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Preface

Multi-level decision-making (MLDM) handles problems that require compromise
between the objectives of two or more interacting entities which are arranged within
a hierarchical structure with independent and perhaps conflicting objectives. Bi-
level decision-making is a special and particularly popular case of MLDM, in which
only two levels of decision entities are involved, each of which tries to optimize
their individual objectives under certain constraints, and to act and react in a
sequential manner. The MLDM problem appears naturally in critical resource
management, production and transportation planning, and organizational policy
making. There are two fundamental issues to address in dealing with an MLDM
problem. One is how to model a multi-level decision problem, and the other is how
to find an optimal solution to the problem.

This monograph presents the new developments in multi-level (in particular bi-
level and tri-level) decision-making theory, technique and methodology in both
modelling and solution issues. It especially presents how a decision support system
(software) can support managers in reaching a solution to a multi-level decision
problem in practice.

This monograph offers the following advantages:

• It focuses on one of the most complex and challenging decision-making struc-
tures, in which several levels of decision entities are involved in a hierarchical
decision-making process in which each level may have more than one decision
entity, and each entity may have more than one objective function and fuzzy
parameters in the functions.

• It combines decision theories, methods, algorithms and applications effectively.
We discuss in detail the models and solution algorithms of each issue of bi-level
and tri-level decision-making, such as multi-leaders, multi-followers, multi-
objectives, rule-based, and fuzzy parameters presented in this monograph, as well
as the related case studies and/or software systems.

• It is designed as a unified whole in which the content in each chapter is related to
the material that precedes it, and also to what will follow. A number of case-
based examples, such as logistics, are discussed in various chapters for different
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multi-level decision situations, as well as the use of decision support systems to
obtain the desired solutions.

• It reflects the latest academic research progress and state-of-the-art development
through the results of our own and other authors’ recent publications in this field.
It does not attempt to provide exhaustive coverage of every fact or research result
that exists.

This monograph is principally based on our research developments over the past
ten years, during which time we have produced more than 50 journal and confer-
ence publications in this field.

The monograph has 14 chapters, organized into five parts. The first part, from
Chaps. 1 to 3, covers concepts of decision-making, decision support systems and
bi-level decision-making in general. The second part of the monograph, from
Chaps. 4 to 6, presents bi-level multi-follower and tri-level multi-follower decision-
making, including related models, solution methods, algorithms and case studies.
The third part, from Chaps. 7 to 9, focuses on uncertainty issues in multi-level
decision-making and discusses fuzzy bi-level and fuzzy multi-objective bi-level
decision models and solution algorithms. In Part IV, Chap. 10 deals with a non-
programming multi-level decision issue and proposes the framework and methods
of rule-set-based bi-level decision-making. The last part, from Chaps. 11 to 14,
shows the development of bi-level and tri-level decision support systems and
related applications by using the methods presented in the previous chapters. These
applications include the power market, supply chain management and railway
organization.

Our potential readers include organizational managers and practicing profes-
sionals, who can use the methods and software provided to solve their real decision
problems; researchers in the areas of bi-level and multi-level decision-making and
decision support systems; students at an advanced undergraduate or master’s level
in information systems, business administration, or the application of computer
science programs.

We wish to thank the Australian Research Council (ARC), whose ARC dis-
covery grant DP0557154 partially supported the work presented in this monograph;
our co-workers, who have offered advice and have conducted some of the research
results in this monograph with us; many researchers who have worked in multi-
level decision-making, fuzzy set application, decision support systems and related
areas over the past several decades, whose significant insights have been included
in the monograph and whose well-known publications feature in the reference list;
Dr. Yue Zheng, Mr. Jialin Han, Dr. Jun Ma, and the researchers and students in the
Decision Systems and e-Service Intelligence (DeSI) laboratory, Centre for Quantum
Computing and Intelligent Systems (QCIS), at the University of Technology
Sydney (UTS) who suffered through several versions of the decision algorithms and
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decision support systems shown in this monograph; Sue Felix who proofread the
main part of this monograph; and the editors and production staff at Springer,
who helped us to ensure the monograph was as good as we were capable of
making it.

Sydney, Australia, October 2014 Guangquan Zhang
Jie Lu

Ya Gao
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Bi-level Decision Making



Chapter 1
Decision Making and Decision Support
Systems

This book addresses an important decision making area—multi-level decision-
making. To help readers understand the following chapters of this book, this chapter
presents fundamental concepts, models, and techniques of decision making and
decision support systems (DSS), thus providing an introduction for the remaining
chapters of this book.

This chapter is organized as follows. Section 1.1 discusses the features of
organizational decision making. Section 1.2 gives the classification of decision
problems and techniques. Section 1.3 introduces six popular decision support
techniques: mathematical programming, multi-criteria decision-making, case-based
reasoning, data mining decision trees, and fuzzy sets. Main concepts, characteristics
and components of DSS are presented in Sect. 1.4. Section 1.5 discusses DSS
classifications. Two kinds of DSS software, a general DSS tool and a specific DSS
with application are illustrated in detail in Sect. 1.6. Finally, we give a summary in
Sect. 1.7.

1.1 Organizational Decision Making

Organizational decision-making seeks to find the optimal or most satisfactory
solution for a decision problem such as selecting the best from a set of product
prototypes, making an optimized resource plan, choosing the most suitable supplier
and determining a product’s price.

Organizational decision problems are of various types, from daily operational
decisions to long-term strategy business decisions, from internal single decisions to
multi-level decisions or multi-organizational decisions. Decision makers can be at
various levels according to their decision problems, such as a product distributor, a
supermarket manager or a head of department. Different decision-making tasks may
have different features and therefore are modeled in different forms or presented by
different methods, and solved by different decision support techniques.

Organizational decisions can be made by an individual or a group of decision
makers. The latter situation is called group decision-making (GDM). Individual
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decisions are often made at lower managerial levels and in small organizations, or
for a short-term decision issue. Group decisions are usually made at high mana-
gerial levels and in large businesses, or for a long-term strategy issue. For the GDM
problem, each group member may have their own understanding of the nature of the
decision problem and the feasibility of particular solutions. Also, the decision
makers in a decision group could be in the same organization, having the same
objectives; in different organizations, and/or having different, even totally con-
flicting objectives; and could also be in the same organization but at different levels
and with different objectives. The latter two situations will be the main focus of this
book: multi-level decision-making.

Multi-level decision-making (MLDM) problems appear in many situations which
require compromise between the objectives of two or more interacting entities and
these entities are arranged within a hierarchical structure with independent and
perhaps conflicting objectives. Bi-level decision-making (BLDM) is a special case
of MLDM which addresses the problem in which two levels of decision makers are
involved and each level tries to optimize their individual objectives under certain
constraints, and to act and react in a sequential manner. The two levels of decision
makers can be suppliers and buyers in a supply chain for a pricing problem or
faculties and departments in a university on a budget arrangement. Tri-level deci-
sion-making (TLDM) is another special case of MLDM and has all the typical
features of MLDM when the number of levels is greater than two.

1.2 Classification for Decision Problems and Techniques

1.2.1 Decision Problem Classification

In general, organizational decision problems can be classified based on their nat-
ures. A classical classification is based on a given problem’s complexity degree,
i.e., structured, semi-structured and unstructured (Turban et al. 2005). The last two
are also called ill-structured. Different types of decision problems may require
different modeling processes and different solution methods.

A structured decision problem can be described by classic mathematical models,
such as linear programming or statistics methods. The procedure for obtaining an
optimal solution is known by standard solution methods. For example, goal pro-
gramming can be used to solve a linear programming model when the decision
maker provides a goal for their decision objective. A typical structured decision
example is that to select a supplier who has the lowest price of all the suppliers with
the same quality/type of products, or determines a product plan which will bring the
highest profit of all the possible product plans in a factory.

An unstructured decision problem is fuzzy, uncertain and vague, for which there
is no standard solution method for obtaining an optimal solution, or where such an
optimal solution does not exist. Human intuition is often the basis for decision
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making in an unstructured problem. Typical unstructured problems include planning
new services to customers, hiring an executive for a big company, choosing a set of
development projects for a long period, or making a set of policies for a social issue.

Semi-structured decision problems fall between structured and unstructured
problems, having both structured and unstructured features, and reflecting most
real-world situations. Solving semi-structured decision problems involves a com-
bination of both standard optimization solution procedures and human judgment,
and also needs the support of related intelligent information processing techniques
and inference approaches.

In principle, computer-based decision support techniques can be more useful in
structured and semi-structured decision problems than unstructured decision
problems. In an unstructured decision problem only part of the problem can be
assisted by computerized decision support techniques. For semi-structured decision
problems, a computerized decision support technique can improve the quality of the
information on which a decision is based, therefore increasing the decision maker’s
situation awareness to reach a better decision and improve decision efficiency.

Another classification of decision problems is based on levels of decision
problems: strategic planning, management control and operational control.

Strategic planning refers to long-range goals and policies for resource allocation.
Such decisions are at a high management level, normally unstructured, and have a
higher degree of uncertainty.

Management control refers to the acquisition and efficient use of resources in the
accomplishment of organizational goals, and related decisions are at middle man-
agement level.

Operational control decisions are about the efficient and effective execution of
specific tasks, are normally structured, and are relatively easy to formulate by
mathematical models and solve by computer-based tools.

Decision making can be also seen as a reasoning process, which can be rational
or irrational (Simon 1993) and is based on explicit assumptions or tacit
assumptions.

Rational decision making emphasizes fact collection and conducting research
such as surveys, interviews and data analysis. A rational decision-making model
involves a cognitive process (thinking through).

Irrational decision making makes assumptions and obtains results without
accurate data and model analysis but is often driven by emotions.

These classifications can help to determine a suitable decision-making meth-
odology and select a suitable support technique for a particular decision problem.

1.2.2 Decision Support Technique Classification

Various decision support techniques including models, methods, algorithms and
software tools have been widely developed by both academic and practical
researchers. There are different classifications for these kinds of decision support
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techniques. Zachary (1987) proposed a cognition-based taxonomy for decision
support techniques which has six basic classes as follows:

Process models are computational models that assist the projection of real-world
complex processes, make some assumptions about the process and give a hypo-
thetical decision. A typical model is the probabilistic model and the Markov chain
is a canonical example of the probabilistic process model.

Choice models support the integration of decision criteria across alternatives to
select the best alternative from a discrete set or continuous description space of
decision alternatives. A typical choice model is the multi-criteria decision-making
model.

Information control techniques provide support to information processing by
helping with the representation, manipulation, access, and monitoring of bodies of
data and knowledge. Typical techniques include data retrieval techniques, data
warehouse approaches, and data mining techniques.

Analysis and reasoning techniques support the application of problem-specific
expert reasoning procedures, such as linear program and other mathematical pro-
gramming, goal-driven, process-driven and data-driven inference. Goal program-
ming, evidential reasoning, case-based reasoning and sensitivity analysis are very
successful techniques in the class of decision techniques.

Representation aids assist in the expression and manipulation of a specific
representation of a decision problem. Typical techniques include natural language
processing, graphic representation and graphic user interface, special human cog-
nitive processing techniques, such as decision trees and decision tables, as well as
techniques to capture the mental model used by expert decision makers and
incorporate it into the interface as an aid to the novice user of a DSS.

Human judgment amplifying/refining techniques help in the quantification of
heuristic judgments. Decision makers are able to solve problems heuristically or
intuitively with results that are usually quite good but almost never truly optimal
(Zachary 1986). Typical techniques in this class include human-aided optimization,
and adaptive user modeling and prediction, as well as Bayesian updating.

The above cognition-based classification of decision support techniques pro-
vides a picture and guideline for decision technique selection for problem solving
and DSS development. In practice, a DSS often integrates two or more of the
techniques mentioned above to solve a complex organizational decision problem.

1.3 Main Decision Support Techniques

In this section, we will introduce six popular decision support techniques involved
in modeling and executing the decision-making process.
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1.3.1 Mathematical Programming

Mathematical programming, also called optimization, refers to the study of deci-
sion-making problems in which one seeks to minimize or maximize a function by
systematically choosing the values of variables from an allowed set (a feasible set).
A mathematical programming model includes three sets of elements: decision
variables, objective functions, and constraints (constraint conditions), where
uncontrollable variables or parameters are within the objective functions and the
constraints. Many real-world decision problems can be modeled by mathematical
programming models.

There are various types of mathematical programming models such as linear
programming (Benayoun et al. 1971), multi-objective programming (Hwang and
Masud 1979), and bi-level/multi-level programming (Bracken and McGill 1973;
Candler and Norton 1977).

Linear programming is an important type of mathematical optimization in which
there is only one objective function, and the objective function and constraints are
expressions of linear relationships among decision variables. Linear programming
is heavily used in various management activities, either to maximize the profit or
minimize the cost of an organization. We use the example below to explain how to
build a linear programming model and obtain a solution for a practical decision
problem.

Example 1.1 A company produces two kinds of product: A and B. We know that
producing one unit of A returns $40 profit, and B returns $70. However, the
company has limitations on its labor (total 501 labor hours available per time slot;
each A needs 4 h and B 3 h), machine time (total 401 machine hours available, each
A needs 2 h and B 5 h), and marketing requirements (need to produce 10 units of
A and 20 units of B). The decision problem is to determine how many A and
B should be produced to obtain the maximum profit. Within these settings and
requirements, we can establish a linear programming model:

Suppose x1 and x2 are the respective units of products A and B to be produced,
Maximize total profit: max z ¼ 40x1 þ 70x2
Labor constraint (hours): 4x1 þ 3x2 � 501;
Machine constraint (hours): 2x1 þ 5x2 � 401;
Marketing requirement for x1 (units): x1 � 10;
Marketing requirement for x2 (units): x2 � 20:

By using the simplex method, we obtain the following solution:

x1 ¼ 93; x2 ¼ 43:

We therefore have the result z = 6,730. That is, by producing 93 units of product
A and 43 units of product B, the company can obtain a maximum profit of $6,730.
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We need to indicate that in order to apply the linear programming technique, the
decision problem must be understood as one requiring an optimization problem, the
objective function and constraints must be modeled in linear functions, and the data
on the various variables in the objective function and constraints must be obtained
to represent the coefficients of these functions.

When a decision problem has more than one objective function, it is called multi-
objective programming or multi-objective decision-making (MODM). When the
objective function and/or constraints are modeled by expressions of non-linear
relationships between decision variables, we will use non-linear programming to
obtain solutions.

1.3.2 Multi-criteria Decision Making

When we need to select the best option from a list of alternatives based on multiple
criteria for a decision problem, it is often necessary to analyze each alternative in
the light of its determination of each of these criteria. Multi-criteria decision-
making (MCDM), also called multi-attribute decision-making (MADM), refers to
making preferred decisions (e.g., evaluation, prioritization, and selection) in the
presence of multiple and conflicting criteria over the alternatives available. An
MCDM utility model combines all the criteria of a given alternative simultaneously
through the use of a specific utility formula or utility function. Problems for MCDM
may range from those in our daily life, such as the selection of a restaurant, to those
affecting entire nations, such as the judicious use of money for the preservation of
national security. However, even with this diversity, all MCDM problems share the
following common characteristics (Hwang and Yoon 1981):

Alternatives: there are usually a limited number of predetermined alternatives,
such as only three suppliers being available to a buyer in a supply chain.

Multiple criteria: there are a limited number of criteria. For example, price,
quality of products, and speed of delivery are criteria for the buyer in selecting a
supplier.

Conflicting criteria: multiple criteria are in conflict with one another; for
example, the low price and high quality of products are in conflict.

Incommensurable unit: criteria may be measured in different units. For example,
the unit price is the dollar and the unit of product quality is degree of satisfaction.

Selection: the solution to an MCDM problem is to select the best solution among
previously specified finite alternatives.

Mathematically, an MCDM problem can be modeled as follows:

select from: A1;A2; . . .;Amf g
s:t: C1;C2; . . .;Cn

�

where A ¼ A1;A2; . . .;Amf g denotes m alternatives and C ¼ C1;C2; . . .;Cnf g
represents n criteria (also called attributes) for characterizing a decision situation.
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The term select in the model is normally based on maximizing a multi-criteria value
(or utility) function elicited from the decision makers. By mapping the alternatives
onto a cardinal scale of value, the alternative with the highest cardinality is
implicitly the best.

In many situations, the MCDM issue is conducted in a decision group in which
several decision makers are involved. In such a situation, we need to aggregate all
group members’ opinions on all alternatives under all criteria, which is called multi-
criteria group decision-making (MCGDM). Furthermore, these criteria may have
different weights, and some experts’ opinions may be more important than others.
Criteria, in particular, can be in a hierarchy; that is, a criterion has several sub-
criteria. Considering all these issues: decision group, decision makers’ weights,
criteria’ weights, and multi-evaluation levels of criteria, Fig. 1.1 shows the working
process of a more general MCGDM. The outcome of a MCDM or a MCGDM is a
ranking of alternatives.

Multi-criteria decision making methods have been widely developed as reported
by Hwang and Yoon (1981), Yager (2004) and other researchers. Some popular
methods include the Technique for The Order Preference by Similarity to Ideal
Solution (TOPSIS) (Hwang and Yoon 1981) and the Analytic Hierarchy Process
(AHP) method (Saaty 1980). Example 1.2 will demonstrate an application of a
MCDM method.

Determine alternatives 

Determine experts and their weights

Determine criteria within the multiple 
evaluation levels and their weights 

Set up the relevance degree (score) of 
alternatives on each leaf criterion 

Calculate the relevance degrees of all aspects 

Obtain relevance degrees of all alternatives 

Obtain the group decision vector 

Rank alternatives and select the best one 

Group 
members 

Final ranking for alternatives 

Alternatives 

Three level criteria 

Fig. 1.1 The working process of a general MCGDM
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Example 1.2 A logistic company plans to develop an e-business system. Com-
panies A, B, C have been selected as alternatives to take this job. Four criteria are
used in the logistic company selection committee:

C1ð Þ user friendly,
C2ð Þ security,
C3ð Þ easy to maintain, and
C4ð Þ excellent in logistic decision support functions.

There are five members (e1, e2, e3, e4, e5) in the committee.

Each member gives their scores (1, 2, 3, 4, 5; 1-unsatisfactory, and 5-highly
satisfactory) to each IT company’s proposal under each criterion by a score matrix.
For example, e1 gives the following scores for companies A, B, C respectively
under the four criteria:

C1 C2 C3 C4

e1’s score matrix :
A
B
C

3 2 5 4
4 3 4 3
3 1 4 3

0
@

1
A

Through aggregating the score matrix of all members using a MCDM method,
such as TOPSIS, it is evident that Company B has the higher value (cardinality) of
evaluation and therefore is ranked the best.

1.3.3 Case-Based Reasoning

Many decision problems cannot be modeled by mathematical programming mod-
els. Managers often produce a solution for a given problem based on their previous
experience and knowledge. Case-based reasoning (CBR) provides an effective
methodology for DSS in solving a new problem based on the solutions of similar
past problems.

The technique of CBR provides a powerful learning ability which uses past
experiences as a basis for dealing with new similar problems. A CBR system can,
therefore, facilitate the knowledge acquisition process by eliminating the time
required to elicit solutions from experts. In dynamically changing situations where
the problem cannot be modeled by mathematical models and solutions are not easy
to generate, CBR is the preferred method of reasoning.

CBR is described by a four-R cycle: retrieve, reuse, revise and retain (Aamodt
and Plaza 1994). In the first ‘R’ stage, when a new problem is input, CBR retrieves
the most similar case(s) from the case base. In the second ‘R’ stage, the solution(s)
of the retrieved case(s) is(are) reused for dealing with the new problem. In the third
‘R’ stage, the solution(s) of retrieved case(s) is (are) revised to suit the new
problem, and in the fourth ‘R’ stage, the revised solution and the new problem are
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retained in the case base for future reuse. Figure 1.2 shows the CBR cycle. Clearly,
CBR is naturally suitable for knowledge-based decision making. The success of a
CBR system in decision making is mainly dependent on the suitability of the
knowledge (cases and rules) and the correctness of reasoning.

To cope with all issues that arise when CBR is used in real-world applications
and especially in rapidly changing environments, several additional phases have
been accepted to extend the original four-R cycle of CBR. As a typical develop-
ment, Reinartz et al. (2001) extended the standard four-R CBR cycle by two
additional stages: review and restore. The review stage covers tasks to judge and
monitor the current state of a CBR system and its knowledge containers, whereas
the restore stage invokes mechanisms to change the system and its knowledge to
improve performance.

CBR-based DSS have been developed for various applications to aid decision
makers or to help a wide variety of decision making activities. Since the CBR
method is a natural reasoning methodology for people, it is easily accepted and
applied by decision makers. Normally people are good at using previous cases but
not as good at recalling the right ones. CBR can assist decision makers to extend
their memory by providing them with the correct cases to help them reason, yet still
allowing them to do all the complex reasoning and decision making.

1.3.4 Data Warehouse and Data Mining

Data warehouse is a repository of an organization’s electronically stored data. A
data warehouse system involves not only data storage but also the techniques to
retrieve and analyze data, to extract, transform and load data, and to manage the
data dictionary. In particular, the data warehouse includes business intelligence
tools to implement the above functions to better support business decision making.

New Case

Cases

Background 
Knowledge

Tested/
Repaired 

Case

Learned 
Case

Solved
Case

Similar 
Case

New
Case

Retrieve

R
eu

se

Revise
R

et
ai

n

Problem

Solution

Fig. 1.2 CBR cycle
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The FACEST (Niu et al. 2009) is a higher management level’s business intelligence
tool based on data warehouse.

Data mining is the process of extracting hidden and undiscovered patterns from
data and is commonly used in a wide range of profiling practices and knowledge
discovery projects. Rules and patterns are discovered from data with the aim of
leading to a set of options or decisions. In most data mining applications, a data file
of query results is created from a data warehouse and then analyzed by a specialist
using artificial intelligence or statistical tools.

Online analytical processing (OLAP) is an efficient way to access a data
warehouse for multi-dimensional analysis and decision support. For the purpose of
analysis and decision support in many business cases, OLAP provides a powerful
tool. Performing analysis through OLAP follows a deductive approach to data
analysis. In data mining, analysts build a data cube to represent the data at different
levels of abstraction, which is a natural partner to OLAP. Analysts can use OLAP
techniques to visualize the data cubes and identify interesting patterns, trends, and
relationships among them. Thus, data mining becomes a powerful tool to analyze
data and provides an effective way to support decision making. Recently, greater
attention has been paid to data-driven DSS which, through its development, data
mining and data analytics (especially streaming data analytics) can be successfully
applied to support decision making in the current big data situation.

1.3.5 Decision Tree

A decision tree is a graphic description of a set of decision rules and their possible
consequences. It can be used to create a plan to reach a goal of decision (Quinlan
1986). A decision tree, as a special form of tree structure, is a predictive model to
map observations about an item with conclusions about the item’s target value.
Each interior node corresponds to a variable and an arc to a child node represents a
possible value or splitting condition of that variable. As shown in Fig. 1.3, a leaf
represents a predicted value (large) of the target variable (size) given the values of
the variables, for example, “600, manufacturer” represented by the path from the
root. From the example shown in Fig. 1.3, we can see that a decision tree can be
used to support strategy making for medium and small businesses in different
industries.

Business 

size size 

medium small small mediumlargelarge 

Manufacturer Service firm 

>=500 >200 <10 <=50
> 10&<200> 50&<500 

Fig. 1.3 An example of decision tree
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The decision tree approach, as a decision support tool, models a decision
problem and its possible consequences in a tree-like graph. It is very suitable for a
decision which involves possible chance event outcomes, resource costs, and
utility. Decision trees are commonly used in decision analysis to help identify the
strategy which is most likely to reach a goal. In applications, a decision tree or
consequences can contain fuzzy numbers or linguistic terms and are therefore called
fuzzy decision trees (Janikow 1998).

1.3.6 Fuzzy Sets and Systems

Whatever decision techniques are used, a critical issue we need to deal with is
uncertainty. Decision environments and data sources often have various uncertain
factors, resulting in uncertain relations among decision objectives and decision
entities. In the meantime, data itself is with uncertainty as well. For example, an
individual’s preference for alternatives and judgment for criteria are often expressed
by linguistic terms, such as ‘low’ and ‘high’, which are uncertain expressions.
Precise mathematical and inference approaches are not efficient enough to tackle
such uncertainty.

Various uncertain information processing techniques have therefore been
developed by using fuzzy sets, fuzzy numbers and fuzzy logic in decision making
activities. Related research has been reported by Zadeh (1975), Zimmermann
(1986), Kacprzyk and Yager (1985), and many other researchers. Research results
include new methodologies and algorithms of fuzzy multi-objective decision
making, fuzzy multi-criteria decision making, fuzzy case-based reasoning, fuzzy
decision trees, fuzzy data retrieval and fuzzy association rules. Various applications
of fuzzy decision making have been developed as well. For example, a web-based
fuzzy group decision support system was developed for the application of team
situation awareness support (Lu et al. 2008b) and a fuzzy hierarchical criteria group
decision-making method was developed for new product comprehensive evaluation
(Lu et al. 2011).

1.4 Decision Support Systems

The DSS field has grown rapidly, drawing technology from many disciplines and
pursuing applications in a variety of domains. This section will introduce the
concepts, characteristics, types and components of a DSS as a software tool, which
will be used in subsequent chapters, such as Chap. 11 on bi-level DSS tools.
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1.4.1 Concepts

Decision support systems are a specific class of computerized information systems
that support organizational or individual decision-making activities. A properly-
designed DSS is an interactive software-based system which supports decision
makers in compiling useful information from raw data, meta-data, documents,
knowledge, and/or models to solve related decision problems. It enables complex
models to be used in real decision problem solving, including long-term planning
and emergency situations which need to be responded to in a very short time. As
many organizational decision problems involve large data sets which are stored in
different databases, data warehouses, and possibly even at websites outside the
organization, the new DSS technology can quickly search and transmit the required
distributed data to help in decision making.

Since the term DSS was proposed in the early 1970s, its definition has been the
subject of great interest. Gorry and Scott-Morton (1971) defined DSS as interactive
computer-based systems which help decision makers to utilize data and models to
solve ill-structured problems. The classic definition of DSS, provided by Keen and
Scott-Morton (1978), is that DSS couples the intellectual resources of individuals
with the capabilities of the computer to improve the quality of decisions. In this
book, a DSS is described as a computer-based information system which supports
decision makers confronting structured and semi-structured decision problems
through direct interaction with data, models, algorithms, and other related tech-
niques (Lu et al. 2007).

From the application point of view, a DSS can be seen as an approach for
supporting decision making. It uses an interactive, flexible and adaptable system
especially developed for supporting the solution for a specific decision problem. It
uses data, provides a user-friendly interface, and can incorporate decision makers’
own insights. In addition, a DSS can use various decision support techniques,
including an optimization model, case-based reasoning, and data warehousing
which are built by an interactive and iterative process, or a combination of some of
these techniques.

Some DSS are developed for a specific decision problem and can only be used
for a particular organization/situation. We call these specific DSS. For example, an
ore blending cost optimization model-based multi-role DSS for blast furnaces in
iron and steel enterprises (Zhang et al. 2011b) is a specific DSS. This DSS is
constructed by pre-processing the data about materials and elements, abstracting the
related optimal operations models and introducing the reasoning mechanism of an
expert system. This multi-role DSS includes a non-linear ore blending model for
blast furnaces, related matching algorithms, a database, a model base and a
knowledge base. This DSS achieved good economic benefits when it was used in an
iron and steel company (see Sect. 1.6.2).

In contrast, some DSS are developed for general decision problems, such as
Decider (Ma et al. 2010), a fuzzy MCGDM-based DSS. This is a general DSS tool
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which can be used, in general, by any organization for solving any fuzzy MCDM or
fuzzy MCGDM problem.

A DSS is intended to support rather than replace decision making; to be an
adjunct to decision makers to extend their capabilities but not to replace their
judgments. Sometimes, there may not be an optimal solution for decision problems
that arise in ill-structured situations and uncertain environments. The decision
therefore must evolve through the interaction of decision makers with resources
such as data analysis models to obtain the most satisfactory solution for the
circumstances.

1.4.2 Characteristics

Several ideal characteristics of DSS have been discussed by Turban and Aronson
(1998) and many other researchers. We list nine main DSS characteristics below:

• dealing with decision problems;
• supporting decision of managers at different levels;
• supporting decision groups and individual decision-makers;
• supporting a variety of decision styles and processes;
• adaptability and flexibility in carrying out a decision support task and approach

of the users;
• interactive and extremely user-friendly to allow non-technical decision makers

to interact fully with the DSS and a web-based interface;
• combining the use of models and analytic techniques;
• combining the use of artificial intelligence;
• accessing a wide variety of data sources.

With these characteristics, a DSS can improve decision makers’ effectiveness,
efficiency and productivity.

1.4.3 Components

Classically, there are three main components in a DSS: a data management com-
ponent which could be a database management system (DBMS), a model com-
ponent which could be a model base and its model-base management system
(MBMS), and a user interface. With the development of DSS, a knowledge base
and related reasoning component, called knowledge-base management system
(KBMS) becomes a component. Since the web is widely used, it is possible to have
a web-based user interface for a DSS. Figure 1.4 shows these components and their
relationships under a DSS framework. However, any given DSS may be composed
of only some of these components.
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Now we present a more detailed explanation of the main components.
The data management component in a DSS mainly includes data sets, databases

or data warehouses, which contain relevant internal or external data and is managed
by a DBMS or related software. The component can be connected to the corporate
intranet, an extranet, and/or the Internet through the web.

The model/method management component, as another important component of
a DSS, includes various quantitative decision models (such as a bi-level decision
model) and methods (such as the Kth-Best algorithm) that provide the analytical
and solution generation capabilities of a DSS. This component is connected to a
model base and/or method base. The model base provides specific decision problem
models of reality, such as a product planning MODM model, a new product
evaluation MCDM model, and bi-level supply chain decision model. A method
base is related to the model base, which consists of a set of methods/algorithms
used to solve decision problems described by models in the model base. For
example, a fuzzy multi-objective group decision support system, called FMODSS
(Lu et al. 2007) has a model base which contains multiple models.

The Knowledge management component can support any of the other compo-
nents such as the user interface, methods, or data management, or it can act as an
independent component. It can be interconnected with the organization’s knowl-
edge base, which may consist of a rule base, a fact base, and a case base to conduct
inference for possible solutions.

The user interface is designed for users to communicate with the DSS. A
decision problem and possible solutions are all derived through the user interface.
The user interface in an active DSS provides effective intensive interaction channels
between computers and decision makers.

User interface

Method base Model base Database
Internal/External

Knowledge 
management

Model /method 
management

Data 
management

Decision makerOther computer-
based systems Web

Knowledge
base

Fig. 1.4 The main components of a DSS
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In summary, a DSS is an interactive computer-based information system which
can help decision makers to utilize data, models, methods, knowledge and com-
munication to solve decision problems. In practice, a DSS may have a number of
special components, such as text-base, multi-media database, and prediction and
varying functions.

1.5 DSS Classification

There is no universally accepted taxonomy of DSS. Not every DSS even fits neatly
into one category of classification and may be a mix of two or more architectures in
one. In this section, we detail five main types of DSS and also discuss other
classifications reported in the literature.

1.5.1 Model-Driven DSS

This type of DSS emphasizes the access to various models, such as the linear
programming model, to generate solutions to assist decision makers. A model-
driven DSS has a model base and has the ability to apply models in the model base.
Multi-objective DSS (MODSS) is a typical model-driven DSS in which several
multi-objective decision-making models are stored a model base of the DSS (Lu
et al. 2007). It allows decision makers to analyze multiple objectives, and uses a
variety of multi-objective decision making models and related methods to derive
efficient solutions. Bi-level DSS (BLDSS) is another typical model-driven DSS
which will be discussed in the chapters that follow. The working principle for a
model-driven DSS is that it incorporates users’ input in various phases of modeling
and achieving solutions.

In a model-driven DSS, decision makers can interact in various stages of model
development, management, and problem solving. A BLDSS, for example, is
intended to provide necessary computerized assistance in bi-level decision-making
models to decision makers to solve their problems. Decision makers are encouraged
to explore any support available in an interactive fashion with the aim of further
defining the nature of the problems. The challenges of a model-driven DSS are
decision problem modeling and solution finding.

1.5.2 Data-Driven DSS

Many decision problems are led by findings obtained from data mining and data
analytics. For example, a data pattern or data association rules can be found through
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data mining. This pattern generates a decision problem and therefore a DSS is
established to solve it. In general, this type of DSS collects and provides real-time
access to a large database or data warehouse to support decision making. Such a
database or data warehouse can have internal or external data sets. A data-driven
DSS can also provide queries and management reports according to decision
makers’ requirements. The more advanced data-driven DSS is combined with
OLAP and data mining (such as spatial data mining, correlation mining, link
mining, and web mining) to support more complex decision-making in a dynamic
online environment. More recently, big data analytics has become a vital com-
petitive force in business. A data-driven DSS in a big data environment tends to
provides better decisions through using big data analytics since it enables decision
makers to strategize on the basis of large data-based evidence.

1.5.3 Knowledge-Driven DSS or Intelligent DSS

A knowledge-based DSS is a DSS that uses the methods and techniques of artificial
intelligence and/or computational intelligence to improve the support to decision
making. The core components of a knowledge-driven DSS are knowledge base and
inference mechanisms (Turban and Watkins 1986; Gregor and Benbasat 1999). A
knowledge base is a special kind of database for knowledge storage and manage-
ment, providing the means for the computerized collection, organization, and
retrieval of knowledge. In principle, expert systems, CBR systems, neural networks
and fuzzy logic-based DSS are all particular types of knowledge-based DSS. Also,
they are practical applications of artificial intelligence and computational intelli-
gence techniques which combine knowledge of a particular domain with inference
capability to enable the system to reach a decision making level of performance. As
they are applications of intelligence technologies they are also called intelligent
decision support systems (IDSS) (Angern and Luthi 1990). Ideally, an IDSS should
be like a human consultant, supporting decision makers to better understand their
problems and generate better solutions (Bui and Lee 1999).

Combined with classical decision making methods and intelligent technology,
IDSS are capable of delivering more reliable decision support tools for users.
Moreover, IDSS have the potential to facilitate effective and swift decision making
in the selection of appropriate applications that best match an organization’s
strategy. In particular, an IDSS’ ability to provide an unprecedented level of
automated guidance on the analysis of a class of decisions can enable decision
makers with few skills in decision analysis to conduct effective decision analysis in
that domain.
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1.5.4 Group DSS

This type of DSS supports multiple decision-makers to work collaboratively in a
group to solve a decision problem (Gray 1987). As communication is very
important in this situation, it is also called communication-driven DSS. A group
DSS (GDSS) is characterized as a DSS that combines the capabilities of distributed
database technologies, computer communication technologies and group decision
technologies to support the identification, analysis, formulation, evaluation, and
solution of problems by a group in a user-friendly computing environment. Due to
the complexity of group decision making, specific decision making models and
methods are needed in a GDSS to establish a systematic means of supporting
effective and efficient group decision making.

A GDSS typically offers a wide range of capabilities, including computerized
support for interactive modeling, idea generation, knowledge sharing, group pref-
erence aggregation mechanisms, and optimal group solution generation. Impor-
tantly, a GDSS is used in decision groups, not in general group meetings, and to
support decision making, not only to create alternatives. This is one of the foun-
dational differences between GDSS and group support systems (GSS). Basically,
there are two types of GDSS. One is online DSS, that is, all decision makers can
access the GDSS and participate in a decision process with communication in a
decision room, such as the fuzzy GDSS (FGDSS) discussed in Lu et al. (2007).
Another is offline GDSS. All decision makers’ options are collected through survey,
and are entered into a GDSS, and an aggregated group decision is obtained. The
GDSS tool, Decider (Ma et al. 2010), is in this type. The focus in GDSS research
has been primarily on group decision-making models, methods, interaction and
communication, with a strong emphasis on the achievement of consensus.

1.5.5 Web-Based DSS

The implementation of a web-based DSS (WDSS) has been popular since the mid-
1990s when Internet technology began to develop rapidly around the world (Shim
et al. 2002). A WDSS uses a web browser to access the Internet or Intranet. It can
be model-driven, data-driven, knowledge-driven, communication-driven or hybrid.
Recent developments in e-Commerce, e-Business, e-Government and e-Service
provide a fertile ground for this new type of DSS application.

The types of DSS discussed above can all be combined with each other to form a
hybrid DSS such as a knowledge-based GDSS or an intelligent WDSS. There are
many other classifications of DSS in the literature. We introduce some related
results below.

Using the relationship with the user as the criterion, there are passive and active
DSS (Jelassi et al, 1987). A passive DSS is a system that aids the process of decision
making but cannot bring out explicit decision suggestions or solutions. An active
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DSS can bring out such decision suggestions or solutions. Many traditional DSS are
passive in their operations. As information technology has recently adopted a more
active role in corporate strategy, DSS could also undertake a more active stance by
identifying gaps in existing operations and suggesting ways to strengthen the
standing of a business.

Another classification for DSS is created by Power (2002) using the mode of
assistance as the criterion. It includes communication-driven DSS, data-driven DSS,
document-driven DSS, knowledge-driven DSS, and model-driven DSS.

Using scope as the criterion, Power (2004) differentiates enterprise-wide DSS
and desktop DSS. An enterprise-wide DSS is linked to large data warehouses and
serves many managers in the company. A desktop, single-user DSS is a small
system that runs on an individual manager’s PC.

More classifications of DSS are available, such as text-oriented DSS, database-
oriented DSS, spreadsheet-oriented DSS, solver-oriented DSS, rule-oriented DSS,
and compound DSS (Holsapple and Whinston 1996). Also, many hybrid DSS have
been developed for more specific and complex decision problems. More recently,
mobile-based DSS has been proposed to support mobile users’ decision making and
have been applied in health field (Kuntagod and Mukherjee 2011; Amailef and Lu
2013).

1.6 DSS Software Illustration

We will introduce two DSS software in this section. One is a general DSS software
kit called Decider (Ma et al. 2010). Another is a specific DSS which is only used for
ore blending (Zhang et al. 2011b).

1.6.1 Case 1: Decider

The software Decider is a fuzzy multi-criteria group decision support system. It is
designed to handle MCDM problems in group decision making. It allows (1)
multiple criteria with multi-level hierarchy, (2) the involvement of several decision
makers in group decision making, and (3) the use of linguistic terms, that is,
decision makers’ opinions can be expressed in linguistic terms and fused by
uncertain information process techniques such as fuzzy numbers and fuzzy
aggregation operators. Decider can deal with both subjective and objective infor-
mation. That is, some criteria can be evaluated by machine assessment and fused
with human opinions. Decider is a fuzzy group DSS.

The decision methodology/working process of Decider is shown in Table 1.1.
Figures 1.5, 1.6 and 1.7 show the interfaces of Decider. Decider can be used for
different multi-criteria group decision problems as long as it has a set of alterna-
tives, a set of criteria and one or more decision makers. The outcome of Decider is
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the ranking of the set of alternatives (see Fig. 1.7). For example, it can be used to
rank a set of new product prototypes with a set of criteria by a group of designers,
or a set of grant applications with a set of criteria by a group of committee members
(Ma et al. 2010).

1.6.2 Case 2: A DSS for Ore Blending Cost Optimization
of Blast Furnaces

In iron and steel enterprises, it is difficult to obtain the lowest-cost optimal solution
to an ore blending problem for blast furnaces because of the complexity of materials

Table 1.1 Working process of decider

Step Process

Step 1 Identify alternatives

Step 2 Identify hierarchies of criteria and evaluators as well as their weights

Step 3 Identify information sources and their connection with criteria

Step 4 Collect information from information sources

Step 5 Evaluators evaluate collected information to generate initial decision matrix for each
alternative

Step 6 Apply the fuzzification method to assessments in initial decision matrix

Step 7 Apply the fuzzy aggregation method to obtain overall assessments of each alternative

Step 8 Generate ranking for each alternative by the fuzzy aggregation method and ranking
strategy

Fig. 1.5 Interface of fabric-
hand based hierarchical
criteria in decider
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and burden of workflow. An ore blending DSS has been developed to solve the
problem. This DSS integrates a database, a model base and a knowledge base. It has
made economic gains since it was implemented in Xiangtan Iron and Steel Group
Co. Ltd., China. Table 1.2 shows the workflow of the ore blending DSS, which has
five steps.

The ore blending DSS provides a friendly human-computer interactive interface.
Users can manually input various process parameters, such as market price, internal
price, supply at corresponding periods, upper and lower bounds, and element

Fig. 1.6 Interface of expert
input by linguistic terms for
fabric-hand in decider

Fig. 1.7 Interface of fabric-
hand final ranking results in
decider

22 1 Decision Making and Decision Support Systems



percentage content for each material. The ore blending DSS consists of two kinds of
computing: optimization computing and experienced computing. For the former, an
expert chooses an appropriate model to obtain the optimal solution. For the latter, a
field expert and an analyst collaboratively conduct the inverse operation for the
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Fig. 1.8 The main interface of the ore blending DSS

Table 1.2 Working process of the ore blending DSS

Step Process

Step 1 A decision maker inputs general information, such as the element proportion of each
kind of coal and ore

Step 2 A field expert enters all kinds of rules about ore blending and formulas of technical
parameters

Step 3 A user inputs an example through the human-computer interactive interface, which
includes the type, upper and lower bounds, price of materials and proportion
constraints of each element in the finished product

Step 4 A decision modeling expert provides an appropriate model for the reasoning machine
from the model base. The reasoning machine fetches data from the database, acquires
rules from the knowledge base and carries out forward reasoning. The result is
returned to the analyst via explanation

Step 5 An analyst analyzes the computing results to determine whether they are reasonable,
and submits the conclusion to the user via the human-computer interface
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optimal solution and validate whether it satisfies the corresponding constraints and
meets the technological requirements.

When a user clicks the optimization computing button, the system will load data
in the database and parameters in the memory workspace, and will perform opti-
mization computing in the background according to the selected model. When the
computing is finished, the results will be transferred back to the system for display.
The main interface for the ore blending cost optimization system is shown in
Fig. 1.8 (Zhang et al. 2011).

1.7 Summary

This book aims to help readers understand what a multi-level decision-making
problem is, how to model it and what it can support to achieve a solution. Fur-
thermore, it will help readers to know how to develop and use a multi-level DSS
tool to handle complex multi-level decision-making problems. This chapter pre-
sents fundamental concepts about decision making, decision models, and DSS, as
well as DSS software illustration. It provides the necessary fundamental techniques
and preliminary knowledge for the following chapters of this book.

24 1 Decision Making and Decision Support Systems



Chapter 2
Optimization Models

To model and solve a bi-level or multi-level optimization problem, we have to first
understand basic single-level optimization models and related solution methods.
This chapter introduces related concepts, models and solution methods of basic
single-level optimization including linear programming, non-linear programming,
multi-objective programming, goal programming, Stackelberg game theory, and
particle swarm optimization. These knowledge will be used in the rest of the book.

This chapter is organized as follows. Section 2.1 introduces basic single-level
optimization concepts and models. Section 2.2 presents the solution method of
linear programming. Section 2.3 addresses non-linear programming by its defini-
tion, classification, theories, and solution methods. Section 2.4 gives the models and
solution methods of multi-objective programming. Section 2.5 introduces goal
programming and its solution process. In Sect. 2.6, we present the principles,
theorems and applications of Stackelberg game theory. Particle swarm optimiza-
tion, which will be used as a solution method for non-linear optimization problem,
is then introduced in Sect. 2.7. Section 2.8 presents a summary.

2.1 Concepts

The core of the decision process is to formulate an identified decision problem and
then find an optimal solution. Many decision models have been developed and
different types of decision models require different kinds of decision-making
methods to obtain solutions. Popular decision models include (1) Analytic Hier-
archy Process (AHP), which allows consideration of both the qualitative and
quantitative aspects of a decision problem and reduces a complex decision to a
series of pairwise comparisons; (2) Grid Analysis, also known as decision matrix
analysis or multi-attribute utility theory, in which the decision matrices are the most
effective, and multiple alternatives and criteria will be taken into account in the
decision process; (3) Decision Tree, which is a graph of decisions and their possible
consequences, is used to create a plan to reach a goal; and (4) Optimization model
which is a more sophisticated approach to solve decision problems and is the main
focus of this book.
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Optimization, also called mathematical programming, refers to the study of
decision problems in which one seeks to minimize (min) or maximize (max) a
function by systematically choosing the values of variables within their allowed
sets. Many real-world decision problems can be modeled by an optimization
framework. To model a decision problem as an optimization model, we need, in
principle, three sets of basic variables: decision variables, result variables and
uncontrollable variables (or parameters).

Decision Variables describe alternative courses of action and are determined by
related decision makers. For example, for a product planning problem, the number
of products to be produced is a decision variable.

Result Variables are outputs and are often described by objective functions, such
as profit (max) and cost (min). The outputs are determined by decision makers, the
factors that cannot be controlled by decision makers, and the relationships among
the variables.

Uncontrollable Variables (or Parameters) are the factors that affect the result
variables but are not under the control of decision makers. These factors can be
fixed, in which case they are called parameters, or they can vary. These factors are
uncontrollable because they are determined by elements of the system environment.
Some of these variables limit decision makers and therefore form what are called
the constraints of the problem. For example, each product’s cost of production
should be less than the total profit, and each product should meet marketing
requirements and so on in a product planning problem.

There are many types of optimization models such as linear programming, non-
linear programming, multi-objective programming, and bi-level programming.

Linear Programming (LP) is an important type of optimization in which the
objective function and constraints are all linear. Linear programming problems
include specialized algorithms for their solutions and for other types of optimization
problems by solving linear programming problems as sub-problems. Linear pro-
gramming is heavily used in various management activities, either to maximize the
profit or minimize the cost. It is also the key technique of other optimization
problems.

Now, we re-consider Example 1.1 discussed in Chap. 1 to explain how to build a
model for an LP practical decision problem.

Example 2.1 A company produces two kinds of products: A and B. We know that
the profit of one unit of A and B is $40 and $70, respectively. However, the
company has limitations in its labor (a total of 501 labor hours available per time
slot; each A needs 4 h and B 3 h), machine (a total of 401 machine hours available,
each A needs 2 h and B 5 h), and marketing requirements (the need to produce 10
units of A and 20 units of B respectively). The decision problem is how many A and
B should be produced to obtain the maximum profit. Using these settings and
requirements, we can establish a linear programming model:
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Decision variables:

x1 ¼ units of A1 to be produced;

x2 ¼ units of A2 to be produced:

Result variable (objective function):
Maximize total profit: 40x1 þ 70x2;
Labor constraint (hours): 4x1 þ 3x2 � 501;
Machine constraint (hours): 2x1 þ 5x2 � 401;
Marketing requirement for x1 (units): x1 � 10;
Marketing requirement for x2 (units): x2 � 20:

This is a linear programming problem and can be modeled by linear program-
ming (see Sect. 2.2).

Non-linear Programming (NLP) is the process of solving a programming
problem subject to certain constraints, over a set of unknown real variables, along
with an objective function to be maximized or minimized, as with linear pro-
gramming, but where some of the constraints or the objective function are non-
linear. For example,

min
x1;x2

40x21 þ 70x32

s:t: x21 þ 20x2 � 100;

2x1 þ 3
ffiffiffiffiffi
x2

p � 140;

x1 � 10; x2 � 20:

Multi-objective Programming (MOP) is the process of simultaneously opti-
mizing two or more conflicting objectives subject to certain constraints. MOP
problems can be found in a variety of fields, such as product and process design,
aircraft design, automobile design, or wherever optimal decisions need to be made
in the presence of trade-offs between two or more conflicting objectives. Maxi-
mizing profit and minimizing the cost of a product; maximizing performance and
minimizing the fuel consumption of a vehicle; and minimizing weight while
maximizing the strength of a particular component are all examples of multi-
objective optimization problems.

In general, a multi-objective programming problem should not have a single
solution that simultaneously minimizes or maximizes each objective to its fullest. In
each case an objective must have reached a point such that, when attempting to
optimize the objective further, other objectives suffer as a result. Finding such a
solution, and quantifying how much better this solution is compared to other
solutions, is the goal when setting up and solving a multi-objective optimization
problem. For example,
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min
x1;x2

40x1 þ 70x2
50x1 þ 60x2

� �

s:t: 10x1 þ 20x2 � 109;

20x1 þ 30x2 � 419:

Bi-level programming (BLP) and multi-level programming (MLP) are complex
optimization situations where one optimization problem is embedded in another
one. A bi-level programming problem is a multi-level programming problem
having two levels. Below is an example of bi-level programming. More detail will
be presented in Chap. 3.

min
x1

40x1 þ 70x2

s:t: 10x1 þ 20x2 � 119;

20x1 þ 30x2 � 409;

min
x2

50x1 þ 60x2

s:t: 10x1 þ 8x2 � 109;

x1 � 10; x2 � 2:

We can see that optimization is an ideal model for decision making. The single
limitation is that it works only if the problem is structured and, for the most part,
deterministic. An optimization model defines the required input data, the desired
output, and the mathematical relationships in a precise manner.

2.2 Linear Programming

Linear programming is a mathematical approach to determining a means to achieve
the best outcome (such as maximum profit or minimum cost) in a given mathe-
matical model. This model is defined by an objective function and one or more
constraints which have linear formats. A typical example would be taking the
limitations of materials and labor described by linear inequalities, and then deter-
mining the “best” production levels for the maximal profit defined by a linear
formula, under those limitations.

LP problem can be written as:

max
x

f ðxÞ ¼ cx

s:t: Ax � b;
ð2:1Þ

where x represents the vector of decision variables, c and b are vectors of known
coefficients, and A is a known matrix of coefficients. The expression f(x) to be
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maximized (in other cases, it may be minimized) is called the objective function.
The equations Ax ≤ b are the constraints which specify a convex polytope over
which the objective function is to be optimized. Both f(x) and Ax have linear
formats.

Linear programming has a tremendous number of application fields. It has been
used extensively in business and engineering, in the areas of transportation, energy,
telecommunications, and manufacturing. It has been proved to be useful in modeling
diverse types of problems in planning, routing, scheduling, assignment, and design.

Just as with standard maximization problems, the method most frequently used
to solve LP problems is the simplex method (Charnes and Cooper 1957). This
method provides us with a systematic way of examining the vertices of the feasible
region to determine the optimal value of the objective function. As is well-known,
the simplex method has proven remarkably efficient in practice.

2.3 Non-linear Programming

Non-linear programming is the process of solving a problem of equalities and
inequalities, collectively termed constraints, over a set of unknown real variables,
along with an objective function to be maximized or minimized, where some of the
constraints or the objective function are non-linear. Formally, an NLP problem can
be written as:

min
x

f ðxÞ ð2:2aÞ

s:t: hðxÞ ¼ 0; ð2:2bÞ

gðxÞ� 0; ð2:2cÞ

where x 2 Rn; f : Rn ! R; h : Rn ! Rp; g : Rn ! Rq: A point x that satisfies the
constraints given by (2.2b) and (2.2c) is called a feasible solution to problem (2.2a)–
(2.2c). A collection of all such feasible solutions forms the feasible region. NLP is
then use to search a feasible solution �x such that f ð�xÞ� f ðxÞ for any feasible solution
x. �x is called an optimal solution to the problem (2.2a–2.2c). In special cases when
the objective function of (2.2a) and constraints (2.2b) and (2.2c) all have linear
forms, the problem (2.2a–2.2c) reduces to a linear programming problem (2.1).

2.3.1 Varieties of Non-linear Programming

Based on the mathematical characteristics of the objective function (2.2a) and the
constraints (2.2b) and (2.2c), NLP can be in many different formats. For an
objective function or a constraint, the format can be linear, sum of squares of linear
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functions, quadratic functions, sum of squares of non-linear functions, sparse non-
linear functions, or non-smooth non-linear functions.

Based on combinations of the above formats of the objective and constraints, an
NLP problem can be a specific type (such as linear objective function, but the
constraint is a quadratic function) and thus have particular properties.

2.3.2 Theories and Optimality Conditions of Non-linear
Programming

In this section, we introduce the most important and widely used theories and opti-
mality conditions of NLP. We first denote the feasible region of problem (2.2a–2.2c)
by S. The following definitions and results can be found in Bazaraa et al. (2013).

Definition 2.1 A point x� 2 S is called a relative or local minimum of f(x) over S if
there is an e[ 0 such that f ðxÞ� f ðx�Þ for all x 2 S within a distance ε of x�. If
f ðxÞ[ f ðx�Þ for all x 2 S, x 6¼ x� within a distance ε of x�, then x� is called a strict
relative minimum of f(x) over S.

Definition 2.2 A point x� 2 X is called a global minimum of f(x) over S if
f ðxÞ� f ðx�Þ for all x 2 S. If f ðxÞ[ f ðx�Þ for all x 2 S, x 6¼ x�, then x� is called a
strict global minimum of f(x) over S.

For situations where constraints are absent, the following two theorems hold.

Theorem 2.1 Let f : Rn ! R be twice continuously differentiable throughout a
neighborhood of x�. If f has a relative minimum at x�, then it necessarily follows
that

1. The gradient vector rf ðx�Þ ¼ 0.
2. Fðx�Þ is positive semi-definite, where Fðx�Þ is the Hessian matrix of f(x) at x�.

Theorem 2.2 Let f : Rn ! R be twice continuously differentiable throughout a
neighborhood of x�. Then a sufficient condition for f(x) to have a strict relative
minimum at x�, where rf ðx�Þ ¼ 0 holds, is that Fðx�Þ is positive definite.

For NLP problems involving only equality constraints, the following definition
and theories hold.

Definition 2.3 A point x� satisfying the constraints hðx�Þ ¼ 0 is called a regular
point of the constraints if the gradient vectors rh1ðx�Þ; . . . ;rhmðx�Þ are linearly
independent.

Theorem 2.3 At a regular point x� of the surfaces S ¼ fxjhðxÞ ¼ 0g, the tangent
plane is equal to T ¼ fyjrhðxÞy ¼ 0g.
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Theorem 2.4 Suppose that x� is a local minimum of f(x) subject to hðxÞ ¼ 0 as well
as a regular point of these constraints. There then exists a vector k 2 Rm such that
rf ðx�Þ � krhðx�Þ ¼ 0.

The following definitions and theories are used for the general NLP problem
(2.2a–2.2c).

Definition 2.4 Let x� be a point satisfying the constraints h x�ð Þ ¼ 0 and g x�ð Þ� 0;
and let J be the set of indices j such that gjðx�Þ ¼ 0. Then x� is called a regular
point of these constraints if the gradient vectors rhi x�ð Þ 1� i�mð Þ, rgjðx�Þðj 2 JÞ
are linear independent.

Theorem 2.5 (Kuhn-Tucker Conditions) Let x� be a relative minimum for the
problem (2.2a–2.2c) and suppose that x� is a regular point for the constraints.
Then there exists a vector k 2 Rm and a vector l 2 Rq such that

rf x�ð Þ � krh x�ð Þ � lrg x�ð Þ ¼ 0; ð2:3aÞ

lg x�ð Þ ¼ 0; ð2:3bÞ

l� 0; ð2:3cÞ

h x�ð Þ ¼ 0; g x�ð Þ� 0: ð2:3dÞ

2.3.3 Methods for Solving Non-linear Programming
Problems

For an NLP problem in which the objective function and constraints have linear
forms, the problem becomes an LP problem which can be solved using the well-
known simple algorithm.

If the objective function of an NLP problem is convex (for the minimization
problem), or concave (for the maximization problem), and the constraint set is
convex, then the programming problem is called a convex programming problem
and general methods from convex optimization can be used.

Several methods are available for solving non-convex problems. One method is
to use special formulations of LP problems. Another involves the use of the branch-
and-bound technique, where the programming problem is divided into subclasses to
be solved with convex (minimization problem) or linear approximations that form a
lower bound on the overall cost within the subdivision. With subsequent divisions,
an actual solution will be obtained at some point whose cost is equal to the best
lower bound obtained for any of the approximate solutions. This solution is opti-
mal, although possibly not unique. The method may also be terminated early, with
the assurance that the best feasible solution is within a tolerance of the best point
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found; such points are called e-optimal solution. Terminating to e-optimal solution
is typically necessary to ensure finite termination. This is especially useful for large,
difficult problems, and problems with uncertain costs or values where the uncer-
tainty can be estimated with appropriate reliability estimation.

Under differentiability and constraint qualifications, the Kuhn–Tucker conditions
provide the necessary conditions for a solution to be optimal. Under convexity,
these conditions are also sufficient.

The most popular methods for NLP problems include Zoutendijk’s feasible
direction method, the gradient projection method, the penalty method, and the
Lagrangian method (Bazaraa et al. 2013).

The above-mentioned methods depend on certain mathematical properties of the
NLP problems to be solved. Sometimes, these properties are difficult to satisfy. In
such situations, these methods become invalid. Heuristics-based methods such as
Genetic Algorithms (Tang et al. 2011), Particle Swarm Optimization (Nezhad et al.
2013), on the other hand, do not have this limitation and are thus another direction
for NLP problems.

2.4 Multi-objective Programming

The main characteristics of Multi-objective Programming (MOP) are that decision
makers need to achieve multiple objectives simultaneously while these multiple
objectives are non-commensurable and conflict with each other.

2.4.1 Multi-objective Programming Model

An MOP model considers a vector of variables, objective functions, and con-
straints. It attempts to maximize (or minimize) the objective functions. Since this
problem rarely has a unique solution, we expect to choose a solution from among
the set of feasible solutions, which will be explained later in this section. Generally,
a MOP problem can be formulated as follows:

max
x

f ðxÞ
s:t: x 2 X ¼ xjgðxÞ� 0f g

ð2:4Þ

where f xð Þ represents k conflicting objective functions, g xð Þ� 0 represents m
constraints, and x 2 Rn is a n-dimensional vector of decision variables.

Multi-objective linear programming (MOLP) is one of the most important forms
of MOP problems, which are specified by linear objective functions subject to a set
of linear constraints. The standard form of a MOLP problem can be written as
follows:
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max
x

Cx

s:t: x 2 X ¼ xjAx� bf g
ð2:5Þ

where C is a k � n objective function matrix, A is an m� n constraint matrix, b is a
m-dimensional vector, and x is a n-dimensional vector of decision variable.

We have the following notion for a complete optimal solution.

Definition 2.5 (Sakawa 1993) x� is said to be a complete optimal solution, if and
only if there exists a x� 2 X such that fi x�ð Þ� fi xð Þði ¼ 1; . . .; kÞ) for all x 2 X:

Also, ideal solution, superior solution, or utopia point are equivalent terms
indicating a complete optimal solution (Lu et al. 2007).

In general, a complete optimal solution that simultaneously maximizes (or
minimizes) all objective functions does not always exist when the objective func-
tions conflict with each other. Thus, a concept of Pareto optimal solution is
introduced into MOLP.

Definition 2.6 (Sakawa 1993) x� is said to be a Pareto optimal solution, if and only
if there does not exist another x 2 X such that fi xð Þ� fi x�ð Þ for all i and fi xð Þ 6¼
fi x�ð Þ for at least one i.

The Pareto optimal solution is also called a non-dominated solution, non-inferior
solution, efficient solution, and non-dominate solution.

In addition to the Pareto optimal solution, the following weak Pareto optimal
solution is defined as a slightly weaker solution concept than the Pareto optimal
solution.

Definition 2.7 (Sakawa 1993) x� is said to be a weak Pareto optimal solution, if
and only if there does not exist another x 2 X such that fi xð Þ[ fi x�ð Þ; i ¼ 1; . . .; k.

Here, let XCO, XP and XWP denote complete optimal, Pareto optimal, and weak
Pareto optimal solution sets, respectively. Then from above definitions, we can
easily obtain the following relations:

XCO � XP � XWP: ð2:6Þ

A satisfactory solution belongs to a reduced subset of the feasible set that exceeds
all of the aspiration levels of each objective. A set of satisfactory solutions is
composed of acceptable alternatives. Satisfactory solutions do not need to be non-
dominated, and a preferred solution is a non-dominated solution selected as the final
choice through decision makers’ involvement in the information processing stage.

The rest of this chapter focuses mainly on MOLP, the linear form of MOP.
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2.4.2 Multi-objective Linear Programming Methods

The methods for solving MOLP problems have been well developed and classified
into four classes by Hwang and Masud (1979) and Lai and Hwang (1994). We list
them in Table 2.1.

As shown in Table 2.1, the first class of MOLP methods basically does not
require any more information nor interaction with decision makers once the
objective functions and constraints have been defined. The solution to a MOLP
problem is presented on the basis of assumptions made about decision makers’
preferences.

The second class of MOLP methods assumes that decision makers have a set of
goals to achieve and that these goals will be established before formulation of a
mathematical programming model. The multi-objective goal programming
(MOGP) assumes that decision makers can specify goals for the objective func-
tions. The key idea behind goal programming is to minimize deviation from the
goals or aspiration levels set by decision makers. In most cases, therefore, MOGP
seems to yield a satisfactory solution rather than an optimal one. More details about
MOGP problem will be discussed later.

Table 2.1 A classification of MOLP methods

Stage at which information
is needed

Type of
information

Typical methods

1 No articulation of preference
information

• Global criteria method (Hwang and Masud
1979, Salukvadze 1974)

2 A priori articulation
of preference information

Cardinal • Weighting method (Hwang and Masud
1979, Sakawa 1993)

Ordinal
and
cardinal

• (Multi-objective) goal programming (GP)
(Ignizio 1976)

3 Progressive articulation
of preference information
(interactive method)

Explicit
trade-off

• Efficient solution via goal programming
(ESGP) (Ignizio 1981)

• Interactive multiple objective linear
programming (IMOLP) (Quaddus and
Holzman 1986)

• Interactive sequential goal programming
(ISGP) (Hwang and Masud 1979)

• ZW method (Zionts and Wallenius 1983)

Implicit
trade-off

• STEP method (STEM) (Benayoun et al.
1971)

• STEUER (Steuer 1977)

4 A posteriori articulation
of preference information
(non-dominated solutions
generation method)

Implicit/
explicit
trade-off

• Parametric method (Hwang and Masud
1979)

• Constraint method (Hwang and Masud
1979; Sakawa 1993)
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The third class of MOLP, interactive methods, requires more involvement and
interaction with decision makers in the solving process. The interaction takes place
through decision makers’ computer interface at each iteration. Trade-off or pref-
erence information from decision makers at each iteration is used to determine a
new solution, therefore decision makers actually gain insights into the problem.
Interactive programming was first initiated by Geoffrion et al. (1972) and further
developed by many researchers. The STEP method (Benayoun et al. 1971) in
particular is known to be one of the first interactive MOLP techniques, to which
there have been a number of modifications and extensions. The interactive MOGP
method was also proposed (Dyer 1972), which attempts to provide a link between
MOGP and interactive methods.

Lastly, the purpose of the fourth class is to determine a subset of the complete set of
non-dominated solutions to a MOLP problem. It deals strictly with constraints and
does not consider the decision makers’ preferences. The desired outcome is to narrow
the possible courses of actions and select the preferred course of action more easily.

Interaction is one of the most important features for solving MOLP problems.
There are three types of interaction in the MOLP problem solving process: pre-
interaction (before the solution process), pro-interaction (during the solution pro-
cess), and post-interaction (after the solution process). The seven MOLP methods
selected from Table 2.1, ESGP, IMOLP, ISGP, MOGP, STEM, STEUER, and ZW,
have differences in the interaction processes with decision makers. The MOGP,
IMOLP and ISGP methods involve pre-interaction with users prior to the solution
process through the collection of weights, goals, and priorities of objectives from
users. The STEM method engages in pro-interaction during the solution process. Its
principle is to require decision makers to nominate the amounts to be sacrificed of
satisfactory objectives until all objectives become satisfactory. It first displays a
solution and the ideal value of each objective. It then asks decision makers to accept
or reject this solution. If it is accepted, the solution is taken as the final satisfactory
solution. However, decision makers often make further searches so that more
alternative solutions can be generated. If the current solution is rejected, a relaxation
process starts. Decision makers will accept a certain level of relaxation of a satis-
factory objective to allow the improvement of unsatisfactory objectives. When the
relaxation fails, the system enables decision makers to continue re-entering a set of
relaxation values and a new solution is then found. If decision makers accept this
solution, it becomes the final satisfactory solution. Otherwise the system repeats the
above process. Post-interaction is used in all seven methods. After a set of candidate
solutions has been generated, decision makers are required to choose the most
satisfactory solution.

Now, we give details of the weighting method for solving MOLP problems.
The key idea of the weighting method is to transform the multiple objective

functions in the MOLP problem (2.5) into a weighted single objective function,
which is described as follows:
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max
x

wCx

s:t: x 2 X ¼ xjAx� bf g
ð2:7Þ

where w ¼ w1;w2; . . .;wkð Þ� 0 is a vector of weighting coefficients assigned to the
objective functions.

Example 2.2 Let us consider the following example of a MOLP problem.

max
x1;x2

f xð Þ ¼ f1 xð Þ
f2 xð Þ

� �
¼ 2x1 þ x2

�x1 þ 2x2

� �

s:t: �x1 þ 3x2 � 21;

x1 þ 3x2 � 27;

4x1 þ 3x2 � 45;

3x1 þ x2 � 30:

ð2:8Þ

Let X denote the feasible region of problem (2.8). When w1 ¼ 0:5;w2 ¼ 0:5, the
weighting problem is formulated as

max wf xð Þ ¼ 0:5x1 þ 1:5x2
s:t: ðx1; x2Þ 2 X:

The optimal solution is ðx�1; x�2Þ ¼ ð3; 8Þ, and the optimal objective function
value is f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð14; 13Þ.

When w1 ¼ 1;w2 ¼ 0, the optimal solution is ðx�1; x�2Þ ¼ ð9; 3Þ, and the optimal
objective function value is f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð21;�3Þ.

When w1 ¼ 0;w2 ¼ 1, the optimal solution is ðx�1; x�2Þ ¼ ð0; 7Þ, and the optimal
objective function value is f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð7; 14Þ.

2.4.3 A Case-Based Example

Example 2.3 A manufacturing company has six types of milling machine, lathe,
grinder, jig saw, drill press, and band saw, whose capacities are to be devoted to
producing three products x1, x2, and x3. Decision makers have three objectives:
maximizing profit, quality, and worker satisfaction. It is assumed that the param-
eters and objectives of the MOLP problem are defined precisely in this example.
For instance, to produce one unit of x1 requires 12 h of machine milling, as listed in
Table 2.2 (Lai 1995).

36 2 Optimization Models



This problem can be described by a MOLP model as follows:

max
x1;x2;x3

f xð Þ ¼
50x1 þ 100x2 þ 17:5x3
92x1 þ 75x2 þ 50x3
25x1 þ 100x2 þ 75x3

0
B@

1
CA

s:t: 12x1 þ 17x2 � 1400;

3x1 þ 9x2 þ 8x3 � 1000;

10x1 þ 13x2 þ 15x3 � 1750;

6x1 þ 16x3 � 1325;

12x2 þ 7x3 � 900;

9:5x1 þ 9:5x2 þ 4x3 � 1075;

x1; x2; x3 � 0:

ð2:9Þ

We can see that this is a typical multi-objective programming problem.

2.5 Goal Programming

Goal programming (GP), originally proposed by Charnes and Cooper (1957), is a
great strategy to deal with multi-objective optimization problems by setting mul-
tiple goals, as we mentioned before. In some decision situations, a decision maker
may have more than one objective, with the improvement on one objective to be
achieved only at the expense of others. For example, a coordinator of a multi-
division firm considers three objectives in making an aggregate production plan: to
maximize the net profit, to maximize the quality of products, and to maximize
worker satisfaction (Example 2.3). The three objectives could be in conflict with

Table 2.2 Production planning data

Machine Product x1
(unit)

Product x2
(unit)

Product x3
(unit)

Machine
(available hours)

Milling machine 12 17 0 1,400

Lathe 3 9 8 1,000

Grinder 10 13 15 1,750

Jig saw 6 0 16 1,325

Drill press 0 12 7 900

Band saw 9.5 9.5 4 1,075

Profit 50 100 17.5

Quality 92 75 50

Worker
satisfaction

25 100 75
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each other, but must be considered simultaneously. Any improvement in one
objective may be achieved only at the expense of other objectives.

Goal programming takes a ‘satisfactory solution’ strategy. It requests a decision
maker to set a goal or a target for the objective (a set of goals for a MOLP) that the
person wishes to attain. A preferred solution is then defined to minimize the
deviation from the goal. Therefore, goal programming would appear to yield a
satisfactory solution rather than an optimal one. Now we give a formal description
of the method adopted by goal programming.

Suppose that a MOLP problem is defined as follows:

max
x

f xð Þ ¼ a1x; a2x; . . .; akxð Þ
s:t: Ax� b:

ð2:10Þ

For problem (2.10), there are a total of k objectives a1x; a2x; . . .; akxð Þ to
achieve. We give goals giði ¼ 1; 2; . . .; kÞ for the ith objective. Our effort is now
focused on making each objective aix as close to its goal giði ¼ 1; 2; . . .; kÞ, as
possible. The problem (2.10) is then transformed as follows:

min
x;v�1 ;v

þ
1 ;...;v

�
k ;v

þ
k

v�1 þ vþ1 þ � � � þ v�k þ vþk

s:t: a1xþ v�1 � vþ1 ¼ g1;

a2xþ v�2 � vþ2 ¼ g2;

..

.

akxþ v�k � vþk ¼ gk;

v�1 ; v
þ
1 ; . . .; v

�
k ; v

þ
k � 0;

Ax� b:

ð2:11Þ

To give a more clear understanding of the idea adopted, v�i and vþi ði ¼ 1; . . .; kÞ
can be defined as follows:

vþ1 ¼ 1
2 a1x� g1j j þ a1x� g1ð Þð Þ ;

v�1 ¼ 1
2 a1x� g1j j � a1x� g1ð Þð Þ ;

..

.

vþk ¼ 1
2 akx� gkj j þ akx� gkð Þð Þ ;

v�k ¼ 1
2 akx� g1j j � akx� gkð Þð Þ :
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In the above formula, v�i and vþi ; are deviation variables representing the under-
achievement and over-achievement of the ith goal gi; for the ith objective aixði ¼
1; . . .; kÞ; respectively.

The problem defined by (2.11) is a standard linear programming problem which
can be solved by the simplex method.

There are some variants of goal programming. The initial goal programming
formulations order the deviations between objectives and goals into a number of
priority levels. The minimization of the deviation at a higher priority level are more
important than the deviations at lower priority levels. This is called lexicographicor
pre-emptive goal programming (Amador and Romero 1989). When clear priority
ordering of the goals to be achieved exists, lexicographic goal programming can be
used.

Weighted or non pre-emptive goal programming can be used if a decision maker
is more interested in making direct comparisons of the objectives. In this situation,
all the deviations between objectives and goals are multiplied by weights, which
reflect the relative importance of the objectives. We add these weighted deviations
together as a single sum to form the objective function. This process is defined by
the following formula:

min
x;v�1 ;v

þ
1; ;...;v

�
k ;v

þ
k

v ¼ w�
1 v

�
1 þ wþ

1 v
þ
1 þ � � � þ w�

k v
�
k þ wþ

k v
þ
k

s:t: a1xþ v�1 � vþ1 ¼ g1;

a2xþ v�2 � vþ2 ¼ g2;

..

.

akxþ v�k � vþk ¼ gk;

v�1 ; v
þ
1 ; . . .; v

�
k ; v

þ
k � 0;

Ax� b;

where w�
i and wþ

i ði ¼ 1; 2; . . .; kÞ are non-negative constants representing the rel-
ative importance to be assigned to the positive and negative deviations for each of
the relevant goals.

Based on goal programming as previously introduced and the MOLP model,
MOGP requires that goals are set for each objective, following which a preferred
solution is defined as one which minimizes the deviations from those goals.

We assume that the goals g ¼ ðg1; . . .; gkÞ are specified for objective functions
f ðxÞ ¼ ðf1ðxÞ; . . .; fkðxÞÞ by decision makers, and a decision variable x� 2 X in the
MOLP problem is sought so that the objective functions f � xð Þ ¼ ðf �1 xð Þ; . . .; f �k xð ÞÞ
are as close as possible to the goals g ¼ ðg1; . . .; gkÞ.

The deviation between f � xð Þ ¼ ðf �1 xð Þ; . . .; f �k xð ÞÞ and g ¼ ðg1; . . .; gkÞ is usually
defined as a deviation function Dðf xð Þ; gÞ. The MOGP can then be defined as an
optimization problem:
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min
x2X

D f xð Þ; gð Þ
s:t: x 2 X ¼ x 2 RnjAx� bf g;

ð2:12Þ

that is, find an x� 2 X, which minimizes Dðf xð Þ; gÞ or

x� ¼ argmin
x2X

D f xð Þ; gð Þ: ð2:13Þ

Normally, the deviation function Dðf xð Þ; gÞ is a maximum of deviation of
individual goals,

D f xð Þ; gð Þ ¼ max D1 f1 xð Þ; g1ð Þ; . . .;Dk fk xð Þ; gkð Þf g: ð2:14Þ

From (2.12) and (2.14), the min–max approach is applied to the GP problem:

min
x2X

max D1 f1 xð Þ; g1ð Þ; . . .;Dk fk xð Þ; gkð Þf g: ð2:15Þ

By introducing an auxiliary variable c, (2.15) can then be transformed into the
following linear programming problem:

min
x

c

s:t: D1 f1 xð Þ; g1ð Þ� c;

D2 f2 xð Þ; g2ð Þ� c;

..

.

Dk fk xð Þ; gkð Þ� c;

Ax� b:

ð2:16Þ

Example 2.4 Let us consider the following example of a MOLP problem:

max
x1;x2

f xð Þ ¼ 2x1 þ x2
�x1 þ 2x2

� �

s:t: �x1 þ 3x2 � 21;

x1 þ 3x2 � 27;

4x1 þ 3x2 � 45;

3x1 þ x2 � 30;

x1; x2 � 0:

Suppose the goals are specified as g ¼ ð10; 10Þ for the two objective functions.
The original MOLP problem can be converted as the following LP problem with
the auxiliary variable c:
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min
x1;x2

c

s:t: 2x1 þ x2 � 10� c;

�x1 þ 2x2 � 10� c;

�x1 þ 3x2 � 21;

x1 þ 3x2 � 27;

4x1 þ 3x2 � 45;

3x1 þ x2 � 30;

x1; x2 � 0:

The optimal solution then is ðx�1; x�2Þ ¼ ð2; 6Þ, and the optimal objective function
values are f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð10; 10Þ.

When the goals are specified as g ¼ ð15; 15Þ, the optimal solution is
ðx�1; x�2Þ ¼ ð1:865; 7:622Þ, and the optimal objective function values are
f � xð Þ ¼ ðf �1 xð Þ; f �2 ðxÞÞ ¼ ð11:351; 13:378Þ. We learn from the optimal objective
function values that the goals are not achieved. The reason is that the goals specified
are beyond the feasible constraint area. The point of x�1; x

�
2

� � ¼ ð1:865; 7:622Þ is on
the boundary of the feasible constraint area.

Goal programming has the advantages of being simple and easy to use. It can
handle relatively large numbers of variables, constraints and objectives, which
accounts for the large number of goal programming applications in many diverse
fields, such as business management, transportation planning, and resource opti-
mization. A limitation of goal programming is that setting the goals for some of the
objectives may not be straight forward. In-depth field knowledge might be required
to solve a decision problem, and experiments sometimes need to be carried out to
set suitable goals.

2.6 Stackelberg Game Model

The Stackelberg game model, which is also called a leader-follower game, was first
proposed by Heinrich von Stackelberg in 1952 (Stackelberg 1952). It is based on
economic monopolization phenomena. In a Stackelberg game, one player acts as a
leader and the rest as followers. The problem is then to find an optimal strategy for
the leader, assuming that the followers react in a rational way which will optimize
their objective functions, given the leader’s actions.

Stackelberg used a hierarchical model to describe a market situation in which
decision makers try to optimize their decisions based on individually different
objectives but are affected by a certain hierarchy.
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2.6.1 Stackelberg Game and Bi-level Programming

The Stackelberg leadership model considers the case of a single leader and fol-
lower. Let X and Y be the strategy sets for the leader and follower respectively.
Denote their objective function by Fðx; yÞ and f ðx; yÞ respectively. Knowing the
selection x of the leader, the follower can select his best strategy yðxÞ such that his
objective function f ðx; yÞ is maximized, i.e.,

y xð Þ 2 U xð Þ ¼ argmax
y2Y

f x; yð Þ: ð2:17Þ

The leader then obtains the best strategy x 2 X as

x 2 argmax
x2X

fF x; yð Þjy 2 U xð Þg: ð2:18Þ

Formulae (2.17) and (2.18) can be combined to express the Stackelberg game as
follows:

max
x

F x; yð Þ
s:t: x 2 X;

y 2 argmax
y2Y

f x; yð Þ:

Bi-level programming (see Chap. 3) is more general than Stackelberg game in
the sense that the strategy sets (also called the admissible sets) depend on both x and
y. This leads to a general bi-level programming (Candler and Norton 1977) as
follows:

max
x

F x; yð Þ
s:t: Gðx; yÞ� 0;

y 2 argmaxff x; yð Þjgðx; yÞ� 0g:
ð2:19Þ

Bi-level programming problem (2.19) is a generalization of several well-known
optimization problem (Dempe 2002). For example, if F x; yð Þ ¼ �f x; yð Þ, then it is a
classical min–max problem; if F x; yð Þ ¼ f x; yð Þ, we have a realization of the
decomposition approach to optimization problem; if the dependence of both the
leader’s and the follower’s problem on y is dropped, the problem is reduced to a bi-
criteria optimization problem.
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2.6.2 Stackelberg Game and Nash Game

The Stackelberg game can be considered as an extension of the well-known Nash
game (Nash 1951). In the Nash game, we assume that there are k players, and the
ith player has a strategy set Xi, and his objective function is fiðxÞ for i ¼ 1; 2; . . .; k,
where x ¼ ðx1; x2; . . .; xkÞ. Each player chooses a strategy based on the choices of
the other players and there is no hierarchy. The unstructured problem is modeled as
follows: for i ¼ 1; 2; . . .; k, we have max

xi2Xi

fiðxÞ.
This is a Nash game in which all players aim to maximize their corresponding

objective functions.
In contrast, there is a hierarchy between the leader and followers in the Stac-

kelberg game. The leader is aware of the choices of the followers, thus the leader,
being in a superior position with regard to everyone else, can achieve the best
objective while forcing the followers to respond to this choice of strategy by solving
the Stackelberg game. Without loss of generality, we now assume that the first
player is the leader, and the rest of the players are followers. Let
X1� ¼ X2 � X3 � � � � � Xk; f1� xð Þ ¼ f2 xð Þ; . . .; fk xð Þð Þ, and x1� ¼ x2; . . .; xkð Þ 2
X1�: The above Nash game is accordingly transformed into a Stackelberg game,
which is given as follows:

max
x12X1

f1ðxÞ
s:t: x1� 2 argmaxff1� xð Þjx1� 2 X1�g:

This is a Stackelberg game or leader-follower game.

2.6.3 Applications of Stackelberg Games

The investigation of Stackelberg games is strongly motivated by real world
applications, and Stackelberg games techniques have been applied with remarkable
success in many domains, such as transportation network design, production
planning and logistics.

Stackelberg games have been applied to the network design problem (Ben-
Ayed 1988) arising in transportation systems. In the accompanying formulation, a
central planner controls investment costs at the system level, while operational
costs depend on traffic flow, which is determined by the individual user’s route
selection. Because users are assumed to make decisions to maximize their
peculiar utility functions, their choices do not necessarily coincide with the
choices that are optimal for the system. Nevertheless, the central planner can
influence users’ choices by improving certain links, making some relatively more
attractive than others. In deciding on these improvements, the central planner tries
to influence users’ preferences in such a way that total costs are minimized. The
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partition of the control variables between the upper and lower levels naturally
leads to a bi-level formulation.

Moreover, a fuzzy Stackelberg game model was set up to control traffic flow in a
disaster area after an earthquake (Feng and Wen 2005). When a severe earthquake
occurs, roadway systems usually suffer various degrees of damage, reducing their
capacity and causing traffic congestion. Maintaining viable traffic functions to
facilitate the saving of more lives is a crucial mission task following an earthquake.
The aim of the commander of the government Emergency-Response Centre at
county and city level (the upper level) is to allow traffic to pass through disaster
areas to the extent that is possible given the roadway’s capacity, while road users (at
the lower level) always choose the shortest route to affect emergency rescues. To
solve this decision problem, the bi-level technique has been used post-earthquake to
provide an efficient traffic control strategy for recovery from chaos.

A Stackelberg game has been formulated for a newsboy problem. The decision
makers are themanufacturer and retailers. The former acts as a leader who controls the
product price, and the retailers as the followers who decide the quantity of newspapers
to order. The relationship between the manufacturer and retailers is a sequential non-
cooperative game. The manufacturer first decides the product price, and the retailers
then decides the quantity. The manufacturer tries to determine product price and
maximize his profit after considering the retailers’ behavior. The retailers’ decision is
to optimize the order quantity so as to maximize his profit at a given product price.
Clearly, this newsboy problem can be modeled as a Stackelberg game.

In addition, Stackelberg games are frequently utilized in many other real-world
cases, such as resource allocation, network investigation, and engineering. These
applications have provided stimulating environments for the development of
Stackelberg games.

2.7 Particle Swarm Optimization

In the computational intelligence area, particle swarm optimization (PSO) is a
computational method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality. PSO is a heuristic
algorithm proposed by Kennedy and Eberhart (1995), Shi and Eberhart (1998).

Inspired by the social behavior of animals, such as fish schooling and bird flocking,
PSO is a kind of population-based algorithm. The population of PSO is called a
swarm, and each individual in the swarm is called a particle. The similarity between
PSO and other evolutionary algorithms lies in the fact that an individual in the
community is moved to a good area according to its fitness for the environment.
Unlike other evolutionary computation methods, however, each particle in PSO has
an adaptable velocity (position change), according to which it moves in the search
space (Parsopoulos and Vrahatis 2002). Moreover, each particle has a memory,
remembering the best position it has ever visited in the search space (Kennedy and
Eberhart 1995). Thus, its movement is an aggregated acceleration towards its best
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previously visited position and towards the best particle of a topological
neighborhood.

Suppose the current search space for PSO is n-dimensional, then the ith particle
of the swarm can be represented by an n-dimensional vector, xi ¼ ðxi1; . . .; xinÞ. The
velocity (position change) of this particle can thus be represented by another
n-dimensional vector vi ¼ ðvi1; . . .; vinÞ: The best previously visited position of the
ith particle is denoted as pi ¼ ðpi1; . . .; pinÞ. Defining g as the index of the best
particle in the swarm (i.e., the gth particle is the best), and letting the superscripts
denote the iteration number, the swarm is manipulated according to the following
two equations (Eberhart et al. 1996):

vkþ1
id ¼ wvkid þ crk1 pid � xkid

� �þ crk2 pkgd � xkid
� �

;

xkþ1
id ¼ xkid þ vKþ1

id ;

where d ¼ 1; . . .; n denotes the d-dimensional vector, i ¼ 1; 2; . . .;N denotes the ith
particle, N is the size of the swarm, w is the inertia weight, c is a positive constant,
called the acceleration constant, r1; r2 are random numbers, uniformly distributed in
[0,1], and k determines the iteration number.

Like many other global optimization methods, whether deterministic or evolu-
tionary, PSO suffers from the problem of local optima. The existence of many local
optimal solutions makes it difficult for PSO to detect the global optimal solution. In
some cases, sub-optimal solutions are acceptable although not desirable, while in
others, a global optimal solution is indispensable. The development of robust and
efficient methods for avoiding local solutions is the subject of current PSO research.

Stretching technique (Parsopoulos and Vrahatis 2002) has been shown through
simulation experiments and it provide an effective way for the PSO method to
escape local optimal solution.

The idea behind the function of Stretching is to perform a two-stage transfor-
mation of the original objective function F xð Þ: The two-stage transformation can be
applied immediately after a local optimization solution �x of the function FðxÞ has
been detected. This transformation has been proposed by Parsopoulos and Vrahatis
(2002) and is defined as follows:

GðxÞ ¼ FðxÞ þ c1 x� �xj jðsignðFðxÞ � Fð�xÞÞ þ 1Þ; ð2:20Þ

HðxÞ ¼ GðxÞ þ c2
sign FðxÞ � Fð�xÞð Þ þ 1
tanh lðGðxÞ � Gð�xÞÞð Þ ; ð2:21Þ

where c1, c2 and l are arbitrary chosen positive constants, and sign xð Þ is defined by:

sign xð Þ ¼
1; if x\0;
0; if x ¼ 0;
�1; if x\0:

8<
:
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The first transformation stage, defined in (2.20), elevates the function F xð Þ and
eliminates all the local optimization solutions that are less optimal than the result of
Fð�xÞ: The second stage, defined by (2.21), stretches the neighborhood of �x upwards,
since it assigns higher function values to those points. Neither stage changes the
local optimal solutions which can produce more optimal results than �x. Thus, the
location of the global solution can be left unchanged.

Because PSO requires only primitive mathematical operators and is computa-
tionally inexpensive in terms of both memory requirements and speed (Parsopoulos
and Vrahatis 2002), it has good convergence performance and has been success-
fully applied in many fields such as neural network training (Zhang et al. 2007),
integral programming (Kitayama and Yasuda 2006), multi-objective optimization
(Ho et al. 2006), and decision making (Nenortaitė 2007).

2.8 Summary

This chapter addresses the basic concepts and models of optimization theory: linear
programming, non-linear programming, goal programming, multi-objective pro-
gramming, Stackelberg games, and particle swarm optimization are introduced.
These concepts, models and solution techniques will be used in the rest of this
book.
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Chapter 3
Bi-level Programming Models
and Algorithms

This chapter introduces basic definitions, theorems, models and algorithms for
bi-level programming (bi-level decision-making) and also basic models of multi-
level programming, which will be used in the remaining chapters of this book.

Bi-level programming is a special situation of multi-level programming in which
there are only two levels of optimization, that is, the levels of decision (optimization)
n = 2. Bi-level and multi-level programming techniques are developed for solving
decentralized decision-making problems with decision entities (also called decision
makers) in a hierarchical system. The decision entity at the upper level is termed the
leader, and at the lower level is termed the follower (Bard 1998). Each decision entity
(leader or follower) tries to optimize their ownobjectives by considering the objective of
the other level onlypartially or not at all, but thedecisionof each level affects the strategy
of other level decisionmakers. The hierarchical optimization structure appears naturally
in critical resource management and policy making, including tourism resource plan-
ning, water resource management, financial planning, healthcare planning, land-use
planning, production planning, transportation planning, and power market pricing.

This chapter is organized as follows. Section 3.1 introduces the basic concepts
and models for linear and non-linear bi-level programming. Section 3.2 presents the
solution theories and some basic results for linear bi-level programming. The Kth-
Best algorithm, the Kuhn-Tucker (Karush-Kuhn-Tucker, or KKT) approach, the
Branch-and-bound algorithm and the penalty function method are introduced in
Sects. 3.3–3.6 respectively to show how to solve a linear bi-level programming
problem. In Sect. 3.7, based on the bi-level programming concept, we present a
multi-level programming model and in particular, a tri-level programming model
(the levels of decision n = 3). Lastly, a summary is provided in Sect. 3.8.

3.1 Bi-level Programming Model

Bi-level programming (BLP) is closely related to the economics problem addressed
by Stackelberg (1952) through its development of strategic game theory. The ori-
ginal formulation for bi-level programming appeared in 1973, in a paper authored
by Bracken and McGill (1973), although it was Candler and Norton (1977) who
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first used the designation “bi-level” programming. However, it was not until the
early 1980s that these problems started to receive the attention they deserved.

Bi-level programming supposes that the leader has control over the variable
x 2 X � Rn and that the follower has control over the variable y 2 Y � Rm. The
leader goes first and selects an x in an attempt to optimize (maximize or minimize)
their objective function F x; y xð Þð Þ subject to some additional constraints. The
notation yðxÞ stresses the fact that the leader’s problem is implicit in the y variable.
Although for the sake of simplicity this notation will not be maintained in general, it
should be remembered that y is always a function of x. The follower observes the
leader’s actions and reacts by selecting a y to optimize their objective function
f ðx; yÞ, subject to a set of constraints in the y variable for the value of x chosen.

A large part of the research on bi-level programming has centered on its linear
version, i.e., the linear bi-level programming, or so-called linear bi-level optimi-
zation or linear bi-level decision-making, in which all formulas of the objective
functions and the constraints from both the leader and follower are all linear
functions.

The general form of linear bi-level programming is defined in Definition 3.1.

Definition 3.1 (Bard 1998) For x 2 X �Rn, y 2 Y �Rm, F : X � Y ! R, and
f : X � Y ! R, a linear bi-level programming problem is given as follows:

min
x2X

F x; yð Þ ¼ c1xþ d1y ð3:1aÞ

s:t: A1xþ B1y� b1; ð3:1bÞ

min
y2Y

f x; yð Þ ¼ c2xþ d2y ð3:1cÞ

s:t: A2xþ B2y� b2; ð3:1dÞ

where c1; c2 2 Rn, d1; d2 2 Rm, b1 2 Rp, b2 2 Rq, A1 2 Rp�n, B1 2 Rp�m,
A2 2 Rq�n, B2 2 Rq�m.

Although the definitions of linear bi-level programming vary considerably from
one reference to another, most recent publications tend to agree on Definition 3.1 as
the general form. Nevertheless, there are many attempts to describe a more general
form of bi-level programming to cover both linear and non-linear bi-level pro-
gramming problems. That is, the objective functions and constraints can be in any
form of functions. A general bi-level programming problem is written as follows:

min
x2X

Fðx; yÞ
s:t: G x; yð Þ� 0;

min
y2Y

f ðx; yÞ
s:t: g x; yð Þ� 0;
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where F, f : Rm � Rn ! R, G : Rm � Rn ! Rp and g : Rm � Rn ! Rq are con-
tinuous and twice differentiable functions.

This chapter mainly focuses on linear bi-level programming. We will first give
related solution theories and then provide some popular solution methods.

3.2 Solution Theories for Linear Bi-level Programming

Definition 3.2 (Basener 2006) A topological space is compact if every open cover
of the entire space has a finite subcover. For example, ½a; b� is compact in R.

Definition 3.3 (Bard 1998)

(a) Constraint region of the linear bi-level programming problem (3.1a–3.1d):

S ¼ x; yð Þjx 2 X; y 2 Y ;A1xþ B1y� b1;A2xþ B2y� b2f g:

(b) Feasible set for the follower for each fixed x 2 X:

S xð Þ ¼ y 2 Y jB2y� b2 � A2xf g:

(c) Projection of S onto the leader’s decision space:

S Xð Þ ¼ x 2 Xj9y 2 Y ;A1xþ B1y� b1;A2xþ B2y� b2f g:

(d) Follower’s rational reaction set for x 2 S Xð Þ:
P xð Þ ¼ y 2 Y j y 2 argmin f x; ŷð Þj ŷ 2 S xð Þ½ �f g;

where argmin f x; ŷð Þjŷ 2 S xð Þ½ � ¼ y 2 S xð Þjf x; yð Þ� f x; ŷð Þ; ŷ 2 SðxÞf g:
(e) Inducible region or feasible region of the leader:

IR ¼ x; yð Þj x; yð Þ 2 S; y 2 P xð Þf g:

To ensure that the problem (3.1a–3.1d) has an optimal solution, Bard (1998)
gave the following assumptions. These assumptions serve as an introduction to an
existence theorem of solutions.

Assumption 3.1

1. S is nonempty and compact.
2. For decisions taken by the leader, the follower has some room to respond, i.e.,

P xð Þ 6¼ ;.
3. P xð Þ is a point-to-point map with respect to x.
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Assumption 3.2 IR is nonempty.

The rational reaction set P xð Þ defines the response while the inducible region IR
represents the set over which the leader may optimize its objective. Thus in terms of
the above notations, problem (3.1a–3.1d) can be written as:

min F x; yð Þj x; yð Þ 2 IRf g: ð3:2Þ

Theorem 3.1 If assumptions 3.1 and 3.2 are satisfied, there exists an optimal
solution for a linear bi-level programming problem (3.1a–3.1d).

Proof It follows immediately from Theorem 6 (Mersha and Dempe 2006). h

Theorem 3.2 The inducible region IR can be written equivalently as a piecewise
linear equality constraint comprised of support hyper-planes of S.

Proof Let us begin by writing the inducible region of Definition 3.3(e) explicitly as
follows:

IR ¼ x; yð Þj x; yð Þ 2 S; d2y ¼ min d2~yjB2~y� b2 � A2x;~y� 0½ �f g:

Now define:

Q xð Þ ¼ min d2yjB2y� b2 � A2x; y� 0f g ð3:3Þ

For each value of x 2 SðXÞ; the resulting feasible region of problem (3.1a–3.1d)
is non-empty and compact. Thus, Q xð Þ which is a linear programming problem
parameterized in x, always has an optimal solution. From duality theory, we get

max u A2x� bð ÞjuB2 � � d2; u� 0f g; ð3:4Þ

which has the same optimal value as (3.3). Let u1; . . .; us be a listing of all the
vertices of the constraint region of (3.4) which is given by U ¼
ujuB2 ��d2; u� 0f g: Because we know that an optimal solution to (3.4) occurs at

a vertex of U, we get an equivalent problem

max u A2x� b2ð Þju 2 u1; . . .; us
� �� � ð3:5Þ

which demonstrates that Q xð Þ is a piecewise linear function. Rewriting IR as

IR ¼ x; yð Þ 2 SjQ xð Þ � d2y ¼ 0f g ð3:6Þ

yields the desired result. h

Corollary 3.1 The linear bi-level programming problem (3.1a–3.1d) is equivalent
to minimizing F x; yð Þ over a feasible region comprised of a piecewise linear
equality constraint.

Proof By the problem (3.2) and Theorem 3.2, we have the desired result.
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The function Q xð Þ defined by the problem (3.3) is convex and continuous. In
general, because we aim to minimize the linear function Fðx; yÞ ¼ c1xþ d1y over
IR, and because Fðx; yÞ is bounded from below by the finite optimal value, i.e.,
min c1xþ d1yj x; yð Þ 2 Sf g, the following can be concluded. h

Corollary 3.2 An optimal solution to the linear bi-level programming problem
(3.1a–3.1d) occurs at a vertex of IR.

Proof Since Fðx; yÞ ¼ c1xþ d1y is linear, if an optimal solution exists, it must
occur at a vertex of IR. The proof is completed. h

Theorem 3.3 The optimal solution x�; y�ð Þ of the linear bi-level programming
problem (3.1a–3.1d) occurs at a vertex of S.

Proof Let x1; y1ð Þ; . . .; xr; yrð Þ be the distinct vertices of S. Since any point in S can
be written as a convex combination of these vertices, let x�; y�ð Þ ¼P�r

i¼1 ai x
i; yið Þ;

where
P�r

i¼1 ai ¼ 1; ai [ 0; i ¼ 1; . . .;�r and �r� r: It must be shown that �r ¼ 1. To
see this let us write the constraints of problem (3.1a–3.1d) at x�; y�ð Þ in their
piecewise linear form (3.6).

0 ¼ Q x�ð Þ � d2y
� ¼ Q

X
i

aix
i

 !
� d2

X
i

aiy
i

 !

�
X
i

aiQ xi
� ��X

i

aid2y
i by convexity of QðxÞ

¼
X
i

ai Q xi
� �� d2y

i
� �

:

But by the definition of Q xið Þ, it follows that

Q xi
� � ¼ min

y2S xið Þ
d2y� d2y

i:

Therefore, Q xið Þ � d2yi � 0; i ¼ 1; . . .;�r. Noting that ai [ 0; the equality in the
preceding expression must hold or else a contradiction would result in the sequence
above. Consequently, Q xið Þ � d2yi ¼ 0 for all i. This implies that xi; yið Þ 2 IR; i ¼
1; . . .;�r; and x�; y�ð Þ can be written as a convex combination of points in IR.
Because x�; y�ð Þ is a vertex of IR; a contradiction results unless �r ¼ 1. h

Corollary 3.3 If x�; y�ð Þ is an extreme point of IR, it is an extreme point of S.

Proof Let x�; y�ð Þ be an extreme point of IR and assume that it is not an extreme
point of S. Let x1; y1ð Þ; . . .; xr; yrð Þ be the distinct vertices of S. Since any point in S
can be written as a convex combination of these vertices, let
x�; y�ð Þ ¼P�r

i¼1 ai x
i; yið Þ, whereP�r

i¼1 ai ¼ 1, ai [ 0, i ¼ 1; . . .;�r and �r� r. It must
be shown that �r ¼ 1. To see this let us write the constraints to problem (3.1a–3.1d)
at x�; y�ð Þ in their piecewise linear form (3.6).
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0 ¼ Q x�ð Þ � d2y� ¼ Q
X
i

aixi
 !

� d2
X
i

aiyi
 !

�
X
i

aiQ xi
� ��X

i

aid2y
i by convexity of QðxÞ

¼
X
i

ai Q xi
� �� d2y

i
� �

:

But by the definition of Q xið Þ, we find that

Q xi
� � ¼ min

y2S xið Þ
d2y� d2y

i:

Therefore, Q xið Þ � d2yi � 0, i ¼ 1; . . .;�r. Noting that ai [ 0, the equality in the
preceding expression must hold or else a contradiction would result in the sequence
above. Consequently, Q xið Þ � d2yi ¼ 0 for all i. This implies that xi; yið Þ 2 IR,
i ¼ 1; . . .;�r and x�; y�ð Þ can be written as a convex combination of points in IR.
Because x�; y�ð Þ is an extreme point of IR, a contradiction results unless �r ¼ 1. This
means that x�; y�ð Þ is an extreme point of S. The proof is completed. h

In searching for a way to solve the linear bi-level programming problems, it would
be helpful to have an explicit representation of IR rather than the implicit repre-
sentation given by formula (3.6). This can be achieved by replacing the follower’s
problem (3.1c, 3.1d) with its KKT conditions and appending the resultant system to
the leader’s problem. Let u 2 Rq, and v 2 Rm be the dual variables associated with
constraints (3.1d) and y� 0, respectively. We have the following result.

Proposition 3.1 (Bard 1998) A necessary condition that x�; y�ð Þ solves the linear
bi-level programming problem (3.1a–3.1d) is that there exist (row) vectors u�, and
v� such that x�; y�; u�; v�ð Þ solves:

min
x;y;u;v

c1xþ d1y ð3:7aÞ

s:t: A1xþ B1y� b1; ð3:7bÞ

uB2 � v ¼ �d2; ð3:7cÞ

u b2 � A2x� B2yð Þ þ vy ¼ 0; ð3:7dÞ

A2xþ B2y� b2; ð3:7eÞ

x� 0; y� 0; u� 0; v� 0: ð3:7fÞ
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3.3 Kth-Best Algorithm for Linear Bi-level Programming

Theorem 3.3 and Corollary 3.3 have provided a theoretical foundation for the Kth-
Best algorithm. This means that by searching extreme points on the constraint
region S, we can efficiently find an optimal solution for a linear BLP problem. The
basic idea of the Kth-Best algorithm is that according to the upper level objective
function value, we place all the extreme points on S in ascending order and select
the first extreme point to check whether it is on the inducible region IR. If it is, the
current extreme point is the optimal solution. If not, we select the next one and
check.

Let ðx 1½ �; y 1½ �Þ; . . .; ðx N½ �; y N½ �Þ denote the N ordered extreme points to the fol-
lowing linear programming problem

min c1xþ d1yj x; yð Þ 2 Sf g; ð3:8Þ

such that c1x i½ � þ d1y i½ � � c1x iþ1½ � þ d1y iþ1½ �; i ¼ 1; . . .;N � 1:
Let ~y denote the optimal solution to the following problem:

min f x i½ �; y
� �jy 2 S x i½ �

� �� �
: ð3:9Þ

We only need to find the smallest i (i 2 1; . . .;Nf g) such that y i½ � ¼ ~y. Let us
write the problem (3.9) as follows:

min
y

f ðx; yÞ
s:t: y 2 S xð Þ;

x ¼ x i½ �:

From Definition 3.3(a) and (c), the above problem is equivalent to:

min
y

f ðx; yÞ ¼ c2xþ d2y ð3:10aÞ

s:t: A1xþ B1y� b1; ð3:10bÞ

A2xþ B2y� b2; ð3:10cÞ

x ¼ x i½ �: ð3:10dÞ

The idea of the Kth-Best algorithm is equivalent to selecting one ordered
extreme point x i½ �; y i½ �

� �
and then solving the problem (3.10a–3.10d) to obtain an

optimal solution ~y. If ~y ¼ y i½ �, x i½ �; y i½ �
� �

is a globally optimal solution to the problem
(3.1a–3.1d). Otherwise, check the next extreme point.
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This can be accomplished with the following procedure.

Example 3.1 Let us consider the following linear bi-level program model:

min
x;y

F x; yð Þ ¼ x� 4y

s:t: �x� y��3;

�2xþ y� 0;

min
y

f ðx; yÞ ¼ xþ y

s:t:�3xþ 2y��4;

2xþ y� 12;

x� 0; y� 0:

Loop 1: Let i ¼ 1, and solve the following linear programming problem with the
simplex method:

min
x;y

F x; yð Þ ¼ x� 4y

s:t: �x� y��3;

�2xþ y� 0;

�3xþ 2y��4;

2xþ y� 12;

x� 0; y� 0:
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The optimal solution is x i½ �; y i½ �
� � ¼ ð3; 6Þ. Let W ¼ ð3; 6Þf g and T ¼ ;.

By the problem (3.10a–3.10d), we have

min
y

f ðx; yÞ ¼ xþ y

s:t: 3xþ 2y� � 4;

2xþ y� 12;

x ¼ 3; y� 0:

Using the simplex method, we find that ~y ¼ 2:5. Because of ~y 6¼ y i½ �; we go to
Step 3.

It follows that W i½ � ¼ 4; 4ð Þ; 1; 2ð Þf g; T ¼ 3; 6ð Þf g and W ¼ 4; 4ð Þ; 1; 2ð Þf g;
then go to Step 4.

Update i ¼ 2, and choose x i½ �; y i½ �
� � ¼ 4; 4ð Þ, then go to Step 2.

Loop 2: By the problem (3.10a–3.10d), we have

min
y

f ðx; yÞ ¼ xþ y

s:t: �3xþ 2y��4;

2xþ y� 12;

x ¼ 4; y� 0:

Using the simplex method, we have ~y ¼ 4. Because of ~y ¼ y i½ �, we stop here.
x i½ �; y i½ �
� � ¼ 4; 4ð Þ is a globally optimal solution.

By examining the above procedure, we find that the optimal solution for this
example occurs at an extreme point x�; y�ð Þ ¼ 4; 4ð Þ with F� ¼ �12 and f � ¼ 8:

3.4 Kuhn-Tucker Approach for Linear Bi-level
Programming

Proposition 3.1 means that the most direct approach for solving the problem (3.1a–
3.1d) is to solve the non-linear programming problem (3.7a–3.7f). One advantage
that it offers is that it allows for a more robust model to be solved without intro-
ducing new computational difficulties.

We use the Kuhn-Tucker approach to solve Example 3.1.

g1 x; yð Þ ¼ �3xþ 2yþ 4� 0; ð3:11aÞ

g2 x; yð Þ ¼ �2x� yþ 12� 0; ð3:11bÞ
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g3 x; yð Þ ¼ y� 0: ð3:11cÞ

From the problem (3.7a–3.7f), we have

min
x;y;u1;u2;u3

x� 4y ð3:12aÞ

s:t: �x� y��3; ð3:12bÞ

�2xþ y� 0; ð3:12cÞ

�3xþ 2y��4; ð3:12dÞ

2xþ y� 12; ð3:12eÞ

�2u1 þ u2 � u3 ¼ �1; ð3:12fÞ

u1g1 x; yð Þ þ u2g2 x; yð Þ þ u3g3 x; yð Þ ¼ 0; ð3:12gÞ

x; y; u1; u2; u3 � 0: ð3:12hÞ

From formulas (3.12f, 3.12h), we have the following two possibilities.

Case 1 u�1; u
�
2; u

�
3

� � ¼ 0; 0; 1ð Þ.
From problem (3.12a–3.12h), we find that g3 x; yð Þ ¼ 0, i.e., y ¼ 0: Conse-

quently, problem (3.12a–3.12h) can be rewritten as follows:

min
x;y

x� 4y

s:t: �x� y��3;

�2xþ y� 0;

�3xþ 2y��4;

2xþ y� 12;

x� 0; y ¼ 0:

It is easy to check that the above problem is infeasible.

Case 2 u�1; u
�
2; u

�
3

� � ¼ 0:5; 0; 0ð Þ:
From the problem (3.12a–3.12h), it follows that g1 x; yð Þ ¼ 0. Consequently,

problem (3.12a–3.12h) can be rewritten as follows:

min
x;y

x� 4y

s:t: �x� y��3;

�2xþ y� 0;

�3xþ 2y ¼ �4;

2xþ y� 12;

x� 0; y� 0:
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Using the simplex method, we find that an optimal solution of the above linear
programming problem occurs at the point x�; y�ð Þ ¼ ð4; 4Þ with F� ¼ �12 and
f � ¼ 8.

By examining the above procedure, we find that the optimal solution for
Example 3.1 occurs at the point x�; y�ð Þ ¼ ð4; 4Þ with F� ¼ �12 and f � ¼ 8, and
only Case 2 is feasible.

3.5 Branch-and-Bound Algorithm for Linear Bi-level
Programming

Before presenting the Branch-and-bound algorithm (Bard and Moore 1990), we
first introduce some additional notations.
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Let w ¼ ðu; vÞ and W ¼ 1; . . .; qþ mf g be the index set for the terms in formula
(3.7d), and let F be the incumbent lower bound on the leader’s objective function.
At the kth level of the search tree we define a subset of indices Wk � W ; and a path
Pk corresponding to an assignment of either wi ¼ 0 or gi ¼ 0 for i 2 Wk. Now let

Sþk ¼ iji 2 Wk;wi ¼ 0f g;
S�k ¼ iji 2 Wk; gi ¼ 0f g;
S0k ¼ iji 62 Wkf g:

For i 2 S0k , the variables wi or gi are free to assume any nonnegative value in the
solution of problem (3.7) with (3.7d) omitted, so complementary slackness (3.7d)
will not necessarily be satisfied.

We use the Branch-and-bound algorithm to solve Example 3.1.

g1 x; yð Þ ¼ �3xþ 2yþ 4� 0; ð3:13aÞ

g2 x; yð Þ ¼ �2x� yþ 12� 0; ð3:13bÞ

g3 x; yð Þ ¼ y� 0: ð3:13cÞ

From the problem (3.7a–3.7f), we have

min
x;y;u1;u2;u3

x� 4y ð3:14aÞ

s:t:�x� y��3; ð3:14bÞ

�2xþ y� 0; ð3:14cÞ

�3xþ 2y��4; ð3:14dÞ

2xþ y� 12; ð3:14eÞ

�2u1 þ u2 � u3 ¼ �1; ð3:14fÞ

u1g1 x; yð Þ þ u2g2 x; yð Þ þ u3g3 x; yð Þ ¼ 0; ð3:14gÞ

x; y; u1; u2; u3 � 0: ð3:14hÞ

Finally we obtain the following linear programming problem with (3.14g)
omitted.

min
x;y;u1;u2;u3

x� 4y ð3:15aÞ

s:t: �x� y��3; ð3:15bÞ

58 3 Bi-level Programming Models and Algorithms



�2xþ y� 0; ð3:15cÞ

�3xþ 2y��4; ð3:15dÞ

2xþ y� 12; ð3:15eÞ

�2u1 þ u2 � u3 ¼ �1; ð3:15fÞ

x; y; u1; u2; u3 � 0: ð3:15gÞ

At each iteration, the check is made to see if the following condition:

u1g1 x; yð Þ þ u2g2 x; yð Þ þ u3g3 x; yð Þ ¼ 0 ð3:16Þ

is satisfied.
After initializing the data, the algorithm finds a feasible solution to the KKT repre-

sentation with the complementary slackness conditions omitted and proceeds to Step 3.
The current point x1 ¼ 3, y1 ¼ 6, u1 ¼ 0; 0; 1ð Þ with Fðx1; y1Þ ¼ �21 does not

satisfy complementarity so a branching variable u3 is selected and the index sets are
updated, giving Sþ1 ¼ 3f g; S�1 ¼ ;; S01 ¼ f1; 2g and P1 ¼ f3g.

In the next iteration, the algorithm branches on u1. Now, two levels down in the tree,
the current sub-problem at Step 1 turns out to be infeasible so the algorithm goes to Step
5 and backtracks. The index sets are Sþ2 ¼ 3f g; S�2 ¼ f1g; S02 ¼ f2g and P2 ¼ f3; 1g:

Go toStep1, a feasible solution is found.AtStep 2, however, the value of the leader’s
objective function is less than the incumbent lower bound, so the algorithm goes to Step
5 and backtracks, giving Sþ3 ¼ ;; S�3 ¼ f3g; S03 ¼ f1; 2g and P3 ¼ 3f g.

The current sub-problem at Step 1 turns out to be infeasible so the algorithm
goes to Step 5 and backtracks. However, no live vertices exist. We have found an
optimal solution, occurring at the point x�; y�ð Þ ¼ 4; 4ð Þ; u�1; u

�
2; u

�
3

� � ¼ ð0:5; 0; 0Þ
with F� ¼ �12 and f � ¼ 8.

3.6 Penalty Function Method for Linear Bi-level
Programming

For the linear bi-level programming problem (3.1a–3.1d) with X ¼ fxjx� 0g and
Y ¼ fyjy� 0g; ignoring the constant term c2x; the dual of the follower’s problem is

max
u

u A2x� b2ð Þ ð3:17aÞ

s:t: uB2 ��d2; ð3:17bÞ

u� 0: ð3:17cÞ

Given x, y solve problem (3.1c, 3.1d) if and only if there exists u such that it
satisfies (3.17b, 3.17c) and p x; y; uð Þ ¼ d2y� u A2x� b2ð Þ ¼ 0: Thus, it can be
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used to formulate a penalty function method for solving problem (3.1a–3.1d)
(Campelo et al. 2000):

min
x;y;u

c1xþ d1yþ K d2y� u A2x� b2ð Þ½ � ð3:18aÞ

s:t: A1xþ B1y� b1; ð3:18bÞ

uB2 ��d2; ð3:18cÞ

A2xþ B2y� b2; ð3:18dÞ

x; y; u� 0; ð3:18eÞ

where K 2 Rþ is called the penalty parameter.

The difficulty with this approach is that for each value of the penalty parameter,
the nonconvex problem (3.18a–3.18e) has to be solved globally. Fortunately,
Campelo et al. (2000) used a decomposition approach to solve this problem. Fur-
thermore, under the assumptions, i.e., the following problem

min
ðx;yÞ2S

F x; yð Þ ¼ c1xþ d1y

has an optimal solution, and U ¼ ujuB2 ��d2; u� 0f g is not empty, the following
results are obtained.

Theorem 3.4 (Campelo et al. 2000) There exists a finite value K� 2 Rþ of K for
which an optimal solution to the penalty function problem (3.18a–3.18e) yields an
optimal solution to the problem (3.1a–3.1d) for all K �K�:
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3.7 Multi-level Programming Model

A multi-level programming (MLP) problem is identified as a kind of mathematical
programming that solves decentralized planning problems with decision makers in
multi-level or hierarchical systems. The execution of decisions is sequential, from
top to middle levels and then to the bottom level. Each decision maker indepen-
dently maximizes (or minimizes) their own objective but is affected by the actions
of other decision makers at the different levels. Generally, the MLP problem can be
formulated as follows:

min
x12X1

f1 x1; x2; . . .; xnð Þ
s:t: g1 x1; x2; . . .; xnð Þ� 0;

min
x22X2

f2 x1; x2; . . .; xnð Þ

s:t: g2 x1; x2; . . .; xnð Þ� 0;

..

.

min
xn2Xn

fn x1; x2; . . .; xnð Þ
s:t: gn x1; x2; . . .; xnð Þ� 0;

ð3:19Þ

where xi 2 Xi � Rmi , fi : Rm1 � Rm2 � 	 	 	 � Rmn ! R and gi : Rm1 � Rm2 � 	 	 	 �
Rmn ! Rmi i ¼ 1; 2; . . .; nð Þ are continuous and twice differentiable functions.

Clearly, when n ¼ 2, the MLP problem (3.19) becomes a bi-level programming
problem. Based on the definitions of the bi-level programming given in Sect. 3.2,
we give the definitions of the multi-level programming problem (3.19) as follows.

Definition 3.4

(a) Constraint region of the ith level programming problem:

Ji x1; x2; . . .; xi�1ð Þ ¼ xi; xiþ1; . . .; xnð Þjxj 2 Xj; gj x1; x2; . . .; xnð Þ� 0; i� j� n
� �

:

(b) Feasible set for the ith level programming problem:

Si x1; x2; . . .; xi�1ð Þ ¼ f xi; xiþ1; . . .; xnð Þ 2 Ji x1; x2; . . .; xi�1ð Þj xiþ1; . . .; xnð Þ 2 argmin

ffiþ1 x1; x2; . . .; xnð Þj xiþ1; . . .; xnð Þ 2 Siþ1 x1; x2; . . .; xið Þgg

Note that, the feasible set of the nth level programming problem, i.e.,
Sn x1; x2; . . .; xn�1ð Þ is equivalent to the set Jn x1; x2; . . .; xn�1ð Þ:
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(c) Inducible region:

IR ¼ x1; x2; . . .; xnð Þjx1 2 X1; x2; x3; . . .; xnð Þ 2 S2 x1ð Þ; g1 x1; x2; . . .; xnð Þ� 0f g:

Finally, problem (3.19) is equivalent to the following problem:

min
x1;x2;...;xnð Þ2IR

f1 x1; x2; . . .; xnð Þ:

Some authors have discussed the optimality and geometric properties of the
linear MLP problem. For details, see Bard (1985), Benson(1989), Ruan et al.
(2004). The methods for solving problem (3.19) are mainly limited to the linear
tri-level programming (TLP) problem because it reflects the main features of
MLP. Note that the tri-level programming problem is a typical form of MLP.
In a tri-level decision model, the decision entity at the top level is called the
leader, and entities at the middle and bottom levels are its followers, but a
decision entity at the middle level is also the leader if it has followers at the
bottom level. The basic tri-level programming problem can be described as
follows:

min
x12X1

f1 x1; x2; x3ð Þ
s:t: g1 x1; x2; x3ð Þ� 0;

min
x22X2

f2 x1; x2; x3ð Þ
s:t: g2 x1; x2; x3ð Þ� 0;

min
x32X3

f3 x1; x2; x3ð Þ
s:t: g3 x1; x2; x3ð Þ� 0:

The details about tri-level programming and its solution methods are referred
to Chap. 6 of this book.

3.8 Summary

This chapter introduces the basic concepts, models, solution definitions, and
solution algorithms of bi-level programming and basic models of multi-level/tri-
level programming. These knowledge and approaches, particularly the Kth-Best
algorithm, the Kuhn-Tucker approach, and the Branch-and-bound algorithm
introduced in Sects. 3.3–3.5, will be used for the development of the approaches for
dealing with fuzzy bi-level/multi-level programming, bi-level/multi-level multi-
follower programming and other more complex decision situations in subsequent
chapters of this book.
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Chapter 4
Bi-level Multi-follower Decision Making

A bi-level decision problem may involve multiple decision entities (decision units
or decision makers) at the lower level, and these followers may have different
reactions for a possible decision made by the leader. This is called a bi-level multi-
follower (BLMF) decision problem. These followers may have different relation-
ships, such as sharing decision variables, objectives and/or constraints for a possible
decision made by the leader; the leader’s decision will be affected, not only by the
reactions of individual followers, but also by the relationships among these fol-
lowers. We therefore need to establish different models to describe these situations
in which followers have different relationships. We also need to develop solution
methods to solve these decision situations.

In this chapter, we first identify the BLMF issue in Sect. 4.1 and then present a
framework in Sect. 4.2 for the BLMF decision problem, which defines nine different
kinds of relationship (Situations S1 to S9) amongst the followers. Under this BLMF
framework, for each of the nine kinds of relationship, a corresponding BLMF
decision model is developed in Sect. 4.3 using two BLMF modeling approaches: the
decision entity-relationship diagrams (DERD) approach and the programming
approach. For these BLMF decision models, we give related solution concepts and
solution methods. Since some models are similar in solution methods, we select only
three typical models: the uncooperative model S1, the semi-cooperative model S5
and the reference-uncooperative model S9 to provide more details. Related solution
concepts, the existence of solutions to these models, a set of BLMF Kth-Best
algorithms and BLMF Kuhn-Tucker approaches for solving the three models are
presented in Sects. 4.4, 4.5 and 4.6 respectively. In addition, some numerical
examples are adopted to illustrate the feasibility of these models, algorithms and
approaches. Discussions and further remarks are given in Sect. 4.7.

4.1 Problem Identification

Although much research on bi-level decision-making has been carried out, the
existing techniques have been mainly focused on a specific situation comprising
one leader and one follower. However, in a real-world bi-level decision problem,
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the lower level may involve multiple decision entities. The leader’s decision is
therefore affected by the objectives and strategies of the multiple followers. For
each possible decision of the leader, those followers may have their own, different
reactions. The relationships between these followers can vary. They may or may not
share their decision variables. They may have individual objectives and constraints
but interact with others cooperatively, or may have common objectives or common
constraints. We can illustrate these situations through an example.

Example 4.1 A university has five faculties. The university (as the leader) aims to
improve its research quality through new research development strategies. The
strategies made at university level directly affect the research strategies made in its
faculties (as followers). In the meantime, the reactions at the faculty level may affect
the research development strategies sought by the university. Each faculty wishes to
optimize its individual research development objective in view of the partial control
exercised at university level. Some faculties make research income the objective
and some set the number of publications; some faculties have lab limitations
(constraint) and some do not. The university’s decision makers can control this
effect by exercising pre-emptive partial control over the university through budget
modifications or regulations, but are subject to possible reactions from the faculties.

This decision problem is a bi-level multi-follower decision problem, otherwise
called a bi-level decentralized optimization problem.

4.2 Framework for Bi-level Multi-follower Decision
Making

Different reactions by followers to each possible action conducted by the leader
might be generated when multiple followers are involved in a bi-level decision-
making problem. Moreover, different kinds of relationships between these followers
could cause multiple different processes for deriving an optimal solution for the
leader’s decision-making. Therefore, the leader’s decision will not only be affected
by the reactions from followers, but also by the relationships between these
followers.

Basically, there are four main kinds of relationship between followers which are
determined by the form of sharing of decision variables (Lu et al. 2006).

1. The uncooperative situation: there is no sharing of decision variables between
the followers. In such a situation, there are obviously neither shared objective
functions nor shared constraint conditions among the followers.

2. The cooperative situation: the followers totally share the decision variables,
objective functions and constraints.

3. The semi-cooperative situation: the followers share the decision variables but
may have individual objective functions and constraints. There are several
different sub-cases within this semi-cooperative situation which are determined
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by the relationships between the objective functions and constraints of the
followers. Each follower may have an individual objective, whatever constraints
are shared. For example, the Computer Science Department has an objective of
maximizing its income from international students’ fees, and the Engineering
Department’s objective is to maximize total student number, to satisfy the
university’s policy on education development. The two followers have different
objectives and may also have different constraints but share all decision vari-
ables, such as marketing investment.

4. The reference-uncooperative situation: the followers have individual decision
variables but take other followers’ variables as references when making their
own decisions. Four sub-cases are involved within this case that involve indi-
vidual objective functions respective or irrespective of constraints, and common
objective function respective or irrespective of constraints.

Based on the four basic situations (cases) of relationships amongst followers,
determined by decision variable (the first relationship factor as shown in Table 4.1),
and their various sub-cases determined by two other relationship factors, objective
functions and constraints, nine different kinds of situation in total are identified
among the followers. These are named S1, S2, …, S9. A framework is established
to describe these cases in Table 4.1.

Each situation shown in the framework requires a specific BLMF decision model
for description. We need to point out that these nine BLMF models are basic
models, based on which we can establish hybrid BLMF models in which, for
example, followers 1 and 2 have a cooperative relationship while followers 3 and 4
have an uncooperative relationship.

Based on the general linear bi-level decision-making model proposed in Chap. 3,
the models of the nine specific BLMF decision situations shown in Table 4.1 are
presented in the following Sect. 4.3.

Table 4.1 A framework for bi-level multi-follower decision-making

Relationships
among
followers

Relationship factor Situation
(Si)Decision variables Objectives Constraints

Uncooperative Individual Individual Individual S1

Cooperative Sharing Sharing Sharing S2

Semi-
cooperative

Sharing Sharing Individual S3

Individual Sharing S4

Individual S5

Reference-
uncooperative

Individual, but take other
followers’ variables as
references

Sharing Sharing S6

Individual S7

Individual Sharing S8

Individual S9
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4.3 Bi-level Multi-follower Decision Models

This section introduces two modeling approaches for BLMF decision problems: the
decision entity-relationship diagrams (DERD) and the programming approach. The
DERD approach is a conceptual modeling approach.

4.3.1 BLMF Decision Entity-Relationship Diagram

In order to identify and classify BLMF decision problems, we first introduce the
following concepts (Lu et al. 2012).

1. Neighborhood entities (NES): two decision entities, also called neighborhood
followers, are at the same level and led by the same decision entity (leader).

2. Cooperative entities: two neighborhood entities share their decision variables
and have the same objective function and constraints.

3. Semi-cooperative entities: two neighborhood entities share their decision vari-
ables but have individual objective functions and constraints.

4. Uncooperative entities: two neighborhood entities have individual decision
variables, objective functions, and constraints.

5. Reference-uncooperative entities: two neighborhood entities have individual
decision variables, objectives and constraints but take others’ decision variables
into consideration as references, that is, they include others’ decision variables
in their objective functions or constraints, but not as control variables.

The five concepts identified above fully reflect the features of a BLMF decision
problem and any combinations of these features.

Concept modeling is a very important method in modeling a decision problem
and diagrams are powerful tools for describing such models. We therefore develop
a DERD approach and use it to model the BLMF decision problem. Figure 4.1
presents diagrammatic notations.

This DERD approach truly reflects real-world decision problems and is easy to
use. In the following sections, we will show how a linear BLMF decision problem
is described by DERD and also is described by bi-level programming.

4.3.2 Linear BLMF Decision Models

This section will describe the nine BLMF decision models identified in the
framework of BLMF decision-making (Table 4.1) by using both DERD and pro-
gramming approaches (Lu et al. 2006).
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1. S1 Model for linear BLMF decision problems
For x 2 X � Rn, yi 2 Yi � Rmi , F: X � Y1 � � � � � Yk ! R, fi: X � Yi ! R,
i ¼ 1; . . .; k, a linear BLMF decision problem in which k � 2ð Þ followers are
involved and there are no shared decision variables, objective functions or
constraints between them is defined as follows (this is called an uncooperative
BLMF decision model).
It consists of finding a solution to the upper level problem:

min
x2X

F x; y1; . . .; ykð Þ ¼ cxþ
Xk
i¼1

diyi

s:t: Axþ
Xk
i¼1

Biyi� b;

where yi is the solution to the ith follower’s problem:

min
yi2Yi

fi x; yið Þ ¼ cixþ eiyi

s:t: Aixþ Ciyi� bi;

where c; ci 2 Rn; di; ei 2 Rmi ;A 2 Rp�n, Bi 2 Rp�mi ; b 2 Rp;Ai 2 Rqi�n, Ci 2
Rq�mi ; bi 2 Rq; i ¼ 1; . . .; k.

The uncooperative BLMF decision model is described by DERD in Fig. 4.2.

Symbol Meaning

Decision entity

A

B

Leadership relationship:  “A” is 
Leader and “B” is A’s Follower

“A1” and “A2” have  a cooperative 
relationship in a NESA1, A2

“A1” and “A2” have a semi-cooperative 
relationship in a NESA1 A2

A1 A2

“A1” and “A2” have an uncooperative 
relationship in a NESA1 A2

“A1” and “A2” have a reference -
uncooperative relationship in a NES

Fig. 4.1 Notations for BLMF
decision entity-relationship
diagrams (DERD)
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2. S2 Model for linear BLMF decision problems
For x 2 X � Rn, y 2 Y � Rm, F: X � Y ! R, fi: X � Y ! R, i ¼ 1; . . .; k, a
linear BLMF decision problem in which kð� 2Þ followers are involved and
there are shared decision variables, objective functions and constraints between
them is defined as follows (this is called a cooperative BLMF decision model).
It consists of finding a solution to the upper level problem:

min
x2X

F x; yð Þ ¼ cxþ dy

s:t: Axþ By� b;

where y is the solution to the ith follower’s problem

min
y2Y

fi x; yð Þ ¼ c0xþ e0y

s:t: A0xþ C0y� b0;

where c; c0 2 Rn; d; e0 2 Rm;A 2 Rp�n, B 2 Rp�m; b 2 Rp;A0 2 Rq�n, C0 2 Rq�m;
b0 2 Rq; i ¼ 1; . . .; k.

The cooperative BLMF decision model is described by DERD in Fig. 4.3.

3. S3 Model for linear BLMF decision problems
For x 2 X � Rn, y 2 Yi � Rm, F: X � Yi ! R, fi: X � Yi ! R, i ¼ 1; . . .; k, a
linear BLMF decision problem in which k � 2ð Þ followers are involved and

Α

ΒkΒ1 …

Fig. 4.2 The DERD of decision model S1

A

B1,B2,…,B k

Fig. 4.3 The DERD of decision model S2
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there are shared decision variables (which means that followers control the same
decision variable y) and objective functions but separate constraints (which
implies that each follower has individual constraints) between them is defined as
follows (this is called a semi-cooperative BLMF decision model).
It consists of finding a solution to the upper level problem:

min
x2X

F x; yð Þ ¼ cxþ dy

s.t. Axþ By� b;

where y is the solution to the ith follower’s problem

min
y2Yi

fi x; yð Þ ¼ c0xþ e0y

s.t. Aixþ Ciy� bi;

where c; c0 2 Rn; d; e0 2 Rm;A 2 Rp�n, B 2 Rp�m; b 2 Rp;Ai 2 Rqi�n, Ci 2
Rqi�m; bi 2 Rqi; i ¼ 1; . . .; k.

The semi-cooperative BLMF decision model is described by DERD in Fig. 4.4.

4. S4 Model for linear BLMF decision problems
For x 2 X � Rn, y 2 Y � Rm, F: X � Y ! R, fi: X � Y ! R, i ¼ 1; . . .; k, a
linear BLMF decision problem in which kð� 2Þ followers are involved and
there are shared decision variables (which means that followers control the same
decision variable y) and constraints but separate objective functions between
them is defined as follows (this is also called a semi-cooperative BLMF decision
model).
It consists of finding a solution to the upper level problem:

min
x2X

F x; yð Þ ¼ cxþ dy

s.t. Axþ By� b;

A

BkB1 …

Fig. 4.4 The DERD of decision model S3
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where y is the solution to the ith follower’s problem

min
y2Yi

fi x; yð Þ ¼ cixþ eiy

s.t. A0xþ C0y� b0;

where c; ci 2 Rn; d; ei 2 Rm;A 2 Rp�n, B 2 Rp�m; b 2 Rp;A0 2 Rq�n, C0 2
Rq�m; b0 2 Rq; i ¼ 1; . . .; k.

This semi-cooperative BLMF decision model S4 can be described by DERD in
the same way as S3, shown in Fig. 4.4.

5. S5 Model for linear BLMF decision problems
For x 2 X � Rn, y 2 Yi � Rm, F: X � Yi ! R, fi: X � Yi ! R, i ¼ 1; . . .; k, a
linear BLMF decision problem in which kð� 2Þ followers are involved and
there are shared decision variables (which means that followers control the same
decision variable y) but separate objective and constraints (which means that an
individual constraint exists for all followers) between them is defined as follows
(this is also called a semi-cooperative BLMF decision model).
It consists of finding a solution to the upper level problem:

min
x2X

F x; yð Þ ¼ cxþ dy

s.t. Axþ By� b;

where y is the solution to the ith follower’s problem

min
y2Yi

fi x; yð Þ ¼ cixþ eiy

s.t. Aixþ Ciy� bi;

where c; ci 2 Rn; d; ei 2 Rm;A 2 Rp�n, B 2 Rp�m; b 2 Rp;Ai 2 Rqi�n, Ci 2
Rqi�m; bi 2 Rqi ; i ¼ 1; . . .; k.

This semi-cooperative BLMF decision model S5 can be described by DERD in
the same way as S3, shown in Fig. 4.4.

6. S6 Model for linear BLMF decision problems
For x 2 X � Rn, yi 2 Yi � Rmi , F: X � Y1 � � � � � Yk ! R, fi: X � Y1 � � � � �
Yk ! R; i ¼ 1; . . .; k, a linear BLMF decision problem in which kð� 2Þ fol-
lowers are involved and there are individual decision variables in shared
objective functions and constraints between them, but the followers take other
followers’ decision variables as references, is defined as follows (this is called a
reference-uncooperative BLMF decision model).
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It consists of finding a solution to the upper level problem:

min
x2X

F x; y1; . . .; ykð Þ ¼ cxþ
Xk
i¼1

diyi

s.t. Axþ
Xk
i¼1

Biyi� b;

where yi is the solution to the ith follower’s problem

min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ c0xþ
Xk
i¼1

eiyi

s.t. A0xþ
Xk
i¼1

Ciyi� b0;

where c; c0 2 Rn; di; ei 2 Rmi ;A 2 Rp�n, Bi 2 Rp�mi ; b 2 Rp;A0 2 Rq�n, Ci 2
Rq�mi ; b0 2 Rq; i ¼ 1; . . .; k.

Note that the shared objective functions for all the followers only imply that their
mathematical expressions are the same as one another’s because each follower
has individual decision variables. The reference-uncooperative BLMF decision
model is described by DERD in Fig. 4.5.

7. S7 Model for linear BLMF decision problems
For x 2 X � Rn; yi 2 Yi � Rmi ; F: X � Y1 � � � � � Yk ! R; fi: X � Y1 � � � � �
Yk ! R; i ¼ 1; . . .; k; a linear BLMF decision problem in which k � 2ð Þ fol-
lowers are involved and there are individual decision variables in shared
objective functions and separate constraints between them, but the followers
take other followers’ decision variables as references, is defined as follows (this
is also called a reference-uncooperative BLMF decision model).
It consists of finding a solution to the upper level problem:

A

BkB1 …

Fig. 4.5 The DERD of decision model S6
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min
x2X

F x; y1; . . .; ykð Þ ¼ cxþ
Xk
i¼1

diyi

s.t. Axþ
Xk
i¼1

Biyi� b;

where yi is the solution to the ith follower’s problem

min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ c0xþ
Xk
i¼1

eiyi

s.t. Aixþ
Xk
s¼1

Cisys� bi;

where c; c0 2 Rn; di; ei 2 Rmi ;A 2 Rp�n, Bi 2 Rp�mi ; b 2 Rp;Ai 2 Rqi�n, Cis 2
Rqi�ms ; bi 2 Rqi ; i; s ¼ 1; . . .; k.

This reference-uncooperative BLMF decision model can be described by DERD
in the same way as S6, shown in Fig. 4.5.

8. S8 Model for linear BLMF decision problems
For x 2 X � Rn, yi 2 Yi � Rmi , F: X � Y1 � � � � � Yk ! R, fi: X � Y1 � � � � �
Yk , ! R; i ¼ 1; . . .; k, a linear BLMF decision problem in which k � 2ð Þ fol-
lowers are involved and there are individual decision variables in separate
objective functions and shared constraints between them, but the followers take
other followers’ decision variables as references, is defined as follows (this is
also called a reference-uncooperative BLMF decision model).
It consists of finding a solution to the upper level problem:

min
x2X

F x; y1; . . .; ykð Þ ¼ cxþ
Xk
i¼1

diyi

s.t. Axþ
Xk
i¼1

Biyi� b;

where yi is the solution to the ith follower’s problem

min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ cixþ
Xk
s¼1

eisys

s.t. A0xþ
Xk
i¼1

Ciyi� b0;
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where c; ci 2 Rn; di 2 Rmi ; eis 2 Rms ;A 2 Rp�n, Bi 2 Rp�mi ; b 2 Rp;A0 2 Rq�n,
Ci 2 Rq�mi ; b0 2 Rq; i ¼ 1; . . .; k.

This reference-uncooperative BLMF decision model can be described by DERD
in the same way as S6, shown in Fig. 4.5.

9. S9 Model for linear BLMF decision problems
For x 2 X � Rn; yi 2 Yi � Rmi ; F: X � Y1 � � � � � Yk ! R, fi: X � Y1 � � � � �
Yk ! R; i ¼ 1; . . .; k; a linear BLMF decision problem in which kð� 2Þ fol-
lowers are involved and there are individual decision variables in separate
objective functions and constraints between them, but the followers take other
followers’ decision variables as references, is defined as follows (this is also
called a reference-uncooperative BLMF decision model).
It consists of finding a solution to the upper level problem:

min
x2X

F x; y1; . . .; ykð Þ ¼ cxþ
Xk
i¼1

diyi

s.t. Axþ
Xk
i¼1

Biyi� b;

where yi is the solution to the ith follower’s problem

min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ cixþ
Xk
s¼1

eisys

s.t. Aixþ
Xk
s¼1

Cisys� bi;

where c; ci 2 Rn; di 2 Rmi ; eis 2 Rms ;A 2 Rp�n, Bi 2 Rp�mi ; b 2 Rp;Ai 2 Rqi�n,
Cis 2 Rqi�ms ; bi 2 Rqi ; i; s ¼ 1; . . .; k.

This reference-uncooperative BLMF decision model can be described by DERD
in the same way as S6, shown in Fig. 4.5.

The above BLMF decision models define the nine basic kinds of relationship
between the followers described in the framework of the BLMF decision problem.
These models clearly require individual definitions for optimal solutions, and related
solution approaches to derive the optimal solutions. In the following sections, we
will introduce different solution approaches to these BLMF decision models.

We need to point out that for any of the nine models, it is assumed that the leader
has full knowledge of the objective functions and constraints of these followers and
the relationships between these objective functions and constraints. The control for
decision variables is partitioned between the leader and the followers. The leader
must anticipate all possible responses of followers based on their relationships.

4.3 Bi-level Multi-follower Decision Models 75



4.4 Uncooperative Bi-level Multi-follower Decision Making

The uncooperative situation model (S1) is the most basic form of all nine decision
models for BLMF decision problems. This section focuses on this model by giving
the definition for an optimal solution, related theorems and solution algorithms for
solving the BLMF decision model S1 (Calvete and Galé 2007; Shi et al. 2005).

4.4.1 Solution Concepts

Definition 4.1

(a) Constraint region of a linear BLMF decision problem:

S ¼ x; y1; . . .; ykð Þ 2 X � Y1 � � � � � YkjAxf

þ
Xk
i¼1

Biyi� b;Aixþ Ciyi� bi; i ¼ 1; . . .; k

)
:

The constraint region of the linear BLFM programming problem refers to all
possible combinations of choices that the leader and followers may make.

(b) Feasible set of the ith follower for 8x 2 X:

SiðxÞ ¼ yi 2 YijCiyi� bi � Aixf g:

The feasible region for the follower is affected by the leader’s choice and the
allowable choices of each follower are the elements of SiðxÞ.

(c) Projection of S onto the leader’s decision space:

S Xð Þ ¼ x 2 Xj9 y1; . . .; ykð Þ 2 Y1 � � � � � Yk; x; y1; . . .; ykð Þ 2 Sf g:

Unlike the rules in uncooperative game theory, in which each player must
choose a strategy simultaneously, the definition of the BLMF model requires
that the leader moves first by selecting an x in attempt to minimize its objective
subject to the constraints of the upper and each lower level.

(d) The ith follower’s rational reaction set for x 2 SðXÞ:

Pi xð Þ ¼ yi 2 Yijyi 2 argmin½fiðx; zÞjz 2 SiðxÞ�f g;

where argmin fi x; zð Þjz 2 Si xð Þ½ � ¼ yi 2 Si xð Þjfi x; yið Þ� fi x; zð Þ; 8z 2 SiðxÞf g:
The followers observe the leader’s action and simultaneously react by
selecting from its feasible set to minimize its objective function.
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(e) Inducible region:

IR ¼ x; y1; . . .; ykð Þj x; y1; . . .; ykð Þ 2 S; yi 2 Pi xð Þ; i ¼ 1; . . .; kf g:

Thus in terms of the above notations, the linear uncooperative BLMF problem
can be written as

min F x; y1; . . .; ykð Þj x; y1; . . .; ykð Þ 2 IRf g: ð4:1Þ
For the sake of assuring an optimal solution to the model S1, it is necessary that the
solution to the problem (4.1) exists which implies that further assumptions about
the uncooperative BLMF decision model should be satisfied.

Assumption 4.1

1. S is non-empty and compact.
2. IR is non-empty.
3. Pi xð Þ is a point-to-point map with respect to x, where i ¼ 1; . . .; k:

Theorem 4.1 If the above assumptions are satisfied, there exists an optimal
solution to the linear uncooperative BLMF decision model S1.

Proof Since neither S nor IR is empty, there is at least one parameter value x	 2
SðXÞ and Pi x	ð Þ 6¼ ;. Consider a sequence ðxt; yt1; . . .; ytkÞ

� �1
t¼1
 IR converging to

ðx	; y	1; . . .; y	kÞ. Then, by the well-known results of linear parametric optimization,
we have y	1 2 Pi x	ð Þ. Hence, ðx	; y	1; . . .; y	kÞ 2 IR shows that IR is closed. By
Assumption 4.1(1) and IR 
 S, IR is also bounded, and IR is non-empty, so the
problem (4.1) consists of minimizing a continuous function over a compact non-
empty set, which implies that the model S1 has an optimal solution. h

4.4.2 Theoretical Properties

Several theoretical properties for the model S1 are presented to support the principle
of algorithms for solving the uncooperative BLMF problem.

Theorem 4.2 The inducible region IR can be expressed equivalently as a piecewise
linear equality constraint comprised of support hyperplanes of S.

Proof First, we define

Qi xð Þ ¼ min eiŷijŷi 2 Si xð Þf g; i ¼ 1; . . .; k:

Since Qi xð Þ can be seen as a linear programming problem with the parameter x,
the dual problem of Qi xð Þ can be written as
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max ðAix� biÞuijCiui��ei; ui� 0f g; i ¼ 1; . . .; k: ð4:2Þ

If both Qi xð Þ and problem (4.2) have feasible solutions, according to the dual
theorem of linear programming, then both have optimal solutions and the same
optimal objective function value. We know that a solution to problem (4.2) occurs at
a vertex of its constraint region Ui ¼ uijCiui��ei; ui� 0f g; i ¼ 1; . . .; k. Adopting
u1i ; . . .; u

qi
i to express all the vertices of Ui; problem (4.2) can be rewritten as:

max ðAix� biÞu j
i ju j

i 2 u1i ; . . .; u
qi
i

� �� �
; i ¼ 1; . . .; k: ð4:3Þ

Evidently, Qi xð Þ is a piecewise linear function according to problem (4.3).

IR ¼ x; y1; . . .; ykð Þj x; y1; . . .; ykð Þ 2 S; yi 2 Pi xð Þ; i ¼ 1; . . .; kf g
¼ x; y1; . . .; ykð Þ 2 Sjeiyi ¼ min eiŷijŷi 2 Si xð Þf g; i ¼ 1; . . .; kf g
¼ x; y1; . . .; ykð Þ 2 Sjeiyi ¼ Qi xð Þ; i ¼ 1; . . .; kf g

ð4:4Þ

and it can be seen that it is a piecewise linear equality constraint. h

Corollary 4.1 The uncooperative BLMF decision model S1 is equivalent to opti-
mizing F over a feasible region comprised of a piecewise linear equality constraint.

Corollary 4.2 An optimal solution to the uncooperative BLMF decision model S1
occurs at a vertex of IR.

Proof According to the equivalent form (4.1) of the BLMF decision model, also,
since F x; y1; . . .; ykð Þ is linear, an optimal solution to the problem must occur at a
vertex of IR if it exists. h

Theorem 4.3 The optimal solution ðx	; y	1; . . .; y	kÞ to the uncooperative BLMF
decision model S1 occurs at a vertex of S.

Proof Let x1; y11; . . .; y
1
k

� �
; . . .; ðxt; yt1; . . .; ytkÞ express the distinct vertices of S. Since

any point in S can be written as a convex combination of these vertices, we can get

x	; y	1; . . .; y
	
k

� � ¼X�t
r¼1

dr xr; yr1; . . .; y
r
k

� �

where
P�t

r¼1 dr ¼ 1; dr [ 0; r ¼ 1; . . .;�t and �t� t:
Let us write the constraints of S1 in the piecewise linear form (4.4) discussed in

Theorem 4.2:

0 ¼ Qi x
	ð Þ � eiy

	
i ¼ Qi

X�t
r¼1

drx
r

 !
� ei

X�t
r¼1

dry
r
i ; i ¼ 1; . . .; k:
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Because of the convexity of Qi xð Þ, we have

0�
X�t
r¼1

drQi x
rð Þ � ei

X�t
r¼1

dry
r
i ¼

X�t
r¼1

dr Qi x
rð Þ � eiy

r
i

� �
: ð4:5Þ

By the definition of Qi xð Þ; we have:

Qi x
rð Þ ¼ min eiyi� eiy

r
i ; r ¼ 1; . . .; t; i ¼ 1; . . .; k:

Thus, Qi xrð Þ � eiyri � 0; r ¼ 1; . . .; t; i ¼ 1; . . .; k:
Because the preceding expression (4.5) must be held with dr [ 0; r ¼ 1; . . .; t; it

follows that Qi xrð Þ � eiyri ¼ 0; r ¼ 1; . . .; t; i ¼ 1; . . .; k:
These statements imply that xr; yr1; . . .; y

r
k

� � 2 IR; r ¼ 1; . . .; t; and that
ðx	; y	1; . . .; y	kÞ can be denoted as a convex combination of the points in the IR.
Since ðx	; y	1; . . .; y	kÞ is a vertex of the IR according to Corollary 4.2 and
Assumption 4.1(3), there must exist t ¼ 1, which implies is a vertex of S. h

Corollary 4.3 If ðx	; y	1; . . .; y	kÞ is a vertex of IR, it is also a vertex of S.

4.4.3 Uncooperative BLMF Kth-Best Algorithm

The well-known Kth-Best algorithm has been successfully applied to a one-leader-
and-one-follower linear bi-level decision problem, as shown in Chap. 3. This
section extends this algorithm to deal with the abovementioned linear uncoopera-
tive BLMF decision problem, called uncooperative BLMF Kth-Best algorithm.

Theorem 4.3 provides a theoretical foundation for searching an algorithm to
solve the uncooperative BLMF decision problem S1. It means that we can effi-
ciently find an optimal solution for a linear BLMF decision problem by searching
vertices on the constraint region S. The basic idea of the algorithm is that we
arrange all the vertices of S in ascending order according to the objective function
of the upper level, and select the first vertex to check whether it is on the inducible
region IR. If it is, the current vertex is the optimal solution. Otherwise, the next one
will be selected and checked.

Let x1; y11; . . .; y
1
k

� �
; . . .; ðxN ; yN1 ; . . .; yNk Þ denote the N ordered vertices to the

linear programming problem:

min F x; y1; . . .; ykð Þj x; y1; . . .; ykð Þ 2 Sf g: ð4:6Þ

such that:

F x j; y j1; . . .; y
j
k

� ��F xjþ1; yjþ11 ; . . .; yjþ1k

� �
; j ¼ 1; . . .;N � 1:
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Let ~yi; i ¼ 1; . . .; k, denote the optimal solution to the following problem

min
yi2Siðx jÞ

fi x
j; yi

� � ¼ cix
j þ eiyi: ð4:7Þ

We only need to find the smallest j under which y ji ¼ ~yi; i ¼ 1; . . .; k .
From Definition 4.1(b), we rewrite (4.7) as follows:

min
yi2Yi

fi x; yið Þ ¼ cixþ eiyi

s:t: Aixþ Ciyi� bi;

x ¼ x j:

ð4:8Þ

where i ¼ 1; . . .; k.
Solving problem (4.1) is equivalent to selecting one ordered vertex

x j; y j1; . . .; y
j
k

� �
and then solving (4.8) to obtain the optimal solution ~yi. If y

j
i ¼ yi for

all i then ðx j; y j1; . . .; y jkÞ is the globally optimal solution to S1. Otherwise, check the
next vertex.

Based on the above results, a multi-follower Kth-Best algorithm (Shi et al. 2005)
which can solve an uncooperative BLMF decision problem is described as follows.

The uncooperative BLMF Kth-Best algorithm is easy to use to solve a linear
uncooperative BLMF decision problem.

Let us give the following example to show how the uncooperative BLMF Kth-
Best algorithm works.
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Example 4.2 Consider the following linear BLMF problem with x 2 R, y 2 R,
z 2 R and X ¼ fxjx� 0g; Y ¼ fyjy� 0g; Z ¼ fzjz� 0g.

min
x2X

F x; y; zð Þ ¼ x� 2y� 4z

s:t: xþ yþ z� 4;

�xþ 3y� 4;

�xþ z� 1;

min
y2Y

f1 x; y; zð Þ ¼ xþ y

s:t: x� y� 0;

min
z2Z

f2 x; y; zð Þ ¼ �2xþ z

s:t: 2x� 5z� 1;

2xþ z� 1:

This model can be rewritten in the formulation of (4.6) as follows:

min
x;y;z

F x; y; zð Þ ¼ x� 2y� 4z

s:t: xþ yþ z� 4;

�xþ 3y� 4;

�xþ z� 1;

x� y� 0;

2x� 5z� 1;

2xþ z� 1:

Now we go through this uncooperative BLMF Kth-Best algorithm from Step 1
to Step 4.

In Step 1, set j ¼ 1; and solve the above problem with the simplex method to
obtain an optimal solution x 1½ �; y 1½ �; z 1½ �

� � ¼ ð0:71; 1:57; 1:71Þ. Let W ¼
f 0:71; 1:57; 1:71ð Þg and T ¼ ;. Go to Step 2.

In Loop 1:
Setting i 1 and by the formulation (4.8), we have

min
y2Y

f1 x; y; zð Þ ¼ xþ y

s.t. x� y� 0;

x ¼ 0:71:

Using the simplex method, we have ~yj ¼ 0:71. Because of ~yj 6¼ y½j�; we go to
Step 3 and then have W½j� ¼ f 0; 1:33; 1ð Þ; 1; 1; 2ð Þ; ð1:65; 1:88; 0:46Þg and T ¼
f 0:71; 1:57; 1:71ð Þg and W ¼ f 0; 1:33; 1ð Þ; 1; 1; 2ð Þ; ð1:65; 1:88; 0:46Þg.
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We then go to Step 4. Update j ¼ 2; and choose x j½ �; y j½ �; z j½ �
� � ¼ ð1; 1; 2Þ; go

back to Step 2.
In Loop 2:
Setting i 1 and the formulation (4.8), we have

min
y2Y

f1 x; y; zð Þ ¼ xþ y

s:t: x� y� 0;

x ¼ 1:

Using the simplex method, we obtain ~yj ¼ 1 and ~yj ¼ y½j�. This is a different
situation from the last loop. We thus set i 2 and have a new expression of f2 by
the formulation (4.8):

min
z2Z

f2 x; y; zð Þ ¼ �2xþ z

s:t: 2x� 5z� 1;

2xþ z� 1;

x ¼ 1:

The same as before, by using the simplexmethod again, we have~zj ¼ 0:2. Because
~zj 6¼ z j½ �; we go to Step 3, and have W j½ � ¼ 0; 0; 1ð Þ; 1:75; 1:75; 0:5ð Þf g; T ¼
f 0:71; 1:57; 1:71ð Þ; ð1; 1; 2Þg and W ¼ f 0; 1:33; 1ð Þ; 1:65; 1:88; 0:46ð Þ; 0; 0; 1ð Þ;
1:75; 1:75; 0:5ð Þg:
We then go to Step 4. Update j ¼ 3 and choose x j½ �; y j½ �; z j½ �

� � ¼ 0; 1:33; 1ð Þ; then
we go back to Step 2.

In Loop 3:
Setting i 1 and the formulation (4.8), we have

min
y2Y

f1 x; y; zð Þ ¼ xþ y

s.t. x� y� 0;

x ¼ 0:

Using the simplex method, we obtain ~yj ¼ 0: Since ~yj 6¼ y½j�; go to Step 3, and we
have W½j� ¼ 0; 0; 1ð Þ; 0:71; 1:57; 1:71ð Þf g; T ¼ 0:71; 1:57; 1:71ð Þ; 1; 1; 2ð Þ; 0;ðf
1:33; 1Þg; W ¼ f 1:65; 1:88; 0:46ð Þ; 0; 0; 1ð Þ; 1:75; 1:75; 0:5ð Þg. We then go to Step
4. Update j ¼ 4 and we get x j½ �; y j½ �; z j½ �

� � ¼ 0; 0; 1ð Þ.
In Loop 4:
Setting i 1 and the formulation (4.8), we have

min
y2Y

f1 x; y; zð Þ ¼ xþ y

s.t. x� y� 0;

x ¼ 0:
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Using the simplex method, we obtain ~yj ¼ 0;~yj 6¼ y½j�. We set i ¼ 2; and have

min
z2Z

f2 x; y; zð Þ ¼ �2xþ z

s.t. 2x� 5z� 1;

2xþ z� 1;

x ¼ 0:

We have ~zj ¼ 1 and ~zj ¼ z½j� The optimal solution of the uncooperative BLMF
problem occurs at the point 0; 0; 1ð Þ with the leader’s objective function value F	 ¼
�4; and two followers’ objective function values f 	1 ¼ 0; and f 	2 ¼ 1 respectively.

4.4.4 Uncooperative BLMF Kuhn-Tucker Approach

A natural idea for dealing with uncooperative BLMF decision problems is to
replace each follower’s problem with its Kuhn-Tucker (or KKT) conditions and
append the resultant system to the leader’s problem. Omitting or relaxing the
complementary constraints leaves a standard linear programming problem that can
be solved by using the simplex method. The Kuhn-Tucker approach is the most
popular method for solving one-leader one-follower bi-level decision problems.
Based on the definition of an optimal solution, a multi-follower Kuhn-Tucker
approach for the uncooperative BLMF decision problem is proposed and described
as follows (Lu et al. 2006).

Let vi 2 Rqi and wi 2 Rmi i ¼ 1; . . .; kð Þ be the dual variables associated with
constraints, Aixþ Ciyi� bi; yi� 0; i ¼ 1; . . .; k; respectively. We have the follow-
ing theorem.

Theorem 4.4 A necessary condition that x	; y	1; . . .; y
	
k

� �
solves the linear BLMF

problem (4.1) is that there exist (row) vectors ðv	1; v	2; . . .; v	kÞ and ðw	1;w	2; . . .;w	kÞ
such that x	; y	1; . . .; y

	
k ; v
	
1; . . .; v

	
k ;w

	
1; . . .;w

	
k

� �
solve the following problem:

min
x;y1;...;yk ;v1;...;vk ;w1;...;wk

F x; y1; . . .; ykð Þ ¼ cxþ
Xk
i¼1

diyi

s.t. Axþ
Xk
t¼1

Biyi� b;

Aixþ Ciyi� bi;

viCi � wi ¼ �ei;
vi bi � Aix� Ciyið Þ þ wiyi ¼ 0;

x� 0; yi� 0; vi� 0;wi� 0; i ¼ 1; 2; . . .; k

ð4:9Þ
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Theorem 4.4 indicates that the most direct approach for solving (4.1) is to solve
the equivalent problem (4.9). One of its advantages is that it allows a more robust
model to be solved without introducing new computational difficulties.

Now, we use Example 4.2 to illustrate the feasibility of the uncooperative BLMF
Kuhn-Tucker approach for solving the uncooperative BLMF decision problem.

Using the Kuhn-Tucker condition of all followers’ problems, we can transform
Example 4.2 into the following problem:

min
x;y;z;u;v

x� 2y� 4z

s.t. 1� u1 � u2 ¼ 0;

u1ðx� yÞ ¼ 0;

u2y ¼ 0;

1� 5v1 � v2 � v3 ¼ 0;

v1ð2x� 5z� 1Þ ¼ 0;

v2ð�2x� zþ 1Þ ¼ 0;

v3z ¼ 0;

xþ yþ z� 4;

�xþ 3y� 4;

�xþ z� 1;

x� y� 0;

2x� 5z� 1;

2xþ z� 1;

x; y; z; u ¼ u1; u2ð Þ; v ¼ ðv1; v2; v3Þ� 0:

It follows the formulation (4.9) that we have the following six possibilities.

Case 1: u; vð Þ ¼ ð0; 1; 0; 0; 1Þ;
Case 2: u; vð Þ ¼ 0; 1; 0; 1; 0ð Þ;
Case 3: u; vð Þ ¼ 0; 1; 0:2; 0; 0ð Þ;
Case 4: u; vð Þ ¼ 1; 0; 0; 0; 1ð Þ;
Case 5: u; vð Þ ¼ ð1; 0; 0; 1; 0Þ;
Case 6: u; vð Þ ¼ ð1; 0; 0:2; 0; 0Þ:
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For Case 2, the above problem can be rewritten as follows:

min
x;y;z

x� 2y� 4z

s.t. y ¼ 0

�2x� zþ 1 ¼ 0;

xþ yþ z� 4;

�xþ 3y� 4;

�xþ z� 1;

x� y� 0;

2x� 5z� 1;

2xþ z� 1;

x; y; z� 0

Using the simplex method, we find that a solution occurs at the point
x; y; zð Þ ¼ 0; 0; 1ð Þ. By using the same approach as that used in Case 2, we obtain a
solution for each case as shown in Table 4.2.

From Table 4.2, we find that the optimal solution for this example occurs at the
point (0, 0, 1) with the optimal value −4. Therefore, we achieve the same solution
as the Result attained by the uncooperative BLMF Kth-Best algorithm.

4.5 Semi-cooperative Bi-level Multi-follower Decision
Making

Within the framework of BFML decision-making, the semi-cooperative relationship
is also a common situation in which followers control the same decision variables
but have individual objective functions and/or constraint conditions. The linear
models (S3–S5) for this kind of BLMF decision-making are presented in
Sect. 4.3.2. Since model S5 is the most representative and typical in the set of
models, this section mainly presents solution concepts, related theoretical properties
and algorithms for model S5.

Table 4.2 Procedures of
uncooperative BLMF
Kuhn-Tucker approach

Case u v x y z F

1 (0, 1) (0, 0, 1) Infeasible

2 (0, 1) (0, 1, 0) 0 0 1 −4

3 (0, 1) (0.2, 0, 0) Infeasible

4 (1, 0) (0, 0, 1) 0.5 0.5 0 −0.5

5 (1, 0) (0, 1, 0) 0 0 1 −4

6 (1, 0) (0.2, 0, 0) 1.75 1.75 0.5 −3.75
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4.5.1 Solution Concepts

Definition 4.2

(a) Constraint region of a linear BLMF decision problem:

S ¼ x; yð Þ 2 X � Y jAxþ By� b;Aixþ Ciy� bi; i ¼ 1; . . .; kf g:

where Y ¼ Y1 \ � � � \Yk:
(b) Feasible set of the ith follower for 8x 2 X:

SiðxÞ ¼ y 2 YijCiy� bi � Aixf g; i ¼ 1; 2; :. . .; k:

(c) Projection of S onto the leader’s decision space:

S Xð Þ ¼ x 2 Xj9y 2 Y ; x; yð Þ 2 Sf g:

(d) The ith follower’s rational reaction set for x 2 SðXÞ:

Pi xð Þ ¼ y 2 Yijy 2 argmin ½fiðx; zÞjz 2 SiðxÞ�f g;

where argmin fi x; zð Þjz 2 Si xð Þ½ � ¼ y 2 Si xð Þjfi x; yð Þ� fi x; zð Þ; 8z 2 SiðxÞf g.
(e) Inducible region:

IR ¼ x; yð Þj x; yð Þ 2 S; y 2 Pi xð Þ; i ¼ 1; . . .; kf g:

Thus, in terms of the above notations, the linear BLMF decision problem can be
written as

min F x; yð Þj x; yð Þ 2 IRf g: ð4:10Þ

For the sake of assuring an optimal solution to the model S5, it requires that the
solution to the formulation (4.10) exists which implies that further assumptions
should be satisfied for the semi-cooperative BLMF decision model in order to give
the solution concepts.

Assumption 4.2

1. S is non-empty and compact.
2. IR is non-empty.
3. Pi xð Þ is a point-to-point map with respect to x, where i ¼ 1; . . .; k.

Theorem 4.5 If the above assumptions are satisfied, there exists an optimal
solution to the linear semi-cooperative BLMF decision model S5.
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Proof Since neither S nor IR is empty, there exists a point x	 2 SðXÞ such that
P x	ð Þ ¼ fyjy 2 Pi x	ð Þ; i ¼ 1; . . .; kg 6¼ ;. Consider a sequence ðxt; ytÞf g1t¼1
 IR
converging to ðx	; y	Þ. Then, by the well-known results of linear parametric opti-
mization, y	 2 P x	ð Þ. Hence, ðx	; y	Þ 2 IR that shows IR is closed. By Assumption
4.2(1) and IR 
 S, thus IR is also bounded, and IR is non-empty. Therefore, the
problem (4.10) consists of minimizing a continuous function over a compact non-
empty set, which implies that model S5 has an optimal solution. h

4.5.2 Theoretical Properties

Theoretical properties and related proofs for the semi-cooperative BLMF decision
model S5 are similar to those of the uncooperative BLMF decision model S1. In this
section, we provide only the related theorems and corollaries for the semi-coop-
erative BLMF decision model S5. Readers can demonstrate these theorems by
taking the proofs in Sect. 4.4.2 as references.

Theorem 4.6 The inducible region IR of the semi-cooperative BLMF decision
model S5 can be expressed equivalently as a piecewise linear equality constraint
comprised of support hyperplanes of S.

Corollary 4.4 The semi-cooperative BLMF decision model S5 is equivalent to
optimizing F over a feasible region comprised of a piecewise linear equality
constraint.

Corollary 4.5 An optimal solution to the semi-cooperative BLMF decision model
S5 occurs at a vertex of IR.

Theorem 4.7 The optimal solution ðx	; y	Þ to the semi-cooperative BLMF decision
model S5 occurs at a vertex of S.

Corollary 4.6 If ðx	; y	Þ is a vertex of the IR, it is also a vertex of S.

4.5.3 Semi-cooperative BLMF Kth-Best Algorithm

The solution method for model S5 is similar to that for model S1. The multi-
follower Kth-Best algorithm proposed in Sect. 4.4.3 can also be used to solve the
model S5. This section will adopt a simple example to illustrate the multi-follower
Kth-Best algorithm for solving a semi-cooperative BLMF decision problem.

Example 4.3 Consider the following linear BLMF problem with x 2 R, y 2 R, and
X ¼ fxjx� 0g, Y1 ¼ fyjy� 0g, Y2 ¼ fyjy� 0g:
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min
x2X

F x; yð Þ ¼ xþ 2y

s.t. x� 3;

x� 1;

min
y2Y1

f1 x; yð Þ ¼ x� 2y

s.t. xþ y� 4;

y� 2;

min
y2Y2

f2 x; yð Þ ¼ xþ y

s.t. xþ y� 3;

y� 1:

According to the multi-follower Kth-Best algorithm, we consider the following
problem:

min
x2X

F x; yð Þ ¼ xþ 2y

s.t. x� 3;

x� 1;

xþ y� 4;

y� 2;

xþ y� 3;

y� 1:

Now we go through the multi-follower Kth-Best algorithm from Step 1 to Step 4.
In Step 1, set j ¼ 1, and solve the above problem with the simplex method to

obtain an optimal solution x 1½ �; y 1½ �
� � ¼ ð2; 1Þ. Let W ¼ fð2; 1Þg and T ¼ ;. Go to

Step 2.
In Loop 1:
Setting i 1 and the formulation (4.8), we have

min
y2Y1

f1 x; yð Þ ¼ x� 2y

s.t. xþ y� 4;

y� 2;

x ¼ 2:

Using the simplex method, we have ~y ¼ 2. Because of ~y 6¼ y½j�, we go to Step 3
and then have W½j� ¼ f 1; 2ð Þ; 3; 1ð Þg, T ¼ f 2; 1ð Þg, W ¼ f 1; 2ð Þ; 3; 1ð Þg. We then
go to Step 4. Update j ¼ 2, and choose x j½ �; y j½ �

� � ¼ ð1; 2Þ, go back to Step 2.
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In Loop 2:
Setting i 1 and the formulation (4.8), we have

min
y2Y1

f1 x; yð Þ ¼ x� 2y

s.t. xþ y� 4;

y� 2;

x ¼ 1:

Through using the simplex method, we obtain ~y ¼ 2 and ~y ¼ y½j�. We set i 2
and have

min
y2Y2

f2 x; yð Þ ¼ xþ y

s.t. xþ y� 3;

y� 1;

x ¼ 1:

We have ~y ¼ 2 and ~y ¼ y½j�.
It has been found that the optimal solution of the semi-cooperative BLMF

problem occurs at the point x 2½ �; y 2½ �
� � ¼ ð1; 2Þ with the leader’s objective value

F	 ¼ 5, and two followers’ objective values f 	1 ¼ �3 and f 	2 ¼ 3 respectively.

4.5.4 Semi-cooperative BLMF Kuhn-Tucker Approach

Similar to Theorem 4.4 for the uncooperative linear BLMF decision problem, we
have the following result for the linear semi-cooperative BLMF decision problem.

Theorem 4.8 A necessary condition that ðx	; y	Þ solves the linear BLMF problem
S5 is that there exist (row) vectors ðv	1; v	2; . . .; v	kÞ and ðw	1;w	2; . . .;w	kÞ such that
x	; y	; v	1; . . .; v

	
k ;w

	
1; . . .;w

	
k

� �
solves

min
x;y;v1;...;vk ;w1;...;wk

F x; yð Þ ¼ cxþ dy

s.t. Axþ By� b;

Aixþ Ciy� bi;

viCi � wi ¼ �ei;
vi bi � Aix� Ciyð Þ þ wiy ¼ 0;

x� 0; y� 0; vi� 0;wi� 0; i ¼ 1; 2; . . .; k

Theorem 4.8 indicates that the most direct approach for solving S5 is to solve the
above equivalent mathematical programming problem.
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Now, we use Example 4.3 proposed in Sect. 4.5.3 to illustrate the feasibility of
the multi-follower Kuhn-Tucker approach for solving the linear semi-cooperative
BLMF decision problem.

Using the Kuhn-Tucker conditions of all followers’ problems, we can transform
Example 4.3 into the following problem.

min
x;y;v1;...;v4;w

F x; yð Þ ¼ xþ 2y

s.t. 1� x� 3;

�2þ v1 þ v2 � w ¼ 0;

v1 xþ y� 4ð Þ ¼ 0;

v2 y� 2ð Þ ¼ 0;

wy ¼ 0;

1� v3 � v4 ¼ 0;

v3 xþ y� 3ð Þ ¼ 0;

v4 y� 1ð Þ ¼ 0;

xþ y� 4;

y� 2;

xþ y� 3;

y� 1;

x; y; v1; . . .; v4;w� 0:

It follows from Theorem 4.8 that we have four possibilities.

Case 1: v;wð Þ ¼ 2; 0; 1; 0; 0ð Þ;
Case 2: v;wð Þ ¼ 2; 0; 0; 1; 0ð Þ;
Case 3: v;wð Þ ¼ 0; 2; 1; 0; 0ð Þ;
Case 4: v;wð Þ ¼ 0; 2; 0; 1; 0ð Þ;

For Case 2, the above problem can be rewritten as follows:

min
x;y

F x; yð Þ ¼ xþ 2y

s:t: 1� x� 3;

2 xþ y� 4ð Þ ¼ 0;

y� 1 ¼ 0;

xþ y� 4;

y� 2;

xþ y� 3;

y� 1;

x; y� 0:
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Using the simplex method, we find that an optimal solution of the above linear
programming problem occurs at the point x; yð Þ ¼ ð3; 1Þ. By using the same
approach as that applied in other cases, we obtain the results for each case as shown
in Table 4.3.

By examining the procedure shown in Table 4.3, we find that the optimal
solution for this example occurs at points (3, 1) and (1, 2) with the optimal value 5.

4.6 Reference-Uncooperative Bi-level Multi-follower
Decision Making

The reference-uncooperative relationship is another common situation in which the
followers uncooperatively make decisions while cross-referencing the decision
information between them. Of the BLMF decision-making models S6–S9, model S9
is the most representative. This section will provide more details about solution
concepts, related theoretical properties and algorithms for model S9.

4.6.1 Solution Concepts

Definition 4.3

(a) Constraint region of a linear BLMF decision problem:

S ¼
(

x; y1; . . .; ykð Þ 2 X � Y1 � � � � � YkjAx

þ
Xk
i¼1

Biyi� b;Aixþ
Xk
s¼1

Cisys� bi; i ¼ 1; . . .; k

)

The problem’s constraint region refers to all possible choice combinations that
the leader and followers might make.

Table 4.3 Procedures of the
semi-cooperative BLMF
Kuhn-Tucker approach

Case v w x y F

1 (2, 0, 1, 0) 0 Infeasible

2 (2, 0, 0, 1) 0 3 1 5

3 (0, 2, 1, 0) 0 1 2 5

4 (0, 2, 0, 1) 0 Infeasible
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(b) Feasible set for the ith follower:

Si x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ

¼ yi 2 YijAixþ
Xk
s¼1

Cisys� bi

( )
; i ¼ 1; . . .; k:

The feasible region for each follower is affected by the leader’s choice of x,
and also uses other followers’ decisions for reference.

(c) Projection of S onto the leader’s decision space:

S Xð Þ ¼ x 2 X 9 y1; . . .; ykð Þ 2 Y1 � � � � � Ykj ; x; y1; . . .; ykð Þ 2 Sf g:

(d) The ith follower’s rational reaction set:

Pi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ
¼ yijyi 2 argmin½fiðx; y1; . . .; ykÞjyi 2 Si x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ�f g;

where

argmin fi x; y1; . . .; ykð Þ yi 2 Si x; y1; . . .; yi�1; yiþ1; . . .; ykð Þj½ �
¼ fyi 2 Si x; y1; . . .; yi�1; yiþ1; . . .; ykð Þjfiðx; y1; . . .; ykÞ
� fi x; y1; . . .; yi�1; ŷi; yiþ1; . . .; ykð Þ; 8ŷi 2 Si x; y1; . . .; yi�1; yiþ1; . . .; ykð Þg:

(e) Inducible region:

IR ¼ x; y1; . . .ykð Þ x; y1; . . .; ykð Þjf 2 S;

yi 2 Pi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ; i ¼ 1; . . .; kg:

Thus in terms of the above notations, the linear BLMF decision problem can be
written as:

min F x; y1; . . .; ykð Þj x; y1; . . .; ykð Þ 2 IRf g: ð4:11Þ

For the sake of assuring an optimal solution to model S9, it is a requirement that
the optimal solution to the formulation (4.11) exists which implies that further
assumptions should be satisfied for the reference-uncooperative BLMF decision
model to give the solution concepts.

Assumption 4.3

1. S is non-empty and compact.
2. IR is non-empty.
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3. Pi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ is a point-to-point map with respect to
x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ, where i ¼ 1; . . .; k.

Theorem 4.9 If the above assumptions are satisfied, there exists an optimal
solution to the linear reference-uncooperative BLMF decision model S9.

Proof Let

P xð Þ ¼ y1; . . .; ykð Þjyi 2 Pi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ; i ¼ 1; . . .; kf g:

Since neither S nor IR is empty, there exists at least one point x	 2 SðXÞ and
P x	ð Þ 6¼ ; for all i ¼ 1; . . .; k. Consider a sequence ðxt; yt1; . . .; ytkÞ

� �1
t¼1
 IR con-

verging to ðx	; y	1; . . .; y	kÞ. Then, by the well-known results of linear parametric
optimization, ðy	1; . . .; y	kÞ 2 P x	ð Þ. Hence, ðx	; y	1; . . .; y	kÞ 2 IR shows that IR is
closed. Thus by Assumption 4.3(1) and IR 
 S, IR is also bounded, and IR is non-
empty, therefore the problem (4.11) consists of minimizing a continuous function
over a compact non-empty set, which implies that model S9 has a solution. h

4.6.2 Theoretical Properties

A number of theoretical properties for model S9 are presented to support the
principle of algorithms for solving the reference-uncooperative BLMF problem.

Theorem 4.10 The inducible region IR can be expressed equivalently as a
piecewise linear equality constraint comprised of support hyperplanes of S.

Proof First, i ¼ 1; . . .; k; define

Qi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ ¼ min eiiŷijŷi 2 Si x; y1; . . .; yi�1; yiþ1; . . .; ykð Þf g:

Since Qi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ can be seen as a linear programming prob-
lem with parameters x; y1; . . .; yi�1; yiþ1; . . .; yk, its dual problem can be written as

max ðAixþ
Xk

s¼1;s 6¼i
Cisys � biÞuijCiiui��eii; ui� 0

( )
; i ¼ 1; . . .; k: ð4:12Þ

If both Qi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ and problem (4.12) have feasible solu-
tions, according to the dual theorem of linear programming, both of them have
optimal solutions and the same optimal objective function value. We know that a
solution to problem (4.12) occurs at a vertex of its constraint region
Ui ¼ uijCiiui��eii; ui� 0f g; i ¼ 1; . . .; k. Adopting u1i ; . . .; u

qi
i to express all the

vertices of Ui, problem (4.12) can be written as:
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max ðAixþ
Xk

s¼1;s6¼i
Cisys � biÞuijui 2 u1i ; . . .; u

qi
i

� �( )
; i ¼ 1; . . .; k: ð4:13Þ

Clearly, Qi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ is a piecewise linear function according
to problem (4.13).

IR ¼ x; y1; . . .; ykð Þ 2 Sjyi 2 Pi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ; i ¼ 1; . . .; kf g
¼ x; y1; . . .; ykð Þ 2 Sjeiiyi ¼ Qi x; y1; . . .; yi�1; yiþ1; . . .; ykð Þ; i ¼ 1; . . .; kf g:

ð4:14Þ

and it can be seen as a piecewise linear equality constraint. h

Corollary 4.7 The reference-uncooperative BLMF decision model S9 is equivalent
to optimizing F over a feasible region comprised of a piecewise linear equality
constraint.

Corollary 4.8 An optimal solution to the reference-uncooperative BLMF decision
model S9 occurs at a vertex of IR.

Proof According to the equivalent form (4.11) of the BLMF decision model, also,
since F(x, y1, …, yk) is linear, an optimal solution to the problem must occur at a
vertex of IR if it exists. h

Theorem 4.11 The optimal solution (x*, y1
*, …, yk

*) to the reference-uncooperative
BLMF decision model occurs at a vertex of S.

Proof Let (x1, y1
1, …, yk

1), …, (xt, y1
t , …, yk

t ) express the distinct vertices of S. Since
any point in S can be written as a convex combination of these vertices, we can get

x	; y	1; . . .; y
	
k

� � ¼X�t
r¼1

dr xr; yr1; . . .; y
r
k

� �

where
Pt

r¼1 dr ¼ 1; dr [ 0; r ¼ 1; . . .; t and t� t.
Let us write the constraints of S9 in the piecewise linear form (4.14) discussed in

Theorem 4.10:

0 ¼ Qi x
	; y	1; . . .; y

	
i�1; y

	
iþ1; . . .; y

	
k

� �� eiiy
	
i

¼ Qi

Xt
r¼1

drx
r;
Xt
r¼1

dry
r
1; . . .;

Xt
r¼1

dry
r
i�1;

Xt
r¼1

dry
r
iþ1; . . .;

Xt
r¼1

dry
r
k

 !

� eii
Xt
r¼1

dry
r
i ; i ¼ 1; ::; k:
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Because of the convexity of Qi(x, y1, …, yi−1, yi+1, …, yk), we have

0�
X�t
r¼1

drQi x
r; yr1; . . .; y

r
i�1; y

r
iþ1; . . .; y

r
k

� �� eii
X�t
r¼1

dry
r
i

¼
X�t
r¼1

drðQi x
r; yr1; . . .; y

r
i�1; y

r
iþ1; . . .; y

r
k

� �� eiiy
r
i Þ:

ð4:15Þ

By the definition of Qi(x, y1, …, yi−1, yi+1, …, yk), we have

Qi x
r; yr1; . . .; y

r
i�1; y

r
iþ1; . . .; y

r
k

� �
¼ min eiiyi� eiiy

r
i ; r ¼ 1; . . .;�t; i ¼ 1; ::; k:

Thus, Qi xr; yr1; . . .; y
r
i�1; y

r
iþ1; . . .; y

r
k

� �� eiiyri � 0; r ¼ 1; . . .;�t; i ¼ 1; . . .; k:
Because the preceding expression (4.15) must be held with dr [ 0; r ¼ 1; . . .;�t,

we have Qi xr; yr1; . . .; y
r
i�1; y

r
iþ1; . . .; y

r
k

� �� eiiyri ¼ 0; r ¼ 1; . . .; t; i ¼ 1; ::; k:
These statements imply that (xr, y1

r , …, yk
r) ∊ IR, r ¼ 1; . . .; t; and that (x*, y1

*, …,
yk
*) can be denoted as a convex combination of the points in the IR. Since (x*, y1

*,…,
yk
*) is a vertex of the IR and according to Corollary 4.8 and Assumption 4.3(3), there
must exist t ¼ 1, which implies (x*, y1

*, …, yk
*) is a vertex of S. h

Corollary 4.9 If (x*, y1
*, …, yk

*) is a vertex of the IR, it is also a vertex of S.

4.6.3 Reference-Uncooperative BLMF Kth-Best Algorithm

In Sect. 4.4, the well-known Kth-Best algorithm has been successfully applied to
solve model S1. This section will extend this algorithm to deal with the above linear
reference-uncooperative BLMF decision model S9.

Theorem 4.11 provides a theoretical foundation for searching an algorithm to
solve the reference-uncooperative BLMF decision problem. It also means that we
can efficiently find an optimal solution for a linear BLMF decision problem by
searching vertices on the constraint region S. The basic idea of the algorithm is that
we arrange all the vertices of S in ascending order according to the objective
function value of the upper level, and select the first vertex to check whether it is on
the inducible region IR. If it is, the current vertex is the optimal solution. Otherwise,
the next one will be selected and checked.

More specifically, let (x1, y1
1, …, yk

1), …, (xN, y1
N, …, yk

N) denote the N ordered
vertices to the linear programming problem

min F x; y1; . . .; ykð Þj x; y1; . . .; ykð Þ 2 Sf g; ð4:16Þ
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such that:

F x j; y j1; . . .; y
j
k

� ��F xjþ1; yjþ11 ; . . .; yjþ1k

� �
; j ¼ 1; . . .;N � 1:

Let ~yi; i ¼ 1; . . .; k; denote the optimal solution to the following problem:

min
yi2Si x j;y1;...;yi�1;yiþ1;...;ykð Þ

fi x
j; y1; . . .; yk

� � ¼ cix
j þ
Xk
s¼1

eisys: ð4:17Þ

We only need to find the smallest j under which y ji ¼ ~yi; i ¼ 1; . . .; k:
From Definition 4.3(b), we rewrite (4.17) as follows:

min
yi

fi x; y1; . . .; ykð Þ ¼ cixþ
Xk
s¼1

eisys

s.t. Aixþ
Xk
s¼1

Cisys� bi;

x ¼ x j;

yl ¼ y jl ; l 6¼ i;

ð4:18Þ

where i = 1, …, k.
Solve problem (4.18) and obtain the optimal solution ~yi. If y

j
i ¼ ~yi for all i then

x j; y j1; . . .; y
j
k

� �
is the globally optimal solution to S9. Otherwise, check the next

vertex.
Based on the above results, a multi-follower Kth-Best algorithm (Zhang et al.

2008) which can solve the reference-uncooperative BLMF decision problems is
described as follows.

It is easy to use the reference-uncooperative BLMF Kth-Best algorithm to solve
the linear reference-uncooperative BLMF decision problem.

Let us present a logistics planning problem which is modeled as a reference-
uncooperative BLMF decision model to show how the proposed reference-unco-
operative BLMF Kth-Best algorithm works.

Example 4.4 A logistics chain often involves a series of units such as supplier and
distributor. All the units involved in the chain are interrelated in such a way that a
decision made at one unit affects the performance of the next unit. In the meantime,
when one unit tries to optimize its objective, it may need to consider the objective
of the next unit, and its decision will be affected by the next unit’s reaction. Both
supplier and distributor, two important units in a logistics chain, have their own
objectives such as maximizing their benefits and minimizing their costs; constraints
such as time, locations and facilities; and variables such as prices. For each possible
decision made by the supplier, the distributor finds a way to optimize its objective
value. The optimal solution of the distributor allows the supplier to compute its
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objective function value. As the main purpose of making a logistics plan is to
optimize the supplier’s objective function value, the supplier is the leader, and the
distributor is the follower in this case.

We assume that there are two kinds of distributors, A and B, in this case. They
have their own decision variables, objectives and constraints, but they cross-ref-
erence information by considering other followers’ decision results in each of their
own decision objectives and constraints. For example, distributor A considers
distributor B’s transportation price.

Before establishing a reference-cooperative BLMF model for the above problem,
we first give the following notations.

x: the supplier’s (leader’s) decision variable;
y: the distributor A’s (follower A’s) decision variable;
z: the distributor B’s (follower A’s) decision variable;
Fðx; y; zÞ: the supplier’s objective function;
f1ðx; y; zÞ: the distributor A’s objective function;
f2ðx; y; zÞ: the distributor B’s objective function.

Let X ¼ fxjx� 0g, Y ¼ fyjy� 0g, Z ¼ zjz� 0f g with x 2 R, y 2 R, z 2 R.
The supplier’s objective is to minimize, over the set X, the total transportation

cost of the system described by minFðx; y; zÞ. Distributor A seeks to minimize its
transportation time delay described by minf1 x; y; zð Þ over the set Y, and distributor B
seeks to do the same by minf2 x; y; zð Þ over the set Z. Although the two distributors
have different decision variables, decision objectives and constraints, each of them
takes the other’s decision variable into their objective and constraints as a reference.
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This is a typical reference-uncooperative BLMF decision problem. The problem’s
model is presented as follows:

min
x2X

F x; y; zð Þ ¼ �xþ 2yþ 3z

s:t: x� 1;

min
y2Y

f1 x; y; zð Þ ¼ x� yþ z

s:t: xþ yþ z� 1;

y� 1;

min
z2z f2 x; y; zð Þ ¼ xþ y� z

s:t: xþ yþ z� 8;

x� 2;

z� 1:

According to the reference-uncooperative BLMF Kth-Best algorithm, we con-
sider the following problem:

min
x;y;z

F x; y; zð Þ ¼ �xþ 2yþ 3z

s:t: x� 1;

xþ yþ z� 1;

y� 1;

xþ yþ z� 8;

x� 2;

z� 1:

Now we go through the reference-uncooperative BLMF Kth-Best algorithm
from Step 1 to Step 4.

In Loop 1:
In Step 1, set j ¼ 1, and solve the above problem with the simplex method to

obtain an optimal solution x 1½ �; y 1½ �; z 1½ �
� � ¼ ð2; 0; 0Þ. Let W ¼ fð2; 0; 0Þg and

T ¼ ;. Go to Step 2.
Setting i 1 and the formulation (4.18), we have

min
y2Y

f1 x; y; zð Þ ¼ x� yþ z

s:t: xþ yþ z� 1;

y� 1;

x ¼ 2;

z ¼ 0:
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Using the simplex method, we have ~yj ¼ 1. Because of ~yj 6¼ y½j�, we go to Step 3
and then have W½j� ¼ 1; 0; 0ð Þ; 2; 1; 0ð Þ; 2; 0; 1ð Þf g; T ¼ f 2; 0; 0ð Þg and W ¼ f 1;ð
0; 0Þ; 2; 1; 0ð Þ; 2; 0; 1ð Þg. We then go to Step 4. Update j ¼ 2, and choose
x j½ �; y j½ �; z j½ �
� � ¼ ð1; 0; 0Þ, go back to Step 2.

In Loop 2:
Setting i 1 and the formulation (4.18), we have

min
y2Y

f1 x; y; zð Þ ¼ x� yþ z

s:t: xþ yþ z� 1;

y� 1;

x ¼ 1;

z ¼ 0:

The same as Loop 1, by using the simplex method, we have ~yj ¼ 1. Because of
~yj 6¼ y½j�, we go to Step 3, and obtain W½j� ¼ 2; 0; 0ð Þ; 1; 1; 0ð Þ; 1; 0; 1ð Þf g; T ¼ f 2;ð
0; 0Þ; 1; 0; 0ð Þg, W ¼ f 2; 1; 0ð Þ; 2; 0; 1ð Þ; 1; 1; 0ð Þ; 1; 0; 1ð Þg.

Then go to Step 4. Update j ¼ 3, and choose x j½ �; y j½ �; z j½ �
� � ¼ ð2; 1; 0Þ, then go to

Step 2 again.
In Loop 3:
Setting i 1 and the formulation (4.18), we have

min
y2Y

f1 x; y; zð Þ ¼ x� yþ z

s:t: xþ yþ z� 1;

y� 1;

x ¼ 2;

z ¼ 0:

Using the simplex method, we obtain ~yj ¼ 1 and ~yj ¼ y½j�. This is a different
situation from the last loop. We thus set i 2 and have a new expression of the
distributor’s function f2 by the formulation (4.18):

min
z2Z

f2 x; y; zð Þ ¼ xþ y� z

s:t: xþ yþ z� 8;

x� 2;

z� 1;

x ¼ 2;

y ¼ 1:
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By using the simplex method as before, we have ~zj ¼ 1. Because ~zj 6¼ z½j�, we go
to Step 3, and have W½j� ¼ 2; 0; 0ð Þ; 1; 1; 0ð Þ; 2; 1; 1ð Þf g, T ¼ f 2; 0; 0ð Þ; 1; 0; 0ð Þ;
2; 1; 0ð Þg, W ¼ f 2; 0; 1ð Þ; 1; 1; 0ð Þ; 1; 0; 1ð Þ; 2; 1; 1ð Þg.
We then go to Step 4. Update j ¼ 4 and choose x j½ �; y j½ �; z j½ �

� � ¼ ð2; 0; 1Þ, then
we go back to Step 2.

In Loop 4:
Setting i 1 and by the formulation (4.18), we have

min
y2Y

f1 x; y; zð Þ ¼ x� yþ z

s:t: xþ yþ z� 1;

y� 1;

x ¼ 2;

z ¼ 0:

Using the simplex method, we obtain ~yj ¼ 1 and ~yj 6¼ y½j�. We go to Step 3, and
have W½j� ¼ 2; 0; 0ð Þ; 1; 0; 1ð Þ; 2; 1; 1ð Þf g, T ¼ 2; 0; 0ð Þ; 1; 0; 0ð Þ; 2; 1; 0ð Þ; 2;ðf
0; 1Þg, W ¼ 1; 1; 0ð Þ; 1; 0; 1ð Þ; 2; 1; 1ð Þf g:

Go to Step 4. Update j ¼ 5 and we get x j½ �; y j½ �; z j½ �
� � ¼ ð1; 1; 0Þ

In Loop 5:
Setting i 1 and by the formulation (4.18), we have:

min
y2Y

f1 x; y; zð Þ ¼ x� yþ z

s:t: xþ yþ z� 1;

y� 1;

x ¼ 1;

z ¼ 0:

Using the simplex method, we obtain ~yj ¼ 1 and ~yj ¼ y½j�. Set i 2, we have

min
z2Z

f2 x; y; zð Þ ¼ xþ y� z

s:t: xþ yþ z� 8;

x� 2;

z� 1;

x ¼ 1;

y ¼ 1:
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We have ~zj ¼ 1, ~zj 6¼ z½j�, go to Step 3. We obtain W½j� ¼ 1; 0; 0ð Þ; 1; 1; 1ð Þ;f
2; 1; 0ð Þg, T ¼ 2; 0; 0ð Þ; 1; 0; 0ð Þ; 2; 1; 0ð Þ; 2; 0; 1ð Þ; 1; 1; 0ð Þf g, W ¼ 1; 1; 1ð Þ; 1;ðf
0; 1Þ; 2; 1; 1ð Þg:

We then go to Step 4. Update j ¼ 6 and we get x j½ �; y j½ �; z j½ �
� � ¼ ð1; 0; 1Þ.

In Loop 6:
Setting i 1 and by the formulation (4.18), we have

min
y2Y

f1 x; y; zð Þ ¼ x� yþ z

s:t: xþ yþ z� 1;

y� 1;

x ¼ 1;

z ¼ 1:

Using the simplexmethod,we obtain~yj ¼ 1 and~yj 6¼ y½j�.We go to Step 3, and have
W½j� ¼ 1; 0; 0ð Þ; 1; 1; 1ð Þ; 2; 0; 1ð Þf g, T ¼ f 2; 0; 0ð Þ; 1; 0; 0ð Þ; 2; 1; 0ð Þ; 2; 0; 1ð Þ;
1; 1; 0ð Þ; ð1; 0; 1Þ, W ¼ 1; 1; 1ð Þ; 2; 1; 1ð Þf g.
We then go to Step 4. Update j ¼ 7 and we get x j½ �; y j½ �; z j½ �

� � ¼ ð2; 1; 1Þ.
In Loop 7:
Setting i 1 and by the formulation (4.18), we have

min
y2Y

f1 x; y; zð Þ ¼ x� yþ z

s:t: xþ yþ z� 1;

y� 1;

x ¼ 2;

z ¼ 1:

Through using the bounded simplex method, we obtain ~yj ¼ 1 and ~yj ¼ y½j�. Set
i 2, we have

min
z2Z

f2 x; y; zð Þ ¼ xþ y� z

s:t: xþ yþ z� 8;

x� 2;

z� 1;

x ¼ 2;

y ¼ 1:

We have ~zj ¼ 1, ~zj ¼ z½j�.
It has been found that from Loop 7, the optimal solution of the reference-

uncooperative BLMF problem occurs at the point (2, 1, 1) with the leader’s
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objective function value F	 ¼ 3, and two followers’ objective function values f 	1 ¼
2 and f 	2 ¼ 2 respectively.

4.6.4 Reference-Uncooperative BLMF Kuhn-Tucker
Approach

Similar to Theorem 4.4 for the uncooperative linear BLMF decision problem, we
have the following result for the BLMF in a reference-uncooperative situation (Lu
et al. 2007).

Theorem 4.12 A necessary condition that x	; y	1; . . .; y
	
k

� �
solves the linear BLMF

problem (4.11) is that there exist (row) vectors ðv	1; v	2; . . .; v	kÞ and ðw	1;w	2; . . .;w	kÞ
such that x	; y	1; . . .; y

	
k ; v
	
1; . . .; v

	
k ;w

	
1; . . .;w

	
k

� �
solve:

min
x;y1;...;yk ;v1;...;vk ;w1;...;wk

F x; y1; . . .; ykð Þ ¼ cxþ
Xk
i¼1

diyi

s:t: Axþ
Xk
i¼1

Biyi� b;

Aixþ
Xk
s¼1

Cisysbi;

viCii � wi ¼ �eii;

vi bi � Aix�
Xk
s¼1

Cisys

 !
þ wiyi ¼ 0;

x� 0; yi� 0; vi� 0;wi� 0; i ¼ 1; 2; . . .; k:

ð4:19Þ

Theorem 4.12 indicates that the most direct approach for solving (4.11) is to
solve the equivalent problem (4.19). One of its advantages is that it allows a more
robust model to be solved without introducing new computational difficulties.

Now, we use Example 4.4 proposed in Sect. 4.6.3 to illustrate the feasibility of
the reference-uncooperative BLMF Kuhn-Tucker approach for solving the linear
BLMF decision problem in a reference-uncooperative situation.

Using the Kuhn-Tucker conditions of all followers’ problems, we can transform
Example 4.4 into the following problem:
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min
x;y;z;u;v

F x; y; zð Þ ¼ �xþ 2yþ 3z

s:t: �1� u1 þ u2 � u3 ¼ 0;

u1 xþ yþ z� 1ð Þ ¼ 0;

u2 y� 1ð Þ ¼ 0;

u3y ¼ 0;

�1þ v1 þ v2 � v3 ¼ 0;

v1 xþ yþ z� 8ð Þ ¼ 0;

v2 z� 1ð Þ ¼ 0;

v3z ¼ 0;

x� 1;

xþ yþ z� 1;

y� 1;

xþ yþ z� 8;

x� 2;

z� 1;

x; y; z; u ¼ u1; u2; u3ð Þ; v ¼ ðv1; v2; v3Þ� 0:

Clearly, we have the following two possibilities:

Case 1: u; vð Þ ¼ ð0; 1; 0; 0; 1; 0Þ;
Case 2: u; vð Þ ¼ 0; 1; 0; 1; 0; 0ð Þ:

For Case 1, the above problem can be rewritten as follows:

min
x;y;z

F x; y; zð Þ ¼ �xþ 2yþ 3z

s:t: y� 1 ¼ 0;

z� 1 ¼ 0;

x� 1;

xþ yþ z� 1;

y� 1;

xþ yþ z� 8;

x� 2;

z� 1;

x; y; z� 0:
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Using the simplex method, we find that a solution occurs at the point
x; y; zð Þ ¼ 2; 1; 1ð Þ. By using the same approach as that used in Case 1, we obtain a
solution for each case as shown in Table 4.4.

As shown in Table 4.4, the optimal solution occurs at the point (2, 1, 1) with the
optimal value 3. We obtain the same solution through the reference-uncooperative
BLMF Kuhn-Tucker approach and the reference-uncooperative BLMF Kth-Best
algorithm for Model S9.

4.7 Summary

Bi-level multi-follower decision-making is a common issue in organizational
management. This chapter establishes a framework for the BLMF decision problem
which identifies nine kinds of relationship between the followers. For each of the
nine relationships, corresponding DERD and BLMF programming decision models
are proposed. In particular, this chapter proposes related theories that focus on the
uncooperative, semi-cooperative and reference-uncooperative BLMF decision
models S1, S5 and S9. To solve these BLMF decision models, a set of multi-
follower Kth-Best algorithms and Kuhn-Tucker approaches are presented. Some
examples are adopted to illustrate how the proposed algorithms work. A decision
support system implements the proposed techniques and will be discussed in
Chap. 11.

Table 4.4 Procedures of
reference-uncooperative
BLMF Kuhn-Tucker
approach

Case u v x y z F

1 (0, 1, 0) (0, 1, 0) 2 1 1 3

2 (0, 1, 0) (1, 0, 0) Infeasible
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Chapter 5
Bi-level Multi-leader Decision Making

In real-world applications, a bi-level decision problem may involve multiple
decision entities on the upper level, that is, the bi-level decision problem has
multiple leaders. The leaders may have their individual decision variables, objective
functions and/or constraint conditions. This kind of bi-level decision problem is
called a bi-level multi-leader (BLML) decision problem.

In this chapter, we first give a case-based example in Sect. 5.1 to illustrate what a
BLML decision problem is. We then introduce a framework for the BLML decision
problem in Sect. 5.2. Section 5.3 presents nine BLML decision models, ML-S1,
ML-S2, …, ML-S9, to describe different situations of a BLML decision process.
Section 5.4 proposes related concepts and definitions of a typical BLML model, the
reference-uncooperative BLML decision model ML-S9. A generalized Nash equi-
librium solution concept for a BLML decision problem is developed in Sect. 5.5.
Based on the solution concept, a bi-level multi-leader particle swarm optimization
(BLML-PSO) algorithm is given in Sect. 5.6. A numerical example is ultimately
adopted to illustrate the BLML decision model and algorithm in Sect. 5.7.

5.1 Problem Identification

In a bi-level decision problem, the leader at the upper level might consist of
multiple decision entities.

Example 5.1 There are several suppliers (also called leaders) in a supply chain
market, but one consumer (also called follower). These suppliers have their indi-
vidual variables, objective functions and/or constraint conditions. They decide on
factors such as pricing, contracting, scheduling, inventory, and transportation
strategies within space constraints, stack ability constraints, load and unloading
rules, warehouse efficiency, load stability, and other constraint limitations, and their
objective is to maximize individual profit. The consumer makes a decision which
maximizes its own objective of ‘paying less, but achieving higher quality com-
modity and service’.
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This is a BLML decision problem. The suppliers (leaders) and the consumer
(follower) make sequential and independent decisions, but in making those deci-
sions, they will be affected by the choices of the other parties involved.

When a bi-level decision problem involves multiple leaders and multiple fol-
lowers, it becomes a bi-level multi-leader and multi-follower (BLMLMF) decision
problem. In mathematical programming, it is described as an equilibrium problem
with equilibrium constraints (EPEC). Related research can be found in Sherali
(1984), Pang and Fukushima (2005), Hu and Ralph (2007), De et al. (2009) and
will be not discussed in this book.

5.2 Framework for Bi-level Multi-leader Decision Making

The various relationships between leaders can result in different processes for
deriving an optimal solution for the leaders’ decision-making. The leaders’ deci-
sions will therefore not only be affected by the reactions of the follower, but also by
the relationships between these leaders. Similar to the bi-level multi-follower
decision, we can consider four main kinds of relationship between the leaders in a
BLMF decision problem:

1. The uncooperative situation: there is no sharing of decision variables between
the leaders.

2. The cooperative situation: the leaders share their decision variables, objectives
and constraints, similar to group decision-making at the upper level.

3. The semi-cooperative situation: the leaders share the decision variables but may
have individual objective functions and constraints. There are three sub-cases
within this situation, determined by the relationships between the objective
functions and constraints.

4. The reference-uncooperative situation: the leaders have individual decision
variables but take other leaders’ variables as references when making their own
decisions. Four sub-cases are included in this case that involve individual
objectives irrespective of constraints and common objective functions irre-
spective of constraints.

Based on the four basic cases and their sub-cases of relationships between
followers, a framework for BLML decision problems is established to describe
these nine situations in Table 5.1.

Each situation shown in the framework requires a specific BLML decision
model for description and a specific approach for deriving an optimal solution for
the decision model.
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5.3 Linear Bi-level Multi-leader Decision Models

This section will describe all nine BLML decision models identified in the
framework shown in Table 5.1. We can use the BLMF concepts (Neighborhood
entities, Cooperative entities, Semi-cooperative entities, Uncooperative entities, and
Reference-uncooperative entities) described in Sect. 4.3 and the DERD approach
(see Fig. 4.1) to describe the leader relationships in a BLML decision problem.

Let L� 2 be the number of leaders, xi, i ¼ 1; . . .; L; be the ith leader decision
variable, and all the leaders’ decision variables are abbreviated by x ¼ x1; . . .; xLð Þ.
Otherwise, if the variables are shared, the leader decision variables are identical to
each other and can be denoted by x. We use y to denote the follower’s decision
variable. We will list the nine BLML decision models in programming form and
also in DERD, as follows:

1. ML-S1 Model for linear BLML decision problems
For xi 2 Xi � Rmi ; y 2 Y � Rn;Fi : Rmi � Rn ! R; f : Rm � Rn ! R; i ¼ 1; . . .; L; a
linear BLML decision problem in which L leaders are involved and no decision
variables, objective functions or constraints are shared between them is called an
uncooperative BLML decision model. Since the leaders’ decision involves a Nash
Equilibrium, this model solved by the ith ði ¼ 1; . . .; LÞ leader gives rise to the
following problem:

min
xi2Xi

Fi xi; yð Þ ¼ cixi þ diy

s:t:Aixi þ Biy� bi;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

where ci 2 Rmi ; di; e 2 Rn;Ai 2 Rpi�mi ;Bi 2 Rpi�n; bi 2 Rpi ; c 2 Rm;A 2 Rq�m;B 2
Rq�n; b 2 Rq:

Table 5.1 A framework for BLML (one follower) decision-making

Relationships
between leaders

Relationship factor Multi-leader
Situation
(ML-Si)

Decision variables Objectives Constraints

Uncooperative Individual Individual Individual ML-S1

Cooperative Sharing Sharing Sharing ML-S2

Semi-
cooperative

Sharing Sharing Individual ML-S3

Individual Sharing ML-S4

Individual ML-S5

Reference-
uncooperative

Individual, but take other
leaders’ variables as a
reference

Sharing Sharing ML-S6

Individual ML-S7

Individual Sharing ML-S8

Individual ML-S9
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The uncooperative BLML decision model ML-S1 is described by DERD in
Fig. 5.1, where A1, A2, …, AL are leaders and B is the follower.

2. ML-S2 Model for linear BLML decision problems
For x 2 X � Rm; y 2 Y � Rn;F : Rm � Rn ! R; f : Rm � Rn ! R, a linear BLML
decision problem in which L leaders are involved and the decision variables,
objective functions and constraints are shared between them is called a cooperative
BLML decision model and is defined as follows.

min
x2X

F x; yð Þ ¼ axþ dy

s:t:Cxþ Dy� h;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

where ca; c 2 Rm; d; e 2 Rn;C 2 Rp�m;D 2 Rp�n; h 2 Rp;A 2 Rq�m;B 2 Rq�n; b 2 Rq.
In fact, the cooperative BLML decision model reduces to a general (one leader

and one follower) bi-level programming problem.
The cooperative BLML decision model ML-S2 is described by DERD in

Fig. 5.2.

A1 ,A2,…,AL  

B

Fig. 5.2 The DERD of
decision model ML-S2

A1  AL 

B

…
Fig. 5.1 The DERD of
decision model ML-S1
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3. ML-S3 Model for linear BLML decision problems
For x 2 X � Rm; y 2 Y � Rn;F : Rm � Rn ! R; f : Rm � Rn ! R, a linear BLML
decision problem in which L leaders are involved and there are shared decision
variables and objective functions but separate constraints between them is defined
as follows (this is called a semi-cooperative BLML decision model).

min
x2X

F x; yð Þ ¼ axþ dy

s:t: Aixþ Biy� bi;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

where a; c 2 Rm; d; e 2 Rn;Ai 2 Rpi�m;Bi 2 Rpi�n; bi 2 Rpi ;A 2 Rq�m; B 2 Rq�n; b 2 Rq.
The semi-cooperative BLML decision model ML-S3 is described by DERD in

Fig. 5.3.

4. ML-S4 Model for linear BLML decision problems
For x 2 X � Rm; y 2 Y � Rn;Fi : Rm � Rn ! R; f : Rm � Rn ! R; i ¼ 1; . . .; L, a
linear BLML decision problem in which L leaders are involved and there are shared
decision variables and constraints between them but separate objective functions is
defined as follows (this is also called a semi-cooperative BLML decision model).

min
x2X

F x; yð Þ ¼ ða1xþ d1y; . . .; aLxþ dLyÞ
s:t: Cxþ Dy� h;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

where ai; c 2 Rm; di; e 2 Rn;C 2 Rp�m;D 2 Rp�n; h 2 Rp;A 2 Rq�m;B 2 Rq�n; b 2 Rq.
TheML-S4 model is, in fact, a bi-level programming problem in which the upper

level is a multi-objective optimization problem. It can be described by DERD in the
same way as the ML-S3 model in Fig. 5.3.

A1 AL

B

…Fig. 5.3 The DERD of
decision model ML-S3
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5. ML-S5 Model for linear BLML decision problems
For x 2 X � Rm; y 2 Y � Rn; Fi : Rm � Rn ! R; f : Rm � Rn ! R; i ¼ 1; . . .; L;
a linear BLML decision problem in which L leaders are involved and there are
shared decision variables but separate objective functions and constraints among
them is defined as follows (this is also called a semi-cooperative BLMF decision
model).

min
x2X

F x; yð Þ ¼ ða1xþ d1y; . . .; aLxþ dLyÞ
s:t: Aixþ Biy� bi;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

where ai; c 2 Rm; di; e 2 Rn;Ai 2 Rpi�m;Bi 2 Rpi�n; bi 2 Rpi ;A 2 Rq�m;B 2 Rq�n;
b 2 Rq.

The upper level of the semi-cooperative BLML decision model ML-S5 is also a
multi-objective programming; the difference between ML-S5 and ML-S4 models is
that ML-S5 has L individual constraints while ML-S4 does not. The ML-S5 model
can be described by DERD in the same way as ML-S3 in Fig. 5.3.

6. ML-S6 Model for linear BLML decision problems
For xi 2 Xi � Rmi ; y 2 Y � Rn; F : Rm � Rn ! R; f : Rm � Rn ! R; i ¼ 1; . . .; L,
consider a linear BLML decision problem in which L leaders are involved and
individual decision variables are present in shared objective functions and con-
straints among them, but all leaders take others’ decision variables as references
(this is called a reference-uncooperative BLML decision model). In this case, the
model solved by the ith leader gives rise to the following problem where the ith
leader has to consider other leaders’ variables and shares the objective function
Fðx; yÞ and constraints gðx; yÞ, but only controls its own variable xi:

min
xi2Xi

F x; yð Þ ¼ axþ dy

s: t: g x; yð Þ ¼ Cxþ Dy� h� 0;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

where a; c 2 Rm; d; e 2 Rn;C 2 Rp�m;D 2 Rp�n; h 2 Rp;A 2 Rq�m;B 2 Rq�n; b 2 Rq.
The reference-uncooperative BLML decision model ML-S6 is described by

DERD in Fig. 5.4.
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7. ML-S7 Model for linear BLML decision problems
For xi 2 Xi � Rmi ; y 2 Y � Rn;F : Rm � Rn ! R; f : Rm � Rn ! R; i ¼ 1; . . .; L,
consider a linear BLML decision problem in which L leaders are involved and
individual decision variables are present in shared objective functions and separate
constraints, but the leaders take other leaders’ decision variables as references (this
is also called a reference-uncooperative BLML decision model). In this case, the
model solved by the ith leader gives rise to the following problem where the ith
leader has to consider other leaders’ variables to optimize the shared objective
function Fðx; yÞ but it only controls its own variable xi and subjects only to its
constraints giðx; yÞ.

min
xi2Xi

F x; yð Þ ¼ axþ dy

s:t: gi x; yð Þ ¼ Aixþ Biy� bi � 0;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

where a; c 2 Rm; d; e 2 Rn;Ai 2 Rpi�m;Bi 2 Rpi�n; bi 2 Rpi ;A 2 Rq�m;B 2 Rq�n; b 2 Rq .
The reference-uncooperative BLML decision model ML-S7 can be described by

DERD in the same way as the ML-S6 model in Fig. 5.4.

8. ML-S8 Model for BLML decision problems
For xi 2 Xi � Rmi ; y 2 Y � Rn;Fi : Rm � Rn ! R; f : Rm � Rn ! R; i ¼ 1; . . .; L,
we consider a linear BLML decision problem in which L leaders are involved and
individual decision variables exist in separate objective functions and shared con-
straints between them, but each leader takes others’ decision variables as references.
This is also called a reference-uncooperative BLML decision model. In this case,
the model solved by the ith leader gives rise to the following problem where the ith
leader has to consider other leaders’ variables, but shares the constraints gðx; yÞ with
other leaders, and independently optimizes its own objective function Fi x; yð Þ:

A1 AL

B

…
Fig. 5.4 The DERD of
decision model ML-S6
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min
xi2Xi

Fi x; yð Þ ¼ aixþ diy

s:t: g x; yð Þ ¼ Cxþ Dy� h� 0;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

where ai; c 2 Rm; di; e 2 Rn;C 2 Rp�m;D 2 Rp�n; h 2 Rp;A 2 Rq�m;B 2 Rq�n; b 2 Rq:
The reference-uncooperative BLML decision model ML-S8 is described by

DERD in the same way as the ML-S6 model in Fig. 5.4.

9. ML-S9 Model for linear BLML decision problems
For xi 2 Xi � Rmi ; y 2 Y � Rn;Fi : Rm � Rn ! R; f : Rm � Rn ! R; i ¼ 1; . . .; L,
consider a linear BLML decision problem in which L leaders are involved and
individual decision variables exist in separate objective functions and constraints
between them, but the leaders take other leaders’ decision variables as references
(this is also called a reference-uncooperative BLML decision model).In this case,
this model solved by the ith leader gives rise to the following problem where the ith
leader has to consider other leaders’ variables x but has its own objective function
Fiðx; yÞ and constraints giðx; yÞ.

min
xi2Xi

Fi x; yð Þ ¼ aixþ diy

s:t: gi x; yð Þ ¼ Aixþ Biy� bi � 0;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

where ai; c 2 Rm; di; e 2 Rn;Ai 2 Rpi�m;Bi 2 Rpi�n; bi 2 Rpi ;A 2 Rq�m;B 2 Rq�n;
b 2 Rq.

The reference-uncooperative BLML decision model ML-S9 is described by
DERD in the same way as ML-S6 model in Fig. 5.4.

5.4 Concepts and Definitions

In this section, we only describe the definitions for the reference-uncooperative
BLML decision problem, that is theML-S9 model, since it is the most general of the
nine models (ML-S1 to ML-S9) defined in Sect. 5.3. Interested readers can figure
similar definitions for other BLML decision problems.
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We reformulate the ML-S9 model into the following problem:

min
xi2Xi

Fi x1; . . .; xL; yð Þ
s:t: gi x1; . . .; xL; yð Þ� 0;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

ð5:1Þ

For problem (5.1), the multiple leaders and the follower have individual control
variables, objective functions and constraints. Below, we provide some basic terms
and symbols:

(a) Constraint region of problem (5.1):

S ¼ x1; . . .; xL; yð Þjxi 2 Xi; gi x; yð Þ� 0;Axþ By� b; y 2 Y ; i ¼ 1; . . .; Lf g:

(b) Feasible set for the follower for each x:

SðxÞ ¼ yjAxþ By� b; y 2 Yf g:

(c) Projection of S onto the ith leader’s decision space:

S Xð Þ ¼ xij9y 2 Y ; x1; . . .; xL; yð Þ 2 Sf g:

(d) The follower’s rational reaction set:

P xð Þ ¼ fy 2 Y jy 2 argmin½f x; ŷð Þ : ŷ 2 SðxÞ�g

where argmin f zð Þ : z 2 SðxÞ½ � ¼ fz� 2 SðxÞjf z�ð Þ� f zð Þ; z 2 SðxÞg.
(e) The ith leader’s feasible region:

Qðx�iÞ ¼ xi; yð Þjxi 2 Xi; gi x; yð Þ� 0; y 2 P xð Þ;Axþ By� bf g

where x�i ¼ x1; . . .; xi�1; xiþ1; . . .; xLð Þ.
(f) Inducible region or feasible region:

IR ¼ x1; 	 	 	 ; xL; yð Þ : x1; 	 	 	 ; xL; yð Þ 2 S; xi; yð Þ 2 Q x�ið Þ; i ¼ 1; 	 	 	 ; Lf g

In terms of the above notions, for i ¼ 1; . . .; L; the BLML decision problem (5.1)
can be written as:

min
xi;yð Þ2Qðx�iÞ

Fi x1; . . .; xL; yð Þ: ð5:2Þ
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5.5 Generalized Nash Equilibrium Solution

In a BLML decision problem, the leaders have their individual variables, objective
functions and constraints. However, each leader’s decision will inevitably be made
by guessing other leaders’ strategies. This means that the upper level problem is a
kind of game problem, that is, a BLML game problem. Given the objective of
searching for equilibrium solutions, this BLML game problem is different to
common single objective, multiple objectives or bi-level decision problems.
A BLML game problem is also different from a conventionally generalized Nash
equilibrium problem, which has no hierarchical structure. Here, it can be referred to
as an extended generalized Nash equilibrium problem. Before addressing a BLML
game problem, we first need to provide the definition of the solution, and then
develop an algorithm by this definition.

Below, we give the solution concept for the BLML decision problem (5.1).

Definition 5.1 A tuple x�1; . . .; x
�
L; y

�� �
is called a generalized Nash equilibrium

optimal solution to the BLML game problem (5.1), if it satisfies the following
conditions: 8 xi; yð Þ 2 Q x��i

� �
; i ¼ 1; . . .; L,

Fi x
�
1; . . .; x

�
L; y

�� ��Fi x
�
1; . . .; x

�
i�1; xi; x

�
iþ1; . . .; x

�
L; y

�� �
;

where x� ¼ x�1; . . .; x
�
L; y

�� �
; x��i ¼ x�1; . . .; x

�
i�1; xi; x

�
iþ1; . . .; x

�
L; y

�� �
:

To obtain a Nash equilibrium optimal solution for the BLML game problem
(5.1), we define the optimal reaction from a leader as follows:

If the ith leader knows the other leaders’ strategies x�i, then let the optimal
reaction of the ith leader be represented as follows xi; yð Þ 2 ciðx�iÞ which solves the
ith leader’s problem:

min
xi2Xi

Fi x1; . . .; xL; yð Þ
s:t: gi x1; . . .; xL; yð Þ� 0;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

Our aim is to make a choice from each leader that is as close to the rational
reaction as possible. A feasible solution is supposed to be a Nash equilibrium
optimal solution when we achieve the situation where the choices of all the leaders
are close enough to their corresponding rational reactions. Based on this strategy,
we re-define a BLML decision problem as a BLML game problem:
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min
x1;...;xL;y

H x1; . . .; xL; yð Þ ¼
XL
i¼1

xi; yð Þ � ciðx�iÞk k

s:t: xi 2 Xi

gi x1; . . .; xL; yð Þ� 0; i ¼ 1; . . .; L;

min
y2Y

f x; yð Þ ¼ cxþ ey

s:t: Axþ By� b;

ð5:3Þ

We obtain the following result, which shows the relationship between problems
(5.1) and (5.3).

Theorem 5.1 Suppose that x�1; . . .; x
�
L; y

�� �
is an optimal solution to problem (5.3);

If H x�1; . . .; x
�
L; y

�� � ¼ 0, then x�1; . . .; x
�
L; y

�� �
is also an optimal solution to problem

(5.1).

Proof Since x�1; . . .; x
�
L; y

�� �
is an optimal solution to problem (5.3), we have

x�1; . . .; x
�
L; y

�� � 2 IR. It follows from H x�1; . . .; x
�
L; y

�� � ¼ 0 that

x�i ; y
�� � ¼ ci x

�
�i

� �
for all i 2 1; . . .; Lf g;

which implies that x�1; . . .; x
�
L; y

�� �
solves problem (5.1). This completes the

proof. h

The above theorem provides us with a new way to obtain a Nash equilibrium
optimal solution to problem (5.1).

5.6 BLML Particle Swarm Optimization Algorithm

In this section, based on the definitions and the solution concept for a BLML
decision problem (5.1), we use the strategy adopted in the particle swarm opti-
mization (PSO) method (Biswal et al. 2008) to develop a BLML particle swarm
optimization (BLML-PSO) algorithm to reach a Nash equilibrium solution for the
BLML decision problem. The algorithm can be used to solve both linear and non-
linear BLML decision models.

Suppose that the search space for the PSO is n-dimensional, and the ith particle
of a swarm can be represented by a vector xi ¼ xi1; . . .; xinð Þ. The velocity (position
change) of this particle can be represented by another n-dimensional vector
vi ¼ vi1; . . .; vinð Þ. The best previously visited position of the ith particle is denoted
as pi ¼ pi1; . . .; pinð Þ. By defining g as the index of the best particle in the swarm
(i.e., the gth particle is the best), and letting the superscripts denote the iteration
number, the swarm is manipulated according to the following two equations (Gao
et al. 2008):
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vkþ1
id ¼ wvkid þ crk1 pid � xkid

� �þ crk2 pkgd � xkid
� �

;

xkþ1
id ¼ xkid þ vkþ1

id ;
ð5:4Þ

where d ¼ 1; . . .; n; i ¼ 1; . . .;N denotes the ith particle, N is the size of the swarm,
w is the “inertia weight”, c is a positive constant, called the “acceleration constant”,
r1; r2 are random numbers, distributed uniformly in [0, 1], and k determines the
iteration number.

The BLML-PSO algorithm is outlined in Fig. 5.5 and the notations used in the
subsequent paragraphs are detailed in Table 5.2.

Samplingtheleader-

controlled variables

Stretching current 

solution

Updating the best 

particle pairs

Generating the follower’s responses by 

PSO and Stretching technique

Outputting the final 

solution

A local solution?

The local solution

X-particles

X-particles Y-particles

Y

N

Fig. 5.5 The outline of the BLML-PSO algorithm

Table 5.2 Explanation of notation

Variable Description

NL The number of candidate solutions (particles) for leaders

Nf The number of candidate solutions (particles) for the follower

xij The jth candidate solutions for the controlling variables from the ith leader

pxij The best previously visited position of xij

x�ij current best position for particle xij

vxij The velocity of xij

kl The current iteration number for the upper level problem

yi The ith candidate solution for the controlling variables from the follower

pyi the best previously visited position of yi

y� The current best position for particle y

vyi The velocity of yi

kf The current iteration number for the lower level problem

MaxKl The predefined maximum iteration number for kl

MaxKf The predefined maximum iteration number for kf

wl;wf The inertia weights for a leader and its follower respectively (coefficient for PSO)

cl; cf The acceleration constants for a leader and its follower respectively (coefficient for PSO)

r1l; r2l; r1f ; r2f Random numbers uniformly distributed in [0, 1] for a leader and its follower respectively
(coefficient for PSO)
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In the BLML-PSO algorithm, we first initiate a swarm comprised of the leader-
controlled variables (X-particles) for each leader. For every X-particle from a
leader, we construct the values of the X-particles from other leaders as constants
and generate the optimal response from the follower by solving the follower’s
problem to obtain the leader’s optimal strategy. To do this, we also need to generate
a population (Y-particles) for the follower, each of which has a velocity. We then
select the previously visited best positions for each Y-particle and the best position
among the Y-particles. Having the current best positions, we adjust the velocities
which are redirected towards these best positions. Every Y-particle will then be
moved by its corresponding velocity in the manner illustrated in (5.4). Having
obtained the optimal objective function value from the follower, the leader’s
objective function values can be calculated. Again with the help of the PSO opti-
mization strategy, we obtain the leader’s optimal strategy and find the difference
between the optimal strategy and the samples (X-particles) for this leader. Once the
sum of the differences between the X-particles and optimal strategies for all leaders
is smaller than a pre-defined value, a Nash equilibrium optimal solution for the
whole BLML decision problem is achieved.

The detailed BLML-PSO algorithm has two parts:
Algorithm 5.1, which generates the response from a follower, and
Algorithm 5.2, which generates optimal strategies for all leaders.
These two algorithms are specified as follows.
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This algorithm will be used in the next section to solve a numerical BLML
decision problem.

5.7 A Numerical Example

We employ a numerical example to illustrate a BLML decision problem and use the
BLML-PSO algorithm to reach solutions.

Example 5.2 Suppose that a BLML decision problem has two leaders and one
follower. Each leader has one objective and one constraint, and the follower has one
objective and one constraint. The first leader controls the decision variable x1,
trying to minimize the objective F1, and the second leader controls the decision
variable x2, trying to minimize the objective F2. The follower controls the decision
variable y to minimize the objective function f . This BLML decision problem is
specified as follows:
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min
x1

F1 x1; x2; yð Þ ¼ 3x1 þ 4x2 þ 5y

s:t: 0� x1 � 3;

min
x2

F2 x1; x2; yð Þ ¼ x1 	 x2 þ y

s:t: 0� x2 � 5;

min
y

f x1; x2; yð Þ ¼ x1 	 yþ x2

s:t: 0� y� 10:

Using the solution concept of the generalized Nash equilibrium, we have
ðx1; yÞ ¼ c1ðx�1Þ which solves the sub-problem:

min
x1

F1 x1; x2; yð Þ ¼ 3x1 þ 4x2 þ 5y

s:t: 0� x1 � 3;

min
y

f x1; x2; yð Þ ¼ x1 	 yþ x2

s:t: 0� y� 10:

and ðx2; yÞ ¼ c2ðx�2Þ which solves the sub-problem:

min
x2

F2 x1; x2; yð Þ ¼ x1 	 x2 þ y

s:t: 0� x2 � 5;

min
y

f x1; x2; yð Þ ¼ x1 	 yþ x2

s:t: 0� y� 10:

From the above problems, we have the following BLML game problem:

min
x1;x2;y

H x1; x2; yð Þ ¼
X2
i¼1

xi; yð Þ � ciðx�iÞk k

s:t: 0� x1 � 3;

0� x2 � 5;

min
y

f x1; x2; yð Þ ¼ x1 	 yþ x2

s:t: 0� y� 10:

Using the BLML-PSO algorithm developed in this chapter, we reach a Nash
equilibrium optimal solution for this BLML game problem as x�1; x

�
2; y

� � ¼
ð0; 0; 5:5432Þ.

Under this solution, the objective values for the leaders and the follower are:
F1 ¼ 0;F2 ¼ 5:5432; f ¼ 0.
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This solution means that when the first leader and the second leader choose their
decision variables as 0, the follower will select a decision variable value of 5.5432.
In this case, a Nash equilibrium status is achieved, and any movement by any leader
will destroy this equilibrium.

5.8 Summary

This chapter presents bi-level decision problems with multiple leaders. After giving
a mathematical definition of a BLML decision problem based on the Nash equi-
librium concept, a BLML-PSO algorithm is developed. This algorithm is also used
to solve a strategic bidding problem in electricity markets, which will be discussed
in Chap. 12.
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Chapter 6
Tri-level Multi-follower Decision Making

In a tri-level hierarchical decision problem, each decision entity at one level has its
objective, constraints and decision variables affected in part by the decision entities
at the other two levels. The choice of values for its variables may allow it to
influence the decisions made at other levels, and thereby improve its own objective.
We called this a tri-level decision problem. When multiple decision entities are
involved at the middle and bottom levels, the top-level entity’s decision will be
affected not only by these followers’ individual reactions but also by the relation-
ships among the followers. We call this problem a tri-level multi-follower (TLMF)
decision.

In this chapter, we first identify tri-level decision problems from real world cases
in Sect. 6.1. We then introduce basic tri-level decision-making models in Sect. 6.2.
Section 6.3 presents a framework for the TLMF decision through analyzing various
kinds of relationships between decision entities in a tri-level decision problem. The
TLMF decision framework contains 64 standard TLMF decision-making situations.
To model these TLMF decision situations, we extend the bi-level decision entity-
relationship diagram (DERD) approach introduced in Chap. 4 to describe tri-level
decision problems. Furthermore, we establish a set of standard and hybrid TLMF
decision models using a mathematical programming approach in Sect. 6.4. A set of
case studies illustrates the development of TLMF decision models by DERD, as well
as programming approaches, in Sect. 6.5. Section 6.6 gives solution concepts for a
linear tri-level decision problem. It also presents a set of tri-level programming
algorithms including a tri-level Kth-Best algorithm. Section 6.7 focuses on solution
methods for the proposed 64 kinds of TLMF decision model. To discuss this in
detail, we take the TLMF decision model S12 in its linear version as a representative
to illustrate solution concepts and theoretical properties, and to describe a TLMF
Kth-Best algorithm for TLMF decision-making. Finally, Sect. 6.8 summarizes this
chapter.

© Springer-Verlag Berlin Heidelberg 2015
G. Zhang et al., Multi-Level Decision Making,
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6.1 Problem Identification

Some decision problems require making a compromise between the objectives of
several interacting decision entities (DE) allocated in a three-level hierarchy. The
execution of decisions is sequential, from top to middle and then to bottom levels.
Each decision entity independently optimizes (maximizes or minimizes) its own
objective but is affected by the actions of other decision entities at the other two
levels. Such a hierarchical decision process appears naturally in many organizations
and business systems.

We use a university example here to explain the nature of the problem.

Example 6.1 A university is organized with three faculties (Information, Business,
Science) and each faculty has 2–4 departments. The university aims to improve its
research quality through creating new research development strategies in 2013. The
strategies made at university level directly affect the research strategy-making in its
faculties. This process continues within a hierarchy of decision entities, including
its departments and research centers. In the meantime, the actions at the faculty
level may affect the research development strategies sought by the university and
the actions at department level may affect those of its faculty. Each related decision
entity in this university wishes to optimize its individual research development
objective in view of the partial control exercised at other levels. The university’s
decision makers can control this effect by exercising preemptive-partial control over
the university through budget modifications or regulations, but subject to possible
reactions from its faculties and also departments. This kind of decision problem is
called a multi-level decision problem or multi-level optimization problem.

The complexity of decision problems increases significantly when the number of
levels (n) is greater than two (Blair 1992). The tri-level decision is the most typical
form of multi-level decision (n > 2). In a tri-level decision, the decision entity at the
top level is called the leader, while entities at the middle and bottom levels are the
followers. However, a decision entity at the middle level is also the leader for
associate entities at the bottom level. As a tri-level decision reflects the main
features of multi-level decision problems, the models and methods developed for
tri-level decisions can be easily extended to other multi-level decision problems.

The tri-level decision problem has been studied by researchers such as White
(1997), Bard and Falk (1982a), Lai (1996) and Shih et al. (1996). The existing
research results are mostly limited to the one-level one-entity situation. In real world
tri-level decision applications, decisions are often made in situations where several
decision entities are at the middle and bottom levels and interact with one another in
some way. Consider Example 6.1. As these three faculties may have different
objectives and different reactions to each possible decision made by the university,
they should be treated as multiple entities at the middle level. These faculties may
also have various relationships between each other, such as sharing their decision
variables or not, and sharing their constraints or not, which may create different
decision situations. As a result, the university’s decision will be affected not only by
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its faculties’ individual optimal reactions but also by the relationships between
faculties and related departments. Some research, such as Shih et al. (1996), con-
sidered tri-level decision problems with multiple followers. However, very few
studies classify the possible relationships among these followers and discuss dif-
ferent models to handle different situations.

Another issue related to tri-level decision-making is the relationship between the
top-level decision entity and the bottom-level entities. In general, in a tri-level
decision problem, the top-level decision entity’s solution will be directly affected by
the middle-level decision entities but indirectly affected by the bottom-level deci-
sion entities. However, in some cases, the solution of the top-level decision entity
can be directly affected by the bottom-level entities’ reactions as well. Considering
Example 6.1, this university leader may also take a department’s feedback in
strategy making and in such a situation its decisions will be directly affected by its
departments’ reactions.

A more complex situation occurs when different entities at the same level have
different decision situations. Considering Example 6.1, some faculties’ departments
make decisions (reactions) cooperatively while others do not. For example, all the
departments in the Business Faculty react cooperatively to the decisions of the
faculty, whereas the departments in the Information Faculty react uncooperatively
to decisions made by the Faculty.

In summary, tri-level decisions involve a variety of situations caused by various
possible relationships among multiple decision entities at two lower levels. The
following sections will first provide basic tri-level decision models and will then
model TLMF decision problems in various situations.

6.2 Basic Tri-level Decision Models

Basic tri-level decision focuses on a one-level one-entity situation and therefore has
only three decision entities: DE1, DE2, and DE3. It can be described as follows
(Bard and Falk 1982a):

min
x2X

f1 x; y; zð Þ DE1ð Þ
s.t. g1 x; y; zð Þ� 0;

where y; z solve:

min
y2Y

f2 x; y; zð Þ DE2ð Þ
s.t. g2 x; y; zð Þ� 0;
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where z solves:

min
z2Z

f3 x; y; zð ÞðDE3Þ
s.t. g3 x; y; zð Þ� 0;

ð6:1Þ

where x 2 X � Rn, y 2 Y � Rm, z 2 Z � Rp, fi : X � Y � Z ! R, i ¼ 1; 2; 3,
variables x, y, z are called the top-level, middle-level and bottom-level variables,
and f1ðx; y; zÞ; f2ðx; y; zÞ, f3ðx; y; zÞ are the top-level, middle-level and bottom-level
objective functions respectively.

From the tri-level decision model (6.1), we can see that this decision problem has
three optimization sub-problems (objective functions). Each level has individual
control variables within its optimization sub-problem, but also considers other levels’
variables in its optimization sub-problem.This decision process is sequential: decision
entity DE1, at the top-level, selects an action within its specified constraint set, then
DE2, at the middle-level, responds within its constraint set, and lastly DE3 responds.

To solve the tri-level decision problem, Bard and Falk (1982a) first developed a
cutting plane algorithm and White (1997) developed a penalty function approach.
In the meantime, Lai (1996) and Shih et al. (1996) extended the tri-level decision
research in two aspects. One is that they developed a fuzzy approach to solve multi-
level programming problems. The other is that a TLMF decision model is proposed
in which multiple followers are at both middle and bottom levels. Below is a TLMF
model. It assumes three sub-problems as centre f1 → division f2i → subdivision, f3t,
t ¼ 1; 2; . . .; ti, i ¼ 1; 2; . . .; s (Shih et al. 1996):

min
x1

f1 xð Þ ¼
X
j

c1jxj ðtop levelÞ

where x2i; x3i1; . . .; x3iti solve

min
x2i

f2i xð Þ ¼
X
j

c2ijxj ðmiddle levelÞ

where x3i1; . . .; x3iti solve

min
x3i1

f3i1 xð Þ ¼
X
j

c3i1jxj ðbottom levelÞ

..

.

min
x3iti

f3iti xð Þ ¼
X
j

c3iti jxj

s.t. A1x1 þ A2ix2i þ A3i1x3i1 þ � � � þ A3iti x3iti � b;

xj� 0; j ¼ 1; 2; . . .; n;

ð6:2Þ
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In this model, there is one decision entity at the top level, s decision entities at
the middle level and t ¼Pi ti decision entities at the bottom level. This is a general
TLMF decision model with uncooperative relationships which adopts the decisions
of other decision entities as references.

In the following section, we will provide more discussion on the TLMF decision
models and solution methods.

6.3 Tri-level Multi-follower Decision Framework

This section first identifies seven issues which are related to the TLMF decision
classification, and then presents a TLMF decision framework and a DERD mod-
eling approach for TLMF decision situations.

6.3.1 TLMF Decision Concepts

When a tri-level decision problem has multiple followers at the middle level and/or
the bottom level, we call it a TLMF decision problem. The model given in (6.1)
describes a basic situation of tri-level decision, that is, each level has one decision
entity only. Problem (6.2) presents the model for a general TLMF decision prob-
lem. In order to identify and classify TLMF decision situations, we first introduce
the following concepts:

1. Neighborhood entity: two decision entities are at the same level, led by the same
decision entity. All neighborhood entities under the same leader are called a
neighborhood entity set (NES).

2. Cooperative entity: two neighborhood entities share their decision variables and
have the same objective and constraint functions. In such a case, we consider the
two entities as one.

3. Semi-cooperative entity: two neighborhood entities share their decision variables
but have distinct objectives and constraint functions.

4. Uncooperative entity: two neighborhood entities have distinct decision vari-
ables, objectives, and constraints.

5. Reference-uncooperative entity: two neighborhood entities have distinct deci-
sion variables, objectives and constraints but take account of others’ variables as
references; that is, they include others’ variables in their objective/constraint
functions, but not as control variables.

6. Direct and secondary follower: all decision entities at the middle level are direct
followers of the top-level decision entity (similarly, each bottom-level entity is a
direct follower of an entity at the middle level); and all entities at the bottom
level are secondary followers of the top-level decision entity.
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7. Direct leader and secondary leader: a decision entity at the top level is the
direct leader of all decision entities at the middle level (similarly, each bottom-
level entity has a direct leader at the middle level) and is the secondary leader of
all decision entities at the bottom level.

6.3.2 TLMF Decision Problem Classification

In a TLMF decision problem, a middle-level decision entity has two roles in
decision-making process, that is, it reacts to each possible strategy made by the top-
level entity and is influenced by the decisions of the followers at the bottom level.
Different relationships between the decision entities at the middle level and bottom
level could result in different processes for deriving an optimal solution for the
decision entity at the top level. The top level’s decision will also sometimes be
affected by the reactions of its secondary followers as well as those of its direct
followers. We therefore list the following relationships between decision entities for
TLMF decision problems:

1. Leader-follower relationship: if an entity is a direct follower of another entity
(leader), we say there is a leader-follower relationship or leadership relationship
between the two entities.

2. Secondary leadership relationship: if the top-level decision entity directly
considers the reactions of an entity at the bottom level, that is, includes a control
variable of this bottom-level entity in its objective and/or constraints, we say that
this top-level entity and the bottom-level entity’s NES have a secondary lead-
ership relationship.

3. Uncooperative relationship: if there are uncooperative entities but no reference-
uncooperative entities in a NES, we say there is an uncooperative relationship in
this NES.

4. Reference-uncooperative relationship: if there are reference-uncooperative
entities in a NES and the rest are uncooperative, we say there is a reference-
uncooperative relationship in this NES.

5. Cooperative relationship at the middle level: if all entities in a NES are coop-
erative, we say there is a cooperative relationship in this NES.

6. Semi-cooperative relationship at the middle level: if there are semi-cooperative
entities in a NES and the rest, if any, are cooperative entities, we say there is a
semi-cooperative relationship in this NES.

7. Secondary followership relationship: if a bottom-level decision entity includes
the control variables of the top-level decision entity in its objective and/or
constraints, we call the relationship between this bottom-level entity’s NES and
the top-level entity a secondary followership relationship.
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6.3.3 TLMF Decision Framework

Based on the above seven relationships defined, a TLMF decision framework is
established as shown in Table 6.1. The framework also presents a classification for
TLMF decision problems. Under the eight features (SL, ML-V, ML-O, ML-R, SF,
BL-V, BL-O, and BL-R) given in Table 6.1, “Y” means “yes”, “N” means “no”, and
blank means ‘not applicable’. A total of 64 standard situations of TLMF decision
problems are identified, named S1, S2, …, and S64 (note that some combinations of
these features are not applicable). Each situation is described by using these seven
relationships. We can describe any complex TLMF decision problem by combining
two or more of these standard situations. For example, in a TLMF decision prob-
lem, a set of bottom-level entities are in the S1 situation and another set of bottom-
level entities match the features of S2. We describe this problem of the combination
of S1 and S2 as a hybrid situation.

The abbreviations used in Table 6.1 for the features are explained as follows:

1. SL: secondary leadership relationship;
2. ML-V: middle-level entities have the same variables;
3. ML-O: middle-level entities have the same objectives and constraints;
4. ML-R: middle-level entities include others’ variables as references;
5. SF: secondary followership relationship;
6. BL-V: bottom-level entities have the same variables;
7. BL-O: bottom-level entities have the same objectives and constraints;
8. BL-R: bottom-level entities include others’ variables as references.

6.3.4 TLMF Decision Entity-Relationship Diagrams

We have identified seven decision-entity relationships: a normal leader-follower
relationship and six implicit relationships. These seven relationships are capable of
fully reflecting the features of the TLMF decision problems identified in Table 6.1
and any of their combinations. Based on this, we introduce a TLMF Decision
Entity-Relationship Diagrams (TLMF-DERD) approach and use it in TLMF
modeling. Figure 6.1 presents diagrammatic notations of the TLMF-DERD
approach.

This TLMF-DERD approach is a concept modeling of TLMF decision prob-
lems. In the following sections, we will show how a TLMF decision problem is first
described by the DERD approach and then presented in a tri-level programming
model.
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6.4 Tri-level Multi-follower Decision Models

This section first describes a general TLMF decision model using multi-level
programming. It then presents a set of specific models for some standard TLMF
decision problems including S9, S12, S15, S18, S20, S25 and S32 selected from
Table 6.1. We also give a hybrid TLMF decision model for a decision situation
which is the combination of S63 and S64.

6.4.1 General Model for TLMF Decision

A general TLMF decision model, which covers all the 64 TLMF decision situa-
tions, is given as follows:

min
x2X

f 1ð Þðx; y1; . . .; yn; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ
s.t. g 1ð Þðx; y1; . . .; yn; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ� 0;

Symbol Meaning 

Decision entity 

A 

B 

Leadership relationship: “A” is 
theLeader, “B” is its Follower. 

Secondary leadership relationship: 
“A” is the top-level entity and “C” 
is a bottom-level entity. 

A 

C 

Secondary followership relationship: 
“A” is the top-level entity, and “C” is 
a followership entity. 

A 

C 

“A1” and “A2” have a cooperative 
relationship in a NES. A1, A2 

“A1” and “A2” have a semi-cooperative 
relationship in a NES. A1 A2 

“A1” and “A2” have a reference-
uncooperative relationship in a NES. A1 A2 

“A1” and “A2” have an uncooperative 
relationship in a NES. A1 A2 

Fig. 6.1 Notations for TLMF
decision entity-relationship
diagrams
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where yi; zi1; . . .; zimiði ¼ 1; . . .; nÞ, solve the ith middle-level follower’s and its
bottom-level followers’ problems:

min
yi2Yi

f ð2Þi x; y1; . . .; yi; . . .; yn; zi1; . . .; zimið Þ

s.t. g 2ð Þ
i ðx; y1; . . .; yi; . . .yn; zi1; . . .; zimiÞ� 0;

where zij j ¼ 1; . . .;mið Þ solves the ith middle-level follower’s jth bottom-level
follower’s problem:

min
zij2Zij

f 3ð Þ
ij ðx; yi; zi1; . . .; zij; . . .; zimiÞ

s.t. g 3ð Þ
ij ðx; yi; zi1; . . .; zimiÞ� 0;

i ¼ 1; . . .; n; j ¼ 1; . . .;mi;

ð6:3Þ

where x 2 X � Rl1 , yi 2 Yi � Rl2i , zij 2 Zij � Rl3ij , f 1ð Þ : X �Qn
i¼1 Yi �

Qn
i¼1
Qmi

j¼1
Zij ! R, f 2ð Þ

i : X �Qn
i¼1 Yi �

Qmi
j¼1 Zij ! R, f 3ð Þ

ij : X � Yi �
Qmi

j¼1 Zij, i ¼ 1; . . .; n,
j ¼ 1; . . .;mi:

In this model, there is one top decision entity f 1ð Þ and n middle decision entities

with objectives f 2ð Þ
1 ; . . .; f 2ð Þ

n . For the ith middle decision problem, there are mi sub-

problems f 3ð Þ
i1 ; . . .; f 3ð Þ

imi
to optimize. Based on this model, we can establish models,

also supported by DERD for all the 64 standard TLMF decision situations pre-
sented in Table 6.1.

6.4.2 Typical Standard Models for TLMF Decision

This section will present seven typical TLMF decision models from the 64 models
proposed in Sect. 6.3.3 by using both DERD and tri-level programming approaches.

1. S9 Model

This model presents a TLMF decision problem which has the following features
and is described by DERD in Fig. 6.2:

1. The top level entity takes the control variables of the decision entities at both
middle and bottom levels into consideration in its objectives, that is, there is a
secondary leadership relationship;

2. The middle-level decision entities have the same variables;
3. The middle-level decision entities have individual objective functions and

constraints, that is, they have a semi-cooperative relationship;
4. The bottom-level decision entities include the control variables of the top-level

entity, that is, there is a secondary followership relationship;
5. The bottom-level decision entities have the same variables;
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6. The bottom-level decision entities have the same objective functions and con-
straints, that is, they have a cooperative relationship.

We describe the S9 model by the tri-level programming approach as follows:

min
x2X

f 1ð Þðx; y; z1; . . .; znÞ
s.t. g 1ð Þðx; y; z1; . . .; znÞ� 0;

where y; ziði ¼ 1; . . .; nÞ solve the ith middle-level follower’s problem and its
bottom-level followers’ problems:

min
y2Yi

f 2ð Þ
i ðx; y; ziÞ

s.t. g 2ð Þ
i ðx; y; ziÞ� 0;

where ziði ¼ 1; . . .; nÞ solves the ith middle-level follower’s bottom-level fol-
lower’s problem:

min
zi2Zi

f 3ð Þ
i ðx; y; ziÞ

s.t. g 3ð Þ
i ðx; y; ziÞ� 0;

ð6:4Þ

where x 2 X � Rl1 , y 2 Yi � Rl2 , zi 2 Zi � Rl3i , Y ¼ Y1 \ � � � \ Yn, f 1ð Þ : X � Y�Qn
i¼1 Zi ! R, f 2ð Þ

i : X � Yi � Zi ! R, f 3ð Þ
i : X � Yi � Zi ! R, i ¼ 1; . . .; n:

In this model, there is one top-level decision entity f 1ð Þ and n middle-level

decision entities with objectives f ð2Þ1 ; . . .; f ð2Þn respectively. Since these middle-level
entities have a semi-cooperative relationship, we describe all middle-level followers

as sharing a decision variable y 2 Yi and having individual objective functions f ð2Þi

and the individual constraints gð2Þi � 0. For any middle-level decision problem f 2ð Þ
i ,

there are mi sub-problems f ð3Þi1 ; . . .; f ð3Þimi
at the bottom level. As all bottom-level

neighborhood decision entities attached to the ith middle-level follower share
variables, objective functions and constraints, that is, they are in a cooperative
relationship. We describe this feature as the shared variable zi 2 Zi and

f ð3Þi1 ¼ � � � ¼ f ð3Þimi
¼ f ð3Þi , gð3Þi1 ¼ � � � ¼ gð3Þimi

¼ gð3Þi . To describe the secondary

A 

…B1 Bn

C11…C1m1 … Cn1…Cnmn

Fig. 6.2 The DERD of
TLMF decision situation S9
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leadership relationship, we have z1; . . .; zn in the objective functions and constraints
of the top-level decision entity.

2. S12 Model

This model presents a TLMF decision problem which has the following features
and is described by DERD in Fig. 6.3:

1. There is a secondary leadership relationship;
2. The decision entities at the middle level have the same variables;
3. The middle-level decision entities have a semi-cooperative relationship;
4. There is a secondary followership relationship;
5. The bottom-level decision entities have individual variables;
6. The bottom-level decision entities have an uncooperative relationship.

We describe the S12 model by the tri-level programming approach as follows:

min
x2X

f 1ð Þðx; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ
s.t. g 1ð Þðx; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ� 0;

where y; zi1; . . .; zimiði ¼ 1; . . .; nÞ solve the ith middle-level follower’s problem and
its bottom-level followers’ problems:

min
y2Yi

f 2ð Þ
i ðx; y; zi1; . . .; zimiÞ

s.t. g 2ð Þ
i ðx; y; zi1; . . .; zimiÞ� 0;

where zij j ¼ 1; . . .;mið Þ solves the ith middle-level follower’s jth bottom-level
follower’s problem:

min
zij2Zij

f 3ð Þ
ij ðx; y; zijÞ

s.t. g 3ð Þ
ij ðx; y; zijÞ� 0;

ð6:5Þ

where x 2 X � Rl1 , y 2 Yi � Rl2 , zij 2 Zij � Rl3ij , Y ¼ Y1 \ � � � \ Yn, f 1ð Þ : X � Y�Qn
i¼1
Qmi

j¼1 Zij ! R, f 2ð Þ
i : X � Yi �

Qmi
j¼1 Zij ! R, f 3ð Þ

ij : X � Yi � Zij ! R, i ¼
1; . . .; n, j ¼ 1; . . .;mi:

…C1m1 Cn1 Cnmn

A 

B1 Bn…

… …C11

Fig. 6.3 The DERD of
TLMF decision situation S12
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In this model, for the ith middle-level decision problem, there are mi sub-

problems f 3ð Þ
i1 ; . . .; f 3ð Þ

imi
at the bottom level. As the bottom-level decision entities are

uncooperative, that is, they have the individual decision variables zij 2 Zij, objective

f 3ð Þ
ij and constraint g 3ð Þ

ij for i ¼ 1; . . .; n; j ¼ 1; . . .;mi.

3. S15 Model

This model presents a TLMF decision problem which has the following features
and is described by DERD in Fig. 6.4:

1. There is a secondary leadership relationship;
2. The middle-level decision entities have the same variables;
3. The middle-level decision entities have a semi-cooperative relationship;
4. There is no secondary followership relationship;
5. The bottom-level decision entities have individual variables;
6. The bottom-level decision entities are reference-uncooperative.

We describe the S15 model by the tri-level programming approach as follows:

min
x2X

f 1ð Þðx; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ
s.t. g 1ð Þðx; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ� 0;

where y; zi1; . . .; zimi ði ¼ 1; . . .; nÞ solve the ith middle-level follower’s problem and
its bottom-level followers’ problems:

min
y2Yi

f 2ð Þ
i ðx; y; zi1; . . .; zimiÞ

s.t. g 2ð Þ
i ðx; y; zi1; . . .; zimiÞ� 0;

where zijðj ¼ 1; . . .;miÞ solves the ith middle-level follower’s jth bottom-level
follower’s problem:

min
zij2Zij

f 3ð Þ
ij ðy; zi1; . . .; zimiÞ

s.t. g 3ð Þ
ij ðy; zi1; . . .; zimiÞ� 0;

ð6:6Þ
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Fig. 6.4 The DERD of
TLMF decision situation S15
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where x 2 X � Rl1 , y 2 Yi � Rl2 , zij 2 Zij � Rl3ij , Y ¼ Y1 \ � � � \ Yn, f 1ð Þ : X � Y�Qn
i¼1
Qmi

j¼1 Zij ! R, f 2ð Þ
i : X � Yi �

Qmi
j¼1 Zij ! R, f 3ð Þ

ij : Yi � Zij ! R, i ¼ 1; . . .; n,
j ¼ 1; . . .;mi:

In thismodel, the bottom level has no secondary followership relationship to the top

level entity; there are only y; zij as variables in the objectives f
3ð Þ

ij and constraints g 3ð Þ
ij of

the bottom level. As the bottom-level decision entities attached to the ith middle-level
follower are reference-uncooperative, we have zi1; . . .; zimi in all objective functions

f 3ð Þ
i1 ; . . .; f 3ð Þ

imi
and constraints g 3ð Þ

i1 ; . . .; g 3ð Þ
imi

of the bottom level for i ¼ 1; . . .; n.

4. S18 Model

This model will present a TLMF decision problem which has the following features
and is described by DERD in Fig. 6.5:

1. There is a secondary leadership relationship;
2. The middle-level decision entities have individual variables;
3. The middle-level entities have a reference-uncooperative relationship;
4. There is a secondary followership relationship;
5. The bottom-level decision entities have the same variables;
6. The bottom-level entities have a semi-cooperative relationship.

We describe the S18 model by the tri-level programming approach as follows:

min
x2X

f 1ð Þðx; y1; . . .; yn; z1; . . .; znÞ
s.t. g 1ð Þðx; y1; . . .; yn; z1; . . .; znÞ� 0;

where yi; ziði ¼ 1; . . .; nÞ solve the ith middle-level follower’s problem and its
bottom-level followers’ problems:

min
yi2Yi

f 2ð Þ
i ðx; y1; . . .; yn; ziÞ

s.t. g 2ð Þ
i ðx; y1; . . .; yn; ziÞ� 0;

where zi solves the ith middle-level follower’s jth j ¼ 1; 2; . . .;mið Þ bottom-level
follower’s problem:

C11

…

C1m1 Cn1 Cnmn
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……

BnB1

…

Fig. 6.5 The DERD of
TLMF decision situation S18
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min
zi2Zij

f 3ð Þ
ij ðx; yi; ziÞ

s.t. g 3ð Þ
ij ðx; yi; ziÞ� 0;

ð6:7Þ

where x 2 X � Rl1 , yi 2 Yi � Rl2i , zi 2 Zij � Rl3i , Zi ¼ Zi1 \ � � � \ Zimi , f
1ð Þ : X�Qn

i¼1 Yi �
Qn

i¼1 Zi ! R, f 2ð Þ
i : X � Yi � Zi ! R; f 3ð Þ

ij : X � Yi � Zij ! R; i ¼ 1;
. . .; n; j ¼ 1; . . .;mi:

In this model, the middle-level decision entities have a reference-uncooperative

relationship so we have y1; . . .; yn in all objective functions f 2ð Þ
i and constraints g 2ð Þ

i
of the middle level. As all decision entities at the bottom level have a semi-
cooperative relationship, we have the shared variable zi 2 Zi for the ith middle-level
follower’s NES, j ¼ 1; . . .;mi; i ¼ 1; . . .; n:

5. S20 Model

This model will present a TLMF decision problem which has the following features
and is described by DERD in Fig. 6.6:

1. There is a secondary leadership relationship;
2. The decision entities at the middle level have individual variables;
3. The middle-level entities have a reference-uncooperative relationship;
4. There is a secondary followership relationship;
5. The bottom-level entities have individual variables;
6. The bottom-level entities have an uncooperative relationship.

We describe the S20 model by the tri-level programming approach as follows:

min
x2X

f 1ð Þðx; y1; . . .; yn; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ
s.t. g 1ð Þðx; y1; . . .; yn; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ� 0;

where yi; zi1; . . .; zimiði ¼ 1; . . .; nÞ solve the ith middle-level follower’s problem
and its bottom-level followers’ problems:

min
yi2Yi

f 2ð Þ
i ðx; y1; . . .; yn; zi1; . . .; zimiÞ

s.t. g 2ð Þ
i ðx; y1; . . .; yn; zi1; . . .; zimiÞ� 0;

C11
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Fig. 6.6 The DERD of
TLMF decision situation S20
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where zij j ¼ 1; . . .;mið Þ solves the ith middle-level follower’s jth bottom-level
follower’s problem:

min
zij2Zij

f 3ð Þ
ij ðx; yi; zijÞ

s.t. g 3ð Þ
ij ðx; yi; zijÞ� 0;

ð6:8Þ

where x 2 X � Rl1 , yi 2 Yi � Rl2i , zij 2 Zij � Rl3ij , f 1ð Þ : X �Qn
i¼1 Yi �

Qn
i¼1Qmi

j¼1 Zij ! R, f 2ð Þ
i : X �Qn

i¼1 Yi �
Qmi

j¼1 Zij ! R; f 3ð Þ
ij : X � Yi � Zij ! R; i ¼ 1;

. . .; n; j ¼ 1; . . .;mi:
In this model, as all decision entities at the middle level have a reference-

uncooperative relationship, we have y1; . . .; yn in the objective f 2ð Þ
i and constraint

g 2ð Þ
i for i ¼ 1; . . .; n. While the bottom-level followers attached to the same middle-

level follower have an uncooperative relationship, each bottom-level entity’s

objective function f 3ð Þ
ij and constraint g 3ð Þ

ij have no other counterparts’ variables for
j ¼ 1; . . .;mi; i ¼ 1; . . .; n.

6. S25 Model

This model will present a TLMF decision problem which has the following features
and is described by DERD in Fig. 6.7:

1. There is a secondary leadership relationship;
2. The middle level entities have individual variables;
3. The middle-level entities have an uncooperative relationship;
4. There is a secondary followership relationship;
5. The bottom-level decision entities have the same variables;
6. The bottom-level neighborhood decision entities have a cooperative

relationship.

We describe the S25 model by the tri-level programming approach as follows:

min
x2X

f 1ð Þðx; y1; . . .; yn; z1; . . .; znÞ
s.t. g 1ð Þðx; y1; . . .; yn; z1; . . .; znÞ� 0;

…

C11…C1m1 Cn1…Cnmn
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Fig. 6.7 The DERD of
TLMF decision situation S25
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where yi; ziði ¼ 1; . . .; nÞ solve the ith middle-level follower’s problem and its
bottom-level followers’ problems:

min
yi2Yi

f 2ð Þ
i ðx; yi; ziÞ

s.t. g 2ð Þ
i ðx; yi; ziÞ� 0;

where zi solves the ith middle-level follower’s bottom-level follower’s problem:

min
zi2Zi

f 3ð Þ
i ðx; yi; ziÞ

s.t. g 3ð Þ
i ðx; yi; ziÞ� 0;

ð6:9Þ

where x 2 X � Rl1 , yi 2 Yi � Rl2i , zi 2 Zi � Rl3ij , f 1ð Þ : X �Qn
i¼1 Yi �

Qn
i¼1

Zi ! R, f 2ð Þ
i : X � Yi � Zi ! R, f 3ð Þ

ij : X � Yi � Zi ! R, i ¼ 1; . . .; n, j ¼ 1; . . .;mi.
In this model, as the middle-level decision entities have an uncooperative rela-

tionship, each middle-level entity objective function f 2ð Þ
i and constraint g 2ð Þ

i have no
other counterparts’ variables for i ¼ 1; . . .; n.

7. S32 Model

This model will present a TLMF decision problem which has the following features
and is described by DERD in Fig. 6.8:

1. There is a secondary leadership relationship;
2. The middle-level decision entities have individual variables;
3. The middle-level decision entities have an uncooperative relationship;
4. There is no secondary followership relationship;
5. The bottom-level decision entities have individual variables;
6. The bottom-level decision entities have an uncooperative relationship.

We describe the S32 model by the tri-level programming approach as follows:

min
xx2X

f 1ð Þðx; y1; . . .; yn; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ
s.t. g 1ð Þðx; y1; . . .; yn; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ� 0;

C11
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Fig. 6.8 The DERD of
TLMF decision situation S32
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where yi; zi1; . . .; zimiði ¼ 1; . . .; nÞ solve the ith middle-level follower’s problem
and its bottom-level followers’ problems:

min
yi2Yi

f 2ð Þ
i ðx; yi; zi1; . . .; zimiÞ

s.t. g 2ð Þ
i ðx; yi; zi1; . . .; zimiÞ� 0;

where zij j ¼ 1; . . .;mið Þ solves the ith middle-level follower’s jth bottom-level
follower’s problem:

min
zij2Zij

f 3ð Þ
ij ðyi; zijÞ

s.t. g 3ð Þ
ij ðyi; zijÞ� 0;

ð6:10Þ

where x 2 X � Rl1 ; yi 2 Yi � Rl2i ; zij 2 Zij � Rl3ij , f 1ð Þ : X �Qn
i¼1 Yi �

Qn
i¼1
Qmi

j¼1
Zij ! R, f 2ð Þ

i : X � Yi �
Qmi

j¼1 Zij ! R, f 3ð Þ
ij : Yi � Zij ! R; i ¼ 1; . . .; n, j ¼ 1;

. . .;mi:
In this model, zij are included in the objective functions and constraints of the top-

level decision entity to describe the secondary leadership relationship. As there is no
secondary followership, however, the top-level variable x is not included in the

objectives f 3ð Þ
ij ðyi; zijÞ and constraints g 3ð Þ

ij ðyi; zijÞ of the bottom level decision prob-
lem. The decision entities at both middle and bottom level are uncooperative, so each

entity’s objective and constraints have only its variables, that is, f 2ð Þ
i and g 2ð Þ

i have

only yi, f
3ð Þ

ij and g 3ð Þ
ij have only zij, not other variables of the same level entities.

6.4.3 Hybrid TLMF Decision Models

Note that each of the 64 standard situations listed in Table 6.1 supposes that all
entities at the same level have the same situations. For example, all the departments
in all faculties of the university are uncooperative. However, in some real-world
applications, the departments in the Faculty of Science are cooperative, and the
departments in the Faculty of Business are uncooperative. We call this a hybrid
TLMF decision problem and will describe it by a hybrid TLMF decision model. As
an example of such hybrid problems, we present a TLMF decision problem in this
section, which is described by DERD in Fig. 6.9:

1. The top-level decision entity is not in a secondary leadership relationship;
2. The middle-level decision entities have individual variables;
3. The middle-level decision entities are uncooperative;
4. There is no secondary followership;
5. The first NES at the bottom level are reference-uncooperative;
6. The rest of the NES at the bottom level have an uncooperative relationship.
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This problem is described by a hybrid model combining S63 and S64 as follows:

min
x2X

f 1ð Þðx; y1; . . .; ynÞ
s.t. g 1ð Þðx; y1; . . .; ynÞ� 0;

where yi; zi1; . . .; zimiði ¼ 1; . . .; nÞ solve the ith middle-level follower’s problem
and its bottom-level followers’ problems:

min
yi2Yi

f 2ð Þ
i ðx; yi; zi1; . . .; zimiÞ

s.t. g 2ð Þ
i ðx; yi; zi1; . . .; zimiÞ� 0;

where z1j j ¼ 1; . . .;m1ð Þ solves the first middle-level follower’s jth bottom-level
follower’s problem in a reference-uncooperative situation:

min
z1j2Z1j

f 3ð Þ
1j ðy1; z11; . . .; z1m1Þ

s.t. g 3ð Þ
1j ðy1; z11; . . .; z1m1Þ� 0;

where zij i 6¼ 1; j ¼ 1; . . .;mið Þ solves the ith middle-level follower’s jth bottom-
level follower’s problem in an uncooperative situation:

min
zij2Zij

f 3ð Þ
ij ðyi; zijÞ

s.t. g 3ð Þ
ij ðyi; zijÞ� 0;

ð6:11Þ

where x 2 X � Rl1 , yi 2 Yi � Rl2i , zij 2 Zij � Rl3ij , f 1ð Þ : X �Qn
i¼1 Yi ! R; f 2ð Þ

i :

X � Yi �
Qmi

j¼1 Zij ! R, f 3ð Þ
1j : Y1 �

Qm1
j¼1 Z1j ! R; f 3ð Þ

ij : Yi � Zij ! R; i ¼ 1; . . .; n;
j ¼ 1; . . .;mi.

In this model, as there is no secondary leadership, zij are not variables in the
objective function and constraints of the top-level decision entity. Similarly, as
there is no secondary followership, x is not in the objectives and constraints of the
bottom level decision entity. The decision entities at the middle level have an

C11

…

C1m1 Cn1 Cnmn

A 

……

BnB1

…

Fig. 6.9 The DERD of a
hybrid TLMF decision
situation
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uncooperative relationship, so the ith entity has only its variables yi in f 2ð Þ
i and

constraints g 2ð Þ
i . The bottom-level entities have two kinds of relationship: the first

NES is reference-cooperative (refer to S63) and the others are uncooperative (refer

to S64). Therefore, we have f 3ð Þ
1j ðy1; z11; z12; . . .; z1m1Þ for the first NES and

f 3ð Þ
ij yi; zij
� �

i ¼ 2; 3; . . .; nð Þ for other NESs at the bottom level.
From the above analysis and discussions, using the standard and hybrid TLMF

decision models, we can easily give the rest of the TLMF decision models
according to the situations described in Table 6.1, as well as their hybrid models,
based on the features of a decision problem.

6.5 Case Studies for TLMF Decision Modeling

In this section, we consider four tri-level multi-follower decision cases concerning
research development strategy-making within a university to illustrate both DERD
and programming approaches for TLMF decision modeling.

6.5.1 Case 1: S28 Model

Assume that the university’s research strategy involves the university, its three
faculties and departments. All three faculties have individual objectives, constraints,
variables and do not take each other into consideration. The departments within
each faculty are also uncooperative. The university takes the responses of both
faculties and departments into account. At the same time, the faculties and
departments fully consider the research strategies of the university. This TLMF
decision problem is described in Fig. 6.10.

We give the variables, objectives and constraints of these decision entities as
follows:

1. The university (leader):

Objective f 1ð Þ is to maximize research quantum which includes the number of
publications (can be transformed to points) and research grant income (can be
transformed to points). To achieve this aim, the main strategy of the university is to
achieve a good balance between rewarding research performance and building a
long-term research development environment. It has

Variable x ¼ ðx1; x2Þ :

x1 How much is used to reward the faculties’ research performance, with the aim
of encouraging faculties to attract more research grants and generate more
publications;

144 6 Tri-level Multi-follower Decision Making



x2 How much is used for the university’s long-term research investment, such as
earlier career researcher development, campus Intranet construction and lab
establishment;

Constraints:

gð1Þ1 � 0 annual research budget;

gð1Þ2 � 0 a fixed number of students;

gð1Þ3 � 0 a fix salary budget which is linked to total working hours.

2. The three faculties (followers):

Science Faculty: Objective f ð2Þ1 is to maximize the faculty’s research budget from
the university.

Variable y ¼ ðy1; y2Þ :

y1 the points granted to reward publication;
y2 the points granted to reward the securing of research grant income;

Informatics Faculty: Objective f ð2Þ2 is to maximize the research budget from the
university.

Variable:
z how much is used to encourage publication;

Business Faculty: Objective f ð2Þ3 is to maximize its research quantum by using
the research budget from the university. It is developing a working load policy to
reduce the teaching load for researchers who have a high research quantum;

Variable:
w how many points of research quantum per $ of research budget?
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Fig. 6.10 Case 1 of the university research development strategy-making
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3. The five departments in the three faculties (bottom followers):

Objectives f ð3Þij ; i ¼ 1; 2; 3; j ¼ 1; 2: all departments have the same objective, that is,
to maximize the department’s research performance;

Constraints gð3Þij ; i ¼ 1; 2; 3; j ¼ 1; 2: departments’ constraints respectively;
Variables: a, b, c, d, and e are variables of the five departments respectively.
Clearly, this TLMF decision case meets the features of S28 in Table 6.1. We

give this case’s TLMF model as follows:

max
x

f 1ð Þ x1; x2; y1; y2; z;w; a; b; c; d; eð Þ University levelð Þ
s.t. g 1ð Þ x1; x2; y1; y2; z;w; a; b; c; d; eð Þ� 0;

max
y

f 2ð Þ
1 ðx1; x2; y1; y2; aÞ ðScience facultyÞ

s.t. g 2ð Þ
1 ðx1; x2; y1; y2; aÞ� 0;

maxa f 3ð Þ
1 ðx1; x2; y1; y2; aÞ ðMathematics departmentÞ

s.t. g 3ð Þ
1 ðx1; x2; y1; y2; aÞ� 0;

max
z

f 2ð Þ
2 ðx1; x2; z; b; cÞ ðInformatics facultyÞ

s.t. g 2ð Þ
2 ðx1; x2; z; b; cÞ� 0;

max
b

f 3ð Þ
21 x1; x2; z; bð ÞðSoft� Eng departmentÞ

s.t. g 3ð Þ
21 ðx1; x2; z; bÞ� 0;

max
c

f 3ð Þ
22 ðx1; x2; z; cÞ ðInf � Sys departmentÞ

s.t. g 3ð Þ
22 ðx1; x2; z; cÞ� 0;

max
w

f 2ð Þ
3 ðx1; x2;w; d; eÞ ðBusiness facultyÞ

s.t. g 2ð Þ
3 ðx1; x2;w; d; eÞ� 0;

max
d

f 3ð Þ
31 ðx1; x2;w; dÞ ðAcc:departmentÞ

s.t. g 3ð Þ
31 ðx1; x2;w; dÞ� 0;

max
e

f 3ð Þ
32 ðx1; x2;w; eÞ ðFinance departmentÞ

s.t. g 3ð Þ
32 ðx1; x2;w; eÞ� 0;

where x1; x2 2 R are the decision variables of the university; y1; y2 2 R; z 2 R;w 2
R are of the three faculties respectively, a; b; c; d; e 2 R are of the five departments
respectively, and X ¼ x1; x2ð Þjx1 [ 0; x2 [ 0f g; Y ¼ ðy1; y2Þjy1 [ 0; y2 [ 0f g;
Z ¼ zjz[ 0f g;W ¼ wjw[ 0f g;A ¼ aja[ 0f g;B ¼ bjb[ 0f g;C ¼ cjc[ 0f g;
D ¼ djd[ 0f g;E ¼ eje[ 0f g. As there is a secondary leadership relationship,
both objective functions maxx f 1ð Þðx1; x2; y1; y2; z;w; a; b; c; d; eÞ and constraint

g 1ð Þðx1; x2; y1; y2; z;w; a; b; c; d; eÞ� 0 of the university include the decision
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variables of departments a, b, c, d, e. Similarly, by the secondary followership,
x ¼ ðx1; x2Þ is included in all departments’ objectives and constraints.

6.5.2 Case 2: S27 Model

In this case, we suppose that all three faculties have uncooperative relationships and
all the departments of each faculty have reference-uncooperative relationships. As
in Case 1, the university takes into account the reactions of the faculties and of all
departments. These departments fully consider both their faculty’s and the uni-
versity’s strategies. From the TLMF decision framework in Table 6.1, this case
refers to situation S27 and is described by DERD in Fig. 6.11.

We suppose that the variables, objectives and constraints of decision entities in
this case are the same as those of Case 1. This case’s TLMF decision model is
written as follows:

max
x

f 1ð Þ x; y; z;w; a; b; c; d; eð Þ
s.t. g 1ð Þ x; y; z;w; a; b; c; d; eð Þ� 0;

max
y

f 2ð Þ
1 ðx; y; aÞ

s.t. g 2ð Þ
1 ðx; y; aÞ� 0;

max
a

f 3ð Þ
1 ðx; y; aÞ

s.t. g 3ð Þ
1 ðx; y; aÞ� 0;

max
z

f 2ð Þ
2 ðx; z; b; cÞ

s.t. g 2ð Þ
2 ðx; z; b; cÞ� 0;

max
b

f 3ð Þ
21 x; z; b; cð Þ

s.t. g 3ð Þ
21 ðx; z; b; cÞ� 0;

max
c

f 3ð Þ
22 x; z; b; cð Þ

s.t. g 3ð Þ
22 ðx; z; b; cÞ� 0;

max
w

f 2ð Þ
3 x;w; d; eð Þ

s.t. g 2ð Þ
3 ðx;w; d; eÞ� 0;

max
d

f 3ð Þ
31 ðx;w; d; eÞ

s.t. g 3ð Þ
31 ðx;w; d; eÞ� 0;

max
e

f 3ð Þ
32 x;w; d; eð Þ

s.t. g 3ð Þ
32 ðx;w; d; eÞ� 0:

6.5 Case Studies for TLMF Decision Modeling 147



As there is a secondary leadership relationship, the university’s objective
function f 1ð Þ x; y; z;w; a; b; c; d; eð Þ and constraint g 1ð Þðx; y; z;w; a; b; c; d; eÞ include
the variables of departments a; b; c; d; e. Similarly, by the secondary followership,
x is included in all departments’ objectives and constraints. As departments take
into account their neighborhood decisions (reference-uncooperative), we have

variable d in the objective f 3ð Þ
32 ðx;w; d; eÞ and constraint g 3ð Þ

32 ðx;w; d; eÞ of depart-
ments E, and e in the objective f 3ð Þ

31 ðx;w; d; eÞ and constraint g 3ð Þ
31 ðx;w; d; eÞ of

departments D.

6.5.3 Case 3: S54 Model

In this case, all three faculties have a reference-uncooperative relationship and all
the departments of each faculty have a semi-cooperative relationship. Unlike Case
2, the university does not take the departments’ decisions directly into account, nor
do all departments directly consider the university’s research strategies during their
decision process. It can be seen from Table 6.1 that this relates to situation S54.
This problem’s DERD is shown in Fig. 6.12. We use the same notations of
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Fig. 6.11 Case 2 of the university research development strategy-making
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Fig. 6.12 Case 3 of the university research development strategy-making
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variables, objectives and constraints used in Case 1, but the Departments of Soft
Eng. and Inf. Sys share variables b, and the Departments of Acc. and Finance share
variables e. We have this case’s TLMF decision model as follows:

max
x

f 1ð Þ x; y; z;wð Þ
s.t. g 1ð Þ x; y; z;wð Þ� 0;

max
y

f 2ð Þ
1 ðx; y; z;w; aÞ

s.t. g 2ð Þ
1 ðx; y; z;w; aÞ� 0;

max
a

f 3ð Þ
1 ðy; aÞ

s.t. g 3ð Þ
1 ðy; aÞ� 0;

max
z

f 2ð Þ
2 ðx; y; z;w; bÞ

s.t. g 2ð Þ
2 ðx; y; z;w; bÞ� 0;

max
b

f 3ð Þ
21 z; bð Þ

s.t. g 3ð Þ
21 ðz; bÞ� 0;

max
c

f 3ð Þ
22 z; bð Þ

s.t. g 3ð Þ
22 ðz; bÞ� 0;

max
w

f 2ð Þ
3 x; y; z;w; dð Þ

s.t. g 2ð Þ
3 ðx; y; z;w; dÞ� 0;

max
d

f 3ð Þ
31 ðw; dÞ

s.t. g 3ð Þ
31 ðw; dÞ� 0;

max
e

f 3ð Þ
32 w; eð Þ

s.t. g 3ð Þ
32 ðw; eÞ� 0:

As these faculties have a reference-cooperative relationship, their variables y, z,

w are included in all faculties’ objective and constraints such as f 2ð Þ
1 ðx; y; z;w; aÞ and

g 2ð Þ
1 ðx; y; z;w; aÞ. To describe the semi-cooperative relationship between depart-

ments, we have f 3ð Þ
2i ðz; bÞ and f 3ð Þ

3i ðw; dÞ where variables b, d are shared by two
departments respectively. This case has no secondary relationships, so x is not
included in department functions and a; b; d are not included in the university’s
objective function.

6.5 Case Studies for TLMF Decision Modeling 149



6.5.4 Case 4: Hybrid of S41, S45 and S48 Models

In this case, the three faculties have a semi-cooperative relationship by sharing the
same variable y. The departments have different relationships in different faculties.
In the Science Faculty, the Math department has a second followership relationship
with the university. In the Informatics Faculty, the two departments have a coop-
erative relationship and no secondary relationship. Two departments in the Business
Faculty have an uncooperative relationship and no secondary relationship. The
three different situations refer to S41, S45, and S48 respectively. This is a hybrid
TLMF decision problem. Figure 6.13 describes its DERD. By using the same
variables, objectives and constraints of decision entities used in previous cases, we
have the following TLMF decision model:

max
x

f 1ð Þ x; yð Þ
s.t. g 1ð Þ x; yð Þ� 0;

max
y

f 2ð Þ
1 ðx; y; aÞ

s.t. g 2ð Þ
1 ðx; y; aÞ� 0;

max
a

f 3ð Þ
1 ðx; y; aÞ

s.t. g 3ð Þ
1 ðx; y; aÞ� 0;

max
y

f 2ð Þ
2 ðx; y; bÞ

s.t. g 2ð Þ
2 ðx; y; bÞ� 0;

max
b

f 3ð Þ
21 y; bð Þ

s.t. g 3ð Þ
21 ðy; bÞ� 0;

max
y

f 2ð Þ
3 x; y; d; eð Þ

s.t. g 2ð Þ
3 ðx; y; d; eÞ� 0;

max
d

f 3ð Þ
31 ðy; dÞ

s.t. g 3ð Þ
31 ðy; dÞ� 0;

max
e

f 3ð Þ
32 y; eð Þ

s.t. g 3ð Þ
32 ðy; eÞ� 0:

We can see that these three faculties share the same variable y but have indi-
vidual objectives. To describe the cooperative relationship between the departments
in the Informatics Faculty, the two departments share variable b, objective function

f 3ð Þ
21 ðz; bÞ and constraint g 3ð Þ

21 ðz; bÞ. To describe the uncooperative relationship in the
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Faculty of Business, its two departments’ objective functions f 3ð Þ
31 ðy; dÞ and

f 3ð Þ
32 ðy; eÞ, have individual variables. As only the Math Department has a secondary
relationship with the university level, x is only included in the Math Department’s
functions.

Through these four cases, we present a way to model real-world TLMF decision
problems by both DERD and programming approaches.

6.6 Tri-level Decision Solution Methods

This section focuses on a linear version of tri-level decision problems with a single
decision entity at each level.

6.6.1 Solution Concepts

According to the basic tri-level decision model (6.1) in a one-level one-entity
situation, we present a linear tri-level programming (decision model) as follows.

For x 2 X � Rn; y 2 Y � Rm; z 2 Z � Rp; f 1ð Þ; f 2ð Þ; f 3ð Þ : X � Y � Z ! R;

min
x2X

f 1ð Þ x; y; zð Þ ¼ a1xþ b1yþ l1z

s.t. A1xþ B1yþ C1z� b1;

min
y2Y

f 2ð Þ x; y; zð Þ ¼ a2xþ b2yþ l2z

s.t. A2xþ B2yþ C2z� b2;

min
z2Z

f 3ð Þ x; y; zð Þ ¼ a3xþ b3yþ l3z

s.t. A3xþ B3yþ C3z� b3;

ð6:12Þ

where ai 2 Rn;bi 2 Rm;li 2 Rp; bi 2 Rqi ;Ai 2 Rqi�n;Bi 2 Rqi�m;Ci 2 Rqi�p, i ¼ 1; 2; 3:
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Fig. 6.13 Case 4 of the university research development strategies making
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The variables x; y; z are called the top-level, middle-level, and bottom-level
variables respectively, and f 1ð Þ x; y; zð Þ; f 2ð Þ x; y; zð Þ; f 3ð Þ x; y; zð Þ the top-level, middle-
level, and bottom-level objective functions, respectively. In this model, the decision
problem consists of three optimization sub-problems (represented by three objective
functions) in a three-level hierarchy. Each level has individual control variables, but
also takes account of other levels in its optimization function.

To obtain an optimal solution to the Linear Tri-level Programming (LTLP)
problem (6.12) based on the solution concept of bi-level programming (Bard 1998),
a solution definition is first proposed as follows:

Definition 6.1

(a) Constraint region of the LTLP:

S ¼ f x; y; zð Þjx 2 X; y 2 Y ; z 2 Z;Aixþ Biyþ Ciz� bi; i ¼ 1; 2; 3g:

(b) Constraint region of the middle level for each fixed x 2 X:

SðxÞ ¼ f y; zð Þ 2 Y � ZjBiyþ Ciz� bi � Aix; i ¼ 2; 3g:

(c) Feasible set for the bottom level for each fixed x; yð Þ 2 X � Y :

S x; yð Þ ¼ z 2 ZjC3z� b3 � A3x� B3yf g:

(d) Projection of S onto the top level’s decision space:

S Xð Þ ¼ x 2 Xj9 y; zð Þ 2 Y � Z; x; y; zð Þ 2 Sf g:

(e) Projection of S onto the top and middle levels’ decision space:

S X; Yð Þ ¼ x; yð Þ 2 X � Y j9z 2 Z; x; y; zð Þ 2 Sf g:

(f) Rational reaction set of the bottom level for x; yð Þ 2 SðX; YÞ:

P x; yð Þ ¼ zjz 2 argmin½f3 x; y; ẑð Þĵz 2 S x; yð Þf g:

(g) Rational reaction set for the middle level for x 2 S Xð Þ:

P xð Þ ¼ f y; zð Þj y; zð Þ 2 argmin½f2 x; ŷ; ẑð Þjðŷ; ẑÞ 2 S xð Þ;
ẑ 2 P x; ŷð Þ�g:

(h) Inducible region (IR):

IR ¼ x; y; zð Þj x; y; zð Þ 2 S; y; zð Þ 2 P xð Þf g:
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Therefore, problem (6.12) is equivalent to the following problem:

min f1 x; y; zð Þj x; y; zð Þ 2 IRf g: ð6:13Þ

6.6.2 Theoretical Properties

The three assumptions stated below serve as an introduction to the solution exis-
tence theorem.

Assumption 6.1

1. S is non-empty and compact.
2. IR is non-empty.
3. P xð Þ and P x; yð Þ are point-to-point maps with respect to x and x; yð Þ respectively.

Three important LTLP theorems are proposed here. Theorem 6.1 proves the
existence of an optimal solution of the LTLP model. Theorem 6.2 presents a way to
obtain a solution to the LTLP problem. Theorem 6.3 provides the necessary
foundations for developing a tri-level Kth-Best algorithm.

Theorem 6.1 If the above assumptions are satisfied, there exists an optimal
solution to the linear tri-level decision model (6.13).

Proof Since neither S or IR is empty, there is at least one parameter value x	 2
SðXÞ and P x	ð Þ 6¼ ;. Consider a sequence ðxt; yt; ztÞf g1t¼1
 IR converging to
ðx	; y	; z	Þ. Then, by the well-known results of linear parametric optimization,
ðy	; z	Þ 2 P x	ð Þ. Hence, ðx	; y	1; . . .; y	kÞ 2 IR that shows IR is closed. By
Assumption 6.1(1) and IR 
 S, IR is also bounded. IR is non-empty, so the problem
(6.13) consists of minimizing a continuous function over a compact non-empty set,
which implies that the problem has an optimal solution. h

Theorem 6.2 The inducible region can be written equivalently as a piecewise
linear equality constraint comprised of support hyper-planes of S.

Proof Using the notations in the proof of Theorem 6.1, the inducible region IR can
be rewritten as follows:

IR ¼ x; y; zð Þ 2 Sjb2yþ l2z ¼ min b2ŷþ l2ẑjBiŷþ Ciẑ� bi � Aix; ŷ� 0;hf
ẑ� 0; i ¼ 2; 3; l3ẑ ¼ min l3~zjC3~z� b3 � A3x� B3y;~z� 0½ �ig: ð6:14Þ
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Let

Q xð Þ ¼ min½b2ŷþ l2ẑjðŷ; ẑÞ 2 S xð Þ; ẑ 2 argmin½l3~zj~z 2 S x; ŷð Þ��; ð6:15Þ

Q x; yð Þ ¼ min l3~zj~z 2 S x; yð Þ½ �: ð6:16Þ

It is then necessary to prove that Q xð Þ is a piecewise linear equality constraint.
According to the expressions for Q xð Þ and Q x; yð Þ, the first step is to prove that

Q x; yð Þ is a piecewise linear equality constraint for any given x and y. Because
Q x; yð Þ can be seen as a linear programming problem with parameters x and y, the
dual problem of Q x; yð Þ is

maxfu A3xþ B3y� b3ð ÞjuC3� � l3; u� 0g: ð6:17Þ

This problem has the same optimal values as Q x; yð Þ at the solution u	. Let
u1; . . .; ut be a listing of all the vertices of the constraint region of the dual problem
given by U ¼ fujuC3� � l3g. Because a solution of the dual problem occurs at a
vertex of U, the equivalent problem is

max u A3xþ B3y� b3ð Þju 2 u1; . . .; ut
� �� �

: ð6:18Þ

This means that Q x; yð Þ is a piecewise linear function.
Next, it will be proved that Q xð Þ is a piecewise linear function. Suppose that

z1; z2; . . .; zs are solutions of problem Q x; yð Þ. For each zi, Q xð Þ becomes a pro-
gramming problem with parameters x and zi. Therefore, there are s parameterized
programming problems, Q xð Þjz1 ; . . .;Q xð Þjzs . Similarly, each Q xð Þjzi is a piecewise
linear function. Hence, the set IR can be rewritten as

IR ¼
[s
i¼1
f x; y; zi
� �jb2y ¼ Q xð Þjzi � l2z

ig ð6:19Þ

which is a piecewise linear equality constraint. h

Corollary 6.1 A solution to the LTLP problem (6.12) occurs at a vertex of the IR.

Theorem 6.3 The solution ðx	; y	; z	Þ of the linear tri-level programming problem
occurs at a vertex of S.

Proof Let x1; y1; z1ð Þ; . . .; ðxt; yt; ztÞ be the distinct vertices of S. Because any point
in S can be written as a convex combination of these vertices, let

x	; y	; z	ð Þ ¼Pt
i¼1 diðxi; yi; ziÞ, where

Pt
i¼1 di ¼ 1; di [ 0; i ¼ 1; . . .; t and t� t. It

must be shown that t ¼ 1. Let us write the constraints of (6.12) at ðx	; y	; z	Þ in their
piecewise linear form (6.19):
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0 ¼ Q x	ð Þjz	 � b2y
	 � l2z

	

¼ Q
Xt
i¼1

dix
i

 !
jz	 � b2

Xt
i¼1

diy
i

 !
� l2

Xt
i¼1

diz
i

 !

�
Xt
i¼1

diQ xi
� �jz	 �Xt

i¼1
dib2y

i �
Xt
i¼1

dil2z
i

¼
Xt
i¼1

diðQ xi
� �jz	 � b2y

i � l2z
iÞ

by the convexity of Q(x). However, by definition Q xið Þjz	 ,

Q xi
� �jz	 ¼ min

y;zð Þ 2 S xið Þ
z2 p xi ;yð Þ

ðb2yþ l2zÞ� b2y
i þ l2z

i:

Therefore, Q xið Þjz	 � b2y
i � l2z

i� 0; i ¼ 1; . . .; t. Noting that di [ 0; i ¼ 1;
. . .; t, the equality in the preceding expression must hold, or else a contradiction
would result in the sequence above. Consequently, Q xið Þjz	 � b2y

i � l2z
i ¼ 0 for

all i. These statements imply that xi; yi; zið Þ 2 IR; i ¼ 1; . . .; t, and that ðx	; y	; z	Þ
can be written as a convex combination of points in the IR. Because ðx	; y	; z	Þ a
vertex of the IR by Corollary 6.1 and PðxÞ and Pðx; yÞ are single-valued, a con-
tradiction results unless t ¼ 1. h

Corollary 6.2 If ðx; y; zÞ is a vertex of IR, then it is also a vertex of S.

6.6.3 Tri-level Kth-Best Algorithm

This section will introduce the tri-level Kth-Best algorithm for solving the linear tri-
level programming problem (6.12).

Theorem 6.3 in Sect. 6.6.2 provides a theoretical foundation and a suitable way
to solve problem (6.12). Therefore, it is necessary only to search the extreme points
of the constraint region S to find an optimal solution for the LTLP problem (6.12).
The main principle of the tri-level Kth-Best algorithm is shown as follows.

Consider the linear programming problem below:

min a1xþ b1yþ l1zj x; y; zð Þ 2 Sf g: ð6:20Þ

The N-ranked basic feasible solutions to (6.20) are:

x½1�; y½1�; z½1�
� �

; x½2�; y½2�; z½2�
� �

; . . .; x½N�; y½N�; z½N�
� �

;
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such that a1x½i� þ b1y½i� þ l1z½i� � a1x iþ1½ � þ b1y iþ1½ � þ l1z iþ1½ �; i ¼ 1; . . .;N � 1.
Then solving the problem (6.12) is equivalent to finding the index

K	 ¼ minfi 2 1; � � �Nf gj x½i�; y½i�; z½i�
� � 2 IRg:

Therefore, a global solution is x½K	�; y½K	�; z½K	�
� �

. Similarly, for fixing x ¼ x½i�, we
have the middle-level and bottom-level problem (6.21) as follows:

min
y2Y

b2yþ l2z

s.t. A2xþ B2yþ C2z2;

min
z2Z

l3z

s.t. A3xþ B3yþ C3z3:

ð6:21Þ

Clearly, problem (6.21) is a general bi-level programming scenario which has
been discussed in Chap. 3. We can use the Kth-Best algorithm, the Kuhn-Tucker
approach or the Branch-and-bound algorithm to solve this problem.

The procedure of the tri-level Kth-Best algorithm is described as follows:
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The tri-level Kth-Best algorithm uses two sub-algorithms: (1) the simplex
algorithm, which can obtain an optimal solution for a linear programming problem,
and (2) the algorithm for finding the adjacent vertices of a selected vertex.
According to the results given by Bard (1984), a vertex is a geometrical interpre-
tation of a feasible solution. Hence, enumerating the adjacent vertices is equivalent
to enumerating all the basic feasible solutions for the decision problem.

6.6.4 A Numerical Example

We give an example to illustrate how the tri-level Kth-Best algorithm can be used to
solve a tri-level decision problem.

Example 6.2 For x 2 X ¼ xjx� 0f g; y 2 Y ¼ yjy� 0f g; z 2 Z ¼ fzjz� 0g, f ð1Þ;
f ð2Þ; f ð3Þ : X � Y � Z ! R,

min
x2X

f ð1Þ ¼ xþ yþ 2z

s:t: 2xþ yþ z� 14;

min
y2Y

f ð2Þ ¼ xþ yþ 3z

s:t: xþ y� 4;

y� 6;

min
z2Z

f ð3Þ ¼ xþ y� z

s:t: yþ z� 8;

yþ 4z� 8;

yþ 2z� 13:

Now it is possible to use the tri-levelKth-Best algorithm to obtain a solution for this
problem. According to the tri-level Kth-Best algorithm, solving this problem first
requires consideration of the middle level and the bottom level as a whole (middle,
bottom) and then solving the problem using the bi-level Kth-Best algorithm.

From (6.20), let us consider a linear programming problem as follows:

min
x2X

f ð1Þ ¼ xþ yþ 2z

s.t. 2xþ yþ z� 14;

xþ y� 4;

y� 6;

yþ z� 8;

yþ 4z� 8;

yþ 2z� 13:
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Now we go through the tri-level Kth-Best algorithm from Step 1 to Step 4.

Step 1: Set i 1. Solve the above problem using the simplex method to obtain
the optimal solution, x½1�; y½1�; z½1�

� � ¼ ð6; 0; 2Þ. Let W ¼ f x½1�; y½1�; z½1�
� �g

and T ¼ ;. Go to Step 2
Step 2: By the problem (6.21), we have the problem:

min
y2Y

f ð2Þ ¼ xþ y� z

s.t. xþ y� 4;

y� 6;

x ¼ 6;

min
z2Z

f ð3Þ ¼ xþ y� z

s.t. yþ z� 8;

yþ 4z� 8

yþ 2z� 13

x ¼ 6:

Using the bi-level Kth-Best algorithm, we have ~y½1�;~z½1�
� � ¼ 6; 2ð Þ 6¼

y 1½ �; z 1½ �
� �

and go to Step 3
Step 3: Find the adjacent vertices of x½1�; y½1�; z½1�

� �
and we have W½1� ¼

f 3:75; 6; 0:5ð Þ; ð4; 0; 6Þg,T={(6, 0, 2)} andW= 3:75; 6; 0:5ð Þ; 4; 0; 6ð Þf g:
Go to Step 4

Step 4: Update i = i + 1, choose x½2�; y½2�; z½2�
� � ¼ ð3:75; 6; 0:5Þ and go back to

Step 2
Step 2: By the problem (6.21), we have the problem:

min
y2Y

f ð2Þ ¼ xþ y� z

s.t. xþ y� 4;

y� 6;

x ¼ 3:75;

min
z2Z

f ð3Þ ¼ xþ y� z

s.t. yþ z� 8;

yþ 4z� 8;

yþ 2z� 13;

x ¼ 3:75:

Using the bi-level Kth-Best algorithm, we have ~y½2�;~z½2�
� � ¼ 6; 2ð Þ 6¼

y 2½ �; z 2½ �
� �

and go to Step 3
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Step 3: Find the adjacent vertices of x½2�; y½2�; z½2�
� �

andwe haveW½2� ¼ fð3; 6; 2Þg,
T = {(6, 0, 2), (3.75, 6, 0.5)} and W ¼ 4; 0; 6ð Þ; ð3; 6; 2Þf g: Go to Step 4

Step 4: Update i = i + 1, choose x½3�; y½3�; z½3�
� � ¼ ð3; 6; 2Þ and go back to Step 2

Step 2: By the problem (6.21), we have the problem:

min
y2Y

f ð2Þ ¼ xþ y� z

s.t. xþ y� 4;

y� 6;

x ¼ 3;

min
z2Z

f ð3Þ ¼ xþ y� z

s.t. yþ z� 8;

yþ 4z� 8;

yþ 2z� 13;

x ¼ 3:

Using the bi-level Kth-Best algorithm, we have ~y½3�;~z½3�
� � ¼ 6; 2ð Þ

¼ y 3½ �; z 3½ �
� �

. Therefore, x½3�; y½3�; z½3�
� �

is an optimal solution of Example
6.2 with K	 ¼ i ¼ 3. For the global solution, the objective value of f1 is
13, and the objective function values of f2 and f3 are 15 and 7
respectively. Therefore, the Kth-Best algorithm provides an useful way
to solve the linear tri-level decision problem.

6.7 Tri-level Multi-follower Decision Solution Methods

We have proposed 64 kinds of TLMF decision model and this section aims to
present solution methods for these models. We take the TLMF decision model S12
in its linear version as representative, to illustrate solution concepts and theoretical
properties, and describe a TLMF Kth-Best algorithm for TLMF decision.

6.7.1 Solution Concepts

According to the general model S12 shown in Sect. 6.4, the model in linear version
can be expressed as follows.

For x 2 X � Rk , y 2 Yi � Rk0 , Y ¼ Y1 \ � � � \ Yn, y 2 Y , zij 2 Zij � Rkij ;

f ð1Þ : X � Y � Z11 � � � � Z1m1 � � � � � Zn1 � � � � � Znmn ! R, f 2ð Þ
i : X � Yi � Zi1 �

� � � � Zimi ! R; f 3ð Þ
ij : X � Yi � Zij ! R; and j ¼ 1; . . .;mi; i ¼ 1; . . .; n;
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min
x2X

f ð1Þ x; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ ¼ cxþ dyþ
Xn
i¼1

Xmi

j¼1
eijzij ð6:22aÞ

s.t. Axþ Byþ
Xn
i¼1

Xmi

j¼1
Cijzij� b; ð6:22bÞ

where ðy; zi1; . . .; zimiÞði ¼ 1; . . .; nÞ is the solution to the ith middle-level follower’s
problem and its bottom-level followers’ problems (6.22c–6.22f):

min
y2Yi

f 2ð Þ
i x; y; zi1; . . .; zimið Þ ¼ cixþ diyþ

Xmi

j¼1
gijzij ð6:22cÞ

s.t. Aixþ Biyþ
Xmi

j¼1
Dijzij� bi; ð6:22dÞ

where zijðj ¼ 1; . . .;miÞ is the solution to the ith middle-level follower’s jth bottom-
level follower’s problem (6.22e–6.22f):

min
zij2Zij

f 3ð Þ
ij x; y; zij
� � ¼ cijxþ dijyþ hijzij ð6:22eÞ

s.t. Aijxþ Bijyþ Eijzij� bij; ð6:22fÞ

where c; ci; cij 2 Rk; d; di; dij 2 Rk0 ; eij; gij; hij 2 Rkij ;A 2 Rs�k;Ai 2 Rsi�k,
Aij 2 Rsij�k;B 2 Rs�k0 ;Bi 2 Rsi�k0 ;Bij 2 Rsij�k0 ;Cij 2 Rs�kij ;Dij 2 Rsi�kij ,
Eij 2 Rsij�kij ; b 2 Rs; bi 2 Rsi ; bij 2 Rsij ; j ¼ 1; . . .;mi; i ¼ 1; . . .; n:

To find an optimal solution for the decision model, relevant solution concepts
are proposed as follows, based on definitions of bi-level programming and tri-level
programming.

Definition 6.1

(a) Constraint region of the TLMF decision model:

S ¼ f x; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ 2 X � Y � Z11 � � � � Z1m1

� � � � � Zn1 � � � � � Znmn jAxþ Byþ
Xn
i¼1

Xmi

j¼1
Cijzij� b;

Aixþ Biyþ
Xmi

j¼1
Dijzij� bi;Aijxþ Bijyþ Eijzij� bij;

j ¼ 1; . . .;mi; i ¼ 1; . . .; ng:
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(b) Constraint region of the ith middle-level follower for each fixed x 2 X:

Si xð Þ ¼ fðy; zi1; . . .; zimiÞ 2 Yi � Zi1 � � � � � Zimi jAixþ Biy

þ
Xmi

j¼1
Dijzij� bi;Aijxþ Bijyþ Eijzij� bij; j ¼ 1; . . .;mig:

(c) Feasible set of the ith middle-level follower’s jth bottom-level follower for
each fixed ðx; yÞ 2 X � Yi:

Sij x; yð Þ ¼ fzij 2 ZijjAijxþ Bijyþ Eijzij� bijg:

(d) Projection of S onto the leader’s decision space:

S Xð Þ ¼ fx 2 Xj9 y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ;
x; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ 2 Sg:

(e) Projection of S onto the top-level leader’s and the ith middle-level follower’s
decision space:

Si X; Yð Þ ¼ f x; yð Þj9ðz11; . . .; z1m1 ; . . .; zn1; . . .; znmnÞ;
x; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ 2 Sg:

(f) Rational reaction set of the ith middle-level follower’s jth bottom-level fol-
lower for ðx; yÞ 2 Si X; Yð Þ:

Pij x; yð Þ ¼ fzij 2 Zijjzij 2 argmin f 3ð Þ
ij x; y; ẑij
� �

: ẑij 2 Sij x; yð Þ
h i

g:

(g) Rational reaction set of the ith middle-level follower for x 2 S Xð Þ:

Pi xð Þ ¼ f y; zi1; . . .; zimið Þjðy; zi1; . . .; zimiÞ 2 argmin½f 2ð Þ
i x; ŷ; ẑi1; . . .; ẑimið Þj

ŷ; ẑi1; . . .; ẑimið Þ 2 Si xð Þ; ẑij 2 Pij x; ŷð Þ; j ¼ 1; . . .;mi�g:

(h) Inducible region:

IR ¼ f x; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þj x; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ
2 S; y; zi1; . . .; zimið Þ 2 Pi xð Þ; i ¼ 1; . . .; ng:

Therefore, based on the notations, the TLMF decision model (6.22a–6.22f) can
be written as:

min
x;y;z11;...;z1m1 ;...;zn1;...;znmn

f 1ð Þ x; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ

s.t. x; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ 2 IR:
ð6:23Þ
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6.7.2 Theoretical Properties

For the sake of assuring that an optimal solution to the model (6.22a–6.22f) exists,
we give the following assumption.

Assumption 6.2

1. S is non-empty and compact.
2. IR is non-empty.
3. Pi xð Þ and Pij x; yð Þ are point-to-point maps with respect to x and ðx; yÞ respec-

tively, where j ¼ 1; . . .;mi; i ¼ 1; . . .; n.

Theorem 6.4 If the TLMF decision model (6.22a–6.22f) meets Assumption 6.2,
then there exists an optimal solution.

Proof Let

PðxÞ ¼ f y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ : ðy; zi1; . . .; zimiÞ 2 Pi xð Þ; i ¼ 1; . . .; ng:

Since neither S nor IR is empty, there is at least one parameter value x	 2 S Xð Þ
and P x	ð Þ 6¼ ;:

Consider a sequence ðxt; yt; zt11; . . .; zt1m1
; . . .ztn1; . . .; z

t
nmn
Þ

n o1
t¼1

 IR converging

to ðx	; y	; z	11; . . .; z	1m1
; . . .z	n1; . . .; z

	
nmn
Þ. Then, by the well-known results of linear

parametric optimization, we have ðx	; y	; z	11; . . .; z	1m1
; . . .z	n1; . . .; z

	
nmn
Þ 2 P x	ð Þ.

Hence, ðx	; y	; z	11; . . .; z	1m1
; . . .z	n1; . . .; z

	
nmn
Þ 2 IR which shows that IR is closed. By

Assumption 6.2(1) and IR 
 S, IR is therefore also bounded, and IR is nonempty,
so the problem (6.22a–6.22f) consists of minimizing a continuous function
over a compact nonempty set, which implies that the problem has an optimal
solution. h

Theorem 6.5 The inducible region IR can be expressed equivalently as a piecewise
linear equality constraint comprised of supporting hyperplanes of S.

Proof First, denote the optimal value of the ith middle-level follower’s jth bottom-
level follower by

Fij x; yð Þ ¼ min hijẑij ĵzij 2 Sij x; yð Þ� �
; j ¼ 1; . . .;mi; i ¼ 1; . . .; n;

and define

Fi xð Þ ¼ min diyþ
Xmi

j¼1
gijzijj y; zi1; . . .; zimið Þ 2 Si xð Þ;

(

hijzij ¼ Fij x; yð Þ; j ¼ 1; . . .;mi
�
; i ¼ 1; . . .; n:
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Since Fij x; yð Þ can be seen as a linear programming problem with parameters
x and y, the dual problem of Fij x; yð Þ can be written as

max ðAijxþ Bijy� biÞuijjEijuij� � hij; uij� 0
� �

: ð6:24Þ

If both Fij x; yð Þ and problem (6.24) have feasible solutions, by the dual theorem
of linear programming, both have optimal solutions and the same optimal objective
function value. Since a solution to problem (6.24) occurs at a vertex of its constraint

region Uij ¼ uijjEijuij� � hij; uij� 0
� �

; adopting u1ij; . . .; u
kij
ij to express all the

vertices of Uij, then problem (6.24) can be written as:

max ðAijxþ Bijy� biÞuijjuij 2 fu1ij; . . .; ukijij g
n o

: ð6:25Þ

Clearly, Fij x; yð Þ is a piecewise linear function according to problem (6.25).
Next, we prove that Fi xð Þ is also a piecewise linear function. Assume that

ðz1i1; . . .; z1imi
Þ; . . .; ðzpii1; . . .; zpiimi

Þ are solutions to the problem Fij x; yð Þ for
i ¼ 1; . . .; n. For each fixed i and a solution ðztii1; . . .; ztiimi

Þ where ti ¼ 1; . . .; pi, Fi xð Þ
becomes a programming problem with parameters x and ðztii1; . . .; ztiimi

Þ, and there are
pi parameterized programming problems such as Fi xð Þjðz1i1;...;z1imi Þ; . . .;Fi xð Þjðzpii1 ;...;zpiimi Þ.
Considering different combinations of ðztii1; . . .; ztiimi

Þ for i ¼ 1; . . .; n; there areQn
i¼1 pi parameterized programming problems Fi xð Þjðztii1;...;ztiimi Þ. Therefore, Fi xð Þ is

also a piecewise linear function as Fij x; yð Þ.
Lastly, according to the above definition of Fi xð Þ, the inducible region IR can be

rewritten as

IR ¼ fðx; y; zt111; . . .; zt11m1
; . . .; ztnn1; . . .; z

tn
nmn
Þ 2 Sjdiyþ

Xmi

j¼1
gijzij

¼ Fi xð Þjðztii1;...;ztiimi Þ; ti ¼ 1; . . .; pi; i ¼ 1; . . .; n
o
:

ð6:26Þ

and it can be seen as a piecewise linear equality constraint. h

Corollary 6.3 The TLMF decision model (6.22a–6.22f) is equivalent to optimizing
f ð1Þ over a feasible region comprised of a piecewise linear equality constraint.

Corollary 6.4 An optimal solution to the TLMF decision model (6.22a–6.22f)
occurs at a vertex of IR.

Proof According to the equivalent form (6.23) of the TLMF decision model, and
since f ð1Þ is linear, an optimal solution to the problem must occur at a vertex of IR if
it exists. h

Theorem 6.6 The optimal solution ðx	; y	; z	11; . . .; z	1m1
; . . .z	n1; . . .; z

	
nmn
Þ to the

TLMF decision model (6.22a–6.22f) occurs at a vertex of S.
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Proof Let x1; y1; z111; . . .; z
1
1m1

; . . .z1n1; . . .; z
1
nmn

� �
; . . .; xt; yt; zt11; . . .; z

t
1m1

; . . .ztn1; . . .; z
t
nmn

� �
indicate the distinct vertices of S. Since any point in S can be written as a convex
combination of these vertices, we have

ðx	; y	; z	11; . . .; z	1m1
; . . .z	n1; . . .; z

	
nmn
Þ

¼
Xt
r¼1

dr xr; yr; zr11; . . .; z
r
1m1

; . . .zrn1; . . .; z
r
nmn

� �

where
Pt

r¼1 dr ¼ 1; dr [ 0; r ¼ 1; . . .; t and t� t:
We can write the constraints of (6.22a–6.22f) in the piecewise linear form (6.26)

discussed in Theorem 6.6:

0 ¼ Fi x
	ð Þjðz	i1;...;z	imi Þ � diy

	 �
Xmi

j¼1
gijz
	
ij

¼ Fi

Xt
r¼1

drx
r

 !
jðz	i1;...;z	imi Þ � di

Xt
r¼1

dry
r
i �
Xmi

j¼1
gij
Xt
r¼1

drz
r
ij; i ¼ 1; ::; n:

Because of the convexity of Fi x	ð Þ, we have

0�
Xt
r¼1

drFi x
rð Þjðz	i1;...;z	imi Þ �

Xt
r¼1

drdiy
r
i �
Xt
r¼1

dr
Xmi

j¼1
gijz

r
ij

¼
Xt
r¼1

dr½Fi x
rð Þjðz	i1;...;z	imi Þ � diy

r
i �
Xmi

j¼1
gijz

r
ij�; i ¼ 1; ::; n:

ð6:27Þ

By the definition of Fi xð Þjðztii1;...;ztiimi Þ, we have

Fi x
rð Þjðz	i1;...;z	imi Þ ¼ minðdiyþ

Xmi

j¼1
gijzijÞ� diy

r
i �
Xmi

j¼1
gijz

r
ij; i ¼ 1; . . .; n:

Thus, Fi xrð Þjðz	i1;...;z	imi Þ � diyri �
Pmi

j¼1 gijz
r
ij� 0; r ¼ 1; . . .; t; i ¼ 1; ::; n.

Since the above expression (6.27) must be held with dr [ 0; r ¼ 1; . . .; t, there
exist Fi xrð Þjðz	i1;...;z	imi Þ � diyri �

Pmi
j¼1 gijz

r
ij� 0; r ¼ 1; . . .; t; i ¼ 1; . . .; n: These state-

ments imply that xr; yr; zr11; . . .; z
r
1m1

; . . .zrn1; . . .; z
r
nmn

� �
2 IR, r ¼ 1; . . .; t and that

ðx	; y	; z	11; . . .; z	1m1
; . . .z	n1; . . .; z

	
nmn
Þ can be denoted as a convex combination of the

points in the IR. Since ðx	; y	; z	11; . . .; z	1m1
; . . .z	n1; . . .; z

	
nmn
Þ is a vertex of the IR

according to Corollary 6.4 and Assumption 6.2(3), there must exist �t ¼ 1, which
means ðx	; y	; z	11; . . .; z	1m1

; . . .z	n1; . . .; z
	
nmn
Þ is a vertex of S. h
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Corollary 6.5 If x	; y	; z	11; . . .; z
	
1m1

; . . .z	n1; . . .; z
	
nmn

� �
is a vertex of the IR, it is

also a vertex of S.

6.7.3 TLMF Kth-Best Algorithm

The above theorems and corollaries provide a theoretical foundation to extend the
tri-level Kth-Best algorithm proposed in Sect. 6.6.3 for solving the TLMF decision
problem (6.22a–6.22f). The main principle of the TLMF Kth-Best algorithm is
showed as follows.

First, consider the following linear programming problem:

min
ðx;y;z11;...;z1m1 ;...;zn1;...;znmnÞ2S

f 1ð Þ x; y; z11; . . .; z1m1 ; . . .; zn1; . . .; znmnð Þ ð6:28Þ

and let

x1; y1; z111; . . .; z
1
1m1

; . . .z1n1; . . .; z
1
nmn

� �
; . . .; ðxN ; yN ; zN11; . . .; zN1m1

; . . .zNn1; . . .; z
N
nmn
Þ

denote the N-ranked basic feasible solutions to (6.28), such that

f 1ð Þ xK ; yK ; zK11; . . .; z
K
1m1

; . . .zKn1; . . .; z
K
nmn

� �
� f 1ð Þ xKþ1; yKþ1; zKþ111 ; . . .; zKþ11m1

; . . .zKþ1n1 ; . . .; zKþ1nmn

� �
; K ¼ 1; . . .;N � 1:

Then solving the problem (6.28) is equivalent to searching the index

K	 ¼ min KjK 2 1; . . .;Nf g; xK ; yK ; zK11; . . .; z
K
1m1

; . . .zKn1; . . .; z
K
nmn

� �
2 IR

n o
;which ensures

that xK
	
; yK

	
; zK

	
11 ; . . .; z

K	
1m1

; . . .zK
	

n1 ; . . .; z
K	
nmn

� �
is the global solution to the TLMF

problem.

To get xK
	
; yK

	
; zK

	
11 ; . . .; z

K	
1m1

; . . .zK
	

n1 ; . . .; z
K	
nmn

� �
; we must obtain yK

	
; zK

	
11 ; . . .;

�
zK
	

1m1
; . . .zK

	
n1 ; . . .; z

K	
nmn
Þ by solving a set of uncooperative linear multi-follower bi-level

(MFBL) decision problems at the middle and bottom level, so next, for i ¼ 1; . . .; n
and the fixing x ¼ xK

	
, the middle-level and bottom-level problem becomes:

min
y2Yi

f 2ð Þ
i x; y; zi1; . . .; zimið Þ ¼ cixþ diyþ

Xmi

j¼1
gijzij

s.t. Aixþ Biyþ
Xmi

j¼1
Dijzij� bi;
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where zijðj ¼ 1; . . .;miÞ is the solution to the ith middle-level follower’s jth bottom-
level follower’s problem:

min
zij2Zij

f 3ð Þ
ij x; y; zij
� � ¼ cijxþ dijyþ hijzij

s.t. Aijxþ Bijyþ Eijzij� bij:
ð6:29Þ
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Clearly, problem (6.29) is an uncooperative MFBL decision problem. It can be
solved by the multi-follower (uncooperative)Kth-Best algorithm given in Sect. 4.4.3,
or the multi-follower (uncooperative) Kuhn-Tucker approach given in Sect. 4.4.4.

Detailed procedures of the TLMF Kth-Best algorithm are presented as follows:

6.7.4 A Numerical Example

Anumerical example is adopted to illustrate how the TLMFKth-Best algorithmworks.

Example 6.3 Consider a TLMF decision problem in a linear version shown as
follows with x 2 R, y 2 R, zij 2 R and X ¼ fxjx� 0g, Yi ¼ fyjy� 0g,
Zij ¼ zijjzij� 0

� �
; i ¼ 1; 2;mi ¼ 2; j ¼ 1; . . .;mi:
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min
x2X

f 1ð Þ x; y; z11; z12; z21; z22ð Þ ¼ �1:5x� yþ 2z11 þ z12 � z21 � 1:5z22

s.t. xþ yþ z11 þ z12 þ z21 þ z22� 10;

x� 1:5;

min
y2Y1

f ð2Þ1 x; y; z11; z12ð Þ ¼ xþ yþ z11 þ z12

s.t. xþ yþ z11 þ z12� 6:5;

min
z112Z11

f ð3Þ11 x; y; z11ð Þ ¼ xþ yþ 3z11

s.t. xþ yþ z11� 3:5;

z11� 2;

min
z122Z12

f ð3Þ12 x; y; z12ð Þ ¼ xþ yþ 2z12

s.t. xþ yþ z12� 5;

z12� 4;

min
y2Y2

f ð2Þ2 x; y; z21; z22ð Þ ¼ x� yþ 2z21 þ 3z22

s.t. xþ yþ z21 þ z22� 5:5;

xþ y� 2;

min
z212Z21

f ð3Þ21 x; y; z21ð Þ ¼ xþ yþ 2z21

s.t. xþ yþ z21� 3;

z21� 2;

min
z222Z22

f ð3Þ22 x; y; z22ð Þ ¼ xþ yþ z22

s.t. xþ yþ z22� 4:5;

z22� 3:

We can adopt the TLMF Kth-Best algorithm to solve the linear semi-cooperative
decision problem. First, we have to solve a linear programming problem in the
format (6.28) of the leader.

Step 1: Set k ¼ 1 and adopt the simplex method to obtain the optimal solution to
the problem (6.28). The optimal solution to (6.28) is x1; y1; z111; z

1
12;

�
z121; z

1
22Þ ¼ ð1:5; 0:5; 1:5; 3; 2; 3Þ and now W ¼ ð1:5; 0:5; 1:5; 3; 2; 3Þf g

and T ¼ ;. Go to Step 2 and iteration 1 will start
Step 2: Put x ¼ 1:5 and i ¼ 1, and solve the BLMF decision problem in the form

of (6.29). We can obtain the optimal solution ŷ; ẑ11; ẑ12ð Þ ¼ ð0:5; 1:5; 3Þ
to (6.29) and go to Step 3

Step 3: Evidently, ŷ; ẑi1; . . .; ẑimið Þ ¼ yk; zki1; . . .; z
k
imi

� �
, i ¼ 1 and n ¼ 2, so

i 6¼ n, set i ¼ 2 and go to Step 2
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Step 2: Put x ¼ 1:5 and i ¼ 2, and solve the BLMF decision problem (6.29). We
can obtain the optimal solution ŷ; ẑ21; ẑ22ð Þ ¼ ð0:5; 1; 2:5Þ to (6.29) and
go to Step 3

Step 3: Now, ŷ; ẑi1; . . .; ẑimið Þ 6¼ yk; zki1; . . .; z
k
imi

� �
and go to Step 4

Step 4: Find the adjacent vertices of x1; y1; z111; z
1
12; z

1
21; z

1
22

� �
and the set

of adjacent vertices W1 ¼ 0; 2; 1:5; 3; 2; 3ð Þ; 1:5; 0:5; 1:5; 3; 1; 3ð Þ; ð1:5;f
0:5; 1:5; 3; 2; 2:5Þg; T ¼ ð1:5; 0:5; 1:5; 3; 2; 3Þf g;W ¼ f 0; 2; 1:5; 3;ð
2; 3Þ; 1:5; 0:5; 1:5; 3; 1; 3ð Þ; ð1:5; 0:5; 1:5; 3; 2; 2:5Þg. Go to Step 5

Step 5: Set k ¼ 2 and choose x2; y2; z211; z
2
12; z

2
21; z

2
22

� � ¼ ð0; 2; 1:5; 3; 2; 3Þ and
go to Step 2. This step means that iteration 1 has stopped and we cannot
obtain an optimal solution through the iteration. The next iteration will
be then executed.

In this way, we ultimately achieve the optimal solution through seven iterations.
The searched vertices and the detailed computing process of iterations 2–7 are
shown as Table 6.2.

In iteration 7, x7; y7; z711; z
7
12; z

7
21; z

7
22

� � ¼ ð1:5; 0:5; 1:5; 3; 1; 2:5Þ is the optimal
solution to the TLMF decision problem and the objective function values of all

decision entities are f 1ð Þ ¼ �1:5; f 2ð Þ
1 ¼ 6:5; f 2ð Þ

2 ¼ 10:5; f 3ð Þ
11 ¼ 6:5; f 3ð Þ

12 ¼ 8; f 3ð Þ
21 ¼ 4;

f 3ð Þ
22 ¼ 4:5:
It is worthwhile to note that W4 ¼ ; and W6 ¼ ; in Table 6.1 do not mean that

adjacent vertices of x4; y4; z411; z
4
12; z

4
21; z

4
22

� �
and x6; y6; z611; z

6
12; z

6
21; z

6
22

� �
do not exist

but may imply that their adjacent vertices have been found in previous iterations
and have been involved in W.

The results show that the TLMF Kth-Best algorithm provides a practical way of
solving the proposed TLMF decision problem. However, the computational load of
the algorithm may grow steeply with the number of variables and constraints.
Therefore, the execution efficiency of the TLMF Kth-Best algorithm is needed to
explore sufficient numeric experiments.

6.8 Summary

In a hierarchical organization, interactive decision entities exist within a predomi-
nantly hierarchical structure and the execution of decisions is sequential, from the
top to the middle and then to the bottom levels. Each entity independently maxi-
mizes its own objective, but is affected by the actions of other entities at the same or
different levels through externalities. Multiple followers commonly appear in both
middle and bottom levels and have various relationships with each other, which
results in the complication of this problem.

This chapter presents four main issues in the area: (1) it establishes a TLMF
decision framework which identifies 64 standard situations and their possible
combinations of TLMF decision problems; (2) it develops a DERD approach to
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effectively model various TLMF decision problems; (3) it gives a general and
standard set of models using both DERD and programming modeling approaches,
as well as hybrid TLMF decision models; (4) it presents solution concepts, theo-
retical properties and related algorithms for a TLMF decision problem.
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Chapter 7
Fuzzy Bi-level Decision Making

Various uncertain issues naturally appear in organizational bi-level decision prob-
lems. Fuzzy sets and fuzzy systems can be used to handle uncertainties. This chapter
introduces related definitions, theorems and models of fuzzy bi-level decision-making
(FBLDM) and develops related algorithms to solve the uncertain issues in bi-level
decision-making.

This chapter is organized as follows. Section 7.1 discusses uncertain issues in
bi-level decision-making and presents a framework for fuzzy bi-level multi-follower
(FBLMF) decision-making. Section 7.2 provides some concepts in related to fuzzy
sets and systems. Section 7.3 gives a fuzzy bi-level decision-making model and a
set of fuzzy bi-level multi-follower decision models. Based on the FBLDM model,
a definition of the optimal solution for the FBLDM problem and a fuzzy approx-
imation Kth-Best algorithm for this problem are proposed in Sect. 7.4. Section 7.5
presents a solution concept and method for solving the FBLMF decision problem.
Conclusions are discussed in Sect. 7.6.

7.1 Problem Identification

Although bi-level decision-making theory and technology have been well studied
and applied with remarkable success in different domains, most of the existing
solution approaches assume that the objective functions and constraints are char-
acterized with precise parameters. Accordingly, these parameters are required to be
fixed at some values in an experimental and/or subjective manner through the
experts’ understanding of the nature of them in the problem-formulation process. It
has been observed that, in most real-world situations, the possible values of these
parameters are often only imprecisely or ambiguously known to the experts who
establish this model. This may result in a difficulty to set parameters in the objective
functions or constraints of the used model.

Example 7.1 A logistics channel of a company concerns the movement of goods
from the source to the place of consumption. Decisions are made at two main
stages, supplier and distributor. The two stages are interrelated in a way that a

© Springer-Verlag Berlin Heidelberg 2015
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decision, such as price or commission, made at supplier stage affects the decision
making in its distributor stage. Also, the distributor executes its policies after, and in
view of, decisions made at the supplier level. The supplier and its distributor
independently maximize their net benefits or minimize their costs but the net benefits
or costs are always affected by the actions of the other. To model the bi-level
decision model, we need to establish the objective functions for both the leader and
follower. However, the parameters of the objective functions (as well as the con-
straint conditions) are often imprecise and uncertain since they are obtained from
experience or experiments which often contain uncertain information such as “about
$100”. Therefore the bi-level decision model will have uncertain parameters.

In terms of this observation and analysis, it would be certainly more appropriate
to interpret uncertain parameters as fuzzy numerical data which can be represented
by means of fuzzy sets (Zadeh 1965). A bi-level programming problem in which the
parameters, either in the objective functions or in the constraints, are described by
fuzzy values is called a fuzzy bi-level programming (FBLP) or a fuzzy bi-level
decision-making (FBLDM) problem.

Multiple followersmay be involved in a fuzzy bi-level decision.Aswe discussed in
Chap. 4, these followersmay have different objectives and/or different constraints, but
could work cooperatively through sharing variables involved in their objective and/or
constraints or they could work uncooperatively. Therefore the leader’s decision will
be affected not only by the followers’ individual reactions but also by the relationships
among the followers. This chapter deals with both fuzzy parameter andmulti-follower
situations by developing fuzzy bi-level multi-follower decision models and solution
methods. Referring to Table 7.1, the FBLMF has nine situations.

7.2 Fuzzy Sets and Systems

Fuzzy sets, introduced by Zadeh in 1965, provide us with a new mathematical tool to
deal with uncertainty of information. Since then, fuzzy set theory has been rapidly
developed and many successful real applications of fuzzy sets in wide-ranging fields

Table 7.1 A framework for fuzzy bi-level multi-follower decision-making

Relationships
among followers

Relationship factor Situation (F-Si)

Decision variables Objectives Constraints

Uncooperative Individual Individual Individual F-S1

Cooperative Sharing Sharing Sharing F-S2

Semi-cooperative Sharing Sharing Individual F-S3

Individual Sharing F-S4

Individual F-S5

Reference-
uncooperative

Individual, but taking
other followers’
variables as references

Sharing Sharing F-S6

Individual F-S7

Individual Sharing F-S8

Individual F-S9
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have been appearing. In this section, we will review basic concepts of fuzzy sets,
fuzzy relations, fuzzy numbers, linguistic variables, and fuzzy linear programming,
which will be used in the rest of the chapters in the book.

7.2.1 Fuzzy Sets

Definition 7.1 (Fuzzy set) Let X be a universal set. Then a fuzzy set ~A of X is
defined by its membership function:

l~A : X ! 0; 1½ �;
x�! l~A xð Þ 2 0; 1½ �: ð7:1Þ

The value of l~A xð Þ represents the grade of membership of x in X and is interpreted
as the degree to which x belongs to ~A, therefore the closer the value of l~A xð Þ is 1,
the more belongs to ~A.

A crisp or ordinary set A of X can also be viewed as a fuzzy set in X with a
membership function as its characteristic function, i.e.,

l~A ¼ 1; x 2 A;
0; x 62 A;

�
ð7:2Þ

A fuzzy set ~A can be characterised as a set of ordered pairs of elements x and its
grade l~A xð Þ and is noted

~A ¼ x; l~A xð Þ� �jx 2 X
� �

: ð7:3Þ

where each pair x; l~A xð Þ� �
is called a singleton.

When X is a countable set, a fuzzy set ~A on X is expressed as

~A ¼
X
xi2X

l xið Þ
xi

: ð7:4Þ

When X is a finite set whose elements are x1; x2; . . .; xn, a fuzzy set ~A on X is
expressed as

~A ¼ x1; l~A x1ð Þ� �
; x2; l~A x2ð Þ� �

; . . .; xn; l~A xnð Þ� �� �
: ð7:5Þ

When X is an infinite and uncountable set, a fuzzy set ~A on X is expressed as

~A ¼
Z
X

l xð Þ
x

: ð7:6Þ
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These expressions mean that the grade of membership of x is l~AðxÞ and the
operations ‘þ,’ ‘

P
,’ and ‘

R
’ do not refer to ordinary addition and integral but they

are union, and ‘/’ does not indicate an ordinary division but it is merely a marker.
The following basic notions are defined for fuzzy sets.

Definition 7.2 (Support of a fuzzy set) Let ~A be a fuzzy set on X. Then the support
of ~A, denoted by supp ~A

� �
, is the crisp set given by

supp ~A
� � ¼ x 2 Xjl~A xð Þ[ 0

� �
: ð7:7Þ

Definition 7.3 (Normal fuzzy set) Let ~A be a fuzzy set on X. The height of ~A,
denoted by hgt ~A

� �
, is defined as

hgt ~A
� � ¼ sup

x2X
l~A xð Þ: ð7:8Þ

If hgt ~A
� � ¼ 1, then the fuzzy set ~A is called a normal fuzzy set; otherwise it is

called subnormal.

Definition 7.4 (Empty fuzzy set) A fuzzy set ~A is empty, denoted by ;, if l~A xð Þ ¼ 0
for all x 2 X.

Definition 7.5 (a-cut) Let ~A be a fuzzy set on X and a 2 ½0; 1�. The a-cut of the
fuzzy set ~A is the crisp set Aa given by

Aa ¼ x 2 Xjl~A xð Þ� a
� �

: ð7:9Þ

7.2.2 Fuzzy Numbers

Definition 7.6 (Fuzzy number) A fuzzy set ~a on R is called a fuzzy number if it
satisfies the following conditions:

1. ~a is normal, i.e., there exists an x0 2 R such that l~a x0ð Þ ¼ 1;
2. aa is a closed interval for every a 2 ½0; 1�, noted by aLa ; a

R
a

� �
;

3. The support of ~a is bounded.

Let F(R) be the set of all fuzzy numbers on R. By the decomposition theorem of
fuzzy sets, we have

~a ¼
[

a2 0;1½ �
a aLa ; a

R
a

� �
; ð7:10Þ
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for every ~a 2 F Rð Þ. For any real number k 2 R, we define lkðxÞ by

lk xð Þ ¼ 1; x ¼ k;
0; x 6¼ k:

�

Then k 2 F Rð Þ.
Definition 7.7 A triangular fuzzy number ~a can be defined by a triplet aL0 ; a; a

R
0

� �
and the membership function l~a xð Þ is defined as:

l~a xð Þ ¼

0; x\aL0
x�aL0
a�aL0

; aL0 � x� a
aR0�x
aR0�a ; a� x� aR0
0; aR0\x

8>>>><
>>>>:

ð7:11Þ

where a ¼ aL1 ¼ aR1 .

Definition 7.8 If ~a is a fuzzy number and aLk [ 0 for any k 2 ð0; 1�, then ~a is called a
positive fuzzy number. Let F�

þðRÞ be the set of all finite positive fuzzy numbers on R.

Definition 7.9 For any ~a; ~b 2 F Rð Þ and 0\a 2 R, the sum ð~aþ ~bÞ, difference
ð~a� ~bÞ, scalar product ða~aÞ and product ð~a� ~bÞ of two fuzzy numbers are defined
by their membership functions:

l~aþ~b tð Þ ¼ sup min
t¼uþv

l~a uð Þ; l~b vð Þ� �
; ð7:12Þ

l~a�~b tð Þ ¼ sup min
t¼u�v

l~a uð Þ; l~b vð Þ� �
; ð7:13Þ

la~b tð Þ ¼ min
t¼au

l~a uð Þf g; ð7:14Þ

l~a�~b tð Þ ¼ sup min
t¼u�v

l~a uð Þ; l~b vð Þ� �
; ð7:15Þ

where we set sup ;f g ¼ �1.

Theorem 7.1 For any ~a; ~b 2 F Rð Þ, and 0\a 2 R,

~aþ ~b ¼
[

k2 0;1ð �
k aLk þ bLk ; a

R
k þ bRk

� �
;

~a� ~b ¼
[

k2 0;1ð �
k aLk � bRk ; a

R
k � bLk

� � ¼ ~aþ �~b
� �

¼
[

k2 0;1ð �
k aLk þ �bRk

� �
; aRk þ �bLk

� �� �
;

a~a ¼
[

k2ð0;1�
k a~aLk ; a~a

R
k

� �
;

~a� ~b ¼
[

k2ð0;1�
k aLk � bLk ; a

R
k � bRk

� �
:
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Definition 7.10 For any ~a 2 F�
þ Rð Þ and 0\a 2 Qþ (Qþ is a set of all positive

rational numbers), the positive fuzzy power a of ~a is defined by the membership
function:

l~aa tð Þ ¼ supmin
t¼ua

l~a uð Þf g ð7:16Þ

where we set sup ;f g ¼ �1.

Theorem 7.2 For any ~a 2 F�
þ Rð Þ and 0\a 2 Qþ,

~aa ¼
[

k2ð0;1�
k aLk
� �a

; aRk
� �a� �

:

Definition 7.11 Let ~a and ~b be two fuzzy numbers. We define:

1. ~a< ~b iff aLk � bLk and aRk � bRk , k 2 ð0; 1�;
2. ~a ¼ ~b iff ~a<~b and ~b<~a;
3. ~a � ~b iff ~a<~b and there exists a k0 2 ð0; 1� such that aLk0 [ bLk0 or a

R
k0
[ bRk0 .

Definition 7.12 If ~a is a fuzzy number and 0\aLk � aRk � 1, for any k 2 ð0; 1�, then
~a is called a normalized positive fuzzy number. Let F�

NðRÞ be the set of all
normalised positive triangular fuzzy numbers on R.

Definition 7.13 Let ~a, ~b 2 F Rð Þ. Then the quasi-distance function of ~a and ~b is
defined as

d ~a; ~b
� � Z1

0

1
2

aLk � bLk
� �2þ aRk � bRk

� �2h i
dk

0
@

1
A

1
2

:

Definition 7.14 Let ~a; ~b 2 F Rð Þ. Then the fuzzy number ~a is said to closer to the
fuzzy number ~b as d ~a; ~b

� �
approaches 0.

Proposition 7.1 If both ~a and ~b are real numbers, then the quasi-distance mea-
surement d ~a; ~b

� �
is identical to the Euclidean distance.

Proposition 7.2 Let ~a; ~b 2 F Rð Þ.
1. If they are identical, then d ~a; ~b

� � ¼ 0.

2. If ~a is a real number or ~b is a real number and d ~a; ~b
� � ¼ 0, then ~a ¼ ~b.

Proposition 7.3 Let ~a; ~b;~c 2 F Rð Þ. Then ~b is closer to ~a than ~c if and only if
d ~b; ~a
� �

\d ~c; ~að Þ.
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Proposition 7.4 Let ~a; ~b 2 F Rð Þ. If d ~a; 0ð Þ\d ~b; 0
� �

, then ~a is closer to 0 than ~b.

Definition 7.15 Let ~ai 2 F Rð Þ, i = 1, …, n. We define ~a ¼ ~a1; . . .; ~anð Þ as follows:

l~a : Rn ! 0; 1½ �;

x 7!
n̂

i¼1

l~aiðxiÞ;

where x ¼ x1; . . .; xnð ÞT2 Rn, and ~a is called an n-dimensional fuzzy number on Rn.
Let F(Rn) be the set of all n-dimensional fuzzy numbers on Rn.

Proposition 7.5 For every ~a 2 FðRnÞ, ~a is normal.

Proposition 7.6 For every ~a 2 FðRnÞ, the k-cut of ~a is an n-dimensional closed
rectangular region for any k 2 ð0; 1�.
Proposition 7.7 For every ~a 2 FðRnÞ; ~a is a convex fuzzy set, i.e.,

l~a kxþ 1� kð Þyð Þ= l~a xð Þ ^ l~a yð Þ;

whenever k 2 ½0; 1�, x = (x1, …, xn), y ¼ ðy1; . . .; ynÞ 2 Rn.

Proposition 7.8 For every ~a 2 FðRnÞ, and k1, k2 2 ð0; 1�, if k1 � k2, then
~ak2 	 ~ak1 .

Definition 7.16 For any ~a, ~b 2 FðRnÞ, and 0\a 2 R, the sum ð~aþ ~bÞ, difference
ð~a� ~bÞ, scalar product ða~aÞ and product ð~a� ~bÞ are defined by the membership
functions:

l~aþ~b xð Þ ¼
n̂

i¼1

l~aiþ~bi
xið Þ; ð7:17Þ

l~a�~b xð Þ ¼
n̂

i¼1

l~ai�~bi
xið Þ; ð7:18Þ

la~a xð Þ ¼
n̂

i¼1

la~ai xið Þ; ð7:19Þ

l~a�~b xð Þ ¼
n̂

i¼1

l~ai�~bi
ðxiÞ: ð7:20Þ
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Definition 7.17 For any ~a ¼ ~a1; . . .; ~anð Þ, ~ai 2 F�
þ Rð Þ (i = 1,…, n) and 0\a 2 Qþ,

l~aa xð Þ ¼
n̂

i¼1

l~aai ðxiÞ: ð7:21Þ

Definition 7.18 For any n-dimensional fuzzy numbers ~a, ~b 2 FðRnÞ, and a 2 ð0; 1�
we define:

1. ~a �
a
~b iff aLk = bLk and aRk = bRk , k 2 a; 1½ �;

2. ~a<a
~b iff aLk � bLk and aRk � bRk , k 2 a; 1½ �;

3. ~a �a
~b iff aLk [ bLk and aRk [ bRk , k 2 a; 1½ �.

We call the binary relations �, �, and � a fuzzy greater-than order, a strict fuzzy
greater-than order, and a strong fuzzy greater-than order, respectively.

Definition 7.19 Let ~a, ~b 2 F Rð Þ be two fuzzy numbers, the ranking of two fuzzy
numbers are defined as:

~a4 ~b if m ~að Þ\m ~b
� �

; ð7:22Þ

or

m ~að Þ ¼ m ~b
� �

and r ~að Þ� r ~b
� �

; ð7:23Þ

where the mean m ~að Þ and the standard deviation r ~að Þ are defined as:

m ~að Þ ¼
R
s ~að Þ x~a xð ÞdxR
s ~að Þ ~a xð Þdx ; ð7:24Þ

r ~að Þ ¼
R
s ~að Þ x

2~a xð ÞdxR
s ~að Þ ~a xð Þdx � m ~að Þð Þ2

 !1
2

; ð7:25Þ

where S ~að Þ ¼ xj~a xð Þ[ 0f g is the support of fuzzy number ~a.

For triangular fuzzy number ~a ¼ ðl;m; nÞ, we have

m ~að Þ ¼ 1
3

lþ mþ nð Þ; ð7:26Þ

r ~að Þ ¼ 1
18

l2 þ m2 þ n2 � lm� ln� mn
� �

: ð7:27Þ
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7.3 Fuzzy Bi-level Decision Models

In this section, we will present a set of fuzzy bi-level decision-making models. We
first propose a FBLDM model and a set of FBLMF decision-making models.

For x 2 X 	 Rn, the leader’s decision variable, y 2 Y 	 Rm, the follower’s
decision variable, F : X � Y ! FðRÞ, the leader’s objective function, and
f : X � Y ! FðRÞ, the follower’s objective function, in general, a linear FBLDM
model can be written as follows:

min
x2X

F x; yð Þ ¼ ~c1xþ ~d1y ð7:28aÞ

s:t: ~A1xþ ~B1y 
 ~b1; ð7:28bÞ

where y is the solution of the lower level problem

min
y2Y

f x; yð Þ ¼ ~c2xþ ~d2y ð7:28cÞ

s:t: ~A2xþ ~B2y 
 ~b2; ð7:28dÞ

where ~c1, ~c2 2 FðRnÞ, ~d1, ~d2 2 FðRmÞ, ~b1 2 FðRpÞ, ~b2 2 FðRqÞ, ~A1 2 FðRp�nÞ,
~B1 2 FðRp�mÞ, ~A2 2 FðRq�nÞ, ~B2 2 FðRq�nÞ.

Based on the normal bi-level decision-making model and the general model of
the bi-level multi-follower decision-making model discussed in Chap. 4, we give a
set of fuzzy bi-level multi-follower (FBLMF) decision models:

1. F-S1 Model for linear FBLMF decision problems
For x 2 X 	 Rn; yi 2 Yi 	 Rmi ;F : X � Y1 � � � � � Yk ! F Rð Þ; fi : X � Yi !
F Rð Þ, and i ¼ 1; . . .; k, a linear FBLMF decision model, in which kð� 2Þ fol-
lowers are involved and have individual decision variables, objective functions
and constraints, is defined as follows (this is called an uncooperative FBLMF
decision model).

min
x2X

F x; y1; . . .; ykð Þ ¼ ~cxþ
Xk
i¼1

~diyi

s:t: ~Axþ
Xk
i¼1

~Biyi 
 ~b;

ð7:29Þ

where yi is the solution to the ith follower’s problem:

min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ ~cixþ ~eiyi

s:t: ~Aixþ ~Ciyi 
 ~bi;
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where ~c;~ci 2 FðRnÞ; ~di;~ei 2 FðRmiÞ; ~A 2 FðRp�nÞ; ~Bi 2 FðRp�miÞ, ~b 2 FðRpÞ;
~Ai 2 FðRqi�nÞ; ~Ci 2 FðRqi�miÞ; ~bi 2 FðRqiÞ; i ¼ 1; . . .; k.

2. F-S2 Model for linear FBLMF decision problems
For x 2 X 	 Rn; y 2 Y 	 Rm;F : X � Y ! F Rð Þ; fi : X � Y ! F Rð Þ; i ¼ 1; . . .; k; a
linear FBLMF decision model, in which kð� 2Þ followers are involved and have
shared decision variables, objective functions and constraints, is defined as follows
(this is called a cooperative FBLMF decision model).

min
x2X

F x; yð Þ ¼ ~cxþ ~dy

s:t: ~Axþ ~By 
 ~b;
ð7:30Þ

where yi is the solution to the ith follower’s problem:

min
y2Y

fi x; yð Þ ¼ ~c0xþ ~d0yi

s:t: ~A0xþ ~B0y 
 ~b0;

where ~c;~c0 2 FðRnÞ; ~d; ~d0 2 FðRmÞ; ~A 2 FðRp�nÞ; ~B 2 FðRp�mÞ; ~b 2 FðRpÞ, ~A0 2 F
ðRq�nÞ; ~B0 2 FðRq�mÞ; ~b0 2 FðRqÞ.

3. F-S3 Model for linear FBLMF decision problems
For x 2 X 	 Rn; y 2 Yi 	 Rm;Y ¼ Y1

T � � �T Yk;F : X � Y ! F Rð Þ; fi : X�
Yi ! F Rð Þ; i ¼ 1; . . .; k, a linear FBLMF decision model, in which kð� 2Þ
followers are involved and have shared decision variables and objective func-
tions but different constraint, is defined as follows (this is called a semi-
cooperative FBLMF decision model).

min
x2X

F x; yð Þ ¼ ~cxþ ~dy

s:t: ~Axþ ~By 
 ~b;
ð7:31Þ

where y is the solution to the ith follower’s problem:

min
y2Yi

fi x; yð Þ ¼ ~c0xþ ~d0yi

s:t: ~Aixþ ~Ciyi 
 ~bi;

where ~c;~c0 2 FðRnÞ; ~d; ~d0 2 FðRmÞ; ~A 2 FðRp�nÞ; ~B 2 FðRp�mÞ; ~b 2 FðRpÞ, ~Ai 2 F
ðRqi�nÞ; ~Ci 2 FðRqi�mÞ; ~bi 2 FðRqiÞ; i ¼ 1; . . .; k.

4. F-S4 Model for linear FBLMF decision problems
For x 2 X 	 Rn; y 2 Y 	 Rm;F : X � Y ! F Rð Þ; fi : X � Y ! F Rð Þ; i ¼ 1; . . .; k, a
linear FBLMF decision model, in which kð� 2Þ followers are involved and have
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shared decision variables and constraints but different objective functions, is
defined as follows (this is also called a semi-cooperative FBLMF decision
model).

min
x2X

F x; yð Þ ¼ ~cxþ ~dy

s:t: ~Axþ ~By 
 ~b;
ð7:32Þ

where y is the solution to the ith follower’s problem:

min
y2Yi

fi x; yð Þ ¼ ~cixþ ~eiyi

s:t: ~A0xþ ~B0y 
 ~b0;

where ~c;~ci 2 FðRnÞ; ~d;~ei 2 FðRmÞ; ~A 2 FðRp�nÞ; ~B 2 FðRp�mÞ; ~b 2 FðRpÞ, ~A0 2 F
ðRq�nÞ; ~B0 2 FðRq�mÞ; ~b0 2 FðRqÞ; i ¼ 1; . . .; k.

5. F-S5 Model for linear FBLMF decision problems
For x 2 X 	 Rn; y 2 Yi 	 Rm;Y ¼ Y1

T � � �T Yk;F : X � Y ! F Rð Þ; fi : X�
Yi ! F Rð Þ; i ¼ 1; . . .; k; a linear FBLMF decision model, in which kð� 2Þ
followers are involved and have shared decision variables but different objective
functions and constraints, is defined as follows (this is also called a semi-
cooperative FBLMF decision model).

min
x2X

F x; yð Þ ¼ ~cxþ ~dy

s:t: ~Axþ ~By 
 ~b;
ð7:33Þ

where y is the solution to the ith follower’s problem:

min
y2Yi

fi x; yð Þ ¼ ~cixþ ~eiyi

s:t: ~Aixþ ~Ciyi 
 ~bi;

where ~c;~ci 2 FðRnÞ; ~d;~ei 2 FðRmÞ; ~A 2 FðRp�nÞ; ~B 2 FðRp�mÞ; ~b 2 FðRpÞ, ~Ai 2 F
ðRqi�nÞ; ~Ci 2 FðRqi�mÞ; ~bi 2 FðRqiÞ; i ¼ 1; . . .; k.

6. F-S6 Model for linear FBLMF decision problems
For x 2 X 	 Rn; yi 2 Yi 	 Rmi ;F : X � Y1 � � � � � Yk ! F Rð Þ; fi : X � Y1 �
� � � � Yk ! F Rð Þ; i ¼ 1; . . .; k; a linear FBLMF decision model, in which
kð� 2Þ followers are involved and there are individual decision variables in the
shared objective functions and constraints among them, but the followers take
other followers’ decision variables as references, is defined as follows (this is
called a reference-uncooperative FBLMF decision model).
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min
x2X

F x; y1; . . .; ykð Þ ¼ ~cxþ
Xk
i¼1

~diyi

s:t: ~Axþ
Xk
i¼1

~Biyi 
 ~b;

ð7:34Þ

where yi is the solution to the ith follower’s problem:

min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ ~c0xþ
Xk
i¼1

~eiyi

s:t: ~A0xþ
Xk
i¼1

~Ciyi 
 ~b0;

where ~c;~c0 2 FðRnÞ; ~di;~ei 2 FðRmiÞ; ~A 2 FðRp�nÞ; ~Bi 2 FðRp�miÞ; ~b 2 FðRpÞ, ~A0 2
F ðRq�nÞ; ~Ci 2 FðRq�miÞ; ~b0 2 FðRqÞ; i ¼ 1; . . .; k.

7. F-S7 Model for linear FBLMF decision problems
For x 2 X 	 Rn; yi 2 Yi 	 Rmi ;F : X � Y1 � � � � � Yk ! F Rð Þ; fi : X � Y1 �
� � � � Yk ! F Rð Þ; i ¼ 1; . . .; k; a linear FBLMF decision model, in which
k � 2ð Þ followers are involved and there are individual decision variables in the
shared objective functions and separate constraints among them, but the fol-
lowers take other followers’ decision variables as references, is defined as fol-
lows (this is also called a reference-uncooperative FBLMF decision model).

min
x2X

F x; y1; . . .; ykð Þ ¼ ~cxþ
Xk
i¼1

~diyi

s:t: ~Axþ
Xk
i¼1

~Biyi 
 ~b;

ð7:35Þ

where yi is the solution to the ith follower’s problem:

min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ ~c0xþ
Xk
i¼1

~eiyi

s:t: ~Aixþ
Xk
s¼1

~Cisys 
 ~bi;
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where ~c;~c0 2 FðRnÞ; ~di;~ei 2 FðRmiÞ; ~A 2 FðRp�nÞ; ~Bi 2 FðRp�miÞ; ~b 2 FðRpÞ, ~Ai 2
F ðRqi�nÞ; ~Cis 2 FðRqi�miÞ; ~bi 2 FðRqiÞ; i; s ¼ 1; . . .; k.

8. F-S8 Model for linear FBLMF decision problems
For x 2 X 	 Rn; yi 2 Yi 	 Rmi ;F : X � Y1 � � � � � Yk ! F Rð Þ; fi : X � Y1 �
� � � � Yk ! F Rð Þ; i ¼ 1; . . .; k; a linear FBLMF decision model, in which
kð� 2Þ followers are involved and there are individual decision variables in the
separate objective functions and shared constraints among them, but the fol-
lowers take other followers’ decision variables as references, is defined as fol-
lows (this is also called a reference-uncooperative FBLMF decision model).

min
x2X

F x; y1; . . .; ykð Þ ¼ ~cxþ
Xk
i¼1

~diyi

s:t: ~Axþ
Xk
i¼1

~Biyi 
 ~b;

where yi is the solution to the ith follower’s problem:

min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ ~cixþ
Xk
s¼1

~eisys

s:t: ~A0xþ
Xk
i¼1

~Ciyi 
 ~b0;

where ~c;~ci 2 FðRnÞ; ~di;~eis 2 FðRmiÞ; ~A 2 FðRp�nÞ; ~Bi 2 FðRp�miÞ; ~b 2 ðRpÞ, ~A0 2 F
ðRq�nÞ; ~Ci 2 FðRq�miÞ; ~b0 2 FðRqÞ; i; s ¼ 1; . . .; k.

9. F-S9 Model for linear FBLMF decision problems
For x 2 X 	 Rn; yi 2 Yi 	 Rmi ;F : X � Y1 � � � � � Yk ! F Rð Þ; fi : X � Y1 �
� � � � Yk ! F Rð Þ; i ¼ 1; . . .; k; a linear FBLMF decision model, in which
kð� 2Þ followers are involved and there are individual decision variables in the
separate objective functions and constraints among them, but the followers take
other followers’ decision variables as references, is defined as follows (this is
also called a reference-uncooperative FBLMF decision model).

min
x2X

F x; y1; . . .; ykð Þ ¼ ~cxþ
Xk
i¼1

~diyi

s:t: ~Axþ
Xk

i¼1
~Biyi 
 ~b;
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where yi is the solution to the ith follower’s problem:

min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ ~cixþ
Xk
s¼1

~eisys

s:t: ~Aixþ
Xk

i¼1
~Cisys 
 ~bi;

where ~c;~ci 2 FðRnÞ; ~di;~eis 2 FðRmiÞ; ~A 2 FðRp�nÞ; ~Bi 2 FðRp�miÞ; ~b 2 FðRpÞ, ~Ai 2 F
ðRqi�nÞ; ~Cis 2 FðRqi�miÞ; ~bi 2 FðRqiÞ; i; s ¼ 1; . . .; k.

We will discuss related solution concepts and solution methods in Sect. 7.4.

7.4 Fuzzy Approximation Kth-Best Algorithm

7.4.1 Property and Algorithm

Based on the FBLDM model proposed in Sect. 7.3, we integrate the classic
Kth-Best algorithm and fuzzy number techniques (Zadeh 1975) into our proposed
fuzzy approximation Kth-Best (FA-Kth-Best) algorithm to deal with the FBLDM
problem.

Turning to solve the FBLDM problem, we first need to transfer the FBLDM
problem into a non-fuzzy bi-level decision problem. In related to the FBLDM
problem, we now consider the following multi-objective linear bi-level program-
ming problem:

For x 2 X 	 Rn, y 2 Y 	 Rm, F : X � Y ! F Rð Þ, and f : X � Y ! FðRÞ,

min
x2X

F x; yð Þð ÞLk ¼ c1
L
kxþ d1

L
ky; k 2 0; 1½ �

min
x2X

F x; yð Þð ÞRk ¼ c1Rkxþ d1Rky; k 2 0; 1½ � ð7:36aÞ

s:t: A1
L
kxþ B1

L
ky 5 b1Lk ;A1

R
kxþ B1

R
ky5 b1Rk ; k 2 0; 1½ � ð7:36bÞ

min
y2Y

f x; yð Þð ÞLk ¼ c2
L
kxþ d2

L
ky; k 2 0; 1½ �

min
y2Y

f x; yð Þð ÞRk ¼ c2
R
kxþ d2

R
ky; k 2 0; 1½ � ð7:36cÞ

s:t: A2
L
kxþ B2

L
ky 5 b2

L
k ;A2

R
kxþ B2

R
ky5 b2

R
k ; k 2 0; 1½ � ð7:36dÞ
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where c1Lk , c1Rk , c2Lk , c2Rk 2 Rn, d1Lk , d1Rk , d2Lk , d2Rk 2 Rm, b1Lk , b1Rk 2 Rp, b2Lk ,
b2Rk 2 Rq, A1

L
k ¼ aijLk

� �
, A1

R
k ¼ aijRk

� � 2 Rp�n, B1
L
k ¼ bijLk

� �
, B1

R
k ¼ bijRk

� � 2 Rp�m,
A2

L
k ¼ eijLk

� �
, A2

R
k ¼ eijRk

� � 2 Rq�n, B2
L
k ¼ sijLk

� �
, B2

R
k ¼ sijRk

� � 2 Rq�m.

For simplicity, we denote the constraint region of problem (7.36a–7.36d) by

S ¼ x; yð ÞjA1
L
kxþ B1

L
ky� b1

L
k ;A1

R
kxþ B1

R
ky� b1

R
k ;A2

L
kx

�
þB2

L
ky� b2

L
k ;A2

R
kxþ B2

L
ky� b2

L
k ; k 2 0; 1½ ��:

Note that problem (7.36a–7.36d) is a deterministic multi-objective linear bi-level
programming problem. It is difficult to obtain the complete optimal solution of the
lower level problem, even though it does not exist in some practical problems, since
the lower level is a multi-objective optimization problem. To overcome this com-
plication, we define the solutions of the lower level problem by means of Pareto
optimality in the multi-objective optimization problem.

We also give some definitions of the problem (7.36a–7.36d).

Definition 7.20 For each fixed x, the constraint region of the lower level problem is:

S xð Þ ¼ yjA2
L
kxþ B2

L
ky� b2

L
k ;A2

R
kxþ B2

R
ky� b2

R
k ; k 2 0; 1½ �� �

:

Definition 7.21 A point y� 2 Sðx�Þ is called a Pareto optimal solution to the lower
level problem in the problem (7.36a–7.36d) if there is no y 2 Sðx�Þ such that

c2
L
kxþ d2

L
ky� c2

L
kx

� þ d2
L
ky

�;

c2
R
kxþ d2

R
ky� c2

R
kx

� þ d2
R
ky

�:

with at least one strong inequality, and k 2 0; 1½ �.
Denote the set of Pareto optimal solutions of the lower level problem by P xð Þ.

Definition 7.22 The feasible region of the problem (7.36a–7.36d) is defined as:

IR ¼ f x; yð Þj x; yð Þ 2 S; y 2 P xð Þg:

Thus, the problem (7.36a–7.36d) can be equivalently written as:

min
x;y

ðc1Lkxþ d1
L
ky; c1

R
kxþ d1

R
kyÞ

s:t: x; yð Þ 2 IR:

We then introduce the definitions of the solutions of the problem (7.36a–7.36d).
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Definition 7.23 A point x�; y�ð Þ 2 IR is said to be a complete optimal solution to
the problem (7.36a–7.36d) if it holds that

c1
L
kx

� þ d1
L
ky

� � c1
L
kxþ d1

L
ky;

c1Rkx
� þ d1Rky

� � c1Rkxþ d1Rky;

for k 2 0; 1½ � and all x; yð Þ 2 IR.

Definition 7.24 A point x�; y�ð Þ 2 IR is said to be a Pareto optimal solution to the
problem (7.36a–7.36d) if there is no x; yð Þ 2 IR such that

c1
L
kxþ d1

L
ky� c1

L
kx

� þ d1
L
ky

�;

c1
R
kxþ d1

R
ky� c1

R
kx

� þ d1
R
ky

�;

with at least one strong inequality, and k 2 0; 1½ �.
Definition 7.25 A point x�; y�ð Þ 2 IR is said to be a weak Pareto optimal solution
to the problem (7.36a–7.36d) if there is no x; yð Þ 2 IR such that

c1
L
kxþ d1

L
ky\c1

L
kx

� þ d1
L
ky

�;

c1
R
kxþ d1

R
ky\c1

R
kx

� þ d1
R
ky

�;

with at least one strong inequality, and k 2 0; 1½ �.
Theorem 7.3 Problems (7.29) and (7.36a–7.36d) are equivalent for k 2 0; 1½ �.
Proof It follows from Definition (7.10) that the objective functions of both prob-
lems are equal. From Definition (7.11), it is easy to check that the constraint regions
of the two problems are the same. This completes the proof. h

Lemma 7.1 If there is x�; y�ð Þ such that cLaxþ dLay� cLax
� þ dLay

�, cLbxþ
dLby� cLbx

� þ dLby
�, cRaxþ dRa y� cRax

� þ dRa y
�, and cRbxþ dRby� cRbx

� þ dRby
� for any

x; yð Þ 2 Rn � Rm 0� b\a� 1ð Þ and fuzzy sets ~c and ~d have a trapezoidal mem-
bership function (Fig. 7.1):

Fig. 7.1 The trapezoidal
membership function
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l~e xð Þ ¼

0 x\eLb
a�b
eLa�eLb

x� cLb
	 


þ b eLb � x\eLa
a eLa � x� eRa
a�b
eRa�eRb

x� eRb
	 


þ b eRa\x� eRb
0 eRa\x� eRb

8>>>>>>><
>>>>>>>:

then

cLkxþ dLky� cLkx
� þ dLky

�;

cRkxþ dRk y� cRkx
� þ dRk y

�;

for any k 2 b; a½ �.
Theorem 7.4 For x 2 X 	 Rn, y 2 Y 	 Rm, if all the fuzzy parameters ~aij, ~bij, ~eij,
~sij, ~ci, ~b1, ~b2, and ~di have trapezoidal membership functions in the FBLDM problem
(7.29),

l~z tð Þ ¼

0 t\zLb
a�b
zLa�zLb

t � zLb
	 


þ b zLb � t� zLa
a zLa � t\zRa
a�b
zRb�zRa

�t þ zRb
	 


þ b zRa � t� zRb
0 zRb\t

8>>>>>>><
>>>>>>>:

ð7:37Þ

where ~z denotes ~aij, ~bij, ~eij, ~sij, ~ci, ~b1, ~b2, and ~di respectively, then x�; y�ð Þ is a
complete optimal solution to the problem (7.36a–7.36d) if and only if x�; y�ð Þ is a
complete optimal solution to the multi-objective linear bi-level programming
(MOL-BLP) problem (7.38a–7.38d):

min
x2X

F x; yð Þð ÞLa ¼ c1
L
axþ d1

L
ay;

min
x2X

F x; yð Þð ÞRa ¼ c1
R
axþ d1

R
ay;

min
x2X

F x; yð Þð ÞLb ¼ c1
L
bxþ d1

L
by;

min
x2X

F x; yð Þð ÞRb ¼ c1
R
bxþ d1

R
by;

ð7:38aÞ

s:t: A1
L
axþ B1

L
ay� b1 L

a ;

A1
R
axþ B1

R
ay� b1 R

a ;

A1
L
bxþ B1

L
by� b1 L

b;

A1
R
bxþ B1

R
by� b1 R

b ;

ð7:38bÞ
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min
y2Y

f x; yð Þð ÞLa ¼ c2
L
axþ d2

L
ay;

min
y2Y

f x; yð Þð ÞRa ¼ c2
R
axþ d2

R
ay;

min
y2Y

f x; yð Þð ÞLb ¼ c2
L
bxþ d2

L
by;

min
y2Y

f x; yð Þð ÞRb ¼ c2
R
bxþ d2

R
by;

ð7:38cÞ

s:t: A2
L
axþ B2

L
ay� b2

L
a ;

A2
R
axþ B2

R
ay� b2

R
a ;

A2
L
bxþ B2

L
by� b2

L
b;

A2
R
bxþ B2

R
by� b2

R
b :

ð7:38dÞ

Proof Denote the constraint regions of (7.36a–7.36d) and (7.38a–7.38d) by S1 and
S2, the feasible regions by IR1 and IR2 respectively. Now in order to show that the
sets IR1 and IR2 are the same, we first prove S1 and S2 are equal.

For any k 2 b; a½ �, it is easy to check that if x; yð Þ satisfies (7.36b) and (7.36d),
then it satisfies (7.38b) and (7.38d). Now we prove, if x; yð Þ satisfies (7.38b) and
(7.38d), then it satisfies (7.36b) and (7.36d). In fact, for any k 2 b; a½ �,

aij
L
k ¼ k� b

a� b
aij

L
a � aij

L
b

	 

þ aij

L
b;

bij
L
k ¼ k� b

a� b
bij

L
a � bij

L
b

	 

þ bij

L
b;

b1
R
k ¼ k� b

a� b
b1

R
a � b1

R
b

	 

þ b1

R
b ;

we have

A1
L
kxþ B1

L
ky ¼ aij

L
k

� �
xþ bij

L
k

� �
y

¼ k� b
a� b

aij
L
a � aij

L
b

	 

þ aij

L
b

� �
xþ k� b

a� b
bij

L
a � bij

L
b

	 

þ bij

L
b

� �
y

¼ k� b
a� b

aij
L
a

� �
xþ 1� k� b

a� b

� �
aij

L
b

	 

xþ k� b

a� b
bij

L
a

� �
yþ 1� k� b

a� b

� �
bij

L
b

	 

y

¼ k� b
a� b

aij
L
a

� �
xþ bij

L
a

� �
y

� �þ 1� k� b
a� b

� �
aij

L
b

	 

xþ bij

L
b

	 

y

	 


¼ k� b
a� b

A1
L
a

� �
xþ B1

L
a

� �
y

� �þ 1� k� b
a� b

� �
A1

L
b

	 

xþ B1

L
b

	 

y

	 


� k� b
a� b

b1
L
a þ 1� k� b

a� b

� �
b1

L
b ¼ b1

L
k
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from (7.38b). Similarly, we can prove

A1
R
kxþ B1

R
ky� b1

R
k ;

A2
L
kxþ B2

L
ky� b2

L
k ;

A2
R
kxþ B2

R
ky� b2

R
k ;

for any k 2 b; a½ � from (7.38b) and (7.38d).
Thus, S1 ¼ S2.
In order to show IR1 ¼ IR2, we consider the following two cases.

Case 1 For any ðx; yÞ 2 IR2, we prove ðx; yÞ 2 IR1.
It follows from ðx; yÞ 2 IR2 that ðx; yÞ 2 S2, and then ðx; yÞ 2 S1. We prove this
result by contradiction, and assume that ðx; yÞ is not a feasible point of problem
(7.36a–7.36d). Thus, there exists y0 such that ðx; y0Þ 2 S1, and

f x; y0ð Þð ÞLk � f x; yð Þð ÞLk and f x; y0ð Þð ÞRk � f x; yð Þð ÞRk ;

which imply that

f x; y0ð Þð ÞLa � f x; yð Þð ÞLa ;
f x; y0ð Þð ÞRa � f x; yð Þð ÞRa ;
f x; y0ð Þð ÞLb � f x; yð Þð ÞLb;
f x; y0ð Þð ÞRb � f x; yð Þð ÞRb :

That is, ðx; yÞ is not a feasible point of the problem (7.38a–7.38d), which contradicts
the definition of ðx; yÞ. Hence, ðx; yÞ 2 IR1, and then IR1 � IR2.

Case 2 For any ðx; yÞ 2 IR1, we prove ðx; yÞ 2 IR2.
It follows from ðx; yÞ 2 IR1 that ðx; yÞ 2 S1, and then ðx; yÞ 2 S2. We prove this
result by contradiction, and assume that ðx; yÞ is not a feasible point of the problem
(7.38a–7.38d). Thus, there exists y0 such that ðx; y0Þ 2 S2, and

f x; y0ð Þð ÞLa � f x; yð Þð ÞLa ;
f x; y0ð Þð ÞRa � f x; yð Þð ÞRa ;
f x; y0ð Þð ÞLb � f x; yð Þð ÞLb;
f x; y0ð Þð ÞRb � f x; yð Þð ÞRb ;
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It follows from Lemma 7.1 that

f x; y0ð Þð ÞLk � f x; yð Þð ÞLk and f x; y0ð Þð ÞRk � f x; yð Þð ÞRk ;

which contradicts ðx; yÞ 2 IR1. Hence, ðx; yÞ 2 IR2, and then IR2 � IR1.
Therefore, IR2 ¼ IR1.
Now, we prove this theorem. If x�; y�ð Þ is a complete optimal solution to the

problem (7.38a–7.38d), then for any ðx; yÞ 2 IR2, we have

F x�; y�ð Þð ÞLa � F x; yð Þð ÞLa ;
F x�; y�ð Þð ÞRa � F x; yð Þð ÞRa ;
F x�; y�ð Þð ÞLb � F x; yð Þð ÞLb;
F x�; y�ð Þð ÞRb � F x; yð Þð ÞRb :

It follows from Lemma 7.1 that

F x�; y�ð Þð ÞLk � F x; yð Þð ÞLk and F x�; y�ð Þð ÞRk � F x; yð Þð ÞRk :

Thus, x�; y�ð Þ is a complete optimal solution to the problem (7.36a–7.36d).
Furthermore, if x�; y�ð Þ is a complete optimal solution to the problem (7.36a–

7.36d), then for any ðx; yÞ 2 IR1, we find

F x�; y�ð Þð ÞLk � F x; yð Þð ÞLk and F x�; y�ð Þð ÞRk � F x; yð Þð ÞRk :

Obviously, x�; y�ð Þ is a complete optimal solution to the problem (7.38a–7.38d).
The proof is complete. h

Theorem 7.5 For x 2 X 	 Rn, y 2 Y 	 Rm, if all the fuzzy parameters ~aij, ~bij, ~eij,~sij,
~ci, ~b1, ~b2, and ~di have trapezoidal membership functions (7.37) in the FBLDM
problem (7.29), then x�; y�ð Þ is a Pareto optimal solution to the problem (7.36a–
7.36d) if and only if x�; y�ð Þ is a Pareto optimal solution to the problem (7.38a–7.38d).

Proof Clearly, it follows from the proof of Theorem 7.4 that the feasible regions of
problems (7.36a–7.36d) and (7.38a–7.38d) are the same. Let x�; y�ð Þ be a Pareto
optimal solution to the problem (7.36a–7.36d). We prove it is also a Pareto optimal
solution to the problem (7.38a–7.38d) by contradiction, and suppose that there
exists a �x;�yð Þ 2 IR2 such that, for k ¼ a; b,
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F �x;�yð Þð ÞLk � F x�; y�ð Þð ÞLk ;
F �x;�yð Þð ÞRk � F x�; y�ð Þð ÞRk;

By using Lemma 7.1, for any k 2 b; a½ �, we have

F �x;�yð Þð ÞLk � F x�; y�ð Þð ÞLk and F �x;�yð Þð ÞRk � F x�; y�ð Þð ÞRk ;

which contradicts the assumption that x�; y�ð Þ is a Pareto optimal solution to the
problem (7.36a–7.36d). Thus, x�; y�ð Þ is a Pareto optimal solution to the problem
(7.38a–7.38d).

Let x�; y�ð Þ be a Pareto optimal solution to the problem (7.38a–7.38d). If x�; y�ð Þ
is not a Pareto optimal solution to the problem (7.36a–7.36d), then there exist
�x;�yð Þ 2 IR1 such that

F �x;�yð Þð ÞLk � F x�; y�ð Þð ÞLk ;
F �x;�yð Þð ÞRk � F x�; y�ð Þð ÞRk ;

Hence, for k ¼ a and k ¼ b, we have

F �x;�yð Þð ÞLa � F x�; y�ð Þð ÞLa ;
F �x;�yð Þð ÞRa � F x�; y�ð Þð ÞRa ;
F �x;�yð Þð ÞLb � F x�; y�ð Þð ÞLb;
F �x;�yð Þð ÞRb � F x�; y�ð Þð ÞRb ;

which contradicts the assumption that x�; y�ð Þ is a Pareto optimal solution to the
problem (7.38a–7.38d), and then x�; y�ð Þ is a Pareto optimal solution to the problem
(7.36a–7.36d). This completes the proof. h

Theorem 7.6 For x 2 X 	 Rn, y 2 Y 	 Rm, if all the fuzzy parameters ~aij, ~bij, ~eij,
~sij, ~ci, ~b1, ~b2, and ~di have trapezoidal membership functions (7.37) in the problem
(7.29), then x�; y�ð Þ is a weak Pareto optimal solution to the problem (7.36a–7.36d)
if and only if x�; y�ð Þ is a weak Pareto optimal solution to the problem (7.38a–7.38d).

Proof The proof is similar to that of Theorem 7.5. h
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To obtain a solution of the FBLDM problem (7.29), we only need to solve the
problem (7.38a–7.38d). However, the lower level problem of the problem (7.38a–
7.38d) is a multi-objective programming scenario. It is not true if we assume the
follower’s rational reaction set P xð Þ is a point-to-point map with respect to x. To
deal with this difficulty, there are at least three approaches, e.g. the optimistic
formulation, pessimistic formulation (Dempe 2002), and selection function
approach (Dempe and Starostina 2006). Since the follower has preferences
(weighting) in related to the objectives, we adopt the third approach, i.e. the
selection function approach, for solving the problem (7.38a–7.38d). Using the
weighting method (Sakawa 1993), we can transform the problem (7.38a–7.38d)
into a linear bi-level programming problem, and the resulting problem can be
solved by the Kth-Best algorithm. Now, this section will introduce a fuzzy
approximation Kth-Best algorithm to solve the FBLDM problem and a case-based
example is used to illustrate the proposed approach.

A case-based example will be given to illustrate the proposed algorithm in the
next section.
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7.4.2 Illustrative Examples

We give examples here to illustrate how to use the proposed FBLDM decision
model and the Fuzzy Approximation Kth-Best algorithm for solving the FBLDM
problems in practice.

Example 7.2 In a logistic system, consider min
x2X

Fðx; yÞ ¼ ~1x� ~2y is a simplified

objective function of a supplier, and min
y2Y

f1 x; yð Þ ¼ ~1xþ ~1y is a simplified objective

function of its distributor, with x 2 R1, y 2 R1, and X ¼ xjx� 0f g, Y ¼ yjy� 0f g,

min
x2X

F x; yð Þ ¼ ~1x� ~2y

s:t: �~1xþ ~3 y 
 ~4;

min
y2Y

f x; yð Þ ¼ ~1xþ ~1y

s:t: ~1x� ~1y 
 ~0;

�~1x� ~1y 
 ~0;

ð7:39Þ

where

l~1 tð Þ ¼
0; t\0
t; 0� t\1
2� t; 1� t\2
0; 2� t

8>><
>>: ; l~2 tð Þ ¼

0; t\1
t � 1; 1� t\2
3� t; 2� t\3
0; 3� t

8>><
>>:

l~3 tð Þ ¼
0; t\2
t � 2; 2� t\3
4� t; 3� t\4
0; 4� t

8>><
>>: ; l~4 tð Þ ¼

0; t\3
t � 3; 3� t\4
5� t; 4� t\5
0; 5� t

8>><
>>:

l~0 tð Þ ¼
0; t\� 1
t þ 1; 1� t\0
1� t; 0� t\1
0; 1� t

8>><
>>:

The proposed Fuzzy Approximation Kth-Best algorithm is used for solving the
problem (7.39) by the following steps.

Step 0: Set l ¼ 1:
Step 1: Give their weights for fuzzy objectives of every leader and follower andP2lþ1

j¼1 wj1 ¼ 1 and
P2lþ1

j¼1 wj2 ¼ 1, respectively.
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Step 2: By using Theorem 7.5, transfer the problem (7.39) to the following
problem:

min
x2X

f x; yð Þð ÞLðRÞ1 ¼ x� 2y

min
x2X

F x; yð Þð ÞL0¼ �3y

min
x2X

F x; yð Þð ÞR0¼ 2x� y

s:t: �1xþ 3y� 4;

�2xþ 2y� 3;

0xþ 4y� 5;

min
y2Y

f x; yð Þð ÞLðRÞ1 ¼ 1xþ 1y

min
y2Y

f x; yð Þð ÞL0¼ 0xþ 0y

min
y2Y

f x; yð Þð ÞR0¼ 2xþ 2y

s:t: 1x� 1y� 0;

0x� 2y� � 1;

2x� 0y� 1;

�1x� 1y� 0;

0x� 0y� 0;

�2x� 2y� � 1:

Step 3: Let the interval ½0; 1� be decomposed into mean sub-intervals with
2l þ 1
� �

nodes ki i ¼ 0; 1; . . .; 2l
� �

, which are arranged in the order of
0 ¼ k0\k1\ � � �\k2l ¼ 1 and a range of errors ε > 0.

Step 4: The problem is then transferred to the following linear bi-level pro-
gramming problem by using the weighting method.

min
x2X

F x; yð Þð Þ ¼ 3x� 6y

s:t: �1xþ 3y� 4;

�2xþ 2y� 3;

0xþ 4y� 5;

min
y2Y

f x; yð Þð Þ ¼ 3xþ 3y

s:t: 1x� 1y� 0;

0x� 2y� � 1;

2x� 0y� 1;

�1x� 1y� 0;

0x� 0y� 0;

�2x� 2y� 1:
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Step 5: The result is x; yð Þ21¼ ð0; 0:5Þ, and

F x; yð Þð ÞLðRÞ1 ¼ �1;

F x; yð Þð ÞL0¼ �1:5;

F x; yð Þð ÞR0¼ �0:5;

f x; yð Þð ÞL Rð Þ
1 ¼ 0:5;

f x; yð Þð ÞL0¼ 0;

f x; yð Þð ÞR0¼ 1:

Step 2: When l ¼ 2, we solve the following problem:

min
x2X

F x; yð Þð ÞLðRÞ1 ¼ x� 2y

min
x2X

F x; yð Þð ÞL1
2
¼ 0:5x� 2:5y

min
x2X

F x; yð Þð ÞL0¼ �3y

min
x2X

F x; yð Þð ÞR1
2
¼ 1:5x� 1:5y

min
x2X

F x; yð Þð ÞR0¼ 2x� y

s:t: �1xþ 3y� 4;

�1:5xþ 2:5y� 3:5;

�2xþ 2y� 3;

�0:5xþ 3:5y� 4:5;

0xþ 4y� 5;

min
y2Y

f x; yð Þð ÞLðRÞ1 ¼ 1xþ 1y

min
y2Y

f x; yð Þð ÞL1
2
¼ 0:5xþ 0:5y

min
y2Y

f x; yð Þð ÞL0¼ 0xþ 0y

min
y2Y

f x; yð Þð ÞR1
2
¼ 1:5xþ 1:5y

min
y2Y

f x; yð Þð ÞR0¼ 2xþ 2y
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s:t: 1x� 1y� 0;

0:5x� 1:5y��0:5;

0x� 2y� � 1;

1:5x� 0:5y� 0:5;

2x� 0y� 1;

�1:5x� 1:5y��0:5;

�1x� 1y� 0;

�2x� 2y��1;

0x� 0y� 0;

�0:5x� 0:5y� 0:5:

Step 4: The problem is then transferred to the following linear bi-level pro-
gramming problem by using method of weighting

min
x2X

F x; yð Þð Þ ¼ 5x� 10y

s:t: �1xþ 3y� 4;

�1:5xþ 2:5y� 3:5;

�2xþ 2y� 3;

�0:5xþ 3:5y� 4:5;

0xþ 4y� 5;

min
y2Y

f x; yð Þð Þ ¼ 5xþ 5y

s:t: 1x� 1y� 0;

0:5x� 1:5y��0:5;

0x� 2y��1;

1:5x� 0:5y� 0:5;

2x� 0y� 1;

�1:5x� 1:5y��0:5;

�1x� 1y� 0;

�2x� 2y��1;

0x� 0y� 0;

�0:5x� 0:5y� 0:5:
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Step 5: The result is x; yð Þ22¼ ð0; 0:5Þ, and

F x; yð Þð ÞLðRÞ1 ¼ �1;

F x; yð Þð ÞL1
2
¼ �1:25;

F x; yð Þð ÞL0¼ �1:5;

F x; yð Þð ÞR1
2
¼ �0:75;

F x; yð Þð ÞR0¼ �0:5;

f x; yð Þð ÞLðRÞ1 ¼ 0:5;

f x; yð Þð ÞL1
2
¼ 0:25;

f x; yð Þð ÞL0¼ 0;

f x; yð Þð ÞR1
2
¼ 0:75;

f x; yð Þð ÞR0¼ 1:

Step 6: Since k x; yð Þ22� x; yð Þ21k¼ 0; x; yð Þ ¼ ð0; 0:5Þ is the optimal solution for
this example. We have the solution x ¼ 0; y ¼ 0:5 of the problem (7.39)
with F x; yð Þ ¼ �0:5� ~2 and f x; yð Þ ¼ 0:5� ~1:

In summary, since the logistics planning problem involves two decision entities
at a hierarchical structure, we have handled it by the bi-level decision techniques.
When modeling this problem in practice, uncertain factors are often involved. That
is, the parameters of the bi-level decision model for logistics planning, involved in
the objective functions and constraints, are uncertain values. It therefore becomes a
fuzzy bi-level decision problem. We apply the developed fuzzy-number-based
Kth-Best algorithm to find an optimal solution for this problem.

7.5 Fuzzy Multi-Follower Approximation Kth-Best
Algorithm

To model a real-world bi-level decision problem, some uncertain parameters often
appear in the objective functions and/or constraints of the leader and/or the fol-
lower. Also, multiple followers may be involved in a decision problem and work
cooperatively according to each of the possible decisions made by the leader, but
they may have different objectives and/or constraints. Following previous sections
and the BLMF decision problem presented in Chap. 4, this section proposes a fuzzy
multi-follower approximation Kth-Best algorithm to solve the FBLMF problem.

Associated with the FBLMF decision problem F-S9, we now consider the fol-
lowing linear bi-level multi-follower decision problem:
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For x 2 X 	 Rn; yi 2 Yi 	 Rmi ;F : X � Y1 � � � � � Yk ! F Rð Þ; fi : X � Y1 � � � � �
Yk ! F Rð Þ, and i ¼ 1; . . .; k,

min
x2X

F x; y1; . . .; ykð Þð ÞLðRÞk ¼ cLðRÞk xþ
Xk
j¼1

dj
LðRÞ
k yj; k 2 0; 1½ � ð7:40aÞ

s:t: ALðRÞ
k xþ

Xk
j¼1

Bj
LðRÞ
k yj � bLðRÞk ; k 2 0; 1½ � ð7:40bÞ

where yi is the solution to the ith follower’s problem:

min
yi2Yi

fi x; y1; . . .; ykð Þð ÞLðRÞk ¼ ci
LðRÞ
k xþ

Xk
s¼1

eis
LðRÞ
k ys; k 2 0; 1½ � ð7:40cÞ

Ai
LðRÞ
k xþ

Xk
s¼1

Cis
LðRÞ
k ys � bi

LðRÞ
k ; k 2 0; 1½ � ð7:40dÞ

where cLðRÞk ; ci
LðRÞ
k 2 Rn, dj

LðRÞ
k 2 Rmj ; eis

LðRÞ
k 2 Rms ;ALðRÞ

k 2 Rp�n, Bj
LðRÞ
k 2 Rp�mj ,

bLðRÞk 2 Rp;Ai
L Rð Þ
k 2 Rqi�n;Cis

L Rð Þ
k 2 Rqi�ms ; bi

LðRÞ
k 2 Rqi .

By using Definition 7.18, we have the following results.

Theorem 7.7 Let x�; y�1; . . .; y
�
k

� �
be the optimal solution of the BLMF problem

defined by (7.40a–7.40d). Then it is also an optimal solution of the FBLMF decision
problem defined by F-S9.

We can prove the following theorem similar to the proof of Theorem 7.4.

Theorem 7.8 If all the fuzzy parameters of F-S9 have triangular membership
functions:

l~zi tð Þ ¼

0; ti\zL0i
ti�zL0i
zi�zL0i

; zL0i � ti\zi
zR0i�ti
zR0i�zi

; zi � ti\zR0i
0; ti � zR0i

8>>>><
>>>>:

then x�; y�1; . . .; y
�
k

� �
is a complete optimal solution to the problem (7.40a–7.40d)

if and only if x�; y�1; . . .; y
�
k

� �
is a complete optimal solution to themulti-objective

bi-level multi-follower (MO-BLMF) problem:
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min
x2X

F x; y1; . . .; ykð Þð Þc¼ cxþ
Xk
i¼1

diyi

min
x2X

F x; y1; . . .; ykð Þð ÞL0¼ cL0xþ
Xk
i¼1

dLi0yi

min
x2X

F x; y1; . . .; ykð Þð ÞR0¼ cR0xþ
Xk
i¼1

dRi0yi

s:t: Axþ Pk
ði¼0Þ

Biyi � b;

AL
0xþ

Pk
i¼0

BL
i0yi � bL0 ;

AR
0xþ

Pk
i¼0

BR
i0yi � bR0 ;

min
yi2Yi

fi x; y1; . . .; ykð Þð Þc¼ cixþ
Xk
j¼1

eijyj

min
yi2Yi

fi x; y1; . . .; ykð Þð ÞL0¼ cLi0xþ
Xk
j¼1

eLij0yj

min
yi2Yi

fi x; y1; . . .; ykð Þð ÞR0¼ cRi0xþ
Xk
j¼1

eRij0yj

s:t: Aixþ
Pk
j¼0

Cijyj � bi;

AL
i0xþ

Pk
j¼0

CL
ij0yj � bLi0;

AR
i0xþ

Pk
j¼0

CR
ij0yj � bRi0:

ð7:41Þ

To solve the problem (7.41), we can transform it into the following problem by
employing the weighting method (Sakawa 1993):

min
x2X

F x; y1; . . .; ykð Þð Þa¼ cxþ
Xk
i¼1

diyi þ cL0xþ
Xk
i¼1

dLi0yi þ cR0xþ
Xk
i¼1

dRi0yi

s:t: AxþPk
i¼0

Biyi � b;

AL
0xþ

Pk
i¼0

BL
i0yi � bL0 ;

AR
0xþ

Pk
i¼0

BR
i0yi � bR0 ;

ð7:42Þ

7.5 Fuzzy Multi-follower Approximation Kth-Best Algorithm 203



min
yi2Yi

fi x; y1; . . .; ykð Þ ¼ cixþ
Xk
j¼1

eijyj þ cLi0xþ
Xk
j¼1

eLij0yj þ cRi0xþ
Xk
j¼1

eRij0yj

s:t: Aixþ
Pk
j¼0

Cijyj � bi;

AL
i0xþ

Pk
j¼0

CL
ij0yj � bLi0;

AR
i0xþ

Pk
j¼0

CR
ij0yj � bRi0:

Note that the problem (7.42) is a general linear bi-level multi-follower problem
which has been discussed in Sect. 4.6. Denoting the constraint region of the
problem (7.42) by S, we can easily obtain the following result by Theorem 4.11.

Theorem 7.9 The solution of the linear BLMFproblem (7.42) occurs at a vertex of S.

Theorem 7.9 has provided the theoretical foundation for our new approach to
solve FBLMF decision problems. According to the objective function of the upper
level, we apply the descendent order to all the extreme points on S, and select the
first extreme point to check if it is on the inducible region IR. If yes, the current
extreme point is the optimal solution. Otherwise, we select the next one and check
it.

Based on the above results, we propose a fuzzy multi-follower approximation
Kth-Best algorithm to solve the FBLMF decision problem F-S9 as follows:

204 7 Fuzzy Bi-level Decision Making

http://dx.doi.org/10.1007/978-3-662-46059-7_4
http://dx.doi.org/10.1007/978-3-662-46059-7_4


7.6 Summary

This chapter first discusses uncertain issue in bi-level decision-making. After
introducing fuzzy sets and related concepts, it presents a fuzzy bi-level decision-
making model and a set of fuzzy bi-level multi-follower decision-making models. It
then presents a set of algorithms to solve these problems. The proposed fuzzy
approximation Kth-Best algorithm and fuzzy multi-follower approximation
Kth-Best algorithm will have a wide range of applications in terms of dealing with
various fuzzy bi-level decision-making problems.
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Chapter 8
Fuzzy Multi-objective Bi-level Decision
Making

In Chap. 7, we presented a set of solution approaches and related algorithms to
solve a fuzzy bi-level programming problem. This chapter extends the results given
in Chap. 7 by adding the capability to handle the multi-objective issue, that is, the
leader, or the follower, or both have multiple objectives. We call it fuzzy multi-
objective bi-level programming (FMO-BLP) or fuzzy multi-objective bi-level
decision-making (FMO-BLD). Obviously, the fuzzy bi-level programming devel-
oped in Chap. 7 is a special case of the FMO-BLP. To obtain a solution for the
FMO-BLP problem, we develop a fuzzy approximation Kuhn-Tucker approach.
The approach can deal with various complex FMO-BLP problems and allow the
parameters in the FMO-BLP model to be any form of membership functions.

The rest of this chapter is organized as follows. Section 8.1 identifies the FMO-BLP
problem. Section 8.2 defines the FMO-BLP model and reviews related theorems and
properties of the FMO-BLP problem. A fuzzy approximation Kuhn-Tucker approach
and related examples for solving the FMO-BLP problem is presented in Sect. 8.3.
A summary is given in Sect. 8.4.

8.1 Problem Identification

In some situations of bi-level decision problems, multiple conflicting objectives
may need to be considered simultaneously by the leader, or the follower, or both.
For example, a coordinator of a multi-division firm considers three objectives in
making an aggregate production plan: to maximize net profits, quality of products,
and workers’ satisfaction. The three objectives are in conflict with each other, but
must be considered simultaneously. Any improvement in one objective may be
achieved only at the expense of others. The multi-objective optimization problem
has been well researched by many researchers. However, in a bi-level model, the
selection of a solution for the leader is not only a compromised solution for the
three objective functions of the leader, but also is affected by the follower’s optimal
reactions. Therefore, how to find an optimal solution for a multiple objectives
bi-level program is a new issue.

© Springer-Verlag Berlin Heidelberg 2015
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Furthermore, fuzzy parameters may be in the objective functions or the constraints
or both since uncertain values are often involved in a bi-level decision problem in
practice aswementioned in Chap. 7. This results in a FMO-BLP problem. In addition,
there may be multiple followers involved in the FMO-BLP problem, that is, the fuzzy
multi-objective bi-level multi-follower (FMO-BLMF) decision problem.

In the following sections, we will mainly consider the linear version of the
FMO-BLP problem.

8.2 Fuzzy Multi-objective Bi-level Decision Model

In this section, we present a FMO-BLP model and review related definitions,
theorems and properties for the FMO-BLP problem.

Consider the following FMO-BLP problem:
For x 2 X � Rn, y 2 Y � Rm, F : X � Y ! F� Rð Þð Þs, and f : X � Y !

F� Rð Þð Þt,

min
x2X

F x; yð Þ ¼ ~c11xþ ~d11y;~c21xþ ~d21y; . . .;~cs1xþ ~ds1y
� � ð8:1aÞ

s:t: ~A1xþ ~B1y5 ~b1; ð8:1bÞ

min
y2Y

f x; yð Þ ¼ ~c12xþ ~d12y;~c22xþ ~d22y; . . .;~ct2xþ ~dt2y
� � ð8:1cÞ

s:t: ~A2xþ ~B2y5 ~b2; ð8:1dÞ

where ~ci1;~cj2 2 F� Rð Þð Þn; ~di1; ~dj2 2 F� Rð Þð Þm, ~b1 2 F� Rð Þð Þp, ~b2 2 F� Rð Þð Þq, ~A1 ¼
~aij
� �

p�n, ~aij 2 F� Rð Þ, ~B1 ¼ ~bij
� �

p�m,
~bij 2 F� Rð Þ, ~A2 ¼ ~eij

� �
q�n, ~eij 2 F� Rð Þ,

~B2 ¼ ~sij
� �

q�m, ~sij 2 F� Rð Þ; i ¼ 1; 2; . . .; s, j ¼ 1; 2; . . .; t.

For the sake of simplicity, denote the constraint region of problem (8.1a)–(8.1d)
by

~S ¼ x; yð Þ j ~A1xþ ~B1y5 ~b1; ~A2xþ ~B2y5 ~b2
� �

:

We assume that ~S is compact.
In the FMO-BLP problem (8.1a)–(8.1d), F x; yð Þ ¼ F1 x; yð Þ; . . .;Fs x; yð Þð Þ and

f x; yð Þ ¼ f1 x; yð Þ; . . .; ft x; yð Þð Þ of the leader and the follower are s-dimensional and
t-dimensional fuzzy numbers, respectively.

Since problem (8.1a)–(8.1d) has fuzzy variables, we first use the k-level sets of
fuzzy variables to describe the objective functions and the constraints. The FMO-
BLP problem (8.1a)–(8.1d) can be reformulated as the following multi-objective
bi-level programming problem:
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min
x2X

F x; yð Þð ÞL Rð Þ
k ¼ F1 x; yð Þð ÞLk ; F1 x; yð Þð ÞRk ; . . .; Fs x; yð Þð ÞLk ; Fs x; yð Þð ÞRk

� � ð8:2aÞ

s:t: A1
L
kxþ B1

L
ky� b1

L
k ;A1

R
kxþ B1

R
ky� b1

R
k ; k 2 0;1½ � ð8:2bÞ

min
y2Y

f x; yð Þð ÞL Rð Þ
k ¼ f1 x; yð Þð ÞLk ; f1 x; yð Þð ÞRk ; . . .; ft x; yð Þð ÞLk ; ft x; yð Þð ÞRk

� � ð8:2cÞ

s:t: A2
L
kxþ B2

L
ky� b2

L
k ;A2

R
kxþ B2

R
ky� b2

R
k ; k 2 0;1½ � ð8:2dÞ

where Fi x; yð Þð ÞLk¼ ci1 L
kxþ di1 L

ky, ci1
L
k ; ci1

R
k ; cj2

L
k ; cj2

R
k 2 Rn, di1 L

k ; di1
R
k ; dj2

L
k ; dj2

R
k 2 Rm,

b1 L
k ; b1

R
k 2 Rp, b2 L

k ; b2
R
k 2 Rq, A1

L
k ¼ aij Lk

� �
, A1

R
k ¼ aij Rk

� � 2 Rp�n, fi x; yð Þð ÞLk¼
cj2 L

kxþ dj2 L
ky;A2

L
k ¼ eij Lk

� �
;A2

R
k ¼ eij Rk

� � 2 Rq�n, B1
L
k ¼ bij Lk

� �
, B1

R
k ¼ bij Rk

� � 2 Rp�m,
B2

L
k ¼ sij Lk

� �
, B2

R
k ¼ sij Rk

� � 2 Rq�n, k 2 0;1½ �; i ¼ 1; . . .; s, j ¼ 1; . . .; t.
For simplicity, we denote the constraint region of problem (8.2a)–(8.2d) by

S ¼ x; yð ÞjA1
L
kxþ B1

L
ky� b1 L

k ;A1
R
kxþ B1

R
ky� b1 R

k

�
, A2

L
kxþ B2

L
ky� b2 L

k ;A2
R
kxþ

B2
R
kyg � b2 R

k

�
, and assume that S is compact.

Clearly, problem (8.2a)–(8.2d) is a deterministic multi-objective linear bi-level
programming problem. It is difficult to obtain the complete optimal solution of the
lower level problem; such a solution does not exist to some practical problems,
since the lower level is a multi-objective optimization problem. To overcome this
difficulty, we define the solutions of the lower level problem by means of Pareto
optimality in multi-objective optimization problem.

Next, we give some definitions of the problem (8.2a)–(8.2d).

Definition 8.1 For each fixed x, the constraint region of the lower level problem is:

S xð Þ ¼ y jA2
L
kxþ B2

L
ky� b2

L
k ;A2

R
kxþ B2

R
ky� b2

R
k ; k 2 0;1½ �� �

:

Definition 8.2 A point y� 2 Sðx�Þ is called a Pareto optimal solution to the lower
level problem in problem (8.2a)–(8.2d) if there is no y 2 Sðx�Þ such that

f1 x; yð Þð ÞLk � f1 x�; y�ð Þð ÞLk ;
f1 x; yð Þð ÞRk � f1 x�; y�ð Þð ÞRk ;

..

.

ft x; yð Þð ÞLk � ft x
�; y�ð Þð ÞLk ;

ft x; yð Þð ÞRk � ft x
�; y�ð Þð ÞRk ;

with at least one strong inequality, and k 2 0;1½ �.

Denote the set of Pareto optimal solutions of the lower level problem by P xð Þ.
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Definition 8.3 The feasible region of the problem (8.2a)–(8.2d) is defined as:

IR ¼ f x; yð Þ j x; yð Þ 2 S; y 2 P xð Þg:

Thus, problem (8.2a)–(8.2d) can be equivalently written as:

min
x;y

F x; yð Þð ÞL Rð Þ
k ¼ ð F1 x; yð Þð ÞLk ; F1 x; yð Þð ÞRk ; . . .; Fs x; yð Þð ÞLk ; Fs x; yð Þð ÞRk Þ

s:t: x; yð Þ 2 IR:

We then introduce the definitions of the solutions of problem (8.2a)–(8.2d).

Definition 8.4 A point x�; y�ð Þ 2 IR is called a complete optimal solution to
problem (8.2a)–(8.2d) if it holds that

F1 x�; y�ð Þð ÞLk � F1 x; yð Þð ÞLk ;
F1 x�; y�ð Þð ÞRk � F1 x; yð Þð ÞRk ;

..

.

Fs x
�; y�ð Þð ÞLk � Fs x; yð Þð ÞLk ;

Fs x
�; y�ð Þð ÞRk � Fs x; yð Þð ÞRk ;

for k 2 0;1½ � and all x; yð Þ 2 IR.

Definition 8.5 A point x�; y�ð Þ 2 IR is called a Pareto optimal solution to problem
(8.2a)–(8.2d) if there is no x; yð Þ 2 IR such that

F1 x; yð Þð ÞLk � F1 x�; y�ð Þð ÞLk ;
F1 x; yð Þð ÞRk � F1 x�; y�ð Þð ÞRk ;

..

.

Fs x; yð Þð ÞLk � Fs x�; y�ð Þð ÞLk ;
Fs x; yð Þð ÞRk � Fs x

�; y�ð Þð ÞRk ;

with at least one strong inequality, and k 2 0;1½ �.

210 8 Fuzzy Multi-objective Bi-level Decision Making



Definition 8.6 A point x�; y�ð Þ 2 IR is called a weak Pareto optimal solution to
problem (8.2a)–(8.2d) if there is no x; yð Þ 2 IR such that

F1 x; yð Þð ÞLk\ F1 x�; y�ð Þð ÞLk ;
F1 x; yð Þð ÞRk\ F1 x�; y�ð Þð ÞRk ;

..

.

Fs x; yð Þð ÞLk\ Fs x
�; y�ð Þð ÞLk ;

Fs x; yð Þð ÞRk\ Fs x
�; y�ð Þð ÞRk ;

with at least one strong inequality, and k 2 0;1½ �.
Theorem 8.1 Problems (8.1a)–(8.1d) and (8.2a)–(8.2d) are equivalent for
k 2 0;1½ �.
Proof It follows from Definition (7.10) that the objective functions of both prob-
lems are equal. From Definition (7.11), it is easy to check that the constraint regions
of the two problems are the same. This completes the proof. h

Lemma 8.1 If there is x�; y�ð Þ such that cLaxþ dLay� cLax
� þ dLay

�, cLbxþ dLby�
cLbx

� þ dLby
�, cRaxþ dRa y� cRax

� þ dRa y
�, and cRbxþ dRby� cRbx

� þ dRby
� for any

x; yð Þ 2 Rn � Rm 0� b\a� 1ð Þ and fuzzy sets ~c and ~d have a trapezoidal mem-
bership function which is also shown in Fig. 8.1:

l~e xð Þ ¼

0; x\eLb
a�b
eLa�eLb

x� cLb
� �

þ b; eLb � x\eLa
a; eLa � x� eRa
a�b
eRa�eRb

x� eRb
� �

þ b; eRa\x� eRb
0; eRb\x

8>>>>>>><
>>>>>>>:

Fig. 8.1 The trapezoidal
membership function
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then we have
cLkxþ dLky� cLkx

� þ dLky
�;

cRkxþ dRk y� cRkx
� þ dRk y

�;

for any k 2 b;a½ �.
Theorem 8.2 For x 2 X � Rn, y 2 Y � Rm, if all the fuzzy parameters ~aij, ~bij, ~eij,
~sij, ~cij, ~b1, ~b2, and ~dij have trapezoidal membership functions in the FMO-BLP
problem (8.1a)–(8.1d),

l~z tð Þ ¼

0; t\zLb
a�b
zLa�zLb

t � zLb
� �

þ b; zLb � t� zLa

a; zLa � t\zRa
a�b
zRb�zRa

�t þ zRb
� �

þ b; zRa � t� zRb

0; zRb\t

8>>>>>>>><
>>>>>>>>:

ð8:3Þ

where ~z denotes ~aij, ~bij, ~eij, ~sij, ~cij, ~b1, ~b2, and ~dij respectively, then x�; y�ð Þ is a
complete optimal solution to the problem (8.2a)–(8.2d) if and only if x�; y�ð Þ is a
complete optimal solution to the multi-objective linear bi-level programming
(MOL-BLP) problem:

min
x2X

F1 x; yð Þð ÞLa ¼ c11
L
axþ d11

L
ay

min
x2X

F1 x; yð Þð ÞRa ¼ c11
R
axþ d11

R
ay

min
x2X

F1 x; yð Þð ÞLb ¼ c11
L
bxþ d11

L
by

min
x2X

F1 x; yð Þð ÞRb ¼ c11
R
bxþ d11

R
by

..

.

min
x2X

Fs x; yð Þð ÞLa ¼ cs1
L
axþ ds1

L
ay

min
x2X

Fs x; yð Þð ÞRa ¼ cs1
R
axþ ds1

R
ay

min
x2X

Fs x; yð Þð ÞLb ¼ cs1
L
bxþ ds1

L
by

min
x2X

Fs x; yð Þð ÞRb ¼ cs1
R
bxþ ds1

R
by

ð8:4aÞ

s:t: A1
L
axþ B1

L
ay� b1

L
a ;

A1
R
axþ B1

R
ay� b1

R
a ;

A1
L
bxþ B1

L
by� b1

L
b;

A1
R
bxþ B1

R
by� b1

R
b ;

ð8:4bÞ
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min
y2Y

f1 x; yð Þð ÞLa ¼ c12
L
axþ d12

L
ay

min
y2Y

f1 x; yð Þð ÞRa ¼ c12
R
axþ d12

R
ay

min
y2Y

f1 x; yð Þð ÞLb ¼ c12
L
bxþ d12

L
by

min
y2Y

f1 x; yð Þð ÞRb ¼ c12
R
bxþ d12

R
by

..

.

min
y2Y

ft x; yð Þð ÞLa ¼ ct2
L
axþ dt2

L
ay

min
y2Y

ft x; yð Þð ÞRa ¼ ct2
R
axþ dt2

R
ay

min
y2Y

ft x; yð Þð ÞLb ¼ ct2
L
bxþ dt2

L
by

min
y2Y

ft x; yð Þð ÞRb ¼ ct2
R
bxþ dt2

R
by

ð8:4cÞ

s:t: A2
L
axþ B2

L
ay� b2

L
a ;

A2
R
axþ B2

R
ay� b2 R

a ;

A2
L
bxþ B2

L
by� b2

L
b;

A2
R
bxþ B2

R
by� b2

R
b :

ð8:4dÞ

Proof Denote the constraint regions of (8.2a)–(8.2d) and (8.4a)–(8.4d) by S1 and
S2, the feasible regions by IR1 and IR2 respectively. Now in order to show that the
sets IR1 and IR2 are the same, we first prove that S1 and S2 are equal.

For any k 2 b;a½ �, it is easy to verify that if x; yð Þ satisfies (8.2b) and (8.2d), then
it satisfies (8.4b) and (8.4d). Now we prove, if x; yð Þ satisfies (8.4b) and (8.4d), then
it satisfies (8.2b) and (8.2d). In fact, for any k 2 b;a½ �,

aij
L
k ¼ k� b

a� b
aij

L
a � aij

L
b

� �
þ aij

L
b;

bij
L
k ¼ k� b

a� b
bij

L
a � bij

L
b

� �
þ bij

L
b;

b1
R
k ¼ k� b

a� b
b1

R
a � b1

R
b

� �
þ b1

R
b ;
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we have
A1

L
kxþ B1

L
ky ¼ aij

L
k

� �
xþ bij

L
k

� �
y

¼ k� b
a� b

aij
L
a � aij

L
b

� �
þ aij

L
b

� 	
x

þ k� b
a� b

bij
L
a � bij

L
b

� �
þ bij

L
b

� 	
y

¼ k� b
a� b

aij
L
a

� �
xþ 1� k� b

a� b

� 	
aij

L
b

� �
x

þ k� b
a� b

bij
L
a

� �
yþ 1� k� b

a� b

� 	
bij

L
b

� �
y

¼ k� b
a� b

aij
L
a

� �
xþ bij

L
a

� �
y

� �

þ 1� k� b
a� b

� 	
aij

L
b

� �
xþ bij

L
b

� �
y

� �

¼ k� b
a� b

A1
L
a

� �
xþ B1

L
a

� �
y

� �

þ 1� k� b
a� b

� 	
A1

L
b

� �
xþ B1

L
b

� �
y

� �

� k� b
a� b

b1
L
a þ 1� k� b

a� b

� 	
b1

L
b ¼ b1

L
k

from (8.4b). Similarly, we can obtain that

A1
R
kxþ B1

R
ky� b1

R
k ;

A2
L
kxþ B2

L
ky� b2

L
k ;

A2
R
kxþ B2

R
ky� b2

R
k ;

for any k 2 b;a½ � from (8.4b) and (8.4d).
Thus, S1 ¼ S2.
Next, we will prove that IR1 ¼ IR2, and consider the following two cases.

Case 1 For any ðx; yÞ 2 IR2, we prove ðx; yÞ 2 IR1.
It follows from ðx; yÞ 2 IR2 that ðx; yÞ 2 S2, and then ðx; yÞ 2 S1. We prove this
result by contradiction, and assume that ðx; yÞ is not a feasible point of problem
(8.2a)–(8.2d). Thus, there exists y0 such that ðx; y0Þ 2 S1, and

fj x; y0ð Þ� �L
k � fj x; yð Þ� �L

kand fj x; y0ð Þ� �R
k � fj x; yð Þ� �R

k ; j ¼ 1; 2; . . .; t;

which imply that
fj x; y

0ð Þ� �L
a � fj x; yð Þ� �L

a ;

fj x; y
0ð Þ� �R

a � fj x; yð Þ� �R
a ;

fj x; y
0ð Þ� �L

b � fj x; yð Þ� �L
b;

fj x; y
0ð Þ� �R

b � fj x; yð Þ� �R
b ; j ¼ 1; 2; . . .; t
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That is, ðx; yÞ is not a feasible point of problem (8.4a)–(8.4d), which contradicts
the definition of ðx; yÞ. Hence, ðx; yÞ 2 IR1, and then IR1 	 IR2.

Case 2 For any ðx; yÞ 2 IR1, we prove ðx; yÞ 2 IR2.
It follows from ðx; yÞ 2 IR1 that ðx; yÞ 2 S1, and then ðx; yÞ 2 S2. We prove this
result by contradiction, and assume that ðx; yÞ is not a feasible point of problem
(8.4a)–(8.4d). Thus, there exists y0 such that ðx; y0Þ 2 S2, and

fj x; y
0ð Þ� �L

a � fj x; yð Þ� �L
a ;

fj x; y
0ð Þ� �R

a � fj x; yð Þ� �R
a ;

fj x; y
0ð Þ� �L

b � fj x; yð Þ� �L
b;

fj x; y
0ð Þ� �R

b � fj x; yð Þ� �R
b ; j ¼ 1; 2; . . .; t:

It follows from Lemma 8.1 that

fj x; y
0ð Þ� �L

k � fj x; yð Þ� �L
k and fj x; y

0ð Þ� �R
k � fj x; yð Þ� �R

k ; j ¼ 1; 2; . . .; t;

which contradicts ðx; yÞ 2 IR1. Hence, ðx; yÞ 2 IR2, and then IR2 	 IR1.
Therefore, IR2 ¼ IR1.
Now, if x�; y�ð Þ is a complete optimal solution to problem (8.4a)–(8.4d), then for

any ðx; yÞ 2 IR2, we have

Fj x
�; y�ð Þ� �L

a � Fj x; yð Þ� �L
a ;

Fj x
�; y�ð Þ� �R

a � Fj x; yð Þ� �R
a ;

Fj x
�; y�ð Þ� �L

b � Fj x; yð Þ� �L
b;

Fj x
�; y�ð Þ� �R

b � Fj x; yð Þ� �R
b ; j ¼ 1; 2; . . .; t:

It follows from Lemma 8.1 that

Fj x
�; y�ð Þ� �L

k � Fj x; yð Þ� �L
k and Fj x

�; y�ð Þ� �R
k � Fj x; yð Þ� �R

k ; j ¼ 1; 2; . . .; t:

Thus, x�; y�ð Þ is a complete optimal solution to problem (8.2a)–(8.2d).
Furthermore, if x�; y�ð Þ is a complete optimal solution to problem (8.2a)–(8.2d),

then for any ðx; yÞ 2 IR1, we find that

Fj x
�; y�ð Þ� �L

k � Fj x; yð Þ� �L
k and Fj x

�; y�ð Þ� �R
k � Fj x; yð Þ� �R

k ; j ¼ 1; 2; . . .; t:

Obviously, x�; y�ð Þ is a complete optimal solution to problem (8.4a)–(8.4d).
The proof is complete. h
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Corollary 8.1 For x 2 X � Rn, y 2 Y � Rm, if all the fuzzy parameters ~aij, ~bij, ~eij,
~sij, ~cij, ~b1, ~b2, and ~dij have piecewise trapezoidal membership functions in the FMO-
BLP problem (8.1a)–(8.1d),

l~z tð Þ ¼

0; t\zLa0
a1�a0
zLa1�zLa0

t � zLa0

� �
þ a0; zLa0 � t\zLa1

a1�a0
zLa2�zLa1

t � zLa1

� �
þ a1; zLa1 � t\zLa2

..

. ..
.

a; zLan�1
� t\zLan

an�an�1
zRan�1

�zRan
�t þ zRan�1

� �
þ an�1; zRan � t\zRan�1

..

. ..
.

an�an�1
zRan�1

�zRan
�t þ zRan�1

� �
þ an�1; zRa1 � t\zRa0

0; zRa0\t

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð8:5Þ

where ~z denotes ~aij, ~bij, ~eij, ~sij, ~cij, ~b1, ~b2, and ~dij respectively, then x�; y�ð Þ is a
complete optimal solution to the problem (8.2a)–(8.2d) if and only if x�; y�ð Þ is a
complete optimal solution to the following multi-objective linear bi-level pro-
gramming (MOL-BLP) problem:

min
x2X

F1 x; yð Þð ÞLa0 ¼ c11
L
a0xþ d11

L
a 0
y

..

.

min
x2X

F1 x; yð Þð ÞLan ¼ c11
L
anxþ d11

L
any

min
x2X

F1 x; yð Þð ÞRa0 ¼ c11
R
a0xþ d11

R
a0y

..

.

min
x2X

F1 x; yð Þð ÞRan ¼ c11
R
an
xþ d11

R
an
y

..

.

min
x2X

Fs x; yð Þð ÞLa0 ¼ cs1
L
a0xþ ds1

L
a0y

..

.

min
x2X

Fs x; yð Þð ÞLan ¼ cs1
L
anxþ ds1

L
any

min
x2X

Fs x; yð Þð ÞRa0 ¼ cs1
R
a0
xþ ds1

R
a0
y

..

.

min
x2X

Fs x; yð Þð ÞRan ¼ cs1
R
anxþ ds1

R
any

ð8:6aÞ
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s:t: A1
L
a0xþ B1

L
a0y� b1 L

a0 ;

..

.

A1
L
anxþ B1

L
any� b1 L

an ;
A1

R
a0xþ B1

R
a0y� b1 R

a0 ;

..

.

A1
R
anxþ B1

R
any� b1 R

an

ð8:6bÞ

min
y2Y

f1 x; yð Þð ÞLa0 ¼ c12
L
a0xþ d12

L
a0y

..

.

min
y2Y

f1 x; yð Þð ÞLan ¼ c12
L
an
xþ d12

L
an
y

min
y2Y

f1 x; yð Þð ÞRa0 ¼ c12
R
a0xþ d12

R
a0y

..

.

min
y2Y

f1 x; yð Þð ÞRan ¼ c12
R
anxþ d12

R
any

..

.

min
y2Y

ft x; yð Þð ÞLa0 ¼ ct2
L
a0xþ dt2

L
a0y

..

.

min
y2Y

ft x; yð Þð ÞLan ¼ ct2
L
an
xþ dt2

L
an
y

min
y2Y

ft x; yð Þð ÞRa0 ¼ ct2
R
a0xþ dt2

R
a0y

..

.

min
y2Y

ft x; yð Þð ÞRan ¼ ct2
R
anxþ dt2

R
any

ð8:6cÞ

s:t: A2
L
a0xþ B2

L
a0y� b2 L

a0 ;

..

.

A2
L
anxþ B2

L
any� b2 L

an ;
A2

R
a0
xþ B2

R
a0
y� b2 R

a0
;

..

.

A2
R
an
xþ B2

R
an
y� b2 R

an
:

ð8:6dÞ
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Theorem 8.3 For x 2 X � Rn, y 2 Y � Rm, if all the fuzzy parameters ~aij, ~bij, ~eij,
~sij, ~cij, ~b1, ~b2, and ~dij have piecewise trapezoidal membership functions (8.3) in the
FMO-BLP problem (8.1a)–(8.1d), then x�; y�ð Þ is a Pareto optimal solution to the
problem (8.2a)–(8.2d) if and only if x�; y�ð Þ is a Pareto optimal solution to problem
(8.4a)–(8.4d).

Proof Clearly, it follows from the proof of Theorem 8.2 that the feasible regions of
problems (8.2a)–(8.2d) and (8.4a)–(8.4d) are the same. Let x�; y�ð Þ be a Pareto
optimal solution to problem (8.2a)–(8.2d). We prove it is also a Pareto optimal
solution to problem (8.4a)–(8.4d) by contradiction, and suppose that there exists a
�x;�yð Þ 2 IR2 such that, for k ¼ a; b,

F1 �x;�yð Þð ÞLk � F1 x�; y�ð Þð ÞLk ;
F1 �x;�yð Þð ÞRk � F1 x�; y�ð Þð ÞRk ;

..

.

Fs �x;�yð Þð ÞLk � Fs x
�; y�ð Þð ÞLk ;

Fs �x;�yð Þð ÞRk � Fs x
�; y�ð Þð ÞRk :

By using Lemma 8.1, for any k 2 b; a½ �, we have

Fi �x;�yð Þð ÞLk � Fi x
�; y�ð Þð ÞLk ; Fi �x;�yð Þð ÞRk � Fi x

�; y�ð Þð ÞRk ; i ¼ 1; . . .; s;

which contradicts the assumption that x�; y�ð Þ is a Pareto optimal solution to
problem (8.2a)–(8.2d). Thus, x�; y�ð Þ is a Pareto optimal solution to problem (8.4a)–
(8.4d)

Let x�; y�ð Þ be a Pareto optimal solution to problem (8.4a)–(8.4d). If x�; y�ð Þ is
not a Pareto optimal solution to problem (8.2a)–(8.2d), then there exist �x;�yð Þ 2 IR1

such that

F1 �x;�yð Þð ÞLk � F1 x�; y�ð Þð ÞLk ;

F1 �x;�yð Þð ÞRk � F1 x�; y�ð Þð ÞRk ;

..

.

Fs �x;�yð Þð ÞLk � Fs x
�; y�ð Þð ÞLk ;

Fs �x;�yð Þð ÞRk � Fs x
�; y�ð Þð ÞRk :
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Hence, for k ¼ a and k ¼ b, we have

Fj �x;�yð Þ� �L
a � Fj x

�; y�ð Þ� �L
a ;

Fj �x;�yð Þ� �R
a � Fj x

�; y�ð Þ� �R
a ;

Fj �x;�yð Þ� �L
b � Fj x

�; y�ð Þ� �L
b;

Fj �x;�yð Þ� �R
b � Fj x

�; y�ð Þ� �R
b ; j ¼ 1; 2; . . .; s

which contradicts the assumption that x�; y�ð Þ is a Pareto optimal solution to
problem (8.4a)–(8.4d), and then x�; y�ð Þ is a Pareto optimal solution to problem
(8.2a)–(8.2d). This completes the proof. h

Theorem 8.4 For x 2 X � Rn, y 2 Y � Rm, if all the fuzzy parameters ~aij, ~bij, ~eij,
~sij, ~cij, ~b1, ~b2, and ~dij have piecewise trapezoidal membership functions (8.3) in the
FMO-BLP problem (8.1a)–(8.1d), then x�; y�ð Þ is a weak Pareto optimal solution to
the problem (8.2a)–(8.2d) if and only if x�; y�ð Þ is a weak Pareto optimal solution to
problem (8.4a)–(8.4d).

Proof The proof is similar to that of Theorem 8.3. h

Similarly, by the result of Corollary 8.1, we have the following results.

Corollary 8.2 For x 2 X � Rn, y 2 Y � Rm, if all the fuzzy parameters ~aij, ~bij, ~eij,
~sij, ~cij, ~b1, ~b2, and ~dij have piecewise trapezoidal membership functions (8.5) in the
FMO-BLP problem (8.1a)–(8.1d), then x�; y�ð Þ is a Pareto optimal solution to
problem (8.2a)–(8.2d) if and only if x�; y�ð Þ is a Pareto optimal solution to problem
(8.4a)–(8.4d).

Corollary 8.3 For x 2 X � Rn, y 2 Y � Rm, if all the fuzzy parameters ~aij, ~bij, ~eij,
~sij, ~cij, ~b1, ~b2, and ~dij have piecewise trapezoidal membership functions (8.5) in the
FMO-BLP problem (8.1a)–(8.1d), then x�; y�ð Þ is a weak Pareto optimal solution to
problem (8.2a)–(8.2d) if and only if x�; y�ð Þ is a weak Pareto optimal solution to
problem (8.4a)–(8.4d).

8.3 Fuzzy Approximation Kuhn-Tucker Approach

To obtain a solution of the FMO-BLP problem (8.1a)–(8.1d), we only need to solve
problem (8.4a)–(8.4d). However, the lower level problem of problem (8.4a)–(8.4d)
is a multi-objective optimization. It is not true if we assume that the follower’s
rational reaction set P xð Þ is a point-to-point map with respect to x. To deal with this
undesirable situation, there are at least three approaches, for example, optimistic
formulation, pessimistic formulation (Dempe 2002) and selection function
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approach (Dempe and Starostina 2006). Since the follower has preferences
(weighting) of the objectives, here we adopt the third approach, that is the selection
function approach, for solving problem (8.4a)–(8.4d). Using the weighting method
(Sakawa 1993), we can transform problem (8.4a)–(8.4d) as a linear bi-level pro-
gramming problem, and the resulting problem can be solved by Kuhn-Tucker
approach. This section will introduce a fuzzy approximation Kuhn-Tucker approach
to solve the FMO-BLP problem and a case-based example is used to illustrate the
proposed approach.

8.3.1 Fuzzy Approximation Kuhn-Tucker Approach

A fuzzy approximation Kuhn-Tucker approach is described in Algorithm 8.1 with
seven main steps to solve the FMO-BLP problem.

A case-based example will be given to illustrate the proposed approach in the
next section

8.3.2 A Case-Based Example

We first present an example to explain how to build a FMO-BLP model and then
apply the proposed fuzzy approximation Kuhn-Tucker approach to solve the
problem defined by the FMO-BLP model.
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Example 8.1 There are two logistics channels in a supply chain system. A forward
logistics channel concerns the movement of goods from source to their point of
consumption. A backward movement will happen when we need to return goods to
suppliers, which is called reverse logistics. In general, the forward logistics brings
profits to all operational stages/departments involved; while a reverse logistics
usually only brings costs. However, many companies have discovered that cost
reductions in inventory carrying costs, transportation and waste disposal can be
substantial with an efficient reverse logistics program and related strategies. To
effectively manage a reverse logistics chain often involves finding an optimal
solution from multiple stages/departments involved in a goods return process.
Bi-level or multi-level decision-making approaches are very promising to be
applied in supporting this kind of decision-making.

Two main operational stages in a reverse logistics chain are the supplier and the
distributor. They both aim to minimize their own cost but have individual con-
straints for a goods return. A decision about sharing cost for goods return made by
the supplier will affect the decision made by the distributor, such as the service
quality provided to customers for a product return. Also, the distributor executes its
policies after, and in view of, decisions made at the supplier stage. As the two
stages in the chain are interrelated in a way that decisions made at one stage affect
the performance of others, this can be seen as a bi-level decision problem. The
supplier is the leader and the distributor is the follower in the decision process. In
almost all of the cases from the real world, supplier and distributor each inde-
pendently minimizes its cost on a reverse logistic chain without well considering
other’s benefits. Obviously, these two stages are interrelated in an uncooperative
way. In practice, logistics managers often imprecisely know the possible values of
related costs. For example, they can only estimate possible inventory carrying cost
and transportation cost of a particular set of goods to be returned. This situation
brings about a demand on the proposed bi-level decision-making model of reverse
logistics management to be able to handle uncertain information.

We define the supplier’s objective function minx2X Fðx; yÞ as to minimize the
cost to the supplier, under the constraints from the requirements of customer service
and the environment pollution issue. The distributor, as the follower, attempts to
minimize its cost from the reverse logistics miny2Y f ðx; yÞ for each policy made by
the supplier.

When modeling the bi-level decision problem, the parameters for the objectives
and constraints of both the leader and the follower are hard to be set by real
numbers as they are described by some uncertain experience data and statistic
reports from managers, such as “about $2 K”. Therefore a fuzzy-number-based
bi-level decision model is created for the reverse logistics decision problem. In
order to facilitate an easy understanding of the application for the proposed fuzzy
approximation Kuhn-Tucker approach, the decision model is established by sim-
plifying it into the following linear FMO-BLP model.
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Consider the following FMO-BLP problem with x 2 R, y 2 R, and X ¼
xjx� 0f g, Y ¼ yjy� 0f g,

min
x2X

F1 x; yð Þ ¼ �~1xþ ~2y

min
x2X

F2 x; yð Þ ¼ ~2x� ~4y

s:t: � ~1xþ ~3y� ~4;

min
y2Y

f1 x; yð Þ ¼ �~1xþ ~2y

min
y2Y

f2 x; yð Þ ¼ ~2x� ~1y

s:t: ~1x� ~1y� ~0;

� ~1x� ~1y� ~0;

where

l~1 ¼

0 t\0

t2 05 t\1

2� t 15 t\2

0 25 t

8>>><
>>>:

; l~2 ¼

0 t\1

t � 1 15 t\2

3� t 25 t\3

0 35 t

8>>><
>>>:

;

l~3 ¼

0 t\2

t � 2 25 t\3

4� t 35 t\4

0 45 t

8>>><
>>>:

; l~4 ¼

0 t\3

t � 3 35 t\4

5� t 45 t\5

0 55 t

8>>><
>>>:

;

l~0 ¼

0 t\� 1

t þ 1 �15 t\0

1� t2 05 t\1

0 15 t

8>>><
>>>:

:

We now solve this problem by using the proposed fuzzy approximation Kuhn-
Tucker approach.

Step 1: We give the weights ð0:5; 0:5Þ for the two fuzzy objectives of the leader
and of the follower.

Step 2: This example is first transformed to the following problem:
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min
x2X

F1 x; yð Þð ÞLk¼ �~1
� �L

kxþ ~2
� �L

ky; k 2 0; 1½ �

min
x2X

F1 x; yð Þð ÞRk¼ �~1
� �R

kxþ ~2
� �R

ky; k 2 0; 1½ �

min
x2X

F2 x; yð Þð ÞLk¼ ~2
� �L

kxþ �~4
� �L

ky; k 2 0; 1½ �

min
x2X

F2 x; yð Þð ÞRk¼ ~2
� �R

kxþ �~4
� �R

ky; k 2 0; 1½ �

s:t: �~1
� �L

kxþ ~3
� �L

ky� ~4
� �L

k ;

�~1
� �R

kxþ ~3
� �R

ky� ~4
� �R

k ; k 2 0; 1½ �
min
y2Y

f1 x; yð Þð ÞLk¼ ~2
� �L

kxþ �~1
� �L

ky; k 2 0; 1½ �

min
y2Y

f1 x; yð Þð ÞRk¼ ~2
� �R

kxþ �~1
� �R

ky; k 2 ½0; 1�

min
y2Y

f2 x; yð Þð ÞLk¼ �~1
� �L

kxþ ~2
� �L

ky; k 2 ½0; 1�

min
y2Y

f2 x; yð Þð ÞRk¼ �~1
� �R

kxþ ~2
� �R

ky; k 2 ½0; 1�

s:t: ~1
� �L

kxþ �~1
� �L

ky� ~0
� �L

k ;

~1
� �R

kxþ �~1
� �R

ky� ~0
� �R

k ;

�~1
� �L

kxþ �~1
� �L

ky� ~0
� �L

k ;

�~1
� �R

kxþ �~1
� �R

ky� ~0
� �R

k ; k 2 0; 1½ �:

Step 3: Let the interval ½0; 1� be decomposed into 2l�1 even sub-intervals with
ð2l�1 þ 1Þ nodes ki i ¼ 0; . . .; 2l�1

� �
which is arranged in the order of 0 ¼

k0\k1\ 
 
 
\k2l�1 ¼ 1 and a range of error e ¼ 10�6 [ 0.
Step 4: When l ¼ 1, we solve the following MOL-BLP problem:

min
x2X

F1 x; yð Þð ÞL Rð Þ
1 ¼ �1xþ 2y

min
x2X

F1 x; yð Þð ÞL0¼ �2xþ 1y

min
x2X

F1 x; yð Þð ÞR0¼ 0xþ 3y

min
x2X

F2 x; yð Þð ÞL Rð Þ
1 ¼ 2x� 4y

min
x2X

F2 x; yð Þð ÞL0¼ 1x� 5y

min
x2X

F2 x; yð Þð ÞR0¼ 3x� 3y

s:t: �1xþ 3y� 4;

�2xþ 2y� 3;

0xþ 4y� 5;
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min
y2Y

f1 x; yð Þð ÞL Rð Þ
1 ¼ 2x� 1y

min
y2Y

f1 x; yð Þð ÞL0¼ 1x� 2y

min
y2Y

f1 x; yð Þð ÞR0¼ 3x� 0y

min
y2Y

f2 x; yð Þð ÞL Rð Þ
1 ¼ �1xþ 2y

min
y2Y

f2 x; yð Þð ÞL0¼ �2xþ 1y

min
y2Y

f2 x; yð Þð ÞR0¼ 0xþ 3y

s:t: 1x� 1y� 0;

0x� 2y� � 1;

2x� 0y� 1;

�1x� 1y� 0;

�2x� 2y� � 1:

Using the weighting method, we transform the above problem as follows:

min
x2X

F x; yð Þ ¼ 1:5x� 3y

s:t: �1xþ 3y� 4;

�2xþ 2y� 3;

0xþ 4y� 5;

min
y2Y

f x; yð Þ ¼ 1:5xþ 1:5y

s:t: 1x� 1y� 0;

0x� 2y� � 1;

2x� 0y� 1;

�1x� 1y� 0;

�2x� 2y� � 1:

Then, using the Kuhn-Tucker approach, we get a solution x; yð Þ ¼
0; 0:5ð Þ with

F1 x; yð Þð ÞL Rð Þ
1 ¼ 1;

F1 x; yð Þð ÞL0¼ 0:5;

F1 x; yð Þð ÞR0¼ 1:5;

F2 x; yð Þð ÞL Rð Þ
1 ¼ �2;

F2 x; yð Þð ÞL0¼ �2:5;

F2 x; yð Þð ÞR0¼ �1:5;
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f1 x; yð Þð ÞL Rð Þ
1 ¼ �0:5;

f1 x; yð Þð ÞL0¼ �1;

f1 x; yð Þð ÞR0¼ 0;

f2 x; yð Þð ÞL Rð Þ
1 ¼ 1;

f2 x; yð Þð ÞL0¼ 0:5;

f2 x; yð Þð ÞR0¼ 1:5;

Step 5: When l ¼ 2, we solve the following MOL-BLP problem

min
x2X

F1 x; yð Þð ÞL Rð Þ
1 ¼ �1xþ 2y

min
x2X

F1 x; yð Þð ÞL1
2
¼ � 3

2
xþ 3

2
y

min
x2X

F1 x; yð Þð ÞL0¼ �2xþ 1y

min
x2X

F1 x; yð Þð ÞR1
2
¼ �

ffiffiffi
2

p

2
xþ 5

2
y

min
x2X

F1 x; yð Þð ÞR0¼ 0xþ 3y

min
x2X

F2 x; yð Þð ÞL Rð Þ
1 ¼ 2x� 4y

min
x2X

F2 x; yð Þð ÞL1
2
¼ 3

2
x� 9

2
y

min
x2X

F2 x; yð Þð ÞL0¼ 1x� 5y

min
x2X

F2 x; yð Þð ÞR1
2
¼ 5

2
x� 7

2
y

min
x2X

F2 x; yð Þð ÞR0¼ 3x� 3y

s:t: �1xþ 3y� 4;

� 3
2
xþ 5

2
y� 7

2
;

�2xþ 2y� 3;

�
ffiffiffi
2

p

2
xþ 7

2
y� 9

2
;

0xþ 4y� 5;

min
y2Y

f1 x; yð Þð ÞL Rð Þ
1 ¼ 2x� 1y

min
y2Y

f1 x; yð Þð ÞL1
2
¼ 3

2
x� 3

2
y

min
y2Y

f1 x; yð Þð ÞL0¼ 1x� 2y

min
y2Y

f1 x; yð Þð ÞR1
2
¼ 5

2
x�

ffiffiffi
2

p

2
y
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min
y2Y

f1 x; yð Þð ÞR0¼ 3x� 0y

min
y2Y

f2 x; yð Þð ÞL Rð Þ
1 ¼ �1xþ 2y

min
y2Y

f2 x; yð Þð ÞL1
2
¼ � 3

2
xþ 3

2
y

min
y2Y

f2 x; yð Þð ÞL0¼ �2xþ 1y

min
y2Y

f2 x; yð Þð ÞR1
2
¼ �

ffiffiffi
2

p

2
xþ 5

2
y

min
y2Y

f2 x; yð Þð ÞR0¼ 0xþ 3y

s:t: 1x� 1y� 0;ffiffiffi
2

p

2
x� 3

2
y� � 1

2
;

0x� 2y� � 1;

3
2
x�

ffiffiffi
2

p

2
y�

ffiffiffi
2

p

2
;

2x� 0y� 1;

� 3
2
x� 3

2
y� � 1

2
;

�1x� 1y� 0;

�
ffiffiffi
2

p

2
x�

ffiffiffi
2

p

2
y�

ffiffiffi
2

p

2
;

�2x� 2y� � 1:

We solve the above problem by using the weighting method and the
Kuhn-Tucker approach:

min
x2X

F x; yð Þ ¼ 3þ 5� ffiffiffi
2

p

2

� 	
x� 10y

s:t: �1xþ 3y� 4;

� 3
2 xþ 5

2 y� 7
2 ;

�2xþ 2y� 3;

�
ffiffi
2

p
2 xþ 7

2 y� 9
2 ;

0xþ 4y� 5;

min
y2Y

f x; yð Þ ¼ 5� ffiffiffi
2

p

2
þ 3

� 	
xþ 5� ffiffiffi

2
p

2
þ 3

� 	
y

s:t: 1x� 1y� 0;ffiffi
2

p
2 x� 3

2 y� � 1
2 ;

0x� 2y� � 1;
3
2 x�

ffiffi
2

p
2 y�

ffiffi
2

p
2 ;

2x� 0y� 1;

� 3
2 x� 3

2 y� � 1
2 ;

�1x� 1y� 0;

�
ffiffi
2

p
2 x�

ffiffi
2

p
2 y�

ffiffi
2

p
2 ;

�2x� 2y� � 1:
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The result of the optimal solution occurs at the point x; yð Þ ¼ 0; 0:5ð Þ with

F1 x; yð Þð ÞL Rð Þ
1 ¼ 1;

F1 x; yð Þð ÞL1
2
¼ 0:75;

F1 x; yð Þð ÞL0¼ 0:5;

F1 x; yð Þð ÞR1
2
¼ 1:25;

F1 x; yð Þð ÞR0¼ 1:5;

F2 x; yð Þð ÞL Rð Þ
1 ¼ �2;

F2 x; yð Þð ÞL1
2
¼ �2:25;

F2 x; yð Þð ÞL0¼ �2:5;

F2 x; yð Þð ÞR1
2
¼ �1:75;

F2 x; yð Þð ÞR0¼ �1:5;

f1 x; yð Þð ÞL Rð Þ
1 ¼ �0:5;

f1 x; yð Þð ÞL1
2
¼ �0:75;

f1 x; yð Þð ÞL0¼ �1;

f1 x; yð Þð ÞR1
2
¼ �

ffiffiffi
2

p

4
;

f1 x; yð Þð ÞR0¼ 0;

f2 x; yð Þð ÞL Rð Þ
1 ¼ 1;

f2 x; yð Þð ÞL1
2
¼ 0:75;

f2 x; yð Þð ÞL0¼ 0:5;

f2 x; yð Þð ÞR1
2
¼ 1:25;

f2 x; yð Þð ÞR0¼ 1:5:

Step 6: Since x; yð Þ22� x; yð Þ21
�� �� ¼ 0\e; x; yð Þ ¼ 0; 0:5ð Þ is the optimal solution

for the example.
Step 7: The solution of the problem is x�; y�ð Þ ¼ ð0; 0:5Þ with

F1 x�; y�ð Þ ¼ 0:5� ~2;

F2 x�; y�ð Þ ¼ �0:5� ~4;

f1 x�; y�ð Þ ¼ 0:5� ~2;

f1 x�; y�ð Þ ¼ �0:5� ~1:
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This example shows how the fuzzy approximation Kuhn-Tucker approach is
used to solve the FMO-BLP problem in a reverse logistic decision making.

8.4 Summary

Uncertainty often occurs in a bi-level decision problem. Moreover, multiple
objectives may be involved for the leader, or the follower, or both in a bi-level
decision problem. To deal with these two problems together and to obtain a
compromise solution, this chapter first presents a fuzzy parameter-based multiple
objectives bi-level decision model, called the FMO-BLP model, and then presents a
fuzzy approximation Kuhn-Tucker approach for solving the FMO-BLP problem.
A case-based example is given to illustrate the feasibility of the proposed approach.
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Chapter 9
Fuzzy Multi-objective Bi-level Goal
Programming

In Chap. 8, we presented the definitions, solutions, and algorithms for the fuzzy
multi-objective bi-level programming (FMO-BLP) problems. This chapter still
addresses the fuzzy multi-objective bi-level problem but applies a goal program-
ming approach. We call it fuzzy multi-objective bi-level goal programming (FMO-
BLGP). This chapter will discuss related definitions, solution concepts, and algo-
rithms for the FMO-BLGP problem and will focus on the linear version of the
FMO-BLGP problem. First, a fuzzy ranking method is used to give a mathematical
definition for a FMO-BLGP problem, and then, based on a fuzzy vectors distance
measure definition, a fuzzy bi-level goal programming (FBLGP) model is proposed.
An algorithm for solving the FMO-BLGP problem is also developed.

This chapter is organized as follows: the identification of the FMO-BLGP
problem is presented in Sect. 9.1, and a fuzzy bi-level goal decision model and
related theorems are developed in Sect. 9.2. Section 9.3 proposes a fuzzy bi-level
goal-programming algorithm for solving FMO-BLGP problems. In Sect. 9.4, a
numerical example is adopted to illustrate the executing procedure of the algorithm
and experiments are carried out. Finally, we discuss and analyze the performance of
this algorithm in Sect. 9.5.

9.1 Problem Identification

In many real-world bi-level decision applications, the leader or the follower not
only have multiple objectives but also have their individual predefined decision
targets (called goals) to achieve the objectives through a decision procedure.
Therefore, goal programming could be integrated with the FMO-BLP approach to
handle the FMO-BLGP problem well.

Example 9.1 In a company, the CEO is the leader, and the heads of branches of the
company are the followers in making an annual budget for the company. The CEO
has two objectives: maximizing profit and maximizing marketing occupation with
two goals $8M and 80 % of the local market respectively. The branch heads have
two objectives: maximizing profit with the goal of “$4M profit” and maximizing
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customer satisfaction with the goal of “increasing customer satisfaction by 10 %
compared to last year”. To achieve the two sets of goals, we can establish a FMO-
BLP model and develop a goal programming-based algorithm.

9.2 Solution Concepts

Based on the fuzzy ranking method in Definition 7.19, a FMO-BLP problem is
defined as:

For x 2 X � Rn, y 2 Y � Rm, F:X � Y ! F� Rð Þð Þs, and f :X � Y ! F� Rð Þð Þt,

min
x2X

F x; yð Þ ¼ ~a11xþ ~b11y; . . .; ~as1xþ ~bs1y
� �

ð9:1aÞ

s:t: ~A1xþ ~B1y � a
~b1; ð9:1bÞ

min
y2Y

f x; yð Þ ¼ ~a12xþ ~b12y; . . .; ~at1xþ ~bt1y
� �

ð9:1cÞ

s:t: ~A2xþ ~B2y � a
~b2; ð9:1dÞ

where ~ah1, ~ai2 2 F� Rð Þð Þn, ~bh1, ~bi2 2 F� Rð Þð Þm, ~b1 2 F� Rð Þð Þp, ~b2 2 F� Rð Þð Þq,
~A1 ¼ ~aij

� �
p�n,

~B1 ¼ ~bij
� �

p�m,
~A2 ¼ ~eij

� �
q�n,

~B2 ¼ ~sij
� �

q�m, ~aij, ~bij, ~eij,

~sij 2 F� Rð Þ; h ¼ 1; . . .; s; i ¼ 1; . . .; t.
To build a FMO-BLGP model, a distance measure between two fuzzy vectors

needs to be developed to measure the distance between a decision and the prede-
fined goal. To do so, a certain number of k-cuts is used to approximate a fuzzy
number, and a final solution is considered to be reached when solutions under two
adjacent k-cuts are nearly equal. To help implement this strategy, a k-cut based
fuzzy vector distance measure is defined below:

Definition 9.1 Let ~a ¼ ~a1; ~a2; . . .; ~anð Þ, ~b ¼ ~b1; ~b2; . . .; ~bn
� �

be two n-dimensional
fuzzy vectors, / ¼ a� k0\k1\ � � �\kl � 1f g be a division of ½a; 1�, the distance
between ~a and ~b under / is defined as:

D ~a; ~b
� �

, 1
lþ 1

Xn
i¼1

Xl
j¼0

aLikj � bLikj

��� ���þ aRikj � bRikj

��� ���n o
; ð9:2Þ

where a is a predefined satisfactory degree.

In Definition 9.1, a satisfactory degree a is used to give flexibility to compare
two fuzzy vectors. It is possible that two fuzzy vectors might not be compared, that
is no ranking relation, by using Definition 9.1. For example, when we compare two
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fuzzy vectors ~a and ~b, if some of the left λ-cuts of ~a are less than those of ~b, while
some right k-cuts of ~a are larger than those of ~b, there is no ranking relation
between ~a and ~b. To solve the incomparable problem, we can enhance the aspi-
ration levels of the attributes, that is, we can adjust the satisfactory degree a to a
point where all incomparable parts are discarded. It can be understood as a risk
taken by a decision maker who neglects all values with the possibility of occurrence
smaller than a. In such a situation, a solution is supposed to be reached under this
aspiration level. So, normally, we take the same a for both objectives and con-
straints in a bi-level programming problem.

Lemma 9.1 For any n-dimensional fuzzy vectors ~a, ~b, ~c, fuzzy distance D defined
in (9.1a)–(9.1d) satisfies the following properties:

1. D ~a; ~b
� � ¼ 0, if ~ai ¼ ~bi, i ¼ 1; 2; . . .; n;

2. D ~a; ~b
� � ¼ D ~b; ~a

� �
;

3. D ~a; ~b
� ��D ~a;~cð Þ þ D ~c; ~b

� �
:

Goals set for the objectives of a leader (~gL) and a follower (~gF) in (9.1a)–(9.1d)
are defined as:

~gL ¼ ~gL1; ~gL2; . . .; ~gLsð Þ; ð9:3aÞ

~gF ¼ ~gF1; ~gF2; . . .; ~gFtð Þ; ð9:3bÞ

where ~gLi i ¼ 1; . . .; sð Þ and ~gFjðj ¼ 1; . . .; tÞ are fuzzy numbers with membership
functions of l~gLi andl~gFj respectively.

Our concern is to make the objectives of both the leader and the follower as near
to their goals as possible. Using the distance measure defined in (9.1a)–(9.1d), we
transform the FMO-BLGP problem into a FBLGP problem as follows:

For x 2 X � Rn, y 2 Y � Rm, F:X � Y ! F� Rð Þð Þs, f :X � Y ! F� Rð Þð Þt,

min
x2X

DðF x; yð Þ; ~gLÞ ð9:4aÞ

s:t: ~A1xþ ~B1y � a
~b1; ð9:4bÞ

min
y2Y

Dðf x; yð Þ; ~gFÞ ð9:4cÞ

s:t: ~A2xþ ~B2y � a
~b2; ð9:4dÞ

where ~A1 ¼ ~aij
� �

p�n, ~B1 ¼ ~bij
� �

p�m, ~A2 ¼ ~eij
� �

q�n, ~B2 ¼ ~sij
� �

q�m, ~aij, ~bij, ~eij, ~sij 2 F� Rð Þð Þ,
and a is a predefined satisfactory degree.
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From Definitions 9.1, we transfer problem (9.4a)–(9.4d) into:

min
x2X

1
lþ 1

Xs
h¼1

Xl
j¼0

aLh1kj xþ bLh1kj y� gLLhkj

��� ���n

þ aRh1kj xþ bRh1kj y� gRLhkj

��� ���o
ð9:5aÞ

s:t: AL
1kj xþ BL

1kj y � bL1kj ;

AR
1kj xþ BR

1kj y� bR1kj ; j ¼ 0; 1; . . .; l;
ð9:5bÞ

min
y2Y

1
lþ 1

Xt
i¼1

Xl
j¼0

aLi2kj xþ bLi2kj y� gLFikj

��� ���n

þ aRi2kj xþ bRi2kj y� gRFikj

��� ���o
ð9:5cÞ

s:t: AL
2kj xþ BL

2kj y� bL2kj ;

AR
2kj xþ BR

2kj y� bR2kj ; j ¼ 0; 1; . . .; l
ð9:5dÞ

where / ¼ a� k0\k1\ � � �\kl � 1f g is a division of ½a; 1�.
For a clear understanding of the idea adopted, we define:

VL�
h1 ¼ 1

2

Xl
j¼0

aLh1kj xþ
Xl
j¼0

bLh1kj y�
Xl
j¼0

gLLhkj

�����
������

Xl
j¼0

aLh1kj x

 (
þ
Xl
j¼0

bLh1kj y

�
Xl
j¼0

gLLhkj

!)
;

VLþ
h1 ¼ 1

2

Xl
j¼0

aLh1kj xþ
Xl
j¼0

bLh1kj y�
Xl
j¼0

gLLhkj

�����
�����þ

Xl
j¼0

aLh1kj xþ
Xl
j¼0

bLh1kj y

 (

�
Xl
j¼0

gLLhkj

!)
;

VR�
h1 ¼ 1

2

Xl
j¼0

aRh1kj xþ
Xl
j¼0

bRh1kj y�
Xl
j¼0

gRLhkj

�����
�����

(
�

Xl
j¼0

aRh1kj xþ
Xl
j¼0

bRh1kj y

 

�
Xl
j¼0

gRLhkj y

!)
;
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VRþ
h1 ¼ 1

2

Xl
j¼0

aRh1kj xþ
Xl
j¼0

bRh1kj y�
Xl
j¼0

gRLhkj

�����
�����þ

Xl
j¼0

aRh1kj x

 (

þ
Xl
j¼0

bRh1kj y�
Xl
j¼0

gRLhkj

!)
;

h ¼ 1; 2; . . .; s;

ð9:6Þ

VL�
i2 ¼ 1

2

Xl
j¼0

aLi2kj xþ
Xl
j¼0

bLi2kj y�
Xl
j¼0

gLFikj

�����
�����

(
�

Xl
j¼0

aLi2kj xþ
Xl
j¼0

bLi2kj y

 

�
Xl
j¼0

gLFikj

!)
;

VLþ
i2 ¼ 1

2

Xl
j¼0

aLi2kj xþ
Xl
j¼0

bLi2kj y�
Xl
j¼0

gLFikj

�����
�����

(
þ

Xl
j¼0

aLi2kj xþ
Xl
j¼0

bLi2kj y

 

�
Xl
j¼0

gLFikj

!)
;

VR�
i2 ¼ 1

2

Xl
j¼0

aRi2kj xþ
Xl
j¼0

bRi2kj y�
Xl
j¼0

gRFikj

�����
�����

(
þ

Xl
j¼0

aRi2kj xþ
Xl
j¼0

bRi2kj y

 

�
Xl
j¼0

gRFikj
y

!)
;

VRþ
i2 ¼ 1

2

Xl
j¼0

aRi2kj xþ
Xl
j¼0

bRi2kj y�
Xl
j¼0

gRFikj

�����
�����

(
þ

Xl
j¼0

aRi2kj xþ
Xl
j¼0

bRi2kj y

 

�
Xl
j¼0

gRFikj

!)
;

i ¼ 1; 2; . . .; t;

where VL�
h1 and VLþ

h1 are deviational variables representing the under-achievement
and over-achievement of the hth goal for a leader under the left λ-cut respectively.
VR�
h1 and VRþ

h1 are deviational variables representing the under-achievement and
over-achievement of the hth goal for a leader under the right λ-cut respectively.
VL�
i2 , VLþ

i2 , VR�
i2 , and VRþ

i2 are for a follower respectively.
For ðvL�11 ; vLþ11 ; vR�11 ; vRþ11 ; . . .; vL�s1 ; vLþs1 ; vR�s1 ; vRþs1 Þ 2 R4s;X 0 	 X � R4s;ðvL�12 ; vLþ12 ;

vR�12 ; v
Rþ
12 ; . . .; v

L�
t2 ; vLþt2 ; vR�t2 ; vRþt2 Þ 2 R4t; Y 0 	 Y � R4t, let
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x ¼ x1; . . .; xnð Þ 2 X;

x0 ¼ x1; . . .; xn; v
L�
11 ; v

Lþ
11 ; v

R�
11 ; v

Rþ
11 ; . . .; v

L�
s1 ; v

Lþ
s1 ; v

R�
s1 ; vRþs1

� � 2 X 0;
y ¼ y1; . . .; ymð Þ 2 Y ;

y0 ¼ y1; . . .; ym; v
L�
12 ; v

Lþ
12 ; v

R�
12 ; v

Rþ
12 ; . . .; v

L�
t2 ; vLþt2 ; vR�t2 ; vRþt2

� � 2 Y 0;

and v1; v2 : X 0 � Y 0 ! R:
Associated with problem (9.5a)–(9.5d), we now consider the following bi-level

programming problem:

min
x02X 0

v1 ¼
Xs
h¼1

ðvL�h1 þ vLþh1 þ vR�h1 þ vRþh1 Þ ð9:7aÞ

s:t:
Xl
j¼0

aLh1kj xþ
Xl
j¼0

bLh1kj yþ vL�h1 � vLþh1 ¼
Xl
j¼0

gLLhkj ;

Xl
j¼0

aRh1kj xþ
Xl
j¼0

bRh1kj yþ vR�h1 � vRþh1 ¼
Xl
j¼0

gRLhkj ;

vL�h1 ; v
Lþ
h1 ; v

R�
h1 ; v

Rþ
h1 
 0;

vL�h1 � vLþh1 ¼ 0; vR�h1 � vRþh1 ¼ 0;

AL
1kj xþ BL

1kj y� bL1kj ;

AR
1kj xþ BR

1kj y� bR1kj ;

h ¼ 1; . . .; s; j ¼ 0; 1; . . .; l;

ð9:7bÞ

min
y02Y 0

v2 ¼
Xt
i¼1

ðvL�i2 þ vLþi2 þ vR�i2 þ vRþi2 Þ ð9:7cÞ

s:t:
Xl
j¼0

aLi2kj xþ
Xl
j¼0

bLi2kj yþ vL�i2 � vLþi2 ¼
Xl
j¼0

gLFikj ;

Xl
j¼1

aRi2kj xþ
Xl
j¼0

bRi2kj yþ vR�i2 � vRþi2 ¼
Xl
j¼0

gRFikj ;

vL�i2 ; vLþi2 ; vR�i2 ; vRþi2 
 0;

vL�i2 � vLþi2 ¼ 0; vR�i2 � vRþi2 ¼ 0;

AL
2kj xþ BL

2kj y � bL2kj ;

AR
2kj xþ BR

2kj y � bR2kj ;

i ¼ 1; . . .; t; j ¼ 0; 1; . . .; l:

ð9:7dÞ
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Theorem 9.1 Let x0�; y0�ð Þ ¼ ðx�; vL��
11 ; vLþ�

11 ; vR��
11 ; vRþ�

11 ; . . .; vL��
s1 ; vLþ�

s1 ; vR��
s1 ; vRþ�

s1 ;

y�; vL��
12 ; vLþ�

12 ; vR��
12 ; vRþ�

12 ; . . .; vL��
t1 ; vLþ�

t1 ; vR��
t1 ; vRþ�

t1 Þ be the optimal solution to
problem (9.7a)–(9.7d), then ðx�; y�Þ is the optimal solution to problem (9.5a)–
(9.5d).

Proof Let the notations associated with problem (9.5a)–(9.5d) are denoted by:

S ¼ x; yð ÞjAL
kkj xþ BL

kkj y� bLkkj ;A
R
kkj xþ BR

kkj y� bRkkj ;
n
j ¼ 0; . . .; l; k ¼ 1; 2g;

ð9:8aÞ

S Xð Þ ¼ x 2 Xj9y 2 Y ;AL
kkj xþ BL

kkj y� bLkkj ;A
R
kkj x

n
þ BR

kkj y� bRkkj ; k ¼ 1; 2; j ¼ 0; . . .; l
o
;

ð9:8bÞ

S xð Þ ¼ y 2 Y j x; yð Þ 2 Sf g; ð9:8cÞ

PðxÞ ¼ fy 2 Y jy 2 argmin Wg ð9:8dÞ

where

W ¼ 1
lþ 1

Xt
i¼1

Xl
j¼0

aLi2kj xþ bLi2kj � gLLhkj ŷ� gLFikj

��� ���n

þ aRi2kj xþ bRi2kj ŷ� gRFikj

��� ���o
IR ¼ x; yð Þj x; yð Þ 2 S; y 2 P xð Þf g: ð9:8eÞ

Problem (9.5a)–(9.5d) can be written as:

min
x;y

1
lþ 1

Xs
h¼1

Xl
j¼0

aLh1kj xþ bLh1kj y� gLLhkj

��� ���n

þ aRh1kj xþ bRh1kj y� gRLhkj

��� ���o
ð9:9aÞ

s:t: x; yð Þ 2 IR: ð9:9bÞ
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Similarly, we denote those for problem (9.7a)–(9.7d) by:

S0 ¼ ðx0; y0ÞjAL
ðkkjÞxþ BL

ðkkjÞy� bLðkkjÞ;A
R
ðkkjÞxþ BR

ðkkjÞy� bRðkkjÞ; k ¼ 1; 2; j ¼ 0; 1; . . .; l;
n
Xl
j¼0

aLh1kj xþ
Xl
j¼0

bLh1kj yþ vL�h1 � vLþh1 ¼
Xl
j¼0

gLLhkj ;

Xl
j¼0

aRh1kj

� �
xþ

Xl
j¼0

bRh1kj yþ vR�h1 � vRþh1 ¼
Xl
j¼0

gRLhkj ;

vL�h1 ; v
Lþ
h1 ; v

R�
h1 ; v

Rþ
h1 
 0;

vL�h1 � vLþh1 ¼ 0; vR�h1 � vRþh1 ¼ 0; h ¼ 1; . . .; s;

Xl
j¼0

aLi2kj xþ
Xl
j¼0

bLi2kj yþ vL�i2 � vLþi2 ¼
Xl
j¼0

gLFikj ;

Xl
j¼0

aRi2kj xþ
Xl
j¼0

bRi2kj yþ vR�i2 � vRþi2 ¼
Xl
j¼0

gRFikj ;

vL�i2 ; vi2Lþ; vR�i2 ; vRþi2 
 0;

vL�i2 � vLþi2 ¼ 0; vR�i2 � vRþi2 ¼ 0; i ¼ 1; . . .; tg; ð9:10Þ

SðX 0Þ ¼ x0 2 X 09y0 2 Y 0; x0; y0ð Þ 2 S0f g; ð9:11Þ

S x0ð Þ ¼ y0 2 Y 0 x0; y0ð Þ 2 S0f g; ð9:12Þ

P x0ð Þ ¼ y0 2 Y 0jy0 2 argmin
Xt
i¼1

v̂L�i2 þ v̂Lþi2 þ v̂R�i2 þ v̂Rþi2
� �" #( )

; ð9:13Þ

IR0 ¼ x0; y0ð Þj x0; y0ð Þ 2 S0; y0 2 P x0ð Þf g: ð9:14Þ

Problem (9.7a)–(9.7d) can be written as

min
x0;y0ð Þ

Xs
h¼1

vL�h1 þ vLþh1 þ vR�h1 þ vRþh1
� �

: x0; y0ð Þ 2 IR0
( )

ð9:15Þ

As x0�; y0�ð Þ is the optimal solution to problem (9.7a)–(9.7d), from (9.15), it can
be seen that, for any ðx0; y0Þ 2 IR0, we have

Xs
h¼1

vL�h1 þ vLþh1 þ vR�h1 þ vRþh1
� �



Xs
h¼1

vL��
h1 þ vLþ�

h1 þ vR��
h1 þ vRþ�

h1

� �
:
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It follows from the definitions of vL�h1 and vLþh1 that

vL�h1 þ vLþh1 ¼
Xl
j¼0

aLh1kj xþ
Xl
j¼0

bLh1kj y�
Xl
j¼0

gLLhkj

�����
�����;

vL��
h1 þ vLþ�

h1 ¼
Xl
j¼0

aLh1kj x
� þ

Xl
j¼0

bLh1kj y
� �

Xl
j¼0

gLLhkj

�����
�����;

for h ¼ 1; . . .; s. Similarly, we have

vR�h1 þ vRþh1 ¼
Xl
j¼0

aRh1kj xþ
Xl
j¼0

bRh1kj y�
Xl
j¼0

gRLhkj

�����
�����;

vR��
h1 þ vRþ�

h1 ¼
Xl
j¼0

aRh1kj x
� þ

Xl
j¼0

bRh1kj y
� �

Xl
j¼0

gRLhkj

�����
�����;

for h ¼ 1; . . .; s. So, for any ðx0; y0Þ 2 IR0, we can obtain

Xl
j¼0

aLh1kj x
0 þ
Xl
j¼0

bLh1kj y
0 �
Xl
j¼0

gLLhkj

�����
�����

þ
Xl
j¼0

aRh1kj x
0 þ
Xl
j¼0

bRh1kj y
0 �
Xl
j¼0

gRLhkj

�����
�����



Xl
j¼0

aLh1kj x
� þ

Xl
j¼0

bLh1kj y
� �

Xl
j¼0

gLLhkj

�����
�����

þ
Xl
j¼0

aRh1kj x
� þ

Xl
j¼0

bRh1kj y
� �

Xl
j¼0

gRLhkj

�����
�����:

ð9:16Þ

We now prove that the projection of S0 onto the X � Y space, denoted by S0jX�Y
is equal to S.

On the one hand, for any x; yð Þ 2 S0jX�Y , from the constraints: AL
kkj
xþ BL

kkj
y

� bLkkj ;A
R
kkj
xþ BR

kkj
y� bRjkj , k ¼ 1; 2; j ¼ 0; . . .; l, we have x; yð Þ 2 S, so S0jX�Y	 S.

On the other hand, for any x; yð Þ 2 S, by (9.6), we can always find vL�11 , v
Lþ
11 , v

R�
11 ,

vRþ11 ,. . ., v
L�
s1 , v

Lþ
s1 , v

R�
s1 , vRþs1 , vL�12 , v

Lþ
12 , v

R�
12 , v

Rþ
12 ,. . ., v

L�
t2 , vLþt2 , vR�t2 , vRþt2 , which

satisfies the constraints of (9.7b) and (9.7d). Together with the inequalities of
AL
kkj
xþ BL

kkj
y� bLkkj , and AR

kkj
xþ BR

kkj
y� bRkkj , k ¼ 1; 2; j ¼ 0; 1; . . .; l, requested

by S, we have x; vL�11 , v
Lþ
11 , v

R�
11 , v

Rþ
11 ,. . ., v

L�
s1 , v

Lþ
s1 , v

R�
s1 , vRþs1 , y; vL�12 , v

Lþ
12 , v

R�
12 , v

Rþ
12 ,. . .,

vL�t2 , vLþt2 , vR�t2 , vRþt2 2 S0, thus x; yð Þ 2 S0jX�Y , S 	 S0jX�Y .
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So, we can prove that

S0jX�Y¼ S: ð9:17Þ

Similarly, we have

SðxÞ0jX�Y¼ S xð Þ; ð9:18Þ

SðXÞ0jX�Y¼ S Xð Þ: ð9:19Þ

Also, from
Pl

j¼0 a
L
i2kj xþ

Pl
j¼0 b

L
i2kj yþ vL�i2 � vLþi2 ¼Pl

j¼0 g
L
Fikj ; and v

L�
i2 � vLþi2 ¼

0; we have

vL�i2 � vLþi2 ¼
Xl
j¼0

aLi2kj xþ
Xl
j¼0

bLi2kj y�
Xl
j¼0

gLFikj

�����
����� ð9:20Þ

for i ¼ 1; . . .; t. Similarly, we have

vR�i2 � vRþi2 ¼
Xl
j¼0

aRi2kj xþ
Xl
j¼0

bRi2kj y�
Xl
j¼0

gRFikj

�����
����� ð9:21Þ

for i ¼ 1; . . .; t. Thus, we obtain

P x0ð Þ ¼ y0 2 Y 0jy0 2 argminW0f g ð9:22Þ

where

W0 ¼
Xt
i¼1

Xl
j¼0

aLi2kj xþ bLi2kj � gLLhkj ŷ� gLFikj

��� ���n

þ aRi2kj xþ bRi2kj ŷ� gRFikj

��� ���; ŷ 2 S x0ð Þ
o
:

From (9.17) and (9.22), we obtain

p x0ð ÞjX�Y¼ p xð Þ: ð9:23Þ

From (9.8e), (9.14), (9.17), and (9.23), we obtain

IR0jX�Y¼ IR; ð9:24Þ

which means that, in X � Y space, the leaders of problem (9.5a)–(9.5d) and (9.7a)–
(9.7d) have the same optimizing space.
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Thus, from (9.16) and (9.24), for any x; yð Þ 2 IR, we have

1
lþ 1

Xs
h¼1

Xl
j¼0

aLh1kj xþ bLh1kj y� gLLhkj

��� ���þ aRh1kj xþ bRh1kj y� gRLhkj

��� ���n o


 1
lþ 1

Xs
h¼1

Xl
j¼0

aLh1kj x
� þ bLh1kj y

� � gLLhkj

��� ���þ aRh1kj x
� þ bRh1kj y

� � gRLhkj

��� ���� �
:

Consequently, ðx�; y�Þ is the optimal solution of problem (9.5a)–(9.5d). h

Adopting the weighting method, (9.7a)–(9.7d) can be further transferred into
(9.25a)–(9.25d):

min
x02X 0

v�1 þ vþ1 ð9:25aÞ

s:t: a1xþ b1yþ v�1 � vþ1 ¼
Xs
h¼1

Xl
j¼0

gLLhkj þ gRLhkj

� �
v�1 ; v

þ
1 
 0;

v�1 � vþ1 ¼ 0;

AL
1kj xþ BL

1kj y � bL1kj ;

AR
1kj xþ BR

1kj y � bR1kj ;

j ¼ 0; 1; . . .; l;

ð9:25bÞ

min
y02Y 0

v�2 þ vþ2 ð9:25cÞ

s:t: a2xþ b2yþ v�2 � vþ2 ¼
Xt
i¼1

Xl
j¼0

ðgLFikj þ gRFikjÞ

v�2 ; v
þ
2 
 0;

v�2 � vþ2 ¼ 0;

AL
2kj xþ BL

2kj y� bL2kj ;

AR
2kj xþ BR

2kj y� bR2kj ;

j ¼ 0; 1; . . .; l;

ð9:25dÞ

where x0 ¼ x1; . . .; xn; v�1 ; v
þ
1

� �
; y0 ¼ y1; . . .; ym; v�2 ; v

þ
2

� �
; v�1 ¼Ps

h¼1 vL�L1 þ vR�L1
� �

,

vþ1 ¼Ps
h¼1 vLþh1 þ vRþh1
� �

; v�2 ¼Pt
i¼1 vL�i2 þ vR�i2
� �

; vþ2 ¼Pt
i¼1 vLþi2 þ vRþi2
� �

; a1 ¼Ps
h¼1

Pl
j¼0 aLh1kj þ aRh1kj

� �
; b1 ¼

Ps
h¼1

Pl
j¼0 bLh1kj þ bRh1kj

� �
; a2 ¼

Pt
i¼1

Pl
j¼0

aLi2kj þ aRi2kj

� �
; b2 ¼

Pt
i¼1

Pl
j¼0 bLi2kj þ bRi2kj

� �
.
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In this formula, v�1 and vþ1 are deviational variables representing the under-
achievement and over-achievement of goals for a leader, and v�2 and vþ2 are devi-
ational variables representing the under-achievement and over-achievement of
goals for a follower respectively.

The non-linear conditions of v�1 � vþ1 ¼ 0, and v�2 � vþ2 ¼ 0 need not to be
maintained if the Kuhn-Tucker approach together with the simplex algorithm are
adopted, since only equivalence at an optimum is wanted. Further explanation can
be found from (Charnes and Cooper 1961). Thus, the problem (9.25a)–(9.25d) is
further transformed into:

min
ðx;v�1 ;vþ1 Þ2X 0

v1 ¼ v�1 þ vþ1 ð9:26aÞ

s:t: a1xþ b1yþ v�1 � vþ1 ¼
Xs
h¼1

Xl
j¼0

gLLhkj þ gRLhkj

� �
;

v�1 ; v
þ
1 
 0;

v�1 � vþ1 ¼ 0;

AL
1kj xþ BL

1kj y � bL1kj ;

AR
1kj xþ BR

1kj y � bR1kj ;

j ¼ 0; 1; . . .; l;

ð9:26bÞ

min
ðy;v�2 ;vþ2 Þ2Y 0

v2 ¼ v�2 þ vþ2 ð9:26cÞ

s:t: a2xþ b2yþ v�2 � vþ2 ¼
Xs
h¼1

Xl
j¼0

gLLhkj þ gRLhkj

� �
;

v�2 ; v
þ
2 
 0;

v�2 � vþ2 ¼ 0;

AL
2kj xþ BL

2kj y � bL2kj ;

AR
2kj xþ BR

2kj y � bR2kj ;

j ¼ 0; 1; . . .; l;

ð9:26dÞ

Problem (9.26a)–(9.26d) is a standard linear bi-level problem that can be solved
by the Kuhn-Tucker approach.

Based on the definitions and theorems for the FMO-BLP problem, we will
present a solution algorithm for such a problem in the next section.
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9.3 Fuzzy Bi-level Goal-Programming Algorithm

Based on the analysis above, the fuzzy bi-level goal-programming algorithm is
detailed as:

26
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9.4 A Numerical Example and Experiments

In this section, we apply the fuzzy bi-level goal-programming algorithm proposed
in Sect. 9.3 on a numerical example to illustrate its operation. Experiments are then
carried out on some numerical examples with different scales to test the algorithm’s
performance.

9.4.1 A Numerical Example

To illustrate the fuzzy bi-level goal-programming algorithm, we consider the fol-
lowing FMO-BLP problem.

Example 9.2 Step 1: (Input the relevant coefficients).

1. Coefficients of (9.1a)–(9.1d).
Suppose that the problem has one leader and one follower with two objectives
F1 and F2 for the leader and f1 and f2 for the follower respectively. This FMO-
BLP problem is as follows:

max
x2X

F1 x; yð Þ ¼ ~6xþ ~3y

max
x2X

F2 x; yð Þ ¼ �~3xþ ~6y

s:t: � ~1xþ ~3y � f21;
min
y2Y

f1 x; yð Þ ¼ ~4xþ ~3y

min
y2Y

f2 x; yð Þ ¼ ~3xþ ~1y

s:t: � ~1x� ~3y � f27;
where x 2 R; y 2 R; and X ¼ fxjx
 0g, Y ¼ fyjy
 0g.
The membership functions for this FMO-BLP problem are as follows:

l~6 xð Þ ¼

0; x\5
x2�25
11 ; 5� x\6

1; x ¼ 6
64�x2
28 ; 6\x� 8

0; x[ 8

8>>>><
>>>>:

; l~3 xð Þ ¼

0 x\2
x2�4
5 2� x\3

1 x ¼ 3;
25�x2
16 3\x� 5

0 x[ 5

8>>>><
>>>>:
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l�~3 xð Þ ¼

0; x\� 5
16�x2

7 ; �4� x\� 3
1; x ¼ �3
25�x2
16 ; �3\x� � 1

0; x[ � 1

8>>>><
>>>>:

; l~4 xð Þ ¼

0; x\3
x2�9
7 ; 3� x\4

1; x ¼ 4;
36�x2
20 ; 4\x� 6

0; x[ 6

8>>>><
>>>>:

l~1 xð Þ ¼

0; x\0:5
x2�0:25
0:75 ; 0:5� x\1

1; x ¼ 1
4�x2
3 ; 1\x� 2

0; x[ 2

;

8>>>><
>>>>:

l�~1 xð Þ ¼

0; x\� 2
4�x2
3 ; �2� x\� 1

1; x ¼ �1
x2�0:25
0:75 ; �1\x� � 0:5

0; x[ � 0:5

;

8>>>><
>>>>:

le21 xð Þ ¼

0; x\19
x2�361

80 ; 19� x\21
1; x ¼ 21
625�x2
184 ; 21\x� 25

0; x[ 25

;

8>>>><
>>>>:

le27 xð Þ ¼

0; x\25
x2�625
104 ; 25� x\27

1; x ¼ 27
961�x2
232 ; 27\x� 31

0; x[ 31

:

8>>>><
>>>>:

2. Suppose the membership functions of the fuzzy goals set for the leader are:

lfgL1 xð Þ ¼

0; x\15
x2�225
175 ; 15� x\20

1; x ¼ 20
900�x2
500 ; 20\x� 30

0; x[ 30

8>>>><
>>>>:

; lfgL2 xð Þ ¼

0; x\4
x2�16
48 ; 4� x\8

1; x ¼ 8
225�x2
161 ; 8\x� 15

0; x[ 15

8>>>><
>>>>:

:

The membership functions of the fuzzy goals set for the follower are:

lfgF1 xð Þ ¼

0; x\10
x2�100
225 ; 10� x\15

1; x ¼ 15
400�x2
175 ; 15\x� 20

0; x[ 20

8>>>><
>>>>:

; lfgF2 xð Þ ¼

0; x\7
x2�49
32 ; 7� x\9

1; x ¼ 9
121�x2

40 ; 9\x� 11
0; x[ 11

8>>>><
>>>>:

:

3. Satisfactory degree: a ¼ 0:2.
4. e ¼ 0:15.
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Step 2: (Initialize) Let k ¼ 1. Associated with this example, we have

max
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11kþ 25

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5kþ 4

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
175kþ 225

p��� ���
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64� 2811k

p
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16k

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
900� 500k

p��� ���
max
x2X

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 7k

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11kþ 25

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48kþ 16

p��� ���
þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kþ 1

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64� 28k

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
225� 161k

p��� ���
s:t: �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2k

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5kþ 4

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
80kþ 361

p
;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:75kþ 0:25

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16k

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
625� 184k

p
;

min
y2Y

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7kþ 9

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5kþ 4

p
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
225kþ 100

p
j þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 20k

p
x

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16k

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400� 175k

p
j

min
y2Y

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5kþ 4

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:75kþ 0:25

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32kþ 49

p
j þ j

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16k

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3k

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
121� 40k

p
j

s:t:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:75kþ 0:25

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5kþ 4

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
104kþ 625

p
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� 3k
p

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16k

p
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
901� 232k

p
;

where k 2 ½0:2; 1�.
Referring to the algorithm, only k0 ¼ 0:2 and k1 ¼ 1 are considered initially.

Thus four non-fuzzy objective functions and four non-fuzzy constraints for the
leader and the follower are generated respectively:

max
x2X

1
4

ffiffiffiffiffiffiffiffiffi
27:2

p
xþ

ffiffiffi
5

p
y�

ffiffiffiffiffiffiffiffi
260

p��� ���þ 6xþ 3y� 20j j
n
þ

ffiffiffiffiffiffiffiffiffi
58:4

p
xþ

ffiffiffiffiffiffiffiffiffi
21:8

p
y� 20

ffiffiffi
2

p��� ���þ 6xþ 3y� 20j j

þ �
ffiffiffiffiffiffiffiffiffi
14:6

p
xþ

ffiffiffiffiffiffiffiffiffi
27:2

p
y�

ffiffiffiffiffiffiffiffiffi
25:6

p��� ���þ �3xþ 6y� 8j j þ j

�
ffiffiffiffiffiffiffi
2:6

p
xþ

ffiffiffiffiffiffiffiffiffi
58:4

p
y�

ffiffiffiffiffiffiffiffiffiffiffi
192:8

p
j þ j � 3xþ 6y� 8j

o

s:t: �
ffiffiffiffiffiffiffi
3:4

p
xþ

ffiffiffi
5

p
y�

ffiffiffiffiffiffiffiffi
377

p
;

� xþ 3y� 21;

�
ffiffiffiffiffiffiffi
0:4

p
xþ

ffiffiffi
5

p
y�

ffiffiffiffiffiffiffiffiffiffiffi
645:8

p
;

� xþ 3y� 21;

min
y2Y

1
4

3xþ 2y� 12:04j j þ 4xþ 3y� 19:1j j þ 6x� 5y� 7:4j jf
þ 4x� 3y� 10:63j j þ �2xþ 0:5y� 18:3j j
þ �3xþ y� 15j j þ �5xþ 2y� 9j j þ �3xþ y� 9j jg

s:t:
ffiffiffiffiffiffiffi
0:4

p
xþ

ffiffiffi
5

p
y�

ffiffiffiffiffiffiffiffiffiffiffi
645:8

p
;

xþ 3y� 27;ffiffiffiffiffiffiffi
3:4

p
xþ

ffiffiffiffiffiffiffiffiffi
21:8

p
y�

ffiffiffiffiffiffiffiffiffiffiffi
914:6

p
;

xþ 3y� 27:
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Step 3: (Compute) By introducing auxiliary variables v�1 , v
þ
1 , v

�
2 , and v

þ
2 , we have

min
x;v�1 ;v

þ
1

v�1 þ vþ1

s:t: 3:083xþ 20:076yþ v�1 � vþ1 ¼ 54:73;

� 1:8xþ 2:2y� 19:4;

� xþ 3y� 21;

� 0:6xþ 4:7y� 24:3;

� xþ 3y� 21

min
y;v�2 ;v

þ
2

v�2 þ vþ2

s:t: 16:498xþ 8:205yþ v�2 � vþ2 ¼ 51:337;

0:6xþ 2:2y� 25:4;

xþ 3y� 7;

1:8xþ 4:7y� 30:2;

xþ 3y� 27:

Using the Kuhn-Tucker approach, the current solution is (1.901, 0, 0, 2.434, 0, 0).
Step 4: (Compare) Because k = 1, go to Step 5.
Step 5: (Split) By inserting a new node k1 ¼ ð0:2þ 1Þ=2, there are a total three

nodes of k0 ¼ 0:2, k1 ¼ 0:6 and k2 ¼ 1. Then a total of six non-fuzzy objective
functions for the leader and follower, together with six non-fuzzy constraints for the
leader and follower respectively, are generated.

Step 6: (Loop) k ¼ 1þ 1 ¼ 2, go to Step 3, and a current solution of (2.011, 0,
0, 2.356, 0, 0) is obtained. As 2:011� 1:901j j þ 2:356� 2:434j j ¼ 0:188[
e ¼ 0:15, the algorithm continues until the solution of (1.957, 0, 0, 2.388, 0, 0) is
obtained. The computing results are listed in Table 9.1.

Step 7: (Output) As j1:957� 1:872j þ j2:388� 2:2:446j ¼ 0:14\e ¼ 0:15,
ðx�; y�Þ = (1.957, 2.388) is the final solution of this example. The objectives for the
leader and follower under ðx�; y�Þ = (1.957, 2.388) are:

F1 x�; y�ð Þ ¼ F1 1:957; 2:388ð Þ ¼ ~6 � 1:957þ ~3 � 2:388;
F2 x�; y�ð Þ ¼ F2 1:957; 2:388ð Þ ¼ �~3 � 1:957þ ~6 � 2:388;
f1 x�; y�ð Þ ¼ f1 1:957; 2:388ð Þ ¼ ~4 � 1:957þ ~3 � 2:388;
f2 x�; y�ð Þ ¼ f2 1:957; 2:388ð Þ ¼ ~3 � 1:957þ ~1 � 2:388:

8>><
>>:

Table 9.1 Summary of the
running solution k x y vþ1k v�1k vþ2k v�2k

1 1.901 2.434 0 0 0 0

2 2.011 2.356 0 0 0 0

3 1.872 2.466 0 0 0 0

4 1.957 2.388 0 0 0 0
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9.4.2 Experiments and Evaluation

The fuzzy bi-level goal-programming algorithm was implemented by Visual Basic
6.0, and run on a desktop computer with CPU Pentium 4 2.8 GHz, RAM 1G,
Windows XP. To test the performance of the proposed algorithm, the following
experiments are carried out.

1. To test the efficiency of the proposed algorithm, we employ ten numerical
examples and enlarge the problem scales by changing the numbers of decision
variables, objective functions and constraints for both leaders and followers
from two to ten simultaneously. For each of these examples, the final solution
has been obtained within 5 s.

2. To test the performance of the fuzzy distance measure in Definition 9.1, we
adjust the satisfactory degree values from 0 to 0.5 on the ten numerical examples
again. At the same time, we change some of the fuzzy coefficients in the con-
straints by moving the points whose membership values equal 0 by 10 % from
the left and right respectively. Experiments reveal that, when a satisfactory
degree is set as 0, the average solution will change by about 6 % if some of the
constraint coefficients are moved as discussed above. When we increase satis-
factory degrees, the average solution change decreases. For the point in which
satisfactory degrees are equal to 0.5, the average solution change is 0.

From Experiment (1), we can see that the proposed algorithm is quite efficient.
The reason is the fact that final solutions can be reached by solving corresponding
linear bi-level programming problems, which can be handled by the Kuhn-Tucker
approach.

From Experiment (2), we can see that if we change some coefficients of fuzzy
numbers within a small range, solutions will be less sensitive to this change under a
higher satisfactory degree. The reason is that, when the satisfactory degree is set to
0, every λ-cut of fuzzy coefficients from 0 to 1 will be considered. Thus, the
decision maker can certainly be influenced by minor information.

For a decision-making process involved with fuzzy parameters, decision makers
may sometimes make small adjustment on the uncertain information about the
preference or circumstances. If the change occurs to the minor information, that is
with smaller satisfactory degrees, there should normally be no significant change to
the final solution. For example, when estimating future profit, the manufacturer may
adjust the possibility of five thousand dollars profit from 2 to 3 %, while the
possibility of one hundred thousand dollars profit remains 100 %. In such a situ-
ation, there should be no outstanding change for his or her final decision on the
device investment. Therefore, to increase the satisfactory degrees is an acceptable
strategy for a feasible solution.

From the above analysis, the advantages and disadvantages of the proposed
fuzzy bi-level goal-programming algorithm are as follows:
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1. This algorithm is quite efficient, as it adopts strategies to transform a non-linear
bi-level decision problem into a linear decision problem.

2. When pursuing optimality, the negative effect from conflicting objectives can be
avoided and a leader can finally reach his or her satisfactory solution by setting
goals for the objectives.

3. The information of the original fuzzy numbers is considered adequately by
using a certain number of λ-cuts to approximate the final precise solution.

4. In some situations, this algorithm might suffer from expensive calculation, as the
size of λ-cuts will increase exponentially with respect to iteration counts.

9.5 Summary

In a bi-level decision model, the leader and/or the follower may have more than one
objective to achieve. This kind of bi-level decision problem is studied by goal
programming in this chapter. Meanwhile, we take into consideration the situation
where coefficients to formulate a bi-level decision model are not precisely known to
us. A fuzzy set method is applied to handle these coefficients, and a fuzzy bi-level
goal-programming algorithm is proposed to solve the FMO-BLP problems.
A numerical example is then adopted to explain this algorithm. Experiments reveal
that the algorithm is quite effective and efficient in solving the FMO-BLP problems.
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Part IV
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Chapter 10
Rule-Set-Based Bi-level Decision Making

As discussed in previous chapters, bi-level decision-making problems are normally
modeled by bi-level programming. Because many uncertain factors are involved in
a bi-level decision-making, it is sometimes very difficult to formulate the objective
functions and constraints of decision makers. When a bi-level decision problem
cannot be formulated by normal bi-level programming, we can consider using rules
to express the objective functions and constraints of a decision problem.

This chapter presents a rule-set-based bi-level decision (RSBLD) concept,
approach and solution. It first introduces related theories to prove the feasibility of
modeling a bi-level decision problem by a rule-set. It then proposes a rule-set-based
bi-level decision modeling approach (i.e. Algorithm 10.1) for modeling a bi-level
decision problem which contains rule generation, rule reduction and other steps. For
solving a rule-set-based bi-level decision problem, this chapter also presents a rule-
set-based bi-level decision solution algorithm (i.e., Algorithm 10.2) and a trans-
formation-based solution algorithm (i.e., Algorithm 10.3) through developing
attribute-importance-degree (AID) based rule trees (Zheng and Wang 2004).
A case-based example is used to illustrate the functions and effectiveness of the
proposed RSBLD modeling approach and the solution algorithms.

This chapter is organized as follows. Section 10.1 identifies the non-program-
ming bi-level decision problem. Section 10.2 introduces the concepts and notions of
information tables and rule-set, which are given as preliminaries in this chapter.
Section 10.3 presents a RSBLD model. A RSBLD modeling approach is presented
in Sect. 10.4. In Sect. 10.5, two RSBLD solution algorithms are provided to solve a
bi-level decision problem which is modeled by rule-sets. A case-based example is
shown in Sect. 10.6. Section 10.7 gives experiment results, and the summary is
presented in Sect. 10.8.

10.1 Problem Identification

In general, there are two main uncertainties in modeling a bi-level decision prob-
lem. One is that the parameter values in the objective functions and constraints of
the leader and the followers may be indefinite or inaccurate. Fuzzy optimization
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approaches can handle this issue, as discussed in previous chapters. Another type of
uncertainty involves the form of the objective functions and constraints. That is,
how to determine the relationships among the proposed decision variables and
formulate the functions for a real decision problem. The challenge can be handled
by a rule-set-based approach. Below, we give an example by way of explanation.

Example 10.1 A factory’s human resource management system is distributed over
two levels. The upper level is the factory executive committee and the lower level is
the workshop management committee. When deciding whether a person can be
recruited for a particular position, the factory executive committee principally
considers the following two factors; the “age” and “education level (edulevel)” of
the person. The workshop management committee is largely concerned with two
other factors: the “seniority” and “health” of the person. Suppose the condition
attributes in ascending order according to the importance degree are “age”, “edu-
level”, “seniority”, “health”.

It is clearly difficult to express the worker selection conditions of the two
committees as linear or non-linear functions, but the two committees have all
necessary information about the workers. We can build rules using the information
to form the selection conditions and objectives of this decision (selection) problem.

10.2 Information Tables and Rule-Sets

For the convenience of describing proposed models and algorithms, we will first
introduce some basic notions of information tables, formulas, rules, decision rule
set functions and rule trees. In addition, we will give some related definitions and
theorems which will be used in subsequent sections.

10.2.1 Information Tables

To present the definition of a rule, we first describe information table and decision
table.

An information table is a knowledge-expressing system which is an important
tool for representing and processing knowledge in machine learning, data mining
and many other fields. It provides a convenient way to describe a finite set of
objects called the universe of discourse by a finite set of attributes (Pawlak 1991).

Definition 10.1 (Information table, Pawlak 1991) An information table can be
formulated as a tuple:

S ¼ U;At; L; Va j a 2 Atf g; Ia j a 2 Atf gð Þ;

where U is a finite non-empty set of objects, At is a finite non-empty set of
attributes, L is a language defined using attributes in At, Va is a non-empty set of
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values for a 2 At; Ia : U ! Va is an information function. Each information
function Ia is a total function that maps an object of U to exactly one value in Va.

An information table can represent all the available information and knowledge
about a situation. Here the objects are only perceived, observed, or measured by
using a finite number of properties. We can easily extend the information function
Ia to some subsets of attributes. For a subset A � At, the value of an object x over
A is denoted by IAðxÞ.

A decision table is a special case of information tables. A decision table is
commonly viewed as a functional description, which maps inputs (conditions) to
outputs (actions) without necessarily specifying the manner in which the mapping is
to be implemented (Lew and Tamanaha 1976). The formal definition of a decision
table is given as follows.

Definition 10.2 (Decision table, Pawlak 1991) A decision table is an information
table for which the attributes in A are further classified into disjoint sets of condition
attributes C and decision attributes D, i.e., At ¼ C [ D; C \ D ¼ ;.

A decision table can be seen as a special and important knowledge expression
system. It shows that, when some conditions are satisfied, decisions (actions,
operations, or controls) can be made. Decision attributes in a decision table can be
unique or not. In the latter case, the decision table can be converted to one with a
unique decision attribute. Therefore, in this chapter, we suppose that there is only
one decision attribute in a decision table.

Based on the two definitions above, we introduce the following definitions.

10.2.2 Formulas and Rules

Definition 10.3 (Formulas, Yao and Yao 2002) In the language L of an infor-
mation table, an atomic formula is given by a ¼ v, where a 2 At and v 2 Va. If ϕ
and w are formulas, then so as :/;/ ^ w; and / _ w.

The semantics of the language L can be defined in the Tarski style through the
notions of a model and satisfiability. The model is an information table S, which
provides interpretation for the symbols and formulas of L.

Definition 10.4 (Satisfiability of formula, Yao and Yao 2002) The satisfiability of a
formula ϕ by an object x, written x�S/ or in short x�/ if S is defined by the
following conditions:

1. x�a ¼ v if Ia xð Þ ¼ v,
2. x�:/ if x2/,

3. x�/ ^ w if x�/ and x�w.
4. x�/ _ w if x�/ or x�w.
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If ϕ is a formula, the set

ms /ð Þ ¼ x 2 U j x�/f g

is called the meaning of the formula ϕ in S. If S is understood, we simply write
m /ð Þ. The meaning of a formula ϕ is therefore the set of all objects having the
property expressed by the formula ϕ. In other words, ϕ can be viewed as the
description of the set of objects m /ð Þ. Thus, a connection between the formulas of
L and subsets of U is established.

To illustrate the idea, consider an information table given by Table 10.1
(Quinlan 1983). The following expressions are some of the formulas of the lan-
guage L:

height ¼ tall; hair ¼ dark;

height ¼ tall ^ hair ¼ dark;

height ¼ tall _ hair ¼ dark:

The meanings of the formulas are given by:

m height ¼ tallð Þ ¼ o3; o4; o5; o6; o7f g;
m hair ¼ darkð Þ ¼ fo4; o5; o7g;
m height ¼ tall ^ hair ¼ darkð Þ ¼ o4; o5; o7f g;
m height ¼ tall _ hair ¼ darkð Þ ¼ o3; o4; o5; o6; o7f g:

From Definition 10.1, we know that an information table records the attribute
values of a set of objects and can be an object database. The aim of knowledge
acquisition is to discover useful and regular knowledge from the object databases.
Usually, the knowledge is expressed by rules which can be formulated as follows
(Pawlak 1991; Yao and Yao 2002).

Table 10.1 An information
table Object Height Hair Eyes Class

o1 Short Blond Blue +

o2 Short Blond Brown −

o3 Tall Dark Blue +

o4 Tall Dark Blue −

o5 Tall Dark Blue −

o6 Tall Blond Blue +

o7 Tall Dark Brown −

o8 Short Blond Brown −
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Definition 10.5 (Rules) Let S ¼ U; At; L; Va j a 2 Atf g; Ia j a 2 Atf gð Þ be an
information table, then a rule r is a formula with the form

/ ) w;

where ϕ and w are formulas of information table S for any x 2 U,

x�/ ) w iff x�:/ _ w:

Definition 10.6 (Decision Rules) Let S ¼ U;C [ D; L; Va j a 2 Atf g; Ia j afð 2
C [ DgÞ be a decision table, where C is the set of condition attributes and D is the
set of decision attributes. A decision rule dr is a rule with the form / ) w, where
/;w are both conjunctions of atomic formulas, for any atomic formula c ¼ v in
/; c 2 C, and for any atomic formula d ¼ v in w; d 2 D.

It is evident that each object in a decision table can be expressed by a decision
rule.

Definition 10.7 An object x is said to be consistent with a decision rule
dr : / ) w, iff x�/ and x�w; x is said to be conflict with dr, iff x�/ and x�:/.

Based on these definitions, we introduce decision rule set functions.

10.2.3 Decision Rule Set Function

To present a bi-level decision model based on obtaining a decision rule set, we first
need to define decision rule set functions. A decision rule set function can be
defined as a mapping from n objects to a decision. Given a decision table
S ¼ U;At; L; Va j a 2 Atf g; Ia j a 2 Atf gð Þ, where At ¼ C [ D and D ¼ df g. Sup-
pose x and y are two variables, where x 2 X and X ¼ Va1 � � � � � Vam; y 2 Y and
Y ¼ Vd . Vai is the set of attribute ai’s values, ai 2 C, i ¼ 1 to m, m is the number of
condition attributes. RS is a decision rule set generated from S.

Definition 10.8 (Decision rule set function) A decision rule set function rs from
X to Y is a subset of the Cartesian product X � Y , such that for each x in X, there is
a unique y in Y generated with RS such that the ordered pair ðx; yÞ is in rs, where RS
is called a decision rule set, x is called a condition variable, y is called a decision
variable, X is the definitional domain, and Y is the value domain.

Calculating the value of a decision rule set function is to make decisions for
objects with a decision rule set. To present the method of calculating the value of a
decision rule set function, we introduce a definition below about matching objects
to decision rules.

Definition 10.9 (Matching an object to a decision rule) An object o is said to
match a decision rule / ) w, if o�/. Given a decision rule set RS, all decision
rules in RS that are matched by object o are denoted as MRo

RS.
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With the definition, a brief method of calculating the result of a decision rule set
function is described as follows:

Step 1: Calculate MRo
RS;

Step 2: Select a decision rule dr from MRo
RS, where dr : ^ a; vað Þf g ) d; vdð Þ;

Step 3: Set the decision value of object o to be vd , i.e. rs oð Þ ¼ vd :

In Step 2, how to select a decision rule from MRo
RS is the key task of the process.

For example, there is a decision rule set RS:

1. a; 1ð Þ ^ b; 2ð Þ ) d; 2ð Þ;
2. a; 2ð Þ ^ b; 3ð Þ ) d; 1ð Þ;
3. b; 4ð Þ ) d; 2ð Þ;
4. b; 3ð Þ ^ c; 2ð Þ ) d; 3ð Þ;
and an undecided object:

o ¼ a; 2ð Þ ^ b; 3ð Þ ^ c; 2ð Þ:

With Step 1, Ro
RS ¼ a; 2ð Þ ^ b; 3ð Þ ) d; 1ð Þ; b; 3ð Þ ^ c; 2ð Þ ) ðd; 3Þf g.

With Step 2, if the final rule is selected as a; 2ð Þ ^ b; 3ð Þ ) d; 1ð Þ, then with
Step 3, rs oð Þ ¼ 1; if the final rule is selected as b; 3ð Þ ^ c; 2ð Þ ) ðd; 3Þ, then with
Step 3, rs oð Þ ¼ 3.

From the above example, we know that there may be more than one rule in
MRo

RS. In this case, when the decision values of these rules are different, the result
can be controlled according to above method, which is called uncertainty of a
decision rule set function. The method of selecting the final rule from MRo

RS is thus
very important, and is called the uncertainty solution method. In this chapter, we
use the AID-based rule tree to deal with the problem, and more details about the
method will be discussed in Sects. 10.4 and 10.5.

10.2.4 Rule Trees

A rule tree is a compact and efficient structure for expressing a rule set. We first
introduce the definition of rule trees (Zheng and Wang 2004) as follows.

Definition 10.10 (Rule tree)

1. A rule tree is composed of one root node, multiple leaf nodes and middle nodes;
2. The root node represents the whole rule set;
3. Each path from the root node to a leaf node represents a rule;
4. Each middle node represents an attribute testing. Each possible value of an

attribute in a rule set is represented by a branch. Each branch generates a new
child node. If an attribute is reduced in some rules, then a special branch is
needed to represent it and the value of the attribute in this rule is assumed to be
“*”, which is different from any possible values of the attribute.
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When two nodes are connected with a branch, we call the upper node a start
node and the lower node an end node.

Figure 10.1 gives an example of a rule tree, where “Age”, “Educational level
(Edulevel)”, “Seniority”, and “Health” are the names of its conditional attributes,
and “Grade” is the name of its decision attribute. The values of these attributes are
noted beside branches.

We define the number of nodes between a branch and the root node as the level
of the branch (including the root node) in the path. For each rule tree, we have two
assumptions as follows:

Assumption 10.1 The branches at the same level represent the possible values of
the same attribute.

Here, an attribute is expressed by the level of a rule tree.

Assumption 10.2 If a rule tree expresses a decision rule set, the branches at the
bottom level represent the possible values of the decision attribute.

Based on Definition 10.10 and the two assumptions, we can improve the rule
tree structure with two constraints.

Definition 10.11 (Attribute importance degree (AID) based rule tree) An AID-
based rule tree is a rule tree which satisfies the following two additional conditions:
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*
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Fig. 10.1 An example of a
rule tree
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1. The conditional attribute expressed at the upper level is more important than that
expressed at any lower level;

2. Among the branches with the same start node, the value represented by the left
branch is more important (or better) than the value represented by any right
branch. Each possible value is more important (or better) than the value “*”.

In the rule tree illustrated in Fig. 10.1, if we suppose

• IDðaÞ is the importance degree of attribute a, and ID Ageð Þ[ ID Edulevelð Þ[
ID Seniorityð Þ[ ID Healthð Þ;

• (Age, Young) is better than (Age, Middle), and (Age, Middle) is better than
(Age, Old);

• (Seniority, Long) is better than (Seniority, Short), and (Health, Good) is better
than (Health, Poor), then the rule tree illustrated by Fig. 10.1 is an AID-based
rule tree.

10.2.5 Rules Comparison

There are many reasons for uncertainty in a decision rule set function. First, the
causality between two events cannot be measured easily, because there are many
factors involved in the events and many different relations among these factors.
When generating a decision rule set, there are some strict constraints and some less-
important elements that are ignored in uncertainty analysis. Second, some empirical
knowledge, especially perceptual knowledge, cannot be expressed precisely and
accurately. Third, the decision rule language can induce uncertainty issues. In
addition, knowledge stored in a rule base or database for a decision problem is often
finite and incomplete, which is also a reason for uncertainty. More obviously,
different learned objects, incomplete learning algorithms and some learning pro-
cesses can cause uncertainty in a decision rule set function as well.

The uncertainty can be eliminated through a process of selection. We can select a
rule correctly only when related information is known. In other words, we are said
to be informed only when we can select rules accurately and definitely. In this
chapter, we present a rule tree-based model to deal with the uncertainty. After the
ordering of importance degrees and the possible values of attributes, a rule tree
(Definition 10.10) is improved to become an AID-based rule tree (Definition
10.11). It can be proved that the following theorem holds.

Theorem 10.1 If we suppose the isomorphic trees to be the same, then there is a
one-to-one correspondence between a rule set and an AID-based rule tree.

From the definitions of rule-set and AID-based rule trees, it is clear that the
theorem holds.
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Compared to a decision rule set, an AID-based rule tree has the following
advantages:

1. An AID-based rule tree is a more concise structure, especially when the scale of
a rule set is huge;

2. An AID-based rule tree is a more structured model which provides a number of
useful properties such as confliction and repetition in an original decision rule
set;

3. It can speed up the searching and matching process on the decision rules;
4. The rules in an AID-based rule tree are ordered, which provides a way to solve

uncertainty problems in decision rule set functions.

Definition 10.12 (Comparison of rules) Suppose the condition attributes are
ordered by their importance degrees as a1; . . .; ap. Rule dr1: ^ ai; va1ið Þf g )
d1; vd1ð Þ is said to be better than rule dr2: ^ ai; va2ið Þf g ) d2; vd2ð Þ, if va1k is better
than va2k or the value of ak is deleted from rule dr2, where k 2 1; . . .; pf g, and for
each j\k, va1j ¼ va2j.

For example, we have two rules:
dr1: (Age, Middle) ∧ (Working Seniority, Long) ⇒ 2,
dr2: (Age, Middle) ∧ (Working Seniority, Short) ⇒ 3, and the value “Long” of

the attribute “Working Seniority” is better than the value “Short”. With Definition
10.12, we know dr1 is better than dr2.

Theorem 10.2 In an AID-based rule tree, the rule expressed by the left branch is
better than the rule expressed by the right branch.

This is evident from Definitions 10.11 and 10.12.

Theorem 10.3 After transformation to an AID-based rule tree, the rules in a rule
set are totally in order, that is, every two rules can be compared.

It is evident that the theorem holds from Definition 10.11 and Theorem 10.2.

Example 10.2 We can order the rules expressed by the rule tree shown in Fig. 10.1
as follows:

1. Age; Youngð Þ ^ Edulevel; Highð Þ ) 2;
2. Age; Middleð Þ ^ Working Seniority; Longð Þ ) 2;
3. Age,Middleð Þ ^ Working Seniority; Shortð Þ ) 3;
4. Age; Oldð Þ ) 4;
5. Edulevel; Shortð Þ ) 4;

where rule i is better than rule iþ 1; i ¼ 1; 2; 3; 4:
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10.3 Rule-Set-Based Bi-level Decision Model

This section will present a RSBLD model, which uses a rule set rather than
mathematic functions to express a bi-level decision problem. We will first discuss
the representation of objectives and constraints in a RSBLD model, and then
present the formulation of the model. Lastly, we will describe a modeling approach
for solving RSBLD problems.

10.3.1 Objectives

As we have discussed before, a decision table can be used to lay out all possible
situations in tabular form where a decision may be encountered, and to specify
which action to take in each of these situations. Decision tables are commonly
thought to be restricted in applicability to procedures involving sequencing of tests,
nested-IFs, or CASE statements. In fact, a decision table can implement any
computable function. It is observed that any Turing Machine program can be
“emulated” by a decision table by letting each Turing Machine instruction of the
form (input, state) + (output, tape movement, state) be represented by a decision
rule (or in a decision table) where (input, state) are conditions and (output, tape
movement, state) are actions. From a more practical point of view, it can also be
shown that all computer program flowcharts can be emulated by decision tables
(Lew and Tamanaha 1976).

In principle, therefore, after emulating all possible situations in a decision
domain, all objective functions can be transformed to decision tables, called
objective decision tables. That is, the objectives of the leader and the follower in a
bi-level decision problem can be transformed into a set of decision tables, where
decision variables are represented by the objects in these decision tables.

Decision rule sets are general knowledge generated from decision tables and
they have stronger knowledge-expressing ability than decision tables because they
overcome the following disadvantages of decision tables:

1. For complex situations, decision tables may become extremely large;
2. The objects in decision tables lack adaptability. They are hard to adapt to new

situations and one object can only record a single situation.

Thus, in the proposed model, we use a decision rule set to represent the
objectives of the leader and the follower in a bi-level decision problem, whereas
decision tables can be viewed as special cases of a decision rule set.
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10.3.2 Constraints

Constraints (constraint conditions) can be seen as the description of the search
space in a decision problem. Here, we use a rule set to represent constraints. Similar
to the discussion in Sect. 10.3.1, after emulating all possible situations in the
constraint field, the constraints can be formulated to an information table. When the
information tables are too big to be processed, they can be transformed to a rule set
using the methods provided by Agrawal et al. (1993) and Agrawal and Srikant
(1994).

A rule set can be viewed as knowledge generated from information tables, but it
has stronger knowledge-expressing ability and better adaptability than information
tables. An information table can be viewed as a special case of rule sets. By using
rule sets, we give the following definition about constraint conditions.

Definition 10.13 (Constraint Condition) Suppose x is a decision variable and RS is
a rule set, then a constraint condition cf ðx;RSÞ is defined as

cf x;RSð Þ ¼ True; if for 8r 2 RS; x 2 mðrÞ
False; else:

�
ð10:1Þ

The meaning of the constraint condition cf ðx;RSÞ is whether variable x belongs
to the region constrained by RS.

10.3.3 Rule-Set-Based Bi-level Decision Model

We can describe the objectives and constraints of the leader and the follower by rule
sets, called a rule-set-based bi-level decision model, as follows.

Definition 10.14 (Rule-set-based bi-level decision model)

min
x

fL x; yð Þ
s:t: cf x;GLð Þ ¼ True

min
y

fF x; yð Þ
s:t: cf y;GFð Þ ¼ True

ð10:2Þ

where x and y are decision variables (vectors) of the leader and the follower
respectively. fL and fF are the objective decision rule set functions of the leader and
the follower respectively. cf is the constraint condition. FL and GL are the objective
decision rule set and constraint rule set respectively of the leader, and FL and GL are
the objective decision rule set and constraint rule set respectively of the follower.
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In this model, we suppose that the decision rule set in the objectives can cover
the objects in the constraints. That is, each object in the constraints can be matched
by one decision rule at least in the objective decision rule set. The assumption is not
too restricted, because when the objective decision tables used to generate objective
decision rule set are huge and the objects in them are uniformly distributed, the
resulting decision rule set usually covers most of the objects to be decided. In other
cases, where some objects in the constraint fields cannot be matched by decision
rules in the objective decision rule set, additional methods should be introduced,
such as similarity matching, fuzzy marching, etc. In this chapter, we will discuss the
models and decision methods based on the above assumption.

10.4 Rule-Set-Based Bi-level Decision Modeling Approach

In the following, we propose an approach for modeling a bi-level decision problem
by rule sets.

Figure 10.2 is the flow charts of the proposed rule-set-based bi-level decision
problem modeling approach.
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We provide explanations for the approach. Step 1 is the key step of the modeling
process. Decision makers can complete the step by laying out all possible situations
that is, transforming the decision problem to information tables. When the decision
makers have the general knowledge (rules) for the problem, they can directly
transform the problem to related rule sets. Therefore, the key in the step is decision
makers’ knowledge about the problem and their ability to write the knowledge into
rules.

In Steps 2, 4 and 6, each of the four rule sets is pre-processed. As incom-
pleteness, noise and inconsistency are common characteristics of a huge real dataset
we need to use related techniques to eliminate these problems before using the data
to make a bi-level decision (Han and Kamber 2001).

In Steps 5, 7, and 9 of this algorithm, related rule sets are reduced by applying a
reduction algorithm. This is for at least one of the following three reasons:

1. When modeling a real-world bi-level decision problem, the rule set in the model
is often on a large scale, which is not convenient to process, and cannot be easily
interpreted and understood by decision makers.

2. The rules in the rule set lack adaptability. In this case, the rule set cannot adapt
to new situations well, so it is unable or has poor ability to support decision
making.

3. The rule sets in the model are original data sets, so the patterns in the data sets
need to be extracted, and the results are more general rules.

Begin

Transform the problem with rule sets

Preprocess FL Preprocess GL Preprocess FF Preprocess GF

Reduce FL? Reduce GL? Reduce FF? Reduce GF?

Reduce FL Reduce GL Reduce FF Reduce GF

A Rule-set - based Bilevel Decision Model

End

Y Y Y YN N N N

Fig. 10.2 Flow chart of the RSBLD modeling approach for modeling rule- set-based bi-level
decision problems (Algorithm 10.1)
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To reduce the size of a decision rule set or to extract decision rules from a decision
table, the rough set-based methods from literature are efficient. Many rough set-
based decision rule extraction and reduction algorithms, called value reduction
algorithms, have been developed (Pawlak 1991; Hu and Cercone 1995; Mollestad
and Skowron 1996; Wang 2001; Wang and He 2003; Zheng andWang 2004). These
algorithms have been applied successfully in many fields. Some rough set-based
systems, such as ROSETTA, RIDAS (Wang et al. 2002), and RSES (Jan et al. 2002),
can be used to reduce the size of a decision rule set or extract a decision rule set from
a decision table. Therefore, we use a rough set-based method to handle the issue.

To reduce the size of the constraint rule set or to generate constraint rules from
information tables, some effective methods have been developed, such as Apriori
algorithm (Agrawal et al. 1993), Fast algorithms for mining association rules
(Agrawal and Srikant 1994), and FP tree algorithm (Han et al. 2000). We can select
one of them to complete this task. Also, we have found that in many cases, when
the constraint rules are obvious or already known, the rule generation process can
be passed over.

10.5 Rule-Set-Based Bi-level Decision Solution Algorithms

In this section, we present two algorithms to solve rule-set-based bi-level decision
models, in which a key technique is that an AID-based rule tree is used to express a
rule set.

10.5.1 Concepts and Properties

Based on Bard (1998), we have the following definition.

Definition 10.15

(a) Constraint region of a bi-level decision problem:

S ¼ x; yð Þ j cf x;GLð Þ ¼ True; cf y;GFð Þ ¼ Truef g ð10:3Þ

(b) Feasible set for the follower for each fixed x:

S xð Þ ¼ y j x; yð Þ 2 Sf g ð10:4Þ

(c) Projection of S onto the leader’s decision space:

S xð Þ ¼ x j 9y; x; yð Þ 2 Sf g ð10:5Þ
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(d) Follower’s rational reaction set for x 2 SðXÞ:

P xð Þ ¼ y j y 2 argmin
y0

fF x; y
0

� �
j y0 2 SðxÞ

n o� �
ð10:6Þ

(e) Inducible region:

IR ¼ x; yð Þ j x; yð Þ 2 S; y 2 P xð Þf g ð10:7Þ

To ensure that (10.2) is well posed it is common to assume that S is nonempty
and compact, and that for all decisions taken by the leader, the follower has some
room to respond, i.e. P(x) ≠ ∅. The rational reaction set PðxÞ defines the response
while the inducible region IR represents the set over which the leader may optimize
its objective. Thus in terms of the above notation, the bi-level decision problem can
be written as

min fL x; yð Þ j x; yð Þ 2 IRf g ð10:8Þ

From the features of the bi-level decision, it is clear that once the leader selects
an x, the first term in the follower’s objective function becomes a constant and can
be removed from the problem. In this case, we replace fFðx; yÞ with fFðyÞ.

To begin, let x 1½ �; y 1½ �
� �

; x 2½ �; y 2½ �
� �

; . . .; x N½ �; y N½ �
� �

denote the N ordered feasible
solutions to the rule-set-based one level one objective problem

min
x

fL x; yð Þ j x; yð Þ 2 Sf g ð10:9Þ

such that

fL x i½ �; y i½ �
� �� fL x iþ1½ �; y iþ1½ �

� � ð10:10Þ

and i ¼ 1; . . .;N � 1. Thus, to solve (10.9) is equivalent to finding the global
optimum x k½ �; y k½ �

� �
.

10.5.2 Rule-Based-Based Solution Algorithm

We present an algorithm for solving a rule-set-based bi-level decision problem. The
main picture of the algorithm is to repeatedly solve two rule-set-based one-level
decision problems. One is for the leader in all of the variables x and a subset of the
variables y associated with an optimal basis to the follower’s problem, and the other
is for the follower with all the variables x fixed. The leader first makes his decision,
and the decision will influence the objective rule set function and the constraint rule
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set function of the follower. In a systematic way, the algorithm explores the optimal
solution of the follower’s problem for x fixed and then returns to the leader’s
problem with the corresponding variables y. If the variables y are not an optimal
solution of the leader’s decision problem, then the leader modifies his decision and
engages in the procedures repeatedly.
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Figure 10.3 shows the flow charts of Algorithm 10.2. We will use an example to
illustrate the algorithm.

10.5.3 Transformation-Based Solution Algorithm

This section presents an alternative algorithm for solving a rule-set-based bi-level
decision problem. The main idea of this algorithm is to transform two level rule-sets
to one level first, then to solve this one-level decision. Before developing the
algorithm, a transformation theorem will be proposed to show the solution equiv-
alence for the two problems before and after transformation.

First, we give a definition below.
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Definition 10.16 (Combination rule of two decision rules) Suppose dr1: /1 )
d1; v1ð Þ and dr2: /2 ) d2; v2ð Þ are two decision rules and they are not in conflict,
then their combination rule is denoted as dr1 ⋂ dr2 with the form

/1 ^ /2 ) d; v1; v2ð Þð Þ;

where d1, d2, and d are the decision attributes of dr1, dr2 and dr respectively, v1, v2
and (v1, v2) are the decision values of dr1 and dr2 and dr respectively.

Here, v1, v2 are called the leader decision and the follower decision of dr
respectively. For example, suppose

dr1: Age; Youngð Þ ) 2;

dr2: Working Seniority; Longð Þ ) 2;

then the combination of the two rules is

dddr: Age; Youngð Þ ^ Working Seniority; Longð Þ ) d; 2; 2ð Þð Þ:

Suppose the objective rule sets are expressed by AID-based rule trees, then the
transformation process can be presented as follows.

Begin

Construct FTL

by FL

Construct FTF 

by FF

Solve problem 
(4.1) 

Set FTF’ and 
W =

Calculate P(x[i])

Solve problem 
(4.3) 

y=y [i]?

OS’ is empty? RS’ is empty?

The optimal 
solution is obtained

Select next solution of 
the follower from  OS’ 

Set  OS’  and  
RS’

OS is empty? RS is empty?

Select next solution of 
the leader from  OS 

Set  OS and  RS 
End

N

N

N

Y

N

N

Y Y

Y

Y

No optimal 
solution

Fig. 10.3 Flow charts of the approach for solving rule-set based bi-level decision model
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[Begin]
Step 1: (Initialization): Let CT be an empty attribute importance degree-based
rule tree;
Step 2: (Construct a new rule tree):

For each rule drL in FTL
For each decision rule drF in FTF
{If drL are not conflict with drF, then

Add rule drL ⋂ drF to CT;}

[End]

Suppose the combined rule set is noted as F, then the single level rule-sets based
decision problem can be formulated as:

min
x;y

f x; yð Þ
s:t: cf x;GLð Þ ¼ True;

cf y;GFð Þ ¼ True;

ð10:12Þ

where x and y are variables of the leader and the follower respectively; f is the
objective decision rule-set function; cf is the constraint function; F, GL, GF are the
objective decision rule set, leader’s constraint rule set and follower’s constraint rule
set respectively.

With the following theorem, we can prove the solution equivalence of the ori-
ginal problems and the transformed problem.

Theorem 10.4 The RSBLD model presented in Eq. 10.2 has an optimal solution (x,
y), iff (x, y) is an optimal solution of its corresponding single level decision model
presented in Eq. 10.12.

Proof Suppose x and y are variables of the leader and the follower respectively, fL
and fF are the objective rule-set functions of the leader and the follower respectively
in Eq. 10.2, and f is the objective rule set function in Eq. 10.12. FL and FF are the
objective rule sets of the leader and the follower in the RSBLD model, and F is the
objective rule set in the single level decision model.

If the optimal solution of the RSBLD model presented in Eq. 10.2 is (x, y), and

fL x; yð Þ ¼ vL and fF x; yð Þ ¼ vF :
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Suppose the final matching rules (Sect. 10.2) of (x, y) in rule sets FL and FF are
drL and drF respectively. Then, from the process of transformation, we know the
rule drL ∩ drF belongs to the combined rule set F.

Because (x, y) is the optimal solution of the RSBLD model, drL and drF must be
the best rules, having the minimal decision values in FL and FF respectively. Thus,
dr = drL ∩ drF must be the best rules matched by (x, y) in F. Besides, because
(x, y) is the best object satisfying both drL and drF, (x, y) is the best object satisfying
dr. Thus, (x, y) is the optimal solution of the single level decision model presented
in Eq. 10.12.

The sufficient condition of the theorem is proved.
If the optimal solution of the single level decision model presented in Eq. 10.12

is (x, y), and

f x; yð Þ ¼ d; vLd ; vFdð Þð Þ:

Suppose the final matching rule of (x, y) in rule set F is dr, then from the process
of transformation, there must be two decision rules drL in FL and drF in FF that
dr = drL ∩ drF. If there is more than one rule pair drL and drF satisfying that
dr = drL ∩ drF, then select the best one among them.

Because (x, y) is the optimal solution of the single level decision model, dr must
be the best rules having the minimal decision value in F. Thus, drL and drF must be
the best rules matched by (x, y) in FL and FF respectively. Besides, because (x, y) is
the best object satisfying dr, (x, y) is the best object satisfying both drL and drF
both, so (x, y) is the optimal solution of the bi-level decision model.

Thus, the necessary condition of the theorem is proved. h

From Theorem 10.1, it is known that the optimal solution of the RSBLD
problem presented in Eq. 10.2 and its transformation problem shown in Eq. 10.12
are equivalent. Therefore, any RSBLD problem can be transformed into a single
level decision problem. Furthermore, a solution is achieved by solving the single
level decision problem. Note that although the original bi-level decision problem
and the transformed one level problem have the same optimal solution, they are not
equivalent. Some information of the leader and the follower unrelated to the
acquiring of the optimal solution is reduced during the transformation process,
because the aim of transformation is only to generate a model which can be easily
solved but has the same optimal solution as the original bi-level decision model.

Based on the transformation theorem proposed, we will develop a transforma-
tion-based solution algorithm for RSBLD problems in the following sections.
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The flow chart of the algorithm is illustrated in Fig. 10.4. By this algorithm, we
can obtain a solution for a rule-set-based bi-level decision problem through solving
the transformed single level problem.

10.6 A Case Study

In this section, we use the RSBLD approach and algorithms introduced to handle
the recruit decision problem given in Example 10.1.

10.6.1 Problem Modeling

Now, we use Algorithm 10.1 to transform the recruit problem to a RSBLD model:
Step 1 transforms the recruit problem with rule sets (information tables as special

cases).
Tables 10.2 and 10.3 represent the objective rule set of the leader, and the

follower respectively.
Equations 10.12 and 10.13 give the constraint rule sets of the leader and the

follower respectively.
The constraint rule set of the leader is

GL ¼ True ) Age; Youngð Þ _ Age; Middleð Þf g: ð10:12Þ

The constraint rule set of the follower is

GF ¼ True ) Seniority;Longð Þ _ Seniority;Middleð Þf g: ð10:13Þ

Because the scale of the data is very small, the pre-process steps (Steps 2, 4, 6 and
8) are passed over. Besides, the constraint rule set of the leader and the follower are
brief enough, so the reduction steps ofGL andGF (Step 5 and Step 9) can be ignored.

Step 3 and Step 7 reduce the objective rule set of the leader and the follower.
After reducing the decision tables based on the rough set theory given in

Sect. 10.2.5, we can obtain the reduced objective rule set of the leader and the
follower as shown in Eqs. 10.14 and 10.15. Here, we use the decision matrices-
based value reduction algorithm (Ziarko et al. 1996) in the RIDAS system (Wang
et al. 2002).

Begin
Construct 
FTL by FL

Construct 
FTF by FF

Transform the bilevel 
problem to a single 

level one

Solve the
single level 

problem
End

Fig. 10.4 Flow chart of Algorithm 10.3
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Table 10.2 Objective rule set
of the leader Age Edulevel Seniority Health Grade

Young High Middle Good 2

Middle High Long Middle 2

Young Short Short Poor 4

Young Middle Middle Middle 2

Middle Middle Short Middle 3

Middle Middle Long Middle 2

Old High Long Middle 3

Young Short Middle Poor 2

Middle Short Short Middle 4

Old Short Middle Poor 4

Middle Short Long Good 3

Middle Short Long Middle 2

Old High Middle Poor 3

Old High Long Good 2

Old Short Long Good 4

Young High Long Good 4

Young Short Long Middle 3

Table 10.3 Objective rule set
of the follower Age Edulevel Seniority Health Grade

Young High Long Good 2

Old Short Short Good 4

Young High Short Good 2

Old High Long Middle 3

Young Short Long Middle 4

Middle High Middle Poor 3

Middle Short Short Poor 4

Old Short Short Poor 4

Old High Long Good 2

Young Short Long Good 2

Young Short Middle Middle 3

Middle Short Middle Good 3

Old High Long Good 2

Middle High Long Good 2

Middle High Short Poor 4
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The reduced objective rule set of the leader:

FL ¼ f
Age; Youngð Þ ^ Seniority; Middleð Þ ) Grade; 2ð Þ;
Age; Middleð Þ ^ Edulevel; Highð Þ ) Grade; 2ð Þ;
Edulevel; Shortð Þ ^ Seniority; Shortð Þ ) Grade; 4ð Þ;
Edulevel,Middleð Þ ^ Seniority, Shortð Þ ) Grade; 3ð Þ;
Edulevel,Middleð Þ ^ Seniority, Longð Þ ) Grade; 2ð Þ;
Age, Oldð Þ ^ Health,Middleð Þ ) Grade; 3ð Þ;
Age, Oldð Þ ^ Edulevel, Shortð Þ ) Grade; 4ð Þ;
Age,Middleð Þ ^ Health, Goodð Þ ) Grade; 3ð Þ;
Age,Middleð Þ ^ Seniority, Longð Þ ^ Health,Middleð Þ ) Grade; 2ð Þ;
Age, Oldð Þ ^ Edulevel, Highð Þ ^ Health, Goodð Þ ) Grade; 2ð Þ;
Edulevel, Highð Þ ^ Health, Poorð Þ ) Grade; 3ð Þ;
Age, Youngð Þ ^ Edulevel, Highð Þ ^ Seniority, Longð Þ ) Grade; 4ð Þ;
Age, Youngð Þ ^ Edulevel, Shortð Þ ^ Seniority, Longð Þ ) Grade; 3ð Þ
g:

ð10:14Þ

The reduced objective rule set of the follower:

FF ¼ f
Edulevel, Highð Þ ^ Health, Goodð Þ ) Grade; 2ð Þ
Edulevel; Shortð Þ ^ Seniority; Shortð Þ ) Grade; 4ð Þ
Age; Oldð Þ ^ Health; Middleð Þ ) Grade; 3ð Þ
Age; Youngð Þ ^ Seniority; Longð Þ ^ Health; Middleð Þ ) Grade; 4ð Þ
Seniority,Middleð Þ ) Grade; 3ð Þ
Seniority; Longð Þ ^ Health; Goodð Þ ) Grade; 2ð Þ
Seniority; Shortð Þ ^ Health; Poorð Þ ) Grade; 4ð Þ
g:

ð10:15Þ
With the above steps, we get the RSBLD model of the decision problem, as

follows:

min
x

fL x; yð Þ
s:t: cf x;GLð Þ ¼ True;

min
y

fF x; yð Þ
s:t: cf y;GFð Þ ¼ True
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where fL; fF are the corresponding decision rule set functions of FL; FF

respectively.

10.6.2 Solution

Now, we use Algorithm 10.2 to solve the bi-level decision problem given in
Sect. 10.6.1. We suppose that the four condition attributes are ordered by attribute
importance degrees as “age”, “edulevel”, “seniority”, “health”.

Step 1: Construct the objective rule tree FTL of the leader by FL and the result is
as shown in Fig. 10.4;

Step 2: Construct the objective rule tree FTF of the follower by FF and the result
is as shown in Fig. 10.5;

Step 3: Solve problem (10.9), and initialize i ¼ 1:

Step 3:1: Let FT 0
L be the objective rule tree of the follower pruned by

the constraint rule sets, and initialize FT 0
L to an empty AID-

based rule tree (Fig. 10.6);
Step 3:2: Use the constraint rule tree GTL to prune FTL and the result is

FT 0
L as Fig. 10.7;

Step 3:3: Search for the rules with the minimal decision value in FT 0
L

and the result rule set is

Young Middle Old *

High Short *

Long Long Middle

* * *

4 3 2

A
ge

E
duleve

l

Seniority
H

ealth
G

rade

High

*

*

2

*

Long

Middle

2

*

Good

3

High Short *

* * *

Good * Middle

2 4 3

High Middle

* Long Short

Poor * *

3 2 3

Short

Short

*

4

Fig. 10.5 Rule tree of the leader’s objective rule set

276 10 Rule-Set-Based Bi-level Decision Making



Young Old *

*

Long

Middle

4
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ge
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Seniority
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ealth
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High Short

* Short Long

Good * Good

2 4 2

*

Middle

*

3

*

*

Middle

3

Short

Poor

4

Fig. 10.6 Rule tree of the follower’s objective rule set

RS ¼ f
Age; Youngð Þ ^ Seniority; Middleð Þ ) Grade; 2ð Þ;
Age; Middleð Þ ^ Edulevel; Highð Þ ) Grade; 2ð Þ
Age; Middleð Þ ^ Seniority; Longð Þ ^ Health,Middleð Þ ) Grade; 2ð Þ
Edulevel; Middleð Þ ^ Seniority, Longð Þ ) Grade; 2ð Þ

g;

Step 3:4:

dr: Age; Youngð Þ ^ Seniority; Middleð Þ ) Grade; 2ð Þ

Steps 3:5–3:6:

RS ¼ f
Age; Middleð Þ ^ Edulevel; Highð Þ ) Grade; 2ð Þ
Age,Middleð Þ ^ Seniority; Longð Þ ^ Health,Middleð Þ ) Grade; 2ð Þ
Edulevel; Middleð Þ ^ Seniority, Longð Þ ) Grade; 2ð Þ

g;
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OS ¼ f
Age; Youngð Þ ^ Edulevel; Highð Þ ^ Seniority; Middleð Þ ^ Health; Poorð Þ;
Age; Youngð Þ ^ Edulevel; Middleð Þ ^ Seniority; Middleð Þ ^ Health; Goodð Þ;
Age, Youngð Þ ^ Edulevel,Middleð Þ ^ Seniority,Middleð Þ ^ Health,Middleð Þ;
Age, Youngð Þ ^ Edulevel,Middleð Þ ^ Seniority,Middleð Þ ^ Health, Poorð Þ;
Age, Youngð Þ ^ Edulevel, Poorð Þ ^ Seniority,Middleð Þ ^ Health, Goodð Þ;
Age, Youngð Þ ^ Edulevel,Middleð Þ ^ Seniority,Middleð Þ ^ Health,Middleð Þ;
Age, Youngð Þ ^ Edulevel,Middleð Þ ^ Seniority,Middleð Þ ^ Health, Poorð Þ
g

Step 3:7: The solution of problem (4.1) is the first object in OS, that is

o ¼ Age; Youngð Þ ^ Edulevel; Highð Þ ^ Seniority; Middleð Þ
^ Health; Goodð Þ

Step 4: Let FT 0
F be the objective rule tree of the follower pruned by the con-

straint rule set and FT 0
F is as Fig. 10.8. W ¼ w;

Step 5: x 1½ � ¼ Age, Youngð Þ ^ ðEdulevel, High). Prune the rules from FT 0
F ,

which are not consistent with

Young Middle *

High Short *

Long Long Middle

* * *

4 3 2
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ge

E
dulevel
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H

ealth
G

rade

High

*

*

2

*

Long

Middle

2

*

Good

3

High Middle

* Long

Poor *

3 2

Fig. 10.7 Rule tree of the leader’s objective rule set after cutting by constraint rule set
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True ) x 1½ �

and suppose the result is the rule tree FT 00
F as shown in Fig. 10.9;

Step 6: Solve the follower’s rule-set-based decision problem below.

min
y

fF x i½ �; y
� �

: y 2 P x i½ �
� �� 	

Step 6:1: Search for the rules with the minimal decision value in F
00
T and

the result rule set is

RS0 ¼ f
Edulevel, Highð Þ ^ Health, Goodð Þ Grade; 2ð Þ
Seniority; Longð Þ ^ Health, Goodð Þ Grade; 2ð Þ

g;

Young *

*

Long

Middle

4

A
ge

E
dulevel

Seniority
H

ealth
G

rade

High

* Long

Good Good

2 2

*

Middle

*

3

Fig. 10.8 The Rule tree of
the follower’s objective rule
set after cutting by constraint
rule set
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Step 6:2:

dr0 : Edulevel, Highð ÞÞ ^ Health, Goodð Þ Grade; 2ð Þ

Steps 6:3–6:4:

RS0 ¼ Seniority; Longð Þ ^ Health, Goodð Þ Grade; 2ð Þf g;
OS0 ¼

Age, Youngð Þ ^ Edulevel, Highð Þ ^ Seniority, Longð Þ ^ Health, Goodð Þ;
Age, Youngð Þ ^ Edulevel; Highð Þ ^ Seniority; Middleð Þ ^ Health; Goodð Þ;
Age; Middleð Þ ^ Edulevel; Highð Þ ^ Seniority; Longð Þ ^ Health; Goodð Þ;
Age; Middleð Þ ^ Edulevel; Highð Þ ^ Seniority; Middleð Þ ^ Health; Goodð Þ

g

Young *

*

Long

Middle

4
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dulevel

Seniority
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2 2
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Fig. 10.9 Rule tree of the
follower’s objective rule set
after pruning the rules which
are not consistent with x[i]

280 10 Rule-Set-Based Bi-level Decision Making



Step 6:5: The solution of the follower’s problem is

ðAge, Young) ^ ðEdulevel, High) ^ ðSeniority, Long)
^ ðHealth, Good):

Step 7: Because y 6¼ y i½ �, Go to Step 8;
Step 8:

Step 8:1–8:2:

OS0 ¼ f
Age,Youngð Þ ^ Edulevel, Highð Þ ^ Seniority,Middleð Þ ^ Health, Goodð Þ;
Age,Middleð Þ ^ Edulevel, Highð Þ ^ Seniority, Longð Þ ^ Health, Goodð Þ;
Age,Middleð Þ ^ Edulevel, Highð Þ ^ Seniority,Middleð Þ ^ Health, Goodð Þ

g;

Step 8:3: The next solution of the follower’s problem is

o0 ¼ ðAge, Young) ^ ðEdulevel, High) ^ ðSeniority, Middle)
^ ðHealth, Good)

Step 8:4: Go to Step 7;

Step 7: Because y ¼ y i½ �, the optimal solution for the bi-level decision problem is
ðAge, Young) ^ ðEdulevel, High) ^ ðSeniority, Middle) ^ ðHealth, Good)
[End]

The solution with the variables of both the factory executive committee and the
workshop management committee will be used in the factory’s decision in
recruiting new workers. It will maximize the ability to satisfy the objectives of
decision making at the two levels.

Now, we use the Algorithm 10.3 to solve the RSBLD problem. We suppose that
the four condition attributes are ordered as “age”, “edulevel”, “seniority”, and
“health”.

Step 1: Construct the objective rule tree FTL of the leader by FL, and the result
is illustrated by Fig. 10.10;

Step 2: Construct the objective rule tree FTF of the follower by FF , and the
result is illustrated by Fig. 10.11;

Step 3: Transform the RSBLD problem to a single level one, and the resulting
objective rule tree CT is illustrated by Fig. 10.12;

Step 4: Use the constraint rule set of both the leader and follower to prune CT ,
and the result is illustrated by Fig. 10.13;

Step 5: Search for the leftmost rule dr in CT whose leader decision and follower
decision are both minimal, and the result is
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dr:ðAge, Young) ( Edulevel, High) (Seniority, Middle) (Health, Good) (d, (2, 2));

Step 6: OB ¼ fob j ob is the object satisfying:

ðAge, Young) ( Edulevel, High) ( (Seniority, Middle) (Health, Good)g;

Step 7: ob = (Age, Young) (Edulevel, High) (Seniority, Middle) (Health,
Good);

Step 8: ob is the final solution of the RSBLD problem.

In Figs. 10.10, 10.11, 10.12 and 10.13, these attribute values are represented by
its first letter.
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Fig. 10.10 Rule tree of the leader’s objective rule set
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10.7 Experiments and Analysis

To test the effectiveness of the proposed RSBLD problem modeling algorithm
(Algorithm 10.1) and solution algorithms (Algorithms 10.2 and 10.3), we imple-
mented these algorithms in Matlab 6.5. We then used classical data sets from the
UCI database to test them in a set of experiments. The UCI database (http://www.
ics.uci.edu/*mlearn/MLRepository.html) consists of many data sets that can be
used by the decision systems and machine learning communities for the empirical
analysis of algorithms.

For each data set we chose, we first selected half of the data set as the original
objective rule set of the leader and the other half as the original objective rule set of
the follower. We assumed no constraints, meaning that all objects consistent with
the objective rule set were in the constraint region. We also supposed that the first
half of the condition attributes were for the leader and the remainder for the fol-
lower. The importance degrees of the condition attributes are in descending order
from the first condition attribute to the last condition attribute. The two experiments
are processed on a computer with 2.33 GHz CPU and 2G memory space. Here, we
describe only these two experiments, as follows.
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Experiment 10.1 Testing of Algorithm 10.1 with the data sets in the UCI database.

Step 1: Randomly choose 50 % of the objects from the data set to be the original
objective decision rule set of the leader, and the remaining 50 % of the
objects to be the original objective decision rule set of the follower;

Step 2: Apply Algorithm 10.1 to construct a rule-set-based bi-level decision
model by using the chosen rule sets. Here, we use the decision matrices-
based value reduction algorithm (Ziarko et al. 1996) in the RIDAS
system (Wang et al. 2002) to reduce the size of the original rule sets
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Experiment 10.2 Testing of Algorithm 10.2 with the data sets in the UCI database.
Following Steps 1 and 2 in Experiment 10.1, we have

Step 3: Apply Algorithm 10.2 to get a solution from the generated rule-set-based
bi-level decision model in Experiment 10.1.

The complexity of the two algorithms (Algorithms 10.1 and 10.2) is also tested
by conducting these two experiments. As shown in Table 10.4, pOL and pOF are the
numbers of objects in the original decision rules of the leader and the follower
respectively; mL and mF are the condition attribute numbers of the leader and the
follower respectively; nOL and nOF are the numbers of the rules in the reduced
objective decision rule set of the leader and the follower respectively; t1 and t2 are
the processing times of Algorithms 10.1 and 10.2 respectively.
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From the results shown in Table 10.4 we find that

1. The processing time of Algorithm 10.1 highly relates to the number of the rules
in the original objective decision rule set and the condition attribute numbers of
the leader and the follower respectively, expressed by the symbols pOL, pOF , mL

and mF .
2. The processing time of Algorithm 10.2 highly relates to the numbers of the rules

in the reduced objective decision rule set and the condition attribute numbers of
the leader and the follower respectively, expressed by nOL, nOF , mL and mF .

These are consistent with our complexity analysis results in Sects. 10.4 and 10.5.

10.8 Summary

In the traditional bi-level decision-making models discussed in previous chapters,
objectives and constraints are expressed by linear or nonlinear functions, and
bi-level programming or genetic approaches can be effectively used to obtain
solutions. However, some real-world bi-level decision problems cannot be easily
formulated as linear or non-linear programs. This chapter uses rule sets to handle
the issue. It presents how to use rule sets to model non-programming bi-level
decision problems, and also develops two algorithms to solve rule-set-based bi-
level decision problems.

Table 10.4 Testing results of Algorithms 10.1 and 10.2

Data sets pOL pOF mL mF nOL nOF Algorithm
10.1

Algorithm
10.2

t1(s) t2 (s)

Lenses 12 12 2 3 6 3 <0.01 0.03

Hayes-roth 50 50 2 3 21 24 <0.01 0.09

Auto-mpg 199 199 4 4 80 76 0.08 0.39

Bupa 172 172 3 3 159 126 0.06 3.10

Processed_cleveland 151 151 6 7 115 127 0.28 5.20

Breast-cancer-
wisconsin

349 349 5 5 47 47 0.51 0.63
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Part V
Multi-level Decision Support Systems

and Applications



Chapter 11
Fuzzy Bi-level and Tri-level Decision
Support Systems

This chapter presents two multi-level decision support systems that implement
related algorithms developed in previous chapters to support decision making in
practice.

The first is a fuzzy bi-level decision support system (called FBLDSS), which
incorporates a set of solution algorithms developed in previous chapters for solving
bi-level decision problems. This system can handle fuzzy bi-level decision prob-
lems, fuzzy multi-objective bi-level decision problems and fuzzy multi-objective
bi-level multi-follower decision problems in both linear and non-linear forms. Users
(decision makers) are allowed to adjust their subjective preferences to achieve
balance between different objectives during the solution process through interacting
with the FBLDSS.

The second is a tri-level decision support system (called TLDSS) that imple-
ments the decision entity relationship diagram (DERD) approach and related
tri-level optimization algorithms developed in Chap. 6. It has the ability to generate
a tri-level decision model based on related parameters entered by users and to
obtain a solution for a linear tri-level decision model.

In the following sections, we will present the two decision support system tools
and related examples.

11.1 A Fuzzy Bi-level Decision Support System

This section introduces a fuzzy bi-level decision support system (FBLDSS), which
can handle fuzzy bi-level decision problems with different features (linear or non-
linear; fuzzy or non-fuzzy; single objective or multi-objective; single follower or
multi-follower). This section first presents the configuration and structure of this
system, and then illustrates linear and nonlinear bi-level decision processes through
two typical examples.
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11.1.1 System Configuration and Interfaces

The FBLDSS is developed in a Windows environment. We adopt the object-
oriented approach to implement it using MS Visual Basic 6.0. The Windows-based
interface allows users exploit the capabilities of the system in a friendly way.

In the main interface, as shown in Fig. 11.1, the menu includes the items File,
Method, Model, Result, and Help, all of which perform many kinds of decision
support activities. Figure 11.2 shows the overall structure of the menu, from which
we can create a bi-level decision model (linear or non-linear) by clicking the item of
New-a linear bi-level model or New-a general bi-level model; clear the current
model configuration by clicking Reset current model item; trigger the fuzzy
approximation branch-and-bound algorithm, fuzzy approximation Kth-Best algo-
rithm, fuzzy bi-level PSO algorithm or fuzzy bi-level goal-programming algorithm
by clicking the items Approximation B_B, Approximation kth-best, PSO or
Approximation goal; and display the solution for the current bi-level decision model
(linear or non-linear) by clicking Linear optimization result or General bi-level
optimization result respectively.

Fig. 11.1 The main interface of the FBLDSS
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11.1.2 System Structure

As a specific type of DSS, this FBLDSS provides computerized assistance to the
decision makers in a decentralized organization to gather knowledge about a
bi-level decision problem and control the decision-making process to achieve a
better-informed outcome.

The structure of the FBLDSS is depicted in Fig. 11.3. Five modules are involved
in this architecture, i.e. user interface, model management, algorithm engine,
updating system, and visualization. Data is collected through the user interface, and
formatted as a corresponding bi-level decision model by the model management
module. The core calculations are carried out in the algorithm engine of this model,
and the solution is outputted through the visualization module to the end user by the
user interface.

File Methods     Model Result         

New-a general 
bi-level model

New-a linear  
bi-level model 

Open   

Save   

Reset current 
model 

Exit 

Approximation
B_B 

Approximation 
kbest 

PSO       

Approximation 
goal 

General bi-level 
model 

Linear bi-level 
model 

Linear optimization 
result 

General optimization 
result 

Content 

About 

Help       

Fig. 11.2 The menu structure of the FBLDSS

Visualization 

Model Management Algorithm Engine 

Updating System User Interface

Fig. 11.3 The system structure of the FBLDSS
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These modules are detailed below:

1. User Interface
Data can be input to the system from two sources: users and data sets/databases.
A user can key in the data directly through the interface, which will build a
bi-level decision model. Meanwhile, data can be stored in terms of existing
projects and can be retrieved by the system for calculation. Entered data is
passed to the model management module where the algorithm engine can be
triggered to run a solution.

Outputs from the system include feasible solutions and all objectives for both
the leader and the follower. If the leader is not satisfied with the current solution
for a bi-level decision problem, it is possible to adjust the satisfactory degree
and trigger the algorithm engineer for another solution.

2. Model Management
The model management module formulates a bi-level decision problem in terms
of objective functions and constraint conditions based on a user’s input, and
controls. The modeling procedure contains three major steps: (1) the generation
of objectives, (2) the generation of constraints and (3) the elicitation of a certain
satisfactory degree for a bi-level decision problem. These functions are data
driven, each requiring a set of coefficients.

3. Algorithm Engine
The algorithm engine module performs the core calculation task of this system
including defuzzification, comparison of fuzzy sets, and bi-level model
optimization.

This system provides three fuzzy bi-level decision algorithms: the fuzzy
approximation branch-and-bound algorithm, the fuzzy approximation Kth-Best
algorithm, and the fuzzy bi-level PSO algorithm. The first two algorithms can
solve fuzzy linear bi-level decision problems. A non-linear bi-level decision
problem can only be solved by using the fuzzy bi-level PSO algorithm.
For multi-objective bi-level decision problems, an extra option of the fuzzy
bi-level goal-programming algorithm is provided in this system for decision
makers to apply.

Once the satisfactory degree is adjusted in the user interface module, the
algorithm engine will be triggered to run on the selected bi-level decision model
retrieved from the model management module.

4. Updating System
In this FBLDSS, update routines are provided from two aspects, i.e. users can
modify an established bi-level decision model retrieved from the model base,
and they can also adjust the satisfactory degree to obtain solutions under dif-
ferent aspiration levels for a fuzzy bi-level decision model.

To define a fuzzy bi-level decision model, a set of crisp numbers is employed
to describe the fuzzy objective functions and constraint conditions by fixing four
points and the format of a fuzzy number. The capacity to incorporate new
information into the established crisp numbers may sometimes introduce
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conflicts between constraints, or cause an existing feasible solution to be invalid.
However, the satisfactory-degree-adjustable mechanism can reduce the possi-
bility of the non-solution situation.

5. Visualization
Since fuzzy numbers are used to interpret the coefficients of objective functions
and constraints, the way fuzzy sets are described in modeling a fuzzy bi-level
decision problem becomes crucial. The fuzzy membership functions of the
coefficients and also the final objective values for both leader and follower are
described by graphs.

To solve a fuzzy or non-fuzzy bi-level decision problem, we need to search the
equilibriumbetween the leader and the follower, both ofwhomachieve optimality,
while the leader takes priority within the constraints. To describe this equilibrium,
the visualization module will complete the presentation and interpretation
functions. The output solutions will help the user to identify the preferred equi-
librium, and will give insights into how this can be achieved.

To implement the functions of intuitive fuzzy number input and pellucid
fuzzy objective output, we describe a fuzzy number by the information of the
formats of the left and right functions, the two points where the membership
value equals zero, and the other two points where the membership value equals
one. Here, the formats of membership functions can be selected as linear,
quadratic, cubic, exponential, and logarithmic. Figure 11.16 shows a window to
identify a fuzzy number, and Fig. 11.19 shows a window to display a fuzzy
objective function.

11.1.3 Linear Bi-level Decision Support Process

The whole decision support procedure for linear bi-level decision problems by the
FBLDSS involves three phases, i.e. (1) problem identification, (2) preference
elicitation, and (3) solution searching/generation.

The relationship between these phases is illustrated in Fig. 11.4. We use a
numerical example to illustrate the linear bi-level decision support process by using
this FBLDSS.

Problem Identification 

Preference Elicitation 

Solution Searching 

Fig. 11.4 Optimization
process by the FBLDSS
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Example 11.1 Suppose that this is a fuzzy multi-objective bi-level multi-follower
(FMO-BLMF) decision problem, and let x ¼ x1; x2; x3ð ÞT2 R3 be the leader’s
decision variables, F1, F2 and F3 be the leader’s objectives.

There are two followers involved in this example. Let y1 and y2 be the decision
variables for the first and second follower respectively while z ¼ z1; z2ð ÞT2 R2 be
the shared decision variables between the two followers, f 11 ; f

2
1 be the first fol-

lower’s objectives and f 12 ; f
2
2 ; f

3
2 be the second follower’s objectives,

X ¼ x� 0f g; Y1 ¼ y1 � 0f g; Y2 ¼ y2 � 0f g; Z ¼ z� 0f g.
Its mathematic model is written as follows:

max
x2X

F1 x; y1; y2; zð Þ ¼ ~9; ~8; ~6
� �

x1; x2; x3ð ÞTþ ~4; ~0; ~6; ~8
� �

y1; y2; z1; z2ð ÞT

max
x2X

F2 x; y1; y2; zð Þ ¼ ~1; ~2; ~3
� �

x1; x2; x3ð ÞTþ ~4; ~0; ~6; ~8
� �

y1; y2; z1; z2ð ÞT

max
x2X

F3 x; y1; y2; zð Þ ¼ ~3; ~4; ~0
� �

x1; x2; x3ð ÞTþ ~6; ~8; ~1; ~2
� �

y1; y2; z1; z2ð ÞT

s.t: ~4; ~0; ~6
� �

x1; x2; x3ð ÞTþ ~8; ~1; ~2; ~3
� �

y1; y2; z1; z2ð ÞT � ~9;
~4; ~0; ~6
� �

x1; x2; x3ð ÞTþ ~8; ~3; ~4; ~0
� �

y1; y2; z1; z2ð ÞT �f14;
max

y2Y1;z2Z
f 11 x; y1; zð Þ ¼ ~3; ~4; ~0

� �
x1; x2; x3ð ÞTþ ~6; ~4; ~0

� �
y1; z1; z2ð ÞT

max
y2Y1;z2Z

f 21 x; y1; zð Þ ¼ ~6; ~8; ~1
� �

x1; x2; x3ð ÞTþ ~2; ~4; ~0
� �

y1; z1; z2ð ÞT

s.t: ~6; ~8; ~1
� �

x1; x2; x3ð ÞTþ ~8; ~4; ~0
� �

y1; z1; z2ð ÞT �f16;
~6; ~3; ~4
� �

x1; x2; x3ð ÞTþ ~0; ~3; ~4
� �

y1; z1; z2ð ÞT � ~8;
max

y2Y2;z2Z
f 12 x; y2; zð Þ ¼ ~6; ~8; ~8

� �
x1; x2; x3ð ÞTþ ~3; ~4; ~0

� �
y2; z1; z2ð ÞT

max
y2Y2;z2Z

f 22 x; y2; zð Þ ¼ ~6; ~8; ~3
� �

x1; x2; x3ð ÞTþ ~0; ~6; ~8
� �

y2; z1; z2ð ÞT

max
y2Y2;z2Z

f 22 x; y2; zð Þ ¼ ~1; ~4; ~0
� �

x1; x2; x3ð ÞTþ ~8; ~3; ~4
� �

y2; z1; z2ð ÞT

s.t: ~0; ~6; ~8
� �

x1; x2; x3ð ÞTþ ~4; ~0; ~6
� �

y2; z1; z2ð ÞT � ~8;
~8; ~1; ~2
� �

x1; x2; x3ð ÞTþ ~4; ~0; ~6
� �

y2; z1; z2ð ÞT � ~9:

The membership functions for this FBLMF decision problem are displayed as
follows:

294 11 Fuzzy Bi-level and Tri-level Decision Support Systems



l~0ðtÞ ¼
0 t\� 1
t þ 1 �15 t\0
1� t2 05 t\1
0 15 t;

8>><
>>:

l~1ðtÞ ¼
0 t\0
t2 05 t\1
2� t 15 t\2
0 25 t;

8>><
>>:

l~2ðtÞ ¼
0 t\1
t � 1 15 t\2
3� t 25 t\3
0 35 t;

8>><
>>:

l~3ðtÞ ¼
0 t\2
t � 2 25 t\3
4� t 35 t\4
0 45 t;

8>><
>>:

l~4ðtÞ ¼
0 t\3
t � 3 35 t\4
5� t 45 t\5
0 55 t;

8>><
>>:

l~6ðtÞ ¼
0 t\5
t � 5 55 t\6
7� t 65 t\7
0 75 t;

8>><
>>:

l~8ðtÞ ¼
0 t\7
t � 7 75 t\8
9� t 85 t\9
0 95 t;

8>><
>>:

l~9ðtÞ ¼
0 t\8
t � 8 85 t\9
10� t 95 t\10
0 105 t;

8>><
>>:

le14ðtÞ ¼
0 t\13
t � 13 135 t\14
15� t 145 t\15
0 155 t;

8>><
>>:

le16ðtÞ ¼
0 t\15
t � 15 155 t\16
289
33 � t2

33 165 t\17
0 175 t:

8>><
>>:

Now we describe the solution process of the example by means of the FBLDSS.
The first phase is to set up a framework for the bi-level decision problem in

which decisions will be made. In this framework, we define what decision makers
wish to achieve as objectives, and any limitations and conditions as constraints. In
specification, the following data need to be input to set up the framework.

1. The number of followers and the number of decision variables, objectives and
constraints for the leader: In this example, there are two followers, three decision
variables, three objectives, and two constraints for the leader, as shown in
Fig. 11.5.

2. The variables, objectives and constraints for the leader: In this example, the
leader controls decision variables ðx1; x2; x3Þ, as shown in Fig. 11.6, having
three objectives named L_Obj(1), L_Obj(2), and L_Obj(3), as shown in
Fig. 11.7, and having two constraints named L_Con(1) and L_Con(2), as shown
in Fig. 11.8.

3. The variables, objectives and constraints for the followers:
The first follower (Follower 1) controls decision variables ðy1; z1; z2Þ, as shown
in Fig. 11.9, having two objectives named F1_Obj(1) and F1_Obj(2), as shown
in Fig. 11.10, and having two constraints named F1_Con(1) and F1_Con(2), as
shown in Fig. 11.11.
The second follower (Follower 2) controls decision variables ðy1; z1; z2Þ, having
two objectives named F2_Obj(1) and F2_Obj(2), and having two constraints
named F2_Con(1) and F2_Con(2), as shown in Figs. 11.12, 11.13 and 11.14.
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4. The max/min choice for individual objectives: In this example, each objective is
to be searched for a maximum value, as shown in Fig. 11.15.

5. The fuzzy parameters occurring in the objectives and constraints: In this
example, the fuzzy coefficient for x1 in the first objective of the leader is entered

Fig. 11.5 Interface for
variable input-linear-1

Fig. 11.6 Interface for
variable input-linear-2
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in Fig. 11.16. The other fuzzy parameters should similarly be entered one by
one.

The second phase is to elicit the preferences of the decision makers. Once
multiple options exist, the decision makers at both levels are allowed to rank these
options by assigning specific weights (refer to Figs. 11.17 and 11.18). In this

Fig. 11.7 Interface for
variable input-linear-3

Fig. 11.8 Interface for
variable input-linear-4

11.1 A Fuzzy Bi-level Decision Support System 297



example, all the decision makers give equivalent weights to each of their objectives,
as shown in Fig. 11.17.

The final phase is to search/obtain a solution. Once a bi-level decision model is
built up, the window, as shown in Fig. 11.17, can be activated to reach a solution. In
this window, the fuzzy approximation branch-and-bound algorithm, fuzzy
approximation Kth-best algorithm, and fuzzy bi-level PSO algorithm are all

Fig. 11.9 Interface for
variable input-linear-5

Fig. 11.10 Interface for
variable input-linear-6
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available to be selected as the approach for the linear bi-level problem by clicking
the option button of B_B, K_Best or PSO.

In Example 11.1, the problem is a FMO-BLMF decision problem and the
decision maker chooses the fuzzy bi-level goal-programming algorithm to solve it;
the window, as shown in Fig. 11.18, can be activated to reach a solution.

In the windows shown as Figs. 11.17 and 11.18, a user can set a specific
satisfactory degree for all the membership functions of the fuzzy numbers by

Fig. 11.11 Interface for
variable input-linear-7

Fig. 11.12 Interface for
variable input-linear-8
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adjusting the slider or keying in a value in the text box above the slider. Thus, a
solution under a specific satisfactory degree chosen by the user can be obtained. In
this example, the leader selected 0.1 for the satisfactory degree, as shown in
Fig. 11.17.

By clicking the Run button in the windows shown as Figs. 11.17 and 11.18, the
optimization algorithm selected will run, the solutions will be shown, and the
corresponding fuzzy objective can be sequentially displayed in the window shown

Fig. 11.13 Interface for
variable input-linear-9

Fig. 11.14 Interface for
variable input-linear-10
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as Fig. 11.19. In this example, under the satisfactory degree 0.1, the final solu-
tion x�1; x

�
2; x

�
3; y

�
1; y

�
2; z

�
1; z

�
2

� � ¼ 0; 0:4513; 0; 0:508; 0; 1:7072; 0ð Þ has been reached,
as shown in Fig. 11.17. Under this solution, the first objective value of the leader is
shown in Fig. 11.19 by clicking the text box under “L_Obj(1)” in Fig. 11.17. The
other objective values can be obtained in the same way.

If the leader is not satisfied with the current solution, the weights for each
objective can be changed or the satisfactory degree can be adjusted to obtain
another solution.

Fig. 11.15 Interface for
variable input-linear-11

Fig. 11.16 The input
window for the membership
function of a fuzzy number
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11.1.4 Non-linear Bi-level Decision Support Process

We use a non-linear bi-level decision problem to illustrate the bi-level decision
support process by means of this FBLDSS.

Example 11.2 Suppose that a bi-level decision problem has one leader and one
follower and each decision entity has one decision variable, one objective function
and one constraint, which is described as follows:

Fig. 11.17 Interface for
result displaying-linear

Fig. 11.18 Interface for
result displaying-goal
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max
x2X

F x; yð Þ ¼ 20;800� 10;816
xy � 30xy

s.t: x[ 0;
max
y2Y

f x; yð Þ ¼ 20;800� 8;652:8ðx�1Þ
xy � 1;000y

s.t: y[ 0:

To solve the non-linear bi-level decision problem, we need to build a structure in
which the decision will be made. In this decision structure, we define the decision
makers’ objectives and constraints. As non-linear formulas have very flexible and
unexpected forms, this system gives tremendous flexibility to users by providing
text boxes to input objective functions and constraint conditions. In specification,
the following data need to be input to set up a non-linear bi-level decision model.

1. The number of leaders and the number of followers: For this problem, there is
one leader and one follower, as shown in Fig. 11.20.

2. The variables, objectives and constraints for the leaders and the followers: In
this example, the leader has one decision variable x, and the follower has one
decision variable y, as shown in Fig. 11.21. The objectives named F and
f respectively for the leader and the follower need to be entered in the window
shown in Fig. 11.22. The constraints named G and g respectively for the leader
and the follower need to be entered in the window shown in Fig. 11.23.

3. The fuzzy parameters (if there are fuzzy parameters involved in the problem)
occur in objectives and constraints: These should be entered as shown in
Fig. 11.24, and their membership functions can be entered one by one in
Fig. 11.16.

Fig. 11.19 The window for
displaying a fuzzy objective

11.1 A Fuzzy Bi-level Decision Support System 303



4. The max/min choices for individual objective: In this example, both the leader
and the follower are looking for the maximum objectives, as shown in
Fig. 11.24.

5. The ≥, ≤, or = choices for individual constraints: as shown in Fig. 11.24.
6. The function formats for the objectives and constraints of both leaders and

followers: as shown in Fig. 11.24.

To facilitate formula inputting, a list box, as shown in Fig. 11.24, can be acti-
vated to show variable names entered in Fig. 11.21. Thus users can refer to the
variable names to reduce the possibility of mistyping.

Fig. 11.20 Interface for
variable input-nonlinear-1

Fig. 11.21 Interface for
variable input-nonlinear-2
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Once a non-linear bi-level decision model is established, a window as shown in
Fig. 11.25 will be shown to display the solutions and objective values for both
leaders and followers. In this example, the solution of ðx; yÞ ¼ ð7:1889; 2:6455Þ has
been reached. Under this solution, the objectives of the leader and follower are able
to achieve 19,660.7357 and 15,338.7115 respectively. If there are fuzzy parameters
involved in this model, the objective values will be fuzzy numbers. In such a
situation, the window shown in Fig. 11.26 will display the solutions and fuzzy
objective values for both leaders and followers. Once a user clicks the text box of an

Fig. 11.22 Interface for
variable input-nonlinear-3

Fig. 11.23 Interface for
variable input-nonlinear-4
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objective value, a button labeled membership will show up. Clicking the mem-
bership button will activate the window shown in Fig. 11.27 to display the cor-
responding fuzzy value of the objective.

11.2 A Tri-level Decision Support System

The tri-level decision support system (TLDSS) software presented in this section
implements the decision entity relationship diagram (DERD) approach and Kth-
Best algorithms proposed in Chap. 6 to support the tri-level decision process and
tri-level multi-follower (TLMF) decision process. Users can input all coefficients
involved in the objectives and constraints conveniently through the DERD
approach with a graphic user interface of the TLDSS, and can build a tri-level or
TLMF decision model. The tri-level Kth-Best algorithm and TLMF Kth-Best
algorithm embedded in the system are then invoked to solve the tri-level decision
model and TLMF decision model respectively.

11.2.1 System Configuration and Tri-level Decision Support
Process

The TLDSS is developed with Java language and its decision information is
presented in mathematics formula and stored in an XML file in the TLDSS.

Fig. 11.24 Interface for
variable input-nonlinear-5
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The system flow chart is shown in Fig. 11.28.
Figure 11.28 describes the decision support process of the TLDSS. First, users

enter the decision entity structure and names within all three levels, and then
determine the relationships between these decision entities. Second, users enter the
decision variables and coefficients of objective functions and constraint conditions.
A DERD model and a programming model will then be formed. The model
established can be saved to a XML file and a user can subsequently load it from the
XML file easily. Also, the system can use the corresponding Kth-Best algorithm to
obtain an optimal solution to the tri-level or TLMF decision model that is
established.

The detailed TLDSS working process is described in Table 11.1.

Fig. 11.25 Interface for
output-nonlinear

Fig. 11.26 Interface for
output-with-fuzzy-
parameters-nonlinear-1
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Fig. 11.27 Interface for output-with-fuzzy-parameters-nonlinear-2

Enter decision entities 

Begin 

End 

Confirm

Set relationships between entities 

Set variables, coefficients of 
objective functions, and constraints

A formula 

Save to file 

Get the optimal solution using Kth-
Best algorithm 

Solution 

Revise

Fig. 11.28 TLDSS flow chart
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11.2.2 Detailed Operational Process and System Interface

In this section, we will present the detailed operational process and related inter-
faces of this TLDSS in support of tri-level and TLMF decision-making.

Figure 11.29 shows the initial interface of the TLDSS. At the top of the window,
there is a menu bar which has the buttons File, Models, Results and Help. In the
menu File, users can save and load decision problems. In the menu Models, users
can reset decision problems. The Results menu is used to show the formula and to
obtain an optimal solution and related results. The left-hand side of the window is
used to show decision problems in a tree structure. At the bottom, there are four
buttons for editing decision problems. The right-hand side is for editing the rela-
tionships, node names, variables, objective functions and constraint conditions.
There is also an option for users to choose the corresponding Kth-Best algorithm to
solve the model that is established. In addition, there is a blank area at the bottom
right-hand side which is used to show the information of each formula, such as
node name, variables, objective function, and constraint conditions.

We then introduce the system interface for the modeling process. Users first
enter the decision entities for three levels. As shown in the tree structure of
Fig. 11.30, each node is a decision entity. From left to the right, the levels from to
bottom are shown in hierarchical form. Users can use the buttons to edit the node in
the editing panel shown in Fig. 11.31, and they can also edit the relationships
between followers, the relationships between the leader and followers, the node
name, the variable number, and the objective functions and constraints.

According to the tri-level decision model, three groups of values need to be input
to the TLDSS: the number of variables, the coefficients of the objective functions,
and the coefficients of the constraint conditions.

When the Edit Variable Number button is pressed, a window as shown in
Fig. 11.32 appears. The number of decision variables can be entered when one of
the decision entities is clicked.

Table 11.1 The tri-level decision support process

Step Process

Step 1 A user adds child nodes to the root node by pressing the Add Node button

Step 2 After all the nodes are added into the tree structure diagram, the user needs to
confirm the diagram. A message dialog will pop up to alert the user to add the
relationship between the decision entities and related variables

Step 3 The user adds the number of variables, objective functions and constraints

Step 4 The user chooses the corresponding Kth-Best algorithm to solve the decision
problem

Step 5 The user obtains an optimal solution and the related results are displayed
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To set the coefficients of the objective functions and constraints, the Edit
Objectives and Constraints button is selected. The window shown in Fig. 11.33
appears. In this system, the number of objective functions is not predefined and
users can add as many functions as they wish.

When the Add new button is pressed, another window is displayed, as shown in
Fig. 11.34, in which the Variable column lists the variable names involved in the
objective function. The Coefficient column shows the coefficients to be entered

Fig. 11.29 Initial window of TLDSS

Fig. 11.30 A decision
problem example used in
TLDSS
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Fig. 11.31 Editing panel in
TLDSS

Fig. 11.32 Edit variable
number

Fig. 11.33 Objective
functions and constraints
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Fig. 11.34 Add a new objective function

Fig. 11.35 Information panel of a tri-level decision model
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when the default value is 0.0. Users can set the Min or Max according to the
requirement of a decision problem. They can also change the values of the coef-
ficients using the button Set. The values will be changed and shown in the coef-
ficient column.

At the bottom right-hand side, there is an information panel which shows the
information of each node selected. Finally, the decision problem is set up and a
tri-level or TLMF decision model is generated, as shown in Figs. 11.35 and 11.36.
The information includes the node name, the number of variables, the objective
functions, and the constraint conditions.

Lastly, there is a Calculate button and a Run button to calculate the decision
problem shown on the left to obtain the result. When users press one of the buttons

Fig. 11.36 Information panel of a TLMF decision model

Fig. 11.37 The optimal solution dialog
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in the Results menu, a solution dialog is displayed. For example, as shown in
Fig. 11.37, the system shows the solution (x1, y1_1, z1_1_1) and the values of the
objective functions f1, f2, and f3 of the tri-level decision model.

There are therefore two outputs in this system. One is the tri-level or TLMF
decision model in both the DERD and programming formats; the other is an
optimal solution to the decision problem established.

11.3 Summary

This chapter presents an FBLDSS to support bi-level decision-making in a complex
environment and a TLDSS to support tri-level decision-making.

The FBLDSS has four features. The first is that the system can process and solve
fuzzy bi-level decision problems with different satisfactory degrees. The second is
that the system can deal with any form of membership function of fuzzy parameters
in a fuzzy bi-level decision model. The third is that the system involves several
methods to suit much wider bi-level decision circumstances under various uncertain
environments. The last feature is that this system can recognize and deal with a
large number of arbitrary function inputs, which gives great flexibility to decision
makers to describe their particular bi-level decision problems.

The TLDSS has two main features. First, it adopts the DERD approach and the
programming method to generate a tri-level decision model and a TLMF decision
model using a graphic interface. In particular, it is able to describe various rela-
tionships between followers in a TLMF decision model. Second, it provides the
corresponding solution algorithms to achieve an optimal solution to the proposed
tri-level decision model or TLMF decision model.
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Chapter 12
Bi-level Programming for Competitive
Strategic Bidding Optimization
in Electricity Markets

We focus on the application of bi-level programming in electricity markets (power
market) in this chapter. Competitive strategic bidding optimization of electric power
plants (companies) is becoming one of the key issues in electricity markets. This
chapter presents a strategic bidding optimization technique developed by applying
the bi-level programming. By analyzing the strategic bidding behavior of power
plants, we understand that this bidding problem includes several power plants and
only one market operator respectively known as multiple leaders and single fol-
lower. The problem can be considered as a bi-level multi-leader optimization
problem which is introduced in Chap. 5. We therefore build a bi-level multi-leader
(BLML) decision (programming) model for this bidding problem in day-ahead
electricity markets. In the BLML decision model, each power plant is allowed to
choose its biddings to maximize its individual profit, and the market operator can
find its minimum purchase electricity fare that is determined by the output power of
each unit and the uniform marginal prices.

In this chapter, we first give the background of this bi-level programming
application in Sect. 12.1. Section 12.2 conducts bidding strategy analysis in com-
petitive electricity markets that is used for modeling. Section 12.3 presents a BLML
competitive electricity markets model. A real data-based case study is shown in
Sect. 12.4 to illustrate and test the bi-level programming model for competitive
strategic bidding optimization in electricity markets. Experimental results on a
strategic bidding problem for a day-ahead electricity market have demonstrated the
validity of the proposed decision model. Section 12.5 summaries this application.

12.1 Background

Throughout the world, electric power industries are undergoing enormous
restructuring from nationalized monopolies to individual organizations in a com-
petitive market (Huang and Pai 2002) with the support of digital eco-systems.
Because of the significance of electricity energy to national economies and society
(Guerrero et al. 2008), electricity markets must be operated under extensive
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conditions of absolute security and stabilization. The research on electricity markets
has attracted many researchers, owners and managers from electricity entities. The
competitive mechanism of day-ahead markets is a very important research issue in
electricity market studies, which can be described as follows: each power plant
submits a set of hourly (half-hourly) generation prices and the available capacities
for the following day. According to this data and an hourly (half-hourly) load
forecast, a market operator allocates the generation output for each unit.

As no determinate operation model for electricity markets exists, the marketing
procedure of electric power industries varies from country to country. Generally
speaking, there are three kinds of running models in electricity markets: the power
pool model, wholesale competitive model, and retail competitive model. These
models adopt three kinds of electric power trading methods: long term contract,
day-ahead market, and facility service. Among them, the day-ahead market is the
most competitive and active imposing great influence on profits for each participant
in the market. Specifically, each power plant submits a set of generation prices and
other related data, based on which the market operator makes a generating plan for
the following day. To optimize this procedure, many models and algorithms have
been proposed.

This chapter applies the bi-level optimization approach for dealing with strategic
bidding optimization in electricity markets. We propose both a strategic bidding
model for power plants and a generation output dispatch model for a market
operator in a day-ahead electricity market. Since there are several power plants
considered as leaders; and there is only one market operator as the follower, this
decision problem is a bi-level multi-leader optimization model which was intro-
duced in Chap. 5. Based on these two models, a specific BLML decision model,
which includes ramp rate constraints for competitive electricity markets, is pro-
posed. A real data-based case study on competitive strategic bidding problem in an
electricity market is then presented.

12.2 Bidding Strategy Analysis in Competitive Electricity
Markets

In an auction-based day-ahead electricity market, each power plant will try to
maximize its own profit by strategic bidding. Normally, each power plant submits a
set of hourly (half-hourly) generation prices and available capacities for the fol-
lowing day. Based on this data and an hourly-load (half-hourly-load) forecast, a
market operator will allocate generation output. In this section, under the analysis of
bidding strategy optimization problems, we build a competitive strategic bidding
model for power plants and a generation output dispatch model for a market
operator in a day-ahead electricity market.
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12.2.1 Strategic Pricing Model for Power Plants

In the upper level, each power plant is concerned with how to choose a bidding
strategy, which includes generation price and available capacity. Many bidding
functions have been proposed. For a power system, the generation cost function
generally adopts a quadratic function of the generation output, i.e. the generation
cost function can be represented as:

Cj Pj
� � ¼ ajP

2
j þ bjPj þ cj ð12:1Þ

where Pj is the generation output of generator j, and aj; bj; cj are coefficients of the
generation cost function of generator j.

The marginal cost of generator j is calculated by:

kj ¼ 2ajPj þ bj ð12:2Þ

It is a linear function of its generation output Pj. The rule in a goods market may
expect each power plant to bid according to its own generation cost. Therefore, we
adopt this linear bid function. Suppose that the bidding for the jth unit at time t is:

Rtj ¼ atj þ btjPtj ð12:3Þ

where t 2 T is the time interval, T is time interval number, j represents the unit
number, Ptj is the generation output of unit j at time t, and atj and btj are the bidding
coefficients of unit j at time t.

According to the justice principle of the same quality, the same network, and the
same price, we adopt a uniform marginal price (UMP) as the market clearing price.
Once the energy market is cleared, each unit will be paid according to its generation
output and UMP. The payoff of the ith power plant is:

Fi ¼
XT
t¼1

ð
X
j2Gi

UMPtPtj �
X
j2Gi

ðajP2
tj þ btjPtj þ ctjÞÞ ð12:4Þ

where Gi is the suffix set of the units belonging to the ith power plant. Each power
plant wishes to maximize its own profit Fi. In fact, Fi is the function of Ptj and
UMPt, and UMPt is the function of all units’ bidding atj, btj and output power Ptj,
which will impact on each other.

Therefore, we establish a strategic pricing model for power plants as follows:

max
atj;btj2 Gi

Fi ¼ Fi at1; bt1; . . .; atN ; btN ;Pt1; . . .;PtNð Þ

¼
XT
t¼1

UMPtPti �
X
j2Gi

ajP
2
tj þ btjPtj þ ctj

� � !

i ¼ 1; . . .; L

ð12:5Þ
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where L is the number of power plants, Pti ¼
P

j2Gi
Ptj, t ¼ 1; . . .; T .

The profit calculated for each power plant will consider both Pti and UMPt,
which can be computed by a market operator, according to the market clearing
model.

12.2.2 Generation Output Dispatch Model for Market
Operator

A market operator actually represents the consumer electricity purchase from power
plants, under the conditions of security and stabilization. The objective of a market
operator is to minimize the total purchase fare, while encouraging power plants to
use a bid price as low as possible. It is reasonable that the lower the price, the more
the output. Thus, the function value of a market operator’s objective will be cal-
culated according to the bidding price. Most previous strategic bidding models do
not include ramp rate constraints, without which the solution for generating dis-
patch may not be a truly optimal one. We should consider the ramp rate constraints
in the real world when modeling a generating dispatch. However, if a model
includes ramp rate as a constraint, the number of decision variables involved in the
problem will increase dramatically, which requires a more powerful solution
algorithm. Based on the analysis above, we build a market operator’s generation
output dispatch model as follows:

min
Ptj

f ¼ f ðat1; bt1; . . .; atN ;btN ;Pt1; . . .;PtNÞ ¼
XT
t¼1

XN
j¼1

RtjPtj

s:t:
XN
j¼1

Ptj ¼ PtD

Pjmin �Ptj �Pjmax

�Dj �Ptj � Pt�1;j �Uj; t ¼ 1; 2; . . .; T

ð12:6Þ

where t 2 T is the time interval, T is the time interval number, j represents the unit
number, Ptj is the generation output of unit j at the time t, and atj and btj are the
bidding co-efficients of unit j at the time t, PtD is the load demand at the time t, Pjmin

is the minimum output power of the jth unit, Pjmax is the maximum output power of
the jth unit, Dj is the maximum downwards ramp rate of the jth unit, and Uj is the
maximum upwards ramp rate of the jth unit.

After receiving all power plants’ bid data, a market operator determines the
output power of each unit and UMPt in time slot t. UMPt can be calculated
according to the following steps:
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[Begin]
Step1: calculate output power of each unit j for all time slots t using formula
(12.6);
Step2: compute bidding Rtj corresponding to the generation output Ptj;
Step3: account UMPt ¼ maxNj¼1Rtj:

[End]

12.3 BLML Decision Model in Competitive Electricity
Markets

From the analysis above, we know that in an auction-based day-ahead electricity
market, each power plant tries to maximize its own profit by strategic bidding, and
each market operator tries to minimize its total electricity purchase fare. The
decision of one will influence the other. This is a typical bi-level decision problem,
which has multiple leaders and only one follower, with power plants as leaders and
a market operator as a follower.

By combining the strategic pricing model defined in (12.5) with the generation
output dispatch model defined in (12.6), we establish a BLML decision model for
competitive strategic bidding-generation output dispatch in an auction-based day-
ahead electricity market as follows:

max
atj;btj2Gi

Fi ¼ Fi at1; bt1; . . .; atN ; btN ;Pt1; . . .;PtNð Þ

¼
XT
t¼1

UMPtPti �
X
j2Gi

ajP
2
tj þ btjPtj þ ctj

� � !

s:t: atmin � atj � atmax;

btmin � btj � btmax;

t ¼ 1; 2; . . .; T; j ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .; L

min
Ptj

f ¼ f ðat1; bt1; . . .; atN ; btN ;Pt1; . . .;PtNÞ ¼
XT
t¼1

XN
j¼1

RtjPtj

s:t:
XN
j¼1

Ptj ¼ PtD;

Pjmin �Ptj �Pjmax;

� Dj �Ptj � Pt�1; j �Uj;

t ¼ 1; 2; . . .; T :

ð12:7Þ

where atj and btj are the bidding coefficients of unit j at time t, atmin, atmax, btmin,
btmax are the lower and upper limits for atj and btj respectively, L is the number of
power plants, Pti ¼

P
j2Gi

Ptj, Pjmin is the minimum output power of the jth unit,
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Pjmax is the maximum output power of the jth unit, Dj is the maximum downwards
ramp rate of the jth unit, and Uj is the maximum upwards ramp rate of the jth unit.

This model describes strategic bidding problems in competitive electricity
markets from a bi-level angle. In this model, there are multiple leaders (power
plants) but only one follower (a market operator). This kind of problem has been
studied in Chap. 5, and we will use the developed BLML-PSO algorithm proposed
in Sect. 5.6 of Chap. 5 to solve it.

12.4 A Case Study

In this section, we will use a real world competitive strategic bidding example to
illustrate the application of bi-level decision technology on an electricity market.

12.4.1 Test Data

In order to test the effectiveness of the proposed BLML decision model and the
BLML-PSO algorithm when solving the model defined by (12.7), a typical com-
petitive strategic bidding case consisting of three companies with six units and
twenty-four time intervals is chosen. The generation cost function can be calculated
by using formula (12.1), where the cost coefficients aj; bj; cj of unit j and other
technical data are given in Table 12.1. The load demands for each time interval t are
given in Table 12.2.

In Table 12.1, Units 1 and 2 belong to the first power plant, Units 3 and 4 belong
to the second power plant, and Units 5 and 6 belong to the third power plant.

To simplify computation, the limit of strategic bidding coefficients does not vary
by different time slots and we suppose:

atmin ¼ 7; atmax ¼ 9; btmin ¼ 0:0002; btmax ¼ 0:007;

t ¼ 1; 2; . . .T ; j ¼ 1; 2; . . .;N:

Table 12.1 Technical data of units

Unit no. aj bj cj pmin (MW) pmax (MW) Dj (MW/h) Uj (MW/h)

1 0.00028 4.10 150 50 680 80 85

2 0.00312 4.50 80 30 150 45 60

3 0.00048 4.10 109 50 360 60 65

4 0.00324 3.74 125 60 240 45 80

5 0.00056 3.82 130 60 300 70 80

6 0.00334 3.78 100 40 160 55 40
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12.4.2 Experiment Results

This example is run by the BLML-PSO algorithm developed in Sect. 5.6. The
running results are listed in Tables 12.3, 12.4, 12.5, 12.6 and 12.7, where atj and btj

Table 12.2 Load demands in
different time intervals t 1 2 3 4 5 6

PtD 1,033 1,000 1,013 1,027 1,066 1,120

t 7 8 9 10 11 12

PtD 1,186 1,253 1,300 1,340 1,313 1,313

tt 13 14 15 16 17 18

PtD 1,273 1,322 1,233 1,253 1,280 1,433

tt 19 20 21 22 23 24

PtD 1,273 1,580 1,520 1,420 1,300 1,193

Table 12.3 Running results
for αtj from the example t j

1 2 3 4 5 6

1 7.37 7.61 7.32 7.03 7.27 8.98

2 8.76 7.74 8.71 7.15 8.13 7.10

3 7.18 8.89 8.60 8.84 8.55 8.26

4 7.36 8.33 7.31 8.28 8.73 7.70

5 7.10 8.80 8.51 8.75 8.46 8.17

6 8.59 7.57 8.54 8.98 7.96 8.93

7 7.11 7.35 7.06 8.77 7.01 8.72

8 8.45 8.90 7.87 8.85 7.82 8.80

9 8.29 8.00 8.24 7.95 7.66 7.37

10 8.42 7.39 8.37 8.81 7.79 8.76

11 7.57 7.28 7.52 7.23 8.94 7.18

12 7.02 7.99 8.97 7.94 8.39 7.36

13 7.49 7.20 7.44 7.15 8.86 7.10

14 8.25 7.22 8.20 8.64 7.62 8.59

15 8.04 7.74 7.98 7.69 7.40 7.11

16 8.11 8.56 7.53 8.51 7.48 8.45

17 8.68 8.92 8.63 8.34 8.58 8.29

18 8.08 7.05 8.03 8.47 7.45 8.42

19 8.50 8.21 7.92 8.16 7.86 7.57

20 8.68 7.65 8.63 7.07 8.04 7.02

21 8.41 8.12 7.83 8.07 7.78 7.49

22 7.91 8.88 7.33 8.30 7.27 8.25

23 8.43 8.67 8.38 8.09 8.33 8.04

24 7.24 8.21 7.19 8.16 7.14 8.11
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are the bidding coefficients of unit j at time t, Ptj is the generation output of unit j at
time t, UMPt is the uniform marginal price at time t.

Under these solutions, the objective values for both the leaders and the follower
are listed in Table 12.7.

Table 12.4 Running results for βtj from the example

t j

1 2 3 4 5 6

1 0.00089 0.00205 0.00321 0.00438 0.00554 0.00670

2 0.00208 0.00074 0.00440 0.00307 0.00673 0.00539

3 0.00641 0.00077 0.00193 0.00310 0.00426 0.00542

4 0.00278 0.00644 0.00510 0.00377 0.00063 0.00609

5 0.00048 0.00164 0.00280 0.00397 0.00513 0.00629

6 0.00382 0.00249 0.00615 0.00481 0.00348 0.00034

7 0.00350 0.00467 0.00583 0.00699 0.00135 0.00251

8 0.00022 0.00568 0.00435 0.00121 0.00667 0.00353

9 0.00687 0.00123 0.00420 0.00536 0.00653 0.00089

10 0.00556 0.00423 0.00109 0.00655 0.00522 0.00208

11 0.00060 0.00176 0.00292 0.00408 0.00525 0.00641

12 0.00626 0.00493 0.00179 0.00045 0.00411 0.00278

13 0.00147 0.00263 0.00379 0.00496 0.00612 0.00048

14 0.00051 0.00597 0.00464 0.00150 0.00696 0.00382

15 0.00449 0.00565 0.00682 0.00118 0.00234 0.00350

16 0.00551 0.00237 0.00103 0.00469 0.00336 0.00022

17 0.00106 0.00222 0.00339 0.00455 0.00571 0.00687

18 0.00406 0.00092 0.00638 0.00324 0.00191 0.00556

19 0.00658 0.00094 0.00391 0.00507 0.00624 0.00060

20 0.00295 0.00162 0.00527 0.00394 0.00080 0.00626

21 0.00065 0.00362 0.00478 0.00595 0.00031 0.00147

22 0.00580 0.00266 0.00132 0.00498 0.00365 0.00051

23 0.00368 0.00484 0.00600 0.00036 0.00333 0.00449

24 0.00220 0.00586 0.00452 0.00138 0.00684 0.00551

Table 12.5 Running results for UMPt from the example

t 1 2 3 4 5 6 7 8

UMP 17.81 8.62 1.49 8.19 2.77 4.35 14.31 4.43

t 9 10 11 12 13 14 15 16

UMP 8.75 6.40 13.45 12.30 1.06 9.47 18.93 15.88

t 17 18 19 20 21 22 23 24

UMP 14.39 18.87 5.42 11.10 19.35 14.60 18.23 7.34
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12.4.3 Experiment Analysis

By the BLML-PSO algorithm developed in Sect. 5.6, solutions are reached for both
the power plants and the market operator to help them make strategic decisions. We
conclude the BLML decision model and the BLML-PSO algorithm in the experi-
ment as follows:

1. The BLML decision model can effectively model strategic bidding problems
from electricity markets. By considering the gaming and bi-level relationships
between several power plants and a market operator, the BLML decision model

Table 12.6 Running results for Ptj from the example

t j

1 2 3 4 5 6

1 493 150 50 240 60 40

2 445 145 63 232 70 45

3 443 140 76 224 80 50

4 442 135 89 216 90 55

5 466 130 102 208 100 60

6 505 125 115 200 110 65

7 556 120 128 192 120 70

8 608 115 141 184 130 75

9 640 110 154 176 140 80

10 665 105 167 168 150 85

11 623 100 180 160 160 90

12 593 110 193 152 170 95

13 538 105 206 144 180 100

14 478 108 231 165 210 130

15 412 109 252 150 200 110

16 333 130 285 180 210 115

17 275 130 320 210 220 125

18 268 150 360 240 260 155

19 322 120 300 200 211 120

20 390 150 360 240 290 150

21 326 150 355 230 299 160

22 266 143 356 240 270 145

23 191 120 320 239 280 150

24 207 100 300 200 254 132

Table 12.7 Objective values for the decision makers

The 1st power plant The 2nd power plant The 3rd power plant The market operator

73,313 65,799 46,376 225,272
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can better reflect the features of such real-world strategic bidding problems in
electricity markets and format these problems practically.

2. The BLML-PSO algorithm is quite effective for solving strategic bidding
problems defined by the BLML decision model. By making several power
plants and a market operator decide sequentially, the hierarchical relation
between them is fully considered. By moving the choice by power plants as
close as possible to their rational reactions, the Nash equilibrium solution can be
obtained.

12.5 Summary

Competitive strategic bidding optimization of power plants in electricity markets is
in a practical sense important and it is technically implementable. This chapter
applies a BLML decision model and BLML-PSO algorithm to handle the com-
petitive strategic bidding decision-making problem in electricity markets. The
proposed solution method can achieve a generalized Nash equilibrium for the
BLML decision problem in an electricity market by providing power plants with
competitive strategic bidding within the prevailing network security constraints.
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Chapter 13
Bi-level Pricing and Replenishment
in Supply Chains

Effective pricing and replenishment strategies in supply chain management are the
keys to business success. Notably, with rapid technological innovation and strong
competition in hi-tech industries such as computer and communication organiza-
tions, the upstream component price and the down-stream product cost usually
decline significantly with time. As a result, effective pricing and replenishment
decision models are very important in supply chain management. This chapter first
establishes a bi-level pricing and replenishment strategy optimization model in
hi-tech industry. Then, two bi-level pricing models for pricing problems, in which
the buyer and the vendor in a supply chain are respectively designated as the leader
and the follower, are presented. Experiments illustrate that bi-level decision tech-
niques can solve problems defined by these models and can achieve a profit
increase under some situations, compared with the existing methods.

This chapter is organized into four sections. After introducing the background in
Sects. 13.1 and 13.2 shows a case study about hi-tech collaborative pricing and
replenishment strategy making. In Sect. 13.3, we use bi-level decision techniques to
develop two bi-level pricing models within another case study, one considering the
buyer as the leader who has priority in deciding, and the other taking the vendor as
the leader. Finally, the summary of this chapter is given in Sect. 13.4.

13.1 Background

Hi-tech products such as computers and communication consumer products have
driven the need for globalization and massive customization, and have come to
occupy a large section of the supply chain industry. Features of hi-tech products
include short product life cycle time and quick response time. The lead-time from
order to delivery is usually compressed from 955 (95 % order delivered within
5 days) to 1,002 (100 % order delivered within 2 days), and both component costs
and product prices are declining at a rate of about 1 % per week (Sern 2003). This
implies that purchasing or selling one-week earlier or later will result in an
approximate loss of 1 % (Lee 2002). As a result, hi-tech products require a more
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effective optimization method to support policy-making by both the buyer and the
vendor in a supply chain.

In reality, the buyer and vendor in a hi-tech product supply chain are two
echelons that need to achieve a win-win business solution. Under this principle of
collaboration, some collaborative pricing and replenishment optimization models
are developed and both the vendor and buyer aim to reduce/optimize the purchase
cost and price respectively.

To reveal well and clearly reflect the interactive and internal relationship
between a vendor and a buyer, we consider both sides to be well-optimized for the
supply chain: the maximum optimization to one side, such as buyer, while still
considering the profit achievement of the other side, such as vendor. In fact, neither
the vendor nor buyer has direct control over the strategy/policy-making of the other,
but their actions affect subsequent responses of each other. Therefore, the pricing
and replenishment strategy problem is naturally a bi-level optimization problem
where either the vendor or buyer can be the leader based on the requirement and
goal of the decision support system.

In the following sections, we will present the formulation of the hi-tech col-
laborative pricing and replenishment strategy problem using non-linear bi-level
programming in the first case study, in which the buyer is the leader. Then, we
address how bi-level pricing models are developed by using bi-level programming
in the second case study. In the second case study, one bi-level pricing model
considers the buyer as the leader who has the privilege of deciding first, and the
vendor as the follower who makes decisions after the buyer; the other bi-level
pricing model takes the vendor’s profit as priority and makes the vendor the leader
and the buyer the follower. These two pricing models allow the buyer and vendor to
make decisions in sequence, fully considering the mutual influence of each other.
To obtain solutions from these non-linear bi-level decision models, the Fuzzy
Bi-level Decision Support System (FBLDSS) software developed in Chap. 11 is
used. We also conduct experiments to illustrate the proposed models.

13.2 Case Study 1: Hi-tech Product Pricing
and Replenishment Strategy Making

This section will handle hi-tech product pricing and replenishment strategy problem
by bi-level decision techniques.

13.2.1 Problem Formulation

The formulation for the pricing and replenishment strategy problem is presented
based on the assumptions of Yang et al. (2007):
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1. Vendor and buyer’s replenishment rates are instantaneous.
2. Component purchase cost and product price to the end consumer decline at a

continuous rate per unit time.
3. Finite planning horizon and constant demand rate are considered.
4. Each replenishment time interval is the same.
5. No shortage is allowed.
6. Purchase lead-time is constant.

It is assumed that the purchase cost of the vendor and the market price to the
end-consumer are fixed. To maximize profit through increased sales, the vendor
offers a price discount rate of rb to the buyer.

The related parameters included in our model are listed in Table 13.1.
If the vendor’s and buyer’s costs decline at continuous rates of rv and rb

respectively, their purchase costs are:

Pv tð Þ ¼ Pv0 1� rvð Þt; 0� t�H ð13:1Þ

Table 13.1 Related parameters

Parameter Description

n The number of orders that a vendor places for the item from a supplier in the
planning horizon

m The number of buyer’s lot size deliveries per vendor’s lot size

Q The buyer’s lot size

rb The weekly decline-rate of the buyer’s purchase cost

D The weekly demand rate

rv The weekly decline-rate of the vendor’s purchase cost

rm The weekly decline-rate of market price to the end-consumer

H The weekly length of the planning horizon

Fv The vendor’s holding cost per dollar per week

Fb The buyer’s holding cost per dollar per week

Cv The vendor’s ordering cost per order

Cb The buyer’s ordering cost per order

Pv0 The vendor’s unit purchase cost at the initial time

Pb0 The buyer’s unit purchase cost at the initial time

Pm0 Market price to the end consumer at the initial time

PvðtÞ The vendor’s unit purchase cost in week t

PbðtÞ The buyer’s unit purchase cost in week t

PmðtÞ The market price to the end consumer in week t

NPv The vendor’s net profit in the planning horizon

NPb The buyer’s net profit in the planning horizon

NP The joint net profit of both the vendor and the buyer in the planning horizon
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and

Pb tð Þ ¼ Pb0 1� rbð Þt; 0� t�H ð13:2Þ

respectively.
If the market price declines at a continuous rate of rm, the unit market price to the

end-consumer is

Pm tð Þ ¼ Pm0 1� rmð Þt; 0� t�H: ð13:3Þ

The buyer’s average inventory level is Q=2, that is, one half of the buyer’s lot
size. The unit purchase cost is

Pb0;Pb0 1� rbð Þ H
mn;Pb0 1� rbð Þ2Hmn; . . .;Pb0 1� rbð Þ

n�1þm�1
mð ÞH

n :

The buyer’s holding cost in the planning horizon is

HCb ¼ FbH
mn

Xn�1

i¼0

Xm�1

j¼1

Pb0 1� rbð ÞtQ
2

¼ FbHPb0Q
2mn

1� 1� rbð ÞH
1� 1� rbð Þ H

mn

; ð13:4Þ

where t ¼ iþ j
m

� �
H=n, i ¼ 0; 1; . . .; n� 1, j ¼ 1; 2; . . .;m� 1.

Note that m and n are positive integers, t is a continuous real number and is
discrete valued in the analytical steps for ease of analysis.

Since the vendor-buyer-combined average inventory level is mQ=2, the vendor’s
average inventory level is Qðm� 1Þ=2 in the collaborative system. The vendor’s
holding cost in the planning horizon is

HCv ¼ FvH
n

Xn�1

i¼0

Pv0 1� rvð ÞtQ m� 1ð Þ
2

¼ FvHPv0Q m� 1ð Þ
2n

1� 1� rvð ÞH
1� 1� rvð ÞHn

; ð13:5Þ

where t ¼ iH
n , i ¼ 0; 1; 2; . . .; n� 1.

The buyer’s net income (sales revenue minus purchase cost) is denoted by NIb as
follows:

NIb ¼
ZH

0

Pm0 1� rmð ÞtDdt �
Xn�1

i¼0

Xm�1

j¼0

Pb0 1� rbð ÞtQ

¼ Pm0D
ln 1� rmð Þ eH lnð1�rmÞ � 1

� �
� Pb0Q 1� 1� rbð ÞH� �

1� 1� rbð Þ H
mn

ð13:6Þ

The vendor’s net income (sales revenue minus purchase cost) is denoted by NIv
as follows:
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NIv ¼
Xn�1

i¼0

Xm�1

j¼0

Pb0 1� rbð ÞtQ�
Xn�1

i¼0

Pv0 1� rvð ÞtmQ

¼ Pb0Q 1� 1� rbð ÞH� �
1� 1� rbð Þ H

mn

� Pv0mQ 1� 1� rvð ÞH� �
1� 1� rvð ÞHn

;

ð13:7Þ

where 1[ rb [ 0, 1[ rv [ 0.
The buyer’s net profit (formula (13.6) minus formula (13.4) and the ordering

cost) is denoted by NPb as follows:

NPb ¼ Pm0D
ln 1� rmð Þ eH ln 1�rmð Þ � 1

� �
� Pb0Q 1� 1� rbð ÞH� �

1� 1� rbð Þ H
mn

� FbHPb0Q
2mn

1� 1� rbð ÞH
1� 1� rbð Þ H

mn

� mnCb:

ð13:8Þ

where 1[ rb [ 0, 1[ rm [ 0.
The vendor’s net profit (formula (13.7) minus formula (13.5) and the ordering

cost) is as follows:

NPv ¼
Pb0Q 1� 1� rbð ÞH� �

1� 1� rbð Þ H
mn

� Pv0mQ 1� 1� rvð ÞH� �
1� 1� rvð ÞHn

� FvHPv0 m� 1ð ÞQ
2n

1� 1� rvð ÞH
1� 1� rvð ÞHn

� nCv:

ð13:9Þ

The joint net profit for both vendor and buyer, the sum of formula (13.8) and
formula (13.9), denoted by NP, is

NP ¼ NPb þ NPv: ð13:10Þ

The relationship between the lot size and the number of deliveries is

Q ¼ HD
mn

ð13:11Þ

The value of rb is dependent on the net profit sharing between the two players.
The relationship between the vendor’s net profit and buyer’s net profit is defined as

NPvð Þ ¼ a NPbð Þ ð13:12Þ

where a is a negotiation factor.
When a ¼ 0, it means all net profit sharing is accrued by the buyer; when a ¼ 1,

it implies that all net profit sharing is equally distributed. A large a means that all
net profit is accrued mainly by the vendor. The optimization problem is a con-
strained non-linear programming problem, stated as
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max NP ¼ NPv þ NPb

s:t: NPvð Þ ¼ a NPbð Þ; a� 0;
Q ¼ HD

mn

ð13:13Þ

When there is no cost/price reduction (i.e., rv ¼ 0, rb ¼ 0 and rm ¼ 0), formulas
(13.8) and (13.9) are undefined. Using L’Hospital’s rule to take the derivatives of
both the numerator and the denominator (Yang et al. 2007), a buyer’s and a ven-
dor’s net profits in formulas (13.8) and (13.9) are derived as

NPb ¼ Pm0DH � Pb0Qmn� Pb0FbHQ
2

� mnCb ð13:14Þ

and

NPv ¼ Pb0Qmn� Pv0mnQ� Pv0FvH m� 1ð ÞQ
2

� nCv ð13:15Þ

respectively.
The results of formulas (13.14) and (13.15) are the same as the case for static

cost and price.
In the vendor–buyer pricing system, both the vendor and buyer aim to maximize

their profits but their decisions are related to each other in a hierarchical way: the
buyer as the leader and the vendor as the follower, or vice versa. When making the
pricing strategy, if we take the buyer’s point of view as having priority over a
vendor, we can set the buyer as the leader and the vendor as the follower. By
combining formulas (13.14) and (13.15), we can establish a bi-level pricing and
replenishment strategy optimization model in a supply chain as follows:

max
m2M

NPb mð Þ ¼ Pm0DH � Pb0Qmn� Pb0FbHQ
2

� mnCb

s:t: m[ 0;

max
n2N

NPv nð Þ ¼ Pb0Qmn� Pv0mnQ� Pv0FvH m� 1ð ÞQ
2

� nCv

s:t: n[ 0: ð13:16Þ

In this non-linear bi-level programming model, both the buyer and vendor adjust
their own controlling variables, wishing to maximize their own profits under their
specific constraints, but the buyer’s objective is also subject to the vendor’s opti-
mized objective function value. That is, the buyer is the leader, who makes a
decision first; and the vendor is the follower, who makes a decision based on the
possible strategy of the buyer.
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13.2.2 Experiments

The bi-level pricing and replenishment strategy optimization model can be illus-
trated by the following example from Yang et al. (2007).

Example 13.1

The demand rate per week, D ¼ 400 units;
The vendor’s unit purchase cost at the initial time, Pv0 ¼ $4;
The buyer’s unit purchase cost at the initial time, Pb0 ¼ $5;
The market price to the end consumer from the buyer at the initial time,
Pm0 ¼ $6;
The buyer’s ordering cost per order, Cb ¼ $30;
The vendor’s ordering cost per order, Cv ¼ $1,000;
The buyer’s holding cost per dollar per week, Fb ¼ 0:004;
The vendor’s holding cost per dollar per week, Fv ¼ 0:004;
The time horizon considered, H ¼ 52 weeks;
The negotiation factor, a ¼ 1.

After substituting the above parameters into formula (13.16), we have the fol-
lowing simplified bi-level pricing and replenishment strategy optimization model:

max
n2N

NPb n;mð Þ ¼ 20,800� 10,816
mn

� 30mn

s:t: n[ 0

max
m2M

NPvðn;mÞ ¼ 20,800� 8,652.8ðm� 1Þ
mn

� 1,000n

s:t: m[ 0:

ð13:17Þ

We use the developed FBLDSS in Chap. 11 to solve problem (13.17). To obtain
a solution, we first input the objective functions and constraints of both the leader
(buyer) and follower (vendor). We then run the software and obtain a solution
m; nð Þ ¼ 6:9743; 2:7225ð Þ; NPv;NPbð Þ ¼ ð19,660.7371; 15,354.9525Þ.
Through comparison of objective values when m ¼ 6 and m ¼ 7, we select

m ¼ 6 since it results in a bigger objective function value for the buyer in the
problem. Similarly, n ¼ 3 results in a bigger objective value for the vendor.

We then use the model and solution method from Yang et al. (2007) to obtain a
solution for the same problem when the negotiation factor a is set as one. It should
be noted that since both m and n can only be positive integers, the buyer’s net profit
and the vendor’s net profit cannot be completely equal in most situations. In this
example, the buyer’s net profit and the vendor’s net profit will be the closest and
maximized under m ¼ 1 and n ¼ 3. Meanwhile, further experiments are carried out
by adjusting the negotiation factor a in a wider range.

The results of our bi-level pricing and replenishment strategy optimization
model and the model of Yang et al. (2007) are compared, as shown in Table 13.2.
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From the experimental results, it is noted that with our bi-level pricing and
replenishment strategy optimization model, compared with Yang et al.’s (2007)
original model (i.e., a ¼ 1), the profit for the buyer increases by about 15 % (from
$17,104 to $19,659) and the profit for the vendor decreases by about 13.5 % (from
$17,800 to $15,396). The total percentage increase for the buyer and the vendor is
about 3.2 % (from $34,904 to $35,016) when compared with the results from Yang
et al. (2007). When α is adjusted in a wider range, the buyer still achieves more
profit in all situations of α with our bi-level strategy optimization model. Even if the
vendor as the follower loses some profit when a� 0:5, the profit sum of both the
buyer and vendor are still higher in our bi-level model under most choices of a.

The proposed bi-level pricing and replenishment optimization model can achieve
more profit for a buyer in a supply chain at the price of some profit loss for the
vendor. This is understandable, as bi-level optimization models always take the
leader’s interest as priority. The reason our results outperform others is that our bi-
level pricing and replenishment strategy optimization model gives the buyer or the
vendor the freedom to optimize their choices, without having to obey the heavy
restrictions faced in the model by Yang et al. (2007).

13.3 Case Study 2: Hi-tech Product Pricing
and Replenishment Strategy Making with Weekly
Decline-Rates

This section takes the hi-tech product pricing and replenishment strategy problem
again, where weekly demand rate and weekly decline-rates are added as extra deci-
sion variables, to carry out the second case study by bi-level decision techniques.

13.3.1 Problem Formulation

In this section, by switching the leader and follower roles, respectively, between a
buyer and a vendor, we develop two bi-level pricing models in a supply chain.

Table 13.2 Summary of results for Example 13.1

Α m n NPb NPv NP

Yang et al. (2007) a ¼ 1 1 3 $17,104 $17,800 $34,904

a[ 2 1 1 $9,954 $19,800 $29,754

1:5� a� 2 1 1 $9,954 $19,800 $29,754

1� a� 1:5 1 3 $17,105 $17,800 $34,904

0:5� a� 1 3 3 $19,328 $15,877 $35,205

a\0:5 2 10 $19,659 $10,367 $30,026

Our bi-level optimization model 6 3 $19,659 $15,396 $35,016
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The buyer’s net profit in a buyer-vendor system can be calculated by:

NPb ¼ Pm0D
ln 1� rmð Þ eH ln 1�rmð Þ � 1

� �
� Pb0Q 1� 1� rbð ÞH� �

1� 1� rbð Þ H
mn

� FbHPb0Q
2mn

1� 1� rbð ÞH
1� 1� rbð Þ H

mn

� mnCb:

ð13:18Þ

The vendor’s net profit can be calculated by:

NPv ¼
Pb0Q 1� 1� rbð ÞH� �

1� 1� rbð Þ H
mn

� Pv0mQ 1� 1� rvð ÞH� �
1� 1� rvð ÞHn

� FvHPv0 m� 1ð ÞQ
2n

1� 1� rvð ÞH
1� 1� rvð ÞHn

� nCv:

ð13:19Þ

In (13.18), the buyer controls m, the number of the buyer’s lot size deliveries per
vendor’s lot size; and rm, the weekly decline-rate of market price to an end-con-
sumer. In (13.19), the vendor controls n, the number of the orders that the vendor
places for the item from a supplier in the planning horizon; rb, the weekly decline-
rate of the buyer’s purchase cost; and rv, the weekly decline-rate of the vendor’s
purchase cost. All other parameters defined in the problem are constants, which may
change if other specific problems are introduced. The explanations of symbols used
in the above two formulas are listed in Table 13.1.

When making the pricing strategy, if we take the buyer’s point of view to make
its profit a priority over the vendor, we can designate the buyer as the leader and the
vendor as the follower. By combining Formulas (13.18) and (13.19), we establish a
bi-level pricing model in a supply chain as follows:

max
m;rm

NPb m; rm; n; rb; rvð Þ

¼ Pm0D
ln 1� rmð Þ eH ln 1�rmð Þ � 1

� �
� Pb0Q 1� 1� rbð ÞH� �

1� 1� rbð Þ H
mn

� FbHPb0Q
2mn

1� 1� rbð ÞH
1� 1� rbð Þ H

mn

� mnCb

s:t: m[ 0;

0:0001� rm � 0:5;

max
n;rb;rv

NPv m; rm; n; rb; rvð Þ ¼ Pb0Q
1� 1� rbð ÞH
1� 1� rbð Þ H

mn

� Pv0mQ
1� 1� rvð ÞH
1� 1� rvð ÞHn

� FvHPv0 m� 1ð ÞQ
2n

1� 1� rvð ÞH
1� 1� rvð ÞHn

� nCv

s:t: n[ 0;

0:0001� rb � 0:5;

0001� rv � 0:5:

ð13:20Þ
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In this model, both the buyer and vendor adjust their own decision variables
respectively, wishing to maximize their own profits, under specific constraints. The
buyer is the leader, who makes a decision first; and the vendor is the follower, who
makes a decision after the buyer.

If we take the point of view of the vendor to make its profit a priority over the
buyer, we can designate the vendor as the leader and the buyer as the follower. By
combining formulas (13.18) and (13.19), we establish another bi-level pricing
model in a supply chain as follows:

max
n;rb;rv

NPv m; rm; n; rb; rvð Þ ¼ Pb0Q
1� 1� rbð ÞH
1� 1� rbð Þ H

mn

� Pv0mQ
1� 1� rvð ÞH
1� 1� rvð ÞHn

� FvHPv0 m� 1ð ÞQ
2n

1� 1� rvð ÞH
1� 1� rvð ÞHn

� nCv

s:t: n[ 0;

0:0001� rb � 0:5;

0:0001� rv � 0:5:

max
m;rm

NPb m; rm; n; rb; rvð Þ

¼ Pm0D
ln 1� rmð Þ eH ln 1�rmð Þ � 1

� �
� Pb0Q 1� 1� rbð ÞH� �

1� 1� rbð Þ H
mn

� FbHPb0Q
2mn

1� 1� rbð ÞH
1� 1� rbð Þ H

mn

� mnCb

s:t: m[ 0;

0:0001� rm � 0:5:

ð13:21Þ

In this model, both the buyer and vendor adjust their own decision variables
respectively, wishing to maximize their own profits, under specific constraints. The
vendor is the leader, who makes the first decision; and the buyer is the follower,
who makes a decision after the buyer.

We will use the FBLDSS to solve problems defined by the above two bi-level
pricing models.

13.3.2 Experiments

In this section, we illustrate the bi-level pricing models in Sect. 13.3.1 by the
following numerical example where the parameters are given as follows:

334 13 Bi-level Pricing and Replenishment in Supply Chains



Example 13.2

1. The demand rate per week, D ¼ 400 units;
2. The vendor’s unit purchase cost at the initial time, Pv0 ¼ $4;
3. The buyer’s unit purchase cost at the initial time, Pb0 ¼ $5;
4. The market price to the end consumer from the buyer at the initial time,

Pm0 ¼ $6;
5. The buyer’s ordering cost per order, Cb ¼ $30;
6. The vendor’s ordering cost per order, Cv ¼ $1; 000;
7. The buyer’s holding cost per dollar per week, Fb ¼ 0:004;
8. The vendor’s holding cost per dollar per week, Fv ¼ 0:004;
9. The time horizon considered, H ¼ 52 weeks.

To deal with this problem, we relax the constraint of equal profit, and add rm, rb,
and rv as decision variables. By using the FBLDSS developed in Chapter 11 to
solve problems defined by Formulas (13.20) and (13.21), we obtain solutions for
both the buyer and the vendor. To evaluate the results of this research, we compare
these results with the results from the original model by Yang et al. (2007) under a
different negotiation factor a, which is defined as a ¼ NPv=Npb. To make the
comparison fair and reasonable, besides m and n, we add rm, rb, and rv as decision
variables to be changeable to maximize the profit in Yang et al.’s (2007) model.
Table 13.3 lists solutions from this research and solutions from the model by Yang
et al. (2007).

From Table 13.3, we can see that, using the bi-level pricing model (the buyer as
the leader) developed in this section, the buyer’s profit will increase compared with
Yang’s model when a� 1:5. If the vendor is taken as the leader, he or she can
achieve a profit increase when a� 2, which is true for most pricing problems in a
supply chain. As the follower, the vendor or buyer is bound to lose, despite the
range of the negotiation factor a. This is understandable, because in a bi-level
decision situation, we always take the leader’s interest as priority.

Table 13.3 Summary and comparison of running results for Example 13.2

m rm N rb rv NPb NPv

Yang et al. (2007) (α ≥ 2) 2 0.0001 9 0.0068 0.5 35,008 69,946

Yang et al. (2007) (1.5 ≤ α ≤ 2) 2 0.0001 9 0.01 0.5 41,280 63,710

Yang et al. (2007) (1 ≤ α ≤ 1.5) 2 0.0001 9 0.017 0.5 52,990 52,068

Yang et al. (2007) (0.5 ≤ α ≤ 1) 1 0.0001 9 0.032 0.5 68,548 36,605

Yang et al. (2007) (α < 0.5) Not applicable

This study (buyer as leader) 5 0.0071 6 0.0372 0.0753 52,399 16,866

This study (vendor as leader) 3 0.0015 7 0.0026 0.0767 21,359 64,165
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These results reveal that when applying bi-level decision techniques on pricing
problems in supply chains, some improvements can be achieved for a player
(a buyer or a vendor) if it is the leader.

13.4 Summary

In this chapter, the pricing and replenishment strategy making problem for hi-tech
products proposed by Yang et al. (2007) is remodeled by bi-level programming. To
solve problems defined by these bi-level programming models, the FBLDSS is
used. Experimental results show that the bi-level pricing models can achieve profit
improvements for both the buyer and vendor. In the two-stage vendor-buyer
inventory system, our experimental data show that the vendor, as the leader, out-
performs the buyer as the leader. This is because the vendor, as the leader, improves
the actual consumption rates; the vendor making the first decision ensures that
production matches demand more closely, reduces inventory and improves business
performance. This is why the vendor managed inventory has become very popular
in recent years.
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Chapter 14
Bi-level Decision Making in Railway
Transportation Management

Transportation management is an important application field of bi-level decision-
making. For example, transportation facilities, resources planning and moving, as
well as staff relocation all involve sub-optimization and optimization problems, that
is, the decision entities are often at two decision levels. This chapter presents two
real applications of the bi-level decision techniques in railway transportation
management.

This chapter is organized by two case studies. Section 14.1 presents a case study
about a bi-level decision model which is established for a railway train set orga-
nization. Section 14.2 shows a bi-level decision model for a railway wagon flow
management problem. Experiments are carried out in each section to further
illustrate the applications of these two bi-level decision models on them in railway
transportation management.

14.1 Case Study 1: Train Set Organization

In this section, a decision model for train set organization (TSO) is developed by
bi-level programming techniques. We first analyze the bi-level optimization nature
of the management on TSO. A bi-level decision model for TSO is then developed,
and applied in a real-world railway station to illustrate the bi-level decision model.

14.1.1 Background

Railway transportation, as one of the most important ways of transportation, has
always been playing an irreplaceable role in social economics. For railway freight
transportation, about 80 % of the whole transportation time is allotted to the
operations of loading/unloading, transferring, and overhauling in railway technical
stations (Li and Du 2002). The working state of technical stations, therefore, will
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influence the whole overpass ability of the railway network. Thus the research on
the railway transportation optimization will be bound to focus on the operation of
technical stations.

Train set organization, aiming at arranging the train set in railway freight
transportation and with extraordinary professional and technical specialties, is one
of the main subjects in railway transportation management. The objectives of TSO
include: to make the transportation efficient and even; to use the transporting device
reasonably and to promote the cooperation among different departments involved in
the freighting procedure. The term of organizing here means arranging, deciding
and managing, while train set organizing acts to arrange the train set, make deci-
sions on related issues, and manage the procedure in railway transportation.

There exist multiple levels among the running of TSO: (1) the national railway
network level the top, (2) the local bureau railway network level the second, (3) the
stations the third, and (4) the operating group the bottom. However, as the oper-
ating objects of both the national railway network and the local bureau railway
network are train sets, while those of the two lower levels are trains, the organi-
zation of TSO can be generalized into two levels: the railway network as the leader
and the stations as the followers. Thus bi-level programming techniques can be
used to analyze the problem.

The main concerns of the railway network are to decide the train type (pick-up-
and-drop-train, district-train, transit-train, or through-train), the train constitution,
the train number, and the detailed route of the departing train set. The objectives of
the railway network include: improving the transportation capacity and service
speed, reducing the cost, balancing the working rhythm among divisions, and
assigning the break-up and make-up jobs among different stations rationally.

The tasks assigned to a station are to constitute a normative train set required by
the railway network from all kinds of freight wagons that stop by this station.
Involved with these tasks, there also include a series of relevant operations, such as:
collecting or delivering, shunting, loading/unloading, and wagon checking.

The main concerns of stations include: making the operating efficient, eco-
nomical and safe; rationally using the transportation devices such as track, shunting
locomotive, and hump; deciding the operation steps together with its schedules; and
cooperating among steps within the schedule-frame of the railway network.

The TSO can be divided into two levels, even though the separate levels still share
intrinsic consistency. For the upper level,whenmaking aTSOplan, the railwaynetwork
must consider the influence from the specific operating ability and device conditions of
stations, while calculating the influence factors from itself such as the amount and
destinations of trains and the track conditions. For stations located at the lower level,
when implementing the working goals, they should try their best to harmonize between
their own operation abilities and the working arrangement from their top counterpart.

Railway stations can be grouped into two classes: through stations and technical
stations. Compared with technical stations, through stations are small sized and
their daily works, mainly on helping trains go through or two train set from opposite
directions meet, are simple and the workload is small. Except for all the functions of
through stations, technical stations are to make a new train set by breaking up the
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old ones and adding transship trains and trains originated there. Related tasks also
include: arrival/departure operating, collection-and-delivering operating, shunting,
loading/unloading, and wagon checking. We generalize these operations at tech-
nical stations as shunting and transship operations.

For the reason of facilitating the modeling, we simplify the tasks of TSO by the
following assumptions:

1. The railway transportation supply is less than the demand; the aim of the TSO is to
fully use the transportation ability to provide as much transportation as possible.

2. The topological structure of a railway network is a circle formed by train lines.
This is to embody the continuous nature of the net and transportation circulation.

3. The main line is double-track with every track direction fixed, which means
there allows two train sets running in opposite directions between two stations
simultaneously. This is to avoid the meeting problem of two train set with
opposite running directions.

4. Within a railway network, there are located only technical stations, and only one
type of trains run, the district trains, which are from one technical station A and
to another technical station B. Between technical stations A and B there are no
other technical stations.

5. The unit workload of shunting and transship operation for all technical stations
are the same. In other words, every technical station shares the identical amount
of operating time for the same train set.

Based on these assumptions above, the decision maker on a railway network
wishes that the density of train sets (calculated by the time intervals between any
two side-by-side running train sets) and the length of a train set (the number of
trains of any train set) as large as possible to obtain the maximal transport capacity.
However, for the sake of safety, the density has its upper limit set by the railway
network. Restricted by the motive power of the locomotive and the useful length
limit of arrival-departure track, the train set length has its upper limit as well.

Ignoring the constraints by a railway network, the stations, on one hand, wish the
length of train set to be large because the larger the length, the more efficient
the operating and the lower the unit operating cost. The operating efficiency is the
amount of trains shunted and transshipped per unit time, while the unit operating
cost is the cost for every single train. On the other hand, the operating time for
shunting and transshipping, which influences the cost, will increase if the length of
the train set increases. However, the overall effect of the train set length is that the
general unit operating cost will decrease with the increase of the train set length.

From the analysis above, we can conclude that:

1. For the variable of the length of a train set, the two levels share the same
objective: the larger the length of the train set the better.

2. For the variable of the density of a train set, the decision makers at the upper
level pursue its minimum while those at the lower level wish it to change with
the train set length in the same direction of travel.
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Generally speaking, the shunting and transshipping time in stations is larger than
the safe time intervals of any two side-by-side running train sets, so the variable of
the density of train set is determined by the lower level, the stations, while the
variable of the length of train set is controlled by the top level, the railway network.
The relationship between decision makers of the railway network and technical
stations is illustrated in Fig. 14.1.

14.1.2 Problem Formulation

Based on the analysis above, a bi-level decision model of TSO is built as:
For x ¼ x1; x2; . . .; xnð Þ 2 X � Rn, y 2 Y � Rm, F; f : X � Y ! F Rð Þ, Leader:

decision-maker of the railway network

max
x2X

F x; yð Þ ¼ max
x2X

F x; yð Þ ¼ a1 �
Pn

i¼1 wi � xiPn
i¼1 wi � yi ð14:1aÞ

s.t.
Xn
i¼1

wi � xi\m; ð14:1bÞ

Xn
i¼1

wi � yi\c1; ð14:1cÞ

The ith follower: the ith technical station

min
yi

fi xi; yið Þ ¼ �b1 � xi � b2 � yi ð14:1dÞ

s:t: c2 � xi
yi

� c3; ð14:1eÞ

yi [ c4: ð14:1fÞ

Technical station 2

Decision maker of the 
railway network

Technical station 1 Technical station n

Train set density

The length of train set

Train set density

Fig. 14.1 The relationship between the railway network and technical stations
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Explanation:

1. Variables:
xi: the length of a train set for the ith station, which is the number of trains of any
train set controlled by the leader, the decision maker of the railway network.
yi: the density of train sets for the ith station, which is the time interval between
any two side-by-side running train sets, controlled by the ith follower, the ith
technical station.

2. Coefficients and constants:
n: the number of technical stations in the railway network.
wi: the relative weight for the ith station in the railway network.
a1: the time interval. If a1 ¼ 24, then a1

�Pn
i¼1 wi � yi means the number of train

sets going through the network within 24 h. a1 �
Pn

i¼1 wi � xi
�Pn

i¼1 wi � yi is the
number of trains going through the network per day, and a1 [ 0:
m: the maximum number of trains of any train set regulated by the Safety Terms.
When the trains are empty, the main concern is not to exceed the length limit.
When the trains are loaded, the weight limit becomes the decisive factor.
However, for the sake of safety, when computing, both the length and weight
must meet the requirements. No matter whether it is the weight or length, the
ultimate limit is put on the number of trains.
c1: the minimum time interval between any trains list regulated by the Safety
Terms.
b1 and b2: the weights set for the influencing power by the length and density to
the unit cost.
c2 and c3: the lower and upper number limits of the trains for technical stations
to shunt and transship per time unit.
c4: the least time for the technical stations to complete the shunting and
transshipping.

3. Formula:
(14.1a) means that the leader aims at obtaining the maximum throughput
capacity within a certain period of time.

Pn
i¼1 wi � xi

�Pn
i¼1 wi � yi means the

number of trains shunted and transshipped per time unit.
(14.1b) means that the length of a train set has its upper limit imposed by the
locomotive’s motive power and the arrival-departure track’s useful length.
When the trains are loaded, except for the length limit, there is still weight
restriction set upon the train set, which means, the weights of goods loaded
together with the weights of trains cannot exceed its upper limit.
(14.1c) means that any two adjacent running train sets cannot be too close for
the sake of safety.
(14.1d) means that the followers wish that the cost is as low as possible. The first
part of (14.1d) means that the more the length of trains sets results in the more
efficient of the shunting and the lower the unit cost. The second part means that
the longer of the time the train set remains in the station the higher the cost.
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(14.1e) means that technical stations have their own lower and upper time limits
to shunt and transship trains.
(14.1f) means that there exists a least period of time for the technical station to
complete the operation.

14.1.3 Experiments

In this section, we take the railway freight operation in a railway station: Station A
into consideration. Station A is a railway technical station with the duty of man-
aging both passenger transportation and freight transportation within the precinct of
its Railway Bureau. The data collected from Station A cover the duration between
November 1, 2006 and December 31, 2006.

Suppose that the trains shunted and transshipped are to the direction of Station
B, which is another station located next to Station A along its downlink. The weight
distribution of trains is listed in Table 14.1, with the locomotive being SS1
(137 ton, 1.9 unit length).

The terms in Table 14.1 are explained as below:

1. Wagon Type: the type of wagon used.
2. Wagon Suttle: the weight of the empty wagon.
3. Load: the weight of the goods loaded.
4. Equivalent Length: the equivalent length of a wagon is calculated from the front

clasp to the rear clasp, with the unit length as 11 m. If the equivalent length is
1.1, then its actual length is 11 × 1.1 = 12.1 m.

According to the model defined by (14.1a–14.1f), the coefficients are calculated
and discussed below:

1. a1: as the computation is within the Basal Daily Working Plan, which is to
arrange wagon assignment and schedule necessary operations based on the
Trains Running Chart, Trains Shunting Plan, Detailed Rules on Technical
Station Management, and constraints set by operating spots; the computing of
the freighting wagon organization is limited within a working day of 24 h. So a1
is set to 24.

Table 14.1 Train set
distribution Wagon

type
Wagon
Suttle (ton)

Load (ton) % Equivalent
length

B23 38 40 3 2.1

P64A 26 58 3 1.5

G70 23 58 9 1.1

G60 23 50 59 1.1

G70 23 55 35 1.1
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2. m: limited by the pulling ability of the locomotive and the territorial landform,
such as grading, within Station A’s precinct, the weight of the train set must not
be larger than 3,500 tons. The departure track used for train sets to the direction
to Station B is Track IV, Filed II, whose effective length is 890 m. By 30 m of
braking distance, which is left for trains to stop safely, the maximum length for
the trains sets is 860 m.
Taking the constitution of the trains listed in Table 14.1, we set 1 unit train as a
virtual train whose equivalent length, denoted by l1 (meters), and weight,
denoted by w1 (ton), are calculated below:

l1 ¼ 2:1� 0:03þ 1:5� 0:03þ 1:1� 0:09

þ 1:1� 0:5þ 1:1� 0:35 ¼ 1:142

w1 ¼ 38þ 40ð Þ � 0:03þ 26þ 58ð Þ � 0:03þ 23þ 58ð Þ � 0:09

þ 23þ 50ð Þ � 0:5þ 23þ 55ð Þ � 0:35 ¼ 66:95

The maximum number of such empty unit train, denoted by me, is
(860 − 1.9 × 11)/(1.142 × 11) = 66, and the maximum number of such loaded
unit train, denoted by ml, is (3,500 − 137)/66.95 = 50.
From above analyzing and computing, we obtain:

m ¼ min me;mlð Þ ¼ min 66; 50ð Þ ¼ 50:

3. c1: for the sake of safety, the pursuing distance, the minimum distance interval
between any side-by-side running trains list, is 10 km, which costs about 0.2 h
in the journey from Station A to Station B. So c1 is set to 0.2.

4. b1 and b2: we set the weights of length and density of trains set on the cost of the
station as 0.4 and 0.6 respectively.

5. c2 and c3: the least number of trains Station A can shunt and transship is 30 per
hour, while the max number is 150.

6. c4: the least time for Station A to complete the shunting and transshipping for a
train set is 0.68 h.

Thus, the bi-level decision problem defined by (14.1a–14.1f) is specialized as
(14.2a–14.2f) in Station A.

Leader: decision-maker of the railway network

max
x

F x; yð Þ ¼ 24x
y

ð14:2aÞ

s:t: x\50; ð14:2bÞ

y[ 0:2: ð14:2cÞ
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Follower: Station A

min
y

f x; yð Þ ¼ �0:4x� 0:6y ð14:2dÞ

s:t: 30� x
y
� 150; ð14:2eÞ

y[ 0:68: ð14:2fÞ

To solve the problem in (14.2a–14.2f), we use the fuzzy bi-Level decision
support system (FBLDSS) software presented in Chap. 11, and come to the solu-
tions of ðx�; y�Þ ¼ ð50; 1:67Þ with F� ¼ 718:6 and f � ¼ �21:002, which means,
the railway network will obtain its maximum throughput capacity of 718.6 trains
per day, if the decision makers of the railway network set the average number of
trains to 50, followed by Station A setting the time interval between every two side-
by-side train sets to 1.67 h.

14.2 Case Study 2: Railway Wagon Flow Management

This section presents a bi-level decision model for railway wagon flow management
(RWFM). We first analyze the multi-level nature of RWFM and then develop a
bi-level decision model for it. Experiments are then carried out to illustrate its
applications.

14.2.1 Background

Railway wagon flow management (RWFM) is to arrange wagon flows in railway
freight transportation. One of the key issues faced by RWFM is how to arrange
wagons generated or transferred in technical stations to form new wagon flows,
while aiming at making transportation cost minimum and under constraints from
both technical stations and rail tracks. An optimal solution to this problem can not
only ensure freight to be sent to the destinations economically, but also make full
use of all transportation facilities, thus reduce jamming probabilities and improve
the transportation ability as a whole.

Due to the difficulties arising from both wagon routing and marshalling plan
optimization, it is even more difficult to integrate these two issues. The most
popular way is to choose wagon rout first, and then optimize the marshalling plans
in every technical station. Although this strategy can decrease the problem solving
difficulties, it still cannot reach global solutions as the benefits from the best routing
can be offset by some extra workload brought in stations (Lin and Zhu 1996).
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Most current research by bi-level decision techniques on traffic controlling
focuses on the transformation network design and layout (Feng and Wen 2005).
Little research has been conducted towards wagon flow management problems
from the multi-level angle. In this section, we use a bi-level method to study the
problem of RWFM.

14.2.2 Problem Formulation

Before establishing the bi-level decision model for RWFM, we list some terms used
in following content.

1. Local wagon flow: wagons that are loaded/uploaded or repaired in one technical
station are called local wagon flow for this station.

2. Local district wagon flow: some wagons are loaded/uploaded or repaired in
intermediate stations between two technical stations. This kind of wagon flow is
called local district wagon flow for the two technical stations.

3. Long-distance wagon flow: for a technical station, if a wagon flow is not its
local wagon flow or local district wagon flow but belongs to another technical
station (local wagon flow or local district wagon flow), this wagon flow is called
long-distance wagon flow for this technical station.

4. Service operation: to assist on the marshalling operation within one station,
some auxiliary operations must be made, including: taking-out and placing-in of
cars, picking-up and dropping trains, loading/uploading goods, and repairing.
We call this kind of auxiliary operation as service operation.

Railway wagon flow management characterized by monopolization, is usually
run by three levels, i.e. railway ministry level, railway bureau level, and station
level. However, when carrying out tasks assigned by its corresponding superior, a
lower level can arrange its own resources to achieve as much profit as possible. The
communication among levels is through marshalling plans which are designed by
the upper level but implemented by the lower counterparts. Marshalling plans are
regulations on organizing vans which may be destined to different destinations to
form van lists. Optimization on marshalling plans aims at minimizing the time spent
for centralizing and detention in technical stations.

In this section, we take railway bureaus as leaders and stations as followers. A
railway bureau controls the workload and working rhythm of the stations in its
administration area. A station, while controlling its own producing resources,
decides which specific method it will use to achieve tasks to be carried in this
station. Thus, the cost in a station is determined by both the station and its upper
administrator, the railway bureau. However, the optimal cost level for a station
does not necessarily produce the most ideal cost status for the railway bureau who
seeks equilibrium with traffic and cost. Although the railway ministry is located
above railway bureaus and technical stations, this study, while not focusing on the
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reciprocal decision relation between a railway ministry and its bureaus, only takes
the decision from the railway ministry as input constraints.

Once a railway bureau selects a marshalling plan, it means two kinds of data are
determined. One is the technical station sequences where some marshalling oper-
ation will be carried for every long-distance wagon flow. The other is the number of
vans to be marshaled in every station. For the leader, a decision involves whether
accepting a carriage and the way to deliver it. The marshalling plans made by a
railway bureau involve only long-distance wagons. In some technical stations,
some long-distance wagons should be merged or separated to decrease cost in
stations and increase traffic efficiencies.

Technical stations perform marshalling operations as well as relevant following
services, such as collecting, delivering, shunting, loading/unloading, and wagon
checking. The facilities of these services depend on the quality of the marshalling
operation which is performed beforehand. Having local wagons, local district
wagons and long-distance wagons as three kinds of marshalling objectives, mar-
shalling operations with local wagons and local district wagons are flexible in
technical stations. Stations can determine the extent and depth of the marshalling
operation for local wagons and local district wagons. The better performance of
marshalling operation results in the easier the following services and the lower the
cost. With the objective of making the costs as low as possible, technical stations
reasonably marshal local wagons and local district wagons as thoroughly as pos-
sible. However, profound marshalling operation will inevitably raise the cost and
the time allocated for marshalling in a technical station within some limitations.
Thus a technical station will seek a best point where its marshalling operations can
bring itself the lowest cost. The decision on how to marshal local wagons and local
district wagons becomes key content for technical stations.

Among 1,440 min a day, some time is allocated for operations other than
marshalling. Also, some marshalling operations are fixed so that a technical station
cannot adjust it. Thus, a station can only decide on flexible wagon flows within
available working time. A station needs first to distribute working time between
local wagons and local district wagons, then divide it among different sections of a
local district wagon flow. Based on this distribution, a station will decide the
amount of marshalling a day, the amount of wagons and time for every marshalling.
Generally speaking, technical stations make decisions from the following aspects.

1. Marshalling percentage: Influenced by time limitation, some marshalling oper-
ations can be executed to only some wagons while others must be treated as if
they had the same sequence number (the same destination station) to reduce
marshalling load. Thus, the percentage of wagons which will be marshaled is a
decision made by a technical station.

2. Shunting choice: within limited working time, a technical station can decrease
the shunting precision to finish a marshalling operation on time. Different
shunting precisions occur in both sort-shunting and group-shunting. For sort-
shunting, every wagon should be placed sequentially by their destinations. For
group-shunting, marshalling is supposed to be finished as long as wagons with
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the same destination are placed together. Group-shunting takes less working
time than sort-shunting.

3. Marshalling precision: marshalling can be divided into different precise degrees.
Actually, the destination of a wagon can be defined from generality to specificity
by stations, operation areas, operation lines, or operation spots. The more pre-
cise, the more working time will be needed.

To facilitate modeling the RWFM problem, we have the following assumptions:

1. Marshalling difficulty is decided by the disorder degree of the wagon flow to be
marshaled. Disorder degree depends on the destination stations of every wagon
and the relationship among them, which occurs randomly. In this research, we
hold that the disorder degrees for wagon flows have no difference.

2. Marshalling costs from two train flows, one of which is from Station A to
Station B and the other is from Station B to Station A, may have trivial dif-
ference on marshalling cost. When making plans and calculating the cost,
decision makers sometimes need to consider the influence from these differ-
ences. However, compared with other influencing factors, the influence from
different directions is trivial and can be ignored. In this research, we hold that
the marshalling costs with two train flows with different directions are exactly
the same.

From the analysis above, a bi-level decision model for RWFM is built as
follows:

For x ¼ x1; x21; x22; . . .; x2mð Þ 2 X � Rmþ1; yi ¼ ðgli; gdi; y1Gil; y1Sil; y1Sid;
ywGil; y2Sil; y2Gid; y2Sid; y2ikÞ 2 Yi � R10; i ¼ 1; 2; . . .;

max
x2X

X
pj;lj2D

pj � lj
� �

Jw 1� rj
� �� �Cwj xð Þ� �

þ
X
si2S

qdi x1ð Þ � ni � Js � Csi x; yið Þ½ �
ð14:3aÞ

s:t: pju min � pju � pju max; j ¼ 1; 2; . . .;m ð14:3bÞ

pjd min � pjd � pjd max; j ¼ 1; 2; . . .;m ð14:3cÞ

mj min � x2j �mj max; j ¼ 1; 2; . . .;m ð14:3dÞ

mj min ¼ max Iju � tTjd ; Ijd � tTjd
� �

; j ¼ 1; 2 ð14:3eÞ

0� qdi � vi ð14:3fÞ

0� q2i þ qdi � ui ð14:3gÞ
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min
yi2Yi

X
si2S

C0
z1i þ C00

z1i þ C000
z1i þ C0

z2i þ C00
z2i þ Cz3i

� ��
1þ Air

Bi
i

� �

þDC2i�
ð14:4aÞ

s:t: qi ¼ q0di þ
X
dk2Di

q00dik þ qzi ð14:4bÞ

Til min � gli � qdi � ðy1Gil � y2Gil � TGi þ y1Sil
� y2Sil � TSiÞ þ qdi � Sil � Tsi � Til max

ð14:4cÞ

Tid min � gdi � qdi � ðy1Gil � y2Gil � TGi þ y1Sil
� y2Sil � TSiÞ þ qdi � Sid � Tsi � Tid max

ð14:4dÞ

i ¼ 1; 2; . . .;m ð14:4eÞ

where

�Cwj xð Þ ¼ �Cw0 þ
�Cwj

pj
þ

�C2wj

x2j
þ D�Cwj;

D�Cwj ¼ pju � pjd
		 		� �Cw2j

x2j � pj
;

Iju ¼ pju
1,440 � wju

;

Ijd ¼ pjd
1,440 � wjd

;

C0
z1i ¼ �C0

z1i � �q0di ;

�C0
z1i ¼ z010i þ

Z11i

a01i � �qb
0
1i

di

þ Z12i � ð y1Gil þ 2� y1Sil þ y1ið Þb02i

þ y2Gil þ y2Silð Þb03iþg
b04i
li Þ;

C00
z1i ¼ �C00

z1i � �q00di ;

�C00
z1i ¼ z0010i þ

Z11iP
dk2Di

a001ik � x
b001ik
2ik

þ Z12i �
X
dk2Di

a001ik

� a2ik � ð y1Gil þ 2� y1Sil þ y1ið Þb002ikþy
b003ik
2ik þ g

b004ik
dik Þ

h i
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C000
z1i ¼ �C000

z1i � qzi;

�C000
z1i ¼ z00010i þ

Z11iP
dk2Di

a0001ik � x
b0001ik
2ik

;

C0
z2i ¼ �C0

z2i � �q0di ;

�C0
z2i ¼ z020i þ

Z 0
21i

a021i � ð y1Gil þ y1Sil þ y1ið Þb021iþ y2Gil þ y2Silð Þb022iþgb
0
23i

li Þ
;

C00
z2i ¼ �C00

z2i � �q00di ;

�C00
z2i ¼ z0020i þ

Z 00
21iP

dk2Di
�a0021i � ð y1Gil þ 2� y1Sil þ y1ið Þb0021iþyb

00
22i

2ik þ gb
00
23i

dik Þ
;

Cz3i ¼ Ni � �Ccx;

Ni ¼
X
dk2Di

½ Cdi þ CcHi � 1ikð Þ � x2ik þ C00
fik � q00dik� þ C0

fi � q0di;

C0
fi ¼

Z 0
31i

a031i � ð y1Gil þ y1Sil þ y1ið Þb031iþ y2Gil þ y2Silð Þb032iþgb
0
33i

li Þ
;

C00
fi ¼

Z 00
31i

a003iki � ð y1Gil þ y1Sil þ y1ið Þb0031ikþyb
00
32ik

2ik þ gb
00
33ik

dik Þ
;

DC2i ¼
X

dk ;dl2Di;k 6¼i

jx2ik � x2ilj
0
@

1
A� Z4i;

Z4i ¼ Z40i þ Z41iP
dk ;dl2Di;k 6¼i

a4ikjx2ik � x2ilj :

The explanations for the above formulas are listed below:

1. Controlling variables:
x1: Assignment of wagons which will go through the area administrated by a
railway bureau and have more than one shunting operation in some technical
station in this area.
x2j: The number of vans within a shunted wagon list from the jth section, which
is from one technical station to another in a railway bureau.
x2ik: The number of wagons in a wagon list which is to the kth section in the ith
station.
gli: The percentage of wagons to be marshaled for local wagon list in the ith
station.
gdi: The percentage of wagons to be marshaled for local district wagon list in the
ith station.
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gdik: The percentage of wagons to be marshaled for local district wagon list to
the kth direction in the ith station.
y1Gil: The percentage of wagons to be marshaled by group-shunting of local
wagons in the ith station.
y1Sil: The percentage of wagons to be marshaled by sort-shunting of local
wagons in the ith station.
y1Gid: The percentage of wagons to be marshaled by group-shunting of local
district wagons in the ith station.
y1Sid: The percentage of wagons to be marshaled by sort-shunting of local
district wagons in the ith station.
y2Gil: The shunting precision for local wagons to be marshaled by group-
shunting in the ith station.
y2Sil: The shunting precision for local wagons to be marshaled by sort-shunting
in the ith station.
y2Gid: The shunting precision for local district wagons to be marshaled by
group-shunting in the ith station.
y2Sid: The shunting precision for local district wagons to be marshaled by sort-
shunting in the ith station.
y2ik: The shunting precision for local district wagon flow marshaled in the ith
station to the kth direction.

2. Other variables: while decision makers from both the upper and lower levels
directly control variables of x and y, there are some other variables whose values
are influenced by x and y directly or indirectly. These variables are summarized
below:
Variables influenced by x1:
pj: The average wagon flow in the jth section, pj ¼ pju þ pjd :
pju: The average wagon flow in the jth section in the up-direction, which fluc-
tuates with the change of x1.
pjd : The average wagon flow in the jth section in the down-direction, which
fluctuates with the change of x1.
qdi: The number of local district wagons and local wagons operated per day in
the ith station.
q0di : The number of local wagons operated in the ith station.
q00dik: The number of local district wagons operated to the kth direction in the ith
station.
q00di : The number of local district wagons operated in the ith station.
q2i: The number of long-distance wagons operated in the ith station.
ni: The loading percentage in the ith station.
rj: The percentage of empty to loaded wagon kilometers in the jth section. It
fluctuates with the change of x1.
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Variables influenced by x:
qzi: The number of wagons marshaled in the ith station a day.
1ik: The number of long distance wagons to the kth direction in the ith station.
nkl: The number of wagon lists some of whose wagons have been added/
removed from the kth section to the lth section.
Variables influenced by y:
yli: Marshalling degree, which is determined by different operating depth, such
as group shunting, sort-shunting and the fit degree of the regulation of Safety
terms, for the local district wagon in the ith station.
ri: The average time difference among the operations for local wagon flow,
local district wagon flow, and long-distance wagon flow in the ith station.
Variables influenced by x and y:
qi: The number of wagons operated in the ith station.

3. Coefficients and constants:
S ¼ fsi; i ¼ 1; 2; . . .; ng: The set of the technical stations administrated by a
railway bureau.
D ¼ fdj; j ¼ 1; 2; . . .;mg: The set of the train running sections administrated by
a railway bureau.
Di ¼ fdk; k ¼ 1; 2; . . .; lg: The set of train running sections which are adjacent
to the ith station.
lj: The hauling distance in the jth section, which is a constant.
Jw: Railway average tariff, which is a constant.
�Cw0: Freight traffic fixed unit cost.
�Cw1j: The freight traffic unit cost in the jth section per day per kilometer.
�Cw2j: Hauling cost in the jth section per wagon per kilometer.
�C0
z2j: The locomotive cost in the jth section per kilometer when there is no

wagon hauled by the locomotive.
Js: Fees charged per wagon.
pju min: The minimum wagon flow which can meet the requisite traffic demand
required for the jth section in the up-direction.
pju max: The maximum wagon flow which can be run for the jth section in the
up-direction.
pjd min: The minimum wagon flow which can meet the requisite traffic demand
required for the jth section in the down-direction.
pjd max: The maximum wagon flow which can be run for the jth section in the
down-direction.
mj max: The maximum number of wagons to form a wagon list in the jth section.
It is determined by the locomotive hauling limit and the useful length of the
receiving and departure tracks in the jth section.
vi: The maximum possible number of wagons that can be operated by service
operation in the ith station.
ui: The maximum possible number of wagons that can be marshaled in the ith
station.
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uju: The percentage of time that can be used a day (1,440 min) for freight
transportation in the jth section in the up direction.
ujd : The percentage of time that can be used a day (1,440 min) for freight
transportation in the jth section in the down direction.
tTju: The minimum time interval between two wagon lists of the jth section in the
up direction regulated by the train working diagram.
tTjd : The minimum time interval between two wagon lists of the jth section in the
down direction regulated by the train working diagram.
Z 0
10i: The minimum cost for marshalling one local wagon in the ith station. This

cost happens in an ideal situation when the number of wagons to be marshaled is
large enough and the marshalling degree is deep enough for one marshalling
operation.
Z11i: Coefficient for the effect from centralized marshalling operation.
�qdi: The number of local wagons to be marshaled for one marshalling operation.
It is determined by the loading/uploading capacity in the ith station.
Z12i: Coefficient for the effect from deepened marshalling operation. It is an
average additional cost spent for one wagon for marshalling operation.
Ai;Bi; a01i; b

0
1i; b

0
2i; b

0
3i; b

0
4i; a

00
1ik; b

00
1ik; a

0
21i; b

0
21i; b

0
22i; b

0
23i; a

00
21i; b

00
21i; b

00
22i,

b0023i; a
0
31k; b

0
31k; b

0
32k; b

0
33k; a

00
31k;b

00
31k; b

00
32k; b

00
33k: Coefficients which are to be

obtained through statistic data.
Z 00
10i: The minimum cost for marshalling one local district wagon in the ith

station. This cost happens in an ideal situation when the number of wagons to be
marshaled is large enough and the marshalling degree is deep enough for one
marshalling operation.
Z 000
10i: The minimum cost for marshalling one long distance wagon in the ith

station. This cost happens in an ideal situation when the number of wagons to be
marshaled is large enough and the marshalling degree is deep enough for one
marshalling operation.
Z 0
20i: The minimum cost for service operation for one local wagon in the ith

station. This cost happens in an ideal situation when marshalling is deep enough
such that service operation can be operated easily and conveniently.
Z 0
21i: The additional cost for service operation for one local wagon in the ith

station. This cost happens when marshalling is superficial thus service operation
become unhandy.
Z 00
20i: The minimum cost for service operation for one local district wagon in the

ith station. This cost happens in an ideal situation when marshalling is deep
enough such that service operation can be operated easily and conveniently.
Z 00
21i: The additional cost for service operation for one local district wagon in the

ith station. This cost happens when marshalling is superficial thus service
operation become unhandy.
Cdi: The coefficient on centralisation and detention for local wagon flow, which
is a number between eight and twelve. The number is decided by specialties
from different wagon flows.
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CcHi: The coefficient on centralisation and detention for long distance wagon
flow, which is a number between eight and twelve.
Z 0
3i: Coefficient on service facilitation for local wagons, which equals the

additional halting time when service operation is totally inconvenient.
Z 00
3i: Coefficient on service facilitation for local district wagons, which equals the

additional halting time when service operation is totally inconvenient.
Z40i: The basic cost for adding/removing one wagon to/from a wagon list in the
ith station. This cost happens when the number of wagons to be added/removed
is large enough.
Z41i: The additional cost for adding/removing one wagon to/from a wagon list in
the ith station. This cost happens when the number of wagons to be added/
removed is small enough (equaling one).
�Ccx: The cost for one wagon to halt one hour, which is caused by wagon
depreciation.
Sil: The percentage of wagons which have special safety requirement of local
wagons in the ith station.
Sid : The percentage of wagons which have special safety requirement of local
district wagons in the ith station.
Tsi: Average time to marshal a wagon which has special safety requirement in
the ith station.
Til min: The least time for marshalling one local wagon list in the ith station.
Til max: The time spent for marshalling one local wagon list with the highest
specification and completeness in the ith station.
Tid min: The least time for marshalling one local district wagon list in the ith
station.
Til max: The time spent for marshalling one local district wagon list with the
highest specification and completeness in the ith station.

4. Formula:
(14.3a) describes a railway bureau’s objective which aims at achieving the
maximum profit for freight operation administrated by this railway bureau. It
has two parts: the profit from the railway network and technical stations in this
bureau.
(14.3b) and (14.3c) mean that wagon flows in both the up-direction and down-
direction have their minimum and maximum limits. Thus the total number of
vans from one station to another has its limits too.
(14.3d) and (14.3e) tell how the limits set for wagon flows in the up-direction
and down-direction are determined and calculated.
(14.3f) and (14.3g) mean the number of long-distance wagon flows to be
marshaled in technical stations cannot exceed their operating abilities.
(14.4a) is the objective for a technical station, which aims at lowering its
operation cost. The operation cost is from three parts: local wagon flow, local
district wagon flow, and long-distance wagon flow.
(14.4b) denotes how the operation cost for local wagon flow, local district
wagon flow, and long-distance wagon flow are calculated.
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(14.4c) and (14.4d) mean that there exist minimum and maximum limits for
marshalling both local wagon flow and local district wagon flow.

5. Symbols:
F1: The economical benefit of the railway network within the area administrated
by a railway bureau.
F2: The economical benefit obtained by all of the technical stations adminis-
trated by the railway bureau.
�Cwj : The freight traffic unit cost in the jth section.
D�Cwj : Additional unit cost in the jth section.
Csi : The operating cost in the ith station. It fluctuates with the change of con-
trolling variables from both the leader and the followers.
Iju: The number of wagons that go through the jth section in the up direction per
minute.
mj min: The minimum number of wagons to form a wagon list in the jth section.
Ijd : The number of wagons that go through the jth section in the down direction
per minute.
C0
z1i: Daily cost spent for marshalling local wagon flow for the ith station.

C00
z1i: Daily cost spent for marshalling local district wagon flow for the ith

station.
C000
z1i: Daily cost spent for marshalling long-distance wagon flow for the ith

station.
C0
z2: Daily cost spent for service operation made for local wagon flow for the ith

station.
C00
z2i: Daily cost spent for service operation made for local district wagon flow

for the ith station.
Cz3i: Daily cost spent for centralizing and detention of wagons in the ith station.
DC2i: Different sections may have different requests on the number of wagon
lists to be run in that section. Thus adding/reducing wagons may be needed in
technical stations to meet the requirements of its adjacent sections. DC2i is the
daily cost spent for adding/reducing wagons in the ith station.
�C0
z1i: Average daily cost spent for marshalling one local wagon for the ith station.

�C00
z1i: Average daily cost spent for marshalling one local district wagon for the

ith station.
�C0
z2i: Average daily cost spent for service operation made for local wagon flow

for the ith station.
�C00
z2i: Average daily cost spent for service operation made for local district

wagon flow for the ith station.
Ni: The total hours spent by all wagons which are halted in the ith station.
C0
fi: The number of additional hours spent for service operation for a local

wagon in the ith station.
C00
fik: The number of additional hours spent for service operation for a local

district wagon to the kth direction in the ith station.
Z4i: The cost spent for adding/removing one wagon.
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14.2.3 Experiments

In this section, we consider the RWFM problem in a railway bureau: Bureau U.
Within the area administrated by Bureau U, there are three technical stations:
Station A, Station B, and Station C. Connecting these stations, we have three
sections: Section 1 that connects Station A and Station B, Section 2 that connects
Station B and Station C, and Section 3 that connects Station C and Station A. We
list the values of some of the main coefficients, which are used to build the bi-level
decision model for this RWFM problem in Tables 14.2 and 14.3.

To help the decision maker in Bureau U make an optimal RWFM plan, we use
the FBLDSS software presented in Chap. 11 to reach a solution. By 342 s running,
the solutions for Bureau U are reached and summarized in Table 14.4.

To test the stability of the FBLDSS, this example has been run six times by the
FBLDSS software. The solution variances are summarized in Table 14.5.

Table 14.2 Summary of the coefficient values in the experiments 1

Station pju min pju max pjd min pjd max ui vi

A 10 29 10 29 19 19

B 10 29 10 29 19 19

C 10 29 10 29 19 19

Table 14.3 Summary of the coefficient values in the experiments 2

Section Til min (min) Til max (min) Tid min (min) Tid max (min)

1 15 20 15 22

2 15 23 15 25

3 15 22 15 21

Table 14.4 Summary of the solutions for Bureau U and the stations

Station Pju Pjd qdi þ q0di q2i x2k y1Gil y1Sil y1i
A 24 28 42 10 18 0.2 0.78 0.41

B 27 23 38 12 11 0.55 0.67 0.35

C 24 17 25 16 7 0.53 0.98 0.48

Table 14.5 Summary of the solutions for Bureau U and the stations

Station Pju Pjd qdi þ q0di q2i x2k y1Gil y1Sil y1i
A 0.002 0.12 0.1 0.05 0.37 0.16 0.00043 0.1

B 0.04 0.29 0.02 0.27 0.42 0.33 0.01 1.23

C 0.17 0.37 0.42 0.07 0.57 0.02 0.27 0.09
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In Table 14.5, we can see that, there is no very large diversion among the
solutions obtained. For every running, the solution has been obtained within 400 s.
Thus, we can come to the conclusion that the FBLDSS could explore veracious
solutions for RWFM problems with quite effective and stable performance.

14.3 Summary

In this chapter, the bi-level optimization natures in train set organization (TSO) and
railway wagon flow management (RWFM) have been put forward by abstracting
and simplifying railway trains management. First, two bi-level decision models are
established for the two problems respectively. Then, these two decision models are
applied to technical stations for real case studies. The experiment results obtained
from these two case studies could be helpful for the tasks of train set organization
and railway wagon flow management.
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