
1 Arithmetics
1.1 ElementaryRules forCalculations

1.1.1 Numbers

1.1.1.1 Natural, Integer, and Rational Numbers

1. Definitions and Notation
The positive and negative integers, fractions, and zero together are called the rational numbers. In
relation to these the following notations are used (see 5.2.1, 1., p. 327):

• Set of natural numbers: IN={0, 1, 2, 3, . . .},
• Set of integers: Z= {. . . ,−2,−1, 0, 1, 2, . . .},
• Set of rational numbers: Q= {x|x =

p

q
with p ∈ Z, q ∈ Z and q �= 0} .

The notion of natural numbers arose from enumeration and ordering. The natural numbers are also
called the non-negative integers.

2. Properties of the Set of Rational Numbers
• The set of rational numbers is infinite.
• The set is ordered, i.e., for any two different given numbers a and b one can tell which is the smaller
one.
• The set is dense everywhere, i.e., between any two different rational numbers a and b (a < b) there
is at least one rational number c (a < c < b). Consequently, there is an infinite number of other rational
numbers between any two different rational numbers.

3. Arithmetical Operations
The arithmetical operations (addition, subtraction, multiplication and division) can be performed with
any two rational numbers, and the result is a rational number. The only exception is division by zero,
which is not possible: The operation written in the form a : 0 is meaningless because it does not have
any result: If a �= 0, then there is no rational number b such that b ·0 = a could be fulfilled, and if a = 0
then b can be any of the rational numbers. The frequently occurring formula a : 0 = ∞ (infinity) does
not mean that the division is possible; it is only the notation for the statement: If the denominator
approaches zero and, e.g., the numerator does not, then the absolute value (magnitude) of the quotient
exceeds any finite limit.

4. Decimal Fractions, Continued Fractions
Every rational number a can be represented as a terminating or periodically infinite decimal fraction
or as a finite continued fraction (see 1.1.1.4, p. 3).

5. Geometric Representation
Fixing an origin the zero point 0, a positive direction the orientation, and the unit of length l the
measuring rule, (see also 2.17.1, p. 115 and (Fig. 1.1)), then every rational number a corresponds to
a certain point on this line. This point has the coordinate a, and it is a so-called rational point. The
line is called the numerical axis. Because the set of rational numbers is dense everywhere, between two
rational points there are infinitely many further rational points.
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2 1. Arithmetics

1.1.1.2 Irrational and Transcendental Numbers
The set of rational numbers is not satisfactory for calculus. Even though it is dense everywhere, it does
not cover the whole numerical axis. If for example the diagonal AB of the unit square rotates around
A so that B goes into the point K, then K does not have any rational coordinate (Fig. 1.2).
The introduction of irrational numbers allows to assign a number to every point of the numerical axis.
In textbooks there are given exact definitions for irrational numbers, e.g., by nests of intervals. For this
survey it is enough to note that the irrational numbers take all the non-rational points of the numerical
axis and every irrational number corresponds to a point of the axis, and that every irrational number
can be represented as a non-periodic infinite decimal fraction.
First of all, the non-integer real roots of the algebraic equation

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0 (n > 1, integer; integer coefficients), (1.1a)

belong to the irrational numbers. These roots are called algebraic irrationals.

A: The simplest examples of algebraic irrationals are the real roots of xn − a = 0 (a > 0), as
numbers of the form n

√
a , if they are not rational.

B: 2
√
2 = 1.414 . . . , 3

√
10 = 2.154 . . . are algebraic irrationals.

The irrational numbers which are not algebraic irrationals are called transcendental.

A: π = 3.141592 . . . e = 2.718281 . . . are transcendental numbers.

B: The decimal logarithm of the integers, except the numbers of the form 10n, are transcendental.

The non-integer roots of the quadratic equation

x2 + a1x+ a0 = 0 (a1, a0 integers) (1.1b)

are called quadratic irrationals. They have the form (a + b
√
D)/c (a, b, c integers, c �= 0; D > 0,

square-free number).

The division of a line segment a in the ratio of the golden section x/a = (a− x)/x (see 3.5.2.3, 3.,

p. 194) leads to the quadratic equation x2 + x − 1 = 0, if a = 1. The solution x = (
√
5 − 1)/2 is a

quadratic irrational. It contains the irrational number
√
5 .

1.1.1.3 Real Numbers
Rational and irrational numbers together form the set of real numbers, which is denoted by IR.

1. Most Important Properties
The set of real numbers has the following important properties (see also 1.1.1.1, 2., p. 1). It is:
• Infinite.
• Ordered.
• Dense everywhere.
• Closed, i.e., every point of the numerical axis corresponds to a real number. This statement does
not hold for the rational numbers.

2. Arithmetical Operations
Arithmetical operations can be performed with any two real numbers and the result is a real number,
too. The only exception is division by zero (see 1.1.1.1, 3., p. 1). Raising to a power and also its
inverse operation can be performed among real numbers; so it is possible to take an arbitrary root of
any positive number; every positive real number has a logarithm for an arbitrary positive basis, except
that 1 cannot be a basis.

A further generalization of the notion of numbers leads us to the concept of complex numbers (see 1.5,
p. 34).

3. Interval of Numbers
A connected set of real numbers with endpoints a and b is called an interval of numbers with endpoints
a and b, where a < b and a is allowed to be −∞ and b is allowed to be +∞. If the endpoint itself does
not belong to the interval, then this end of the interval is open, in the opposite case it is closed.
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An interval is given by its endpoints a and b, putting them in braces: A bracket for a closed end of the
interval and a parenthesis for an open one. It is to be distinguished between open intervals (a, b), half-
open (half-closed) intervals [a, b) or (a, b] and closed intervals [a, b], according to whether none of the
endpoints, one of the endpoints or both endpoints belong to it, respectively. Frequently the notation
]a, b[ instead of (a, b) for open intervals, and analogously [a, b[ instead of [a, b) is used. In the case of
graphical representations, in this book the open end of the interval is denoted by a round arrow head,
the closed one by a filled point.

1.1.1.4 Continued Fractions

Continued fractions are nested fractions, by which rational and irrational numbers can be represented
and approximated even better than by decimal representation (see 19.8.1.1, p. 1002 and A and
B on p. 4).

1. Rational Numbers
The continued fraction of a rational number is fi-
nite. Positive rational numberswhich are greater
than 1 have the form (1.2). For abbreviation

the symbol
p

q
= [a0; a1, a2, . . . , an] is used with

ak ≥ 1 (k = 1, 2, . . . , n).

p

q
= a0 +

1

a1 +
1

a2 +
1

. . . +
1

an−1 +
1

an

. (1.2)

The numbers ak are calculated with the help of the Euclidean algorithm:

p

q
= a0 +

r1
q

(
0 <

r1
q

< 1

)
, (1.3a)

q

r1
= a1 +

r2
r1

(
0 <

r2
r1

< 1
)
, (1.3b)

r1
r2

= a2 +
r3
r2

(
0 <

r3
r2

< 1
)
, (1.3c)

...
...

...

rn−2

rn−1

= an−1 +
rn
rn−1

(
0 <

rn
rn−1

< 1

)
, (1.3d)

rn−1

rn
= an (rn+1 = 0) . (1.3e)

61

27
= 2 +

7

27
= 2 +

1

3 +
6

7

= 2 +
1

3 +
1

1 +
1

6

= [2; 3, 1, 6] .

2. Irrational Numbers

Continued fractions of irrational numbers do not break off. They are called infinite continued fractions
with [a0; a1, a2, . . .].

If some numbers ak are repeated in an infinite continued fraction, then this fraction is called a periodic
continued fraction or recurring chain fraction. Every periodic continued fraction represents a quadratic
irrationality, and conversely, every quadratic irrationality has a representation in the form of a periodic
continued fraction.

The number
√
2 = 1.4142135 . . . is a quadratic irrationality and it has the periodic continued fraction

representation
√
2 = [1; 2, 2, 2, . . .].
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3. Aproximation of Real Numbers
If α = [a0; a1, a2, . . .] is an arbitrary real number, then every finite continued fraction

αk = [a0; a1, a2, . . . , ak] =
p

q
(1.4)

represents an approximation of α . The continued fraction αk is called the k-th approximant of α . It
can be calculated by the recursive formula

αk =
pk
qk

=
akpk−1 + pk−2

akqk−1 + qk−2

(k ≥ 1; p−1 = 1, p0 = a0; q−1 = 0, q0 = 1). (1.5)

According to the Liouville approximation theorem, the following estimat holds:

|α− αk| = |α− pk
qk
| < 1

q2k
. (1.6)

Furthermore, it can be shown that the approximants approach the real number α with increasing ac-
curacy alternatively from above and from below. The approximants converge to α especially fast if the
numbers ai (i = 1, 2, . . . , k) in (1.4) have large values. Consequently, the convergence is worst for the
numbers [1; 1, 1, . . .].

A: From the decimal presentation of π the continued fraction representation π = [3; 7, 15, 1, 292, . . .]
follows with the help of (1.3a)–(1.3e). The corresponding approximants (1.5) with the estimate accord-

ing to (1.6) are: α1 =
22

7
with |π − α1| <

1

72
≈ 2 · 10−2, α2 =

333

106
with |π − α2| <

1

1062
≈ 9 · 10−5,

α3 =
355

113
with |π − α3| <

1

1132
≈ 8 · 10−5. The actual errors are much smaller. They are less than

1.3 ·10−3 for α1, 8.4 ·10−5 for α2 and 2.7 ·10−7 for α3 . The approximants α1, α2 and α3 represent better
approximations for π than the decimal representation with the corresponding number of digits.

B: The formula of the golden section x/a = (a − x)/x (see 1.1.1.2, p. 2, 3.5.2.3, 3., p. 194 and
17.3.2.4, 4., p. 908) can be represented by the following two continued fractions: x = a[1; 1, 1, . . .] and

x =
a

2
(1 +

√
5) =

a

2
(1 + [2; 4, 4, 4, . . .]). The approximant α4 delivers in the first case an accuracy of

0.018 a, in the second case of 0.000 001 a.

1.1.1.5 Commensurability

Two numbers a and b are called commensurable, i.e., measurable by the same number, if both are an
integer multiple of a third number c. From a = mc, b = nc (m,n ∈ Z) it follows that

a

b
= x (x rational). (1.7)

Otherwise a and b are incommensurable.

A: The length of a side and a diagonal of a square are incommensurable because their ratio is the

irrational number
√
2 .

B: The lengths of the golden section are incommensurable, because their ratio contains the irra-

tional number
√
5 (see 1.1.1.2, p. 2 and 3.5.2.3, 3.,p. 194). Therefore the sides and diagonals in a

regular pentagon are incommensurable (see in 3.1.5.3, p. 139). Today Hippasos from Metapontum
(450 BC) is considered to have discovered the irrational numbers via this example.

1.1.2 Methods for Proof

Mostly three types of proofs are used:
• direct proof,
• indirect proof,
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• proof by (mathematical or arithmetical) induction.
Furthermore there are constructive proofs.

1.1.2.1 Direct Proof
The starting point is a theorem which has already been proven (premise p) and the truth of the state-
ment of the new theorem is derived from it (conclusion q). The logical steps mostly used for the con-
clusions are implication and equivalence (see 5.1, p. 323).

1. Direct Proof by Implication
The implication p ⇒ q means that the truth of the conclusion follows from the truth of the premise
(see “ Implication ” in the truth table, 5.1.1, p. 323).

Prove the inequality
a+ b

2
≥

√
ab for a > 0, b > 0. The premise is the well-known binomial formula

(a+ b)2 = a2+2ab+ b2. By subtracting 4ab follows (a+ b)2− 4ab = (a− b)2 ≥ 0. From this inequality
the statement is obtained certainly if the investigations are restricted only to the positive square roots
because of a > 0 and b > 0.

2. Direct Proof by Equivalence
The proof will be delivered by verifying an equivalent statement. In practice it means that all the
arithmetical operations which have to be used for changing p into q must be uniquely invertible.

Prove the inequality 1 + a+ a2 + · · ·+ an <
1

1− a
for 0 < a < 1.

Multiplying by 1− a yields 1− a+ a− a2 + a2 − a3 ± · · ·+ an − an+1 = 1− an+1 < 1.
This last inequality is true because of the assumption 0 < an+1 < 1. The starting inequality also holds
because all the arithmetical operations to be used are uniquely invertible.

1.1.2.2 Indirect Proof or Proof by Contradiction
To prove the statement q: Starting from its negation q̄, and from q̄ arriving at a false statement r, i.e.,
q̄ ⇒ r (see also 5.1.1, 7., p. 325). In this case q̄ must be false, because using the implication a false
assumption can result only in a false conclusion (see truth table 5.1.1, p. 323). If q̄ is false q must be
true.

Prove that the number
√
2 is irrational. Suppose,

√
2 is rational. So the equality

√
2 =

a

b
holds for

some integers a, b and b �= 0. Assuming that the numbers a, b are coprime numbers, i.e., they do not

have any common divisor, then follows (
√
2)2 = 2 =

a2

b2
or a2 = 2b2, therefore, a2 is an even number,

and this is possible only if a = 2n is an even number. Deducing a2 = 4n2 = 2b2 holds, hence b must be
an even number, too. It is obviously a contradiction to the assumption that a and b are coprimes.

1.1.2.3 Mathematical Induction
Theorems and dependent on natural numbers n are proven with this method. The principle of math-
ematical induction is the following: If the statement is valid for a natural number n0, and if from the
validity of the statement for a natural number n ≥ n0 the validity of the statement follows for n + 1,
then the statement is valid for every natural number n ≥ n0. According to these, the steps of the proof
are:

1. Basis of the Induction: The truth of the statement is to be shown for n = n0. Mostly n0 = 1 can
be choosen.

2. Induction Hypothesis: The statement is valid for an integer n (premise p).

3. Induction Conclusion: Formulation the proposition for n+ 1 (conclusion q).

4. Proof of the Implication: p ⇒ q.

Steps 3. and 4. together are called the induction step or logical deduction from n to n+ 1.
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Prove the formula sn =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

n(n+ 1)
=

n

n+ 1
.

The steps of the proof by induction are:

1. n = 1 : s1 =
1

1 · 2 =
1

1 + 1
is obviously true.

2. Suppose sn =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

n(n+ 1)
=

n

n+ 1
holds for an n ≥ 1.

3. Supposing 2. it is to show: sn+1 =
n+ 1

n+ 2
.

4. The proof: sn+1 =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

n(n+ 1)
+

1

(n+ 1)(n+ 2)
= sn +

1

(n+ 1)(n+ 2)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)
=

n2 + 2n+ 1

(n+ 1)(n+ 2)
=

(n+ 1)2

(n+ 1)(n+ 2)
=

n+ 1

n+ 2
.

1.1.2.4 Constructive Proof
In approximation theory, for instance, the proof of an existence theorem usually follows a constructive
process, i.e., the steps of the proof give a method of calculation for a result which satisfies the proposi-
tions of the existence theorem.

The existence of a third-degree interpolation-spline function (see 19.7.1.1, 1., p. 996) can be proved
in the following way: It is to be shown that the calculation of the coefficients of a spline satisfying
the requirements of the existence theorem results in a tridiagonal linear equation system, which has a
unique solution (see 19.7.1.1, 2., p. 997).

1.1.3 Sums andProducts
1.1.3.1 Sums

1. Definition
To briefly denote a sum the summation sign

∑
is used:

a1 + a2 + . . .+ an =
n∑

k=1

ak. (1.8)

With this notation the sum of n summands ak (k = 1, 2, . . . , n) is denoted, k is called the running
index or summation variable.

2. Rules of Calculation
1. Sum of Summands Equal to Each Other , i.e., ak = a for k = 1, 2, . . . , n:

n∑
k=1

ak = na. (1.9a)

2. Multiplication by a Constant Factor
n∑

k=1

cak = c
n∑

k=1

ak. (1.9b)

3. Separating a Sum
n∑

k=1

ak =
m∑
k=1

ak +
n∑

k=m+1

ak (1 < m < n). (1.9c)

4. Addition of Sums with the Same Length
n∑

k=1

(ak + bk + ck + . . .) =
n∑

k=1

ak +
n∑

k=1

bk +
n∑

k=1

ck + . . . . (1.9d)
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5. Renumbering

n∑
k=1

ak =
m+n−1∑
k=m

ak−m+1,
n∑

k=m

ak =
n−m+l∑
k=l

ak+m−l. (1.9e)

6. Exchange the Order of Summation in Double Sums
n∑

i=1

(
m∑
k=1

aik

)
=

m∑
k=1

(
n∑

i=1

aik

)
. (1.9f)

1.1.3.2 Products

1. Definition
The abbreviated notation for a product is the product sign

∏
:

a1a2 . . . an =
n∏

k=1

ak. (1.10)

With this notation a product of n factors ak (k = 1, 2, . . . , n) is denoted, where k is called the running
index.

2. Rules of Calculation
1. Product of Coincident Factors , i.e., ak = a for k = 1, 2, . . . , n:

n∏
k=1

ak = an. (1.11a)

2. Factoring out a Constant Factor
n∏

k=1

(cak) = cn
n∏

k=1

ak. (1.11b)

3. Separating into Partial Products

n∏
k=1

ak =

(
m∏
k=1

ak

)⎛⎝ n∏
k=m+1

ak

⎞⎠ (1 < m < n). (1.11c)

4. Product of Products
n∏

k=1

akbkck . . . =

(
n∏

k=1

ak

)(
n∏

k=1

bk

)(
n∏

k=1

ck

)
. . . . (1.11d)

5. Renumbering

n∏
k=1

ak =
m+n−1∏
k=m

ak−m+1,
n∏

k=m

ak =
n−m+l∏
k=l

ak+m−l. (1.11e)

6. Exchange the Order of Multiplication in Double Products
n∏

i=1

(
m∏
k=1

aik

)
=

m∏
k=1

(
n∏

i=1

aik

)
. (1.11f)

1.1.4 Powers, Roots, and Logarithms

1.1.4.1 Powers
The notation ax is used for the algebraic operation of raising to a power. The number a is called the
base, x is called the exponent or power, and ax is called the power. Powers are defined as in Table 1.1.
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For the allowed values of bases and exponents there are the following
Rules of Calculation:

ax ay = ax+y, ax : ay =
ax

ay
= ax−y, (1.12)

ax bx = (a b)x, ax : bx =
ax

bx
=
(
a

b

)x

, (1.13)

(ax)y = (ay)x = ax y, (1.14)

ax = ex ln a (a > 0). (1.15)

Here ln a is the natural logarithm of a where e = 2.718281828459 . . . is the base. Special powers are

(−1)n =
{
+1, if n even,
−1, if n odd,

, (1.16a) a0 = 1 for any a �= 0 . (1.16b)

Table 1.1 Definition of powers

base a exponent x power ax

0 1

arbitrary real, �= 0 n = 1, 2, 3, . . . an = a · a · a · . . . · a︸ ︷︷ ︸
n factors

(a to the power n)

n = −1,−2,−3, . . . an =
1

a−n

rational:
p

q
a

p
q = q

√
ap

positive real (p, q integer, q > 0) (q-th root of a to the power p)

irrational:

lim
k→∞

pk
qk

lim
k→∞

a
pk
qk

0 positive 0

1.1.4.2 Roots
According to Table 1.1 the n-th root of a positive number a is the positive number denoted by

n
√
a (a > 0, real; n > 0, integer). (1.17a)

This operation is called taking of the root or extraction of the root, a is the radicand, n is the radical or
index.
The solution of the equation

xn = a (a real or complex ; n > 0 , integer) (1.17b)

is often denoted by x = n
√
a. But there is no reason to be confused: In this relation the notation de-

notes all the solutions of the equation, i.e., it represents n different values xk (k = 1, 2, . . . , n) to be
calculated. In the cace of negative or complex values they are to be determined by (1.140b) (see 1.5.3.6,
p. 38).

A: The equation x2 = 4 has two real solutions, namely x1,2 = ±2.

B: The equation x3 = −8 has three roots among the complex numbers: x1 = 1 + i
√
3, x2 =

−2 and x3 = 1− i
√
3 , but only one among the reals.
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1.1.4.3 Logarithms

1. Definition
The logarithm u of a positive number x > 0 to the base b > 0, b �= 1, is the exponent of the power
which has the value x with b in the base. It is denoted by u = logb x. Consequently the equation

bu = x (1.18a) yields logb x = u (1.18b)

and conversely the second one yields the first one. In particular holds

logb 1 = 0, logb b = 1, logb 0 =
{−∞ for b > 1,
+∞ for b < 1.

(1.18c)

The logarithm of negative numbers can be defined only among the complex numbers. The logarithmic
functions see 2.6.2, p. 73.
To take the logarithm of a given number means to find its logarithm. To take the logarithm of an
expression means it is transformed like (1.19a, 1.19b). The determination of a number or an expression
from its logarithm is called raising to a power.

2. Some Properties of the Logarithm
a) Every positive number has a logarithm to any positive base, except the base b = 1.

b) For x > 0 and y > 0 the followingRules of Calculation are valid for any b (which is allowed to be
a base):

log (xy) = log x+ log y, log

(
x

y

)
= log x− log y, (1.19a)

log xn = n log x, in particular log n
√
x =

1

n
log x . (1.19b)

With (1.19a, 1.19b) the logarithm of products and fractions can be calculated as sums or differences of
logarithms .

Take the logarithm of the expression
3x2 3

√
y

2zu3
: log

3x2 3
√
y

2zu3
= log

(
3x2 3

√
y
)
− log (2zu3)

= log 3 + 2 log x+
1

3
log y − log 2− log z − 3 log u.

Often the reverse transformation is required, i.e., an expression containing logarithms of different amou-
nts is to be rewritten into one, which is the logarithm of one expression.

log 3 + 2 log x+
1

3
log y − log 2− log z − 3 log u = log

3x2 3
√
y

2zu3
.

c) Logarithms to different bases are proportional, i.e., the logarithm to a base a can be change into a
logarithm to the base b by multiplication:

loga x = M logb x where M = loga b =
1

logb a
. (1.20)

M is called the modulus of the transformation.

1.1.4.4 Special Logarithms
1. The logarithm to the base 10 is called the decimal or Briggsian logarithm, in formulas:

log10 x = lg x and log (x10α) = α + log x. (1.21)

2. The logarithm to the base e is called the natural or Neperian logarithm, in formulas:

loge x = ln x. (1.22)

The modulus of transformation to change from the natural logarithm into the decimal one is

M = log e =
1

ln 10
= 0.4342944819 , (1.23)
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and to change from the decimal into the natural one it is

M1 =
1

M
= ln 10 = 2.3025850930 . (1.24)

3. The logarithm to base 2 is called the binary logarithm, in formulas:

log2 x = ld x or log2 x = lb x. (1.25)

4. The values of the decimal and natural logarithm can be found in logarithm tables. Some time ago
the logarithm was used for numerical calculation of powers, and it often made numerical multiplication
and division easier. Mostly the decimal logarithm was used. Today pocket calculators and personal
computers make these calculations.
Every number given in decimal form (so every real number), which is called in this relation the antilog,
can be written in the form

x = x̂10k with 1 ≤ x̂ < 10 (1.26a)

by factoring out an appropriate power of ten: 10k with integer k. This form is called the half-logarithmic
representation. Here x̂ is given by the sequence of figures of x, and 10k is the order of magnitude of x.
Then for the logarithm holds

log x = k + log x̂ with 0 ≤ log x̂ < 1, i.e., log x̂ = 0, . . . . (1.26b)

Here k is the so-called characteristic and the sequence of figures behind the decimal point of log x̂ is
called the mantissa. The mantissa can be found in logarithm tables.

lg 324 = 2.5105, the characteristic is 2, the mantissa is 5105. Multiplying or dividing this number
by 10n, for example 324000; 3240; 3.24; 0.0324, their logarithms have the same mantissa, here 5105,
but different characteristics. That is why the mantissas are given in logarithm tables. In order to get
the mantissa of a number x first the decimal point has to be moved to the right or to the left to get a
number between 1 and 10, and the characteristic of the antilog x is determined by how many digits k
the decimal point was moved.

5. Slide rule Beside the logarithm, the slide rule was of important practical help in numerical calcu-
lations. The slide rule works by the principle of the form (1.19a), so multiplying and dividing is done
by adding and subtracting numbers. On the slide rule the scale-segments are denoted according to the
logarithm values, so multiplication and division can be performed as addition or subtraction (see Scale
and Graph Papers 2.17.1, p. 115).

1.1.5 Algebraic Expressions

1.1.5.1 Definitions

1. Algebraic Expression
One or more algebraic quantities, such as numbers or symbols, are called an algebraic expression or
term if they are connected by the symbols, + , − , · , : , √ , etc., as well as by different types of braces

for fixing the order of operations.

2. Identity
is an equality relation between two algebraic expressions if for arbitrary values of the symbols in them
the equality holds.

3. Equation
is an equality relation between two algebraic expressions if the equality holds only for a few values of
the symbols. For instance an equality relation

F (x) = f(x) (1.27)

between two functions with the same independent variable is considered as an equation with one variable
if it holds only for certain values of the variable. If the equality is valid for every value of x, it is called
an identity, or one says the equality holds identically, written as formula F (x) ≡ f(x).
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4. Identical Transformations
are performed in order to change an algebraic expression into another one if the two expression are
identically equal. The goal is to have another form, e.g., to get a shorter form or a more convenient
form for further calculations. Often it is of interest to have the expression in a form which is especially
good for solving an equation, or taking the logarithm, or calculating the derivative or integral of it, etc.

1.1.5.2 Algebraic Expressions in Detail

1. Principal Quantities
Principal quantities are those general numbers (literal symbols) occurring in algebraic expressions, ac-
cording to which the expressions are classified. They must be fixed in any single case. In the case of
functions, the independent variables are the principal quantities. The other quantities not given by
numbers are the parameters of the expression. In some expressions the parameters are called coeffi-
cients.

So-called coefficients occur e.g. in the cases of polynomials, Fourier series, and linear differential
equations, etc.

An expression belongs to a certain class depending on which kind of operations are performed on the
principal quantities. Usually, the last letters of the alphabet x, y, z, u, v, . . . are used to denote the
principal quantities and the first letters a, b, c, . . . are used for parameters. The letters m, n, p, . . . are
usually used for positive integer parameter values, e.g. for indices in summations or in iterations.

2. Integral Rational Expressions
are expressions which contain only addition, subtraction, andmultiplication of the principal quantities,
including powers of them with non-negative integer exponents.

3. Rational Expressions
contain also division by principal quantities, i.e., division by integral rational expressions, so principal
quantities can have negative integers in the exponent.

4. Irrational Expressions
contain roots, i.e., non-integer rational powers of integral rational or rational expressions with respect
to their principal quantities, of course.

5. Transcendental Expressions
contain exponential, logarithmic or trigonometric expressions of the principal quantities, i.e., there
can be irrational numbers in the exponent of an expression of principal quantities, or an expression
of principal quantities can be in the exponent, or in the argument of a trigonometric or logarithmic
expression.

1.1.6 Integral Rational Expressions

1.1.6.1 Representation in Polynomial Form
Every integral rational expression can be changed into polynomial form by elementary transformations,
as in addition, subtraction, and multiplication of monomials and polynomials.

(−a3 + 2a2x− x3)(4a2 + 8ax) + (a3x2 + 2a2x3 − 4ax4)− (a5 + 4a3x2 − 4ax4)
= −4a5 + 8a4x− 4a2x3 − 8a4x+ 16a3x2 − 8ax4 + a3x2 + 2a2x3 − 4ax4 − a5 − 4a3x2 + 4ax4

= −5a5 + 13a3x2 − 2a2x3 − 8ax4.

1.1.6.2 Factoring Polynomials
Polynomials often can be decomposed into a product ofmonomials and polynomials. To do so, factoring
out, grouping, special formulas and special properties of equations can be used.

A: Factoring out: 8ax2y − 6bx3y2 + 4cx5 = 2x2(4ay − 3bxy2 + 2cx3).

B: Grouping: 6x2 + xy − y2 − 10xz − 5yz = 6x2 + 3xy − 2xy − y2 − 10xz − 5yz = 3x(2x+ y)−
y(2x+ y)− 5z(2x+ y) = (2x+ y)(3x− y − 5z).
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C: Using the properties of equations (see also 1.6.3.1, p. 43): P (x) = x6 − 2x5 + 4x4 + 2x3 − 5x2.

a) Factoring out x2. b) Realizing that α1 = 1 and α2 = −1 are the roots of the equation P (x) = 0 and
dividing P (x) by x2(x−1)(x+1) = x4−x2 gives the quotient x2−2x+5. This expression can no longer
be decomposed into real factors because p = −2, q = 5, p2/4 − q < 0, so finally the decomposition is
x6 − 2x5 + 4x4 + 2x3 − 5x2 = x2(x− 1)(x+ 1)(x2 − 2x+ 5).

1.1.6.3 Special Formulas
(x± y)2 = x2 ± 2xy + y2, (1.28)

(x+ y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz, (1.29)

(x+ y + z + · · ·+ t+ u)2 = x2 + y2 + z2 + · · ·+ t2 + u2 +

+2xy + 2xz + · · ·+ 2xu+ 2yz + · · ·+ 2yu+ · · ·+ 2tu, (1.30)

(x± y)3 = x3 ± 3x2y + 3xy2 ± y3. (1.31)

The calculation of the expression (x ± y)n is done by the help of the binomial formula (see (1.36a)–
(1.37a)).

(x+ y)(x− y) = x2 − y2, (1.32)

xn − yn

x− y
= xn−1 + xn−2y + · · ·+ xyn−2 + yn−1, (for integer n, and n > 1), (1.33)

xn + yn

x+ y
= xn−1 − xn−2y + · · · − xyn−2 + yn−1 (for odd n, and n > 1), (1.34)

xn − yn

x+ y
= xn−1 − xn−2y + · · ·+ xyn−2 − yn−1 (for even n, and n > 1). (1.35)

1.1.6.4 Binomial Theorem

1. Power of an Algebraic Sum of Two Summands (First Binomial Formula)
The formula

(a+ b)n = an + nan−1b+
n(n− 1)

2!
an−2b2 +

n(n− 1)(n− 2)

3!
an−3b3

+ · · ·+ n(n− 1) . . . (n−m+ 1)

m!
an−mbm + · · ·+ nabn−1 + bn (1.36a)

is called the binomial theorem, where a and b are real or complex values and n = 1, 2, . . . . Using the
binomial coefficients delivers a shorter and more convenient notation:

(a+ b)n =

(
n

0

)
an+

(
n

1

)
an−1b+

(
n

2

)
an−2b2+

(
n

3

)
an−3b3+ · · ·+

(
n

n− 1

)
abn−1+

(
n

n

)
bn(1.36b)

or

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk. (1.36c)

2. Power of an Algebraic Difference (Second Binomial Formula)

(a− b)n = an − nan−1b+
n(n− 1)

2!
an−2b2 − n(n− 1)(n− 2)

3!
an−3b3

+ · · ·+ (−1)m
n(n− 1) . . . (n−m+ 1)

m!
an−mbm + · · ·+ (−1)nbn (1.37a)

or
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(a− b)n =
n∑

k=0

(
n

k

)
(−1)kan−kbk. (1.37b)

3. Binomial Coefficients
The definition is for non-negative and integer n and k:(

n

k

)
=

n!

(n− k)!k!
(0 ≤ k ≤ n), (1.38a)

where n! is the product of the positive integers from 1 to n, and it is called n factorial:

n! = 1 · 2 · 3 · . . . · n, and by definition 0! = 1. (1.38b)

The binomial coefficients can easily be seen from the Pascal triangle in Table 1.2. The first and the
last number is equal to one in every row; every other coefficient is the sum of the numbers standing on
left and on right in the row above it.

Simple calculations verify the following formulas:(
n

k

)
=

(
n

n− k

)
=

n!

k!(n− k)!
, (1.39a)

(
n

0

)
= 1,

(
n

1

)
= n,

(
n

n

)
= 1. (1.39b)

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n− 1

k

)
+

(
n− 2

k

)
+ · · ·+

(
k

k

)
. (1.39c)

(
n+ 1

k

)
=

n+ 1

n− k + 1

(
n

k

)
. (1.39d)

(
n

k + 1

)
=

n− k

k + 1

(
n

k

)
. (1.39e)

(
n+ 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)
. (1.39f)

Table 1.2 Pascal’s triangle

n Coefficients

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

6

↑(
6

0

) ↑(
6

1

) ↑(
6

2

) ↑(
6

3

) ↑(
6

4

) ↑(
6

5

) ↑(
6

6

)
... · · · · · · · · · · · · · · · · ·

For an arbitrary real value α (α ∈ IR) and a non-negative integer k one can define the binomial coeffi-

cient

(
α

k

)
:

(
α

k

)
=

α(α− 1)(α− 2) · · · (α− k + 1)

k!
for integer k and k ≥ 1,

(
α

0

)
= 1. (1.40)
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(
−1

2

3

)
=

−1
2
(−1

2
− 1)(−1

2
− 2)

3!
= − 5

16
.

4. Properties of the Binomial Coefficients
• The binomial coefficients increase until the middle of the binomial formula (1.36b), then decrease.
• The binomial coefficients are equal for the terms standing in symmetric positions with respect to
the start and the end of the expression.
• The sum of the binomial coefficients in the binomial formula of degree n is equal to 2n .
• The sum of the coefficients at the odd positions is equal to the sum of the coefficients at the even
positions.

5. Binomial Series
The formula (1.36a) of the binomial theorem can also be extended for negative and fraction exponents.
If |b| < a, then (a+ b)n has a convergent infinite series (see also 21.5, p. 1057):

(a+ b)n = an + nan−1b+
n(n− 1)

2!
an−2b2 +

n(n− 1)(n− 2)

3!
an−3b3 + · · · . (1.41)

1.1.6.5 Determination of the Greatest CommonDivisor of Two
Polynomials

It is possible that two polynomials P (x) of degree n and Q(x) of degreem with n ≥ m have a common
polynomial factor, which contains x. The least commonmultiple of these factors is the greatest common
divisor of the polynomials.

P (x) = (x − 1)2(x − 2)(x − 4) , Q(x) = (x − 1)(x − 2)(x − 3); the greates common devisor is
(x− 1)(x− 2).

IfP (x) andQ(x) do not have any common polynomial factor, they are called relatively prime or coprime.
In this case, their greatest common divisor is a constant.

The greatest common divisor of two polynomials P (x) and Q(x) can be determined by the Euclidean
algorithm without decomposing them into factors:
1. Division of P (x) by Q(x) = R0(x) results in the quotient T1(x) and the remainder R1(x):

P (x) = Q(x)T1(x) +R1(x) . (1.42a)

2. Division of Q(x) by R1(x) results in the quotient T2(x) and the remainder R2(x):

Q(x) = R1(x)T2(x) +R2(x). (1.42b)

3. Division of R1(x) by R2(x) results in T3(x) and R3(x), etc. The greatest common divisor of the
two polynomials is the last non-zero remainder Rk(x). This method is known from the arithmetic of
natural numbers (see 1.1.1.4, p. 3).

The determination of the greatest common divisor can be used, e. g., when equations musz be solved
to separate the roots with higher multiplicity or to apply the Sturm method (see 1.6.3.2, 2., p. 44).

1.1.7 Rational Expressions

1.1.7.1 Reducing to the Simplest Form

Every rational expression can be written in the form of a quotient of two coprime polynomials. To do
this, only elementary transformations are necessary such as addition, subtraction, multiplication and
division of polynomials and fractions and simplification of fractions.

Find the most simple form of
3x+

2x+ y

z

x
(
x2 +

1

z2

) − y2 +
x+ z

z
:
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(3xz + 2x+ y)z2

(x3z2 + x)z
+

−y2z + x+ z

z
=

3xz3 + 2xz2 + yz2 + (x3z2 + x)(−y2z + x+ z)

x3z3 + xz
=

3xz3 + 2xz2 + yz2 − x3y2z3 − xy2z + x4z2 + x2 + x3z3 + xz

x3z3 + xz
.

1.1.7.2 Determination of the Integral Rational Part

Aquotient of two polynomials with the same variable x is a proper fraction if the degree of the numerator
is less than the degree of the denominator. In the opposite case, it is called an improper fraction. Every
improper fraction can be decomposed into a sum of a proper fraction and a polynomial by dividing the
numerator by the denominator, i.e., separating the integral rational part.

Determine the integral rational part of R(x) =
3x4 − 10ax3 + 22a2x2 − 24a3x+ 10a4

x2 − 2ax+ 3a2
:

(3x4−10ax3+22a2x2−24a3x +10a4) : (x2 − 2ax+ 3a2) = 3x2 − 4ax+ 5a2 +
−2a3x− 5a4

x2 − 2ax− 3a2
3x4− 6ax3+ 9a2x2

− 4ax3+13a2x2−24a3x
− 4ax3+ 8a2x2−12a3x

5a2x2−12a3x +10a4

5a2x2−10a3x +15a4

− 2a3x− 5a4. R(x) = 3x2 − 4ax+ 5a2 +
−2a3x− 5a4

x2 − 2ax+ 3a2
.

The integral rational part of a rational functionR(x) is considered to be as an asymptotic approximation
for R(x) because for large values of |x|, the value of the proper fraction part tends to zero, and R(x)
behaves as its polynomial part.

1.1.7.3 Partial Fraction Decomposition

Every proper rational fraction

R(x) =
P (x)

Q(x)
=

anx
n + an−1x

n−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

(n < m) (1.43)

with coprime polynomials in the numerator and denominator can be uniquely decomposed into a sum of
partial fractions. The coefficients a0, a1, . . . , an, b0, b1, . . . , bn are real or complex numbers. The partial
fractions have the form

A

(x− α)k
(1.44a) and

Dx+ E

(x2 + px+ q)m
where

(
p

2

)2

− q < 0 . (1.44b)

In the followings real coefficients are assumed in R(x) in (1.43).

First the leading coefficient bm of the denominatorQ(x) is transformed into 1 by dividing the numerator
and the denominator of (1.43) by the original value of bm. In the case of real coefficients the following
three cases are to be distinguished.
In the case of complex coefficients inR(x) only the first two cases can occur, since complex polynomials
can be factorized into a product of first degree polynomials. Every proper rational fraction R(x) can
be expanded into a sum of fractions of the form (1.44a), where A and α are complex numbers.

1. Partial Fraction Decomposition, Case 1
The denominator Q(x) has m different simple roots α1 , . . . , αm . Then the expansion has the form

P (x)

Q(x)
=

anx
n + · · ·+ a0

(x− α1)(x− α2) . . . (x− αm)
=

A1

x− α1

+
A2

x− α2

+ · · ·+ Am

x− αm

(1.45a)
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with coefficients

A1 =
P (α1)

Q′(α1)
, A2 =

P (α2)

Q′(α2)
, . . . , Am =

P (αm)

Q′(αm)
, (1.45b)

where in the numerators of (1.45b) the values of the derivative
dQ

dx
are taken for x = α1, x = α2, . . . .

6x2 − x+ 1

x3 − x
=

A

x
+

B

x− 1
+

C

x+ 1
, α1 = 0 , α2 = +1 and α3 = −1;

P (x) = 6x2 − x + 1 , Q′(x) = 3x2 − 1 , A =
P (0)

Q′(0)
= −1, B =

P (1)

Q′(1)
= 3 and C =

P (−1)

Q′(−1)
= 4,

P (x)

Q(x)
= −1

x
+

3

x− 1
+

4

x+ 1
.

An other possibility to determine the coefficients A1, A2, . . . , Am is the method of comparing coeffi-
cients (see 4., p. 17).

2. Partial Fraction Decomposition, Case 2
The denominator Q(x) has l multiple real roots α1, α2, . . . , αl with multiplicities k1, k2, . . . , kl respec-
tively. Then the decomposition has the form

P (x)

Q(x)
=

anx
n + an−1x

n−1 + · · ·+ a0
(x− α1)k1(x− α2)k2 . . . (x− αl)kl

=
A1

x− α1

+
A2

(x− α1)2
+ · · ·+ Ak1

(x− α1)k1

+
B1

x− α2

+
B2

(x− α2)2
+ · · ·+ Bk2

(x− α2)k2
+ · · ·+ Lkl

(x− αl)kl
. (1.46)

x+ 1

x(x− 1)3
=

A1

x
+

B1

x− 1
+

B2

(x− 1)2
+

B3

(x− 1)3
. The coefficients A1, B1, B2, B3 can be determined

by the method of comparing coefficients.

3. Partial Fraction Decomposition, Case 3
If the denominator Q(x) has also complex roots, then its factorization is

Q(x) = (x− α1)
k1(x− α2)

k2 · · · (x− αl)
kl

·(x2 + p1x+ q1)
m1(x2 + 2p2x+ q2)

m2 · · · (x2 + prx+ qr)
mr (1.47)

according to (1.168), p. 44. Here α1, α2, . . . , αl are the l real roots of polynomial Q(x) . Beside these
roots Q(x) has r complex conjugate pairs of roots, which are the roots of the quadratic factors x2 −

pix+ qi (i =1,2,. . . ,r). The numbers pi, qi are real, and
(
pi
2

)2

− qi < 0 holds. In this case the partial

fraction decomposition has the form

P (x)

Q(x)
=

anx
n + an−1x

n−1 + · · ·+ a1x+ a0
(x− α1)k1(x− α2)k2 · · · (x2 + p1x+ q1)m1(x2 + p2x+ q2)m2 · · ·

=
A1

x− α1

+
A2

(x− α1)2
+ · · ·+ Ak1

(x− α1)k1
+

B1

x− α2

+
B2

(x− α2)2
+ · · ·+ Bk2

(x− α2)k2
+ · · ·

+
C1x+D1

x2 + p1x+ q1
+

C2x+D2

(x2 + p1x+ q1)2
+ · · ·+ Cm1x+Dm1

(x2 + p1x+ q1)m1
+

+
E1x+ F1

x2 + p2x+ q2
+

E2x+ F2

(x2 + p2x+ q2)2
+ · · ·+ Em2x+ Fm2

(x2 + p2x+ q2)m2
+ · · · . (1.48)

5x2 − 4x+ 16

(x− 3)(x2 − x+ 1)2
=

A

x− 3
+

C1x+D1

x2 − x+ 1
+

C2x+D2

(x2 − x+ 1)2
. The coefficients A,C1, D1, C2, D2 are

to be determined by the method of comparing coefficients.
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4. Method of Comparing Coefficients
In order to determine the coefficientsA1, A2, . . . , E1, F1 . . . in (1.48) the expression (1.48) has to bemul-
tiplied by Q(x), then the result Z(x) is compared with P (x), since Z(x) ≡ P (x). After ordering Z(x)
by the powers of x, one gets a system of equations by comparing the coefficients of the corresponding
x–powers in Z(x) and P (x) . This method is called the method of comparing coefficients or method of
undetermined coefficients.

6x2 − x+ 1

x3 − x
=

A

x
+

B

x− 1
+

C

x+ 1
=

A(x2 − 1) +Bx(x+ 1) + Cx(x− 1)

x(x2 − 1)
.

Comparing the coefficients of the same powers of x, one gets the system of equations 6 = A+ B + C ,
−1 = B − C , 1 = −A , and its solutions are A = −1, B = 3, C = 4.

1.1.7.4 Transformations of Proportions
The equality

a

b
=

c

d
(1.49a) yields ad = bc,

a

c
=

b

d
,

d

b
=

c

a
,

b

a
=

d

c
(1.49b)

and furthermore
a± b

b
=

c± d

d
,

a± b

a
=

c± d

c
,

a± c

c
=

b± d

d
,

a+ b

a− b
=

c+ d

c− d
. (1.49c)

From the equalities of the proportions

a1
b1

=
a2
b2

= · · · = an
bn

(1.50a) it follows that
a1 + a2 + · · ·+ an
b1 + b2 + · · ·+ bn

=
a1
b1

. (1.50b)

1.1.8 Irrational Expressions
Every irrational expression can be written in a simpler form by 1. simplifying the exponent, 2. taking
out terms from the radical sign and 3. moving the irrationality into the numerator.
1. Simplifying the Exponent The exponent can be simplified if the radicand can be factorized
and the index of the radical and the exponents in the radicand have a common factor; the index of the
radical and the exponents must be divided by their greatest common divisor.

6

√
16(x12 − 2x11 + x10) = 6

√
42 · x5·2(x− 1)2 = 3

√
4x5(x− 1) .

2. Moving the Irrationality There are different ways tomove the irrationality into the numerator.

A:

√
x

2y
=

√
2xy

4y2
=

√
2xy

2y
. B: 3

√
x

4yz2
= 3

√
2xy2z

8y3z3
=

3
√
2xy2z

2yz
.

C:
1

x+
√
y
=

x−√
y(

x+
√
y
) (

x−√
y
) =

x−√
y

x2 − y
.

D:
1

x+ 3
√
y
=

x2 − x 3
√
y + 3

√
y2(

x+ 3
√
y
) (

x2 − x 3
√
y + 3

√
y2
) =

x2 − x 3
√
y + 3

√
y2

x3 + y
.

3. Simplest Forms of Powers and Radicals Also powers and radicals can be transformed into
the simplest form.

A: 4

√√√√ 81x6

(
√
2−√

x)4
=

√√√√ 9x3

(
√
2−√

x)2
=

3x
√
x√

2−√
x
=

3x
√
x(
√
2 +

√
x)

2− x
=

3x
√
2x+ 3x2

2− x
.

B:
(√

x+
3
√
x2 +

4
√
x3 +

12
√
x7
) (√

x− 3
√
x+ 4

√
x− 12

√
x5
)
= (x1/2+x2/3+x3/4+x7/12)(x1/2−x1/3+

x1/4−x5/12) = x+x7/6+x5/4+x13/12−x5/6−x−x13/12−x11/12+x3/4+x11/12+x+x5/6−x11/12−x13/12−
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x7/6−x = x5/4−x13/12−x11/12+x3/4 =
4
√
x5− 12

√
x13− 12

√
x11+

4
√
x3 = x3/4(1−x1/6−x1/3+x1/2) =

4
√
x3 (1− 6

√
x− 3

√
x+

√
x).

1.2 Finite Series
1.2.1 Definition of a Finite Series
The sum

sn = a0 + a1 + a2 + · · ·+ an =
n∑

i=0

ai, (1.51)

is called a finite series. The summands ai (i = 0, 1, 2, . . . , n) are given by certain formulas, they are
numbers, and they are the terms of the series.

1.2.2 Arithmetic Series
1. Arithmetic Series of First Order
is a finite series where the terms form an arithmetic sequence, i.e., the difference of two terms standing
after each other is a constant:

Δai = ai+1 − ai = d = const holds, so ai = a0 + id. (1.52a)

Thus holds:

sn = a0 + (a0 + d) + (a0 + 2d) + · · ·+ (a0 + nd) (1.52b)

sn =
a0 + an

2
(n+ 1) =

n+ 1

2
(2a0 + nd). (1.52c)

2. Arithmetic Series of k-th Order
is a finite series, where the k-th differences Δkai of the sequence a0, a1, a2, . . . ,an are constants. The
differences of higher order are calculated by the formula

Δνai = Δν−1ai+1 −Δν−1ai (ν = 2, 3, . . . , k). (1.53a)

It is convenient to calculate them from the difference schema (also difference table or triangle schema):

a0
Δa0

a1 Δ2a0
Δa1 Δ3a0

a2 Δ2a1
. . . Δka0

Δa2 Δ3a1

a3 Δ2a2
. . . Δka1

. . .
...

...
... Δna0

...
... Δkan−k . . .

Δ3an−3 . . .

Δ2an−2

Δan−1

an

(1.53b)

The following formulas hold for the terms and the sum:

ai = a0 +

(
i

1

)
Δa0 +

(
i

2

)
Δ2a0 + · · ·+

(
i

k

)
Δka0 (i = 1, 2, . . . , n), (1.53c)

sn =

(
n+ 1

1

)
a0 +

(
n+ 1

2

)
Δa0 +

(
n+ 1

3

)
Δ2a0 + · · ·+

(
n+ 1

k + 1

)
Δka0. (1.53d)
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1.2.3 Geometric Series
The sum (1.51) is called a geometric series, if the terms form a geometric sequence, i.e., the ratio of two
successive terms is a constant:

ai+1

ai
= q = const holds, so ai = a0q

i. (1.54a)

Thus holds:

sn = a0 + a0q + a0q
2 + · · ·+ a0q

n = a0
qn+1 − 1

q − 1
for q �= 1, (1.54b)

sn = (n+ 1)a0 for q = 1. (1.54c)

For n → ∞ (see 7.2.1.1, 2., p. 459), there is an infinite geometric series, which has a limit if |q| < 1,
and this limit is called sum s:

s =
a0

1− q
. (1.54d)

1.2.4 Special Finite Series

1 + 2 + 3 + · · ·+ (n− 1) + n =
n(n+ 1)

2
, (1.55)

p+ (p+ 1) + (p+ 2) + · · ·+ (p+ n) =
(n+ 1)(2p+ n)

2
, (1.56)

1 + 3 + 5 + · · ·+ (2n− 3) + (2n− 1) = n2 , (1.57)

2 + 4 + 6 + · · ·+ (2n− 2) + 2n = n(n+ 1) , (1.58)

12 + 22 + 32 + · · ·+ (n− 1)2 + n2 =
n(n+ 1)(2n+ 1)

6
, (1.59)

13 + 23 + 33 + · · ·+ (n− 1)3 + n3 =
n2(n+ 1)2

4
, (1.60)

12 + 32 + 52 + · · ·+ (2n− 1)2 =
n(4n2 − 1)

3
, (1.61)

13 + 33 + 53 + · · ·+ (2n− 1)3 = n2(2n2 − 1) , (1.62)

14 + 24 + 34 + · · ·+ n4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
, (1.63)

1 + 2x+ 3x2 + · · ·+ nxn−1 =
1− (n+ 1)xn + nxn+1

(1− x)2
(x �= 1) . (1.64)

1.2.5 MeanValues
(See also 16.3.4.1, 1., p. 839 and 16.4, p. 848)

1.2.5.1 ArithmeticMean or Arithmetic Average
The arithmetic mean of the n quantities a1, a2, . . . , an is the expression

xA =
a1 + a2 + · · ·+ an

n
=

1

n

n∑
k=1

ak . (1.65a)

For two values a and b holds:

xA =
a+ b

2
. (1.65b)

The values a , xA and b form an arithmetic sequence.
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1.2.5.2 GeometricMean or Geometric Average
The geometric mean of n positive quantities a1, a2, . . . , an is the expression

xG = n
√
a1a2 . . . an =

(
n∏

k=1

ak

) 1
n

. (1.66a)

For two positive values a and b holds

xG =
√
ab . (1.66b)

a b

xG.

a)

xG

b
a

.

b)

Figure 1.3

The values a , xG and b form a geometric sequence.
If a and b are given line segments, then a segment

with length xG =
√
ab can be given by the help of

one of the constructions shown in Fig. 1.3a or in
Fig. 1.3b.
A special case of the geometric mean is given by di-
viding a line segment according to the golden sec-
tion (see 3.5.2.3, 3., p. 194).

1.2.5.3 HarmonicMean
The harmonic mean of n quantities a1, a2, . . . , an (ai �= 0; i = 1, 2, . . . , n) is the expression

xH =
[
1

n
(
1

a1
+

1

a2
+ · · ·+ 1

an
)
]−1

=

[
1

n

n∑
k=1

1

ak

]−1

. (1.67a)

For two values a and b holds

xH =
[
1

2

(
1

a
+

1

b

)]−1

, xH =
2ab

a+ b
. (1.67b)

1.2.5.4 QuadraticMean
The quadratic mean of n quantities a1, a2,. . . , an is the expression

xQ =

√
1

n
(a12 + a22 + · · ·+ an2) =

√√√√ 1

n

n∑
k=1

a2k . (1.68a)

For two values a and b holds

xQ =

√
a2 + b2

2
. (1.68b)

The quadratic mean is important in the theory of observational error (see 16.4, p. 848).

1.2.5.5 Relations Between theMeans of Two Positive Values

For xA =
a+ b

2
, xG =

√
ab , xH =

2ab

a+ b
, xQ =

√
a2 + b2

2
we have

1. if a < b, then

a < xH < xG < xA < xQ < b , (1.69a)

2. if a = b, then

a = xA = xG = xH = xQ = b . (1.69b)
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1.3 BusinessMathematics
Business calculations are based on the use of arithmetic and geometric series, on formulas (1.52a)–
(1.52c) and (1.54a)–(1.54d). However these applications in banking are so varied and special that a
special discipline has developed using specific terminology. So business arithmetic is not confined only
to the calculation of the principal by compound interest or the calculation of annuities. It also includes
the calculation of interest, repayments, amortization, calculation of instalment payments, annuities,
depreciation, effective interest yield and the yield on investment. Basic concepts and formulas for cal-
culations are discussed below. For studying financial mathematics in detail, you will have to consult
the relevant literature on the subject (see [1.2], [1.8]).

Insurance mathematics and risk theory use the methods of probability theory and mathematical statis-
tics, and they represent a separate discipline, so they don’t be discussed here (see [1.4], [1.5]).

1.3.1 Calculation of Interest or Percentage

1.3.1.1 Percentage or Interest

The expression p percent of K means
p

100
K, where K denotes the principal in business mathematics.

The symbol for percent is %, i.e., the following equalities hold:

p% =
p

100
or 1% = 0.01. (1.70)

1.3.1.2 Increment

If K is raised by p%, the increased value is

K̃ = K
(
1 +

p

100

)
. (1.71)

Relating the incrementK
p

100
to the new value K̃, the proportion isK

p

100
: K̃ = p̃ : 100, so K̃ contains

p̃ =
p · 100
100 + p

(1.72)

percent of increment.

If an article has a value of e 200 and a 15% extra charge is added, the final value ise 230. This price

contains p̃ =
15 · 100
115

= 13.04 percent increment for the user.

1.3.1.3 Discount or Reduction

Reducing the value K by p% rebate yields the reduced value

K̃ = K
(
1− p

100

)
. (1.73)

Comparing the reduction K
p

100
to the new value K̃ gives

p̃ =
p · 100
100− p

(1.74)

percent of rebate.

If an article has a value e 300, and they give a 10% discount, it will be sold for e 270. This price

contains p̃ =
10 · 100

90
= 11.11 percent rebate for the buyer.
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1.3.2 Calculation of Compound Interest

1.3.2.1 Interest

Interest is either payment for the use of a loan or it is a revenue realized from a receivable. For a principal
K, placed for a whole period of interest (usually one year),

K
p

100
(1.75)

interest is paid at the end of the period of interest. Here p is the rate of interest for the period of interest,
and one says that p% interest is paid for the principal K.

1.3.2.2 Compound Interest

Compound interest is computed on the principal and on any interest earned that has not been paid or
withdrawn. It is the return on the principal for two or more time periods. The interest of the principal
increased by interest is called compound interest.
In the following different cases are discussed which depend on how the principal is changing.

1. Single Deposit
Compounded annually the principal K increases after n years up to the final value Kn. At the end of
the n-th year this value is:

Kn = K
(
1 +

p

100

)n

. (1.76)

For a briefer notation the substitution 1 +
p

100
= q is used and q is called the accumulation factor or

growth factor.
Interest may be compounded for any period of time: annually, half-annually, monthly, daily, and so on.
Dividing the year intom equal interest periods the interest will be added to the principalK at the end

of every period. Then the interest is K
p

100m
for one interest period, and the principal increases after

n years with m interest periods up to the value

Km·n = K
(
1 +

p

100m

)m·n
. (1.77)

The quantity
(
1 +

p

100

)
is known as the nominal rate, and

(
1 +

p

100m

)m

as the effective rate.

A principal of e 5000, with a nominal interest 7.2% annually, increases within 6 years a) com-
pounded annually toK6 = 5000(1+0.072)6 = e 7588.20, b) compounded monthly toK72 = 5000(1+
0.072/12)72 = e 7691.74.

2. Regular Deposits
Suppose depositing the same amountE in equal intervals. Such an interval must be equal to an interest
period. The depositions can be made at the beginning of the interval, or at the end of the interval. At
the end of the n-th interest period the balance Kn is

a) Depositing at the Beginning:

Kn = Eq
qn − 1

q − 1
. (1.78a)

b) Depositing at the End:

Kn = E
qn − 1

q − 1
. (1.78b)

3. Depositing in the Course of the Year
A year or an interest period is divided into m equal parts. At the beginning or at the end of each of
these time periods the same amount E is deposited and bears interest until the end of the year. In this
way, after one year the balance K1 is
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a) Depositing at the Beginning:

K1 = E

[
m+

(m+ 1)p

200

]
. (1.79a)

b) Depositing at the End:

K1 = E

[
m+

(m− 1)p

200

]
. (1.79b)

In the second year the total K1 bears interest, and further deposits and interests are added like in the
first year, so after n years the balance Kn for midterm deposits and yearly interest payment is:

a) Depositing at the Beginning:

Kn = E

[
m+

(m+ 1)p

200

]
qn − 1

q − 1
. (1.80a)

b) Depositing at the End:

Kn = E

[
m+

(m− 1)p

200

]
qn − 1

q − 1
. (1.80b)

At a yearly rate of interest p = 5.2% a depositor deposits e 1000 at the end of every month. After
how many years will it reach the balance e 500 000?

From (1.80b), for instance, from 500 000 = 1000
[
12 +

11 · 5.2
200

]
· 1.052

n − 1

0.052
, follows the answer, n =

22.42 years.

1.3.3 AmortizationCalculus

1.3.3.1 Amortization

Amortization is the repayment of credits. The assumptions:
1. For a debt S the debtor is charged at p% interest at the end of an interest period.
2. After N interest period the debt is completely repaid.

The charge of the debtor consists of interest and principal repayment for every interest period. If the
interest period is one year, the amount to be paid during the whole year is called an annuity.

There are different possibilities for a debtor. For instance, the repayments can be made at the interest
date, or meanwhile; the amount of repayment can be different time by time, or it can be constant during
the whole term.

1.3.3.2 Equal Principal Repayments

The amortization instalments are paid during the year, but no midterm compound interest is calcu-
lated. The following notation should be used:
• S debt (interest payment at the end of a period with p%),

• T =
S

mN
principal repayment (T = const),

• m number of repayments during one interest period,
• N number of interest periods until the debt is fully repaid.
Besides the principal repayments the debtor also has to pay the interest charges:

a) InterestZn for then-th Interest Period:

Zn =
p S

100

[
1− 1

N

(
n− m+ 1

2m

)]
. (1.81a)

b) Total Interest Z to be Paid for a Debt
S,mN Times, During N Interest Periods
with an Interest Rate p% :

Z =
N∑

n=1

Zn =
p S

100

[
N − 1

2
+

m+ 1

2m

]
. (1.81b)

A debt of e 60 000 has a yearly interest rate of 8%. The prin-
cipal repayment of e 1000 for 60 months should be paid at the
end of the months. How much is the actual interest at the end of
each year? The interest for every year is calculated by (1.81a) with
S = 60000, p = 8, N = 5 and m = 12. They are enumerated in
the annexed table.

1. year: Z1 = e 4360
2. year: Z2 = e 3400
3. year: Z3 = e 2440
4. year: Z4 = e 1480
5. year: Z5 = e 520

Z = e 12200
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The total interest can be calculated also by (1.81b) as Z =
8 · 60000

100

[
5− 1

2
+

13

24

]
= e 12 200.

1.3.3.3 Equal Annuities

For equal principal repayments T =
S

mN
the interest payable decreases over the course of time (see

the previous example). In contrast to this, in the case of equal annuities the same amount is repaid
for every interest period. A constant annuity A containing the principal repayment and the interest is
repaid, i.e., the charge of the debtor is constant during the whole period of repayment.
With the notation
• S debt (interest payment of p% at the end of a period),
• A annuity for every interest period (A const),
• a one instalment paid m times per interest period (a const),

• q = 1 +
p

100
the accumulation factor,

after n interest periods the remaining outstanding debt Sn is:

Sn = S qn − a

[
m+

(m− 1)p

200

]
qn − 1

q − 1
. (1.82)

Here the term Sqn denotes the value of the debt S after n interest periods with compound interest
(see (1.76)). The second term in (1.82) gives the value of the midterm repayments a with compound
interest (see (1.80b) with E = a). For the annuity holds

A = a

[
m+

(m− 1)p

200

]
. (1.83)

Here payingA once means the same as paying a m times. From (1.83) it follows thatA ≥ ma. Because
after N interest periods the debt must be completely repaid, from (1.82) for SN = 0 considering (1.83)
for the annuity holds:

A = S qN
q − 1

qN − 1
= S

q − 1

1− q−N
. (1.84)

To solve a problem of business mathematics, from (1.84), any of the quantities A, S, q or N can be
expressed, if the others are known.

A: A loan of e 60 000 bears 8% interest per year, and is to be repaid over 5 years in equal instalments.
How much is the yearly annuity A and the monthly instalment a? From (1.84) and (1.83) we get:

A = 60 000
0.08

1− 1

1.085

= e 15 027.39, a =
15027.39

12 +
11 · 8
200

= e 1207.99.

B: A loan of S =e 100 000 is to be repaid duringN = 8 years in equal annuities with an interest rate
of 7.5%. At the end of every year e 5000 extra repayment must be made. How much will the monthly

instalment be? For the annuity A per year according to (1.84) follows A = 100 000
0.075

1− 1

1.0758

=

e 17 072.70. BecauseA consists of 12 monthly instalments a, and because of the e 5000 extra payment

at the end of the year, from (1.83) A = a
[
12 +

11 · 7.5
200

]
+ 5000 = 17 072.70 holds, so the monthly

charge is a = e 972.62.
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1.3.4 AnnuityCalculations

1.3.4.1 Annuities
If a series of payments is made regularly at the same time intervals, in equal or varying amounts, at the
beginning or at the end of the interval, it is called annuity payments. To distinguish are:

a) Payments on an Account The periodic payments, called rents, are paid on an account and bear
compound interest. Therefore the formulas of 1.3.2 are to be used.

b) Receipt of Payments The payments of rent are made from capital bearing compound interest.
Here the formulas of the annuity calculations in 1.3.3 are to be used, where the annuities are called
rents. If no more than the actual interest is paid as a rent, it is called a perpetual annuity.

Rent payments (deposits and payoffs) can be made at the interest terms, or at shorter intervals during
the period of interest, i.e. in the course of the year.

1.3.4.2 Future Amount of an Ordinary Annuity
The date of the interest calculations and the payments should coincide. The interest is calculated at
p% compound interest, and the payments (rents) on the account are always the same, R. The future
value of the ordinary annuityRn, i.e., the amount to which the regular deposits increase after n periods
amounts to:

Rn = R
qn − 1

q − 1
with q = 1 +

p

100
. (1.85)

The present value of an ordinary annuityR0 is the amount which should be paid at the beginning of the
first interest period (one time) to reach the final value Rn with compound interest during n periods:

R0 =
Rn

qn
with q = 1 +

p

100
. (1.86)

A man claims e 5000 at the end of every year for 10 years from a firm. Before the first payment
the firm declares bankruptcy. Only the present value of the ordinary annuity R0 can be asked from the
administration of the bankrupt’s estate. With an interest of 4% per year the man gets:

R0 =
1

qn
R
qn − 1

q − 1
= R

1− q−n

q − 1
= 5000

1− 1.04−10

0.04
= e 40 554.48.

1.3.4.3 Balance aftern Annuity Payments
For ordinary annuity payments capital K is at our disposal bearing p% interest. After every interest
period an amount r is paid. The balance Kn after n interest periods, i.e., after n rent payments, is:

Kn = Kqn −Rn = Kqn − r
qn − 1

q − 1
with q = 1 +

p

100
. (1.87a)

Conclusions from (1.87a):

r = K
p

100
(1.87b) ConsequentlyKn = K holds, so the capital does not change. This

is the case of perpetual annuity.

r > K
p

100
(1.87c) The capital will be completely used up after N rent payments.

From (1.87a) it follows for KN = 0:

K =
r

qN
qN − 1

q − 1
. (1.87d)

If midterm interest is calculated and midterm rents are paid, and the original interest period is divided
into m equal intervals, then in the formulas (1.85)–(1.87a) n is replaced by mn and accordingly q =

1 +
p

100
by q = 1 +

p

100m
.
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What amount must be deposited monthly at the end of the month for 20 years, from which a rent of
e 2000 should be paid monthly for 20 years, and the interest period is one month with an interest rate
of 0.5%.
From (1.87d) follows for n = 20 · 12 = 240 the sum K which is necessary for the required payments:

K =
2000

1.005240
1.005240 − 1

0.005
= e 279 161.54. The necessary monthly deposits R are given by (1.85):

R240 = 279 161.54 = R
1.005240 − 1

0.005
, i.e., R = e 604.19.

1.3.5 Depreciation

1.3.5.1 Methods of Depreciation
Depreciation is the term most often used to indicate that assets have declined in service potential in
a given year either due to obsolescence or physical factors. Depreciation is a method whereby the
original (cost) value at the beginning of the reporting year is reduced to the residual value at year-end.
The following concepts are used:
• A depreciation base,
•N useful life (given in years),
•Rn residual value after n years (n ≤ N),
• an (n = 1, 2, . . . , N) depreciation rate in the n-th year.

The methods of depreciation differ from each other depending on the amortization rate:
• straight-line method, i.e., equal yearly rates,
• decreasing-charge method, i.e., decreasing yearly rates.

1.3.5.2 Straight-LineMethod
The yearly depreciations are constant, i.e., for amortization rates an and the remaining value Rn after
n years follows:

an =
A−RN

N
= a, (1.88) Rn = A− n

A−RN

N
(n = 1, 2, . . . , N). (1.89)

Substituting RN = 0, then the value of the given thing is reduced to zero afterN years, i.e., it is totally
depreciated.

The purchase price of a machine isA = e 50 000. In 5 years it should be depreciated to a valueR5 =

Year Depreciation Depreciation Residual Cumulated depr. in %
base expense value of the depr. base

1 50 000 8000 42 000 16.0
2 42 000 8000 34 000 19.0
3 34 000 8000 26 000 23.5
4 26 000 8000 18 000 30.8
5 18 000 8000 10 000 44.4

e 10 000.
Linear depreciation according to
(1.88) and (1.89) yields the an-
nexed amortization schedule:
It shows that the percentage of ac-
cumulated depreciation with re-
spect to the actual initial value is
increasing.

1.3.5.3 Arithmetically Declining Balance Depreciation
In this case the depreciation is not constant. It is decreasing yearly by the same amount d, by the
so-called multiple. For depreciation in the n-th year follows:

an = a1 − (n− 1)d (n = 2, 3, . . . , N + 1; a1 and d are given). (1.90)

Considering the equality A−RN =
N∑

n=1
an from the previous equation it follows that:

d =
2[Na1 − (A−RN)]

N(N − 1)
. (1.91)
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For d = 0 follows the special case of straight-line depreciation. If d > 0, it follows from (1.91) that

a1 >
A−RN

N
= a, (1.92)

where a is the depreciation rate for straight-line depreciation. The first depreciation rate a1 of the
arithmetically-declining balance depreciation must satisfy the following inequality:

A−RN

N
< a1 < 2

A−RN

N
. (1.93)

A machine of e 50 000 purchase price is to be depreciated to the value of e 10 000 within 5 years by

Year Depretiation Depreciation Residual Depreciation in %
base expense value of depr. base

1 50 000 15 000 35 000 30.0
2 35 000 11 500 23 500 32.9
3 23 500 8 000 15 500 34.0
4 15 500 4 500 11 000 29.0
5 11 000 1 000 10 000 9.1

arithmetically declining deprecia-
tion. In the first year e 15 000
should be depreciated.
The annexed depreciation sched-
ule is calculated by the given for-
mulas, and it shows that with the
exception of the last rate the per-
centage of depreciation is fairly
equal.

1.3.5.4 Digital Declining Balance Depreciation
Digital depreciation is a special case of arithmetically declining depreciation. Here it is required that
the last depreciation rate aN should be equal to the multiple d. From aN = d it follows that

d =
2(A−RN)

N(N + 1)
, (1.94a) a1 = Nd, a2 = (N − 1)d, . . . , aN = d. (1.94b)

The purchase price of a machine is e A = 50 000. This machine is to be depreciated in 5 years to
Year Depreciation Depreciation Residual Depreciation in %

base expense value of the depr. base
1 50 000 a1 = 5d = 13 335 36 665 26.7
2 36 665 a2 = 4d = 10 668 25 997 29.1
3 25 997 a3 = 3d = 8 001 17 996 30.8
4 17 996 a4 = 2d = 5 334 12 662 29.6
5 12 662 a5 = d = 2 667 9 995 21.1

the value R5 = e 10 000 by
digital depreciation.
The annexed depreciation
schedule, calculated by the
given formulas, shows that
the percentage of the de-
preciation is fairly equal.

1.3.5.5 Geometrically Declining Balance Depreciation
Consider geometrically declining depreciation where p% of the actual value is depreciated every year.
For the residual value Rn after n years holds:

Rn = A
(
1− p

100

)n

(n = 1, 2, . . .) . (1.95)

Usually A (the acquisition cost) is given. The useful life of the asset is N years long. If from the quan-
tities RN , p and N , two is given, the third one can be calculated by the formula (1.95).

A: A machine with a purchase value e 50 000 is to be geometrically depreciated yearly by 10%.
After how many years will its value drop below e 10 000 for the first time? Based on (1.95), yields

N =
ln(10 000/50 000)

ln(1− 0.1)
= 15.27 years.

B: For a purchase price ofA =e 1000 the residual valueRn should be represented forn = 1, 2, . . . , 10
years by a) straight-line, b) arithmetically declining, c) geometrically declining depreciation. The re-
sults are shown in Fig. 1.4.
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1.3.5.6 Depreciation with Different
Types of Depreciation Account
Since in the case of geometrically declining deprecia-
tion the residual value cannot become equal to zero
for a finite n, it is reasonable after a certain time, e.g.,
after m years, to switch over to straight-line depreci-
ation. m is to be determined to an amount that from
this time on the geometrically declining depreciation
rate is smaller than the straight-line depreciation rate.
From this requirement it follows that:

m > N − 100

p
. (1.96)

Here m is the last year of geometrically declining de-
preciation andN is the last year of linear depreciation
when the residual value becomes zero.

A machine with a purchase value of e 50 000 is to be depreciated to zero within 15 years, for m
years by geometrically declining depreciation with 14% of the residual value, then with the straight-

line method. From (1.96) followsm > 15− 100

14
= 7.76, i.e., afterm = 8 years it is reasonable to switch

over to straight-line depreciation.

1.4 Inequalities

1.4.1 Pure Inequalities
1.4.1.1 Definitions

1. Inequalities
Inequalities are comparisons of two real algebraic expressions represented by one of the following signs:

Type I > (“greater”) Type II < (“smaller”)
Type III �= (“not equal”) Type IIIa <> (“greater or smaller”)
Type IV ≥ (“greater or equal”) Type IVa �< (“not smaller”)
Type V ≤ (“smaller or equal”) Type Va �> (“not greater”)

The notation III and IIIa, IV and IVa, and V and Va have the same meaning, so they can be replaced
by each other. The notation III can also be used for those types of quantities for which the notions of
“greater” or “smaller” cannot be defined, for instance for complex numbers or vectors, but in this case
it cannot be replaced by IIIa.

2. Identical Inequalities, Inequalities of the Same and of the Opposite Sense,
Equivalent Inequalities

1. Identical Inequalities are valid for arbitrary values of the letters contained in them.
2. Inequalities of the Same Sense belong to the same type from the first two, i.e., both belong to
type I or both belong to type II.
3. Inequalities of the Opposite Sense belong to different types of the first two, i.e., one to type
I, the other to type II.
4. Equivalent Inequalities are inequalities if they are valid exactly for the same values of the un-
knowns contained in them.

3. Solution of Inequalities
Similarly to equalities, inequalities can contain unknown quantities which are usually denoted by the
last letters of the alphabet. The solution of an inequality or a system of inequalities means the determi-
nation of the limits for the unknowns between which they can change, keeping the inequality or system



1.4 Inequalities 29

of inequalities true.

Solutions can be looked for any kind of inequality; mostly pure inequalities of type I and II are to be
solved.

1.4.1.2 Properties of Inequalities of Type I and II

1. Change the Sense of the Inequality

If a > b holds, then b < a is valid, (1.97a)

if a < b holds, then b > a is valid. (1.97b)

2. Transitivity

If a > b and b > c hold, then a > c is valid; (1.98a)

if a < b and b < c hold, then a < c is valid. (1.98b)

3. Addition and Subtraction of a Quantity

If a > b holds, then a± c > b± c is valid; (1.99a)

if a < b holds, then a± c < b± c is valid. (1.99b)

By adding or subtracting the same amount to the both sides of inequality, the sense of the inequality
does not change.

4. Addition of Inequalities

If a > b and c > d hold, then a+ c > b+ d is valid; (1.100a)

if a < b and c < d hold, then a+ c < b+ d is valid. (1.100b)

Two inequalities of the same sense can be added.

5. Subtraction of Inequalities

If a > b and c < d hold, then a− c > b− d is valid; (1.101a)

if a < b and c > d hold, then a− c < b− d is valid. (1.101b)

Inequalities of the opposite sense can be subtracted; the result keeps the sense of the first inequality.
Subtracting inequalities of the same sense is not allowed.

6. Multiplication and Division of an Inequality by a Quantity

If a > b and c > 0 hold, then ac > bc and
a

c
>

b

c
are valid, (1.102a)

if a < b and c > 0 hold, then ac < bc and
a

c
<

b

c
are valid, (1.102b)

if a > b and c < 0 hold, then ac < bc and
a

c
<

b

c
are valid, (1.102c)

if a < b and c < 0 hold, then ac > bc and
a

c
>

b

c
are valid. (1.102d)

Multiplication or division of both sides of an inequality by a positive value does not change the sense
of the inequality. Multiplication or division by a negative value changes the sense of the inequality.

7. Inequalities and Reciprocal Values

If 0 < a < b or a < b < 0 hold, then
1

a
>

1

b
is valid. (1.103)
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1.4.2 Special Inequalities

1.4.2.1 Triangle Inequality for Real Numbers

For arbitrary real numbers a, b, a1, a2, . . . , an, there are the inequalities

|a+ b| ≤ |a|+ |b| ; |a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an| . (1.104)

The absolute value of the sum of two or more real numbers is less than or equal to the sum of their
absolute values. The equality holds only if the summands have the same sign.

1.4.2.2 Triangle Inequality for Complex Numbers

For n complex numbers z1, z2, . . . , zn ∈ C∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ = |z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn| =
n∑

k=1

|zk|. (1.105)

1.4.2.3 Inequalities forAbsoluteValues ofDifferences ofReal andComplex
Numbers

For arbitrary real numbers a, b ∈ IR, there are the inequalities

||a| − |b|| ≤ |a− b| ≤ |a|+ |b|. (1.106)

The absolute value of the difference of two real numbers is less than or equal to the sum of their absolute
values, but greater than or equal to the absolute value of the difference of their absolute values. For
two arbitrary complex numbers z1, z2 ∈ C

||z1| − |z2|| ≤ |z1 − z2| ≤ |z1|+ |z2| . (1.107)

1.4.2.4 Inequality for Arithmetic andGeometricMeans
a1 + a2 + · · ·+ an

n
≥ n

√
a1a2 · · · an for ai > 0 . (1.108)

The arithmetic mean of n positive numbers is greater than or equal to their geometric mean. Equality
holds only if all the n numbers are equal.

1.4.2.5 Inequality for Arithmetic andQuadraticMeans∣∣∣∣a1 + a2 + · · ·+ an
n

∣∣∣∣ ≤
√
a12 + a22 + · · ·+ an2

n
. (1.109)

The absolute value of the arithmetic mean of numbers is less than or equal to their quadratic mean.

1.4.2.6 Inequalities for DifferentMeans of Real Numbers

For the harmonic, geometric, arithmetic, and quadratic means of two positive real numbers a and b
with a < b the following inequalities hold (see also 1.2.5.5, p. 20):

a < xH < xG < xA < xQ < b. (1.110a)

Here

xA =
a+ b

2
, xG =

√
ab , xH =

2ab

a+ b
, xQ =

√
a2 + b2

2
. (1.110b)

1.4.2.7 Bernoulli’s Inequality

For every real number a ≥ −1 and integer n ≥ 1 holds

(1 + a)n ≥ 1 + n a . (1.111)
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The equality holds only for n = 1 , or a = 0.

1.4.2.8 Binomial Inequality
For arbitrary real numbers a, b ∈ IR holds

|a b| ≤ 1

2
(a2 + b2) . (1.112)

1.4.2.9 Cauchy-Schwarz Inequality

1. Cauchy-Schwarz Inequality for Real Numbers
The Cauchy-Schwarz inequality holds for arbitrary real numbers ai, bj ∈ IR :

|a1b1 + a2b2 + · · ·+ anbn| ≤
√
a12 + a22 + · · ·+ an2

√
b1

2 + b2
2 + · · ·+ bn

2 (1.113a)

or

(a1b1 + a2b2 + · · ·+ anbn)
2 ≤ (a1

2 + a2
2 + · · ·+ an

2)(b1
2 + b2

2 + · · ·+ bn
2). (1.113b)

For two finite sequences of n real numbers, the sum of the pairwise products is less than or equal to
the product of the square roots of the sums of the squares of these numbers. Equality holds only if
a1 : b1 = a2 : b2 = · · · = an : bn.
If n = 3 and {a1, a2, a3} and {b1, b2, b3} are considered as vectors in a Cartesian coordinate system,
then the Cauchy-Schwarz inequality means that the absolute value of the scalar product of two vectors
is less than or equal to the product of absolute values of these vectors. If n > 3, then this statement
can be extended for vectors in n-dimensional Euclidean space.

2. Cauchy-Schwarz Inequality for Complex Numbers
Considering that for complex numbers |z|2 = z∗z (z∗ is the complex conjugate of z), the inequality
(1.113b) is valid also for arbitrary complex numbers zi, wj ∈ C:
(z1w1 + z2w2 + · · ·+ znwn)

∗(z1w1 + z2w2 + · · ·+ znwn)
≤ (z1

∗z1 + z2
∗z2 + · · ·+ zn

∗zn)(w1
∗w1 + w2

∗w2 + · · ·+ wn
∗wn).

3. Cauchy-Schwarz Inequality for Convergent Infinite Series and Integrals
An analogous statement to (1.113b) is the Cauchy-Schwarz inequality for convergent infinite series and
for certain integrals:( ∞∑

n=1

anbn

)2

≤
( ∞∑
n=1

an
2

)( ∞∑
n=1

bn
2

)
, (1.114)

[∫ b

a
f(x) ϕ(x) dx

]2
≤
(∫ b

a
[f(x)]2 dx

) (∫ b

a
[ϕ(x)]2 dx

)
. (1.115)

1.4.2.10 Chebyshev Inequality
If a1, a2, . . . , an, b1, b2, . . . , bn are real positive numbers, then the following inequalities hold:(

a1 + a2 + · · ·+ an
n

) (
b1 + b2 + · · ·+ bn

n

)
≤ a1b1 + a2b2 + · · ·+ anbn

n
(1.116a)

for a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn,

or a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn,

and (
a1 + a2 + · · ·+ an

n

) (
b1 + b2 + · · ·+ bn

n

)
≥ a1b1 + a2b2 + · · ·+ anbn

n
(1.116b)

for a1 ≤ a2 ≤ . . . ≤ an and b1 ≥ b2 ≥ . . . ≥ bn.

For two finite sequences withn positive numbers, the product of the arithmeticmeans of these sequences
is less than or equal to the aritmetic mean of the pairwise products if both sequences are increasing or
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both are decreasing; but the inequality is valid in the opposite sense if one of the sequences is increasing
and the other one is decreasing.

1.4.2.11 Generalized Chebyshev Inequality

If a1, a2, . . . , an, b1, b2, . . . , bn are real positive numbers, then the following inequalities hold:

k

√
a1k + a2k + · · ·+ ank

n

k

√
b1

k + b1
k + · · ·+ bn

k

n
≤ k

√
(a1b1)k + (a2b2)k + · · ·+ (anbn)k

n
(1.117a)

for a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn
or a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn

and

k

√
a1k + a2k + · · ·+ ank

n

k

√
b1

k + b1
k + · · ·+ bn

k

n
≥ k

√
(a1b1)k + (a2b2)k + · · ·+ (anbn)k

n
(1.117b)

for a1 ≤ a2 ≤ . . . ≤ an and b1 ≥ b2 ≥ . . . ≥ bn.

1.4.2.12 Hölder Inequality

1. Hölder Inequality for Series

If p and q are two real numbers such that
1

p
+

1

q
= 1 is fulfilled, and if x1, x2, . . . , xn and y1, y2, . . . , yn

are arbitrary 2n complex numbers, then the following inequality holds:

n∑
k=1

|xkyk| ≤
[

n∑
k=1

|xk|p
] 1

p
[

n∑
k=1

|yk|q
] 1

q

. (1.118a)

This inequality is also valid for countable infinite pairs of numbers:

∞∑
k=1

|xkyk| ≤
[ ∞∑
k=1

|xk|p
] 1

p
[ ∞∑
k=1

|yk|q
] 1

q

, (1.118b)

where from the convergence of the series on the right-hand side the convergence of the left-hand side
follows.

2. Hölder Inequality for Integrals

If f(x) and g(x) are two measurable functions on the measure space (X,A, μ) (see 12.9.2, p. 695), then
the following inequality holds:

∫
X

|f(x)g(x)|dμ ≤
⎡⎣∫
X

|f(x)|p dμ
⎤⎦ 1

p
⎡⎣∫
X

|g(x)|q dμ
⎤⎦ 1

q

. (1.118c)

1.4.2.13 Minkowski Inequality

1. Minkowski Inequality for Series

If p ≥ 1 holds, and {xk}k=∞
k=1 and {yk}∞k=1 with xk, yk ∈ C are two sequences of numbers, then holds:[ ∞∑

k=1

|xk + yk|p
] 1

p

≤
[ ∞∑
k=1

|xk|p
] 1

p

+

[ ∞∑
k=1

|yk|p
] 1

p

. (1.119a)
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2. Minkowski Inequality for Integrals
If f(x) and g(x) are two measurable functions on the measure space (X,A, μ) (see 12.9.2, p. 695), then
holds:⎡⎣∫

X

|f(x) + g(x)|pdμ
⎤⎦ 1

p

≤
⎡⎣∫
X

|f(x)|pdμ
⎤⎦ 1

p

+

⎡⎣∫
X

|g(x)|pdμ
⎤⎦ 1

p

. (1.119b)

1.4.3 Solution of Linear andQuadratic Inequalities
1.4.3.1 General Remarks
During the solution of an inequality it is transformed into equivalent inequalities step by step. Similarly
to the solution of an equation the same expression can be added to both sides; formally, it may seem
that a summand is brought from one side to the other, changing its sign. Furthermore one can multiply
or divide both sides of an inequality by a non-zero expression, where the inequality keeps its sense if
this expression has a positive value, and changes its sense if this expression has a negative value. An
inequality of first degree can always be transformed into the form

ax > b. (1.120)

The simplest form of an inequality of second degree is

x2 > m (1.121a) or x2 < m (1.121b)

and in the general case it has the form

ax2 + bx+ c > 0 (1.122a) or ax2 + bx+ c < 0. (1.122b)

1.4.3.2 Linear Inequalities
The linear inequality of first degree (1.120) has the solution

x >
b

a
for a > 0 (1.123a) and x <

b

a
for a < 0. (1.123b)

5x+ 3 < 8x+ 1, 5x− 8x < 1− 3, −3x < −2, x >
2

3
.

1.4.3.3 Quadratic Inequalities
Inequalities of second degree in the form

x2 > m (1.124a) and x2 < m (1.124b)

have solutions

a) x2 > m : For m ≥ 0 the solution is x >
√
m and x < −

√
m (|x| >

√
m), (1.125a)

for m < 0 the inequality obviously holds for any x. (1.125b)

b) x2 < m : For m > 0 the solution is −
√
m < x <

√
m (|x| <

√
m), (1.126a)

for m ≤ 0 there is no solution. (1.126b)

1.4.3.4 General Case for Inequalities of SecondDegree

ax2 + bx+ c > 0 (1.127a) or ax2 + bx+ c < 0. (1.127b)

First dividing the inequality by a. If a < 0 then the sense of the inequality changes, but in any case it
will have the form

x2 + px+ q < 0 (1.127c) or x2 + px+ q > 0. (1.127d)
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By completing the square it follows that(
x+

p

2

)2

<
(
p

2

)2

− q (1.127e) or
(
x+

p

2

)2

>
(
p

2

)2

− q. (1.127f)

Denoting x+
p

2
by z and

(
p

2

)2

− q by m, the inequalities

z2 < m (1.128a) or z2 > m (1.128b)

can be obtained. Solving these inequalities yields the values for x.

A: −2x2 + 14x− 20 > 0, x2 − 7x+ 10 < 0,
(
x− 7

2

)2

<
9

4
, −3

2
< x− 7

2
<

3

2
,

−3

2
+

7

2
< x <

3

2
+

7

2
.

The solution is 2 < x < 5.

B: x2 + 6x+ 15 > 0, (x+ 3)2 > −6. The inequality holds identically.

C: −2x2 + 14x− 20 < 0,
(
x− 7

2

)2

>
9

4
, x− 7

2
>

3

2
and x− 7

2
< −3

2
.

The solution intervals are x > 5 and x < 2.

1.5 ComplexNumbers

1.5.1 Imaginary andComplexNumbers

1.5.1.1 Imaginary Unit
The imaginary unit is denoted by i, which represents a number different from any real number, and
whose square is equal to −1. In electronics, instead of i the letter j is usually used to avoid accidently
confusing it with the intensity of current, also denoted by i. The introduction of the imaginary unit leads
to the generalization of the notion of numbers to the complex numbers, which play a very important role
in algebra and analysis. The complex numbers have several interpretations in geometry and physics.

1.5.1.2 Complex Numbers
The algebraic form of a complex number is

z = a+ i b. (1.129a)

When a and b take all possible real values, then one gets all possible complex numbers z. The number
a is the real part, the number b is the imaginary part of the number z:

a = Re(z), b = Im(z). (1.129b)

For b = 0 it is z = a, so the real numbers form a subset of the complex numbers. For a = 0 it is z = i b,
which is a “pure imaginary number”.
The total set of complex numbers is denoted by C .

Remark: Functions w = f(z) with complex variable z = x + i y will be discussed in function theory
(see 14.1, p. 731 ff).

1.5.2 GeometricRepresentation

1.5.2.1 Vector Representation
Similarly to the representation of the real numbers on the numerical axis, the complex numbers can be
represented as points in the so-called Gaussian number plane: A number z = a + i b is represented by
the point whose abscissa is a and ordinate is b (Fig. 1.5). The real numbers are on the axis of abscissae
which is also called the real axis, the pure imaginary numbers are on the axis of ordinates which is
also called the imaginary axis. On this plane every point is given uniquely by its position vector or
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radius vector (see 3.5.1.1, 6., p. 181), so every complex number corresponds to a vector which starts at
the origin and is directed to the point defined by the complex number. So, complex numbers can be
represented as points or as vectors (Fig. 1.6).

1.5.2.2 Equality of Complex Numbers

Two complex numbers are equal by definition if their real parts and imaginary parts are equal to each
other. From a geometric viewpoint, two complex numbers are equal if the position vectors correspond-
ing to them are equal. In the opposite case the complex numbers are not equal. The notions “greater”
and “smaller” are meaningless for complex numbers.

0 Re(z)

Im(z)

a

b
z=a+ib

Figure 1.5

z

Re(z)0

Im(z)

Figure 1.6

Re(z)0

z

Im(z)

b

a

�

�

Figure 1.7

1.5.2.3 Trigonometric Form of Complex Numbers

The form

z = a+ i b (1.130a)

is called the algebraic form of the complex number. Using polar coordinates yields the trigonometric
form of the complex numbers (Fig. 1.7):

z = ρ(cosϕ+ i sinϕ). (1.130b)

The length of the position vector of a point ρ = |z| is called the absolute value or the magnitude of the
complex number , the angle ϕ, given in radian measure, is called the argument of the complex number
and is denoted by arg z:

ρ = |z|, ϕ = arg z = ω + 2kπ with 0 ≤ ρ < ∞, −π < ω ≤ +π, k = 0,±1,±2, . . . . (1.130c)

One calls ϕ the principal value of the argument of the complex number.
The relations between ρ , ϕ and a , b for a point are the same as between the Cartesian and polar
coordinates of a point (see 3.5.2.2, p. 192):

a = ρ cosϕ, (1.131a) b = ρ sinϕ, (1.131b) ρ =
√
a2 + b2, (1.131c)

ϕ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arccos

a

ρ
for b ≥ 0, ρ > 0,

− arccos
a

ρ
for b < 0, ρ > 0,

undefined for ρ = 0

(1.131d)

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan
b

a
for a > 0,

+
π

2
for a = 0, b > 0,

−π

2
for a = 0, b < 0,

arctan
b

a
+ π for a < 0, b ≥ 0,

arctan
b

a
− π for a < 0, b < 0.

(1.131e)
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The complex number z = 0 has absolute value equal to zero; its argument arg 0 is undefined.

1.5.2.4 Exponential Form of a Complex Number
The representation

z = ρeiϕ (1.132a)

is called the exponential form of the complex number, where ρ is the magnitude and ϕ is the argument.
The Euler relation is the formula

eiϕ = cosϕ+ i sinϕ . (1.132b)

Representation of a complex number in three forms:

a) z = 1 + i
√
3 (algebraic form), b) z = 2

(
cos

π

3
+ i sin

π

3

)
(trigonometric form),

c) z = 2 ei
π
3 (exponential form), considering the principal value of it.

Without restriction to the principal value holds the representation

d) z = 1+i
√
3 = 2 exp

[
i
(
π

3
+ 2kπ

)]
= 2

[
cos

(
π

3
+ 2kπ

)
+ i sin

(
π

3
+ 2kπ

)]
(k = 0,±1,±2, . . .) .

1.5.2.5 Conjugate Complex Numbers
Two complex numbers z and z∗ are called conjugate complex numbers if their real parts are equal and
their imaginary parts differ only in sign:

Re(z∗) = Re(z) , Im(z∗) = −Im(z) . (1.133a)

The geometric interpretation of points corresponding to the conjugate complex numbers are points
symmetric with respect to the real axis. Conjugate complex numbers have the same absolute value,
their arguments differ only in sign:

z = a+ i b = ρ(cosϕ+ i sinϕ) = ρeiϕ, (1.133b)

z∗ = a− i b = ρ(cosϕ− i sinϕ) = ρe−iϕ. (1.133c)

Instead of z∗ one often uses the notation z for the conjugate of z.

1.5.3 CalculationwithComplexNumbers

1.5.3.1 Addition and Subtraction
Addition and subtraction of two or more complex numbers given in algebraic form is defined by the
formula

z1 + z2 − z3 + · · · = (a1 + i b1) + (a2 + i b2)− (a3 + i b3) + · · ·
= (a1 + a2 − a3 + · · ·) + i (b1 + b2 − b3 + · · ·) . (1.134)

The calculation can be done in the same way as doing with usual binomials. As a geometric interpreta-
tion of addition and subtraction can be considered the addition and subtraction of the corresponding
vectors (Fig. 1.8). For these the usual rules for vector calculations are to be used (see 3.5.1.1, p. 181).
For z and z∗, z + z∗ is always real, and z − z∗ is pure imaginary.

Re(z)0

Im(z)

z
3

z
2

z +z
1 2z

1

z +z -z
1 2 3

-z
3

Figure 1.8
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Im(z) z z
1 2

z
2

z
1

1
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z

zi

Im(z)

Figure 1.10
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1.5.3.2 Multiplication
The multiplication of two complex numbers z1 and z2 given in algebraic form is defined by the following
formula

z1z2 = (a1 + i b1)(a2 + i b2) = (a1a2 − b1b2) + i (a1b2 + b1a2) . (1.135a)

For numbers given in trigonometric form holds

z1z2 = [ρ1(cosϕ1 + i sinϕ1)][ρ2(cosϕ2 + i sinϕ2)]

= ρ1ρ2[cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)], (1.135b)

i.e., the absolute value of the product is equal to the product of the absolute values of the factors, and
the argument of the product is equal to the sum of the arguments of the factors. The exponential form
of the product is

z1z2 = ρ1ρ2e
i(ϕ1+ϕ2). (1.135c)

The geometric interpretation of the product of two complex numbers z1 and z2 is a vector (Fig. 1.9). It
is generated by rotation of the vector corresponding to z1 by the argument of the vector z2 (clockwise or
counterclockwise according to the sign of this argument), and the length of the vector will be stretched
by |z2|.
The product z1z2 can also be represented with similar triangles (Fig. 1.9). The multiplication of a
complex number z by i means a rotation by π/2 and the absolute value does not change (Fig. 1.10).
For z and z∗:

zz∗ = ρ2 = |z|2 = a2 + b2. (1.136)

1.5.3.3 Division
Division is defined as the inverse operation of multiplication. For complex numbers given in algebraic
form holds

z1
z2

=
a1 + i b1
a2 + i b2

=
a1a2 + b1b2

a22 + b2
2 + i

a2b1 − a1b2

a22 + b2
2 . (1.137a)

For complex numbers given in trigonometric form holds

z1
z2

=
ρ1(cosϕ1 + i sinϕ1)

ρ2(cosϕ2 + i sinϕ2)
=

ρ1
ρ2

[cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2)] , (1.137b)

i.e., the absolute value of the quotient is equal to the ratio of the absolute values of the dividend and
the divisor; the argument of the quotient is equal to the difference of the arguments.
For the exponential form follows

z1
z2

=
ρ1
ρ2

ei(ϕ1−ϕ2). (1.137c)

In the geometric representation the vector corresponding to z1/z2 can be generated by a rotation of the
vector representing z1 by − arg z2, and then by a contraction by |z2|.
Remark: Division by zero is impossible.

1.5.3.4 General Rules for the Basic Operations
Calculations with complex numbers z = a+ i b are to be done in the same way as doing with ordinary
binomials, but considering i 2 = −1. Dividing a complex number by a complex number first the imag-
inary part of the denominator has to be removed by multiplying the numerator and the denominator
of the fraction by the complex conjugate of the divisor. This is possible because

(a+ i b)(a− i b) = a2 + b2 (1.138)

is a real number.

(3− 4i )(−1 + 5i )2

1 + 3i
+

10 + 7i

5i
=

(3− 4i )(1− 10i − 25)

1 + 3i
+

(10 + 7i )i

5i i
=

−2(3− 4i )(12 + 5i )

1 + 3i
+
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7− 10i

5
=

−2(56− 33i )(1− 3i )

(1 + 3i )(1− 3i )
+
7− 10i

5
=

−2(−43− 201i )

10
+
7− 10i

5
=

1

5
(50+191i ) = 10+38.2i .

1.5.3.5 Taking Powers of Complex Numbers
The n-th power of a complex number could be calculated using the binomial formula, but it would
be very inconvenient. For practical reasons the trigonometric form is to be used and the so-called de
Moivre formula:

[ρ(cosϕ+ i sinϕ)]n = ρn(cosnϕ+ i sinnϕ) , (1.139a)

i.e., the absolute value is raised to the n-th power, and the argument is multiplied by n. In particular,
holds:

i 2 = −1, i 3 = −i , i 4 = +1 (1.139b) in general i 4n+k = i k . (1.139c)

1.5.3.6 Taking then-th Root of a Complex Number
Taking of the n-th root is the inverse operation of taking powers. For z = ρ(cosϕ+ i sinϕ) �= 0 the

notation

z1/n = n
√
z (n > 0, integer), (1.140a)

is the shorthand notation for the n different values

ωk = n
√
ρ

(
cos

ϕ+ 2kπ

n
+ i sin

ϕ+ 2kπ

n

)
,

(k = 0, 1, 2, . . . , n− 1). (1.140b)

While addition, subtraction, multiplication, division, and tak-
ing a power with integer exponent have unique results, taking
the n-th root has n different solutions ωk.
The geometric interpretations of the points ωk are the vertices
of a regular n-gon whose center is at the origin. In Fig. 1.11
the six values of 6

√
z are represented.
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1.6 Algebraic andTranscendental Equations

1.6.1 TransformingAlgebraic Equations toNormal Form
1.6.1.1 Definition
The variable x in the equality

F (x) = f(x) (1.141)

is called the unknown if the equality is valid only for certain values x1, x2, . . . , xn of the variable, and
these values are called the solutions or the roots of the equation. Two equations are considered equiv-
alent if they have exactly the same roots.
An equation is called an algebraic equation if the functions F (x) and f(x) are algebraic, i.e., they are
rational or irrational expressions; of course one of them can be constant. Every algebraic equation can
be transformed into the normal form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0 (1.142)

by algebraic transformations. The roots of the original equation occur among the roots of the normal
form, but under certain circumstances some are superfluous. The leading coefficient an is frequently
transformed to the value 1.
The exponent n is called the degree of the equation.

Determine the normal form of the equation
x− 1 +

√
x2 − 6

3(x− 2)
= 1 +

x− 3

x
. The transformations
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step by step are:

x(x − 1 +
√
x2 − 6) = 3x(x − 2) + 3(x − 2)(x − 3), x2 − x + x

√
x2 − 6 = 3x2 − 6x + 3x2 − 15x +

18, x
√
x2 − 6 = 5x2−20x+18, x2(x2−6) = 25x4−200x3+580x2−720x+324, 24x4−200x3+

586x2 − 720x+ 324 = 0. The result is an equation of fourth degree in normal form.

1.6.1.2 System ofnAlgebraic Equations
Every system of algebraic equations can be transformed to normal form, i.e., into a system of polynomial
equations:

P1(x, y, z, . . .) = 0 , P2(x, y, z, . . .) = 0 , . . . , Pn(x, y, z, . . .) = 0 . (1.143)

The Pi (i = 1, 2, . . . , n) are polynomials in x, y, z, . . . .

Determine the normal form of the equation system: 1.
x√
y
=

1

z
, 2.

x− 1

y − 1
=

√
z , 3. xy = z .

The normal form is: 1. x2z2 − y = 0 , 2. x2 − 2x+ 1− y2z + 2yz − z = 0, 3. xy − z = 0.

1.6.1.3 Extraneous Roots
After transforming an algebraic equation into the normal form (1.142) it can happen that the equation
P (x) = 0 has some roots which are not solutions of the original equation (1.141). The roots of the
equation P (x) = 0 must be substituted into the original equation to check whether they are really
solutions of (1.141).

Extraneous solutions can emerge if not invertible transformations are performed:

1. Vanishing denominator If the equation has the form

P (x)

Q(x)
= 0 (1.144a)

with polynomials P (x) and Q(x), then the normal form of (1.144a) after multiplying by the denomi-
nator Q(x) is:

P (x) = 0. (1.144b)

The roots of (1.144b) are the same as the roots of (1.144a), except the ones which are roots both of the
numerator and of the denominator, i.e. which satisfy P (x) = 0 and Q(x) = 0. If x = α is a root of
the denominator, then in the case x = α the multiplication by Q(x) is a multiplication by zero. Every
time when a non-identical transformation is performed, the checking of the solutions is necessary (see
also 1.6.3.1, p. 43).

x3

x− 1
=

1

x− 1
. The corresponding normal form is x4 − x3 − x + 1 = 0 . x1 = 1 is a solution of

the normal form, but it is not a solution of the original equation, since the fractions are not defined for
x = 1.

2. Irrational equations If the original equation contains radicals, the normal form is usually
achieved by powering. E.g. squaring is not an identical transformation (since it is not invertible).

√
x+ 7 + 1 = 2x or

√
x+ 7 = 2x − 1 . By squaring both sides of the second form of the equation

its normal form is 4x2 − 5x − 6 = 0, and the roots are x1 = 2 and x2 = −3/4 . The root x1 = 2 is a
solution of the original equation, but the root x2 = −3/4 is not.

1.6.2 Equations ofDegree atMost Four

1.6.2.1 Equations of Degree One (Linear Equations)

1. Normal Form
ax+ b = 0 (a �= 0) . (1.145)
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2. Number of Solutions
There is a unique solution

x1 = − b

a
. (1.146)

1.6.2.2 Equations of Degree Two (Quadratic Equations)

1. Normal Form

ax2 + bx+ c = 0 (a �= 0) (1.147a)

or divided by a:

x2 + px+ q = 0 . (1.147b)

2. Number of Real Solutions of a Real Equation Depending on the sign of the discriminant

D = 4ac− b2 for (1.147a) or D = q − p2

4
for (1.147b) , (1.148)

holds:
• for D < 0, there are two real solutions (two real roots),
• for D = 0, there is one real solution (two coincident roots),
• for D > 0, there is no real solution (two complex roots).

3. Properties of the Roots of a Quadratic Equation If x1 and x2 are the roots of the quadratic
equation (1.147a) or (1.147b), then the following equalities hold:

x1 + x2 = − b

a
= −p , x1 · x2 =

c

a
= q . (1.149)

4. Solution of Quadratic Equations

Method 1: Factorization of

ax2 + bx+ c = a(x− α)(x− β) (1.150a) or x2 + px+ q = (x− α)(x− β) , (1.150b)

if it is successful, immediately gives the roots

x1 = α , x2 = β . (1.151)

x2 + x− 6 = 0, x2 + x− 6 = (x+ 3)(x− 2) , x1 = −3, x2 = 2.

Method 2: Using the solution formula in the cases D ≤ 0:
a) For (1.147a) the solutions are

x1,2 =
−b±

√
b2 − 4ac

2a
(1.152a) or x1,2 =

− b

2
±
√√√√(

b

2

)2

− ac

a
. (1.152b)

If b is an even integer the second formula is to be used.
b) For (1.147b) the solutions are

x1,2 = −p

2
±
√
p2

4
− q . (1.153)

1.6.2.3 Equations of Degree Three (Cubic Equations)

1. Normal Form

ax3 + bx2 + cx+ d = 0 (a �= 0) (1.154a)

or after dividing by a and substituting y = x+
b

3a
there is

y3 + 3py + 2q = 0 or in reduced form y3 + p∗y + q∗ = 0 , (1.154b)
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where

q∗ = 2q =
2b3

27a3
− bc

3a2
+

d

a
and p∗ = 3p =

3ac− b2

3a2
. (1.154c)

2. Number of Real Solutions Depending on the sign of the discriminant

D = q2 + p3 (1.155)

holds:
• for D > 0, one real solution (one real and two complex roots),
• for D < 0, three real solutions (three different real roots),
• for D = 0, one real solution (one real root with multiplicity three) in the case p = q = 0; or two real
solutions (a single and a double real root) in the case p3 = −q2 �= 0.

3. Properties of the Roots of a Cubic Equation If x1 , x2, and x3 are the roots of the cubic
equation (1.154a), then the following equalities hold:

x1 + x2 + x3 = − b

a
, x1x2 + x1x3 + x2x3 =

c

a
, x1x2x3 = −d

a
. (1.156)

4. Solution of a Cubic Equation

Method 1: If it is possible to decompose the left-hand side into a product of linear terms

ax3 + bx2 + cx+ d = a(x− α)(x− β)(x− γ) (1.157a)

one immediately gets the roots

x1 = α , x2 = β , x3 = γ . (1.157b)

x3 + x2 − 6x = 0, x3 + x2 − 6x = x(x+ 3)(x− 2); x1 = 0, x2 = −3, x3 = 2.

Method 2: Using the Formula of Cardano. By substituting y = u+ v the equation (1.154b) has the
form

u3 + v3 + (u+ v)(3uv + 3p) + 2q = 0. (1.158a)

This equation is obviously satisfied if

u3 + v3 = −2q and uv = −p (1.158b)

hold. Writing (1.158b) in the form

u3 + v3 = −2q , u3v3 = −p3 , (1.158c)

there are two unknowns u3 and v3, the sum and product of which are known. Therefore using the Vieta
root theorem (see 1.6.3.1, 3., p. 44) the solutions of the quadratic equation

w2 − (u3 + v3)w + u3v3 = w2 + 2qw − p3 = 0 (1.158d)

can be calculated:

w1 = u3 = −q +
√
q2 + p3 , w2 = v3 = −q −

√
q2 + p3 , (1.158e)

so for the solution y of (1.154b) the Cardano formula results in

y = u+ v =
3

√
−q +

√
q2 + p3 +

3

√
−q −

√
q2 + p3 . (1.158f)

Since the third root of a complex number means three different numbers (see (1.140b), p. 38) there are
nine different cases, but because of uv = −p, the solutions are reduced to the following three:

y1 = u1 + v1 (if possible, consider the real third roots u1 and v1 such that u1v1 = −p), (1.158g)

y2 = u1

(
−1

2
+

i

2

√
3
)
+ v1

(
−1

2
− i

2

√
3
)
, (1.158h)

y3 = u1

(
−1

2
− i

2

√
3
)
+ v1

(
−1

2
+

i

2

√
3
)
. (1.158i)
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y3 + 6y + 2 = 0 with p = 2, q = 1 and q2 + p3 = 9 and u = 3
√
−1 + 3 = 3

√
2 = 1.2599,

v = 3
√
−1− 3 = 3

√
−4 = −1.5874. The real root is y1 = u + v = −0.3275, the complex roots are

y2,3 = −1

2
(u+ v)± i

√
3

2
(u− v) = 0.1638± i · 2.4659.

Method 3: For a real equation, the auxiliary values given in Table 1.3 can be used. With p from
(1.154c)

r = ±
√
|p| (1.159)

is substituted where the sign of r is the same as the sign of q. Next, usingTable 1.3, one can determine
the value of the auxiliary variable ϕ and with it the roots y1, y2 and y3 depending on the signs of p and
D = q2 + p3.

Table 1.3 Auxiliary values for the solution of equations of degree three

p < 0
p > 0

q2 + p3 ≤ 0 q2 + p3 > 0

cosϕ =
q

r3
coshϕ =

q

r3
sinhϕ =

q

r3

y1 = −2r cos
ϕ

3
y1 = −2r cosh

ϕ

3
y1 = −2r sinh

ϕ

3

y2 = +2r cos

(
60◦ − ϕ

3

)
y2 = r cosh

ϕ

3
+ i

√
3 r sinh

ϕ

3
y2 = r sinh

ϕ

3
+ i

√
3 r cosh

ϕ

3

y3 = +2r cos

(
60◦ +

ϕ

3

)
y3 = r cosh

ϕ

3
− i

√
3 r sinh

ϕ

3
y3 = r sinh

ϕ

3
− i

√
3 r cosh

ϕ

3

y3 − 9y + 4 = 0. p = −3, q = 2, q2 + p3 < 0, r =
√
3, cosϕ =

2

3
√
3
= 0.3849, ϕ = 67◦22′.

y1 = −2
√
3 cos 22◦27′ = −3.201, y2 = 2

√
3 cos(60◦ − 22◦27′) = 2.747, y3 = 2

√
3 cos(60◦ + 22◦27′) =

0.455.
Checking: y1 + y2 + y3 = 0.001 which can be considered 0 for the accuracy of our calculations.

Method 4: Numerical approximate solution, see 19.1.2, p. 952; numerical approximate solution by
the help of a nomogram, see 2.19, p. 128.

1.6.2.4 Equations of Degree Four
1. Normal Form

ax4 + bx3 + cx2 + dx+ e = 0 (a �= 0) . (1.160)

If all the coefficients are real, this equation has 0 or 2 or 4 real solutions.
2. Special Forms If b = d = 0 holds, the roots of the biquadratic equation

ax4 + cx2 + e = 0 (1.161a)

can be calculated by the formulas

x1,2,3,4 = ±√
y, y =

−c±
√
c2 − 4ae

2a
. (1.161b)

For a = e and b = d, the roots of the equation

ax4 + bx3 + cx2 + bx+ a = 0 (1.161c)

can be calculated by the formulas

x1,2,3,4 =
y ±

√
y2 − 4

2
, y =

−b±
√
b2 − 4ac+ 8a2

2a
. (1.161d)



1.6 Algebraic and Transcendental Equations 43

3. Solution of a General Equation of Degree Four

Method 1: If somehow the left-hand side of the equation can be factorized

ax4 + bx3 + cx2 + dx+ e = 0 = a(x− α)(x− β)(x− γ)(x− δ) (1.162a)

then the roots can be immediately determined:

x1 = α , x2 = β , x3 = γ , x4 = δ. (1.162b)

x4 − 2x3 − x2 + 2x = 0, x(x2 − 1)(x− 2) = x(x− 1)(x+ 1)(x− 2);
x1 = 0, x2 = 1, x3 = −1, x4 = 2.

Method 2: The roots of the equation (1.162a) for a = 1 coincide with the roots of the equation

x2 + (b+ A)
x

2
+

(
y +

by − d

A

)
= 0, (1.163a)

where A = ±
√
8y + b2 − 4c and y is one of the real roots of the equation of third degree

8y3 − 4cy2 + (2bd− 8e)y + e(4c− b2)− d2 = 0 (1.163b)

with B =
b3

8
− bc

2
�= 0. The case B = 0 gives by the help of the substitution x = u − b

4
a biquadratic

equation of the form (1.161a) for u with a = 1 .

Method 3: Approximate solution, see 19.1.2, p. 952.

1.6.2.5 Equations of Higher Degree
It is impossible to give a formula or a finite sequence of formulas which produce the roots of an equation
of degree five or higher (see also 19.1.2.2,2., p. 954).

1.6.3 Equations ofDegreen

1.6.3.1 General Properties of Algebraic Equations

1. Roots
The left-hand side of the equation

xn + an−1x
n−1 + . . .+ a0 = 0 (1.164a)

is a polynomial Pn(x) of degree n, and a solution of (1.164a) is a root of the polynomial Pn(x). If α is
a root of the polynomial, then Pn(x) is divisible by (x− α). Generally

Pn(x) = (x− α)Pn−1(x) + Pn(α). (1.164b)

Here Pn−1(x) is a polynomial of degree n− 1. If Pn(x) is divisible by (x−α)k, but it is not divisible by
(x−α)k+1 then α is called a root of order k of the equation Pn(x) = 0. In this case α is a common root
of the polynomial Pn(x) and its derivatives to order (k − 1).

2. Fundamental Theorem of Algebra
Every equation of degree n whose coefficients are real or complex numbers has n real or complex
roots, where the roots of higher order are counted by their multiplicity. Denoting the roots of P (x)
by α, β, γ, . . . and they have multiplicity k, l,m, . . ., then the product representation of the polynomial
is

P (x) = (x− α)k(x− β)l(x− γ)m . . . . (1.165a)

The solution of the equation P (x) = 0 can be simplified by reducing the equation to another one, which
has the same roots, but only with multiplicity one (if possible). In order to get this, the polynomial is
to be composed into a product of two factors

P (x) = Q(x)T (x), (1.165b)

such that

T (x) = (x− α)k−1(x− β)l−1 . . . , Q(x) = (x− α)(x− β) . . . . (1.165c)
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Because the roots of the polynomial P (x) with higher multiplicity are the roots of its derivative P ′(x),
too, T (x) is the greatest common devisor of the polynomial P (x) and its derivative P ′(x) (see 1.1.6.5,
p.14). Dividing P (x) by T (x) yields the polynomial Q(x) which has all the roots of P (x) , and each
root occurs with multiplicity one.

3. Theorem of Vieta About Roots
The relations between the n roots x1, x2, . . . , xn and the coefficients of the equation (1.164a) are:

x1 + x2 + . . .+ xn =
n∑

i=1

xi = −an−1,

x1x2 + x1x3 + . . .+ xn−1xn =
n∑

i,j=1
i<j

xixj = an−2,

x1x2x3 + x1x2x4 + . . .+ xn−2xn−1xn =
n∑

i,j,k=1
i<j<k

xixjxk = −an−3, (1.166)

. . .

x1x2 . . . xn = (−1)na0.

1.6.3.2 Equations with Real Coefficients

1. Complex Roots
Polynomial equations with real coefficients can also have complex roots but only pairwise conjugate
complex numbers, i.e., if α = a + i b is a root, then β = a − i b is also a root, and it has the same
multiplicity. The expressions p = −(α + β) = −2a and q = αβ = a2 + b2 satisfy the unequation(
p

2

)2

− q < 0, so that

(x− α)(x− β) = x2 + px+ q (1.167)

holds. Substituting the product corresponding to (1.167) for every pair of factors in (1.165a), one gets
a decomposition of the polynomial with real coefficients into real factors.

P (x) = (x− α1)
k1(x− α2)

k2 · · · (x− αl)
kl

·(x2 + p1x+ q1)
m1(x2 + p2x+ q2)

m2 · · · (x2 + prx+ qr)
mr . (1.168)

Here α1, α2, . . . , αl are the l real roots of the polynomial P (x). It also has r pairs of conjugate complex
roots, which are the roots of the quadratic factors x2+ pix+ qi (i = 1, 2, . . . , r). The numbers αj (j =

1, 2, . . . , l), pi and qi (i = 1, 2, . . . , r) are real and the inequalities
(
pi
2

)2

− qi < 0 hold.

2. Number of Roots of an Equation with Real Coefficients
According to (1.167) every equation of odd degree has at least one real root. The number of further
real roots of (1.164a) between two arbitrary real numbers a < b, can be determined in the following
way:

a) Separate the Multiple Roots: Separating the multiple roots of P (x) = 0, yields an equation
which has all the roots of the original equation, but onlywithmultiplicity one. Then the formmentioned
in the case of the fundamental theorem must be produced.
For practical reasons it is a good idea to start with the determination of the Sturm chain (the Sturm
functions (1.169)). This is almost the same as the Euclidean algorithm for determining the greatest
common devisor, but it gives some further information. If Pm is not a constant then P (x) has multiple
roots, which must be separated. Therefore in the following it can be assumed that P (x) = 0 has no
multiple roots.
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b) Creating the Sequence of Sturm Functions:

P (x), P ′(x), P1(x), P2(x), . . . , Pm = const. (1.169)

Here P (x) is the left-hand side of the equation, P ′(x) is the first derivative of P (x), P1(x) is the re-
mainder on division of P (x) by P ′(x), but with the opposite sign, P2(x) is the remainder on division of
P ′(x) by P1(x) similarly with the opposite sign, etc.; Pm = const is the last non-zero remainder, but
it must be a constant, otherwise P (x) and P ′(x) have common devisors, and P (x) has multiple roots.
In order to simplify the calculations the remainders can be multiplied by positive numbers, what does
not change the result.

c) Theorem of Sturm: If A is the number of changes in sign, i.e. the number of changes from “+”
to “−” and vice versa, in the sequence (1.169) for x = a, and B is the number of changes in sign in the
sequence (1.169) for x = b, then the differenceA−B is equal to the number of real roots of P (x) = 0 in
the interval [a, b]. If in the sequence some numbers are equal to zero, then they should not be considered
in the sign change count.

Determination of the number of roots of the equation x4 − 5x2 + 8x − 8 = 0 in the interval [0, 2].
The calculations by the Sturm functions are: P (x) = x4 − 5x2 + 8x − 8; P ′(x) = 4x3 − 10x + 8;
P1(x) = 5x2 − 12x + 16; P2(x) = −3x + 284; P3 = −1. Substituting x = 0 results in the sequence
−8,+8,+16,+284,−1 with two changes in sign, substituting x = 2 results in +4,+20,+12,+278,−1
with one change in sign, so A− B = 2− 1 = 1, i.e., between 0 and 2 there is one root.

d) Descartes Rule: The number of positive roots of the equation P (x) = 0 is not greater than the
number of changes of sign in the sequence of coefficients of the polynomial P (x), and these two numbers
can differ from each other only by an even number.

What can be told about the roots of the equation x4+2x3−x2+5x−1 = 0 ? The coefficients in the
equation have signs + , + , − , + , − , i.e., there are three changes of sign. By the rule of Descartes the
equation has either three or one roots. Because on replacing x by −x the roots of the equation change
their signs, and on replacing x by x + h the roots are shifted by h, the number of negative roots, or
the roots greater than h can be estimated by the help of the rule of Descartes. In the given example
replacing x by −x yields x4 − 2x3 − x2 − 5x− 1 = 0, i.e., the equation has at most one negative root.
Replacing x by x+1 yields x4+6x3+11x2+13x+6 = 0, i.e., every positive root of the equation (one
or three) is smaller than 1.

3. Solution of Equations of Degree n

Usually equations with n > 4 can be solved only approximately. In practice, approximate methods are
also used to get solutions of equations of degree three or four (see 19.1.2.3, p. 954).
In order to determine certain real roots of an algebraic equation the general numerical procedures for
non-linear equations can be used (see 19.1, p. 949). In order to determine all roots, including the
complex roots of an algebraic equation of degree n the Brodetsky-Smeal method can be used (see [1.7],
[19.31]). In order to determine complex roots one can use the Bairstow method (see [19.31]).

1.6.4 ReducingTranscendentalEquationstoAlgebraicEquations

1.6.4.1 Definition

An equation F (x) = f(x) is transcendental if at least one of the functions F (x) or f(x) is not algebraic.

A: 3x = 4x−2 · 2x, B: 2 log5 (3x− 1)− log5 (12x+ 1) = 0, C: 3 cosh x = sinh x+ 9,

D: 2x−1 = 8x−2 − 4x−2, E: sin x = cos2 x− 1

4
, F: x cos x = sin x.

In some cases it is possible to reduce the solution of a transcendental equation to the solution of an
algebraic equation, for instance by appropriate substitutions. In general, transcendental equations
can be solved only approximately. In the following sections some special transcendental equations are
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discussed which can be reduced to algebraic equations.

1.6.4.2 Exponential Equations

Exponential equations can be reduced to algebraic equations in the following two cases, if the unknown
x or a polynomial P (x) is only in the exponent of some quantities a, b, c, . . . :

a) If the powers aP1(x), bP2(x), . . . are connected by multiplication or division, then the logarithm can
be taken on an arbitrary base.

3x = 4x−2 · 2x; x log 3 = (x− 2) log 4 + x log 2; x =
2 log 4

log 4− log 3 + log 2
.

b) If a, b, c, . . . are integer (or rational) powers of the same number k, i.e., a = kn, b = km, c = kl, . . . ,
holds, then by substituting y = kx one can get an algebraic equation for y, and after solving it follows

the solution x =
log y

log k
.

2x−1 = 8x−2 − 4x−2 ;
2x

2
=

23x

64
− 22x

16
. Substitution of y = 2x results in y3 − 4y2 − 32y = 0 and

y1 = 8, y2 = −4 , y3 = 0; 2x1 = 8, 2x2 = −4, 2x3 = 0, so x1 = 3 follows. There are no further real
roots.

1.6.4.3 Logarithmic Equations

Logarithmic equations can be reduced to algebraic equations in the following two cases, if the unknown
x or a polynomial P (x) is only under the logarithm sign:

a) If the equation contains only the logarithm of the same expression, then by introducing this as a
new unknown, one can solve the equation with respect to it. The original unknown can be determined
by using the logarithm.

m[loga P (x)]2 + n = a
√
[loga P (x)]2 + b. The substitution y = loga P (x) yields the equationmy2 +

n = a
√
y2 + b . After solving for y one gets the solution for x from the equation P (x) = ay.

b) If the equation is a linear combination of logarithms of polynomials of x, on the same base a, with
integer coefficients m, n, . . ., i.e., it has the form m loga P1(x) + n loga P2(x) + . . . = 0, then the left-
hand side can be written as the logarithm of a rational expression. (The original equation may contain
rational coefficients and rational expressions under the logarithm, or logarithms with different bases,
if the bases are rational powers of each other.)

2 log5 (3x− 1) − log5(12x + 1) = 0 , log5
(3x− 1)2

12x+ 1
= log5 1,

(3x− 1)2

12x+ 1
= 1; x1 = 0 , x2 = 2.

Substituting x1 = 0 in the original equation gives negative values in the logarithm, i.e., this logarithm
is a complex value, so x = 0 is not a solution.

1.6.4.4 Trigonometric Equations

Trigonometric equations can be reduced to algebraic equations if the unknown x or the expressionnx+a
with integer n is only in the argument of the trigonometric functions. After using the trigonometric
formulas (see 2.7.2, p.81) the equation will contain only one unique function containing x, and after
replacing it by y an algebraic equation arises. The solution for x is obtained from the solutions for y,
naturally taking the multi-valuedness of the solution into consideration.

sin x = cos2 x − 1

4
or sin x = 1 − sin2 x − 1

4
. Substituting y = sin x yields y2 + y − 3

4
= 0 and

y1 =
1

2
, y2 = −3

2
. The result y2 gives no real solution, because | sin x| ≤ 1 for all real x; from y1 =

1

2
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follows x =
π

6
+ 2kπ and x =

5π

6
+ 2kπ with k = 1, 2, 3, . . . .

1.6.4.5 Equations with Hyperbolic Functions
Equations with hyperbolic functions can be reduced to algebraic equations if the unknown x is only in the
argument of the hyperbolic functions. Rewriting the hyperbolic functions as exponential expressions,

then substituting y = ex and
1

y
= e−x, and the result is an algebraic equation for y. After solving this

the solution is x = ln y .

3 cosh x = sinh x+9;
3(ex + e−x)

2
=

ex − e−x

2
+9; ex+2e−x−9 = 0 ; y+

2

y
−9 = 0, y2−9y+2 = 0;

y1,2 =
9±

√
73

2
; x1 = ln

9 +
√
73

2
≈ 2.1716 , x2 = ln

9−
√
73

2
≈ −1.4784 .
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