
Chapter 2
Optimization Models

To model and solve a bi-level or multi-level optimization problem, we have to first
understand basic single-level optimization models and related solution methods.
This chapter introduces related concepts, models and solution methods of basic
single-level optimization including linear programming, non-linear programming,
multi-objective programming, goal programming, Stackelberg game theory, and
particle swarm optimization. These knowledge will be used in the rest of the book.

This chapter is organized as follows. Section 2.1 introduces basic single-level
optimization concepts and models. Section 2.2 presents the solution method of
linear programming. Section 2.3 addresses non-linear programming by its defini-
tion, classification, theories, and solution methods. Section 2.4 gives the models and
solution methods of multi-objective programming. Section 2.5 introduces goal
programming and its solution process. In Sect. 2.6, we present the principles,
theorems and applications of Stackelberg game theory. Particle swarm optimiza-
tion, which will be used as a solution method for non-linear optimization problem,
is then introduced in Sect. 2.7. Section 2.8 presents a summary.

2.1 Concepts

The core of the decision process is to formulate an identified decision problem and
then find an optimal solution. Many decision models have been developed and
different types of decision models require different kinds of decision-making
methods to obtain solutions. Popular decision models include (1) Analytic Hier-
archy Process (AHP), which allows consideration of both the qualitative and
quantitative aspects of a decision problem and reduces a complex decision to a
series of pairwise comparisons; (2) Grid Analysis, also known as decision matrix
analysis or multi-attribute utility theory, in which the decision matrices are the most
effective, and multiple alternatives and criteria will be taken into account in the
decision process; (3) Decision Tree, which is a graph of decisions and their possible
consequences, is used to create a plan to reach a goal; and (4) Optimization model
which is a more sophisticated approach to solve decision problems and is the main
focus of this book.

© Springer-Verlag Berlin Heidelberg 2015
G. Zhang et al., Multi-Level Decision Making,
Intelligent Systems Reference Library 82, DOI 10.1007/978-3-662-46059-7_2

25

Optimization, also called mathematical programming, refers to the study of
decision problems in which one seeks to minimize (min) or maximize (max) a
function by systematically choosing the values of variables within their allowed
sets. Many real-world decision problems can be modeled by an optimization
framework. To model a decision problem as an optimization model, we need, in
principle, three sets of basic variables: decision variables, result variables and
uncontrollable variables (or parameters).

Decision Variables describe alternative courses of action and are determined by
related decision makers. For example, for a product planning problem, the number
of products to be produced is a decision variable.

Result Variables are outputs and are often described by objective functions, such
as profit (max) and cost (min). The outputs are determined by decision makers, the
factors that cannot be controlled by decision makers, and the relationships among
the variables.

Uncontrollable Variables (or Parameters) are the factors that affect the result
variables but are not under the control of decision makers. These factors can be
fixed, in which case they are called parameters, or they can vary. These factors are
uncontrollable because they are determined by elements of the system environment.
Some of these variables limit decision makers and therefore form what are called
the constraints of the problem. For example, each product’s cost of production
should be less than the total profit, and each product should meet marketing
requirements and so on in a product planning problem.

There are many types of optimization models such as linear programming, non-
linear programming, multi-objective programming, and bi-level programming.

Linear Programming (LP) is an important type of optimization in which the
objective function and constraints are all linear. Linear programming problems
include specialized algorithms for their solutions and for other types of optimization
problems by solving linear programming problems as sub-problems. Linear pro-
gramming is heavily used in various management activities, either to maximize the
profit or minimize the cost. It is also the key technique of other optimization
problems.

Now, we re-consider Example 1.1 discussed in Chap. 1 to explain how to build a
model for an LP practical decision problem.

Example 2.1 A company produces two kinds of products: A and B. We know that
the profit of one unit of A and B is $40 and $70, respectively. However, the
company has limitations in its labor (a total of 501 labor hours available per time
slot; each A needs 4 h and B 3 h), machine (a total of 401 machine hours available,
each A needs 2 h and B 5 h), and marketing requirements (the need to produce 10
units of A and 20 units of B respectively). The decision problem is how many A and
B should be produced to obtain the maximum profit. Using these settings and
requirements, we can establish a linear programming model:

26 2 Optimization Models

http://dx.doi.org/10.1007/978-3-662-46059-7_1
http://dx.doi.org/10.1007/978-3-662-46059-7_1

Decision variables:

x1 ¼ units of A1 to be produced;

x2 ¼ units of A2 to be produced:

Result variable (objective function):
Maximize total profit: 40x1 þ 70x2;
Labor constraint (hours): 4x1 þ 3x2 � 501;
Machine constraint (hours): 2x1 þ 5x2 � 401;
Marketing requirement for x1 (units): x1 � 10;
Marketing requirement for x2 (units): x2 � 20:

This is a linear programming problem and can be modeled by linear program-
ming (see Sect. 2.2).

Non-linear Programming (NLP) is the process of solving a programming
problem subject to certain constraints, over a set of unknown real variables, along
with an objective function to be maximized or minimized, as with linear pro-
gramming, but where some of the constraints or the objective function are non-
linear. For example,

min
x1;x2

40x21 þ 70x32

s:t: x21 þ 20x2 � 100;

2x1 þ 3
ffiffiffiffiffi
x2

p � 140;

x1 � 10; x2 � 20:

Multi-objective Programming (MOP) is the process of simultaneously opti-
mizing two or more conflicting objectives subject to certain constraints. MOP
problems can be found in a variety of fields, such as product and process design,
aircraft design, automobile design, or wherever optimal decisions need to be made
in the presence of trade-offs between two or more conflicting objectives. Maxi-
mizing profit and minimizing the cost of a product; maximizing performance and
minimizing the fuel consumption of a vehicle; and minimizing weight while
maximizing the strength of a particular component are all examples of multi-
objective optimization problems.

In general, a multi-objective programming problem should not have a single
solution that simultaneously minimizes or maximizes each objective to its fullest. In
each case an objective must have reached a point such that, when attempting to
optimize the objective further, other objectives suffer as a result. Finding such a
solution, and quantifying how much better this solution is compared to other
solutions, is the goal when setting up and solving a multi-objective optimization
problem. For example,

2.1 Concepts 27

min
x1;x2

40x1 þ 70x2
50x1 þ 60x2

� �

s:t: 10x1 þ 20x2 � 109;

20x1 þ 30x2 � 419:

Bi-level programming (BLP) and multi-level programming (MLP) are complex
optimization situations where one optimization problem is embedded in another
one. A bi-level programming problem is a multi-level programming problem
having two levels. Below is an example of bi-level programming. More detail will
be presented in Chap. 3.

min
x1

40x1 þ 70x2

s:t: 10x1 þ 20x2 � 119;

20x1 þ 30x2 � 409;

min
x2

50x1 þ 60x2

s:t: 10x1 þ 8x2 � 109;

x1 � 10; x2 � 2:

We can see that optimization is an ideal model for decision making. The single
limitation is that it works only if the problem is structured and, for the most part,
deterministic. An optimization model defines the required input data, the desired
output, and the mathematical relationships in a precise manner.

2.2 Linear Programming

Linear programming is a mathematical approach to determining a means to achieve
the best outcome (such as maximum profit or minimum cost) in a given mathe-
matical model. This model is defined by an objective function and one or more
constraints which have linear formats. A typical example would be taking the
limitations of materials and labor described by linear inequalities, and then deter-
mining the “best” production levels for the maximal profit defined by a linear
formula, under those limitations.

LP problem can be written as:

max
x

f ðxÞ ¼ cx

s:t: Ax � b;
ð2:1Þ

where x represents the vector of decision variables, c and b are vectors of known
coefficients, and A is a known matrix of coefficients. The expression f(x) to be

28 2 Optimization Models

http://dx.doi.org/10.1007/978-3-662-46059-7_3

maximized (in other cases, it may be minimized) is called the objective function.
The equations Ax ≤ b are the constraints which specify a convex polytope over
which the objective function is to be optimized. Both f(x) and Ax have linear
formats.

Linear programming has a tremendous number of application fields. It has been
used extensively in business and engineering, in the areas of transportation, energy,
telecommunications, and manufacturing. It has been proved to be useful in modeling
diverse types of problems in planning, routing, scheduling, assignment, and design.

Just as with standard maximization problems, the method most frequently used
to solve LP problems is the simplex method (Charnes and Cooper 1957). This
method provides us with a systematic way of examining the vertices of the feasible
region to determine the optimal value of the objective function. As is well-known,
the simplex method has proven remarkably efficient in practice.

2.3 Non-linear Programming

Non-linear programming is the process of solving a problem of equalities and
inequalities, collectively termed constraints, over a set of unknown real variables,
along with an objective function to be maximized or minimized, where some of the
constraints or the objective function are non-linear. Formally, an NLP problem can
be written as:

min
x

f ðxÞ ð2:2aÞ

s:t: hðxÞ ¼ 0; ð2:2bÞ

gðxÞ� 0; ð2:2cÞ

where x 2 Rn; f : Rn ! R; h : Rn ! Rp; g : Rn ! Rq: A point x that satisfies the
constraints given by (2.2b) and (2.2c) is called a feasible solution to problem (2.2a)–
(2.2c). A collection of all such feasible solutions forms the feasible region. NLP is
then use to search a feasible solution �x such that f ð�xÞ� f ðxÞ for any feasible solution
x. �x is called an optimal solution to the problem (2.2a–2.2c). In special cases when
the objective function of (2.2a) and constraints (2.2b) and (2.2c) all have linear
forms, the problem (2.2a–2.2c) reduces to a linear programming problem (2.1).

2.3.1 Varieties of Non-linear Programming

Based on the mathematical characteristics of the objective function (2.2a) and the
constraints (2.2b) and (2.2c), NLP can be in many different formats. For an
objective function or a constraint, the format can be linear, sum of squares of linear

2.2 Linear Programming 29

functions, quadratic functions, sum of squares of non-linear functions, sparse non-
linear functions, or non-smooth non-linear functions.

Based on combinations of the above formats of the objective and constraints, an
NLP problem can be a specific type (such as linear objective function, but the
constraint is a quadratic function) and thus have particular properties.

2.3.2 Theories and Optimality Conditions of Non-linear
Programming

In this section, we introduce the most important and widely used theories and opti-
mality conditions of NLP. We first denote the feasible region of problem (2.2a–2.2c)
by S. The following definitions and results can be found in Bazaraa et al. (2013).

Definition 2.1 A point x� 2 S is called a relative or local minimum of f(x) over S if
there is an e[0 such that f ðxÞ� f ðx�Þ for all x 2 S within a distance ε of x�. If
f ðxÞ[f ðx�Þ for all x 2 S, x 6¼ x� within a distance ε of x�, then x� is called a strict
relative minimum of f(x) over S.

Definition 2.2 A point x� 2 X is called a global minimum of f(x) over S if
f ðxÞ� f ðx�Þ for all x 2 S. If f ðxÞ[f ðx�Þ for all x 2 S, x 6¼ x�, then x� is called a
strict global minimum of f(x) over S.

For situations where constraints are absent, the following two theorems hold.

Theorem 2.1 Let f : Rn ! R be twice continuously differentiable throughout a
neighborhood of x�. If f has a relative minimum at x�, then it necessarily follows
that

1. The gradient vector rf ðx�Þ ¼ 0.
2. Fðx�Þ is positive semi-definite, where Fðx�Þ is the Hessian matrix of f(x) at x�.

Theorem 2.2 Let f : Rn ! R be twice continuously differentiable throughout a
neighborhood of x�. Then a sufficient condition for f(x) to have a strict relative
minimum at x�, where rf ðx�Þ ¼ 0 holds, is that Fðx�Þ is positive definite.

For NLP problems involving only equality constraints, the following definition
and theories hold.

Definition 2.3 A point x� satisfying the constraints hðx�Þ ¼ 0 is called a regular
point of the constraints if the gradient vectors rh1ðx�Þ; . . . ;rhmðx�Þ are linearly
independent.

Theorem 2.3 At a regular point x� of the surfaces S ¼ fxjhðxÞ ¼ 0g, the tangent
plane is equal to T ¼ fyjrhðxÞy ¼ 0g.

30 2 Optimization Models

Theorem 2.4 Suppose that x� is a local minimum of f(x) subject to hðxÞ ¼ 0 as well
as a regular point of these constraints. There then exists a vector k 2 Rm such that
rf ðx�Þ � krhðx�Þ ¼ 0.

The following definitions and theories are used for the general NLP problem
(2.2a–2.2c).

Definition 2.4 Let x� be a point satisfying the constraints h x�ð Þ ¼ 0 and g x�ð Þ� 0;
and let J be the set of indices j such that gjðx�Þ ¼ 0. Then x� is called a regular
point of these constraints if the gradient vectors rhi x�ð Þ 1� i�mð Þ, rgjðx�Þðj 2 JÞ
are linear independent.

Theorem 2.5 (Kuhn-Tucker Conditions) Let x� be a relative minimum for the
problem (2.2a–2.2c) and suppose that x� is a regular point for the constraints.
Then there exists a vector k 2 Rm and a vector l 2 Rq such that

rf x�ð Þ � krh x�ð Þ � lrg x�ð Þ ¼ 0; ð2:3aÞ

lg x�ð Þ ¼ 0; ð2:3bÞ

l� 0; ð2:3cÞ

h x�ð Þ ¼ 0; g x�ð Þ� 0: ð2:3dÞ

2.3.3 Methods for Solving Non-linear Programming
Problems

For an NLP problem in which the objective function and constraints have linear
forms, the problem becomes an LP problem which can be solved using the well-
known simple algorithm.

If the objective function of an NLP problem is convex (for the minimization
problem), or concave (for the maximization problem), and the constraint set is
convex, then the programming problem is called a convex programming problem
and general methods from convex optimization can be used.

Several methods are available for solving non-convex problems. One method is
to use special formulations of LP problems. Another involves the use of the branch-
and-bound technique, where the programming problem is divided into subclasses to
be solved with convex (minimization problem) or linear approximations that form a
lower bound on the overall cost within the subdivision. With subsequent divisions,
an actual solution will be obtained at some point whose cost is equal to the best
lower bound obtained for any of the approximate solutions. This solution is opti-
mal, although possibly not unique. The method may also be terminated early, with
the assurance that the best feasible solution is within a tolerance of the best point

2.3 Non-linear Programming 31

found; such points are called e-optimal solution. Terminating to e-optimal solution
is typically necessary to ensure finite termination. This is especially useful for large,
difficult problems, and problems with uncertain costs or values where the uncer-
tainty can be estimated with appropriate reliability estimation.

Under differentiability and constraint qualifications, the Kuhn–Tucker conditions
provide the necessary conditions for a solution to be optimal. Under convexity,
these conditions are also sufficient.

The most popular methods for NLP problems include Zoutendijk’s feasible
direction method, the gradient projection method, the penalty method, and the
Lagrangian method (Bazaraa et al. 2013).

The above-mentioned methods depend on certain mathematical properties of the
NLP problems to be solved. Sometimes, these properties are difficult to satisfy. In
such situations, these methods become invalid. Heuristics-based methods such as
Genetic Algorithms (Tang et al. 2011), Particle Swarm Optimization (Nezhad et al.
2013), on the other hand, do not have this limitation and are thus another direction
for NLP problems.

2.4 Multi-objective Programming

The main characteristics of Multi-objective Programming (MOP) are that decision
makers need to achieve multiple objectives simultaneously while these multiple
objectives are non-commensurable and conflict with each other.

2.4.1 Multi-objective Programming Model

An MOP model considers a vector of variables, objective functions, and con-
straints. It attempts to maximize (or minimize) the objective functions. Since this
problem rarely has a unique solution, we expect to choose a solution from among
the set of feasible solutions, which will be explained later in this section. Generally,
a MOP problem can be formulated as follows:

max
x

f ðxÞ
s:t: x 2 X ¼ xjgðxÞ� 0f g

ð2:4Þ

where f xð Þ represents k conflicting objective functions, g xð Þ� 0 represents m
constraints, and x 2 Rn is a n-dimensional vector of decision variables.

Multi-objective linear programming (MOLP) is one of the most important forms
of MOP problems, which are specified by linear objective functions subject to a set
of linear constraints. The standard form of a MOLP problem can be written as
follows:

32 2 Optimization Models

max
x

Cx

s:t: x 2 X ¼ xjAx� bf g
ð2:5Þ

where C is a k � n objective function matrix, A is an m� n constraint matrix, b is a
m-dimensional vector, and x is a n-dimensional vector of decision variable.

We have the following notion for a complete optimal solution.

Definition 2.5 (Sakawa 1993) x� is said to be a complete optimal solution, if and
only if there exists a x� 2 X such that fi x�ð Þ� fi xð Þði ¼ 1; . . .; kÞ) for all x 2 X:

Also, ideal solution, superior solution, or utopia point are equivalent terms
indicating a complete optimal solution (Lu et al. 2007).

In general, a complete optimal solution that simultaneously maximizes (or
minimizes) all objective functions does not always exist when the objective func-
tions conflict with each other. Thus, a concept of Pareto optimal solution is
introduced into MOLP.

Definition 2.6 (Sakawa 1993) x� is said to be a Pareto optimal solution, if and only
if there does not exist another x 2 X such that fi xð Þ� fi x�ð Þ for all i and fi xð Þ 6¼
fi x�ð Þ for at least one i.

The Pareto optimal solution is also called a non-dominated solution, non-inferior
solution, efficient solution, and non-dominate solution.

In addition to the Pareto optimal solution, the following weak Pareto optimal
solution is defined as a slightly weaker solution concept than the Pareto optimal
solution.

Definition 2.7 (Sakawa 1993) x� is said to be a weak Pareto optimal solution, if
and only if there does not exist another x 2 X such that fi xð Þ[fi x�ð Þ; i ¼ 1; . . .; k.

Here, let XCO, XP and XWP denote complete optimal, Pareto optimal, and weak
Pareto optimal solution sets, respectively. Then from above definitions, we can
easily obtain the following relations:

XCO � XP � XWP: ð2:6Þ

A satisfactory solution belongs to a reduced subset of the feasible set that exceeds
all of the aspiration levels of each objective. A set of satisfactory solutions is
composed of acceptable alternatives. Satisfactory solutions do not need to be non-
dominated, and a preferred solution is a non-dominated solution selected as the final
choice through decision makers’ involvement in the information processing stage.

The rest of this chapter focuses mainly on MOLP, the linear form of MOP.

2.4 Multi-objective Programming 33

2.4.2 Multi-objective Linear Programming Methods

The methods for solving MOLP problems have been well developed and classified
into four classes by Hwang and Masud (1979) and Lai and Hwang (1994). We list
them in Table 2.1.

As shown in Table 2.1, the first class of MOLP methods basically does not
require any more information nor interaction with decision makers once the
objective functions and constraints have been defined. The solution to a MOLP
problem is presented on the basis of assumptions made about decision makers’
preferences.

The second class of MOLP methods assumes that decision makers have a set of
goals to achieve and that these goals will be established before formulation of a
mathematical programming model. The multi-objective goal programming
(MOGP) assumes that decision makers can specify goals for the objective func-
tions. The key idea behind goal programming is to minimize deviation from the
goals or aspiration levels set by decision makers. In most cases, therefore, MOGP
seems to yield a satisfactory solution rather than an optimal one. More details about
MOGP problem will be discussed later.

Table 2.1 A classification of MOLP methods

Stage at which information
is needed

Type of
information

Typical methods

1 No articulation of preference
information

• Global criteria method (Hwang and Masud
1979, Salukvadze 1974)

2 A priori articulation
of preference information

Cardinal • Weighting method (Hwang and Masud
1979, Sakawa 1993)

Ordinal
and
cardinal

• (Multi-objective) goal programming (GP)
(Ignizio 1976)

3 Progressive articulation
of preference information
(interactive method)

Explicit
trade-off

• Efficient solution via goal programming
(ESGP) (Ignizio 1981)

• Interactive multiple objective linear
programming (IMOLP) (Quaddus and
Holzman 1986)

• Interactive sequential goal programming
(ISGP) (Hwang and Masud 1979)

• ZW method (Zionts and Wallenius 1983)

Implicit
trade-off

• STEP method (STEM) (Benayoun et al.
1971)

• STEUER (Steuer 1977)

4 A posteriori articulation
of preference information
(non-dominated solutions
generation method)

Implicit/
explicit
trade-off

• Parametric method (Hwang and Masud
1979)

• Constraint method (Hwang and Masud
1979; Sakawa 1993)

34 2 Optimization Models

The third class of MOLP, interactive methods, requires more involvement and
interaction with decision makers in the solving process. The interaction takes place
through decision makers’ computer interface at each iteration. Trade-off or pref-
erence information from decision makers at each iteration is used to determine a
new solution, therefore decision makers actually gain insights into the problem.
Interactive programming was first initiated by Geoffrion et al. (1972) and further
developed by many researchers. The STEP method (Benayoun et al. 1971) in
particular is known to be one of the first interactive MOLP techniques, to which
there have been a number of modifications and extensions. The interactive MOGP
method was also proposed (Dyer 1972), which attempts to provide a link between
MOGP and interactive methods.

Lastly, the purpose of the fourth class is to determine a subset of the complete set of
non-dominated solutions to a MOLP problem. It deals strictly with constraints and
does not consider the decision makers’ preferences. The desired outcome is to narrow
the possible courses of actions and select the preferred course of action more easily.

Interaction is one of the most important features for solving MOLP problems.
There are three types of interaction in the MOLP problem solving process: pre-
interaction (before the solution process), pro-interaction (during the solution pro-
cess), and post-interaction (after the solution process). The seven MOLP methods
selected from Table 2.1, ESGP, IMOLP, ISGP, MOGP, STEM, STEUER, and ZW,
have differences in the interaction processes with decision makers. The MOGP,
IMOLP and ISGP methods involve pre-interaction with users prior to the solution
process through the collection of weights, goals, and priorities of objectives from
users. The STEM method engages in pro-interaction during the solution process. Its
principle is to require decision makers to nominate the amounts to be sacrificed of
satisfactory objectives until all objectives become satisfactory. It first displays a
solution and the ideal value of each objective. It then asks decision makers to accept
or reject this solution. If it is accepted, the solution is taken as the final satisfactory
solution. However, decision makers often make further searches so that more
alternative solutions can be generated. If the current solution is rejected, a relaxation
process starts. Decision makers will accept a certain level of relaxation of a satis-
factory objective to allow the improvement of unsatisfactory objectives. When the
relaxation fails, the system enables decision makers to continue re-entering a set of
relaxation values and a new solution is then found. If decision makers accept this
solution, it becomes the final satisfactory solution. Otherwise the system repeats the
above process. Post-interaction is used in all seven methods. After a set of candidate
solutions has been generated, decision makers are required to choose the most
satisfactory solution.

Now, we give details of the weighting method for solving MOLP problems.
The key idea of the weighting method is to transform the multiple objective

functions in the MOLP problem (2.5) into a weighted single objective function,
which is described as follows:

2.4 Multi-objective Programming 35

max
x

wCx

s:t: x 2 X ¼ xjAx� bf g
ð2:7Þ

where w ¼ w1;w2; . . .;wkð Þ� 0 is a vector of weighting coefficients assigned to the
objective functions.

Example 2.2 Let us consider the following example of a MOLP problem.

max
x1;x2

f xð Þ ¼ f1 xð Þ
f2 xð Þ

� �
¼ 2x1 þ x2

�x1 þ 2x2

� �

s:t: �x1 þ 3x2 � 21;

x1 þ 3x2 � 27;

4x1 þ 3x2 � 45;

3x1 þ x2 � 30:

ð2:8Þ

Let X denote the feasible region of problem (2.8). When w1 ¼ 0:5;w2 ¼ 0:5, the
weighting problem is formulated as

max wf xð Þ ¼ 0:5x1 þ 1:5x2
s:t: ðx1; x2Þ 2 X:

The optimal solution is ðx�1; x�2Þ ¼ ð3; 8Þ, and the optimal objective function
value is f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð14; 13Þ.

When w1 ¼ 1;w2 ¼ 0, the optimal solution is ðx�1; x�2Þ ¼ ð9; 3Þ, and the optimal
objective function value is f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð21;�3Þ.

When w1 ¼ 0;w2 ¼ 1, the optimal solution is ðx�1; x�2Þ ¼ ð0; 7Þ, and the optimal
objective function value is f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð7; 14Þ.

2.4.3 A Case-Based Example

Example 2.3 A manufacturing company has six types of milling machine, lathe,
grinder, jig saw, drill press, and band saw, whose capacities are to be devoted to
producing three products x1, x2, and x3. Decision makers have three objectives:
maximizing profit, quality, and worker satisfaction. It is assumed that the param-
eters and objectives of the MOLP problem are defined precisely in this example.
For instance, to produce one unit of x1 requires 12 h of machine milling, as listed in
Table 2.2 (Lai 1995).

36 2 Optimization Models

This problem can be described by a MOLP model as follows:

max
x1;x2;x3

f xð Þ ¼
50x1 þ 100x2 þ 17:5x3
92x1 þ 75x2 þ 50x3
25x1 þ 100x2 þ 75x3

0
B@

1
CA

s:t: 12x1 þ 17x2 � 1400;

3x1 þ 9x2 þ 8x3 � 1000;

10x1 þ 13x2 þ 15x3 � 1750;

6x1 þ 16x3 � 1325;

12x2 þ 7x3 � 900;

9:5x1 þ 9:5x2 þ 4x3 � 1075;

x1; x2; x3 � 0:

ð2:9Þ

We can see that this is a typical multi-objective programming problem.

2.5 Goal Programming

Goal programming (GP), originally proposed by Charnes and Cooper (1957), is a
great strategy to deal with multi-objective optimization problems by setting mul-
tiple goals, as we mentioned before. In some decision situations, a decision maker
may have more than one objective, with the improvement on one objective to be
achieved only at the expense of others. For example, a coordinator of a multi-
division firm considers three objectives in making an aggregate production plan: to
maximize the net profit, to maximize the quality of products, and to maximize
worker satisfaction (Example 2.3). The three objectives could be in conflict with

Table 2.2 Production planning data

Machine Product x1
(unit)

Product x2
(unit)

Product x3
(unit)

Machine
(available hours)

Milling machine 12 17 0 1,400

Lathe 3 9 8 1,000

Grinder 10 13 15 1,750

Jig saw 6 0 16 1,325

Drill press 0 12 7 900

Band saw 9.5 9.5 4 1,075

Profit 50 100 17.5

Quality 92 75 50

Worker
satisfaction

25 100 75

2.4 Multi-objective Programming 37

each other, but must be considered simultaneously. Any improvement in one
objective may be achieved only at the expense of other objectives.

Goal programming takes a ‘satisfactory solution’ strategy. It requests a decision
maker to set a goal or a target for the objective (a set of goals for a MOLP) that the
person wishes to attain. A preferred solution is then defined to minimize the
deviation from the goal. Therefore, goal programming would appear to yield a
satisfactory solution rather than an optimal one. Now we give a formal description
of the method adopted by goal programming.

Suppose that a MOLP problem is defined as follows:

max
x

f xð Þ ¼ a1x; a2x; . . .; akxð Þ
s:t: Ax� b:

ð2:10Þ

For problem (2.10), there are a total of k objectives a1x; a2x; . . .; akxð Þ to
achieve. We give goals giði ¼ 1; 2; . . .; kÞ for the ith objective. Our effort is now
focused on making each objective aix as close to its goal giði ¼ 1; 2; . . .; kÞ, as
possible. The problem (2.10) is then transformed as follows:

min
x;v�1 ;v

þ
1 ;...;v

�
k ;v

þ
k

v�1 þ vþ1 þ � � � þ v�k þ vþk

s:t: a1xþ v�1 � vþ1 ¼ g1;

a2xþ v�2 � vþ2 ¼ g2;

..

.

akxþ v�k � vþk ¼ gk;

v�1 ; v
þ
1 ; . . .; v

�
k ; v

þ
k � 0;

Ax� b:

ð2:11Þ

To give a more clear understanding of the idea adopted, v�i and vþi ði ¼ 1; . . .; kÞ
can be defined as follows:

vþ1 ¼ 1
2 a1x� g1j j þ a1x� g1ð Þð Þ ;

v�1 ¼ 1
2 a1x� g1j j � a1x� g1ð Þð Þ ;

..

.

vþk ¼ 1
2 akx� gkj j þ akx� gkð Þð Þ ;

v�k ¼ 1
2 akx� g1j j � akx� gkð Þð Þ :

38 2 Optimization Models

In the above formula, v�i and vþi ; are deviation variables representing the under-
achievement and over-achievement of the ith goal gi; for the ith objective aixði ¼
1; . . .; kÞ; respectively.

The problem defined by (2.11) is a standard linear programming problem which
can be solved by the simplex method.

There are some variants of goal programming. The initial goal programming
formulations order the deviations between objectives and goals into a number of
priority levels. The minimization of the deviation at a higher priority level are more
important than the deviations at lower priority levels. This is called lexicographicor
pre-emptive goal programming (Amador and Romero 1989). When clear priority
ordering of the goals to be achieved exists, lexicographic goal programming can be
used.

Weighted or non pre-emptive goal programming can be used if a decision maker
is more interested in making direct comparisons of the objectives. In this situation,
all the deviations between objectives and goals are multiplied by weights, which
reflect the relative importance of the objectives. We add these weighted deviations
together as a single sum to form the objective function. This process is defined by
the following formula:

min
x;v�1 ;v

þ
1; ;...;v

�
k ;v

þ
k

v ¼ w�
1 v

�
1 þ wþ

1 v
þ
1 þ � � � þ w�

k v
�
k þ wþ

k v
þ
k

s:t: a1xþ v�1 � vþ1 ¼ g1;

a2xþ v�2 � vþ2 ¼ g2;

..

.

akxþ v�k � vþk ¼ gk;

v�1 ; v
þ
1 ; . . .; v

�
k ; v

þ
k � 0;

Ax� b;

where w�
i and wþ

i ði ¼ 1; 2; . . .; kÞ are non-negative constants representing the rel-
ative importance to be assigned to the positive and negative deviations for each of
the relevant goals.

Based on goal programming as previously introduced and the MOLP model,
MOGP requires that goals are set for each objective, following which a preferred
solution is defined as one which minimizes the deviations from those goals.

We assume that the goals g ¼ ðg1; . . .; gkÞ are specified for objective functions
f ðxÞ ¼ ðf1ðxÞ; . . .; fkðxÞÞ by decision makers, and a decision variable x� 2 X in the
MOLP problem is sought so that the objective functions f � xð Þ ¼ ðf �1 xð Þ; . . .; f �k xð ÞÞ
are as close as possible to the goals g ¼ ðg1; . . .; gkÞ.

The deviation between f � xð Þ ¼ ðf �1 xð Þ; . . .; f �k xð ÞÞ and g ¼ ðg1; . . .; gkÞ is usually
defined as a deviation function Dðf xð Þ; gÞ. The MOGP can then be defined as an
optimization problem:

2.5 Goal Programming 39

min
x2X

D f xð Þ; gð Þ
s:t: x 2 X ¼ x 2 RnjAx� bf g;

ð2:12Þ

that is, find an x� 2 X, which minimizes Dðf xð Þ; gÞ or

x� ¼ argmin
x2X

D f xð Þ; gð Þ: ð2:13Þ

Normally, the deviation function Dðf xð Þ; gÞ is a maximum of deviation of
individual goals,

D f xð Þ; gð Þ ¼ max D1 f1 xð Þ; g1ð Þ; . . .;Dk fk xð Þ; gkð Þf g: ð2:14Þ

From (2.12) and (2.14), the min–max approach is applied to the GP problem:

min
x2X

max D1 f1 xð Þ; g1ð Þ; . . .;Dk fk xð Þ; gkð Þf g: ð2:15Þ

By introducing an auxiliary variable c, (2.15) can then be transformed into the
following linear programming problem:

min
x

c

s:t: D1 f1 xð Þ; g1ð Þ� c;

D2 f2 xð Þ; g2ð Þ� c;

..

.

Dk fk xð Þ; gkð Þ� c;

Ax� b:

ð2:16Þ

Example 2.4 Let us consider the following example of a MOLP problem:

max
x1;x2

f xð Þ ¼ 2x1 þ x2
�x1 þ 2x2

� �

s:t: �x1 þ 3x2 � 21;

x1 þ 3x2 � 27;

4x1 þ 3x2 � 45;

3x1 þ x2 � 30;

x1; x2 � 0:

Suppose the goals are specified as g ¼ ð10; 10Þ for the two objective functions.
The original MOLP problem can be converted as the following LP problem with
the auxiliary variable c:

40 2 Optimization Models

min
x1;x2

c

s:t: 2x1 þ x2 � 10� c;

�x1 þ 2x2 � 10� c;

�x1 þ 3x2 � 21;

x1 þ 3x2 � 27;

4x1 þ 3x2 � 45;

3x1 þ x2 � 30;

x1; x2 � 0:

The optimal solution then is ðx�1; x�2Þ ¼ ð2; 6Þ, and the optimal objective function
values are f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð10; 10Þ.

When the goals are specified as g ¼ ð15; 15Þ, the optimal solution is
ðx�1; x�2Þ ¼ ð1:865; 7:622Þ, and the optimal objective function values are
f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð11:351; 13:378Þ. We learn from the optimal objective
function values that the goals are not achieved. The reason is that the goals specified
are beyond the feasible constraint area. The point of x�1; x

�
2

� � ¼ ð1:865; 7:622Þ is on
the boundary of the feasible constraint area.

Goal programming has the advantages of being simple and easy to use. It can
handle relatively large numbers of variables, constraints and objectives, which
accounts for the large number of goal programming applications in many diverse
fields, such as business management, transportation planning, and resource opti-
mization. A limitation of goal programming is that setting the goals for some of the
objectives may not be straight forward. In-depth field knowledge might be required
to solve a decision problem, and experiments sometimes need to be carried out to
set suitable goals.

2.6 Stackelberg Game Model

The Stackelberg game model, which is also called a leader-follower game, was first
proposed by Heinrich von Stackelberg in 1952 (Stackelberg 1952). It is based on
economic monopolization phenomena. In a Stackelberg game, one player acts as a
leader and the rest as followers. The problem is then to find an optimal strategy for
the leader, assuming that the followers react in a rational way which will optimize
their objective functions, given the leader’s actions.

Stackelberg used a hierarchical model to describe a market situation in which
decision makers try to optimize their decisions based on individually different
objectives but are affected by a certain hierarchy.

2.5 Goal Programming 41

2.6.1 Stackelberg Game and Bi-level Programming

The Stackelberg leadership model considers the case of a single leader and fol-
lower. Let X and Y be the strategy sets for the leader and follower respectively.
Denote their objective function by Fðx; yÞ and f ðx; yÞ respectively. Knowing the
selection x of the leader, the follower can select his best strategy yðxÞ such that his
objective function f ðx; yÞ is maximized, i.e.,

y xð Þ 2 U xð Þ ¼ argmax
y2Y

f x; yð Þ: ð2:17Þ

The leader then obtains the best strategy x 2 X as

x 2 argmax
x2X

fF x; yð Þjy 2 U xð Þg: ð2:18Þ

Formulae (2.17) and (2.18) can be combined to express the Stackelberg game as
follows:

max
x

F x; yð Þ
s:t: x 2 X;

y 2 argmax
y2Y

f x; yð Þ:

Bi-level programming (see Chap. 3) is more general than Stackelberg game in
the sense that the strategy sets (also called the admissible sets) depend on both x and
y. This leads to a general bi-level programming (Candler and Norton 1977) as
follows:

max
x

F x; yð Þ
s:t: Gðx; yÞ� 0;

y 2 argmaxff x; yð Þjgðx; yÞ� 0g:
ð2:19Þ

Bi-level programming problem (2.19) is a generalization of several well-known
optimization problem (Dempe 2002). For example, if F x; yð Þ ¼ �f x; yð Þ, then it is a
classical min–max problem; if F x; yð Þ ¼ f x; yð Þ, we have a realization of the
decomposition approach to optimization problem; if the dependence of both the
leader’s and the follower’s problem on y is dropped, the problem is reduced to a bi-
criteria optimization problem.

42 2 Optimization Models

http://dx.doi.org/10.1007/978-3-662-46059-7_3

2.6.2 Stackelberg Game and Nash Game

The Stackelberg game can be considered as an extension of the well-known Nash
game (Nash 1951). In the Nash game, we assume that there are k players, and the
ith player has a strategy set Xi, and his objective function is fiðxÞ for i ¼ 1; 2; . . .; k,
where x ¼ ðx1; x2; . . .; xkÞ. Each player chooses a strategy based on the choices of
the other players and there is no hierarchy. The unstructured problem is modeled as
follows: for i ¼ 1; 2; . . .; k, we have max

xi2Xi

fiðxÞ.
This is a Nash game in which all players aim to maximize their corresponding

objective functions.
In contrast, there is a hierarchy between the leader and followers in the Stac-

kelberg game. The leader is aware of the choices of the followers, thus the leader,
being in a superior position with regard to everyone else, can achieve the best
objective while forcing the followers to respond to this choice of strategy by solving
the Stackelberg game. Without loss of generality, we now assume that the first
player is the leader, and the rest of the players are followers. Let
X1� ¼ X2 � X3 � � � � � Xk; f1� xð Þ ¼ f2 xð Þ; . . .; fk xð Þð Þ, and x1� ¼ x2; . . .; xkð Þ 2
X1�: The above Nash game is accordingly transformed into a Stackelberg game,
which is given as follows:

max
x12X1

f1ðxÞ
s:t: x1� 2 argmaxff1� xð Þjx1� 2 X1�g:

This is a Stackelberg game or leader-follower game.

2.6.3 Applications of Stackelberg Games

The investigation of Stackelberg games is strongly motivated by real world
applications, and Stackelberg games techniques have been applied with remarkable
success in many domains, such as transportation network design, production
planning and logistics.

Stackelberg games have been applied to the network design problem (Ben-
Ayed 1988) arising in transportation systems. In the accompanying formulation, a
central planner controls investment costs at the system level, while operational
costs depend on traffic flow, which is determined by the individual user’s route
selection. Because users are assumed to make decisions to maximize their
peculiar utility functions, their choices do not necessarily coincide with the
choices that are optimal for the system. Nevertheless, the central planner can
influence users’ choices by improving certain links, making some relatively more
attractive than others. In deciding on these improvements, the central planner tries
to influence users’ preferences in such a way that total costs are minimized. The

2.6 Stackelberg Game Model 43

partition of the control variables between the upper and lower levels naturally
leads to a bi-level formulation.

Moreover, a fuzzy Stackelberg game model was set up to control traffic flow in a
disaster area after an earthquake (Feng and Wen 2005). When a severe earthquake
occurs, roadway systems usually suffer various degrees of damage, reducing their
capacity and causing traffic congestion. Maintaining viable traffic functions to
facilitate the saving of more lives is a crucial mission task following an earthquake.
The aim of the commander of the government Emergency-Response Centre at
county and city level (the upper level) is to allow traffic to pass through disaster
areas to the extent that is possible given the roadway’s capacity, while road users (at
the lower level) always choose the shortest route to affect emergency rescues. To
solve this decision problem, the bi-level technique has been used post-earthquake to
provide an efficient traffic control strategy for recovery from chaos.

A Stackelberg game has been formulated for a newsboy problem. The decision
makers are themanufacturer and retailers. The former acts as a leader who controls the
product price, and the retailers as the followers who decide the quantity of newspapers
to order. The relationship between the manufacturer and retailers is a sequential non-
cooperative game. The manufacturer first decides the product price, and the retailers
then decides the quantity. The manufacturer tries to determine product price and
maximize his profit after considering the retailers’ behavior. The retailers’ decision is
to optimize the order quantity so as to maximize his profit at a given product price.
Clearly, this newsboy problem can be modeled as a Stackelberg game.

In addition, Stackelberg games are frequently utilized in many other real-world
cases, such as resource allocation, network investigation, and engineering. These
applications have provided stimulating environments for the development of
Stackelberg games.

2.7 Particle Swarm Optimization

In the computational intelligence area, particle swarm optimization (PSO) is a
computational method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality. PSO is a heuristic
algorithm proposed by Kennedy and Eberhart (1995), Shi and Eberhart (1998).

Inspired by the social behavior of animals, such as fish schooling and bird flocking,
PSO is a kind of population-based algorithm. The population of PSO is called a
swarm, and each individual in the swarm is called a particle. The similarity between
PSO and other evolutionary algorithms lies in the fact that an individual in the
community is moved to a good area according to its fitness for the environment.
Unlike other evolutionary computation methods, however, each particle in PSO has
an adaptable velocity (position change), according to which it moves in the search
space (Parsopoulos and Vrahatis 2002). Moreover, each particle has a memory,
remembering the best position it has ever visited in the search space (Kennedy and
Eberhart 1995). Thus, its movement is an aggregated acceleration towards its best

44 2 Optimization Models

previously visited position and towards the best particle of a topological
neighborhood.

Suppose the current search space for PSO is n-dimensional, then the ith particle
of the swarm can be represented by an n-dimensional vector, xi ¼ ðxi1; . . .; xinÞ. The
velocity (position change) of this particle can thus be represented by another
n-dimensional vector vi ¼ ðvi1; . . .; vinÞ: The best previously visited position of the
ith particle is denoted as pi ¼ ðpi1; . . .; pinÞ. Defining g as the index of the best
particle in the swarm (i.e., the gth particle is the best), and letting the superscripts
denote the iteration number, the swarm is manipulated according to the following
two equations (Eberhart et al. 1996):

vkþ1
id ¼ wvkid þ crk1 pid � xkid

� �þ crk2 pkgd � xkid
� �

;

xkþ1
id ¼ xkid þ vKþ1

id ;

where d ¼ 1; . . .; n denotes the d-dimensional vector, i ¼ 1; 2; . . .;N denotes the ith
particle, N is the size of the swarm, w is the inertia weight, c is a positive constant,
called the acceleration constant, r1; r2 are random numbers, uniformly distributed in
[0,1], and k determines the iteration number.

Like many other global optimization methods, whether deterministic or evolu-
tionary, PSO suffers from the problem of local optima. The existence of many local
optimal solutions makes it difficult for PSO to detect the global optimal solution. In
some cases, sub-optimal solutions are acceptable although not desirable, while in
others, a global optimal solution is indispensable. The development of robust and
efficient methods for avoiding local solutions is the subject of current PSO research.

Stretching technique (Parsopoulos and Vrahatis 2002) has been shown through
simulation experiments and it provide an effective way for the PSO method to
escape local optimal solution.

The idea behind the function of Stretching is to perform a two-stage transfor-
mation of the original objective function F xð Þ: The two-stage transformation can be
applied immediately after a local optimization solution �x of the function FðxÞ has
been detected. This transformation has been proposed by Parsopoulos and Vrahatis
(2002) and is defined as follows:

GðxÞ ¼ FðxÞ þ c1 x� �xj jðsignðFðxÞ � Fð�xÞÞ þ 1Þ; ð2:20Þ

HðxÞ ¼ GðxÞ þ c2
sign FðxÞ � Fð�xÞð Þ þ 1
tanh lðGðxÞ � Gð�xÞÞð Þ ; ð2:21Þ

where c1, c2 and l are arbitrary chosen positive constants, and sign xð Þ is defined by:

sign xð Þ ¼
1; if x\0;
0; if x ¼ 0;
�1; if x\0:

8<
:

2.7 Particle Swarm Optimization 45

The first transformation stage, defined in (2.20), elevates the function F xð Þ and
eliminates all the local optimization solutions that are less optimal than the result of
Fð�xÞ: The second stage, defined by (2.21), stretches the neighborhood of �x upwards,
since it assigns higher function values to those points. Neither stage changes the
local optimal solutions which can produce more optimal results than �x. Thus, the
location of the global solution can be left unchanged.

Because PSO requires only primitive mathematical operators and is computa-
tionally inexpensive in terms of both memory requirements and speed (Parsopoulos
and Vrahatis 2002), it has good convergence performance and has been success-
fully applied in many fields such as neural network training (Zhang et al. 2007),
integral programming (Kitayama and Yasuda 2006), multi-objective optimization
(Ho et al. 2006), and decision making (Nenortaitė 2007).

2.8 Summary

This chapter addresses the basic concepts and models of optimization theory: linear
programming, non-linear programming, goal programming, multi-objective pro-
gramming, Stackelberg games, and particle swarm optimization are introduced.
These concepts, models and solution techniques will be used in the rest of this
book.

46 2 Optimization Models

	2 Optimization Models
	2.1 Concepts
	2.2 Linear Programming
	2.3 Non-linear Programming
	2.3.1 Varieties of Non-linear Programming
	2.3.2 Theories and Optimality Conditions of Non-linear Programming
	2.3.3 Methods for Solving Non-linear Programming Problems

	2.4 Multi-objective Programming
	2.4.1 Multi-objective Programming Model
	2.4.2 Multi-objective Linear Programming Methods
	2.4.3 A Case-Based Example

	2.5 Goal Programming
	2.6 Stackelberg Game Model
	2.6.1 Stackelberg Game and Bi-level Programming
	2.6.2 Stackelberg Game and Nash Game
	2.6.3 Applications of Stackelberg Games

	2.7 Particle Swarm Optimization
	2.8 Summary

