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Classification is a main data mining task, which aims at predicting the class label 
of new input data on the basis of a set of pre-classified samples. Multiple Criteria 
Linear Programming (MCLP) is used as a classification method in data mining 
area, which can separate two or more classes by finding discriminate hyperplane. 
Although MCLP shows good performance in dealing with linear separable data, it is 
no longer applicable when facing with nonlinear separable problem. Kernel-based 
Multiple Criteria Linear Programming (KMCLP) model is developed to solve non-
linear separable problem. In this method, kernel function is introduced to project the 
data into a higher-dimensional space in which the data will have more chance to be 
linear separable. KMCLP performs well in some real applications. However, just as 
other prevalent data mining classifiers, MCLP and KMCLP learn only from training 
examples. In traditional machine learning area, there are also classification tasks in 
which data sets are classified only by prior knowledge, i.e. expert system. Some 
works combine the above two classification principle to overcome the defaults of 
each approach. In this section, we combine the prior knowledge and MCLP or KM-
CLP model to solve the problem when input consists of not only training example, 
but also prior knowledge.

5.1 � Introduction

Multiple Criteria Linear Programming (MCLP) is used as a classification method 
which is based on a set of classified training examples (Kou et al. 2003). By solv-
ing a linear programming problem, MCLP can find a hyperplane to separate two 
classes. The principle of MCLP classifier is to train on the training set then get some 
separation model that can be used to predict the label of the new data. However, 
MCLP model is only applicable for linear separable data. To facilitate its applica-
tion on nonlinear separable data set, kernel-based multiple criteria linear program-
ming (KMCLP) method was proposed by Zhang et  al. (2009), which introduces 
kernel function into the original MCLP model to make it possible to solve nonlinear 
separable problem. Likewise, there are also many other prevalent classifiers, such 
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as Support Vector Machine, Neural Networks, Decision Tree etc., which share the 
same principle of learning solely from training examples. This inevitably can bring 
out some disadvantages. One problem is that noisy points may lead to poor result. 
The other more important one is that when training samples are hard to get or when 
sampling is costly, these methods will be inapplicable.

Different from the above empirical classification methods, another commonly 
used method in some area to classify the data is to use prior knowledge as the clas-
sification principle. Two well-known traditional methods are Rule-Based reasoning 
and Expert System. In these methods, prior knowledge can take the form of logi-
cal rule which is well recognized by computer. However, these methods also suf-
fer from the fact that pre-existing knowledge cannot contain imperfections (Towell 
et al. 1990). Whereas, as is known to all, most of the knowledge is tacit in that it 
exists in people’s mind. Thus, it is not an easy task to acquire perfect knowledge.

Recent works combine the above two classification principles to overcome the 
defaults of each approach. Prior knowledge can be used to aid the training set to 
improve the classification ability; also training example can be used to refine prior 
knowledge. In such combination methods, Knowledge-Based Artificial Neural Net-
works (KBANN) and Knowledge-Based Support Vector Machine (KBSVM) are 
two representatives. KBANN is a hybrid learning system which firstly inserts a 
set of hand-constructed, symbolic rules into a neural network. The network is then 
refined using standard neural learning algorithms and a set of classified training 
examples. The refined network can function as a highly-accurate classifier (Towell 
and Shavlik 1994). KBSVM provides a novel approach to incorporate prior knowl-
edge into the original support vector classifier. Prior knowledge in the form of poly-
hedral knowledge sets in the input space of the given data can be expressed into 
logical implications. By using a mathematical programming theorem, these logical 
implications can work as a set of constraints in support vector machine formulation. 
It is also a hybrid formulation capable of generating a classifier based on train-
ing data and prior knowledge (Fung et al. 2002; Mangasarian 2005). Some works 
are focused on incorporating nonlinear knowledge into nonlinear kernel classifica-
tion problem (Mangasarian and Wild 2008), because nonlinear prior knowledge is 
more general in practical application. In addition to the application in classification 
problem, (Mangasarian et al. 2004) has shown the effectiveness of introduce prior 
knowledge into function approximation.

In this chapter, we summarize the relevant works which combine the prior 
knowledge and MCLP or KMCLP model. Such works can extend the application of 
MCLP or KMCLP model to the cases where prior knowledge is available. Specifi-
cally, knowledge-incorporated MCLP model deals with linear knowledge and linear 
separable classification problem. The prior knowledge in the form of polyhedral 
knowledge sets can be expressed into logical implications, which can further be 
converted into a series of equalities and inequalities. Incorporating such kind of 
constraints to original MCLP model, we then obtain the final knowledge-incorpo-
rated MCLP model. It is supposed to be necessary and possible that KMCLP model 
make better use of knowledge to achieve better outcomes in classifying nonlinear 
separable data. Linear knowledge can also be introduced into kernel-based MCLP 
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model by transforming the logical implication into the expression with kernel. With 
this approach, nonlinear separable data with linear knowledge can be easily clas-
sified. Concerning the nonlinear prior knowledge, by writing the knowledge into 
logical expression, the nonlinear knowledge can be added as constraints to the ker-
nel-based MCLP model. It then helps to find the best discriminate hyperplane of the 
two classes. Numerical tests on the above models indicate that they are effective in 
classifying data with prior knowledge.

5.2 � MCLP and KMCLP Classifiers

5.2.1 � MCLP

Multiple criteria linear programming (MCLP) is a classification method (Olson and 
Shi 2007). Classification is a main data mining task. Its principle is to use the exist-
ing data to learn some useful knowledge that can predict the class label of other un-
classified data. The purpose of classification problem can be described as follows:

Suppose the training set of the classification problem is X, which has n observa-
tions in it. Of each observation, there are r attributes (or variables) which can be any 
real value and a two-value class label G (Good) or B (Bad). Of the training set, the 
ith observation can be described by Xi = ( Xi1,…, Xir ), where i can be any number 
from 1 to n. The objective of the classification problem is to learn from the training 
set and get a classification model that can classify these two classes, so that when 
given an unclassified sample z = ( z1,…, zr), we can predict its class label with the 
model.

So far, many classification methods have been developed and widely used in data 
mining area. Specifically, MCLP is an efficient optimization-based method in solv-
ing classification problem. The framework of MCLP is based on the linear discrimi-
nate analysis models. In linear discriminate analysis, the purpose is to determine 
the optimal coefficients (or weights) for the attributes, denoted by W = ( w1, …, wr)  
and a boundary value (scalar) b to separate two predetermined classes: G (Good) 
and B (Bad); that is

�

(5.1)

To formulate the criteria and constraints for data separation, some variables need to 
be introduced. In the classification problem, X w X w X wi i ir r= + +1 1   is the score 
for the ith observation. If all records are linear separable and a sample Xi is cor-
rectly classified, then let βi  be the distance from Xi to b, and consider the linear 
system, X w bi i= + β , ∀ ∈X Gi  and X w bi i= − β , ∀ ∈X Bi . However, if we con-
sider the case where the two groups are not linear separable because of mislabeled 
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records, a “soft margin” and slack distance variable αi  need to be introduced. αi 
is defined to be the overlapping of the two-class boundary for mislabeled case Xi .  
Previous equations now can be transformed to X w bi i i= − +α β , ∀ ∈X Gi  and 
X w bi i i= + −α β , ∀ ∈X Bi . To complete the definitions of βi  and αi, let βi = 0  for 
all misclassified samples and αi = 0  for all correctly classified samples. Figure 5.1 
shows all the above denotations in two-class discriminate problem.

A key idea in linear discriminate classification is that the misclassification of 
data can be reduced by using two objectives in a linear system. One is to maximize 
the minimum distances (MMD) of data records from a critical value and another is 
to separate the data records by minimizing the sum of the deviations (MSD) of the 
data from the critical value. In the following we give the two basic formulations of 
MMD and MSD (Olson and Shi 2007):

MSD 

�

(5.2)

Minimize  
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Fig. 5.1   Overlapping of two-class Linear Discriminate Analysis
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MMD 

�

(5.3)

Instead of maximizing the minimizing distances of data records from a boundary 
b or minimizing the sum of the deviations of the data from b in linear discriminate 
analysis models, MCLP classification considers all of the scenarios of tradeoffs and 
finds a compromise solution. So, to find the compromise solution of the two linear 
discriminate analysis models MMD and MSD for data separation, MCLP wants to 
minimize the sum of αi  and maximize the sum of βi  simultaneously, as follows:

Two-Class MCLP model (Olson and Shi 2007):

�

(5.4)

To facilitate the computation, a compromise solution approach (Olson and Shi 
2007) has been employed to modify the above model so that we can systematically 
identify the best trade-off between -∑αi and ∑ βi for an optimal solution. The “ideal 
value” of − ∑αi and ∑ βi are assumed to be α* > 0 and β* > 0 respectively. Then, if 
− ∑αi > α*, we define the regret measure as -dα+ = ∑αi + α*; otherwise, it is 0. If 
− ∑αi < α*, the regret measure is defined as dα − = α* + ∑αi; otherwise, it is 0. Thus, 
we have (i) α* + ∑αi = dα − − dα +, (ii) |α* + ∑αi | = dα − + dα +, and (iii) dα−, dα + ≥ 0.  
Similarly, we derive β* - ∑ βi = dβ− − dβ+, |β* − ∑ βi | = dβ− + dβ+, and dβ−, dβ+ ≥ 0. 
The two-class MCLP model has been gradually evolved as:
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�

(5.5)

Here α* and β* are given in advance, w and b are unrestricted. With the optimum 
value of w and b, a discriminate line is constructed to classify the data set.

The geometric meaning of the model is shown as in Fig. 5.2.
To better and clearly understand the methods, we now sum up the notations in-

volved in the models above.

X	 �the training set of the classification problem with n observations and r 
attributes,

W	 the optimal coefficients (or weights) for the attributes, W = (w1, …, wr),
b	 �a boundary value (scalar) to separate two predetermined classes, the discrimi-

nation function is Wx = b,
αi 	 �the overlapping of the two-class boundary for mislabeled case Xi. αi = 0  for 

all correctly classified samples,
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Fig. 5.2   Compromised and Fuzzy Formulations
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βi 	 the distance from Xi to b, βi = 0  for all misclassified samples,
α* and β*	 �the “ideal value” of − Σαi and Σβi for solving the two-criteria model (4),
dα−, dα+	 �the regret measure, if − Σαi > α*, − dα + = Σαi + α*; otherwise, it is 0. If 

− Σαi < α*, dα −  = α* + Σαi; otherwise, it is 0.
dβ−, dβ+	 �the regret measure, if Σβi > β*, dβ + = Σβi − β*; otherwise, it is 0. If 

Σβi < β*, dβ −  = β* − Σβi; otherwise, it is 0.

5.2.2 � KMCLP

MCLP model is only applicable for the linear problem. To extend its application, 
kernel-based multiple criteria linear programming (KMCLP) method was proposed 
by (Zhang et al. 2009). It introduces kernel function into the original MCLP model 
to make it possible to solve nonlinear separable problem. The process is based on 
the assumption that the solution of MCLP model can be described in the following 
form:

� (5.6)

here n is the sample size of data set. Xi represents each training sample. yi is the class 
label of ith sample, which can be + 1 or − 1. Put this w into two-class MCLP model 
(5.5), the following model is formed:

�

(5.7)

In above model, each Xi is included in the expression ( Xi · Xj) which is the inner 
product of two samples. But with this model, we can only solve linear separable 
problem. In order to extend it to be nonlinear model, ( Xi · Xj) in the model can 
be replaced with K( Xi, Xj), then with some nonlinear kernel, i.e. RBF kernel, the 
above model can be used as a nonlinear classifier. The formulation of RBF kernel is 
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Kernel-based multiple criteria linear programming (KMCLP) nonlinear classi-
fier:

�

(5.8)
With the optimal value of this model ( λ, b, α, β), we can obtain the discrimination 
function to separate the two classes:

�

(5.9)

where z is the new input data which is the evaluated target with r attributes. Xi rep-
resents each training sample. yi is the class label of ith sample.

We notice here that a set of optimization variable w is substituted by a set of 
variables λ in the new model, which is the result of introduction of formulation 
(6) and thus lead to the employment of kernel function. KMCLP is a classification 
model which is applicable for nonlinear separable data set. With its optimal solution 
λ and b, the discrimination hyperplane is then constructed, and the two classes can 
be separated by it.

5.3 � Linear Knowledge-incorporated MCLP Classifiers

5.3.1 � Linear Knowledge

Prior knowledge in some classifiers usually consists of a set of rules, such as, if A 
then x G∈  (or x B∈ ), where condition A is relevant to the attributes of the input 
data. One example of such form of knowledge can be seen in the breast cancer re-
currence or nonrecurrence prediction. Usually, doctors can judge if the cancer recur 
or not in terms of some measured attributes of the patients. The prior knowledge 
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used by doctors in the breast cancer dataset includes two rules which depend on two 
features of the total 32 attributes: tumor size (T) and lymph node status (L). The 
rules are (Fung et al. 2005):
If L ≥ 5 and T ≥ 4 Then RECUR and If L = 0 and T ≤ 1.9 Then NONRECUR
The conditions L ≥ 5 and T ≥ 4 (L = 0 and T ≤ 1.9) in the above rules can be written 

into such inequality as Cx c≤ , where C is a matrix driven from the condition, x  
represents each individual sample, c is a vector. For example, if each sample x  is 
expressed by a vector 1[ , , , , , , ]TL T rx x x x… … … , for the rule: if L ≥ 5 and T ≥ 4 then 
RECUR, it also means: if xL ≥ 5 and xT ≥ 4, then x RECUR∈ , where xL  and xT  
are the corresponding values of attributes L and T of a certain sample data, r is the 
number of attributes. Then its corresponding inequality Cx c″  can be written as:

where x  is the vector with r attributes include two features relevant to prior knowl-
edge.

Similarly, the condition L = 0 and T ≤ 1.9 can also be reformulated to be inequali-
ties. With regard to the condition L = 0, in order to express it into the formulation 
of Cx c≤ , we must replace it with the condition L ≥ 0 and L ≤ 0. Then the condition 
L = 0 and T ≤ 1.9 can be represented by two inequalities: 1 1C x c≤  and 2 2C x c≤ , as 
follows:
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We notice the fact that the set { | }x Cx c≤  can be regarded as polyhedral convex set. 
In Fig. 5.3, the triangle and rectangle are such sets.
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Fig. 5.3   The classification result by MCLP(line a) and Knowledge-Incorporated MCLP(line b)
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In two-class classification problem, the result RECUR or NONRECUR is equal 
to the expression x B∈  or x G∈ . So according to the above rules, we have:

�
(5.10)

In MCLP classifier, if the classes are linearly separable, then x G∈  is equal to 
x w bT ≥ , similarly, x B∈  is equal to Tx w b≤ . That is, the following implication 
must hold:

� (5.11)

For a given ( , )w b , the implication Cx c x w bT≤ ⇒ ≥  holds, this also means 
that Cx c x w bT≤ <,  has no solution x . According to nonhomogeneous Farkas 
theorem, we can conclude that C u w c u b uT T+ = + ≤ ≥0 0 0, , ,  has a solution ( , )u w  
(Fung et al. 2002).

The above statement is able to be added to constraints of an optimization prob-
lem. In this way, the prior knowledge in the form of some equalities and inequalities 
in constraints is embedded to the original multiple linear programming (MCLP) 
model. The knowledge-incorporated MCLP model is described in the following.

5.3.2 � Linear Knowledge-incorporated MCLP

Now, we are to explain the knowledge-incorporated MCLP model. This model is to 
deal with linear knowledge and linear separable data. The combination of the two 
kinds of input can help to improve the performances of both methods.

Suppose there are a series of knowledge sets as follows:
If C x c i ki i≤ = …, , ,1     Then x G∈
If D x d j lj j≤ = …, , ,1   Then x B∈
This knowledge also means the convex sets { | }, , ,x C x c i ki i≤ = …1  lie on the G 

side of the bounding plane, the convex sets { | }, , ,x D x d j lj j≤ = …1  on the B side.
Based on the above theory in the last section, we converted the knowledge to the 

following constraints:
There exist = =, 1,..., , , 1,..., ,i ju i k v j l  such that:

�

(5.12)

However, there is no guarantee that such bounding planes precisely separate all the 
points. Therefore, some error variables need to be added to the above formulas. The 
constraints are further revised to be:

There exist u r i k and v s j li j, , , ,..., , , , ,..., ,i i j jρ σ= =1 1  such that:

Cx c x G or x B≤ ⇒ ∈ ∈( )

Cx c x w b or x w bT T≤ ⇒ ≥ ≤( )
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D v w d v b v

iT i iT i i
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0 0 0 1
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, , , ,...,
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�
(5.13)

After that, we embed the above constraints to the MCLP classifier, and obtained the 
knowledge-incorporated MCLP classifier:

�

(5.14)

In this model, all the inequality constraints are derived from the prior knowledge. 
The last objective C( i i j j( ) ( ))r s∑ ∑+ + +ρ σ  is about the slack error variables 
added to the original knowledge equality constraints. The last objective attempts to 
drive the error variables to zero. We want to get the best bounding plane ( w, b) in 
formula (1) by solving this model to separate the two classes.

We notice the fact that if we set the value of parameter C to be zero, this means to 
take no account of knowledge. Then this model will be equal to the original MCLP 
model. Theoretically, the larger the value of C, the greater impact on the classifica-
tion result of the knowledge sets.

5.3.3 � Linear Knowledge-Incorporated KMCLP

If the data set is nonlinear separable, the above model will be inapplicable. We need 
to figure out how to embed prior knowledge into the KMCLP model, which can 
solve nonlinear separable problem.
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As is shown in the above part, in generating KMCLP model, we suppose:

�
(5.15)

If expressed by matrix, the above formulation will be:

� (5.16)

where Y is n*n diagonal matrix, the value of each diagonal element depends on the 
class label of the corresponding sample data, which can be + 1 or − 1. X is the n*r in-
put matrix with n samples, r attributes. λ is a n-dimensional vector λ=( λ1, λ2,…, λn)

T.

Therefore, w in the original MCLP model is replaced by XTYλ, thus forming the 
KMCLP model. And in this new model, the value of each λi is to be worked out by 
the optimization model.

In order to incorporate prior knowledge into KMCLP model, the inequalities 
about the knowledge must be transformed to be the form with λi instead of w. En-
lightened by the KMCLP model, we also introduce kernel to the expressions of 
knowledge. Firstly, the equalities in (5.12) are multiplied by input matrix X (Fung 
et al. 2003). Then replacing w with XTYλ, (5.12) will be:

�

(5.17)

Kernel function is introduced here to replace XCiT and XXT. Also slack errors are 
added to the expressions, then such kind of constraints are formulated:

�

(5.18)
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These constraints can be easily embedded to KMCLP model (5.8) as the constraints 
acquired from prior knowledge.

Knowledge-incorporated KMCLP classifier:

�

(5.19)

In this model, all the inequality constraints are derived from prior knowledge. ui, 
vi∈ Rp, where p is the number of conditions in one knowledge. For example, in the 
knowledge if xL ≥ 5 and xT ≥ 4, then x RECUR∈ , the value of p is 2. ri, ρi, s j and σj 
are all real numbers. And the last objective ρ σ+ + +∑ ∑i j jiMin ( ) ( )r s  is about 
the slack error variables added to the original knowledge equality constraints. As we 
talked in last section, the larger the value of C, the greater impact on the classifica-
tion result of the knowledge sets.

In this model, several parameters need to be set before optimization process. 
Apart from C we talked about above, the others are parameter of kernel function q 
(if we choose RBF kernel) and the ideal compromise solution α* and β*. We want to 
get the best bounding plane ( λ, b) by solving this model to separate the two classes. 
And the discrimination function of the two classes is:

�
(5.20)

where z is the input data which is the evaluated target with r attributes. Xi represents 
each training sample. yi is the class label of ith sample.
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5.4 � Nonlinear Knowledge-Incorporated KMCLP 
Classifier

5.4.1 � Nonlinear Knowledge

In the above models, the prior knowledge we deal with is linear. That means the 
conditions in the above rules can be written into such inequality as Cx ≤ c, where C 
is a matrix driven from the condition, x  represents each individual sample, c is a 
vector. The set {x| Cx ≤ c} can be viewed as polyhedral convex set, which is a linear 
geometry in input space. But, if the shape of the region which consists of knowledge 
is nonlinear, for example, {x| ||x||2 ≤ c}, how to deal with such kind of knowledge?

Suppose the region is nonlinear convex set, we describe the region by g( x) ≤ 0. 
If the data is in this region, it must belong to class B. Then, such kind of nonlinear 
knowledge may take the form of:

�
(5.21)

Here g( x): Rr→Rp ( x∈ Γ) and h( x): Rr→Rq ( x∈∆) are functions defined on a subset 
Γ and ∆ of Rr which determine the regions in the input space. All the data satisfied 
g( x) ≤ 0 must belong to the class B and h( x) ≤ 0 to the class G.

With KMCLP classifier, this knowledge equals to:

�
(5.22)

This implication can be written in the following equivalent logical form (Mangasar-
ian and Wild 2007):

�

(5.23)
The above expressions hold, then there exist v∈ Rp, r∈ Rq, v,r  ≥ 0 such that:

�
(5.24)

Add some slack variables on the above two inequalities, then they are converted to:

�

(5.25)
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The above statement is able to be added to constraints of an optimization problem.

5.4.2 � Nonlinear Knowledge-incorporated KMCLP

Suppose there are a series of knowledge sets as follows:
If gi( x) ≤ 0, Then x B∈ ( gi( x): Rr→Rp

i ( x∈Γi), i  = 1,…,k)
If hj( x) ≤ 0, Then x G∈ ( hj( x): Rr→Rq

j ( x∈∆j), j  = 1,…,l)
Based on the above theory in last section, we converted the knowledge to the 

following constraints:
There exist vi∈ Rp

i, i = 1,…,k, rj∈ Rq
j, j = 1,…,l, vi,rj  ≥ 0 such that:

�

(5.26)

These constraints can be easily imposed to KMCLP model (4.8) as the constraints 
acquired from prior knowledge.

Nonlinear knowledge in KMCLP classifier (Zhang et al. 2002):

�

(5.27)

− −…− + + + ≥ ∈λ λ

λ
1 1 1

1 1 1

0y K X x y K X x b v g x s x

y K X x
n n n i

T
i i( , ) ( , ) ( ) , ( )

( ,

Γ

)) ( , ) ( ) , ( )+…+ − + + ≥ ∈λn n n j
T

j jy K X x b r h x t x0 ∆

Min(

s.t.
=1

d d d d C s t

y K X X

i j

j

l

i

k

α α β β

λ

+ − + −+ + + + +

+
=
∑∑) ( )

( , ) ..
1

1 1 1 1
.. ( , ) ,

...

( , ) ...

+ = + − ∈

+ +

λ α β

λ λ

n n n

n n

y K X X b X

y K X X y

1 1 1

1 1 1

 , for B,
1

nn n n n n

i
i

n

i
i

K X X b X

d d

( , )

,*

*

= − + ∈

+ = −

−

=

− +

=

∑

α β

α α

β β

α α

 ,   for G,
n

1

11

1 1 1
0

n

n n n i
T

i i

d d

y K X x y K X x b v g x s

∑ = −

− − − + + + ≥

− +
β β

λ λ

,

( , ) ... ( , ) ( ) , ii=1, k

i=1, k

...,

, ...,

( , ) ... ( , )

s

y K X x y K X x b r h
i

n n n j
T

≥

+ + − +

0

1 1 1
λ λ

jj j

j

x t l

t l

( ) , ...

, ...

,..., , ,..., ,

+ ≥
≥

≥ ≥

0

0

0 0

j=1, ,

j=1, ,

1 n 1 n
α α β β λλ λ

α α β β

1 n
,..., ,

( , )

, , ,

≥
≥

≥− + − +

0

0

0

v r

d d d d
i j



96 5  Knowledge-incorporated Multiple Criteria Linear Programming Classifiers

In this model, all the inequality constraints are derived from the prior knowledge. 

The last objective C s t
i j

j

l

i

k

( )+
=
∑∑

1=1

 is about the slack error. Theoretically, the larger 

the value of C, the greater impact on the classification result of the knowledge sets.
The parameters need to be set before optimization process are C, q (if we choose 

RBF kernel), α* and β*. The best bounding plane of this model decided by ( λ, b) of 
the two classes is the same with formula (5.20).

5.5 � Numerical Experiments

All above models are linear programming models which are easily solved by some 
commercial software such as SAS LP and MATLAB. In this paper, MATLAB6.0 
is employed in the solution process. To prove the effectiveness of these models, 
we apply them to four data sets which consist of knowledge sets and sample data. 
Among them, three are synthetic examples, one is real application.

5.5.1 � A Synthetic Data Set

To demonstrate the geometry of the knowledge-incorporated MCLP, we apply the 
model to a synthetic example with 100 points. These points are marked by “o” and 
“+” in Fig. 5.3 which represent two different classes. Original MCLP model (5) and 
knowledge-incorporated MCLP model (14) are applied to get the separation lines 
of the two classes. Figure 5.3 depicts the results of the separation lines (line a and 
line b) generated by the two models.

The rectangle and the triangle in Fig. 5.3 are two knowledge sets for the classes. 
Line a is the discriminate line of the two classes by the origional MCLP mod-
el (C = 0), then line b is generated by the Knowledge-Incorporated MCLP model 
(C = 1). From the above figure, we can see that the separation line changed when 
we incorporated prior knowledge into MCLP(C is set to be 1), thus results in two 
different lines a and b. And when we change the rectangle knowledge set’s position, 
the line b is also changed with it. This means that the knowledge does have effect 
on the classifier, and our new model seems valid to deal with the prior knowledge.

5.5.2 � Checkerboard Data

For knowledge-incorporated KMCLP which can handle nonlinear separable data, 
we construct a checkerboard dataset (Fig. 5.4) to test the model. This data set con-
sists of 16 points, and no neighboring points belong to one class. The two squares 
in the bottom of the figure are prior knowledge for the classes (Fung et al. 2003). In 
this case, we can see the impressive influence of the knowledge on the separation 
curve.
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Experiments are conducted with the knowledge-incorporated KMCLP model 
with C  = 0, 0.001, 0.01, 0.1 and 1. And, after grid search process, we choose the 
best suitable value for parameters: q = 1, α* = 10−5, β* = 106. The results of the sepa-
ration curve generated by knowledge-incorporated KMCLP are showed in Fig. 5.5.

We notice the fact that when C = 0.01(Fig. 5.5a) or even smaller value, the separation 
curve can not be as sharp as that of a bigger value of C like in Fig. 5.5b. And bigger C 
means more contribution of prior knowledge to the optimization result. Obviously in 
this checkerboard case, sharper line will be more preferable, because it can lead to more 
accurate separation result when faced with larger checkerboard data.

However in Fig. 5.5b, we also find when set C = 0 the separation curve can also 
be sharp. It seems to have no difference with C = 0.1 and 1. This demonstrates 
the original KMCLP model can achieve a preferable result by itself even without 
knowledge.

5.5.3 � Wisconsin Breast Cancer Data with Nonlinear Knowledge

Concerning real word cases, we apply the nonlinear knowledge model (27) to Wis-
consin breast cancer prognosis data set for predicting recurrence or nonrecurrence 
of the disease. This data set concerns 10 features obtained from a fine needle as-
pirate (Mangasarian and Wild 2007; Murphy and Aha 1992). Of each feature, the 
mean, standard error, and worst or largest value were computed for each image, thus 
resulting in 30 features. Besides, two histological features, tumor size and lymph 

Fig. 5.4   The checkerboard data set
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node status, obtained during surgery for breast cancer patients, are also included 
in the attributes. According to the characteristic of the data set, we separate the 
features into four groups F1, F2, F3 and F4, which represent the mean, standard 
error, worst or largest value of each image and histological features, respectively. 
We plotted each point and the prior knowledge in the 2-dimensional space in terms 
of the last two attributes in Fig. 5.6. The three geometric regions in the figure are 
the corresponding knowledge. And the points marked by “ο” and “+” represent two 
different classes. With the three knowledge regions, we can only discriminate a part 
of “ο” data. So we need to use multiple criteria linear programming classification 
method plus prior knowledge to solve the problem.

The prior knowledge involved here is nonlinear knowledge. The whole knowl-
edge consists of three regions, which correspond to the following three implica-
tions:

Here, xiT is the tumor size, and xiL is the number of lymph nodes of training sample 
Xi. In Fig. 5.6, the ellipse near to the upper-right corner is about the knowledge of 
the first implication. The triangular region corresponds to the second implication. 
And the ellipse in the bottom corresponds to the third implication. The red circle 
points represent the recurrence samples, while the blue cross points represent non-
recurrence samples.
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Fig. 5.5   The classification results by Knowledge-Incorporated KMCLP on checkerboard data set. 
a C = 0.01. b C = 0.1, 1, 0
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Table 5.1   The accuracies of classification on Wisconsin breast cancer data set.
F1 and F4 (%) F1, F3 and F4 (%) F3 and F4 (%) F1,F2,F3 and F4 (%)

C = 0 51.807 59.783 57.609 63.043
C = 1 56.522 66.304 63.043 64.13

Before classification, we scaled the attributes to [0, 1]. And in order to balance 
the samples in the two classes, we need to randomly choose 46 samples, which is 
the exact number of the recurrence samples, from the nonrecurrence group. We 
choose the value of q from the range [10−6, …, 106], and find the best value of q for 
RBF kernel is 1. Leave-one-out cross-validation method is used to get the accuracy 
of the classification of our method.

Experiments are conducted with respect to the combinations of four subgroups 
of attributes. C = 0 means the model takes no account of knowledge. The results are 
shown here.Tab 5.1

The above table shows that classified by our model with knowledge ( C = 1), 
the accuracies are higher than the results without knowledge ( C = 0). The high-
est improvement of the four attributes groups is about 6.7 %. Although it is not as 
much as we expected, we can see the knowledge dose make good results on this 
classification problem. Probably, the knowledge here is not as precise as can pro-

Fig. 5.6   WPBC data set and prior knowledge

 

5.5 � Numerical Experiment



100

duce noticeable improvement to the precision. But it does have influence on the 
classification result. If we have much more precise knowledge, the classifier will 
be more accurate.

5.6 � Conclusions

In this section, we summarize the relevant works which combine the prior knowl-
edge and MCLP or KMCLP model to solve the problem when input consists of not 
only training example, but also prior knowledge. Specifically, how to deal with lin-
ear and nonlinear knowledge in MCLP and KMCLP model is the main concerning 
of this paper. Linear prior knowledge in the form of polyhedral knowledge sets in 
the input space of the given data can be expressed into logical implications, which 
can further be converted into a series of equalities and inequalities. These equalities 
and inequalities can be imposed to the constraints of original MCLP and KMCLP 
model, then help to generate the separation hyperplane of the two classes. In the 
same way, nonlinear knowledge can also be incorporated as the constraints into the 
KMCLP model to make it possible to separate two classes with help of prior knowl-
edge. All these models are linear programming formulations, which can be easily 
solved by some commercial software. With the optimum solution, the separation 
hyperplane of the two classes can be formulated. Numerical tests indicate that these 
models are effective when combining prior knowledge with the training sample as 
the classification principle.
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