
Nondeterministic Modal Interfaces�

Ferenc Bujtor1, Sascha Fendrich2, Gerald Lüttgen2, and Walter Vogler1

1 Institut für Informatik, University of Augsburg, Germany
{walter.vogler,ferenc.bujtor}@informatik.uni-augsburg.de

2 Software Technologies Research Group, University of Bamberg, Germany
{gerald.luettgen,sascha.fendrich}@swt-bamberg.de

Abstract. Interface theories are employed in the component-based design of
concurrent systems. They often emerge as combinations of Interface Automata
(IA) and Modal Transition Systems (MTS), e.g., Nyman et al.’s IOMTS, Bauer
et al.’s MIO, Raclet et al.’s MI or our MIA. In this paper, we generalise MI to
nondeterministic interfaces, for which we resolve the longstanding conflict be-
tween unspecified inputs being allowed in IA but forbidden in MTS. With this
solution we achieve, in contrast to related work, an associative parallel composi-
tion, a compositional preorder, a conjunction on interfaces with dissimilar alpha-
bets supporting perspective-based specifications, and a quotienting operator for
decomposing nondeterministic specifications in a single theory.

1 Introduction

Interface theories [2,7,8,15,16,18] support the component-based design of concurrent
systems and offer a semantic framework for, e.g., software contracts [1] and web ser-
vices [4]. Several such theories are based on de Alfaro and Henzinger’s Interface Au-
tomata (IA) [10], whose distinguishing feature is a parallel composition on labelled
transition systems with inputs and outputs, where receiving an unexpected input is re-
garded as an error, i.e., a communication mismatch. All states are pruned from which
entering an error state cannot be prevented by the environment, rather than leaving the
parallel composition fully undefined as in [2].

Various researchers have combined IA with Larsen’s Modal Transition Systems
(MTS) [14], which features may- and must-transitions to express allowed and required
behaviour, resp. In a refinement of an interface, all required behaviour must be pre-
served and no disallowed behaviour may be added. Whereas in IA outputs are optional,
they may now be enforced in theories combining IA and MTS, such as Nyman et al.’s
IOMTS [15], Bauer et al.’s MIO [2], Raclet et al.’s Modal Interfaces (MI) [18] and
our Modal Interface Automata (MIA) [16,17]. In this paper we extend MI to nonde-
terministic systems, yielding the most general approach to date and permitting new
applications, e.g., for dealing with races in networks. We built upon our prior work
in [17], from which we adopt disjunctive must-transitions that are needed for opera-
tionally defining conjunction, which is another key operator in interface theories and
supports perspective-based specification.

� Research support was provided by the DFG (German Research Foundation) under
grants LU 1748/3-1 and VO 615/12-1.

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 152–163, 2015.
c© Springer-Verlag Berlin Heidelberg 2015



Nondeterministic Modal Interfaces 153

Combining IA and MTS is, however, problematic since unspecified inputs are for-
bidden in MTS, but allowed in IA with arbitrary behaviour afterwards. In IOMTS [15],
the MTS-view was adopted and, as a consequence, compositionality of refinement wrt.
the parallel operator ‖ was lost. In [17] we followed the IA-view but found that resol-
ving the conflict is essential for a more flexible conjunction. In our new MIA, we can
optionally express the IA-view for state p and input i by an i-may-transition from p to
a special, universal state e that can be refined in any way; we will need this option when
defining ‖. There is a similar idea in MI [18], but an ordinary state is used there with the
consequence that ‖ is not associative. In contrast to the somewhat related demonic com-
pletion as used, e.g., in [11], we do not enforce input-enabledness. With the new feature,
our interface theory allows for a proper distinction between may- and must-transitions
for inputs, unlike [16,17]. This enables us to define conjunction also on interfaces with
dissimilar alphabets via alphabet extension.

As in MI, our MIA is equipped with a multicast parallel composition, where one
output can synchronise with several inputs. We also develop a quotienting operator as
a kind of inverse of parallel composition ‖. For a specification P and a given compo-
nent D, quotienting constructs the most general component Q such that Q ‖ D refines P.
Quotienting is a very practical operator because it can be used for decomposing con-
current specifications stepwise, specifying contracts [3], and reusing components. In
contrast to [18], our quotienting permits nondeterministic specifications and comple-
ments ‖ rather than a simpler parallel product without pruning.

In summary, our new interface theory MIA generalises and improves upon exist-
ing theories combining IA and MTS: parallel composition is commutative and asso-
ciative (cf. Section 3), quotienting also works for nondeterministic specifications (cf.
Section 4), conjunction properly reflects perspective-based specification (cf. Sections 5
and 6), and refinement (cf. Section 2) is compositional and permits alphabet extension
(cf. Section 6). A technical report of this paper [5] contains all proofs, more explana-
tions and examples; it also introduces a disjunction and an action scoping operator.

2 Modal Interface Automata: The Setting

In this section we define MIA and its supported operations. Essentially, MIAs are state
machines with disjoint input and output alphabets and two transition relations, may
and must, as in MTS [14]. May-transitions describe permitted behaviour, while must-
transitions describe required behaviour. Unlike previous versions of MIA [16,17] and
other similar theories, we introduce the universal state e as an extra constituent.

Definition 1 (Modal Interface Automata). A Modal Interface Automaton (MIA) is
a tuple (P, I,O,−→,���, p0,e), where

– P is the set of states containing the initial state p0 and the universal state e,
– I and O are disjoint sets, the alphabets of input and output actions, not containing

the special internal action τ , and A =df I ∪O is called the alphabet,
– −→⊆ P× (A∪{τ})× (Pfin(P)\ /0) is the disjunctive must-transition relation, with
Pfin(P) being the set of finite subsets of P,

– ���⊆ P× (A∪{τ})×P is the may-transition relation.



154 F. Bujtor et al.

We require (a) for all α ∈ A∪{τ}that p
α−→ P′ implies ∀p′∈P′. p

α��� p′ (syntactic con-
sistency) and that (b) e appears in transitions only as the target of input may-transitions.

Cond. (a) states that whatever is required should be allowed; this syntactic consistency
is a natural and standard condition (cf. [14]). Cond. (b) matches the idea for e explained
in the introduction. We use this state in the context of parallel composition to represent
communication errors. Note that our disjunctive must-transitions have a single label, in
contrast to Disjunctive MTS [13].

In the sequel, we identify a MIA (P, I,O,−→,���, p0,e) with its state set P and, if
needed, use index P when referring to one of its components, e.g., we write IP for I.
Similarly, we write, e.g., I1 instead of IP1 for MIA P1. In addition, we let i, o, a, ω
and α stand for representatives of the alphabets I, O, A, O∪{τ} and A∪{τ}, resp.;
we write A = I/O when highlighting inputs I and outputs O in an alphabet A, and we
define â =df a and τ̂ =df ε (the empty word). Furthermore, outputs and internal actions
are called local actions since they are controlled locally by P. For convenience, we let

p
a−→ p′, p 	 a−→ and p 	 a��� denote p

a−→ {p′}, 	 ∃p′. p
a−→ p′ and 	 ∃p′. p

a��� p′, resp.
In figures, we often refer to an action a as a? if a∈ I, and as a! if a∈O. Must-transitions
(may-transitions) are drawn using solid, possibly splitting arrows (dashed arrows); any
depicted must-transition also implicitly represents the underlying may-transition(s).

We now define weak must- and may-transition relations that abstract from transitions
labelled by τ . The following definition is equivalent to the one in [17].

Definition 2 (Weak Transition Relations). We define weak must-transition and weak
may-transition relations, =⇒ and =⇒ resp., as the smallest relations satisfying the
conditions P′ ε

=⇒ P′ for finite P′ ⊆ P, p
ε

=⇒ p as well as:

(a) P′ α̂
=⇒ P′′, p′′ ∈ P′′ and p′′ τ−→ P′′′ implies P′ α̂

=⇒ (P′′ \ {p′′})∪P′′′,
(b) P′ ε

=⇒ P′′ = {p1, . . . , pn} and ∀ j. p j
a−→ Pj implies P′ a

=⇒ ⋃n
j=1 Pj,

(c) p
ε

=⇒ p′′
τ��� p′ implies p

ε
=⇒ p′,

(d) p
ε

=⇒ p′′
α��� p′′′ ε

=⇒ p′ implies p
α

=⇒ p′.

For {p′} α̂
=⇒ P′′ we often write p′ α̂

=⇒ P′′. Mostly for inputs a, we also use relation

compositions
a−→ ε
=⇒ and

a��� ε
=⇒ resp., i.e., where leading τs are disallowed. Observe

that p
a−→ ε
=⇒ P′ implies p

a
=⇒ P′, and p

a��� ε
=⇒ p′ implies p

a
=⇒ p′.

Now we define our refinement relation. It is a weak alternating simulation conceptu-
ally similar to the observational modal refinement found, e.g., in [12]. A notable aspect,
originating from IA [10], is that inputs must be matched immediately, i.e., only trail-
ing τs are allowed. Intuitively, this is due to parallel composition requiring that a signal
sent from one system must be received immediately; otherwise, it is considered an er-
ror (a communication mismatch). Since one wishes not to introduce new errors during
refinement, a refined system must immediately provide all specified inputs.

We treat the universal state e as completely underspecified, i.e., we decree that any
state refines it. This is only possible since e is not an ordinary state. We define our
refinement preorder for MIAs with common input and output alphabets; we relax this
in Section 6.



Nondeterministic Modal Interfaces 155

Definition 3 (MIA Refinement). Let P,Q be MIAs with common input/output alpha-
bets. A relation R ⊆P×Q is a MIA-refinement relation if for all (p,q)∈R with q 	= eQ:

(i) p 	= eP,

(ii) q
i−→ Q′ implies ∃P′. p

i−→ ε
=⇒ P′ and ∀p′∈P′ ∃q′∈Q′.(p′,q′) ∈R,

(iii) q
ω−→ Q′ implies ∃P′. p

ω̂
=⇒ P′ and ∀p′∈P′ ∃q′∈Q′.(p′,q′) ∈R,

(iv) p
i��� p′ implies ∃q′.q

i��� ε
=⇒ q′ and (p′,q′) ∈R,

(v) p
ω��� p′ implies ∃q′.q ω̂

=⇒ q′ and (p′,q′) ∈R.

We write p� q and say that p MIA-refines q if there exists a MIA-refinement relation R
such that (p,q) ∈R, and we let p � q stand for p � q and q � p. Furthermore, we
extend these notations to MIAs, write P � Q if p0 � q0, and use � analogously.

MIA refinement � is a preorder and the largest MIA-refinement relation. The preorder
property is quite subtle to prove due to the weak transition relations.

3 Parallel Composition

IA [9,10] is equipped with an interleaving parallel operator, where an action occurring
as an input in one interface is synchronised with the same action occurring as an output
in some other interface; the synchronised action is hidden, i.e., labelled by τ . Since
our work builds upon MI [18] we instead consider here a parallel composition, where
the synchronisation of an interface’s output action involves all concurrently running
interfaces that have the action as input. We define a parallel operator ‖ on MIA in two
stages. First, a standard product ⊗ between two MIAs is introduced.

Definition 4 (Parallel Product). MIAs P1, P2 are composable if O1 ∩O2 = /0. For such
MIAs we define the product P1⊗P2 = ((P1 ×P2) ∪̇ {e12}, I,O,−→,���,(p01, p02), e12),
where I =df (I1 ∪ I2) \ (O1 ∪O2) and O =df O1 ∪O2 and where −→ and ��� are the
smallest relations satisfying the following conditions:

(PMust1) (p1, p2)
α−→ P′

1 ×{p2} if p1
α−→ P′

1 and α /∈ A2

(PMust2) (p1, p2)
α−→ {p1}×P′

2 if p2
α−→ P′

2 and α /∈ A1

(PMust3) (p1, p2)
a−→ P′

1 ×P′
2 if p1

a−→ P′
1 and p2

a−→ P′
2 for some a

(PMay1) (p1, p2)
α��� (p′1, p2) if p1

α��� p′1 and α /∈ A2

(PMay2) (p1, p2)
α��� (p1, p′2) if p2

α��� p′2 and α /∈ A1

(PMay3) (p1, p2)
a��� (p′1, p′2) if p1

a��� p′1 and p2
a��� p′2 for some a.

From the parallel product, parallel composition is obtained by pruning, i.e., one re-
moves errors and states leading up to errors via local actions, so called illegal states.
This cuts all input transitions leading to an illegal state.

In [6] we have shown that de Alfaro and Henzinger have defined pruning in an in-
appropriate way in [9]. We remedied this by cutting not only an i-transition from some
state p to an illegal state, but also all other i-transitions from p. Now, in [6,9], p can be
refined by a state with an i-transition and arbitrary behaviour afterward; we express this
by introducing an i-may-transition to the universal state.



156 F. Bujtor et al.

p0P:
a? b! q0Q: b? r0R: j?

(p0 ‖ q0) ‖ r0 tt ‖ r0
a?

j?

a?,b!

j?

p0 ‖ (q0 ‖ r0) tt
a?

j?

a?,b!, j?

Fig. 1. Differences of our state e to tt in [18], where AP = {a}/{b}, AQ = {b}/ /0 and AR = { j}/ /0

Definition 5 (Parallel Composition). Given a parallel product P1⊗P2, a state (p1, p2)

is a new error if there is some a ∈ A1 ∩A2 such that (a) a ∈ O1, p1
a��� and p2 	 a−→,

or (b) a ∈ O2, p2
a��� and p1 	 a−→. It is an inherited error if one of its components is

a universal state, i.e., if it is of the form (e1, p2) or (p1,e2).
We define the set E ⊆ P1 ×P2 of illegal states as the least set such that (p1, p2) ∈ E

if (i) (p1, p2) is a new or inherited error or (ii) (p1, p2)
ω��� (p′1, p′2) and (p′1, p′2) ∈ E.

Should the initial state be an illegal state, i.e., (p01, p02) ∈ E, then e12 becomes the
initial – and thus the only reachable – state of the parallel composition P1 ‖ P2.

Otherwise, P1 ‖ P2 is obtained from P1 ⊗P2 by pruning illegal states as follows. If

there is a state (p1, p2) 	∈ E with (p1, p2)
i��� (p′1, p′2) ∈ E for some i ∈ I, then all

must- and may-transitions labelled i and starting at (p1, p2) are removed, and a sin-

gle transition (p1, p2)
i��� e12 is added. Furthermore, all states in E, all unreachable

states (except for e12), and all their incoming and outgoing transitions are removed. If
(p1, p2) ∈ P1 ‖ P2, we write p1 ‖ p2 and call p1 and p2 compatible.

In [18], Raclet et al. use a similar approach to pruning: they introduce a state we
denote as tt, which has only input may-transitions as incoming transitions. Furthermore,
it has a may-loop for every action of the parallel composition so that it can be refined by
any state, much like our universal state (cf. Def. 3(i)). To see the difference, condsider
the MIAs P, Q, R in Figure 1, where we construct (P ‖ Q) ‖ R according to [18]. Since
tt is an ordinary state, it is combined with r0 inheriting the j-must-loop. In our approach,
the combination with r0 is an inherited error, and e does not have any must-transitions.

More importantly, there is the severe problem that parallel composition in [18] is not
associative. Consider again the systems P, Q and R in Fig. 1; their parallel compositions
shown are not equivalent according to � (and the equivalence in [18]). Note that our
example does not rely on the multicast aspect of our parallel composition; it works just
as well for IA parallel composition.

Theorem 6 (Associativity of Parallel Composition). Parallel composition is associa-
tive in the sense that, for MIAs P, Q and R, if (P ‖ Q) ‖ R is defined, then P ‖ (Q ‖ R) is
defined as well and they are isomorphic, and vice versa.

Theorem 7 (Compositionality of Parallel Composition). Let P1, P2 and Q1 be MIAs
and P1 � Q1. Assume that Q1 and P2 are composable, then (a) P1 and P2 are compos-
able, and (b) P1 ‖ P2 � Q1 ‖ P2, and P1 ‖ P2 is compatible if Q1 ‖ P2 is.



Nondeterministic Modal Interfaces 157

P:

p0

rqst!
resp!
fail!

D:

d0

d1

rqst? resp! fail!

Q:

q0

q1

eQ

rqst! resp? fail?

resp?,fail? Q ‖ D:

(q0,d0)

(q1,d1)

rqst! resp! fail!

Fig. 2. Q = P//D with q0 = p0//d0 and q1 = p0//d1, where the alphabets are AP = /0/{rqst, resp,
fail}, AD = {rqst}/{resp, fail}, AQ = {resp, fail}/{rqst} and AQ‖D = /0/{rqst, resp, fail}

4 Quotienting

The quotient operation is a kind of inverse or adjoined operation to parallel composition.
It equips the theory with a means for component reuse and incremental, component-
based specification. To describe the participants in a quotient operation we use the let-
ters P for the specification, D for the divisor (the already implemented component) and
Q for the quotient or its refinements. Given MIAs P and D, the quotient is the coarsest
MIA Q such that Q ‖ D � P holds; we call this inequality the defining inequality of the
quotient. We write P//D for the quotient if it exists.

We demonstrate quotienting with the simple client-server application of Figure 2.
The server takes the role of the already given component D. It can receive a request and
answers with a response. Additionally, the server may implement a failure as answer.
When composed in parallel, client Q and server D are supposed to form a closed system,
i.e., all shared actions are outputs. Thus, the parallel composition of client and server
must refine the overall specification P. A specification for the client is then obtained as
the quotient Q = P//D. Figure 2 gives a preview of this Q according to our construction
below. Client Q may implement the sending of a request, and if so, it must be receptive
for a response and a failure. If one of the latter two transitions were of may-modality,
this would cause a communication mismatch in the parallel composition with D. The
may-transitions resp? and fail! from q0 to eQ only exist to make Q as coarse as possible;
they disappear in the parallel composition with D. Now, it is easy to check that the
defining inequality Q ‖ D � P is satisfied. The example also shows that, in general, we
do not have equality of (P//D) ‖ D and P.

We define the quotient for a restricted set of MIAs, namely where the specification
P has no τs and where the divisor D is may-deterministic without τs. We call D may-

deterministic if d
α��� d′ and d

α��� d′′ implies d′ = d′′. Due to syntactic consistency,
a may-deterministic MIA has no disjunctive must-transitions, i.e., the target sets of
must-transitions are singletons. In addition, we exclude the pathological case where

P has some state p and input i with p
i��� eP and ∃p′ 	= eP. p

i��� p′. Recall that transi-

tions p
i��� eP are meant to express the following situation: (a) input i is not specified

at p, but at the same time (b) p shall be refinable as in IA [10] by a state with an
i-transition and arbitrary subsequent behaviour. Despite these restrictions, our quotient



158 F. Bujtor et al.

significantly generalises that of MI [18], which considered deterministic specifications
and divisors only. In the following, we call MIAs P, D satisfying our restrictions
a quotient pair.

4.1 Definition and Main Result

Like most other operators we define the quotient in two stages, where mayP(p,α) stands

for {p′ ∈ P | p
α���P p′}.

Definition 8 (Pseudo-quotient). Let (P, IP,OP,−→P,���P, p0,eP), (D, ID,OD,−→D,
���D,d0,eD) be a quotient pair with AD ⊆ AP and OD ⊆ OP, and I =df IP ∪OD and
O =df OP \OD. The pseudo-quotient of P over D is defined as the MIA ({(eP,eD)}, I,O,
/0, /0,(eP,eD),(eP,eD)) if p0 = eP. Otherwise, P�D =df (P×D, I,O,−→,���,(p0,d0),
(eP,eD)), where the transition relations are defined by:

(QMust1) (p,d)
a−→ P′ × {d} if p

a−→P P′ and a 	∈ AD

(QMust2) (p,d)
a−→ P′ × {d′} if p

a−→P P′ and d
a−→D d′

(QMust3) (p,d)
a−→ P′ × {d′} if P′ =df mayP(p,a) 	= /0, eP 	∈ P′,

d
a���D d′ and a ∈ OD

(QMay1) (p,d)
a��� (p′,d) if p

a���P p′ 	= eP and a 	∈ AD

(QMay2) (p,d)
a��� (p′,d′) if p

a���P p′ 	= eP and d
a−→D d′

(QMay3) (p,d)
a��� (p′,d′) if p

a���P p′, eP 	∈ mayP(p,a),

d
a���D d′ and a 	∈ OP ∩ ID

(QMay4) (p,d)
a��� (eP,eD) if eP ∈ mayP(p,a) (note: a ∈ IP ⊆ I)

(QMay5) (p,d)
a��� (eP,eD) if p 	= eP, d 	 a���D and a ∈ AD \ (OP ∩ ID)

Regarding the definition of the alphabets we follow [8] and [18]; there is, however,
a choice regarding the input alphabet, which we discuss in Sec. 6. The intuition behind
a state (p,d) in P�D is that (p,d) composed in parallel with d refines state p, and
that (p,d) should be coarsest wrt. MIA refinement satisfying this condition. With this
in mind, we now justify some of the above rules intuitively.

Rule (QMust1) is necessary due to the following consideration. If P has an a-must-
transition where a is unknown to D, this can only originate from an a-must-transition
in the quotient Q that we wish to construct; in order to be most permissive, each p′ ∈ P′
must have a match in Q ‖ D. The corresponding consideration is true for Rule (QMay1),
which also establishes syntactic consistency for Rule (QMust1).

Rule (QMust3) ensures that (p,d) and d are compatible in case of an output of d. An
application of this rule can be seen in Fig. 2 for action fail? at q1 = p0//d1. Syntactic
consistency results from Rules (QMay2) and (QMay3); note that a∈ OD implies a 	∈ ID.

Rule (QMay5) makes P�D as coarse as possible. The input a-may-transitions in-
troduced here just disappear in (P�D) ‖ D, since a is blocked by D. This can be seen
in Fig. 2 for actions resp? and fail? at q0 = p0//d0 and in Q ‖ D at (q0,d0).

P�D is indeed a MIA. We have already argued for syntactic consistency. All rules
ensure p 	= eP; hence, eP�D has no outgoing transitions. Incoming transitions of eP�D

can only arise from Rules (QMay4) or (QMay5), which are only applicable for a ∈ I.



Nondeterministic Modal Interfaces 159

Up to now, we have only defined the pseudo-quotient. Considering a candidate pair
(p,d), for some combinations of modalities and assignments of actions to input or out-
put, it is impossible that p is refined by a state resulting from a parallel composition
with d. We call such states impossible states and remove them from the pseudo-quotient

states. For example, for p
a−→ and d

a��� such that d 	 a−→, no parallel composition with
d refines p. While may-transitions can be refined by removing them and disjunctive
transitions can be refined to subsets of their targets to prevent the reachability of im-
possible states, all states having a must-transition to only impossible states must also be
removed.

Definition 9 (Quotient). Let P�D be the pseudo-quotient of P over D. The set G ⊆
P×D of impossible states is defined as the least set refining the following rules:

(G1) p
a−→P and d 	 a−→D and a ∈ AD implies (p,d) ∈ G

(G2) p 	= eP and p 	 a���P and d
a���D and a ∈ OD implies (p,d) ∈ G

(G3) p 	= eP and d = eD implies (p,d) ∈ G
(G4) (p,d)

a−→P�D R′ and R′ ⊆ G implies (p,d) ∈ G

The quotient P//D is obtained from P�D by deleting all states (p,q) ∈ G. This also
removes any may- or must-transition exiting and any may-transition entering a deleted
state. Deleted states are also removed from targets of disjunctive must-transitions.
If (p,d) ∈ P//D, we write p//d. If (p0,d0) 	∈ P//D, the quotient P over D is not
defined.

Rule (G1) is obvious since (p,d) cannot ensure that p
a−→P is matched if d has no

a-must-transition, as an a-may-transition or even a forbidden action at d can in no case
compose to a refinement of a must-transition at p. Rule (G2) captures the situation
where d has an output a that is forbidden at p. Offering an a-must-input in the quotient
would lead to a transition in the parallel composition with d, while not offering it would
lead to an error; both would not refine p. Rule (G3) captures the division by eD: state eD

in parallel with any state is universal and does not refine p 	= eP. Finally, Rule (G4)
propagates back all impossibilities that cannot be avoided by refining.

Note that P//D is a MIA. Quotienting yields the coarsest MIA satisfying the defi-
ning inequality; proving this statement involves showing that the definedness of ‖ and //
is mutually preserved across refinement. Operator // is also monotonous at the left.

Theorem 10 (// is a Quotient Operator wrt. ‖). Let P, D be a quotient pair and Q be
a MIA such that AD ⊆ AP, OD ⊆ OP, OQ = OP \OD and IQ = IP ∪OD. Then, Q � P//D
iff Q ‖ D � P.

Theorem 11 (Monotonicity of // wrt. �). Let P1, P2, D be MIAs with P1 � P2. If P1//D
is defined and P2, D are a quotient pair, then P2//D is defined and P1//D � P2//D.

4.2 Discussion

For Q ‖ D � P to hold, Q ‖ D and P must have the same input alphabet and the
same output alphabet. Thus, we must have OQ = OP \OD and IQ ⊇ IP \ ID. Concern-
ing the input actions in D, quotient Q can listen to them but does not have to. Hence,



160 F. Bujtor et al.

IQ ⊆ IP \ ID ∪AD = IP ∪OD. The more inputs Q has, the easier it is to supply the be-
haviour ensuring Q ‖ D � P. Thus, we have chosen the input alphabet IP ∪OD for our
quotient P//D, just as is done in [8] and [18]. When comparing some Q to P//D in
Thm. 10, Q necessarily has the same input and output alphabets as P//D, by Def. 3.

Quotient operators for interface theories have already been discussed by Raclet et
al. [18] and Chilton et al. [7]. Our quotient Q = P//D is most similar to [18], where D
is assumed to be may-deterministic, P and D have no internal transitions, and IQ =
IP ∪ OD. However, also P must be may-deterministic there, whereas we additionally
allow nondeterminism and disjunctive must-transitions in P.

In addition, we have corrected some technical shortcomings of MI [18]. Its quotient
operation ignores compatibility so that quotienting is an adjoint to the parallel product
but not to parallel composition. This has been recognised in a technical report [3], which
unfortunately employs a changed setting without a universal state.

5 Conjunction

Besides parallel composition and quotienting, conjunction is one of the most important
operators of interface theories. It allows one to specify different perspectives of a sys-
tem separately, from which an overall specification can be determined. More formally,
the conjunction should be the coarsest specification that refines the given perspective
specifications, i.e., it should characterise the greatest lower bound of the refinement
preorder. In the sequel, we define conjunction on MIAs with common alphabets, as we
did for MIA refinement. Similar to parallel composition, we first present a conjunctive
product and, in a second step, remove state pairs with contradictory specifications.

Definition 12 (Conjunctive Product). Consider two MIAs (P, I,O,−→P,���P, p0,eP)
and (Q, I,O, −→Q,���Q,q0,eQ) with common alphabets. The conjunctive product is
defined as P&Q =df (P×Q, I,O,−→,���,(p0,q0),(eP,eQ)), satisfying the following
rules plus the symmetric rules of (OMust1), (IMust1), (EMust1), (May1), (EMay1):

(OMust1) (p,q)
ω−→ {(p′,q′) | p′ ∈ P′, q

ω̂
=⇒Q q′} if p

ω−→P P′ and q
ω̂

=⇒Q

(IMust1) (p,q)
i−→ {(p′,q′) | p′ ∈ P′, q

i��� ε
=⇒Q q′} if p

i−→P P′ and q
i��� ε
=⇒Q

(EMust1) (p,eQ)
α−→ P′ × {eQ} if p

α−→P P′

(May1) (p,q)
τ��� (p′,q) if p

τ
=⇒P p′

(OMay) (p,q)
ω��� (p′,q′) if p

ω
=⇒P p′ and q

ω
=⇒Q q′

(IMay) (p,q)
i��� (p′,q′) if p

i��� ε
=⇒P p′ and q

i��� ε
=⇒Q q′

(EMay1) (p,eQ)
α��� (p′,eQ) if p

α���P p′

Note that this definition is similar to the one in [17], except for the treatment of inputs
and the universal state. The conjunctive product is inherently different from the pa-
rallel product. Single transitions are defined through weak transitions, e.g., as in Rules
(OMust1), (IMust1) and (May1), and τ-transitions synchronise by Rule (OMay). Fur-
thermore, as given by Rules (EMust1) and (EMay1), a universal state is a neutral ele-
ment for the conjunctive product, whereas it is absorbing for the parallel product.



Nondeterministic Modal Interfaces 161

R1:

0

1

2

rqst1!, rqst2!

rqst?

rqst1! rqst2!

sel!

R2:

0

1 2

rqst?

sel! sel!
rqst1! rqst2!

R1 ∧R2:

(0,0)

(1,0)

(2,1) (2,2)

rqst?

sel!

rqst1! rqst2!

Fig. 3. Conjunction on MIAs may lead to disjunctive transitions

Definition 13 (Conjunction). Given a conjunctive product P&Q, the set F ⊆ P×Q of
inconsistent states is defined as the least set satisfying for all p 	= eP and q 	= eQ:

(F1) (p
o−→P and q 	 o

=⇒Q) or (p 	 o
=⇒P and q

o−→Q) implies (p,q) ∈ F

(F2) (p
i−→P and q 	 i���Q) or (p 	 i���P and q

i−→Q) implies (p,q) ∈ F

(F3) (p,q)
α−→ R′ and R′ ⊆ F implies (p,q) ∈ F

The conjunction P∧Q is obtained by deleting all states (p,q) ∈ F from P&Q. This also
removes any may- or must-transition exiting and any may-transition entering
a deleted state; in addition, deleted states are removed from targets of disjunctive must-
transitions. We write p∧q for (p,q) of P∧Q; all such states are defined and consistent
by construction. If (p0,q0) ∈ F, then the conjunction of P and Q does not exist.

An example of conjunction is given in Fig. 3. MIAs R1 and R2 can be understood
as requirements for a server front-end that routes between a client and at least one of
two back-ends. MIA R1 specifies that, after getting a client’s request (rqst?), a back-end
selection (sel!) must be performed, after which the request can be forwarded to one of
the two back-ends (rqst1!, rqst2!). MIA R2 specifies that, with the selection, it is decided
to which one of the back-ends the request will be forwarded (rqst1!, rqst2!).

In R1 ∧R2, the selection process (sel!) is given by a disjunctive must-transition. Such
a requirement cannot be specified in a deterministic theory, such as MI [18] which
our theory extends. Although one might approximate the disjunctive sel! by individual
selection actions sel1! and sel2! for each back-end, the conjunction would either have
both actions as may-transitions and thus allow one to omit both, or would have both
actions as must-transitions, disallowing a server application with only one back-end.

Theorem 14 (∧ is And). Let P and Q be MIAs with common alphabets. Then, (i) (∃R.
R � P and R � Q) iff P∧Q defined. Further, in case P∧Q is defined and for any R:
(ii) R � P and R � Q iff R � P∧Q.

Clearly, conjunction is commutative. Further, as a consequence of the above theorem,
(i) it is also associative and (ii) MIA refinement is compositional wrt. conjunction.

6 Alphabet Extension

So far, MIA refinement is only defined on MIAs with the same alphabets. This is in-
sufficient for supporting perspective-based specification, where an overall specification



162 F. Bujtor et al.

is conjunctively composed of smaller specifications, each addressing one ‘perspective’
(e.g., a single system requirement) and referring only to actions that are relevant to that
perspective. Hence, it is useful to extend conjunction and thus MIA refinement to dis-
similar alphabets in such a way that we can add new inputs and outputs in a refinement
step. For this purpose we introduce alphabet extension as an operation on MIAs, simi-
lar to [17] and also to weak extension in [18]. More precisely, we add may-loops for all
new actions to each state, except the universal state.

Definition 15 (Alphabet Extension & Refinement). Given a MIA (P, I,O,−→,���,
p0,e) and disjoint action sets I′ and O′ satisfying I′ ∩A = /0= O′ ∩A, where A=df I∪O,
the alphabet extension of P by I′ and O′ is given by [P]I′,O′ =df (P, I∪I′,O∪O′,−→,���′,
p0,e) for ���′=df ���∪{(p,a, p) | p ∈ P\{e}, a∈ I′ ∪O′}. We often write [p]I′,O′ for p
as state of [P]I′ ,O′ , or conveniently [p] in case I′, O′ are understood from the context.

For MIAs P and Q with p ∈ P, q ∈ Q, IP ⊇ IQ and OP ⊇ OQ, we define p �′ q if
p � [q]IP\IQ,OP\OQ

. Since �′ extends � to MIAs with different alphabets, we write �
for �′ and abbreviate [q]IP\IQ,OP\OQ

by [q]P; the same notations are used for P and Q.

Compositionality of parallel composition as in Thm. 7 is preserved by the extended
refinement relation as long as alphabet extension does not yield new communications.

Theorem 16 (Compositionality of Parallel Composition). Let P1, P2, Q be MIAs such
that Q and P2 are composable and P1 � Q. Assume further that, for I′ =df I1 \ IQ and
O′ =df O1 \OQ, we have (I′ ∪O′)∩A2 = /0. Then: (a) P1 and P2 are composable, and
(b) if Q and P2 are compatible, then so are P1 and P2 and P1 ‖ P2 � Q ‖ P2.

Our conjunction operator may be lifted to conjuncts with dissimilar alphabets by
defining P∧′ Q =df [P]Q∧ [Q]P; the lifted operator ∧′ satisfies the analogue of Thm. 14.

7 Conclusions and Future Work

We presented an extension of Raclet et al.’s modal interface theory [18] to nondeter-
ministic systems. To do so we resolved, for the first time properly, the conflict be-
tween unspecified inputs being allowed in interface theories derived from de Alfaro and
Henzinger’s Interface Automata [10] but forbidden in Modal Transition Systems [14].
To this end, we introduced a special universal state, which enabled us to achieve com-
positionality (in contrast to [15]) as well as associativity (in contrast to [18]) for parallel
composition; this also allowed for a more practical support of perspective-based speci-
fication when compared to [16,17]. In addition, we defined a quotienting operator that
permits the decomposition of nondeterministic specifications and takes pruning in pa-
rallel composition into account (in contrast to [18]).

Regarding future work, we wish to explore the choice of alphabets for quotienting
and relax the determinism requirement on divisors. We also intend to implement our
theory in MICA (see http://www.irisa.fr/s4/tools/mica/) or the MIO Work-
bench [2].

Acknowledgments. We thank the reviewers for their comments and suggestions.

http://www.irisa.fr/s4/tools/mica/


Nondeterministic Modal Interfaces 163

References

1. Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman, U., Wą-
sowski, A.: Moving from specifications to contracts in component-based design. In: de Lara,
J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58. Springer, Heidelberg (2012)

2. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refine-
ment, and the MIO Workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

3. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier, P.,
Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T.A., Larsen, K.G.: Contracts for system
design. Tech. Rep. 8147, INRIA (November 2012)

4. Beyer, D., Chakrabarti, A., Henzinger, T.A., Seshia, S.A.: An application of web-service
interfaces. In: ICWS, pp. 831–838. IEEE (2007)

5. Bujtor, F., Fendrich, S., Lüttgen, G., Vogler, W.: Nondeterministic modal interfaces. Tech.
Rep. 2014-06, Institut für Informatik, Universität Augsburg (2014)

6. Bujtor, F., Vogler, W.: Error-pruning in interface automata. In: Geffert, V., Preneel, B., Rovan,
B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 162–173. Springer,
Heidelberg (2014)

7. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.Z.: A compositional specification theory
for component behaviours. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 148–168.
Springer, Heidelberg (2012)

8. Chilton, C.: An Algebraic Theory of Componentised Interaction. Ph.D. thesis, Oxford (2013)
9. de Alfaro, L., Henzinger, T.A.: Interface automata. In: FSE, pp. 109–120. ACM (2001)

10. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineering Theories of Software-
Intensive Systems. NATO Science Series, vol. 195. Springer (2005)

11. De Nicola, R., Segala, R.: A process algebraic view of input/output automata. Theor. Comput.
Sci. 138(2), 391–423 (1995)

12. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic. In: Meyer,
A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 163–180. Springer,
Heidelberg (1989)

13. Larsen, K., Xinxin, L.: Equation solving using modal transition systems. In: LICS,
pp. 108–117. IEEE (1990)

14. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

15. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and product line
theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidel-
berg (2007)

16. Lüttgen, G., Vogler, W.: Modal interface automata. LMCS 9(3) (2013)
17. Lüttgen, G., Vogler, W.: Richer interface automata with optimistic and pessimistic compati-

bility. ECEASST 66 (2013), an extended version has been submitted to Acta Informatica
18. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A modal

interface theory for component-based design. Fund. Inform. 108(1-2), 119–149 (2011)


	Nondeterministic Modal Interfaces
	1 Introduction
	2 Modal Interface Automata: The Setting
	3 Parallel Composition
	4 Quotienting
	4.1 Definition and Main Result
	4.2 Discussion

	5 Conjunction
	6 Alphabet Extension
	7 Conclusions and Future Work
	References




