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Abstract. Model checking has always been the flag ship in the fleet of
automated formal verification techniques. It has been in the center of in-
terest of formal verification research community for more than 25 years.
Focusing primarily on the well-known state space explosion problem,
a decent amount of techniques and methods have been discovered and
applied to push further the frontier of systems verifiable with a model
checker. Still, the technique as such has not yet been matured enough to
become a common part of a software development process, and its pen-
etration into the software industry is actually much slower than it was
expected. In this paper we take a closer look at the so called explicit-state
model checking, we briefly recapitulate recent research achievements in
the field, and report on practical experience obtained from using our
explicit state model checker DIVINE. Our goal is to help the reader un-
derstand what is the current position of explicit-state model checking
in general practice and what are the strengths and weaknesses of the
explicit-state approach after almost three decades of research. Finally,
we suggest some research directions to pursue that could shed some light
on the future of this formal verification technique.

1 Introduction

Methods for ensuring quality of various software and hardware products are
inseparable part of the development process. For both software and hardware
developers it is often the case that the only technique used to detect system
flaws is testing, and, considering the cost of poor quality for a given product,
it is quite often a valid and reasonable choice. However, for those cases where
the consequence of a possible design error or an implementation bug is too high,
the standard testing approach is insufficient, either due to the inherent principal
incompleteness of error detection, or because the amount of tests to be done to
decrease the probability of an undiscovered error to an acceptable level is simply
too large. In such the cases formal verification methods come in place.

Model checking [28] is a formal verification procedure that takes the model of a
system under verification and a single piece of system specification as inputs. For
these the procedure decides whether the system meets the given specification or
not. In the negative case, i.e. when there is a behaviour of the system violating the
spec, a witness of such the violation, the so called counterexample, is (optionally)
returned.
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The strong benefit of the model checking approach is that when a verification
procedure successfully proceeds, it provides user of a model checker with the
confidence of satisfaction of validity of the given spec for the system at the level
that is equal to the confidence given by a mathematical proof. Moreover, the
decision procedure is fully automated (made by a computer) once the inputs are
put to a form suitable for the model checker in use.

These obvious benefits of model checking approach naturally do not come for
free. The standard work-flow of model checking requires user to provide model
checker with a formal description of both the system and specification to be pro-
cessed. Unfortunately, the experience with model checking shows that describ-
ing the system to be verified in a form acceptable by a model checker de facto
amounts to re-formulating the relevant parts of the system in the modelling lan-
guage of the model checker. While perhaps not very difficult, this is a step that is
hardly automated and thus requires non-trivial human effort. Similarly, formal-
ising specification in the context of model checking requires system engineers to
express individual system properties as temporal logic formulae. Depending on
the temporal logic used, we speak of the technique as of LTL (Linear Temporal
Logic) model checking, CTL (Computational Tree Logic) model checking, etc.
However, once the inputs to the model checker are in proper form, the decision
about validity of a single system property can be fully automated.

The principle behind the automated decision procedure is to let computer
fully explore all internal configurations of the system under verification. The so
called reachable state space is a set of system configurations that the system
may evolve to from a given set of initial states. With proper analysis of reach-
able state space the model checker may either proof the absence of erroneous
reachable configuration or proof the conformance of the system’s behaviour with
the specification given as a temporal logic formula.

Unfortunately, real-world systems have reachable state space as large as their
full analysis is beyond the capabilities of contemporary computing platforms. As
a result in many cases the verification by model checking ends up with a failure
due to insufficient computing resources, memory in particular. The fact that
the size of the state space tends to grow exponentially with the size of system
description, let us say in some programming language, is generally referred to as
the state space explosion problem. Actually there are two fundamental reasons for
the exponential grow — processing of inputs and control-flow non-determinism.

A lot of attention has been paid to the development of approaches to fight
the state space explosion problem [31] in the field of automated formal verifi-
cation [48]. Many techniques, such as state compaction [35], compression [37],
state space reduction [29,33,47], symbolic state space representation [23], etc.,
were introduced to reduce the memory requirements of a single model-checking
task. With the invention of application of binary decision diagrams to model
checking [46] the field of model checking has got split into symbolic and explicit-
state (enumerative) branch. While CTL has become the native specification logic
within the symbolic branch (namely due to the SMV model checker [27]), LTL
remain closely tied with the explicit-state model checking, also due to the well
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known explicit-state model checker SPIN [37]. Nevertheless, excursions in both
directions exist, see e.g. [22,30,53].

Henceforward, we primarily focus on the explicit-state branch and LTL model
checking. Due to Vardi and Wolper [52], the problem of LTL model checking re-
duces to the problem of checking Büchi automata emptiness, which in turns
amounts to the detection of an accepting cycle in a directed graph of the reach-
able state space producted with a monitor of an LTL property violation. Unfor-
tunately, accepting cycle detection algorithms as used in explicit-state model
checkers, such as SPIN [37], DIVINE [3], or LTSmin [18], has to construct
and store the whole graph of the product. Hence, those model checkers suf-
fer primarily from high memory demands caused by the state space explosion
problem.

This paper touches three main directions taken recently with respect to the
LTL explicit-state model checking. In Section 2, we briefly recapitulate research
effort spent in fighting state space explosion by means of parallel and distributed
memory processing. Even though the state space explosion is a serious problem,
surprisingly, it is not always the primary one that prevents model checking from
being used in practice. Another quite hampering factor in the model checking
scheme is the need of formal modelling. To address this problem we discuss, in
Section 3, a direct application of explicit-state model checking to an LLVM bit-
code. LLVM bitcode is used as an internal compiler representation of a program,
and hence, it is automatically obtained from a source code with a common com-
piler. In Section 4 we notice that explicit-state model checking is typically used
as an instance of unit-testing, and we discuss an extension towards symbolic
representations that would push explicit-state model checking back to formal
verification. Finally, Section 5 offers a few final remarks and hopefully gives
some clues for the future of explicit-state model checking.

2 Parallel Processing and State Space Explosion

There is no doubt that the range of verification problems that can be solved
with logic model checking tools has increased significantly over the last few
decades. Though surprisingly, this increase is not only based on newly discovered
algorithmic advances, but is strongly attributed to the increase in the speed of a
single processor core and available size of the main memory [39]. Realising that
the efficiency of explicit-state model checking strongly depends on the speed of
computing hardware used, and supported with the fact that the speed of a single
CPU core is not going to scale in the future, no option was left out than to go
for parallel processing.

The main obstacle for direct extension of existing sequential LTL model
checkers towards parallel architectures lied in the fact that a time-optimal pa-
rallel and scalable algorithm for Büchi emptiness problem is unlikely to ex-
ist [49]. (This is still an open problem.) As a result the pioneering work in
parallel and distributed-memory LTL model checking [8] employed parallel scal-
able, but time-unoptimal algorithms for accepting cycle detection. While in the
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sequential case, algorithms for accepting cycle detection, such as Nested DFS [32]
or various versions of Tarjan’s algorithm for SCC decomposition [51], relies on
the depth-first-search post-order, distributed-memory algorithms are built on
top of reachability procedures, value propagation or topological sort [9,21].

Distributed-memory processing cannot fight the state space explosion problem
alone and must be combined with other techniques. One of the most successful
technique to fight the state space explosion in explicit-state model checking is
Partial Order Reduction [47]. As a matter of fact, new topological sort proviso
had to be developed in order to maintain efficiency of partial order reduction in
the distributed-memory setting [6]. Another important algorithmic improvement
relates to classification of LTL formulae [25]. For some classes of LTL formulae
the parallel algorithms could be significantly improved [2]. For weak LTL formu-
lae, the OWCTY algorithm [24] even matches the optimal sequential algorithms
in terms of complexity. However, this algorithm suffers from not being an on-the-
fly algorithm. Since the on-the-fly verification is an important practical aspect,
a modification of this algorithm that allows for on-the-fly verification in most
verification instances has been also developed [5].

All the distributed-memory algorithms has been implemented as part of pa-
rallel and distributed-memory LTL model checker DIVINE [12]. However, the
focus of DIVINE on non-DFS-based algorithms and distributed-memory process-
ing, does not require DIVINE to be used in distributed-memory only. As a matter
of fact, DIVINE runs smoothly also in a shared-memory setting [4].

Since the lack of ability of parallel processing would mean a significant
drawback for other explicit-state model checkers considering the contemporary
computing hardware, they have also undergone a parallel processing face-lift.
Namely, the SPIN model checker has been adapted to parallel processing with
the so called stack-slicing [38] and piggybacking [41] techniques. Though, the
most innovative extension of SPIN with respect to parallel processing was the so
called swarm verification [39,40] that took the step towards the map-reduce
pattern in model checking. In particular, a single verification task is cloned as
many times as is the number of available processors, and for each clone the
order of exploration of the state space is altered. In such a swarm of parallel
tasks, the probability of early detection of an accepting cycle is significantly
increased.

A completely different approach was chosen for LTSmin model checker [43].
Authors of which has successfully adapted sequential Nested DFS algorithm to
parallel shared-memory processing. The idea is to run Nested DFS algorithm
freely in parallel and then detect and recover from situations that could violate
the soundness of computation. Even though such an approach cannot scale in
general, practical measurements showed a superior results on shared-memory
architectures [34,42].

Yet another parallel computing platform has become popular recently – gen-
eral purpose graphical processing units (GPGPUs). Though, this platform was
never meant for acceleration of memory demanding computations, the raw com-
puting power of it is rather attractive. A series of results regarding acceleration
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of LTL model checking has been published recently employing non-DFS-based
algorithms for accepting cycle detection [1,10,11] and accelerated state space
generation [54].

3 Model Checking without Modeling

Recent formal verification research activities put a strong emphasis on direct ap-
plicability of verification methods in practice. This is witnessed, e.g., by Software
Verification Competition [17] – a mainstream activity in the program analysis
community. The strong drive to make formal method applications approachable
by the general software development and engineering community highlights the
fact that the most important factor of using formal methods in practice is their
ease of use. Hence, formal methods must be applied on artefacts that software
engineers and developers naturally work with, i.e. at the level of source code.

Moreover, should the model checking method spread massively and a model
checkers become regular utility for software developers, it has to implement
a full programming language specification, so that the programs the software
developers write and run are also valid inputs for the model checker. Program-
ming languages are rather complex in their full specification, and still engineers
in pursuit of more elegant and more maintainable code balance on the bound-
aries of what is allowed and what is not in a particular programming language.
Therefore, introducing substantial constraints on a programming language in
order to enable model checking typically results in complete elimination of the
model checking process from the development cycle.

A new approach to verification of C/C++ programs without the explicit need
of modeling has been presented in [7]. The suggested solution effectively chains
our parallel and distributed-memory model checker DIVINE with CLang compiler
using the LLVM [44] infrastructure, intermediate bitcode representation (LLVM
IR) in particular. Even though, LLVM IR has not precise semantics, the fact is
that real-world compilers achieve an enviable level of agreement in this respect,
despite numerous optimisation passes they all implement.

Using the LLVM IR as input for model checking thus not only enables model
checking without the tedious process of system modelling, but it also provides a
stable modelling language with reasonable well defined semantics. Within such
a setup model checkers, such as DIVINE, may offer full LTL model checking of
virtually unmodified C/C++ source codes.

The only limitation regarding input to the model checker is the need for com-
pleteness of the C/C++ program description. As a matter of fact, the model
checker cannot verify programs that do calls to external libraries for which it has
no source code available. Similarly, any calls to the kernel of operating system,
such as processing of input and output are beyond the scope of this approach,
unless the external environment is somehow added to the program and simulated
without actual performance of Input/Output instructions. In principle, such
a usage scenario resembles the well known unit testing approach.

Note that DIVINE internally provides an implementation of majority of the
POSIX thread APIs (pthread.h), which in turns enables verification of unmodi-
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fied multithreaded programs. In particular, DIVINE explores all possible thread
interleavings systematically at the level of individual bitcode instructions. This
allows DIVINE, for example, to virtually prove an absence of deadlock or as-
sertion violation in a given multithreaded piece of code, which is a feat that is
impossible to achieve with the standard testing techniques.

The main disadvantage of modelling the systems to be verified at the level
of LLVM bitcode is the very fine grained nature of this language is subject to
the thread of massive state space explosion. However, the low-level nature of
LLVM entails a granularity of operations much finer than what is necessary
for verification. τ -reduction [7] proposes a collection of heuristics that lead to
a coarser granularity without losing correctness of the overall verification. The
basic idea behind τ -reduction is that effects of instructions are observable from
other threads only when the thread accesses main memory via load or store
instructions. Model checker can benefit from this fact by pretending that most
instructions are invisible and executing more of them within one step.

Among the latest extension of our LLVM bitcode model checker is the in-
ternal support for the full C++11 exception handling mechanism and C++11
threading [50].

4 Symbolic Data in Explicit-State Model Checking

For programs that do not process input data, the entire state space to be explored
is derived from the program source code itself. Let us refer to these programs
as to closed systems. For closed systems, model checking equals to formal verifi-
cation, as it can guarantee that no system execution violates the model-checked
property. As mentioned above this is particularly interesting for multithreaded
programs, since for those programs regular testing approach is insufficient to de-
tect all concurrency related issues due to the non-deterministic nature of thread
scheduling.

However, for programs that read input data (the so called open systems),
explicit-state model checking approach is in trouble. Note that even for a simple
program that reads only a single 32-bit integer value, the enumeration of all
possible input values would result into an unmanageable state space explosion.
Hence, the idea of closing an open system with an environment process that
would feed the program with all possible inputs is, in the case of explicit-state
model checking, out of use. Though, for open systems that are executed over
some concrete input data, i.e. the usual way the systems are tested; application
of explicit-state model checking may have some benefits. In those cases model
checking can detect inappropriate behaviour of the system after a system call
failure, errors in exception handling, and/or other errors related to the control-
flow non-determinism in general.

Still open systems represent a verification challenge. The way explicit-state
model checking can address this problem is the so called control explicit, data
symbolic (CEDS) approach [13]. The idea of it is to let a model checker track
explicitly only the control-flow part of a system configuration while data values



52 J. Barnat

are stored symbolically. In other words, for each control-flow point the model
checker keeps a set of possible data values that are valid for the particular control-
flow point, the so called multi-state. Such a set-based representation of data
allow for efficient handling of both sources of non-determinism present in the
state space graph.

Naturally, the way the set of values are represented may differ. Explicit sets,
i.e. when set members are enumerated explicitly, are very fast for small ranges
but as mentioned above fail to scale. On the other hand, symbolic sets, repre-
sented, e.g., by first-order formulae in the bit-vector theory scale well to arbitrary
range of input variables, but their usage make the model checker dependent on
the efficiency of satisfiability modulo theory solvers.

Moreover, the detection of accepting cycles as prescribedby the automata-based
approach to LTLmodel checking requires deciding equality of twomulti-states dur-
ing the state space traversal. In the explicated state space, this operation is trivial
to be implemented efficiently with a hash table. However, when the sets of val-
ues are represented with logic formulae the decision of equivalence of multi-states
is quite troublesome as the formulae lack unique canonical form. Since two equal
multi-states may have different memory representations, use of efficient hashing is
prohibited.

For those symbolic representations that allow at least linear ordering of multi-
states, a logarithmic search would be possible, however, when using bitvector
formulae this is not the case. The only obviously available option is a linear search
in which the potentially new multi-state associated with a given control-flow
point is compared with every other multi-state generated so far and associated
to the same control-flow point. Note that the complexity of equality operation
for multi-states may be very high [14].

Unfortunately, the CEDS approach is not without limitations. For example, it
is unclear how to deal with dynamic allocation of memory blocks of which size is
prescribed with a symbolically treated input variable. Nevertheless, for programs
avoiding these allocations, the CEDS approach provides complete and efficient
automatic verification procedure. As a matter of fact, we have implemented the
CEDS approach by integrating DIVINE model checker and Z3 SMT solver [36]
and applied our new tool successfully to verify some multithreaded programs
with input [14]. We were also able to apply LTL model checking for verification
of open embedded systems, simulink diagrams in particular [15].

Regarding verification of LTL properties, other symbolic approaches exist,
the standard symbolic model checking [26], interpolation [45], and IC3 ap-
proach [19,20] are the most relevant. According to our experimental compar-
ison [16] there is no clear winner among these approaches in terms of the speed
of verification and applicability. In other words, extending explicit-state model
checking with symbolic data representation feature makes the technique a com-
petitive approach in the formal verification field in general.
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5 Conclusions and Future Directions

The cost of deployment of formal verification (integration of a formal verifica-
tion method into a development cycle) and also quite often really questionable
performance are the key factors that prevent formal verification methods such
as LTL model checking from being massively used in practice. While ease of
use and readiness for immediate applicability have often minimal value from
the academic point of view, for industry, these are the most important factors
considered in many situations. As a matter of fact, a service that would include
the tedious step of manual modelling is to be refused immediately by many
practitioners.

Another show-stopper for academic tools are restrictions put on inputs that
are processed. A tool that cannot deal with dynamic memory allocation can never
be expected to be useful in practical verification of software systems. Should a
formal verification tool be considered for massive use, the methods the tool
builds on must be as complete as to be able to process a full-scale programming
language including exception handling mechanism, dynamic memory allocation,
object-oriented principles, etc.

Though, formal verification tools that are limited to some degree may still be
successfully employed in many specific situations. Both practitioners and aca-
demic should learn how to find and communicate these specific setups in order
to avoid a failure deployment of a model checker due to exaggerated expecta-
tions of practitioners, as well as to avoid missed opportunities due to the lack
of advertisement and reporting on successful applications of model checkers in
practice.

As for the explicit-state model checking approach, we have identified some of
the obstacles preventing both the ease of use and efficiency of explicit-state model
checkers in this paper. We showed two directions to take that counteract these
problems, the connection to LLVM intermediate representation and extending
the model checker with symbolic representations of data. Still there is much to
do in the future.

Less theoretical, but by no means less important for verification of larger pro-
grams, is input preprocessing. The verification effort must start with pruning
away those parts of the input programs that cannot influence the decision about
the correctness. Especially given the low-level nature of LLVM, clever heuris-
tics for detecting irrelevant code could lead to considerably smaller control-flow
graphs. Methods such as slicing or automated abstractions will become a com-
mon part of the model checking work-flow to alleviate the burden of state space
explosion as much as possible.

The technology evolution also must not be neglected. Should explicit-state
model checking have some future, we predict that it must be able to fully utilise
the power of future computing platforms, such as network clusters and clouds.
History showed that the raw computing power cannot be underestimated, there-
fore we predict that new methods and techniques to allow trading of space
requirements for computation time will be needed.
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Finally, it is clear that there is no winning approach in the field of formal
verification. An integration of techniques such as explicit-state model checking,
symbolic execution and abstract interpretation is the next logical step towards
the formal verification approach of the future. However, a key factor of success
of such the combination is to preserve the general ability to process inputs in
some form of full-scale programming language. As for approaches presented in
this paper, the full combination of LLVM model checking and CEDS approach
is yet to be seen.
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5. Barnat, J., Brim, L., Ročkai, P.: A Time-Optimal On-the-Fly Parallel Algorithm
for Model Checking of Weak LTL Properties. In: Breitman, K., Cavalcanti, A.
(eds.) ICFEM 2009. LNCS, vol. 5885, pp. 407–425. Springer, Heidelberg (2009)
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48. Pelánek, R.: Fighting state space explosion: Review and evaluation. In: Cofer, D.,

Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596, pp. 37–52. Springer, Heidelberg
(2009)

49. Reif, J.H.: Depth-first search is inherrently sequential. Information Processing Let-
ters 20(5), 229–234 (1985)
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