
101

Chapter 6
Knowledge Extraction from Support
Vector Machines

© The Author(s) 2015
Y. Shi et al., Intelligent Knowledge, SpringerBriefs in Business,
DOI 10.1007/978-3-662-46193-8_6

Support Vector Machines have been a promising tool for data mining during these
years because of its good performance. However, a main weakness of SVMs is its
lack of comprehensibility: people cannot understand what the “optimal hyperplane”
means and are unconfident about the prediction especially when they are not the
domain experts. In this section we introduce a new method to extract knowledge
with a thought inspired by the decision tree algorithm and give a formula to find
the optimal attributes for rule extraction. The experimental results will show the
efficiency of this method.

6.1 Introduction

Support Vector Machines, which were widely used during these years for data min-
ing tasks, have a main weakness that the generated nonlinear models are typically
regarded as incomprehensible black-box models. Lack of comprehensibility makes
it difficult to apply in fields such as medical diagnosis and financial data analysis
(Martens 2008).

We briefly introduce two fundamental kinds of rules. (Martens 2008): Proposi-
tional rule, which is most frequently used, is simple “If … Then … ”expressions
based on conventional propositional logic; The second is M-of-N rules which usu-
ally expressed as “If {at least/exactly/at most} M of the N conditions 1 2(,)NC C C…
are satisfied Then Class = 1”. Most of the existing algorithms extract propositional
rules while only little algorithm, such as TREPAN, could extract the second rules.
(Martens 2008).

There are several techniques to extract rules from SVMs so far, and one potential
method of classifying these rule extraction techniques is in terms of the “translucen-
cy”, which is of the view taken within the rule extraction method of the underlying
classifier. Two main categories of rule extraction methods are known as decompo-
sitional and pedagogical (Diederich 2004). Decompositional approach is closely

102 6 Knowledge Extraction from Support Vector Machines

related to the internal workings of the SVMs and their constructed hyperplane. On
the other hand, pedagogical algorithms consider the trained model as a black box
and directly extract rules which relate the inputs and outputs of the SVMs.

There are some performance criteria to evaluated the extracted rules, Craven and
Shavlik (Craven 1996) listed such five criteria as follows:

1) Comprehensibility: The extent to which extracted representations are humanly
comprehensible.

2) Fidelity: The extent to which the extracted representations model the black box
from which they were extracted.

3) Accuracy: The ability of extracted representations to make accurate predictions
on previously unseen cases.

4) Scalability: The ability of the method to scale to other models with large input
spaces and large number of data.

5) Generality: The extent to which the method requires special training regimes or
restrictions on the model architecture.

However, the last two are hard to quantize, so we consider the first three criteria
only.

First we should introduce coverage to explain accuracy and fidelity better. If the
condition (that is, all the attribute tests) in a rule antecedent holds true for a given
instance, we say that the rule antecedent is satisfied and the rule covers the instance.
Let n erscov be the number of instances covered by the rule R and D be the number
of instances in the data. Then we can define coverage as:

(6.1)

Then we can define accuracy and fidelity easily. Let ncorrect be the number of in-
stances correctly classified by R and ncoincide be the number of instances which pre-
diction by R coincides with prediction by the SVM decision function. We define
them as:

 (6.2)

(6.3)

There is not a definition about comprehensibility acknowledged by all. In this paper
we define it as the number of attribute tests in rule antecedent in the simplest form,
which means if there are two antecedents such as If a1 >α and If a1 < β they can be
simplified to the form If α β< <a1 .

However, the major algorithms for rule extraction from SVM have some disad-
vantages and limitations. There are two main decomposition methods: SVM + Pro-
totypes and Fung. The main drawback of SVM + Prototypes is that the extracted

covcov () ersn
erage R

D
=

accuracy R
n
n
corrent

ers
()

cov
=

fidelity R
n
n
coincide

ers
()

cov
=

1036.2 Decision Tree and Support Vector Machines

rules are neither exclusive nor exhaustive which results in conflicting or missing
rules for the classification of new data instances. The main disadvantage of Fung is
that each of the extracted rules contain all possible input variables in its conditions,
making the approach undesirable for larger input spaces as it will extract complex
rules lack of interpretability, which is same to SVM + Prototypes. How to solve this
problem? Rules extracted from decision tree are of good comprehensibility with re-
markably less antecedents as the decision tree is constructed recursively rather than
construct all the branches and leaf nodes at the same time. So our basic thought is to
integrate the advantage of decision tree with rule extraction methods.

6.2 Decision Tree and Support Vector Machines

6.2.1 Decision Tree

Decision Tree is widely used in predictive model. A decision tree is a recursive
structure that contains a combination of internal and leaf nodes. Each internal node
specifies a test to be carried out on a single attribute and its branches indicate the
possible outcomes of the test. So given an instance for which the associated class
label is unknown, the attribute values are tested again the decision tree. A path is
traced from the root to a leaf node which holds the class prediction.

A crucial step in decision tree is splitting criterion. The splitting criterion indi-
cates the splitting attribute and may also indicate either a split-point or a splitting
subset. The splitting attribute is determined so that the resulting partitions at each
branch are as pure as possible. According to different algorithms of splitting attri-
bute selection people have developed lots of decision tree algorithms such as ID3,
C4.5 and CART.

6.2.2 Support Vector Machines

For a classification problem in which the training set is given by

 (6.4)

where x x x Ri i i n
T n= … ∈(, ,)1 and y i li ∈ − = …{ , }, , ,1 1 1 , standard C-SVM con-

structs a convex quadratic programming

(6.5)

 (6.6)

T x y x y Rl l
n l= … ∈ × −{(,), , (,)} ({ , }) ,1 1 1 1

2

, , 1

1min ,
2

l

i
w b i

w C
ξ

ξ
=

+ ∑

. . ((·)) 1 , 1, , ,i i is t y w x b i lξ+ ≥ − = …

104

 (6.7)

where C is the penalty parameter to compromise this conflict of two terms in the
objective function.

6.3 Knowledge Extraction from SVMs

6.3.1 Split Index

We need to sort and find the attribute of optimal performance for splitting. There are
two methods for this purpose: F-value and RFE (Deng and Tian 2009).

F-value aims at displaying the difference of each attribute. For a certain attribute
k, it defines:

 (6.8)

 (6.9)

 (6.10)

and then defines the F-value of attribute k as:

(6.11)

The numerator reflects the extent of difference between positive and negative points
on attribute k while the denominator reflects the extent of variance of positive points
and negative points respectively on attribute k . So the larger F k() is, the better the
attribute k could distinguish these two categories.

RFE, which is short for recursive feature elimination, delete the attribute with
minimal absolute value component of the vector w during each iteration. On the
other hand it reveals that the attribute k, which correspond to the maximal absolute
value component of w : wk, is the most important attribute as it changes slightly it
could result in the maximal change in the result of decision function.

But two figures as follows show a dilemma that we may not get a desired result
while taking each one separately into consideration. Figure 6.1 shows that the at-
tribute x1 has a maximal w1 as the gradient of the decision line, but F ()1 is too low,

ξi i l≥ = …0 1, , , ,

1

1[] [] , 1, , ,
i

k i k
y

x x k n
l

+

+ =
= = …∑

1

1[] [] , 1, , ,
i

k i k
y

x x k n
l

−

− =−
= = …∑

1

1[] [] , 1, , ,
l

k i k
i

x x k n
l =

= = …∑

F k
x x x x

l
x x

k k k k

i k kyi

()
([] []) ([] [])

([] [])
=

− + −

−
− +

+ −

+

+

=
∑

2 2

21
1

1
1 ll

x xi k kyi−

−

−
−

=−
∑1

2
1
([] [])

6 Knowledge Extraction from Support Vector Machines

1056.3 Knowledge Extraction from SVMs

so the attribute x1 is not a good attribute for splitting. Figure 6.2 shows that x1 has a
large F ()1 but a small w1 and similarly we won’t select x1 as the splitting attribute.

So we could say both F-value and RFE are not always effective and stable and so
they are not an excellent criterion to evaluate the splitting capacity.

Here we introduce a new criterion called Split Index to balance the effect of
these two factors. The Split Index of attribute k could be computed as the formula:

 (6.12)

It is easy to compute and obviously we should normalize the training data to make
sure that all the attributes are under the same condition. We assume that the training
data we mentioned later has been normalized.

In order to test the rationality of (6.12) we use it in the two data showed in the
figures above. The attribute x2 has maximal SI value rather than x1 which has large
component w1 on the first data. When applying to the second data the attribute x2
has maximal SI value rather than x1 which has larger F ()1 . The results are better
using SI value for splitting after computation.

SI k F k wk() ()*=

Fig. 6.1  Example of attribute with large w1 but low F ()1

106

6.3.2 Splitting and Rule Induction

We choose the attribute ki with maximal SI value as the splitting attribute dur-
ing the ith iteration. In order to get rules with good comprehensibility we want to
get subsets of ki as pure as possible, which means we want to extract rules like if
ak1

≤α then label − 1 and if ak1
≥ β then label 1 with a perfect accuracy. α and

β are named split points, which should make sure that the instances are covered as
much as possible with coincide label. In addition a constraint inequality must be
satisfied: α β≤ .

If α β= the algorithm ends with two rules mentioned above because all the at-
tributes are covered. While α β< the rules cannot give the label of instances with
α β< <ak1

, and ak1 is of no use to these instances. We define the rest instances
which satisfy α β< <ak1

 as the training data for the second iteration with ak1
 de-

leted and select a new attribute ak2
 with maximal SI value. The procedure could

hold on until some stopping criteria are matched.
The method to compute α and β is crucial because the split points are closely

related to the quality and performance of the extracted rules. The first method is to
compute the cross point that the optimal decision hyperplane learned by SVM inter-
sect the normalized border as showed in Fig. 6.3. The advantage is stability as they

Fig. 6.2  Example of attribute with large F ()1 but low w1

6 Knowledge Extraction from Support Vector Machines

1076.3 Knowledge Extraction from SVMs

are inducted directly from the SVM decision hyperplane. But the intuitive solutions
may be hard to compute especially dealing with high dimensional data.

The main idea is to construct a statistic which is a good estimation of the split
points and easy to compute. First we assume that the negative and positive points
satisfied 0

1
≤ ≤ak iα and βi ka≤ ≤

1
1 respectively on attribute ki during ith iteration.

So if α βi i≤ we can induct these two rules:

(6.13)

 (6.14)

The accuracy of these two rules is 100 % on the training data.
If α βi i> the accuracy of these two rules descends and we should find a better

estimation. Set Sipos to be the set that contains the value of attribute ki on positive
instances and aipos that satisfies:

(6.15)

 (6.16)

, 1
ik iif a a then≤ −

, 1
ik iif a a then≥

ai ipos
≥α

pos poss i i sa S we have a a∀ ∈ ≤

Fig. 6.3  and β are cross points the decision hyperplane intersect the border

108

Then we can yield this rule based on the fact that aipos is no less than αi and βi:

(6.17)

According to (6.13) we yield another rule:

 (6.18)

Its accuracy is also 100 % and we consider (6.17) and (6.18) at the same time. We
set the statistics βi to be the median of aipos and αi :

(6.19)

Now (6.17) and (6.18) could be replaced by:

(6.20)

Similarly we have corresponding rule on the negative instances:

 (6.21)

While:

 (6.22)

αi and βi are convergent with little error compared to αi , βi , aipos and aineg. We can
get formula as follows:

And two yielded rules could have unique form:

(6.23)

 (6.24)

 , 1
i posk iif a a then≥

 , 1
ik iif a thenα>

β αi i ia
pos

= +() / 2

 , 1
ik iif a thenβ≥

 , 1
ik iif a thenα≤ −

α βi i ia
neg

= +() / 2

 ;
() / 2 .

neg

i i i
i

i i

if
a else
α α β

α β
≤= +

 ;
() / 2 .

pos

i i i
i

i i

if
a else
β α β

β α
≤= +

 , 1i iif a thenα≤ −

 , 1i iif a thenβ≥

6 Knowledge Extraction from Support Vector Machines

1096.3 Knowledge Extraction from SVMs

But one problem should be taken into consideration: the estimated statistics α and
β are strongly relied on αi and βi because they can also change the value of aipos
and aineg according to (6.15). If there is an outlier the statistics biases too much. We
mark αabnor for this “abnormal” training data and αnor while deleting the outlier.
α αabnor nor− may be great as the outlier plays an important role.

To eliminate the influence of outliers we need to make the data set linear sepa-
rable in order that the label is coincided with what the SVM predict. According to
the thought of pedagogical rule extraction algorithm known as learn what SVM
has learned we could make the training set linear separable through 3 steps: (1)
perform linear SVM on the normalized training data and get the decision function;
(2) change the label into what the decision function predicts; (3) do the second
learning on the linear separable data and get new decision function. After these
steps we erase the outliers and α and β are good approximation of split points.

In order to stop the iteration we construct two stopping criterion: (1) no attribute
left; (2) α βi i= such that all the instances are covered by the rules extracted. Nev-
ertheless, sometimes these criteria are too idealized. We should do some changes
to make the criteria practical. If we take comprehensibility into consideration we
should limit the number of antecedent because rules with too many antecedents
are hard to comprehend and interpret especially when the training data is of high
dimension. So the first criterion could be changed as follows: (1) The number of
antecedents reaches the maximal threshold (5 usually).

On the other hand some rules may be redundant because their coverage is too
low. We can prune them to keep the rules in rule set efficient and easy to understand.
We can also integrate a rule into a “father” rule which developed during the last
iteration with one antecedent less. This process could repeat, but it may reduce the
accuracy of the “pruned” rules. Now the stopping criteria could be changed into:

1) The number of antecedents reaches the maximal threshold (5 usually) or no attri-
bute left.

2) α βi i= Such that all the instances are covered by the rules extracted.
3) Too little instances remain in the training data.

For these rules are on the normalized data we should convert them into rules on
original training data. The final step is to refer to the meaning of each attribute and
change the norm such as “attribute k ” into its real meaning.

Now we can summarize the algorithm as follows:
Algorithm 6.1 (Rule extraction from SVM using Split Index)

1) Divide the data into two parts: training data and test data;
2) Normalize the training set and do linear SVM on it, change the label into what

the SVM predict;
3) Do linear SVM and get the decision function;
4) Compute Split Index value and choose the attribute aki with maximal value as

splitting attribute;
5) Compute αi and βi , then extract two rules respectively;

110

 6) Delete the points covered by these two rules and make the instances rest to
consist of the new training data with aki deleted;

 7) Repeat step 3–6 with i i← +1 until any of the stopping criterion is matched;
 8) Get the rule set and prune redundant rules;
 9) Yield corresponding rules on original training data;
10) Do tests on test data and evaluate the criterion of the rules in rule set;

6.4 Numerical Experiments

We choose the wine data as our experimental data from UCI repository.
The data is the result of a chemical analysis of wines grown in the same region in

Italy but derived from three different cultivars. The analysis determined the quan-
tities of 13 constituents found in each of the three types of wines, and we select
two types among the three for our two-class classification task and the first 130
instances are reserved. For the comprehensibility of our results we need to illustrate
the meaning of each attribute for detail:

 1) Alcohol;
 2) Malic acid;
 3) Ash;
 4) Alcalinity of ash;
 5) Magnesium;
 6) Total phenols;
 7) Flavanoids;
 8) Nonflavanoid phenols;
 9) Proanthocyanins;
10) Color intensity;
11) Hue;
12) OD280/OD315 of diluted wines;
13) Proline

We randomly select 65 instances as training data while the rest consist of the test
data. During the first iteration the a13 has the maximal SI value and we have
α1 0 5043= . , β1 0 326= . , a a

pos neg1 1 1 10 5257 0 3138 0 32 0 515= = = =. , . , . , .α β after
computation. According to (6.23) and (6.24) we yield two rules:

(6.25)

 (6.26)

On the second iteration the splitting attribute is a2, and we have α2 0 2617= . ,
β2 0 2483= . ,

13 0.32, 1if a then≤

13 0.515, -1if a then≥

6 Knowledge Extraction from Support Vector Machines

1116.4 Numerical Experiments

Table 6.1  EXPERIMENTAL RESULTS ON WINE TEST DATA
Rule Fidelity Accuracy Coverage Number of antecendent
R1 0.94 0.97 36/65 1
R2 0.95 1 20/65 1
R3 1 1 1/65 2
R4 1 1 4/65 2

a2pos
 = 0.3087,a2neg

= 0.2416,ᾱ2= 0.245, ͞β2 = 0.2852, so we get two rules:

(6.27)

 (6.28)

On the second iteration the splitting attribute is a3 and there are only two instances
in the training data, so we end the algorithm according to the stopping criterion (3).
Then we yield rule set on the original training data:

(6.29)

 (6.30)

 (6.31)

(6.32)

The following table shows the performance of rules on the test data (Table 6.1):

2 0.245, 1if a then≤

2 0.2852, -1if a then≥

1: Pr 726.64, 1R if oline then≤

2 : Pr 1000, 1R if oline then≥ −

3 : 726 Pr 1000 1.62, 1R if oline and Malic Acid then< < ≤

4 : 726 Pr 1000 1.74, 1R if oline and Malic Acid then< < ≥ −

	Chapter-6
	Knowledge Extraction from Support Vector Machines
	6.1 Introduction
	6.2 Decision Tree and Support Vector Machines
	6.2.1 Decision Tree
	6.2.2 Support Vector Machines

	6.3 Knowledge Extraction from SVMs
	6.3.1 Split Index
	6.3.2 Splitting and Rule Induction

	6.4 Numerical Experiments

