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With the development of highway transportation, the high speed and heavy duty 
phenomena have become extraordinarily common. The premature pavement dam-
age caused by the dynamic loads of heavy duty vehicles is becoming more and more 
serious and is receiving widespread attentions. The static highway design method 
has met difficulty to meet the traffic requirement. It is a prevailing subject to study 
the dynamics of pavement structure, to reveal the pavement damage mechanism, 
and to promote the changing of pavement design criterion from static to dynamic.

This chapter establishes the models of a finite (Sect. 4.1–4.3) and infinite beam 
(Sect. 4.4) on a nonlinear foundation with viscous damping. Based on the Galerkin 
method and the integral transform method, the numerical and analytical solutions 
are derived for the dynamic response of the pavement structure subjected to a mov-
ing load. Moreover, the vibration characteristics of the pavement structure under 
a moving load are discussed through some examples. Furthermore, the coupled 
nonlinear vibration of the vehicle–pavement system is studied based on a finite 
Timoshenko beam on the foundation subjected to a spring–mass–damper oscillator.

4.1 � The Dynamic Response of a Vehicle– 
Pavement System Based on a Finite Beam  
on a Nonlinear Foundation

The dynamic response problem of elastic beams on a nonlinear viscoelastic foun-
dation displays nonlinear and viscous characteristics, which make the analysis dif-
ficult. The Galerkin truncation method is a powerful tool for dealing with dynamic 
problems in such cases. It has been widely used to study free and forced vibration 
phenomena for elastic materials on nonlinear viscoelastic foundations. Based on the 
Galerkin method, Li et al. investigated the chaos of a pavement on a viscoelastic 
foundation subjected to a moving vehicle with the first order discretization and 
Melnikov’s function [1]; Sheng et al. studied the dynamic behavior of Timoshenko 
beams with damage on a viscoelastic foundation by using 2-term truncation [2]; 



4  Dynamic Analysis of a Pavement Structure Under a Vehicle’s Moving Load96

Pellicano and Mastroddi investigated the nonlinear dynamic behavior via 3-term 
truncation in conjunction with the method of normal forms [3]; Ansari et al. stud-
ied train–track interaction via 3-term truncation, considering the internal–external 
resonance condition and obtained the frequency responses of different harmonics, 
and found that the nonlinear stiffness plays a positive role in the design of railway 
tracks because of the delay in the jump phenomenon [4, 5]; Yan et al. studied the 
dynamic response of functionally graded beams with an open edge crack on an 
elastic foundation subjected to a transverse moving load via 3-term truncation [6]; 
Coskun studied the forced vibrations of an elastic beam on a nonlinear tensionless 
foundation by employing the 5-term truncation [7]; Celep et  al. investigated the 
response of a beam on a tensionless Pasternak foundation subjected to a dynamic 
load by employing the 5-term truncation [8]; Vassilev and Djondjorov investigated 
the dynamic stability of viscoelastic pipes lying on a foundation of variable modu-
lus using 10-term truncation [9]; Yang et al. presented the dynamic behavior of the 
vehicle–pavement-foundation coupled system using the 20-term truncation [10]; 
Chen and Chen studied steady-state deformations of an infinite beam on a tension-
less foundation under a moving point load through 80-term truncation [11]; Senalp 
et al. studied the dynamic response of a finite length Euler–Bernoulli beam on linear 
and nonlinear viscoelastic foundations under a concentrated moving force, and 100-
term truncation is utilized in order to solve the governing equations of motion [12].

Although the Galerkin truncation has been widely applied to dynamic problems 
of finite beams on a nonlinear viscoelastic foundation, the convergence of the trun-
cation terms has not been studied. In this section, the convergence of Galerkin’s 
method for dynamic response of finite Euler–Bernoulli beams on a cubic nonlinear 
foundation with viscous damping is studied. The parametric dependence study is 
carried out to investigate the effects of different parameters on the convergence of 
the Galerkin truncation.

The dynamic response of a finite beam on an elastic foundation has been stud-
ied through different boundary conditions. Based on the finite element method for 
the dynamic analysis of beams on an elastic foundation subjected to moving point 
loads, Thambiratnam and Zhuge proved that the beams of span length L > 10 m can 
accurately approximate the response of the ideal beam of infinite length [13]. In 
order to study the interaction between train vehicles and railway track, Muscolino 
and Palmeri scrutinized the response of beams on a viscoelastic foundation under 
moving single degree-of-freedom (SDOF) oscillators [14]. Based on modal shapes 
and natural frequencies of the beam-foundation, the effects of boundary conditions 
and the span length of the beam are investigated through a state–space formulation. 
Monsalve et al. presented the dynamic analysis of a Timoshenko beam-column on 
a two-parameter elastic foundation with generalized end conditions. The end condi-
tions allowed simulating any end support condition to the beam-column [15]. The 
dynamic responses of functionally graded beams on an elastic foundation subjected 
to a moving load with different end supports are obtained by Yan et al. [6]. The au-
thors found that boundary conditions have significant influence on the dynamic re-
sponse of the cracked functionally graded materials’ beams. However, there are no 
works on the influences of boundary conditions of finite beams on a foundation on 
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the dynamic response of the beams excited by a moving load and the convergence 
of the Galerkin’s method. To address the lack of research in this aspect, the dynamic 
responses are calculated by the Galerkin truncation under three types of the con-
ventional boundary conditions, namely simply-supported (SS), clamped–clamped 
(CC), and free–free (FF) boundary conditions. In the present work, the effects of 
the boundary condition and span length of the supporting beam on the dynamic 
responses and the convergence of the Galerkin truncation are studied.

This section investigates the convergence of Galerkin’s method for the dynamic 
response of a vehicle–pavement system. The pavement is modeled as a finite length 
Euler–Bernoulli or a Timoshenko beam with uniform cross-section on a nonlin-
ear viscoelastic foundation. The vehicle is simplified as a concentrated force or a 
spring–mass–damper oscillator. Galerkin’s method is utilized to discretize the non-
linear partial differential governing equation of the forced vibration. Moreover, the 
dependence of the convergence of Galerkin’s method on boundary conditions, span 
length, and other system parameters is studied, respectively.

4.1.1 � Equation of Motion [16]

The system under investigation is a finite elastic Euler–Bernoulli beam on a non-
linear viscoelastic foundation and subjected to a moving load. Consider a homoge-
neous beam with constant cross-section A, moment of inertial I, length L, densityρ, 
and modulus of elasticity E. The foundation is taken as a nonlinear Winkler’s foun-
dation with liner-plus-cubic stiffness and viscous damping with three parameters 
as follows

� (4.1)

where P represents the force induced by the foundation per unit length of the beam, 
k1 and k3 are the linear and nonlinear foundation parameters, respectively, μ is the 
damping coefficient of the foundation, T is the time, a comma preceding T denotes 
the partial differentiation with respect to T.

Using the Hamilton principle and considering the Euler–Bernoulli beam theory, 
one can develop the governing differential equation of motion for the beam as

� (4.2)

where w( X, T) is the vertical displacement function, EI is the flexural rigidity of 
the beam, X is the spatial coordinate along the axis of the beam, δ( X) is the Dirac 
delta function used to deal with the moving concentrated load, a comma preceding 
X denotes the partial differentiation with respect to X, Fz and v are the magnitudes 
of the load and load speed, respectively.

Introduce the dimensionless variables and parameters as follows

3
1 3 ,TP k w k w cw= + +

3
1 3, , , ( )TT XXXX T zAw EIw k w k w cw F X VTρ δ+ + + + = -



4  Dynamic Analysis of a Pavement Structure Under a Vehicle’s Moving Load98

�

(4.3)

where x is the dimensionless spatial coordinate and t is the dimensionless time. 
Equation (4.2) can be transformed into the dimensionless equation

� (4.4)

Here, the beam considered in the model, is assumed to be simply supported at both 
ends, and therefore the boundary conditions are given as follows

� (4.5)

In the present investigation, two other kinds of boundary conditions of the beam are 
also considered, that is, both clamped ends, as follows

� (4.6)

and both free ends as follows

� (4.7)

In all numerical examples here, the initial conditions are

�
(4.8)

4.1.2 � Galerkin’s Discretization

The Galerkin truncation method is used to discretize the system and the series ex-
pansion form for w( x, t) is assumed to be

�
(4.9)

where ϕk x( ) are the trial functions, and q tk ( ) are sets of generalized displacements 
of the beams. In this research, the first n terms of Eq. (4.9) is considered in order to 
determine w( x, t). Substituting Eq. (4.9) into Eq. (4.4) leads to

b
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= =

= =
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∞

=
= ∑
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�

(4.10)

Multiplying Eq. (4.10) by the weight functions w xi ( ) and integrating it over the in-
terval of 0 and 1, the Galerkin procedure leads to the following set of n second-order 
ordinary differential equations (ODES)

�

(4.11)

If the trial functions and the weight functions are both chosen properly, the vertical 
displacement of the beams w x tn ( , ) can be numerically solved via Eq. (4.9).

In the present investigation, both the trial and weight functions are chosen as 
eigenfunctions of the beam-foundation linear subsystem under the boundary con-
ditions. The natural frequencies and the mode functions of the beam on a linear 
elastic foundation which is simply supported and without any loads can be derived 
as follows

� (4.12)

and

� (4.13)

where

�
(4.14)

When the beam is CC at the ends, the kth mode functions is

�
(4.15)

( ) ( ) ( ) ( ){ } ( ) ( )
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( )2 2 4
b 1, 1, 2,k kk k kω β= + = 

( ) sin( ), ( 1, 2, )k kx x kφ β= = 

( ), 1, 2,k k kβ = π = 

( ) cosh cos (sin sinh ), 1, 2,k k k k k kx x x x x kφ β β ξ β β= - + - = …
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where

�
(4.16)

and the characteristic equation is

� (4.17)

whose nontrivial solutions should be numerically computed: 1 24.73, 7.85,β β= = … 
(notice that (2 1) /2 for 2k k kβ π≅ + > ).

When the beam is FF at the ends, the kth mode functions is

� (4.18)

where

�
(4.19)

and the characteristic equation is Eq. (4.17), same as CC boundary conditions. The ei-
genvalues are 1 2 30, 4.73, 7.85β β β= = = … (notice that (2 1) /2 for 3k k kβ π≅ - > ).

Both the trial and weight functions are chosen as eigenfunctions of the beam-
foundation linear subsystem. That is to say, ( ) ( )k kx xϕ φ= , ( ) ( )i iw x xφ= . For SS, 
CC, and FF boundary conditions, the mode functions satisfied

� (4.20)

With the usual orthogonal condition, the CC and FF boundary conditions satisfied

�
(4.21)

Substitution of Eq. (4.21) into Eq. (4.11) yields

�

(4.22)

For a set of given parameters kb, k1, k3, Fz, μ and the initial conditions in Eq. (4.8), 
q tk ( ) can be numerically solved via the Runge–Kutta method (fourth order) from 
Eq. (4.22) by discretizing the temporal variables. After substituting the numerical 
solutions into Eq. (4.9), the vertical displacement w x tn ( , ) can be solved.
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4.1.3 � Numerical Results

In this part, the beam is assumed to be the asphalt mixtures D-12 (limestone). The 
physical and geometric properties and dimensionless parameters’ value of the pave-
ment, foundation, and the moving load are listed in Table 4.1.

The results of a few different numbers of Galerkin truncation terms, namely, 
50-term Galerkin’s truncation, 75-term Galerkin’s truncation, 150-term Galerkin’s 
truncation, and 200-term Galerkin’s truncation for the vertical deflections of the as-
phalt pavement while the load moves to the mid-point of the pavement and the ver-
tical deflections of pavement center with time are, respectively, shown in Figs. 4.1 
and 4.2. The numerical results demonstrated that there are big differences between 
the 50-term Galerkin’s truncation results with the 150-term ones and the 200-term 
ones. The comparisons indicate that the 50-term Galerkin’s method is not accurate 
enough for the dynamic response analysis of the asphalt pavement on a soft soil 
foundation running the vehicle, and there are discernible differences between the 
results of the 75-term and the 150-term Galerkin’s method. The comparisons also 
predict that the difference between the results of the 150-term and the 200-term 
Galerkin’s method is very small, so the 150-term Galerkin’s method yields rather 
accurate results. The maximum relative differences between the maximum mid-
point vertical deflections is 14.29 × 10−2 in the 50-term Galerkin truncation and the 
200-term Galerkin truncation, 4.876 × 10−2 in the 75-term Galerkin truncation and 
the 200-term Galerkin truncation, and 0.3381 × 10−2 in the 150-term Galerkin trun-
cation and 200-term Galerkin truncation.

Table 4.1   Properties of the asphalt mixtures D-12, pavement, foundation, and load [17]. (Reprinted 
from ref. [16], Copyright 2014, with permission from Elsevier)
Item Notation Value Dimensionless value
Asphalt mixtures (D–12)
Young’s modulus(steel) E 6.998 GPa –
Mass density ρ 2373 kg/m3 –
Height of pavement h 0.3 m –
Width of pavement b 1.0 m –
Modulus of elasticity kb – 5.41 × 10−4

Length L 160 m 1
Foundation
Mean stiffness k1 8 × 106 N/m2 97.552
Nonlinear stiffness k3 8 × 106 N/m4 2.497 × 106

Viscous damping c 0.3 × 106 Ns/m2 39.263
Moving load
Load Fz 212.6 KN 1.013 × 10−4

Speed V 20 m/s 0.01165

4.1 � The Dynamic Response of a Vehicle–Pavement System Based …
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In Figs. 4.3 and 4.4, the effects of three kinds of boundary conditions on the ver-
tical displacements of the pavement midpoint ( /2)X L=  while /(2 )T L V=  versus 
the truncation terms and the shape of the pavement while /(2 )T L V=  are displayed. 
In Fig. 4.4a, the effects of three kinds of boundary conditions on the vertical dis-
placements of the pavement midpoint ( /2)X L=  while /(2 )T L V=  versus the trun-
cation terms are displayed. Figure 4.4b shows the kth-order of the natural frequen-
cies. The numerical results also illustrate that the convergence for simply supported 
boundary conditions is slightly slower, the same as changing tendencies of the natu-
ral frequencies. The numerical results which are shown in Fig. 4.4 also illustrate 
that the convergence can be predicted from the growth in the natural frequencies.
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Fig. 4.1   The effects of the 
Galerkin truncation terms 
on the vertical deflection of 
the pavement. (Reprinted 
from ref. [16], Copyright 
2014, with permission from 
Elsevier)
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In the following calculations for the asphalt pavement on a soft soil foundation 
with a moving vehicle, only the results of the simply supported boundary condi-
tions are shown. Figure 4.5 shows the dependence of the convergence in terms of 
the vertical deflections of the pavement on the system parameters. There is a little 
difference among the vertical deflections for different lengths of the beam while the 
truncation terms are not too large, which means 20n < . The numerical results also 
illustrate that when a longer length of the pavement L is chosen, more truncation 
terms are required to achieve convergence. The convergence of Galerkin’s method 
depends on the pavement and foundation parameters, including the modulus of elas-
ticity of the pavement, height and width of the pavement, the linear and nonlinear 
foundation parameters, and the damping coefficient of the foundation, which are 
displayed in Fig. 4.5, respectively. The numerical results of the asphalt pavement 

a

w

b

Fig. 4.4   The effects of the boundary conditions: a on the vertical displacements of the pavement 
midpoint versus truncation terms; b on the natural frequencies versus terms. (Reprinted from ref. 
[16], Copyright 2014, with permission from Elsevier)
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a b

c d

e f

g

Fig. 4.5   The effects of the parameters on the vertical displacements of the pavement midpoint 
versus truncation terms. (Reprinted from ref. [16], Copyright 2014, with permission from Elsevier)
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on a soft soil foundation with a moving vehicle illustrate that the convergence of the 
Galerkin truncation increases with the growing modulus of elasticity of the pave-
ment, the nonlinear foundation parameters, but decreases with the increase of the 
linear foundation parameters and the damping coefficient. It is also found that the 
convergence increases with the height and the width of the pavement. The numeri-
cal results also depict that there is a little difference among the vertical deflections 
of the pavement for not too large truncation terms with the different modulus of 
elasticity of the pavement, nonlinear foundation parameters, the height and the 
width of the beam, and the damping coefficient of the foundation. The vertical dis-
placements of the pavement decrease with the increase of these parameters.

The vertical deflections of the asphalt pavement while the load moves to mid-
point of the pavement for different lengths of pavement and different boundary 
conditions are shown in Fig. 4.6a and b, respectively. Figure 4.6a demonstrates that 
beams of span length 18mL =  with SS or CC boundary conditions can accurately 
approximate the response of the infinite length asphalt pavement on a soft soil foun-
dation with a moving vehicle, and three solutions are overlapped when the span 
length of the pavement is rather large. Figure 4.6b indicates that the FF boundary 
conditions are the inefficient ones.

4.2 � The Dynamic Response of a Finite Timoshenko  
Beam on a Nonlinear Viscoelastic Foundation  
to a Moving Load [18]

4.2.1 � Equation of Motion

The system under investigation is a finite elastic Timoshenko beam on a nonlinear 
viscoelastic foundation subjected to a moving load, as shown in Fig. 4.7. F0 and V, 
respectively, represent the magnitude of the load and the load speed. Moreover, V 

a b
σ

Fig. 4.6   The effects of the span length of the pavement on the vertical deflection of the pavement 
with n = 200. (Reprinted from ref. [16], Copyright 2014, with permission from Elsevier)
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is assumed to be constant. X and U are the spatial coordinate along the axis of the 
beam and the vertical displacement function, respectively. Consider a homogeneous 
beam with constant cross-section A, moment of inertial I, length L, density ρ, modu-
lus of elasticity E, shear modulus G, and effective shear area k′A.

The foundation is taken as a nonlinear Pasternak foundation with linear-plus-
cubic stiffness and viscous damping as follows:

�
(4.23)

where P represents the force induced by the foundation per unit length of the beam. 
k1 and k3 are the linear and nonlinear foundation parameters, respectively. Further-
more, Gp and μ are the shear deformation coefficient and the damping coefficient of 
the foundation, respectively, and T is the time.

Using the Hamilton principle and considering the Timoshenko beam theory, one 
can develop the governing differential equations of motion for the beam as

�

(4.24)

where kf and cf are the foundation rocking stiffness and the damping coefficient, 
ψ ( , )X T  is the slope function due to bending of the beam, ( )X VTδ -  is the Dirac 
delta function used to deal with the moving concentrated load.

Introduce the dimensionless variables and parameters as follows

�

(4.25)
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Fig. 4.7   The model of a finite Timoshenko beam on a nonlinear viscoelastic Pasternak foundation. 
(Reprinted from ref. [18], with kind permission from Springer Science+Business Media)
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where x is the dimensionless spatial coordinate and t is the dimensionless time. 
Equation (4.24) can be transformed into the following dimensionless equation

�

(4.26)

4.2.2 � Normal Modes

The harmonic solution can be assumed in the form

�

(4.27)

where ωk are the natural frequencies, and ϕk x( ) and υk x( ) are the corresponding 
mode functions of the beam on a linear Pasternak foundation, which can be derived 
from Eq. (4.26) as follows

�

(4.28)

where

By eliminating the functions Uk from Eq. (4.28), one obtains the Timoshenko beam 
equations of free vibration in the form

�

(4.29)

Thus the characteristic equation has the form
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Replacing 2z r=  casts Eq. (4.30) in the form

� (4.31)

Its roots are

� (4.32)

where 2( ) 4 .c a b ac∆ = - + - +
Now, one should discuss the sign of the roots z1 and z2: 2 10; 0k z zω∀ ⇔ < >   

for forq z q< < >0 0 01; .
Two possible solutions to Eq. (4.28) can be obtained:

a.	 For 0,q <

�
(4.33)

b.	 For 0,q >

�
(4.34)

where the integration constants Ci, Ci
′, Hi, and Hi

′ depend on the boundary condi-
tions.

The simply supported boundary condition analyzed in this research is the most 
frequently encountered boundary condition for the present problem. The boundary 
conditions for a simply supported beam are

�
(4.35)

a.	 For 0,q <  the solution to Eq. (4.29) has the form (4.33). From the boundary con-
ditions at x = 0, the following equations are obtained

� (4.36)

The system of equations is satisfied when C1 = C3 = 0, which corresponds to the 
solution for the Euler–Bernoulli beam.

The boundary conditions at 1x =  are expressed by the matrix equation

�
(4.37)
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The nontrivial solution to Eq. (4.37) is obtained from the condition that the main 
matrix determinant is equal to zero. Thus, one can obtain the frequency equation

� (4.38)

Consequently, the corresponding ith normal modes with simply supported boundary 
conditions can be obtained as

�
(4.39)

b.	 For 0,q >  the solution to Eq. (4.29) has the form (4.34). From the boundary con-
ditions at x = 0, the following equations are obtained

� (4.40)

The system of equations is satisfied when 1 3 0.H H= =
The boundary conditions at 1x =  are expressed by the matrix equation

�
(4.41)

The nontrivial solution to Eq. (4.41) is obtained from the condition that the main 
matrix determinant is equal to zero. Thus, one can obtain the frequency equation

� (4.42)

Consequently, the corresponding ith normal modes with simply supported boundary 
conditions can be obtained as

�
(4.43)

4.2.3 � Galerkin’s Discretization

The Galerkin truncation method is used to discretize the system and the series ex-
pansion forms for u x t( , ) and ψ ( , )x t  with the simply supported boundary conditions 
are assumed as
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where φk( x) and νk( x) are the trial functions, qk( t) and ζk( t) are the sets of general-
ized displacements. In this research, the trial functions φk( x) and νk( x) are chosen 
as eigenfunctions of the Timoshenko beam linear subsystem with the simply sup-
ported boundary conditions as

�
(4.45)

The first n terms of Eq. (4.44) are considered in this research. Substituting Eq. (4.44) 
into Eq. (4.26) leads to

�

(4.46)

Multiplying Eq.  (4.46) by the weight functions wi( x) and integrating it over the 
interval of 0 and 1, the Galerkin procedure leads to the following set of 2n second-
order ODES

�

(4.47)

Here, the weight functions wi( x) and vi( x), i = 1,2,…,n, are also chosen as eigenfunc-
tions of the Timoshenko beam linear subsystem. That is,
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With the usual orthogonal condition, the SS boundary conditions lead to
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Substitution of Eq. (4.49) into Eq. (4.47) yields

�

(4.50)

The above mentioned ODES can be solved via the fourth-order Runge–Kutta meth-
od. In the numerical computation here, the initial conditions are

� (4.51)

4.2.4 � Numerical Results

In this part, numerical examples are given for parametric research. The physical and 
geometric properties of the Timoshenko beam, foundation and the moving load are 
listed in Table 4.2.

The vertical deflection of the beam when the load moves to the mid-point of 
the beam is shown in Fig. 4.8a, while the vertical deflection of beam center with 
time is illustrated in Fig. 4.8b. The Galerkin truncation term is set to four values, 
namely, a 50-term Galerkin’s truncation, 75-term Galerkin’s truncation, 150-term 
Galerkin’s truncation, and 200-term Galerkin’s truncation. As shown in the two 
plots, the transverse deflection increases for x < 80 or t < 4, and the biggest deflection 
appears at x = 80 (with ± 0.2 % variations) or t = 4 (with ± 0.15 % variations). After 
reaching the peak values, the transverse deflection decreases and tends to zero. The 
growth speed of the transverse deflection is almost the same as the reduced speed. 
The numerical results also demonstrated that there are large differences between the 
50-term Galerkin truncation results with the 150-term ones and the 200-term ones. 
There is no doubt that the 50-term Galerkin’s method is not accurate enough for the 
dynamic response analysis Timoshenko beams on nonlinear viscoelastic founda-
tions subjected to a moving concentrated load, and there are discernible differences 
between the results of the 75-term and the 150-term Galerkin’s method. Moreover, 
the results of the 150-term and the 200-term Galerkin’s method are almost the same. 
Therefore, the 150-term Galerkin’s method yields rather accurate results. The maxi-
mum relative differences between the maximum mid-point vertical deflections is 
8.49 × 10−2 in the 50-term Galerkin’s truncation and 200-term Galerkin’s truncation, 
4.06 × 10−2 in the 75-term Galerkin’s truncation and 200-term Galerkin’s trunca-
tion, and 0.74 × 10−2 in the 150-term Galerkin’s truncation and 200-term Galerkin’s 
truncation. The results are in good agreement with the research by Ding et al. [16].

Figure 4.9 shows the dependence of the convergence in terms of the vertical de-
flections of the beam on the system parameters. The abscissa represents the trunca-
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Table 4.2   Properties of the beam, foundation, and load. (Reprinted from ref. [18], with kind per-
mission from Springer Science+Business Media)
Item Notation Value Dimensionless Value
Beam
Young’s modulus E 6.998 GPa –
Shear modulus G 77 GPa
Mass density ρ 2373 kg/m3 –
Height of pavement h 0.3 m –
Width of pavement b 1.0 m –
Length L 160 m –
Shear coefficients k′ 0.4 –
– α – 4.401
– β – 1.502 × 107

Foundation
Linear stiffness k1 8 × 106 N/m2 97.552
Nonlinear stiffness k3 8 × 106 N/m4 2.497 × 106

Viscous damping µ 0.3 × 106 Ns/m2 39.263
Shear deformation coefficient Gp 6.669 × 107 N 0.0318
Rocking stiffness kf 108 N 1.626 × 105

Rocking damping coefficient cf 1.5 × 106 N·s 2.618 × 104

Moving load
Load F0 2.126 × 105 N 1.01 × 10−4

Speed V 20 m/s 0.01165
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Fig. 4.8   Effects of the Galerkin’s truncation terms: a The effects on the vertical deflection of the 
beam; b The effects on the vertical deflection of the beam’s midpoint. (Reprinted from ref. [18], 
with kind permission from Springer Science+Business Media)
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tion terms n while the ordinate represents the vertical displacements of the beam’s 
midpoint while /(2 )X L V= , /(2 )T L V= . As seen in these figures, the vertical de-
flections of the beam increase with the truncation terms initially, but gradually ap-
proach to a stable value. The numerical results illustrate that the convergence of the 
Galerkin truncation increases with the growing modulus of elasticity of the beam, 
the shear modulus of the beam, the shear coefficient of the foundation, the height 

a b

c d

e f

Fig. 4.9   Effects of parameters on the vertical displacements of the beam’s midpoint versus the 
truncation terms. (Reprinted from ref. [18], with kind permission from Springer Science+Business 
Media)

 

4.2 � The Dynamic Response of a Finite Timoshenko Beam …�



4  Dynamic Analysis of a Pavement Structure Under a Vehicle’s Moving Load114

and the width of the beam, but decreases with the growing length of the beam. That 
is, the longer the length of the beam that is chosen, the more truncation terms are 
required to achieve convergence. From the obtained results, it is concluded that the 
vertical displacements of the beam decrease with the growing of these parameters 
except the length of the beam. For various values of L, there is little difference 
among the vertical deflections of the beam when ( /2, /(2 ))nU L L V  has been a stable 
value in Fig. 4.9a. Moreover, the numerical results also depict that there is little dif-
ference among the vertical deflections of the beam for not too large truncation terms 
with different values of the modulus of elasticity and the height and width of the 
beam. It should be noted that the effects of the above mentioned parameters have 
been investigated except the shear modulus of the beam and the shear coefficient 
of the foundation in Ref. [16]. In this section, similar conclusions are drawn from 
Fig. 4.9b, e and f. However, the influence of the length of the beam on the vertical 
deflection of a Timoshenko beam on the Pasternak foundation can be neglected, 
which is different from Ref. [16], probably because of a model difference.

The above discussions demonstrate that the above mentioned parameters have 
appreciable influences on the convergence of the Galerkin truncation. However, 
some parameters do not, including the linear foundation parameters, the rocking 
stiffness of the foundation, the damping coefficient of the foundation, and the non-
linear foundation parameters. On the other hand, these parameters have greater ef-
fects on the vertical displacements than the convergence of the Galerkin truncation. 
Consequently, it is difficult to demonstrate the dependence of the convergence on 
these parameters. In order to study the effects of these parameters on the conver-
gence of the Galerkin truncation, δn is introduced and described by

�
(4.52)

The effects of other system parameters on the convergence of the Galerkin trun-
cation are investigated in Fig. 4.10. Compared with Fig. 4.9, on the contrary, the 
numerical results demonstrate that δn decreases with the truncation terms until they 
are zero. From Fig. 4.10a and b, it can be seen that the convergence of the Galerkin 
truncation decreases with the increasing linear foundation parameters, but increases 
with the increasing rocking stiffness of the foundation. Furthermore, the 100-term 
Galerkin’s method does not have a convergent numerical solution. This conclusion 
coincides with that in Ref. [16].

Figure 4.10c and d show a more complicated phenomenon that the convergence 
of the Galerkin truncation concerns not only the system parameters but also the 
truncation terms. As seen in Fig. 4.10c, when the truncation term is less than 37, 
the larger damping coefficient of the foundation performs the faster convergence. 
Otherwise, the smaller damping coefficient of the foundation leads to the faster 
convergence. A similar conclusion can be drawn from Fig. 4.10d, whereas the non-
linear foundation parameter has less influence on the convergence of the Galerkin 
truncation than the damping coefficient of the foundation.

The time history diagrams for the vertical dynamic deflections of the mid-span 
of the beam for different values of the system parameters are shown in Fig. 4.11. As 
seen in these figures, the maximum value of the dynamic deflection occurs almost 
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at the mid-span of the beam (with ± 0.15 % variations), as illustrated in Fig. 4.8b. 
However, it is worth to note that the peak value occurs at a farther vicinity of the 
mid-span (with ± 0.86 % variations) when the damping coefficient of the foundation 
is a greater one from Fig. 4.11a. Thus, the growth speed of the transverse deflection 
is far greater than the reduced speed. That is to say, the damping coefficient of the 
foundation is a reason for time delay. Moreover, as the damping coefficient of the 
foundation increases, the deflection of the Timoshenko beams decreases accord-
ingly. In Ref. [19], similar results can be found. Above all, the numerical results 
show that the damping coefficient of the foundation has significant influence on the 
dynamic response of the Timoshenko beam. In other words, the damping coefficient 
of the foundation cannot be neglected when studying the dynamic response of finite 
Timoshenko beams supported by nonlinear viscoelastic Pasternak foundations.

The effects of the shear modulus of the beam and the shear deformation co-
efficient of the foundation on the deflections of the beams lying on viscoelastic 
nonlinear foundations are illustrated in Fig.  4.11b and c, respectively. From the 
simulation results obtained, one can see that the biggest deflections decrease with 
the increasing shear modulus of the beams and the increasing shear deformation 
coefficient of the foundations. It should be noted that a Pasternak foundation turns 
into a Winkler foundation when Gp = 0. That is to say, the maximum deflection of a 
Timoshenko beam on a Pasternak foundation is much smaller than that of a beam on 
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permission from Springer Science+Business Media)

 

4.2 � The Dynamic Response of a Finite Timoshenko Beam …�



4  Dynamic Analysis of a Pavement Structure Under a Vehicle’s Moving Load116

a Winkler foundation. It is noted that this conclusion corresponds with the research 
in Ref. [20].

From Fig. 4.11d, one can observe that the maximum deflection decreases with 
the increasing rocking stiffness of the foundation. In Ref. [19], Ding et al. has a 
similar conclusion. Figure 4.11e and f display the effects of the linear elasticity pa-
rameter and the nonlinear elasticity parameter of the foundation on the deflection of 
Timoshenko beams supported by viscoelastic nonlinear foundations. The numerical 
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results indicate that the biggest deflections decrease with the increasing linear and 
nonlinear elasticity parameters of the foundation. The whole form of the deflection 
has little change with different linear elasticity parameters and nonlinear elasticity 
parameters of the foundation.

Figure 4.12 shows that the influence of the nonlinear elasticity parameter on the 
vertical displacements of the beam at mid-span while the load moves to the mid-
point of the beam versus the magnitude of the moving load. The figure predicts that 
the difference between the results of 6 4

3 8.0 10 N/mk = ×  and 11 4
3 8.0 10 N/mk = ×  

is very small. When compared the results of 6 4
3 8.0 10 N/mk = ×  with 

14 4
3 8.0 10 N/mk = × , there are big differences and the deflection decreases with 

the increasing nonlinear elasticity parameter. Furthermore, the deflection of the Ti-
moshenko beams increases with the increasing magnitude of the moving load.

As far as the effects of the rocking damping coefficient on the dynamic response 
of finite beams are concerned, one can conclude that the rocking damping coefficient 
could neither affect greatly on the deflection of the beam nor make a contribution 
to the convergence of the Galerkin truncation from Fig. 4.13. That is, the rocking 
damping coefficient can be neglected when studying the dynamic response of finite 
Timoshenko beams supported by nonlinear viscoelastic Pasternak foundations.
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Fig. 4.12   The effects of the nonlinear elasticity parameter on the vertical displacement versus 
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4.3 � Vibration of a Vehicle–Pavement Coupled  
System Based on a Finite Timoshenko Beam  
on a Nonlinear Foundation [21]

4.3.1 � The Mathematical Model

The schematic of a finite elastic beam subjected to a moving spring–mass–damper 
system on a nonlinear foundation is shown in Fig. 4.14. The beam is modeled based 
on Timoshenko beam theory. U( X, T) and ψ( X, T) are the vertical displacement func-
tion and the slope function due to bending of the beam, respectively. T is the time. 
X and Z are, respectively, the spatial coordinate along the axis of the beam and the 
vertical spatial coordinate. Shearing strain γ is defined as γ = U, X–ψ, where the com-
ma preceding X denotes the partial differentiation with respect to X. The foundation 
model is characterized by linear elastic modulus k1, nonlinear elastic modulus k3, Pas-
ternak foundation modulus (shear deformation coefficient) GP, damping coefficient μ, 
rocking stiffness kf, and rocking damping coefficients cf. V represents the speed of the 
moving oscillator. k and c are, respectively, the elastic stiffness and the damping coef-
ficients of the moving oscillator. m1 and m2 are the masses in the moving oscillator. 
Z1 and Z2 are the vertical displacement functions of the two masses of the oscillator.

Consider the pavement as a homogeneous beam with constant cross-section A, 
moment of inertial I, length L, densityρ, shear modulus G, effective area k′A, and 

Fig. 4.13   The effects of the rocking damping coefficient on the vertical deflection versus the 
truncation terms. (Reprinted from ref. [18], with kind permission from Springer Science+Business 
Media)
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modulus of elasticity E. The equations of motion for the Timoshenko beam can be 
obtained by the d’Alembert’s principle and the Timoshenko beam theory as

�

(4.53)

where F0 represents the force induced by the moving spring–mass–damper oscil-
lator. The comma preceding T denotes the partial differentiation with respect to T. 
Furthermore, the equations of motion for the moving oscillator can be obtained by 
Newton’s Second Law as

�

(4.54)

In this research, all work is based on the assumption that the moving oscillator stays 
on the ground. The displacement of the moving oscillator is expressed as the sum of 
the vertical displacement of the beam and beam’s surface roughness as

� (4.55)

where Zp ( )X  represents the road surface roughness, and is defined as

�
(4.56)

in which a is the amplitude of the road surface roughness, and L0 is the wavelength 
of harmonic road roughness. Substituting Eq. (4.55) into Eq. (4.54) leads to
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Fig. 4.14   Schematic representation of a Timoshenko beam subjected to a moving oscillator on a 
nonlinear Pasternak foundation. (Reprinted from ref. [21], Copyright 2014, with permission from 
Elsevier)
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�
(4.57)

and

�

(4.58)

Substitution of Eqs. (4.57) and (4.58) into Eq. (4.53) leads to the following govern-
ing differential equations of coupled motion

�

(4.59)

Here, the beam is assumed to be simply supported at both ends. Therefore, the 
boundary conditions are given as follows

� (4.60)

In order to avoid round-off due to manipulations with large or small numbers in 
numerical calculations, the following dimensionless variables and parameters are 
introduced

�

(4.61)
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Equations  (4.59) and (4.60) can be expressed into the dimensionless normalized 
forms

�

(4.62)

and

� (4.63)

4.3.2 � The Schemes of Solution

The Galerkin truncation method is used to discretize the governing equations and 
the series expansion form for u( x, t) and ψ( x, t) which are simply supported at both 
ends, respectively, are assumed as

�

(4.64)

where qk( t) and ζk( t), respectively, are sets of generalized vertical displacements 
and slope displacements due to the bending of the beam, φk( x) and νk( x) are the trial 
functions of u( x, t) and ψ( x, t), respectively. Moreover, each of the trial functions 
should satisfy the boundary conditions (4.63). The first n terms of Eq. (4.64) are 
considered in the following calculations.

In this research, the trial functions φk( x) and νk( x) are chosen as eigenfunctions 
of the Timoshenko beam linear subsystem with the simply supported boundary con-
ditions as

�
(4.65)

where βk = kπ. Substituting Eqs. (4.64) and (4.65) into Eq. (4.62) leads to
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�

(4.66)

Here, the weight functions wi( x) and vi( x), i = 1,2,…,n, are also chosen as eigenfunc-
tions of the Timoshenko beam linear subsystem, i.e.,

� (4.67)

Multiplying the first two equations of Eq. (4.66) by the weight functions wi( x) and 
vi( x), respectively, then integrating the resulting equation over the interval of 0 and 
1, the Galerkin procedure leads to the following set of 2n + 1 s-order ODES

�

(4.68)

In the following simulations, the initial conditions are all set as

�

(4.69)
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For a set of given physical and geometric parameters of the Timoshenko beam, 
the foundation and the moving vehicle, qk( t), ζk( t), and z1( t) can be numerically 
solved via the fourth-order Runge–Kutta method from Eq. (4.68) by discretizing the 
temporal variables based on the initial conditions of Eq. (4.69). After substituting 
the numerical solutions of qk( t) and ζk( t) into Eq. (4.64), one can solve the vertical 
displacement function u( x, t) and the slope function ψ( x, t).

4.3.3 � Numerical Case Studies

In the following numerical examples, the physical and geometric properties of the 
vehicle–pavement coupled system are listed in Table 4.3.

Based on the parameter values, the values of the dimensionless parameters 
α, β, and κ, are determined by Eq.  (4.61) as 74.4013, 1.502 10α β= = × , and 

41.02172 10k -= × .
Ride comfort is one of the most significant dynamic performance characteristics 

of modern vehicles. Here, the vertical dynamic acceleration of the vehicle body, m1, is 
introduced for describing the ride comfort. Therefore, the acceleration A1 is defined as

Table 4.3   Properties of the Timoshenko beam, foundation and load. (Reprinted from ref. [21], 
Copyright 2014, with permission from Elsevier)

Item Notation Value Dimensionless 
value

Vehicle Vehicle body mass m1 21260 kg 0.18665
Tire mass m2 190 kg 0.00167
Suspension stiffness k 2.06 × 106 N/m 0.84114
Suspension damping c 3.0 × 104 N s/m 0.13151
Speed V 15 m/s 0.00874

Foundation Linear stiffness k1 8 × 106 N/m2 97.552
Nonlinear stiffness k3 8 × 106 N/m4 2.497 × 106

Viscous damping µ 0.3 × 106 Ns/m2 39.263
Shear parameter Gp 6.66875 × 107 N 0.0318
Rocking stiffness kf 106 N 1.6259 × 103

Rocking damping coefficient cf 1.5 × 106 N·s 2.618 × 104

Beam Young’s modulus E 6.998 GPa –
Shear modulus G 3.2 GPa –
Mass density ρ 2373 kg/m3 –
Cross–section of the pavement A 0.3 m2 –
Moment of inertial of the 
pavement

I 0.00225 m4 –

Length L 160 m –
Wavelength of road roughness L0 10 m
Amplitude of road roughness a 0.002 m
Shear coefficients k′ 0.4 –
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�
(4.70)

Convergence Studies

The modal truncation method has been widely used to investigate the dynamic re-
sponse of elastic materials on a nonlinear foundation. Theoretically, an exact solu-
tion is obtained by considering an infinite number of modes. Ding et  al. studied 
the convergence of Galerkin’s method for the Euler–Bernoulli beam [16] and the 
Timoshenko beam [18] on a nonlinear foundation subjected to a moving force. The 
authors found that the Galerkin truncation needs super high-order modes. More-
over, Bhattiprolu, Bajaj, and Davies studied the effect of the number of modes due 
to the nonlinear and viscoelastic behaviors of soils [22]. They found that Galerkin’s 
method needs 20 modes even for the beam on a nonlinear foam foundation. At the 
beginning of the numerical investigation, the convergence of the modal truncation 
is studied for determining the validity of the present study.

Figure 4.15 shows the comparison of the dynamic responses of the vehicle–pave-
ment coupled system with different Galerkin truncation terms. The time history of 
the vertical deflection of the midpoint of the Timoshenko beam, meaning /2X L= ,  
is shown in Fig.  4.15a. The vertical deflection ( , /2 )U X L V  of the Timoshenko 
beam is shown in Fig. 4.15b. As shown in Fig. 4.15a and b, there are significant 
differences between the results from the 25-term modal truncation with the results 
from the 100-term truncation and the 200-term truncation. Furthermore, there are 
some differences that can be discerned from the numerical results of the 50-term 
modal truncation with the results of the 100-term. Therefore, the dynamic response 
of the Timoshenko beam on a six-parameter foundation subjected to a moving oscil-
lator needs more than 50 terms of the modal truncation. The comparison also shows 
that the vertical deflections from the 100-term modal truncation are very close to the 
results from the 200-term truncation. These conclusions are in good agreement with 
the study by Yang et al. based on the same pavement and subgrade model subjected 
to a moving force [18].

Figure 4.15c and d, respectively, display the vertical displacement and the accelera-
tion of the vehicle body with the different terms of the modal truncation. Figure 4.15c 
shows that there are discernible differences between the time history and the vertical 
displacement of the vehicle body of 25-term and 200-term modal truncations. More-
over, Fig. 4.14d illustrates that there are almost no differences in the accelerations of 
the vehicle body between the 25-term and 200-term modal truncation. Therefore, the 
simulations for the displacement of the vehicle body do not need such a large number 
of modes as like the calculations for the displacement of the pavement do.

From Fig. 4.15a–d, one can find that the 100-term Galerkin truncation for the 
dynamic response of the vehicle–pavement coupled system based on a Timoshenko 
beam on a six-parameter foundation yields rather accurate results. In the following 
numerical examples, the first 100 modes are considered for the Galerkin truncation. 
Therefore, n = 100.
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The Timoshenko beam theory takes into account shear deformation and rota-
tional inertia effects. If the shear deformation and the rotational inertia effects are 
neglected, the Timoshenko beam theory deduces to the Euler–Bernoulli beam the-
ory. The Euler–Bernoulli beam theory is known as an engineer’s beam theory or 
classical beam theory. The similar Galerkin procedure is applicable in the case of 
Euler–Bernoulli beams on the same nonlinear foundation. In this case, the equations 
of motion can be derived as

�

(4.71)
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Fig. 4.15   Convergence of the Galerkin’s truncation method. (Reprinted from ref. [21], Copyright 
2014, with permission from Elsevier)
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Using the similar Galerkin procedure, the following set of n + 1 dimensionless sec-
ond-order ODES leads to

�

(4.72)

where dimensionless parameter kb is defined as

� (4.73)

Based on the parameter values in Table  4.3, kb is determined by Eq.  (4.73) as 
45.41 10bk -= × . Then, qk( t) and z1( t) in Eq. (4.72) are numerically solved via the 

fourth-order Runge–Kutta method.
In Fig.  4.16a, the effects of two different beam theories on the vertical dis-

placements of the pavement ( /2, /2 )U L L V  versus the truncation terms are shown. 
Without considering the rocking stiffness and the rocking damping coefficients, 
the numerical results in Fig. 4.16a illustrate that the convergence of the Galerkin 
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truncation for the Timoshenko beam on the six-parameter foundation is slightly 
slower than the Euler–Bernoulli beam on the same foundation. Moreover, Fig. 4.16a 
shows that the vertical displacements of the Timoshenko beam are slightly larger 
than those of the Euler–Bernoulli beam. One thing needs to be known, Palmeri 
and Cicirello also found that the Timoshenko beam theory predicts larger deflec-
tions than the Euler–Bernoulli beam theory based on cracked beams under static 
loads [23]. In Ref. [16], the authors have found that the convergence of the modal 
truncation is predicted by the natural frequency of the linear subsystem. In order to 
explore the reason behind the different convergence for the two beam theories, the 
natural frequencies of the linear subsystem of the two beam models are compared. 
The natural frequencies of the Euler–Bernoulli beam on a linear elastic Pasternak 
foundation which is simply supported and without any loads, ωEk, are derived as 
follows

� (4.74)

where k = 1,2,…. The natural frequencies of the Timoshenko beam on the same 
foundation and with the same boundary conditions, ωTk, are calculated from the 
following equation

�

(4.75)

The Fig. 4.16b shows that the natural frequencies of the Timoshenko beam on a 
linear foundation increase slower than the frequencies of the Euler–Bernoulli beam 
on the same foundation. The comparison between Fig. 4.16a and b shows that the 
changing tendencies of the natural frequencies not only predict the convergence of 
the modal truncation, but also predict the differences between the convergences of 
the different beam theories.

Figure 4.17 shows the effects of the length of the road on the dynamic response 
of the pavement. Figure 4.17a and b, respectively, depict the effects of the length 
of the road for the Euler–Bernoulli beam and the Timoshenko beam on a nonlinear 
foundation. As indicated by Fig. 4.17, the vertical displacement of the pavement 
does not converge with an increasing length of the road. Furthermore, the no con-
vergence phenomenon appears in the dynamic response based on the Euler–Ber-
noulli beam and the Timoshenko beam on a nonlinear foundation. The amplitude of 
the fluctuation of the vertical displacement is about 1/10 of the maximum vertical 
deflection of the pavement. It should be noted that Thambiratnam and Zhuge found 
that the finite length of beams can accurately approximate the response of the ideal 
beam of infinite length based on the dynamic analysis of beams on an elastic foun-
dation subjected to moving point loads [24]. Moreover, based on a moving concen-
trated load, Ding et al. also found the dynamic responses have good convergence of 
the length of the pavement [16]. Therefore, the coupling between the oscillator and 
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the pavement causes the fluctuation of the vertical displacement of the pavement 
with the increasing length of the road. On the other hand, Fig. 4.17 illustrates that 
the maximum and the minimum of the fluctuation of the vertical displacement are 
both convergent with an increasing pavement length. Therefore, the finite length of 
the pavement can be used to study the vibration of the vehicle–pavement coupled 
system. In the following calculations, the length of the road, L = 160 m.

�The Coupling Effect

The effect of coupling between the pavement and the vehicle is examined in this 
section. Based on Eq. (4.56) and Table 4.3, the excitation frequency from the rough-
ness of the road surface is derived as

�
(4.76)

If the suspension damping is neglected, based on Table 4.3, the natural frequency of 
the moving spring–mass oscillator is derived as

�
(4.77)

Therefore, based on the parameter values in Table 4.3, the vehicle body is near to 
resonance.

The time history of the vertical displacement of the pavement U( L/2, T) is de-
scribed in Fig. 4.18a. Meanwhile, the time history of the vehicle body is shown in 
Fig. 4.18b. The speed of the moving vehicle is set to three values, namely, V = 10 m/s, 
V = 15.667  m/s, and V = 20  m/s. Based on Eq.  (4.76) and Table  4.3, the excita-
tion frequencies of the pavement, respectively, are calculated as ωP = 6.283 rad/s, 
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ωP = 9.844 rad/s, and ωP = 12.566 rad/s. Figure 4.18b shows that the amplitude of 
the vibration of the vehicle is very large when the vehicle is near to resonance. 
Based on Eq. (4.76), the vibration of the vehicle will be faster for the greater mov-
ing speed. This conclusion is also found from Fig. 4.18b. Figure 4.18a reveals that 
the amplitude of the dynamic response of the pavement becomes smaller when the 
vehicle is close to resonance. Furthermore, the response curves of the midpoint of 
the beam become narrower when the moving speed of the vehicle increases. There-
fore, the resonance of the vehicle obviously influences the dynamic response of the 
pavement.

Figure 4.19a exhibits the biggest displacement of the vehicle body versus the 
speed of the vehicle. The numerical results clearly show the resonance area of the 
vehicle body. Moreover, there is only a little change for the biggest displacement 
of the vehicle body with the different moving speeds of the vehicle while speeding 
away from the resonance area. Figure 4.19b and c, respectively, show the biggest 
vertical displacement of the midpoint of the pavement and the biggest accelera-
tion of the vehicle body versus the moving speed of the vehicle. The comparison 
between Fig. 4.19b and c clearly reveals that the changing tendencies of the vertical 
deflections of the pavement’s midpoint and the acceleration of the vehicle body ver-
sus the speed are completely opposite. On the other hand, the changing processes 
of Fig. 4.19a and b are fully synchronized. Therefore, the dynamic response of the 
pavement and the vibration of the vehicle are coupled.

Figure  4.20a and b show the time history of the midpoint of the pavement 
and the vehicle body with different suspension stiffness. Based on Eq. (4.76) and 
Table 4.3, the natural frequencies of the vehicle are calculated as ωo = 0.9844 rad/s 
for 42.06 10 N/mk = ×  and ωo = 31.49  rad/s for 72.06 10 N/mk = × . There-
fore, the vehicle is far away from resonance when 42.06 10 N/mk = ×  and 

72.06 10 N/mk = × . This is the reason why the vibration of the vehicle body is very 
weak with 42.06 10 N/mk = ×  and 72.06 10 N/mk = × . Figure 4.21 illustrates the 
influence of the suspension damping on the dynamic response of the vehicle–pave-
ment coupled system. Figure 4.21b shows that the vibration of the vehicle becomes 

3 4 5 6 7 8 9 10
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
U

(L
/2

,T
)

(m
m

)

T (s)

V=10 m/s
V=15.667 m/s
V=20 m/s

n=100

0 1 2 3 4 5 6
-15

-10

-5

0

5

10

15

20

Z 1
(m

m
)

T (s)

V=10 m/s V=15.667 m/s V=20 m/s

n=100

a b

Fig. 4.18   The effects of the speed of the vehicle. (Reprinted from ref. [21], Copyright 2014, with 
permission from Elsevier)

 

4.3 � Vibration of a Vehicle–Pavement Coupled System Based …�



4  Dynamic Analysis of a Pavement Structure Under a Vehicle’s Moving Load130

stronger with the decreasing suspension damping. As seen from Fig. 4.21a, the sus-
pension damping has a significant impact on the dynamic response of the pavement. 
As seen in Figs. 4.18, 4.20 and 4.21 also prove that the dynamic response of the 
pavement becomes stronger when the vibration of the vehicle becomes weaker.
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�Physical Parameter Studies

In this section, the effects of the physical parameters of the pavement and the sub-
grade on the vibration of the vehicle–pavement are investigated by numerical exam-
ples. Figure 4.22a and b, respectively, show the effects of the linear elastic modulus 
of the subgrade on the response of the pavement and the vehicle. The comparison 
in Fig. 4.22a indicates that the dynamic response of the pavement becomes weaker 
with the increasing linear elastic modulus of the subgrade. On the other hand, the 
numerical results in Fig. 4.22b indicate that the parameter of the subgrade changes 
the response of the pavement faster. The pavement is affected more than the vehicle. 
Therefore, the authors only show the numerical results of the response of the pave-
ment in the following calculations.

The effects of the other five parameters of the foundation on the dynamic re-
sponse of the pavement are presented in Fig. 4.23a–e. Meanwhile, the effects of 
the shear modulus of the pavement are displayed in Fig. 4.23f. Figure 4.23d shows 
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that the effects of the rocking damping coefficient of the subgrade on the dynamic 
response of the pavement can be neglected. On the contrary, Fig. 4.23 show that 
the other five physical parameters, namely, the nonlinear elasticity parameter, the 
shear deformation coefficient, the rocking stiffness and the damping coefficient of 
the subgrade, and the shear modulus of the pavement, are all important parameters 
that influence the dynamic response of the pavement. Furthermore, the response 
of the pavement decreases with these increasing physical parameters. Therefore, if 
any of these physical parameters are neglected during the process of modeling, the 
dynamic analysis overestimates the dynamic response of the pavement.
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4.4 � The Dynamic Response of an Infinite Timoshenko 
Beam on a Nonlinear Viscoelastic Foundation [19, 25]

The integral transformation is a powerful tool for dealing with dynamic prob-
lems. There are two approaches to deal with a nonlinear term in the governing 
equations, namely, a perturbation method [26] and the Adomian decomposition 
method (ADM) without linearization or perturbation [27]. Kargarnovin et  al. 
[26] compared the responses of a nonlinear and an equivalent linear viscoelastic 
model, and found that the results are completely different at low frequencies. 
Furthermore, Hryniewicz [27] found that the nonlinearity of the foundation in-
creases the amplitude of vibration under certain conditions. Based on the non-
linear cubic Winkler foundation, Kargarnovin et  al. [26] studied the response 
of an infinite Timoshenko beam subjected to a harmonic moving load, and con-
sidered the shear modulus of the beams, without taking into account the shear 
parameter of the foundation. Hryniewicz [27] discussed the dynamic response 
of an infinite Rayleigh beam subjected to a moving load without considering the 
shear modulus of the beam or the foundation. However, there have been no lit-
eratures on the dynamic response of an infinite beam on a nonlinear foundation 
considering the shear deformable beams and shear modulus of the foundation at 
the same time.

The standard ADM was developed by Adomian for solving linear or nonlinear 
differential and integral equations [28]. The method has a significant advantage 
in providing with the solution in a rapid convergent series. Recently several au-
thors have proposed a variety of modifications on the standard ADM. Vahidi 
and Jalalvand applied the Shanks transformation on the ADM to improve the 
accuracy of the approximate solutions [29]. Nevertheless, the modified ADM has 
not been applied to investigate the dynamic response of a beam on a nonlinear 
foundation.

This section investigates the dynamic response of infinite Timoshenko beams 
supported by nonlinear viscoelastic foundations to a moving concentrated force. 
The nonlinearity in the foundation is assumed to be cubic. The nonlinear governing 
equations of motion are developed by considering the effects of the shear deform-
able beams and the shear modulus of the foundations at the same time. The differ-
ential equations are respectively solved using the ADM and a perturbation method 
in conjunction with a complex Fourier transformation. An approximate closed form 
solution is derived in an integral form from the presented Green’s function and the 
theorem of residues, which is used for the calculation of the integral. The dynamic 
response distribution along the length of the beam is obtained from the closed form 
solution. The derivation process demonstrates that two methods for the dynamic 
response of infinite beams on nonlinear foundations to a moving force give a con-
sistent result. The numerical results reveal the influences of the shear deformable 
beam and the shear modulus of the foundations on dynamic responses. Moreover, 
the influences on the dynamic response are numerically studied for nonlinearity, 
viscoelasticity, and other system parameters.
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4.4.1 � The Mathematical Model

An infinite elastic Timoshenko beam on a nonlinear viscoelastic foundation sub-
jected to a moving load is used to model many engineering devices, as shown in 
Fig. 4.24, where F0 and ω are the magnitude and the frequency of the external load, 
v is the moving speed of the load, t is the time, x is the spatial coordinate along the 
axis of the beam, w( X, T) is the vertical deflection function of the infinite Timosh-
enko beam.

The speed of the moving load is assumed to be constant. The nonlinear visco-
elastic foundation is taken as a Pasternak foundation with linear-plus-cubic stiffness 
and viscous damping. Based on these assumptions, the governing differential equa-
tions for the displacements u( x, t) and the rotation ψ( x, t) of the beam are

�

(4.78)

where a comma preceding x or t denotes a partial differentiation with respect to 
x or t, A is the constant cross–section of the homogeneous Timoshenko beam, G, 
I, ρ, and E are the shear modulus, the second moment of area, the density and the 
modulus of elasticity of the beam, *k A is the effective shear area, k1, k3, and Gp 
are the linear, the nonlinear and the shear foundation parameters, c is the damping 
coefficient of the foundation, kf and cf respectively are the rocking stiffness and 
damping coefficients of the foundation, and the harmonic concentrated moving load 
is expressed by

� (4.79)

where δ( x–vt) is the Dirac delta function, which can be defined by

� (4.80)

for arbitrary function f( x).
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Fig. 4.24   The model of an infinite Timoshenko beam on a nonlinear viscoelastic foundation 
under a harmonic moving load. (Reprinted from ref. [25], Copyright 2014, with permission from 
Elsevier)
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4.4.2 � The Perturbation Method

Introduce a dimensionless variable as follows

�
(4.81)

Substituting Eq. (4.81) into Eq. (4.78) leads to

�

(4.82)

where *q k AG= , 3

1

k IS q
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= , 2
3 ( )qk

S
ε = . Introducing the coordinate transforma-

tion

� (4.83)

and substituting Eq. (4.83) into Eq. (4.82) yield

�

(4.84)

One assumes an expansion of dimensionless displacement

�

(4.85)

Substituting Eq. (4.85) into Eq. (4.84), and then equating coefficient 0ε , 1ε , and ε 2 
in the resulting equation, one obtains
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where

�
(4.89)

0,1,2k = . Then, the application of a complex Fourier transform

�
(4.90)

to Eq. (4.86) leads to

�
(4.91)

0 ( )U ξ  and 0 ( )ξΨ , termed as Green’s functions, can be solved from Eq. (4.91)

�

(4.92)

where

� (4.93)

Now, if an inverse Fourier transform is taken from both sides of (4.93), then one 
will get
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�

(4.94)

To calculate the integrals of Eq.  (4.94), it is necessary to employ the resi-
due theorem. According to the residue theorem, the integrals of Eq.  (4.94) 
are returned to the sum of the residues at the poles. The poles are the roots of 

4 3 2
10 20 30 40 50 0B B B B Bξ ξ ξ ξ+ + + + = . Since the beam length is considered to be 

infinite, the boundary conditions are

�
(4.95)

The closed form solutions are obtained as
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(4.96)

for 0η ≥ , where jξ  in the first part of Eq. (4.96) is the pole of 0 ( )W ξ  in the upper 
half part of the complex plane and jξ  in the second part of Eq. (4.96) is the pole of 
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�

(4.97)
for 0η ≤ , where jξ  in the first part of Eq. (4.97) is the pole of 0 ( )W ξ  in the lower 
half part of the complex plane and jξ  in the second part of Eq. (4.97) is the pole of 

0 ( )ξΨ  in the lower half part of the complex plane.
When the integrals of Eq. (4.94) have high order poles, the closed form solutions 

are obtained as

�

(4.98)

where lξ  in the first part of Eq. (4.98) is the second order pole of 0 ( )U ξ , 1ξ  and 2ξ  
are the first order poles. lξ  in the second part of Eq. (4.98) is the second order pole 
of 0 ( )ξΨ , 1ξ  and 2ξ  are the first order poles.

Using a similar procedure based on appropriate Green’s functions and the convo-
lution integral theorem, one obtains the closed form solutions
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where 1( )w η  and 1( )ψ η  can be determined by

�
(4.101)

Therefore, the dynamic response of the system can be determined by the following 
equation

� (4.102)

The same procedure is applicable in the case of Euler–Bernoulli beams. In this case, 
the equations of motion can be derived as

� (4.103)

Using the same procedure, one can calculate the closed form solution as

�

(4.104)

Using the same method of the residue theorem, one will solve Eq. (4.104).

4.4.3 � The Modified ADM

The ADM is an iterative method, which has proven successful in dealing with non-
linear equations. This method is based on the search for a solution in the form of 
a series in which the nonlinear terms are calculated recursively using the Adomian 
polynomials. The main properties of the method are that it is capable of reducing the 
size of computational work while still maintaining highly accurate numerical solu-
tions. In this study, a moving harmonic load is considered, and the modified ADM 
is used to deal with the nonlinear term of the foundation reaction. The complex in-
tegral transformations, Green’s function, and the theorem of residues are employed 
for the dynamic response of the Timoshenko beam with an infinite length supported 
by a nonlinear foundation.

The ADM gives the solutions u( x, t) and ψ( x, t) of Eq. (4.78) in a series form of 
the infinite sum

�

(4.105)
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Substitution of Eq. (4.105) into the linear terms in Eq. (4.78) yields

�

(4.106)

where f( w) and Li ( i = 1,2,3) are called the nonlinear operator and the linear operator 
and defined by

� (4.107)

� (4.108)

In order to solve Eq. (4.106) via the ADM, the nonlinear operator f( w) can be de-
composed into the form of the infinite sum of series

� (4.109)

where jA  are called Adomian polynomials of 1 2, , , jw w w… . So that Eq. (4.106) is 
rewritten as the recursive form
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(4.110)
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(4.111)

for 1j ≥ .
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�

(4.112)

So here jA  are given as

�

(4.113)

Since the beam is infinitely long and the transverse load moves in the positive x 
direction with a constant velocity v, a moving coordinate η can be defined by

� (4.114)

For an infinite Timoshenko beam in the steady-state dynamic response, one can as-
sume the form of the solution for (4.110) as
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(4.115)

The following results can be obtained
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where the prime indicates differentiation with respect to η. Substitution of 
Eq. (4.116) into Eq. (4.110) yields

�

(4.117)

Considering the boundary conditions of an infinite beam and applying the complex 
Fourier transform to (4.117), one will get

�

(4.118)

where 0 ( )W ξ  and 0 ( )w η  are a couple of Fourier transforms, 0 ( )ξΨ  and 0 ( )ψ η  are 
also a couple of Fourier transforms. 10 80B B-  are determined by the following terms
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(4.119)

Now, if an inverse Fourier transform is taken from both sides of Eq. (4.119), then 
one will get
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� (4.120)

Equation (4.120) can be calculated via employing the residue theorem. According 
to the residue theorem, the integrals of Eq. (4.120) are the sum of residues at the 
poles. The poles are the roots of the denominator in Eq. (4.120). The closed form 
solutions are obtained as

�

(4.121)

for 0η ≥ , where jξ  and nξ  are the poles of 0 ( )W ξ  and 0 ( )ξΨ  in the upper half part 
of the complex plane, and
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(4.122)

for 0η ≤ , where jξ  and nξ  are the poles of 0 ( )w ξ  and 0 ( )ξΨ  in the lower half part 
of the complex plane. When the integrals of Eq. (4.120) have high order poles, the 
sum of residues at the poles are obtained as
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�

(4.123)
where lξ  and mξ  are the second order poles of 0 ( )w ξ  and 0 ( )ξΨ , respectively, 1ξ  and 

2ξ  are the first order poles.
As pointed out by Wazwaz [30], the modified decomposition method may give 

the exact solution for nonlinear equations by only using two iterations. In the fol-
lowing computations, the infinite series Aj  only keeps the first three terms for the 
modified ADM. Now, consider Eq. (4.111). For j = 1 and 2, Eq. (4.111) can be re-
written as

�
(4.124)

and

�

(4.125)

Using a similar procedure for Eq. (4.117) and the convolution integral theorem, one 
obtains the closed form solutions of Eqs. (4.124) and (4.125)
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and
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(4.127)

where ( )1jw η  and ( )1jψ η  ( j = 1, 2) are the dynamic responses of e ( )ji T X vTω δ - ,  
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Eqs.  (4.126) and (4.127) will be solved. According to the procedure for solving 
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2 2
i i60 70 80 60 70 80

4 3 2
1 210 20 30 40 50

i i0 0
4 3 2

1 210 20 30 40 50

dRes e lim e
d ( )( )

i idRes e lim e
d ( )( )

l
l

m
m

B B B B B B
B B B B B

k AGF k AGF
B B B B B

ξη ξη

ξ ξ
ξ ξ

ξη ξη

ξ ξ
ξ ξ

ξ ξ ξ ξ
ξ ξ ξ ξ ξξ ξ ξ ξ

ξ ξ
ξ ξ ξ ξ ξξ ξ ξ ξ

→
=

→
=

   + + + +
   - -+ + + +   

′ ′   
=   - -+ + + +   

( )
( ) ( )

2 * * 3
p 1 1 1 1 1 3 0

2 * *
1 f 1 f 1 1 0

Av k AG G w cvw k w k AG k w

Iv EI c v k AG k k AGw

ρ ψ

ρ ψ ψ ψ

′ ′′′- - - + + = -

′′ ′ ′- - + + - =

   

   

( )
( ) ( )

2 * * 2 2 3
p 2 2 1 2 2 3 0 1 3 1 0 3 1

2 * *
2 f 2 f 2 2

3 3

0

AV k AG G w cVw k w k AG k w w k w w k w

IV EI c V k AG k k AGw

ρ ψ

ρ ψ ψ ψ

′′ ′ ′- - - + + = - - -

′′ ′ ′- - + + - =

       

   

( ) ( ) ( )
( ) ( ) ( )

3 * * *
1 3 0 11

3 * * *
1 3 0 11

d ,

d

w k w w

k w

η η η η η

ψ η η η ψ η η

+∞

-∞
+∞

-∞

= - -

= - -

∫
∫



 



 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 * * 2 * * 3 * * *
2 3 0 1 1 0 1 21

2 * * 2 * * 3 * * *
2 3 0 1 1 0 1 21

3 3 d ,

3 3 d

w k w w w w w w

k w w w w w

η η η η η η η η η η η η η

ψ η η η η η η η η η η η ψ η η

+∞

-∞

+∞

-∞

 = - - - + - - + - 

 = - - - + - - + - 

∫
∫



     



     



145

�

(4.128)

where j = 1, 2. The steady-state response w( X, T) can be solved by the following 
equation based on the solutions of Eqs. (4.117), (4.126), and (4.127)

� (4.129)

In the standard ADM, the infinite series of the decomposition for the nonlinear op-
erator w( u) is suggested as follows

�
(4.130)

It should be noted that in this scheme, the sum of the subscripts in each term of Aj 
are equal to j. The c( n, j) are products of n components of u whose subscripts sum 
to j, divided by the factorial of the number of repeated subscripts. Thus

�

(4.131)

So here Aj are given as
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(4.132)
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Compared with the procedure of the modified ADM, Eq. (4.110) and Eq. (4.111) for 
j = 1 are exactly the same as Eqs. (4.117) and (4.124), while Eq. (4.110) should be

�
(4.133)

for j = 2, and Eq. (4.127) should be

�
(4.134)

After comparing Eq. (4.125) with Eq. (4.132) and Eq. (4.127) with Eq. (4.133), one 
can find that the modified ADM includes more terms than the standard ADM. The 
extra terms cause a huge number of calculations for the steady-state response, and 
the calculations for the closed form solutions are more complicated.

4.4.4 � The Moving Force

In this part, numerical examples are given for parametric research. The physical and 
geometric properties of the Timoshenko beam, the foundation and the moving load 
are listed in Table 4.4.

In part three, the decomposition series for the Adomian decomposition were 
found. But the convergence of the decomposition series has not been determined. 
Accordingly, let

�

(4.135)

� (4.136)

The decomposition series Eq. (4.129) will converge rapidly to an exact solution for 
0 1jα≤ < , 0,1, 2,j = …. According to Table 4.4 and Eqs.  (4.89) and (4.135), one 
can obtain

� (4.137)
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� (4.139)

� (4.140)

� (4.141)

In the following computations, the infinite decomposition series Eq. (4.105) only 
keeps the first three terms.

Based on the prescribed method, a computer program has been provided to solve 
the problem. To realize the steady–state response, it is sufficient to study the vibra-
tion of any point of the beam. Hence, the point x = 0 is used in the following numeri-
cal examples. As the first example, the dynamic response of the infinite Timoshen-
ko beam is considered during passage of a moving load. Figure 4.25 shows the time 
history of the Timoshenko beam subjected to the moving concentrated force. For 
t < 0, the transverse deflection increases with time, and the largest deflection does 
not appear in t = 0, but there is a little delay. After reaching the largest deflection, the 
transverse deflection decreases and tends toward zero while the growth speed of the 
transverse deflection is far greater than the reduced speed.

2 0.0000294w =

1
0

0
0.1346 1
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w
w

α = ≈ <

Table 4.4   Properties of the beam, foundation, and load. (Reprinted from ref. [19], with kind per-
mission from Springer Science+Business Media)
Item Notation Value
Beam
Young’s modulus(steel) E 201 GPa
Shear modulus G 77 GPa
Mass density ρ 7850 kg/m3

Cross sectional area A 7.69 × 10−3 m2

Second moment of area I 3.055 × 10−5 m4

Shear coefficients k′ 0.4
Foundation
Linear stiffness k1 3.5 × 107 N/m2

Nonlinear stiffness k3 4 × 1014 N/m4

Viscous damping µ 1732.5 × 103 Ns/m2

Shear parameter Gp 66687500 N
Rocking stiffness kf 108 N/m2

Rocking Damping 
coefficients

cf 1.5 × 106 N·s/m2

Moving load
Load F0 65 KN
Speed v 50 m/s
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The effects of the shear modulus of the Timoshenko beam and the shear modu-
lus of the foundation on the deflection of the beam on the viscoelastic nonlinear 
foundation are illustrated in Figs. 4.26 and 4.27, respectively. From the observation 
of Figs. 4.26 and 4.27, it is found that the largest deflection of the Timoshenko 
beam decreases with the increasing shear moduli of the beam and the foundation. 
Furthermore, Figs. 4.26 and 4.27 show that the contributions of the shear moduli of 
the beam and the foundation on the deflection are significant, especially when the 

Fig. 4.25   The approximate analytical solution of the deflection of the beam. (Reprinted from ref. 
[19], with kind permission from Springer Science+Business Media)

 

Fig. 4.26   Effect of the shear modulus of the Timoshenko beam on the deflection of the beam 
Timoshenko. (Reprinted from ref. [19], with kind permission from Springer Science+Business 
Media)
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shear moduli of the beams and the foundations are small. That is, the shear moduli 
of both the beams and the foundations cannot be neglected for the dynamic response 
of infinite beams on nonlinear viscoelastic foundations. In this section, the effects of 
the shear moduli of the beams and the foundations are investigated at the same time, 
and similar results are found at the above mentioned two references. On the other 
hand, the numerical results also indicate that the shear modulus of Timoshenko 
beams is not sensitive to the time delays of the largest deflection while the time 
delays decrease with the increasing shear modulus of the foundations.

Figure 4.28 shows the effect of the modulus of the elasticity of the beam on the 
deflection of the Timoshenko beam on the viscoelastic nonlinear foundation. As it 

Fig. 4.27   Effect of the shear modulus of the foundation on the deflection of the beam. (Reprinted 
from ref. [19], with kind permission from Springer Science+Business Media)
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Fig. 4.28   The effect of the modulus of the elasticity of the Timoshenko beam on the deflection of 
the beam. (Reprinted from ref. [19], with kind permission from Springer Science+Business Media)
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is seen in this figure, the modulus of the elasticity of the Timoshenko beam has little 
effect on the transverse deflection of the Timoshenko beam. Specifically, there are 
only discernible differences between the results for rather large and different modu-
lus of the elasticity of the Timoshenko beam.

Figure 4.29 illustrates the effect of the damping coefficient of the foundation on 
the deflection of the Timoshenko beam on the viscoelastic nonlinear foundation. 
It should be noted that the viscoelastic foundation turns into an elastic Pasternak 
foundation when c = 0. The numerical result shows that the damping coefficient of 
the foundation has significant influence on the dynamic response of the deflection 
of the Timoshenko beam and the deflection decreases with the increasing damping 
coefficient. Furthermore, the numerical result shows that the largest deflection of 
the Timoshenko beam on the elastic Pasternak foundation appears at t = 0. More-
over, the time of the largest deflection appearing is delayed with the increasing 
damping coefficient of foundations. Hence a larger value of the damping coefficient 
of foundations leads to a smaller deflection of the beam and the damping is one of 
the reasons for the time delay.

The effects of the linear and the nonlinear elasticity parameters of the foun-
dations on the deflection of the Timoshenko beam on the viscoelastic nonlinear 
foundation are displayed in Figs. 4.30 and 4.31. Figures 4.30 and 4.31 show that 
the form of the deflection of the beam has little change with different linear and 
nonlinear elasticity parameters of the foundations. Furthermore, the numerical re-
sults of Figs. 4.30 and 4.31 show that the largest deflection of the beams decreases 
with the increasing linear elasticity parameter of the foundation and the decreasing 
nonlinear elasticity parameter.

Figures 4.32 and 4.33 show that the dynamic responses of the Timoshenko beam 
on the viscoelastic nonlinear foundation change with the rocking stiffness and the 
damping coefficients of foundation. As seen in this figures, the shape has little 
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Fig. 4.29   The effect of the damping coefficient of the foundation on the deflection of the beam. 
(Reprinted from ref. [19], with kind permission from Springer Science+Business Media)
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change and the largest deflection decreases with the increasing foundation rocking 
stiffness and damping coefficients. It proves that the influences of the rocking stiff-
ness and damping coefficients of the foundation on the transverse deflection of the 
infinite beam on the foundation cannot be neglected.

The effect of the velocity of the moving concentrated force on the deflection 
of the Timoshenko beam on the viscoelastic nonlinear foundation is displayed in 
Fig. 4.34. Figure 4.34 indicates that the largest deflection of the Timoshenko beam 
decreases with the increasing moving velocity. Furthermore, the deflection of the 
beam is sensitive to the changing moving velocity. On the other hand, the numerical 
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Fig. 4.30   The effect of the linear elasticity parameter of the foundation on the deflection of the 
beam. (Reprinted from ref. [19], with kind permission from Springer Science+Business Media)
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Fig. 4.31   The effect of the nonlinear elasticity parameter of the foundation on the deflection of 
the beam. (Reprinted from ref. [19], with kind permission from Springer Science+Business Media)
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results in Fig. 4.34 prove that the whole form of the deflection of the Timoshenko 
beam on the viscoelastic nonlinear foundation has little change under different ve-
locities of the moving concentrated force.

The deflections of two different beam models on the viscoelastic nonlinear foun-
dation are compared in Fig. 4.35. As it is seen from the figure, the deflection of the 
Timoshenko beam near the region of t = 0 is smaller than that of the Euler–Bernoulli 
beam. Furthermore, the deflection of the Timoshenko beam on the foundation is 
larger than that of the Euler–Bernoulli beam in other regions. Nevertheless, the 
Euler–Bernoulli beam is more acceptable for the dynamic response of the beam on 
the foundation in this investigation, because the Euler–Bernoulli beam overesti-
mates the results of the dynamic response. In other words, the numerical results in 
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Fig. 4.32   The effect of the foundation rocking stiffness on the deflection of the beam. (Reprinted 
from ref. [19], with kind permission from Springer Science+Business Media)

 

Fig. 4.33   The effect of the foundation damping coefficient on the deflection of the beam. 
(Reprinted from ref. [19], with kind permission from Springer Science+Business Media)
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Fig. 4.35 illustrate that the dynamic response based on the Euler–Bernoulli beam 
theory provides a more conservative estimate in road design.

4.4.5 � Parametric Studies

In this part, numerical examples are given for parametric research. The physical and 
geometric properties of the beam, the foundation and the moving load are listed in 
Table 4.4.

Fig. 4.35   Comparison of two different beam models from the deflection of the beam. (Reprinted 
from ref. [19], with kind permission from Springer Science+Business Media)

 

Fig. 4.34   Influence of the moving velocity of the load on the deflection of the beam. (Reprinted 
from ref. [19], with kind permission from Springer Science+Business Media)
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The steady-state responses of a point at x = 0 of the Timoshenko beam on a vis-
coelastic nonlinear foundation based on the modified ADM and the standard ADM 
are compared in Fig. 4.36. As pointed out by Wazwaz [30], the modification dem-
onstrated a rapid convergence of the series solution if compared with the standard 
ADM. As it can be seen from the figure, the largest deflections of the Timoshenko 
beam via the modified ADM are smaller than those via the standard ADM. Although 
the modified ADM may give more accurate results, in the investigations of dynamic 
response of beams on a foundation, the standard ADM is more conservative.

Fig. 4.36   The approximate analytic solution of deflection of the beam. (Reprinted from ref. [25], 
Copyright 2014, with permission from Elsevier)

 

a b

Fig. 4.37   The effects of the moving speed on the approximate analytic solution of deflection of 
the beams: a the standard ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, 
with permission from Elsevier)
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Figure 4.37 illustrates the effects of the speed of the moving load on the dy-
namic responses of the beam changing with the frequency of the external load. 
Figure 4.37a and b show the numerical results solved by the standard ADM and 
the modified ADM, respectively. The numerical results indicate that the largest de-
flection of the beams decreases with the increasing moving speed for both ADMs. 
Furthermore, Fig. 4.37a and b both show that the responses are more sensitive to 
the frequency of the external load for the smaller moving speed. The figures also 
demonstrate that the two kinds of ADM yield the qualitatively same results, while 
there are quantitative differences.

Based on the two kinds of ADMs, the effects of the nonlinear elasticity param-
eter of the foundations on the deflection of the infinite beams on a nonlinear foun-
dation are displayed in Fig. 4.38a and b, respectively. Figure 4.38 shows that the 
shapes of the time history of the Timoshenko beam center are almost the same for 
different nonlinear parameters of the foundation. Moreover, the numerical results of 
Fig. 4.38 show that the largest deflections of the beams increase with the increasing 
nonlinear elasticity parameter of the foundation. The numerical results also indicate 
that the results from the two ADMs qualitatively predict the same tendencies with 
the changing parameters, while quantitatively there are certain differences. The re-
sults via the standard ADM are more sensitive to nonlinear parameters than those 
via the modified ADM.

The effects of the shear modulus of the foundation, the shear modulus of Ti-
moshenko beams and the rocking damping coefficients on the deflection of the 
infinite Timoshenko beams on a nonlinear viscoelastic Pasternak foundation with 
v = 50 m/s and ω = 1 Hz are shown in Figs. 4.39, 4.40 and 4.41, respectively. The 
numerical results show that the largest deflections of beams decrease with the shear 
modulus of the beam, the shear modulus of the foundation and the rocking damp-
ing coefficient, and the shear moduli of the beams and the foundation cannot be 
neglected. The numerical simulations also indicate results via the standard ADM 
are more sensitive to shear modulus parameters than those via the modified ADM.

a b

Fig. 4.38   The effects of the nonlinear elasticity parameter of foundations on the deflection of the 
beams: a the standard ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, with 
permission from Elsevier)
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Fig. 4.39   The effects of the shear modulus of beams on the deflection of the beams: a the standard 
ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, with permission from 
Elsevier)

 

a b

Fig. 4.40   The effects of the shear modulus of foundations on the deflection of the beams: a the 
standard ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, with permission 
from Elsevier)

 

a b

Fig. 4.41   The effects of the rocking damping coefficients on the deflection of the beams: a the 
standard ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, with permission 
from Elsevier)
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4.5 � Chapter Summary

This chapter is devoted to the dynamic analysis of a pavement structure under a 
vehicle’s moving load. The pavement structure is modeled as a finite Euler–Ber-
noulli beam on a nonlinear foundation, a finite Timoshenko beam on a nonlinear 
Pasternak foundation and an infinite Timoshenko beam on a nonlinear foundation 
with viscous damping. Moreover, three types of the conventional boundary condi-
tions, namely SS, CC, and FF boundary conditions are investigated. The numerical 
simulation found that the vertical deflections of the pavement for three boundary 
conditions are overlapped with a rather large length of the pavement. The vehicle’s 
moving load is considered as a moving concentrated load, a harmonic moving load 
and a moving spring-mass-damper oscillator, respectively.

Based on the dynamic response of the pavement-vehicle system, the conver-
gence of the Galerkin truncation and the dependences on the system parameters are 
numerically studied. It was found that the convergence of the Galerkin truncation 
can be predicted by the natural frequencies, the slow growth in the natural frequen-
cy of the pavement causes lack of convergence, and investigation into dynamical 
responses of the vehicle–pavement-foundation system needs large truncation terms. 
Furthermore, the convergence increases with growing of the moduli of elasticity 
of the pavement and the nonlinear foundation parameters but decrease with the 
increasing linear foundation parameters and the damping coefficient. Moreover, the 
convergence of the Galerkin truncation for Timoshenko beams on foundations is 
slightly slower than that of the Euler–Bernoulli beam. Nevertheless, the vertical 
deflections of the Timoshenko beam are slightly larger.

To account for shear deformations of the pavement and the subgrade, the shear 
modulus of the beam and the shear deformation coefficient of the foundation are 
considered at the same time. Therefore, nonlinear coupled dynamics of the vehicle–
pavement system is investigated with a Timoshenko beam on a linear-plus-cubic 
Pasternak-type foundation under a moving spring-mass-damper oscillator. The nu-
merical examples revealed that the amplitude of the vibratory responses of the pave-
ment becomes smaller when the vehicle is close to resonance.

In conjunction with complex Fourier transformation, the ADM and a perturba-
tion method are, respectively, used to deal with the nonlinear term from the founda-
tion reaction for the dynamic analysis of infinite Timoshenko beams on the nonlin-
ear foundation. This chapter proves that the ADM and the perturbation method give 
the consistent result for current issues.
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