
Exact Algorithms for 2-Clustering with Size

Constraints in the Euclidean Plane�

Alberto Bertoni, Massimiliano Goldwurm, and Jianyi Lin

Dipartimento di Informatica, Università degli Studi di Milano,
Via Comelico 39/41, 20135 Milano, Italy

jianyi.lin@unimi.it

Abstract. We study the problem of determining an optimal bipartition
{A,B} of a set X of n points in R

2 that minimizes the sum of the sample
variances of A and B, under the size constraints |A| = k and |B| = n−k.
We present two algorithms for such a problem. The first one computes
the solution in O(n 3

√
k log2 n) time by using known results on convex-

hulls and k-sets. The second algorithm, for an input X ⊂ R
2 of size n,

solves the problem for all k = 1, 2, . . . , �n/2� and works in O(n2 log n)
time.

Keywords: algorithms for clustering, cluster size constraints, data ana-
lysis, Euclidean distance, machine learning.

1 Introduction

The general Clustering Problem consists in finding an optimal partition of a set
X of n points in m clusters, i.e. a partition of X in m subsets that minimizes
the sum of the dispersion of points around the centroid in each subset. This is
a fundamental problem in many research areas like data mining, image analy-
sis, pattern recognition and bioinformatics [18]. Clustering is a classical method
in unsupervised machine learning, frequently used in statistical data analysis
[5,10].

A computational analysis of the problem depends on a variety of parameters:
the dimension d of the point space (usually R

d), the distance or semi-distance
used to measure the dispersion of points, the number m of clusters (which may
be arbitrary, as part of the instance, or fixed in advance), the size of the clusters
and possibly others constraints [2,20,21]. In most cases the problem is difficult.
For instance, assuming the squared Euclidean semi-distance, when the dimension
d is arbitrary the general Clustering Problem is NP-hard even if the number m
of clusters is fixed to 2 [1,6]. The same occurs if m is arbitrary and the dimension
is d = 2 [14]. The problem is solvable in polynomial time when fixing both m and
d [11]. Moreover there exists a well-known, usually fast, heuristic for finding an
approximate solution, called k-Means [13], which however requires exponential
time in the worst case [19].

� This research has been supported by project PRIN #H41J12000190001 “Automata
and formal languages: mathematical and applicative aspects”.

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 128–139, 2015.
c© Springer-Verlag Berlin Heidelberg 2015

Exact Algorithms for 2-Clustering with Size Constraints 129

Thus, a natural goal of research in this context is to study particular cases
with suitable hypothesis on the input that allow us to design polynomial time
algorithms. Here, we consider the Clustering Problem in R

2, assuming squared
Euclidean semi-distance, when the number of clusters is m = 2 and their size is
given by the instance. We call it Size Constrained 2-Clustering in R

2 (2-SCC-2
for short).

More precisely, an instance of this problem is given by a set X ⊂ R
2 of

n points in general position and an integer k such that 1 ≤ k ≤ n/2, while
the solution is a bipartition {A,B} of X such that |A| = k, that minimizes the
total weight W (A)+W (B), where W (A) (respectively, W (B)) is the sum of the
squares of the �2-distances of all points a ∈ A (resp. b ∈ B) from the centroid
of A (resp. B). A more formal description is given in Section 3. Recall that the
unconstrained version of the same problem, with an arbitrary number of clusters,
is NP-hard [14].

The relevance of the 2-clustering problems is due to the wide spread of hie-
rarchical clustering techniques, that repeatedly apply the 2-clustering as the key
step. The 2-clustering problem with cluster size constraints has been already
studied in [12,4], where it is shown that in dimension 1 the problem is solvable
in polynomial time for every norm �p with integer p ≥ 1, while there is some
evidence that the same result does not hold for non-integer p. It is also known
that for arbitrary dimension d the same problem is NP-hard even assuming equal
sizes of the two clusters.

In this work we show two results. First, we describe an algorithm that solves
2-SCC-2 in O(n 3

√
k log2 n) time. This is obtained by using known results of

computational geometry concerning in particular dynamic data structures for
convex hulls [17,16] and the enumeration of k-sets in R

2 [9,7]. Then, we present an
algorithm for the full-version of the problem, i.e. a procedure yielding a solution
for all k = 1, 2, . . . , �n/2�, which works in O(n2 logn) time. Both algorithms
are based on a separation result on the clusters of optimal solutions for 2-SCC-
2, presented in Section 3 and proved in [4], which intuitively extends to the
bidimensional case the so-called String Property of the optimal clusterings on
the real line [15]. The results we present here are obtained by assuming the
Euclidean norm and this hypothesis is crucial our proofs. We observe that the
Euclidean norm is an essential hypothesis in our proofs and the results we present
here do not seem to hold under different assumptions. For instance, in the case
of Manhattan distance (�1 norm), the separation result on the plane yields a
O(n3 logn) time algorithm for the full-version of the problem [3].

2 Preliminary Notions

In this section we fix our notation and recall some known results of computational
geometry [8,17].

For any point a ∈ R
2, we denote by ax and ay the abscissa and the ordinate

of a, respectively. We denote by ‖a‖ the usual Euclidean norm of point a, i.e.
‖a‖ = (a2x+a2y)

1/2. We also fix a total order on points in R
2: for every a, b ∈ R

2,

130 A. Bertoni, M. Goldwurm, and J. Lin

we set a <o b if either ay < by or ay = by∧ax < bx. Clearly, every point a defines
a vector of length ‖a‖ oriented from the origin to a.

Given two points a, b ∈ R
2, the oriented line segment from a to b is called

oriented edge and is identified by the pair (a, b). By a little abuse of language
we also denote by (a, b) the straight line through the two points oriented from a
to b. We define the (positive) phase of (a, b) as the angle between the oriented
edges (a, (ax + 1, ay)) and (a, b), measured counter-clockwise. We denote it by
phase(a, b). Clearly, we have 0 ≤ phase(a, b) < 2π. Note that two oriented edges
have the same phase if and only if they are parallel and have the same orientation.

We also define the slope of (a, b) as the remainder of the division phase(a, b)/π
and we denote it by slope(a, b). Observe that (a, b) and (b, a) have the same slope
and, more generally, two oriented edges have the same slope if and only if they
are parallel (with either equal or opposite orientation).

Moreover, for every pair of oriented edges (a, b), (c, d), we say that (a, b) is
on the right of (c, d) and write (a, b)Right(c, d) if the position of the straight
line (c, d) is obtained by a counter-clockwise rotation of the straight line (a, b)
(around their intersection point) smaller than π. On the contrary, if such
a rotation is greater than π we say that (a, b) is on the left of (c, d) and write
(a, b)Left(c, d). Note that relations Right and Left correspond respectively to the
positive and negative sign of the cross product (a, b)×(c, d), which is determined
by the well-known right-hand rule.

Clearly, once the coordinates of points are known, one can compute in constant
time both phase and slope of a point, as well as establish the validity of relations
Right and Left between two oriented edges.

Now, let us consider a finite set X ⊂ R
2: we say that X is in general position

if it does not contain 3 collinear points. Moreover, if X consists of n points, for
any integer 0 ≤ k ≤ n a k-set of X is a subset A ⊆ X of cardinality |A| = k such
that A = X ∩ H for a suitable half-space H ⊂ R

2. This means A is separable
from its complement Ā by a straight-line. Determining the maximum number
of k-sets of a family of n points in R

2 is a central problem in combinatorial
geometry, first posed in [9].

Recall that the intersection of an arbitrary collection of convex sets is convex.
Then for any set A ⊆ R

d, the convex hull or convex closure of A, denoted by
Conv(A), is defined as the smallest convex subset of Rd containing A, i.e.

Conv(A) =
⋂

{Y ⊆ R
d : A ⊆ Y, Y is convex}

It is well-known that the convex closure of a finite set A of points in R
d is

a polytope [17] determined by the intersection of finitely many half-spaces; in
particular in R

2, Conv(A) is a convex polygon. It is possible to identify a polygon
by giving its vertices, and hence the determination of the convex closure Conv(A)
of a given set A ⊂ R

2 consists in finding the vertices of the associated polygon.
We recall that the convex hull of a set X of n points in R

2 can be computed in
time O(n log n) [17].

Exact Algorithms for 2-Clustering with Size Constraints 131

3 Problem Definition and First Properties

To give a formal definition of the problem, we recall that a cluster of a finite set
X ⊂ R

2 is a non-empty subset A ⊂ X , while the pair {A, Ā} is a 2-clustering
of X , where Ā = X �A is the complement of A. Assuming the Euclidean norm
‖ · ‖, the centroid of A is the value CA ∈ R

2 defined by

CA = argmin
µ∈R2

∑

a∈A

‖a− μ‖2.

It turns out that CA is the mean value of points in A: CA =
∑

a∈A a

|A| . Moreover,

we denote by W (A) the weight of A, that is

W (A) =
∑

a∈A

‖a− CA‖2

Note that W (A)
|A|−1 is the traditional sample variance of A, once we interpret the

elements of A as sample points picked up from a random variable in R
2 (rather

than in R). Hence, it represents a natural measure of the dispersion of points in
A around their mean value.

Then, the 2-SCC-2 problem is defined as follows:

Given a set X ⊂ R
2 of cardinality n (in general position) and an integer

k, 1 ≤ k ≤ n/2, find a 2-clustering {A, Ā} of X , with |A| = k, that
minimizes the weight W (A, Ā) = W (A) +W (Ā).

By the observation above, since the size of the clusters is constrained, this is
equivalent to looking for the 2-clustering (A,B) that minimizes the sum of the
sample variances of A and B.

The weight of a 2-clustering in the plane can be computed using the following
proposition, the proof of which is here omitted for sake of brevity.

Proposition 1. Let {A,B} be a 2-clustering of a set X ⊂ R
2 of n points such

that |A| = k for some k ∈ {1, 2, . . . , �n/2�}. Then
W (A,B) =

∑

p∈X

‖p‖2 − n

k(n− k)
‖SA‖2

where SA =
∑

a∈A a.

As a consequence, solving the 2-SCC-2 problem for an instance (X, k) is equiv-
alent to determining a subset A ⊆ X of size k that maximizes the value ‖SA‖.

Another property we use in the present work is the following separation result
between the clusters of optimal solutions of the 2-SCC-2 problem, proved in [4].

Proposition 2 (Separation Result). Let {A,B} be an optimal solution of
the 2-SCC-2 problem for an instance X ⊂ R

2 with constraint |A| = k. Then,
there exists a constant c ∈ R such that, for every p ∈ X,

p ∈ A ⇒ 2px(CBx − CAx) + 2py(CBy − CAy) < c+ ‖CB‖2 − ‖CA‖2,
p ∈ B ⇒ 2px(CBx − CAx) + 2py(CBy − CAy) > c+ ‖CB‖2 − ‖CA‖2.

132 A. Bertoni, M. Goldwurm, and J. Lin

As a consequence, both clusters of any optimal solution {A,B} of the 2-SCC-2
problem are separated by the straight line of equation

2x(CBx − CAx) + 2y(CBy − CAy) = c+ ‖CB‖2 − ‖CA‖2

for some constant c ∈ R. This implies that A is a k-set and B is a (n− k)-set.
This result can be interpreted as a natural extension of the well-known String

Property, stating that all optimal clusterings on the real line consist of contiguous
subsets of the input set (see for instance [15]).

Moreover, Propositions 1 and 2 imply that the 2-SCC-2 problem for an in-
stance (X, k) can be solved by computing a k-set A ⊆ X with maximum ‖SA‖.

4 Algorithm for Constrained 2-Clustering in R
2

In this section we present an efficient technique, based on Proposition 2, to solve
the 2-SCC-2 problem as defined in Section 3. Here the input is given by a set
X ⊂ R

2 of n ≥ 4 points in general position and an integer k such that 1 < k ≤
�n/2�. Our purpose is to show that the algorithm works in O(n 3

√
k log2 n) time.

We first introduce some preliminary notions. Given two disjoint polygons it
is easy to see that there exist 4 straight lines that are tangent to both polygons:
they are called bitangents. Two bitangents keep one polygon on one side and
the other polygon on the other side, while the other two bitangents keep both
polygons on the same side. Bitangents as well as straight lines can be oriented.

Given X ⊂ R
2 and two points a, b ∈ X we define

Xr(a, b) = {p ∈ X | (a, p)Right(a, b)},
X l(a, b) = {p ∈ X | (a, p)Left(a, b)}.

In other words, Xr(a, b) is the set of points in X on the right-hand side of (a, b),
while X l(a, b) is the set of points in X on the left-hand side of (a, b).

Definition 1. Given a set X ⊂ R
2 of cardinality n ≥ 4 in general position, we

say that the oriented edge (a, b) with a, b ∈ X, a �= b, is a (k − 1)-set edge if
|Xr(a, b)| = k − 1 (and hence |X l(a, b)| = n− k − 1).

Setting A = Xr(a, b) ∪ {a} and Ā = X l(a, b) ∪ {b}, it is clear that A is a k-set
of X and the straight line (a, b) is the unique bitangent between Conv(A) and
Conv(Ā) that keeps A� {a} on its right. Indeed, as illustrated in Figure 1a, two
of the other three bitangents between Conv(A) and Conv(Ā) do not separate A
from Ā, and the remaining one does not keep A � {a} on its right-hand side.
This proves the following proposition for any set X ⊂ R

2 of n ≥ 4 points and
any k = 2, . . . , �n/2�.
Proposition 3. There exists a bijection between the (k− 1)-set edges of X and
the k-sets of X: each (k − 1)-set edge (a, b) can be associated with the k-set
{a} ∪Xr(a, b), while any k-set A corresponds to the unique oriented edge (a, b),
bitangent to Conv(A) and Conv(Ā), such that A� {a} = Xr(a, b) .

Exact Algorithms for 2-Clustering with Size Constraints 133

Fig. 1. (a) There are 4 bitangents between Conv(A) and Conv(Ā), but only (a, b)
separates A and Ā keeping A � {a} on its right-hand side. (b) Given the k-set Ai

(polygon with horizontal lines) associated to the (k−1)-set edge (ai, bi) we can compute
the subsequent k-set Ai+1 (polygon with vertical lines) associated to (ai+1, bi+1) by
removing ai and inserting bi in the convex hull. Segments with arrow represent oriented
edges scanned by procedure NextBitangent on the perimeter of the convex hull.

Let us denote by A(a, b) the k-set corresponding to the (k − 1)-set edge (a, b).
Since two (k− 1)-set edges of X cannot have the same phase, we can consider

the sequence
Ek−1 = {(a1, b1), ..., (ah, bh)}

of all (k − 1)-set edges of X ordered according with increasing phase.
The following proposition yields the key property for computing all k-sets

A(ai, bi) for i = 1, 2, . . . , h. The proof is here omitted but its validity should be
evident from Figure 1b.

Proposition 4. For every i = 1, 2, ..., h, we have

A(a1+〈i〉h , b1+〈i〉h) = A(ai, bi) ∪ {bi}� {ai}
where 〈i〉h is the remainder of the division i/h.

As a consequence, setting

Si =
∑

p∈A(ai,bi)

p (1)

we have S1+〈i〉h = Si − ai + bi.
Thus, in order to solve the 2-SCC-2 problem for an instance (X, k), we can

simply determine the first oriented edge (a1, b1) ∈ Ek−1 and design a procedure
for computing (a1+〈i〉h , b1+〈i〉h) from (ai, bi). This allows us to compute all pairs
(ai, bi) ∈ Ek−1 and hence all values ‖Si‖’s one after the other, taking the largest
one. The overall computation is described by Algorithm 2.

Let us start by showing the computation of (a1, b1).

134 A. Bertoni, M. Goldwurm, and J. Lin

Proposition 5. Given a set X ⊂ R
2 of n ≥ 4 points in general position, for

any k = 2, . . . , �n/2� the (k − 1)-set edge of smallest phase can be obtained in
O(n log n) time.

Proof. First, it is easy to determine the k-th smallest point a in X with respect
to the total order <o, together with set A = {q ∈ X | q ≤o a}. Clearly, A is
a k-set ofX . Similarly, we can determine the (k+1)th element b inX with respect
to <o, i.e. the smallest point in the set Ā = X �A. To determine the (k− 1)-set
edge of A, the algorithm first computes the convex hulls Conv(A) and Conv(Ā).
Then, starting from a and b, it moves two points u and v counter-clockwise on
the perimeter of Conv(A) and Conv(Ā), respectively, stopping at the first edge
on Conv(A) (respectively, on Conv(Ā)) that is on the right (respectively, on the
left) of the oriented edge (u, v).

The procedure is formally described by Algorithm 1 given below, where for
every point p on the perimeter of a convex hull, Succ(p) is the counter-clockwise
successor of p on the same perimeter.

Algorithm 1. FirstSetEdge(a,b)

1: u := a; u′ := Succ(u)
2: v := b; v′ := Succ(v)
3: while ((u, u′)Left(u, v) ∨ (v, v′)Right(u, v)) do
4: if (u, u′)Left(u, v) then
5: if (u, u′)Left(u, v′) then
6: u := u′; u′ :=Succ(u)
7: else
8: v := v′; v′ :=Succ(v)
9: else
10: v := v′; v′ :=Succ(v)
11: return (u, v)

At each loop iteration the procedure checks whether the current edges (u, u′)
and (v, v′) on the two perimeters verify the exit condition

(u, u′)Right(u, v) ∧ (v, v′)Left(u, v),

which guarantees A � {u} = Xr(u, v) and Ā � {v} = X l(u, v). Hence, in the
affirmative case, (u, v) is the required (k − 1)-set edge.

The most expensive operation in the overall procedure is the computation of
the convex hulls Conv(A) and Conv(Ā), which can be done in O(n log n) time
[17]. Also note that the while loop at lines 3–10 requires O(n) steps. ��

Once the initial (k − 1)-set edge is determined our general procedure com-
putes all the subsequent (k − 1)-set edges in the order defined by Ek−1. For
each (ai, bi) ∈ Ek−1, the procedure computes the squared norm of Si (defined
in Equation 1), maintaining in q the largest value. The details are given in Al-
gorithm 2, where procedure NextBitangent, called at lines 10 and 16, yields the
successive (k − 1)-set edge in the required order.

Exact Algorithms for 2-Clustering with Size Constraints 135

Algorithm 2. Solving 2-SCC-2

Input: a set X ⊂ R
2 of n ≥ 4 points in general position; an integer 1 < k ≤ �n/2�.

Output: the solution π = {A,B} of the 2-SCC-2 problem on instance X with con-
straint |A| = k.

1: Compute the k-th smallest point a in X with respect to <o

2: A := {p ∈ X : p ≤o a}; Ā := X � A
3: Compute the smallest point b in Ā with respect to <o

4: A := Conv(A)
5: Ā := Conv(Ā)
6: (a1, b1) := FirstSetEdge(a, b)
7: S :=

∑
x∈A x

8: q := ‖S‖2
9: (x, y) := (a1, b1)
10: (r, s) := NextBitangent(a1, b1)
11: while (r, s) �= (a1, b1) do
12: S := S − r + s
13: if q < ‖S‖2 then
14: q := ‖S‖2
15: (x, y) := (r, s)
16: (r, s) := NextBitangent(r, s)
17: π := {Xr(x, y) ∪ {x}, Xl(x, y) ∪ {y}}
18: return π

Procedure NextBitangent is defined by Algorithm 3, which uses function Succ
as in Algorithm 1. Such a procedure first computes the convex hulls A and Ā
of the new k-set A and of its complement by two insert and delete operations.
Then, in the main loop, the procedure determines the (k−1)-set edge of the new
k-set by following a path counter-clockwise on the perimeter of the two convex
hulls. As in Algorithm 1, the exit condition

(u, u′)Right(u, v) ∧ (v, v′)Left(u, v)

guarantees that (u, v) is the required (k − 1)-set edge.
The correctness proof of Algorithm 2, which is here omitted for lack of space,

is based on the fact that distinct k-sets must have (k−1)-set edges with different
phases.

The analysis of time complexity of Algorithm 2 requires the following result
on the number of k-sets of X , given in [7].

Theorem 1. For any set X of n points in R
2 and any k ∈ N, 1 ≤ k ≤ �n

2 �, the
number of k-sets of X is less than 6.48n 3

√
k.

Proposition 6. The time complexity required by Algorithm 2 on an input of
n ≥ 4 points with 1 < k ≤ �n

2 � is O(n 3
√
k · log2 n).

Proof. First recall that, by Proposition 5, the first part of the procedure from
line 1 to line 8, can be executed in time O(n log n). The remaining time required

136 A. Bertoni, M. Goldwurm, and J. Lin

Algorithm 3. NextBitangent(r, s)

Input: a (k − 1)-set edge (r, s) of X computed in Algorithm 2.
Output: the subsequent (k − 1)-set edge of X in phase order.
1: A := Insert(Delete(A, r),s)
2: Ā := Insert(Delete(Ā, s),r)
3: u := s; u′ := Succ(u)
4: v := r; v′ := Succ(v)
5: repeat
6: if (u, u′)Left(u, v) then
7: if (u, u′)Left(u, v′) then
8: u := u′; u′ :=Succ(u)
9: else
10: v := v′; v′ :=Succ(v)
11: else
12: v := v′; v′ :=Succ(v)
13: until (u, u′)Right(u, v) ∧ (v, v′)Left(u, v)
14: return (u, v)

by the algorithm is dominated by calls to procedure NextBitangent. The compu-
tation maintains, as permanent structure, the convex hulls A and Ā, which are
updated at lines 1–2 of each call of NextBitangent in O(log2 n) time by using the
data structure introduced in [16]. Since there is just one call to NextBitangent
for each (k − 1)-set edge, by Proposition 3 and Theorem 1 the total cost of all
updates of A and Ā is O(n 3

√
k log2 n).

The time cost of the other operations of NextBitangent is due to the repeat-
until loop of Algorithm 3. Here, the key observation is that each edge (u, u′)
inside the repeat-until loop is a (n−k)-set edge, because the phase of the opposite
edge (u′, u) is included between the phases of two consecutive (k − 1)-set edges.
These edges (u, u′) scan counter-clockwise the boundary of A and each of them
is considered just by one call of NextBitangent. The same occurs for the k-set
edges (v, v′) scanning counter-clockwise the boundary of Ā. Therefore, the time
required by the main loop in all calls to NextBitangent is at most proportional
to |Ek|+ |En−k| = 2|Ek|, which is again O(n 3

√
k) by Theorem 1. Thus, the time

cost of all calls to NextBitangent turns out to be O(n 3
√
k log2 n). ��

5 Algorithm for the Full Problem

In this section we present an algorithm that, for an input X ⊂ R
2 of n points

in general position, computes an optimal 2-clustering {Ak, Āk} of X such that
|Ak| = k, for each k = 1, 2, . . . , �n/2�. We prove that the algorithm works in
time O(n2 logn).

The result is based on Propositions 1 and 2 and on the following relation-
ship between oriented edges and 2-clusterings of X including a k-set. Given two

Exact Algorithms for 2-Clustering with Size Constraints 137

distinct points a, b ∈ X , we associate the oriented edge (a, b) with the 2-clustering
{A, Ā} of X where either A or Ā equals the set R(a, b) defined by

R(a, b) =

{
Xr(a, b) ∪ {b} if a <o b
X l(a, b) ∪ {b} otherwise.

Note that here {A, Ā} is an unordered pair of sets. Moreover, A and Ā are,
respectively, a k-set and a (n−k)-set for some k ∈ {1, 2, . . . , n−1}. Also observe
that the 2-clusterings associated with (a, b) and (b, a) are always different.

Proposition 7. Given a set X ⊂ R
2 of n points in general position, let {A, Ā}

be a 2-clustering of X where A is a k-set for some k ∈ {1, 2, . . . , n − 1}. Then
{A, Ā} is the 2-clustering of X associated with an oriented edge (a, b) with a, b ∈
X.

Proof. Since A is a k-set we can consider a bitangent (u, v) that separates A
and Ā with u ∈ Ā and v ∈ A. Assume that u <o v: if A = Xr(u, v) ∪ {v} then
(u, v) is the required oriented edge because A = R(u, v); otherwise, A equals
X l(u, v)∪{v} and the same 2-clustering {A, Ā} is associated with (v, u) because
Ā = R(v, u). A symmetric reasoning holds in case v <o u. ��

Note that in the previous proof we can choose the bitangent (u, v) separating
A and Ā in two different ways. This proves that every k-sets of X is associated
with two oriented edges. Hence, such a correspondence is quite different from
the bijection of Proposition 3 introduced in the previous section.

By the proposition above, one can design an algorithm that scans all k-sets by
considering in some order all oriented edge outgoing from each point. In order to
compute efficiently the weights of the clusters we introduce a special order among
the oriented edges E = {(a, b) | a, b ∈ X, a �= b}: for every (u, v), (w, z) ∈ E, we
set (u, v) <e (w, z) if either u <o w or u = w and slope(u, v) < slope(w, z).

Proposition 8. For any instance set X ⊂ R
2 of n points, the 2-SCC-2 problem

for all k = 1, 2, . . . , �n/2� can be solved in O(n2 logn) time.

Proof. Consider procedure Full 2-SCC-2 defined by Algorithm 4. It computes
points SR(a,b) (as defined in Proposition 1) for all oriented edges in (a, b) ∈
E, taken according with the total order <e. For each k = 1, 2, . . . , �n/2�, the
procedure maintains the optimal value q[k] = ‖SA‖2/k(n−k), where A is a k-set
of X and keeps in e[k] the associated oriented edge. By Propositions 2 and 7,
this guarantees that all possible 2-clusterings of X are considered.

The computation first considers all points in X in the order <o and, for each
a ∈ X , it determines R = SA(a), where A(a) = {u ∈ X | u <o a}. Then,
it computes SR(a,b) for every edge (a, b) such that b ∈ X � {a} in the order
<e: for any pair of consecutive edges (a, b), (a, c), the value SR(a,c) is obtained
from SR(a,b) by adding or subtracting c according whether a <o c or c <o a
(see instructions 10 and 14, respectively). Note that such a computation only
requires constant time.

138 A. Bertoni, M. Goldwurm, and J. Lin

The time complexity of the algorithm is dominated by the operation of sorting
the oriented edges with the same starting point a. This can be done in O(n log n)
time for each a ∈ X . Note that the other operations, in the inner for-loop, require
at most constant time and hence they are executed O(n2) many times. Therefore,
the overall time of the algorithm is O(n2 logn). ��

Algorithm 4. Full 2-SCC-2

Input: a set X ⊂ R
2 of n points in general position

Output: the sequence (e[1], . . . , e[�n/2�]) of oriented edges, where each e[k] is associ-
ated with the solution {Ak, Āk} of 2-SCC-2 for X such that |Ak| = k

1: for k = 1, 2, . . . , �n/2� do
2: q[k] := 0
3: T :=

∑
p∈X p

4: Sort X according with <o and let (a1, a2, . . . , an) be the ordered sequence
5: for i = 1, 2, . . . , n do
6: R :=

∑
j<i aj

7: g := i− 1
8: Sort the set X � {ai} according with slope(ai, ·) and let (b1, b2, . . . , bn−1) be the

ordered sequence
9: for j = 1, 2, . . . , n− 1 do

10: if ai <o bj then

{
R := R+ bj
g := g + 1

11: if g ≤ n− g then

{
m := g
S := R

12: else

{
m := n− g
S := T −R

13: if q[m] < ‖S‖2
g(n−g)

then

{
q[m] := ‖S‖2

g(n−g)

e[m] := (ai, bj)

14: if bj <o ai then

{
R := R− bj
g := g − 1

15: return (e[1], . . . , e[�n/2�])

References

1. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Machine Learning 75, 245–249 (2009)

2. Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in
Algorithms, Theory, and Applications. Chapman and Hall/CRC (2008)

3. Bertoni, A., Goldwurm, M., Lin, J., Pini, L.: Size-constrained 2-Clustering in the
Plane with Manhattan Distance. In: Proc. 15th Italian Conference on Theoretical
Computer Science. CEUR Workshop Proceedings, vol. 1231, pp. 33–44. CEUR-
WS.org (2014) ISSN 1613-0073

4. Bertoni, A., Goldwurm, M., Lin, J., Saccà, F.: Size Constrained Distance
Clustering: Separation Properties and Some Complexity Results. Fundamenta
Informaticae 115(1), 125–139 (2012)

Exact Algorithms for 2-Clustering with Size Constraints 139

5. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
6. Dasgupta, S.: The hardness of k-means clustering. Technical Report CS2007-0890,

Department of Computer Science and Engineering, University of California, San
Diego (2007)

7. Dey, T.: Improved Bounds for Planar k-Sets and Related Problems. Discrete &
Computational Geometry 19(3), 373–382 (1998)

8. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS monographs on
theoretical computer science. Springer (1987)

9. Erdős, P., Lovász, L., Simmons, A., Straus, E.G.: Dissection graphs of planar point
sets. In: A Survey of Combinatorial Theory (Proc. Internat. Sympos., Colorado
State Univ., Fort Collins, Colo., 1971), pp. 139–149. North-Holland, Amsterdam
(1973)

10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd edn. Springer (2009)

11. Inaba, M., Katoh, N., Imai, H.: Applications of weighted voronoi diagrams and
randomization to variance-based k-clustering (extended abstract). In: Proceedings
of the Tenth Annual Symposium on Computational Geometry, SCG 1994, USA,
pp. 332–339 (1994)

12. Lin. J.: Exact algorithms for size constrained clustering. PhD Thesis, Dottorato di
ricerca in Matematica, Statistica e Scienze computationali, Università degli Studi
di Milano. Ledizioni Publishing (2013)

13. MacQueen, J.B.: Some method for the classification and analysis of multivariate
observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical
Structures, pp. 281–297 (1967)

14. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. Theoretical Computer Science 442, 13–21 (2012)

15. Novick, B.: Norm statistics and the complexity of clustering problems. Discrete
Applied Mathematics 157, 1831–1839 (2009)

16. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J.
Comput. Syst. Sci. 23(2), 166–204 (1981)

17. Preparata, F., Shamos, M.: Computational geometry: an introduction. Texts and
monographs in computer science. Springer (1985)

18. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, Elsevier
(2009)

19. Vattani, A.: K-means requires exponentially many iterations even in the plane. In:
Proceedings of the 25th Symposium on Computational Geometry (SoCG) (2009)

20. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proc. of
the 17th Intl. Conf. on Machine Learning, pp. 1103–1110 (2000)

21. Zhu, S., Wang, D., Li, T.: Data clustering with size constraints. Knowledge-Based
Systems 23(8), 883–889 (2010)

	Exact Algorithms for 2-Clustering with Size Constraints in the Euclidean Plane
	1 Introduction
	2 Preliminary Notions
	3 Problem Definition and First Properties
	4 Algorithm for Constrained 2-Clustering in R2
	5 Algorithm for the Full Problem
	References

