
81

Chapter 5
Knowledge-incorporated Multiple Criteria 
Linear Programming Classifiers

© The Author(s) 2015
Y. Shi et al., Intelligent Knowledge, SpringerBriefs in Business,
DOI 10.1007/978-3-662-46193-8_5

Classification is a main data mining task, which aims at predicting the class label 
of new input data on the basis of a set of pre-classified samples. Multiple Criteria 
Linear Programming (MCLP) is used as a classification method in data mining 
area, which can separate two or more classes by finding discriminate hyperplane. 
Although MCLP shows good performance in dealing with linear separable data, it is 
no longer applicable when facing with nonlinear separable problem. Kernel-based 
Multiple Criteria Linear Programming (KMCLP) model is developed to solve non-
linear separable problem. In this method, kernel function is introduced to project the 
data into a higher-dimensional space in which the data will have more chance to be 
linear separable. KMCLP performs well in some real applications. However, just as 
other prevalent data mining classifiers, MCLP and KMCLP learn only from training 
examples. In traditional machine learning area, there are also classification tasks in 
which data sets are classified only by prior knowledge, i.e. expert system. Some 
works combine the above two classification principle to overcome the defaults of 
each approach. In this section, we combine the prior knowledge and MCLP or KM-
CLP model to solve the problem when input consists of not only training example, 
but also prior knowledge.

5.1  Introduction

Multiple Criteria Linear Programming (MCLP) is used as a classification method 
which is based on a set of classified training examples (Kou et al. 2003). By solv-
ing a linear programming problem, MCLP can find a hyperplane to separate two 
classes. The principle of MCLP classifier is to train on the training set then get some 
separation model that can be used to predict the label of the new data. However, 
MCLP model is only applicable for linear separable data. To facilitate its applica-
tion on nonlinear separable data set, kernel-based multiple criteria linear program-
ming (KMCLP) method was proposed by Zhang et al. (2009), which introduces 
kernel function into the original MCLP model to make it possible to solve nonlinear 
separable problem. Likewise, there are also many other prevalent classifiers, such 
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as	Support	Vector	Machine,	Neural	Networks,	Decision	Tree etc., which share the 
same	principle	of	learning	solely	from	training	examples.	This	inevitably	can	bring	
out	some	disadvantages.	One	problem	is	that	noisy	points	may	lead	to	poor	result.	
The other more important one is that when training samples are hard to get or when 
sampling	is	costly,	these	methods	will	be	inapplicable.

Different	 from	the	above	empirical	classification methods, another commonly 
used method in some area to classify the data is to use prior knowledge	as	the	clas-
sification	principle.	Two	well-known	traditional	methods	are	Rule-Based	reasoning	
and	Expert	System.	In	these	methods,	prior	knowledge	can	take	the	form	of	logi-
cal	rule	which	is	well	recognized	by	computer.	However,	these	methods	also	suf-
fer	from	the	fact	that	pre-existing	knowledge	cannot	contain	imperfections	(Towell	
et	al.	1990).	Whereas,	as	is	known	to	all,	most	of	the	knowledge	is	tacit	in	that	it	
exists	in	people’s	mind.	Thus,	it	is	not	an	easy	task	to	acquire	perfect	knowledge.

Recent	works	combine	the	above	two	classification	principles	to	overcome	the	
defaults	of	each	approach.	Prior	knowledge	can	be	used	to	aid	the	training	set	to	
improve	the	classification	ability;	also	training	example	can	be	used	to	refine	prior	
knowledge.	In	such	combination	methods,	Knowledge-Based	Artificial	Neural	Net-
works	 (KBANN)	and	Knowledge-Based	Support	Vector	Machine	 (KBSVM) are 
two	 representatives.	KBANN	 is	 a	 hybrid	 learning	 system	which	 firstly	 inserts	 a	
set	of	hand-constructed,	symbolic	rules	into	a	neural	network.	The	network	is	then	
refined using standard neural learning algorithms and a set of classified training 
examples.	The	refined	network	can	function	as	a	highly-accurate	classifier	(Towell	
and	Shavlik	1994).	KBSVM	provides	a	novel	approach	to	incorporate	prior	knowl-
edge	into	the	original	support	vector	classifier.	Prior	knowledge	in	the	form	of	poly-
hedral knowledge	sets	 in	the	input	space	of	the	given	data	can	be	expressed	into	
logical implications. By using a mathematical programming theorem, these logical 
implications	can	work	as	a	set	of	constraints	in	support	vector	machine	formulation.	
It	 is	 also	 a	 hybrid	 formulation	 capable	 of	 generating	 a	 classifier	 based	on	 train-
ing	data	and	prior	knowledge	(Fung	et	al.	2002;	Mangasarian	2005).	Some	works	
are	focused	on	incorporating	nonlinear	knowledge	into	nonlinear	kernel	classifica-
tion	problem	(Mangasarian	and	Wild	2008),	because	nonlinear	prior	knowledge	is	
more general in practical application. In addition to the application in classification 
problem,	(Mangasarian	et	al.	2004)	has	shown	the	effectiveness	of	introduce	prior	
knowledge	into	function	approximation.

In	 this	 chapter,	 we	 summarize	 the	 relevant	 works	 which	 combine	 the	 prior	
knowledge	and	MCLP	or	KMCLP	model.	Such	works	can	extend	the	application	of	
MCLP	or	KMCLP	model	to	the	cases	where	prior	knowledge	is	available.	Specifi-
cally,	knowledge-incorporated	MCLP	model	deals	with	linear	knowledge	and	linear	
separable	classification	problem.	The	prior	knowledge	 in	 the	 form	of	polyhedral	
knowledge	 sets	 can	be	expressed	 into	 logical	 implications,	which	can	 further	be	
converted	 into	 a	 series	of	 equalities	 and	 inequalities.	 Incorporating	 such	kind	of	
constraints	to	original	MCLP	model,	we	then	obtain	the	final	knowledge-incorpo-
rated	MCLP	model.	It	is	supposed	to	be	necessary	and	possible	that	KMCLP	model	
make	better	use	of	knowledge	to	achieve	better	outcomes	in	classifying	nonlinear	
separable	data.	Linear	knowledge	can	also	be	introduced	into	kernel-based	MCLP	
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model	by	transforming	the	logical	implication	into	the	expression	with	kernel.	With	
this	approach,	nonlinear	separable	data	with	linear	knowledge	can	be	easily	clas-
sified.	Concerning	the	nonlinear	prior	knowledge,	by	writing	the	knowledge	into	
logical expression, the nonlinear knowledge	can	be	added	as	constraints	to	the	ker-
nel-based	MCLP	model.	It	then	helps	to	find	the	best	discriminate	hyperplane	of	the	
two	classes.	Numerical	tests	on	the	above	models	indicate	that	they	are	effective	in	
classifying	data	with	prior	knowledge.

5.2  MCLP and KMCLP Classifiers

5.2.1  MCLP

Multiple	criteria	linear	programming	(MCLP) is a classification	method	(Olson	and	
Shi	2007).	Classification	is	a	main	data	mining	task.	Its	principle	is	to	use	the	exist-
ing	data	to	learn	some	useful	knowledge	that	can	predict	the	class	label	of	other	un-
classified	data.	The	purpose	of	classification	problem	can	be	described	as	follows:

Suppose	the	training	set	of	the	classification	problem	is	X, which has n	observa-
tions	in	it.	Of	each	observation,	there	are	r	attributes	(or	variables)	which	can	be	any	
real	value	and	a	two-value	class	label	G	(Good)	or	B	(Bad).	Of	the	training	set,	the	
ith	observation	can	be	described	by	Xi	=	( Xi1,…,	Xir	),	where	i	can	be	any	number	
from 1 to n.	The	objective	of	the	classification	problem	is	to	learn	from	the	training	
set and get a classification model that can classify these two classes, so that when 
given an unclassified sample z	=	( z1,…,	zr),	we	can	predict	its	class	label	with	the	
model.

So	far,	many	classification	methods	have	been	developed	and	widely	used	in	data	
mining	area.	Specifically,	MCLP	is	an	efficient	optimization-based	method	in	solv-
ing	classification	problem.	The	framework	of	MCLP	is	based	on	the	linear	discrimi-
nate analysis models. In linear discriminate analysis, the purpose is to determine 
the	optimal	coefficients	(or	weights)	for	the	attributes,	denoted	by	W	=	( w1,	…,	wr)	 
and	a	boundary	value	(scalar)	b	to	separate	two	predetermined	classes:	G	(Good)	
and	B	(Bad);	that	is

 

(5.1)

To	formulate	the	criteria	and	constraints	for	data	separation,	some	variables	need	to	
be	introduced.	In	the	classification	problem,	X w X w X wi i ir r= + +1 1   is the score 
for the ith	observation.	If	all	records	are	linear	separable	and	a	sample	Xi is cor-
rectly classified, then let βi 	be	the	distance	from	Xi to b, and consider the linear 
system, X w bi i= + β , ∀ ∈X Gi  and X w bi i= − β , ∀ ∈X Bi . However, if we con-
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records,	a	“soft	margin”	and	slack	distance	variable	αi 	need	to	be	introduced.	αi 
is	defined	to	be	the	overlapping	of	the	two-class	boundary	for	mislabeled	case	Xi .  
Previous	 equations	 now	 can	 be	 transformed	 to	 X w bi i i= − +α β , ∀ ∈X Gi  and 
X w bi i i= + −α β , ∀ ∈X Bi . To complete the definitions of βi  and αi, let βi = 0  for 
all misclassified samples and αi = 0  for all correctly classified samples. Figure 5.1 
shows	all	the	above	denotations	in	two-class	discriminate	problem.

A	key	 idea	 in	 linear	discriminate	classification	 is	 that	 the	misclassification	of	
data	can	be	reduced	by	using	two	objectives	in	a	linear	system.	One	is	to	maximize	
the	minimum	distances	(MMD)	of	data	records from a critical value and another is 
to	separate	the	data	records	by	minimizing	the	sum	of	the	deviations	(MSD)	of	the	
data	from	the	critical	value.	In	the	following	we	give	the	two	basic	formulations	of	
MMD	and	MSD	(Olson	and	Shi	2007):

MSD 

 

(5.2)
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Fig. 5.1  Overlapping	of	two-class	Linear	Discriminate	Analysis
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MMD 

 

(5.3)

Instead of maximizing the minimizing distances of data records	from	a	boundary	
b or minimizing the sum of the deviations of the data from b in linear discriminate 
analysis	models,	MCLP	classification considers all of the scenarios of tradeoffs and 
finds a compromise solution. So, to find the compromise solution of the two linear 
discriminate	analysis	models	MMD	and	MSD	for	data	separation,	MCLP	wants	to	
minimize the sum of αi  and maximize the sum of βi  simultaneously, as follows:

Two-Class	MCLP	model	(Olson	and	Shi	2007):

 

(5.4)

To facilitate the computation, a compromise solution approach	 (Olson	 and	 Shi	
2007)	has	been	employed	to	modify	the	above	model	so	that	we	can	systematically	
identify	the	best	trade-off	between	-∑αi	and	∑	βi	for	an	optimal	solution.	The	“ideal	
value”	of	−	∑αi and ∑ βi	are	assumed	to	be	α* > 0 and β* > 0 respectively. Then, if 
−	∑αi > α*, we define the regret measure as -dα+ =	∑αi + α*; otherwise, it is 0. If 
−	∑αi < α*, the regret measure is defined as dα − = α* +	∑αi; otherwise, it is 0. Thus, 
we	have	(i)	α* +	∑αi = dα −	−	dα +,	(ii)	|α* +	∑αi	|	=	dα − + dα +,	and	(iii)	dα−, dα +	≥	0.  
Similarly, we derive β*	-	∑	βi = dβ−	−	dβ+, |β*	−	∑	βi	|	=	dβ− + dβ+, and dβ−, dβ+	≥	0. 
The	two-class	MCLP	model	has	been	gradually	evolved	as:
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(5.5)

Here α* and β* are given in advance, w and b	are	unrestricted.	With	the	optimum	
value of w and b, a discriminate line is constructed to classify the data set.

The geometric meaning of the model is shown as in Fig. 5.2.
To	better	and	clearly	understand	the	methods,	we	now	sum	up	the	notations	in-

volved	in	the	models	above.

X	 	the	 training	 set	 of	 the	 classification	 problem	 with	 n	 observations	 and	 r 
attributes,

W	 the	optimal	coefficients	(or	weights)	for	the	attributes,	W	=	(w1,	…,	wr),
b	 	a	boundary	value	(scalar)	to	separate	two	predetermined	classes,	the	discrimi-

nation	function	is	Wx = b,
αi 	 	the	overlapping	of	the	two-class	boundary	for	mislabeled	case	Xi. αi = 0  for 

all correctly classified samples,
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Fig. 5.2  Compromised	and	Fuzzy	Formulations
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βi  the distance from Xi to	b,	 βi = 0  for all misclassified samples,
α* and β*	 	the	“ideal	value”	of	−	Σαi	and	Σβi	for	solving	the	two-criteria	model	(4),
dα−, dα+	 	the	regret	measure,	if	−	Σαi > α*,	−	dα	+	=	Σαi +	α*; otherwise, it is 0. If 

−	Σαi < α*, dα −		=	α*	+	Σαi; otherwise, it is 0.
dβ−, dβ+	 	the	 regret	 measure,	 if	 Σβi > β*, dβ +	=	Σβi −	β*; otherwise, it is 0. If 

Σβi < β*, dβ −		=	β*	−	Σβi; otherwise, it is 0.

5.2.2  KMCLP

MCLP	model	is	only	applicable	for	the	linear	problem.	To	extend	its	application,	
kernel-based	multiple	criteria	linear	programming	(KMCLP)	method	was	proposed	
by	(Zhang	et	al.	2009).	It	introduces	kernel	function	into	the	original	MCLP	model	
to	make	it	possible	to	solve	nonlinear	separable	problem.	The	process	is	based	on	
the	assumption	that	the	solution	of	MCLP	model	can	be	described	in	the	following	
form:

 (5.6)

here n is the sample size of data set. Xi represents each training sample. yi is the class 
label	of	ith	sample,	which	can	be	+	1	or	−	1.	Put	this	w	into	two-class	MCLP	model	
(5.5),	the	following	model	is	formed:

 

(5.7)

In	above	model,	each	Xi	 is	 included	 in	 the	expression	( Xi · Xj)	which	 is	 the	 inner	
product	of	two	samples.	But	with	this	model,	we	can	only	solve	linear	separable	
problem.	 In	 order	 to	 extend	 it	 to	 be	 nonlinear	model,	 ( Xi · Xj)	 in	 the	model	 can	
be	replaced	with	K( Xi, Xj),	 then	with	some	nonlinear	kernel,	i.e.	RBF	kernel,	the	
above	model	can	be	used	as	a	nonlinear	classifier.	The	formulation	of	RBF	kernel	is	
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Kernel-based	multiple	criteria	linear	programming	(KMCLP)	nonlinear	classi-
fier:

 

(5.8)
With	the	optimal	value	of	this	model	( λ, b, α, β),	we	can	obtain	the	discrimination	
function to separate the two classes:

 

(5.9)

where z is the new input data which is the evaluated target with r	attributes.	Xi rep-
resents each training sample. yi	is	the	class	label	of	ith sample.

We	notice	here	 that	a	set	of	optimization	variable	w	 is	 substituted	by	a	set	of	
variables	λ in the new model, which is the result of introduction of formulation 
(6)	and	thus	lead	to	the	employment	of	kernel	function.	KMCLP	is	a	classification	
model	which	is	applicable	for	nonlinear	separable	data	set.	With	its	optimal	solution	
λ and b, the discrimination hyperplane is then constructed, and the two classes can 
be	separated	by	it.

5.3  Linear Knowledge-incorporated MCLP Classifiers

5.3.1  Linear Knowledge

Prior	knowledge	in	some	classifiers	usually	consists	of	a	set	of	rules,	such	as,	if	A 
then x G∈ 	(or	x B∈ ),	where	condition	A	is	relevant	to	the	attributes	of	the	input	
data.	One	example	of	such	form	of	knowledge	can	be	seen	in	the	breast	cancer	re-
currence	or	nonrecurrence	prediction.	Usually,	doctors	can	judge	if	the	cancer	recur	
or	not	in	terms	of	some	measured	attributes	of	the	patients.	The	prior	knowledge	

Minimize    
Subject to:

     

d d d d

i
i

n

d

α α β β

α α
α

+ − + −+ + +

∗

=

−+ = −∑
1

  d

d  d
i

i

n

y K X X y Kn n

α

β β
β β

λ λ

+

∗

=

− +− = −∑
+ +

            
1

1 1 1 1( , ) ... (( , ) ,
......

( , ) ... ( ,

X X b for X B

y K X X y K X X

n

n n n n n

1 1 1 1

1 1 1

= + − ∈

+ +

α β

λ λ )) ,

, ..., , , ..., , , ..., ,

= − + ∈

≥ ≥ ≥ +

b for X G
d ,

n n n

n n n

α β

α α β β λ λ α1 1 10 0 0 dd ,d ,dα β β
− + − ≥ 0

λ λ
λ λ
1 1 1

1 1 1

y K X z y K X z b then z B
y K X z y K X

n n n

n n n

( , ) ( , ) , ,
( , ) (

+…+ ≤ ∈
+…+ ,, ) , ,z b then z G≥ ∈



895.3	 	Linear	Knowledge-incorporated	MCLP	Classifiers	

used	by	doctors	in	the	breast	cancer	dataset	includes	two	rules	which	depend	on	two	
features	of	the	total	32	attributes:	tumor	size	(T)	and	lymph	node	status	(L).	The	
rules	are	(Fung	et	al.	2005):
If L ≥ 5 and T ≥ 4 Then RECUR and If L = 0 and T ≤ 1.9 Then NONRECUR
The conditions L ≥ 5 and T ≥ 4 (L = 0 and T ≤ 1.9)	in	the	above	rules	can	be	written	

into	such	inequality	as	 Cx c≤ , where C is a matrix driven from the condition, x  
represents each individual sample, c is a vector. For example, if each sample x  is 
expressed	by	a	vector	 1[ , , , , , , ]TL T rx x x x… … … , for the rule: if L ≥ 5 and T ≥ 4 then 
RECUR, it also means: if xL ≥ 5 and xT ≥ 4, then x RECUR∈ , where xL  and xT  
are	the	corresponding	values	of	attributes	L	and	T	of	a	certain	sample	data,	r is the 
number	of	attributes.	Then	its	corresponding	inequality	Cx c″ 	can	be	written	as:

where x  is the vector with r	attributes	include	two	features	relevant	to	prior	knowl-
edge.

Similarly, the condition L = 0 and T ≤ 1.9	can	also	be	reformulated	to	be	inequali-
ties.	With	regard	to	the	condition	L = 0, in order to express it into the formulation 
of Cx c≤ , we must replace it with the condition L ≥ 0 and L ≤ 0. Then the condition 
L = 0 and T ≤ 1.9	can	be	represented	by	two	inequalities:	 1 1C x c≤  and 2 2C x c≤ , as 
follows:
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We	notice	the	fact	that	the	set	{ | }x Cx c≤ 	can	be	regarded	as	polyhedral	convex	set.	
In Fig. 5.3, the triangle and rectangle are such sets.
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Fig. 5.3  The	classification	result	by	MCLP(line	a)	and	Knowledge-Incorporated	MCLP(line	b)
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In two-class classification	problem,	the	result	RECUR	or	NONRECUR	is	equal	
to the expression x B∈  or x G∈ .	So	according	to	the	above	rules,	we	have:

 
(5.10)

In	MCLP	 classifier,	 if	 the	 classes	 are	 linearly	 separable,	 then	 x G∈ 	 is	 equal	 to	
x w bT ≥ , similarly, x B∈ 	is	equal	to	 Tx w b≤ . That is, the following implication 
must hold:

 (5.11)

For a given ( , )w b , the implication Cx c x w bT≤ ⇒ ≥  holds, this also means 
that Cx c x w bT≤ <,  has no solution x .	 According	 to	 nonhomogeneous	 Farkas	
theorem, we can conclude that C u w c u b uT T+ = + ≤ ≥0 0 0, , ,  has a solution ( , )u w  
(Fung	et	al.	2002).

The	above	statement	is	able	to	be	added	to	constraints	of	an	optimization	prob-
lem. In this way, the prior knowledge	in	the	form	of	some	equalities	and	inequalities	
in	 constraints	 is	 embedded	 to	 the	original	multiple	 linear	programming	 (MCLP)	
model.	The	knowledge-incorporated	MCLP	model	is	described	in	the	following.

5.3.2  Linear Knowledge-incorporated MCLP

Now,	we	are	to	explain	the	knowledge-incorporated	MCLP	model.	This	model	is	to	
deal	with	linear	knowledge	and	linear	separable	data.	The	combination	of	the	two	
kinds	of	input	can	help	to	improve	the	performances	of	both	methods.

Suppose	there	are	a	series	of	knowledge	sets	as	follows:
If C x c i ki i≤ = …, , ,1    Then x G∈
If D x d j lj j≤ = …, , ,1  Then x B∈
This	knowledge	also	means	the	convex	sets	{ | }, , ,x C x c i ki i≤ = …1  lie on the G 

side	of	the	bounding	plane,	the	convex	sets	{ | }, , ,x D x d j lj j≤ = …1  on the B side.
Based	on	the	above	theory	in	the	last	section,	we	converted	the	knowledge	to	the	

following constraints:
There exist = =, 1,..., , , 1,..., ,i ju i k v j l  such that:

 

(5.12)

However,	there	is	no	guarantee	that	such	bounding	planes	precisely	separate	all	the	
points.	Therefore,	some	error	variables	need	to	be	added	to	the	above	formulas.	The	
constraints	are	further	revised	to	be:

There exist u r i k and v s j li j, , , ,..., , , , ,..., ,i i j jρ σ= =1 1  such that:

Cx c x G or x B≤ ⇒ ∈ ∈( )

Cx c x w b or x w bT T≤ ⇒ ≥ ≤( )

C u w c u b u i k

D v w d v b v

iT i iT i i

jT j jT j j

+ = + ≤ ≥ =

− = − ≤ ≥

0 0 0 1

0 0 0

, , , ,...,

, , ,, ,...,j l= 1
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(5.13)

After	that,	we	embed	the	above	constraints	to	the	MCLP	classifier,	and	obtained	the	
knowledge-incorporated	MCLP	classifier:

 

(5.14)

In	this	model,	all	the	inequality	constraints	are	derived	from	the	prior	knowledge.	
The	last	objective	C( i i j j( ) ( ))r s∑ ∑+ + +ρ σ 	is	about	the	slack	error	variables	
added	to	the	original	knowledge	equality	constraints.	The	last	objective	attempts	to	
drive	the	error	variables	to	zero.	We	want	to	get	the	best	bounding	plane	( w, b)	in	
formula	(1)	by	solving	this	model	to	separate	the	two	classes.

We	notice	the	fact	that	if	we	set	the	value	of	parameter	C	to	be	zero,	this	means	to	
take	no	account	of	knowledge.	Then	this	model	will	be	equal	to	the	original	MCLP	
model. Theoretically, the larger the value of C, the greater impact on the classifica-
tion	result	of	the	knowledge	sets.

5.3.3  Linear Knowledge-Incorporated KMCLP

If	the	data	set	is	nonlinear	separable,	the	above	model	will	be	inapplicable.	We	need	
to	figure	out	how	to	embed	prior	knowledge	into	 the	KMCLP	model,	which	can	
solve	nonlinear	separable	problem.
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As	is	shown	in	the	above	part,	in	generating	KMCLP	model,	we	suppose:

 
(5.15)

If	expressed	by	matrix,	the	above	formulation	will	be:

 (5.16)

where Y is n*n diagonal matrix, the value of each diagonal element depends on the 
class	label	of	the	corresponding	sample	data,	which	can	be	+	1	or	−	1.	X is the n*r in-
put matrix with n samples, r	attributes.	λ is a n-dimensional vector λ=( λ1, λ2,…,	λn)

T.

Therefore, w	 in	 the	original	MCLP	model	 is	 replaced	by	XTYλ, thus forming the 
KMCLP	model.	And	in	this	new	model,	the	value	of	each	λi	is	to	be	worked	out	by	
the optimization model.

In order to incorporate prior knowledge	 into	KMCLP	model,	 the	 inequalities	
about	the	knowledge	must	be	transformed	to	be	the	form	with	λi instead of w.	En-
lightened	by	 the	KMCLP	model,	we	 also	 introduce	kernel	 to	 the	 expressions	 of	
knowledge.	Firstly,	the	equalities	in	(5.12)	are	multiplied	by	input	matrix	X	(Fung	
et	al.	2003).	Then	replacing	w with XTYλ,	(5.12)	will	be:

 

(5.17)

Kernel function is introduced here to replace XCiT and XXT.	Also	slack	errors	are	
added	to	the	expressions,	then	such	kind	of	constraints	are	formulated:

 

(5.18)
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These	constraints	can	be	easily	embedded	to	KMCLP	model	(5.8)	as	the	constraints	
acquired	from	prior	knowledge.

Knowledge-incorporated	KMCLP	classifier:

 

(5.19)

In	this	model,	all	the	inequality	constraints	are	derived	from	prior	knowledge.	ui, 
vi∈ Rp, where p	is	the	number	of	conditions	in	one	knowledge.	For	example,	in	the	
knowledge	if xL ≥ 5 and xT ≥ 4, then x RECUR∈ , the value of p is 2. ri, ρi, s j and σj 
are	all	real	numbers.	And	the	last	objective	 ρ σ+ + +∑ ∑i j jiMin ( ) ( )r s 	is	about	
the	slack	error	variables	added	to	the	original	knowledge	equality	constraints.	As	we	
talked	in	last	section,	the	larger	the	value	of	C, the greater impact on the classifica-
tion	result	of	the	knowledge	sets.

In	 this	model,	 several	 parameters	 need	 to	 be	 set	 before	 optimization	process.	
Apart	from	C	we	talked	about	above,	the	others	are	parameter	of	kernel	function q 
(if	we	choose	RBF	kernel)	and	the	ideal	compromise	solution	α*	and	β*.	We	want	to	
get	the	best	bounding	plane	( λ, b)	by	solving	this	model	to	separate	the	two	classes.	
And	the	discrimination	function	of	the	two	classes	is:

 
(5.20)

where z is the input data which is the evaluated target with r	attributes.	Xi represents 
each training sample. yi	is	the	class	label	of	ith sample.
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5.4  Nonlinear Knowledge-Incorporated KMCLP 
Classifier

5.4.1  Nonlinear Knowledge

In	the	above	models,	 the	prior	knowledge	we	deal	with	is	 linear. That means the 
conditions	in	the	above	rules	can	be	written	into	such	inequality	as	Cx	≤	c, where C 
is a matrix driven from the condition, x  represents each individual sample, c is a 
vector. The set {x| Cx	≤	c}	can	be	viewed	as	polyhedral	convex	set,	which	is	a	linear	
geometry	in	input	space.	But,	if	the	shape	of	the	region	which	consists	of	knowledge	
is nonlinear, for example, {x| ||x||2	≤	c},	how	to	deal	with	such	kind	of	knowledge?

Suppose	the	region	is	nonlinear	convex	set,	we	describe	the	region	by	g( x)	≤	0.	
If	the	data	is	in	this	region,	it	must	belong	to	class	B.	Then,	such	kind	of	nonlinear	
knowledge	may	take	the	form	of:

 
(5.21)

Here g( x):	Rr→Rp	( x∈ Γ)	and	h( x):	Rr→Rq	( x∈∆)	are	functions	defined	on	a	subset	
Γ and ∆ of Rr	which	determine	the	regions	in	the	input	space.	All	the	data	satisfied	
g( x)	≤	0	must	belong	to	the	class	B and h( x)	≤	0	to	the	class	G.

With	KMCLP	classifier,	this	knowledge	equals	to:

 
(5.22)

This	implication	can	be	written	in	the	following	equivalent	logical	form	(Mangasar-
ian	and	Wild	2007):

 

(5.23)
The	above	expressions	hold,	then	there	exist	v∈ Rp, r∈ Rq, v,r		≥	0	such	that:

 
(5.24)

Add	some	slack	variables	on	the	above	two	inequalities,	then	they	are	converted	to:

 

(5.25)
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The	above	statement	is	able	to	be	added	to	constraints	of	an	optimization	problem.

5.4.2  Nonlinear Knowledge-incorporated KMCLP

Suppose	there	are	a	series	of	knowledge	sets	as	follows:
If gi( x)	≤	0,	Then	 x B∈ ( gi( x):	Rr→Rp

i	( x∈Γi),	i		=	1,…,k)
If hj( x)	≤	0,	Then	 x G∈ ( hj( x):	Rr→Rq

j	( x∈∆j),	j		=	1,…,l)
Based	on	the	above	theory	in	last	section,	we	converted	the	knowledge	to	the	

following constraints:
There exist vi∈ Rp

i, i	=	1,…,k, rj∈ Rq
j, j	=	1,…,l, vi,rj		≥	0	such	that:

 

(5.26)

These	constraints	can	be	easily	imposed	to	KMCLP	model	(4.8)	as	the	constraints	
acquired	from	prior	knowledge.

Nonlinear knowledge	in	KMCLP	classifier	(Zhang	et	al.	2002):

 

(5.27)
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In	this	model,	all	the	inequality	constraints	are	derived	from	the	prior	knowledge.	

The	last	objective	C s t
i j

j

l

i

k

( )+
=
∑∑

1=1

	is	about	the	slack	error.	Theoretically,	the	larger	

the value of C,	the	greater	impact	on	the	classification	result	of	the	knowledge	sets.
The	parameters	need	to	be	set	before	optimization	process	are	C, q	(if	we	choose	

RBF	kernel),	α*	and	β*.	The	best	bounding	plane	of	this	model	decided	by	( λ, b)	of	
the	two	classes	is	the	same	with	formula	(5.20).

5.5  Numerical Experiments

All	above	models	are	linear	programming	models	which	are	easily	solved	by	some	
commercial	software	such	as	SAS	LP	and	MATLAB.	In	this	paper,	MATLAB6.0	
is employed in the solution process. To prove the effectiveness of these models, 
we	apply	them	to	four	data	sets	which	consist	of	knowledge	sets	and	sample	data.	
Among	them,	three	are	synthetic	examples,	one	is	real	application.

5.5.1  A Synthetic Data Set

To	demonstrate	the	geometry	of	the	knowledge-incorporated	MCLP,	we	apply	the	
model	to	a	synthetic	example	with	100	points.	These	points	are	marked	by	“o”	and	
“+”	in	Fig.	5.3	which	represent	two	different	classes.	Original	MCLP	model	(5)	and	
knowledge-incorporated	MCLP	model	(14)	are	applied	to	get	the	separation	lines	
of the two classes. Figure 5.3	depicts	the	results	of	the	separation	lines	(line a and 
line b)	generated	by	the	two	models.

The rectangle and the triangle in Fig. 5.3	are	two	knowledge	sets	for	the	classes.	
Line a	 is	 the	 discriminate	 line	 of	 the	 two	 classes	 by	 the	 origional	MCLP	mod-
el	(C	=	0),	 then	 line b	 is	generated	by	the	Knowledge-Incorporated	MCLP	model	
(C	=	1).	From	the	above	figure,	we	can	see	that	the	separation	line	changed	when	
we incorporated prior knowledge	into	MCLP(C	is	set	to	be	1),	thus	results	in	two	
different lines a and b.	And	when	we	change	the	rectangle	knowledge	set’s	position,	
the	line	b	is	also	changed	with	it.	This	means	that	the	knowledge	does	have	effect	
on the classifier, and our new model seems valid to deal with the prior knowledge.

5.5.2  Checkerboard Data

For	knowledge-incorporated	KMCLP	which	can	handle	nonlinear	separable	data,	
we	construct	a	checkerboard	dataset	(Fig.	5.4)	to	test	the	model.	This	data	set	con-
sists	of	16	points,	and	no	neighboring	points	belong	to	one	class.	The	two	squares	
in	the	bottom	of	the	figure	are	prior	knowledge	for	the	classes	(Fung	et	al.	2003).	In	
this	case,	we	can	see	the	impressive	influence	of	the	knowledge	on	the	separation	
curve.
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Experiments	 are	 conducted	 with	 the	 knowledge-incorporated	 KMCLP	model	
with C		=	0,	0.001,	0.01,	0.1	and	1.	And,	after	grid	search	process,	we	choose	the	
best	suitable	value	for	parameters:	q	=	1,	α*	=	10−5,	β*	=	106. The results of the sepa-
ration	curve	generated	by	knowledge-incorporated	KMCLP	are	showed	in	Fig.	5.5.

We	notice	the	fact	that	when	C	=	0.01(Fig.	5.5a)	or	even	smaller	value,	the	separation	
curve	can	not	be	as	sharp	as	that	of	a	bigger	value	of	C	like	in	Fig.	5.5b.	And	bigger	C 
means	more	contribution	of	prior	knowledge	to	the	optimization	result.	Obviously	in	
this	checkerboard	case,	sharper	line	will	be	more	preferable,	because	it	can	lead	to	more	
accurate	separation	result	when	faced	with	larger	checkerboard	data.

However	in	Fig.	5.5b,	we	also	find	when	set	C	=	0	the	separation	curve	can	also	
be	 sharp.	 It	 seems	 to	 have	 no	 difference	with	C	=	0.1	 and	 1.	 This	 demonstrates	
the	original	KMCLP	model	can	achieve	a	preferable	result	by	itself	even	without	
knowledge.

5.5.3  Wisconsin Breast Cancer Data with Nonlinear Knowledge

Concerning	real	word	cases,	we	apply	the	nonlinear	knowledge	model	(27)	to	Wis-
consin	breast	cancer	prognosis	data	set	for	predicting	recurrence	or	nonrecurrence	
of	the	disease.	This	data	set	concerns	10	features	obtained	from	a	fine	needle	as-
pirate	(Mangasarian	and	Wild	2007;	Murphy	and	Aha	1992).	Of	each	feature,	the	
mean, standard error, and worst or largest value were computed for each image, thus 
resulting	in	30	features.	Besides,	two	histological	features,	tumor	size	and	lymph	

Fig. 5.4  The	checkerboard	data	set
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node	status,	obtained	during	surgery	for	breast	cancer	patients,	are	also	 included	
in	 the	 attributes.	According	 to	 the	 characteristic	 of	 the	 data	 set,	we	 separate	 the	
features	 into	four	groups	F1,	F2,	F3	and	F4,	which	represent	 the	mean,	standard	
error, worst or largest value of each image and histological features, respectively. 
We	plotted	each	point	and	the	prior	knowledge	in	the	2-dimensional	space	in	terms	
of	the	last	two	attributes	in	Fig.	5.6. The three geometric regions in the figure are 
the	corresponding	knowledge.	And	the	points	marked	by	“ο”	and	“+” represent two 
different	classes.	With	the	three	knowledge	regions,	we	can	only	discriminate	a	part	
of	“ο” data. So we need to use multiple criteria linear programming classification 
method	plus	prior	knowledge	to	solve	the	problem.

The	prior	knowledge	involved	here	is	nonlinear	knowledge.	The	whole	knowl-
edge consists of three regions, which correspond to the following three implica-
tions:

Here, xiT is the tumor size, and xiL	is	the	number	of	lymph	nodes	of	training	sample	
Xi. In Fig. 5.6,	the	ellipse	near	to	the	upper-right	corner	is	about	the	knowledge	of	
the first implication. The triangular region corresponds to the second implication. 
And	the	ellipse	in	the	bottom	corresponds	to	the	third	implication.	The	red	circle	
points	represent	the	recurrence	samples,	while	the	blue	cross	points	represent	non-
recurrence samples.
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Fig. 5.5  The	classification	results	by	Knowledge-Incorporated	KMCLP	on	checkerboard	data	set.	
a C	=	0.01.	b C	=	0.1,	1,	0
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Table 5.1  The	accuracies	of	classification	on	Wisconsin	breast	cancer	data	set.
F1	and	F4	(%) F1,	F3	and	F4	(%) F3	and	F4	(%) F1,F2,F3	and	F4	(%)

C	=	0 51.807 59.783 57.609 63.043
C	=	1 56.522 66.304 63.043 64.13

Before	classification,	we	scaled	the	attributes	to	[0,	1].	And	in	order	to	balance	
the	samples	in	the	two	classes,	we	need	to	randomly	choose	46	samples,	which	is	
the	 exact	 number	 of	 the	 recurrence	 samples,	 from	 the	 nonrecurrence	 group.	We	
choose the value of q from the range [10−6,	…,	106],	and	find	the	best	value	of	q for 
RBF	kernel	is	1.	Leave-one-out	cross-validation	method	is	used	to	get	the	accuracy 
of the classification of our method.

Experiments	are	conducted	with	respect	to	the	combinations	of	four	subgroups	
of	attributes.	C	=	0	means	the	model	takes	no	account	of	knowledge.	The	results	are	
shown	here.Tab	5.1

The	 above	 table	 shows	 that	 classified	 by	 our	model	with	 knowledge	 ( C	=	1),	
the	 accuracies	 are	 higher	 than	 the	 results	without	 knowledge	 ( C	=	0).	The	 high-
est	improvement	of	the	four	attributes	groups	is	about	6.7	%.	Although	it	is	not	as	
much	as	we	expected,	we	can	see	the	knowledge	dose	make	good	results	on	this	
classification	problem.	Probably,	the	knowledge	here	is	not	as	precise	as	can	pro-

Fig. 5.6  WPBC	data	set	and	prior	knowledge
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duce	noticeable	 improvement	 to	 the	precision.	But	 it	does	have	 influence	on	 the	
classification	result.	If	we	have	much	more	precise	knowledge,	the	classifier	will	
be	more	accurate.

5.6  Conclusions

In	this	section,	we	summarize	the	relevant	works	which	combine	the	prior	knowl-
edge	and	MCLP	or	KMCLP	model	to	solve	the	problem	when	input	consists	of	not	
only	training	example,	but	also	prior	knowledge.	Specifically,	how	to	deal	with	lin-
ear and nonlinear knowledge	in	MCLP	and	KMCLP	model	is	the	main	concerning	
of	this	paper.	Linear	prior	knowledge	in	the	form	of	polyhedral	knowledge	sets	in	
the	input	space	of	the	given	data	can	be	expressed	into	logical	implications,	which	
can	further	be	converted	into	a	series	of	equalities	and	inequalities.	These	equalities	
and	inequalities	can	be	imposed	to	the	constraints	of	original	MCLP	and	KMCLP	
model, then help to generate the separation hyperplane of the two classes. In the 
same	way,	nonlinear	knowledge	can	also	be	incorporated	as	the	constraints	into	the	
KMCLP	model	to	make	it	possible	to	separate	two	classes	with	help	of	prior	knowl-
edge.	All	these	models	are	linear	programming	formulations,	which	can	be	easily	
solved	by	some	commercial	software.	With	 the	optimum	solution,	 the	separation	
hyperplane	of	the	two	classes	can	be	formulated.	Numerical	tests	indicate	that	these	
models	are	effective	when	combining	prior	knowledge	with	the	training	sample	as	
the classification principle.
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