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Abstract. In order to host a general purpose operating system, hypervi-
sors need to virtualize the CPU memory subsystem. This entails dynami-
cally changing MMU resources, in particular the page tables, to allow
a hosted OS to reconfigure its own memory. In this paper we present the
verification of the isolation properties of a hypervisor design that uses di-
rect paging. This virtualization approach allows to host commodity OSs
without requiring either shadow data structures or specialized hardware
support. Our verification targets a system consisting of a commodity
CPU for embedded devices (ARMv7), a hypervisor and an untrusted
guest running Linux.The verification involves three steps: (i) Formaliza-
tion of an ARMv7 CPU that includes the MMU, (ii) Formalization of
a system behavior that includes the hypervisor and the untrusted guest
(iii) Verification of the isolation properties. Formalization and proof are
done in the HOL4 theorem prover, thus allowing to re-use the existing
HOL4 ARMv7 model developed in Cambridge.

Keywords: formal verification, hypervisor, memory management.

1 Introduction

Memory isolation is a key requirement of systems executing software at different
privilege levels. Inevitable security flaws of COTS OSes make providing trust-
worthy memory isolation using only OS level security mechanisms infeasible.
Alternatively, memory isolation can be provided by leveraging special low-level
execution platforms, like hypervisors. The small code-base of hypervisors makes
the verification of their memory isolation properties feasible. In that way, a hy-
pervisor can be used to host a commodity OS (which provides the non-critical
services) along with several critical components, which are deployed in isolated
partitions.

In this paper we present the formal verification of the memory isolation pro-
perties guaranteed by a hypervisor for embedded systems. Here, we focus on
the main functionality of the hypervisor namely the virtualization of the mem-
ory subsystem, which determines the binding of physical memory locations to
locations addressable at the application level. In order to properly isolate parti-
tions, the hypervisor takes control of the memory configuration, by configuring
the MMU and the corresponding page tables. Moreover, in order for such a hy-
pervisor to host a general purpose OS it is necessary to allow the guest OS to
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dynamically reconfigure its internal memory hierarchy and to impose its own
access restrictions. The virtualization of the memory subsystem must provide
this functionality and play the role of a security monitor for the MMU settings.
In fact, since the MMU is the key functionality used by the hypervisor to isolate
the security domains, violation of complete mediation of the MMU settings can
enable an attacker to bypass the hypervisor policies which could compromise
the security of the entire system. This is also what makes a formal analysis of
correctness a worthwhile enterprise.

A distinguishing feature of our work is the adoption of direct paging as virtu-
alization mechanism. This mechanism has been previously introduced by Xen [6]
and permits to virtualize the memory subsystem without requiring either shadow
data structures (e.g., shadow page tables) or specialized hardware (e.g., nested
page tables [2,6]). Direct paging allows a virtualization aware (i.e., paravirtuali-
zed) guest to directly manipulate the page tables while they are in passive state,
i.e., not in active use by the MMU, and then using a dedicated API, verified in
this paper, that effectuates and monitors the transition of page tables between
passive and active state. Subsequent operations (like mapping specific entries)
are done by invoking the corresponding hypercall, until the page tables are freed.

Our verification is done in the HOL4 theorem prover and targets a system
consisting of a commodity CPU for embedded devices (ARMv7 [2]), which hosts
the hypervisor and an untrusted guest. The verification is done in three steps: (i)
We formalize (Section 2) the hosting hardware by extending the existing ARMv7
model developed in Cambridge with the formal model of the ARMv7 MMU, (ii)
We formalize (Section 3) the behavior of the complete system by introducing
a system model, which interleaves instructions executed by an untrusted guest
with a low-level specification of the hypervisor handlers, and (iii) we prove (Sec-
tions 4 and 5) the security properties, by decomposing the proof into lemmas
that can be reused by other virtualization mechanisms that use direct paging.

The verification is made complex by the level of abstraction. We target a real
commodity CPU architecture and the model of the handlers is deliberately low
level so that the implementation can be directly derived from the specification.

2 Formal Model of the ARMv7 CPU

In this model a machine state is modeled as a record σ = 〈regs , coregs ,mem〉 ∈ Σ,
where regs , coregs and mem ∈ 232 → 28, respectively, represent the registers, co-
processors and system memory. In the state σ, the function mode(σ) determines
the current privilege execution mode, which can be either PL0 (user mode, used
by the guest) or PL1 (privileged mode, used by the hypervisor). Here, the three
coprocessor registers coregs = 〈SCTLR, TTBR0, DACR〉 ∈ 232 × 232 × 232 are
the System Control Register, the Translation Table Base Control Register, and
the Domain Access Control Register respectively.

The system behavior is modeled by the state transition relation
l∈{PL0,PL1}−−−−−−−−−→

⊆ Σ × Σ, where a transition realizes the effects of the execution of an ARM
instruction. Non-privileged transitions (σ PL0−−−→ σ′) start and end in PL0 states.
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σ.SCTLR �= 0

desc = readL1
(σ.TTBR0, σ, va.l1_idx)

desc.type = SEC

(ap_checkL1(desc, PL, accreq))

mmu(σ, PL, va, accreq) = translateL1(desc, va)

σ.SCTLR �= 0

descL1 = readL1
(σ.TTBR0, σ, va.l1_idx)

descL1.type = PT

descL2 = readL2
(descL1.pa, σ, va.l2_idx)

descL2.type = SP

(ap_checkL2(descL2, PL, accreq))

mmu(σ, PL, va, accreq) = translateL2(descL2, va)

Fig. 1. (a) One-step and (b) Two-step address translation

All the other transitions (σ PL1−−−→ σ′) involve at least one state in the privileged
level. A transition from PL0 to PL1 is done by raising an exception, that can
be caused by software interrupts, illegitimate memory accesses and hardware
interrupts.

We extended the HOL4 ARMv7 model developed in Cambridge [3] to take
into account the behavior of the ARMv7 MMU. The main functionalities of
the MMU are virtual-to-physical address mapping and memory access control.
The MMU is modeled by the mmu(σ, PL, va, accreq) → pa ∪ {⊥} function.
The function takes the state σ, a privilege level PL, a virtual address va ∈ 232

and the requested access right accreq ∈ {rd, wt, ex}, for read, write and execution
respectively, and returns either the corresponding physical address pa ∈ 232 (if
the access is granted) or an access permission fault (⊥).

The SCTLR register controls the MMU. If the MMU is disabled (SCTLR =
0), all access permissions are granted and the mmu function yields an identity
mapping (mmu(σ, PL, va, accreq) = va). If the MMU is enabled (SCTLR 	= 0),
the mmu can execute up to two page table walks to translate a virtual address.
The first walk accesses the active first level (L1) page table, whose address is
identified by the TTBR0 register.

An L1 page table contains 4096 entries, each mapping 1MB of contiguous
virtual memory. When executing the first table walk, the MMU accesses the
proper L1 entry. If the entry is unmapped, then the MMU yields a permission
fault (⊥). If the entry is Section (SEC) (Figure 1a) and the requested access is
legitimate (ap_checkL1(desc, PL, accreq)) then the corresponding 1MB is line-
arly mapped to 1MB of physical memory (translateL1(desc, va)). If the entry is
Page table (PT), then a second page table walk is needed (Figure 1b). In this
case, the L1 entry points to an L2, which contains 256 entries. Each L2 entry, of
type Small page (SP ), linearly maps 4KB of virtual memory.

We introduce some auxiliary definitions to describe the properties guaranteed
by an ARMv7 CPU that obeys the access privileges computed by the MMU. We
use the predicate mmuphys(σ, PL, pa, accreq) to identify the accesses granted
to the physical memory. An access to a physical address is allowed if at least
one virtual address exists that enables the requested access permission and that
maps to pa; mmuphys(σ, PL, pa, accreq) = (∃va. mmu(σ, PL, va, accreq) = pa).

We say that two states are MMU-consistent if their memories differ only for
writable physical addresses. Formally, mmuc(σ, σ

′, PL) if ∀pa. σ.mem(pa) 	=
σ′.mem(pa) ⇒ mmuphys(σ, PL, pa, wt).
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Two states are MMU-equivalent if for any virtual address va the MMU yields
the same translation and the same access permissions. Formally, σ

mmu≡ σ′ if and
only if ∀va, PL, accreq. mmu(σ, PL, va, accreq) = mmu(σ′, PL, va, accreq).

The transition relation queries the MMU model to identify when an instruc-
tion raises an exception and satisfies the following properties.

Property 1. Let σ ∈ Σ such that mode(σ) = PL0. If σ
PL0−−−→ σ′ then

mmuc(σ, σ
′, PL0) and σ.coregs = σ′.coregs .

Property 2. Let σ1, σ2 ∈ Σ, A be a set of physical addresses, mode(σ1) =
mode(σ2) = PL0 and A ⊇ {pa | ∃accreq. mmuphys(σ, PL0, pa, accreq)}, and
σ1

mmu≡ σ2, σ1.regs = σ2.regs , σ1.coregs = σ2.coregs and ∀pa ∈ A. σ1.mem(pa) =

σ2.mem(pa). If σ1
PL0−−−→ σ′

1 and σ2
PL0−−−→ σ′

2 then σ′
1.regs = σ′

2.regs , σ′
1.coregs =

σ′
2.coregs and ∀pa ∈ A. σ′

1.mem(pa) = σ′
2.mem(pa).

In [8] the authors validated the HOL4 ARMv7 model against these properties
under the assumption that the address translation is the identity map.

3 Formal Model of the Hypervisor

Our target scenario consists of an ARMv7 CPU hosting the hypervisor and an
untrusted guest. The hypervisor uses direct paging to virtualize the memory
subsystem: the page tables are allocated by the guest inside its own memory
and the guest is allowed to manage its page table while tables are not in active
use by the MMU. Subsequent operations on the tables are done by invoking
the corresponding hypercall serving the request. In our approach the physical
memory is logically fragmented into blocks of 4KB, resulting in 220 possible
physical blocks. Since L1 and L2 page tables are 16KB and 1KB respectively, an
L1 page table is stored in four contiguous physical blocks and a physical block
can contain four L2 page tables. The hypervisor associates a type to each block:
(i) D; the block does not contain sensitive data, (ii) L1: the block contains part
of an L1 page table, and (iii) L2: the block contains four L2 page tables.

To handle guest requests, the hypervisor provides nine hypercalls: switch that
selects the active L1, L1create and L2create to change the type of a block to the
corresponding table type, L1free and L2free to free the page tables and changing
the type of a block to D, L1unmap and L2unmap to unmap a page table entry,
L1map and L2map to map a specific entry of a page table.

The hypercalls enforce the page type policy: the guest is allowed to change
only blocks of type D. Naively enforcing this policy requires the hypervisor to
re-validate the page tables before reactivating them, that is a time consuming
task. To make overhead sustainable, the hypervisor maintains a reference counter
for each block. The intuition is that the hypervisor changes the type of a physi-
cal block (e.g., allocates or frees a page table) only if the corresponding reference
counter is zero and that this enables the hypervisor to skip the re-validation tasks.

We model the complete system reusing the formal model of Section 2.
A system state is modeled by a tuple 〈σ, h〉, consisting of an ARMv7 state σ
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bls = {block(pa) + i | i < 4}
∀bl ∈ bls.τ � bl : D ∧ Gmem � bl : 0 ∧ ρ(bl) = 0
descs = [readL1(pa, σ, j) | j < 4096]
pts = [block(d.pa) | d ∈ descs ∧ d.type = PT ]
secsrd = [block(d.pa) | d ∈ descs ∧ d.type = SEC ∧ (0, rd) ∈ d.ap]
secswt = [block(d.pa) | d ∈ descs ∧ d.type = SEC ∧ (0, wt) ∈ d.ap]
∀bl ∈ pts.τ � bl : L2

∀bl ∈ secsrd.∀idx < 256.Gmem � bl + idx : 0
∀bl ∈ secswt.∀i < 28.bl + i �∈ bls ∧ τ � bl + i : D ∧ ρ(bl + i) < MAX − 212

ρ′ = for bl ∈ secswt(for i < 28 (λρ1.ρ1(bl + i) := ρ1(bl + i) + 1))ρ
ρ′′ = for bl ∈ pts(λρ2.ρ2(bl) := ρ2(bl) + 1)ρ′

τ ′ = (τ(bl ∈ bls) := L1)

〈σ, 〈τ, ρ〉〉 createL1(pa)−−−−−−−−−→ 〈
σ, 〈τ ′, ρ′′〉〉

Fig. 2. Inference rule for hypervisor createL1 handler

and an abstract hypervisor state h, of the form 〈τ, ρ〉. Let bl ∈ 220 be the index
of a physical block and t ∈ {D,L1, L2}, τ � bl : t tracks the type of the block
and ρ(τ) ∈ 230 tracks the reference counter. We use Gmem to statically identify
the memory region assigned to the guest: if the block bl is part of the guest
memory then Gmem � bl : 0, otherwise Gmem � bl : 1

The behavior of the system is defined by a labeled transition relation 〈σ, h〉 α−→
〈σ′, h′〉. The model interleaves standard non-privileged transitions (α = 0) with
abstract handler invocations (e.g., α = createL1(pa)):

– if σ PL0−−−→ σ′ then 〈σ, h〉 0−→ 〈σ′, h〉 ; instructions executed in non-privileged
mode that do not raise exceptions behave equivalently to the standard
ARMv7 semantics and do not affect the abstract hypervisor state.

– if σ
PL1−−−→ σ′ then the hypervisor intercepts the exception and its handler

atomically transforms the state of the system

The model of the hypervisor handlers is defined by HOL4 functions that de-
scribe the hypervisor behavior. These functions are deliberately low level, for
example they store the page tables in the system memory instead of using ab-
stract data structures. This enables us to include the page tables in the attack
surface taken into account by our verification. The hypervisor handlers check
that (i) guest can only change data pages (pages of type D), (ii) page table
blocks are typed correctly, and (iii) the blocks that are readable/writable by the
guest are enclosed in the part of the memory granted to the guest. If a han-
dler fails to validate the guest request, then it terminates without affecting the
system state (i.e., 〈σ, 〈τ, ρ〉〉 α−→ 〈σ, 〈τ, ρ〉〉.

In Figure 2 we use an inference-rule to exemplify the behavior of the L1create
handler. The guest uses the hypercall to request the validation of an L1 pointed
to by the address pa. If the validation succeeds the type of the corresponding
physical blocks is changed to L1. Here, block(pa) returns the block pointed to by
the physical address pa and [f(x) | p(x)] represents list comprehension. More-
over, r(β) := value represents the update of the field β of the record r with
value. Finally, let d be an entry of a page table, we use d.pa, d.type and d.ap
to represent the initial physical address pointed to by the entry, its type (either
a section SEC or a page table PT ) and the set of the granted access rights.
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The handler checks that the four blocks containing the new page table have
reference zero, are typed D and reside in the guest memory. To accept the
request, each PT entry must point to a valid L2 in the guest memory. Section
descriptors allowing guest read accesses must point to a section encompassing
only blocks that are part of the guest memory. Moreover, if the descriptor allows
guest write access, then the hypervisor ensures that all the reachable blocks are
typed D , that their reference counter is less than the maximum allowed bound
and that none of the blocks of the new page table are included in that section.

The hypercall also updates the reference counters of the pointed blocks, by
summing the number of references that enable guest write access and the number
of references from PT entries.

4 Security Properties

As common, our verification strategy consists in introducing a state invariant
(I(s)) that guarantees the desired security properties and in demonstrating that
the invariant is preserved by any possible transition. Clearly, the system must
start (i.e., the boot must terminate) in a state that satisfies the invariant. We
use QI to identify the set of all possible states that satisfy the invariant.

Theorem 1. Let s ∈ QI, if s α→ s′ then s′ ∈ QI.

Guaranteeing that the invariant is preserved requires to demonstrate that each
handler preserves the invariant (α 	= 0) and that the guest is not able to break
it. Intuitively, while the hypervisor is inactive (α = 0), the only mechanism that
can confine the behavior of an arbitrary guest is the MMU. Thus, the hypervi-
sor must play the role of a security monitor of the MMU settings. If complete
mediation of the MMU settings is violated, then an attacker can bypass the
hypervisor policies and compromise the security of the entire system. Enforcing
this property is critical in the direct paging mechanism because the page tables
are dynamically allocated and released by the untrusted guest and they reside
in the guest memory.

Theorem 2. Let s ∈ QI, if s 0→ s′ then s
mmu≡ s′.

Definition 1. Two states s and s′ do not differ in a physical block of me-
mory (written s

bl≡ s′) if for each physical address pa if block(pa) = bl then
s.mem(pa) = s′.mem(pa).

Definition 2. Two states s and s′ are t-equivalent (written s
Gmem:t≡ s′) iff for

each physical block bl if Gmem � bl : t then s
bl≡ s′.

We use the approach of [5] to analyze the data separation properties. The non-
exfiltration property guarantees that a transition executed by the guest does not
modify the secure resources:
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Theorem 3. Let s ∈ QI, if s 0→ s′ then s
Gmem:1≡ s′.

The non-infiltration property is a noninterference property guaranteeing that
a transition executed by the guest depends only on its accessible resources.

Theorem 4. Let s1, s2 ∈ QI such that s1.regs = s2.regs, s1.coregs = s2.coregs

and s1
Gmem:0≡ s2. If s1

α→ s′1 and s2
α→ s′2 then s′1.regs = s′2.regs, s′1.coregs =

s′2.coregs and s′1
Gmem:0≡ s′2

5 Verification Strategy

To describe the verification of the security properties we summarize the structure
of the system invariant.

Definition 3. I(〈σ, 〈τ, ρ〉〉) holds if,

σ.SCTLR �= 0 ∧ τ � σ.TTBR0 : L1 ∧ ∀bl ∈ 220. IT (〈σ, 〈τ, ρ〉〉 , bl) ∧ IC(〈σ, 〈τ, ρ〉〉 , bl)
where IC(〈σ, 〈τ, ρ〉〉 , bl) holds if, ρ(bl) =

∑

i∈0...220

cnt(σ, τ, bl, i)

and IT (〈σ, 〈τ, ρ〉〉 , bl) holds if,
{
τ � bl : L1 ⇒ IT1(σ, τ, bl)
τ � bl : L2 ⇒ IT2(σ, τ, bl)

The invariant requires that the MMU is enabled, the active page table is typed
L1, the reference counter is correctly counting the references to each block and
each block is well-typed.

We use Figure 3 to summarize the properties checked by the invariant.
The table in the center represents the physical memory and reports the page
type (pt), the static type (gm) and the reference counter of each block (rc).

Fig. 3. Invariant
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The four top most blocks contain an L1, whose 4096 entries are depicted by
the table L1-A. The top entry is a section descriptor (T = S) that grants write
permission to the guest (ap = 0, w). The entry points to the second physical
section, which consists of 256 blocks. Three other section descriptors are de-
picted: one grants write accesses to the guest, one grants only read permission
to the guest (0, r), and the last one prevents any guest access and enables write
permission to the privileged mode (1, w). The last two entries of the L1 are PT-
entries. These two entries point to two different L2 page tables that are stored in
the same physical block. To satisfy IT1(σ, τ, 0), if a section enables guest access
then the pointed blocks must all be in the guest memory. Moreover, if a section
enables guest write access then each pointed block must be typed D. Finally, PT-
entries must point to addresses contained in physical blocks that are typed L2.
The Figure depicts two additional L1 page tables; L1-B satisfies the invariant,
L1-C contains three entries that violate IT1 . In fact (i) the first section grants
write permission to the guest, but at least one of the pointed blocks is not typed
D, (ii) the second section enables guest accesses, but at least one of the pointed
blocks is not in the guest memory and (iii) the third entry is a PT-entry, but
points to a physical address that is contained by a block typed D.

The table L2-A depicts the content of the 768-th physical block, which con-
tains four L2 page tables. To satisfy IT2(σ, τ, 768), if one entry of the four page
tables enables guest access then the pointed block must be in the guest memory.
Moreover, if the entry also enables guest write access then the pointed block
must be typed D.

We use the same figure to illustrate the reference counter. For a physical block
bl, if block i is typed L1 then cnt(σ, τ, bl, i) counts the number of section entries
that point to bl and that are writable in user mode plus the number of PT-entries
that point to bl. If block i is typed L2 then cnt(σ, τ, bl, i) counts the number of
entries that point to bl and that are writable in user mode. In Figure 3 we use
solid arrows to represent the references that are counted and dashed arrows to
represent the other references.

Lemma 1. Let 〈σ, 〈τ, ρ〉〉 ∈ QI then ∀pa. mmuph(σ, 0, pa, wt) ⇒ (Gmem � block(pa) : 0

∧ τ � block(pa) : D)

Lemma 2. Let 〈σ, 〈τ, ρ〉〉 ∈ QI then ∀pa. mmuph(σ, 0, pa, rd) ⇒ (Gmem � block(pa) : 0)

Lemmas 1 and 2 directly follow from the invariant and show that the MMU
setup forbids guest accesses outside the guest memory and guest write accesses
to physical blocks that are not typed D. Using Lemma 1 and Property 1 we
directly show that the guest can only change physical blocks that are inside its
own memory and that are typed D.

Lemma 3. Let s = 〈σ, 〈τ, ρ〉〉 ∈ QI and s
0→ s′. For each bl, if s 	bl≡ s′ then

Gmem � bl : 0 and τ � bl : D.

Notice that Lemma 3 directly guarantees Theorem 3. Similarly, Lemma 1 and
Property 2 guarantee Theorem 4 for guest transitions (i.e., α = 0).
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Proof of Theorem 2. We must ensure that for each possible address va the MMU
translation is equivalent in the states s = 〈σ, 〈τ, ρ〉〉 and s′ = 〈σ′, 〈τ, ρ〉〉. Prop-
erty 1 guarantees that the coprocessors registers are not affected by user transi-
tions, thus the address of the active L1 can not be changed by the guest. The first
translation walk accesses the L1 entry that maps va. The invariant I(s) guar-
antees that the active page L1 is typed L1 ( τ � σ.c2 : L1). Thus, Lemma 3
guarantees that in the two states s and s′ the MMU fetches the same L1 descrip-
tor. If the descriptor is either unmapped or a section the proof is completed. If
the descriptor is a PT-entry then the translation executes the second walk, ac-
cessing an entry of the pointed L2. Let bl be the block containing the pointed
L2. From the invariant, we know that τ � bl : L2. Again, Lemma 3 guaran-
tees that in the two states s and s′ the MMU fetches the same L2 descriptor, thus
concluding the proof.

Lemma 4. Let 〈σ, 〈τ, ρ〉〉 ∈ QI, if σ
bl≡ σ′ then IT (〈σ′, 〈τ, ρ〉〉 , bl) and

∀bl′. cnt(σ, τ, bl′, bl) = cnt(σ′, τ, bl′, bl).

Lemma 4 shows that the well-typeness of a block and its counted references are
independent from the content of the other physical blocks.

Lemma 5. Let s ∈ QI, if s 0→ s′ then s′ ∈ QI.

Lemma 5 shows that the invariant is preserved by the execution of an arbitrary
guest instruction, thus guaranteeing that untrusted software can not breach the
security of the system. Since the guest can not directly change the abstract
hypervisor data-structures and can not directly affect the coprocessor registers
(Property 1), in order to reestablish the invariant we need to show that for every
block bl both IT (〈σ′, 〈τ, ρ〉〉 , bl) and IC(〈σ′, 〈τ, ρ〉〉 , bl) hold. If τ � bl : D then

IT trivially holds. Otherwise, Lemma 3 guarantees that s
bl≡ s′ and Lemma 4

demonstrates that IT holds. For the reference counter we must prove that
ρ(bl) =

∑
i∈0...220 cnt(σ′, τ, bl, i) knowing that ρ(bl) =

∑
i∈0...220 cnt(σ, τ, bl, i).

We directly show that for every block i cnt(σ′, τ, bl, i) = cnt(σ, τ, bl, i). If τ � i : D
this equality is trivial, since cnt is zero. Otherwise, Lemma 3 guarantees that
s

i≡ s′ and Lemma 4 concludes the proof.

Lemma 6. Let 〈σ, 〈τ, ρ〉〉 ∈ QI and ∀bl′. (τ(bl′) 	= τ ′(bl′)) ⇒ (ρ(bl′) = 0). For
every bl if τ ′(bl) = τ(bl) then IT (〈σ, 〈τ ′, ρ′〉〉 , bl) and ∀bl′. cnt(σ, τ, bl′, bl) =
cnt(σ, τ ′, bl′, bl).

Lemma 6 expresses that well-typedness and counters are preserved for all hy-
pervisor data changes, as long as the blocks whose types change have reference
counter zero. The equality of the reference counter is established by showing that
cnt is independent on the type of the block bl′. The strategy used to establish
IT depends on the type of the block bl. If τ � bl : D then the proof is trivial.
If τ � bl : L2 we use reductio ad absurdum. Assume that IT does not hold, then
there must exist an entry i of the page table that grants guest write access to
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a block bl′ that is not typed D in τ ′. From the invariant, we know that such
an entry does not exist in 〈σ, h〉. Thus, i must point to a block bl′ such that
(τ(bl′) 	= τ ′(bl′)). The hypothesis of the Theorem guarantees that ρ(bl′) = 0,
then for all bl′′ (including bl) cnt(σ, τ, bl′, bl′′) = 0. This contradicts the assump-
tion that there is an entry i that points to bl′ and that is writable by the guest.
For τ � bl : L1 we use a similar reasoning.

Lemmas 4 and 6 are used to modularize the proof of Theorem 1 for the
transitions modeling the hypervisor handlers. For example, to demonstrate that
the invariant is preserved by createL1(pa) we first show that the type is changed
only for pages having reference zero, then we demonstrate that the content of
the blocks containing the page tables is not changed.

For the IT predicate, we use the two Lemmas to guarantee that IT is preserved
for blocks that are not in bls = {block(pa) + i | i < 4}. Then, we demonstrate
that the checks performed by the hypercall guarantees IT1

(σ′, τ ′, bl) for the every
block in bls (i.e., the blocks containing the new L1).

For the IC predicate, since the invariant guarantees that
ρ(bl) =

∑
i∈0...220 cnt(σ, τ, bl, i), then we must prove :

ρ′(bl) =
∑

i∈0...220 cnt(σ′, τ ′, bl, i) + ρ(bl)−∑
i∈0...220 cnt(σ, τ, bl, i).

For a block i that is not in bls, the two Lemmas guarantee that
cnt(σ′, τ ′, bl, i) = cnt(σ, τ, bl, i), thus our goal is reduced to demonstrate ρ′(bl) =∑

i∈bls cnt(σ
′, τ ′, bl, i) + ρ(bl)−∑

i∈bls cnt(σ, τ, bl, i). Since the hypercall checks
that the initial type of a block i ∈ bls is D, then cnt(σ, τ, bl, i) = 0. Finally, we
must demonstrate that the hypercall correctly updates the counters by adding
the references of the new L1 page table: ρ′(bl) = ρ(bl) +

∑
i∈bls cnt(σ

′, τ ′, bl, i).

6 Evaluation

The verification has been performed using the HOL4 interactive theorem prover.
This allows building the formal model of the system on top of the existing
ARMv7 model developed in Cambridge [3], by extending the transition relation
to take into account the MMU constraints and by substituting the activation of
exceptions with the specification of the hypervisor handlers. This specification
consists of 500 lines of HOL4 code, intentionally avoids any high level construct
and resembles the control flow of the C implementation, with the aim of making
this executable specification as close as possible to the C implementation. This
increased the difficulty of the proof (e.g., the system invariant consists of 2k
lines of HOL4 and the proofs consist of 15k lines of HOL4 ), which must handle
finite arithmetic overflows, page tables not stored into abstract states and forced
us to identify the invariants of the loops required to iterate the page tables.
However, the low level of abstraction allowed us to identify several bugs of the
original design: (i) arithmetic overflow when updating the reference counter, due
to the guest being able to create unlimited references to a physical block (ii)
bit field and offset mismatch, (iii) missing check that a newly allocated page
table prevents the guest from overwriting the page table itself, (iv) usage of the
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signed shift operator where the unsigned one was necessary, and (v) side channels
exploitable by the guest by requesting to validate page tables outside the guest
memory.

We implemented a prototype of the hypervisor to experiment the verified
design. This prototype consists of 4500 LOC of C (with a minor part of assembly)
and is directly derived from the verified specification. Initial benchmarks show
promising results; the hypervisor is capable of hosting a paravirtualized Linux
and for the LMBench introduces an overhead between 2% (select benchmark)
and 495% (fork+bin benchmark), compared to the native Linux. This overhead
is much less than what the many other hypervisors for ARM impose [7].

We briefly compare our virtualization mechanism to existing approaches to
virtualize the memory subsystem. Functional correctness of mechanisms based
on Shadow page tables (SPT) has been verified in [1,4,10]. Using SPT, the
hypervisor keeps a shadow copy of the guest page tables. This copy is updated
(after validation) by the hypervisor whenever the guest operates on its page
tables. The main benefits of direct paging respect to SPT is that the hypervisor
does not replicate the guest page tables, thus reducing memory accesses and
memory overhead and not requiring dynamic allocation in the hypervisor.

Hardware-assisted virtualization (e.g., nested-paging included in the ARMv7
virtualization extension) frees the hypervisors from implementing a virtualiza-
tion mechanism of the memory subsystem (e.g., [6,11]). This simplification comes
at the cost of enlarging the TCB and moving the verification from software to
hardware. Moreover, since hardware virtualization support is still uncommon in
embedded systems, then software based virtualization is the only viable option
for several platforms (including ARM11, ARM CortexA5 and Intel Quark).

The formal verification of seL4 [9] demonstrated that the verification of
a complete microkernel is possible even at the machine code level [12]. A com-
plete commodity OS can be executed on top of a microkernel by mapping the OS
threads directly to the microkernel threads, thus delegating completely the pro-
cess management functionality from the hosted OSes to the microkernel (e.g.,
L4Linux). This generally involves an invasive and error-prone OS adaptation
process, however. An alternative approach consists of extending the microkernel
with a virtualization mechanism of the memory subsystem, like the one proposed
in this paper.

7 Concluding Remarks

We presented a design to virtualize the ARMv7 memory subsystem that requires
neither specialized hardware support nor shadow data structures. Together with
the machine-assisted proof of its correctness and the spatial isolation provided by
the hypervisor, the design represents the first trustworthy virtualization mecha-
nism using direct paging, previously introduced by Xen for x86, but not verified.

The design correctness is stated in terms of (i) complete mediation of the
MMU settings, (ii) non-exfiltration and (iii) non-infiltration. These properties
show that user mode processes (e.g., a possibly malicious guest OS) are incapable
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of affecting the MMU behaviour and that can not influence (or be influenced by)
the resources that are not allocated to the guest.

The low level abstraction of the hypervisor specification increased the com-
plexity of our verification, but allowed us to identify and to correct several bugs.
Moreover, since the specification avoids any high level constructs, it has been
used to directly drive a prototype.
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