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Abstract. Given an n-vertex graph G and two positive integers d, k ∈ N, the
(d, kn)-differential coloring problem asks for a coloring of the vertices of G (if
one exists) with distinct numbers from 1 to kn (treated as colors), such that
the minimum difference between the two colors of any adjacent vertices is at
least d. While it was known that the problem of determining whether a general
graph is (2, n)-differential colorable is NP-complete, our main contribution is
a complete characterization of bipartite, planar and outerplanar graphs that admit
(2, n)-differential colorings. For practical reasons, we also consider color ranges
larger than n, i.e., k > 1. We show that it is NP-complete to determine whether
a graph admits a (3, 2n)-differential coloring. The same negative result holds for
the (�2n/3�, 2n)-differential coloring problem, even in the case where the input
graph is planar.

1 Introduction

Several methods for visualizing relational datasets use a map metaphor where objects,
relations between objects and clusters are represented as cities, roads and countries, re-
spectively. Clusters are usually represented by colored regions, whose boundaries are
explicitly defined. The 4-coloring theorem states that four colors always suffice to color
any map such that neighboring countries have distinct colors. However, if not all coun-
tries of the map are contiguous and the countries are not colored with unique colors,
it would be impossible to distinguish whether two regions with the same color belong
to the same country or to different countries. In order to avoid such ambiguity, this
necessitates the use of a unique color for each country; see Figure 1.

However, it is not enough to just assign different colors to each country. Although
human perception of color is good and thousands of different colors can be easily dis-
tinguished, reading a map can be difficult due to color constancy and color context
effects [19]. Dillencourt et al. [6] define a good coloring as one in which the colors as-
signed to the countries are visually distinct while also ensuring that the colors assigned
to adjacent countries are as dissimilar as possible. However, not all colors make sui-
table choices for coloring countries and a “good” color palette is often a gradation of
certain map-like colors [4]. In more restricted scenarios, e.g., when a map is printed
in gray scale, or when the countries in a given continent must use different shades of
a predetermined color, the color space becomes 1-dimensional.

This 1-dimensional fragmented map coloring problem is nicely captured by the
maximum differential coloring problem [5,15,16,23], which we slightly generalize in
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(a) Colored with random assignment of colors (b) Colored with max. differential coloring

Fig. 1. Illustration of a map colored using the same set of colors obtained by the linear interpola-
tion of blue and yellow. There is one country in the middle containing the vertices 40-49 which
is fragmented into three small regions.

this paper: Given a map, define the country graph G = (V,E) whose vertices repre-
sent countries, and two countries are connected by an edge if they share a non-trivial
geographic boundary. Given two positive integers d, k ∈ N, we say that G is (d, kn)-
differential colorable if and only if there is a coloring of the n vertices of G with
distinct numbers from 1 to kn (treated as colors), so that the minimum color distance be-
tween adjacent vertices of G is at least d. The maximum k-differential coloring problem
asks for the largest value of d, called the k-differential chromatic number of G, so that
G is (d, kn)-differential colorable. Note that the traditional maximum differential color-
ing problem corresponds to k = 1.

A natural reason to study the maximum k-differential coloring problem for k > 1 is
that using more colors can help produce maps with larger differential chromatic num-
ber. Note, for example, that a star graph on n vertices has 1-differential chromatic num-
ber (or simply differential chromatic number) one, whereas its 2-differential chromatic
number is n + 1. That is, by doubling the number of colors used, we can improve
the quality of the resulting coloring by a factor of n. This is our main motivation for
studying the maximum k-differential coloring problem for k > 1.

Related Work. The maximum differential coloring problem is a well-studied problem,
which dates back in 1984, when Leung et al. [15] introduced it under the name “sepa-
ration number” and showed its NP-completeness. It is worth mentioning though that
the maximum differential coloring problem is also known as “dual bandwidth” [23]
and “anti-bandwidth” [5], since it is the complement of the bandwidth minimization
problem [17]. Due to the hardness of the problem, heuristics are often used for co-
loring general graphs, e.g., LP-formulations [8], memetic algorithms [1] and spectral
based methods [13]. The differential chromatic number is known only for special graph
classes, such as Hamming graphs [7], meshes [20], hypercubes [20,21], complete bi-
nary trees [22], complete m-ary trees for odd values of m [5], other special types of
trees [22], and complements of interval graphs, threshold graphs and arborescent com-
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parability graphs [14]. Upper bounds on the differential chromatic number are given
by Leung et al. [15] for connected graphs and by Miller and Pritikin [16] for bipartite
graphs. For a more detailed bibliographic overview refer to [2]. Note that in addition
to map-coloring, the maximum differential coloring problem is motivated by the radio
frequency assignment problem, where n transmitters have to be assigned n frequencies,
so that interfering transmitters have frequencies as far apart as possible [12].

Our Contribution. In Section 2, we present preliminary properties and bounds on
the k-differential chromatic number. One of them guarantees that any graph is (1, n)-
differential colorable; an arbitrary assignment of distinct colors to the vertices of the
input graph guarantees a minimum color distance of one (see Lemma 1). So, the next
reasonable question to ask is whether a given graph is (2, n)-differential colorable. Un-
fortunately, this is already an NP-complete problem (for general graphs), since a graph
is (2, n)-differential colorable if and only if its complement has a Hamiltonian path [15].
This motivates the study of the (2, n)-differential coloring problem for special classes
of graphs. In Section 3, we present a complete characterization of bipartite, outer-planar
and planar graphs that admit (2, n)-differential colorings.

In Section 4, we double the number of available colors. As any graph is (2, 2n)-
differential colorable (due to Lemma 1; Section 2), we study the (3, 2n)-differential
coloring problem and we prove that it is NP-complete for general graphs (Theorem 4;
Section 4). We also show that testing whether a given graph is (k + 1, kn)-differential
colorable is NP-complete (Theorem 5; Section 4). On the other hand, all planar graphs
are (�n/3�+1, 2n)-differential colorable (see Lemma 3; Section 2) and testing whether
a given planar graph is (�2n/3�, 2n)-differential colorable is shown to be NP-complete
(Theorem 6; Section 4). In Section 5, we provide a simple ILP-formulation for the maxi-
mum k-differential coloring problem and experimentally compare the optimal results
obtained by the ILP formulation for k = 1 and k = 2 with GMap, which is a heuristic
based on spectral methods developed by Hu et al. [10]. We conclude in Section 6 with
open problems and future work.

2 Preliminaries

The maximum k-differential coloring problem can be easily reduced to the ordinary
differential coloring problem as follows: If G is an n-vertex graph that is input to the
maximum k-differential coloring problem, create a disconnected graph G′ that contains
all vertices and edges of G plus (k − 1) · n isolated vertices. Clearly, the k-differential
chromatic number of G is equal to the 1-differential chromatic number of G′. A draw-
back of this approach, however, is that few results are known for the ordinary differential
coloring problem, when the input is a disconnected graph. In the following, we present
some immediate upper and lower bounds on the k-differential chromatic number for
connected graphs.

Lemma 1. The k-differential chromatic number of a connected graph is at least k.

Proof. Let G be a connected graph on n vertices. It suffices to prove that G is (k, kn)-
differential colorable. Indeed, an arbitrary assignment of distinct colors from the set
{k, 2k, . . . , kn} to the vertices of G guarantees a minimum color distance of k. ��



118 M.A. Bekos et al.

Lemma 2. The k-differential chromatic number of a connected graph G = (V,E) on
n vertices is at most �n

2 �+ (k − 1)n.

Proof. The proof is a straightforward generalization of the proof of Yixun and Jin-
jiang [23] for the ordinary maximum differential coloring problem. One of the vertices
of G has to be assigned with a color in the interval [�n

2 �, �n
2 �+(k− 1)n], as the size of

this interval is (k− 1)n+1 and there can be only (k− 1)n unassigned colors. Since G
is connected, that vertex must have at least one neighbor which (regardless of its color)
would make the difference along that edge at most kn− �n

2 � = �n
2 �+ (k − 1)n. ��

Lemma 3. The k-differential chromatic number of a connected m-colorable graph
G = (V,E) on n vertices is at least � (k−1)n

m−1 �+ 1.

Proof. Let Ci ⊆ V be the set of vertices of G with color i and ci be the number
of vertices with color i, i = 1, . . . ,m. We can show that G is (� (k−1)n

m−1 � + 1, kn)-
differential colorable by coloring the vertices of Ci with colors from the following set:
[ (
∑i−1

j=1 cj) + 1 + (i− 1)� (k−1)n
m−1 �, (∑i

j=1 cj) + (i− 1)� (k−1)n
m−1 � ] ��

3 The (2,n)-Differential Coloring Problem

In this section, we provide a complete characterization of (i) bipartite graphs, (ii) ou-
terplanar graphs and (iii) planar graphs that admit (2, n)-differential coloring. Central
to our approach is a result of Leung et al. [15] who showed that a graph G has (2, n)-
differential coloring if and only if the complement Gc of G is Hamiltonian. As a con-
sequence, if the complement of G is disconnected, then G has no (2, n)-differential
coloring.

In order to simplify our notation scheme, we introduce the notion of ordered differ-
ential coloring (or simply ordered coloring) of a graph, which is defined as follows.
Given a graph G = (V,E) and a sequence S1 → S2 → . . . → Sk of k disjoint sub-
sets of V , such that ∪k

i=1Si = V , an ordered coloring of G implied by the sequence
S1 → S2 → . . . → Sk is one in which the vertices of Si are assigned colors from
(
∑i−1

j=1 |Sj |) + 1 to
∑i

j=1 |Sj |, i = 1, 2, . . . , k.

Theorem 1. A bipartite graph admits a (2, n)-differential coloring if and only if it is
not a complete bipartite graph.

Proof. Let G = (V,E) be an n-vertex bipartite graph, with V = V1 ∪ V2, V1 ∩ V2 = ∅
and E ⊆ V1 × V2. If G is a complete bipartite graph, then its complement is discon-
nected. Therefore, G does not admit a (2, n)-differential coloring. Now, assume that G
is not complete bipartite. Then, there exist at least two vertices, say u ∈ V1 and v ∈ V2,
that are not adjacent, i.e., (u, v) /∈ E. Consider the ordered coloring of G implied by
the sequence V1 \ {u} → {u} → {v} → V2 \ {v}. As u and v are not adjacent, it
follows that the color difference between any two vertices of G is at least two. Hence,
G admits a (2, n)-differential coloring. ��
Lemma 4. An outerplanar graph with n ≥ 6 vertices, that does not contain K1,n−1 as
a subgraph, admits a 3-coloring, in which each color set contains at least 2 vertices.
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Proof. Let G = (V,E) be an outerplanar graph with n ≥ 6 vertices, that does not
contain K1,n−1 as a subgraph. As G is outerplanar, it admits a 3-coloring [18]. Let
Ci ⊆ V be the set of vertices of G with color i and ci be the number of vertices with
color i, that is ci = |Ci|, for i = 1, 2, 3. W.l.o.g. let c1 ≤ c2 ≤ c3. We further assume
that each color set contains at least one vertex, that is ci ≥ 1, i = 1, 2, 3. If there is no
set with less than 2 vertices, then the lemma clearly holds. Otherwise, we distinguish
three cases:

Case 1: c1 = c2 = 1 and c3 ≥ 4. W.l.o.g. assume that C1 = {a} and C2 = {b}. As
G is outerplanar, vertices a and b can have at most 2 common neighbors. On the
other hand, since G has at least 6 vertices, there exists at least one vertex, say
c ∈ C3, which is not a common neighbor of a and b. W.l.o.g. assume that (b, c)
/∈ E. Then, vertex c can be colored with color 2. Therefore, we derive a new
3-coloring of G for which we have that c1 = 1, c2 = 2 and c3 ≥ 3.

Case 2: c1 = 1, c2 = 2 and c3 ≥ 3: W.l.o.g. assume that C1 = {a} and C2 =
{b, b′}. First, consider the case where there exists at least one vertex, say c ∈ C3,
which is not a neighbor of vertex a. In this case, vertex c can be colored with color
1 and a new 3-coloring of G is derived with c1 = c2 = 2 and c3 ≥ 3, as desired.
Now consider the more interesting case, where vertex a is a neighbor of all vertices
of C3. As G does not contain K1,n−1 as a subgraph, either v ertex b or vertex
b′ is not a neighbor of vertex a. W.l.o.g. let that vertex be b, that is (a, b) /∈ E. As
G is outerplanar, vertices a and b′ can have at most 2 common neighbors. Since
G has at least 6 vertices and vertex a is a neighbor of all vertices of C3, there exist
at least one vertex, say c ∈ C3, which is not adjacent to vertex b′, that is (b′, c) /∈ E.
Therefore, we can color vertex c with color 2 and vertex b with color 1 and derive
a new 3-coloring of G for which we have that c1 = c2 = 2 and c3 ≥ 2, as desired.

Case 3: c1 = 1, c2 ≥ 3 and c3 ≥ 3: W.l.o.g. assume that C1 = {a}. Then, there exists
at least one vertex, say c ∈ C2 ∪ C3, which is not a neighbor of vertex a. In this
case, vertex c can be colored with color 1 and a new 3-coloring of G is derived with
c1 = c2 = 2 and c3 ≥ 3, as desired. ��

Lemma 5. Let G = (V,E) be an outerplanar graph and let V ′ and V ′′ be two disjoint
subsets of V , such that |V ′| ≥ 2 and |V ′′| ≥ 3. Then, there exist two vertices u ∈ V ′

and v ∈ V ′′, such that (u, v) /∈ E.

Proof. The proof follows from the fact that an outerplanar graph is K2,3 free. ��
Theorem 2. An outerplanar graph with n ≥ 8 vertices has (2, n)-differential coloring
if and only if it does not contain K1,n−1 as subgraph.

Proof. Let G = (V,E) be an outerplanar graph with n ≥ 8 vertices. If G contains
K1,n−1 as subgraph, then the complement Gc of G is disconnected. Therefore, G does
not admit a (2, n)-differential coloring. Now, assume that G does not contain K1,n−1

as subgraph. By Lemma 4, it follows that G admits a 3-coloring, in which each color
set contains at least two vertices. Let Ci ⊆ V be the set of vertices with color i and
ci = |Ci|, for i = 1, 2, 3, such that 2 ≤ c1 ≤ c2 ≤ c3. We distinguish the following
cases:
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Fig. 2. (a) An outerplanar graph colored with 3 colors, white, black and grey (Case 1 of Thm. 2),
and, (b) its (2, n)-differential coloring. (c) Another outerplanar graph also colored with 3 colors,
white, black and grey (Case 2 of Thm. 2), and, (d) its (2, n)-differential coloring.

Case 1: c1 = 2, c2 = 2, c3 ≥ 4. Since |C1| = 2 and |C3| ≥ 4, by Lemma 5 it follows
that there exist two vertices a ∈ C1 and c ∈ C3, such that (a, c) /∈ E. Similarly,
since |C2| = 2 and |C3 \ {c}| ≥ 3, by Lemma 5 it follows that there exist two
vertices b ∈ C2 and c′ ∈ C3, such that c �= c′ and (b, c′) /∈ E; see Figure 2a-2b.

Case 2: c1 ≥ 2, c2 ≥ 3, c3 ≥ 3. Since |C1| = 2 and |C3| ≥ 3, by Lemma 5 it follows
that there exist two vertices a ∈ C1 and c ∈ C3, such that (a, c) /∈ E. Similarly,
since |C2| ≥ 3 and |C3 \ {c}| ≥ 2, by Lemma 5 it follows that there exist two
vertices b ∈ C2 and c′ ∈ C3, such that c �= c′ and (b, c′) /∈ E; see Figure 2c-2d.

For both cases, consider the ordered coloring implied by the sequence C1 \ {a} →
{a} → {c} → C3 \ {c, c′} → {c′} → {b} → C2 \ {b}. As (a, c) /∈ E and (b, c′) /∈ E,
it follows that the color difference between any two vertices of G is at least two. Hence,
G admits a (2, n)-differential coloring. ��

The next theorem gives a complete characterization of planar graphs that admit
(2, n)-differential colorings. Due to space constraints, the detailed proof (which is simi-
lar to the one of Theorem 2) is given in the full version [3].

Theorem 3. A planar graph with n ≥ 36 vertices has a (2, n)-differential coloring if
and only if it does not contain as subgraphs K1,1,n−3, K1,n−1 and K2,n−2.

Sketch of Proof. It can be shown that a planar graph G with n ≥ 36 vertices, that does
not contain as subgraphs K1,1,n−3, K1,n−1 and K2,n−2, admits a 4-coloring, in which
two color sets contain at least 2 vertices and the remaining two at least 5 vertices [3].
This together with a property similar to the one presented in Lemma 5 for outerplanar
graphs implies that the complement of G is Hamiltonian and hence G has a (2, n)-
differential coloring [3]. ��

4 NP-completeness Results

In this section, we prove that the (3, 2n)-differential coloring problem is NP-complete.
Recall that all graphs are (2, 2n)-differential colorable due to Lemma 1.

Theorem 4. Given a graph G = (V,E) on n vertices, it is NP-complete to determine
whether G has a (3, 2n)-differential coloring.
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Fig. 3. (a) An instance of the (3, n)-differential coloring problem for n = 6; (b) An instance of
the (3, 2n′)-differential coloring problem constructed based on graph G

Proof. The problem is clearly in NP. In order to prove that the problem is NP-hard,
we employ a reduction from the (3, n)-differential coloring problem, which is known
to be NP-complete [15]. More precisely, let G = (V,E) be an instance of the (3, n)-
differential coloring problem, i.e., graph G is an n-vertex graph with vertex set V =
{v1, v2, . . . , vn}. We will construct a new graph G′ with n′ = 2n vertices, so that
G′ is (3, 2n′)-differential colorable if and only if G is (3, n)-differential colorable; see
Figure 3.

Graph G′ = (V ′, E′) is constructed by attaching n new vertices to G that form
a clique; see the gray colored vertices of Figure 3b. That is, V ′ = V ∪ U , where
U = {u1, u2, . . . , un} and (u, u′) ∈ E′ for any pair of vertices u and u′ ∈ U . In
addition, for each pair of vertices v ∈ V and u ∈ U there is an edge connecting them
in G′, that is (v, u) ∈ E′. In other words, (i) the subgraph, say GU , of G′ induced by
U is complete and (ii) the bipartite graph, say GU×V , with bipartition V and U is also
complete.

First, suppose that G has a (3, n)-differential coloring and let l : V → {1, . . . , n} be
the respective coloring. We compute a coloring l′ : V ′ → {1, . . . , 4n} of G′ as follows:
(i) l′(v) = l(v), for all v ∈ V ′ ∩ V and (ii) l′(ui) = n+ 3i, i = 1, 2, . . . , n. Clearly, l′

is a (3, 2n′)-differential coloring of G′.
Now, suppose that G′ is (3, 2n′)-differential colorable and let l′ : V ′ → {1, . . . , 2n′}

be the respective coloring (recall that n′ = 2n). We next show how to compute the
(3, n)-differential coloring for G. W.l.o.g., let V = {v1, . . . vn} contain the vertices of
G, such that l′(v1) < . . . < l′(vn), and U = {u1, . . . un} contains the newly added
vertices of G′, such that l′(u1) < . . . < l′(un). Since GU is complete, it follows that the
color difference between any two vertices of U is at least three. Similarly, since GU×V

is complete bipartite, the color difference between any two vertices of U and V is also
at least three. We claim that l′ can be converted to an equivalent (3, 2n′)-differential
coloring for G′, in which all vertices of V are colored with numbers from 1 to n, and
all vertices of U with numbers from n+ 3 to 4n.

Let U ′ be a maximal set of vertices {u1, . . . , uj} ⊆ U so that there is no vertex
v ∈ V with l′(u1) < l′(v) < l′(uj). If U ′ = U and l′(v) < l′(u1), ∀v ∈ V , then our
claim trivially holds. If U ′ = U and l′(v) > l′(uj), ∀v ∈ V , then we can safely recolor
all the vertices in V ′ in the reverse order, resulting in a coloring that complies with
our claim. Now consider the case where U ′

� U . Then, there is a vertex vk ∈ V s.t.
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l′(vk) − l′(uj) ≥ 3. Similarly, we define V ′ = {vk, . . . , vl ∈ V } to be a maximal
set of vertices of V , so that l′(vk) < . . . < l′(vl) and there is no vertex u ∈ U
with l′(vk) < l′(u) < l′(vl). Then, we can safely recolor all vertices of U ′ ∪ V ′,
such that: (i) the relative order of the colors of U ′ and V ′ remains unchanged, (ii) the
color distance between vl and u1 is at least three, and (iii) the colors of U ′ are strictly
greater than the ones of V ′. Note that the color difference between uj and uj+1 and
between vk−1 and vk is at least three after recoloring, i.e., l′(uj+1) − l′(uj) ≥ 3 and
l′(vk) − l′(vk−1) ≥ 3. If we repeat this procedure until U ′ = U , then the resulting
coloring complies with our claim. Thus, we obtain a (3, n)-differential coloring l for G
by assigning l(v) = l′(v), ∀v ∈ V . ��
Theorem 5. Given a graph G = (V,E) on n vertices, it is NP-complete to determine
whether G has a (k + 1, kn)-differential coloring.

Sketch of Proof. Based on an instance G = (V,E) of the (k+1, n)-differential coloring
problem, which is known to be NP-complete [15], construct a new graph G′ = (V ′, E′)
with n′ = kn vertices, by attaching n(k − 1) new vertices to G, as in the proof of
Theorem 4. Then, using a similar argument as above, we can show that G has a (k +
1, n)-differential coloring if and only if G′ has a (k + 1, kn′)-differential coloring.

The NP-completeness of 2-differential coloring in Theorem 4 was about general
graphs. Next, we consider the complexity of the problem for planar graphs. Note that
from Lemma 2 and Lemma 3, it follows that the 2-differential chromatic number of
a planar graph on n-vertices is between �n

3 �+1 and � 3n
2 � (a planar graph is 4-colorable).

The next theorem shows that testing whether a planar graph is (�2n/3�, 2n)-differenti-
al colorable is NP-complete. Since this problem can be reduced to the general 2-diffe-
rential chromatic number problem, it is NP-complete to determine the 2-differential
chromatic number even for planar graphs.

Theorem 6. Given an n-vertex planar graph G = (V,E), it is NP-complete to deter-
mine if G has a (�2n/3�, 2n)-differential coloring.

Proof. The problem is clearly in NP. To prove that the problem is NP-hard, we employ
a reduction from the well-known 3-coloring problem, which is NP-complete for planar
graphs [11]. Let G = (V,E) be an instance of the 3-coloring problem, i.e., G is an
n-vertex planar graph. We will construct a new planar graph G′ with n′ = 3n vertices,
so that G′ is (�2n′/3�, 2n′)-differential colorable if and only if G is 3-colorable.

Graph G′ = (V ′, E′) is constructed by attaching a path v → v1 → v2 to each vertex
v ∈ V of G; see Figure 4a-4b. Hence, we can assume that V ′ = V ∪V1∪V2, where V is
the vertex set of G, V1 contains the first vertex of each 2-vertex path and V2 the second
vertices. Clearly, G′ is a planar graph on n′ = 3n vertices. Since G is a subgraph of G′,
G is 3-colorable if G′ is 3-colorable. On the other hand, if G is 3-colorable, then G′ is
also 3-colorable: for each vertex v ∈ V , simply color its neighbors v1 and v2 with two
distinct colors different from the color of v. Next, we show that G′ is 3-colorable if and
only if G′ has a (�2n′/3�, 2n′)-differential coloring.

First assume that G′ has a (�2n′/3�, 2n′)-differential coloring and let l : V ′ →
{1, . . . , 2n′} be the respective coloring. Let u ∈ V ′ be a vertex of G′. We assign a color
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Fig. 4. (a) An instance of the 3-coloring problem; (b) An instance of the (�2n′/3�, 2n′)-
differential coloring problem constructed based on graph G; (c) The (�2n′/3�, 2n′)-differential
coloring of G′, in the case where G is 3-colorable

c(u) to u as follows: c(u) = i, if 2(i − 1)n + 1 ≤ l(u) ≤ 2in, i = 1, 2, 3. Since l is
a (�2n′/3�, 2n′)-differential coloring, no two vertices with the same color are adjacent.
Hence, coloring c is a 3-coloring for G′.

Now, consider the case where G′ is 3-colorable. Let Ci ⊆ V be the set of vertices of
the input graph G with color i, i = 1, 2, 3. Clearly, C1 ∪ C2 ∪ C3 = V . We compute a
coloring l of the vertices of graph G′ as follows (see Figure 4c):

- Vertices in C1 are assigned colors from 1 to |C1|.
- Vertices in C2 are assigned colors from 3n+ |C1|+ 1 to 3n+ |C1|+ |C2|.
- Vertices in C3 are assigned colors from 5n+|C1|+|C2|+1 to 5n+|C1|+|C2|+|C3|.
- For a vertex v1 ∈ V1 that is a neighbor of a vertex v ∈ C1, l(v1) = l(v) + 2n.
- For a vertex v1 ∈ V1 that is a neighbor of a vertex v ∈ C2, l(v1) = l(v)− 2n.
- For a vertex v1 ∈ V1 that is a neighbor of a vertex v ∈ C3, l(v1) = l(v)− 4n.
- For a vertex v2 ∈ V2 that is a neighbor of a vertexx v1 ∈ V1, l(v2) = l(v1)+3n+|C2|.
From the above, it follows that the color difference between (i) any two vertices in G,
(ii) a vertex v1 ∈ V1 and its neighbor v ∈ V , and (iii) a vertex v1 ∈ V1 and its neighbor
v2 ∈ V2, is at least 2n = � 2n′

3 �. Thus, G′ is (�2n′/3�, 2n′)-differential colorable. ��

5 An ILP for the Maximum k-Differential Coloring Problem

In this section, we describe an integer linear program (ILP) formulation for the maxi-
mum k-differential coloring problem. Recall that an input graph G to the maximum
k-differential coloring problem can be easily converted to an input to the maximum
1-differential coloring by creating a disconnected graph G′ that contains all vertices
and edges of G plus (k − 1) · n isolated vertices. In order to formulate the maximum
1-differential coloring problem as an integer linear program, we introduce for every
vertex vi ∈ V of the input graph G a variable xi, which represents the color assigned to
vertex vi. The 1-differential chromatic number of G is represented by a variable OPT ,
which is maximized in the objective function. The exact formulation is given below.
The first two constraints ensure that all vertices are assigned colors from 1 to n. The
third constraint guarantees that no two vertices are assigned the same color, and the
forth constraint maximizes the 1-differential chromatic number of the graph. The first
three constraints also guarantee that the variables are assigned integer values.
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(a) (b) (c)

Fig. 5. A map with 16 countries colored by: (a) GMap [10], (b) ILP-n, (c) ILP-2n

maximize OPT
subject to xi ≤ n ∀vi ∈ V

xi ≥ 1 ∀vi ∈ V
|xi − xj | ≥ 1 ∀(vi, vj) ∈ V 2

|xi − xj | ≥ OPT ∀(vi, vj) ∈ E

Note that a constraint that uses the absolute value is of the form |X | ≥ Z and therefore
can be replaced by two new constraints: (i) X+M ·b ≥ Z and (ii) −X+M ·(1−b) ≥ Z ,
where b is a binary variable and M is the maximum value that can be assigned to the
sum of the variables, Z + X . That is, M = 2n. If b is equal to zero, then the two
constraints are X ≥ Z and −X + M ≥ Z , with the second constraint always true.
On the other hand, if b is equal to one, then the two constraints are X + M ≥ Z and
−X ≥ Z , with the first constraint always true.

Next, we study two variants of the ILP formulation described above: ILP-n and ILP-
2n, which correspond to k = 1 and k = 2, and compare them with GMap, which is
a heuristic based on spectral methods developed by Hu et al. [10].

Our experiment’s setup is as follow. We generate a collection of 1, 200 synthetic
maps and analyze the performance of ILP-n and ILP-2n, on an Intel Core i5 1.7GHz
processor with 8GB RAM, using the CPLEX solver. For each map a country graph
Gc = (Vc, Ec) with n countries is generated using the following procedure. (1) We
generate 10n vertices and place an edge between pairs of vertices (i,j) such that � i

10� =
� j
10�, with probability 0.5, thus resulting in a graph G with approximately n clusters.

(2) More edges are added between all pairs of vertices with probability p, where p takes
the values 1/2, 1/4 . . .2−10. (3) Ten random graphs are generated for different values
of p. (4) Graph G is used as an input to a map generating algorithm (available as the
Graphviz [9] function gvmap), to obtain a map M with country graph Gc. A sample
map generated by the aforementioned procedure is shown in Figure 5.

Note that the value of p determines the “fragmentation” of the map M , i.e., the
number of regions in each country, and hence, also affects the number of edges in the
country graph. When p is equal to 1/2, the amount of extra edges is enough to make
almost all regions adjacent and therefore the country graph is a nearly complete graph,
whereas for p equal to 2−10, the country graph is nearly a tree. To determine a suitable
range for the number of vertices in the country graph, we evaluated real world datasets,
such as those available at gmap.cs.arizona.edu. Even for large graphs with over
1, 000 vertices, the country graphs tend to be small, with less than 16 countries.

gmap.cs.arizona.edu
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Fig. 6. Running-time results and differential coloring performance for all algorithms

Figure 6 summarizes the experimental results. Since n is ranging from 5 to 16, the
running times of both ILP-n and ILP-2n are reasonable, although still much higher than
GMap. The color assignments produced by ILP-n and GMap are comparable, while the
color assignment of ILP-2n results in the best minimum color distance. Note that in the
presence of twice as many colors as the graph’s vertices, it is easier to obtain higher
color difference between adjacent vertices. However, this comes at the cost of assigning
pairs of colors that are more similar to each other for non-adjacent vertices, as it is also
the case in our motivating example from the Introduction where G is a star.

6 Conclusion and Future Work

In this paper, we gave complete characterizations of bipartite, outerplanar and planar
graphs that admit (2, n)-differential colorings (which directly lead to polynomial-time
recognition algorithms). We also generalized the problem for more colors than the num-
ber of vertices in the graph and showed that it is NP-complete to determine whether
a graph admits a (3, 2n)-differential coloring. Even for planar graphs, the problem of
determining whether a graph is (�2n/3�, 2n)-differential colorable remains NP-hard.

Several related problems are still open: (i) Is it possible to characterize which bipar-
tite, outerplanar or planar graphs are (3, n)-differential colorable? (ii) Extend the char-
acterizations for those planar graphs that admit (2, n)-differential colorings to
1-planar graphs. (iii) Extend the results above to (d, kn)-differential coloring problems
with larger k > 2. (iv) As all planar graphs are (�n

3 � + 1, 2n)-differential colorable, is
it possible to characterize which planar graphs are (�n

3 �+2, 2n)-differential colorable?
(v) Since it is NP-complete to determine the 1-differential chromatic number of a planar
graph [2], a natural question to ask is whether it is possible to compute in polynomial
time the corresponding chromatic number of an outerplanar graph.
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