
Adaptively Approximate Techniques

in Distributed Architectures

Barbara Catania and Giovanna Guerrini

University of Genoa, Italy
{barbara.catania,giovanna.guerrini}@unige.it

Abstract. The wealth of information generated by users interacting
with the network and its applications is often under-utilized due to com-
plications in accessing heterogeneous and dynamic data and in retrieving
relevant information from sources having possibly unknown formats and
structures. Processing complex requests on such information sources is,
thus, costly, though not guaranteeing user satisfaction. In such environ-
ments, requests are often relaxed and query processing is forced to be
adaptive and approximate, either to cope with limited processing re-
sources (QoS-oriented techniques), possibly at the price of sacrificing
result quality, or to cope with limited data knowledge and data hetero-
geneity (QoD-oriented techniques), with the aim of improving the qua-
lity of results. While both kinds of approximation techniques have been
proposed, most adaptive solutions are QoS-oriented. Additionally, tech-
niques which apply a QoD-oriented approximation in a QoD-oriented
adaptive way (called ASAP - Approximate Search with Adaptive Pro-
cessing - techniques), though demonstrated potentially useful in getting
the right compromise between precise and approximate computations,
have been largely neglected. In this paper, we first motivate the problem
and provide a taxonomy for classifying approximate and adaptive tech-
niques according to the dimensions pointed out above. Then, we show,
through some concrete examples, the benefits of using ASAP techniques
in two different contexts.

Keywords: query processing, approximate technique, adaptive tech-
nique, Quality of Data, Quality of Service.

1 Introduction

The last decade has seen the raise of new applications and novel processing
environments characterized by high heterogeneity, limited data knowledge, ex-
tremely high variability and unpredictability of data characteristics and dynamic
processing conditions. All such characteristics are shared by most data manage-
ment applications under distributed architectures, including data integration
applications, web services, data streams, P2P systems, and hosting.

Query processing in such new application contexts is characterized by two
main features: adaptivity, in order to adapt the processing to dynamic condi-
tions that prevent the selection of a single optimal execution strategy, and ap-
proximation, in order to cope with data heterogeneity, limited data knowledge

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 65–77, 2015.
� Springer-Verlag Berlin Heidelberg 2015



66 B. Catania and G. Guerrini

during query specification, and limited resource availability, which make precise
answers impossible to compute or unsatisfactory from a user point of view.

As discussed in [9], approximate and adaptive techniques can be classified into
two main groups. When they are targeted to improve the quality of result, either
in terms of completeness or in terms of accuracy, we refer to the techniques as
Quality of Data (QoD)-oriented techniques. By contrast, when they are used in
order to cope with limited or constrained resource availability during processing,
we refer to the techniques as Quality of Service (QoS)-oriented techniques. For
example, in order to maximize completeness or accuracy, QoD parameters have
to be taken into account for adapting or approximating query specification and
processing. Often, both QoD and QoS parameters are taken into account, in
order to provide the best trade-off between resource usage and data quality.

While both QoS-oriented and QoD-oriented approximate techniques have been
proposed, most adaptive solutions are QoS-oriented. QoS-oriented approximation
is often applied in an adaptive way, that is, when targeted at achieving
a QoS goal, e.g., related to load, throughput, or memory, approximation is applied
adapting to runtime conditions, possibly ensuring that certain QoD constraints
are met or, less frequently, with a QoD-oriented goal (that is, minimizing the in-
troduced inaccuracy). By contrast, very few approaches apply QoD-oriented ap-
proximation techniques in an adaptive way.

In [8,9], we claimed instead that QoD-oriented adaptive approaches for QoD-
oriented approximation techniques, called ASAP (Approximate Search with
Adaptive Processing) techniques in the following, may help in getting the right
compromise between precise and approximate computations. More generally,
we claimed that ASAP can be defined as a new framework under which QoD-
oriented approximation techniques, which may adaptively change, at run-time,
the degree of the applied approximation, can be defined. For example, this can
be achieved by providing execution plans which interleave both precise and ap-
proximate evaluations in the most efficient way, dynamically taking decisions
concerning when, how, and how much to approximate, with the goal of improv-
ing the quality of result with efficiency guarantees. Unfortunately, as far as we
know, no general solution has been proposed so far for the problem described
above. Some preliminary work has been presented in [19], where the use of adap-
tive techniques for combining exact (fast) and approximate (accurate) joins when
performing dynamic integration has been proposed.

Our group is currently interested in investigating ASAP approaches in diffe-
rent scenarios, taking care of problems related to data heterogeneity and limited
data knowledge in different potentially distributed architectures. In this paper,
after summarizing existing approximate and adaptive approaches with respect to
the type of quality they are targeted to, we consider two different instantiations of
the concept of ASAP technique. The first one, that we call ASAP in the small,
concerns the definition of a specific ASAP technique for a given application
context, namely advanced architectures with a limited degree of distribution,
like data stream management systems. The second one, that we call ASAP in
the large, concerns a vision related to environments characterized by a higher



Adaptively Approximate Techniques in Distributed Architectures 67

degree of distribution and data heterogeneity. The paper is then concluded by
some final considerations and discussion about on-going work on this subject.

2 A Taxonomy for Approximate and Adaptive Techniques

A query processing technique is said to be adaptive if the way in which a query
is executed may change on the basis of the feedbacks obtained from the en-
vironment during evaluation. Adaptive techniques can be characterized by the
following components: (i) subject, i.e., the elements in the processing affected
by the adaptation (e.g., the query execution plan, or the assignment of load to
processors); (ii) target, i.e., what the technique attempts at adapting to, that
is, the properties monitored and the feedbacks collected during evaluation (e.g.,
data characteristics, arrival rates, network condition, processors load); (iii) goal
or aim, i.e., the parameter(s) appearing in the objective function, that is, what
the technique attempts to maximize/minimize (e.g., result data quality, time,
throughput, energy consumption).

A query is said to be relaxed if its result is either stretched or shrunk when the
results of the original query are too few or too many. Preference-based queries,
such as top-k or skyline queries, can be considered relaxed queries as well: they
can be thought as a shrinking with respect to the overall set of possible results,
since they reduce the cardinality of the ranked result set, or as a stretching
approach with respect to the set of optimal results. A processing technique is
said to be approximate if it does not produce the exact result but an approximate
one, possibly with some guarantees on the “distance” of the generated solution
from the exact one.

Approximate queries or techniques can be characterized by the following com-
ponents: (i) subject, representing the query processing task or the data to which
approximation is applied (e.g., query specification, through rewriting or prefer-
ences, or processing algorithm); (ii) target, representing the information used for
the approximation (e.g., ranking function, set of relevant attributes, similarity
function, pruning condition, used summary); (iii) goal or aim, i.e., the parame-
ter(s) appearing in the object function of the technique, that is, what it attempts
to maximize/minimize (e.g., result data quality, time, throughput).

As pointed out in the introduction, depending on their aim, approximate and
adaptive techniques can be classified into Quality of Data (QoD)-oriented tech-
niques, when they are finalized at improving the quality of result, either in terms
of completeness or in terms of accuracy, and Quality of Service (QoS)-oriented
techniques, when they are used in order to cope with limited or constrained
resource availability during query processing.

While both QoS-oriented and QoD-oriented approximate techniques have
been proposed, most adaptive solutions are QoS-oriented. In the following, each
group of proposals is discussed, pointing out the main considered subjects.

QoD-Oriented Approximate Techniques. They provide approximate an-
swers in situations where precise results are not always satisfactory for the user.



68 B. Catania and G. Guerrini

High data heterogeneity and limited user knowledge about such data, indeed,
may cause precise evaluation produce empty/few answers or too many answers.
A solution consists in modifying traditional queries, such as selections and joins,
by relaxing their definition or by approximating their evaluation, in order to im-
prove result quality, in terms of completeness and relevance with respect to the
original query. Query rewritings like those presented in [6,22,29] and preference-
based queries, such as top-k and skyline [7,16,25] are examples of QoD-oriented
approximation techniques which relax the original query definition with the goal
of returning a more satisfactory answer set. A third group of QoD-oriented ap-
proximate techniques concerns processing algorithms for executing a traditional
query (e.g., a join) by using ad hoc query processing algorithms which auto-
matically apply the minimum amount of relaxation based on the available data,
in order to return a non-empty result similar to the user request. Most QoD-
oriented ApQP techniques concern the join operator [18] and face approximate
match issues for strings [14] or numeric values [26]. In defining QoD-oriented
techniques, QoS guarantees have to be provided, in order to cope with the avail-
able resources in the most efficient way.

QoS-Oriented Approximate Techniques. They provide approximate an-
swers, with accuracy guarantees, to computationally expensive operations also
in environments characterized by limited or unavailable resources, where a pre-
cise result can be obtained only at the price of a unacceptably high response
time, communication overhead, occupied space, or it cannot be obtained at all.
QoS-oriented techniques have been mainly defined for queries to be executed over
either huge amount of data (as in data warehousing systems and in stream-based
management systems) or complex data (like spatial data) or because correspond-
ing to very expensive computations (as multi-way joins). Concerning the subject,
four main distinct aspects have been considered: query rewriting, e.g., those pre-
sented in the data stream context [23]; data reduction, where data themselves
are approximated with the aim of reducing or simplifying the dataset over which
queries have to be executed [13,27], including load shedding [4,28]; processing al-
gorithms, which modify traditional and non approximate processing techniques
in order to generate an approximate result in an efficient way, with respect to
the available resources [1, 3].

QoS-Oriented Adaptive Techniques. In adaptive query processing, the way
in which a query is executed is changed on the basis of the feedbacks obtained
from the environment during evaluation. The classical plan-first execute-next
approach to query processing is replaced either by giving away the notion of
query plan at all, as in routing based approaches, where each single data item
can participate to the production of the final result taking its own way (route)
through operators composing the query, or by a dynamic optimization process,
in which queries are on-the-fly re-optimized through a two-steps solution. Some
approaches (e.g., [4,5,24,28]) introduce approximation, thus they have an impact



Adaptively Approximate Techniques in Distributed Architectures 69

on QoD, and some others [15,20] process approximate operators (i.e., top-k), but
the aim of the adaptation is QoS.

ASAP Techniques. Some of the techniques discussed above exhibit an adap-
tive behavior and, at the same time, introduce some approximation. Specifically,
some approaches to QoS-oriented adaptive processing of QoD-oriented approx-
imate queries have been proposed, but target and goal of the adaptation is
QoS, namely processing efficiency [15, 20]. Additionally, adaptive approaches
have been proposed for some QoS-oriented approximation techniques (namely,
load shedding and data summarization) [4, 5, 24, 28] but only few of them take
QoD-information into account as aim [4]. Constraints on data are exploited in [5]
to improve QoS (specifically, to reduce memory overhead). However, a QoD-
oriented adaptation target is rarely considered, with the exception of [19].

Thus, QoD-oriented adaptive approaches for QoD-oriented approximation
techniques (i.e., ASAP techniques) have been so far neglected. However, we
claim that such techniques could be very relevant for various data management
applications in different application contexts. In the following sections, we will
present two examples of ASAP techniques showing their potential.

3 ASAP in the Small

The first example of ASAP technique we present refers to a, potentially dis-
tributed, architecture for data stream management. In this context, similarly to
[19], ASAP techniques may help in defining adaptive techniques which combine
exact (fast) and approximate (accurate) relaxed queries over dynamic (stream)
data. In the following, we point out which data and which requests we are going
to consider; we then present the targeted problem and we introduce an ASAP
technique as a possible solution to the identified problem.

Data. A data stream is a continuous, unbounded, and potentially infinite se-
quence of data, e.g., tuples. In a data stream, each item is associated with
a timestamp, either assigned by the source dataset or by the Data Stream Man-
agement System (DSMS), at arrival time. Queries over data streams can be either
one-time, if they are evaluated once on a given subset of data, or continuous, if
they are continuously evaluated as soon as new data arrive.

Request. According to the STREAM DSMS [2], continuous queries can be
evaluated over data streams and time-varying relations. Continuous queries are
evaluated, according to the relational semantics, at each time instant on the
relation states and on the subsets of the data streams available at that instant.
Window operators are applied on data streams in order to compute, at each time
instant, a subset of the data items arrived so far in the stream.

The basic idea of a skyline-based approach to query relaxation of selection and
join operations is to use a relaxing distance function d (usually, a numeric function)
to quantify the distance of each tuple (pair of tuples) from the specified conditions.
The relaxed version of the query provides a non-empty answer while being ‘close’,



70 B. Catania and G. Guerrini

according to funcion d, to the original query formulated by the user [17]. Unfor-
tunately, skyline queries for data streams are blocking operators, that require the
usage of a specific window-based operator in order to compute, at each instant of
time, the finite subset of data from which the best itemset (i.e., the skyline set) is
computed. A skyline set is computed in terms of a dominance relationwith respect
to a given set of attributes, by returning those items that are not dominated by any
other item.1 An example of a relaxed operator for the data stream context, based
on a skyline operator, has been proposed in [11], where the concept of relaxation
skyline (r-skyline), first introduced in [17] for stored data, has been extended to
deal with data streams and queries composed of selection and window-based join
operations.

Example 1. Consider an application of habitat monitoring and assume that sen-
sors have been located inside nests, returning several properties of the place
around the nest, including light. Assume the user is interested in detecting the
nests under a light above a certain threshold. Suppose also this monitoring should
last for a long period, thus a continuous selection query is issued. Suppose the
query is submitted during daytime, a given light threshold and a given humidity
level is chosen, leading to the following query:

SELECT idNest, light, humidity

FROM SensorNest [RANGE 2 min]

WHERE light >= 50 and humidity <= 60

In the previous query, [RANGE 2 Minutes] is a window operator that, when
applied on stream SensorNest, at each time instant returns the set of tuples
arrived in the last 2 minutes which satisfy the specified conditions.

Table 1 reports a portion of data stream SensorNest. For each tuple, the
arrival time τ , expressed in minutes, is shown. By assuming that the previous
query is executed in a precise way, at each instant of time a non-empty result is
returned, thus facing a few answer problem. On the other hand, if we interpreted
the query as a r-skyline query with respect to both the selection conditions
C1 ≡ SensorNest.humidity<= 60 and C2 ≡ SensorNest.light >= 50, the
computation returns different itemsets. As an example, at time 4, tuples s4 and
s3 belong to the window and we get the following distance values, just computing
differences between attribute values and query constants: d(s3, C1) = 3, d(s3,
C2) = 5; d(s4, C1) = 5, d(s4, C2) = 10. According to the classical notion of
dominance, and assuming to prefer lower values, it follows that s3 dominates s4
and s3 is returned as result at time 4. ♦

The Targeted Problem. Precise queries in a data stream management con-
text guarantee a very efficient execution for selection operations, since they are
not blocking operations, i.e., they do not require window-based operators for

1 Given a set of points, each corresponding to a list of values for the relevant attributes,
a point A dominates a point B if it is better in at least one dimension and equal to or
better than B in all the others, with respect to some ordering [7].



Adaptively Approximate Techniques in Distributed Architectures 71

Table 1. SensorNest data stream

tuple idNest humidity % light % τ

s1 0001 49 45 1
s2 0002 47 49 2
s3 0001 63 45 3
s4 0003 65 40 4
s5 0004 66 76 5
s6 0005 70 70 6
s7 0006 70 66 7
... ... ... ... ...

their computation, which, on the other hand, is mandatory for join. At the same
time, they guarantee maximal accuracy by definition. However, users may not
be acquainted of the actual data arriving in streaming and, as a consequence,
they may issue queries that, for specific instant of times, return an empty result
set, thus potentially decreasing user satisfaction. With reference to the previous
example, assuming that 50 is a suitable value for daytime, during light hours,
probably, a non empty answer is computed. However, at sunset, the light is get-
ting low and few (or no) data may be returned as answer. Two scenarios may
arise to increase user satisfaction: (i) this is exactly what the user wants and
no modification to the query has to be specified; (ii) the user may anyway want
some results to be returned, the closest to the specified conditions. In the sec-
ond case, the system should modify the query in order to provide a non-empty
result with accuracy guarantees. This behavior can be obtained, for example,
by changing selection conditions, through user interaction, similarly to what has
been done in [22] for stored data. Unfortunately, this approach is suitable neither
for a data stream management context since the query is usually specified once
and continuously executed over arriving data nor for a more general distributed
environment, where the limited user knowledge about data often make this ap-
proach unfeasible. A different approach would be that of executing an r-skyline
query, even for selection, thus always obtaining the best result and avoiding the
empty/few answer problem, at the price of a costly window-based computation.

From the previous considerations, it follows that, as soon as we want to
combine processing efficiency (a QoS parameter) with result accuracy (a QoD
parameter), a trade-off arises: the definition of skyline-based relaxation tech-
niques may help in solving the empty answer problem but the price to pay
is the introduction of a window-based computation and therefore, in general,
a decrease of performance.

The ASAP Proposal. In order to combine the benefits of both precise and
relaxed queries, an ASAP approach can thus be considered. The idea is to rely
on the usage of an adaptive processing approach, in order to switch from precise
selection operations to skyline-based ones as soon as, based on some dynamically
monitored QoD parameters, the system understands that this is needed for im-
proving result quality. The same technique may then switch from a skyline-based



72 B. Catania and G. Guerrini

computation to a precise one to reduce result size as soon as a QoD parameter
indicates that a precise computation can generate a result with QoD guarantees.
In the resulting approach, the target of both adaptation and approximation is
thus QoD-oriented, while the aim of both adaptation and approximation is both
QoD and QoS since the techniques aim at achieving the best trade-off between
a QoD parameter, namely result completeness, and a QoS parameter, namely
response time, by recurring to (more expensive) skyline-based computations only
when needed.

The idea is to model adaptive query processing as a finite state automa in
which each state corresponds to one (possibly relaxed) query to be executed
[12]. Transition from one state to another is performed during processing using
heuristics with the aim of maximizing accuracy, defined according to specific
user or system constraints and statistics, computed over already processed data.
The overall ASAP framework relies on three main components: (i) monitor,
which collects aggregate values, related to selectivity and precision of the query
in execution; (ii) assessor, which determines whether some QoD conditions are
satisfied; (iii) responder, which, based on assessor predicates, determines whether
the query plan should be modified in a certain instant of time.

In order to give an idea of how the ASAP processing works, we suppose
that the QoD-oriented user request corresponds to a precise continuous query
annotated with specific QoD constraints, over parameters to be computed in
a continuous way, like: σavg, average result cardinality (selectivity constraint);
πmax, maximal distance of the returned tuples from the specified query con-
ditions (precision constraint); μ, weight for selectivity and precision (trade-off
constraint). We can then consider the very simple ASAP automata presented
in Figure 1, containing just two states: one corresponding to a precise query
and one corresponding to the r-skyline query obtained by relaxing all conditions
appearing in the original request. More complex state machines can of course be
provided by increasing the number of the considered states, i.e., the number of
relaxed queries taken into account.

The computation then proceeds as follows:

– Statistics computed by the monitor may quantify how far the current result
is from the selectivity and precision constraints associated with the original
request. Based on such statistics, say σ for selectivity and π for precision,
an accuracy measure has been provided, which, given an annotated precise
query Q and a, either precise or relaxed, query Q measures how far is Q

′

result with respect to Q′ result. A higher accuracy for Q
′
implies an higher

user satisfaction in obtaining Q
′
result.

– The assessor can then determine whether, during the computation, some
QoD conditions are satisfied. The following are examples of some relevant
predicates: (i) sel+/sel−: too many/too less results are generated by the
query at hand, with respect to initially specified selectivity constraints; (ii)
relax+/relax−: the distance of the returned tuples is too high or the non
returned tuples are quite close to the initial query and thus can be returned.



Adaptively Approximate Techniques in Distributed Architectures 73

Fig. 1. An example of an ASAP automata

– Finally, the monitor component establishes whether a transition has to be
performed, thus the query in execution has to be changed, in order to increase
accuracy. This reasoning should rely on predicates computed by the assessor
component and by the accuracy measure used to drive the process.

By varying the trade-off constraint, more emphasis can be given to either selec-
tion and precision, thus driving the process towards relaxed or precise compu-
tations.

4 ASAP in the Large

By increasing the complexity of the considered environment, moving towards
highly distributed architectures, all concepts introduced in Section 3 become less
clear. Indeed, while from one hand, user interactions with the network and its
many applications generate a valuable amount of information, facts, and opinions
with a great socio-economic potential, from the other hand, this huge wealth of
information is currently being exploited much below its potential because of the
difficulties in accessing data to retrieve relevant information. ASAP in the large
can thus be interpreted as a step towards the realization of an entity-relationship
search paradigm for uncontrolled and wide information domains, with an impact
on qualitative and quantitative performance of systems for processing strongly
interrelated and heterogeneous data in distributed dynamic environments. Under
those new scenarios, data and requests can be characterized as follows.

Data Sources. Data from different sources are highly heterogeneous in terms
of structure, semantic richness, and quality. They are often geo-referenced, time-
variant, and dynamic. Information sources, which could be represented according
to a graph-based data model, may contain: (i) strongly related and semantically
complex but relatively static data (e.g., Linked Open Data); (ii) unstructured
data, or data with a simple and defined structure; (iii) data dynamically gen-
erated by a multitude of diverse people (e.g., social networks, microblogs); (iv)
highly dynamic data generated by public or private institutions linked to the
territory (data streams).

Requests. Complex requests expressing relationships among the entities of
user interest have to be represented, possibly relying on a graph-based query



74 B. Catania and G. Guerrini

language. Such requests are often vaguely specified, since users cannot reason-
ably know format and structure of data encoding the relevant information. For
example, the user may ask for the nearest shops selling the book which her friend
Luca likes or for the biography of the author of the painting she is watching.

The Targeted Problem. Processing complex requests on heterogeneous and
dynamic information sources can be costly since it first requires a request in-
terpretation, then processing has to be performed on available sources deemed
relevant (to reduce processed data volumes), and finally results should be aggre-
gated in a consistent answer and returned to the user. Additionally, the answer
may not guarantee the user satisfaction since the request could have been incor-
rectly interpreted, processed on inaccurate, incomplete, unreliable data, or even
it could have required a processing time inadequate to the urgency of the request.
As pointed out in [21], one solution to these problems relies on user interven-
tion. However, depending on the request urgency and the specific application
scenario, such intervention may not always be possible. The problem thus arises
to define approaches for providing approximate answers to shared and complex
information needs, even vaguely and imprecisely specified, operating on the full
spectrum of relevant content, overcoming the difficulties related to heterogeneity
and dynamism while requiring a limited user involvement.

The ASAP Proposal. In [10], we claimed that the ASAP paradigm can be
effectively used to tackle the problem described above. In order to limit user
intervention, a specific type of QoD-oriented approximation has been proposed,
namely Wearable Queries (WQs). WQs integrate explicit requests with profile
(information provided by the user as well as induced by the system, e.g., user
habits) and context (spatio-temporal coordinates of the request, its motivation,
and its environment, e.g., in terms of potential interaction and urgency). The
computed result should minimize the distance between the returned items and
the specified context and user information. To this aim, WQs computation should
take into account data specificities, with a particular reference to quality, geo-
localization, and freshness of data sources and specific data items, in order to
select relevant data sources and provide results at the appropriate level of detail.

To enable search in a huge space of highly heterogeneous and poorly controlled
sources, an adaptive pay-as-you-go approach, influenced by quality, dynamics,
and specificities of the considered sources, needs to be adopted. The devised
approach, which constitutes a completely new QoD-oriented adaptive approach
applied to QoD-oriented approximate searches (thus, a new ASAP approach),
generates and incrementally refines mappings between sources, according to the
requirements induced by the submitted requests, thus avoiding the prohibitive
costs of full integration. The role of the proposed QoD-adaptive approach is
therefore twofold: the space of sources is incrementally adapted to the peculiar-
ities of the submitted requests and, simultaneously, requests, specified as WQs,
are processed by incrementally adapting them to the peculiarities of the space
of sources and its evolution over time.



Adaptively Approximate Techniques in Distributed Architectures 75

In order to maximize accuracy during the adaptive process, we explore a yet
unexplored coordinate, namely metadata corresponding to synthetic represen-
tations of similar WQ executions repeated over time (called Profiled Wearable
Query Patterns - PWQPs). Similar requests are very common in dynamic con-
texts, each time information needs are widespread among different users, because
induced by an event, the interests of a community, or a place (e.g., during or after
an exceptional event -environmental emergencies or flash mobbing initiatives-).
The ability to take advantage of the experience gained by prior processing in
new searches allows response times and interpretation errors to be limited, thus
reducing the possibility of producing unsatisfactory answers.

For processing WQs, we envisage an mechanism that moves at each step, in
the large space of possible approximate answers, towards the sources deemed
capable of producing the best solutions with respect to profile and context of
the request, quality and dynamism of the sources and knowledge gained from
previous executions. The process is incremental, i.e., first it attempts to exploit
PWQPs, then makes a coarse-grain selection of sources, and later it focuses
approximation efforts on the description of the selected sources. The results
are composed or reconciled through mappings, selected or generated on-the-fly.
The envisioned solution couples this mechanism with a method for assessing
the quality of each individual processing. This information, together with any
explicit user feedback, is used for updates and refinements.

5 Conclusions

In this paper, after revising and classifying approximate and adaptive processing
techniques with respect to the quality parameters they take into account, we in-
troduced ASAP techniques and we showed that they can be successfully used in
both specific and more general application contexts, characterized by an higher
complexity of the environment and of the data sources at hand. We remark that
ASAP is not a new concept, rather, it can be interpreted as a revision of existing
processing approaches focusing on QoD parameters, which could be effectively
and efficiently used in emerging contexts. Several issues are still open and re-
quire further investigation, especially under the “ASAP in the large” vision. In
this context, we are currently investigating issues concerning data source cha-
racterization, for Linked and crowdsourced (social) data, as well as automatic
acquisition of approximate geo-spatial contexts for crowdsourced (social) data.

References

1. Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region Proximity in Metric Spaces
and its Use for Approximate Similarity Search. ACM Trans. Inf. Syst. 21(2),
192–227 (2003)

2. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I.,
Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford
Stream Data Manager. IEEE Data Eng. Bull. 26(1), 19–26 (2003)



76 B. Catania and G. Guerrini

3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An Opti-
mal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions.
J. ACM 45(6), 891–923 (1998)

4. Babcock, B., Datar, M., Motwani, R.: Load Shedding for Aggregation Queries over
Data Streams. In: ICDE, pp. 350–361 (2004)

5. Babu, S., Srivastava, U., Widom, J.: Exploiting k-Constraints to Reduce Mem-
ory Overhead in Continuous Queries over Data Streams. ACM Trans. Database
Syst. 29(3), 545–580 (2004)

6. Belussi, A., Boucelma, O., Catania, B., Lassoued, Y., Podestà, P.: Towards
Similarity-Based Topological Query Languages. In: Grust, T., et al. (eds.) EDBT
2006. LNCS, vol. 4254, pp. 675–686. Springer, Heidelberg (2006)

7. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE,
pp. 421–430 (2001)

8. Catania, B., Guerrini, G.: Towards Adaptively Approximated Search in Distributed
Architectures. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data Man-
agement 1. SCI, vol. 331, pp. 171–212. Springer, Heidelberg (2011)

9. Catania, B., Guerrini, G.: Approximate queries with adaptive processing. In: Cata-
nia, B., Jain, L.C. (eds.) Advanced Query Processing, Volume 1: Issues and Trends.
ISRL, vol. 36, pp. 237–269. Springer, Heidelberg (2013)

10. Catania, B., Guerrini, G., Belussi, A., Mandreoli, F., Martoglia, R., Penzo, W.:
Wearable queries: adapting common retrieval needs to data and users. In: 7th
International Workshop on Ranking in Databases (co-located with VLDB 2013),
DBRank 2013, Riva del Garda, Italy, August 30, p. 7. ACM (2013)

11. Catania, B., Guerrini, G., Pinto, M.T., Podestà, P.: Towards relaxed selection
and join queries over data streams. In: Morzy, T., Härder, T., Wrembel, R. (eds.)
ADBIS 2012. LNCS, vol. 7503, pp. 125–138. Springer, Heidelberg (2012)

12. Catania, B., Guerrini, G., Pomerano, D.: An adaptive approach for processing
relaxed continuous queries (in preparation)

13. Chaudhuri, S., Das, G., Narasayya, V.R.: Optimized Stratified Sampling for Ap-
proximate Query Processing. ACM Trans. Database Syst. 32(2), 9 (2007)

14. Chaudhuri, S., Ganti, V., Kaushik, R.: A Primitive Operator for Similarity Joins
in Data Cleaning. In: ICDE, p. 5 (2006)

15. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.:
Adaptive Rank-aware Query Optimization in Relational Databases. ACM Trans.
Database Syst. 31(4), 1257–1304 (2006)

16. Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Tech-
niques in Relational Database Systems. ACM Comput. Surv. 40(4) (2008)

17. Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing Join and Selection Queries.
In: VLDB, pp. 199–210 (2006)

18. Koudas, N., Srivastava, D.: Approximate Joins: Concepts and Techniques. In:
VLDB, p. 1363 (2005)

19. Lengu, R., Missier, P., Fernandes, A.A.A., Guerrini, G., Mesiti, M.: Time-
completeness Trade-offs in Record Linkage using Adaptive Query Processing. In:
EDBT, pp. 851–861 (2009)

20. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing of
Top-k Queries in XML. In: ICDE, pp. 162–173 (2005)

21. Mass, Y., Ramanath, M., Sagiv, Y., Weikum, G.: IQ: The Case for Iterative Query-
ing for Knowledge. In: Proc. of CIDR 2011, pp. 38–44 (2011)

22. Mishra, C., Koudas, N.: Interactive Query Refinement. In: EDBT, pp. 862–873
(2009)



Adaptively Approximate Techniques in Distributed Architectures 77

23. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S.,
Olston, C., Rosenstein, J., Varma, R.: Query Processing, Approximation, and Re-
source Management in a Data Stream Management System. In: CIDR (2003)

24. Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over
Distributed Data Streams. In: SIGMOD Conference, pp. 563–574 (2003)

25. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in
Database Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

26. Silva, Y.N., Aref, W.G., Ali, M.H.: The similarity join database operator. In: ICDE,
pp. 892–903 (2010)

27. Spiegel, J., Polyzotis, N.: TuG Synopses for Approximate Query Answering. ACM
Trans. Database Syst. 34(1) (2009)

28. Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load
Shedding in a Data Stream Manager. In: VLDB, pp. 309–320 (2003)

29. Zhou, X., Gaugaz, J., Balke, W.-T., Nejdl, W.: Query Relaxation using Malleable
Schemas. In: SIGMOD Conference, pp. 545–556 (2007)


	Adaptively Approximate Techniques in Distributed Architectures
	1 Introduction
	2 A Taxonomy for Approximate and Adaptive Techniques
	3 ASAP in the Small
	4 ASAP in the Large
	5 Conclusions
	References




