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Chapter 9
Modeling and Interaction of a Vehicle–Road 
System with Nonlinearity and Viscoelasticity
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This chapter presents a nonlinear vehicle–road coupled model which is composed 
of a seven-degree-of-freedom (DOF) vehicle and a simply supported double-layer 
rectangular thin plate on a nonlinear viscoelastic foundation. The nonlinearity of 
the suspension stiffness, suspension damping, and tire stiffness is considered and 
the Leaderman constitutive relation and Burgers model are applied to describe the 
nonlinear and viscoelastic properties of the asphalt pavement material.

The equations of motion for the vehicle–road system are derived and the partial 
differential equation of the road pavement is discretized into an infinite number 
of second-order ordinary differential equations and first-order ordinary differen-
tial equations by Galerkin’s method and a mathematical transform. A numerical 
integration method for solving this coupled system is developed and the nonlinear 
dynamic behaviors of the system are analyzed. In addition, the simulation results 
of the nonlinear viscoelastic model are compared to those of the linear or elastic 
model. The effects of system parameters on vehicle riding comfort and road damage 
are investigated [1, 2].

9.1  System Models and Equations of Motion

9.1.1  Modeling Nonlinearity and Viscoelasticity

A seven-DOF nonlinear vehicle and a double-layer rectangular thin plate on a non-
linear viscoelastic foundation with four simply supported boundaries are used to 
model the vehicle and the pavement. Figure 9.1 shows the nonlinear vehicle–road 
coupled system built in this work. In this model, the nonlinearity of tire and suspen-
sion and the viscoelasticity of pavement material are considered.

The nonlinear dynamic tire force can be formulated as

 (9.1)F k Z k Z c Ztk t t t t t t= + +β1
2
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where kt  is the linear tire stiffness, β1  is the nonlinear tire stiffness coefficient, ct  
is the tire damping coefficient, Zt  and Zt  are the relative vertical displacement and 
velocity between the wheel and the road surface, respectively.

The nonlinear spring force of the vehicle suspension is modeled as

 (9.2)

where ks  is the linear stiffness coefficient of the suspension, β2  and β3  are the 
square and cubic nonlinear stiffness coefficients of the suspension, Zs  is the rela-
tive vertical displacement between the wheel and the vehicle body.

The hydraulic damper of the vehicle suspension is modeled as

 (9.3)

where cs  is the linear damping coefficient of the suspension, β4  is the asymmetry 
coefficient, 

zs  is the relative vertical velocity between the wheel and the vehicle 
body.
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Fig. 9.1  The three-dimensional nonlinear vehicle–road coupled system. (Reprinted from [1], with 
kind permission from ASME)
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The upper and lower layers of the plate and the viscoelastic foundation stand 
for the asphalt topping, base course, and subgrade of the road, respectively. The 
Leaderman constitutive relation and the Burgers model are applied here to model 
the nonlinear viscous behaviors of the asphalt topping. The base course is assumed 
to be linear elastic. The Leaderman constitutive relation [3–5]can be expressed as

 (9.4)

where E0  is the initial elastic modulus, β5  is the square nonlinear coefficient, β6  
is the cubic nonlinear coefficient, and E( t) is the relax function which is derived 
from the Burgers model for the asphalt mix. The Burgers model [6–8] is shown in 
Fig. 9.2 and can be written as

 (9.5)

where

 (9.6)

The relax function obtained from Eq. (9.6) is
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Fig. 9.2  The Burgers model. (Reprinted from [1], with kind permission from ASME)
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(9.7)

where

 
(9.8)

The road subgrade is modeled by a nonlinear Kelvin foundation [9, 10] and the 
reaction force of the subgrade is

 

(9.9)

where K is the foundation response modulus, β7  is the cubic nonlinear coefficient, 
and C is the foundation damping coefficient.

9.1.2  The Equations of Motion for a Nonlinear Vehicle

The vehicle equations of motion can be obtained by d’Alembert’s principle

 (9.10)

where

 (9.11)
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 (9.13)

 (9.14)

 (9.15)

z z zb b b1 2 3, , and  are the vehicle body’s vertical, pitching, and rolling displace-
ments respectively and z z z zt t t t1 2 3 4, , ,  are the wheel’s vertical displacements. 
Furthermore, m1 is the mass of the vehicle body, m2 and m3 are the moments of 
inertia of the vehicle body in the pitching and rolling directions respectively, and 
m m m and mt t t t1 2 3 4, , ,  are the wheels’ masses. F F F Ft t t t1 2 3 4, , , and  are the tire 
forces, which will be expressed by Eq. (9.56) in Sect. 9.1.4. d f  is half of the 
front wheel track, dr  is half of the rear wheel track, and l l1 2+  is the wheel space. 

, , ( 1 ~ 4)ti si sik k c i =  are equivalent nonlinear coefficients of the tire stiffness, sus-
pension stiffness, and damping, which are expressed by

 (9.16)

 (9.17)

 (9.18)

where i k k ctli sli sli= 1 4~ , , ,  are linear coefficients of the stiffness or damping, rti  
and w x y tti ti( , , )  are the road roughness and pavement displacements at the mid-
point of the tire print.

9.1.3  The Equations of Motion for the Nonlinear and 
Viscoelastic Pavement

The directions of the vertical, longitudinal, and transverse pavement displacements 
are shown in Fig. 9.1. According to elastic dynamics [11, 12], the pavement dis-
placements take the following form
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 (9.19)

The relationship between the pavement strains and displacements is

 (9.20)

With the Leaderman constitutive relation Eq. (9.4), the asphalt topping stresses can 
be written as

 (9.21)

where E1 , G1 , and µ1 are the elastic modulus, the shear modulus, and Poisson’s 
ratio of the asphalt pavement, respectively. The expressions of g1, g2, and g3 are

 (9.22)
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 (9.24)

For the linear constitutive relation, the stresses of the base course are

 (9.25)

where E2 , G2 , and µ2 are the elastic modulus, the shear modulus, and Poisson’s 
ratio of the base course, respectively.

The position of the stress-neutral layer is shown in Fig. 9.1 and has been deter-
mined in Chap. 5,

 (9.26)

The internal forces of the double-layer, thin plate satisfy the following equation

 (9.27)
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where

 (9.28)
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By integrating the three-dimensional balance equations of the double-layer, thin 
plate with the vertical-varied density along Z, one may obtain
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 (9.40)

where

 (9.41)

From Eq. (9.40), one may obtain the partial differential equation of the pavement 
vertical vibration induced by the moving vehicle loads,
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where Fts  is the s th tire force.
The displacement of the double-layer, thin plate with four simply supported 

boundaries can be expressed as

 (9.43)

The substitution of Eq. (9.43) into Eq. (9.42) leads to a residual value. By limiting 
the residual value, the following equation can be obtained using Galerkin’s method,

 (9.44)
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nary differential equations with an integral item,

 (9.45)

where i NM j NN= =1 1~ , ~ ,

 (9.46)

 (9.47)

 (9.48)

 (9.49)

where D D D A A Aij ij ij ij ij ij1 2 3 1 2 3, , , , , and  are expressions of the system parameters.
Due to the integral term in Eq. (9.45), the following transformation [3–5] is ap-

plied,

 (9.50)

w x y t U t m x
L

n y
Bmn

n

NN

m

NM
( , , ) ( )sin sin .=

==
∑∑ π π

11

( ( ) ( ) ( ))sin( )

si

L w h w
t

F x x y y i x Lti ti ti
i

BL
+ − − −

=
∑∫∫ ρ

∂

∂
δ δ π

2

2
1

4

00
/

nn( ) .j y B dxdyπ / = 0

M U C U K U K U K U E t G dij ij ij ij ij ij ij ij ij ij
t

  + + + + + −∫1 2
2

3
3

0
( ) ( )τ τ ττ = Rij

M LB h C LB Cij ij= =
4 4

ρ , ,

K D LB K K D K D LB Kij ij ij ij ij ij1 1 2 2 3 3 74 4
= + = = +, , β

G
D
x

D
x y

D
y

i x L j y B dxE Exy E( ) ( )sin( )sin( )τ
∂

∂

∂

∂ ∂

∂

∂
π π= + +

2
1

2

2 2
2

22 / / ddy

A U A U A U

BL

ij ij ij ij ij ij

00

1 2
2

3
3

∫∫
= + +

R F x x y y i x L j y B dxdyij ts ts ts
s

BL
= − −

=
∑∫∫ δ δ π π( ) ( )sin( )sin( )

1

4

00
/ /

x x E t G dij ij
t

1 2 0
+ = −∫  ( ) ( )τ τ τ



2859.1  System Models and Equations of Motion 

By substituting Eq. (9.7) into Eq. (9.45), one obtains

 (9.51)

The first derivation of Eq. (9.51) is

 (9.52)

The substitution of Eq. (9.50) into Eq. (9.45) leads to

 (9.53)

Thus Eq. (9.45) turns into one second-order ordinary differential equation, 
Eq. (9.53), and two first-order ordinary differential equations, Eq. (9.52). By re-
writing them as matrix equations, one obtains

 (9.54)

 (9.55)

where X1{ } , X 2{ } , AU{ } , U{ } , and R X Xf − −{ }1 2  are the column vec-
tors with NM × NN lines. The components of these column vectors are x ij1 , x ij2 , 
A U A U A Uij ij ij ij ij ij1 2

2
3

3+ + , Uij , and R x xij ij ij− −1 2  respectively. The row subscript 
nr  of these column vectors depends on the mode numbers i  and j  through the 
expression n i NN jr = − × +( )1 . [Mr], [Cr], and [Kr] are square matrixes of order 
NM  × NN. Here, K K K U K Ur = + +[ ]1 2 3

2 .

9.1.4  The Interaction Between the Vehicle and the Pavement

In regards to the coupling action of the vehicle and the road, the vertical contact 
force between the tire and the pavement is related not only to the tire motion and 
road surface roughness, but also to the road vibration. Based on Eq. (9.1), the verti-
cal contact force between the tire and the pavement may be expressed as

 (9.56)
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where w x y tts ts( , , )  is the pavement displacement of the point under the s th 
tire and rts  is the road surface roughness satisfying the following functions 

r r B vt
L

r r B
L

vt l lt t t t1 3 0
0

2 4 0
0

1 2
2 2

= = = = + +sin( ), sin[ ( )]π π
.

By substituting Eq. (9.43) into Eq. (9.56), one obtains

 

(9.57)

From Eq. (9.49) one may get

 

(9.58)

It is clear from the above two equations that the contact forces between the tire and 
the road pavement are not only influenced by the wheel displacement, wheel veloc-
ity, and road roughness, but also by the pavement vibration mode’s displacement 
and velocity. Thus, Zts , the four wheel displacements, are coupled with Umn , the 
pavement vibration mode’s displacements.

Equation (9.10) and Eq. (9.55) can be rewritten in the following form,

 (9.59)

where
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Consequently, Eq. (9.54) and Eq. (9.59) compose the first- and second-order or-
dinary differential equations of the nonlinear vehicle–road coupled system. Since 
the stiffness matrix K and damping matrix C of Eq. (9.59) have coupled items and 
time-varied parameters, the following numerical integration method is used to solve 
the equations.

9.2  Dynamic Responses of the Nonlinear Vehicle–Road 
Coupled System

The quick direct integral method and the Runge–Kutta method of order 4 can be 
combined to solve the system of equations. The routines of the calculation program 
in this study are as follows:
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1. Establish the initial conditions

Assume the initial displacement and initial velocity of Eq. (9.59) are { } { ( )}
{ } { ( )}
Z Z
Z Z

0

0

0
0

=
=



  

.

Assume the initial displacements of Eq. (9.54) are { } { ( )}
{ } { ( )}

X X
X X

1 0 1

2 0 2

0
0

=
=





.

The initial acceleration can be obtained from Eq. (9.59),

 (9.61)

2.  Compute the displacement, velocity, and acceleration of the vehicle–road coupled 
system when t n t= +( )1 ∆ . Here, n +1  is the number of steps, and n  =  0,1,2,3…

Let φ ψ= = 0  when n = 0  and φ ψ= = 1 2/  when n ≥1 . Given the integration time 
step ∆t, one can build the following relations:

 (9.62)

 (9.63)

where

 (9.64)

By substituting Eq. (9.62) and Eq. (9.63) into Eq. (9.59) when t n t= +( )1 ∆ , one 
can obtain

 

(9.65)
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3. By repeating process (2), one can get the displacement, velocity, and accelera-
tion of the system step by step.

The convergence criterion of this method is

 (9.66)

where ∆t  is the integration time step, and ω  is the natural angular frequency of 
the system.

During the dynamic simulation, the vehicle parameters correspond to those of a 
heavy truck. Parameters for the vehicle system are as follows [12, 13]:

mb1 = 15280 kg, mb2 = 3 × 105 kg m2, mb3 = 0.6 × 105 kg m2, mt1 = mt3 = 190 kg, 
mt2 = mt4 = 380 kg, ksl1 = ksl3 = 370 × 103 N/m, ksl2 = ksl4 = 920 × 103 N/m, 
csl1 = csl3 = 12,000 N s/m, csl2 = csl4 = 30,000 N s/m, ktl1 = ktl3 = 0.73 × 106 N/m, 
ktl2 = ktl4 = 1.46 × 106 N/m, ct1 = ct3 = 600 N s/m, ct2 = ct4 = 900 N s/m, l1 = 3.29 m, 
l2 = 1.48 m, lf = 1.90 m, lr = 1.80 m, β1 = 0.01, β2 = 0.1, β3 = 0.6, β4 = 1/3.

Parameters of the pavement and foundation are given below [14, 15]:
L = 600 m, B = 24 m, h1 = 0.09 m, E1 = 2400 MPa, E3 = 2400 MPa, 

η2 = 3159.32 MPa s, η3 = 509.61 MPa s, μ1 = 0.35, ρ1 = 2.613 × 103 kg/m3, h2 = 0.2 m, 
E2 = 1100 MPa, μ2 = 0.35, ρ2 = 2.083 × 103 kg/m3, K = 48 × 106 N/m2, C = 0.3 × 104 N s/
m2, β5 = 0.1, β6 = 0.1, β7 = 0.01, L0 = 2.3 m, B0 = 0.002 m.

In order to confirm the validity of the integration results, two numerical tests 
were done to choose a suitable mode number for the pavement displacement and 
an integration time step. It is found that, when the time step is smaller than 1 ms 
and the mode number of the pavement is larger than 10, dynamic responses of the 
system vary slightly. Thus, a suitable value of NM is 10 and a suitable value of ∆t  
is 1 ms.

The natural frequencies of the derived system are calculated with the system 
parameters selected above. The vertical, pitching, and rolling natural frequencies of 
the vehicle body and the vertical natural frequencies of the four wheels are 1.6314, 
0.8076, 0.7562, 12.1137, 12.1357, 12.6053, and 12.6492 Hz, respectively. The nat-
ural frequencies of the road range from 34.1739 to 143.3673 Hz. By substituting 
the highest natural frequency of the coupled system 143.3673 Hz into Eq. (9.66), 
one obtains ∆t < × =2 143 3673 2 2/ 2 ms( . ) .π . Because the time step ∆t  is 1 ms, the 
convergence criterion is well satisfied.

In addition, the responses that occur during the first 5 s are removed so as to 
minimize the effect of the transitional course. When v = 10 m/s and B0 = 0.002 m, 
the time history of the vehicle body’s vertical acceleration, phase trajectories, and 
Poincaré maps of the vehicle body’s vertical motion, along with the power spectrum 
of the vehicle body’s vertical displacement can be obtained, as shown in Fig. 9.3. 
From Fig. 9.3, it can be seen that the time history is periodic, the phase trajectories 
are a closed curve, the Poincaré map is a point, and the power spectrum consists of 
discrete lines. Thus it can be concluded that the vertical motion of the vehicle body 
is periodic. It has also been found that the peak frequencies in the power spectrum 
include 4.38, 8.73, 13.1, and 1.6 Hz, which correspond to one time, two times, and 

∆t fa< = =2 1 2/ when /ω φ ψ�
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three times the road roughness excitation frequency, as well as the vertical natural 
frequency of the vehicle body respectively. The 4.38 and 1.6 Hz values may be 
easily explained using vibration theory: the frequency components of forced vibra-
tion include the excitation frequency and natural frequency of the system. The 8.73 
and 13.1 Hz values may be the result of the square and cubic nonlinearities of the 
system, which result in two and three times the excitation frequency, respectively.

Figure 9.4 shows the time history, phase trajectories, Poincaré maps, and power 
spectrum of the pavement vertical displacement when B0 = 0.002 m. It may be ob-
served from Fig. 9.4 that the time history is not periodic, the phase trajectories are 
complicate and irregular, the Poincaré map is an unclosed curve, and the power 
spectrum consists of discrete lines. According to nonlinear vibration theory, the 
largest Lyapunov exponent may be used as a criterion for motion type. If the largest 
Lyapunov exponent is larger than zero, the system motion is possibly chaotic. On 
the other hand, if the largest Lyapunov exponent is zero, the system will have a peri-
odic or quasiperiodic motion. When B0 = 0.002 m, the largest Lyapunov exponent of 
the pavement displacement is computed using the method of Wolf [16, 17], and the 
result is zero. Thus it may be concluded that the vertical motion of the pavement is 
quasiperiodic. It is also found that the spectral peak frequencies are 4.38, 8.73, and 
13.1 Hz, corresponding to one time, two times, and three times the road excitation 
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Fig. 9.3  Vehicle responses with B0 = 0.002 m. (Reprinted from [1], with kind permission from 
ASME)
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frequency, respectively. Similarly, the square and cubic nonlinearity of the system 
cause the existence of two and three times the excitation frequency.

The dynamic responses of the vehicle body and the pavement in a vertical direc-
tion when B0 = 0.02 and 0.1 m are also simulated. It is found that the vertical motion 
of the vehicle body is always periodic in all three cases, but the vertical motion of 
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Fig. 9.4  Pavement responses with B0 = 0.002 m. (Reprinted from [1], with kind permission from 
ASME)
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the pavement is different in the three cases. Figures 9.5 and 9.6 show the pavement 
responses in the three cases.

It can be seen from the above two figures that

1. When B0 = 0.02 m, the time history of the pavement vertical displacement is 
similar to that of when B0 = 0.002 m. An exception is the appearance of a high-
frequency wave. Then, the Poincaré map is a closed curve, and the power spec-
trum consists of more peaks than when B0 = 0.002 m.

2. When B0 = 0.1 m, the time history and phase trajectories of the pavement verti-
cal motion are complicated and irregular, the Poincaré map looks like a narrow 
band, and the power spectrum consists not only of many peaks, but also of con-
tinuous broadband stochastic curves.

The largest Lyapunov exponents corresponding to these two cases ( B0 = 0.02 m, 
0.1 m) are also computed and found to be 0 and 0.1912. Hence it may be concluded 
that the vertical motion of the pavement when B0 = 0.02 m is quasiperiodic and the 
vertical motion of the pavement when B0 = 0.1 m is chaotic.
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Fig. 9.5  Pavement responses with B0 = 0.02 m. (Reprinted from [1], with kind permission from 
ASME)
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9.3  The Effects of Nonlinearity and Viscoelasticity on 
Vehicle and Road Responses

To investigate the effect of nonlinearity on vehicle and pavement responses, the am-
plitude–frequency response curves of the vehicle body’s vertical acceleration and 
the pavement vertical displacement for a linear and nonlinear system are drawn, as 
shown in Fig. 9.7. In order to obtain a frequency range from 0.5 to 40 Hz, the wave 
length L0 varies from 0.5 to 40 m, and the vehicle velocity V is set to 20 m/s. From 
Fig. 9.7 it can be seen that the effect of nonlinearity on the vehicle body vertical ac-
celeration is greater than the effect on the pavement vertical displacement. At lower 
frequencies, the responses of the nonlinear system are larger than those of the linear 
system. However, in higher frequencies, the responses of the nonlinear system are 
smaller than that of the linear system.

In addition, Fig. 9.8 compares the amplitude–frequency response curves of the 
vehicle body vertical acceleration and the pavement vertical displacement for the 
linear elastic and viscoelastic asphalt topping. It may be observed from Fig. 9.8 that 
the effect of the viscoelastic pavement material on the vehicle response is much 
smaller than its effect on the pavement response. The response of the pavement 
with the viscoelastic material is greater than the response of the pavement with the 
linear elastic material.
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Fig. 9.6  Pavement responses with B0 = 0.1 m
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The effects of seven nonlinear parameters β1 , β2 , β3 , β4 , β5 , β6 , β7 , and 
four viscoelastic parameters E1 , E3 , η2, η3 on the vehicle body vertical accelera-
tion, and the pavement displacement are studied, as shown in Fig. 9.9, 9.10, 9.11, 
9.12, 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, and 9.19. The main conclusions are listed 
here,

1. In four of the nonlinear parameters of the vehicle system, the effect of the sus-
pension damper asymmetry coefficient β4  is the greatest, the effects of the 
square nonlinear tire stiffness β1  and the square nonlinear suspension stiffness 
β2  are the second, and the effect of the cubic nonlinear suspension stiffness β3  
is the least. A large β1  or small β4  both benefit vehicle riding comfort and road 
service life. Small β2  may improve vehicle riding comfort but hardly influences 
the pavement displacement.

2. The effects of the pavement nonlinear parameters β5 , β6 , and β7  on the 
responses of the vehicle and pavement is very small. Therefore, these three non-
linear parameters may be omitted in order to simplify the calculations.

3. In four of the viscoelastic parameters of the pavement asphalt topping, the effect 
of E1  on system response is greater than that of E3 , and the effect of η2 on sys-
tem response is greater than that of η3. A small E1, large E3, large η2, or large η3 
may not only improve vehicle riding comfort but also extend road service life.
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Fig. 9.16  The effect of pavement topping elastic modulus E1. (Reprinted from [2], with kind per-
mission from Academy Publisher)
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Fig. 9.15  The effect of nonlinear foundation stiffness β7. (Reprinted from [2], with kind permis-
sion from Academy Publisher)
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Fig. 9.14  The effect of cubic nonlinear pavement topping elastic β6. (Reprinted from [2], with 
kind permission from Academy Publisher)
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Fig. 9.17  The effect of pavement topping elastic modulus E3. (Reprinted from [2], with kind per-
mission from Academy Publisher)
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Fig. 9.19  The effect of pavement topping damping η3. (Reprinted from [2], with kind permission 
from Academy Publisher)
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Fig. 9.18  The effect of pavement topping damping η2. (Reprinted from [2], with kind permission 
from Academy Publisher)
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9.4  Chapter Summary

In this chapter, a 3D vehicle–road coupled system with nonlinearity and viscoelas-
ticity is built and the nonlinear responses of the vehicle and road are computed si-
multaneously. The effects of the nonlinear and viscous parameters on vehicle riding 
comfort and road damage are also analyzed. It can be found that

1. The effect of nonlinearity on the vehicle body vertical acceleration is greater 
than the effect on the pavement vertical displacement. At lower frequencies, 
the responses of the nonlinear system are greater than those of the linear sys-
tem. However, at higher frequencies, the responses of the nonlinear system are 
smaller than those of the linear system. Hence, it is necessary to take into account 
the nonlinearity of the vehicle suspension to research the nonlinear dynamic phe-
nomena of the vehicle and to improve computational accuracy. On the other 
hand, the nonlinearity of the pavement material may be neglected if one calcu-
lates only the amplitude of the pavement response.

2. The influence of the viscoelastic pavement material on the vehicle response is 
much smaller than that on the pavement response. The response of the pavement 
with viscoelastic asphalt topping is greater than the response with linear elastic 
material. Thus, the viscoelastic characteristic of asphalt topping should be con-
sidered in order to estimate the pavement response more accurately.
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