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Preface

This volume contains the invited and contributed papers selected for presen-
tation at the 41st Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2015), which was held January 24–29, 2015, in Pec
pod Sněžkou, in the Czech Republic.

SOFSEM (originally SOFtware SEMinar) is devoted to leading research and
fosters cooperation among researchers and professionals from academia and in-
dustry in all areas of computer science. SOFSEM started in 1974 in the for-
mer Czechoslovakia as a local conference and winter school combination. The
renowned invited speakers and the growing interest of the authors from abroad
gradually changed SOFSEM in the mid-1990s to an international conference
with proceedings published in the Springer LNCS series. SOFSEM became a
well-established and fully international conference maintaining the best of its
original winter school aspects, such as a higher number of invited talks and an
in-depth coverage of novel research results in selected areas of computer science.
SOFSEM 2015 was organized around the following four tracks:

– Foundations of Computer Science (chaired by Roger Wattenhofer)
– Software and Web Engineering (chaired by Tiziana Margaria)
– Data, Information, and Knowledge Engineering (chaired by Jaroslav

Pokorný)
– Cryptography, Security, and Verification (chaired by Jean-Jacques

Quisquater)

With its four tracks, SOFSEM 2015 covered the latest advances in research,
both theoretical and applied, in leading areas of computer science. The SOFSEM
2015 Program Committee consisted of 69 international experts from 23 different
countries, representing the track areas with outstanding expertise.

An integral part of SOFSEM 2015 was the traditional SOFSEM Student Re-
search Forum (chaired by Roman Špánek), organized with the aim of presenting
student projects on both the theory and practice of computer science, and to give
the students feedback on the originality of their results. The papers presented
at the Student Research Forum were published in separate local proceedings.

In response to the call for papers, SOFSEM 2015 received 101 submissions
from 31 different countries. The submissions were distributed in the conference
tracks as follows: 59 in the Foundations of Computer Science, 11 in the Software
and Web Engineering, 17 in the Data, Information, and Knowledge Engineering,
and 14 in the Cryptography, Security, and Verification. From these, 31 submis-
sions fell in the student category.

After a detailed reviewing process (using the EasyChair conference system
for an electronic discussion), a careful selection procedure was carried out within
each track. Following strict criteria of quality and originality, 42 papers were
selected for presentation, namely: 26 in the Foundations of Computer Science,



VI Preface

four in the Software and Web Engineering, eight in the Data, Information, and
Knowledge Engineering, and four in the Cryptography, Security, and Verification.
Based on the recommendation of the chair of the Student Research Forum, 12
student papers were chosen for the SOFSEM 2015 Student Research Forum.

As editors of these proceedings, we are grateful to everyone who contributed
to the scientific program of the conference, especially the invited speakers and all
the authors of contributed papers. We also thank the authors for their prompt re-
sponses to our editorial requests. SOFSEM 2015 was the result of a considerable
effort by many people. We would like to express our special thanks to:

– The members of the SOFSEM 2015 Program Committee and all external
reviewers for their careful reviewing of the submissions

– Roman Špánek for his preparation and handling of the Student Research
Forum

– The SOFSEM Steering Committee, chaired by Július Štuller, for guidance
and support throughout the preparation of the conference

– The Organizing Committee, consisting of Martin Řimnáč (Chair), Július
Štuller, Pavel Tyl, Dana Kuželová and Milena Zeithamlová, for the generous
support and preparation of all aspects of the conference

– Springer’s LNCS series for its continued support of the SOFSEM conferences.

We are greatly indebted to the Action M Agency, in particular Milena
Zeithamlová, for the local arrangements of SOFSEM 2015. We thank the In-
stitute of Computer Science of the Academy of Sciences of the Czech Republic
in Prague, for its invaluable support of all aspects of SOFSEM 2015. Finally, we
are very grateful for the financial support of the Czech Society for Cybernetics
and Informatics.

October 2014 Giuseppe F. Italiano
Tiziana Margaria
Jaroslav Pokorný

Jean-Jacques Quisquater
Roger Wattenhofer
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Ina Schäfer Braunschweig, Germany
Stefan Schmid T-Labs, Germany
Ulrich Schmid Vienna, Austria



Organization IX

Markus Schordan Livermore, USA
Cristina Seceleanu Vasteras, Sweden
Martin Stanek Bratislava, Slovakia
Srikanta Tirthapura Ames, USA
Massimo Tisi Nantes, France
A Min Tjoa Wien, Austria
Remco Veltkamp Utrecht, The Netherlands
Claire Vishik Wakefield, USA
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Broňa Brejová Yuanzhi Li
Witold Charatonik Vahid Liaghat
Yijia, Chen Kaitai Liang
Rajesh Chitnis Peter Ljunglöf
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Falk Hüffner, Christian Komusiewicz, and Manuel Sorge

Fixing Improper Colorings of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Konstanty Junosza-Szaniawski, Mathieu Liedloff,
and Pawe�l Rz ↪ażewski
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What is Computation: An Epistemic Approach�

Jǐŕı Wiedermann1 and Jan van Leeuwen2

1 Institute of Computer Science of AS CR, Prague, Czech Republic
jiri.wiedermann@cs.cas.cz

2 Dept. of Information and Computing Sciences, Utrecht University, The Netherlands
J.vanLeeuwen1@uu.nl

“How can one possibly analyze computation in general? The
task seems duanting, if not impossible.” Y. Gurevich [14]

Abstract. Traditionally, computations are seen as processes that trans-
form information. Definitions of computation subsequently concentrate
on a description of the mechanisms that lead to such processes. The
bottleneck of this approach is twofold. First, it leads to a definition of
computation that is too broad and that precludes a separation of en-
tities that, according to prevailing opinions, do perform computation
from those which don’t. Secondly, it also leads to a ‘machine-dependent’
notion of computation, complicating the identification of computational
processes. We present an alternative view of computation, viz. that of a
knowledge generating process. From this viewpoint, computations create
knowledge within the framework of ‘more or less’ formalized epistemic
theories. This new perception of computation allows to concentrate upon
the meaning of computations – what they do for their designers or users.
It also enables one to see the existing development of computers and
information technologies in a completely new perspective. It permits the
extrapolation of the future of computing towards knowledge generation
and accumulation, and the creative exploitation thereof in all areas of
life and science. The flux of our ideas on computation bring challeng-
ing new problems to the respective research, with wide connotations in
the field of artificial intelligence, in cognitive sciences, and in philosophy,
epistemology and methodology of science.

1 Introduction

Why do we compute? What do we compute? These two seemingly innocent ques-
tions were recently posed by Samson Abramsky in his contribution to the book
commemorating the hundredth anniversary of Alan Turing’s birth [1] in 2012.
These questions can be made more concrete, e.g., why are we using comput-
ers? What are we computing with them? What is the meaning of computations
performed with the help of computers? Here, and also in the sequel, we do not
just have numerical computations (‘computations with numbers’) in mind, but

� This work was partially supported by RVO 67985807 and the GA ČR grant
No. P202/10/1333.

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 1–13, 2015.
c© Springer-Verlag Berlin Heidelberg 2015



2 J. Wiedermann and J. van Leeuwen

any computations performed by whatever kind of computer. Of course, there are
numerous replies possible and each of us will have an answer why he/she is mak-
ing use of computations. However, what we are after is not a subjective answer
pertinent to some specific use of commonly used computers. We want to have an
answer that is grounded in some systematic theory, as part of a deeper under-
standing of the notion of computation, applicable to whatever use of whatever
sort of computers. So far we do not seem to have a satisfactory answer obeying
the latter conditions. This is related to fact that from the viewpoint of computer
science, or computability theory for that matter, we in fact do not know quite
well what computation ‘is’, in general. This is very unsatisfactory, since compu-
tation is the central notion in many scientific disciplines. The reasons for this
unsatisfying state of affairs have accumulated during the past few decades.

Namely, computation is no longer what it used to be a one or two decades
ago. Up until the end of the nineteen eighties no expert was bothered by the
question what computation was. The answer was clear – computation is what
is described by the generally accepted mathematical model of computation: the
Turing machines, or any computational model equivalent to it [11,22].

With the advent of new computing technologies, networking, and advances
in physics and biology, computation became understood as a far broader, far
more common, and far more complex phenomenon than was modeled by means
of Turing machines. In fact, it has become harder and harder to see these newer
notions of computation through the lens of Turing machines (cf. [28]). Examples
include biologically inspired models, physically inspired models and, last but not
least, ‘technologically enabled’ models such as the Internet. One has to consider
non-numerical computational models and devices, but also computations done
on paper or by heart, proofs, computation with real numbers, continuous compu-
tations, geometrical constructions using compass and ruler, etc. The question is
then, what is computation? What device performing computations is the ‘right’
one? How can computation be defined in such a way that every computational
device realizes it in its specific way? Is there anything that all these computations
have in common?

The scientific community, especially in informatics, physics and philosophy,
has, of course, reacted to these new trends. (Un)surprisingly, instead of agreeing
on a joint view of computation, the community has split into several opinion
groups. For example, Frailey [12] maintains the radical position that computa-
tion is realized by whatever process. Other computer scientists, like Bajcsy [4]
and Rosenbloom [16], define computation as a process which transforms informa-
tion. Other researchers require additional properties, or state that computation
is about symbol manipulation (e.g., Fortnow [11], Denning, [9], Conery [8] or
philosopher Searle [3]). Still others, - like A.V. Aho [2], or Searle (again) [18] -
require that there must be some computational model supporting the computa-
tion. Fredkin [13] has put it like this: The thing about a computational process
is that we normally think of it as a bunch of bits that are evolving over time
plus an engine – the computer. Deutsch [10] holds an even tougher view: there
must also be a physical realization of a computational model. Finally, Zenil [32]
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has put programmability at the center of the discussion and of the definition
of computation. Many opinions exist but many fall short in capturing the full
notion as intuitively understood nowadays.

The previous efforts in defining computation have several things in common.
First, all seem to agree that computation is a process. Secondly, all definitions
tend to express computation as ‘what the underlying hardware is doing’ or, in
other words, HOW the process of computation is realized. This does not give
much insight because ‘what the hardware does’ is performing operations on data;
this forces us to see meaningless operations with data as computation. However,
we are primarily interested in WHAT the computation does, i.e. what it does for
the designers, users, observers. What a computation does, is only expressed by
the design of the implementing system. Knowing how a computation does what
it does is less interesting.

The intriguing question remains: what is it a computation does? Our answer
[29] is simple: computation generates knowledge. It generates knowledge over
some domain of interest for which the underlying computational system was
designed or developed, or in which the system itself has evolved. Of course, the
notion of knowledge itself is as hard to define as is computation. It has been
debated ever since the Greek philosophers captured its many forms. For our
purposes a general definition as given in Wikipedia will be good enough [31].
It stresses that knowledge is ‘a familiarity with something or someone’ and ‘the
theoretical or practical understanding of a subject’. Skills and behaviour are also
considered to be knowledge.

Following this definition, knowledge essentially is an observer-dependent en-
tity. Thus, the notion of computation as we defined it here is essentially observer
dependent as well. This is a clear contrast to viewing computation as information
processing, which we rejected above. It is far more fitting to our intuition.

The arguments to support our understanding of computation by means of
examples from the history of computing will be given in Section 2. In Section
3 we concentrate on the internal structure of knowledge from the epistemic
viewpoint. Section 4 presents a formal definition of computation as knowledge
generation. In Section 5 we discuss the potential benefits of the epistemic view
of computation. Section 6 contains conclusions.

This paper excerpts the presentation of our ideas in [29] and [30]. The readers
interested in more details of the topics outlined here are kindly referred to our
original works ([29,30]). In a forthcoming paper we digress on the possibility of
a new theory of computation based on our philosophy [25].

2 Computation as Knowledge Generation

In Section 1 we asserted our main thesis: computation is the process of knowledge
generation. In this section we review some examples of computational systems
and how they can be seen as processes utilizing and producing knowledge.

In Table 1 (from [29]) we give an overview of a number of computational sys-
tems, together with the respective knowledge domains and types of knowledge
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they produce. The items in the first part of the table (contemporary comput-
ing systems) clearly show an increasing ‘growth’ in knowledge generation: the
further down one gets in the table, the more general and less formal the under-
lying knowledge domains are and the bigger part of reality are captured. From
this point of view, classical computational systems as we know them are only
very primitive systems for generating knowledge. Newer systems are vastly more
versatile.

The items in the second part of the table capture natural computing systems.
These systems are not designed by people but exist in the natural world. They
obviously belong to the class of systems (processes) producing knowledge ac-
cording to our definition, i.e. they are computational. Note that we would not

Table 1. Computation as knowledge generation (cf. [29])

Computational system Underlying knowledge What knowledge is

domain produced

Contemporary computing systems

Acceptors Formal languages Language membership

Recognizers Formal languages Membership function

Translators Functions, relations Function value

Scientific computing Mathematics Solutions

Theorem provers Logic Proofs

Operating systems Computer’s devices and Management of computer’s

peripheries own activities

Word processors and Graphical layout, spelling, Editing skills

graphical editors grammar

Database and information Relations over structured Answers to formalized

systems finite domains queries

Control systems Selected domains of human
activity

Monitoring, control

Search engines Relations over unstructured Answers to queries in

potentially unbounded natural language

domains

Artificial cognitive systems Real world, science Conjectures, explanations

Natural computing systems

Living systems, cells Real world Life, behavior, intelligence

Brain, mind, social Knowable world Knowledge of the world

networks

The Universe Science Living systems

Non-Turing computing systems

Compass and ruler Euclidean geometry Euclidean constructions

BSS machine [6] Theory of real numbers Values of real functions

Oracles [22] A set A ⊆ Σ∗ Characteristic function of A

Super-Turing computations Formal languages in Σ2 Language membership
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have been able to include these examples under most of the classical definitions
of computation, as the underlying ‘computational mechanisms’ are not known.

The items in the last part of the table seek the limits of our definition, resulting
from attempts to falsify our thesis with the help of somewhat exotic examples
which cannot be realized by Turing machines but are, nonetheless, still regarded
as computations. It is clear that the examples still fit. They point to the fact
that it is generally not a good idea to require that there must be a physical
realization of the computational model at hand. This is in a good agreement with
the practices in geometry, mathematics and even in (higher order) computability
theory where processes similar to the ones we considered are routinely considered
as computational processes.

3 The Structure of Knowledge

It goes without saying that once we concentrate on WHAT computations do
instead of on HOW they do what they do, we lose the opportunity to investi-
gate possible finer details of the effectuating processes as they are studied in e.g.
computability theory or in computational complexity. On the other hand, our
approach opens the way towards the investigation of other, so far mostly ne-
glected aspects of computations: the insight into the character of the knowledge
generating mechanisms used by computations.

In order to achieve its goals, a computation requires familiarity with the
knowledge domain for which it is designed. In the sequel we will assume that
this domain is given in the form of a theory. We do not restrict ourselves to
theories in the strict formal sense of mathematics only. In this section we outline
the broader analysis from [30] on the theories and structures that computations
may exploit.

We will view ‘theories’ as an analytical tool for expressing knowledge. This
may include e.g. describing, understanding, explaining and answering queries,
providing solutions and predictions in areas of science or life, or the generation
or control of behavior. A theory will normally consist of a collection of facts,
sentences, statements, patterns of behavior, or linguistic descriptions and prin-
ciples needed for deriving other statements using formal or informal inference
rules. However, a theory could also have a form of a semantic network, or of a set
of conditions and restrictions holding for a computation. A theory could also be
a map, a scheme, and so on. Knowledge produced within the scope of a theory
will have to fit the ‘language’ of the underlying domain. New knowledge that is
generated may be kept in a knowledge base and become an integral part of the
theory.

In general there is no a priori need for a theory to be correct or truthful.
A theory, in the general sense we are using, can even be based on erroneous,
unproven or non-verified beliefs and facts. Nevertheless, whatever ‘knowledge’
is generated within a flawed theory is formally considered to be knowledge, and
thus truthful, within that theory.

A possible way of viewing the highly generalized notion of a theory that we
use here, is to see it as a model of the world in which a computation is rooted



6 J. Wiedermann and J. van Leeuwen

Table 2. The structure of knowledge (cf. [30])

Mathematics,
logic, & com-
puter science

Philosophy and
natural sciences

Mind and humanoid cog-
nitive systems

Domain of
discourse

Abstract
entities

Ideas, empirical
data

Perception, cognition

Elements
of
knowledge

Axioms,
definitions

Facts, observations Stimuli, multimodal con-
cepts, episodic memories

Inference
rules

Deductive sys-
tem, program-
ming languages

Rational thoughts,
logics

Rules and associations
formed by statistical learn-
ing

Final form
of knowl-
edge

Predicates, the-
orems, proofs,
solutions

Statements, theo-
rems, hypotheses,
explanations, pre-
dictions, theories

Conceptualization, behavior,
communication, natural lan-
guage (NL), thinking, knowl-
edge of the world formed
mostly in a NL and in form
of scientific theories

(cf. [26,27]). An important characteristic is that knowledge according to a theory
can be generated time and again from the same base facts and principles, e.g.
by computations that do so. In evolving domains, the theory corresponding to
the underlying domain will have to evolve along with it.

Table 2 illustrates the structure of the theories in various knowledge domains.
In the table, from left to right, the domains range from theory-full domains with
formal theories to theory-less domains that admit no formal description for what
they capture (cf. [23]). The examples shows the different levels of formalization,
completeness and truthfulness of the theories that may underlie respective do-
mains.

In cases where heterogeneous knowledge is used, natural language is an impor-
tant mediator among theories. Semantics is of crucial importance here. Semantics
is a form of knowledge and thus it is to be represented by a theory again. From
this viewpoint all computations, including computations generating knowledge
based on natural language understanding, bear a homogeneous structure. The
knowledge framework behind the latter computations will normally be based on
cooperating theories.

In general, theories depend not only on the knowledge at hand, but also on the
context in which this knowledge is used and even on the history of past uses of
this knowledge. In the case of embodied cognitive systems the context does not
only refer to the grammatical context, but to the entire perceptual situation. All
this leads to a complex intertwining of the respective theories. In general we do
not know much about cooperating theories [26]. But here one can see the benefit
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of viewing computations as knowledge generating processes again: whatever deep
and detailed (classical) view of the mechanisms realizing a computation can in
no way contribute to the elucidation of the semantics of the computation.

The just presented view of the structure of computations contains one more
principal observation. It illustrates that computations generate knowledge from
the knowledge in which computations are rooted (see also Section 4). One might
say that computation is knowledge in action.

4 An Epistemic Definition of Computation

Given the extensional definition given in Section 1, knowledge is an observer-
dependent notion. After all, the decision of knowledge being based on a ‘famil-
iarity with something or someone’ clearly is in the eye of the beholder, especially
when it concerns knowledge that is not generally accepted. Therefore, computa-
tion as a process generating knowledge must be observer-relative, too ([30]).

As designers/observers of a computation, we must be aware of how a particu-
lar computation is related to the specific knowledge it generates. In response to
its input a computation is not allowed to generate completely arbitrary knowl-
edge. Each computation is required to generate knowledge over the domain for
which the underlying system was designed or into which it has evolved. Similar
to how intelligent behavior of an embodied robot arises from the interaction be-
tween brain, body and world, so is knowledge generated by computation in its
interaction with the underlying knowledge domain.

More formally, there must be a way to verify the correspondence between
a given computation and the domain over which the computation generates
its output in the form of knowledge. For this, every computation must exploit
some cognisance of the underlying knowledge domain. It is obliged to only use
the facts, statements, rules and laws that describe the knowledge domain and
that hold in this domain. This is what is meant when we said above that a
computation is rooted in its knowledge domain. As illustrated in Table 2, the
required attributes of computations can take different forms, depending on our
knowledge of the underlying knowledge domain and on our ability to formally
describe it, including the rules and laws holding in this domain.

We will now argue how the verification obligation might be expressed, i.e.
that a given computational process generates knowledge that is expressed by
means of the theory of the underlying domain. Of course, there must be an
explanation (e.g., a proof) that the computational process works as expected.
The explanation should express that the process generates knowledge that can
be inferred from the underlying theory. The latter is also the key to a more
formal definition of computation.

Before given the definition, we need one more notion. By a ‘piece of knowledge’
we will denote any constant, term or expression which belongs to the theory or
which can be derived using the respective rules and laws of the given theory.
In [25] the collection of all items of knowledge possibly pertaining to a given
computation, will be termed the meta space of the underlying theory. Although
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we will make use of the terminology used in mathematical logic below, one has to
bear in mind that our notions of ‘theory’ and ‘inference rules’ are much broader
than in logic and also include informal theories and informal rules of rational
thinking.

Definition ([30]): Let T be a theory, let ω be a piece of knowledge serving as the
input to a computation, and let κ ∈ T be a piece of knowledge from T denoting
the output of a computation. Let Π be a computational process and let E be an
explanation. Then we say that process Π acting on input ω generates the piece
of knowledge κ if and only if the following two conditions hold:

– (T, ω) � κ, i.e., κ is provable within T from ω, and
– E is the (causal) explanation that Π generates κ on input ω.

We say that the 5-tuple C = (T, ω, κ,Π,E) is a computation rooted in theory
T which on input ω generates knowledge κ using the computational process Π
with explanation E. The device or mechanism realizing process Π is called a
computer.

Under suitable conditions, computations may be composed to obtain new com-
putations that fit the definition. Compositionality is an important property for
the controlled behaviour of classes of computations (cf. [25]).

In the definition above, ω may be a set of numbers, a query in a formal or
natural language, or a statement whose validity we are looking for, and so on.
The computational process Π is a parameter of the computation. This captures
that the same knowledge may be generated within the same theory by different
computational processes. A change of computational process will most likely
result in a different explanation. Whatever Π has to know about T must either
be encoded in the design of Π and in ω or Π must have access to T. The
condition (T, ω) � κ implies that T is closed with respect to the inferences in T.
The means that, once κ has been computed, it can be added as an explicit piece
of knowledge to T , thus extending the knowledge base of T. In [30] we have
argued by means of concrete examples that both conditions in the definition
above are necessary.

The proposed definition of computation corresponds very well to the contem-
porary theory (and hopefully also the practice) of programming. The designer
of a program must be aware of theory T, of the required result κ and of the
fact that (T, ω) � κ. Then there is a computational model for which one has
to design a computational process Π generating the required knowledge κ. One
has to deliver also the evidence E, since otherwise one cannot be sure that the
program does what was assumed.

Notice that the closure of T can be used e.g. to model interactive computa-
tions where after each interaction, the knowledge base is updated by the recently
computed piece of knowledge. When a computation can modify the underlying
theory we speak of an evolving computation. In this way one can model poten-
tially infinite, interactive and evolutionary computations (cf. [28]). The formal-
ism also enables one to define universal computations for some domain D, i.e.
computations where the same computation process Π is used for generating the
corresponding pieces of knowledge for all ω ∈ D. (For more details see also [25].)
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Finally, observe the natural way in which our approach accommodates pre-
vious efforts to define computation, by giving a common procedural platform
for all kinds of computation. Using the previous notation, in the majority of
the classical approaches to computation, a computation would look like this:
C = (Π). No other conditions are required from Π. In our approach we have
found a different common denominator of all computations: this is the respective
knowledge generation aspect.

Example. In [30] we give several examples of how our definition can be used
to explain cases of ‘computation’ which have proved to be hard using classical
definitions. Here we only discuss the example of the computing rock ([7,19]).
Searle [19] describes the example as follows:

‘Consider the example ... of a rock falling off a cliff. The rock satisfies
the law s = 1

2gt
2, and that fact is observer independent. But notice, we

can treat the rock as a computer if we like. Suppose we want to compute
the height of the cliff. We know the rule and we know the gravitational
constant. All we need is a stop watch. And we can then use the rock as
simple analog computer to compute the height of the cliff.’

How does this conform to our definition of computation? First of all, for com-
puting the height of a cliff, a rock alone is not enough. In addition to it we
need both a stop watch and a person to observe the falling rock, operate the
stop watch and know how to compute the distance traveled by the falling rock
during the fall. Thus, the ‘computer’ consists of a rock and of a person endowed
with the abilities just described. The theory behind the computation and the
explanation are quite complex if all details are to be mentioned, from Newto-
nian physics to the visual observation ability of the observer and his capability
to perform arithmetic operations, and so on. But, in principle, all these details
can be delivered with sufficient plausibility. We conclude that the whole system
as described indeed performs a computation according to our definition. (Actu-
ally, considering the complexity of the components of this analog computer, one
could hardly call it ‘a simple analog computer’ as Searle does.)

It is important to realize that the conclusion above was possible only due to
our insight into the entire process. An observer who has no understanding of
stop watches or of the physical laws obeyed by falling bodies, can never come
to such a conclusion. The example also is a clear instance of a computation
that is observer-relative. In [30] several other examples are given, including e.g.
the analysis of Searle’s Chinese Room problem ([17]), which relies on a careful
understanding of computation.

5 Discussion

There is no doubt that the classical view of computation, essentially based on the
notion of Turing machines, has proved to be a very potent paradigm. It has lead
to computability and computational complexity theory as we know them today.
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It has learned us what can and what cannot be computed by the underlying
models of computation and how efficiently this can or cannot be done. All this is
carried out in the observer independent framework. The broadest framework is
probably provided by Gurevich’ approach using Abstract State Machines [5,14].

However, we seem to be reaching the limit of this approach. Namely, when it
comes to solving the omnipresent problems e.g. related to artificial intelligence
and especially cognition, we do not know at all what the actual potential of our
computers is and what undiscovered mechanisms may be available one time to
compute. For instance, we have no good clue of how to program computers in
order to (learn them to) think, to be conscious, to acquire, understand and use
natural languages or to create new knowledge. All these abilities are considered
to be observer-relative qualities.

Our approach opens the road towards approaching the latter problems. As
seen from our definition of computation, this is because it concentrates on the
meaning of computation – what they do from the viewpoint of an observer
or designer, and how they achieve their goals. There are many advantages of
defining computation as a knowledge generating process:

(i) It gives a better way to distinguish objects which perform computation
from those that do not. For example, according to our definition one can assign a
computing ability to a rock (cf. [7]) only when it provably generates knowledge.
In [30] we have shown that a rock can be seen as an analog computer in a
scenario in which it is heated in order to ‘compute’ its own melting point. Under
a different scenario a rock might be able to compute different knowledge – e.g.,
its momentum, weight, volume, and so on. More examples of our approach to
unconventional computations are given in [30].

(ii) It offers a framework for modeling/discussing the question of observer
dependency. Namely, an observer can be modeled by the same means as a com-
putation. In this approach an observer is seen as a computation that ‘observes’
an other computation. In this way, an observer has some information about the
observed computation as input (as required by our definition) and his/her task
is to decide, whether it is a computation or not. This, of course, depends on the
observer’s own knowledge. A case analysis of the related computational scenarios
reveals a number of new non-trivial insights that until now were not accessible
to such a treatment. For instance, one can prove that a so-called universal ob-
server whose decisions always agree with those of every other observer, for any
computation, does not exist. (For details, see [30].)

(iii) It offers independence of the notion of computation from the underlying
mechanisms. The definition covers not only all known instances of computation
but also many hitherto unknown instances. It seems that for understanding com-
putation one should investigate ‘natural’ rather than ‘artificial’ computations.

(iv) It supports the thinking about computation at a high level of abstraction,
which is important for the design of artificial systems and for understanding other
natural systems developed by some evolutionary process.

(v) It answers certain problems from cognitive science whose ‘intractability’
was due, as it seems now, to the use of the classical definition of computation.
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For example, there is a widely discussed question in cognitive science what cogni-
tion is, if not computation [24]. As long as cognition is seen as an ability to gain,
collect, produce and exploit knowledge, then it corresponds to our definition of
computation in its most crystal form. Under such a view the original problem
dissolves.

(vi) It puts the semantics of computations in the foreground which, classically,
has so far been viewed as something secondary by which a computation can
somehow be endowed a posteriori in the programming process. In fact, we have
identified a new intermediate stage between computations (in the classical sense)
and intelligence, viz. the ability to produce knowledge. Intuitively, the ability
to produce knowledge is a prerequisite of intelligence. What ingredients make
intelligence stronger than computation, in our sense? For a further discussion of
this question, see our analysis of Searle’s Chinese Room problem in [30].

(vii) It indicates that the formal framework that works for theory-full domains
can be extended to theory-less domains. In doing so, natural language plays the
central role: it enables dealing with knowledge domains and epistemic theories for
which no formalization is available. Moreover, natural languages offer semantic
means for bridging the gaps between seemingly unrelated knowledge domains,
enabling one to draw analogies between such domains to be used as knowledge
creation mechanisms (cf. [27]).

(viii) It offers a novel way of analysing prevailing trends in the history of
information technologies when viewing them via their ability and potential to
generate knowledge. It shows a steady shift towards interactivity, communication
in natural languages, and to knowledge production.

(ix) Last but not least, our definition has great philosophical and method-
ological merit since it concentrates on the sense of computation, viz. knowl-
edge generation, promoting computation to the key notion which is behind all
progress.

6 Conclusion

In [15], David Deutsch is quoted as saying:

. . . the creation of knowledge [ . . . ] now has to be understood as one of the
fundamental processes in nature; that is, [. . . ] fundamental in the sense
that one needs to understand them in order to understand the universe
in a fundamental way.

In this paper we have argued that computation is the fundamental process un-
derlying this, which explains why computation is the far-reaching process as
claimed in computer science already for many years.

We believe that the time that computation was seen as an intrinsically phys-
ical process only has passed and that it is necessary to consider computation
as an observer-relative process as well. This is because we are increasingly fac-
ing problems where, due to their nature, such a framework is required. This
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is especially the case of computations related to AGI (artificial general intelli-
gence) which are all firmly rooted in theory-less, observer-dependent domains.
We expect that changing the philosophy of computation towards that of viewing
them as knowledge generating processes will help in the understanding and the
creation of new intelligent information technologies.
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Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 733–744.
Springer, Heidelberg (2012)

27. Wiedermann, J.: The creativity mechanisms in embodied agents: An explanatory
model. In: 2013 IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 41–45. IEEE (2013)

28. Wiedermann, J., van Leeuwen, J.: How we think of computing today. In: Beck-
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Abstract. We examine the known approximation algorithms for the
classic graph coloring problem in general graphs, with the aim to ex-
tract and restate the core ideas. We also explore a recent edge-weighted
generalization motivated by the modeling of interference in wireless net-
works. Besides examining the current state-of-the-art and the key open
questions, we indicate how results for the classical coloring problem can
be transferred to the approximation of general edge-weighted graphs.

1 Introduction

Graph coloring is among the most fundamental NP-hard optimization problems.
It forms the basic model of conflict resolution, or scheduling with conflicts, and
the allocation of scarce resources, such as access to spectrum in wireless com-
puting.

Formally, given an input graph G = (V,E) with vertex set V and edge set
E, a proper (vertex) coloring is an assignment π : V → {1, 2, . . . , } such that
adjacent vertices receive different colors, i.e., uv ∈ E implies that π(u) �= π(v).
The objective of the coloring problem is to minimize the number of colors used,
i.e., the largest value π(v). The chromatic number χ(G) is the minimum number
of colors used in a proper coloring of G. Let n denote |V |.

The aim of this note is to survey the state of affairs in the development of
approximation algorithms for graph coloring. Namely, we focus on inexact algo-
rithms that offer performance guarantees: the performance (ratio) of a coloring
algorithm is largest ratio between the number of colors used by the algorithm
on an instance G to the chromatic number of G. This ratio may be a function
of some parameter of the graph, most commonly n, the number of vertices. We
consider here general graphs, i.e., the class of all graphs, rather than (possibly)
more manageable graph families.

We survey the known polynomial-time approximation algorithms for general
graphs, with the aim to gather and restate the key ideas used in these algorithms.
This is a study that extends back to early seventies, but curiously enough, the
trail dries up by 1990. In the interim, research in lower bounds has brought
extensive and illustrious advances, which may motivate renewed efforts on upper
bounds.

We also introduce a recently proposed generalization of coloring involving
edge-weighted graphs. This is motivated by scheduling in wireless networks.
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2 Approximation Algorithms for Coloring General
Graphs

It is useful to break the task of coloring the whole graph into progress steps.
Informally, an operation yields progress towards a T -coloring if a repetition of
such operations results in a valid T -coloring.

We first note that the coloring task can be reduced to the apparently easier
task of finding a large independent set, i.e., a subset of mutally non-adjacent
vertices. This set can be assigned a fresh color, and the task repeated until all
the vertices have been colored. In general, such a reduction carries a log-factor
overhead (as known from the approximation of the Set Cover problem). However,
since we are content with performance ratios that are a polynomial in n when
treating general graphs, the overhead factor actually reduces to a constant.

Example: Suppose we are given a
√
n-approximation algorithm for indepen-

dent sets in χ-colorable graphs. We argue that repeated application results in
a 4

√
n-approximation for coloring. Namely, χ

√
n applications (using that many

colors) reduce the number of vertices to at most n/2. Halving the number of ver-
tices further takes at most another χ

√
n/2 applications. Continuing, the number

of colors used form a geometric sequence of χ
√
n(1 +

√
2
−1

+
√
2
−2

+ · · · ) ≤
χ
√
n/(1− 1/

√
2) < 3.5χ

√
n, which yields a 3.5

√
n-approximation.

Observation 1. Repeated application of a ρ-approximation algorithm for inde-
pendent sets in χ-colorable graphs results in a O(ρ)-approximation algorithm for
coloring, whenever ρ = Ω(nε), for some ε > 0.

Johnson. One simple progress step involves identifying a smallest degree vertex
v. We add v to our independent set solution and recurse on the setN [v] of vertices
non-adjacent to v.

Johnson [17] analyzed several graph coloring heuristics and showed that the
minimum-degree greedy heuristic attained a non-trivial performance ratio. The
heuristic can be viewed as a repeated application of the above progress step.
His observation was that for a minimum degree vertex v, the number N [v] of
non-neighbors is at least n/χ − 1, since all nodes that belong to the largest
color class A must be non-adjacent to the other nodes in the class, and A must
contain at least n/χ vertices. By repeatedly selecting a minimum degree vertex
and eliminating its neighbors, we obtain an independent set whose size S(n), as
a function of the number of nodes n in the graph, can be given by the recurrence
relation S(n) ≥ 1 + S(n/χ) and S(1) = 1. The solution of this recurrence is
S(n) = logχ n. It follows that

Observation 2. Selecting the minimum-degree vertices makes progress towards
a O(n/ logχ n)-coloring.

The performance ratio of the minimum-degree algorithm is therefore at most
O(n/(χ · logχ n)). This is maximized when χ is constant, for a performance ratio
of O(n/ log n).
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Wigderson. Wigderson [22] observed that 3-colorable graphs could be colored
with O(

√
n)-colors. Namely, we can consider two cases depending on vertex

degrees. If there is a vertex v of degree at least
√
n, then we can make progress

as follows. We note that the graph G[N(v)] induced by the neighbors of v is
2-colorable; thus by assigning it two fresh colors, we make progress towards
a O(

√
n)-coloring. On the other hand, if there is a vertex of degree less than

√
n,

we can make progress towards a O(
√
n)-coloring in the same way as argued for

the min-degree heuristic.
By generalizing his argument, we can always make progress towards

a O(χnχ−1)-coloring by considering two cases depending on vertex degree: either
there is a node of degree at most nχ−1, or there is a node v of higher degree in
which case its sizable neighborhood is χ− 1 colorable and by induction we make
progress.

Observation 3. We can always make progress towards a O(χnχ−1)-coloring of
χ-colorable graphs.

If we now combine this bound with Johnson’s, selecting the better of
the two bounds, we obtain an algorithm with performance ratio at most
O(min(nχ−1, n/(χ logχ n)), which is easily seen to be O(n(log logn/ logn)2).

Berger and Rompel. Even if there are no truly low-degree vertices, we may
still find a set of independent vertices whose combined neighborhood is relatively
small, allowing us to generalize the min-degree approach of making progress.

Consider the largest color class A, whose size is clearly at least n/χ. If we
pick a subset S in A, then none of the other vertices A \S are adjacent to nodes
in S, obviously. Thus, in particular, we can see that if we define N(S) to be the
set of vertices non-adjacent to all nodes in S, we get that |N(S)| ≥ n/χ − |S|.
Since S will generally be much smaller than n/χ, finding such a set S allows us
to make progress towards finding a Ω(|S| · logχ n)-independent set, resulting in
a O(n/(|S| logχ n))-coloring.

But how to find such a set of non-trivial size? We have no certificate of what
it means to be in the largest color class A. Here we are helped by abundance:
A is large so it contains a lot of subsets. In particular:

Observation 4. A random subset of size K = logχ n is contained in A with
probability at least 1/n.

Thus, we can pick random subsets until we find one that satisfies the properties
of belonging to A. Berger and Rompel [4] derandomized this argument to obtain
a deterministic method with the same performance.

It follows that we can strengthen the min-degree approach considerably:

Observation 5. One can always make progress towards a O(n/(logχ n)2)-
coloring.

If we combine this progress bound with Wigderson’s, we obtain a coloring
with performance ratio of min(χnχ−1, n/(χ(logχ n)2)). This is maximized when
χ = Θ(log n/ log logn), for a performance of O(n(log logn/ logn)3).
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Note that the hardest cases for all these approximation algorithms are when
χ(G) is Θ(log n/ log logn). Wigderson’s approach then fails to deliver, leaving
us with a O(log n/ log logn)2-sized independent set.

Further Improvement. One may wonder if Observation 4 can be leveraged
to get stronger properties on the subset S beyond the basic bound of n/χ on
the non-neighborhood size. The key observation (from [9]) is that when the
non-neighborhood size is small, nearly all of it must belong to the independent
set A. But then, one can bring to bear algorithms to approximately find large
independent sets. Specifically, the Ramsey method of Boppana and Halldórsson
[6] achieves equivalent approximation factor for the independent set problem as
Wigderson’s method gave for the coloring problem.

We are thus led to the following strategy. We search for an independent set S
of size K = logχ n that satisfies properties that hold for subsets of A. Then, one
of two things must happen:

1. The Ramsey method finds a large independent set in N(S) (specifically of
size Ω(log3 n)), or

2. The non-neighborhood N(S) is larger than we previously argued.

Specifically, in the latter case the non-neighborhood must be of size Ω(logχ n ·
logn/ log(χ log log n/ logn)), which in the range of interest for χ is Ω(logχ n ·
logn).

When combined with Wigderson’s bound, we obtain a performance ratio of
O(n(log logn)2/ log3 n), shaving off a loglog-factor.

Additional Results. Progress on lower bounds on approximability, based on
the PCP theory [2], has been extensive since the early nineties. Most of the work
is on the somewhat easier independent set problem, while Feige and Kilian [7]
showed how to extend some of the results to chromatic number, in particular giv-
ing n1−ε-hardness, for any ε > 0. The strongest hardness to date for independent

sets is n/2(logn)3/4+γ

, for any γ > 0, by Khot and Ponnuswami [20].
The most promising direction for improved approximation algorithms for in-

dependent sets and coloring has for long been semi-definite programming (SDP),
such as the θ-function of Lovász [21] and various hierarchies and strengthenings.
For many families of problems, the best possible results achievable in polyno-
mial time are obtained by SDPs. SDPs have been useful for coloring graphs of
low chromatic number, including the best approximation known for 3-coloring of
Õ(n3/14) [5]. For general graphs, however, all the results on SDP for independent
sets or coloring have been negative, with stronger lower bounds than the known
inapproximability bounds.

We are led to ask what may possibly help algorithms for coloring general
graphs. It is curious that it is almost a quarter of a century since the appearance
of the last improved approximation results ([8] in 1990). The bold conjecture in
[9] that the best possible approximability is only Θ(n/polylog(n)) may still be
validated. That still leaves some room for improvement.
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3 Coloring Edge-Weighted Graphs

We address a generalization of the classic graph coloring problem. A coloring can
be viewed as a partition of the vertices into sets of ultimate sparsity: each vertex
has degree less than 1 (i.e., zero) from the other nodes in the same color class.
We assume the same constraint, with the only difference that degrees are now
weighted. In fact, the graph need not be symmetric, so we have an edge-weighted
digraph. Thus, we now seek a partition into fewest possible vertex subsets such
that each node has weighted in-degree less than 1 from other nodes in the same
set.

Our motivation for this problem comes from modeling interference in wireless
networks. Whereas the classical TCS approach is to model interference as a pair-
wise binary property (i.e., one that can be captured by a graph), a more refined
view commonly used by engineering communities is that interference is a many-
to-one relationship. Having a conversation in a room where another discussion
is going on may work fine, but once the room becomes crowded with speakers,
listening becomes progressively harder. In other words, it is the cumulative effect
of multiple transmitters that matters when assessing whether a message can be
properly decoded.

Formally, we are given a digraph H = (V,E) with non-negative weights w :
E → R+ on the edges. A subset S of vertices is independent if the in-degree
within S of each node is strictly less than 1, i.e., if

∑
u∈S w(u, v) < 1, for each

v ∈ S. A coloring is, as before, a partition into independent sets, and we aim to
use the fewest colors possible. Notice that in the case of symmetric 0/1-weights,
the definition coincides with classical graph coloring.

We will first focus on coloring approximation in terms of the parameters
n and χ, before examining the sparser instances that relate to the specific wire-
less applications.

3.1 Coloring General (Edge-Weighted) Graphs

The question of how well we can handle general edge-weighted graphs is inter-
esting from a basic science standpoint, even if the results are too weak for most
applications.

A very simple approach yields an easy O(n/ logn)-approximation (proposed
for the wireless scheduling problem in [16], while the generic approach was per-
haps first stated in [10]): Partition the graph into n/ logn vertex-disjoint sets,
and color each set optimally with a fresh set of colors. Since such an optimal
coloring of a graph on n vertices can be obtained in time about 3n [16], using the
technique of inclusion-exclusion, the time complexity of coloring the log n-sized
sets is polynomial.

The only other reported result involves the case of graphs that contain an
independent set of size (1 + ε)n/2, for some ε > 0. In this case, a semi-definite
programming formulation results in an algorithm to produce an independent set
of size Ω(εn) [13]. This is, however, insufficient to provide non-trivial bounds
even for 2-colorable graphs.
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We propose here different approaches that emulate some of the results ob-
tained for ordinary graphs. We skip Johnson’s approach and start with Berger
and Rompel’s. Recall that χ = χ(H) is the chromatic number of the edge-
weighted graph H .

Proposition 1. There is an algorithm that finds a O(n/(logχ logn n)2)-coloring
of an edge weighted graph H.

Let k be such that k = χ(H) · log2k n, and note that log k = Θ(log(χ logn)).
Let X = log2k n. We form a (classical) graph G on the same vertex set as H ,
where uv ∈ E(G) iff w(u, v) + w(v, u) ≥ 1/X . We then apply the algorithm of
Berger and Rompel on G to obtain an independent set I in G, but retain at most
X of the nodes in I. This set is then a feasible (edge-weighted) independent set
in H , since all weights of edges within I are less than 1/X .

It remains to argue a lower bound on the size of the independent set I found.
Consider a color class C in H and a node v in C. Observe that v has fewer than
X neighbors within C in G, thus C induces a subgraph in G of maximum degree
less than X . It follows that χ(G) ≤ X ·χ(H) = k. The Berger-Rompel algorithm
produces a set I of size Ω(log2χ(G) n) = Ω(X). Hence, we make progress towards
a O(n/X)-coloring, as claimed.

We next turn to Wigderson’s approach. We start with the case of 2-colorable
graphs, the first case that is not computationally easy in the edge-weighted
setting. With hindsight, we actually aim to handle a more general case. A graph
H is said to be t-almost k-colorable, for parameters t and k, if there is a subset
of tn1/k vertices whose removal leaves the graph k-colorable.

Proposition 2. There is an algorithm that finds a O(t
√
n)-coloring of t-almost

2-colorable edge-weighted graphs.

Set X =
√
n and form again the graph G = GX defined as before. Again, we

see that an independent set in G of size at most X is independent in H . If there
is a vertex of degree at most 3(t + 1)n/X in G, we can clearly make progress
towards a O(tX)-coloring, as desired.

On the other hand, consider a vertex v of degree at least 3(t + 1)n/X and
let Nv denote its set of neighbors. Our aim is to apply the SDP approach on
the induced subgraph H [Nv], and for that purpose we need to show that its
independence number is high. Let C denote the set of (at most tX) vertices
whose removal makes H to be 2-colorable, and let A and B denote the two color
classes. Suppose v is in A, without loss of generality, and let NA = Nv ∩ A be
the subset of Nv from A. Note that NA is of size at most X (since the sum of
the incoming weights from nodes in A is less than 1 and each such edge weight
is at least 1/X). The set Nv −NA − C must be a subset of B, and its fraction
of Nv is at least

|Nv −NA − C|
|Nv|

≥ 1− |X |+ |tX |
|Nv|

≥ 1− 1 + t

3(t+ 1)
=

2

3
.
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Thus, the induced subgraph H [Nv] contains a feasible subset of at least two
thirds of the nodes. We can then apply the SDP result of [13] with ε = 1/3 to
obtain an independent set I of size Ω(ε|Nv|) = Ω(tX), making progress towards
a O(n/(tX)) = O(

√
n/t)-coloring, as desired.

We now apply the approach recursively, along the lines of Wigderson.

Proposition 3. There is an algorithm that finds an independent set of size
Ω(n1/k/(t + k)) in a t-almost k-colorable edge-weighted graphs. Thus, we can
make progress towards a O((t + k)n1−1/k)-coloring.

When k = 2, the claim holds from Prop. 2, so assume k ≥ 3. Let X = n1/k

and form G = GX as before. If there is a vertex of degree at most n/X in G,
then by selecting it we make progress towards a O(n/X) = O(n1−1/k) coloring.
Otherwise, consider the set Nv of neighbors of an arbitrary vertex v, which
is of size greater than n/X = n1−1/k. We claim that H [Nv] is (t + 1)-almost
k− 1-colorable. Namely, Nv might contain the at most tX nodes whose removal
turns H into a k-colorable graph H ′, and it could contain at most X nodes that
belong to the same color class in H ′ as v, but together this amounts to only
(t+1)n1/k ≤ (t+1)(|Nv|k/(k−1))1/k = (t+1)|Nv|1/(k−1), which satisfies (t+1)-
almost (k − 1)-colorability. By applying our method by induction on H [Nv], we
obtain an independent set I of size at least

c
|Nv|1/(k−1)

(t+ 1) + (k − 1)
= c

|Nv|1/(k−1)

t+ k
≥ c

n1/k

t+ k
,

for some absolute constant c, thus making progress towards a (t + k)n1−1/k-
coloring, as desired.

In particular, we obtain a O(kn1−1/k)-coloring of k-colorable graphs.

Finally, we can combine the two approaches (Props. 1 and 3) to get approxi-
mation results for coloring general edge-weighted graphs that almost matches
the best ratio known for ordinary graphs. The maximum of the two bounds is
achieved when χ = θ(logn/ log logn).

Corollary 1. There is a O(n(log logn/ logn)3)-approximate algorithm for
coloring edge-weighted graphs.

3.2 Better Solvable Cases

The instances that arise in wireless settings are not completely arbitrary. They
have structure that distinguish them from general instances. Let us examine
some of the structural properties that help in getting better solutions.

Wireless transmissions take place in physical space, and interferences gene-
rally speaking decreases with distance. One may expect there to be limits to how
much a single transmission can be disturbed. Graph theoretically, it is natural to
consider graphs of low maximum in-degree Δ−(H). It was shown in [14] that one
can color such graphs using 
2Δ− + 1�2 colors. Very recently, an optimal upper
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bound of 
2Δ−+1� colors was obtained [3], which can be made constructive up to
an arbitrarily small error term. A tight bound of �Δ+1 was also recently given
for undirected edge-weighted graphs [1]. That resolves these questions. However,
there is no clear link between maximum degree and the chromatic number, thus
it does not directly address the question of efficient approximability.

Another parameter of sparsity that connects well with classical colorings is
inductiveness. A graph is ρ-inductive if there is an ordering of the vertices so
that for each vertex v, the in-degree of v from the nodes succeeding it in the
order is at most ρ. Hoefer et al. [15] were among the first to treat wireless
scheduling problems as edge-weighted graphs. They also introduced measures
related to inductiveness in the study of the corresponding independent set prob-
lem. Earlier, Kesselheim and Vöcking [19] had actually shown that for wireless
instances (with certain regimes of fixed power assignments to the transmitters),
ρ(H) = O(log nχ(H)). This leaves the question of how good colorings can be
obtained in terms of the inductiveness parameter ρ.

Kesselheim and Vöcking [19] gave a distributed algorithm that uses at most
O(ρ log n) colors, resulting in a O(log2 n)-approximation. The bound on ρ was
later tightened to the optimal ρ(H) = O(χ) [11], resulting in a O(log n)-
approximation for coloring. However, this turns out to be best possible in
terms of inductiveness alone; namely, there are instances such that χ(H) =
Ω(ρ(H) log n) [3]. Thus, better-than-logarithmic solutions will need to take ad-
ditional properties of wireless instance into account.

Constant factor approximations are known for the independent set problem
of edge-weighted graphs for instances derived by wireless settings. Specifically,
it holds for the main two variants based on the choice of power assigned to the
senders: power depends only on the intended transmission distance [12], or the
power can be arbitrary [18]. This immediately implies logarithmic approxima-
tions for the corresponding coloring problems. These results utilize the fact that
the transmission take place between units embedded in a metric space. Each
node of the graph corresponds to a communication link, a sender-receiver pair
located in the metric, while the weight of an edge represents the disturbance that
one transmission has on another transmission link. In particular, in the setting
where all senders use the same power, the weight of the directed edge (u, v) from
link (su, ru) to link (sv, rv) is proportional to (d(sv, rv)/d(su, rv))

α, where α is
a fixed positive constant.

The key question is whether the metric property can be brought to bear to
obtain better approximation ratios than logarithmic. The holy grail would be to
give an absolute constant factor approximation. So far, all attempts have failed.
Still, there are no obvious a priori reasons why this cannot succeed.

Additionally, it would be interesting to characterize other classes of instances
that admit efficient approximations.
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4 Conclusions

We have explored two graph coloring problems: The classical one and a recent
edge-weighted variation motivated by wireless applications. Much remains to be
done to deepen our understanding, even for the classical version.

Acknowledgments. The author thanks Christian Konrad and Tigran Tonoyan
for helpful comments.
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10. Halldórsson, M.M.: Approximation via partitioning. Research Report IS-RR-95-
0003F, JAIST (1995)
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12. Halldórsson, M.M., Mitra, P.: Wireless Capacity with Oblivious Power in General
Metrics. In: SODA (2011)
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Abstract. Secure multi-party computation (MPC) allows multiple par-
ties to compute a known function over inputs held by each party, without
any party having to reveal its private input. Unfortunately, traditional
MPC algorithms do not scale well to large numbers of parties. In this
paper, we describe several recent MPC algorithms that are designed to
handle large networks. All of these algorithms rely on recent techniques
from the Byzantine agreement literature on forming and using quorums.
Informally, a quorum is a small set of parties, most of which are trust-
worthy. We describe the advantages and disadvantages of these scalable
algorithms, and we propose new ideas for improving practicality of cur-
rent techniques. Finally, we conduct simulations to measure bandwidth
cost for several current MPC algorithms.

1 Introduction

In secure multi-party computation (MPC), a set of parties, each having a secret
value (input), want to compute a common function over their inputs, without
revealing any information about their inputs other than what is revealed by the
output of the function.

In this paper, we focus on scalable MPC algorithms, which are designed to
be resource-efficient (e.g., in terms of bandwidth, computation, and latency)
for large networks. Scalable MPC is of importance for many applications over
modern networks. For example, how can peers in BitTorrent auction off resources
without hiring an auctioneer? How can we design a decentralized Twitter that
enables provably anonymous broadcast? How can we perform data mining over
data spread over large numbers of machines?

Although much theoretical progress has been made in the MPC literature to
achieve scalability (e.g., [1,9,3,22,23,25]), practical progress is slower. In partic-
ular, most known schemes suffer from either poor or unknown communication
and computation costs in practice.

Most large-scale distributed systems are composed of nodes with limited re-
sources. This makes it of extreme importance to balance the protocol load across
all parties involved. Also, large networks tend to have weak admission control
mechanisms which makes them likely to contain Byzantine nodes. Thus, a key
variant of the MPC problem that we consider will be when a certain hidden
fraction of the nodes are controlled by a Byzantine adversary.
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1.1 Problem Statement

In the MPC problem, a set of n parties, each holding a private input, jointly
evaluate a function f over their inputs while ensuring,

1. Upon termination of the protocol, all parties have learned the correct output
of f ; and

2. No party learns any information about other parties’ inputs other than what
is revealed from the output.

We assume the identities of the n parties are common knowledge, and there is a
private and authenticated communication channel between every pair of parties.
We consider two communication models. In the synchronous model, there is an
upper bound, known to all parties, on the length of time that a message can
take to be sent through a channel. In the asynchronous model, there is no such
upper bound.

Usually, a certain fraction of the parties are controlled by a Byzantine1 ad-
versary. These parties can deviate arbitrarily from the protocol. In particular,
they can send incorrect messages, stop sending any messages, share information
amongst themselves, and so forth. Their goal is to thwart the protocol by either
obtaining information about the private inputs, or causing the output of the
function to be computed incorrectly. We say the adversary is semi-honest if the
adversary-controlled parties are curious to learn about other parties’ secret infor-
mation, but they strictly follow the protocol. We say that the parties controlled
by the adversary are malicious (or Byzantine or dishonest). The remaining par-
ties are called semi-honest (or simply, honest).

The adversary is either computationally-bounded or computationally-unbounded.
The former is typically limited to only probabilistic polynomial-time (PPT) algo-
rithms, and the latter has no computational limitations. The adversary is either
assumed to be static or adaptive. A static adversary is limited to selecting the set
of dishonest parties at the start of the protocol, while an adaptive adversary does
not have this limitation.

1.2 Measures of Effectiveness

The following metrics are typically used to measure the effectiveness of MPC
protocols.

Resource Costs. These include communication cost (number of messages sent
and size of each message), computation cost, and latency (number of rounds of
communication). We remark that load-balancing may be important for all of
these resources.

Fault Tolerance. These metrics measure to what degree a protocol can tolerate
adversarial attack. They include: the number of nodes that an adversary can take
over (without sacrificing correctness); the type(s) of faults, i.e., Byzantine, crash

1 Also known as active or malicious.
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faults, randomly, or adversarially distributed; the number of bits in messages that
can be corrupted by an adversary; and the amount of churn that the protocol
can tolerate

1.3 MPC and Byzantine Agreement

In the Byzantine setting, the MPC problem is tightly related to the problem of
Byzantine agreement (BA), where a group of n parties each holding an input
value want to agree on a common value. In a celebrated result, Pease, Shostak,
and Lamport [53] proved that perfectly-secure BA can be achieved as long as less
than one third fraction of the parties is corrupted. There are several interesting
connections between BA and MPC:

1. BA can be seen as MPC for the simplest type of function: a function that
must return a bit equal to the input bit of at least one honest party. However,
BA is simpler that MPC in that it is not necessary to maintain privacy of
inputs.

2. MPC protocols strongly rely on the use of a broadcast channel which is
typically realized using a BA protocol.2 Most MPC results so far assume the
existence of a broadcast channel. Unfortunately, this requirement is highly
problematic in settings, where the number of parties is large.

3. Several recent MPC schemes [3,9,25,62] crucially build upon the notion of
quorums3 for achieving scalability. A quorum is a polylogarithmic set of
parties, where the number of corrupted parties in each quorum is guaranteed
not to exceed a certain fraction. King et al. [43] show how to use BA to
efficiently create a collection of quorums.

Paper Organization. The rest of this paper is organized as follows. In Sec-
tion 2, we review related work with a focus on MPC for many parties (i.e.,
scalable MPC). In Section 3, we describe key open problems in scalable MPC.
In Section 4, we describe algorithmic tools used in current scalable MPC algo-
rithms. Section 5 describes recent quorum-based results for scalable MPC, and
defines and analyzes new techniques for improving these results. Finally, we con-
clude in Section 6.

2 Related Work

Due to the large body of work, we do not attempt a comprehensive review of
the MPC literature here, but rather focus on work that is relevant to scalable
MPC.

2 The standard definition of MPC (as given in Section 1.1) implies Byzantine agree-
ment. Goldwasser and Lindell [36] show that a relaxed definition of MPC allows
MPC without a broadcast channel (and hence without Byzantine agreement).

3 Also known as committees.
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The MPC problem was first described by Yao [59]. He described an algorithm
for MPC with two parties in the presence of a semi-honest adversary. Goldre-
ich et al. [37] propose the first MPC protocol that is secure against a Byzantine
adversary. This work along with [15,33] are all based on cryptographic hard-
ness assumptions and are often regarded as the first generic solutions to MPC.
These were followed by several cryptographic improvements [12,17,39] as well
as information theoretically-secure protocols [2,6,11,13] in late 1980s and 1990s.
Unfortunately, these methods all have poor communication scalability. In par-
ticular, if there are n parties involved in the computation, and the function f is
represented by a circuit with m gates, then these algorithms require each party
to send a number of messages and perform a number of computations that is
Ω(mn).

In 2000s, exciting improvements were made to the cost of MPC, when m (i.e.,
the circuit size) is much larger than n [21,22,27]. For example, Damgard et al. [22]
give an algorithm with computation and communication cost that is Õ(m) plus
a polynomial in n. Unfortunately, the additive polynomial in these algorithms is
large (at least Ω(n6)) making them impractical for large n.

Depending on the model of computation, every function can be represented
in terms of some elementary operations such as arithmetic operations (e.g., addi-
tion, multiplication), Boolean operations (e.g., and, or), RAM instructions (e.g.,
get-value, set-value), etc. Informally speaking, every MPC protocol specifies how
a group of elementary operations can be computed securely. The function is
computed securely via composition of these secure operations. From this per-
spective, we classify the broad range of MPC approaches into two categories:
techniques that evaluate circuits (Boolean or arithmetic), and techniques that
evaluate RAM programs.

2.1 Circuit-Based Techniques

We subdivide the set of circuit-based methods into three categories based on their
main approach for achieving privacy: garbled circuits, secret sharing, and fully
homomorphic encryption. Although some protocols such as [9,28] may fall into
more than one category, most protocols follow only one as their main approach.

Garbled Circuits. The idea of garbled circuits dates back to the two-party
MPC proposed by Yao [59].4 One party is called the circuit generator and the
other one is called the circuit evaluator. For each wire in the circuit, the gener-
ator creates a mapping that maps each possible value of that wire to another
value (called the garbled value). The generator then sends this mapping to the
evaluator. The evaluator evaluates the circuit using the mapping to compute the
garbled output. Next, the generator computes another mapping (called transla-
tion) that maps all possible garbled outputs to their actual values. In the final
round, the generator sends the translation to the evaluator, and the evaluator
sends the garbled output to the generator. Both parties can compute the actual

4 The term “garbled circuits” is due to Beaver, Micali, and Rogaway [12].
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output at the same time without learning anything about each other’s inputs.
This algorithm is only secure in the semi-honest setting.

Yao’s original model has been the basis for several secure computation al-
gorithms mostly for the two-party setting with computational hardness assump-
tions [37,40,44,48,50]. In a line of research, Lindell and Pinkas give the first proof
of Yao’s protocol [49] and present a two-party approach based on garbled circuits
that uses the cut-and-choose technique to deal with malicious parties [48,50].

Secret Sharing. In secret sharing, one party (called the dealer) distributes
a secret amongst a group of parties, each of whom is allocated a share of the
secret. Each share reveals nothing about the secret to the party possessing it,
and the secret can only be reconstructed when a sufficient number of shares are
combined together.

Many MPC schemes build upon the notion of secret sharing (most notably,
[6,11,13,22,25,28,39]). Informally speaking, each party secret shares its input
among all parties using a secret sharing scheme such as Shamir’s scheme [56].
Then, all parties perform some intermediate computation on the received shares
and ensure that each part now has a share of the result of the computation. In the
final stage, all parties perform a final computation on the intermediate results
to find the final result. In the Byzantine setting, each stage of this approach usu-
ally requires several rounds of communication used to verify consistency of the
shares distributed by each party (using a Verifiable Secret Sharing (VSS) scheme
like [11,18]) and to perform complicated operations such as multiplication.

Ben-Or et al. [11] show that every functionality can be computed with
information-theoretic security in the presence of a semi-honest adversary con-
trolling less than half of the parties, and in the presence of a Byzantine adver-
sary controlling less than a third of the parties. They propose a protocol for
securely evaluating an arithmetic circuit that represents the functionality. First,
the parties secret-share their inputs with each other using Shamir’s scheme [56].
For the Byzantine case, an interactive VSS protocol is proposed using bivariate
polynomials. The parties emulate the computation of each gate of the circuit by
computing shares of the gate’s output from the shares of the gate’s inputs.

Given shares of the input wires, an addition gate’s output is computed without
any interaction simply by asking each party to add their local shares together.
Unfortunately, multiplying two polynomials results in a polynomial that has a
higher degree and is not completely random. Ben-Or et al. [11] emulate a multi-
plication gate computation by running interactive protocols for degree reduction
and polynomial randomization.

The efficiency of [11] was later improved by others in similar and different
settings [6,22,39]. Unfortunately, these protocols still do not scale well with n
and incur large communication and computation costs in practice.

Dani et al. [24] propose an MPC protocol for evaluating arithmetic circuits
in large networks. The protocol is unconditionally-secure against a Byzantine
adversary corrupting less than (1/3−ε)n of the parties, for some positive constant
ε. The protocol creates a set of quorums using the quorum building algorithm
of [43]. For each gate in the circuit, a quorum is used to compute the output of the
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gate using the MPC of [11] among parties of the quorum. The protocol ensures
that all parties in the quorum learn the output of gate masked with a uniformly
random value which is secret-shared among all parties of the quorum. Thus, no
party learns any information about the output, but the parties together have
enough information to provide the input for computation of the masked output
of the next gate. This procedure is repeated for every level of the circuit. At the
top level, the output is computed and sent down to all parties through all-to-all
communication between the quorums. Assuming a circuit of depth d with m
gates, this protocol requires each party to send (and compute) Õ(m/n +

√
n)

bits (operations) with latency O(d + polylog(n)).
This protocol was later modified in [25] in order to support asynchronous

communication incurring the same asymptotic costs but tolerating less than
(1/8 − ε)n malicious parties. In the new model, the adversary has control over
the latency of the communication channels and can arbitrarily delay messages
sent over them. However, all messages sent by the parties are assumed to be
eventually delivered but with indefinite delays.

The main challenge in this model is that the parties require a distributed
mechanism to learn when sufficient number of inputs are received in order to
start the computation over those inputs. To this end, Dani et al. [25] propose
to count the number of ready inputs using a distributed data structure called
τ-counter, where τ = n− t is the threshold on the number inputs to be received
before the circuit is evaluated, and t < n/8.

Fully Homomorphic Encryption. A fully homomorphic encryption (FHE)
scheme allows to perform secure computation over encrypted data without de-
crypting it. Gentry [30] proposed the first FHE scheme based on the hardness
of lattice problems. Since then, many techniques have been proposed to improve
the efficiency of FHE [10,32,58]. Unfortunately, current techniques are still very
slow and can only evaluate small circuits. This restriction is primarily due to
noise management techniques (such as bootstrapping [30]) used to deal with a
noise term in ciphertexts that increases slightly with homomorphic addition and
exponentially with homomorphic multiplication.

In particular, if the circuit has a sufficiently small multiplicative depth, then
it is possible to use current FHE schemes in practice without using the ex-
pensive noise management techniques. Such a scheme is often called somewhat
homomorphic encryption (SHE) [58], which requires significantly less amount of
computation than an FHE with noise management.

Damgard et al. [28] propose a Byzantine-resilient MPC scheme using SHE
in an offline phase to compute Beaver multiplication triples [6]. These triples
are later used in the online phase to compute multiplication gates efficiently.
One drawback of this scheme is that when cheating happens in the network, the
protocol cannot guarantee termination. Malicious parties can take advantage of
this to prevent the protocol from termination.5

5 In general, if the majority of parties are malicious, then the termination of MPC
(i.e., output delivery) cannot be guaranteed.
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Asharov et al. [1] describe a constant-roundMPC scheme using a threshold FHE
(TFHE) technique that provides Byzantine-resilience and circuit-independent
communication cost. All parties first encrypt their inputs under the FHE scheme of
Brakerski et al. [10] and send the encrypted values to all other parties. Then, each
party evaluates the desired function over the encrypted inputs via homomorphism,
and eventually participates in a distributed decryption protocol to decrypt the out-
put. Although providing constant rounds of communication, this scheme does not
scale well with the number of parties and the circuit size due to all-to-all communi-
cation overhead (i.e.,Ω(n2)) and high computation overhead of the FHE of [10] for
large-depth circuits. To overcome the high computation cost, the authors propose
to outsource circuit computation to a powerful party (e.g., the “cloud”).While this
is helpful for the semi-honest setting, it requires expensive zero-knowledge proofs
to enforce honest behavior in the Byzantine setting.

Boyle et al. [9] describe a synchronous MPC protocol for evaluating arithmetic
circuits. The protocol is computationally-secure against an adversary corrupting
up to (1/3−ε) fraction of parties, for some fixed positive ε. As network size scales,
it becomes infeasible to require each party communicate with all other parties.
To this end, the protocol of [9] uses quorums to achieve sublinear (polylog(n))
communication locality which is defined as the total number of point-to-point
communication channels that each party uses in the protocol. Interestingly, the
communication costs are independent of circuit size. This is achieved by eval-
uating the circuit over encrypted values using an FHE scheme. Unfortunately,
the protocol is not fully load-balanced as it evaluates the circuit using only one
quorum (called supreme committee) for performing general MPC. The protocol
requires each party to send polylog(n) messages of size Õ(n) bits and requires
polylog(n) rounds.

Chandran et al. [14] address two limitations of the protocol of [9]: adaptive
adversary and optimal resiliency (i.e., t < n/2 malicious parties). They achieve
both of these by replacing the common reference string (CRS) assumption of [9]
with a different setup assumption called symmetric-key infrastructure (SKI),
where every pair of parties share a uniformly-random key that is unknown to
other parties. The authors also show how to remove the SKI assumption at a
cost of increasing the communication locality by O(

√
n). Although this protocol

provides small communication locality, the bandwidth cost seems to be super-
polynomial due to large non-constant message sizes.

2.2 RAM-Based Techniques

Most MPC constructions model algorithms as circuits. Unfortunately, a circuit
can at best model the worst-case running time of an algorithm because a cir-
cuit can only be created by unrolling loops to their worst-case runtime [35].
Moreover, circuits incur at least a linear computation complexity in the total
size of the input, while a sublinear overhead is crucial for achieving scalability in
most large-scale applications. In addition, most algorithms have already been de-
scribed in terms of instructions (programs) to a random access memory (RAM)
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machine6 [19], not circuits. These all bring the following question to the mind:
Is it possible to securely evaluate RAM programs instead of circuits? Luckily,
the answer is “yes”. Goldreich and Ostrovsky [38] show that by constructing
a RAM with secure access, one can evaluate arbitrary RAM programs privately.
Such a RAM is often called an Oblivious RAM (ORAM). This is typically con-
sidered in a setting, where a group of parties (clients) want to access a data
storage (RAM) held by another party (a server).

To build an ORAM, content encryption alone is not sufficient because the
party holding the data (or an eavesdropper) can obtain critical information about
the queries by analyzing the access patterns, even though the data is encrypted.
Therefore, techniques are required to hide the access patterns to the data storage,
meaning that no party is able to distinguish between any subsets of the data
requests. More precisely, the following information must remain private: (1) the
locations of accessed data items, (2) the order of data requests, (3) the number
of requests to the same location, and (4) the type of access (e.g., get-value,
set-value).

Goldreich and Ostrovsky [38] propose a two-party technique for securely out-
sourcing data to a remote storage. The client’s access pattern to the remote
storage is hidden by continuously shuffling and re-encrypting data as they are
accessed. The authors show that any program in the standard RAMmodel can be
compiled into a program for an ORAM using an ORAM simulator with an over-
head that is polylogarithmic in the size of the memory. Although asymptotically-
efficient, the algorithm of [38] is not practical due to large constant factors.

Several techniques have been proposed to improve the overhead of ORAM
protocols in general [52,55,57] and for secure two-party computation [31,34,47].
Damgard et al. [26] propose the first ORAM algorithm in the multi-party setting.
Unfortunately, their algorithm requires each party to communicate and maintain
information of size equivalent to all parties’ inputs. Boyle et al. [3] describe a
scalable technique for secure computation of RAM programs in large networks by
performing local communications in quorums of parties. For securely evaluating a
RAM program Π , their protocol incurs a total communication and computation
of poly(n)+Õ(T ime(Π)) while requiring Õ(|x|+Space(Π)/n) memory per party,
where T ime(Π) and Space(Π) are time and space complexity of Π respectively,
and |x| denotes the input size.

3 Open Problems

In this section, we describe several open problems in the domain of scalable MPC.
These problems are roughly ordered from easiest to hardest. We describe some
partial progress on the first two problems later in this paper.

6 A RAM machine has a lookup functionality for accessing memory locations that
takes O(1) operations. Given an array A of N values and an index x ∈ {1, ..., N},
the lookup functionality returns A[x].
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Share Renewal. In the protocol of [25], each gate of the circuit is assigned
a quorum Q, and the parties in Q are responsible for computing the function
associated with that gate. Then, they send the result of this computation to
any quorums associated with gates that need this result as input. Let Q′ be
one such quorum. It is necessary to securely send the output from Q to Q′

without revealing any information to any individual party or to any coalition of
adversarial parties. Inspired by [41], we refer to this problem as share renewal,
because it involves generating a fresh sharing of a secret-shared value among a
new set of parties.

Dani et al. [25] handle this problem by masking the result in Q and unmask-
ing the result in Q′. Unfortunately, they do not provide an explicit construction
of their method, and simple constructions are very expensive in terms of com-
munication and computation costs [62]. Boyle et al. [9] overcome this problem
by sending their encrypted inputs to only one quorum which does all of the
computation using FHE. This results in large computation and communication
costs for parties in that quorum. In Section 5, we give some ideas for solving this
problem efficiently.

Secure Multiplication. Consider an arithmetic circuit representing the de-
sired function to be computed. Using a linear secret sharing scheme (such as
[56]), addition gates can be computed with no communication by simply adding
the two input shares. On the other hand, known secret sharing schemes are
not multiplicatively homomorphic meaning that the product of two shares is
not necessarily a valid and secure share of the product of the corresponding se-
crets. Designing an efficient technique for secure multiplication is an important
building block for secret-sharing-based MPC. We are not aware of a perfectly-
secure technique for secure multiplication that requires only constant rounds of
communication.

Byzantine-Resilient Threshold Decryption. Consider n parties that have
jointly encrypted a message using some encryption scheme. In threshold decryp-
tion, for some parameter x < n, it is required that any subset of x parties can
decrypt the message, while any subset of strictly less than x parties learn nothing
about the encrypted message. Threshold decryption of a (fully) homomorphic
encryption can be used as a primitive for constructing efficient MPC protocols.

Unfortunately, known techniques for Byzantine-resilient threshold decryption
(such as [1,16]) suffer from large communication overhead, due to zero-knowledge
proofs used for ensuring honest behavior. A key open problem is to reduce this
communication overhead.

Las Vegas MPC. Recently, several randomized MPC algorithms have been
proposed (such as [9,14,25]) with Monte Carlo guarantees. In particular, the
output is correct with high probability7. Alternatively, one may try to design a
Las Vegas MPC algorithm. For this type of algorithm, the output must be correct

7 An event occurs with high probability, if it occurs with probability at least 1− 1/nc,
for any c > 0 and all sufficiently large n.
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with probability 1, but the latency can be a random variable. It is not clear that
a quorum-based approach will be effective for solving this open problem.

Oblivious Parallel RAM. While parallelism has been extensively used in var-
ious computer architectures for accelerating computations, most ORAM models
of computation (see Section 2.2) are not parallel. In the Parallel RAM (PRAM)
model of computation, several parties, running in parallel, want to access the
same shared external memory. This separates the program into two parts: con-
trol flow and shared memory. The goal is to parallelize control flow via oblivious
access to the share memory in order to reduce computational time and latency.

In general, any PRAM program can be converted into a RAM program to
be then evaluated by a standard ORAM. Unfortunately, this transformation in-
curs a large computational overhead. Boyle et al. [4] take a first step towards
addressing this problem by describing an oblivious PRAM scheme that com-
piles any PRAM program into an Oblivious PRAM (OPRAM) program. This
compiler incurs polylogarithmic overhead in the number of parties and the mem-
ory size. The algorithm is based on the ORAM construction of Shi et al. [55]
which requires cryptographic assumptions. It remains unknown if one can design
a perfectly-secure oblivious PRAM with resource costs that scale well with the
network size and are independent of memory size.

Large Inputs. It is also interesting to consider MPC when each party can have
very large inputs. Following is a concrete problem in this domain. Let M be
a sparse adjacency matrix for some graph, and let the columns of M be parti-
tioned among the parties. This problem motivates the following questions: Can
we securely and efficiently compute the shortest path between a given pair of
vertices over M? We can also consider other graph-theoretic problems. Even
simpler, can we securely compute the dot product of two sparse vectors with re-
source costs proportional only to the number of non-zero entries in the vectors?
We are not aware of any algorithms for even these simple types of problems.

4 Algorithmic Tools

In this section, we describe key algorithmic tools used in scalable MPC protocols.

4.1 Verifiable Secret Sharing

An (n, t)-secret sharing scheme, is a protocol in which a dealer who holds a
secret value shares the secret among n parties such that any set of t parties
cannot gain any information about the secret, but any set of at least t+1 parties
can reconstructs it. An (n, t)-verifiable secret sharing (VSS) scheme is an (n, t)-
secret sharing scheme with the additional property that after the sharing phase,
a dishonest dealer is either disqualified or the honest parties can reconstruct
the secret, even if shares sent by dishonest parties are spurious. Katz et al. [42]
propose a constant-round VSS protocol based on Shamir’s secret sharing [56].
This result is described in Theorem 1.
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Theorem 1. [42] There exists a synchronous linear (n, t)-VSS scheme for t <
n/3 that is perfectly-secure against a static adversary. The protocol requires one
broadcast and three rounds of communication.

For practicality, one can use the cryptographic VSS of Kate et al. [46] called
eVSS 8, which is based on Shamir’s scheme and the hardness of the discrete
logarithm problem. Since eVSS generates commitments over elliptic curve groups,
it requires smaller message sizes than other DL-based VSS scheme such as [39].

Theorem 2. [46] There exists a synchronous linear (n, t)-VSS scheme for t <
n/2 that is secure against a computationally-bounded static adversary. In worst
case, the protocol requires two broadcasts and four rounds of communication.

4.2 Secure Broadcast

In the Byzantine setting, when parties have only access to secure pairwise chan-
nels, a protocol is required to ensure secure (reliable) broadcast. Such a broadcast
protocol guarantees all parties receive the same message even if the broadcaster
(dealer) is dishonest and sends different messages to different parties. It is known
that a BA protocol can be used to perform secure broadcasts. The BA algorithm
of Braud-Santoni et al. [8] gives the following result.

Theorem 3. [8] There exists an unconditionally-secure protocol for performing
secure broadcasts among n parties. The protocol has Õ(n) amortized communica-
tion and computation complexity, and it can tolerate up to (1/3− ε)n Byzantine
parties, for any positive ε.

The algorithm of [8] achieves this result by relaxing the load-balancing require-
ments. If concerned with load-balancing, one can instead use the load-balanced
BA algorithm of King et al. [45] with O(

√
n) blowup.

4.3 Quorum Building

As an intermediate result in a Byzantine agreement paper, King et al. [43] give
a protocol that can be used to bring all parties to agreement on a collection of n
quorums. This protocol is based on the almost-everywhere Byzantine agreement9

of King et al. [45].

Theorem 4. [45] Suppose there are n parties, b < 1/4−ε of which are malicious,
for any fixed positive ε. Then, there is a polylogarithmic (in n) bounded degree
network and a protocol such that,

– With high probability, a 1−O(1/ lnn) fraction of the honest parties agree on
the same value (bit or string).

8 Stands for efficient VSS.
9 King et al. [45] relax the requirement that all uncorrupted parties reach agreement
at the end of the protocol, instead requiring that a 1− o(1) fraction of uncorrupted
parties reach agreement. They refer to this relaxation as almost-everywhere agree-
ment.



Recent Results in Scalable Multi-Party Computation 35

– Every honest party sends and processes only a polylogarithmic (in n) number
of bits.

– The number of rounds required is polylogarithmic in n.

Their main technique is to divide the parties into groups of polylogarithmic
size; each party is assigned to multiple groups. In parallel, each group then uses
a leader election algorithm [29] to elect a small number of parties from within
their group to move on. This step is recursively repeated on the set of elected
parties until size of the remaining parties in this set becomes polylogarithmic.
At this point, the remaining parties can solve the semi-random-string agreement
problem10 (similarly, they can run Byzantine agreement protocol to agree on
a bit). Provided the fraction of dishonest parties in the set of remaining par-
ties is less than 1/3 with high probability, these parties succeed in agreeing on
a semi-random string. Then, these parties communicate the result value to the
rest of the parties.

In general, one can use any BA algorithm to build a set of quorums as de-
scribed in [43]. Theorem 5 gives a quorum building protocol using the BA algo-
rithm of Braud-Santoni et al. [8].

Theorem 5. [8] There exists an unconditionally-secure protocol that brings all
good parties to agreement on n good quorums with high probability. The protocol
has Õ(n) amortized communication and computation complexity11, and it can
tolerate up to (1/3− ε)n Byzantine parties, for any positive ε. If at most (α− ε)
fraction of parties are Byzantine, then each quorum is guaranteed to have T ≤
αN Byzantine parties.

5 Quorum-Based MPC

In Table 1, we review recent MPC results that provide sublinear communication
locality. All of these results rely on some quorum building technique for creating
a set of quorums each with honest majority. In the rest of this section, we
describe a few ideas for improving efficiency of the synchronous MPC of [24].
These techniques are proved in [62]. We also conduct experiments to show the
effectiveness of our techniques when compared with the protocols of [24] and [9].

Although the protocol of [24] asymptotically scales well with n, it is ineffi-
cient in practice due to large hidden factors in its cost complexities. Moreover,
the paper does not provide an explicit construction of the proposed share re-
newal technique (see Section 3). Unfortunately, simple constructions seem very
expensive in terms of communication and computation costs since parties in the
second quorum need to jointly and securely unmask each input.

10 In semi-random-string agreement problem, we want to reach a situation where, for
any positive constant ε, 1/2 + ε fraction of parties are good and agree on a single
string of length O(log n) with a constant fraction for random bits.

11 Amortized communication complexity is the total number of bits exchanged divided
by the number of parties.
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Õ
(1

)
O
(n

�·
p
o
lylo

g
(n

))
N
o

[2
5
]

P
e
rfe

c
t

(1
/
8−

ε)n
N
o

Y
e
s

N
o
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Õ (
T
im

e
(Π

) )
p
o
ly(n

)
+
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In [62], we propose a simple and efficient technique for share renewal. We also
implement an efficient secure multiplication protocol to reduce the bandwidth
and computation costs of [24]. In the rest of this section, we sketch the main
properties of this new algorithm. Full details of the algorithms are in [62].

Consider n parties in a fully-connected synchronous network with private
channels. Let f be any deterministic function over n inputs in some finite field
Fp for prime p = poly(n), where f is represented as an arithmetic circuit with
m gates and depth d. We prove the following theorem in [62].

Theorem 6. There exists an unconditionally-secure n-party protocol that can
compute f with high probability, while ensuring,

– The protocol tolerates up to (1/6− ε)n malicious parties.
– Each party sends (computes) Õ(m/n) messages (operations).
– Each message is of size O(log p) bits.
– The protocol has O(d) rounds of communication.

While our techniques are perfectly-secure, one can use the efficient VSS of
Theorem 2 to achieve a cryptographic variant of Theorem 6 with better efficiency.

Theorem 7. There exists an n-party protocol secure against a PPT adversary
such that the protocol can compute f with high probability, while ensuring,

– The protocol tolerates up to (1/6− ε)n malicious parties.
– Each party sends O

(
m
n log4 n

)
messages and computes O

(
m
n (κ+log p) log4 n

)
operations, where κ is the security parameter.

– Each message is of size O(κ+ log p) bits.
– The protocol has O(d) rounds of communication.

In this section, we represent each shared value s ∈ Fp by 〈s〉 = (s1, ..., sn)
meaning that each party Pi holds a share si generated by the VSS scheme of
Theorem 1 during its sharing phase. Using the natural component-wise addition
of representations, we define 〈a〉 + 〈b〉 = 〈a + b〉. For multiplication, we define
〈a〉 · 〈b〉 = Multiply(〈a〉, 〈b〉), where Multiply is a protocol defined later in this
section.

5.1 Share Renewal

Recalling from Section 3, let Q and Q′ be the quorums involved in the share re-
newal process. In [62], we propose a different approach than [24] by reducing the
share renewal problem to the simpler problem of generating
a fresh sharing of the output of Q among parties of Q′. In other words, par-
ties in Q generate a new set of random shares that represents the same secret as
the output of Q, and distribute this new sharing among parties of Q′.

The high-level idea is to first generate a random polynomial that passes
through the origin, and then add it to the polynomial that corresponds to the
shared secret. The result is a new polynomial that represents the same secret
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Fig. 1. Share renewal technique [62]

but has coefficients that are chosen randomly and completely independent of
the coefficients of the original polynomial. Combined with the VSS scheme of
Theorem 1 in a group of n parties with t < n/3 dishonest parties, this proto-
col has one round of communication and requires each party to send O(n) field
elements.

This idea was first proposed by Ben-Or et al. [11]. The solution provided in [11]
requires a zero-knowledge proof, where each party is asked to prove distribution
of shares over a polynomial with zero free-coefficient. Unfortunately, such a proof
is either round-expensive (as in [11]) or requires a weaker adversarial model for
the problem to be solved efficiently (e.g., see [41]). On the other hand, by relaxing
the resiliency bound by only one less dishonest party, we can generate a random
polynomial that passes through the origin without requiring the zero-knowledge
step.

Let φ(x) be the original polynomial. The idea is to first generate a random
polynomial ρ(x) of degree deg(φ) − 1, and then compute a new polynomial
φ0(x) = x · ρ(x) that is of degree deg(φ) and passes through the origin. Finally,
the fresh polynomial is computed from φ(x)+φ0(x). The polynomial ρ(x) can be
simply generated by asking parties to agree on a secret-shared uniform random
value (using the protocol GenRand described in [62]) over a random polynomial
of degree deg(φ)− 1. Figure 1 depicts this idea for the special case of d = 1.

Theorem 8. [62] Let Q and Q′ be two quorums of size N , where Q holds a
shared value 〈s〉 = (s1, ..., sN ) over a polynomial φ of degree d = N/3. There
exists a protocol that can generate a new shared value 〈s′〉 = (s′1, ..., s′N ) in Q′

such that s′ = s. The protocol is secure against a computationally-unbounded
Byzantine adversary corrupting less than a 1/6 fraction of the parties in each
quorum.



Recent Results in Scalable Multi-Party Computation 39

5.2 Secure Multiplication

The secure multiplication protocol of [62] (denoted by Multiply) is based on a well-
known technique proposed by Beaver [6]. The technique generates
a shared multiplication triple (〈u〉, 〈v〉, 〈w〉) such that w = u · v. The triple
is then used to convert multiplications over shared values to additions.

The only difference between Multiply and Beaver’s multiplication method is
that Beaver generates shared random elements u and v on polynomials of degree
d and multiplies them to get a polynomial of degree 2d for w. Then, a degree
reduction algorithm is run to reduce the degree from 2d to d. Instead, we choose
polynomials of degree d/2 for u and v to get a polynomial of degree d for w. In
our protocol, since we require less of 1/6 fraction of the parties be dishonest in
each quorum, we can do this without revealing any information to the adversary.
We note that the first step of Multiply is independent of the inputs and thus, can
be performed in an offline phase to generate a sufficient number of multiplication
triples.

Theorem 9. [62] Given two secret-shared values 〈a〉 and 〈b〉, the protocol Mul-
tiply correctly generates a shared value 〈c〉 such that c = a · b. The protocol is
perfectly-secure against an adversary corrupting less than a 1/6 fraction of the
parties.

5.3 Simulation Results

To study the effectiveness of our techniques and compare our new MPC scheme
to previous work, we simulate our protocol along with the protocols of Dani
et al. [24] and Boyle et al. [9]. We use these protocols to solve the secure multi-
party sorting (MPS) problem. MPS is useful in many applications such as anony-
mous communication [7,51,54], privacy-preserving statistical analysis [20] (e.g.,
top-k queries [5]), auctions [60], and location-based services [61]. It is often impor-
tant for these applications to be run among many parties. For example, MPS is a
critical component of communications algorithms that could enable the creation
of large anonymous microblogging services without requiring trusted authorities
(e.g., an anonymous Twitter).

We run our protocol for inputs chosen from Zp with a 160-bit prime p for
getting about 80 bits of security. We set the parameters of our protocol in such
a way that we ensure the probability of error for the quorum building algorithm
of [8] is smaller than 10−5. For the sorting circuit, we set k = 2 to get ε < 10−8

for all values of n in the experiment. Clearly, for larger values of n, the error
becomes superpolynomially smaller, e.g., for n = 225, we get ε < 10−300. For all
protocols evaluated in this section, we assume cheating (by malicious parties)
happens in every round of the protocols. This is essential for evaluating various
strategies used by these protocols for tolerating active attacks.

Figure 2 illustrates the simulation results obtained for various network sizes
between 25 and 230 (i.e., between 32 and about 1 billion). To better compare the
protocols, the vertical and horizontal axis of the plot are scaled logarithmically.
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Fig. 2. Bandwidth cost of scalable MPC protocols

The x-axis presents the number of parties and the y-axis presents the number
of Kilobytes sent by each party for delivering one anonymous bit.

In this figure, we report results from three different versions of our protocol.
The first plot (marked with circles) belongs to our unconditionally-secure proto-
col (Theorem 6) that uses the perfectly-secure VSS scheme of Katz et al. [42].
The second plot (marked with stars) represents our computationally-secure pro-
tocol (Theorem 7) which uses the cryptographic VSS of Kate et al. [46]. The last
plot (marked with diamonds) shows the cost of the cryptographic protocol with
amortized (averaged) setup cost.

We obtain this by running the setup phase of our protocol once and then
using the setup data to run the online protocol 100 times. The total number of
bits sent was then divided by 100 to get the average communication cost. To
achieve better results, we also generated a sufficient number of random triples in
the setup phase. Then, the triples were used by our multiplication subprotocol
in the online phase to multiply secret-shared values efficiently.

Our protocols significantly reduce bandwidth costs when compared to the
protocols of [24] and [9]. For example, for n = 220 (about 1 million parties12),
the amortized protocol requires each party to send about 64KB of data per
anonymous bit delivered (about 8MB for our non-amortized version) while the
protocols of [24] and [9] each send more than one Terabytes of data per party
and per sorting bit delivered.

6 Conclusion

We described recent MPC algorithms that are efficient, even with many parties.
In particular, we reviewed the most important results that achieve scalability

12 This is less than 1% of the number of active Twitter users. An intriguing application
of our protocol is an anonymous version of Twitter.
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via quorums. To draw distinctions between various schemes, we described differ-
ent approaches used in the literature for solving MPC. We described six open
problems whose solutions would improve efficiency of scalable MPC schemes. Ad-
ditionally, we described constructive techniques to improve efficiency of current
quorum-based techniques. A drawback of most MPC results is the lack of em-
pirical studies. We addressed this by implementing and benchmarking a number
of recent methods as well as our new techniques.
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Abstract. I will present our (with Bart�lomiej Bosek, Dariusz Leniowski
and Anna Zych) recent results on the problem of maintaining maximum
size matchings in incremental bipartite graphs (FOCS’14). In this prob-
lem a bipartite graph G between n clients and n servers is revealed on-
line. The clients arrive in an arbitrary order and request to be matched to
a subset of servers. In our model we allow the clients to switch between
servers and want to maximize the matching size between them, i.e., af-
ter a client arrives we find an augmenting path from a client to a free
server. Our goals in this model are twofold. First, we want to minimize
the number of times clients are reallocated between the servers. Second,
we want to give fast algorithms that recompute such reallocation.

As for the number of changes, we propose a greedy algorithm that
chooses an augmenting path π that minimizes the maximum number of
times each server in π was used by augmenting paths so far. We show
that in this algorithm each server has its client reassigned O(

√
n) times.

This gives an O(n3/2) bound on the total number of changes, what gives
a progres towards the main open question risen by Chaudhuri et al.
(INFOCOM’09) who asked to prove O(n log n) upper bound. Next, we
argue that the same bound holds in the decremental case. Moreover,
we show incremental and decremental algorithms that maintain (1− ε)-
approximate matching with total of O(ε−1n) reallocations, for any ε > 0.

Finally, we address the question of how to efficiently compute paths
given by this greedy algorithm. We show that by introducing proper
amortization we can obtain an incremental algorithm that maintains
the maximum size matching in total O(

√
nm) time. This matches the

running time of one of the fastest static maximum matching algorithms
that was given by Hopcroft and Karp (SIAM J. Comput ’73). We extend
our result to decremental case where we give the same total bound on
the running time. Additionally, we show O(ε−1m) time incremental and
decremental algorithms that maintain (1− ε)-approximate matching for
any ε > 0. Observe that this bound matches the running time of the
fastest approximate static solution as well.
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Abstract. Model checking has always been the flag ship in the fleet of
automated formal verification techniques. It has been in the center of in-
terest of formal verification research community for more than 25 years.
Focusing primarily on the well-known state space explosion problem,
a decent amount of techniques and methods have been discovered and
applied to push further the frontier of systems verifiable with a model
checker. Still, the technique as such has not yet been matured enough to
become a common part of a software development process, and its pen-
etration into the software industry is actually much slower than it was
expected. In this paper we take a closer look at the so called explicit-state
model checking, we briefly recapitulate recent research achievements in
the field, and report on practical experience obtained from using our
explicit state model checker DIVINE. Our goal is to help the reader un-
derstand what is the current position of explicit-state model checking
in general practice and what are the strengths and weaknesses of the
explicit-state approach after almost three decades of research. Finally,
we suggest some research directions to pursue that could shed some light
on the future of this formal verification technique.

1 Introduction

Methods for ensuring quality of various software and hardware products are
inseparable part of the development process. For both software and hardware
developers it is often the case that the only technique used to detect system
flaws is testing, and, considering the cost of poor quality for a given product,
it is quite often a valid and reasonable choice. However, for those cases where
the consequence of a possible design error or an implementation bug is too high,
the standard testing approach is insufficient, either due to the inherent principal
incompleteness of error detection, or because the amount of tests to be done to
decrease the probability of an undiscovered error to an acceptable level is simply
too large. In such the cases formal verification methods come in place.

Model checking [28] is a formal verification procedure that takes the model of a
system under verification and a single piece of system specification as inputs. For
these the procedure decides whether the system meets the given specification or
not. In the negative case, i.e. when there is a behaviour of the system violating the
spec, a witness of such the violation, the so called counterexample, is (optionally)
returned.
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The strong benefit of the model checking approach is that when a verification
procedure successfully proceeds, it provides user of a model checker with the
confidence of satisfaction of validity of the given spec for the system at the level
that is equal to the confidence given by a mathematical proof. Moreover, the
decision procedure is fully automated (made by a computer) once the inputs are
put to a form suitable for the model checker in use.

These obvious benefits of model checking approach naturally do not come for
free. The standard work-flow of model checking requires user to provide model
checker with a formal description of both the system and specification to be pro-
cessed. Unfortunately, the experience with model checking shows that describ-
ing the system to be verified in a form acceptable by a model checker de facto
amounts to re-formulating the relevant parts of the system in the modelling lan-
guage of the model checker. While perhaps not very difficult, this is a step that is
hardly automated and thus requires non-trivial human effort. Similarly, formal-
ising specification in the context of model checking requires system engineers to
express individual system properties as temporal logic formulae. Depending on
the temporal logic used, we speak of the technique as of LTL (Linear Temporal
Logic) model checking, CTL (Computational Tree Logic) model checking, etc.
However, once the inputs to the model checker are in proper form, the decision
about validity of a single system property can be fully automated.

The principle behind the automated decision procedure is to let computer
fully explore all internal configurations of the system under verification. The so
called reachable state space is a set of system configurations that the system
may evolve to from a given set of initial states. With proper analysis of reach-
able state space the model checker may either proof the absence of erroneous
reachable configuration or proof the conformance of the system’s behaviour with
the specification given as a temporal logic formula.

Unfortunately, real-world systems have reachable state space as large as their
full analysis is beyond the capabilities of contemporary computing platforms. As
a result in many cases the verification by model checking ends up with a failure
due to insufficient computing resources, memory in particular. The fact that
the size of the state space tends to grow exponentially with the size of system
description, let us say in some programming language, is generally referred to as
the state space explosion problem. Actually there are two fundamental reasons for
the exponential grow — processing of inputs and control-flow non-determinism.

A lot of attention has been paid to the development of approaches to fight
the state space explosion problem [31] in the field of automated formal verifi-
cation [48]. Many techniques, such as state compaction [35], compression [37],
state space reduction [29,33,47], symbolic state space representation [23], etc.,
were introduced to reduce the memory requirements of a single model-checking
task. With the invention of application of binary decision diagrams to model
checking [46] the field of model checking has got split into symbolic and explicit-
state (enumerative) branch. While CTL has become the native specification logic
within the symbolic branch (namely due to the SMV model checker [27]), LTL
remain closely tied with the explicit-state model checking, also due to the well
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known explicit-state model checker SPIN [37]. Nevertheless, excursions in both
directions exist, see e.g. [22,30,53].

Henceforward, we primarily focus on the explicit-state branch and LTL model
checking. Due to Vardi and Wolper [52], the problem of LTL model checking re-
duces to the problem of checking Büchi automata emptiness, which in turns
amounts to the detection of an accepting cycle in a directed graph of the reach-
able state space producted with a monitor of an LTL property violation. Unfor-
tunately, accepting cycle detection algorithms as used in explicit-state model
checkers, such as SPIN [37], DIVINE [3], or LTSmin [18], has to construct
and store the whole graph of the product. Hence, those model checkers suf-
fer primarily from high memory demands caused by the state space explosion
problem.

This paper touches three main directions taken recently with respect to the
LTL explicit-state model checking. In Section 2, we briefly recapitulate research
effort spent in fighting state space explosion by means of parallel and distributed
memory processing. Even though the state space explosion is a serious problem,
surprisingly, it is not always the primary one that prevents model checking from
being used in practice. Another quite hampering factor in the model checking
scheme is the need of formal modelling. To address this problem we discuss, in
Section 3, a direct application of explicit-state model checking to an LLVM bit-
code. LLVM bitcode is used as an internal compiler representation of a program,
and hence, it is automatically obtained from a source code with a common com-
piler. In Section 4 we notice that explicit-state model checking is typically used
as an instance of unit-testing, and we discuss an extension towards symbolic
representations that would push explicit-state model checking back to formal
verification. Finally, Section 5 offers a few final remarks and hopefully gives
some clues for the future of explicit-state model checking.

2 Parallel Processing and State Space Explosion

There is no doubt that the range of verification problems that can be solved
with logic model checking tools has increased significantly over the last few
decades. Though surprisingly, this increase is not only based on newly discovered
algorithmic advances, but is strongly attributed to the increase in the speed of a
single processor core and available size of the main memory [39]. Realising that
the efficiency of explicit-state model checking strongly depends on the speed of
computing hardware used, and supported with the fact that the speed of a single
CPU core is not going to scale in the future, no option was left out than to go
for parallel processing.

The main obstacle for direct extension of existing sequential LTL model
checkers towards parallel architectures lied in the fact that a time-optimal pa-
rallel and scalable algorithm for Büchi emptiness problem is unlikely to ex-
ist [49]. (This is still an open problem.) As a result the pioneering work in
parallel and distributed-memory LTL model checking [8] employed parallel scal-
able, but time-unoptimal algorithms for accepting cycle detection. While in the
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sequential case, algorithms for accepting cycle detection, such as Nested DFS [32]
or various versions of Tarjan’s algorithm for SCC decomposition [51], relies on
the depth-first-search post-order, distributed-memory algorithms are built on
top of reachability procedures, value propagation or topological sort [9,21].

Distributed-memory processing cannot fight the state space explosion problem
alone and must be combined with other techniques. One of the most successful
technique to fight the state space explosion in explicit-state model checking is
Partial Order Reduction [47]. As a matter of fact, new topological sort proviso
had to be developed in order to maintain efficiency of partial order reduction in
the distributed-memory setting [6]. Another important algorithmic improvement
relates to classification of LTL formulae [25]. For some classes of LTL formulae
the parallel algorithms could be significantly improved [2]. For weak LTL formu-
lae, the OWCTY algorithm [24] even matches the optimal sequential algorithms
in terms of complexity. However, this algorithm suffers from not being an on-the-
fly algorithm. Since the on-the-fly verification is an important practical aspect,
a modification of this algorithm that allows for on-the-fly verification in most
verification instances has been also developed [5].

All the distributed-memory algorithms has been implemented as part of pa-
rallel and distributed-memory LTL model checker DIVINE [12]. However, the
focus of DIVINE on non-DFS-based algorithms and distributed-memory process-
ing, does not require DIVINE to be used in distributed-memory only. As a matter
of fact, DIVINE runs smoothly also in a shared-memory setting [4].

Since the lack of ability of parallel processing would mean a significant
drawback for other explicit-state model checkers considering the contemporary
computing hardware, they have also undergone a parallel processing face-lift.
Namely, the SPIN model checker has been adapted to parallel processing with
the so called stack-slicing [38] and piggybacking [41] techniques. Though, the
most innovative extension of SPIN with respect to parallel processing was the so
called swarm verification [39,40] that took the step towards the map-reduce
pattern in model checking. In particular, a single verification task is cloned as
many times as is the number of available processors, and for each clone the
order of exploration of the state space is altered. In such a swarm of parallel
tasks, the probability of early detection of an accepting cycle is significantly
increased.

A completely different approach was chosen for LTSmin model checker [43].
Authors of which has successfully adapted sequential Nested DFS algorithm to
parallel shared-memory processing. The idea is to run Nested DFS algorithm
freely in parallel and then detect and recover from situations that could violate
the soundness of computation. Even though such an approach cannot scale in
general, practical measurements showed a superior results on shared-memory
architectures [34,42].

Yet another parallel computing platform has become popular recently – gen-
eral purpose graphical processing units (GPGPUs). Though, this platform was
never meant for acceleration of memory demanding computations, the raw com-
puting power of it is rather attractive. A series of results regarding acceleration
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of LTL model checking has been published recently employing non-DFS-based
algorithms for accepting cycle detection [1,10,11] and accelerated state space
generation [54].

3 Model Checking without Modeling

Recent formal verification research activities put a strong emphasis on direct ap-
plicability of verification methods in practice. This is witnessed, e.g., by Software
Verification Competition [17] – a mainstream activity in the program analysis
community. The strong drive to make formal method applications approachable
by the general software development and engineering community highlights the
fact that the most important factor of using formal methods in practice is their
ease of use. Hence, formal methods must be applied on artefacts that software
engineers and developers naturally work with, i.e. at the level of source code.

Moreover, should the model checking method spread massively and a model
checkers become regular utility for software developers, it has to implement
a full programming language specification, so that the programs the software
developers write and run are also valid inputs for the model checker. Program-
ming languages are rather complex in their full specification, and still engineers
in pursuit of more elegant and more maintainable code balance on the bound-
aries of what is allowed and what is not in a particular programming language.
Therefore, introducing substantial constraints on a programming language in
order to enable model checking typically results in complete elimination of the
model checking process from the development cycle.

A new approach to verification of C/C++ programs without the explicit need
of modeling has been presented in [7]. The suggested solution effectively chains
our parallel and distributed-memory model checker DIVINE with CLang compiler
using the LLVM [44] infrastructure, intermediate bitcode representation (LLVM
IR) in particular. Even though, LLVM IR has not precise semantics, the fact is
that real-world compilers achieve an enviable level of agreement in this respect,
despite numerous optimisation passes they all implement.

Using the LLVM IR as input for model checking thus not only enables model
checking without the tedious process of system modelling, but it also provides a
stable modelling language with reasonable well defined semantics. Within such
a setup model checkers, such as DIVINE, may offer full LTL model checking of
virtually unmodified C/C++ source codes.

The only limitation regarding input to the model checker is the need for com-
pleteness of the C/C++ program description. As a matter of fact, the model
checker cannot verify programs that do calls to external libraries for which it has
no source code available. Similarly, any calls to the kernel of operating system,
such as processing of input and output are beyond the scope of this approach,
unless the external environment is somehow added to the program and simulated
without actual performance of Input/Output instructions. In principle, such
a usage scenario resembles the well known unit testing approach.

Note that DIVINE internally provides an implementation of majority of the
POSIX thread APIs (pthread.h), which in turns enables verification of unmodi-
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fied multithreaded programs. In particular, DIVINE explores all possible thread
interleavings systematically at the level of individual bitcode instructions. This
allows DIVINE, for example, to virtually prove an absence of deadlock or as-
sertion violation in a given multithreaded piece of code, which is a feat that is
impossible to achieve with the standard testing techniques.

The main disadvantage of modelling the systems to be verified at the level
of LLVM bitcode is the very fine grained nature of this language is subject to
the thread of massive state space explosion. However, the low-level nature of
LLVM entails a granularity of operations much finer than what is necessary
for verification. τ -reduction [7] proposes a collection of heuristics that lead to
a coarser granularity without losing correctness of the overall verification. The
basic idea behind τ -reduction is that effects of instructions are observable from
other threads only when the thread accesses main memory via load or store
instructions. Model checker can benefit from this fact by pretending that most
instructions are invisible and executing more of them within one step.

Among the latest extension of our LLVM bitcode model checker is the in-
ternal support for the full C++11 exception handling mechanism and C++11
threading [50].

4 Symbolic Data in Explicit-State Model Checking

For programs that do not process input data, the entire state space to be explored
is derived from the program source code itself. Let us refer to these programs
as to closed systems. For closed systems, model checking equals to formal verifi-
cation, as it can guarantee that no system execution violates the model-checked
property. As mentioned above this is particularly interesting for multithreaded
programs, since for those programs regular testing approach is insufficient to de-
tect all concurrency related issues due to the non-deterministic nature of thread
scheduling.

However, for programs that read input data (the so called open systems),
explicit-state model checking approach is in trouble. Note that even for a simple
program that reads only a single 32-bit integer value, the enumeration of all
possible input values would result into an unmanageable state space explosion.
Hence, the idea of closing an open system with an environment process that
would feed the program with all possible inputs is, in the case of explicit-state
model checking, out of use. Though, for open systems that are executed over
some concrete input data, i.e. the usual way the systems are tested; application
of explicit-state model checking may have some benefits. In those cases model
checking can detect inappropriate behaviour of the system after a system call
failure, errors in exception handling, and/or other errors related to the control-
flow non-determinism in general.

Still open systems represent a verification challenge. The way explicit-state
model checking can address this problem is the so called control explicit, data
symbolic (CEDS) approach [13]. The idea of it is to let a model checker track
explicitly only the control-flow part of a system configuration while data values



52 J. Barnat

are stored symbolically. In other words, for each control-flow point the model
checker keeps a set of possible data values that are valid for the particular control-
flow point, the so called multi-state. Such a set-based representation of data
allow for efficient handling of both sources of non-determinism present in the
state space graph.

Naturally, the way the set of values are represented may differ. Explicit sets,
i.e. when set members are enumerated explicitly, are very fast for small ranges
but as mentioned above fail to scale. On the other hand, symbolic sets, repre-
sented, e.g., by first-order formulae in the bit-vector theory scale well to arbitrary
range of input variables, but their usage make the model checker dependent on
the efficiency of satisfiability modulo theory solvers.

Moreover, the detection of accepting cycles as prescribedby the automata-based
approach to LTLmodel checking requires deciding equality of twomulti-states dur-
ing the state space traversal. In the explicated state space, this operation is trivial
to be implemented efficiently with a hash table. However, when the sets of val-
ues are represented with logic formulae the decision of equivalence of multi-states
is quite troublesome as the formulae lack unique canonical form. Since two equal
multi-states may have different memory representations, use of efficient hashing is
prohibited.

For those symbolic representations that allow at least linear ordering of multi-
states, a logarithmic search would be possible, however, when using bitvector
formulae this is not the case. The only obviously available option is a linear search
in which the potentially new multi-state associated with a given control-flow
point is compared with every other multi-state generated so far and associated
to the same control-flow point. Note that the complexity of equality operation
for multi-states may be very high [14].

Unfortunately, the CEDS approach is not without limitations. For example, it
is unclear how to deal with dynamic allocation of memory blocks of which size is
prescribed with a symbolically treated input variable. Nevertheless, for programs
avoiding these allocations, the CEDS approach provides complete and efficient
automatic verification procedure. As a matter of fact, we have implemented the
CEDS approach by integrating DIVINE model checker and Z3 SMT solver [36]
and applied our new tool successfully to verify some multithreaded programs
with input [14]. We were also able to apply LTL model checking for verification
of open embedded systems, simulink diagrams in particular [15].

Regarding verification of LTL properties, other symbolic approaches exist,
the standard symbolic model checking [26], interpolation [45], and IC3 ap-
proach [19,20] are the most relevant. According to our experimental compar-
ison [16] there is no clear winner among these approaches in terms of the speed
of verification and applicability. In other words, extending explicit-state model
checking with symbolic data representation feature makes the technique a com-
petitive approach in the formal verification field in general.



Quo Vadis Explicit-State Model Checking 53

5 Conclusions and Future Directions

The cost of deployment of formal verification (integration of a formal verifica-
tion method into a development cycle) and also quite often really questionable
performance are the key factors that prevent formal verification methods such
as LTL model checking from being massively used in practice. While ease of
use and readiness for immediate applicability have often minimal value from
the academic point of view, for industry, these are the most important factors
considered in many situations. As a matter of fact, a service that would include
the tedious step of manual modelling is to be refused immediately by many
practitioners.

Another show-stopper for academic tools are restrictions put on inputs that
are processed. A tool that cannot deal with dynamic memory allocation can never
be expected to be useful in practical verification of software systems. Should a
formal verification tool be considered for massive use, the methods the tool
builds on must be as complete as to be able to process a full-scale programming
language including exception handling mechanism, dynamic memory allocation,
object-oriented principles, etc.

Though, formal verification tools that are limited to some degree may still be
successfully employed in many specific situations. Both practitioners and aca-
demic should learn how to find and communicate these specific setups in order
to avoid a failure deployment of a model checker due to exaggerated expecta-
tions of practitioners, as well as to avoid missed opportunities due to the lack
of advertisement and reporting on successful applications of model checkers in
practice.

As for the explicit-state model checking approach, we have identified some of
the obstacles preventing both the ease of use and efficiency of explicit-state model
checkers in this paper. We showed two directions to take that counteract these
problems, the connection to LLVM intermediate representation and extending
the model checker with symbolic representations of data. Still there is much to
do in the future.

Less theoretical, but by no means less important for verification of larger pro-
grams, is input preprocessing. The verification effort must start with pruning
away those parts of the input programs that cannot influence the decision about
the correctness. Especially given the low-level nature of LLVM, clever heuris-
tics for detecting irrelevant code could lead to considerably smaller control-flow
graphs. Methods such as slicing or automated abstractions will become a com-
mon part of the model checking work-flow to alleviate the burden of state space
explosion as much as possible.

The technology evolution also must not be neglected. Should explicit-state
model checking have some future, we predict that it must be able to fully utilise
the power of future computing platforms, such as network clusters and clouds.
History showed that the raw computing power cannot be underestimated, there-
fore we predict that new methods and techniques to allow trading of space
requirements for computation time will be needed.
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Finally, it is clear that there is no winning approach in the field of formal
verification. An integration of techniques such as explicit-state model checking,
symbolic execution and abstract interpretation is the next logical step towards
the formal verification approach of the future. However, a key factor of success
of such the combination is to preserve the general ability to process inputs in
some form of full-scale programming language. As for approaches presented in
this paper, the full combination of LLVM model checking and CEDS approach
is yet to be seen.
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2. Barnat, J., Brim, L., Černá, I.: Property driven distribution of Nested DFS. In:
Proc. Workshop on Verification and Computational Logic, number DSSE-TR-2002-
5 in DSSE Technical Report, pp. 1–10. University of Southampton, UK (2002)

3. Barnat, J., Brim, L., Havel, V., Havĺıček, J., Kriho, J., Lenčo, M., Ročkai, P.,
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5. Barnat, J., Brim, L., Ročkai, P.: A Time-Optimal On-the-Fly Parallel Algorithm
for Model Checking of Weak LTL Properties. In: Breitman, K., Cavalcanti, A.
(eds.) ICFEM 2009. LNCS, vol. 5885, pp. 407–425. Springer, Heidelberg (2009)
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1 Introduction

In 1957, the eminent computer scientist, Edsger W. Dijkstra, sought to record his pro-
fession as “Computer Programmer” on his marriage certificate. The Dutch authorities,
although probably more progressive than most, refused on the grounds that there was
no such profession. Ironically, just a decade later, the term “software crisis” had been
coined, as delegates at a NATO Conference in Garmisch [1] reported a common set of
problems, namely that software took too long to develop, cost too much to develop, and
the software which was eventually delivered did not meet user expectations. Despite
the advances in technology over the past 50 years, this remains problematic, as evi-
denced by the following quote from the US President’s Council of Advisors on Science
& Technology (PCAST) in 2012.

“The problem of predictable development of software with the intended func-
tionality that is reliable, secure and efficient remains one of the most important
problems in [ICT]”

A number of initiatives have emerged over the years to address the software crisis.
Outsourcing of the software development activity has been on the increase in recent
years according to US1 and European2 reports. However, in many cases outsourcing
of software development has not been successful [2,3]. The success of the open source
movement which has proven surprisingly successful at developing high quality software
in a cost effective manner [4] has been an inspiration for a number of specific forms of
software outsourcing, including opensourcing [5], innersourcing [6] and crowdsourcing
[7].

2 Open-Source-Inspired Outsourcing

The conventional wisdom of software engineering suggests that given the inherent com-
plexity of software, it should be developed using tightly co-ordinated, centralized teams,
following a rigorous development process. In recent times, the Open Source Software

1 IT Outsourcing Statistics: 2012/2013.
2 European IT Outsourcing Intelligence Report.

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 58–64, 2015.
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(OSS) phenomenon has attracted considerable attention as a seemingly agile, practice-
led initiative that appears to address these three aspects of the so-called “software cri-
sis”: cost, time-scale and quality. In terms of costs, OSS products are usually freely
available for public download. From the point of view of development speed, the col-
laborative, parallel efforts of globally-distributed co-developers has allowed many OSS
products to be developed much more quickly than conventional software. In terms
of quality, many OSS products are recognized for their high standards of reliability,
efficiency and robustness, and the OSS phenomenon has produced several “category
killers” (i.e., products that remove any incentive to develop any competing products) in
their respective areas—Linux and Apache spring to mind. The OSS model also seems to
harness the most scarce resource of all—talented software developers, many of whom
exhibit a long-standing commitment to their chosen projects. It is further suggested that
the resulting peer review model helps ensure the quality of the software produced.

This brief synopsis illustrates why the OSS topic would be of such interest to the
software engineering community, and also provides a hint as to why it would have
greater research appeal and interest, particularly in an outsourcing context where com-
panies seek to take advantage of resources beyond co-located developers on a single site.
As mentioned, the OSS phenomenon has inspired other forms of outsourcing, of which
crowdsourcing is one. This work will focus on crowdsourcing in software development.

3 Crowdsourcing Software Development

Software engineering no longer takes place in small, isolated groups of co-located devel-
opers, all working for the same employer, but increasingly takes place in a globalized
context across organizations and communities involving many people. One emerging
approach to getting work done is crowdsourcing, a sourcing strategy that has emerged
since the nineties [8]. Driven by Web 2.0 technologies, organizations can tap into
a workforce consisting of anyone with an Internet connection. Customers, or requesters,
can advertise chunks of work, or tasks, on a crowdsourcing platform, where suppliers
(i.e., individual workers) select those tasks that match their interests and abilities [9].

Crowdsourcing has been adopted in a wide variety of domains, such as design and
sales of T-shirts [10] and pharmaceutical research and development [11] and there are
numerous crowdsourcing platforms through which customers and suppliers can find
each other [12]. One of the best known crowdsourcing platforms is Amazon Mechani-
cal Turk (AMT) [13]. On AMT, chunks of work are referred to as Human Intelligence
Tasks (HIT) or micro-tasks. Typical micro-tasks are characterized as self-contained,
simple, repetitive, short, requiring little time, cognitive effort and specialized skills, and
crowdsourcing has worked particularly well for such tasks [14]. Examples include tag-
ging images, and translating fragments of text. Consequently, remuneration of work is
typically in the order of a few cents to a few US dollars.

In contrast to micro-tasks, software development tasks are often interdependent, com-
plex, heterogeneous, and can require significant periods of time, cognitive effort and
various types of expertise. Yet, there are cases of crowdsourcing complex tasks; for
instance, InnoCentive deal with problem solving and innovation projects, which may
yield payments of thousands of US dollars [10]. A number of potential benefits may
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arise through the use of crowdsourcing in general, and these would also be applicable
in the context of software development specifically:

– Cost reduction through lower development costs for developers in certain regions,
and also through the avoidance of the extra cost overheads typically incurred in
hiring developers;

– Faster time-to-market through accessing a critical mass of necessary technical tal-
ent who can achieve follow-the-sun development across time zones, as well as par-
allel development on decomposed tasks, and who are typically willing to work at
weekends, for instance;

– Higher quality through broad participation: the ability to get access to a broad and
deep pool of development talent who self-select on the basis that they have the
necessary expertise, and who then participate in contests where the highest quality
‘winning’ solution is chosen;

– Creativity and open innovation: there are many examples of “wisdom of crowds”
creativity whereby the variety of expertise available ensures that more creative so-
lutions can be explored, which often elude the fixed mindset that can exist within
individual companies, a phenomenon known as ‘near-field repurposing of knowl-
edge.’

Given that the first three benefits above (cost, time and quality) directly address the
three central problematic areas of the so-called ‘software crisis’ [15], it is not surpris-
ing that a number of authors have argued that crowdsourcing may become a common
approach to software development [16,17].

We conducted a case study of a major multinational company who commissioned
a crowdsourcing software development initiative using the TopCoder platform [7]. Be-
low we present a number of lessons learned in the form of Dos and Dont’s.

4 The Dos in Crowdsourcing Software Development

4.1 Do Familiarize Yourself with the Crowdsourcing Process

The software development approach in crowdsourcing can be significantly different
from that which organizations use for their internal development. For example, the
crowdsourcing software development process at TopCoder is a waterfall process and
it is not trivial to integrate this with the agile type approach which characterizes the
majority of in-house development today. It is important to become familiar with the
crowdsourcing process at the outset, so that architects, developers and project managers
can prepare and discuss internally what needs to be done for a smooth interaction with
the crowd.

There are several new roles which emerge when crowdsourcing software develop-
ment. For example at TopCoder, the interaction with crowd contestants is mediated by
co-pilots who are experienced members of the crowd community and platform special-
ists who interact with customer companies. Also, while the concept of first and second
prizes is clear, concepts such as Reliability Bonus and Digital Run points are not so
obvious but have significant financial implications for the customer. The level at which
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prize money should be pitched for competitions, and the preparing of specifications
and reviewing of competitions is also something which needs to be understood in the
crowdsourcing software development process.

The warranty periods for crowdsourced work can also be problematic. For example,
TopCoder operate a five day warranty period after a competition winning entry has been
selected, during which the customer has to accept or reject the submission. This requires
discipline at the customer end to ensure that submissions can be internally reviewed.
There is also a 30-day warranty period during which problems can be reported. How-
ever, it can be difficult to operate this longer warranty period usefully as some much
additional interdependent development work would have been done in the intervening
30 days and this would make it difficult to roll back the crowdsourcing element.

4.2 Do Provide Clear Documentation to the Crowd

Documentation clearly plays an important role, as this is the key channel through which
crowd developers will know what to develop. The documentation that specifies the con-
text and the requirements for the software development task at hand must be easy to
understand and provide sufficient information for crowd developers to do their task.
Finding the right balance is important; giving either too little or too much informa-
tion will result in a deliverable that is likely to be unacceptable. Overwhelming the
crowd with information is likely to scare them off, resulting in few or even no submis-
sions. Also, the crowd tend not to have a recurrent relationship with customers. Thus
the kind of tacit organizational knowledge that one can take for granted for in-house
development does not occur in crowdsourcing. Consequently, far more comprehensive
and explicit documentation of requirements is necessary.

4.3 Do Assign a Special Person to Answer Questions from the Crowd

Interacting with the crowd can be a very time-consuming activity. In the case study we
conducted, the single point of contact had to have both technical and project manage-
ment skills, and consequently such a liaison ended up being a senior resource. However,
a significant amount of time of this senior person was taken up by answering technical
questions on the Q&A forum through which crowd developers asked for clarification.
Therefore, a better approach would be to allocate a person who would be well informed
about the technical intricacies of the project but who would not have a senior role, and
hence be a cheaper resource. The nature of interaction which takes place episodically,
perhaps once per day, through the rather narrow Q&A forum also requires quite a lot of
discipline on the part of the person charged with that responsibility.

5 The Don’ts in Crowdsourcing Software Development

5.1 Don’t Stay Anonymous

A crowdsourcing customer may be concerned about potential IP “leaking,” and giving
away the company’s “Secret Sauce.” As a result, a customer may choose to disguise
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their participation by staying anonymous, using a pseudonym in contest descriptions.
However, a significant downside of that tactic is that such contests may attract very
little interest and participation from the crowd. For crowd developers, it can be particu-
larly interesting to work for blue chip companies as doing so allows them build their re-
sumes. It is not uncommon for developers to use their TopCoder ‘rating’ on their resume
as evidence of their technical skills and know-how. By staying anonymous, however,
a customer may be much less appealing to work for. Also, the anonymity may offer an
inadequate level of protection anyway in that the specifications for a competition may
effectively reveal the company’s identify anyway.

5.2 Don’t Reject Submissions If They Can Easily be Fixed

Once a contest is over, the customer may have five days to accept the ‘winning’ sub-
mission. This means that there is only limited time for a customer to fully analyze and
test the deliverable before an accept or reject decision must be made. If a customer
decides the deliverable is not of the expected quality, it may be rejected. However, a
possible negative side effect is that crowd developers may not participate in future con-
tests of this customer, as doing so involves a risk of spending time and not getting paid
for it. If a customer is not yet ready to handle the incoming deliverable, the customer
can, of course, just accept the deliverable. After accepting, there is an additional war-
ranty period of 30 days during which identified defects can be reported and fix without
additional cost. However, taking this route can pose significant overhead in receiving,
checking and integrating the fixed deliverable. Therefore, a customer is probably better
off to fix minor defects internally rather than using the warranty period.

5.3 Don’t Underestimate the Cost

The cost of crowdsourcing software should not be underestimated. Using the TopCoder
platform, for example, the cost of a single contest can be much higher than merely the
prize money for the First Prize. Assuming a first place prize of 1,000 USD, the prize
money for the second place is 500 USD. Add to that a Reliability Bonus of 200 USD,
a Digital Run contribution of 450 USD, a specification review of 50 USD, a review
board of 800 USD, and co-pilot fees of 600 USD, a single contest would cost 3,600
USD.

5.4 Don’t Expect Miracles

Finally, it is important to stress that crowdsourcing software development does not rep-
resent the much sought after ’silver bullet.’ Expected benefits from crowdsourcing in-
clude high-quality and innovative solutions in a faster time-scale and low cost. Indeed,
given TopCoder’s workforce of around 700,000 developers, one would expect a signif-
icant number of participants for each contest, and consequently, high-quality of inno-
vative deliverables. However, our findings suggest quite a different picture. For the 53
contests held by our case study company, there were a total of 720 registrants, and a
total of only 84 submissions, less than two on average. Furthermore, there were more
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than 500 issues reported with these submissions. The case company was also quite
disappointed by the level of innovation–rather than the expected high-quality HTML5
code (HTML5 has many novel features compared to HTML4), few HTML5 features
were actually used due to the portability constraints set forth by the customer company.

6 Conclusion

Crowdsourcing software development is not as straightforward as crowdsourcing micro-
tasks found on platforms such as Amazon Mechanical Turk. Given the complexity of
software development, we should not be surprised that the difficulties in ‘common’ (in-
house) software development settings are exacerbated when outsourced to a crowd. Yet,
little is known about crowdsourcing software development, and our suggested dos and
don’ts are based on a single case study. More research is necessary–to that end, we
developed a research framework that identifies the key perspectives and concerns [18].
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Abstract. The wealth of information generated by users interacting
with the network and its applications is often under-utilized due to com-
plications in accessing heterogeneous and dynamic data and in retrieving
relevant information from sources having possibly unknown formats and
structures. Processing complex requests on such information sources is,
thus, costly, though not guaranteeing user satisfaction. In such environ-
ments, requests are often relaxed and query processing is forced to be
adaptive and approximate, either to cope with limited processing re-
sources (QoS-oriented techniques), possibly at the price of sacrificing
result quality, or to cope with limited data knowledge and data hetero-
geneity (QoD-oriented techniques), with the aim of improving the qua-
lity of results. While both kinds of approximation techniques have been
proposed, most adaptive solutions are QoS-oriented. Additionally, tech-
niques which apply a QoD-oriented approximation in a QoD-oriented
adaptive way (called ASAP - Approximate Search with Adaptive Pro-
cessing - techniques), though demonstrated potentially useful in getting
the right compromise between precise and approximate computations,
have been largely neglected. In this paper, we first motivate the problem
and provide a taxonomy for classifying approximate and adaptive tech-
niques according to the dimensions pointed out above. Then, we show,
through some concrete examples, the benefits of using ASAP techniques
in two different contexts.

Keywords: query processing, approximate technique, adaptive tech-
nique, Quality of Data, Quality of Service.

1 Introduction

The last decade has seen the raise of new applications and novel processing
environments characterized by high heterogeneity, limited data knowledge, ex-
tremely high variability and unpredictability of data characteristics and dynamic
processing conditions. All such characteristics are shared by most data manage-
ment applications under distributed architectures, including data integration
applications, web services, data streams, P2P systems, and hosting.

Query processing in such new application contexts is characterized by two
main features: adaptivity, in order to adapt the processing to dynamic condi-
tions that prevent the selection of a single optimal execution strategy, and ap-
proximation, in order to cope with data heterogeneity, limited data knowledge

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 65–77, 2015.
� Springer-Verlag Berlin Heidelberg 2015
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during query specification, and limited resource availability, which make precise
answers impossible to compute or unsatisfactory from a user point of view.

As discussed in [9], approximate and adaptive techniques can be classified into
two main groups. When they are targeted to improve the quality of result, either
in terms of completeness or in terms of accuracy, we refer to the techniques as
Quality of Data (QoD)-oriented techniques. By contrast, when they are used in
order to cope with limited or constrained resource availability during processing,
we refer to the techniques as Quality of Service (QoS)-oriented techniques. For
example, in order to maximize completeness or accuracy, QoD parameters have
to be taken into account for adapting or approximating query specification and
processing. Often, both QoD and QoS parameters are taken into account, in
order to provide the best trade-off between resource usage and data quality.

While both QoS-oriented and QoD-oriented approximate techniques have been
proposed, most adaptive solutions are QoS-oriented. QoS-oriented approximation
is often applied in an adaptive way, that is, when targeted at achieving
a QoS goal, e.g., related to load, throughput, or memory, approximation is applied
adapting to runtime conditions, possibly ensuring that certain QoD constraints
are met or, less frequently, with a QoD-oriented goal (that is, minimizing the in-
troduced inaccuracy). By contrast, very few approaches apply QoD-oriented ap-
proximation techniques in an adaptive way.

In [8,9], we claimed instead that QoD-oriented adaptive approaches for QoD-
oriented approximation techniques, called ASAP (Approximate Search with
Adaptive Processing) techniques in the following, may help in getting the right
compromise between precise and approximate computations. More generally,
we claimed that ASAP can be defined as a new framework under which QoD-
oriented approximation techniques, which may adaptively change, at run-time,
the degree of the applied approximation, can be defined. For example, this can
be achieved by providing execution plans which interleave both precise and ap-
proximate evaluations in the most efficient way, dynamically taking decisions
concerning when, how, and how much to approximate, with the goal of improv-
ing the quality of result with efficiency guarantees. Unfortunately, as far as we
know, no general solution has been proposed so far for the problem described
above. Some preliminary work has been presented in [19], where the use of adap-
tive techniques for combining exact (fast) and approximate (accurate) joins when
performing dynamic integration has been proposed.

Our group is currently interested in investigating ASAP approaches in diffe-
rent scenarios, taking care of problems related to data heterogeneity and limited
data knowledge in different potentially distributed architectures. In this paper,
after summarizing existing approximate and adaptive approaches with respect to
the type of quality they are targeted to, we consider two different instantiations of
the concept of ASAP technique. The first one, that we call ASAP in the small,
concerns the definition of a specific ASAP technique for a given application
context, namely advanced architectures with a limited degree of distribution,
like data stream management systems. The second one, that we call ASAP in
the large, concerns a vision related to environments characterized by a higher
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degree of distribution and data heterogeneity. The paper is then concluded by
some final considerations and discussion about on-going work on this subject.

2 A Taxonomy for Approximate and Adaptive Techniques

A query processing technique is said to be adaptive if the way in which a query
is executed may change on the basis of the feedbacks obtained from the en-
vironment during evaluation. Adaptive techniques can be characterized by the
following components: (i) subject, i.e., the elements in the processing affected
by the adaptation (e.g., the query execution plan, or the assignment of load to
processors); (ii) target, i.e., what the technique attempts at adapting to, that
is, the properties monitored and the feedbacks collected during evaluation (e.g.,
data characteristics, arrival rates, network condition, processors load); (iii) goal
or aim, i.e., the parameter(s) appearing in the objective function, that is, what
the technique attempts to maximize/minimize (e.g., result data quality, time,
throughput, energy consumption).

A query is said to be relaxed if its result is either stretched or shrunk when the
results of the original query are too few or too many. Preference-based queries,
such as top-k or skyline queries, can be considered relaxed queries as well: they
can be thought as a shrinking with respect to the overall set of possible results,
since they reduce the cardinality of the ranked result set, or as a stretching
approach with respect to the set of optimal results. A processing technique is
said to be approximate if it does not produce the exact result but an approximate
one, possibly with some guarantees on the “distance” of the generated solution
from the exact one.

Approximate queries or techniques can be characterized by the following com-
ponents: (i) subject, representing the query processing task or the data to which
approximation is applied (e.g., query specification, through rewriting or prefer-
ences, or processing algorithm); (ii) target, representing the information used for
the approximation (e.g., ranking function, set of relevant attributes, similarity
function, pruning condition, used summary); (iii) goal or aim, i.e., the parame-
ter(s) appearing in the object function of the technique, that is, what it attempts
to maximize/minimize (e.g., result data quality, time, throughput).

As pointed out in the introduction, depending on their aim, approximate and
adaptive techniques can be classified into Quality of Data (QoD)-oriented tech-
niques, when they are finalized at improving the quality of result, either in terms
of completeness or in terms of accuracy, and Quality of Service (QoS)-oriented
techniques, when they are used in order to cope with limited or constrained
resource availability during query processing.

While both QoS-oriented and QoD-oriented approximate techniques have
been proposed, most adaptive solutions are QoS-oriented. In the following, each
group of proposals is discussed, pointing out the main considered subjects.

QoD-Oriented Approximate Techniques. They provide approximate an-
swers in situations where precise results are not always satisfactory for the user.
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High data heterogeneity and limited user knowledge about such data, indeed,
may cause precise evaluation produce empty/few answers or too many answers.
A solution consists in modifying traditional queries, such as selections and joins,
by relaxing their definition or by approximating their evaluation, in order to im-
prove result quality, in terms of completeness and relevance with respect to the
original query. Query rewritings like those presented in [6,22,29] and preference-
based queries, such as top-k and skyline [7,16,25] are examples of QoD-oriented
approximation techniques which relax the original query definition with the goal
of returning a more satisfactory answer set. A third group of QoD-oriented ap-
proximate techniques concerns processing algorithms for executing a traditional
query (e.g., a join) by using ad hoc query processing algorithms which auto-
matically apply the minimum amount of relaxation based on the available data,
in order to return a non-empty result similar to the user request. Most QoD-
oriented ApQP techniques concern the join operator [18] and face approximate
match issues for strings [14] or numeric values [26]. In defining QoD-oriented
techniques, QoS guarantees have to be provided, in order to cope with the avail-
able resources in the most efficient way.

QoS-Oriented Approximate Techniques. They provide approximate an-
swers, with accuracy guarantees, to computationally expensive operations also
in environments characterized by limited or unavailable resources, where a pre-
cise result can be obtained only at the price of a unacceptably high response
time, communication overhead, occupied space, or it cannot be obtained at all.
QoS-oriented techniques have been mainly defined for queries to be executed over
either huge amount of data (as in data warehousing systems and in stream-based
management systems) or complex data (like spatial data) or because correspond-
ing to very expensive computations (as multi-way joins). Concerning the subject,
four main distinct aspects have been considered: query rewriting, e.g., those pre-
sented in the data stream context [23]; data reduction, where data themselves
are approximated with the aim of reducing or simplifying the dataset over which
queries have to be executed [13,27], including load shedding [4,28]; processing al-
gorithms, which modify traditional and non approximate processing techniques
in order to generate an approximate result in an efficient way, with respect to
the available resources [1, 3].

QoS-Oriented Adaptive Techniques. In adaptive query processing, the way
in which a query is executed is changed on the basis of the feedbacks obtained
from the environment during evaluation. The classical plan-first execute-next
approach to query processing is replaced either by giving away the notion of
query plan at all, as in routing based approaches, where each single data item
can participate to the production of the final result taking its own way (route)
through operators composing the query, or by a dynamic optimization process,
in which queries are on-the-fly re-optimized through a two-steps solution. Some
approaches (e.g., [4,5,24,28]) introduce approximation, thus they have an impact
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on QoD, and some others [15,20] process approximate operators (i.e., top-k), but
the aim of the adaptation is QoS.

ASAP Techniques. Some of the techniques discussed above exhibit an adap-
tive behavior and, at the same time, introduce some approximation. Specifically,
some approaches to QoS-oriented adaptive processing of QoD-oriented approx-
imate queries have been proposed, but target and goal of the adaptation is
QoS, namely processing efficiency [15, 20]. Additionally, adaptive approaches
have been proposed for some QoS-oriented approximation techniques (namely,
load shedding and data summarization) [4, 5, 24, 28] but only few of them take
QoD-information into account as aim [4]. Constraints on data are exploited in [5]
to improve QoS (specifically, to reduce memory overhead). However, a QoD-
oriented adaptation target is rarely considered, with the exception of [19].

Thus, QoD-oriented adaptive approaches for QoD-oriented approximation
techniques (i.e., ASAP techniques) have been so far neglected. However, we
claim that such techniques could be very relevant for various data management
applications in different application contexts. In the following sections, we will
present two examples of ASAP techniques showing their potential.

3 ASAP in the Small

The first example of ASAP technique we present refers to a, potentially dis-
tributed, architecture for data stream management. In this context, similarly to
[19], ASAP techniques may help in defining adaptive techniques which combine
exact (fast) and approximate (accurate) relaxed queries over dynamic (stream)
data. In the following, we point out which data and which requests we are going
to consider; we then present the targeted problem and we introduce an ASAP
technique as a possible solution to the identified problem.

Data. A data stream is a continuous, unbounded, and potentially infinite se-
quence of data, e.g., tuples. In a data stream, each item is associated with
a timestamp, either assigned by the source dataset or by the Data Stream Man-
agement System (DSMS), at arrival time. Queries over data streams can be either
one-time, if they are evaluated once on a given subset of data, or continuous, if
they are continuously evaluated as soon as new data arrive.

Request. According to the STREAM DSMS [2], continuous queries can be
evaluated over data streams and time-varying relations. Continuous queries are
evaluated, according to the relational semantics, at each time instant on the
relation states and on the subsets of the data streams available at that instant.
Window operators are applied on data streams in order to compute, at each time
instant, a subset of the data items arrived so far in the stream.

The basic idea of a skyline-based approach to query relaxation of selection and
join operations is to use a relaxing distance function d (usually, a numeric function)
to quantify the distance of each tuple (pair of tuples) from the specified conditions.
The relaxed version of the query provides a non-empty answer while being ‘close’,
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according to funcion d, to the original query formulated by the user [17]. Unfor-
tunately, skyline queries for data streams are blocking operators, that require the
usage of a specific window-based operator in order to compute, at each instant of
time, the finite subset of data from which the best itemset (i.e., the skyline set) is
computed. A skyline set is computed in terms of a dominance relationwith respect
to a given set of attributes, by returning those items that are not dominated by any
other item.1 An example of a relaxed operator for the data stream context, based
on a skyline operator, has been proposed in [11], where the concept of relaxation
skyline (r-skyline), first introduced in [17] for stored data, has been extended to
deal with data streams and queries composed of selection and window-based join
operations.

Example 1. Consider an application of habitat monitoring and assume that sen-
sors have been located inside nests, returning several properties of the place
around the nest, including light. Assume the user is interested in detecting the
nests under a light above a certain threshold. Suppose also this monitoring should
last for a long period, thus a continuous selection query is issued. Suppose the
query is submitted during daytime, a given light threshold and a given humidity
level is chosen, leading to the following query:

SELECT idNest, light, humidity

FROM SensorNest [RANGE 2 min]

WHERE light >= 50 and humidity <= 60

In the previous query, [RANGE 2 Minutes] is a window operator that, when
applied on stream SensorNest, at each time instant returns the set of tuples
arrived in the last 2 minutes which satisfy the specified conditions.

Table 1 reports a portion of data stream SensorNest. For each tuple, the
arrival time τ , expressed in minutes, is shown. By assuming that the previous
query is executed in a precise way, at each instant of time a non-empty result is
returned, thus facing a few answer problem. On the other hand, if we interpreted
the query as a r-skyline query with respect to both the selection conditions
C1 ≡ SensorNest.humidity<= 60 and C2 ≡ SensorNest.light >= 50, the
computation returns different itemsets. As an example, at time 4, tuples s4 and
s3 belong to the window and we get the following distance values, just computing
differences between attribute values and query constants: d(s3, C1) = 3, d(s3,
C2) = 5; d(s4, C1) = 5, d(s4, C2) = 10. According to the classical notion of
dominance, and assuming to prefer lower values, it follows that s3 dominates s4
and s3 is returned as result at time 4. ♦

The Targeted Problem. Precise queries in a data stream management con-
text guarantee a very efficient execution for selection operations, since they are
not blocking operations, i.e., they do not require window-based operators for

1 Given a set of points, each corresponding to a list of values for the relevant attributes,
a point A dominates a point B if it is better in at least one dimension and equal to or
better than B in all the others, with respect to some ordering [7].
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Table 1. SensorNest data stream

tuple idNest humidity % light % τ

s1 0001 49 45 1
s2 0002 47 49 2
s3 0001 63 45 3
s4 0003 65 40 4
s5 0004 66 76 5
s6 0005 70 70 6
s7 0006 70 66 7
... ... ... ... ...

their computation, which, on the other hand, is mandatory for join. At the same
time, they guarantee maximal accuracy by definition. However, users may not
be acquainted of the actual data arriving in streaming and, as a consequence,
they may issue queries that, for specific instant of times, return an empty result
set, thus potentially decreasing user satisfaction. With reference to the previous
example, assuming that 50 is a suitable value for daytime, during light hours,
probably, a non empty answer is computed. However, at sunset, the light is get-
ting low and few (or no) data may be returned as answer. Two scenarios may
arise to increase user satisfaction: (i) this is exactly what the user wants and
no modification to the query has to be specified; (ii) the user may anyway want
some results to be returned, the closest to the specified conditions. In the sec-
ond case, the system should modify the query in order to provide a non-empty
result with accuracy guarantees. This behavior can be obtained, for example,
by changing selection conditions, through user interaction, similarly to what has
been done in [22] for stored data. Unfortunately, this approach is suitable neither
for a data stream management context since the query is usually specified once
and continuously executed over arriving data nor for a more general distributed
environment, where the limited user knowledge about data often make this ap-
proach unfeasible. A different approach would be that of executing an r-skyline
query, even for selection, thus always obtaining the best result and avoiding the
empty/few answer problem, at the price of a costly window-based computation.

From the previous considerations, it follows that, as soon as we want to
combine processing efficiency (a QoS parameter) with result accuracy (a QoD
parameter), a trade-off arises: the definition of skyline-based relaxation tech-
niques may help in solving the empty answer problem but the price to pay
is the introduction of a window-based computation and therefore, in general,
a decrease of performance.

The ASAP Proposal. In order to combine the benefits of both precise and
relaxed queries, an ASAP approach can thus be considered. The idea is to rely
on the usage of an adaptive processing approach, in order to switch from precise
selection operations to skyline-based ones as soon as, based on some dynamically
monitored QoD parameters, the system understands that this is needed for im-
proving result quality. The same technique may then switch from a skyline-based
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computation to a precise one to reduce result size as soon as a QoD parameter
indicates that a precise computation can generate a result with QoD guarantees.
In the resulting approach, the target of both adaptation and approximation is
thus QoD-oriented, while the aim of both adaptation and approximation is both
QoD and QoS since the techniques aim at achieving the best trade-off between
a QoD parameter, namely result completeness, and a QoS parameter, namely
response time, by recurring to (more expensive) skyline-based computations only
when needed.

The idea is to model adaptive query processing as a finite state automa in
which each state corresponds to one (possibly relaxed) query to be executed
[12]. Transition from one state to another is performed during processing using
heuristics with the aim of maximizing accuracy, defined according to specific
user or system constraints and statistics, computed over already processed data.
The overall ASAP framework relies on three main components: (i) monitor,
which collects aggregate values, related to selectivity and precision of the query
in execution; (ii) assessor, which determines whether some QoD conditions are
satisfied; (iii) responder, which, based on assessor predicates, determines whether
the query plan should be modified in a certain instant of time.

In order to give an idea of how the ASAP processing works, we suppose
that the QoD-oriented user request corresponds to a precise continuous query
annotated with specific QoD constraints, over parameters to be computed in
a continuous way, like: σavg, average result cardinality (selectivity constraint);
πmax, maximal distance of the returned tuples from the specified query con-
ditions (precision constraint); μ, weight for selectivity and precision (trade-off
constraint). We can then consider the very simple ASAP automata presented
in Figure 1, containing just two states: one corresponding to a precise query
and one corresponding to the r-skyline query obtained by relaxing all conditions
appearing in the original request. More complex state machines can of course be
provided by increasing the number of the considered states, i.e., the number of
relaxed queries taken into account.

The computation then proceeds as follows:

– Statistics computed by the monitor may quantify how far the current result
is from the selectivity and precision constraints associated with the original
request. Based on such statistics, say σ for selectivity and π for precision,
an accuracy measure has been provided, which, given an annotated precise
query Q and a, either precise or relaxed, query Q measures how far is Q

′

result with respect to Q′ result. A higher accuracy for Q
′
implies an higher

user satisfaction in obtaining Q
′
result.

– The assessor can then determine whether, during the computation, some
QoD conditions are satisfied. The following are examples of some relevant
predicates: (i) sel+/sel−: too many/too less results are generated by the
query at hand, with respect to initially specified selectivity constraints; (ii)
relax+/relax−: the distance of the returned tuples is too high or the non
returned tuples are quite close to the initial query and thus can be returned.
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Fig. 1. An example of an ASAP automata

– Finally, the monitor component establishes whether a transition has to be
performed, thus the query in execution has to be changed, in order to increase
accuracy. This reasoning should rely on predicates computed by the assessor
component and by the accuracy measure used to drive the process.

By varying the trade-off constraint, more emphasis can be given to either selec-
tion and precision, thus driving the process towards relaxed or precise compu-
tations.

4 ASAP in the Large

By increasing the complexity of the considered environment, moving towards
highly distributed architectures, all concepts introduced in Section 3 become less
clear. Indeed, while from one hand, user interactions with the network and its
many applications generate a valuable amount of information, facts, and opinions
with a great socio-economic potential, from the other hand, this huge wealth of
information is currently being exploited much below its potential because of the
difficulties in accessing data to retrieve relevant information. ASAP in the large
can thus be interpreted as a step towards the realization of an entity-relationship
search paradigm for uncontrolled and wide information domains, with an impact
on qualitative and quantitative performance of systems for processing strongly
interrelated and heterogeneous data in distributed dynamic environments. Under
those new scenarios, data and requests can be characterized as follows.

Data Sources. Data from different sources are highly heterogeneous in terms
of structure, semantic richness, and quality. They are often geo-referenced, time-
variant, and dynamic. Information sources, which could be represented according
to a graph-based data model, may contain: (i) strongly related and semantically
complex but relatively static data (e.g., Linked Open Data); (ii) unstructured
data, or data with a simple and defined structure; (iii) data dynamically gen-
erated by a multitude of diverse people (e.g., social networks, microblogs); (iv)
highly dynamic data generated by public or private institutions linked to the
territory (data streams).

Requests. Complex requests expressing relationships among the entities of
user interest have to be represented, possibly relying on a graph-based query
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language. Such requests are often vaguely specified, since users cannot reason-
ably know format and structure of data encoding the relevant information. For
example, the user may ask for the nearest shops selling the book which her friend
Luca likes or for the biography of the author of the painting she is watching.

The Targeted Problem. Processing complex requests on heterogeneous and
dynamic information sources can be costly since it first requires a request in-
terpretation, then processing has to be performed on available sources deemed
relevant (to reduce processed data volumes), and finally results should be aggre-
gated in a consistent answer and returned to the user. Additionally, the answer
may not guarantee the user satisfaction since the request could have been incor-
rectly interpreted, processed on inaccurate, incomplete, unreliable data, or even
it could have required a processing time inadequate to the urgency of the request.
As pointed out in [21], one solution to these problems relies on user interven-
tion. However, depending on the request urgency and the specific application
scenario, such intervention may not always be possible. The problem thus arises
to define approaches for providing approximate answers to shared and complex
information needs, even vaguely and imprecisely specified, operating on the full
spectrum of relevant content, overcoming the difficulties related to heterogeneity
and dynamism while requiring a limited user involvement.

The ASAP Proposal. In [10], we claimed that the ASAP paradigm can be
effectively used to tackle the problem described above. In order to limit user
intervention, a specific type of QoD-oriented approximation has been proposed,
namely Wearable Queries (WQs). WQs integrate explicit requests with profile
(information provided by the user as well as induced by the system, e.g., user
habits) and context (spatio-temporal coordinates of the request, its motivation,
and its environment, e.g., in terms of potential interaction and urgency). The
computed result should minimize the distance between the returned items and
the specified context and user information. To this aim, WQs computation should
take into account data specificities, with a particular reference to quality, geo-
localization, and freshness of data sources and specific data items, in order to
select relevant data sources and provide results at the appropriate level of detail.

To enable search in a huge space of highly heterogeneous and poorly controlled
sources, an adaptive pay-as-you-go approach, influenced by quality, dynamics,
and specificities of the considered sources, needs to be adopted. The devised
approach, which constitutes a completely new QoD-oriented adaptive approach
applied to QoD-oriented approximate searches (thus, a new ASAP approach),
generates and incrementally refines mappings between sources, according to the
requirements induced by the submitted requests, thus avoiding the prohibitive
costs of full integration. The role of the proposed QoD-adaptive approach is
therefore twofold: the space of sources is incrementally adapted to the peculiar-
ities of the submitted requests and, simultaneously, requests, specified as WQs,
are processed by incrementally adapting them to the peculiarities of the space
of sources and its evolution over time.
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In order to maximize accuracy during the adaptive process, we explore a yet
unexplored coordinate, namely metadata corresponding to synthetic represen-
tations of similar WQ executions repeated over time (called Profiled Wearable
Query Patterns - PWQPs). Similar requests are very common in dynamic con-
texts, each time information needs are widespread among different users, because
induced by an event, the interests of a community, or a place (e.g., during or after
an exceptional event -environmental emergencies or flash mobbing initiatives-).
The ability to take advantage of the experience gained by prior processing in
new searches allows response times and interpretation errors to be limited, thus
reducing the possibility of producing unsatisfactory answers.

For processing WQs, we envisage an mechanism that moves at each step, in
the large space of possible approximate answers, towards the sources deemed
capable of producing the best solutions with respect to profile and context of
the request, quality and dynamism of the sources and knowledge gained from
previous executions. The process is incremental, i.e., first it attempts to exploit
PWQPs, then makes a coarse-grain selection of sources, and later it focuses
approximation efforts on the description of the selected sources. The results
are composed or reconciled through mappings, selected or generated on-the-fly.
The envisioned solution couples this mechanism with a method for assessing
the quality of each individual processing. This information, together with any
explicit user feedback, is used for updates and refinements.

5 Conclusions

In this paper, after revising and classifying approximate and adaptive processing
techniques with respect to the quality parameters they take into account, we in-
troduced ASAP techniques and we showed that they can be successfully used in
both specific and more general application contexts, characterized by an higher
complexity of the environment and of the data sources at hand. We remark that
ASAP is not a new concept, rather, it can be interpreted as a revision of existing
processing approaches focusing on QoD parameters, which could be effectively
and efficiently used in emerging contexts. Several issues are still open and re-
quire further investigation, especially under the “ASAP in the large” vision. In
this context, we are currently investigating issues concerning data source cha-
racterization, for Linked and crowdsourced (social) data, as well as automatic
acquisition of approximate geo-spatial contexts for crowdsourced (social) data.
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Abstract. In this paper, we will take a closer look at the essential differences be-
tween two of the most prominent database query languages today, SPARQL and
SQL, and at their underlying data models, RDF resp. the relational model (RM).
There is an enormous “hype” around SPARQL/RDF at the moment claiming all
kinds of advantages of these “newcomers” over the long-established SQL/RM
setting. We discover that many of these claims are not justified, at least not as
far as data representation and querying is concerned. Our conclusion will be that
SQL/RM are well able to serve the same purpose as SPARQL/RDF if treated
fairly, and if presenting itself properly. We omit all aspects of navigation over
distributed or federated data resources, though, as SQL isn’t (yet) made for this
task.

1 Introduction

The query language SPARQL [1] and RDF [2], its underlying data representation format,
have been at the forefront of interest of researchers in databases and information systems
for a number of years by now. This is not so much because this specific language and this
specific format are so revolutionary, but because both have been intimately associated
with notions like Semantic Web, Linked Open Data, Ontologies, Internet Information
Systems, Social Media and the like: Ideas and trends that are really motivating and mov-
ing not just researchers, but our entire “information society”.

Consequently, getting good funding for proposals addressing these issues is compa-
ratively easy these days (and increasingly harder for other, “old-fashioned” topics like
SQL). Even when discussing curricula for computer science students nowadays, aca-
demic teachers have to decide whether to switch from “good old” relational databases
and SQL [3] to “cool” RDF databases and SPARQL already in their introductory lec-
tures on information systems. Making such a step at the core of academic education
would really mean for the SQL community to “surrender” to the new trend, because
you lose the fight if you lose the “youth”. And fight there is, despite the increasing
number of SPARQL-to-SQL contributions, e.g. [4,5], seemingly bringing peace back,
but in reality attempting to reduce SQL to a kind of “DB assembler”, hidden under the
surface, but offering SPARQL as “the” new interface to every database.

Well-established vendors of relational DBMSs have been eager to respond to this
trend not by abandoning relational technology but by “embracing” and integrating the
new concepts – probably in the hope to push them from the agenda similarly to the
successful rejection of “attacks” by object-oriented databases in the 1990s and from
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XML databases during the previous decade. Not to speak about another “new kid on the
block”, the NoSQL movement, claiming the RDF approach as a “member of their club”!
In his controversial, but influential paper of 2013, C. Mohan discusses (and partially
discredits) this most recent “attack” on SQL using a title even more polemical than ours:
“History Repeats Itself: Sensible and NonsenSQL Aspects of the NoSQL Hoopla” [6].
Will the vendors’ strategy of “friendly enclosure” be successful this time, or has the
dawn of the relational approach come at last?

“The End of an Era” is the heading of a chapter in a recent SIGMOD Record paper
entitled “The relational model is dead, SQL is dead, and I don’t feel so good myself”
[7], summarizing opinions expressed by well-known colleagues during a panel held
in Florence in 2012. The present paper aims at contributing to this “meta-scientific”
discussion, too, and its title is, of course, a provocative one as well, obviously inspired
by the Mohan title as well as the “Florence” title.

Being controversial in science is only possible in contributions that have not been
submitted to, but invited for a conference (like the two papers mentioned above, and
like the present one). Such opportunities are rare, but can be used to speak out, and to
write about ideas otherwise not “sellable” in our current publication “culture”. SPARQL
has not been my topic in research at all, up till now, but SQL has. Writing this paper, for
me went along with learning RDF and SPARQL – but sometimes learners, particularly
experienced ones, ask questions and observe seemingly obvious things that specialists
in a field don’t ask, resp. see, anymore, or never asked or saw in the first place.

Surprisingly enough, there have been hardly any attempts up till now to compare
the two languages and the two data models, not taking into account all the SPARQL-
to-SQL translations (always in one direction, why not the other way round?). A recent
“comprehensive comparative study” [8] to me looks neither comprehensive nor deep
(enough).

The careful reader will have noticed the switch from the common, impersonal style
of an author indirectly (or collectively, “we”) speaking about himself to the first person
style (“I”) in the last section – normally, a no-go in science. Wherever personal, subjec-
tive opinion rather than objective facts is communicated in this paper, I will consciously
use this style, returning to the classical indirect style in the other parts.

Last not least, why the title’s prefix, “Back to the Future”? Of course, this is on
the one hand a tribute to the famous movie by Robert Zemeckis of 1985 [9], Mohan’s
“History Repeats Itself” is also mirrored. On the other hand, the question mark at the
end of the title is intended to apply to its prefix as well: Are we really returning, when
promoting SPARQL as vigorously as we do now, to a dèja-vu situation, namely that
phase in the early 1980s when SQL became popular and quickly dominating, leaving
none of the other competing languages a chance to seriously survive? One might begin
to think so. Any assumption that “back to the future” is also intended to ring the “re-
inventing wheels” bell is purely speculative and can’t be confirmed or even encouraged
by this author – but can’t be prevented either.

The main part of this paper is structured as follows: First we will restrict the scope
of our comparative investigation of the two approaches to just the data representation
and data retrieval context in chapter 2. Then we will discuss the data models underlying
SPARQL und SQL, respectively – RDF versus the relational model (RM) – in chapter
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3. In chapter 4, the focus is on the conceptualizations from which databases in each of
these models are derived, formally represented using an ontology or an ER diagram.
In chapter 5 we will briefly look at graph databases, a particular kind of databases
SPARQL/RDF claim to serve particularly well (as opposed to relational databases). In
chapter 6 at last, the two languages proper will be contrasted. We will conclude with
a summary of our findings and with an answer to the question posed in the title of this
paper.

2 On Data: Everywhere and Anyhow?

One of the obstacles for properly judging about SPARQL’s merits, in particular in com-
parison with SQL, is the circumstance that SPARQL is intimately bound to two di-
mensions of discussion which SQL is not, or at least not obviously addressing: data
manipulation in a physically distributed and federated environment (even extending to
the entire internet), and data manipulation in a heterogeneous environment as far as data
representation formats are concerned. Behind all of this there is the dream or vision to
be able to access any kind of data residing anywhere at any time. We all have this dream,
and presently “googling” for keywords is as close as we come to making this dream be-
come real – not a too pleasant answer though. Accessing all of Google’s contents using
SQL queries would be much more goal-directed and informative an approach, provided
we were all “SQL literate”. Pattern matching and browsing enormous lists of matches
hoping for a needle in the haystack is a very poor style of retrieval indeed. However,
SQL never tried to go that direction, you can’t “surf the web” in an SQL query, and you
are bound to data stored in tables and represented in tuples.

SPARQL on the other hand can deal with URIs and URLs and has the syntactic
means to (express commands that make an interpreter) navigate to a particular data
resource before actually starting to evaluate the query proper. Like SQL, SPARQL is
bound to data being represented in a single format – this time triples rather than tu-
ples and datasets rather than tables. However, RDF enthusiasts claim that using this
even more primitive format for representing data than the tuple format, one is able to
accommodate data from a wide range of less rigorous semi-structured formats (RDF it-
self isn’t semi-structured at all, but as rigorously structured as one could imagine). The
claim of RDF to be the best (only?) approach to accommodating data of all kinds, even
including unstructured data, even not requiring a schema for data contained, is probably
as attractive as the world-wide reach of its access mechanism. Of course, users of the
“sparqling the web” approach have to be able to “speak” a formal language, too, as op-
posed to Google surfers who just need to enter a search key (getting served by pattern
matching only in return). So wrt to accessibility of the approach to a wider audience of
users SPARQL is as “upper class” as SQL.

The interesting (but hardly ever posed) question is whether a completely new lan-
guage is needed for doing so. Or would a suitable extension to SQL do (have done, if
you think the train can’t be stopped anymore) the same job – of course, only if com-
ing with the necessary DBMS technology for web-wide distributed processing as well
as near-universal format transformation? In order to be able to investigate (if not an-
swer) this question fairly and seriously we will exclude the question about distribution
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and navigation from our discussion. SQL isn’t made for this (not yet, at least, we are
sure it could be), so we shouldn’t compare apples and pears. Thus, we will assume that
a single SPARQL backend is around, no URI and no explicit prefix of a SPARQL query
will appear in this paper. We will just deal with data residing at a single site. This might
look to SPARQL aficionados as losing an essential characteristic of “their” language.
But I think it is inevitable to do so if (fairly and meaningfully) comparing SPARQL and
SQL – and there remains enough to be discussed and investigated anyway!

As far as data formats are concerned we will compare the two approaches, the re-
lational one as well as the RDF one, without any limitations, as both are rigorously
structured formats if viewed as what they are. The question of representing semi- or
unstructured “data” will be excluded as well, for space reasons and because the an-
swer is quite obvious: Translating un- or semi-structured documents into RDF or RM
databases requires a high amount of pre-processing for both models, starting from
a conceptualization of the resp. application domain and extracting individual facts from
the document. We don’t discuss the issues arising in the context of storage strategies in
this paper either. Whether column or row stores are used, whether triple stores require
new DBMS technologies or just new indexing and optimization strategies in relational
DBMS is a serious matter, but not essential for comparing the formats and the lan-
guages, it is orthogonal and would blow the scope of this paper.

3 On Syntax: Triples vs. Tuples

Both languages, SPARQL as well as SQL, are based on a particular formalism for
representing individual data elements, the Resource Description Format (RDF) and the
relational model (RM), respectively. Both, RDF and RM, are data models – even though
RDF isn’t called a model, but a format instead. This is the case at least if we exclude all
aspects of navigation in a communication network consisting of distributed “resources”,
and that’s what we do in this paper. Comparing the languages is impossible without
comparing the models. Thus, we start by considering the foundations of RDF and RM.

We will do so, by first stating what is objectively (and hopefully undoubtedly) “true”
about the two models, then we will interpret our findings and compare these interpre-
tations. Comparing is a subjective activity for us: Without a particular interpretation of
what we see, a meaningful comparison will remain on the surface. In the remainder
of this paper we will thus subdivide discussions into these two categories (objective,
subjective) throughout. Therefore, each of the following chapters will consist of two
sections entitled “Facts”, and “Views”, respectively, as will this one.1 A word of “warn-
ing” ahead: Parts of this chapter will appear like tutorials for beginners, which doesn’t
mean that I expect our readers to be ignorant of the basics listed. But if we want to
compare two models, we better remind ourselves of these basics in order to properly
compare them on the basis of what they are, rather than what we might have been told
about them.

1 I am well aware of the double meaning of both notions, fact and view, in the context of
a database paper. I hope readers will understand which side of the coin they are looking at
whenever they read these terms.
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3.1 Facts

SPARQL queries are evaluated over collections of triples, i.e., tuples of length 3. Triple
collections are called datasets. They may or may not contain duplicates, so “datasets”
may indeed be “data-multisets”. We will exclude duplicates, however, in this study for
simplicity’s sake. Every RDF database is a set of datasets. One of them – called the
default dataset – is considered unnamed and is part of every RDF database, other named
datasets may be added at the discretion of the database designer. We will not make this
distinction (unnamed vs. named) in the following, but assume there is a set of uniquely
named datasets in each RDF database, without loss of generality.

SQL queries, on the other hand, are evaluated over collections of tuples of arbitrary
length (not just length 3). Tuple collections are called relations in RM, considering
relations subsets of products of domains as done in mathematics. SQL calls tuples rows,
and relations tables. Tables may contain duplicates (unlike relations), and again we will
exclude duplicates from this study, so that tables are proper relations for the time being.
All tables in a relational database are uniquely named. It should be clear already at
this point, that RDF and RM databases are very similarly organized on the top level:
relations as tuple sets vs. datasets as triple sets. This seems obvious, but is noteworthy
considering the way RDF is introduced all over the place.

Tables – at least from the viewpoint of SQL2 – require (locally unique) names for
their columns, called attributes. The choice of attributes is left to database designers,
as the choice of table names. Attributes are expected to reflect the meaning of the data
items in the resp. column using terminology from the real-world domain from which the
resp. data are coming. Thus, tuples structurally turn into records, where each component
is prefixed by a selector (here the resp. attribute), thus making order of components
irrelevant (due to the uniqueness of attributes). Attributes, like table names are consi-
dered meta-data, making up the schema of the resp. relational database together with
the names of the resp. tables and the associated data types. Each column, and thus each
attribute, is associated with a unique data type.

RDF datasets do not have attributes, at least not explicitly. Thus, RDF databases
don’t (seem to) have a schema in the sense of the relational model, apart from the
names of named datasets, if any. Implicitly, however, the roles of the three columns of
a triple are well-distinguished from each other, and are fixed (even their order mat-
ters). Triples are supposed to represent elementary statements about the underlying
application domain syntactically reflecting the structure of basic sentences in natural
language: (Subject, Predicate, Object). These three grammatical concepts may be con-
sidered (meta-)attributes of every RDF dataset, though not explicitly mentioned in most
cases.

For comparing relational tuples and RDF triples on an equal basis, one could well
treat triples as records, too, using subject, predicate, and object as (meta-)selectors.
Thus, datasets could be properly compared with tables. And RDF databases would have
a schema, too, though the (meta-)attributes of the individual datasets were all the same
and did not relate to a specific domain of interpretation (but to generic grammatical con-

2 Other relational languages, such as QbE and Datalog, don’t use attributes, but assume columns
to have a fixed order instead. We will come back to these co-existing views of rows/tuple in
chapter 4.



Back to the Future Should SQL Surrender to SPARQL? 83

cepts instead). Thus, it appears more appropriate to call this (implicit) schema of RDF
databases a meta-schema. As all meta-attributes of all datasets in this meta- schema are
identical in RDF, there is no need to declare them.

The data types underlying the columns in a table can be freely chosen in a relational
database by the database designer. The choice is guided by the meaning which the cho-
sen attribute for the resp. column has in the application domain of the resp. database.
Data types consist of atomic (non-decomposable), symbolic values, or sequences of
such values. The former restriction is known as the First Normal Form (1NF) require-
ment, the necessity to have symbolic values arises from the simple fact that tuples have
to be stored in electronic devices and printed on paper or displayed on screens of such
devices.

In an RDF database, the claim for atomicity and symbol-valued domains is retained
for obvious reasons (recall that for the scope of this discussion we exclude all aspects
of navigation over the web, thus all URIs are considered irrelevant). Free choice of
domains for columns3 is not an issue, at least “technically”: As the three (meta-)column
names are generic, column domains ought to reflect this genericity (i.e., application
independence). They ought to be as general as possible, allowing for any symbolic
value to be stored in each of the three columns, at least in principle. Thus, string would
possibly be the best choice as data type for each column of a dataset, at least in our
restricted context without URIs but just literals as values.

However, the roles to be played by the entries in each of the three columns (subject,
predicate, object) imply a certain categorization of the potential entries in the columns
of an RDF dataset. Subjects and objects in a triple are supposed to come from a dif-
ferent category than predicates. There is a category of things (roughly similar to the
categories of entities or objects in other conceptual frameworks), and a category of in-
terrelationships between things (including properties of things, which are represented
by other things).4 Meta-attributes subject and object are thing-valued, whereas predi-
cate is relationship-valued. This is a semantic categorization, however, which has to
be made concrete for each application domain for which an RDF database is designed
anew – very similar to the choice of attributes in relational schemas. As the choice of
data types for subject, predicate and object in RDF has to be made on the syntactic
level, generically, however, data type choice is not free for designers in RDF.

A last syntactic issue remains to be mentioned: Certain attribute values in a row of
an RM table can be missing. Formally, this attribute is considered to have a null value
in the resp. row, representing a piece of data which exists in the underlying application
domain but is unknown at present (at least that’s how SQL interprets nulls). In certain

3 Even though column is a notion from the relational context, we will speak of columns of a
dataset (or a triple) in RDF, too, from now on, as it should be clear from the previous dis-
cussion, that datasets are special cases of tables, and triples special cases of tuples, at least
structurally.

4 We avoid speaking of resources in this context, rather using the fuzzy, but more neutral term
thing instead. Resource is “RDF speak” in the W3C documents, as the origin of this approach
is the representation of networks of information “resources”. As we consciously exclude all
aspects of distribution, navigation and data origin in this paper, and rather focus on the abi-
lity of the two approaches to represent data about real-world domains, this deviation seems
appropriate.
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situations, due to the design of the resp. database, there may be a lot of null values in
a table, making this table rather sparse. In RDF, there is nothing like a null value (“blank
nodes” are a different affair, we omit them in this context, too).

3.2 Views

Now, what does all of this mean? Is RDF any “better” than RM? Are there any databases
that can be built using RDF, but not using RM, or vice versa? As the above discussion
has been focusing on structural (syntactic) aspects, just touching semantics slightly here
and there, we might expect a partial answer only, but no less than this we do expect.

A simplistic (?) answer to the “better” question is very easily given: Triples are tu-
ples, and datasets are tables – thus every RDF database is a relational database, making
very restricted use of the potential of the relational model, due to its restriction to the
“Power of Three”. Following this line of reasoning, the data representation strategy
underlying RDF is no more than a very particular schema design strategy in the rela-
tional context: Restrict yourself to triple tables and follow the subject-predicate-object
style when designing attributes of your “triple tables”, alias datasets. RM seems to be
the winner straightaway, and RDF seems to be dispensable, “emperor’s new clothes”.
What this view would mean for SPARQL vs. SQL in the end can be guessed quite
easily.5

Taking the “RM subsumes RDF” view, it would be quite astonishing if arbitrary (>3
columns) tables could be represented by (not as) datasets of triples, too, thus making
RDF in turn able to make RM dispensable, not by subsumption, but by translation
into a different format. There is a conceptually quite simple way of mapping relational
databases to RDF databases, however, well-known by most researchers today: Map each
table to a named dataset of its own; inside the table, map tuples to subjects, attributes
(i.e., column names) to predicates, and attribute values to objects. Thus, each n-tuple in
a relational database is mapped to n triples in its RDF counterpart. Doing so, translates
a table with (simplified) one key and n non-key attributes, and with m rows into a dataset
with n×m triples, one for each non-key attribute value.

There is a small technical problem, though: How to express entire tuples as entries in
the subject column of a triple (data) set? Attributes are strings by definition, so they fit
into the predicate column, attribute values are symbolic, too, so they can at least be cast
into strings, and thus fit into the object column, but tuples? We at least need a symbolic
identifier for each tuple to be entered into the subject column as a “surrogate” for the
tuple. TIDs, tuple identifiers, used internally by most relational DBMSs for identifying
rows in tables, could do the job. If table schemas happen to have single-attribute primary
keys, the values of such key attributes may serve as unique symbolic representatives of
the individual tuples in the subject column, too. If such key attributes exist, they don’t
need to be represented as predicates, their values not as objects, but as the subjects of
all triples arising from the mapping of the respective table to triple set format.

TIDs are “syntactic” identifiers not related to any concept in the underlying applica-
tion domain, keys on the other hand are semantic concepts arising from the application

5 This isn’t the entire story though, that’s why I speak in conditional style here. In the next
section, when semantics are considered, this view will turn out to be too narrow, but not false.
For the time being, it is valid, however, as we just look at structure.
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domain. But at the end, TIDs can be viewed as “artificial” semantic attributes, added
during the design process for reducing potential multi-attribute keys to single-attribute
ones (or adding artificial keys if none have been identified among the natural attributes).
At the end, this is a minor problem: “Normalizing” each table schema in such a way
that it has a single-attribute primary key leads to a dataset design which represents each
n-tuple by n-1 triples6. Thus, each relational table can be transformed into an RDF
dataset, and, thus, RDF is as expressive as RM. This, together with the first observation
(RM subsumes RDF) leads to the view: Both models are equally expressive – whether
the one or the other is chosen depends on additional arguments still to be discovered
(or might even be just a matter of taste). Certainly the number of individual data items
representing a piece of information would be much larger if going the RDF way with
its “narrow tables” approach, as if being able to use arbitrarily “wide” tuples.

The existence of null values in a table doesn’t provide any problem for transforming
tables in RDF. If in a certain tuple the value of a certain attribute is null, this value is
not represented by a triple at all. This attribute is thus treated as not being applicable
to the resp. tuple, a tiny semantic difference as compared to the “exists, but currently
unknown” view SQL has of null values, but not an obstacle.

There is one issue already visible here which is definitely worth closer consideration,
however: In tables attributes are meta-data, in RDF datasets they are turned into data (if
represented as predicates of triples, as suggested in the RM-to-RDF discussion above).
This is an important, maybe the most important idea introduced by RDF as far as data
representation is concerned. It is no difference between the two models, as using (ap-
plication domain) attributes as values of a meta-attribute (serving as column name) is a
valid choice in any relational database as well, no need to switch to RDF instead. We
will come back to this issue in the next chapter. To summarize our findings up till now:

1. Both formats, RDF and RM, are in principle equally well-suited for representing
any kind of data composed from atomic values.

2. RDF is strictly speaking not required as a new format, but can be purely interpreted
as a schema design strategy for relational databases, characterized by turning ap-
plication domain attributes or relationship roles into data rather than meta-data.

3. Missing information in a relational tuple (represented by a null value) is simply
missing in the triple representation, thus leading to a more compact representation
of otherwise sparse tables.

All of this is rather unspectacular so far. The only point that may cause controversy is
the view that RDF up till here is dispensable as a model of its own! But we didn’t treat
semantics yet – let us not forget that RDF/SPARQL are the “icons” of the Semantic
Web movement! And we didn’t talk about graph databases either – to be discussed in
chapter 5. Nevertheless, there was no need for a subjective “I” statement till now!

6 If any attribute has a null value for any of its attributes, this attribute value is simply omitted
in the triple representation, thus reducing the number of triples is needed. At least this appears
to be a viable strategy unless we want to extend RDFs data model by a null value equivalent.
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4 On Semantics: Ontologies vs. Schemas

As we saw in chapter 3, both, RDF and RM, are providing certain choices of data
structures able to accommodate data syntactically, regardless of the meaning of the
data. Both are generic formats, semantically neutral and uniform, even rigorous (which
means that there is just a single type of structure available in both models, tables vs.
datasets resp. triples vs. tuples).

For being able to use such “syntactic” models for representing data from a particular
application domain, a prior semantic modelling of the resp. domain is required. Con-
cepts (i.e., specific terminology, resp. vocabulary) having a particular significance and
meaning in the context of the domain at hand must be identified and classified according
to the categories of a certain meta-model (e.g., class, property, attribute, relationship,
subclass etc.). The process of generating such a model of the specificities of a domain
is often called its conceptualization, the meta-model used is called a conceptual model,
and the result of the conceptualization a conceptual schema of the resp. domain7. Once
the conceptualization is in place, a systematic derivation of data structures for accom-
modating data about the instances of the concepts at a particular moment in time takes
place.

This chapter is looking more closely at such conceptualizations in general and on the
way how to derive data structures in either RDF or RM from them. Both approaches
to data representation, the RDF and the RM one, follow this style of design, but they
do so quite differently – which possibly makes them appear more different than they
essentially are.

4.1 Facts

In the RM context, there is a well-established design approach for conceptualizing an
application domain before designing a relational schema, which has been in place since
almost 40 years. The Entity-Relationship Model [10], or one of its many EER exten-
sions and variants, e.g., UML class diagrams, is traditionally chosen for conceptual-
ization. ER diagrams (graphical representations of ER schemas) are used to formally
express the result of a particular conceptualization. Without going into too many de-
tails about notation variants and possible extensions, we will consider the following as
the main categories of ER concepts: Entity types with properties, is a hierarchies of
sub- and super-entity types and inheritance of properties, relationship types (possibly
with properties, too, and roles). Key properties for entity types as well as cardinalities
for relationship types are noteworthy annotations in ER diagrams representing special
constraints on instance sets (called populations) of the types.

Entities, in the philosophy of this approach, are “things” in the same spirit as dis-
cussed briefly in the previous chapter when motivating the subject-object roles in RDF

7 The term “schema” is used in the database community, not in the AI-oriented W3C context.
Here the result of modeling is a “model”, which sounds more reasonable. Unfortunately, the
term “model” has been used for the resp. meta-models in the DB context (e.g., relational
model, ER model). We use “schema”, as it is so specific that no misinterpretations are to be
expected. “Model” has many facets in other communities and disciplines.
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triples which can be played by “things” in the domain underlying the resp. database.
In the ER context, however, there is a second category of things, called values. Val-
ues are “things with restricted rights”: They have to be printable symbols (or symbol
sequences considered atomic, too). Values don’t have properties, they can’t participate
in relationships, but can only serve as properties of entities. Values can be stored in
a database, entities cannot. Entities are considered (abstractions of) concrete or ima-
gined “things” from the application domain usually not printable (such as people and
events, e.g.). They can’t be stored as such, but only their property values as well as in-
formation about the relationships they have to other entities represent them indirectly in
a database. Properties of an entity are all “value-valued”, an entity can’t be a property
of another entity. Only relationships can establish links between two or more entities.8

Relationships resemble entities in as far as they can be characterized by properties them-
selves, however, relationships cannot play the role of participants in other relationships.
In summary, ER is a rather “middle-of-the-road” collection of modelling techniques,
some of which are a bit special (not to be found like this in other approaches), but most
of them to be found in lots of other modelling approaches, too.

ER modelling is a kind of “pre-processing” step before a database schema proper
is designed (these two modelling phases are called conceptual and logical design, re-
spectively). The main idea for deriving relational DB schemas from ER diagrams is
to represent types by tables and instances of the types by tuples. Thus the table cor-
responding to a type contains tuple representations of the population of the resp. type
at the resp. moment in time. Properties are turned into attributes, i.e., each property of
a type (regardless whether entity or relationship type) has its own column in the table
corresponding to the resp. type. Key properties become primary key (PK) attributes in
the corresponding tables. Each entity is thus represented by the tuple of all its (current)
property values. Subtypes of an entity type are represented by splitting the entity table
of the uppermost entity type in a hierarchy into sub-tables for the individual sub-types.
Inheritance is considered by either having multiple copies of property columns for each
sub-type or by linking sub- and super-type tables by means of PK columns.

Relationships are represented relationally by tuples, too, consisting of the keys of the
participating entities plus the properties of the resp. relationship. The PK values of the
participating entities form foreign keys (FK) in relationship tables referencing the entity
tables of the related entity types. Cardinalities may lead to a reduced number of tables
due to including relationship tables into entity tables in case of functional constraints on
the resp. relationship type. This way of turning types into tables has been adopted by the
vast majority of the RM community, they are taught to beginners in database textbooks,
and almost all major relational DBMS products come along with design tools following
exactly this mapping approach – however, there are alternatives around, going exactly
this “classical” way if moving from entities and relationships to tuples is not necessary,
but recommendable (or better: recommended in the RM field).

8 In UML, there are no relationships in the ER sense, instead properties may be entity-valued.
Relationship types of arity >2 have to be “simulated” by means of entity types the instances of
which are “simulating” the instances of the resp. relationship types. Such properties are called
associations in UML.
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In the RDF context, matters appear to be very different, at least as they are presented
in most sources. This is mainly due to the terminology used and to the way of presenting
the techniques used, going back to a different tradition in computer science, the tradi-
tion of knowledge representation in AI (in particular as followed in description logics).
Here, there is no fixed (or at least traditionally used) meta-model coming with the RDF
structural model, but instead any kind of conceptualization seems to be acceptable in
principle, most favourably a conceptualization in form of an ontology (quite often spec-
ified in terms of the OWL [11] style of ontology specification).
“An ontology is defined as a formal, explicit specification of a shared conceptualiza-
tion. . . It provides a common vocabulary to denote the types, properties and interrela-
tionships of concepts in a domain.” [12] Following this “definition” – which has been
taken by the anonymous authors of the source of this quotation in Wikipedia straight-
away from serious scientific publications – obviously, every (extended) ER diagram
represents an ontology, as it consists of exactly “types, properties and interrelationships
of concepts in a domain”.9

We will not go into the same degree of detail as for ER modelling above in the
context of ontologies, mainly because the general idea of an ontology and the style of
conceptualization followed in ER modelling is not essentially different. In ontologies,
too, objects/individuals of the application domain under consideration are characterized
by means of properties assigned to the individuals. Furthermore, similar individuals (as
far as the property structure is concerned) sharing additional semantically motivated as-
pects not expressible by properties alone, are summarized into collections with a given
name, called classes.

There are usually no distinctions made between individuals resembling entities and
those resembling values in ontologies. There is also no explicit mention of relationships
as individuals of their own, instead properties may relate individuals arbitrarily (as in
UML [13]), n-ary relationships can be (and have to, not always painless) “re-ified” as
individuals. Class hierarchies with inheritance of properties (and sometimes of other
class-related concepts) are to be found in nearly all ontological approaches. Whatever
concrete style of specifying an ontology is used (OWL, RDF Schema, or others) –
essentially these are the categories of conceptualization if coming from the AI rather
than the DB tradition, and they are – again essentially – no different than the techniques
of the ER approach. The entity-value as well as the entity-relationship distinction in ER
are dispensable – as in UML’s class diagrams, a direct derivative of ER.

What matters much more is the question how ontologies/conceptual schemas are
turned into RDF representations of data about the resp. application domain, because
here we have the interesting differences from the relational approach of turning the
conceptual (ER) schema into a logical (RM) schema. The basic strategy for mapping
ontologies to RDF is based on the observation that all information available about the
“things” in an application domain can be expressed as functional associations between
two “things”: A property (in the ER sense) of an entity (a “thing” which is character-
ized by other “things”) is a mapping of the characterized “thing” (the “subject”) to the
characterizing one (the “object”). The name of the property becomes the name of the

9 That’s why this observation is already stated under the heading “Facts” rather than in the
“Views” section of this chapter.
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(functional) mapping. If two “things” are simply related to each other, without the one
“characterizing” the other, the same mapping idea can be used, as long as the associa-
tion between the two is unique, at least with respect to this particular kind of association
carrying some specific meaning in the application domain. In such a case, the associ-
ation name plays the role of the function name. That’s what the triple idea is mainly
about: Representing a single functional association between two “things”.

There are two essential characteristics of this alternative way of deriving data struc-
tures from a conceptualization:

1. Each property or association is represented by a data element of its own (in the
RDF case by a triple), rather than by a data element collectively representing all
properties and all functional associations for a given “thing” (in a single RM tuple).

2. The names of the properties resp. associations are represented as data (predicate
entries in the subject-predicate-object sense) rather than meta-data (such as RM
attributes).

Note, that these two design decisions are orthogonal to each other: Neither is causally
depending on the other. You can choose to represent subject-object pairs by individ-
ual tuples without storing the corresponding property names as data (i.e., RDF predi-
cate values). If doing so, all subject-object pairs with the same predicate can go into
a dataset of its own, called by the name of this common predicate. This would lead to
pairs rather than triples for representing each individual predicate value (object) in rela-
tion to its subject. You can also choose to represent concepts (such as properties or as-
sociations) as data without “fragmenting” the information about a common subject into
as many data elements as there a concepts applicable to that subject. The result would
be a tuple with one column representing the resp. subject and two columns per pro-
perty/association: one for the property name (alias predicate) and one for the property
value (alias object). Whether such a representation makes much sense is questionable,
however.

4.2 Views

The ER (Meta-)Model has been introduced during a development phase of computer
science in the late 1970s during which a rather large body of so-called semantic data
models [14] emerged. Semantic models were the predecessors of the better known
object-oriented data models, which became popular in the 1980s and 1990s. Most of
the semantic models disappeared and have been forgotten, just ER (and its more mod-
ern derivative in UML) survived. The OO approach disappeared because it came along
with the attempt to introduce new DBMS technology directly supporting OO concepts
rather than retaining relational storage techniques and treating objects and classes as
pre-processing concepts for relations. OO products couldn’t replace RM products, just
a few ideas of this period are still around in so-called object-relational extensions to
RM today.

The “ontology movement” in computer science is much younger than the semantic
modelling approaches, going back to the early 1990s. Influenced by much older ideas
in philosophy, from where the term “ontology” has been taken, the use of this term
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became particular popular in the AI field. It took quite some time before you could find
statements like “The methods used in the construction of ontologies thus conceived are
derived . . . from earlier initiatives in database management systems.” [15]

What is the relationship between ER and OWL, ontologies and ER schemas?10 Is
RDF “bound to” ontologies like relational DBs are (seems to be) “bound to” ER dia-
grams? Is RDF more “powerful” because it is “supporting” ontologies rather than “just”
ER diagrams? Is there a standard way of mapping an ontology to an “RDF schema” (are
there any such schemas at all) like mapping an ER diagram to a particular relational
schema? Can RDF accommodate ER diagrams, and can relational databases accommo-
date OWL ontologies? A plethora of questions all relevant to our topic!

My claim in this respect is very simple: Both “schools” of conceptual modelling are
essentially achieving the same result with the same means. Most (if not all) presumed
differences between ontological and semantic modelling are terminological ones arising
from different traditions rather than from objective differences. Thus, RDF databases
might as well be designed if starting from an ER schema, whereas relational database
design may start from almost any ontology, too. Whether the ontology is formally rep-
resented by a diagram (such diagrammatical techniques exist in the ontology context,
too) or the ER diagram is written out in textual form doesn’t matter either, this is purely
a matter of convenience! What matters is how similar concepts are treated when de-
signing data structures that accommodate instance data after the resp. database has been
“populated”.

The “competition” I think we ought to concentrate on is between the strategy of
mapping ER diagrams to relational schemas on the one hand, and the strategy of rep-
resenting data about concepts in an ontology as RDF triples – not between ER and,
say OWL (as the arguably most prominent ontological formalism) as such. The most
essential question here is whether it is beneficial that properties of “things” are turned
into data (as they are in case of, say, OWL-to-RDF, where they become values of meta-
attribute predicate) or into meta-data (as they are in case of ER-to-RM, where they
become attributes). The RDF approach makes properties become accessible to queries
(such as: Which properties – not property values – does a particular “thing” have?).
If questions like this are to be expected, the RDF design is preferable, otherwise the
RM representation is much more compact. The argument that property-as-data makes
it easier to represent missing property values doesn’t really convince me, null values do
a good job, too, at least in cases where they remain the exception rather than the rule.

The other important question is whether a strongly fragmented design of the data
(as in triples, representing minimal pieces of information in a single syntactic entity)
is preferable over a more compact one, where all properties of a single thing are repre-
sented together in one tuple. The major findings in this chapter are for me the following:

1. Both, RDF and RM databases, require a formal conceptualization as the basis of
the design of a particular database. In RM this conceptualization is made explicit
in the schema (table and column names), in RDF a major part goes into the data.

10 Note that whenever I speak about ER here and in the following, I mean EER, i.e., one of the
many extended ER models that have been proposed over the last 2-3 decades. At least entity
type hierarchies with inheritance are part of all of these extensions.
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2. Ontologies are no stronger as techniques for formalizing conceptualizations than
semantic data models (as ER) from which RM database schemas are derived.

3. All steps made towards an RDF database if starting from an ontology can be made
in an analogous manner if ending up with a relational schema.

4. A serious investigation of the benefits of representing properties as data (which
could be done when designing RM databases as well, not just when using RDF) is
still missing: Which kind of queries benefit from this and what is the price to be
paid? Are null values better or worse than non-applicable predicates in RDF? Is
being “schemaless” really an advantage to be aimed at?

5 On Graphs and Data – or Data and Graphs

Let us turn to graphs next, another key concept of our topic, at least from the perspective
of RDF (and of SPARQL, claimed to be particularly suited for representing what is
called graph databases). “RDF is a directed, labelled graph data format for representing
information in the Web.” [16] This sounds as if RDF is really “great” for graph data
(whatever that may be) – and by implicit assumption as if RM is not. So let us look
at the relationship between graphs and data first – and ask what “graph databases”
could be.

5.1 Facts

Triples can be visualized as atomic graphs, i.e., as pairs of labelled nodes connected
by a directed labelled edge. The source node is labelled by the subject of the triple, the
destination node by its object, and the edge by the predicate. As “things” may play both,
the subject as well as the object role (in different, as well as in the same triple), sets
of triples can be visualized by arbitrary directed graphs, including cyclic ones. Thus,
triple sets correspond to forests of connected graphs. If triple sets can be visualized by
such directed graphs, the converse is true as well: Every such graph can be textually
represented by a triple set. This is why RDF seems to be so well-suited for representing
graph databases, whatever that means exactly.

What about relational databases and graphs? Do they have to “leave the field” to RDF
in this respect, simply because they don’t “have” trees, just rows? Not at all! It is well-
known from basic courses on relational databases that rows can be formally modelled in
two different ways: Either as tuples in the proper mathematical sense, i.e., as elements
of products of symbol sets (domains), or as trees of depth 1 (we just wrote about them a
few lines before in the RDF context). In the tree view, the row itself is represented by an
(unlabelled) root node, each of the attribute values labels one of the leaves of the tree,
and the attributes proper (i.e., the selectors in the record sense) label the edges between
root and leaves, the edges being directed from root to leaves. Whereas order matters
in the tuple view (where attributes don’t play a role), it doesn’t matter in the tree view
(due to the uniqueness of attributes). Here, attributes can be understood as functions
mapping rows to attribute values in a unique manner.

Thus, tuples “are” (atomic directed) graphs as much as triples “are”! The out-degree
of rows in a table can be higher than 1, as opposed to that of triples, viewed as graphs,
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where the out-degree is fixed to 1. It is more difficult, however, to view tables, i.e., sets
of rows, as (complex) graphs. This is due to the fact that attribute values (i.e., leaves
of “row trees”) cannot at the same time be roots of trees representing other rows. Root
nodes in this “classical” style of representing rows/tuples as trees are not labelled by
symbolic strings, they are unlabelled, which means they correspond to abstractions,
representing the row as a whole. They are “artificial things” (non-printable) which are
what variables in SQL are bound to: entire rows. Thus, there are no inter-row links, and
tables are forests of depth 1 trees, each row represented by an isolated component of
the overall graph.

Navigating from one row to the other via common “things” (object in the first, subject
in the second statement) appears to be very simple in RDF, visually just following paths
in the graph representation. In relational databases, joining tables is needed in order to
achieve the same “hopping” from one “thing” to the other. Most joins are performed
along foreign key-primary key (FK-PK) connections between tables: Value equality of
one attribute of the one table (the foreign key attribute) and a different attribute in the
other table (primary key attribute there) does the job. Existence of a join partner for
the FK value is guaranteed due to the inclusion dependency being implied by the FK
property, uniqueness of the matching row follows from the PK property in the “foreign”
table referenced.

5.2 Views

Is it therefore true that tables are not suited for representing complex graphs (and thus
relational databases are not suited to represent “graph databases”), even though rows
are trees like triples? A small mental “shift of perspective” reveals that this is not, at
least not necessarily true. If we “press” relational schemas a little bit by requiring each
table to have a primary key, and a single-attribute PK in particular, there is room for
a slightly modified tree view of tuples. Most tables satisfy this condition quite naturally
anyway, and in other cases artificial surrogates – as proposed, e.g., in Codd’s RM/T
extension of the relational model [17] – do the job. This is the same idea as used for
representing tuples by sets of triples in 3.1 above: The TIDs we mentioned up there are
such symbolic surrogates for entire tuples.

If we represent a tuple as a tree, the root of which is (labelled by, and thus repre-
senting) the PK value rather than an (unnamed) abstraction of “the tuple as such”, then
FK references from an attribute value of one tuple to the PK value of the other are no
longer using leaf nodes of isolated, unconnected trees but can go straight to the roots
of other trees representing referenced tuples. Thus collections of joinable tuples (that
is, joinable via FK-PK links) form general graphs, even cyclic ones are possible. Eve-
ry graph representable by an RDF dataset is equally well representable by a relational
graph (and vice versa)! The myth of RDF as the new answer to the challenge of graph
databases has vanished! Navigation from triple to triple is as easy as navigation from
tuple to tuple.

Switching to a different graphical representation of rows/tuples when looking at re-
lational databases is really crucial here. This (mental) switch doesn’t mean that the
relational format has changed anyhow: It is just important to understand the particu-
lar role played by FK-PK connections between different rows as being the “real” links
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which are encoded into row form. This means that the PK value (a single one, no com-
posite keys accepted!) of a row is regarded as the root of the tree “visualizing” a row.
FK attributes (again always single column FKs!) are like entity-valued properties – the
restriction to values as the only “things” that can play the object role in ER is essentially
responsible for the (mis-)conception of rows (representing individual entities) as being
unrelated (in the graphical sense) to other rows (or entities). As soon as we re-establish
such links into relational thinking, RM is “back in business” as a serious format for
representing collections of link data! We will see in the next chapter (on queries in
SPARQL vs. queries in SQL) that a minor extension of the SQL syntax based on FK-PK
links could even dramatically reduce the syntactic effort needed for queries navigating
through paths in a graph.

Finally: Why am I using the proviso “whatever graph databases are” all the time?
There is a big terminological misunderstanding underway at present, or better said:
Even researchers are using their terms in a sloppy way (not for the first time!). Graph
database is confused with Graph DBMS! A DBMS that provides specialized storage
and data access technology which speeds up navigation through large collections of
data which can be visualised as graphs (such as WWW structures, or links in a social
network, e.g.) is one thing – a database consisting of such data is a completely different
thing! A database is not a database (management) system. RDF is a data model, not
a piece of DBMS technology!

You don’t (necessarily) gain query evaluation speed when representing individual
edges of a graph in RDF triple form rather than as RM tuples. Even the usage of a triple
store doesn’t help (as such) to gain performance as compared to using a relational store
(organized as row store or column store or in a different manner internally). Only special
evaluation mechanisms for special “graph queries” (whatever they are) will help gaining
evaluation speed. Whether you need a new generation of DBMSs or whether improving
the query optimizer and the ac-cess mechanisms of an existing DBMS product can be
equally successful remains to be seen. But this is not our topic here, what matters:
Data models and DB languages don’t speed up query execution! As far as “real” graph
databases are concerned: If every set of tuples and every set of triples has a directed
graph counterpart (and vice versa), where does this leave the idea of RDF being better
suited for representing inherently “graphy” data than RM?

Before changing topic let me again summarize what matters in the “Views” section
of this chapter:

1. As a data representation format, RDF is no better for representing data that is (or
can be) visualized as graphs than RM. Tuples have a natural graph visualization,
too, which means that “graphy” data can be represented in tuples as in triples. None
of the two formats is particularly “graph-friendly”.

2. A single tuple is a more compact representation of atomic graphs which all share
the same subject node, and where the predicates (labelling the edges emerging from
this node) are encoded in the column headings (alias attribute) once for all rows in
the table.

3. If turning away from the traditional graph view of a tuple as having an unlabelled
root which represents the entire tuple towards a view where the PK value of the
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resp. tuple is the root node we can even build connected complex graphs out of
tables where individual tuples are graphically linked via FK references.

4. Don’t mix DBMS technology (storage, access, query optimization) able to speed
up graph queries over data interpreted as graphs with DBs containing “graph data”.
RDF and SPARQL are no “graph DBMS”, but a data model and a query language,
resp.

6 On Queries: Patterns vs. Literals

Let us now – finally, quite late, admittedly – turn to the query languages appearing in the
title of this paper: SPARQL and SQL. Let me recall that we restricted this discussion of
the core language features of SPARQL to a single-backend situation, thus we will not
explicitly use any PREFIX clause in SPARQL queries. Both languages are huge if you
look at the resp. grammars, SQL more so than SPARQL, but the latter rapidly catching
up. Our goal is to come up with principle statements about the relationship between the
two linguistic approaches, not side-tracked by “nitty-gritty” detail, but focusing on the
essential characteristics, those that really matter.

6.1 Facts

On the surface, SPARQL queries have the look and feel of SQL queries, as the three
main SQL keywords – SELECT, FROM and WHERE – are used, even retaining the
basic semantics they have in SQL: SELECT clauses specify the structure of the output
data elements, FROM specifies the input datasets (if there is a choice), and WHERE
specifies which input data are to be considered in the output. Semantically, the anal-
ogy with SQL queries holds, too, as results of SPARQL queries are derived, unnamed
datasets (as for SQL, where results are derived, unnamed tables)11. DISTINCT elimi-
nates duplicates in SPARQL as in SQL. UNION allows for duplicate-free combination
of two datasets into a common one, as in SQL. ORDER BY determines the sequence
of presentation of output datasets, as in SQL. Since SPARQL 1.1, aggregate functions
and GROUP BY clauses have been “inherited” from SQL, too.

However, that’s how far the commonalities go! The basic mechanism of accessing
triples in SPARQL is (at least syntactically) fundamentally different from that of SQL
for accessing tuples. Whereas variables in SQL stand for entire tuples, and attributes
(i.e., column names) are used as functions applied to such tuple variables for accessing
tuple components, variables in SPARQL stand for triple components, and attributes are
not used at all, mainly because they remain implicit in RDF (Subject, Predicate, Object),
and are the same for all triples anyway.

Instead the basic syntactic features in the WHERE part (responsible for specifying
those input triples from which the query results are to be constructed) are so-called triple
patterns, sequences of three components separated by a space, each component being
either a literal (in our restricted context without URIs and blank nodes) or a variable

11 This is the “good, old” idea of an algebra in maths: The output of an expression is of the
same kind as its input, thus allowing for nested expressions “consuming” the results of their
sub-expressions.
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(a string prefixed by a question mark, or an equivalent symbol). Thus, triple patterns
are tuples potentially with variables represented without the ordinary tuple delimiters
known from mathematics (i.e., without round brackets enclosing the tuple and without
commas separating components).

Triple patterns are evaluated by matching them against variable-free triples in the
input dataset, literals in the input replacing variables, each replacement generating
a new candidate result. As in mathematics, different occurrences of the same variable
in a query represent the same binding (different from the usage of variables in most
programming languages offering “destructive assignment”). The SELECT clause de-
termines those variables in the WHERE part the bindings to which (“matches” in the
above sense) are considered relevant for the output (the remaining variables are treated
as local to the WHERE part). In addition, a FILTER clause can be added after the triple
pattern consisting of one or more comparisons restricting the range of variable bindings
by comparing them to delimiter values using the well-known operators >, >, = (or
by other built-in functions). We postpone the discussion of the OPTIONAL clause in
SPARQL queries till later.

In SQL, the WHERE part consists of comparisons between terms, whereas accessing
tables and binding variables to tuples in these tables is achieved in the FROM part only.
If a SPARQL triple pattern contains literals (i.e., constants from the perspective of log-
ical syntax), such literals match only in case they appear identically in the input triples
against which the patterns are matched. Thus, the same effect could be achieved by hav-
ing nothing but variables in each triple pattern and pushing the equality condition to a
subsequent FILTER part. If doing so, the “real” roles of the three parts become visible:
SELECT specifies the structure of output elements in both cases, WHERE in SPARQL
corresponds to FROM in SQL, and FILTER in SPARQL corresponds to WHERE in
SQL. SPARQL’s FROM clause is only relevant if several distinct datasets are used as
input. 12

Such linguistic details aside, the fundamental difference between both languages’
basic data access mechanisms is in the role played by variables: In case of SQL they
represent entire tuples, in case of SPARQL they access triple components rather than
triples as a whole. The difference is well-motivated as we stated above, however, this
difference in usage of variables for matching against structures is well-known in logic
and in database theory: It is what distinguishes Codd’s TRC (tuple relational calculus)
[18] from Lacroix/Pirotte’s DRC (domain relational calculus) [19] . TRC corresponds
well with the tree representation of table rows, with attributes being selectors marking
the edges of the trees turned into functions in TRC. DRC corresponds with the tuple
view of table rows requiring a positional syntax where queries contain tuples with vari-
ables and where order of components matters. SQL is based on TRC, SPARQL is based
on DRC – at least if you accept the “R” (standing for “relational”) in the RDF context,
but triples are tuples from the perspective of maths, so datasets are relations!

12 Not such a particularly brilliant choice of keyword semantics, unless the SPARQL designers
intended to vex the SQL community!
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6.2 More Facts

SPARQL didn’t “invent” the DRC style, however – there have been DRC languages
in the relational DB field since long. Query-by-Example [20] was an early relational
query language in the 1970s, which retained attention when MS Access offered a query
design interface based on a drag-and-drop manipulation style which reflects QbE ideas.
Much more significant, however, is Datalog [21] as a DRC language, designed in the
1970s, too, but having survived in the academic context since then: Datalog is the lan-
guage of deductive database research, and – due to its close correspondence with pure
PROLOG – it is the language used when discussing database problems in the area of
Logic Programming.

Each triple pattern corresponds to a Datalog literal13 without explicit predicate (i.e.,
relation name). A triple pattern like, e.g.,

?x friend of ?y.
evaluated over an (implicit) dataset called ds here corresponds to the Datalog literal

ds(X,’friend of’,Y).
The dataset/relation name has to be made explicit, brackets are used for delimiting the
parameter list, commas separate the list components, variables are written as (or starting
with) capitals (as in Prolog), strings are quoted (as in SQL). Such patterns are evaluated
over triples, represented as variable-free triple patterns, e.g.,

‘John’ friend of ‘Jack’.
In Datalog, a triple would be a fact, represented as a ground literal

ds(‘John’,’friend of’, ‘Jack’).
Matching a triple pattern against a triple in the dataset exactly corresponds to evalua-
tion of a Datalog literal over a set of Datalog facts. This technique has been called
unification in the context of the resolution inference technique in clausal logic since the
1950s [22], the term has been retained in Logic Programming and in Datalog.

In the “SPARQL world”, matching is often called graph matching, referring to the
graph representation of triples. As we saw in the previous chapter, tuples in RM (and
thus in SQL and Datalog) have a graph representation, too – if we choose this “graph
view”, unification is a graph matching technique as well. If we look at triples in RDF
in the linearized (“Turtle”) form used above, it becomes obvious that graph matching is
the same as unification. So again, it is all a matter of perspective and of terminology!
But in essence, there is nothing new in evaluating (and writing down) triple patterns
over triples as compared to evaluating (query) literals over sets of ground literals (facts)
in Datalog. The main argument in favour of the Datalog terminology would be that it
has been around since more than half a century in logic (which makes it “boring”, as
opposed to a new terminology making SPARQL innovative and “cool”.

SPARQL WHERE parts consisting of more than one triple pattern are called basic
graph patterns, consisting of triple patterns (each terminated by a dot), enclosed in set
braces, e.g.: . . . WHERE {?x name ?n. ?x age 53. }
13 Unfortunately, the term “literal” is ambiguous: In mathematical logic (and thus in Prolog and

Datalog) a literal is an atomic formula (with or without negation) consisting of a predicate, i.e.,
a relation name, and a parameter list, where each parameter is a logical term, i.e., a constant, or
a variable, or a function application. In SPARQL, a literal is a string, i.e., a constant in logical
terminology.



Back to the Future Should SQL Surrender to SPARQL? 97

Such a composite condition is to be read conjunctively, i.e., both triple patterns are
supposed to match with a triple each, assigning the same binding to the two occur-
rences of variable ?x. This corresponds one-to-one to the body of a Datalog rule, where
there are commas delimiting the individual literals, and comma stands for logical AND:

. . . ds(X, ‘name’, N) , ds(X, ‘age’, 53).
Dots are not needed at the end of each Datalog literal as there a list brackets termi-

nating the component list of each such literal, but there is a separator (the conjunctive
comma) explicitly between the literals. Set braces are not needed as delimiters for the
entire complex condition, but there is a dot at the end of the rule body. But again: Basic
group patterns are conjunctions of atomic statements, as are rule bodies in Datalog. All
differences are syntactic sugar!

To conclude the story: In SPARQL, there may be FILTER clauses associated with
individual triple patterns or entire basic graph patterns, together forming a group graph
pattern, e.g.: . . . WHERE {?x name ?n. ?x age ?a. FILTER a <50 }

In Datalog, such comparison literals are “and-ed” with the database literals without
any “warning” by means of an extra keyword (FILTER):

. . . ds(X, ‘name’, N) , ds(X, ‘age’, A) , A <60.
But during evaluation, database literals (like the two ds-literals) are treated differ-

ently from comparison literals: Database literals generate variable bindings, whereas
comparison literals “consume” such bindings (generated before by database literals in
the same conjunction) and test them for truth or falsehood.

Strictly speaking, every match of an RDF literal (corresponding to a Datalog con-
stant) in a triple pattern against a triple is an equality test rather than a binding gener-
ation. So if being consequent, only variables should be used in triple patterns and the
testing part moved into a FILTER, such that the first example of a basic group pattern
above would turn into a group graph pattern as follows:

. . . WHERE {?x name ?n. ?x age ?n. FILTER ?n = 53 }
In Datalog, explicit equality test rather than test by matching is possible, too:

. . . ds(X, ‘name’, N) , ds(X, ‘age’, A) , A = 53.
Thus, the extra FILTER clause might even be useful as it makes the different modes

of evaluation of atomic expressions explicit. However, FILTER is only useful if applied
in the strict sense sketched here, where every testing/filtering step is made explicit in
a FILTER clause. SQL is following such a strict strategy of “separating concerns”:
Variable bindings are created during evaluation of the FROM clause only. The WHERE
clause in SQL is purely selective in testing the generated bindings for satisfying the
specified condition. Datalog combines the two tasks (generation of bindings and testing
conditions) inside a uniform conjunctive rule body without distinguishing the two parts
syntactically.

Negation is a “notorical culprit” in Datalog, causing all kinds of difficulties and be-
ing responsible for concepts like safe rules, negation-as-failure and stratification. Syn-
tactically, it is quite simple: Literals can be prefixed by a negation operator (either
a symbol like #, or ?, or !, or simply the keyword not). Negative literals are “controlled”
like comparison literals in that all variables they contain must be bound by evaluating
positive database literals in the same conjunction before evaluating the negative literals.
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The corresponding evaluation technique called negation-as-failure is a test technique,
so negative literals are tests, too.

In SPARQL, there was no explicit negation initially – quite surprising! Since
SPARQL 1.1, there is a NOT EXISTS construct which has to go into FILTER clauses,
but uses triple patterns as parameter – the only exception from the rule that triple pat-
terns (corresponding to positive database literals in Datalog) belong into the WHERE
part proper. The syntax (using an explicit existential quantifier) has been derived from
SQL (where it is used with an entire embedded query as operand, testing its answer
table for non-emptiness). The semantics, however, is very close to Datalog’s negation-
as-failure test style. There is a tiny, but remarkable difference: If the pattern “inside”
a NOT EXISTS expression contains a local variable, not bound at the time of evalu-
ation, any match for this variable leads to the EXISTS being successful (as in SQL,
where a single tuple in the embedded sub-query makes the EXISTS succeed). In Data-
log, an auxiliary rule is needed as existential quantifiers are implicit at the beginning of
every rule body (binding their local variables), never directly after a not, however.

For space reasons, we omit the (interesting) discussion of OPTIONAL clauses in
SPARQL queries here. OPTIONAL is tightly related to the issue of non-applicable
predicates in RDF (vs. null values in RM). They syntactically compete with IS NULL
tests in SQL (Datalog doesn’t “have” null values traditionally, for no obvious reasons).

6.3 Views (at Last)

The main observation I can identify in the present chapter is the observation that
SPARQL is essentially much closer to Datalog than to SQL, despite the many efforts
to include ever more SQL keywords into SPARQL. There have been numerous papers
written on defining the semantics of SPARQL using Datalog or on using Datalog-like
techniques for extending SPARQL by a rule concept (just to mention [23] as a par-
ticularly striking example of such a paper). But all of these contributions overlook (at
least that is how I perceive them) the enormous closeness of SPARQL’s triple patterns
to Datalog literals and of SPARQL’s graph matching to Datalog’s unification. In this
respect, SPARQL is quite far away from the basic syntactic style of SQL. On the other
hand, we know that Datalog and SQL (at least as far as the common core concepts are
concerned) are very close siblings, in as much as Datalog expressions can be easily and
systematically mapped to (core) SQL expressions, and vice versa.

If Datalog were “sugared” by means of a whole bunch of SQL keywords (as SPARQL
has been), the closeness between Datalog and SPARQL would be much more obvious.
I believe myself, that introducing a more semantically motivated strategy of working
with different datasets in RDF (not just because they come from different endpoints,
but because they are concerned with important, distinct classes of “things” in one and
the same domain) will lead to a SPARQL syntax where triple patterns are indeed pre-
fixed directly by dataset names, not indirectly by using identifiers introduced in PREFIX
clauses. Then a further step towards Datalog would have been done, revealing that triple
patterns are indeed (like) Datalog literals.

A final idea at the end of this chapter: In SPARQL 1.1, the new (?) concept of
a path expression has been introduced, allowing (among others) for a more compact
style of expressing navigation along paths in a data graph. Rather than introducing
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variables for all the intermediate “things” through which a path runs (being object in
the one, and subject in the next triple in a chain), a sequence of the predicates involved is
simply formed. This technique isn’t that new either, as it has been used in quite a num-
ber of OO query languages in the past. In the SQL context, however, this kind of tech-
nique is still missing. If following our proposal to exploit FK-PK links between rows in
different (copies of) tables, a similar kind of path expression could be added to SQL’s
syntax (conservatively, quite important for standardization). Rather than having a single
attribute attached to TRC variables (e.g., S.name), a sequence of such (FK) attributes
in postfix notation could be allowed (e.g., S.father.mother.husband.name), abbreviating
queries considerably by saving variables and – most importantly – JOIN occurrences.
Furthermore, evaluation of such path expressions could be done more efficiently (by the
DBMS) than via join algorithms.

7 Conclusion: A Tale of Two Languages

This paper has been an unusual one, at least in computer science. It consists almost
entirely of text, even stronger, of narrative text, without any formalism, and with very
few examples only. Texts like this are called essays in philology. So this was an essay
about two models and two languages. Essays are a rare species in our branch of science,
but I thought this genre to be appropriate regarding the contents and the intention of the
paper.

Most of the paper has been rather unspectacular in style (at least that is how I perceive
it). This didn’t just happen to be the case, but the paper has been written like this on
purpose. As most contributions on RDF/SPARQL (and Semantic Web & Co.) come
along with a rather “hyped” style (at least that is how I perceive it), I intended to respond
to this style in a “matter of fact” manner, trying to set a notable contrast to so many
examples of “W3C hoopla” (to borrow the unserious expression from Mohan). Probably
there is still quite a bit of controversial argumentation around in my “Views” parts,
which causes protest by part of my audience, but that’s intended, too.

I don’t want to repeat all the summaries of chapters 3 to 6 here. Just so much: For
me it was quite revealing to discover how close the RDF data model is to a specific
schema design strategy for an RM database, and how similar the way from an ontology
to an RDF database schema is to the way from an ER diagram to a relational schema.
Discovering that the “graph database debate” is almost an idle fight, at least on the
level of models and languages, was enlightening, too – let the SQL people enhance
their query optimizers and storage architectures for “graph queries” (unfortunately not
further discussed in this paper), and we will see what is left of the “graph DBMS”
debate! The discovery that SPARQL finally did successfully, what Datalog couldn’t
achieve commercially – namely to base a relational query language an DRC rather than
on TRC (as SQL did) was interesting, too. But why not position SPARQL directly
in the research line established by Datalog rather than opportunistically “stealing” all
kinds of SQL keywords? If SQL manages to overcome those weaknesses that motivated
SPARQL designer to follow Datalog, than the many SQL keywords in SPARQL may
finally turn against SPARQL, as SQL is already around all the time.

So let us finally answer the question in the title of this paper: Should SQL surrender
to SPARQL? Remember that the motivation for this question – which wasn’t meant
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purely rhetorical – was the observation that RDF/SPARQL topics have been dominating
the research agendas of funding agencies, program committees and researchers alike for
several years by now. My answer is quite clear: Certainly not!

I think that there is just one notable piece of progress which SPARQL could claim in
its favour, exactly the issue we omitted in this paper: Providing linguistic features for
navigating over a network of distributed data resources contributing jointly for provid-
ing the answers to a given query. If SQL is extended by similar features, it would be
competitive again – but this issue was just what I decided to omit from this paper.
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Abstract. In heterogeneous networks, devices can communicate by
means of multiple interfaces. By choosing which interfaces to activate
(switch-on) at each device, several connections might be established.
A connection is established when the devices at its endpoints share at
least one active interface. Interfaces are associated with a cost defin-
ing the percentage of energy consumed to switch-on the corresponding
interface.

In this paper, we consider the case where each device is limited to
activate at most a fixed number p of its available interfaces in order to
accomplish the required task. In particular, we consider the so-called
Coverage problem. Given a network G = (V,E), nodes V represent de-
vices, edges E represent connections that can be established. The aim
is to activate at most p interfaces at each node in order to establish all
the connections defined by E. Parameter p implies a sort of balanced
consumption among devices so that none of them suffers - in terms of
consumed energy - for being exploited in the network more than others.

We provide an NP-completeness proof for the feasibility of the prob-
lem even considering the basic case of p = 2 and unitary costs for all
the interfaces. Then we provide optimal algorithms that solve the prob-
lem in polynomial time for different graph topologies and general costs
associated to the interfaces.

1 Introduction

As technology advances and hardware costs reduce, very powerful devices are
available for a wide range of applications. Moreover, heterogeneous devices may
communicate to each other by means of different protocols and interfaces. The
connection among heterogeneous devices might result as a fundamental mean for
the communication among different local area networks that all together form
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Fig. 1. Example of multi-interface network composed of heterogeneous devices con-
nected by means of different interfaces

a wide area network, or the Internet. In this paper, we are interested in net-
works composed by heterogeneous devices that exploit different communication
interfaces in order to establish desired connections. It is very common to find
devices equipped with Bluetooth, Wi-Fi and GPRS interfaces but very few ap-
plications usually take advantage of such available heterogeneity. Selecting the
best interfaces for specific connections depends on several factors. Namely, the
choice might depend on the availability of a specific interface on some devices,
the required communication bandwidth, the cost (in terms of energy consump-
tion) for maintaining an active interface, the neighborhood, and so forth. Since
devices are usually portable or mobile, a lot of effort must be devoted to en-
ergy consumption issues in order to prolong the network lifetime. In fact, the
failure of a device due to draining batteries is something that could be delayed
if suitable solutions are provided when building the connections of a desired
network in accordance to specific requirements. This introduces challenging and
natural optimization problems that must take care of different parameters at
the same time. In general, a network of devices will be described by a graph
G = (V,E), where V represents the set of devices and E is the set of possible
connections defined according to the distance between devices and the available
interfaces that they share. Each v ∈ V is associated with a set of available inter-
faces W(v). The set of all the possible available interfaces in the network is then
determined by

⋃
v∈V W(v); we denote the cardinality of this set by k. We say

that a connection is established when the endpoints of the corresponding edge
share at least one active interface. If an interface α is activated at some node u,
then u consumes some energy c(α) for maintaining α as active, and it provides
a maximum communication bandwidth b(α) with all its neighbors that share in-
terface α. An example of a network instance is shown in Figure 1, where mobile
phones, smartphones, tablets and laptops can communicate in a point-to point
way by means of different interfaces and protocols such as IRdA, Bluetooth,
Wi-Fi, GSM, Edge, UMTS and Satellite. All the possible connections can be
established by means of at least one interface. Note that, some devices are not
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directly connected even though they share some interfaces. This can be due to
many factors like for instance obstacles, distances, or used protocols. In order to
provide a full instance, one should provide (if necessary) the cost for each device
to activate a specific interface, and the corresponding bandwidth that can be
handled. While bandwidths usually concern the interfaces, the energy spent by
each device to activate a specific interface may vary substantially. In order to
make easier the model, the costs might be referred to the percentage of battery
consumed by each device, and hence it might be considered the same for each
device with respect to a specific interface among the whole network. Neverthe-
less, different assumptions may lead to completely different problems that point
out specific peculiarities of the composed networks.

In this paper, we are interested in the so-called Coverage problem, see [12]. It
consists in finding the cheapest way to establish all the connections defined by
an input graph G, no matter the interface used to accomplish each connection,
no bandwidths requirements are provided. The problem only asks to ensure that
for each edge of G, there is a common active interface at its endpoints. The
objective is to minimize the overall cost of activation in the network.

Here, we add one further constraint to the original setting, in order
to maintain under control the energy spent by single devices. We intro-
duce parameter p with the meaning that no device can activate more than
p interfaces. That is, instead of finding the solution that minimizes the over-
all cost due to the activation of the interfaces along the whole network, our aim
is to minimize the overall cost subject to constraint p. The new setting is in
favor of a more balanced energy consumption among nodes, hence prolonging
the network lifetime.

Related Work. Multi-interface networks have been extensively studied during
the last years. Many basic problems of standard network optimization are recon-
sidered in such a setting [3], focusing on issues related to routing [9] and network
connectivity [5,10]. In [4,12], the so called Coverage problem has been studied.
It consists in finding the cheapest way to establish all the connections defined by
an input graph G, no matter the interface used to accomplish each connection.
The problem only asks to ensure that for each edge of G, there is a common
active interface at its endpoints. The objective is to minimize the overall cost of
activation in the network. Another interesting objective function concerns the
minimization of the maximum cost on a single node [8].

Connectivity issues have been addressed in [2,14]. The problem consists in
finding the cheapest way to ensure the connectivity of the entire network. In other
words, it aims to find at each node a subset of the available interfaces that must
be activated in order to guarantee a path between every pair of nodes in G while
minimizing the overall cost of the interfaces activated among the whole network.
As for Coverage, another studied objective function is that of minimizing the
maximum cost paid on a single node [8]. The Connectivity problem corresponds
to a generalization of the well-know Minimum Spanning Tree problem.

In [14], the attention has been devoted to the so called Cheapest path problem.
Here, the goal is to find a minimum cost subset of available interfaces that can
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Table 1. Complexity of the CMI(2) problem. Parameters n, k and Δ are the number
of nodes, the number of interfaces, and the maximum node degree of the input instance
of CMI(2), respectively.

Graph class Unitary/Arbitrary Costs Complexity of CMI(2)

Feasibility on graphs with
Δ ≥ 4

unitary NP-complete

Complete bipartite graphs arbitrary solvable in O(k4n)

Complete graphs arbitrary solvable in O(k3n)

Rings arbitrary solvable in O(k3n)

Trees arbitrary solvable in O(Δk2n)

Paths arbitrary solvable in O(kn)

be activated in some nodes in order to guarantee a connecting path between two
specified nodes of the network. This problem corresponds to a generalization of
the well-know Shortest Path problem between two nodes in standard networks.

Another interesting study [13] investigates a basic problem like the Maximum
Matching. As in its classical version, the problem asks for the maximum subset of
connections that can be established concurrently without sharing any common
node. That is, a solution is provided by a set of disjoint edges of the input graph,
and hence each node appears in the solution at most once.

Bandwidth constraints have been addressed in [7], by studying flow problems
on multi-interface networks. In that paper, each interface has been associated
with one further parameter expressing the bandwidth that the interface can
manage. The Maximum Flow problem as well as the Minimum Cost Flow prob-
lem aim to guarantee a connection between two given nodes, taking into account
bandwidth constraints.

Our Results. In this paper, we are interested in the Coverage problem with
the further constraint that each node of the network can activate at most
p interfaces. From now on, the problem is denoted by CMI(p), according to
the name given in the original paper where the Coverage on multi-interface net-
works has been introduced [12]. In particular, we refer to what was called the
unbounded case, where there was no bound on the number k of interfaces avail-
able over all the network. In our notation, we refer to that problem as CMI(∞),
since there was no restriction on the number of interfaces activated at the single
nodes, that is p = ∞. Moreover, since this is the first study on this new variant
of the problem, we start evaluating what can be computed for CMI(2). The
results contained in this paper are summarized in Table 1.

It turns out that already the feasibility of CMI(2) is NP-complete for graphs
of maximum degree Δ ≥ 4 (even if they are bipartite with interfaces of unitary
costs). This reveals a completely different behavior with respect to the previously
studied CMI(∞) where feasibility was trivially solved by the definition of the
problem. In fact, an instance of CMI(∞) – as well as of CMI(2) – guarantees
that each connection appearing in the input graph can be established. It follows



106 A. Aloisio and A. Navarra

that in CMI(∞) there always exists a feasible solution, by activating all the
interfaces available at each node. Contrary, the constraint introduced in CMI(2)
by means of parameter p = 2 makes the feasibility problem very difficult. We
then show how the problem can be optimally solved for many graph classes like
complete graphs, complete bipartite graphs, rings, and trees for arbitrary costs
associated to the interfaces. Interestingly, in all such graph classes but rings,
CMI(∞) was difficult to be computed or even to approximate [14].

Outline. The next section provides definitions and notation in order to formally
describe the CMI(p) problem. Section 3 contains all the research contributions.
We provide hardness results for general graphs, and optimal algorithms for var-
ious graphs classes that work in polynomial time. Finally, Section 4 contains
conclusive remarks and a discussion of interesting open problems.

2 Definitions

For a graph G = (V,E), we denote by V its node set of cardinality n, and
by E its edge set of cardinality m. Unless otherwise stated, G is assumed to
be undirected, connected, and without multiple edges or loops. For each node
v ∈ V , let deg(v) be the degree of v, and Δ be the maximum degree among all
the nodes. A global assignment of the interfaces to the nodes in V is given in
terms of an appropriate interface assignment function W , as follows.

Definition 1. A function W :V → 2{1,2,...,k} is said to cover graph G if for each
{u, v} ∈ E we have W (u) ∩W (v) �= ∅.

The cost of activating an interface is assumed to be identical for all nodes
and given by a cost function c: {1, . . . , k} → R+, i.e., the cost of interface i is
denoted as ci. The considered CMI(p) optimization problem is so formulated:

CMI(p): Coverage in Multi-Interface Networks

Input : A graph G = (V,E), an allocation of available interfaces W :V →
2{1,...,k} covering graph G, an interface cost function c: {1, . . . , k} →
R+, an integer p ≥ 1.

Solution : If possible, an allocation of active interfaces WA:V → 2{1,...,k} cov-
ering G such that for all v ∈ V , WA(v) ⊆ W (v) and |WA(v)| ≤ p;
Otherwise, a negative answer.

Goal : Minimize the total cost of the active interfaces, c(WA) =∑
v∈V

∑
i∈WA(v) ci.

Note that we can consider two variants of the above problem: The cost func-
tion c can span over R+, or c(i) = 1, with i = 1, . . ., k (unit cost case). In both
cases we assume k ≥ 2, since the case k = 1 admits an obvious unique solution
(all nodes must activate their unique interface).

As mentioned above, CMI(p) is a special case of the more general CMI(∞)
problem (see [6,12]), where each node cannot activate more than p interfaces.
Interestingly, on the one hand the basic variant with p = 2 results more difficult
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in general than CMI(∞). On the other hand, there are special graph classes
that turn out to be much more affordable. For trees and complete graphs, for in-
stance, CMI(∞) has been proved to be APX -hard and not approximable within
O(log k), respectively, while CMI(2) is polynomially solvable.

3 Complexity

In this section, we first study the hardness of the problem, and then we provide
different algorithms designed for various graph topologies.

Theorem 1. Finding a feasible solution for CMI(2) is NP-complete for graphs
with Δ ≥ 4, even for the unit cost case and bipartite graphs.

Proof. The proof proceeds by a polynomial time reduction of the well-known
3-SAT problem with bounded occurrences. The problem is known to be NP-
complete [11] and it can be stated as follows:

3-SAT : 3-Satisfiability with bounded occurrences

Input : Set S of variables, collection C of clauses over S. Each c ∈ C
satisfies |c| ≤ 3 and, for each s ∈ S, there are at most 3 clauses in
C that contain either s or s̄.

Question: Is there a satisfying truth assignment for C?

For our reduction we consider the unit cost interface case. Given an instance
(C, S) of 3-SAT , we transform it into an instance (G,W ) of CMI(2) with unit
cost interfaces.

Each variable in S is represented in G by means of two interfaces i and
ī corresponding to the two literals generated by the variable. As shown in
Figure 2, graph G can be divided into four main levels. At the first level there

Fig. 2. A polynomial transformation from 3-SAT to CMI(2). The graph depicted in
the figure is obtained from the input set of clauses C = {(1∨2∨3̄), (2̄∨3∨4̄), (3̄∨4), 4}.
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are |S| nodes. Each node is associated with three interfaces, two corresponding
to the two literals of the represented variable, plus a new interface α common to
all the nodes of this first level. At the second level of the graph, clauses composed
of three literals are represented by three nodes, one for each literal. Each node
is associated with the two interfaces related to the variable that generates the
appearing literal plus two new interfaces among the set {β, γ, δ}. The first node
holds {β, γ}, the second {β, δ}, and the third {γ, δ}. At level three there is one
node for each clause composed of three literals and one for each clause composed
of two literals. The first type of nodes hold six interfaces, three corresponding
to the literals appearing in the clause plus {β, γ, δ}. The second type of nodes
hold four interfaces related to the two variables appearing in the clause. Finally,
the fourth level is composed of |C| nodes, each associated with the interfaces
corresponding to the literals appearing in the represented clause. For each node
of the first level there is one further node holding only interface α. Moreover,
each node of the first level is connected to all the nodes of the second level that
share some interfaces, to the nodes of the third level corresponding to clauses
composed of only two literals with which they share some interfaces, and to the
nodes of the fourth level corresponding to clauses composed of only one literal
with which they share some interface. The three nodes of the the second level
corresponding to one clause are all connected to the node of the third level with
six interfaces corresponding to the same clause. Finally, nodes of the third level
are connected to those of the fourth level according to the represented clauses,
i.e. one connection for each node.

Since we are considering 3-SAT with bounded occurrences of the variables,
the originated graph admits a maximum degree Δ = 4. In fact, nodes of level one
corresponding to variables in 3-SAT can have at most three connections toward
the other levels, one for each clause that contains the considered variable. For
the other levels, the maximum degree of four simply follows by construction.
The number of nodes in G is proportional to the number of literals plus the
number of clauses appearing in the input instance of 3-SAT , while the number
of interfaces is exactly k = 2|S|+4, hence the transformation requires polynomial
time. Moreover, G is bipartite since each level is connected to at most one level
above and one below. Given a satisfying truth assignment for an instance of
3-SAT , we obtain an activation function that solves the corresponding instance
of CMI(2), and viceversa.

(⇒) All the nodes holding interface α activate it. At each node of level one,
we activate the interface corresponding to the literals set to true by the truth
assignment for each variable. Hence, all nodes at level one have now activated
two interfaces. All the connections from level one are then satisfied by activate
at the connected nodes the interfaces corresponding to the literals set to true
by the truth assignment for each variable. At level two, one further interface is
chosen among {β, γ, δ} according to the connections with level three. That is,
consider the three nodes at level two connected to the same node of level three
corresponding to one clause. Chose one of the literals l that makes true such
a clause. Then, nodes at level two not holding l activate the common interface
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they have among {β, γ, δ}. In doing so, the connections between nodes of levels
two and three are established by activating at the nodes of level three the same
interface extracted from {β, γ, δ} and interface l. Finally, connections between
nodes of level three and four are satisfied again by activating at the nodes of
level four the interfaces corresponding to the literals set to true by the truth
assignment for each variable. Hence, all the connections are established and the
constraint on p = 2 holds.

(⇐) Given an activation function that solves the instance of CMI(2), we can
easily obtain a satisfying truth assignment for corresponding instance of 3-SAT .
In fact, the constraints implied by the described instances impose to activate
the interface corresponding to one literal for each variable. Such an assignment
must satisfy all the clauses of the 3-SAT instance since nodes of the fourth level
are associated only to the interfaces corresponding to the literals appearing in
the represented clauses. Since each node of the fourth level activates at least one
interface in order to establish its unique connection, then at least one literal for
each clause is set to true. ��

Similarly to the approach adopted in [1], as the feasibility of CMI(2) has
been shown to be NP-complete, it is interesting to understand whether the
optimization problem is harder than CMI(∞) even for specific graph topologies.

Theorem 2. CMI(2) is solvable on complete graphs in O(k3n) time.

Proof. The proof is constructive, and it is divided into two main steps in order
to check whether there exists a solution that makes use of one, or three interfaces
over all the network. In fact, using just two or more than three different inter-
faces over all the network does not provide any advantage. Let G = (V,E) be
a complete graph. In order to construct a feasible solution using only two in-
terfaces over all the network means to assign to each node either one or two
interfaces. If there exists a solution with a node activating only one interface, it
means that all the nodes must hold such an interface. It follows that the solu-
tion with all the nodes activating one same interface is cheaper. Hence, the only
alternative is to activate exactly two interfaces at all the nodes.

If the solution is composed of just two interfaces over all the network, it means
that all the nodes activate the same two interfaces, and hence the solution with
only one interface is cheaper.

If the final optimal solution contains exactly three interfaces over all the net-
work, then all the nodes activate two interfaces among the chosen three. In this
way, all the nodes share a common active interface. Again, if a node activates
only one interface then all the nodes must activate the same interface against
the assumption on the optimality. The two interfaces to be activated at each
node are the cheapest ones among those available. Overall, we need

(
k
3

)
trials

for a total complexity of O(k3n).
Solutions with more than three interfaces over all the network are certainly

not optimal as each node can activate at most p = 2 interfaces and every pair of
nodes must share one active interface. ��
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In contrast with the hardness result on bipartite graphs, the next theorem
addresses the case of complete bipartite graphs.

Theorem 3. CMI(2) is solvable on complete bipartite graphs in O(k4n) time.

Proof. The proof is constructive, and it is divided into five main steps in order
to check whether there exists a solution that makes use of one, two, three, four
interfaces over all the network, plus a final case to show that using more than
four different interfaces does not provide any advantage. Let G = (V,E) be
a complete bipartite graph with nodes V that can be represented as two sets
X and Y so that each edge in E has one endpoint in X and the other in Y , for
any u ∈ X and v ∈ Y .

Among all the solutions provided by the next phases, the algorithm will chose
the cheapest one.
One interface case. In linear time it is possible to check whether all the nodes
of the input graph hold one (or more) same interface, and we save the one of
minimum cost, if any.
Two interfaces case. If the final optimal solution contains exactly two interfaces
over all the nodes, it must be structured as follows: All the nodes in X (or in
Y , resp.) activate the same two interfaces α, β, and every node in Y (or in X ,
resp.) activates either α or β. No other combination is possible to establish all
the connections. These are at most 2

(
k
2

)
trials.

Three interfaces case. If the final optimal solution contains exactly three inter-
faces over all the nodes, it must be structured as follows. Consider three interfaces
α, β, and γ. There are two possible sub-cases:

– All the nodes in both X and Y activate two interfaces (the cheapest ones if
possible) among the selected triple

– in X (or in Y , resp.) all the nodes activate two interfaces in the form {α, β},
{α, γ} while in Y (or X , resp.) there can be nodes activating just interface
{α} or {β, γ}.

By activating the interfaces as above, each connections is clearly established.
There are

(
k
3

)
triples, and for each one, only the second subcase generates

6 trials, 3 given by fixing interface α, times 2 given by the choice of X and
Y .
Four interfaces case. If the final optimal solution contains exactly four interfaces
over all the nodes, it must be structured as follows. Consider four interfaces α,
β, γ, and δ. There are two possible sub-cases:

– Nodes in X activate one couple of interfaces among {α, β} or {γ, δ}, nodes
in Y activate one couple among {α, γ}, {α, δ}, {β, γ}, or {β, δ}.

– Nodes in X activate one couple of interfaces among {α, β}, {α, γ}, or {β, δ},
nodes in Y activate one couple among {α, β}, {α, δ}, or {β, γ}.

By activating the interfaces as above, each connections is clearly established.
There are

(
k
4

)
choices for the interfaces, and for each one, the first subcase

generates 6 trials, 3 given by the ways of mixing the four interfaces, times 2
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given by the choice of X and Y . The second subcase gives rise to 12 trials,
6 given by the ways of mixing the four interfaces according to the description,
times 2 given by the choice of X and Y .
More than four interfaces case. First we note that there cannot be a node in
X activating only one interface as otherwise the solution must belong to either
the one interface or the two interfaces cases.

Assume in X (or similarly in Y ) there are two nodes activating overall four
different interfaces by means of two different couples of interfaces {α, β} and
{γ, δ}. Then, in Y all nodes must activate one interface from the first couple
and another from the second couple. Overall, only four interfaces are activated.

Let us consider a node in X that activates interfaces {α, β}. Then, every node
in Y must activate at least one interface among α and β. In order to make use
of five interfaces over all the network, and by the above case, without loss of
generality there must be in X a node activating {α, γ}. It follows that every
node in Y that activates β but not α must activate γ. If there are no of such
nodes, all nodes in Y can activate α, and hence we are back to the one or two or
three interfaces cases. In order to make use of five interfaces in Y , there must be
a node in Y activating interfaces {α, δ}, that is, a new interface δ can be paired
only with α. Hence, we have two nodes in Y activating two different couples of
interfaces {β, γ} and {α, δ}. By the above arguments, this implies four interfaces
over all the network.

Once computed the optimal solutions for each of the above cases, the cheapest
one is selected. By summing up all the required trials that the algorithm must

evaluate, the outcoming time complexity is O
((

k
4

)
n
)
= O(k4n). ��

One interesting consequence of the above theorem is that CMI(2) can be
optimally solved on star graphs where CMI(∞) is already APX -hard.

Theorem 4. CMI(2) is solvable on trees in O(k2Δn) time.

Proof. Make the input tree rooted by choosing arbitrarily one node r as the
root. Apart for the leaves, to each node holding j interfaces, we associate
a list of dimension at most j +

(
j
2

)
. That is, j entries corresponding to the

j interfaces and
(
j
2

)
entries corresponding to the possible couples of interfaces

that it can activate in a solution. A leaf with j interfaces is associated with a list
of dimension just j since a leaf is never required to activate two interfaces. The
i-th entry records the cost of activating the i-th interface belonging to the leaf.
Each node x whose children are only leaves can fulfill its list with the costs of the
solution for the subtree rooted at x when activating the interfaces corresponding
to the considered entry of the list, if possible. In the case a considered entry -
corresponding to either one or two interfaces activated at x - can not provide
a feasible solution, the entry is set to ∞. This check costs deg(x) for each entry,
for a total cost of

(
j +
(
j
2

))
deg(x). Now, every internal node whose children have

been already evaluated can be considered for updating its list. By proceeding
this way until the root, the optimal solution is the cheapest one calculated at r.
In total, the algorithm requires O(k2Δn) steps. ��
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Fig. 3. All the six possible path instances arising from the shown ring cut at {u, v}

By applying the above theorem on paths, it follows that CMI(2) can be solved
on such graphs in O(k2n) steps. It also follows that on rings, CMI(2) can be easily
solved by exploiting the result on paths. Before providing more details on the
resolution algorithm for rings, it is better to point out that another approach to
solve CMI(2) with arbitrary costs on paths can be that used in [14] designed for
the Cheapest Path problem. In fact, when considering paths as input, CMI(∞),
CMI(2) and Cheapest Paths coincide. This induces a time complexity of O(kn)
by means of a transformation of the input path to an instance where to apply
the standard Dijkstra’s algorithm for shortest paths.

Corollary 1. CMI(2) is solvable on paths in O(kn) time.

The algorithm for paths can be used to solve CMI(2) on rings with a time
complexity of O(k3n) by comparing the solutions found on the paths obtained
by cutting the ring at one arbitrary edge, and taking care of the costs required
to establish the excluded connection.

Theorem 5. CMI(2) is solvable on rings in O(k3n) time.

Proof. Consider one arbitrary node u whose neighbors are t and v in the input
ring R. The algorithm works on the path P obtained by cutting R on {u, v},
adding a new neighbor u′ to v, and defining a new covering function WP for P .
As shown in Figure 3, the new covering function WP is equivalent to the origi-
nal function W defined on R but for nodes u and u′. Let α ∈ W (u)

⋂
W (t) and

β ∈ W (u)
⋂

W (v) with possibly α ≡ β, then for each of such occurrences that
are at most k +

(
k
2

)
, WP (u) = α and WP (u′) = β. Let WP

A be the activation
function evaluated by the algorithm for the cheapest solution arising among
all the considered paths. Then, the activation function WA for R is equiva-
lent to WP

A but for node u (and of course node u′ that does not appear in
R) to which it assigns WA(u) = WP

A (u)
⋃

WP
A (u′). The computed solution is

clearly optimal, as it equals to an exhaustive search among all possible settings.
From the above description, and by Corollary 1, we obtain a time complexity of

O
((

k +
(
k
2

))
kn
)
= O(k3n). ��
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4 Conclusion

In the context of multi-interface networks, we have proposed a variant to the
Coverage problem. Our modification to the original model concerns the further
constraint for which each node can activate at most p interfaces. The new defined
problem CMI(p) turns out to be much more difficult in general with respect to
the basic CMI(∞). In fact, the feasibility version of CMI(p) has been shown to
be NP-complete. However, we provide polynomial time optimal algorithms for
CMI(2) with arbitrary costs with respect to many important graph topologies
where the original CMI(∞) was proven to be hard even to be approximated.
Namely, we have solved the problem on complete graphs, complete bipartite
graphs, trees, rings, and paths.

As future work, it would be interesting to study what can be done when the
input instance is assured to admit a solution. Moreover, since the completeness
proof holds for graphs with Δ ≥ 4, while we solved the problem when Δ ≤ 2
(that is, paths and rings), it remains to show what happens for subcubic graphs,
i.e. Δ ≤ 3. Distributed algorithms also deserve investigation.
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Abstract. Given an n-vertex graph G and two positive integers d, k ∈ N, the
(d, kn)-differential coloring problem asks for a coloring of the vertices of G (if
one exists) with distinct numbers from 1 to kn (treated as colors), such that
the minimum difference between the two colors of any adjacent vertices is at
least d. While it was known that the problem of determining whether a general
graph is (2, n)-differential colorable is NP-complete, our main contribution is
a complete characterization of bipartite, planar and outerplanar graphs that admit
(2, n)-differential colorings. For practical reasons, we also consider color ranges
larger than n, i.e., k > 1. We show that it is NP-complete to determine whether
a graph admits a (3, 2n)-differential coloring. The same negative result holds for
the (�2n/3�, 2n)-differential coloring problem, even in the case where the input
graph is planar.

1 Introduction

Several methods for visualizing relational datasets use a map metaphor where objects,
relations between objects and clusters are represented as cities, roads and countries, re-
spectively. Clusters are usually represented by colored regions, whose boundaries are
explicitly defined. The 4-coloring theorem states that four colors always suffice to color
any map such that neighboring countries have distinct colors. However, if not all coun-
tries of the map are contiguous and the countries are not colored with unique colors,
it would be impossible to distinguish whether two regions with the same color belong
to the same country or to different countries. In order to avoid such ambiguity, this
necessitates the use of a unique color for each country; see Figure 1.

However, it is not enough to just assign different colors to each country. Although
human perception of color is good and thousands of different colors can be easily dis-
tinguished, reading a map can be difficult due to color constancy and color context
effects [19]. Dillencourt et al. [6] define a good coloring as one in which the colors as-
signed to the countries are visually distinct while also ensuring that the colors assigned
to adjacent countries are as dissimilar as possible. However, not all colors make sui-
table choices for coloring countries and a “good” color palette is often a gradation of
certain map-like colors [4]. In more restricted scenarios, e.g., when a map is printed
in gray scale, or when the countries in a given continent must use different shades of
a predetermined color, the color space becomes 1-dimensional.

This 1-dimensional fragmented map coloring problem is nicely captured by the
maximum differential coloring problem [5,15,16,23], which we slightly generalize in

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 115–127, 2015.
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(a) Colored with random assignment of colors (b) Colored with max. differential coloring

Fig. 1. Illustration of a map colored using the same set of colors obtained by the linear interpola-
tion of blue and yellow. There is one country in the middle containing the vertices 40-49 which
is fragmented into three small regions.

this paper: Given a map, define the country graph G = (V,E) whose vertices repre-
sent countries, and two countries are connected by an edge if they share a non-trivial
geographic boundary. Given two positive integers d, k ∈ N, we say that G is (d, kn)-
differential colorable if and only if there is a coloring of the n vertices of G with
distinct numbers from 1 to kn (treated as colors), so that the minimum color distance be-
tween adjacent vertices of G is at least d. The maximum k-differential coloring problem
asks for the largest value of d, called the k-differential chromatic number of G, so that
G is (d, kn)-differential colorable. Note that the traditional maximum differential color-
ing problem corresponds to k = 1.

A natural reason to study the maximum k-differential coloring problem for k > 1 is
that using more colors can help produce maps with larger differential chromatic num-
ber. Note, for example, that a star graph on n vertices has 1-differential chromatic num-
ber (or simply differential chromatic number) one, whereas its 2-differential chromatic
number is n + 1. That is, by doubling the number of colors used, we can improve
the quality of the resulting coloring by a factor of n. This is our main motivation for
studying the maximum k-differential coloring problem for k > 1.

Related Work. The maximum differential coloring problem is a well-studied problem,
which dates back in 1984, when Leung et al. [15] introduced it under the name “sepa-
ration number” and showed its NP-completeness. It is worth mentioning though that
the maximum differential coloring problem is also known as “dual bandwidth” [23]
and “anti-bandwidth” [5], since it is the complement of the bandwidth minimization
problem [17]. Due to the hardness of the problem, heuristics are often used for co-
loring general graphs, e.g., LP-formulations [8], memetic algorithms [1] and spectral
based methods [13]. The differential chromatic number is known only for special graph
classes, such as Hamming graphs [7], meshes [20], hypercubes [20,21], complete bi-
nary trees [22], complete m-ary trees for odd values of m [5], other special types of
trees [22], and complements of interval graphs, threshold graphs and arborescent com-



The Maximum k-Differential Coloring Problem 117

parability graphs [14]. Upper bounds on the differential chromatic number are given
by Leung et al. [15] for connected graphs and by Miller and Pritikin [16] for bipartite
graphs. For a more detailed bibliographic overview refer to [2]. Note that in addition
to map-coloring, the maximum differential coloring problem is motivated by the radio
frequency assignment problem, where n transmitters have to be assigned n frequencies,
so that interfering transmitters have frequencies as far apart as possible [12].

Our Contribution. In Section 2, we present preliminary properties and bounds on
the k-differential chromatic number. One of them guarantees that any graph is (1, n)-
differential colorable; an arbitrary assignment of distinct colors to the vertices of the
input graph guarantees a minimum color distance of one (see Lemma 1). So, the next
reasonable question to ask is whether a given graph is (2, n)-differential colorable. Un-
fortunately, this is already an NP-complete problem (for general graphs), since a graph
is (2, n)-differential colorable if and only if its complement has a Hamiltonian path [15].
This motivates the study of the (2, n)-differential coloring problem for special classes
of graphs. In Section 3, we present a complete characterization of bipartite, outer-planar
and planar graphs that admit (2, n)-differential colorings.

In Section 4, we double the number of available colors. As any graph is (2, 2n)-
differential colorable (due to Lemma 1; Section 2), we study the (3, 2n)-differential
coloring problem and we prove that it is NP-complete for general graphs (Theorem 4;
Section 4). We also show that testing whether a given graph is (k + 1, kn)-differential
colorable is NP-complete (Theorem 5; Section 4). On the other hand, all planar graphs
are (
n/3�+1, 2n)-differential colorable (see Lemma 3; Section 2) and testing whether
a given planar graph is (
2n/3�, 2n)-differential colorable is shown to be NP-complete
(Theorem 6; Section 4). In Section 5, we provide a simple ILP-formulation for the maxi-
mum k-differential coloring problem and experimentally compare the optimal results
obtained by the ILP formulation for k = 1 and k = 2 with GMap, which is a heuristic
based on spectral methods developed by Hu et al. [10]. We conclude in Section 6 with
open problems and future work.

2 Preliminaries

The maximum k-differential coloring problem can be easily reduced to the ordinary
differential coloring problem as follows: If G is an n-vertex graph that is input to the
maximum k-differential coloring problem, create a disconnected graph G′ that contains
all vertices and edges of G plus (k − 1) · n isolated vertices. Clearly, the k-differential
chromatic number of G is equal to the 1-differential chromatic number of G′. A draw-
back of this approach, however, is that few results are known for the ordinary differential
coloring problem, when the input is a disconnected graph. In the following, we present
some immediate upper and lower bounds on the k-differential chromatic number for
connected graphs.

Lemma 1. The k-differential chromatic number of a connected graph is at least k.

Proof. Let G be a connected graph on n vertices. It suffices to prove that G is (k, kn)-
differential colorable. Indeed, an arbitrary assignment of distinct colors from the set
{k, 2k, . . . , kn} to the vertices of G guarantees a minimum color distance of k. ��
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Lemma 2. The k-differential chromatic number of a connected graph G = (V,E) on
n vertices is at most 
n2 �+ (k − 1)n.

Proof. The proof is a straightforward generalization of the proof of Yixun and Jin-
jiang [23] for the ordinary maximum differential coloring problem. One of the vertices
of G has to be assigned with a color in the interval [�n2 , �

n
2 +(k− 1)n], as the size of

this interval is (k− 1)n+1 and there can be only (k− 1)n unassigned colors. Since G
is connected, that vertex must have at least one neighbor which (regardless of its color)
would make the difference along that edge at most kn− �n2  = 
n2 �+ (k − 1)n. ��

Lemma 3. The k-differential chromatic number of a connected m-colorable graph
G = (V,E) on n vertices is at least 
 (k−1)n

m−1 �+ 1.

Proof. Let Ci ⊆ V be the set of vertices of G with color i and ci be the number
of vertices with color i, i = 1, . . . ,m. We can show that G is (
 (k−1)n

m−1 � + 1, kn)-
differential colorable by coloring the vertices of Ci with colors from the following set:
[ (
∑i−1

j=1 cj) + 1 + (i− 1)
 (k−1)n
m−1 �, (

∑i
j=1 cj) + (i− 1)
 (k−1)n

m−1 � ] ��

3 The (2,n)-Differential Coloring Problem

In this section, we provide a complete characterization of (i) bipartite graphs, (ii) ou-
terplanar graphs and (iii) planar graphs that admit (2, n)-differential coloring. Central
to our approach is a result of Leung et al. [15] who showed that a graph G has (2, n)-
differential coloring if and only if the complement Gc of G is Hamiltonian. As a con-
sequence, if the complement of G is disconnected, then G has no (2, n)-differential
coloring.

In order to simplify our notation scheme, we introduce the notion of ordered differ-
ential coloring (or simply ordered coloring) of a graph, which is defined as follows.
Given a graph G = (V,E) and a sequence S1 → S2 → . . . → Sk of k disjoint sub-
sets of V , such that ∪k

i=1Si = V , an ordered coloring of G implied by the sequence
S1 → S2 → . . . → Sk is one in which the vertices of Si are assigned colors from
(
∑i−1

j=1 |Sj |) + 1 to
∑i

j=1 |Sj |, i = 1, 2, . . . , k.

Theorem 1. A bipartite graph admits a (2, n)-differential coloring if and only if it is
not a complete bipartite graph.

Proof. Let G = (V,E) be an n-vertex bipartite graph, with V = V1 ∪ V2, V1 ∩ V2 = ∅
and E ⊆ V1 × V2. If G is a complete bipartite graph, then its complement is discon-
nected. Therefore, G does not admit a (2, n)-differential coloring. Now, assume that G
is not complete bipartite. Then, there exist at least two vertices, say u ∈ V1 and v ∈ V2,
that are not adjacent, i.e., (u, v) /∈ E. Consider the ordered coloring of G implied by
the sequence V1 \ {u} → {u} → {v} → V2 \ {v}. As u and v are not adjacent, it
follows that the color difference between any two vertices of G is at least two. Hence,
G admits a (2, n)-differential coloring. ��

Lemma 4. An outerplanar graph with n ≥ 6 vertices, that does not contain K1,n−1 as
a subgraph, admits a 3-coloring, in which each color set contains at least 2 vertices.
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Proof. Let G = (V,E) be an outerplanar graph with n ≥ 6 vertices, that does not
contain K1,n−1 as a subgraph. As G is outerplanar, it admits a 3-coloring [18]. Let
Ci ⊆ V be the set of vertices of G with color i and ci be the number of vertices with
color i, that is ci = |Ci|, for i = 1, 2, 3. W.l.o.g. let c1 ≤ c2 ≤ c3. We further assume
that each color set contains at least one vertex, that is ci ≥ 1, i = 1, 2, 3. If there is no
set with less than 2 vertices, then the lemma clearly holds. Otherwise, we distinguish
three cases:

Case 1: c1 = c2 = 1 and c3 ≥ 4. W.l.o.g. assume that C1 = {a} and C2 = {b}. As
G is outerplanar, vertices a and b can have at most 2 common neighbors. On the
other hand, since G has at least 6 vertices, there exists at least one vertex, say
c ∈ C3, which is not a common neighbor of a and b. W.l.o.g. assume that (b, c)
/∈ E. Then, vertex c can be colored with color 2. Therefore, we derive a new
3-coloring of G for which we have that c1 = 1, c2 = 2 and c3 ≥ 3.

Case 2: c1 = 1, c2 = 2 and c3 ≥ 3: W.l.o.g. assume that C1 = {a} and C2 =
{b, b′}. First, consider the case where there exists at least one vertex, say c ∈ C3,
which is not a neighbor of vertex a. In this case, vertex c can be colored with color
1 and a new 3-coloring of G is derived with c1 = c2 = 2 and c3 ≥ 3, as desired.
Now consider the more interesting case, where vertex a is a neighbor of all vertices
of C3. As G does not contain K1,n−1 as a subgraph, either v ertex b or vertex
b′ is not a neighbor of vertex a. W.l.o.g. let that vertex be b, that is (a, b) /∈ E. As
G is outerplanar, vertices a and b′ can have at most 2 common neighbors. Since
G has at least 6 vertices and vertex a is a neighbor of all vertices of C3, there exist
at least one vertex, say c ∈ C3, which is not adjacent to vertex b′, that is (b′, c) /∈ E.
Therefore, we can color vertex c with color 2 and vertex b with color 1 and derive
a new 3-coloring of G for which we have that c1 = c2 = 2 and c3 ≥ 2, as desired.

Case 3: c1 = 1, c2 ≥ 3 and c3 ≥ 3: W.l.o.g. assume that C1 = {a}. Then, there exists
at least one vertex, say c ∈ C2 ∪ C3, which is not a neighbor of vertex a. In this
case, vertex c can be colored with color 1 and a new 3-coloring of G is derived with
c1 = c2 = 2 and c3 ≥ 3, as desired. ��

Lemma 5. Let G = (V,E) be an outerplanar graph and let V ′ and V ′′ be two disjoint
subsets of V , such that |V ′| ≥ 2 and |V ′′| ≥ 3. Then, there exist two vertices u ∈ V ′

and v ∈ V ′′, such that (u, v) /∈ E.

Proof. The proof follows from the fact that an outerplanar graph is K2,3 free. ��

Theorem 2. An outerplanar graph with n ≥ 8 vertices has (2, n)-differential coloring
if and only if it does not contain K1,n−1 as subgraph.

Proof. Let G = (V,E) be an outerplanar graph with n ≥ 8 vertices. If G contains
K1,n−1 as subgraph, then the complement Gc of G is disconnected. Therefore, G does
not admit a (2, n)-differential coloring. Now, assume that G does not contain K1,n−1

as subgraph. By Lemma 4, it follows that G admits a 3-coloring, in which each color
set contains at least two vertices. Let Ci ⊆ V be the set of vertices with color i and
ci = |Ci|, for i = 1, 2, 3, such that 2 ≤ c1 ≤ c2 ≤ c3. We distinguish the following
cases:
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Fig. 2. (a) An outerplanar graph colored with 3 colors, white, black and grey (Case 1 of Thm. 2),
and, (b) its (2, n)-differential coloring. (c) Another outerplanar graph also colored with 3 colors,
white, black and grey (Case 2 of Thm. 2), and, (d) its (2, n)-differential coloring.

Case 1: c1 = 2, c2 = 2, c3 ≥ 4. Since |C1| = 2 and |C3| ≥ 4, by Lemma 5 it follows
that there exist two vertices a ∈ C1 and c ∈ C3, such that (a, c) /∈ E. Similarly,
since |C2| = 2 and |C3 \ {c}| ≥ 3, by Lemma 5 it follows that there exist two
vertices b ∈ C2 and c′ ∈ C3, such that c �= c′ and (b, c′) /∈ E; see Figure 2a-2b.

Case 2: c1 ≥ 2, c2 ≥ 3, c3 ≥ 3. Since |C1| = 2 and |C3| ≥ 3, by Lemma 5 it follows
that there exist two vertices a ∈ C1 and c ∈ C3, such that (a, c) /∈ E. Similarly,
since |C2| ≥ 3 and |C3 \ {c}| ≥ 2, by Lemma 5 it follows that there exist two
vertices b ∈ C2 and c′ ∈ C3, such that c �= c′ and (b, c′) /∈ E; see Figure 2c-2d.

For both cases, consider the ordered coloring implied by the sequence C1 \ {a} →
{a} → {c} → C3 \ {c, c′} → {c′} → {b} → C2 \ {b}. As (a, c) /∈ E and (b, c′) /∈ E,
it follows that the color difference between any two vertices of G is at least two. Hence,
G admits a (2, n)-differential coloring. ��

The next theorem gives a complete characterization of planar graphs that admit
(2, n)-differential colorings. Due to space constraints, the detailed proof (which is simi-
lar to the one of Theorem 2) is given in the full version [3].

Theorem 3. A planar graph with n ≥ 36 vertices has a (2, n)-differential coloring if
and only if it does not contain as subgraphs K1,1,n−3, K1,n−1 and K2,n−2.

Sketch of Proof. It can be shown that a planar graph G with n ≥ 36 vertices, that does
not contain as subgraphs K1,1,n−3, K1,n−1 and K2,n−2, admits a 4-coloring, in which
two color sets contain at least 2 vertices and the remaining two at least 5 vertices [3].
This together with a property similar to the one presented in Lemma 5 for outerplanar
graphs implies that the complement of G is Hamiltonian and hence G has a (2, n)-
differential coloring [3]. ��

4 NP-completeness Results

In this section, we prove that the (3, 2n)-differential coloring problem is NP-complete.
Recall that all graphs are (2, 2n)-differential colorable due to Lemma 1.

Theorem 4. Given a graph G = (V,E) on n vertices, it is NP-complete to determine
whether G has a (3, 2n)-differential coloring.
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Fig. 3. (a) An instance of the (3, n)-differential coloring problem for n = 6; (b) An instance of
the (3, 2n′)-differential coloring problem constructed based on graph G

Proof. The problem is clearly in NP. In order to prove that the problem is NP-hard,
we employ a reduction from the (3, n)-differential coloring problem, which is known
to be NP-complete [15]. More precisely, let G = (V,E) be an instance of the (3, n)-
differential coloring problem, i.e., graph G is an n-vertex graph with vertex set V =
{v1, v2, . . . , vn}. We will construct a new graph G′ with n′ = 2n vertices, so that
G′ is (3, 2n′)-differential colorable if and only if G is (3, n)-differential colorable; see
Figure 3.

Graph G′ = (V ′, E′) is constructed by attaching n new vertices to G that form
a clique; see the gray colored vertices of Figure 3b. That is, V ′ = V ∪ U , where
U = {u1, u2, . . . , un} and (u, u′) ∈ E′ for any pair of vertices u and u′ ∈ U . In
addition, for each pair of vertices v ∈ V and u ∈ U there is an edge connecting them
in G′, that is (v, u) ∈ E′. In other words, (i) the subgraph, say GU , of G′ induced by
U is complete and (ii) the bipartite graph, say GU×V , with bipartition V and U is also
complete.

First, suppose that G has a (3, n)-differential coloring and let l : V → {1, . . . , n} be
the respective coloring. We compute a coloring l′ : V ′ → {1, . . . , 4n} of G′ as follows:
(i) l′(v) = l(v), for all v ∈ V ′ ∩ V and (ii) l′(ui) = n+ 3i, i = 1, 2, . . . , n. Clearly, l′

is a (3, 2n′)-differential coloring of G′.
Now, suppose that G′ is (3, 2n′)-differential colorable and let l′ : V ′ → {1, . . . , 2n′}

be the respective coloring (recall that n′ = 2n). We next show how to compute the
(3, n)-differential coloring for G. W.l.o.g., let V = {v1, . . . vn} contain the vertices of
G, such that l′(v1) < . . . < l′(vn), and U = {u1, . . . un} contains the newly added
vertices of G′, such that l′(u1) < . . . < l′(un). Since GU is complete, it follows that the
color difference between any two vertices of U is at least three. Similarly, since GU×V

is complete bipartite, the color difference between any two vertices of U and V is also
at least three. We claim that l′ can be converted to an equivalent (3, 2n′)-differential
coloring for G′, in which all vertices of V are colored with numbers from 1 to n, and
all vertices of U with numbers from n+ 3 to 4n.

Let U ′ be a maximal set of vertices {u1, . . . , uj} ⊆ U so that there is no vertex
v ∈ V with l′(u1) < l′(v) < l′(uj). If U ′ = U and l′(v) < l′(u1), ∀v ∈ V , then our
claim trivially holds. If U ′ = U and l′(v) > l′(uj), ∀v ∈ V , then we can safely recolor
all the vertices in V ′ in the reverse order, resulting in a coloring that complies with
our claim. Now consider the case where U ′ � U . Then, there is a vertex vk ∈ V s.t.
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l′(vk) − l′(uj) ≥ 3. Similarly, we define V ′ = {vk, . . . , vl ∈ V } to be a maximal
set of vertices of V , so that l′(vk) < . . . < l′(vl) and there is no vertex u ∈ U
with l′(vk) < l′(u) < l′(vl). Then, we can safely recolor all vertices of U ′ ∪ V ′,
such that: (i) the relative order of the colors of U ′ and V ′ remains unchanged, (ii) the
color distance between vl and u1 is at least three, and (iii) the colors of U ′ are strictly
greater than the ones of V ′. Note that the color difference between uj and uj+1 and
between vk−1 and vk is at least three after recoloring, i.e., l′(uj+1) − l′(uj) ≥ 3 and
l′(vk) − l′(vk−1) ≥ 3. If we repeat this procedure until U ′ = U , then the resulting
coloring complies with our claim. Thus, we obtain a (3, n)-differential coloring l for G
by assigning l(v) = l′(v), ∀v ∈ V . ��

Theorem 5. Given a graph G = (V,E) on n vertices, it is NP-complete to determine
whether G has a (k + 1, kn)-differential coloring.

Sketch of Proof. Based on an instance G = (V,E) of the (k+1, n)-differential coloring
problem, which is known to be NP-complete [15], construct a new graph G′ = (V ′, E′)
with n′ = kn vertices, by attaching n(k − 1) new vertices to G, as in the proof of
Theorem 4. Then, using a similar argument as above, we can show that G has a (k +
1, n)-differential coloring if and only if G′ has a (k + 1, kn′)-differential coloring.

The NP-completeness of 2-differential coloring in Theorem 4 was about general
graphs. Next, we consider the complexity of the problem for planar graphs. Note that
from Lemma 2 and Lemma 3, it follows that the 2-differential chromatic number of
a planar graph on n-vertices is between 
n3 �+1 and 
 3n2 � (a planar graph is 4-colorable).
The next theorem shows that testing whether a planar graph is (
2n/3�, 2n)-differenti-
al colorable is NP-complete. Since this problem can be reduced to the general 2-diffe-
rential chromatic number problem, it is NP-complete to determine the 2-differential
chromatic number even for planar graphs.

Theorem 6. Given an n-vertex planar graph G = (V,E), it is NP-complete to deter-
mine if G has a (
2n/3�, 2n)-differential coloring.

Proof. The problem is clearly in NP. To prove that the problem is NP-hard, we employ
a reduction from the well-known 3-coloring problem, which is NP-complete for planar
graphs [11]. Let G = (V,E) be an instance of the 3-coloring problem, i.e., G is an
n-vertex planar graph. We will construct a new planar graph G′ with n′ = 3n vertices,
so that G′ is (
2n′/3�, 2n′)-differential colorable if and only if G is 3-colorable.

Graph G′ = (V ′, E′) is constructed by attaching a path v → v1 → v2 to each vertex
v ∈ V of G; see Figure 4a-4b. Hence, we can assume that V ′ = V ∪V1∪V2, where V is
the vertex set of G, V1 contains the first vertex of each 2-vertex path and V2 the second
vertices. Clearly, G′ is a planar graph on n′ = 3n vertices. Since G is a subgraph of G′,
G is 3-colorable if G′ is 3-colorable. On the other hand, if G is 3-colorable, then G′ is
also 3-colorable: for each vertex v ∈ V , simply color its neighbors v1 and v2 with two
distinct colors different from the color of v. Next, we show that G′ is 3-colorable if and
only if G′ has a (
2n′/3�, 2n′)-differential coloring.

First assume that G′ has a (
2n′/3�, 2n′)-differential coloring and let l : V ′ →
{1, . . . , 2n′} be the respective coloring. Let u ∈ V ′ be a vertex of G′. We assign a color
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Fig. 4. (a) An instance of the 3-coloring problem; (b) An instance of the (�2n′/3�, 2n′)-
differential coloring problem constructed based on graph G; (c) The (�2n′/3�, 2n′)-differential
coloring of G′, in the case where G is 3-colorable

c(u) to u as follows: c(u) = i, if 2(i − 1)n + 1 ≤ l(u) ≤ 2in, i = 1, 2, 3. Since l is
a (
2n′/3�, 2n′)-differential coloring, no two vertices with the same color are adjacent.
Hence, coloring c is a 3-coloring for G′.

Now, consider the case where G′ is 3-colorable. Let Ci ⊆ V be the set of vertices of
the input graph G with color i, i = 1, 2, 3. Clearly, C1 ∪ C2 ∪ C3 = V . We compute a
coloring l of the vertices of graph G′ as follows (see Figure 4c):

- Vertices in C1 are assigned colors from 1 to |C1|.
- Vertices in C2 are assigned colors from 3n+ |C1|+ 1 to 3n+ |C1|+ |C2|.
- Vertices in C3 are assigned colors from 5n+|C1|+|C2|+1 to 5n+|C1|+|C2|+|C3|.
- For a vertex v1 ∈ V1 that is a neighbor of a vertex v ∈ C1, l(v1) = l(v) + 2n.
- For a vertex v1 ∈ V1 that is a neighbor of a vertex v ∈ C2, l(v1) = l(v)− 2n.
- For a vertex v1 ∈ V1 that is a neighbor of a vertex v ∈ C3, l(v1) = l(v)− 4n.
- For a vertex v2 ∈ V2 that is a neighbor of a vertexx v1 ∈ V1, l(v2) = l(v1)+3n+|C2|.

From the above, it follows that the color difference between (i) any two vertices in G,
(ii) a vertex v1 ∈ V1 and its neighbor v ∈ V , and (iii) a vertex v1 ∈ V1 and its neighbor
v2 ∈ V2, is at least 2n = 
 2n′

3 �. Thus, G′ is (
2n′/3�, 2n′)-differential colorable. ��

5 An ILP for the Maximum k-Differential Coloring Problem

In this section, we describe an integer linear program (ILP) formulation for the maxi-
mum k-differential coloring problem. Recall that an input graph G to the maximum
k-differential coloring problem can be easily converted to an input to the maximum
1-differential coloring by creating a disconnected graph G′ that contains all vertices
and edges of G plus (k − 1) · n isolated vertices. In order to formulate the maximum
1-differential coloring problem as an integer linear program, we introduce for every
vertex vi ∈ V of the input graph G a variable xi, which represents the color assigned to
vertex vi. The 1-differential chromatic number of G is represented by a variable OPT ,
which is maximized in the objective function. The exact formulation is given below.
The first two constraints ensure that all vertices are assigned colors from 1 to n. The
third constraint guarantees that no two vertices are assigned the same color, and the
forth constraint maximizes the 1-differential chromatic number of the graph. The first
three constraints also guarantee that the variables are assigned integer values.
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(a) (b) (c)

Fig. 5. A map with 16 countries colored by: (a) GMap [10], (b) ILP-n, (c) ILP-2n

maximize OPT
subject to xi ≤ n ∀vi ∈ V

xi ≥ 1 ∀vi ∈ V
|xi − xj | ≥ 1 ∀(vi, vj) ∈ V 2

|xi − xj | ≥ OPT ∀(vi, vj) ∈ E

Note that a constraint that uses the absolute value is of the form |X | ≥ Z and therefore
can be replaced by two new constraints: (i) X+M ·b ≥ Z and (ii)−X+M ·(1−b) ≥ Z ,
where b is a binary variable and M is the maximum value that can be assigned to the
sum of the variables, Z + X . That is, M = 2n. If b is equal to zero, then the two
constraints are X ≥ Z and −X + M ≥ Z , with the second constraint always true.
On the other hand, if b is equal to one, then the two constraints are X + M ≥ Z and
−X ≥ Z , with the first constraint always true.

Next, we study two variants of the ILP formulation described above: ILP-n and ILP-
2n, which correspond to k = 1 and k = 2, and compare them with GMap, which is
a heuristic based on spectral methods developed by Hu et al. [10].

Our experiment’s setup is as follow. We generate a collection of 1, 200 synthetic
maps and analyze the performance of ILP-n and ILP-2n, on an Intel Core i5 1.7GHz
processor with 8GB RAM, using the CPLEX solver. For each map a country graph
Gc = (Vc, Ec) with n countries is generated using the following procedure. (1) We
generate 10n vertices and place an edge between pairs of vertices (i,j) such that 
 i

10� =

 j
10�, with probability 0.5, thus resulting in a graph G with approximately n clusters.

(2) More edges are added between all pairs of vertices with probability p, where p takes
the values 1/2, 1/4 . . .2−10. (3) Ten random graphs are generated for different values
of p. (4) Graph G is used as an input to a map generating algorithm (available as the
Graphviz [9] function gvmap), to obtain a map M with country graph Gc. A sample
map generated by the aforementioned procedure is shown in Figure 5.

Note that the value of p determines the “fragmentation” of the map M , i.e., the
number of regions in each country, and hence, also affects the number of edges in the
country graph. When p is equal to 1/2, the amount of extra edges is enough to make
almost all regions adjacent and therefore the country graph is a nearly complete graph,
whereas for p equal to 2−10, the country graph is nearly a tree. To determine a suitable
range for the number of vertices in the country graph, we evaluated real world datasets,
such as those available at gmap.cs.arizona.edu. Even for large graphs with over
1, 000 vertices, the country graphs tend to be small, with less than 16 countries.

gmap.cs.arizona.edu
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Fig. 6. Running-time results and differential coloring performance for all algorithms

Figure 6 summarizes the experimental results. Since n is ranging from 5 to 16, the
running times of both ILP-n and ILP-2n are reasonable, although still much higher than
GMap. The color assignments produced by ILP-n and GMap are comparable, while the
color assignment of ILP-2n results in the best minimum color distance. Note that in the
presence of twice as many colors as the graph’s vertices, it is easier to obtain higher
color difference between adjacent vertices. However, this comes at the cost of assigning
pairs of colors that are more similar to each other for non-adjacent vertices, as it is also
the case in our motivating example from the Introduction where G is a star.

6 Conclusion and Future Work

In this paper, we gave complete characterizations of bipartite, outerplanar and planar
graphs that admit (2, n)-differential colorings (which directly lead to polynomial-time
recognition algorithms). We also generalized the problem for more colors than the num-
ber of vertices in the graph and showed that it is NP-complete to determine whether
a graph admits a (3, 2n)-differential coloring. Even for planar graphs, the problem of
determining whether a graph is (
2n/3�, 2n)-differential colorable remains NP-hard.

Several related problems are still open: (i) Is it possible to characterize which bipar-
tite, outerplanar or planar graphs are (3, n)-differential colorable? (ii) Extend the char-
acterizations for those planar graphs that admit (2, n)-differential colorings to
1-planar graphs. (iii) Extend the results above to (d, kn)-differential coloring problems
with larger k > 2. (iv) As all planar graphs are (
n3 � + 1, 2n)-differential colorable, is
it possible to characterize which planar graphs are (
n3 �+2, 2n)-differential colorable?
(v) Since it is NP-complete to determine the 1-differential chromatic number of a planar
graph [2], a natural question to ask is whether it is possible to compute in polynomial
time the corresponding chromatic number of an outerplanar graph.
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Abstract. We study the problem of determining an optimal bipartition
{A,B} of a set X of n points in R

2 that minimizes the sum of the sample
variances of A and B, under the size constraints |A| = k and |B| = n−k.
We present two algorithms for such a problem. The first one computes
the solution in O(n 3

√
k log2 n) time by using known results on convex-

hulls and k-sets. The second algorithm, for an input X ⊂ R
2 of size n,

solves the problem for all k = 1, 2, . . . , �n/2� and works in O(n2 log n)
time.

Keywords: algorithms for clustering, cluster size constraints, data ana-
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1 Introduction

The general Clustering Problem consists in finding an optimal partition of a set
X of n points in m clusters, i.e. a partition of X in m subsets that minimizes
the sum of the dispersion of points around the centroid in each subset. This is
a fundamental problem in many research areas like data mining, image analy-
sis, pattern recognition and bioinformatics [18]. Clustering is a classical method
in unsupervised machine learning, frequently used in statistical data analysis
[5,10].

A computational analysis of the problem depends on a variety of parameters:
the dimension d of the point space (usually Rd), the distance or semi-distance
used to measure the dispersion of points, the number m of clusters (which may
be arbitrary, as part of the instance, or fixed in advance), the size of the clusters
and possibly others constraints [2,20,21]. In most cases the problem is difficult.
For instance, assuming the squared Euclidean semi-distance, when the dimension
d is arbitrary the general Clustering Problem is NP-hard even if the number m
of clusters is fixed to 2 [1,6]. The same occurs if m is arbitrary and the dimension
is d = 2 [14]. The problem is solvable in polynomial time when fixing both m and
d [11]. Moreover there exists a well-known, usually fast, heuristic for finding an
approximate solution, called k-Means [13], which however requires exponential
time in the worst case [19].
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Thus, a natural goal of research in this context is to study particular cases
with suitable hypothesis on the input that allow us to design polynomial time
algorithms. Here, we consider the Clustering Problem in R2, assuming squared
Euclidean semi-distance, when the number of clusters is m = 2 and their size is
given by the instance. We call it Size Constrained 2-Clustering in R2 (2-SCC-2
for short).

More precisely, an instance of this problem is given by a set X ⊂ R2 of
n points in general position and an integer k such that 1 ≤ k ≤ n/2, while
the solution is a bipartition {A,B} of X such that |A| = k, that minimizes the
total weight W (A)+W (B), where W (A) (respectively, W (B)) is the sum of the
squares of the �2-distances of all points a ∈ A (resp. b ∈ B) from the centroid
of A (resp. B). A more formal description is given in Section 3. Recall that the
unconstrained version of the same problem, with an arbitrary number of clusters,
is NP-hard [14].

The relevance of the 2-clustering problems is due to the wide spread of hie-
rarchical clustering techniques, that repeatedly apply the 2-clustering as the key
step. The 2-clustering problem with cluster size constraints has been already
studied in [12,4], where it is shown that in dimension 1 the problem is solvable
in polynomial time for every norm �p with integer p ≥ 1, while there is some
evidence that the same result does not hold for non-integer p. It is also known
that for arbitrary dimension d the same problem is NP-hard even assuming equal
sizes of the two clusters.

In this work we show two results. First, we describe an algorithm that solves
2-SCC-2 in O(n 3

√
k log2 n) time. This is obtained by using known results of

computational geometry concerning in particular dynamic data structures for
convex hulls [17,16] and the enumeration of k-sets in R2 [9,7]. Then, we present an
algorithm for the full-version of the problem, i.e. a procedure yielding a solution
for all k = 1, 2, . . . , 
n/2�, which works in O(n2 logn) time. Both algorithms
are based on a separation result on the clusters of optimal solutions for 2-SCC-
2, presented in Section 3 and proved in [4], which intuitively extends to the
bidimensional case the so-called String Property of the optimal clusterings on
the real line [15]. The results we present here are obtained by assuming the
Euclidean norm and this hypothesis is crucial our proofs. We observe that the
Euclidean norm is an essential hypothesis in our proofs and the results we present
here do not seem to hold under different assumptions. For instance, in the case
of Manhattan distance (�1 norm), the separation result on the plane yields a
O(n3 logn) time algorithm for the full-version of the problem [3].

2 Preliminary Notions

In this section we fix our notation and recall some known results of computational
geometry [8,17].

For any point a ∈ R2, we denote by ax and ay the abscissa and the ordinate
of a, respectively. We denote by ‖a‖ the usual Euclidean norm of point a, i.e.
‖a‖ = (a2x+a2y)

1/2. We also fix a total order on points in R2: for every a, b ∈ R2,
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we set a <o b if either ay < by or ay = by∧ax < bx. Clearly, every point a defines
a vector of length ‖a‖ oriented from the origin to a.

Given two points a, b ∈ R2, the oriented line segment from a to b is called
oriented edge and is identified by the pair (a, b). By a little abuse of language
we also denote by (a, b) the straight line through the two points oriented from a
to b. We define the (positive) phase of (a, b) as the angle between the oriented
edges (a, (ax + 1, ay)) and (a, b), measured counter-clockwise. We denote it by
phase(a, b). Clearly, we have 0 ≤ phase(a, b) < 2π. Note that two oriented edges
have the same phase if and only if they are parallel and have the same orientation.

We also define the slope of (a, b) as the remainder of the division phase(a, b)/π
and we denote it by slope(a, b). Observe that (a, b) and (b, a) have the same slope
and, more generally, two oriented edges have the same slope if and only if they
are parallel (with either equal or opposite orientation).

Moreover, for every pair of oriented edges (a, b), (c, d), we say that (a, b) is
on the right of (c, d) and write (a, b)Right(c, d) if the position of the straight
line (c, d) is obtained by a counter-clockwise rotation of the straight line (a, b)
(around their intersection point) smaller than π. On the contrary, if such
a rotation is greater than π we say that (a, b) is on the left of (c, d) and write
(a, b)Left(c, d). Note that relations Right and Left correspond respectively to the
positive and negative sign of the cross product (a, b)×(c, d), which is determined
by the well-known right-hand rule.

Clearly, once the coordinates of points are known, one can compute in constant
time both phase and slope of a point, as well as establish the validity of relations
Right and Left between two oriented edges.

Now, let us consider a finite set X ⊂ R2: we say that X is in general position
if it does not contain 3 collinear points. Moreover, if X consists of n points, for
any integer 0 ≤ k ≤ n a k-set of X is a subset A ⊆ X of cardinality |A| = k such
that A = X ∩ H for a suitable half-space H ⊂ R2. This means A is separable
from its complement Ā by a straight-line. Determining the maximum number
of k-sets of a family of n points in R2 is a central problem in combinatorial
geometry, first posed in [9].

Recall that the intersection of an arbitrary collection of convex sets is convex.
Then for any set A ⊆ Rd, the convex hull or convex closure of A, denoted by
Conv(A), is defined as the smallest convex subset of Rd containing A, i.e.

Conv(A) =
⋂

{Y ⊆ Rd : A ⊆ Y, Y is convex}

It is well-known that the convex closure of a finite set A of points in Rd is
a polytope [17] determined by the intersection of finitely many half-spaces; in
particular in R2, Conv(A) is a convex polygon. It is possible to identify a polygon
by giving its vertices, and hence the determination of the convex closure Conv(A)
of a given set A ⊂ R2 consists in finding the vertices of the associated polygon.
We recall that the convex hull of a set X of n points in R2 can be computed in
time O(n log n) [17].
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3 Problem Definition and First Properties

To give a formal definition of the problem, we recall that a cluster of a finite set
X ⊂ R2 is a non-empty subset A ⊂ X , while the pair {A, Ā} is a 2-clustering
of X , where Ā = X �A is the complement of A. Assuming the Euclidean norm
‖ · ‖, the centroid of A is the value CA ∈ R2 defined by

CA = argmin
μ∈R2

∑
a∈A

‖a− μ‖2.

It turns out that CA is the mean value of points in A: CA =
∑

a∈A a

|A| . Moreover,

we denote by W (A) the weight of A, that is

W (A) =
∑
a∈A

‖a− CA‖2

Note that W (A)
|A|−1 is the traditional sample variance of A, once we interpret the

elements of A as sample points picked up from a random variable in R2 (rather
than in R). Hence, it represents a natural measure of the dispersion of points in
A around their mean value.

Then, the 2-SCC-2 problem is defined as follows:

Given a set X ⊂ R2 of cardinality n (in general position) and an integer
k, 1 ≤ k ≤ n/2, find a 2-clustering {A, Ā} of X , with |A| = k, that
minimizes the weight W (A, Ā) = W (A) +W (Ā).

By the observation above, since the size of the clusters is constrained, this is
equivalent to looking for the 2-clustering (A,B) that minimizes the sum of the
sample variances of A and B.

The weight of a 2-clustering in the plane can be computed using the following
proposition, the proof of which is here omitted for sake of brevity.

Proposition 1. Let {A,B} be a 2-clustering of a set X ⊂ R2 of n points such
that |A| = k for some k ∈ {1, 2, . . . , 
n/2�}. Then

W (A,B) =
∑
p∈X

‖p‖2 − n

k(n− k)
‖SA‖2

where SA =
∑

a∈A a.

As a consequence, solving the 2-SCC-2 problem for an instance (X, k) is equiv-
alent to determining a subset A ⊆ X of size k that maximizes the value ‖SA‖.

Another property we use in the present work is the following separation result
between the clusters of optimal solutions of the 2-SCC-2 problem, proved in [4].

Proposition 2 (Separation Result). Let {A,B} be an optimal solution of
the 2-SCC-2 problem for an instance X ⊂ R2 with constraint |A| = k. Then,
there exists a constant c ∈ R such that, for every p ∈ X,

p ∈ A ⇒ 2px(CBx − CAx) + 2py(CBy − CAy) < c+ ‖CB‖2 − ‖CA‖2,
p ∈ B ⇒ 2px(CBx − CAx) + 2py(CBy − CAy) > c+ ‖CB‖2 − ‖CA‖2.
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As a consequence, both clusters of any optimal solution {A,B} of the 2-SCC-2
problem are separated by the straight line of equation

2x(CBx − CAx) + 2y(CBy − CAy) = c+ ‖CB‖2 − ‖CA‖2

for some constant c ∈ R. This implies that A is a k-set and B is a (n− k)-set.
This result can be interpreted as a natural extension of the well-known String

Property, stating that all optimal clusterings on the real line consist of contiguous
subsets of the input set (see for instance [15]).

Moreover, Propositions 1 and 2 imply that the 2-SCC-2 problem for an in-
stance (X, k) can be solved by computing a k-set A ⊆ X with maximum ‖SA‖.

4 Algorithm for Constrained 2-Clustering in R2

In this section we present an efficient technique, based on Proposition 2, to solve
the 2-SCC-2 problem as defined in Section 3. Here the input is given by a set
X ⊂ R2 of n ≥ 4 points in general position and an integer k such that 1 < k ≤

n/2�. Our purpose is to show that the algorithm works in O(n 3

√
k log2 n) time.

We first introduce some preliminary notions. Given two disjoint polygons it
is easy to see that there exist 4 straight lines that are tangent to both polygons:
they are called bitangents. Two bitangents keep one polygon on one side and
the other polygon on the other side, while the other two bitangents keep both
polygons on the same side. Bitangents as well as straight lines can be oriented.

Given X ⊂ R2 and two points a, b ∈ X we define

Xr(a, b) = {p ∈ X | (a, p)Right(a, b)},
X l(a, b) = {p ∈ X | (a, p)Left(a, b)}.

In other words, Xr(a, b) is the set of points in X on the right-hand side of (a, b),
while X l(a, b) is the set of points in X on the left-hand side of (a, b).

Definition 1. Given a set X ⊂ R2 of cardinality n ≥ 4 in general position, we
say that the oriented edge (a, b) with a, b ∈ X, a �= b, is a (k − 1)-set edge if
|Xr(a, b)| = k − 1 (and hence |X l(a, b)| = n− k − 1).

Setting A = Xr(a, b) ∪ {a} and Ā = X l(a, b) ∪ {b}, it is clear that A is a k-set
of X and the straight line (a, b) is the unique bitangent between Conv(A) and
Conv(Ā) that keeps A� {a} on its right. Indeed, as illustrated in Figure 1a, two
of the other three bitangents between Conv(A) and Conv(Ā) do not separate A
from Ā, and the remaining one does not keep A � {a} on its right-hand side.
This proves the following proposition for any set X ⊂ R2 of n ≥ 4 points and
any k = 2, . . . , 
n/2�.

Proposition 3. There exists a bijection between the (k− 1)-set edges of X and
the k-sets of X: each (k − 1)-set edge (a, b) can be associated with the k-set
{a} ∪Xr(a, b), while any k-set A corresponds to the unique oriented edge (a, b),
bitangent to Conv(A) and Conv(Ā), such that A� {a} = Xr(a, b) .
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Fig. 1. (a) There are 4 bitangents between Conv(A) and Conv(Ā), but only (a, b)
separates A and Ā keeping A � {a} on its right-hand side. (b) Given the k-set Ai

(polygon with horizontal lines) associated to the (k−1)-set edge (ai, bi) we can compute
the subsequent k-set Ai+1 (polygon with vertical lines) associated to (ai+1, bi+1) by
removing ai and inserting bi in the convex hull. Segments with arrow represent oriented
edges scanned by procedure NextBitangent on the perimeter of the convex hull.

Let us denote by A(a, b) the k-set corresponding to the (k − 1)-set edge (a, b).
Since two (k− 1)-set edges of X cannot have the same phase, we can consider

the sequence
Ek−1 = {(a1, b1), ..., (ah, bh)}

of all (k − 1)-set edges of X ordered according with increasing phase.
The following proposition yields the key property for computing all k-sets

A(ai, bi) for i = 1, 2, . . . , h. The proof is here omitted but its validity should be
evident from Figure 1b.

Proposition 4. For every i = 1, 2, ..., h, we have

A(a1+〈i〉h , b1+〈i〉h) = A(ai, bi) ∪ {bi}� {ai}

where 〈i〉h is the remainder of the division i/h.

As a consequence, setting

Si =
∑

p∈A(ai,bi)

p (1)

we have S1+〈i〉h = Si − ai + bi.
Thus, in order to solve the 2-SCC-2 problem for an instance (X, k), we can

simply determine the first oriented edge (a1, b1) ∈ Ek−1 and design a procedure
for computing (a1+〈i〉h , b1+〈i〉h) from (ai, bi). This allows us to compute all pairs
(ai, bi) ∈ Ek−1 and hence all values ‖Si‖’s one after the other, taking the largest
one. The overall computation is described by Algorithm 2.

Let us start by showing the computation of (a1, b1).
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Proposition 5. Given a set X ⊂ R2 of n ≥ 4 points in general position, for
any k = 2, . . . , 
n/2� the (k − 1)-set edge of smallest phase can be obtained in
O(n log n) time.

Proof. First, it is easy to determine the k-th smallest point a in X with respect
to the total order <o, together with set A = {q ∈ X | q ≤o a}. Clearly, A is
a k-set ofX . Similarly, we can determine the (k+1)th element b in X with respect
to <o, i.e. the smallest point in the set Ā = X �A. To determine the (k− 1)-set
edge of A, the algorithm first computes the convex hulls Conv(A) and Conv(Ā).
Then, starting from a and b, it moves two points u and v counter-clockwise on
the perimeter of Conv(A) and Conv(Ā), respectively, stopping at the first edge
on Conv(A) (respectively, on Conv(Ā)) that is on the right (respectively, on the
left) of the oriented edge (u, v).

The procedure is formally described by Algorithm 1 given below, where for
every point p on the perimeter of a convex hull, Succ(p) is the counter-clockwise
successor of p on the same perimeter.

Algorithm 1. FirstSetEdge(a,b)

1: u := a; u′ := Succ(u)
2: v := b; v′ := Succ(v)
3: while ((u, u′)Left(u, v) ∨ (v, v′)Right(u, v)) do
4: if (u, u′)Left(u, v) then
5: if (u, u′)Left(u, v′) then
6: u := u′; u′ :=Succ(u)
7: else
8: v := v′; v′ :=Succ(v)
9: else
10: v := v′; v′ :=Succ(v)
11: return (u, v)

At each loop iteration the procedure checks whether the current edges (u, u′)
and (v, v′) on the two perimeters verify the exit condition

(u, u′)Right(u, v) ∧ (v, v′)Left(u, v),

which guarantees A � {u} = Xr(u, v) and Ā � {v} = X l(u, v). Hence, in the
affirmative case, (u, v) is the required (k − 1)-set edge.

The most expensive operation in the overall procedure is the computation of
the convex hulls Conv(A) and Conv(Ā), which can be done in O(n log n) time
[17]. Also note that the while loop at lines 3–10 requires O(n) steps. ��

Once the initial (k − 1)-set edge is determined our general procedure com-
putes all the subsequent (k − 1)-set edges in the order defined by Ek−1. For
each (ai, bi) ∈ Ek−1, the procedure computes the squared norm of Si (defined
in Equation 1), maintaining in q the largest value. The details are given in Al-
gorithm 2, where procedure NextBitangent, called at lines 10 and 16, yields the
successive (k − 1)-set edge in the required order.
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Algorithm 2. Solving 2-SCC-2

Input: a set X ⊂ R
2 of n ≥ 4 points in general position; an integer 1 < k ≤ �n/2�.

Output: the solution π = {A,B} of the 2-SCC-2 problem on instance X with con-
straint |A| = k.

1: Compute the k-th smallest point a in X with respect to <o

2: A := {p ∈ X : p ≤o a}; Ā := X � A
3: Compute the smallest point b in Ā with respect to <o

4: A := Conv(A)
5: Ā := Conv(Ā)
6: (a1, b1) := FirstSetEdge(a, b)
7: S :=

∑
x∈A x

8: q := ‖S‖2
9: (x, y) := (a1, b1)
10: (r, s) := NextBitangent(a1, b1)
11: while (r, s) �= (a1, b1) do
12: S := S − r + s
13: if q < ‖S‖2 then
14: q := ‖S‖2
15: (x, y) := (r, s)
16: (r, s) := NextBitangent(r, s)
17: π := {Xr(x, y) ∪ {x}, Xl(x, y) ∪ {y}}
18: return π

Procedure NextBitangent is defined by Algorithm 3, which uses function Succ
as in Algorithm 1. Such a procedure first computes the convex hulls A and Ā
of the new k-set A and of its complement by two insert and delete operations.
Then, in the main loop, the procedure determines the (k−1)-set edge of the new
k-set by following a path counter-clockwise on the perimeter of the two convex
hulls. As in Algorithm 1, the exit condition

(u, u′)Right(u, v) ∧ (v, v′)Left(u, v)

guarantees that (u, v) is the required (k − 1)-set edge.
The correctness proof of Algorithm 2, which is here omitted for lack of space,

is based on the fact that distinct k-sets must have (k−1)-set edges with different
phases.

The analysis of time complexity of Algorithm 2 requires the following result
on the number of k-sets of X , given in [7].

Theorem 1. For any set X of n points in R2 and any k ∈ N, 1 ≤ k ≤ 
n2 �, the
number of k-sets of X is less than 6.48n 3

√
k.

Proposition 6. The time complexity required by Algorithm 2 on an input of
n ≥ 4 points with 1 < k ≤ 
n2 � is O(n 3

√
k · log2 n).

Proof. First recall that, by Proposition 5, the first part of the procedure from
line 1 to line 8, can be executed in time O(n log n). The remaining time required
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Algorithm 3. NextBitangent(r, s)

Input: a (k − 1)-set edge (r, s) of X computed in Algorithm 2.
Output: the subsequent (k − 1)-set edge of X in phase order.
1: A := Insert(Delete(A, r),s)
2: Ā := Insert(Delete(Ā, s),r)
3: u := s; u′ := Succ(u)
4: v := r; v′ := Succ(v)
5: repeat
6: if (u, u′)Left(u, v) then
7: if (u, u′)Left(u, v′) then
8: u := u′; u′ :=Succ(u)
9: else
10: v := v′; v′ :=Succ(v)
11: else
12: v := v′; v′ :=Succ(v)
13: until (u, u′)Right(u, v) ∧ (v, v′)Left(u, v)
14: return (u, v)

by the algorithm is dominated by calls to procedure NextBitangent. The compu-
tation maintains, as permanent structure, the convex hulls A and Ā, which are
updated at lines 1–2 of each call of NextBitangent in O(log2 n) time by using the
data structure introduced in [16]. Since there is just one call to NextBitangent
for each (k − 1)-set edge, by Proposition 3 and Theorem 1 the total cost of all
updates of A and Ā is O(n 3

√
k log2 n).

The time cost of the other operations of NextBitangent is due to the repeat-
until loop of Algorithm 3. Here, the key observation is that each edge (u, u′)
inside the repeat-until loop is a (n−k)-set edge, because the phase of the opposite
edge (u′, u) is included between the phases of two consecutive (k − 1)-set edges.
These edges (u, u′) scan counter-clockwise the boundary of A and each of them
is considered just by one call of NextBitangent. The same occurs for the k-set
edges (v, v′) scanning counter-clockwise the boundary of Ā. Therefore, the time
required by the main loop in all calls to NextBitangent is at most proportional
to |Ek|+ |En−k| = 2|Ek|, which is again O(n 3

√
k) by Theorem 1. Thus, the time

cost of all calls to NextBitangent turns out to be O(n 3
√
k log2 n). ��

5 Algorithm for the Full Problem

In this section we present an algorithm that, for an input X ⊂ R2 of n points
in general position, computes an optimal 2-clustering {Ak, Āk} of X such that
|Ak| = k, for each k = 1, 2, . . . , 
n/2�. We prove that the algorithm works in
time O(n2 logn).

The result is based on Propositions 1 and 2 and on the following relation-
ship between oriented edges and 2-clusterings of X including a k-set. Given two
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distinct points a, b ∈ X , we associate the oriented edge (a, b) with the 2-clustering
{A, Ā} of X where either A or Ā equals the set R(a, b) defined by

R(a, b) =

{
Xr(a, b) ∪ {b} if a <o b
X l(a, b) ∪ {b} otherwise.

Note that here {A, Ā} is an unordered pair of sets. Moreover, A and Ā are,
respectively, a k-set and a (n−k)-set for some k ∈ {1, 2, . . . , n−1}. Also observe
that the 2-clusterings associated with (a, b) and (b, a) are always different.

Proposition 7. Given a set X ⊂ R2 of n points in general position, let {A, Ā}
be a 2-clustering of X where A is a k-set for some k ∈ {1, 2, . . . , n − 1}. Then
{A, Ā} is the 2-clustering of X associated with an oriented edge (a, b) with a, b ∈
X.

Proof. Since A is a k-set we can consider a bitangent (u, v) that separates A
and Ā with u ∈ Ā and v ∈ A. Assume that u <o v: if A = Xr(u, v) ∪ {v} then
(u, v) is the required oriented edge because A = R(u, v); otherwise, A equals
X l(u, v)∪{v} and the same 2-clustering {A, Ā} is associated with (v, u) because
Ā = R(v, u). A symmetric reasoning holds in case v <o u. ��

Note that in the previous proof we can choose the bitangent (u, v) separating
A and Ā in two different ways. This proves that every k-sets of X is associated
with two oriented edges. Hence, such a correspondence is quite different from
the bijection of Proposition 3 introduced in the previous section.

By the proposition above, one can design an algorithm that scans all k-sets by
considering in some order all oriented edge outgoing from each point. In order to
compute efficiently the weights of the clusters we introduce a special order among
the oriented edges E = {(a, b) | a, b ∈ X, a �= b}: for every (u, v), (w, z) ∈ E, we
set (u, v) <e (w, z) if either u <o w or u = w and slope(u, v) < slope(w, z).

Proposition 8. For any instance set X ⊂ R2 of n points, the 2-SCC-2 problem
for all k = 1, 2, . . . , 
n/2� can be solved in O(n2 logn) time.

Proof. Consider procedure Full 2-SCC-2 defined by Algorithm 4. It computes
points SR(a,b) (as defined in Proposition 1) for all oriented edges in (a, b) ∈
E, taken according with the total order <e. For each k = 1, 2, . . . , 
n/2�, the
procedure maintains the optimal value q[k] = ‖SA‖2/k(n−k), where A is a k-set
of X and keeps in e[k] the associated oriented edge. By Propositions 2 and 7,
this guarantees that all possible 2-clusterings of X are considered.

The computation first considers all points in X in the order <o and, for each
a ∈ X , it determines R = SA(a), where A(a) = {u ∈ X | u <o a}. Then,
it computes SR(a,b) for every edge (a, b) such that b ∈ X � {a} in the order
<e: for any pair of consecutive edges (a, b), (a, c), the value SR(a,c) is obtained
from SR(a,b) by adding or subtracting c according whether a <o c or c <o a
(see instructions 10 and 14, respectively). Note that such a computation only
requires constant time.
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The time complexity of the algorithm is dominated by the operation of sorting
the oriented edges with the same starting point a. This can be done in O(n log n)
time for each a ∈ X . Note that the other operations, in the inner for-loop, require
at most constant time and hence they are executed O(n2) many times. Therefore,
the overall time of the algorithm is O(n2 logn). ��

Algorithm 4. Full 2-SCC-2

Input: a set X ⊂ R
2 of n points in general position

Output: the sequence (e[1], . . . , e[�n/2�]) of oriented edges, where each e[k] is associ-
ated with the solution {Ak, Āk} of 2-SCC-2 for X such that |Ak| = k

1: for k = 1, 2, . . . , �n/2� do
2: q[k] := 0
3: T :=

∑
p∈X p

4: Sort X according with <o and let (a1, a2, . . . , an) be the ordered sequence
5: for i = 1, 2, . . . , n do
6: R :=

∑
j<i aj

7: g := i− 1
8: Sort the set X � {ai} according with slope(ai, ·) and let (b1, b2, . . . , bn−1) be the

ordered sequence
9: for j = 1, 2, . . . , n− 1 do

10: if ai <o bj then

{
R := R+ bj
g := g + 1

11: if g ≤ n− g then

{
m := g
S := R

12: else

{
m := n− g
S := T −R

13: if q[m] < ‖S‖2
g(n−g)

then

{
q[m] := ‖S‖2

g(n−g)

e[m] := (ai, bj)

14: if bj <o ai then

{
R := R− bj
g := g − 1

15: return (e[1], . . . , e[�n/2�])
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Abstract. In various wireless networking settings, node locations de-
termine a network’s topology, allowing the network to be modelled by a
geometric graph drawn in the plane. Without any additional information,
local geometric routing algorithms can guarantee delivery to the target
node only in restricted classes of geometric graphs, such as triangula-
tions. In order to guarantee delivery on more general classes of geometric
graphs (e.g., convex subdivisions or planar subdivisions), previous local
geometric routing algorithms required Θ(log n) state bits to be stored
and passed with the message. We present the first local geometric rout-
ing algorithm using only one state bit to guarantee delivery on convex
subdivisions and the first local geometric memoryless routing algorithm
that guarantees delivery on edge-augmented monotone subdivisions (in-
cluding all convex subdivisions) when the algorithm has knowledge of
the incoming port (the preceding node on the route).

1 Introduction

1.1 Local Geometric Routing

A local routing algorithm determines a sequence of forwarding decisions that
defines a path in a network from a source node to a given target node, where
each internal node along the path selects one of its neighbours to extend the
path as a function of its local network neighbourhood and limited information
about the target node. Additional information available to each node on the
path may include the identity of its neighbour that forwarded the message (the
incoming port on which the message arrived) as well as a small number of state
bits passed with the message (which may be modified locally before forward-
ing). In various wireless networking settings, the locations of nodes and physical
proximity between nodes determine the pairs of nodes that can communicate;
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that is, the network is determined geometrically. The network’s geometric pro-
perties can provide navigational cues, enabling a local routing algorithm to use
this additional geometric information to guide a message towards its destina-
tion. Each node may know its location, allowing every node on the path to make
a forwarding decision as a function of the relative locations of its neighbours, the
target node, and itself. We refer to such algorithms as local geometric routing
algorithms. This paper examines the problem of defining local geometric routing
algorithms that guarantee delivery from any source node to any target node on
specific classes of geometric graphs.

1.2 Model and Definitions

We represent a network by an undirected graph G drawn in the plane, where
each vertex is represented by a point and each edge is represented by a (straight)
line segment connecting the vertices at its endpoints. Let V (G) denote the set of
vertices (points) of G and let E(G) denote its set of edges (line segments), where
n = |V (G)| and m = |E(G)|. To simplify the discussion, we assume that vertices
are in general position. By that we mean that no three points are collinear and
no two points have the same x-coordinate or the same y-coordinate.

We require G to be connected for a route to exist between any pair of nodes.
The drawing need not be planar, although some of our discussion relates to
planar subdivisions. A drawing of a graph G in the plane is a planar subdivision
(also planar drawing, plane graph, or planar straight-line graph) if each edge
in E(G) is drawn as a line segment and any two edges intersect only at their
common endpoint. A planar subdivision partitions the plane into faces. When
each internal face is a convex polygon and the boundary of the outer face is
the convex hull, the drawing is a convex subdivision. When each internal face
is a triangle, the subdivision is a triangulation. When each internal face is an
x-monotone polygon (but not necessarily convex) and the boundary of the outer
face is also an x-monotone polygon, the drawing is amonotone subdivision. Recall
that a polygon is x-monotone if the intersection of its interior with any vertical
line gives a connected region (i.e., a line segment). Every convex subdivision is
also a monotone subdivision.

When G contains a spanning subgraph that is a convex subdivision, (respec-
tively, a monotone subdivision), then we say G is an edge-augmented convex
subdivision (respectively, an edge-augmented monotone subdivision); in this case,
G corresponds to a convex subdivision to which zero or more edges have been
added joining pairs of vertices in the underlying convex subdivision, possibly
creating edge crossings. Edge-augmented convex subdivisions are not planar in
general. Any routing algorithm that guarantees delivery on edge-augmented con-
vex subdivisions also guarantees delivery on convex subdivisions.

Using notation similar to that previously defined [3,10,11], a local geomet-
ric routing algorithm can be expressed as a routing function f : V (G) ×
V (G) ×P(V (G)) → V (G), where P() denotes the power set, with arguments
f(u, t,N(u)) such that u ∈ V (G) is the vertex for which a forwarding decision
is being made (i.e., the node presently holding the message), t ∈ V (G) is the
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target vertex, andN(u) ⊆ V (G) is the set of neighbours of u inG. Upon receiving
a message destined for a node t, a node u forwards the message to its neighbour
w = f(u, t,N(u)).

If u knows which of its neighbours forwarded the message, then we say the
routing algorithm is predecessor-aware and represent the corresponding routing
function as f(u, v, t, N(u)), where v ∈ V (G) denotes the neighbour of u that last
forwarded the message. Otherwise, we say the routing algorithm is predecessor-
oblivious. Furthermore, if c state bits are passed with the message then we say the
routing algorithm is c-bit local and the routing function becomes f(u, t,N(u), e)
(or f(u, v, t, N(u), e) if predecessor-aware), where e ∈ {0, 1}c. We focus on the
case c = 1. If no bits are passed with the message then we say the routing al-
gorithm is stateless. Note that no state information is stored at a node after it
has forwarded a message; that is, the network is memoryless. When a message is
forwarded, its destination t and the c state bits are passed with it. All other in-
formation is available locally at node u. Randomized solutions exists (e.g., [10]);
in this work we restrict attention to deterministic routing algorithms.

1.3 Related Work

When applying a local geometric algorithm that is stateless and predecessor-
oblivious, every time a node u receives a message destined for a given target
node t, u always forwards the message to its same neighbour. Consequently,
stateless predecessor-oblivious routing algorithms that guarantee delivery are
limited to restricted classes of geometric graphs. These include greedy routing
[12] and compass routing [15], both of which succeed on any Delaunay trian-
gulation but fail on more general triangulations [6], as well as greedy-compass
routing [2], which succeeds on any triangulation. In a triangulation each node
knows the complete set of edges bounding every face on which it is adjacent.
Beyond triangulations are convex subdivisions, where faces remain convex, but
a node only knows two edges bounding every face on which it is adjacent. Eve-
ry stateless and predecessor-oblivious local geometric routing algorithm fails on
some convex subdivision [2]. Conseqently, local routing algorithms require addi-
tional reference beacons, or the ability to store learned route information in state
bits, to support successful navigation on convex subdivisions or, more generally,
on planar subdivisions.

Face routing [15] succeeds on any planar subdivision, but requires both
predecessor-awareness and Θ(log n) state bits (assuming vertex coordinates can
be stored using Θ(log n) bits per vertex). Variants of face routing succeed on
unit disc graphs [7] and some quasi unit disc graphs [16]. Some local geomet-
ric algorithms define a route (or a graph traversal) on planar and near-planar
subdivisions by performing a depth-first traversal of a locally defined spanning
tree [1,4,9,17]; all such algorithms known require Θ(log n) state bits. For graphs
drawn in three-dimensional space, every stateless and predecessor-aware local
geometric routing algorithm fails on some unit ball graph [11].

If Θ(log n) state bits are available, then geometric information is not nec-
essary to support local routing: by storing an index into a polynomial-length
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universal traversal sequence, predecessor-oblivious routing is possible on any
graph, not restricted to belonging to any particular class of drawings [8]; this
requires each node to be able to reconstruct the traversal sequence. With-
out geometric information, a stateless routing algorithm requires knowledge of
a large neighbourhood around each node to guarantee delivery. Specifically,
a predecessor-aware stateless routing algorithm requires each node to have know-
ledge of the induced subgraph within graph distance n/3 of itself; for predecessor-
oblivious algorithms the distance increases to n/2 [3]. There exists a small set of
graphs such that every stateless routing algorithm whose knowledge is limited to
a smaller neighbourhood around each node fails on one or more of these graphs.

In addition to knowing the target node t, knowledge of the source node
s also determines whether local routing is possible. Applying the right-hand
rule along the edges of the sequence of faces that intersect the line segment from
s to t gives a stateless predecessor-aware local geometric routing that succeeds
on convex subdivisions (requiring knowledge of s) [17]; this is essentially face
routing applied to a specific class of graphs that does not require backtracking.
To succeed on planar subdivisions that are not convex, face routing is occasio-
nally forced to backtrack [7,15], requiring Θ(log n) state bits. Knowledge of s is
significant even when geometric information is not available. For example, given
s, a stateless predecessor-aware local routing algorithm only requires knowledge
of the induced subgraph within graph distance n/4 of each node to guarantee
delivery in any graph, instead of distance n/3 without knowledge of s [3].

Although similar to local routing, online routing [5] differs by the fact that
each node u along the route has complete information about the subgraph ex-
plored prior to arriving at u. Storing such information in a message requires
Θ(n log n) state bits in general.

Guaranteeing delivery on geometric graphs beyond triangulations requires
state information or predecessor-awareness. In this paper we seek to bridge the
gap between stateless predecessor-oblivious local routing algorithms, which can-
not guarantee delivery even on convex subdivisions, and Θ(log n)-bit local rout-
ing algorithms. Specifically, we examine whether navigation is possible when
a local routing algorithm is provided a single state bit and whether it is pos-
sible when enabled with predecessor awareness. In each case we seek to define
a routing algorithm and to identify broad classes of geometric graphs on which
the algorithm guarantees delivery. For surveys on local geometric routing, see
Morin [17], Guan [14], Urrutia [18], and Frey et al. [13].

1.4 Overview of Results

No stateless predecessor-oblivious local geometric routing algorithm can guaran-
tee delivery on convex subdivisions [2]; to succeed on convex subdivisions and,
therefore, on more general classes of graphs, such as planar subdivisions, a lo-
cal geometric routing algorithm must have the ability to store state information
or be provided with predecessor awareness. To the authors’ knowledge, prior
to this work no predecessor-oblivious c-bit local geometric routing algorithm
was known to guarantee delivery on convex subdivisions for any c ∈ o(log n).
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Table 1. Graphs on which local routing is possible. New contributions appear in bold

bits predecessor oblivious predecessor aware

0
triangulations [2] (edge-aug.) convex subdiv.,

impossible on convex subdiv. [2] (edge-aug.) monotone subdiv.

1 convex subdiv.
beyond edge-aug. monotone subdiv.:

unknown
O(1) beyond convex subdiv.: unknown

O(log n) all graphs [8] planar [15], unit disc [7], all graphs [8]

Similarly, no predecessor-aware stateless local geometric routing algorithm was
known to guarantee delivery on convex subdivisions. This paper presents the
first predecessor-aware stateless local geometric routing algorithm and the first
1-bit predecessor-oblivious local geometric routing algorithm to guarantee de-
livery on any non-trivial class of geometric graphs beyond triangulations. See
Table 1. In Section 2 we present a predecessor-oblivious local geometric routing
algorithm that uses one state bit (c = 1) and guarantees delivery on any convex
subdivision. In Section 3, we present a stateless predecessor-aware local geomet-
ric routing algorithm that guarantees delivery on any edge-augmented monotone
subdivision. We conclude with a discussion in Section 4.

2 Using One State Bit

We describe a predecessor-oblivious one-bit geometric local routing algorithm,
called OneBit, that guarantees delivery on any convex subdivision. Let u denote
the node holding the message, i.e., the node making a forwarding decision. As
in compass routing [15] and greedy-compass routing [2], we refer to the clock-
wise (respectively, counterclockwise) neighbour of u relative to t, denoted cw(u)
(respectively, ccw(u)) defined as the node v ∈ N(u) that forms the smallest
clockwise (counterclockwise) angle ∠tuv. Let Hs denote the closed half-plane
containing u whose boundary is the vertical line �t through t. See Figure 1A.
Algorithm OneBit never forwards the message to a node outside Hs, enabling
all nodes along the route to identify Hs consistently relative to �t, regardless of
whether the source node s is left or right of �t.

Algorithm OneBit uses one state bit, denoted c, to determine whether node
u should forward the message from u to cw(u) or to ccw(u). The state bit
c can be initialized arbitrarily at the source node s, e.g., c ← 0. Node s does
not need to know it is the source; the algorithm can initialize c arbitrarily if it
is not assigned a value in {0, 1}. See Algorithm 1 and Figure 1B. The resulting
route corresponds to a sequence of clockwise forwarding decisions (when c = 0),
which we call an clockwise chain, followed by a sequence of counterclockwise for-
warding decisions (when c = 1), which we call a counterclockwise chain, followed
by another clockwise chain (when c = 0 again), and so on, until the message
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Fig. 1. (A) The clockwise and counterclockwise neighbours of u are defined relative
to the line segment from u to t. The state bit c remains unchanged since both ccw(u)
and cw(u) are in Hs; node u forwards the message to ccw(u) if c = 0 and to cw(u) if
c = 1. (B) The bold arrows denote the sequence of local forwarding decisions made by
Algorithm OneBit from s to t on this convex subdivision. Nodes at which the state bit
toggles are shaded grey. Some edges can be traversed once in each direction on a route;
e.g., see the subsequence a → b → c → b → d. (C) The increasing sequence of angles
and the region R(C) determined by a clockwise chain C.

reaches the target node t. Note that a clockwise chain proceeds in a counter-
clockwise direction relative to t, and vice versa. The algorithm toggles the state
bit whenever continuing the chain would send the message outside Hs. As we
show, each chain in the resulting sequence is contained within a region bounded
by the preceding chain, giving a convergence towards t. We refer to the first and
last vertices on a chain according to the chronological order of the sequence of
forwarding decisions as its head and tail, respectively, where the tail of the ith
chain is the head of the (i + 1)st chain.

Lemma 1. For every node u in a convex subdivision, if u �= t, then cw(u) ∈ Hs

or ccw(u) ∈ Hs.

Proof. The lemma follows from the fact that the half-plane Hs is closed and is
bounded by the vertical line �t through t and that every face is convex. ��

Lemma 2. Every clockwise (respectively, counterclockwise) chain C terminates,
either at t or at the head of an oppositely oriented chain.

Proof. Without loss of generality, suppose C is a clockwise chain corresponding
to the sequence of vertices v1, . . . , vk. By construction, the nodes v1, . . . , vk are
all contained in Hs and corresponds to a sequence of increasing angles ∠v1tz <
· · · < ∠vktz, where z is any point that lies below t on �t. See Figure 1C. As
defined in Algorithm 1, the chain C terminates when the tail node u has no
clockwise neighbour. By Lemma 1, u must have a counterclockwise neighbour v,
which defines the head of the subsequent counterclockwise chain. ��

Lemma 2 implies that the forwarding sequence cannot continue indefinitely
(i.e., it cannot cycle) without a change of state. Consequently, every chain C has
a head and a tail. Given a chain C, let R(C) denote the region bounded by C,
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Algorithm 1. OneBit(u, c, t)

Preconditions: u is the node holding the message, N(u) is its set of neighbours,
c ∈ {0, 1} is the state bit passed with the message, t is the target node, and cw(u)
and ccw(u) denote the clockwise and counterclockwise neighbours of u, respectively.

Postconditions: Forward the message from u to w with state bit c′, where w ∈ N(u).

1: c′ ← c
2: if [c′ = 0 and ccw(u) �∈ Hs] or [c′ = 1 and cw(u) �∈ Hs] then
3: c′ ← not c′ (The current chain cannot be continued in Hs: change states.)
4: end if
5: if t ∈ N(u) then (The target node t is adjacent to u.)
6: w ← t (Forward the message to the target node t.)
7: else if c′ = 0 then (State 0)
8: w ← ccw(u) (Forward the message along a counterclockwise chain.)
9: else (State 1)
10: w ← cw(u) (Forward the message along a clockwise chain.)
11: end if

the respective vertical rays emanating away from its head and tail, and �t. See
Figure 1C. We say a chain is complete if it originated and terminated as a result
of toggling the state bit. Consequently, all chains are complete, except the first
(whose head is the source node s) and the last (whose tail is the target node t).

Lemma 3. If Ci and Cj are any two chains in a route such that Ci is complete
and Ci precedes Cj, then R(Cj) ⊆ R(Ci)

Proof. The result follows by induction on the sequence of chains between Ci

and Cj . Consider the case when Ci and Cj are consecutive chains. Without
loss of generality, suppose Ci is a clockwise chain. Let u denote any node in Ci

other than the tail. Node u forwards the message to its neighbour v = cw(u).
Therefore, ccw(v) exists. That is, either ccw(v) = u or ccw(v) = u′ such that
∠tvu′ < ∠tvu. See Figure 2A. That is, no two chains can cross. They can,
however, share a common sequence of adjacent vertices. ��

Lemma 4. If Ci and Cj are any two oppositely oriented chains, then Cj �= Ci.

Proof. We prove the lemma by contradiction. By definition of R(C) and
Lemma 2, no point of C lies in the interior of R(C) and, consequently, for any
chains Ci and Cj , R(Ci) �= R(Cj) if and only if Ci �= Cj . Suppose Ci = Cj ,
where Ci and Cj are two oppositely oriented chains. Therefore, for every edge
{u, v} in both Ci and Cj , u = cw(v) and v = ccw(u) (or vice versa). Conse-
quently, no internal vertex on the chains can have an edge into the interior of
R(Ci) = R(Cj). See Figure 2B. Since every face is convex, t must have a neigh-
bour in Hs. Therefore, some node on Ci must have a neighbour that is t or that
lies in the interior of R(Ci), deriving a contradiction. ��
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Fig. 2. Illustrations in support of Lemmas 3 (A) and 4 (B)

Theorem 1. Given any convex subdivision G and any vertices {s, t} ⊆ V (G),
Algorithm OneBit is a predecessor-oblivious geometric local routing algorithm
that uses one state bit to determine a sequence of forwarding decisions from
s to t in G.

Proof. Each chain is finite by Lemma 2. In particular, the first chain terminates.
Each pair of subsequent chains, Ci and Cj , is complete, except for the last chain
which terminates at t. Lemmas 3 and 4 imply that R(Cj) is a proper subset
of R(Ci). Consequently, the sequence of chains converges towards �t. Since the
vertices of each chain are vertices of G, of which there are a finite number, the
result follows. ��

3 Using Predecessor Awareness

We describe a predecessor-aware stateless geometric local routing algorithm,
called PredAware(u, v, t), that guarantees delivery on any edge-augmented mono-
tone subdivision.

Let G be an edge-augmented monotone subdivision. We define a partial order
P over the vertex set V (G) as follows. For each u ∈ V (G), let �u denote the
vertical line through u, let z′u denote a point on �u above u, and let H−

u and
H+

u denote the respective left and right half-planes bounded by �u. Let the ith
left neighbour of u, denoted leftu(i), be the node in v ∈ N(u) ∩H−

u that forms
the ith smallest convex angle ∠vuz′u. The parent of u is its first left neighbour,
leftu(1). Similarly, let the ith right neighbour of u, denoted rightu(i), be the node
v ∈ N(u)∩H+

u that forms the ith smallest convex angle ∠vuz′u. See Figure 3A.
If u has no left neighbours, then u is a root. If u has no right neighbours, then
u is a leaf. For all nodes u and v, u = leftv(i) for some i if and only if v = rightu(j)
for some j; in particular, this inverse relationship exists if and only if u and
v are neighbours and u lies to the left of �v. The left neighbour relation, ≺ (or
equivalently, the right neighbour relation) assigns an orientation to each edge
in E(G) such that u ≺ v if {u, v} ∈ E(G) and ux < vx, where ax denotes the
x-coordinate of point a. That is, each (previously undirected) edge {u, v} ∈
E(G), where ux < vx, is assigned the orientation (u, v). Since x-coordinates
belong to a total order, the corresponding directed graph is acyclic, which defines
the partial order P on the vertex set V (G). See Figure 3C.
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z′u
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e

lu
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vl
vr
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Fig. 3. (A) Nodes a and b are the respective 1st and 2nd left neighbours of u. Node a is
the parent of u. Nodes c, d, and e are the respective 1st, 2nd, and 3rd right neighbours
of u. (B) An edge-augmented monotone subdivision G, where the underlying monotone
subdivision is shown in bold. (C) The corresponding directed acyclic graph on G with
parent edges defining a spanning tree in bold.

Lemma 5. P defines a single-source (single root) single-sink (single leaf) di-
rected acyclic graph over G.

Proof. Let M be the monotone subdivision underlying G. Recall that the bound-
ary of the exterior face of any monotone subdivision is monotone. Hence M has
a leftmost and a rightmost node, which we denote by vl and vr, respectively.
Since these nodes remain incident to the outer face even after edge augmenta-
tion, they are also the leftmost and rightmost vertices in G. Observe that for
each vertex v �∈ {vl, vr} of G, there is a monotone path from vl to vr that passes
through v. Hence every vertex v �∈ {vl, vr} has a left and a right neighbour.

The existence of a directed cycle in G would imply some edge oriented from
right to left. By definition, all edges are oriented from left to right. Therefore,
the resulting edge orientations on G determine a directed acyclic graph with
a unique source vl and a unique sink vr. ��

The term “source” as used in Lemma 5 refers to a vertex with in-degree zero
and non-zero out-degree. Throughout the rest of the paper, a source node refers
to the initial node s from which a message is routed to a target node t.

Algorithm PredAware traverses every edge of G using the partial order
P defined on G. The orientation of each edge and, consequently, the partial
order P , can be determined locally by any node u that knows its coordinates
and those of its set of neighbours N(u). The route corresponds to a depth-first
traversal of a spanning tree of G, resulting in a complete traversal of the graph’s
vertices (implying guaranteed delivery). Specifically, for each node u ∈ V (G) that
is not the leftmost node (which is the tree root) the edge {u, leftu(1)} ∈ E(G)
(i.e., the edge from u to its parent) corresponds to a tree edge.

Lemma 6. The set of parent edges defines a spanning tree on G.

Proof. By Lemma 5, the graph G is a directed acyclic graph with a single source.
Each vertex other than the root has a single parent edge, which is an in-edge.
The result follows. ��
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Let u denote the node holding the message, i.e., the node making a forwarding
decision. Let v ∈ N(u) denote the neighbour of u that last forwarded the message
to u. At the start of the route (when u = s initially), suppose v = ∅. The tree
traversal algorithm is described in Algorithm 2.

Algorithm 2. PredAware(u, v, t)

Preconditions: u is the node holding the message, N(u) is its set of neighbours,
v ∈ N(u) is u’s neighbour that last forwarded the message, t is the target node,
leftu(i) and rightu(i) denote the ith left and right neighbours of u, respectively.

Postconditions: Forward the message from u to w, where w ∈ N(u).
1: if t ∈ N(u) then (The target node t is adjacent to u.)
2: w ← t (Forward the message to the target node t.)
3: else if v = ∅ then (There is no predecessor: initiate the route.)
4: if rightu(1) �= ∅ then (u has a right neighbour.)
5: w ← rightu(1) (Forward the message to u’s first right neighbour.)
6: else (u has no right neighbour.)
7: w ← leftu(1) (Forward the message to u’s parent.)
8: end if
9: else if v = leftu(1) then (u’s parent passed the message into a new subtree of u.)
10: if rightu(1) �= ∅ then (u has a right neighbour.)
11: w ← rightu(1) (Forward the message to u’s first right neighbour.)
12: else (u has no right neighbour.)
13: w ← v (Return the message to u’s parent.)
14: end if
15: else if v = leftu(i) for some i ≥ 2 then (This edge is not in the spanning tree;

return the message.)
16: w ← v (Return the message to the sender v.)
17: else (Traversal of u’s ith subtree is complete. Traverse u’s (i+ 1)st subtree.)
18: if rightu(i+ 1) �= ∅ then (u has an (i+ 1)st right neighbour.)
19: w ← rightu(i+ 1) (Forward the message to u’s (i+ 1)st right neighbour.)
20: else if leftu(1) �= ∅ then (u has no (i+1)st right neighbour but has a parent.)
21: w ← leftu(1) (Forward the message to u’s parent.)
22: else (u has neither an (i+ 1)st right neighbour nor a parent: u is the root.)
23: w ← rightu(1) (Forward the message to u’s first right neighbour.)
24: end if
25: end if

Theorem 2. Given any edge-augmented monotone subdivision G and any ver-
tices {s, t} ⊆ V (G), Algorithm PredAware is a predecessor-aware stateless geo-
metric local routing algorithm that determines a sequence of forwarding decisions
from s to t in G. Furthermore, Algorithm PredAware performs a traversal of G.

Proof. Upon receiving the message from its parent, each node u sequentially
forwards the message to each of its right neighbours in clockwise order (see lines
9–14 and 17–24 in Algorithm 2). Upon receiving the message from its ith right
neighbour, u forwards the message to its (i + 1)st right neighbour. If u has no
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(i + 1)st neighbour, then u returns the message to its parent. If u receives the
message from a left neighbour other than its parent, then u returns the message
to the sender; this indicates that the message was sent along a non-tree edge,
and the message is returned immediately. Therefore, the route is extended only
when a node u receives the message from its parent, by forwarding the message
to each of u’s right neighbours. A node’s set of right neighbours includes all of its
children in the spanning tree on the set of parent edges. Algorithm 2 generates
a depth-first recursive traversal of the set of parent edges, which, by Lemma 6,
corresponds to a spanning tree of G. The resulting sequence of forwarding deci-
sions is a preorder (depth-first) traversal of the spanning tree. ��

Although local algorithms exist for various classes of geometric graphs that
construct a spanning tree on which a depth-first tree traversal determines
a graph traversal sequence (e.g., [1,17]), these all require Θ(log n) state bits.
Algorithm PredAware is stateless. Its ability to guarantee delivery on a mono-
tone subdivision is due to predecessor awareness.

4 Discussion and Directions for Future Research

The algorithms presented in this paper reduce the gap between the classes of
geometric graphs on which guaranteed delivery is possible without state bits and
those on which it is possible with O(log n) state bits. Several questions remain
to be answered to close this gap. See Table 1.

If nodes have distinct labels, then identifying t in the message requiresΩ(log n)
bits. That data is static and is not modified by the routing algorithm. The goal of
this research is to minimize the state bits modified dynamically by the algorithm.
With sufficient state bits, a routing algorithm can record the complete partial
graph that has been explored (e.g., O(n logn) state bits). Braverman’s local
routing algorithm [8] guarantees delivery on any graph using Θ(log n) state bits,
regardless of geometry, and without requiring predecessor awareness. In many
cases, Θ(log n) bits is an allowable cost.

We seek to identify and characterize classes of geometric graphs on which
delivery can be guaranteed using few states. In this paper we showed that guar-
anteed delivery is possible on convex subdivisions using only one state bit and
without predecessor awareness, and on edge-augmented monotone subdivisions
using only predecessor awareness and no state bits. Routing in planar subdivi-
sions (and other classes of geometric graphs) allows a local routing algorithm
to capitalize on the inherent geometry to guarantee delivery using fewer states
than are necessary on arbitratry graphs. This leads to some natural open ques-
tions. Is geometric local routing on planar subdivisions possible using c state
bits, where c ∈ o(log n) or c ∈ O(1)? On what classes of geometric graphs can
a geometric local routing algorithm guarantee delivery using O(1) state bits?
On what classes of geometric graphs can a stateless geometric local routing al-
gorithm guarantee delivery using predecessor awareness? With both predecessor
awareness and O(1) state bits, can a local routing algorithm guarantee delivery
on more general classes of graphs than if it were predecessor-aware and stateless?
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Finally, measuring and bounding a local routing algorithm’s dilation (worst-
case ratio of actual route length to shortest path length) is of interest. Can O(1)
dilation be guaranteed on convex subdivisions with one state bit?
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7. Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Net. 7(6), 609–616 (2001)

8. Braverman, M.: On ad hoc routing with guaranteed delivery. In: Proc. ACM
PODC, vol. 27, p. 418 (2008)

9. Chavez, E., Dobrev, S., Kranakis, E., Opatrny, J., Stacho, L., Urrutia, J.: Traversal
of a quasi-planar subdivision without using mark bits. J. Interconn. Net. 5(4),
395–408 (2004)
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Abstract. Interface theories are employed in the component-based design of
concurrent systems. They often emerge as combinations of Interface Automata
(IA) and Modal Transition Systems (MTS), e.g., Nyman et al.’s IOMTS, Bauer
et al.’s MIO, Raclet et al.’s MI or our MIA. In this paper, we generalise MI to
nondeterministic interfaces, for which we resolve the longstanding conflict be-
tween unspecified inputs being allowed in IA but forbidden in MTS. With this
solution we achieve, in contrast to related work, an associative parallel composi-
tion, a compositional preorder, a conjunction on interfaces with dissimilar alpha-
bets supporting perspective-based specifications, and a quotienting operator for
decomposing nondeterministic specifications in a single theory.

1 Introduction

Interface theories [2,7,8,15,16,18] support the component-based design of concurrent
systems and offer a semantic framework for, e.g., software contracts [1] and web ser-
vices [4]. Several such theories are based on de Alfaro and Henzinger’s Interface Au-
tomata (IA) [10], whose distinguishing feature is a parallel composition on labelled
transition systems with inputs and outputs, where receiving an unexpected input is re-
garded as an error, i.e., a communication mismatch. All states are pruned from which
entering an error state cannot be prevented by the environment, rather than leaving the
parallel composition fully undefined as in [2].

Various researchers have combined IA with Larsen’s Modal Transition Systems
(MTS) [14], which features may- and must-transitions to express allowed and required
behaviour, resp. In a refinement of an interface, all required behaviour must be pre-
served and no disallowed behaviour may be added. Whereas in IA outputs are optional,
they may now be enforced in theories combining IA and MTS, such as Nyman et al.’s
IOMTS [15], Bauer et al.’s MIO [2], Raclet et al.’s Modal Interfaces (MI) [18] and
our Modal Interface Automata (MIA) [16,17]. In this paper we extend MI to nonde-
terministic systems, yielding the most general approach to date and permitting new
applications, e.g., for dealing with races in networks. We built upon our prior work
in [17], from which we adopt disjunctive must-transitions that are needed for opera-
tionally defining conjunction, which is another key operator in interface theories and
supports perspective-based specification.
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Combining IA and MTS is, however, problematic since unspecified inputs are for-
bidden in MTS, but allowed in IA with arbitrary behaviour afterwards. In IOMTS [15],
the MTS-view was adopted and, as a consequence, compositionality of refinement wrt.
the parallel operator ‖ was lost. In [17] we followed the IA-view but found that resol-
ving the conflict is essential for a more flexible conjunction. In our new MIA, we can
optionally express the IA-view for state p and input i by an i-may-transition from p to
a special, universal state e that can be refined in any way; we will need this option when
defining ‖. There is a similar idea in MI [18], but an ordinary state is used there with the
consequence that ‖ is not associative. In contrast to the somewhat related demonic com-
pletion as used, e.g., in [11], we do not enforce input-enabledness. With the new feature,
our interface theory allows for a proper distinction between may- and must-transitions
for inputs, unlike [16,17]. This enables us to define conjunction also on interfaces with
dissimilar alphabets via alphabet extension.

As in MI, our MIA is equipped with a multicast parallel composition, where one
output can synchronise with several inputs. We also develop a quotienting operator as
a kind of inverse of parallel composition ‖. For a specification P and a given compo-
nent D, quotienting constructs the most general component Q such that Q ‖D refines P.
Quotienting is a very practical operator because it can be used for decomposing con-
current specifications stepwise, specifying contracts [3], and reusing components. In
contrast to [18], our quotienting permits nondeterministic specifications and comple-
ments ‖ rather than a simpler parallel product without pruning.

In summary, our new interface theory MIA generalises and improves upon exist-
ing theories combining IA and MTS: parallel composition is commutative and asso-
ciative (cf. Section 3), quotienting also works for nondeterministic specifications (cf.
Section 4), conjunction properly reflects perspective-based specification (cf. Sections 5
and 6), and refinement (cf. Section 2) is compositional and permits alphabet extension
(cf. Section 6). A technical report of this paper [5] contains all proofs, more explana-
tions and examples; it also introduces a disjunction and an action scoping operator.

2 Modal Interface Automata: The Setting

In this section we define MIA and its supported operations. Essentially, MIAs are state
machines with disjoint input and output alphabets and two transition relations, may
and must, as in MTS [14]. May-transitions describe permitted behaviour, while must-
transitions describe required behaviour. Unlike previous versions of MIA [16,17] and
other similar theories, we introduce the universal state e as an extra constituent.

Definition 1 (Modal Interface Automata). A Modal Interface Automaton (MIA) is
a tuple (P, I,O,−→,���, p0,e), where

– P is the set of states containing the initial state p0 and the universal state e,
– I and O are disjoint sets, the alphabets of input and output actions, not containing

the special internal action τ , and A =df I∪O is called the alphabet,
– −→⊆ P× (A∪{τ})× (Pfin(P)\ /0) is the disjunctive must-transition relation, with
Pfin(P) being the set of finite subsets of P,

– ���⊆ P× (A∪{τ})×P is the may-transition relation.
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We require (a) for all α ∈ A∪{τ}that p
α−→ P′ implies ∀p′∈P′. p

α��� p′ (syntactic con-
sistency) and that (b) e appears in transitions only as the target of input may-transitions.

Cond. (a) states that whatever is required should be allowed; this syntactic consistency
is a natural and standard condition (cf. [14]). Cond. (b) matches the idea for e explained
in the introduction. We use this state in the context of parallel composition to represent
communication errors. Note that our disjunctive must-transitions have a single label, in
contrast to Disjunctive MTS [13].

In the sequel, we identify a MIA (P, I,O,−→,���, p0,e) with its state set P and, if
needed, use index P when referring to one of its components, e.g., we write IP for I.
Similarly, we write, e.g., I1 instead of IP1 for MIA P1. In addition, we let i, o, a, ω
and α stand for representatives of the alphabets I, O, A, O∪{τ} and A∪{τ}, resp.;
we write A = I/O when highlighting inputs I and outputs O in an alphabet A, and we
define â =df a and τ̂ =df ε (the empty word). Furthermore, outputs and internal actions
are called local actions since they are controlled locally by P. For convenience, we let

p
a−→ p′, p � a−→ and p � a��� denote p

a−→ {p′}, � ∃p′. p
a−→ p′ and � ∃p′. p

a��� p′, resp.
In figures, we often refer to an action a as a? if a∈ I, and as a! if a∈O. Must-transitions
(may-transitions) are drawn using solid, possibly splitting arrows (dashed arrows); any
depicted must-transition also implicitly represents the underlying may-transition(s).

We now define weak must- and may-transition relations that abstract from transitions
labelled by τ . The following definition is equivalent to the one in [17].

Definition 2 (Weak Transition Relations). We define weak must-transition and weak
may-transition relations, =⇒ and =⇒ resp., as the smallest relations satisfying the
conditions P′ ε

=⇒ P′ for finite P′ ⊆ P, p
ε

=⇒ p as well as:

(a) P′ α̂
=⇒ P′′, p′′ ∈ P′′ and p′′

τ−→ P′′′ implies P′ α̂
=⇒ (P′′ \ {p′′})∪P′′′,

(b) P′ ε
=⇒ P′′ = {p1, . . . , pn} and ∀ j. p j

a−→ Pj implies P′ a
=⇒ ⋃n

j=1 Pj ,

(c) p
ε

=⇒ p′′
τ��� p′ implies p

ε
=⇒ p′,

(d) p
ε

=⇒ p′′
α��� p′′′

ε
=⇒ p′ implies p

α
=⇒ p′.

For {p′} α̂
=⇒ P′′ we often write p′

α̂
=⇒ P′′. Mostly for inputs a, we also use relation

compositions
a−→ ε
=⇒ and

a��� ε
=⇒ resp., i.e., where leading τs are disallowed. Observe

that p
a−→ ε
=⇒ P′ implies p

a
=⇒ P′, and p

a��� ε
=⇒ p′ implies p

a
=⇒ p′.

Now we define our refinement relation. It is a weak alternating simulation conceptu-
ally similar to the observational modal refinement found, e.g., in [12]. A notable aspect,
originating from IA [10], is that inputs must be matched immediately, i.e., only trail-
ing τs are allowed. Intuitively, this is due to parallel composition requiring that a signal
sent from one system must be received immediately; otherwise, it is considered an er-
ror (a communication mismatch). Since one wishes not to introduce new errors during
refinement, a refined system must immediately provide all specified inputs.

We treat the universal state e as completely underspecified, i.e., we decree that any
state refines it. This is only possible since e is not an ordinary state. We define our
refinement preorder for MIAs with common input and output alphabets; we relax this
in Section 6.



Nondeterministic Modal Interfaces 155

Definition 3 (MIA Refinement). Let P,Q be MIAs with common input/output alpha-
bets. A relation R ⊆P×Q is a MIA-refinement relation if for all (p,q)∈R with q �= eQ:

(i) p �= eP,

(ii) q
i−→ Q′ implies ∃P′. p

i−→ ε
=⇒ P′ and ∀p′∈P′ ∃q′∈Q′.(p′,q′) ∈R,

(iii) q
ω−→ Q′ implies ∃P′. p

ω̂
=⇒ P′ and ∀p′∈P′ ∃q′∈Q′.(p′,q′) ∈R,

(iv) p
i��� p′ implies ∃q′.q

i��� ε
=⇒ q′ and (p′,q′) ∈R,

(v) p
ω��� p′ implies ∃q′.q

ω̂
=⇒ q′ and (p′,q′) ∈R.

We write p! q and say that p MIA-refines q if there exists a MIA-refinement relation R
such that (p,q) ∈R, and we let p "! q stand for p ! q and q ! p. Furthermore, we
extend these notations to MIAs, write P ! Q if p0 ! q0, and use "! analogously.

MIA refinement ! is a preorder and the largest MIA-refinement relation. The preorder
property is quite subtle to prove due to the weak transition relations.

3 Parallel Composition

IA [9,10] is equipped with an interleaving parallel operator, where an action occurring
as an input in one interface is synchronised with the same action occurring as an output
in some other interface; the synchronised action is hidden, i.e., labelled by τ . Since
our work builds upon MI [18] we instead consider here a parallel composition, where
the synchronisation of an interface’s output action involves all concurrently running
interfaces that have the action as input. We define a parallel operator ‖ on MIA in two
stages. First, a standard product ⊗ between two MIAs is introduced.

Definition 4 (Parallel Product). MIAs P1, P2 are composable if O1∩O2 = /0. For such
MIAs we define the product P1⊗P2 = ((P1×P2) ∪̇ {e12}, I,O,−→,���,(p01, p02), e12),
where I =df (I1 ∪ I2) \ (O1 ∪O2) and O =df O1 ∪O2 and where −→ and ��� are the
smallest relations satisfying the following conditions:

(PMust1) (p1, p2)
α−→ P′

1×{p2} if p1
α−→ P′

1 and α /∈ A2

(PMust2) (p1, p2)
α−→ {p1}×P′

2 if p2
α−→ P′

2 and α /∈ A1

(PMust3) (p1, p2)
a−→ P′

1×P′
2 if p1

a−→ P′
1 and p2

a−→ P′
2 for some a

(PMay1) (p1, p2)
α��� (p′1, p2) if p1

α��� p′1 and α /∈ A2

(PMay2) (p1, p2)
α��� (p1, p′2) if p2

α��� p′2 and α /∈ A1

(PMay3) (p1, p2)
a��� (p′1, p′2) if p1

a��� p′1 and p2
a��� p′2 for some a.

From the parallel product, parallel composition is obtained by pruning, i.e., one re-
moves errors and states leading up to errors via local actions, so called illegal states.
This cuts all input transitions leading to an illegal state.

In [6] we have shown that de Alfaro and Henzinger have defined pruning in an in-
appropriate way in [9]. We remedied this by cutting not only an i-transition from some
state p to an illegal state, but also all other i-transitions from p. Now, in [6,9], p can be
refined by a state with an i-transition and arbitrary behaviour afterward; we express this
by introducing an i-may-transition to the universal state.
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p0P:
a? b! q0Q: b? r0R: j?

(p0 ‖ q0) ‖ r0 tt ‖ r0
a?

j?

a?,b!

j?

p0 ‖ (q0 ‖ r0) tt
a?

j?

a?,b!, j?

Fig. 1. Differences of our state e to tt in [18], where AP = {a}/{b}, AQ = {b}/ /0 and AR = { j}/ /0

Definition 5 (Parallel Composition). Given a parallel product P1⊗P2, a state (p1, p2)

is a new error if there is some a ∈ A1 ∩A2 such that (a) a ∈ O1, p1
a��� and p2 � a−→,

or (b) a ∈ O2, p2
a��� and p1 � a−→. It is an inherited error if one of its components is

a universal state, i.e., if it is of the form (e1, p2) or (p1,e2).
We define the set E ⊆ P1×P2 of illegal states as the least set such that (p1, p2) ∈ E

if (i) (p1, p2) is a new or inherited error or (ii) (p1, p2)
ω��� (p′1, p′2) and (p′1, p′2) ∈ E.

Should the initial state be an illegal state, i.e., (p01, p02) ∈ E, then e12 becomes the
initial – and thus the only reachable – state of the parallel composition P1 ‖ P2.

Otherwise, P1 ‖ P2 is obtained from P1 ⊗P2 by pruning illegal states as follows. If

there is a state (p1, p2) �∈ E with (p1, p2)
i��� (p′1, p′2) ∈ E for some i ∈ I, then all

must- and may-transitions labelled i and starting at (p1, p2) are removed, and a sin-

gle transition (p1, p2)
i��� e12 is added. Furthermore, all states in E, all unreachable

states (except for e12), and all their incoming and outgoing transitions are removed. If
(p1, p2) ∈ P1 ‖ P2, we write p1 ‖ p2 and call p1 and p2 compatible.

In [18], Raclet et al. use a similar approach to pruning: they introduce a state we
denote as tt, which has only input may-transitions as incoming transitions. Furthermore,
it has a may-loop for every action of the parallel composition so that it can be refined by
any state, much like our universal state (cf. Def. 3(i)). To see the difference, condsider
the MIAs P, Q, R in Figure 1, where we construct (P ‖ Q) ‖ R according to [18]. Since
tt is an ordinary state, it is combined with r0 inheriting the j-must-loop. In our approach,
the combination with r0 is an inherited error, and e does not have any must-transitions.

More importantly, there is the severe problem that parallel composition in [18] is not
associative. Consider again the systems P, Q and R in Fig. 1; their parallel compositions
shown are not equivalent according to "! (and the equivalence in [18]). Note that our
example does not rely on the multicast aspect of our parallel composition; it works just
as well for IA parallel composition.

Theorem 6 (Associativity of Parallel Composition). Parallel composition is associa-
tive in the sense that, for MIAs P, Q and R, if (P ‖ Q) ‖ R is defined, then P ‖ (Q ‖ R) is
defined as well and they are isomorphic, and vice versa.

Theorem 7 (Compositionality of Parallel Composition). Let P1, P2 and Q1 be MIAs
and P1 ! Q1. Assume that Q1 and P2 are composable, then (a) P1 and P2 are compos-
able, and (b) P1 ‖ P2 ! Q1 ‖ P2, and P1 ‖ P2 is compatible if Q1 ‖ P2 is.
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P:

p0

rqst!
resp!
fail!

D:

d0

d1

rqst? resp! fail!

Q:

q0

q1

eQ

rqst! resp? fail?

resp?,fail? Q ‖ D:

(q0,d0)

(q1,d1)

rqst! resp! fail!

Fig. 2. Q = P//D with q0 = p0//d0 and q1 = p0//d1, where the alphabets are AP = /0/{rqst, resp,
fail}, AD = {rqst}/{resp, fail}, AQ = {resp, fail}/{rqst} and AQ‖D = /0/{rqst, resp, fail}

4 Quotienting

The quotient operation is a kind of inverse or adjoined operation to parallel composition.
It equips the theory with a means for component reuse and incremental, component-
based specification. To describe the participants in a quotient operation we use the let-
ters P for the specification, D for the divisor (the already implemented component) and
Q for the quotient or its refinements. Given MIAs P and D, the quotient is the coarsest
MIA Q such that Q ‖ D ! P holds; we call this inequality the defining inequality of the
quotient. We write P//D for the quotient if it exists.

We demonstrate quotienting with the simple client-server application of Figure 2.
The server takes the role of the already given component D. It can receive a request and
answers with a response. Additionally, the server may implement a failure as answer.
When composed in parallel, client Q and server D are supposed to form a closed system,
i.e., all shared actions are outputs. Thus, the parallel composition of client and server
must refine the overall specification P. A specification for the client is then obtained as
the quotient Q = P//D. Figure 2 gives a preview of this Q according to our construction
below. Client Q may implement the sending of a request, and if so, it must be receptive
for a response and a failure. If one of the latter two transitions were of may-modality,
this would cause a communication mismatch in the parallel composition with D. The
may-transitions resp? and fail! from q0 to eQ only exist to make Q as coarse as possible;
they disappear in the parallel composition with D. Now, it is easy to check that the
defining inequality Q ‖ D ! P is satisfied. The example also shows that, in general, we
do not have equality of (P//D) ‖ D and P.

We define the quotient for a restricted set of MIAs, namely where the specification
P has no τs and where the divisor D is may-deterministic without τs. We call D may-

deterministic if d
α��� d′ and d

α��� d′′ implies d′ = d′′. Due to syntactic consistency,
a may-deterministic MIA has no disjunctive must-transitions, i.e., the target sets of
must-transitions are singletons. In addition, we exclude the pathological case where

P has some state p and input i with p
i��� eP and ∃p′ �= eP. p

i��� p′. Recall that transi-

tions p
i��� eP are meant to express the following situation: (a) input i is not specified

at p, but at the same time (b) p shall be refinable as in IA [10] by a state with an
i-transition and arbitrary subsequent behaviour. Despite these restrictions, our quotient
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significantly generalises that of MI [18], which considered deterministic specifications
and divisors only. In the following, we call MIAs P, D satisfying our restrictions
a quotient pair.

4.1 Definition and Main Result

Like most other operators we define the quotient in two stages, where mayP(p,α) stands

for {p′ ∈ P | p
α���P p′}.

Definition 8 (Pseudo-quotient). Let (P, IP,OP,−→P,���P, p0,eP), (D, ID,OD,−→D,
���D,d0,eD) be a quotient pair with AD ⊆ AP and OD ⊆ OP, and I =df IP ∪OD and
O =df OP \OD. The pseudo-quotient of P over D is defined as the MIA ({(eP,eD)}, I,O,
/0, /0,(eP,eD),(eP,eD)) if p0 = eP. Otherwise, P$D =df (P×D, I,O,−→,���,(p0,d0),
(eP,eD)), where the transition relations are defined by:

(QMust1) (p,d)
a−→ P′ × {d} if p

a−→P P′ and a �∈ AD

(QMust2) (p,d)
a−→ P′ × {d′} if p

a−→P P′ and d
a−→D d′

(QMust3) (p,d)
a−→ P′ × {d′} if P′ =df mayP(p,a) �= /0, eP �∈ P′,

d
a���D d′ and a ∈ OD

(QMay1) (p,d)
a��� (p′,d) if p

a���P p′ �= eP and a �∈ AD

(QMay2) (p,d)
a��� (p′,d′) if p

a���P p′ �= eP and d
a−→D d′

(QMay3) (p,d)
a��� (p′,d′) if p

a���P p′, eP �∈ mayP(p,a),

d
a���D d′ and a �∈ OP ∩ ID

(QMay4) (p,d)
a��� (eP,eD) if eP ∈ mayP(p,a) (note: a ∈ IP ⊆ I)

(QMay5) (p,d)
a��� (eP,eD) if p �= eP, d � a���D and a ∈ AD \ (OP ∩ ID)

Regarding the definition of the alphabets we follow [8] and [18]; there is, however,
a choice regarding the input alphabet, which we discuss in Sec. 6. The intuition behind
a state (p,d) in P$D is that (p,d) composed in parallel with d refines state p, and
that (p,d) should be coarsest wrt. MIA refinement satisfying this condition. With this
in mind, we now justify some of the above rules intuitively.

Rule (QMust1) is necessary due to the following consideration. If P has an a-must-
transition where a is unknown to D, this can only originate from an a-must-transition
in the quotient Q that we wish to construct; in order to be most permissive, each p′ ∈ P′

must have a match in Q ‖D. The corresponding consideration is true for Rule (QMay1),
which also establishes syntactic consistency for Rule (QMust1).

Rule (QMust3) ensures that (p,d) and d are compatible in case of an output of d. An
application of this rule can be seen in Fig. 2 for action fail? at q1 = p0//d1. Syntactic
consistency results from Rules (QMay2) and (QMay3); note that a∈OD implies a �∈ ID.

Rule (QMay5) makes P$D as coarse as possible. The input a-may-transitions in-
troduced here just disappear in (P$D) ‖ D, since a is blocked by D. This can be seen
in Fig. 2 for actions resp? and fail? at q0 = p0//d0 and in Q ‖ D at (q0,d0).

P$D is indeed a MIA. We have already argued for syntactic consistency. All rules
ensure p �= eP; hence, eP$D has no outgoing transitions. Incoming transitions of eP$D

can only arise from Rules (QMay4) or (QMay5), which are only applicable for a ∈ I.
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Up to now, we have only defined the pseudo-quotient. Considering a candidate pair
(p,d), for some combinations of modalities and assignments of actions to input or out-
put, it is impossible that p is refined by a state resulting from a parallel composition
with d. We call such states impossible states and remove them from the pseudo-quotient

states. For example, for p
a−→ and d

a��� such that d � a−→, no parallel composition with
d refines p. While may-transitions can be refined by removing them and disjunctive
transitions can be refined to subsets of their targets to prevent the reachability of im-
possible states, all states having a must-transition to only impossible states must also be
removed.

Definition 9 (Quotient). Let P$D be the pseudo-quotient of P over D. The set G ⊆
P×D of impossible states is defined as the least set refining the following rules:

(G1) p
a−→P and d � a−→D and a ∈ AD implies (p,d) ∈ G

(G2) p �= eP and p � a���P and d
a���D and a ∈ OD implies (p,d) ∈ G

(G3) p �= eP and d = eD implies (p,d) ∈ G
(G4) (p,d)

a−→P$D R′ and R′ ⊆ G implies (p,d) ∈ G

The quotient P//D is obtained from P$D by deleting all states (p,q) ∈ G. This also
removes any may- or must-transition exiting and any may-transition entering a deleted
state. Deleted states are also removed from targets of disjunctive must-transitions.
If (p,d) ∈ P//D, we write p//d. If (p0,d0) �∈ P//D, the quotient P over D is not
defined.

Rule (G1) is obvious since (p,d) cannot ensure that p
a−→P is matched if d has no

a-must-transition, as an a-may-transition or even a forbidden action at d can in no case
compose to a refinement of a must-transition at p. Rule (G2) captures the situation
where d has an output a that is forbidden at p. Offering an a-must-input in the quotient
would lead to a transition in the parallel composition with d, while not offering it would
lead to an error; both would not refine p. Rule (G3) captures the division by eD: state eD

in parallel with any state is universal and does not refine p �= eP. Finally, Rule (G4)
propagates back all impossibilities that cannot be avoided by refining.

Note that P//D is a MIA. Quotienting yields the coarsest MIA satisfying the defi-
ning inequality; proving this statement involves showing that the definedness of ‖ and //
is mutually preserved across refinement. Operator // is also monotonous at the left.

Theorem 10 (// is a Quotient Operator wrt. ‖). Let P, D be a quotient pair and Q be
a MIA such that AD ⊆ AP, OD ⊆ OP, OQ = OP \OD and IQ = IP∪OD. Then, Q ! P//D
iff Q ‖ D ! P.

Theorem 11 (Monotonicity of // wrt. !). Let P1, P2, D be MIAs with P1 ! P2. If P1//D
is defined and P2, D are a quotient pair, then P2//D is defined and P1//D ! P2//D.

4.2 Discussion

For Q ‖ D ! P to hold, Q ‖ D and P must have the same input alphabet and the
same output alphabet. Thus, we must have OQ = OP \OD and IQ ⊇ IP \ ID. Concern-
ing the input actions in D, quotient Q can listen to them but does not have to. Hence,
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IQ ⊆ IP \ ID ∪AD = IP ∪OD. The more inputs Q has, the easier it is to supply the be-
haviour ensuring Q ‖ D ! P. Thus, we have chosen the input alphabet IP ∪OD for our
quotient P//D, just as is done in [8] and [18]. When comparing some Q to P//D in
Thm. 10, Q necessarily has the same input and output alphabets as P//D, by Def. 3.

Quotient operators for interface theories have already been discussed by Raclet et
al. [18] and Chilton et al. [7]. Our quotient Q = P//D is most similar to [18], where D
is assumed to be may-deterministic, P and D have no internal transitions, and IQ =
IP ∪OD. However, also P must be may-deterministic there, whereas we additionally
allow nondeterminism and disjunctive must-transitions in P.

In addition, we have corrected some technical shortcomings of MI [18]. Its quotient
operation ignores compatibility so that quotienting is an adjoint to the parallel product
but not to parallel composition. This has been recognised in a technical report [3], which
unfortunately employs a changed setting without a universal state.

5 Conjunction

Besides parallel composition and quotienting, conjunction is one of the most important
operators of interface theories. It allows one to specify different perspectives of a sys-
tem separately, from which an overall specification can be determined. More formally,
the conjunction should be the coarsest specification that refines the given perspective
specifications, i.e., it should characterise the greatest lower bound of the refinement
preorder. In the sequel, we define conjunction on MIAs with common alphabets, as we
did for MIA refinement. Similar to parallel composition, we first present a conjunctive
product and, in a second step, remove state pairs with contradictory specifications.

Definition 12 (Conjunctive Product). Consider two MIAs (P, I,O,−→P,���P, p0,eP)
and (Q, I,O, −→Q,���Q,q0,eQ) with common alphabets. The conjunctive product is
defined as P&Q =df (P×Q, I,O,−→,���,(p0,q0),(eP,eQ)), satisfying the following
rules plus the symmetric rules of (OMust1), (IMust1), (EMust1), (May1), (EMay1):

(OMust1) (p,q)
ω−→ {(p′,q′) | p′ ∈ P′, q

ω̂
=⇒Q q′} if p

ω−→P P′ and q
ω̂

=⇒Q

(IMust1) (p,q)
i−→ {(p′,q′) | p′ ∈ P′, q

i��� ε
=⇒Q q′} if p

i−→P P′ and q
i��� ε
=⇒Q

(EMust1) (p,eQ)
α−→ P′ × {eQ} if p

α−→P P′

(May1) (p,q)
τ��� (p′,q) if p

τ
=⇒P p′

(OMay) (p,q)
ω��� (p′,q′) if p

ω
=⇒P p′ and q

ω
=⇒Q q′

(IMay) (p,q)
i��� (p′,q′) if p

i��� ε
=⇒P p′ and q

i��� ε
=⇒Q q′

(EMay1) (p,eQ)
α��� (p′,eQ) if p

α���P p′

Note that this definition is similar to the one in [17], except for the treatment of inputs
and the universal state. The conjunctive product is inherently different from the pa-
rallel product. Single transitions are defined through weak transitions, e.g., as in Rules
(OMust1), (IMust1) and (May1), and τ-transitions synchronise by Rule (OMay). Fur-
thermore, as given by Rules (EMust1) and (EMay1), a universal state is a neutral ele-
ment for the conjunctive product, whereas it is absorbing for the parallel product.
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R1:

0

1

2

rqst1!, rqst2!

rqst?

rqst1! rqst2!

sel!

R2:

0

1 2

rqst?

sel! sel!
rqst1! rqst2!

R1∧R2:

(0,0)

(1,0)

(2,1) (2,2)

rqst?

sel!

rqst1! rqst2!

Fig. 3. Conjunction on MIAs may lead to disjunctive transitions

Definition 13 (Conjunction). Given a conjunctive product P&Q, the set F ⊆ P×Q of
inconsistent states is defined as the least set satisfying for all p �= eP and q �= eQ:

(F1) (p
o−→P and q � o

=⇒Q) or (p � o
=⇒P and q

o−→Q) implies (p,q) ∈ F

(F2) (p
i−→P and q � i���Q) or (p � i���P and q

i−→Q) implies (p,q) ∈ F

(F3) (p,q)
α−→ R′ and R′ ⊆ F implies (p,q) ∈ F

The conjunction P∧Q is obtained by deleting all states (p,q) ∈ F from P&Q. This also
removes any may- or must-transition exiting and any may-transition entering
a deleted state; in addition, deleted states are removed from targets of disjunctive must-
transitions. We write p∧q for (p,q) of P∧Q; all such states are defined and consistent
by construction. If (p0,q0) ∈ F, then the conjunction of P and Q does not exist.

An example of conjunction is given in Fig. 3. MIAs R1 and R2 can be understood
as requirements for a server front-end that routes between a client and at least one of
two back-ends. MIA R1 specifies that, after getting a client’s request (rqst?), a back-end
selection (sel!) must be performed, after which the request can be forwarded to one of
the two back-ends (rqst1!, rqst2!). MIA R2 specifies that, with the selection, it is decided
to which one of the back-ends the request will be forwarded (rqst1!, rqst2!).

In R1∧R2, the selection process (sel!) is given by a disjunctive must-transition. Such
a requirement cannot be specified in a deterministic theory, such as MI [18] which
our theory extends. Although one might approximate the disjunctive sel! by individual
selection actions sel1! and sel2! for each back-end, the conjunction would either have
both actions as may-transitions and thus allow one to omit both, or would have both
actions as must-transitions, disallowing a server application with only one back-end.

Theorem 14 (∧ is And). Let P and Q be MIAs with common alphabets. Then, (i) (∃R.
R ! P and R ! Q) iff P∧Q defined. Further, in case P∧Q is defined and for any R:
(ii) R ! P and R ! Q iff R ! P∧Q.

Clearly, conjunction is commutative. Further, as a consequence of the above theorem,
(i) it is also associative and (ii) MIA refinement is compositional wrt. conjunction.

6 Alphabet Extension

So far, MIA refinement is only defined on MIAs with the same alphabets. This is in-
sufficient for supporting perspective-based specification, where an overall specification
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is conjunctively composed of smaller specifications, each addressing one ‘perspective’
(e.g., a single system requirement) and referring only to actions that are relevant to that
perspective. Hence, it is useful to extend conjunction and thus MIA refinement to dis-
similar alphabets in such a way that we can add new inputs and outputs in a refinement
step. For this purpose we introduce alphabet extension as an operation on MIAs, simi-
lar to [17] and also to weak extension in [18]. More precisely, we add may-loops for all
new actions to each state, except the universal state.

Definition 15 (Alphabet Extension & Refinement). Given a MIA (P, I,O,−→,���,
p0,e) and disjoint action sets I′ and O′ satisfying I′ ∩A = /0= O′ ∩A, where A=df I∪O,
the alphabet extension of P by I′ and O′ is given by [P]I′,O′ =df (P, I∪I′,O∪O′,−→,���′,
p0,e) for ���′=df ���∪{(p,a, p) | p∈ P\{e}, a∈ I′ ∪O′}. We often write [p]I′,O′ for p
as state of [P]I′ ,O′ , or conveniently [p] in case I′, O′ are understood from the context.

For MIAs P and Q with p ∈ P, q ∈ Q, IP ⊇ IQ and OP ⊇ OQ, we define p !′ q if
p ! [q]IP\IQ,OP\OQ

. Since !′ extends ! to MIAs with different alphabets, we write !
for !′ and abbreviate [q]IP\IQ,OP\OQ

by [q]P; the same notations are used for P and Q.

Compositionality of parallel composition as in Thm. 7 is preserved by the extended
refinement relation as long as alphabet extension does not yield new communications.

Theorem 16 (Compositionality of Parallel Composition). Let P1, P2, Q be MIAs such
that Q and P2 are composable and P1 ! Q. Assume further that, for I′ =df I1 \ IQ and
O′ =df O1 \OQ, we have (I′ ∪O′)∩A2 = /0. Then: (a) P1 and P2 are composable, and
(b) if Q and P2 are compatible, then so are P1 and P2 and P1 ‖ P2 ! Q ‖ P2.

Our conjunction operator may be lifted to conjuncts with dissimilar alphabets by
defining P∧′ Q =df [P]Q∧ [Q]P; the lifted operator ∧′ satisfies the analogue of Thm. 14.

7 Conclusions and Future Work

We presented an extension of Raclet et al.’s modal interface theory [18] to nondeter-
ministic systems. To do so we resolved, for the first time properly, the conflict be-
tween unspecified inputs being allowed in interface theories derived from de Alfaro and
Henzinger’s Interface Automata [10] but forbidden in Modal Transition Systems [14].
To this end, we introduced a special universal state, which enabled us to achieve com-
positionality (in contrast to [15]) as well as associativity (in contrast to [18]) for parallel
composition; this also allowed for a more practical support of perspective-based speci-
fication when compared to [16,17]. In addition, we defined a quotienting operator that
permits the decomposition of nondeterministic specifications and takes pruning in pa-
rallel composition into account (in contrast to [18]).

Regarding future work, we wish to explore the choice of alphabets for quotienting
and relax the determinism requirement on divisors. We also intend to implement our
theory in MICA (see http://www.irisa.fr/s4/tools/mica/) or the MIO Work-
bench [2].
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Abstract. In this paper we consider the group search problem, or evacu-
ation problem, in which k mobile entities (MEs) located on the line
perform search for a specific destination. The MEs are initially placed
at the same origin on the line L and the target is located at an unknown
distance d, either to the left or to the right from the origin. All MEs
must simultaneously occupy the destination, and the goal is to minimize
the time necessary for this to happen. The problem with k = 1 is known
as the cow-path problem, and the time required for this problem is known
to be 9d − o(d) in the worst case (when the cow moves at unit speed);
it is also known that this is the case for k ≥ 1 unit-speed MEs. In this
paper we present a clear argument for this claim by showing a rather
counter-intuitive result. Namely, independent of the number of MEs,
group search cannot be performed faster than in time 9d − o(d). We
also examine the case of k = 2 MEs with different speeds, showing
a surprising result that the bound of 9d can be achieved when one ME
has unit speed, and the other ME moves with speed at least 1/3.

Keywords: evacuation, group search, mobile entity.

1 Introduction

Search problems are well-studied within the fields of operations research, com-
puting, and mathematics. Indeed, nearly sixty years ago Bellman [6] asked
a question that can be stated as follows: “A hiker is lost in a forest whose di-
mensions are known to her. What is the best path for her to follow to escape
the forest?”

In general, search problems deal with a searcher looking for a hidden object (or
“target”), with a goal of minimizing the time required to find it. Many versions
of this problem can be considered, including variations in the environment (e.g.,
a geometric setting vs. a graph), whether the target is fixed or mobile, or if the
target is a point in space or a boundary of a region or other curve, the use of
a deterministic or randomized search strategy, and whether or not the searcher(s)
have access to additional tools to aid the search (such as markers to drop in the
environment) [3,4,5,7,8,11,12,15,16].
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Search also naturally leads into the rendezvous problem, where two or more
searchers seek to meet in an environment, and that problem lends itself to ad-
ditional considerations of the inherent abilities of the searchers themselves, such
as whether they have the same speed or different speeds, their ability to com-
municate and see their environment (typically over a limited distance), and if
the searchers are able to follow the same or different search strategy, e.g. do the
searchers have unique identifiers so they can adopt their own search method, or
are they indistinguishable and therefore must use the same (randomized or de-
terministic) strategy? [1,9,10]. The book by Alpern and Gal [2] is a good survey
of known results for both the search and rendezvous problems.

The focus of this paper is on the group search problem or evacuation problem,
where k mobile entities, all starting from the origin on the line, must find and
simultaneously gather at the target located at an unknown distance d from the
origin. The inspiration for the name comes from consideration of an evacuation
procedure of a building (one, say, that is on fire). We note that some of the
mobile entities might find the target and move away from it, only to return
later. Strictly speaking, the “simultaneous gathering” condition can be dispensed
with by noting that the evacuation procedure has finished only when all mobile
entities have reached and “exited” at the target.

In the case of the line that we consider, the most relevant previous results are
in relation to the cow-path problem, a search problem that was introduced by
Baeza-Yates, et al. in 1988 [3] and has since been considered in the same form
and in different variations in [4,5,11,13,14,16,17]. The cow-path problem involves
a single cow, Eloise1, who is standing at a crossroads (defined as the origin) with
w paths leading off into unknown territory. Traveling with unit speed, the goal
of Eloise is to locate a target destination (say, a tasty patch of grass) that is
at distance d from the origin in as small a time as possible. Eloise faces three
difficulties: (1) she does not know the value of d, (2) she does not know which
of the w paths leads to the goal, and (3) her eyesight is not very good, so she
will not know she has found the goal until she is standing in it.

Baeza-Yates, et al. [3,4] studied the cow-path problem, and proposed a deter-
ministic algorithm they called Linear Spiral Search (detailed later) as a solution.
In the case that w = 2 (two paths), this algorithm will find the goal in time at
most 9d, and they showed that this is optimal up to lower order terms. In the
same work, the authors considered the case of w > 2 paths, showing an optimal
(up to lower order terms) result of

(
1 + 2 ww

(w−1)w−1

)
d time bound to find the

target using a deterministic search strategy.
Let us move away from cows, and into the world of mobile entities (MEs)

in what follows, opening up our entities to (possibly) have more computational
power, memory, and/or communication ability than the average cow. We will
use the phrase mobile agent (or more simply agent) interchangeably with mobile
entity in what follows. We will also use the words target or destination to denote
the goal of the search.
1 From the book Eloise and the Old Blue Truck, by Kennon Graham, illustrated by

Florence Sarah Winship, a childhood favorite of one of the authors.
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In [5] Baeza-Yates and Schott examined other variations of the cow-path prob-
lem in these stronger settings. They note the straightforward fact that if d is
known by the ME then, in the worst case, it must travel for 3d units of time (for
w = 2 paths). They also considered cases involving two or more MEs having
uniform speed. If the MEs are able to communicate arbitrarily far away, then a
total distance of at least 2d must be traveled to find the destination, and 4d if
both MEs must reach the destination. Baeza-Yates and Schott showed the total
distance traveled when no communication is present, and both MEs must reach
the goal is also 9d, the same time it would take a single ME .

The previous results all applied to deterministic search algorithms. Kao, et
al. [14] examined the first randomized algorithm for the cow-path problem and,
for the case of w = 2 paths, obtained an optimal randomized 4.59112d bound for
the search time. Those authors also give a bound for w > 2 paths, which they
conjecture to be an optimal randomized strategy.

The cow-path problem, with either one or two MEs, cannot be solved in time
smaller than 9d (up to lower order terms), where d is the distance from the origin
to the destination, and the MEs have unit speed. This result is proved, and re-
proved in various fashions, in [4,5,11,13,14,16,17]. However, [5] seems to claim
that if the number of MEs is greater than two, then the evacuation procedure
can be performed in a smaller time. We would dispute this claim and in the first
part of this paper will give a proof showing that 9d is also optimal (up to lower
order terms) when the number of MEs is at least 2. In doing so, we present
an alternative way of proving the lower bound of 9d than the papers previously
mentioned have done.

In the second part of this paper, we would initiate the study of the evacuation
problem where mobile entities have different maximum speeds. We show the
somewhat surprising result (to the authors at least) that when there are two (or
more) mobile entities, one with unit speed and the others having maximum speed
at least 1/3, then the evacuation problem can still be performed in time at most
9d. The authors believe that this is the first result regarding the evacuation
problem with mobile entities having different maximum speeds, and hope to
inspire further work in this direction. Indeed, the authors know of no prior work
in the field of search, rendezvous, or evacuation that considers mobile entities
with differing maximum speeds.

1.1 Our Results

We consider k MEs on the line, all starting at the origin. We work in the
restricted setting where communication between MEs is only possible when
they are in contact (i.e. occupy the same location), but we consider that any
communication occurs instantaneously.

We examine the evacuation problem where all k MEs must simultaneously
occupy a target located at an unknown distance d from the origin. The aim is
to achieve this goal in as small a time as possible. We assume here that d is
a positive integer, but most all of our results can be generalized for rational or
real values of d, provided that d is not too small.
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In Section 2 we consider k(≥ 2) MEs having a uniform speed that (by re-
scaling time) we will set to 1. We briefly recall the Linear Spiral Search method
described in [3,4] in which a single ME can find a target in time at most 9d,
and also recall a coordinated method for two MEs to solve evacuation in time
at most 9d.

We give a new proof of a lower bound of 9d− o(d) for the evacuation time of
two or more MEs having unit speed (Theorem 3).

In Section 3 we will look at the case when k = 2 and the MEs have different
maximum speeds. We will normalize the speeds of the MEs by setting the speed
of the fastest ME to 1 and then setting the speed of the slower ME propor-
tionately. We demonstrate that, provided the speed of the slower ME is at least
1/3, then the 9d evacuation time bound can still be achieved (Theorem 4).

In our considerations we will use time-space diagrams to support our reasoning
and the proofs. A time-space is a 2d-plane with the horizontal axis representing
location on the line L and the vertical axis refers to the time t. We are only
interested in the half-plane where the values of time are positive. In this context,
the trajectory adopted by a ME can be described as a function of time t to give
a location on L.

2 Multiple MEs with Uniform Speeds

As mentioned earlier, there has been much previous work done in this problem
before. However, the goal of this section is to provide a clear and complete
explanation to the claim of the 9d− o(d) worst case in this setting for multiple
searchers with uniform speeds. We will use d to denote the destination as well
as the (unknown) distance to that destination. This should not cause confusion
as the meaning should be clear from the context. We recall our assumption that
d ≥ 1.

For completeness we first recall what is known in the case of one or two
searchers.

2.1 A Basic Strategy for a Single Mobile Agent

As a brief reminder, a search strategy in the case of a single ME for two paths
was outlined in [4], referred to as Linear Spiral Search by the authors in that
paper. This search strategy is given as Algorithm 1, where for simplicity we
consider the two paths to be a line in this case.

This deterministic search strategy for a single ME yields the search time of
9d, which is optimal up to lower order terms [4, Theorem 2.1].

2.2 Evacuating Two Mobile Entities on the Line

For the evacuation problem with two MEs on the line (or two paths), there are
at least two strategies that will yield a 9d upper bound for the problem.
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Algorithm 1. A “doubling strategy” for a single mobile agent
r ← 1 ;
dir ← left /* dir ∈ {left, right} */ ;
while (Destination not found) do

Walk distance r in direction dir and return to the origin /* (Stop at
destination if found.) */ ;
Reverse dir ;
r ← 2 · r ;

endw

One strategy is that each entity ignores the existence of the other entity and
simply executes their own version of Algorithm 1, independently of the other
(in fact, each ME can independently begin by going left or right at the start of
their own procedure). This will clearly give an evacuation time of at most 9d,
since an entity that finds the destination simply waits for the other.

A second strategy coordinates the use of the searchers to find the target. One
such coordinated strategy was first described and analyzed in [5]: Two searchers
start exploring in opposite directions with a speed of 1/3, then the searcher who
finds the target uses their maximum speed to catch up to and inform the other
agent, and then both travel to the target at maximum speed.

This procedure also guarantees the 9d upper bound for completing evacuation
of the pair of searchers. Furthermore, this coordinated strategy gives the total
distance of 12d traveled by the pair, as opposed to a worst-case total distance of
18d by the use of Algorithm 1 in an uncoordinated fashion. (See [5] for details.)

2.3 A Lower Bound

In [5], the authors make the statement “if we have more [than two] robots, we
can have two robots searching and coming back to certain points, while other
robots can carry messages between the searchers until the goal is found. In this
case, the goal can be reached in a smaller time.”

It is unclear if the authors of [5] are claiming that the evacuation problem can
be solved in time smaller than 9d− o(d) using more than two searchers, and no
proof of any such claim is offered. In any case, we would dispute such a claim,
and here we want to give a new proof that 9d is a lower bound (up to lower order
terms) on the evacuation problem (for any number of agents). We remind the
reader that the lower bound of 9d− o(d) was proven to be optimal for a single
agent in [4]. We want to investigate the lower bound for two or more agents with
maximal speed 1.

So here we assume that there are at least two agents performing the group
search problem. To facilitate our proof, we first define some notation. We suppose
that the agents performing the evacuation procedure are following some fixed
(but unknown) algorithmic procedure, which may or may not be coordinated.
The only restrictions we impose are the ones mentioned earlier, that agents can
only communicate when they occupy the same point, that this communication
is instantaneous, and that the maximum speed is 1.
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Definition 1. For t > 0, we define α(t) ∈
[
0, π

2

]
as the angle, measured in

radians, as follows:

α(t) = sup
t′≥t

{
arctan

(x
t′
)
: (x, t′) ∈ E

}
,

where E is the set of all pairs (x, t′) such that some agent is at distance x from
the origin at time t′.

In other words, α(t) defines a symmetric cone (centered around the origin)
of size 2α(t) in the time/space diagram that contains all terrain that is ever
explored from time t to time ∞ during the evacuation procedure, if we assume
that the evacuation target does not actually exist, so that the agents will be
exploring the x-axis forever.

We note the following facts without proof.

Fact 1. For any sequence 0 < t1 < t2 < . . ., we have α(t1) ≥ α(t2) ≥ . . ..
In other words, for any increasing sequence of numbers {ti}∞i=1, the sequence
{α(ti)}∞i=1 is a non-increasing sequence.

Fact 2. limi→∞ α(ti)
def
= α exists, and is independent of the particular increas-

ing series of numbers {ti}∞i=1 chosen.

The previous fact follows as the non-increasing sequence {α(ti)}∞i=1 is bounded
below (by 0), and, hence by the monotone convergence theorem, has a limit. (We
can alternatively express Facts 1 and 2 in terms of the tangents of the angles.)

Theorem 3. Suppose that there are two agents performing the evacuation. If
tan(α) �= 1

3 , where α is the limit defined in Fact 2, then there exists δ > 0 and
arbitrarily large values of d such that the evacuation procedure takes time at least
(9 + δ)d.

Proof. For the sake of this proof, we may suppose that there is an “adversary”
who decides where to place the evacuation target, provided that this point has
not yet been visited by any agent in the evacuation procedure.

Suppose ε > 0. (We shall say more about how we select ε later.) Given this
ε, let us pick t0 and t1 > t0 large enough so that:

(a) |α(t0)− α| < ε,
(b) the position at time t1, z(t1), of an agent Z satisfies

∣∣∣arctan( |z(t1)|
t1

)
− α
∣∣∣ < ε

(Remark: We assume, without loss of generality, that the value of α(t) in an
interval around t1 is defined by an agent located to the right of the origin.
Otherwise, we may consider a similar argument to the one that follows where
α(t1) is defined by an agent to the left of the origin. Hence, under our
assumption, the agent could be at the point labeled Z in Fig. 2.3.), and

(c) the line from Z extending backwards in time at a 45◦ angle to the time-axis
that intersects the cone defined by the angles ±(α±ε) does so after the time
t0. (See Fig. 2.3.)
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t0
αL αR

Z
D

D

45◦

target d

d

t′

Fig. 1. Time/space diagram of configuration used to establish the lower bound

The purpose of the last condition is that the shaded region shown in the
figure has not been visited by any agent (as has the corresponding region on the
right-hand side of the figure, but we have not shaded that region).

Given this choice of t0 and t1, the evacuation point is placed slightly inside of
the shaded region, as shown in Fig. 2.3.

With this configuration as labeled, we can make the following conclusions:
The earliest time that the evacuation point, at distance d from the origin, can

be found is at time t′, where t′ satisfies tan(α+ε+ζ′) = d
t′ , for a small ζ′ > 0 (to

guarantee the target is in the unexplored region). Note that we can also choose
ζ′ so that ζ′ < ε.

This means that the earliest time that agent Z could learn about the existence
of the target is at the time t′ + d+D, where D satisfies

∣∣∣ D
t′+d+D − tan(α)

∣∣∣ < ε.
This is because Z is at the specified location in the diagram at time t′ + d+D,
and obtaining the information at an earlier time would violate the “speed of
light” in this timeframe (which is the maximum speed of 1, indicated by the line
that makes a 45◦ angle with the time axis).

Finally, this means that the earliest that agent Z could arrive at the evacuation
point is at time t′ + 2 · (d + D), since Z would require time d + D to travel to
the evacuation point from its current location at full speed.

The remaining part of this argument is some calculations in order to attempt
to lower bound the sum t′ + 2 · (d+D). First we have that

tan(α+ ε+ ζ ′) =
d

t′
as already noted, and (1)

tan(α± ζ′′) =
D

D + d+ t′
for a small 0 < ζ′′ < ε (with sign (2)

depending upon the exact location of Z).
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Using Taylor’s Theorem (see your favorite beginning calculus book), we note
that we can write

tan(α+ ε+ ζ′) = tanα+ (sec2 α)(ε+ ζ′) + g(δ′)(ε+ ζ′)2 and (3)
tan(α± ζ′′) = tanα± (sec2 α)(ζ′′)± g(δ′′)(ζ′′)2 (4)

where g(z) = 2 sec2 z tan z, 0 < δ′ < ε+ ζ′, and 0 < δ′′ < ζ′′.
The signs in (4) depend upon the position of Z. For the location of Z as given

in Fig. 2.3, we have that (4) is actually (using the appropriate signs):

tan(α− ζ′′) = tanα− (sec2 α)(ζ′′)− g(δ′′)(ζ′′)2. (5)

(The case for Z located on the other side of the angle labeled αR is similar to
the analysis we give below, and is left to the reader.)

Then, for a given ε, we can find (small) constants C1 and C2 (that depend
upon ε) such that

tan(α+ ε+ ζ′) ≤ tanα+ (sec2 α)(ε+ ζ′) + C1(ε+ ζ′)2 (6)
and tanα− (sec2 α)(ζ′′)− C2(ζ

′′)2 ≤ tan(α − ζ′′) (7)

for all 0 < ζ′ < ε and 0 < ζ′′ < ε. We note that C1 → 0 as ε + ζ′ → 0 and,
similarly, C2 → 0 as ζ′′ → 0.

In what follows, in order to simplify the notation somewhat, we will let x =
tanα and recall, of course, that sec2 α = 1 + tan2 α = 1 + x2.

Therefore, from (1) and (2), and (6) and (7) we can write:

t′ ≥ d

x+ (1 + x2)(ε+ ζ′) + C1(ε+ ζ′)2
, and (8)

D

D + d+ t′
≥ x− (1 + x2)(ζ′′)− C2(ζ

′′)2, from which we get (9)

D ≥
(d+ t′)

(
x− (1 + x2)(ζ′′)− C2(ζ

′′)2
)

1− x+ (1 + x2)(ζ′′) + C2(ζ′′)2.
(10)

(Again, in the other case to consider for the location of the agent Z, one can
obtain similar inequalities to use as lower bounds.)

The earliest time that agent Z can complete the evacuation procedure is
t′ +2 · (d+D) which, using (8) and (10) is lower bounded by the function, after
some simplification,

d · h(x, ε, ζ′, ζ′′, C1, C2)
def
= d

{
1

x+ (1 + x2)(ε+ ζ′) + C1(ε+ ζ′)2
+ 2

+

(
2
(
x− (1 + x2)(ζ′′)− C2(ζ

′′)2
)

1− x+ (1 + x2)(ζ′′) + C2(ζ′′)2

)
·
(
1 +

1

x+ (1 + x2)(ε+ ζ′) + C1(ε+ ζ′)2

)}
.

Recall that if ε+ ζ′ → 0, then C1 → 0, and if ζ′′ → 0, then C2 → 0.
So let us consider the function f(x) = 1

x + 2 +
(

2x
1−x

)
·
(
1 + 1

x

)
. We claim

that f(x) ≥ h(x, ε, ζ′, ζ′′, C1, C2) for any x ∈ (0, 1), and for all small enough ε
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(and hence ζ′, ζ′′, C1, and C2), and that h(x, ε, ζ′, ζ′′, C1, C2) increases to f(x)
as {ε, ζ′, ζ′′, C1, C2} all approach 0.

Elementary calculus tells us that f(x) is minimized, under the restriction that
0 < x < 1, when x = 1

3 . In this case, we have f
(
1
3

)
= 9, and f(x) > 9 for any

other value of x ∈ (0, 1)−
{
1
3

}
.

We therefore claim that for any other value of x ∈ (0, 1)−
{
1
3

}
, since f(x) > 9,

and since h increases with decreasing values of {ε, ζ′, ζ′′, C1, C2}, we can find
(suitably small) ε (and corresponding C1 and C2 for all 0 < ζ′, ζ′′ < ε) such
that h(x, ε, ζ′, ζ′′, C1, C2) > 9 as well. So if tan(α) �= 1

3 , we can find a ε > 0, and
a corresponding δ > 0 so that h(x, ε, ζ′, ζ′′, C1, C2) ≥ 9 + δ.

Finally, for this δ defined above (by choosing an appropriate ε), since α(t)
decreases to α, we can find an infinite sequence of pairs of times {(t2i, t2i+1)}∞i=0

so that (t2i, t2i+1) would all satisfy conditions (a), (b), and (c) above (with t2i
in place of t0 and t2i+1 in place of t1).

This means that there is an infinite sequence of distances di such that the
evacuation time (having a target at distance di) will be at least (9 + δ)di. �

Intuitively, Theorem 3 tells us that the leftmost and rightmost boundaries of
the region explored by the agents must (in the limit) grow an average of 1/3
unit distance per unit of time in order to successfully accomplish evacuation in
time (at most) 9d.

For more than two agents, we may consider the leftmost and rightmost agent
at any time. The region that has been explored by a set of agents will still consist
of a single connected segment in the line. Hence, we can conclude the following
result just by considering the leftmost and rightmost agent at any moment in
time, and repeating the proof of Theorem 3.

Corollary 1. For two or more agents, if tan(α) �= 1
3 , then there exists δ > 0

and arbitrarily large d such that evacuation takes time at least (9 + δ)d.

3 Agents Having Different Maximum Speeds

Now we consider two cases involving mobile entities having different maximum
speeds. As before, by rescaling, we assume the maximum speed is 1. We call
a mobile entity with maximum speed 1 a “fast ME”. A mobile entity with speed
s, where 0 < s < 1 shall be called a “slow ME”. We use the notation FME to
refer to the “fast” mobile entity. Similarly, we will use SME to refer to the “slow”
mobile entity.

Section 3.1 deals with the special case of one fast ME and one slow ME . In
the case that s ≥ 1

3 , we show that evacuation can still be accomplished in time
9d, a fact that these authors found surprising when we first discovered it.

Section 3.2 deals with the case of two fast MEs and one slow ME . Even in
this case, if the slow ME is not too slow (in particular, if s ≥ 1

5 ), then evacuation
can still be performed in time 9d.
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3.1 One Fast, One Slow

For one FME and one SME we will show that, provided s ≥ 1
3 , the 9d evac-

uation time bound still holds using a coordinated strategy for the two mobile
entities. A picture that hints at the strategies of the two MEs can be seen in
Fig. 2, but we give some brief discussion of each strategy in what follows.

The FME’s Strategy. The FME searches for the evacuation point as if
the SME is not there, using the doubling strategy described in Algorithm 1
(always traveling at its maximum speed). The FME follows this strategy until
the evacuation target is located. Having found the target, it immediately seeks
to make contact with the SME (still moving at its maximum speed of 1). Both
MEs then walk together to the evacuation target with the full speed s of the
SME . Fig. 2 shows the exploration path the FME takes to find the target as
the solid black line, which is simply the doubling strategy from before.

One point to keep in mind is that the FME knows the strategy of the SME ,
so the FME knows in which direction to travel in order to find and inform the
SME once it locates the target.

The SME’s Strategy. The slow mobile entity is obviously unable to mimic
the path of the FME due to its reduced maximum speed. Somewhat counter-
intuitively, even if s > 1

3 , the SME is instructed to use speed 1
3 and follow the

dashed path outlined in Fig. 2. It follows such a path until it is informed by the
FME of the location of the evacuation target, and then proceeds at maximum
speed, i.e. s, to reach that destination.

time

Fig. 2. An optimal strategy for two dif-
ferent speeds, where the slower agent has
a speed at least 1/3 the speed of the fast
agent

The SME is following its own “dou-
bling strategy”, but this takes more
time to execute than it does for
the FME . In particular, initially the
SME stays at the origin for 4 units of
time, and then begins its own move-
ments. After that, it uses a “dou-
bling strategy” to move to distances
1, 2, 4, 8, 16, . . . from the origin (on op-
posite sides of the origin, i.e. moving
to distance 1 to the left, taking three
units of time, returning to the origin,
then to distance 2 to the right and re-
turning, then to distance 4 to the left,
etc.) Recall that the SME is moving at
speed 1/3, and, hence takes time 2·3·2k
to execute one portion of its “doubling”
move, i.e. moving to distance 2k and
returning to the origin.

Observe that the SME and FME will meet at certain pre-defined times and
locations during their trajectories. All of the meeting points, aside from the first
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one at the origin while the SME is not moving, occur at locations that were
originally extreme points (i.e. turning points) of the trajectory of the FME . For
example, the two agents will meet at distances 1, 2, 4, . . . from the origin (again,
on opposite sides of the origin).

Under this strategy, the SME will never discover the evacuation point before
the FME does so, and therefore must simply keep walking in this way until the
FME comes to inform it of the location of the evacuation target and take it
there with the maximum speed of the SME .

We also remark that by following the particular outlined strategy, the SME
is at the origin at the same moment that the FME is at one of the turning
points of its movements.

Still 9d Evacuation, When s ≥ 1
3
.

Theorem 4. The coordinated strategy outlined above for the SME and FME
gives a 9d upper bound for time of the evacuation problem, as long as s ≥ 1

3 .

Proof. We can think of the evacuation procedure as a three-step process where
(1) the FME locates the evacuation target, (2) the FME informs the SME of
that location, and (3) the two agents proceed (back) to the target.

We assume that d ≥ 2. (The 9d bound for d = 1 is easy to verify.) Note that the
FME will locate the target between successive “peaks” on the same side of the
origin (or it will find the destination just at a “peak”), so we define k to be the
integer such that 2k−2 < d ≤ 2k. In particular, we can write d = 2k−2 + ε for
some 0 < ε ≤ 3 · 2k−2.

The “discovery phase” to locate the target will take time (at most)

2 · 1 + 2 · 2 + · · ·+ 2 · 2k−1 + d = 2

k−1∑
i=0

2i + d = 2 · (2k − 1) + d.

At the time when the FME locates the evacuation target, the distance be-
tween the FME and SME is 4

3ε. Why? The two agents crossed paths at the
meeting point that is 2k−2 away from the origin, and since that meeting the
FME has moved distance ε and the SME has moved a distance of ε

3 (as it is
moving at speed 1

3 ). After the FME locates the target, it immediately reverses
direction to inform the SME . At that time, the two agents are 4

3ε apart and
the distance between the pair will decrease at a rate of 2

3 (the relative speeds
between the agents). Therefore, the time for the FME to inform the SME is
4
3ε÷

2
3 = 2ε. Note that this also means when the FME informs the SME , they

are at distance 2ε from the evacuation target.
Finally, the two agents return to the target to complete the evacuation pro-

cedure. Thus, assuming the 1
3 worst-case speed of the SME , this final “exit

portion” will take time 2ε÷ 1
3 = 6ε.
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Therefore, the entire evacuation procedure (in the worst-case, with a 1
3 speed

for the SME) will take time at most

2(2k − 1) + d+ 2ε+ 6ε = 2(4× 2k−2 − 1) + d+ 8ε

= 2
(
4(2k−2 + ε)− 4ε− 1

)
+ d+ 8ε

= 8d− 8ε− 2 + d+ 8ε

= 9d− 2. �

We conjecture that when s < 1/3, then the evacuation time for the pair is
strictly larger than 9d, i.e. there exists a constant δ > 0 such that the evacuation
time is at least (9 + δ)d− o(d).

3.2 Two (or More) Fast Agents, Many Slow Agents

We finish with a remark about evacuating two (or more) fast agents, together
with one or more slow MEs.

With (at least) two FMEs, this pair can perform the coordinated evacuation
procedure mentioned in Section 2.2. Once a fast ME discovers the evacuation
target and proceeds to inform the other FME , any slow agents that have re-
mained at the origin can be informed as the FME passes through the origin. It
takes an FME time 4d to find the target and return to the origin, and another
5d time to catch up to the other FME , inform it, and return to the target.
Hence, as long as the slow MEs have a speed of at least 1/5, they will arrive at
the evacuation point at the exact same time as the fast pair, hence, the collection
of all MEs can still finish the evacuation in time 9d.

4 Conclusion

As stated in the introduction, our main goal in this paper was to initiate study of
the evacuation problem using mobile entities having different maximum speeds.

We demonstrated some cases where the original optimal 9d bound for ho-
mogeneous mobile agents is still obtainable in this new setting, provided the
maximum speed of the slow agent(s) is not too small. Further work is neces-
sary to investigate these problems, and the related, more general, search and
rendezvous problems utilizing entities with different maximum speeds.

Acknowledgments. The authors would like to thank Shantanu Das, Mordechai
Shalom, and Shmuel Zaks for valuable conversations about these problems during
the course of a visit to Technion.
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Abstract. We study online makespan scheduling with a fixed number
of parallel machines. Jobs arrive in an online fashion in consecutive time
steps, and must be scheduled both immediately and definitely. In contrast
to the number of machines, the number of jobs is not known in advance.
This paper focuses on the advice complexity of the problem. Basically, we
ask how much additional information may help us to obtain solutions of
high quality. Our main result is the construction of a (1+ ε)-competitive
online algorithm with advice that reads a constant number of advice bits,
for any ε > 0; here, “constant” means with respect to the input size, but
our bound does depend on the number of machines and ε. This result
is particularly interesting since it shows some very significant threshold
behavior; it is known that, to be a little better, namely optimal, a linear
number of advice bits is necessary. We also show that the advice can be
derived from the input in polynomial time (with respect to the input
size).

Keywords: online algorithms, advice complexity, makespan scheduling.

1 Introduction

Many problems that are met in practice are intrinsically online which means that
parts of the output need to be computed while only a prefix of the definite input
is known. A prominent example is the class of scheduling problems where jobs
need to be assigned to a number of resources (which we call machines). Every
now and then a new job appears and an algorithm must assign it to a machine
without knowing what comes next. Furthermore, each job has a processing time,
and every machine has a load which is the sum of all processing times of jobs
that are assigned to this machine. A solution is computed with a particular
objective in mind, which usually means to either minimize some cost function or
maximize some gain function. In the case of the scheduling problem considered
in the work at hand, our goal is to minimize the load of the machine with the
largest one, i. e., we want the machine with the highest load to finish as early
as possible; we call this value the makespan, and accordingly speak of online
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makespan scheduling. To simplify the environment we work in, we assume that
the jobs arrive in consecutive time steps, job after job. Before we continue, let
us give a formal definition of an online minimization problem.

Definition 1 (Online Minimization Problem). An online minimization
problem consists of a set I of inputs and a cost function. Every input I ∈ I is a
sequence I = 〈x1, . . . , xn〉 of requests. Furthermore, a set of feasible outputs (or
solutions) is associated with every I; every output is a sequence O = 〈y1, . . . , yn〉
of answers. The cost function assigns a positive real value cost(I, O) to every
input I and any feasible output O. For every input I, we call any feasible output
O for I that has smallest possible cost (i. e., that minimizes the cost function)
an optimal solution for I.

We call algorithms that need to work without knowing the whole input in
advance online algorithms [1]. For makespan scheduling, the requests equal jobs
which are identified with their processing times. The problem is parameterized
by the number of machines m, and we assume that m is known in advance. For
each request, an online algorithm answers with the index of the machine that
the job is assigned to (i. e., scheduled on); this assignment must not be changed
in any subsequent time step. Let us give a formal definition.

Definition 2 (Online Makespan Scheduling). The online makespan
scheduling problem, short MS, is defined as follows. Given are an integer m ≥ 2
and a sequence of n positive rational numbers I = 〈x1, . . . , xn〉, for some n ∈ N+,
where xi ∈ Q+ is the processing time of the i-th job on any of the m available
identical machines. A feasible solution is a sequence O = 〈y1, . . . , yn〉 such that
yi ∈ {1, . . . ,m}, for all i ∈ {1, . . . ,m}. Alternatively, we can represent every fea-
sible solution as an m-tuple (M1, . . . ,Mm) where Mj = {i ∈ {1, . . . , n} | yi = j}.
For every j ∈ {1, . . . ,m}, we say that

∑
i∈Mj

xi is the load of the j-th machine.
The goal is to minimize the makespan

cost(I, O) := max
j∈{1,...,m}

∑
i∈Mj

xi.

of the solution O on the input I.

For the sake of easy notation, we write cost(O) instead of cost(I, O) as I
is always clear from the context. Moreover, we sometimes refer to the optimal
makespan by T ∗ := cost(O∗), where O∗ is an optimal solution for the given
instance. In this paper, we consider a special kind of online algorithms that
were introduced by Böckenhauer et al. [4] and Hromkovič et al. [12]. These
algorithms are equipped with an additional resource in the form of a special tape,
which contains binary information about the input which is written onto it by
a hypothetical oracle that sees the whole input in advance and has unbounded
computing power. Our main object of interest is the length of the information
that the oracle communicates this way, and what advantage the online algorithm
gains from that knowledge. Formally, these online algorithms with advice are
defined as follows.
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Definition 3 (Online Algorithm with Advice). Consider an input I of
an online minimization problem. An online algorithm Alg with advice com-
putes the output sequence Alg

φ(I) = 〈y1, . . . , yn〉 such that yi is computed from
φ, x1, . . . , xi, where φ is the content of the advice tape, i. e., an infinite binary
sequence. An online algorithm Alg is c-competitive with advice complexity b(n)
if there exist non-negative constants c and β such that, for every n and for any
input sequence I of length at most n, there exists some advice string φ such that

cost
(
Alg

φ(I)
)
≤ c · cost(Opt(I)) + β,

where Opt is an optimal offline algorithm, and at most the first b(n) bits of
φ have been accessed during the computation of the solution Alg

φ(I). If the
above inequality holds with β = 0, we call Alg strictly c-competitive with advice
complexity b(n). Moreover, Alg is called optimal if it is strictly 1-competitive.

While online algorithms are classically investigated in the framework of com-
petitive analysis [1, 20], studying the advice complexity asks another question
instead of simply what is possible when computing online. The idea is to get a
better understanding of what makes a certain problem hard, i. e., what is hidden
in the input that must be extracted to compute a satisfiable output. Hromkovič
et al. [12] proposed to use this value as a measurement for the information content
of an online problem. As observed before [3], there are a few extremely successful
approaches to give a mathematical definition of the information content of finite
objects such as Kolmogorov complexity [7, 13] or Shannon’s entropy [19]. How-
ever, these are hardly helpful to measure the information content of a concrete
instance with respect to the given problem.

The dependence of the achievable output quality and the number of advice
bits used comes in many different flavors. For instance, for the simple online
knapsack problem it was shown that one bit of additional information allows
to compute a 2-competitive solution while purely deterministic algorithms are
arbitrarily bad; surprisingly, any further increase of the number of advice bits
does not help until a number is supplied that logarithmically grows in the input
size [6]. Then, if a logarithmic number of advice bits is available, there is an
online algorithm that is (1 + ε)-competitive, for any ε > 0. In this paper, we
demonstrate a phase transition that is even more drastic.

Other problems studied within this (or a similar) model include online bin
packing [5,18], the k-server problem [3,9,10,17], and the online set cover problem
[16]. There were also some efforts made to reduce different online problems to
each other using some kind of advice preserving reduction [2,5,9]. This allows to
compare two problems to each other in terms of their advice complexity, and to
propagate hardness results.

Scheduling problems have been thoroughly studied. The advice complexity of
a special kind of scheduling was investigated by Böckenhauer et al. [4]. Some of
the results were later generalized and improved by Komm and Královič [14, 15].
For the variant we investigate in this paper, a simple greedy approach achieves
a competitive ratio of 2 − 1/m [1]. Recently, Renault et al. [18] studied online
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scheduling with advice for different objectives including makespan minimization.
The authors showed the existence of a (1 + ε)-competitive algorithm that uses
O(1/ε log2(1/ε)) advice bits per request, for any ε > 0. They also gave a com-
plementing lower bound showing that at least (1 − 2m/n) log2(m) advice bits
per time step are necessary to obtain an optimal solution. However, the model
used in their work, which was introduced by Emek et al. [9], does not allow for
studying sublinear advice, i. e., less than a constant amount of advice per time
step. In this model, the advice is not read from a tape, but it is supplied with
every time step where the number of advice bits is fixed and the same in every
step.

In the following section, we present an online algorithm with advice that
achieves, for any ε > 0, a competitive ratio of 1 + ε while reading⌈

log
(
3m
ε

)
log
(
1 + ε

3m

)⌉�log2(m)+m

⌈
log2

(
1 +

3m

ε

)⌉
advice bits.

2 Sublinear Advice

As already mentioned, different problems behave in quite different ways in terms
of their advice complexity. However, it seems to be rather common that a linear
amount of advice is necessary to be optimal (of course, there are exceptions,
e. g., the ski rental problem where 1 bit of advice allows for a trivial optimal
solution [14]). It has been shown by Renault et al. [18] that also for the makespan
scheduling problem a linear amount of advice is necessary. An intriguing fact
is, however, that we pay this large amount of additional information for an
arbitrarily small fraction of performance: if we do not demand to be optimal,
but only want to be extremely (arbitrarily) close to an optimal solution, the
sufficient amount of information surprisingly drops to a constant (for a fixed
number of machines). This very significant threshold behavior renders the result
presented in this section particularly interesting.

2.1 Important Jobs

Before we start with the description of an algorithm achieving this goal, we
briefly introduce some notation that we will use during our analysis. We start
with a simple observation.

Observation 1. An optimal solution cannot do better than perfectly balance the
processing times of all jobs. Therefore, the makespan of an optimal solution is
at least the average load over all machines, i. e.,

T ∗ ≥ 1

m

n∑
i=1

xi.
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The analysis of the algorithm presented in this section relies on cleverly par-
titioning the jobs; we first describe a rather naive approach.

Definition 4. Let α > 0. The k-th job is called α-large if xk ≥ αT ∗. Conversely,
the k-th job is called α-small if xk < αT ∗.

If there are only two machines, any deterministic online algorithm without
advice has a competitive ratio that is at least 3/2 [1]. It can be shown that,
in the case of two machines, the knowledge of the existence and the index of
a 2/3-large job allows an online algorithm to improve its competitive ratio to
4/3 [8]. Since an online algorithm does not know T ∗ in advance, it is unable to
tell whether a given job is α-large or not until the last job arrives. Encoding
an index requires roughly log2(n) bits of advice and is therefore not feasible
to achieve a constant advice complexity. However, by Observation 1, an online
algorithm can use the prefix of the input that was presented so far to estimate
a bound on the makespan of an optimal solution. This way, the algorithm can
recognize potentially large jobs. The following definition formalizes this notion.

Definition 5. Let α > 0. The k-th job is (α,m)-important if

xk ≥ α

m

k−1∑
i=1

xi.

In fact, the concept of important jobs is a generalization of large jobs in the
following sense.

Observation 2. Every α-large job is (α,m)-important.

Proof. Assume the k-th job is α-large. We have

xk ≥ αT ∗ ≥ α

m

n∑
i=1

xi ≥
α

m

k−1∑
i=1

xi,

where the second inequality follows from Observation 1. Thus, the k-th job is
(α,m)-important. ��

2.2 The Algorithm

For any given ε > 0, we aim at constructing an online algorithm Aε with advice
that is strictly (1 + ε)-competitive and that has an advice complexity that is
constant with respect to the length of the input sequence. We do this by showing
how Aε schedules the jobs of an arbitrary but fixed instance I = 〈x1, . . . , xn〉.
Let δ := ε/3. We partition the set of jobs as follows: Let L be the set of all
(δ,m)-important jobs in I, i. e.,

L :=

{
k ∈ {1, . . . , n}

∣∣∣∣∣ xk ≥
δ

m

k−1∑
i=1

xi

}
,
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and let
S := {1, . . . , n} \ L

be the set of all other jobs. Note that, as implied by Observation 2, the indices
of all δ-large jobs are contained in L. Consequently, all jobs corresponding to
the indices in S are δ-small. Since an online algorithm can recognize whether
an arriving job is (δ,m)-important or not, it can use two different strategies to
schedule the jobs with indices in L and the jobs with indices in S. Intuitively
speaking, we will exploit that if the algorithm Aε misplaces an (δ,m)-important
job, the relative error significantly decreases as more and more (δ,m)-important
jobs arrive. Below, following this idea, we prove that it is sufficient to know how
to schedule the last few jobs that are (δ,m)-important and let the oracle encode
the indices of these jobs. As for the jobs that are not (δ,m)-important, the
algorithm Aε reads some information about the distribution of their processing
times among the machines in an optimal solution and then tries to approximate
this distribution. In this case, the relative error can be restrained because the
processing times of these jobs are all small with respect to the makespan of an
optimal solution.

For later analysis, consider any optimal solution O∗ = 〈y∗1 , . . . , y∗n〉 for the
instance I and, for all j ∈ {1, . . . ,m}, let l∗j and s∗j denote the sum of the
processing times of all jobs with their index in L or S, respectively, that are
scheduled on the j-th machine, i. e., we define

l∗j :=
∑

i∈M∗
j ∩L

xi and s∗j :=
∑

i∈M∗
j ∩S

xi

where M∗
j := {i ∈ {1, . . . , n} | y∗i = j}. Note that the optimal makespan is given

by T ∗ = maxj∈{1,...,m} l∗j + s∗j .
Although it has not yet been described how the algorithm Aε schedules the

jobs, let O := Aε(I) = 〈y1, . . . , yn〉 be the solution produced by Aε on the
instance I. For j ∈ {1, . . . ,m}, we define

lj :=
∑

i∈Mj∩L

xi

where Mj := {i ∈ {1, . . . , n} | yi = j}. Let ki, for i ∈ {1, . . . , |L|}, denote the
index of the i-th (δ,m)-important job. The following lemma shows that although
there might be an arbitrary number of (δ,m)-important jobs only the last few
of them really affect the quality of the solution.

Lemma 1. Let t := �log(m/δ)/ log(1+δ/m). If |L| > t, then we have r ≤ δT ∗,
where r :=

∑|L|−t
i=1 xki denotes the load induced by the first |L| − t jobs that are

(δ,m)-important.

Proof. Assume there are at least t+ 1 jobs that are (δ,m)-important. First, we
notice that, for every c ∈ {2, . . . , |L|}, we have

kc∑
i=1

xi = xkc +

kc−1∑
i=1

xi ≥
(
1 +

δ

m

) kc−1∑
i=1

xi ≥
(
1 +

δ

m

) kc−1∑
i=1

xi (1)
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by the definition of important jobs. Combining Observation 1 together with
multiple applications of (1) yields

T ∗ ≥ 1

m

n∑
i=1

xi ≥
1

m

k|L|∑
i=1

xi ≥
1

m

(
1 +

δ

m

)t k|L|−t∑
i=1

xi.

We can now use these insights to bound the load induced by the first |L|− t jobs
that are (δ,m)-important from above by

r =

|L|−t∑
i=1

xki ≤
k|L|−t∑
i=1

xi ≤
mT ∗(
1 + δ

m

)t ≤ δT ∗,

which concludes the proof. ��

The goal is to schedule the last t′ := min{t, |L|} jobs that are (δ,m)-important
according to the optimal solution O∗. For this purpose, the oracle encodes a se-
quence of t′ indices that indicate how the last t′ jobs that are (δ,m)-important are
to be scheduled. Clearly, these indices can be encoded using at most t�log2(m)
bits of advice. Note that since |L| is not known to the algorithm, it does not know
when the first one of these jobs arrives. To address this problem, as elaborated
in the following, the t′ indices of the sequence are ordered in such a way that
the algorithm does not need to know when the (|L|− t′+1)-th job that is (δ,m)-
important arrives. Essentially, the oracle takes the “pattern” that describes how
the last t′ jobs that are (δ,m)-important are to be scheduled and shifts it so that
the algorithm can simply loop over these indices and naturally aligns with the
pattern as soon as the (|L| − t′ + 1)-th job that is (δ,m)-important arrives. Let
Rt(·) denote the remainder of the Euclidean division by t. For i ∈ {1, . . . , |L|},
the algorithm Aε schedules the i-th (δ,m)-important job according to the R′

t(i)-
th index encoded by the oracle, where R′

t(i) := Rt(i−1)+1. Note that Aε reads
t′ different indices for the last t′ jobs that are (δ,m)-important. As for the advice
string, for i ∈ {|L|− t′+1, . . . , |L|}, the R′

t(i)-th index encodes y∗i . Consequently,
the algorithm Aε and the optimal solution O∗ schedule the last t′ jobs that are
(δ,m)-important identically.

The following lemma shows that this is a good approximation to the optimal
solution.

Lemma 2. For j ∈ {1, . . . ,m}, we have lj ≤ l∗j + δT ∗.

Proof. Consider an arbitrary machine with index j ∈ {1, . . . ,m}. If |L| ≤ t, the
algorithm Aε and the solution O∗ schedule all (δ,m)-important jobs identically
and we have lj = l∗j . Otherwise, by our previous observations, lj and l∗j differ by
at most r and, following Lemma 1, we get lj ≤ l∗j + r ≤ l∗j + δT ∗. ��

Next, we describe how the algorithm deals with the jobs that are not (δ,m)-
important. For j ∈ {1, . . . ,m}, we define pj := s∗j/s, where s :=

∑m
j′=1 s

∗
j′ .

The ratios p1, . . . , pm indicate how the processing times of the jobs in S are
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distributed among the machines by the optimal solution O∗. Furthermore, let
c := m/δ and qj := �pjc/c, for all j ∈ {1, . . . ,m}. Note that since qj ∈
{0/c, 1/c, . . . , c/c} the oracle can encode each qj using �log2(c+ 1) bits. For

all i ∈ {0, . . . , n} and all j ∈ {1, . . . ,m}, let s
(i)
j denote the load induced by the

jobs that (i) are scheduled on the j-th machine by the algorithm Aε, (ii) are not
(δ,m)-important and (iii) arrive at the latest in the i-th time step; formally, we
define

s
(i)
j :=

∑
i′∈{1,...,i}∩Mj∩S

xi′ .

For a shorter notation, let

s(i) :=

m∑
j=1

s
(i)
j .

Note that s(i−1) ≤ s(i), for all i ∈ {1, . . . , n}, and s(n) = s. If in time step i a job
arrives that is not (δ,m)-important, thenAε schedules this job on a machine with

index j ∈ {1, . . . ,m} such that s
(i−1)
j does not exceed qjs

(i−1). In the following,
we prove that in every time step there is actually such an index with the desired
property. Moreover, we show that the processing times of the jobs that are not
(δ,m)-important are distributed among the machines approximately equally by
the algorithm Aε and the optimal solution O∗.

Lemma 3. For every i ∈ {0, . . . , n}, there exists an index j ∈ {1, . . . ,m} such

that s
(i)
j ≤ qjs

(i).

Proof. Towards contradiction, we assume the contrary, i. e., s
(i)
j > qjs

(i), for all
j ∈ {1, . . . ,m}. Under this assumption, we have

s(i) =

m∑
j=1

s
(i)
j >

m∑
j=1

qjs
(i) ≥ s(i)

m∑
j=1

pj = s(i)

which clearly cannot be true. ��

Lemma 4. For all j ∈ {1, . . . ,m}, we have s
(n)
j ≤ s∗j + 2δT ∗.

Proof. Consider an arbitrary j ∈ {1, . . . ,m}. If no jobs are scheduled on the j-th
machine or all jobs that are scheduled on the j-th machine are (δ,m)-important,

then s
(n)
j = 0 and the claim follows trivially. Otherwise, let k be the index of the

last job that is not (δ,m)-important and that is scheduled on the j-th machine.
We have

s
(k−1)
j ≤ qjs

(k−1) ≤ (pj + 1/c)s = s∗j + s/c ≤ s∗j + δT ∗

where we used that s ≤
∑n

i=1 xi together with Observation 1 and c := m/δ
in the last inequality. Since the k-th job is not (δ,m)-important and therefore
δ-small, we get

s
(n)
j = s

(k−1)
j + xk ≤ s∗j + 2δT ∗

as claimed. ��
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Algorithm 1. The online algorithm Aε with advice for MS.

k ← 0
for j ← 1 to m do

sj ← 0

for i ← 1 to n do
if i-th job is (δ,m)-important then

k ← k + 1
k ← Rt(k − 1) + 1 where t = �log(3m/ε)/ log(1 + ε/3m)�
output the k-th index encoded by the oracle

else
j ← index j ∈ {1, . . . ,m} such that sj ≤ qj

∑m
j′=1 sj′

sj ← sj + xi

output the index j

To conclude the analysis of the algorithm Aε, we now combine the various
results elaborated above to determine the competitive ratio as well as the advice
complexity of Aε.

Theorem 1. The algorithm Aε for MS is strictly (1 + ε)-competitive and reads
b(n) ∈ O(1) bits of advice. Note that b(n) depends on the number of machines
m and ε.

Proof. We can use Lemma 2 and Lemma 4 to bound the makespan of the solu-
tion O produced by Aε from above by

cost(O) = max
j∈{1,...,m}

∑
i∈Mj

xi

= max
j∈{1,...,m}

s
(n)
j + lj

≤ max
j∈{1,...,m}

s∗j + l∗j + 3δT ∗

= (1 + ε)T ∗ = (1 + ε) cost(O∗) .

Thus, Aε is strictly (1 + ε)-competitive.
Next, we address the advice complexity of Aε. As described above, the algo-

rithm reads at most t�log2(m) bits to schedule the last t′ jobs that are (δ,m)-
important according to the optimal solution O∗, and another m�log2(c+ 1)
bits to read the approximative ratios q1, . . . , qm. Thus, if we express the advice
complexity b(n) of the algorithm in terms of ε and m, we get

b(n) ≤
⌈

log
(
3m
ε

)
log
(
1 + ε

3m

)⌉�log2(m)+ m

⌈
log2

(
1 +

3m

ε

)⌉
∈ O(1) ,

which finishes the proof. Note that we assume the number m of machines to be
fixed. ��
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Fig. 1. The number of advice bits required depending on ε and m

For the sake of clarity, the pseudocode of the complete algorithm Aε is shown
in Algorithm 1. Moreover, the number of advice bits read by Aε plotted as a
function of the competitive ratio 1 + ε and the number of machines m is shown
in Figure 1.

2.3 A Polynomial-Time Oracle

In our model, we make the quite strong assumption that the oracle has un-
bounded computing power. Indeed, a straightforward approach of generating
the advice is to compute an optimal solution (which is NP-hard), to identify
the (δ,m)-important jobs, and to create the advice as described in the preceding
section. However, for the problem studied in this paper, we can even construct
an efficient oracle that also allows to compute a solution that is arbitrarily close
to an optimal one.

Since there is a polynomial-time approximation scheme (PTAS) for the
makespan scheduling problem [11], the oracle can compute an approximate solu-
tion O′ with makespan T ′ := cost(O′) ≤ (1 + ε′)T ∗ in polynomial time, for any
ε′ > 0. It then encodes the advice string as described in the previous subsection
but with respect to the solution O′ (rather than with respect to an optimal solu-
tion) and some parameter ε′′ > 0. This can also be done in polynomial time. If
this advice string is given to the algorithm Aε′′ , the makespan of the algorithm’s
output can be bounded by T ≤ (1 + ε′′)T ′. For appropriate choices of ε′ and ε′′,
for instance ε′ := ε′′ := ε/3, this yields a solution with makespan

T ≤ (1 + ε′)(1 + ε′′)T ∗ ≤ (1 + ε)T ∗

if ε is small enough.
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Clearly, an oracle with infinite computing power can compute an optimal
solution and needs to communicate less advice bits (because ε > ε′′). However,
the number of advice bits encoded with this approach is still constant in the
number of jobs and only dependent on the number of machines and ε.

Since the advice used in total is constant with respect to the input length, we
can give an even cruder approach. The oracle simply computes an upper bound u
on the number of the advice bits, then generates all binary strings of this length,
and simulates the online algorithm on each of them. Since the algorithm itself
clearly runs in polynomial time (with respect to n), and there are 2u strings
to try, which again is constant for fixed ε and m, the advice string φ∗ that
leads to the best approximation is found in polynomial time. This string is not
necessarily the same as the string φ that is produced by the approach described
in Subsection 2.2. However, since φ is a string (or a prefix of a string) that was
considered by the oracle, the solution produced by Aε when given φ∗ as advice
is at least as good as if it were given φ.

Note that this last observation is independent of the problem and can be ap-
plied to every online problem whose advice complexity has the same asymptotic
behavior.

3 Conclusion

In this paper, we studied the advice complexity of online makespan scheduling.
We showed that, with respect to the number of jobs that arrive online, constant
advice suffices to produce a near-optimal output. This is particularly interesting
as it is known that linear advice [18] is necessary to obtain an optimal result.
Intuitively speaking, this is due to the fact that there is only a constant number
of jobs that significantly affect the quality of the solution whereas the optimality
of the solution might depend on the placement of every single job. Moreover,
the oracle that produces the advice works in polynomial time. It remains open
whether similar results can be obtained for machines that have different speeds
or objectives for scheduling problems other than makespan minimization such as
maximizing the minimum load (machine cover) or, for 1 < p ≤ ∞, minimizing
the �p norm [18].

Acknowledgments. The author thanks Hans-Joachim Böckenhauer, Juraj
Hromkovič, and Dennis Komm for making this work possible, their support,
and all the enlightening discussions.
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15. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theo-
retical Informatics and Applications (RAIRO) 45(2), 249–267 (2011)
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Abstract. In this paper we consider the problem of synchronous ren-
dezvous in which two anonymous mobile entities (robots) A and B are
expected to meet at the same time and point in a graph G = (V,E).
Most of the work devoted to rendezvous in graphs assumes that robots
have access to the same sets of nodes and edges, where the topology
of connections may be initially known or unknown. In our work we as-
sume the movement of robots is restricted by the topological properties
of the graph space coupled with the intrinsic characteristics of robots
preventing them from visiting certain edges in E.

We consider three rendezvous models reflecting on restricted maneu-
verability of robots A and B. In Edge Monotonic Model each robot
X ∈ {A,B} has weight wX and each edge in E has a weight restric-
tion. Consequently, a robot X is only allowed to traverse edges with
weight restrictions greater that wX . In the remaining two models graph
G is unweighted and the restrictions refer to more arbitrary subsets of
traversable nodes and edges. In particular, in Node Inclusive Model the
set of nodes VX available to robot X, for X ∈ {A,B} satisfies the condi-
tion VA ⊆ VB or vice versa, and in Blind Rendezvous Model the relation
between VA and VB is arbitrary. In each model we design and analyze
efficient rendezvous algorithms. We conclude with a short discussion on
the asynchronous case and related open problems.

1 Introduction

In this paper we consider rendezvous problem, a challenge in which two or more
mobile entities, called later robots have the goal to meet at the same point and
time in provided space. This space can be either a network of discrete nodes be-
tween which robots can move along existing connections, or a geometric environ-
ment in which the movement of robots is restricted by the topological properties
of the space. As indicated in [19] symmetry plays a key role in determining the
feasibility and efficiency of solutions in the rendezvous problem. It is quite often
that anonymous (indistinguishable) players find themselves in a situation where
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the tools and advice given to each robot are identical and rendezvous may not
be feasible [5]. In this context, determining even small pieces of information that
would help to distinguish between participating robots often prove to be vital in
achieving rendezvous.

Rendezvous problems have been studied in a number of different settings.
A vast literature includes several exhaustive surveys on the topic and other
searching games, see, e.g., [4,5,22]. The work on rendezvous includes both deter-
ministic algorithms surveyed recently in [22] as well as randomized approaches
including already classical work in [2,3,8,9]. Another group of algorithms focus
on geometric setting including earlier work on the line [9,10] and the plane [6,7]
as well as more recent work on fat (with non-zero radius) robots [1,14]. Another
interesting group of rendezvous algorithms is designed for infinite (Euclidean)
spaces for both synchronized and asynchronous solutions [12, 13, 16]. An im-
portant group of rendezvous algorithms have been considered for graph based
environments, see, e.g., [15, 18, 21]. However, all previous work is devoted to
the case when both robots have access to the same part of the network. An
interesting version of rendezvous in which robots face different costs associated
with traversed edges was considered recently in [17] where the authors consider
scenarios with and without communication between participating robots.

Our work refers to the extreme communicationless case of [17] in which the
costs imposed on edges are either unit or infinite. We also make reference to blind
rendezvous considered recently in the context of cognitive radio networks [11,20].

1.1 Model of Computation

We consider rendezvous of anonymous (indistinguishable also with respect to the
control mechanism) robots in networks modeled by graphs. The network G =
(V,E) where the two robots are expected to rendezvous is a simple connected
graph in which two nodes sA, sB ∈ V are selected as the starting points for robots
A and B respectively. Moreover, for each X ∈ {A,B} we define its reachability
graph also referred to as the map GX = (VX , EX), a subgraph of G in which
VX and EX are respectively the sets of nodes and edges accessible from sX .
Moreover, agent X is only able to see its own map. Let kX = |VX | be the size of
map GX and assume w.l.o.g. that kA ≤ kB. While the robots are anonymous,
we use extra assumptions with respect to the network nodes (and in some cases
edges too). In particular, we assume that all nodes of the input network graph
G = (V = {v1, v2, . . . , vn}, E) are ordered, s.t., vi < vi+1 for all i = 1, 2, . . . n− 1
and this order is consistent with the order of nodes in GX , for X ∈ {A,B}.
In particular, if VX = {v(X)

1 , v
(X)
2 , . . . , v

(X)
kX

}, v
(X)
a = vi, and v

(X)
b = vj , where

vi, vj ∈ V and i ≤ j, we also get v
(X)
a ≤ v

(X)
b . Finally, let T (VX) be a rooted tree

that spans all nodes in VX in which the starting point sX is placed in the root
of T (VX) and the order on children is consistent with the order of nodes in VX .

The actions of the two robots are synchronized. I.e., the two robots A and B
have access to the global clock ticking in discrete time steps 0, 1, 2, . . . . Our al-
gorithms start with the global clock set to time 0. During a single time step
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each robot assesses the node in which it resides in (including check for co-
location/rendezvous with the other robot). Then it decides whether to stay at
the same node or to move to one of its neighbors via an available (edge) connec-
tion. During the traversal between two connected nodes the "eyes" of the robot
are closed. Consequently, since the robots cannot meet on edges rendezvous has
to take place at some node. The running time of all algorithms is bounded, i.e.,
the robots stop within the time given to the respective rendezvous algorithms.

We consider three models of computation with restrictions on maps given
to robots A and B.

1. Edge Monotonic Model. This model is motivated by the case in which
each robot X ∈ {A,B} has weight wX and each edge in E has weight
restriction. This setting imposes an order on edges in E = {e1, e2, . . . em},
in which for any 1 ≤ i < j ≤ m edge ej tolerates weights non-smaller than
ei. Let iX be the smallest integer, s.t., eiX tolerates weight wX . One can
conclude that robot X is only allowed to traverse edges with index ≥ iX .
Consequently in this model if rendezvous is possible EA ⊆ EB and VA ⊆ VB

(i.e., GA is a subgraph of GB), see section 2.1.
2. Node Inclusive Model. In this model we only assume that VA ⊆ VB, i.e.,

the relationship between edges spanning nodes in EA and EB remains un-
specified.

3. Blind Rendezvous Model. In this model we only assume that VA∩VB �= ∅.
Also here the relationship between EA and EB is unspecified.

1.2 Our Results

In this paper we study synchronized rendezvous in three different restriction
models. In section 2.1 we present optimal O(kA+kB)−time rendezvous algorithm
RV1 in the Edge Monotonic Model. In section 2.2 we present rendezvous algo-
rithm RV2 that meets two robots in the Node Inclusive Model in almost linear
time O((kA+kB) log(kA+kB)). In the Blind Rendezvous Model, see section 2.3
we show that rendezvous is not feasible. We introduce explicit labels to make
rendezvous feasible and present two rendezvous algorithms RV3 and RV4 whose
superposition allows robots to meet in time min{O((kA+kB)

3 log logn,O((kA+
kB)

2 logn)}. We conclude with the final comment and a short discussion on
asynchronous models in section 3.

2 Rendezvous Algorithms

In this section we design and analyze several rendezvous algorithms in the con-
sidered restriction models.

2.1 Rendezvous in Edge Monotonic Model

Recall that in this model, we adopt the order of edges in E = {e1, e2, ..., em}
where ei < ei+1. For any l ∈ {1, . . . ,m}, we define a sequence of subgraphs
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G(l) = (V (l), E(l)), where E(l) = {el, el+1, ..., em} and V (l) is the set of nodes
in V induced by the edges of E(l), and E(l + 1) ⊂ E(l). In this model each
robot X is associated with the threshold index iX ∈ {1, . . . ,m} determining the
set of edges E(iX) traversable by X. In other words, robot X can walk only
along edges from E(iX). We also define a sequence of connected components
GX(l) = {VX(l), EX(l)}, for l ∈ {iX , . . . ,m}, where VX(l) is the set of nodes
reachable from sX via edges in E(iX), and EX(l) ⊆ E(l) is the maximal set of
edges spanning nodes in VX(l). So in this case VX = VX(iX), EX = EX(iX),
and kX = |VX(iX)|. The following Lemma holds.

Lemma 1. In Edge Monotonic Model either (VA ⊆ VB) or (VB ⊆ VA), or
VA ∩ VB = ∅.

Proof. The lemma (statement) would be false if all of the terms (VA ⊆ VB), (VB ⊆
VA), and VA ∩ VB = ∅ were false too. Assume w.l.o.g. that VA ∩ VB �= ∅, where
VA = VA(iA) and VB = VB(iB), and iA ≥ iB. Since iB ≤ iA (edges traversable
by A are also traversable by B) and VA ∩ VB �= ∅ (the reachability graphs GA

and GB coincide) all edges and points in GA(iA) are also available to robot B,
meaning VA ⊆ VB .

We define the concept of a sleeve of graphs with respect to X denoted by
SL(X).

Definition 1. The sleeve of graphs SL(X) with respect to robot X is the maxi-
mal sequence of connected components GX(iX), GX(iX + 1), . . . , GX(l∗), in
which |VX(l + 1)| > |VX(l)|/2, for all iX ≤ l∗ < m. A subsequence GX(iX + j),
GX(iX + j + 1), . . . , GX(l∗), for any j ∈ {0, 1, . . . , l∗ − iX}, is called a tail of
SL(X) and the smallest (in the adopted order) node v∗ ∈ VX(l∗) is called the
target in SL(X).

In what follows we present a pseudo-code of the proposed rendezvous algo-
rithm in the monotonic model. If at any time step the two robots A and B meet,
the rendezvous is achieved and the two robots halt.

Algorithm RV1(X ∈ {A,B})
Step 1 Walk from sX to the target node v∗ in SL(X)
Step 2 Wait in v∗ until conclusion of time step 2kX ;
Step 3 Walk along the Euler tour of T (VX) and Halt.

Theorem 1. If rendezvous is feasible, Algorithm RV1 admits meeting in opti-
mal time O(kA + kB).

Proof. Recall that kA ≤ kB. According to Lemma 1 if rendezvous is feasible, i.e.,
VA ∩ VB �= ∅ we conclude that VA ⊆ VB. We consider two complementary cases:
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Case 1 [2kA > kB ] Since 2kA > kB according to Definition 1 sleeve SL(A) is
a tail of SL(B) and the two sleeves share the same target v∗. The robots A
and B are initially placed in their own sleeves at distance at most kB < 2kA
from the joint target v∗. This admits rendezvous in Step 1 in time at most
kB.

Case 2 [2kA ≤ kB ] In this case, robot A halts at the latest at time step 4kA on
the conclusion of Step 3, i.e., after 2kA time steps devoted to Step 1 and
Step 2, followed by additional 2kA− 2 time steps devoted to the Euler tour
traversal in T (VA)) in Step 3. Note, however, that robot B enters Step 3
in time step 2kB + 1 > 4kA, when robot A is already immobilized. Since
during Step 3 robot B visits all nodes in VB (that include also all nodes in
VA) rendezvous must occur. �

2.2 Rendezvous in Node Inclusion Model

Recall that in this model we assume that all nodes are ordered and kA ≤ kB ,
where VA ⊆ VB . In this model we have no order on edges and in turn the concept
of sleeve of graphs cannot be applied here. Instead, one can focus on a different
mechanism that will allow to distinguish between two robots and with this in
mind we focus on the values of kA and kB . Note that if kA = kB due to the
inclusion assumption we also have VA = VB . In this case, since orders of nodes
in VA and VB are consistent the robots can meet at the smallest (in order)
node v∗ in VA and VB that must coincide. Otherwise, the values of kA and kB
differ and each robot X, for X ∈ {A,B} can adopt kX as its unique identifier.
Furthermore, apart from unique identities there needs to be a synchronization
mechanism (sizes of kA and kB can be dramatically different) that will allow
robots to coordinate their individual moves. The rendezvous mechanism for any
robot X is based on synchronized awaiting of the first stage that is long enough
to accommodate actions reflecting the size kX . In particular, we identify the
power of two jX , s.t., 2jX−1 ≤ kX < 2jX that provide a constant estimation and
the upper bound on the size of kX . The algorithm applied to robot X operates
in stages j = 1, 2, 3, ..., jX, where during stages 1 through jX − 1 the robot
remains immobilized and in the last stage jX it actively participates (visiting all
nodes in VX) in the rendezvous process. Note that if jA < jB (and VA ⊂ VB)
in stage jB , when robot A is already immobilized, B by visiting all nodes in
VB (that is a superset of VA) must conclude rendezvous. In the complementary
case, i.e., when the estimates jA and jB are the same we use binary expansions
bA[0, . . . , jA] and bB[0, . . . , jB] (where positions jA, jB are the most significant)
of kA and kB respectively to differentiate between the robots.

Lemma 2. If jA = jB and kA < kB there exists i ∈ {0, 1, . . . , jA = jB}, s.t.,
bA[i] = 0 and bB[i] = 1.

Proof. If for all i ∈ {0, 1, . . . , jA = jB}, (bA[i] = 0) => (bB[i] = 0) would imply
kA ≥ kB.
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A pseudo-code of the rendezvous algorithm RV2 in the inclusion model fol-
lows. If at any time step the two robots A and B meet, the rendezvous is achieved
and the two robots halt.

1. Algorithm RV2(X ∈ {A,B})
2. Step 1 Compute jX and bX [0, . . . , jB ].
3. Step 2 for j = 1, 2, . . . , jX do
4. if (j = jX ) {active stage}
5. use 2jX time steps to walk to and wait in v∗. {smallest node}
6. (i) for i = 0, 1, . . . , jX do
7. if (bX [i] = 1)
8. (a) use 2 ·2jX time steps to visit Euler tour in T (VX)
9. and return to v∗

10. else (b) wait 2 · 2jX time steps in v∗

11. else (ii) wait 2j · (2j + 1) time steps where you are.

We prove the following theorem.

Theorem 2. If rendezvous is feasible Algorithm RV2 admits meeting in time
O((kA + kB) log(kA + kB)).

Proof. The rendezvous algorithm runs in jX stages controlled by the loop for in
line 3. There are two cases. In the first case, where jA < jB, when robot B is in
the active stage robot A is already immobilized, and B meets A during traversal
of the Euler tour in T (VB), see line 8 of the code. Otherwise, when jA = jB
we have two subcases. In the first subcase when kA = kB the robots meet in
the shared smallest node v∗, see line 5. In the second subcase, where kA < kB ,
according to Lemma 2 there exists i, s.t., bA[i] = 0 and bB[i] = 1 when robot
B visits the Euler tour in T (VB) and robot A is immobilized. Thus this subcase
admits rendezvous too.

With respect to the time complexity we first observe that the execution time
of algorithm RV2 is bounded and it depends on the parameter jX . The time
complexity of each stage j = 1, ..., jX is bounded by 3 · 2j resulting in the total
complexity

∑jX
j=1(2

j · (2j + 1)) ≤
∑jX

j=0(2
j · (2jX + 1)). This is equivalent to

(2jX + 1)
∑jX

j=1(2
j) = (2jX + 1) · (2jX+1 − 1) = O(kX · log kX), since 2jX − 1 ≤

kX < 2jX . This admits the time complexity O((kA + kB) log(kA + kB)). �

2.3 Blind Rendezvous Model

In this section we consider rendezvous where the relationship between the maps
of robots is more arbitrary. We first show that without any additional informa-
tion, even if VA ∩ VB �= ∅, rendezvous cannot be reached.

Theorem 3. Blind rendezvous is not feasible.
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Proof. Assume that for any X ∈ {A,B} we have VX = {v(X)
1 , v

(X)
2 } and EX =

{(v(X)
1 , v

(X)
2 )}, where node v

(A)
2 coincides with v

(B)
1 and where for each robot X

the starting node sX coincides with vX1 on its own map. It is enough to observe
that without any additional information the symmetry tie cannot be broken.
And indeed, since the robots are anonymous (indistinguishable) whenever robot
A visits v

(A)
2 robot B visits v

(B)
2 , i.e., the two robots never visit the shared node

simultaneously. �

One can adopt a natural assumption that the nodes in VX apart from being
ordered they also have explicit labels. In consequence, if a node v

(A)
a ∈ VA coin-

cides with v
(B)
b ∈ VB they both possess the same explicit label. We assume that

the labels are drawn from the set of integers {1, 2, . . . , n}, and we use notation
b
(X)
i (or b

(X)
i [0.. logn]) to denote the binary expansion of the explicit label of

v
(X)
i ∈ VX .
We also assume that n is known to both robots. Otherwise no rendezvous

algorithm would stop and report infeasibility of rendezvous when VA ∩ VB = ∅,
as robots are not aware of sizes of each others maps.

Before we present two rendezvous algorithms we show that the symmetry tie
problem, see Theorem 3, can be overcome if the explicit labels are available.
W.l.o.g. we also assume that the order of labels is consistent with the order
imposed on nodes on each map. If this is not the case a new (consistent) order
for nodes in VA and VB can be computed on the basis of explicit labels (we only
care about nodes in VA ∩ VB). The following result has been shown in [11]. Our
proof, however, is much simpler and based on binary representation of explicit
labels.

Lemma 3. Assume that the map of any robot X ∈ {A,B} is an ordered pair
of nodes (v

(X)
1 , v

(X)
2 ) connected by a symmetric edge, where nodes v

(A)
2 and v

(B)
1

physically coincide and nodes v
(A)
1 and v

(B)
2 don’t. In such network one can break

the symmetry tie to reach rendezvous in time O(log logn).

Proof. We first observe that according to the imposed order b
(A)
1 < b

(A)
2 = b

(B)
1 <

b
(B)
2 . The case where sA = v

(A)
2 and sB = v

(B)
1 is trivial and another case where

sA = v
(A)
1 and sB = v

(B)
2 can be easily resolved by an algorithm that alternates

between the two nodes (e.g., in every other time step). Let 1 ≤ rA ≤ logn be
the largest integer position, s.t., b

(A)
1 [rA] �= b

(A)
2 [rA]. Since b

(A)
1 < b

(A)
2 one can

conclude that b
(A)
1 [rA] = 0 and b

(A)
2 [rA] = 1. Similarly let 1 ≤ rB ≤ logn be the

largest integer position, s.t., b(B)
1 [rB ] �= b

(B)
2 [rB ]. Since b

(B)
1 < b

(B)
2 one can also

conclude that b
(B)
1 [rB ] = 0 and b

(B)
2 [rB] = 1. We observe that since b

(A)
2 = b

(B)
1

one can conclude that rA �= rB as the respective positions cannot contain 0
and 1 at the same time. Moreover binary expansions brA and brB of rA and rB
respectively are limited to log logn+ 1 bits.

We consider a symmetry breaking algorithm in which in time step i each robot
X ∈ {A,B} moves to the other node only if i = 2 · l (i is even) or if i = 2 · l− 1
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(i is odd) and brX [l] = 1, for l = 1, . . . , log logn + 1. Note that since rA �= rB
for some 1 ≤ l ≤ log logn+ 1 we must have brA[l] �= brB[l] and if until now the
rendezvous is not reached (all previous moves were symmetric and in the last
odd time step, when the symmetry was broken robots occupy different nodes)
in the next even step the rendezvous is accomplished.

Corollary 1. Note that the lemma above applies to pairs of nodes at distance
1. In a more general case, where the distance between nodes in the pair is d ≥ 1,
the symmetry breaking rendezvous takes time O(d log logn).

In the remaining part of this section we present two rendezvous algorithms fol-
lowed by their superposition. The first algorithm RV3 has the time complexity
O((kA + kB)

3 log logn) and its idea is based on the blind rendezvous algorithm
from [11] where the problem was studied in complete graphs. The second algo-
rithm RV4 has the time complexity O((kA + kB)

2 logn) making it superior to
RV3 when kA + kB > logn

log log n = τ, where τ is the threshold value. This ren-
dezvous algorithm resembles algorithm RV2 however here the symmetry tie is
broken with the help of explicit labels.

Blind Rendezvous in Time O((kA + kB)3 log logn). Similarly to its pre-
decessor RV2 also the first blind rendezvous algorithms RV3 operates in stages
accommodating geometrically increasing estimates on sizes of the input maps.
This is needed as the size of the map of one robot is not known to the other.
The robot starts using active stages only when the current estimate is large
enough to accommodate its map. The rendezvous process terminates in time
O((kA+kB)

3 log logn) if the maps of both agents are smaller than the threshold
value τ. Otherwise, algorithm RV3 is followed by execution of algorithm RV4.
If at any time step the two robots A and B meet, the rendezvous is achieved
and the two robots halt.

1. Algorithm RV3(X ∈ {A,B})
2. Step 1 Compute jX and the threshold τ = logn

log logn
.

3. Step 2 for j = 1, 2, . . . , �log τ� do
4. if (j ≥ jX ) {active stage}
5. (i) for all pairs (a, b) ∈ {1, . . . , 2j} × {1, . . . , 2j}
6. ordered lexicographically do
7. if (either of v(X)

a , v
(X)
b exists)

8. (a) run blind rendezvous in pair (v
(X)
a , v

(X)
b ) or

9. wait appropriate O(2j log log n) time steps
10. in the only existing node;
11. else (b) wait appropriate O(2j log log n) time steps
12. where you currently are;
13. else (ii) wait suitable O(23j · log log n) time steps where you are.



Deterministic Rendezvous in Restricted Graphs 197

Theorem 4. If kA + kB < τ = logn
log logn and rendezvous is feasible, algorithm

RV3 admits rendezvous in time O((kA + kB)
3 log logn).

Proof. The rendezvous algorithm runs in �log τ stages controlled by the loop
for in line 3. Robot X starts executing active stages as soon as the stages can
accommodate the size of X ’s map. If the size of the map is too big, robot X
awaits execution of the second rendezvous algorithms RV4, see line 9. During an
active round all pairs (a, b) from the Cartesian product {1, . . . , 2j}× {1, . . . , 2j}
are drawn in the lexicographic order. Only certain pairs are valid, i.e., when
either of v

(X)
a and v

(X)
b exists. In each valid pair if only one node exists robot

X remains in this node for the duration of the symmetry breaking procedure.
Otherwise, if both nodes exist the breaking symmetry procedure is executed with
the distance between the two nodes bounded by 2j.

If rendezvous is feasible we must have nodes v
(A)
a ∈ VA and v

(B)
b ∈ VB that

coincide by sharing the same label. If the pair (v
(X)
a , v

(X)
b ) exists in both maps

thanks to the symmetry breaking procedure eventually robot A will visit v
(A)
a at

the same time when entity B visits v
(B)
b and the rendezvous is reached. If only

one element of the pair (v
(X)
a , v

(X)
b ) exists, i.e., either v

(A)
a for A or v

(B)
b for B

the respective robot is asked to wait in the existing node of the pair resulting
in rendezvous too. Otherwise the robots await the next pair from the Cartesian
Product without movement for the period corresponding to execution of the
symmetry breaking procedure. Thus the actions performed by robots A and B
remain fully synchronized.

With respect to the time complexity we first observe that the execution time
of algorithm RV2 is bounded and it depends on the parameter jX . The time
complexity of each stage j = 1, ..., jX is bounded by 3 · 2j resulting in the total
complexity

∑jX
j=1(2

j · (2j + 1)) ≤
∑jX

j=0(2
j · (2jX + 1)). This is equivalent to

(2jX + 1)
∑jX

j=1(2
j) = (2jX + 1) · (2jX+1 − 1) = O(kX · log kX), since 2jX−1 ≤

kX < 2jX . This admits the time complexity O((kA + kB) log(kA + kB)). �

Blind Rendezvous in Time O((kA + kB)2 logn). We start with the proof
of the following fact.

Lemma 4. One can impose a periodic order π(X) on nodes of a spanning tree
T (VX), s.t., the walking distance (the number of edges to be visited) between two
consecutive nodes in order π(X) is at most 3.

Proof. We say that the nodes located at an even distance from the root sX are
on an even level and all the remaining nodes are on an odd level. The ordering
of nodes π is created according to the following principle. Starting from the root
sX we visit all nodes in T (VX) using depth-first search algorithm. The root gets
label 0. When we arrive (from the parent) to an even level the currently visited
node gets the next available label. In other words at even levels we use pre-order
numbering principle. And when we arrive (from the last child) to an odd level
the currently visited node gets the next available label. I.e., at odd levels we
follow post-order numbering principle



198 A. Farrugia et al.

We need to show that the labeling (ordering) procedure proposed above gene-
rates at least one new label in three consecutive steps. And indeed, if we follow the
route determined by the depth-first search algorithm and we visit for the first time
a node v at an even level (when the new label is generated): (case 1) if the first child
of v has a child w then w (which is at distance 2 from v) gets the new label; (case
2) if the first child of v is a leaf this child (which is at distance 1 from v) gets the
new label; (case 3) if the node v is a leaf but not the last child of its parent the next
label goes to the (next) sibling of v (which is at distance 2); and (case 4) if v is the
last child the next label goes to its parent (which is at distance 1).

Similarly, if v is visited for the last time on an odd level it gets a new label.
Now (case 5) if v is the last child and its parent w is not the last child the next
sibling of the parent (which is at distance 3 from v) gets the new label; (case
6) if v is the last child and its parent w is also the list child then the parent of
w (at distance 2 from v) gets the new label; (case 7) and if v is the last child
and its parent is the root, the periodic order is established (and the next label
is at distance 1). In the remaining cases when v is not the last child (case 8) if
its next sibling (at distance 2) is a leaf it gets the new label; and (case 9) if the
next sibling of v has children the next label go to the first child (at distance 3
from v) of this sibling. �

1. Algorithm RV4(X ∈ {A,B})
2. Step 1 Determine jX , the threshold τ = log n

log log n
, and the label b(X)

i of sX ;
3. Step 2 for j = �log τ�, 2, . . . , log n do
4. if (j ≥ jX ) {active stage}
5. (walk to and wait in sX) in 2j time steps;
6. for l = 0, 1, . . . , log n do {test all bits}
7. if (b(X)

i [l] = 1) {walk all the time}
8. for 22j × 3 time steps do
9. walk to the next node in order π(X);
10. else repeat 2j times {walk and wait for another}
11. (walk to the next node in order π(X)
12. and wait there) in 2j × 3 time steps;
13. else wait appropriate O(22j · log n) time steps where you are.

The last rendezvous algorithm RV4 operates on the following principle.
At the start of each active stage robot X returns (if moved before) to the star-
ting point sX . If the two starting points in VA and in VB coincide rendezvous
is accomplished. Otherwise the algorithm controls further movement of robots,
s.t., during long enough (≥ 2j × 3 time steps) interval of an active stage j one
of the robots, say w.l.o.g. A, visits all nodes in VA in the periodic order π(A)
with frequency of one visit per three time steps. While the other robot B visits
consecutive nodes with frequency of 2j × 3 time steps. So when eventually robot
B resides in the node that belongs to VA ∩ VB there is enough time for robot A
to arrive in this node before B moves away. If at any time step the two robots
A and B meet, the rendezvous is achieved and the two robots halt.
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Theorem 5. If kA + kB ≥ τ = logn
log logn and rendezvous is feasible, algorithm

RV4 admits rendezvous in time O((kA + kB)
2 logn).

Proof. Lets consider the first stage that is active for both robots A and B, i.e.,
when j = jB . Note that line 13 of the pseudo-code accommodates for the waiting
time needed for two robots to stay synchronized prior to this stage. In this active
stage loop for in line 6 compares consecutive bits of labels b

(A)
i adopted by A

and b
(B)
i′ adopted by B. There must be at least one position l on which the two

labels differ. In consequence, there is a spell of 22j × 3 time steps during which
one of the robots, say w.l.o.g. A with the bit b

(A)
i [l] = 1, visits periodically all

nodes in VA with frequency of 3 time steps per node. During the same times
spell the other robot B with the bit b

(B)
i′ [l] = 0 waits long (≥ 2j × 3 time steps)

periods of time in every node of VB. So when eventually robot B visits the node
that belongs to VA∩VB the other robot A has enough time to arrive in this node
before B moves on.

The time complexity of this first active stage is O(22jB · log n) = O(k2
B logn).

Since the duration of stages grows exponentially we conclude that the total time
complexity is also O(k2

B logn) = O((kA + kB)
2 log n). �

Corollary 2. In the Blind Rendezvous Model two robots can rendezvous in time
min{O((kA + kB)

3 log logn,O((kA + kB)
2 logn)}.

Proof. The result follows directly from the superposition of RV3 and RV4.

3 Conclusion

In this paper we studied deterministic synchronized rendezvous of two robots in
the network environment with restrictions imposed on network edges.
The restrictions prevent robots from visiting certain parts of the network. We
considered three restriction models and we provided four efficient solutions in
Section 2. One of the open problems is to establish the exact complexity of
rendezvous in considered models and to answer whether the use of randomisa-
tion helps. One can also consider models in which maps are not known to the
robots. Another interesting question refers to better understanding (including
time complexity) of gathering more than two robots. In this setting while robots
could meet in pairs, one mutually accessible location for gathering may not be
available. It would be also good to understand the case when robots are asked
to meet asynchronously. Initial studies indicate that in Edge Monotonic Model
there exist rendezvous algorithms that allows robots to meet after adopting tra-
jectories of length polynomial in kA+kB . In Node Inclusive Model the lengths of
respective trajectories become exponential. Finally in Blind Rendezvous Model
rendezvous is not feasible even if explicit labels are provided.
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Abstract. We consider problems concerning the scheduling of a set of
trains on a single track. For every pair of trains there is a minimum
headway, which every train must wait before it enters the track after
another train. The speed of each train is also given. Hence for every
schedule - a sequence of trains - we may compute the time that is at
least needed for all trains to travel along the track in the given order.
We give the solution to three problems: the fastest schedule, the ave-
rage schedule, and the problem of quantile schedules. The last problem is
a question about the smallest upper bound on the time of a given frac-
tion of all possible schedules. We show how these problems are related
to the travelling salesman problem. We prove NP-completeness of the
fastest schedule problem, NP-hardness of quantile of schedules problem,
and polynomiality of the average schedule problem. We also describe
some algorithms for all three problems. In the solution of the quantile
problem we give an algorithm, based on a reverse search method, ge-
nerating with polynomial delay all Eulerian multigraphs with the given
degree sequence and a bound on the number of such multigraphs. A
better bound is left as an open question.

Keywords: schedule, generating permutations with repetitions, Eule-
rian multigraphs.

1 Introduction

In the theory of combinatorial algorithms typically the following problems are
considered: find any feasible solution, find one feasible solution, find an optimal
solution, enumerate all solutions (with minimum weight), count all solutions
(with a given weight). We ask a natural follow-up question: what is a quantile of
the given fraction of feasible solutions, i.e., what is the minimum number a such
that the weights of all feasible solutions of a given fraction are not exceeding
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a. For example for the travelling salesman problem the question about the 0.8-
quantile is: what is the smallest number a such that 80% of all travelling salesman
tours for a set of given cities have a weight of at most a.

Problems considered in this paper originate from railway track allocation in
a real world application [6].

Let us consider the strategic routing of freight trains in a highly utilized
network. Given a railway network that is utilized by a set of passenger trains and
a model day that is partitioned into a few time slices. Each time slice represents
a special traffic situation of the day and comprised several hours, for instances the
morning and afternoon peak of a working day or the night with a rather small
amount of passenger traffic. We classify the trains into different train types,
which describe the characteristic properties of the trains,e.g., running times,
headway times or special requirements for the track. The preset passenger traffic
for each slice is simply described by the number of trains of a specific train type.
In particular there is no information of the actual schedule of the trains. We only
know that this trains used the track within the time slice. On the demand side
the freight trains are defined by an origin destination pair, the departure time
and its train type. The task is to find a route for each freight train that does not
exceed a given distance and running time limit and minimize the expected delays.
Since we are only interested in a strategic routing with a rough approximated
timing, the minimal expected delays should ensure the existence of a feasible
timetable or at least increase the possibility for one.

At this point the topic of the paper pops up. We need for each track an
estimation of the expected delays. This could be done by estimating the possible
schedules for each slice, track and train set. In our case we have a fixed set of
passenger train and a huge amount of possible freight train sets. Let us denote
by a configuration a vector that contains a number of trains for each freight
train type. Now we are looking for an assignment of configurations to tracks
and slices so that a feasible routing for the requested demand exists. Since we
can assume that the cost of a schedule increases with the number of trains, it is
possible to assign a configuration with much more trains in it than in the end are
routed over the specific track. We could interpret an assigned configuration as
capacity. Therefore a solving procedure can start with a subset of the possible
configurations and can generate on demand new smaller configurations with
better cost and tighter capacity to improve the overall solution. In particular, it
is usefull within a column generation approach to solve a mixed integer program
formulation of the problem. Finally we come to the following problem that had
to be solved as sub-problem several times.

We consider a single railway track (from station A to B) and a set of trains,
with their speeds and minimal headway between every pair of trains. For any
given sequence of trains we can compute the least time that is needed for all
trains of the sequence to arrive at B.
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Fig. 1. Example for schedules of two slow and two fast trains and their times

Example 1. Let us consider the following trivial example. We are given two
train types with running time 3 and 5 and the headways are given in the matrix(
1 1
3 1

)
. Figure 1 shows three potential orderings of 4 trains (2 of each type).

A natural question is which sequence gives the minimal time. Under some
natural conditions with respect to the speeds of the trains and the minimal
headways we prove that a sequence of trains ordered with non-increasing speed
is fastest. However in the general case the problem of the fastest schedule is
NP-complete. For the general case we give an algorithm for finding the fastest
schedule, based on dynamic programming. Moreover we give an explicit formula
for the average time taken over all possible schedules. This problem is equivalent
to the problem of determining the average weight of all Hamilton cycles.

The last question and most interesting from both a practical and theoretical
point of view is the question about the quantile of the schedule, i.e., what is the
minimum number a such that the weights of all schedules of a given fraction
are not exceeding a. For example, if a 0.8-quantile is equal to a, then 80% of all
schedules can be realized in time not exceeding a. To solve the problem we take
advantage of the fact that the speeds of trains and the minimal headways depend
only on the type of trains. In addition, there is only a small number of types
compared to the number of trains. The simplest way is to generate all sequences
of trains or sequences of types of trains, and to compute the quantile directly.
We solve the problem in a more sophisticated way. First we define an equiva-
lence relation on the set of schedules such that any two schedules in the relation
have the same time for finishing. Then we generate all equivalence classes and
compute the time for finishing for every class. The equivalence classes of our re-
lation directly correspond to Eulerian multigraphs with a given degree sequence.
To generate the multigraphs we use the reverse search method introduced by
Avis and Fukuda [2]. We prove that there are O(nk2−1) Eulerian multigraphs
on k vertices with n edges. This bound is not tight. Any better bound on this
number would give a better complexity bound of our algorithm since we generate
Eulerian multigraphs with polynomial delay.
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2 Preliminaries and Problem Formulation

For n ∈ N we denote {1 . . . n} by [n] and by [n]∗ the set of all finite sequences
of elements of the set [n]. Let X = {x1, x2, . . . , xn} be the set of trains. Let
the function t : X → [k] assign every train its type. We assume that the set
X and the function t are fixed in the following. Let l : [k] → N be a function
defined by l(i) = |t−1(i)|. Thus li = l(i) denotes the number of trains of the
i-th type. Let r : [k] → R+ assign the running time to every train type and let
m : [k] × [k] → R+ be the function determining the minimal headway between
the trains of certain types.
Let S(X) denote a set of all permutations of the set X . We will call the permu-
tations of X schedules. The minimal running time of the schedule y ∈ S(X) is
computed as

RT (y) =

n−1∑
i=1

m(t(yi), t(yi+1)) + r(t(yn)).

We define the following three problems:

Problem 1. Fastest-schedule
Input: (X, t, r,m, k).
Output: YES if and only if there exists a schedule s ∈ S(X) such that

RT (s) ≤ k.

Problem 2. Average-schedule
Input: (X, t, r,m).
Output: τ̄ ∈ R - average running time of a schedule, i.e.,

τ̄ =

∑
y∈S(X) RT (y)

|S(X)| .

Problem 3. α-quantile schedule
Input: (X, t, r,m, α1).
Output: τ - time needed to realize α|S(X)| schedules, i.e.,

τ = min{rt : |{s ∈ S(X) : RT (s) ≤ rt}|
|S(X)| ≥ α}.

1 with α - a given fraction of the schedules that have to be realizable (1 means that
all schedules must be realizable, 0.5 means that half of the potential schedules must
be realizable)
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3 Fastest Schedule Problem

Theorem 2. Fastest-schedule is NP-complete regarding to number of train types.

We can solve the fastest schedule problem by interpreting it as a slight modifi-
cation of the TSP. The modification will state that a city from the TSP setting
must be visited a given number of times. It is allowed to visit the same city
multiple times in a row but there is a non zero ”distance” assigned to such ope-
ration. As cities we will denote members of set [k] ∪ 0. Distances are given by
following function:

d(x, y) =

⎧⎪⎨⎪⎩
m(x, y), x �= 0 ∧ y �= 0,

r(x), x �= 0 ∧ y = 0,

0, x = 0 ∧ y �= 0.

The number of times that the city denoted by x ∈ [k] must be visited is given by
the function l(x) as defined in the preliminaries. The city with number 0 must
be visited exactly once. Notice that every tour in this graph corresponds to
a number of schedules (the tour determines the order of train types so actual
trains of the same type can be permuted). The tour length is equal to the running
time of the corresponding schedules.
Such modification of the TSP can be solved using a modification of the classic
dynamic programming algorithm given by Bellman [3]. Let μ : N × [k] → N be
a function. By μ(t, (x1 . . . xk)) we will denote the minimal length of tour from 0
to t passing through each city i ∈ [k] exactly xi times (starting and ending visits
are not counted). We can define μ recursively as:

μ(t, (x1, . . . , xk)) = min
i∈[k]∧xi �=0

{μ(i, (x1, . . . xi − 1, . . . , xk)) + w(i, t)}.

The iterative procedure can be initiated for all i by:

μ(i, (0, . . . , 0)) = w(0, i),

from which we can obtain the respective next values using the recursive formula.
Value of μ(0, (l(1), . . . , l(k))) gives a solution to the Fastest-schedule problem.
The computational complexity of this algorithm can be calculated by estimating
the number of different parameter sets of function μ that must be calculated
and the time for computing a single value. The first parameter can be picked in
k ways and the second parameter is the number of solutions of the inequality:
x1 + . . . + xk ≤ n. The number of solutions of this inequality can be estimated
by nk. Each value of the function μ can be computed in linear time. From above
we conclude that the algorithm runs in time O(nk+1).
The most natural candidate for an optimal solution is a schedule with trains that
are ordered non-decreasing by their running time. This simple solution seems to
work in real world scenario, but it can be shown that it is not correct in the
general case. A question rises what conditions have to be fulfilled for this simple
solution to be correct.
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Theorem 3. Let (X, t, r,m) be an instance of the fastest-schedule problem. If
we assume that:

∀x1,x2,x3,x4∈X r(t(x1)) ≤ r(t(x2)) ∧ r(t(x1)) ≤ r(t(x3)) ∧ r(t(x1)) ≤ r(t(x4))

⇒ m(t(x1), t(x2)) +m(t(x3), t(x4)) ≤ m(t(x3), t(x1))

+m(t(x1), t(x4))

(1)

and

∀x1,x2,x3,x4,x5∈X r(t(x1)) ≤ r(t(x2)) ≤ r(t(x3)) ∧ r(t(x2)) ≤ r(t(x4)) ∧ r(t(x2))

≤ r(t(x5))

⇒ m(t(x1), t(x2)) +m(t(x2), t(x3)) +m(t(x4), t(x5))

≤ m(t(x1), t(x3)) +m(t(x4), t(x2)) +m(t(x2), t(x5)) (2)

then the schedule consisting of trains ordered not-decreasing by running time, is
the solution to fastest schedule problem.

4 Average Schedule Problem

Besides the question for an optimal solution, let it be minimum or maximum,
finding the running time of an average schedule could be of interest. This problem
can be solved in polynomial time. First we reduce the problem of the average
schedule to the problem of the average Hamilton cycle length in a complete
graph. Let X = {1, . . . , n} be a set of trains. For each pair of trains i, j ∈ V with
i �= j,m(t(i), t(j)) determines minimal headway between i and j. Let V = X∪{0}
be the vertex set of the graph, A = [n]× [n] \ {(i, i) : i ∈ [n]} be the arc set and
let weight function be given by:

w(i, j) =

⎧⎪⎨⎪⎩
m(t(i), t(j)), i �= 0 ∧ j �= 0

r(t(i)), i �= 0 ∧ j = 0

0, i = 0 ∧ j �= 0.

Observe that the tour in this graph corresponds to exactly one schedule and that
the tour length is equal to this schedule running time. Hence the average time
of all schedules is equal to the average Hamilton cycle length.

Theorem 4. Let G = (V,E,w) be a weighted undirected complete graph. Then
the average tour length for a Hamiltonian cycle in G is 2

n−1

∑
e∈E we.

Proof. Since G is a complete graph, each edge is contained in exactly (n − 2)!
Hamiltonian cycles. There are in total n!

2n Hamiltonian cycles in a complete
graph. Therefore the average weight of all Hamiltonian cycles is

2n

n!
·
∑
e∈E

(n− 2)! · we =
2

n− 1

∑
e∈E

we. (3)

��
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Corollary 5. Let D = (V,A,w) be a weighted directed complete graph. Then
the average tour length for a Hamiltonian cycle in D is 1

n−1

∑
a∈A wa.

Proof. There are in total n!
n Hamiltonian cycles in a complete directed graph.

��

Corollary 6. Let G = (V,E,w) be a weighted undirected complete graph. Then
the average length of a Hamiltonian path in G is 2

n

∑
e∈E we.

Corollary 7. Let D = (V,A,w) be a weighted directed complete graph. Then
the average length of a Hamiltonian path in D is 1

n

∑
(i,j)∈A w(i, j).

Proof. Let V ′ := V ∪{0} as above and A′ := A∪{(0, i) : i ∈ V }∪{(i, 0) : i ∈ V }.
Let w′

a := wa for (i, j) ∈ A, w′
a := 0 for a ∈ A′\A. Again, there is a bijection

between Hamiltonian cycles in D′ := (V ′, A′, w′) and Hamiltonian paths in D,
from which the formula follows. ��

We can conclude that average running time of a schedule for given (X, t, r,m)
equals to 1

n

∑
(i,j)∈A w(i, j), where A and w(i, j) are defined as above.

5 Schedules Quantiles

The problem “quantile schedule” is at least as hard as the fastest schedule. For
α = 1

n! , where n is the number of trains, a solution of α-quantile is also a solution
of the problem Fastest-schedule.

We need some more notations. For b, k ∈ N, s = (s1, . . . , sb) ∈ [k]∗, p, q ∈ [k],
by Δ(s, p, q) we will denote {i ∈ [b − 1] : p = t(si), q = t(si+1)} which is a set
of all the indices on which a train type changes from p to q in the sequence s.
By δ(s, p, q) we will denote |Δ(s, p, q)|.

Let ∼⊂ S(X)× S(X) be a relation defined on permutations of the set of the
trains.

We say that:
y ∼ z :⇔ ∀p,q∈[k] δ(y, p, q) = δ(z, p, q).

Lemma 8. For any y, z ∈ S(X) if y ∼ z then t(yn) = t(zn) and t(y1) = t(z1).

Proof. Notice that the sum
∑

q∈[k] δ(y, t(yn), q) is equal to the number of occur-

rences of a train of the type t(yn) in the schedule y on positions from 1 to n− 1.
Hence ∑

q∈[k]

δ(y, t(yn), q) = lt(yn) − 1.

By the definition of the relation ∼ we get:∑
q∈[k]

δ(z, t(yn), q) =
∑
q∈[k]

δ(y, t(yn), q) = lt(yn) − 1.
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So the trains of the type t(yn) occur lt(yn)− 1 times on positions from 1 to n− 1
in the sequence z, but trains of the type t(yn) occur lt(yn) times (on positions
from 1 to n) in the sequence z, hence t(zn) = t(yn). The proof of t(y1) = t(z1)
is analogue. ��

Theorem 9. For any y, z ∈ S(X) if y ∼ z, then RT (y) = RT (z).

Proof. We can observe that

RT (y) =

(
n−1∑
i=1

m(t(yi), t(yi+1))

)
+ r(t(yn))

=

⎛⎝ ∑
p,q∈[k]

m(p, q)δ(y, p, q)

⎞⎠+ r(t(yn))

From Lemma 8 and y ∼ z, t(yn) = t(zn), we obtain r(t(yn)) = r(t(zn)). From
the definition of ∼ we have that

∀p,q∈[k] δ(y, p, q) = δ(z, p, q)

from above:

RT (y) =

⎛⎝ ∑
p,q∈[k]

m(p, q)δ(y, p, q)

⎞⎠+ r(t(yn))

=

⎛⎝ ∑
p,q∈[k]

m(p, q)δ(z, p, q)

⎞⎠+ r(t(zn)) = RT (z).

��

Theorem 10. There exist functions m, r such that if y, z ∈ S(X) and y �∼ z,
then RT (y) �= RT (z).

Let us denote the equivalence classes of the relation ∼ by [s]∼. By δ([s]∼, p, q)
we will denote the value of δ(y, p, q) for any y ∈ [s]∼. This notation is well-
defined since from the definition of relation ∼ for any y ∈ [s]∼ it holds that
∀p, q ∈ [k] δ(s, p, q) = δ(y, p, q).

By a block of the trains of the type i we denote a sequence of consecutive
trains of type i such that a train directly before and after the block are of any
type not equal to i. Given s ∈ S(X), by bs(i) we denote number of blocks of the
trains of the type i.

We define a function R : S(X) → [k]∗ as follows: for s ∈ S(X), R(s) is a
sequence obtained from s by replacing every block of trains of type i by single
appearance of i. Notice that R(s) is a sequence of length

∑
i∈[k] bs(i). Moreover

notice that:

δ(R(s), p, q) =

{
δ(s, p, q), p �= q,

0, p = q.
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It is easy to observe that if R(y) = R(z) then y ∼ z. Let R([s]∼) = {R(y) : y ∈
[s]∼} and R−1(R(s)) = {y ∈ S(X) : R(y) = R(s)}.

Lemma 11. For any s ∈ S(X)

|R−1(R(s))| =
k∏

i=1

l(i)!

(
l(i)− 1

bs(i)− 1

)
.

From above lemma directly follows:

Corollary 12. For any s ∈ S(X)

|[s]∼| = |R([s]∼)| ·
k∏

i=1

l(i)!

(
l(i)− 1

bs(i)− 1

)
.

Hence to count the number of schedules in [s]∼, it is enough to count the
number of sequences in R([s]∼).

Let G[s]∼ = (V[s]∼ , μ[s]∼) be a directed multigraph where μ[s]∼ : V 2
[s]∼ → N

is function assigning to vertices p, q the number of arcs from p to q. The multi-
graph is constructed as follows: V[s]∼ = [k] ∪ {0}, for all p, q ∈ [k], μ[s]∼(p, q) =
δ([s]∼, p, q), moreover μ[s]∼(t(sn), 0) = 1 and μ[s]∼(0, t(s1)) = 1. By Eulerian
cycle in G[s]∼ we mean a vertex sequence in G[s]∼ containing every pair (p, q) ∈
V 2
[s]∼ as consecutive pair pq exactly μ[s]∼(p, q) times. By Ĝ[s]∼ = (V[s]∼ , μ̂[s]∼) we

denote the multigraph obtained from G[s]∼ by deleting all loops (for each vertex
v ∈ V[s]∼ μ̂[s]∼(v, v) = 0 ).

Let G = (V, μ) be a multigraph, by deg−G(i) =
∑

v∈V μ(v, i) we denote the

indegree of vertex i in graph G, and by deg+G(i) =
∑

v∈V μ(i, v) we denote out
degree of vertex i in graph G. It can be noted that for all i ∈ [k] it holds that
deg−G(i) = deg+G(i). Moreover it can by shown that deg−G(i) = bi for i ∈ [k].
The following observation is the key to our algorithm.

Remark 13. Every sequence r ∈ R([s]∼) corresponds to one Euler vertex se-

quence in Ĝ[s]∼ .

Remark 14. Graph Ĝ[s]∼ is connected for any s ∈ S(X).

For a multigraph G = (V, μ) we define the Kirchhoff matrix K(G) as follows :

K(G)ij =

{
deg−G(i), if i = j,

−μG(i, j), if i �= j.

For i ∈ [n] we denote by Ki the matrix obtained from K by deleting the
i-th row and the i-th column. By det(K) we denote determinant of matrix K.
By ec(G) we denote number of Euler cycles in G.
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Theorem 15. (de Bruijn, van Aardenne-Ehrenfest, Smith, Tutte [1]) Given
a multigraph G = (V, μ) then the number of Eulerian cycles ec(G) is given by:

ec(G) =
t1(G)

∏
v∈V

(
deg−G(v)− 1

)
!∏

i,j∈[k],i�=j (μ(i, j))!
,

where tv(G) denotes number of trees rooted at vertex v.

Theorem 16. (Tutte Matrix Tree Theorem [5]) Given a multigraph G = (V, μ)
with Kirchhoff matrix K(G), then the number of trees rooted at vertex v is equal
to det(Kv(G)).

Theorem 17. For any s ∈ S(X) it holds that

|[s]∼| =
det
(
K1(Ĝ[s]∼)

)∏k
i=1

(
deq−

Ĝ[s]∼
(i)− 1

)
!∏

i,j∈[k],i�=j (δ(s, i, j))!
·

k∏
i=1

l(i)!

(
l(i)− 1

deg−
Ĝ[s]∼

(i)− 1

)
.

Proof. Follows directly from the Lemma 11 and the Theorems 15 and 16. ��

6 Algorithm

Instead of enumerating all equivalence classes of relation ∼, we can enumerate
all connected Eulerian multigraphs with given vertex degree sequence. To ge-
nerate only connected graphs with desired properties, we use the reverse search
method described in the next part of the paper. Every graph identifies one ∼
equivalence class therefore corresponding schedules have equal running times.
The algorithm generates all graphs. Then sorts them by running time of cor-
responding schedules. Then it finds a first equivalence class such that number
of schedules in this class and in proceeding classes is at least α fraction of all
schedules and returns its running time. The following algorithm solves the run-
ning time problem:

Algorithm 1. RunningTime(X , t, r, m, α)

1: Generate all graphs for X into S using reverse search.
2: Order the schedules in S by running time in ascending order
3: allSchedulesNumber =

∑
s∈S |[s]∼|

4: τ = 0
5: currentNumberOfSchedules = 0
6: while currentNumberOfSchedules < α · allSchedulesNumber do
7: s = S.Pop
8: currentNumberOfSchedules+ = |[s]∼|
9: τ = RT (s)
10: end while
11: return τ

Functions RT and l are defined in terms of t, r,m as in former part of the
paper.
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Theorem 18. The RunningTime algorithm returns a valid result.

Proof. The validity of result follows from Theorem 17. ��

Theorem 19. There are at most O(nk2−1) connected multigraphs with given
vertex degree sequence.

From Theorem 19 we know that there are at most O(nk2−1) connected multi-
graphs with given vertex degree sequence. All operations conducted on single
graphs take polynomial time Therefore the complexity of the whole algorithm is
at most O(nk2−1).

7 Algorithm for Generating Connected Graphs

To generate connected graphs efficiently, we can use a method of Avis and
Fukuda called Reverse Search [2]. The main idea of this technique is to define
a graph on the set of objects to generate and perform a search on its span-
ning tree generating one object by visiting each vertex. To be precise: a triple
(Γ, Ŝ, f), where Γ = (V , E), Ŝ ∈ V , f is a mapping V \ {Ŝ} → V , is called local

search if {v, f(v)} ∈ E for each v ∈ V \ {Ŝ}.
Local search (Γ, Ŝ, f) is called finite local search if for each v ∈ V \ {Ŝ} there

exists a positive integer i such that f i(v) = Ŝ.
Let (Γ, Ŝ, f) be a finite local search with trace T . As “abstract reverse search”

we call a routine of traversing T and outputting all its vertices. The traversal
can be implemented in any way. In this paper we will conduct the traversal by
breadth first search starting from the sink and traversing all edges in a way
opposite to their direction.

By Nμ(v) = {u ∈ V : μ(v, u) > 0} we denote the neighbourhood of vertex v.
By C(V, μ) we denote the number of connected components of graph G = (V, μ).
For μ : V × V → N such that μ(u, v) > 0 we define μ− (u, v) = μ′ by

μ′(p, q) =

{
μ(u, v)− 1, for (p, q) = (u, v),

μ(p, q), for (p, q) �= (u, v).

For a graph G = (V, μ) a traversal from u to v we call a “bridge traversal” if
and only if C(V, μ) < C(V, μ− (u, v)). By non-bridge neighbours of v we denote
the set NNμ(v) = {u ∈ Nμ(v) : (v, u) is not a bridge traversal}.

For a G = (V, μ) ∈ Gl by
−→
G we will denote a minimal Euler cycle for graph

G - a cycle generated by the following algorithm:
Assuming that we use Tarjan’s [7] algorithm for finding bridges then the

time complexity of above algorithm is O(|E|2) where |E| =
∑

v∈V deg+G(v) is
the number of edges in the graph G. The algorithm is a realization of Fleury’s
algorithm [4] for finding Euler cycle. The correctness of the algorithm follows
directly from the correctness of Fleury’s algorithm.

Let w, x, y, z ∈ V such that μ(w, x), μ(x, y), μ(y, z) > 0. By t(G, (w, x, y, z)) =
(V, μt) we will denote a multigraph obtained from G by following modification
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Algorithm 2. MinimalEulerCycle(V, μ)

1: μF = μ, v = 0, u = 0
2: mec = ”empty sequence” {minimal Euler cycle}
3: repeat
4: mec += u {append to the end of the sequence}
5: if NNμF (v) �= ∅ then u = min (NNμF (v))
6: else u = min (NμF (v)) end if
7: μF = μF − (v, u)
8: v = u,
9: until v = 0
10: return mec

of μ:

μt(p, q) =

⎧⎪⎨⎪⎩
μ(p, q)− 1, for (p, q) ∈ {(w, x), (x, y), (y, z)},
μ(p, q) + 1, for (p, q) ∈ {(w, y), (y, x), (y, z)},
μ(p, q), otherwise.

It can be noted that the transformation t preserves the vertex degree sequence
and the connectivity of the graph. It should be noted that we did not assume
that vertexes w, x, y, z are not equal, so it is possible that two, three, or all
are equal. It can also be noted that for every G ∈ Gl and w, x, y, z there exist
w′, x′, y′, z′, such that if G′ = t(G, (w, x−, y, z)), then t(G′, (w′, x′, y′, z′)) = G.

Let ŝ ∈ {0, . . . , k}n and ŝ = (s0, . . . , sn) be a sequence where s0 ≤ . . . ≤ sn.
By (s)i we denote the i-th element of s, by (s)≤i = (s1, . . . , si) we denote the
sequence containing the first i elements of s. By (s)≥i = (si, . . . , sn) we denote
the sequence containing elements of s starting from the i-th element.

Let P (G) = max{i ∈ {0, . . . , n} : (
−→
G)≤i = (ŝ)≤i}.

Let Pv(G) = min{(−→G)P (G)+1, . . . , (
−→
G)n}.

Let PP (G) = min{i > P (G) : (
−→
G)i = Pv(G)}.

Lemma 20. Let G = (V, μ) ∈ Gl. It holds that: PP (G) > P (G) + 1.

Corollary 21. Let G = (V, μ) ∈ Gl. It holds that: PP (G) ≥ 2.

Let f : Gl \ {G[ŝ]∼} → Gl be a function declared as follows:

let h = ((
−→
G )PP (G)−2, (

−→
G)PP (G)−1, (

−→
G)PP (G), (

−→
G )PP (G)+1) then f(G) equals to

t(G, h). Notice that the function f is well defined because of Corollary 21.

Remark 22. It can be noted that function f preserves the first PP (G) − 2

elements of
−→
G , i.e.,

−→
G≤PP (G)−2 =

−−−→
f(G)≤PP (G)−2.

By f−1(G) = {H ∈ Gl : f(H) = G} we will denote the inverse function of f .

Lemma 23. Let G ∈ Gl then P (G) ≤ P (f(G)).

Lemma 24. Let G = (V, μ) ∈ Gl. If P (G) = P (f(G)) then PP (f(G)) <
PP (G).
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Theorem 25. For each G ∈ Gl there exists i ∈ N such that f i(G) = G[ŝ]∼ .

Let Γ = (Gl, E) be a graph. {G1, G2} ∈ E if and only if G1 can be obtained from

G2 by applying the transformation t to G1 or vice-versa. Let Ŝ = G[ŝ]∼ , it is

clear that for every G ∈ Gl \ {Ŝ} it holds that {G, f(G)} ∈ E .
From above and from Theorem 25 it follows that (Γ, Ŝ, f) is a finite local search
and a reverse search method can be applied to generate all graphs in Gl.

Lemma 26. The time complexity of f(G) is O(n2).

Lemma 27. The time complexity of f−1(G) is O(n6).

Theorem 28. Traversing Γ by the reverse search method outputs elements with
maximal headway of O(n6).

Theorem 29. The computation complexity of the RunningTime algorithm is at
most O(nk2−1).
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Appendix

Proof (Theorem 2). First we will show that Fastest-schedule is NP-hard. Let
(C, d,B) be a travelling salesman problem (TSP) instance where C is the set
of cities, d : C2 → N is the distance function and B is the maximal searched
tour length. For c ∈ C by i(c) we will denote index of c in an arbitrarily chosen
ordering of C, and by ci we will denote i-th city in the ordering. We define
Fastest-schedule instance as follows: X = C for all c ∈ X, t(c) = i(c), m(i, j) =
d(ci, cj), r = 0, k = B. Every schedule of a given instance contains every train
from X exactly once. Therefore it contains each train of every type exactly once.
From above every schedule corresponds to a travelling salesman tour (a sequence
of types of trains induce travelling salesman tour (TS-tour)). The running time
of a schedule of this instance is equal to the length of the corresponding travelling
salesman tour. Therefore the fastest schedule corresponds to the shortest TS-
tour, so the answer to a given TSP problem is YES, if and only if the answer to
the constructed Fastest-schedule problem is YES.
Moreover we will show that the Fastest-schedule problem is in NP. Given an
instance of the Fastest-schedule problem (X, t, r,m, k) and a certificate C which
is a sequence of trains, we can determine the running time of C by applying
the running time formula in polynomial time. The answer to a given problem
is YES, if and only if the running time of given certificate is less or equal to k.
From the above it follows that the Fastest-schedule problem is NP-complete. ��
Proof (Theorem 3). Without loss of generality we can assume that t(i) ≤ t(j) ⇔
r(t(i)) ≤ r(t(j)) - we relabel train types so trains of types with lower indices are
faster. Let us assume that s is the solution to the Fastest-schedule problem and
that s does not consist of trains ordered by train type. By si we will denote the
i-th element of s. By s′ we will denote the schedule consisting of trains ordered
by train types thus ordered not-decreasing by running time. Let i be the fastest
train such that t(si) �= t(s′i). Let j be the index of the last appearance of a train
of type t(si)−1. If such train does not exist, i.e., si is the fastest train, let j = 0.
Let us move train si to position j + 1 in s. The conditions from the theorem
guarantee that such operation will not increase running time of the schedule
- the condition (1) guarantees that moving the fastest train to the beginning
will not increase the time, and the condition (2) guarantees that moving trains
to positions grater than 1 will not increase running time. After applying this
operation repeatedly, we will obtain s′, with a running time that is not larger
than the running time of s. ��
Proof (Theorem 6). Let 0 be a vertex not in V . Let V ′ := V ∪ {0}, E′ := E ∪
{{0, i} : i ∈ V }, and w′

e := we for {i, j} ∈ E and w′
e := 0 for e ∈ E′\E. Then each

Hamiltonian cycle in G′ := (V ′, E′, w′) corresponds to exactly one Hamiltonian
path in G and vice versa. Therefore the average weight of all Hamiltonian paths
in G equals the average weight of all Hamiltonian cycles in G′, which is ��

2

(n+ 1)− 1

∑
e∈E′

we =
2

n

∑
e∈E

we. (4)
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Proof (Theorem 10). Let us define r such that ∀i∈S(X) r(i) = 0. Let H be
the sequence of all pairs of train types. Let m(Hi) denote the value of m for
the i-th pair from the sequence H . Let Hi = (a, b). By l(Hi) we will de-
note max{l(t(a)), l(t(b))}. We define m as follows: m(H1) = 1 and m(Hi) =

2�log2
∑i−1

j=1 l(Hj)�+1. The function m is constructed in such way that when we
analyse RT expressed in a binary number system, we can observe that particular
places correspond to a specific pair from H . For a given i values of RT at indices

2�log2
∑i−1

j=1 l(Hi)�+1 - 2�log2
∑i

j=1 l(Hj)�+1 depend only on the value of pair Hi. So
if y, z ∈ S(X) and y �∼ z, there exist p, q ∈ [k] such that δ(y, p, q) �= δ(z, p, q). Let
us assume that pair (p, q) has index i in H . Binary notations of RT (y) and RT (z)

differ on one of the following indices: 2�log2
∑i−1

j=1 l(Hi)�+1 - 2�log2
∑i

j=1 l(Hj)�+1. ��

Proof (Lemma 11). In order to calculate the total number of schedules in
R−1(R(s)) we have to arrange the trains of every type into certain number
of blocks. Type i has to be arranged into bs(i) blocks. This can be done in

l(i)!
(
l(i)−1
bs(i)−1

)
ways - first we choose one of l(i)! permutations and then divide it

into the desired number of blocks. To obtain the final number of the schedules
we have to take the product over all train types. ��

Proof (Theorem 19). Given a number of trains n, a number of types k and
a vertex degree sequence l, then every multigraph G with vertex sequence l can
be represented as Kirchhoff matrix K(G). All values in matrix K(G) sum up
to n, i.e.,

∑
i,j∈[k] K(G)i,j = n. From the former we know that the number of

unique Kirchhoff matrices is at most the number of solutions of the following
equation: x1 + . . .+ xk2 = n (every variable in the equation corresponds to one

value in K(G)). This equation has at most
(
n+k2−1
k2−1

)
= O(nk2−1) solutions. ��

Proof (Lemma 20). From the definition of PP (G) we know that PP (G) > P (G),
so let us suppose on the contrary that PP (G) = P (G) + 1. This means that

(
−→
G)P (G)+1 =

min{(−→G)P (G)+1, . . . , (
−→
G)n} = ŝP (G)+1, which contradicts the definition of P (G).

��

Proof (Lemma 23). Since from Lemma 20 we know that PP (G) ≥ P (G) + 2, it

follows from Remark 22 that
−→
G≤P (G) =

−−−→
f(G)≤P (G) and thus P (G) ≤ P (f(G)).

��

Proof (Lemma 24). From Remark 22 we know that the first PP (G) − 2 steps
of the MinimalEulerCycle algorithm will be in f(G) the same as in G. Let
h = (w, x, y, z) be the sequence selected in the definition of f . After PP (G)− 2
steps of the MinimalEulerCycle algorithm in f(G) we are visiting vertex w.
By μG

F we will denote function μF maintained by algorithm applied to G while

visiting w and by μ
f(G)
F when applied to f(G). There are two cases:

(1) the traversal from w to x is not a bridge traversal in (V, μG
F ), then the

traversal from w to y is not a bridge in (V, μ
f(G)
F ).
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(2) the traversal from w to x is a bridge traversal in (V, μG
F ), which means that

NNμG
F
(w) = ∅. From above it can be shown that NN

μ
f(G)
F

(w) = ∅.
By definition of f , y is vertex with smallest value in (

−→
G )≥P (G)+1. From the

definition of Fleury’s algorithm we also know that NNμG
F
(w) is a subset of the

set of vertices occurring in (
−→
G)≥P (G)+1. From above and the case analysis in

the former part of the proof we know that the algorithm will traverse from w

to y. From the definition of f we know that (
−→
G)PP (G) = y. From the fact that

algorithm traverses from w to y instead of x we know that (
−−−→
f(G))PP (G)−1 = y.

From the definition of f , it follows that Pv(G) = y. Because P (G) = P (f(G)), we
know that also Pv(G) = Pv(f(G)), so Pv(f(G)) = y. From above it imminently
follows that PP (f(G)) = PP (G)− 1 < PP (G). ��

Proof (Thorem 25). From Lemma 23 we know that P (G) ≤ P (f(G)). Let us
assume that P (G) = P (f(G)), then from Lemma 24 we know that PP (f(G)) <
PP (G). Because PP (G) > P (G), there exists a finite j such that P (G) <
P (f j(G)). From the former observation it is clear that there exists a finite i such
that P (f i(G)) = n. If P (f i(G)) = n, then f i(G) = G[ŝ]∼ . ��

Proof (Lemma 26). The evaluation of function f(G) requires to compute
−→
G and

functions P, Pv, PP . Former can be done in O(n2) and latter in O(n), which
gives final complexity of O(n2). ��

Proof (Lemma 27). To compute f−1(G), we can enumerate the entire graph
H such that there exist w, x, y, z ∈ V such that t(H, (w, x, y, z)) = G. There
are O(n4) sequences w, x, y, z ∈ V thus we have to enumerate at most O(n4).
For each graph H we have to check if f(H) = G which can be done in a time
proportional to O(n2). From the above we get that the time complexity of f−1

is O(n6). ��

Proof (Theorem 28). The trace of local search (Γ, Ŝ, f) is a directed sub-graph

T = (V , E(f)) where E(f) = {(v, f(v)) : v ∈ V \ {Ŝ}}. T is simply the directed

spanning tree of Γ , rooted in Ŝ, defined by f .
When performing a traversal of trace of Γ between outputting consecutive

elements, we have to calculate f−1. Aside from computing f−1, the reverse
search routine has to push computed vertices to a queue which can be done in
O(n). From the above it follows that dominating operation during reverse search
is computing f−1 which from Lemma 27 can be done in O(n6). ��
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Abstract. Due to the remarkable power of modern SAT solvers, one can effi-
ciently solve NP-complete problems in many practical settings by encoding them
into SAT. However, many important problems in various areas of computer sci-
ence lie beyond NP, and thus we cannot hope for polynomial-time encodings
into SAT. Recent research proposed the use of fixed-parameter tractable (fpt)
reductions to provide efficient SAT encodings for these harder problems. The
parameterized complexity classes ∃k∀∗ and ∀k∃∗ provide strong theoretical ev-
idence that certain parameterized problems are not fpt-reducible to SAT. Origi-
nally, these complexity classes were defined via weighted satisfiability problems
for quantified Boolean formulas, extending the general idea for the canonical
problems for the Weft Hierarchy.

In this paper, we provide alternative characterizations of ∃k∀∗ and ∀k∃∗ in
terms of first-order logic model checking problems and problems involving alter-
nating Turing machines with appropriate time bounds and bounds on the number
of alternations. We also identify parameterized Halting Problems for alternating
Turing machines that are complete for these classes.

The alternative characterizations provide evidence for the robustness of the
new complexity classes and extend the toolbox for establishing membership re-
sults. As an illustration, we consider various parameterizations of the 3-coloring
extension problem.

1 Introduction

The recent success of modern SAT solvers in many practical settings has placed them
at the heart of an important approach to solving NP-complete problems, where problem
instances are encoded to SAT and subsequently solved using a SAT solver [3,12,17,22].
However, many important computational problems lie above the first level of the Poly-
nomial Hierarchy (PH), and thus this approach does not work to solve these problems,
as polynomial-time reductions to SAT are not possible for these problems, unless the
PH collapses.

Problem instances occurring in practical settings are not random, and often con-
tain some kind of structure, which can be exploited by parameterized algorithms. Re-
cently, the structure in problems instances was used to break the complexity barriers
between the first and second level of the PH, by means of fpt-reductions [9,21]. Such
fpt-reducibility results adopt a new perspective on what amounts to positive results in
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parameterized complexity. This new perspective (i.e., aiming at fpt-reducibility to SAT
rather than fpt-solvability) greatly extends the power of positive results, as parameters
can be less restrictive, and problems can be solved efficiently on larger classes of in-
stances.

In order to provide suitable negative results, a new parameterized complexity classes
∃k∀∗ has been introduced [13,14], which lies at the basis of a hardness theory that
provides such negative evidence. The class ∃k∀∗ is located above para-co-NP and below
para-ΣP

2 (see Figure 1), and is based on weighted variants of quantified Boolean satis-
fiability problems. Several problems from various domains have already been shown
hard or complete for the class ∃k∀∗ or its dual ∀k∃∗, including problems in Knowledge
Representation [14], Boolean Optimization [13], and Computational Social Choice [8].
The role that ∃k∀∗ and ∀k∃∗ play in the analysis of parameterizations of problems
complete for the second level of the PH, is analogous to the role that the Weft-hierarchy
plays in the analysis of parameterizations of NP-complete problems. The parameterized
complexity classes para-NP and para-co-NP, on the one hand, and the classes ∃k∀∗ and
∀k∃∗, on the other hand, constitute a borderline between problems that are fpt-reducible
to SAT (or UNSAT) and problems that are not, similarly to the way in which the classes
W[1] and FPT provide a borderline between problems that are fixed-parameter tractable
and problems that are not. Neither W[1] nor ∃k∀∗ and ∀k∃∗ have a direct counterpart in
classical complexity theory, and these classes thus provide a tighter complexity analysis
than parameterized complexity classes that are derived from classical classes [10].

para-ΣP
2 para-ΠP

2

para-NP para-co-NP

para-ΔP
2

para-DP
∃k∀∗ ∀k∃∗

W[P]
W[1]

co-W[P]
co-W[1]FPT

Fig. 1. Parameterized complexity classes up to the second level of the polynomial hierarchy. Ar-
rows indicate inclusion relations. (For a definition of the classes para-DP and para-ΔP

2, we refer
to other resources [2,10,20])

1.1 New Contributions

We provide new characterizations of the parameterized complexity class ∃k∀∗ in terms
of first-order model checking problems and in terms of alternating Turing machines,
with appropriate time bounds. Consequently, dual characterizations hold for the para-
meterized complexity class ∀k∃∗. More specifically, we show the following results.
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1. ∃k∀∗ is precisely the class of all parameterized problems that can be expressed in
terms of checking whether a given first-order formula ∃x1, . . . , xk.∀y1, . . . , yn.ψ
is true in a given relational structure, taking the number of existential variables as
the parameter. (Theorem 1)

2. ∃k∀∗ is precisely the class of all parameterized problems that can be decided by
a 2-alternating Turing machine that runs in fixed-parameter tractable time, starts in
an existential state, and uses a number of nondeterministic existential steps that is
bounded by a function of the parameter. (Theorem 2)

3. The Halting Problem for 2-alternating Turing machines that start in an existential
state, parameterized by the number of nondeterministic existential steps, is com-
plete for ∃k∀∗. (Theorem 3)

Theorem 1 provides an easy and convenient way for establishing membership results;
we use it also in the proofs of Theorems 2 and 3 and give an example application to a
combinatorial problem in Section 5.

Theorem 2 establishes the robustness of the class ∃k∀∗, in analogy to the characte-
rization of the first two classes of the Weft-hierarchy in terms of Turing machines [4,5].

Theorem 3 provides an analogue to the Cook-Levin Theorem for the complexity
class ∃k∀∗, which supports our assumption that ∃k∀∗ �= para-co-NP, in analogy to the
argumentation that the W[1]-completeness of the Halting Problem for nondeterminis-
tic Turing machines, parameterized by the number of steps, supports the assumption
W[1] �= FPT (see [6] and cf. the discussion in [5]). Interestingly, our version of the
Halting Problem remains ∃k∀∗-complete, independently of whether the Turing machine
uses a single tape, or an arbitrary number of tapes, in contrast to versions of the Halting
Problem that characterize classes of the Weft-hierarchy, where a single tape captures
W[1], and an arbitrary number of tapes captures W[2] [4,5].

We would like to remark that the membership in W[1] or W[2] for some paramete-
rized problems remained open for a long time, and was finally established by means of
machine characterizations [4]. We expect that our machine characterizations for ∃k∀∗
can be of similar use.

In Section 5 we exemplify our new complexity toolbox by applying it to parame-
terizations of a graph coloring problem, shown to be ΠP

2-complete by Ajtai, Fagin, and
Stockmeyer [1].

We provide proof sketches for the results presented in this paper. For full detailed
proofs we refer to a technical report [15].

2 Preliminaries

Propositional and First-Order Logic. A literal is a propositional variable x or a negated
variable ¬x. We use the standard notion of (truth) assignments α : Var(ϕ) → {0, 1}
for Boolean formulas and truth of a formula under such an assignment.

A (relational) vocabulary τ is a finite set of relation symbols. Each relation symbol R
has an arity arity(R) ≥ 1. A structure A of vocabulary τ , or τ -structure (or simply
structure), consists of a set A called the domain and an interpretation RA ⊆ Aarity(R)

for each relation symbol R ∈ τ . We use the usual definition of truth of a first-order
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logic sentence ϕ over the vocubulary τ in a τ -structure A. We let A |= ϕ denote that the
sentence ϕ is true in structureA. If ϕ is a first-order formula with free variables Free(ϕ),
and μ : Free(ϕ) → A is an assignment, we use the notation A, μ |= ϕ to denote that
ϕ is true in structure A under the assignment μ.

The Polynomial Hierarchy. There are many natural decision problems that are not
contained in the classical complexity classes P or NP. The Polynomial Hierarchy
[18,20,23,24] contains a hierarchy of increasing complexity classes ΣP

i , for all i ≥ 0.
We give a characterization of these classes based on the satisfiability problem of var-
ious classes of quantified Boolean formulas. A quantified Boolean formula is a for-
mula of the form Q1X1Q2X2 . . . QmXmψ, where each Qi is either ∀ or ∃, the Xi are
disjoint sets of propositional variables, and ψ is a Boolean formula over the variables
in
⋃m

i=1 Xi. The quantifier-free part of such formulas is called the matrix of the formula.
Truth of such formulas is defined in the usual way. Let γ = {x1 (→ d1, . . . , xn (→ dn}
be a function that maps some variables of a formula ϕ to truth values. We let ϕ[γ]
denote the application of such a substitution γ to the formula ϕ. For each i ≥ 1,
we let QSATi be the problem to decide whether a given quantified Boolean for-
mula ϕ = ∃X1∀X2∃X3 . . . QiXiψ is true, where Qi is a universal quantifier if i is
even and an existential quantifier if i is odd.

Input formulas to the problem QSATi are called ΣP
i -formulas. For each nonnega-

tive integer i ≤ 0, the complexity class ΣP
i can be characterized as the closure of the

problem QSATi under polynomial-time reductions [23,24]. The ΣP
i -hardness of QSATi

holds already when the matrix of the input formula is restricted to 3CNF for odd i, and
restricted to 3DNF for even i. The class ΣP

0 coincides with P, and the class ΣP
1 coincides

with NP. For each i ≥ 1, the class ΠP
i is defined as co-ΣP

i .

Parameterized Complexity. We briefly introduce some core notions from parameterized
complexity theory. For an in-depth treatment we refer to other sources [6,7,11,19].
A parameterized problem L is a subset of Σ∗ × N for some finite alphabet Σ. For
an instance (I, k) ∈ Σ∗ × N, we call I the main part and k the parameter. A para-
meterized problem L is fixed-parameter tractable if there exists a computable function
f and a constant c such that there exists an algorithm that decides whether (I, k) ∈ L
in time O(f(k)||I||c), where ||I|| denotes the size of I . Let L ⊆ Σ∗ × N and L′ ⊆
(Σ′)∗ ×N be two parameterized problems. An fpt-reduction from L to L′ is a mapping
R : Σ∗ × N → (Σ′)∗ × N from instances of L to instances of L′ such that there exist
some computable function g : N → N such that for all (I, k) ∈ Σ∗ × N: (i) (I, k) is
a yes-instance of L if and only if (I ′, k′) = R(I, k) is a yes-instance of L′, (ii) k′ ≤
g(k), and (iii) R is computable in fpt-time. We write L ≤fpt L′ if there is an
fpt-reduction from L to L′. Similarly, we call reductions that satisfy properties (i)
and (ii) but that are computable in time O(||I||f(k)), for some fixed computable func-
tion f , xp-reductions.

Parameterized complexity theory also offers complexity classes for problems that
lie higher in the polynomial hierarchy. Let C be a classical complexity class, e.g., NP.
The parameterized complexity class para-C is then defined as the class of all parame-
terized problems L ⊆ Σ∗ × N, for some finite alphabet Σ, for which there exist an
alphabet Π , a computable function f : N → Π∗, and a problem P ⊆ Σ∗ ×Π∗ such
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that P ∈ C and for all instances (x, k) ∈ Σ∗ × N of L we have that (x, k) ∈ L if
and only if (x, f(k)) ∈ P . Intuitively, the class para-C consists of all problems that
are in C after a precomputation that only involves the parameter [10]. In particular,
the class para-NP consists of all parameterized problems that can be fpt-reduced to the
trivial parameterized variant of the propositional satisfiability problem, i.e., the problem
SAT where the parameter value is a fixed constant for all instances.

The basic complexity classes ∃k∀∗ and ∀k∃∗ are defined in terms of the following
weighted variant of QSAT2 [13,14].

∃k∀∗-WSAT

Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k such
that ∀Y.ψ[α] is true?

The class ∃k∀∗ is defined to be the closure of ∃k∀∗-WSAT under fpt-reductions. More-
over, its dual class ∀k∃∗ is defined by ∀k∃∗ = co-∃k∀∗.

We will also consider the variant ∃≤k∀∗-WSAT of ∃k∀∗-WSAT, where the problem
is to decide whether there exists a truth assignment α to X with weight at most k such
that ∀Y.ψ[α] is true. This problem is also ∃k∀∗-complete. A proof of this can be found
in the technical report [15].

Alternating Turing machines. We use the same notation as Flum and Grohe [11, Ap-
pendix A.1]. Let m ≥ 1 be a positive integer. An alternating Turing machine (ATM)
with m tapes is a 6-tuple M = (S∃, S∀, Σ,Δ, s0, F ), where: S∃ and S∀ are disjoint
sets; S = S∃ ∪ S∀ is the finite set of states; Σ is the alphabet; s0 ∈ S is the initial
state; F ⊆ S is the set of accepting states; and Δ ⊆ S × (Σ ∪ {$,�})m × S ×
(Σ ∪ {$})m × {L,R,S}m is the transition relation. The elements of Δ are the tran-
sitions). The symbols $,� �∈ Σ are special symbols. “$” marks the left end of any
tape. It cannot be overwritten and only allows R-transitions.1 “�” is the blank sym-
bol. Intuitively, the tapes of our machine are bounded to the left and unbounded to
the right. The leftmost cell, the 0-th cell, of each tape carries a “$”, and initially, all
other tape cells carry the blank symbol. The input is written on the first tape, starting
with the first cell, the cell immediately to the right of the “$”. A configuration is a tu-
ple C = (s, x1, p1, . . . , xm, pm), where s ∈ S, xi ∈ Σ∗, and 0 ≤ pi ≤ |xi| + 1 for
each 1 ≤ i ≤ k. Intuitively, $xi�� . . . is the sequence of symbols in the cells of tape i,
and the head of tape i scans the pi-th cell. The initial configuration for an input x ∈ Σ∗

is C0(x) = (s0, x, 1, ε, 1, . . . , ε, 1), where ε denotes the empty word. A computation
step of M is a pair (C,C′) of configurations such that the transformation from C to C′

obeys the transition relation. We omit the formal details. We write C → C′ to de-
note that (C,C′) is a computation step of M. If C → C′, we call C′ a successor
configuration of C. A halting configuration is a configuration that has no successor
configuration. A halting configuration is accepting if its state is in F . A step C → C′

1 To formally achieve that “$” marks the left end of the tapes, whenever
(s, (a1, . . . , am), s′, (a′

1, . . . , a
′
m), (d1, . . . , dm)) ∈ Δ, then for all 1 ≤ i ≤ m we

have that ai = $ if and only if a′
i = $ and that ai = $ implies di = R.
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is nondeterministic if there is a configuration C′′ �= C′ such that C → C′′, and is exis-
tential if C is an existential configuration. A state s ∈ S is called deterministic if for
any a1, . . . , am ∈ Σ ∪ {$,�}, there is at most one (s, (a1, . . . , am), s′, (a′1, . . . , a′m),
(d1, . . . , dm)) ∈ Δ. Similarly, we call a non-halting configuration deterministic if its
state is deterministic, and nondeterministic otherwise. A configuration is called existen-
tial if it is not a halting configuration and its state is in S∃, and universal if it is not a
halting configuration and its state is in S∀. Intuitively, in an existential configuration,
there must be at least one possible run that leads to acceptance, whereas in a universal
configuration, all possible runs must lead to acceptance. Formally, a run of an ATM M
is a directed tree where each node is labeled with a configuration of M such that: (1) The
root is labeled with an initial configuration. (2) If a vertex is labeled with an existential
configuration C, then the vertex has precisely one child that is labeled with a successor
configuration of C. (3) If a vertex is labeled with a universal configuration C, then for
every successor configuration C′ of C the vertex has a child that is labeled with C′.
We often identify nodes of the tree with the configurations with which they are labeled.
The run is finite if the tree is finite, and infinite otherwise. The length of the run is the
height of the tree. The run is accepting if it is finite and every leaf is labeled with an
accepting configuration. If the root of a run ρ is labeled with C0(x), then ρ is a run with
input x. Any path from the root of a run ρ to a leaf is called a computation path. The
language (or problem) accepted by M is the set QM of all x ∈ Σ∗ such that there is an
accepting run of M with initial configuration C0(x). M runs in time t : N → N if for ev-
ery x ∈ Σ∗ the length of every run of M with input x is at most t(|x|). A step C → C′

is an alternation if either C is existential and C′ is universal, or vice versa. A run ρ of M
is �-alternating, for an � ∈ N, if on every path in the tree associated with ρ, there are less
than � alternations between existential and universal configurations. The machine M is
�-alternating if every run of M is �-alternating.

3 A First-Order Model Checking Characterization

In this section, we characterize the class ∃k∀∗ in terms of first-order model checking.
Consider the following parameterized problem.

∃k∀∗-MC
Instance:A first-order logic sentence ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ over
a vocabulary τ , where ψ is quantifier-free, and a finite τ -structure A.
Parameter: The number k of existentially quantified variables of ϕ.
Question: Does A |= ϕ?

We show that this problem is complete for the class ∃k∀∗. This result does not imply
that ∃k∀∗ ⊆ A[2] (cf. [11]), because the parameter of the problem ∃k∀∗-MC is only
the number of existential variables, not the size of the entire first-order formula.
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Theorem 1. ∃k∀∗-MC is ∃k∀∗-complete.

Proof. We show ∃k∀∗-membership by giving an fpt-reduction to ∃k∀∗-WSAT.
Let (ϕ,A) be an instance of ∃k∀∗-MC, where ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ is
a first-order logic sentence over vocabulary τ , and A is a τ -structure with domain A.
We may assume without loss of generality that ψ contains only connectives ∧ and ¬.

We construct an instance (ϕ′, k) of ∃k∀∗-WSAT, where ϕ is of the form ∃X ′.∀Y ′.ψ′.
We define X ′ = { x′

i,a : 1 ≤ i ≤ k, a ∈ A }, and Y ′ = { y′j,a : 1 ≤ j ≤ n, a ∈ A }.
Intuitively, the variable x′

i,a denotes whether the variable xi is assigned to value a,
and similarly, the variable y′j,a denotes whether yj is assigned to value a. In order to
define ψ′, we will use the auxiliary function μ on subformulas of ψ, defined by let-
ting μ(χ1 ∧ χ2) = μ(χ1) ∧ μ(χ2), μ(¬χ1) = ¬μ(χ1), and μ(χ) =

∨
1≤i≤u(ψz1,ai

1
∧

· · · ∧ ψzm,ai
m
) if χ = R(z1, . . . , zm) and RA = {(a11, . . . , a1m), . . . , (au1 , . . . , a

u
m)},

where for each z ∈ X ∪ Y and each a ∈ A we let ψz,a = x′
i,a if z = xi, and we

let ψz,a = y′j,a if z = yj . Now, we define ψ′ by letting ψ′ = ψ′
unique-X′ ∧ (ψ′

unique-Y ′ →
μ(ψ)), where ψ′

unique-X′ =
∧

1≤i≤k(
∨

a∈A x′
i,a ∧

∧
a,a′∈A,a �=a′(¬x′

i,a ∨ ¬x′
i,a′)),

and ψ′
unique-Y ′ =

∧
1≤j≤n(

∨
a∈A y′j,a ∧

∧
a,a′∈A,a �=a′(¬y′j,a ∨ ¬y′j,a′)). Intuitively, the

formula ψ′
unique-X′ represents whether the variables x′

i,a encode a unique assignment for
each variable xi. Similarly, the formula ψ′

unique-Y ′ represents whether the variables y′i,a
encode a unique assignment for each variable yi. We claim that (A, ϕ) ∈ ∃k∀∗-MC if
and only if (ϕ′, k) ∈ ∃k∀∗-WSAT.

Hardness can be shown by means of an fpt-reduction from ∃k∀∗-WSAT. A detailed
proof of both membership and hardness can be found in the technical report [15]. ��

4 Alternating Turing Machine Characterizations

Next, we characterize ∃k∀∗ in terms of ATMs. In particular, we consider parameterized
problems related to the halting problem for a particular class of ATMs, and show that
these problems are ∃k∀∗-complete. Moreover, we show that ∃k∀∗ is exactly the class of
parameterized decision problems that can be decided by a certain class of ATMs.

We consider the following restrictions on ATMs. An ∃∀-Turing machine (or simply
∃∀-machine) is a 2-alternating ATM (S∃, S∀, Σ,Δ, s0, F ), where s0 ∈ S∃. Let �, t ≥ 1
be positive integers. We say that an ∃∀-machine M halts (on the empty string) with
existential cost � and universal cost t if: (1) there is an accepting run of M with input ε,
and (2) each computation path of M contains at most � existential configurations and at
most t universal configurations.

Let P be a parameterized problem. An ∃k∀∗-machine for P is a ∃∀-machine M such
that there exists a computable function f and a polynomial p such that: (1) M decides P
in time f(k) · p(|x|); and (2) for all instances (x, k) of P and each computation path R
of M with input (x, k), at most f(k) · log |x| of the existential configurations of R are
nondeterministic. We say that a parameterized problem P is decided by some ∃k∀∗-
machine if there exists a ∃k∀∗-machine for P .
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Let m ∈ N be a positive integer. We consider the following parameterized problem.

∃k∀∗-TM-HALTm.
Instance: An ∃∀-machine M with m tapes, and positive integers k, t ≥ 1.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and
universal cost t?

In addition, we consider the parameterized problem ∃k∀∗-TM-HALT∗ =
⋃

m∈N
∃k∀∗-

TM-HALTm, i.e., the variant of the above problem where the number of tapes is given
as part of the input, rather than being a fixed constant.

In the remainder of this section, we show that the class ∃k∀∗ is characterized by
alternating Turing machines in the way specified by the following two theorems.

Theorem 2. ∃k∀∗ is exactly the class of parameterized decision problems that are de-
cided by some ∃k∀∗-machine.

Theorem 3. The problem ∃k∀∗-TM-HALT∗ is ∃k∀∗-complete, and so is the problem
∃k∀∗-TM-HALTm for each m ∈ N.

Proof (Theorems 2 and 3). In order to show these results, concretely, we will prove the
following claims:

1. ∃k∀∗-TM-HALT∗ ≤fpt ∃k∀∗-MC.
2. For any parameterized problem P that is decided by some ∃k∀∗-machine with

m tapes, it holds that P ≤fpt ∃k∀∗-TM-HALTm+1.
3. There is an ∃k∀∗-machine with a single tape that decides ∃≤k∀∗-WSAT.
4. Let A and B be parameterized problem. If there is an ∃k∀∗-machine for B with

m tapes, and if A ≤fpt B, then there is an ∃k∀∗-machine for A with m tapes.
5. ∃k∀∗-TM-HALT2 ≤fpt ∃k∀∗-TM-HALT1.

These claims imply the desired results in the following way.
By Claims 1 and 2, by Theorem 1, and by transitivity of fpt-reductions, we have that

any parameterized problem P that is decided by an ∃k∀∗-machine is fpt-reducible to
∃k∀∗-WSAT, and thus is in ∃k∀∗. Conversely, let P be any parameterized problem in
∃k∀∗. Then, by ∃k∀∗-hardness of ∃≤k∀∗-WSAT, we know that P ≤fpt ∃≤k∀∗-WSAT.
By Claims 3 and 4, we know that P is decided by some ∃k∀∗-machine with a single
tape. From this we conclude that ∃k∀∗ is exactly the class of parameterized problems
P decided by some ∃k∀∗-machine.

Together, Claims 2 and 3 imply that ∃≤k∀∗-WSAT ≤fpt ∃k∀∗-TM-HALT2. Clearly,
for all m ≥ 2, ∃k∀∗-TM-HALT2 ≤fpt ∃k∀∗-TM-HALTm. This gives us ∃k∀∗-hardness
of ∃k∀∗-TM-HALTm, for all m ≥ 2. ∃k∀∗-hardness of ∃k∀∗-TM-HALT1 follows from
Claim 5, which states that there is an fpt-reduction from ∃k∀∗-TM-HALT2 to ∃k∀∗-
TM-HALT1. This also implies that ∃k∀∗-TM-HALT∗ is ∃k∀∗-hard. Then, by Claim 1,
and since ∃k∀∗-MC is in ∃k∀∗ by Theorem 1, we obtain ∃k∀∗-completeness of ∃k∀∗-
TM-HALT∗ and ∃k∀∗-TM-HALTm, for each m ≥ 1.

For Claims 1–3, we describe the main idea and intuition behind the proof. A full
detailed proof of these claims can be found in the technical report [15].
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Proof of Claim 1 (sketch). Given an ∃∀-machine M with m tapes and positive in-
tegers k, t ≥ 1, we construct a structure A and a first-order sentence ∃x1, . . . , xk′ .
∀y1, . . . , yu.ψ such that A |= ϕ if and only if M halts on the empty string with existen-
tial cost k and universal cost t. In order to do so, firstly, we transform M in such a way
that each computation path contains exactly k existential configurations and exactly
t universal configurations (rather than at most k existential configurations and at most
t universal configurations) by adding a “clock” to it, i.e., by indexing the existential and
universal states with time steps i and allowing M to be “idle” at each time step.

Then, we use the existential variables xi (and the structure A) to guess the first
k many (existential) configurations and transitions of M, and we use universal vari-
ables (and the structure A) to represent the subsequent t many (universal) configura-
tions and transitions. The position of the tape heads and the tape contents for the first
k many configurations can be represented by formulas whose size depends only on
k. This is not entirely straightforward, but can be done by adapting a technique used by
Flum and Grohe [11, Theorem 7.28] to our setting. In order to represent the position
of the tape heads and the tape contents for the universal configurations, we can use ad-
ditional universally quantified variables, since the number of universal variables is not
bounded by the parameter. Finally, it is straightforward to encode into ψ the condition
that the computation path of M that is represented by the variables xi and yi must be an
accepting run.

Proof of Claim 2 (sketch). Let P be a parameterized problem, and let M be an ∃k∀∗-
machine that decides it, i.e., there exists a computable function f and a polynomial
p such that for any instance (x, k) of P we have that any computation path of M with
input (x, k) has length at most f(k) · p(|x|) and contains at most f(k) · log |x| nonde-
terministic existential configurations. Let (x, k) be an instance of P . We construct an
∃∀-machine M(x,k) and positive integers k′, t ≥ 1 such that M(x,k) accepts the empty
string with existential cost k′ and universal cost t if and only if M accepts (x, k).

In order to do so, we add symbols σ to the alphabet that represent sequences of
u many nondeterministic transitions ofM, for u ≤ �log |x|. The machineM(x,k) firstly
guesses f(k) of such symbols σ. This can be done using k′ = f(k) many existential
steps. Then, M(x,k) simulates using (deterministic) universal steps the existential steps
of M on input (x, k), where it simulates the nondeterministic existential steps of M
by “reading off” the transitions of the guessed symbols σ. Finally, M(x,k) simulates
the (nondeterministic) universal steps of M. The entire simulation of M on input (x, k)
requires at most t = f(k) · p(|x|) universal steps.

Proof of Claim 3 (sketch). We describe the working of an ∃k∀∗-machine M for
∃≤k∀∗-WSAT. Let (ϕ, k) be an instance of ∃≤k∀∗-WSAT, where ϕ = ∃X.∀Y.ψ,
and X = {x1, . . . , xn}. Firstly, M determines the size of X , and nondeterministically
guesses k many bitstrings of length �log |X |, which it appends to the tape contents.
This can be done using fpt-many existential steps, of which at most k · �log |X | many
are nondeterministic. These bitstrings represent an assignment α : X → {0, 1} of
weight at most k in the following way: α sets exactly those xi to true for which the tape
contains a bitstring that is the binary representation of index i. Then, M uses polyno-
mially many nondeterministic universal steps to guess an assignment β : Y → {0, 1}.
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Finally, it applies the assignment α ∪ β to the formula ψ and simplifies the resulting
formula, using polynomially many deterministic steps. The machine M accepts if and
only if ψ[α ∪ β] evaluates to true.

Proof of Claim 4 (sketch). Let R be the fpt-reduction from A to B, and let M be an al-
gorithm that decides B and that can be implemented by an ∃k∀∗-machine with m tapes.
Then, the composition of R and M is an algorithm that decides A. It is straightforward
to verify that the composition of R and M can be implemented by an ∃k∀∗-machine
with m tapes.

Proof of Claim 5 (sketch). The claim follows by the following statement, which is
known from the literature [16, Thm 8.9 and Thm 8.10]. Let m ≥ 1 be a (fixed) posi-
tive integer. For each ATM M with m tapes, there exists an ATM M′ with 1 tape such
that: (1) M and M′ are equivalent, i.e., they accept the same language; (2) M′ simulates
n many steps of M using O(n2) many steps; and (3) M′ simulates existential steps
of M using existential steps, and simulates universal steps of M using universal
steps. ��

5 Showcase Application to a Combinatorial Problem

In this section, we will exemplify our new complexity toolbox by applying it to vari-
ous parameterizations of a well-known ΠP

2-complete problem, as considered by Ajtai,
Fagin, and Stockmeyer [1].

Let G = (V,E) be a graph. We will denote those vertices v that have degree 1 by
leaves. We call a (partial) function c : V → {1, 2, 3} a 3-coloring (of G). Moreover,
we say that a 3-coloring c is proper if c assigns a color to every vertex v ∈ V , and if
for each edge e = {v1, v2} ∈ E holds that c(v1) �= c(v2). Now consider the following
ΠP

2-complete decision problem.

3-COL-EXT

Instance: a graph G = (V,E) with n many leaves, and an integer m.
Question: can any 3-coloring that assigns a color to exactly m leaves of G
(and to no other vertices) be extended to a proper 3-coloring of G?

We consider several parameterizations p for this problem, denoted 3-COL-EXT(p).

p parameter (k)
degree the degree of G, i.e., k = deg(G)
#leaves the number of leaves of G, i.e., k = n
#col.leaves the number of leaves that are pre-colored, i.e., k = m
#uncol.leaves the number of leaves that are not pre-colored, i.e., k = n−m

For most of these parameterizations, the existing parameterized complexity toolbox suf-
fices to determine whether or not an fpt-reduction to SAT exists. The following results
witness this (proofs of these results can be found in the technical report [15]). For pa-
rameterized problems that are in para-NP, an fpt-reduction to SAT exists, whereas this
is not the case for problems that are hard for para-ΠP

2 (unless the PH collapses).
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Proposition 1. The problems 3-COL-EXT(degree) and 3-COL-EXT(#uncol.leaves)
are para-ΠP

2-complete. The problem 3-COL-EXT(#leaves) is para-NP-complete.

For the remaining parameterization of the problem 3-COL-EXT the classes para-NP and
para-ΠP

2 seem to be of little help. On the one hand, 3-COL-EXT(#col.leaves) is unlikely
to be hard for the class para-ΠP

2, for the following reason. It is straightforward to con-
struct an xp-reduction from 3-COL-EXT(#col.leaves) to SAT. However, problems that
are hard for para-ΠP

2 do not allow xp-reductions to SAT, unless the PH collapses [14].
Therefore, 3-COL-EXT(#col.leaves) is not para-ΠP

2-hard, unless the PH collapses. On
the other hand, at first sight it is unclear how one can come up with a more efficient
reduction from 3-COL-EXT(#col.leaves) to SAT than the obvious xp-reduction. To
back up this conjecture of the non-existence of an fpt-reduction to SAT for the problem
3-COL-EXT(#col.leaves), we will use the class ∃k∀∗.

In order to give evidence that the problem 3-COL-EXT(#col.leaves) does not allow
an fpt-reduction to SAT, we can show that it is hard for the class ∀k∃∗. In addition, we
can illustrate the use of the characterization of the parameterized complexity class ∃k∀∗
in terms of first-order model checking (Theorem 1), by using the problem ∀k∃∗-MC
(which is the complement of the problem ∃k∀∗-MC) to show ∀k∃∗-membership, char-
acterizing the complexity of 3-COL-EXT(#col.leaves) as ∀k∃∗-complete.

Theorem 4. 3-COL-EXT(#col.leaves) is ∀k∃∗-complete.

Proof. To show membership, we give an fpt-reduction from 3-COL-EXT(#col.leaves)
to ∀k∃∗-MC. Let (G,m) be an instance of 3-COL-EXT(#col.leaves), where V ′ de-
notes the set of leaves of G, and where k = m is the number of edges that can be
pre-colored. Moreover, let V ′ = {v1, . . . , vn} and let V = V ′ ∪ {vn+1, . . . , vu}. We
construct an instance (A, ϕ) of ∀k∃∗-MC. We define the domain A = { av,i : v ∈
V ′, 1 ≤ i ≤ 3 } ∪ {1, 2, 3}. Next, we define CA = {1, 2, 3}, SA = { (av,i, av,i′) : v ∈
V ′, 1 ≤ i, i′ ≤ 3 }, and FA = { (j, j′) : 1 ≤ j, j′ ≤ 3, j �= j′ }. Then, we can
define the formula ϕ, by letting ϕ = ∀x1, . . . , xk.∃y1, . . . , yu.(ψ1 → (ψ2 ∧ ψ3 ∧
ψ4)), where ψ1 =

∧
1≤j<j′≤k ¬S(xi, xi′), and ψ2 =

∧
1≤j≤u C(yj), and ψ3 =∧

vj∈V ′,1≤i≤3((
∨

1≤�≤k(x� = avj ,i)) → (yj = i)), and ψ4 =
∧

{vj ,vj′}∈E F (yj , yj′).

It is straightforward to verify that (G,m) ∈ 3-COL-EXT if and only if A |= ϕ.
Intuitively, the assignments to the variables xi correspond to the pre-colorings of the

vertices in V ′. This is done by means of elements av,i, which represent the coloring of
vertex v with color i. The subformula ψ1 is used to disregard any assignments where
variables xi are not assigned to the intended elements. Moreover, the assignments to
the variables yi correspond to a proper 3-coloring extending the pre-coloring. The sub-
formula ψ2 ensures that the variables yi are assigned to a color in {1, 2, 3}, the subfor-
mula ψ3 ensures that this coloring extends the pre-coloring encoded by the assignment
to the variables xi, and the subformula ψ4 ensures that this coloring is proper.

Hardness can be shown by means of an fpt-reduction from ∀k∃∗-WSAT. A proof of
hardness can be found in the technical report [15]. ��

6 Conclusion

The classes ∃k∀∗ and ∀k∃∗ are parameterized complexity classes between the first and
the second level of the PH, that can be used to give evidence that certain parameterized
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problems do not allow an fpt-reduction to SAT. By definition, ∃k∀∗ and ∀k∃∗ are cha-
racterized in terms of weighted variants of the quantified Boolean satisfiability problem.
We provided characterizations of these classes in terms of a first-order logic model
checking problem, and in terms of alternating Turing machines with appropriate time
bounds and bounds on the number of alternations. Moreover, we showed how one of
these alternative characterizations can be used to show membership in the class ∃k∀∗,
by means of an example problem that is related to extending partial graph 3-colorings to
complete, proper 3-colorings. Our alternative characterizations establish the robustness
of the classes and provide new ways of showing membership.

Further research includes applying the additional characterizations we provided to
show membership in ∃k∀∗ and ∀k∃∗ for further parameterized problems. In addition,
it would be interesting to obtain similar characterizations for the classes ∃∗∀k-W[t],
which are parameterized complexity classes that are defined analogously to ∃k∀∗, and
that can be used to get similar intractability results [14,15].
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Abstract. We propose a new method for controlled system synthesis on
non-deterministic automata, which includes the synthesis for deadlock-
freeness, as well as invariant and reachability expressions. Our technique
restricts the behavior of a Kripke-structure with labeled transitions, rep-
resenting the uncontrolled system, such that it adheres to a given require-
ment specification in an expressive modal logic, while all non-invalidating
behavior is retained. This induces maximal permissiveness in the context
of supervisory control. Research presented in this paper allows a system
model to be constrained according to a broad set of liveness, safety and fair-
ness specifications of desired behavior, and embraces most concepts from
Ramadge-Wonham supervisory control, including controllability and
marker-state reachability. The synthesis construction is formally verified
using the Coq proof assistant.

1 Introduction

This paper concerns the controlled system synthesis on non-deterministic au-
tomata for requirements in modal logic. The controlled systems perspective
treats the system under control — the plant — and a system component which
restricts the plant behavior — the controller — as a single integrated entity.
This means that we take a model of all possible plant behavior, and construct
a new model which is constrained according to a logical specification of de-
sired behavior — the requirements. The synthesis, of such a restricted behavioral
model incorporates a number of concepts from supervisory control theory [6],
which affirm the generated model as being a proper controlled system, in rela-
tion to the original plant specification. Events are strictly partitioned into being
either controllable or uncontrollable, such that synthesis only disallows events
of the first type. In addition, synthesis preserves all behavior which does not
invalidate the requirements, thereby inducing maximal permissiveness [6]. The
requirement specification formalism extends Hennessy-Milner Logic [10] with
invariant, reachability, and deadlock-freeness expressions, and is also able to
express the supervisory control concept of marker-state reachability [13].

The intended contribution of this paper is two-fold. First, it presents a tech-
nique for controlled system synthesis in a non-deterministic context. Second, it
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defines synthesis for a modal logic which is able to capture a broad set of require-
ments. Regarding the first contribution, it should be noted that supervisory control
synthesis is often approached using a deterministic model of both plant and con-
troller. Notably, the classic Ramadge-Wonham supervisory control theory [13] is a
well-researched example of this setup. The resulting controller restricts the behav-
ior of the deterministic plant model, thereby ensuring that it operates according
to the requirements via event-based synchronization. A controlled system can not
be constructed in this way for a non-deterministic model, as illustrated by exam-
ple in Figure 1. Assume that we wish to restrict all technically possible behavior
of an indicator light of a printer (Figure 1a) such that after a single refill event,
the indicator light turns green immediately. In the solution shown in Figure 1b,
the self-loop at the right-most state is disallowed, as indicated using dashed lines,
while all other behavior is preserved. Note that it is not possible to construct this
maximally-permissive solution using event-based synchronization, as shown in [4].
However, an outcome as shown in Figure 1b can be obtained by applying synthesis
for the property� [refill]green, using the method described in this paper. As this
example shows, the strict separation between plant and controller is not possible
for non-deterministic models, and therefore we interpret the controlled system as
a singular entity.

Ink Present Out Of Ink Ink Present Out Of Ink

Fig. 1. Example of control synthesis in a non-deterministic context. A model for all
possible behavior of an ink presence indicator light of a printer is restricted in such
a way that after every refill , the state labeled with green is reached directly. Synthesis,
as defined in this paper, of the property � [refill]green upon the model in Figure 1a,
results in a synthesis outcome as in Figure 1b., where disallowed behavior is indicated
using dashed lines.

This requirement formalism applied in this paper, which extends Hennessy-
Milner Logic with invariant and reachability operators, and also includes a test
for deadlock-freeness, is able to express a broad set of liveness, safety, and fair-
ness properties. For instance, an important liveness concept in supervisory con-
trol theory involves marker-state reachability, which is informally expressed as
the requirement that it is always possible to reach a state which is said to be
marked. This requirement is modeled as �♦marked , using the requirement spec-
ification logic, in conjunction with assigning marked as a separate property to
the designated states in the Kripke-model.

Safety-related requirements, which model the absence of faulty behavior, in-
clude deadlock-avoidance, expressed as � dlf (i.e., invariantly, deadlock-free)
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and safety requirements of a more general nature. For instance, one might re-
quire that some type of communicating system is always able to perform a
receive step, directly after every send step. Such a property is expressed as
� [send]<receive>true, using the requirement specification logic applied in this
paper. In addition, we argue that this logic is able to model a limited class of fair-
ness properties. One might require from a system which uses a shared resource
that in every state, the system has access to the resource (the state has the access
property), or it can do a lock step to claim the resource, after which access is
achieved immediately. We synthesize the property � (access ∨ <lock>access) in
order to constrain the plant behavior in this way.

The remainder of this paper is set up as follows. We consider a number of re-
lated works on control synthesis in Section 2. Preliminary definitions in Section
3 introduce formal notions up to a clear statement of the synthesis problem. Sec-
tion 4 concerns the formal definition of the synthesis construction while Section
5 lists a number of important theorems indicating correctness of the synthesis
approach, with detailed proofs being available in textual form [19], as well as in
computer-verified form [16].

2 Related Work

Earlier work by the same authors concerning synthesis for modal logic includes
a recursive synthesis method for Hennessy-Milner Logic [17], and a synthesis
method for a subset of the logic considered in this paper, with additional restric-
tions on combinations of modal operators [18]. This paper vastly improves previ-
ous efforts by allowing unrestricted synthesis for invariant formulas and including
the new operator ♦ for reachability. It also takes into account deadlock-freeness,
and uncontrollable events, thereby achieving controllability.

We analyze related work alongside the three intended improvements in this
paper: 1) Allowance of non-determinism in plant specifications, 2) Expressiveness
of the requirement specification formalism, and, 3) Adhering to some form of
maximal permissiveness.

Ramadge-Wonham supervisory control [13] defines a broadly-embraced me-
thodology for controller synthesis on deterministic plant models for requirements
specified using automata. It defines a number of key elements in the relation-
ship between plant and controlled system, such as controllability, marker-state
reachability, deadlock-freeness and maximal permissiveness. Despite the fact that
a strictly separated controller offers advantages from a developmental or imple-
mentational point of view, we argue that increased abstraction and flexibility
justifies research into control synthesis for non-deterministic models. In addi-
tion, we emphasize that the automata-based description of desired behavior in
the Ramadge-Wonham framework [13] does not allow the specification of require-
ments of existential nature. For instance, in this framework it is not possible to
specify that a step labeled with a particular event must exist, hence the choice
of modal logic as our requirement formalism.

Work by Pnueli and Rosner [12] concerns a treatment of synthesis for reac-
tive systems, based upon a finite transducer model of the plant, and a temporal
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specification of desired behavior. This synthesis construction is developed fur-
ther for deterministic automata in [12], but the treatment remains non-maximal.
This research is extended in [2], which connects reactive synthesis to Ramadge-
Wonham supervisory control using a parity-game based approach. The method-
ology described in [2] transforms the synthesis control problem for μ-calculus
formulas in such a way that the set of satisfying models of a μ-calculus for-
mula coincides with the set of controllers which enforce the controlled behavior.
Although non-determinism is allowed in plant-specifications in [2], the treat-
ment via loop-automata does not allow straightforward modeling of all (infi-
nite) behaviors. Also, maximal permissiveness is not specified as a criterion for
control synthesis in [2]. Interesting follow-up research is found in [3], for non-
deterministic controllers over non-deterministic processes. However, the specifi-
cation of desired behavior is limited to alternating automata [3], which do not
allow complete coverage of invariant expressions over all modalities, or an equiva-
lent thereof. Reactive synthesis is further applied to hierarchical [1] and recursive
[11] component-based specifications. These works, which both are based upon
a deterministic setting, provide a quite interesting setup from a developmental
perspective, due to their focus on the re-usability of components.

Research in [20] relates Ramadge-Wonham supervisory control to an equiva-
lent model-checking problem, resulting in important observations regarding the
mutual exchangeability and complexity analysis of both problems. Despite the
fact that research in [20] is limited to a deterministic setting, and synthesis re-
sults are not guaranteed to be maximally permissive, it does incorporate a quite
expressible set of μ-calculus requirements. Other research based upon a dual
approach between control synthesis and model checking studies the incremental
effects of transition removal on the validity of μ-calculus formulas [7,14].

Research by D’Ippolito and others [8], [9] is based upon the framework of the
world machine model for the synthesis of liveness properties, stated in fluent
temporal logic. A distinction is made between controlled and monitored beha-
vior, and between system goals and environment assumptions [8]. A controller is
then derived from a winning strategy in a two-player game between original and
required behavior, as expressed in terms of the notion of generalized reactivity,
as introduced in [8]. Research in [8] also emphasizes the fact that pruning-based
synthesis is not adequate for control of non-deterministic models, and it defines
synthesis of liveness goals under a maximality criterion, referred to as best-effort
controller. However, this maximality requirement is trace-based and is therefore
not able to signify inclusion of all possible infinite behaviors. In addition, some
results in [8] are based upon the assumption of a deterministic plant specification.

3 Definitions

We assume a set E of events and a set P of state-based properties. In addition, we
assume a strict partition of E into controllable events C and uncontrollable events
U , such that C ∪ U = E and C ∩ U = ∅. State-based properties are used to capture
state-based information, and are assigned to states using a labeling function.
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Example properties are shown in Figure 1, as red and green. Figure 1 also shows
examples of the events print and refill , which are assumed to be controllable in
this example. Events are used to capture system dynamics, and represent actions
occurring when the system transitions between states. Controllable events may
be used to model actuator actions in the plant, while an uncontrollable event
may represent, for instance, a sensor reading. Basic properties and events are
used to model plant behavior in the form of a Kripke-structure [5] with labeled
transitions, to be abbreviated as Kripke-LTS, as formalized in Definition 1. Note
that we assume finiteness of the given transition relation.

Definition 1. We define a Kripke-LTS as a four-tuple (X,L,−→, x) for state-
space X, labeling function L : X (→ 2P , finite transition relation −→⊆ X×E×X,
and initial state x ∈ X. The universe of all Kripke-LTSs is denoted by K.

As usual, we will use the notation x
e−→ x′ to denote that (x, e, x′) ∈−→.

The reflexive-transitive closure −→∗ of a transition relation −→ is defined in the
following way: For all x ∈ X it holds that (x, x) ∈−→∗ and if there exist e ∈ E
and y, x′ ∈ X such that x

e−→ y and y −→∗ x′ then (x, x′) ∈−→∗.
Two different behavioral preorders are applied in this paper. The first is the

simulation preorder, which is reiterated in Definition 2. Simulation is used to
signify inclusion of behavior, while synthesis may alter the transition structure
due to, for instance, unfolding. Simulation as applied in this paper is a straight-
forward adaptation of the definition of simulation in [15].

Definition 2. For k′ = (X ′, L′,−→′, x′) and k = (X,L,−→, x) we say that k′

and k are related via simulation (notation: k′ * k) if there exists a relation
R ⊆ X ′ ×X such that (x′, x) ∈ R and for all (y′, y) ∈ R the following holds:

1. We have L′(y′) = L(y); and

2. If y′ e−→′z′ then there exists a step y
e−→ z such that (z′, z) ∈ R.

Partial bisimulation [4] is an extension of simulation such that the subset of
uncontrollable events is bisimulated. For plant specification k ∈ K and synthe-
sis result s ∈ K we require that s is related to k via a partial bisimulation.
This signifies the fact that synthesis did not disallow any uncontrollable event,
which implies controllability in the context of supervisory control. Research in
[4] details the nature of this partial bisimulation preorder.

Definition 3. If k′ = (X ′, L′,−→′, x′) and k = (X,L,−→, x), then k′ and k
are related via a partial bisimulation (notation: k′ � k) if there exists a relation
R ⊆ X ′ ×X such that (x′, x) ∈ R and for all (y′, y) ∈ R the following holds:

1. We have L′(y′) = L(y);

2. If y′ e−→′z′ then there exists a step y
e−→ z such that (z′, z) ∈ R; and

3. If y
e−→ z for e ∈ U then there exists a step y′ e−→′z′ such that (z′, z) ∈ R.

Requirements are specified using a modal logic F given in Definition 5, which
is built upon the set of state-based formulas B in Definition 4.
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Definition 4. The set of state-based formulas B is defined by the grammar:

B ::= true | false | P | ¬B | B ∧ B | B ∨ B

As indicated in Definition 4, state-based formulas are constructed from
a straightforward Boolean algebra which includes the basic expressions true and
false, as well as a state-based property test for p ∈ P . Formulas in B are then
combined using the standard Boolean operators ¬, ∧ and ∨.

Definition 5. The requirement specification logic F is defined by the grammar:

F ::= B | F ∧ F | B ∨ F | [E]F | <E>F | �F | ♦B | dlf

We briefly consider the elements of the requirement logic F . Basic expres-
sions in Definition 4 function as the basic building blocks in the modal logic F .
Conjunction is included, having its usual semantics, while disjunctive formulas
are restricted to those having a state-based formula in the left-hand disjunct.
This restriction guarantees correct synthesis solutions, since it enables a local
state-based test for retaining the appropriate transitions. The formula [e]f can
be used to test whether f holds after every e-step, while the formula <e>f is
used to assess whether there exists an e-step after which f holds. These two
operators thereby follow their standard semantics from Hennessy-Milner Logic
[10]. An invariant formula � f tests whether f holds in every reachable state,
while a reachability expression ♦ b may be used to check whether there exists
a path such that the state-based formula b holds at some state on this path.
Note that the sub-formula b of a reachability expression ♦ b is restricted to
a state-based formula b ∈ B. This is used to acquire unique synthesis solutions,
due to the fact that for unrestricted reachability expressions, only an indefinite
unfolding coincides with a maximal solution. The deadlock-free test dlf tests
whether there exists an outgoing step of a particular state. Combined with the
invariant operator, the formula � dlf can be used to specify that the entire
synthesized system should be deadlock-free. Deadlock-freeness is not defined as
a state-based expression here since it requires information about (the existence
of) outgoing transitions, which may have been removed during synthesis. Vali-
dity of formulas in B and F , with respect to a Kripke-LTS k ∈ K, is as shown
in Definition 6.

Definition 6. For k = (X,L,−→, x) ∈ K and f ∈ F we define if k satisfies f
(notation: k � f) as follows:

k � true

p ∈ L(x)

(X,L,−→, x) � p

k �� b

k � ¬b
k � f k � g

k � f ∧ g

k � f

k � f ∨ g

k � g

k � f ∨ g

∀x
e−→ x′ (X,L,−→, x′) � f

(X,L,−→, x) � [e]f

x
e−→ x′ (X,L,−→, x′) � f

(X,L,−→, x) � <e>f

∀x −→∗ x′ (X,L,−→, x′) � f

(X,L,−→, x) � � f

x −→∗ x′ (X,L,−→, x′) � b

(X,L,−→, x) � ♦ b

x
e−→ x′

(X,L,−→, x) � dlf
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We may now formulate the synthesis problem in terms of the previous defini-
tions in Definition 7. Research in this paper focuses on resolving this problem.

Definition 7. Given k ∈ K and f ∈ F , find s ∈ K in a finite method such that
the following holds: 1) s � f , 2) s * k, 3) s � k, 4) For all k′ * k and k′ � f
holds k′ * s; or determine that such an s does not exist.

These four properties are interpreted in the context of supervisory control
synthesis as follows. Property 1 (validity) states that the synthesis result satis-
fies the synthesized formula. Property 2 (simulation) asserts that the synthesis
result is a restriction of the original behavior, while property 3 (controllability)
ensures that no accessible uncontrollable behavior is disallowed during synthe-
sis. Controllability is achieved if the synthesis result is related to the original
plant-model via a partial bisimulation, which adds bisimulation of all uncontrol-
lable events to the second property. Note that the third property implies the
second property, as can be observed in Definitions 2 and 3. However, both these
properties are of importance since the former is related to the synthesis result
being a restriction of original behavior, while the latter signifies achievement of
controllability. Property 4 (maximality) states that synthesis removes the least
possible behavior, and thereby induces maximal permissiveness. That is, the be-
havior of every alternative synthesis option is included in the behavior of the
synthesis result.

Fig. 2. Overview of the synthesis process. Steps in the original transition relation
(Figure 2a) of type x

e−→ x′ are combined with reductions of the synthesized require-
ment (Figure 2b), resulting in transitions of type (x, f)

e−→0 (x′, f ′), and possibly
inducing unfoldings. Transition are then removed (Figure 2c-2d) based upon a local
synthesizability test for formulas assigned to target states, until synthesizability holds
in every reachable state (Figure 2e).

4 Synthesis

The purpose of this section is to illustrate the formal definition of the synthesis
construction. Synthesis as defined in this paper involves three major steps, after
which a modified Kripke-LTS is obtained. If synthesis is successful, the resulting
structure satisfies all synthesis requirements, as stated in Definition 7. The first
stage of synthesis transforms the original transition relation −→⊆ X × E ×X ,
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for state-space X , into a new transition relation −→0⊆ (X ×F)×E × (X ×F)
over the state-formula product space. This allows us to indicate precisely which
modal (sub-)formula needs to hold at each point in the new transition relation.
The second step removes transitions based upon an assertion of synthe-
sizability of formulas assigned to the target states of transitions. This second
step is repeated until no more transitions are removed. The third and final syn-
thesis step tests whether synthesis has been successful by evaluating whether
the synthesizability predicate holds for every remaining state. An overview of
the synthesis process is shown in Figure 2.

A formal derivation of the starting point in the synthesis process −→0 is shown
in Definition 9. This definition relies upon sub-formulas under conjunction and
invariant operators, as formalized in Definition 8.

Definition 8. We say that f ∈ F is a sub-formula of g ∈ F (notation f ∈
sub (g)) if this can be derived by the following rules:

f ∈ sub (f)

f ∈ sub (g)

f ∈ sub (g ∧ h)

f ∈ sub (h)

f ∈ sub (g ∧ h)

f ∈ sub (g)

f ∈ sub (� g)

Definition 9. For state-space X and original transition relation −→⊆ X×E ×
X, we define the starting point of synthesis −→0⊆ (X × F) × E × (X × F) as
follows:

x
e−→ x′

(x, b)
e−→0 (x, true)

(x, f)
e−→0 (x′, f ′) (x, g)

e−→0 (x′, g′) g′ ∈ sub (f ′)

(x, f ∧ g)
e−→0 (x′, f ′)

(x, f)
e−→0 (x′, f ′) (x, g)

e−→0 (x′, g′) g′ �∈ sub (f ′)

(x, f ∧ g)
e−→0 (x′, f ′ ∧ g′)

x
e−→ x′ x � b

(x, b ∨ f)
e−→0 (x′, true)

(x, f)
e−→0 (x′, f ′)

(x, b ∨ f)
e−→0 (x′, f ′)

x
e−→ x′

(x, [e]f)
e−→0 (x′, f)

x
e−→ x′ e �= e′

(x, [e′]f) e−→0 (x′, true)

x
e−→ x′

(x, <e>f)
e−→0 (x′, f)

x
e−→ x′

(x, <e′>f) e−→0 (x′, true)

(x, f)
e−→0 (x′, f ′) f ′ ∈ sub (� f)

(x,� f)
e−→0 (x′,� f)

(x, f)
e−→0 (x′, f ′) f ′ �∈ sub (� f)

(x,� f)
e−→0 (x′,� f ∧ f ′)

x
e−→ x′

(x,♦ b)
e−→0 (x′, true)

x
e−→ x′

(x,♦ b)
e−→0 (x′,♦ b)

x
e−→ x′

(x, dlf )
e−→0 (x′, true)

The intuitive interpretation of a derivation rule for (x, f)
e−→0 (x′, f ′) in De-

finition 9 is an assignment of the formula f ′ to the state x′, if f ′ is required for
the validity of f in x, after event e. This is particularly recognizable in the deriva-
tion rules for [e]f . The derivation rules for conjunction ensure the validity of
reductions for both operands. However, in order to achieve a terminating synthe-
sis procedure, reductions of conjunctive formulas are prevented from expanding
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infinitely often using the sub-formula relation. This applies also to reductions of
invariant formulas. The prevention of indefinite formula expansion under con-
junction is essential, and only required for, finiteness of the formula-reductions
for invariant expressions. Other reduction strategies typical for the synthesis ap-
proach in Definition 9 include a limitation of outgoing transitions based upon
the state-based validity of left-hand disjuncts. In addition, reductions towards
true are included for <e>f and ♦ p, in order to achieve maximal permissiveness,
since the synthesis for a single witness does not affect other outgoing transitions,
which should be left in place.

The starting point of synthesis −→0 is subjected to transition removal via
a synthesizability test for formulas assigned to the target states of transitions.
In generalized form, we define a formula f ∈ F to be synthesizable in the state-
formula pair (x, g) if this can be derived by the rules in Definition 11. For an
appropriate definition of synthesizability, it is necessary to extend the notion of
sub-formulas in such a way that a state-based evaluation can be incorporated,
in order to handle disjunctive formulas correctly. This leads to the sub-formula
notion called part , which is shown in Definition 10.

Definition 10. We say that a formula f ∈ F is a part of a formula g ∈ F in
the context of a state based evaluation for (X,L,−→, x) if f ≡ g, or a derivation
can be obtained by the following rules:

f ∈ part (x, g)

f ∈ part (x, g ∧ h)

f ∈ part (x, h)

f ∈ part (x, g ∧ h)

x �� b f ∈ part (x, g)

f ∈ part (x, b ∨ g)

f ∈ part (x, g)

f ∈ part (x,� g)

Partial formulas as shown in Definition 10 are used in the definition of synthe-
sizability as shown in Definition 11. In particular, this is used in the definition
of synthesizability for formulas of type <e>f . In addition, partial formulas play
a major role in the correctness proofs of the synthesis method.

Definition 11. With regard to an intermediate relation −→n⊆ (X ×F)× E ×
(X×F) in the synthesis procedure, we say that a formula f ∈ F is synthesizable
in the state-formula pair (x, g) (notation: (x, g) ↑ f) if this can be derived as
follows:

x � b

(x, g) ↑ b

(x, g) ↑ f1 (x, g) ↑ f2
(x, g) ↑ f1 ∧ f2

x � b

(x, g) ↑ b ∨ f

(x, g) ↑ f

(x, g) ↑ b ∨ f

(x, g) ↑ [e]f

(x′, g′) ↑ f (x, g)
e−→n (x′, g′) f ∈ part (x′, g′)

(x, g) ↑ <e>f

(x, g) ↑ f

(x, g) ↑ � f

(x, g) −→∗
n (x′, g′) x′ � b

(x, g) ↑ ♦ b

(x, g)
e−→n (x′, g′)

(x, g) ↑ dlf

It is important to note here that the synthesizability test serves as a partial
assessment. The synthesizability predicate for f holds in the state-formula pair
(x, g) if it is possible to modify outgoing transitions of (x, g) in such a way that
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f becomes satisfied in (x, g). However, synthesizability is not straightforwardly
definable for a number of formulas. For instance, it can not be directly assessed
whether it is possible to satisfy an invariant formula. Therefore, the synthesi-
zability test in Definition 11 is designed to operate in conjunction with the
process of repeated transition removal, as shown in Figure 2. This is reflected,
for instance, in the definition of synthesizability for an invariant formula � f ,
which only relies upon f being synthesizable. However, since synthesizability
needs to hold at every reachable state for synthesis to be successful, such a
definition of synthesizability for invariant formulas is appropriate due to its role
in the entire synthesis process. A synthesis example for the invariant formula
� p ∧ [a]q is shown in Figure 3.

Fig. 3. Synthesis for the formula � p ∧ [a]q upon the model in Figure 3a, resulting in
the restricted behavioral model shown in Figure 3b. Note the unfolding for [a]q, the
restricted formula-expansion for invariant formulas, and transition disabling, indicated
by dashed lines, due to the state-based formula q not being synthesizable in x, and
p not being synthesizable in z

Using the definitions stated before, we are now ready to define the main
synthesis construction. That is, how transitions are removed from the synthesis
starting point −→0, and how are the subsequent intermediate transition relations
−→1,−→2, . . . constructed. In addition, more clarity is required with regard to
reaching a stable point during synthesis, and verifying whether the synthesis
construction has been completed successfully.

Definition 12. For k = (X,L,−→, x) ∈ K and f ∈ F , we define the n-th
iteration in the synthesis construction as follows:

(x, f)
e−→n (x′, f ′) e ∈ U

(x, f)
e−→n+1 (x′, f ′)

(x, f)
e−→n (x′, f ′) (x, f) ↑ f

(x, f)
e−→n+1 (x′, f ′)

The corresponding system model Sn
k,f is defined as stated below, using the labeling

function Lproj , such that Lproj (y, g) = L(y), for all y ∈ X and g ∈ F .

Sn
k,f = (X ×F , Lproj ,−→n, (x, f))
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One last definition remains, namely completeness of the synthesis construc-
tion. The formula reductions induced by Definition 9 are finite, which implies
a terminating construction of the transition relation −→0. Since −→0 consists of
finitely many transitions, only finitely many steps may be removed. This means
that at some point, no more transitions are removed, and a stable point will be
reached. If at this point, synthesizability holds at every reachable state, synthesis
is successful. Otherwise, it is not. It is natural that a formal notion representing
the first situation serves as a premise for a number of correctness results. This
notion is formalized as completeness in Definition 13.

Definition 13. For k = (X,L,−→, x) ∈ K, f ∈ F and n ∈ N, we say that Sn
k,f

is complete if the following holds:

For all (x, f) −→∗
n (x′, f ′) it holds that (x′, f ′) ↑ f ′.

5 Correctness

We show that synthesis as defined in this paper results in a controlled system
adhering to the conditions in Definition 7. Detailed proofs are available in [19],
while computer-verified proofs are available as well [16]. The synthesis method
is finite (Theorem 1), and the result satisfies the synthesized requirement (The-
orem 2). In addition, we show that the synthesis result is related to the original
model via partial bisimulation (Theorem 3), which implies simulation. As a final
result, we prove maximal permissiveness (Theorem 4). Assessing whether syn-
thesis has been successful is done by checking whether synthesizability holds at
every reachable state in the fixed point obtained as a result of Theorem 1.

Theorem 1. For k = (X,L,−→, x) ∈ K, having finite −→, and f ∈ F , there
exists an n ∈ N such that Sn

k,f = Sm
k,f for all m > n.

Theorem 2. If Sn
k,f is complete then Sn

k,f � f .

Theorem 3. If Sn
k,f is complete then Sn

k,f � k.

Theorem 4. If k′ * k and k′ � f then k′ * Sn
k,f .

6 Conclusions

This paper presents a novel approach to controlled system synthesis for modal
logic on non-deterministic plant models. The behavior of a Kripke-structure with
labeled transitions is adapted such that it satisfies the synthesized requirement.
The relationship between the synthesis result and the original plant specifica-
tion adheres to important notions from Ramadge-Wonham supervisory control:
controllability and maximal permissiveness. The requirement specification logic
also allows expressibility of deadlock-freeness and marker-state reachability. The
synthesis approach, via a reduction on modal expressions combined with an ite-
ratively applied synthesizability test for formulas assigned to target states of
transitions results in an effective synthesis procedure. Our next research efforts
will focus on determining the effectiveness of this procedure as well as its appli-
cability in case studies.
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Abstract. Biological network comparison is an essential but algorithmi-
cally challenging approach for the analysis of underlying data. A typical
example is looking for certain subgraphs in a given network, such as sub-
graphs that maximize some function of their nodes’ weights. However, the
corresponding maximum-weight connected subgraph (mwcs) prob-
lem is known to be hard to approximate. In this contribution, we consider
the problem of the simultaneous discovery of maximum weight subgraphs
in two networks, whose nodes are matched by a mapping: the maximum-
weight cross-connected subgraphs (mwccs) problem. We provide
inapproximability results for this problem. These results indicate that
the complexity of the problem is conditioned both by the nature of the
mapping function and by the topologies of the two networks. In particu-
lar, we show that the problem is inapproximable even when the mapping
is an injective function and the input graphs are two binary trees. We
also prove that it remains hard to approximate when the mapping is a
bijective function and the input graphs are a graph and a binary tree.
We further analyze a variant of the mwcs problem where the networks’
nodes are assigned both a weight and a contribution value, that we call
maximum-weight ratio-bounded connected subgraph (mwrbcs).
We provide a polynomial time algorithm for bounded-degree trees and
an efficient dynamic programming solution for cycles. These algorithms
allow us to derive a polynomial solution for mwccs applicable when (i)
mwrbcs is polynomially solvable for one of the graphs and (ii) the set
of connected induced subgraphs of the other graph is polynomially enu-
merable.

1 Introduction

Networks of interacting units are a core concept in modern biology that enables
understanding of biological processes at the system level. In their most basic
form biological networks are graphs where vertices represent biological entities
such as genes or proteins and edges represent interactions between these entities.
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Increasingly advanced experimental methods are used to provide evidence of
existing interactions and nowadays comprehensive resources provide access to
this knowledge (see for example [5] and [9]).

One of the key concepts to understand biological processes is that of modules
within biological networks. Modules are considered to be sets of entities (genes,
proteins, etc.) that function in a coordinated fashion or physically interact (for a
review see [8]). The problem of finding gene modules within a biological network
was first solved using simulated annealing by Ideker et al. [6].

A possible formulation for the problem of finding modules within a network
is to look for connected sub-networks that maximize weights on the nodes.
These weights typically represent some measure of biological activity, for ex-
ample the expression level of genes. Finding the optimal (with respect to sum
of weights) module in a biological network has been formally defined as the
maximum (node-)weight connected subgraph problem (mwcs) [3].

Roughly, mwcs consists in the computation of the connected induced sub-
graph G′ of a node-weighted graph G, such that the cumulative sum of its node’s
weights is maximal.

However, it is NP-hard to approximate the optimum of the mwcs problem
within a constant factor 0 < ε < 1 [1]. Despite this complexity, there exist
efficient exact solutions to this problem, using either reductions to the prize-

collecting steiner tree problem [3], or using branch-and-cut mixed integer
programming with node separation [1].

One limitation of the existing formulation is that it only considers one net-
work at a time. Indeed, several studies have demonstrated the added value of
identifying biological processes that are conserved across different conditions or
even different species [12,7] as modules identified in single condition lack robust-
ness [11]. We previously proposed a formulation for the identification of modules
that are conserved across species. In our formulation, the two species are rep-
resented by two different networks with weighted nodes and we are provided
with a mapping between the nodes of these networks. This mapping represents
the similarity between genes or proteins across species, for example modeling
orthology.

We formalized the identification of conserved modules as the maximum-

weight cross-connected subgraphs (mwccs) problem [4] which consists
in the computation of two modules (connected subgraphs, one in each network),
such that (i) the cumulative sum of their node weights is maximal and (ii) the
proportion of conserved nodes within the solution is greater than a fixed thresh-
old α. We consider a node in one of the modules to be conserved if it is mapped
to a node in the other module. We have proposed an efficient mixed-integer
programming solution for this problem and provided a fast implementation1.

In this paper, we investigate the algorithmic complexity of the mwccs prob-
lems. In the case of α = 0, the mwccs problem is as hard as the mwcs problem
since it amounts to solving two independent mwcs instances. Here, we (i) es-
tablish the hardness of the problem when α = 1, corresponding to a complete

1 http://software.cwi.nl/xheinz

http://software.cwi. nl/xheinz
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conservation requirement where all nodes in a module must admit a mapped
counterpart in the other module; and (ii) provide polynomial exact algorithms
for certain sub-cases and arbitrary α. This paper is organized as follows. We
recall basic definitions and problem formulation in Section 2. In Section 3, we
provide inapproximability results for this problem when α = 1. These results
indicate that the complexity of the problem is conditioned both by the nature
of the mapping function and by the topologies of the two networks.

In particular, we show that the problem is inapproximable even when the map-
ping is an injective function and the input graphs are two binary trees. We also
prove that it remains hard to approximate when the mapping is a bijective func-
tion and the input graphs are a graph and a binary tree. In Section 4, we study
a variant of the mwcs problem where the networks’ nodes are assigned both a
weight and a contribution value, that we callmaximum-weight ratio-bounded

connected subgraph (mwrbcs). We provide a polynomial time algorithm for
bounded-degree trees and an efficient dynamic programming solution for cycles.
These algorithms allow us to derive a polynomial solution for mwccs applicable
when (i) mwrbcs is polynomially solvable for one of the graphs and (ii) the set
of subgraphs of the other graph is polynomially enumerable.

2 Preliminaries

Let us first recall the basic needed material related to graphs. A graphG = (V,E)
consists of a set of vertices V and a set of edges (unordered pairs of vertices)
E. We say that G is node-weighted if a function w : V → R is provided. Given
a graph G = (V,E), its subgraph G′ = (V ′, E′) is said to be induced if G′

has exactly the edges that appear in G over the vertex set V ′ ∈ V , that is
E′ = {(x, y) ∈ E | x, y ∈ V ′}. We denote the graph induced by the node set V ′

in G by G [V ′].

The mwcs and mwccs problems are formally defined as follows.

maximum (node-)weight connected subgraph problem (mwcs): Given a
node-weighted graph G = (V,E), w its node-weighting function, find a subset
V ∗ ⊆ V , such that the induced graph G [V ∗] is connected, and

∑
v∈V ∗ w(v) is

maximum. Roughly, mwcs consists in the discovery of the connected subgraph
of maximal weight, in a node weighted (possibly negatively) graph.

maximum-weight cross-connected subgraphs (mwccs): Given two node-
weighted graphs G1 = (V1, E1) and G2 = (V2, E2), w1 and w2 their respective
node-weighting functions, a symmetric relation M(V1, V2), and an interconnec-
tion ratio α ∈ [0, 1], mwccs asks to find two subsets of nodes V1

∗ ⊆ V1 and
V2

∗ ⊆ V2 such that:

1. the induced graphs G1 [V1
∗] and G2 [V2

∗] are connected, and
2. an α-fraction of the solution is M -related:

|U∗| ≥ α× |V1
∗ ∪ V2

∗| where U∗ = {u ∈ V1
∗, v ∈ V2

∗ | M(u, v)}, and
3.
∑

u∈V1
∗ w1(u) +

∑
v∈V2

∗ w2(v) is maximal.
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3 Inapproximability of MWCCS

We prove the inapproximability of two specific cases of the mwccs problem.
First, we prove that if the mapping between G1 and G2 is an injective function
and G1 is a comb tree while G2 is a binary tree, mwccs is APX-hard and can
not be approximated within factor 1.0014. Then, we prove that if the mapping is
a bijective function, the problem is as hard to approximate as when considering
a tree and a graph. These results shade light on the role of the mapping with
respect to the difficulty of the problem.

Both proofs consist in an L-reduction from theAPX-hard max-3sat(B) prob-
lem [10]: Given a collection Cq = {c1, . . . cq} of q clauses where each clause
consists of a set of three literals over a finite set of n boolean variables Vn =
{x1, . . . xn} and every literal occurs in at most B clauses, is there a truth assign-
ment of Vn satisfying the largest number of clauses of Cq?

Proposition 1. The mwccs problem for a comb tree and a binary tree is APX-
hard and not approximable within factor 1.0014 even when the mapping M is an
injective function and a complete conservation (i.e. alpha = 1) is required.

We first describe how we build an instance of mwccs corresponding to an
instance of max-3sat(B). Given any instance (Cq, Vn) of max-3sat(B), we
build a comb tree G1 = (V1, E1) with weight function w1, a binary tree G2 =
(V2, E2) with weight function w2 and a mapping M as follows.

The comb graph G1 is defined as follows. The vertex set is V1 = {r, li, cj , dli,
dcj | 1 ≤ i ≤ n, 1 ≤ j ≤ q}. The edge set is given by the following equation.

E1 ={(cj , dcj), (li, dli) | 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∪
{(dcq, r), (r, dl1)}∪
{(dcj , dcj+1), (dli, dli+1) | 1 ≤ i < n, 1 ≤ j < q}.

The weight function w1 is defined as follows: for all 1 ≤ i ≤ n and 1 ≤ j ≤ q,
w1(li) = B, w1(cj) = 1 and w1(r) = w1(dcj) = w1(dli) = 0.

Roughly, in G1 there is a node for each clause (denoted by cj) and for each
literal (denoted by li) that represent the leaves of the comb. The spine of the
comb contains dummy nodes for each clause (denoted by dcj) and for each literal
(denoted by dli) separated by a central node (denoted by r).

The binary tree G2 = (V2, E2) with weight function w2 is defined as follows.

The vertex set is V2 = {r, xi, xi, c
k
j , dxi, dxi, dc

i
j , dc

i
j | 1 ≤ i ≤ n, 1 ≤ j ≤ q, 1 ≤

k ≤ 3}. The edge set E2 is given by the following equation.

E2 ={(r, dxn)} ∪
{(ck′

j , dckj ) | xk, is the k′-th literal of clause cj} ∪

{(ck′
j , dckj )|xk, is the k′-th literal of clause cj} ∪

{(dxi, dxi+1)|1 ≤ i < n} ∪

{(dxi, dxi), (dxi, xn−i+1), (dxi, xn−i+1), (xi, dc
i
1), (xi, dc

i
1)|1 ≤ i ≤ n} ∪

{(dcij , dcij+1), (dc
i
j , dc

i
j+1)|1 ≤ i ≤ n, 1 ≤ j < q}
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The weight function w2 is defined as follows: for all 1 ≤ i ≤ n, 1 ≤ j ≤ q and
1 ≤ k ≤ 3, w2(xi) = w2(xi) = −B and w2(r) = w2(c

k
j ) = w2(dxi) = w2(dxi) =

w2(dc
i
j) = w2(dc

i
j) = 0

Roughly, in G2 there is a node for each literal of each clause (denoted by
ckj ) and for each value of each literal (denoted by xi and xi). Dummy nodes for
literals have been duplicated (one for each value of the literal - that is dxi and
dxi). Dummy nodes for clauses have also been duplicated (one for each value of

all literals - dcij and dcij). The structure is not as easy to informally describe as
for G1 but the reader may refer to an illustration provided in Figure 1.

Finally, the mapping M is an injective function from V1 to V2 defined as
follows.

M(r) = r

M(li) = {xi, xi}, for all 1 ≤ i ≤ n

M(cj) = {ckj |1 ≤ k ≤ 3}, for all 1 ≤ j ≤ q

M(dli) = {dxi, dxi}, for all 1 ≤ i ≤ n

M(dcj) = {dcij , dcij}, for all 1 ≤ i ≤ n and 1 ≤ j ≤ q

Fig. 1. Illustration of the construction of G1, G2, and M , given Cq = {(x1 ∨ x2 ∨
¬x3), (¬x1 ∨x2 ∨x5), (¬x2 ∨x3 ∨¬x4), (¬x3 ∨x4 ∨¬x5)}. For readability, the mapping
M is not drawn but represented as labels located on the nodes: any pair of nodes (one
in G1 and one in G2) of similar inner label are mapped in M .

Let us prove that this construction is indeed an L-reduction from max-

3sat(B). More precisely, we will prove the following property.

Lemma 1. There exists an assignment of Vn satisfying at least m clauses of Cq

if and only if there exists a solution to mwccs of weight at least m.
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Proof. ⇒ Given an assignmentA of Vn satisfying m clauses of Cq, we construct
a solution to mwccs of weight m as follows.

Let V ∗
1 =V1 \ {cj | cj is not satisfied by the assignment} and

V ∗
2 ={r} ∪

{ckj | cj is satisfied by its k-th literal} ∪
{xi, dc

i
j | xi = 1, 1 ≤ j ≤ q} ∪

{xi, dc
i
j | xi = 0, 1 ≤ j ≤ q} ∪

{dxi, dxi | 1 ≤ i ≤ n}.

By construction, G1[V
∗
1 ] is connected since all the vertices of the spine of the

comb have been kept. Moreover, G1[V
∗
1 ] contributes B × n + m to the overall

weight of the solution, that is B for each of the li and +1 for each satisfied clause.
By construction, all the sub-trees rooted at xi (resp. xi) are kept in G2[V

∗
2 ] if

xi = 1 (resp. xi = 0) in A. Moreover, all the dummy nodes for literals (dxi and
dxi) and the root r have been kept. Thus, G2[V

∗
2 ] is also connected. Furthermore,

G2[V
∗
2 ] contributes to −B×n to the overall weight of the solution since exactly

one of each variable node (xi and xi) has been kept. One can easily check that
any node of V ∗

1 has a mapping counterpart in V ∗
2 . The overall solution is valid

and of total weight m.

⇐ Given any solution {V ∗
1 , V ∗

2 } to mwccs of weight m, we construct a solution
to the max-3sat(B) problem satisfying at least m clauses as follows.

First, note that we can assume that any such solution to mwccs is canonical,
meaning that V ∗

2 does not contain both vertices xi and xi for all 1 ≤ i ≤ n.
Indeed, by contradiction, suppose there exists a solution such that {xi, xi} ⊆ V ∗

2

for a given 1 ≤ i ≤ n. Then, {xi, xi} in G2 induce a negative weight of −2B.
This negative contribution can at most be compensated by the weight of the
corresponding literal node in G1 (w1(li) = B) and at most B clause nodes in G1

(B ≥
∑

w1(cj) where xi ∈ cj or xi ∈ cj) since every literal occurs in at most B
clauses in Cq. Therefore, such local configuration does not provide any positive
contribution to the solution and can be transformed into a better solution by
removing one of the sub-trees rooted in {xi, xi}. We will consider hereafter that
m is the weight of the resulting canonical solution. We further assume that m > 1
since otherwise we can build a trivial assignment A = {c11 = 1} of Vn that is
satisfying at least one clause of Cq.

Let A be an assignment of Vn such that for all 1 ≤ i ≤ n if xi ∈ V ∗
2 then

xi = 1 and xi = 0 otherwise. Note that, since our solution is canonical, each
literal has been assigned a single boolean value in A. Let us now prove that this
assignment satisfies at least m clauses of Cq.

First, note that since our solution is canonical and we require any node of
V ∗
1 to have a mapping counterpart in V ∗

2 , this implies that if li ∈ V ∗
1 then its

contribution (that is w1(li) = B) is cancelled by the negative contribution of
either xi or xi in V ∗

2 (that is w2(xi) = w2(xi) = −B). Therefore, the weight m
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of the solution can only be realized by m clause nodes of G1, say C1 ⊆ V ∗
1 –

since w1(cj) = 1 for all 1 ≤ j ≤ q.
As already stated, to be part of the solution any node in V ∗

1 has a mapping
counterpart in V ∗

2 . Thus, for each node in C1, there should be a node of C2 ⊆
{ckj | 1 ≤ j ≤ q, 1 ≤ k ≤ 3} in V ∗

2 . More precisely, by construction, any node cj
in V1 has exactly three mapping counterparts in V2 (that is {ckj | 1 ≤ k ≤ 3})
and for each cj ∈ C1 at least one of these mapping counterparts has to belong
to C2.

Finally, since both G1[V
∗
1 ] and G2[V

∗
2 ] have to be connected, each node in

C2, say ckj , should be connected by a path to a node xi or xi, say xi, for some
1 ≤ i ≤ n, in G2[V

∗
2 ]. By construction, this is the case if xi is the k-th literal

of the clause cj for some 1 ≤ k ≤ 3. Thus, A is an assignment that satisfies
any clause cj such that the clause node cj belongs to V ∗

1 . As already stated
|C1| = m. ��

The above reduction linearly preserves the approximation since the weights
of optimal solutions of the problems correspond and there exists an assignment
of Vn satisfying at least m clauses of Cq if and only if there exists a solution to
mwccs of weight at least m. Hence, given an approximation to mwccs, one can
derive an algorithm for max-3sat(B) with the same approximation ratio. Since
max-3sat(B), B ≥ 3, is APX-hard [10] and max-3sat(B) for B = 6 is not
approximable within factor 1.0014 [2], so is mwccs, which proves Proposition 1.

Let us now prove a similar result for mwccs problem when the mapping is a
bijective function.

Proposition 2. The mwccs problem for a graph and a tree is APX-hard and
not approximable within factor 1.0014 even when the mapping is a bijective func-
tion and a complete conservation (i.e. alpha = 1) is required.

Proof. Given any instance (Cq, Vn) of max-3sat(B), we build a graph G1 =
(V1, E1) with weight function w1, a tree G2 = (V2, E2) with weight function w2

and a mappingM as follows. The graphG1 has the vertex set V1 = {r, li, xi, xi, cj,
ckj | 1 ≤ i ≤ n, 1 ≤ j ≤ q, 1 ≤ k ≤ 3} and the edge set defined by the following
equation.

E1 ={(li, xi), (li, xi), (r, xi), (r, xi) | 1 ≤ i ≤ n} ∪
{(cj , ckj ), (r, ckj ) | 1 ≤ k ≤ 3, 1 ≤ j ≤ q}.

The weight function w1 is defined as follows: for all 1 ≤ k ≤ 3, 1 ≤ i ≤ n and
1 ≤ j ≤ q, w1(li) = B, w1(cj) = 1 and w1(r) = w1(c

k
j ) = w1(xi) = w1(xi) = 0.

Roughly, in G1 there is a node for each clause (denoted by cj), for each of the
three literals of each clause (denoted by ckj ), for each literal (denoted by li) and
for each valuation of each literal (denoted by xi, xi). Clause nodes and literal
nodes are separated by a central node r.
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The tree G2 is defined as follows. The vertex set is V2 = V1, the edge set is
given by the following equation:

E2 ={(li, r), (cj , r), (xi, r), (xi, r) | 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∪
{(ckj , xi) | xi is the k-th literal of clause cj} ∪
{(ckj , xi) | xi is the k-th literal of clause cj}.

The weight function w2 is defined as follows: for all 1 ≤ k ≤ 3, 1 ≤ i ≤ n and
1 ≤ j ≤ q, w2(xi) = w2(xi) = −B, w2(r) = w2(c

k
j ) = w2(li) = w2(cj) = 0.

Roughly, in G2 all the nodes except the ones in {ckj | 1 ≤ j ≤ q, 1 ≤ k ≤ 3}
form a star centered in node r. The nodes representing the literal of the clause
(that is ckj ) are connected to their corresponding variable nodes (that is xi or
xi).

Finally, the mapping M is a bijective function from V1 to V2 defined as the
identity (that is each node in V1 is mapped to the node of similar label in V2).

Fig. 2. Illustration of the construction of G1, G2, and M , given Cq = {(x1 ∨ x2 ∨
¬x3), (¬x1 ∨x2 ∨x5), (¬x2 ∨x3 ∨¬x4), (¬x3 ∨x4 ∨¬x5)}. For readability, the mapping
M is not drawn but deduced from the labels of the nodes; any pair of nodes (one in
G1 and one in G2) of similar label are mapped in M .

Let us prove that this construction is indeed an L-reduction from max-

3sat(B). More precisely, we will prove the following property.

Lemma 2. There exists an assignment of Vn satisfying at least m clauses of
Cq if and only if there exists a solution (not necessarily optimal) to mwccs of
weight at least m.

Proof. ⇒ Given an assignmentA of Vn satisfying m clauses of Cq, we construct
a solution to mwccs of weight m as follows.

Let V ∗
1 = V ∗

2 = {cj | cj is satisfied by A} ∪ {ckj | ckj is satisfying cj by A} ∪
{xi | xi = 1} ∪ {xi | xi = 0} ∪ {r, li | 1 ≤ i ≤ n}.
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By construction, G1[V
∗
1 ] and G2[V

∗
2 ] are connected. Moreover, G1[V

∗
1 ] con-

tributes B × n + m to the overall weight of the solution, that is B for each of
the li and +1 for each satisfied clause, while G2[V

∗
2 ] contributes −B × n to the

overall weight of the solution since exactly one of each variable node (i.e., xi and
xi) has been kept. The overall solution is valid and of total weight m.

⇐ Given any solution V ∗ ⊆ V1 to mwccs of weight m, we construct a solution
to the max-3sat(B) problem satisfying at least m clauses as follows.

First, note that, as in the previous construction, we can assume that any such
solution to mwccs is canonical meaning that V ∗ does not contain both vertices
xi and xi for any 1 ≤ i ≤ n.

Let A be an assignment of Vn such that for all 1 ≤ i ≤ n, if xi ∈ V ∗ then
xi = 1 and xi = 0 otherwise. Note that, since our solution is canonical, each
literal has been assigned a single boolean value in A. Let us now prove that this
assignment satisfies at least m clauses of Cq.

First, note that since our solution is canonical, as in the previous construction,
the weight m of the solution can only be induced by m clause nodes of G1, say
C1 ⊆ V ∗.

Since both G1[V
∗] and G2[V

∗] have to be connected, any solution with m > 1
will include node r in V ∗. Thus, for each node cj ∈ C1 there should be a node
of {ckj | 1 ≤ k ≤ 3} in G1[V

∗] to connect cj to r. In G2[V
∗], in order for nodes r

and ckj to be connected, the corresponding literal node (that is xi or xi), say xi

– has to be kept in V ∗. By construction, this is the case if xi is the k-th literal
of clause cj . Thus, A is an assignment that satisfies any clause cj such that the
clause node cj belongs to V ∗. As already stated |C1| = m. ��

The above reduction linearly preserves the approximation and proves Propo-
sition 2.

4 A General Algorithm for Some Polynomial Cases of
MWCCS

In this section, we consider the general version of the problem where α is given
in the input rather than being fixed, but where the mapping is restricted to a
partial function (any element of V1 has at most one image in V2) and G1 to a
polynomially enumerable graph (i.e. the number of connected induced subgraphs
is polynomially bounded). We will consider each subgraph of G1 as part of a
candidate solution and will try to find the best subgraph in G2, that is a subgraph
that maximizes the total weight of the candidate solution and such that at least
an α-fraction of the nodes of G1 and G2 in the solution are M -related. The
optimal solution will be the maximum among the candidate ones.

We suppose that there is a polynomial number of connected induced subgraphs
of G1. For every subgraph G′

1 = (V ′
1 , E

′
1) of G1, we define the corresponding

G2 contribution function c : V2 → N to be c(v) = |{v, u | M(u, v), u ∈ V ′
1}|.

Informally, the contribution function provides for each node of V2 the number
of inverse images plus one if at least one exists, given that G′

1 is supposed to be
the candidate solution.
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Given G2 = (V2, E2), its weight-function w2 and its contribution function
c, the problem now corresponds to the discovery of the connected subgraph of
maximum weight such that:

∑
v∈V ′

2
c(v)− α× |V ′

1 | ≥ α× |V ′
2 |, where α× |V ′

1 | is
constant.

We call this problem the maximum-weight ratio-bounded connected

subgraph (mwrbcs) problem and in the general case is defined formally as
follow: Given a node-weighted graph G = (V,E), its node-weighting function
w : V → R, its contribution function c : V → N such that

∑
v∈V c(v) ≤ k|V |,

k ∈ N, and a ratio α ∈ [0, 1] find a subset V ∗ ⊆ V such that:

1. the induced graph G [V ∗] is connected, and
2. the ratio of the sum of contributions plus some constant over the number of

nodes in the solution is greater than or equal to α, that is:∑
v∈V ∗

c(v) + C ≥ α× |V ∗|, and

3.
∑

v∈V ∗
w(v) is maximum.

Proposition 3. mwrbcs is as difficult as mwcs.

Proof. Indeed, when ∀v ∈ V, c(v) = 1 the mwcs and mwrbcs problems are
equivalent. Thus, mwrbcs is hard to approximate for general graphs. ��

Let us show now that it is in PTIME for bounded-degree trees.

Proposition 4. mwrbcs is solvable in O(nd+2) time for d-ary trees.

Proof. Let us consider the mwrbcs problem for a d-ary tree. We define a dy-
namic programming strategy with a O(nd+2) time complexity. This leads to a
polynomial algorithm for d-ary trees. The basic idea is to define a 3-dimensional
table T of size |V |×

∑
v∈V c(v)×|V | that stores the maximum weight of a subtree

rooted in v of size s and of total contribution tc.
Formally, ∀v ∈ V, 0 ≤ tc ≤

∑
v∈V c(v), 0 ≤ s ≤ |V |, let us note v〈i〉 the i-th

child of v, 1 ≤ i ≤ d, we have:

T [v][0][0] = 0

T [v][tc][s] = max
tc1,...,tcd, s1,...,sd

(
w(v) +

∑
1≤i≤d

T [v〈i〉][tci][si]

)

s.t. tc = c(v) +
∑

1≤i≤d

tci

s = 1 +
∑

1≤i≤d

si

The optimal subtree can be reconstructed from the table by finding the entry
with the maximal weight and where the contribution ratio is not violated, and
backtracking from that entry on the selected tci’s and si’s from the max function.
Each entry of the table can be computed in O(nd−1) (that is, an integer partition
of |V | into d parts) time, and since

∑
v∈V c(v) ∈ O(n), there are O(n3) of them,

which leads to the overall complexity. ��
As paths and cycles are trees of degree 1, using the preceding result leads to an

O(n3) algorithm for these cases. However, one can achieve a better complexity.
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Proposition 5. mwrbcs is solvable in O(n2) time for paths and cycles.

Proof. Let us first consider the mwrbcs problem for paths. Leveraging the lin-
earity of the graph structure, we define a dynamic programming strategy with
an O(n2) time complexity.

The idea is to define two 2-dimensional tables Tw and Ttc with n2 entries
each and that store respectively, for each pair of indices, the maximum weight
and the total contribution, of the corresponding graph. Let us consider a given
orientation in the path with the node at the starting end as the reference node,
of index 0. Every candidate solution (a subpath) in the path can then be defined
as a pair of positions, the first element being the starting position as an index
number, the second element being the size of the candidate solution. The main
idea being that increasing the indices one by one enables us to update the weights
and total contributions incrementally.

Formally, let us denote the k-th node of the graph in the predefined orientation
by nk, we have for all 0 ≤ i ≤ j ≤ n:

Tw[i][i] = 0
Tw[i][j] = w(ni+j−1) + Tw[i][j − 1]

Ttc[i][i] = 0
Ttc[i][j] = c(ni+j−1) + Ttc[i][j − 1]

The optimal subpath is defined by the indices of the entry with the maximal
weight and where the contribution ratio is not violated (i.e., for any (i, j) s.t.
Ttc[i][j] ≥ α · j). Each O(n2) entry of the tables can be computed in constant
time, leading to the overall complexity. For cycles, the trick consists in taking
any linearization of the cycle and merging two copies of the corresponding lin-
earization as the input path. This ensures that we will consider any candidate
solution (i.e., simple subpath of the cycle). The time complexity is preserved. ��

5 Conclusion

In this contribution we provide the first deep complexity analysis of the mwccs

problem and show several interesting results. There still remain numerous per-
tinent questions to be answered. First of all, generalizing the problem to more
than two graphs is of interest; even if the hardness results will hold, what prac-
tical solutions can be derived? We also would like to study the complexity effect
of the relaxation of the connectivity constraints. Finally, it would be relevant to
further analyse the links that can be set up between mwrbcs and variants of
mwcs such as the budget constraint one.
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Abstract. A popular way of formalizing clusters in networks are highly
connected subgraphs, that is, subgraphs of k vertices that have edge con-
nectivity larger than k/2 (equivalently, minimum degree larger than k/2).
We examine the computational complexity of finding highly connected
subgraphs. We first observe that this problem is NP-hard. Thus, we ex-
plore possible parameterizations, such as the solution size, number of ver-
tices in the input, the size of a vertex cover in the input, and the number
of edges outgoing from the solution (edge isolation), and expose their in-
fluence on the complexity of this problem. For some parameters, we find
strong intractability results; among the parameters yielding tractability,
the edge isolation seems to provide the best trade-off between running
time bounds and a small parameter value in relevant instances.

1 Introduction

A popular method of analyzing complex networks is to identify clusters or com-
munities, that is, subgraphs that have many interactions within themselves and
fewer with the rest of the graph (e. g. [18, 19]). Hartuv and Shamir [9] proposed
a prominent clustering algorithm producing highly connected clusters, formalized
as follows: the edge connectivity λ(G) of a graph G is the minimum number of
edges whose deletion results in a disconnected graph, and a graph G with n ver-
tices is called highly connected if λ(G) > n/2. An equivalent characterization is
that a graph is highly connected if each vertex has degree at least 
n/2� + 1 [3].
Moreover, highly connected graphs have diameter at most two [9].

We study the following problem:

Highly Connected Subgraph

Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Is there a vertex set S such that |S| = k and G[S] is highly
connected?

In addition to the natural application in analyzing complex networks [19],
Highly Connected Subgraph also occurs (with vertex weights) as a sub-
problem in a column generation algorithm for partitioning graphs into highly
connected components [11].

� FH and MS gratefully acknowledge support by Deutsche Forschungsgemeinschaft,
projects ALEPH (HU 2139/1) and DAPA (NI 369/12) respectively. Due to space
constraints, proofs for results marked by � are deferred to a full version of this
extended abstract.
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Since Highly Connected Subgraph is NP-hard (Theorem 1), we explore
the “parameter ecology” [7] of this problem. We are looking for fixed-parameter
algorithms, that is, we try to find problem parameters p that allow for a run-
ning time bounded by f(p) · |G|O(1). The hope is that the function f grows not
too fast (although it has to be superpolynomial unless P = NP), and that the
parameter value p can be expected to be relatively small in interesting instances.
Clearly, there is a trade-off between these goals. Similarly to NP-hardness, fixed-
parameter tractability can be refuted by giving suitable reductions from hard
problems of the classes W[1] or W[2]. For details, refer to the literature [5].

Results. We list the results going from the hardest parameters to the easiest,
corresponding roughly to going from small expected parameter values to large
ones. Let n be the number of vertices in G. For the parameter � := n − k (the
number of vertices to delete to obtain a highly connected subgraph), we obtain
a strong hardness result: there is a trivial nO(�) time algorithm, but it is unlikely
that no(�) time can be achieved (Theorem 1). For the size of the solution k, a fixed-
parameter algorithm is unlikely, even if we additionally consider the degeneracy
of G as a parameter (Theorem 2). If we take the minimum size τ of a vertex cover
for G as parameter, we obtain a fixed-parameter algorithm: the problem can be
solved in (2τ)τ · nO(1) time (Theorem 3). Considering the number of vertices n,
we can clearly solve the problem in 2n · nO(1) time. We show that it is unlikely
that this can be improved to 2o(n) · nO(1) time (Theorem 4). If the parameter
is the number γ of edges between G[S] and the remaining vertices, then the
problem can be solved in time O(4γn2) (Theorem 5). Finally, if we consider
the number α of edges to delete to obtain a highly connected subgraph (plus

singleton vertices), we obtain a O(2 4·α0.75

+α2nm)-time algorithm (Theorem 8).
This running time is subexponential in α.

Related work. The algorithm by Hartuv and Shamir [9] partitions a graph heuris-
tically into highly connected components; another algorithm tries to explicitly
minimize the number of edges that need to be deleted for this [11]. Highly con-
nected graphs can be seen as clique relaxation [18], that is, a graph class that has
many properties similar to cliques, without being as restrictive. Highly connected
graphs are very similar to 0.5-quasi-complete graphs [17], that is, graphs where
every vertex has degree at least (n− 1)/2. These graphs are also referred to as
(degree-based) 0.5-quasi-cliques [15]. Recently, also the task of finding subgraphs
with high vertex connectivity has been examined [20].

Preliminaries. Using standard graph notation, we consider only simple undi-
rected graphs G = (V,E) with n := |V | and m := |E|; we call n the order of G.
We use N(v) to denote the set of neighbors of a vertex v. For a vertex set S ⊆ V ,
we denote G[S] := (S, {{u, v} ∈ E | u, v ∈ S}) the subgraph of G induced by S.
We use G− S as shorthand for G[V \ S]. A cut (A,B) in a graph G = (V,E) is
a vertex bipartition, that is, A ∩ B = ∅ and A ∪ B = V . The cut edges are
the edges between vertices in A and B; the size of a cut is the number of its
cut edges.
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2 Vertex Deletion

For finding large cliques in a graph, one successful approach is to use fixed-
parameter algorithms for the parameter “number of vertices in the graph that are
not in the clique” [13, 14]. We show by a reduction from Hitting Set that such
fixed-parameter algorithms are unlikely for Highly Connected Subgraph.

Theorem 1 (�). Highly Connected Subgraph is NP-hard and W[2]-hard
parameterized by � := n−k.Moreover, an no(�)-time algorithm implies FPT=W[1].

3 Solution Size and Degeneracy

A graph has degeneracy d if every subgraph contains at least one vertex that has
degree at most d. In many graphs from real-world applications, the degeneracy
of a graph is very small compared to the network size [6]. For yes-instances, the
degeneracy of the input graph has to be at least 
k/2�+ 1. Therefore, Highly

Connected Subgraph is polynomial-time solvable if the input graph has con-
stant degeneracy: trying all subgraphs with k ≤ 2d + 2 vertices decides the
problen in n2d · nO(1) time. This can be improved to the following running time.

Proposition 1 (�). HighlyConnected Subgraph can be solved in 2d·nd+O(1)

time where d is the degeneracy of G.

Unfortunately, if we regard the degeneracy as a parameter instead of a constant,
we obtain hardness using a reduction from Clique, even if additionally the
solution size k is a parameter.

Theorem 2 (�). Highly Connected Subgraph parameterized by the com-
bined parameter (d, k), where d is the degeneracy of G, is W[1]-hard.

4 Vertex Cover Size

We next consider the parameter τ , the minimum size of a vertex cover of G.
This parameter is interesting because it can be smaller than the number of
vertices of G. We show that Highly Connected Subgraph is solvable in
(2τ)τ ·nO(1) time. The algorithm first computes a vertex cover C, then determines
via branching the intersection of C and the desired solution S, and then adds
suitable vertices of the independent set V \ C. We identify suitable vertices in
the independent set by solving an instance of Set Multicover.

Set Multicover

Input: A universe U with covering demands d : U → N, a family F of
subsets of the universe with multiplicity values m : F → N, and p ∈ N.
Question: Is there a multiset of at most p subsets from F that contains
each F ∈ F at most m(F ) times, and covers each u ∈ U with at least d(u)
subsets?
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Lemma 1. A given instance of Highly Connected Subgraph with a vertex
cover of size τ can be solved using the answers to at most 2τ instances of Set

Multicover, each with |U | ≤ τ and 2maxu∈U d(u) ≤ τ . Furthermore, all these
instances can be computed in O(2τ (n+ τn)) time.

Proof. Fix some highly connected subgraph G[S] of order k if it exists. First
compute a minimum vertex cover C for G in O(1.274τ +τn) time [4]. Enumerate
all 2τ possibilities for C′ ⊆ C. Clearly, in one branch C′ = C∩S. In each branch,
delete the vertices from C \ C′. Then remove vertices from the independent set
V \C′ that have k/2 or less neighbors in C′, since they cannot be part of S. Let
V ′ be the thus reduced vertex set. It remains to find k′ := k − |C′| vertices in
V ′ \ C′ such that each vertex v in C′ has more than d(v) := k/2 − |N(v) ∩ C′|
neighbors among these k′ vertices. This is an instance of Set Multicover: In
our case, the universe is C′, the covering demands are d as defined above, the
family is F = {N(v)∩C′ | v ∈ V ′ \C′}, the multiplicity of X ∈ F is the number
of vertices in V ′ \ C′ having neighborhood X in C′, and p = k′. If the solution
to Set Multicover has less than k′ sets, then we can add arbitrary further
vertices from V ′ \ C′ to make the vertex subset large enough (if |V ′ \ C′| < k′,
then we can safely reject this branch for C′ ⊆ C). ��

Set Multicover with multiplicity constraints can be solved in O((b+1)|U||F|)
time [10], where b := maxu∈U d(u). Note that |C′| > k/2, since the vertices
outside of C′ form an independent set and we cannot choose k/2 or more of
them. Thus, b < |C′| ≤ τ . The size of F is at most n. Together with the
enumeration of the instances, we obtain the following.

Theorem 3. Highly Connected Subgraph can be solved in O((2τ)τ · τn)
time.

5 Number of Vertices

A trivial algorithm for Highly Connected Subgraph is to enumerate all ver-
tex subsets S of size k and to check for each subset whether it is highly connected.
This algorithm has running time O(2n ·m). We now show by a reduction from
Clique that a running time improvement to 2o(n) · nO(1) is unlikely. The idea
of the reduction is to add to a Clique instance some new graph that is so large,
that, in the resulting instance of Highly Connected Subgraph, every highly
connected graph of size k must contain this new graph. The remaining vertices
must form a clique in order to have sufficiently high degree. The following lemma
shows that we can efficiently construct the graph which we need to add to the
Clique instance.

Lemma 2 (�). For any two integers a, b ∈ N such that a is even, b − 3 ≥ 8 is
a power of two, and a− 2 ≥ 2b, there is a graph G = (X ∪W,E) on the disjoint
vertex sets X and W , such that
i) G[X ] is connected,
ii) |X | = a− 2, |W | = a− b+ 1,
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iii) NG(X) \X = W ,
iv) each vertex in X has degree a, and each vertex in W has degree a− b.
Moreover, G can be constructed in time polynomial in a.

We call the graph G described in the above lemma an (a, b)-equalizer and the
vertices in W are its ports.

Lemma 3. There is a polynomial-time many-one reduction from Clique to
Highly Connected Subgraph that is parameter-linear with respect to the
number of vertices.

Proof. Let (G, p) represent an instance of Clique. Without loss of generality,
assume that p − 3 ≥ 8 and p − 3 is a power of two. Otherwise, repeatedly add
a universal vertex and increase p by one, until p− 3 ≥ 8, and p − 3 is a power
of two. Note that this at most doubles p. Furthermore, assume that n − 1 ≥ p;
otherwise, solve the instance in polynomial time.

Denote |V (G)| = n. We construct the instance (G′, k) of Highly Connected

Subgraph where k = 4n − 1. Note that the minimum degree in a highly con-
nected graph with k vertices is 2n. Graph G′ is constructed as follows. First,
copy G into G′. Then add a vertex-disjoint (2n, p)-equalizer. By Lemma 2, a
(2n, p)-equalizer exists and is computable in polynomial time, because, by choice
of (G, p), 2n is even, p− 3 ≥ 8 is a power of two, and 2n− 2 ≥ 2p. Denote the
ports of the equalizer by W and its remaining vertices by X . Add an edge be-
tween each port and each vertex in V (G); this finishes the construction. The
graph G′ has less than 5n vertices, since the (2n, p)-equalizer has less than 4n
vertices. It remains to show equivalence of the instances, that is,

(G, p) is a yes-instance ⇔ (G′, k = 4n− 1) is a yes-instance.

“⇒”: Let G[S] be a clique of order p in G. Then, G′[S ∪ X ∪ W ] is highly
connected: Each vertex in S is adjacent to p− 1 vertices in S and to 2n− p+ 1
vertices in W . Hence, each vertex in S has 2n neighbors in S∪X∪W , as required.
Each port has 2n − p neighbors in X ∪ W and p neighbors in S. Finally, each
vertex in X has 2n neighbors in X ∪W .

“⇐:” Let G′[S] be a highly connected graph of order k in G′. There are at
most n vertices in V (G)∩S, thus there is at least one vertex in S∩X . Since G′[X ]
is connected and each vertex in X has degree exactly 2n (the minimum degree
in G′[S]), we have X ⊆ S. Furthermore, since {v | X ∩ N(v) �= ∅} \ X =
W , also W ⊆ S, leaving 4n − 1 − |X | − |W | = p vertices in S ∩ V (G). Since
NG′(V (G)) \ V (G) = W and |W | = 2n− p+ 1, each vertex in S ∩ V (G) has at
least p− 1 neighbors in S ∩ V (G). Thus G[S ∩ V (G)] is a clique. ��

Using Lemma 3, we can connect the running time with respect to parameter n
with the Exponential Time Hypothesis (ETH) [16].

Theorem 4. If the Exponential Time Hypothesis (ETH) is true, then Highly

Connected Subgraph does not admit a 2o(n) · nO(1)-time algorithm.
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6 Edge Isolation

We now present a single-exponential FPT algorithm for the number γ of edges
between the desired highly connected subgraph G[S] and the remaining graph.
In this case, S is called “γ-isolated”. More formally, if G = (V,E) is a graph,
we call a set S ⊆ V γ-isolated if (S, V \ S) is a cut of size at most γ. To our
knowledge, Ito et al. [13] were the first to consider a formal notion of isolation
in the context of dense subgraph identification. There is the following difference
between the isolation definitions: we count the total size of the cut (S, V \ S),
whereas previous definitions count the size of (S, V \ S) divided by the size of
S [12, 13] or the minimum of the number of outgoing edges per vertex [14]. Our
isolation definition leads to the following problem.

Isolated Highly Connected Subgraph

Input: An undirected graph G = (V,E), nonnegative integers k and γ.
Question: Is there a k-vertex γ-isolated highly connected subgraph con-
tained in G?

The notion of isolation is not only motivated from an algorithmic point of view
but also from the application. Ideally, communities in a network have fewer
connections to the rest of the network [18]. Thus, putting an additional constraint
on the number of outgoing edges may yield better communities than merely
demanding high edge connectivity.

In the following, it will be useful to consider an augmented version of Iso-

lated Highly Connected Subgraph: we place integer labels on the ver-
tices which imply that these vertices are harder to isolate. We thus additionally
equip each instance of Isolated Highly Connected Subgraph with a la-
beling f : V → N and we call V ′ ⊆ V γ-isolated under f if there are at most
γ −

∑
v∈V ′ f(v) edges between V ′ and V \ V ′ in G. Without loss of generality,

assume k ≥ 2 in the following.
The algorithm first performs three reduction rules. The first simple rule

removes connected components that are too small.

Rule 1. Remove all connected components with less than k vertices from G.

The next rule finds connected components that are either trivial solutions or can-
not contain any solution since proper subgraphs violate the isolation condition.

Rule 2. If there is a connected component C = (V ′, E′) of G that has minimum
cut size at least γ + 1, then accept if C is highly connected, |V ′| = k, and V ′ is
γ-isolated under f . Otherwise remove C from G.

Proof (Correctness of Rule 2). The rule is clearly correct if it accepts. If the
rule removes C, then C has a minimum cut of size at least γ + 1. Thus, for
every induced subgraph C[S] of C that does not contain all of its vertices, set
S is not γ-isolated. Hence, no subgraph of C is a solution and we can safely
remove C. ��
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Rule 3. If G has a connected component C with a minimum cut (A,B) of size at
most k/2, then do the following. For each v ∈ A redefine f(v) := f(v)+|N(v)∩B|
and for each v ∈ B redefine f(v) := f(v) + |N(v) ∩ A|. Then, delete all edges
between A and B.

Proof (Correctness of Rule 3). Any k-vertex subgraph of C with nonempty in-
tersection with both sides of (A,B) is not highly connected as it has a minimum
cut of size at most k/2. Hence, any highly connected induced subgraph C[S]
of C is either contained in C[A] or in C[B]. If S is γ-isolated under f in G, then
it is also γ-isolated under the modified f in the modified graph (and vice-versa)
by the way we have redefined f . ��
Exhaustive application of these rules yields a relation between γ and k/2.

Lemma 4. If Rules 1 to 3 are not applicable, then γ > k/2.

Proof. Assume the contrary. Each connected component has a minimum cut
cutting at least one edge because Rule 1 is not applicable and k ≥ 2. Further,
each connected component has a cut of size at most γ because Rule 2 is not
applicable. By assumption γ ≤ k/2 and, hence, each connected component has
a cut of size at most k/2 which contradicts the inapplicability of Rule 3. ��
As shown by the following lemma, the reduction rules can be applied efficiently.

Lemma 5 (�). Rules 1 to 3 can be exhaustively applied in O((kn+γ)nm) time.

Using the above, we can now present the branching algorithm.

Theorem 5. There is an O(4γn2 + (kn+ γ)nm)-time algorithm for Isolated

Highly Connected Subgraph.

Proof. We first reduce the instance with respect to Rules 1 to 3. By Lemma 5
this can be done in O((kn+ γ)nm) time. Next, we guess one vertex v that is in
the solution S (by branching into n cases according to the n vertices). We start
with S′ := {v} and try to extend S′ to a solution. More precisely, we choose
a vertex v′ from the neighborhood of S′ (that is, from

⋃
u∈S′ N(u) \ S′), and

branch into two cases: add v′ to S′, or exclude v′, that is, delete v′ and in-
crease f(u) by one for all u ∈ N(v′). In the first case, we increase |S′| by one. In
the second case, we increase

∑
u∈S′ f(u) by at least one. Branching is performed

until |S′| = k or
∑

u∈S′ f(u) exceeds γ or the neighborhood of S′ is empty. When
|S′| reaches k, we check whether S′ is highly connected and γ-isolated under f ,
and if this is the case, we have found a solution. Otherwise, when

∑
u∈S′ f(u)

exceeds γ or no branching is possible because the neighborhood of S′ is empty,
we abort the branch; in this case, clearly no superset of S′ can be a solution. The
height of the search tree is bounded by k + γ, and each branch can be executed
in O(n) time, yielding a running time bound of O(n · 2k+γ · n).

We now distinguish two cases: k ≤ γ and k > γ. In the first case 2k+γ ≤ 4γ , as
required. If k > γ, there is at least one vertex in S that has no neighbors outside
of S. Thus, instead of S′ = {v}, we can start with S′ := {v}∪N(v). Since v has
more than k/2 neighbors in S, we have |S′| > k/2 + 1, and thus there are less
than k/2 branches of adding a vertex. By Lemma 4, 2k/2+γ ≤ 4γ . ��
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We now present a further way of analyzing the presented data reduction rules
by giving a Turing kernelization [1] for Isolated Highly Connected Sub-

graph parameterized by γ. Informally, a Turing kernelization is a reduction of
the input instance of a parameterized problem to many instances of the same
problem which are small measured in the parameter. Then, the solution to the
original input instance can be computed by solving the small problem instances
separately.

To motivate the Turing kernelization result we first observe that Isolated

Highly Connected Subgraph does not admit a problem kernel, that is,
a Turing kernelization which produces only one small problem instance.
The disjoint union of a set of graphs has an isolated highly connected subgraph
if and only if at least one of the graphs has one. Hence, Isolated Highly Con-

nected Subgraph has a trivial OR-composition which implies the following [2].

Proposition 1. Isolated Highly Connected Subgraph does not admit
a polynomial-size problem kernel with respect to γ unless NP ⊆ coNP/poly.

Before describing the Turing kernelization, we give a formal definition.

Definition 1. Let L be a parameterized problem and let g : N → N be a com-
putable function. A Turing kernelization for L is an algorithm that, for each
instance (x, k), decides whether (x, k) ∈ L in polynomial time using an oracle
for {(x′, k′) | |x′| + k′ ≤ g(k) ∧ (x′, k′) ∈ L}. The sequence of queries posed to
the oracle is called Turing kernel. We call g(k) the size of the Turing kernel.

We now describe the algorithm in detail. The first step is to reduce to the aug-
mented version of Isolated Highly Connected Subgraph in which we intro-
duce the vertex labeling f . Then, apply Rules 2 and 3 exhaustively. Afterwards,
apply the following reduction rule which removes high-degree vertices.

Rule 4 (�). Let (G, k, γ) be an instance of Isolated Highly Connected

Subgraph that is reduced with respect to Rules 2 and 3. If G contains a vertex v
of degree at least 3γ − f(v), then remove v from G, and for each u ∈ N(v)
increase f(u) by one.

Now we construct n instances of Isolated Highly Connected Subgraph

that have O(γ3) vertices each. The original instance is a yes-instance if and only
if one of these instances is a yes-instance. The idea is to exploit the fact that
highly connected graphs have diameter two [9]. Thus, to find highly connected
graphs, it is sufficient to explore the two-neighborhood of each vertex. More
precisely, the instances are constructed as follows.

For each vertex v ∈ V , construct the graph Gv := G[N2[v]] where N2[v] is the
set of all vertices that have distance at most two from v (including v). When
solving the Isolated Highly Connected Subgraph instances we need to
determine whether a subgraph is γ-isolated. Thus, the graph Gv has to con-
tain information on the original vertex degrees. Note that for each u ∈ V , f(u)
denotes the number of edges deleted during the data reduction that are inci-
dent with u. Moreover, for each vertex u in Gv, let g(u) denote the number
of neighbors of u in G in V \ N2[v]. To obtain instances of Isolated Highly
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Connected Subgraph one may not use vertex labelings. Thus, for each u
of Gv add g(u) + f(u) new vertices and make them adjacent to u. This com-
pletes the construction of Gv. In this way we obtain n instances (Gv, k, γ) of
Isolated Highly Connected Subgraph. The following lemma shows that
it is sufficient to solve these instances in order to determine whether the origi-
nal Isolated Highly Connected Subgraph instance (G = (V,E), k, γ) is a
yes-instance.

Lemma 6 (�). Let (G = (V,E), k, γ) be an instance of Isolated Highly

Connected Subgraph and, for each v ∈ V , let (Gv, k, γ) denote the instance
as constructed above. Then, (G, k, γ) is a yes-instance if and only if there is
a v ∈ V such that (Gv, k, γ) is a yes-instance.

We now show that the instances have bounded size.

Lemma 7 (�). Let (Gv, k, γ) be an instance of Isolated Highly Connected

Subgraph constructed from G as described above. Then Gv has less than (3γ)3

vertices and less than 3γ4 edges.

Combining Lemmas 6 and 7 leads to the following.

Theorem 6. Isolated Highly Connected Subgraph admits a Turing ker-
nel of size O(γ4) which has less than (3γ)3 vertices.

7 Edge Deletion

We now show that there is a subexponential fixed-parameter algorithm for
Highly Connected Subgraph with respect to α, the number of edges we
are allowed to delete in order to obtain a highly connected graph of order k.
The algorithm is a search tree algorithm which branches on whether or not a
given vertex is part of the highly connected graph. Repeated application of two
reduction rules (similar to Rules 2 and 3 above) ensures that the branches are
effective in reducing the remaining search space. To give a precise presentation
of the branching step and the reduction rules, we define the problem with an
additional seed S, a set of vertices which have to be in the highly connected
graph.

Seeded Highly Connected Edge Deletion

Input: An undirected graph G = (V,E), a vertex set S ⊆ V , and non-
negative integers k and α.
Question: Is there a set E′ ⊆ E of at most α edges such that G −
E′ consists only of degree-zero vertices and a (k + |S|)-vertex highly
connected subgraph containing S?

For S = ∅ we obtain the plain edge deletion problem. The reduction rules are as
follows.



Finding Highly Connected Subgraphs 263

Rule 5 (�). If there is a connected component C = (V ′, E′) of G that has
minimum cut size at least α + 1, then accept if C is highly connected, S ⊆ V ′,
|V ′ \ S| = k, and the remaining connected components of G contain at most α
edges. Otherwise reject.

Rule 6 (�). If there is a connected component of G that has a minimum cut of
size at most (k + |S|)/2, then delete all cut edges and reduce α by their number.

Similarly to the edge isolation parameter, after using the reduction rules k, |S|,
and α are related.

Lemma 8 (�). If Rules 5 and 6 are not applicable, then α > (k + |S|)/2.

As the ones presented in Section 6, both rules can be applied efficiently.

Lemma 9 (�). Rules 5 and 6 are exhaustively applicable in O(α2nm) time.

Exhaustively applying the reduction rules lets us bound the number of the re-
maining vertices linearly in α. This will be useful in the branching algorithm
below.

Theorem 7 (�). Seeded Highly Connected Edge Deletion admits
a problem kernel with at most 2α+4α/k vertices and

(
2α
2

)
+α edges computable

in O(α2nm) time.

In the subexponential branching algorithm, we use the following simple branch-
ing rule. It simply takes a vertex and branches onwhether or not it should be added
to the seed S for the desired highly connected graph.

Branching Rule 1. If α+k ≥ 0, then choose an arbitrary vertex v ∈ V \S and
branch into the cases of adding v to S or removing v from G. That is, create the
instances I1 = (G,S ∪ {v}, k − 1, α) and I2 = (G− v, S, k, α− degG(v)). Accept
if I1 or I2 is accepted.

It is clear that Branching Rule 1 is correct. We now describe the complete
algorithm and bound its running time.

Theorem 8. There is an O(2 4·α0.75

+α2nm)-time algorithm for Highly Con-

nected Edge Deletion.

Proof. We first apply the kernelization from Theorem 7, which entails applying
Rules 5 and 6 exhaustively. Then, if k ≤ 2

√
α we check whether S ∪ V ′ induces

a highly connected subgraph, for every vertex subset V ′ ⊆ V \ S of size k. We
accept or reject accordingly. If k > 2

√
α, then we apply Branching Rule 1 and

recurse on the two created instances.
From the correctness of the rules it is clear that this algorithm finds a solution

if there is one. Let us analyze its running time. Note that in each recursive call,
except the first one, the input instance has O(α) vertices according to Theorem 7.
Thus applying Rules 5 and 6 in a recursive call amounts to O(α5) time except
in the first one where it is O(α2nm) time, by Lemma 9. Next, in each recursive
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call we may have to check whether S ∪ V ′ is highly connected for all k-vertex
subsets V ′. This is done only after Rules 5 and 6 have been exhaustively applied
and only if k ≤ 2

√
α. Thus, the graph G is of order at most 2α + 4α/k ≤

4α (note that k ≥ 2 without loss of generality). Hence, testing the subgraphs
amounts to O((4α)2

√
α+2) time. In total, the time spent per search tree node is

O((4α)max{5,2√α+2).
Now let us bound the number of leaves C of the search tree. Note that the

total number of search tree nodes is within a constant factor of C. For an instance
I = (G,S, k, α) of Highly Connected Subgraph, consider the value μ(I) =
k+α in the root of the search tree, after applying Rules 5 and 6. Then, μ(I) ≤ 3α
by Lemma 8. Let C(μ(I)) denote an upper bound on the number of leaves that
a search tree with a root with value μ(I) can have. Whenever we apply Branching
Rule 1, μ is reduced by a certain amount. More precisely, C(μ(I)) fulfills C(0) =
1, and C(μ(I)) ≤ C(μ(I1)) + C(μ(I2)). Hence, C(μ(I)) is monotone. Further,
since Rule 6 is not applicable, degG(v) ≥ (|S| + k)/2 ≥ k/2 ≥

√
α in the

application of Branching Rule 1. This implies C(μ(I)) ≤ C(μ(I)−1)+C(μ(I)−√
α). Hence C(μ(I)) is at most the number of paths in R2 from the origin to some

point (x, y) that take only steps (1, 0) or (0,
√
α), where x + y = μ(I). Scaling

the y-axis by a factor of 1/
√
α, computing C(μ(I)) reduces to the problem

of counting such paths from the origin to some (x, y′) taking only steps (1, 0)
or (0, 1) such that x+

√
αy′ = μ(I). We now bound the number of these paths.

The number of (0, 1) steps is at most 3
√
α. If the path contains i (0, 1)-

steps, then the total number of steps in the path is i + 3α −
√
αi. Hence,

there are
(
i+3α−√

αi
i

)
paths with exactly i steps (0, 1). This implies C(μ(I)) ≤∑3

√
α

i=0

(
i+3α−√

αi
i

)
. To bound this number we use the fact that

(
a+b
a

)
≤ 22

√
ab

[8, Lemma 9]. Hence C(μ(I)) ≤
∑3

√
α

i=0 22
√

i·(3α−√
αi). Consider the derivative f(i)

of 2
√

i · (3α−
√
αi) with respect to i. We have

f(i) =

√
α(3

√
α− 2i)√√

αi(3
√
α− i)

.

Inspecting f(i) shows that
√

i · (3α−
√
αi) is maximized over 0 ≤ i ≤ 3

√
α

if i = 3
√
α/2. This gives C(μ(I)) ≤ 3

√
α · 23

√
α
√
α. Finally,

3
√
α · 23

√
α
√
α · (4α)max{5,2√α+2} ∈ O(24α

0.75

),

giving the overall running time bound of O(24α
0.75

+ α2nm). ��

Although the presented algorithm is a subexponential-time algorithm with re-
latively small constants in the exponential functions, it is unclear whether it can
be useful in practice. This is because the parameter α is likely to be large in real-
world instances. With further substantial running time improvements, however,
one might obtain practical algorithms. For example, an algorithm with running
time O(2α

0.5 · nm) should perform well on many real-word instances.
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6. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs
in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010,
Part I. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010)

7. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algo-
rithmics: Parameter ecology and the deconstruction of computational complexity.
Eur. J. Combinatorics 34(3), 541–566 (2013)

8. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds
for parameterized complexity of cluster editing with a small number of clusters. J.
Comput. Syst. Sci. 80(7), 1430–1447 (2014)

9. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf.
Process. Lett. 76(4–6), 175–181

10. Hua, Q.-S., Wang, Y., Yu, D., Lau, F.C.M.: Dynamic programming based al-
gorithms for set multicover and multiset multicover problems. Theor. Comput.
Sci. 411(26-28), 2467–2474 (2010)
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Abstract. In this paper we consider a variation of a recoloring problem,
called the r-Color-Fixing. Let us have some non-proper r-coloring ϕ of
a graph G. We investigate the problem of finding a proper r-coloring
of G, which is “the most similar” to ϕ, i.e. the number k of vertices
that have to be recolored is minimum possible. We observe that the
problem is NP-complete for any r ≥ 3, but is Fixed Parameter Tractable
(FPT), when parametrized by the number of allowed transformations
k. We provide an O∗(2n) algorithm for the problem (for any fixed r)
and a linear algorithm for graphs with bounded treewidth. Finally, we
investigate the fixing number of a graph G. It is the maximum possible
distance (in the number of transformations) between some non-proper
coloring of G and a proper one.

1 Introduction

Many problems in real-life applications have a dynamic nature. When the con-
straints change, the previously found solution may no longer be optimal or even
feasible. Therefore often there is needed to recompute the solution (preferably
using the old one). This variant is called a reoptimization and has been stud-
ied for many combinatorial problems, e.g. TSP (see Ausiello et al. [1]), Shortest
Common Superstring (see Bilò et al. [2]) or Minimum Steiner Tree (see Zych and
Bilò [17]). We also refer the reader to the paper of Shachnai et al. [16], where
the authors describe a general model for combinatorial reoptimization.

Another family of problems, in which we deal with transforming one solution
to another, is reconfiguration. Here we are given two feasible solutions and want
to transform one into another by a series of simple transformations in such a way
that every intermediate solution is feasible. When we consider a reconfiguration
version of the graph coloring problem, we want to transform one proper coloring
into another one in such a way that at every step we can recolor just one vertex
and the coloring obtained after this change is still proper.

A special attention has been paid to determining if a given graph G is
r-mixing, i.e. if for any two proper r-colorings of G you can transform one into

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 266–276, 2015.
c© Springer-Verlag Berlin Heidelberg 2015
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another (maintaining a proper r-coloring at each step). Cereceda et al. [8–10]
characterize graphs, which are 3-mixing and they provide a polynomial algo-
rithm for recognizing them. Determining if a graph is r-mixing for any r ≥ 4 is
PSPACE-complete [7]. There are also some results showing that a graph G is
r-mixing, where r is some function of G. For example, Jerrum [14] showed that
every graph G is (Δ(G) + 2)-mixing. This bound has been recently refined by
Bonamy and Bousquet [6], who proved that every graph is (χg(G) + 1)-mixing,
where χg(G) denotes the Grundy number of G, i.e. the highest possible number
of colors used by a greedy coloring of G. Clearly χg(G) ≤ Δ(G) + 1.

Another direction of research in r-mixing graphs is the maximum number
of transformations necessary to obtain one r-coloring from another one (i.e.
the distance between those colorings). Bonamy and Bousquet [6] show that if
r ≥ tw(G)+2 (where tw(G) denotes the treewidth of G), then any two r-colorings
of G are in distance of at most 2(n2 + n), while for r ≥ χg(G) + 1, any two
r-colorings are in distance of at most 4 · χg(G) · n.

A slightly different problem has been considered by Felsner et al. [13]. They
also transformed one r-coloring to another one using some local changes, but
did not require the initial coloring to be proper (the final one still has to be
proper). Also, a vertex could be recolored to color x if it did not have any
neighbor colored with x (strictly speaking, any out-neighbor, as the authors were
considering directed graphs). They showed that if G is a 2-orientation (i.e. every
out-degree is equal to 2) of some maximal bipartite planar graph (i.e. a plane
quadrangulation), then every proper 3-coloring of G could be reached in O(n2)
steps from any initial (even non-proper) 3-coloring of G. Similar results hold for
4-colorings and 3-orientations of maximal planar graphs (i.e. triangulations).

In this paper we consider a slightly different problem. We start with some
(possibly non-proper) r-coloring and ask for the minimum number of transfor-
mations needed to obtain a proper r-coloring (any proper r-coloring, not the
specific one). We are allowed to change colors of vertices arbitrarily, provided
that we recolor just one vertex in each step. We mainly focus on the computa-
tional aspects of determining if, starting with some given r-coloring of G, we can
reach a proper r-coloring in at most k steps.

The paper is organized as follows. In Section 3 we show that our problem is
NP-complete for any r ≥ 3 and polynomial otherwise (here k is a part of the in-
put). In Section 4 we provide an O∗(2n) algorithm for the problem1. In the next
two Sections we focus on the parametrized complexity (we refer the reader to the
book by Downey and Fellows [12] for an introduction to the parametrized com-
plexity theory). Namely, we show that our problem is in FPT, when parametrized
by k (Section 5) and provide a linear algorithm solving the problem for graphs
with bounded treewidth (Section 6). In Section 7 we investigate the fixing num-
ber of G, i.e. the maximum (over all initial colorings ϕ) distance from ϕ to a
proper coloring of G.

1 In O∗ notation we suppress factors, which are polynomial in the input size.
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2 Preliminaries

For a natural number r, by [r] we denote the set {1, 2, .., r}. By r-coloring of
a graph G we mean any assignment of natural numbers from [r] (called colors)
to vertices of G. A coloring is proper if no adjacent vertices get the same color.
Note that there may be some colors that are not assigned to any vertex.

For two r-colorings ϕ, ϕ′ let ϕ,ϕ′ denote the set {v ∈ V : ϕ(v) �= ϕ′(v)}. We
also define the distance dist(ϕ, ϕ′) between two r-colorings ϕ, ϕ′. It is equal to
their Hamming distance, i.e. |ϕ, ϕ′|.

Let r be some fixed integer. The problem we consider in this paper is formally
defined as follows.

Problem: r-Color-Fixing (r-Fix)
Instance: A graph G, integer k, an r-coloring ϕ of V (G).
Question: Does there exist a proper r-coloring ϕ′ of G such that dist(ϕ, ϕ′) ≤
k?

Such a coloring ϕ′ is called a witness of I, for I = (G, k, ϕ) being a Yes-
instance of r-Fix. Obviously, if r < χ(G) (by χ(G) we denote the chromatic
number of G, i.e. the smallest number of colors needed to color G properly),
then the answer is always No. By recoloring of a vertex v we mean an operation
of changing the color assigned to v, obtaining another coloring ϕ′, such that
ϕ, ϕ′ = {v}.

In the optimization version of the problem we ask for the minimum number
k of recolorings needed to transform ϕ into a proper coloring of G. Let χr

ϕ(G)
denote this minimum possible value of k. If r < χ(G), we define χr

ϕ(G) := ∞ for
every r-coloring ϕ of G.

3 Complexity

First, we shall prove that if k is the part of the input, r-Fix problem is NP-
complete for any r ≥ 3. Clearly, the problem is in NP for all r. Also, a graph
G with n vertices is r-colorable if and only if G can be recolored from any fixed
coloring within at most n steps. Thus we obtain the following.

Observation 1. r-Fix problem is NP-complete for any r ≥ 3 (when the number
k of allowed recolorings is a part of the input).

For r = 1, the problem clearly reduces to determining if the graph has no
edges. For r = 2 the problem is also polynomial time solvable. If G is not
bipartite, the answer is No.

Observation 2. Let G be a bipartite graph with bipartition classes X and Y
and let ϕ be a 2-coloring of G. Then we have2

χ2
ϕ(G) =

∑
C : connected

component of G

min{|
(
X , ϕ−1(1)

)
∩ V (C)|, |

(
X , ϕ−1(2)

)
∩ V (C)|}.

2 By ϕ−1(i) we denote the set of vertices colored with the color i.
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Proof. Let C be a connected component of G and let X ′, Y ′ denote its classes
of bipartition. By ϕ′ we denote the restriction of ϕ to C. To obtain a proper
coloring of C, we either have to recolor the vertices from X ′ \ϕ′−1(1) to color 1
and vertices from Y ′ \ϕ−1(2) to color 2, or the other way around. Therefore the
minimum number of recoloring operations needed to obtain a proper coloring
of C is equal to min{|X ′ , ϕ′−1(1)|, |X ′ , ϕ′−1(2)|}. Clearly X ′ , ϕ′−1(1) =
(X ∩ V (C)),

(
ϕ−1(1) ∩ V (C)

)
=
(
X , ϕ−1(1)

)
∩ V (C) (and symmetrically for

ϕ−1(2)). We repeat this for every connected component C of G. ��

4 Exact Algorithm via Inclusion-Exclusion

In this section we deal with the optimization version of the problem. Note that
the brute force algorithm works in time O∗(

∑n
k=0

(
n
k

)
(r − 1)k) = O∗(rn). We

shall obtain a better algorithm by reducing the instance of our problem to an
instance of the so-called Max Weighted Partition problem and then solve
it, using the algorithm by Björklund, Husfeldt and Koivisto [3]. A partition of
the set N is a family of sets S1, . . . , Sr such that

⋃r
i=1 Si = N and Si ∩ Sj = ∅

for every i �= j. Notice that we do not require for the sets Si to be non-empty.

Problem: Max Weighted Partition
Instance: A set N , integer d and functions f1, f2, . . . , fd : 2

N → [−M,M ]
for some integer M .
Question: What is the maximum w, for which there exists a partition
S1, S2, . . . , Sd, such that

∑d
i=1 fi(Si) = w?

Let G be a graph and let ϕ be its r-coloring. We shall construct a correspond-
ing instance J = (N, d, f1, . . . , fd) of Max Weighted Partition problem. Set
N = V (G) and d = r. We define functions f1, f2, . . . , fd as:

fi(S) =

{
−|S \ ϕ−1(i)| if S is independent,
−r · n otherwise.

In this way every partition of V (G) into r independent set, corresponding to
the proper r-coloring ϕ′, has the total weight (−

∑r
i=1 |ϕ′−1(i)\ ϕ−1(i)|). It is

also easy to notice that any partition into independent sets has greater weight
than any partition having at least one non-independent set.

The only thing left is to prove that the weight is maximized for a partition
corresponding to a coloring ϕ′, such that dist(ϕ′, ϕ) is minimum. To see this,
notice that dist(ϕ′, ϕ) = |{v ∈ V : ϕ′(v) �= ϕ(v)}| = |

⋃r
i=1{v ∈ V : ϕ′(v) =

i∧ ϕ(v) �= i}| =
∑r

i=1 |{v ∈ V : ϕ′(v) = i∧ ϕ(v) �= i}| =
∑r

i=1 |ϕ′−1(i) \ ϕ−1(i)|.
Moreover, if a weight of a found partition is at most −r · n, it contains at least
one non-independent set, which means that r < χ(G) and therefore χr

ϕ(G) = ∞.
Now we can use the algorithm by Björklund et al. to find the optimal solution

for J .

Theorem 3 (Björklund, Husfeldt, Koivisto [3]). Max Weighted Par-
tition problem can be solved in time O∗(2nd2M) (where n is the cardinality of
the ground set), using exponential space.
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Since d = r is a constant and M = n · r, we obtain the following corollary.

Corollary 4. For any constant r, the optimization version of the r-Fix problem
can be solved in time O∗(2n) (where n is the number of vertices in the input
graph), using exponential space.

If we have only polynomial space available, we get the following bounds.

Theorem 5 (Björklund, Husfeldt, Koivisto [3]). Max Weighted Par-
tition problem can be solved in time O∗(3nd2M) (where n is the cardinality of
the ground set), using polynomial space.

Corollary 6. For any constant r, the optimization version of the r-Fix problem
can be solved in time O∗(3n) (where n is the number of vertices in the input
graph), using polynomial space.

5 Parametrized Complexity

Clearly for k being a fixed integer, the problem can be easily solved in time
O∗(
(
n
k

)
rk) = O∗(nkrk). To do it, we have to consider every k-element subset of

vertices and check whether recoloring the chosen vertices (in rk ways, since we
are interested in recoloring at most k vertices and thus some colors may remain
unchanged) allows us to obtain a proper coloring. Therefore our problem is in
XP (when parametrized by k). In the remainder of this section we show that the
problem is in FPT, i.e. we can solve it in time f(k) · nO(1) (i.e. the degree of a
polynomial function of n does not depend on k).

For an improper coloring ϕ of G, let Gϕ denote a conflict graph of G under the
coloring ϕ, i.e. a graph induced by the set of edges {uv ∈ E(G) : ϕ(u) = ϕ(v)}.
Note that the conflict graph can be found in polynomial time. Consider the
following algorithm.
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Lemma 7. Let ϕ be a non-proper r-coloring of G. Then I = (G, k, ϕ) is a
Yes-instance of r-Fix if and only if for any edge xy ∈ E(Gϕ) there exists an
r-coloring (possibly non-proper) ϕ1 of G such that:

1. ϕ, ϕ1 = {x} or ϕ, ϕ1 = {y},
2. I ′ = (G, k − 1, ϕ1) is a Yes-instance of r-Fix.

Proof. First assume that I = (G, k, ϕ) is a Yes-instance of r-Fix and let ϕ′

be its witness. Consider an edge xy from Gϕ. By the definition of Gϕ, we have
ϕ(x) = ϕ(y). Since ϕ′ is proper, clearly ϕ′(x) �= ϕ′(y). Then at least one of
the vertices x, y has changed its color. Without loss of generality assume that
ϕ′(x) �= ϕ(x). Let ϕ1 be a coloring defined as follows.

ϕ1(u) =

{
ϕ(u) if u �= x

ϕ′(u) if u = x.

It is clear that it satisfies the conditions given in lemma.
Now consider ϕ being an r-coloring of G and let xy be an edge from Gϕ.

Without loss of generality let ϕ1 to be some r-coloring of G such that ϕ, ϕ1 =
{x} and the instance I ′ = (G, k − 1, ϕ1) is a Yes-instance of r-Fix.

Let ϕ′
1 be a witness of I ′. Notice that dist(ϕ′

1, ϕ) ≤ dist(ϕ′
1, ϕ1)+dist(ϕ1, ϕ) ≤

k and therefore I = (G, k, ϕ) is a Yes-instance of r-Fix with witness ϕ′
1. ��

Lemma 8. The algorithm Fix solves r-Fix problem for any r.

Proof. Let I = (G, k, ϕ) be an instance of r-Fix. If ϕ is a proper labeling of G,
then the algorithm returns Yes in line 1. Suppose then that ϕ is not proper. If
k = 0, the algorithm returns No in line 2.

Assume that k > 0 and the algorithm works properly for all instances with
parameter smaller than k. Suppose that I = (G, k, ϕ) is a Yes-instance of r-Fix.
Let xy be an edge chosen in line 3. Then, by Lemma 7, there exist an r-coloring
ϕ1 of G such that ϕ , ϕ1 = {x} or ϕ , ϕ1 = {y} and I ′ = (G, k − 1, ϕ1) is a
Yes-instance of Rec. Without loss of generality assume that ϕ,ϕ1 = {x}. Let
us consider an iteration of the loop in lines 4–6 color ϕ1(x). By the inductive
assumption, the recursive call in line 6 returns Yes and therefore the whole
algorithm returns Yes.

If I is a No-instance of Rec, then by the inductive assumption and Lemma 7,
for every col the recursive calls in lines 6 and 9 return No. Therefore the algo-
rithm returns No in line 10. ��

Let T (n, k) be the computational complexity of the algorithm Fix. We can
write the following recursive formula:

T (n, k) ≤ nO(1) + (r − 1) · T (n, k − 1) + (r − 1) · T (n, k − 1).

Solving it, we obtain the following.

Lemma 9. The algorithm Fix solves r-Fix problem in time T (n, k) ≤
(2(r − 1))

k · nO(1).
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Corollary 10. For any fixed r, the r-Fix problem is in FPT, when parametrized
by k.

Corollary 10 yields that the r-Fix problem admits a kernel. However, its size
is exponential.

Open Problem 1. Design a polynomial kernel for the r-Fix problem,
parametrized by k or prove that it does not exist (under some reasonable com-
plexity assumptions).

6 Algorithm for Graphs with Bounded Treewidth

In this section we consider the optimization version of r-Fix problem for graphs
with bounded treewidth. For more information about tree decompositions and
treewidth, the reader is referred to Diestel’s book [11]. Here we just quickly
present basic definitions that we shall use.

Let G = (V,E) be a graph with n vertices. A tree decomposition of G is a pair
({Xi : i ∈ I}, T = (I, F )}, where T is a tree whose every node has associated a
subset Xi of vertices of G with the following properties:

1.
⋃

i∈I Xi = V ,
2. for every vw ∈ E there exists i ∈ I such that {v, w} ⊆ Xi,
3. for every v ∈ V , the set {i ∈ I : v ∈ Xi} induces a subtree in T .

The width of a tree decomposition ({Xi : i ∈ I}, T ) is equal to maxi∈I |Xi| − 1,
while the treewidth tw(G) of a graph G is the minimum width of a tree decompo-
sition of G.

Let T be a rooted tree. This gives us a notion of „children” of nodes of T . A
decomposition ({Xi : i ∈ I}, T = (I, F )} of G = (V,E) is nice if every node i ∈ I
belongs to one of the following types:

1. Leaf: node i is a leaf of T and |Xi| = 1,
2. Introduce: node i has exactly one child j and there is a vertex v ∈ V such

that Xi = Xj ∪ {v},
3. Forget: node i has exactly one child j and there is a vertex v ∈ V such that

Xj = Xi ∪ {v},
4. Join: node i has exactly two children j1 and j2, and Xi = Xj1 = Xj2 .

Every graph G with n vertices admits a nice tree decomposition with O(n)
nodes and width equal to tw(G). Moreover, it can be found in linear time if
tw(G) is bounded (for the details see Bodlaender [4] and Kloks [15]).

In this section we prove the following theorem.

Theorem 11. For any fixed r, the optimization version of r-Fix problem can
be solved in time O(n ·rt+2), where n is the number of vertices of the input graph
and t is its treewidth.
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We shall use a standard technique of dynamic programming on a tree-
decomposition. See the survey by Bodlaender and Koster [5] for more examples.
Consider a graph G and its r-coloring ϕ. Let ({Xi : i ∈ I}, T = (I, F )) be a
nice tree decomposition of G with width equal to tw(G). Let i0 be the root of
T . Moreover, let Gi denote a subgraph of G induced by the set

⋃
j Xj where j

belongs to the subtree of T rooted at i.
For every node i of T we introduce a table Ki, indexed with all possible

proper r-colorings of Xi. Let f : Xi → [r]. If f is a proper r-coloring of G[Xi],
then Ki[f ] is the minimum number of recolorings needed to obtain from ϕ|Gi a
proper r-coloring ϕ′ of Gi, such that ϕ′|Xi = f . Clearly, χr

ϕ(G) = minf{Ki0 [f ]}.
We shall show how to construct tables Ki for every type of node. We traverse T

in a post-order fashion, so when we consider a node i, we have already considered
all its children.

Leaf Node. Let i be a leaf node and Xi = {v}. It is clear that the value of Ki[f ]
is equal to 0 if f(v) = ϕ(v) or 1 otherwise. Thus the table Ki can be computed
in O(1) time (as r is fixed).

Introduce Node. Let i be an introduce node and j be its child node with
Xi = Xj ∪ {v}. Observe that from the properties of tree decompositions follows
that v /∈ V (Gj) (property 3). Moreover, v is not adjacent to any vertex from
V (Gj) \Xj (property 2 and 3). It is not hard to observe that Ki[f ] is defined as
follows:

Ki[f ] =

{
Kj [f |Xj ] if f(v) = ϕ(v)

Kj [f |Xj ] + 1 otherwise.
Observe that Ki can be computed in time O(rt+1).

Forget Node. Let i be a forget node and j be its child with Xi ∪ {v} = Xj .
Clearly Gi = Gj . Then Ki[f ] is the minimum of Kj[f

′], where f ′|Xi = f . Note
that there are at most r such colorings f ′ for each f . Therefore the table Ki can
be computed in time O(rt+2).

Join Node. Let i be a join node and let j1 and j2 be its children. Recall that
Xi = Xj1 = Xj2 . From the properties of tree decompositions it follows that
V (Gj1) ∩ V (Gj2 ) = Xi (property 3) and no vertex from V (Gj1 ) \Xi is adjacent
to a vertex from V (Gj2) \ Xi. Therefore we can recolor Gi by recoloring Gj1

and Gj2 separately and glueing obtain colorings on Xi. Thus Ki[f ] = Kj1 [f ] +
Kj2 [f ]− (f , ϕ|Xi). Clearly we can compute Ki in time O((t + 1)rt+1).

Observe that for each i, the table Ki has at most rt+1 elements. Therefore
the space complexity of the algorithm is bounded by O(n · rt+1). Since we can
compute each table in time O(rt+2), the total time complexity of the algorithm
is O(n · rt+2), which finishes the proof of Theorem 11.

7 Fixing Number

Recall that for a graph G and its r-coloring ϕ, by χr
ϕ(G) we denote the minimum

number vertices that have to be recolored to obtain some proper r-coloring of G.
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An r-fixing number of a graph G (denoted by χr(G)) is a maximum value of
χr
ϕ(G) over all colorings ϕ : V (G) → {1, .., r}.

Definition 1. By χ(G) we denote the fixing number of a graph G, defined as a
maximum value of χr(G) over all r ≥ χ(G).

Lemma 12. Let ϕ be some r-coloring of G and ϕ′ be an (r + 1)-coloring of G
such that ϕ−1(i) = ϕ′−1(i) for i ∈ {1, . . . , r − 1}. Then χr+1

ϕ′ (G) ≤ χr
ϕ(G).

Proof. Recoloring the vertices in the same way as with ϕ makes ϕ′ proper. ��

Lemma 13. For all graphs G and r ≥ χ(G) holds χr+1(G) ≤ χr(G).

Proof. Let ϕ′ be an (r + 1)-coloring of G such that χr+1
ϕ′ (G) = χr+1(G). Let

ϕ be an r-coloring of G obtained from ϕ′ by identifying colors r and r + 1. By
Lemma 12 we obtain the following. χr+1(G) = χr+1

ϕ′ (G) ≤ χr
ϕ(G) ≤ χr(G). ��

Corollary 14. For all graphs G holds χ(G) = χχ(G)(G).

Let G be a bipartite graph with bipartition classes X,Y and let ϕ be its
2-coloring. Recall from Observation 2 that

χr
ϕ(G) =

∑
C : connected

component of G

min{|
(
X , ϕ−1(1)

)
∩ V (C)|, |

(
X , ϕ−1(2)

)
∩ V (C)|}.

Note that if |
(
X , ϕ−1(1)

)
∩ V (C)| ≥ |C|/2, then |

(
X , ϕ−1(2)

)
∩ V (C)| ≤

|C|/2 for any connected component C of G. Thus we can easily obtain the
following corollary.

Corollary 15. χ(G) ≤ 
n/2� for every bipartite graph G on n vertices.

This result can be generalized for non-bipartite graphs.

Theorem 16. For all G holds χ(G) ≤
⌊
n · χ(G)−1

χ(G)

⌋
.

Proof. For a graph G = (V,E) set r = χ(G) and let ϕ an r-coloring of G such
that χr

ϕ(G) = χ(G). Consider some proper r-coloring ϕ′ of G. Let Ai = ϕ−1(i)
and A′

i = ϕ′−1(i) for all i ∈ [r]. By Bi,j we denote Ai∩A′
j . Clearly

⋃
i,j Bi,j = V .

Note that for any permutation σ of [r], we can obtain a proper r-coloring of G
from ϕ by recoloring all vertices but Cσ =

⋃
i∈[r] Bi,σ(i) (this proper coloring

will be equivalent to ϕ′ up to the permutation of colors).
Suppose that |Cσ| < n

r for all σ. On one hand we have |
⋃

σ Cσ| ≤
∑

σ |Cσ| <
r! · n

r . On the other hand, we have:

|
⋃
σ

Cσ| =|
⋃
σ

⋃
i

Bi,σ(i)| = |
⋃
i

⋃
σ

Bi,σ(i)| = |
⋃
i

⋃
j

⋃
σ s.t.
σ(i)=j

Bi,j |

=(r − 1)!|
⋃
i

⋃
j

Bi,j | = (r − 1)!n.
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This is a contradiction, so there exists σ with |Cσ | ≥ n
r and therefore we can

obtain a proper r-coloring of G by recoloring at most n · r−1
r vertices. Since χ(G)

is an integer, we obtain our claim. ��

To see that this bound is attainable, consider a graph G(m, r) on n = m · r
vertices, consisting of m disjoint copies of Kr. Clearly χ(G(m, r)) = r. Let ϕ
be an r-coloring of G(m, r) such that ϕ(v) = 1 for every vertex v. Clearly we
have to recolor every vertex but one from every copy of Kr, which gives us
χ(G(m, r)) ≥ χr

ϕ(G(m, r)) = m(r − 1) = n r−1
r .

However, there are graphs G for which the value of χ(G) is significantly
smaller. For example, consider an odd cycle Cn for n ≥ 9. Clearly χ(Cn) = 3. Let
ϕ be any coloring of Cn with r ≥ 3 colors. Arbitrarily choose vertex v and remove
it from Cn, obtaining a path Pn−1. Since χ(Pn−1) = 2, then by Theorem 16 we
can obtain a proper coloring of Pn−1 by recoloring at most 
(n− 1)/2� vertices.
Then we can restore vertex v and, if necessary, recolor it to an available color
(there is always at least one). In this way we performed at most 1+ 
(n− 1)/2�
recoloring operations, which is roughly n

2 compared to 2n
3 given by Theorem 16.

Acknowledgement. The authors are sincerely grateful to Dieter Kratsch for
valuable discussion on the topic.
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Abstract. When scheduling jobs for systems in the cloud, we often deal with
jobs that arrive and depart in an online manner. Each job should be assigned to
a server upon arrival. Jobs are annotated with sizes which define the amount of
resources that they need. Servers have uniform capacity and, at all times, the total
size of jobs assigned to a server should not exceed this capacity. This setting is
closely related to the classic bin packing problem. The difference is that, in bin
packing, the objective is to minimize the total number of used servers. In the
cloud systems, however, the cost for each server is proportional to the length of
the time interval it is rented for, and the goal is to minimize the cost involved in
renting all used servers. Recently, certain bin packing strategies were considered
for renting servers in the cloud [Li et al. SPAA’14]. There, it is proved that all
Any-Fit strategies have a competitive ratio of at least μ, where μ is the max/min
interval length ratio of jobs. It is also proved that First Fit has a competitive ratio
of 2μ + 13, while Best Fit is not competitive at all. We observe that the lower
bound of μ extends to all online algorithms. We also prove that, surprisingly, Next
Fit algorithm has a competitive ratio of at most 2μ+ 1. We also show that a va-
riant of Next Fit achieves a competitive ratio of K ×max{1, μ/(K − 1)} + 1,
where K is a parameter of the algorithm. In particular, if the value of μ is known,
the algorithm has a competitive ratio of μ + 2; this improves upon the existing
upper bound of μ + 8. Finally, we introduce a simple algorithm called Move To
Front (MTF) which has a competitive ratio of at most 6μ+8. We experimentally
study the average-case performance of different algorithms and observe that the
typical behaviour of MTF is better than other algorithms.

1 Introduction

Bin packing is a classic problem in the context of online computation. The input is
a sequence of items of different sizes which appear in a sequential, online manner.
The goal is to place these items into a minimum number of bins of uniform capacity
so that the total size of items in each bin is no more than the uniform capacity of bins.
It is often assumed that bins have size 1 and items have positive sizes no more than 1.
The problem is online in the sense that, upon receiving an item, an algorithm should
place it into a bin without any knowledge about the (size of) incoming items. A simple
online strategy is Next Fit (NF) in which there is a single open bin at each time. If an
incoming item fits in the open bin, the algorithm places it there; otherwise, it closes the
open bin and opens a new bin for the item. First Fit (FF) is an online algorithm that does
not close bins. It places an incoming item in the first bin that has enough space; if such

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 277–288, 2015.
c© Springer-Verlag Berlin Heidelberg 2015
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a bin does not exist, it opens a new bin. Best Fit (BF) works similarly to First Fit except
that it maintains bins in the decreasing order of their level. The level of a bin is the total
size of items placed in the bin. Note that First Fit and Best Fit avoid opening new bins
unless they have to. Algorithms with this property are called Any Fit algorithms.

In many cloud systems, a set of jobs appear in an online manner. These jobs should
be hosted by servers of fixed capacities. Each job has a load which defines the amount of
resources that it needs. Depending on the application, the load of a job might represent
its memory requirement, GPU resource usage or bandwidth usage. In the cloud gaming
systems, for example, different instances of computer games are created in an online
fashion and run in cloud servers; players interact with the servers via thin clients [8,10].
Here, an instance of a game is a job which, depending on the game and the number
of users involved in it, has a load. In the case of computer games, the load of a job is
mainly defined through the amount of GPU resources that it demands [10].

With the above description, any online bin packing algorithm can be used to assign
jobs to servers. A job of load x can be treated as an item of size x which is assigned to
a server (bin) of certain capacity. In this paper, we interchangeably use terms ‘job’ and
‘item’ as well as ‘server’ and ‘bin’. There are, however, distinctions between assigning
jobs to servers and the bin packing problem. First, jobs depart the system after they
complete. When a job arrives, it is not clear when it completes and an algorithm should
place it without any knowledge about its departure time. Second, in the bin packing
problem, the objective is to minimize the number of used bins. Bins can be regarded
as servers that one can buy, and the goal is to minimize the cost by buying a small
number of servers. In the cloud, however, the servers are rented from cloud service
providers. For example, gaming companies such as OnLive [3] and GaiKai [2] offer
cloud gaming services which execute in public clouds like Amazon EC2 [1]. A rented
server is charged by its usage, often in an hourly or monthly basis. So, in order to
minimize the cost, we need to minimize the total time that servers are rented. In doing
so, an algorithm releases a server when all its assigned jobs complete.

Definition 1. In the server renting problem , a series of jobs (items) appear in an online
manner. Each job has a load (size) that defines the amount of resources that it needs.
Upon its arrival, a job should be assigned to a server (bin). Servers have a uniform
capacity, and the total load of jobs assigned to a server at any time should not exceed
this capacity. Besides its arrival time, each job has a departure time that indicates when
it completes and leaves the system. The length of the interval between the arrival and
departure time of a job is called the ‘length’ of the job. Upon its arrival,, the length of
a job is unknown to online algorithms. To assign a job to a server, an online algorithm
might open (rent) a new server or place it to any of the previously opened servers. When
all jobs assigned to a server depart, that server is released. The goal is to minimize the
total usage time of servers . More precisely, assuming that an algorithm opens m bins
B1, . . . , Bm, the total cost of the algorithm is

∑m
i=1 ti, where ti is the length of the time

interval between when Bi is opened and when it is released. Without loss of generality,
we assume the capacity of servers to be 1 and jobs have size at most 1. Also, we assume
the length of jobs is at least Δ and at most μΔ where μ ≥ 1.

When studying the server renting problem, we are interested algorithms with good
worst-case and average-case performance. For measuring the worst-case performance,
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we compare online algorithms with an optimal offline algorithm OPT that knows the
entire sequence (all arrival times, lengths and sizes) in advance. An algorithm is said to
be c-competitive (more precisely, asymptotic c-competitive) if the cost of serving any
input sequence never exceeds c times the cost of OPT within an additive constant.

1.1 Previous Work and Contribution

The Bin Packing problem has been widely studied over the past few decades. It is known
that Next Fit is 2-competitive while Best Fit and First Fit are both 1.7-competitive [9].
Generally, any Any Fit algorithm that avoids placing items in the bin with the lowest
level is 1.7-competitive (these algorithms are called Almost Any Fit). The Harmonic
family of algorithms is another class of bin packing algorithms which are based on
placing items of similar sizes together in the same bins. These algorithm generally have
better competitive ratios than Any Fit algorithms. The best member of this family is
Harmonic++ with a competitive ratio of 1.5888 [11]. However, because of their poor
average-case performance, algorithms of the Harmonic family are rarely used in prac-
tice. It is known that no online algorithm can be better than 1.54037-competitive [4].

Coffman et al. [6] studied a dynamic version of the bin packing problem in which
items arrive and depart. It is proved that the competitive ratio of First Fit is between
2.75 and 2.89 while no online algorithm can do better than 2.5 [6]. A discrete version
of the problem, where each item has size 1/k for some integer k, is studied in [5]. Note
that in these results, the objective is to minimize the number of opened bins.

The online server renting problem as defined above was recently introduced by Li
et al. [10]. Some terms and notations in this paper are also borrowed from this paper.
The authors prove that no Any Fit algorithm can be better than μ competitive. Recall
that μ is the ratio between the largest length and the smallest length in the sequence.
The competitive ratio of First Fit is proved to be at most at most 2μ+ 13-competitive.
On the other hand, it is proved that Best Fit does not have a bounded competitive ratio.
This result is somewhat surprising as Best Fit is usually the superior algorithm for most
applications of the bin packing problem. In [10], a slight modification of the First Fit
algorithm is introduced which achieves a competitive ratio of at most 8

7μ+ 55/7 in the
general case and a competitive ratio of at most μ+ 8 when the value of μ is known.

In this paper, we further study the server renting problem. We first observe that the
lower bound of μ holds for the competitive ratio of any online algorithm. In the standard
bin packing, there is no harm in keeping bins open; hence, Any Fit algorithms have
advantage over algorithms that close bins (e.g., Next Fit). This is not necessarily the case
for the server renting problem because when a bin gets closed, as no new item is placed
there, the bin gets released earlier; this might improve the cost of the algorithm. Assume
items sizes are at no larger than 1/k for some k ≥ 1. We show that the competitive
ratio of the Next Fit algorithm is at most k

k−1μ + 1 when k ≥ 2 and at most 2μ + 1
when k < 2. In particular, when k = 1 (when there is no restriction on item sizes),
the competitive ratio is at most 2μ + 1. Note that this is much better than 2μ + 13
of First Fit. We also introduce a variant of Next Fit which achieves a ratio of at most
K ×max{1, μ

K−1} + 1, where K is a parameter of the algorithm. In particular, if the
value of μ is known, we get an algorithm with competitive ratio of at most μ+2 which
is better than μ+ 8 of a similar algorithm presented in [10].
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Although Next Fit has a good competitive ratio, unfortunately, it has a poor average-
case performance. Our experiments indicate that, for sequences generated uniformly at
random, Best Fit outperforms both Next Fit and First Fit. Recall that Best Fit does not
have a bounded competitive ratio. We introduce a simple algorithm, called Move To
Front (MTF), which performs better than Best Fit on average. Moreover, in contrast to
Best Fit, it has a bounded competitive ratio of at most 6μ+ 8.

2 Preliminaries

In this section, we present some basic results about the server renting problem. First,
using a similar argument as [10], we prove a general lower bound for competitive ratio
of any online algorithm.

Theorem 1. The competitive ratio of any online algorithm for the server renting prob-
lem is at least μ

1+ε(μ−1) where ε is a lower bound for the size of items.

Proof. Recall that the lengths of all items are at least Δ and at most μΔ. Consider
a sequence which is defined through phases. Each phase starts with 1

ε2 items of size ε.
To place these items, any algorithm has to open at least 1/ε bins. At time Δ, 1

ε2 − 1
ε

items depart in an adversarial manner so that there is a single of item of size ε in 1/ε
bins (some bins might get released at this time). The remaining items stay for a period
of length μΔ and the online algorithm keeps a single bin for each of them. At time μΔ,
all items depart and the phase ends. The cost of the online algorithm for each phase is
at least μΔ/ε since it keeps 1/ε bins for a period of μΔ. OPT places items which have
length μΔ together in a single bin and incurs a cost of μΔ for them. Other 1

ε2 −
1
ε items

are placed tightly together in 1/ε− 1 bins for a period of length Δ. The cost of OPT for
these items will be Δ/ε − Δ. In total, the cost of OPT will be μΔ + Δ/ε − Δ and the

competitive ratio of the algorithm will be μΔ/ε

μΔ+Δ/ε−Δ = μ
1+ε(μ−1) . ��

Next, we introduce two lower bounds for the cost of OPT. We call an item x active
at time t if t is in the interval between the arrival and the departure time of x. Let the
span of an input sequence σ be the total length of intervals at which at least one item is
active. Clearly, the cost of any algorithm for serving σ is at least equal to the span of σ.
Define the resource utilization of an item as the product of its size and its length. The
cost of any algorithm for σ is at least equal to the total resource utilization of items in
σ, denoted by util(σ). So, we have the following lower bounds for the cost of OPT.

Proposition 1. For any input sequence σ, the cost of an optimal offline algorithm OPT

is at least equal to span(σ) and util(σ), namely, the span of σ and also the total
resource utilization of items in σ.

When we allow arbitrarily small items, Theorem 1 indicates that all algorithms have
a competitive ratio of at least μ. This suggests that when item sizes are larger than
a fixed value, better competitive ratios can be achieved. Consider a sequence σ in which
all item sizes are larger than 1/k for some positive value k. The cost of any algorithm
is at most equal to the total length of all items denoted by L(σ), which happens when
no two items share a bin. On the other hand, the total resource utilization of items, and
consequently cost of OPT, is at least L(σ)/k. So, we get the following.
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Proposition 2. [10] When items sizes are at least 1/k (k is a positive value), the com-
petitive ratio of any online algorithm for the server renting problem is at most k.

3 Next Fit Algorithm

In this section, we analyze the Next Fit algorithm for the server renting problem. Recall
that for the bin packing problem Next Fit keeps one bin open at any given time. If an
incoming item does not fit in the open bin, it closes the bin and opens a new bin. For
the server renting problem, we distinguish between closing and releasing a bin. When
an item does not fit in the open bin, the algorithm closes the bin and does not refer to it.
Such a bin remains in the system (i.e., is being rented) until all items which are placed
there depart and it becomes released.

Example 1. Consider a sequence 〈a = (0.3, 1, 5), b = (0.4, 2, 6), c = (0.4, 3, 5), . . .〉.
The first element of each tuple indicates the size of an item, while the second and
the third elements respectively indicate the arrival and the departure times of the item.
At time 1, item a arrives and is placed in the single open bin. At time 2, item b arrives
and is placed in the same bin (the level of the bin will be 0.7). At time 3, item c arrives
and does not fit in the open bin; hence, the current open bin is closed and a new bin is
opened for c. The closed bin remains in the system (and a rental cost is paid for it) until
time 6 where item b departs and the bin gets released.

Theorem 2. Assume all items have size 1/k or smaller, where k is a positive value no
smaller than 1. When k ≥ 2, the competitive ratio of Next Fit for the server renting
problem is at most μ

1−1/k + 1. When k < 2, the ratio is at most 2μ+ 1.

Proof. Assume Next Fit opens m bins B1, . . . , Bm for serving an arbitrary sequence σ.
Let sti denote the length of the time interval during which server Bi is rented. We refer
to this period as the stretch of Bi. Let NF(σ) denote the cost of Next Fit for serving
σ. We have NF(σ) =

∑m
1 sti. The stretch of Bi can be partitioned into two period.

The first one is the interval between when Bi is opened and when it is closed. The
second period is the interval between when Bi is closed and when it is released. Let
st1i and st2i respectively denote the lengths of the first and the second periods of Bi

(st1i + st2i = sti). If a bin is released before being closed, the second period will be
empty, i.e., st2i = 0. Let p ≤ m denote the number of other bins, i.e., those which are
closed before being released. We call these bins critical bins. Note that when a bin is
closed, it takes a time of length at most μΔ before it gets released, i.e., the second period
of each critical bin has a length of at most μΔ (see Figure 1). So, the total rental time
for the second periods of all bins is no more than p × μΔ. On the other hand, the total
rental time of the first periods of all bins is no more than the span of input sequence.
This is because the first period of a bin starts when that of previous bin is finished, i.e.,
no two bins are in their first stretch period at the same time. So we have

NF(σ) =

m∑
i=1

sti =

m∑
i=1

st1i +

p∑
i=1

st2i ≤ span(σ) + p× μΔ (1)



282 S. Kamali and A. López-Ortiz
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Fig. 1. The stretch of bins in a packing of the Next Fit algorithm. In this example, bins B2, B4,
and B5 are critical bins. The second periods of bins are highlighted in red.

Assume k ≥ 2. At the time of being closed, all critical bins have a level of at least
1 − 1/k; otherwise, the item that caused opening of a new bin could fit in such a bin.
This implies that the number of critical bins is no more than ω(σ)

1−1/k where ω(σ) is the
total size of items in σ. Let util(σ) denote the total resource utilization of items in
σ. Since the length of each item is at least Δ, we have util(σ) ≥ ω(σ) × Δ, and by
Proposition 1, ω(σ) ≤ OPT(σ)/Δ. Consequently, p ≤ OPT(σ)

(1−1/k)Δ . Also, by Proposition

1, span(σ) ≤ OPT(σ). Plugging these into Equation 1, we get the following inequality
which completes the proof.

NF(σ) ≤ OPT(σ) +
OPT(σ)

1− 1/k
× μ

Next, assume k < 2. We define the amortized level of a critical bin B as the the
size of the item that closes B plus the total sizes of items in B at the time Next Fit
closes it. By definition of NF, the amortized level of all critical bins is more than 1. At
the same time, the size of each item is added at most twice in the total amortized cost
(once as a part of a critical bin and once as the time that closes a critical bin). Hence,
the total sum of the amortized levels of all critical bins is at most twice the total size of
sequence. This implies that the number of critical bins is no more than twice the total
size of items in σ, i.e., p ≤ 2ω(σ) ≤ 2 OPT(σ)/Δ. Applying this into Equation 1, we
get NF(σ) ≤ OPT(σ) + 2 OPT(σ) × μ which completes the proof. ��

3.1 Improving the Competitive Ratio: Modified Next Fit Algorithm

In this section, we modify the Next Fit algorithm to improve its competitive ratio. Intu-
itively speaking, the competitive ratio improves for sequences formed by small items.
On the other hand, as Proposition 2 implies, when all items are relatively large, the
competitive ratio is independent of μ. This suggest that the competitive ratio can be
improved when large and small items are treated separately. A similar approach is used
in [10] to improve the competitive ratio of First Fit. Consider the following algorithm.

Modified Next Fit with parameter K: The algorithm applies the Next Fit strategy
to place items. In doing so, it treats items with size smaller than 1/K separately
from those with size larger than or equal to 1/K .
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Theorem 3. The competitive ratio of Modified Next Fit with parameter K is at most
K ×max{1, μ/(K − 1)}+ 1.

Proof. Consider a sequence σ and let σs and σl denote the subsequences of σ respec-
tively formed by items smaller and larger or equal to K . Recall that the resource utiliza-
tion of an item is the product of its length and its size, and the total resource utilization
of all items in a sequence is a lower bound for the cost of OPT. As Proposition 2 sug-
gests, the number of opened bin by Modified Next Fit for items in σl is no more than
k × util(σl), where util(σl) is the total utilization of items in σl.

For placing σs, as the proof of Theorem 2 suggests, the algorithm incurs a cost of
at most μΔ × ω(σs)

1−1/K + span(σs), where ω(σs) is the total size of item in σs. This

will be no more than μΔ× util(σs)
Δ(1−1/K) + span(σs), where util(σs) is the total resource

utilization of σs (this is because the length of all items is at least Δ). In total, the cost of
the algorithm will be at most K × util(σl) +μ× util(σs)

1−1/K + span(σs). This is no more
than K × util(σ)×max{1, μ

K−1} + span(σ) where util(σ) is the total utilization of
items in σ. Since util(σ) and span(σ) are lower bounds for the cost of OPT, we can
conclude the cost of Modified Next Fit is at most K ×max{1, μ

K−1}+ 1. ��

When the value of μ is known to the algorithm, we can define K to be μ+ 1. In this
case, the competitive ratio of Modified First Fit will be at most μ+ 2.

Proposition 3. When the value of μ is known, there exists an online algorithm which
achieves a competitive ratio of at most μ+ 2.

4 Toward Practical Algorithms: Move to Front Algorithm

In the previous sections, we showed that Next Fit and a variant of that have promising
competitive ratios. Providing these types of worst-case guarantees is important in the
theoretical analysis of the problem. Nevertheless, in practice, we are interested in algo-
rithms that also have good average-case performance. For example, in the case of the
classic bin packing problem, Best Fit and First Fit are preferred over other algorithms
in most applications. This is because they have acceptable worst-case performance (al-
though not as good as the Harmonic family) and superior average-case performance.
We examined different algorithms to evaluate their average-case performance for the
server renting problem. Our experiments are presented in Section 5 and show that, on
average, Best Fit has an evident advantage over First Fit and Next Fit. These results are
in contrast with the competitive results and indicate that the worst-case behaviour and
average-case behaviour of these algorithms are quite different.

In this section, We introduce a new algorithm, called Move-To-Front (MTF), for the
server renting problem. We prove that, unlike Best Fit, MTF has a bounded competitive
ratio. Our experiments indicate that MTF has a better average-case performance com-
pared to other algorithms. MTF is a simple Any Fit algorithm and runs as fast as BF and
FF. Hence, we believe that MTF is a practical and efficient algorithm for the problem.

Move To Front: The algorithm maintains a list of open bins. It places an item x in
the first bin in the list which has enough space. If no bin has enough space, a new
bin is opened. After placing x into a bin, that bin is moved to the front of the list.
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Theorem 4. Move To Front has a competitive ratio of at most 6μ+ 8.

Proof. Consider the packing of MTF for a sequence σ. We assume σ is continuous in
the sense that at any given time there is at least one active item, and any algorithm
maintains at least one open bin. For sequences which are not continuous, at some point,
all bins of MTF and OPT are released. In this case, we can divide the sequence into
continuous subsequences and apply the same argument for each of them.

We divide the span of the sequence into periods of length (μ + 1)Δ (except for the
last period which might be shorter). We also divide bins of MTF into critical and non-
critical bins. A bin B is critical if in the interval between when B is opened and when
it is released, some other bin B′ is opened by MTF. Note that no two non-critical bins
can be opened at the same time. Hence, the total cost of MTF for all non-critical bins is
at most span(σ) which is no more than OPT(σ).

For each critical bin B, we define head, tail, and body of B as follows. If B is opened
and released in the same period, its head is its stretch (the interval between its opening
and releasing) while its body and tail are empty intervals. Otherwise, the head of B is
the interval between when B is opened and the end of the period in which it is opened.
The tail of B is the interval between the start of the period in which it is released and
when it is released. The body of B is the interval between the head and the tail of B
(see Figure 2). Let head(B), body(B), and tail(B) indicate the lengths of head, body,
and tail of B, respectively. For the cost that MTF incurs for B we have:

stretch(B) = head(B) + body(B) + tail(B) ≤ 2(μ+ 1)Δ + body(B)

Assume there are m critical bins opened by MTF. The algorithm incurs a cost of at most
2× (μ+ 1) for the head and the tail of each bin. We will have:

MTF(σ) ≤ 2m(μ+ 1)Δ +
m∑
b=1

body(Bb) + OPT(σ)

The last term is added for non-critical bins. Assume there are q+1 periods; note that the
last period cannot include the body of any bin. For each period Pi among other periods
(1 ≤ i ≤ q), let α(Pi) denote the number of critical bins which have their body in Pi,
i.e., critical bins which are open at the beginning of the period and remain open till the
end. MTF incurs a cost of α(Pi)× (μ+ 1)Δ for bodies of critical bins in Pi. So:

MTF(σ) ≤ 2m(μ+ 1)Δ + (μ+ 1)Δ

q∑
i=1

α(Pi) + OPT(σ) (2)

Next, we consider the cost of OPT for packing σ. We prove the following claims:

Claim 1: For the number of critical bins opened by MTF we have m ≤ 2 OPT(σ)/Δ.
Claim 2: For each period P , if α(P ) = 1, OPT incurs a cost of (μ+ 1)Δ.
Claim 3: For each period P , if α(P ) ≥ 2, OPT incurs a cost of at least (α(P )− 1)Δ/2.

Claim 1 implies that the first term in Equation 2 is upper bounded by 4(μ+1) OPT(σ).
Claims 2 implies that in the specified periods, MTF and OPT incur the same costs. Claim
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Fig. 2. The span of an input sequence is divided into periods. The red and blue intervals respec-
tively indicate heads and tails of the bins while black intervals are bodies of the bins.

3 implies that α(P ) ≤ 2 OPT(P )/Δ + 1 where OPT(P ) is the cost inured by OPT in
period P . Consequently, the second term in Equation 2 is upper bounded by

(μ+ 1)Δ

q∑
i=1

(2 OPT(Pi)/Δ + 1) = 2(μ+ 1)

q∑
i=1

OPT(Pi) + q(μ+ 1)Δ

< 2(μ+ 1) OPT(σ) + span(σ)

The last inequality holds because we have divided the stretch of σ into q+1 periods of
length (μ+ 1)Δ (except the last period which might be shorter). Note that span(σ) ≤
OPT(σ). Adding all terms in Equation 2, we get:

MTF(σ) ≤ 4(μ+ 1) OPT(σ) + 2(μ+ 1) OPT(σ) + 2 OPT(σ)

= (6μ+ 8) OPT(σ)

To complete the proof, it remains to show the above claims hold.
For Claim 1, define the amortized weight of a critical bin B as the total size of items

in B plus the size of the item that opens a new bin, while B is still open (by definition
of critical bins, such item exists). The amortized weight of every critical bin is more
than 1, and the total amortized cost of all critical bins is more than m. Each item is
counted at most twice in the total amortized cost (once as the item that opens a new
bin and once as the member of a critical bin). Assume ω(σ) is the total size of items;
we will have m < 2ω(σ). Note that ω(σ) ≤ util(σ)/Δ ≤ OPT(σ)/Δ. Hence, we get
m ≤ 2 OPT(σ)/Δ.

For Claim 2, note that OPT maintains at least one open bin any given each time;
otherwise, the sequence is not continuous.

For Claim 3, let t denote the start time of P and let B∗ denote the set of the α(P ) bins
that have their body stretched along P . Consider the time interval [t+Δ, t+(μ+1)Δ).
In this interval, any of the bins in B∗ receive at least one new item; otherwise, the
algorithm would have released the bin (recall that the length of any item is at most μΔ).
For each bin B in B∗, except the last bin in the list maintained by the algorithm right
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before time t +Δ, let tB indicate the time that the bin B′ receives an item for the first
time (in the interval [t + Δ, t + (μ + 1)Δ)). Here, B′ is the bin that is placed right
after B in the mentioned ordering. Define the critical set of B as the set of items in
B at time tB plus the item that was placed in B′. Note that the total size of items in
the critical set of each bin is more than 1. Hence, the critical items of each bin have
a resource utilization of more than Δ in the interval [t, t+ (μ+ 1)Δ) . Since each item
belongs to the critical sets of at most two bins, the total resource utilization of critical
items is at least (α(P ) − 1)Δ/2 in the interval [t, t + 1 + μ). Note that the resource
utilization is a lower bound for the cost of OPT in the same interval. ��

The above proof can be extended to any algorithm that maintains a list of bins and
places an incoming item in the first bin which has enough space. Such an algorithm
might update the list after placing items. In particular, the above analysis holds for the
First Fit algorithm. For the Best Fit algorithm, it fails because the order of bins changes
when items depart. Recall that Best Fit is not competitive.

5 Average-Case Analysis: An Experimental Study1

In this section, we compare the average-case performance of different algorithms for
the server renting problem on randomly-generated sequences. We discretize the prob-
lem by assuming that the capacity of bins is an integer E and items have integer sizes in
the range [1, E]. Moreover, we assume items arrive in discrete time-steps in the range
[1, T −μ] and their length is in the interval [1, μ]. Here, T is a measure of sparsness and
defines the rate at which the items arrive. We examine different values of μ and T for
sequences of fixed length. Table 1 gives a summary of the datasets that we generated for
our experiments. In all cases, sizes and lengths of items are randomly and independently
taken from the indicated ranges (assuming a uniform distribution). For each setting,we
run different algorithms on 103 randomly generated sequences. For each sequence,
we compute the resource utilization of the sequence as a lower bound for the cost of
OPT. We use the ratio between the cost of an algorithm and the resource utilization as
a measure of performance.

Table 1. A summary of the experimental settings

Parameter Description Value Note

n length of sequences 105 Number of items to be packed
μ maximum length of items 1,2,5,10,100 Lengths are picked from the range [1, μ]

T span of sequence 103, 104, 105 Arrival times are picked from the range [1, T − μ]

E bin capacity 103 Sizes are picked from the range [1, E]

The algorithms that we considered in the experiments are Next Fit, Modified Next
Fit, First Fit, Modified First Fit, Harmonic, Best Fit, and Move To Front. We define the

1 We thank David S. Johnson for various useful suggestions about the experimental validation
of the various strategies.
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parameters of Modified Next Fit and Modified First Fit to be respectively E/(μ + 1)
and E/(μ + 7). These values ensure that these algorithms achieve their best possible
competitive ratio (see Section 3.1 and [10]). Note that the value of μ is not known to an
online algorithm and the mentioned algorithms are semi-online in this sense. We also
consider the Harmonic algorithm which classify items by their sizes (using harmonic
intervals) into K classes and applies the Next Fit strategy for placing items of each
class; for our experiments we assume K = 10. A straightforward analysis shows that
the competitive ratio of the Harmonic algorithm is as good as Modified Next Fit (with
the same parameter K). However, similar to the bin packing problem, for the server
renting problem, Harmonic seems to have a poor average-case performance.

Figure 3 shows the average-case performance ratio for different algorithms. In most
cases, Move To Front is the best algorithm. Intuitively, there are two factors which de-
fine the quality of a packing. One is how well items are aligned to each other. A packing
is well-aligned if items that arrive at the same time are placed together; this ensures that,
on expectation, all items of a bin depart also at (almost) the same time. Thus, there is
a more chance of saving cost through releasing bins. The second factor in defining the
quality of an algorithm is how well the items are packed together. Clearly, if items are
tightly packed, there is a save in cost by opening a smaller number of bins.

Next Fit results in well-aligned packings; however, it does not packs items as tightly
as Any Fit algorithms do. On the other side, Best Fit results in tight packings which
are not necessarily well-aligned. Move To Front provides a compromise; the packing of
MTF is well-aligned because items placed in the most recent bin are expected to have
(almost) same arrival times. At the same time, as an Any Fit algorithm, MTF places
items almost tightly and does not open a large number of bins. For smaller values of μ,
it is more important to achieve well-aligned packings. This is because, when items have
roughly same lengths, there is more benefit in placing them together according to their

T  = 1,000 T  = 10,000 T  = 100,000
μ  = 1 μ  = 2 μ  = 5 μ  = 10 μ  = 100 μ  = 1 μ  = 2 μ  = 5 μ  = 10 μ  = 100 μ  = 1 μ  = 2 μ  = 5 μ  = 10 μ  = 100

Next Fit 1.4011 1.4618 1.4970 1.5113 1.5255 1.7186 1.6564 1.5810 1.5473 1.5263 1.9539 1.9291 1.8721 1.8014 1.5496
Modified Next Fit 1.4392 1.4820 1.4780 1.5023 1.5253 1.8069 1.8061 1.7223 1.6383 1.5366 1.9762 1.9738 1.9313 1.8601 1.5631

First Fit 1.5647 1.4561 1.3448 1.2929 1.2255 1.7485 1.6635 1.5288 1.4295 1.2624 1.9544 1.9292 1.8705 1.7950 1.4132
Modified First Fit 1.6666 1.5335 1.3952 1.3233 1.2287 1.8362 1.7622 1.6330 1.5148 1.2768 1.9726 1.9534 1.9042 1.8352 1.4293

Harmonic 1.7598 1.6937 1.5848 1.5143 1.4235 1.9555 1.9270 1.8842 1.8195 1.5170 1.9946 1.9903 1.9797 1.9726 1.8294
Best Fit 1.6659 1.5027 1.3509 1.2637 1.1151 1.7401 1.6585 1.5342 1.4359 1.2107 1.9540 1.9287 1.8696 1.7935 1.4164

Move To Front 1.4113 1.3921 1.3094 1.2560 1.1612 1.7134 1.6323 1.5036 1.4110 1.2251 1.9536 1.9283 1.8689 1.7913 1.4005
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Fig. 3. Average-case performance ratio of major server renting problem algorithms, assuming
a uniform distribution for the length and size of items. The bold numbers indicate the best algo-
rithm for different values of T and μ. In all cases MTF is the best or second to the best algorithm.
To make comparison easier, the numbers are plotted into a bar diagram.
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arrival time so that they depart at (almost) the same time (which results in releasing their
bins). This is particularly more evident for sequences with small span (T = 1, 000). In
these sequences, many items appear at the same time and almost all algorithms result in
relatively good packing (regarding the number of opened bins). As a results, for smaller
values of μ and T , Next Fit performs better relative to other algorithms. In particular,
when μ = 1 and T = 1, 000, it slightly outperforms MTF. For larger values of μ, it is
more important to avoid opening new bins; this is because each bin remains open for
a relativity long period of time and one should avoid opening new bins if possible.
Hence, when μ is large (μ = 100), Best Fit is slightly better than MTF.

6 Concluding Remarks

We showed that the Next Fit algorithm provides promising worst case guarantees for
the server renting problem. We expect that the same holds for other bounded-space
algorithms, e.g., Harmonic or BBF2 of [7]. Unfortunately, these algorithms do not have
good average-case performance. We introduced Move To Front algorithm as a simple
and fast Any Fit algorithm which can be regarded as an alternative to Best Fit and First
Fit. Our experiments indicate that MTF outperforms other algorithms on average. The
closest counterpart of MTF (regarding the average case performance) is Best Fit which
does not have a bounded competitive ratio. In contrast to Best Fit, we proved that MTF

has a competitive ratio of at most 6μ + 8. We believe this upper bound is not tight
and the competitive ratio of MTF can be improved; we leave this as a future work.
Another promising direction for future work is to provide theoretical upper bounds for
the average-case performance of MTF.
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Abstract. Given a language L that is online recognizable in linear time
and space, we construct a linear time and space online recognition algo-
rithm for the language L ·Pal, where Pal is the language of all nonempty
palindromes. Hence for every fixed positive k, Palk is online recognizable
in linear time and space. Thus we solve an open problem posed by Galil
and Seiferas in 1978.

1 Introduction

In the last decades the study of palindromes constituted a notable branch in
formal language theory. Recall that a string w = a1 · · · an is a palindrome if it
is equal to

←
w = an · · · a1. There is a bunch of papers on palindromes in strings.

Some of these papers contain the study of strings “rich” in palindromes (see,
e.g., [7]), some other present solutions to algorithmic problems like finding the
longest prefix-palindrome [12] or counting distinct subpalindromes [9].

For languages constructed by means of palindromes, an efficient recognition
algorithm is often not straightforward. In this paper we develop a useful tool
for construction of acceptors for such languages. Before stating our results, we
recall some notation and known facts.

The language of nonempty palindromes over a fixed alphabet is denoted by
Pal. Let Palev = {w ∈ Pal: |w| is even}, Pal>1 = {w ∈ Pal: |w| > 1}, Palk =
{w1 · · ·wk : w1, . . . , wk ∈ Pal}. Given a function f : N → N and a language L,
an algorithm recognizes L in f(n) time and space if for any string w of length
n, the algorithm decides whether w ∈ L using at most f(n) time and at most
f(n) additional space. An algorithm recognizes a given language online if the
algorithm processes the input string sequentially from left to right and decides
whether to accept each prefix after reading the rightmost letter of that prefix.

It is well known that every context-free language can be recognized by rela-
tively slow Valiant’s algorithm (see [13]). According to [11], there are still no
examples of context-free languages that cannot be recognized in linear time on
a RAM computer. Some “palindromic” languages were considered as candidates
to such “hard” context-free languages.

At some point, it was conjectured that the languages Palev
∗ and Pal>1

∗,
where ∗ is a Kleene star, cannot be recognized in O(n) (see [8, Section 6]). But
a linear algorithm for the former was given in [8] and for the latter in [6]. The
recognition of Palk appeared to be a more complicated problem. Linear algo-
rithms for the cases k = 1, 2, 3, 4 were given in [6]. Their modified versions can
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be found in [3, Section 8]. In [6] and [3] it was conjectured that there exists
a linear time recognition algorithm for Palk for arbitrary k. In this paper we
present such an algorithm. Moreover, our algorithm is online. The main contri-
bution is the following result.

Theorem. Suppose a given language L is online recognizable in f(n) time and
space, for some function f : N → N. Then the language L ·Pal can be recognized
online in f(n) + cn time and space for some constant c > 0 independent of L.

Corollary. For arbitrary k, Palk is online recognizable in O(kn) time and space.

Note that the related problem of finding the minimal k such that a given
string belongs to Palk can be solved online in O(n logn) time [5], and it is not
known whether a linear algorithm exists.

The paper is organized as follows. Section 2 contains necessary combinatorial
properties of palindromes; similar properties were considered, e.g., in [2]. In
Sect. 3 we describe an auxiliary data structure used in the main algorithm.
An online recognition algorithm for Palk with O(kn log n) working time is given
in Sect. 4. Finally, in Sect. 5 we speed up this algorithm to obtain the main
result. Proofs omitted due to space constraints are included in the full version
[10].

2 Basic Properties of Palindromes

A string of length n over the alphabet Σ is a map {1, 2, . . . , n} (→ Σ. The length
of w is denoted by |w| and the empty string by ε. We write w[i] for the ith letter
of w and w[i..j] for w[i]w[i+1] . . . w[j]. Let w[i..i−1] = ε for any i. A string u is
a substring of w if u = w[i..j] for some i and j. The pair (i, j) is not necessarily
unique; we say that i specifies an occurrence of u in w. A string can have many
occurrences in another string. A substring w[1..j] (resp., w[i..n]) is a prefix [resp.
suffix ] of w. An integer p is a period of w if w[i] = w[i+p] for i = 1, . . . , |w|−p.

A substring [resp. suffix, prefix] of a given string is called a subpalindrome
[resp. suffix-palindrome, prefix-palindrome] if it is a palindrome. We write w =
(uv)∗u to state that w = (uv)ku for some nonnegative integer k. In particular,
u = (uv)∗u, uvu = (uv)∗u. Two basic combinatorial lemmas are quite useful.

Lemma 1. Suppose p is a period of a nonempty palindrome w; then there are
palindromes u and v such that |uv| = p, v �= ε, and w = (uv)∗u.

Lemma 2. Suppose w is a palindrome and u is its proper suffix-palindrome or
prefix-palindrome; then the number |w|−|u| is a period of w.

A string is primitive if it is not a power of a shorter string. Denote by p
the minimal period of a palindrome w. By Lemma 1, we obtain palindromes
u, v such that w = (uv)∗u, v �= ε, and |uv| = p. The string uv is primitive.
The representation (uv)∗u is called canonical decomposition of w. Let w[i..j] be
a subpalindrome of the string w. The number (i+j)/2 is the center of w[i..j].
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The center is integer [half-integer] if the subpalindrome has an odd [resp., even]
length. For any integer n, shl (w, n) denotes the string w[t+1..|w|]w[1..t], where
t = n mod |w|.

Lemma 3. Suppose (xy)∗x is a canonical decomposition of w and u is a sub-
palindrome of w such that |u| ≥ |xy|−1; then the center of u coincides with the
center of some x or y from the decomposition.

3 Palindromic Iterator

Let w[i..j] be a subpalindrome of a string w. The number 
(j−i+1)/2� is the
radius of w[i..j]. Let C = {c > 0: 2c is an integer} be the set of all possible
centers for subpalindromes. Palindromic iterator is the data structure containing
a string text and supporting the following operations on it:

1. appendi(a) appends the letter a to the end;
2. maxPal returns the center of the longest suffix-palindrome;
3. rad(x) returns the radius of the longest subpalindrome with the center x;
4. nextPal(x) returns the center of the longest proper suffix-palindrome of the

suffix-palindrome with the center x.

Example 1. Let text = aabacabaa. Then maxPal = 5. Values of rad and nextPal
are listed in the following table (the symbol “−” means undefined value):

text a a b a c a b a a
x 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

rad(x) 0 0 1 0 0 1 0 0 0 4 0 0 0 1 0 0 1 0 0
nextPal(x) − − − − − − − − − 8.5 − − − − − − 9 9.5 −

A fractional array of length n is an array with n elements indexed by the
numbers {x ∈ C : 0 < x ≤ n

2 }. Fractional arrays can be easily implemented
using ordinary arrays of double size. Let refl(x, y) = y + (y − x) be the function
returning the position symmetric to x with respect to y.

Proposition 1. Palindromic iterator can be implemented such that appendi re-
quires amortized O(1) time and all other operations require O(1) time.

Proof. Our implementation uses a variable s containing the center of the longest
suffix-palindrome of text, and a fractional array r of length 2s such that for
each i ∈ C, 0 < i ≤ s, the number r[i] is the radius of the longest subpalin-
drome centered at i. Obviously, maxPal = s. Let us describe rad(x). If x ≤ s,
rad(x) = r[x]. If x > s, then each palindrome with the center x has a counter-
part with the center refl(x, s). On the other hand, rad(x) ≤ |text|−
x�, implying
rad(x) = min{r[refl(x, s)], |text|−
x�}. To implement nextPal and appendi, we
need additional structures.

We define an array lend[0..|text|−1] and a fractional array nodes[ 12 ..|text|+
1
2 ]

to store information about maximal subpalindromes of text. Thus, lend[i] con-
tains centers of some maximal subpalindromes of the form text[i+1..j]. Precisely,
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lend[i] = {x ∈ C : x < s and �x − rad(x) = i+1}. Each center x is also con-
sidered as an element of a biconnected list with the fields x.next and x.prev
pointing at other centers. We call such elements nodes and store in the array
nodes. The following invariant of palindromic iterator holds.

Let c0 < . . . < ck be the centers of all suffix-palindromes of text. For each
j ∈ 0, k−1, nodes[cj ].next = cj+1 and nodes[cj+1].prev = cj.

Clearly, c0 = s, ck = |text|+ 1
2 . Let link(x) and unlink(x) denote the operations

of linking x to the end of the list and removing x from the list, respectively.
Obviously, nextPal(x) = nodes[x].next. The following pseudocode of appendi
uses the three-operand for loop like in the C language.

1: function appendi(a)
2: for (s0 ← s; s < |text|+ 1; s ← s+ 1

2 ) do
3: r[s] ← min(r[refl(s, s0)], |text| − 
s�); � fill r
4: if 
s�+ r[s] = |text| and text[�s−r[s]−1] = a then
5: r[s] ← r[s] + 1; � here s is the center of the longest suffix-pal.
6: break;

7: lend[�s−r[s]−1] ← lend[�s−r[s]−1] ∪ {s}; � fill lend

8: text ← text · a;
9: link(nodes[|text|]); link(nodes[|text|+ 1

2 ]); � adding trivial suffix-pals.
10: for each x in lend[�s − rad(s)] do
11: unlink(nodes[refl(x, s)]); � removing invalid centers from the list

The code in lines 2–8 is a version of the main loop of Manacher’s algorithm [12];
see also [3, Chapter 8]. The array lend is filled simultaneously with r. Let us
show that the invariant is preserved.

Suppose that a symbol is added to text and the value of s is updated. Denote
by S the set of centers x > s such that the longest subpalindrome centered at
x has lost its status of suffix-palindrome on this iteration. Once we linked the
one-letter and empty suffix-palindromes to the list, it remains to remove the
elements of S from it. Let t = �s − rad(s). Since text[t..|text|] is a palindrome,
we have lend[t] = {refl(x, s) : x ∈ S}. Thus, lines 10–11 unlink S from the list.

Since appendi links exactly two nodes to the list, any sequence of n calls
to appendi performs at most 2n unlinks in the loop 10–11. Further, any such
sequence performs at most 2n iterations of the loop 2–8 because each iteration
increases s by 1

2 and s ≤ |text|. Thus, appendi works in the amortized O(1) time.

4 Palindromic Engine

Palindromic engine is the data structure containing a string text, bit arrays m
and res of length |text|+1, and supporting a procedure append(a, b) such that

1. append(a, b) appends the letter a to text, sets m[|text|] to b, and calculates
res[|text|];

2. m is filled by append except for the bit m[0] which is set initially;

3. res[i] = 1 iff there is j ∈ N such that 0 ≤ j < i, m[j] = 1, and text[j+1..i] ∈
Pal (thus res[0] is always zero).
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Lemma 4. Let L be a language. Suppose that for any i ∈ 0, |text|, m[i] = 1 iff

text[1..i] ∈ L; then for any i ∈ 0, |text|, res[i] = 1 iff text[1..i] ∈ L · Pal.

Let f, g be functions of integer argument. We say that a palindromic engine
works in f(n) time and g(n) space if any sequence of n calls to append on empty
engine requires at most f(n) time and g(n) space.

Proposition 2. Suppose a palindromic engine works in f(n) time and space,
and a language L is online recognizable in g(n) time and space; then the language
L · Pal is online recognizable in f(n) + g(n) +O(n) time and space.

We use the palindromic iterator in our implementation of palindromic engine.
Let len(x) be the function returning length of the longest subpalindrome centered
at x, i.e., len(x) = 2 · rad(x) + 
x� − 
x − 1

2�. The operations of bitwise “or”,

“and”, “shift” are denoted by or, and, shl respectively. Let x
or← y be short for

x ← (x or y). The naive O(n2) time implementation is as follows; to improve it,
we have to decrease the number of suffix-palindromes to loop through.

1: function append(a, b)
2: appendi(a); n ← |text|; res[n] ← 0; m[n] ← b;
3: for (x ← maxPal; x �= n+1

2 ; x ← nextPal(x)) do

4: res[n]
or← m[n−len(x)]; � loop through all suffix-palindromes

A nonempty string w is cubic if its minimal period p is at most |w|/3.
A subpalindrome t = w[i..j] is leading in w if any period p of any longer sub-
palindrome w[i′..j] satisfies 2p > |t|. For example, the only cubic subpalindrome
of w = aabababa is w[2..8] = abababa, and the only non-leading subpalindrome is
w[4..8] = ababa. In general, a non-leading subpalindrome t has a period p ≤ |t|/2
and then t = (uv)ku with k ≥ 2 (Lemma 1); moreover, (uv)k+1u is a subpalin-
drome also, so t is a suffix of some leading cubic subpalindrome.

Lemma 5. Let s = w[i..j] be a leading subpalindrome of w, with the canonical
decomposition (uv)∗u, and t = w[i′..j] be the longest proper suffix-palindrome of
s that is leading in w. Then t = u if s = uvu, and t = uvu otherwise.

Lemma 6. A string of length n has at most log 3
2
n leading suffix-palindromes.

To obtain a faster algorithm, we loop through leading suffix-palindromes only.
Informally, to take into account other suffix-palindromes, we gather the corre-
sponding bits of m into an additional bit array z described below.

For every i ∈ 0, |text|, let ji be the maximal number j′ such that text[i+1..j′]
is a leading subpalindrome. Since any empty subpalindrome is leading, ji is well
defined. Let pi be the minimal period of text[i+1..ji]. Denote by di the length of
the longest proper suffix-palindrome of text[i+1..ji] such that text[ji−di+1..ji]
is leading in text. By Lemma 5, di = min{(ji−i)−pi, pi+((ji−i) mod pi)}. The
array z is maintained to support the following invariant:

z[i] = m[i] or m[i+pi] or . . . or m[ji−di−2pi] or m[ji−di−pi] for all i ∈ 0, |text| .
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Proposition 3. The palindromic engine can be implemented to work in
O(n log n) time and O(n) space.

Proof. Consider the following implementation of the function append.

1: function append(a, b)
2: appendi(a); n ← |text|; res[n] ← 0; m[n] ← b; z[n] ← b; d ← 0;
3: for (x ← maxPal; x �= n+1

2 ; x ← n−(d−1)/2) do � for leading suf-pal
4: p ← len(x)− len(nextPal(x)); � min period of processed suf-pal
5: d ← min(p+(len(x) mod p), len(x)−p); � lenght of next leading s-pal
6: if 3p > len(x) then � processed suf-pal is not cubic
7: z[n−len(x)] ← m[n−len(x)];

8: else z[n−len(x)]
or← m[n−d−p]; � processed suf-pal is cubic

9: res[n]
or← z[n−len(x)];

Let w0, . . . , wk be all leading suffix-palindromes of text and |w0| > . . . > |wk|.
We show by induction that the values taken by x are the centers of w0, . . . , wk

(in this order). In the first iteration x = maxPal is the center of w0. Let x be
the center of wi. The minimal period p of wi is calculated in line 4 according to
Lemmas 1 and 2. By Lemma 5, the value assigned to d in line 5 is |wi+1|. Thus,
the third operand in line 3 sets x to the center of wi+1 for the next iteration.

Let x and (uv)∗u be, respectively, the center and the canonical decomposition
of wi. Denote by w any suffix-palindrome such that |wi| ≥ |w| > |wi+1|. By
Lemma 3, w = (uv)∗u. If the invariant of z is preserved, the assignment in

line 9 is equivalent to the sequence of assignments res[n]
or← m[n−|w|] for all

such w. Since i runs from 0 to k, finally one gets res[n]
or← m[n−|w|] for all

suffix-palindromes w, thus providing that the engine works correctly. To finish
the proof, let us show that our implementation preserves the invariant on-the-fly,
setting the correct value of z[n−|wi|] in lines 7, 8 just before it is used in line 9.

As in the pseudocode presented above, denote by n the length of text with
the letter c appended. For any j ∈ 0, n−1, the bit z[j] is changed iff text[j+1..n]
is a leading suffix-palindrome. Assume that wi = text[j+1..n] is a leading suffix-
palindrome and x is its center. If wi is not cubic, line 7 gives the correct value of
z[j], because n−d−p = j. Suppose wi is cubic. Let (uv)

∗u be a canonical decom-
position of wi. Then w′ = text[i+1..n−|vu|] is a leading subpalindrome. Indeed,
w′ = (uv)∗u and |w′| ≥ |uvuvu|. For some i′ ≤ i, suppose that text[i′+1..n−|uv|]
is a leading subpalindrome, p is its minimal period, and 2p < |w′|; then since
p ≥ |uv|, we have, by Lemmas 1 and 3, that either 2p > |w′| or |uv| divides p.
Hence text[i′+1..n−|uv|] = (uv)∗u. Thus i′ = i because text[i+1..n] is leading.
Since w′ is leading, we restore the invariant for z[n−|wi|] in line 8.

Since the number of iterations of the for cycle equals the number of leading
suffix-palindromes of text, it is O(log n) by Lemma 6. This gives us the required
time bound; the space bound is obvious.

5 Linear Algorithm

Consider the word-RAM model with β+1 bits in the machine word, where the
bits are numbered starting with 0 (the least significant bit). A standard as-
sumption is β > log |text|. For a bit array s[0..n] and integers i0, i1 such that
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0 ≤ i1 − i0 ≤ β, we write x ← s[
−−−→
i0..i1] to get the number x whose jth bit, for

any j ∈ 0, β, equals s[i0+j] if 0 ≤ i0+j ≤ min{n, i1} and 0 otherwise. Similarly,

x ← s[
←−−−
i0..i1] defines x with a jth bit equal to s[i1−j] if max{0, i0} ≤ i1−j ≤ n

and to 0 otherwise. We write s[
←−−−
i0..i1] ← x and s[

−−−→
i0..i1] ← x for the inverse ope-

rations. A bit array is called forward [backward ] if each read/write operation

for s[
−−−→
i0..i1] [resp. s[

←−−−
i0..i1]] takes O(1) time. Forward [backward] arrays can be

implemented on arrays of machine words with the aid of bitwise shifts.
Processing a string of length n, we can read/write a group of logn elements

of forward or backward array in a constant time. In this section we speed up
palindromic engine using bitwise operations on groups of logn bits. This sort
of optimization is often referred to as four Russians’ trick (see [1]). Note that
there is a simpler algorithm recognizing Palk in O(kn logn) time, but it cannot
be sped up in this fashion.

In the sequel n denotes |text|. As above, our palindromic engine contains
a palindromic iterator and a bit array z. Arraysm[0..n] and z[0..n] are backward,
while slightly extended array res[0..n+β] is forward.

5.1 Idea of the Algorithm

We say that a call to append is predictable if it retains the value of maxPal (or,
in other words, extends the longest suffix-palindrome). For a predictable call,
we know from symmetry which suffix-palindromes will be extended. This crucial
observation allows us to fill res[n..n+β] in advance so that in the next β calls
we need only few changes of res provided that these calls are predictable.

Let text = vs at some point, where s is the longest suffix-palindrome.
The number of subsequent calls preserving maxPal is at most |v| =
n−len(maxPal): this is the case if we add

←
v . Consider those calls. Let c0 <

. . . < ck be the list of centers of all suffix-palindromes of text. Let i ∈ 1, k. After
some predictable call ci can vanish from this list. Let pi be the number of pre-
dictable calls that retain ci on the list. Then pi = rad(refl(ci,maxPal))− rad(ci)
(in Figure 1 p1 = 5−3 = 2).

a a b a a a c c c e c c c a a b a c a b a a c c c e c c c a a a b
1 j0 c0 j1 c1 n

︷ ︸︸ ︷︷ ︸︸ ︷
s︷ ︸︸ ︷

p1
f

p1
f

Fig. 1. Predictable calls

Let ji = n−len(ci). If the operation res[
−−−−→
n..n+β]

or← m[
←−−−−−
ji−pi..ji] is performed

for some i ∈ 1, k−1, we do not need to consider the suffix-palindrome with

the center ci during the next β predictable calls. Similarly, if res[
−−−−→
n..n+β]

or←
m[

←−−−−−
j0−β..j0] or (m[

←−−−−−−−−
jk−pk..jk−1] shl 1) is performed, we do not consider the
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centers c0 and ck (a shift appears because the empty suffix-palindrome is ig-
nored). The algorithm is roughly as follows. When the assignments above are
performed, each of the next β predictable calls just adds two suffix-palindromes
(one-letter and empty) and performs the corresponding assignments for them.
When an unpredictable call or the (β+1)st predictable call occurs, we make new
assignments in the current position and use array z to reduce the number of
suffix-palindromes to loop through. Let us consider details.

5.2 Algorithm

We add to the engine an integer variable f such that 0 ≤ f ≤ min{β, n −
len(maxPal)}. The value of res[−−−−→n..n+f ] is called the prediction. Let us describe it.
The centers ci and the numbers pi are defined in Sect. 5.1. Let pr: {c0, . . . , ck} →
N0 be the mapping defined by pr(c0) = f and pr(ci) = min{pi, f} for i > 0.
Obviously, pr(ci) is computable in O(1) time. According to Sect. 5.1, the fol-
lowing value, called f -prediction, takes care of the palindromes with the centers
c0, . . . , ck during all the time when they are suffix-palindromes:

m[
←−−−−−−−−−
j0−pr(c0)..j0] or · · · or m[

←−−−−−−−−−−−−−−−
jk−1−pr(ck−1)..jk−1] or (m[

←−−−−−−−−−−−
jk−pr(ck)..jk−1] shl 1).

The prediction calculated by our algorithm will sometimes deviate from the
f -prediction, but in a way that guarantees condition 3 of the definition of palin-
dromic engine. Now we describe the nature of this deviation.

Let c ∈ C and c > n+ 1
2 . Denote c′ = refl(c,maxPal). Suppose c′ > 0 and

�c − rad(c′) ≤ n+1 (see Figure 2). Let r be a positive integer such that
r ≤ rad(c′)+1 and �c − r ≤ n. The values c and r are chosen so that after
a number of predictable calls text will contain a suffix-palindrome with the cen-
ter c and the radius r−1. Then res[�c+r−1] = 1 if m[�c−r] = 1. We call the
value g = m[�c−r] shl (�c+r−1−n)] an additional prediction. The assignment

res[n..n+f ]
or← g performs disjunction of the bits res[�c+r−1] and m[�c − r]

(we suppose �c+r−1 ≤ n+f). Setting this bit to 1 is not harmful: if there will
be no unpredictable calls before the position �c+r−1, then this bit will be set to
1 when updating the f -prediction on the 
c�th iteration. Additional predictions
appear as a byproduct of the linear-time implementation of the engine.

b a b a b a c a b a b a b a a a b a b a b a c a b a b a b
1 c′ c0 i n c i′

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷

�c� + r − n

Fig. 2. Additional prediction; c0 = maxPal, c′ = refl(c, c0), i = c− r, i′ = c+ r − 1

We define the prediction through the main invariant of palindromic engine:

res[
−−−−→
n..n+f ] equals the bitwise “or” of the f -prediction and some additional

predictions. Such a definition guarantees that res[n] = 1 iff m[j] = 1 and
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text[j+1..n] ∈ Pal for some j, 0 ≤ j < n. Thus, the goal of append(a, b) is
to preserve the main invariant. Our implementation of append(a, b) consists of
three steps:

1. call appendi(a) to extend text (and increment n); then assign b to m[n];
2. if maxPal remains the same and f > 0, decrement f and perform

res[
−−−−→
n..n+f ]

or← m[
←−−−−−−−−−−−−
n−1−pr(n)..n−1] or (m[

←−−−−−−−−−−−−
n−pr(n+1

2 )..n−1] shl 1);
3. otherwise, assign f ← min{β, n−len(maxPal)} and recalculate the prediction

res[
−−−−→
n..n+f ].

The operations of step 2 correspond to a predictable call and obviously preserve
the main invariant. In the sequel we only consider step 3; step 1 is supposed to
be performed: a is appended to text, n is incremented, and m[n] = b.

5.3 Prediction Recalculation

Recall that c0 < . . . < ck are the centers of suffix-palindromes, ji = n−len(ci).

First, clear the prediction: res[
−−−−→
n..n+f ] ← 0. To get the f -prediction, it

suffices to assign res[
−−−−→
n..n+f ]

or← m[
←−−−−−−−−
ji−pr(ci)..ji] for i = 0, . . . , k−1 and

res[
−−−−→
n..n+f ]

or← m[
←−−−−−−−−−−−
jk−pr(ck)..jk−1] shl 1. But our algorithm processes leading

suffix-palindromes only, and the bits of m that correspond to non-leading suffix-
palindromes are accumulated in a certain fast accessible form in the array z. For
simplicity, we process the empty suffix separately.

Let i0 < . . . < ih be integers such that ci0 < . . . < cih are the centers of
all leading suffix-palindromes, r ∈ 0, h−1 and s = ir+1 − ir − 1 > 0. Denote
by w the suffix-palindrome centered at cir . Let (uv)

∗u be the canonical decom-
position of w. It follows from Lemma 3 that cir+1, . . . , cir+s are the centers of
(uv)s+1u, . . . , (uv)2u, cir+s+1 = cir+1 is the center of uvu, and w = (uv)s+2u.
Then w is cubic. The converse is also true, i.e., if w = (uv)s+2u is a cubic
suffix-palindrome, then (uv)s+1u, . . . , (uv)2u are non-leading suffix-palindromes,
and uvu is a leading suffix-palindrome. So, non-leading suffix-palindromes are
grouped into series following cubic leading suffix-palindromes.

Recall that the palindromic iterator allows one, in O(1) time, to 1) get ci+1

from ci; 2) find the minimal period of a suffix-palindrome; 3) using Lemma 5,
get cir+1 from cir . The prediction recalculation involves the following steps:

1. accumulate some blocks of bits from m into z (see below);

2. for all r ∈ 0, h−1, assign res[
−−−−→
n..n+f ]

or← m[
←−−−−−−−−−−
jir−pr(cir )..jir ];

3. for all r ∈ 1, h−1, if cir is the center of a cubic suffix-palindrome and

len(cir ) ≤ 2β, assign res[
−−−−→
n..n+f ]

or← m[
←−−−−−−−−−−−−−−−−
jir+s−pr(cir+s)..jir+s] for s =

1, 2, . . . , ir+1−ir−1;
4. for all r ∈ 0, h−1, if cir is the center of a cubic suffix-palindrome and either

len(cir ) > 2β or cir = c0, perform the assignments of step 3 in O(1) time
with the aid of the array z.

Thus, “short” and “long” non-leading suffix-palindromes are processed sepa-
rately (resp., on step 3 and step 4). Steps 1 and 4 require further explanation.
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5.4 Content of z and Prediction of Long Suffix-Palindromes

Let w be a cubic leading suffix-palindrome such that |w| > 2β or |w| =
len(maxPal). Suppose (uv)∗u is the canonical decomposition of w. Then p = |uv|
is the minimal period of w. Denote the centers of suffix-palindromes w, . . . , uvu, u
by c1, c2, . . . , ck respectively. Let us describe the behavior of those suffix-
palindromes in predictable calls.

Let t be the longest suffix of text with the period p (t is not necessarily a
palindrome). Then |t| = |w| + rad(refl(ck, c1)) − rad(ck) is computable in O(1)
time. Since w is leading and cubic, |t| < |w|+ p. In a predictable call to append,
the suffix t extends if text[n] = text[n−p], and breaks otherwise. Suppose t
extended to ta. The suffix-palindromes centered at c2, . . . , ck also extended, while
w extends iff |w| < |t|. Thus, in a series of such extensions of t the set of centers
loses its first element during each p steps. Suppose t broke. Now the palindromes
centered at c2, . . . , ck broke, while w can extend provided that w = t.

Example 2. Let text = baaaabaaa. Then maxPal = 6; w = aaa is a leading cubic
suffix-palindrome; w = (uv)∗u for u = ε and v = a; t = w. Suffix-palindromes
aaa, aa, a, ε have the centers c1 = 8, c2 = 8.5, c3 = 9, c4 = 9.5 respectively. After
the predictable call to append, text = baaaabaaaa, t is extended, and w (with
the center c1) broke. After the second predictable call, text = baaaabaaaab, t is
broken, and only c2 remains the center of a suffix-palindrome.

Consider the first f predictable calls. Let q be the maximal number such that
the suffix t of period p extends over the first q of these calls. Since w is “long”,
i.e., |w| > 2β or w is the longest suffix-palindrome, and f ≤ β, one can be obtain
q in O(1) time: q = min{f, rad(refl(ck,maxPal))− rad(ck)}. If q < f , the (q+1)st
predictable call breaks the suffix of period p; as a result, at most one palindrome
w′ = (uv)∗u extends to a suffix-palindrome at this moment (cf. Example 2). The
length of w′ in the initial text equals |t|−q, implying (|t|−q−|u|) mod p = 0.

To process w′, we perform res[
−−−−→
n..n+f ]

or← m[
←−−−−−−−
j−pr(ci)..j] for j = n−|w′|, ci =

n−(|w′|−1)/2. To process other palindromes (uv)∗u, we consider z.

x x x x b a c d c a b a c d c a b a c d c a b a c d c
jt jw j′t c1 n

. . .

w︷ ︸︸ ︷

r0w r0w r0w r0wr1w r1w r1w r1w
p p p pa

x x c a b a c d c a b a c d c a b a c d c a b a c d c
jt jwj

′
t c1 n

. . . . . .

w︷ ︸︸ ︷

r0w r0w r0w r0w r0wr1w r1w r1w r1w r1w
p p p p pb

Fig. 3. Series of palindromes with a common period p. The cases presented are
(a) p > β+1 (= r0w + r1w = 5) and (b) β+1 ≥ p (= r0w + r1w = 6)
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Denote jt = n − |t|, j′t = jt + p − 1, and jw = n − |w|, see Figure 3 a, b.
We store the information about the series of palindromes (uv)∗u in the block
z[jt...j

′
t] of length p = |uv|. For any j ≥ 0, ij = j′t − ((j + j′t − jw) mod p). Thus,

i0 = jw, i1 = jw−1 if jw �= jt, and i1 = j′t otherwise. Hence while j increases,
ij cyclically shifts left inside the range jt, j′t. We fill the block z[jt..j

′
t] such that

each of its bits is responsible for the whole series of suffix-palindromes with the
period p.

∀j ∈ 0, β : z[ij] = m[ij ] or m[ij+p] or . . . or m[ij+lp] for l = 
(n−ij)/p� . (1)

Let r0w = min{β, jw−jt}+ 1, r1w = min{β+1−r0w, j′t−jw}. Clearly, r0w + r1w =
min{β+1, p}. Hence, ij in (1) runs through the ranges [jw−r0w+1..jw] and
[j′t−r1w+1..j′t]. Let d = (1 shl (q+1))−1; thus, d is the bit mask consisting of q+1
ones. Suppose β+1 < p (see Figure 3,a). To recalculate the prediction, it suf-

fices to assign res[
−−−−→
n..n+q]

or← d and(z[
←−−−−−−−−−
jw−r0w+1..jw] or (z[

←−−−−−−−−
j′t−r1w+1..j′t] shl r0w)).

Suppose β+1 ≥ p (see Fig. 3,b). Let k = �q/p. To recalculate the prediction, it
suffices to perform the following:

res[
−−−−→
n..n+q]

or← d and(z[
←−−−
jt..jw] or (z[

←−−−−−
jw+1..j′t] shl r0w)),

res[
−−−−→
n..n+q]

or← d and((z[
←−−−
jt..jw] or (z[

←−−−−−
jw+1..j′t] shl r0w)) shl p),

. . .

res[
−−−−→
n..n+q]

or← d and((z[
←−−−
jt..jw] or (z[

←−−−−−
jw+1..j′t] shl r0w)) shl (kp)) .

(2)

To perform these assignments in O(1) time, we use a precomputed array g of

length β such that g[i] =
∑�β/i�

j=0 2ij is the bit mask containing ones separated by
i−1 zeroes. Then the sequence of assignments (2) is equivalent to the operation

res[
−−−−→
n..n+q]

or← d and((z[
←−−−
jt..jw] or (z[

←−−−−−
jw+1..j′t] shl r

0
w)) · g[p]).

Along with the f -prediction, the described method can produce additional
predictions. Indeed, suppose we processed a cubic leading suffix-palindrome w =
(uv)∗u. If q > |v|, the position n+(|v|+1)/2 is the center of the suffix-palindrome

v after |v| predictable calls. However, the corresponding assignment res[n+|v|] or←
m[n] is performed much earlier: calculating the prediction in the nth call of
append, we accumulate the bit m[n] in the array z (see (1)) and then use it in

updating res[n..n+q]. The assignment res[n+|v|+1]
or← m[n−1] is performed at

the same moment but corresponds to the (|v|+1)st predictable call, and so on. If
q > |vuv|, we have the same situation with the suffix-palindrome vuv after |vuv|
calls. All these premature assignments are not necessary but bring no trouble.

Lemma 7. Given the array z, the prediction recalculation requires O(l +
min{2β, s}) time, where l is the number of leading suffix-palindromes and s is
the length of the second largest leading suffix-palindrome.

Proof. The above analysis shows that each of steps 2, 4 takes O(1) time per
series of palindromes with a common period. Step 3 takes O(min{2β, s}) time.
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5.5 Recalculation of the Array Z and the Time Bounds

Lemma 8. Recalculation of z requires O(l+(n−n0)) time, where l is the number
of leading suffix-palindromes and n0 is the length of text at the moment of the
previous recalculation.

Lemma 9. After an unpredictable call to append, k successive predictable calls
require O(k) time in total.

Proof. A predictable call without recalculation takes O(1) time. The number
of recalculations is 
k/β�. Since the number of leading suffix-palindromes is
O(log n) by Lemma 6, it follows from Lemmas 7, 8 that the recalculation takes
O(log n+min{2β,O(n)}) +O(log n+O(β)) = O(β) time, whence the result.

Lemma 10. An unpredictable call requires O(maxPal−maxPal0 + n−n0) time,
where maxPal0 is the center of the longest suffix-palindrome and n0 is the length
of text at the moment of the previous unpredictable call.

Proof. By Lemmas 7, 8, the prediction recalculation takes O(l +min{2β, s}) +
O(l + (n − n0)) time, where l is the number of leading suffix-palindromes and
s is the length of the second longest leading suffix-palindrome. Since l ≤ s, it
remains to show that s = O(maxPal−maxPal0). See [10] for details.

Proposition 4. The palindromic engine can be implemented to work in O(n)
time and space.

Proof. The correctness of the implementation described in Sect. 5.2, 5.3 was
proved in Sect. 5.2–5.4. It remains to prove the time bound. Consider the se-
quence of n calls to append. Let n1 < n2 < . . . < nk be the numbers of all unpre-
dictable calls to append and maxPal1 < maxPal2 < . . . < maxPalk be the centers
of the longest suffix-palindromes just before each of these calls. By Lemma 10, all
these calls require O(1+ (maxPal2−maxPal1)+ (n2−n1)+ (maxPal3−maxPal2)+
(n3−n2) + . . .+ (maxPalk−maxPalk−1) + (nk−nk−1)) = O(n) time. A reference
to Lemma 9 ends the proof.

Proposition 4 together with Proposition 2 implies the main theorem.

6 Conclusion

In the RAM model considered in this paper all operations are supposed to be
constant-time. This is the so called unit-cost RAM. Our algorithm heavily relies
on multiplication and modulo operations, and we do not know whether it can
be modified to use only addition, subtraction, and bitwise operations.

It was conjectured that there exists a context-free language that can not be
recognized in linear time by a unit-cost RAM machine. This paper shows that
a popular idea to use palindromes in the construction of such a language is quite
likely to fail. For some discussion on this problem, see [11].
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Abstract. Flip-pushdown automata, introduced by Sarkar [7], are push-
down automata with an additional ability to reverse the contents of
their pushdown, and with the most interesting setting arising when the
number of such flips is limited by a constant. Two characterizations of
flip-pushdown automata (with a limited number of flips) in terms of
grammars are presented in this paper. First, the model is characterized
by context-free grammars with an extra ability to generate reversals,
which are called reversal-generating context-free grammars (RGCFG).
Next, a model of parallel word production called parallel interleaving
grammar system (PIGS) is introduced, for which the equivalence with
flip-pushdown automata is proved, linking flip-pushdown automata to
parallelism. The characterization in terms of PIGS is used to prove that
flip-pushdown automata (with a limited number of flips) are weaker than
ET0L systems, which solves an open problem of Holzer and Kutrib [2].

Keywords: flip-pushdown automaton, reversal-generating context-free
grammar, RGCFG, parallel interleaving grammar system, PIGS.

1 Introduction

Nondeterministic flip-pushdown automata (NFPDA) are an extension of ordi-
nary (nondeterministic) pushdown automata, given an additional ability to flip
the pushdown store, i.e., to reverse its contents. This flipping operation allows
to read the pushdown store at both of its ends and, in particular, to use it as
a dequeue.

Since dequeue automata can be used to simulate Turing machines, it is obvious
that when the number of pushdown flips is unlimited, flip-pushdown automata
and Turing machines are equal in their computational power [7]. Thus, the re-
search focus has been mainly on flip-pushdown automata with the number of
flips limited by a constant. Flip-pushdown automata, limited in this way, are
known to be more powerful than ordinary pushdown automata, while retaining
virtually all of their pleasant properties, which makes the study of flip-pushdown
automata particularly interesting [2].
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Flip-pushdown automata have been introduced by Sarkar in [7]. Since then,
many of their properties have been resolved. Most of these results have been
obtained by Holzer and Kutrib in [2] and [3].

However, up to now, there has been no type of grammar proved to be equiva-
lent to NFPDA with a limited number of flips. In this paper, we introduce such
grammars. First, we show that (limited) NFPDA are equivalent to an extension
of context-free grammars that we call reversal-generating context-free grammars
(RGCFG). Such grammars have an ability to generate reversals along with or-
dinary symbols, and are related to the flip-pushdown input-reversal technique
introduced by Holzer and Kutrib [2]. Next, we show that (limited) NFPDA
are equivalent to systems of parallel grammars that we call parallel interleav-
ing grammar systems (PIGS). PIGS appear to be a natural way of describing
parallel word productions, so the equivalence of NFPDA and PIGS establishes
a strong link between NFPDA and parallelism.

The viewpoint of grammars can make the reasoning about NFPDA-languages
much easier, as we demonstrate by providing an example application. In particu-
lar, Holzer and Kutrib have posed in [2] an open problem of the relation between
(limited) NFPDA and E0L systems and between (limited) NFPDA and ET0L
systems, and in both cases they have conjectured incomparability. The former
problem has been solved by Ďurǐs and Košta in [1], where they have proved that
NFPDA and E0L are in fact incomparable. In this paper, we solve the latter
problem by showing that the strict inclusion holds, i.e., NFPDA with a limited
number of flips are strictly weaker than ET0L systems.

2 Definitions

In this section, we shall review the formal definition of NFPDA and the cor-
responding families of languages, and briefly survey some of the basic results
obtained so far.

Definition 1. A (nondeterministic) flip-pushdown automaton (NFPDA) is
a tuple A = (K,Σ, Γ, δ,Δ, q0, Z0, F ), where K is a finite set of states, Σ is
an input alphabet, Γ is a pushdown alphabet, δ is an ordinary transition func-
tion from K × (Σ ∪ {ε}) × Γ to finite subsets of K × Γ ∗, Δ is a flip transi-
tion function from K to subsets of K, q0 in K is an initial state, Z0 in Γ is
a bottom-of-pushdown symbol, and F ⊆ K is a set of accepting states.

A configuration of the NFPDA A is defined similarly as for ordinary PDA,
i.e., it is a triple (q, w, s), where q in K is a state, w in Σ∗ is an unread part
of the input word, and s in Γ ∗ is a content of the pushdown (written from the
bottom of the pushdown). A computation step of the NFPDA A is a relation
�A on its configurations defined as follows: for p, q in K, a in Σ ∪ {ε}, u in Σ∗,
s, t in Γ ∗, and Z in Γ , we define (p, au, sZ) �A (q, u, st) if (q, t) is in δ(p, a, Z)
(ordinary transitions) and (p, u, Z0s) �A (q, u, Z0s

R) if q is in Δ(p) (flip tran-
sitions). Observe that the flip transition function does not depend neither on
the input, nor on the contents of the pushdown. However, it may be easily seen
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that this definition is equivalent to the definition with a flip transition function
Δ going from K × (Σ ∪ {ε}) × Γ to K. If A is understood from the context,
we shall write � instead of �A. The language L(A) accepted by A by a final
state and the language N(A) accepted by A by empty pushdown are defined
as usual: L(A) = {w ∈ Σ∗ | ∃q ∈ F, s ∈ Γ ∗ : (q0, w, Z0) �∗ (q, ε, s)}, and
N(A) = {w ∈ Σ∗ | ∃q ∈ K : (q0, w, Z0) �∗ (q, ε, ε)}. We say that the NFPDA
A operates in at most (exactly) k flips, if in every its computation, the push-
down store is reversed at most (exactly) k times. This can be easily turned into
a syntactic definition as well.

In [2], it is proved that NFPDA accepting by a final state and NFPDA accept-
ing by empty pushdown are equivalent, while the simulations involved do not
change the number of flips performed. Moreover, it is proved there that NFPDA
with at most k flips are equivalent to NFPDA with exactly k flips. In [7], it is ob-
served that NFPDA with unrestricted number of pushdown flips are equivalent
to Turing machines in their computational power.

Definition 2. We denote the family of languages accepted (either by a final
state or by empty pushdown) by some NFPDA operating in at most k flips by
L (NFPDAk). Further, we define

L (NFPDAfin) =

∞⋃
k=0

L (NFPDAk),

and denote the family of languages accepted by arbitrary NFPDA by L (NFPDA)
(it is already shown that L (NFPDA) = L (RE)).

In the previous works [7], [2], and [3], these families of languages have been
defined in a slightly different manner. However, both definitions can be clearly
seen to be equivalent. In [2], it has been proved that the families L (NFPDAk)
form an infinite hierarchy, i.e.,

L (CF) = L (NFPDA0) � L (NFPDA1) � L (NFPDA2) � . . .

Finally, let us state the important Flip-pushdown input-reversal theorem, intro-
duced by Holzer and Kutrib in [2] (in a slightly different form).

Theorem 1 (Holzer, Kutrib [2]). Let k be in N. A language L is accepted by
empty pushdown by a NFPDA A1 = (K,Σ, Γ, δ,Δ, q0, Z0, ∅) operating in k + 1
pushdown flips iff the language

LR = {uvR | (q0, u, Z0) �∗
A1

(q1, ε, Z0s) with k flips, q2 ∈ Δ(q1),

and (q2, v, Z0s
R) �∗

A1
(q3, ε, ε) without any flip}

is accepted by empty pushdown by some NFPDA A2 operating in k pushdown
flips. The same statement holds for NFPDA accepting by a final state.
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3 Reversal-Generating Context-Free Grammars

In this section, we define an extension of context-free grammars that has an
additional ability to generate reversals. We shall call such context-free grammars
reversal-generating and we shall prove that they are equivalent to NFPDA. Our
definition of these grammars will be closely related to the flip-pushdown input-
reversal technique of Holzer and Kutrib [2]. In fact, word production by reversal-
generating grammars can be viewed as an inverse of this technique. While in the
flip-pushdown input-reversal technique one gets a word from a NFPDA-language
and transforms this word by a series of reversals into a word from a certain
context-free language, a reversal-generating grammar generates a context-free
language with special reversal symbols. By interpreting these reversal symbols
in an appropriate order, one actually performs an inverse of the flip-pushdown
input-reversal technique, and obtains a word from some NFPDA-language.

Definition 3. A reversal-generating context-free grammar (RGCFG) is a five-
tuple G = (N, T, P, σ,�), where (N, T, P, σ) is a context-free grammar, and �
is a special reversal symbol belonging to T .

A derivation step of G is defined as for the context-free grammar G′ =
(N, T, P, σ). The only difference is in the definition of the generated language.
We define L(G) = {�(w) | w ∈ L(G′)}, where � : T ∗ → (T − {�})∗ is the
reversal-interpreting function defined inductively by

�(w) =

{
w for w without an occurrence of �,
u�(vR) for w = u�v, u without an occurrence of �, and v in T ∗.

That is, reversal symbols are interpreted in the left-to-right order. We illus-
trate this by the following example.

Example 1. Let us consider a RGCFG G = (N, T, P, σ,�), such that (N, T, P, σ)
generates a language consisting of words having the form u�v�x�y�z. Then,
for every such word, the language L(G) contains the word

�(u�v�x�y�z) = u�(zR�yR�xR�vR) = uzR�(v�x�y) =

= uzRv�(yR�xR) = uzRvyR�(x) = uzRvyRx.

The following proposition can be proved easily by induction, so we omit its
proof.

Proposition 1. Let G = (N, T, P, σ,�) be a RGCFG and let us denote the
context-free grammar (N, T, P, σ) by G′. Then,

L(G) = {w1w
R
2nw2w

R
2n−1 . . . wnw

R
n+1 | w1�w2� . . .�w2n ∈ L(G′)} ∪

∪ {w1w
R
2n+1w2w

R
2n . . . wnw

R
n+2wn+1 | w1�w2� . . .�w2n+1 ∈ L(G′)}.

Similarly as in the case of NFPDA, we shall be interested mainly in reversal-
generating grammars generating a limited number of reversal symbols. We shall
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call RGCFG generating at most k reversal symbols k-reversal-generating. It can
be observed that this can be easily turned into a syntactic constraint, and that
the condition of generating at most k reversal symbols is equivalent to the condi-
tion of generating exactly k reversal symbols. Further, a reversal-aware normal
form of k-reversal generating CFGs can be considered, such that every nonter-
minal is aware of which reversals it produces in a terminal word. This can be
formalized by taking a set of nonterminal symbols of the form N = N ′×2{1,...,k},
where the second projection of each nonterminal is a (possibly empty) set of in-
dices, corresponding to reversal symbols it generates in a terminal word. Ob-
viously, these sets always consist of contiguous numbers. A proof that this is
indeed a normal form is easy, and left to the reader.

Definition 4. We denote the family of languages generated by k-reversal gene-
rating context-free grammars by L (RGCFGk). Furthermore, we define

L (RGCFGfin) =

∞⋃
k=0

L (RGCFGk).

We denote the family of languages generated by unrestricted reversal-generating
context-free grammars by L (RGCFG).

Finally, we may proceed to the main theorem of this section, asserting that
NFPDA and RGCFG are equivalent.

Theorem 2. For all k in N, the identity L (NFPDAk) = L (RGCFGk) holds.

Proof. First, let G be a RGCFG producing k reversal symbols. An equivalent
NFPDA A performing k pushdown flips can be defined similarly as in the stan-
dard simulation of context-free grammars on pushdown automata (see, e.g., [4]).
Let us initialize Psim to be the set of production rules of G. The automaton
A first makes its pushdown store contain the word Z0σ, where Z0 is a fixed
bottom-of-pushdown symbol (different from the terminals and nonterminals of
G), and σ is an initial nonterminal of G. Next, the following procedure is re-
peated: If a nonterminal of G is on the top of the pushdown, read nothing from
the input and rewrite the nonterminal on the pushdown using some production
rule in Psim. If � is on the top of the pushdown, erase it, perform a flip, and
reverse the right-hand sides of production rules in Psim. If any other terminal is
on the top of the pushdown, erase it, and read the same symbol from the input.
If it is not possible, A gets stuck. The automaton accepts if Z0 is on the top of
the pushdown (and the whole input is read). Clearly, L(A) = L(G).

Now, let us prove the remaining inclusion. LetA be aNFPDAperforming k flips.
Obviously, by a minor change of its transition function, it is possible to obtain a
NFPDAA′, which behaves exactly likeA, except that before every pushdown flip,
it is forced to read some new special symbol # (and which cannot accept the input
if some #-transition is not followed by a pushdown flip). Clearly, L(A′) consists of
words u = u1#u2# . . .#uk+1, such that u1u2 . . . uk+1 can be accepted by A with
k flips performed at the positions marked in u by symbols #. Now, by applying
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the flip-pushdown input-reversal technique [2] (see also Theorem 1 of the present
paper) k times, one obtains the language

L′ = {u1#u3# . . .#uk#uR
k+1#uR

k−1# . . .#uR
2 | u1#u2# . . .#uk+1 ∈ L(A′)},

if k is odd, and the language

L′ = {u1#u3# . . .#uk+1#uR
k #uR

k−2# . . .#uR
2 | u1#u2# . . .#uk+1 ∈ L(A′)},

if k is even (this can be easily proved by induction). The Flip-pushdown input-
reversal theorem implies that the language L′ is context-free. Consider a context-
free grammar G′ generating L′, and define a RGCFG G to be the same as G′,
but generating � instead of #. Then, it follows by Proposition 1 that

L(G) = {u1u2 . . . uk+1 | u1#u2# . . .#uk+1 ∈ L(A′)} = L(A).

The theorem is proved. ��

Corollary 1. L (NFPDAfin) = L (RGCFGfin).

4 Parallel Interleaving Grammar Systems

In this section, we shall introduce systems of parallel grammars, which we shall
call parallel interleaving grammar systems (PIGS). Roughly said, languages ge-
nerated by PIGS consist of words u1v1u2v2 . . . umvm, where u1#u2# . . .#um

is generated by one context-free grammar, and v1#v2# . . .#vm is generated
by another one. Here, # is a special switch symbol marking points in which
the grammars interleave. The number of switch symbols generated need not be
the same for both grammars, but the principle sketched above can be clearly
generalized to hold in this setting as well.

Thus, we have two context-free grammars interleaving each other. However,
these two grammars need not generate their words from scratch, but some se-
quential precomputation may take place. This means that first, an initial senten-
tial form is precomputed sequentially, and this is then used by both grammars to
start the generative process from. We shall prove that if the language of sequen-
tially precomputed sentential forms is regular, then PIGS (with some restriction
on the number of switch symbols) are equivalent to NFPDA (with a restriction
on the number of pushdown flips).

To sum up, the generative process of PIGS can be divided into three stages.
First, a sequential precomputation takes place, resulting in some sentential form.
Next, this sentential form is used as an axiom by two context-free grammars,
both of which (asynchronously) produce a terminal word with special switch
symbols #. Finally, these two words are combined into the final output by the
following procedure: start by copying the word generated by the first grammar.
When a switch symbol is encountered, do not copy it to the output, but continue
by copying the word generated by the second grammar, etc.
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Definition 5. A parallel interleaving grammar system with two context-free
grammars and with a regular set of axioms (PIGS(2,CF,Reg)) is a six-tuple
G = (N, T, P1, P2,#, I), where N is a finite set of nonterminals, T is a finite set
of terminals, N ∩ T = ∅, P1, P2 ⊆ N × (N ∪ T )∗ are two finite sets of context-
free production rules, # in T is a switch symbol, and I ⊆ (N ∪ T )∗ is a regular
language of initial sentential forms (axioms).

Remark 1. In order to make the above definition strictly finitary, the regular set
I may be replaced, e.g., by a regular grammar generating I.

Remark 2. The notation PIGS(2,CF,Reg) has been chosen in regard to possible
future generalizations: PIGS consisting of more than two grammars can be stu-
died, and some other family of grammars, and/or axiom sets can be considered.
We believe that these generalizations are worth of research interest.

A derivation step of the first grammar of G is a binary relation⇒G,1(or simply
⇒1, if G is understood) on (N ∪ T )∗ defined as follows: u ⇒G,1 v iff there are
words u1, u2, x in (N ∪ T )∗ and a nonterminal ξ in N , such that u = u1ξu2,
v = u1xu2, and ξ → x is in P1. A derivation step of the second grammar of G,
⇒G,2 (or ⇒2, if G is understood), is defined similarly. The language generated
by the first grammar of G from the axiom x is defined by

L(G, 1, x) = {w ∈ T ∗ | x ⇒∗
1 w},

and we make an analogous definition for the second grammar of G as well. Let
us define a locally regulated shuffle w1 �# w2 of words w1, w2 to be the output
ϕ(w1, w2) of the word combining function ϕ defined by

ϕ(u1#u2# . . .#ui, v1#v2# . . .#vj) = u1v1u2v2 . . . ujvjuj+1 . . . ui

for i ≥ j, and by

ϕ(u1#u2# . . .#ui, v1#v2# . . .#vj) = u1v1u2v2 . . . uivivi+1 . . . vj

for i ≤ j. For languages L1, L2, let us define

L1�# L2 = {w1�# w2 | w1 ∈ L1, w2 ∈ L2}.

Then, we define the language generated by G by

L(G) =
⋃
x∈I

L(G, 1, x)�# L(G, 2, x).

Remark 3. Every language L, generated by some PIGS(2,CF,Reg), can be ex-
pressed by L =

⋃
w∈R τ1(w)�# τ2(w), where R is a regular language, and τ1, τ2

are context-free substitutions.

Remark 4. The operation �# can be regarded as an analogy of shuffles on
trajectories, studied in [5], with a local control instead of a global one. Thus, we
believe it is worth of research attention.



Two Grammatical Equivalents of Flip-Pushdown Automata 309

Similarly as in the case of NFPDA and RGCFG, we shall be interested mostly
in PIGS generating a limited number of switch symbols. We shall call a PIGS
(i, j)-switch-generating, if its first grammar generates i switch symbols, and its
second grammar generates j switch symbols (it can be easily seen that this
is equivalent to the condition of generating at most i resp. j switch symbols).
By a direct analogy with reversal-aware RGCFGs, a switch-aware normal form
of (i, j)-switch-generating PIGS can be defined (cf. Section 3). However, two
sets of indices – one for each grammar – have to be remembered here for every
nonterminal.

Definition 6. We denote the family of languages generated by (i, j)-switch ge-
nerating PIGS(2,CF,Reg) by L (PIGS(i,j)(2,CF,Reg)). Further, we define

L (PIGSfin(2,CF,Reg)) =
⋃

i,j≥0

L (PIGS(i,j)(2,CF,Reg)),

and we denote the family of languages generated by unrestricted PIGS(2,CF,Reg)
by L (PIGS(2,CF,Reg)).

Now, we may present the main result of this paper, characterizing languages
accepted by NFPDA in terms of PIGS.

Theorem 3. For all k ≥ 1, L (NFPDAk) = L (PIGS� k−1
2 ,
 k−1

2 �(2,CF,Reg)).

Proof. We shall use Theorem 2, i.e., we shall prove our statement by showing
that the identity

L (RGCFGk) = L (PIGS� k−1
2 ,
 k−1

2 �(2,CF,Reg))

holds for all k ≥ 1. In the rest of the proof, we shall assume that k is odd. The
proof for the case when k is even is analogous.

First, letG = (N, T, P, σ,�) be a k-reversal-generatingRGCFG in the reversal-
aware normal form. We shall construct a ((k − 1)/2, (k− 1)/2)-switch-generating
PIGS(2,CF,Reg) G′ = (N ′, T ′, P ′

1, P
′
2,#, I ′), such that L(G′) = L(G). We shall

call nonterminals, from which the middle (i.e., the (k + 1)/2-st) reversal symbol
is generated,middle nonterminals. Obviously, the initial nonterminal σ is middle,
and there is at most one middle nonterminal in each sentential form.

Now, for each word w generated by G, consider a derivation such that pro-
duction rules from middle nonterminals are used first, followed by all other
rules. The first stage of the derivation has a form σ ⇒∗ u�v, where u, v are
in (N ∪ T )∗, and it follows by Proposition 1 that u ⇒∗ w1� . . .�w(k+1)/2 =: x,
v ⇒∗ w(k+3)/2� . . .�wk+1 =: y, where w = w1w

R
k+1 . . . w(k+1)/2w

R
(k+3)/2. Thus,

it is obviously sufficient to construct G′ so that its first grammar generates x,
and its second grammar generates yR (in both cases with � replaced by #), for
all words x, y as above (and nothing else is generated by G′).

In order to do this, let us first observe that a regular language R and homo-
morphisms h1, h2 do exist, such that

{(h1(z), h2(z)) | z ∈ R}
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is exactly the set of all pairs (u, vR), such that G generates u�v in the first
stage of some derivation, where the reversal symbol between u and v is middle.
The language R may be, for instance, defined to be a language over the alphabet
of production rules of G, consisting of all valid chains of production rules from
middle nonterminals, together forming a complete first stage of some derivation.

Suppose that the alphabet ΣR of R and N ∪ T are disjoint. Now, set I ′ = R,
and define P ′

1 to contain rules simulating h1, i.e., rewriting all symbols c from
ΣR by h1(c), and, furthermore, all production rules of G with � replaced by #.
Formally, P ′

1 = {c → h(h1(c)) | c ∈ ΣR} ∪ {ξ → h(x) | ξ → x ∈ P}, where h
is a homomorphism such that h(�) = # and h(c) = c for c in (N ∪ T )− {�}.
Furthermore, define P ′

2 to contain rules simulating h2 and rules of G with their
right side reversed (and with � replaced by #). This can be formally written as
P ′
2 = {c → h(h2(x)) | c ∈ ΣR} ∪ {ξ → h(x)R | ξ → x ∈ P}. Finally, let us set

N ′ = N ∪ ΣR, T
′ = (T ∪ {#})− {�}, and the PIGS G′ is completely defined.

By what has been noted above, it is clear that L(G′) = L(G).
Now, we shall prove the remaining inclusion. Suppose that we are given a

((k−1)/2, (k−1)/2)-switch-generating PIGS(2,CF,Reg)G = (N, T, P1, P2,#, I).
We shall construct a k-reversal-generating RGCFG G′ = (N ′, T ′, P ′, σ′,�), such
that L(G′) = L(G). Let GI = (NI , TI , PI , σI) be a regular grammar generating
I, such that NI and N×{1, 2}∪T ∪{�} are disjoint. Let us define G′ as follows:
N ′ = NI ∪N × {1, 2}, T ′ = (T ∪ {�})− {#}, σ′ = σI , and

P ′ = {ξ → h1(x)ηh2(x)
R | x ∈ T ∗

I , η ∈ NI , ξ → xη ∈ PI} ∪
∪ {ξ → h1(x)�h2(x)

R | x ∈ T ∗
I , ξ → x ∈ PI} ∪

∪ {(ξ, 1) → h1(x) | ξ → x ∈ P1} ∪ {(ξ, 2) → h2(x)
R | ξ → x ∈ P2},

where h1, h2 : (N ∪ T )
∗ → (N ′ ∪ T ′)∗ are homomorphisms defined by h1(ξ) =

(ξ, 1), h2(ξ) = (ξ, 2) for ξ in N , h1(#) = h2(#) = � and h1(c) = h2(c) = c
for c in T − {#}. It is obvious that the context-free grammar (N ′, T ′, P ′, σ′)
generates words w1� . . .�w(k+1)/2�wR

(k+3)/2� . . .�wR
k+1 such that the first

grammar of G generates w1# . . .#w(k+1)/2, and the second grammar generates
wk+1# . . .#w(k+3)/2. Then, L(G

′) = L(G) follows directly by Proposition 1. ��

Corollary 2. L (NFPDAfin) = L (PIGSfin(2,CF,Reg)).

Proof. The inclusionL (NFPDAfin) ⊆ L (PIGSfin(2,CF,Reg)) follows directly
by Theorem 3. The remaining inclusion holds, since for all i, j in N, we have
L (PIGSi,j(2,CF,Reg)) ⊆ L (PIGSmax{i,j},max{i,j}(2,CF,Reg)), which, by The-
orem 3, equals L (NFPDA2max{i,j}+1). ��

5 A Relation to ET0L Systems

In this section, we shall present an example application of the characterization
of NFPDA in terms of PIGS: We shall prove that flip-pushdown automata (with
a constant number of flips) are strictly weaker than ET0L systems (for the
definition, see, e.g., [6]).
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The problem of the relation between flip-pushdown automata and ET0L
systems has been posed by Holzer and Kutrib in [2]. There, they have con-
jectured that both NFPDA and E0L, and NFPDA and ET0L are incomparable.
Ďurǐs and Košta have already confirmed the former conjecture [1]. In this sec-
tion, we shall prove that the latter conjecture does not hold, i.e., NFPDA are
strictly weaker than ET0L systems.

Theorem 4. L (NFPDAfin) � L (ET0L).

Proof. It has been already known thatL (NFPDAfin) �⊇ L (ET0L). This can be
proved, e.g., by showing that the language L = {anbncn | n ∈ N} is in L (ET0L),
but not in L (NFPDAfin). For more information, see [2].

Thus, it remains to prove that L (NFPDAfin) ⊆ L (ET0L). We shall show
this by applying Theorem 3, i.e., we shall prove that for all nonnegative integers
i, j and every (i, j)-switch-generating PIGS(2,CF,Reg) G = (N, T, P1, P2,#, I),
there is an ET0L system S = (V,P , x,Σ), such that L(S ) = L(G). Without
loss of generality, we may suppose that i = j, that G is in the switch-aware
normal form, and that I ⊆ N∗. Further, let GI = (NI , TI , PI , σI) be a regular
grammar generating I, such that PI ⊆ NI × (TINI ∪ {ε}), NI ∩ (N ∪ T ) = ∅,
and TI ⊆ N . Finally, we shall assume that G generates switch symbols only by
rules of the form α → #, with α in N .

Since L (CF) ⊆ L (ET0L), it is possible to simulate both context-free gram-
mars of G by an ET0L-system. Thus, the only problem is with interleaving. To
overcome this, we have to generate regular axioms of G already appropriately
interleaved. The only serious problem here is when a nonterminal from an axiom
generates a switch symbol (in one or both of the grammars of G), since then it
can generate symbols in two different contiguous parts of the final word, and it
may produce some other nonterminals that generate symbols in even other con-
tiguous parts of the final word (between the two contiguous parts it generates
symbols in directly). In that case, we shall split the nonterminal into two parts
that will be rewritten always in parallel. These parts may be split even further.

Besides this, it is important to mark each symbol with the number (1 or 2) of
the grammar of G it corresponds to. Then, after generating the interleaved and
marked axioms, it is possible to simulate both grammars on these axioms (with
the presence of split nonterminals described above).

Now, we shall describe the formal construction. In what follows, h1 and h2

are homomorphisms, such that h1(ξ) = (ξ, 1) and h2(ξ) = (ξ, 2) for ξ in N ∪NI ,
and h1(c) = h2(c) = c for c in T . Next, for ξ in N , we define ζ1(ξ) to be (s, t)
if ξ generates switch symbols s to t in the first grammar of G, and to be (0, 0)
if it generates none. The notation ζ2(ξ) has a similar meaning for the second
grammar of G. The derivation of S will proceed in four phases, with the right
order enforced by symbols Π1, Π2, Π3, and Π4 in V −Σ. In the s-th phase, the
symbol Πs is present in the sentential form. Moreover, every table of production
rules designated for the s-th phase contains rules Πs → Πs and Πt → F for
t �= s, where F in V −Σ is a special fail symbol. The only rule from F in each
table is F → F . Thus, the sentential form containing F cannot be terminated.
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The axiom x of S will be h1(σI)$1h2(σI)$i+2$2$i+3 . . . $i+1$2i+2Π1, where
$s is a symbol in V −Σ denoting the end of the s-th contiguous part of the word
being generated. These symbols will be erased in the end.

In the first phase, appropriately interleaved axioms of G are generated. For
each rule α → xβ of GI , there is one separate table Pα→xβ inP . If ζ1(x) = (0, 0),
then there is a rule h1(α) → h1(x)h1(β) in Pα→xβ , and similarly for ζ2(x) =
(0, 0). If ζ1(x) = (s, t) �= (0, 0), then there are rules h1(α) → (h1(x), left),
$k → LkRk$k for s < k ≤ t and $t+1 → (h1(x), right)h1(β)$t+1 in Pα→xβ ,
and similarly for the second grammar (these rules correspond to the splitting of
nonterminals). Symbols Lk and Rk are placeholders for the further subdivision of
split nonterminals. It follows from our assumption of all switch-producing rules
having the form α → # that all these symbols will be rewritten sometimes. In
addition, there are rules h1(ξ) → F and h2(ξ) → F for all ξ in NI , ξ �= α in this
table. This is in order to assure that in the first phase, only the tables of rules
corresponding to the nonterminal of GI present in the sentential form are used.
Moreover, there are rules Π1 → Π1 and Πs → F for s > 1 in this table. For all
other symbols y, there is a rule y → y.

For each rule α → ε of GI , there is one separate table Pα→ε in P . This
contains rules h1(α) → ε, h2(α) → ε. Further, for all ξ in NI , ξ �= α, there are
rules h1(ξ) → F and h2(ξ) → F . Since this table is used at the end of the first
phase, there is a rule Π1 → Π2. Similarly as above, rules Πs → F for s > 1 are
present, and for all other symbols y, there is a rule y → y.

In the second phase, split (switch-producing) nonterminals are rewritten. We
shall only describe the tables corresponding to the first grammar of G, since the
tables for the second grammar are analogous. Let ξ in N be a nonterminal, such
that ζ1(ξ) �= (0, 0). Then, for each rule ξ → uηv in P1 with u, v in (N ∪ T )∗ and
ζ1(η) = ζ1(ξ) (note that the only switch-generating nonterminal on the right

side is η), there is a table P
(1)
ξ→uηv in P containing the rules (h1(ξ), left) →

h1(u)(h1(η), left), (h1(ξ), right) → (h1(η), right)h1(v), Π2 → Π2, Πs → F for
s �= 2, and y → y for all other symbols y. This table can be used also if (split) ξ
is not present – in that case, the sentential form is not changed.

Now, let us consider rules with two switch-producing nonterminals on the
right side, i.e., ξ → uαvβw in P1, where ζ1(ξ) = (s, t) �= (0, 0), ζ1(α) = (s, k),
ζ1(β) = (k + 1, t) for some s ≤ k < t and u, v, w in (N ∪ T )∗. To every

such rule, there is a table P
(1)
ξ→uαvβw in P containing the following production

rules: (h1(ξ), left) → h1(u)(h1(α), left), Lk+1 → (h1(α), right)h1(v), Rk+1 →
(h1(β), left), and (h1(ξ), right) → (h1(β), right)h1(w). Further, for every non-
terminal η �= ξ generating the k-th and the (k + 1)-st switch symbol, this table
contains the rules (h1(η), left) → F and (h1(η), right) → F . This is in order
to assure that if in some terminable derivation, Lk+1 or Rk+1 is rewritten using
this table, then this derivation step is valid, i.e., (h1(ξ), left) and (h1(ξ), right)
were present. However, when neither Lk+1 nor Rk+1 is present in the sentential
form, this table can be used (with no effect). Finally, the table contains rules
Π2 → Π2, Πs → F for s �= 2, and y → y for all other symbols y. The case of
more than two switch-producing nonterminals on the right side is analogous.



Two Grammatical Equivalents of Flip-Pushdown Automata 313

For all rules of the type α → # in P1, there is a table P
(1)
α→# in P , with rules

(h1(α), left) → ε, (h1(α), right) → ε, Π2 → Π2, Πs → F for s �= 2, and y → y
for all other symbols y.

A table used for finalizing the second phase has rules Π2 → Π3, Πs → F for
s �= 2, and y → y for all other symbols y. This table may be used also if the
second phase is not finished yet, however, as we shall see, the sentential form
cannot be terminated in that case (F will be produced in the third phase).

In the third phase, the rest of nonterminals is rewritten. For each rule ξ → u

in P1, where ζ1(ξ) = (0, 0) and u is in (N ∪T )∗, there is a table P
(1)
ξ→u in P , with

rules h1(ξ) → h1(u), and h1(ξ) → h1(ξ). Further, for all (split) switch-producing
nonterminals η and all symbols Rk and Lk, it contains rules that rewrite them
to F . Finally, it contains rules Π3 → Π3, Πs → F for s �= 3, and y → y for all
other symbols y. Similarly for rules ξ → u in P2.

A table for finalizing the third phase is similar to the table for finalizing the
second phase.

Finally, there is only one table designated to the fourth phase. For each non-
terminal, it contains rules rewriting it to F (that is, the third phase has to be
finished). Moreover, it contains rules $k → ε for all k, 1 ≤ k ≤ 2i+ 2, Π4 → ε,
Πs → F for s �= 4, and y → y for all other symbols y. ��

Acknowledgements. Many thanks go to Branislav Rovan and Pavel Labath,
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paper.
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Abstract. This paper explores the language classes that arise with re-
spect to the head count of a finite ultrametric automaton. First we prove
that in the one-way setting there is a language that can be recognized
by a one-head ultrametric finite automaton and cannot be recognized
by any k-head non-deterministic finite automaton. Then we prove that
in the two-way setting the class of languages recognized by ultramet-
ric finite k-head automata is a proper subclass of the class of languages
recognized by (k + 1)-head automata. Ultrametric finite automata are
similar to probabilistic and quantum automata and have only just re-
cently been introduced by Freivalds. We introduce ultrametric Turing
machines and ultrametric multi-register machines to assist in proving
the results.

1 Introduction

Ultrametric finite automata and ultrametric Turing machines were first intro-
duced by [3]. This development has been followed by several papers in which
various aspects of these machines are studied in depth. [1] have studied the
descriptional complexity of ultrametric automata. They showed that ultramet-
ric automata can achieve an exponential advantage in terms of the number of
states required when compared with equivalent deterministic automata. [8] have
studied the reversal complexity of ultrametric Turing machines.

Ultrametric machines are similar to probabilistic machines, with the
difference that for ultrametric machines it is not necessary for amplitudes (which
are the equivalent of probabilities in probabilistic automata) to be within the
range of 0 and 1. Instead, general p-adic numbers are used. We should note that
in [12], a similar generalization of probabilistic automata was introduced, where
”probabilities” can be arbitrarily large numbers, and the acceptance criterion
is whether the probability to be in an accepting state is greater than a given
threshold. Furthermore, it was shown that this generalization is in fact equivalent
to probabilistic automata. However, unlike the concepts used for these pseudo-
probabilistic machines, the definition of ultrametric machines uses the concept
of a p-adic norm.

It can be argued that the definition introduced by Freivalds is natural, because
in 1916, Alexander Ostrowski proved that any non-trivial absolute value on the
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rational numbers Q is equivalent to either the usual real absolute value or a
p-adic absolute value. This result demonstrates that using p-adic numbers is
not merely one of many possibilities to generalize the definition of determini-
stic algorithms, but rather the only remaining possibility not yet explored [3].
Additionally, useful properties have been proven for the definition of ultrametric
machines—[1] proved that the language class recognized by regulated p-adic
machines coincides with the class of regular languages.

In this paper, we address the question of the language hierarchy associated
with the number of heads of ultrametric multi-head automata. Several results
can be found in the literature that consider deterministic, nondeterministic, and
probabilistic finite automata in both—two-way and one-way—cases [5,9,11,13].
This paper examines whether similar results regarding the separation in classes
with respect to the head count can be achieved for ultrametric multi-head fi-
nite automata. Other results consider the relationships of the language classes
recognized by ultrametric and classical automata.

2 P -Adic Numbers

p-adic numbers are discussed in more detail in [10]. The use of p-adics in other
sciences can be seen in [7,2]. Here, we only restate the definition of the p-adic
absolute value.

For every non-zero rational number α there exists a unique prime factorization
α = ±2α23α35α57α7 · · · where αi ∈ Z.

Definition 1. The p-adic absolute value (also called the p-norm) of a rational
number α = ±2α23α35α57α7 · · · is

‖α‖p =

{
p−αp , if α �= 0

0, if α = 0.

3 One-Way Multi-head Automata

3.1 Definitions

We extend the definition of ultrametric automata given in [1] by adding rejecting
states.

Definition 2. A finite one-way p-ultrametric one-head automaton (1upfa or
1upfa(1)) is a sextuple 〈S,Σ, s0, δ, QA, QR〉 where

– S is a finite set—the set of states,
– Σ is a finite set ($ /∈ Σ)—input alphabet,
– s0 : S → Qp is the initial amplitude distribution,
– δ : (Σ ∪ {$})× S × S → Qp is the transition function,
– QA, QR ⊆ S are the sets of accepting and rejecting states, respectively.
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The automaton works as follows: At every timestep, each of its states has an as-
sociated p-adic number called its amplitude. The automaton starts with an initial
amplitude distribution s0. It subsequently proceeds by processing the input word’s
w = w1 . . . wn symbols one at a time. The amplitude distribution after proces-
sing the i-th symbol is denoted as si, with si(y) =

∑
x∈S si−1(x) · δ (wi, x, y) for

every y ∈ S. After the n-th symbol,the end marker $ is similarly processed, ob-
taining the final amplitude distribution sn+1. If the sum of the p-norms of final
amplitudes over accepting states is greater than the sum of final amplitudes over
rejecting states, i.e. if

∑
x∈QA

‖sn+1(x)‖p >
∑

x∈QR
‖sn+1(x)‖p, then the word

w is said to be accepted, otherwise—rejected.

A two-way k-head finite automaton consists of an input tape containing the
input word on which the heads of the automaton can move freely in both direc-
tions, not crossing the endmarkers. The tape is read-only. We use the standard
definition for the two-way k-head non-deterministic finite automaton:

Definition 3 ([5]). A two-way non-deterministic k-head finite automaton (2nfa
(k)) is a sextuple 〈S,Σ, k, s0, δ, F 〉, where

– S is a finite set—the set of states,

– Σ is a finite set (�, " /∈ Σ)—the input alphabet (� and " are the left and right
endmarkers, respectively),

– k ≥ 1 is the number of heads,

– s0 ∈ S is the starting state,

– δ : S × (Σ ∪ {�, "})k → 2S×{−1,0,1}k

is the partial transition function.
Whenever (s′, (d1, . . . , dk)) ∈ δ (s, (a1, . . . , ak)) is defined, then di ∈ {0, 1}
if ai = �, and di ∈ {−1, 0} if ai = ", for 1 ≤ i ≤ k,

– F ⊆ S is the set of accepting states.

If for any state and k-tuple of symbols the transition function δ is either
undefined or singleton, then the automaton is said to be deterministic (2dfa(k)).
If the heads of the automaton never move left, then the automaton is defined to
be one-way. Nondeterministic and deterministic one-way k-head automata are
denoted by 1nfa(k) and 1dfa(k), respectively.

3.2 Relation to Classical Automata

Strict hierarchies of classes have been shown for both one-way multi-head de-
terministic and nondeterministic automata with regard to the head count of the
automata [5,13]. In 1978, [13] used the language

L′
k =

{
w1$w2$ . . . $w2k

∣∣wi ∈ {a, b}∗ ∧ wi = w2k+1−i for all 1 ≤ i ≤ k
}

to prove the separation of the class of languages that can be recognized by
a 1dfa(k) from the class that can be recognized by a 1dfa(k + 1).

We will consider a similar language, Lk.
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Theorem 1. For every k ≥ 1 ∈ N, there exists a language Lk such that:

(1) for every prime p there exists a 1upfa(1) that recognizes Lk,

(2) Lk cannot be recognized by any 1nfa(k).

Proof. Let n =
(
k
2

)
+ 1. The sought language is

Lk = {w11w21 . . . 1w2n|wi ∈ {0m|m ≥ 1} ∧ wi = w2n−i+1} .

We will now prove that Lk satisfies the points of our theorem.
(1) We show that for an arbitrary language Lk, a 1upfa(1) can be built

for every prime number p. The automaton starts in n different starting states
q1,1,1, q1,2,1, . . . , q1,n,1 with amplitude 1. Each of these states begins a compu-
tational path that is intended to accumulate amplitude in one of n different
rejecting states q2n,1,2, q2n,2,2, . . . , q2n,n,2. Every branch contains two kinds of
states—states of the 1st group qi,j,1 are responsible for generating amplitudes,
and states of the 2nd group qi,j,2 are intended for amplitude accumulation,
i ∈ [1, 2n] , j ∈ [1, n].

If 0 is read from the input and the automaton is in one of the 1st group
states qi,j,1, where i ≤ n, then the amplitude of the state remains the same and
with amplitude 1 the automaton goes to a 2nd group state, qi,j,2. By doing so,
the state’s accumulated amplitude is added to qi,j,2. If 0 is read in a 2nd group
state qi,j,2, the state’s amplitude remains the same. If 1 is read in a 1st group
state qi,j,1, where i < n, then the automaton with amplitude j+1 transitions to
qi+1,j,1, thereby transitioning there with amplitude (j+1) · |qi+1,j,1| (by |qi|, we
denote the amplitude of the state qi). In contrast, if 0 is read in the 1st group
state qi,j,1, where i > n, the amplitude of the state remains unchanged and the
transition to qi,j,2 is made with amplitude −1. If 1 is read in the 1st group state
qi,j,1, where i ≥ n, the transition to qi+1,j,1 is made with amplitude −(j + 1).
If 1 is read in a 2nd group state, a transition is made from qi,j,1 to qi+1,j,1,
with amplitude 1. The exception is the last column of states, q2n,j,1 and q2n,j,2,
which are responsible for reading in the last block of the word. In this case, the
transition if 1 is read is not defined. A schematic representation of the described
automaton is presented in Fig. 1.

As a result, if a word 0a110a210a31 . . . 10a2n was read, then each of the rejecting
states q2n,j,2 has accumulated an amplitude equal to
a1+a2 ·(j+1)+a3 ·(j+1)2+· · ·+an ·(j+1)n−1−an+1 ·(j+1)n−1−an+2 ·(j+1)n−2

− · · · − a2n,
which is equal to 0 if the word belongs to the language; i.e. if

a1 = a2n ∧ a2 = a2n−1 ∧ . . . ∧ an = an+1.
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It follows that a word is in Lk iff the following equations hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + a2 · 2 + a3 · 22 + · · ·+ an · 2n−1 − an+1 · 2n−1 − an+2 · 2n−2 − · · · − a2n

= 0

a1 + a2 · 3 + a3 · 32 + · · ·+ an · 3n−1 − an+1 · 3n−1 − an+2 · 3n−2 − · · · − a2n

= 0

· · ·
a1 + a2 · (n+ 1) + a3 · (n+ 1)2 + · · ·+ an · (n+ 1)n−1 − an+1 · (n+ 1)n−1

−an+2 · (n+ 1)n−2 − · · · − a2n = 0

rewriting⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1 − a2n) + 2 · (a2 − a2n−1) + 22 · (a3 − a2n−2) + · · ·+ 2n−1 · (an − an+1)

= 0

(a1 − a2n) + 3 · (a2 − a2n−1) + 32 · (a3 − a2n−2) + · · ·+ 3n−1 · (an − an+1)

= 0

· · ·
(a1 − a2n) + (n+ 1) · (a2 − a2n−1) + (n+ 1)2 · (a3 − a2n−2) + · · ·

+(n+ 1)n−1 · (an − an+1) = 0

We see that the coefficients of the system form a Vandermonde matrix. There-
fore, its determinant is non-zero, and since the given system is homogeneous, only
the trivial solution exists.

However, if the word does not belong to Lk, then no more than 4 lines can
hold true. However, even in this case at least one line will exist that is not equal
to 0. Otherwise the system would have a nontrivial solution. Therefore, a word
belongs to Lk iff the sum of the final amplitude norms of the rejecting states is
greater than 0.

By adding an accepting state with a sufficiently small norm of the ampli-
tude (decreasing as the length of the word increases) it is possible to make the
automaton accept the language Lk.

(2) Proven by [4], a proof for a similar language can also be found in [13]. The
idea of this proof relies on the fact that any two heads that have been used to
compare a pair cannot be used to compare another pair. This implies that if the
number of block pairs in a word n is greater than the number of pairs of heads(
k
2

)
, then the language cannot be recognized with k heads. ��

4 Two-Way Automata

4.1 Definitions

Ultrametric multi-head automata are defined by generalizing the definition of
ultrametric one-head one-way automata in a natural way. The definition of multi-
head automata due to [5] is used as well.
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Fig. 1. Automaton for recognizing 0n10m10h1 · · · 10h10m10n. Double-circled states are
rejecting. Large arrows with labels in them show the amplitude distribution when the
automaton starts. Small labelled arrows show transitions. A label (a, b) indicates that
if the automaton reads a, transition with amplitude b should be made.

Definition 4. A finite k-head two-way p-ultrametric automaton (2upfa(k)) is
a septuple 〈S,Σ, k, s0, δ, QA, QR〉 where

– S is a finite set of states,
– Σ is a finite set (�, " /∈ Σ)—the input alphabet (� and " are the left and right

endmarkers, respectively),
– k ≥ 1 is the number of heads,
– s0 : S → Qp is the initial distribution of amplitudes,

– δ : S×(Σ ∪ {�, "})k×S×{−1, 0, 1}k → Qp is the partial transition function.
Whenever δ (s, (a1, . . . , ak), s

′, (d1, . . . , dk)) is defined and not equal to 0, then
di ∈ {0, 1} if ai = �, and di ∈ {−1, 0} if ai = ", for 1 ≤ i ≤ k,

– QA, QR ⊆ S are the sets of accepting and rejecting states, respectively.

2upfa(k) works in a similar way as 1upfa , with the exception that the au-
tomaton now has k heads that can move freely, as in a 2nfa(k). In contrast to
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1upfa, amplitudes are now given for a pair consisting of the positions of the
heads and a state. The amplitude of the state y ∈ S with heads in positions
(p1, . . . , pk) ∈ {0, . . . , |w|+ 1}k on the word w = a1 . . . an after the i-th opera-
tion is given by

si(y, (p1, . . . , pk)) =
∑

x∈S,p′
1,...,p

′
k∈{0,1,...,n+1}:

δ
(
x,
(
ap′

1
,...,ap′

k

)
,y,(p1−p′

1,...,pk−p′
k)

)
is defined

si−1 (x, (p
′
1, . . . , p

′
k)) · δ

(
x,
(
ap′

1
, . . . , ap′

k

)
, y,

(p1 − p′1, . . . , pk − p′k))

Similarly as before, the acceptance of a word is determined by comparing the
final amplitude p-norm sum of the accepting and rejecting states. That is, the
word is accepted iff

∑
x∈QA

∥∥∥∥∥∥∥∥
∑
i∈N,

(p1,...,pk)∈Fi(x)

si(x, (p1, . . . , pk))

∥∥∥∥∥∥∥∥
p

>
∑

x∈QR

∥∥∥∥∥∥∥∥
∑
i∈N,

(p1,...,pk)∈Fi(x)

si(x, (p1, . . . , pk))

∥∥∥∥∥∥∥∥
p

where (p1, . . . , pk) ∈ Fi(x) iff the automaton with some amplitude halts in the
i-th step in the state x with the heads in positions p1, . . . , pk.

The class of languages recognized by 2upfa(k) is denoted 2UpFA(k).
Ultrametric Turing machines are defined to be used as a device to assist in

proving results regarding multi-head automata classes. We modify the definition
for Turing machine by [6].

Definition 5. A p-ultrametric Turing machine with k work tapes (uptm(k) or
simply uptm) is an octuple M = 〈Q,Σ, b, Γ, q0, δ, QA, QR〉 where:
– Q is a nonempty set of states,
– Σ is a nonempty set—the input alphabet,
– b /∈ Σ is the “empty” symbol,
– Γ ⊇ Σ ∪ {b} is the working alphabet,
– q0 : Q → Qp is the initial amplitude distribution,

– δ : Q × Γ k × Q × (Γ × {−1, 0, 1})k → Qp is a partially-defined transition
function where −1 denotes moving the head to the left, 1 denotes moving the
head to the right, 0 denotes not moving the head, and Qp is the amplitude of
the transition,

– QA, QR ⊆ S are the sets of accepting and rejecting states, respectively.

The class of languages recognized by a uptm is denoted UpTM .
Similarly, as with ultrametric multi-head automata, the machine with a given

amplitude is in one of its possible configurations. However, now the configuration
consists of the state of the finite control, the position of the k heads, and the
contents of all k tapes. The amplitude with which the machine is in one of
its configurations in the i-th step is computed analogously as in the case with
ultrametric multi-head automata. The criteria for acceptance are analogous to
those of ultrametric multi-head automata.
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Ultrametric multi-register automata are also used as an intermediate device
for proofs.

Definition 6. A finite p-ultrametric k register automaton (also referred to as
a machine) (2upra(k)) consists of a p-ultrametric finite control and k registers
that can hold natural numbers. The automaton begins with the input number
in the first register with the specified starting amplitude distribution in some

of its states . A predicate
?
= 0 and the operations +1 or −1 can be applied to

a register. Each of the transitions of the finite control can have a predicate or
an operation associated with it that is triggered when the transition is made.
Acceptance criteria are analogous to those of ultrametric automata.

4.2 Simulation of Ultrametric Automata by Ultrametric Turing
Machines

In this subsection, we will show how to simulate an ultrametric multi-head au-
tomaton by an ultrametric Turing machine. The techniques used here are similar
to the techniques used by [9] for probabilistic automata.

Without loss of generality, we can assume that the simulated automaton has
at most 2 transitions from each state and input symbol. We will show how to
construct a p-ultrametric 2-tape Turing machine that, having received the de-
scription of a k-head p-ultrametric automaton as an input, will accept exactly
the same words as the automaton. We will consider only automata recognizing
unary languages, and we will show how to encode the description of the automa-
ton as a word in the form 12

n

, n ∈ N. Furthermore, we will require that the
amplitudes of the simulated automaton are p-constructible sets.

Definition 7. A set S of p-adic numbers is p-constructible if there exists a p-
ultrametric Turing machine that, having received a description of a number x ∈ S
as an input, reaches a marked state qu with amplitude x.

A 2upfa(k) can be described with a binary sequence denoting, in turn: the
number of states, the number of heads, the transitions between the states, and
their respective amplitudes.

The simulation is performed as follows: The 2upfa(k) A with transitions from
a p-constructible set is simulated by a uptm(2) T . T receives the description of
A in unary alphabet as a word in the form 12

n

, n ∈ N. T starts by reading the
input word and deterministically (making transitions with amplitude 1) writes
n in binary on the second tape, where n is the description of the automaton A.
Additionally, a space of size O(k · logm) is reserved (where m is the length of the
input word on which the automaton must be simulated) for k counters denoting
the positions of the heads of the automaton A. From this point forward, only
the second tape will be used (we will refer to it as the work tape).

While processing the input word, the automaton A can be in different configu-
rations in parallel with different amplitudes. If A is in a configuration with an
amplitude a, T will simulate it by being in a configuration in which the content



322 R. Krǐslauks and K. Balodis

of the work tape corresponds to the respective configuration of A with the same
amplitude a.

To show that T can simulate A in such a way, we must show that every
transition of A can be realized by T . If A has a transition from q1 to q2 with
an amplitude a1, and from q1 to q3 with an amplitude a2, then T being in
a configuration corresponding to q1 can make transitions to configurations cor-
responding to q2 and q3 with amplitudes a1 and a2, respectively. This simulation
is accomplished by T branching into two branches, and in both of them writing
on a special place on the tape d1 or d2, respectively, with an amplitude 1, where
d1 and d2 are the descriptions of the transitions and the amplitudes a1 and a2,
respectively. This is done deterministically with amplitude 1. Next, a subrou-
tine is called that transitions to a marked state qu with an amplitude a1 or a2.
(Because all transitions of A are p-constructible, there exists such a subroutine.)
Subsequently, T changes the work tape so that it corresponds to the respective
transition (again, this is done deterministically with amplitude 1). Because the
only transition that is accomplished with an amplitude other than 1 is the tran-
sition to the state qu, after this procedure T is in a configuration corresponding
to q2 with amplitude a1, and in a configuration q3 with amplitude a2.

4.3 Multi-head Automata

[11] has proven that for finite deterministic and nondeterministic automata, the
language class that can be recognized using k heads is a proper subclass to the
class of languages that can be recognized if k+1 heads are allowed. Using similar
methods, [9] has proven the same for finite probabilistic automata. We prove here
that the same holds for finite ultrametric automata.

Definition 8. By Ĉ, we denote the subset of a language class C containing only
the words in the form 12

n

, n ∈ N, more precisely

Ĉ =
{
L ∈ C|∀x ∈ L ∃n ∈ N : x = 12

n
}

Theorem 2. For every natural number k and prime p:

̂2UpFA(k) � ÛpTM.

Proof. We will construct a special p-ultrametric Turing machine with 2 tapes and
log-space space complexity called T . We will show that its recognized language
cannot be recognized by a p-ultrametric automata with k heads for any k.

Similarly as in the previous section, we will construct T so that it simulates
a 2upfa(k) A given in its input. The input word on which A will be simulated
will be the input of T , i.e. the description of A.

More precisely, T 1st tape contains 1m,m ∈ N, T checks whether the word is
in the form 12

n

, n ∈ N (if not, the word is rejected), and by taking up to O(log(n))
space, writes n’s binary representation on the 2nd tape (we will refer to it as the
work tape ). It then checks whether n’s binary representation is syntactically
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a valid 2upfa(k); if not, the word is rejected. Then, T designates a space on
the work tape to be used for k counters that will be used to represent A’s head
positions. Since the counter values can be in {0, . . . , 2n + 1}, O(k · log(2n)) ∼
O(k · n) space is required. All previous actions are performed deterministically.
Next, T is run on the input string similarly as it is shown in the previous section.
(The head of the first tape is not used anymore; instead, a check is performed
to determine whether or not the counters corresponding to head positions are
inside word boundaries.) Consequently, T is with respective amplitudes in all of
the possible configurations of A after processing the word. Afterwards, T checks
whether the contents of the work tape suggest that A is in an accepting state,
and halts in a rejecting state if A would have accepted the word; T halts in
an accepting state if A would have rejected the word. Therefore, T yields the
opposite result to that of A with the same amplitudes.

Let us consider the language L(T ) recognized by T . We can see that for every
2upfa(k) denoted by J , there exists a word w such that it is either in L(T ) but
not in L(J ), or it is in L(J ) but not in L(T ); namely, J ’s specification. ��

Similarly, as in [9] and [11], in the following proofs we will use the function

fk :
{
12

n |n ∈ N
}
→
{
12

n |n ∈ N
}
, where fk(1

2n) = 12
k·n

.
When fk is applied to a language, we refer to the following function: fk(L) =

{fk(x)|x ∈ L}.

Lemma 1. For every language L ∈ ÛpTM that is recognized by a 2-tape uptm in

logarithmic space, there exists a natural number u such that: fu(L) ∈ ̂2UpFA(3).

Proof. We will show how a uptm denoted by T that recognizes L can be trans-
formed into a uptm called T ′, which can then be replaced by a p-ultrametric 3
register machine. From this, it easily follows that there exists a 2upfa(3) that
recognizes a “stretched” variant of L, where stretching is done by fu.

We will construct T ′ so that it simulates T . T ′ will hold the following infor-
mation on its work tape:

– the binary information of the input word,
– T head position on the 1st tape (we will call it the input tape),
– T 2nd tape contents (we will call it the work tape) (requires O(logn) space),
– T head position on the work tape.

The simulation of T on T ′’s work tape is less complicated than in the case of
ultrametric automata, since T ′ can use the original finite control of T , and the
transitions are not required to be simulated on the tape. To simulate T , T ′ uses
only the work tape.

We can see that given T ′, a corresponding p-ultrametric 3 register machine can
be constructed. If the input is of the form 12

n

, then the register machine starts
with n in the first register and with 0 in the remaining registers. The contents
of the work tape of T ′ can be simulated by manipulating the registers of the
first two stored sub-words, v and hrev, and by using the third as an auxiliary
register. To do this, we use operations “add 1” and “divide by 2”, which can be
carried out by using the auxiliary register.



324 R. Krǐslauks and K. Balodis

Since a position of a multi-head automaton directly corresponds to a number
in a register, and the simulated Turing machine has log-space space complexity,
a 3 register machine can be replaced with a p-ultrametric 3 head automaton.
However, since its heads cannot cross word boundaries and therefore cannot
simulate arbitrarily large numbers, the input words must be sufficiently long.
This is achieved by selecting a large enough u. ��

Lemma 2. For all languages L ∈ ÛpTM and all u, v ≥ 1, u, v ∈ N: fu(L) ∈
̂2UpFA(v) ⇒ L ∈ ̂2UpFA(u · v).

Proof. Let the 2upfa(v) in the premise be A and the 2upfa(u · v) in the
conclusion–A′.

Consider the operation of A on a word fu(l), l = 12
n ∈ L, n ∈ N. The position

of each of v heads of A can be described with an integer hi ∈ [0, 2u·n − 1]. hi can
be written in base 2n with u digits. As the position of each head of A′ can be
described with a digit in base 2n, each head of A can be simulated with u heads
of A′. As each movement of a head of A corresponds to movement of heads of
A′, the respective transitions can be accomplished with equal amplitudes, and
the accepting amplitudes of the words remain the same.

Note that this simulation is performed analogously as for deterministic au-
tomata in [11] and for probabilistic automata in [9]. ��

Lemma 3. For every language L ∈ ÛpTM and every u > v > 1, u, v ∈ N:

fu+1(L) ∈ ̂2UpFA(v) ⇒ fu(L) ∈ ̂2UpFA(v + 1).

Proof. Let the 2upfa(v) in the premise be A and the 2upfa(v + 1) in the
conclusion–A′.

Consider the operation of A on a word fu+1(l), l = 12
n ∈ L, n ∈ N.

The position of each of v heads of A on the input word can be described with
an integer hi ∈

[
0, 2(u+1)·n + 1

]
.

We will simulate the position hi in the automaton A′ with a head gi and an
additional number xi ∈ [0, 2n], so that hi = gi + xi · 2u·n. It is evident that the
values in the necessary interval can be denoted this way:

2u·n + (2n − 1) · 2u·n = 2u·n · (1 + (2n − 1)) = 2u·n+n = 2(u+1)·n.

All v numbers xi are coded with the (v+1)-th head of A′, similarly to [11]. This
can be accomplished if sufficient space exists on the tape of A′, specifically if
(2n)v < 2u·n, which holds as v < u.

Again, as each movement of a head ofA corresponds to the movement of heads
of A′, the respective transitions can be accomplished with equal amplitudes, and
the accepting amplitudes of the words remain the same. ��

The result concerning the superiority of a k + 1 head over k heads follows
from the previous lemmas and Theorem 2.
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Theorem 3. For all k ≥ 2 ∈ N:

̂2UpFA(k) � ̂2UpFA(k + 1).

Proof. We prove from the contrary by showing that if there exists such h ≥ 2

that ̂2UpFA(h) = ̂2UpFA(h+ 1), it implies ̂2UpFA(h · (h+ 1)) = ÛpTM , which
contradicts 2.

Take L ∈ ÛpTM for some prime p. Lemma 1 implies that there exists m ∈ N
such that fm(L) ∈ ̂2UpFA(3). Consequently, fm(L) ∈ ̂2UpFA(h). Lemma 3 im-

plies that if m > h+ 1, then fm−1(L) ∈ ̂2UpFA(h+ 1) = ̂2UpFA(h). Reduce m

by 1 and repeat until we get fm(L) ∈ ̂2UpFA(h) and m = h+ 1. Lemma 2 im-

plies that if fm(L) ∈ ̂2UpFA(h), then L ∈ ̂2UpFA(h ·m) = ̂2UpFA(h · (h+ 1)).
Contradiction with Theorem 2. ��

Corollary 1. Since 2UpFA(k+1) is a superset of 2UpFA(k) and we proved that
there exists a language that can be recognized with k+1 heads and not by k, the
head hierarchy result holds for languages in multi-letter alphabets as well:

2UpFA(k) � 2UpFA(k + 1).
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Abstract. Nash-Williams and Chvátal conditions (1969 and 1972) are
well known and classical sufficient conditions for a graph to contain a
Hamiltonian cycle. In this paper, we add constraints, called conflicts.
A conflict is a pair of edges of the graph that cannot be both in a
same Hamiltonian path or cycle. Given a graph G and a set of conflicts,
we try to determine whether G contains such a Hamiltonian path or cycle
without conflict. We focus in this paper on graphs in which each vertex
is part of at most one conflict, called one-conflict graphs. We propose
Nash-Williams-type and Chvátal-type results in this context.

Keywords: graph, conflict, Hamiltonian, path, cycle.

1 Introduction

These last decades many works have been done to prove sufficient conditions for
a graph to have a Hamiltonian cycle. The most classical ones in a graph with
n vertices are the following: Dirac’s condition [3] (the degree of each vertex is at
least n

2 ), Ore’s condition [10] (for any non adjacent vertices u and v, degree of
u plus degree of v is at least n), Bondy-Chvátal’s condition (based on closure of
graphs), Nash-Williams’ condition (every k-regular graph on 2k+1 vertices has
a Hamiltonian cycle) and Chvátal’s condition (based on the degree sequences).
For more results in this area, see the recent survey [8]. More recently, several
papers were devoted to the introduction of conflicts into graphs. A conflict is
a pair of edges of the graph and, as they are in conflict, they cannot be both
in a structure as a path or a tree. Conflicts are useful to model situations in
which it is forbidden to use two incompatible objects (because of their nature,
functions, etc.) in a same structure. In [11,5] the authors investigate the problem
to find a path without conflict between two vertices in a graph with a given set
of restrictive type of conflicts (the two edges of a conflict share a same vertex).
For these graphs, the problem of finding two-factors1 is considered in [4] and

� B. Momège has a PhD grant from CNRS and région Auvergne.
1 A subgraph such that for any vertex its in-degree and its out-degree is exactly one.
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a dichotomy between tractable and intractable instances is also given. In [6],
the authors study the problem of spanning tree without conflict. All the known
results show that adding conflicts to a graph considerably increase the complexity
of problems.

In a very recent paper [7] we tried to extend the classical Dirac’s, Ore’s and
Bondy-Chvátal’s results to graphs in which each vertex is part of at most one
conflict (called one-conflict graphs). We shown that it is not possible in all cases.
We then proposed sufficient conditions (inspired by Dirac’s and Ore’s ones) for
a one-conflict graph to contain a Hamiltonian path or cycle without conflict and
Bondy-Chvátal-type conditions.

In this paper we try to extend the classical Nash-Williams’ condition and
Chvátal’s condition to one-conflict graphs. We show that it is not possible in all
cases. We then propose sufficient Nash-Williams-type and Chvátal-type condi-
tions for a one-conflict graph to contain a Hamiltonian path or cycle without
conflict.

2 Preliminaries, Notations and Definitions

In this paper, we only consider undirected, unweighted and simple graphs. We
refer to [1] for definitions and undefined notations. The vertex set of a graph
G is denoted by VG and its edge set by EG. If |VG| = n, the graph G is called an
n-vertex graph. An edge between u and v in a graph G is denoted by uv. The two
endpoints of an edge are said to be adjacent to each other. The complete graph
Kn is a graph with n vertices in which every vertex is adjacent to every other.
A path in G consists of a sequence of distinct vertices with each two consecutive
vertices in the sequence adjacent to each other in the graph. A cycle in G consists
of a sequence of distinct vertices (except the starting and ending vertex) starting
and ending at the same vertex, with each two consecutive vertices in the sequence
adjacent to each other in the graph. A path (or a cycle) of G is Hamiltonian if
it contains all the vertices of G. The length of a path or a cycle is the number of
edges it contains. For example, in an n-vertex graph the length of a Hamiltonian
path is n− 1 and the length of a Hamiltonian cycle is n. A matching in a graph
is a set of edges without common vertices. An edge and a vertex on that edge
are called incident. The degree of a vertex v of G is the number of edges incident
to v. It is denoted by degG(v). The minimum degree of G is denoted by δ(G)
(i.e. δ(G) = minv∈VG degG(v)). A graph where each vertex has degree k is called
a k-regular graph. If G is a graph, a conflict in G is a pair {e1, e2} of distinct
edges of G. We denote by (G, Conf) a graph G with a set of conflicts Conf .
A path without conflict P in (G, Conf) is a path P in G such that for any e, e′ of
P , {e, e′} /∈ Conf (similarly for Hamiltonian path without conflict, cycle without
conflict and Hamiltonian cycle without conflict).

In this paper we only consider graph with conflicts such that each vertex is
not involved in more than one conflict. We call such graphs one-conflict graphs.
From now, (G, Conf) is an n-vertex one-conflict graph.
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3 Nash-Williams-type Conditions in One-Conflict Graphs

Let k ≥ 0 be an integer. In 1969, Nash-Williams proves the following result:

Theorem 1 (Nash-Williams). [9] Every k-regular graph on 2k + 1 vertices
has a Hamiltonian cycle.

Remark 2. Let α, β ∈ N. If G is an α-regular graph on 2β + 1 vertices, we
have:

2|EG| =
∑
v∈VG

degG(v) = α(2β + 1)

and therefore α is necessarily divisible by two. Thus, for a k-regular graph on
2k + 1-vertices, k is divisible by two.

Remark 3. Theorem 1 is “tight”, that is to say, it becomes false if we replace
2k + 1 vertices with 2k + 2 vertices or k-regular with (k − 1)-regular (k ≥ 1).

Proof. If we replace 2k + 1 vertices with 2k + 2 vertices. The disjoint union of
two complete graphs on k + 1 vertices is a k-regular graph on 2k + 2 vertices
that is not connected and therefore admits no Hamiltonian cycle.

If we replace k-regular with (k − 1)-regular. Consider the disjoint union of
a complete graph on k + 1 vertices deprived of the edges of a perfect matching
(it exists because k+1 is even by Remark 2) and a complete graph on k vertices.
It is a (k−1)-regular graph on 2k+1 vertices that is not connected and therefore
admits no Hamiltonian cycle. ��

Remark 4. In general, Theorem 1 is false for one-conflits graphs. For example,
if k = 2, the cycle on 5 vertices with a conflict is a k-regular graph on 2k + 1
vertices that contains no Hamiltonian cycle without conflict.

In this section, we show the following result:

Theorem 5. Every k-regular one-conflict graph on 2k+1 vertices has a Hamil-
tonian path without conflict.

If k = 0, 1 or 2 the result is obvious. Indeed, if k = 0, a 0-regular one-conflict
graph on 1 vertices is a single vertex. If k = 1 there is no a 1-regular one-conflict
graph on 3 vertices (as for all k odd) from Remark 2. If k = 2, a 2-regular
one-conflict graph on 5 vertices is a cycle with at most one conflict and simply
remove an edge (of the conflict, if it exists) to obtain a Hamiltonian path. We
now assume that k is greater than or equal to 3.

Lemma 6. Every k-regular one-conflict graph on 2k+1 vertices (G, Conf) has
a path without conflict of length at least k.

Proof. Suppose the length i of a longest path without conflict

P = v0, . . . , vi
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in (G, Conf) is strictly less than k (i.e. i < k). We remove one edge outside
P from each conflict. We denote by G′ the graph obtained. Each vertex of G′ is
of degree greater than or equal to k − 1. A path in G′ is then a path without
conflict in (G, Conf). Therefore, in G′, the vertices v0 and vi cannot be adjacent
to a vertex outside P . As the degrees degG′(v0) and degG′(v1) are greater than
or equal to k − 1 we have v0vi ∈ EG′ . Thus,

C = v0, . . . , vi, v0

is a cycle without conflict of length i+ 1 in (G, Conf).
Now consider any vertex vj of the cycle C. Since degG(vj) = k, the vertex

vj is adjacent to a vertex v outside the cycle in G. If there is no edge of the cycle
C in conflict with vvj then

v, vj , . . . , vi, v0, . . . , vj−1

(only the k+1 first vertex if j = 0) is an path without conflict of length i+1 in
(G, Conf), which contradicts the maximality of i. There is, therefore, an edge ab
of C in conflict with vvj . We then have a �= vj or b �= vj . By symmetry we may
assume that a �= vj . As a cannot be in more than one conflict, we can replace
the vertex vj chosen initially by a to execute the above operation and get an
path without conflict of length i+1 in (G, Conf). In all cases, the maximality of
i is contradicted. So the initial assumption is false and there is a path without
conflict of length at least k. ��
Lemma 7. Let P = v0, . . . , vi be a path without conflict of length i in a k-regular
one-conflict graph on 2k+1 vertices (G, Conf) that cannot be extended by adding
a vertex adjacent to one of its endpoints. If k ≤ i ≤ 2k − 3, (G, Conf) has a
cycle without conflict of length i+ 1.

Proof. We remove one edge outside P from each conflict. We denote by G′ the
graph obtained. Each vertex of G′ is of degree greater than or equal to k − 1.
In G′, the vertices v0 and vi are in no conflict and are of degree greater than or
equal to k− 1. They each are adjacent to k− 1 vertices of P (because otherwise
we could extend P by adding an adjacent vertex of one of its endpoints).

There is 0 ≤ j ≤ i − 1 such that v0 is adjacent to vj+1 and vi is adjacent
to vj . Indeed, if for any vertex vj+1 adjacent to v0, vj is not adjacent to vi,
at least k−1 vertices of P are not adjacent to vi. Thus, vi is adjacent to at most
i− (k − 1) vertices of P and as

i− (k − 1) ≤ 2k − 3− (k − 1) = k − 2 < k − 1,

this is impossible.
Now, if j = 0 or j = i− 1,

v0, . . . , vp, v0

is a cycle without conflict of length i+ 1 in (G, Conf) and if 0 < j < i− 1,

v0, . . . , vj , vi, . . . , vj+1, v0

is a cycle without conflict of length i+ 1 in (G, Conf). ��
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Lemma 8. For k ≤ i ≤ 2k − 3, any cycle without conflict C = v0, . . . , vi, v0 of
length i + 1 in a k-regular one-conflict graph on 2k + 1 vertices (G, Conf) can
give rise to a path without conflict of length i+ 1 in (G, Conf).

Proof. If i = k. As the degree of the vertices of (G, Conf) is equal to k, each of
the k vertices outside of the cycle C is connected to at least one vertex of the
cycle. There are therefore at least k edges between the vertices of the cycle and
the vertices outside. As the cycle has k+1 edges, at most 
k+1

2 � of them may be
involved in conflicts (two adjacent edges of C cannot both being part of the set
of edges involved in distinct conflicts). As k > 
k+1

2 � (k ≥ 3), there is an edge
vjv between a vertex vj of C and a vertex v outside C which is in conflict with
no edge of C. We add vvj to C and remove an edge of C containing vj to obtain
a path without conflict length i+ 1 in (G, Conf).

If i > k. Take a vertex v outside the cycle. As the degree of v is equal to k it
is adjacent to at least two vertices vj and vl of C. Since v is not in more than
one conflict, one of the edges vvj or vvl is not in conflict with the edges of C.
For example if it is vvj , we add vvj to C and remove one edge of C containing
vj to obtain a path without conflict of length i+ 1 in (G, Conf). ��

In a k-regular one-conflict graph on 2k+1 vertices (G, Conf), any path without
conflict of length i with k ≤ i ≤ 2k − 3, can give rise to a path without conflict
of length i+ 1 in the following way:

– If possible add a vertex that is adjacent to one of its endpoints,
– Otherwise construct a cycle without conflict of length i + 1 using the tech-

nique presented in Lemma 7 and then construct a path without conflict of
length i+ 1 from this cycle using the technique presented in Lemma 8.

Lemma 6 shows that there is a path without conflict of length at least k in
(G, Conf) and using iteratively the above operation we get the following result:

Lemma 9. Every k-regular one-conflict graph on 2k+1 vertices (G, Conf) has
a path without conflict of length at least 2k − 2.

We show now that there is a path without conflict of length at least 2k− 1 in
every k-regular one-conflict graph on 2k + 1 vertices (G, Conf).

Lemma 10. Every k-regular one-conflict graph on 2k+1 vertices (G, Conf) has
a path without conflict of length at least 2k − 1.

Proof. Let

P = v0, . . . , v2k−2

be a path without conflict of length 2k − 2 in (G, Conf). Let v and v′ be the
vertices outside P . We remove one edge outside P from each conflict. We denote
by G′ the graph obtained. We will show that there is a Hamiltonian path in
G′ which will be a Hamiltonian path without conflict in (G, Conf). To do this,
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suppose that there is no path of length greater than 2k− 2 in G′. We note that
for each vertex x of G′:

degG′(x) = k − 1 or degG′(x) = k.

If vv′ ∈ EG′ :
In this case v and v′ cannot be adjacent to v0, to v1, to v2k−3, and to v2k−2

in G′. Thus, v and v′ are each adjacent to at least k − 2 vertices of the set

{v2, v3, . . . , v2k−4}

of 2k− 5 vertices. As v (resp. v′) cannot be adjacent to two consecutive vertices
of P in G′, it is adjacent to the subset of vertices of even index

{v2, v4, . . . , v2k−4}

of the previous set. So

v0, v1, v2, v, v
′, v4, . . . , v2k−2

is a path without conflict of length at least 2k − 1 and (G, Conf) which contra-
dicts the assumption that there is no path of length greater than 2k − 2 in G′.

We therefore have vv′ /∈ EG′ . In this case, v cannot be adjacent to v1, to
v2k−2, and to two consecutive vertices of P in G′. So the only possible solution
is degG′(v) = k − 1 and v is adjacent to the vertices with odd index of P in G.
Similarly for v′.

Furthermore, we can replace a vertex x of even index different to 0 and 2k−2
(k − 2 possible vertices) by v to obtain a new path without conflict of length
2k−2 in (G, Conf), a new graph G′ and an edge xv′ /∈ EG′ . For the same reasons
as above we see that x must be adjacent to the vertices of odd index of P in
G. Similarly for all the k − 2 vertices of different even index different to 0 and
2k − 2.

The vertex v2 is then adjacent to v1, v, v
′ and to the k − 2 vertices of even

index different to 0 and 2k−2 in G. So its degree is strictly greater than k which
contradicts the assumption on the degree of the vertices of G.

Finally, assuming that there is no path without conflict of length greater than
2k − 2 in (G, Conf) leads to a contradiction. ��

We show now that there is a Hamiltonian path without conflict in every k-
regular one-conflict graph on 2k + 1 vertices (G, Conf).

Proof (of Theorem 5). Let

P = v0, . . . , v2k−1

be a path without conflict of length 2k − 1 in (G, Conf). Let v be the vertex
outside P . We remove one edge outside P from each conflict. We denote by G′
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the graph obtained. We will show that there is a Hamiltonian path in G′ which
will be a Hamiltonian path without conflict in (G, Conf). To do this, assume the
contrary.

We denote by NG′(x) the set of vertices adjacent to the vertex x of G′ i.e.
NG′(x) := {y ∈ VG′ | xy ∈ EG′}. We note that every vertex x of G′ satisfies:

degG′(x) = |NG′(x)| = k − 1 or degG′(x) = k.

We have v0 /∈ NG′(v) and v2k−1 /∈ NG′(v). If v0v2k−1 ∈ EG′ , then there is
a cycle v0, . . . , v2k−1, v0 of length 2k in G′ with a vertex adjacent to v and so
there is a Hamiltonian path in G′. So v0v2k−1 /∈ EG′ . If |NG′(v)| = k then v is
connected to two vertices adjacent in P and then there is a Hamiltonian path
in G′. Finally, |NG′(v)| = k− 1 and either the differences between the indices of
two consecutive vertices of NG′(v) ordered by increasing index are all 2 i.e.

NG′(v) = {v1, v3, . . . , v2k−3}

or
NG′(v) = {v2, v4, . . . , v2k−2},

either the differences between the indices of two consecutive vertices of NG′(v)
ordered by increasing index are all 2 except one that is 3 i.e.

NG′(v) = {v1, v3, . . . , vi} ∪ {vi+3, vi+5, . . . , v2k−2}.

If the differences between the indices of two consecutive vertices of NG′(v)
ordered by increasing index are all 2. By symmetry we may assume that

NG′(v) = {v1, v3, . . . , v2k−3}.

In this case
NG′(v0) = NG′(v).

Indeed, if v0 is adjacent to vl ∈ {v2, v4, . . . , v2k−2} then

vl, v0, . . . , vl−1, v, vl+1, . . . , v2k−1

is a Hamiltonian path in G′. Now, we want to show that there are two adjacent
vertices in

X := {v2, v4, . . . , v2k−2}.
To do this, assume the contrary. We see that for all x in X we have NG′(x) ⊆
NG′(v)∪{v2k−1}. Let X ′ := X�{v2k−2}. For all vi in X ′ we have viv2k−1 /∈ EG′ .
Indeed, if viv2k−1 ∈ EG′ then

v0, . . . , vi−1, v, vi+1, . . . , v2k−1, vi

is a Hamiltonian path in G′. So there are at least k − 1 edges between each
vertex in X and NG′(v) and therefore |X ′|(k−1) = (k−2)(k−1) edges between
X ′ and NG′(v), k − 2 edges between v2k−2 and NG′(v), |NG′(v)| = k − 1 edges
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between v0 and NG′(v) and |NG′(v)| = k − 1 edges between v and NG′(v) and
as degG′(y) ≤ k for all y ∈ NG′(v) we have:

(k − 1)k ≥
∑

y∈NG′(v)

degG′(y) ≥ (k + 1)(k − 1)− 1 > (k − 1)k.

This is a contradiction, and therefore there are two adjacent vertices vi and vi+j

in X. Then
v0, . . . vi−1, v, vi+j−1, vi, vi+j . . . , v2k−1

is a Hamiltonian path in G′. This contradicts the initial assumption that there
is no Hamiltonian path in G′.

So the differences between the indices of two consecutive vertices of NG′(v)
ordered by increasing index are all 2 except one that is 3 and we have

NG′(v) = {v1, v3, . . . , vi} ∪ {vi+3, vi+5, . . . , v2k−2}.

In this case
NG′(v0) = NG′(v).

Indeed, if v0 is adjacent to vj+1 for vj ∈ NG′(v) (j �= 2k − 2) then

v, vj , . . . , v0, vj+1, . . . , v2k−1

is a Hamiltonian path in G′, and if v0 is adjacent to vi+2, then

vi+1, vi+2, v0, . . . , vi, vi+3, . . . v2k−1

is Hamiltonian path in G′. Similarly, we can show that

NG′(v2k−1) = NG′(v).

Let S be the set of the k−3 vertices of P located between two vertices of NG′(v)
whose indices differ by 2 i.e.

S := {v1, v2, . . . , v2k−2}\({v1, v3, . . . , vi}∪{vi+3, vi+5, . . . , v2k−2}∪{vi+1, vi+2}).

Let x ∈ S. We can easily see that if NG′(x) �= NG′(v) there is a Hamiltonian
path in G′. So we have

NG′(x) = NG′(v) = NG′(v0) = NG′(v2k−1).

The vertex vi is adjacent to v, v0, vi+1, v2k−1 and to the k− 3 vertices of S and
therefore we have degG′(vi) ≥ k+1. This contradicts the initial hypothesis that
G is a k-regular graph.

Thus, assuming that there is no Hamiltonian path in G′ leads to a contra-
diction and therefore there is a Hamiltonian path in G′. Finally, Theorem 5 is
true. ��
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4 Chvátal-type Conditions in One-Conflict Graphs

Definition 1. The degree sequence (d1, . . . , dn) of a graph is the sequence of the
degrees of the vertices, in increasing order, with repetitions as needed:

d1 ≤ · · · ≤ dn.

We recall the result of Chvátal (1972) for “classical” graphs (i.e. without
conflict):

Theorem 11 (Chvátal). [2] Let (G, Conf) be is an n-vertex one-conflict graph
with n ≥ 3. If the degree sequence (d1, . . . , dn) of an n-vertex graph satisfies

∀i < n

2
, di ≤ i ⇒ dn−i ≥ n− i

then it has a Hamiltonian cycle.

This result becomes false when we consider conflicts. Indeed, let G1 be the
graph obtained from the disjoint union of K1 and Kn−1 by adding two edges
between K1 and Kn−1. A Hamiltonian cycle in G1 necessarily contains these two
edges. If Conf contains the conflict composed of these two edges, (G1, Conf) sa-
tisfies the conditions of Theorem 11 but contains no Hamiltonian cycle without
conflict.

A second counterexample for n ≥ 4 is the graph G2 obtained from the disjoint
union of K2 (with VK2 = {x, y}) and Kn−2 (with VKn−2 = {v1, . . . , vn−2}) by
adding the three edges xv1, xv2 and yv2. A Hamiltonian cycle in G2 necessarily
contains xv1 and yv2. If Conf contains the conflict composed of these two edges,
(G2, Conf) satisfies the conditions of Theorem 11 but contains no Hamiltonian
cycle without conflict.

We start with a useful lemma:

Lemma 12. We denote by G′ a graph obtained from an n-vertex one-conflict
graph (G, Conf) by removing in G one edge from each conflict. The degree se-
quence (d′1, . . . , d′n) of G′ satisfies

∀i ∈ {1, . . . , n}, di ≤ d′i + 1.

Proof. By definition we have:

∀i ∈ {1, . . . , n}, ∃vi ∈ VG′ = VG s.t. degG′(vi) = d′i.

As each vertex is not involved in more than one conflict we have:

∀i ∈ {1, . . . , n}, degG(vi) ≤ degG′(vi) + 1 = d′i + 1

and as
d′1 ≤ · · · ≤ d′n
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we have
∀i ∈ {1, . . . , n}, degG(v1), . . . , degG(vi) ≤ d′i + 1.

So for all i ∈ {1, . . . , n}, G contains at least i vertices of degree less than or equal
to d′i + 1. Thus, we have

∀i ∈ {1, . . . , n}, di ≤ d′i + 1.

��

We deduce from Theorem 11 and Lemma 12 the following result:

Theorem 13. Let (G, Conf) be is an n-vertex one-conflict graph. If the degree
sequence (d1, . . . , dn) of G satisfies

∀i < n

2
, di ≤ i+ 1 ⇒ dn−i ≥ n− i+ 1

then (G, Conf) has a Hamiltonian cycle without conflict.

Proof. Suppose G satisfies the conditions. We remove one edge from each con-
flict. We denote by G′ the graph obtained. We will show that there is a Hamilto-
nian cycle in G′ which will be a Hamiltonian cycle without conflict in (G, Conf).
We denote by

d′1 ≤ · · · ≤ d′n
the degree sequence of G′. We will show that G′ satisfies the condition of
Theorem 11 i.e.:

∀i < n

2
, d′i ≤ i ⇒ d′n−i ≥ n− i.

Suppose that there is i < n
2 such that d′i ≤ i. By Lemma 12, this implies

di ≤ i+ 1.

By definition of G this implies

dn−i ≥ n− i+ 1

and we use again Lemma 12 to obtain

d′n−i ≥ n− i

and finally G′ satisfies the condition of Theorem 11. ��

By adding to a graph a universal vertex adjacent to all other vertices and then
applying Theorem 11 to this new graph, Chvátal also proved in [2] the following
result for Hamiltonian paths:

Theorem 14 (Chvátal). [2] If the degree sequence (d1, . . . , dn) of an n-vertex
graph satisfies

∀i ≤ n

2
, di ≤ i− 1 ⇒ dn+1−i ≥ n− i

then it has a Hamiltonian path.
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We deduce from Theorem 14 the following result:

Theorem 15. Let (G, Conf) be is an n-vertex one-conflict graph. If the degree
sequence (d1, . . . , dn) of G satisfies

∀i ≤ n

2
, di ≤ i ⇒ dn+1−i ≥ n+ 1− i

then (G, Conf) has a Hamiltonian path without conflict.

Proof. Suppose G satisfies the conditions. We remove one edge from each con-
flict. We denote by G′ the graph obtained. We will show that there is a Hamilto-
nian path in G′ which will be a Hamiltonian path without conflict in (G, Conf).
We denote by

d′1 ≤ · · · ≤ d′n
the degree sequence of G′. We will show that G′ satisfies the condition of
Theorem 14 i.e.:

∀i ≤ n

2
, d′i ≤ i− 1 ⇒ d′n+1−i ≥ n− i

Suppose that there is i ≤ n
2 such that d′i ≤ i− 1. By Lemma 12, this implies

di ≤ i.

By definition of G this implies

dn+1−i ≥ n+ 1− i

and we use again Lemma 12 to obtain

d′n+1−i ≥ n− i

and finally G′ satisfies the condition of Theorem 14. ��

Remark 16. In our paper [7] we proved that an n-vertex one-conflict graph
(G, Conf) s.t. δ(G) ≥ n

2 contains a Hamiltonian path without conflict. When
n is odd, this result is a simple corollary of Theorem 15. Indeed, if n = 2p+ 1
and δ(G) ≥ n

2 we have δ(G) ≥ p + 1 thus the degree sequence (d1, . . . , dn) of
G satisfies :

∀i ∈ {1, . . . , n}, di ≥ p+ 1

and finally :

∀i ≤ n

2
, di ≥ p+ 1 >

n

2
≥ i.

5 Conclusion and Perspectives

In this paper we give sufficient conditions for a one-conflict graph to contain
a Hamiltonian path or cycle without conflict. As the classical Nash-Williams’
condition and Chvátal’s condition cannot always be generalized, we extended
and proved similar conditions. Our perspectives now are to investigate system
with more conflicts. We already have partial results.
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2. Chvátal, V.: On hamilton’s ideals. J. Combinatorial Theory (B) 12, 163–168 (1972)
3. Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. 2, 69–81

(1952)
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Abstract. Nondeterministic finite automata with don’t care states,
namely states which neither accept nor reject, are considered. A cha-
racterization of deterministic automata compatible with such a device
is obtained. Furthermore, an optimal state bound for the smallest com-
patible deterministic automata is provided. Finally, it is proved that the
problem of minimizing nondeterministic and deterministic don’t care au-
tomata is NP-complete.

1 Introduction

Finite state automata are well-known and widely investigated language accep-
tors. On each input string x, the behavior of a finite automaton is an answer
yes/no to the question of the membership of x to the accepted language. In some
situations, however, we could have some input sequences for which the answer of
the automaton is not interesting, or even situations where the automaton does
not need to consider all possible strings over the input alphabet. For example,
an automaton could receive its input from another machine or program, which
produces only sequences in a special form, thus excluding all the other sequences
which are definable over the input alphabet. We give a couple of trivial but imme-
diate examples over the alphabet {-, 0, 1, . . . , 9}. If the inputs of the automaton
represent numbers in decimal notation produced by a (correct) program, the
automaton cannot expect sequences starting by 0 (with the only exception of
the sequence 0) as 00123, sequences starting by -0, and sequences containing
the symbol - after the leftmost position, as 4-9-2014. On the other hand, if the
inputs would represent calendar dates, the last string will be a valid input, while
a string as -1234 will be invalid (unless a strange and counterintuitive format is
used).

In these cases, we do not need to define the behavior of the automaton, namely
acceptance or rejection, on the strings which are not interesting or will never
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appear as input. This suggests us the idea of studying finite automata with three
kinds of states: accepting states, rejecting states, and don’t care states. We call
these models automata with don’t care states or, shortly, don’t care automata.
A quite natural problem we consider in the paper is the state reduction of these
models. Of course, to perform this reduction, we can arbitrarily accept or reject
strings on the which the behavior of the automaton is not specified.

This idea is not completely new, if fact, in digital systems design, Moore au-
tomata (or equivalently Mealy automata) are used to specify several kinds of
algorithms, protocols and processes which then are used in sequential circuits
synthesis. Usually, the automata are incomplete (laking either outputs or tran-
sitions from some inputs), and the elimination of redundant states reduces the
size of the logic needed to be implemented, tested or verified. However, the stan-
dard algorithm for minimizing deterministic complete automata is not enough
for incomplete ones. The first algorithm for the exact solution was described
by Paull and Unger [11], and Pfleeger [13] proved that the minimization of in-
complete deterministic Moore machines is a NP-complete problem. Since then
many other exact and heuristic algorithms have been proposed, some consider-
ing that the initial machine is nondeterministic [14,8,12,9,3]. The standard Paull
and Unger approach is based on the identification of sets of compatible states
and the obtention of a minimal closed cover. The use of don’t care states has
been also considered for different purposes in the case of automata on infinite
words [4].

In this paper, we mainly investigate nondeterministic automata with don’t
care states (dcNFA). Given a such a device A, we are interested in finding
a smallest deterministic finite automaton (DFA) B which is “compatible” with
it, in the sense that all the strings accepted by A are also accepted by B and all
the strings rejected by A are also rejected by B, while on the remaining strings B
can have an arbitrary behavior. This problem can be reformulated as a separation
problem: given two regular languages L1 and L2, find a language L with minimal
state complexity that separates L1 and L2, i.e. such that L1 ⊆ L ⊆ Lc

2 (where
Lc is the complement of L). In the context of model checking, this version of
the problem was considered by Chen et al. [1], but there the general Paull and
Unger algorithm was used.

Here we obtain a precise characterization of the DFAs which are compatible
with a given dcNFA. This result is useful to obtain an upper bound for the num-
ber of states of the smallest compatible DFAs. We also show that this bound is
tight. We also study computational complexity aspects. To this respect, we show
that the problem of obtaining a smallest DFA compatible with a given dcNFA is
NP-complete, and it remains NP-complete if the given don’t care automaton is
deterministic. The paper concludes with some considerations concerning dcNFAs
over one-letter alphabets.

Due to the lack of space, some of the proofs are omitted from this version of
the paper.
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2 Automata with don’t care States

Given an alphabet Σ, we consider the usual notions of deterministic finite au-
tomata (DFAs) and nondeterministic finite automata (NFAs) (with multiple
initial states). Given an automaton A, we denote the language accepted by it
as L(A). We also assume that the reader is familiar with the notion of minimal
DFA. We now introduce the main notion we are interested in.

Definition 1. A don’t care nondeterministic finite automaton (dcNFA) A is
a tuple 〈Q,Σ, δ, I, F⊕, F�〉, where A⊕ = 〈Q,Σ, δ, I, F⊕〉 and A� = 〈Q,Σ, δ, I,
F�〉 are two NFAs such that L(A⊕)∩L(A�) = ∅. A state q ∈ Q is called an ac-
cepting (rejecting) state if q ∈ F⊕ (q ∈ F�, respectively). If q /∈ F⊕ ∪ F�

then q is called a don’t care state. Associated to A there are the two lan-
guages L⊕(A) = L(A⊕) and L�(A) = L(A�) called the accepted and the rejected
language by A, respectively.

The automaton A is a don’t care deterministic finite automaton (dcDFA) if
the set I consists exactly of one element i and δ is a partial function from Q
to Q, namely, for each q ∈ Q, a ∈ Σ, δ(q, a) contains at most one element.

Notice that given a dcNFA A, its accepted (rejected) language consists of
all words having a computation path from an initial state to an accepting
(a rejecting, resp.) state. Hence, if all the states of A are reachable from the
initial state, then the sets F⊕ and F� must be disjoint. As usual, in the deter-
ministic case we will denote a dcNFA as 〈Q,Σ, δ, i, F⊕, F�〉 and we will write
p = δ(q, a) instead of p ∈ δ(q, a), when δ(q, a) is defined. The function δ can be
made total, in a standard way, by inserting an extra state, called trap or dead
state. However, while in DFAs this state is rejecting, according to our definition
in the case of dcNFAs this state should be a don’t care state. Hence, in a dc-
NFA with a partial transition function, a string x ∈ Σ∗ leading to an undefined
transition is neither accepted nor rejected.

In this paper, given a don’t care automaton A we are interested in finding
automata that agree with A on its accepted and rejected languages. This leads
to the following definition.

Definition 2. Let A be a dcNFA. A language L is said to be compatible with A
whenever L⊕(A) ⊆ L and L�(A) ⊆ Lc. An NFA (or DFA) B is compatible with
A when L(B) is compatible with A.

Since, as already observed, unspecified transitions have different meanings
for DFAs (rejection) and for dcDFAs (don’t care condition), while counting the
number of the states in the case of DFAs we will add the trap state when the
transition function is not total, while in the case of dcDFAs we will never add
any extra state.

Example 3. Consider the dcDFAA represented in Figure 1. We label each accept-
ing state with a ⊕ and each rejecting state with a ,, leaving don’t care states un-
labeled. Hence, F� = {s5} and F⊕ = {s0, s3}. Trivially,L⊕(A) = (a3b3)	(ε+ a3)
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⊕
s0

s1 s2

⊕
s3

s4
	
s5

a
a

a

b
b

b

Fig. 1. The dcDFA A of Example 3

and L�(A) = (a3b3)	(a3b2). The language L = (a3b3)	(ε + a + a2 + a3) is com-
patible withA. Notice thatL is accepted by a DFA with the same transition graph
of A (plus an implicit trap state) and with set of final states {s0, s1, s2, s3}. In the
next sections, we will present several smaller DFAs compatible with A.

LetG = (V,E) be an undirected graph. We recall that each complete subgraph
of G is called a clique. We also say that a subset α ⊆ V forms a clique if the
subgraph of G induced by α, namely the graph (α,E ∩ (α × α)), is a clique.
Furthermore, a clique α ⊆ V is maximal if any other subset of V which properly
contains α does not form a clique. A clique covering of a graph G is a set of
cliques such that every vertex of G belongs at least to one clique.

A self-verifying automaton (SVFA) A is a dcNFA where it is required that for
each input string there exists at least one computation ending in an accepting or
in a rejecting state, i.e., L⊕(A) = (L�(A))c. This implies that the only language
compatible with A is its accepted language L⊕(A). Hence, each SVFA can be
transformed into an equivalent (and unique) minimal DFA. In [7] an optimal
bound for the number of states of the minimal DFA equivalent to any given
SVFA has been obtained. The authors associate with each n-state self-verifying
automaton a graph with n vertices and prove that the state set of the minimum
DFA equivalent to the given SVFA should be isomorphic to the set of the ma-
ximal cliques of such a graph. In the next sections, we use a similar approach
for obtaining minimal DFAs compatible with a given automata with don’t care
states.

3 Conversion into Compatible Deterministic Automata

In this section we study how to convert any given dcNFA A into compatible
DFAs. In particular we are interested in finding a minimal DFA compatible
with A. As we will see, it is possible to have several minimal nonisomorphic
smallest compatible DFAs.

Let us suppose that all the states of A = 〈Q,Σ, δ, I, F⊕, F�〉 are reachable
from the initial state. For each q ∈ Q, we denote by L⊕

q and L�
q , respectively,

the set of strings accepted and the set of strings rejected starting from q, that
is, L⊕

q = {x ∈ Σ∗ | δ(q, x) ∩ F⊕ �= ∅} and L�
q = {x ∈ Σ∗ | δ(q, x) ∩ F� �= ∅}.

Using the fact that q is reachable, it can be immediately verified that those two
languages are disjoint. For the same reason, applying the subset construction
to A, it turns out that L⊕

α ∩ L�
α = ∅ for each subset α ⊆ Q whose states are
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all reachable by a same string, where L×
α =

⋃
q∈α L×

q , for × ∈ {⊕,,}. So, by
suitable marking accepting and rejecting states, from A we can get the subset
dcDFA As (with only reachable states) with L×(As) = L×(A), for × ∈ {⊕,,}.

As in [7], to study the structure of DFAs which are compatible with A, we
introduce a compatibility relation on the state set Q. Intuitively, two states p, q
of A are compatible if and only if two computations starting from p and q cannot
give contradictory answers on the same string. Formally:

Definition 4. Two states p, q of A are compatible if and only if

(L⊕
p ∪ L⊕

q ) ∩ (L�
p ∪ L�

q ) = ∅.

The compatibility graph of A is the undirected graph whose vertex set is Q, and
which contains the edge {p, q} if and only if states p and q are compatible.

It follows from the above discussion that if α is a state of the automaton As,
then all states p, q in the set α must be compatible. Hence, each reachable state
of As is represented by a clique in the compatibility graph.

In the case of SVFAs, it was proved that if for two reachable subsets α, β ⊆ Q
of the subset automaton the set α∪β is a clique of the compatibility graph then
α and β are equivalent [7]. In our case, since the automaton As deriving from the
subset construction could contain don’t care states, we cannot properly define
a similar equivalence over As states. However, we can prove the following result
which will allow us to characterize DFAs that are compatible with A in terms
of functions mapping states into cliques of the compatibility graph.

Theorem 5. A DFA A′ = 〈Q′, Σ, δ′, i′, F ′〉 is compatible with a given dcNFA
A = 〈Q,Σ, δ, I, F⊕, F�〉 if and only if there is a function φ : Q′ → 2Q such that:

1. I ⊆ φ(i′),
2. for q ∈ Q′, a ∈ Σ, δ(φ(q), a) ⊆ φ (δ′(q, a)),
3. for q ∈ Q′, φ(q) ∩F⊕ �= ∅ implies q ∈ F ′ and φ(q) ∩F� �= ∅ implies q /∈ F ′.

Furthermore, if A′ is compatible with A then:

4. for each x ∈ Σ∗, δ(I, x) ⊆ φ(δ′(i′, x)),
5. the set φ(Q′) is a clique covering of the compatibility graph of A.

Proof. First, let us suppose that A′ is compatible with A. For each q ∈ Q′, we
define

φ(q) = {p ∈ Q | ∃x ∈ Σ∗ s.t. q = δ′(i′, x) and p ∈ δ(I, x)}.
By considering the empty string, we observe that I ⊆ φ(i′), proving 1. Now,
given a ∈ Σ, let q′ = δ′(q, a). To prove 2 we show that p′ ∈ δ(φ(q), a) implies p′ ∈
φ(q′). To this aim, let us consider p ∈ φ(q) such that p′ ∈ δ(p, a). By the definition
of φ, there is a string x ∈ Σ∗ such that q = δ′(i′, x) and p ∈ δ(I, x). Hence,
q′ = δ′(q, a) = δ′(i′, xa) and p′ ∈ δ(p, a) ⊆ δ(I, xa). According to the definition
of φ this implies p′ ∈ φ(q′). Finally, the condition 3 follows immediately from
our choice of φ.
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To prove the converse, first of all it is useful to derive 4 from 1 and 2. We
use an induction on the length of the string x. The basis x = ε is trivial. Now,
let us consider a nonempty string x = ya with y ∈ Σ∗ and a ∈ Σ, and suppose
condition 4 true for y. Given p ∈ δ(I, x), there is a state p′ ∈ δ(I, y) such that
p ∈ δ(p′, a). Furthermore, q = δ′(q′, a) where q′ = δ′(i′, y). From the induction
hypothesis we get that p′ ∈ φ(δ′(i′, y)) = φ(q′) and, by condition 2, δ(φ(q′), a) ⊆
φ(δ′(q′, a)) and, by putting all together, we complete the proof of 4:

p ∈ δ(p′, a) ⊆ δ(φ(q′), a) ⊆ φ(δ′(q′, a)) = φ(δ′(i′, x)).

Now, given x ∈ L⊕(A), let p ∈ δ(I, x)∩F⊕. Since p ∈ φ(δ′(I, x)), by condition 3
x should be accepted by A′. In a similar way, if x ∈ L�(A) then x should be
rejected by A′. Hence we conclude that A′ is compatible with A.

Concerning the second part of the theorem, we already proved 4. To prove 5,
first we show that, for each q ∈ Q′, the set φ(q) is a clique of the compatibility
graph of A, namely, each two states p, r ∈ φ(q) are compatible. Let x, u ∈ Σ∗

such that q = δ′(i′, x) = δ′(i′, u), p ∈ δ(I, x), and r ∈ δ(I, u). By contradiction,
suppose p and r not compatible. Then, there is z ∈ Σ∗ such that, without loss of
generality, δ(p, z) ∈ F⊕ and δ(r, z) ∈ F�. It follows that z distinguishes strings
x and u, which contradicts the fact that these strings lead to the same state in
the automaton A′. This allows us to conclude that p, r must be compatible and,
hence, φ(q) is a clique. Furthermore, since all the states of A are reachable, as
a consequence of 4 for each p ∈ Q there is a state q ∈ Q′ such that p ∈ φ(q).
This completes the proof of 5. ��

Using Theorem 5, we now derive a “pseudo-subset construction” which allows
to find some DFAs compatible with A. We remind the reader that we suppose
that all the states of A are reachable from the initial state. Then we define
a DFA A′ = 〈Q′, Σ, δ′, i′, F ′〉 as follows:

– Q′ is the set of all maximal cliques of the compatibility graph of A; in the
following, given a maximal clique α ⊆ Q, we use the same name α to denote
the corresponding state in Q′;

– i′ is a clique that includes the set I of initial states of A;
– for α ∈ Q′, σ ∈ Σ, δ′(α, σ) is a state β ∈ Q′ such that δ(α, σ) ⊆ β;
– the set F ′ of final states is a subset of Q′ that contains those states α s.t.

α ∩ F⊕ �= ∅ and does not contain those states α s.t. α ∩ F� �= ∅, namely,
each state of Q′ that contains a state from F⊕ is marked as final, each state
that contains a state from F� is marked as nonfinal, while each one of the
remaining states can be freely marked either as final or as nonfinal.

The above definition leaves some degrees of freedom, which allow to obtain
different DFAs. For any possible choice, it can be immediately verified that the
function φ : Q′ → 2Q defined as φ(α) = α satisfies the conditions of Theorem 5.
Hence, it turns out that each DFA A′, defined as above, is compatible with A.

Example 6. Let us consider the dcDFA A of Example 3 (Figure 1). Its compa-
tibility graph is depicted in Figure 2 (left). Applying the above construction we
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obtain 4 different DFAs, which are summarized in the Figure 2 (right). We have
two choices for the initial state and two choices for the transition from state
{s1, s2, s5} on b. These choices are represented by dotted arrows.

s0

s5

s4

s3

s2

s1

⊕
s0s1
s2s3

⊕
s0s1
s2s4

	
s1s2
s5

a

b

a

b

a

b

b

Fig. 2. The compatibility graph of the dcDFA A in Fig. 1 and four compatible DFAs

In the previous construction, we used the covering of the compatibility graph
defined by maximal cliques. In general, we could also use a different covering,
provided that the trivial function φ mapping each clique of the considered cover
in itself satisfies the conditions 1, 2, and 3 of Theorem 5. For instance, further
DFAs, compatible with the dcDFA A of Example 6, are depicted in Figure 3. We

	
s5

⊕
s0s2
s4

⊕
s1s3

b

a

a

a

b

a

a, b

Fig. 3. More DFAs compatible with the dcDFA A in Figure 2

can observe that in this example the compatibility graph of A cannot be covered
using less than 3 cliques. Hence, there are no DFAs compatible with A with
less than 3 states, the number of maximal cliques in the compatibility graph.
However, in general the situation can be different, as illustrated in the next
example.

Example 7. Let us consider the dcDFA A depicted in the upper part of Figure 4
with its compatibility graph, which contains 4 maximal cliques. This graph has
the following two coverings consisting each one of two cliques: {{s0, s1}, {s2, s3}}
and {{s0, s3}, {s1, s2}}. For these coverings we obtain two DFAs which are com-
patible with A (see also Figure 4). Since these DFAs have only two states and
each DFA consisting only of one state cannot be compatible with A, it turns
out that they are the smallest DFAs which are compatible with A. In Figure 5
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⊕
s0

s1

	
s2

s3

a

b
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s2,s3

b

a
b

a
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s1,s2
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b

a
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Fig. 4. The dcDFA A of Example 7 with its compatibility graph, and two compatible
DFAs

⊕
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s3
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b
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s1,s2

	
s2,s3
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b

c
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b
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c

a

b
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s0,s1

⊕
s0,s3

	
s1,s2

	
s2,s3a, c

b

a

c

b

c

a

b

b

a, c

Fig. 5. The dcNFA Â of Example 7 (top left), with two compatible DFAs (top right
and bottom)

it is depicted a dcNFA Â having the same compatibility graph as A, with two
compatible DFAs whose states correspond to all maximal cliques of that graph.

We observe that in the automaton Â the strings a, b, bca, and bcb lead to
the set of states {s0, s1}, {s0, s3}, {s2, s3}, and {s1, s2}, respectively. Hence,
observing the compatibility graph and using condition 4 of Theorem 5 we can
conclude that in this example all maximal cliques of the compatibility graph are
necessary. Hence, each DFA compatible with Â should have at least 4 states.

Example 7 shows that we can have different dcNFAs A and Â with the
same compatibility graph but with smallest compatible DFAs of different sizes.
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The following theorem summarizes the situation, providing bounds for such a
size in terms of cliques of the compatibility graph:

Theorem 8. For each dcNFA A, there exists a compatible DFA whose number
of states is bounded by the number of maximal cliques in the compatibility graph
of A. Furthermore, each DFA compatible with A should have at least as many
states as the smallest number of cliques covering the compatibility graph of A.

4 State Complexity

In this section, we study descriptional complexity aspects. First we state an
upper bound for the number of states of smallest DFAs compatible with a given
dcNFA, showing that it can be effectively reached, i.e. it is tight. The arguments
are adapted from those used for SVFAs [7].

Theorem 9. For each integer n ≥ 2 and each n-state dcNFA there exists
a compatible DFA with at most f(n) states, where

f(n) =

⎧⎨⎩
3�n/3�, if n ≡ 0 (mod 3),

4 · 3�n/3�−1, if n ≡ 1 (mod 3),
2 · 3�n/3�, if n ≡ 2 (mod 3).

Furthermore this bound can be effectively reached.

Proof. The upper bound immediately derives from Theorem 8 and from a result
by Moon and Moser [10] stating that the maximum number of maximal cliques
in a graph with n vertices is given by the function f(n). The lower bound is
a consequence of Theorem 10 in [7], where for each integer n an n-state SVFA An

with multiple initial states such that the smallest equivalent DFA requires f(n)
states was provided. (See Figure 6 for the case of n multiple of 3.) Since SVFAs
with multiple initial states are a special case of dcNFAs, the claimed result
follows. ��

The optimality proof in Theorem 9 is a consequence of the optimality of the
same bound for SVFAs with multiple initial states. Since the optimal bound in
the case of SVFAs with a single initial state is slightly different (1+f(n−1)), one
could ask what happens in the case of dcNFAs with a single initial state. We are
going to prove that in this case the optimal bound remains that of Theorem 9.

To this aim, for each n we consider an automaton A′
n, obtained by modifying

the automaton An used to give the optimality in Theorem 9, as follows. We
start from the same set of states of An and from the same transition graph.
One of the initial states of An is chosen as the initial state of A′

n. Furthermore,
we add a transition on a new input symbol c from a selected state of An to all
the states that in An are initial. In this way each time the automaton A′

n makes
a transition on the letter c, it is able to simulate a computation of An on a factor
w ∈ {a, b}∗. We show that each DFA compatible with A′

n requires f(n) states,
where f is the function given in Theorem 9, by considering the following general
lemma:
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(0,1) (0,2) · · · (0,m−1)
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(0,m)

(1,1) (1,2) · · · (1,m−1)
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b b

a
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Fig. 6. Automaton An of Theorem 9 in the case of n multiple of 3

Lemma 10. Let Σ be an alphabet and c /∈ Σ be an extra symbol. Given
a dcNFA A over Σ, a nonempty set K ⊆ (Σ∪{c})∗, two languages J ′, J ′′ ⊆ Σ∗,
consider the languages L′ = KcL⊕(A)∪J ′ and L′′ = KcL�(A)∪J ′′. If L′∩L′′ = ∅
then each DFA accepting a language L, with L′ ⊆ L ⊆ L′′c should have at least
as many states as a smallest DFA compatible with A.

Theorem 11. For each integer n there is an n-state dcNFA with a unique initial
state such that the smallest compatible DFA requires f(n) states, where f(n) is
the function given in Theorem 9.

After considering the restriction to dcNFAs having only one initial state, we
further restrict to the case of deterministic transitions where, clearly, the bound
of Theorem 9 can be reduced. In fact, given an n-state dcDFA A we can just
arbitrarily mark each don’t care state as accepting or rejecting in order to obtain
a compatible DFA with the same number of states. Furthermore, if the set of
don’t care states of A is empty and A is minimal then we clearly cannot obtain
a smaller compatible DFA. Hence, in the deterministic case n is a tight bound.

We can also observe that if A contains a don’t care trap state then a compa-
tible DFA can be always obtained by moving each transition leading to the trap
state to an arbitrarily chosen state and by arbitrarily choosing final states among
the remaining don’t care states. Hence, the resulting DFA contains n− 1 states.
For each n this bound cannot be further reduced. Consider in fact the n-state
automaton consisting of a loop of n− 1 states accepting the language (abn−2)∗

and rejecting all the strings in (abn−2)∗abk with 0 ≤ k < n − 2, plus a don’t
care trap state. Clearly, each two states on the loop are incompatible. Hence,
they belong to different cliques of the compatibility graph. By Theorem 8, we
conclude that each compatible DFA should have at least n− 1 states.
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5 Time Complexity

In this section we shortly study time complexity of the reductions of dcDFAs and
dcNFAs to minimal compatible DFAs. In both cases we prove
NP-completeness. Our starting point is the following problem, which has been
proved to be NP-complete by Pfleeger [13]:

Given an “incomplete” DFA A and k > 0, is there a way to assign a state
to each unspecified transition so that the resulting complete automaton
has a minimal equivalent DFA with at most k states?

A clarification is necessary to explain the meaning of “incomplete” in this con-
text. As already mentioned in the Section 2, reaching an undefined transition
in a DFA is conventionally interpreted as the definitive rejection of the input
and, hence, undefined transitions can be made defined by introducing a trap
state, which is not final and, so, rejecting. In the above mentioned problem, an
undefined transition will never be reached (e.g., because some restrictions on the
form of possible input words) and, hence, it represents a don’t care condition.
Hence, an “incomplete” DFA A = 〈Q,Σ, δ, i, F 〉 in the previous problem, can be
transformed in a complete dcDFA by adding a trap state qt which is the only
don’t care state, and by choosing F as the set of accepting states and Q − F
as the set of rejecting states. From this discussion we immediately obtain the
following result.

Theorem 12. The problem of deciding if, given a dcDFA A and an integer
k > 0, there exists a compatible DFA with at most k states is NP-hard.

We note that the same result could also be deduced using NP-completeness of
the inference of a DFA from a finite set of words [6]. We can also easily prove
that the problem belongs to NP. However, we can do better, by proving that
the problem is in NP even if A is nondeterministic. This allows us to obtain the
main result of this section:

Theorem 13. The problem of deciding if, given a dcNFA A and an integer
k > 0, there exists a compatible DFA with at most k states is NP-complete.

Proof. To show that the problem belongs to NP, we observe that in polyno-
mial time it is possible to nondeterministically generate a DFA B with at most
k states and verify if it is compatible with A. More into details, compatibility is
verified by checking if L⊕(A) ⊆ L(B) and L�(A) ⊆ (L(B))c. To do that, from
A and B we build a product (nondeterministic) automaton and verify that for
each reachable state (p, q), when the component p is an accepting state of A then
the component q is a final state of B and when the component p is a rejecting
state of A then the component q is a nonfinal state of B.

NP-hardness follows from Theorem 12. ��
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6 The Unary Case

As well-known, in the unary case (namely the case of languages and automata
defined over a one letter alphabet, which in the following we assume to be Σ =
{a}) many state bounds are lower than in the general case. In this section we
shortly present some considerations in this respect for dcNFAs. First of all, using
standard results on diophantine equations, we can prove the following lemma:

Lemma 14. A unary dcNFA cannot accept a string am
′
along a path contain-

ing a state belonging to a loop of length �′ and reject another string am
′′
along

a path containing a state belonging to a loop of length �′′, if �′ and �′′ are relatively
prime.

The maximal state gap between n-state unary NFAs and equivalent DFAs

is eΘ(
√
n lnn) [2]. Using Lemma 14, it is possible to show that the same gap

cannot be reached starting from unary dcNFAs and compatible DFAs. This
happens even in the case of SVFAs. However, it has been shown that the state

gap between unary n-state SVFAs and DFAs grows at least as eΩ(
3√
n ln2 n) [5].

Hence, there is at least the same gap from dcNFAs to DFAs.

Theorem 15. For each sufficiently large integer n there is a dcNFA with at

most n states such that each compatible DFA requires at least eΩ(
3√
n ln2 n).
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Abstract. Several kinds of quantum pushdown automaton models have
been proposed, and their computational power is investigated inten-
sively. However, for some quantum pushdown automaton models, it is
not known whether quantum models are at least as powerful as classical
counterparts or not. This is due to the reversibility restriction. In this pa-
per, we introduce a new quantum pushdown automaton model that has
a garbage tape. This model can overcome the reversibility restriction by
exploiting the garbage tape to store popped symbols. We show that the
proposed model can simulate any quantum pushdown automaton with a
classical stack as well as any probabilistic pushdown automaton. We also
show that our model can solve a certain promise problem exactly while
deterministic pushdown automata cannot. These results imply that our
model is strictly more powerful than classical counterparts in the setting
of exact, one-sided error and non-deterministic computation.

Keywords: quantum pushdown automata, deterministic pushdown au-
tomata, quantum computation models.

1 Introduction

One important question in quantum computing is whether a computational gap
exists between models that are allowed to use quantum effects and models that
are not. Several types of quantum computation models have been proposed,
including quantum finite automata, quantum counter automata, and quantum
pushdown automata. Quantum finite automata are the simplest model of quan-
tum computation, and have been investigated intensively[3–5, 7, 8, 13–15, 17, 22–
24, 26–28]. Several quantum automata augmented with additional computational
resources have also been proposed, including quantum counter automata and
quantum pushdown automata [6, 12, 16–18, 20, 23, 29, 30].

It might be a surprising result that some of simple quantum computation
models can be less powerful than classical counterparts[15, 29, 30] due to the
reversibility restriction. Thus, it is a natural question what kinds of restric-
tions make quantum models less powerful than classical counterparts, and what
kinds of computational resources make quantum models more powerful. Moti-
vated by those questions, quantum pushdown automata have been investigated.
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Quantum pushdown automata were first proposed in [17], but their model is
the generalized quantum pushdown automata whose evolution does not have to
be unitary. Then Golovkins proposed quantum pushdown automata including
unitarity criteria[12], and he showed that quantum pushdown automata can rec-
ognize every regular language and some non-context-free languages. However,
it is still open whether Golovkins’s model of quantum pushdown automata are
more powerful than probabilistic pushdown automata or not. In [18], it is shown
that a certain promise problem can be solved exactly by Golovkins’s model of
quantum pushdown automata while it cannot be solved by deterministic push-
down automata. However, it is not known whether Golovkins’s model can sim-
ulate any deterministic pushdown automaton or not. This is because quantum
computation models must be reversible while pop operation deletes the stack-
top symbol, which is not a reversible operation. In [20], a quantum pushdown
automaton model that has a classical stack is proposed, and it is shown that
the model is strictly more powerful than classical counterparts in the setting of
one-sided error as well as non-deterministic computation.

The above mentioned results are for the models whose state transitions are
described by unitary operators. It is known that by allowing more general op-
erators such as trace preserving completely positive (TPCP) maps, quantum
finite automata can simulate classical counterparts as well as several quantum
finite automata mentioned above[13, 14]. These results were generalized and it
was shown how to define general quantum operators for other models in [28].
For counter automata and pushdown automata, it is also known that general-
ized quantum models (i.e., the models that can use TPCP maps) can simulate
classical counterparts[23, 24].

In this paper, we focus on the restricted quantum computation models (i.e.,
the models whose state transitions are described by unitary operators) rather
than the general models (i.e., the models whose state transitions are described
by TPCP maps). As mentioned above, it is known that the generalized quan-
tum computation models can simulate classical counterparts and sometimes can
be strictly more powerful than classical counterparts. Nevertheless, studying re-
stricted models is important. That is, our goal is to investigate what kinds of
restriction makes quantum models less powerful and under what kinds of restric-
tions quantum models are still more powerful than classical counterparts. This
could lead to understand the source of the power of quantum computation in
architecturally restricted models such as quantum automata.

Motivated by these discussions, we introduce a new model of quantum push-
down automata, called quantum pushdown automata with a garbage tape. This
model has a garbage tape on which popped symbols are stored, and thus, we
can pop the stack-top symbol preserving reversibility. The garbage tape is a
write-only memory, and thus, classical pushdown automata cannot exploit it.
A quantum computation model that has a write-only memory was proposed in
[25]. The model uses a write-only memory in order to control interference be-
tween distinct computation paths. In our model, the write-only garbage tape
is restricted to store popped symbols. Also the similar notion of garbage tapes
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were proposed in [8, 22]. In those models, a garbage tape is used to make tran-
sitions reversible. Our model is constructed so as to take advantages of both of
a write-only tape and a garbage tape.

Another motivation is that it is expected that investigating quantum push-
down automata reveals how last-in first-out manner of memory access affects (or
limits) quantum computation. However, for this purpose, Golovkins’s model[12]
is too restrictive on pop operation, i.e., we can pop a stack-top symbol only if
we can delete stack-top symbol preserving reversibility. Thus, we cannot identify
from which the impossibilities come from, reversibility or last-in first-out man-
ner of memory access. In contrast, our model is useful for this purpose since pop
operations can always be executed preserving reversibility.

In this paper, we show that the proposed model can simulate any quantum
pushdown automaton with a classical stack, which is proposed in [20], as well
as any classical pushdown automaton. It is known that quantum pushdown au-
tomata with a classical stack are strictly more powerful than classical counter-
parts in the setting of one-sided error and non-deterministic computation[20].
Thus, so is our model. We also show that our model can solve a certain promise
problem exactly while deterministic pushdown automata cannot. This implies
that our model is strictly more powerful than classical counterparts also in the
setting of exact computation. It is a common technique to apply the pumping
lemma (or Ogden’s lemma[21], which is a generalization of the pumping lemma)
in order to show that a language is not context-free, i.e., pushdown automata
cannot recognize the language. However, our problem is a promise problem.
Thus, we cannot apply the pumping lemma to our case.1 In [2], the pumping
lemma is proved through the analysis of pushdown automata. We modify their
notion of full state, and use it to show the impossibility by directly analyzing
time evolution of pushdown automata. This is a new technique to prove that a
certain promise problem cannot be computed by pushdown automata.

2 Preliminaries

A quantum pushdown automaton with a garbage tape (QPAG) has an input
tape, a stack and a garbage tape. A QPAG also has a finite state control. The
input tape contains a classical input string, and its tape head is implemented by
qubits that represent the position of the tape head. The stack and the garbage
tape are implemented by qubits that represent contents of the stack and the
garbage tape, respectively. The finite state control is also implemented by qubits
that represents the current state. A QPAG reads the stack top symbol and the
input symbol pointed by the input tape-head, and then evolves as follows: The
tape head can move to the right or stay at the same position, the finite state
control moves to the next state, and a stack symbol is pushed to the stack or

1 As far as the author knows, [18] is the only exception in which the pumping lemma is
used for a promise problem. The technique in [18] can be applied only to the limited
cases. For OBDD models, an impossibility proof for a partial function, which is a
function counterpart of promise problems, was shown recently in [1].
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popped from the stack. When we pop a symbol from the stack, the popped
symbol is written on the garbage tape, moving the garbage tape head to the
right. This allows a QPAG to pop the stack top symbol preserving reversibility.
We define QPAGs formally as follows.

Definition 1. A quantum pushdown automaton with a garbage tape (QPAG) is
defined as the following 7-tuple: M = (Q,Σ, Γ, δ, q0, Qacc, Qrej), where Q is a set
of states, Σ is a set of input symbols including the left and the right endmarkers
{|c, $}, respectively, Γ is a set of stack symbols including the bottom symbol Z, δ is
a quantum state transition function (δ : (Q×Σ×Γ×Q×G∪{ε, pop}×{0, 1}})−→
C), where G(⊆ (Γ \{Z})+) is a finite set and (Γ \{Z})+ is the set of all nonempty
strings of finite length from alphabet Γ \ {Z}, q0 is the initial state, Qacc (⊆ Q)
is the set of accepting states, and Qrej (⊆ Q) is the set of rejecting states, where
Qacc ∩Qrej = ∅. ��

δ(q, a, b, q′, b′, D) = α means that the amplitude of the transition from q to q′

updating the input tape head to D (D = 1 means ‘right’ and D = 0 means ‘stay’)
and pushing b′ to the stack (or popping the stack-top symbol if b′ = pop) is α
when reading input symbol a and stack symbol b. A configuration of a QPAG
is (q, k, ws, wg), where q ∈ Q is the current state of the finite state control, k
is the position of the input tape head, and ws and wg are the strings on the
stack and the garbage tape, respectively. We store a configuration of a QPAG in
a quantum register, where a basis state is described as |q, k, ws, wg〉. For input
string x, we define the time evolution operator Ux as follows:

Ux(|q, k, wsb, wg〉)
=

∑
q′∈Q,b′∈G∪{ε,pop},D∈{0,1}

δ(q, x(k), b, q′, b′, D)
∣∣q′, k +D,w′

s, w
′
g

〉
,

where x(k) is the k-th input symbol of input x,

w′
s =

{
wsbb

′ if b′ �= pop
ws if b′ = pop

and w′
g =

{
wg if b′ �= pop
wgb if b′ = pop (b is the popped stack-top symbol).

If Ux is unitary (for any input string x), then the corresponding QPAG is called
well-formed. A well-formed QPAG is considered valid in terms of the quantum
theory. We consider only well-formed QPAGs. For so-called well-formedness con-
ditions, readers may refer to [19]. Let the initial quantum state and the initial
position of the input tape head be q0 and ‘0’, respectively. We define |ψ0〉 as
|ψ0〉 = |q0, 0, Z, ε〉. We also define Enon, Eacc and Erej as follows:

Enon = span{|q, k, ws, wg〉 |q �∈ Qacc and q �∈ Qrej},
Eacc = span{|q, k, ws, wg〉 |q ∈ Qacc}, Erej = span{|q, k, ws, wg〉 |q ∈ Qrej}.

We define observable O as O = Enon ⊕ Eacc ⊕ Erej . For notational simplicity,
we define the outcome of a measurement corresponding to Ej as j for j ∈
{non, acc, rej}. A QPAG computation proceeds as follows:
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(a) Ux is applied to |ψi〉, and we obtain |ψi+1〉 = Ux |ψi〉.
(b) |ψi+1〉 is measured with respect to O. Let |φj〉 be the projection of |ψi+1〉 to

Ej . Then each outcome j is obtained with probability | |φj〉 |2. Note that this
measurement causes |ψi+1〉 to collapse to 1

||φj〉| |φj〉, where j is the obtained
outcome.

(c) If the outcome of the measurement is acc or rej, the automaton outputs the
measurement result and halts. Otherwise, go to (a).

3 Simulation of QCPDAs

In this section, we show that a QPAG can simulate a quantum pushdown
automaton with a classical stack (QCPDA). Since QCPDAs can simulate any
probabilistic pushdown automata[20], QPAGs can simulate any probabilistic
pushdown automata as well. For the definition of QCPDAs, readers may re-
fer to [19], which is the technical report version of this paper, or may refer to
[20]. A quantum pushdown automaton with a classical stack(QCPDA) is a quan-
tum pushdown automaton whose classical stack operations are determined by
measurement results. We can use the garbage tape so that if we measure the
garbage tape, the stack contents will be identical among all the basis states con-
tained in the resulting superposition. Therefore, we can simulate a QCPDA by
a QPAG.

Theorem 1. Let Mqc = (Q,Σ, Γ, δ, q0, σ,Qacc, Qrej) be a QCPDA. Then, there
exists a QPAG Mq such that for any input, the acceptance probability of Mq is
the same as that of Mqc.

Proof. For a transition of Mqc from state q to q′ moving the input tape head
to D, we construct the corresponding transitions of Mq, which consist of three
successive transitions, as follows: Note that the stack operation of Mqc is deter-
mined solely by the state q′ to which it transits, denoted by σ(q′). We add two
new states qa and qb to Q and also add σ(q′) to Γ . Then, we replace the original
transition with the transition from q to qa such that the stack operation is the
same as the original transition (σ(q′)), the direction of the tape head is D and
the transition probability is also the same. We define the transition from qa to
qb, whose probability is one, as a transition pushing the label σ(q′) to the stack,
the input tape head staying at the same position. We also define the transition
from qb to q′, whose probability is one, as a transition popping σ(q′) from the
stack and moving it to the garbage tape, the input tape head staying at the
same position. This records the history of stack operations in the garbage tape.
Thus, if the history of stack operations are different between two computation
paths, they do not interfere with each other since the contents of the garbage
tape are different. This means that if we measure the garbage tape, the contents
of the stack are identical between any basis states contained in the resulting
superposition at any moment of computation. In other words, if we trace out
the garbage tape, then, the stack configuration is not in a superposition but in
a classical mixture of basis states. Thus, it can be regarded as a classical stack,
and the resulting QPAG Mq simulates the original QCPDA Mqc. ��
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It is known that QCPDAs can recognize a certain non-context-free language
with one-sided error[20]. This means that QPAGs are strictly more powerful
than classical pushdown automata in the setting of one-sided error as well as
non-deterministic computation.

Corollary 1. The class of languages recognized by one-sided error QPAGs prop-
erly includes the class of languages recognized by one-sided error probabilistic
pushdown automaton as well as by non-deterministic pushdown automaton. ��

4 Possibility and Impossibility of Solving a Certain
Promise Problem

We say that two strings, u and v, have even (resp. odd) distinctions, denoted by

u
e∼ v (resp. u

o∼ v), if |u| = |v| and u and v are different at even (resp. odd)

number of positions. For example, 1100
e∼ 1111 since the third and the fourth

bits are different between the two strings, and 1000
o∼ 1111 since the second,

the third and the fourth bits are different between the two strings. We define a
promise problem, Problem I, as follows:

Problem I

– An input is of the form w1#w2#w3, where w1, w2 ∈ {a, b, c}n and w3 ∈
{a, b, c, d}n.

– Problem: Compute w1
e∼ wR

2 xor w1
e∼ wR

3 . ��

We show that QPAGs can solve Problem I exactly while deterministic push-
down automata cannot solve it. This result combined with Theorem 1 implies
that QPAGs are strictly more powerful than classical pushdown automata in the
setting of exact computation.

Theorem 2. There exists a QPAG that solves Problem I exactly.

Proof. We use the same technique as in Theorem 3.1 of [18]. We construct a
QPAG, M , that solves Problem I as follows: We consider two sub-automata, M1

and M2, such that M1 (resp. M2) computes whether w1
e∼ wR

2 (resp. w1
e∼ wR

3 ),
and run them in a superposition. It is straightforward to see that M1 and M2 can
be implemented by reversible deterministic pushdown automata with a garbage
tape, which is a special case of QPAGs, and we can construct M1 and M2 so that
the contents of the garbage tape at the moment of reading the right-endmarker
can be the same between the two sub-automata. Then, we utilize the algorithm
in [9] (the improved Deutsch-Jozsa algorithm[11]) to compute the exclusive-or
exactly using the two sub-automata as the oracle for Deutsch’s problem[10]. ��

In the following, we show that no deterministic pushdown automata can solve
Problem I.

Theorem 3. No deterministic pushdown automata can solve Problem I. ��
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We introduce several lemmas in order to prove Theorem 3. We divide w1 into
two segments w1 = w1Lw1R. Similarly, we divide w2 and w3 as w2 = w2Lw2R and
w3 = w3Lw3R, respectively. In the following discussion, we assume that there
exists a deterministic pushdown automaton that solves Problem I. Let hmax(k)
be the maximum height of the stack over all w1’s at the moment of reading
the k-th symbol of w1. Note that stack height can increase at most O(1) when
reading each symbol2. Then, it is obvious that there is a constant, c, for which
the following holds:

hmax(
n

c
) < log|Γ |

(
3

c−1
c n/(#states · n(n+ 1))

)
,

where #states denotes the number of states of the finite state control, and
n = |w1|. We fix such a constant c, and also fix the length of w1L to be n/c.

We say that pushdown automatonM is in a state-configuration of (q, a) if M is
in the state q and the stack-top symbol is a. In other words, a state-configuration
is a configuration of a pushdown automaton ignoring the position of the tape
head and the stack contents except for the stack-top. The notion of a state-
configuration is a modification of the notion of full state in [2]. Note that the tape
head can be stationary at a transition. Thus, the stack height can increase (or
decrease) multiple times with multiple transitions during reading one symbol. Let
hb(i) and cb(i) denote the stack height and the state-configuration, respectively,
immediately before reading the i-th symbol of the input. Also let ha(i) denote the
set of stack heights that consists of the stack height after reading the i-th symbol
and the stack heights during reading the (i + 1)-th symbol with the tape head
being stationary on the (i+ 1)-th symbol. For each h ∈ ha(i), let ca(i, h) be the
corresponding state-configuration. We define the notations “hb(i) > ha(j)” and
“hb(i)−ha(j)” as follows: hb(i) > ha(j) iff hb(i) > minh′∈ha(j)h

′. hb(i)−ha(j) =
hb(i)−minh′∈ha(j)h

′. A zero-stack pair is a pair (l, r) (1 ≤ l < r ≤ n) such that
hb(l) ∈ ha(r) and hb(l) �> ha(t) for any t (l < t < r). Then, we have the following
lemma.

Lemma 1. We fix w1 arbitrarily. Let (i, j) be a zero-stack pair such that the
maximum of hb(k) − ha(l) for i < k < l < j is ω(1). Then, for any zero-stack
pair (i′, j′) (1 ≤ i′ < j′ < i or j < i′ < j′ ≤ n), the maximum of hb(k) − ha(l)
for i′ < k < l < j′ is O(1).

Proof. We consider a zero-stack pair (i, j) (1 ≤ i < j ≤ n) such that the
maximum of hb(k) − ha(l) for i < k < l < j is ω(1). Let the maximum
(resp. minimum) height of the stack during processing from the i-th symbol
to the j-th symbol be hmax (resp. hmin). Note that hmax − hmin > ω(1). For
each h ∈ {hmin, . . . , hmax}, let ZSh be the set of zero-stack pairs such that
ZSh = {(l, r)|hb(l) = h, i ≤ l < r ≤ j}. Note that for at least a constant
fraction of {hmin, . . . , hmax}, ZSh is nonempty. For each h ∈ {hmin, . . . , hmax},
we choose at most one (lh, rh) ∈ ZSh such that lh < lh+1 and rh+1 ≤ rh. It

2 Note that, on the other hand, stack height may decrease more than ω(1) when
reading each input symbol.
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is obvious that we can have such (lh, rh)’s for at least a constant fraction of
{hmin, . . . , hmax}. Let (ca(k, h), t) be a pair of a state-configuration and an in-
put symbol where t ∈ Σ is the input symbol pointed by the tape head at the
moment when the automaton is in the state-configuration ca(k, h) with the k
and h. Then, there exists two distinct zero-stack pairs (lh1 , rh1) and (lh2 , rh2)
(h1 < h2) such that cb(lh1) = cb(lh2) and (ca(rh1 , h1), t) = (ca(rh2 , h2), t) for
some t since |Σ| and the number of possible state-configurations are both O(1)
while we have ω(1) pairs of (lh, rh)’s. We divide w1 as w1 = uvxyz where
u = w1(1) · · ·w1(lh1 − 1), v = w1(lh1) · · ·w1(lh2 − 1), x = w1(lh2) · · ·w1(rh2),
y = w1(rh2 + 1) · · ·w1(rh1), and z = w1(rh1 + 1) · · ·w1(n), where w1(i) denotes
the i-th symbol of w1. Then, for any i ≥ 0, the configuration after reading
uvixyiz and the configuration after reading uvxyz are the same, including the
contents of the stack.

We assume that there exists two zero-stack pairs (i1, j1) and (i2, j2) (1 ≤ i1 <
j1 < i2 < j2 ≤ n) such that the maximum of hb(k) − ha(l) for i1 < k < l < j1
and the maximum for i2 < k < l < j2 are both ω(1). Then, we can divide w1

in two ways: w1 = ukvkxkykzk with (ik, jk) (k ∈ {1, 2}). It is obvious that there
exist p and q such that |u1v

p
1x1y

p
1z1| = |u2v

q
2x2y

q
2z2|. Thus, there exist two inputs

u1v
p
1x1y

p
1z1 and u2v

q
2x2y

q
2z2 for which the configurations after reading the two

inputs are the same, including the contents of the stack. This implies that for
any completion of the inputs, both of u1v

p
1x1y

p
1z1 and u2v

q
2x2y

q
2z2 leads to the

same answer, which is a contradiction. ��

Let wpref be a string for which there is a zero-stack pair (i, j) and the max-
imum of hb(k) − ha(l) for i < k < l < j is ω(1) where |wpref | = c|w1L|
for some constant c (0 < c < 1). If there is no such zero-stack pair for any
long enough wpref , we define wpref to be an empty string. We fix such a
wpref . We define a+ = b, b+ = c, c+ = a. For two strings u, v ∈ {a, b, c}n,
we say u ≤ v iff [(u(k) = x) −→ (v(k) = x or v(k) = x+)], where x ∈
{a, b, c} and u(k) (resp. v(k)) represents the k-th symbol of u (resp. v). Let
WLall be the set of w1L’s such that WLall = {wprefa

|w1L|−|wpref |−kbk|0 ≤
k ≤ |w1L|−|wpref |−1} (= {wprefaaa . . . aaa, wprefaaa . . . aab, wprefaaa . . . abb,
wprefaaa . . . bbb, . . . , wprefabb . . . bbb}). Note that for any two distinct u, v ∈ WL,
u ≤ v or v ≤ u. Then, we have the following lemma.

Lemma 2. There exists WL ⊆ WLall satisfying the following conditions: (1)
Any w ∈ WL leads to the same state-configuration, say CWL. (2) Given a
constant c, after reading w, the stack contents between the top and the c-th from
the top are the same among all w ∈ WL. (3) |WL| = Θ(n). ��

Proof. There exists a constant fraction of WLall, which is WL, satisfying the
first and the second conditions of the lemma since the number of possible state-
configurations is a constant and the number of possible stack contents between
the top and the c-th from the top is also a constant. It is obvious that |WL| =
Θ(n) since |WLall| = |w1L| − |wpref | = Θ(n). ��

We consider the case that the following Condition I holds:
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Condition I. There exists w1L ∈ WL and w2L such that for at least 1/(n+ 1)
fraction of {w1R}, stack height is less than log|Γ |(3n−|w1L|/(#states · n(n+1)))
at the moment of reading the last symbol of w1Lw1Rw2L. ��

In this case, at the moment when stack height is less than log|Γ |(3n−|w1L|/
(#states · n(n + 1))), the number of possible configurations (including stack
contents and the position of the input tape head) is less than 1

n+13
n−|w1L|,

which means there exist at least two distinct partial inputs w1Lw1Rw2L and
w1Lw

′
1Rw2L that result in the same configuration (including stack contents and

the position of an input tape head) since |{w1R}| = 3n−|w1L|. Thus both of
w1Lw1Rw2L and w1Lw

′
1Rw2L lead to the same answer for any completion of

the rest of the input. This is a contradiction. Thus, we can say the nega-
tion of Condition I holds. In this case, given w2, at every step of processing
w2, for at most 1/(n + 1) fraction of {w1R}, stack height becomes less than
log|Γ |(3n−|w1L|/(#states · n(n + 1))). Thus, for at most n/(n + 1) fraction of

{w1R}, stack height becomes less than log|Γ |(3n−|w1L|/(#states ·n(n+1))) while
processing w2; for at least 1/(n + 1) fraction of {w1R}, stack height is always
more than or equal to log|Γ |(3

n−|w1L|/(#states · n(n+1))) while processing w2.
We consider the case that the following Condition II holds:

Condition II. For any w1L ∈ WL and w2, at least 1/(n+1) fraction of {w1R},
stack height is always greater than or equal to log|Γ |(3n−|w1L|/(#states·n(n+1)))
while processing w2. ��

We define w3L as the prefix of w3 such that stack height is always higher
than ĥ−O(1) (= ĥ′) during reading w1Rw2w3L and it becomes ĥ′ when reading

the last symbol of w3L, where ĥ denotes the stack height after reading the last
symbol of w1L. If stack height is always higher than ĥ′ during reading w3, we
define w3L = w3.

Lemma 3. We assume that there exists a deterministic pushdown automaton
that solves Problem I. Then, there exist w1R, k (1 ≤ k ≤ n) and a set W2 of w2’s
such that, starting from CWL, w1Rw2w3L leads to the same state-configuration
for all w2 ∈ W2 where w3L = dk, stack height is always greater than or equal to
ĥ−O(1), and |W2| = Ω( 1

n2 3
n), where CWL is as in Lemma 2.

Proof. Note that for each w2, there are more than 1
n+13

|w1R| of w1R’s for which

stack height is always greater than or equal to log|Γ |(3
n−|w1L|/(#states · n(n+

1))) while processing w2 by Condition II. This means that for some w1R, there
are Ω( 1n3

n) of w2’s for which stack height is always greater than or equal to

log|Γ |(3
n−|w1L|/(#states · n(n+ 1))) while processing w2. By Lemma 1 and the

fact that ĥ < log|Γ |(3|w1R|/(#states ·n(n+1))), the lemma follows immediately.
��

We fix w1R, k and W2 as those in Lemma 3 in the following. For WL in
Lemma 2, the following lemma holds.
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Lemma 4. We assume that there exists a deterministic pushdown automaton
that solves Problem I. For w1R, k and W2 in Lemma 3, there exist w1L ∈ WL
and two distinct partial inputs w1Lw1Rw2w3L and w1Lw1Rw′

2w3L (w2, w
′
2 ∈ W2

and w3L = dk) such that w1
e∼ wR

2 and w1
o∼ w′R

2 .

Proof. Let WL = {w1
1L, w

2
1L, . . . , w

m
1L} where wi

1L ≤ wi+1
1L . W 1

2,even denotes the

set of w2 ∈ {a, b, c}n such that w1
1Lw1R

e∼ wR
2 . Also W 2

2,even denotes the set

of w2 ∈ W 1
2 such that w2

1Lw1R
e∼ wR

2 . Similarly, W i
2,even denotes the set of

w2 ∈ W i−1
2,even such that wi

1Lw1R
e∼ wR

2 . In other words, for all w2 ∈ W i
2,even and

j ≤ i, wj
1Lw1R

e∼ wR
2 . We show that |W i

2,even| ≤ c|W i−1
2,even| for some constant

c < 1 in the following. We consider the positions at which wi−1
1L and wi

1L differ.
We define the set of such positions to beDi. Note that wi−1

1L (k) = a and wi
1L(k) =

b for k ∈ Di, where w(k) represents the k-th symbol of w. We define S =
{w2 ∈ W i−1

2,even|∃k ∈ Di wR
2 (k) = b or wR

2 (k) = c.}, where w2(k) denotes the k-

th symbol of w2. It is obvious that |S| ≥ c1|W i−1
2,even| for some constant c1 < 1.

For w2 ∈ S, let l be the largest position in Di such that wR
2 (l) = b or wR

2 (l) = c.
We assume that wR

2 (l) = b without loss of generality. We consider w′
2 such that

w′R
2 (i) = wR

2 (i) for i �= l and w′R
2 (i) = c. It is obvious that w′

2 is also in S. Then,

either wi
1Lw1R

o∼ wR
2 or wi

1Lw1R
o∼ w′R

2 holds. This implies that a half of elements
in S cannot belong to W i

2,even. Thus, |W i
2,even| ≤ |W i−1

2,even| − c1
2 |W

i−1
2,even| =

c2|W i−1
2,even|, where c2 = 1 − c1

2 . Similar to W 1
2,even, we define W 1

2,odd, and then,

similarly, it can be shown that |W i
2,odd| ≤ c|W i−1

2,odd| for some constant c < 1.

Therefore, |W i
2,even| and |W i

2,odd| can be smaller than |W2| for i ∈ Θ(n). The
lemma follows. ��

(Proof of Theorem 3)
We assume that there exists a classical deterministic pushdown automaton that
solves Problem I. Then, by Lemma 4, we have two input strings, wa = w1Lw1R

w2w3L and wb = w1Lw1Rw′
2w3L (w2, w

′
2 ∈ W2 and w3L = dk), such that w1

o∼
wR

2 and w1
e∼ w′R

2 . We fix w3R = dn−k. Then, the answer only depends on the
number of distinctions between w1 and wR

2 (or w′R
2 ). Thus, one is YES and the

other is NO for wa and wb. However, the configurations (including the contents
of the stack and the position of the input tape head) at the moment of reading
the last symbol of w3L are the same between wa and wb if k �= n. On the other
hand, if k = n, the state-configuration at the moment of reading the last symbol
of wa and wb are the same. Thus, both of wa and wb lead to the same answer.
This is a contradiction. ��

5 Comparison between Quantum Pushdown Automata
with and without a Garbage Tape–Concluding Remarks

In this paper, we showed that QPAGs are strictly more powerful than classical
pushdown automata in the setting of exact, one-sided error and nondeterministic
computation. In this section, we discuss comparison between quantum pushdown
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automata with and without a garbage tape. Our conjecture is that Problem I
cannot be solved exactly by quantum pushdown automata without a garbage
tape, which is Golovkins’s model[12], since it seems to be impossible to compute

w1
e∼ wR

2 or w1
e∼ wR

3 without a garbage tape. On the other hand, in the QPAG
model, popped symbols are always stored in the garbage tape. Thus, if the con-
tents of the garbage tape are different between two computation paths, they no
longer interfere with each other. In other words, only the two computation paths
that have the same contents in the garbage tape can interfere with each other.
This might make the QPAG model less powerful than Golovkins’s model. There-
fore, we conjecture that the class of languages recognized by the two models are
incomparable. We also conjecture that even the generalized quantum pushdown
automata without a garbage tape constructed by the technique in [28] cannot
solve Problem I. At least, the generalized model of quantum pushdown automata
without a garbage tape cannot execute the algorithm in Theorem 2. This is
because, although the garbage tape is in a superposition in the middle of the
computation of the algorithm, the generalized quantum pushdown automaton
cannot represent such a superposition without a garbage tape. Thus, our model
and the generalized model without a garbage tape might also be incomparable.
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Abstract. In this paper, we use the new notion of clique arrangements
to suggest that leaf powers are a natural special case of strongly chordal
graphs. The clique arrangement A(G) of a chordal graph G is a directed
graph that represents the intersections between maximal cliques of G by
nodes and the mutual inclusion of these vertex subsets by arcs. Recently,
strongly chordal graphs have been characterized as the graphs that have
a clique arrangement without bad k-cycles for k ≥ 3.

The class Lk of k-leaf powers consists of graphs G = (V,E) that have
a k-leaf root, that is, a tree T with leaf set V , where xy ∈ E if and
only if the T -distance between x and y is at most k. Structure and linear
time recognition algorithms have been found for 2-, 3-, 4-, and, to some
extent, 5-leaf powers, and it is known that the union of all k-leaf powers,
that is, the graph class L =

⋃∞
k=2 Lk, forms a proper subclass of strongly

chordal graphs. Despite that, no essential progress has been made lately.
In this paper, we characterize the subclass of strongly chordal graphs

that have a clique arrangement without certain bad 2-cycles and show
that L is contained in that class.

1 Introduction

Leaf powers have been introduced by Nishimura et al. [22] to model the problem
of reconstructing phylogenetic trees. In particular, a given graph G = (V,E) is
called the k-leaf power of a tree T for some k ≥ 2, if V is the set of leaves in
T and any two distinct vertices x, y ∈ V are adjacent, that is, xy ∈ E if and only
if the distance of x and y in T is at most k. For all k ≥ 2, the class of graphs that
are a k-leaf power of some tree, is simply called k-leaf powers and denoted by
Lk. The general problem, from a graph theoretic point of view, is to structurally
characterize Lk for all fixed k ≥ 2 and to provide efficient recognition algorithms.

On the other hand, if we push k to infinity, then it turns out that not every
graph is a k-leaf power for some k ≥ 2. In particular, a k-leaf power is, by def-
inition, the subgraph of the kth power of a tree T induced by the leaves of T .
Since trees are sun-free chordal and as taking graph powers and induced sub-
graphs do not destroy this property, it follows trivially that every k-leaf power,
despite the value of k, is sun-free chordal. By Farber [16], strongly chordal graphs
are exactly the sun-free chordal graphs and, hence, k-leaf powers are strongly
chordal. But not every strongly chordal graph is a k-leaf power. In fact, we are
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aware of exactly the one counterexample shown as G7 in Figure 1 which has
been found by Bibelnieks et al. [1]. It is reasonable to ask for a characterization
of the strongly chordal graphs that are not a k-leaf power for any k ≥ 2. This
problem can equivalently be formulated as to describe the class L =

⋃∞
k=2 Lk,

which we call leaf powers, for short.
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Fig. 1. The graphs G1, . . . , G7

Recently, we introduced the clique arrangement in [20], a new data structure
that is especially valuable for the analysis of strongly chordal graphs and, thus,
also for the study of leaf powers. The clique arrangement A(G) = (X , E) of
a chordal graph G is a directed acyclic graph that has certain vertex subsets
of G as a node set and describes the mutual inclusion of these sets by arcs.
In particular, for every set C1, C2, . . . of maximal cliques of G there is a node
X = C1∩C2 ∩ . . . in X and two nodes X,Z ∈ X are joined by an arc XZ ∈ E , if
X ⊂ Z and there is no Y ∈ X with X ⊂ Y ⊂ Z. In [20], we characterize strongly
chordal graphs in terms of forbidden bad k-cycles in their clique arrangement for
k ≥ 3, and we show how to construct the clique arrangement of a strongly chordal
graph in O(n logn) time. Moreover, it is known that the clique arrangements of
ptolemaic graphs are even directed trees [24].

That strongly chordal graphs are characterized by clique arrangements with
forbidden bad k-cycles, k ≥ 3, and that ptolemaic graphs are precisely the



366 R. Nevries and C. Rosenke

graphs that have cycle-free clique arrangements justifies the question, if there
is anything interesting between these two borders. As L can be found between
strongly chordal graphs and ptolemaic graphs [3] it appears likely that the degree
of acyclicity in clique arrangements of leaf powers is between forbidden bad
k-cycles, k ≥ 3, and the complete absence of cycles.

Thus, analyzing the clique arrangements of leaf powers and even more of G7

can lead to new insights that will ultimately bring the solution to the charac-
terization of L. In this paper, we first introduce a new notion of bad 2-cycles
that has in fact been inspired by the study of the clique arrangement of G7.
Secondly, we characterize the subclass of strongly chordal graphs that have no
bad 2-cycles in their clique arrangement by the seven forbidden induced sub-
graphs depicted in Figure 1. Finally, we prove that L is a subset of our new
graph class. Beside the fact that this starts to explain how maximal cliques in-
tersect in leaf powers, this means also that for the first time a natural graph
class has been identified that is a proper subclass of strongly chordal graphs but
a superclass of leaf powers. So far, to the best of our knowledge, every known
natural subclass of strongly chordal graphs has also been a proper subclass of L.

Because of space limitations most of the proofs have been omitted. We refer
to the technical report [21] for the missing details.

2 Previous Work

Leaf powers are a well studied graph class which still offers a large number of
open questions that remained unsolved for several years. Obviously, a graph
G is a 2-leaf power if and only if it is the disjoint union of cliques, that is,
G does not contain an induced path of length 2. Dom et al. [14,15] prove that
3-leaf powers are exactly the chordal graphs that do not contain an induced
bull, dart, or gem. Brandstädt et al. [4] contribute to the characterization of 3-leaf
powers by showing that they are exactly the graphs that result from substituting
cliques into the nodes of a tree. Moreover, they give a linear time algorithm to
recognize 3-leaf powers building on their characterization.

A characterization of 4-leaf powers in terms of forbidden subgraphs is yet
unknown. However, basic 4-leaf powers, the 4-leaf powers without true twins, are
characterized as the chordal graphs that are free of eight forbidden subgraphs
presented by Rautenbach [23]. The structure of basic 4-leaf powers has further
been analyzed by Brandstädt et al. [8], who provide a nice characterization of
the two-connected components of basic 4-leaf powers that leads to a linear time
recognition algorithm even for 4-leaf powers.

For 5-leaf powers, a polynomial time recognition algorithm was given in [13].
However, no structural characterization is known, even for basic 5-leaf powers.
Only for distance-hereditary basic 5-leaf powers a characterization in terms of
chordal graphs that are free of 34 forbidden induced subgraphs has been discov-
ered by Brandstädt et al. [6].

Except from the result in [10] that Lk ⊆ Lk+1 is not true for every k, there
have not been any more essential advances in determining the structure of k-leaf
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powers for k ≥ 5 since 2007. Instead, research has focused on generalizations
of leaf powers such as simplicial powers [5], (k, �)-leaf powers [9] and pairwise
compatibility graphs [19,12].

Brandstädt et al. [3] show that L coincides with the class of fixed tolerance
NeST (neighborhood subtree tolerance) graphs, a well-known graph class with an
absolutely different motivation given by Bibelnieks et al. [1]. Naturally, charac-
terizations and an efficient recognition algorithms for this class are also open
questions today. However, by Brandstädt et al. [2,3], it is known that L is
a superclass of ptolemaic graphs, that is, gem-free chordal graphs [18], and
even a superclass of directed rooted path graphs, introduced by Gavril [17].
Hence, up to this point, it is known that L has to be searched in a rela-
tively small gap between strongly chordal graphs and directed rooted path
graphs.

3 Preliminaries

Several used graph classes are not explicitly defined due to space limitations.
For a comprehensive survey on graph classes we would like to refer to [7].

Throughout this paper, all graphs G = (V,E) are simple, without loops and,
with the exception of clique arrangements, undirected. We usually denote the
vertex set by V and the edge set by E, where the edges are also called arcs in a
directed graph. We write x−y, respectively x→y in the directed case, for xy ∈ E
and x|y for xy �∈ E. For all x ∈ V we let N(x) = {y | xy ∈ E} denote the
open neighborhood and N [x] = N(x) ∪ {x} the closed neighborhood of x in an
undirected graph G. In a directed graph, No(x) = {y | xy ∈ E} denotes the set
of neighbors that are reachable from x by a single arc and Ni(x) = {y | yx ∈ E}
are the neighbors that reach x by a single arc. If |Ni(x)| = 0 then x is a source
and if |No(x)| = 0 then x is a sink.

An independent set is a set of mutually nonadjacent vertices. A clique C is a
set of mutually adjacent vertices and C is called maximal, if there is no clique
C′ with C ⊂ C′. The set of all maximal cliques of G is denoted by C(G).

A graph F = (U,EU ) is an induced subgraph of a graph G = (V,E), if U ⊆ V
and EU = {xy | x, y ∈ U, xy ∈ E}.

A (simple) path in a graph G is a sequence x1, x2 . . . , xk of non-repeating
vertices in G, such that xixi+1 ∈ E for all i ∈ {1, . . . , k − 1}. If E is clear
from the context, then we denote the path by x1−x2− . . .−xk in an undirected
graph. In a directed graph, x1→x2→ . . .→xk specifies a directed path and we
say that x1 reaches xk. An arc x→y is called transitive, if x reaches y by a
directed path that does not use the arc x→y. The distance dG(x, y) between
two vertices x, y of an (un-) directed graph G is the minimum number of edges
in an (un-) directed path starting in x and ending in y. If the edge xkx1 is
additionally present in E, then we talk of a (simple) cycle in G, and as for paths,
an undirected cycle is denoted by x1−x2− . . .−xk−x1. An undirected cycle is
called induced k-cycle Ck, if G contains xixj if and only if j = i+1 or i = k and
j = 1.
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A tree T is an undirected connected acyclic graph, that is, for all pairs x, y of
vertices there exists a path x− . . .−y, and T is free of cycles. Directed graphs
are acyclic, if they are free of directed cycles.

A clique X = {x0, . . . , xk−1} and an independent set Y = {y0, . . . , yk−1}
induce a k-sun in G, if every edge xiyj between X and Y fulfills i = j or
i + 1 = j, where the indices are counted modulo k. By definition, a graph is
chordal if and only if it does not contain induced k-cycles for any k ≥ 4, and by
Farber [16] a graph is strongly chordal if and only if it is chordal and does not
contain induced k-suns for any k ≥ 3.

A graph G = (V,E) is the k-leaf power of a tree T for k ≥ 2, if V is the set of
leaves in T and xy ∈ E if and only if dT (x, y) ≤ k for all x, y ∈ V . In this case T
is called a k-leaf root of G. Notice that k-leaf roots are not necessarily unique
for given k-leaf powers. For all k ≥ 2, the class Lk consists of all graphs that are
a k-leaf power for some tree and L =

⋃∞
k=2 Lk is the class of leaf powers.

The clique arrangement A(G) = (X , E) of a chordal graph G, as introduced
in [20], is a directed acyclic graph with node set

X =

{
X

∣∣∣∣∣ X =
⋂
C∈C

C with C ⊆ C(G) and X �= ∅
}

,

containing a node for every intersection of a set of maximal cliques, and arc set

E = {XZ | X,Z ∈ X with X ⊂ Z and �Y ∈ X : X ⊂ Y ⊂ Z }

that describes their mutual inclusion. Notice that A(G) does not contain transi-
tive arcs. Clearly, the set of sinks in A(G) corresponds exactly to C(G). Moreover,
as the nodes represent the intersections of maximal cliques, it follows that the
vertices of any particular node form a clique in G.

Although A(G) is acyclic by definition, we call the following structure a cycle
for the lack of a better term. For any k ∈ �, a k-cycle of A(G) is a set of nodes
S0, . . . , Sk−1, T0, . . . , Tk−1 such that for all i ∈ {0, . . . , k − 1} there is a directed
path from Si to Ti and a directed path from Si to Ti−1 (counted modulo k).
Then S0, . . . , Sk−1 are called starters of the cycle and T0, . . . , Tk−1 are called
terminals of the cycle. Note that Si ⊆ Ti∩Ti−1 for all i ∈ {0, . . . , k− 1}. In [20],
we call a k-cycle bad, if k ≥ 3 and for all i, j ∈ {0, . . . , k − 1} there is a directed
path from Si to Tj, if and only if j ∈ {i, i− 1} (counted modulo k).

Theorem 1 (Nevries and Rosenke [20]). Let G be a chordal graph and let
A(G) be the clique arrangement of G. Then G is strongly chordal if and only if
A(G) is free of bad k-cycles for all k ≥ 3.

In this paper we also apply the following property of clique arrangements for
induced subgraphs:

Lemma 1. If G is a chordal graph with clique arrangement A(G) = (X , E) that
occurs as an induced subgraph of a chordal graph G′ with clique arrangement
A(G′) = (X ′, E ′), then there is a function φ : X → X ′ that fulfills for all
X,Y ∈ X : (1) X = Y ⇔ φ(X) = φ(Y ), and (2) A(G) has a directed path from
X to Y if and only if A(G′) has a directed path from φ(X) to φ(Y ).
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4 Bad 2-Cycles in Clique Arrangements and the Graphs
Characterized by Their Exclusion

As shown in [20], strongly chordal graphs can be characterized by forbidden
bad k-cycles in their clique arrangements, where k ≥ 3. But as leaf powers are
a proper subclass of strongly chordal graphs, this kind of cycles does not fully
capture the structure that is forbidden in the clique arrangements of leaf powers.
To cover the required stronger acyclicity we studied the clique arrangement of
G7, the only known example of a strongly chordal graph that is not a leaf power,
and extracted the concept of bad 2-cycles, which are a natural continuation of
bad k-cycles with k ≥ 3. Accordingly, we call a 2-cycle bad, if for all i, j ∈ {0, 1}

S0 (condition)
x0 (Cl. 5)

S1 (condition)
x1 (Cl. 5)

T (direct)

P00 (Cl. 1,3,4)
y00 (Cl. 9-11)

P01 (Cl. 1,3,4)
y01 (Cl. 9-11)

P10 (Cl. 1,3,4)
y10 (Cl. 9-11)

P11 (Cl. 1,3,4)
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T0 (condition) T1 (condition)
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T ′
1 (Cl. 7,8)
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Fig. 2. Proof sketch: Based on the precondition of a bad 2-cycle with starters S0, S1

(double frames) and terminals T0, T1 (bold frames) we firstly show the existence of
other nodes as Pij and sinks as Qij that are arranged along directed paths, depicted as
wavy arrows in the figure. Secondly, we identifiy vertices in the nodes that ultimately
build the forbidden graphs G1, . . . , G7. The numbers in the brackets identify the claims
that show the respective objects.

there is a directed path from starter Si to terminal Tj that does not contain a
node X which fulfills S0 ∪ S1 ⊆ X ⊆ T0 ∩ T1. Notice that there may still be
other paths from Si to Tj containing nodes X as described in the definition. In
particular, the node T = T0∩T1 is always a superset of S0∪S1 and thus, situated
on certain paths from Si to Tj . That a node X does not occur is, however, only
required for one path from Si to Tj . Figure 3 shows the seven clique arrangements
of the graphs G1, . . . , G7, which all have a bad 2-cycle.

In this section we show that, in terms of forbidden subgraphs, G1, . . . , G7

exactly characterize the subclass of strongly chordal graphs that have a clique
arrangement without bad 2-cycles. The following theorem provides the main
argument of this paper:

Theorem 2. Let G = (V,E) be a strongly chordal graph with clique arrange-
ment A(G) = (X , E). The graph A(G) contains a bad 2-cycle if and only if G
contains one of the graphs G1, . . . , G7 as an induced subgraph.
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Fig. 3. The top left figure displays A(G7) and, without dashed nodes and arcs, it
shows A(G1). Similarly, the top right figure presents A(G6) or, without the dashed
parts, A(G2). The bottom left figure shows A(G5) and, without dashed parts, A(G3).
The bottom right contains A(G4). Bold arcs emphasize the bad 2-cycle, where starters
are double framed and terminals bold framed.
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Proof. The proof starts by showing the first direction, that is, if A(G) contains
a bad 2-cycle, then G contains one of the graphs G1, . . . , G7 as an induced
subgraph. A sketch and overview for this direction can be found in Figure 2.

Among the bad 2-cycles of A(G) we select a cycle with starters S0, S1 and
terminals T0, T1 that primarily minimizes the summed cardinalities of the ter-
minals |T0| + |T1| and secondarily maximizes the summed cardinalities of the
starters |S0| + |S1|. Because T0 and T1 have a non-empty intersection there is
a node T = T0 ∩ T1, which by the way contains S0 ∪ S1. In the following we
provide a number of claims to support our arguments. We start by shaping the
bad 2-cycle:

Claim 1. For all i, j ∈ {0, 1} there is a path Bij from Si to Tj that does not
contain a node X with S0 ∪ S1 ⊆ X ⊆ T0 ∩ T1 (hence, Bij does also not contain
T ) such that there is a node Pij on Bij with (1) Si ⊆ Pij ⊆ Tj, (2) S1−i �⊆ Pij,
(3) Pij �⊆ T , and (4) there exists a sink Qij in A(G) with S1−i �⊆ Qij that fulfills
Pij = Qij ∩ Tj.

In the following we refer to the nodes Pij by the P -nodes and we call Qij the
Q-nodes. The pure existence of the Q-nodes does not directly imply that they
are different:

Claim 2. For all i, j, i′, j′ ∈ {0, 1} with (i, j) �= (i′, j′), the sinks Qij and Qi′j′

differ.

Hence, the Q-nodes represent distinct maximal cliques in G. For the pairwise
intersection between the P -nodes, Claim 1 directly implies for all i, j, j′ ∈ {0, 1}
that Pij �⊆ P(1−i)j′ . We can now infer the following two additional statements
about the intersections between the P -nodes and the intersections between the
Q-nodes:

Claim 3. For all i ∈ {0, 1} it is true that Pi0 ∩ Pi1 = Si.

Claim 4. For all i, i′ ∈ {0, 1} it is true that P0i∩P1i′ and Q0i∩Q1i′ are subsets
of T .

We deduce that Pij ∩ Pi′j′ ⊆ T for all i, j, i′, j′ ∈ {0, 1} with (i, j) �= (i′, j′).
Following the construction of the P -nodes, we also know for all i, j ∈ {0, 1} that
the set P ′

ij = Pij \ T is not empty.
Using the collected facts about the mentioned nodes on the bad 2-cycle, the

next two claims start selecting vertices to construct one of the induced subgraphs
G1, . . . , G7:

Claim 5. For all i ∈ {0, 1}, the starter Si has a vertex xi that is not contained
in Q(1−i)0 ∪Q(1−i)1.

Claim 6. For all i, j ∈ {0, 1}, there is a vertex zij ∈ Qij \Pij with the following
two properties: (1) for all i′, j′ ∈ {0, 1} it is true that zij = zi′j′ ⇐⇒ (i, j) =
(i′, j′) and (2) zij is neither adjacent to x1−i, zi(1−j), z(1−i)j , z(1−i)(1−j), nor to
any vertex in P ′

i(1−j), in P ′
(1−i)j or in P ′

(1−i)(1−j).
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Depending on the edges between the six central vertices of G1, . . . , G7, there
exist up to two additional vertices in G4, . . . , G7. This dependency is also visible
in the clique arrangement. Consider the sets V0 = P00 ∪ P01, V1 = P10 ∪ P11,
D0 = P00 ∪ P11 and D1 = P01 ∪ P10 and moreover, for all i, j ∈ {0, 1} let
Cij = Vi ∪ Dj. If one of the sets Cij , i, j ∈ {0, 1} induces a clique in G, then it
follows that T0 or T1 are proper subsets of maximal cliques in G:

Claim 7. For all i, j ∈ {0, 1} and k = (i + j + 1) mod 2, the node Tk is not
a sink in A(G), if Cij is a clique in G.

In such a case, if Cij is a clique, we select an additional vertex from a sink that
is reachable from Tk:

Claim 8. For all i, j ∈ {0, 1} and k = (i + j + 1) mod 2, the set Cij being
a clique in G implies the existence of a sink T ′

k that is reachable from Tk and
that contains a vertex zk ∈ T ′

k\(P0k∪P1k∪T1−k) such that (1) zk is not one of the
vertices z1−k, z00, z01, z10, z11, (2) zk is neither adjacent to z1−k, z0(1−k), z1(1−k)

nor to any vertex in T1−k \ T , and (3) zk is adjacent to at most one vertex of
z0k and z1k.

Object of the remainder of the proof is to select the central vertices yij
from P ′

ij for all i, j ∈ {0, 1} to ultimately induce a forbidden subgraph. But
before giving the strategy of how to select these four vertices, we briefly summa-
rize the results gathered in the proof so far. By Claim 5, we know that there are
vertices x0 ∈ S0 and x1 ∈ S1. As we select yij from P ′

ij it follows from P ′
ij ⊆ Tj ,

which is made sure in the construction of the P -nodes according to Claim 1,
that {x0, x1, y00, y10} ⊆ T0 and {x0, x1, y01, y11} ⊆ T1 are cliques in G, regard-
less of the particular choice of y00, y01, y10, y11. Moreover, by Claim 6, there
exists an independent set {z00, z01, z10, z11} in G such that for all i, j ∈ {0, 1},
the vertex zij is adjacent to xi but not to x1−i. Again, since the vertices yij
come from P ′

ij ⊆ P ′
ij , it follows that zij is adjacent to yij but not to any of

yi(1−j), y(1−i)j , y(1−i)(1−j). Finally, Claim 8 states that certain circumstances im-
ply the existence of two non-adjacent vertices z0 and z1 in G that are both adja-
cent to x0 and x1 and such that for all k ∈ {0, 1} it is true that zk is adjacent to
y0k and y1k but not adjacent to y0(1−k), y1(1−k), z0(1−k) and z0(1−k). The claim
leaves it open, if zk can be adjacent to either z0k or z1k and, consequently, we
cope with this problem during the following vertex selection.

The main difference between the graphs G1 to G7 are the edges between
the two cliques {x0, x1, y00, y10} and {x0, x1, y01, y11}. In this proof, the possible
edges y00y01, y00y11, y01y10 and y10y11 are reflected by the sets V0, V1, D0 and
D1. In fact, each of these four edges has both endpoint in exactly one of the sets.
To complete this direction of the proof, we therefore analyze the edges inside the
sets V0, V1, D0 and D1. For the decision, which forbidden subgraph is induced in
G, it suffices to know whether these sets are cliques. The following three claims
perform this analysis for all necessary cases:

Claim 9. If at most one of the sets V0, V1, D0, D1 is a clique in G, then G
contains G1, G2 or G3 as an induced subgraph.
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Claim 10. If exactly two of the sets V0, V1, D0, D1 are cliques in G, then G
contains G2, G3 or G4 as an induced subgraph.

Claim 11. If at least three of the sets V0, V1, D0, D1 are cliques in G,then G con-
tains at least one of G1, . . . , G7 as an induced subgraph.

The proof is completed by the converse direction, that is, if G contains one of
G1, . . . , G7 as an induced subgraph, thenA(G) has a bad 2-cycle.We basically use
Lemma 1. The clique arrangements of all graphs G1, . . . , G7 contain bad 2-cycles
with the same starters S0 = {x0} and S1 = {x1} and the same terminals T0 =
{x0, x1, y00, y10} and T1 = {x0, x1, y01, y11}. Moreover, there exist nodes Pij =
{xi, yij} and Qij = {xi, yij , zij} such that we have paths Si→ . . .→Pij→ . . .→Tj

and Pij→ . . . →Qij for all i, j ∈ {0, 1}. If G contains one of G1, . . . , G7 as an in-
duced subgraph, then there is a function φ, that maps these nodes to some nodes of
A(G) such thatφ(Si)→ . . .→φ(Pij)→ . . .→φ(Tj) andφ(Pij)→ . . .→φ(Qij) for all
i, j ∈ {0, 1}. Hence, the clique arrangementA(G) contains a 2-cycle with starters
φ(S0), φ(S1) and terminals φ(T0), φ(T1).

Assume that this 2-cycle is not bad, that is, at least one of the four paths
in A(G), without loss of generality say φ(S0)→ . . .→φ(T0), contains a node X
with φ(S0) ∪ φ(S1) ⊆ X ⊆ φ(T0) ∩ φ(T1). If X is situated on the subpath
φ(S0)→ . . .→φ(P00), then it follows that X ⊂ Q00 and, hence, x1−z00, a con-
tradiction.

Hence, X is on the subpath φ(P00)→ . . .→φ(T0). Here, φ(P00) is a subset of
X and as X ⊆ φ(T0)∩φ(T1) by definition, φ(P00) is also a subset of φ(T1). This
means that y00 ∈ φ(T1), which implies y00−y01 and y00−y11. Consequently, we
are in the case were the induced subgraph in G is one of G4, . . . , G7. The clique
arrangement of all these graphs contains a sink T ′

1 = {x0, x1, y01, y11, z1} that is
reached from T1. In A(G), we have φ(T1)→ . . .→φ(T ′

1), thus, φ(P00) ⊂ φ(T ′
1),

which finally means that y00−z1, a contradiction.
Hence, X does not exist and A(G) contains a bad 2-cycle with starters

φ(S0), φ(S1) and terminals φ(T0), φ(T1). ��

5 New Forbidden Induced Subgraphs for Leaf Powers

The firstly known strongly chordal graph that is not in L, namely G7, has been
found by Bibelnieks et al. [1]. In fact, they were looking for a strongly chordal
graph that is not a fixed tolerance NeST graph, but by Brandstädt et al. [3],
we know that L and this class are equal. Notwithstanding all efforts, no coun-
terexample structurally different from G7 has been discovered for some years
and it was even assumed that G7 is the smallest possible strongly chordal graph
without a leaf root.

To show that G7 is not in L, Bibelnieks et al. [1] use a lemma of Broin et al.
[11]. The basic idea of the proof of this lemma is to show for certain pairs of
edges x1y1 and x2y2 in G that the path between x1 and y1 is disjoint from the
path between x2 and y2 in every leaf root of G. In particular, this happens,
if vertices a, b exist in G with x1, y1 ∈ N(a) \ N [b] and x2, y2 ∈ N(b) \ N [a].
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The graph G7 has a cycle x0−y00−y10−x1−y11−y01−x0, where the condition is
fulfilled for many pairs of edges in the cycle. It follows that every leaf root of
G7 would have a cycle, which is a contradiction.

In this section, we show that G1, . . . , G6 are also not in L. Interestingly, every
of these six graphs is smaller than G7. For our proof, we generalize the argu-
ment of Bibelnieks et al. [1] for pairs of edges x1y1 and x2y2 that correspond to
disjoint paths in leaf roots. The following Lemma provides three corresponding
conditions:

Lemma 2. Let G = (V,E) be a k-leaf power of a tree T for some k ≥ 2 and
let x1y1 and x2y2 be two edges of G on distinct vertices x1, y1, x2, y2 ∈ V . The
paths x1− . . .−y1 and x2− . . .−y2 in T are disjoint, that is, do not share any
node, if at least one of the following conditions holds:

1. At most one of the edges x1x2, x1y2, y1x2, y1y2 is in E.
2. There is a vertex a ∈ V such that x1, y1 ∈ N(a), and x2, y2 �∈ N [a], and

|N(x1) ∩ {x2, y2}| ≤ 1, and |N(y1) ∩ {x2, y2}| ≤ 1.
3. There are distinct vertices a, b ∈ V such that x1, y1 ∈ N(a) \ N [b], and

x2, y2 ∈ N(b) \N [a].

Based on this, we can find a cycle x0−y00−y10−x1−y11−y01−x0 in every
graph from G1, . . . , G7 such that many pairs of edges in the cycle fulfill at least
one of the three conditions. The following theorem states that this is never
compatible with the existence of a leaf root.

Theorem 3. The graphs G1, . . . , G7 are not in L.

This implies that G1, . . . , G7 are forbidden induced subgraphs for L. As these
seven graphs precisely characterize the strongly chordal graphs that have no
bad 2-cycle in their clique arrangement, it follows that the maximal cliques of
a leaf power cannot intersect in the way as described by bad 2-cycles. This is
formalized in the following corollary:

Corollary 4. If G is a graph in L, then the clique arrangement A(G) does not
contain a bad 2-cycle.

6 Conclusion

In this paper, we were able to identify and characterize the proper subclass of
strongly chordal graphs that have a clique arrangement without bad 2-cycles.
This class naturally stands between strongly chordal graphs, which have clique
arrangements without bad k-cycles for k ≥ 3, and ptolemaic graphs, whose clique
arrangements are entirely free of cycles. By providing the first case for a natural
subclass of strongly chordal graphs that is a superclass of L, we essentially
tighten the gap for the location of L in the hierarchy of chordal graphs. It
remains for future work to find a complete characterization of L in terms of
forbidden subgraphs or forbidden cyclic structures in the clique arrangements.
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6. Brandstädt, A., Le, V.B., Rautenbach, D.: Distance-hereditary 5-Leaf Powers. Dis-
crete Mathematics 309, 3843–3852 (2009)
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Abstract. Communication complexity theory is a powerful tool to show
time complexity lower bounds of distributed algorithms for global prob-
lems such as minimum spanning tree (MST) and shortest path. While
it often leads to nearly-tight lower bounds for many problems, polylog-
arithmic complexity gaps still lie between the currently best upper and
lower bounds. In this paper, we propose a new approach for filling the
gaps. Using this approach, we achieve tighter deterministic lower bounds
for MST and shortest paths. Specifically, for those problems, we show the
deterministic Ω(

√
n)-round lower bound for graphs of O(nε) hop-count

diameter, and the deterministic Ω(
√

n/ log n) lower bound for graphs of
O(log n) hop-count diameter. The main idea of our approach is to utilize
the two-party communication complexity lower bound for a function we
call permutation identity, which is newly introduced in this paper.

1 Introduction

In distributed computing theory, many graph problems are naturally treated
as the problems in networks, where each vertex represents a computing entity
(node) and each edge does a communication link between two nodes. The theory
of distributed graph algorithms has been developed so far for the efficient in-
network computation of graph problems. A crucial factor of distributed graph
algorithms is locality. Local algorithms require each node to compute its output
only by the interaction to the nodes within a bounded distance smaller than
the diameter of the network. In other words, local algorithms must terminate
within o(D) rounds, where D is the hop-count diameter of the network. There
are a number of problems allowing local solutions: Maximal matchings, colorings,
independent sets, and so on. On the other hand, some of other graph problems
(e.g., minimum spanning tree, shortest path, minimum cut, and so on) are known
to have no local solution. They are called global problems. By the definition, the
(worst-case) run of any algorithm for global problems inherently takes Ω(D)
rounds.

For both local and global problems, the time complexity is one of the cen-
tral measures to evaluate distributed algorithms. In this paper, we focus on the
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distributed complexity of two well-known global problems: Minimum spanning
tree (MST) and shortest s-t path. As we stated above, these problems have triv-
ial Ω(D)-round lower bounds. If the communication bandwidth of each link is
not bounded, every global problem has an optimal-time algorithm with O(D)
rounds: A process aggregates the whole information of the network, and com-
putes the result locally. However the assumption of so rich bandwidth is far from
real systems, and thus the challenge of global problems is to solve them in the en-
vironment with a limited bandwidth. Theoretically, such environments are called
CONGEST model, where processes work under the round-based synchrony, and
each link can transfer O(log n)-bit messages per one round.

A seminal result about the lower bounds for global problems is the one by Das
Sarma et al. [1], which exhibits that many problems, including MST and shortest
s-t path, are more expensive tasks. Precisely, it shows that p Ω(

√
n/ logn+D)-

round lower bounds hold for many global problems even if D is small (i.e.,
D = O(log n)). The core of this result is a general framework to obtain the
lower bounds based on the reduction from two-party communication complex-
ity by Yao [15]. Two-party communication complexity is a theory to reveal the
amount of communication to compute a global function whose inputs are dis-
tributed among two players. The reduction framework in [1] induces the hardness
of MST and shortest s-t path from the two-party communication complexity of
set-disjointness function. While the framework is a powerful tool to bound the
time complexity of global problems, all the bounds obtained by that approach
have the form of Ω(f(n)/(m logn)), where f(n) is the amount of information
inherently exchanged among the network to solve the target problem, m is the
number of the links where the information must be transferred, and logn fac-
tor is the bandwidth of each link (that is, m logn is the amount of informa-
tion transmittable within a round). Unfortunately, that form does not strictly
match the known corresponding upper bounds, which typically have the form
of O(f(n)polylog(n)/m). That is, for many global problems, the currently best
bounds still have (poly)logarithmic gaps.

The objective of this paper is to close those gaps. For that goal, we intro-
duce a new two-party function called permutation identity, whose determinis-
tic communication complexity is slightly more expensive than set-disjointness,
and show new reductions using it on the top of the framework by Das Sarma
et al. [1]. Specifically, for MST and shortest s-t path, we show the determin-
istic Ω(

√
n)-round lower bound for graphs of O(nε) hop-count diameter, and

the deterministic Ω(
√

n/ logn) lower bound for graphs of O(log n) hop-count
diameter. The comparison with the prior work are shown in Table 1. As far as
we consider the complexity of deterministic and exact computation, our bounds
beat the currently best ones.

2 Related Work

The paper by Das Sarma et al. [1] is the first one explicitly considering the dis-
tributed verification problem, which has given a general framework to lead lower
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Table 1. Comparison with the prior work. SP (resp. MST) means the shortest
s-t path problem (resp. the minimum spanning tree problem). The phrase “α(n)-
approximation” implies that α(n)-approximation is hard for any non-trivial function
α(n).

paper bound problem comments

Garay et al. [4] O(
√
n log∗ n+D) MST deterministic

Nanongkai [11] O(
√
nD1/4 +D) SP

(1 + o(1))-approximation

single-source SP

Das Sarma et al.[1] Ω(
√

n
log n

) SP,MST

randomized
α(n)-approximation

D = O(nε) (ε < 1/2)

Das Sarma et al.[1] Ω(
√

n
log n

) SP, MST

randomized
α(n)-approximation

(D = Θ(log n))

This paper Ω(
√
n) SP, MST

deterministic
D = O(nε) (ε < 1/2)

This paper Ω(
√

n
log n

) SP, MST
deterministic
D = O(log n))

bounds and approximation hardness for a vast class of problems. It is used in se-
veral following papers to obtain the complexity for a number of graph problems:
Weighted/unweighted diameter and all-pair shortest paths [13,6,8,9], minimum
cuts [5,11], distance sketches [8], weighted single-source shortest paths [8,11],
fast random walks [12], and so on. While the framework by Das Sarma et al. [1]
pointed out a general relationship interconnecting the communication complex-
ity theory and distributed complexity theory, the construction of the worst-case
instances used in the framework is much inspired by the earlier papers leading
the time lower bound for the distributed MST construction [14,10,3]. Dinitz et
al. [2] shows a bit complexity result for non graph-theoretic problems based on
communication complexity theory.

3 Preliminaries

3.1 Round-Based Distributed Systems

A distributed system consists of n nodes interconnected with communication
links. We model it by a weighted graph G = (V,E,w), where V is the set of
nodes, E ⊆ V ×V is the set of links (edges), and w : E → R is a weight function.
The hop-count diameter of G (i.e., the diameter of the unweighted graph (V,E))
is denoted byD. Executions of the system proceed with a sequence of consecutive
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rounds. In each round, each process sends a (possibly different) message to each
neighbor, and within the round, all messages are received. After receiving the
messages, the process performs local computation. Throughout this paper, we
restrict the number of bits transmittable through any communication link per
one round to O(log n) bits. This is known as the CONGEST model.

3.2 Distributed MST and Single-Source Shortest Paths

In this paper we consider two popular graph problems: Minimum spanning tree
(MST) and shortest s-t path. The distributed minimum spanning tree problem
requires the system to find the MST of the (weighted) network. After the com-
putation by distributed MST algorithms, each node must identify the incident
edges constituting the MST. In the shortest s-t path problem, the algorithm
takes two input nodes s and t, and computes a shortest path between them. Af-
ter the computation, each node on the computed path must identify the incident
edge toward s and the distance from s.

3.3 Two-Party Communication Complexity

Communication complexity, which is first introduced by Yao [15], reveals the
amount of communication to compute a global function whose inputs are dis-
tributed in the network. The most successful scenario in communication com-
plexity is two-party communication complexity, where two players, called Alice
and Bob, respectively have their inputs x, y ∈ U (where U is the domain of
inputs), and compute a global function f : U ×U → {0, 1}. The communication
complexity of a two-party protocol is the number of one-bit messages exchanged
by the protocol for the worst case input (if the protocol is randomized, it is
defined as the expected number of bits exchanged for the worst-case input). One
of the most popular functions in two-party communication complexity is set-
disjointness, which is the function over two k-bit 0-1 vectors x, y ∈ 0, 1k and
return value one if and only if there exists a common position i ∈ [0, k− 1] such
that i-th bits of x and y are one.

While the known best lower bounds for MST and shortest s-t path is obtained
by using the communication complexity of set-disjointness, it seems difficult to
extend that proof for a stronger bound we will prove. Thus in this paper, we
introduce a new function called permutation identity, which is defined as follows:

Definition 1. Let πA, πB : [1, N ] → [1, N ] be permutations over [1, N ]. The
permutation identity function identN is defined as follows:

identN (πA, πB) =

{
1 if ∀i ∈ [1, N ] : πA ◦ πB(i) = i,
0 otherwise,

where πA ◦ πB means the composition of πA and πB, that is, πA ◦ πB(i) =
πA(πB(i)).

Theorem 1. The deterministic communication complexity of two-party permu-
tation identity over [1, N ] is Ω(N logN) bits.
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While we omit the proof of this theorem due to lack of space, it is almost
the same as that for equality function, which is found in a standard textbook
of communication complexity [7]. We also show a fundamental lemma for the
permutation identity function, which is used in the following sections.

Lemma 1. Let πA and πB be permutations over [1, N ]. If πA ◦ πB is not iden-
tical, there exists i ∈ [1, N ] such that πA ◦ πB(i) < i holds.

4 General Framework for the Reduction

The proof basically follows the framework by Das Sarma et al. [1]. The core of
this framework is the reduction from two-party computation via a hard instance
for distributed computation. In this section, we introduce the framework which
is slightly modified for our proof.

4.1 Graph Construction

The graph we construct is denoted by G(N,M), where N and M are design
parameters of the graph. For simplicity of the argument, throughout the paper,
we assume that M + 1 is a power of 2, i.e., M = 2p − 1 for some nonnegative
integer p. Note that the assumption is not essential and it is not difficult to
remove it. The graph is built by the following steps:

1. Prepare N paths of length M , each of which is denoted by Pi (1 ≤ i ≤ N).
The nodes constituting Pi are identified by v0i , v

1
i , · · · , vMi from left to right.

2. Add edges (v0i , v
1
j ) and (v

(M−1)
i , vMj ) for any i, j ∈ [1, N ].

3. Add edges (v0i , v
0
(i+1)) and (vMi , vM(i+1)) for any i ∈ [1, N − 1].

4. Construct a complete binary tree T (M) with M + 1 leaf. where each leaf is
identified by u0, u1, · · · , uM from left to right.

5. Add edges (ui, vij) for any i ∈ [0,M ] and j ∈ [1, N ].

The weight of each edge depends on concrete reductions, which is determined
later. Note that the number n of nodes in G(N,M) is Θ(NM), and its diameter
is D = O(log n). We also define the sets of nodes A = {u0} ∪ {v0i , v1i |i ∈ [1, N ]}
and B = {uM} ∪ {v(M−1)

i , vMi |i ∈ [1, N ]}. The whole construction is illustrated
in Figure 1. For this graph, we can show the following theorem.

Theorem 2 (Das Sarma et al. [1]). Let A be any algorithm running on
the graph G(N,M) with an arbitrary edge-weight function, and r < M be an
arbitrary value. Then there exists a two-party protocol satisfying the following
three properties:

– At the beginning of the protocol, Alice (resp. Bob) knows the whole topological
information of G(N,M) except for the subgraph induced by B (resp. A),
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Fig. 1. Construction of G(N,M)

– after the run of the protocol, Alice and Bob output the internal states of the
processes in A and B at round �(r−3)/2 in the execution of A on G(N,M),
respectively, and

– the protocol consumes at most O(r(logMN)2)-bit communication.

While the graph used in this paper is a slightly modified version of the original
construction in [1], the theorem above is proved in the almost same way. So we
just quote it without the proof.

4.2 Networked Two-Party Computation

To obtain time lower bounds for distributed algorithms, we use a variation of the
two-party computation problem in distributed settings. We assume that Alice
and Bob are placed at two nodes in a network of n nodes, and have inputs
x ∈ U and y ∈ U for two-party function f : U × U → {0, 1}, respectively.
It is also assumed that each node in the network (including ones other than
Alice and Bob) knows everything (i.e., the complete knowledge of the network
topology) except for the inputs held by Alice and Bob. Then all nodes must
work cooperatively for outputting the value of f(x, y) as fast as possible. In
what follows, we call this problem setting the networked two-party computation
(and the networked permutation identity problem if f = identN). Note that
the measurement of the networked two-party computation is not the amount of
communication, but the number of rounds.
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Obviously the time complexity of networked two-party computation problems
relies on the target function f and the topology of the network. A useful conse-
quence from Theorem 2 is that we can transform the communication lower bound
for any two-party computation into the time lower bound for its networked ver-
sion. In the original version by Das Sarma et al. [1], the transformation from
two-party set-disjointness is considered. Here we derive the similar fact from
two-party permutation identify function (the proof is omitted for lack of space):

Theorem 3. Let M = N/ logN . For any deterministic algorithm A solving the
networked permutation identity over [1, N ] in G(N,M), its worst-case running
time is Ω(

√
n/ logn) rounds.

4.3 Lower Bound for MST

We show the reduction from networked permutation identity to MST. In this
reduction we construct an instance of the MST problem by virtually assigning
some weight to each edge in G(N,M) for M = N/ logN to encode an instance
(πA, πB) of permutation identity over [1, N ]. After the construction of the MST,
Alice and Bob can determine the identity of πA◦πB from the computed MST. Let
L(πA, πB) be the instance of the MST problem corresponding to the permutation
identity instance (πA, πB), which is constructed by defining edge-weight function
w as follows:

1. For any i ∈ [1, N ] and j ∈ [1,M − 1], w(uj , vji ) = 100NM .
2. For any i ∈ [1, N − 1], w(v0i , v

0
i+1) = 100NM and w(vMi , vMi+1) = 100NM .

3. For any i ∈ [1, N ], w(u0, v0i ) = 2i and w(uM , vMi ) = 2i− 1.
4. For any i, j ∈ [1, N ], w(v0i , v

1
j ) = 1 if πA(j) = i. Otherwise w(v0i , v

1
j ) =

100NM . Similarly, for any i, j ∈ [1, N ], w(vM−1
i , vMj ) = 1 if πB(j) = i.

Otherwise w(vM−1
i , vMj ) = 100NM .

5. All other edges have weight one.

The construction of L(πA, πB) is illustrated in Figure 2. LetEA = {(u0, v0i )|i ∈
[1, N ]} and EB = {(uM , vMi )|i ∈ [1, N ]}. The following lemma is the core of the
reduction.

Lemma 2. The MST of L(πA, πB) contains no edge in EA if and only if πA◦πB

is identical.

Proof. Let P ′
i be the path consisting of the nodes v0πA(πB(i)), v

1
πB(i), v

2
πB(i), · · · ,

vM−1
πB(i), v

M
i . Following the standard greedy algorithm for constructing the MST,

every edge with weight one is contained in the MST. Thus, the components
P ′
1, P

′
2, · · · , P ′

N and T (M) are MST fragments. A component P ′
i is merged with

T (M) by choosing either (u0, v0πA(πB(i))) or (uM , vMi ) (all other edges merging

them are too heavy (i.e., 100NM) and never chosen as a MST edge). If πA ◦
πB is identical, πA(πB(i)) = i holds. Thus we have w(u0, v0πA(πB(i))) = 2i and

w(uM , vMi ) = 2i−1 for any i ∈ [1, N ]. This implies that P ′
i is merged with T (M)
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Fig. 2. An example of L(πA, πB). Every unlabeled edge has weight one. All the edges
with weight 100NM are grayed out.

by edge (uM , vMi ) (Figure 3). On the other hand, if πA ◦πB is not identical, from
Lemma 1, there exists at least one i satisfying πA ◦πB(i) < i. Then for such i we
have w(u0, v0πA(πB(i))) ≤ 2(i− 1) and w(uM , vMi ) = 2i− 1. Thus P ′

i and T (N) is

merged with edge w(u0, v0πA(πB(i))) ∈ EA (Figure 4). The lemma is proved ��

Lemma 3. If an algorithm A solves the MST problem in L(πA, πB) within r
rounds, there exists an algorithm solving the networked permutation identity over
[1, N ] in G(N,M) within O(r) rounds.

Proof. At the rounds one and two, each node sets up the instance L(πA, πB)
of the MST problem according to the input (πA, πB). Then the system runs
the MST algorithm A. From Lemma 2, no edge in EA is not included in the
constructed MST if πA ◦ πB is identical. Then, after the construction of the
MST, each node v0i (i ∈ [1, N ]) sends to u0 the information that no incident
edge is contained in the MST. By this information, u0 can determine whether
πA ◦πB is identical or not. That is, the networked permutation identity is solved
in G(N,M) within O(r) rounds. ��

Combining Theorem 3 and Lemma 3, we have the main theorem below.

Theorem 4. Any deterministic algorithm solving the MST problem, its worst-
case running time is Ω(

√
n/ logn) rounds.
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Fig. 3. Graph L(πA, πB) when πA ◦ πB is identical
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Fig. 4. Graph L(πA, πB) when πA ◦ πB is not identical

4.4 Lower Bound for Shortest s-t Path

The argument in this section is almost the same as Section 4. We construct a
graph L′(πA, πB) by fixing a weight function w for the network G(N,M) for
M = N logN . The weight function w is defined as follows:
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1. For any i ∈ [1, N ] and j ∈ [0,M ], w(uj , vji ) = 100NM .
2. For any i ∈ [1, N − 1], w(v0i , v

0
i+1) = 1 and w(vMi , vMi+1) = 1.

3. For any i, j ∈ [1, N ], w(v0i , v
1
j ) = 100NM if πA(j) = i. Otherwise w(v0i , v

1
j ) =

100NM . Similarly, for any i, j ∈ [1, N ], w(vM−1
i , vMj ) = 1 if πB(j) = i.

Otherwise w(vM−1
i , vMj ) = 100NM .

4. For any i ∈ [1, N ] and j ∈ [1,M − 1], w(vji , v
j+1
i ) = 1.

5. Every edge in T (M) has weight 100NM .

We also define s = v01 and t = vMN . Then, we have the following lemma:

Lemma 4. In graph L′(πA, πB), the length of the shortest s-t path is N+M−1
if and only if πA ◦ πB is identical.

Proof. The path v01 , v
0
2 , · · · v0N , v1N , v2N , · · ·V M−1

N , vMN is the s-t path of length
N + M − 1. We first show that this is the shortest path if πA ◦ πB is identical.
Since the length of the shortest path between s and t is at most N + M − 1,
it contains no edge with weight 100NM . Thus we omit those edges. Then, if
πA ◦ πB is identical, v0i and vMi are connected by a path of length M . Thus, the
graph (where all isolated nodes in T (M) are removed) becomes a subdivision of
a ladder graph. It is not difficult to see that the shortest path between s and
t is N +M − 1 (Figure 5).
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Fig. 5. Graph L′(πA, πB) when πA ◦ πB is identical

We next consider the case where πA ◦ πB is not identical. From Lemma 1,
there exists i satisfying πA ◦ πB(i) < i. Then, we have an s-t path
v01 , v

0
2 , · · · v0πA(πB(i)), v

1
πB(i)), v

2
πB(i)), · · · , v

M−1
πB(i)), v

M
i , vMi+1, · · · , vMN of length less

than N +M − 1 (Figure 6). The lemma is proved. ��

Lemma 5. If an algorithm A solves the shortest s-t path problem in L′(πA, πB)
within r rounds, there exists an algorithm solving the networked permutation
identity over [1, N ] within O(r) rounds.
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Fig. 6. Graph L′(πA, πB) when πA ◦ πB is not identical (πA ◦ πB(i) = j)

The proof is almost the same as that for Lemma 3, and thus we omit it.
Finally we obtain the following theorem.

Theorem 5. Any deterministic algorithm solving the shortest s-t path problem,
its worst-case running time is Ω(

√
n/ logn) rounds.

5 Lower Bound for the Graphs with O(nε) Hop-Count
Diameter

For the case of larger diameter graphs, we obtain stronger bounds by slightly
modifying the framework graph G(N,M). Since the fundamental idea has been
proposed in the prior work [1], we state only the results in this paper. Theorem 4
and 5 are extended as follows:

Theorem 6. Any deterministic algorithm solving the MST problem or the
shortest s-t path problem, its worst-case running time is Ω(

√
n/ logn) rounds

for graphs with diameter O(log n). In addition, for graphs with diameter O(nε)
(0 < ε < 1/2), the worst-case running time is Ω(

√
n) rounds.

6 Concluding Remarks

In this paper, we introduced a new function called permutation identity. By
using the seminal reduction framework by Das Sarma et al.[1], we show the de-
terministic Ω(

√
n/ logn)-round lower bounds for MST and shortest s-t path.

Furthermore, for graph with for graphs with O(nε) hop-count diameter, we ob-
tained Ω(

√
n) lower bounds.

An open problem is that we show the same lower bounds for randomized
algorithms. Because of the analogy to the equality function, the permutation
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identity problem is unlikely to have the same lower bound (i.e., Ω(N logN)
bits) for randomized protocols. It is an interesting future work to explore a
(two-party) function over permutations exhibiting Ω(N logN)-bit randomized
lower bound.

References

1. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. In: Proc. of the 43rd Annual ACM Symposium on Theory of Com-
puting, pp. 363–372 (2011)

2. Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and achieving
symmetry in chains and rings. Journal of the ACM 55(1) (2008)

3. Elkin, M.: An unconditional lower bound on the hardness of approximation of
distributed minimum spanning tree problem. In: Proc the 30th ACM Symposium
on Theory of Computing(STOC), pp. 331–340 (2004)

4. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal on Computing 27(1), 302–316
(1998)

5. Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation. In: Afek, Y. (ed.)
DISC 2013. LNCS, vol. 8205, pp. 1–15. Springer, Heidelberg (2013)

6. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and ap-
plications. In: Proc. of the 2012 ACM Symposium on Principles of Distributed
Computing (PODC), pp. 355–364 (2012)

7. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press (1997)

8. Lenzen, C., Patt-Shamir, B.: Fast routing table construction using small messages:
Extended abstract. In: Proc. of the 45th Annual ACM Symposium on Symposium
on Theory of Computing (STOC), pp. 381–390 (2013)

9. Lenzen, C., Peleg, D.: Efficient distributed source detection with limited band-
width. In: Proc. of the 2013 ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 375–382 (2013)

10. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed mst for constant diameter
graphs. Distributed Computing 18(6), 453–460 (2006)

11. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Proc. of the 46th ACM Symposium on Theory of Computing (STOC),
pp. 565–573 (2014)

12. Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower
bound on distributed random walk computation. In: Proc. of the 30th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC),
pp. 257–266 (2011)

13. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network diameter and
girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part II. LNCS, vol. 7392, pp. 660–672. Springer, Heidelberg (2012)

14. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM Journal on Com-
puting 30(5), 1427–1442 (2000)

15. Yao, A.C.-C.: Some complexity questions related to distributive comput-
ing(preliminary report). In: Proc. of the 11th Annual ACM Symposium on Theory
of Computing (STOC), pp. 209–213 (1979)



On Visibly Pushdown Trace Languages

Friedrich Otto

Fachbereich Elektrotechnik/Informatik, Universität Kassel,
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

Abstract. We present a characterization of the class of (linearizations
of) visibly pushdown trace languages in terms of cooperating distributed
systems (CD-systems) of stateless deterministic restarting automata with
window size one that use an external pushdown store for computing the
global successor relation.

1 Introduction

Input-driven languages were already presented in 1983 by von Braunmühl and
Verbeek [6], but they became the focus of much attention only after their rein-
vention by Alur and Madhusudan [2] under the name of visibly pushdown lan-
guages. This class of languages properly extends the regular languages by some
important context-free concepts, but they are still sufficiently restricted to inherit
many closure and decidability results from the regular languages. In particular,
they have found applications in the modelling of questions concerning the pro-
gram analysis of recursive programs (see, e.g., [17]). On the other hand, trace
languages have been studied with regard to their ability to model concurrent
processes (see, e.g., [7,9]), and by combining these two concepts a variant of the
visibly pushdown trace languages is used in [5] to analyze concurrent recursive
programs. In that paper the visibly pushdown trace languages are realized by so-
called concurrent visibly pushdown automata (CVPA) that combine the concept
of a visibly pushdown automaton with that of Zielonka’s asynchronous automa-
ton [18]. However, for the concurrent pushdown alphabets considered in [5], it
is assumed that the push and pop operations of any process are independent of
all the push and pop operations of any other process.

Here we study the class of formal languages that occur as linearizations of
visibly pushdown trace languages without enforcing any such restriction, that
is, the dependency relation D on a given pushdown alphabet Σ is completely
independent of the actual partitioning of Σ into call, return, and internal sym-
bols. Our main result gives a characterization of the class of (linearizations of)
all visibly pushdown trace languages in terms of a cooperating distributed sys-
tem (CD-system) of stateless deterministic restarting automata of a particularly
simple type, the so-called VPD-CD-R(1)-systems.

In [11] CD-systems of stateless deterministic R(1)-automata were introduced.
Although the restarting automata of this type are very restricted in their com-
putational power, these systems accept a class of semi-linear languages that

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 389–400, 2015.
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contains all (linearization of) rational trace languages. In [13] these CD-systems
were then extended by introducing an external pushdown store that is used to
determine the successor of the current automaton. Essentially such a system
can be interpreted as a traditional pushdown automaton, in which the opera-
tion of reading an input symbol has been replaced by a stateless deterministic
R(1)-automaton. Hence, not the first symbol is necessarily read, but some sym-
bol that can be reached by this automaton by moving across a prefix of the
current input word. Other variants of pushdown automata that do not simply
read their input sequentially from left to right have been studied before. For
example, in [3] pushdown automata are considered that can reverse their input.
It is shown in [13] that these types of CD-systems yield an automata-theoretical
characterization for the class of (linearizations of) context-free trace languages
(see also [14] for an extended presentation).

Here we combine the idea of the above CD-systems with an external pushdown
with the idea of a visibly pushdown automaton. We will see that the class of
languages accepted by these VPD-CD-R(1)-systems properly contains (the li-
nearizations of) all visibly pushdown trace languages. In fact, a subclass of these
CD-systems will be described that characterizes (the linearizations of) all visibly
pushdown trace languages. We also present a deterministic class of our CD-
systems, but we will see that the class of languages they accept is incomparable
under inclusion to (the linearizations of) all visibly pushdown trace languages.

This paper is structured as follows. In Section 2 we restate the necessary
notions and notation on traces and trace languages, and in the next section we
describe the CD-systems of stateless deterministic R(1)-automata and present
the announced VPD-CD-R(1)-systems. Section 4 presents our characterization
result, and in Section 5 we discuss the deterministic variant of our CD-systems.

2 Visibly Pushdown Trace Languages

Let Σ be a finite alphabet, and let D be a binary relation on Σ that is reflexive
and symmetric. Then D is a dependency relation on Σ, and ID = (Σ×Σ)�D is
the corresponding independence relation. Obviously, the relation ID is irreflexive
and symmetric. The dependency relation D induces a binary relation ≡D on Σ∗

that is defined as the smallest congruence relation (with respect to the operation
of concatenation) that contains the set of pairs { (ab, ba) | (a, b) ∈ ID }. For
w ∈ Σ∗, the congruence class of w mod ≡D is denoted by [w]D, that is, [w]D =
{ z ∈ Σ∗ | w ≡D z }. These congruence classes are called traces, and the factor
monoid M(D) = Σ∗/≡D is a trace monoid (see, e.g., [7]). By ϕD we denote the
morphism ϕD : Σ∗ → M(D) that is defined by w (→ [w]D for all words w ∈ Σ∗.

The underlying idea is the following. The letters of Σ are interpreted as ac-
tions, and (a, b) ∈ ID expresses the fact that actions a and b are independent,
which means that they can be executed in parallel, or when realized on a single
processor, then they can be executed in any order. In contrast, if (c, d) ∈ D,
then the actions c and d are dependent on each other, which means that the
sequences of actions cd and dc will have different effects.
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For a subset S of the trace monoid M(D), the set of words L = ϕ−1
D (S) ⊆ Σ∗

is called a linearization of S. Now a language L ⊆ Σ∗ is called (the linearization
of) a rational trace language, if there exists a dependency relation D on Σ and
a regular language R ⊆ Σ∗ such that L = ϕ−1

D (ϕD(R)) =
⋃

w∈R[w]D. By LRAT
we denote the set of linearizations of all rational trace languages.

Analogously, a language L ⊆ Σ∗ is the linearization of a context-free trace lan-
guage, if there exist a dependency relation D on Σ and a context-free language
R ⊆ Σ∗ such that L = ϕ−1

D (ϕD(R)) =
⋃

w∈R[w]D [1,4]. By LCF we denote the
set of all linearizations of context-free trace languages.

Here we are interested in a particular subclass of LCF , the class LVPD of
linearizations of all visibly pushdown trace languages. Following the presentation
in [2], a language L is a visibly pushdown language if it is accepted by a visibly
pushdown automaton (or VPDA for short). A VPDA is a restricted type of push-
down automaton the input alphabet Σ of which is a pushdown alphabet, that
is, it is partitioned into three disjoint subsets Σc of call symbols, Σr of return
symbols, and Σint of internal symbols. A VPDA M over Σ = Σc ∪̇Σr ∪̇Σint is
defined by a 5-tuple M = (Q,Qin, Γ, δ,Qfin), where

– Q is a finite set of states,Qin ⊆ Q is the subset of initial states, andQfin ⊆ Q
is the subset of final states,

– Γ is a finite stack alphabet not containg the bottom marker ⊥,
– and δ ⊆ (Q×Σc ×Q× Γ ) ∪ (Q×Σr × (Γ ∪ {⊥})×Q) ∪ (Q×Σint ×Q) is

a transition relation.

A transition of the form (q, a, q′, A), where q, q′ ∈ Q, a ∈ Σc, and A ∈ Γ , is
a push transition. On reading the letter a, M can push A onto its pushdown and
switch from state q to state q′. Observe that this action is not influenced by the
content of the pushdown. A transition of the form (q, a, A, q′), where q, q′ ∈ Q,
a ∈ Σr, and A ∈ Γ ∪ {⊥}, is a pop transition. On reading the letter a, M can
remove the symbol A from the top of its pushdown and switch from state q to q′,
if A ∈ Γ ; if, however, A = ⊥, then on reading a, M can switch from state q to q′

without changing the content of its pushdown, if ⊥ is the topmost symbol on
the pushdown. Finally, a transition of the form (q, a, q′), where q, q′ ∈ Q and
a ∈ Σint, is an internal transition. On reading the letter a, M can switch from
state q to q′ without looking at the pushdown at all.

Obviously, the content of the pushdown is always a word of the form ⊥α for
some α ∈ Γ ∗. A word w ∈ Σ∗ is accepted by M , if there exists a computa-
tion of M that starts from an initial configuration of the form (q0, w,⊥), where
q0 ∈ Qin, and that ends with an accepting configuration of the form (q1, ε,⊥α)
for some q1 ∈ Qfin and a word α ∈ Γ ∗. By L(M) we denote the language
accepted by M , and VPL denotes the class of all visibly pushdown languages.

It is known that REG � VPL � CFL holds, that VPL is closed under union,
intersection, complementation, product, and Kleene star, and that each VPDA
can effectively be converted into an equivalent deterministic VPDA [2].

Definition 1. Let Σ = Σc ∪̇Σr ∪̇Σint be a pushdown alphabet. A language
L ⊆ Σ∗ is the linearization of a visibly pushdown trace language, if there exist
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a dependency relation D on Σ and a visibly pushdown language R ⊆ Σ∗ such
that L = ϕ−1

D (ϕD(R)) =
⋃

w∈R[w]D. By LVPD(D) we denote the set of all li-
nearizations of visibly pushdown trace languages obtained from (Σ,D), and
LVPD is the set of all linearizations of visibly pushdown trace languages.

We illustrate this definition by a simple example.

Example 1. Let R = { an(bc)n | n ≥ 0 }, where Σc = {a}, Σr = {c}, and Σint =
{b}. Then it is easily seen that R is a visibly pushdown language over Σ. Let
D = {(a, a), (a, b), (a, c), (b, a), (b, b), (c, a), (c, c)}, that is, xbcy ≡D xcby holds
for all x, y ∈ Σ∗. Then L = ϕ−1

D (ϕD(R)) = { anv | n ≥ 0, v ∈ {b, c}∗, |v|b =
|v|c = n }, which is not even context-free.

3 CD-Systems of Stateless Deterministic R(1)-Automata

Stateless types of restarting automata were introduced in [8]. Here we are
only interested in the most restricted form of them, the stateless deterministic
R-automaton of window size one. A stateless deterministic R(1)-automaton is
a one-tape machine that is described by a 5-tuple M = (Σ, c, $, 1, δ), where
Σ is a finite alphabet, the symbols c, $ �∈ Σ serve as markers for the left and
right border of the work space, respectively, the size of the read/write window is
one, and δ : Σ ∪ {c, $} → {MVR,Accept, ε} is the (partial) transition function.
There are three types of transition steps: move-right steps (MVR), which shift
the window one step to the right, combined rewrite/restart steps (denoted by ε),
which delete the content a of the window, thereby shortening the tape, and place
the window over the left end of the tape, and accept steps (Accept), which cause
the automaton to halt and accept. Finally, we use the notation δ(a) = ∅ to ex-
press the fact that the function δ is undefined for the symbol a. Some additional
restrictions apply in that the sentinels c and $ must not be deleted, and that the
window must not move right on seeing the $-symbol.

A configuration of M is described by a pair (α, β), where either α = ε (the
empty word) and β ∈ {c} ·Σ∗ · {$} or α ∈ {c} ·Σ∗ and β ∈ Σ∗ · {$}; here αβ is
the current content of the tape, and it is understood that the head scans the first
symbol of β. A restarting configuration is of the form (ε, cw$), where w ∈ Σ∗;
to simplify the notation such a configuration is usually written as cw$.

If M = (Σ, c, $, 1, δ) is a stateless deterministic R(1)-automaton, then we can
partition its alphabet Σ into four disjoint subalphabets:

(1) ΣM = { a ∈ Σ | δ(a) = MVR }, (3) ΣA = { a ∈ Σ | δ(a) = Accept },
(2) Σε = { a ∈ Σ | δ(a) = ε }, (4) Σ∅ = { a ∈ Σ | δ(a) = ∅ }.

To exclude some trivial cases we assume in the following that δ(c) = MVR holds
for each stateless deterministic R(1)-automaton considered.

In [10] CD-systems of restarting automata were introduced. Here we study
a restricted variant of the pushdown CD-system of stateless deterministic R(1)-
automata (PD-CD-R(1)-system) of [13,14]. Such a system consists of a CD-system
of stateless deterministic R(1)-automata and an external pushdown store. For-
mally, it is defined as a tuple M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ), where
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– I is a finite set of indices, and Σ is a finite input alphabet,
– for all i ∈ I, Mi = (Σ, c, $, 1, δi) is a stateless deterministic R(1)-automaton

on Σ, and σi ⊆ I is a non-empty set of possible successors for Mi,
– Γ is a finite pushdown alphabet, and ⊥ �∈ Γ is the bottom marker of the

pushdown store,
– I0 ⊆ I is the set of initial indices, and
– δ : (I ×Σ × (Γ ∪ {⊥}))→ 2I×(Γ∪{⊥})∗ is the successor relation.

A configuration ofM is a triple (i, ω,⊥α), where i ∈ I, ω ∈ c·Σ∗ ·$∪{Accept},
and α ∈ Γ ∗. It describes the situation that the component automaton Mi has
just been activated, cw$ is the corresponding restarting configuration, and ⊥α
is the current content of the pushdown with the last symbol of α at the top. An
initial configuration of M on input w ∈ Σ∗ has the form (i0, cw$,⊥) for any
i0 ∈ I0, and an accepting configuration has the form (i,Accept,⊥) for any i ∈ I.

The single-step computation relation ⇒M that M induces on the set of
configurations is defined by the following three rules, where i ∈ I, w ∈ Σ∗,
α ∈ ⊥ · Γ ∗, A ∈ Γ , and, for each i ∈ I, Σ

(i)
M , Σ

(i)
ε , and Σ

(i)
A are the subsets of

Σ according to the above definition that correspond to the automaton Mi:

(1) (i, cw$, αA) ⇒M (j, cw′$, αη) if ∃u ∈ Σ
(i)
M

∗
, a ∈ Σ

(i)
ε , v ∈ Σ∗ such that

w = uav, w′ = uv, and (j, η) ∈ δ(i, a, A);

(2) (i, cw$,⊥) ⇒M (j, cw′$,⊥η) if ∃u ∈ Σ
(i)
M

∗
, a ∈ Σ

(i)
ε , v ∈ Σ∗ such that

w = uav, w′ = uv, and (j,⊥η) ∈ δ(i, a,⊥);

(3) (i, cw$, α) ⇒M (i,Accept, α) if ∃u ∈ Σ
(i)
M

∗
, a ∈ Σ

(i)
A , v ∈ Σ∗ such that

w = uav, or w ∈ Σ
(i)
M

∗
and δi($) = Accept.

Notice that the content of the pushdown store is always of the form ⊥α for some
α ∈ Γ ∗. By ⇒∗

M we denote the computation relation ofM, which is the reflexive
and transitive closure of the relation ⇒M. The language L(M) accepted by
M consists of all words for which M has an accepting computation, that is,

L(M) = {w ∈ Σ∗ | ∃i0 ∈ I0 ∃i ∈ I : (i0, cw$,⊥) ⇒∗
M (i,Accept,⊥) }.

Thus, the system M accepts if and when the currently active component
Mi executes an accepting tail computation starting from the current restarting
configuration cw′$, and the pushdown store just contains the bottom marker ⊥.

Definition 2. A PD-CD-R(1)-system M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) is in
strong normal form if it satisfies the following conditions, where, for all i ∈ I,

Σ
(i)
M , Σ

(i)
ε , Σ

(i)
A , Σ

(i)
∅ is the partitioning of alphabet Σ for the automaton Mi:

(1) ∃ i+ ∈ I : δi+(c) = MVR, δi+($) = Accept, and Σ
(i+)
∅ = Σ;

(2) ∀i ∈ I � {i+} : δi(c) = MVR, |Σ(i)
ε | = 1, Σ

(i)
A = ∅, and δi($) = ∅.

Thus, ifM is in strong normal form, then it has a unique component Mi+ that
can execute accept instructions, but it only accepts the empty word, while all
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other components each delete a single kind of letter. In [13] it is shown that each
PD-CD-R(1)-system M can effectively be converted into a PD-CD-R(1)-system
M′ in strong normal form such that L(M′) = L(M). By L(PD-CD-R(1)) we
denote the class of languages that are accepted by PD-CD-R(1)-systems. In [13]
a particular subclass of these systems is described that characterizes the class of
linearizations of all context-free trace languages.

Now we introduce the restricted model of the PD-CD-R(1)-system announced
above, where Σ = Σc ∪̇Σr ∪̇Σint is a pushdown alphabet.

Definition 3. A visibly pushdown-CD-R(1)-system (a VPD-CD-R(1)-system
for short) over Σ is a PD-CD-R(1)-system M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ)
in strong normal form that satisfies the following additional restrictions:

[Push] ∀a ∈ Σc ∀i ∈ I : if Σ
(i)
ε = {a}, then ∃Γ (a, i) ⊆ Γ such that

δ(i, a, B) = { (j, BA) | j ∈ σi, A ∈ Γ (a, j) } for all B ∈ Γ ∪ {⊥},
that is, if component automaton Mi erases the input letter a ∈ Σc, then a sym-
bol from the set Γ (a, i) is pushed onto the pushdown store. This operation is
independent of the current topmost symbol on the pushdown.

[Pop] ∀a ∈ Σr ∀i ∈ I : if Σ
(i)
ε = {a}, then ∃Γ (a, i) ⊆ Γ ∪ {⊥} such that

− δ(i, a, A) = { (j, ε) | j ∈ σi } for all A ∈ Γ (a, i)� {⊥},
− δ(i, a,⊥) = { (j,⊥) | j ∈ σi }, if ⊥ ∈ Γ (a, i), and
− δ(i, a, B) = ∅ for all B ∈ (Γ ∪ {⊥})� Γ (a, i),

that is, if component automaton Mi erases the input letter a ∈ Σr, then a sym-
bol from the set Γ (a, i) must be popped from the pushdown store unless it only
contains the bottom marker ⊥.

[Internal] ∀a ∈ Σint ∀i ∈ I : if Σ
(i)
ε = {a}, then

δ(i, a, B) = { (j, B) | j ∈ σi } for all B ∈ Γ ∪ {⊥},
that is, if component automaton Mi erases the input letter a ∈ Σint, then the
pushdown store is not used in the choice of the successor component.

An input word w ∈ Σ∗ is accepted by M, if there exists a computation of the
form (i0, cw$,⊥) ⇒∗

M (i+,Accept,⊥α) for some i0 ∈ I0 and α ∈ Γ ∗. As usual
we denote the language of all input words that are accepted by M as L(M).

Observe that it is not required that the pushdown only contains the bottom
marker ⊥ at the end of an accepting computation.

Example 2. Let L = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0 }, and let M =
(I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) be the VPD-CD-R(1)-system that is defined byΣc =
{a}, Σr = {c}, and Σint = {b}, I = {a1, a2, b, c1, c2,+}, and Γ = {C,D}, the
component automata are defined by the following transition functions:

δa1(a) = ε, δb(b) = ε, δc1(c) = ε, δc2(c) = ε, δ+($) = Accept,
δa2(a) = ε, δb(c) = MVR, δc1(b) = MVR, δc2(b) = MVR,

σa1 = {a2, b}, σa2 = {a2, b}, σb = {c1, c2}, σc1 = {+}, σc2 = {b}, σ+ = {+},
and I0 = {a1,+}, and δ is defined as follows, where A ∈ Γ ∪ {⊥}:

(1) δ(a1, a, A) = {(a2, AD), (b, AD)}, (4) δ(c1, c,D) = {(+, ε)},
(2) δ(a2, a, A) = {(a2, AC), (b, AC)}, (5) δ(c2, c, C) = {(b, ε)},
(3) δ(b, b, A) = {(c1, A), (c2, A)},
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and for all other tripels, δ yields the empty set. The letter a is the only one in Σc,
and Ma1 and Ma2 are those component automata that can erase this letter. We
have Γ (a1, a) = {D} and Γ (a2, a) = {C}. The letter c is the only one in Σr,
and Mc1 and Mc2 are those component automata that can erase this letter. We
have Γ (c1, c) = {D} and Γ (c2, c) = {C}.

The automaton M+ just accepts the empty word, while Ma1 and Ma2 delete
the first letter, if it is an a; otherwise, they get stuck. The automaton Mb reads
across c’s and deletes the first b it encounters, and analogously, Mc1 and Mc2

read across b’s and delete the first c they encounter. Thus, we see from the
successor sets that M can only accept certain words of the form amv such that
v ∈ {b, c}∗. In fact, it can be shown that M accepts iff m = |v|b = |v|c holds.
Hence, we see that L(M) = L.

By L(VPC-CD-R(1)) we denote the class of languages that are accepted by
VPC-CD-R(1)-systems. When Σint = Σ, then a VPC-CD-R(1)-automaton over
Σ does not use its pushdown at all. It now follows easily that VPC-CD-R(1)-
systems can simulate the stl-det-local-CD-R(1)-systems of [11,12]. As the lan-
guage L of Example 2 is not accepted by a system of that type, we have the
following result.

Proposition 1. L(stl-det-local-CD-R(1)) � L(VPC-CD-R(1)).

Further, VPD-CD-R(1)-systems accept all visibly pushdown languages, as from
a given VPDA we can easily construct a VPD-CD-R(1)-system that accepts the
same language

Proposition 2. VPL � L(VPD-CD-R(1)).

Let ψ : Σ∗ → Nn denote the Parikh mapping, where Σ = {a1, . . . , an}. Ap-
plying a construction similar to the one used in [14], we can derive the following
result.

Theorem 1. Each language L ∈ L(VPD-CD-R(1)) contains a sublanguage E ∈
VPL such that ψ(L) = ψ(E) holds. In fact, a VPDA for E can be constructed
effectively from a VPD-CD-R(1)-system for L.

The context-free language L = { anban | n ≥ 1 } does not contain any sublan-
guage that is a visibly pushdown language and that is letter-equivalent to the
language itself. Hence, Theorem 1 yields the following negative result.

Proposition 3. L = { anban | n ≥ 1 } �∈ L(VPD-CD-R(1)).

As PD-CD-R(1)-systems accept all context-free languages, the following proper
inclusion can be derived.

Proposition 4. L(VPC-CD-R(1)) � L(PD-CD-R(1)).

While the language L = { anv | v ∈ {b, c}∗, |v|b = |v|c = n } of Example 2 is
accepted by a VPD-CD-R(1)-system, the intersection L ∩ (a∗ · b∗ · c∗) of L with
the regular set a∗ · b∗ · c∗ is not even accepted by any PD-CD-R(1)-system (see
[14], Prop. 3.11). Thus, we have the following closure and non-closure results.



396 F. Otto

Theorem 2. The language class L(VPC-CD-R(1)) is effectively closed under
union, but it is neither closed under complement, nor under intersection, nor
under intersection with regular sets.

In the following we consider a subclass of the VPC-CD-R(1)-systems that
characterizes the visibly pushdown trace languages.

4 Characterizing the Visibly Pushdown Trace Languages

We are interested in the (linearizations of) visibly pushdown trace languages. By
a modification of the proof of Proposition 2, the following result can be shown.

Theorem 3. If D is a dependency relation on a finite pushdown alphabet Σ =
Σc ∪̇Σr ∪̇Σint, then LVPD(D) ⊆ L(VPD-CD-R(1)).

The language L′ = {wam | |w|a = |w|b = |w|c ≥ 1,m ≥ 1 } on Σ = {a, b, c}
is accepted by a stl-det-local-CD-R(1)-system ([12], Example 4.15), and hence, it
is accepted by a VPD-CD-R(1)-system by Proposition 1, but as shown in [14],
Prop. 4.8, this language is not the linearization of any context-free trace language
over Σ. Thus, we obtain the following result.

Corollary 1. LVPD � L(VPD-CD-R(1)).

We now concentrate on a restricted class of VPD-CD-R(1)-systems.

Definition 4. Let M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) be a VPD-CD-R(1)-system
that satisfies the following condition:

(∗) ∀i, j ∈ I : Σ
(i)
ε = Σ

(j)
ε implies that Σ

(i)
M = Σ

(j)
M ,

that is, if two component automata erase the same letter, then they also read
across the same subset of Σ. With M we associate the binary relation IM =⋃

i∈I(Σ
(i)
M × Σ

(i)
ε ), that is, (a, b) ∈ IM iff there exists a component automaton

Mi such that δi(a) = MVR and δi(b) = ε. Further, let DM = (Σ ×Σ)� IM.

Observe that the relation IM is necessarily irreflexive, but it will in general
not be symmetric. Now the following characterization can be established.

Theorem 4. Let M be a VPD-CD-R(1)-system over Σ satisfying condition (∗)
above. If the associated relation IM is symmetric, then DM is a dependency
relation on Σ, and L(M) ∈ LVPD(DM). In fact, from M one can construct
a VPDA B over Σ such that L(M) =

⋃
u∈L(B)[u]DM .

The system M constructed in the proof of Theorem 3 satisfies property (∗),
and the associated relation IM coincides with the relation ID, and hence, it is
symmetric. Thus, Theorems 3 and 4 yield the following characterizations.

Corollary 2. A language L ⊆ Σ∗ is the linearization of a visibly pushdown
trace language if and only if there exists a VPD-CD-R(1)-system M satisfying
condition (∗) such that the relation IM is symmetric and L = L(M).
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5 Deterministic VPD-CD-R(1)-Systems

It is known that, from a given VPDA M , a deterministic VPDA M ′ can be
constructed such that L(M ′) = L(M) holds [2]. Does a corresponding result
hold for VPD-CD-R(1)-systems that accept linearizations of visibly pushdown
trace languages?

In [15] a deterministic variant of the PD-CD-R(1)-systems was introduced and
studied, the deterministic pushdown CD-systems of R(1)-automata, or det-PD-
CD-R(1)-systems, and it was show that the language class L(det-PD-CD-R(1)) is
incomparable to the class of linearizations of context-free trace languages with
respect to inclusion. Here we adjust the notion of a deterministic PD-CD-R(1)-
system to obtain a deterministic variant of the VPD-CD-R(1)-system.

Definition 5. A deterministic visibly pushdown-CD-R(1)-system (or det-VPD-
CD-R(1)-system) over a pushdown alphabet Σ = Σc ∪̇Σr ∪̇Σint is a det-PD-
CD-R(1)-system M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, i0, δ) that satisfies the following
additional restrictions:

[Push] ∀a ∈ Σc ∀i ∈ I : if a ∈ Σ
(i)
ε , then ∃j ∈ σi ∃A ∈ Γ such that

δ(i, a, B) = (j, BA) for all B ∈ Γ ∪ {⊥},
that is, if component automaton Mi erases the input letter a ∈ Σc, then
a uniquely determined symbol A ∈ Γ is pushed onto the pushdown store. This
operation is independent of the current topmost symbol on the pushdown.

[Pop] ∀a ∈ Σr ∀i ∈ I : if a ∈ Σ
(i)
ε , then ∀A ∈ Γ ∪{⊥} ∃j ∈ σi such that

− δ(i, a, A) = (j, ε), if A ∈ Γ, and
− δ(i, a,⊥) = (j,⊥), if A = ⊥,

that is, if component automaton Mi erases the input letter a ∈ Σr, then
a symbol must be popped from the pushdown store unless it only contains the
bottom marker ⊥.

[Internal] ∀a ∈ Σint ∀i ∈ I : if a ∈ Σ
(i)
ε , then ∃j ∈ σi such that

δ(i, a, B) = (j, B) for all B ∈ Γ ∪ {⊥},
that is, if component automaton Mi erases the input letter a ∈ Σint, then the
pushdown store is not used in the choice of the successor component.

An input word w ∈ Σ∗ is accepted by M, if there exists a computation of the
form (i0, cw$,⊥) ⇒∗

M (i, cx$,⊥α) ⇒∗
Mi

(i,Accept,⊥α) for some i ∈ I and some
α ∈ Γ ∗, that is, if the computation that starts with the initial configuration of M
on input w ends with a component Mi that accepts the current tape contents cx$.
Observe that here it is not required that the given input is completely erased by
an accepting computation.

Again we illustrate this definition by a simple example, in which we consider
a slight variation of the language of Example 2.

Example 3. Let LEx3 = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0, and |v1|b ≥
|v1|c for each prefix v1 of v }. In analogy to the language considered in Exam-
ple 2 it follows that this language is not context-free and that it is not accepted
by any stl-det-local-CD-R(1)-system.
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Let M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, 0, δ) be defined as follows, where Σ is turned
into a pushdown alphabet by taking Σc = {a}, Σr = {c}, and Σint = {b}:

– I = {0, 1, 2, 3,+}, and Γ = {C,D},
– M0, M1, M2, M3, and M+ are defined by the following transition functions:

δ0($) = Accept, δ0(a) = ε, δ1(a) = ε, δ1(b) = ε,
δ+($) = Accept, δ2(b) = ε, δ3(c) = ε, δ3(b) = MVR,

– σ0 = {1}, σ1 = {1, 3}, σ2 = {3}, σ3 = {2,+}, and
– δ is defined as follows, where A ∈ Γ ∪ {⊥}:

(1) δ(0, a, A) = (1, AD), (4) δ(2, b, A) = (3, A),
(2) δ(1, a, A) = (1, AC), (5) δ(3, c, C) = (2, ε),
(3) δ(1, b, A) = (3, A), (6) δ(3, c,D) = (+, ε).

It is easily seen that L(M) = LEx3 holds.

As each visibly pushdown language is accepted by a deterministic VPDA, and
as a deterministic VPDA can easily be turned into a det-VPD-CD-R(1)-system
for the same language, we have the following inclusion result.

Proposition 5. VPL � L(det-VPD-CD-R(1)).

This inclusion is proper as seen from the language LEx3. Further, Theorem 1
also holds for det-VPD-CD-R(1)-systems. Next we consider some of the closure
properties of the class L(det-VPD-CD-R(1)).

Theorem 5. L(det-VPD-CD-R(1)) is closed under complement. In fact, from
a given det-VPD-CD-R(1)-system M for a language L over Σ, one can effectively
construct a det-VPD-CD-R(1)-system Mc for the language Lc = Σ∗ � L.

Unfortunately, L(det-VPD-CD-R(1)) is not closed under intersection with reg-
ular sets, as LEx3∩ (a∗ · b∗ · c∗) = { anbncn | n ≥ 0 }, which does not contain any
sublanguage that is a visibly pushdown language and that is letter-equivalent to
LEx3 ∩ (a∗ · b∗ · c∗). Hence, we obtain the following nonclosure results.

Corollary 3. L(det-VPD-CD-R(1)) is not closed under union or intersection.

It follows that L(det-VPD-CD-R(1)) is a proper subclass of L(VPD-CD-R(1))
that is incomparable to the class LVPD with respect to inclusion.

6 Conclusion

We have introduced a class of pushdown CD systems of restarting automata that
accepts a proper superclass of the linearizations of all visibly pushdown trace
languages, and we have characterized the latter class in terms of a restricted
type of pushdown CD systems. In addition, we have considered a deterministic
type of these systems, but as it turned out they do not accept the linearizations
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L(PD-CD-R(1))

LCF

������������������������������� L(det-PD-CD-R(1))

�����������������
L(VPD-CD-R(1))

��

CFL

�������

LVPD

�� �������������������������������
L(det-VPD-CD-R(1))

�� �������������������
L(stl-det-local-CD-R(1))

��

VPL

����������������

��

�������

LRAT

�� �������������������������������
L(stl-det-global-CD-R(1))

�� �������������������

REG

��

�������
����������������

Fig. 1. Hierarchy of language classes accepted by various types of CD-systems of stl-
det-R(1)-automata. Each arrow represents a proper inclusion, and classes that are not
connected by a sequence of arrows are incomparable under inclusion.

of all visibly pushdown trace languages. The diagram in Figure 1 summarizes
the hierarchy results that we have obtained for the classes of languages that are
accepted by (deterministic and nondeterministic) VPD-CD-R(1)-systems.

The emptiness problem and the finiteness problem are decidable for context-
free languages. From Theorem 1 we know that we can construct a visibly push-
down sublanguage E of L(M) from a given (det-)VPD-CD-R(1)-system M such
that E is letter-equivalent to L(M). Hence, L(M) is empty (finite) if and only
if E is empty (finite). Further, L(det-VPD-CD-R(1)) is effectively closed under
complementation. As L(M) = Σ∗ iff Σ∗ � L(M) = ∅, we immediately obtain
that universality is decidable for these systems.

On the other hand, for stl-det-global-CD-R(1)-systems, the inclusion problem is
undecidable. As the latter systems can be seen as a special type of det-VPD-CD-
R(1)-systems, the inclusion problem is also undecidable for our systems. Actually,
it is even undecidable whether L(M) is contained in a given regular language,
or whether it contains a given regular language (see [16], Cor. 5.4).
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Abstract. We study an optimization problem with applications in de-
sign and analysis of resilient communication networks: given two vertices
s, t in a graph G = (V,E), find a vertex set X ⊂ V of minimum cardinal-
ity, such that X and its neighborhood constitute an s-t vertex separator.
Although the problem naturally combines notions of graph connectivity
and domination, its computational properties significantly differ from
these relatives.

In particular, we show that on general graphs the problem cannot be

approximated to within a factor of 2log
1−δ n, with δ = 1/ log logc n and

arbitrary c < 1/2 (if P �= NP). This inapproximability result even applies
if the subgraph induced by a solution set has the additional constraint of
being connected. Furthermore, we give a 2

√
n-approximation algorithm

and study the problem on graphs with bounded node degree. With Δ
being the maximum degree of nodes V \ {s, t}, we identify a (Δ + 1)
approximation algorithm.

Keywords: graph theory, approximation algorithms, inapproximability.

1 Introduction

In recent years, the development of secure overlay networks has strongly ad-
vanced (e.g. [1,2,3]). As a consequence, we are approaching a situation, where
the effort an attacker needs to spend on identifying worthwile targets may exceed
the costs of mounting the actual attack. This is especially true, since huge bot-
nets, which are able to conduct massive denial-of-service attacks, can be cheaply
rent on the internet. In contrast, while actively observing a network node will
reliably reveal its communication partners, it might be connected to a risk of
detection, a risk of failure or a considerable amount of resources necessary to
obtain the involved nodes’ addresses.

Motivated by these facts, we study a problem that we term as Cut Do-

mination: given a graph G and a pair of particular nodes s and t, we seek to
select a node set X of minimum cardinality such that the nodes in X and their
neighborhood constitute an s-t-vertex-separator.

This problem is posed to an attacker possessing knowledge about the network
topology, but not about actual addresses of the participants (needed to mount
the attack). Examples for such settings are virtual private networks with dynamic
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c© Springer-Verlag Berlin Heidelberg 2015



402 R. Rothenberger, S. Grau, and M. Rossberg

routing [1], where the data itself is encrypted and authenticated, but denial-of-
service attacks may still cause a severe thread.

A related theoretical problem was first described in [4,5], where, given graphG
and a budget x ≤ n, the number of node pairs rendered unreachable by removing
x nodes and their respective neighborhood was to be maximized. The derived
decision problem was shown to be NP-complete, but needs to be solved in order
to build more resilient networks.

Cut Domination differs from this problem as only paths between a specific
node pair s, t are to be disrupted. One can imagine s and t as important and
well-equipped communication partners, leaving the intermediate network nodes
as easier targets for an attack. Although the related network formation problem
is easy to solve (connect s and t by as many isolated, parallel paths as possible),
the properties of Cut Domination are interesting in their own respect and
might provide insight into the practically-motivated problem described in [4,5].

Our contributions are the following: After introducing a problem formalization
in Section 2, we show in Section 3 that generally the Cut Domination problem

cannot be approximated to within a factor of 2log
1−δ n, with δ = 1/ log logc n

and arbitrary c < 1/2 (if P �= NP). This result also holds if the observed node
set has to be connected (Connected Cut Domination) and for the respective
weighted variant (Weighted Cut Domination). In Section 4 we give a 2

√
n-

approximation algorithm for Weighted Cut Domination, which can also be
used to approximate Connected Cut Domination to within a ratio of n2/3

of an optimal solution. Finally, in Section 5, we show a (Δ + 1)-approximation
algorithm for Weighted Cut Domination, with Δ denoting the maximum
degree of nodes V \{s, t}. Since Cut Domination is a special case ofWeighted

Cut Domination, all upper bound results for the weighted variant also apply
to the unweighted version.

2 Problem Definition and Notation

To formalize the studied optimization problem, we first introduce necessary no-
tation: For an undirected graph G = (V,E) and a node u ∈ V , let the inclusive
neighborhood of u be N+(u) = {u} ∪ {v ∈ V | {u, v} ∈ E}. Analogously, for a
set U ⊆ V , let N+(U) =

⋃
u∈U N+(u) be the inclusive neighborhood of U .

Furthermore, for an undirected graph G = (V,E) and non-adjacent nodes
s, t ∈ V , an s-t-vertex-separator is a node set U ⊆ V \ {s, t} with the property
that the removal of U from G disconnects s and t. It is a well-known result, that a
minimum s-t-vertex-separator can be found in polynomial time [6]. Sometimes,
such a set is also called an s-t vertex cut. In the same context, we define an
s-t-cut dominator to be a set U ⊆ V \ {s, t}, so that N+(U)\ {s, t} is an s-t-
vertex-separator of G. In other words, U dominates an s-t-vertex-separator.

Given a simple undirected graph G = (V,E) and two non-adjacent nodes
s, t ∈ V , the Cut Domination problem consists of finding a minimum s-t-cut
dominator. Furthermore, we define the Connected Cut Domination problem
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s t

(a) Smallest s-t-cut dominator (black) and
its dominated s-t-cut (grey)

s t

(b) Smallest connected s-t-cut dominator
(black) and its dominated s-t-cut (grey)

Fig. 1. Variants of cut domination

of finding a connected s-t-cut dominator of minimum cardinality. Examples for
typical solutions are given in Figure 1.

Both problems admit a natural generalization by adding a weight function
w : V → R+ that assigns positive weights to the nodes of G. Trying to find a
(connected) set U ⊆ V \ {s, t} of minimum weight w(U) =

∑
v∈U w(v) dominat-

ing an s-t-separator is called Weighted (Connected) Cut Domination.
In the rest of the paper let the problem size n = |V \ {s, t}|, the number of

nodes excluding s and t.

3 Inapproximability of Cut Domination

We show an approximation-preserving polynomial-time reduction from Red-

Blue Set Cover to Cut Domination.
The Red-Blue Set Cover problem is a generalization of the Set Cover

problem, where the universe U is partitioned into two subsets, a set R of red
elements and a set B of blue elements. We are given a collection of sets S =
{S1, S2, . . . , Sn} over the universe U and have to find a subcollection C ⊆ S
containing all blue elements while also containing a minimum number of red
elements. Let R(C) =

⋃
Si∈C Si ∩R denote the set of red elements covered by

the subcollection C.
Carr et al. showed in [7] that Red-Blue Set Cover is O(2log

1−δ n)-inappro-
ximable with δ = 1/ log logc n for every constant c < 1/2, unless P=NP. This
result even holds for Red-Blue Set Cover with the additional constraint that
every set Si ∈ S only contains one blue and two red elements.

Theorem 1. Cut Domination is O(2log
1−δ n)-inapproximable for every con-

stant c < 1/2, with δ = 1/ log logc n, if P �=NP.

Proof. We are given an instance I = (S, R,B) of Red-Blue Set Cover with
the constraint, that every set contains one blue and two red elements. W.l.o.g.
we can assume, that every red element and every blue element is contained in at
least one set S ∈ S. Furthermore, we assume an arbitrary ordering of the sets in
S. We now build an instance I ′ = (G = (V,E), s, t) of Cut Domination with
the following properties:



404 R. Rothenberger, S. Grau, and M. Rossberg

(1) Every feasible solution C ⊆ S for I corresponds to a feasible solution U ⊆
V \ {s, t} of size |R(C)| for I ′.

(2) For every feasible solution U ⊆ V \ {s, t} for I ′, we can find a solution C ⊆ S
for I with |R(C)| ≤ |U |.

Starting from an empty graph, we first create nodes s and t. Then we add a
complete subgraph of ‘red’ nodes VR = {vr | r ∈ R}, each of them corresponding
to one of the red elements in R. Afterwards, we construct two s-t-pathways, so
called b-connectors, for each blue element b ∈ B and connect them to some of
the ‘red’ nodes. This is done in such a way, that all of the b-connectors have to
be cut to disconnect s and t, while cutting them can be done by selecting pairs
of ‘red’ nodes whose corresponding elements are in a set together with b. The
construction of the b-connectors will be explained in greater detail now, for an
arbitrary, but fixed blue element b ∈ B.

For every set Si ∈ S that contains b, we do the following. First, we create
a pair of nodes ui

l, ui
k corresponding to the red elements rl, rk in Si. Second,

we add edges
{
ui
l , vl
}
and

{
ui
k, vk

}
. Third, we connect both ui

l and ui
k to each

node of the previously created pair for b. If there is no previously created pair
for b, we connect ui

l and ui
k to s. After examining all sets, we connect both nodes

of the lastly created pair to t. This gives us the first b-connector. An example
of such a b-connector can be seen in Fig. 2. By repeating this procedure and
creating node pairs wi

l , w
i
k instead of ui

l, u
i
k, we obtain the second b-connector.

VR

v1

v2 v3

v4

s t

S1 = {b1, r1, r2}

u1
1

u1
2

S3 = {b1, r2, r3}

u3
2

u3
3

S5 = {b1, r3, r4}

u5
4

u5
3

Fig. 2. The first b1-connector

We do this for all blue elements b ∈ B to get the graph G. The construction
can obviously be performed in polynomial time and creates a graph G with
exactly 4|S|+ |R| nodes, excluding s and t. Since every red element appears in
at least one set of S and every set contains exactly two red elements, there can
be at most 2|S| red elements. Thus, it holds that |V (G) \ {s, t}| ≤ 6|S|.

The only thing left for us to show is, how to transform feasible solutions of the
Red-Blue Set Cover instance I to feasible solutions of the Cut Domination

instance I ′ and vice versa while containing their costs.
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Given a solution C ⊆ S of I we determine the set R(C) of red elements
covered by C and take the nodes U = {vr ∈ VR | r ∈ R(C)} as an s-t-cut domi-
nating set in G. Note that U only consists of nodes from VR and does not
contain any node of a b-connector. By definition, it holds that |R(C)| = |U |.
Choosing at least one of the vr ∈ VR, all nodes of VR are dominated since VR

induces a complete subgraph. Therefore the only s-t paths left may lead over the
b-connectors. Consider an arbitrary blue element b ∈ B. Since C is a solution
to I it has to cover b. Consequently, there has to be a set Si ∈ C containing
b. Furthermore, both the red elements rk and rl from Si have to be contained
in R(C). This means, that vrk and vrl are in U . According to the construction,
there are node pairs ui

k, u
i
l and wi

k, w
i
l in the b-connectors and edges

{
vrk , ui

k

}
,{

vrl , ui
l

}
,
{
vrk , wi

k

}
and

{
vrl , wi

l

}
. Due to the fact, that vrk and vrl are chosen,

ui
k, u

i
l, w

i
k and wi

l are dominated, therefore cutting both b-connectors. Since this
holds for every b ∈ B, all b-connectors are cut, thus separating s and t.

Consider now a set U ⊆ V (G) \ {s, t} that dominates an s-t-separator of G.
First, we show that we can choose a set U ′ ⊆ VR with |U ′| ≤ |U | that also
dominates an s-t-separator of G. To do so, we consider the b-connectors. Due
to the construction there are only two ways to dominate a cut of a b-connector:
either by choosing a node of the connector or by choosing two nodes vrk , vrl ∈ VR,
so that {b, rk, rl} ∈ S. In the second case, both b-connectors are cut and we are
done. Otherwise, there has to be at least one node from U on each of the two
b-connectors. Instead of taking these two nodes, we can arbitrarily choose a set
Sj ∈ S with b ∈ Sj and take the nodes vrk , vrl ∈ VR corresponding to the red
elements rk, rl ∈ Sj . By doing so we still cut both b-connectors and additionally
dominate all nodes from VR, if they were not already. We can do this for all
b ∈ B while still containing the size of the solution. This first step ensures that
all b-connectors are cut by nodes in VR. Afterwards, we eliminate all nodes from
V \ VR from the solution to obtain U ′.

We now define R(U ′) to be the set of all red elements whose corresponding
nodes are in U ′. We can choose C as the collection of all sets S ∈ S that contain
only red elements from R(U ′). Since U ′ ⊆ VR and R(C) ⊆ R(U ′) it now holds
that |R(C)| ≤ |R(U ′)| = |U ′|. Our transformation ensures that for every blue
element b ∈ B there are nodes vrk , vrl ∈ U ′ with {b, rk, rl} ∈ S. Especially
rk, rl ∈ R(U ′) and therefore {b, rk, rl} ∈ C. Since this holds for every b ∈ B, C
has to cover all blue elements.

Weighted Cut Domination has to be at least as difficult to approximate
as the unweighted case. Hence, the inapproximability result also holds for the
weighted variant of the problem. The s-t-cut dominating set that can be con-
structed from a Red-Blue Set-Cover solution consists only of nodes from
VR, therefore it is connected. Furthermore, we transform a feasible solution of
the constructed graph G to a solution of the same size that consists only of
nodes from VR. This is possible for every s-t-cut dominating set of G. Especially,
it is possible for every connected s-t-cut dominating set of G. Consequently,
Theorem 1 also holds for Connected Cut Domination.
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4 A 2
√
n-Approximation in General Graphs

We give a 2
√
n-approximation algorithm for Weighted Cut Domination.

Since the unweighted problem is a special case of the weighted variant, the
approximability result holds for both.

Algorithm 1. Weighted Cut Domination Approximation (G, s, t, w)

foreach wi ∈ {w(v) | v ∈ V \ {s, t}} do1

U1 ← ∅;2

while ∃ v ∈ V \ (U1 ∪ {s, t}) : |N+(v)\({s,t}∪N+(U1))|
w(v)

≥
√

n
wi

do3

choose such a node v arbitrarily;4

U1 ← U1 ∪ {v};5

G′ ← G \ (N+(U1) \ {s, t});6

if s and t are in the same connected component H of G′ then7

foreach v ∈ V \ {s, t} do w′(v) ← min
{
w(u) | u ∈ N+(v) \ {s, t}

}
8

C ← min-vertex-cut(H,s, t, w′);
Ci ← ∅;9

foreach v ∈ C do10

v′ ← argmin
{
w(u) | u ∈ N+(v) \ {s, t}

}
;11

Ci ← Ci ∪ {v′};12

Ci ← Ci ∪ U1;13

else14

Ci ← U1;15

return argminX∈{Ci|1≤i≤n}{w(X)};16

Algorithm 1 proceeds as follows: the weights appearing in the graph are, one by
one, considered as maximum weight of a vertex from an optimal solution. For
every weight wi, we compute a candidate solution Ci as follows.

First, we greedily choose nodes v, which dominate at least w(v)
√
n/wi currently

undominated nodes, including themselves, and consider their inclusive neighbor-
hoods as dominated. This is repeated until either an s-t-cut is dominated or no
appropriate node is left. The result of this greedy selection is a set U1. Second,
we consider the induced subgraph G′ of currently undominated nodes. If s and t
are not connected in G′, the candidate solution for wi is the set Ci = U1 and the
algorithm continues with wi+1. Otherwise we consider the connected component
H of G′ which contains s and t. The nodes of V \ {s, t} are then assigned new
weights w′, so that w′(v) := min {w(u) | u ∈ N+(v) \ {s, t}}. The new weights
represent the cost to dominate these nodes. Now we compute a minimum s-t-cut
C in (H,w′). Third, we choose a minimum-weight neighbor in G for each node
v ∈ C arbitrarily. This gives us a set Ci of weight at most w′(C). The candidate
solution for wi is the set Ci = U1 ∪ Ci.
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After calculating the sets Ci for 1 ≤ i ≤ n, the set with minimum weight
w(Ci) is returned.

Theorem 2. Algorithm 1 is a
√
n · (1 + wmax/OPT ) approximation algorithm,

where OPT denotes the weight of an optimal solution and wmax denotes the
maximum weight of a node from this optimal solution. Especially, this is at most
2
√
n.

Proof. Consider an optimal solution Vopt ⊆ V \ {s, t}. Now let

wmax = max {w(v) | v ∈ Vopt}.

It follows that: (i) w(v) ≤ wmax for all v ∈ Vopt and
(ii) wmax ≤ w(Vopt).

Since Algorithm 1 does one round for each node’s weight, there must be a round
1 ≤ j ≤ n with wj = wmax. Consider the respective run of the algorithm’s main
loop.

To bound the weight of U1, we take a look at the nodes v1, v2, . . . v|U1| of
U1 in the order in which they are included in U1 by the algorithm. Let the set
Uk
1 =

{
v1, . . . , vk

}
be the set U1 after the k-th round of the greedy selection

and U0
1 = ∅. Let the set of newly dominated nodes for vk be Nk := N+(vk) \

({s, t} ∪N+(Uk−1
1 )). These sets are pairwise disjoint.

Since every node vk ∈ U1 dominated at least |Nk| ≥ w(vk)
√
n/wmax new

nodes, it holds that

w(U1) =

|U1|∑
k=1

w(vk) ≤
|U1|∑
k=1

|Nk| wmax/
√
n

≤ wmax√
n

n =
√
n wmax.

After the greedy selection all v ∈ V \ (U1 ∪ {s, t}) fulfill

|N+(v) \ ({s, t} ∪N+(U1))| < w(v)
√
n/wmax. (1)

Now take a closer look at G′ = G \ (N+(U1) \ {s, t}), the induced subgraph of
currently undominated nodes. If s and t are cut in G′, U1 is an s-t-cut dominating
set of weight at most

√
n w(Vopt) as desired. Let us now assume that this is not

the case, i.e. there is a connected component H of G′ which contains both s and t.
We know that Vopt dominates an s-t-cut inG. Therefore, Vopt\U1 has to dominate
an s-t-cut in H . It now holds that (N+(Vopt \U1) \ (N+(U1) ∪ {s, t}))∩V (H) is
an s-t-cut in H . Therefore, the weight w′(C) of the minimum w′-weight s-t-cut
in H is at most w′((N+(Vopt \ U1) \ (N+(U1) ∪ {s, t})) ∩ V (H)). Furthermore,
since for every node v ∈ C there is a node u ∈ N+(v) \ {s, t} with w(u) = w′(v),
it holds that

w(Cj) ≤ w′(C). (2)

This leads to

w(Cj) ≤ w′(C)
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≤ w′((N+(Vopt \ U1) \ (N+(U1) ∪ {s, t})) ∩ V (H))

≤
∑

v∈Vopt\U1

∑
u∈N+(v)\(N+(U1)∪{s,t})

w′(u)

≤
∑

v∈Vopt\U1

|N+(v) \ (N+(U1) ∪ {s, t})|w(v)

(1)
<

∑
v∈Vopt\U1

√
n w(v)

w(v)

wmax

(i)

≤
∑

v∈Vopt\U1

√
n w(v) ≤

√
n w(Vopt).

Hence, by uniting Cj and U1, we obtain a set of nodes with weight at most√
n w(Vopt) +

√
n wmax in run j of the algorithm. Consequently, the algorithm

returns a set of weight at most
√
n(1 + wmax/w(Vopt)) w(Vopt).

In the unweighted version all weights are 1. Therefore, the following simplifi-
cations of the algorithm can be applied. First, one run of the algorithm’s main
loop will be sufficient, since we know wmax = 1. Second, the greedy procedure
only chooses nodes dominating at least

√
n new nodes. Third, the minimum-

weight-function is not necessary. It suffices to calculate a minimum cardinality
s-t-vertex-cut of G′.

So, the algorithm will degenerate to greedily choosing nodes which dominate
at least

√
n new nodes and computing a minimum s-t-vertex-cut in the result-

ing graph of undominated nodes. The approximation ratio of this algorithm is√
n (1+ 1

OPT ), where OPT denotes the size of the optimal solution. Since OPT
is at least one the simplified algorithm would give a 2

√
n-approximation in the

worst case. We can improve this ratio by adding a preprocessing step that enu-
merates all subsets U ⊆ V up to a constant size k ∈ N and checks whether
they dominate an s-t-cut. The first subset to do is an optimal solution. If none
of the subsets dominates an s-t-cut, the optimal solution has to be of size at
least k + 1. Therefore, the approximation ratio of the simplified algorithm with
such a preprocessing step is at most

√
n(1 + 1

k+1 ). The preprocessing needs

O(knk(|V | + |E|)) time, since for all
∑k

i=1

(
n
i

)
subsets it has to construct the

graph G′ of undominated nodes and test whether s and t are connected in G′.
We state this observation in the following corollary.

Corollary 1. Cut Domination can be approximated with ratio√
n · (1 + 1

k+1 ) for every constant k ∈ N.

A variation of Algorithm 1 can also be applied to approximate Connected

Cut Domination. In particular, we can use it as a subroutine to solve one
instance Iv of Weighted Cut Domination for each node v ∈ V \ {s, t} and
return a minimum weight result. The nodes of that result are then connected
to v via shortest paths in G \ {s, t}. In instance Iv, the weight of a node is
set to its hop distance to node v, thereby (over-)paying for intermediate nodes.
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In addition, the greedy phase has to be adapted to start with U1 = {v} and
choose nodes u that dominate at least w(u)

√
n/wmax

√
2wmax new nodes. It can be

shown that this algorithm achieves an approximation ratio of
√
n
√
OPT , which

is at most n2/3.

5 The Case of Bounded Vertex Degrees

We show that Weighted Cut Domination is (Δ+1)-approximable, if all but
at most a logarithmic number of nodes are of degree Δ or less.

Theorem 3. Let W ⊆ V \{s, t} with |W | = O(log n). Then Weighted Cut

Domination is (ΔW + 1)-approximable where ΔW is the maximum degree of
nodes from V \ ({s, t} ∪W ) in G \ {s, t}.

Proof. Consider an algorithm that iterates all 2|W | subsets U ⊆ W . For each
U ⊆ W the algorithm proceeds like one round of Algorithm 1, but with U
taking the place of U1, and calculates a candidate solution CU . It then outputs
the candidate solution of minimum weight.

Now we need to show, that this algorithm outputs a (ΔW + 1)-approximate
solution. Let Vopt be a minimum weight s-t-cut dominating set ofG. Furthermore,
let Wopt = Vopt ∩ W . Since Wopt ⊆ W , there is a round where U = Wopt.
We know that every node from Vopt \Wopt is from V \ ({s, t} ∪W ) and therefore
has a maximum degree of ΔW in G \ {s, t}. It follows, that for every node
v ∈ Vopt \Wopt ∑

u∈N+(v)\{s,t}
w′(u) ≤ (ΔW + 1)w(v). (3)

Let us now consider the induced subgraph GWopt of nodes which are not dom-
inated by Wopt. We know that Vopt dominates an s-t-vertex-cut of G. There-
fore, Vopt \Wopt has to dominate an s-t-vertex-cut of GWopt . It now holds, that
N+(Vopt \Wopt) \ (N+(Wopt) ∪ {s, t}) is an s-t-cut of GWopt . Since C is a mini-
mum s-t-cut of GWopt according to w′, it is also true that

w′(C) ≤ w′(N+(Vopt \Wopt) \ (N+(Wopt) ∪ {s, t})). (4)

Therefore, for the s-t-cut dominating set CWopt constructed from C, it holds that

w(CWopt)
(2)
≤ w′(C)

(4)
≤ w′(N+(Vopt \Wopt) \ (N+(Wopt) ∪ {s, t}))
≤

∑
v∈Vopt\Wopt

∑
u∈N+(v)\{s,t}

w′(u)

(3)
≤ (ΔW + 1)w(Vopt \Wopt).
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Hence, it holds that w(Wopt ∪ CWopt) ≤ w(Wopt) + (ΔW + 1)w(Vopt \Wopt) =
(ΔW + 1)w(Vopt) − ΔWw(Wopt). We obtain a (ΔW + 1)-approximation in the
worst case and an upper bound for the size of the algorithm’s solution. Since the
algorithm computes 2|W | induced subgraphs and minimum weight s-t-vertex-
cuts, its running time is O(2|W |(|V |+ |E|+

√
|V ||E|)), which is polynomial in

n if and only if |W | = O(log n).

Theorem 3 is especially relevant in practical applications, since communication
overlay networks usually are of constant or logarithmic degree for scalability
reasons.

As the minimum s-t-vertex-cut provides an upper bound for the minimum
s-t-cut-dominating set, Cut Domination can be solved in polynomial time for
all graphs with a minimum s-t-vertex-cut of constant size. In particular, this
includes all graphs, where s and t have degrees bounded by a constant.

6 Conclusion

Although a minimum s-t-vertex-separator can be found in polynomial time, we
showed that it is much more complex to efficiently dominate any s-t-vertex sep-
arator. In particular, we proved that the Cut Domination problem is not ap-

proximable to within a factor of 2log
1−δ n, with δ = 1/ log logc n and arbitrary

c < 1/2 (if P �= NP) by reducing from Red-Blue Set Cover. Thus, its inap-
proximability is higher than that of Dominating Set, the problem of finding a
smallest set of nodes dominating all nodes of a graph [8] (again, if P �= NP).

On the positive side, we were able to show thatWeighted Cut Domination

is 2
√
n-approximable in general graphs and (Δ+1)-approximable in graphs with

maximum degreeΔ. In practice, the case of bounded node degrees is of special in-
terest, since common overlay networks feature at most logarithmic degrees. The
obtained (in-)approximability results are similar to the best known results for
Red-Blue Set Cover [7,9], which is believed to be a canonical representative
from the class of optimization problems with superpolylogarithmic but poten-
tially subpolynomial approximability. Closing the gap between approximability
and inapproximability of Weighted Cut Domination by showing stronger
inapproximability or approximability results, as well as investigating inapprox-
imability for graphs of bounded node degree, remains for future research.

Connected Cut Domination is also of special interest, as in computer net-
works attacks sometimes spread from one node to another. We showed that the
inapproximability result carries on to Connected Cut Domination. An ap-
proximation algorithm similar to Algorithm 1 achieves an approximation ratio
of

√
n
√
OPT . It remains open, whether the approximation ratio can be low-

ered to the same ratio as for Cut Domination or which ratio is achievable for
Weighted Connected Cut Domination.

Another matter of interest is the relation of Cut Domination to the original
problem described in [4,5]. It is a goal for future work to show similar approx-
imability bounds for that problem.
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Abstract. In this paper, we consider a linear decision tree such that a
linear threshold function at each internal node has a bounded weight:
the sum of the absolute values of its integer weights is at most w. We
prove that if a Boolean function f is computable by such a linear decision
tree of size (i.e., the number of leaves) s and rank r, then f is also
computable by a depth-2 threshold circuit containing at most s(2w+1)r

threshold gates with weight at most (2w + 1)r+1 in the bottom level.
Combining a known lower bound on the size of depth-2 threshold circuits,
we obtain a 2Ω(n/ logw) lower bound on the size of linear decision trees
computing the Inner-Product function modulo 2, which improves on the
previous bound 2

√
n if w = 2o(

√
n).

1 Introduction

A binary decision tree is one of the basic models of computation. In a standard
decision tree, each internal node is labeled with a Boolean variable and each leaf
with 0 or 1. For a given input assignment to the Boolean variables, a path from
the root to a leaf is naturally defined according to the values of the variables,
and the decision tree returns as output the label (0 or 1) of the leaf in the path.
Thus, a decision tree represents a Boolean function. In this paper, we consider
a linear decision tree in which a classification rule at each internal node is given
by a linear threshold function, where a linear threshold function g is defined by
integer weights w1, w2, . . . , wn and threshold t, and for every input x ∈ {0, 1}n,
the output of g is given by g(x) = sign(

∑n
i=1 wixi − t).

For a linear decision tree T , its depth is defined to be the length of the longest
path from the root to a leaf in T , and its size is to be the number of leaves in
T . The depth and size are natural complexity measures for decision trees since
these correspond to the time and space complexity from the viewpoint of parallel
computation, and several lower bound results are obtained for each measure.
Nisan proved that any linear decision tree computing Inner-Product function
IPn of 2n variables has depth Ω(n/ logn) by showing that a liner threshold
function has small communication complexity [15]. Gröger and Turán obtained

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 412–422, 2015.
c© Springer-Verlag Berlin Heidelberg 2015
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a linear lower bound on the depth of linear decision trees computing IPn by an
adversary argument [8]. Turán and Vatan generalized the Gröger and Turán’s
result to 2Ω(n/r) in terms of rank r of linear decision trees [17], where the rank of a
binary tree T is the maximal depth of a complete binary tree embedded in T (see
Section 2 for the precise definition). Since a lower bound on the depth is that
on the size, the lower bounds above imply ones on the size of linear decision
trees computing IPn. In particular, the result in [17] immediately implies that
any linear decision tree computing IPn has size 2Ω(

√
n) regardless of its rank,

as follows. If a tree satisfies r ≤ √
n, then their result gives the desired lower

bound; otherwise, we obtain the bound from the definition of the rank: If a tree
has rank r >

√
n, then the tree must have size s > 2

√
n. In the paper [18], we

directly investigated the size complexity of linear decision trees, and obtained
a weaker lower bound which is applicable to a wide class of Boolean functions
(having high communication complexity) .

On the other hand, a simple counting argument gives a stronger lower
bound on the size. More precisely, we can show that there exists an n-variable
Boolean function that requires size 2n/poly(n), since the number of the n-
variable Boolean functions computable by linear threshold functions is bounded
by 2O(n2) [12,13], and the binary trees of size s have at most 4s different struc-
tures (more precisely, it equals to the (s−1)-th Catalan number), and thus linear

decision trees of size s can compute at most (2n
2

)s ·4s Boolean functions. To the
best of our knowledge, we do not know any explicitly defined Boolean function
that requires size 2n/poly(n) for its linear decision tree representation.

In this paper, to tighten the gap between 2Ω(
√
n) and 2n/poly(n), we restrict

ourselves to the case where the weights of each linear threshold function are
bounded: the weight vector (w1, w2, . . . , wn) should satisfy

∑
i |wi| ≤ w for some

integer w. Our main result is to prove a 2Ω(n/ logw) lower bound on the size of
such linear decision trees computing IPn. Our lower bound improves on Turán
and Vatan’s one if w = 2o(

√
n). We note that the computational power of a

linear threshold function is well-studied in terms of the weight. In particular, it
is known that every linear threshold function has a representation where each
weight has magnitude at most 2O(n log n) (see, for example, Corollary 2.3 in [13]),
and this was shown to be tight in [9].

Informally, we show in the proof that any given linear threshold function
can be converted to a depth-2 threshold circuit, which immediately implies the
desired lower bound, since strong lower bounds against depth-2 threshold circuits
are known [7]. To be more specific, the proof proceeds in the following three steps.
At the first step, we use an argument of Blum [2] to show that any linear decision
tree T of size s, weight w and rank r can be converted into a linear decision list L
of size s, weight w and term r. At the next step, in a similar way to a conversion
method in [11], we convert L into a depth-3 threshold circuit C in which the top
gate is a threshold gate, the middle layer contains s AND gates with fan-in r,
and the bottom layer contains threshold gates with bounded weight w. At the
final step, using the idea in Beigel et al. [1], we complete the proof by collapsing
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the middle and bottom layers of C to a single layer containing at most s(2w+1)r

threshold gates each of which has bounded weight (2w + 1)r+1.
We note that the steps of our proof do not depend on any explicit property

of IPn, and hence we can apply them to linear decision trees computing any
function. Consequently, we can also obtain a similar lower bound for linear de-
cision trees computing a Boolean function for which a lower bound on the size
of depth-2 threshold circuits is known, such as ORTp,n which determines the or-
thogonality of two given 1-dimensional homogeneous linear subspaces of Fn

p [7].
The rest of the paper is organized as follows. In Section 2, we define some

terms on linear decision trees, linear decision lists, and threshold circuits. In
Section 3, we give the lower bound for linear decision trees. In Section 4, we
conclude with some remarks.

2 Definitions

In this section, we give definitions of linear decision trees, linear decision lists,
and threshold circuits.

2.1 Linear Decision Trees and Lists

Let g be a linear threshold function with n inputs, weights w1, w2, . . . , wn and
a threshold t. Then the output g(x) of g for every input x = (x1, x2, . . . , xn) ∈
{0, 1}n is given as follows:

g(x) = sign

(
n∑

i=1

wixi − t

)

where, for any number η, sign(η) = 1 if η ≥ 0 and sign(η) = 0, otherwise. We
assume throughout the paper that the weights and threshold of every threshold
function are integers. We define the weight w of a threshold function g as the
sum of the absolute values of the weights w1, w2, . . . , wn of g for the n input
variables x1, x2, . . . , xn.

A linear decision tree T is a binary decision tree in which a classification rule
at each internal node is given by a linear threshold function and each leaf is
labelled by zero or one. Given an input x ∈ {0, 1}n to T , the output T (x) of T
is determined by the following procedure starting from the root until reaching a
leaf: if the output of the linear threshold function at the current node is zero for
x, then go to the left child; otherwise go the right. If the leaf reached is labeled
by z ∈ {0, 1}, then T (x) = z. The size s of T is defined to be the number
of leaves in T . We say that T has weight w if the linear threshold function at
every internal node of T has weight w. The rank of a linear decision tree T is
inductively defined as follows: if T consists of a single leaf, then rank(T ) = 0;
otherwise,
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rank(T ) =

{
rank(Tl) + 1 if rank(Tl) = rank(Tr);
max{rank(Tl), rank(Tr)} otherwise,

(1)

where Tl and Tr denote the left and right subtrees of the root, respectively.
For a positive integer m, a linear decision list L of length m is a sequence

of pairs (S0, z0), (S1, z1), . . . , (Sm−2, zm−2), (Sm−1 = ∅, zm−1), where, for each j,
0 ≤ j ≤ m− 1, Sj is a set of linear threshold functions, and zj ∈ {0, 1}. Given
an input x ∈ {0, 1}n to L, the output L(x) is defined to be such zj′ that every
linear threshold function in Sj′ outputs one for x, while an output of at least
one of the linear threshold functions in Sj is zero for every j, 0 ≤ j ≤ j′− 1. We
say that L has term k if #Sj ≤ k holds for every j, 0 ≤ j ≤ m− 1, where #Sj

indicates the cardinality of Sj , and that L has weight w if every linear threshold
function in S0 ∪ S2 ∪ . . . ∪ Sm−1 has weight w.

Clearly, a linear decision tree is a generalization of an ordinary decision tree
such that a classification rules at each internal node is given by a single Boolean
variable. Similarly, a linear decision list is a generalization of an ordinary decision
list such that each internal node has a set of Boolean literals. The following two
facts are well-known for the ordinary decision trees and lists:

Fact 1 ([2]). An ordinary decision tree T of size s can be simulated by an
ordinary decision list of length s and term rank(T ).

Fact 2 ([4]). If an ordinary decision tree T has size s then rank(T ) ≤ log s.

Since Boolean literals for ordinary decision trees and lists play same role as
threshold functions for linear decision trees and lists, we immediately have the
following lemma from Fact 1 and 2:

Lemma 1. Any linear decision tree T of size s and weight w can be simulated
by a linear decision list of length s, term rank(T ) and weight w. Moreover, it
also can be simulated by a linear decision list of length s, term at most log s and
weight w.

We will use this lemma to obtain our main result.

2.2 Threshold Circuits

A threshold gate with an arbitrary number n of inputs computes a linear thresh-
old function with n inputs. We say that a threshold gate g has weight w if the
corresponding linear threshold function of g has weight w. A threshold circuit
C is a combinatorial circuit of threshold gates. In this paper, we only consider
threshold circuits of depth 2: a circuit consists of two layers such that the bottom
level contains a number of gates, and the second level does a single gate, called
top gate. The size s of a depth-2 threshold circuit is defined to be the number
of threshold gates in the bottom level of the circuit.
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To obtain the lower bounds for linear decision trees, we consider two Boolean
functions IPn and ORTp,n, defined as follows.

IPn is defined to be a Boolean function of 2n variables such that, for every
pair of inputs x = (x1, x2, · · · , xn) ∈ {0, 1}n and y = (y1, y2, · · · , yn) ∈ {0, 1}n,

IPn(x,y) = x1y1 ⊕ x2y2 ⊕ . . .⊕ xnyn,

where ⊕ denotes the XOR function.
Let Fp be the prime field of characteristic p, and Fn

p be the n-dimensional
vector space of Fp. Let Pn−1(Fp) be the (n − 1)-dimensional projective space,
where the elements in Pn−1(Fp) are 1-dimensional linear subspaces of Fn

p . Then,
ORTp,n is defined to be a Boolean function of 2n�logn variables such that, for
every pair of inputs q ∈ {0, 1, . . . , p− 1}n and q′ ∈ {0, 1, . . . , q − 1}n,

ORTp,n(q, q
′) =

{
0 if q is orthogonal to q′;
1 otherwise.

Forster et al. derived the following lower bounds on the size of threshold
circuits for IPn and ORTp,n [7].

Lemma 2 ([7]). Suppose a Boolean function f is computed by a depth-2 thresh-
old circuit whose bottom level contains z gates. If f is IPn, and each of the z
gates has weight at most w, then

z ≥ 2n/2 − 1

w + 1
.

Moreover, if f is ORTp,n, and each of the z gates has weight at most w, then

z ≥ pn/2 − 1

w + 1
.

3 Lower Bounds for Linear Decision Trees

In Section 3.1, we present a technical lemma, and give results obtained from the
lemma. In Section 3.2, we prove the lemma.

3.1 Our Results

The following lemma shows a relationship between linear decision trees and
depth-2 threshold circuits. We will give a proof of the lemma in the next section.

Lemma 3. Suppose a linear decision tree T of size s, weight w and rank r
computes a Boolean function f : {0, 1}n → {0, 1}. Then, f is also computable by
a depth-2 threshold circuit such that its bottom level contains at most s(2w+1)r

gates, each of which has weight at most (2w + 1)r+1.
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Combining Lemma 2 with Lemma 3, we immediately obtain our main result for
linear decision trees, as follows.

Theorem 1. Let T be a linear decision tree of weight w and rank r. If T com-
putes IPn, the size of T is at least

2n/2 − 1

(2w + 1)r((2w + 1)r+1 + 1)
.

If T computes ORTp,n, the size of T is at least

pn/2 − 1

(2w + 1)r((2w + 1)r+1 + 1)
.

Proof. We only give a proof for IPn. Let T be a linear decision tree computing
IPn, and let s, w and r be the size, weight and rank of T . By Lemma 3, we
obtain from T a depth-2 threshold circuit C that computes IPn and has size

z ≤ s(2w + 1)r (2)

and weight at most (2w + 1)r+1. On the other hand, Lemma 2 implies that

2n/2 − 1

(2w + 1)r+1 + 1
≤ z. (3)

Therefore, we have the claim from (2) and (3). ��

By Lemma 1 and Theorem 3.2, we can obtain lower bounds on the size of
linear decision trees regardless of its rank.

Corollary 1. Let T be a linear decision tree of weight w. If T computes IPn,
the size of T is at least (

2n/2 − 1

2

)1/(10 logw)

.

If T computes ORTp,n, the size of T is at least(
pn/2 − 1

2

)1/(10 logw)

.

3.2 Proof of Lemma 3

In this section, we prove Lemma 3. Let T be an arbitrary linear decision tree
computing a Boolean function f : {0, 1}n → {0, 1}, and s, w and r be be size,
weight and rank of T , respectively. We construct the desired depth-2 threshold
circuit C∗.

Firstly, we convert T to a linear decision list by applying Lemma 1: we obtain
from T a linear decision list L that computes f and has length s, term r and
weight w. We denote by (S0, z0), (S1, z1), . . . , (Ss−1, zs−1) the sequence of pairs
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composing L; and, for each j, 0 ≤ j ≤ s − 1, let a
(j)
0 , a

(j)
1 , . . . , a

(j)
#Sj−1 be the

threshold functions in Sj . Furthermore, for every k, 0 ≤ k ≤ #Sj − 1, we denote

by w
(j)
k,1, w

(j)
k,2, . . . , w

(j)
k,n the weights of a

(j)
k for x1, x2, . . . , xn, respectively; and

denote by t
(j)
k the threshold of a

(j)
k , that is, we have

a
(j)
k (x) = sign

(
n∑

i=1

w
(j)
k,ixi − t

(j)
k

)
.

Secondly, we convert L to a depth-3 intermediate circuit C. The top gate
g of C has threshold zero, and receives outputs of s circuits C0, C1, . . . , Cs−1

of depth-2 given as follows: For each j, 0 ≤ j ≤ s − 1, the circuit Cj computes

AND of the outputs of threshold gates g
(j)
0 , g

(j)
1 , . . . , g

(j)
#Sj−1, where g

(j)
k computes

a
(j)
k for each k, 0 ≤ k ≤ #Sj − 1. Note that the fan-ins of the top gates of

C0, C1, . . . , Cs−1 equal to #S0,#S1, . . . ,#Ss−1, respectively. In addition, we
have #Sj ≤ r for every j, 0 ≤ j ≤ s − 1. For each j, 0 ≤ j ≤ s − 1, we then
define the weight wj of g for the output of Cj as

wj =

{
2(s−1)−j if zj = 1;

−2(s−1)−j otherwise.
(4)

Eq. (4) implies that, for any index j′, we have

s−1∑
j=j′+1

|wj | < |wj′ |, (5)

Since g has threshold zero, (5) implies that the output of Cj′ dominates the
outputs of Cj′+1, Cj′+2, . . . , Cs, that is, for every x ∈ {0, 1}n, C(x) equals to
the output of Cj′ with the least index j′ satisfying

Cj(x) = 0

for every 1 ≤ j ≤ j′ − 1 and
Cj′(x) = 1.

Therefore, C clearly simulates L, and hence computes f .
Finally, we obtain the desired depth-2 circuit C∗ from C. The top gate g∗ of

C∗ has threshold zero. For the bottom level of C∗, we employ a standard idea to
construct a certain set of threshold gates from Cj for each j, 0 ≤ j ≤ s−1 so that
the gates somehow compute the same function as Cj does. (See, for example, [1]
or [10].) We below give the construction for completeness.

Let j, 0 ≤ j ≤ s − 1, be an arbitrary index. Recall that w
(j)
k,1, w

(j)
k,2, . . . , w

(j)
k,n

are the weights of a
(j)
k (and hence of g

(j)
k ) for x1, x2, . . . , xn. We define a function

p(j) as follows: For every x = (x1, x2, . . . , xn) ∈ {0, 1}n,

p(j)(x) =

#Sj−1∑
k=0

(2w + 1)k

(
w +

n∑
i=1

w
(j)
k,ixi

)
; (6)
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in other words, p(x) is a (2w + 1)-nary integer of #Sj digits such that the
(k+1)-st digit corresponds to the value

w +

n∑
i=1

w
(j)
k,ixi.

Note that we have

0 ≤ w +
n∑

i=1

w
(j)
k,ixi ≤ 2w + 1

and hence
0 ≤ p(j)(x) ≤ (2w + 1)#Sj ≤ (2w + 1)r.

We denote by m the integer (2w + 1)r hereafter.

The value p(j)(x) uniquely determines the outputs of g
(j)
0 , g

(j)
1 , . . . , g

(j)
#Sj−1 as

in the following claim:

Claim. For every k, 0 ≤ k ≤ #Sj − 1, we define p
(j)
k as

p
(j)
k (x) ≡

⌊
p(j)(x)

(2w + 1)k

⌋
mod 2w + 1

for every x ∈ {0, 1}n. Then g
(j)
k (x) = 1 if and only if w + t

(j)
k ≤ p

(j)
k .

Proof. Let k, 0 ≤ k ≤ #Sj − 1 be an arbitrary index. By Eq. (6), we have

⌊
p(j)(x)

(2w + 1)k

⌋
=

#Sj−1∑
k′=k

(2w + 1)k
′−k

(
w +

n∑
i=1

w
(j)
k′,ixi

)

=

(
w+

n∑
i=1

w
(j)
k,ixi

)
+

#Sj−1∑
k′=k+1

(2w+1)k
′−k

(
w+

n∑
i=1

w
(j)
k′,ixi

)
(7)

Since the second term of the right hand side of Eq. (7) is a multiple of 2w + 1,
we clearly have

p
(j)
k (x) ≡ w +

n∑
i=1

w
(j)
k,ixi mod 2w + 1.

Thus, w + t
(j)
k ≤ p

(j)
k if and only if

t
(j)
k ≤

n∑
i=1

w
(j)
k,ixi,

and hence the claim follows. ��

For each integer l, 0 ≤ l ≤ m, we say that l satisfies Cj if both p(j)(x) = l
and Cj(x) = 1 hold for some x ∈ {0, 1}n.
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By an elementary transformation from Eq. (6), we have

p(j)(x) =
n∑

i=1

w
(j)
i xi +

#Sj−1∑
k=0

(2w + 1)kw, (8)

where

w
(j)
i =

#Sj−1∑
k=0

(2w + 1)kw
(j)
k,i .

For each integer l, 0 ≤ l ≤ m, we construct a threshold gate h
(j)
l with threshold

l and weight w
(j)
i for each i, 1 ≤ i ≤ n: For every x = (x1, x2, . . . , xn) ∈ {0, 1}n,

h
(j)
l (x) = sign(pj(x)− l).

Eq. (8) implies that h
(j)
l is a linear threshold function. In addition, we have by

construction that h
(j)
l (x) = 1 for every l, 0 ≤ l ≤ p(j)(x), while h

(j)
l (x) = 0 for

every l, p(j)(x) + 1 ≤ l ≤ m.

We now define the weight w
(j)
0 of g∗ for the output of h

(j)
0 as

w
(j)
0 =

{
wj if the integer zero satisfies Cj ;
0 otherwise.

(9)

Inductively, for each integer l, 1 ≤ l ≤ m, the top gate g∗ receives the output of

h
(j)
l with weight w

(j)
l defined as

w
(j)
l =

⎧⎨⎩
wj if the value l − 1 does not satisfy Cj , but l does;
−wj if the value l − 1 satisfies Cj , but l does not;
0 otherwise.

(10)

Eq. (10) then clearly imply that, for every x ∈ {0, 1}n,
m∑
l=0

w
(j)
l h

(j)
l (x) =

{
wj if p(j)(x) satisfies Cj ;
0 otherwise.

(11)

Thus, using h
(j)
0 , h

(j)
1 , . . . , h

(j)
m , we can simulates the contributions of Cj to the

top gate g∗.
Consequently, we have obtained a depth-2 threshold circuit C∗ that simulates

C, and hence C∗ computes f . The bottom level of C∗ contains at most sm =
s(2w + 1)r gates. Furthermore, Eq. (8) implies that, for an arbitrary j, 0 ≤ j ≤
s− 1, each bottom-level gate constructed from Cj has weight

n∑
i=1

#Sj−1∑
k=0

(2w + 1)k|w(j)
k,i | =

#Sj−1∑
k=0

(2w + 1)k
(
|w(j)

k,1|+ |w(j)
k,2|+ · · ·+ |w(j)

k,n|
)

≤
#Sj−1∑
k=0

(2w + 1)k · w

≤ (2w + 1)r+1

as desired.
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4 Conclusions

In this paper, we derive lower bounds on the size of a linear decision tree by
simulating a linear decision tree by depth-2 threshold circuit. Our lower bound
gives a better bound than the previous one for IPn if the weight w of trees
satisfy w = 2o(

√
n). Note that we can apply Lemma 2 to any linear decision trees

computing a Boolean function f , and hence it yields such lower bounds if f has
a lower bound for depth-2 threshold circuits.
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Abstract. Developers in modern general-purpose programming languages cre-
ate reusable code libraries by encapsulating them in Applications Programming
Interfaces (APIs). Domain-specific languages (DSLs) can be developed as an al-
ternative method for code abstraction and distribution, sometimes preferable to
APIs because of their expressivity and tailored development environment. How-
ever the cost of implementing a fully functional development environment for a
DSL is generally higher. In this paper we propose DSLit, a prototype-tool that,
given an existing API, reduces the cost of developing a corresponding DSL by
analyzing the API, automatically generating a semantically equivalent DSL with
its complete development environment, and allowing for user customization. To
build this bridge between the API and DSL technical spaces we make use of exist-
ing Model-Driven Engineering (MDE) techniques, further promoting the vision
of MDE as a unifying technical space.

1 Introduction

Modern General-purpose Programming Languages (GPLs) provide facilities for pro-
gram abstraction and reuse, to foster the development of distributable libraries. Code
in a programming library is encapsulated behind Application Programming Interfaces
(APIs), that are used in user programs by the mechanisms provided by the GPL (e.g.,
function call or class inheritance). Sometimes library developers prefer to provide
their users with a Domain-Specific Language (DSL), instead of (or in addition to) an
API. APIs and DSLs can be seen as alternative methods to access the library function-
alities, and are characterized by specific advantages. Programs written in the DSL can
be more expressive, maintainable, concise and readable than corresponding GPL pro-
grams using the API (e.g., by avoiding the user to write some boilerplate code) [1,2].
On the other side, APIs allow for natural integration in complex programs written
in their native language (or in other languages when coupled with suitable interface
bindings).

Literature distinguishes DSLs in internal and external [3]. Internal DSLs are cre-
ated by embedding DSL constructs into an existing GPL, which acts as host language.
Although the internal approach allows DSLs to be easily developed [4], the corre-
sponding tooling relies on the existing support for the host language, which limits the
domain-specific assistance [5]. External DSLs instead are characterized by a separate
syntax and specific development facilities. An important advantage of this approach

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 423–435, 2015.
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is that the domain-specific development environment can be tailored to ease coding
in the DSL:

– Static validation can be enriched to enforce semantic constraints hidden in the API.
Thus some runtime errors can be avoided at compile time.

– Features like syntax highlighting, code completion, outlining, folding, can be tai-
lored to the DSL.

– The DSL interpretation/compilation step can be designed to automatically optimize
the DSL code execution.

While, depending on the case, DSL or API (or both) may be the preferable solu-
tion [6], the development cost of a DSL, especially if external, is in general much higher.
Users have to define the DSL (i.e., abstract and concrete syntaxes, and semantics) and
develop the domain-specific environment (e.g., syntax highlighting, code assistance,
folding, outline view) which are tedious and time-consuming tasks.

In this paper we propose a method to automatically analyze an existing object-
oriented API and generate an external DSL out of it. Our approach leverages model-
driven techniques to analyze and represent APIs at high-level of abstraction (i.e., as
metamodels) which are later used to automatically generate the DSL components and
the corresponding tooling, including parser, compiler and development environment.
Developers can influence the DSL generation by editing the model-based API represen-
tation and by specifying design choices about the structure of the DSL to
generate.

We provide a proof-of-concept implementation of the method in the DSLit tool,
that is able to analyze Java APIs and generate external textual DSLs using the Xtext
framework [7]. DSLit is currently able to deal with two API categories that we de-
scribe. The first category is called Plain Old Data (POD1) and indicates simple APIs
that have the purpose of creating and maintaining a data structure. Usually such APIs
are composed by classes made exclusively of getters, setters and constructors. The sec-
ond category is called Fluent and contains those APIs that rely on chaining method
calls. The return value of these method calls is an object representing the context of the
keyword, and it is used to structure the language, defining which keywords can follow
other keywords. For APIs not included in these categories, we also provide a fallback
category, called SimpleJava based on a subset of Java which includes statements and
declarations.

While currently limited in scope, the DSLit prototype, freely available at the project
website2, demonstrates the feasibility and usefulness of the approach.

The paper is structured as follows. Section 2 presents concrete examples to motivate
our approach. Section 3 describes the conceptual framework applied to obtain a DSL
from a Java API, while Section 4 presents the implementation of the prototype tool and
the solution of the running cases. Section 5 lists the related work and Section 6 finalizes
the paper and outlines some further work.

1 http://en.wikipedia.org/wiki/Plain_old_data_structure
2 http://www.emn.fr/z-info/atlanmod/index.php/DSLit

http://en.wikipedia.org/wiki/Plain_old_data_structure
http://www.emn.fr/z-info/atlanmod/index.php/DSLit
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2 Motivating Examples

While APIs have proven to be a flexible means to encapsulate and reuse program logic,
their usage can be cumbersome. A typical example is Java Swing, an API based on the
Abstract Window Toolkit (AWT3) for the development of graphical user interfaces for
Java applications. Several DSLs have been developed to allow more concise and read-
able interface specifications with respect to Swing-like code. An example is JavaFX4, a
framework specifically tailored to create rich internet applications (RIA) that includes
the so-called JavaFX Script, which is a DSL enabling the fast definition of user inter-
faces. Figures 1a and 2b compare two equivalent chunks of code written in Java Swing
and JavaFX Script, respectively.

Fig. 1. A Swing example using (a) Java code, (b) JavaFX and (c) DSLit

Both examples specify the creation of a frame including a title and a label and the
JavaFX Script version is remarkably more concise and readable. Developers in JavaFX
are free from writing most of the boilerplate code and can use a declarative language
specifically adapted to the creation of user interfaces. However, JavaFX Script was not
developed as a DSL for targeting the Java Swing API but as a DSL to develop user
interfaces rapidly and effectively. Thus, JavaFX Script code does not compile to the
corresponding Java Swing code and it incorporates extra features such as declarative
animation or mutation triggers.

As can be seen, a clear correspondence can be drawn among the DSL constructs and
the Java API calls. For instance the ”title:” element corresponds to a call to setTitle().
In this case DSL and API seem to lay at the same abstraction level, thus theoretically
allowing for a purely syntactic translation. Note that this example does not show how
to handle user interface event handlers, which can execute arbitrary actions, and are
therefore generally written in GPL code.

The snippet in the Figure 1c is written in the DSL obtained with DSLit by analyz-
ing the Swing API. The snippet shows only a few lexical differences with the JavaFX
version. In this sense, the constructs of the automatically-generated DSL mimic the
structure defined in the API, e.g., there is a DSL element for each API method. In ad-
dition, a compiler is also generated by DSLit that translates this snippet to the program
in the Figure 1a.

As we will show, the conciseness of the previous DSL comes from the particular
containment structure of the Swing API. As a significantly different example we show

3 http://java.sun.com/products/jdk/awt
4 http://docs.oracle.com/javafx

http://java.sun.com/products/jdk/awt
http://docs.oracle.com/javafx
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Fig. 2. An excerpt of Java code using the jRTF Fluent API and the corresponding automatically-
generated DSL

in Figure 2a a program using jRTF5, a Fluent API to construct Rich Text Format (RTF)
documents by Java. According to M. Fowler6, a Fluent API is an implementation of
an object-oriented API that aims to provide more readable code. It is normally imple-
mented by using method chaining to relay the instruction context of subsequent calls
(but the Fluent paradigm is not limited to method chaining). Fluent APIs are becoming
a very popular way to implement internal DSLs in Java. The jRTF example in Figure 2
shows how a method chain in the Fluent API can closely resemble a DSL.

Figure 2b shows the DSL automatically generated from jRTF by DSLit. Differently
from the Swing case, the DSL in Figure 2 provides very little syntactic simplification
w.r.t. its corresponding Java code. However, even in this case, the generation allows, for
instance, generating an environment that has a domain-specific outline representing the
RTF document structure, and it can be augmented with static checking capabilities (that
are poor in the fluent API version).

In this paper we present a method that, given an API, generates an equivalent DSL.
Our current application of this approach supports APIs fitting in one of the two cate-
gories previously defined plus a fallback category which resembles Java-like languages.
We provide DSLit, a tool that generates such DSL, together with its development envi-
ronment and a Java compiler, providing the following benefits:

– The generated DSL development environment has features like syntax highlighting
or code completion that are tailored to the API domain.

– Semantic constraints can be made explicit and static validation can be enriched by
parameterizing the generation process. E.g., the DSL for Swing can be customized
so that labels are always created in a single container frame, and the frame name is a
mandatory attribute (avoiding at compile time some common mistakes in interface
development).

– The DSL compiler can be manually improved to optimize the resulting API code
(e.g., reordering DSL definition elements to get optimal performance).

5 http://code.google.com/p/jrtf/
6 http://martinfowler.com/bliki/FluentInterface.html

http://code.google.com/p/jrtf/
http://martinfowler.com/bliki/FluentInterface.html
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3 From API to DSL

Figure 3 gives an overview of the linguistic architecture of our approach, spanning over
three technical spaces (TS)7: (1) the API TS, in which API objects (i.e., in memory)
conform to the set of defined API classes, (2) the Model TS (we refer to the MOF/Ecore
TS), in which models conform to metamodels, and (3) the Grammar TS, in which pro-
grams conform to the grammar (e.g., a GPL).

Fig. 3. Technical spaces and bridges

The process for obtaining a DSL from an API is split into three steps: (1) extracting
an API metamodel for the set of class definitions in the API, (2) computing a DSL
metamodel from the API metamodel, and (3) generating the grammar and the DSL
tooling from the DSL metamodel. The steps are detailed in the following subsections.

3.1 API Classes to API Metamodel

The first step generates an API metamodel by applying a bridge between the API and
Model TSs. This bridge maps API class definitions into metamodel elements. Thus
Java classes are mapped into metaclasses, while attributes and methods are mapped
into metaclass attributes and references/operations, respectively. The mapping is not
trivial because of the semantic differences between class definitions and metaclasses,
but it is well studied in works such as [9] and [10].

When applied to big APIs, this step may generate very large metamodels. For in-
stance in Figure 1 the bridge would create a metaclass for each class and interface of
the Swing API. Our approach provides a customization mechanism that allows filtering
out API elements (e.g., classes, methods, attributes) in order to influence the construc-
tion of the DSL metamodel. Filtered elements will typically include technical classes
that are out of the developer’s interest or do not belong to the level of abstraction of the
DSL. For instance, in the Swing example the developer may be interested only in the
JFrame and JLabel class, with all their ancestors in the inheritance hierarchy.

7 The concept of Technical Space (TS) is introduced in [8]. It is defined according to a confor-
mance relationship that associates artifacts (e.g. program) with meta-artifacts (e.g. grammar).
Bridges can be defined to transfer artifacts from one to another TS.
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Once the API metamodel is generated, developers can leverage in metamodel tech-
niques to make explicit semantics in the DSL that are hidden in Java. An example is
the semantics of references in metamodels: references can have containment semantics
and multiplicity constraints that are implicit in Java attributes. To this aim, develop-
ers may manually enrich the API metamodel to exploit these aspects in the generated
DSL, which can be statically checked on the DSL code. For instance, by adding a con-
tainment property to the reference between JFrame and JLabel the resulting DSL may
automatically check that a label is not contained in two distinct frames.

3.2 API Metamodel to DSL Metamodel

API classes represent an internal abstraction mechanism of object-oriented languages,
i.e., an in-language abstraction. The API metamodel we obtained in the previous step
is an artifact describing this in-language abstraction. The purpose of the second step is
to transform the in-language abstraction in a linguistic abstraction, i.e., an abstraction
defined by language constructs. We perform the transformation between in-language
abstraction and linguistic abstraction within the Model TS as a model transformation,
thus creating the DSL metamodel.

Lifting the abstraction to the linguistic level is not a trivial step, as the logic to apply
is strongly dependent on the structure of the DSL the user wants to obtain. For instance
in the Swing DSL we want to generate language concepts for classes (e.g. JFrame,
JLabel) and attributes (e.g. title, size) of the API. Conversely, in the RTF example the
language structure contains a concept for each method of the API.

The linguistic abstraction of a DSL contains: (a) the domain concepts, which are
extracted from the API metamodel; and (b) its structure and capabilities, which define
how the concepts can be defined, linked and composed (e.g., which concepts become
Statements, whether the DSL is going to use Blocks, etc.). While the former is domain-
specific, the latter can be considered domain-independent and be reused in different
DSLs. For instance, in our first example the domain contains the elements JFrame and
JLabel (and their attributes) while the structure of programs in the Swing DSL may be
composed by a sequence of statements initializing the JFrame and JLabel attributes.

In order to generate the DSL metamodel we built a template system which receives as
inputs: (a) the API metamodel, and (b) a template defining the structure and capabilities
of the languages. Our approach currently provides three templates for the categories
considered in DSLit but more templates can also be plugged in.

3.3 DSL Metamodel to DSL Environment

The last step is a bridge between the Model TS and the Grammar TS which produces
the needed artefacts for the DSL. The Model TS already contains several well-known
tools that help in generating the components of an external textual DSL environment
(e.g., Xtext). Therefore, this step is devoted to generate the input artifacts for these tools,
including: (1) the mapping of metamodel elements (i.e., the abstract syntax definition of
the DSL) into the grammar rules of the concrete syntax, (2) development environment
(e.g., validators, type system, etc.) and (3) compiler.
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The generation process is parameterized by the DSL metamodel and the template
chosen. While the DSL metamodel provides domain-specific information (e.g., con-
cepts, attributes, references) and basic semantics (e.g., cardinalities, containment, etc.),
the template drives the grammar structure of the resulting DSL and also the develop-
ment environment and compiler.

The resulting compiler is able to transform DSL programs in their corresponding
Java programs. As shown in Figure 3 the compiler is an artefact of the Grammar TS,
and the execution of the compiled Java program produces the set of API objects in the
API TS (plus possibly other objects). Most tools create also a parser towards the Model
TS that extracts from programs the corresponding instance of the DSL metamodel.

The next section explains how we implement the approach and illustrates in detail
how the motivating examples are addressed.

4 DSLit

As a proof of concept of the described approach, we have implemented DSLit, a proto-
type DSL generator integrated in the Eclipse platform. The current prototype contains
three DSL templates that aim to address the APIs that fall under the categories previ-
ously introduced, respectively POD, Fluent and SimpleJava.

Once one of the provided templates is selected, our tool is able to generate a domain-
specific development environment, using Xtext. Currently DSLit supports the genera-
tion of a Proposal Provider and Validator components of the environment. In future
work we plan to investigate the domain-specific customization of other components.

4.1 Grammar Generation

In this section, we describe the DSL templates included in DSLit, covering three possi-
ble representations of the information contained within the API metamodel.

POD DSL Generator. DSLit provides an ad-hoc POD DSL Generator. The generator
can be applied to any API, but it only considers their POD part (setters, getters and
constructors) for the definition of the DSL. This generator has been applied to a Swing
subset and generates the DSL in Figure 1c.

In the following we briefly describe the transformation logic for the generation of the
DSL grammar model (conforming to the Xtext metamodel) from the API metamodel.
The full code of the transformation is available at the paper website.

The POD DSL extracted out of the API metamodel takes into account only attributes
and references contained in the classes defined in the metamodel. All the classes, at-
tributes and references are mapped to grammar rules in Xtext and their names will
appear as terminals in the grammar. Each class is transformed into a rule that contains,
wrapped into braces, the features that correspond to the attributes and references for
that class. Each of those features expands to the rule that represents the type of the cor-
responding attribute or reference, while its cardinality depends on the cardinality of the
corresponding attribute or reference. In particular, a multi valued attribute is expressed
as a feature list, an optional attribute is expressed as an optional feature and finally
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a single valued attribute is expressed as a single feature. Finally, since we know the
semantics of the POD template, our tool is able to append additional grammar rules in
order to avoid identifying the root class of the API metamodel. Thus, it adds to the tem-
plate the rules Grammar and Element. The former is the grammar root rule and contains
a list of Elements, while the latter includes as alternatives all the rules that correspond
to the metaclasses.

Fig. 4. Example of the POD DSL for Swing

In Figure4, an excerpt of the generation of the Java Swing DSL is shown. The classes
Frame, MenuBar are mapped to the corresponding grammar rules (generated according
to the schema className-attrOrRefName-AttrOrRefTypeName). The rule Frame con-
tains as terminal the name of the related class and two optional features menuBar and
title that represent respectively the reference and the attribute embedded in the class
Frame. They expand in two rules Frame menuBar MenuBar and Frame title EString.
The former contains the name of the reference menuBar as terminal and the feature
next (inserted by the generator) that expand in the rule MenuBar; the latter contains
the name of the attribute title as terminal and the feature value (inserted as well by the
generator), since the title is defined as a primitive type. The remaining rules MenuBar
and MenuBar menuCount EInt follow the same mapping strategy.

Fluent DSL Generator. The Fluent DSL generator transforms a fluent API into an
equivalent external DSL. The generator included in DSLit is able to handle simple fluent
APIs like the jRTF (Figure 2).

The API metamodel generated from a Fluent API is composed by operations defined
over the classes of the metamodel. For each class, a grammar rule is created. It contains
a set of alternatives that are the grammar rules corresponding to the operations for that
class. Inside these rules, each operation parameter is mapped to a feature that, depending
on the parameter cardinality, can be optional or a list. In addition, an optional feature
next is defined, that expands to the rule representing the return type of the operation.

It is important to note that in the Fluent DSL, all the names of the operations defined
in the classes of the metamodel appear as terminal in the grammar.

Figure 5 shows the generation of a Fluent DSL for a small subset of the jRTF API.
The classes Rtf and RtfPara are mapped to the corresponding rules; while the operations
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Fig. 5. Example of the generation of a Fluent DSL

rtf(), section(RtfPara) and out() are mapped to rules which names follow the schema:
className-operationName-parameterNames-returnType.

In particular, Rtf rtf contains as terminal the name of the operation rtf() and an op-
tional feature next, that represents the return type Rtf of the operation rtf(). Rtf section
paragraphs RtfPara contains the terminal section, a list of paragraphs that expand the

rule RtfPara (not shown in the example) and the optional feature next. Finally, Rtf out
contains only the terminal out, since the operation out() has neither parameters nor a
return type that is a class of the input API metamodel.

SimpleJava DSL Generator. In the case in which the API does not suit one of the
previous templates, the user has still the possibility to generate a fallback DSL. Since
no assumptions can be made on the structure of the API and on its intended use, the
generated DSL needs to offer similar capabilities to the Java language. The SimpleJava
DSL generator produces a DSL that resembles Java but is restricted to the use of the
analyzed API. The generated DSL in this case has the purpose of being a starting point
for DSL development, since 1) the DSL developer can easily add domain-specific fea-
tures to the generated environment, 2) moving the domain information to the linguistic
level makes it more suitable to automated analysis.

The SimpleJava template (an excerpt is shown in Figure6) defines typical Java con-
cepts, e.g. Declaration and Assignment. The transformation API2Grammar expands the
SimpleJava template with the information contained within the API metamodel. It is im-
portant to note that names of classes, attributes and references in the API metamodel
are inserted in the template respectively as alternatives of the grammar rules Type and
Attribute.

As mentioned above, the SimpleJava template does not make any assumption on
the structure of the API. Therefore, it is applicable to any API, including those for
which other templates such as Plain Old Data structure, and Fluent DSL are applicable.
Figure 7 revisits the Swing and jRTF examples: the DSL code samples of Figure 1 and
2 are now expressed in textual syntaxes derived using the SimpleJava template. This
figure further illustrates how SimpleJava works.
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Program:
      statements+=Statement*;
Statement:
      Declaration | Assignment;
Declaration:
      var=Var;
Assignment:
      left=VariableExpression '=' right=Expression;
Expression:
     VariableExpression | Literal;

VariableExpression:
       var=ReferenceVar ('.' attr=Attribute)?;
ReferenceVar:
     value=[Value];
Literal:
      FloatLiteral | StringLiteral | ...;
Var:
     name=ID ':' type=Type;
Attribute:
      name=__AllAttributeNames__;

Type:
     name=__AllClassNames__;

Fig. 6. Excerpt of the DSL Template for the SimpleJava DSL generator

Fig. 7. SimpleJava template applied to Swing and jRTF

4.2 Development-Environment Generation

Once the DSL grammar is generated, Xtext is able to produce several artifacts compos-
ing a DSL development environment. In particular, it offers 1) a proposal provider that
provides a list of accessible keywords according to the current terminal of the gram-
mar (i.e. content assist) and 2) a validator performing static analysis during editing.
However, since we know the semantics of the DSL template that has been used to gen-
erate the grammar, we can automatically derive improved versions of such environment
components by mixing the DSL domain-independent part, that comes from the template
structure, and the DSL domain-specific part, that is inferred from the API metamodel.

In our prototype, these improved components are generated for the POD and Sim-
pleJava DSLs and can be can be eventually redefined by the developer if needed. For
the Fluent DSL, since the proposal provider and validator are embedded in the structure
of the grammar (i.e., how the feature of a grammar rule expands in other rules), we rely
instead on the Xtext default components.

4.3 Compiler Generation

Since the semantics of the DSL template is well-defined, a DSL instance can be trans-
formed into its equivalent in Java. For instance concepts like Declaration, Assignment
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and Statement in the SimpleJava template (Figure6) have a one-to-one correspondence
with Java programming language’s constructs. Xtext provides the capability to generate
a model-representation of the DSL grammar according to the Xtext metamodel. Such
a DSL model is then transformed to a Java model leveraging on MoDisco8 that is in
turn translated to a Java readable file using Acceleo9, a model-to-text transformation
tool.

5 Related Work

The work presented in [11] about Framework-Specific Modeling Languages studies
how to identify and extract domain-specific knowledge from APIs. Some of the ideas
in that work inspired our research. Works such as [12] investigate current analysis tech-
niques to understand APIs and extract some usage patterns. Such studies could comple-
ment ours in identifying specific API features and therefore improve our process.

Integration between the model and the API TS has been considered in works such
as [9,10,13], where approaches to define bridges between these two TSs are presented.
However, none of them enables the generation of a DSL from an API definition nor the
selection of an appropriate structure for the resulting DSL.

Existing approaches such as METABORG [14], SugarJ [15] and Helvetia10 enable
the definition of internal DSLs and the corresponding generation of the domain-specific
environment in the host language. Instead, our approach targets external DSLs. Further-
more ours can automatically generate a DSL definition for an API, which could be used
as input for the aforementioned approaches.

Some GPLs with flexible concrete syntaxes like Haskell or Ruby enable direct defi-
nitions of DSLs directly using GPL syntax. An example of such a DSL is given in [16].
One problem with this kind of approaches is that DSL concrete syntax must be a subset
of GPL concrete syntax (i.e., DSL syntax must be valid GPL code). Another problem
is that the corresponding API has to be defined specifically so that GPL syntax may be
used directly as a DSL. Therefore, compromises must be made on both API and DSL.

In [17] the authors evaluate 10 different approaches to implement DSLs, concluding
that embedded DSLs are the simplest to implement. Our approach could be considered
as an additional approach with which a significant amount of DSL customization is at-
tainable at a comparatively low cost: (a) it provides a specific textual syntax not limited
by a host GPL and (b) it kickstarts a DSL tooling ready to be used for the DSL.

The approach presented in [18] provides abstractions for repeatedly used patterns.
Instead, we target on abstracting API calls into DSL constructs. However, both ap-
proaches could be combined so that simple DSL construct could be mapped to complex
patterns of API usage.

8 http://www.eclipse.org/gmt/modisco/technologies/J2SE5/
9 http://www.eclipse.org/acceleo

10 http://scg.unibe.ch/research/helvetia

http://www.eclipse.org/gmt/modisco/technologies/J2SE5/
http://www.eclipse.org/acceleo
http://scg.unibe.ch/research/helvetia
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6 Conclusion and Future Work

In this paper we have presented an approach to automatically generate an external DSL
out of an object-oriented API by transforming in-language abstraction into linguistic
abstraction. The generation process has been presented as a bridge between the in-
volved technical spaces (i.e., API TS, Model TS, and Grammar TS) and uses a template
mechanism, which allows customization of the resulting DSL. Our approach has been
implemented on the Eclipse platform, as a plugin called DSLit, which generates an
Xtext-based textual DSL out of Java-based APIs. The current prototype incorporates
two templates that generate specific DSL structures (POD and Fluent) as well as a fall-
back template covering a subset of Java (SimpleJava).

In future work we plan to study how our method could cope with APIs that allow cus-
tom code extension (e.g., providing implementations of interfaces or abstract classes).
We would also like to define more templates allowing for different types of DSLs, which
in turn will need a deeper study on API characterization. Another possibility to explore
is the generation of DSL interpreters instead of compilers. They would for instance
make it possible to load and execute DSL code at runtime. Finally, since a GPL al-
lows interleaving calls to distinct APIs, one open question to study is how the generated
DSLs may be combined in order to achieve the same kind of interleaving achievable
with a GPL.
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Abstract. Industrial enterprises are facing an increasing complexity of
their manufactured products. This goes along with a high number of
fast moving and volatile customer requirements. In order to support engi-
neering organizations in increasing their profitability, this paper presents
major success factors for efficient requirements engineering and design
in plant engineering. In this paper a Function Based Requirements Engi-
neering and Design concept is introduced, which helps plant engineering
companies achieve a more efficient requirement analysis and solution con-
cept engineering. By splitting up the requirements engineering process
in three layers – Problem Layer, Abstraction Layer and Solution Layer
– the concept fosters an increase in reusability of requirements and fea-
tures, better traceability as well as higher transparency throughout the
whole process. We were able to prove the feasibility of the concept based
on a case study involving the engineering of baggage handling systems.

Keywords: plant engineering, requirements engineering, function based
engineering, industrial engineering.

1 Introduction

Today, industrial enterprises in plant engineering are facing a rising complexity
of their manufactured products and manufacturing processes [1,2]. Especially
the European plant engineering companies are exposed to increasing competitive
pressure, especially from the Asian market [3–5]. These changing basic conditions
require that companies enhance their planning efficiency as well as their planning
quality [6].

Prior research on this topic has shown that the most important levers to reach
these goals are currently:

• The development of standardization and modularization strategies to im-
prove interdisciplinary cooperation and the project comprehensive reuse of
artifacts [3,5].

• The development of requirements engineering (RE) concepts and processes
which improve the requirements elicitation at the beginning of a project and
help to build the right product during the project [4,7].

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 436–448, 2015.
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In this paper we will introduce a novel concept for a function based require-
ments and systems engineering concept for the plant engineering domain. This
concept can be applied in order to improve the following aspects:

• Improved coverage of the requirements of engineered plants (“Build the right
product”).

• Improved efficiency during the early phases of the engineering process (i.e.
basic engineering).

• Better communication with the customer regarding the engineered plant and
its features.

• Full transparency and traceability throughout the whole engineering process.

We will first provide an overview of work related to this topic. This will be
followed by a description of the traditional requirements management approach
usually employed in plant engineering. We will then introduce our integrated
Function Based Requirements Engineering and Design approach. Finally, we will
evaluate the concept based on a case study and give a brief outlook on future
research needed in order to further extend this topic.

2 Related Work

RE is a long established information systems and software engineering disci-
pline with a high number of publications available. Most of these concepts focus
on defining guidelines and establishing good practices on how to perform the
different RE tasks, such as stakeholder analyses, requirements elicitation, doc-
umentation, prioritization etc. [8]. Current problems relating to RE in general
include a lack of information (about the needs and requirements of customers and
their relevance), heterogeneous understanding of requirements, the high degree
of necessary coordination and communication, limited tool support and limited
guidance and adoption strategies (especially in complex domains) [9–11].

Despite its economic importance, research is still not focusing on the handling
of customer requirements and the requirements based solution design and vali-
dation in context of the engineering of industrial plants. In [12], major challenges
(authority requirements, aging, communication, knowledge transfer, representa-
tion of requirements and tools) were identified regarding RE in the energy plant
engineering domain. Other authors describe concepts about how to define re-
quirements at different levels of abstraction, such as system level, function level,
and software level [13].

Three independent market studies performed recently highlight the urgency for
developing plant engineering specific RE and design concepts. In [14], especially
large scale plant engineering companies state that they see a high potential in mak-
ing the RE and requirements management process more efficient. Others expect
the optimization of the requirements management process in combination with
an optimization of the solution design engineering as the main topic for future ac-
tivities [15]. The third study found, that only one third of the companies follow
a structured approach to gather customer requirements and integrate them into
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their solution portfolio. This leads to “complexity and diverging customer require-
ments [being] key challenges, driving the need for a structured approach” [16].

3 Traditional Requirements Management in Plant
Engineering

In this section we will provide an overview of the traditional RE and design
approach usually applied in plant engineering, and point out potential issues
emerging from such an approach.

Today, especially within the plant engineering domain, a typical RE process
is split up in a Problem Layer, which defines the problem to be solved for a
customer, and a Solution Layer, where the solution to the problem is designed
(Figure 1).

Fig. 1. Traditional requirements engineering and design approach in plant engineering

The process usually starts with a Customer creating a Requirements Specifi-
cation for a plant that the Customer wants to purchase. This specification is then
handed over to a plant engineering company, which is supposed to realize the plant
for the Customer. A Solution Architect of the plant engineering company then an-
alyzes this Requirements Specification document in order to obtain an overview of
what theCustomer needs. Based on his interpretation of theCustomer’s needs, the
Solution Architect then defines the concept as to how the plant could be realized to
comply with the Customer’s needs. This concept is documented and described in a
Feature Specification document and handed over to a Planner for further process-
ing. The Planner then analyzes the Feature Specification document and engineers
the plant according to the concept described in the document.The engineeredplant
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itself is an assembly of different sub-plants, machines and components. If a second
Customer is also requesting a plant at the same time, an identical process is started
in parallel. Due to the complexity of such engineering projects, the roles of the sec-
ond request are usually handled by different persons than for the first Customer.
Communication and design matching in the different phases of the parallel pro-
cesses usually doesn’t take place.

During such RE and design processes as described above, multiple issues
may emerge, especially in bigger companies that are running multiple customer
projects in parallel:

• No Reuse of Requirements: Requirements are typically written in a nat-
ural language style with each Customer having different ways of expressing
himself. This may lead to situations where two Requirements of two different
Customers have the same semantic meaning but a completely different text.
Situations such as these are not identified, resulting in redundantly designing
individual solutions to address the same Requirements.

• No Traceability between Requirements and Features: The Solution
Architect creates a solution concept to satisfy the Customer’s needs and
documents it in a Feature Specification. Since Requirements Specifications
are rarely split into atomic Requirements, there is usually no traceability
between a single Requirement and the associated Feature to address this
Requirement. Transparency towards the Customer (e.g. which Requirements
can/cannot be fulfilled) requires a significant level of manual effort.

• No Reuse of Features: There is no systematic reuse of solutions (Features)
for the same Requirements. The same Requirement defined by two Customers
may lead to two different solutions as they are handled by different Solution
Architects.

• No Traceability between the Engineered Plants and their Features:
The Planner analyzes the Feature Specification and engineers the real Plant
according to this specification. Engineered Plants usually consist of a num-
ber of Sub-Plants/Sub-Components. Significant manual effort is needed to
analyze which parts of the Feature Specification are realized by which Sub-
Plant/Sub-Component.

• No Reuse of Components: There is no systematic reuse of Sub-Plants/
Sub-Components used to realize a Plant. Similar Features defined in differ-
ent projects and engineered by different Planners may result in completely
different, individually engineered solutions using different Sub-Plants/Sub-
Components.

• Limited Reporting and Analytics Capabilities: The capabilities to
analyze the RE and design processes are limited. Regarding the Problem
Layer, reports about Requirements, which are often requested by Customers
but cannot be fulfilled by the company, are hard to realize. Solution Layer
reports such as Plants/Components which are part of the Customer’s port-
folio, but rarely requested by a Customer, also require significant manual
effort.

• Know-How Required between the Problem Layer and Solution
Layer : Every request by a Customer requires a Solution Architect to ana-
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lyze the Requirements Specification and design a solution to it. This even
applies to cases where the requested plants are of limited complexity. Since
Solution Architects are highly specialized, this results in high engineering
costs for every plant.

Some of these issues mentioned above could be mitigated to a certain extent
at the process level. When defining close collaboration and communication pro-
cesses between Solution Architects and Planners over multiple projects, the reuse
ratios regarding Features and engineered Plants could be improved. However, the
higher the number of parallel projects being processed in a company, the harder
it will be to establish such processes.

Another approach to mitigate some of these issues would be to use formal tem-
plates for defining requirements or use cases, as proposed by [17]. However, this
would only promote a better and unique interpretation of requirements – the ma-
jority of the issues, especially regarding traceability and reuse, would still exist.

4 Function Based Requirements Management

In this chapter we will introduce our novel Function Based Requirements Engi-
neering and Design concept for industrial plants. We will first describe the basic
concept behind the approach, followed by the potential benefits resulting from it.

4.1 Basic Concept

The concept described here has been developed based on domain expert knowl-
edge and extensive practical experience gained in various customer projects of
an IT consulting company. Such a concept could solve the issues and problems
identified in the previous section. The foundation for the concept is the func-
tion based standardization framework described by [18]. By applying our new
concept, the RE and design process can be split up into three different layers
(Figure 2):

• Problem Layer: In this layer the customer defines the problem that needs
to be solved using a customer-specific language and wording.

• Abstraction Layer: The problem that has been defined by a customer in
the Problem Layer is mapped to an abstract, standardized representation of
the problem.

• Solution Layer: In this layer, a standardized set of Functions and Features
is defined, which can be used to compose a solution that can satisfy the
customer’ s Requirements.

The problem defined by the Customer in the Problem Layer is still docu-
mented in a Requirement Specification document. This document is then split
into single Requirements, which ideally fulfill the characteristics of good Require-
ments : unitary, complete, consistent, atomic, traceable, current, unambiguous,
and verifiable [19,20]. This split could either be performed by the Customer
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Fig. 2. Function Based Requirements Engineering and Design concept overview

himself or by the Solution Architect of the engineering company. The result is a
list of customer-specific Requirements. Due to the fact that Customers use their
own language and wording to define Requirements, situations can occur where
two Customers semantically have the same Requirement regarding the system
to be designed, but phrase it in a totally different way, therefore making it hard
to recognize the similarity between them (e.g. Must be able to operate with nor-
mal German supply voltage“ vs. Must be able to be connected to 230 V power
outlets“).

This problem is solved by introducing a set of Master Requirements within
the Abstraction Layer. Such Master Requirements are Requirements that are de-
fined in a standardized and generic way – and should fulfill the characteristics
of good Requirements. They always comprise two elements: a textual represen-
tation of the requirement and, when applicable, a corresponding formula, which
allows automated evaluations and validations (e.g. Text: “The Voltage must be
<<value>>V ”, Formula: “Voltage = <<value>>V”). Each customer-specific
Requirement has to be mapped to exactly one Master Requirement (while one
Master Requirement can be mapped to any number of customer-specific Require-
ments). This task is performed by a Technical Sales person in the engineering
company talking directly with the Customer. The complexity of having Cus-
tomer -specific languages and wordings can be eliminated by applying this con-
cept. If there is no suitable Master Requirement to address a customer-specific
Requirement, a new Master Requirement needs to be created. The result is a list
of Master Requirements, which is a standardized representation of the customer-
specific Requirements.

A solution now needs to be engineered to address these Master Requirements.
The Solution Layer becomes relevant at this point. The solution portfolio of the
engineering company is represented by a set of standardized Functions that can
be used and combined in order to create specific solutions for customers. Each of
the Functions is defined as a set of characteristics that describe the capabilities
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of the same (e.g. “Maximum speed”, Maximum weight”, “Voltage” etc.). Each
of the Functions has a number of components assigned to it, which are able to
realize the function. This structure follows the Function Based Engineering, a
framework which has been introduced as a standardization and modularization
strategy for the engineering of industrial plants in [18]. Each of the Functions
in the solution portfolio has a link to those Master Requirements, which are
relevant for the Function or have to be applied for a particular Feature of the
Function (e.g. if a Function has a specific voltage in its characteristics, then the
corresponding Master Requirements need to be assigned to this Function). This
assignment of Master Requirements to the relevant Functions is performed by
the Solution Architect of the engineering company as part of project-independent
activities. This task requires extensive engineering know-how.

As soon as the relationships between the Master Requirements and the stan-
dardized Functions are defined, a solution can be engineered to address the
customer’s Requirements. Since these Requirements are already represented as
a list of Master Requirements, and each of the Master Requirements is related
to the relevant Functions, it can be easily evaluated and validated as to which
(combination) of the Functions from the Solution Layer is able to fulfill the
Customers’ needs.

The left part of Figure 3 shows such an example for a mapping between
customer specific Requirements (Req. 1.1 to Req. 1.3 ) to their corresponding
representation as Master Requirements (“Master Req. 1” to “Master Req. 3”).
In this example, the Requirements are linked using an AND logic operation
(“�”), which means that all of them need to be fulfilled by a potential solu-
tion. Alternatively, Requirements can also be linked using OR and XOR logic
operations.

Fig. 3. Mapping between Problem Layer, Abstraction Layer and Solution Layer
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The right part of Figure 3 shows the validation of the Master Requirements
towards the Functions (Conveying Function 1, Conveying Function 2 and Fluid
Pumping Function 1 ) available in the Solution Layer. The only Function which
could fulfill the Requirements is the Conveying Function 1 as it can satisfy all
of the specified Master Requirements. The Fluid Pumping Function 1 is not
a suitable solution as it does not have a “Max. Weight” characteristic, and
therefore cannot satisfy Master Requirement 3. Conveying Function 2 is also
not suitable as its “Max. Weight” characteristic of 1000 kg does not match the
Master Requirement 3, which requires a “Max. Weight” of at least 1200 kg.

4.2 Benefits of the Concept

By applying the Function Based Requirements Engineering and Design concept
as described, most of the issues associated with traditional RE in plant engi-
neering can be solved. In particular, the following advantages can be achieved
with this concept:

• Standardized Representation of Requirements: By using Master Re-
quirements between the Problem Layer and the Solution Layer, a set of
standardized requirements is introduced leading to a higher degree of stan-
dardization during the whole RE process. This results in a higher cross-
project reuse ratio with regard to the Requirements used – as well as to the
solutions that are engineered.

• Elimination of Customer-Specific Wording: Customer-specific wording
is eliminated by mapping each customer-specific Requirement to a Master
Requirement. This results in a unique/non-ambiguous interpretation of the
Requirements.

• Early Pre-determination of Practicability and Automated Solution
Proposals: Each Master Requirement comprises a text-based as well as a
formula-based representation. The formula representation could be used for
an automated solution proposal by validating the Requirements formulas
against the characteristics of the standardized Functions in the Solution
Layer. This approach means that it can be identified as to whether a solution
requested by a Customer can be fulfilled or not at a very early stage.

• Automated Requirements Validation: Analogous to the automated gen-
eration of solution proposals, for every solution engineered in the Solution
Layer it is possible to automatically validate whether the customers’ Re-
quirements are fulfilled.

• Full Traceability: Due to the relationship between customer-specific Re-
quirements, Master Requirements and the standardized Functions, full trace-
ability is possible at the Requirements level from the Problem Layer to the
Solution Layer and vice versa.

• Identification of Unused Functions: Due to the full traceability, it is
possible to identify how often each of the standardized Functions is used in
the Solution Layer. This could help to reassess the solution portfolio of the
engineering company, e.g. by eliminating unused functions.
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• Identification of Frequently Requested Requirements that cannot
be Fulfilled: Due to the full traceability, it is possible to identify those
Requirements of the Customers that cannot be fulfilled with the solution
portfolio of the engineering company. Mapping to the Master Requirements
makes it easy to identify those Requirements that are frequently requested
by multiple Customers, but have never (or rarely) been fulfilled.

• Improved Reuse Ratio within the Solution Layer : By employingMas-
ter Requirements, a higher reuse ratio can be achieved regarding the solu-
tion engineered in the Solution Layer. Once all customer Requirements are
mapped to Master Requirements, it can be analyzed as to how similar cus-
tomer requests have been solved in the past, in order to reuse these solutions
(or parts of them).

• Reduced Engineering Costs: Using the traditional approach, each cus-
tomer request requires a Solution Architect for further processing. By apply-
ing our new approach, the highly qualified Solution Architect can focus on
his tasks that are independent of any particular project: perform the engi-
neering of a new standardized Function (i.e. to define the Solution Layer),
define Master Requirements and relate them to the relevant standardized
Functions. Project-specific tasks, such as communicating to the customer
and creating a first solution concept, can be handed over to a Technical
Sales person in the future. This would reduce the engineering costs for every
plant requested by a Customer.

5 Case Study

In this section, we will describe a case study, which we performed in coopera-
tion with an international IT consulting company involved in plant engineering
projects. The goal of the case study was to prove the feasibility of the Function
Based Requirements Engineering and Design described above by validating the
following statements:

• Statement 1 (S1): Individual customer Requirements can be mapped to com-
mon Master Requirements in order to reduce complexity and identify Re-
quirements with the same semantic.

• Statement 2 (S2): It is possible to define unique Master Requirements by
using a standardized text-based representation in conjunction with a formula-
based one.

• Statement 3 (S3): Mapping from Master Requirements to standardized Func-
tions in the Solution Layer facilitates efficient solution engineering based on
the customers’ Requirements.

In this case study we initially analyzed 52 different projects that the partic-
ipating company had executed within the last years. These projects involved
the engineering of small airport baggage handling systems (i.e. max. 4 million
passengers per year, max. 1500 bags/hour). The first step was to identify those
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projects where the customer provided a detailed Requirements Specification dur-
ing its request for proposal. This reduced the number of relevant projects down to
six. In 46 of the projects, no structured Requirements Specification was provided
(in these cases the Requirements were identified in verbal face-to-face communi-
cation between a sales person and the Customer). The next step was to analyze
the Requirements Specifications provided within these six remaining projects.
The size of the documents ranged from 7 to 135 pages, resulting in completely
different structures and level of details within the documents. However, it was
noticeable that only few of the Requirements defined in the document were able
to fulfill the criteria for good Requirements as described above. We then started
splitting up the Requirements Specifications into single and unique Requirements.
In order to limit the number of Requirements to a manageable amount, we fo-
cused on Requirements for belt conveyors regarding the baggage which needs to
be handled, the dimensions of the conveyors, the generated noise level, the con-
veying speed and the surrounding conditions. Overall we extracted 53 customer
Requirements regarding these categories from the Requirements Specifications.
We then analyzed these Requirements in detail and defined the respective Mas-
ter Requirements in order to create the initial Abstraction Layer. We found that
those 53 customer Requirements can be abstracted and generalized by using 14
different Master Requirements. This corresponds to a Requirements abstraction
rate of 73% (Table 1).

Table 1. Number of Requirements identified during the case study

The standardized Functions determining the Solution Layer for this case
study has already been defined in an earlier case study relating to Function
Based Engineering [18] and were reused for our purpose. Overall, 30 different
belt conveying functions (e.g. Straight Conveying 1200 mm, Curved Conveying
90◦ etc.) and their corresponding Features had been defined there, which we were
able to reuse in the context of this case study. In the next step, we were able to
map each of the Master Requirements defined earlier to one or more Features,
which were assigned to the standardized Functions.

Reflecting the case study and referring to the statements defined above, it can
be stated that we were able to confirm statements S1 and S2. Up until now, state-
ment S3 could only be partially confirmed. Regarding statement S1, we were able
to define an abstracted set of Master Requirements where each of the customers’
Requirements could be mapped, thus reducing the complexity of the domain. We
further specified each of the Master Requirements using a text-based as well as
formula-based representation (Statement S2). Mapping from Requirements de-
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Table 2. Sample of mapping customer Requirement to Master Requirement during
case study

fined by the Customers to standardized Master Requirements for Requirements
regarding the speed of the conveyors is shown as example in Table 2.

Regarding statement S3, we were able to map every Master Requirement to
the corresponding Features of the standardized Functions. However, we were
not able to fully prove the improved efficiency of the solution design. To confirm
this statement to its full extent, it would be necessary to apply our concept
within a new engineering project from the very beginning. However, since we
were able to automatically reduce the number of potential conveying functions
available for configuration of the plants by matching their Features to the Master
Requirements, it can be assumed that it will also have a positive effect on the
overall efficiency of the solution design process.

During the case study, we additionally identified a couple of key lessons
learned:

• As already stated earlier, only a few customers (6 out of 52) provided struc-
tured Requirements Specifications. For those Customers not having such a
structured overview of the Requirements, the existence of the Master Re-
quirements could help the Technical Sales person to perform a structured
Requirement elicitation from the Customer

• The process of splitting up the Requirements Specifications of the Customers
into single Requirements already has a first positive impact. Since each Re-
quirement must be interpreted and mapped to Master Requirements, it is
necessary that the Requirements are completely understood. Existing am-
biguities are solved in cooperation with the Customer, ensuring that the
correct solutions are engineered. Example: Requirement : “Luggage size
to be transported: 900 x 700 x 500mm.”; Ambiguity : Which of the numbers
is for width, length or height?

• A frequent source of inconsistency between Requirements of different Cus-
tomers is that different units are used. In the Abstraction Layer, eachMaster
Requirement needs to have a standardized unit of measure. When linking a
customer Requirement with a different unit of measure to a Master Require-
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ment, the value must be converted. Conversion tables could additionally be
saved with the Master Requirements. Example: Dimensions: millimeter
(mm) vs. meter (m) =>standardized as millimeter.

• The initial effort to define the Abstraction Layer (i.e. the Master Require-
ments) and the mapping to the Solution Layer (i.e. the standardized Func-
tions) is a time consuming task, which needs to be performed prior to the first
Customer projects. However, this is an activity that is only required once, and
it should have a fast payback time.

6 Conclusion

The aim of this article was to introduce a novel Function Based Requirements En-
gineering and Design concept for the plant engineering domain. We have shown
the problems plant engineering companies are facing with traditional approaches
to RE. We then introduced a concept to solve the problems by introducing an
Abstraction Layer with Master Requirements between the Requirements in the
Problem Layer and the standardized Functions in the Solution Layer. We were
able to prove the feasibility of our concept by analyzing real customer projects,
in this particular case the engineering of baggage handling systems. Using these
projects, three statements have been validated and partially confirmed. How-
ever, this concept is currently still in an early phase and further research has
to prove that it can be implemented in practice and can achieve the goals that
have been set. For evaluation purposes, we recommend that prototypes and case
studies are performed in cooperation with other plant engineering companies –
preferably using projects from various domains.

The Function Based Requirements Engineering and Design described in this
article has the potential to significantly improve the efficiency and transparency
of designing customer-specific plant solutions (i.e. the basic engineering). In order
to further establish the concept, some additional research is necessary regarding
this topic. On the one hand, additional case studies should be carried out in order
to further prove the applicability of the concept. On the other hand, the concept
should be integrated in an IT infrastructure in order to verify to what extent it
is possible to automate process steps such as the mapping of customer Require-
ments to Master Requirements, the automated and Requirements-based design
proposal etc. Additionally, an evaluation should be performed to determine to
what extent the framework could be transferred to other domains in addition to
plant engineering (e.g. software engineering). These remain challenges that need
to be addressed by future research.
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Abstract. Connections between source code components are important
to know in the whole software life. Traditionally, we use syntactic analysis
to identify source code dependencies which may not be sufficient in cases
of dynamically typed programming languages, loosely coupled compo-
nents or when multiple programming languages are combined. We aim
at using developer activity as a source for identifying implicit source code
dependencies, to enrich or supplement explicitly stated dependencies in
the source code. We propose a method for identification of implicit de-
pendencies from activity logs in IDE, mainly of switching between source
code files in addition to usually used logs of copy-pasting code fragments
and commits. We experimentally evaluated our method using data of stu-
dents’ activity working on five projects. We compared implicit dependen-
cies with explicit ones including manual evaluation of their significance.
Our results show that implicit dependencies based on developer activity
partially reflect explicit dependencies and so may supplement them in
cases of their unavailability. In addition, implicit dependencies extend
existing dependency graph with new significant connections applicable
in software development and maintenance.

Keywords: software component, dependency, source code, developer
activity, dependency graph, implicit dependency, implicit feedback.

1 Introduction

Source code dependencies traditionally reflect explicit statements in the source
code and are identified with syntactic analysis of source code contents. As
a dependency we understand oriented connection between two source code com-
ponents of selected granularity, namely instance or type reference, inheritance
relationship or call reference.

Identified dependencies are used to form a dependency matrix or an oriented
graph of interconnected software components to study organization and hier-
archy of software components and their attributes [7]. Dependencies are also
sourced for identifying problematic places, possibly code smells and complexity
of the web of software components, which is important for maintenance activities
on evolving software in particular.
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Source code dependencies allow software developers to learn about how the
existing source code works and how it is composed, e.g., how it will be affected by
an introduced change or how much effort will be required for refactoring. Both
adding new functionality and changing existing functionality require developers
to know about the dependencies before making a change in the source code.

Traditional approaches use a syntactic analysis for identifying source code
dependencies. Other approach is to employ developer activity as a source for
identifying source code dependencies, but mostly logs of copy-pasting code frag-
ments and commits to identify hidden dependencies in source code are used.
We propose a method for identification of source code dependencies that ex-
tends existing works with utilizing data of developer’s navigation in source code
space (logs of switching between source code components). Based on the source
for identification, we distinguish identified source code dependencies as implicit,
i.e., identified from developer activity as an implicit feedback related to the
source code, in addition to the traditional explicit dependencies reflecting ex-
plicit statements in the source code. With our method we broaden the space of
known source code dependencies, thus extending a dependency graph with new
edges relevant for the development or other evaluations of the source code.

For the identification of the implicit source code dependencies we use de-
veloper activity recorded in an integrated development environment (IDE) and
commit logs from a revision control system (RCS) [14]. Our work is inspired
by the research project PerConIK – Personalized Conveying of Information and
Knowledge (perconik.fiit.stuba.sk) [2] with its goal to bring new software met-
rics based on evaluating data of developer activity and context of software de-
velopment. Infrastructure of this project [3] provides us with data collected in
software house and university environment (student team projects), which we
use for evaluation of our method.

2 Related Work

Software product and its source code result from software developer activity. This
motivates current research to look for how software attributes (mostly maintain-
ability) [4] are affected by activities performed during the development together
with the context which developers had resided in. Developers are often disrupted
at work, switch between multiple tasks or take over another developer’s task.
Because of that, various tools for navigation in the source code were proposed,
notably dependency graph of software components [7] and task-related tools,
e.g., for source code and developer recommendation [1,6,13].

We may infer programming sessions [6] from developer activity monitored
during the software development and use them to describe tasks which developers
had worked on with task contexts [1,15], i.e., source code artifacts relevant to
the currently solved task by developer. Developers visit places in the source code
related to the task more often during the work on that particular task [4,8]. From
the recorded data we may then reconstruct what the developer was working on
[6,13] or what particular developer specializes in [11].



Identifying Hidden Source Code Dependencies 451

There are multiple sources and types of data that we can gather when moni-
toring developers during the processes of software development [14], for example:
source code files and their contents from source code repositories [13]; develop-
ment tasks from issue tracking systems; developer activity in an IDE [1,3,7];
developer activity outside of an IDE, in operating system or even events in real
life.

It is important to not affect monitored developers during their activities [8],
being it a similar problem of gathering implicit feedback on the Web [2]. Several
issues arise in the design and development of the infrastructure for a system for
gathering mentioned data of developer activity together – scalability and effi-
cient processing online among them. One of the already proposed solutions is
developed within the project PerConIK – Personalized Conveying of Information
and Knowledge which considers software repository as a web of software compo-
nents and applies “webification” of software development [2,3], i.e., employing
methods and techniques fromWeb engineering to identify new information about
software development and propose new software metrics.

Traditional source code metrics rely on a syntactic analysis of source code,
omitting the information from development process. Basic example is the lines
of code metric which evaluates the size of source code but not the time spent
working on the measured source code. Similarly, traditional dependency graph
of software components is created with identified references of source code com-
ponents [7], helping developers with software development and maintenance.
Authors in [17] also successfully applied network algorithms on identified depen-
dencies to predict problems in software design.

Dependencies identified with syntactic analysis of source code are explicit
since they reflect explicit statements in the source code [7]. We identify following
main problems of the explicit dependencies and of their identification:

• Explicit dependencies do not capture cross-language connections in source
code, e.g. in Web projects developed in combination of HTML and C# lan-
guage.

• Explicit dependencies do not capture connections with configuration files,
schema template files or runtime dependencies.

• Syntactic analysis of source code is not trivial or even possible for dynami-
cally typed languages, e.g., JavaScript, Ruby.

• Explicit dependencies do not reflect sources of solutions in source code, de-
veloper’s inspiration and places required to check when particular component
is changed.

We see possibilities of employing developer activity as a source for identi-
fication of source code dependencies, inspired by the task context approaches
[1,6,13]. Source code does not contain information about the developer’s in-
tents, inspirations and decisions for implemented solutions, what may suitably
extend existing dependency graph. Moreover, because developer activity is not
language-dependent, we may identify dependencies across different programming
languages and also dependencies with configuration files or others which are cur-
rently not covered by explicit dependencies.
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3 Implicit Source Code Dependencies

Software developer interacts with source code components during the devel-
opment and maintenance, and so implicitly reveals task-related dependencies
hidden in the source code. Selected example situations are:

• Developer studies existing code and navigates between dependent compo-
nents to understand implemented logic (navigation paths) [8].

• Developer implements functionality in multiple components at the time.
• Developer copy-pastes a code fragment from existing component further
changes of the original implementation may lead to inconsistency [4].

• Developer configures source code components by creating or maintaining
external configuration files

In all these situations developer’s navigation and activity performed in the
source code implicitly reveals dependent components. When we do not take into
account contents of source code files, developer activity also reveals dependencies
on configuration files or on components implemented in different programming
language. The idea behind the implicit dependencies is similar to the identifica-
tion of task contexts, i.e., the developer works with software components that
are related with each other for the task completion, and is based on empirical
observations of developer activity from two sources – activities recorded in an
IDE, e.g., custom extension for Microsoft Visual Studio or Eclipse [3], and com-
mit history in a RCS, e.g., Microsoft Team Foundation Server or Git [12]. We
chose to use these low-level logs of activities with source code components from
all available types of logs [14] provided by the project PerConIK [2]:

• navigation in the source code - open, close and switch-to a source code file
in an IDE - time-related activities changing currently opened file;

• copy-paste code fragment between two source code files; and
• commit (or check-in) of a collection of source code files to a RCS.

Although we do not force choice of the granularity for source code compo-
nents (e.g., line of code, method, class or library), but for our experiments and
implementation we consider source code files as components.

Our method (see Figure 1) consists of steps for converting raw logs of developer
activity in an IDE and from a RCS to the format used by our method, continued
by the identification of implicit dependencies, their weighting and validation and
finally construction of a dependency graph.

Fig. 1. Overview of method for identification of implicit source code dependencies
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3.1 Identification of Implicit Dependencies

We define source code dependencies as oriented connections between pairs of
software components. Dependencies are weighted according to their significance
and, considering software evolution, are valid for the particular time. Let S be
the set of source code components of the selected granularity, then the space of
dependencies in the source code is D = S × S × T × R in the time T with the
weights R. Note that the explicit dependencies are valid in time while explicit
statements are present in the source code.

Based on the types of activity logs used for identification of the implicit depen-
dencies we define three specialized types of implicit dependencies
Dimp ⊆ D:

• time-related implicit dependencies Dimp,time,
• content-related implicit dependencies Dimp,content,
• commit-related implicit dependencies Dimp,commit.

The most common activity performed by developer during the development is
the navigation in the source code space. Ttime-related activities with source code
components in an IDE are described with the tuples (source, target, operation,
timestamp) containing the source and the target component of the operation,
type of performed operation (e.g., open, close or switch-to file) and timestamp
when the activity occurred. We reconstruct developer activity from these logs
to create time-related implicit dependencies dimp,time (1) between the software
components s1and s2, which occurred at the time t, when developer spent time
span in the target component (the time window property) before making next
operation. The weight wis determined by the weighting function using the time
window property.

dimp,time = (s1, s2, t, w, time window) (1)

Content-related activities of copying and pasting code are described with the
tuples (target, code operation, content, timestamp), containing the target com-
ponent where the code operation was performed (copy, cut or paste) with the
code content, and when the operation happened. Final copy-paste operation is
logged with at least two actions, i.e., copying the code from the source code
component X and pasting it into the source code component Y . Because of that
we reconstruct the clipboard stack to identify content-related implicit dependen-
cies dimp,content (2) where the content property contains the copy-pasted code
fragment and may be used for determining the weight w.

dimp,content = (s1, s2, t, w, content) (2)

The last type of implicit dependencies are identified from commit operations.
Developers tend to submit changes in a collection of source code components as
a solution for the particular task, thus the changed components are implicitly
connected with each other. For each pair of the changed components (s1, s2) in
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the same commit we create dependency dimp,commit (3) with total count of all
committed components and weight w.

dimp,commit = (s1, s2, t, w, total count) (3)

3.2 Weighting of Implicit Dependencies

Each specialized type of implicit dependency extends general Dimp with extra
property, being it time window, content or count. We use these properties to
determine the significance of dependencies with the weighting function weight
differently for each specialized type (4), ranging from insignificant to fully sig-
nificant dependency.

weight : Dimp→〈0, 1〉 (4)

Time-related implicit dependencies are weighted according to the time spent
in the visited component, i.e., significance of visiting (opening, switching-to) that
component for the developer. The weighting function may be specified for the
particular implementation. In our case we chose the weighting function to be as
shown in Figure 2. To eliminate mistakes in developer’s navigation in source code
space, the dependency becomes fully significant after the selected threshold a.
But after the threshold b the dependency is becoming irrelevant (the threshold
c). After experiments we chose the thresholds to be a = 10 seconds, b = 10
minutes and c = 15 minutes for our method.

Fig. 2. The weighting function for time-related implicit dependencies dimp,timewith
threshold parameters a, b and c



Identifying Hidden Source Code Dependencies 455

Content-related implicit dependencies are identified from the copy-paste oper-
ations, thus their significance may correspond to the amount of the code copied
or its contents. However, for simplicity we chose to weight every dimp,content with
constant of 1.

Commit-related implicit dependencies are weighted to the total count of com-
mitted components, as in (5), to promote smaller, fine-grained, commits solving
single tasks. The lower the count of changed components in a commit, the more
dependent they are together and contrariwise.

weight (dimp,commit)=
1

count
(5)

3.3 Validation of Implicit Dependencies

Even though changes in the source code invoke changes of its explicit dependen-
cies, we are not able to similarly validate implicit dependencies over time. To
model their relevance we validate them to the selected time using a forgetting
function [9]. Developer interacts with the source code components mostly based
on the task they currently solve, thus when the contents change over time or
the task is finished, the developer’s interactions lose their significance. Because
of that the definition for validation functions of implicit dependencies Dimp (6)
is similar to of explicit dependencies Dexp (7).

validityimp :Dimp×T → 〈0, 1〉 (6)

validityexp :Dexp×T→ {0, 1} (7)

Explicit dependencies are valid or not according to existence of explicit state-
ments to the selected time, hence the validity selected to 0 or 1. Implicit depen-
dencies are valid according to the forgetting function to the selected time t (8),
which we chose to use from [16] with parameters set to a = 1 and b = 0.08:

y = ae(−b
√
t) (8)

3.4 Dependency Graph

After the identification of implicit dependencies, we extend existing dependency
graph G(V,E) of V for the vertices of software components (source code files),
and Efor edges of aggregated dependencies. We differentiate between explicit
and implicit edges in the graph because of differences in their meaning, i.e.,
E = Eexp ∪ Eimp:

• Explicit dependencies represent statements in the source code, e.g., refe-
rences, call hierarchy, inheritance.

• Implicit dependencies represent how developers interacted with source code
during the development, e.g., their inspirations.
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Both explicit and implicit edges of dependency graph are weighted with sum
of weights of aggregated explicit or implicit dependencies of the corresponding
type (9), possibly validated to the selected time. Resulting weight of implicit
edge represents significance of aggregated implicit dependencies over time with
single value.

weight (eimp, s1,s2) =
∑

dimp∈Dimp,s1,s2

validity (dimp)w (9)

4 Evaluation

We propose implicit source code dependencies to be mainly applied during the
processes of development and maintenance. To evaluate contribution of implicit
dependencies we performed two experiments to show that:

• implicit dependencies reflect explicit dependencies of components which de-
veloper worked on during the task,

• implicit dependencies enrich dependency graph with new significant connec-
tions usable during the maintenance.

The PerConIK project is developed in cooperation with a medium sized soft-
ware company. Before deploying our method in real work environment, we opted
for evaluating it using data of five on-going student software projects provided
also by the PerConIK project. These projects were developed by students of
master courses Software Engineering or Information Systems. All projects were
developed in C#/.NET and other Microsoft technologies in time span of one
academic year:

• Project A – development of a web/desktop application by 3 developers,

• Project B – development of class libraries by 1 developer,

• Project C – development of class libraries by 1 developer,

• Project D – development of a web/desktop application by the team of
7 developers,

• Project E – development of a web application by the team of 7 developers.

Table 1 shows total numbers of activity logs from these projects, total num-
ber of explicit edges in their dependency graphs and also results of the selected
source code metrics – lines of code, maintainability index and cyclomatic com-
plexity. In our evaluation we use source code files for components used in the
method. Because all the evaluated projects were developed using Microsoft tech-
nologies, we employed the Code Map functionality of Microsoft Visual Studio
to identify explicit dependencies using the built-in reference recognition and the
Code Metrics to evaluate other metrics.
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Table 1. Results of the source code metrics for the software projects used for our
evaluation, total numbers of explicit edges in their dependency graphs and numbers
of activity logs recorded in 1 year of their development (LOC – lines of code, MI –
maintainability index, CC – cyclomatic complexity)

Project LOC MI CC |Eexp| No. of
activity logs

A 2,402 82 1,285 232 15,215

B 4,384 74 2,164 274 8,584

C 4,993 81 3,213 528 24,213

D 5,342 81 1,839 270 55,877

E 3,721 81 1,779 189 48,717

Table 2. Total numbers of edges for identified implicit dependencies in dependency
graphs for the evaluated software projects with the same vertices set

Project |Eimp| for thresholds

0 1 2 3

A 640 423 200 124

B 507 339 141 88

C 792 524 224 124

D 797 556 285 201

E 755 464 246 164

4.1 Reflection of Explicit Dependencies

We expect that implicit dependencies reflect explicit ones based on the existence
of the developer’s task context. We compared existing explicit dependencies of
evaluated projects with identified implicit dependencies by comparing the Eexp

and Eimp sets of dependency graphs. Table 2 shows total numbers of identified
implicit edges in dependency graphs constrained by threshold for edge weights
ranging from 0 to 3, when considering only edges between the files that appear
in the explicit dependency graphs.

For evaluating the overlap of implicit and explicit edges we used weight thresh-
olds of 1 and 2 to filter out less significant implicit edges. Higher values may have
been also used but not for the dataset of size of ours. Table 3 shows how much
of the identified implicit edges are explicit as well and how many explicit edges
were identified with implicit edges (last column). We found out that up to 54% of
all the identified implicit dependencies are common with explicit dependencies.
We also analyzed whether the rest of the implicit dependencies are significant
or not (see Section 4.2).
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Table 3. Overlaps of implicit and explicit edges in dependency graphs with selected
thresholds to filter out less significant implicit edges

Project
Eimp

threshold |Eexp∩Eimp| |Eexp∩Eimp|
|Eimp|

|Eexp∩Eimp|
|Eexp|

A
1 173 40.90% 74.57%

2 108 54.00% 46.55%

B
1 140 41.30% 51.09%

2 70 49.65% 25.55%

C
1 210 40.08% 39.77%

2 120 53.57% 22,73%

D
1 191 34.35% 70.74%

2 123 43.16% 45.56%

E
1 149 32.11% 78.84%

2 108 43.90% 57.14%

Secondly, identified implicit dependencies overlapped up to 78.84% of explicit
dependencies between files included in the space of implicit dependencies. That
means that we are able to partially compensate inability of identification of
explicit dependencies in cases where source code analysis is not possible but
monitoring of developer activity is. Such example is usage of multiple program-
ming language in the same software project, e.g., when simply combining HTML,
JavaScript and CSS.

4.2 Significance of Implicit Dependencies

For the second experiment we expected that implicit dependencies provide new
and significant information about connected software components, e.g., when
particular component in a source code file relies on settings in a configuration
file or when components are loosely coupled. Our task was to discuss identi-
fied implicit dependencies with the developers and decide whether they reflect
connections in source code usable in the maintenance or not. As a significant
connection of source code files, i.e., significant implicit dependency, we under-
stood: If the components in the source code file A are changed, the contents of
the file B should be checked or changed as well.

We were able to perform this experiment on the first four projects only and
we chose to validate implicit dependencies with the weight threshold of 2. We
chose this threshold to evaluate as most of the implicit edges as possible while
still keeping the number of edges relatively low and the experiment bearable
for developers. Developers manually checked each dependency and decided its
significance, hence evaluating all the identified edges would have been too diffi-
cult. In this experiment the counts of implicit edges were higher than in the first
experiment because we also evaluated dependencies between files which were
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not included in the explicit dependency graphs, e.g., webpages, configuration
files, etc. To simplify the evaluation process, we generated dependency graphs in
DGML format (for Microsoft Visual Studio) with implicit edges only, excluding
the explicit ones. Developers were able to switch between the graph and the file,
thus ensure in their decision of keeping or removing the dependency from the
graph. In the end we compared the results with the original files. We achieved
precision of more than 75% for the evaluated projects (Table 4).

Table 4. Evaluation of significance of implicit dependencies with the weight
threshold of 2

Project
No. of implicit dependencies

Precision
Original Significant

A 180 138 76.67%

B 112 103 91.96%

C 257 203 78.99%

D 634 576 90.85%

During the experiment we led discussion with the participated developers and
received positive feedback for ability to identify dependencies between loosely
coupled components across layers of the Model-View-Controller pattern. Even
more, developers reminded reasons why the files were dependent during their
work with them.

We highly appreciate the ability to identify dependencies just from logs of
switching between source code files in the IDE. This is important when look-
ing for dependencies on configuration files, schema template files or dynamically
resolved dependencies. As an example, these situations were correctly identi-
fied with our method from developer activity in the IDE (for Web projects in
ASP.NET MVC):

• Dependencies between C# classes and the XML configuration files, e.g., key-
value settings, database connection strings, web service definitions.

• The View layer components (HTML webpages) displaying contents of the
Model layer components (C#), e.g., webpage displaying data of a data class
in table view.

• Dependencies between the View layer components (HTML webpages) on the
Controller layer components (C#), e.g., when linking to a controller action.

• Dependencies between JavaScript source code files and C# files.
• Correct pairings of the View layer (HTML) with its code-behind (C#).
• Transitive dependencies on class inheritance hierarchies through interfaces.

5 Conclusion

Knowledge about dependencies of software components is utilized mostly during
the development and maintenance processes, helping software developers with
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navigation and study of the existing source code. However, identification of ex-
plicit dependencies does not provide information about all connections in the
source code. Moreover, in case of dynamically typed languages, it is sometimes
even impossible to identify dependencies at all. Because of that we proposed
the identification of implicit dependencies from developer activity to enrich ex-
isting dependency graph with new significant edges, or to supplement explicit
dependencies in case of their unavailability.

For the evaluation of our method we used data gathered in the course of stu-
dent (team) software projects. While we see natural difference between behavior
of students and professional developers (work habits and schedule, experience),
the evaluated projects were of relatively large size considering school projects
and served as a basis for next step in our research, which aims at evaluating our
method in real work environment. In our first experiment we showed overlap of
both explicit and implicit edges in dependency graphs, thus possibilities of sup-
plementing explicit dependencies with implicit ones. In our second experiment
we attempted to manually evaluate significance of identified implicit dependen-
cies. We achieved positive results, with correctly identifying hidden dependencies
in the source code, and also cross-language dependencies.

Achieved results allowed us to deploy our monitoring infrastructure to a
medium size software company. The infrastructure is aimed at recording im-
plicit feedback of software developers and annotating source code with infor-
mation tags created manually by the developers (during code reviews) or au-
tomatically based on source code analysis and developer activity analysis [3].
In June 2014 we have started to record activity data from two teams of total
25 developers working on web information systems development in this software
company. Just before the deployment of our developed infrastructure within
the PerConIK project for recording implicit feedback of software developers we
tested the infrastructure extensively.

First impression of developers on the dependencies enriched by implicit depen-
dencies was very positive including examples of such dependencies identified even
by hand in existing software repositories. While the straightforward application
of implicit dependencies is to visualize them in the form of a graph, we discussed
our method with professional software developers and received valuable feedback
to simply provide prioritized list of software components to be checked for the se-
lected component upon developer’s request. We plan to continue in experimental
evaluation with dataset based on professional developers’ work.
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M.: Webification of Software Development: General Outline and the Case of
Enterprise Application Development. In: AWERProcedia Information Technol-
ogy and Computer Science: 3rd World Conf. on Information Technology, vol. 3,
pp. 1157–1162 (2013)
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Abstract. We built a framework for analyzing the contents of large so-
cial networks, based on the approximate counting technique developed by
Gonen and Shavitt. Our toolbox was used on data from a large forum—
boards.ie—the most prominent community website in Ireland. For the
purpose of this experiment, we were granted access to 10 years of forum
data. This is the first time the approximate counting technique is tested
on real-world, social network data.

Keywords: approximate counting, software development, social net-
works, big data.

1 Introduction

Many real-world systems are complex networks and consist of a large number of
highly connected interacting components. Examples are the World Wide Web,
Internet, neural and social networks. Complex networks can be represented as
graphs. These graphs contain characteristic patterns and substructures, such
as cycles or triangles. Such patterns are called network motifs, subgraphs or
templates. There are several algorithmic procedures to count or detect network
motifs of size O(log n). Counting and detecting motifs is a method of identifying
functional properties of a network. The frequency of certain motifs indicates
how nodes behave in the network. The term “motif” was coined by Milo et al.,
who subsequently found motifs in biochemical, neurobiological, ecological and
engineering networks [11]. A problem with counting patterns in graphs is that
the general problem is known to be #P-hard[13], and therefore no efficient (i.e.,
polynomial time) algorithms are known. Attempts to count motifs in networks
must either be limited to networks of a modest size, so exponential algorithms
finish in reasonable time, or give an approximate answer. As networks of interest
are emerging that are large by nature, the latter approach seems the way to go.

Approximate counting of motifs has not been attempted on large networks
(more than a few thousand nodes) [16]. In the experiment which this paper
reports, we set up and tested a framework that is capable of analyzing large, real-
world, social-media networks, by transforming them into graphs and
approximately counting motifs in these networks.

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 463–474, 2015.
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This paper is organized as follows. We start with an overview of related work,
then we discuss the approximate counting algorithm and parameter settings that
lead to acceptable results. Then, we discuss the dataset on which the experiments
were run. Section 6 contains the results of our analysis and our findings based
on this, and the final section contains directions of further results and expansion
of the algorithms.

2 Related Work

Networks with similar global topology can have varying local structures. In fact,
local motifs are increasingly considered to be the small building blocks which
are responsible for local functions in a network. Milo et al. [11] found network
motifs in biochemical, neurobiological, ecological and engineering networks. An
example of functional properties of motifs was illustrated by Becchetti et al. [5].
They showed that the local number of triangles in large-scale Web graphs is
an indication of spamming activity. Przulj et al. [12] uses the term graphlet to
denote a connected network with a small number of nodes.

The search for motifs in networks focuses on either induced or non-induced
motifs [8]. Induced motifs have an additional restriction: an induced motif is
a subset of vertices that contains all the edges between those vertices that
are present in the original network. In general, searching non-induced motifs
is more informative because a vertex in a network could have functions not as-
sociated with all of its adjacent edges [8]. Motif detection is equivalent to the
subgraph isomorphism problem, a well-known problem in Graph Theory, which
is NP-complete [7]. The exact solution can be found by enumerating all possible
combinations of vertices that together form the size of the motif, and checking
whether the edges present correspond to the edges in the subgraph. Ullmann
described an exponential algorithm for subgraph isomorphism which takes poly-
nomial time for a fixed choice of a subgraph [14]. Counting the number of motifs
of a particular vertex builds upon the subgraph isomorphism problem. Count-
ing motifs amounts to enumerating how many subgraphs can be found in which
a particular vertex is included. Finding non-induced motifs grows rapidly in
computation time with input size, and has not been attempted on large-scale,
real-world networks [16]. Reducing this computation time represents a major
research challenge.

Brute-force search for a particular motif requires the enumeration of all pos-
sibilities. For instance, finding all triangles in a network requires finding every
pair of edges with the same vertex as one of their end vertices, and checking
whether there is an edge connecting the other end vertices of these two edges.
Without any form of approximation, the most efficient way to solve this prob-
lem uses matrix multiplication, which is of order O(n3) if a textbook method is
used. Without matrix multiplication, a naive algorithm takes computation time
of O(n5). For larger networks testing such naive algorithms is problematic.

Counting the number of a certain motif is #P -hard. #P-problems are of
the form “compute the value of a function f(x),” where f(x) is the number
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of possible solutions to the corresponding NP-decision problem [13]. They are
at least as hard as the NP-problem, since solving the decision problem entails
finding out if this number is nonzero. There are a few existing algorithms for
counting and detecting non-induced motifs. These techniques go back to Larry
Stockmeyer’s (1983) theorem for approximate counting. He proved that for every
#P-problem there is a randomized approximate algorithm that determines the
count, using an NP-oracle. [13] This means that for a particular instance a of P
and ε > 0, the algorithm returns the count C with a high probability such that
(1 − ε)P (a) ≤ C ≤ (1 + ε)P (a). The randomized algorithm is in principle an
(ε, δ)-approximation method.

3 Approximate Counting Algorithm

3.1 Color Coding

The approximate counting algorithm makes use of the color coding technique
introduced by Alon et al. [2], used there to detect simple paths, cycles and
bounded treewidth subgraphs. (See, e.g., Bodlaender and Koster [6]). Recently,
the color coding technique has been used to detect signaling pathways in PPI-
networks [1].

The color coding technique is based on random assignments of colors to the
vertices of an input graph. It can detect specific subgraphs efficiently by only con-
sidering specific color assignments, in time proportional to a polynomial function
of the input n = ||V ||. If the assignment of colors is repeated sufficiently many
times the method will find a specific occurrence of the motif of size O(log(n))
with high probability. Multiple algorithms use elements of, or are entirely based
on, the color coding technique [3,1]. Arvind and Raman [3] used color coding for
counting the number of subgraphs isomorphic to a bounded treewidth graph.
Alon et al. [1] described a polynomial time algorithm for approximating the
number of non-induced occurrences of trees and bounded treewidth subgraphs
with k ∈ O(log n) vertices. In 2007, Hüffner, Wernicke and Zichner [10] presented
various algorithmic improvements for color coding that lead to savings in time
and memory consumption.

Other methods have been explored to approximate the number of motifs,
such as the exploitation of subgraph symmetries by Grochow and Kellis [9]. It
could happen that a subgraph H can be mapped to a given subset G of a graph
multiple times. Eliminating these subgraph symmetries significantly decreases
computation time. However, the running time of the algorithm still increases
exponentially with the size of the motif.

Zhao et al. [16] have recently shown that using color coding in addition to
parallel programming can find motifs in networks with millions of nodes. They
have combined parallelization of color coding with stream based partitioning.
Their “ParSE” algorithm was tested on large-scale, synthetically generated, so-
cial contact networks for urban regions.

In this paper, color coding is also employed to countmotifs. Gonen and Shavitt’s
algorithm for counting simple paths will be explained in detail, together with its
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implementation in the Python programming language and performance on the fo-
rum data set. By testing the algorithm on the forum data, Gonen and Shavitt’s
simple path algorithm is applied for the first time to a real-world, social network.

3.2 Simple Path Algorithm

Gonen and Shavitt’s algorithm to find simple paths uses the color coding tech-
nique by Alon, Yuster and Zwick [2]. It approximates the number of paths of
length k − 1, where k is the number of colors in the color set. The input is the
graph G, a vertex v ∈ V , the path length k − 1, fault tolerance ε, and error
probability δ.

1: t = log(1δ ); s = 4kk

ε2k! ;
2: for j = 1 to t do
3: for i = 1 to s do
4: Color each vertex of F independently and uniformly
5: at random with one of the k colors
6: for all u ∈ V do
7: Ci(u, ∅) = 1
8: end for
9: for all l ∈ [k] do

10: Ci(v, l) =

{
1 if col(v) = l
0 otherwise

11: end for
12: for all S ⊆ [k] s.t. ||S|| > 1 do
13: Ci(v, S) =

∑
u∈N(v) Ci(u, S\col(v))

14: end for
15: Pi(v, [k]) =

∑k
l=1

∑
(S1,S2)∈Al,v

∑
u∈N(v) Ci(v, S1)Ci(u, S2),

16: where Al,v = {(Si, Sj) | Si ⊆ [k], Sj ⊆ [k],
17: Si ∩ Sj = ∅, ||Si|| = l, ||Sj|| = k − l}
18: Let Xv

i = Pi(v, [k])
19: end for
20: Let Y v

j =
∑s

i=1 Xv
i

s
21: end for
22: Let Zv be the median of Y v

1 . . . , Y v
t

23: Return Zv.kk/k!

This algorithm is an (ε, δ)-approximation for counting simple paths of length
k−1 containing vertex v, “simple” meaning that there are no repeated vertices in
the path. Pi(v, S) is the number of colorful paths (i.e., paths on which all nodes
have a distinct color) containing v using colors in S at the ith coloring. Ci(v, S)
is the number of colorful paths for which one of the endpoints is v using colors
in S at the ith coloring. The algorithm finds an approximation of the number
of paths within [(1− ε)r, (1 + ε)r], where r is the actual number of paths in the
graph, with a probability of at least 1− 2δ.

The estimator used in this algorithm is also called “median of means” and it can
be shown, using Chebyshev’s inequality and Chernoff bounds, that the expected
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value of the number of colorful paths (i.e., the number of paths times k!/kk) can
be approximated arbitrarily closely using a limited number of iterations.

When experimenting with the algorithm on known graphs, two problems with
the original pseudocode of Gonen and Shavitt became apparent. First of all, when
v is a node on the path, the colorful paths containing v are counted “in both
directions”, in other words twice. Second, when v is an endpoint, one of the sets
in the partition is the empty set and therefore Ci(u, {}) = 1 for all neighbors of v.
To get results that are both theoretically correct and experimentally acceptable,
we had to adapt the value of Pi as follows.

Pi(v, [k]) = Ci(v, k) +
1

2

k−1∑
l=2

∑
(S1.S2)∈Al,v

∑
u∈N(v)

Ci(v, S1).Ci(u, S2)

This adaptation in computing Pi influences the complexity of computing Pi

only by a constant, leaving the complexity of the algorithm O((2e)k||E||. log(1δ )/
ε2), as in the Gonen-Shavitt case.

4 About the Implementation

To implement and test the simple path algorithm in Python, we made use of
the packages NetworkX (http://networkx.github.io/) for generating graphs
of vertices and edges to which weights and labels can be associated, and Numpy
(http://www.numpy.org/) that provides a library of mathematical functions for
performing computations on large arrays.

To achieve a better performance we have made use an efficient bitwise rep-
resentation of color sets. The sets of colors required are all “small” sets with
cardinality certainly less than 32. Such sets can efficiently be represented as 32-
bit integers using a bitwise representation where, for example, the set {6, 4, 3, 1}
is represented by the integer 26 + 24 + 23 + 21 = 90. The counterparts to the
necessary set operations can then be efficiently implemented as combinations of
logical bit operations.

To test the implementation, we generated complete and random graphs with
less than 20 nodes in which the number of paths of a given length can be com-
puted exactly using built-in NexworkX functions and compared the results with
the results of the color coding algorithm. An example of the measured results is
in Figure 1.

For obvious reasons, exact counting cannot be done on large graphs. However,
both calculations and tests suggested that the number of iterations needed to
achieve acceptable accuracy in the color coding case could be reduced signifi-
cantly, resulting in a significant reduction in computation time (See Figure 2).

A series of further tests led to fine tuning of the parameters of the algorithm
for the analysis of the real data set.

http://networkx.github.io/
http://www.numpy.org/
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Fig. 1. Simple path counts of length 2 for random graphs with 2/3 possible edges

Fig. 2. Accuracy of the algorithm for varying s and t

5 About the Data Set

The real-world, complex networks for which the numbers of simple paths have
been counted are generated from an Irish forum data set. This data set was put
online in 2008 for the “boards.ie SIOC Data Competition.” (SIOC stands for
Semantically-Interlinked Online Communities Project). The complete data set
contains ten years of Irish online life from Irelands largest community website
“boards.ie” over the years 1998-2007. Since the foundation of the website in
1998, over 36 million posts have been made and the current posting rate is around
17,000 a day (retrieved from http://www.boards.ie/content/about-us). The
data set is a large collection of RDF-files (Resource Description Framework), in
which each file contains a post in a thread on a forum. The RDF-files have a tree-
like structure, corresponding to the way in which the board’s website contains

boards.ie
boards.ie
http://www.boards.ie/content/about-us
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various forums, each forum contains multiple threads and each thread contains
board posts that are chronological replies to each other. In this project, useful in-
formation from the data set is extracted by parsing the RDF-files. Such informa-
tion involves the topic of the post (title), the username of the person who posted,
his FOAF-person profile, and the thread which contains the posts. The Python
package that is used for this purpose is rdflib (https://github.com/RDFLib/
rdflib/), which can query and extract certain elements from an RDF-file. From
there, we generate graphs that represent the structure of the data set by using
the NetworkX Python package. For the main analysis of this project, graphs are
constructed in which nodes represent users with accounts on the boards web-
site, and edges the connections between users if they posted in the same threads.
For an initial analysis, the data of the years 1998-2000 were used. The distri-
bution of simple paths in these graphs were compared to artificial data, such
as randomly generated graphs, preferential attachment graphs, and small-world
graphs. While testing the algorithm on the data sets, the algorithm was revised
and further optimized. The results of the motif counts were analyzed and com-
pared, and further analysis of these substructures was used to yield conclusions
about this forum data set.

6 Results and Conclusions

6.1 Analysis

Having tested, corrected and fine-tuned our software, it was time to run tests on
the SIOC data and compare characteristics of these data with artificially created
networks of different sorts. Due to space limitation, only a small fraction of the
results obtained can be presented here.

First we give a logarithmic representation of the means of all nodes per path
length. We obtain a linear plot, which indicates the mean of the counts grows
exponentially in path length. The plot shows a standard deviation close to the
means, indicating a large tail of the distribution. Similar results were obtained
for 1999 and 2000.

Figure 4 shows the relationship between the number of paths of length 3 vs
length 2 and 4 vs 7 of the same node for the 1998 data set. The relationship is
linear and was found for each pair of length up till length 9.

The distribution of paths in the boards forum data was compared with ran-
dom, preferential attachment and small-world graphs. For the graphs of 1998,
1999 and 2000 the distribution of the number of paths of a specific length is
plotted. In Figures 5 and 6 the x-axis represents the number of paths of spe-
cific length that were counted of which a given node is a member. The y-axis
shows the relative number of occurrences of this number of paths for all nodes
in the graph in Figure 5. In Figure 6, the y-axis shows the relative occur-
rence of this number of paths for 150 graphs generated by graph models in
NetworkX, in which each time the number of paths for a random node was
determined. (These graphs have the same number of nodes and edges as the

https://github.com/RDFLib/rdflib/
https://github.com/RDFLib/rdflib/
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Fig. 3. Analysis of 1998 path counts. Logarithm of means and standard deviations

Fig. 4. Relationship between path lengths in 1998 data

1998 data.) Based on the minimum and maximum number of paths, the data
is segmented into 50 bins. The data was fitted to all valid parametric prob-
ability distributions in Matlab, using the function Allfitdist (retrieved from
http://www.mathworks.nl/matlabcentral/fileexchange/). The four best fit-
ting probability density functions are displayed in the plot. Below the results
are shown for the boards graph of 1998. Since the relationship between differ-
ent path lengths is linear (Figure 4), the main analysis below is performed with
path length 3. The graphs in Figure 6 are, respectively, generated randomly,
then scale-free according to the preferential attachment model by Barabási and

Fig. 5. Paths of length 3 and 4 in the 1998 data and fitted probability density functions

http://www.mathworks.nl/matlabcentral/fileexchange/
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Fig. 6. Path counts in 150 randomly generated graphs according to different models

Albert [4] and then twice according to the small-world model of Watts and Stro-
gatz [15] with rewiring probabilities 0.5 and 0.03. Other probabilities were also
tested and showed similar results.

A final plot compares path counts to degree.

6.2 Conclusions

Concerning the Algorithms. The most important conclusion to draw from
the experiments is that the algorithms of Gonen & Shavitt and our implemen-
tation of them indeed work. Except from a minor glitch in the pseudocode,
mentioned above, and the fact that in practice much fewer iterations of the ran-
domized algorithm were necessary than were required by the theory everything
went more or less smoothly. This again supports the practice of testing imple-
mentations against data for which the count is known. Nonetheless, there were
some performance issues which support the consideration to port the implemen-
tation to a lower-level language, such as C, before making the tools more widely
available. Meanwhile however, extensions as discussed in the next section, and
tests on even larger networks seem in order.

Concerning the Experiments. The histograms of the number of paths
(Figure 5) show that the distribution of the number of paths is broader than for
random graphs with the same number of nodes and edges. The peak for path
length 3 of the 1998 data is at 1.5 × 104 paths, while for random graphs with
the same number of nodes the peak is at 4.5 × 104 (≈ 3 times larger than the
SIOC graph). On the other hand, the tails of path distributions of the SIOC
graphs are much larger for all path lengths. Again, for path length 3 the largest
number of paths of the SIOC data is around 3.5× 105, while for random graphs
it is around 2.3× 104 (≈ 15 times smaller than the SIOC graph). Similar results
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were obtained for larger path lengths. This suggests that there are a few mem-
bers extremely active on the boards website and are connected with other nodes
through many paths. For instance, when a node is a member of a large number
of paths of length 3 (4 nodes), it suggests that the node itself posts prolifically
and has many threads in common with other users (prolific poster) and it could
have posted in a thread in which an extremely active user has posted (extremely
active neighbor). However, from Figure 7 it can be concluded that counting the
number of paths a node is a member of and its degree are highly correlated. This
suggests that prolific users are generally in more paths. The two outliers in this
correlation could be explained by considering neighbors; there is one node with
low degree (degree 3) and a high number of paths (173000). This means that it
is probably connected to a very prolific user, or even to two. There is one node
with a higher degree (degree 45) and a low number of paths (8022).

Fig. 7. paths of length 3 vs degree

Comparing the distribution of counts against those of artificially generated
graphs revealed that the distribution of the boards data graph is similar to that
of preferential attachment graphs with the same amount of nodes and edges.
The small-world model [15] with varying rewiring probabilities does not show
similar path-count distributions as the SIOC data. In the simple path counts it is
seen that the distribution of the counts looks similar to preferential attachment
networks. Each new individual on the boards website posting in a thread has a
higher probability of posting in a thread in which a prolific poster has posted
earlier. Hence, it has a higher probability of forming an edge with that person.
This mechanism is essentially how a preferential attachment network is dynami-
cally generated. In a preferential attachment graph, every new node connects to
already existing nodes and has a higher probability of connecting to “popular”
nodes in the graph. However, the preferential attachment model differs from the
real-world SIOC graph in several aspects. Firstly, in a preferential attachment
graph, a new node has a fixed number of starting edges. Each new node con-
nects to existing nodes with the same amount of edges, while in the SIOC data
a new individual on a forum could actively engage in many threads, post new
questions and/or be an observer. Also, the preferential attachment model does
not take into account that new nodes can make new threads. In addition, the
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degree distribution of a scale-free network (that can be generated by the pref-
erential attachment model) generally follows a power-law distribution. This was
not observed for the SIOC data. In the SIOC data, the number of nodes with
higher degree decreases less rapidly. However, it is likely that the preferential
attachment process causes the similarity in distribution of path counts between
the preferential attachment and the SIOC data graphs.

7 Further Research

In this project we created a toolbox for analyzing real-world, social networks of
considerable size. Our approach was concentrated on simple paths, but the algo-
rithms can easily be extended to researching other motifs and graph properties.
The toolbox we created can be expanded in several directions:

– Algorithmically: the algorithms and code developed so far can still be opti-
mized in several ways. For instance, the approach taken allows for numerous
variations of parallelization. Not only can different parts of the graph be
explored simultaneously, as was done on artifical data in [16] because of the
limited size of the structures searched for, but also the iterations sketched
above can be parallelized, with which a speedup is expected or, equivalently,
the ability to tackle even larger graphs.

– Semantically: Though the motifs considered so far are interesting, they do
not represent the only properties one would extract from social networks. For
instance a question of interest is: which users form cliques interested in the
same subset of subjects? Is the opinion of users about subjects related to their
geographic location (IP-number)? Which (opposing) coalitions are formed?
Simple paths are just a start. Yet, the triangles mentioned in Section 1 are
simple paths of length two, of which the endpoints are neighbors. Circles are
like paths of arbitrary length, and cliques are circles in which all points are
neighbors.

– Dynamically: So far only static graphs have been considered. However, we
have data spanning a long period of time. We would make the toolbox ade-
quate to deal with development of structures over time. For example time
decay could be added to the preferential attachment model to account for
recency of threads.

We will continue to pursue this research.
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Abstract. Designing business processes from scratch is an intricate and
challenging task for process modellers. For this reason, the reuse of pro-
cess patterns has become an integral part of process modelling in order to
deal with recurring design issues in a given domain when modelling new
business processes and variants thereof. The specialization of abstract
process activities remains a key issue in process pattern reuse. Depend-
ing on the intended purpose of process pattern reuse, the specialization
of abstract process activities typically ranges from the substitution of ab-
stract process activities with sub-processes to the substitution of activity
labels with specialized labels. The specialization of abstract process ac-
tivities through label specialization has been hardly investigated so far
in the business process community. The approach presented in this paper
achieves consistent specialization of abstract process activities by ensur-
ing consistent specialization of activity labels through exploitation of
semantic activity labels as introduced in previous work. Semantic activ-
ity labels encode the linguistic meaning of process activities and thereby
facilitate the establishment of consistency criteria based on the implicit
semantics captured by activity labels.

Keywords: semantic activity labels, activity label specialization, con-
sistent reuse of process patterns.

1 Introduction

Traditional business process management relies on business process models which
prescribe a sequence of process activities that are performed in order to meet an or-
ganization’s business objectives. The modelling of such business processes is sup-
ported by various languages such as Event-driven Process Chains (EPCs) [7] or
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theBusiness ProcessModel and Notation (BPMN) [14]. Process patterns represent
core business processes and allow for the description and reuse of best-practice pro-
cess knowledge in organizations rather than defining business processes either from
scratch or through updates of existing business process models (cf. [21,22]). Typ-
ically, process patterns are represented by process model templates which mainly
consist of abstract process activities, the labels of which lack domain-specific ex-
pressiveness (see also [2,15]). Empirical studies show that activity labels are the
key for human model readers to understand process models [12] as “the use of in-
formative and unambiguous labels improves an overall understanding of a process
model” [10]. As a consequence, the reuse of process patterns faces the issue of sub-
stituting abstract process activity labels with more informative labels, leading to
what we call activity specialization by label specialization. In order to illustrate the
need for activity specialization by label specialization, consider a process pattern
for the definition of development processes which consists of, amongst others, ab-
stract process activity “Define Requirements”. When reusing this process pattern
for modelling a domain-specific development process, e.g., a software development
project, themodeller replaces the “DefineRequirements” activity labelwith amore
expressive label, e.g., “Define Software Requirements With Customer” or “Define
Component Requirements for ArchitectureDesign”, in order to accomplish a higher
informative value for human model readers.

The reuse of process patterns requires a mechanism for checking the consis-
tency of the resulting specialized process model with respect to the original pro-
cess patterns. Violations of consistency criteria may have significant impact on
the correctness of propagated best-practice knowledge, thereby posing an imped-
iment to controlled process evolution in organizations. While consistency along
the behavioural dimension of process models has been thoroughly investigated,
e.g., in data-centric business process modelling [17,1], consistent specialization of
abstract process activities by label specialization still is an open research issue.

Consistent label specialization has to cope with two critical challenges. First,
empirical studies show that the current labelling practice of process activities
is conducted rather arbitrarily [13], which inherently causes a potential threat
for understanding process models by human model readers as well as informa-
tion systems. Second, consistent specialization requires a verification of the lin-
guistic meaning of activity labels at any level of abstraction that these labels
appear. In order to deal with this first issue, we proposed in previous work [3]
a comprehensive lexical and semantic labelling framework. This framework in-
troduces, on the one hand, lexical labels to facilitate unambiguous formulation
of activity labels by text clauses and, on the other hand, the refactoring of se-
mantic activity labels to facilitate linguistic encoding of activity labels. As a
key feature, the framework covers the analysis tasks of automated label refac-
toring to accomplish human understandability and the automated semantic an-
notation of process activities to accomplish interpretability by information sys-
tems. In order to deal with the second issue, this paper extends the lexical and
semantic labelling framework with consistency criteria for label specialization.
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In particular, the proposed consistency criteria exploit semantic activity labels
annotated to process activities.

The remainder of this paper is organized as follows. Section 2 presents the
annotation of process activities with semantic activity labels. For illustration pur-
poses, the presented approach towards consistent activity specialization employs,
without loss of generality, a more compact formalization of semantic activity la-
bels with respect to previous work [3]. Section 3 presents the main contribution
of this paper. Section 4 provides an application example in order to illustrate
the main benefits of the proposed approach for the process modeller. Section 5
discusses the state of the art on the specialization of process activities.

2 Annotation of Process Activities with Semantic
Activity Labels

The formulation of activity labels by process modellers typically includes the
description of tasks or actions (e.g. “Verify” or “Identify”) and process objects
(e.g. “Order” or “Requirements”) which together constitute the main building
blocks for activity labels. Accounting for the linguistic meaning of activity labels,
however, requires the consideration of the product of the meaning of the words
that compose the activity labels (cf. [11, p. 68 et seq.]). In other words, linguistic
encoding of activity labels involves the description of task/process objects on the
one side and the description of relationships between used words on the other
side. In previous work [3], we introduced semantic activity labels to facilitate
linguistic encoding of process activity labels into a semantic representation that
abstracts from any lexical representation. A semantic activity label embodies a
set of process items, i.e., process objects and tasks and a set of relationships
between them. The process items and relationships encapsulated by semantic
activity labels originate from a process knowledge base to accomplish controlled
evolution and specification of process activity labels. The formalism for process
knowledge bases employed in this paper (Definition 1) is a simplification with
respect to previous work [3] which allows for a more focussed discussion of the
specialization aspects of semantic activity labels.

Definition 1 (Process Knowledge Base).
A process knowledge base P = (I,≤I , R, τ,≤R) consists of

- the set of process items I;
- the partial order ≤I over I, called process item hierarchy. The set of all
sub-process items of a process item i ∈ I, denoted by sub(i), is given by
sub(i) = {i′ ∈ I | i′ ≤I i};

- the set of relationships R;
- the function τ : R (→ I × I which assigns to each relationship r ∈ R a pair
of process items (i, i′) ∈ I × I, called the relationship type of r;

- the partial order ≤R over R, called relationship hierarchy, which requires
that ∀(r, r′) ∈ R×R, if r ≤R r′ then i ≤I ī and i′ ≤I ī′, where (i, i′) = τ(r)
and (̄i, ī′) = τ(r′).
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Fig. 1. Running example of a process knowledge base P1

Figure 1 illustrates a process knowledge base P1 according to Definition 1. By
convention, the labels annotated to process items in Figure 1 are abbreviations
and are used for textual descriptions of respective process items throughout the re-
mainder of this paper. The process items2TA3 and2PO3 serve as root process
items for the specification of tasks and process objects, respectively. A task repre-
sents an action which is performed on a process object, which is expressed by root
relationship <is performed on>(2TA3,2PO3). A process object represents
a real or an abstract thing being of interest within a process domain. In addition
to <is performed on> relationships between tasks and process objects, process
knowledge base P1 considers parameter relationships. A parameter denotes a pro-
cess object whichmight be used for defining intentional aspects relevant for execut-
ing a task on a process object. The specification of a parameter is derived from the
root relationship <param>(2TA3,2PO3). The illustrated process knowledge
base states one intentional aspect named means between a task and a process ob-
ject expressed by root relationship <means param>(2TA3, 2PO3) which rep-
resents a specialization of the <param>(2TA3, 2PO3) relationship (see [3] for
further parameter types). A means parameter refers to a process object which en-
ables task execution, i.e., a process object that is a means to complete the task. For
example, the activity “Define Software Requirements with Customer” indicates
“Customer” as means parameter.

Definition 2 (Semantic Activity Label). Let P = (I,≤I , R, τ,≤R) be a pro-
cess knowledge base. A semantic activity label l = (Il, Rl) over P consists of a
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set of process items Il ⊆ I, and a set of relationships Rl ⊆ R. It is required that
∀r ∈ Rl : {i, i′} ⊆ Il where (i, i′) = τ(r).

Given process knowledge base P1 (Fig. 1), semantic activity label lA describing
process activity “Define Requirements” consists of

– the process item set IlA = {2TA13,2PO13}, the process items of which
are the machine-readable interpretations of the “Define” task and the “Re-
quirements” process object, and

– the relationship set RlA = {<is performed on> (2TA13,2PO13)}
and semantic activity label lS describing process activity “Define Software Re-
quirements With Customer” consists of

– the process item set IlS = {2TA13,2PO23,2PO33}, the process items
of which are the machine-readable interpretations of the task “Define” and
the process objects “Software Requirements” and “Customer”, and

– the relationship set RlS = {<is performed on> (2TA13,2PO23),
<means parameter> (2TA13,2PO33)}

The exploitation of the expressive power of semantic activity labels requires
their annotation to process activities. For this purpose, we introduce a process
activity repository as follows.

Definition 3 (Process Activity Repository). A process activity repository
RA = (P,A,L, λ) consists of

– a process knowledge base P = (I,≤I , R, τ,≤R),
– a set of process activities A = {A1, . . . , An},
– a set of semantic activity labels L over P,
– function λ : A (→ L which annotates each process activity A ∈ A with exactly

one semantic activity label lS ∈ L.

3 Consistent Specialization of Process Activities by Label
Specialization

This section provides an answer to the question when exactly a process activity
S is considered a consistent specialization of a process activity A. The key prop-
erty that determines consistent specialization of activity labels concerns the ob-
servable differences between the activity labels of A and S. More precisely, we
say that S is an observation-consistent specialization of A if and only if the
linguistic meaning of A is observable in S. This means that all process items
and relationships associated with A are observable in the process items and
relationships associated with S. The specialization of process activities based
on observable differences between the activities’ labels is what we call process
activity specialization by label specialization. Process activity specialization by
label specialization requires a reasoning over observable differences and corre-
spondences between semantic activity labels annotated to the respective process
activities. In this context, a pair of semantic activity labels lA and lS is consid-
ered equivalent if both consist of the same set of process items, i.e., IlA = IlS and,
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moreover, both consist of the same set of relationships, i.e., RlA = RlS . Based
on the notion of equivalence of semantic activity labels, we introduce predicate
ocs(lS , lA) which evaluates to true if and only if lS is an observation-consistent
specialization of lA.

Definition 4 (Specialization of Semantic Activity Labels). Let P = (I,
≤I , R, τ,≤R) be a process knowledge base and let L be a set of semantic ac-
tivity labels over P. Semantic activity label lS = (IlS , RlS ) is defined to be an
observation-consistent specialization of semantic activity label lA = (IlA , RlA),
denoted by predicate ocsl(lS , lA), iff there exists a mapping A : IlA (→ IlS such
that

1. A is total and injective, and
2. ∀i ∈ IlA : A(i) ≤I i, and
3. ∀r ∈ RlA : ∃!r′ ∈ RlS such that

i. r′ ≤R r, and
ii. (A(̄i),A(j̄)) = τ(r′) where (̄i, j̄) = τ(r)

Definition 4 requires additional comments. Mapping function A : IlA (→ IlS
is a total and injective function (Requirement 1) and thus ensures that every
process item a ∈ IlA is mapped to a distinct process item s ∈ IlS . If process
item a maps to process item s then it is required that s is a specialization of
a according to P (Requirement 2). Consequently, Requirements 1 and 2 ensure
that a more general process item in lA is substituted only with a more special
process item in lS . Requirement 3 addresses consistency criteria regarding the
relationships of RlA and RlS . Observation-consistent specialization requires that
for any relationship r in RlA there is a single relationship r′ in RlS such that r′

is a specialization of r according to P (Requirement 3.i), and the process items
of r are mapped to the process items of r′ according to A (Requirement 3.ii).

For purposes of illustration of observation-consistent label specialization, re-
call from the running example the specialization of process activity “Define Re-
quirements” annotated with semantic activity label lA to process activity “Define
Software Requirements With Customer” annotated with semantic activity label
lS . Semantic activity label lS is an observation-consistent specialization of lA be-
cause there exists an injective mapping function A from concepts 2TA13 and
2PO13 of semantic activity label lA to the concepts 2TA13 and 2PO23 in
lS , respectively, and the relationship between 2TA13 and 2PO13 of lA cor-
responds to the relationship between 2TA13 and 2PO23 of lS according to
Definition 4.

Based on the specialization of semantic activity labels, we finally define pro-
cess activity specialization by label specialization as follows. A process activity S
is a specialization of another process activity A if the semantic activity label lS
annotated to S is an observation-consistent specialization of the semantic activ-
ity label lA annotated to A. Definition 5 provides a formalization of the notion
of activity specialization by label specialization.

Definition 5 (Activity Specialization by Label Specialization). LetRA =
(P,A,L, λ) be a process activity repository. Given process activities {A,S} ⊆ A,
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then process activity S is defined to be a specialization of A, denoted by predicate
ocsa(S,A), iff ocsl(λ(S), λ(A)).

4 Application: User Support for Specializing Abstract
Process Activities

This section illustrates the potential benefits of consistent reuse of process pat-
terns to process modellers. For this purpose, Figure 2 shows a reuse example
using BPMN. Figure 2a illustrates process pattern Plan Development Project
as a BPMN model which serves as process template for the design of domain
specific development projects (e.g., software or hardware development projects).
The process pattern consists of the three abstract process activities “Define
Requirements”, “Design Architecture”, and “Define Development Plan” as well
as the elementary process activity “Check Development Risk”. In contrast to
abstract process activities, elementary process activities already represent exe-
cutable process activities that need not be further specialized for the purpose
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Fig. 2. Example of process pattern reuse
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of describing domain-specific processes. Figure 2b shows a domain-specific de-
velopment process for software projects which results from the reuse of the
previously described process patterns. Then, one may observe that the origi-
nal process activity “Define Requirements” has been substituted with “Define
Software Requirements With Customer”, “Design Architecture” with “Design
Software Component Architecture”, and “Define Development Plan” with “De-
fine Software Development Plan”.

A process activity repository RA presents the key to assisting process mod-
ellers with the reuse of process patterns by providing a hierarchical arrangement
of process activities, also referred to for short as process activity hierarchy. A pro-
cess activity hierarchy is a complete lattice structure (RA,S) where S ⊆ RA×RA

is the set of all specialization relationships between the activities in RA accord-
ing to Definition 5. In other words, a process hierarchy results from inferring
observation-consistent specialization relationships between semantic activity la-
bels annotated to respective process activities in RA.

For the purpose of illustrating a process activity hierarchy, consider the exam-
ple shown in Figure 3. Figure 3b illustrates a process activity hierarchy over the
process activities shown in Figure 3a. A directed arc leading from an activity A
to another activity S means that S is a specialization of A under observation-
consistent label specialization.

A =

a1 = Define Requirements
a2 = Design Architecture
a3 = Check Development Risk
a4 = Define Development Plan
a5 = Define Software Requirements
a6 = Define Requirements With Customer
a7 = Define Hardware Requirements With Customer
a8 = Define Software Requirements With Customer
a9 = Design Software Component Architecture 
a10 = Design Hardware System Architecture
a11 = Evaluate Software Architecture
a12 = Define Software Development Plan
a13 = Define Hardware Development Plan

ID | Activity Label Root

a1 a2 a3 a4

a6

a7 a8

a5 a9 a10

a11

a12 a13

Inference of Process Activity Hierarchy 
Based on Consistent Specialization of 

Semantic Activity Labels

(a) (b)

Fig. 3. (a) Set of process activities and (b) hierarchical arrangement over process ac-
tivities

In the course of reusing process pattern Plan Development Project, a pro-
cess modeller can explore the process activity hierarchy for desired substitutions.
For example, if abstract process activity “Design Architecture” should be sub-
stituted with a domain-specific process activity then a process modeller can
choose one of the process activity specializations associated with “Design Archi-
tecture”. In the example shown in Figure 3, a process modeller may select either
“Design Hardware System Architecture” or “Design Software Component Archi-
tecture”, thereby ensuring the consistent specialization of process activities by
specializing their labels. In case of non-availability of the desired process activi-
ties, the process modeller can populate the process activity repository with new
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process activities. Afterwards, a hierarchical update procedure automatically
infers specialization relationships between all process activities and, therefore,
consistent reuse in a subsequent step is ensured.

5 Related Work

Existing work on the specialization of process activities mainly relates to busi-
ness process model decomposition and abstraction (e.g., [6,8,9,18]). Some of the
proposed approaches [8,18] exploit activity labels to address activity specializa-
tion while other approaches [9,16,6] assume the existence of an activity ontology
which provides prescribed decomposition relations between process activities. To
our knowledge, the approach presented in this paper is the first theoretical ap-
proach to support consistent specialization of process activities by specializing
their activity labels.

Another field of research that relates to the work presented in this paper is the
work on the comparison and alignment of process models. One of the main issues
in that area represents the identification of one-to-one correspondences between
process activities of different process models [19]. Most approaches suggest the
computation of lexical or linguistic similarity measures between activity labels to
infer correspondences between process activities [20,5,4]. The proposed similarity
measures consider activity labels as compositions of words or noun phrases only
and neglect implicit meaning of relations between involved words. Moreover,
similarity measures do not facilitate inference of process activities on different
levels of abstraction. Consequently, it is impossible to check whether abstract
process activities have been specialized in a consistent fashion in the course of
process patterns reuse.

6 Conclusion and Future Work

This paper introduces the specialization of process activities by specialization of
their labels, which represents an orthogonal approach to the decomposition of
process activities into sub-processes. Thereby, we contribute to the identification
of process activities on different levels of abstraction from a semantic point of
view, which represents a key issue in the field of establishing alignments between
process models. This paper presents the theoretical foundations for a lexical and
semantic labelling framework. In order to facilitate a comprehensive evaluation,
future work will provide an implementation of a lexical and semantic labelling
framework based on the concepts presented in this paper.

From the results in this paper, future research will evolve in two main di-
rections. The first direction will be devoted to the development of refinement
and extension operations for activity labels. These operations should assist pro-
cess designers in preserving consistent activity specialization during the overall
reuse process. The second direction will exploit semantic activity labels for the
purpose of finding frequent process patterns in existing process descriptions. In
particular, semantic activity labels will be used to identify semantically correct
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one-to-one correspondences between process models which serve as input for an
envisioned framework for finding frequent process patterns.
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Abstract. A critical issue in large scale search engines is to efficiently
handle sudden peaks of incoming query traffic. Research in metric spaces
has addressed this problem from the point of view of creating caches that
provide information to, if possible, exactly/approximately answer a query
very quickly without needing to further process an index. However, one of
the problems of that approach is that, if the cache is not able to provide
an answer, the distances computed up to that moment are wasted, and
the search must proceed through the index structure. In this paper we
present an index structure that serves a twofold role: that of a cache and
an index in the same structure. In this way, if we are not able to provide
a quick approximate answer for the query, the distances computed up to
that moment are used to query the index. We present an experimental
evaluation of the performance obtained with our structure.

1 Introduction

New applications for search engines demand the use of data more complex than
plain-text. Metric spaces have proven useful and practical for performing sim-
ilarity search on very-large collections of complex objects. In this case, queries
are objects of the same type of those stored in the database where, for example,
one is interested in retrieving the k most similar objects to a given query. The
similarity between any two objects is calculated by an application-dependent dis-
tance function, which is usually expensive to compute. The database is indexed
using pre-computed distances to reduce comparisons during the search.

One of the critical issues in large scale search engines is efficiently handling
sudden peaks in incoming query traffic. Typically, a large search engine is com-
posed of one or more front-service (FS) machines and a collection of P processors

� Partially funded by: MICIN ref. TIN2009-14560-C03-02 (PGE & FEDER), Xunta
de Galicia ref. GRC2013/053 (FEDER), and CDTI-MINECO-Axencia Galega de
Innovación EXP 00064563/ITC-20133062 for authors in UDC1. FONDEF IDeA
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forming a distributed memory system. The Front-Service is in charge of receiving
and sending queries to processors for results calculation. Each processor is seen
as a search node which is in charge of a fraction of the whole object collection.
Efficient search is supported by an index data structure that is distributed onto
the P processors and parallel query processing is performed by sending the query
to a number of processors. For systems under heavy query traffic it is critical to
reduce the number of computations and yet to maintain an efficient throughput
(number of queries entirely solved per unit time).

Research in metric-space similarity search has mainly focused on optimizing
the execution of single queries. In multiple query settings, where query arrival
rate can drastically change in intensity, and query content can become dyna-
mically skewed in unpredictable ways, a relevant question is how we can make
current queries benefit from previous query results so that they can be answered
with approximate results. The underlying assumption is that approximate an-
swers can be computed with much less computing cycles than regular answers
so that servers are able to cope with drastic increase in incoming query traffic.

Caching query results is a feasible solution, and strategies such as QCache and
RCache [1] have been proposed. However, they fail to reduce overall comput-
ing cycles as they treat independently caching and indexing. Namely, incoming
queries that do not benefit from the cache are redirected to the metric index
so query answers are computed from scratch. Our experiments show that the
cost of accessing the cache in previous strategies can be even more expensive (or
similar) than computing the answer for a query from the index itself.

To illustrate the above claim we performed experiments under the setting
described in Section 4. We used a query log on the following three cases: (1)
each query is sent to a RCache [1] and if the cache fails to produce the top-k
results, the query is solved with an M-Tree [2] index, (2) each query is sent
to a QCache [1], (a variation of the RCache) and if the cache fails to produce
the top-k results, the query is sent to the M-Tree index and, (3) each query is
directly solved with the M-Tree index. In each case we computed the running
time and the number of distance evaluations required to process the full query
log. Figure 1 shows the results normalized to 1. Cache sizes were set to 1%,
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3% and 6% of the number of queries, which produces cache hit ratios of 15%,
22% and 33% respectively. The results show that the running time and distance
evaluations when using caches are a significant part of the search cost.

In this paper we propose a strategy which contains a cache embedded in the
index so that computing cycles are not wasted when cache contents are not able
to produce good approximate results. In such a case, previous computations for
the query are used to continue the traversal of the index in order to produce
approximate query results as fast as possible.

The remaining of this paper is organized as follows. Section 2 reviews related
work on similarity search and caching. In Section 3 we present a new index struc-
ture that combines indexing and caching strategies. Section 4 presents the results
obtained in the experimental evaluation of our structure. Finally, Section 5 sum-
marizes the main conclusions from our work.

2 Related Work

A metric space (U, d) is composed of a universe of objects U and a metric,
a function d : U × U → R+ that measures the dissimilarity between any two
objects and that holds the properties of strictly positiveness (d(x, y) > 0 and if
d(x, y) = 0 then x = y), symmetry (d(x, y) = d(y, x)), and the triangle inequality
(d(x, z) ≤ d(x, y)+d(y, z)). The database or collection of objects is a finite subset
X ⊆ U , with size n = |X |.

There are two main queries of interest: (a) range search, RX(q, r), that re-
trieves all the objects u ∈ X within a search radius r of the query q, and (b)
k-nearest neighbors search, kNNX(q), that retrieves the set k most similar ob-
jects to q. Given a query q ∈ U , the goal is to retrieve the most similar objects
to q with the minimum number of object comparisons.

Many metric index structures have been proposed and studied (see [3,4]). The
proposals of this paper make use of one of those structures, the List of Clusters
(LC) [5], which has shown to outperform well-known alternative metric-space
indexes [6]. LC partitions the collection into a set of disjoint clusters as follows.
We first choose a cluster center c ∈ X and a radius rc. The cluster ball (c, rc)
contains the subset of elements of X at distance at most rc from c. We define
IX,c,rc = {u ∈ X−{c}, d(c, u) ≤ rc} as the cluster of internal elements which lie
inside (c, rc), and EX,c,rc = {u ∈ X, d(c, u) > rc} as the external elements. The
clustering process is recursively applied in E. As shown in [5] a good policy for
selecting the next center is to choose the object in the collection that maximizes
the sum of distances to previous centers.

Given a query Rx(q, r), q is sequentially compared with the cluster centers of
the LC. Given a center c, we exhaustively scan its cluster I (that is, we compare
q with the objects u ∈ I) if the query ball (q, r) intersects the cluster ball (c, rc).
The search then continues with the next cluster in LC. At any point of the search,
the search stops if the query ball (q, r) is totally and strictly contained in the
cluster ball (c, rc), since the construction process ensures that all the elements
that are inside the query ball (q, r) have been inserted in I (as shown in line
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Search(LC, q, r)
1. If LC is empty Then Return

2. Let LC = (c, rc, I) : E
3. Compute the distance d(c, q)
4. If d(c, q) ≤ r Add c to the set of

results

5. If d(c, q) ≤ rc + r Then Search I
exhaustively

6. If d(c, q) > rc − r Then Search(E, q, r)

(a) LC search algorithm (b) LC example

Fig. 2. The List of Clusters (LC) strategy

6 of Figure 2a). Figure 2b shows three clusters and a query RX(q, r). In this
example, q has to be compared with the objects in the clusters with centers c2
and c3, but the cluster with center c1 is directly discarded.

The selection of effective pivot /cluster centers for metric indexes has been
deeply studied. One of the existing proposals for center selection is SSS [7,8] that
selects a new object as a center if it is far enough from those already selected.
Being M the maximum distance between any two objects in the space, and α
a parameter such that 0 ≤ α ≤ 1, an object in the collection is selected as a new
center if its distance to the previously selected centers is greater than M × α.
In [9] it has been shown that the most effective pivots for a given object of the
database are the nearest and furthest pivots.

2.1 Parallel Processing for List of Clusters

We assume a parallel architecture in which a front-service receives queries and
evenly distributes their processing onto the processors. The work in [6] studied
various forms of parallelization of the LC strategy concluding that a global in-
dexing strategy called GG, which stands for Global Index and Global Centers,
achieves the best performance.

The GG strategy builds a LC and distributes it uniformly at random the
clusters of the LC onto the processors. Upon reception of a query q, the broker
sends it to a circularly selected processor. This processor becomes the ranker for
that query. It calculates the query plan, that is, the list of clusters that intersect
(q, r). To this end, it broadcasts the query to all processors and they calculate in
parallel a fraction 1/P of the query plan. Then they send their nq/P pieces of the
global plan to the ranker, which merges them to get the global plan with clusters
sorted in construction order. The then ranker sends the query q and its plan to
the processor i containing the first cluster to be visited. This processor i goes
directly to the GG clusters that intersect with q, compares q against the objects
stored in them, and returns to the ranker those within (q, r). The remaining part
of the query plan is passed to the next processor j and so on, till completing the
processing of the query.
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2.2 Metric Space Cache

A metric space cache C consists of a set of past queries with their respective
results. Let qi ∈ C, if the query along with all results in kNNX (qi , k) are in the
cache. Also oi ∈ C denotes that the object oi ∈ X is stored in the cache and thus
belongs to at least one set kNNX(qi, k) associated with a cached query qi. Let
rq denote the radius of the smallest hyper-sphere centered in q which contains
all objects in kNNX(q, k). The safe radius sq [1,10] of the query q with respect
to a query qi ∈ C is the radius rqi minus the distance from q to qi, namely
sq(qi) = rqi − d(q, qi). Every cached query qi gives complete knowledge of the
space up to distance rqi from qi. If q is inside the hypersphere centered in qi with
radius rqi , then as long as we restrict ourselves to look inside this hypersphere,
we have complete knowledge of the k′ ≤ k nearest neighbours of q.

Thus, if the safe radius sq(qi) of a query q ∈ U with respect to a query qi ∈ C is
a positive value, then every object in the range query RX(q, sq(qi)) is also in the
cache C and thus can be solved over the cache with the range query RC(q, sq(qi)).
Furthermore, the k′ objects in RC(q, sq(qi)) are also the k′ nearest neighbours
of q in the whole database X .

In [1,10,11] two differentmetric-space cache algorithmswere presented: RCache
(Result Cache) and QCache (Query Cache). RCache uses a hash table H where,
for each query qi ∈ C, it stores tuples of the form (qi, kNN(qi, k)), being the object
qi the hash key. If the query is not in C, then it attempts to give an approximate an-
swer. To search for an approximated answer, RCache uses a metric-space indexM
to perform a kANNC(q, k) search of the k closest objects to qi which are currently
stored in C. QCache builds the metric index M over the query objects instead of
indexing every single object returned by the queries in the cache, as the RCache
algorithm does. This reduces by a factor of k the number of indexed objects. The
main idea is to search sets of suitable cached queries first and then to use the cached
results of those queries to find an approximate answer. According to the experi-
mental results reported in [1,10], the quality of the approximate results returned
by both algorithms are comparable.

In [12] a caching metric-space index called D-File was proposed. D-File uses a
hash table with entries [o1, o2, d(o1, o2)], where o1 and o2 are the objects identifier
and the third component is the computed distance between them. D-File is
kept in main memory in order to reduce the number of distance computations
performed over a second index like the M-tree [2]. This goal is achieved when
the distance d(o1, o2) is in the D-File, or by obtaining a lower or upper bound of
d(o1, o2) and thereby improving the pruning over the M-tree. However, as shown
in [13], D-File suffers from a too high internal processing cost because of the
hash table. Recently, SnakeTable [13] was specifically proposed for scenarios in
which queries are received in streams of very similar queries.

3 Combining Indexing and Caching

One of the problems of previous proposals in caching for searching in metric
spaces is the cost of processing the cache in terms of distance computations. If the
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cache succeeds in providing an answer, the distance computations to process the
cache save the distance computations needed to solve the query with an index.
However, if the cache fails, those distance computations for processing the cache
are wasted and add up to the overall search cost.

In this section we present a variant of the list of clusters that combines index-
ing and caching policies into the same structure so, if the cache cannot provide
an exact or approximate answer for the query, at least the distance computa-
tions needed to process the cache are not wasted, since they would be necessary
anyway in order to solve the query in the index.

3.1 Index Structure and Construction

The index structure is that of a LC in which cluster centers are not selected
among the objects in the database, but among the queries received in search
time. Therefore, there is no index built until the system starts receiving queries.
This implies that the search cost will be higher for the first queries. To avoid this
in a real scenario, we can make use of an additional index at the beginning of
the process that would be dropped when the new index structure has stabilized.

Since queries are dynamic, it is not possible to follow the center selection
policy of LC. We use SSS [7], that adapts to the dynamic nature of the queries,
and guarantees that the centers will be well distributed in the space. Therefore,
if the distance from a new query q to existing cluster centers is greater than
M × α, q will become a new cluster center and the index will be restructured
accordingly. The cluster corresponding to the new cluster center q may be empty
if no object in the collection is closer to q than to any other past query used as a
cluster center. In this case, the cluster would be removed. As in LC, each object
belongs to, and only to, the cluster formed by its closest cluster center.

Reorganizing the index when a new query is selected as a cluster center has
a cost in terms of distance computations. However, SSS guarantees that the
number of pivots will stabilize at some point, so the cost of that reorganization
will be amortized among all processed queries.

The reason for choosing the cluster centers among the queries received by the
system is that, in this way, they will better cover the portion of the space defined
by the queries, which is not necessarily the same space defined by the objects in
the database. This would benefit the algorithms for range and kNN search since
the cluster centers would be more similar to future queries.

In addition, we keep additional information in each cluster. Instead of storing
only the cluster center, the list of objects belonging to the cluster, and the
covering radius, we keep the distances from the center to each of the objects in
the cluster, as proposed in [14]. In this way, the cluster centers also play the
role of a pivot during the search. As shown in [9], the nearest pivot is the most
promising for each object, so using the cluster center as a pivot for each of the
objects belonging to that cluster should be the most effective choice. In addition,
keeping the distances from the cluster center to each object in the cluster will
also make possible to return approximate results to queries sufficiently similar
to one of the pivots.
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3.2 Index as a Cache for Approximate Search

The main motivation for this index structure is that it can be used as a classical
index or as a cache that may help to quickly provide approximate answers to
queries when the system is receiving a huge number of queries. When a new
query is submitted to the system, the first step consists in comparing the query
object with the cluster centers. Since these objects are past queries, they reflect
the space defined by the queries, and it is probable that new queries are equal
or similar to some of the cluster centers. The higher the number of past queries
used as cluster centers, the more the chances that a new query is sufficiently
similar to a past query used as a cluster center.

If d(q, ci) = 0 for some ci, the approximate answer to q will be extracted by
just using the information contained in Ci. This may leave some objects out of
the answer, but it would not require additional distance computations.

The case in which a new query is exactly equal to a past query used as
a cluster center will happen very few times. However, it is still possible to pro-
vide an approximate result if q is sufficiently close to some cluster center ci.
Notice that by selecting the cluster centers with SSS, all of them are at least at
a distance M ×α. Therefore, the covering radius of each cluster will be at most
M×α

2 . We consider that q is sufficiently similar to the cluster center ci if:

d(q, ci) ≤
M × α

2
× ρ

where 0 ≤ ρ ≤ 1. Therefore, ρ determines how close a query has to be to a past
query in order to return an approximate answer. Since the structure of the index
does not depend on ρ, this parameter can be easily changed during the search
phase depending on the processing demands on the system.

3.3 Searching

Algorithm 1 shows the pseudocode of the algorithm for range search. Given
R(q, r), and being I the index, the search process proceeds as follows:

– In a first step, the query q is compared with the center of each of the clusters
of I (lines 2 and 3). This comparison allows us to determine if q will become
a new cluster center or not. If the d(q, pi) > M×α for all pivots pi, q becomes
a new cluster center (lines 4 and 5). In this case, it is necessary to restructure
the index so the objects that are closer to this new pivot are assigned to its
cluster. The procedure AddNewCluster(I, q) carries out this restructuring.

Notice that it is possible to carry out this reorganization without compar-
ing q with all objects in the database, since the distances from each object
x to its cluster center provides us with lower bounds on d(q, x) so it may not
be necessary to compute d(q, x).

– After comparing the query q with each of the cluster centers, we can use this
information and the index as a cache (lines 6-8). First, if d(q, ci) = 0 for some
pi, we can answer the query with the information contained in the cluster
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1 Algorithm: RangeSearch (I, q, r)

Data: I : Index structure; q: query object; r: search radius;
2 for i = 1 to I.size do
3 d[i] = d(q, pi) ;
4 if ∀i, d[i] ≥ M × α then
5 AddNewCluster(I ,q);
6 else
7 if ∃pi / d[i] ≤ M×α

2
× ρ then

8 ApproximateRangeSearch(I.ci, q, r);
9 else

10 for i = 1 to I.size do
11 if d[i]− cri ≤ r then
12 foreach xj ∈ I.Ci do
13 if |d[i]− d(ci, xj)| ≤ r then
14 if d(q, xj) < r then
15 Result ← Result ∪ {xj}

Algorithm 1. Pseudocode for range search with approximate search

formed by ci. Even if an exact match does not occur, the information of the
index allows us to provide an approximate answer. If d(q, ci) ≤ M×α

2 × ρ for
some ci, we will also build the answer to q from the information contained
in the cluster formed by ci. In that case, we restrict the search to the cluster
of ci. Since the index stores the distances d(x, ci) for all the objects in the
cluster, we can use these distances to obtain lower bounds for d(q, x) and
discard some objects x without comparing them with q.

– If cannot provide an approximate answer, the search continues exploiting the
rest of information in the index by combining cluster and pivot criteria to
discard the objects in the clusters (lines 9-15). Notice that at this point we
already have the distance from q to the cluster centers. Those clusters that
do not intersect the query ball (q, r) are directly discarded from the result.
For those clusters that cannot be completely discarded, we use the distances
from the center to the objects x in the cluster to obtain lower bounds on
d(q, x). In those cases in which these lower bounds do not allow us to directly
discard x, we finally have to compute the distance d(q, x).

With this algorithm, if the structure is not able to provide an approximate
answer for a query (thus acting like a cache), the distances computed up to that
moment are not wasted, since they are the same needed to search using the
index. As in proposals in which the cache is a component separated from the
index, in the proposed algorithm it is also possible to activate/deactivate the use
of the cache in function of the processing requirements of the system. Actually,
the parameter ρ allows us to control the degree to which the cache will be used
(and in consequence, the quality of the approximate answers).

Although we have only explained the algorithm for range search, adapting it
for the case of kNN search is straightforward. Given a new query q, its list of
k nearest neighbors can be initialized with the first objects it is compared with.
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Then, the search proceeds as a range search, but updating the range at each step
if necessary as the distance from q to its current kth nearest neighbor.

4 Experimental Results

In this section we provide experimental results on different aspects of our struc-
ture. We implemented it using the Metric Spaces Library [15]. We used two
collections from the library, widely used in the state of the art, namely English,
a dictionary containing 69, 069 words, and Nasa, a collection of 40, 151 images
represented by feature vectors of dimension 20. The edit distance was used for
English, and the Euclidean distance for Nasa.

For each collection, 90% of the objects were used as the database, and the
remaining 10% were used as base queries. The query sets were created from
the base queries in order to reflect the typical human behavior in real search
engines. To do so, the base queries were replicated following the same distribution
obtained from a set of real queries obtained from a web search engine. In this
way, the queries have a biased distribution that matches that we would obtain in
a real system. Following this procedure, we generated files with 10, 000 queries
for each collection. The query range for English was set to 2, and for Nasa we
used a range that retrieves an average of 0.01% of the collection for each query.

In a first set of experiments, we analyzed how the structure performance
evolves when the first queries are submitted to the system. To do this, we ran
the 10, 000 queries for each collection with an initially empty index. In order to
focus on the cost of solving queries and updating the index, the parameter ρ was
set to 0 in these experiments when the cache was used, which means that the
cache is used only when a new query is exactly equal to a past query. Figures
3 and 4 show for each collection the number of distances needed to answer the
range queries with and without using the cache part of the algorithm (RWC and
RWOC respectively), the number of distances needed to update the index with and
without cache (UWC and UWOC respectively), and the sum of these two numbers
(TWOC and TWC). The results are shown in terms of the number of queries received
by the system (from 0 to 10, 000). As we can see in the results, the cost of solving
a query decreases in all cases as the index gets more information. In the case
of Nasa, which needs a smaller number of centers, we can see how the cost of
updating the index quickly decreases as the number of past queries increases.

We conducted experiments to analyze the performance when we use the struc-
ture as a cache and an index at the same time, providing approximate but quick
answers when possible. In order to leave the cost of updating the index out of the
results so it does not interfere with the purpose of these experiments, we ran the
10, 000 queries twice for each collection: the first one allows the index to build
and stabilize (which has been analyzed in the previous experiments), and the
second one allows us to measure search performance when very few changes in
the index happen. Figure 5 shows the average number of distance computations
to solve range queries and 4-NN queries for different values of the parameter ρ.
The results reflect only the performance in the second phase. The figure shows



Efficient Similarity Search by Combining Indexing and Caching Strategies 495

Fig. 3. Search and update cost for range queries in English
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Fig. 4. Search and update cost for range queries in Nasa

for each value of ρ the cost of solving the query using the cache (English-TWC
and Nasa-TWC) and without using it (English-TWOC and Nasa-TWOC). As the
value of ρ grows, the requirements for a query to be solved using only informa-
tion of its closest cluster are lower, which results in less distance computations.
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Fig. 5. Cost for range and 4-NN search using the structure as a cache and as an index

Even for the smallest values of ρ, the improvement with respect to the version
that does not use the cache is very significant.

5 Conclusions

We have presented a metric structure for similarity search that allows us to use
it as a cache or a classic metric index. One of the main differences with the
original List of Clusters structure is that cluster centers are selected among past
queries instead of among the objects in the collection, and that they are selected
with a criterion that ensures they will be distributed in the space. In addition,
each cluster stores the distances from the center to each of its objects. Given a
new query, we provide an approximate result if it is equal or very similar to one
of the past queries we keep in the index. If we cannot provide an approximate
result, the distances computations needed to examine past queries are used to
continue the search in the index, and to prune part of the search space.

The main advantage of this metric structure is that it can work as a cache
and an index at the same time. Since the cluster centers are past queries, the
comparison of each query with them allows us to provide an approximate but
quick result. Even if the first step cannot return an approximate answer, those
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distance computations carried out to that moment are not wasted work, since
they would be necessary anyway to query the index. Therefore, the main differ-
ence with previous proposals is that the cache is integrated with the index, not
requiring any additional processing.

Some lines for future work are still open. We are working on replacement policy
to dynamically update the past queries kept in the index as cluster centers. This
can be important if the distribution of the queries received by the system are
very skewed in certain and short periods of time.
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Abstract. Databases and documents are commonly isolated from each
other, controlled by Database Management Systems (DBMS) and In-
formation Retrieval Systems (IRS), respectively. However, both systems
are likely to store data about the same entities, a strong argument in fa-
vor of their integration. We propose a DBMS-IRS integration approach
that uses terms in DBMS queries as keywords to IRS searches, retrieving
documents strongly related to the queries. The IRS keywords are built
“expanding” an initial set of user-provided keywords, with top-ranked
terms found in a query result: the terms are ranked based on a mea-
sure of term diffusion over the query result. Our experiments show the
effectiveness of the approach in two different domains, in comparison to
other DBMS-IRS integration methods, as well as to other term-ranking
methods.

Keywords: information integration, DBMS-IRS integration, query
expansion, term-ranking methods.

1 Introduction

Databases and documents are the basic sources of information in the majority
of organizations, controlled by Database Management Systems (DBMS) and
Information Retrieval Systems (IRS), respectively. While databases follow strict
rules for data organization, documents are based on free text. Databases are
queried by means of formal query languages (like SQL), whereas documents are
normally retrieved through keyword lists. It is understood that database queries
are exact; on the contrary, document retrieval is inexact by nature, frequently
retrieving much irrelevant documents.

These differences reinforces the isolation of databases and documents inside
organizations; more precisely, DBMS and IRS usually do not communicate with
each other. However, there are still many DBMS-IRS integration opportunities
[1,2].

The “dataspace” [3], for example, is one of the approaches that envisions a
transparent access to data stored in either a DBMS or an IRS. Nonetheless,
many authors still do not see it as a “ready-to-use” technology [4]. We can also
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point other integration approaches, such as structured queries over documents
[5,6], keyword searches over databases [7], and XML retrieval [8].

Our approach takes a different rationale, using the fact that, in a given orga-
nization, the DBMS and the IRS will probably keep different information about
the same entities. Example: find contracts, business proposals, or presentation
slides – side IRS − regarding last month company’s clients – side DBMS −; or
recover emails with user complaints − side IRS − related to products made on
company’s division XYZ – side DBMS.

With that in mind, we propose DBFIRe (DataBases for Information Retrie-
val), an approach that borrows ideas from query expansion [9] in IR. Documents
are retrieved through a keyword search formed by top-ranked terms1 extracted
from a database query result, “expanding” an initial set of keywords provided by
the user; the user keywords act as a rough description of the information need.
Besides using the query result as expansion corpus, DBFIRe also offers a new
term-ranking method based on the diffusion of a term in the query result: as
we assume database queries return exact responses, the more the term is spread
over the query result, the better its ranking.

Two other approaches [10,11] also build keyword searches from database
queries: in [11], entire column contents are ranked, instead of isolated terms
as DBFIRe does, whereas in [10] the keywords are taken from the query body.
Expansion could also be done using other term-ranking approaches, such as
[12–14]. Thus, our experiments investigated the following hypotheses:

• Could we get the same results using only the original user keywords, that is,
without expanding those keywords?

• How does DBFIRe behave compared with similar approaches [10,11]?

• What is the performance of our term-ranking method compared to other
methods, like [12–14]?

In all tests with two different domains, DBFIRe achieved significantly better
results.

The rest of the paper is structured as follows: we review related work in
Section 2 and detail DBFIRe itself in Section 3; Section 4 presents the experi-
ments we ran for DBFIRe validation; and Section 5 concludes the paper, with
some suggestions of further improvements to the method.

2 Related Work

In this section, we detail approaches that use DBMS queries to feed IRS searches,
as well as concepts about query expansion, showing other term-ranking methods
that inspired DBFIRe.

1 Regarding the DBMS world, we use “term”; regarding the IRS world, we use “key-
word”.
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2.1 SCORE (Symbiotic Context Oriented Information Retrieval)

Instead of ranking individual terms, SCORE [11,15] ranks the whole content of
tuple elements2 (consider a tuple element as the intersection between a row and
a column among the tuples of the query result). Thus, considering a query over
a single database table, each element is ranked according to its higher frequency
in the query result and its lower presence in the rest of the table, as detailed in
(1):

W (A, t) = NQ (A, t) log(
1 + |T | − |Q (T ) |

1 +NT (A, t)−NQ(A, t)
) (1)

In this equation, consider table T with |T| rows, and a query over T – Q(T )
– with |Q(T)| rows. W (A, t) is the weight of tuple element t over column A,
NQ(A, t) is the number of times the element t appears in column A of Q(T )
and NT (A, t) is the number of times the element t appears in column A of T .
SCORE returns the best scored N elements with the higher values of W , where
N is a tuning parameter. Though the formulation targets a single table, it can
be easily extended for database queries made of joins between different tables.

Note that all terms in the top N elements are sent to the IRS. This decreases
the quality of document retrieval, as we will see in the experiments detailed in
Section 4.

2.2 SEMEX (SEMantic EXplorer)

Suggesting documents related to a database query is only a portion of SEMEX
functionalities. Actually, its focus is Personal Information Management (PIM)
[16]; the part of the system which is indeed related to DBFIRe is detailed in [10].

Unlike SCORE, SEMEX disregards the query result, looking for terms on the
query body only. SEMEX sees queries as graphs: literals in WHERE clauses and
names of tables label nodes; attribute-value pairs and join predicates label edges.
After a number of traversals, SEMEX suggests node and edge labels that best
summarize the graph.

For example, consider the following query:

SELECT * FROM papers
WHERE keywords LIKE %information% AND keywords
LIKE %retrieval% AND year=’2014’

The query selects papers whose keywords contain the words “information” and
“retrieval” in a specific year. This query is modelled by the graph in Figure 1.

Given the graph, SEMEX suggests the following keyword search:

papers information retrieval 2014

2 The main paper about SCORE [11] uses “terms” when referring to tuple elements.
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See that not all graph elements are suggested: in this case, edge labels were
considered “distraction” to the IRS. Indeed, it is a good description of the in-
formation need; perhaps a human could come with the same keywords.

Fig. 1. Example query for SEMEX

However, by not using the query result, the method neglects an important
source of useful terms.

2.3 Query Expansion

The main purpose of query expansion in IR is to give a better description of
the user’s information need. It starts from an initial set of keywords, which is
augmented by terms in some expansion source. Despite the availability of a great
number of approaches, our focus is on automatic expansion methods, based on a
first round of keyword search, called pseudo-relevance feedback (PRF) methods
[9].

Considering each tuple composed of a bag of words, PRF environments are
very similar to ours: think of the documents in the first round of keyword search
as equivalent to the tuples of the database query result. In this case, expansion
methods can be easily adapted.

PRF ranks terms inside top-k documents returned by the first keyword search.
The definite keyword search is built with the original user keywords and ex-
panded with the best n ranked terms; the documents returned to the user are
those from the expanded search. Parameters k and n must be manually tuned.

In this paper, we compared DBFIRe with three widely used PRF methods,
each one with its own score function, which ranks the best n terms for expansion.
One of them is called KLD (Kullback-Leibler Divergence [13]). KLD defines its
term score as in (2):

score(t) = pR (t) log(
pR (t)

pC (t)
) (2)
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The score quantifies the divergence between the probability of finding term t
among top-k documents (PR) and the probability of finding t in the document
collection (PC).

Another method also measures differences among term distributions; it is
known as DFR (Divergence from Randomness [12]). DFR term score is detailed
in (3):

score (t) = tfk log2

(
1 + Pn

Pn

)
+ log2(1 + Pn) (3)

In (3), tf k means the term frequency among the top-k documents, and Pn

is the frequency of the term on the whole collection divided by the number of
documents in the collection.

Finally, the third approach we tested is what we call RM, because it is based
on Relevance Models [14]. As with KLD and DFR, terms are ranked based on
its score as defined in (4):

score (t) =
∑
d∈R

p(d)p(t|d)
∏
q∈Q

p(q|d) (4)

In this case, R is the set of top-k documents, p(d) is the probability of docu-
ment d appearing in R (normally estimated by its rank), p(t|d) is the probability
of term t occurring in document d, Q is the set of the user keywords, and p(q|d)
is the probability of keyword q occurring in document d.

Though the basic idea in RM is to rank terms based only on term probabilities
over the expansion source, documents that do not contain at least one of the
user keywords, will not contribute to the term score; that is the so-called “zero-
probability” problem. The authors suggest smoothing this effect, using also the
term probability over the whole collection [17]. Therefore, to get p(q|d) we should
follow (5):

p (q | d) = λ
#(q, d)

|d| + (1− λ)
#(q, C)

|C| (5)

In this case, #(q, d) and #(q, C) are the number of occurrences of q in
document d and in the whole collection C, respectively; likewise, |d| and |C|
are the size in words of document d and collection C; at last, the formula is
smoothed by parameter λ, which is set at 0.2.

The ideas of query expansion inspired our own method, which will we show
in the next section.

3 DBFIRe: DataBases f or Information Retrieval

DBFIRe starts from an initial database query and a set of keywords provided by
the user; the keywords are a brief summary of his/her information need. These
keywords are then expanded with top ranked terms found in the query result;
the new set of keywords is sent to the IRS in order to retrieve related documents.

However, how should we rank the terms? Should we choose just any expansion
method? Note that all methods detailed in Section 2 use some heuristic regarding
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term occurrences over the whole document collection. If we consider database
queries producing exact answers, perhaps we could focus exclusively on the query
result as expansion source, and forget how the terms appear in the collection as
a whole.

Therefore, one possibility would be using the pure term frequencies over the
query result; in fact, as we will see ahead, this already gives a good advantage
over traditional methods. However, if we also consider the presence of the term
over tuple elements of the query result, we can do even better.

We believe the joint measure of both frequencies gives a better estimation of
how much spread is a term over the database query result. Therefore, each term
should be ranked based on its already mentioned term frequency – tf(t), which
is the number of occurrences of t along the whole query result, and also on the
term’s element frequency – ef(t), which stands for the number of tuple elements
in which t occurs. This ranking formula is shown in (6), where s(t) is the overall
score of term t.

s (t) = tf (t)
√

ef(t) (6)

The computation of ef(t) considers only the presence of a term in a tuple
element, no matter how many times it may occur in that element. Moreover,
once we will always have less tuple elements than terms, a small increase on its
element frequency –ef(t) – may cause a stronger impact on s(t); therefore, we
smooth this effect by applying the square root to the ef(t) component.

Though useful to measure the diffusion of a term over the query result, s(t)
can also give higher weights to stopword terms, that is, terms that don’t help
expansion. Thus, common stopwords [18] are discarded.

Lastly, it is also possible to tune the amount of overhead for DBFIRe. Similar
to other expansion methods, DBFIRe has two parameters that can be adjusted
manually: the number of added terms (a parameter called n), as well as the
number of tuples that should be processed (parameter k).

3.1 Term Weighting

A known effect in expansion methods is the so-called “query drift” [19]: as more
terms are added, the IRS tends to retrieve more documents related to these
terms instead of related to the user keywords. To avoid this, expansion terms
should be given lower weights than the user keywords, but keeping the relative
differences of their scores s(t).

Thus, inspired by the Rocchio’s beta [20], the weight of each term in DBFIRe
normalizes its score s(t) with respect to the maximum value of s, but limited
to a user defined parameter (called β); β should be set in the interval (0, 1). In
DBFIRe, we weight terms as in (7):

weight (t) = β
s(t)

max(s)
(7)

Parameter β tunes the importance that the expansion should have: the higher
β, the higher the weight of top-ranked terms. Additionally, we assure the user
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keywords are specially treated assigning them the maximum weight (that is,
1.0). Though the best value of β will probably differ from domain to domain,
we think a value that can be generally applied is β =0.5, half way between the
whole interval (0, 1).

3.2 An Example

Consider the online movie database, available at IMDB3 (Internet Movie Data
Base), and suppose we are interested in movies directed by Francis Ford Coppola;
relevant documents for the keyword search could be reviews or general comments
about the movies on the query, for example. We show some tuples of the query
result in Table 1, highlighting non-stopword terms with at least two occurrences.

Table 1. Fragment of the query Francis Ford Coppola movies

Title Plot

the godfather (1972) vito corleone, head of the corleone mafia family,
passes the family businesses to his son, michael ...

the godfather: part ii (1974) the continuing saga of the corleone crime family ...

the godfather: part iii (1990) final instalment of mario puzzo’s mafia trilogy ...

With these data, we get the terms shown in Table 2, presented in descending
order of their score s. We focused only on the highlighted terms of Table 1, show-
ing their term frequencies, element frequencies and the corresponding scores s.

Table 2. Frequencies and score for highlighted terms in Table 1

t tf(t) ef(t) s(t)

godfather 3 3 5.19

corleone 3 2 4.24

family 3 2 4.24

mafia 2 2 2.82

The definite keywords sent to the IRS are shown below, along with their
weights according to (7). In this case, we set k =3, n =4 and β =0.5, and con-
sidered “Francis Ford Coppola movies” as initial user keywords.

3 http://imdb.com
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1.0 francis 1.0 ford 1.0 coppola 1.0 movies 0.5 godfather
0.4 corleone 0.4 family 0.27 mafia

Though this is just a toy example, we wanted to stress the main idea of
DBFIRe, rewarding terms that appear in more than one row or column of the
query result. For example, despite “godfather” has the same term frequency than
“corleone”, its score is higher due to a greater element frequency.

We can also see the effect of smoothing through the square root of ef(t):
without smoothing, the score of “godfather” would be 50% higher than the
score of “corleone”; using smoothing, this difference goes around 22%. Other
smoothing functions could be used, but the square root gave the more “behaved”
results.4

4 Experiments

We judged the quality of DBFIRe regarding the relevance of the documents
returned. This is equivalent to the evaluation of an IRS, in which we usually use
test collections [21]: a set of documents, a set of topics, and pairs of relevance
assessments, determining which document is relevant for which topic. We used
Indri5 as IRS and MAP (Mean Average Precision) [21] as quality indicator. We
simulated the user keywords through the <title> fields of each collection topic,
which represents our baseline, that is, a keyword search without expansion.

However, we have a strict requirement: the test collection must allow the usage
of a related database. Therefore, we focused on two test collections created under
INEX (INitiative for the Evaluation of XML retrieval) workshops [22]: the 2011
Data Centric [23] and the 2013 Linked Data [24], using the ad-hoc search task
of each one.

4.1 Environment Setup for Data Centric Collection

The collection is composed of XML documents derived from IMDB plain files.
There is no direct associated database, but it is possible to build a database
processing the XML files. In our case, XML markups identifying entities such as
movies, actors or locations became database tables whose data is filled through
the attribute/value pairs in each XML file. In Figure 2 we see a fragment of an
XML file converted into database tables.

In order to avoid a bias due to a database created as an exact copy of the data
in the document collection, the actual collection was appended with “dummy”
files, available in the TREC 2005 Robust Track test collection [25].

After loading the data, we created SQL queries for each collection topic, ac-
cording to the each topic’s description. Queries and database schema are avail-
able online.6

4 The same example (“godfather” versus “corleone”) smoothed through log(ef(t))
would give a score more than 50% higher to “godfather”.

5 http://www.lemurproject.org/indri
6 https://sites.google.com/a/copin.ufcg.edu.br/sofsem-2015/
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Fig. 2. Loading an XML file into the database (Data Centric collection)

4.2 Environment Setup for Linked Data Collection

In this case, documents are composed of Wikipedia articles, while the structured
content is provided by YAGO [26] and DBpedia [27] ontologies. The queries were
run over both ontologies, through a language similar to SQL: SPARQL.7

For the first 50 Jeopardy topics of the collection [24], we created SPARQL
queries, returning triples in the form <resource, property, value>: a resource
identifies an article on Wikipedia, a property corresponds to an attribute of that
resource, and the last component is the value of the property for the resource.
Resembling a database query result, we converted the triples into tuples, with
resources and values as tuple elements, and properties naming tuple columns;
Figure 3 shows an example of how we made this conversion. As with the Data
Centric collection, all queries we created are available online.6

Fig. 3. Converting SPARQL triples into DBFIRe tuples (Linked Data collection)

7 http://www.w3.org/TR/sparql11-query
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4.3 Results

The benchmarks for each test collection investigated the three hypothesis stated
in the beginning of the paper: we compared DBFIRe with the baseline (a keyword
search without expansion), with other DBMS/IRS integration methods (SCORE
and SEMEX), as well as with different expansion methods (KLD, DFR and RM).
We also wanted to verify whether our term ranking could be better than ranking
terms through their term frequencies only, a method we called TF.

All expansion methods (KLD, DFR, RM and TF) used the same expansion
framework of DBFIRe: tuples as expansion corpus, and the same values for k, n
and β (we set β =0.5 in all experiments).

The benchmarks in Data Centric collection and Linked Data collection appear
in Table 3 and Table 4, respectively. The tables also show the relative differences
of each method compared to DBFIRe. We tested the methods for different com-
binations of parameters k and n, with most results verified at the 0.05 level
through Wilcoxon signed rank tests [21]. However, we had three cases where the
differences were verified only at the 0.1 level. These cases appear shadowed in
Table 3 and Table 4.

Table 3. Comparisons for Data Centric test collection

Table 4. Comparisons for Linked Data test collection

4.4 Discussion

The first conclusion from the benchmarks is that DBFIRe is very effective when
considering the baseline and other integration methods (SCORE and SEMEX).
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Regarding SCORE, the usage of the whole content of tuple elements increases
the chance of the query drift effect, once tuple elements may contain both “good”
and “bad” terms; besides, SCORE neglects cues for the information need (such
as the user keywords, for example). This explains why SCORE had the worst
performance among all methods.

With respect to SEMEX, its approximation of the user information need is
not enough to good retrieval results: it does show some improvement compared
to SCORE, but its performance is way below the baseline, for example.

DBFIRe also significantly beats the baseline. That is, expanding user key-
words with individual terms of the query result is much better than using the
keywords alone. However, why not just any term-ranking method?

When comparing with traditional ranking methods (KLD, DFR and RM),
we had significant differences in most tests among all different combinations of
parameters k and n; only two of them in the Linked Data collection had a p-value
above the usual “standard” 0.05 level. However, none of these methods was able
to beat the baseline: in both test collections, the differences were not statistically
significant, with p-values above 0.2 in all cases. Once all these methods use some
heuristic for term frequencies over the whole collection, this result reinforces the
idea of expanding the user keywords based in term distributions exclusively over
the query result.

Nevertheless, which measure of term diffusion should we use? Ranking terms
based only on their term frequencies does give good results, as we see by the
numbers of method TF. However, using it together with a second measure of
term spread (the tuple element frequency, used by DBFIRe) always presents a
better result, though we had only slight differences in the Linked Data collection.

5 Conclusions and Future Work

The paper presented a method for retrieving documents associated to database
queries. The method contains two innovations: the use of database query results
as reliable sources of additional keywords for in information retrieval, and a
new term-ranking method, which takes advantage of the diffusion of terms in
database query results. These innovations can be a useful resource to DBMS/IRS
integration inside organizations. Furthermore, it is easy to implement, either at
application level or at DBMS level.

Still, some improvements are possible. One of them is to avoid the manual
tuning of the weight of expansion terms for the IRS keyword search: we could
automatically adjust DBFIRe tuning parameter, using the frequencies in the
query result of the initial user keywords. The more user keywords in the query
result, the more it should be “trusted”, using a higher value for the tuning
parameter.

Similarly, the amount of user keywords on the query result could also rank the
tuples to be used for expansion. In a DBMS view, all tuples are equally relevant,
but some tuples may present more useful terms for expansion than others may.
Ranking tuples based on the diffusion of the user keywords, could provide a more
useful expansion corpus.
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Abstract. An important reason to prefer dependency parsing over
classical phrased based methods, especially for languages such as Per-
sian, with the property of being “free word order”, is that this partic-
ular property has a negative impact on the accuracy of conventional
parsing methods. In Persian, some words such as adverbs can freely be
moved within a sentence without affecting its correctness or meaning. In
this paper, we illustrate the robustness of dependency parsing against
this particular problem by training two well-known dependency parsers,
namelyMST Parser andMalt Parser, using a Persian dependency corpus
called Dadegan. We divided the corpus into two separate parts including
only projective sentences and only non-projective sentences, which are
corelated with the free word order property. As our results show, MST
Parsing is not only more tolerant than Malt Parsing against the free
word order problem, but it is also in general a more accurate technique.

Keywords: data mining, knowledge discovery and machine learning,
knowledge modeling and processing.

1 Introduction

Working on dependency based grammars has been an interesting research av-
enue in the recent decade, as a suitable alternative for phrase based grammars
of languages such as Persian and Czech, which are regarded as free word order
languages. A phrase structure parse tree represents hierarchal relations between
words in a constituent. However, a dependency parse tree represents relations be-
tween individual words. Dependency parsing has become widely used in different
applications such as temporal relation extraction and machine translation [7].

Persian is an Indo-European language with a writing system that is based on
the Arabic script. In contrastwith English, in which the order of main constituents
is SVO (Subject-Verb-Object), Persian is mainly a SOV language. Besides, in Per-
sian, both subjects and/or objectsmaybeomitted.Furthermore, someconstituents
such as adverbs can be placed anywhere in the sentence. That is why Persian is re-
garded as a Free Word Order Language. This phenomenon allows different phrase
structures for the same sentence. As a result of this divergence, it may be difficult
for a phrase-based parser to learn the structure of Persian sentences. As we later
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show, the dependency parsing is more suitable to overcome this problem. Figure
1 shows the phrase structure of sentence “the basket is on the table”. Note that
Persian sentences are written from right to left.

Fig. 1. A phrase structure for “The basket is on the table” in Persian

Dependency parse trees can be divided into projective and non-projective
trees. A projective dependency tree is shown in Figure 2. In the projective trees
the edges do not cross each other and a word and its dependents can form a
substring of the sentence, but in non-projective trees, there are crossing edges.
A non-projective dependency tree is shown in Figure 3. In English, projective
trees can cover most sentences, but in languages like Persian non-projective trees
are more frequent.

Fig. 2. A projective dependency tree for “We will change our approach” in Persian

In this paper, we present the evaluations of two of most successful dependency
parsing methods, namely Malt Parser and MST Parser for Persian. We also
show that one of these methods is more suitable for projective sentences and the
other is more suitable for non-projective sentences, which correspond to the free
word order property.
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Fig. 3. A non-projective dependency tree for “I will request my book from him” in
Persian

The paper is structured as follows. Section 2 briefly describes the background
of parsing techniques. In Section 3, there is a description of Malt Parser and
MST Parser followed by introducing a Persian dependency Treebank. Section 4
presents the results of our experiment. Finally, Section 5 includes our conclusions.

2 Background

There have been several researches on phrase based approaches for grammar in-
duction. One of most successful grammar induction algorithms is the constituent
context model (CCM) [4]. CCM is a distributional based method, which is based
on a simple idea: the sequences of words or tags that construct the same con-
stituents appear in analogous contexts. A constituent is a group of words or tags
that constructs a single unit within a pars tree. A context is a pair of words
that surround a constituent [9]. Figure 4 shows an example of a constituent and
its context. Parent based CCM (PCCM) is a history based method, which im-
proved CCM especially for Persian. PCCM employs the parent’s information of
each context and constituent to avoid divergence in the likelihood space [8].

There are compelling reasons to switch our attention from phrase structure
grammar to dependency grammar. Persian is a so-called free word order natu-
ral language where constituents can be moved freely around each clause. These
scrambled clauses are the most important reason to use a dependency grammar.
The methods such as CCM that learn from frequency of constituents and contexts
patterns have a lower accuracy in free word order languages such as Persian.

On the other hand, dependency grammars represent information by a number
of head-dependent arcs. There is also an extra node called root, with no head. In a
complete sentence, the governing verb is a dependent of this root node, and other
words are directly or indirectly dependents of the governing verb. A dependency
grammar is more robust against word movements within the sentences due to its
word to word interactions. The parsers of dependency relations can be divided
into two groups: 1) graph based parsers, and 2) transition based parsers.



514 S.A.M. Falavarjani and G. Ghassem-Sani

Fig. 4. A constituent and a context for “The factory income was increased last month”
in Persian

In graph based approaches, every graph has a score and the graph with the
highest score is equivalent to a maximum spanning tree. MST Parser is a graph
based parser. On the other hand transition based approaches are based on certain
transition systems. A transition system consists of some configurations and cer-
tain transitions between these configurations. Malt Parser is a transition based
parser. MST Parser and Malt Parser are explained in more details in the next
section.

3 Experimental Frameworks

In this section, we briefly describe the so-called Malt Parsing and MST Parsing
methods. We also introduce the dependency Treebank that has been used for
doing experiments on the mentioned parsing methods.

3.1 Dependency Parsing

Two of most successful dependency parsing methods are the so-called Malt Pars-
ing andMST Parsing [11], [7].Malt Parsing is a multilingual data-driven parsing
method. This parsing method does not require any grammar and one can de-
velop a parser for any new language with a Treebank consisting of dependency
relations between words. The parsing method relies on a transition system that
consists of a number of configurations and transitions between these configu-
rations. The transition system is based on a simple idea: beginning from an
initial configuration and after a number of valid transitions, the system obtains
a dependency tree.

Malt Parser is based on three components:

• The parsing algorithm
• A Feature model
• A machine learning approach
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Any transition-based parsing algorithm such as Malt Parsing needs to work
with the following structures:

• A stack consisting of partially processed tokens.
• An input buffer consisting of remaining input tokens.
• An arc list consisting of previously recognized arcs [11].

The parser constructs the dependency structure of the input sentence incre-
mentally by checking the existence of a dependency relation between the top of
its stack and the first token of the remaining input buffer. The feature model
contains some lexical features, part-of-speech tags, and some dependency based
features. The parser also requires a machine learning algorithm to get a mapping
from the feature model to one of the actions: left-arc, right-arc, reduce, and shift.
Malt Parser uses a support vector machine algorithm to predict appropriate
action in each configuration [2].

Another successful dependency parsing method is the so-called MST Parsing.
MST Parsing is a graph-based approach. The parser extracts the spanning tree
with the maximum score out of a complete graph. In this graph, the score of each
arc is calculated by the dot product of a feature vector extracted from the input
sentence and a weight vector obtained during the training phase. The complete
graph contains all possible dependency arcs. The score of a dependency tree is
the sum of scores of all the dependency arcs of the tree. The maximum spanning
tree (MST ) is a tree that maximizes the sum of all arc scores and contains all
vertices. MST Parser searches the whole space of all spanning trees using the
so-called Chu-Liu-Edmonds algorithm [7]. The main advantage of graph-based
approaches is their simplicity.

3.2 A Persian Treebank

Dadegan is a public domain Persian dependency Treebank consisting of 29,982
sentences manually annotated with syntactic roles and morpho-syntatctic fea-
tures. One valuable feature of this Treebank is that there are approximately

Table 1. Statistics about the persian dependency treebank

Number of Sentences 29,982

Number of Words 498,081

Number of Distinct Words 37,618

Percent of Sentences with Length 2 to 15 38

Percent of sentences with length higher than 15 62

Number of Sentences with Internal Punctuation 7341

Number of Sentences with Internal Verb 14830

Number of Sentences with Internal Punctuation and Verb contemporary 5677
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5000 distinct verb lemmas in its sentences. The corpus is annotated with part of
speech tags, person, number, and the tense-mood-aspect of words of sentences in
the CoNLL-format. In this Treebank, 39.24% of the words are tagged as nouns,
12.62% as verbs, 11.64% as prepositions, and 7.39% as adjectives. Table 1 shows
some statistics about the Dadegan Treebank [12].

There are two representations for objects accompanied by the accusative case
maker. In the first representation, the accusative case maker is the head and in
the other representation, it is the dependent of the direct object of the main
verb of the sentence. In our experiments, we have used the first representation.

4 Persian Parsing

Our main goal of focusing our attention on dependency parsing for Persian
is that Persian has the property of being “free word order”. This particular
property has a negative impact on the accuracy of conventional parsing methods
[3,9]. In our experiments, we illustrate the extent of the data-driven dependency
parsers success to overcome this problem. For this goal, we divided the Dadegan
corpus into two separate parts including only projective sentences and only non-
projective sentences, which are correlated with the free word order property.
Then, we trained the parsers on each part of the Treebank. We used 90% of the
data for training and the rest for test. Our features were gold standard POS
tags taken from the Dadegan Treebank. We used the same data and features for
both parsers.

To apply Malt Parsing to Persian, we selected the Arc-eager algorithm [10].
Due to the using of the Reduce action and not deleting the dependent in the
Right-arc action, this algorithm seems to be more suitable than other methods
for free word order languages. This algorithm can select four actions in every
configuration. Left-arc and Right-arc actions add a dependency arc between
the word on the top of stack and the first word of the input buffer. Reduce pops
the stack and shift removes the first word of the input buffer and pushes it
onto the stack. Arc-eager algorithm is a linear-time algorithm [11].

To apply MST Parsing, we used the non-projective and the order2 settings.
The non-projective setting allows the parser to select non-projective arcs in
addition to projective ones. With the order2 settings, the parser can find the
interactions between three words in addition to the interactions between two
words. This can increase the accuracy of the parser for free word order languages.

The accuracy obtained for projective sentences by the Malt Parser is 87%
and by the MST Parser is 84%. Therefore, the Malt Parser is more accurate
than the MST Parser on the sentences without any non-projective arcs. The
accuracy obtained for non-projective sentences by the Malt Parser is 73% and
by the MST Parser is 77%. Thus, the MST Parser is more accurate than the
Malt Parser on the sentences with non-projective arcs, because the Malt Parser
finds relations between the words on the top of the stack and the first word
of the input buffer, which are sequential words in most cases. Therefore, when
dependents of a word are not sequential and there is a space between them, the
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accuracy of Malt Parser will be reduced. Although Malt Parsing has obtained
a higher accuracy on a Persian dependency Treebank called Uppsala [13], the
accuracy of MST Parsing has been higher on Dadegan, because there are much
more non-projective sentences in Dadegan. The results are given in Table 2.

Table 2. Accuracy of parsers on projective and non-projective sentences

All Sentences ProjectiveSentences Non-projective Sentences

MST Parser 81 84 77

Malt Parser 78 87 73

5 Conclusions

In this paper, we examined the ability of the dependency parsers to overcome the
free word order problem in Persian. We used the MST Parser as a graph based
parser and the Malt Parser as a transition based one. Our experiments showed
that the Malt Parser is more accurate than the MST Parser for sentences with-
out any non-projective arcs, and reversely the MST Parser is more accurate for
sentences with non-projective arcs. Thus, we can conclude that the Malt Parsing
is a more suitable approach for languages like English with less non-projective sen-
tences andMST Parsing is more appropriate for languages with the free word or-
der property. One possible future work to improve the performance of dependency
parsers can be the usage of semantic information. Semantic information can help
the parser to find the correct relation between words.
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Abstract. Large amount of entities published by various sources in-
evitably introduces inaccuracies, mainly duplicated information. These
can even be found within a single dataset. In this paper we propose
a method for automatic discovery of identity relationship between two
entities (also known as instance matching) in a dataset represented as
a graph (e.g. in the Linked Data Cloud). Our method can be used for
cleaning existing datasets from duplicates, validating of existing identity
relationships between entities within a dataset, or for connecting different
datasets using the owl:sameAs relationship. Our method is based on the
analysis of sub-graphs formed by entities, their properties and existing
relationships between them. It can learn a common similarity threshold
for particular dataset, so it is adaptable to its different properties. We
evaluated our method by conducting several experiments on data from
the domains of public administration and digital libraries.

Keywords: duplicates, identity, similarity, relationship, semantic web,
owl:sameAs, Linked Data, web of data.

1 Introduction

The Web has shifted from a group of pages into an interconnected network of in-
formation processable by automatic agents. Many web pages contain structured
data in formats such as XML or RDFa. New methods for extracting structured
information from unstructured data emerge [2,16]. Facts about real-world entities
are grouped into various datasets and published on the Web. Moreover, datasets
are connected with each other using links and shared vocabularies (schemas),
thus forming the Linked Data Cloud.

These datasets have the form of graphs with vertices representing entities
and values, and edges representing relationships. They capture semantics usable
for various adaptation and personalization tasks. Linked Data can help with
content-based recommendations, answering near natural language search queries,
filtering relevant information, or adapting web pages to specific users.

Linked Data can also be used in detection of similarity between objects,
relationship discovery, or semantic enrichment of existing web pages. For all these
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tasks we need to have a good representation [7]. The main problem linked with
representation is the discovery of similarity and identity between entities [18].

An imminent problem of large datasets is that they usually contain duplicates
and it is a challenge to find them. This is also referred to as the data linking
problem where the goal is to find equivalent resources on the Semantic Web [5].

Marking entities as duplicates on the Semantic Web is usually done using
a owl:sameAs relationship. However, a study [6] proved, that owl:sameAs is often
wrongly used to connect e.g. two people or other objects with identical names,
although their other attributes are not identical and they represent different real-
world entities. Another problem is that sometimes owl:sameAs is deliberately or
mistakenly used to connect very similar, although not identical entities.

In this paper we address the problem of identifying if two entities are the same
with satisfactory precision. Our main goal is to discover whether two entities in
one dataset refer to the identical real-world object, a problem which is also
known as instance matching. We use graph algorithms and specific rules on
various attributes, results of which we combine in a specific way tailored for
each dataset in order to determine if two given entities are the same.

In our experiments we focused on finding duplicate people and companies
in various datasets. Our main contribution is that the proposed method can
automatically adapt to varying properties of datasets.

2 Related Work

Because the Linked Data datasets use various ontologies and schemas to describe
their content, there is a problem of ontology diversity, which could cause that
identical entities are not connected. Graph algorithms are used to address this
problem in [20]. Graph patterns in the form of sub-graphs with identical vertices
and edges are defined. At first, the authors integrate two datasets and detect the
graph patterns in them. Then, ontology alignment on each of the graph patterns
is performed. Finally, it aggregates similar ontology classes and properties.

Detecting duplicates in XML data was examined in [9]. The authors proposed
to combine not only the information within elements, but also the information
about how the data is structured. Their solution uses Bayesian network to de-
termine the degree of similarity of two entities.

Analyzing sub-graphs of compared entities is also used in the domain of on-
tology matching problem [3,15]. They usually compare two similar datasets (de-
scribing the same domain, very similar entities and relationships but described
using different schemas with different names). The prior knowledge that the two
compared datasets are very close to each other makes the comparison easier,
unless we are comparing one very rich dataset (lots of entities with plethora of
attributes, richly connected through various relationships) with very sparse one
(only few entities’ attributes and basic relationships).

This approach can be used to map more ontologies to each other, and thus
discovering identical entities in datasets which use these ontologies. Problem with
this approach is that it requires manual verification as the precision is not high
enough. This can be difficult and time consuming, especially for large datasets.
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Another approach using graph algorithms is described in [8]. The proposed
method finds relationships among entities in DBpedia. Its main idea is to split
the graph into its components using the breadth-first search. Then, the shortest
path between two entities is computed. The disadvantage is not considering the
type of the relationship. However, we can use the presence of such relationship
as an indicator that the two entities are identical.

When performing the instance matching the usual approach is to 1) quickly
scan the whole dataset to find entities for comparison, and 2) measure the simi-
larity between pairs of entities found in the previous step [17,12].

This approach is also used in [1]. The authors propose a method for instance
matching using class hierarchy of instances. For selecting candidates of poten-
tially identical entities they use small number of characteristic attributes (e.g.
name or title). Then they search for entities which have similar values of these
attributes. The challenge here is automatic selection of characteristic attributes,
as well as the similarity threshold for the values of attributes.

Selecting potential candidates allows the algorithm to scale on large datasets.
Otherwise, we would have to compare each possible pair of entities, resulting
in quadratic complexity. On the other hand, if this step is executed with low
precision, we may omit some duplicates, so on smaller datasets it is desirable to
compare as many pairs of entities as possible.

A suitable similarity measure has to be applied on the attributes of compared
entities. Each pair of attributes can be compared using different similarity mea-
sure according to the data type, e.g. text or numeric similarity. There can also
be more complex measures, comparing e.g. geo data or address records [15]. We
need to know the semantics of the attributes to correctly select the metrics.

Current approaches use either attribute values to compare pairs of entities [13],
or graph algorithms to compute the similarity based on entity’s relationships
with its neighbors [11]. Instances can also be matched based on the representa-
tion of their metadata [14]. However, various datasets need different approaches
according to their properties. In many datasets it is vital to use
a combination of approaches with weights tailored for a particular domain.

3 Detecting Similarity between Entities

We propose a method for finding if two given entities are identical. It can compare
each pair of entities within a dataset (or possibly more datasets). The method
was designed to work on datasets which can be represented using graphs, such
as (but not limited to) RDF representation, the basis of the Linked Data Cloud.

Our method is based on a hypothesis that the matching of entities is reflected
in the similarity between the sub-graphs composed of classes and properties of
the individual entities. For a given pair of entities we compute how similar they
are. Then, we determine a common similarity threshold, above which we mark
the entities to be identical.

We use matching of features of entities, as well as properties of the sub-
graphs they are part of. Our method computes the similarity between entities as
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a weighted sum of these four partial parameters: 1) similarity of entities’ proper-
ties, 2) graph distance between entities, 3) graph distance between neighboring
entities, and 4) similarity of entities’ relationships:

SGN =
SNP × wSNP + SNR× wSNR + ND · wND +DRN × wDRN

wSNP + wSNR + wND + wDRN
(1)

where

SGN - similarity of graph nodes, final similarity between two entities
SNP - similarity of entities’ properties
SNR - similarity of relationships between entities
ND - graph distance between entities
DRN - average graph distance between adjacent entities
wi - weight of a particular component

The resulting values of the similarity, as well as the results produced by each
component, are from the interval [0, 1]. Similarity = 1.0 means that the two
entities are 100% similar (i.e. identical), whereas similarity = 0.0 means that the
two entities are not similar at all. All components of the eq. 1 have associated
weights, which determine the component’s contribution to the total similarity.

In some datasets (e.g. in the domain of public administration data) it turns
out that the entities’ properties are more important than relationships between
them (the records contain a lot of attributes, but few connections). On the other
hand, in domains such as social networks or digital libraries, there are many
relationships between entities, so the weights of related similarity components
should be higher. In our approach the weights can be automatically trained, so
that our method can adapt itself to a particular problem domain. They can also
be assigned manually by a domain expert.

As we already mentioned, we compute the similarity of two entities A,B from
the interval SGNA,B ∈ [0, 1]. To determine whether these entities are identical
we need to find a threshold of similarity (denoted S) from the same interval.
The threshold S should be determined for each domain differently, as it should
reflect dataset’s properties.

3.1 Similarity of Properties between Entities (SNP)

When computing the similarity of properties (attributes) of two entities, we
need to use suitable similarity measure according to the data types used. This is
illustrated in Tab. 1 representing people in a dataset of owners of companies in
Slovakia, which provides example properties used when comparing two entities.
As we can see, not all types of properties can be compared using textual similari-
ty. Example in the first row depicts that sometimes the attribute labelled name
contains not only the name of a person (entity A), but also an abbreviation of
related organization (entity B). Row 2 demonstrates that names and addresses
may be mixed together.
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Table 1. Comparison of example properties between various pairs of entities

Property label Entity A Entity B

Name Jozef Turanovsky Jozef Turanovsky - UNIP

Name, Address Juraj Siroky Mgr. Juraj Siroky 137
Strme vrsky 137 Strmy vrsok 137

Address Zombova 19 Lomonosovova 30
040 23 Kosice - Sidlisko KVP 040 01 Kosice - Juh

District Kosice II Kosice 4

If the entities are in the same dataset (which is the primary concern of this paper)
or if their properties are described using the same vocabulary (ontology) we can
easily determine which properties to compare. Otherwise, we need to apply some
matching algorithm to determine appropriate attributes for comparison. For the
similarity of properties between entities A and B we define:

PRx = {prop1, prop2, . . . propn} - denotes a set of properties of entity x
PRy = {prop1, prop2, . . . propm} - denotes a set of properties of entity y
PRx,y = PRx∩PRy - denotes a set of properties common to both entities x and y

Similarity of properties (sig. SNP ) between entities is defined as follows:

SNP =
SP0 × wP0 + SP1 × wP1 + . . .+ SPk × wPk

wP0 + wP1 + . . .+ wPk

(2)

where

SP0, SP1, . . . , SPn - similarity between common properties (text, numeric, etc.)
wP0 , wP1 , . . . , wPn - weight of each similarity

Again, we determine the component’s importance using weights which we train
using machine learning. The eq. 2 reflects the weighted average of the individual
similarities between the properties. Sometimes, it is possible that some properties
will be ignored (we set their weight to zero). We do not consider properties unique
to some entity, only those common to both of the compared entities.

We compare the properties of entities using textual similarity and numerical
similarity. Textual similarity of properties is the average between the Levenshtein
distance and 3-gram similarity of the compared properties, as these metrics are
widely used and their good performance has been confirmed. Numerical similarity
is defined the normalized numerical distance, which we compute as follows:

ndist(numA, numB) =
MAXnum− | numA − numB |

MAXnum
(3)

where

ndis(numA, numB) - normalized distance between the numbers, ndis ∈ [0, 1]
MAXnum - maximum value of the numerical properties in the domain
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Table 2. Comparison of names of equal properties between DBpedia and YAGO

Property Name in DBpedia Name in YAGO

School almaMater school

Date of birth birthDate wasBornOnDate

Nationality nationality nationality

Place of birth birthPlace wasBornIn

Title title title

Linking Properties from Different Vocabularies

Existing approaches usually consider the fact that the entities are described
using the same vocabulary, so the names of properties will match. A problem
occurs when the properties are defined using different schemas. Tab. 2 presents
a comparison of several names of properties in DBpedia and YAGO datasets. As
we can see, some of the names do not match, although they describe the same
fact. To solve this problem we also use semantic similarity of properties’ names.
The semantic similarity between words is not easily computable as in general we
do not know exact meaning of the words. Also, we often do not have complete
information on their context. We use WordNet in order to determine if two words
are in the same synset. Once at least one of these similarities is above the given
threshold, we can say that the names represent the same property, so that we
can compare the values using previously described metrics.

In order to link the names of the properties we take all the properties of the
entity A. Then, we find the most similar property of the entity B according to its
name. When the entities come from different datasets, it is not always possible
to connect all the properties. Subsequently, we consider only the properties we
are able to link when computing the overall similarity of properties (SNP ).

3.2 Distance between the Entities (ND)

When calculating the distance between two entities in a graph we use the algo-
rithm of breadth-first search. Our intention is to find the shortest path between
the entities. We consider every edge to have the length of 1. The final distance
is normalized to the interval [0, 1]. Normalization is based on the minimum and
maximum distance in the given dataset.

Maximum and minimum distances for the normalization must be set for each
dataset separately in the preprocessing phase. We experimented in the domain of
public administration data, where the minimum distance between organizations
is at least 2. Also, we conducted experiments on data from digital libraries, where
the minimum and maximum distances between papers’ authors are different (for
more details see evaluation).
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3.3 Average Distance between Adjacent Entities (DRN)

The average distance between the two entities is defined as the normalized avera-
ge distance computed from the smallest distances to the neighboring entities. We
compute DRN of entities A and B using their direct neighbors (see Fig. 1).

Fig. 1. Relationships nodes for two entities

In Fig. 1 entity A has three neighboring entities - RNA1, RNA2 and RNA3.
Entity B has four neighboring entities - RNB1, RNB2, RNB3 and RNB4. For
each neighboring entity of A we find the closest neighboring entity of B and use
their distance. The value of DRN between A and B is equal to the average of
these distances. Finally, we normalize the average distance using maximum and
minimum average distances according to eq. 4.

DRN(A, B) =
MAXdrn − avg dist(A, B)

MAXdrn −MINdrn
(4)

avg dist(A, B) =

∑
∀RNBj ∈ RNB : min(RNAi, RNBj)

| RNA | (5)

where

DRN(A, B) - normalized average distance betweenA and B,DRN(A B) ∈ [0, 1]
avg dist(A, B) - average distance between entities A and B
MINdrn - minimum average distance between entities
MAXdrn - maximum average distance between entities

3.4 Similarity of Relationships between Entities (SRN)

The last component of the similarity computation is the similarity of entities’
relationships. For both entities A and B we divide their neighboring entities
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according to the type of the relationship between them. For each type we express
the Jaccard coefficient between sets of adjacent entities of A and adjacent entities
of B and we compute the average of the Jaccard coefficients:

SNR(A, B) =
j(RNAR1, RNBR1) + . . .+ j(RNARn, RNBRn)

| R | (6)

where

R - list of the types of relationships for which the neighboring entities of A and
B form non-empty sets
j(RA RB) - Jaccard coefficient between sets of neighboring entities of A and B

4 Evaluation

We have conducted several experiments with various datasets in order to evaluate
specific parts of our method, from finding duplicate organizations to finding
namesakes of authors of research papers.

4.1 Finding Identical Organizations

In this experiment we used public data1 with information about cities, villages,
regions and organizations in Slovakia. It contains a lot of duplicates and our goal
was to identify identical organizations which were wrongly labelled as diverse,
thus helping to clean the dataset.

Throughout the time, organisations may change their names, cease to exist
and be started again elsewhere, etc. However, each organization has assigned
its unique ID number, which persists event if the organization changes some
of its properties (e.g. name, owner). We used this ID for evaluation. For each
organization X we found two other organizations which we used to compute the
similarities: 1) one identical organization A with the same ID number, and 2)
one random organization B that has a different ID number.

We expected A to be the most similar organization to X and B to be the least
similar, according to our method. Note that have not used the unique ID when
computing the similarity, we only used it for selecting the entities and evaluating
the performance of our method.

For setting up the weights of components of our method we used machine
learning, particularly support vector machines. We trained on the 80% and tested
on 20% of the data. As a threshold (S) for two entities to be identical we used the
value of S = 0.5, which we set manually based on our observations of the available
data. This value could also be trained if enough test data was present. We used
precision, recall, accuracy and F1 score as standard metrics of performance.

The dataset used for this experiment was composed by a graph of 13,820
vertices, they had 119,484 properties and were connected using 131,683 relation-
ships. We compared the names and addresses of organizations. As a baseline we
used textual similarity computed using Levenshtein distance and 3-grams.

1 http://naseobce.sk

http://naseobce.sk
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The results are summarized in Tab. 3. We used two setups: the first one
involved computing the SGN value using all similarity components, in the second
one we only computed the value of SNP (the similarity of properties). We have
performed the training and testing on 5,000 and 10,000 examples, respectively.

Using only the similarity of properties resulted in the best overall F1 score
because the entities’ properties are the most dominant in this dataset. Including
other components has worsen the results. The baseline method was better when
finding identical organizations, but it also produced more false positives.

Table 3. Results of experiment with identical organization identification

Method Size Presicion Recall Accuracy F1 score

SNP 5,000 0.98981 0.98812 0.99014 0.99012

SNP 10,000 0.99240 0.99275 0.99257 0.99257

SGN 5,000 0.95532 0.82688 0.89409 0.88647

SGN 10,000 0.96147 0.93057 0.94663 0.94576

3gramLev 5,000 1.00000 0.22811 0.61405 0.37148

3gramLev 10,000 1.00000 0.19275 0.59637 0.32320

4.2 Finding Namesakes of the Authors in DBLP

In the second experiment we used data from DBLP digital library [10]. In this
dataset the authors are not represented as separate entities (e.g. using unique
identificators), but only using their full names. No other information is available.
It is not clear when two records represent the same person or they are namesakes.
In this experiment we used our method to identify identical and diverse authors.

For each author we found the number of his namesakes using these steps:

1. Set the threshold to S = 0.5, a value we manually chose for this experiment.
2. For all papers transform all its authors to new temporary authors. Each

temporal author was assigned to only one paper he wrote.
3. For each temporary author find an identical temporary author using our

method. Merge found authors to one entity. Repeat until no further tempo-
rary author could be merged.

In order to evaluate the results we created an application which showed au-
thors and their papers. We asked 5 researchers to combine the authors with the
same name into one entity if all records represented one physical person. Thus,
we obtained a golden standard for evaluation of our method. The manually
processed dataset contained information about 100 distinct authors from three
research communities, each author had his associated papers. The researchers
were from the same communities and thus were able to correctly assess the
authors. The number of papers varied from 3 to 20 papers per author.

For each of the 100 authors we found his namesakes analyzing the whole DBLP
dataset (containing more than 1,300,000 author records). We then evaluated the
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precision of ourmethod based on the number of namesakes it found comparedwith
the expected number of namesakes. We normalized these values to the interval
[0, 1] andwe calculated the weighted average,where the weights are the numbers of
publications for all namesakes of the author. Normalized precision for one author
was calculated using the normalization interval, where the minimum value was the
original number of namesakes, and the maximum value was the total number of
papers (because one author can be divided into at most as many namesakes as the
number of papers he wrote). This way we obtained the weighted mean precision
of 96.35%.

We compared our results with a method based on detecting communities of
authors according to co-authorship of research papers [19]. It assumes that re-
searchers who authored papers together are always the same people. However,
author and his namesake would probably not have a common colleague, so their
publications and co-authors will form two separate clusters. Our method out-
performed this baseline by 12%.

We also compared the number of namesakes our method found with the num-
ber from the golden standard. We derived the precision as the ratio of correctly
computed counts of namesakes to the number of all authors. Here, our result
was 80.2%, whereas the baseline method achieved only 66.34%.

It turns out that considering only co-authors and shared publications is not
always the best indicator for namesake detection. Our method achieved better
results because it combines graph patterns better representing the real situation.

5 Conclusion

We proposed a method for identifying duplicates in existing data and finding
identity relations between entities. It can be used to clean a dataset as well as to
verify existing relationships denoting duplicate entities (e.g. using owl:sameAs
link). Since we are able to process any graph data, our method can also be
applied on the Linked Data datasets.

Our method is proposed as universal, its main contribution is combining simi-
larity of attributes with the similarity of sub-graph neighbourhoods of compared
entities. This can be helpful when finding e.g. namesakes of a person according
to various other objects he is linked to. The method can automatically adapt its
components (using weights) to reflect the properties of a particular dataset.

One important step in our method is setting the similarity threshold (S) which
influences the accuracy. When the threshold is set too low it will result in high
recall but low precision. Otherwise, setting the threshold too high will produce
high precision but very low recall.

We analyzed this on a dataset from the project Annota [4], which is a social
bookmarking and annotation tool. It is primarily aimed at bookmarking research
papers available on the Web (with special support of metadata extraction from
digital libraries such as ACM DL2). Annota’s RDF dataset contains over 71,000
research papers, 390,000 authors, 9,000 publications and 6,400 publishers.

2 http://dl.acm.org

http://dl.acm.org
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For each author we randomly chose 5 other authors thus forming candi-
date pairs for duplicates. For each pair we calculated their similarity using our
method. We observed that when setting the threshold S < 0.5 we found dupli-
cates in around 70% of the cases. When the threshold was S = 0.5 the share
of duplicates fell to around 32% and setting the threshold to S = 0.6 resulted
in only around 2% of duplicates. Because for each author we selected very few
candidates compared to all authors in the dataset, the probability of choosing
real duplicate was insignificantly small.

This feature can be used to automatically adjust the threshold for an un-
known dataset: randomly pair each entity with a small set of other entities, then
calculate the similarity between each pair of entities. Start with a low similarity
threshold and increment it iteratively until the number of duplicates found is
close to zero. For very large datasets this process should be performed only on
their subsets for performance sake.

The applications of our method are multiple: 1) it can be used to find dupli-
cates in an existing dataset in order to clean the data, 2) it can be used to verify
the existing identity relations, and 3) it can be used in the process of creating
a new dataset so that we do not include the same entities twice.

Our method could also be used to connect a newly created dataset to the
Linked Data cloud, which is vital for enriching the Semantic Web. Entities
marked as identical can be connected using owl:sameAs link. In the future work
we plan to evaluate this in experiments by linking Annota dataset to existing
RDF datasets available on the Web.
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Abstract. Web browsing behaviour is a matter of study in several fields – from
web usage mining, to its applications in adaptive and personalized systems. Cur-
rent web browsers allow for parallel browsing – opening multiple web pages at
once and switching between them. To capture such behaviour, client-side ob-
servations are typically performed, where attracting and retaining enough partici-
pants poses a challenge. In this paper, we describe a study based on an experiment
on logging the parallel browsing behaviour, both in an adaptive web-based educa-
tional system and on the open Web, while using the educational system as a tool
for recruiting and motivating the participants. We focus on how various types of
users (here students), including their personality information, participated in the
experiment regarding churn and their observed behaviour. The paper concludes
with ”lessons learned” important to consider when planning and performing si-
milar studies.

Keywords: web browsing study, tabbed web browsing, educational systems,
churn.

1 Introduction and Related Work

As more and more aspects of everyday life are now being carried out using the Web,
if not completely on the Web, observing and analysing web browsing behaviour comes
into importance. By understanding how users browse websites, either within a single
web-based system, or across heterogeneous systems on the open Web in general, we
can possibly improve any personalization and adaptation feature that can be based on
user behaviour (i.e. implicit feedback), such as:

• Domain modelling – creating links between pages, links between domain terms, or
assigning domain terms to content based on user movement across the Web.

• User modelling – discovering user’s current interests and predicting future ones
from their visits to pages.

• Recommender systems – observing patterns in users’ visits from a page to other
pages and recommending relevant pages to similar users.

An important aspect of how users browse the Web stems from modern web browsers.
These not only allow opening multiple windows at once, but also allow opening mul-
tiple web pages within a single window using tabs. Such behaviour is called parallel

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 531–542, 2015.
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browsing [1,8] or tabbed browsing [4,9,18]. Since multiple web pages are accessible to
the user without having to load or reload them, the tabbing has changed the traditional
web usage mining approaches [18].

Traditionally, server-side log-based web usage mining considers page load events,
but with the parallel browsing, the user can switch contexts by navigating between
opened tabs with various pages attributed to different user tasks without generating
these page load events that could be visible to server-side logging. The user can also
open a page in various ways. A link can be opened into the same tab, replacing the
currently opened page, or in a new tab, leaving the source page opened and branching
the browsing action tree. Therefore, even when the page load event is observed in the
server-side logging, it can represent differing browsing actions when we take parallel
browsing into account. Various inferences can be made from traditionally logged ac-
tions, e.g. when the user loads two different pages by clicking a link from the same
page, the page must have still existed for the second click and therefore the first click
must have been branching [7,18]; or tasks in the browsing can be discovered and then
browsing behaviour can be estimated [1]. However, in order to fully capture and anal-
yse the user browsing behaviour including using multiple pages (tabs) and switching
between them, and to allow for the aforementioned personalization and adaptation fea-
tures based on user behaviour, one must use client-side tracking and observe the actions
on the user computers in their browsers.

A single web-based system can easily track its users on the client-side by includ-
ing client-side-executed scripts into pages served by this system and aggregating user
actions across multiple pages (activating/deactivating single pages) to reconstruct the
browsing tree. We previously used such approach [10] to capture user browsing within
adaptive web-based educational system ALEF (Adaptive Learning Framework).

Users, however, do browse in tabs across heterogeneous web systems in various sit-
uations [4], ranging from comparing pages against each other, keeping frequently used
ones at hand, creating bookmarks or todo lists, to simply multitasking. To observe such
behaviour, the tracking must be done either in all pages, e.g. by using an adaptive proxy
that injects scripts into web pages passing through it, or by observing the user’s browser
directly via a browser extension. Except when monitoring connections in a school, in
a workplace, etc., where an intercepting proxy [12] or browser can be configured au-
thoritatively, active user participation is required to install modified network settings or
a browser extension [4] to participate in such experiments.

Studies of browsing behaviour therefore often face a choice, either:

• Passively use server-side data that are easily observable from all visitors, but those
do not provide details on advanced features of their browsing behaviour, such as
parallel browsing. Or:

• Actively monitor the participants with client-side software, but attracting enough
participants to install the logging software voluntarily (in order to observe their
natural behaviour) and retaining these participants usually becomes a challenge.

In this paper, we describe a study where we observed users’ browsing behaviour both
within adaptive web-based educational system ALEF (Adaptive Learning Framework)
[17] and on the open Web while using ALEF as a tool to find participants and moti-
vate them to stay in the study, i.e. to observe the web browsing behaviour to maximum
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extent, while actually reliably finding and retaining participants. We focus on how stu-
dents participated in the experiment.

Our aim is to understand how users participate in a voluntary long-term browsing
behaviour study that requires installation of a logging browser extension which is, in
fact, always a privacy intrusion to some degree, and how long they remain participating.
By observing user features that can be observed independently from the study, such as
participant demographics elicited through surveys, their academic performance (in the
case of student users), or their actions in other web systems (such as in an adaptive
learning system), we could predict how would users join before even starting the study
and for example estimate required population to be acquired. If we could predict how
long would they participate (their churn rate) and what causes them to stay/leave, we
could obtain more results from more participants in similar studies.

The rest of this paper is organized as follows: first, we describe the browsing be-
haviour logging infrastructure and explain the experiment setup, including motivation
and recruitment of the participants via ALEF. Next, the resulting dataset is described,
followed by analysis of churn and user behaviour during the experiment. In the last part,
we outline future work and implications of this study.

2 Study on Logging the Browsing Behaviour

2.1 Experiment Setup

For the purpose of this experiment, we implemented parallel browsing tracking as
an extension in the Brumo platform (Browser-based User Modelling and Personaliza-
tion Framework1) [15], which provides infrastructure for browser extensions, including
client-server communication and storage, and allows distributing the extensions. We
capture user actions in separate tabs, such as loading the page, bringing the page into
focus or hiding it, and then combine these actions into single-timeline stream using re-
construction algorithm we described in [10]. We created an infrastructure, where the
events are observed using the extension, sent to server and analysed [11]. The output
is a browsing tree describing how a given user clicked on each single link or typed-in
URLs (into the same tab or a new tab), how they switched between tabs or out of the
browser – effectively reconstructing entire user session, allowing for analysis of switch
frequencies between given resources, or user browsing styles.

We set up experiment with participants who used educational system ALEF – bach-
elor students of the Principles of software engineering course – instructing them to
broaden their knowledge about topics presented in the system and look for appropriate
external sources (URLs related to given content) on the open Web, attaching them to
corresponding learning objects. This task was also motivated competitively using global
user score and leaderboards – students were awarded score points for links attached to
the content [6].

Submitted external sources were scored according to their novelty (repeated URLs
were penalized), access level (sources attached as public and signed with own username
were worth more points than anonymous sources), and finally according to their quality

1 http://brumo.fiit.stuba.sk

http://brumo.fiit.stuba.sk
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and relevance to the given learning object. The last criterion was evaluated by a domain
expert, who rated the sources in three levels: appropriate (accepted), neutral, rejected,
which were rewarded with more points, rewarded with the default amount of points,
or penalized with negative amount of points, respectively. On top of that, whenever
a student achieved a reward level amounting to five top-rated (signed and approved)
sources, an additional content (a recapitulating question for a final exam) was unlocked
for the given student – motivating the students to browse for quality links.

Most importantly, we asked the students to let us see their browsing behaviour while
looking for these external sources and in order to do that, the students could insert the
external sources only when the Brumo extension with browser tracking was present.
The main phase of the experiment (inserting the external sources) ran for more than
a week and data collection continued voluntarily for a year among users who have kept
the extension installed after the learning system experiment.

2.2 Dataset

For studying various user approaches in browsing style and participation in the study,
we created a dataset consisting of 249 users. The users are structured into three groups:

1. 80 users: bachelor students from ALEF system who chose to participate in the
browsing study. These are students who were learning the course content in ALEF
and as other ALEF students, they were given the opportunity to install the exten-
sion and then submit external sources that rewarded points as a motivation. These
students chose to install the extension in order to participate. Then they could leave
the extension installed for some time, remaining in the study. This group serves as
a positive sample and allows exploring which features influences joining the study
and the length of participation.

2. 144 users: bachelor students from ALEF system who chose not to participate in the
browsing study. These students were also exposed to the same motivation as the
group (1), but chose not to participate. However, except the browsing behaviour on
the open Web (which is naturally not available, since these students did not install
the logging extension), other features about their activity in the learning system,
personality, etc. (see below) were still observed for these users, therefore this group
serves as a negative example and allows exploring which student/user properties
have impact on not participating.

3. 25 users: older students (mostly master study) in the browsing study who did not
come from the ALEF system. These users started using the logging extension
through other means, for example by attending a student research seminar where
the extension was propagated. The number of these users is rather low, because
the logging extension was freshly deployed and there are little additional features
known about these users apart from their browsing behaviour.

Additional to browsing actions within and outside of the educational system, we com-
puted/included churn data (when the user joined, left, etc.), activity within the exper-
iment (external sources statistics), activity within the educational system outside of
the experiment (question-answer learning object answering), and study performance.
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Two types of demographic traits were elicited: Felder and Silverman learning style [5]
was obtained via a questionnaire within ALEF, and Big Five personality traits were ob-
tained via professional assessment. Table 1 provides more detail about the data collected
in the dataset.

Table 1. Dataset composition

Feature Source Explanation
A Churn Brumo extension, Date and time joined and left

partially inferred (started/stopped using the extension),
participated in experiment, is still active

B Browsing Brumo extension, ALEF Browsing behaviour within ALEF,
actions outside of ALEF, during experiment,

outside of experiment, total browsing
C External ALEF External sources submitted, categorized

sources as approved, rejected, and deleted
D Learning ALEF Number of shown and number of answered

activty question-answer learning objects; portion
of views skipped without answering (tendency
to “cheat” into viewing question-answer pairs
without having to rate); portion of views rated
with default value (similar)

E Study Course Academic performance
F Learning style Questionnaire (ALEF) Dimensions (active/reflective, sensing/

intuitive, verbal/visual, sequential/global)
G Personality Professional assessment Traits (openness to experience,

traits conscientiousness, extraversion, agreeableness,
neuroticism) – value and percentile

Since several of these attributes depend on participation, either by doing some vol-
untary activity in the educational system, or filling out the questionnaire, or taking the
personality traits assessment, not all of these data are available for each user. Dataset
features coverage is shown in Figure 1.

2.3 User Participation and Browsing Style

First, due to the nature of the continuing experiment, we were interested in churn rate (or
retention conversely). Determining the churn is a task of finding when the user is likely
to leave. The term comes from the telecommunications field, where one is interested
in when and why is the user going to switch to competing service provider, but the
churn is commonly explored in the field of adaptive web-based systems. For example,
in a user-generated content community, rate of participation and feedback from other
users can be associated with length of membership [14]. In another example, a length of
participation in a community-based question answering system can be predicted using
classifiers based on questions, answers, gratification and answerer demographic features
[3]. Perhaps closer to our study is an example of content discovery system, where users
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Fig. 1. Dataset sparsity: first column represents participations (by their ID), columns 2 to 8 rep-
resent particular features (according to Table 1); grey – attribute is present, white – attribute is
missing (user did not participate in the source activity). First 105 users participated in the brows-
ing study (groups 1+3), rest of them, 144, did not participate (group 2).

view recommended Web pages. Time spent, visit features and content features can be
associated with number of sessions made by the user [2].

If we could predict the churn, we can, for example, increase or add user motivation
during the experiment to prevent them leaving and obtain better data, or even predict
how many participants we need in the beginning given the expected dropout through
the course of experiment. We believe that simple actions like notification of the teacher
or stimulated message to the student including gamification measures currently more
and more employed in domain of educational systems can further improve students’
engagement and so their results. There is, however, a rather important difference to
traditional churn prediction tasks. In setups such as ours, the user is being observed in
their natural activity on the Web and it is even desirable for the purpose of obtaining
unbiased data to interfere with this activity as little as possible. Actions on the web
therefore do not correspond with the user satisfaction or engagement in the experiment.
In our case, we have multiple external features relevant to the user – study performance
in the course, activity in ALEF, external source activity, or personal traits which could
be possibly used universally.

A potential candidate for relevance to churn is the activity in ALEF related to question-
answer learning objects, because the motivation is similar [16]. The user is presented with
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Fig. 2. User participation in the browsing study (groups 1 and 3). Dark bars represents time (days)
since the start of the study until the user has joined. Light bars are the length of the participation
(time until the user has left).

a pair consisting of a question and a student-provided answer and has to judge the correct-
ness of the answer. The user is motivated by getting acquainted with potential questions
for upcoming exams and recapitulating own knowledge. In the external sources gather-
ing experiment, the students were rewarded for multiple quality links with a potential
exam questions, so there is similar motivation in both of these activities.

Users can, however, “cheat” out of the work of rating the answer correctness by using
an option to skip a question and get another one multiple times in a row, or by answering
with the default correctness value. While some rate of skips and default answers is
natural, for some users, rates as high as 90 % skipped questions were observed. This
could relate to the user’s approach to participation in other kinds of activity – e.g., if
a user is only interested in the score and reward levels for the external sources, he/she
could install the logging extension for a very brief period of time or even into a separate
browser, submit prepared sources (to achieve a score for the attached sources) and stop
participating.

The overview of how users joined and left the study is shown in Figure 2. The
overview of relations found in the dataset is shown in Figure 3. Correlations within
segments of features (group of features describing on property of subjects, e.g. their
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learning style) delimited by horizontal and vertical lines are expected, since some of
the features are inferred from others in the same segment, or they may be related on
each other, for example, the ALEF experiment ran from the beginning of the dataset
for some time, therefore time of joining is related to the user having participated in the
study from the ALEF experiment (users who joined sooner), or having participated in
the study independently (users who joined later).

Fig. 3. Associations between various features of users found in the experiment (Pearson pairwise
correlation). Horizontal and vertical lines mark feature segments of the same type. The notation
identifies features according to their segment explanations, e.g., personality dimensions, learning
style dimensions, or browsing actions (see Table 1).

The question-answer learning object activity described above correlates both to
whether the user has participated in the study at all (0.297, p-value = 0.002) and how
actively they participated (0.483, p-value ≈ 0), suggesting that these activities with
similar underlying motivations (allowing the students to practice exam-like questions)
attracted similar user behaviour. Therefore, if we base user motivation in an experiment
starting from an educational system on similar mechanics as another activity in the
system with known usage, even when the activity is very different to the experiment, we
can predict user participation to a degree.
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In the logs themselves, we indeed found a behaviour we can call “short-participa-
ting”. It is similar to the skipping and default-rating the question-answer learning objects
– some users allowed tracking only for the minimal time, when they installed or enabled
the tracking, looked up and attached several external sources to the learning content (in-
serting the sources into the system was the only activity that strictly required the presence
of tracking) and stopped the tracking altogether. In some cases, only the inserting took
place with the tracking. This can be induced by realising that the tracking is needed to
insert the link only after having the external links already found, in that case, clearer com-
munication (within the constraint of this being an uncontrolled experiment) may help.

In some cases, students mentioned that they use a different browser for their daily
browsing activity and they used the two browsers for which the tracking is implemented
only to insert sources looked up elsewhere. Therefore, in browsing behaviour studies,
it is important to cover as many various browsers as feasible technically and labour-
wise. Due to differences between browsers in creating extensions, integrating with the
browser and pages, maintaining their compatibility through new browser versions, etc.,
covering every possible browser is infeasible. Often only one browser is observed.

If a study is concerned with a smaller number of participants (such as when follow-
up in-person interviews are planned), they can be recruited with explicit requirement of
everyday usage of a given supported browser, such as in [4]. However, in cases similar
to our where we motivated users to participate, temporary switching the browser can
hinder the goal of observing the natural user behaviour on a large scale. Note that we
supported two common browsers (Chrome and Firefox), such as some other studies do
[19], and yet there was a relatively significant portion of users who commented on using
other browsers (Safari, Opera). On the other hand, supporting two and more browsers
creates a possibility for users to intentionally install the extension into that browser they
do not use naturally, cases of this behaviour were observed in this study.

We then looked on the continuing participation in the study. On one hand, using
a “stealth” extension (one that does not present any specific features directly to the user,
although it is not hidden in any way in the standard extension-listing user interfaces in
the browser) to track browsing has an effect of observing the natural behaviour of the
users and some participants will continue to use it because it does not interfere with their
browser experience. On the other hand, this very same mechanism of the initial motiva-
tion (e.g. user score, questions) in an experiment and no subsequent user features of the
tracking can mean that we lose participants, e.g., when the user reinstalls or switches the
browsers. In interviews with selected participants, several of those who left the study at
some time after the experiment (they did not short-participate as above) mentioned that
no user features were the reason for deliberately uninstalling the tracking.

It seems that the best approach is combining the initial motivation (as described
here with ALEF experiment) to gather the initial user base together with later features
available in the tracking software (allowing the users [of educational system] to see
their browsing history, manage tabs, etc.) to retain the users for ongoing data collec-
tion. Instead of having the logging stay quietly behind, making the logging software
attractive to participants can not only help keep users in the study, but possibly also
attract new users who did not receive or did not respond to the initial motivation such
as that from the educational system we describe here.
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Regarding the browsing behaviour within the adaptive learning system, a common
type of browsing paths observed in the experiment was a “loop”, which is a sequence
of tabbing actions that:

• starts in a learning object,
• follows user switches through several pages and
• returns to the same learning object.

Such feature could be, for example, used for discovering external sources complement-
ing the content that the user was previously browsing. A method for web content en-
richment was created based on the logged browsing behaviour [13].

3 Conclusions and Future Work

In this paper, we presented findings and lessons learned of conducting a study on open
Web browsing behaviour of students who use an educational system, which served as a
motivation tool for engagement in the study. Our study was based on the dataset con-
sisting of 249 users structured into three groups according to activities they performed
within the educational system ALEF. We explored user participation and found a cor-
relation with participation in the system activity. We summed up our observations as
recommendations for conducting browsing studies. These include using other activity
in an adaptive web based system (here educational system) as a basis for predicting the
participation in another study, avoiding “short-participating” when covering single, or
on the other hand, multiple web browsers, and continuing the participation motivation
in some form after the initial drafting motivation. By caring for these aspects, a brows-
ing study can gather more participants, observe as much as possible of their natural
behaviour (both in terms of length of the observed part and in its quality).

In spite of the fact that the resulting dataset is based on enough participants to con-
sider their behaviour and traits, the number is insufficient for cross-validation of a pre-
dictive model. It, however, includes diverse set of attributes describing various aspects
of the user from personality traits, to performance, to activity in an educational system,
and activity on the open Web, which helps to get inside into browsing behaviour of
study participants. Along the lines of such breadth oriented study, a qualitative experi-
ment observing physical users could complement these findings.

Research described here was so far focused on the user side of the problem, i.e. how
users participated and browsed. Another aspect, the item based view, on which we plan
focusing now, is important for leveraging these findings in domain modelling, recom-
mender systems, etc. – how browsing styles differ depending on the item. We have
shown previously that the tabbing actions differ in learning environment based on the
type of learning object (explanations, exercises, and questions) [10]. Various browsing
styles could perhaps differentiate the quality of web pages, or help us reveal relations
between objects, such as subsumed-by (one object logically follows after another, es-
pecially in, but not limited to, an educational environment), or related-to (one object
explains concepts present in another object).
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Abstract. We propose X-Fun, a core language for implementing various
Xml standards in a uniform manner. X-Fun is a higher-order functional
programming language for transforming data trees based on node selec-
tion queries. It can support the Xml data model and XPath queries as
a special case. We present a lean operational semantics of X-Fun based
on a typed lambda calculus that enables its in-memory implementation
on top of any chosen path query evaluator. We also discuss compilers
from Xslt, XQuery and XProc into X-Fun which cover the many de-
tails of these standardized languages. As a result, we obtain in-memory
implementations of all these Xml standards with large coverage and high
efficiency in a uniform manner from Saxon’s XPath implementation.

Keywords: Xml transformations, database queries, functional program-
ming languages, compilers.

1 Introduction

A major drawback of query-based functional languages with data trees so far is
that they either have low coverage in theory and practice or no lean operational
semantics. Theory driven languages are often based on some kind of macro tree
transducers [3,5,11], which have low coverage, in that they are not closed under
function composition [4] and thus not Turing complete (for instance type check-
ing is decidable [12]). The W3C standardised languages XQuery [13] and Xslt

[7], in contrast, have large coverage in practice (string operations, data joins,
arithmetics, aggregation, etc.) and in theory, since they are closed by function
composition and indeed Turing complete [8]. The definitions of these standards,
however, consist of hundreds of pages of informal descriptions. They neither ex-
plain how to a build a compiler in a principled manner nor can they be used as
a basis for formal analysis.

A second drawback is the tower of languages approach, adopted for standard-
ised Xml processing languages. What happened in the case of Xml was the
development of a separate language for each class of use cases, which all host
the XPath language for querying data trees based on node navigation. Xslt

serves for use cases with recursive document transformations such as Html pub-
lishing, while XQuery was developed for use cases in which Xml databases are
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queried. Since the combination of both is needed in most larger applications, the
Xml pipeline language XProc [16,17,18] was developed and standardised again
by the W3C. This resulted in yet another functional programming language for
processing data trees based on XPath.

For resolving the above two drawbacks, the question is whether there exists
a uniform core language for processing data trees that can cover the different
Xml standards in a principled manner. It should have a lean and formal opera-
tional semantics, support node selection queries as with XPath and it should
be sufficiently expressive in order to serve as a core language for implementing
XQuery, Xslt, and XProc in a uniform manner.

Related work. An indicator for the existence of a uniform core language for Xml

processing is that the omnipresent Saxon system [14] implements Xslt and
XQuery on a common platform. However, there is no formal description of this
platform as a programming language, and it does not support the Xml pipeline
language XProc so far. Instead, the existing implementations of XProc, Cal-

abash [16] and QuiXProc [18], are based on Saxon’s XPath engine directly.
The recent work from Castagna et al. [2] gives further hope that our question

will find a positive answer. They present an XPath-based functional program-
ming language with a lean formal model based on the lambda calculus, which
thus satisfies our first two conditions above and can serve as a core language for
implementing a subset of XQuery 3.0. We believe that relevant parts of Xslt

and XProc can also be compiled into this language, even though this is not
shown there. The coverage, however, will remain limited, in particular on the
XPath core (priority is given to strengthening type systems). Therefore, our
last requirement is not satisfied.

Contributions. In this paper, we present the first positive answer to the above
question based on X-Fun. This is a new purely functional programming language.
X-Fun is a higher-order language and it supports the evaluation of path-based
queries that select nodes in data trees. The path queries are mapped to X-Fun
expressions, whose values can be computed dynamically. In contrast to most
previous interfaces between databases and programming languages, we overload
variables of path queries with variables of X-Fun. In this manner, the variables in
path queries are always bound to tree nodes, before the path query is evaluated
itself. We note in particular, that path queries are not simply mapped to X-Fun
expressions of type string.

The formal model of the operational semantics of X-Fun is a lambda calculus
with a parallel call-by-value reduction strategy. Parallel evaluation is possible
due to the absence of imperative data structures. The main novelty in X-Fun
admission of tree nodes as values of type node. Which precise nodes are admitted
depends on a tree store. New nodes can be created dynamically by adding new
trees to the tree store. The same tree can be added twice to the store but with
different nodes. How nodes are represented internally can be freely chosen by
the X-Fun implementation and is hidden from the programmer.
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X-Fun can serve as a uniform core language for implementing XQuery, Xslt

andXProc. In order to do so, we have developed compilers of all three languages
into X-Fun. We also discuss how to implement X-Fun in an in-memory fashion
on top of any in-memory XPath evaluator. Based on our compilers, we thus
obtain new in-memory implementations of XQuery, Xslt and XProc with
large coverage. Our implementation has very good efficiency and outperforms
the most widely used XProc implementation by a wide margin.

Outline. In Section 2 we introduce our general model of data trees, alongside
its application to Xml documents. The syntax and type system of the X-Fun
language is introduced in Section 3. The applications of X-Fun to Xml docu-
ment transformation is studied in Section 4, where we discuss compilers from
other Xml processing languages into X-Fun. Section 5 contains our notes on the
implementation of X-Fun and the results of our experiments.

2 Preliminaries

We introduce a general concept of data trees which will be used in the X-Fun
language. We also show how to instantiate the trees to the Xml data model.

2.1 Data Values and Data Trees

We fix a finite set Char whose elements will be called characters. A data value
”c1 · · · cn” is a word of characters for c1, . . . , cn ∈ Char . We define String =
Char∗ to be the set of all data values, and nil=”” to be the empty data value.

Next, we will fix a natural number k ≥ 1 and introduce data trees in which
each node contains exactly k data values with characters in Char .

A node label is a k-tuple of data values, i.e., an element of (String)k. The set
of data trees T of label size k over Char is the least set that contains all pairs of
node labels and sequences of data trees in T . That is, it contains all unranked
trees t with the abstract syntax t ::= l(t1, . . . , tn),where n ≥ 0 and l ∈ Stringk.
It should be noticed that the set of node labels is infinite, but that each node
label can be represented finitely.

2.2 XML Data Model

For Xml data trees, we can fix k = 4 and Char the set of Unicode characters,
and restrict ourselves to node labels of the following forms, where all vi are data
values:

(”element”, v1, v2, nil) (”attribute”, v1, v2, v3)
(”comment”, nil, nil, v3) (”processing-instruction”, v1, nil, v3)
(”document”, nil, nil, nil) (”text”, v1, nil, nil)

An element (”element”, v1, v2, nil) has three non-nil data values: its type
“element”, a name v1 and a namespace v2. An attribute has four data values: its
type, a name v1, a namespace v2, and the attribute value v3. A text node contains
its type and its text value v3. Besides these, there are comments, processing
instructions and the rooting document node.
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3 Language X-Fun

In this section, we introduce X-Fun, a new functional programming language for
transforming data trees. X-Fun can be applied to all kinds of data trees with
a suitable choice of its parameters. We will instantiate the case of data trees
satisfying the Xml data model concomitant with XPath as a query language.

We start with introducing the types and values of X-Fun (Section 3.1). Then
we explain how to map path queries to X-Fun values, by using particular X-Fun
expressions with variables (Section 3.2). The general syntax of X-Fun expres-
sions is given in Section 3.3. Some syntactic sugar and an example of an X-Fun
program are given in Sections 3.5 and 3.6. Discussion of the typing rules for
X-Fun’s type system and the formal semantics of X-Fun can be found in the
research report [10].

3.1 Types and Values

The X-Fun language supports higher-order values and expressions with the fol-
lowing types:

T ::= none | node | tree | number | bool | char

| T1 × . . .× Tn | [T ] | T1 → T2 | T1 ∪ T2

A value of type char is an element of Char , a value of type tree is an element
of T . A value of type number is a floating point number, while the values of
type bool are the Boolean values true and false . A value of type node will be
a node of the graph of one of the trees stored by the environment of the X-Fun
evaluator. The precise node identifiers chosen by the evaluator are left internal
(to the mapping from trees to graphs).

As usual, we support list types [T ] which denote all lists of values of type T ,
product types T1× . . .×Tn whose values are all tuples of the values of types Ti,
and function types T1 → T2 whose values are all partial functions of values of
type T1 to values of type T2. Besides these, we also support type unions in the
obvious manner.

A data value ”c1 · · · cn” ∈ String is considered as a list of characters of
type string = [char]. A node label is considered a k-tuple of strings, i.e., as
a value of type label = stringk. Hedges are considered as lists of trees of type
hedge = [tree].

Since XPath can return sequences of items of different types, we define the
type pathresult as node ∪ number ∪ string ∪ bool. The result of evaluating
a path expression will then be of type [pathresult]. To be able to specify path
expressions, we define the type path as [char∪pathresult∪ [pathresult]], i.e.,
as list of characters, individual items returned by a path expression, and whole
sequences of those items.

3.2 XPath Queries as X-Fun Expressions

We will consider XPath expressions as values of our programming language.
This is done in such a manner that the variables in XPath expressions can
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be bound to values of the programming language. For instance, if we have an
XPath expression

$x//book[auth=$y]

then one might want to evaluate this expression while variable x is bound to
a node of some tree and variable y to some data value. In X-Fun, the above
query will be represented by the following expression of type path, where x is
a variable of type node and y a variable of type string:

x ::’/’ ::’/’ ::’b’ ::’o’ ::’o’ ::’k’ ::’[’ ::’a’ ::’u’ ::’t’ ::’h’ ::’=’ :: y ::’]’ :: nil

The concrete syntax of X-Fun supports syntactic sugar for values of type path,
so that the above expression can be defined as:

"$x//book[auth=$y]"

In order to enable the evaluation of path expressions, X-Fun supports a builtin
function evalPath of type path → [pathresult]. In an implementation of X-Fun,
this function can be mapped straightforwardly to existing XPath evaluators.

3.3 Syntax of X-Fun Expressions

X-Fun is a purely functional programming languagewhose values subsume higher-
order function, trees, strings, numbers and Boolean values. The evaluation strat-
egy of X-Fun is fully parallel, which is possible since no imperative constructs are
permitted.

The syntax of X-Fun programs E is given in Figure 1. All expressions of X-Fun
are standard in functional programming languages, so we only briefly describe
different kinds of subexpressions of X-Fun programs.

A variable x is evaluated to the value of the corresponding type. The constant
expression c returns the respective constant, which can be a Boolean value,

Expressions

E ::= x

| c

| E1 :: E2

| (E1, . . . , En), n ≥ 2

| match E { P1 → E1, . . . , Pn → En }
| fun x:T1 → T2 { E }
| E1(E2)

| try E1 catch(x) E2

| raise(E)

Patterns
P ::= x : T

| !(E)

| P1 :: P2

| (P1, . . . , Pn), n ≥ 2

Fig. 1. Syntax of X-Fun’s expressions
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a number or a character from Char . The list constructor E1 :: E2 prepends an
element to a list, while the tuple constructor (E1, . . . , En) constructs tuples.

The match expression match E { P1 → E1, . . . , Pn → En } selects one of
the branches Ei based on the patterns Pi, which are matched against the value
of E. The pattern x : T captures a matched value of type T into a variable.
The pattern !(E) matches the value against the value of expression E. Here,
the matching of functional values, or lists/tuples that contain functions is not
permitted. Pattern P1 :: P2 matches a list if P1 and P2 match its head and tail,
while the pattern (P1, . . . , Pn) matches tuples.

A function expression fun x:T1 → T2 { E } returns a new function, with the
argument x : T1 and the return value of type T2 obtained by the evaluation of
the function body E. The expression E1(E2) applies a function to a value. X-Fun
also supports exception handling, where exceptions are values of type string.

3.4 Builtin Operators

At the beginning of the evaluation, the environment contains bindings of the
global variables given in Figure 2.

Parameters Fixed
Global variable Type Global variable Type

makeTree label× [tree] → tree nil [none]
evalPath path → [pathresult] subtree node → tree
less char × char → bool label node → label

addTree tree → node

Fig. 2. Builtin operators of X-Fun

The first block contains three functions, whose semantics are parameters of
the language, and depend on the query language and data model. For a label l
and a sequence of trees h, the function application makeTree(l, h) returns the
data tree l(h), if l(h) is a well-formed data tree (e.g., in the Xml data model
attributes cannot have children) and raises an exception otherwise. The function
evalPath(p) evaluates a path expression p. Whenever p is not well-formed (e.g.,
with respect to the XPath 3.0 specification) an error is raised. Note that path
expressions are X-Fun values, which means they can be computed dynamically
by the X-Fun program using information from the input data tree. We will also
define functions evalPathT , on top of evalPath, for T = [node], [string], etc.
These functions verify (using a match expression with a typecase) that the
result of the path call is of type T and raise an exception otherwise.

The next four operators are generic and do not depend on the specific kind
of data trees. The variable nil refers to the empty list. A function application
subtree(v) returns the subtree rooted at node v, while a function application
label(v) returns the label of the node. The function addTree returns the identifier
of the root node of the tree, and is used for storing the graph of the tree in the
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environment. This function can be used to access nodes of newly generated trees
by starting path navigation from their root.

3.5 Syntactic Sugar

In the X-Fun snippets in the rest of the paper we shall employ some syntactic
shortcuts, which enable us to express more succinctly some X-Fun constructs:

List Concatenation. We shall use the binary operator * to concatenate two
lists.

Simplified Patterns. When the type of a capture variable can be deduced
from the matched expression we shall omit the “: T ” in the capture pat-
tern. This happens when the match expression is used to decompose lists
and tuples instead of doing a typecase. For example, we shall simply write
match E { h :: t → E1, e → E2 } to get the head and tail of a list.

Let-Declarations. We shall use the syntax let x1 = E1, . . . , xn = En in E
instead of match (E1, . . . , En) { (x1, . . . , xn) → E } as a more familiar
way to declare variables.

Tuple Arguments. We shall allow tuple arguments to functions to be written
without an extra pair of parentheses. I.e., f(a, b) instead of f((a, b)). This is
unambiguous since tuples always have at least two members.

3.6 Example

In Figure 3 we illustrate a transformation that converts an address book into
Html. The address fields are assumed to be unordered in the input data tree,
while the fields of the output Html addresses should be published in the order
name, street, city and, phone.

<addre s se s>
<address>
<name>Jemal Antidze</name>
<phone>99532 305972</phone>
<c i t y>Tb l i s s i</ c i t y>
<phone>99532 231231</phone>

</ address>
<address>
<name>Joachim Niehren</name>
<c i t y>L i l l e</ c i t y>
<s t r e e t>Rue Esquermoise</ s t r e e t>

</ address>
</ addre s se s>

⇒

<o l>
< l i>

<p>Jemal Antidze</p>
<p>Tb l i s s i</p>
<p>Phone: 99532 305972</p>
<p>Phone: 99532 231231</p>

</ l i>
< l i>

<p>Joachim Niehren</p>
<p>Rue Esquermoise</p>
<p>L i l l e</p>

</ l i>
</ o l>

Fig. 3. Publication of an address book in Html except for secret entries

An X-Fun program defining this transformation is given in Figure 4. Start-
ing at the root it first locates all address records, and applies the function
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convert address to each of them. For each address record, the program first
extracts the values of the fields name, street, and city located at some children
of x. These values are then bound to variables named alike and later output as
text nodes. The example program uses the standard map function, which can
be defined in X-Fun for every T and T ′ as follows

mapT→T ′ = fun x : (T → T ′)× [T ] → [T ′] { match x {
( f , head : : t a i l ) → f ( head ) : : mapT→T ′ ( f , t a i l )
other → nil

} }

and the functions element and text, which are wrappers around makeTree which
facilitate creation of nodes of the correct kind.

fun book : t r ee→ t r ee {
l e t bookroot = addTree( book ) i n
l e t conver t addre s s = fun x : node→ t r ee {

l e t name = evalPath[node] ( ”$x/ ch i l d : : name/ tex t ( ) ” ) ,
s t r e e t = evalPath[node] ( ”$x/ ch i l d : : s t r e e t / t ex t ( ) ” ) ,
c i t y = evalPath[node] ( ”$x/ ch i l d : : c i t y / t ex t ( ) ” ) i n

element( ” l i ” ,
element( ”p” , mapnode→tree (name , subtree) ) : :
element( ”p” , mapnode→tree ( s t r e e t , subtree) ) : :
element( ”p” , mapnode→tree ( c i ty , subtree) ) : :
mapstring→tree (

fun x : string → tree {
element( ”p” , text( ”Phone : ” ∗ x ) : : n i l )

} , evalPath[string] ( ”data ($x/ ch i l d : : phone ) ” ) )
)

} i n
element( ” o l ” , mapnode→tree ( conver t addre s s ,

evalPath[node] ( ”$bookroot /descendant : : address ” ) ) )
}

Fig. 4. X-Fun program converting address books to Html

4 Translations from Other Xml Languages

In this section, we briefly sketch translations from the standard Xml processing
languages, Xslt XQuery and XProc.

A more thorough treatment of this topic can be found in the full version of
the paper.[10]

By implementing these three compilers, we obtain a uniform implementation
of the whole Xml processing stack based on a single X-Fun evaluator.
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Xslt. Each template in the Xslt stylesheet is translated to a function in
X-Fun. Furthermore, for each mode, we produce an additional function which
implements the selection of the correct template from the set of templates asso-
ciated with that mode according to their match patterns. The call-template

and apply-templates instructions are translated as calls to the template or
mode functions respectively. In the copy-of instruction, the nodes returned by
the XPath expression are copied to the output using the subtree function and
strings and numbers are converted to a new text node with a call to makeTree.
The instructions constructing elements, attributes and other Xml nodes trans-
late to corresponding calls to makeTree. The for-each instruction translates
to a call to map, where the list to map over is produced by a call to evalPath
and the mapping function is the body of the for-each instruction. Other Xslt

instructions like if and choose can be translated similarly.

XQuery. The feature that most distinguishes XQuery is the Sql-like Flwor

expression. It enables the programmer to create a stream of tuples using the
for and let clauses, filter them with a where clause and then reorder them
using the order by clause. There is no single expression in X-Fun which covers
this functionality, but it is easy to build it piecewise. Using several evalPath
calls we can construct the list of tuples which corresponds to the tuple stream
of XQuery. Sorting and filtering of a list are functions easily definable in
a functional language, and the functionality of where and order by is trans-
lated to calls to these functions. The sort and filter conditions are given again by
calls to evalPath with the appropriate XPath expression. Translation of other
XQuery constructs like the if expressions and functions proceeds in a straight
forward manner.

XProc. By encapsulating each processing step in a function, X-Fun can easily
express the multi-stage processing which is inherent in XProc. The pipelines
then become simple function compositions. XProc steps which invoke XQuery

or Xslt processing are handled by defining a function whose body is the trans-
lation of the respective program. Simple XProc steps like split-sequence,
which splits a sequence of documents into two based on an XPath criterion are
defined as normal X-Fun functions and provided as a library. The pipeline them
simply calls these functions to do the required processing. The rest of the con-
structs like choosing among alternative subpipelines (choose) or looping over
documents in a sequence are compiled to match and map expressions in X-Fun.

5 Implementation and Experiments

We have implemented a proof-of-concept X-Fun language evaluator in the Java
programming language. We have instantiated X-Fun with the Xml data model,
using standard Java libraries for manipulating Xml trees. We have used XPath

as the path language, as implemented by Saxon. We have used standard tech-
niques for implementing functional languages, using the heap to store the values
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and the environment of the program and a stack for representing recursive func-
tion calls. We reduce an expression in all possible positions in an arbitrary order.

We have attempted to interface our implementation with Tatoo, a highly
efficient evaluator of anXPath fragment based on [1]. Unfortunately, the penalty
of crossing the language barrier (Tatoo is implemented in OCaml) shadowed
all performance gains from a faster implementation, so we could not perform any
significant experiments. To see the difference in performance in using a faster
XPath implementation, we would need to implement X-Fun in OCaml as well.

We have also implemented the compilers of Xslt and XQuery into X-Fun.
In order to support real-world Xslt and XQuery, they need support for ad-
ditional features, like modules and various optional attributes of expressions in
these languages (e.g., grouping with the group-starting-with attribute, etc.).
However, none of these limitations are fundamental and they are not imple-
mented because of their volume. The supported fragment is wide enough to run
all queries from the XMark [15] benchmark.

We don’t have an XProc compiler implementation, but for the purposes of
testing we have run X-Fun on manually translated programs.

5.1 Experiments

To evaluate the performance of our implementation, we have compared it with
the leading industry tool, the Saxon Xslt and XQuery processor. To compare
our performance on XProc pipelines, we have used Calabash, the most fre-
quently used XProc processor, as baseline. The tests were run on a computer
with an Intel Core i7 processor running at 2.8 GHz, with 4GB of RAM and
a SATA hard drive, running 64-bit Linux operating system.

First, we have compared the running time of our implementation on XQuery

programs. We used the queries from the XMark benchmark, and the results are
in Figure 5. The tests show that the running time of both tools is comparable.
X-Fun is faster in case of simple queries (Q6, Q7, Q15, which contain just a simple
loop), while Saxon is faster on queries involving joins (e.g., Q8, Q9, Q11). On
the rest of queries our implementation of X-Fun is at most 20% slower that the
competition, which we consider a good result as Saxon is a highly optimised
industry tool, while we have not spent much time optimising the performance
of our X-Fun implementation.

For the Xslt test, we used a transformation publishing an address book to
Html. The transformation in question is a more elaborate version of the program
in Figure 4, and it includes about 40 XPath expressions. The tests show that
Saxon is about 4 times faster than our tool (for example, 15.7 vs. 63 seconds
on a 200 MB document) and that the time of both tools scales linearly with the
document size.

In the XProc comparison, we have a simple pipeline consisting of 4 steps.
First, it selects subtrees from the input document, splits the resulting sequence
into two based on the presence of some node. The documents from the two
sequences are then joined into pairs and these pairs are concatenated to form
a single document again. We have compared the performance of Calabash with
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Query X-Fun Saxon

Q1 13.5 10.9
Q2 13.6 12.9
Q3 14.0 12.5
Q4 16.7 12.8
Q5 17.2 13.8
Q6 11.5 13.6
Q7 11.4 12.5

Query X-Fun Saxon

Q8* 962 592
Q9* 1235 705
Q10 314 222
Q11* 650 410
Q12 595 317
Q13 20.5 11.6
Q14 14.5 12.8

Query X-Fun Saxon

Q15 12.0 14.4
Q16 13.6 11.8
Q17 13.9 12.4
Q18 14.4 12.5
Q19 20.8 15.4
Q20 13.8 12.0

Fig. 5. Running time in seconds of X-Fun and Saxon on queries from the XMark

benchmark on a 500 MB document. The three queries marked with ‘*’, due to their
complexity, were run on a 300 MB document.

our implementation of the pipeline in X-Fun. Both implementations show linear
scalability with respect to size of the input and the pipeline, as can be seen in
Figures 6 and 7 (for scaling the pipeline size, we simply composed the described
pipeline with itself). However, our own implementation is consistently at least
two times faster, and for the larger pipelines the difference is even more apparent.
While the relatively low processing speed per megabyte can be explained by the
need to create many small documents (the element per megabyte density is much
higher compared to the previous tests), it is surprising to see an implementation
specifically designed for processing XProc be outperformed by our unoptimised
implementation of the pipeline steps.

Document size X-Fun Calabash

2 MB 8.7 s 16.6 s
4 MB 15.3 s 32.6 s
6 MB 23.1 s 51.8 s
8 MB 39.5 s 78.7 s

Fig. 6. Performance of X-Fun and
Calabash on a fixed pipeline with vary-
ing input tree size

Pipeline size X-Fun Calabash

1 8.7 s 16.6 s
2 12 s 75.8 s
3 16 s 136.6 s
4 22 s 198.6 s

Fig. 7. Performance of X-Fun and
Calabash on a 2 MB document with
varying pipeline size

6 Conclusion and Future Work

We have presented X-Fun, a language for processing data trees and shown
that can serve as a uniform programming language for Xml processing and as
a uniform core language for implementing XQuery, Xslt, and XProc on top
of any existing XPath evaluator. Our implementation based on Saxon’s in-
memory XPath evaluator yields surprisingly efficient implementations of the
three W3C standards, even there is a lot of space left for optimisation. We have
obtained results which are a match for the Saxon’s XQuery and Xslt eva-
luators and in the case of XProc, first results show that we are already faster
than Calabash.
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Our prime objective in future is to build streaming implementations of X-
Fun, and thus of XQuery, Xslt, and XProc. The main ideas behind it are
described in a technical report [9]. These streaming implementation will serve
in the tools called QuiXQuery, QuiXslt, and QuiXProc. A first version of
QuiXslt is freely available for testing on our online demo machine [6] while
streaming is not yet available for our current QuiXProc implementation.

Acknowledgement. We would like to thank Guiseppe Castagna and Kim
Nguyen for their helpful discussions about the type system of X-Fun.
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2 Universidade Federal de São Carlos, São Carlos, Brazil

{valencio,leandro}@ibilce.unesp.br, {diogolg06,zafalon}@gmail.com,
accolombini@dc.ufscar.br

Abstract. The increase in new electronic devices had generated a considerable
increase in obtaining spatial data information; hence these data are becoming
more and more widely used. As well as for conventional data, spatial data need
to be analyzed so interesting information can be retrieved from them. Therefore,
data clustering techniques can be used to extract clusters of a set of spatial data.
However, current approaches do not consider the implicit semantics that exist
between a region and an object’s attributes. This paper presents an approach that
enhances spatial data mining process, so they can use the semantic that exists
within a region. A framework was developed, OntoSDM, which enables spatial
data mining algorithms to communicate with ontologies in order to enhance the
algorithm’s result. The experiments demonstrated a semantically improved result,
generating more interesting clusters, therefore reducing manual analysis work of
an expert.

Keywords: data mining, ontology, context-aware.

1 Introduction

Nowadays, companies are obtaining and using more and more data and that brings
different challenges related to efficiency [1]. Besides that, it’s important to be able to
extract and understand information from databases. Furthermore, data that are being
stored had changed and not always are traditional data, such as strings and integers, but
are also spatial data. Those data are becoming more popular due to the use of electronic
devices, like smartphones and GPS [2].

The advancement of these new technologies provided a shift in the context of in-
formation extraction in databases [3]. New techniques needed to be considered, since
spatial data has unique characteristics that distinguish them from traditional data and are
also considered more complex [4]. Therefore, spatial data mining can be defined as the
extensive use of statistical methods of pattern recognition technology, artificial intelli-
gence, machine knowledge, etc. The main goal is to extract understandable, interesting
and initially unknown information from spatial databases, such as data management
bases, business database, or remote sensors [5].

G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939, pp. 555–565, 2015.
c© Springer-Verlag Berlin Heidelberg 2015
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There are many different techniques that allow extracting spatial information where
each one have a different approach, for instance, there are spatial association rules tech-
niques, classification and clustering methods. Regarding clustering algorithm, the goal
is to partition the spatial objects in groups, called clusters, allowing finding pattern dis-
tributions in the data [6]. This technique can be applied to perform analysis of satellite
images, on geographic information system, marketing strategies and so on [7]. Nor-
mally, the clusters are calculated considering a minimum distance from a point to other
neighbors or can also consider an object’s neighborhood [8]. Newer algorithms adds
to the clustering formation the use of similarity measures, where besides density shall
also be considered the non-spatial attributes, thus cluster in which points have a greater
degree of similarity between them are created [9].

However, existing techniques do not consider that the points are in a geographical
region and that region holds an implicit semantic knowledge. Normally, those knowl-
edge are only considered when an expert analyses the results manually, and using the
context provided by regions it can assert which clusters are relevant.

When analyzing Figure 1 it is possible to realize the importance of considering the
region during clustering generation. Considering that, it’s possible to create new al-
gorithms that will address different approaches that were not considered before, for
instance, one can consider a new cluster by having points that have some attributes that
are more relevant for a specific region, or even disregard points for being in a region
less interesting.

Fig. 1. Comparison between clusters without and with regions

Therefore, the developed work, OntoSDM, allows spatial data mining (SDM) algo-
rithms to use the semantic relevance of a point in relation to their region. The semantic
information is provided by a domain ontology created by the user, allowing enhancing
the cluster generation process.

This paper is organized as follows: Section 2 presents the theoretical concepts needed
to developed the work; in Section 3 the development stages of the approach are discussed;



OntoSDM: An Approach to Improve Quality on SDM Algorithms 557

in Section 4 the experiments and results are presented; and finally, in Section 5 the con-
clusion and future work are presented.

2 Concepts and Techniques

2.1 Spatial Clustering Methods

Spatial clustering techniques aim to group objects corresponding to the density and
similarity between them. Accordingly, data in each cluster created have similar at-
tributes among objects in the same cluster and as different as possible of others [6].
Researchers have developed several algorithms in this category where each one has a
specific approach, and they can be organized in four methods: partitioning, hierarchical,
density-based and grid-based methods [9].

The first, partitioning method, were used even before the term data mining became
popular [8]. These algorithms [10, 11], normally need a parameter k as input so they can
analyze the set of objects in a way to arrange them in k clusters. Algorithms belonging
to the hierarchical method [11, 12] uses a tree structure called dendrogram, where the
data from the database is recursively divide into subsets, which can be done using two
approaches, “top-down” or “bottom-up”.

Most partitioning algorithms can only find clusters in a spherical shape. On the other
hand, density-based algorithm [13, 14] can generate clusters that have arbitrary shapes,
and do so considering how dense is a point’s surrounding prior to adding it to a cluster.
Another advantages is that it is possible to eliminate isolated points, known as noises.
One drawback to this method is the need of choosing good parameters to achieve a good
result.

Finally, algorithms based on grid have better performance, reducing the processing
time, moreover the number of objects do not directly impact the processing time. This
is because, instead of considering each point individually, the whole area is divided into
cells and if a particular cell contains a minimum number of points it is considered to be
dense. The clusters are then formed by connecting the cells that were marked as dense.

2.2 Ontology

SDM algorithms usually have a manual analysis step, where an expert in the domain
that is being analyzed will infer his knowledge in the algorithm’s result. That allows to
obtain a more interesting result, besides that it’s possible to apply techniques that will
improve future results.

Nowadays there is a trend in using ontologies techniques to express the context and
infer knowledge about a specific domain [15]. Ontologies are normally chosen since
they provide an efficient way to express a greater semantic representation due to its
structure and inference capability [16]. There are many definitions for ontology applied
to the computer field, one widely know defines it as a theoretical representation of a set
of objects, properties of objects and the relationships between objects that are possible
in a specific field of knowledge [17].

The use of ontologies has become quite popular for providing a common under-
standing, a shared knowledge and the ability to be able to share it with people and other
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applications for a variety of uses [18]. To ensure these efficient sharing and formalism,
ontologies are usually based on the specifications of the semantic web [1].

Regarding this topic, it is important to understand the concepts of URI, universal
resource identifier, which are a universal unique identifier for each resource in ontology.
Furthermore, RDF, resource description framework, which is a data model that allows
to describe resources using RDF triples that consists of a subject, a predicate and an
object, as seen in Figure 2. New information is always added as a new RDF triple, by
connecting them forming a graph structure.

Fig. 2. A RDF triple example

As the first layer, RDF is limited in terms of semantic capability, since the main
purpose of the layer is to ensure the basic framework structure for sharing information.
The semantic concepts are added in the next layers as RDFS and OWL [19]. RDFS adds
concepts related to classes and properties hierarchy, finally, OWL enhance the concepts
introduced in RDFS adding complex structures based on description logic [18].

3 The OntoSDM Approach

This work aimed to develop a framework, able to extend SDM algorithms so they are
able to use ontologies that represent the areas or regions of a domain that it is being
analyzed. Thus it is considered a new attribute to a point, it’s semantic weight.

The framework works as a middle tier between the triplestore repository and the
SDM algorithm, Figure 3, display the representation of the architecture created. Fur-
thermore, the developed approach is divided in two steps, preparation and execution.

The first stage is responsible to initialize and prepare the ontology. In this stage, the
framework establishes a connection with the triplestore and obtain all defined classes in
it. The user must then identify the ontology class that holds the region information. After
defining the class, the user must specify weights for each predicate that are relating an
ontology instance with other classes’ instances described in the ontology. The weight
range from -1 to 1, where -1 represents a lower relevance and 1 represents greater
semantic relevance.

All the steps described earlier are executed during the preparation stage and the algo-
rithm base has not being executed yet. The next stage concerns the logic and execution



OntoSDM: An Approach to Improve Quality on SDM Algorithms 559

Fig. 3. OntoSDM framework architecture

stage, and it’s executed during the execution of the SDM algorithm. Instead of the tradi-
tional point, that has only the coordinates information, the semantic point is initialized
and a new attribute is considered, it’s semantic weight. Figure 4 displays the simplified
framework’s model.

The two main classes are highlighted. The first, ONConection, is responsible for
making the connection to the repository and perform all queries needed during the al-
gorithm execution. The other class is the ONSemanticPoint, and it’s responsible to hold
the semantic point information and perform the semantic value calculation. To use the
OntoSDM framework the SDM algorithm needs only to use the ONSemanticPoint class
provided by the framework.

Firstly, the algorithm will obtain the spatial object, a point, from the database and
will initialize it with the x and y coordinates. Since all ontology regions are known at
the preparation stage, all information is transferred to classes, thus preventing to query
the ontology unnecessarily. Therefore, it’s possible to go through all regions and check
if the point is within any known region.

If the point is within any known region each non-spatial attribute of the point it is then
analyzed. First, the ontology is queried to verify if it has any information on the point’s
attributes regarding the region that the point is located. In case the ontology had any in-
formation, a list with all the object properties is returned and then it is checked whether
the weights for the respective properties have been set by the user during the preparation
stage. As stated above, the semantic weight ranges from -1 to 1, where
a value of -1 is considered a low semantic relevance and 1 is a higher semantic relevance.

The formulas for calculating the semantic value are shown in (1), (2) and (3). The
formula (1) indicates the value of A(p), where for a given point p which has, non-spatial
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Fig. 4. OntoSDM class model illustration

attributes, oi, such that, i = 0. . . n, the sum of non-spatial attributes that have a negative
relevance value, o−, is performed.

A(p) =∑n
i=i o−i (1)

The value of B(p) shown in formula (2) is obtained by summing the non-spatial at-
tributes that have positive relevance, o+, for a particular point p. Finally, the semantic
value, S(p) is calculated for the point p as shown in formula (3).

B(p) =∑n
i=i o+i (2)

S(p) =
(A(p)+B(p))

max{|A(p)|,B(p), 1} (3)

This value is calculated to all points by checking in which region each one is and then
getting all existing predicates and their respective weights.

With this approach, we introduce a new concept for geographical points that can be
used in spatial data mining algorithms, it’s semantic value that it’s relative to the region
that the point is located and it’s non-spatial attributes. Lastly, the semantic point has all
the necessary information, such as the point’s region, list of non-spatial attributes, and
especially the semantic value.

Therefore, it is needed now to consider what will be the approach and how the SDM
algorithm will use the semantic information during its execution. They can use different
strategies, such as disregarding the point immediately if it is a point that it’s not con-
sider to be semantic relevant in that region, or even, use the semantic value with other
attributes to add a point to a new cluster that wouldn’t be considered before and so on.
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4 Experiments

For the experiments execution, the framework OntoSDM was applied in two SDM algo-
rithms that have different approaches. The first, MRClustering, is a density-base algo-
rithm based on VDBSCAN algorithm. The algorithm CHSMST+ is an extension from
the graph-based algorithm CHSMST. The experiments were performed with the inten-
tion of proving that the approach can be used in different SDM clustering algorithms.

The experiments were then performed on a real database, which holds information
on work accidents in the city of São José do Rio Preto, Brazil. The database has over
100 000 registered accidents where 30 000 are geo-referenced. The tests were applied
using data sets ranging from 3 000 to 25 000 points, it was measured the execution time
for each approach and the clusters formed were analyzed by a specialist.

Besides preparing the database, it was necessary to develop a domain ontology that
represents the universe of work accidents in the city. Therefore, the ontology created
for the experiments had the following structure:

• 4 regions (Commercial, Industrial, Residential and Hospitals);
• 50 objects involved, those represent objects that were related or cause the accident.
• 50 job occupation;
• 3 predicates that represent if the accident is considered to be frequent, common or

rare.

4.1 Cluster Quality

The developed approach allows algorithms to choose how they want to use the semantic
information provided by the OntoSDM. It is possible to disregard a point if it is not
interesting or even include a new one if it’s inside a region that makes it more relevant.
The strategy used during the execution of the algorithm was to disregard a point if it is
not considered semantically relevant to the region. The first experiments were aimed at
validating the increase in quality of the results when compared with the algorithm with
and without the developed approach for a given set of data.

Due to the strategy that it was used, disregarding non-relevant points, it was expected
a reduction in the amount of generated clusters. This reduction provides better final
results that facilitate further analysis that are made by an expert analyst. Table 1 shows
the number of clusters obtained for the MRClustering algorithm. The reduction rates of
clusters reached almost 25% with an average of 19% for all data sets.

Analyzing visually the result, it is possible to notice a general improvement. For
instance, the industrial area of the city had 151 clusters and after applying the OntoSDM
approach a total of 84 clusters was generated. In order to validate that only non-relevant
points were disregarded, all cluster were analyzed. Following are shown some clusters
that were not generated, in an industrial region, when using the OntoSDM approach.

– 9 clusters were removed since the points had “Industrial Machine” as object in-
volved;

– 3 clusters had accidents that happened with “Saw” as object involved;
– 5 clusters where the job occupation was “Heavy machine operator”;
– 12 cluster where the job occupation was “Welder”.



562 C.R. Valêncio et al.

Table 1. Quantity of cluster generated using the MRClustering algorithm

Points Without OntoSDM With OntoSDM

3.000 142 clusters 107 clusters

5.000 198 clusters 150 clusters

10.000 492 clusters 409 clusters

25.000 1 247 clusters 1 075 clusters

It is important to notice that the point is not disregarded if only one attribute is not
relevant, but all attributes chosen by the users are taken into consideration to generate
the semantic value, and only if this value is bellow the threshold is that the point is not
considered relevant hence disregarded. This can be seen when analyzing the hospital
regions, where even being described, in the ontology, that accidents inside this region
that had the job occupation “Nursing Assistant” are considered frequent, 3 clusters were
kept due to the other attributes.

Finally, how individual points are disregarded and not the cluster as a whole, it’s
possible to form more relevant and consistent clusters. Figure 5 shows the result by
applying the algorithm CHSMST+. Each red point it’s a work accident report, the blue
regions represent the industrial areas of the city and the clusters are represented by the
grey lines.

Fig. 5. Cluster Generated using the CHSMST+ Algorithm

As is possible to see, several clusters take a great area, almost crossing the entire city,
although, when the OntoSDM approach is added the points that were in the industrial
region are disregarded and that provides a more consistent and interested result, as can
be seen in Figure 6.
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Fig. 6. Cluster Generated using The OntoSDM approach with the CHSMST+ Algorithm

5 Execution Time

The following experiments aimed to measure the impact caused by the OntoSDM ap-
proach when applied to a SDM algorithm. Therefore, the total running time of the algo-
rithm was measured for each data set and it was then compared using both approaches,
with and without using the OntoSDM. The execution times can be seen in Figure 7.

Fig. 7. Execution time

As expected, by using the OntoSDM, it caused an impact on the total execution time.
To better analyze how the execution times are distributed, the 25 000 point data set were
analyzed in more detail.

For this, the algorithm execution was divided into 4 stages: “Point instantiation”,
“Computing KdistSet and Eps”, “Algorithm execution” and “Consolidation” as it’s
shown in Figure 8.
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Fig. 8. Execution time detailed

As can be seen in the graph, the impact of the OntoSDM approach focuses on the
instantiation stage. This is due to the fact that it needs to analyze each point that it’s
instantiate and calculate it’s semantic value contained in the data set.

In the other hand, how the approach implemented disregard non-relevant points,
those points do not need to be analyzed by following steps during the algorithm ex-
ecution, such as the density and similarity calculation. Furthermore, another advantage
is that the approach provided a reduction during the consolidation stage. That occurred
since fewer clusters were generated preventing the algorithm to expend time processing
and recording unnecessary clusters that will be discarded by an analyst in a future stage.

6 Conclusion

The developed approach achieved its objective by providing a novel approach that con-
siders the relevance of a point’s attributes in relation to the region that the point is
located. With this data, algorithms can be adapted to use this information, allowing ap-
plying different strategies to get different results. The experiments showed a increase
in the total time execution when compared with the same algorithm without using the
OntoSDM approach, but the increase in time can be justified since the result presented
a better quality in semantic.

In the future, it is intended to optimize the point instantiation stage and add other
techniques to improve the results. For instance, manage situations when may have
a region overlapping and enable the use of objects properties between different classes
of the ontology.
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Abstract. In this work, we aim to make attribute-based encryption
(ABE) more suitable for access control to data stored in the cloud. For
this purpose, we concentrate on giving to the encryptor full control over
the access rights, providing feasible key management even in case of mul-
tiple independent authorities, and enabling viable user revocation, which
is essential in practice. Our main result is an extension of the decentral-
ized CP-ABE scheme of Lewko and Waters [6] with identity-based user
revocation. Our revocation system is made feasible by removing the com-
putational burden of a revocation event from the cloud service provider,
at the expense of some permanent, yet acceptable overhead of the encryp-
tion and decryption algorithms run by the users. Thus, the computation
overhead is distributed over a potentially large number of users, instead
of putting it on a single party (e.g., a proxy server), which would eas-
ily lead to a performance bottleneck. The formal security proof of our
scheme is given in the generic bilinear group and random oracle models.

Keywords: storage in clouds, access control, attribute-based encryp-
tion, multi-authority, user revocation.

1 Introduction

Recent trends show a shift from using companies’ own data centres to out-
sourcing data storage to cloud service providers. Besides cost savings, flexibility
is the main driving force for outsourcing data storage, although in the other
hand it raises the issue of security, which leads us to the necessity of encryp-
tion. Traditional cryptosystems were designed to confidentially encode data to
a target recipient (e.g. from Alice to Bob) and this seems to restrict the range
of opportunities and flexibility offered by the cloud environment. Imagine the
following scenario: some companies are cooperating on a cryptography project
and from each, employees are working together on some tasks. Suppose that
Alice wants to share some data of a subtask with those who are working on it,
and with the managers of the project from the different companies. We see that
encrypting this data with traditional techniques, causes that recipients must be
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determined formerly, moreover either they has to share the same private key or
several encrypted versions (with different keys) must be stored. These under-
mine the possible security, efficiency and the flexibility which the cloud should
provide.

Attribute-based encryption (ABE) proposed by Sahai and Waters [12] is in-
tended for one-to-many encryption in which ciphertexts are encrypted for those
who are able to fulfil certain requirements. The most suitable variant for fine-
grained access control in the cloud is called ciphertext-policy (CP-)ABE, in
which ciphertexts are associated with access policies, determined by the encryp-
tor and attributes describe the user, accordingly attributes are embedded in the
users’ secret keys. A ciphertext can be decrypted by someone if and only if, his
attributes satisfy the access structure given in the ciphertext, thus data sharing
is possible without prior knowledge of who will be the receiver preserving the
flexibility of the cloud even after encryption.

Returning to the previous example, using CP-ABE Alice can encrypt with an
access policy expressed by the following Boolean formula: “CryptoProject”

AND (“Subtask Y” OR “Manager”). Uploading the ciphertext to the cloud,
it can be easily accessed by the employees of each company, but the data can be
recovered only by those who own a set of attributes in their secret keys which
satisfies the access policy (e.g. “CryptoProject”, “Subtask Y” ).

In spite of the promising properties, the adoption of CP-ABE requires further
refinement. A crucial property of ABE systems is that they resist collusion at-
tacks. In most cases (e.g. [2,14]) it is achieved by binding together the attribute
secret keys of a specific user with a random number so that only those attributes
can be used for decryption which contains the same random value as the others.
As a result private keys must be issued by one central authority that would need
to be in a position to verify all the attributes or credentials it issued for each user
in the system. However even our example shows that attributes or credentials
issued across different trust domains are essential and these have to be verified
inside the different organisations (e.g. “Manager” attribute ). To overcome this
problem, we are going to make use of the results of Lewko and Waters [6] about
decentralising CP-ABE.

The other relevant issue is user revocation. In everyday use, a tool for chang-
ing a user’s rights is essential as unexpected events may occur and affect these.
An occasion when someone has to be revoked can be dismissal or the reveal-
ing of malicious activity. Revocation is especially hard problem in ABE, since
different users may hold the same functional secret keys related with the same
attribute set (aside from randomization). We emphasise that user revocation is
applied in exceptional cases like the above-mentioned, as all other cases can be
handled simpler, with the proper use of attributes (e.g. an attribute can include
its planned validity like “CryptoProject2015”).

Related Work. The concept of ABE was first proposed by Sahai and Waters [12]
as a generalization of identity-based encryption. Bethencourt et al. [2] worked
out the first ciphertext-policy ABE scheme in which the encryptor must decide
who should or should not have access to the data that she encrypts (ciphertexts
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are associated with policies, and users’ keys are associated with sets of descriptive
attributes). This concept was further improved by Waters in [14].

The problem of building ABE systems with multiple authorities was first
considered by Chase [3] with a solution that introduced the concept of using
a global identifier (GID) for tying users’ keys together. Her system relied on
a central authority and was limited to expressing a strict AND policy over
a pre-determined set of authorities. Decentralized ABE of Lewko and Waters
[6] does not require any central authority and any party can become an autho-
rity while there is no requirement for any global coordination (different author-
ities need not even be aware of each other) other than the creation of an initial
set of common reference parameters. With this it avoids placing absolute trust in
a single designated entity, which must remain active and uncorrupted throughout
the lifetime of the system. Several other multi-authority schemes (e.g. [10,13])
were shaped to the needs of cloud computing, although these lack for efficient
user revocation.

Attribute revocation with the help of expiring attributes was proposed by
Bethencourt et al. [2]. For single authority schemes Sahai et al. [11] introduced
methods for secure delegation of tasks to third parties and user revocation
through piecewise key generation. Ruj et al. [10], Wang et al. [13] and Yang et
al. [15] show traditional attribute revocation (in multi-authority setting) causing
serious computational overhead, because of the need for key re-generation and
ciphertext re-encryption. A different approach is identity-based revocation, two
types of which were applied to the scheme of Waters [14]. Liang et al. [9] gives
the right of controlling the revoked set to a “system manager” while Li et al. [8],
follow [5], from the field of broadcast encryption systems and give the revocation
right directly to the encryptor. This later was further developed by Li et al. [7]
achieving full security with the help of dual system encryption.

To the best of our knowledge no multi-authority system is integrated with
identity-based user revocation and our work is the first in this direction.

Contribution. Based on [6] and [5] we propose a scheme that adds identity-based
user revocation feature to distributed CP-ABE. With this extension, we achieve
a scheme with multiple, independent attribute authorities, in which revocation
of specific users (e.g. with IDi) from the system with all of their attributes is
possible without updates of attribute public and secret keys (neither periodi-
cally, nor after revocation event). We avoid re-encryption of all ciphertexts the
access structures of which contain a subset of attributes of the revoked user.
The revocation right can be given directly to the encryptor, just like the right
to define the access structure which fits to the cloud computing scenario.

Organization. In section 2 we introduce the theoretical background that we use
later and define the security of multi-authority CP-ABE schemes with ID-based
revocation. In section 3 the details of our scheme can be found together with
efficiency and security analysis. Directions for further research are proposed in
the last section.
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2 Background

We first briefly introduce bilinear maps, give formal definitions for access struc-
tures and relevant background on Linear Secret Sharing Schemes (LSSS). Then
we give the algorithms and security definitions of Ciphertext Policy Attribute-
Based Encryption with identity-based user revocation.

2.1 Bilinear Maps

We present the most important facts related to groups with efficiently com-
putable bilinear maps.

Let G0 and G1 be two multiplicative cyclic groups of prime order p. Let g be
a generator of G0 and e be a bilinear map (pairing), e : G0×G0 → G1, with the
following properties:

1. Bilinearity: ∀u, v ∈ G1 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab

2. Non-degeneracy: e(g, g) �= 1.

We say that G0 is a bilinear group if the group operation in G0 and the bilinear
map e : G0 × G0 → G1 are both efficiently computable. Notice that the map e
is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.2 Access Structures

Definition 1 (Access Structure [1]). Let {P1, . . . , Pn} be a set of parties. A
collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, . . . , Pn}, i.e.,
A ⊆ 2{P1,...,Pn} \ {∅}. The sets in A are called the authorized sets, and the sets
not in A are called the unauthorized sets.

In our case the access structure A will contain the authorized sets of attributes,
furthermore we restrict our attention to monotone access structures. However, it
is possible to (inefficiently) realize general access structures using our techniques
by having the not of attributes as separate attributes as well.

2.3 Linear Secret Sharing Schemes (LSSS)

To express the access control policy we will make use of LSSS. Here we adopt
the definitions from those given in [1].

Definition 2 (Linear Secret Sharing Scheme). A secret-sharing scheme Π
over a set of parties P is called linear (over Zp) if
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1. the shares for each party form a vector over Zp,
2. there exists a matrix A with � rows and n columns called the share-generating

matrix for Π. For all i = 1, . . . , �, the ith row of A let the function ρ defined
the party, labelling row i as ρ(i). When we consider the column vector v =
(s; r2, . . . , rn), where s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp

are randomly chosen, then Av = λ is the vector of � shares of the secret s
according to Π. The share (Av)i = λi belongs to party ρ(i).

In [1] it is shown that every linear secret sharing-scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows. Sup-
pose that Π is an LSSS for the access structure A. Let S ∈ A be any authorized
set, and let I ⊂ {1, 2, . . . , �} be defined as I = {i|ρ(i) ∈ S}. Then, there exist con-
stants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s according to
Π , then

∑
i∈I ωiλi = s. Furthermore, it is also shown in [1] that these constants

{ωi} can be found in time polynomial in the size of the share-generating matrix
A and for unauthorized sets, no such {ωi} constants exist.

We use the convention that (1, 0, 0, . . . , 0) is the “target” vector for any linear
secret sharing scheme. For any satisfying set of rows I in A, we will have that
the target vector is in the span of I, but for any unauthorized set, it is not.

Using standard techniques (see [6] - Appendix G) one can convert any mono-
tonic boolean formula into an LSSS representation. An access tree of � nodes
will result in an LSSS matrix of � rows.

2.4 Revocation Scheme for Multi-authority CP-ABE

A multi-authority Ciphertext-Policy Attribute-Based Encryption system with
identity-based user revocation is comprised of the following algorithms:

Global Setup(λ) → GP . The global setup algorithm takes in the security
parameter λ and outputs global parameters GP for the system.

Central Authority Setup(GP ) → (SK∗, PK∗). The central authority runs
this algorithm with GP as input to produce its own secret key and public
key pair, SK∗, PK∗.

Identity KeyGen(GP,RL,GID) → K∗
GID. The central authority runs this

algorithm upon a user request for identity secret key. It checks whether the
request is valid and if yes, generates K∗

GID.
Authority Setup(GP ) → (PK, SK). Each attribute authority runs the au-
thority setup algorithm with GP as input to produce its own secret key and
public key pair, SK,PK.

KeyGen(GP, SK,GID, i) → Ki,GID. The attribute key generation algorithm
takes in an identity GID, the global parameters, an attribute i belonging to
some authority, and the secret key SK for this authority. It produces a key
Ki,GID for this attribute, identity pair.

Encrypt(GP,M, (A, ρ), {PK}, PK∗, RL) → CT . The encryption algorithm
takes in a message M, an access matrix (A, ρ), the set of public keys for
relevant authorities, the public key of the central authority, the revoked user
list and the global parameters. It outputs a ciphertext CT .
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Decrypt(GP,CT, (A, ρ), {Ki,GID},K∗
GID, RL) → M. The decryption algo-

rithm takes in the global parameters, the revoked user list, the ciphertext,
identity key and a collection of keys corresponding to attribute, identity pairs
all with the same fixed identity GID. It outputs either the message M when
the collection of attributes i satisfies the access matrix corresponding to the
ciphertext. Otherwise, decryption fails.

2.5 Security Model

We now define (chosen plaintext) security of multi-authority CP-ABE system
with identity-based revocation. Security is defined using the following Security
Game between an attacker algorithm A and a challenger. We assume that ad-
versaries can corrupt authorities only statically, but key queries are made adap-
tively. The definition reflects the scenario where all users in the revoked set RL
get together and collude (this is because the adversary can get all of the private
keys for the revoked set). The game is the following:

Setup. The challenger runs the Global Setup algorithm to obtain the global
public parameters GP . A specifies a set AA′ ⊆ AA of corrupt attribute au-
thorities and uses the Authority Setup to obtain public and private keys. For
honest authorities in AA\AA′ and for the Central Authority, the challenger
obtains the corresponding keys by running the Authority Setup and Central
Authority Setup algorithms, and gives the public keys to the attacker.

Key Query Phase. A adaptively issues private key queries for identities GIDk

(which denotes the kth GID query). The challenger gives A the correspond-
ing identity keys K∗

GIDk
by running the Identity KeyGen algorithm. Let UL

denote the set of all queried GIDk. A also makes attribute key queries by
submitting pairs of (i, GIDk) to the challenger, where i is an attribute be-
longing to a good authority. The challenger responds by giving the attacker
the corresponding key, Ki,GIDk

.
Challenge. The attacker gives the challenger two messagesM0,M1, a setRL ⊆

UL of revoked identities and an access matrix (A, ρ).
RL and A must satisfy the following constraints. Let V denote the subset of
rows of A labelled by attributes controlled by corrupt authorities. For each
identity GIDk ∈ UL, let VGIDk

denote the subset of rows of A labelled by
attributes i for which the attacker has queried (i, GIDk). For each GIDk ∈
UL \ RL, we require that the subspace spanned by V ∪ VGIDk

must not
include (1, 0, . . . , 0) while for GIDk ∈ RL, it is allowed and we only require
that the subspace spanned by V must not include (1, 0, . . . , 0). (In other
words, the attacker cannot ask for a set of keys that allow decryption, in
combination with any keys that can be obtained from corrupt authorities
in case of a non revoked GIDk. For revoked identities we only do not allow
corrupted attributes to satisfy the access structure alone.)
The attacker must also give the challenger the public keys for any corrupt
authorities whose attributes appear in the labelling ρ.
The challenger flips a random coin β ∈ (0, 1) and sends the attacker an
encryption of Mβ under access matrix (A, ρ) with the revoked set RL.
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Key Query Phase 2. The attacker may submit additional attribute key
queries (i, GIDk), as long as they do not violate the constraint on the chal-
lenge revocation list RL and matrix (A, ρ).

Guess. A must submit a guess β′ for β. The attacker wins if β′ = β. The
attacker’s advantage in this game is defined to be P(β′ = β) − 1

2 .

Definition 3. We say that a multi-authority CP-ABE system with identity-based
revocation is (chosen-plaintext) secure (against static corruption of attribute au-
thorities) if, for all revocations sets RL of size polynomial in the security parame-
ter, all polynomial time adversary have at most a negligible advantage in the above
defined security game.

3 Our Results

To build our model we will use the prime order group construction of Lewko and
Waters [6], because of its favourable property of having independent attribute
authorities. In order to achieve identity-based revocation we supplement the
distributed system with a Central Authority. However it seems to contradict with
the original aim of distributing the key generation right, this additional authority
would generate only secret keys for global identifiers (GID ∈ Zp) of users and
the attribute key generation remains distributed. Our Central Authority does
not possess any information that alone would give advantage during decryption,
in contrast to single authority schemes, where the authority is able to decrypt
all ciphertexts. Regarding this, we can say that our system remains distributed,
in spite of launching a Central Authority.

Our Approach to the Cloud Storage Scenario. We give a high-level description
about a possible application of the algorithms that we proposed in subsection 2.4.
Because of efficiency reasons data should be encrypted by a symmetric cipher,
always using fresh random number as key, which is also encrypted, but with our
scheme and in this form attached to the ciphertext that is stored by the cloud
service provider (CSP). Decryption is possible for users, who can obtain the
symmetric key, or with other words those, who possess the necessary attributes
and were not revoked. Attribute Authorities are run locally on trusted servers
of organisations, that are using the system, while the Central Authority is run
by the CSP, which also maintains (archives, publishes) the RL revocation list,
based on the revocation requests from authorised parties from the organisations.
The ABE encryption always uses the fresh RL and ABE decryption is run with
the RL at the encryption time of the ciphertext, which are obtained from the
CSP. This approach automatically leads to lazy re-encryption of ciphertext, as
fresh symmetric key and RL are used whenever data is edited.

Our Technique. We face with the challenges of identity-based revocation. To real-
ize the targeted features, we use some ideas from public key broadcast encryption
systems [5]. We use secret sharing in the exponent. Suppose an encryption algo-
rithm needs to create an encryption with a revocation setRL = GID∗

1 , . . . , GID∗
r
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of r identities. The algorithm will create an exponent s∗ ∈ Zp and split it into r
random shares s1, . . . , sr such that

∑r
k=1 sk = s∗. It will then create a ciphertext

such that any revoked user with GID∗
k will not be able to incorporate the kth

share and thus not decrypt the message.
This approach presents the following challenges. First, we need to make cru-

cial that the decryptor need to do the GID comparisons even if his attributes
satisfy the access structure of the ciphertext. Second we need to make sure that
a user with revoked identity GID∗

k cannot do anything useful with share k.
Third, we need to worry about collusion attacks between multiple revoked users.

To address the first one we are going to take advantage of the technique of
[6] that is used to prevent collusion attacks. Here the secret s, used for the en-
cryption, is divided into shares, which are further blinded with shares of zero.
This structure allows for the decryption algorithm to both reconstruct the main
secret and to “unblind” it in parallel. When we would like to make this algorithm
necessary, but not enough for decryption it is straightforward to spoil the “un-
blinding” of the secret by changing the shares of zero in the exponent to shares
of an other random number, s∗ ∈ Zp. Thus we can require an other computa-
tion, namely the comparison of the decryptor’s and the revoked users’ GIDs.
If correspondence is found, the algorithm stops, otherwise reveals the blinding,
enabling decryption.

The second challenge is addressed by the following method. A user with
GID �= GID∗

k can obtain two linearly independent equations (in the exponent)
involving the share sk, which he will use to solve for the share sk. However, if
GID = GID∗

k, the obtained equations are going to be linearly dependent and
the user will not be able to solve the system.

In the third case, the attack we need to worry about is where a user with GID∗
k

processes ciphertext share l, while another user with GID∗
l processes share k,

and then they combine their results. To prevent collusion, we use H(GID) as
the base of the identity secret key, such that in decryption each user recovers
shares sk · logg H(GID) in the exponent, disallowing the combination of shares
from different users.

3.1 Our Construction

Based on the above principles, the proposed algorithms are the following:

Global Setup(λ) → GP
In the global setup, a bilinear group G0 of prime order p is chosen.
The global public parameters, GP , are p and a genera-
tor g of G0, and a function H mapping global identities GID ∈ Zp to
elements of G0 (this is modelled as a random oracle in the security proof).

Central Authority Setup(GP ) → (SK∗, PK∗)
The algorithm chooses random exponents a, b ∈ Zp, keeps them as secret
key SK∗ = {a, b} and publishes PK∗ = {ga, g1/b}.
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Identity KeyGen(GP,RL,GID, SK∗) → K∗
GID

Upon the request of a user it first checks whether the user is on the list of
revoked users (RL) or it has been queried before, if yes refuses the request,
otherwise computes H(GID) and generates the global identity secret key:

K∗
GID = H(GID)(GID+a)b.

Authority Setup(GP ) → (PK, SK)
For each attribute i belonging to the authority (these indices i are not reused
between authorities), the authority chooses two random exponents αi, yi ∈
Zp and publishes PK = {e(g, g)αi, gyi ∀i} as its public key. It keeps SK =
{αi, yi ∀i} as its secret key.

KeyGen(GP, SK,GID, i) → Ki,GID

To create a key for a GID, for attribute i belonging to an authority, the
authority computes:

Ki,GID = gαiH(GID)yi

Encrypt(GP,M, (A, ρ), {PK}, PK∗, RL) → CT
The encryption algorithm takes in a message M, an n× � access matrix A
with ρ mapping its rows to attributes, the global parameters, the public keys
of the relevant authorities, the user identity public key and the most recent
list of revoked users.
It chooses random s, s∗ ∈ Zp and a random vector v ∈ Z�

p with s as its first
entry. Let λx denote Ax ·v, where Ax is row x of A. It also chooses a random
vector w ∈ Z�

p with s∗ as its first entry. Let ωx denote Ax · w.
For each row Ax of A, it chooses a random rx ∈ Zp and supposed that the
number of revoked users is |RL| = r it chooses sk such that s∗ =

∑r
k=1 sk.

The CT ciphertext is computed as

C0 = M· e(g, g)s,
C1,x = e(g, g)λxe(g, g)αρ(x)rx , C2,x = grx , C3,x = gyρ(x)rxgωx ∀x = 1, . . . , n

C∗
1,k =

(
gagGID∗

k

)−sk
, C∗

2,k = gsk/b ∀k = 1, . . . , r.

Decrypt(GP,CT, (A, ρ), {Ki,GID},K∗
GID, RL)→M

We assume the ciphertext is encrypted under an access matrix (A, ρ).
If the decryptor is not on the list of revoked users (RL) and has the secret
keys K∗

GID for his GID and {Ki,GID} for a subset of rows Ax of A, such
that (1, 0, . . . , 0) is in the span of these rows, then the decryptor proceeds as
follows. First chooses constants cx ∈ Zp such that

∑
x cxAx = (1, 0, . . . , 0)

and denoting r = |RL| computes:

∏
x

(
C1,x·e(H(GID),C3,x)
e(Kρ(x),GID ,C2,x)

)cx
r∏

k=1

(
e(K∗

GID, C∗
2,k)e(C

∗
1,k, H(GID))

)1/(GID−GID∗
k)

= e(g, g)s

The message then can be obtained as : M = C0/e(g, g)
s.
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To see the soundness of the Decryption algorithm observe the following:

A =
∏
x

(
C1,x · e(H(GID), C3,x)

e(Kρ(x),GID, C2,x)

)cx

=
∏
x

(
e(g, g)λx+ωx logg H(GID)

)cx
= e(g, g)

∑
x λxcx · e(H(GID), g)

∑
x ωxcx = e(g, g)s+s∗ logg H(GID)

B =

r∏
k=1

(
e(K∗

GID, C∗
2,k)e(C

∗
1,k, H(GID))

)−1/(GID−GID∗
k)

=

r∏
k=1

(
e(g, g)(GID−GID∗

k)sk logg H(GID)
)−1/(GID−GID∗

k)

= e(g, g)−
∑r

k=1 sk logg H(GID) = e(g, g)−s∗ logg H(GID)

Remarks. Supposing that we have a honest but curious CSP, which does not
collude with the users, it is also possible to achieve indirect revocation (sim-
ilarly to [9,11]), with simple modifications on our scheme. With other words,
the CSP could fully supervise user revocation based on the revocation requests
from parties, authorised for this. We only need to modify the Encrypt algorithm
to compute C,C0, C1,x, C2,x as originally and C′

3,x = gyρ(x)rx ∀x = 1, . . . , n.
These values would form CT ′ that is sent to the CSP, where the collusion resis-
tant CT with the revocation information is computed and published. CT has the
same form as earlier, the only difference is that the blinding vector w is chosen
by the CSP, so ωx, C

∗
1,k, C

∗
2,k (as previously) and C3,x = C′

3,x · gωx are computed
also by the CSP. The main advantage of this approach is that immediate and
efficient (partial) re-encryption can be achieved as only w, sk, ωx, C

∗
1,k, C

∗
2,k and

C3,x need to be recomputed after a revocation event.
Alternatively, it is also possible to give revocation right directly to the en-

cryptor by simply publishing a user list instead of RL. In this case RL would be
defined by the user, separately for each ciphertext, and attached to CT .

3.2 Efficiency

Traditional, attribute-based user revocation (e.g. [13,10,15]) affects attributes,
thus the revocation of a user may cause the update of all the users’ attribute
secret keys who had common attribute with the revoked user (a general attribute
can affect big proportion of the users) and the re-encryption of all ciphertext the
access structure of which contain any of the revoked user’s attributes (most of
these could not be decrypted by the revoked user).

In our scheme, a revocation event does not have any effect on the attributes
as it is based on identity. Although it is a trade-off and in the other hand there
is some computational overhead on the encryption and decryption algorithms.
In this way the necessary extra computation of authorities is reduced and dis-
tributed between the largest set of parties, the users, preventing a possible per-
formance bottleneck of the system. At the same time the extra communication
is also reduced to the publication of the revoked user list. Our revocation scheme
has the following costs.
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The ciphertext has 2r additional elements, if the number of revoked users is r.
For the computation of these values 3r exponentiations and r multiplications are
needed in G0. Alternatively, the revoked user list may contain gagGID∗

i instead
of the global identifiers. In this case the encryptor need to do only 2r addi-
tional exponentiations in G0, compared with the scheme of [6], to compute the
ciphertext. The overhead of the decryption algorithm is 2r pairing operations,
r multiplications and exponentiations in group G1.

3.3 Security

We point out that from the point of view of a user, whose attributes have never
satisfied the access structure defined in the ciphertext, our construction is at
least as secure as the one by [6], because the computation of A is equivalent to
the decryption computation given there. However in our case, it is not enough to
obtain the message. Changing the first entry of the blinding vector w from zero
to a random number (as we did), causes that the blinding will not cancel out
from A , but we need to compute B which can divide it out. B can be computed
with any GID different from any GID∗

k of the revocation list and we ensure that
the decryptor must use the same GID both in A and B by using H(GID) in
the keys.

Theorem 1. For any adversary A, let q be a bound on the total number of
group elements it receives from queries it makes to the group oracles and from
its interaction with the security game, described in 2.5. The above described
construction is secure according to Definition 3 in the generic bilinear group and
random oracle models. The advantage of A is O(q2/p).

Our construction is proven to be secure in the generic bilinear group model
previously used in [2,6], modelling H as a random oracle. Security in this model
assures us that an adversary cannot break our scheme with only black-box access
to the group operations and H . At an intuitive level, this means that if there are
any vulnerabilities in our scheme, then these vulnerabilities must exploit specific
mathematical properties of elliptic curve groups or cryptographic hash functions
used when instantiating our construction. The formal proof can be found in the
full length version of this paper in [4].

4 Future Work

We proposed a scheme for efficient identity-based user revocation in multi-
authority CP-ABE. In the future, our work can be continued in several directions.

The method of identity-based user revocation can be the foundation of
a future method that allows non monotonic access structures in multi-authority
setting. However our scheme cannot be applied directly for this purpose, it may
be used to develop ideas in this field.

The security of our construction is proved in the generic bilinear group model,
although we believe it would be possible to achieve full security by adapting the
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dual system encryption methodology, which was also used by Lewko and Waters
[6] in their composite order group construction. This type of work would be inter-
esting even if it resulted in a moderate loss of efficiency from our existing system.
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Abstract. In order to host a general purpose operating system, hypervi-
sors need to virtualize the CPU memory subsystem. This entails dynami-
cally changing MMU resources, in particular the page tables, to allow
a hosted OS to reconfigure its own memory. In this paper we present the
verification of the isolation properties of a hypervisor design that uses di-
rect paging. This virtualization approach allows to host commodity OSs
without requiring either shadow data structures or specialized hardware
support. Our verification targets a system consisting of a commodity
CPU for embedded devices (ARMv7), a hypervisor and an untrusted
guest running Linux.The verification involves three steps: (i) Formaliza-
tion of an ARMv7 CPU that includes the MMU, (ii) Formalization of
a system behavior that includes the hypervisor and the untrusted guest
(iii) Verification of the isolation properties. Formalization and proof are
done in the HOL4 theorem prover, thus allowing to re-use the existing
HOL4 ARMv7 model developed in Cambridge.

Keywords: formal verification, hypervisor, memory management.

1 Introduction

Memory isolation is a key requirement of systems executing software at different
privilege levels. Inevitable security flaws of COTS OSes make providing trust-
worthy memory isolation using only OS level security mechanisms infeasible.
Alternatively, memory isolation can be provided by leveraging special low-level
execution platforms, like hypervisors. The small code-base of hypervisors makes
the verification of their memory isolation properties feasible. In that way, a hy-
pervisor can be used to host a commodity OS (which provides the non-critical
services) along with several critical components, which are deployed in isolated
partitions.

In this paper we present the formal verification of the memory isolation pro-
perties guaranteed by a hypervisor for embedded systems. Here, we focus on
the main functionality of the hypervisor namely the virtualization of the mem-
ory subsystem, which determines the binding of physical memory locations to
locations addressable at the application level. In order to properly isolate parti-
tions, the hypervisor takes control of the memory configuration, by configuring
the MMU and the corresponding page tables. Moreover, in order for such a hy-
pervisor to host a general purpose OS it is necessary to allow the guest OS to
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dynamically reconfigure its internal memory hierarchy and to impose its own
access restrictions. The virtualization of the memory subsystem must provide
this functionality and play the role of a security monitor for the MMU settings.
In fact, since the MMU is the key functionality used by the hypervisor to isolate
the security domains, violation of complete mediation of the MMU settings can
enable an attacker to bypass the hypervisor policies which could compromise
the security of the entire system. This is also what makes a formal analysis of
correctness a worthwhile enterprise.

A distinguishing feature of our work is the adoption of direct paging as virtu-
alization mechanism. This mechanism has been previously introduced by Xen [6]
and permits to virtualize the memory subsystem without requiring either shadow
data structures (e.g., shadow page tables) or specialized hardware (e.g., nested
page tables [2,6]). Direct paging allows a virtualization aware (i.e., paravirtuali-
zed) guest to directly manipulate the page tables while they are in passive state,
i.e., not in active use by the MMU, and then using a dedicated API, verified in
this paper, that effectuates and monitors the transition of page tables between
passive and active state. Subsequent operations (like mapping specific entries)
are done by invoking the corresponding hypercall, until the page tables are freed.

Our verification is done in the HOL4 theorem prover and targets a system
consisting of a commodity CPU for embedded devices (ARMv7 [2]), which hosts
the hypervisor and an untrusted guest. The verification is done in three steps: (i)
We formalize (Section 2) the hosting hardware by extending the existing ARMv7
model developed in Cambridge with the formal model of the ARMv7 MMU, (ii)
We formalize (Section 3) the behavior of the complete system by introducing
a system model, which interleaves instructions executed by an untrusted guest
with a low-level specification of the hypervisor handlers, and (iii) we prove (Sec-
tions 4 and 5) the security properties, by decomposing the proof into lemmas
that can be reused by other virtualization mechanisms that use direct paging.

The verification is made complex by the level of abstraction. We target a real
commodity CPU architecture and the model of the handlers is deliberately low
level so that the implementation can be directly derived from the specification.

2 Formal Model of the ARMv7 CPU

In this model a machine state is modeled as a record σ = 〈regs , coregs ,mem〉 ∈ Σ,
where regs , coregs and mem ∈ 232 → 28, respectively, represent the registers, co-
processors and system memory. In the state σ, the function mode(σ) determines
the current privilege execution mode, which can be either PL0 (user mode, used
by the guest) or PL1 (privileged mode, used by the hypervisor). Here, the three
coprocessor registers coregs = 〈SCTLR, TTBR0, DACR〉 ∈ 232 × 232 × 232 are
the System Control Register, the Translation Table Base Control Register, and
the Domain Access Control Register respectively.

The system behavior is modeled by the state transition relation
l∈{PL0,PL1}−−−−−−−−−→

⊆ Σ × Σ, where a transition realizes the effects of the execution of an ARM
instruction. Non-privileged transitions (σ PL0−−−→ σ′) start and end in PL0 states.
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σ.SCTLR �= 0

desc = readL1
(σ.TTBR0, σ, va.l1_idx)

desc.type = SEC

(ap_checkL1(desc, PL, accreq))

mmu(σ, PL, va, accreq) = translateL1(desc, va)

σ.SCTLR �= 0

descL1 = readL1
(σ.TTBR0, σ, va.l1_idx)

descL1.type = PT

descL2 = readL2
(descL1.pa, σ, va.l2_idx)

descL2.type = SP

(ap_checkL2(descL2, PL, accreq))

mmu(σ, PL, va, accreq) = translateL2(descL2, va)

Fig. 1. (a) One-step and (b) Two-step address translation

All the other transitions (σ PL1−−−→ σ′) involve at least one state in the privileged
level. A transition from PL0 to PL1 is done by raising an exception, that can
be caused by software interrupts, illegitimate memory accesses and hardware
interrupts.

We extended the HOL4 ARMv7 model developed in Cambridge [3] to take
into account the behavior of the ARMv7 MMU. The main functionalities of
the MMU are virtual-to-physical address mapping and memory access control.
The MMU is modeled by the mmu(σ, PL, va, accreq) → pa ∪ {⊥} function.
The function takes the state σ, a privilege level PL, a virtual address va ∈ 232

and the requested access right accreq ∈ {rd, wt, ex}, for read, write and execution
respectively, and returns either the corresponding physical address pa ∈ 232 (if
the access is granted) or an access permission fault (⊥).

The SCTLR register controls the MMU. If the MMU is disabled (SCTLR =
0), all access permissions are granted and the mmu function yields an identity
mapping (mmu(σ, PL, va, accreq) = va). If the MMU is enabled (SCTLR �= 0),
the mmu can execute up to two page table walks to translate a virtual address.
The first walk accesses the active first level (L1) page table, whose address is
identified by the TTBR0 register.

An L1 page table contains 4096 entries, each mapping 1MB of contiguous
virtual memory. When executing the first table walk, the MMU accesses the
proper L1 entry. If the entry is unmapped, then the MMU yields a permission
fault (⊥). If the entry is Section (SEC) (Figure 1a) and the requested access is
legitimate (ap_checkL1(desc, PL, accreq)) then the corresponding 1MB is line-
arly mapped to 1MB of physical memory (translateL1(desc, va)). If the entry is
Page table (PT), then a second page table walk is needed (Figure 1b). In this
case, the L1 entry points to an L2, which contains 256 entries. Each L2 entry, of
type Small page (SP ), linearly maps 4KB of virtual memory.

We introduce some auxiliary definitions to describe the properties guaranteed
by an ARMv7 CPU that obeys the access privileges computed by the MMU. We
use the predicate mmuphys(σ, PL, pa, accreq) to identify the accesses granted
to the physical memory. An access to a physical address is allowed if at least
one virtual address exists that enables the requested access permission and that
maps to pa; mmuphys(σ, PL, pa, accreq) = (∃va. mmu(σ, PL, va, accreq) = pa).

We say that two states are MMU-consistent if their memories differ only for
writable physical addresses. Formally, mmuc(σ, σ

′, PL) if ∀pa. σ.mem(pa) �=
σ′.mem(pa)⇒ mmuphys(σ, PL, pa, wt).
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Two states are MMU-equivalent if for any virtual address va the MMU yields
the same translation and the same access permissions. Formally, σ

mmu≡ σ′ if and
only if ∀va, PL, accreq. mmu(σ, PL, va, accreq) = mmu(σ′, PL, va, accreq).

The transition relation queries the MMU model to identify when an instruc-
tion raises an exception and satisfies the following properties.

Property 1. Let σ ∈ Σ such that mode(σ) = PL0. If σ
PL0−−−→ σ′ then

mmuc(σ, σ
′, PL0) and σ.coregs = σ′.coregs .

Property 2. Let σ1, σ2 ∈ Σ, A be a set of physical addresses, mode(σ1) =
mode(σ2) = PL0 and A ⊇ {pa | ∃accreq. mmuphys(σ, PL0, pa, accreq)}, and
σ1

mmu≡ σ2, σ1.regs = σ2.regs , σ1.coregs = σ2.coregs and ∀pa ∈ A. σ1.mem(pa) =

σ2.mem(pa). If σ1
PL0−−−→ σ′

1 and σ2
PL0−−−→ σ′

2 then σ′
1.regs = σ′

2.regs , σ′
1.coregs =

σ′
2.coregs and ∀pa ∈ A. σ′

1.mem(pa) = σ′
2.mem(pa).

In [8] the authors validated the HOL4 ARMv7 model against these properties
under the assumption that the address translation is the identity map.

3 Formal Model of the Hypervisor

Our target scenario consists of an ARMv7 CPU hosting the hypervisor and an
untrusted guest. The hypervisor uses direct paging to virtualize the memory
subsystem: the page tables are allocated by the guest inside its own memory
and the guest is allowed to manage its page table while tables are not in active
use by the MMU. Subsequent operations on the tables are done by invoking
the corresponding hypercall serving the request. In our approach the physical
memory is logically fragmented into blocks of 4KB, resulting in 220 possible
physical blocks. Since L1 and L2 page tables are 16KB and 1KB respectively, an
L1 page table is stored in four contiguous physical blocks and a physical block
can contain four L2 page tables. The hypervisor associates a type to each block:
(i) D; the block does not contain sensitive data, (ii) L1: the block contains part
of an L1 page table, and (iii) L2: the block contains four L2 page tables.

To handle guest requests, the hypervisor provides nine hypercalls: switch that
selects the active L1, L1create and L2create to change the type of a block to the
corresponding table type, L1free and L2free to free the page tables and changing
the type of a block to D, L1unmap and L2unmap to unmap a page table entry,
L1map and L2map to map a specific entry of a page table.

The hypercalls enforce the page type policy: the guest is allowed to change
only blocks of type D. Naively enforcing this policy requires the hypervisor to
re-validate the page tables before reactivating them, that is a time consuming
task. To make overhead sustainable, the hypervisor maintains a reference counter
for each block. The intuition is that the hypervisor changes the type of a physi-
cal block (e.g., allocates or frees a page table) only if the corresponding reference
counter is zero and that this enables the hypervisor to skip the re-validation tasks.

We model the complete system reusing the formal model of Section 2.
A system state is modeled by a tuple 〈σ, h〉, consisting of an ARMv7 state σ
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bls = {block(pa) + i | i < 4}
∀bl ∈ bls.τ � bl : D ∧ Gmem � bl : 0 ∧ ρ(bl) = 0
descs = [readL1(pa, σ, j) | j < 4096]
pts = [block(d.pa) | d ∈ descs ∧ d.type = PT ]
secsrd = [block(d.pa) | d ∈ descs ∧ d.type = SEC ∧ (0, rd) ∈ d.ap]
secswt = [block(d.pa) | d ∈ descs ∧ d.type = SEC ∧ (0, wt) ∈ d.ap]
∀bl ∈ pts.τ � bl : L2

∀bl ∈ secsrd.∀idx < 256.Gmem � bl + idx : 0
∀bl ∈ secswt.∀i < 28.bl + i �∈ bls ∧ τ � bl + i : D ∧ ρ(bl + i) < MAX − 212

ρ′ = for bl ∈ secswt(for i < 28 (λρ1.ρ1(bl + i) := ρ1(bl + i) + 1))ρ
ρ′′ = for bl ∈ pts(λρ2.ρ2(bl) := ρ2(bl) + 1)ρ′

τ ′ = (τ(bl ∈ bls) := L1)

〈σ, 〈τ, ρ〉〉 createL1(pa)−−−−−−−−−→ 〈
σ, 〈τ ′, ρ′′〉〉

Fig. 2. Inference rule for hypervisor createL1 handler

and an abstract hypervisor state h, of the form 〈τ, ρ〉. Let bl ∈ 220 be the index
of a physical block and t ∈ {D,L1, L2}, τ � bl : t tracks the type of the block
and ρ(τ) ∈ 230 tracks the reference counter. We use Gmem to statically identify
the memory region assigned to the guest: if the block bl is part of the guest
memory then Gmem � bl : 0, otherwise Gmem � bl : 1

The behavior of the system is defined by a labeled transition relation 〈σ, h〉 α−→
〈σ′, h′〉. The model interleaves standard non-privileged transitions (α = 0) with
abstract handler invocations (e.g., α = createL1(pa)):

– if σ
PL0−−−→ σ′ then 〈σ, h〉 0−→ 〈σ′, h〉 ; instructions executed in non-privileged

mode that do not raise exceptions behave equivalently to the standard
ARMv7 semantics and do not affect the abstract hypervisor state.

– if σ
PL1−−−→ σ′ then the hypervisor intercepts the exception and its handler

atomically transforms the state of the system

The model of the hypervisor handlers is defined by HOL4 functions that de-
scribe the hypervisor behavior. These functions are deliberately low level, for
example they store the page tables in the system memory instead of using ab-
stract data structures. This enables us to include the page tables in the attack
surface taken into account by our verification. The hypervisor handlers check
that (i) guest can only change data pages (pages of type D), (ii) page table
blocks are typed correctly, and (iii) the blocks that are readable/writable by the
guest are enclosed in the part of the memory granted to the guest. If a han-
dler fails to validate the guest request, then it terminates without affecting the
system state (i.e., 〈σ, 〈τ, ρ〉〉 α−→ 〈σ, 〈τ, ρ〉〉.

In Figure 2 we use an inference-rule to exemplify the behavior of the L1create
handler. The guest uses the hypercall to request the validation of an L1 pointed
to by the address pa. If the validation succeeds the type of the corresponding
physical blocks is changed to L1. Here, block(pa) returns the block pointed to by
the physical address pa and [f(x) | p(x)] represents list comprehension. More-
over, r(β) := value represents the update of the field β of the record r with
value. Finally, let d be an entry of a page table, we use d.pa, d.type and d.ap
to represent the initial physical address pointed to by the entry, its type (either
a section SEC or a page table PT ) and the set of the granted access rights.
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The handler checks that the four blocks containing the new page table have
reference zero, are typed D and reside in the guest memory. To accept the
request, each PT entry must point to a valid L2 in the guest memory. Section
descriptors allowing guest read accesses must point to a section encompassing
only blocks that are part of the guest memory. Moreover, if the descriptor allows
guest write access, then the hypervisor ensures that all the reachable blocks are
typed D , that their reference counter is less than the maximum allowed bound
and that none of the blocks of the new page table are included in that section.

The hypercall also updates the reference counters of the pointed blocks, by
summing the number of references that enable guest write access and the number
of references from PT entries.

4 Security Properties

As common, our verification strategy consists in introducing a state invariant
(I(s)) that guarantees the desired security properties and in demonstrating that
the invariant is preserved by any possible transition. Clearly, the system must
start (i.e., the boot must terminate) in a state that satisfies the invariant. We
use QI to identify the set of all possible states that satisfy the invariant.

Theorem 1. Let s ∈ QI, if s
α→ s′ then s′ ∈ QI.

Guaranteeing that the invariant is preserved requires to demonstrate that each
handler preserves the invariant (α �= 0) and that the guest is not able to break
it. Intuitively, while the hypervisor is inactive (α = 0), the only mechanism that
can confine the behavior of an arbitrary guest is the MMU. Thus, the hypervi-
sor must play the role of a security monitor of the MMU settings. If complete
mediation of the MMU settings is violated, then an attacker can bypass the
hypervisor policies and compromise the security of the entire system. Enforcing
this property is critical in the direct paging mechanism because the page tables
are dynamically allocated and released by the untrusted guest and they reside
in the guest memory.

Theorem 2. Let s ∈ QI, if s
0→ s′ then s

mmu≡ s′.

Definition 1. Two states s and s′ do not differ in a physical block of me-
mory (written s

bl≡ s′) if for each physical address pa if block(pa) = bl then
s.mem(pa) = s′.mem(pa).

Definition 2. Two states s and s′ are t-equivalent (written s
Gmem:t≡ s′) iff for

each physical block bl if Gmem � bl : t then s
bl≡ s′.

We use the approach of [5] to analyze the data separation properties. The non-
exfiltration property guarantees that a transition executed by the guest does not
modify the secure resources:
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Theorem 3. Let s ∈ QI, if s
0→ s′ then s

Gmem:1≡ s′.

The non-infiltration property is a noninterference property guaranteeing that
a transition executed by the guest depends only on its accessible resources.

Theorem 4. Let s1, s2 ∈ QI such that s1.regs = s2.regs, s1.coregs = s2.coregs

and s1
Gmem:0≡ s2. If s1

α→ s′1 and s2
α→ s′2 then s′1.regs = s′2.regs, s′1.coregs =

s′2.coregs and s′1
Gmem:0≡ s′2

5 Verification Strategy

To describe the verification of the security properties we summarize the structure
of the system invariant.

Definition 3. I(〈σ, 〈τ, ρ〉〉) holds if,

σ.SCTLR �= 0 ∧ τ � σ.TTBR0 : L1 ∧ ∀bl ∈ 220. IT (〈σ, 〈τ, ρ〉〉 , bl) ∧ IC(〈σ, 〈τ, ρ〉〉 , bl)

where IC(〈σ, 〈τ, ρ〉〉 , bl) holds if, ρ(bl) =
∑

i∈0...220

cnt(σ, τ, bl, i)

and IT (〈σ, 〈τ, ρ〉〉 , bl) holds if,
{

τ � bl : L1 ⇒ IT1(σ, τ, bl)
τ � bl : L2 ⇒ IT2(σ, τ, bl)

The invariant requires that the MMU is enabled, the active page table is typed
L1, the reference counter is correctly counting the references to each block and
each block is well-typed.

We use Figure 3 to summarize the properties checked by the invariant.
The table in the center represents the physical memory and reports the page
type (pt), the static type (gm) and the reference counter of each block (rc).

Fig. 3. Invariant
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The four top most blocks contain an L1, whose 4096 entries are depicted by
the table L1-A. The top entry is a section descriptor (T = S) that grants write
permission to the guest (ap = 0, w). The entry points to the second physical
section, which consists of 256 blocks. Three other section descriptors are de-
picted: one grants write accesses to the guest, one grants only read permission
to the guest (0, r), and the last one prevents any guest access and enables write
permission to the privileged mode (1, w). The last two entries of the L1 are PT-
entries. These two entries point to two different L2 page tables that are stored in
the same physical block. To satisfy IT1(σ, τ, 0), if a section enables guest access
then the pointed blocks must all be in the guest memory. Moreover, if a section
enables guest write access then each pointed block must be typed D. Finally, PT-
entries must point to addresses contained in physical blocks that are typed L2.
The Figure depicts two additional L1 page tables; L1-B satisfies the invariant,
L1-C contains three entries that violate IT1 . In fact (i) the first section grants
write permission to the guest, but at least one of the pointed blocks is not typed
D, (ii) the second section enables guest accesses, but at least one of the pointed
blocks is not in the guest memory and (iii) the third entry is a PT-entry, but
points to a physical address that is contained by a block typed D.

The table L2-A depicts the content of the 768-th physical block, which con-
tains four L2 page tables. To satisfy IT2(σ, τ, 768), if one entry of the four page
tables enables guest access then the pointed block must be in the guest memory.
Moreover, if the entry also enables guest write access then the pointed block
must be typed D.

We use the same figure to illustrate the reference counter. For a physical block
bl, if block i is typed L1 then cnt(σ, τ, bl, i) counts the number of section entries
that point to bl and that are writable in user mode plus the number of PT-entries
that point to bl. If block i is typed L2 then cnt(σ, τ, bl, i) counts the number of
entries that point to bl and that are writable in user mode. In Figure 3 we use
solid arrows to represent the references that are counted and dashed arrows to
represent the other references.

Lemma 1. Let 〈σ, 〈τ, ρ〉〉 ∈ QI then ∀pa. mmuph(σ, 0, pa, wt) ⇒ (Gmem � block(pa) : 0

∧ τ � block(pa) : D)

Lemma 2. Let 〈σ, 〈τ, ρ〉〉 ∈ QI then ∀pa. mmuph(σ, 0, pa, rd) ⇒ (Gmem � block(pa) : 0)

Lemmas 1 and 2 directly follow from the invariant and show that the MMU
setup forbids guest accesses outside the guest memory and guest write accesses
to physical blocks that are not typed D. Using Lemma 1 and Property 1 we
directly show that the guest can only change physical blocks that are inside its
own memory and that are typed D.

Lemma 3. Let s = 〈σ, 〈τ, ρ〉〉 ∈ QI and s
0→ s′. For each bl, if s �bl≡ s′ then

Gmem � bl : 0 and τ � bl : D.

Notice that Lemma 3 directly guarantees Theorem 3. Similarly, Lemma 1 and
Property 2 guarantee Theorem 4 for guest transitions (i.e., α = 0).
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Proof of Theorem 2. We must ensure that for each possible address va the MMU
translation is equivalent in the states s = 〈σ, 〈τ, ρ〉〉 and s′ = 〈σ′, 〈τ, ρ〉〉. Prop-
erty 1 guarantees that the coprocessors registers are not affected by user transi-
tions, thus the address of the active L1 can not be changed by the guest. The first
translation walk accesses the L1 entry that maps va. The invariant I(s) guar-
antees that the active page L1 is typed L1 ( τ � σ.c2 : L1). Thus, Lemma 3
guarantees that in the two states s and s′ the MMU fetches the same L1 descrip-
tor. If the descriptor is either unmapped or a section the proof is completed. If
the descriptor is a PT-entry then the translation executes the second walk, ac-
cessing an entry of the pointed L2. Let bl be the block containing the pointed
L2. From the invariant, we know that τ � bl : L2. Again, Lemma 3 guaran-
tees that in the two states s and s′ the MMU fetches the same L2 descriptor, thus
concluding the proof.

Lemma 4. Let 〈σ, 〈τ, ρ〉〉 ∈ QI, if σ
bl≡ σ′ then IT (〈σ′, 〈τ, ρ〉〉 , bl) and

∀bl′. cnt(σ, τ, bl′, bl) = cnt(σ′, τ, bl′, bl).

Lemma 4 shows that the well-typeness of a block and its counted references are
independent from the content of the other physical blocks.

Lemma 5. Let s ∈ QI, if s
0→ s′ then s′ ∈ QI.

Lemma 5 shows that the invariant is preserved by the execution of an arbitrary
guest instruction, thus guaranteeing that untrusted software can not breach the
security of the system. Since the guest can not directly change the abstract
hypervisor data-structures and can not directly affect the coprocessor registers
(Property 1), in order to reestablish the invariant we need to show that for every
block bl both IT (〈σ′, 〈τ, ρ〉〉 , bl) and IC(〈σ′, 〈τ, ρ〉〉 , bl) hold. If τ � bl : D then

IT trivially holds. Otherwise, Lemma 3 guarantees that s
bl≡ s′ and Lemma 4

demonstrates that IT holds. For the reference counter we must prove that
ρ(bl) =

∑
i∈0...220 cnt(σ′, τ, bl, i) knowing that ρ(bl) =

∑
i∈0...220 cnt(σ, τ, bl, i).

We directly show that for every block i cnt(σ′, τ, bl, i) = cnt(σ, τ, bl, i). If τ � i : D
this equality is trivial, since cnt is zero. Otherwise, Lemma 3 guarantees that
s

i≡ s′ and Lemma 4 concludes the proof.

Lemma 6. Let 〈σ, 〈τ, ρ〉〉 ∈ QI and ∀bl′. (τ(bl′) �= τ ′(bl′)) ⇒ (ρ(bl′) = 0). For
every bl if τ ′(bl) = τ(bl) then IT (〈σ, 〈τ ′, ρ′〉〉 , bl) and ∀bl′. cnt(σ, τ, bl′, bl) =
cnt(σ, τ ′, bl′, bl).

Lemma 6 expresses that well-typedness and counters are preserved for all hy-
pervisor data changes, as long as the blocks whose types change have reference
counter zero. The equality of the reference counter is established by showing that
cnt is independent on the type of the block bl′. The strategy used to establish
IT depends on the type of the block bl. If τ � bl : D then the proof is trivial.
If τ � bl : L2 we use reductio ad absurdum. Assume that IT does not hold, then
there must exist an entry i of the page table that grants guest write access to
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a block bl′ that is not typed D in τ ′. From the invariant, we know that such
an entry does not exist in 〈σ, h〉. Thus, i must point to a block bl′ such that
(τ(bl′) �= τ ′(bl′)). The hypothesis of the Theorem guarantees that ρ(bl′) = 0,
then for all bl′′ (including bl) cnt(σ, τ, bl′, bl′′) = 0. This contradicts the assump-
tion that there is an entry i that points to bl′ and that is writable by the guest.
For τ � bl : L1 we use a similar reasoning.

Lemmas 4 and 6 are used to modularize the proof of Theorem 1 for the
transitions modeling the hypervisor handlers. For example, to demonstrate that
the invariant is preserved by createL1(pa) we first show that the type is changed
only for pages having reference zero, then we demonstrate that the content of
the blocks containing the page tables is not changed.

For the IT predicate, we use the two Lemmas to guarantee that IT is preserved
for blocks that are not in bls = {block(pa) + i | i < 4}. Then, we demonstrate
that the checks performed by the hypercall guarantees IT1

(σ′, τ ′, bl) for the every
block in bls (i.e., the blocks containing the new L1).

For the IC predicate, since the invariant guarantees that
ρ(bl) =

∑
i∈0...220 cnt(σ, τ, bl, i), then we must prove :

ρ′(bl) =
∑

i∈0...220 cnt(σ′, τ ′, bl, i) + ρ(bl)−
∑

i∈0...220 cnt(σ, τ, bl, i).

For a block i that is not in bls, the two Lemmas guarantee that
cnt(σ′, τ ′, bl, i) = cnt(σ, τ, bl, i), thus our goal is reduced to demonstrate ρ′(bl) =∑

i∈bls cnt(σ
′, τ ′, bl, i) + ρ(bl)−

∑
i∈bls cnt(σ, τ, bl, i). Since the hypercall checks

that the initial type of a block i ∈ bls is D, then cnt(σ, τ, bl, i) = 0. Finally, we
must demonstrate that the hypercall correctly updates the counters by adding
the references of the new L1 page table: ρ′(bl) = ρ(bl) +

∑
i∈bls cnt(σ

′, τ ′, bl, i).

6 Evaluation

The verification has been performed using the HOL4 interactive theorem prover.
This allows building the formal model of the system on top of the existing
ARMv7 model developed in Cambridge [3], by extending the transition relation
to take into account the MMU constraints and by substituting the activation of
exceptions with the specification of the hypervisor handlers. This specification
consists of 500 lines of HOL4 code, intentionally avoids any high level construct
and resembles the control flow of the C implementation, with the aim of making
this executable specification as close as possible to the C implementation. This
increased the difficulty of the proof (e.g., the system invariant consists of 2k
lines of HOL4 and the proofs consist of 15k lines of HOL4 ), which must handle
finite arithmetic overflows, page tables not stored into abstract states and forced
us to identify the invariants of the loops required to iterate the page tables.
However, the low level of abstraction allowed us to identify several bugs of the
original design: (i) arithmetic overflow when updating the reference counter, due
to the guest being able to create unlimited references to a physical block (ii)
bit field and offset mismatch, (iii) missing check that a newly allocated page
table prevents the guest from overwriting the page table itself, (iv) usage of the
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signed shift operator where the unsigned one was necessary, and (v) side channels
exploitable by the guest by requesting to validate page tables outside the guest
memory.

We implemented a prototype of the hypervisor to experiment the verified
design. This prototype consists of 4500 LOC of C (with a minor part of assembly)
and is directly derived from the verified specification. Initial benchmarks show
promising results; the hypervisor is capable of hosting a paravirtualized Linux
and for the LMBench introduces an overhead between 2% (select benchmark)
and 495% (fork+bin benchmark), compared to the native Linux. This overhead
is much less than what the many other hypervisors for ARM impose [7].

We briefly compare our virtualization mechanism to existing approaches to
virtualize the memory subsystem. Functional correctness of mechanisms based
on Shadow page tables (SPT) has been verified in [1,4,10]. Using SPT, the
hypervisor keeps a shadow copy of the guest page tables. This copy is updated
(after validation) by the hypervisor whenever the guest operates on its page
tables. The main benefits of direct paging respect to SPT is that the hypervisor
does not replicate the guest page tables, thus reducing memory accesses and
memory overhead and not requiring dynamic allocation in the hypervisor.

Hardware-assisted virtualization (e.g., nested-paging included in the ARMv7
virtualization extension) frees the hypervisors from implementing a virtualiza-
tion mechanism of the memory subsystem (e.g., [6,11]). This simplification comes
at the cost of enlarging the TCB and moving the verification from software to
hardware. Moreover, since hardware virtualization support is still uncommon in
embedded systems, then software based virtualization is the only viable option
for several platforms (including ARM11, ARM CortexA5 and Intel Quark).

The formal verification of seL4 [9] demonstrated that the verification of
a complete microkernel is possible even at the machine code level [12]. A com-
plete commodity OS can be executed on top of a microkernel by mapping the OS
threads directly to the microkernel threads, thus delegating completely the pro-
cess management functionality from the hosted OSes to the microkernel (e.g.,
L4Linux). This generally involves an invasive and error-prone OS adaptation
process, however. An alternative approach consists of extending the microkernel
with a virtualization mechanism of the memory subsystem, like the one proposed
in this paper.

7 Concluding Remarks

We presented a design to virtualize the ARMv7 memory subsystem that requires
neither specialized hardware support nor shadow data structures. Together with
the machine-assisted proof of its correctness and the spatial isolation provided by
the hypervisor, the design represents the first trustworthy virtualization mecha-
nism using direct paging, previously introduced by Xen for x86, but not verified.

The design correctness is stated in terms of (i) complete mediation of the
MMU settings, (ii) non-exfiltration and (iii) non-infiltration. These properties
show that user mode processes (e.g., a possibly malicious guest OS) are incapable
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of affecting the MMU behaviour and that can not influence (or be influenced by)
the resources that are not allocated to the guest.

The low level abstraction of the hypervisor specification increased the com-
plexity of our verification, but allowed us to identify and to correct several bugs.
Moreover, since the specification avoids any high level constructs, it has been
used to directly drive a prototype.
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Abstract. Barak, Shaltiel Tromer showed how to construct a True Ran-
dom Number Generator (TRNG) which is secure against an adversary
who has some limited control over the environment.

In this paper we improve the security analysis of this TRNG. Essen-
tially, we significantly reduce the entropy loss and running time needed
to obtain a required level of security and robustness.

Our approach is based on replacing the combination of union bounds
and tail inequalities for �-wise independent random variables in the orig-
inal proof, by a more refined of the deviation of the probability that
a randomly chosen item is hashed into a particular location.

1 Introduction

1.1 Random Number Generators

Random number generators are used for various purposes, such as simulating,
modeling, cryptography and gambling. Below we briefly discuss possible ap-
proaches and issues in generating random numbers.

True Random Number Generators. The term “True Random Number Gen-
erator” (TRNG) refers to a hardwaredevice that generates randomnumbers based
on some physical phenomena (radiation, jitter, ring oscillators, thermal noise etc.).
As an example of such an implementation one can mention the HotBits project
[13], which is based on timing the decay of Caesuim-137. Such implementations
are typically very reliable and hard to tamper. Sometimes as a TRNG one consid-
ers also a software application which generates random numbers based on unpre-
dictable human behavior, like mouse movement or typing keyboard keys. Even
if they are not completely unpredictable (because knowing an operator’s habits
helps in predicting the output) the generated results are typically of high quality
and have found real-world cryptographic applications (e.g. PGP). True Random
NumberGenerators do not have internal states (hence are not predictable from the
sampling history)and produces a high quality output. However, they are usually
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c© Springer-Verlag Berlin Heidelberg 2015
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slow and not easy to implement (for instance, because of the need of a dedicated
hardware).

1.2 Pseudo-Random Number Generators

On the other side we have pseudo-random number generators (PRNG’s), al-
gorithms that use mathematical formulas to produce a randomly looking out-
put. They depend on internal states and for this reason needs to be externally
“seeded”. They are fast and relatively easy to implement. However, seeding them
properly is of critical importance. A lot of PRGNs from standard software use
predictable seeds. For example, recall the discovered vulnerability in a version
of Netscape browser [7].

Classical TRNG Design. Typically the process of building a TRNG consists
of the following stages

(a) Setting an entropy source (physical or non-physical)
(b) Post-processing part
(c) Quality evaluation

The entropy source does not necessarily provide samples of excellent quality
and therefore step (b) is needed. Its purpose is to eliminate bias or dependen-
cies. Posprocessing procedure could be very simple as the famous von Nuemann
corrector or very complicated. Finally, the whole implementation should be sub-
jected to common statistical tests, for example [9,2].

1.3 TRNGs in Environments under (Partial) Adversarial Control

Imagine a setting where an attacker has some partial control over the environ-
ment where the sampling device operates. For instance he could influence voltage
or temperature. The goal is to build a TRNG which is robust in such a setting.

Resilient Extractors. Slightly simplifying the problem, we can focus on the
postprocessing algorithm, that is on how to extract random bits from randomness
within a source. Suppose that we have a source that produces samples distributed
according to X , where X is unpredictable in the sense that it has high entropy.
This assumption is the most general way of capturing “randomness” because
we cannot assume that our source, which might be a very complicated physical
processes, has any specific nice properties. One can extract almost uniform bits
from high entropy source by the use of so called “randomness extractors”. How-
ever, no deterministic procedure can extract one bit which is close to uniform
from every high-entropy source [12]. The general purpose randomness extractors,
which are guaranteed to work with every source having enough entropy, require
additional truly random bits (called the seed) as a “catalyst” [10]. While this
concept is generally extremely useful, the direct application of a seeded extractor
to an entropy source does not provide a way to build a good TRNG:
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(a) In real applications, generating even small number of truly random bits can
be extremely hard.

(b) In some designs there might be correlations between the source and the
seed. For instance, when the seed is stored in a TRNG which uses a source
of randomness within the computer (like timing events).

(c) If we want a TRNG with some kind of resilience, we should ensure it also
for the procedure generating seed.

One can overcome this problem by designing a deterministic extractor which
works for a restricted class of sources. Some constructions for specific cases are
known; see for instance [8,6] and recall the most famous example - von Neumann
sources. However they are not applicable in our case.

Resilient extractors via fixing seeds. Barak, Shaltiel and Tromer [3]
came up with the very simple but surprisingly useful idea of fixing a seed. Let
us discuss it briefly. Suppose for a moment that we have only one source X
of entropy k and an arbitrary seeded extractor , that from any X having k-
bits of min-entropy extracts m close-to-uniform bits using a random seed. This
means that the output is close to uniform in average over all possible seeds.
Hence running the extractor with a fixed seed, for most of the seeds, yields an
output which is still close to uniform (by the Markov Inequality). Now let us
make a realistic assumption that the source X depends on some finite number
of boolean1 environmental variables (corresponding to changes in the voltage,
temperature, radiation etc) and suppose that

(a) the adversary controls t of the environmental variables
(b) in every of 2t possible configurations of the “compromised” states, entropy

in the source is big enough (i.e. at least k)

Provided that t is small, by the union bound we conclude that fixing the seed,
for most of the seeds, we still obtain a good extractor in every state. Below we
summarize this discussion more quantitatively:

Proposition 1 (Resilient extractor from any extractor). Let {Xe}e∈{0,1}t

be a collection of n-bit random variables and let Ext : {0, 1}n × S → {0, 1}m be
a function such that for every e the distribution of ExtS(Xe, S), where S if chosen
randomly from S, is ε-close to uniform. Then for all but a 2−u fraction of s ∈ S
the distribution Ext(Xe, s) is 2u+tε-close to uniform for every e ∈ {0, 1}t.
Even the best extractors need in worst case at least k = m + 2 log(1/ε)−O(1)
bits of entropy on their input in order to extract m bits which are ε-close to
uniform [11]. The optimal rate, with k = m + 2 log(1/ε) − 2, is achieved for
example by 2-universal hashing (the Leftover Hash Lemma).

Resilient TRNG from the resilient Extractor. The assumption that
our extractor works only for small (of size 2t) family of distributions in the con-
text of a TRNG is not restrictive. Indeed, imagine a manufacturer who has a de-
vice producing samples of a distribution X . The seed s is chosen once and for all

1 Without losing generality, since we can describe more “granulated” properties using
more than one boolean variable.
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and every single TRNG box is built by composing a copy of the sampling device
with the extractor seeded by the same s. Once s is chosen, could be even made
public. The confidence level δ ensures that with high probability we can find
a good s. After choosing s, the manufacturer tests the implementation against
randomness test like NIST [2] and DIEHARD [9]. For more details, we refer the
reader to [3]. The above discussion can be summarized by the following result.

Theorem 1 (Simple resilient TRNG, informal). There exists an efficient
seeded extractor Ext such that for every source X which in every of 2t states of
the environment has the min-entropy at least

k 	 m+ 2 log(1/ε) + 2 log(1/δ) + 2t− 2, (1)

for all but at most a δ fraction of the seed s it holds that Ext(X, s) is ε-close to
the uniform m-bit string in every state of the environment.

Note that the entropy loss L = k−m must be substantially bigger than 2 log(1/ε)
if we want non-trivial values of δ and t. Than additional entropy loss is a price
we pay for resilience of the extractor.

The resilient TRNG of Barak Shaltiel and Tromer Barak et al. showed
and implemented a construction of a TRNG which is secure against any adver-
sary who controls t environmental variables. In their proof �-wise independent
hash families are used as extractors. Roughly speaking, the assumption on �-
wise independence allows estimating higher moments of the statistical distance
between output of hashing and the uniform distribution. This way we get sig-
nificant improvements over the Markov Inequality used in Theorem 1.

Theorem 2 ([3] Resilient TRNG from any �-universal hash family, in-
formal). Let H be an �-wise independent family of hash functions from n to m
bits. Suppose that an n-bit source X in every of 2t states of the environment has
the min-entropy at least

k 	 �+ 2

�
·m+ 2 log(1/ε) +

2 log(1/δ)

�
+

2t

�
+ log �− 2 +

4

�
. (2)

Then for all but δ fraction of h ∈ H it holds that h(X) is ε-close to the uniform
m-bit string in every state of the environment. For � = 2 we have the better
bound k 	 m+ 2 log(1/ε) + 2 log(1/δ) + 2t− 2.

We remark that the constant −2 in Theorem 2 is slightly better than what is
stated in [3]. This is because the authors used a slightly weaker statement of the
Leftover Hash Lemma.

Optimizing the parameters. The construction of Barak et al. depends on
several parameters and gives a lot of freedom to optimize the design for a par-
ticular real-world application. For instance, minimizing the entropy loss (i.e.
minimizing k) is of the crucial importance when the source produces entropy
slowly or expensively (for instance when one uses patterns typing by a user, like
mouse clicking, as the source). In such a case, one may prefer the (slightly more
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complicated) implementation with universal families of a higher degree. In the
other hand, when the sampling procedure is more efficient (like thermal noise)
one can afford entropy losses and prefer faster running time of the extractor,
a higher confidence level for the choice of the seed or to increase the number of
the environmental variables under adversarial control.

Advantages and disadvantages. The big advantage of Theorem 2 over tri
vial Theorem 1 is that one can increase t proportionally to the degree � of hashing
family, which is actually a bit surprising. The main disadvantage is the entropy
loss L = k−m needs to be bigger than 2m

� which is Ω(m) for small �. Theoreti-
cally, one can reduce this with � big enough, however this could be inconvenient
because of the following two reasons: (a) the running time increases by a fac-
tor poly(�) and (b) the description of an �-wise independent hashing family on
{0, 1}n takes �n bits hence there could be a problem with sampling a good func-
tion h (note that n could be even much bigger than k, which is the case of low
entropy rate).

1.4 Our Results and Techniques

Summary of our contribution. We reduce the entropy loss in Theorem 2
by 2m/� for any �, saving linear amount of entropy. This matches the RT-bound
and hence is tight. Our approach is based on the more refined analysis of the
concentration properties of universal hashing.

Hashing into a given slot - bounds on the deviation. Applying estimates
for �-wise independent random variables [1] we prove the following formula

Lemma 1. Let � 	 be an even integer, H be an �-universal family of hash
functions from n to m bits and k−m 3 2 log �. Then for any X of min-entropy
at least k we have

E
h←H

|Pr (h(X) = y)− Pr(Um = y)|� 
 C� ·
(
2−k−m�

)�/2
(3)

where C� = 2
√
π� · e1/6� ·

(
5
2e

)�/2
.

The left-hand side of Equation(3) gives the deviation of the probability (over the
choice of the hash functions) of hashing a random variable X into a particular
slot from its expectation (equal to 2−m by the universal property). Studying
such deviations is a natural idea, used essentially in [4].

Remark 1 (Sharp bounds on the deviation). One can get symptomatically sharp
bounds in Equation(3) with more effort, by expanding the bracket and compute
the �-th moment precisely. The improvement is by a factor of c� and leads to
further non-trivial improvements of the results of Barak et al. We find this gain
too small and do not optimize the bounds in Equation(3).

Improved bounds on the fraction of good seeds in hashing. We prove
the following inequality
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Proposition 2. Let X be an n-bit random variable and H be an arbitrary family
of functions from n bits to m bits. Let � 	 2 be an even integer and ε > 0. Then

Pr
h←H

[SD(h(X);Um) > ε] � Ey←Um Eh←H (Pr[h(X) = y]− Pr[Um = y])�

2−m�(2ε)�
. (4)

This estimate allows us to bound the fraction of the seeds (i.e. hash functions)
for which the statistical distance is small, in terms of the deviation of the hash-
ing probability. This bound offers a significant improvement over an alternative
approach which bounds the deviation |Pr[h(X) = y] − Pr[Um = y]| for every y
separately and after that uses the union bound to upper-bound the sum (this
is essentially the strategy of Barak et al.). Intuitively, the gain could be even
of a factor 2m which should save a linear (in m) amount of entropy. Indeed,
unlike Theorem 2 we are able to get meaningful security even for k < m(1+2/�)
(assuming small t and �).

Improved efficiency and security of the construction of Barak et

al. Using the tools discussed above, we prove the following result

Theorem 3 (A resilient TRNG from any �-universal hash family,
informal). Let H be an �-universal family of hash functions from n to m bits,
where � is an even integer. Suppose that a source X which in every of 2t states
of the environment has the min-entropy at least

k 	 m+ 2 log(1/ε) +
2 log(1/δ)

�
+

2t

�
+ log �− 2. (5)

Then for all but at most a δ fraction of h ∈ H it holds that h(X) is ε-close to
the uniform m-bit string in every state of the environment.

The theorem is valid under the assumption k −m 3 log � which we omitted as
it is satisfied for interesting values of parameters. Our improvements over [4] can
be summarized as follows:

(i) For � = 2 (the simplest extractor) we save log(1/δ) + t bits of entropy. Al-
ternatively, the probability of choosing a bad hash functions in the prepro-
cessing phase gets squared and the number of the states under adversarial
control can be doubled. Entropy savings is important for expensive or slow
sources. Higher confidence level for the choice of the seed is important if we
want to subject the implementation to the statistical tests, like DIEHARD

[9]. Finally, the more variables under adversarial control the more robust
the PRNG is.

(ii) For � > 2 (but not too big), in comparison to Theorem 2, we save the linear
amount of entropy, precisely 2m

� . The case � > 2 is preferable for slow or
expensive entropy sources or when the priority is the high robustness (i.e.
big number of states).

(iii) Even for � 3 2 our result is still much better in some settings. For example,
for ε = 2−

10
√
m (reasonable subexponential security) and � ≈ log(1/ε) the

entropy loss L = k −m becomes close to L ≈ 2 log(ε) whereas Theorem 2
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gives L ≈ 2 log(ε) + 2m0.9. In general, the entropy amount 2m/� we save
can be used to increase the number of the adversary’s degrees of freedom
by m, which is quite a lot.

Remark 2. Even reducing the entropy loss by only constant number of bits gives
non-trivial results! This is because decreasing the minimal k by d is equivalent
to increasing t by d�/2 (keeping ε, δ unchanged). In particular, optimizing the
bound in Theorem 3 would slightly improve our results (see Remark 1).

2 Preliminaries

Statistical distance. For any two random variables X,Y taking values in
the same space we define the statistical distance of X and Y to be Δ(X ;Y ) =∑

x |Pr[X = x] − Pr[Y = x]|. When Δ(X ;Y ) � ε we say that X and Y are
ε-close.

Entropy notions. The min-entropy of a random variable X is defined to be
H(X) = log(1/maxx Pr[X = x]).

independent hash functions. A family H from n to m bits is called �-wise
independent if and only if for every different n-bit strings x1, x2, . . . , x� and
h chosen at random from H the random variables h(x1), h(x2), . . . , h(x�) are
independent and uniform.

2.1 Security Definitions

Changing environment - security game. We consider the following ideal
setting[3]

(i) An adversary chooses 2t distributions X1, . . . , X2t over {0, 1}n, such that
H∞(X) 	 k for all i = 1, . . . , 2t.

(ii) A public parameter h is chosen at random and independently of the choices
of Xi

(iii) The adversary receives h, and selects i ∈ {1, . . . , 2t}
(iv) The user computes Ext(X), where X is sampled from Xi.

Note that in the game defining the security of an extractor, the adversary chooses
the distribution and the user chooses (independently) a seed. Here the adversary
is in some sense “semi-adaptive”, because he can choose an arbitrary distribution
but from the class of distributions he had committed to before he saw a seed.
Of course, the adversary cannot be made fully-adaptive in the sense that he
chooses a distribution without any restriction after seeing the seed. Thus, this
definition seems to be a reasonable compromise.

Resilient extractor. We define resilient extractor exactly as in [3] except
that we state the confidence level δ explicitly.

Definition 1 (Resilient extractor [3]). Given n, k,m, ε, δ and t an extractor
E is t-resilient with the confidence level δ if, in the above setting, with probability
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1 − δ over the choice of the public parameter s the statistical distance between
Ext(X, s) and Um is at most ε. For shortness, we also call it (k, ε, t, δ)-resilient
extractor.

This together with the entropy source yields a construction of a TRNG which
is robust against some adversarial influences. One possible concern here is how
to ensure that the entropy amount, under possible influences, is still sufficient?
This is a serious problem but must be solved independently on the designing
an extractor, because if the adversary had a way to significantly decrease en-
tropy amount then no scheme would be secure anymore, regardless of what an
extraction function is applied. We note that, as mentioned in [3], the security
definition might be even too strong for real world applications. For example,
the assumption that the adversary is computationally unlimited and that all
distributions Xi could be completely independent2. For long data streams, the
extractor can be applied sequentially to consecutive blocks, provided that each
block has enough entropy conditioned on all previous blocks.

3 Improved Analysis for Pairwise Independent Hashing

Motivating discussion. Let H be a family of 2-universal hash functions from
n to m bits and let X be a distribution over {0, 1}n of min-entropy at least k.
We will show that if L = k −m is big enough, then the distribution H(X), H ,
where H is a random member of H, is ε-close to Um, H . This result is known as
the Leftover Hash Lemma:

Theorem 4. For H, H and X as above we have SD((H(X), H); (Um, H)) �√
2m−k.

Note that L = k − m needs to be roughly 2 log(1/ε) if we want to guarantee
that the statistical distance at most ε. We will refer to L as the entropy loss,
because it equals the difference between the amount of entropy we invest and
the length of the extracted output. By the Markov Inequality we trivially obtain
the following corollary (see also [5], the remark after Theorem D.5)

Corollary 1. For all but most a δ fraction of the functions h ∈ H it holds that
SD(h(X);Um) �

√
2m−k/δ.

This corollary states that for a fixed source X , a fixed hash function yields
a good extractor for all but a small fraction of hash functions. In particular we
obtain the existence of an resilient extractor with parameters as in Theorem 1.

Improved analysis by the second moment technique. In Lemma 2 below
we will prove a much better result than Corollary 1. We will apply the Markov
Inequality for the second moment. Essentially, we bound the deviation of the
probability of hashing X into particular value from its expectation which is 2−m

(from the universal property).

2 They should be related being a perturbed version of the same distribution.
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Lemma 2. Let H be a 2-universal family of hahs functions from n to m bits and
let X be a distribution of min-entropy at least k. Then for all but an δ fraction
of h ∈ H we have SD(h(X);Um) <

√
2m−k/δ.

As an easy corollary we obtain the following theorem, which is much better than
Theorem 2.

Theorem 5 (A resilient TRNG from 2-universal family). Let H be a 2-
universal family of hahs functions from n to m bits and let δ, ε be parameters.
Then for all but a δ fraction of h ∈ H, the function h is a (k, ε, t, δ)-resilient
extractor where

k 	 m+ 2 log(1/ε) + log(1/δ) + t (6)

Proof. The proof will follow from the following claims:

Claim 1. For every X we have

Pr
h←H

[SD(h(X);Um) > ε] � Ey←Um Eh←H (Pr[h(X) = y]− Pr[Um = y])2

2−2mε2
(7)

Claim 2. The expression

E
h←H

(Pr[h(X) = y]− Pr[Um = y])
2

over the distributions X of min-entropy at least k is maximized for a flat X , i.e.
X uniform over a set of size 2k.

Claim 3. For every X uniform over a set of size 2k we have

E
h←H

(Pr[h(X) = y]− Pr[Um = y])
2 ≈ 2−m−k. (8)

Now we give the proofs.

Proof (Proof of Claim 1). By the definition of the statistical distance and the
Markov Inequality we obtain

Pr
h←H

[SD(h(X);Um) > ε] = Pr
h←H

[
E

y←Um

|Pr[h(X) = y]− Pr[Um = y]| > 2−mε

]
� Eh←H (Ey←Um |Pr[h(X) = y]− Pr[Um = y]|)2

2−2mε2
(9)

The inequality between the first and the second moment (which follows imme-
diately from the Jensen Inequality) yields(

E
y←Um

|Pr[h(X) = y]− Pr[Um = y]|
)2

� E
y←Um

(Pr[h(X) = y]− Pr[Um = y])
2
.

(10)
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Combining Equation (11) and Equation (10) changing the order of the expecta-
tions we obtain

Pr
h←H

[SD(h(X);Um) > ε] � Eh←H Ey←Um (Pr[h(X) = y]− Pr[Um = y])2

2−2mε2

� Ey←Um Eh←H (Pr[h(X) = y]− Pr[Um = y])2

2−2mε2
(11)

which finishes the proof. ��

Proof (Proof of Claim 2). This fact easily follows from the extreme point tech-
nique. It is known that every distribution of min-entropy k is a convex combina-
tion of flat distributions of min-entropy k. Our expression is a convex function
of the distribution X . Hence, the maximum is on a flat distribution. ��

Proof (Proof of Claim 3). By expanding the square we get

E
h←H

(Pr[h(X) = y]− Pr[Um = y])2 = E
h←H

Pr[h(X) = y]2

− 2 · 2−m E
h←H

Pr[h(X) = y] + 2−2m

(12)

Let X ′ be an independent copy of X . By the universality of H, we can compute
the first term as follows

E
h←H

Pr[h(X) = y]2 = E
h←H

Pr[h(X) = h(X ′) = y]

= E
h←H

Pr[h(X) = h(X ′) = y|X �= X ′] Pr[X �= X ′]

+ E
h←H

Pr[h(X) = h(X ′) = y|X = X ′] Pr[X = X ′]

= 2−2m Pr[X �= X ′] + 2−m Pr[X = X ′]

≈ 2−2m + 2−m−k (13)

where the last approximation follows from Pr[X = X ′] = 2−k 2 1. By the
universality we also have

E
h←H

Pr[h(X) = y] = 2−m. (14)

The claim follows by pluggingEquation (13) andEquation (14) into Equation (12).
��

The proof is finished. ��

4 Improved Analysis for �-wise Independent Hashing

It is easy to see that Proposition 2 and Lemma 1, together with the observation
that the right hand side Proposition 2 among all X of min-entropy is maximized
for flat X (which follows by convexity, see Claim 2), imply the following
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Theorem 6 (An resilient from �-universal hashing). LetH bean �-universal
family of hash functions from n tom bits and let ε, δ be parameters. Then for all but
a δ fraction of h ∈ H the function h is a (k, ε, t, δ)-resilient extractor where

k 	 m+ 2 log(1/ε) +
2 log(1/δ)

�
+

2t

�
+ log �− 2 (15)

The proofs of Proposition 2 and Lemma 1 are discussed in the next two subsec-
tions. For consistency with some standard notations we denote � = p.

4.1 Bounds on the Fraction of Good Seeds.

We give the proof of Proposition 2

Proof (Proof of Proposition 2). Let δ(y, h) = Pr[h(X) = y]− Pr[Um = y]. Note
that we have SD(h(X);Um) = 1

2 · 2mEy←Um |δ(y, h)|. By the Markov Inequality
we obtain

Pr
h←H

[SD(h(X);Um) > ε] = Pr
h←H

[
E

y←Um

|δ(y, h)| > 2 · 2−mε

]
� Eh←H (Ey←Um |δ(y, h)|)�

2−mp(2ε)�
. (16)

Since for every h we have (Ey←Um |δ(y, h)|)� � Ey←Um |δ(y, h)|� by the Jensen
Inequality, the last equation implies

Pr
h←H

[SD(h(X);Um) > ε] � Eh←H (Ey←Um |δ(y, h)|p)
2−m�(2ε)�

. (17)

The result follows by exchanging the order of the expectations. ��

4.2 Lp-distance between the Output of Hashing and the Uniform
Distribution

Proof (Proof of Lemma 1). We can assume that X is flat. We will use the well-
known estimate on �-wise independent random variables.

Lemma 3 (�-wise independence moment estimate [1]). Let � 	 4 be an
even integer. Let Z1, . . . , Zt be �-wise independent random variables taking values
in [0, 1]. Let Z = Z1 + . . .+ Zn, μ = EZ. Then we have

E |Z − μ|� � C� ·
(
�μ+ �2

)�/2
(18)

where C� = 2
√
π� · e1/6� · (5/2e)�/2 � 8.
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We will apply Lemma 3 to the random variables Zx = 1{h(x)=y} where x ∈
supp(X) and y is fixed. Let δ(x, y) = PrX [h(X) = y]− Pr[Um = y]. We obtain

E
h←H

|δ(x, y)|� = 2−k� ·E

∣∣∣∣∣∣
∑

x∈supp(X)

Zx −EZ

∣∣∣∣∣∣
�

� 2−k� · C� ·
(
� · 2k−m + �2

)�/2
= 2−k� · C� ·

(
2k−m�

)�/2 · (1 + 2m−k�
)�/2

� C� · e2
m−k�2/2 ·

(
2−k−m�

)�/2
and the result follows. ��

5 Conclusion

We improved the security analysis of the TRNG of Barak et al. by carefully
studying the deviation of the probability of hashing into a given location.
The loss in the entropy amount seems to be optimal. An interesting problem
for the future work is to propose different models for controlling environment.
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Abstract. Although there exist rare cases where exponential algorithms
are used with success, practical software projects mostly consist of poly-
nomial code. We present an automatic analysis tool which divides while-
loops in a Java software project into polynomial ones and the rest. The
analysis can be useful for example in software quality assurance, main-
tenance and design of new programming language idioms.

After running our tool on two sets of several medium size Java projects
we conclude that almost 80% of while-loops are trivially polynomial.

1 Introduction

Most work on improving existing programming languages, coding habits or pro-
gram development methodologies are based on problems whose existence comes
from common knowledge and does not result from any thorough analysis of ex-
isting code. The main goal of this work is to propose an automatic analysis of
while-loops to detect ones which, in intent, run in polynomial time (PTIME).
Our secondary goal is to obtain a comprehensive picture of how effective are
simple criteria for polynomial execution time that do not require complicated
analysis of a program and can be applied by a relatively fresh person (e.g.
a new developer in a programmers team, a quality assurance person not deeply
involved in the project or a person in a software maintenance team).

The polynomial complexity is often identified with the limit of efficient com-
putation, although a number of practical exponential algorithms are in everyday
use (e.g. extended regexp matching, see [5]). We establish a number of typical
cases, such as counting up to a specified integer, reading an input stream, or
iterating over a data structure. In the end it turns out that about 80% of the
while-loops are trivially polynomial. Our analysis is rough, it is not backed up
by any formal treatment of the loops’ complexity. Its goal is to provide an ex-
perimental background for a proposal of a new programming language in which
polynomial loops would be syntactically or statically distinguished from the other
ones. Our aim is an evolutionary change in programmers’ habits with a view to-
wards more readable and more maintainable code. In particular we want to be
able to statically detect more programming errors such as unintended change of
loop control variable. The proposal itself is out of scope of the current paper.
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It can be reasonably expected that most loops should be polynomial and
the others likely have some kind of mistake. In fact it is rare to find correct
code which is not polynomial in a regular software project. This work serves as
a quantitative base of this assumption; we propose a number of categories of
polynomial loops, encode them as XPath expressions over abstract syntax trees
and, using a code scanning tool CodeStatistics [4], for a given Java project we
can calculate the number of loops that are easily checked as being polynomial.

Our analysis is not a precise one. Unlike the line of research connected with
Implicit Computational Complexity [2], we do not aim at giving precise linguistic
criteria to select programs in PTIME. Instead, we work on real code and give
only an estimate on the number of polynomial loops. Of course there are many
loops which are perfectly correct (and polynomial) and do not fit into any of
our categories. On the other hand, the number of iterations of some loops in our
categories may be bounded by a variable’s value, which itself may be exponential
with respect to the size of input. Nevertheless we treat them as polynomial.

A similar pragmatic analysis of code is done by many tools such as Find-
Bugs [11] or CheckStyle [1], which help limit the quality assurance effort Using
these programs as part of regular development toolchain can greatly improve
the code quality without inducing any significant cost (a detailed analysis can
be found in Section 4 of [10]).

A few static approaches to inference of complexity of loops were described
previously. One of them was proposed by Shkaravska, Kersten, and van Eeke-
len [14] and is based on assumption that running time is given exactly by a
polynomial (or combination of polynomials depending on the loop condition),
coefficients of which are determined with test runs of the loop. Ermedahl et al.
have studied derivation of numerical upper bounds of the execution time of the
program ([3]). Hoffman et al. [8] have shown analysis of worst-case polynomial
bounds of programs in a simplified functional programming language. One of the
other approaches is generation of bounds which are linear combinations of vari-
ables, developed by Gulwani et al. [6], which needs some additional user-defined
functions for the description of data structures used in the program.

Another approach at computing polynomial time bounds is shown in work of
Gulwani and Zuleger [7] who have achieved 76% success rate in analysing .NET
binaries. The difference to our works is that (i) we operate on source code with
no translation during analysis, so our results can be easily related to source code
which would benefit presentation to programmer (ii) we do not limit the iteration
control, whereas in the work of Gulwani only arithmetic and boolean control is
analysed (iii) we deal explicitly with loops doing input/output operations.

Kasai and Adachi [12] propose a language of essentially for-loops designed in
a way that allows syntactic characterization of for polynomial functions.

The paper is organized as follows. Section 2 presents details of our loop cat-
egories together with examples of corresponding XPath rules. Section 3 reports
the results of the study performed on a set of several open source Java projects
together with actual code snippets presenting various loop categories. The num-
bers resulting from this analysis are compared with the analysis of another set
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of Java projects. In Section 3.4 we present related work on for-loops that can
easily be combined with our analysis and we conclude in Section 4.

2 Analysis

2.1 Cost Model

Analysis of complexity is always relative to a cost model associated with the
computation process. The model should describe (1) which data is taken into
account as input, (2) which resources are counted (e.g. time, memory, network
connections etc.) and (3) which elements of the model cause charging for the
resource (e.g. firing of a rule in a Turing machine is charged one time unit).

In this study, we focus on running time analysis of Java programs. As input
we take the numerical variables occurring in a loop as well as the graph structure
of the objects reachable from the variables in scope. We charge one time unit for
a simple operation such as assignment, addition, control-flow split etc.

In general, there are three approaches possible for measuring complexity of
programs operating on numerical variables. The first two are strict from the
complexity theory point of view, but highly counter-intuitive. The third one is
a compromise, which follows the human intuition about program complexity, but
has some unexpected properties as far as the complexity theory is concerned.

In the first approach all 32-bit integers are viewed as symbols of a Turing
machine alphabet rather than actual input data. In this view, input data is
stored in external massive storage devices such as disks since this may make
a potentially infinite input size (see e.g. [13]). This model follows our intuition
when operations on data-structures are considered, but is rather disconcerting
when numeric programs are considered. Indeed, basic operations on integers are
here naturally constant-time operations, as they produce one integer as a result.
However it follows that all numeric programs run basically in constant time, as
they use at most constant number of additional 32-bit integer variables, which all
can range over a constant number of values, so the total number of configurations
is constant (although this might sometimes be quite a big constant).

In the second model machine integers are bit sequences. In this view basic
operations on integers, such as addition, have linear complexity, and any program
whose number of operations is linear with respect to the number represented by
the input value is in fact exponential, which is again contrary to the intuition.
This model is followed quite often when cryptographic algorithms are analysed.

The model that is most often adopted in the analysis of algorithms and pro-
grams consists in treating integers as unary values, e.g. an integer of value
n has size n, but nevertheless considering basic operations on integers as atomic,
i.e., done in constant time. This model agreeswith the common intuition, but leads
to paradoxes as far as complexity theory is concerned. For example consider the
program in Figure 1. It works in linear time with respect to the value (and size)
of n, but the final value of k is 2n, whose size is exponential. So it produces expo-
nential output in linear time. No Turing Machine can do such a thing!
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k = 1 ;
i = 0 ;
while ( i < n) {

k = k + k ;
i++;

}

Fig. 1. Linear program calculating an exponential value

We adopt here the view of the second model.1 It is important to remark
that our meaning of polynomial loops amounts only to limiting the number of
iterations of the loop. Such polynomial loops do not compose well, in a sense
that nested or even subsequent polynomial loops can in fact run in exponential
time. Consider the two programs presented in Figure 2 (loops are presented as
for-loops for the sake of readability).

k = 1 ;
for ( i = 0 ; i < n ; i++) {

k = k + k ;
for ( j = 0 ; j < k ; j++) {

doSomething ( ) ;
}

}

k = 1 ;
for ( i = 0 ; i < n ; i++) {

k = k + k ;
}
for ( j = 0 ; j < k ; j++) {

doSomething ( ) ;
}

Fig. 2. Two polynomial loops make an exponential program

Although in both programs the number of iterations of both loops is bounded
by values of variables that are not modified in their bodies, since the value of
k can grow to be exponential, doSomething is executed exponential times as so
is bounded the number of iterations of the second loop. At the same time the
second loop analysed in isolation is perfectly polynomial since given a bound
k it iterates a polynomial number of times with respect to the value.

Having in mind these paradoxes we have consciously decided to follow this
inconsistent model in our study. The main reason for this is that we want to
obtain a picture based upon the way the programmers view their code. We
believe also that the community of programmers is likely to adopt solutions that
help in code management in accordance with their point of view and they will
disregard methods that claim a program is non-polynomial while they see at
first sight it is.

1 A language sensitive to complexity issues should make it possible to distinguish which
model is used in a particular piece of code. This is not available in contemporary
programming languages.
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Table 1. Versions of programs used as sources for experiments. The second set of
programs shown below the line was used for verification of rules.

Program Version
Apache Tomcat 7.0.32
Googla App Engine SDK 1.7.2.1
Apache Hadoop 1.0.4
Hibertate 4.1.7.Final
Oracle Berkeley DB 5.0.58
JEdit 5.0pre1
AspectJ 1.7.2
Spring Framework 3.1.1
Vuze 5.0.0.1

2.2 Scope

Our experiment consists of analysing while-loops in six open-source Java pro-
grams: Apache Hadoop, Google App Engine SDK, JEdit, Hibernate, Oracle
Berkeley DB, Apache Tomcat (for exact versions see Table 1). This is the same
selection as of the previous analysis done on the for-loops with CodeStatistics,
which covered the for-loops [4]. The body of the programs outside of the loops
is not analysed and recursion is not taken into account.

In the chosen projects almost 35% of loops are while-loops, while the other
approximately 65% are for-loops. We do not consider do-while-loops as they
constitute less then 1% of the total number of loops. We do not analyse the for-
loops because a similar analysis was done previously be Fulara and Jakubczyk [4],
but we do relate their categories with our notion of a polynomial loop.

For the sake of simplicity we do not analyse termination of loops by throwing
an exception, as it is generally hard to detect in Java given the existence of
unchecked exceptions. However an exception can only lead to a decrease in the
number of iterations.

The aim of this work is to categorize approximately 80% of the loops. This
would give a reasonable ground for introducing to a programming language
a syntactic distinction between “safe” (i.e. polynomial) loops and unsafe ones.
The unsafe loops, constituting 20% of the total number of loops in the program,
could be marked as possibly unsafe and left for more detailed checks by the
programmer.

2.3 Tools

The tool used for the analysis of Java code is CodeStatistics [4]. It translates the
abstract syntax tree of a Java source file to an XML representation and counts
the numbers of matches for each of the specified XPath expressions. For debug-
ging and/or further analysis, CodeStatistics can print each matched fragment
together with the matching XPath expression. An example of CodeStatistics
XPath rule is presented in Figure 3.
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<d e s c r i p t i o n name="while−read−wr i t e " xpath=’//WhileStatement [
(

// MethodInvocation [ s t a r t s−with (@methodName , " read ") ]
or
// MethodInvocation [ s t a r t s−with (@methodName , " wr i t e ") ]
or
// MethodInvocation /Name/ a t t r i b u t e : : fu l lname = "System . in "

)
] ’/>

Fig. 3. An example of a rule definition. This rule selects all loops which either call
method read or write on any object or call any method of System.in

2.4 Methodological Remarks

Real programming languages deal with phenomena that are absent from the
focus of complexity theory. We have to fit them somehow into the framework of
the theory. Here are the major issues that we take into account.

Polynomial loops. The main goal of the analysis is to identify polynomially
bounded loops. We consider a loop as polynomially-bounded if its execution
time is bound by a single variable polynomial, for which the variable is a value
which either exists in memory or can be polynomially calculated from values in
memory.

System interaction. There are loops for which main reason of existence is in-
teraction with the outside world. This includes for example reading or writing
data, waiting for other threads and so on. We categorize these loops in a sepa-
rate category as the complexity of the interaction is generally not defined in the
usual computation models such as Turing machines.

We assume that loops that interact with system by the methods outlined
above are polynomial, which is backed by a simple argument that a loop which
reads some data in every iteration does need at least as much amount of data as
the number of iterations. The same applies, in a slightly more convoluted way,
to writes — the usual notion of polynomial execution time refers to decision
problems on Turing machines, so to express a problem of producing output we
must include the output of the program in the input of the decision problem. We
see the inter-process communication the same way — a communication can be
seen as transfer of some information between threads, which a Turing machine
would have to include in the input tape.

Aliasing. In all places where this may be a problem potential aliasing of variables
is not taken into account, i.e. we consider all objects to be different instances.
For more detailed view of the problem see for example [9].
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3 Results

3.1 Rules of Categorization

System interaction: sleep-wait-notify. This rule selects all loops in which a call
to Thread.sleep or wait, notify, notifyAll on any object is done. An example of
a loop which is categorized in this category is shown in Figure 4(a).

System interaction: read-write. This rule catches all loops where method read
or write of any object is called or there is a call to any method of System.in; see
Figure 4(b). Only calls to method write on System.out are caught as it turned
out that other methods are mostly used for debugging or logging of messages,
which would categorize otherwise innocent loops as system interactions.

while ( ! stopAwait ) {
try { Thread . s l e ep (10000) ; }

catch ( InterruptedExcept ion ex ) { } }

(a) An example of loop in the category System interaction: sleep-wait-notify.

while ( ( l i n e=br . readLine ( ) ) != null ) {
i f ( v e r s i on == null && l i n e . con ta in s ( key ) ) {

v e r s i on=l i n e . sub s t r i n g ( l i n e . indexOf ( key ) + key . l ength ( ) ,
l i n e . l ength ( ) − 1) ; } }

(b) An example of loop in the category System interaction: read-write.

while ( s t . hasMoreTokens ( ) ) {
S t r ing pane=s t . nextToken ( ) ;
addOptionPane ( pane ) ;

}

(c) An example of loop in the category Linear iteration: iterators.

Fig. 4. Categories of loops

The following categories include loops that satisfy a particular condition but
do not belong to any of the “system interaction” categories.

Linear iteration: iterators. This category looks for calls of methods which are
either advancing an iterator or checking if a collection is empty, in which case
it can be reasonably expected that elements are removed from the collection
as they are processed. More specifically, the rule catches all loops where the
condition either is just an invocation of a method with one of the names hasNext,
hasPrevious, hasMoreElements, hasMoreTokens, isEmpty on an object or an
expression which includes invocation of method size or length, for example like
in Figure 4(c).
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This should catch most of iterations with standard collections’ iterators, the
Enumerable interface and usage of StringTokenizer. As in general it is not pos-
sible to tell if a collection is not altered in loop body, 100 loops matching this
rule were selected at random and hand-checked for additions to the iterated col-
lection, and it was found out that there were none. It was found out as well that
99% of checked loops had a next (or corresponding) call on each if-branch.

Linear iteration: local counter. The existence of this rule is motivated by the
following example loop:
while ( end > s t a r t ) {

byte temp=buf [ s t a r t ] ;
buf [ s t a r t ]=buf [ end ] ;
buf [ end]=temp ;
s t a r t++;
end−−;

}

Assuming non-negative starting values and no overflows the condition even-
tually becomes false, as the direction of increasing/decreasing of variables is
towards the check failing. The example was generalised to select all loops in
which at least one of the check operands is a local variable that is increased or
decreased in the desirable way (only operators -- and ++ are taken into account),
is not assigned to, and if the other operand is a local variable as well it is not
assigned to and does not increase/decrease in the undesirable way.

3.2 Categorization of Loops

The results of categorization are given in Figure 5. It should be noted that the
intersections between categories are not always empty (but the “linear” cate-
gories explicitly exclude the “system interaction” categories); the total number
of 80.87% of loops which are categorized is the difference between 100% and the
number of uncategorised loops, so that it is correct with non-zero intersections
as well.

To make the intersections more clear additional calculation of the number
of loops which are categorized simultaneously in two categories was performed.
Results of that analysis are shown in Table 2. The rules which excluded system
interactions from other categories were turned off for that analysis, therefore
numbers for some categories are bigger than in Figure 5.

After developing the set of rules a second evaluation was done on additional
set of programs in order to check if the rules were not overtrained to specific
examples used during the test. The results are shown in Figure 6; in total 72%
of loops were categorized.

3.3 Sights

During the experiments a number of interesting sights could be noticed. First,
some of the loops have a termination condition which depends on some non-
trivial invariant property of certain objects, for example on acyclity of the graph
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program all loops uncategorized linear iteration system interaction
iterators local counter read sleep-wait

write notify
appeng 6 2 1 3
hadoop 1274 137 82 47 890 472
hibernate 739 94 464 8 170 5
berkdb 830 241 123 42 319 175
jedit 394 143 65 36 138 12
tomcat 1017 198 219 65 461 187
total 4260 815 954 198 1978 854
percent of all 19.13% 22.39% 4.65% 46.43% 20.05%
categorized loops 80.87%
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Fig. 5. Results of categorization of while-loops with rules given in Section 3.1

of relevant objects in the heap. We feel that those loops should be at least
commented in some way by the programmer. We have also found that 0.28% of
loops are not terminated by neither loop condition nor usual flow control (break,
return etc.), and are probably using exceptions for terminating the loops. We
think that those loops should be clearly commented as well.

3.4 For-Loops

After categorizing over 80% of while-loops it is a natural extension to check if a
similar result can be obtained for the for-loops. Building onto work of Fulara and
Jakubczyk [4] let’s recall their result of generating decreases formula for 74.4%
of for-loops. Considering their categories and how the expression which shall de-
crease is built we can see what is its relationship to other variables in the program,
and therefore infer an upper bound on the complexity. All of the rules used in
the referenced results excluded any additional modifications of control variables;
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program all loops uncategorized linear iteration system interaction
iterators local counter read sleep-wait

write notify
aspectj 1453 626 93 176 532 74
spring 187 98 55 8 9 8
vuze 1485 151 426 51 704 318
total 3125 875 574 235 1245 400
percent of all 28.00% 18.37% 7.52% 39.84% 12.80%
categorized loops 72.00%
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Fig. 6. Results of categorization of while-loops for second set of test programs

Table 2. Intersections of categories as absolute numbers and percentages of their
categories

iterators local counter read-write sleep-wait-notify
iterators 0 12 1050 166
local counter 0 230 117
read-write 0 532
sleep-wait-notify 0

iterators local counter read-write sleep-wait-notify
1537 478 1978 854

iterators 1537 0 3% / 1% 53% / 68% 19% / 11%
local counter 478 0 12% / 48% 14% / 24%
read-write 1978 0 62% / 27%
sleep-wait-notify 854 0
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that means that it is only necessary check the other operand of the comparison in
loop guard. It turns out that in every case this is known upon entering the loop:
Literal. A literal cannot be changed in any way, so literal-bounded loop has
complexity O(1).
Constant. Using a constant is practically equivalent to using a literal (with a
type), so the complexity is still O(1).
Final field. A final field in a program is effectively a constant known upon
entering the loop.
Local expression. This category consists of loops for which the number of loop
body executions is bounded by an expression which uses only local variables
not modified in the loop body. The complexity of such loop depends on the
expression which is used: it is polynomial if the expression is polynomial. As we
do not check functions which may be called, the only way to write an expression
which is not polynomial in our case is to use bit shift or unary negation operators,
which can produce numbers exponentially big with respect to their operands.
Additional check was ran for that category to check if the expressions contain
aforementioned operators, and it was found out that there are no uses of those
operators in the studied projects.

3.5 Recapitulation of Results

Taking the above analysis of for-loops into account it turns out that all of the
previously categorized for-loops have polynomial complexity. That means than
in total we have

74.4% · 65%+ 80.8% · 35% ≈ 76.6%

of loops categorized.
Our rules and instructions to reproduce the results, with links to the tools

used, are available on the webpage http://codestatistics.mimuw.edu.pl/.
The webpage also contains an extended version of this paper with additional
examples.

4 Conclusions and Future Work

We have presented an automatic analysis tool which detects clearly polynomial
while-loops in a Java software project. The polynomial loops are divided into
several categories, such as iterating to a specified integer value, reading an input
stream, or visiting a data structure. We ran our tool on two sets of several
medium size open source Java projects and, as expected, it turned out that
almost 80% of while-loops are trivially polynomial. We believe that this is also
the amount of polynomial time loops that can be judged as such by programmers
or software engineers that are not deeply involved in the project.

The analysis we presented can be extended in various ways. One of the exten-
sions would be to transform the categories of while-loops into the corresponding
ones for the for-loops, which would improve the analysis described in [4].

http://codestatistics.mimuw.edu.pl/
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The presented analysis constitutes a necessary starting point for further in-
vestigations on how to apply implicit computational complexity methods to real
languages such as Java. For example a programming language could introduce
separate keyword for loops which are possibly non-polynomial and reject or warn
about loops which do not use the keyword but do not seem to be polynomial.
Another useful conclusion that can be drawn from the analysis is that a useful
category that could have its own separate syntax is the category of loops that
deal with input and output.
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Reniers, Michel A. 230
Romijn, Lotte 463
Rosenke, Christian 364
Rossberg, Michael 401
Rothenberger, Ralf 401
Rubinchik, Mikhail 289
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