =

( ∞∑
k=1

t1kxk, . . . ,
∞∑
k=1

tnkxk, . . .

)
. (12.188)

If
∞∑

k,n=1
|tnk|2 =M <∞, then T is a compact operator from l2 into l2 with ‖T‖ ≤M .

C: The integral operator (12.136) is a compact operator in the spaces C([a, b]) and Lp((a, b)) (1 <
p <∞).

12.7.3 FredholmAlternative
Let T be a compact linear operator in a Banach space X. The following equations (of the second kind)
are considered with a parameter λ �= 0:

λx− Tx = y, λx− Tx = 0,
λf − T ∗f = g, λf − T ∗f = 0.

(12.189)
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The following statements are valid:

a) dim(ker(λI−T )) = dim(ker(λI−T ∗)) < +∞, i.e., both homogeneous equations always have the
same number of linearly independent solutions.

b) Im(λI − T ) = ker(λI − T ∗)⊥ and ‡ Im(λI − T ∗) = ker(λI − T )⊥.
c) Im(λI − T ) = X if and only if ker(λI − T ) = 0.

d) The Fredholm alternative (also called the Riesz–Schauder theorem):

α) Either the homogeneous equation has only the trivial solution. In this case λ ∈ �(T ), the operator
(λI − T )−1 is bounded, and the inhomogeneous equation has exactly one solution x = (λI − T )−1y for
arbitrary y ∈ X.

β) Or the homogeneous equation has at least one non-trivial solution. In this case λ is an eigenvalue of
T , i.e., λ ∈ σ(T ), and the inhomogeneous equation has a (non-unique) solution if and only if the right-
hand side y satisfies the condition f(y) = 0 for every solution f of the adjoint equation T ∗f = λf .
In this last case every solution x of the inhomogeneous equation has the form x = x0 + h, where x0 is
a fixed solution of the inhomogeneous equation and h ∈ ker(λI − T ).
Linear equations of the form Tx = y with a compact operator T are called equations of the first kind.
Their mathematical investigation is in general more difficult (see [12.11],[12.18]).

12.7.4 CompactOperators inHilbert Space
Let T : IH −→ IH be a compact operator. Then T is the limit (in B(IH)) of a sequence of finite dimen-
sional operators. The similarity to the finite dimensional case can be seen from the statements:

If C is a finite dimensional operator and T = I − C, then the injectivity of T implies the existence of
T−1 and T−1 ∈ B(IH).
If C is a compact operator, then the following statements are equivalent:

a) ∃T−1 and it is continuous,

b) x �= 0 ⇒ Tx �= 0, i.e., T is injective,

c) T (IH) = IH, i.e., T is surjective.

12.7.5 Compact Self-AdjointOperators

1. Eigenvalues
A compact self-adjoint operator T �= 0 in a Hilbert space IH possesses at least one non-zero eigenvalue.
More precisely, T always has an eigenvalue λ with |λ| = ‖T‖. The set of eigenvalues of T is at most
countable.
Any compact self-adjoint operator T has the representation T =

∑
k
λkPλk

(in B(IH)), where λk are

the different eigenvalues of T and Pλ denotes the projector onto the eigenspace IHλ. In this case the
operator T is diagonalizable. From this fact it follows that Tx =

∑
k
λk(x, ek)ek for every x ∈ IH, where

{ek} is the orthonormal system of the eigenvectors of T . If λ /∈ σ(T ) and y ∈ IH, then the solution of

the equation (λI − T )x = y can be represented as x = Rλ(T )y =
∑
k

1

λ− λk
(y, ek)ek.

2. Hilbert-Schmidt Theorem
If T is a compact self-adjoint operator in a separable Hilbert space IH, then there is a basis in IH con-
sisting of the eigenvectors of T .
The so-called spectral (mapping) theorems (see [12.8], [12.10], [12.12], [12.13], [12.18]) can be con-
sidered as the generalization of the Hilbert–Schmidt theorem for the non-compact case of self-adjoint
(bounded or unbounded) operators.

‡Here the orthogonality is considered in Banach spaces (see 12.5.4.2, p. 682).
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12.8 Non-LinearOperators
In the theory of non-linear operator equations the most important methods are based on the following
principles:

1. Principle of the ContractingMapping, Banach Fixed-Point Theorem (see 12.2.2.3, p. 666,
and 12.2.2.4, p. 666). For further modifications of this principle see [12.8],[12.11], [12.12], [12.18].

2. Generalization of the NewtonMethod (see 18.2.5.2, p. 931 and 19.1.1.2, p. 950) for the infinite
dimensional case.

3. Schauder Fixed-Point Principle (see 12.8.4, p. 691)

4. Leray-Schauder Theory (see 12.8.5, p. 692)

Methods based on principles 1 and 2 yield information on the existence, uniqueness, constructivity
etc. of the solution, while methods based on principles 3 and 4, in general, allow “only” the qualitative
statement of the existence of a solution. If further properties of operators are known then see also
12.8.6, p. 692, and 12.8.7, p. 693.

12.8.1 Examples ofNon-LinearOperators
For non-linear operators the relation between continuity and boundedness discussed for linear operators
in 12.5.1, p. 677 is no longer valid in general. In studying non-linear operator equations, e.g., non-
linear boundary value problems or integral equations, the following non-linear operators occur most
often. Iteration methods described in 12.2.2.4, p. 666, can be successfully applied for solving non-linear
integral equations.

1. Nemytskij Operator
Let Ω be an open measurable subset from IRn (12.9.1, p. 693) and f : Ω × IR −→ IR a function of two
variables f(x, s), which is continuous with respect to x for almost every s and measurable with respect
to s for every x (Caratheodory conditions). The non-linear operator N to F(Ω) defined as

(Nu)(x) = f [x, u(x)] (x ∈ Ω) (12.190)

is called the Nemytskij operator. It is continuous and bounded if it maps Lp(Ω) into Lq(Ω), where
1

p
+

1

q
= 1. This is the case, e.g., if

|f(x, s)| ≤ a(x) + b|s|
p
q with a(x) ∈ Lq(Ω) (b > 0) (12.191)

or if f : Ω× IR −→ IR is continuous. The operator N is compact only in special cases.

2. Hammerstein Operator
Let Ω be a relatively compact subset of IRn, f a function satisfying the Caratheodory conditions and
K(x, y) a continuous function on Ω× Ω. The non-linear operator H on F(Ω)

(Hu)(x) =
∫
Ω

K(x, y)f [y, u(y)] dy (x ∈ Ω) (12.192)

is called the Hammerstein operator. H can be written in the form H = K · N with the Nemytskij
operator N and the integral operator K determined by the kernel K

(Ku)(x) =
∫
Ω

K(x, y)u(y) dy (x ∈ Ω). (12.193)

If the kernel K(x, y) satisfies the additional condition∫
Ω×Ω

|K(x, y)|q dx dy <∞ (12.194)

and the function f satisfies the condition (12.191), then H is a continuous and compact operator on
Lp(Ω).
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3. Urysohn Operator
Let Ω ⊂ IRn be an open measurable subset and K(x, y, s) : Ω × Ω × IR −→ IR a function of three
variables. Then the non-linear operator U on F(Ω)

(Uu)(x) =
∫
Ω

K[x, y, u(y)] dy (x ∈ Ω) (12.195)

is called the Urysohn operator. If the kernel K satisfies the appropriate conditions, then U is a contin-
uous and compact operator in C(Ω) or in Lp(Ω), respectively.

12.8.2 Differentiability ofNon-LinearOperators
Let X,Y be Banach spaces, D ⊂ X be an open set and T : D −→ Y. The operator T is called Fréchet
differentiable (or, briefly, differentiable) at the point x ∈ D if there exists a linear operatorL ∈ B(X,Y)
(in general depending on the point x) such that

T (x+ h)− T (x) = Lh+ ω(h) with ‖ω(h)‖ = o(‖h‖) (12.196)

or in an equivalent form

lim
‖h‖→0

‖T (x+ h)− T (x)− Lh‖
‖h‖ = 0, (12.197)

i.e., ∀ ε > 0, ∃ δ > 0, such that ‖h‖ < δ implies ‖T (x + h) − T (x) − Lh‖ ≤ ε‖h‖. The operator L,
which is usually denoted by T ′(x), T ′(x, ·) or T ′(x)(·), is called the Fréchet derivative of the operator T
at the point x. The value dT (x;h) = T ′(x)h is called the Fréchet differential of the operator T at the
point x (for the increment h).
The differentiability of an operator at a point implies its continuity at that point. If T ∈ B(X,Y), i,e.,
T itself is linear and continuous, then T is differentiable at every point, and its derivative is equal to
T .

12.8.3 Newton’sMethod
Let X, D be as in the previous paragraph and T : D −→ Y. Under the assumption of the differentiability
of T at every point of the set D an operator T ′ : D −→ B(X,Y) is defined by assigning the element
T ′(x) ∈ B(X,Y) to every point x ∈ D. Suppose the operator T ′ is continuous on D (in the operator
norm); in this case T is called continuously differentiable on D.
Suppose Y = X and also that the set D contains a solution x∗ of the equation

T (x) = 0. (12.198)

Furthermore, it is assumed that the operator T ′(x) is continuously invertible for each x ∈ D, hence
[T ′(x)]−1 is in B(X). Because of (12.196) for an arbitrary x0 ∈ D one conjectures that the elements
T (x0) = T (x0)−T (x∗) and T ′(x0)(x0−x∗) are “not far” from each other and therefore the element x1
defined as

x1 = x0 − [T ′(x0)]−1T (x0) (12.199)

is an approximation of x∗ (under the given assumptions). Starting with an arbitrary x0 the so-called
Newton approximation sequence

xn+1 = xn − [T ′(xn)]−1T (xn) (n = 0, 1, . . .) (12.200)

can be constructed. There are many theorems known from the literature discussing the behavior and
the convergence properties of this method. Here only the following most important result is mentioned
which demonstrates the main properties and advantages of Newton’s method:

∀ ε ∈ (0, 1) there exists a ball B = B(x0; δ), δ = δ(ε) in X, such that all points xn lie in B and the
Newton sequence converges to the solution x∗ of (12.198). Moreover, ‖xn − x0‖ ≤ εn‖x0 − x∗‖ which
yields a practical error estimation.

Themodified Newton’s method is obtained if the operator [T ′(x0)]−1 is used instead of [T ′(xn)]−1 ∀n =
0, 1, . . . in formula (12.200). For further estimations of the speed of convergence and for the (in general
sensitive) dependence of the method on the choice of the starting point x0 see [12.7], [12.12], [12.18].
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Jacobian or Functional Matrix Given a non-linear operator T = F : D −→ IRm on an open set
D ⊂ IRn withm non-linear coordinate functionsF1, F2, . . . , Fm andn independent variablesx1, x2, . . . , xn.
Then

F (x) =

⎛⎜⎜⎜⎝
F1(x)
F2(x)
...
Fm(x)

⎞⎟⎟⎟⎠ ∈ IRm ∀ x = (x1, x2, . . . , xn) ∈ D (12.201)

holds. If the partial derivatives
∂Fi
∂xk

(k = 1, 2, . . . , n) of the coordinate functions Fi (i = 1, 2, . . . ,m)

on D exist and are continuous, then the mapping (the operator) F in every point of D is differentiable
and its derivative at the point x = (x1, x2, . . . , xn) ∈ D is the linear operator F ′(x) : IRn −→ IRm with
the matrix representation

F ′(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F1(x)

∂x1

∂F1(x)

∂x2
. . .

∂F1(x)

∂xn
∂F2(x)

∂x1

∂F2(x)

∂x2
. . .

∂F2(x)

∂xn
...

...
...

...
∂Fm(x)

∂x1

∂Fm(x)

∂x2
. . .

∂Fm(x)

∂xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12.202)

The derivative F ′(x) is a matrix of the type (m,n) . It is called the Jacobian or functional matrix of
F . Special cases of occurrence are, e.g., the iterative solution of systems of non-linear equations by the
Newton method (see 19.2.2.2, p. 962) or describing the independence of functions (see 2.18.2.6, 3., p.
123).
For m = n the so-called functional determinant or Jacobian determinant can be formed, which is de-
noted shortly by

D(F1, F2, . . . , Fn)

D(x1, x2, . . . , xn)
. (12.203)

This determinant is used for the solution of (mostly inner-mathematical) problems (see also, e.g.,
8.5.3.2, p. 539).

12.8.4 Schauder’s Fixed-PointTheorem

Let T : D −→ X be a non-linear operator defined on a subset D of a Banach space X. The non-trivial
question of whether the equation x = T (x) has at least one solution, can be answered as follows: If
X = IR and D = [−1, 1], then every continuous function, mapping D into D, has a fixed point in D.
If X is an arbitrary finite dimensional normed space (dimX ≥ 2), then Brouwer’s fixed-point theorem
holds.

1. Brouwer’s Fixed-Point Theorem LetD be a non-empty closed bounded and convex subset of
a finite dimensional normed space. If T is a continuous operator, which maps D into itself, then T has
at least one fixed point in D.
The answer in the case of an arbitrary infinite dimensional Banach space X is given by Schauder’s
fixed-point theorem.

2. Schauder’s Fixed-Point Theorem Let D be a non-empty closed bounded and convex subset
of a Banach space X. If the operator T : D −→ X is continuous and compact (hence completely
continuous) and it maps D into itself, then T has at least one fixed point in D.
By using this theorem, it is proved, e.g., that the initial value problem (12.70), p. 668, always has a
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local solution for t ≥ 0, if the right-hand side is assumed only to be continuous.

12.8.5 Leray-SchauderTheory
For the existence of solutions of the equationsx = T (x) and (I+T )(x) = ywith a completely continuous
operator T , a further principle is found which is based on deep properties of the mapping degree. It can
be successfully applied to prove the existence of a solution of non-linear boundary value problems. Here
only those results of this theory are mentioned which are the most useful ones in practical problems,
and for simplicity a formulation is chosen which avoids the notion of the mapping degree.

Leray–Schauder Theorem: Let D be an open bounded set in a real Banach space X and let T :
D:−→ X be a completely continuous operator. Let y ∈ D be a point such that x+ λT (x) �= y for each
x ∈ ∂D and λ ∈ [0, 1], where ∂D denotes the boundary of the setD. Then the equation (I+T )(x) = y
has at least one solution.
The following version of this theorem is very useful in applications:

Let T be a completely continuous operator in the Banach space X. If all solutions of the family of
equations

x = λT (x) (λ ∈ [0, 1]) (12.204)

are uniformly bounded, i.e., ∃ c > 0 such that ∀λ and ∀ x satisfying (12.204) the a priori estimation
‖x‖ ≤ c holds, then the equation x = T (x) has a solution.

12.8.6 PositiveNon-LinearOperators
The successful application of Schauder’s fixed-point theorem requires the choice of a set with appropri-
ate properties, which is mapped into itself by the considered operator. In applications, especially in the
theory of non-linear boundary value problems, ordered normed function spaces and positive operators
are often considered, i.e., which leave the corresponding cone invariant, or isotone increasing operators,
i.e., if x ≤ y ⇒ T (x) ≤ T (y). If confusions (see, e.g., 12.8.7, p. 693) are excluded, these operators are
also called monotone.

Let X = (X,X+, ‖ · ‖) be an ordered Banach space, X+ a closed cone and [a, b] an order interval of
X. If X+ is normal and T is a completely continuous (not necessarily isotone) operator that satisfies
T ([a, b]) ⊂ [a, b], then T has at least one fixed point in [a, b] (Fig. 12.6b).

y
b

a

a) b x

y=f(x)

y=x
y

b

a

b) b x

y=f(x)

y=x

a a

Figure 12.6

Notice that the condition T ([a, b]) ⊂ [a, b] automatically holds for any isotone increasing operator T ,
which is defined on an (o)-interval (order interval) [a, b] of the space X if it maps only the endpoints a, b
into [a, b], i.e., when the two conditions T (a) ≥ a and T (b) ≤ b are satisfied. Then both sequences

x0 = a and xn+1 = T (xn) (n ≥ 0) and y0 = b and yn+1 = T (yn) (n ≥ 0) (12.205)

are well defined, i.e., xn, yn ∈ [a, b], n ≥ 0. They are monotone increasing and decreasing, respectively,
i.e., a = x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . and b = y0 ≥ y1 ≥ . . . yn ≥ . . .. A fixed point x∗, x∗ of the operator
T is calledminimal ,maximal, respectively, if for every fixed point z of T the inequalities x∗ ≤ z, z ≤ x∗
hold, respectively.

Now,the following statement is valid (Fig. 12.6a)): Let X be an ordered Banach space with a closed
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cone X+ and T : D −→ X, D ⊂ X a continuous isotone increasing operator. Let [a, b] ⊂ D be such
that T (a) ≥ a and T (b) ≤ b. Then T ([a, b]) ⊂ [a, b], and the operator T has a fixed point in [a, b] if one
of the following conditions is fulfilled:

a) X+ is normal and T is compact;

b) X+ is regular.

Then the sequences {xn}∞n=0 and {yn}∞n=0, defined in (12.205), converge to the minimal and to the
maximal fixed points of T in [a, b], respectively.

The notion of the super- and sub-solutions is based on these results (see [12.14]).

12.8.7 MonotoneOperators inBanach Spaces

1. Special Properties
An arbitrary operator T : D ⊂ X −→ Y (X,Y normed spaces) is called demi-continuous at the point
x0 ∈ D if for each sequence {xn}∞n=1 ⊂ D converging to x0 (in the norm of X) the sequence {T (xn)}∞n=1

converges weakly to T (x0) in Y. T is called demi-continuous on the set D if T is demi-continuous at
every point of D.

In this paragraph another generalization of the notion of monotonicity known from real analysis are
introduced. Let X now be a real Banach space, X∗ its dual, D ⊂ X and T : D −→ X∗ a non-linear
operator. T is called monotone if ∀ x, y ∈ D the inequality (T (x) − T (y), x − y) ≥ 0 holds. If X = IH
is a Hilbert space, then (·, ·) means the scalar product, while in the case of an arbitrary Banach space
one refers to the notation introduced in 12.5.4.1, p. 681. The operator T is called strongly monotone
if there is a constant c > 0 such that (T (x) − T (y), x − y) ≥ c‖x − y‖2 for ∀ x, y ∈ D. An operator

T : X −→ X∗ is called coercive if lim
‖x‖→∞

(T (x), x)

‖x‖ = ∞.

2. Existence Theorems
for solutions of operator equations with monotone operators are given here only exemplarily: If the op-
erator T , mapping the real separable Banach space X into X∗, (DT = X), is monotone demi-continuous
and coercive, then the equation T (x) = f has a solution for arbitrary f ∈ X∗.
If in addition the operator T is strongly monotone, then the solution is unique. In this case the inverse
operator T−1 also exists.

For a monotone, demi-continuous operator T : IH −→ IH in a Hilbert space IH withDT = IH, there holds
Im(I + T ) = IH, where (I + T )−1 is continuous. If T is supposed to be strongly monotone, then T−1 is
bijective with a continuous T−1 .

Constructive approximation methods for the solution of the equation T (x) = 0 with a monotone oper-
ator T in a Hilbert space are based on the idea of Galerkin’s method (see 19.4.2.2, p. 974, or [12.10],
[12.18]). By means of this theory set-valued operators T : X −→ 2X

∗
can also be handled. The notion

of monotonicity is then generalized by (f − g, x− y) ≥ 0, ∀ x, y ∈ DT and f ∈ T (x), g ∈ T (y).

12.9 Measure andLebesgue Integral

12.9.1 SetAlgebras andMeasures
The initial point for introducing measures is a generalization of the notion of the length of an interval in
IR, of the area, and of the volume of subsets of IR2 and IR3, respectively. This generalization is necessary
in order to “measure” as many sets as possible and to “make integrable” as many functions as possible.
For instance, the volume of an n-dimensional rectangular parallelepiped

Q = {x ∈ IRn : ak ≤ xk ≤ bk (k = 1, 2, . . . , n)} has the value
n∏

k=1

(bk − ak). (12.206)
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1. σAlgebra or Set Algebra
Let X be an arbitrary set. A non-empty system A of subsets from X is called a σ algebra if:

a) A ∈ A implies X \ A ∈ A and (12.207a)

b) A1, A2, . . . , An, . . . ∈ A implies
∞⋃
n=1

An ∈ A. (12.207b)

Every σ algebra contains the sets ∅ and X, the intersection of countably many of its sets and also the
difference sets of any two of its sets.

In the following IR denotes the set IR of real numbers extended by the elements−∞ and +∞ (extended

real line), where the algebraic operations and the order properties from IR are extended to IR in the

natural way. The expressions (±∞) + (∓∞) and
∞
∞ are meaningless, while 0 · (+∞) and 0 · (−∞) are

assigned the value 0.

2. Measure
A function μ: A −→ IR+ = IR+ ∪+∞, defined on a σ algebra A, is called a measure if

a) μ(A) ≥ 0 ∀ A ∈ A, (12.208a)

b) μ(∅) = 0, (12.208b)

c) A1, A2, . . . An, . . . ∈ A, Ak ∩ Al = ∅ (k �= l) implies μ

( ∞⋃
n=1

An

)
=

∞∑
n=1

μ(An). (12.208c)

The property c) is called σ additivity of the measure. If μ is a measure on A, and for the sets A,B ∈
A, A ⊂ B holds, then μ(A) ≤ μ(B) (monotonicity). If An ∈ A (n = 1, 2, . . .) and A1 ⊂ A2 ⊂ · · ·,
then μ

( ∞⋃
n=1
An

)
= lim

n→∞μ(An) (continuity from below).

LetA be a σ algebra of subsets of X and μ a measure onA. The triplet X = (X,A, μ) is called ameasure
space, and the sets belonging to A are called measurable or A-measurable.

A: CountingMeasure: Let X be a finite set {x1, x2, . . . , xN}, A the σ algebra of all subsets of X,
and let assign a non-negative number pk to each xk (k = 1, . . . , N). Then the function μ defined on A
for every set A ∈ A, A = {xn1 , xn2 , . . . , xnk

} by μ(A) = pn1 + pn2 + · · ·+ pnk
is a measure which takes

on only finite values since μ(X) = p1 + · · ·+ pN <∞. This measure is called the counting measure.

B: DiracMeasure: LetA be a σ algebra of subsets of a set X and a an arbitrary given point from
X. Then a measure (called Dirac Measure) is defined on A by

δa(A) =
{
1, if a ∈ A,
0, if a /∈ A. (12.209a)

It is called the δ function (concentrated on a). The characteristic function or indicator function of a
subset A ⊆ X denotes the function χA : X −→ {0, 1} of X on {0, 1}, which has the value 1 for x ∈ A
and for all other x the value 0:

χA(x) =
{
1, if x ∈ A,
0, otherwise.

(12.209b)

Obviously δa(A) = δa(χA) = χA(a) (see 12.5.4, p. 681), where χA denotes the characteristic function
of the set A.

C: Lebesgue Measure: Let X be a metric space and B(X) the smallest σ algebra of subsets of X
which contains all the open sets from X. B(X) exists as the intersection of all the σ algebras containing
all the open sets, and is called the Borel σ algebra of X. Every element from B(X) is called a Borel set
(see [12.6]).

Suppose now, X = IRn (n ≥ 1). Using an extension procedure a σ algebra and a measure on it can be
constructed, which coincides with the volume on the set of all rectangular parallelepipeds in IRn. More
precisely: There exists a uniquely defined σ algebraA of subsets of IRn and a uniquely defined measure
λ on A with the following properties:
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a) Each open set from IRn belongs to A, in other words: B(IRn) ⊂ A.

b) If A ∈ A, λ(A) = 0 and B ⊂ A then B ∈ A and λ(B) = 0.

c) If Q is a rectangular parallelepiped, then Q ∈ A, and λ(Q) =
n∏

k=1
(bk − ak).

d) λ is translation invariant, i.e., for every vector x ∈ IRn and every set A ∈ A one has x+A = {x+ y:
y ∈ A} ∈ A and λ(x+ A) = λ(A).

The elements of A are called Lebesgue measurable subsets of IRn. λ is the (n-dimensional) Lebesgue
measure in IRn.

Remark: In measure theory and integration theory one says that a certain statement (property, or
condition) with respect to the measure μ is valid almost everywhere or μ-almost everywhere on a set
X, if the set, where the statement is not valid, has measure zero. It is denoted by a.e. or μ-a.e.§ For
instance, if λ is the Lebesgue measure on IR and A,B are two disjoint sets with IR = A ∪ B and f is a
function on IR with f(x) = 1, ∀x ∈ A and f(x) = 0, ∀ x ∈ B, then f = 1, λ-a.e. on IR if and only if
λ(B) = 0.

12.9.2 Measurable Functions
12.9.2.1 Measurable Function
LetA be a σ algebra of subsets of a set X. A function f : X −→ IR is calledmeasurable if for an arbitrary
α ∈ IR the set f−1((α,+∞]) = {x : x ∈ X, f(x) > α} is in A.
A complex-valued function g + ih is called measurable if both functions g and h are measurable. The
characteristic function χA of every set A ∈ A is measurable, because

χ−1
A ((α,+∞]) =

{
A, if α ∈ (−∞, 1),
∅, if α ≥ 1

(12.210)

is valid (see Dirac measure, p. 694). If A is the σ algebra of the Lebesgue measurable sets of IRn and
f : IRn −→ IR is a continuous function, then the set f−1((α,+∞]) = f−1((α,+∞)), according to 12.2.3,
p. 668, is open for every α ∈ IR, hence f is measurable.

12.9.2.2 Properties of the Class ofMeasurable Functions
The notion of measurable functions requires no measure but a σ algebra. Let A be a σ algebra of sub-
sets of the set X and let f, g, fn : X −→ IR be measurable functions. Then the following functions (see
12.1.7.4, p. 660) are also measurable:

a) αf for every α ∈ IR; f · g;
b) f+, f−, |f |, f ∨ g and f ∧ g;
c) f + g, if there is no point from X where the expression (±∞) + (∓∞) occurs;

d) sup fn, inf fn, lim sup fn (= lim
n→∞ sup

k≥n
fk), lim inf fn;

e) the point-wise limit lim fn, in case it exists;

f) if f ≥ 0 and p ∈ IR, p > 0, the f p is measurable.

A function f : X −→ IR is called elementary or simple if there is a finite number of pairwise disjoint sets

A1, . . . , An ∈ A and real numbers α1, . . . , αn such that f =
n∑

k=1
αkχk, where χk denotes the character-

istic function of the set Ak. Since each characteristic function of a measurable set is measurable (see
(12.210)), so every elementary function is measurable. It is interesting that each measurable function
can be approximated arbitrarily well by elementary functions: For each measurable function f ≥ 0
there exists a monotone increasing sequence of non-negative elementary functions, which converges
point-wise to f .

§Here and in the following parts “a.e.” is an abbreviation for “almost everywhere”.
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12.9.3 Integration

12.9.3.1 Definition of the Integral

Let (X,A, μ) be a measure space. The integral
∫
X
f dμ (also denoted by

∫
f dμ) for a measurable

function f is defined by means of the following steps:

1. If f is an elementary function f =
n∑

k=1
αkχk, then∫

f dμ =
n∑

k=1

αkμ(Ak). (12.211)

2. If f : X −→ IR (f ≥ 0), then∫
f dμ = sup

{∫
g dμ : g is an elementary function with 0 ≤ g(x) ≤ f(x), ∀ x ∈ X

}
. (12.212)

3. If f : X −→ IR and f+, f− are the positive and the negative parts of f , then∫
f dμ =

∫
f+ dμ−

∫
f− dμ (12.213)

under the condition that at least one of the integrals on the right side is finite (in order to avoid the
meaningless expression∞−∞).

4. For a complex-valued function f = g + ih, if the integrals (12.213) of the functions g, h are finite,
put ∫

f dμ =
∫
g dμ+ i

∫
h dμ. (12.214)

5. If for any measurable set A and a function f there exists the integral of the function fχA then put∫
A

f dμ :=
∫
fχA dμ. (12.215)

The integral of a measurable function is in general a number from IR. A function f : X −→ IR is called

integrable or summable over X with respect to μ if it is measurable and
∫
|f | dμ <∞.

12.9.3.2 Some Properties of the Integral
Let (X,A, μ) be a measure space, f, g : X −→ IR be measurable functions and α, β ∈ IR.

1. If f is integrable, then f is finite a.e., i.e., μ{x ∈ X: |f(x)| = +∞} = 0.

2. If f is integrable, then
∣∣∣∣∫ f dμ∣∣∣∣ ≤ ∫

|f | dμ.

3. If f is integrable and f ≥ 0, then
∫
f dμ ≥ 0.

4. If 0 ≤ g(x) ≤ f(x) on X and f is integrable, then g is also integrable, and
∫
g dμ ≤

∫
f dμ.

5. If f, g are integrable, then αf + βg is integrable, and
∫
(αf + βg) dμ = α

∫
f dμ+ β

∫
g dμ.

6. If f, g are integrable on A ∈ A, i.e., there exist the integrals
∫
A
f dμ and

∫
A
g dμ according to

(12.215) and f = g μ-a.e. on A, then
∫
A
f dμ =

∫
A
g dμ.

If X = IRn and λ is the Lebesgue measure, then the introduced integral is the (n-dimensional) Lebesgue
integral (see also 8.2.3.1, 3., p. 507). In the case n = 1 and A = [a, b], for every continuous function
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f on [a, b] both the Riemann integral
∫ b

a
f(x) dx (see 8.2.1.1, 2., p. 494) and the Lebesgue integral∫

[a,b]
f dλ are defined. Both values are finite and equal to each other. Furthermore, if f is a bounded

Riemann integrable function on [a, b], then it is also Lebesgue integrable and the values of the two
integrals coincide.

The set of Lebesgue integrable functions is considerably larger than the set of the Riemann integrable
functions and it has several advantages, e.g., when passing to the limit under the integral sign and f ,
|f | are Lebesgue integrable simultaneously.

12.9.3.3 Convergence Theorems
Now Lebesgue measurable functions will be considered throughout.

1. B. Levi’s Theorem onMonotone Convergence
Let {fn}∞n=1 be an a.e. monotone increasing sequence of non-negative integrable functions with values

in IR. Then

lim
n→∞

∫
fn dμ =

∫
lim
n→∞ fn dμ. (12.216)

2. Fatou’s Theorem
Let {fn}∞n=1 be a sequence of non-negative IR-valued measurable functions. Then∫

lim inf fn dμ ≤ lim inf
∫
fn dμ. (12.217)

3. Lebesgue’s Dominated Convergence Theorem
Let {fn} be a sequence of measurable functions convergent on X a.e. to some function f . If there exists
an integrable function g such that |fn| ≤ g a.e., then f = lim

n→∞ fn is integrable and there holds

lim
n→∞

∫
fn dμ =

∫
lim
n→∞ fn dμ . (12.218)

4. Radon-Nikodym Theorem
a)Assumptions: Let (X,A, μ) be a σ-finite measure space, i.e., there exists a sequence {An},An ∈ A
such that X =

∞⋃
n=1
An and μ(An) < ∞ for ∀ n. In this case the measure is called σ finite. It is called

finite if μ(X) <∞, and it is called a probability measure if μ(X) = 1. A real function ϕ defined onA is
called absolutely continuous with respect to μ if μ(A) = 0 implies ϕ(A) = 0. This property is denoted
by ϕ ≺ μ.
For an integrable function f , the functionϕ defined onA byϕ(A) =

∫
A f dμ is σ additive and absolutely

continuous with respect to the measure μ. The converse of this property plays a fundamental role in
many theoretical investigations and practical applications:

b) Radon–Nikodym Theorem: Suppose a σ-additive function ϕ and a measure μ are given on a σ
algebra A, and let ϕ ≺ μ. Then there exists a μ-integrable function f such that for each set A ∈ A,

ϕ(A) =
∫
A

f dμ. (12.219)

The function f is uniquely determined up to its equivalence class, and ϕ is non-negative if and only if
f ≥ 0 μ-a.e.

12.9.4 Lp Spaces
Let (X,A, μ) be a measure space and p a real number 1 ≤ p < ∞. For a measurable function f ,
according to 12.9.2.2, p. 695, the function |f |p is measurable as well, so the expression
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Np(f) =
(∫

|f |p dμ
) 1

p

(12.220)

is defined (andmay be equal to +∞). Ameasurable function f : X −→ IR is called p-th power integrable,
or an Lp-function if Np(f) < +∞ holds or, equivalent to this, if |f |p is integrable.
For every p with 1 ≤ p < +∞, the set of all Lp-functions, i.e., all functions p-th power integrable with
respect to μ on X, is denoted by Lp(μ) or by Lp(X) or in full detail Lp(X,A, μ). For p = 1 the simple
notation L(X) is used. For p = 2 the functions are called quadratically integrable.

The set of all measurable μ-a.e. bounded functions on X is denoted by L∞(μ) and the essential supre-
mum of a function f is defined as

N∞(f) = ess. sup f = inf{a ∈ IR : |f(x)| ≤ a μ–a.e.}. (12.221)

Lp(μ) (1 ≤ p ≤ ∞) equipped with the usual operations for measurable functions and taking into
consideration Minkowski inequality for integrals (see 1.4.2.13, p. 32), is a vector space and Np(·) is a
semi-norm on Lp(μ). If f ≤ g means that f(x) ≤ g(x) holds μ-a.e., then Lp(μ) is also a vector lattice
and even a K-space (see 12.1.7.4, p. 660). Two functions f, g ∈ Lp(μ) are called equivalent (or they
are declared as equal) if f = g μ-a.e. on X. In this way, functions are considered to be identical if they
are equal μ-a.e. The factorization of the set Lp(X) modulo the linear subspace N−1

p (0) leads to a set
of equivalence classes on which the algebraic operations and the order can be transferred naturally. So
a vector lattice (K-space) is obtained again, which is denoted now by Lp(X, μ) or Lp(μ). Its elements
are called functions, as before, but actually they are classes of equivalent functions.

It is very important that ‖f̂‖p = Np(f) is now a norm on Lp(μ) (f̂ stands here for the equivalence class
of f , which will later be denoted simply by f), and (Lp(μ), ‖f‖p) for every p with 1 ≤ p ≤ +∞ is a
Banach lattice with several good compatibility conditions between norm and order. For p = 2 with

(f, g) =
∫
fg dμ as a scalar product, L2(μ) is also a Hilbert space (see [12.12]).

Very often the spaceLp(Ω) is considered for ameasurable subset Ω ⊂ IRn. Its definition is not a problem
because of step 5 in (12.9.3.1, p. 696).

The spaces Lp(Ω, λ), where λ is the n-dimensional Lebesgue measure, can also be introduced as the
completions (see 12.2.2.5, p. 668 and 12.3.2, p. 670) of the non-complete normed spaces C(Ω) of all

continuous functions on the set Ω ⊂ IRn equipped with the integral norm ‖x‖p =
(∫

|x|p dλ
) 1

p

(1 ≤
p <∞) (see [12.18]).

Let X be a set with a finite measure, i.e., μ(X) < +∞, and suppose for the real numbers p1, p2, 1 ≤ p1 <
p2 ≤ +∞. Then Lp2(X, μ) ⊂ Lp1(X, μ), and with a constant C = C(p1, p2, μ(X)) > 0 (independent
of x), there holds the estimation ‖x‖1 ≤ C‖x‖2 for x ∈ Lp2 (here ‖x‖k denotes the norm of the space
Lpk(X, μ) (k = 1, 2)).

12.9.5 Distributions

12.9.5.1 Formula of Partial Integration
For an arbitrary (open) domain Ω ⊆ IRn, C∞

0 (Ω) denotes the set of all arbitrary many times in Ω

differentiable functions ϕ with compact support, i.e., the set supp(ϕ) = {x ∈ Ω : ϕ(x) �= 0} is compact
in IRn and lies in Ω. The set of all locally summable functions with respect to the Lebesguemeasure in IRn

is doted by L1
loc(Ω), i.e., all the measurable functions f (equivalent classes) on Ω such that

∫
ω |f | dλ <

+∞ for every bounded domain ω ⊂ Ω.

Both sets are vector spaces (with the natural algebraic operations).

There hold Lp(Ω) ⊂ L1
loc(Ω) for 1 ≤ p ≤ ∞, and L1

loc(Ω) = L1(Ω) for a bounded Ω. If the elements

of Ck(Ω) are considered as the classes generated by them in Lp(Ω), then the inclusion Ck(Ω) ⊂ Lp(Ω)

holds for bounded Ω, where Ck(Ω) is at once dense. If Ω is unbounded, then the set C∞
0 (Ω) is dense (in
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this sense) in Lp(Ω).

For a given function f ∈ Ck(Ω) and an arbitrary function ϕ ∈ C∞
0 (Ω) the formula of partial integration

has the form∫
Ω

f(x)Dαϕ(x) dλ = (−1)|α|
∫
Ω

ϕ(x)Dαf(x) dλ (12.222)

∀ α with |α| ≤ k (the fact that Dαϕ|∂Ω = 0 is used), and will be taken as the starting point for the
definition of the generalized derivative of a function f ∈ L1

loc(Ω).

12.9.5.2 Generalized Derivative

Suppose f ∈ L1
loc(Ω). If there exists a function g ∈ L1

loc(Ω) such that ∀ ϕ ∈ C∞
0 (Ω) with respect to

some multi-index α the equation∫
Ω

f(x)Dαϕ(x) dλ = (−1)|α|
∫
Ω

g(x)ϕ(x) dλ (12.223)

holds, then g is called the generalized derivative (derivative in the Sobolev sense or distributional deriva-
tive) of order α of f . It is denoted by g = Dαf as in the classical case.

The convergence of a sequence {ϕk}∞k=1 in the vector space C∞
0 (Ω) to ϕ ∈ C∞

0 (Ω) is defined as

ϕk −→ ϕ if and only if
{

a) ∃ a compact set K ⊂ Ω with supp(ϕk) ⊂ K for any k ,
b) Dαϕk → Dαϕ uniformly on K for each multi-index α .

(12.224)

The set C∞
0 (Ω), equipped with this convergence of sequences, is called the fundamental space, and is

denoted by D(Ω). Its elements are often called test functions.

12.9.5.3 Distributions

A linear functional ! on D(Ω) continuous in the following sense (see 12.2.3, p. 668):

ϕk, ϕ ∈ D(Ω) and ϕk −→ ϕ imply !(ϕk) −→ !(ϕ) (12.225)

is called a generalized function or a distribution.

A: If f ∈ L1
loc(Ω), then

!f (ϕ) = (f, ϕ) =
∫
Ω
f(x)ϕ(x) dλ, ϕ ∈ D(Ω) (12.226)

is a distribution. A distribution, defined by a locally summable function as in (12.226), is called regular.
Two regular distributions are equal, i.e., !f (ϕ) = !g(ϕ) ∀ϕ ∈ D(Ω), if and only if f = g a.e. with respect
to λ.

B: Let a ∈ Ω be an arbitrary fixed point. Then !δa(ϕ) = ϕ(a), ϕ ∈ D(Ω) is a linear continuous
functional on D(Ω), hence a distribution, which is called the Dirac distribution, δ distribution or δ
function.

Since !δa cannot be generated by any locally summable function (see [12.11], [12.24]), it is an example
for a non-regular distribution.

The set of all distributions is denoted byD′(Ω). From amore general duality theory than that discussed
in 12.5.4, p. 681, D′(Ω) can be obtained as the dual space of D(Ω). Consequently, one should write
D∗(Ω) instead. In the spaceD′(Ω), it is possible to define several operations with its elements and with
functions from C∞(Ω), e.g., the derivative of a distribution or the convolution of two distributions,
which makeD′(Ω) important not only in theoretical investigations but also in practical applications in
electrical engineering, mechanics, etc.

For a review and for simple examples in applications of generalized functions see, e.g., [12.11],[12.24].
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Here, only the notion of the derivative of a generalized function is discussed.

12.9.5.4 Derivative of a Distribution
If ! is a given distribution, then the distribution Dα! defined by

(Dα!)(ϕ) = (−1)|α|!(Dαϕ), ϕ ∈ D(Ω), (12.227)

is called the distributional derivative of order α of !.
Let f be a continuously differentiable function, say on IR (so f is locally summable on IR, and f can be
considered as a distribution), let f ′ be its classical derivative and D1f its distributional derivative of
order 1. Then:

(D1f, ϕ) =
∫
IR

f ′(x)ϕ(x) dx, (12.228a)

from which by partial integration there follows

(D1f, ϕ) = −
∫
IR

f(x)ϕ′(x) dx = −(f, ϕ′). (12.228b)

In the case of a regular distribution !f with f ∈ L1
loc(Ω) by using (12.226)

(Dα!f )(ϕ) = (−1)|α|!f (Dαϕ) = (−1)|α|
∫
Ω

f(x)Dαϕdλ (12.229)

is obtained, which is the generalized derivative of the function f in the Sobolev sense (see (12.223)).

A: For the regular distribution generated by the (obviously locally summable) Heaviside function

Θ(x) =
{
1 for x ≥ 0,
0 for x < 0

(12.230)

the non-regular δ distribution is obtained as the derivative.

B: Inmathematical modeling of technical and physical problems one is faced with (in a certain sense
idealized) influences concentrated at one point, such as a “point-like” force, needle-deflection, collision,
etc., which can be expressed mathematically by using the δ or Heaviside function. For example,mδa is
the mass density of a point-like massm concentrated at one point a (0 ≤ a ≤ l) of a beam of length l.

The motion of a spring-mass system on which at time t0 there acts a momentary external force F is
described by the equation ẍ + ω2x = Fδt0 . With the initial conditions x(0) = ẋ(0) = 0 its solution is

x(t) =
F

ω
sin(ω(t− t0))Θ(t− t0).
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