
Multi-Robot Foremost Coverage
of Time-Varying Graphs

Eric Aaron1, Danny Krizanc2(B), and Elliot Meyerson2

1 Computer Science Department, Vassar College, Poughkeepsie, NY, USA
eaaron@cs.vassar.edu

2 Department of Mathematics and Computer Science, Wesleyan University,
Middletown, CT, USA

{dkrizanc,ekmeyerson}@wesleyan.edu

Abstract. In this paper we demonstrate the application of time-varying
graphs (TVGs) for modeling and analyzing multi-robot foremost cover-
age in dynamic environments. In particular, we consider the multi-robot,
multi-depot Dynamic Map Visitation Problem (DMVP), in which a team
of robots must visit a collection of critical locations as quickly as pos-
sible, in an environment that may change rapidly and unpredictably
during navigation. We analyze DMVP in the context of the R ⊃ B ⊃ P
TVG hierarchy. We present exact offline algorithms for k robots on edge-
recurrent TVGs (R) over a range of topologies motivated by border cov-

erage: an O(Tn) algorithm on a path and an O(T n2

k
) algorithm on a

cycle (where T is a time bound that is linear in the input size), as well
as polynomial and fixed parameter tractable solutions for more general
notions of border coverage. We also present algorithms for the case of
two robots on a tree (and outline generalizations to k robots), including
an O(n5) exact algorithm for the case of edge-periodic TVGs (P) with
period 2, and a tight poly-time approximation for time-bounded edge-
recurrent TVGs (B). Finally, we present a linear-time 12Δ

5
-approximation

for two robots on general graphs in B with edge-recurrence bound Δ.

1 Introduction

For mobile robot applications such as multi-robot surveillance, search and rescue,
patrol, and inspection tasks, problems are often formulated as graph coverage
problems. In many such applications, the robots may navigate in dynamic envi-
ronments that can change unpredictably during navigation, but conventional sta-
tic graph formulations do not represent those essential dynamics. We address this
issue by adopting recent formulations of time-varying graphs (TVGs) to enable
analysis of multi-robot team navigation in dynamic environments. In particular,
in this paper we present results for the multi-robot, multi-depot Dynamic Map
Visitation Problem (DMVP), in which a team of robots must visit a collection of
critical locations on a map (graph) as quickly as possible, but the environment
may change during navigation. We present efficient offline algorithms, including
a fixed parameter tractable solution, for an arbitrary number of robots over a
c© Springer-Verlag Berlin Heidelberg 2015
J. Gao et al. (Eds.): ALGOSENSORS 2014, LNCS 8847, pp. 22–38, 2015.
DOI: 10.1007/978-3-662-46018-4 2

Multi-Robot Foremost Coverage of Time-Varying Graphs 23

range of topologies motivated by border coverage (Sect. 2), and for two robots
on a tree (Sect. 3); details of our main results are summarized in Sect. 1.2.

Many approaches to coverage problems [10,11] (including border coverage
[14,23]) are based on static graph representations, as are related combinatorial
optimization problems such as the k-traveling repairman problem, k-traveling
salesman problem, etc. [4,15]. DMVP is distinct from these other problems,
with crucial and distinguishing aspects of DMVP including (1) robots can start
at any number of distinct depots, and (2) robots need not return to their depot
after completion of coverage. Permitting multiple depots allows for the team-
ing of geographically disjoint robots; while completing a series of heterogeneous
tasks, robots may not be together when a map visitation call is warranted. The
absence of a requirement for return ensures that the singular goal is timely cov-
erage completion, which is important for time-sensitive inspection tasks or other
applications.

The most fundamental difference between DMVP and related problems is
that DMVP employs a TVG representation of the environment, which can cap-
ture variation in graph structure over time in ways that static graphs cannot.
A TVG [8] is a five-tuple G = (V,E, T , ρ, ζ), where T ⊆ T is the lifetime of
the system, presence function ρ(e, t) = 1 ⇐⇒ edge e ∈ E is available at time
t ∈ T , and latency function ζ(e, t) gives the time it takes to cross e if start-
ing at time t. The graph G = (V,E) is called the underlying graph of G, with
|V | = n. As in [2,16,20], we consider the discrete case in which T = N, edges
are undirected, and all edges have uniform travel cost 1. If agent a is at u, and
edge (u, v) is available at time τ , then a can take (u, v) during this time step,
visiting v at time τ + 1. As a traverses G we say a both visits and covers the
vertices in its traversal, and we will henceforth use these terms interchangeably.
J = {(e1, t1), ..., (ek, tk)} is a journey ⇐⇒ {e1, ..., ek} is a walk in G (called
the underlying walk of J), ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti) for all i < k. The
topological length of J is k, the number of edges traversed. The temporal length
is the duration of the journey: (arrival date) − (departure date). Given a date
t, a journey from u to v departing on or after t whose arrival time is soonest
is called foremost ; whose topological length is minimal is called shortest ; and
whose temporal length is minimal is called fastest.

In [8], a hierarchy of thirteen TVG classes is presented. In related work on
exploration [2,16,19], broadcast [7], and offline computation of optimal journeys
[6], focus is primarily on the chain R ⊃ B ⊃ P, which enforce natural constraints
for mobile robot applications: R (recurrence of edges) is the class of all TVG’s
G such that G is connected, and ∀e ∈ E,∀t ∈ T ,∃t′ > t s.t. ρ(e, t′) = 1; B
(time-bounded recurrence of edges) is the class of all TVG’s G such that G is
connected, and ∀e ∈ E,∀t ∈ T ,∃t′ ∈ [t, t + Δ) s.t. ρ(e, t′) = 1, for some Δ;
P (periodic edges) is the class of all TVG’s G such that G is connected, and
∀e ∈ E,∀t ∈ T ,∀k ∈ N, ρ(e, t) = ρ(e, t + kp) for some p, the period of G.

We are interested in solving the following problem:

Problem. Given a TVG G (in class R, B or P) and a set of starting locations
S for k agents in G, the TVG foremost coverage or Dynamic Map Visitation

24 E. Aaron et al.

Problem (DMVP) is the task of finding journeys starting at time 0 for each of
these k agents such that every node in V is in some journey, and the maximum
temporal length among all k journeys is minimized. The decision variant asks
whether this coverage can be completed in no more than a given t time steps,
that is, these journeys can be found such that no journey has arrival date later
than t.

For the minimization version of the problem DMVP(G, S) and the corre-
sponding decision problem DMVP(G, S, t), the input is viewed as a sequence of
graphs Gi each represented as an n × n adjacency matrix, with an associated
integer duration ti, i.e., G = (G1, t1), (G2, t2), ..., (Gm, tm), where G1 appears ini-
tially at time zero (see [9,21,22] for alternative views of TVGs). Let T =

∑m
i=1 ti.

We know from [2] that we can run an O(nm) preprocessing step that lets us pre-
sume that T < 2 nm–3 m, (that is, T is at worst linear in G), and enables O(1)
edge presence lookups ρ(e, τ), without affecting asymptotic runtime of any of the
algorithms presented below. We think of the input G as a temporal subgraph
of some TVG G∞ with lifetime N and the same edge constraints as G. Thus,
the limited information provided in G is used to find journeys (which may have
temporal length greater than T) that cover G, for agents in G∞.

1.1 Related Results

The problem most similar to (but distinct from) DMVP is the minmax k-
traveling salesman problem [12,27], in which all robots start at and return to a
single depot on a static graph. Approximation algorithms have been given that
forgo the single depot requirement, but still require a return to multiple initial
depots [4,26]. To the best of our knowledge, no previous work has addressed
the case of exact algorithms for multiple agents either without return or with
multiple depots, even for the static case. A pseudo-polynomial time algorithm
for any constant k > 1 agents on a tree for the k-traveling salesman problem
(single depot with return) is presented in [12]. A pseudo-polynomial solution
for the weighted tree case is given in [27]. This algorithm runs in O(n3) for the
restriction to two robots and unweighted edges (Lemma 1). We sequentially gen-
eralize this to DMVP by (1) allowing multiple depots, (2) not requiring robots
to return to their depots, and (3) incorporating TVG models, namely, P and B
(Sect. 3).

Heuristics for boundary coverage for multiple robots are considered in [14], in
which the problem is reduced to k-rural postman over a static graph extracted
from a continuous environment. This graph extraction procedure motivates our
result on “border coverage” graphs in R (Theorem 3).

The complexity of DMVP for a single agent was explored in [2], in which it
was shown that in the edge-recurrent TVG class R it is NP-hard to approximate
within any factor, even over max-degree 3 trees, and stars (i.e., trees with at most
one vertex of degree greater than 1). (A related result was derived independently
in [25].) The periodic case P, even with period p = 2, was shown to be NP-hard
over a larger class of graphs than the static case MVP, which is hard even over

Multi-Robot Foremost Coverage of Time-Varying Graphs 25

trees when k is part of the input [1]. Other hardness results for problems over
TVGs have been shown for computing strongly connected components [5] and
dynamic diameter [18].

1.2 Main Results

We present algorithms for DMVP for k agents in R over a range of topologies
motivated by border coverage: an O(Tn) algorithm to optimally solve DMVP
on a path, an O(T n2

k) algorithm on a cycle, a polynomial solution for the border
graph of a planar region divided into a constant number of components, and a
fixed parameter tractable solution for any m-leaf c-almost tree, for parameters
m and k, and constant c. We demonstrate a fundamental hardness separation
between P and static graphs for all fixed k. We then consider the case of trees
in P with p = 2 and give a O(n5) algorithm for the case of two agents. We also
give an O(n3) algorithm for tight approximation for two agents on a tree in B.
Finally, we present a linear-time 12Δ

5 approximation for two agents on general
graphs in B with edge-recurrence bound Δ. Corresponding generalizations to k
agents are outlined here and will appear in the full version of this paper.

2 k-Agent Border Coverage in R
DMVP on paths, cycles and more general classes of graphs is motivated by border
coverage, e.g., for security. Coverage of a path corresponds to securing critical
points along the border between any two adjacent connected planar regions,
neither of which surrounds the other, while coverage of a cycle corresponds to
securing the complete border of any simply connected planar region.

Theorem 1. DMVP for k agents in R on a path is solvable in O(Tn) time.

Proof. Consider DMVP with underlying graph the path P = v1...vn and k agents
a1, ..., ak starting at locations s1, ..., sk, respectively. Orient P left-to-right, with
v1 the leftmost vertex. Without loss of generality, suppose s1, ..., sk are ordered
from left to right. Note that if two or more agents start at the same vertex si, sim-
ply sending two of them in opposite directions will be trivially optimal, thereby
reducing the problem to two instances of DMVP over edge-disjoint subpaths
v1...si and si...vn, which can be solved independently.

Assume no two agents start at the same node. The idea is to compute for
each vertex u ∈ s1...vn the optimal cost of the solution to the DMVP subproblem
over v1...u for all agents starting on or to the left of u. Call this cost c(u). We can
compute all c(u) from left to right, and finally get the result c(vn) for DMVP for
all k agents over P (Algorithm 1). On a path, it is never advantageous for any
two agents to cross over one another, since they could simply each turn around
instead. As a result, agent a1 must cover v1. Let v be the node directly to the left
of s2. The subproblems to be computed from c(s1) to c(v) concern only agent
a1. c(s1) is the time it takes a1 to reach v1 by simply traveling left starting at

26 E. Aaron et al.

Algorithm 1. DMVP-Path(G, {s1, ..., sk})
for all v ∈ s1...vn do � Initialize c

c(v) = ∞
for i = 1, ..., k do

lBoundary = si � Evaluate all left-first journeys for ai

if i = 1 then
lBoundary = v1

while lBoundary /∈ {si−1, ∅} do � Try every possible left endpoint
t = 0
loc = si

turned = eval = False � evaluate solution?
while loc /∈ {∅, si+1} and t < T do � enter at most T times

if loc = lBoundary then
turned = True

if turned = True and loc = si then
eval = True

if eval = True then
c(loc) = min(c(loc), max(c(lBoundary.lNode), t))

if not turned and ρ(loc.lEdge, t) = 1 then
loc = loc.lNode

if turned and ρ(loc.rEdge, t) = 1 then
loc = loc.rNode

t = t + 1
lBoundary = lBoundary.lNode

rBoundary = si � Evaluate all right-first journeys for ai

if i = k then
rBoundary = vn

while rBoundary /∈ {si+1, ∅} do � Try every possible right endpoint
t = 0
loc = si

turned = eval = False � evaluate solution?
while loc /∈ {si−1, ∅} and t < T do � enter at most T times

if loc = rBoundary then
turned = True

if turned = True and loc = si then
eval = True

if eval = True then
c(rBoundary) = min(c(rBoundary), max(c(loc.lNode), t))

if not turned and ρ(loc.rEdge, t) = 1 then
loc = loc.rNode

if turned and ρ(loc.lEdge, t) = 1 then
loc = loc.lNode

t = t + 1
rBoundary = rBoundary.rNode

return c(vn)

Multi-Robot Foremost Coverage of Time-Varying Graphs 27

time 0. For all u strictly between s1 and s2, a1 can cover v1...u either by going
left first or right first. We can compute all left-first journeys in a single pass in
O(T) by going left until hitting v1, then turning around and recording the time
at which each u is reached. For the journeys that go right first, a1 travels right
to u, turns around and travels left until v1 is reached. For each u, the minimum
of the left-first and right-first journey is stored as c(u). Doing this for each u
takes overall O(T |s1...s2|).

Now consider any agent ai in {a2, ..., ak−1}, and suppose all subproblems to
the left of si have already been computed. Let Li be the path from the right
neighbor of si−1 to si, and Ri be the path from si to the left neighbor of si+1.
In a full optimal solution over P , the leftmost vertex ai covers could be any
vertex in Li, and the rightmost vertex could be any in Ri. c(si) is the minimum
over all vj in Li, of the maximum of c(vj−1) and the time it takes ai to reach
vj traveling left from time 0. This is computed in a single O(T) left pass. Now
suppose the rightmost vertex ai covers is not si. Then, if ai goes left first and
turns around at l, we can compute the cost of ai’s journey ending at each vertex
r
= si in Ri in a single O(T) pass, in which ai turns around at l and then travels
right as far as possible. Doing this for each l takes overall O(T |Li|). Similarly,
if ai goes right first and turns around at r, we can compute the cost of ai’s
journey ending at each vertex l
= si in Li in a single O(T) pass, in which ai

turns around at r and then travels left as far as possible. Doing this for each r
takes overall O(T |Ri|). For each r ∈ Ri, c(r) is the minimum over all vj ∈ Li, of
the maximum of c(vj−1) and the minimum between the left-first and right-first
journeys of ai covering vj ...r. c(r) can simply be updated immediately anytime
a better solution is evaluated.

ak faces a similar situation to a1, it must cover vn, so only needs to consider
variable left endpoints. The cost of the optimal solution over all of P is then
the minimum over all vj ∈ Lk of the max of c(vj−1) and the minimum between
the left-first and right-first journeys of ak covering vj ...vn. Computation of the
complete DMVP solution over P takes O(T |R1|) + O(T |L2|) + O(T |R2|) + ... +
O(T |Lk−1|) + O(T |Rk−1|) + O(T |Lk|) = O(Tn). ��

Theorem 2. DMVP for k agents in R on a cycle is solvable in O(T n2

k) time.

Proof. Consider DMVP over the cycle C = v0v1...vnv0 for k agents a1, ..., ak

ordered clockwise around the cycle at locations s1, ..., sk, respectively. If any two
agents start at the same node, then sending them in opposite directions will
be optimal, thereby reducing the problem to DMVP on a path, which can be
solved with Algorithm 1 in O(Tn). If no two agents start at the same node,
let d be the shortest distance between any two agents ai,ai+1. Since there are k
agents, d ≤ �n

k �. The furthest that ai+1 covers counter-clockwise can be any node
from si+1 to the immediate clockwise neighbor of si. For each of these O(n/k)
potential left endpoints vj , we can run Algorithm 1 on the path consisting of C
with the edge (vj−1, vj) removed. Taking the minimum over all vj results in an
O(T n2

k) runtime. ��

28 E. Aaron et al.

C1

C2

C3

C4

Fig. 1. Border coverage graph extracted from a planar region (gray) subdivided into
four components.

The next result corresponds to a more general notion of border coverage
akin to that addressed in [14]. Consider any simply connected planar region
divided by throughways into some number of subregions, e.g., a complex of
secure buildings or zones. The border coverage graph of such a subdivided region
is the graph induced by the coverage of critical points along the union of the
subregions’ borders, e.g., Fig. 1.

Theorem 3. DMVP for k agents in R is solvable in O(Tn6c+1) time, when G
is the border coverage graph of a simply connected planar region divided into c
subregions, for c constant.

Proof. Suppose R is a simply connected planar region divided into c subregions,
for c constant. Call a path P ⊂ G a through-path if the endpoints of P have
degree greater than two and all intermediate vertices of P have degree two. Let
c1 be the number of through-paths in G. c1 can be bounded by considering how
R is subdivided. Let Gi be the border coverage graph corresponding to R divided
into i < c subregions. We create a new subregion by adding a through-path P
between two vertices of Gi, such that all vertices of P are internal to R and no
edge of P crosses an edge of Gi. This addition creates another through-path for
each endpoint of P that had degree two before the addition. Thus, at most three
new through-paths are added for each subregion of R, i.e., c1 < 3c.

In an optimal solution, the agents that start on a through-path P = u...v
but never reach u or v must together cover a set of vertices whose induced graph
is a subpath of P . For each P , there are O(n2) such subpaths. It would never
be better for an outside agent to enter P in order to cover a vertex between two
disjoint subpaths, as it must cross over at least one agent that never leaves P ,
and the remainder of their journeys could be swapped at no cost. So we forbid
outside agents to travel along these subpaths. From Theorem 1, DMVP for each
of these subpaths can be computed in O(Tn).

Selecting the subpath these agents cover for every through-path induces
a subset of the remaining vertices that must be covered to complete cover-
age, namely, the vertices adjacent to but not included in any subpath. There

Multi-Robot Foremost Coverage of Time-Varying Graphs 29

are O(n2c1) ways to make this selection. If the internally-covered subpath of
a through-path P with endpoints u and v is empty, then it must be that no
agents started between u and v, so in addition to the O(n) choices for pairs of
vertices adjacent to a subpath of P of length 0, there are two further ways for
outside agents to complete coverage of P : by at some point traveling directly
from u to v, or from v to u, covering all of P along the way. At most two
outside agents are required to cover the remainder of each path, so in an opti-
mal solution at most 2c1 agents leave their start paths. For any P , the agents
that could leave are each of the at most 2c1 closest to u and v, resp. There
are c2 = (2c1)4c21 ways to partition the remaining elements to cover between
all agents that could leave their start paths, and after running an O(Tn3) all-
pairs-all-times-foremost-journey preprocessing step [2], DMVP for each agent
can be computed in O(4c212

2c1). Running this for each agent for the O(n2c1)
ways to cover all paths and computing internal path costs yields a total runtime
of O(n2c1)(O(4c2c

2
12

2c1) + O(c1Tn)) + O(Tn3) = O(Tn6c+1). ��

Pointing towards further generalizations, the following theorem extending Thm.
10 in [2] applies to a slightly larger classes of graphs and includes the number of
agents as a parameter in an fixed parameter tractable (FPT) solution. We will
give the complete proof in the full version.

Theorem 4. DMVP for k agents in R is fixed parameter tractable, when G is
an m-leaf c-almost-tree, for parameters m and k, and c constant.

Proof sketch. For all t < T , consider the decision variant over m-leaf trees.
Partitioning the leaf set among agents (km ways) and using the single agent
O(Tn3+cf(m)) algorithm [2] for each guarantees coverage of everything but the
union of shortest paths between depots. If an edge in such a path has not already
been covered this creates a cut with agents confined to subtrees. There are 2k

ways to select which paths are cut. Such a selection induces a tree of subproblems
which can be solved in a bottom-up fashion, fixing cut points along the way.
There will always be an unsolved subproblem of degree no more than one. Fix the
cut point for this subproblem as far as possible given the time bound t by testing
the instance corresponding to each of the O(n) possible cut points along the
path. This factor of n can be pulled out to keep the algorithm FPT for k,m. It
is straightforward to extend this idea to c-almost-trees. ��

3 Two Agents on a Tree

We know from [2] that DMVP for k agents on a tree is hard in B, regardless of
k, even over spiders (i.e., trees in which at most one vertex has degree greater
than 2). However, for a single agent in P, DMVP can be solved in polynomial
time over spiders for fixed p, and in linear time on arbitrary trees when p = 2.
Since in P we are able to efficiently solve DMVP over a wider range of graph
classes than in B or R [2], to show that for multiple agents P is fundamentally
more complex than the class of static graphs, we demonstrate that for DMVP

30 E. Aaron et al.

k

G G G G

Cn Cn Cn Cn

Fig. 2. Graph class for which DMVP is NP-hard in P with p = 2, but trivially in P
when p = 1. Each thick edge represents the edges in the complete biparitite graph
linking vertices in a Cn to vertices in a G.

for k agents there is a hardness separation between P with p = 2, and p = 1, for
all k. Note that when p = 2, edges can only be one of three possible dynamic
types: (01) available only at odd times, (10) available only at even times, (11)
available at all times.

Theorem 5. For all k ≥ 1, there is a class of graphs C such that DMVP in P
for k agents over graphs in C is trivial when p = 1, but NP-hard when p = 2.

Proof. For any graph G with an even number of vertices v0, ..., vn−1, take k
copies of G and k copies of Cn = c0...cn−1c0, a cycle of length n. Add edges
to form a complete bipartite graph linking vertices in each Cn to each G (see
Fig. 2). For p = 2, let all original edges of G be of type 11. Let all (vi, ci) be of
type 01 when i is even and type 10 when i is odd. Let (vi, ci+1) and (ci, ci+1) be
of type 10 when i is even and 01 when i is odd, where indices are taken mod n.
Suppose each agent ai starts at a distinct v0. If t = 2n − 1, ai must completely
cover G before moving to a Cn, to avoid waiting at a vertex of Cn for a time
step on the way back to a G, and thus effectively solve HAM-PATH [17] on G.
However, when p = 1, each agent simply jumps repeatedly from a G to a Cn,
since every uncovered vertex across the bipartite cut is always available. ��

Now, even DMVP restricted to static graphs (also known as MVP) is in general
NP-hard on trees for k agents, but for a single agent it can be solved in linear
time [1]. What about DMVP when k = 2? We build up to an exact polynomial
solution for DMVP on a tree for two agents a1, a2 in P for the p = 2 case, and
a tight approximation in B for all Δ, via a series of related lemmas partially-
ordered by constraints, see Fig. 3. The base result (Lemma 1) is implied by an
upper bound established in [27], but the further results are, to our knowledge,
novel generalizations, with our main result being an O(n5) solution for DMVP
in P for two agents with p = 2 (Theorem 7).

Lemma 1. MVP with return for two agents starting at a single depot on a tree
can be solved in O(n3) time.

Multi-Robot Foremost Coverage of Time-Varying Graphs 31

L1: static single depot with return

L2: static single depot

T5: static

L3: p = 2 single depot with return

L4: p = 2 single depot

T6: p = 2T7: Δ-approx.

O(1)

O(1)

O(n2)

O(n2)

O(n2)
O(1)

O(1)O(1)

Fig. 3. Poset of results leading to solutions for two-agent DMVP on a tree; arrows
indicate increasing factors of complexity as constraints are loosened.

Proof sketch. This result is implied as a special case in [27]. (An O(n6) algorithm
is given in [12].) We give the following proof idea:

At each node v (whose maximal subtree is denoted Gv) from the leaves up to
the starting depot, i.e., root s, we compute and store possible pairs of costs for
a1 and a2 covering and returning to the root of the maximal subtree rooted at v,
by iterating over the pairs of costs (c1, c2)ui

associated with covering each of v’s
children u1, ..., udeg v, to compute partial solution costs (c1, c2)i

v, corresponding
to possible pairs of costs covering the subtrees Gu1 , ..., Gui . However, each new
cost pair (c1, c2)i

v is only stored if c2 is less than the current best cost associated
with c1. Each cost is bounded by 2n − 3, and each child is iterated over only
once, taking O(n2) to combine its costs (c1, c2)ui

with the costs (c1, c2)i−1
v of

covering the previous branches of the subtree to get all (c1, c2)i
v, yielding the

O(n3) total runtime. ��

The following extension drops the constraint of returning to root.

Lemma 2. MVP for two agents starting at a single depot on a tree can be solved
in O(n3) time.

Proof. Follow the same method describe in the proof of Lemma 1, except now
at each node v store pairs of costs for covering Gv for each of the following four
cases: both a1 and a2 return to v ((cr

1, c
r
2)v), a1 returns to v but not a2 ((cr

1, c2)v),
a2 returns to v but not a1 ((c1, cr

2)v), neither returns to v ((c1, c2)v). Partial solu-
tions are then updated for each return type: (cr

1, c
r
2)

i−1
v combined with (cr

1, c
r
2)ui

,
(cr

1, c2)ui
, (c1, cr

2)ui
, and (c1, c2)ui

to get (cr
1, c

r
2)

i
v, (cr

1, c2)
i
v, (c1, cr

2)
i
v, and (c1, c2)i

v,
resp.; (cr

1, c2)
i−1
v combined with (cr

1, c
r
2)ui

and (c1, cr
2)ui

to get (cr
1, c2)

i
v and

(c1, c2)i
v; (c1, cr

2)
i−1
v combined with (cr

1, c
r
2)ui

and (cr
1, c2)ui

to get (c1, cr
2)

i
v and

(c1, c2)i
v; (c1, c2)i−1

v combined with (cr
1, c

r
2)ui

to get (c1, c2)i
v. That is, with-return

costs are added to with-return costs to get new with-return costs, as the journey
must end on some later branch; without-return costs are added to with-return
costs to get new without-return costs that end on the current branch; with-return

32 E. Aaron et al.

costs are added to without-return costs to get new without-return costs that end
up on some previous branch. Updating cost pairs for all four return types incurs
only a constant factor runtime increase over the return to root case. ��

This is generalized now to the case of multiple depots; the standard MVP
formulation.

Theorem 6. MVP for two agents on a tree can be solved in O(n3) time.

Proof. Suppose a1 starts at s1 and a2 starts at s2. Let P = (s1 = p1)p2...pl−1

(pl = s2) be the unique simple path from s1 to s2.
First, note that if a1 and a2 do not cross paths, that is, there is no v ∈ P

such that both a1 and a2 include v in their journeys, then the subtrees covered
by a1 and a2 will be disjoint, reducing the problem to two instances of MVP on
a tree for a single agent, each of which can be solved independently in O(n) [1].
There are O(n) ways to cut P so that the journeys are disjoint, so trying each
of these possibilities takes O(n2), which is subsumed by the cost of considering
non-disjoint solutions.

Assuming the optimal journeys are not disjoint, using the algorithm described
in Lemma 2, run for all v ∈ P MVP for two agents starting at a single depot
for the maximal subtree rooted at v that is edge-disjoint from P , generating
all resulting potential cost pairs. Now, we build up solutions from left-to-right,
i.e., from s1 to s2. After considering each pi along P , we want all cost pairs
for all four cost pair cases (both return, only a1 returns, etc.) of covering all of
G excluding the branches rooted at all pj , for all j > i. With-return costs are
added to with-return costs to get new with-return costs; without-return costs
are added to with-return costs to get new without-return costs that end on pi’s
branch; with-return costs are added to without-return costs to get new without-
return costs that end up on some previous branch rooted at pk, for some k < i.
Additional cost for traversing P is accumulated along the way: each time a1

precedes to the next vertex of P , 1 is added to the cost of a1’s with-return costs
(2 to without-return); 2|l − i| added to a2’s costs when pi is selected to be its
furthest vertex reached, and |l−j| subtracted when pj ’s branch is marked as the
final branch a2 enters, i.e., when pj ’s without-return costs are added to previous
with-return costs for p1...pj−1. Updating costs at each branch again takes O(n3),
so the cost of the overall solution remains O(n3). ��

That concludes our results for the static case. We now generalize these results
to the case of TVGs in P.

Lemma 3. DMVP with return for two agents starting at a single depot on a
tree in P can be solved in O(n5), when p = 2.

Proof. This case runs similar to Lemma 1, but since we are in P, we must be
careful about how we build up solutions, as it matters in which order branches
are taken. From [2], we know that with p = 2, each agent can enter each branch
at most once, and that each branch can in an O(n) pre-processing step be marked
as either 01, fastest journey available only at even times; 10, fastest journey only

Multi-Robot Foremost Coverage of Time-Varying Graphs 33

available at odd times; or 11, fastest journey always available. Note that this also
applies to the subbranch covered by each agent. Furthermore, the optimal way
for a single agent to cover any set of classified branches is to alternate between
taking 01’s and 10’s as many times as possible, before taking the remaining
branches in any order. So, given a start time along with the difference di between
the number of 01’s and 10’s in a partial solution for ai’s coverage of Gv, we can
add a partition of a new branch and check in constant time exactly how the cost
of our solution will be affected.

Computing from the leaves up, as in Lemma 1, we store all possible pairs of
costs of covering the maximal subtree rooted at v, but now we store separate
pairs of costs for four cases defined by whether each ai reaches v at an odd or
even time. This adds only a constant factor overhead, and given a pair of costs
and start times, we can in constant time compute whether the type τi of each
of the two journeys is 01, 10, or 11. Storing all possible di for each cost pair
means O(deg(v)2n) tuples (c1, c2, d1, d2) are stored at each branch, with branch
updates taking O(deg(v)2n2), as (c1, c2, d1, d2)i−1

v partial solutions are combined
with (c1, c2, τ1, τ2)ui

, yielding a cost of O(deg(v)3n2) per node, and hence O(n5)
overall. ��

Lemma 4. DMVP for two agents starting at a single depot on a tree in P can
be solved in O(n5) time, when p = 2.

Proof. In a similar manner to the extension from Lemma 1 to Lemma 2, we now
store cost pairs for each of the four return cases for a1 and a2. Branch types can
still be maintained as in Lemma 3 in order to preserve optimal orderings, so the
algorithm again runs in O(n5). ��

Theorem 7. DMVP for 2 agents on a tree in P can be solved in O(n5) time,
when p = 2.

Proof. Again, let P = (s1 = p1)p2...pl−1(pl = s2) be the unique simple path
from s1 to s2, and assume a1’s and a2’s journeys are not disjoint, since we can
solve each of the O(n) disjoint instances in O(n). We adopt a similar though
more involved version of the left-to-right dynamic programming approach from
the proof of Lemma 6, as the order now matters in which each agent takes its
portion of each subtree bi (i.e., subtrees rooted at each pi but disjoint from P).
First, compute all pairs of costs for covering each bi in O(n5) via Lemma 4.

Suppose the final subtree taken by a1 in an optimal solution is bj . Then,
a1 can only take its assigned sections of b1, ..., bj−1 as it moves towards s2 for
the first time, since each agent can enter any subtree at most once in P with
p = 2. Suppose the closest a1 gets to s2 is pk. Then all of bj+1, ..., bk−1 can
be taken either on the way from pj to pk, or on the way back. A similar case
applies for a2. So, as we consider each branch from s1 to s2, we build up partial
solution costs for a1 and a2 in two directions at once: outside-in for a1, and
inside-out for a2. That is, suppose that through i − 1 branches we have stored
all (c1(→), c1(←), t)i−1

P , where c1(→) is the cost of the forward journey so far,
c1(←) is the cost of the reverse journey (i.e., after covering its portion of bk),

34 E. Aaron et al.

Order of branches covered in solutions

a1 start: [

a2 start: [

]

]

b1 b2

b2 b1

b1 b2 b3 b4 b5 b6 b7

s1 p2 p3 p4 p5 p6 s2

Fig. 4. Possible ways to update costs for a pair of partial solutions to include each
agent’s coverage of b3, assuming a1 ends on b2, a2 ends on some branch bi, with i > 3,
and a2 takes b2 on the way to b1. In this case, both a1 and a2 can take their portion
of b3 either directly after b1 or directly preceding b2.

and t is the start time for the reverse journey; and (c2, t)i−1
P , where c2 is the

costs of a2 covering its portions of b1, ..., bi−1, assuming pi−1 is reached by a2 for
the first time at time t. Update partial solutions to include bi in the following
way: for a1, if a branch has been taken without return, further branches can
be taken either directly after all forward journeys or directly before all reverse
journeys, otherwise, all branches can only be taken on forward journeys, except
of course for the branch taken without return, which must be taken last; for
a2, if a branch has been taken without return, further branches must be taken
with return directly preceding existing solutions, otherwise, further branches can
either be taken directly before existing solutions or directly after (see Fig. 4),
and all must be taken with return. The cost of the final branch taken by a1

is succinctly inserted between the forward and backward costs. Additional costs
accumulated via the traversal of edges of P are added in as in Theorem 6, but now
taking into account the edge type (i.e., 01,10, or 11), and the time parity at which
the edge is reached. Running these updates for each time parity, each return
case, and each location of the branch in an optimal ordering incurs together
only constant factor overhead. Storing both (c2, t)i

P for all (c1(→), c1(←), t)i
P ,

takes O(n2) space, but we can reduce this to O(n) by compactly representing
the solution cost by the sum of c1(→) and c1(←), and a bit for storing the parity
of each. The update at each branch still takes O(n2) to compute all possible cost
pair cases for the new partial solutions, so the full iteration from p1 to pl takes
O(n3), and the initial O(n5) runtime dominates. ��

We can also apply Theorem 6 to get a tight approximation for two agents on a
tree in B:

Theorem 8. DMVP for two agents on a tree in B can be Δ-approximated in
O(n3) time ∀ Δ > 1. This approximation is tight.

Multi-Robot Foremost Coverage of Time-Varying Graphs 35

Proof. The cost to cover a tree G in B for two agents, starting at potentially
distinct depots, is lower-bounded by the cost C of covering the static G from
these same depots. C can be computed in O(n3) via the algorithm described
in Theorem 6. By following in B the journeys resulting in static cost C, each
agent will wait at most Δ − 1 steps for each successive edge to appear, thereby
completing coverage in no more than ΔC steps. Since C is the fastest possible
cost of covering G, this must be a Δ-approximation.

It is straightforward to extend to the case of k agents the result from [2]
that DMVP for a single agent in B over trees is NP-hard to approximate within
any factor less than Δ; simply link together by long paths k copies of the graph
constructed for that proof. ��

Over general graphs in B, we can use spanning tree coverage to get the following
approximation:

Theorem 9. DMVP for two agents in B can be 12Δ
5 -approximated in O(n) time

∀ Δ > 1.

Proof. Given a graph G, and a spanning tree H of G (constructed in O(n) time),
the Euler tour of H is a 2n − 1 node cycle C, the complete coverage of which
implies complete coverage of G. From [1], for a cycle, we know each agent covers
no more than � 3

5�|C| − 2 edges in an optimal two agent solution, which can be
found in O(n) time. Following this solution in B, the two agents take at most
Δ(� 6n−3

5 � − 2) steps to complete coverage, which is no more than 12Δ
5 times

worse than the minimum possible number of steps �n−1
2 � for covering G. ��

We are able to extend Theorems 6 and 7 to any fixed number of agents k,
applying ideas from the extension of 2-partition to k-partition for multisets of
integers. With multiple depots, the union of the shortest paths between depots
forms a k-leaf tree H. The possible costs of partitioning subtrees rooted at
vertices in H but edge-disjoint from H and covering these subtrees along a
path between two depots can be computed in a similar manner to the proof of
Theorem 7. Then, the method of optimally ordering 01, 10, and 11 branches
can be used on H itself. The methods for establishing approximation bounds for
Theorem 8 will also still hold in the k agent case. For Theorem 9, bounds for
cycle coverage in [1] enable kΔ-approximations in O(kn3) for any k > 2. We will
give the complete proofs in the full version of this paper.

4 Conclusion and Discussion

This paper has demonstrated the use of time-varying graphs for modeling multi-
robot foremost coverage in dynamic environments, through consideration of the
Dynamic Map Visitation Problem (DMVP). We have presented efficient algo-
rithms for an arbitrary fixed number of agents for a range of topologies motivated
by border coverage, and for two agents on a tree. Future work will extend Theo-
rems 6, 7, 8 and 9 to a polynomial time solution for any fixed k, and we believe

36 E. Aaron et al.

it is also possible to make the extension to fixed p in Theorem 7. This begins by
extending the idea that “when p = 2, an agent can enter any subtree at most
once” to “for any p > 1, an agent at o can visit a node at depth p − 1 in Go and
return to o at most once”.

In general, allowing for the number of agents to not be fixed increases the
complexity of the problem, but when the number of agents becomes linear in the
size of the graph—or, in the case of trees, linear in the number of leaves—special
behavior can occur that further exposes the implications of applying constraints
on edge dynamics and the number of depots to this type of problem. We make
the following observation:

Remark 1. DMVP for n
c agents on an star can be solved in polynomial time in

B for any fixed Δ, but is hard in R, for c constant.

Proof. Recall that a star is a tree in which at most one vertex has degree
greater than 1. In B, DMVP is upper-bounded by 2Δc, when each agent is
assigned c vertices to cover, and the foremost journeys taken between each are
as long as possible. At each time step, each agent has O(n) ways to continue its
journey, so computing all possible journeys of time ≥ 2Δc for all agents takes
O((n2

c)2Δc) = O(n4Δc). In R, we cannot upper-bound the length of solutions,
so all agents except one may be trapped together at a single vertex indefinitely,
while the remaining agent is left alone to cover the rest of the star itself, which is
NP-hard [2]. ��

More generally, DMVP becomes tractable whenever it is possible to upper-bound
optimal solutions by some constant, e.g., in B and P as k approaches n. This
idea complements results of fixed parameter tractability for problems over TVGs
of fixed treewidth [24], in which T is a fixed parameter.

Remark 2. With a single depot, DMVP for k ≥ m agents on an m-leaf tree is
easy in R; but with two depots, it is hard in B, for all Δ.

Proof. If all agents start at a single depot s, sending one agent to each leaf l via
the foremost journey from s to l will be optimal, even in R. Now, consider the
situation in B, with Δ = 2 over a spider with one sufficiently long leg. If one
agent a starts at the center of the spider and the rest at the end of the long leg,
in an optimal solution, a must cover all of the other legs before any other agent
reaches the center, so the problem reduces to a single agent on a spider, which
we know is hard. ��

Decisive factors for DMVP tractability include environment topology, number of
robots, and also the number of depots. The challenges of intractability that arise
from these generalizations motivate research into online solutions to the problem.
As a related example, [13] includes online approaches to static tree exploration
with limited communication between agents. In future work, we plan to extend
our results to markovian TVG models (e.g., [3,9]), which could support online
solutions for general cases of map visitation problems in probabilistic dynamic
environments.

Multi-Robot Foremost Coverage of Time-Varying Graphs 37

References

1. Aaron, E., Kranakis, E., Krizanc, D.: On the complexity of the multi-robot, multi-
depot map visitation problem. In: IEEE MASS, pp. 795–800 (2011)

2. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: Foremost waypoint coverage
of time-varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS,
vol. 8747, pp. 29–41. Springer, Heidelberg (2014). http://www.univ-orleans.fr/lifo/
evenements/WG2014/

3. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic
graphs. Distr. Comp. 24(1), 31–44 (2011)

4. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. OMEGA 34(3), 209–219 (2006)

5. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs
and the computation of multicast trees in dynamic networks. In: Pierre, S.,
Barbeau, M., An, H.-C. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270.
Springer, Heidelberg (2003)

6. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. IJ Found. Comp. Sci. 14(02), 267–285 (2003)

7. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations
in time-varying graphs: broadcasting under unstructured mobility. In: Calude,
C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 111–124. Springer,
Heidelberg (2010)

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPED 27(5), 387–408 (2012)

9. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (Cover
Time of a Simple Random Walk on Evolving Graphs). In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

10. Choset, H.: Coverage for robotics - a survey of recent results. Ann. Math. Artif.
Intell. 31, 113–126 (2001)

11. Correll, N., Rutishauser, S., Martinoli, A.: Comparing coordination schemes for
miniature robotic swarms: a case study in boundary coverage of regular structures.
In: Khatib, O., Kumar, V., Rus, D. (eds.) Experimental Robotics. STAR, vol. 39,
pp. 471–480. Springer, Heidelberg (2008)

12. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree explo-
ration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS,
vol. 3894, pp. 341–351. Springer, Heidelberg (2006)

13. Dynia, M., Kuty�lowski, J., der Heide, F.M., Schindelhauer, C.: Smart robot teams
exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 327–338. Springer, Heidelberg (2006)

14. Easton, K., Burdick, J.: A coverage algorithm for multi-robot boundary inspection.
In: Proceedings of ICRA, pp. 727–734 (2005)

15. Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman prob-
lem. ACM Trans. Algorithms 3(4) (2007). http://dl.acm.org/citation.cfm?
doid=1290672.1290677

16. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theor. Comput. Sci. 469, 53–68 (2013)

17. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York (1979)

http://www.univ-orleans.fr/lifo/evenements/WG2014/
http://www.univ-orleans.fr/lifo/evenements/WG2014/
http://dl.acm.org/citation.cfm?doid=1290672.1290677
http://dl.acm.org/citation.cfm?doid=1290672.1290677

38 E. Aaron et al.

18. Godard, E., Mazauric D.: Computing the dynamic diameter of non-deterministic
dynamic networks is hard. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.)
ALGOSENSORS 2014. LNCS, vol. 8847, pp. 88–102. Springer, Heidelberg (2015)

19. Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public trans-
portation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS
2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011)

20. Ilcinkas, D., Wade, A.M.: Exploration of the T -Interval-Connected Dynamic
Graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO
2013. LNCS, vol. 8179, pp. 13–23. Springer, Heidelberg (2013)

21. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: STOC, pp. 513–522 (2010)

22. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT
News 42(1), 82–96 (2011)

23. Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. In: ACM
MobiCom, pp. 284–298 (2005)

24. Mans, B., Mathieson, L.: On the treewidth of dynamic graphs. In: Du, D.-Z., Zhang,
G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 349–360. Springer, Heidelberg
(2013)

25. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS,
vol. 8635, pp. 553–564. Springer, Heidelberg (2014)

26. Nagamochi, H., Okada, K.: A faster 2-approximation algorithm for the minmax
p-traveling salesmen problem on a tree. Discrete Applied Math. 140(1-3), 103–114
(2004)

27. Xu, L., Xu, Z., Xu, D.: Exact and approximation algorithms for the minmax
k-traveling salesmen problem on a tree. EJOR 227, 284–292 (2013)

	Multi-Robot Foremost Coverage of Time-Varying Graphs
	1 Introduction
	1.1 Related Results
	1.2 Main Results

	2 k-Agent Border Coverage in R
	3 Two Agents on a Tree
	4 Conclusion and Discussion
	References

