Chapter 9
Modeling and Interaction of a Vehicle—Road
System with Nonlinearity and Viscoelasticity

This chapter presents a nonlinear vehicle—road coupled model which is composed
of a seven-degree-of-freedom (DOF) vehicle and a simply supported double-layer
rectangular thin plate on a nonlinear viscoelastic foundation. The nonlinearity of
the suspension stiffness, suspension damping, and tire stiffness is considered and
the Leaderman constitutive relation and Burgers model are applied to describe the
nonlinear and viscoelastic properties of the asphalt pavement material.

The equations of motion for the vehicle-road system are derived and the partial
differential equation of the road pavement is discretized into an infinite number
of second-order ordinary differential equations and first-order ordinary differen-
tial equations by Galerkin’s method and a mathematical transform. A numerical
integration method for solving this coupled system is developed and the nonlinear
dynamic behaviors of the system are analyzed. In addition, the simulation results
of the nonlinear viscoelastic model are compared to those of the linear or elastic
model. The effects of system parameters on vehicle riding comfort and road damage
are investigated [1, 2].

9.1 System Models and Equations of Motion

9.1.1 Modeling Nonlinearity and Viscoelasticity

A seven-DOF nonlinear vehicle and a double-layer rectangular thin plate on a non-
linear viscoelastic foundation with four simply supported boundaries are used to
model the vehicle and the pavement. Figure 9.1 shows the nonlinear vehicle-road
coupled system built in this work. In this model, the nonlinearity of tire and suspen-
sion and the viscoelasticity of pavement material are considered.

The nonlinear dynamic tire force can be formulated as

Ey,=kZ +BkZ+cZ, .1
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Fig. 9.1 The three-dimensional nonlinear vehicle—road coupled system. (Reprinted from [1], with
kind permission from ASME)

where £, is the linear tire stiffness, g, is the nonlinear tire stiffness coefficient, c,
is the tire damping coefficient, Z, and Z, are the relative vertical displacement and
velocity between the wheel and the road surface, respectively.

The nonlinear spring force of the vehicle suspension is modeled as

Fy =kyz,+Byk,z; + Bsk,z, 9.2)

where k; is the linear stiffness coefficient of the suspension, B, and j, are the
square and cubic nonlinear stiffness coefficients of the suspension, Z_ is the rela-
tive vertical displacement between the wheel and the vehicle body.

The hydraulic damper of the vehicle suspension is modeled as

F,, = C,(1+ Bysig(Z)Z,> 9.3)

where ¢, is the linear damping coefficient of the suspension, S, is the asymmetry
coefficient, z is the relative vertical velocity between the wheel and the vehicle
body.
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The upper and lower layers of the plate and the viscoelastic foundation stand
for the asphalt topping, base course, and subgrade of the road, respectively. The
Leaderman constitutive relation and the Burgers model are applied here to model
the nonlinear viscous behaviors of the asphalt topping. The base course is assumed
to be linear elastic. The Leaderman constitutive relation [3—5]can be expressed as

0 = Ey(s(x,2,0) + Bse(x, 2,0)* + Bge(x, 2,1)°) 04

+ _[;E(t —7)(e(x,z,T) + B, e(x, z, 'L')2 +Bse(x, z,r)3 )dt

where E| is the initial elastic modulus, f; is the square nonlinear coefficient, g,
is the cubic nonlinear coefficient, and E(¢) is the relax function which is derived
from the Burgers model for the asphalt mix. The Burgers model [6—8] is shown in
Fig. 9.2 and can be written as

o+po+p,0=q&+q,E 9.5)

where
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The relax function obtained from Eq. (9.6) is

E;

E, W 1,

S

Fig. 9.2 The Burgers model. (Reprinted from [1], with kind permission from ASME)
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E(t)=Ae ™ +Be™# 9.7

where

_ntpi =4

2p, ’

=P —4p,

2P (9.8)

1 1
A= ——=(aq, —~q),B=——=(q, — BP).
VPP —4p; VPP —4p;

The road subgrade is modeled by a nonlinear Kelvin foundation [9, 10] and the
reaction force of the subgrade is

o

/3:

P=kZ, +Bkz +cz, 9.9)

where K is the foundation response modulus, f$, is the cubic nonlinear coefficient,
and C is the foundation damping coefficient.

9.1.2 The Equations of Motion for a Nonlinear Vehicle

The vehicle equations of motion can be obtained by d’Alembert’s principle

M,7,+CZ,+K,Z, =R, (9.10)
where
M, =diag[my,, my, my; my; m, my my,] (9.11)
- _
Zk\'t kgl +kyoly =kl +kgyly ~kgd; —kpd, +kisd, +k,d, kg —ky —kg3 —k4
=
k.\-lllz "’l‘f\zlz2 +k\3l|2 ‘*'k.mlzz kahd —kohd, —kshd +kyhd, kgl —koh, kgl —kyaly
K, = kxld; ‘*’kx:df ‘*'k.ssd% +ks4dr2 kad,  kod, —kad, —kgyd, (9 12)
Ky 0 0 0
k. 0 0
ks 0
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Zp15 Zpp-and z,, are the vehicle body’s vertical, pitching, and rolling displace-
ments respectively and z,, z,,, z,5,z,, are the wheel’s vertical displacements.
Furthermore, m, is the mass of the vehicle body, m, and m, are the moments of
inertia of the vehicle body in the pitching and rolling directions respectively, and
My, My, Myy, and m,, are the wheels’ masses. F), F,,, F,;, and F,, are the tire
forces, which will be expressed by Eq. (9.56) in Sect. 9.1.4. d is half of the
front wheel track, d, is half of the rear wheel track, and /, +/, is the wheel space.
kyskysc, (i =1~ 4) are equivalent nonlinear coefficients of the tire stiffness, sus-
pension stiffness, and damping, which are expressed by

ki + BikuyilZ; — 1y = wW(xyi5 Y35 1)] (9.16)

kg = kg + Bokgi(Zyy — Z) + Bskyi (2, — Zn')z 0.17)

|0.25

¢y = ci(1+ Bysig(Zy = 2,) |2y — 2, (9.18)

where i=1~4, k,, k,, c, are linear coefficients of the stiffness or damping, r,
and w(x,,y,,t) are the road roughness and pavement displacements at the mid-
point of the tire print.

9.1.3 The Equations of Motion for the Nonlinear and
Viscoelastic Pavement

The directions of the vertical, longitudinal, and transverse pavement displacements
are shown in Fig. 9.1. According to elastic dynamics [11, 12], the pavement dis-
placements take the following form
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[ d
u(x,y,z,t) = AL
dy

v(x,y,z,t) = —za—w . (9.19)
dy

w(x, y,t) = w(x, y,1)

The relationship between the pavement strains and displacements is

. 3w
x -T2 5
ax?
52
e, = —za—vz” . (9.20)
y
52
Y= 22 ld
0xdy

With the Leaderman constitutive relation Eq. (9.4), the asphalt topping stresses can
be written as

-7

E|
e ola 0+ 1" Dg, (5,2, dr)

—)

(x,y,z,t)+ _[0 2, (x,»,2,7)d7] 9.21)

-7

=G (g oy 20+ [ P D g v,y 2d)

where E,,G,, and u, are the elastic modulus, the shear modulus, and Poisson’s
ratio of the asphalt pavement, respectively. The expressions of g,, g,, and g, are

% w 92w 9% w
gi(x 2 =225+ b z2<—2>2 - o2’ (—2>3

i i (9.22)
9 s 8w
iy (—z 2 4 Bz (—) o2 %)
3y 3y
82 82 82
g2(x,yaz’t):_2_2}+ﬂ522(_1;/)2_ﬂ623(_‘:)3
dy dy dy (9.23)
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2 5 82W2 3,0°W 3 (9.24)
g3(x,y,z,0) =2z +4Bsz7 (——) =8Bz (———)" :
ax dxdy dxdy
For the linear constitutive relation, the stresses of the base course are
i E, [32 L 9? "y
x= Z
1- ,u% ax? ) y?
E 9w 9w (9.25)
o,=- [ +nu ]
L T e T T
52
Ty = —2G22—W
dxdy

where E,,G,, and u, are the elastic modulus, the shear modulus, and Poisson’s

ratio of the base course, respectively.
The position of the stress-neutral layer is shown in Fig. 9.1 and has been deter-

mined in Chap. 5,

hO
2Eh +2E,h,

(9.26)

_ E\W +E,(2h + hy)h,

The internal forces of the double-layer, thin plate satisfy the following equation

] i
M, = o,zdz
o=ty =hy
3w 3w aw 3w
:_Dxl_z_ x2(_2)2_Dx3(_2 _Dy1_2
ox ax ax ay
BZW 2 32w 3 t
D3 =P Cp) - | Et=0Dg (x, y,0)d
ho
M, = '[ho—h1—hz 0, zdz
9w 9w ) 9w 3 3w
=D, = =Dy =Dy () =Dy 5
vl 2 y2 I 3 92 layz
DL _p (5 o d
Dol ) ~Pals) = J, Et=0)D, (x, y 1)
M ho ¢ zd D 3w D (8 w)2 D (82w
= zdz = — —_— = —) - —
T gy Yoxoy U oxdy 3 axdy
t
_ jo E(t =7)Dp,, (x, y,1)dT

9.27)
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where
_ W E =3hWE +3IGE)  Es[(hy—h) =y —h —h,)’]
D, = - + ’ (9.28)
3(1-p1) 3(1-p3)

9.29
D, = Iy Bs Ey (' + 6k by — dhoh —4h3) (9-29)

! 40—y}
D, = Iy B E (=5hyh +10h3hE =103y + 5hy +h') (9.30)

51-p7)
D, = 1y by (W E, =3hyhE + 315 E)) 4 1y E[(hy =) = (hy =y — 1))’ ] 9.31)

. 30-p7) 3(1-143)

D,= 1 by Bs Ey () + 6l by — 4lghi’ —417) 9.32)

g 41-p)
Iy B Ey (=5hohi +10h3hE =101y + 5hy + k') (9.33)

D= 2 ’
S5(1-py)
2

D, = =2G\ hy +2G,yh; +

Z G\ +2Gy i hy — 4Gy by hy —2Gyhyh3
3 (9.34)

2
+2G,hhy +2G, 3 + 3 G,

D,y = Gily B () + Gl by — 4hoh —4I) (9.35)

D,y = %Glhl B (—5hoh +10m2h2 =10k +5hi +h') (9:36)
o

Dy (e y.0)==],", &6y, 2,02/0-y])dz (9.37)
h

Dy (x,y,7) = —_[hooihl 2,(x,y,2,0)2/(1 =y} )dz (9.38)

D S d (9.39)

Exy (x,»,7)= _Jho*hl g3(x,v,2,7)zde. .

By integrating the three-dimensional balance equations of the double-layer, thin
plate with the vertical-varied density along Z, one may obtain
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oM. 9 (9.40)
X Xy
+ -0.=0
dx dax O
oM, oM, 0.=0
dx Ay 7
an aQy 0
— 4+ ———ph——+q(x,y,0)=0
ox oy > +4q(x,,1)
where
ph = jh L prde+ [ pyde=pyy+pyhy. ©.41)

hohh

From Eq. (9.40), one may obtain the partial differential equation of the pavement
vertical vibration induced by the moving vehicle loads,

D (a‘*_w+a4_W)+2(D +2D )84—‘”
xl 8y4 1 xyl 92 8y2
83w2 Pwoatw 83w2 *watw
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ax ay
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where F, is the s th tire force.
The displacement of the double-layer, thin plate with four simply supported
boundaries can be expressed as

NM NN nty 043
w(x, y,1) = ZZUmn(t)sm nT, .

m=1n=1

The substitution of Eq. (9.43) into Eq. (9.42) leads to a residual value. By limiting
the residual value, the following equation can be obtained using Galerkin’s method,

LB Pw < ..
[N <L(w)+ph?—glE,«S(x—xﬁw(y—y,,»))sm(mx/m (9.44)
sin(jmwy/B)dxdy = 0.

By simplifying the above equation, one can discretize Eq. (9.42) into a set of ordi-
nary differential equations with an integral item,

MUy +CyU; + KyyUyy + KyUp + KU + j(;E(t—t)G(r)dt= R, (9.45)

where i =1~ NM, j =1~ NN,

My =22 onc, =2, (9.46)
[} 4 ij
LB LB
Ky = Dy + == K, Koy = Doy, Ky = Dy +—=p7 K ©-47)
2
B 9° D Dg,, 9*D,
G(r) = j j - aEy 3 E2) sin(ix/L)sin(jy/B)dxdy  (9.48)
xXoy y

— 2 3
= AlijU,.j + Azl.].Uij + A3U.U,.j

4
LB . o
R, = -[o Io ; F 8(x—x,)8(y — y,,)sin(imx/L)sin(jmy/B)dxdy ~ (9-49)

where Dy, Dy, Dy, Ay, Ay, and Ay are expressions of the system parameters.
Due to the integral term in Eq. (9.45), the following transformation [3—5] is ap-
plied,

5y + 0y = [ Ee-1)G(D)dr (9.50)
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By substituting Eq. (9.7) into Eq. (9.45), one obtains

Xy = j(:—Aae‘“("f)G(z)dr o051

x5 =], _Bpe )Gyt

The first derivation of Eq. (9.51) is

{5‘147 = —axy; — Aa( AUy + 4,UL + A3U7) ©.52)

2 3y
Yoy = =Py = BA(A Uy + Aoy U + A3 Uy)

The substitution of Eq. (9.50) into Eq. (9.45) leads to

MUy +CyU; + KUy + KyyUp + KUy + 3 + 30 = Ry (9:33)

/]

Thus Eq. (9.45) turns into one second-order ordinary differential equation,
Eq. (9.53), and two first-order ordinary differential equations, Eq. (9.52). By re-
writing them as matrix equations, one obtains

X, = —aX, - Aa(AU + AU + 4U°) = f(1,X,,U) (9.54)
X, =—BX, = BR(AU + AU* + 4U) = f(1,X,,U)
MrU+CrU+KrU =R -X,-X, (9.55)

where {X}, { 2}s {AU} {U}, and {Rf X, - Xz} are the column vec-
tors with NM XNN hnes The components of these column vectors are X;, X,
AUy + Ay, Uj + 4y;U5 Uy and Ry —x,; —Xy; respectively. The row subscript
n, of these column vectors depends on the mode numbers ; and ; through the
expression n, =(i—1)x NN+ j . [M ], [C], and [K ] are square matrixes of order
NM xNN. Here, K, =[K, + K,U + K;U?].

9.1.4 The Interaction Between the Vehicle and the Pavement

In regards to the coupling action of the vehicle and the road, the vertical contact
force between the tire and the pavement is related not only to the tire motion and
road surface roughness, but also to the road vibration. Based on Eq. (9.1), the verti-
cal contact force between the tire and the pavement may be expressed as

. . aw(xtsaytsat)
Frg = kyg[xgg = rig = Wxgg s Vg O+ ¢4 [Xgg = g = o ]

(9.56)
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where w(x,,y,,t) is the pavement displacement of the point under the s th
tire and 7, is the road surface roughness satisfying the following functions

. 2mvt . 2w
1y =15 =B, sm(L—), Ty =1y = By sm[L— e+ +1)].
0 0
By substituting Eq. (9.43) into Eq. (9.56), one obtains

NM NN

ks (2 =1 ) F € (Zyg =T ) — kg z ZUWI (1) sin 2 ﬂBy
m=1n=I
9.57
_Cty:zﬁflﬁ(]mn Q) sin s1n%—cm:zﬂijz];(]mn (t) mzrx sin m;y.( )
From Eq. (9.49) one may get
R, = ,[OL IOB i[km (z, —r)+e, (2, =7~k % g U,,() sin 22 sin mTTy
=1 =l =
—c, % g U, (t) sin 27 gjn LY —c, % %\i U, (t) : Tx o m;y] (9.58)
=l el =l el

8(x—x,)8(y—y,) sm(mx/L) sm(jny/B)dxdy.

It is clear from the above two equations that the contact forces between the tire and
the road pavement are not only influenced by the wheel displacement, wheel veloc-
ity, and road roughness, but also by the pavement vibration mode’s displacement
and velocity. Thus, Z, , the four wheel displacements, are coupled with U, , the
pavement vibration mode’s displacements.

Equation (9.10) and Eq. (9.55) can be rewritten in the following form,

[MUZ}+[CHZY+[KI{Z} = (R} 9.59)
where
M, 0 B R,

The scheme of [C] is



9.2 Dynamic Responses of the Nonlinear Vehicle—Road Coupled System 287

1
¥ ok ok ok x ok k| () .0
1
¥ Ok ok ok ok Kk k() .0
]
¥ ok ok ox % x x! .0
1
v N *
~ 1 .
~ 1
0k ok ok %k % *:* L. %
K ok ok ok ko k) % L. %
1
H ok ok ok ok ok kx| ok
_______________ RN,
]
0 0 O * * = %% .. *
! L — Cr
: T R
: h Lo
1
ok ok ok ok ok ok
000 | J(NM*NN+7)x(NM*NN+7)
The scheme of [K] is
- , .
¥ ok ok ok ok ok k() .0
1
® ok ok ok ok ok k() .0
]
® ok ok ok ok ok k() .0
1
Ky ko kK kx| % *
~ ] .
I~ 1
* %k ok % % % *:* Lk
Kook ok ok ok ok k) &Lk
1
* ok ok ok ok ok ok Dok ok
_______________ 4oL
]
0 0 0 * * * *,% ..
! - Kr
. h . :
: h Lo
1
* ok ok sk ok sk ok
—0 00 ' J(NM*NN+T)x(NM*NN+7)

Consequently, Eq. (9.54) and Eq. (9.59) compose the first- and second-order or-
dinary differential equations of the nonlinear vehicle-road coupled system. Since
the stiffness matrix K and damping matrix C of Eq. (9.59) have coupled items and
time-varied parameters, the following numerical integration method is used to solve
the equations.

9.2 Dynamic Responses of the Nonlinear Vehicle-Road
Coupled System

The quick direct integral method and the Runge—Kutta method of order 4 can be
combined to solve the system of equations. The routines of the calculation program
in this study are as follows:
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1. Establish the initial conditions

Assume the initial displacement and initial velocity of Eq. (9.59) are {{Z jo = {Z (0);.
Z}o =12(0)}

Ko =15,(0)}
{Xz}o = {X2(O)}

The initial acceleration can be obtained from Eq. (9.59),

{(Z}y =M1 ({R}y —[K1p{Z}o —[ClyiZ}). (9.61)

Assume the initial displacements of Eq. (9.54) are {

2. Compute the displacement, velocity, and acceleration of the vehicle—road coupled
system when ¢ = (n+1)Ar. Here, n+1 is the number of steps, and n =0,1,2,3...

Let =4 =0 when n=0 and ¢=%=1/2 when n >1. Given the integration time
step At, one can build the following relations:

{{Z}m = {2}, +1Z1, A+ (24 2L AC =i Z),, A0 g o)
{2}, =12}, + 1+ $)(Z), A =92}, Mt

(X = U0, + G U2+ 2+ i)

(9.63)
At
{Xo b =1X,3, +z(f21 +2/5 +215+ fo4)
where
At At
ﬁl = fl(tleln?Un)?le = fl(tn +_’X1n +_fllﬂl]n)b
2 2
At At . X
fi} = .fi(tn +_’Xln +_f129Un)>f]4 = f](tn +At’X1n +A-tf13’Un)
2 2 (9.64)

At At
S = L0, X,,,U,), [ = 5, "'7’)(1" +7.f217Un)’

At At
S = 122, +7’X1n +7f22»Un)’f24 = [, + At Xy, + Atf53,U,).

By substituting Eq. (9.62) and Eq. (9.63) into Eq. (9.59) when ¢ = (n+1)A¢, one
can obtain

{2}t = [MT (R 1 = [K 1 123, = (Clyy +[K ], ADIZS,
A+ PCly + 1/ 2+ ) [K],y AL} {Z}, At (9.65)
+(B[Clypy + YK ], A4}, AL
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3. By repeating process (2), one can get the displacement, velocity, and accelera-
tion of the system step by step.

The convergence criterion of this method is

At <2/wwhen ¢=y=1/2fa (9.66)

where At is the integration time step, and @ is the natural angular frequency of
the system.

During the dynamic simulation, the vehicle parameters correspond to those of a
heavy truck. Parameters for the vehicle system are as follows [12, 13]:

m,1=15280 kg, m,2=3x10° kg m?, m,3=0.6x10°> kg m*, m 1=m3=190 kg,
m2=m4=380 kg, k,1=kj3=370x10° N/m, k2=kA=920x10° N/m,
c,1=¢,3=12,000 N s/m, ¢ 2=c 4=30,000 N s/m, k,1=k,3=0.73x10° N/m,
k2=kA=146x10° N/m, c,1=c3=600 N s/m, c2=c4=900 N s/m, [,=3.29 m,
,=1.48m, /=190 m, /=180 m, §,=0.01, 5,=0.1, 5,=0.6, §,=1/3.

Parameters of the pavement and foundation are given below [14, 15]:

L=600 m, B=24 m, h=0.09 m, E=2400 MPa, E,=2400 MPa,
17,=3159.32 MPas, ,=509.61 MPa s, u,=0.35, p, =2.613x 10° kg/m®, h,=0.2 m,
E,=1100 MPa, u,=0.35, p,=2.083 x 10° kg/m*, K=48 x 10° N/m?, C=0.3x 10N s/
m?, $,=0.1, f,=0.1, #,=0.01, L, =2.3 m, B;=0.002 m.

In order to confirm the validity of the integration results, two numerical tests
were done to choose a suitable mode number for the pavement displacement and
an integration time step. It is found that, when the time step is smaller than 1 ms
and the mode number of the pavement is larger than 10, dynamic responses of the
system vary slightly. Thus, a suitable value of NM is 10 and a suitable value of At
is 1 ms.

The natural frequencies of the derived system are calculated with the system
parameters selected above. The vertical, pitching, and rolling natural frequencies of
the vehicle body and the vertical natural frequencies of the four wheels are 1.6314,
0.8076, 0.7562, 12.1137, 12.1357, 12.6053, and 12.6492 Hz, respectively. The nat-
ural frequencies of the road range from 34.1739 to 143.3673 Hz. By substituting
the highest natural frequency of the coupled system 143.3673 Hz into Eq. (9.66),
one obtains As < 2/(27 x143.3673) = 2.2ms . Because the time step Az is 1 ms, the
convergence criterion is well satisfied.

In addition, the responses that occur during the first 5 s are removed so as to
minimize the effect of the transitional course. When v=10 m/s and B,=0.002 m,
the time history of the vehicle body’s vertical acceleration, phase trajectories, and
Poincaré maps of the vehicle body’s vertical motion, along with the power spectrum
of the vehicle body’s vertical displacement can be obtained, as shown in Fig. 9.3.
From Fig. 9.3, it can be seen that the time history is periodic, the phase trajectories
are a closed curve, the Poincaré map is a point, and the power spectrum consists of
discrete lines. Thus it can be concluded that the vertical motion of the vehicle body
is periodic. It has also been found that the peak frequencies in the power spectrum
include 4.38, 8.73, 13.1, and 1.6 Hz, which correspond to one time, two times, and
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Fig. 9.3 Vehicle responses with B =0.002 m. (Reprinted from [1], with kind permission from
ASME)

three times the road roughness excitation frequency, as well as the vertical natural
frequency of the vehicle body respectively. The 4.38 and 1.6 Hz values may be
casily explained using vibration theory: the frequency components of forced vibra-
tion include the excitation frequency and natural frequency of the system. The 8.73
and 13.1 Hz values may be the result of the square and cubic nonlinearities of the
system, which result in two and three times the excitation frequency, respectively.
Figure 9.4 shows the time history, phase trajectories, Poincaré maps, and power
spectrum of the pavement vertical displacement when B,=0.002 m. It may be ob-
served from Fig. 9.4 that the time history is not periodic, the phase trajectories are
complicate and irregular, the Poincaré map is an unclosed curve, and the power
spectrum consists of discrete lines. According to nonlinear vibration theory, the
largest Lyapunov exponent may be used as a criterion for motion type. If the largest
Lyapunov exponent is larger than zero, the system motion is possibly chaotic. On
the other hand, if the largest Lyapunov exponent is zero, the system will have a peri-
odic or quasiperiodic motion. When B,=0.002 m, the largest Lyapunov exponent of
the pavement displacement is computed using the method of Wolf [16, 17], and the
result is zero. Thus it may be concluded that the vertical motion of the pavement is
quasiperiodic. It is also found that the spectral peak frequencies are 4.38, 8.73, and
13.1 Hz, corresponding to one time, two times, and three times the road excitation
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Fig. 9.4 Pavement responses with B =0.002 m. (Reprinted from [1], with kind permission from
ASME)

frequency, respectively. Similarly, the square and cubic nonlinearity of the system
cause the existence of two and three times the excitation frequency.

The dynamic responses of the vehicle body and the pavement in a vertical direc-
tion when B;=0.02 and 0.1 m are also simulated. It is found that the vertical motion
of the vehicle body is always periodic in all three cases, but the vertical motion of
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Fig. 9.5 Pavement responses with B =0.02 m. (Reprinted from [1], with kind permission from
ASME)

the pavement is different in the three cases. Figures 9.5 and 9.6 show the pavement
responses in the three cases.
It can be seen from the above two figures that

1. When B;=0.02 m, the time history of the pavement vertical displacement is
similar to that of when B;=0.002 m. An exception is the appearance of a high-
frequency wave. Then, the Poincaré map is a closed curve, and the power spec-
trum consists of more peaks than when B,=0.002 m.

2. When B;=0.1 m, the time history and phase trajectories of the pavement verti-
cal motion are complicated and irregular, the Poincaré map looks like a narrow
band, and the power spectrum consists not only of many peaks, but also of con-
tinuous broadband stochastic curves.

The largest Lyapunov exponents corresponding to these two cases (B8,=0.02 m,
0.1 m) are also computed and found to be 0 and 0.1912. Hence it may be concluded
that the vertical motion of the pavement when B;=0.02 m is quasiperiodic and the
vertical motion of the pavement when B =0.1 m is chaotic.
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Fig. 9.6 Pavement responses with B;=0.1 m

9.3 The Effects of Nonlinearity and Viscoelasticity on
Vehicle and Road Responses

To investigate the effect of nonlinearity on vehicle and pavement responses, the am-
plitude—frequency response curves of the vehicle body’s vertical acceleration and
the pavement vertical displacement for a linear and nonlinear system are drawn, as
shown in Fig. 9.7. In order to obtain a frequency range from 0.5 to 40 Hz, the wave
length L varies from 0.5 to 40 m, and the vehicle velocity V' is set to 20 m/s. From
Fig. 9.7 it can be seen that the effect of nonlinearity on the vehicle body vertical ac-
celeration is greater than the effect on the pavement vertical displacement. At lower
frequencies, the responses of the nonlinear system are larger than those of the linear
system. However, in higher frequencies, the responses of the nonlinear system are
smaller than that of the linear system.

In addition, Fig. 9.8 compares the amplitude—frequency response curves of the
vehicle body vertical acceleration and the pavement vertical displacement for the
linear elastic and viscoelastic asphalt topping. It may be observed from Fig. 9.8 that
the effect of the viscoelastic pavement material on the vehicle response is much
smaller than its effect on the pavement response. The response of the pavement
with the viscoelastic material is greater than the response of the pavement with the
linear elastic material.
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Fig. 9.7 The effect of nonlinearity on amplitude—frequency responses. a Vehicle body vertical
accelerations. b Pavement displacements. (Reprinted from [1], with kind permission from ASME)
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The effects of seven nonlinear parameters f,, B,, S5, By, Bs, Bg» By, and

four viscoelastic parameters E,, E;, 11,, 7, on the vehicle body vertical accelera-
tion, and the pavement displacement are studied, as shown in Fig. 9.9, 9.10, 9.11,
9.12, 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, and 9.19. The main conclusions are listed
here,

1.

A, /m/s?

In four of the nonlinear parameters of the vehicle system, the effect of the sus-
pension damper asymmetry coefficient S, is the greatest, the effects of the
square nonlinear tire stiffness S, and the square nonlinear suspension stiffness
B, are the second, and the effect of the cubic nonlinear suspension stiffness f3,
is the least. A large B, or small $, both benefit vehicle riding comfort and road
service life. Small f, may improve vehicle riding comfort but hardly influences
the pavement displacement.

. The effects of the pavement nonlinear parameters fs, f[,, and f; on the

responses of the vehicle and pavement is very small. Therefore, these three non-
linear parameters may be omitted in order to simplify the calculations.

. In four of the viscoelastic parameters of the pavement asphalt topping, the effect

of E, on system response is greater than that of E; and the effect of 7, on sys-
tem response is greater than that of », A small £, large E}, large 7,, or large 7,
may not only improve vehicle riding comfort but also extend road service life.
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Fig. 9.9 The effect of square nonlinear tire stiffness f,. (Reprinted from [2], with kind permission
from Academy Publisher)
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Fig. 9.10 The effect of square nonlinear suspension stiffness f,. (Reprinted from [2], with kind
permission from Academy Publisher)
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Fig. 9.11 The effect of cubic nonlinear suspension stiffness f;. (Reprinted from [2], with kind
permission from Academy Publisher)
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Fig. 9.12 The effect of suspension damper asymmetry coefficient §,. (Reprinted from [2], with
kind permission from Academy Publisher)
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Fig. 9.13 The effect of square nonlinear pavement topping elastic f;. (Reprinted from [2], with
kind permission from Academy Publisher)
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Fig. 9.14 The effect of cubic nonlinear pavement topping elastic f,. (Reprinted from [2], with
kind permission from Academy Publisher)
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Fig. 9.15 The effect of nonlinear foundation stiffness f,. (Reprinted from [2], with kind permis-
sion from Academy Publisher)
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Fig. 9.16 The effect of pavement topping elastic modulus E,. (Reprinted from [2], with kind per-
mission from Academy Publisher)
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Fig. 9.17 The effect of pavement topping elastic modulus E;. (Reprinted from [2], with kind per-
mission from Academy Publisher)
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Fig. 9.18 The effect of pavement topping damping #,. (Reprinted from [2], with kind permission
from Academy Publisher)
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Fig. 9.19 The effect of pavement topping damping 7. (Reprinted from [2], with kind permission
from Academy Publisher)
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9.4 Chapter Summary

In this chapter, a 3D vehicle-road coupled system with nonlinearity and viscoelas-
ticity is built and the nonlinear responses of the vehicle and road are computed si-
multaneously. The effects of the nonlinear and viscous parameters on vehicle riding
comfort and road damage are also analyzed. It can be found that

1.

The effect of nonlinearity on the vehicle body vertical acceleration is greater
than the effect on the pavement vertical displacement. At lower frequencies,
the responses of the nonlinear system are greater than those of the linear sys-
tem. However, at higher frequencies, the responses of the nonlinear system are
smaller than those of the linear system. Hence, it is necessary to take into account
the nonlinearity of the vehicle suspension to research the nonlinear dynamic phe-
nomena of the vehicle and to improve computational accuracy. On the other
hand, the nonlinearity of the pavement material may be neglected if one calcu-
lates only the amplitude of the pavement response.

. The influence of the viscoelastic pavement material on the vehicle response is

much smaller than that on the pavement response. The response of the pavement
with viscoelastic asphalt topping is greater than the response with linear elastic
material. Thus, the viscoelastic characteristic of asphalt topping should be con-
sidered in order to estimate the pavement response more accurately.
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