
The Dos and Dont’s of Crowdsourcing
Software Development

Brian Fitzgerald and Klaas-Jan Stol

Lero—The Irish Software Engineering Research Centre
University of Limerick, Ireland

{bf,klaas-jan.stol}@lero.ie

1 Introduction

In 1957, the eminent computer scientist, Edsger W. Dijkstra, sought to record his pro-
fession as “Computer Programmer” on his marriage certificate. The Dutch authorities,
although probably more progressive than most, refused on the grounds that there was
no such profession. Ironically, just a decade later, the term “software crisis” had been
coined, as delegates at a NATO Conference in Garmisch [1] reported a common set of
problems, namely that software took too long to develop, cost too much to develop, and
the software which was eventually delivered did not meet user expectations. Despite
the advances in technology over the past 50 years, this remains problematic, as evi-
denced by the following quote from the US President’s Council of Advisors on Science
& Technology (PCAST) in 2012.

“The problem of predictable development of software with the intended func-
tionality that is reliable, secure and efficient remains one of the most important
problems in [ICT]”

A number of initiatives have emerged over the years to address the software crisis.
Outsourcing of the software development activity has been on the increase in recent
years according to US1 and European2 reports. However, in many cases outsourcing
of software development has not been successful [2,3]. The success of the open source
movement which has proven surprisingly successful at developing high quality software
in a cost effective manner [4] has been an inspiration for a number of specific forms of
software outsourcing, including opensourcing [5], innersourcing [6] and crowdsourcing
[7].

2 Open-Source-Inspired Outsourcing

The conventional wisdom of software engineering suggests that given the inherent com-
plexity of software, it should be developed using tightly co-ordinated, centralized teams,
following a rigorous development process. In recent times, the Open Source Software

1 IT Outsourcing Statistics: 2012/2013.
2 European IT Outsourcing Intelligence Report.

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 58–64, 2015.
c© Springer-Verlag Berlin Heidelberg 2015



The Dos and Dont’s of Crowdsourcing Software Development 59

(OSS) phenomenon has attracted considerable attention as a seemingly agile, practice-
led initiative that appears to address these three aspects of the so-called “software cri-
sis”: cost, time-scale and quality. In terms of costs, OSS products are usually freely
available for public download. From the point of view of development speed, the col-
laborative, parallel efforts of globally-distributed co-developers has allowed many OSS
products to be developed much more quickly than conventional software. In terms
of quality, many OSS products are recognized for their high standards of reliability,
efficiency and robustness, and the OSS phenomenon has produced several “category
killers” (i.e., products that remove any incentive to develop any competing products) in
their respective areas—Linux and Apache spring to mind. The OSS model also seems to
harness the most scarce resource of all—talented software developers, many of whom
exhibit a long-standing commitment to their chosen projects. It is further suggested that
the resulting peer review model helps ensure the quality of the software produced.

This brief synopsis illustrates why the OSS topic would be of such interest to the
software engineering community, and also provides a hint as to why it would have
greater research appeal and interest, particularly in an outsourcing context where com-
panies seek to take advantage of resources beyond co-located developers on a single site.
As mentioned, the OSS phenomenon has inspired other forms of outsourcing, of which
crowdsourcing is one. This work will focus on crowdsourcing in software development.

3 Crowdsourcing Software Development

Software engineering no longer takes place in small, isolated groups of co-located devel-
opers, all working for the same employer, but increasingly takes place in a globalized
context across organizations and communities involving many people. One emerging
approach to getting work done is crowdsourcing, a sourcing strategy that has emerged
since the nineties [8]. Driven by Web 2.0 technologies, organizations can tap into
a workforce consisting of anyone with an Internet connection. Customers, or requesters,
can advertise chunks of work, or tasks, on a crowdsourcing platform, where suppliers
(i.e., individual workers) select those tasks that match their interests and abilities [9].

Crowdsourcing has been adopted in a wide variety of domains, such as design and
sales of T-shirts [10] and pharmaceutical research and development [11] and there are
numerous crowdsourcing platforms through which customers and suppliers can find
each other [12]. One of the best known crowdsourcing platforms is Amazon Mechani-
cal Turk (AMT) [13]. On AMT, chunks of work are referred to as Human Intelligence
Tasks (HIT) or micro-tasks. Typical micro-tasks are characterized as self-contained,
simple, repetitive, short, requiring little time, cognitive effort and specialized skills, and
crowdsourcing has worked particularly well for such tasks [14]. Examples include tag-
ging images, and translating fragments of text. Consequently, remuneration of work is
typically in the order of a few cents to a few US dollars.

In contrast to micro-tasks, software development tasks are often interdependent, com-
plex, heterogeneous, and can require significant periods of time, cognitive effort and
various types of expertise. Yet, there are cases of crowdsourcing complex tasks; for
instance, InnoCentive deal with problem solving and innovation projects, which may
yield payments of thousands of US dollars [10]. A number of potential benefits may



60 B. Fitzgerald and K. Stol

arise through the use of crowdsourcing in general, and these would also be applicable
in the context of software development specifically:

– Cost reduction through lower development costs for developers in certain regions,
and also through the avoidance of the extra cost overheads typically incurred in
hiring developers;

– Faster time-to-market through accessing a critical mass of necessary technical tal-
ent who can achieve follow-the-sun development across time zones, as well as par-
allel development on decomposed tasks, and who are typically willing to work at
weekends, for instance;

– Higher quality through broad participation: the ability to get access to a broad and
deep pool of development talent who self-select on the basis that they have the
necessary expertise, and who then participate in contests where the highest quality
‘winning’ solution is chosen;

– Creativity and open innovation: there are many examples of “wisdom of crowds”
creativity whereby the variety of expertise available ensures that more creative so-
lutions can be explored, which often elude the fixed mindset that can exist within
individual companies, a phenomenon known as ‘near-field repurposing of knowl-
edge.’

Given that the first three benefits above (cost, time and quality) directly address the
three central problematic areas of the so-called ‘software crisis’ [15], it is not surpris-
ing that a number of authors have argued that crowdsourcing may become a common
approach to software development [16,17].

We conducted a case study of a major multinational company who commissioned
a crowdsourcing software development initiative using the TopCoder platform [7]. Be-
low we present a number of lessons learned in the form of Dos and Dont’s.

4 The Dos in Crowdsourcing Software Development

4.1 Do Familiarize Yourself with the Crowdsourcing Process

The software development approach in crowdsourcing can be significantly different
from that which organizations use for their internal development. For example, the
crowdsourcing software development process at TopCoder is a waterfall process and
it is not trivial to integrate this with the agile type approach which characterizes the
majority of in-house development today. It is important to become familiar with the
crowdsourcing process at the outset, so that architects, developers and project managers
can prepare and discuss internally what needs to be done for a smooth interaction with
the crowd.

There are several new roles which emerge when crowdsourcing software develop-
ment. For example at TopCoder, the interaction with crowd contestants is mediated by
co-pilots who are experienced members of the crowd community and platform special-
ists who interact with customer companies. Also, while the concept of first and second
prizes is clear, concepts such as Reliability Bonus and Digital Run points are not so
obvious but have significant financial implications for the customer. The level at which



The Dos and Dont’s of Crowdsourcing Software Development 61

prize money should be pitched for competitions, and the preparing of specifications
and reviewing of competitions is also something which needs to be understood in the
crowdsourcing software development process.

The warranty periods for crowdsourced work can also be problematic. For example,
TopCoder operate a five day warranty period after a competition winning entry has been
selected, during which the customer has to accept or reject the submission. This requires
discipline at the customer end to ensure that submissions can be internally reviewed.
There is also a 30-day warranty period during which problems can be reported. How-
ever, it can be difficult to operate this longer warranty period usefully as some much
additional interdependent development work would have been done in the intervening
30 days and this would make it difficult to roll back the crowdsourcing element.

4.2 Do Provide Clear Documentation to the Crowd

Documentation clearly plays an important role, as this is the key channel through which
crowd developers will know what to develop. The documentation that specifies the con-
text and the requirements for the software development task at hand must be easy to
understand and provide sufficient information for crowd developers to do their task.
Finding the right balance is important; giving either too little or too much informa-
tion will result in a deliverable that is likely to be unacceptable. Overwhelming the
crowd with information is likely to scare them off, resulting in few or even no submis-
sions. Also, the crowd tend not to have a recurrent relationship with customers. Thus
the kind of tacit organizational knowledge that one can take for granted for in-house
development does not occur in crowdsourcing. Consequently, far more comprehensive
and explicit documentation of requirements is necessary.

4.3 Do Assign a Special Person to Answer Questions from the Crowd

Interacting with the crowd can be a very time-consuming activity. In the case study we
conducted, the single point of contact had to have both technical and project manage-
ment skills, and consequently such a liaison ended up being a senior resource. However,
a significant amount of time of this senior person was taken up by answering technical
questions on the Q&A forum through which crowd developers asked for clarification.
Therefore, a better approach would be to allocate a person who would be well informed
about the technical intricacies of the project but who would not have a senior role, and
hence be a cheaper resource. The nature of interaction which takes place episodically,
perhaps once per day, through the rather narrow Q&A forum also requires quite a lot of
discipline on the part of the person charged with that responsibility.

5 The Don’ts in Crowdsourcing Software Development

5.1 Don’t Stay Anonymous

A crowdsourcing customer may be concerned about potential IP “leaking,” and giving
away the company’s “Secret Sauce.” As a result, a customer may choose to disguise



62 B. Fitzgerald and K. Stol

their participation by staying anonymous, using a pseudonym in contest descriptions.
However, a significant downside of that tactic is that such contests may attract very
little interest and participation from the crowd. For crowd developers, it can be particu-
larly interesting to work for blue chip companies as doing so allows them build their re-
sumes. It is not uncommon for developers to use their TopCoder ‘rating’ on their resume
as evidence of their technical skills and know-how. By staying anonymous, however,
a customer may be much less appealing to work for. Also, the anonymity may offer an
inadequate level of protection anyway in that the specifications for a competition may
effectively reveal the company’s identify anyway.

5.2 Don’t Reject Submissions If They Can Easily be Fixed

Once a contest is over, the customer may have five days to accept the ‘winning’ sub-
mission. This means that there is only limited time for a customer to fully analyze and
test the deliverable before an accept or reject decision must be made. If a customer
decides the deliverable is not of the expected quality, it may be rejected. However, a
possible negative side effect is that crowd developers may not participate in future con-
tests of this customer, as doing so involves a risk of spending time and not getting paid
for it. If a customer is not yet ready to handle the incoming deliverable, the customer
can, of course, just accept the deliverable. After accepting, there is an additional war-
ranty period of 30 days during which identified defects can be reported and fix without
additional cost. However, taking this route can pose significant overhead in receiving,
checking and integrating the fixed deliverable. Therefore, a customer is probably better
off to fix minor defects internally rather than using the warranty period.

5.3 Don’t Underestimate the Cost

The cost of crowdsourcing software should not be underestimated. Using the TopCoder
platform, for example, the cost of a single contest can be much higher than merely the
prize money for the First Prize. Assuming a first place prize of 1,000 USD, the prize
money for the second place is 500 USD. Add to that a Reliability Bonus of 200 USD,
a Digital Run contribution of 450 USD, a specification review of 50 USD, a review
board of 800 USD, and co-pilot fees of 600 USD, a single contest would cost 3,600
USD.

5.4 Don’t Expect Miracles

Finally, it is important to stress that crowdsourcing software development does not rep-
resent the much sought after ’silver bullet.’ Expected benefits from crowdsourcing in-
clude high-quality and innovative solutions in a faster time-scale and low cost. Indeed,
given TopCoder’s workforce of around 700,000 developers, one would expect a signif-
icant number of participants for each contest, and consequently, high-quality of inno-
vative deliverables. However, our findings suggest quite a different picture. For the 53
contests held by our case study company, there were a total of 720 registrants, and a
total of only 84 submissions, less than two on average. Furthermore, there were more



The Dos and Dont’s of Crowdsourcing Software Development 63

than 500 issues reported with these submissions. The case company was also quite
disappointed by the level of innovation–rather than the expected high-quality HTML5
code (HTML5 has many novel features compared to HTML4), few HTML5 features
were actually used due to the portability constraints set forth by the customer company.

6 Conclusion

Crowdsourcing software development is not as straightforward as crowdsourcing micro-
tasks found on platforms such as Amazon Mechanical Turk. Given the complexity of
software development, we should not be surprised that the difficulties in ‘common’ (in-
house) software development settings are exacerbated when outsourced to a crowd. Yet,
little is known about crowdsourcing software development, and our suggested dos and
don’ts are based on a single case study. More research is necessary–to that end, we
developed a research framework that identifies the key perspectives and concerns [18].

Acknowledgments. This work was supported by Science Foundation Ireland grant
10/CE/I1855 to Lero—The Irish Software Engineering Research Centre, Enterprise Ire-
land grant IR/2013/0021 to ITEA2-SCALARE, and the Irish Research Council.

References

1. Naur, P., Randell, B. (eds.): Report on a conference sponsored by the NATO SCIENCE COM-
MITTEE (1968)

2. Nakatsu, R., Iacovou, C.: A comparative study of important risk factors involved in offshore
and domestic outsourcing of software development projects: A two-panel delphi study. Infor-
mation & Management 46, 57–68 (2009)

3. Tiwana, A., Keil, M.: Control in internal and outsourced software projects. Journal of Man-
agement Information Systems 26, 9–44 (2009)

4. Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K.: Perspectives on Free and Open Source
Software. MIT Press (2005)

5. Ågerfalk, P.J., Fitzgerald, B.: Outsourcing to an unknown workforce: Exploring opensourc-
ing as a global sourcing strategy. MIS Quarterly 32 (2008)

6. Stol, K., Avgeriou, P., Babar, M., Lucas, Y., Fitzgerald, B.: Key factors for adopting inner
source. ACM Trans. Softw. Eng. Methodol., 23 (2014)

7. Stol, K., Fitzgerald, B.: Two’s company, three’s a crowd: A case study of crowdsourcing
software development. In: Proc. 36th Int’l Conf. Software Engineering, pp. 187–198 (2014)

8. Greengard, S.: Following the crowd. Communications of the ACM 54, 20–22 (2011)
9. Hoffmann, L.: Crowd control. Communications of the ACM 52 (2009)

10. Howe, J.: Crowdsourcing: Why the Power of the Crowd is Driving the Future of Business.
Crown Business (2008)

11. Lakhani, K.R., Panetta, J.: The principles of distributed innovation. Innovations: Technology,
Governance, Globalization 2 (2007)

12. Doan, A., Ramakrishnan, R., Halevy, A.: Crowdsourcing systems on the world-wide web.
Communications of the ACM 54 (2011)

13. Ipeirotis, P.: Analyzing the amazon mechanical turk marketplace. XRDS 17, 16–21 (2010)
14. Kittur, A., Smus, B., Khamkar, S., Kraut, R.: Crowdforge: Crowdsourcing complex work. In:

Proceedings of the ACM Symposium on User Interface Software and Technology (2011)



64 B. Fitzgerald and K. Stol

15. Fitzgerald, B.: Open source software: Lessons from and for software engineering. IEEE Com-
puter 44, 25–30 (2011)

16. Begel, A., Herbsleb, J.D., Storey, M.A.: The future of collaborative software development.
In: Proceedings of the ACM Symposium on Computer-Supported Collaborative Work (2012)

17. Kazman, R., Chen, H.M.: The metropolis model: A new logic for development of crowd-
sourced systems. Communications of the ACM 52 (2009)

18. Stol, K., Fitzgerald, B.: Researching crowdsourcing software development: perspectives and
concerns. In: Proc. 1st Int’l Workshop on Crowdsourcing in Software Engineering (2014)


	The Dos and Dont's of CrowdsourcingSoftware Development
	1 Introduction
	2 Open-Source-Inspired Outsourcing
	3 Crowdsourcing Software Development
	4 The Dos in Crowdsourcing Software Development
	4.1 Do Familiarize Yourself with the Crowdsourcing Process
	4.2 Do Provide Clear Documentation to the Crowd
	4.3 Do Assign a Special Person to Answer Questions from the Crowd

	5 The Don'ts in Crowdsourcing Software Development
	5.1 Don't Stay Anonymous
	5.2 Don't Reject Submissions If They Can Easily be Fixed
	5.3 Don't Underestimate the Cost
	5.4 Don't Expect Miracles

	6 Conclusion
	References




