
Maximally Permissive Controlled System

Synthesis for Modal Logic�

Allan C. van Hulst, Michel A. Reniers, and Wan J. Fokkink

Eindhoven University of Technology, The Netherlands
ahulst@tue.nl

Abstract. We propose a new method for controlled system synthesis on
non-deterministic automata, which includes the synthesis for deadlock-
freeness, as well as invariant and reachability expressions. Our technique
restricts the behavior of a Kripke-structure with labeled transitions, rep-
resenting the uncontrolled system, such that it adheres to a given require-
ment specification in an expressive modal logic, while all non-invalidating
behavior is retained. This induces maximal permissiveness in the context
of supervisory control. Research presented in this paper allows a system
model to be constrained according to a broad set of liveness, safety and fair-
ness specifications of desired behavior, and embraces most concepts from
Ramadge-Wonham supervisory control, including controllability and
marker-state reachability. The synthesis construction is formally verified
using the Coq proof assistant.

1 Introduction

This paper concerns the controlled system synthesis on non-deterministic au-
tomata for requirements in modal logic. The controlled systems perspective
treats the system under control — the plant — and a system component which
restricts the plant behavior — the controller — as a single integrated entity.
This means that we take a model of all possible plant behavior, and construct
a new model which is constrained according to a logical specification of de-
sired behavior — the requirements. The synthesis, of such a restricted behavioral
model incorporates a number of concepts from supervisory control theory [6],
which affirm the generated model as being a proper controlled system, in rela-
tion to the original plant specification. Events are strictly partitioned into being
either controllable or uncontrollable, such that synthesis only disallows events
of the first type. In addition, synthesis preserves all behavior which does not
invalidate the requirements, thereby inducing maximal permissiveness [6]. The
requirement specification formalism extends Hennessy-Milner Logic [10] with
invariant, reachability, and deadlock-freeness expressions, and is also able to
express the supervisory control concept of marker-state reachability [13].

The intended contribution of this paper is two-fold. First, it presents a tech-
nique for controlled system synthesis in a non-deterministic context. Second, it

� Supported by the EU FP7 Programme under grant agreement No. 295261 (MEALS).

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 230–241, 2015.
c© Springer-Verlag Berlin Heidelberg 2015

Maximally Permissive Controlled System Synthesis for Modal Logic 231

defines synthesis for a modal logic which is able to capture a broad set of require-
ments. Regarding the first contribution, it should be noted that supervisory control
synthesis is often approached using a deterministic model of both plant and con-
troller. Notably, the classic Ramadge-Wonham supervisory control theory [13] is a
well-researched example of this setup. The resulting controller restricts the behav-
ior of the deterministic plant model, thereby ensuring that it operates according
to the requirements via event-based synchronization. A controlled system can not
be constructed in this way for a non-deterministic model, as illustrated by exam-
ple in Figure 1. Assume that we wish to restrict all technically possible behavior
of an indicator light of a printer (Figure 1a) such that after a single refill event,
the indicator light turns green immediately. In the solution shown in Figure 1b,
the self-loop at the right-most state is disallowed, as indicated using dashed lines,
while all other behavior is preserved. Note that it is not possible to construct this
maximally-permissive solution using event-based synchronization, as shown in [4].
However, an outcome as shown in Figure 1b can be obtained by applying synthesis
for the property� [refill]green, using the method described in this paper. As this
example shows, the strict separation between plant and controller is not possible
for non-deterministic models, and therefore we interpret the controlled system as
a singular entity.

Ink Present Out Of Ink Ink Present Out Of Ink

Fig. 1. Example of control synthesis in a non-deterministic context. A model for all
possible behavior of an ink presence indicator light of a printer is restricted in such
a way that after every refill , the state labeled with green is reached directly. Synthesis,
as defined in this paper, of the property � [refill]green upon the model in Figure 1a,
results in a synthesis outcome as in Figure 1b., where disallowed behavior is indicated
using dashed lines.

This requirement formalism applied in this paper, which extends Hennessy-
Milner Logic with invariant and reachability operators, and also includes a test
for deadlock-freeness, is able to express a broad set of liveness, safety, and fair-
ness properties. For instance, an important liveness concept in supervisory con-
trol theory involves marker-state reachability, which is informally expressed as
the requirement that it is always possible to reach a state which is said to be
marked. This requirement is modeled as �♦marked , using the requirement spec-
ification logic, in conjunction with assigning marked as a separate property to
the designated states in the Kripke-model.

Safety-related requirements, which model the absence of faulty behavior, in-
clude deadlock-avoidance, expressed as � dlf (i.e., invariantly, deadlock-free)

232 A.C. van Hulst, M.A. Reniers, and W.J. Fokkink

and safety requirements of a more general nature. For instance, one might re-
quire that some type of communicating system is always able to perform a
receive step, directly after every send step. Such a property is expressed as
� [send]<receive>true, using the requirement specification logic applied in this
paper. In addition, we argue that this logic is able to model a limited class of fair-
ness properties. One might require from a system which uses a shared resource
that in every state, the system has access to the resource (the state has the access
property), or it can do a lock step to claim the resource, after which access is
achieved immediately. We synthesize the property � (access ∨ <lock>access) in
order to constrain the plant behavior in this way.

The remainder of this paper is set up as follows. We consider a number of re-
lated works on control synthesis in Section 2. Preliminary definitions in Section
3 introduce formal notions up to a clear statement of the synthesis problem. Sec-
tion 4 concerns the formal definition of the synthesis construction while Section
5 lists a number of important theorems indicating correctness of the synthesis
approach, with detailed proofs being available in textual form [19], as well as in
computer-verified form [16].

2 Related Work

Earlier work by the same authors concerning synthesis for modal logic includes
a recursive synthesis method for Hennessy-Milner Logic [17], and a synthesis
method for a subset of the logic considered in this paper, with additional restric-
tions on combinations of modal operators [18]. This paper vastly improves previ-
ous efforts by allowing unrestricted synthesis for invariant formulas and including
the new operator ♦ for reachability. It also takes into account deadlock-freeness,
and uncontrollable events, thereby achieving controllability.

We analyze related work alongside the three intended improvements in this
paper: 1) Allowance of non-determinism in plant specifications, 2) Expressiveness
of the requirement specification formalism, and, 3) Adhering to some form of
maximal permissiveness.

Ramadge-Wonham supervisory control [13] defines a broadly-embraced me-
thodology for controller synthesis on deterministic plant models for requirements
specified using automata. It defines a number of key elements in the relation-
ship between plant and controlled system, such as controllability, marker-state
reachability, deadlock-freeness and maximal permissiveness. Despite the fact that
a strictly separated controller offers advantages from a developmental or imple-
mentational point of view, we argue that increased abstraction and flexibility
justifies research into control synthesis for non-deterministic models. In addi-
tion, we emphasize that the automata-based description of desired behavior in
the Ramadge-Wonham framework [13] does not allow the specification of require-
ments of existential nature. For instance, in this framework it is not possible to
specify that a step labeled with a particular event must exist, hence the choice
of modal logic as our requirement formalism.

Work by Pnueli and Rosner [12] concerns a treatment of synthesis for reac-
tive systems, based upon a finite transducer model of the plant, and a temporal

Maximally Permissive Controlled System Synthesis for Modal Logic 233

specification of desired behavior. This synthesis construction is developed fur-
ther for deterministic automata in [12], but the treatment remains non-maximal.
This research is extended in [2], which connects reactive synthesis to Ramadge-
Wonham supervisory control using a parity-game based approach. The method-
ology described in [2] transforms the synthesis control problem for µ-calculus
formulas in such a way that the set of satisfying models of a µ-calculus for-
mula coincides with the set of controllers which enforce the controlled behavior.
Although non-determinism is allowed in plant-specifications in [2], the treat-
ment via loop-automata does not allow straightforward modeling of all (infi-
nite) behaviors. Also, maximal permissiveness is not specified as a criterion for
control synthesis in [2]. Interesting follow-up research is found in [3], for non-
deterministic controllers over non-deterministic processes. However, the specifi-
cation of desired behavior is limited to alternating automata [3], which do not
allow complete coverage of invariant expressions over all modalities, or an equiva-
lent thereof. Reactive synthesis is further applied to hierarchical [1] and recursive
[11] component-based specifications. These works, which both are based upon
a deterministic setting, provide a quite interesting setup from a developmental
perspective, due to their focus on the re-usability of components.

Research in [20] relates Ramadge-Wonham supervisory control to an equiva-
lent model-checking problem, resulting in important observations regarding the
mutual exchangeability and complexity analysis of both problems. Despite the
fact that research in [20] is limited to a deterministic setting, and synthesis re-
sults are not guaranteed to be maximally permissive, it does incorporate a quite
expressible set of µ-calculus requirements. Other research based upon a dual
approach between control synthesis and model checking studies the incremental
effects of transition removal on the validity of µ-calculus formulas [7,14].

Research by D’Ippolito and others [8], [9] is based upon the framework of the
world machine model for the synthesis of liveness properties, stated in fluent
temporal logic. A distinction is made between controlled and monitored beha-
vior, and between system goals and environment assumptions [8]. A controller is
then derived from a winning strategy in a two-player game between original and
required behavior, as expressed in terms of the notion of generalized reactivity,
as introduced in [8]. Research in [8] also emphasizes the fact that pruning-based
synthesis is not adequate for control of non-deterministic models, and it defines
synthesis of liveness goals under a maximality criterion, referred to as best-effort
controller. However, this maximality requirement is trace-based and is therefore
not able to signify inclusion of all possible infinite behaviors. In addition, some
results in [8] are based upon the assumption of a deterministic plant specification.

3 Definitions

We assume a set E of events and a set P of state-based properties. In addition, we
assume a strict partition of E into controllable events C and uncontrollable events
U , such that C ∪ U = E and C ∩ U = ∅. State-based properties are used to capture
state-based information, and are assigned to states using a labeling function.

234 A.C. van Hulst, M.A. Reniers, and W.J. Fokkink

Example properties are shown in Figure 1, as red and green. Figure 1 also shows
examples of the events print and refill , which are assumed to be controllable in
this example. Events are used to capture system dynamics, and represent actions
occurring when the system transitions between states. Controllable events may
be used to model actuator actions in the plant, while an uncontrollable event
may represent, for instance, a sensor reading. Basic properties and events are
used to model plant behavior in the form of a Kripke-structure [5] with labeled
transitions, to be abbreviated as Kripke-LTS, as formalized in Definition 1. Note
that we assume finiteness of the given transition relation.

Definition 1. We define a Kripke-LTS as a four-tuple (X,L,−→, x) for state-
space X, labeling function L : X �→ 2P , finite transition relation −→⊆ X×E×X,
and initial state x ∈ X. The universe of all Kripke-LTSs is denoted by K.

As usual, we will use the notation x
e−→ x′ to denote that (x, e, x′) ∈−→.

The reflexive-transitive closure −→∗ of a transition relation −→ is defined in the
following way: For all x ∈ X it holds that (x, x) ∈−→∗ and if there exist e ∈ E
and y, x′ ∈ X such that x

e−→ y and y −→∗ x′ then (x, x′) ∈−→∗.
Two different behavioral preorders are applied in this paper. The first is the

simulation preorder, which is reiterated in Definition 2. Simulation is used to
signify inclusion of behavior, while synthesis may alter the transition structure
due to, for instance, unfolding. Simulation as applied in this paper is a straight-
forward adaptation of the definition of simulation in [15].

Definition 2. For k′ = (X ′, L′,−→′, x′) and k = (X,L,−→, x) we say that k′

and k are related via simulation (notation: k′
 k) if there exists a relation
R ⊆ X ′ ×X such that (x′, x) ∈ R and for all (y′, y) ∈ R the following holds:

1. We have L′(y′) = L(y); and

2. If y′ e−→′z′ then there exists a step y
e−→ z such that (z′, z) ∈ R.

Partial bisimulation [4] is an extension of simulation such that the subset of
uncontrollable events is bisimulated. For plant specification k ∈ K and synthe-
sis result s ∈ K we require that s is related to k via a partial bisimulation.
This signifies the fact that synthesis did not disallow any uncontrollable event,
which implies controllability in the context of supervisory control. Research in
[4] details the nature of this partial bisimulation preorder.

Definition 3. If k′ = (X ′, L′,−→′, x′) and k = (X,L,−→, x), then k′ and k
are related via a partial bisimulation (notation: k′ � k) if there exists a relation
R ⊆ X ′ ×X such that (x′, x) ∈ R and for all (y′, y) ∈ R the following holds:

1. We have L′(y′) = L(y);

2. If y′ e−→′z′ then there exists a step y
e−→ z such that (z′, z) ∈ R; and

3. If y
e−→ z for e ∈ U then there exists a step y′ e−→′z′ such that (z′, z) ∈ R.

Requirements are specified using a modal logic F given in Definition 5, which
is built upon the set of state-based formulas B in Definition 4.

Maximally Permissive Controlled System Synthesis for Modal Logic 235

Definition 4. The set of state-based formulas B is defined by the grammar:

B ::= true | false | P | ¬B | B ∧ B | B ∨ B

As indicated in Definition 4, state-based formulas are constructed from
a straightforward Boolean algebra which includes the basic expressions true and
false, as well as a state-based property test for p ∈ P . Formulas in B are then
combined using the standard Boolean operators ¬, ∧ and ∨.
Definition 5. The requirement specification logic F is defined by the grammar:

F ::= B | F ∧ F | B ∨ F | [E]F | <E>F | �F | ♦B | dlf

We briefly consider the elements of the requirement logic F . Basic expres-
sions in Definition 4 function as the basic building blocks in the modal logic F .
Conjunction is included, having its usual semantics, while disjunctive formulas
are restricted to those having a state-based formula in the left-hand disjunct.
This restriction guarantees correct synthesis solutions, since it enables a local
state-based test for retaining the appropriate transitions. The formula [e]f can
be used to test whether f holds after every e-step, while the formula <e>f is
used to assess whether there exists an e-step after which f holds. These two
operators thereby follow their standard semantics from Hennessy-Milner Logic
[10]. An invariant formula � f tests whether f holds in every reachable state,
while a reachability expression ♦ b may be used to check whether there exists
a path such that the state-based formula b holds at some state on this path.
Note that the sub-formula b of a reachability expression ♦ b is restricted to
a state-based formula b ∈ B. This is used to acquire unique synthesis solutions,
due to the fact that for unrestricted reachability expressions, only an indefinite
unfolding coincides with a maximal solution. The deadlock-free test dlf tests
whether there exists an outgoing step of a particular state. Combined with the
invariant operator, the formula � dlf can be used to specify that the entire
synthesized system should be deadlock-free. Deadlock-freeness is not defined as
a state-based expression here since it requires information about (the existence
of) outgoing transitions, which may have been removed during synthesis. Vali-
dity of formulas in B and F , with respect to a Kripke-LTS k ∈ K, is as shown
in Definition 6.

Definition 6. For k = (X,L,−→, x) ∈ K and f ∈ F we define if k satisfies f
(notation: k � f) as follows:

k � true

p ∈ L(x)

(X,L,−→, x) � p

k �� b

k � ¬b
k � f k � g

k � f ∧ g

k � f

k � f ∨ g

k � g

k � f ∨ g

∀x e−→ x′ (X,L,−→, x′) � f

(X,L,−→, x) � [e]f

x
e−→ x′ (X,L,−→, x′) � f

(X,L,−→, x) � <e>f

∀x −→∗ x′ (X,L,−→, x′) � f

(X,L,−→, x) � � f

x −→∗ x′ (X,L,−→, x′) � b

(X,L,−→, x) � ♦ b

x
e−→ x′

(X,L,−→, x) � dlf

236 A.C. van Hulst, M.A. Reniers, and W.J. Fokkink

We may now formulate the synthesis problem in terms of the previous defini-
tions in Definition 7. Research in this paper focuses on resolving this problem.

Definition 7. Given k ∈ K and f ∈ F , find s ∈ K in a finite method such that
the following holds: 1) s � f , 2) s
 k, 3) s � k, 4) For all k′
 k and k′ � f
holds k′
 s; or determine that such an s does not exist.

These four properties are interpreted in the context of supervisory control
synthesis as follows. Property 1 (validity) states that the synthesis result satis-
fies the synthesized formula. Property 2 (simulation) asserts that the synthesis
result is a restriction of the original behavior, while property 3 (controllability)
ensures that no accessible uncontrollable behavior is disallowed during synthe-
sis. Controllability is achieved if the synthesis result is related to the original
plant-model via a partial bisimulation, which adds bisimulation of all uncontrol-
lable events to the second property. Note that the third property implies the
second property, as can be observed in Definitions 2 and 3. However, both these
properties are of importance since the former is related to the synthesis result
being a restriction of original behavior, while the latter signifies achievement of
controllability. Property 4 (maximality) states that synthesis removes the least
possible behavior, and thereby induces maximal permissiveness. That is, the be-
havior of every alternative synthesis option is included in the behavior of the
synthesis result.

Fig. 2. Overview of the synthesis process. Steps in the original transition relation
(Figure 2a) of type x

e−→ x′ are combined with reductions of the synthesized require-
ment (Figure 2b), resulting in transitions of type (x, f)

e−→0 (x′, f ′), and possibly
inducing unfoldings. Transition are then removed (Figure 2c-2d) based upon a local
synthesizability test for formulas assigned to target states, until synthesizability holds
in every reachable state (Figure 2e).

4 Synthesis

The purpose of this section is to illustrate the formal definition of the synthesis
construction. Synthesis as defined in this paper involves three major steps, after
which a modified Kripke-LTS is obtained. If synthesis is successful, the resulting
structure satisfies all synthesis requirements, as stated in Definition 7. The first
stage of synthesis transforms the original transition relation −→⊆ X × E ×X ,

Maximally Permissive Controlled System Synthesis for Modal Logic 237

for state-space X , into a new transition relation −→0 ⊆ (X ×F)×E × (X ×F)
over the state-formula product space. This allows us to indicate precisely which
modal (sub-)formula needs to hold at each point in the new transition relation.
The second step removes transitions based upon an assertion of synthe-
sizability of formulas assigned to the target states of transitions. This second
step is repeated until no more transitions are removed. The third and final syn-
thesis step tests whether synthesis has been successful by evaluating whether
the synthesizability predicate holds for every remaining state. An overview of
the synthesis process is shown in Figure 2.

A formal derivation of the starting point in the synthesis process −→0 is shown
in Definition 9. This definition relies upon sub-formulas under conjunction and
invariant operators, as formalized in Definition 8.

Definition 8. We say that f ∈ F is a sub-formula of g ∈ F (notation f ∈
sub (g)) if this can be derived by the following rules:

f ∈ sub (f)

f ∈ sub (g)

f ∈ sub (g ∧ h)

f ∈ sub (h)

f ∈ sub (g ∧ h)

f ∈ sub (g)

f ∈ sub (� g)

Definition 9. For state-space X and original transition relation −→⊆ X×E ×
X, we define the starting point of synthesis −→0⊆ (X × F) × E × (X × F) as
follows:

x
e−→ x′

(x, b)
e−→0 (x, true)

(x, f)
e−→0 (x′, f ′) (x, g)

e−→0 (x′, g′) g′ ∈ sub (f ′)

(x, f ∧ g)
e−→0 (x′, f ′)

(x, f)
e−→0 (x′, f ′) (x, g)

e−→0 (x′, g′) g′ �∈ sub (f ′)

(x, f ∧ g)
e−→0 (x′, f ′ ∧ g′)

x
e−→ x′ x � b

(x, b ∨ f)
e−→0 (x′, true)

(x, f)
e−→0 (x′, f ′)

(x, b ∨ f)
e−→0 (x′, f ′)

x
e−→ x′

(x, [e]f)
e−→0 (x′, f)

x
e−→ x′ e �= e′

(x, [e′]f) e−→0 (x′, true)

x
e−→ x′

(x, <e>f)
e−→0 (x′, f)

x
e−→ x′

(x, <e′>f) e−→0 (x′, true)

(x, f)
e−→0 (x′, f ′) f ′ ∈ sub (� f)

(x,� f)
e−→0 (x′,� f)

(x, f)
e−→0 (x′, f ′) f ′ �∈ sub (� f)

(x,� f)
e−→0 (x′,� f ∧ f ′)

x
e−→ x′

(x,♦ b)
e−→0 (x′, true)

x
e−→ x′

(x,♦ b)
e−→0 (x′,♦ b)

x
e−→ x′

(x, dlf)
e−→0 (x′, true)

The intuitive interpretation of a derivation rule for (x, f)
e−→0 (x′, f ′) in De-

finition 9 is an assignment of the formula f ′ to the state x′, if f ′ is required for
the validity of f in x, after event e. This is particularly recognizable in the deriva-
tion rules for [e]f . The derivation rules for conjunction ensure the validity of
reductions for both operands. However, in order to achieve a terminating synthe-
sis procedure, reductions of conjunctive formulas are prevented from expanding

238 A.C. van Hulst, M.A. Reniers, and W.J. Fokkink

infinitely often using the sub-formula relation. This applies also to reductions of
invariant formulas. The prevention of indefinite formula expansion under con-
junction is essential, and only required for, finiteness of the formula-reductions
for invariant expressions. Other reduction strategies typical for the synthesis ap-
proach in Definition 9 include a limitation of outgoing transitions based upon
the state-based validity of left-hand disjuncts. In addition, reductions towards
true are included for <e>f and ♦ p, in order to achieve maximal permissiveness,
since the synthesis for a single witness does not affect other outgoing transitions,
which should be left in place.

The starting point of synthesis −→0 is subjected to transition removal via
a synthesizability test for formulas assigned to the target states of transitions.
In generalized form, we define a formula f ∈ F to be synthesizable in the state-
formula pair (x, g) if this can be derived by the rules in Definition 11. For an
appropriate definition of synthesizability, it is necessary to extend the notion of
sub-formulas in such a way that a state-based evaluation can be incorporated,
in order to handle disjunctive formulas correctly. This leads to the sub-formula
notion called part , which is shown in Definition 10.

Definition 10. We say that a formula f ∈ F is a part of a formula g ∈ F in
the context of a state based evaluation for (X,L,−→, x) if f ≡ g, or a derivation
can be obtained by the following rules:

f ∈ part (x, g)

f ∈ part (x, g ∧ h)

f ∈ part (x, h)

f ∈ part (x, g ∧ h)

x �� b f ∈ part (x, g)

f ∈ part (x, b ∨ g)

f ∈ part (x, g)

f ∈ part (x,� g)

Partial formulas as shown in Definition 10 are used in the definition of synthe-
sizability as shown in Definition 11. In particular, this is used in the definition
of synthesizability for formulas of type <e>f . In addition, partial formulas play
a major role in the correctness proofs of the synthesis method.

Definition 11. With regard to an intermediate relation −→n⊆ (X ×F)× E ×
(X×F) in the synthesis procedure, we say that a formula f ∈ F is synthesizable
in the state-formula pair (x, g) (notation: (x, g) ↑ f) if this can be derived as
follows:

x � b

(x, g) ↑ b

(x, g) ↑ f1 (x, g) ↑ f2
(x, g) ↑ f1 ∧ f2

x � b

(x, g) ↑ b ∨ f

(x, g) ↑ f

(x, g) ↑ b ∨ f

(x, g) ↑ [e]f

(x′, g′) ↑ f (x, g)
e−→n (x′, g′) f ∈ part (x′, g′)

(x, g) ↑ <e>f

(x, g) ↑ f

(x, g) ↑ � f

(x, g) −→∗
n (x′, g′) x′ � b

(x, g) ↑ ♦ b

(x, g)
e−→n (x′, g′)

(x, g) ↑ dlf

It is important to note here that the synthesizability test serves as a partial
assessment. The synthesizability predicate for f holds in the state-formula pair
(x, g) if it is possible to modify outgoing transitions of (x, g) in such a way that

Maximally Permissive Controlled System Synthesis for Modal Logic 239

f becomes satisfied in (x, g). However, synthesizability is not straightforwardly
definable for a number of formulas. For instance, it can not be directly assessed
whether it is possible to satisfy an invariant formula. Therefore, the synthesi-
zability test in Definition 11 is designed to operate in conjunction with the
process of repeated transition removal, as shown in Figure 2. This is reflected,
for instance, in the definition of synthesizability for an invariant formula � f ,
which only relies upon f being synthesizable. However, since synthesizability
needs to hold at every reachable state for synthesis to be successful, such a
definition of synthesizability for invariant formulas is appropriate due to its role
in the entire synthesis process. A synthesis example for the invariant formula
� p ∧ [a]q is shown in Figure 3.

Fig. 3. Synthesis for the formula � p ∧ [a]q upon the model in Figure 3a, resulting in
the restricted behavioral model shown in Figure 3b. Note the unfolding for [a]q, the
restricted formula-expansion for invariant formulas, and transition disabling, indicated
by dashed lines, due to the state-based formula q not being synthesizable in x, and
p not being synthesizable in z

Using the definitions stated before, we are now ready to define the main
synthesis construction. That is, how transitions are removed from the synthesis
starting point −→0, and how are the subsequent intermediate transition relations
−→1,−→2, . . . constructed. In addition, more clarity is required with regard to
reaching a stable point during synthesis, and verifying whether the synthesis
construction has been completed successfully.

Definition 12. For k = (X,L,−→, x) ∈ K and f ∈ F , we define the n-th
iteration in the synthesis construction as follows:

(x, f)
e−→n (x′, f ′) e ∈ U

(x, f)
e−→n+1 (x′, f ′)

(x, f)
e−→n (x′, f ′) (x, f) ↑ f

(x, f)
e−→n+1 (x′, f ′)

The corresponding system model Sn
k,f is defined as stated below, using the labeling

function Lproj , such that Lproj (y, g) = L(y), for all y ∈ X and g ∈ F .

Sn
k,f = (X ×F , Lproj ,−→n, (x, f))

240 A.C. van Hulst, M.A. Reniers, and W.J. Fokkink

One last definition remains, namely completeness of the synthesis construc-
tion. The formula reductions induced by Definition 9 are finite, which implies
a terminating construction of the transition relation −→0. Since −→0 consists of
finitely many transitions, only finitely many steps may be removed. This means
that at some point, no more transitions are removed, and a stable point will be
reached. If at this point, synthesizability holds at every reachable state, synthesis
is successful. Otherwise, it is not. It is natural that a formal notion representing
the first situation serves as a premise for a number of correctness results. This
notion is formalized as completeness in Definition 13.

Definition 13. For k = (X,L,−→, x) ∈ K, f ∈ F and n ∈ N, we say that Sn
k,f

is complete if the following holds:

For all (x, f) −→∗
n (x′, f ′) it holds that (x′, f ′) ↑ f ′.

5 Correctness

We show that synthesis as defined in this paper results in a controlled system
adhering to the conditions in Definition 7. Detailed proofs are available in [19],
while computer-verified proofs are available as well [16]. The synthesis method
is finite (Theorem 1), and the result satisfies the synthesized requirement (The-
orem 2). In addition, we show that the synthesis result is related to the original
model via partial bisimulation (Theorem 3), which implies simulation. As a final
result, we prove maximal permissiveness (Theorem 4). Assessing whether syn-
thesis has been successful is done by checking whether synthesizability holds at
every reachable state in the fixed point obtained as a result of Theorem 1.

Theorem 1. For k = (X,L,−→, x) ∈ K, having finite −→, and f ∈ F , there
exists an n ∈ N such that Sn

k,f = Sm
k,f for all m > n.

Theorem 2. If Sn
k,f is complete then Sn

k,f � f .

Theorem 3. If Sn
k,f is complete then Sn

k,f � k.

Theorem 4. If k′
 k and k′ � f then k′
 Sn
k,f .

6 Conclusions

This paper presents a novel approach to controlled system synthesis for modal
logic on non-deterministic plant models. The behavior of a Kripke-structure with
labeled transitions is adapted such that it satisfies the synthesized requirement.
The relationship between the synthesis result and the original plant specifica-
tion adheres to important notions from Ramadge-Wonham supervisory control:
controllability and maximal permissiveness. The requirement specification logic
also allows expressibility of deadlock-freeness and marker-state reachability. The
synthesis approach, via a reduction on modal expressions combined with an ite-
ratively applied synthesizability test for formulas assigned to target states of
transitions results in an effective synthesis procedure. Our next research efforts
will focus on determining the effectiveness of this procedure as well as its appli-
cability in case studies.

Maximally Permissive Controlled System Synthesis for Modal Logic 241

References

1. Aminof, B., Mogavero, F., Murano, A.: Synthesis of hierarchical systems. In:
Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 42–60. Springer,
Heidelberg (2012)

2. Arnold, A., Vincent, I., Walukiewicz, I.: Games for synthesis of controllers with
partial observation. Theoretical Computer Science 1(303), 7–34 (2003)

3. Arnold, A., Walukiewicz, I.: Nondeterministic controllers of nondeterministic pro-
cesses. In: Logic and Automata, pp. 29–52. Amsterdam University Press (2008)

4. Baeten, J., van Beek, B., van Hulst, A., Markovski, J.: A process algebra for su-
pervisory coordination. In: Process Algebra and Coordination. EPTCS, pp. 36–55
(2011)

5. Bull, R., Segerberg, K.: Basic modal logic. In: Handbook of Philosophical Logic,
pp. 1–88. Springer (1994)

6. Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Springer
(1999)

7. Cleaveland, R., Steffen, B.: A linear-time model checking algorithm for the
alternation-free modal mu-calculus. Formal Methods in System Design 2, 121–147
(1993)

8. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesis of live be-
haviour models. In: Foundations of Software Engineering, pp. 77–86. ACM Press
(2010)

9. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesizing nonanoma-
lous event-based controllers for liveness goals. ACM Transactions on Software En-
gineering Methodology 22(1), 1–36 (2013)

10. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

11. Lustig, Y., Vardi, M.: Synthesis from recursive-components libraries. In: Games,
Automata, Logics and Formal Verification. EPTCS, pp. 1–16 (2011)

12. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Principles of
Programming Languages, pp. 179–190. ACM Press (1989)

13. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

14. Sokolsky, O., Smolka, S.: Incremental model checking in the modal mu-calculus.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer, Heidelberg
(1994)

15. van Glabbeek, R.: The linear time-branching time spectrum II. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

16. van Hulst, A.: Coq v8.3 proofs (2014),
http://seweb.se.wtb.tue.nl/~ahulst/sofsem/

17. van Hulst, A., Reniers, M., Fokkink, W.: Maximal synthesis for Hennessy-Milner
logic. In: Application of Concurrency to System Design, pp. 1–10. IEEE (2013)

18. van Hulst, A., Reniers, M., Fokkink, W.: Maximal synthesis for Hennessy-Milner
logic with the box-modality. In: Workshop on Discrete Event Systems, pp. 278–285.
IEEE (2014)

19. van Hulst, A., Reniers, M., Fokkink, W.: Maximally permissive controlled system
synthesis for modal logic (2014), preprint at http://arxiv.org/abs/1408.3317/

20. Ziller, R., Schneider, K.: Combining supervisory synthesis and model checking.
ACM Transactions on Embedded Computing Systems 4(2), 331–362 (2005)

http://seweb.se.wtb.tue.nl/~ahulst/sofsem/
http://arxiv.org/abs/1408.3317/

	Maximally Permissive Controlled System Synthesis for Modal Logic
	1 Introduction
	2 Related Work
	3 Definitions
	4 Synthesis
	5 Correctness
	6 Conclusions
	References

