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Abstract

Vehicle dynamics and road dynamics are two separate subjects. In vehicle dynam-
ics, road surface roughness is generally regarded as random excitation to the ve-
hicle, while at the same time handling stability, ride comfort, and vehicle safety are 
all investigated. In road dynamics, the vehicle is generally regarded as a moving 
load acting on the pavement, while at the same time the response and lifetime of 
the pavement and foundation are all studied. This book suggests a new research 
concept to couple the vehicle and the road together with a three dimensional (3D) 
tire model. The dynamics of the vehicle, road, and the vehicle–road coupled system 
were investigated by a theoretical analysis, numerical simulations, and field tests.

Chap 1 gives the state of research in vehicle dynamics, road dynamics and tire 
dynamics, and proposes the research scheme of vehicle-road coupled system dy-
namics.

In Chap.  2, the lumped parameter models of two-axle and three-axle vehicle 
systems are established and the dynamic responses are analyzed.

In Chap. 3, the nonlinear virtual prototype model of a heavy vehicle is set up, and 
an orthogonal optimization program for the virtual heavy vehicle model is presented 
to analyze the effect of vehicle parameters on riding comfort and road friendliness 
according to the design of experiment (DOE) method.

In Chap. 4, the road models of a finite and infinite beam on a nonlinear founda-
tion with viscous damping are established. Based on the Galerkin method and the 
integral transform method, the numerical and analytical solutions are derived for 
the dynamic response of the pavement structure subjected to a moving load. More-
over, the vibration characteristics of the pavement structure under a moving load are 
discussed through some examples. Furthermore, the coupled nonlinear vibration of 
the vehicle–pavement system is studied based on a finite Timoshenko beam on the 
foundation subjected to a spring–mass–damper oscillator.

Chap 5 establishes the road model as an infinite double-layer plate on a Kel-
vin foundation and an elastic half-space. An analytical approach is developed to 
investigate the dynamic response of the road subjected to moving vehicle loads. 
The analytical solutions of the dynamic responses in time domain are then derived 
by integrating the generalized Duhamel integral over the Green’s function of the 
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vi Brief Introduction

double-layer plate under the unit impulse load. The vibration characteristics of the 
road under a moving constant and harmonic load are then analyzed.

In Chap. 6, a 3D finite element model of the road system is established and the 
time-dependent deflection, stress, and strain of the road are obtained by linking to-
gether the road surface roughness, a moving heavy duty vehicle, and a multilayered 
road system. The road fatigue life is calculated by taking the tensile strain at the 
bottom of the asphalt surface as the evaluation index.

In Chap. 7, a 2D and 3D vehicle–road coupled systems are built and coupled 
system responses are simulated with the methods of mode superposition, Galerkin’s 
method, and numerical integration. The differences between the coupled system 
and the traditional systems are also investigated.

By using the theory of vehicle–pavement coupled system proposed in Chap. 7, 
effects of system parameters on dynamic characteristics of vehicle and pavement 
are simulated and analyzed in Chap. 8. Based on the simulation results, some low 
dynamic design measures are suggested for choosing system parameters, which 
may contribute to the ride comfort of heavy vehicle and the life of asphalt pavement.

Chapter 9 presents a nonlinear vehicle-road coupled model composed of a seven 
degree of freedom (DOF) vehicle and a simply supported double-layer rectangular 
thin plate on a nonlinear viscoelastic foundation. A numerical integration method 
for solving this coupled system is developed and the nonlinear dynamic behaviors 
of the system are analyzed. In addition, the simulation results of the nonlinear vis-
coelastic model are compared to those of the linear or elastic model. The effects 
of system parameters on vehicle riding comfort and road damage are investigated.

In Chap. 10, a vehicle–road field test section was built on a highway and the re-
sponses of a heavy vehicle and the road were measured. This book has constructed 
a cross-subject research framework referred to as “vehicle-road coupled system dy-
namics” and will be beneficial to vehicle optimization, road design, construction, 
and fatigue life prediction.

This book is suitable for university professors, graduate students, and engineers 
majoring in vehicles, mechanics, highway engineering, and other related areas.
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Chapter 1
Introduction

© Science Press, Beijing and Springer-Verlag Berlin Heidelberg 2015
S. Yang et al., Dynamics of Vehicle-Road Coupled System, 
DOI 10.1007/978-3-662-45957-7_1

With the increase in road traffic and vehicle loads, premature damage of the asphalt 
pavement on expressways has become more prevalent, which has been greatly 
reducing the pavement’s effective lifetime. Much of the damage occurs within the 
first 2–3 years after the road use [1]. Road damage is seen to cause an increase in 
dynamic tire forces, which may worsen vehicle vibration and reduce the passenger’s 
ride comfort and safety. Accordingly, the increased vehicle vibration leads to an 
increased tire force, which may speed up road damage. Hence, the vehicle and road 
together form a coupled system. Mamlouk [2] put forward the concept that vehicle-
road interaction can be applied to weigh-in-motion, pavement design, and vehicle 
regulation as early as 1997.

However, at present, the vehicle and the pavement are investigated separately 
in vehicle dynamics and road dynamics. In vehicle dynamics, the road surface 
roughness is generally regarded as an excitation on a vehicle, where the handling 
stability, ride comfort, and safety of vehicles are investigated. In road dynamics, 
the vehicle is generally regarded as a moving load acting on the pavement, and 
the dynamic response and fatigue life of roads are investigated. The interaction 
of vehicle and road should however, be investigated simultaneously based on a 
vehicle-road coupled system. This will be beneficial to vehicle optimization, road 
design, construction and fatigue life prediction. It is a new cross-subject topic that 
involves vehicle dynamics, road dynamics, tire dynamics, and nonlinear dynamics, 
and has important theoretical significance and application value.

1.1 � The State of Research in Vehicle Dynamics

In vehicle dynamics, the investigation of vehicle-road interaction began many 
decades ago. Here, vehicles are taken as research subjects and roads as excitations. 
The dynamic tire loads and the road-friendly characteristics of vehicles are inves-
tigated according to road damage experiential equations. Research topics involve 
dynamic analysis, studies on the effects of vehicle parameters on road damage, and 
optimal design of suspensions. In the study of vehicle dynamics, the road system 
is not modeled and the effect of pavement vibration on vehicle dynamics is also 
seldom considered. The research models of vehicles have undergone great changes, 
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from the traditional lumped-parameter model to the modern finite-element model, 
dynamic sub-structure model and multibody dynamic model, and from linear mod-
els to nonlinear models with nonlinear stiffness or damping. Figures 1.1–1.4 show 
these vehicle models. The responses of these models can be obtained theoretically 
or numerically. Theoretical methods include mode superposition, direct integration, 
and averaging, while the main methods of numerical integration are the Newmark-β 
method, the Wilson-θ method, and the Runge-Kutta method.

Fig. 1.1   2-DOF quarter-
vehicle model
 

Fig. 1.2   4-DOF half-vehi-
cle model
 

Fig. 1.3   7-DOF full-vehicle 
model
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For the lumped-parameter modeling method, the finite degree-of-freedom 
(DOF) model of a vehicle system is comprised of mass, spring, and damping ele-
ments. Typical examples include a quarter-vehicle model with 2-DOF, a half-vehi-
cle model with 4- or 5-DOF, and a full-vehicle model with 7–18-DOF. At present, 
these models are popular for researching road-friendly characteristics of vehicles. 
Cole and Cebon are representative researchers in this area. They investigated the 
effect of heavy vehicle parameters on tire pressure and road damage, and optimized 
a passive suspension. It was found that a 15  % reduction in dynamic tire force may 
lead to a 5.3  % decrease in road damage. Moreover, they proposed the concept of 
spatial repeatability and believed that the peak forces applied by a heavy vehicle 
fleet are concentrated at specific locations along the pavement. They also used the 
95th percentile fourth-power force to investigate the effect of suspension stiffness 
and damping on road damage [3-9]. Hardy used the mode-superposition theory and 
the integral transform to derive an analytical solution of the displacement of a beam 
on a viscoelastic foundation, and validated it by field experiments [10]. Yi K, op-
timized active and semiactive heavy vehicle suspensions in order to decrease the 
pavement damage caused by dynamic vehicle loads [11]. Kenis investigated dy-
namic tire loads on pavements with different road surface roughness and simulated 
the dynamic pavement response [12]. Markow and Myers investigated the influence 
of heavy vehicle characteristics on tire forces and pavement response. They found 
that the vehicle configuration and suspension system greatly influences tire forces 
and that the tire pressure has little effect on the dynamic load [13, 14]. Sun opti-
mized a 3-DOF quarter-truck suspension system by minimizing the dynamic pave-
ment load and found that a large tire pressure and a small suspension damping may 
increase dynamic tire forces [15]. Yu optimized a heavy vehicle suspension with 
the aim of decreasing road damage and proposed that the main cause of pavement 
damage is a small damping coefficient [16]. Zhu investigated the effect of vehicle 
speed, road roughness, wheel track, and tread on tire loads using a 7-DOF model 
and designed a semiactive suspension to minimize dynamic tire loads [17–18]. Xu 
revised the fourth-power force and analyzed the influences of the vehicle load, run-
ning speed, and suspension parameters on road damage with a revised fourth-power 
law and optimized suspension parameters [19]. Liu investigated the relationship 
among road damage, suspension parameters, vehicle load, and road roughness, and 
proposed that the main reason for road damage is the spatial repeatability of the 

Fig. 1.4   Vehicle model of 
multibody system dynamics
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dynamic tire force and the vibration of sprung mass [20]. Zheng discussed the ef-
fect of vehicle speed and road roughness on random tire force and pavement fatigue 
stress using a 2-DOF model [21]. Zhang built a function to describe the relation-
ship between the suspension parameters and the vertical tire force and found that 
a heavy vehicle with a preview-feedback active suspension leads to 23–27 % less 
road damage and improves riding comfort by more than 90  %. He also presented a 
full probability evaluation of pavement damage by the vehicle based on the fourth-
power law, and analyzed the relativity of vehicle riding comfort to pavement dam-
age [22–25]. Yu investigated the variation of the Dynamic Load Coefficient (DLC) 
with the road roughness wavelength using a 4-DOF model and concluded that the 
DLC does not increase with a rise in vehicle speed, but shows resonance with a peak 
value [26]. Zhang investigated the effect of vehicle speed, road roughness, vehicle 
load, and suspension stiffness on dynamic tire loads using a single-DOF model 
[27]. Guo employed a Fourier-superposition method to calculate the amplitude and 
power spectral density (PSD) of the vehicle dynamic load, and the amplitude factor 
and PSD of acceleration, and concluded that an increase in vehicle speed and road 
roughness will increase the DLC [28]. Yan designed an optimal active-suspension 
controller based on a 2-DOF model and compared road-friendliness between active 
and passive suspension systems using DLCs, dynamic load stress factors, and 95th 
percentile fourth-power forces. It was concluded that an active suspension can im-
prove road-friendliness of a heavy vehicle [29].

Since finite element (FE) modeling demands much more calculation time, the 
FE vehicle model is mainly used for the design of complex parts such as the vehicle 
body, engine mount, etc. [30–32]. The dynamic substructure approach includes the 
mechanical admittance method and the modal synthesis method. The modal synthe-
sis method has been successfully applied to study the vehicle vibration noise mech-
anism and the vibration transfer characteristics of the vehicle chassis and frame [33, 
34]. At present, dynamic analysis modeling of the vehicle is usually combined with 
the lumped mass method, FE method and modal synthesis method.

With the development of computer technology and applied software, Functional 
Virtual Prototyping (FVP) technology is now used extensively in vehicle modeling. 
The core content of the FVP is the Multi-Body System Kinematics and Dynam-
ics modeling theory. Since FVP models are good at describing complex structures 
and dynamic tire-road contact forces, more scholars have begun to analyze vehicle 
dynamic behaviors based on the FVP vehicle model. Popular multi-body dynamics 
software include Simpack, ADAMS, and TruckSim, which have developed profes-
sional design modules in cooperation with famous vehicle manufacturing compa-
nies, such as Ford, BMW, GE, etc. [35–37]. Vaculin optimized a semiactive sus-
pension system based on SIMPACK and Matlab by minimizing the tire dynamic 
load [38]. Odhams developed a complex multibody model of a heavy-load hinged 
vehicle using TruckSim and studied the driving safety of a trailer under the opera-
tion of an active steering system [39]. Yang investigated vehicle ride comfort using 
ADAMS software [40]. Lu validated a FVP full-vehicle model with experimental 
data of a heavy vehicle and discussed the effects of vehicle speed, vehicle load and 
road surface roughness on tire forces and DLC [41]. Ren built a FVP vehicle model 
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with ADAMS and studied the interaction between the vehicle and the road, and 
designed an active suspension which can significantly reduce tire forces [42–43]. 
Studies of road-friendly vehicles using FVP models have not been sufficient so far 
and thus need further research.

At the same time, other scholars have modeled the nonlinear characteristics of 
suspensions and tires, and have studied the nonlinear dynamics and semiactive con-
trol of vehicle systems. Stensson analyzed nonlinear phenomena, including mul-
tisolutions, subresonance, and parameter sensitivity using numerical simulation, 
in a SAAB 9000 vehicle suspension [44]. Kim investigated vibration control of a 
vehicle suspension with magneto-rheological fluid (MRF) damping [45]. Zhu in-
vestigated bifurcations and chaos in a vehicle suspension with nonlinear damping 
and stiffness [46–47]. Li investigated primary resonance, subharmonic resonance 
and chaos in a hysteretic nonlinear vehicle suspension using Melnikov’s method 
and numerical methods [48–49]. Georgios studied the effect of suspension damp-
ing on vehicle ride comfort using a semiactive control based on a nonlinear vehicle 
model [50]. Oscar modeled the nonlinearity of air suspensions on heavy-duty trucks 
and numerically analyzed the influence of road roughness on ride comfort [51]. Ji 
proposed a square nonlinear model to describe tire forces through a dynamic tire 
test [52]. Qu discussed the effects of nonlinear factors on vehicle steering, dynamic 
response, and handling stability based on a nonlinear perturbation tire model[53]. 
Meng considered the nonlinearity of a leaf-spring suspension and tire stiffness, and 
found that double-period bifurcations existed in some range of frequencies which 
greatlyincreased the vertical acceleration of the vehicle body [54]. Zhao performed 
a dynamic test for a l0.00-20-type tire and found that the tire radial stiffness has 
a nonlinear relationship with displacement, but hardly varied with excitation fre-
quency [55]. Zhu and Xu set up a nonlinear vehicle suspension model for a leaf 
spring with variable stiffness, and calculated the stochastic response with the sta-
tistic nonlinear method, and compared the numerical results with the test data [56, 
57]. Yang built a 2-DOF model for a heavy vehicle suspension with a primary and a 
secondary leaf spring, and optimized the suspension parameters in order to enhance 
riding comfort [58].

It is to be noted that these investigations on vehicle dynamics generally assumed 
that the pavement was rigid and stationary and did not take into account the effect 
of pavement vibration on vehicle response. It is necessary to propose a new vehicle-
pavement-foundation coupled model to investigate the vehicle’s and the pavement’s 
response simultaneously.

1.2 � The State of Research in Road Dynamics

In road dynamics, the vehicle is generally regarded as a moving load acting on the 
pavement, and the pavement’s dynamic response such as stress, strain, and displace-
ments are investigated. In theoretical research, the methods of integral transform, 
mode superposition, and transfer matrix are used to obtain the analytical solutions 
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of the system and numerical integrations are used to calculate the distribution of re-
sponses. In computational research, the methods of finite element (FE) and bound-
ary element (BE) are used to model the multilayer system of the road, and the road 
response can then be obtained by numerical integrations. The Strategic Highway 
Research Program (SHRP) in the US, performed comprehensive research on road 
dynamics and road damage potential of dynamic wheel loads [59]. The Organiza-
tion for Economic Co-operation and Development (OECD) in Europe completed 
the project of Dynamic Interaction between Vehicles and Infrastructure Experiment 
(DIVINE) and also contributed a lot to the research of road dynamics [60–61]. The 
dynamic response of roads under traffic loads and the mechanism of road damage 
have become a hot topic in road research.

In road dynamics, researchers emphasize the road and seldom model the vehicle 
system. They hardly consider the influence of vehicle vibration on road dynam-
ics. Research models of the road have developed from one-dimensional to two- or 
three-dimensional, from single to multilayer, from using a linear elastic foundation 
to a nonlinear elastic foundation, and from linear elastic to nonlinear viscoelastic 
materials. At present, roads are usually modeled as a beam, a plate, or a multilayer 
system on an elastic or viscoelastic foundation, as shown in Figs. 1.5–1.8.

The one-dimensional model of a beam on a viscoelastic foundation is simple and 
practical and is suitable for dynamic analysis of a symmetric road. Early on, this 
model was widely used by scholars in different countries to research road dynamics 
under moving loads. Timoshenko investigated the vibration of a simply supported 

Fig. 1.5   Model of a beam 
on a viscoelastic foundation
 

Fig. 1.6   Model of a plate on a 
viscoelastic foundation
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beam induced by a moving point load, and obtained a triangular series solution 
of the beam response [62]. Kenny, Fryba, and Steele investigated the dynamic re-
sponse of beams of finite and infinite lengths under moving loads [63–65]. Thambi-
ratnam calculated the response of a beam on an elastic foundation via the Newmark 
numerical integration. He analyzed the effects of load moving speed, foundation 
stiffness and beam length on beam response [66]. Liu and Sun derived an analyti-
cal solution of a beam on a viscoelastic foundation under moving loads using the 
integral transform method and discussed the influence of road roughness on pave-
ment displacement and strain respectively [67, 68]. Giuseppe studied the response 
of a beam on a viscoelastic foundation subjected to a single-DOF oscillator. He 
converted the coupled-system equations to dimensionless ones and calculated the 
response by the methods of mode superposition and numerical integration [69]. 
Deng investigated the dynamics of a beam on a Winkler or a Kelvin foundation 
under moving vehicle loads using an integral transform [70]. Zhou obtained an 
analytical solution of a beam with infinite length on a Kelvin foundation under 
moving loads using an integral transform. He proposed that the beam displacement 
increases with the speed of moving loads when the foundation damping is small, 
but on the contrary, varies when the foundation damping is large [71–72]. In the last 
several years, some scholars have investigated the nonlinear dynamics, such as bi-
furcations and chaos, of beams on a nonlinear elastic foundation. Lenci investigated 
the chaos of a nonlinear beam on a Winkler foundation under an axial load using 
the method of Melnikov and found two different paths from bifurcation to chaos 
[73]. Kargarnovin obtained the responses of infinite beams supported by nonlinear 
viscoelastic foundations and subjected to harmonic moving loads using a perturba-
tion method and a complex Fourier transform. He investigated the influence of the 
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Fig. 1.8   Model of a 
multilayer on a viscoelastic 
foundation

 

Fig. 1.7   Model of an elastic 
half space
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load speed and the frequency on the beam response [74]. Santee and Gonçalves 
investigated the stability of a beam on a nonlinear elastic foundation and the effects 
of system parameters on the nonlinear vibration of the beam. They obtained the 
critical boundary of system instability with Melnikov’s method [75]. Kang studied 
the nonlinear behavior of a beam under a distributed axial load with time-dependent 
terms by Galerkin’s discretization and the spectral balance method. He found that 
the system’s motion will turn into chaos after several Hopf bifurcations [76]. Con-
sidering material and geometric nonlinearities, Zhang studied the chaotic motions 
of an axially compressed nonlinear elastic beam subjected to a transverse load using 
the nonlinear Galerkin and the Melnikov methods and found that chaos may occur 
in the system when the load parameters satisfy certain conditions [77]. Zhang used 
Galerkin’s method and numerical integration to investigate the nonlinear dynam-
ics of a Timoshenko beam with damage on a viscoelastic foundation, and obtained 
phase trajectories, a Poincaré section and a bifurcation diagram. She also discussed 
the effects of beam material, loads, foundation, and damage on the beam’s response 
[78].

The 2-dimenional model of a plate on a viscoelastic foundation has been an ac-
tive area of research, with research results mainly concentrated on the dynamics 
of a linear elastic plate on a foundation. Fulton, Sneddon, and Morley solved for 
the dynamic response of a plate subjected to linear loads using the integral trans-
formation method [79–80]. Liu built a 2-DOF vehicle and a plate on a viscoelas-
tic foundation, and derived the analytical solution of the pavement displacement 
under moving vehicle loads using an integral transform. He analyzed the effects 
of road roughness and foundation modulus on pavement displacement and strains, 
and found that a large foundation modulus may lead to a small strain [81]. Huang 
investigated the dynamic response of a thin plate on a Winkler foundation under a 
harmonic moving load. He found that velocity, moving load frequency, foundation 
stiffness, and tire configuration all affect the dynamic behavior of the plate [82]. 
Kim studied the dynamic response of a plate on a viscous Winkler foundation under 
moving loads of varying amplitude using the mode superposition and the integral 
transform methods. He analyzed the influence of wheel space and driving speed on 
the plate displacement and stress [83]. Sun studied the response of a plate subjected 
to a moving point or line load and obtained the analytical solution using Green’s 
function. He discussed the relation of the critical speed and the critical frequency 
of the moving loads [84]. Wu converted a rectangular plate subjected to a line load 
into a beam subjected to a point load by the equivalent method, and the conver-
sion was seen to be beneficial for test design and its fulfillment [85]. Cai studied 
the steady-state response of pavement systems subjected to a moving traffic load 
employing Kirchhoffʼs small-deflection thin-plate theory and Biot’s fully dynamic 
poroelastic theory. He also simulated the influences of load speed, soil permeability, 
and the plate’s flexural rigidity on the pavement system’s response [86]. Cheng and 
Zheng investigated the dynamics of a rectangular plate on an elastic foundation 
by the mode superposition method [87–88]. Deng [17] investigated the dynamics 
of a pavement under a moving vehicle load using an integral transform and the 
generalized Duhamel integral based on the plate model on an elastic foundation 
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[70]. Based on the principle of calculus variation, Yang analyzed the response of 
a rigid pavement lying on a Winkler foundation and the effects of the main ve-
hicle parameters on the dynamic response [89]. Zhou modeled a rigid pavement as 
an infinite plate on a Kelvin foundation subjected to moving loads and developed 
analytical solutions of steady-state displacements using Duhamelʼs integral for con-
stant or harmonic point, line, and area loads. The effects of velocity and damping 
on the maximum and the distribution of displacement were also analyzed, and the 
critical velocity and characteristics of the dynamic response of the plate were found 
[90–91]. Yan used an integral transform for solving a two-parameter layer founda-
tion mode analytically, and discussed the effects of load moving speed, foundation 
modulus, foundation damping, the Poisson ratio, plate thickness, and plate elastic 
modulus of pavement deformation [92]. Additionally, some scholars have put much 
emphasis on the bifurcation and chaos of plates on a nonlinear elastic foundation. 
However, this research mainly considers loads with fixed positions and seldom con-
siders moving loads. Gajiendar [93] and Nath [94] investigated the nonlinear vibra-
tion of a circular plate on an elastic foundation respectively. Xiao investigated the 
bifurcation and chaos of a rectangular, moderately thick, cracked plate on an elastic 
foundation subjected to a periodic load[95]. Qiu analyzed the bifurcation and chaos 
of a circular plate on a nonlinear elastic foundation [96]. Yang studied nonlinear 
vibration and singularities of a rectangular, thin plate on a nonlinear elastic founda-
tion with a Melnikov function and Galerkin’s method [97–98].

From top to bottom, the pavement system contains a surface course, a base 
course, a sub-base course, a filled subgrade, and a natural foundation. A three-di-
mensional multilayered medium on a linear elastic foundation is the best model 
closest to a real pavement. The analytical method can provide explicit representa-
tions and physical interpretations of the subject—this method has thus been widely 
used and is still important for understanding the nature of the problem. Eason first 
studied the dynamics of a three-dimensional pavement subjected to a point load 
moving at a constant speed [99]. De Barros derived the dynamic responses of a 
viscoelastic-layered half space to a point or a line load moving at a constant speed 
[100]. Based on the Betti–Rayleigh dynamic reciprocal theorem and Green’s func-
tion, Cao converted the moving source problem to a fixed source problem with the 
receiver point moving in an opposite direction and derived the transfer matrix of the 
multilayered soil medium subjected to a moving load. A Matlab code was devel-
oped and employed to perform a case study. The results show that the ground vibra-
tion induced by a moving load is of typically low-frequency feature [101]. Deng 
obtained the theoretical solution of a dynamic response of a multilayer induced by 
a half-sinusoidal load [70]. Zhong derived the explicit solution of an axisymmetric 
multilayered half space by means of an integral transform and transfer matrix [102]. 
Li analyzed the response of an elastic multilayer under traffic loads and consid-
ered the material viscoelasticity in his model[103]. On the other hand, numerical 
methods, such as the finite element method and boundary element method have 
been used successfully in the dynamic analysis of a layered viscoelastic medium 
subjected to moving loads. The introduction of numerical methods into the solution 
process can possibly allow for more complicated and hence more realistic pavement 
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dynamics problems. Wu considered the interaction between pavements and the un-
derlying soil foundation and investigated the dynamic responses of concrete pave-
ments subjected to moving loads using the 3D finite element method. The effects of 
finite element division, foundation stiffness and pavement thickness on pavement 
displacement were also discussed [104]. Markov presented that the key factors in-
fluencing a stiff pavement are the configuration of the vehicle and axle, vehicle 
load, suspension properties, vehicle speed, road roughness and plate bending [105]. 
Considering the dynamic variation and complex distribution of the tire-pavement 
contact stress, together with vehicle speed and viscoelastic material properties, Sid-
dharthan developed a 3D-MOVE procedure using the Fourier transformation meth-
od and simulated pavement responses to the moving tire loads [106–107]. Wang 
simulated the road damage caused by different trucks in North America and found 
that a large vehicle load would exacerbate road damage [108]. Kim studied the 
stress and strain of pavements with sand or clay foundations under tire loads us-
ing the finite-element method. He proposed that there existed a flaw in the flexible 
pavement design [109]. Metrikine studied the stability of a two-mass oscillator that 
moves along a beam on a viscoelastic half-space. Using the Laplace and the Fourier 
integral transforms, he derived expressions for the dynamic stiffness of the beam at 
the point of contact with the oscillator and concluded that a proper combination of 
negative damping mechanisms may effectivelystabilize the system [110]. Jeongho 
modeled the base and subgrade layers as stress-dependent cross-anisotropic materi-
als to assess the pavement response using finite-element (FE) analysis, and estab-
lished equations correlating the critical strains to layer displacements, axle loading, 
offset distance, and layer moduli in order to evaluate the accelerated damage po-
tential due to overweight truck loading [111]. Darestani tested road responses under 
both quasi-static and dynamic truck loads and the resulting test data were used 
to validate the finite element model developed in ANSYS for further sensitivity 
study on those parameters affecting the dynamic response of concrete pavements 
[112]. Using the nonlinear finite element method, Asghar estimated the cracking 
and failure of rigid pavement slabs and joints as a result of repeated application 
of the dynamic loads. Simulations were performed for specific gross vehicle loads 
and tractor–trailer configurations, and it was found that the vehicle speed fluctuated 
with the DLC and the rise of vehicle load may reduce the DLC [113]. In addition, 
Chen, Hou, Xie, and Liu also built finite element models for roads and analyzed 
stress, strain, and other dynamic responses of the road [114–117].

Some problems may exist in the current research field of road dynamics, such as:

1.	 The loads acting upon the road are not comprehensively treated. In most studies, 
only the vertical load is considered while the lateral and the longitudinal loads 
are neglected.

2.	 Linear elastic materials are usually investigated, but insufficient results are avail-
able for nonlinear viscoelastic materials.

3.	 Research is concentrated on the response of the road, and is hardly concerned 
with the effects of road vibration on vehicle system dynamics.

4.	 In research on plates on a nonlinear elastic foundation, an equivalent distributed 
load at a fixed position is used. Moving or random loads are scarcely applied. 
Moreover, nonlinear viscoelastic pavement materials are seldom considered.
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1.3 � The State of Research in Tire Dynamics

Tire dynamics is concerned about the relation of force, deformation, and dynamic 
responses of a tire under different driving conditions, as shown in Fig. 1.9. For the 
investigation on vehicle–road interaction, it is important to model the tire’s vertical, 
longitudinal, and lateral forces as well as the aligning moment.

The research of tire dynamics includes the analysis of the extrinsic and intrinsic 
characteristics of the tire. The extrinsic characteristics are the tire enveloping, slide, 
and roll characteristics of the tire, which are related to vehicle ride comfort, han-
dling stability, and driving or braking safety. The intrinsic characteristics are the in-
herent frequency, mode, and dynamic response. Research on vehicle tire mechanics 
is the key to connecting vehicles and roads. Tire mechanical models can be divided 
into five categories: the enveloping model, the sliding model, the ring model, the 
direct-mode model, and the FE model.

The enveloping characteristic model of a tire is used to describe the vertical and 
longitudinal forces. Tires are modeled as springs, masses, and a low-pass filter. 
Many enveloping models for tires have been presented, including the single-point-
contact model, the fixed-print model, the rigid/flexible-roller-contact model, and 
the radial spring model, as shown in Fig. 1.10. The simplest is the point-contact tire 

Uncertain factors: 
Load, tire pressue,  
road conditions 

Slide angle, roll angle, 
slip ration, vehicle speed, 
radial deformation 
Load, tire pressue,  
road conditions 

Tire

Vertical, longitudinal and 
lateral forces, aligning 
torque, overturning moment 
and rolling resistance 
moment of tire 

Fig. 1.9   The research task of tire dynamics
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Fig. 1.10   Tire enveloping models
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model, which describes the tire’s vertical force and is most widely used in both ve-
hicle dynamics and road dynamics. Some scholars have used the fixed-print model 
to add a line or a surface moving load to the pavement, and thus analyzed the dy-
namic response of the road. Guo presented a flexible roller-contact tire model, and 
carried out simulations of a vehicle vibration system based on a rigid- and a flex-
ible- roller-contact tire model. The simulation results showed good agreement with 
experimental data [118–120]. Huang proposed a new method for measuring the 
effective road profile to study tire displacement enveloping characteristics [121]. 
Guan presented a vehicle system with the enveloping tire model to study the per-
formance of an active suspension system [122]. Yang proposed a modified elastic-
roller tire model and developed a two-dimensional vehicle-road-subgrade coupled 
system. The improved elastic-roller line-contact model and the point-contact model 
of the vehicle-road coupled system are compared [123].

The sliding models aim at describing the relationship among the lateral tire force, 
aligning torque, sliding angle, and vertical tire load. These models are usually used 
to analyze vehicle handling stability and are seldom used in road dynamics, and can 
be divided into: pure physical models, empirical models, and semiempirical models. 
According to the tire physical structure and working mechanism, the pure physical 
model is proposed in the form of a mathematical expression used to describe a tire’s 
mechanical characteristics, and is simple and convenient in theoretical research. 
Pure physical models are expressed by polynomials and include the Fiala, the Gim, 
and the Dugoff tire models, etc. [124–125]. The empirical model has a higher preci-
sion, but has a higher computing cost, and is only used in vehicle dynamics design 
and simulation. The famous Magic Formula model was proposed by Pacejka based 
on extensive experiments. It is expressed by inverse tangent functions and can be 
used to describe a six-directional wheel force in a steady state [126]. The semiem-
pirical model combines the theoretical model with experimental data. Due to the 
higher precision and shorter computing time, it has been widely used in vehicle 
simulation and theoretical research. Guo put forward a semiempirical model, named 
the UniTire Model, which describes a tire’s mechanical characteristics in an expo-
nential form. It describes the six-component characteristics of a tire in a variety of 
working conditions, and has a high precision in simulating complex and extreme 
conditions [127]. Shiotsuka, Palkovicis, Ren, and Cui all used the manual neural-
network theory to develop tire sliding models [128–131].

The ring model and the direct-mode model of tires can account for envelop-
ing and sliding properties, and they have thus attracted much attention in vehicle 
dynamic simulations. However, they are seldom used in road dynamic research. 
In order to extend the frequency range of the tire, Pacekja introduced a dynamic 
rigid-ring model based on the Magic Formula model and proposed a Swift model. 
The Magic Formula and Swift tire models were developed at Delft University of 
Technology. They have been implemented in commercial software (ADAMS, SIM-
PACK and MATLAB/Simulink), and named as MF-Tyre and MF-Swift, respective-
ly. The ring tire model extracts the low-order mode parameters from experimental 



1.4  The Research Scheme of Vehicle-Road Coupled System Dynamics� 13

measurements. On the other hand, the direct-mode model obtains almost all mode 
parameters from experimental measurements and additionally considers road rough-
ness. It is more practical, but also more difficult than the ring model, and costs more 
in experimental expenses. Guan put forward a tire model describing the enveloping 
and sliding properties with the tire mode parameters [132].

With higher precision and longer computing time, the FE model can model the 
tire configuration in detail and is widely used in tire design. The FE tire model has 
been used for static and dynamic analyses, thermal coupling, abrasion, and fatigue 
life prediction. However, research work on vehicle and road dynamics with FE tire 
models is still seldom found. Rao used the ABAQUS software to investigate the 
lateral and longitudinal forces of pneumatic tires during steering and braking and 
compared the simulated results with test data [133]. Gall built a 3D FE tire model 
with the tread, and found that the normal stress reaches a maximum value when 
the friction coefficient is in the vicinity of 0.55 [49], and the distribution of normal 
stress tends to be stable with an increasing friction coefficient. This model is suit-
able for the analysis of transient rolling contacts, internal stress, modality, noise, 
and so on [134]. Mousseau combined a multibody vehicle model and a FE tire 
model and derived the tire force and displacement [135].

1.4 � The Research Scheme of Vehicle-Road Coupled 
System Dynamics

Over the past couple of decades, the vehicle and the pavement have been investi-
gated separately in vehicle dynamics and road dynamics. In vehicle dynamics, road 
surface roughness is usually regarded as an excitation to a vehicle, and accordingly, 
the vibration of the pavement is neglected. In road dynamics, the vehicle is general-
ly regarded as a moving load acting on the pavement, consequently, the characteris-
tics of the vehicle suspension are not considered. It is noted that the coupling action 
between vehicle and road is seldom considered in the previously published works.

On the other hand, research on vehicle-track coupled dynamics [136–139] and 
vehicle-bridge coupled dynamics [140–145] has developed rapidly and achieved 
good results. The research ideas and methods of vehicle-track and vehicle-bridge 
interaction has inspired us to bring coupled dynamics to vehicle-road systems.

The research scheme of vehicle-road coupled system dynamics is proposed, as 
shown in Fig. 1.11. The vehicle and the road are linked by tire forces, and the result-
ing vehicle-road coupled system is composed of a vehicle model, a road model, and 
a tire model. Based on this coupled system, the vibration of the vehicle and road can 
be calculated simultaneously and the vehicle-road interaction can be investigated in 
detail. In recent years, our group has developed a body of research on vehicle-road 
coupled system dynamics [123, 146–149], which is beneficial to vehicle and road 
design, road construction, and fatigue life prediction.
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1.5 � Outline and the Main Issues of Vehicle-Road Coupled 
System Dynamics

The main part of this book consists of nine chapters, which may be divided into four 
parts as follows:

1.	 Analysis of vehicle system dynamics (Chaps. 2 and 3)

The dynamic properties of a leaf-spring and damper system for a heavy truck were 
measured, and nonlinear stiffness and damping models are proposed. The model 
parameters are identified from test data. Then, multiple-degree-of-freedom and 
multibody models of heavy vehicles were constructed, and the dynamics for heavy 
vehicles are analyzed. The orthogonal optimization and the semiactive control strat-
egy are also presented based on the multibody vehicle model.

2.	 Dynamic responses of road systems under vehicle loads (Chaps. 4, 5, and 6)

A beam on a nonlinear foundation, a double-layer plate on a viscoelastic foundation 
and elastic half space, and  (FE) model are set up for viscoelastic roads. The road 
dynamic responses under vehicle loads are calculated theoretically and numerical-
ly. The natural frequencies and modes of the road system are also calculated with 
Galerkin’s methods, differential quadrature, and so on.

3.	 Modeling and dynamic interaction of vehicle-road coupled systems (Chaps. 7, 8, 
and 9)

The two-dimensional and three-dimensional vehicle-road coupled systems are 
built and coupled system responses are simulated with the methods of mode 

Heavy vehicle 

Vehicle dynamics 

Road roughness 

Tire model Tire dynamics

Road Road dynamics

Moving load 

Vehicle-road

coupled system

dynamics

v

Fig. 1.11   The research scheme of vehicle-road coupled system dynamics
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superposition, Galerkin and numerical integration. The differences between the 
coupled system and the traditional systems are also investigated. The effects of 
system parameters, nonlinearity, and viscoelasticity on vehicle riding comfort and 
road damage were analyzed and the low dynamic design measures of the vehicle-
road system parameters are summarized. In addition, the nonlinear dynamics of the 
vehicle-road coupled system are investigated.

4.	 Construction of a highway test section for vehicle-road interaction analysis 
(Chap. 10)

In order to obtain reliable data of vehicle and road dynamic responses, a vehicle-
road test section was built on a highway and the responses of a heavy vehicle and 
the road were measured. By comparing simulated results with test data, the valid-
ity of the proposed vehicle-road coupled model and the calculation methods were 
verified.

In vehicle-road coupled system dynamics, further work is needed in the follow-
ing areas:

1.	 Modeling of a nonlinear viscoelastic road subjected to 3D moving loads and 
boundary conditions.

2.	 Modeling of 3D nonlinear tire forces and 3D coupled vehicle-road systems.
3.	 The solvable conditions of ordinary and partial differential equations with inte-

gral terms.
4.	 Effective analytical methods and stable convergent numerical integration algo-

rithms to solve high dimensional rigid-flexible coupled systems.
5.	 Construction of vehicle-road test sections and analysis of test data.

The research on dynamics of vehicle-road coupled system need some more 
investigation on it. It has been found that the coupling effects in vehicle-road 
systems are not as strong as those in railway train-track coupled systems, but it will 
have more effects in loaded “vehicle”-road system, especially on a highway ramp 
or on a bridge. It will also have more impacts on the vehicle driving safety when 
taking into account of the coupling effect in the road roughness spectrum which we 
will work in near future.
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The interaction between a vehicle and the road is a very complicated dynamic pro-
cess, which involves many fields such as vehicle dynamics, pavement dynamics, and 
tribology. From the aspect of dynamics, the dynamic process between the vehicle and 
the road can be briefly summarized as follows: (1) when a vehicle is moving on the 
road surface, the random vibration excited by the uneven road profile is transferred to 
the vehicle body through the tires and the suspension. (2) The vehicle body vibration 
is transferred to the road surface through the suspension as well as the tires. The re-
peated dynamic contact stresses (vertical and lateral) caused by the vehicle load may 
result in accumulative deformation of the road profile. (3) The changed road profile 
excites a new round of vibration on the vehicle once again. It is widely believed that 
contact stress is the main reason for road damage, especially for cracking and rutting. 
It should be noted that the tire and the suspension are two core transmission parts 
that define the relationship between the pavement and the vehicle. In this chapter, the 
damping of the shock absorber and the stiffness of the leaf spring are first obtained in 
a laboratory experiment. Through experimental data fitting and parameter identifica-
tion, the nonlinear models for the shock absorbers and the leaf spring are established. 
Then the lumped parameter models of two-axle and three-axle vehicle systems are 
established and the dynamic responses are analyzed in detail.

2.1 � Experimental Modeling for the Nonlinear 
Components in Vehicle Suspension

The shock absorber and the leaf springs are both key components of a heavy vehicle 
suspension. The damping and stiffness characteristics have an important influence 
on vehicle ride comfort and road friendliness. These parts are usually simplified 
as a linear model for the sake of convenience of calculation. However, the lin-
ear model cannot reflect their nonlinear characteristics and thus the vehicle vibra-
tion responses are distorted. So it is necessary to establish nonlinear models for the 
shock absorber and the leaf spring through experiments.
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2.1.1 � Experimental Damping Characteristics of the Shock 
Absorber

1.	 Theoretical basis and experimental purpose

The relation of damping force to piston relative velocity can elucidate the damping 
characteristics of a shock absorber. Furthermore, the relationship between damp-
ing force and velocity is nonlinear due to the shock absorber’s structural feature of 
a throttle valve and its working principle. The working principle of the hydraulic 
shock absorber can be briefly summarized [1] as follows: When a piston is moving 
back and forth in the cylinder tube, oil in the shell of the shock absorber repeatedly 
flows from one cavity into the other cavity through some narrow gaps. As a result, 
a damping force is produced because of the friction among the oil molecules. In 
theory, a greater damping force attenuates the vehicle suspension vibration fast-
er. However, the damping force is always larger in the tension stage than in the 
compression stage. The purpose of setting the throttle valve is to make the shock 
absorber improve vehicle dynamic behaviors. A bidirectional hydraulic shock ab-
sorber is studied in this chapter, which could attenuate the vibration in the tension 
and compression stages and reflects the nonlinear hysteretic characteristics. The 
shock absorber is a typical nonlinear system and the modeling of its damping force 
has become a research highlight [2]. Nonlinear modeling methods consist of: para-
metric models and nonparametric models. Parametric models account for the shock 
absorber’s internal fluid flow and the real structure of throttle, while nonparametric 
models are mainly based on actual measurements, ignoring its internal structure [3].

At present there are many mathematical models to describe the damping char-
acteristics of a shock absorber. A complex nonlinear shock-absorber model was 
proposed by Segel [4] and Lang [5], which includes 83 parameters depending on 
physical features. Although Lang’s model is good at describing the distortion prob-
lem during high frequency, it has some limitations in practical applications due to 
many parameters [6, 7]. Karadayi established a simpler and clearer model for de-
scribing the hysteresis characteristics of a shock absorber, but it is only suitable for 
low-frequency working conditions. Besinger and Cole proposed a nonlinear model 
including seven parameters [8]. They applied the Besinger model to a heavy-duty 
vehicle suspension shock absorber, and its simulation results are in accordance with 
experiments when the frequency is less than 10 Hz and the speed is less than 1 m/s 
[9, 10].

The shock absorber has asymmetrical and hysteretic damping characteristics. 
Mathematical models for symmetrical hysteresis include the bilinear model and 
differential hysteresis (such as Bouc–Wen) model. These models are based on the 
assumption of symmetry, which is not suitable for describing the behavior of the 
hysteretic system.

In this section, the damping characteristics of the shock absorber are first mea-
sured, and the least squares method (LMS) is used to identify the relevant param-
eters in order to establish a nonlinear, asymmetrical model for the shock absorber.
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2.	 Testing system and scheme

In this section, a dynamic material testing system (Hongda HT-911) is chosen to test 
the damping characteristics of the shock absorber. The principle of the test system 
is shown in Fig. 2.1 [11].

The test system includes a servo control system, a signal acquisition system, a 
function generator, a security monitoring system, a digital A/D interface system, a 
servo-valve driver, and a twin-tube hydraulic shock absorber.

The key specifications of this testing machine are: static and dynamic load rat-
ing: 500 – 50,000 kN, actuator nominal displacement range: 0–25 mm, frequency 
range: 0.05–50 Hz.

The specific testing scheme is designed as follows:

1.	 Clamping the shock absorber

The lower end of the shock absorber is vertically fixed to the hydraulic servo-plat-
form and the upper end is fastened to a rigid beam equipped with a force sensor. 
The shock absorber is adjusted along the vertical direction to ensure that the piston 
does not produce eccentric wear during the loading process. The initial position of 
the servo-console is also adjusted to ensure that the piston is located in the middle 
of the effective stroke.

Fig. 2.1   Test principle schematics of a shock absorber. (Reprinted from ref. [11], Copyright 2013, 
with kind permission from Maxwell Scientific organization)
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2.	 Loading the shock absorber

The excitation frequency, amplitude and sampling frequency are all input into the 
computer. A sinusoidal driving signal is produced through a function generator. The 
signal is amplified by the digital A/D interface to make the servo platform excite the 
shock absorber with the pre-input frequency and amplitude.

3.	 Collecting the data

Because the applied driving excitation is a displacement of the shock-absorber pis-
ton, the displacement signal can be directly obtained as the pre-input signal. And the 
damping force can be recorded through the force sensor on the rigid beam.

The test object is a shock absorber in front suspension of the heavy-duty truck 
DFL1250A9 manufactured by Dongfeng Motor Corporation Ltd, China. Photo-
graphs of the testing setup and the shock absorber are shown in Figs. 2.2 and 2.3 
respectively.

Fig. 2.3   Shock absorber. 
(Reprinted from ref. [11], 
Copyright 2013, with kind 
permission from Maxwell 
Scientific organization)

 

Fig. 2.2   Experimental setup 
for testing shock absorber. 
(Reprinted from ref. [11], 
Copyright 2013, with kind 
permission from Maxwell 
Scientific organization)
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3.	 Testing results for damping characteristics

To obtain the nonlinear damping characteristics of a shock absorber, it is necessary 
to do some excitation tests at different excitation frequencies and different ampli-
tudes. The steady-state excitation on the shock absorber is made according to the 
standard QC/T 545-1999. The excitation frequencies were chosen as 1.0, 1.5, 2.0, 
2.5 Hz, and the excitation amplitudes of the piston were chosen as 5, 10, 15, 20 mm.

Because the shock absorber is excited by a sinusoidal displacement, the piston 
motion is given as

� (2.1)

Where S0  is the amplitude of the piston movement and ω  is the angular frequency 
of the displacement. The relative velocity between the piston and the cylinder tube 
can be deduced as

� (2.2)

Through a series of experiments, the damping characteristic curves of the shock 
absorber are measured. Then the force–displacement curves for different excitation 
frequencies and amplitudes are shown in Figs. 2.4 and 2.5, respectively.

From Figs. 2.4 and 2.5, it can be observed that the area of the curves gradually 
increases with the increasing excitation frequency at the same excitation amplitude. 
The reason is that the higher external excitation frequency results in a larger damp-
ing force and dissipated energy. In addition, the damping force–velocity curves of 
the shock absorber were also obtained under different frequencies and amplitudes, 
shown as Figs. 2.6 and 2.7.

Figures 2.6 and 2.7 show that the curves present obvious nonlinear character-
istics during both the tension and the compression stages. Furthermore, there also 
exists a hysteresis phenomenon.

S S t= 0 2sin( )πω

V S t= 2 20πω πωcos( )

Fig. 2.4   Force–displacement 
curves for different frequen-
cies. (Reprinted from ref. 
[11], Copyright 2013, with 
kind permission from Max-
well Scientific organization)
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Fig. 2.7   Force–velocity 
curve for different ampli-
tudes. (Reprinted from ref. 
[11], Copyright 2013, with 
kind permission from Max-
well Scientific organization)

 

Fig. 2.6   Force–velocity 
curve for different frequen-
cies. (Reprinted from ref. 
[11], Copyright 2013, with 
kind permission from Max-
well Scientific organization)

 

Fig. 2.5   Force–displacement 
curve for different ampli-
tudes. (Reprinted from ref. 
[11], Copyright 2013, with 
kind permission from Max-
well Scientific organization)
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In order to further simulate the actual vibration of a heavy vehicle travelling on 
an uneven road, a random excitation test is also performed for the shock absorber. 
Figures 2.8 and 2.9 show the damping characteristics of the shock absorber under 
random excitation.

Some conclusions can be drawn from Figs. 2.8 and 2.9 as follows:

1.	 The points feature is an uneven distribution under random excitation but these 
points are basically located within a region of −6 to 6 mm amplitude and −0.06 
to 0.06 m/s velocity.

2.	 The force–displacement curve presents a “Hamburger” shape and the left and 
right sides are not completely symmetrical. The damping characteristics curve 
presents a “Banana” shape. These results once again prove that the shock 
absorber has indeed features of nonlinearity and asymmetry.

Fig. 2.9   Force–displacement 
curve for random excitation. 
(Reprinted from ref. [11], 
Copyright 2013, with kind 
permission from Maxwell 
Scientific organization)

 

Fig. 2.8   Force–velocity 
curve for random excitation. 
(Reprinted from ref. [11], 
Copyright 2013, with kind 
permission from Maxwell 
Scientific organization)
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4.	 Modeling of the shock absorber

Experimental research is only the beginning in the understanding of the shock absorb-
er’s characteristics. Parameter identification should be done to complete the vehicle dy-
namics research. There are two ways to accomplish system parameter identification: in 
the time domain and in the frequency domain. The LSM was first proposed by Gauss 
in 1795, and is a basic and effective method to apply identification theory to a static 
or dynamic, linear or nonlinear system. Thus the LSM is utilized to identify the shock 
absorber parameters based on experimental data. In this section, the Besinger model is 
chosen for the identification of the damping force. A nonlinear springs and a damper are 
cascaded together in this model, as shown in Fig. 2.10. The model has three features: 
a nonlinear relationship between the tension and compression stages, a hysteresis loop, 
and saturation in the tension stage at high speeds.

According to the model in Fig. 2.10, the spring force can be written as

� (2.3)

where k1  and k2  are the coefficients of the spring stiffness. The damping force is 
defined as

�
(2.4)

where C v c v

v
c( )

( )
=

−

+
−








+1
2 2

1

α

α
α

α

 is a function of v , the piston velocity relative to 

the cylinder tube, and

where Cb  is the damping coefficient of the shock absorber at the high-speed stage 
of the tension stage;

F k x k xk = +1 2
3

F
C v v v v
C v C v v v vc
e b

=
<

+ − ≥




( )
( )

lim

lim lim lim

c C C c C Ce c e c1 22 2= − = −( ) / , ( ) /

Fig. 2.10   The Besinger 
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Ce  is the damping coefficient of the shock absorber at the low-speed stage of 
the tension stroke;

Cc  is the damping coefficient of the shock absorber in the compression stage;
vlim  is the transition speed between the high- and low-speed stages during the 

tensile stroke;
α  is the transition parameter between the compressive and tensile damping 

forces.
Figure 2.11 illustrates the trend of C(v) with the relative velocity and the transi-

tion parameter.
Combining (2.3) with (2.4), the first-order differential expression of the shock 

absorber damping force is

�

(2.5)

5.	 Parameter identification of the shock absorber

According to the Besinger model, when the relative velocity of the piston is rel-
atively low, there is a nonlinear relationship between the damping force and the 
relative velocity. When the relative velocity of the piston exceeds vlim , there is a 
piecewise relationship between the damping force and the relative velocity. The 
Besinger model includes the seven parameters Cc , Ce , Cb , vlim , α , k1 , and k2 . 
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Fig. 2.11   Curve of the damping function C(v). (Reprinted from ref. [11], Copyright 2013, with 
kind permission from Maxwell Scientific organization)
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In order to identify these model parameters from the experimental data, a parameter 
identification process is designed as Fig. 2.12. For the Cc , Ce , Cb , α  parameters 
of Besinger, the objective function can be defined as

�

(2.6)
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Fig. 2.12   Parameter identification flowchart of the shock absorber. (Reprinted from ref. [11], 
Copyright 2013, with kind permission from Maxwell Scientific organization)
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where Fi  and vi  are the shock absorber’s damping force and the piston’s relative 
velocity obtained from the experimental data, N  are the sampling points, and vlim  
can be directly estimated from the experimental results. Combining with Eqs. (2.3) 
and (2.4), one can determine k1  and k2  by the cut-and-try method.

Based on the testing data (frequency 2 Hz, amplitude 10 mm), the LMS method 
is utilized to identify the damping parameters of the shock absorber. The specific 
damping coefficients are: C Ns mc = 5630 / , C Ns me = 31523 / , C Ns mb = 2500 / , 
v m slim . /= 0 123 , α = 0 0195. /m s , k N mm1 150= / , and k N mm2

30 12= . / .

2.1.2 � Experimental Stiffness Characteristics of the Leaf Springs

The stiffness characteristic caused by the vertical deformation of the leaf spring di-
rectly affects vehicle ride comfort, integrity of goods and dynamic tire force. Since 
2005, due to the continuous development of the domestic automobile industry and 
transport industry, the demand for large-tonnage heavy commercial vehicles has 
gradually increased. As an important component part, the leaf spring of a heavy 
vehicle suspension continues to increase in demand. The demand for heavy leaf 
springs was about 16 million ton at the end of 2006 and 36 million ton by 2008, 
which accounted for more than 35 % of the total demand for commercial vehicle 
leaf springs in China. For convenience, the leaf spring is usually simplified to a lin-
ear model, generating results that cannot reflect its nonlinear characteristics. Thus, 
analysis of the vehicle vibration response may be distorted based on a linear model. 
So it is necessary to establish a nonlinear model for the leaf spring through experi-
ments. The experimental and theoretical study of the leaf spring has had a great sig-
nificance to improving heavy-vehicle ride comfort.

1.	 Theoretical basis and experimental purposes

There are many nonlinear factors during the leaf spring’s actual operation, such as 
large deformation, contact between leafs and so on. These factors lead to energy 
loss in the leaf spring and show nonlinear-hysteresis characteristics under dynamic 
loading. The hysteresis characteristics have an influence on vehicle ride comfort 
and road friendliness. In recent decades, many scholars have proposed nonlinear 
mechanical models for the leaf spring. In the initial study, the hysteresis charac-
teristics of the leaf spring are simplified as a parallel linear model. This model is 
very simple and clear, and it is able to reflect the leaf spring’s locking phenom-
enon. However, Caughey pointed out that this model has poor accuracy. In 1970s, 
a modified dual linear model formed by a set of parallel linear springs and dampers 
was proposed [12]. Fancher proposed an index-difference model of the leaf spring, 
which can more accurately reflect the transient vibration characteristics and hyster-
esis characteristics of the leaf spring [13]. In recent years, the finite element (FE) 
method has been widely applied in research on leaf-spring equivalent damping and 
hysteresis characteristics [14–16].
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2.	 Testing system and scheme

The leaf spring of a heavy vehicle in this experiment has nine leaves with equal 
widths as well as thicknesses. The material is steel (60SiMn). The basic geometrical 
length of each piece ranges from 1600 to 280 mm (1600, 1600, 1412, 1222, 1034, 
846, 656, 468, 280 mm). The width and the thickness of each spring are 90 and 
25 mm, respectively. The total height of the spring is 220 mm, including 30 mm arc 
height. The experimental setup includes: a jack (type: YDC240QX-200), a string 
pressure gauge (type: JM2X-3102), a digital displacement sensor (type: DA-10), 
and an integrated testing instrument (type: JMZX-300X). The test system is shown 
in Fig. 2.13.

The specific testing program of the leaf spring stiffness characteristics is as fol-
lows:

1.	 Installation of the leaf spring

Some grease between the spring leaves is spread to reduce the frictional contact 
resistance. In the experiment, the leaf spring is installed according to the location 
on the heavy vehicle and is loaded with a jack at the top of the leaf spring. Two pads 
are used to support the two ends of the spring and the spring can slide along the 
longitudinal direction.

2.	 Loading the leaf spring

According to the vehicle leaf spring performance requirements, a 14.4 kN preload 
on the leaf spring is first loaded. Then the leaf spring is loaded and unloaded gradu-
ally along the central vertical direction.

3.	 Data acquisition

The load and the deformation of the leaf spring are recorded using the pressure 
gauge and displacement sensors, respectively.

The testing setup and photograph of the leaf spring are shown in Figs. 2.14 and 
2.15, respectively.

Slide

Jack

Force sensor

Pad

Beam

Fig. 2.13   Test principle schematics of a leaf spring
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3.	 Analysis of the experimental results

The results of the loading and unloading experiments of the leaf spring are shown 
in Table 2.1, which includes 12 experimental variations to determine the stiffness 
characteristics. The test curve is also shown as solid line in Fig. 2.17. It is clear that 
when the leaf spring is loaded and unloaded, the envelope curves of the leaf-spring 
stiffness characteristics basically formed two straight lines with different slopes, 
showing the hysteretic characteristic.

4.	 Modeling for a nonlinear leaf spring

In order to reflect the actual nonlinear hysteretic characteristic of the leaf spring, the 
Fancher difference model mentioned previously is chosen to describe the stiffness 
of the leaf spring. The schematic diagram of the model is showed in Fig. 2.16.

Table 2.1   Experimental results of a leaf spring
Test number Load/kN Displacement 

(loading)/mm
Displacement 
(unloading)/mm

1 29.5 − 12.52 − 10.306
2 40.9 − 6.914 − 2.521
3 43.8 − 5.577 − 0.931
4 56.5 0.417 4.126
5 64.1 4.040 10.849
6 85.1 14.519 17.799

Fig. 2.14   Experimental setup 
for testing a leaf spring
 

Fig. 2.15   Leaf spring 
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In the Fancher model, the restoring force of the spring during the loading process 
is written as

�
(2.7)

The restoring force of the leaf spring during the unloading process is

�

(2.8)
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Fig. 2.17   Stiffness comparison chart between test and simulation
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Fig. 2.16   Fancher leaf spring 
model
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where δ  is the vertical displacement of leaf spring, Fu  and Fl  are the restoring 
force of loading and unloading, Fenvu  and Fenvl  are the envelop forces of loading 
and unloading, ku  and kl  are the stiffnesses of loading and unloading, and βu  is 
the attenuation coefficient.

The restoring forces of the leaf spring model can also be obtained using the fol-
lowing iterative formula:

� (2.9)

5.	 Parameter identification of the leaf spring stiffness

LSM is a basic estimation method, which can be applied not only to a static system 
but also to a dynamic system, not only to a linear system but also to a nonlinear 
system, not only to an on-line system but also to an off-line system. Therefore, the 
identification based on the test data of the leaf spring is conducted with the LSM 
for our test data. After the parameter identification, the model parameters are ob-
tained. k N mu = 2064995 / , k N ml =1768096 / , F Nu = 55394 , F Nl = 45989 , 
β = × −0 1 10 3. m . Comparing the actual test results with the fitted model, the maxi-
mum of the error is 2.9 %, shown in Fig. 2.17.

2.2 � Dynamic Analysis of a Two-Axle Heavy Vehicle

2.2.1 � Vehicle Model and Differential Equations of Motion

A vehicle is a complex vibration system. It is rather difficult to establish a complete 
model to reflect the overall vehicle vibration characteristics. When the mathemati-
cal model for analysis is established, the vibration system must be appropriately 
simplified according to the research objective. A simple “whole-vehicle” model is 
shown in Fig. 2.18. It is three dimensional, with 8 degrees of freedom.

The symbols in Fig. 2.18 are listed as: mc —operator and seat mass, zc —verti-
cal displacement of operator’s seat, mb —vehicle body, zb —vertical displacement 
of center of vehicle body; Iθ —pitch moment inertia of vehicle body, θ —pitch 
angle of vehicle body, Iφ —roll moment inertia of vehicle body, φ —roll angle of 
vehicle body, mti —tire mass( i =1 2 3 4, , , ), zti —vertical displacement of tire, qi
—road roughness displacement inputs to the four tires, ksi —suspension stiffness, 
csi —suspension damping, kti —tire stiffness, cti —tire damping, kc —seat spring 
stiffness, cc —seat spring damping, d f —half of front axle spacing, dr —half of 
rear axle spacing, l1 —spacing between the center of vehicle body and front axle, l2
—spacing between center of vehicle body and rear axle, lx —longitudinal spacing 
between center of vehicle body and seat, ly —transverse spacing between center of 
vehicle body and seat.

F F F F ei envi i envi
i i= + −−

− − −( ) /
1

1δ δ β
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The governing equations of this whole-vehicle model can be derived from the 
Lagrange equation.

Differential equation of vertical motion of seat

� (2.10)

Differential equation of vertical motion of vehicle body

�

(2.11)

Differential equation of pitch motion of vehicle body

�

(2.12)
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Fig. 2.18   Three-dimensional vehicle model with 8 degrees of freedom
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Differential equation of roll motion of vehicle body

�

(2.13)

Differential equation of vertical motion of left-side front tire

�
(2.14)

Differential equation of vertical motion of left-side rear tire

�
(2.15)

Differential equation of vertical motion of right-side front tire

�
(2.16)

Differential equation of vertical motion of right-side rear tire

�
(2.17)

It is convenient to rewrite Eqs.  (2.10)–(2.17) together in the standard form of a 
matrix equation

�
(2.18)

where,
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2.2.2 � Calculation of the Vehicle Response

This simple vehicle model does not contain the detailed suspension nonlinearities 
that are typical of heavy vehicles, however its response illustrates many of the more 
important vehicle characteristics. Linear vehicle simulations can be performed effi-
ciently in the frequency domain for random inputs. In this approach, spectral densi-
ties of the output variables are calculated directly from a vehicle response transfer 
function and the road roughness spectral densities.

1.	 Calculation of displacement, velocity and acceleration

Taking a Fourier transform of both sides of Eq. (2.18)leads to

�
(2.19)

The transfer matrix relating the road displacement inputs to the vehicle vibration 
displacement outputs can be expressed as follows

�
(2.20)

where Hz q− ( )ω  is a matrix of eight rows and four columns, in which angular fre-
quency ω  is used as an independent variable.

The spectral density matrix of the displacement response may be calculated us-
ing the well-known relationship between the input and the output spectral densities 
for a linear system

�
(2.21)

where [ ]Gq  is the spectral density matrix of the road profile displacement, Hz q−
*( )ω  

and [ ( )]Tz qH ω-  are the complex conjugate and transpose of matrix Hz q− ( )ω , re-
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2.2.2 � Calculation of the Vehicle Response

This simple vehicle model does not contain the detailed suspension nonlinearities 
that are typical of heavy vehicles, however its response illustrates many of the more 
important vehicle characteristics. Linear vehicle simulations can be performed effi-
ciently in the frequency domain for random inputs. In this approach, spectral densi-
ties of the output variables are calculated directly from a vehicle response transfer 
function and the road roughness spectral densities.

1.	 Calculation of displacement, velocity and acceleration

Taking a Fourier transform of both sides of Eq. (2.18)leads to

�
(2.19)

The transfer matrix relating the road displacement inputs to the vehicle vibration 
displacement outputs can be expressed as follows

�
(2.20)

where Hz q− ( )ω  is a matrix of eight rows and four columns, in which angular fre-
quency ω  is used as an independent variable.

The spectral density matrix of the displacement response may be calculated us-
ing the well-known relationship between the input and the output spectral densities 
for a linear system

�
(2.21)

where [ ]Gq  is the spectral density matrix of the road profile displacement, Hz q−
*( )ω  

and [ ( )]Tz qH ω-  are the complex conjugate and transpose of matrix Hz q− ( )ω , re-
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spectively. [ ]Gz  is a matrix of eight rows and eight columns, in which the spectral 
densities of the vehicle displacements in the ith degree of freedom can be extracted 
from the diagonal elements (Gz zi i , i = 1–8) are the direct spectral densities. Follow-
ing the relation ω π= 2 f  and substituting the angular frequency with the temporal 
frequency in Eq.  (2.21), the root-mean-square of the vehicle-vibration displace-
ments in the ith degree of freedom is given by

� (2.22)

Let [ ( )]Hz q− ω  and [ ( )]Hz q− ω  denote the transfer matrices of the velocity and ac-
celeration. Then, from the property of the Fourier transform, we can derive

� (2.23)

� (2.24)

So, the spectral density matrix of the acceleration response is given by

� (2.25)

Similarly, the diagonal elements Gz zi i   in matrix Gz[ ] are also the direct spectral 
densities of the vehicle-vibration accelerations in the ith degree of freedom. So, the 
root-mean-square of the vehicle-vibration accelerations in the ith degree of freedom  
is obtained from

� (2.26)

When evaluating ride comfort, one can obtain the root-mean-square of the seat’s 
vertical acceleration by multiplying Eq. (2.26) by the frequency weighting function 
W f( ) , that is

� (2.27)

where, W f
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2.	 Calculation of the dynamic suspension deflection

Let fd1 , fd 2 , fd3  and fd 4 denote the dynamic suspension deflection of the left-side 
front, left-side rear, right-side front and right-side rear suspensions. Then, from the 
calculation formula and Fig. 2.18, we can derive

σ z z zi i i
G f df2

0
=

∞
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[ ] [ ( )][ ][ ( )] ( ) [ ( )][ ][* *G H G H f H G Hz z q q z q
T

z q q z

= =− − − −ω ω ω π ω4 42 qq
T( )]ω

σ
  z z zi i i

G f df2
0

=
∞

∫ ( )

σ
  z z zc c c

W f G f df2 2
0

=
∞

∫ ( ) ( )



432.2 � Dynamic Analysis of a Two-Axle Heavy Vehicle�

�

(2.28)

Taking the Fourier transform of both sides of Eq. (2.28) and rewriting in a form of 
a matrix

� (2.29)

where,

Substituting Eq. (2.20) into Eq. (2.29) leads to

� (2.30)

[ ( )] [ ( )][ ( )]H H Hf q f z z qd d− − −=ω ω ω  is the transfer matrix relating the road dis-
placement inputs to the dynamic suspension deflection outputs. So, the spectral 
density matrix of the dynamic suspension deflection can be expressed as

� (2.31)

where [ ]Gfd  is a matrix of four rows and four columns, in which the diagonal ele-
ments Gfd11 , Gfd 22 , Gfd 33 , and Gfd 44  are the direct spectral densities of the dy-
namic suspension deflection of the left-side front, left-side rear, right-side front and 
right-side rear suspensions, respectively. So, the root-mean-square of the dynamic 
suspension deflection is given by

�
(2.32)

3.	 Calculation of the stochastic dynamic tire force

The stochastic dynamic tire force generated by a moving vehicle is

� (2.33)
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By substituting Eqs. (2.14)–(2.17) into Eq. (2.33), we have after some rearrange-
ment

�

(2.34)

Similarly, the following equation can be deduced by the Fourier transform

� (2.35)

in which

[ ( )]HFd q−
ω  is the transfer matrix relating the road displacement inputs to the sto-

chastic dynamic tire force outputs. So, the spectral density matrix of the stochastic 
dynamic tire force can be expressed as

� (2.36)

The diagonal elements GFd11 , GFd 22 , GFd 33 , and GFd 44  in matrix [ ]GFd  are the 
direct spectral densities of the dynamic tire force of the four tires. So, the root-
mean-square of the dynamic tire force is given by

�
(2.37)

2.2.3 � Analysis of Vehicle-Vibration Response Under Random 
Excitation

In this section, the distribution of the dynamic tire forces are calculated using 
Matlab software, and a parametric study then follows to show the effect of the 
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vehicle system parameters on the dynamic tire force. The heavy vehicle param-
eters are chosen to be: m kgb = 24900 , I kg mθ = 203931 2· , 222994 ,·I kg mφ =  
m m kgt t1 3 300= = , m m kgt t2 4 800= = , m kgc = 90 , k k kN ms s1 3 400= = / , 
k k kN ms s2 4 2500= = / , k k kN mt t1 3 1000= = / , k k kN mt t2 4 3000= = / , 
k kN mc = 29 9. / , c c kN s ms s1 3 15= = · / , c c kN s ms s2 4 25= = · / , c N s mc = 680 · / , 
c c kN s mt t1 3 1= = · / , c c kN s mt t2 4 3= = · / ; d mf = 0 993. , d mr = 0 93. , l m1 4 55= . , 
l m2 1 8= . , l mx = 4 4. , l my = 0 8. , vehicle moving speed v m s= 20 / . The road 
grade is B.

Figure 2.19 shows the front and rear tire force spectral density as defined by 
Eq. (2.36). There are two main spectral peaks in the curve. The two spectral peaks 
for the front tire are frequencies of approximately 1.5 and 9.5  Hz, and the two 
spectral peaks for the rear tire are at frequencies of approximately 2 and 14 Hz. The 
first peak frequency corresponds to the spring-mass resonant frequency, which is 
related to suspension stiffness. The second peak frequency corresponds to the wheel 
hop frequency, which is related to tire stiffness. The second peak is relatively small 
compared to the first one. This also indicates that the suspension parameters have a 
significant effect on the dynamic tire force.

Figure 2.20 shows the energy distribution ratio of the dynamic tire force in dif-
ferent frequency domains, which can easily be estimated by the formula

a bLeft tire Right tire

Fig. 2.20   Energy distribution ratio of the dynamic tire force
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�
(2.38)

From Fig. 2.20, we can see that the dynamic tire force generated by a heavy vehicle 
is typically of low frequency. The energy is concentrated primarily in the range of 
0–4 Hz, in this frequency range, the energy distribution ratio of the front tire force 
is 75.6 %, and it is 91 % for the rear tire.

2.2.4 � Numerical Results and Discussions

In this section, the effect of vehicle suspension stiffness, suspension damping, tire 
stiffness, tire damping, road grade, and moving speed on the energy distribution of 
the dynamic tire force will be examined. The energy distribution of the dynamic tire 
force for the left-side and the right-side tires is similar, so, only the dynamic tire 
force of the left-side tire are worked out. In order to clearly observe the distribution 
of tire force spectral density for different parameters, logarithmic y-axes are used in 
Figs. 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, and 2.30.

1.	 The effect of suspension stiffness

The suspension stiffness has a significant effect on the tire force spectral density, 
affecting both the sprung mass resonant frequency and the wheel hop frequency. 
Figures 2.21 and 2.22 illustrate the relationship between the suspension stiffness 
and the tire force spectral density. The variation in the front suspension stiffness 
has little effect on the rear tire force spectral density, and the variation in the rear 
suspension stiffness also has little effect on the front tire force spectral density. As 
the front and rear suspension stiffnesses increase, the first spectral peaks of the 
front- and the rear-tire force increase in magnitude, while the second spectral peaks 
decrease in magnitude. The frequencies of both spectral peaks are seen to increase. 
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Fig. 2.21   The effect of front suspension stiffness on the tire force spectral density
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Fig. 2.22   The effect of rear suspension stiffness on the tire force spectral density
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Fig. 2.23   The effect of front suspension damping on the tire force spectral density
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Fig. 2.24   The effect of rear suspension damping on the tire force spectral density
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Fig. 2.27   The effect of front tire damping on the tire force spectral density
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Fig. 2.25   The effect of front tire stiffness on the tire force spectral density
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Fig. 2.26   The effect of rear tire stiffness on the tire force spectral density
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a b

Fig. 2.29   The effect of vehicle moving speed on the tire force spectral density
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Fig. 2.28   The effect of rear tire damping on the tire force spectral density
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Fig. 2.30   The effect of road grade on the tire force spectral density
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These suggest that, as the suspension stiffness increases, the low frequency vibra-
tion of the dynamic tire force becomes stronger and the damage to the pavement in-
creases. Therefore, in order to reduce the dynamic tire force and improve pavement 
service life, a small suspension stiffness should be considered first when designing 
the suspension, under the condition that the suspension bearing capacity and ride 
comfort can be completely guaranteed.

2.	 The effect of suspension damping

The effect of suspension damping on the tire force spectral density can be seen in 
Figs. 2.23 and 2.24. The variation in the front-suspension damping has little ef-
fect on the rear tire force spectral density, and the variation in the rear suspension 
damping also has little effect on the front tire force spectral density. The frequencies 
corresponding to the two spectral peaks do not change as the suspension damping 
changes. As the front suspension damping increases, the first and second spectral 
peaks of the front tire force all decrease significantly, and when the damping in-
creases to a certain value, the second spectral peak disappears. As the rear suspen-
sion damping increases, the second spectral peak of the rear tire force decreases 
significantly. But the first spectral peak decreases only slightly. These show that 
increasing suspension damping can reduce the dynamic tire force, which is benefi-
cial for pavement service life.

3.	 The effect of tire stiffness

Figures 2.25 and 2.26 show the effect of the tire stiffness on the tire force spectral 
density. The tire stiffness has a great effect on a wheel hop frequency as well as the 
tire force spectral density beyond the wheel hop frequency, and the larger the tire 
stiffness, the higher the second spectral peak value. This can be clearly seen in both 
Figs. 2.25a and 2.26b. However, the tire stiffness only has a moderate effect on the 
sprung mass resonant frequency as well as on the low-frequency tire force spectral 
density.

An increase in inflation pressure will cause an increase in the tire stiffness. The 
larger the tire stiffness, the more severe the vehicle vibration and the higher the 
dynamic tire force. So, it is necessary to strictly limit tire overpressure.

4.	 The effect of tire damping

The effect of suspension damping on the tire force spectral density can be seen 
in Figs. 2.27 and 2.28. The tire damping has little effect on the tire force spectral 
density in the low-frequency range, but has some effect on the wheel hop frequency 
and higher frequencies. As the tire damping increases, the first spectral peak re-
mains unchanged, but the second spectral peak decreases slightly. Compared with 
the other parameters, the effect of tire damping on the tire force spectral density is 
small, so, most studies of dynamic tire force omit this variable by assuming that the 
inherent damping of the tire is negligible.

5.	 The effect of moving speed

As seen in Fig. 2.29, we clearly recognize that the vehicle speed has a significant 
effect on the tire force spectral density, which significantly increases as the vehicle 
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speed increases. The higher the speed, the more serious the vehicle vibration and the 
higher the dynamic tire force.

6.	 The effect of road roughness

Roughness has a tremendous effect on the tire force spectral density. Figure 2.30 
shows the relationship between road grades and the tire force spectral density. 
Symbols A, B, C, and D denote the road grades. The tire force spectral density 
significantly increases as the road roughness increases (i.e., the pavement surface 
condition becomes worse). A lower road grade (going from A to D) will cause larger 
dynamic tire force and more pavement damage.

2.3 � Dynamic Analysis of a Three-Axle Heavy Vehicle

This section presents a mathematical model of the interacting process of a vehicle-
tire–road system and attempts to figure out the mechanics of interaction. A nonlin-
ear tri-axle vehicle model with a balanced suspension is first proposed based on a 
detailed analysis of the structural features of a heavy vehicle. Furthermore, an FRC 
(flexible rolling contact) tire model with enveloping characteristics is added into 
the full vehicle model. The tire model considers both the tire contact history with 
a rough road profile and the uneven distribution characteristics of a vertical load. 
It is expected that these results can supply new ideas for vehicle–road interaction 
research.

2.3.1 � Modeling for a Three-Axle Vehicle with a Balanced 
Suspension

A three-axle vehicle dynamic model with 6 degrees of freedom is built, as shown 
in Fig. 2.31.

The main parameters of the vehicle model are listed as follows:

mc ,mb ,mp    cab mass, body mass, and balanced rod mass.
Ibθ , I pθ    body and balanced suspension moment of inertia.
mtf ,mtm ,mtr    unsprung mass of the steering suspension and balanced suspension.
kc1 , kc2    front and rear mount stiffness of the cab.
cc1 , cc2    front and rear mount damping of the cab.
ksf , csf    stiffness and damping of the steering suspension.
ksr , csr    stiffness and damping of the balanced suspension.
ktf , ctf    stiffness and damping of the steering suspension tire.
ktm , ctm    stiffness and damping of the intermediate tire.
ktr , ctr    stiffness and damping of the rear tire.
q f , qm , qr    road input to the steering suspension tire and balanced suspension tire.
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zc , zb , ztf , zp    vertical displacement of the cab, body, front axle, and balanced 
rod.
θb ,θ p    angular displacements of the body and balanced suspension.
l1    distance from the front axle to the center of the vehicle body mass.
l2    distance from the center of balanced rod to the center of the vehicle body mass.
l3    distance from the intermediate axle to the rear axle.
l4    distance from the center of the cab to the center of the vehicle body mass.
l5    distance from the front cab mount to the center of the cab.
l6    distance from the rear cab mount to the center of the cab.

According to D’Alembert’s principle, the relative displacements between the frame 
and the cab are

�
(2.39)

The relative displacement between the frame and the front steering suspension is

The relative displacement between the frame and the balanced suspension is

� (2.40)

z z l l
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c b b

c b b

1 4 5

2 4 6

= − +
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θ
θ
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z z lff b b= −θ 1

z z lrr b b= −θ 2

Fig. 2.31   A three-axle vehicle model with a balanced suspension. (Reprinted from ref. [19], with 
kind permission from Science China Press and Springer-Verlag Berlin Heidelberg)
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The forces between the frame and the cab are

� (2.41)

� (2.42)

The force between the frame and the front steering suspension is

� (2.43)

The force between the frame and the balanced suspension is

� (2.44)

The differential equation of vertical motion for the vehicle cab is

� (2.45)

The differential equation of vertical motion for the vehicle body is

� (2.46)

The differential equation of pitching motion for the vehicle body is

� (2.47)

The differential equation of vertical motion for the front suspension tire is

� (2.48)

The differential equation of vertical motion for the balanced rod is

�

(2.49)

The differential equation of pitching motion for the balanced rod is

�

(2.50)
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The above equations of motion can be written in the form of a matrix of unity

� (2.51)

where Z z z z zc b b tf p p
T{ } = { }θ θ , in which each matrix can be expressed as
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2.3.2 � Modeling for a Vehicle-Tire–Road Coupling System

Because the tire is the only link between the vehicle and the road besides the air, it 
can not only support the vehicle load but also attenuate the shock from the uneven 
road profile. The tire dynamic behavior also has an important influence on vehicle 
and road dynamics. Therefore, it is necessary to build a tire model to reflect the 
tire’s actual physical features and to satisfy the vehicle–road interaction study. A tire 
is mainly composed of rubber and cord-rubber composite materials. Consequently, 
there exists a contact footprint area between the tire and the road caused by the tire’s 
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radial deformation. When a vehicle is travelling on uneven road surface, the height 
of the wheel center is not the pure sum of the tire free radius and the road original 
profile elevation. The single point contact (SPC) tire model is often used in vehicle 
dynamics and road design. However, the contact relationship between tire and road 
occurs through a finite footprint area rather than at a single point. The SPC model 
is convenient for calculating the dynamic tire force, but it cannot reflect the real 
interaction of the vehicle-tire–road system and also cannot filter out the high spatial 
frequency components from uneven road excitation. The tire property of filtering 
out the high-frequency excitation component is called the enveloping characteris-
tic, which was initially proposed by Lippmann [17]. A flexible roll contact (FRC) 
model, proposed by Guo, includes the tire geometry and flexible filtering properties 
[18], as shown in Fig. 2.32 [19]. The FRC model can reflect the variable contact 
length on a road surface for a rolling tire. The contact area is not a single point and 
the contact point is not constrained to lie vertically beneath the wheel center but 
depends on the local road profile. The model has the ability to envelop small irregu-
larities through local deformations within the footprint.

Some springs are used to simulate the effects of inflation pressure and flexible 
carcass, and some dampers describe the energy dissipation caused by carcass defor-
mations. Both the tire stiffness and damping are taken into account in this section. 
The vertical dynamic load at the wheel center is expressed as

�
(2.52)

where r0  is the free radius of tire, k xt ( )  and c xt ( )  are the tire distributive verti-
cal stiffness and damping, respectively, ( , )Z X x∆  and ( , )Z X x∆   are the relative 
deformation and velocity at a particular point within the contact length. ( , )Z X x∆  
and ( , )Z X x∆   can be expressed as

F k x Z X x dx c x Z X x dxd tr

r
tr

r
= +

− −∫ ∫( )· ( , ) ( )· ( , )
0

0

0

0∆ ∆ 

Fig. 2.32   The FRC tire 
model on an uneven road 
surface. (Reprinted from ref. 
[19], with kind permission 
from Science China Press 
and Springer-Verlag Berlin 
Heidelberg)
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�

(2.53)

where q X( )  is the original road profile, q X x( )+  is the local road profile of a par-
ticular contact point between the tire and road, Z Xc ( )  is the vertical displacement 
of the wheel center. There are two methods that are used to model the distributions 
of the vertical stiffness and damping: uniform and nonuniform distributions.

1.	 Uniform distribution:

�
(2.54)

where Kts  and Cts  are the vertical stiffness and damping of the tire, and 2a is the 
length of the footprint.

2.	 Nonuniform distribution:

�
(2.55)

where ( )z x∆  and ( )z x∆  are the relative deformation and velocity at each point and 
the road profile along the contact length, and q xz ( )  is the distribution function of 
the vertical load.

The actual distribution of a load on the local contact area is not symmetrically 
distributed for a moving vehicle, but the load distribution can be approximately as-
sumed as a uniform, symmetrical distribution of a parabolic or trapezoidal shape. 
Thus, a nonuniform model is adopted to represent the distributions of the vertical 
stiffness and damping, as Eq. 2.56.

�
(2.56)

where Fz  is the static vertical load, η( )u  is the dimensionless function, u x
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are fitted coefficients, n  is the uniform distribution factor, Δ is the distance from 
the load distribution center to the footprint center, and 

a
∆  is the partial distribution 

factor. According to Fig. 2.32, the force and the moment equilibrium equations are 
obtained using the following equations
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�
(2.57)

Then, the constraint equation is easily deduced as

�

(2.58)

By combining the three-axle heavy vehicle model with the FRC tire model and the 
random road excitation, the vehicle-tire–road coupling system can be established, 
as illustrated in Fig. 2.33.

According to D’Alembert’s principle, the differential equation of vertical motion 
for the vehicle cab is

� (2.59)
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Fig. 2.33   A nonlinear 
vehicle-tire–road coupling 
system. (Reprinted from ref. 
[19], with kind permission 
from Science China Press 
and Springer-Verlag Berlin 
Heidelberg)
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where Fc1  and Fc2  are the forces between the cab and the frame,

� (2.60)

� (2.61)

The differential equation of vertical motion for the vehicle body is

� (2.62)

where Fff  is the force between the front steering suspension and the frame, Frr  is 
the force between the balanced suspension and the frame. The Fff  is composed of 
the front nonlinear damping force of the shock absorber and the nonlinear restoring 
force of the leaf springs, and can be expressed as

� (2.63)

�

(2.64)

�
(2.65)

Frr  is composed of the rear nonlinear damping force and the nonlinear restoring 
force as well, and can be expressed as

� (2.66)

�

(2.67)

�
(2.68)
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The differential equation of pitching motion for the vehicle body is also obtained as

� (2.69)

The differential equation of motion for the unsprung mass of the steering suspen-
sion is obtained as

� (2.70)

where Ffd  is the dynamic tire with the FRC tire model,

�

(2.71)

The differential equation of motion for the balanced rod is

� (2.72)

Where Fmd  and Frd  are presented respectively as
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2.3.3 � Numerical Results and Discussions

The interaction of a vehicle and a road is a weakly coupled for two reasons: (1) the 
displacement response of the pavement system (0–1 mm) is much smaller than the 
deflection of the tire or suspension (10–20 mm), (2) the speed of propagation of 
elastic waves along the road profile (100–600 m/s) is much larger than the vehicle’s 
speed (10–50 m/s). So the road profile can be assumed to be unchanged for a ve-
hicle traveling on a road surface. In addition, the vehicle–road system is a nonlinear 
coupled system. The superposition principle of a linear system is no longer valid 
and the vibration response cannot be directly analyzed in the frequency domain. 
Therefore, it is necessary to set up a random roughness model in the time domain.

Generally, there are three methods to build the time-domain road model: the har-
monic superposition method, the linear filtered white-noise method, and the numer-
ical simulation for PSD sampling method. The linear filtered white-noise method 
has the advantage of high precision and a small calculation burden. Therefore, the 
filtered white-noise method is chosen for setting up the time-domain road model in 
this section. There are different road inputs to each tire for a three-axle vehicle. Let 
the front tire road input be q s1( )  and the rear tire road input be q s1( ) . Then the rear 
road input q s2 ( )  is defined as

� (2.75)

Where s is the distance traveled by the vehicle, and b is the delayed distance. So the 
transfer function is expressed as

�
(2.76)

where τ = b u/  ( b is the distance between the front and the rear axles and u is 
vehicle speed) is the time delay between inputs experienced by the front and the 
rear wheels. Then one can obtain the power spectral matrix in spatial frequencies as

�
(2.77)

In order to obtain the road input to the rear wheel, a rational function is needed to 
replace e s−τ  approximately. There are several ways to construct a rational func-
tion, such as the Pade’s approximation, Bessel functions, Lagrangian polynomial, 
etc. The Pade’s approximation is used to substitute e s−τ  in Eq. (2.77) in this sec-
tion [20, 21]. Then one can obtain a new transfer function as

�
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According to control theory, the state equations for Eq. (2.78) can be easily derived 
as follows

�
(2.79)

where

Then the front and the rear wheel inputs of a balanced suspension are obtained for 
B-class (GB/T 7031—2005/ISO 86) road surfaces, shown in Fig. 2.34.

It can be seen from Fig. 2.35 that the simulated road excitation result is close to 
theory in the PSD frequency spectrum. The validity of the time-domain input signal 
is verified.

The schematic diagram for the three road inputs are proposed for a tri-axle ve-
hicle, shown as Fig. 2.36. The road input to the front tire is first simulated using 
the band-limited white noise module in MATLAB/Simulink. The same principle 
can be used to simulate another road input to the wheel. Then the intermediate and 
the rear road inputs are calculated by considering the delay times τ1  and τ2 . Of 
course, the rear road input can also be deduced from the intermediate input with a 
delay time τ3 .
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Fig. 2.34   B-class road surfaces. (Reprinted from ref. [19], with kind permission from Science 
China Press and Springer-Verlag Berlin Heidelberg)
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It is very difficult to obtain an approximate analytical solution for a high-
dimensional nonlinear system or a nonlinear system under random excitation. 
Numerical methods are effective ways to solve such problems. Moreover, the 
specific methods are listed as: the Runge–Kutta method, the central differential 
method, the Newmark-β method, the Wilson-θ method, and the Houbolt method. 
The Newmark-β method has an advantage of unconditional stable integration if 
suitable parameters are chosen. Although the Newmark-β method calculation costs 
a lot of time, the single-step error 3( ( ))O t∆  is smaller than the central differential 
method’s, and has a high precision. Thus, the Newmark-β method is the best choice 
to solve the above nonlinear model under uneven road excitation.

The main dynamic parameters involved in the vehicle model are shown in 
Table 2.2.

The cab accelerations and the tire forces are compared based on the FRC and 
SPC tire models, respectively, as shown in Fig. 2.37, 2.38, 2.39, 2.40 and 2.41.

In Fig. 2.37, it can be observed that the response amplitude of the cab accelera-
tion based on the FRC tire model is much smaller than that based on the SPC tire 
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Fig. 2.35   Validation in frequency domain for a B-class road. (Reprinted from ref. [19], with kind 
permission from Science China Press and Springer-Verlag Berlin Heidelberg)

 

 

Fig. 2.36   Schematic diagram for the three road inputs. (Reprinted from ref. [19], with kind per-
mission from Science China Press and Springer-Verlag Berlin Heidelberg)
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Parameter Unit Symbol Value Parameter Unit Symbol Value
Cab mass kg mc

557.5 Front mount 
damping of 
cab

N s/m cc1
3620

Vehicle 
body mass

kg mb
11,523 Rear mount 

damping of 
cab

N s/m cc2
3620

Unsprung 
mass of 
steering 
suspension

kg mtf
412 Damping 

of steering 
suspension

N s/m ctf 50,636

Balanced 
rod mass

kg mp
177 Damping 

of balanced 
suspension

N s/m csr 25,320

Unsprung 
mass of 
balanced 
suspneiosn

kg m mtm tr= 676 Damping 
of steering 
suspension 
tire

N.s/m ctf 3500

Body 
moment of 
inertia

kg m2
Iθ1

55,502 Damping 
of balanced 
suspension 
tire

N s/m ctm = 7000

Balanced 
suspension 
moment of 
inertia

kg m2
I pθ 351 Distance 

from front 
axle to 
center of 
vehicle 
body mass

m l1 3.64

Front 
mount 
stiffness of 
cab

N/m kc1 36,230 Distance 
from 
intermediate 
axle to rear 
axle

m l3 1.3

Rear mount 
stiffness of 
cab

N/m kc2
36,230 Distance 

from front 
cab mount 
to center of 
cab

m l5 1.2

Stiffness 
of steering 
suspension

N/m ksr 251,380 Distance 
from rear 
cab mount 
to center of 
cab

m l6 1.0

Stiffness of 
balanced 
suspension

N/m ktf 206,4000 Distance 
from center 
of cab to 
center of 
vehicle 
body mass

m l4 2.8

Table 2.2   Main parameters of a three-axle vehicle
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 Response in time domain  Response in frequency domain
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Fig. 2.38   Comparison of front tire forces with the FRC and SPC models. (Reprinted from ref. 
[19], with kind permission from Science China Press and Springer-Verlag Berlin Heidelberg)

 

Parameter Unit Symbol Value Parameter Unit Symbol Value
Stiffness 
of steering 
suspension 
tire

N/m ktf 1,100,000 Distance 
from center 
of balanced 
rod to center 
of vehicle 
body mass

m l2 2.71

Stiffness of 
balanced 
suspension 
tire

N/m k ktm tr= 2,200,000

Table 2.2  (continued)
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Fig. 2.37   Comparison of cab accelerations with the FRC and SPC models. (Reprinted from ref. 
[19], with kind permission from Science China Press and Springer-Verlag Berlin Heidelberg)
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model in the time domain. The frequency components show a slight difference and 
the maximum amplitude of PSD for the FRC model is even bigger than the SPC 
model’s.

Figure 2.38 shows that the response amplitude of the front tire force based on the 
FRC tire model are slightly smaller than those based on the SPC model. The FRC 
tire model reduces the amplitude of the PSD significantly at the high-frequency 
range.

As can be seen from Figs. 2.39 and 2.40, the response amplitudes of the inter-
mediate and rear tire forces based on the SPC tire model are much larger than those 
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Fig. 2.39   Comparison of intermediate tire forces with the FRC and SPC models. (Reprinted from 
ref. [19], with kind permission from Science China Press and Springer-Verlag Berlin Heidelberg)

 

 Response in time domain  Response in frequency domaina b

0 0.5 1 1.5 2
-30

-20

-10

0

10

20

30

t/s

f tr
/k

N

FRC
SPC

0 10 20 30 40 50
10 -1

10 0

10 1

10 2

10 3
FRC
SPC

f/Hz

PS
D

/k
N

2 /H
z

Fig. 2.40   Comparison of the rear tire forces with the FRC and SPC models. (Reprinted from ref. 
[19], with kind permission from Science China Press and Springer-Verlag Berlin Heidelberg)
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based on the FRC model. The amplitudes of the PSD at the medium- and high-
frequency domains are all suppressed by the FRC tire model.

In short, the response amplitude of cab acceleration based on the FRC tire model 
is much smaller than that based on the SPC tire model in the time domain. In addi-
tion, the amplitudes of the PSD for the tire dynamic load at the medium- and high-
frequency domains are all suppressed by the FRC tire model. The traditional SPC 
tire model may bring a large error. The FRC model filters out vibration components 
of the tire forces at medium and high frequencies and reflects the actual interaction 
process of vehicle–road.

2.4 � Chapter Summary

1.	 The detail testing scheme of the shock absorber is proposed and the damping 
characteristics are tested under both sinusoidal and random displacement excita-
tion. The testing data under different excitation frequencies and amplitudes are 
analyzed. Test results show that the shock absorber has typical features of non-
linearity, nonsymmetry, and hysteresis. In order to satisfy the vehicle dynamics 
simulation, the nonlinear Besinger model is chosen to describe the shock absorb-
er’s nonlinear characteristics. The LSM is utilized to identify seven parameters 
of the Besinger model based on the experiment results.

2.	 When the leaf spring is loaded and unloaded repeatedly in vertical direction, the 
leaf spring will slide longitudinally, generating a viscous friction between the 
leafs. So when it is loaded and unloaded, the envelope curves of the leaf spring 
stiffness characteristics are basically two straight lines with different slopes, 
showing the hysteretic characteristic. The nonlinear model of a leaf spring is 
established by fitting the experimental results and identifying the parameters, 
and can provide a reliable and effective parameter source for vehicle dynamics 
research.

3.	 The dynamic tire force generated by a heavy vehicle has typical low-frequency 
features. The energy is concentrated primarily in the range of 0 ~ 4 Hz. In order to 
reduce the dynamic tire force and improve pavement service life, small suspen-
sion stiffness should be first considered under the condition that the suspension 
bearing capacity and ride comfort can be completely guaranteed. The increased 
suspension damping can reduce the dynamic tire force, which is a benefit to 
pavement service life.

4.	 The response amplitude of the cab acceleration with the FRC tire model is much 
smaller than that with the SPC tire model in the time domain. In addition, the 
amplitudes of PSD for tire dynamic load at the medium- and high-frequency 
domains are all suppressed by the FRC tire model. The traditional SPC tire 
model may bring a larger error. The FRC model filters out vibration components 
of tire forces at medium and high frequencies and reflects the actual interaction 
process of vehicle–road.
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There are several models used to study vehicle dynamics, such as the lumped pa-
rameter model (as shown in Chap. 2 of this book) and the digital simulation model. 
With the rapid development of computer technology, the function virtual proto-
type (FVP) technology has been widely utilized to study vehicle riding comfort 
and road friendliness. In this chapter, the nonlinear virtual prototype model of a 
heavy vehicle (DFL1250A9) is set up, and an orthogonal optimization program 
for the virtual heavy vehicle model is presented to analyze the effect of vehicle 
parameters on riding comfort and road friendliness according to the design of ex-
periment (DOE) method. Through a reasonable choice for the best objects, factors, 
level and experiment combination, a best matching program of experiment factors 
could be obtained and the goal of riding comfort and road friendliness could be ac-
complished. Finally, two kinds of adjustable damper control system are established 
within MATLAB/Simulink environment. The ADAMS/Matlab cosimulation of the 
full vehicle system is completed to show that the MR damper under semiactive 
“on–off” control can minimize seat vertical acceleration, suspension deflection, and 
dynamic tire force compared with a passive suspension. The semiactive suspension 
can improve vehicle dynamical performance, weaken vehicle body vibration, and 
increase riding comfort.

3.1 � Modeling of Vehicle Suspension, Tire, and Road

The multibody system (MBS) dynamics is one of the most important theoretical 
achievements of mechanics. With the development of the theory, corresponding 
commercial software packages, such as ADAMS [1], have been developed and are 
conveniently used in modeling and simulation. In the automotive industry, vehicle 
dynamic modeling and simulation have already been widely used in vehicle perfor-
mance studies, such as riding, handling, and stability. A complicated heavy vehicle 
model, including the suspension structures and parameters in more detail, can be 
conveniently built with the help of the software tools. The FVP technology has 
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been widely applied in the vehicle industry [2, 3]. A moving vehicle is a complex 
nonlinear vibration system with multiple DOF, and some proper assumptions and 
simplifications are given, as follows:

1.	 Internal friction and damping in hinges, except for rotational hinges and pris-
matic joint, are neglected.

2.	 In addition to bushings and springs, vehicle parts and components are regarded 
as rigid bodies.

3.	 The engine’s inner structure is neglected, and only the output rotational speed 
and torque are included.

The front suspension of a heavy vehicle is composed of the front axle, leaf springs 
(eight leaves), a shock absorber, a steering knuckle, tie rods and so on. The shock 
absorber is a major damping element in a suspension system, which is mainly used 
to attenuate vibration of the vehicle body. The damping force between the two rigid 
bodies is expressed by the following equation:

� (3.1)

where fd  is a nonlinear interpolation spline function and v is the relative accelera-
tion between the two rigid bodies. The damping force is a function of the instanta-
neous relative velocity of the two components. The shock absorber (SACHS F088) 
of the front suspension was tested on an HT-911 dynamic material testing system. 
The force–velocity characteristic curve of the shock absorber is shown in Fig. 3.1 
[6].

( )d dF f v=

Fig. 3.1   Nonlinear characteristic curve of a shock absorber. Reprinted from ref. [3], Copyright 
2010, with permission from Elsevier
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The leaf springs for the suspension are built in a module of ADAMS. Each leaf 
is made up of a series of parts connected with discrete beams. The leaves are con-
nected with bushings at the leaf seat. The beam forces and moments are calculated 
as follows:

� (3.2)

where F and T are the force and the moment, x, y, z, a, b, c, Vx, Vy, Vz, wx, wy, and 
wz  are the relative displacement, angle, velocity, and angular velocity between the 
points I  and J , respectively, K  is and the leaf spring stiffness, C is the damping 
coefficient, and l is the length of the beam. Given the polar moment of inertia along 
the x-axis, moment of inertia along the y–y and z–z central axes, cross-sectional 
area, Young’s elastic modulus, and other parameters, the leaf spring forces and mo-
ments of each connection portion can be determined.

The leaf spring of the front suspension is established according to the structure 
of Fig. 3.2. The external dimensions of the front leaf spring are 1600 × 90 × 25 mm.

The front steering suspension is assembled with the shock absorbers, leaf spring, 
steering knuckles, tie rod tires, and so on, as shown in Fig. 3.3.
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Fig. 3.2   Leaf spring of the front suspension. Reprinted from ref. [3], Copyright 2010, with per-
mission from Elsevier
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A steering subsystem is established to ensure the correct dynamics simulation of 
the full vehicle model. It is the combination of the steering wheel, the column shaft, 
the knuckle arm, etc. as shown in Fig. 3.4.

The rear suspension of the heavy vehicle is a nonindependent balanced sus-
pension, which includes the intermediate axle, rear axle, lateral rod, longitu-
dinal road, and leaf spring. The external dimensions of the rear leaf spring are 
1720 × 90 × 15 mm, as shown in Fig. 3.5.

The balanced suspension utilizes the “level” principle to distribute the load 
equally and to reduce the effect of road irregularities. It is difficult to model the 
guiding mechanism due to the complicated spatial geometric relationship in the 

Fig. 3.4   Steering subsystem. Reprinted from ref. [3], Copyright 2010, with permission from 
Elsevier

Fig. 3.3   Front steering suspension. Reprinted from ref. [3], Copyright 2010, with permission from 
Elsevier
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traditional modeling method. The multibody dynamics modeling provides an effec-
tive method to solve this problem. The balanced suspension includes tandem driv-
ing axles (intermediate axle and rear axle), leaf springs (nine leaves), lateral rods, 
and longitudinal rods. These templates are also built according to 2D drawings, as 
shown in Fig. 3.6.

The tire is a very crucial component of the whole vehicle model. There are five 
general tire models used for the dynamics simulation of a multibody vehicle model 
[8]: the Fiala model, the University of Arizona (UA) model, the Smithers model, the 
DELET model and the model proposed in this book. First, the tire is simulated as an 
elastic ring, which is called the Fiala Tire (FT) model in this book. The FT model 
is a physical tire model in which the tire carcass is modeled as a beam on an elastic 

Fig. 3.5   Leaf spring of a balanced suspension. Reprinted from ref. [3], Copyright 2010, with 
permission from Elsevier

Fig. 3.6   Tandem balanced suspension system. Reprinted from ref. [3], Copyright 2010, with per-
mission from Elsevier
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foundation in the lateral direction. Although the tire belt ply or buffer layer is sim-
plified as a section beam acted on under a concentrated load, it can well describe the 
normal, longitudinal, the lateral forces between the tire and the road, with regards to 
vehicle ride comfort and road damage.

The dimensionless analytical equation of the FT model is

� (3.3)

where Py  is the lateral force of the tire, Pz is the vertical loading, µ  is the tire adhe-
sion coefficient, Ma  is the aligning torque, a is the length of the tire footprint, and 
φ  is the dimensionless sideslip angle. The sideslip angle can be expressed as

�
(3.4)

where β  is the slip angle and K  is the cornering stiffness. The types of front and rear 
tires are both 11.00R20. The parameters are listed in Table 3.1.

The road is not ideally flat and its surface is a mixture of waves with differing 
wavelength and amplitude. It has been established that most road surface irregulari-
ties are normally distributed and may be accurately modeled by a stationary ran-
dom process. Thus, we often describe road surfaces with a power spectral density 
(PSD) in a frequency domain. It is difficult to create a road model which not only 
meets tire requirements but also conforms to stochastic distribution characteristics. 
At present, there are generally three ways to simulate the road spectrum: harmonic 
superposition, integral white noise, and noise-shaping filter method. In this section, 
the random sinusoidal (harmonic wave) superposition method is adopted, which is 
the method of discrete numerical simulation. According to standard GB/T 7031-
2005/ISO 8608, the PSD of road surface roughness can be represented as
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Table 3.1   Main parameters of the tire. (11.00R20)
Parameter Unit Value
Free rolling radius Mm 507
Vertical stiffness N/mm 1100
Vertical damping N·s/mm 3.5
Coefficient of rolling resistance moment Mm 0.015
Cornering stiffness N/rad 800
Camber stiffness N/rad 0
Friction coefficient of pure rolling 0.9
Friction coefficient of pure sliding 1.0
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� (3.5)

where 0n  is the reference spatial frequency, n is the spatial frequency, G nd ( )0  is the 
road roughness coefficient (the value of the power spectrum density when the refer-
ence spatial frequency is n0), X n( ) is the amplitude of the road surface roughness 
in the spatial domain, and w is the frequency index which depends on the frequency 
structure of the road spectrum. The w index is found within the range of 1.75 < w 
< 2.25, with w = 2 being a good average value. In a certain spatial frequency range, 

1 2n n n< < , the displacement PSD of road roughness is G nd ( ). According to the ex-
pansion properties of the stationary stochastic process, the variance of road rough-
ness is described by

�
(3.6)

The spatial frequency range, 1 2n n n< < , is divided into several uniform intervals 
which have a width of in∆ . The power density ( )dG n  in every small interval is 
substituted by mid( )d iG n - , where mid ( 1, 2, , )in i n- = …  is the center frequency of the 
interval i. Based on such a discrete approximation method, Eq. (3.6) is expressed as

�
(3.7)

In order to describe the road model, a sinusoidal function is constructed as follows:

�
(3.8)

The standard deviation of this function is mid( )·d i iG n n- ∆  in every small interval. 
After superposition, the road surface in two-dimensional (2D) space is

�
(3.9)

where θ  is the random phase angle uniformly distributed from 0 to 2π , x is the 
longitudinal coordinate of a road, and q x( ) is the vertical roughness of the road. 
The surface of a B-class road in 2D space and the corresponding 3D virtual road 
model are shown in Figs. 3.7 and 3.8, respectively. The 3D virtual road model’s di-
mension is 1000 m × 22.5 m and the vertical roughness scale is kept equal with the 
longitudinal-coordinate scale in Fig. 3.8.
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A full-vehicle model includes a locomotive cab, a chassis frame, a carriage, an 
engine, an oil tank, and their key subsystems. After a precise definition of the spatial 
locations of the subsystems, the vehicle model is established through the input and 
the output communication device. The integration process of a full-vehicle model 
is shown in Fig. 3.9.

The integrated model can be more accurate and truly reflect the actual fine struc-
ture of vehicle systems. Some quasi-static equilibrium simulations are done and 
implemented to check for redundant constraints. The whole 3D vehicle model is 
shown in Fig. 3.10. The main parameters of the full vehicle model are listed as 
follows. The full vehicle mass is 24,900 kg, the axle bases are 5700 and 1300 mm, 
the wheel bases are 1986/1860/1860 mm, the centric height is 862 mm, the camber 
angle is 1°, the kingpin inclination is 7°, the toe-in angle is 1°52ʹ.

Fig. 3.7   Surface profile of a B-class road. Reprinted from ref. [3], Copyright 2010, with permis-
sion from Elsevier

Fig. 3.8   Three-dimensional (3D) virtual road. Reprinted from ref. [3], Copyright 2010, with per-
mission from Elsevier
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3.2 � Orthogonal Optimization of a Heavy Vehicle

It is not enough to evaluate a single parameter’s (vehicle geometric position, suspen-
sion stiffness, and damping characteristics) effect on vehicle performance. Accord-
ing to whether a mathematical model exists, s, optimization methods for a target can 
be divided into two categories: (1) computable optimization, whose mathematical 
model is known and can be numerically solved directly; (2) experimental optimi-
zation, whose mathematical model is unknown and cannot be solved directly—in 
this case, an optimal parameter combination can be obtained based on experimental 

Fig. 3.9   The integration process of a full vehicle model. Reprinted from ref. [3], Copyright 2010, 
with permission from Elsevier

Fig. 3.10   Three-dimensional (3D) multibody vehicle model. Reprinted from ref. [3], Copyright 
2010, with permission from Elsevier
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results. DOE for optimization is a discrete optimization method proposed by Fish-
er. The parametric modeling is the most advantageous for the multibody vehicle 
model. In order to figure out which vehicle parameter has the most significant im-
pact on vehicle performance and which parameters result in the extremities, several 
simulation trials of matching parameters should be done. Furthermore, since the 
vehicle multibody model contains a lot of nonlinear parameters, it is suitable to uti-
lize the experimental optimization method to improve the vehicle ride comfort and 
road friendliness. The orthogonal experimental design method was first proposed 
by Tiankou Hongyi from Japan, and is called the International Standard Orthogonal 
Test. This method has been widely used in detection, earthquake prediction, and 
product design because of its effective, robust, high-quality characteristics [4, 8].

In this section, an orthogonal optimization program for the multibody heavy ve-
hicle model is presented to analyze the effect of vehicle parameters on ride comfort 
and road friendliness according to the DOE method. Through a reasonable choice 
of the best objects, factors, level, and experiment combination, a best matching pro-
gram of experimental factors can be obtained and the goal of ride comfort and road 
friendliness can be accomplished.

1.	 Orthogonal program

The orthogonal DOE method makes use of an orthogonal table to arrange the ex-
periments and analyze the multifactor effects on the objective. The basic character-
istic of this method is that full-scale testing is replaced by a representative sample of 
possible parameter-value combination in the digital experiment. The effect of every 
factor (system parameter) on the objects can be analyzed and the best matching of 
levels can also be selected through a full-scale experiment method in detail. But 
the full-scale experiments have so many combinations that they are hard to accom-
plish due to the heavy workload. If the main purpose of the experiment is to seek 
the optimal combination of levels, the orthogonal table can be used to arrange for 
fewer experiments. The focus of this study on the interaction between the vehicle 
and the road—the acceleration of the centers of mass of the vehicle and driver seat 
are chosen to evaluate ride comfort, while the tire dynamic force is used to evaluate 
road friendliness. So in this orthogonal experiment, the objects are established as 
the vertical acceleration of the driver seat (Object1), the vertical acceleration of the 
vehicle’s center of mass (Object2), the front tire force (Object3), the intermediate 
tire force (Object4), and the rear tire force (Object5).

Shock absorbers and leaf springs have a significant impact on vehicle perfor-
mance and road friendliness. Thus, the suspension’s and the cab suspension’s damp-
ing and stiffness coefficients are selected as the experiment factors. The front steer-
ing suspension and the balanced suspension of a heavy vehicle is a nondependent 
suspension and the left and the right shock absorbers and leaf springs are completely 
symmetrical. So in this orthogonal experiment, the experiment factors are selected 
as the front suspension damping (Factor A), the front suspension stiffness (Factor 
B), the balanced damping (Factor C), the balanced suspension stiffness (Factor D), 
and the driver seat damping (Factor E). After the selection of the experiment fac-
tors, the range of levels for the factors needs to be determined. The nonlinearity of 
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the multibody vehicle model and the comprehensive effect of factors on the objects 
are taken into account. For example, the three-level curve of the front suspension 
damping and leaf spring stiffness of a balanced suspension are shown in Figs. 3.11 
and 3.12. Each level value of vehicle parameter is 0.7, 1.0, and 1.3 times of the 
initial value (described in Chap. 2) [7].

According to the established experiment objects, experiment factors, experiment 
levels, a reasonable orthogonal table is formulated and the experiment matrix is 
constructed, as the orthogonal table of L27

53( ), listed in Table 3.2.
The orthogonal experiment program is implemented by the flow chart in 

Fig.  3.13. Through a reasonable choice for the best objects, factors, level and 

Fig. 3.11   Damping curve of the front suspension. Reprinted from ref. [7], Copyright 2013, with 
kind permission from CESER Publications

Fig. 3.12   Stiffness curve of a balanced suspension. Reprinted from ref. [7], Copyright 2013, with 
kind permission from CESER Publications
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experiment combination, a best matching program of experiment factors can be 
obtained and the goal of ride comfort and road friendliness can be accomplished.

2.	 Results of the orthogonal experiment

According to the orthogonal experiment L27
53( ), 27 sets of orthogonal experiments 

for the parameterized model of a heavy vehicle were done and the results are shown 
in Table 3.3.

Range analysis is commonly used to study the orthogonal experiment, which can 
show the optimization results of the orthogonal experiment intuitively. In order to 
analyze the effect of different levels of experiment factors on vehicle ride comfort 

Table 3.2   L27
53( ) Orthogonal table

Experiment Number Factor and level
A B C D E

T1 1 1 1 1 1
T2 1 1 2 2 2
T3 1 1 3 3 3
T4 1 2 1 2 2
T5 1 2 2 3 3
T6 1 2 3 1 1
T7 1 3 1 3 3
T8 1 3 2 1 1
T9 1 3 3 2 2
T10 2 1 1 2 3
T11 2 1 2 3 1
T12 2 1 3 1 2
T13 2 2 1 3 1
T14 2 2 2 1 2
T15 2 2 3 2 3
T16 2 3 1 1 2
T17 2 3 2 2 3
T18 2 3 3 3 1
T19 3 1 1 3 2
T20 3 1 2 1 3
T21 3 1 3 2 1
T22 3 2 1 1 3
T23 3 2 2 2 1
T24 3 2 3 3 2
T25 3 3 1 2 1
T26 3 3 2 3 2
T27 3 3 3 1 3
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and road friendliness, the range analysis and judgment of the results of the orthogo-
nal experiment are conducted through a specific process as shown in Fig. 3.14.

The expression for the range analysis is

� (3.10)

where y ji is the mean value of the sum of evaluation indexes of all levels for each 
factor. Rj  is defined as the range between the maximum and the minimum value 
of y ji, which is used to evaluate the importance on the objects. So the best level 

{ } { }max min , 1,2,3j ji jiR y y i= - =

Fig. 3.13   Flow chart of the orthogonal experiment. Reprinted from ref. [7], Copyright 2013, with 
kind permission from CESER Publications
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for each factor could be achieved when y ji is the smallest and the larger Rj means 
greater significance of the object. The aims of the interaction study of the vehicles 
and the road is to reduce the driver acceleration, vehicle center of mass acceleration 
and the dynamic tire forces upon the road surface.

The range analysis of the driver’s acceleration is listed in Table 3.4. Figure 3.15 
is the comparison chart of each experiment factor’s effect on the driver seat accel-
eration. The degree of importance of the suspension parameters on the first object 
(driver seat acceleration) is listed in descending order: balanced suspension stiffness 
(Factor D), front suspension damping (Factor A), driver seat damping (Factor E), 
front suspension stiffness (Factor B), and balanced suspension damping (Factor C). 

Table 3.3   Orthogonal simulation experiment results
Experiment 
number

Optimal object
Driver seat 
acceleration/m/s2

Vehicle body 
acceleration/m/s2

Front tire
force/N

Intermediate 
tire force/N

Rear tire
force/N

T1 1.2446 1.0153 26,143.8 35,559.9 35,157.4
T2 2.1266 0.9661 26,385.3 34,556.9 34,478.7
T3 1.0682 0.9831 26,310.4 33,890.6 33,785.9
T4 1.6856 1.0672 26,267.6 35,580.2 35,153
T5 1.127 0.9642 26,433.4 34,584.1 34,468.2
T6 1.2348 0.9749 26,365.6 33,867.1 33,845.3
T7 1.3622 0.9984 26,316.6 35,506.5 35,227.5
T8 1.0584 0.9319 26,418.7 34,534.2 34,547.4
T9 1.0486 0.8931 26,374.7 33,872.4 33,825.2
T10 2.5872 1.1432 26,145.7 35,626.6 35,135.5
T11 1.176 1.0006 26,461.2 34,558.8 34,445.7
T12 1.0682 0.9438 26,347.2 33,852.5 33,847.9
T13 1.4994 0.9718 26,237.2 35,588.9 35,109.5
T14 1.0584 0.9504 26,411.3 34,626.9 34,469.1
T15 1.0976 0.9383 26,327.7 33,838.7 33,788.9
T16 1.715 0.9932 26,218.6 35,602.7 35,192.6
T17 1.0878 0.9451 26,496.9 34,547.4 34,507.7
T18 1.1662 0.9641 26,373.8 33,896.9 33,788
T19 1.3818 0.9968 26,194.5 35,621.5 35,142.6
T20 1.078 0.9773 26,450.1 34,596.9 34,438.7
T21 1.1466 0.9742 26,355.5 33,887.9 33,785.4
T22 1.6954 1.0241 26,257.1 35,570.4 35,134.7
T23 1.7542 0.9622 26,415.1 34,542.5 34,465.2
T24 1.0976 0.9873 26,245.4 33,839.5 33,793.8
T25 2.548 1.046 26,264.4 35,591.1 35,216.1
T26 1.0682 0.9436 26,447.1 34,544.4 34,454.5
T27 1.1172 0.9586 26,305.6 33,869.2 33,933.7
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Fig. 3.14   Range analysis diagram. Reprinted from ref. [7], Copyright 2013, with kind permission 
from CESER Publications

Table 3.4   Range analysis of the driver’s acceleration
Range Factor

A B C D E
y j1 11.2700 11.9560 12.8772 15.719 12.4852
y j2 15.0822 12.4558 12.2500 11.5346 13.4358
y j3 10.9466 12.8870 12.1716 10.0450 11.3778

1jy 1.2522 1.3284 1.4308 1.7466 1.3872

y j2 1.6758 1.3839 1.3611 1.2816 1.4929
y j3 1.2163 1.4319 1.3542 1.1161 1.2642

Rj 0.4595 0.1035 0.0766 0.6305 0.2348

Fig. 3.15   The effect of experiment factors on driver acceleration. Reprinted from ref. [7], Copy-
right 2013, with kind permission from CESER Publications
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Thus, the balanced suspension stiffness and the front suspension damping are two 
dominant factors affecting ride comfort. In short, the best combination of factor 
levels for lowest driver’s acceleration is determined as A3B1C3D3E3.

The range analysis of the vehicle body acceleration is listed in Table  3.5. 
Figure 3.16 is the comparison chart of each experiment factor’s effect on the vehicle 

Table 3.5   Range analysis of the vehicle body acceleration
Range Factor

A B C D E
y j1 8.7695 8.7942 9.0013 9.2560 8.8479
y j2 8.9354 8.8505 8.8151 8.6414 8.8821
y j3 8.8099 8.8701 8.6740 8.6174 8.7848
y j1 0.9444 0.9771 1.0001 1.0284 0.9831
y j2 0.9929 0.9834 0.9795 0.9602 0.9869
y j3 0.9789 0.9856 0.9638 0.9575 0.9761
Rj 0.0185 0.0085 0.0363 0.0709 0.0108

Fig. 3.16   The effect of experiment factors on the vehicle body acceleration. Reprinted from ref. 
[7], Copyright 2013, with kind permission from CESER Publications
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body acceleration. The degree of importance of the suspension parameter’s effect 
on the second object (vehicle body acceleration) is in sequence of the balanced sus-
pension stiffness (Factor D), the balanced suspension damping (Factor C), the front 
suspension damping (Factor A), the driver seat damping (Factor E), and the suspen-
sion stiffness (Factor B). Thus, the balanced suspension stiffness, damping and the 
front suspension damping are the dominant factors affecting ride comfort. In short, 
the best combination of factor levels is determined as A1B1C3D3E3.

The range analysis of the front tire force is listed in Table 3.6. Figure 3.17 is the 
comparison chart of each experiment factor’s effect on the front tire force. The de-
gree of importance of the suspension parameter’s effect on the third object (front tire 
force) is in sequence of the balanced suspension stiffness (Factor D), the balanced 
suspension damping (Factor C), the driver seat damping (Factor E), the front sus-
pension damping (Factor A), and the suspension stiffness (Factor B).Thus, the bal-

Table 3.6   Range analysis of the front tire force
Range Factor

A B C D E
y j1 236,918.0 237,016.1 236,291.7 236,045.5 236,797.9
y j2 237,032.9 237,019.6 236,960.4 237,919.1 237,034.9
y j3 237,019.6 236,934.8 237,216.4 237,005.9 237,137.7
y j1 26,324.2 26,335.1 26,310.4 26,227.3 26,310.9

y j2 26,336.9 26,335.5 26,328.9 26,435.5 26,337.2
y j3 26,335.5 26,326.1 26,357.4 26,333.9 26,348.6
Rj 12.7   9.4 47.0 208.2 37.7

Fig. 3.17   The effect of experiment factors on front tire force. Reprinted from ref. [7], Copyright 
2013, with kind permission from CESER Publications
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anced suspension stiffness and damping are the dominant factors affecting front tire 
force. In short, the best combination of factor levels is determined as A1B3C1D1E1.

The range analysis of the intermediate tire force is listed in Table 3.7. Figure 3.18 
is the comparison chart of each experiment factor’s effect on the intermediate tire 
force. The degree of importance of the suspension parameter’s effect on the fourth 
object (intermediate tire force) is in sequence of the balanced suspension stiffness 
(Factor D), the driver seat damping (Factor E), the suspension stiffness (Factor B), 
the balanced suspension damping (Factor C), and the front suspension damping 
(Factor A). Thus, the balanced suspension stiffness is the only dominant factor af-
fecting the intermediate tire force. In short, the best combination of factor levels is 
determined as A3B1C3D3E2.

The range analysis of the intermediate tire force is listed in Table 3.8. Figure 3.19 
is the comparison chart of each experiment factor’s effect on the intermediate tire 
force. The degree of importance of the suspension parameters effect on the fifth 
object (rear tire force) is in sequence of the balanced suspension stiffness (Factor  
D), the balanced suspension damping (Factor C), the front suspension damping 

Table 3.7   Range analysis of the intermediate tire force
Range Factor

A B C D E
y j1 312,079.8 311,951.9 312,151.6 320,247.8 312,200
y j2 312,043.7 312,139.4 312,038.3 311,092.1 311,958.2
y j3 312,031.2 312,063.4 311,964.8 304,814.8 311,996.5
y j1 34,675.5 34,661.3 34,683.5 35,583.1 34,688.9

y j2 34,671.5 34,682.2 34,670.9 34,565.8 34,662.0

y j3 34,670.1 34,673.7 34,662.8 33,868.3 34,666.3

Rj 4.0 20.9 20.7 1714.8 26.9

Fig. 3.18   The effect of experiment factors on the intermediate tire force. Reprinted from ref. [7], 
Copyright 2013, with kind permission from CESER Publications
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(Factor A), the suspension stiffness (Factor B), and the driver seat damping (Factor 
E). Thus, the balanced suspension stiffness is the dominant factor affecting rear tire 
force. In short, the best combination of factor levels is determined as A3B2C1D3E3.

Through the range analysis, the best factor and combination of levels are ob-
tained for each object. In order to equalize the five object effects on ride comfort 
and road friendliness, the final best matching is chosen as A1B1C3D2E3 according to 
the major and minor effects on ride comfort and road friendliness.

According to the range analysis method, the best combination of A1B1C3D2E3 is 
obtained. The optimized results are shown in Fig. 3.20–3.24.

Based on the calculation of the results, the optimized root mean square (R.M.S) 
acceleration of the driver and body decreased 8.9 and 7.4 %, respectively, compared 
with the nonoptimized results, and the dynamic tire force of the front, intermediate 
and rear wheels decreased 2.3 , 4.3, and 3.8 %, respectively.

Table 3.8   Range analysis of the rear tire force
Range Factor

A B C D E

y j1
310,566.8 310,488.6 310,217.8 316,468.9 31,038.9

y j2
310,355.7 310,284.9 310,227.7 310,365.4 310,427.3

y j3
310,215.7 310,364.7 310,692.7 304,394.1 310,326.0

y j1
34,507.4 34,498.7 34,468.6 35,163.2 34,487.2

y j2
34,483.9 34,476.1 34,469.7 34,485.0 34,483.9

y j3
34,468.4 34,484.9 34,521.4 33,821.6 34,468.4

Rj
39.0 22.6 52.8 1341.6 11.2

Fig. 3.19   The effect of experiment factors on the rear tire force. Reprinted from ref. [7], Copyright 
2013, with kind permission from CESER Publications



3  Dynamic Analysis of a Heavy Vehicle Using Function Virtual Prototype88

Fig. 3.22   The optimized result of front tire force. Reprinted from ref. [7], Copyright 2013, with 
kind permission from CESER Publications

Fig. 3.20   The optimized result of driver acceleration. Reprinted from ref. [7], Copyright 2013, 
with kind permission from CESER Publications

Fig. 3.21   The optimized result of body acceleration. Reprinted from ref. [7], Copyright 2013, with 
kind permission from CESER Publications
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3.3 � Semiactive Control of a Heavy Vehicle

In this section, a detailed multibody model of a heavy vehicle is presented in AD-
AMS/CAR. Two kinds of control algorithms are developed for a semiactive sus-
pension in the MATLAB/Simulink virtual environment, respectively. Thus the 
ADAMS/Matlab cosimulation of the full truck-system is completed through the 
establishing interface [5].

1.	 Control algorithm

The designed semiactive control system in this section is shown as follows:

1.	 Semiactive on–off control

Generally, the semiactive on–off control damping force is

Fig. 3.24   The optimized result of rear tire force. Reprinted from ref. [7], Copyright 2013, with 
kind permission from CESER Publications

Fig. 3.23   The optimized result of intermediate tire force. Reprinted from ref. [7], Copyright 2013, 
with kind permission from CESER Publications
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�
(3.11)

where V is the velocity between the damper piston and the column casing, which is 
equal to the velocity between the wheel and the vehicle body, Cmax is the damping 
coefficient when the orifice is fully closed, and is also the passive suspension damp-
ing coefficient, and Cmin is the damping coefficient when the orifice is fully open. 
Let max 3000 N·s/mC = , min 0C = .

2.	 Semiactive MR control based on a revised Bingham model

In recent years, a number of semiactive control label M (Magneto-rheological) R 
fluid-based dampers have been developed for vehicle suspension applications. The 
MR damper offers high viscous damping corresponding to low velocities in the 
preyield condition, while the postyield saturation corresponding to high velocities 
can be characterized by a considerably lower viscous damping coefficient. The 
damping properties are considered to be well suited for vibration attenuation ap-
plications to achieve the satisfactory compromise among different conflicting re-
quirements. Although the traditional Bingham model can be used to fit the MR 
damper force–displacement response and energy dissipation ability, this model can-
not describe the MR damper nonlinear characters of force and velocity well. Thus, 
a revised Bingham model with a nonlinear hysteresis loop is used in this section. 
The MR damping force with this model is expressed by the following equations:

�
(3.12)

�
(3.13)

where C1 —MR damper viscous damping coefficient,
Fy—control force,
V0  —MR damper at zero-force velocity, and
V   —relative acceleration between the damper piston and the column casing.
The parameters for the damper are chosen as: 1 800 N·s/mC = , max 1000 NyF = ,  
min 8 NyF = , and 0 1 m/sV = . The revised Bingham mechanics model is shown as 

Fig. 3.25.

2.	 Controller design

First, some necessary measurements are defined based on the multibody vehicle 
model in ADAMS/CAR, including the velocity of vehicle body ( V-body), the ve-
locity between the wheel and the vehicle body ( V-left, V-right). These are three 
measured signals, which are taken as the output state variables of the vehicle model. 
Second, the control inputs to the vehicle model are defined as semiactive forces 
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Force-left and Force-right. Third, the full vehicle model is exported as a nonlinear 
ADAMS plant to MATLAB/Simulink and the designed control algorithm is inte-
grated with the dynamic vehicle model by the control interface. Thus, the cosimula-
tion can be run repeatedly until a more practical controller is achieved. The cosimu-
lation environment in MATLAB/Simulink has been set up to simulate the ADAMS 
model, and the cosimulation system diagram is shown in Fig. 3.26.

The subsystem of the semiactive “on–off” controller and the semiactive MR con-
troller based on the revised Bingham model are, respectively, shown as Fig. 3.27, 
3.28.

3.	 Cosimulation analysis

The vehicle vertical acceleration directly reflects the passengers’ ride comfort. The 
vehicle suspension dynamic deflection is the displacement between the wheel and 

Fig. 3.25   Revised Bingham 
model. Reprinted from ref. 
[8], Copyright 2008, with 
kind permission from IEEE yF

yF yF

F
1C

V0V

Fig. 3.26   Cosimulation system diagram. Reprinted from ref. [8], Copyright 2008, with kind per-
mission from IEEE
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Fig. 3.27   Subsystem of the “on–off” controller. Reprinted from ref. [8], Copyright 2008, with 
kind permission from IEEE

Fig. 3.28   Subsystem of the MR controller. Reprinted from ref. [8], Copyright 2008, with kind 
permission from IEEE
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the vehicle body. If the deflection exceeds the designed positive stop, the bumper 
block would damage the suspension components. Vehicle dynamic tire force seri-
ously affects vehicle driving, braking characteristics and pavement damage. Ac-
cording to these performance indexes, some simulations are done under the national 
standard C-level road, fully laden, and 40  km/h condition. The vehicle dynamic 
performances under the passive control, semiactive “on–off” control, and semiac-
tive MR control are analyzed, respectively. The results of every index R.M.S are 
shown in Table 3.9.

From Table 3.9, it is found that the semiactive “on–off” control can reduce the 
driver seat acceleration, left suspension deflection, right suspension deflection, left 
tire force, and right tire dynamic force by 23.6, 23.6, 12.5, 8.7, and 8.6 %, respec-
tively, compared to the passive suspension. And the semiactive MRF control based 
on the revised Bingham model can reduce the same variables by 26.7, 34.3, 38.6, 
9.2, and 8.2 % compared to the “on–off” control, respectively. Therefore, the semi-
active MRF control effects on the revised Bingham model is much better than the 
traditional passive and “on–off” control strategies and the vehicle dynamic perfor-
mances are improved.

3.4 � Chapter Summary

1.	 Based on multibody dynamics theory, a nonlinear virtual prototype model of 
a heavy vehicle is quickly created. According to the orthogonal optimization 
theory of statistics, the advantage of the parametric model of a multibody vehicle 
is fully utilized to accomplish the dual optimization goals of ride comfort and 
road friendliness.

2.	 Through establishing the interface, the ADAMS/Matlab cosimulation system 
of the virtual vehicle model is completed. It is found that the adjustable shock 
absorbers can improve vehicle dynamical performance, weaken vehicle body 
vibration and increase ride comfort. The cosimulation technology offers a new 
way to model and control a complex dynamic system.

Table 3.9   Root mean square (R.M.S) of the suspension dynamic performance
Performance index(R.M.S) Unit Passive On–off MR
Seat vertical acceleration m/s−2 0.586 0.448 0.430
Left suspension deflection M 0.055 0.042 0.036
Right suspension deflection M 0.088 0.077 0.054
Left tire force N 26,631 24,319 24,185
Right tire force N 29,177 26,656 26,774
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Chapter 4
Dynamic Analysis of a Pavement Structure 
Under a Vehicle’s Moving Load
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With the development of highway transportation, the high speed and heavy duty 
phenomena have become extraordinarily common. The premature pavement dam-
age caused by the dynamic loads of heavy duty vehicles is becoming more and more 
serious and is receiving widespread attentions. The static highway design method 
has met difficulty to meet the traffic requirement. It is a prevailing subject to study 
the dynamics of pavement structure, to reveal the pavement damage mechanism, 
and to promote the changing of pavement design criterion from static to dynamic.

This chapter establishes the models of a finite (Sect. 4.1–4.3) and infinite beam 
(Sect. 4.4) on a nonlinear foundation with viscous damping. Based on the Galerkin 
method and the integral transform method, the numerical and analytical solutions 
are derived for the dynamic response of the pavement structure subjected to a mov-
ing load. Moreover, the vibration characteristics of the pavement structure under 
a moving load are discussed through some examples. Furthermore, the coupled 
nonlinear vibration of the vehicle–pavement system is studied based on a finite 
Timoshenko beam on the foundation subjected to a spring–mass–damper oscillator.

4.1 � The Dynamic Response of a Vehicle– 
Pavement System Based on a Finite Beam  
on a Nonlinear Foundation

The dynamic response problem of elastic beams on a nonlinear viscoelastic foun-
dation displays nonlinear and viscous characteristics, which make the analysis dif-
ficult. The Galerkin truncation method is a powerful tool for dealing with dynamic 
problems in such cases. It has been widely used to study free and forced vibration 
phenomena for elastic materials on nonlinear viscoelastic foundations. Based on the 
Galerkin method, Li et al. investigated the chaos of a pavement on a viscoelastic 
foundation subjected to a moving vehicle with the first order discretization and 
Melnikov’s function [1]; Sheng et al. studied the dynamic behavior of Timoshenko 
beams with damage on a viscoelastic foundation by using 2-term truncation [2]; 
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Pellicano and Mastroddi investigated the nonlinear dynamic behavior via 3-term 
truncation in conjunction with the method of normal forms [3]; Ansari et al. stud-
ied train–track interaction via 3-term truncation, considering the internal–external 
resonance condition and obtained the frequency responses of different harmonics, 
and found that the nonlinear stiffness plays a positive role in the design of railway 
tracks because of the delay in the jump phenomenon [4, 5]; Yan et al. studied the 
dynamic response of functionally graded beams with an open edge crack on an 
elastic foundation subjected to a transverse moving load via 3-term truncation [6]; 
Coskun studied the forced vibrations of an elastic beam on a nonlinear tensionless 
foundation by employing the 5-term truncation [7]; Celep et  al. investigated the 
response of a beam on a tensionless Pasternak foundation subjected to a dynamic 
load by employing the 5-term truncation [8]; Vassilev and Djondjorov investigated 
the dynamic stability of viscoelastic pipes lying on a foundation of variable modu-
lus using 10-term truncation [9]; Yang et al. presented the dynamic behavior of the 
vehicle–pavement-foundation coupled system using the 20-term truncation [10]; 
Chen and Chen studied steady-state deformations of an infinite beam on a tension-
less foundation under a moving point load through 80-term truncation [11]; Senalp 
et al. studied the dynamic response of a finite length Euler–Bernoulli beam on linear 
and nonlinear viscoelastic foundations under a concentrated moving force, and 100-
term truncation is utilized in order to solve the governing equations of motion [12].

Although the Galerkin truncation has been widely applied to dynamic problems 
of finite beams on a nonlinear viscoelastic foundation, the convergence of the trun-
cation terms has not been studied. In this section, the convergence of Galerkin’s 
method for dynamic response of finite Euler–Bernoulli beams on a cubic nonlinear 
foundation with viscous damping is studied. The parametric dependence study is 
carried out to investigate the effects of different parameters on the convergence of 
the Galerkin truncation.

The dynamic response of a finite beam on an elastic foundation has been stud-
ied through different boundary conditions. Based on the finite element method for 
the dynamic analysis of beams on an elastic foundation subjected to moving point 
loads, Thambiratnam and Zhuge proved that the beams of span length L > 10 m can 
accurately approximate the response of the ideal beam of infinite length [13]. In 
order to study the interaction between train vehicles and railway track, Muscolino 
and Palmeri scrutinized the response of beams on a viscoelastic foundation under 
moving single degree-of-freedom (SDOF) oscillators [14]. Based on modal shapes 
and natural frequencies of the beam-foundation, the effects of boundary conditions 
and the span length of the beam are investigated through a state–space formulation. 
Monsalve et al. presented the dynamic analysis of a Timoshenko beam-column on 
a two-parameter elastic foundation with generalized end conditions. The end condi-
tions allowed simulating any end support condition to the beam-column [15]. The 
dynamic responses of functionally graded beams on an elastic foundation subjected 
to a moving load with different end supports are obtained by Yan et al. [6]. The au-
thors found that boundary conditions have significant influence on the dynamic re-
sponse of the cracked functionally graded materials’ beams. However, there are no 
works on the influences of boundary conditions of finite beams on a foundation on 
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the dynamic response of the beams excited by a moving load and the convergence 
of the Galerkin’s method. To address the lack of research in this aspect, the dynamic 
responses are calculated by the Galerkin truncation under three types of the con-
ventional boundary conditions, namely simply-supported (SS), clamped–clamped 
(CC), and free–free (FF) boundary conditions. In the present work, the effects of 
the boundary condition and span length of the supporting beam on the dynamic 
responses and the convergence of the Galerkin truncation are studied.

This section investigates the convergence of Galerkin’s method for the dynamic 
response of a vehicle–pavement system. The pavement is modeled as a finite length 
Euler–Bernoulli or a Timoshenko beam with uniform cross-section on a nonlin-
ear viscoelastic foundation. The vehicle is simplified as a concentrated force or a 
spring–mass–damper oscillator. Galerkin’s method is utilized to discretize the non-
linear partial differential governing equation of the forced vibration. Moreover, the 
dependence of the convergence of Galerkin’s method on boundary conditions, span 
length, and other system parameters is studied, respectively.

4.1.1 � Equation of Motion [16]

The system under investigation is a finite elastic Euler–Bernoulli beam on a non-
linear viscoelastic foundation and subjected to a moving load. Consider a homoge-
neous beam with constant cross-section A, moment of inertial I, length L, densityρ, 
and modulus of elasticity E. The foundation is taken as a nonlinear Winkler’s foun-
dation with liner-plus-cubic stiffness and viscous damping with three parameters 
as follows

� (4.1)

where P represents the force induced by the foundation per unit length of the beam, 
k1 and k3 are the linear and nonlinear foundation parameters, respectively, μ is the 
damping coefficient of the foundation, T is the time, a comma preceding T denotes 
the partial differentiation with respect to T.

Using the Hamilton principle and considering the Euler–Bernoulli beam theory, 
one can develop the governing differential equation of motion for the beam as

� (4.2)

where w( X, T) is the vertical displacement function, EI is the flexural rigidity of 
the beam, X is the spatial coordinate along the axis of the beam, δ( X) is the Dirac 
delta function used to deal with the moving concentrated load, a comma preceding 
X denotes the partial differentiation with respect to X, Fz and v are the magnitudes 
of the load and load speed, respectively.

Introduce the dimensionless variables and parameters as follows

3
1 3 ,TP k w k w cw= + +

3
1 3, , , ( )TT XXXX T zAw EIw k w k w cw F X VTρ δ+ + + + = -
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�

(4.3)

where x is the dimensionless spatial coordinate and t is the dimensionless time. 
Equation (4.2) can be transformed into the dimensionless equation

� (4.4)

Here, the beam considered in the model, is assumed to be simply supported at both 
ends, and therefore the boundary conditions are given as follows

� (4.5)

In the present investigation, two other kinds of boundary conditions of the beam are 
also considered, that is, both clamped ends, as follows

� (4.6)

and both free ends as follows

� (4.7)

In all numerical examples here, the initial conditions are

�
(4.8)

4.1.2 � Galerkin’s Discretization

The Galerkin truncation method is used to discretize the system and the series ex-
pansion form for w( x, t) is assumed to be

�
(4.9)

where ϕk x( ) are the trial functions, and q tk ( ) are sets of generalized displacements 
of the beams. In this research, the first n terms of Eq. (4.9) is considered in order to 
determine w( x, t). Substituting Eq. (4.9) into Eq. (4.4) leads to

b
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�

(4.10)

Multiplying Eq. (4.10) by the weight functions w xi ( ) and integrating it over the in-
terval of 0 and 1, the Galerkin procedure leads to the following set of n second-order 
ordinary differential equations (ODES)

�

(4.11)

If the trial functions and the weight functions are both chosen properly, the vertical 
displacement of the beams w x tn ( , ) can be numerically solved via Eq. (4.9).

In the present investigation, both the trial and weight functions are chosen as 
eigenfunctions of the beam-foundation linear subsystem under the boundary con-
ditions. The natural frequencies and the mode functions of the beam on a linear 
elastic foundation which is simply supported and without any loads can be derived 
as follows

� (4.12)

and

� (4.13)

where

�
(4.14)

When the beam is CC at the ends, the kth mode functions is

�
(4.15)
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where

�
(4.16)

and the characteristic equation is

� (4.17)

whose nontrivial solutions should be numerically computed: 1 24.73, 7.85,β β= = … 
(notice that (2 1) /2 for 2k k kβ π≅ + > ).

When the beam is FF at the ends, the kth mode functions is

� (4.18)

where

�
(4.19)

and the characteristic equation is Eq. (4.17), same as CC boundary conditions. The ei-
genvalues are 1 2 30, 4.73, 7.85β β β= = = … (notice that (2 1) /2 for 3k k kβ π≅ - > ).

Both the trial and weight functions are chosen as eigenfunctions of the beam-
foundation linear subsystem. That is to say, ( ) ( )k kx xϕ φ= , ( ) ( )i iw x xφ= . For SS, 
CC, and FF boundary conditions, the mode functions satisfied

� (4.20)

With the usual orthogonal condition, the CC and FF boundary conditions satisfied

�
(4.21)

Substitution of Eq. (4.21) into Eq. (4.11) yields

�

(4.22)

For a set of given parameters kb, k1, k3, Fz, μ and the initial conditions in Eq. (4.8), 
q tk ( ) can be numerically solved via the Runge–Kutta method (fourth order) from 
Eq. (4.22) by discretizing the temporal variables. After substituting the numerical 
solutions into Eq. (4.9), the vertical displacement w x tn ( , ) can be solved.
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4.1.3 � Numerical Results

In this part, the beam is assumed to be the asphalt mixtures D-12 (limestone). The 
physical and geometric properties and dimensionless parameters’ value of the pave-
ment, foundation, and the moving load are listed in Table 4.1.

The results of a few different numbers of Galerkin truncation terms, namely, 
50-term Galerkin’s truncation, 75-term Galerkin’s truncation, 150-term Galerkin’s 
truncation, and 200-term Galerkin’s truncation for the vertical deflections of the as-
phalt pavement while the load moves to the mid-point of the pavement and the ver-
tical deflections of pavement center with time are, respectively, shown in Figs. 4.1 
and 4.2. The numerical results demonstrated that there are big differences between 
the 50-term Galerkin’s truncation results with the 150-term ones and the 200-term 
ones. The comparisons indicate that the 50-term Galerkin’s method is not accurate 
enough for the dynamic response analysis of the asphalt pavement on a soft soil 
foundation running the vehicle, and there are discernible differences between the 
results of the 75-term and the 150-term Galerkin’s method. The comparisons also 
predict that the difference between the results of the 150-term and the 200-term 
Galerkin’s method is very small, so the 150-term Galerkin’s method yields rather 
accurate results. The maximum relative differences between the maximum mid-
point vertical deflections is 14.29 × 10−2 in the 50-term Galerkin truncation and the 
200-term Galerkin truncation, 4.876 × 10−2 in the 75-term Galerkin truncation and 
the 200-term Galerkin truncation, and 0.3381 × 10−2 in the 150-term Galerkin trun-
cation and 200-term Galerkin truncation.

Table 4.1   Properties of the asphalt mixtures D-12, pavement, foundation, and load [17]. (Reprinted 
from ref. [16], Copyright 2014, with permission from Elsevier)
Item Notation Value Dimensionless value
Asphalt mixtures (D–12)
Young’s modulus(steel) E 6.998 GPa –
Mass density ρ 2373 kg/m3 –
Height of pavement h 0.3 m –
Width of pavement b 1.0 m –
Modulus of elasticity kb – 5.41 × 10−4

Length L 160 m 1
Foundation
Mean stiffness k1 8 × 106 N/m2 97.552
Nonlinear stiffness k3 8 × 106 N/m4 2.497 × 106

Viscous damping c 0.3 × 106 Ns/m2 39.263
Moving load
Load Fz 212.6 KN 1.013 × 10−4

Speed V 20 m/s 0.01165

4.1 � The Dynamic Response of a Vehicle–Pavement System Based …
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In Figs. 4.3 and 4.4, the effects of three kinds of boundary conditions on the ver-
tical displacements of the pavement midpoint ( /2)X L=  while /(2 )T L V=  versus 
the truncation terms and the shape of the pavement while /(2 )T L V=  are displayed. 
In Fig. 4.4a, the effects of three kinds of boundary conditions on the vertical dis-
placements of the pavement midpoint ( /2)X L=  while /(2 )T L V=  versus the trun-
cation terms are displayed. Figure 4.4b shows the kth-order of the natural frequen-
cies. The numerical results also illustrate that the convergence for simply supported 
boundary conditions is slightly slower, the same as changing tendencies of the natu-
ral frequencies. The numerical results which are shown in Fig. 4.4 also illustrate 
that the convergence can be predicted from the growth in the natural frequencies.
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Fig. 4.1   The effects of the 
Galerkin truncation terms 
on the vertical deflection of 
the pavement. (Reprinted 
from ref. [16], Copyright 
2014, with permission from 
Elsevier)
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In the following calculations for the asphalt pavement on a soft soil foundation 
with a moving vehicle, only the results of the simply supported boundary condi-
tions are shown. Figure 4.5 shows the dependence of the convergence in terms of 
the vertical deflections of the pavement on the system parameters. There is a little 
difference among the vertical deflections for different lengths of the beam while the 
truncation terms are not too large, which means 20n < . The numerical results also 
illustrate that when a longer length of the pavement L is chosen, more truncation 
terms are required to achieve convergence. The convergence of Galerkin’s method 
depends on the pavement and foundation parameters, including the modulus of elas-
ticity of the pavement, height and width of the pavement, the linear and nonlinear 
foundation parameters, and the damping coefficient of the foundation, which are 
displayed in Fig. 4.5, respectively. The numerical results of the asphalt pavement 

a

w

b

Fig. 4.4   The effects of the boundary conditions: a on the vertical displacements of the pavement 
midpoint versus truncation terms; b on the natural frequencies versus terms. (Reprinted from ref. 
[16], Copyright 2014, with permission from Elsevier)
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a b
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Fig. 4.5   The effects of the parameters on the vertical displacements of the pavement midpoint 
versus truncation terms. (Reprinted from ref. [16], Copyright 2014, with permission from Elsevier)
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on a soft soil foundation with a moving vehicle illustrate that the convergence of the 
Galerkin truncation increases with the growing modulus of elasticity of the pave-
ment, the nonlinear foundation parameters, but decreases with the increase of the 
linear foundation parameters and the damping coefficient. It is also found that the 
convergence increases with the height and the width of the pavement. The numeri-
cal results also depict that there is a little difference among the vertical deflections 
of the pavement for not too large truncation terms with the different modulus of 
elasticity of the pavement, nonlinear foundation parameters, the height and the 
width of the beam, and the damping coefficient of the foundation. The vertical dis-
placements of the pavement decrease with the increase of these parameters.

The vertical deflections of the asphalt pavement while the load moves to mid-
point of the pavement for different lengths of pavement and different boundary 
conditions are shown in Fig. 4.6a and b, respectively. Figure 4.6a demonstrates that 
beams of span length 18mL =  with SS or CC boundary conditions can accurately 
approximate the response of the infinite length asphalt pavement on a soft soil foun-
dation with a moving vehicle, and three solutions are overlapped when the span 
length of the pavement is rather large. Figure 4.6b indicates that the FF boundary 
conditions are the inefficient ones.

4.2 � The Dynamic Response of a Finite Timoshenko  
Beam on a Nonlinear Viscoelastic Foundation  
to a Moving Load [18]

4.2.1 � Equation of Motion

The system under investigation is a finite elastic Timoshenko beam on a nonlinear 
viscoelastic foundation subjected to a moving load, as shown in Fig. 4.7. F0 and V, 
respectively, represent the magnitude of the load and the load speed. Moreover, V 

a b
σ

Fig. 4.6   The effects of the span length of the pavement on the vertical deflection of the pavement 
with n = 200. (Reprinted from ref. [16], Copyright 2014, with permission from Elsevier)
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is assumed to be constant. X and U are the spatial coordinate along the axis of the 
beam and the vertical displacement function, respectively. Consider a homogeneous 
beam with constant cross-section A, moment of inertial I, length L, density ρ, modu-
lus of elasticity E, shear modulus G, and effective shear area k′A.

The foundation is taken as a nonlinear Pasternak foundation with linear-plus-
cubic stiffness and viscous damping as follows:

�
(4.23)

where P represents the force induced by the foundation per unit length of the beam. 
k1 and k3 are the linear and nonlinear foundation parameters, respectively. Further-
more, Gp and μ are the shear deformation coefficient and the damping coefficient of 
the foundation, respectively, and T is the time.

Using the Hamilton principle and considering the Timoshenko beam theory, one 
can develop the governing differential equations of motion for the beam as

�

(4.24)

where kf and cf are the foundation rocking stiffness and the damping coefficient, 
ψ ( , )X T  is the slope function due to bending of the beam, ( )X VTδ -  is the Dirac 
delta function used to deal with the moving concentrated load.

Introduce the dimensionless variables and parameters as follows

�

(4.25)
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Fig. 4.7   The model of a finite Timoshenko beam on a nonlinear viscoelastic Pasternak foundation. 
(Reprinted from ref. [18], with kind permission from Springer Science+Business Media)
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where x is the dimensionless spatial coordinate and t is the dimensionless time. 
Equation (4.24) can be transformed into the following dimensionless equation

�

(4.26)

4.2.2 � Normal Modes

The harmonic solution can be assumed in the form

�

(4.27)

where ωk are the natural frequencies, and ϕk x( ) and υk x( ) are the corresponding 
mode functions of the beam on a linear Pasternak foundation, which can be derived 
from Eq. (4.26) as follows

�

(4.28)

where

By eliminating the functions Uk from Eq. (4.28), one obtains the Timoshenko beam 
equations of free vibration in the form

�

(4.29)

Thus the characteristic equation has the form

� (4.30)
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Replacing 2z r=  casts Eq. (4.30) in the form

� (4.31)

Its roots are

� (4.32)

where 2( ) 4 .c a b ac∆ = - + - +
Now, one should discuss the sign of the roots z1 and z2: 2 10; 0k z zω∀ ⇔ < >   

for forq z q< < >0 0 01; .
Two possible solutions to Eq. (4.28) can be obtained:

a.	 For 0,q <

�
(4.33)

b.	 For 0,q >

�
(4.34)

where the integration constants Ci, Ci
′, Hi, and Hi

′ depend on the boundary condi-
tions.

The simply supported boundary condition analyzed in this research is the most 
frequently encountered boundary condition for the present problem. The boundary 
conditions for a simply supported beam are

�
(4.35)

a.	 For 0,q <  the solution to Eq. (4.29) has the form (4.33). From the boundary con-
ditions at x = 0, the following equations are obtained

� (4.36)

The system of equations is satisfied when C1 = C3 = 0, which corresponds to the 
solution for the Euler–Bernoulli beam.

The boundary conditions at 1x =  are expressed by the matrix equation

�
(4.37)
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The nontrivial solution to Eq. (4.37) is obtained from the condition that the main 
matrix determinant is equal to zero. Thus, one can obtain the frequency equation

� (4.38)

Consequently, the corresponding ith normal modes with simply supported boundary 
conditions can be obtained as

�
(4.39)

b.	 For 0,q >  the solution to Eq. (4.29) has the form (4.34). From the boundary con-
ditions at x = 0, the following equations are obtained

� (4.40)

The system of equations is satisfied when 1 3 0.H H= =
The boundary conditions at 1x =  are expressed by the matrix equation

�
(4.41)

The nontrivial solution to Eq. (4.41) is obtained from the condition that the main 
matrix determinant is equal to zero. Thus, one can obtain the frequency equation

� (4.42)

Consequently, the corresponding ith normal modes with simply supported boundary 
conditions can be obtained as

�
(4.43)

4.2.3 � Galerkin’s Discretization

The Galerkin truncation method is used to discretize the system and the series ex-
pansion forms for u x t( , ) and ψ ( , )x t  with the simply supported boundary conditions 
are assumed as
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where φk( x) and νk( x) are the trial functions, qk( t) and ζk( t) are the sets of general-
ized displacements. In this research, the trial functions φk( x) and νk( x) are chosen 
as eigenfunctions of the Timoshenko beam linear subsystem with the simply sup-
ported boundary conditions as

�
(4.45)

The first n terms of Eq. (4.44) are considered in this research. Substituting Eq. (4.44) 
into Eq. (4.26) leads to

�

(4.46)

Multiplying Eq.  (4.46) by the weight functions wi( x) and integrating it over the 
interval of 0 and 1, the Galerkin procedure leads to the following set of 2n second-
order ODES

�

(4.47)

Here, the weight functions wi( x) and vi( x), i = 1,2,…,n, are also chosen as eigenfunc-
tions of the Timoshenko beam linear subsystem. That is,
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Substitution of Eq. (4.49) into Eq. (4.47) yields

�

(4.50)

The above mentioned ODES can be solved via the fourth-order Runge–Kutta meth-
od. In the numerical computation here, the initial conditions are

� (4.51)

4.2.4 � Numerical Results

In this part, numerical examples are given for parametric research. The physical and 
geometric properties of the Timoshenko beam, foundation and the moving load are 
listed in Table 4.2.

The vertical deflection of the beam when the load moves to the mid-point of 
the beam is shown in Fig. 4.8a, while the vertical deflection of beam center with 
time is illustrated in Fig. 4.8b. The Galerkin truncation term is set to four values, 
namely, a 50-term Galerkin’s truncation, 75-term Galerkin’s truncation, 150-term 
Galerkin’s truncation, and 200-term Galerkin’s truncation. As shown in the two 
plots, the transverse deflection increases for x < 80 or t < 4, and the biggest deflection 
appears at x = 80 (with ± 0.2 % variations) or t = 4 (with ± 0.15 % variations). After 
reaching the peak values, the transverse deflection decreases and tends to zero. The 
growth speed of the transverse deflection is almost the same as the reduced speed. 
The numerical results also demonstrated that there are large differences between the 
50-term Galerkin truncation results with the 150-term ones and the 200-term ones. 
There is no doubt that the 50-term Galerkin’s method is not accurate enough for the 
dynamic response analysis Timoshenko beams on nonlinear viscoelastic founda-
tions subjected to a moving concentrated load, and there are discernible differences 
between the results of the 75-term and the 150-term Galerkin’s method. Moreover, 
the results of the 150-term and the 200-term Galerkin’s method are almost the same. 
Therefore, the 150-term Galerkin’s method yields rather accurate results. The maxi-
mum relative differences between the maximum mid-point vertical deflections is 
8.49 × 10−2 in the 50-term Galerkin’s truncation and 200-term Galerkin’s truncation, 
4.06 × 10−2 in the 75-term Galerkin’s truncation and 200-term Galerkin’s trunca-
tion, and 0.74 × 10−2 in the 150-term Galerkin’s truncation and 200-term Galerkin’s 
truncation. The results are in good agreement with the research by Ding et al. [16].

Figure 4.9 shows the dependence of the convergence in terms of the vertical de-
flections of the beam on the system parameters. The abscissa represents the trunca-
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Table 4.2   Properties of the beam, foundation, and load. (Reprinted from ref. [18], with kind per-
mission from Springer Science+Business Media)
Item Notation Value Dimensionless Value
Beam
Young’s modulus E 6.998 GPa –
Shear modulus G 77 GPa
Mass density ρ 2373 kg/m3 –
Height of pavement h 0.3 m –
Width of pavement b 1.0 m –
Length L 160 m –
Shear coefficients k′ 0.4 –
– α – 4.401
– β – 1.502 × 107

Foundation
Linear stiffness k1 8 × 106 N/m2 97.552
Nonlinear stiffness k3 8 × 106 N/m4 2.497 × 106

Viscous damping µ 0.3 × 106 Ns/m2 39.263
Shear deformation coefficient Gp 6.669 × 107 N 0.0318
Rocking stiffness kf 108 N 1.626 × 105

Rocking damping coefficient cf 1.5 × 106 N·s 2.618 × 104

Moving load
Load F0 2.126 × 105 N 1.01 × 10−4

Speed V 20 m/s 0.01165
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Fig. 4.8   Effects of the Galerkin’s truncation terms: a The effects on the vertical deflection of the 
beam; b The effects on the vertical deflection of the beam’s midpoint. (Reprinted from ref. [18], 
with kind permission from Springer Science+Business Media)
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tion terms n while the ordinate represents the vertical displacements of the beam’s 
midpoint while /(2 )X L V= , /(2 )T L V= . As seen in these figures, the vertical de-
flections of the beam increase with the truncation terms initially, but gradually ap-
proach to a stable value. The numerical results illustrate that the convergence of the 
Galerkin truncation increases with the growing modulus of elasticity of the beam, 
the shear modulus of the beam, the shear coefficient of the foundation, the height 

a b

c d

e f

Fig. 4.9   Effects of parameters on the vertical displacements of the beam’s midpoint versus the 
truncation terms. (Reprinted from ref. [18], with kind permission from Springer Science+Business 
Media)
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and the width of the beam, but decreases with the growing length of the beam. That 
is, the longer the length of the beam that is chosen, the more truncation terms are 
required to achieve convergence. From the obtained results, it is concluded that the 
vertical displacements of the beam decrease with the growing of these parameters 
except the length of the beam. For various values of L, there is little difference 
among the vertical deflections of the beam when ( /2, /(2 ))nU L L V  has been a stable 
value in Fig. 4.9a. Moreover, the numerical results also depict that there is little dif-
ference among the vertical deflections of the beam for not too large truncation terms 
with different values of the modulus of elasticity and the height and width of the 
beam. It should be noted that the effects of the above mentioned parameters have 
been investigated except the shear modulus of the beam and the shear coefficient 
of the foundation in Ref. [16]. In this section, similar conclusions are drawn from 
Fig. 4.9b, e and f. However, the influence of the length of the beam on the vertical 
deflection of a Timoshenko beam on the Pasternak foundation can be neglected, 
which is different from Ref. [16], probably because of a model difference.

The above discussions demonstrate that the above mentioned parameters have 
appreciable influences on the convergence of the Galerkin truncation. However, 
some parameters do not, including the linear foundation parameters, the rocking 
stiffness of the foundation, the damping coefficient of the foundation, and the non-
linear foundation parameters. On the other hand, these parameters have greater ef-
fects on the vertical displacements than the convergence of the Galerkin truncation. 
Consequently, it is difficult to demonstrate the dependence of the convergence on 
these parameters. In order to study the effects of these parameters on the conver-
gence of the Galerkin truncation, δn is introduced and described by

�
(4.52)

The effects of other system parameters on the convergence of the Galerkin trun-
cation are investigated in Fig. 4.10. Compared with Fig. 4.9, on the contrary, the 
numerical results demonstrate that δn decreases with the truncation terms until they 
are zero. From Fig. 4.10a and b, it can be seen that the convergence of the Galerkin 
truncation decreases with the increasing linear foundation parameters, but increases 
with the increasing rocking stiffness of the foundation. Furthermore, the 100-term 
Galerkin’s method does not have a convergent numerical solution. This conclusion 
coincides with that in Ref. [16].

Figure 4.10c and d show a more complicated phenomenon that the convergence 
of the Galerkin truncation concerns not only the system parameters but also the 
truncation terms. As seen in Fig. 4.10c, when the truncation term is less than 37, 
the larger damping coefficient of the foundation performs the faster convergence. 
Otherwise, the smaller damping coefficient of the foundation leads to the faster 
convergence. A similar conclusion can be drawn from Fig. 4.10d, whereas the non-
linear foundation parameter has less influence on the convergence of the Galerkin 
truncation than the damping coefficient of the foundation.

The time history diagrams for the vertical dynamic deflections of the mid-span 
of the beam for different values of the system parameters are shown in Fig. 4.11. As 
seen in these figures, the maximum value of the dynamic deflection occurs almost 
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at the mid-span of the beam (with ± 0.15 % variations), as illustrated in Fig. 4.8b. 
However, it is worth to note that the peak value occurs at a farther vicinity of the 
mid-span (with ± 0.86 % variations) when the damping coefficient of the foundation 
is a greater one from Fig. 4.11a. Thus, the growth speed of the transverse deflection 
is far greater than the reduced speed. That is to say, the damping coefficient of the 
foundation is a reason for time delay. Moreover, as the damping coefficient of the 
foundation increases, the deflection of the Timoshenko beams decreases accord-
ingly. In Ref. [19], similar results can be found. Above all, the numerical results 
show that the damping coefficient of the foundation has significant influence on the 
dynamic response of the Timoshenko beam. In other words, the damping coefficient 
of the foundation cannot be neglected when studying the dynamic response of finite 
Timoshenko beams supported by nonlinear viscoelastic Pasternak foundations.

The effects of the shear modulus of the beam and the shear deformation co-
efficient of the foundation on the deflections of the beams lying on viscoelastic 
nonlinear foundations are illustrated in Fig.  4.11b and c, respectively. From the 
simulation results obtained, one can see that the biggest deflections decrease with 
the increasing shear modulus of the beams and the increasing shear deformation 
coefficient of the foundations. It should be noted that a Pasternak foundation turns 
into a Winkler foundation when Gp = 0. That is to say, the maximum deflection of a 
Timoshenko beam on a Pasternak foundation is much smaller than that of a beam on 
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Fig. 4.10   Effects of parameters on δn versus truncation terms. (Reprinted from ref. [18], with kind 
permission from Springer Science+Business Media)

 

4.2 � The Dynamic Response of a Finite Timoshenko Beam …�



4  Dynamic Analysis of a Pavement Structure Under a Vehicle’s Moving Load116

a Winkler foundation. It is noted that this conclusion corresponds with the research 
in Ref. [20].

From Fig. 4.11d, one can observe that the maximum deflection decreases with 
the increasing rocking stiffness of the foundation. In Ref. [19], Ding et al. has a 
similar conclusion. Figure 4.11e and f display the effects of the linear elasticity pa-
rameter and the nonlinear elasticity parameter of the foundation on the deflection of 
Timoshenko beams supported by viscoelastic nonlinear foundations. The numerical 
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Fig. 4.11   Effects of parameters on the deflection of the beam. (Reprinted from ref. [18], with kind 
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results indicate that the biggest deflections decrease with the increasing linear and 
nonlinear elasticity parameters of the foundation. The whole form of the deflection 
has little change with different linear elasticity parameters and nonlinear elasticity 
parameters of the foundation.

Figure 4.12 shows that the influence of the nonlinear elasticity parameter on the 
vertical displacements of the beam at mid-span while the load moves to the mid-
point of the beam versus the magnitude of the moving load. The figure predicts that 
the difference between the results of 6 4

3 8.0 10 N/mk = ×  and 11 4
3 8.0 10 N/mk = ×  

is very small. When compared the results of 6 4
3 8.0 10 N/mk = ×  with 

14 4
3 8.0 10 N/mk = × , there are big differences and the deflection decreases with 

the increasing nonlinear elasticity parameter. Furthermore, the deflection of the Ti-
moshenko beams increases with the increasing magnitude of the moving load.

As far as the effects of the rocking damping coefficient on the dynamic response 
of finite beams are concerned, one can conclude that the rocking damping coefficient 
could neither affect greatly on the deflection of the beam nor make a contribution 
to the convergence of the Galerkin truncation from Fig. 4.13. That is, the rocking 
damping coefficient can be neglected when studying the dynamic response of finite 
Timoshenko beams supported by nonlinear viscoelastic Pasternak foundations.
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Fig. 4.12   The effects of the nonlinear elasticity parameter on the vertical displacement versus 
the magnitude of the moving load. (Reprinted from ref. [18], with kind permission from Springer 
Science+Business Media)
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4.3 � Vibration of a Vehicle–Pavement Coupled  
System Based on a Finite Timoshenko Beam  
on a Nonlinear Foundation [21]

4.3.1 � The Mathematical Model

The schematic of a finite elastic beam subjected to a moving spring–mass–damper 
system on a nonlinear foundation is shown in Fig. 4.14. The beam is modeled based 
on Timoshenko beam theory. U( X, T) and ψ( X, T) are the vertical displacement func-
tion and the slope function due to bending of the beam, respectively. T is the time. 
X and Z are, respectively, the spatial coordinate along the axis of the beam and the 
vertical spatial coordinate. Shearing strain γ is defined as γ = U, X–ψ, where the com-
ma preceding X denotes the partial differentiation with respect to X. The foundation 
model is characterized by linear elastic modulus k1, nonlinear elastic modulus k3, Pas-
ternak foundation modulus (shear deformation coefficient) GP, damping coefficient μ, 
rocking stiffness kf, and rocking damping coefficients cf. V represents the speed of the 
moving oscillator. k and c are, respectively, the elastic stiffness and the damping coef-
ficients of the moving oscillator. m1 and m2 are the masses in the moving oscillator. 
Z1 and Z2 are the vertical displacement functions of the two masses of the oscillator.

Consider the pavement as a homogeneous beam with constant cross-section A, 
moment of inertial I, length L, densityρ, shear modulus G, effective area k′A, and 

Fig. 4.13   The effects of the rocking damping coefficient on the vertical deflection versus the 
truncation terms. (Reprinted from ref. [18], with kind permission from Springer Science+Business 
Media)
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modulus of elasticity E. The equations of motion for the Timoshenko beam can be 
obtained by the d’Alembert’s principle and the Timoshenko beam theory as

�

(4.53)

where F0 represents the force induced by the moving spring–mass–damper oscil-
lator. The comma preceding T denotes the partial differentiation with respect to T. 
Furthermore, the equations of motion for the moving oscillator can be obtained by 
Newton’s Second Law as

�

(4.54)

In this research, all work is based on the assumption that the moving oscillator stays 
on the ground. The displacement of the moving oscillator is expressed as the sum of 
the vertical displacement of the beam and beam’s surface roughness as

� (4.55)

where Zp ( )X  represents the road surface roughness, and is defined as

�
(4.56)

in which a is the amplitude of the road surface roughness, and L0 is the wavelength 
of harmonic road roughness. Substituting Eq. (4.55) into Eq. (4.54) leads to
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Fig. 4.14   Schematic representation of a Timoshenko beam subjected to a moving oscillator on a 
nonlinear Pasternak foundation. (Reprinted from ref. [21], Copyright 2014, with permission from 
Elsevier)
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�
(4.57)

and

�

(4.58)

Substitution of Eqs. (4.57) and (4.58) into Eq. (4.53) leads to the following govern-
ing differential equations of coupled motion

�

(4.59)

Here, the beam is assumed to be simply supported at both ends. Therefore, the 
boundary conditions are given as follows

� (4.60)

In order to avoid round-off due to manipulations with large or small numbers in 
numerical calculations, the following dimensionless variables and parameters are 
introduced

�

(4.61)
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Equations  (4.59) and (4.60) can be expressed into the dimensionless normalized 
forms

�

(4.62)

and

� (4.63)

4.3.2 � The Schemes of Solution

The Galerkin truncation method is used to discretize the governing equations and 
the series expansion form for u( x, t) and ψ( x, t) which are simply supported at both 
ends, respectively, are assumed as

�

(4.64)

where qk( t) and ζk( t), respectively, are sets of generalized vertical displacements 
and slope displacements due to the bending of the beam, φk( x) and νk( x) are the trial 
functions of u( x, t) and ψ( x, t), respectively. Moreover, each of the trial functions 
should satisfy the boundary conditions (4.63). The first n terms of Eq. (4.64) are 
considered in the following calculations.

In this research, the trial functions φk( x) and νk( x) are chosen as eigenfunctions 
of the Timoshenko beam linear subsystem with the simply supported boundary con-
ditions as

�
(4.65)

where βk = kπ. Substituting Eqs. (4.64) and (4.65) into Eq. (4.62) leads to
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�

(4.66)

Here, the weight functions wi( x) and vi( x), i = 1,2,…,n, are also chosen as eigenfunc-
tions of the Timoshenko beam linear subsystem, i.e.,

� (4.67)

Multiplying the first two equations of Eq. (4.66) by the weight functions wi( x) and 
vi( x), respectively, then integrating the resulting equation over the interval of 0 and 
1, the Galerkin procedure leads to the following set of 2n + 1 s-order ODES

�

(4.68)

In the following simulations, the initial conditions are all set as

�

(4.69)
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For a set of given physical and geometric parameters of the Timoshenko beam, 
the foundation and the moving vehicle, qk( t), ζk( t), and z1( t) can be numerically 
solved via the fourth-order Runge–Kutta method from Eq. (4.68) by discretizing the 
temporal variables based on the initial conditions of Eq. (4.69). After substituting 
the numerical solutions of qk( t) and ζk( t) into Eq. (4.64), one can solve the vertical 
displacement function u( x, t) and the slope function ψ( x, t).

4.3.3 � Numerical Case Studies

In the following numerical examples, the physical and geometric properties of the 
vehicle–pavement coupled system are listed in Table 4.3.

Based on the parameter values, the values of the dimensionless parameters 
α, β, and κ, are determined by Eq.  (4.61) as 74.4013, 1.502 10α β= = × , and 

41.02172 10k -= × .
Ride comfort is one of the most significant dynamic performance characteristics 

of modern vehicles. Here, the vertical dynamic acceleration of the vehicle body, m1, is 
introduced for describing the ride comfort. Therefore, the acceleration A1 is defined as

Table 4.3   Properties of the Timoshenko beam, foundation and load. (Reprinted from ref. [21], 
Copyright 2014, with permission from Elsevier)

Item Notation Value Dimensionless 
value

Vehicle Vehicle body mass m1 21260 kg 0.18665
Tire mass m2 190 kg 0.00167
Suspension stiffness k 2.06 × 106 N/m 0.84114
Suspension damping c 3.0 × 104 N s/m 0.13151
Speed V 15 m/s 0.00874

Foundation Linear stiffness k1 8 × 106 N/m2 97.552
Nonlinear stiffness k3 8 × 106 N/m4 2.497 × 106

Viscous damping µ 0.3 × 106 Ns/m2 39.263
Shear parameter Gp 6.66875 × 107 N 0.0318
Rocking stiffness kf 106 N 1.6259 × 103

Rocking damping coefficient cf 1.5 × 106 N·s 2.618 × 104

Beam Young’s modulus E 6.998 GPa –
Shear modulus G 3.2 GPa –
Mass density ρ 2373 kg/m3 –
Cross–section of the pavement A 0.3 m2 –
Moment of inertial of the 
pavement

I 0.00225 m4 –

Length L 160 m –
Wavelength of road roughness L0 10 m
Amplitude of road roughness a 0.002 m
Shear coefficients k′ 0.4 –
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�
(4.70)

Convergence Studies

The modal truncation method has been widely used to investigate the dynamic re-
sponse of elastic materials on a nonlinear foundation. Theoretically, an exact solu-
tion is obtained by considering an infinite number of modes. Ding et  al. studied 
the convergence of Galerkin’s method for the Euler–Bernoulli beam [16] and the 
Timoshenko beam [18] on a nonlinear foundation subjected to a moving force. The 
authors found that the Galerkin truncation needs super high-order modes. More-
over, Bhattiprolu, Bajaj, and Davies studied the effect of the number of modes due 
to the nonlinear and viscoelastic behaviors of soils [22]. They found that Galerkin’s 
method needs 20 modes even for the beam on a nonlinear foam foundation. At the 
beginning of the numerical investigation, the convergence of the modal truncation 
is studied for determining the validity of the present study.

Figure 4.15 shows the comparison of the dynamic responses of the vehicle–pave-
ment coupled system with different Galerkin truncation terms. The time history of 
the vertical deflection of the midpoint of the Timoshenko beam, meaning /2X L= ,  
is shown in Fig.  4.15a. The vertical deflection ( , /2 )U X L V  of the Timoshenko 
beam is shown in Fig. 4.15b. As shown in Fig. 4.15a and b, there are significant 
differences between the results from the 25-term modal truncation with the results 
from the 100-term truncation and the 200-term truncation. Furthermore, there are 
some differences that can be discerned from the numerical results of the 50-term 
modal truncation with the results of the 100-term. Therefore, the dynamic response 
of the Timoshenko beam on a six-parameter foundation subjected to a moving oscil-
lator needs more than 50 terms of the modal truncation. The comparison also shows 
that the vertical deflections from the 100-term modal truncation are very close to the 
results from the 200-term truncation. These conclusions are in good agreement with 
the study by Yang et al. based on the same pavement and subgrade model subjected 
to a moving force [18].

Figure 4.15c and d, respectively, display the vertical displacement and the accelera-
tion of the vehicle body with the different terms of the modal truncation. Figure 4.15c 
shows that there are discernible differences between the time history and the vertical 
displacement of the vehicle body of 25-term and 200-term modal truncations. More-
over, Fig. 4.14d illustrates that there are almost no differences in the accelerations of 
the vehicle body between the 25-term and 200-term modal truncation. Therefore, the 
simulations for the displacement of the vehicle body do not need such a large number 
of modes as like the calculations for the displacement of the pavement do.

From Fig. 4.15a–d, one can find that the 100-term Galerkin truncation for the 
dynamic response of the vehicle–pavement coupled system based on a Timoshenko 
beam on a six-parameter foundation yields rather accurate results. In the following 
numerical examples, the first 100 modes are considered for the Galerkin truncation. 
Therefore, n = 100.
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The Timoshenko beam theory takes into account shear deformation and rota-
tional inertia effects. If the shear deformation and the rotational inertia effects are 
neglected, the Timoshenko beam theory deduces to the Euler–Bernoulli beam the-
ory. The Euler–Bernoulli beam theory is known as an engineer’s beam theory or 
classical beam theory. The similar Galerkin procedure is applicable in the case of 
Euler–Bernoulli beams on the same nonlinear foundation. In this case, the equations 
of motion can be derived as

�

(4.71)
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Fig. 4.15   Convergence of the Galerkin’s truncation method. (Reprinted from ref. [21], Copyright 
2014, with permission from Elsevier)
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Using the similar Galerkin procedure, the following set of n + 1 dimensionless sec-
ond-order ODES leads to

�

(4.72)

where dimensionless parameter kb is defined as

� (4.73)

Based on the parameter values in Table  4.3, kb is determined by Eq.  (4.73) as 
45.41 10bk -= × . Then, qk( t) and z1( t) in Eq. (4.72) are numerically solved via the 

fourth-order Runge–Kutta method.
In Fig.  4.16a, the effects of two different beam theories on the vertical dis-

placements of the pavement ( /2, /2 )U L L V  versus the truncation terms are shown. 
Without considering the rocking stiffness and the rocking damping coefficients, 
the numerical results in Fig. 4.16a illustrate that the convergence of the Galerkin 
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Fig. 4.16   Comparison between the different beam theories of the pavement. (Reprinted from ref. 
[21], Copyright 2014, with permission from Elsevier)
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truncation for the Timoshenko beam on the six-parameter foundation is slightly 
slower than the Euler–Bernoulli beam on the same foundation. Moreover, Fig. 4.16a 
shows that the vertical displacements of the Timoshenko beam are slightly larger 
than those of the Euler–Bernoulli beam. One thing needs to be known, Palmeri 
and Cicirello also found that the Timoshenko beam theory predicts larger deflec-
tions than the Euler–Bernoulli beam theory based on cracked beams under static 
loads [23]. In Ref. [16], the authors have found that the convergence of the modal 
truncation is predicted by the natural frequency of the linear subsystem. In order to 
explore the reason behind the different convergence for the two beam theories, the 
natural frequencies of the linear subsystem of the two beam models are compared. 
The natural frequencies of the Euler–Bernoulli beam on a linear elastic Pasternak 
foundation which is simply supported and without any loads, ωEk, are derived as 
follows

� (4.74)

where k = 1,2,…. The natural frequencies of the Timoshenko beam on the same 
foundation and with the same boundary conditions, ωTk, are calculated from the 
following equation

�

(4.75)

The Fig. 4.16b shows that the natural frequencies of the Timoshenko beam on a 
linear foundation increase slower than the frequencies of the Euler–Bernoulli beam 
on the same foundation. The comparison between Fig. 4.16a and b shows that the 
changing tendencies of the natural frequencies not only predict the convergence of 
the modal truncation, but also predict the differences between the convergences of 
the different beam theories.

Figure 4.17 shows the effects of the length of the road on the dynamic response 
of the pavement. Figure 4.17a and b, respectively, depict the effects of the length 
of the road for the Euler–Bernoulli beam and the Timoshenko beam on a nonlinear 
foundation. As indicated by Fig. 4.17, the vertical displacement of the pavement 
does not converge with an increasing length of the road. Furthermore, the no con-
vergence phenomenon appears in the dynamic response based on the Euler–Ber-
noulli beam and the Timoshenko beam on a nonlinear foundation. The amplitude of 
the fluctuation of the vertical displacement is about 1/10 of the maximum vertical 
deflection of the pavement. It should be noted that Thambiratnam and Zhuge found 
that the finite length of beams can accurately approximate the response of the ideal 
beam of infinite length based on the dynamic analysis of beams on an elastic foun-
dation subjected to moving point loads [24]. Moreover, based on a moving concen-
trated load, Ding et al. also found the dynamic responses have good convergence of 
the length of the pavement [16]. Therefore, the coupling between the oscillator and 
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the pavement causes the fluctuation of the vertical displacement of the pavement 
with the increasing length of the road. On the other hand, Fig. 4.17 illustrates that 
the maximum and the minimum of the fluctuation of the vertical displacement are 
both convergent with an increasing pavement length. Therefore, the finite length of 
the pavement can be used to study the vibration of the vehicle–pavement coupled 
system. In the following calculations, the length of the road, L = 160 m.

�The Coupling Effect

The effect of coupling between the pavement and the vehicle is examined in this 
section. Based on Eq. (4.56) and Table 4.3, the excitation frequency from the rough-
ness of the road surface is derived as

�
(4.76)

If the suspension damping is neglected, based on Table 4.3, the natural frequency of 
the moving spring–mass oscillator is derived as

�
(4.77)

Therefore, based on the parameter values in Table 4.3, the vehicle body is near to 
resonance.

The time history of the vertical displacement of the pavement U( L/2, T) is de-
scribed in Fig. 4.18a. Meanwhile, the time history of the vehicle body is shown in 
Fig. 4.18b. The speed of the moving vehicle is set to three values, namely, V = 10 m/s, 
V = 15.667  m/s, and V = 20  m/s. Based on Eq.  (4.76) and Table  4.3, the excita-
tion frequencies of the pavement, respectively, are calculated as ωP = 6.283 rad/s, 
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Fig. 4.17   The effects of the length of the road on the vertical displacement of the pavement mid-
point. (Reprinted from ref. [21], Copyright 2014, with permission from Elsevier)
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ωP = 9.844 rad/s, and ωP = 12.566 rad/s. Figure 4.18b shows that the amplitude of 
the vibration of the vehicle is very large when the vehicle is near to resonance. 
Based on Eq. (4.76), the vibration of the vehicle will be faster for the greater mov-
ing speed. This conclusion is also found from Fig. 4.18b. Figure 4.18a reveals that 
the amplitude of the dynamic response of the pavement becomes smaller when the 
vehicle is close to resonance. Furthermore, the response curves of the midpoint of 
the beam become narrower when the moving speed of the vehicle increases. There-
fore, the resonance of the vehicle obviously influences the dynamic response of the 
pavement.

Figure 4.19a exhibits the biggest displacement of the vehicle body versus the 
speed of the vehicle. The numerical results clearly show the resonance area of the 
vehicle body. Moreover, there is only a little change for the biggest displacement 
of the vehicle body with the different moving speeds of the vehicle while speeding 
away from the resonance area. Figure 4.19b and c, respectively, show the biggest 
vertical displacement of the midpoint of the pavement and the biggest accelera-
tion of the vehicle body versus the moving speed of the vehicle. The comparison 
between Fig. 4.19b and c clearly reveals that the changing tendencies of the vertical 
deflections of the pavement’s midpoint and the acceleration of the vehicle body ver-
sus the speed are completely opposite. On the other hand, the changing processes 
of Fig. 4.19a and b are fully synchronized. Therefore, the dynamic response of the 
pavement and the vibration of the vehicle are coupled.

Figure  4.20a and b show the time history of the midpoint of the pavement 
and the vehicle body with different suspension stiffness. Based on Eq. (4.76) and 
Table 4.3, the natural frequencies of the vehicle are calculated as ωo = 0.9844 rad/s 
for 42.06 10 N/mk = ×  and ωo = 31.49  rad/s for 72.06 10 N/mk = × . There-
fore, the vehicle is far away from resonance when 42.06 10 N/mk = ×  and 

72.06 10 N/mk = × . This is the reason why the vibration of the vehicle body is very 
weak with 42.06 10 N/mk = ×  and 72.06 10 N/mk = × . Figure 4.21 illustrates the 
influence of the suspension damping on the dynamic response of the vehicle–pave-
ment coupled system. Figure 4.21b shows that the vibration of the vehicle becomes 

3 4 5 6 7 8 9 10
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
U

(L
/2

,T
)

(m
m

)

T (s)

V=10 m/s
V=15.667 m/s
V=20 m/s

n=100

0 1 2 3 4 5 6
-15

-10

-5

0

5

10

15

20

Z 1
(m

m
)

T (s)

V=10 m/s V=15.667 m/s V=20 m/s

n=100

a b

Fig. 4.18   The effects of the speed of the vehicle. (Reprinted from ref. [21], Copyright 2014, with 
permission from Elsevier)

 

4.3 � Vibration of a Vehicle–Pavement Coupled System Based …�



4  Dynamic Analysis of a Pavement Structure Under a Vehicle’s Moving Load130

stronger with the decreasing suspension damping. As seen from Fig. 4.21a, the sus-
pension damping has a significant impact on the dynamic response of the pavement. 
As seen in Figs. 4.18, 4.20 and 4.21 also prove that the dynamic response of the 
pavement becomes stronger when the vibration of the vehicle becomes weaker.
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�Physical Parameter Studies

In this section, the effects of the physical parameters of the pavement and the sub-
grade on the vibration of the vehicle–pavement are investigated by numerical exam-
ples. Figure 4.22a and b, respectively, show the effects of the linear elastic modulus 
of the subgrade on the response of the pavement and the vehicle. The comparison 
in Fig. 4.22a indicates that the dynamic response of the pavement becomes weaker 
with the increasing linear elastic modulus of the subgrade. On the other hand, the 
numerical results in Fig. 4.22b indicate that the parameter of the subgrade changes 
the response of the pavement faster. The pavement is affected more than the vehicle. 
Therefore, the authors only show the numerical results of the response of the pave-
ment in the following calculations.

The effects of the other five parameters of the foundation on the dynamic re-
sponse of the pavement are presented in Fig. 4.23a–e. Meanwhile, the effects of 
the shear modulus of the pavement are displayed in Fig. 4.23f. Figure 4.23d shows 
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that the effects of the rocking damping coefficient of the subgrade on the dynamic 
response of the pavement can be neglected. On the contrary, Fig. 4.23 show that 
the other five physical parameters, namely, the nonlinear elasticity parameter, the 
shear deformation coefficient, the rocking stiffness and the damping coefficient of 
the subgrade, and the shear modulus of the pavement, are all important parameters 
that influence the dynamic response of the pavement. Furthermore, the response 
of the pavement decreases with these increasing physical parameters. Therefore, if 
any of these physical parameters are neglected during the process of modeling, the 
dynamic analysis overestimates the dynamic response of the pavement.
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4.4 � The Dynamic Response of an Infinite Timoshenko 
Beam on a Nonlinear Viscoelastic Foundation [19, 25]

The integral transformation is a powerful tool for dealing with dynamic prob-
lems. There are two approaches to deal with a nonlinear term in the governing 
equations, namely, a perturbation method [26] and the Adomian decomposition 
method (ADM) without linearization or perturbation [27]. Kargarnovin et  al. 
[26] compared the responses of a nonlinear and an equivalent linear viscoelastic 
model, and found that the results are completely different at low frequencies. 
Furthermore, Hryniewicz [27] found that the nonlinearity of the foundation in-
creases the amplitude of vibration under certain conditions. Based on the non-
linear cubic Winkler foundation, Kargarnovin et  al. [26] studied the response 
of an infinite Timoshenko beam subjected to a harmonic moving load, and con-
sidered the shear modulus of the beams, without taking into account the shear 
parameter of the foundation. Hryniewicz [27] discussed the dynamic response 
of an infinite Rayleigh beam subjected to a moving load without considering the 
shear modulus of the beam or the foundation. However, there have been no lit-
eratures on the dynamic response of an infinite beam on a nonlinear foundation 
considering the shear deformable beams and shear modulus of the foundation at 
the same time.

The standard ADM was developed by Adomian for solving linear or nonlinear 
differential and integral equations [28]. The method has a significant advantage 
in providing with the solution in a rapid convergent series. Recently several au-
thors have proposed a variety of modifications on the standard ADM. Vahidi 
and Jalalvand applied the Shanks transformation on the ADM to improve the 
accuracy of the approximate solutions [29]. Nevertheless, the modified ADM has 
not been applied to investigate the dynamic response of a beam on a nonlinear 
foundation.

This section investigates the dynamic response of infinite Timoshenko beams 
supported by nonlinear viscoelastic foundations to a moving concentrated force. 
The nonlinearity in the foundation is assumed to be cubic. The nonlinear governing 
equations of motion are developed by considering the effects of the shear deform-
able beams and the shear modulus of the foundations at the same time. The differ-
ential equations are respectively solved using the ADM and a perturbation method 
in conjunction with a complex Fourier transformation. An approximate closed form 
solution is derived in an integral form from the presented Green’s function and the 
theorem of residues, which is used for the calculation of the integral. The dynamic 
response distribution along the length of the beam is obtained from the closed form 
solution. The derivation process demonstrates that two methods for the dynamic 
response of infinite beams on nonlinear foundations to a moving force give a con-
sistent result. The numerical results reveal the influences of the shear deformable 
beam and the shear modulus of the foundations on dynamic responses. Moreover, 
the influences on the dynamic response are numerically studied for nonlinearity, 
viscoelasticity, and other system parameters.
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4.4.1 � The Mathematical Model

An infinite elastic Timoshenko beam on a nonlinear viscoelastic foundation sub-
jected to a moving load is used to model many engineering devices, as shown in 
Fig. 4.24, where F0 and ω are the magnitude and the frequency of the external load, 
v is the moving speed of the load, t is the time, x is the spatial coordinate along the 
axis of the beam, w( X, T) is the vertical deflection function of the infinite Timosh-
enko beam.

The speed of the moving load is assumed to be constant. The nonlinear visco-
elastic foundation is taken as a Pasternak foundation with linear-plus-cubic stiffness 
and viscous damping. Based on these assumptions, the governing differential equa-
tions for the displacements u( x, t) and the rotation ψ( x, t) of the beam are

�

(4.78)

where a comma preceding x or t denotes a partial differentiation with respect to 
x or t, A is the constant cross–section of the homogeneous Timoshenko beam, G, 
I, ρ, and E are the shear modulus, the second moment of area, the density and the 
modulus of elasticity of the beam, *k A is the effective shear area, k1, k3, and Gp 
are the linear, the nonlinear and the shear foundation parameters, c is the damping 
coefficient of the foundation, kf and cf respectively are the rocking stiffness and 
damping coefficients of the foundation, and the harmonic concentrated moving load 
is expressed by

� (4.79)

where δ( x–vt) is the Dirac delta function, which can be defined by

� (4.80)

for arbitrary function f( x).
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Fig. 4.24   The model of an infinite Timoshenko beam on a nonlinear viscoelastic foundation 
under a harmonic moving load. (Reprinted from ref. [25], Copyright 2014, with permission from 
Elsevier)
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4.4.2 � The Perturbation Method

Introduce a dimensionless variable as follows

�
(4.81)

Substituting Eq. (4.81) into Eq. (4.78) leads to

�

(4.82)

where *q k AG= , 3

1

k IS q
k A

= , 2
3 ( )qk

S
ε = . Introducing the coordinate transforma-

tion

� (4.83)

and substituting Eq. (4.83) into Eq. (4.82) yield

�

(4.84)

One assumes an expansion of dimensionless displacement

�

(4.85)

Substituting Eq. (4.85) into Eq. (4.84), and then equating coefficient 0ε , 1ε , and ε 2 
in the resulting equation, one obtains

�
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where

�
(4.89)

0,1,2k = . Then, the application of a complex Fourier transform

�
(4.90)

to Eq. (4.86) leads to

�
(4.91)

0 ( )U ξ  and 0 ( )ξΨ , termed as Green’s functions, can be solved from Eq. (4.91)

�

(4.92)

where

� (4.93)

Now, if an inverse Fourier transform is taken from both sides of (4.93), then one 
will get
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�

(4.94)

To calculate the integrals of Eq.  (4.94), it is necessary to employ the resi-
due theorem. According to the residue theorem, the integrals of Eq.  (4.94) 
are returned to the sum of the residues at the poles. The poles are the roots of 

4 3 2
10 20 30 40 50 0B B B B Bξ ξ ξ ξ+ + + + = . Since the beam length is considered to be 

infinite, the boundary conditions are

�
(4.95)

The closed form solutions are obtained as
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(4.96)

for 0η ≥ , where jξ  in the first part of Eq. (4.96) is the pole of 0 ( )W ξ  in the upper 
half part of the complex plane and jξ  in the second part of Eq. (4.96) is the pole of 

0 ( )ξΨ  in the upper half part of the complex plane, and
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�

(4.97)
for 0η ≤ , where jξ  in the first part of Eq. (4.97) is the pole of 0 ( )W ξ  in the lower 
half part of the complex plane and jξ  in the second part of Eq. (4.97) is the pole of 

0 ( )ξΨ  in the lower half part of the complex plane.
When the integrals of Eq. (4.94) have high order poles, the closed form solutions 

are obtained as

�

(4.98)

where lξ  in the first part of Eq. (4.98) is the second order pole of 0 ( )U ξ , 1ξ  and 2ξ  
are the first order poles. lξ  in the second part of Eq. (4.98) is the second order pole 
of 0 ( )ξΨ , 1ξ  and 2ξ  are the first order poles.

Using a similar procedure based on appropriate Green’s functions and the convo-
lution integral theorem, one obtains the closed form solutions
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where 1( )w η  and 1( )ψ η  can be determined by

�
(4.101)

Therefore, the dynamic response of the system can be determined by the following 
equation

� (4.102)

The same procedure is applicable in the case of Euler–Bernoulli beams. In this case, 
the equations of motion can be derived as

� (4.103)

Using the same procedure, one can calculate the closed form solution as

�

(4.104)

Using the same method of the residue theorem, one will solve Eq. (4.104).

4.4.3 � The Modified ADM

The ADM is an iterative method, which has proven successful in dealing with non-
linear equations. This method is based on the search for a solution in the form of 
a series in which the nonlinear terms are calculated recursively using the Adomian 
polynomials. The main properties of the method are that it is capable of reducing the 
size of computational work while still maintaining highly accurate numerical solu-
tions. In this study, a moving harmonic load is considered, and the modified ADM 
is used to deal with the nonlinear term of the foundation reaction. The complex in-
tegral transformations, Green’s function, and the theorem of residues are employed 
for the dynamic response of the Timoshenko beam with an infinite length supported 
by a nonlinear foundation.

The ADM gives the solutions u( x, t) and ψ( x, t) of Eq. (4.78) in a series form of 
the infinite sum

�

(4.105)
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Substitution of Eq. (4.105) into the linear terms in Eq. (4.78) yields

�

(4.106)

where f( w) and Li ( i = 1,2,3) are called the nonlinear operator and the linear operator 
and defined by

� (4.107)

� (4.108)

In order to solve Eq. (4.106) via the ADM, the nonlinear operator f( w) can be de-
composed into the form of the infinite sum of series

� (4.109)

where jA  are called Adomian polynomials of 1 2, , , jw w w… . So that Eq. (4.106) is 
rewritten as the recursive form
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(4.110)

for 0j = , and
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(4.111)

for 1j ≥ .
The modified ADM suggests that the nonlinear operator f( w) can be decomposed 

by the following polynomials
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�

(4.112)

So here jA  are given as

�

(4.113)

Since the beam is infinitely long and the transverse load moves in the positive x 
direction with a constant velocity v, a moving coordinate η can be defined by

� (4.114)

For an infinite Timoshenko beam in the steady-state dynamic response, one can as-
sume the form of the solution for (4.110) as
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(4.115)

The following results can be obtained
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where the prime indicates differentiation with respect to η. Substitution of 
Eq. (4.116) into Eq. (4.110) yields

�

(4.117)

Considering the boundary conditions of an infinite beam and applying the complex 
Fourier transform to (4.117), one will get

�

(4.118)

where 0 ( )W ξ  and 0 ( )w η  are a couple of Fourier transforms, 0 ( )ξΨ  and 0 ( )ψ η  are 
also a couple of Fourier transforms. 10 80B B-  are determined by the following terms
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(4.119)

Now, if an inverse Fourier transform is taken from both sides of Eq. (4.119), then 
one will get
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� (4.120)

Equation (4.120) can be calculated via employing the residue theorem. According 
to the residue theorem, the integrals of Eq. (4.120) are the sum of residues at the 
poles. The poles are the roots of the denominator in Eq. (4.120). The closed form 
solutions are obtained as

�

(4.121)

for 0η ≥ , where jξ  and nξ  are the poles of 0 ( )W ξ  and 0 ( )ξΨ  in the upper half part 
of the complex plane, and
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(4.122)

for 0η ≤ , where jξ  and nξ  are the poles of 0 ( )w ξ  and 0 ( )ξΨ  in the lower half part 
of the complex plane. When the integrals of Eq. (4.120) have high order poles, the 
sum of residues at the poles are obtained as
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�

(4.123)
where lξ  and mξ  are the second order poles of 0 ( )w ξ  and 0 ( )ξΨ , respectively, 1ξ  and 

2ξ  are the first order poles.
As pointed out by Wazwaz [30], the modified decomposition method may give 

the exact solution for nonlinear equations by only using two iterations. In the fol-
lowing computations, the infinite series Aj  only keeps the first three terms for the 
modified ADM. Now, consider Eq. (4.111). For j = 1 and 2, Eq. (4.111) can be re-
written as

�
(4.124)

and

�

(4.125)

Using a similar procedure for Eq. (4.117) and the convolution integral theorem, one 
obtains the closed form solutions of Eqs. (4.124) and (4.125)
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�

(4.128)

where j = 1, 2. The steady-state response w( X, T) can be solved by the following 
equation based on the solutions of Eqs. (4.117), (4.126), and (4.127)

� (4.129)

In the standard ADM, the infinite series of the decomposition for the nonlinear op-
erator w( u) is suggested as follows

�
(4.130)

It should be noted that in this scheme, the sum of the subscripts in each term of Aj 
are equal to j. The c( n, j) are products of n components of u whose subscripts sum 
to j, divided by the factorial of the number of repeated subscripts. Thus

�

(4.131)

So here Aj are given as

�

(4.132)
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Compared with the procedure of the modified ADM, Eq. (4.110) and Eq. (4.111) for 
j = 1 are exactly the same as Eqs. (4.117) and (4.124), while Eq. (4.110) should be

�
(4.133)

for j = 2, and Eq. (4.127) should be

�
(4.134)

After comparing Eq. (4.125) with Eq. (4.132) and Eq. (4.127) with Eq. (4.133), one 
can find that the modified ADM includes more terms than the standard ADM. The 
extra terms cause a huge number of calculations for the steady-state response, and 
the calculations for the closed form solutions are more complicated.

4.4.4 � The Moving Force

In this part, numerical examples are given for parametric research. The physical and 
geometric properties of the Timoshenko beam, the foundation and the moving load 
are listed in Table 4.4.

In part three, the decomposition series for the Adomian decomposition were 
found. But the convergence of the decomposition series has not been determined. 
Accordingly, let

�

(4.135)

� (4.136)

The decomposition series Eq. (4.129) will converge rapidly to an exact solution for 
0 1jα≤ < , 0,1, 2,j = …. According to Table 4.4 and Eqs.  (4.89) and (4.135), one 
can obtain

� (4.137)
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� (4.139)

� (4.140)

� (4.141)

In the following computations, the infinite decomposition series Eq. (4.105) only 
keeps the first three terms.

Based on the prescribed method, a computer program has been provided to solve 
the problem. To realize the steady–state response, it is sufficient to study the vibra-
tion of any point of the beam. Hence, the point x = 0 is used in the following numeri-
cal examples. As the first example, the dynamic response of the infinite Timoshen-
ko beam is considered during passage of a moving load. Figure 4.25 shows the time 
history of the Timoshenko beam subjected to the moving concentrated force. For 
t < 0, the transverse deflection increases with time, and the largest deflection does 
not appear in t = 0, but there is a little delay. After reaching the largest deflection, the 
transverse deflection decreases and tends toward zero while the growth speed of the 
transverse deflection is far greater than the reduced speed.

2 0.0000294w =

1
0

0
0.1346 1

w
w

α = ≈ <

2
1

1
0.633 1

w
w

α = ≈ <

Table 4.4   Properties of the beam, foundation, and load. (Reprinted from ref. [19], with kind per-
mission from Springer Science+Business Media)
Item Notation Value
Beam
Young’s modulus(steel) E 201 GPa
Shear modulus G 77 GPa
Mass density ρ 7850 kg/m3

Cross sectional area A 7.69 × 10−3 m2

Second moment of area I 3.055 × 10−5 m4

Shear coefficients k′ 0.4
Foundation
Linear stiffness k1 3.5 × 107 N/m2

Nonlinear stiffness k3 4 × 1014 N/m4

Viscous damping µ 1732.5 × 103 Ns/m2

Shear parameter Gp 66687500 N
Rocking stiffness kf 108 N/m2

Rocking Damping 
coefficients

cf 1.5 × 106 N·s/m2

Moving load
Load F0 65 KN
Speed v 50 m/s
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The effects of the shear modulus of the Timoshenko beam and the shear modu-
lus of the foundation on the deflection of the beam on the viscoelastic nonlinear 
foundation are illustrated in Figs. 4.26 and 4.27, respectively. From the observation 
of Figs. 4.26 and 4.27, it is found that the largest deflection of the Timoshenko 
beam decreases with the increasing shear moduli of the beam and the foundation. 
Furthermore, Figs. 4.26 and 4.27 show that the contributions of the shear moduli of 
the beam and the foundation on the deflection are significant, especially when the 

Fig. 4.25   The approximate analytical solution of the deflection of the beam. (Reprinted from ref. 
[19], with kind permission from Springer Science+Business Media)

 

Fig. 4.26   Effect of the shear modulus of the Timoshenko beam on the deflection of the beam 
Timoshenko. (Reprinted from ref. [19], with kind permission from Springer Science+Business 
Media)
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shear moduli of the beams and the foundations are small. That is, the shear moduli 
of both the beams and the foundations cannot be neglected for the dynamic response 
of infinite beams on nonlinear viscoelastic foundations. In this section, the effects of 
the shear moduli of the beams and the foundations are investigated at the same time, 
and similar results are found at the above mentioned two references. On the other 
hand, the numerical results also indicate that the shear modulus of Timoshenko 
beams is not sensitive to the time delays of the largest deflection while the time 
delays decrease with the increasing shear modulus of the foundations.

Figure 4.28 shows the effect of the modulus of the elasticity of the beam on the 
deflection of the Timoshenko beam on the viscoelastic nonlinear foundation. As it 

Fig. 4.27   Effect of the shear modulus of the foundation on the deflection of the beam. (Reprinted 
from ref. [19], with kind permission from Springer Science+Business Media)
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Fig. 4.28   The effect of the modulus of the elasticity of the Timoshenko beam on the deflection of 
the beam. (Reprinted from ref. [19], with kind permission from Springer Science+Business Media)
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is seen in this figure, the modulus of the elasticity of the Timoshenko beam has little 
effect on the transverse deflection of the Timoshenko beam. Specifically, there are 
only discernible differences between the results for rather large and different modu-
lus of the elasticity of the Timoshenko beam.

Figure 4.29 illustrates the effect of the damping coefficient of the foundation on 
the deflection of the Timoshenko beam on the viscoelastic nonlinear foundation. 
It should be noted that the viscoelastic foundation turns into an elastic Pasternak 
foundation when c = 0. The numerical result shows that the damping coefficient of 
the foundation has significant influence on the dynamic response of the deflection 
of the Timoshenko beam and the deflection decreases with the increasing damping 
coefficient. Furthermore, the numerical result shows that the largest deflection of 
the Timoshenko beam on the elastic Pasternak foundation appears at t = 0. More-
over, the time of the largest deflection appearing is delayed with the increasing 
damping coefficient of foundations. Hence a larger value of the damping coefficient 
of foundations leads to a smaller deflection of the beam and the damping is one of 
the reasons for the time delay.

The effects of the linear and the nonlinear elasticity parameters of the foun-
dations on the deflection of the Timoshenko beam on the viscoelastic nonlinear 
foundation are displayed in Figs. 4.30 and 4.31. Figures 4.30 and 4.31 show that 
the form of the deflection of the beam has little change with different linear and 
nonlinear elasticity parameters of the foundations. Furthermore, the numerical re-
sults of Figs. 4.30 and 4.31 show that the largest deflection of the beams decreases 
with the increasing linear elasticity parameter of the foundation and the decreasing 
nonlinear elasticity parameter.

Figures 4.32 and 4.33 show that the dynamic responses of the Timoshenko beam 
on the viscoelastic nonlinear foundation change with the rocking stiffness and the 
damping coefficients of foundation. As seen in this figures, the shape has little 
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Fig. 4.29   The effect of the damping coefficient of the foundation on the deflection of the beam. 
(Reprinted from ref. [19], with kind permission from Springer Science+Business Media)
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change and the largest deflection decreases with the increasing foundation rocking 
stiffness and damping coefficients. It proves that the influences of the rocking stiff-
ness and damping coefficients of the foundation on the transverse deflection of the 
infinite beam on the foundation cannot be neglected.

The effect of the velocity of the moving concentrated force on the deflection 
of the Timoshenko beam on the viscoelastic nonlinear foundation is displayed in 
Fig. 4.34. Figure 4.34 indicates that the largest deflection of the Timoshenko beam 
decreases with the increasing moving velocity. Furthermore, the deflection of the 
beam is sensitive to the changing moving velocity. On the other hand, the numerical 

-0.1 0.0 0.1 0.2
-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

D
ef

le
ct

io
n(

m
)

Time(s)

k1=3*10
7
N/m

2

k1=3.5*10
7
N/m

2

k1=4*10
7
N/m

2

Fig. 4.30   The effect of the linear elasticity parameter of the foundation on the deflection of the 
beam. (Reprinted from ref. [19], with kind permission from Springer Science+Business Media)

 

-0.1 0.0 0.1 0.2
-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

D
e

ec
tio

n(
m

)

T

k3=3*10
8
N/m

4

k3=4.01*10
8
N/m

4

k3=5*10
8
N/m

4

-0.1 0.0 0.1 0.2
-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

D
e

ec
tio

n(
m

)

Time(s)

k3=3*10
8
N/m

4

k3=4.01*10
8
N/m

4

k3=5*10
8
N/m

4

Fig. 4.31   The effect of the nonlinear elasticity parameter of the foundation on the deflection of 
the beam. (Reprinted from ref. [19], with kind permission from Springer Science+Business Media)
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results in Fig. 4.34 prove that the whole form of the deflection of the Timoshenko 
beam on the viscoelastic nonlinear foundation has little change under different ve-
locities of the moving concentrated force.

The deflections of two different beam models on the viscoelastic nonlinear foun-
dation are compared in Fig. 4.35. As it is seen from the figure, the deflection of the 
Timoshenko beam near the region of t = 0 is smaller than that of the Euler–Bernoulli 
beam. Furthermore, the deflection of the Timoshenko beam on the foundation is 
larger than that of the Euler–Bernoulli beam in other regions. Nevertheless, the 
Euler–Bernoulli beam is more acceptable for the dynamic response of the beam on 
the foundation in this investigation, because the Euler–Bernoulli beam overesti-
mates the results of the dynamic response. In other words, the numerical results in 
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Fig. 4.32   The effect of the foundation rocking stiffness on the deflection of the beam. (Reprinted 
from ref. [19], with kind permission from Springer Science+Business Media)

 

Fig. 4.33   The effect of the foundation damping coefficient on the deflection of the beam. 
(Reprinted from ref. [19], with kind permission from Springer Science+Business Media)
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Fig. 4.35 illustrate that the dynamic response based on the Euler–Bernoulli beam 
theory provides a more conservative estimate in road design.

4.4.5 � Parametric Studies

In this part, numerical examples are given for parametric research. The physical and 
geometric properties of the beam, the foundation and the moving load are listed in 
Table 4.4.

Fig. 4.35   Comparison of two different beam models from the deflection of the beam. (Reprinted 
from ref. [19], with kind permission from Springer Science+Business Media)

 

Fig. 4.34   Influence of the moving velocity of the load on the deflection of the beam. (Reprinted 
from ref. [19], with kind permission from Springer Science+Business Media)
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The steady-state responses of a point at x = 0 of the Timoshenko beam on a vis-
coelastic nonlinear foundation based on the modified ADM and the standard ADM 
are compared in Fig. 4.36. As pointed out by Wazwaz [30], the modification dem-
onstrated a rapid convergence of the series solution if compared with the standard 
ADM. As it can be seen from the figure, the largest deflections of the Timoshenko 
beam via the modified ADM are smaller than those via the standard ADM. Although 
the modified ADM may give more accurate results, in the investigations of dynamic 
response of beams on a foundation, the standard ADM is more conservative.

Fig. 4.36   The approximate analytic solution of deflection of the beam. (Reprinted from ref. [25], 
Copyright 2014, with permission from Elsevier)

 

a b

Fig. 4.37   The effects of the moving speed on the approximate analytic solution of deflection of 
the beams: a the standard ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, 
with permission from Elsevier)
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Figure 4.37 illustrates the effects of the speed of the moving load on the dy-
namic responses of the beam changing with the frequency of the external load. 
Figure 4.37a and b show the numerical results solved by the standard ADM and 
the modified ADM, respectively. The numerical results indicate that the largest de-
flection of the beams decreases with the increasing moving speed for both ADMs. 
Furthermore, Fig. 4.37a and b both show that the responses are more sensitive to 
the frequency of the external load for the smaller moving speed. The figures also 
demonstrate that the two kinds of ADM yield the qualitatively same results, while 
there are quantitative differences.

Based on the two kinds of ADMs, the effects of the nonlinear elasticity param-
eter of the foundations on the deflection of the infinite beams on a nonlinear foun-
dation are displayed in Fig. 4.38a and b, respectively. Figure 4.38 shows that the 
shapes of the time history of the Timoshenko beam center are almost the same for 
different nonlinear parameters of the foundation. Moreover, the numerical results of 
Fig. 4.38 show that the largest deflections of the beams increase with the increasing 
nonlinear elasticity parameter of the foundation. The numerical results also indicate 
that the results from the two ADMs qualitatively predict the same tendencies with 
the changing parameters, while quantitatively there are certain differences. The re-
sults via the standard ADM are more sensitive to nonlinear parameters than those 
via the modified ADM.

The effects of the shear modulus of the foundation, the shear modulus of Ti-
moshenko beams and the rocking damping coefficients on the deflection of the 
infinite Timoshenko beams on a nonlinear viscoelastic Pasternak foundation with 
v = 50 m/s and ω = 1 Hz are shown in Figs. 4.39, 4.40 and 4.41, respectively. The 
numerical results show that the largest deflections of beams decrease with the shear 
modulus of the beam, the shear modulus of the foundation and the rocking damp-
ing coefficient, and the shear moduli of the beams and the foundation cannot be 
neglected. The numerical simulations also indicate results via the standard ADM 
are more sensitive to shear modulus parameters than those via the modified ADM.

a b

Fig. 4.38   The effects of the nonlinear elasticity parameter of foundations on the deflection of the 
beams: a the standard ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, with 
permission from Elsevier)
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Fig. 4.39   The effects of the shear modulus of beams on the deflection of the beams: a the standard 
ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, with permission from 
Elsevier)

 

a b

Fig. 4.40   The effects of the shear modulus of foundations on the deflection of the beams: a the 
standard ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, with permission 
from Elsevier)

 

a b

Fig. 4.41   The effects of the rocking damping coefficients on the deflection of the beams: a the 
standard ADM; b the modified ADM. (Reprinted from ref. [25], Copyright 2014, with permission 
from Elsevier)
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4.5 � Chapter Summary

This chapter is devoted to the dynamic analysis of a pavement structure under a 
vehicle’s moving load. The pavement structure is modeled as a finite Euler–Ber-
noulli beam on a nonlinear foundation, a finite Timoshenko beam on a nonlinear 
Pasternak foundation and an infinite Timoshenko beam on a nonlinear foundation 
with viscous damping. Moreover, three types of the conventional boundary condi-
tions, namely SS, CC, and FF boundary conditions are investigated. The numerical 
simulation found that the vertical deflections of the pavement for three boundary 
conditions are overlapped with a rather large length of the pavement. The vehicle’s 
moving load is considered as a moving concentrated load, a harmonic moving load 
and a moving spring-mass-damper oscillator, respectively.

Based on the dynamic response of the pavement-vehicle system, the conver-
gence of the Galerkin truncation and the dependences on the system parameters are 
numerically studied. It was found that the convergence of the Galerkin truncation 
can be predicted by the natural frequencies, the slow growth in the natural frequen-
cy of the pavement causes lack of convergence, and investigation into dynamical 
responses of the vehicle–pavement-foundation system needs large truncation terms. 
Furthermore, the convergence increases with growing of the moduli of elasticity 
of the pavement and the nonlinear foundation parameters but decrease with the 
increasing linear foundation parameters and the damping coefficient. Moreover, the 
convergence of the Galerkin truncation for Timoshenko beams on foundations is 
slightly slower than that of the Euler–Bernoulli beam. Nevertheless, the vertical 
deflections of the Timoshenko beam are slightly larger.

To account for shear deformations of the pavement and the subgrade, the shear 
modulus of the beam and the shear deformation coefficient of the foundation are 
considered at the same time. Therefore, nonlinear coupled dynamics of the vehicle–
pavement system is investigated with a Timoshenko beam on a linear-plus-cubic 
Pasternak-type foundation under a moving spring-mass-damper oscillator. The nu-
merical examples revealed that the amplitude of the vibratory responses of the pave-
ment becomes smaller when the vehicle is close to resonance.

In conjunction with complex Fourier transformation, the ADM and a perturba-
tion method are, respectively, used to deal with the nonlinear term from the founda-
tion reaction for the dynamic analysis of infinite Timoshenko beams on the nonlin-
ear foundation. This chapter proves that the ADM and the perturbation method give 
the consistent result for current issues.
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A beam and a plate on different kinds of foundations have been widely adopted to 
predict the deflections and the stresses of the road [1–3]. Chapter 4 in this book 
established a finite and an infinite beam models on nonlinear foundations, and dis-
cussed the effect of nonlinear parameters on beam responses. The road structure, 
from top to bottom, consists of surface course, base course, subbase course, as well 
as subgrade and natural foundation. A multilayered medium is close to the actual 
road system.

Based on the previous researches, this chapter improves the traditional single 
infinite Kirchhoff plate model and establishes an infinite double-layer plate on a 
Kelvin foundation and an elastic half-space to model the road’s layered system. An 
analytical approach is developed to investigate the dynamic response of the road 
subjected to moving vehicle loads. The shape of the tire–road contact area is as-
sumed to be rectangular spatial distributed, and the load pressure within the contact 
area is assumed to be uniformly distributed. The Fourier transform is used to derive 
the Green’s function of the road under the unit impulse load. Based on the superpo-
sition principle of linear system, the analytical solutions of the dynamic responses 
in time domain are then derived by integrating the generalized Duhamel integral 
over the Green’s function of the double-layer plate under the unit impulse load. The 
vibration characteristics of the road under a moving constant and harmonic load are 
then analyzed.

5.1 � Description of the Moving Vehicle Loads

5.1.1 � Mathematical Model of the Moving Vehicle Loads

It is the tire on the road surface that actually applies vehicle loads to the road. There-
fore, the tire contact shape and pressure is important in computing the dynamic 
responses of the road system. A lot of field tests have been done to measure the 
actual contact shape and contact pressure between the tire and the road surface. The 
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available data shows that the contact shape is between rectangular and circular, and 
the contact pressure distributions are typically nonuniform and vary with vehicle 
loads, tire type, tire pressure, and vehicle moving speed [4–6]. The precise descrip-
tion of the tire contact shape and the contact pressure using a mathematical formula 
is very difficult. But for the truck tire, especially, when the load is large enough, the 
contact shape is more similar to a rectangular. So, in order to simplify the follow-
ing calculation, in this chapter and chap. 6, the rectangular tire contact shape with 
uniform vertical contact pressure is assumed to simulate the tire–road contact forces 
generated by moving heavy vehicles.

If the vertical ( z direction) vehicle load F x y t( , , )  is uniformly distributed in a 
rectangular area − ≤ ≤ − ≤ ≤{ }l x l l y l1 1 2 2, , and is moving in the positive x  di-
rection with a constant advance velocity v , Then, this vehicle load F x y t( , , )  can 
be characterized by

1.	 Moving constant load

�
(5.1)

For the steady state response of the road, Eq. (5.1) can be simplified as

�

(5.2)

where F  is the magnitude of the moving constant load, (·)H  represents the Heaviside 
unit step function.

2.	 Moving harmonic load

�
(5.3)

For the steady state response of the road, Eq. (5.3) can be simplified as

�

(5.4)

where F0  is the amplitude of the moving harmonic load, and 0 02 fω π=  is the fre-
quency of the moving harmonic load.
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5.1.2 � Calculation of the Tire Contact Area

When a single-axle single-tire is considered, the tire contact shape can be a combi-
nation of a rectangle of 0 4 0 6. .L L×  and two semicircles whose radiuses are width 
0.3 L of the rectangle [6, 7]. The layout of the contact area is shown in Fig. 5.1a. So, 
the tire contact area can be expressed as

�
(5.5)

where Ac  is the contact area of the single-tire, A F pc = / , F  is the tire–road con-
tact force generated by the single-tire, p is the tire–road contact pressure.

The size L can be obtained from Eq. (5.5)

�

(5.6)

The contact area Ac is converted into an equivalent rectangle with a length of 2 l1 and 
a width of 2 0 62l L= . . The length 2 1l  can be calculated as follow

�
(5.7)

20.4 0.6 (0.3 )cA L L Lπ= × + ×

L
Ac=

0 5227.

2
2 0 61
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2l1

single-tire dual-tirea b

Fig. 5.1   Contact area of the tire. a single-tire, b dual-tire
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When a single-axle dual-tire is considered, the layout of the contact area is shown in 
Fig. 5.1b. The length and the width of the contact rectangle are 2 1l  and 2 2l , respec-
tively. The calculation of l1  is the same as the abovementioned single-tire contact, 
the size l2  is half of the distance between the two tires’ centers, 2 1 52l ds= . , in 
which ds  is the equivalent circle diameter of single-tire contact area under full load.

�

(5.8)

5.2 � Dynamic Responses of an Infinite Double-Layer Plate 
on a Kelvin Foundation

5.2.1 � Governing Equations of the Infinite Double-Layer 
Plate

The infinite double-layer plate on a Kelvin foundation, shown in Fig. 5.2, is em-
ployed as a road model. The upper layer of the plate models the surface course, and 
the lower layer models the base course. Each layer is assumed to extend to infinity 
horizontally and to be of uniform thickness. The material of each layer is consid-
ered to be linear elastic with elastic modulus 1E  and 2E , shear modulus G1 and G2 , 
Poisson’s ratio 1µ  and 2µ , mass density 1ρ  and 2ρ , thickness h1  and h2 . In a 
Cartesian coordinate system {x, y, z}, based on the assumptions of plate theory, the 
motion of the double-layer thin plate is governed as follows.

1.	 Displacement components

�

(5.9)
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2.	 Strain components

� (5.10)

3.	 Stress components

�

(5.11)

where E z( ) , G z( ) , and ( )zµ  represents the change of elastic modulus, shear mod-
ulus, and Poisson’s ratio along the direction z.

4.	 Internal force components

Let h0  be the distance between the stress neutral layer and the upper surface of 
the double-layer plate and take the stress neutral layer as plane z = 0  as shown in 
Fig. 5.2. So, the stress components of the double-layer plate satisfies the following 
functions

�
(5.12)

where r  is the curvature radius of the stress neutral layer.
Since the stress of the neutral layer is zero, it can be gained

�
(5.13)

Substituting Eq. (5.12) into Eq. (5.13), one gets

�

(5.14)

By integrating the above equation, the vertical position of the stress neutral layer 
can be obtained.
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�
(5.15)

The internal force components can be expressed as

�

(5.16)

in which,

�

(5.17)

5.	 Dynamic equation

Integrating the 3D equilibrium equation of variable-density in direction z, one can 
obtain

�

(5.18)
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Substituting Eq. (5.16) into the first two equations of Eq. (5.18) leads to expres-
sions of the shear components

�

(5.19)

Substituting Eq.  (5.19) into the third of Eq.  (5.18), together with some arrange-
ment, one obtains the partial differential equation of the double-layer thin plate on 
a viscoelastic Kelvin foundation under moving vehicle loads in terms of vertical 
displacement w as

�

(5.20)

The boundary conditions for x → ±∞ , y → ±∞  and the initial condition for t = 0  
are represented by

�

(5.21)

5.2.2 � The Displacement and the Stress of the Double-Layer 
Plate Under Moving Vehicle Loads Supported by a Kelvin 
Foundation

1.	 Vertical displacement Green’s functions of the double-layer plate

The triple Fourier transform and its inversion are defined as follows

�
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By replacing F x y t( , , ) on the right side of Eq.  (5.20)with the unit impulse load 
( , , ;0,0,0) ( ) ( ) ( )F x y t x y tδ δ δ δ= , which acts at the origin of the coordinates for time 

t = 0, and applying the triple Fourier transform with respect to x y t, ,  in Eq. (5.20), 
one obtains the algebraic equation of vertical displacement in the transformed do-
main.

�
(5.23)

The following property of the Fourier transform is used in deriving the above 
equation

for � (5.24)

Rewriting Eq. (5.23) leads to

�
(5.25)

Applying an inverse Fourier transform in Eq. (5.25) leads to

�

(5.26)

Equation (5.26) is the vertical displacement of the double-layer plate on a visco-
elastic Kelvin foundation under unit impulse load, namely, vertical displacement 
Green’s functions of the double-layer plate.

According to the theory of linear partial differential equation, the dynamic 
response of the double-layer plate to an external moving load F x y t( , , )  can be cal-
culated by a generalized Duhamel integral, which integrates the Green’s functions 
in all dimensions [8,9].

�

(5.27)

where the left-hand-side of Eq.  (5.27) is the convolution integral of the moving 
load F  and Green’s function, uki  on the right-hand-side of Eq. (5.27) represents 
the dynamic responses along the ei  direction for the observation x y z, ,  of the 
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viscoelastic body under the moving load F  acting on the surface of the viscoelastic 
body along the ek  direction, and S  is the distribution area of the moving load F .

2.	 Displacement and stress of the double-layer plate under a moving constant load

The vertical displacements of the double-layer plate under a moving constant load 
can be obtained by substituting Eq. (5.2) and Eq. (5.26) into Eq. (5.27), that is

�

(5.28)

letting '
1 1 vζ ζ τ= -  and performing some integral calculation, one rewites Eq. (5.28) 

as
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(5.29)
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function are used
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�

(5.30)

The stress components in the upper layer can be expressed as

�

(5.31)

�

(5.32)

�

(5.33)

By exchanging E1  and 1µ  in Eq. (5.31)–(5.33) for E2  and 2µ , one can obtain the 
stress components in the lower layer.

3.	 Displacement and stress of the double-layer plate under a moving harmonic load

The vertical displacements of the double-layer plate under a moving harmonic load 
can be obtained by substituting Eq. (5.4) and Eq. (5.26) into Eq. (5.27), that is
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�

(5.34)

Performing the same derivation process as Eq. (5.29) leads to

�

(5.35)

The stress components in the upper layer can be expressed as
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(5.36)
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(5.37)
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�

(5.38)

By exchanging E1  and 1µ  in Eq. (5.36)–(5.38) for E2  and 2µ , one can obtain the 
stress components in the lower layer.

5.3 � Numerical Simulations of an Infinite Double-Layer 
Plate on a Kelvin Foundation

Computation of dynamic responses of the double-layer plate to the moving loads 
requires numerical evaluation of Eq. (5.29), (5.31)–(5.33) and Eqs. (5.35)–(5.38), 
which involve the double integrals in the infinite intervals. These integrals are high-
ly oscillatory in nature as they contain complex indexes. Such integrals require 
a great deal of sophistication in the numerical computation. Usually, researchers 
tend to evaluate these integrals by the fast Fourier transform. In this section, an 
efficient computer program based on the adaptive Simpson numerical algorithm 
is developed to perform the integrals and the program is coded and implement-
ed via Mathmatica. The parameters used in the numerical calculation are chosen 
to be: E1 1500= MPa , E2 1200= MPa, 1 2 0.35µ µ= = , h1 0 15= . m, h2 0 2= . m, 

3
1 2613kg / mρ = , 3

2 2083kg / mρ = , K = 50 3MN m/ , v = 25m s/ .

5.3.1 � Result Verification

The single-layer plate is the model frequently adopted by researchers in their study 
of vehicle-induced road vibrations. Furthermore, a single-layer plate is a special 
case of a double-layer plate when the material properties of each layer are iden-
tical. The steady-state response of a single-layer plate on a Winkler foundation 
under a moving rectangular distributed constant load is available in the literature 
of Kim [10], which is used to compare it with the solution of this section. Kim’s 
numerical result was obtained by using the fast Fourier transform. In Kim’s paper, 
the parameters used in the numerical calculation are chosen to be: E = 1516MPa, 

0.35µ = , h = 0 15. m , 32440kg / mρ = , K = 95 3MN m/ , C = 0 , F = 175N , 
l l1 2 0 075= = . m . By using the parameters in Kim’s paper, the vertical displace-
ments under three different speeds are also calculated and plotted in Fig. 5.3. It can 
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be seen that the results obtained in this section are in good agreement with Fig. 2(a) 
in Kim’s paper.

5.3.2 � The Dynamic Response of the Double-Layer Plate

1.	 The dynamic response of the double-layer plate under a moving constant load

If we consider the vehicle load F = 50kN  and the contact pressure p = 0 7. MPa, 
the length l1 0 11= . m, and the width l2 0 16= . m, the tire contact rectangle can be 
evaluated from Eqs. (5.5)–(5.8). The vertical displacement w  and the longitudinal 
normal stress xσ  at the bottom of the double-layer plate for different values of the 
damping coefficient are shown in Fig. 5.4, 5.5 5.6, when the load is moving at a 
constant speed. From Fig. 5.4–5.6, we can see:

a.	 With the extension of the time and the space, the dynamic responses attenu-
ate rapidly. The dynamic responses are symmetric with respect to the two 
axes( x- and y-axes) and time t = 0 when there is no damping in the system. The 
maximum of the dynamic responses occur at the center of the load. When there 
exists damping, the dynamic responses are symmetric with respect to the x- axis, 
but no longer symmetric with respect to the y-axis and time t = 0. As the damp-
ing increases, the asymmetry of the dynamic responses become more obvious. 
The maximum of the longitudinal normal stress still occurs at the center of the 
load. However there exists a significant delay in the vertical displacement and 
the maximum of the vertical displacement lags behind the center of the load. 
The distance and the time of the lag become more apparent when the damping 
increases.

Fig. 5.3   Vertical displacement calculated using the parameters in Kim’s paper
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b.	 Before and after the load passes through the observation point which is located at 
the bottom of the double-layer plate, the longitudinal normal stress of this point 
is negative. When the load is passing through the observation point, the longi-
tudinal normal stress of this point is positive. So, when the vehicle is traveling 
on the road, each point of the road must go through an alternating process from 
compression to tension, then from tension to compression, which is extremely 
adverse to the road fatigue life.

c.	 When there exists damping in the system, the plate vibration is propagating for-
ward along the moving direction in the space domain, the plate vibration ahead 
of the load is greater than that behind the load. The plate vibration before the 
load passing through is greater than that after the load passing through in the time 
domain.

2.	 The dynamic response of the double-layer plate under a moving harmonic load

The vertical displacement and the longitudinal normal stress at the bottom of the 
double-layer plate under a moving harmonic load with respect to different loading 
frequencies and amplitudes for the observation point ( x = 0 , y = 0 ) are shown in 

b

a Vertical displacement

Longitudinal normal stress at the bottom of the
double-layer plate

Fig. 5.4   The dynamic 
response of the double-layer 
plate along the x-axis under 
a moving constant load. a 
Vertical displacement, b 
Longitudinal normal stress at 
the bottom of the double-
layer plate
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Fig. 5.7 and 5.8, respectively, where C = 600 3kN s m· / . From Fig. 5.7 and 5.8, we 
can see:

a.	 The plate vibration frequency increases as the loading frequency increases, and 
the vibration amplitude before the load passes through is larger than that after 
the load passes through, but the influence region of the displacement and stress 
in the time domain is becoming narrower as the loading frequency increases.

b.	 As the loading frequency increases, the negative maximum of the vertical dis-
placement decreases and the positive maximum of the vertical displacement 
increases, the increase of positive maximum is greater than the decrease of nega-
tive maximum. Also, the maximum longitudinal tensile stress decreases and the 
maximum longitudinal compressive stress increases as the loading frequency 
increases. The influence of the loading frequency on the vertical displacement is 
greater than that on the longitudinal normal stress at the bottom of the double-
layer plate.

b

a Vertical displacement

Longitudinal normal stress at the bottom of the
double-layer plate

Fig. 5.5   The dynamic 
response of the double-layer 
plate along the y-axis under 
a moving constant load. a 
Vertical displacement, b 
Longitudinal normal stress at 
the bottom of the double-
layer plate
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c.	 As the harmonic load amplitude increases, the plate vibration amplitude also 
increases, which causes a significant increase in the negative and positive maxi-
mum of the vertical displacement and the maximum longitudinal tensile and 
compressive stress.

5.4 � Dynamic Responses of an Infinite Double-Layer Plate 
on an Elastic Half Space Foundation

5.4.1 � Governing Equations of the Infinite Double-Layer 
Plate

The double-layer thin plate on an elastic half-space foundation, shown in Fig. 5.9 is 
employed as a road model. The upper layer of the plate models the surface course, 

b

a Vertical displacement

Longitudinal normal stress at the bottom of the
double-layer plate

Fig. 5.6   The dynamic 
response of the double-layer 
plate verses time under a 
moving constant load. a 
Vertical displacement, b 
Longitudinal normal stress at 
the bottom of the double-
layer plate
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and the lower layer models the base course. The contact condition between the 
plate and the elastic half-space foundation is assumed to be smooth. Each layer 
is assumed to extend to infinity horizontally, and to be of uniform thickness. E1, 
E2, 1µ , 2µ , 1ρ , 2ρ , h1 , and h2  denote the elastic modulus, Poisson’s ratio, mass 
density, and thickness of the two layers, respectively. F x y t( , , ) is the load moving 
at a constant speed v along the x direction, P x y t( , , ) is the foundation reaction. The 
partial differential equation of the vertical vibration of the double-layer plate can be 
obtained from Eq. (5.20)

�
(5.39)

in which, D , Dxy , Dk , and hρ  have the same meaning as sect. 5.2.

( )
4 4 4 2
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 ∂ ∂ ∂ ∂
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b
Longitudinal normal stress at the bottom of the

double-layer plate

a Vertical displacement

Fig. 5.7   The dynamic 
response of the double-layer 
plate vs. time under different 
frequencies of harmonic load. 
a Vertical displacement, b 
Longitudinal normal stress at 
the bottom of the double-
layer plate
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a Vertical displacement

b
Longitudinal normal stress at the bottom of the

double-layer plate

Fig. 5.8   The dynamic 
response of the double-layer 
plate vs. time under different 
amplitudes of harmonic load. 
a Vertical displacement, b 
Longitudinal normal stress at 
the bottom of the double-
layer plate

 

x

y

h1

h2

F(x, y, t
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z

Fig. 5.9   An infinite double-
layer plate on an elastic half-
space foundation
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The boundary conditions for x → ±∞ , y → ±∞  and the initial condition for 
t = 0  are represented by

�

(5.40)

5.4.2 � Governing Equations of the Elastic Half-Space Foundation

The mass density, Poisson’s ratio, elastic modulus, and Lamé constant of the elastic 
half-space foundation are symbolized by ρ , µ , E , λ , and G . ub , vb , and wb  are 
the displacement components along the three directions x , y , z . Based on elasto-
dynamics, the motion of the homogeneous isotropic elastic medium is governed by 
the following equations.

1.	 Motion differential equations

�

(5.41)

2.	 Geometric equations

�

(5.42)

3.	 Physical equations
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4.	 Navier’s equations of motion

� (5.44)
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is the Laplase operator.
The boundary conditions for x y z= ±∞ = ±∞ = +∞, ,  are represented by

�

(5.45)

The stress boundary conditions for the plane z = 0  are expressed as

�
(5.46)

The displacement on the interface between the elastic half-space foundation and the 
double-layer plate must satisfy

�
(5.47)

5.4.3 � The Solutions of a Half-Space Foundation in a Number-
Frequency Domain

Based on the Helmholtz potential[11], the displacement field of a half-space foun-
dation can be represented as
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(5.48)

in which, Φ  and Ψ  are the scalar potential function and vector potential function 
of the displacement field U , respectively. Letting g = ∇×Ψ  [1] and expanding 
Eq. (5.48) lead to
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�

(5.49)

Substituting Eqs.  (5.49) into Navier’s equations of motion (5.44) yields relation-
ships satisfied by functions Φ  and g

�

(5.50)

in which, ( 2 ) /pC Gλ ρ= +  is the compression (P wave) wave speed, /sC G ρ=  
is the shear (S wave) wave speed.

Simultaneously, the vector potential function g = ∇×Ψ  must satisfy 
∇ = ∇∇× =g . Ψ 0 , that is

�

(5.51)

By applying the triple Fourier transform with respect to x y t, ,  in Eqs. (5.50), one 
can transform the problem from the time-space domain to the wave-frequency do-
main. The transformed wave equations are

�

(5.52)
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The solutions to the transformed differential equations (5.52) can be given as
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�
(5.53)

where 1A , 2A , 3A , and 4A  are the integration constants which can be determined 
by the stress boundary condition Eq (5.46) for the plane z = 0 and the Eq (5.51). 
The exponentially increasing terms eB zp  and eB zs  have been discarded because the 
boundary condition for z = +∞  must be considered.

Solving the geometric Eq (5.42), physical Eq (5.43), and the Eq (5.49) simulta-
neously, one expresses the stress components in terms of Φ  φ  and gi  as

�

(5.54)

By applying the triple Fourier transform with respect to x y t, ,  in Eqs. (5.54) and 
Eq. (5.51), one can get

�

(5.55)

Substituting Eqs. (5.53) into Eqs. (5.55) leads to
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(5.56)
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5.4.4 � Displacement Green’s Functions of the Elastic Half-Space 
Foundation

By replacing F x y t( , , ) on the right side of Eq. (5.39) with the unit impulse load 
( , , ) ( ) ( ) ( )F x y t x y tδ δ δ= , and applying a triple Fourier transform with respect to 

x y t, ,  in Eq. (5.39), the algebraic equation of the vertical displacement in the trans-
formed domain can be obtained.

�
(5.57)

From Eq. (5.47), Eq. (5.49) and Eq. (5.53), we can know

�
(5.58)

Substituting Eq. (5.58) into Eq. (5.57) leads to

�
(5.59)

From the stress boundary conditions Eq. (5.46), it can be known that Eq. (5.59) is 
the transformed vertical stress zσ  on the surface of the half-space foundation for the 
plane z = 0, that is 1 2( , , )z P k kσ ω= - .

    By letting ( )4 4 2 2 2
1 1 2 1 22( 2 )xy kD D k k D D k k hρ ω= + + + - , and substituting 

Eq. (5.59) into Eq. (5.56), together with some arrangement, Eq. (5.56) can be re-
written in a form of a matrix for the plane z = 0

�

(5.60)

Solving Eq. (5.60) leads to
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(5.61)
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in which, 
∆ = + + +  + + − + +( ) / ( ) ( / )(k k B D B G k k B B B D G ks p s p s1

2
2
2 2

1 1
2

2
2 2

1 1
22 2 kk2

2 ) .

By applying the Fourier transformation to Eqs. (5.49), along with the substitu-
tion of Eqs. (5.53) and Eqs. (5.61), the transformed displacement can be expressed 
as

�

(5.62)

By considering the geometric equations and the physical equations, the transformed 
stress can be expressed as

�

(5.63)

�

(5.64)

The expression of the displacement and stress of the elastic half-space foundation 
under a unit impulse load can be obtained by employing the inverse Fourier trans-
formation to Eqs. (5.62)–(5.64). Limited by space, we present here only the expres-
sion of the displacement and the longitudinal stress xσ , those are

�

(5.65)
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�

(5.66)

�

(5.67)

�

(5.68)

Equations (5.65)–(5.68) are namely the displacement and stress Green’s functions 
of the elastic half-space foundation.

5.4.5 � The Displacement and Stress of the Double-Layer Plate 
Under Moving Vehicle Loads Supported by Elastic 
Half-Space

1.	 The displacement and stress of the double-layer plate on an elastic half-space 
foundation under a moving constant load

Substituting Eq.  (5.2) and Eqs.  (5.65)–(5.68) into Eq.  (5.27) and calculating by 
a generalized Duhamel integral, then performing the same derivation process as 
Eq.  (5.29), the expression of the displacement and the longitudinal stress of the 
elastic half-space foundation under a moving constant load can be obtained as
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�

(5.71)

�

(5.72)

    in which, k vk C k vk Cp p s s= − = −1 1/ , / , Bp , Bs, and ∆  must also be modified 
correspondingly.

By considering Eq. (5.47) of the displacement compatibility and by letting z = 0   
in Eq. (5.71), the vertical displacement of the double-layer plate can be expressed as

�

(5.73)

The stress components in the upper layer can be expressed as
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�

(5.76)

By exchanging E1 and 1µ in Eqs. (5.74)–(5.76) for E2 and 2µ , the stress components 
in the lower layer can be obtained.

2.	 The displacement and stress of the double-layer plate on an elastic half-space 
foundation under a moving harmonic load

Substituting Eq.  (5.4) and Eqs.  (5.65)–(5.68) into Eq.  (5.27)and calculating by 
a generalized Duhamel integral, then performing the same derivation process as 
Eq.  (5.29), the expression of the displacement and the longitudinal stress of the 
elastic half-space foundation under a moving harmonic load can be obtained as
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    in which, 0 1 0 1( ) / , ( ) /p p s sk vk C k vk Cω ω= - = - , Bp, Bs, and ∆  must also 
be modified correspondingly.

By setting z = 0  in Eq.  (5.79), the vertical displacement of the double-layer 
plate can be expressed as

�

(5.81)

The stress components in the upper layer can be expressed as

�

(5.82)

�

(5.83)

�

(5.84)

By exchanging E1  and 1µ  in Eqs. (5.82)–(5.84) for E2  and 2µ , the stress compo-
nents in the lower layer can be obtained.

5.5 � Numerical Simulations of an Infinite Double-Layer 
Plate on an Elastic Half Space Foundation

The analytical solutions of the dynamic responses of the double-layer plate on 
an elastic half-space foundation to moving loads are all generalized double inte-
grals in the infinite intervals. The integrands are highly oscillatory and singular 
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in nature as they contain complex indexes. The numerical evaluation of these in-
tegrals is a formidable task. In this section, an efficient computer program based 
on an adaptive Simpson numerical algorithm is developed to perform the integrals 
and the program is coded and implemented via Mathmatica. The parameters used 
in the numerical calculation are chosen to be: E1 1500= MPa, E2 1200= MPa, 

1 2 0.35µ µ= = , h1 0 15= . m, h1 0 2= . m, 3
1 2613kg / mρ = , 3

2 2083kg / mρ = , 
E = 50MPa, 32000kg / mρ = , 0.35µ = , v = 25m s/ , F = 50kN , F0 15= kN, 
f0 15= Hz,l1 0 11= . m, and l2 0 16= . m.

In actual calculation, the material damping can be taken into account through 
use of the linear hysteretic damping theory (complex damping theory) [12]. That is 
multiplying all the material parameters by the hysteretic damping coefficient

�

(5.85)

where ξ  denotes the hysteretic damping ratio, and here 0.05ξ = .

5.5.1 � Result Verification

The dynamic response of an elastic half-space to a moving point load was presented 
by Hung via the direct integral transform method. In Hung’s paper [13], the param-
eters used in the numerical calculation are chosen to be: G = 20MPa , 0.25µ = , 

32000kg / mρ = , 0.02ξ = . The normalized vertical displacement W  and longitu-
dinal displacement U  are defined by

�

(5.86)

By setting the plate thickness equal to zero, the double-layer plate on an elastic half-
space foundation can be easily degenerated to an elastic half-space, which is used 
to verify the accuracy of the present theory and procedure. By using Hung’ material 
parameters, the normalized vertical displacement W and longitudinal displacement 
U  of an elastic half-space under a moving point load for the observation point 
( , , ) ( , , )x y z = 0 0 1m  are calculated and plotted in Fig. 5.10a and b. It can be seen 
that the results obtained in this section are in good agreement with Figs. 6 and 7 in 
Hung’s paper. This fact indicates the correctness of the analytical derivation and 
procedure developed in this study.
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5.5.2 � The Dynamic Response of the Double-Layer Plate

The longitudinal normal stress xσ  at the bottom of the double-layer plate under a 
moving constant load for the observation point (x = 0, y = 0) is shown in Fig. 5.11a 
against time t. The vertical displacement and the longitudinal normal stress of the 
elastic half-space foundation for the observation point (x = 0 , y = 0) with respect 
to the different depth values are shown in Figs. 5.11b and c against time t. Accord-
ing to the displacement compatibility condition, the vertical displacement of the 
elastic half-space foundation for z = 0  in Fig. 5.11b is the vertical displacement 
of the double-layer plate. The vertical displacement and the longitudinal normal 
stress at the bottom of the double-layer plate under a moving harmonic load for 
the observation point ( x = 0 , y = 0 ) are shown in Fig. 5.12 against time t. From 
Fig. 5.11 and 5.12, we can see:

1.	 The longitudinal normal stress at the bottom of the double-layer plate presents 
an alternating process from compression to tension, then from tension to com-
pression. The longitudinal normal stress is compressive before and after the load 
passes through the observation point, but when the load is passing through the 
observation point, the longitudinal normal stress is tensile, and the maximum 
tensile stress is much larger than the maximum compression stress.

2.	 As the depth increases, the displacement and the stress of the elastic half-place 
foundation attenuates very rapidly. For the given material parameters, the maxi-
mum vertical displacement wbmax is − 0.2735 mm and the maximum longitudinal 
tensile stress maxxσ is 9459.97 Pa when z = 0m, the maximum vertical displace-
ment wbmax is − 0.1100 mm and the maximum longitudinal tensile stress maxxσ
is 36.85 Pa when z = 2m. The rate of decrease of the vertical displacement and 
longitudinal tensile stress reaches up to 59.78  and 99.61 %, respectively.

3.	 The maximum longitudinal tensile stress appears on both sides of the load center 
and the curve of the longitudinal tensile stress presents an obvious “saddle” type.

a bNormalized vertical displacement Normalized longitudinal displacement

Fig. 5.10   Normalized displacements calculated using the parameters in Hung’s paper. a Normal-
ized vertical displacement, b Normalized longitudinal displacement
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a bVertical displacement of the double-layer plate Longitudinal normal stress of the double-layer plate

Fig. 5.12   The dynamic response of the double-layer plate on an elastic half-space foundation 
under a moving harmonic load. a Vertical displacement of the double-layer plate, b Longitudinal 
normal stress of the double-layer plate

 

a b

c

Longitudinal normal stress at the bottom
of the double-layer plate

Vertical displacement for different depth values

Longitudinal normal stress for different depth values

 

Fig. 5.11   The dynamic response of the double-layer plate on an elastic half-space foundation 
under a moving constant load. a Longitudinal normal stress at the bottom of the double-layer 
plate, bVertical displacement for different depth values, c Longitudinal normal stress for different 
depth values
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4.	 The vibration frequency of the double-layer plate increases under a harmonic 
load, the vertical displacement and longitudinal normal stress in the front and 
rear of the load center present an obvious fluctuation trend.

5.6 � Chapter Summary

In this chapter, the road is regarded as an infinite double-layer plate on a Kelvin 
foundation and on an elastic half-space, and the steady-state response of the road 
subjected to moving vehicle loads is studied. The governing equations of motion are 
analytically solved by integral transforms, together with the generalized Duhamel 
integral integrated over the Green’s function of the double-layer plate under the 
unit impulse load. The dynamic responses in the time-space domain are evaluated 
by the efficient computer program, which is developed via Mathmatica and have 
been validated by comparing with results available in the literatures. The following 
conclusions can be drawn from the studies.

1.	 With the extension of the time and the space, the road dynamic responses attenu-
ate rapidly. As the foundation damping increases, the asymmetry of the road 
dynamic responses before and after the load passes through become more obvi-
ous. The road dynamic response before the load passes through is greater than 
that after the load passes through. The maximum vertical displacement lags 
behind the center of the load. The distance and the time of the lag become more 
apparent when the damping increases.

2.	 The longitudinal normal stress at the bottom of the double-layer plate presents a 
tension and a compression alternating process. When the load is passing through 
the observation point, the longitudinal normal stress is tensile. However, before 
and after the load passes through the observation point, the longitudinal normal 
stress is compressive. This goes against the road fatigue life.

3.	 The vibration frequency of the double-layer plate increases under a moving har-
monic load. The vertical displacement and longitudinal normal stress in the front 
and rear of the load center present an obvious fluctuation trend.

4.	 As the depth increases, the displacement and the stress of the elastic half-place 
foundation attenuates very rapidly. The maximum longitudinal tensile stress 
doesn’t appear at the load center, but appear on both sides of the load center. So, 
the curve of the longitudinal tensile stress shows obviously saddle-like.
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Chapter 6
Road Dynamic Responses Under Moving 
Vehicle Loads Based on Three-Dimensional 
Finite Element Model
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Chapter 4 and Chap. 5 studied the road dynamic responses under moving loads by 
the analytical method. The deficiency of the analytical method lies in: (1) The road 
system model is relatively simple, the beam and the plate models, which are based 
on the small deformation theory and cannot reflect the real road structure. (2) The 
analytical method takes the road as a continuum body of infinite length in the hori-
zontal direction and cannot reflect the size effect of the road. (3) It is difficult for the 
analytical method to treat the nonlinearity of constitutive relations and the nonlinear 
dynamic behavior between the vehicle and the road.

In this chapter, based on the layered plate theory, a 3-D finite element model of 
the road system is established by ANSYS10.0 software. The time-dependent deflec-
tion, stress and strain of the road are obtained by linking together the road surface 
roughness, a moving heavy duty vehicle, and a multilayered road system. The road 
fatigue life is calculated by taking the tensile strain at the bottom of the asphalt sur-
face as the evaluation index. A parametric investigation is then conducted to show 
the effects of vehicle load, road grade, vehicle moving speed and vehicle parameters 
on the road fatigue life. The fatigue-induced failure regularity and mechanism of the 
road system under a moving stochastic load is elucidated.

6.1 � Three-Dimensional Finite Element Model of Road 
System

6.1.1 � Road Model of a Layered Plate and Its Basic 
Assumptions

When using the finite element method to establish the layered system of the road 
system, it is necessary to simplify the real road by ignoring the secondary factors 
and focusing on the key issues. Here, it is assumed that [1, 2]:
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1.	 The material of each layer is homogeneous and isotropic.
2.	 The soil base is infinite in both the horizontal direction and the depth direction. 

Other layers resting on the soil base are infinite in the horizontal direction, but 
finite in the depth direction.

3.	 When the vehicle is moving, the stress and displacement of the road at an infinite 
distance from the vehicle load are zero.

4.	 The contact condition between each layer is completely continuous.

Based on the above assumptions, a four-layer medium, consisting of the surface 
course, the base course, the subbase and the soil base, is employed as a road model 
to account for the real situation of the road system. The asphalt mixture is a typical 
viscoelastic material highly sensitive to temperature. The properties of the asphalt 
mixture depend on the time, the temperature and the stress. So the Burgers model 
is used to characterize the viscosity in the asphalt concrete surface course. The soil 
will generate a large plastic deformation under an external force. The Drucker–
Prager model is used to handle the behavior of the soil base. The semi-rigid base 
and subbase course are enforced to behave as linear elastic.

6.1.2 � Three Dimensional Finite Element Model of the Road 
System

1.	 The finite element model

The actual road system extends horizontally and vertically to infinity. It is imple-
mented in ANSYS by choosing a cube of finite size along the x, y and z axis. This 
will unavoidably cause additional computational errors. To mitigate such errors, the 
model must be large enough. However, the larger the model, the longer the com-
putation time as it requires more elements and computational resources if the same 
level of precision is to be maintained. After using other models in the existing litera-
ture for reference and trying a number of model dimensions for analysis [3–5],we 
found that, when the model length and width along the x and y axis exceeds 5 m, and 
the model depth along the z axis exceeds 3 m, the maximum vertical displacement at 
the top of the surface course becomes stable and no apparent change can be found. 
Finally, the model dimension ( x, y, z) is selected to be 16.35 m × 6 m × 6 m. Where, 
the x-axis is the longitudinal direction, the y-axis is the transverse direction, and the 
z-axis is the vertical direction (depth).

The finite element model of the road is set up layer by layer from the bottom to 
the top. First, establish the left side of the soil base for x = 0 , then stretch the left 
side for 16.35 m along the x-axis to establish the soil base. Next, stretch orderly 
upward to establish the subbase, base course, and surface course. Element Solid 45 
is used to simulate the structural behavior of the base course, subbase and soil base, 
and element Solid 186, which allows large viscoelastic deformation, is employed to 
simulate the behavior of the asphalt surface course. The contact condition between 
each layer is completely continuous.

As the moving load on the road surface is localized, subdivision is required near 
the loaded area to capture the step-stress and strain gradient in these areas. So along 
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the transverse y axis, the middle part uses dense elements while the outer part uses 
spare elements. Along the vertical z axis, the surface and base layers use a dense 
element while the soil foundation uses spare elements. There are 65,424 nodes and 
59,024 elements in the road finite element model. The finite element mesh of the 
road system is shown in Fig. 6.1.

2.	 The boundary conditions

The boundary conditions have a great influence on the calculation results, so it is 
important to select the correct boundary conditions. When the vehicle is moving on 
the road, there are no responses at infinity. Therefore, according to Saint Venant’s 
Principle, the boundary conditions are adopted as follows: the x-axis displacements 
of the two longitudinal sections are constrained to be zero, the y-axis displacements 
of the two transverse sections are constrained to be zero, and the displacements at 
the bottom of the road are constrained to be zero along the x, y, and z directions.

6.1.3 � A Transient Dynamic Analysis of Road System Vibration

The full method is used to fulfill the transient dynamic finite element analysis of the 
road system, and the Consistent Mass Matrices (CMM) is used in the calculation.

1.	 Modal analysis to determine the Rayleigh damping coefficient

The damping mechanism is very complicated, which is related to the structure it-
self, the viscosity of the surrounding medium, the energy dissipation of the soil 
base, and so on. It is very difficult to determine accurately the damping matrix in 
the finite element analysis. Therefore, Rayleigh damping assumes that the damping 
matrix is a linear combination of the stiffness matrix and the mass matrix is adopted 
in the finite element analysis of this chapter. That is,

� (6.1)[ ] [ ] [ ]C M K= +α β

Vehicle moving direction

x
y

z

v

Fig. 6.1   Finite element mesh 
of the road system
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where, α  is Alpha damping, also known as the mass damping coefficient, and β
is Beta damping, also known as the stiffness damping coefficient. According to 
the orthogonal condition, these two damping coefficients can be calculated by the 
vibration modes and the damping ratios. That is,

� (6.2)

where, iω  and kω  are the natural frequencies of the order i  and order k  mode, iξ  
and kξ , which must be determined by the test, are the damping ratios corresponding 
to the order i and order k mode, in general, the value of i  and k  can be chosen as 
i k= =1 2, . The damping ratio is approximated as a constant in a certain frequency 
range, that is i kξ ξ ξ= = , then Eq. (6.2) can be simplified as

� (6.3)

The block Lanczos’s method is used to carry out the modal analysis of the finite 
element model. The frequencies corresponding to the modes of the first five orders 
are 6.5037, 7.4609, 8.4101, 8.5306, and 9.4529 Hz, respectively. Then,

� (6.4)

� (6.5)

The damping ratio of the road system is usually between 0.02 and 0.2. By letting 
0.05ξ = , the damping coefficient can be calculated to be 2.183α = , 0.00114β = .

2.	 The integration time step

In the ANSYS transient dynamic analysis, the Newmark-β  method is used to solve 
the equation of motion on the discrete time point. The integration time step (∆t) 
affects not only the computational efficiency but also the solution accuracy and the 
convergence of the transient dynamic analysis. The smaller the time step, the higher 
the accuracy. An integration time step that is too large will affect the response of 
the higher order modes, and an integration time step that is too small will increase 
the computation cost. In this section, the step load is used to carry out the transient 
dynamic analysis. In order to describe the step load, ∆t  should be selected as follow 
[6]

� (6.6)

In which, f1  is the first order frequency of the finite elementmodel, determined by 
the above modal analysis.
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3.	 The viscoelastic constitutive model

An asphalt mixture is a typical viscoelastic material with properties that depend on 
the time, the temperature, and the stress. The Burgers model is commonly used for 
characterizing viscosity in road [7–9]. The Burgers model is a combination of the 
Maxwell model and the Kelvin models in series. Both the Maxwell model and the 
Kelvin model experience identical stress σ , and their strain are 1ε  and 2ε , respec-
tively. So, the total strain ε  is composed of two parts

� (6.7)

The stress–strain relationship of the Bergers model can be further expressed as,

� (6.8)

where 1 1 2 1 2 1 2
1 2 1 1 2

1 2 1 2 2
, , , ,p p q q

E E E E E
η η η η η η ηη+

= + = = =  where E1 and E2 are 

elastic constants, and 1η and 2η  are viscosity constants.
The viscoelastic material has a creep and stress relaxation process, and the strain 

and stress responses are a function of time. Under the constant strain 0 ( )H tε ε= , 
the stress response, which varies with the time, can be expressed as:

� (6.9)

where, H t( )  is the Heaviside unit step function, Y t( )  is the relaxation modulus 
representing the stress under unit strain,

� (6.10)

4.	 Loading

The dynamic random tire force in the time domain can be obtained by using the 
procedure presented in Sect. 2.2. That is, building up the whole vehicle model of 8 
degrees of freedom, considering the road random roughness, and using the New-
mark- β  method to solve the differential equation of vehicle motion. The moving 
random load equals the sum of the vehicle static load and the dynamic random tire 
force in the time domain. Due to the fact that the rear axle load is greater than the 
front axle load, only the moving random load of the left-side rear tire is taken into 
consideration in the finite element analysis of this chapter. The vehicle model refers 
to the structure of Dongfeng DFL1250A9, which is plotted in Fig. 6.2. Dongfeng 
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DFL1250A9 has double rear axles, which is combined into a single axle in the 
whole vehicle model of 8 degrees of freedom. When the dynamic response of the 
road system is calculated, the moving random load will be divided equally into two 
parts, which are distributed on the road at intervals of 1.3 m.

Suppose, the moving random load is uniformly distributed in a rectangular 
contact area, the contact pressure p is 0.7  MPa, and the contact area, which is 
0 218 0 314. .m m× , can be calculated by Eqs.  (5.5)–(5.8). The contact area is di-
vided into 8 rectangular elements, 2 along the x axis, 4 along the y axis.

When the step load is adopted, the loading process is shown in Fig. 6.3. The first 
step load is applied in rows 1, 2 of elements, the second step load is applied in rows 
2, 3 of elements, and so on. The vehicle moving speed can be changed by changing 
the load duration time in each unit.

a  Effect diagram of loading b  Schematic diagram of loading elements

Fig. 6.3   Loading process of a moving vehicle. a Effect diagram of loading. b Schematic diagram 
of loading elements

 

1.3m 5.7m

Fig. 6.2   Schematic diagram 
of the vehicle model
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6.2 � Dynamic Responses of Road System to the Moving 
Vehicle Loads

The 8 degrees of freedom vehicle model shown in Fig. 2.18 of Chap. 2 is used here 
to generate the stochastic dynamic tire force in the time domain. The vehicle calcu-
lation parameters refer to Sect. 2.2.3.

The material parameters of each layer of the road system are given in 
Table  6.1. The material parameters of the Burgers model are chosen to be: 

1 2 1 2350MPa, 164.7MPa, 233.4658GPa s, 5.0317GPa sE E η η= = = ⋅ = ⋅.

6.2.1 � Vertical Displacement Analysis of Road System

The vertical displacement (road deflection) can reflect the overall strength and ri-
gidity of the road system. It is an important mechanical index of asphalt pavement 
design in China. Figure 6.4 shows the vertical displacement of each layer against the 
time. Figure 6.5 illustrates the relationship between the maximum vertical displace-

Table 6.1   Material parameters of each layer of the road system
Layer Thick-

ness
/m

Elastic 
moduli
/MPa

Poisson’s 
ratio

Internal 
friction 
angle/0

Dilat-
ancy 
angle/0

Cohe-
sion/
kPa

Density
/kgm-3

Damp-
ing ratio
/%

Surface
course

0.15 1400 0.35 60 350 2500 0.05

Base
course

0.30 1200 0.35 40 250 2200 0.05

Subbase 0.25 650 0.4 35 200 2000 0.05
Soil 
base

35 0.4 22 30 55 1930 0.05

Fig. 6.4   Vertical displace-
ment w vs. time
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ments of each layer and the road system depth. The maximum vertical displacement 
is 0.5889 mm, occurring on the surface of the asphalt. The vertical displacement 
decreases as the depth increases. The maximum vertical displacement on the top of 
the soil base is 0.4798 mm. The deflection caused by the soil base is about 77.35 % 
of that on the surface of the asphalt. Therefore, increasing the soil compaction can 
effectively reduce the surface deflection

6.2.2 � Stress Analysis of Road System

1.	 The vertical normal stress

Figure 6.6 shows the vertical normal stress of each layer against time. Figure 6.7 
illustrates the relationship between the maximum vertical normal stresses of all lay-
ers and the road system depth. Each layer of the road system is mainly under pres-
sure in the vertical direction. The maximum vertical compressive stress appears 
in the asphalt surface course. As the load approaches and leaves the observation 
point, there is very little tensile stress in each layer. As the depth increases, the 
vertical compressive stress decreases rapidly in the base and the subbase. The maxi-
mum vertical compressive stress on the surface of the asphalt is 0.745 MPa. The 
maximum vertical compressive stress at the junction of the base and the subbase is 
0.0585 MPa, only 7.85 % of that is on the surface of the asphalt. The compressive 
stress has dropped to a very small value (0.0127 MPa) on the top of the soil base. 
This shows that the asphalt surface course is easiest to produce compaction defor-
mation. Thus during road paving, attention must be paid to the compaction quality.

2.	 The longitudinal normal stress

Figure 6.8 shows the longitudinal (vehicle moving direction) normal stress of each 
layer against the time. Figure 6.9 illustrates the relationship between the maximum 

Fig. 6.5   Maximum vertical 
displacement wzmax vs. depth
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Fig. 6.6   Vertical normal 
stress zσ  vs. time
 

Fig. 6.8   Longitudinal normal 
stress xσ vs. time
 

Fig. 6.7   Maximum vertical 
normal stress maxzσ  vs. 
depth
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longitudinal normal stresses of all layers and the road system depth. The longitu-
dinal normal stress is alternating, and there is both tensile stress and compressive 
stress in each layer. The asphalt surface course is primarily under pressure, the lon-
gitudinal compressive stress decays rapidly in the surface course, the maximum 
longitudinal compressive stress on the surface of the asphalt is 0.61528 MPa, but 
the maximum longitudinal compressive stress at the junction of the surface course 
and base course is only 0.11499 MPa. The lower part of the base and the subbase are 
mainly under tensile stress, the maximum longitudinal tensile stress occurs at the 
junction of the base and the subbase, with a value of 0.0712 MPa.

3.	 The transverse normal stress

Figure 6.10 shows the transverse normal stress of each layer against the time. Fig-
ure 6.11 illustrates the relationship between the maximum transverse normal stress-
es of all layers and the road system depth. The asphalt surface course is primarily 
under pressure, the transverse compressive stress also decays rapidly in the surface 
course, the maximum transverse compressive stress on the surface of the asphalt is 

Fig. 6.10   Transverse normal 
stress yσ  vs. time
 

Fig. 6.9   Maximum longitu-
dinal normal stress maxxσ
vs. depth
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0.70453 MPa, but the maximum transverse compressive stress at the junction of the 
surface course and base course is only 0.11249 MPa. The base and the subbase are 
mainly under tensile stress, the maximum transverse tensile stress also occurs at the 
junction of the base and the subbase, the maximum value is 0.0775 MPa, which is 
8.85 % larger than the maximum longitudinal tensile stress.

4.	 The longitudinal shear stress

Figure 6.12 shows that the longitudinal shear stress of each layer against the time. 
Figure  6.13 illustrates the relationship between the maximum longitudinal shear 
stress of all layers and the road system depth. As the traffic load approaches and 
leaves the observation point, the longitudinal shear stress zxτ  of each layer experi-
ences two changes in the opposite direction. The longitudinal shear stress varies 
significantly in the asphalt surface course. First, it increases as the depth increases, 
and reaches the maximum value in the lower part of the asphalt surface course. 
Then, it decreases significantly as the depth increases. The maximum shear stress at 
the junction of the base and the subbase is 0.37 times that in the surface course. The 

Fig. 6.11   Maximum trans-
verse normal stress maxyσ
vs. depth

 

Fig. 6.12   Longitudinal shear 
stress zxτ  vs. time
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shear stress of the soil base is approximately zero. So it is particularly important to 
improve the anti-shear ability in the asphalt surface.

6.2.3 � Stain Analysis of Road System

1.	 The vertical linear strain

Figure 6.14 shows the vertical linear strain of each layer against the time. In the 
asphalt surface course, the vertical linear strain is alternating. When the load is ap-
proaching or leaving the observation point, it bears vertical tensile strain, but when 
the traffic load is passing through the observation point, it bears vertical compres-
sive strain. The vertical tensile strain decreases gradually as the depth increases. An 
alternative variation of the vertical strain can easily make the asphalt surface course 

Fig. 6.14   Vertical normal 
strain zε  vs. time
 

Fig. 6.13   Maximum longi-
tudinal shear stress maxzxτ
vs. depth

 

6  Road Dynamic Responses Under Moving Vehicle …



2076.2 � Dynamic Responses of Road System to the Moving Vehicle Loads�

detach from the base course. The base and the subbase mainly bear vertical com-
pressive strain. From the analysis of the stress response in the above subsection, we 
know that the vertical compressive stress is very small in the base and the subbase 
compared with that in the surface course. From Fig. 6.14, we know that the vertical 
compressive strain should not be ignored, and the vertical compressive strain at the 
junction of the base and the subbase is larger than that at the junction of the surface 
course and the base. This is mainly because the elasticity modulus of the base and 
the subbase materials, which deforms easily under the load action, is less than that 
of the surface course material.

2.	 The longitudinal linear strain

Figure 6.15 shows the longitudinal linear strain of each layer against the time. The 
longitudinal linear strain is alternating, and there is both tensile strain and compres-
sive strain in each layer. The surface of the asphalt mainly bears compressive strain. 
In the surface course, when the load is approaching or leaving the observation point, 
it bears longitudinal compressive strain, but when the traffic load is passing through 
the observation point, it bears longitudinal tensile strain. The base and the subbase 
mainly bear tensile strain.

3.	 The transverse linear strain

Figure 6.16 shows the transverse linear strain of each layer against the time. The 
surface of the asphalt mainly bears compressive strain. The interior of the surface 
course, the base, and the subbase bear tensile strain. The maximum transverse ten-
sile strain occurs at the junction of the subbase and the soil base.

Fig. 6.15   Longitudinal nor-
mal strain xε  vs. time
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6.3 � Analysis of Asphalt Pavement Fatigue Life Under 
Moving Vehicle Loads

6.3.1 � Prediction Model of Asphalt Pavement Fatigue Life

When the vehicle is traveling repeatedly on the road, not only the road surface 
performance, such as smoothness and anti-slide, but also the structural strength will 
decrease step by step, until fatigue failure occurs. It is very important to study the 
fatigue properties of asphalt pavements, which receives widespread attention from 
road scientists and engineers all over the world. In order to ensure the asphalt pave-
ment to maintain good practicability and durability, the fatigue life is taken as the 
basic design principle in asphalt pavement design in many countries of the world.

Because there have many factors affecting the asphalt pavement fatigue life, 
it is very difficult to establish directly the relation between the asphalt pavement 
fatigue life and the various influencing factors. Therefore, at present, almost all of 
the researchers adopt the approach which firstly establishes the prediction model 
of asphalt mixture through the indoor accelerated loading test, and then revises 
the indoor fatigue life model to establish the prediction model of asphalt pavement 
fatigue life in view of various influencing factors. However, because the testing 
instrument and method, the pavement structure, environmental and operational con-
ditions are different, it is difficult to get a fatigue life equation suitable for a variety 
of conditions, and it is more difficult to establish a stable and reliable relationship 
between the indoor fatigue test and the asphalt pavement fatigue life. At present, the 
commonly used fatigue life model is divided into the strain model and the strain–
stiffness model [10].

The strain model takes the tensile strain tε  as a parameter variable, and the equa-
tion can be expressed as

� (6.11)
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Fig. 6.16   Transverse normal 
strain yε  vs. time
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in which N f is the fatigue life of the road system, represented by the number of 
loading cycles, tε  is the tensile strain at the bottom of the surface course, and k1  
and k2  are experimentally measured constants.

The strain–stiffness model, which is recommended by Monismith, takes the stiff-
ness modulus of the asphalt mixture as a parameter variable. Considering the influ-
ence of asphalt aging and temperature change, the equation can be expressed as

� (6.12)

where E  is the stiffness modulus of the asphalt mixture (or dynamic stiffness mod-
ulus), and k3 is a constant depending on the temperature.

When a single vehicle is passing through the road, David Cebon [11] puts for-
ward fatigue life prediction models, which take longitudinal tensile strain at the 
bottom of the asphalt concrete surface course as a parameter variable. That is,

� (6.13)

� (6.14)

where N f  is the fatigue life of the road system, at which the fatigue fracture area 
is equal to 10 or 45 % of the wheel path area, ε  is the maximum tensile strain at 
the bottom of the asphalt concrete surface course, and E, in psi (6.89 kPa) is the 
elasticity modulus of the asphalt concrete surface course.

Equations (6.13) and (6.14) have been widely used in fatigue life analysis of road 
system. In this section, the fatigue life of the road system is calculated by Eq. (6.13), 
and the parametric study follows to show the effects of the vehicle load, the road 
grade, the vehicle moving speed, the suspension stiffness, the suspension damping, 
the tire stiffness and the tire damping on the road fatigue life.

6.3.2 � Parameter Influence Analysis of Asphalt Pavement Fatigue 
Life

1.	 The effect of the vehicle load

Figure 6.17 illustrates the relationship between the vehicle load and the road fatigue 
life. As the load increases, the static load and the dynamic tire force distributed on 
the road all increase, and the road fatigue life decreases severely. For example, the 
fatigue life for 80 % overload is 27.81 % of that for full load. It has been shown that 
overloading is one of the main reasons for early damage to the road.

2 3
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2.	 The effect of the road grade

The effect of the road grade on the road fatigue life can be seen in Fig. 6.18. As the 
road grade decreases from A to D, the dynamic tire force distributed on the road 
increases continuously, and the road fatigue life decreases with a parabolic correla-
tion. The fatigue life for C grade is 64 % of that for A grade, but the fatigue life for D 
grade is only 31.83 % of that for A grade. Therefore, improving the road roughness 
grade is an effective measure to reduce the dynamic tire force and improve the road 
fatigue life.

3.	 The effect of the suspension parameters

Figures 6.19 and 6.20 show the effect of the rear suspension stiffness and the rear 
suspension damping on the road fatigue life, respectively. When the suspension 
stiffness is small, the road fatigue life increases slightly as the suspension stiffness 

Fig. 6.18   Effect of the road 
grade
 

Fig. 6.17   Effect of the 
vehicle load
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increases, and then it decreases approximately in a parabolic arc as the suspension 
stiffness increases. In general, increasing the suspension stiffness will reduce the 
road fatigue life.

As the suspension damping increases, the road fatigue life increases rapidly at 
first, and then remains unchanged. This implies that increasing suspension damp-
ing is beneficial to improve the road fatigue life. In addition, according to vehicle 
dynamics, reducing the suspension stiffness and increasing the suspension damping 
can effectively inhibit vehicle vibration.

4.	 The effect of the tire stiffness

The effect of the rear tire stiffness on road fatigue life can be seen in Fig. 6.21. The 
road fatigue life decreases as the tire stiffness increases. Because the tire stiffness 
and the inflation pressure are closely related, an increase in inflation pressure will 
cause an increase in tire stiffness. The greater the tire stiffness, the more severe the 

Fig. 6.20   Effect of the sus-
pension damping
 

Fig. 6.19   Effect of the sus-
pension stiffness
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vehicle vibration and the larger the dynamic tire force. In order to avoid early road 
damage, it is necessary to strictly limit tire overpressure.

5.	 The effect of the vehicle moving speed

Figure 6.22 shows the effect of the vehicle moving speed on the road fatigue life. 
As the vehicle moving speed increases, the tensile strain at the bottom of the asphalt 
surface course decreases, and the road fatigue life increases. But the increase in 
moving speed will worsen vehicle vibration, which is disadvantageous to driving 
safety. In addition, high-speed vehicles will generate greater horizontal forces while 
braking and turning. These horizontal forces may cause the increase of shear stress 
in the road system, destroy the adhesion among layers, and make the road produce 
rutting, shoving, and wave. So, the effect of vehicle speed should be considered 
from all aspects.

Fig. 6.22   Effect of the 
vehicle moving speed
 

Fig. 6.21   Effect of the tire 
stiffness
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6.4 � Chapter Summary

This chapter establishes a 3D viscoelastic finite element model of the asphalt pave-
ment system. In view of the interaction between the vehicle and the road, the dis-
placement, the stress and the strain in the road system under a moving random load 
are numerically simulated, and the effects of loading capacity, road grade, vehicle 
moving speed, and vehicle parameters on the road fatigue life are discussed in de-
tails. The analysis results point to the following conclusions:

1.	 The asphalt surface course is under a pressure state in all three dimensions, and 
the shear stress in this layer is the main cause for its failure.

2.	 The base and the subbase are under a tensile state in the longitudinal and the 
transverse directions, the maximum longitudinal and transverse tensile stress 
occurs at the junction of the base and the subbase. So, the road fatigue failure 
caused by tensile stress under a moving load should first appear at the junction 
of the base and the subbase.

3.	 The road fatigue life decreases sharply as the road grade decreases and the 
vehicle load increases. Thus, improving the road roughness grade and strictly 
enforcing restrictions on overloading are effective measures to avoid early road 
damage and to prolong the road fatigue life.

4.	 Reducing the suspension and the tire stiffness, and increasing suspension damp-
ing can inhibit vehicle vibration and improve the road fatigue life.

5.	 Increasing the vehicle moving speed is beneficial to improve the road fatigue 
life. However increasing the vehicle moving speed will worsen vehicle vibration 
and increase the road shear failure while braking and turning. So, the effect of 
vehicle speed should be considered from all aspects.
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Chapter 7
Modeling and Dynamic Analysis of Vehicle–
Road Coupled Systems
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With the increase of road traffic and vehicle loads, earlier damage of asphalt 
pavement on expressways has become more and more serious, which has greatly 
shortened the effective lifespan of the pavement. Road damage causes dynamic 
tire-force to increase greatly, which may reduce the passenger’s ride comfort and 
safety. Thus it is necessary to investigate the interaction between vehicle and pave-
ment intently and compute vehicle loads accurately. However at present, vehicle 
and road are investigated separately in vehicle dynamics and road dynamics. In 
vehicle dynamics, road surface roughness is generally regarded as an excitation 
to a vehicle, and the dynamic behavior and the parameter optimization of vehicles 
are investigated. In road dynamics, the vehicle is generally regarded as a moving 
load acting on the pavement, and the pavement is modeled as a beam, a plate and a 
multilayer system on viscous elastic foundations. It is necessary to propose a new 
vehicle–road coupled system to investigate the responses of the vehicle and road 
simultaneously.

In this chapter, the two- and three-dimensional vehicle–road coupled systems are 
built and coupled system responses are simulated with the methods of mode super-
position, Galerkin’s method and numerical integration. The differences between the 
coupled system and the traditional systems are also investigated.

7.1 � Modeling of A Two-Dimensional Vehicle–Road 
Coupled System

7.1.1 � Model of Tire-Road Contact

The characteristics of contact between tire and road, which is one of the key issues 
that affect vehicle dynamics and dynamic pavement forces, have received more and 
more attention. Many tire models have been proposed during the past decades. The 
simplest and most popular one is the point contact tire model which describes the 
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vertical force of the tire. However, the contact characteristics between tire and road 
are rather complicated. Considering the effect of geometric size and elastic filter of 
a tire, the enveloping effect on the road should not be neglected when a vehicle is 
running on rough ground. In addition, the contact print length between tire and road 
varies in time and the tire may jump away from the ground. Thus when the road 
surface roughness is complex, the point contact tire model may pose rather large 
uncertainties.

Guo presented a flexible roller contact tire model, and carried out simulations 
of a vehicle vibration system based on a rigid and flexible roller contact tire model 
[1–3]. The compressing deformation between tire and road is expressed as

2 2
0 0 2( ) ( ) 0

( , )
0 0

aa
a

q x x r x r z x z
z x x

z

 + + - - - ∆ ≥∆ = 
∆ ≤�

(7.1)

where q( x, xa) is the road surface roughness, r0 is the tire radius, z2( x) and x are the 
vertical and lengthwise displacements of the wheel center, xa is the local lengthwise 
coordinate in the tire contact print, and -r0 ≤ x ≤ r0.

The vertical dynamic force between the tire and pavement is

( ) ( ) ( , )zd t a a
a

F x k x z x x dx= ⋅ ∆∫
�

(7.2)

where kt is the tire vertical distributing stiffness coefficient, and a is the length of 
the tire contact print.

The flexible roller model considers three assumptions, including the multipoint 
contact between the tire and the road, the varying tire print length and the probabili-
ty of the tire jumping away from the road. But the model does not consider the effect 
of tire damping and pavement vibration on tire force. Moreover, when computing 
the effective road input, this model has the assumption that a vehicle runs slowly on 
the road and uses a static tire load to replace the dynamic tire load.

Based on the above analysis, a revised flexible roller contact model (RFRC tire 
model) is proposed, as shown in Fig. 7.1 [4].

The proposed model is composed of three equations. The compressing deforma-
tion between tire and road is expressed as
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 + + + - - - ∆ ≥∆ = 
∆ ≤�

(7.3)

where w is the vertical vibration displacement of the pavement.
The relative velocity between the tire and the pavement is
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where, v is the vehicle running speed.
The vertical dynamic force between the tire and the pavement is

[ ]( ) ( ) ( , ) ( ) ( , )zd t a t a a
a

F x k x z x x c x z x x dx= ⋅ ∆ + ⋅ ∆∫ 

�
(7.5)

where kt and ct are the tire vertical distributing stiffness and damping coefficient 
respectively.

Substituting Eq. (7.5) into the vehicle–road coupled system equations of motion, 
the tire force can be determined and the dynamics of the system can be studied with 
no need to compute the effective road input.

7.1.2 � Equations of a Two-Dimensional Vehicle–Road Coupled 
System

The vehicle–pavement-foundation coupled system built in this work is shown in 
Fig. 7.2. A two DOF oscillator and a Bernoulli–Euler beam on a viscoelastic Kelvin 
foundation with two simply supported ends are employed to model the vehicle and 
the pavement. The vehicle begins to move along the beam at a constant velocity in 
the lengthwise direction from the midpoint of the beam when t = 0.

Let the vehicle’s static equilibrium and the pavement’s neutral position be the co-
ordinate origins. The system equations of motion can be obtained by d’Alembert’s 
principle as follows,

�
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Fig. 7.1   The revised flexible roller tire model. (Reprinted from ref. [4], with kind permission from 
Springer Science+Business Media)
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where z1 z2 and w are the vertical displacements of the body, wheel, and pavement, 
respectively. E, I, Fzd, and L are the modulus of elasticity, the cross-sectional mo-
ment of inertia, the tire vertical force, and the road length respectively. X0 is the 
wheel center lengthwise position at any time, which is expressed as x L vtt = +/ 2

The harmonic road excitation takes the following form,

0 0 0 0sin(2 / ) sinq B vt L B tπ= = Ω� (7.8)

where B0 and L0 are the amplitude and wavelength of road roughness respectively.
The initial conditions and boundary conditions of the beam are
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where the normal mode Ui(x)  can be obtained by boundary conditions (7.9) and 
(7.10) as

2( ) sini
i xU x

mL L
π

=
�
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Fig. 7.2   Two-dimensional vehicle–road coupled system with roller tire-road contact. (Reprinted 
from ref. [4], with kind permission from Springer Science+Business Media)
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The road partial differential Eq. (7.7) can be discretized into many ordinary differ-
ential equations with the method of mode superposition,

2( ) 2 ( ) ( ) ( )j j j j j j jt t t F tη ξ ω η ω η+ + = 

� (7.13)
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7.1.3 � Interaction of Tire and Road

Substituting road roughness Eq.  (7.8) and road vertical displacement (7.11) into 
Eqs. (7.3) and (7.4), one gets the relative displacement and velocity between the tire 
and the pavement as follows,
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where z2 s is the tire static deformation.
By using even distributing stiffness and damping, the vertical tire force using the 

revised flexible roller contact (RFRC) tire model can be expressed as
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where a1 and a2 are the start point and the end point of the tire contact print, which 
are varying every moment. When ∆ Z ≤ 0, the tire jumps away from the pavement. 
When ∆ Z ≥ 0, the tire contacts with the pavement.
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The vertical tire force using the traditional single point contact (SPC) tire model 
is
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Equations (7.18) and (7.19) show that the tire force is influenced by wheel vibra-
tion, pavement vibration, and road surface roughness. Thus the vehicle equations 
are coupled with the road equations. Combining the vehicle ordinary differential 
Eq.  (7.6) and the road Eq.  (7.13) leads to the vehicle–pavement coupled system 
equation,

[ ]{ } [ ]{ } [ ]{ } { }M Z C Z K Z R+ + = 

� (7.20)

where, 1 2 1 2{ } { }TZ z z η η=   is the displacement column vector of the 
vehicle–road system. [M], [C], [K] are the matrices of mass, damping, and stiffness 
respectively. [R] is the force vector.

Since it is difficult to remove the coupled terms from the above vehicle–road 
coupled equations, the numerical integral is the best method to solve the equation.

7.1.4 � Calculation Program and Model Verification

A computer program was designed to get the dynamic responses of the coupled 
system by the quick direct integral method [5, 6]. The routines of the calculation 
program are outlined as follows,

1.	 Input system parameters, integral step ∆ t , integral step number n, and modal 
superposition order of the pavement NM.

2.	 Create mass, stiffness, and the force matrix.
3.	 Set initial conditions when t = 0.

Let the initial displacement and initial velocity be 0

0
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Initial acceleration can be obtained from Eq. (7.20) as
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4.	 Calculate the displacement and velocity when t = ( n + 1)∆ t.

Let ϕ = ψ = 0 when n = 0 and ϕ = ψ = 1/2 when n ≥ 1. One can build the following 
relations:

{ } { } { } (1 2 ){ } { }

{ } { } ( ){ } { }

2 2
n 1 n n n n 1

n 1 n n n 1

Z Z Z t / Z t Z t

Z Z 1 Z t Z t

ψ ψ
ϕ ϕ

+ -

+ -

 = + ∆ + + ∆ - ∆


= + + ∆ - ∆

  

   

�
(7.22)

5.	 Calculate the tire force when t = ( n + 1)∆ t.

a.	 Applying the RFRC tire model

The pavement displacement when t = ( n + 1)∆ t at the position of xt + x can be ob-
tained by Eq. (7.11). Here, the value of x is between − r0 and r0. Tire deformation at 
the position of xt + x can be obtained by Eq. (7.16). When ∆ Z ≥ 0, the tire contacts 
the pavement and the start ( a1) and end ( a2) of the tire contact print can be found. 
Thus, the start point and end point of the tire print when t = ( n + 1)∆ t can be deter-
mined. The tire force when t = ( n + 1)∆ t can be obtained by Eq. (7.18) and the force 
matrix { } 1nR +  when t = ( n + 1)∆ t can be obtained by Eq. (7.15).

b.	 Applying the SPC tire model

Pavement displacement, tire force, and the force matrix { }n + 1R  when t = ( n + 1)∆ t 
can be obtained by Eqs. (7.11), (7.19) and (7.15).

6.	 Calculate acceleration when t = ( n + 1)∆ t.

Substituting Eq. (7.22) into the coupled system Eq. (7.20) when t = ( n + 1)∆ t leads to
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Thus one can obtain the acceleration matrix of the coupled system when t = ( n + 
1)∆ t as
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7.	 Repeating steps (4), (5), and (6), one can get the displacement, velocity, force, 
and acceleration matrixes of the coupled system step by step.

8.	 Output time histories of the vehicle’s body acceleration, suspension deformation, 
tire force, pavement displacement and pavement acceleration.

Figure 7.3 shows the calculating block diagram for this two-dimensional vehicle–
road coupled system.

Parameters of the pavement structure are chosen as follows: E = 1.6 × 109 N/m2, 
ρ = 2.5 × 103 kg /m3 , K = 48 × 106 N/m2, C = 0.3 × 105 N.s/m2, NM = 140, the width 
of the pavement is 6 m and the height of the pavement is 0.1 m. The cross section 
is rectangular.
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Fig. 7.3   The calculating block diagram
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Parameters of the vehicle system are the same as found in reference [7], 
m2 = 637.5 kg, m1 = 75 kg, K2 = 70,360 N/m, K1 = 286,500 N/m, C2 = 1530.7 N · s2/m, 
C1 = 7760.2 N · s2/m, R0 = 0.36675 m. The tire type is 235/75R15.

Road impulse excitation was simulated by a triangular bump that is the same as 
reference [7], as shown in Fig. 7.4.

The vertical accelerations of the vehicle body at different velocities were cal-
culated based on the two tire models at speeds of 10, 20, 30, 40, 50, 60, 70, and 
80 km/h, as shown in Fig. 7.5. The dashed and the solid lines represent the results 
of SPC and RFRC tire models respectively.

Maximum vehicle body vertical acceleration obtained from simulation results 
and test data by reference [7] are listed in Table 7.1 and shown in Fig. 7.6.

It can be seen from Fig. 7.6 and Table 7.1 that

1.	 Results of the proposed RFRC tire model are closer to the test data than those of 
the traditional SPC tire model except in the case of 60 km/h. Thus, the validity of 
the RFRC tire model is basically verified.

2.	 The results of the SPC tire model are always greater than the test data.
3.	 The margin of error of the RFRC tire model is greatest when v = 60 km/h. The 

reason for this may be that the roughness of the road leads to vehicle resonance 
and enlarges the vehicle body acceleration. However, the roughness of the road 
is neglected here because of the lack of a test of road roughness in reference [7].

7.2 � Effects of the Two Tire Models on the Responses 
of the Vehicle–Road Coupled System

To investigate the difference between the two tire models in dynamics analysis, 
parameters of a heavy vehicle system were chosen as [8]

m1 = 10,109  kg, m2 = 190  kg, k1 = 75,000  N/m, kt = 2,060,000  N/m, 
c1 = 30,000  N · s/m, ct = 900  N · s/m, r0 = 559  mm, v = 20  m/s and a tire type of 
12.00R20.

The vehicle–road system responses under harmonic, impulse, and random 
road excitation using the SPC and RFRC tire models are computed and shown in 
Figs. 7.7, 7.8, 7.9, 7.10, 7.11, and 7.12. The dashed and solid lines represent the 
results of the SPC and RFRC tire models respectively.

Fig. 7.4   Triangular bump in 
[7] (Unit:mm)
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1.	 Harmonic responses

With a road roughness harmonic wavelength of L0 = 10  m and amplitude of 
B0 = 0.01 m, the vehicle body acceleration A1, suspension deformation sd, tire force 
Ft, pavement displacement w, and pavement acceleration Ar are all shown in Fig. 7.7.

From Fig. 7.7 it can be seen that

1.	 Values derived for the vehicle body acceleration and tire force which are based 
on the proposed RFRC model are in general smaller than those based on the 
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Fig. 7.5   Vehicle body vertical accelerations using two tire models. (Reprinted from ref. [4], with 
kind permission from Springer Science+Business Media)
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Table 7.1   Maximum vehicle body vertical acceleration

Vehicle speed
(km/h)

SPC model 
(m/s2)

Error
(%)

RFRC model
(m/s2)

Error
(%)

Test data
(m/s2)

10 8.4540 + 68.07 5.1627 + 2.64 5.03
20 12.8837 + 82.75 7.5082 + 6.50 7.05
30 15.6314 + 74.85 9.0087 + 0.77 8.94
40 17.6742 + 51.45 10.0967 − 13.48 11.67
50 19.0164 + 41.60 10.9328 − 18.59 13.43
60 20.0244 + 18.84 11.6198 − 31.04 16.85
70 20.8145 + 34.90 12.1762 − 21.09 15.43
80 21.4072 + 44.84 12.6114 − 14.67 14.78
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Fig. 7.6   Comparison between the two tire models and the test data
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single point contact tire model. The reason may be that the flexible roller contact 
reflects the elastic characteristic of the tire.

2.	 Suspension deformation based on the RFRC tire model is different from that 
based on the SPC model. But the two results have the same varying rule.

3.	 The effect of tire models on pavement displacement is very small.
4.	 The effect of tire models on pavement acceleration is greater than on pavement 

displacement. The peak value of pavement acceleration based on the RFRC 
model is higher than that based on the SPC model. This may be explained by the 
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ability of the RFRC model to describe a tire jumping away from the pavement 
and then impacting it.

With a road surface roughness amplitude of B0 = 0.1m and the remaining param-
eters being unchanged, the responses of the coupled system are shown in Fig. 7.8, 
from which it can be seen that

1.	 The effects of tire models on vehicle body acceleration, tire force, and suspension 
deformation decrease with the increase of the road surface roughness amplitude. 
Vehicle body acceleration, tire force, and suspension deformation based on the 
RFRC model are smaller than those based on the SPC model.

2.	 With the increase in the road surface roughness amplitude, the effect of the tire 
models on pavement acceleration increases.

With a road surface roughness wavelength of L0 = 2.3m and the remaining param-
eters being unchanged, the coupled system responses are shown in Fig. 7.9, where 
it can be seen that

1.	 The effects of tire models on vehicle body acceleration, tire force, suspension 
deformation, and pavement acceleration increase with the decrease in the road 
surface roughness wave length.
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Fig. 7.8   Harmonic responses with B0 = 0.1 m. (Reprinted from ref. [4], with kind permission from 
Springer Science+Business Media)
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2.	 Vehicle body acceleration and tire force based on the flexible roller contact tire 
model are smaller than those based on the single contact tire model. The effect of 
tire models on suspension deformation becomes complicated.

With a vehicle running speed of v = 40 m/s, the responses of the coupled system are 
shown in Fig. 7.10, where it can be seen that

1.	 The effects of tire models on vehicle body acceleration, tire force, suspension 
deformation, and pavement acceleration increase with the increase in the vehicle 
running speed.

2.	 The effects of tire models on vehicle body acceleration, tire force, and suspension 
deformation become complicated. This is because the vehicle speed influences 
not only the frequency of road excitation but also the lengthwise position of the 
vehicle and pavement.

2.	 Impulse responses

According to GB5902-86, the height of the triangle protruding block for a heavy 
vehicle is 0.12  m. The impulse responses of the coupled system are shown in 
Fig. 7.11. From Fig. 7.11 it can be seen that

1.	 Peak values for vehicle body acceleration and tire force based on the RFRC tire 
model are much smaller than those based on the SPC tire model. The impulse 
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Fig. 7.9   Harmonic responses with L0 = 2.3 m. (Reprinted from ref. [4], with kind permission from 
Springer Science+Business Media)
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action time of the RFRC model is longer than that of the SPC model. This dem-
onstrates that the RFRC tire model is able to reflect the tire’s elastic deformation, 
geometric size, and vibration absorption.

2.	 Effect of tire models on suspension deformation is small. The peak value for 
suspension deformation based on the RFRC model is smaller than that based on 
the SPC tire model. The peak time value for suspension deformation obtained 
from the RFRC model lags behind that obtained from the SPC tire model.

3.	 The RFRC tire model’s peak values for pavement displacement and acceleration 
are smaller than those of the SPC tire model. But the effect of tire models on 
pavement acceleration is greater than that of the pavement displacement. At dif-
ferent times and different positions, the pavement displacement and acceleration 
of the RFRC model may be larger or smaller than that of the SPC model.

3.	 Stochastic responses

According to GB7031-87 [9], the time-domain data of C-class road roughness is 
simulated with the method proposed by Liu [10]. The stochastic responses of the 
vehicle–road coupled system are shown in Fig. 7.12.

From Fig. 7.12 it can be seen that
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Fig. 7.10   Harmonic responses with v = 40 m/s. (Reprinted from ref. [4], with kind permission 
from Springer Science+Business Media)
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1.	 The effects of tire models on the stochastic responses of the vehicle–road cou-
pled system are greater than that on the harmonic responses.

2.	 The peak values of the vehicle body responses and tire force obtained by the 
RFRC model are much smaller than that by the SPC model.

3.	 The peak value of suspension deformation obtained by the RFRC model is 
smaller than that obtained by the SPC model. The peak time value for suspension 
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Fig. 7.11   Impulse responses of the vehicle–road coupled system. (Reprinted from ref. [4], with 
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deformation obtained from the RFRC model lags behind that from the SPC tire 
model.

4.	 The RFRC tire model’s peak value for pavement displacement and acceleration 
are smaller than those of the SPC tire model. But the effect of tire models on 
pavement acceleration is greater than that of the pavement displacement. At dif-
ferent times and different positions, the RFRC model’s pavement displacement 
and acceleration may be larger or smaller than the SPC model.
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7.3 � Modeling of a Three-Dimensional Vehicle–Road 
Coupled System

The three-dimensional (3D) vehicle–road coupled system considered in this work is 
shown in Fig. 7.13. A seven DOF vehicle and a double-layer rectangular thin plate 
on a viscoelastic foundation with four simply supported boundaries are employed 
to model the vehicle and pavement. The upper layer of the plate models an asphalt 
topping, the lower layer models the base course, and the viscoelastic foundation 
stands for the sub grade of the pavement. The pavement roughness is assumed to 
be sinusoidal and the material for the topping and base course is assumed to be 
isotropic and elastic. The vehicle is moving along the plate at a constant velocity in 
a lengthwise direction.

7.3.1 � Equations of Motion for the Vehicle

The vehicle equations can be obtained by using Dalembert’s principle.
The vertical vibration equation for the vehicle body is

Fig. 7.13   The three-dimensional vehicle–road coupled system. (Reprinted from ref. [11] by per-
mission of Taylor & Francis Ltd)
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The pitch vibration equation for the vehicle body is
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The rolling vibration equation for the vehicle body is
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The vertical vibration equation for the right front wheel is
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The vertical vibration equation for the right rear wheel is
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The vertical vibration equation for the left front wheel is
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The vertical vibration equation for the left rear wheel is

4 4 4 1 4 2 2 3 4 1 4 2 2 3

4

( ) ( )
0

t t s b t b b r s b t b b r

t

m z c z z z l z d k z z z l z d
F

- - + + - - + +
+ =
    

�
(7.31)

where zb1, zb2, zb3 are the vehicle body’s vertical, pitching and rolling displacements. 
zt 1, zt 2, zt 3, zt 4 are the wheel’s vertical displacements. mb1 is the mass of the vehicle 
body, and mb2 and mb3 are the moment of inertia of the vehicle body in the pitching 



234 7  Modeling and Dynamic Analysis of Vehicle–Road Coupled Systems

and rolling directions respectively. cs1 ~ cs4 are the suspension damping coefficients, 
ks1 ~ ks4 are the suspension stiffness’s, mt 1 ~ mt 4 are the wheel’s masses, and Ft1 ~ Ft4 
are the tire forces. df is half of the front wheel track, dt is half of the rear wheel track 
and l1 + l2 is the wheel space.

The above vehicle equations can be rewritten in matrix form,

v v v v v v vM Z C Z K Z R+ + = 

� (7.32)

where
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Symmetric

1 2 3 4[0 0 0 ]T
v t t t tR F F F F= - - - -� (7.36)

1 2 3 1 2 3 4[ ]T
v b b b t t t tZ z z z z z z z=� (7.37)
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7.3.2 � Equations of Motion for the Road

The two layers’ height, elastic modulus, shear modulus, Poisson ratio, and density 
are symbolized by h1, h2, E1, E2, G1, G2, μ1, μ2, ρ1, and ρ2� Let h0 be the distance be-
tween the stress neutral layer and the upper surface of the double-layer plate� Take 
the stress neutral layer as the coordinate axial x and vertical direction as coordinate 
axial z� The coordinate system is built, as shown in Fig� 7�13�

The partial differential equation of the double-layer thin plate on the viscoelastic 
foundation subjected to moving vehicle loads can be gained
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(7�38)

where, Fts is the s-th wheel’s tire force�
The displacement of the double-layer thin plate with four simply supported 

boundaries can be expressed as
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where, L and B are the pavement’s length and width�
Substituting Eq� (7�39) into Eq� (7�38) leads to the residual value R,
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(7�40)

By limiting the residual value R the following equation can be got by Galerkin’s 
method

0 0
sin( / )sin( / ) 0

L B
R i x L j y B dxdyp p =∫ ∫� (7�41)

As a simplification of the above equation, Eq� (7�38) can be discretized as a set of 
ordinary differential equations

� (7�42)

where m = 1 ~ NM, n = 1 ~ NN ,

,
4mn

LB
M hr=

�
(7�43)

mn mn mn mn mn mn mnM U C U K U R+ + =�� �
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,
4mn

LB
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(7�44)
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7.3.3 � Interaction Between the Vehicle and the Road

The vertical contact force between the tire and the pavement is related to not only 
tire motion and road surface roughness but also road vibration� Thus the vertical 
contact force between the tire and the pavement can be expressed as
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where s = 1 ~ 4 and rts is the road surface roughness satisfying the following 
functions
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Where, B0 is the amplitude of the road surface roughness, and L0 is the wavelength 
of the road roughness�

Substituting Eq� (7�39) into Eq� (7�47), one gets
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Substituting Eq� (7�39) into Eq� (7�46) leads to
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It is clear that the contact force between tire and pavement is influenced not only by 
wheel displacement, wheel velocity and road roughness, but also by the pavement 
vibration mode’s displacement and velocity. In addition, the force upon the pave-
ment is related to wheel track and wheel spacing. Equations (7.32) and (7.42) will 
compose the ordinary differential equations of the vehicle–road coupled system.

Omitting the coupling action of the vehicle and the pavement, one can simplify 
the contact forces between tire and pavement

( ) ( )t̂s ts ts ts ts ts tsF k x r c x r= - + - � (7.51)
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The coupled system equations take the following expression

[ ]{ } [ ]{ } [ ]{ } { }M Z C Z K Z R+ + = 

� (7.53)

where, [M], [C], [K] are the matrices of mass, damping, and stiffness respectively. 
{Z} and {R} are displacements and force excitations of the vehicle–pavement cou-
pled system respectively, which are expressed by
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Here, i, m, and n are subscripts, and the relation of Zi and Umn is shown in Table 7.2.
[C] and [K] are the damping and the stiffness matrixes of the vehicle–pavement 

coupled system, and the configuration of [K] for the coupled system is
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where, Kv  is the stiffness matrix of the vehicle subsystem, Kr  is the stiffness ma-
trix of the pavement subsystem, Kin1  and Kin2  are the coupled stiffness matrixes 
between the vehicle and pavement.

Kv  is expressed by Eq. (7.34). Diagonal elements of Kr  are expressed by
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where, i NM NN= × +8 7~ . The value of m and n can be determined by i accord-
ing to Table 7.2.

Off-diagonal elements of Kr  are expressed by

Table 7.2   Relation of Zi and Umn. (Reprinted from ref. [11] by permission of Taylor & Francis Ltd)

I N
M 1 2 … NM × NN-1 NM × NN
1 8 9 NM × NN + 6 NM × NN + 7
2 NM × NN + 8 NM × NN + 9 2 × NM × NN + 6 2 × NM × NN + 7
⋮
NM × NN-1 (NM × NN-2) × 

  (NM × NN) + 8
(NM × NN-2) × 
  (NM × NN) + 9

(NM × NN-1) × 
  (NM × NN) + 6

(NM × NN-1) ×
   (NM × NN) + 7

NM × NN (NM × NN-1) ×
   (NM × NN) + 8

(NM × NN-1) × 
  (NM × NN) + 9

(NM × NN) × 
  (NM × NN) + 6

(NM × NN) × 
  (NM × NN) + 7
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where, i NM NN= × +8 7~ , j NM NN= × +8 7~ , and i j≠ . The value of m 
and n can be decided by i and the value of m  and n  can be determined by j accord-
ing to Table 7.2.

Kin1  and Kin2  are symmetric and the expression of Kin1  is

1[ ] sin sin cos sints ts ts ts
in ij ts ts

m x n y m x n y
K k c

L B L B
π π π π

= - -
�

(7.58)

where, i NM NN j s j= × + = = −8 7 4 7 3~ , ~ ,  The value of m and n can be deter-
mined by i according to Table 7.2.

Since Kr , Kin1 , and Kin2  are related to the tire positions xts  and yts  [K] is a 
time-varying matrix. With the same configuration as [K], [C] is also a time-varying 
matrix.

The configuration of [K] for a separated system is

By comparing the stiffness and damping matrix configurations for a coupled system 
and a separated system, the difference between these two systems is whether to 
consider the coupling of the tire and pavement displacements, namely, whether the 
coefficients Kij , K ji  Cij  and C ji  ( ~ , ~ )i NM NN j= × + =8 7 4 7  are all zero. 
Due to the high dimensional matrix and time-varied parameters, the equations are 
solved by direct numerical integration.
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7.4 � Response Comparison of the Coupled System 
with the Traditional Separated System

Parameters for the heavy vehicle system are chosen as follows [11, 12]:
mb1 = 21,260  kg, mb2 = 3 × 105  kg · m2, mb3 = 0.6 × 105  kg · m2, mt1 = mt3 = 220  kg, 

mt2 = mt4 = 1500 kg, ks1 = ks3 = 2 × 106 N/m, ks2 = ks4 = 5 × 106 N/m, cs1 = cs3 = 5000 N · s/m, 
cs2 = cs4 = 40,000  N · s/m, kt1 = kt3 = 1.73 × 106  N/m, kt2 = kt4 = 4.6 × 106  N/m, 
ct1 = ct3 = 1200 N · s/m, ct2 = ct4 = 4300 N · s/m。

Parameters for the pavement and foundation are chosen as follows [13, 14]:
h1 = 0.1 m, μ1 = 0.25, E1 = 1600 MPa, ρ1 = 2.5 × 103 kg/m3, h2 = 0.2 m, E2 = 700 MPa, 

μ2 = 0.25, ρ2 = 2.2 × 103  kg/m3, K = 8 × 106  N/m3, C = 0.3 × 105  N · s/m2, v = 20  m/s, 
B0 = 0.002 m, L0 = 10 m, L = 160 m, B = 24 m。

To confirm the validity of the integration results, two numerical tests have been 
done for choosing a suitable mode number for the pavement and integral time step. 
The effects of the mode number on the vertical accelerations of the vehicle body and 
pavement are shown in Figs. 7.14 and 7.15. It is found that when the mode number 
of the pavement is larger than 20, system dynamic responses change very little. 
Thus, the suitable value of NM is 20. With a similar numerical test, the suitable 
value for ∆t  can be obtained as 0.1 ms.

By comparing the dynamics of the coupled vehicle–pavement-foundation sys-
tem with that of a traditional system, the effect of coupling action on vehicle body 
acceleration, tire forces, suspension deformations, and pavement displacements can 
be found.

In order to minimize effects of initial conditions and boundary conditions, three 
techniques are applied. First, integrate the system equations with zero initial condi-
tions from t = 0 to t = 0.25 s, which means a vehicle begins running from the position 
of x = 75 m to x = 80 m at a velocity of 20 m/s. Then, let t = 0 and choose for the 
initial condition displacements and velocities at a time where the vehicle passing 
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position is x = 80 m. Finally, integrate the system equations again. Thus the dynamic 
response of a coupled system and a traditional system can be obtained, as shown in 
Figs. 7.16, 7.17, 7.18, and 7.19. Solid lines represent the coupled system’s response 
and dashed lines represent the traditional system’s response.

Figure 7.16 shows the vertical, pitch and roll acceleration of the vehicle body, and 
vertical displacement of the pavement at the position of y = 18 m when t s= 0 08. . 
In Fig. 4, the road surface roughness amplitude is B0 0 002= . m  and the foundation 
reaction modulus is K = ×8 106N m3/ . From Fig. 7.16 it can be seen that

1.	 Vehicle–pavement coupling affects the vertical acceleration of the vehicle body 
most largely. The coupled system amplitude of vertical acceleration is 26 % 
larger than that of the traditional system.

2.	 The effect of the coupling action on pitching acceleration of the vehicle body and 
vertical displacement of the pavement is very small.

3.	 Though road surface roughness used in this work does not change in traverse 
direction y, the coupled system can reflect the roll acceleration of the vehicle 
body. However, the effect of the coupled action on the roll acceleration of the 
vehicle body needs further investigation.

Let road surface roughness amplitude of B0 0 01= . m . Accelerations of the vehicle 
body and vertical displacement of the pavement are shown in Fig. 7.17. Comparing 
Fig. 7.16 with Fig. 7.17, one can find that

1.	 The amplitude of vertical acceleration for a coupled system is 5.0 % larger than 
that for a traditional system, but the amplitude of the pavement displacement for 
a coupled system is 18.9 % smaller than that for a traditional system.

2.	 With the increase of road surface roughness amplitude, the effect of coupling 
action on vehicle body accelerations decrease, but the effect of coupling action 
on pavement displacement increase.
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3.	 The effect of the coupled action on the vertical displacement of the pavement is 
much larger at a position where the vehicle is passing than at other positions.

Figure 7.18 shows suspension deformations between vehicle body and right front 
wheel, right rear wheel, left front wheel, and left rear wheel with B0 = 0.002 m. From 
Fig. 7.18 it can be seen that

1.	 The coupling action causes front and rear suspension deformations to increase 
6.7 and 35.3 % respectively.

2.	 The effect of the coupling action on the rear suspension is much more dramatic 
than on the front suspension.

Figure 7.19 shows vehicle suspension deformations in the case of B0 0 01= . m  and 
K = ×8 106N m3/ . It can be seen from Fig. 7.19 that the coupling action causes the 
front and rear suspension deformations to increase 0.4 and 9.7 % respectively. Thus 
the effect of the coupling action on suspension deformations becomes smaller with 
the increase in road surface roughness amplitude.
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Fig. 7.16   Vehicle body accelerations with B0 = 0.002 m. (Reprinted from ref. [11] by permission 
of Taylor & Francis Ltd)
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Figure 7.20 shows the tire forces of the right front wheel, right rear wheel, left 
front wheel, and left rear wheel with B0 0 002= . m . From Fig. 7.20 it can be seen 
that

1.	 After considering the coupling action, the tire force amplitudes of the front and 
rear wheel increase 1.0 and 16.3 % respectively.

2.	 The effects of the coupling action on the rear wheel’s tire forces are much more 
significant than on the front wheel’s tire forces.

3.	 The right tire force is not the same as the left tire force. This is because the pave-
ment displacement at the right wheels is not the same as that at the left wheels.

Figure 7.21 shows the tire forces in the case of B0 0 01= . m . From Fig. 7.21 it can 
be seen that after considering the coupling action, the tire force amplitudes of the 
front and rear wheel increase 0.3 and 2.1 % respectively. Thus with the increase in 
road surface roughness amplitude, the effect of the coupling action on the tire forces 
becomes smaller.

Figure  7.22 shows the pavement displacements at the four wheels with 
B0 = 0.002 m. From Fig. 7.22 it can be seen that
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Fig. 7.17   Vehicle body accelerations with B0 = 0.01 m. (Reprinted from ref. [11] by permission of 
Taylor & Francis Ltd)
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1.	 After considering the coupling action, the pavement displacement amplitudes at 
the front wheels and rear wheels both increase 15.2 and 5.8 %, respectively.

2.	 The pavement displacement at the rear wheel of the traditional system is delayed 
behind the coupled system for about 0.15 s. The time delay at the front wheel is 
difficult to see.

Figure 7.23 shows the pavement displacements in the case of B0 0 01= . m . From 
Fig. 7.23 it can be seen that

1.	 After considering the coupling action, the amplitudes of the pavement displace-
ment at the front and rear wheels increase 45.8 and 4.3 %, respectively. Thus 
with the increase in the road surface roughness amplitude, the effect of the cou-
pling action on the pavement displacement at the front wheels becomes larger, 
but the effect of the coupling action on the pavement displacement at the rear 
wheels becomes smaller.
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Fig. 7.18   Suspension deformations with B0 = 0.002 m. (Reprinted from ref. [11] by permission of 
Taylor & Francis Ltd)
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2.	 The pavement displacements of the traditional system are delayed behind the 
coupled system for 0.21 s at the front wheel and 0.18 s at the rear wheel. The time 
delay of the traditional system can be seen more easily on a rough road surface 
than on a smooth road surface.

7.5 � Chapter Summary

In this chapter, a two-dimensional and a three-dimensional vehicle–road coupled 
system are built and a revised roller tire model is proposed. The responses of the 
vehicle and road are computed simultaneously and the effects of the vehicle–road 
coupling on responses are also analyzed. It can be found that
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Taylor & Francis Ltd)
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Fig. 7.20   Tire forces with B0 = 0.002  m. (Reprinted from ref. [11] by permission of Taylor & 
Francis Ltd)

 

1.	 Under harmonic, impulse, or stochastic road excitations, the vehicle body accel-
eration and the tire force obtained from the RFRC tire model are smaller than 
those obtained from the SPC tire model. As to the pavement acceleration, the 
comparison result is on the contrary. Under short wave length harmonic exci-
tation, high running speed, impulse or stochastic road excitation, the two tire 
models’ results are very different. In these cases, the flexible roller contact tire 
model should be used to compute the tire force and system responses.

2.	 The dynamic response of the coupled system changes similarly with that of the 
traditional system, including the vehicle body vertical acceleration, tire forces 
and suspension deformations. The role of vehicle–road coupling in the vehicle 
and road dynamic computation depends mainly on the relation between the road 
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Fig. 7.21   Tire forces with B0 = 0.01 m. (Reprinted from ref. [11] by permission of Taylor & Fran-
cis Ltd)

 

roughness amplitude and the pavement displacement. In the case of a heavy-duty 
vehicle, a soft subgrade or a higher running speed, the pavement displacement 
may be near the amplitude of road roughness and vehicle–road coupling should 
be considered.
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Chapter 8
Parameter Design of Vehicle–Road System  
with Low Dynamic Interaction
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At present, parameter design of the vehicle and pavement with the aim of reducing 
the vehicle–pavement dynamic interaction is usually studied respectively in vehicle 
dynamics and road dynamics. It is seldom to study the low dynamic design of ve-
hicle and road parameters simultaneously.

By using the new theory of vehicle–pavement coupled system proposed in 
Chap. 7, effects of system parameters on dynamic characteristics of vehicle and 
pavement are simulated and analyzed in detail. Based on the simulation results, 
some low dynamic design measures are suggested for choosing system parameters, 
which may contribute to the ride comfort of heavy vehicle and the life of asphalt 
pavement [1].

8.1 � Verification of the New Theory of Vehicle–Road 
Coupled System

In order to investigate the low dynamic design of vehicle and road parameters, the 
validity of the new theory of vehicle–road coupled system must be verified first. 
A response comparison with the finite element method given by Wu [2] is made 
here. Wu considered the interaction between pavements and the underlying soil 
foundation and researched the effects of a finite element grid, pavement thickness 
and foundation stiffness on pavement displacement by using the 3D finite element 
method [2].

After applying the same parameters and boundary conditions to Wu’s model, 
the pavement displacements are obtained by the above quick direct integral method 
based on the vehicle–pavement coupled model. Simulation results of this work are 
shown in Fig. 8.1 and Table 8.1[3].

From Fig. 8.1 and Table 8.1 it can be seen that the results in two methods are very 
close. Thus, the validation of this vehicle–pavement coupled model and the quick 
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τ
a

τ
b

τ
c

Fig. 8.1   Results of this work. 
a The effect of a mode super-
position number. b The effect 
of pavement thickness. c The 
effect of foundation stiffness. 
Reprinted from ref. [3], with 
kind permission from Taylor 
& Francis Ltd
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direct integral method is tested. However, both methods have a sensitive parameter, 
grid division or mode superposition number, which influences the simulation results 
greatly. Hence, the numerical test is necessary to choose the suitable parameter in 
order to assure the correctness of the results and to improve computation efficiency.

8.2 � Evaluation Criterions of Low Dynamic Interaction

The dynamic interaction between tire and pavement plays an important role in ve-
hicle and road dynamic responses. Low dynamic interaction will lead to a better 
vehicle riding comfort and a longer road fatigue life. The research on rail vehicle/
track systems with low dynamic interaction has attracted scholars’ attention and 
some basic rules for reducing dynamic interaction have been proposed for design-
ing parameters [4–5].

However, the research on low dynamic parameters design of vehicle–road sys-
tems is still seldom found. The present studies on vehicle and road parameters de-
sign are often separated in vehicle dynamics and road dynamics, respectively.

In vehicle dynamics, the dynamic load coefficient (DLC) has been widely ad-
opted as an evaluation criterion for dynamic interaction, which is expressed by [6],

� (8.1)

where, Fd  is the root mean square (RMS) value of the dynamic tire force, and Fs  
is the static tire force.

However, DLC is unable to reflect the spatial distribution of tire forces and may 
lead to a calculation error. Hence, Cebon and Cole put forward a fourth power ag-
gregate force to evaluate the road damage induced by tire dynamic forces [7–8].

In road dynamics, the tensile strain at the bottom of an asphalt surface has been 
a widely used evaluation criterion for dynamic interaction. Road fatigue life can be 
predicted using the tensile strain [9]

� (8.2)

/d sDLC F F=

N kf
t

k

=




1

1 2

ε

Table 8.1   The amplitude of pavement displacement at the midpoint obtained by two methods(cm). 
Reprinted from ref. [3], with kind permission from Taylor & Francis Ltd
Parameters
Methods

h (cm) K (kN/m3)
15.24 30.48 45.72 27,143 81,430 135,717

Wu[2] 0.165 0.065 0.035 0.125 0.065 0.050
This work 0.155 0.060 0.028 0.100 0.060 0.046



254 8  Parameter Design of Vehicle–Road System with Low Dynamic Interaction

where N f is the fatigue life of the pavement structure, represented by the number 
of loading cycles, tε  is the tensile strain at the bottom of the surface course, k1 and 
k2  are experimentally measured constants.

In addition, the stiffness modulus of the asphalt mixture and longitudinal tensile 
strain at the bottom of the asphalt concrete surface course has been used to predict 
road fatigue life [5, 10]. When the pavement material is geometrically linear, the 
pavement displacement can also be used as an evaluation criterion for road damage.

In this work, four criteria are used for evaluating the dynamic interaction be-
tween tire and pavement. The pavement displacement and DLC are computed to 
evaluate the influence of system parameters on the road damage. In addition, RMS 
of the vertical and pitching vehicle body acceleration are chosen as the criterions 
for vehicle riding comfort.

8.3 � Effects of Vehicle System Parameters

Let the integral step be 0.1 ms and the mode superposition order NM = 20. Effects 
of vehicle parameters, such as vehicle speed, vehicle load, wheel mass, tire stiff-
ness, suspension stiffness, tire damping, suspension damping, wheelbase and wheel 
tread, on RMS of the vertical vehicle body acceleration A1 , RMS of the pitching 
vehicle body acceleration A2 , DLC of the wheels, and the maximum amplitude of 
the pavement displacement w  are obtained. In the DLC results, the square marker 
stands for the DLC of the front wheel and the circle marker stands for the DLC of 
the rear wheel.

8.3.1 � The Effect of Vehicle Speed

The effect of the vehicle running speed on vehicle riding comfort and pavement 
damage is shown in Fig. 8.2. It can be seen from Fig. 8.2 that the effect of the ve-
hicle speed on vehicle riding comfort and pavement damage is fluctuant and the 
front wheel DLC is greater than the rear wheel DLC. The reason for this fluctuation 
is that the change in road excitation frequency induced by a change in vehicle speed 
leads to resonance of the vehicle system.

8.3.2 � The Effect of Vehicle Load

Figure 8.3 shows the effect of the vehicle load on vehicle riding comfort and pave-
ment damage. It can be seen from Fig. 8.3 that

1.	 With an increase in the vehicle load, the vertical acceleration of the vehicle body 
first increases and then decreases, while the pitching acceleration changes a lit-
tle. Thus, there may exist a load value at which the vehicle’s riding comfort is the 
worst.
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2.	 With an increase in the vehicle load, the DLC decreases and the amplitude of 
pavement displacement increases.

It should be noted that the conclusion concerning the DLC and pavement displace-
ment contradict each other. Many present studies show that the increase of the ve-
hicle load will aggravate the probability of road damage. Hence, it may be said that 
the pavement displacement is more suitable to be a criterion for road damage than 
the DLC.

8.3.3 � The Effect of Wheel Mass

The effects of the front and rear wheel masses are given in Figs. 8.4 and 8.5.
Figures 8.4 and 8.5 show that

1.	 With the increase in the front wheel mass, the vertical acceleration of the vehicle 
body and pavement displacement increases, the front wheel DLC decreases, but 
the pitch acceleration of the vehicle body rises first and then decreases.

2.	 With the rise of rear wheel mass, all responses increase, such as the vertical and 
pitch acceleration of the vehicle body, the front and rear wheel DLC, and the 
pavement displacement.
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Thus, a light wheel is beneficial to riding comfort and road fatigue life. However, 
the design of the wheel mass should also consider other factors, including structure 
strength and tire–road adhesion characteristics.

8.3.4 � The Effects of Tire Stiffness

The effects of the front and rear tire stiffness are shown in Figs. 8.6 and 8.7. From 
these two figures, it can be seen that

1.	 The effect of the tire stiffness on vertical acceleration of the vehicle body is 
contradicted by that on the pitching acceleration of the vehicle body. In order to 
guarantee vehicle riding comfort, a reasonable value for rear suspension stiffness 
should be chosen according to a compromise between the vertical and pitching 
acceleration of the vehicle body.

2.	 With the increase of front or rear tire stiffness, the DLC of the front or rear wheel 
and the pavement displacement increase. Moreover, the increase in front tire 
stiffness hardly influences the DLC of the rear wheel and vice versa. Thus, small 
tire stiffness contributes to a decrease in road damage.
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8.3.5 � The Effects of Suspension Stiffness

The effects of the front and rear vehicle suspension stiffness are shown in Figs. 8.8 
and 8.9. From these two figures, it is found that

1.	 With the rise in the front suspension stiffness, the vertical and the pitching accel-
erations of the vehicle body, DLC and pavement displacement all increase. Thus, 
small front suspension stiffness is a benefit to both vehicle riding comfort and a 
reduction in road damage.

2.	 With the rise in rear suspension stiffness, the vertical acceleration of the vehi-
cle body and DLC increase, but the pitching acceleration of the vehicle body 
decreases slightly, and the pavement displacement first decreases and then 
increases. Thus, the effect of rear suspension stiffness on riding comfort is com-
plicated and a reasonable value for rear suspension stiffness should be chosen 
through a trade-off between vertical and pitching accelerations of the vehicle 
body. In addition, the small rear suspension stiffness may increase road damage.
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8.3.6 � The Effects of Tire Damping

The effects of front and rear tire damping are shown in Figs. 8.10 and 8.11. From 
these two figures, it is found that

1.	 With an increase in front or rear tire damping, the vertical and pitch accelerations 
of the vehicle body decrease which is beneficial to vehicle riding comfort.

2.	 With an increase in front tire damping, the DLC of the front wheel and the pave-
ment displacement decrease, but the DLC of the rear wheel rises slightly.

3.	 A rise in rear tire damping leads to an enlargement of pavement displacement, 
but reduces the DLC of the rear wheel.

Thus, the effect of rear suspension stiffness on riding comfort is complicated and a 
reasonable value for rear suspension stiffness should be chosen through a trade-off 
between the vertical and pitching acceleration of the vehicle body. In addition, it 
should also be noted that the conclusion concerning the DLC and pavement dis-
placement is contradictory. Taking the pavement displacement as a criterion, big 
front tire damping and small rear tire damping may contribute to a reduction in road 
damage.

On the other hand, big front or rear tire damping can improve riding comfort.
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8.3.7 � The Effects of Suspension Damping

The effects of front and rear suspension damping are shown in Figs. 8.12 and 8.13. 
From these two figures, it is found that

1.	 With the increase of front suspension damping, the vertical acceleration of vehi-
cle body decreases but the pitch acceleration increases.

2.	 With an increase in front suspension damping, the DLC of the front wheel and 
the pavement displacement first goes down and then goes up, but the DLC of the 
rear wheel rises slightly.

3.	 With an increase in rear suspension damping, the vertical acceleration of the 
vehicle body increases but the pitch acceleration decreases.

4.	 With an increase in rear suspension damping, the DLC of the rear wheel and 
the pavement displacement increase, but the DLC of the rear wheel decreases 
slightly.

Hence, a small amount of suspension damping is beneficial in reducing road dam-
age. While there exists a most suitable value for the front suspension damping in or-
der to reduce road damage, the effect of suspension damping on comfort is compli-
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cated. A reasonable value for rear suspension damping should be chosen according 
to a compromise between the vertical and pitching acceleration of the vehicle body.

8.3.8 � The Effect of Wheelbase

The effect of wheelbase is shown in Fig. 8.14. From Fig. 8.14, it is found that

1.	 A large wheelbase leads to a small vertical acceleration and a big pitch accelera-
tion for the vehicle body, and a small pavement displacement.

2.	 An increase in wheelbase will result in the enlargement of the front and rear 
wheel DLC.

Here, it should also be noted that the conclusion concerning the DLC and pavement 
displacement is contradictory. Taking the pavement displacement as a criterion, a 
large wheelbase may contribute to a reduction in road fatigue damage. The effect 
of wheelbase on riding comfort is complicated. Thus, a reasonable value for the 
wheelbase should be chosen according to a compromise between the vertical and 
pitching acceleration of the vehicle body.
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8.3.9 � The Effect of Wheel Tread

The effect of wheel tread is shown in Fig. 8.15. From Fig. 8.15, it is found that

1.	 A large wheel tread leads to a large vertical acceleration and a small pitch accel-
eration for the vehicle body, but the effect is very small.

2.	 With an increase in wheel tread, the pavement displacement decreases, the front 
wheel DLC increases slightly and the rear wheel DLC decreases slightly.

Here, it should also be noted that the conclusion concerning the DLC and pavement 
displacement is contradictory. Taking the pavement displacement as a criterion, a 
large wheel tread will improve road fatigue life but does harm to riding comfort.

Fig. 8.14   The effect of wheelbase. Reprinted from ref. [1], with kind permission from Inder-
science Enterprises Limited
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8.4 � Effects of Road System Parameters

Effects of road parameters on vehicle riding comfort and road fatigue damage are 
also obtained, including density, height, elastic modulus, and Poisson ratio of pave-
ment, the foundation response modulus and the foundation damping coefficient. In 
the DLC results, the square marker stands for the DLC of the front wheel and the 
circle marker stands for the DLC of the rear wheel.

8.4.1 � The Effects of Pavement Density

The effects of pavement density are shown in Fig. 8.16 and 8.17. From these two 
figures, it is found that

1.	 The effects of pavement density on vehicle responses, such as the vertical and 
pitch acceleration of the vehicle body and DLC of the wheels, is slight.

2.	 With a rise in pavement density, the pavement displacement fluctuates slightly.
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Fig. 8.15   The effect of wheel tread. Reprinted from ref. [1], with kind permission from Inder-
science Enterprises Limited
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Hence, in order to reduce road damage, the density of the topping and base course 
should be chosen reasonably and a parameter value inducing peak pavement dis-
placement must be avoided. The effect of the pavement density on riding comfort is 
too small to be considered.

8.4.2 � The Effects of Pavement Height

Figures 8.18 and 8.19 show the effects of the pavement topping height and base 
course height. From these two figures, it can be noted that

1.	 With an increase in the topping or base course height, the vertical acceleration of 
the vehicle body increases. But the effect of these two parameters on the pitching 
acceleration of the vehicle body is slight.

2.	 With an increase in the topping or base course height, the DLC of the front wheel 
increases and the DLC of the rear wheel changes slightly.

3.	 An increase in the topping or base course height leads to a decrease in the pave-
ment displacement.
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Fig. 8.16   The effect of the topping course density. Reprinted from ref. [1], with kind permission 
from Inderscience Enterprises Limited

 



2678.4 � Effects of Road System Parameters�

Thus, a large topping or base course height contributes to a decrease in road damage 
but does harm to riding comfort.

8.4.3 � The Effects of Elastic Modulus

Figures 8.20 and 8.21 show the effects of the pavement elastic modulus. From these 
two figures, it can be noted that

1.	 With an increase in the topping or base course elastic modulus, the vertical accel-
eration of the vehicle body increases. But the effect of these two parameters on 
the pitching acceleration of the vehicle body is slight.

2.	 With an increase in the topping or base course elastic modulus, the DLC of the 
front wheel increases and the DLC of the rear wheel decreases slightly.

3.	 An increase in the topping or base course elastic modulus leads to a decrease in 
the pavement displacement.

Taking the pavement displacement as a criterion, a large topping or base course 
elastic modulus will improve road fatigue life but do harm to riding comfort.
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8.4.4 � The Effects of the Pavement Poisson Ratio

Figures 8.22 and 8.23 show the effects of the pavement Poisson ratio. From these 
two figures, it can be found that

1.	 With an increase in the topping or base course Poisson ratio, the vertical accel-
eration of the vehicle body increases. But the effect of these two parameters on 
the pitching acceleration of the vehicle body is slight.

2.	 With an increase in the topping or base course elastic modulus, the DLC of the 
front wheel increases and the DLC of the rear wheel decreases slightly.

3.	 An increase in the topping or base course elastic modulus leads to a decrease in 
the pavement displacement.

Taking the pavement displacement as a criterion, a large topping or base course 
Poisson ratio will improve road fatigue life but do harm to riding comfort.

8.4.5 � The Effect of the Foundation Response Modulus

The effect of the foundation response modulus is shown in Fig. 8.24. It can be seen 
that
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1.	 With an increase in the foundation response modulus, the vertical acceleration 
of the vehicle body increases, but the pitching acceleration of the vehicle body 
decreases.

2.	 With an increase in the foundation response modulus, the DLC of the front wheel 
increases and the DLC of the rear wheel decreases slightly.

3.	 An increase in the foundation response modulus results in a reduction of the 
pavement displacement.

Taking the pavement displacement as a criterion, a large foundation response modu-
lus is beneficial to road fatigue life but harmful to riding comfort.

8.4.6 � The Effect of the Foundation Damping coefficient

The effect of the foundation damping coefficient is shown in Fig. 8.25. It can be 
seen that

1.	 With an increase in the foundation damping coefficient, the vertical acceleration 
of the vehicle body decreases, but the pitching acceleration of the vehicle body 
only varies slightly.
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2.	 With an increase in the foundation damping coefficient, the DLC of the front and 
rear wheel decreases slightly, and the pavement displacement also decreases.

Hence, a large foundation damping coefficient is beneficial to both road fatigue life 
and riding comfort.

8.5 � Chapter Summary

In this chapter, vehicle–road coupled system is compared with the finite element 
model first so as to verify the validity of this coupled system. Then the effects of the 
vehicle–road coupling and system parameters on vehicle riding comfort and road 
fatigue damage were analyzed. Some rules of choosing parameters for low dynamic 
action can be suggested that

1.	 The effect of vehicle running velocity on vehicle riding comfort and pavement 
damage is fluctuant. Thus, those velocities inducing the maximum of vehicle 
body acceleration or pavement displacement should be calculated beforehand 
and drivers should be informed the risk of these velocities.

2.	 Increase of the vehicle load may further intensify road damage. However, there 
exists an unreasonable load value near to half gauge load which will induce reso-
nance of vehicle body and be harmful to riding comfort.

3.	 It is favorable to decrease tire stiffness or suspension stiffness for controlling 
road damage. Increase of wheel track or wheelbase also leads to the decrease of 
road damage.

4.	 In order to improve riding comfort, the suspension stiffness should be decreased 
and the tire damping increased. Effects of wheel track, wheelbase, and tire stiff-
ness on vertical acceleration of vehicle body contradict with that on pitching 
acceleration of vehicle body. Thus, the effect of these three parameters on ride 
comfort is complex.

5.	 Increase of topping height, base course height, topping density, base course den-
sity, topping Poisson ratio, base course Poisson ratio, or foundation response 
modulus is favorable to both improving ride comfort and decreasing road fatigue 
damage.
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Chapter 9
Modeling and Interaction of a Vehicle–Road 
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This chapter presents a nonlinear vehicle–road coupled model which is composed 
of a seven-degree-of-freedom (DOF) vehicle and a simply supported double-layer 
rectangular thin plate on a nonlinear viscoelastic foundation. The nonlinearity of 
the suspension stiffness, suspension damping, and tire stiffness is considered and 
the Leaderman constitutive relation and Burgers model are applied to describe the 
nonlinear and viscoelastic properties of the asphalt pavement material.

The equations of motion for the vehicle–road system are derived and the partial 
differential equation of the road pavement is discretized into an infinite number 
of second-order ordinary differential equations and first-order ordinary differen-
tial equations by Galerkin’s method and a mathematical transform. A numerical 
integration method for solving this coupled system is developed and the nonlinear 
dynamic behaviors of the system are analyzed. In addition, the simulation results 
of the nonlinear viscoelastic model are compared to those of the linear or elastic 
model. The effects of system parameters on vehicle riding comfort and road damage 
are investigated [1, 2].

9.1 � System Models and Equations of Motion

9.1.1 � Modeling Nonlinearity and Viscoelasticity

A seven-DOF nonlinear vehicle and a double-layer rectangular thin plate on a non-
linear viscoelastic foundation with four simply supported boundaries are used to 
model the vehicle and the pavement. Figure 9.1 shows the nonlinear vehicle–road 
coupled system built in this work. In this model, the nonlinearity of tire and suspen-
sion and the viscoelasticity of pavement material are considered.

The nonlinear dynamic tire force can be formulated as

� (9.1)F k Z k Z c Ztk t t t t t t= + +β1
2


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where kt  is the linear tire stiffness, β1  is the nonlinear tire stiffness coefficient, ct  
is the tire damping coefficient, Zt  and Zt  are the relative vertical displacement and 
velocity between the wheel and the road surface, respectively.

The nonlinear spring force of the vehicle suspension is modeled as

� (9.2)

where ks  is the linear stiffness coefficient of the suspension, β2  and β3  are the 
square and cubic nonlinear stiffness coefficients of the suspension, Zs  is the rela-
tive vertical displacement between the wheel and the vehicle body.

The hydraulic damper of the vehicle suspension is modeled as

� (9.3)

where cs  is the linear damping coefficient of the suspension, β4  is the asymmetry 
coefficient, 

zs  is the relative vertical velocity between the wheel and the vehicle 
body.
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Fig. 9.1   The three-dimensional nonlinear vehicle–road coupled system. (Reprinted from [1], with 
kind permission from ASME)
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The upper and lower layers of the plate and the viscoelastic foundation stand 
for the asphalt topping, base course, and subgrade of the road, respectively. The 
Leaderman constitutive relation and the Burgers model are applied here to model 
the nonlinear viscous behaviors of the asphalt topping. The base course is assumed 
to be linear elastic. The Leaderman constitutive relation [3–5]can be expressed as

� (9.4)

where E0  is the initial elastic modulus, β5  is the square nonlinear coefficient, β6  
is the cubic nonlinear coefficient, and E( t) is the relax function which is derived 
from the Burgers model for the asphalt mix. The Burgers model [6–8] is shown in 
Fig. 9.2 and can be written as

� (9.5)

where

� (9.6)

The relax function obtained from Eq. (9.6) is
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Fig. 9.2   The Burgers model. (Reprinted from [1], with kind permission from ASME)

 



278 9  Modeling and Interaction of a Vehicle–Road System with Nonlinearity …

�
(9.7)

where

�
(9.8)

The road subgrade is modeled by a nonlinear Kelvin foundation [9, 10] and the 
reaction force of the subgrade is

�

(9.9)

where K is the foundation response modulus, β7  is the cubic nonlinear coefficient, 
and C is the foundation damping coefficient.

9.1.2 � The Equations of Motion for a Nonlinear Vehicle

The vehicle equations of motion can be obtained by d’Alembert’s principle

� (9.10)

where

� (9.11)

�
(9.12)
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� (9.13)

� (9.14)

� (9.15)

z z zb b b1 2 3, , and  are the vehicle body’s vertical, pitching, and rolling displace-
ments respectively and z z z zt t t t1 2 3 4, , ,  are the wheel’s vertical displacements. 
Furthermore, m1 is the mass of the vehicle body, m2 and m3 are the moments of 
inertia of the vehicle body in the pitching and rolling directions respectively, and 
m m m and mt t t t1 2 3 4, , ,  are the wheels’ masses. F F F Ft t t t1 2 3 4, , , and  are the tire 
forces, which will be expressed by Eq.  (9.56) in Sect.  9.1.4. d f  is half of the 
front wheel track, dr  is half of the rear wheel track, and l l1 2+  is the wheel space. 

, , ( 1 ~ 4)ti si sik k c i =  are equivalent nonlinear coefficients of the tire stiffness, sus-
pension stiffness, and damping, which are expressed by

� (9.16)

� (9.17)

� (9.18)

where i k k ctli sli sli= 1 4~ , , ,  are linear coefficients of the stiffness or damping, rti  
and w x y tti ti( , , )  are the road roughness and pavement displacements at the mid-
point of the tire print.

9.1.3 � The Equations of Motion for the Nonlinear and 
Viscoelastic Pavement

The directions of the vertical, longitudinal, and transverse pavement displacements 
are shown in Fig. 9.1. According to elastic dynamics [11, 12], the pavement dis-
placements take the following form

R F F F Fv t t t t
T= − − − −[ ]0 0 0 1 2 3 4
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T= [ ]1 2 3 1 2 3 4 .
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� (9.19)

The relationship between the pavement strains and displacements is

� (9.20)

With the Leaderman constitutive relation Eq. (9.4), the asphalt topping stresses can 
be written as

� (9.21)

where E1 , G1 , and µ1 are the elastic modulus, the shear modulus, and Poisson’s 
ratio of the asphalt pavement, respectively. The expressions of g1, g2, and g3 are

� (9.22)
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� (9.24)

For the linear constitutive relation, the stresses of the base course are

� (9.25)

where E2 , G2 , and µ2 are the elastic modulus, the shear modulus, and Poisson’s 
ratio of the base course, respectively.

The position of the stress-neutral layer is shown in Fig. 9.1 and has been deter-
mined in Chap. 5,

� (9.26)

The internal forces of the double-layer, thin plate satisfy the following equation

� (9.27)
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where

� (9.28)
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By integrating the three-dimensional balance equations of the double-layer, thin 
plate with the vertical-varied density along Z, one may obtain
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� (9.40)

where

� (9.41)

From Eq. (9.40), one may obtain the partial differential equation of the pavement 
vertical vibration induced by the moving vehicle loads,

�

(9.42)
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where Fts  is the s th tire force.
The displacement of the double-layer, thin plate with four simply supported 

boundaries can be expressed as

� (9.43)

The substitution of Eq. (9.43) into Eq. (9.42) leads to a residual value. By limiting 
the residual value, the following equation can be obtained using Galerkin’s method,

� (9.44)

By simplifying the above equation, one can discretize Eq. (9.42) into a set of ordi-
nary differential equations with an integral item,

� (9.45)

where i NM j NN= =1 1~ , ~ ,
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� (9.49)

where D D D A A Aij ij ij ij ij ij1 2 3 1 2 3, , , , , and  are expressions of the system parameters.
Due to the integral term in Eq. (9.45), the following transformation [3–5] is ap-

plied,

� (9.50)
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By substituting Eq. (9.7) into Eq. (9.45), one obtains

� (9.51)

The first derivation of Eq. (9.51) is

� (9.52)

The substitution of Eq. (9.50) into Eq. (9.45) leads to

� (9.53)

Thus Eq.  (9.45) turns into one second-order ordinary differential equation, 
Eq.  (9.53), and two first-order ordinary differential equations, Eq.  (9.52). By re-
writing them as matrix equations, one obtains

� (9.54)

� (9.55)

where X1{ } , X 2{ } , AU{ } , U{ } , and R X Xf − −{ }1 2  are the column vec-
tors with NM × NN lines. The components of these column vectors are x ij1 , x ij2 , 
A U A U A Uij ij ij ij ij ij1 2

2
3

3+ + , Uij , and R x xij ij ij− −1 2  respectively. The row subscript 
nr  of these column vectors depends on the mode numbers i  and j  through the 
expression n i NN jr = − × +( )1 . [Mr], [Cr], and [Kr] are square matrixes of order 
NM  × NN. Here, K K K U K Ur = + +[ ]1 2 3

2 .

9.1.4 � The Interaction Between the Vehicle and the Pavement

In regards to the coupling action of the vehicle and the road, the vertical contact 
force between the tire and the pavement is related not only to the tire motion and 
road surface roughness, but also to the road vibration. Based on Eq. (9.1), the verti-
cal contact force between the tire and the pavement may be expressed as

� (9.56)
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where w x y tts ts( , , )  is the pavement displacement of the point under the s th 
tire and rts  is the road surface roughness satisfying the following functions 

r r B vt
L

r r B
L

vt l lt t t t1 3 0
0

2 4 0
0

1 2
2 2

= = = = + +sin( ), sin[ ( )]π π
.

By substituting Eq. (9.43) into Eq. (9.56), one obtains

�

(9.57)

From Eq. (9.49) one may get

�

(9.58)

It is clear from the above two equations that the contact forces between the tire and 
the road pavement are not only influenced by the wheel displacement, wheel veloc-
ity, and road roughness, but also by the pavement vibration mode’s displacement 
and velocity. Thus, Zts , the four wheel displacements, are coupled with Umn , the 
pavement vibration mode’s displacements.

Equation (9.10) and Eq. (9.55) can be rewritten in the following form,

� (9.59)
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� (9.60)

The scheme of [C] is

F k z r c z r k U t m x
L

n y
Bts ts ts ts ti ts ts ts mn

n
= − + − −

=
( ) ( ) ( )sin sin 

π π

1

NNN

m

NM

ts mn
n

NN

m

NM

ts mnc U t m x
L

n y
B

c U t m

∑∑

∑∑
=

==
− −

1

11

 ( )sin sin ( )π π ππ π πv
L

m x
L

n y
Bn

NN

m

NM
cos sin .

==
∑∑

11

R k z r c z r k U t m x
L

n y
Bij ts ts ts ts ts ts ts mn

n

= − + − −
=

[ ( ) ( ) ( )sin sin 

π π

1111

4

00

11

NN

m

NM

s

BL

ts mn
n

NN

m

NM

c U t m x
L

n y
B

∑∑∑∫∫

∑
==

==

−  ( )sin sinπ π∑∑ ∑∑−

− −
==

c U t m v
L

m x
L

n y
B

x x y y

ts mn
n

NN

m

NM

ts ts

( ) cos sin ]

( ) (

π π π

δ δ

11

))sin( )sin( ) .i x L j y B dxdyπ π/ /

[ ]{ } [ ]{ } [ ]{ } { }M Z C Z K Z R + + =

[ ] , { }M
M

M
R

R
R X X

v

r

v

r
=








 =

− −








0
0 1 2



2879.2 � Dynamic Responses of the Nonlinear Vehicle–Road Coupled System�

)7*()7*(*******000

******000
*********
*********
*********
*********
00*******
00*******
00*******

+×+






































NNNMNNNM

MOMMMMMMMM

L

L

L

L

L

L

L

L

Cv

Cr

The scheme of [K] is

)7*()7*(*******000

******000
*********
*********
*********
*********
00*******
00*******
00*******

+×+






































NNNMNNNM

����������
�
�
�
�
�
�
�
�

Kv

Kr

Consequently, Eq.  (9.54) and Eq.  (9.59) compose the first- and second-order or-
dinary differential equations of the nonlinear vehicle–road coupled system. Since 
the stiffness matrix K and damping matrix C of Eq. (9.59) have coupled items and 
time-varied parameters, the following numerical integration method is used to solve 
the equations.

9.2 � Dynamic Responses of the Nonlinear Vehicle–Road 
Coupled System

The quick direct integral method and the Runge–Kutta method of order 4 can be 
combined to solve the system of equations. The routines of the calculation program 
in this study are as follows:
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1.	 Establish the initial conditions

Assume the initial displacement and initial velocity of Eq. (9.59) are { } { ( )}
{ } { ( )}
Z Z
Z Z

0

0

0
0

=
=



  

.

Assume the initial displacements of Eq. (9.54) are { } { ( )}
{ } { ( )}

X X
X X

1 0 1

2 0 2

0
0

=
=





.

The initial acceleration can be obtained from Eq. (9.59),

� (9.61)

2.	� Compute the displacement, velocity, and acceleration of the vehicle–road coupled 
system when t n t= +( )1 ∆ . Here, n +1  is the number of steps, and n  =  0,1,2,3…

Let φ ψ= = 0  when n = 0  and φ ψ= = 1 2/  when n ≥1 . Given the integration time 
step ∆t, one can build the following relations:

� (9.62)

� (9.63)

where

� (9.64)

By substituting Eq.  (9.62) and Eq.  (9.63) into Eq.  (9.59) when t n t= +( )1 ∆ , one 
can obtain

�

(9.65)

{ } [ ] ({ } [ ] { } [ ] { } ). Z M R K Z C Z0
1

0 0 0 0 0= − −−

{ } { } { } ( ){ } { }

{ } {

Z Z Z t Z t Z t
Z

n n n n n

n

+ −

+

= + + + −

=
1

2
1

2

1

1 2  



∆ ∆/ ψ ψ ∆

  Z Z t Z tn n n} ( ){ } { }+ + −





 −1 1φ ∆ φ ∆

{ } { } ( )

{ } { } (

X X t f f f f

X X t f

n n

n n

1 1 1 11 12 13 14

2 1 2 21

6
2 2

6

+

+

= + + + +

= + +

∆

∆ 22 222 23 24f f f+ +








 )

f f t X U f f t t X t f U

f f t

n n n n n n

n

11 1 1 12 1 1 11

13 1

2 2
= = + +

= +

( , , ), ( , , ),

(

∆ ∆

∆tt X t f U f f t t X tf U

f f t X

n n n n n

n n

2 21 12 14 1 1 13

21 2 1

, , ), ( , , )

( ,

+ = + +

=

∆
∆ ∆

,, ), ( , , ),

( ,

U f f t t X t f U

f f t t X t f

n n n n

n n

22 2 1 21

23 2 1 2

2 2

2 2

= + +

= + +

∆ ∆

∆ ∆
22 24 2 1 23, ), ( , , ).U f f t t X tf Un n n n= + +∆ ∆

{ } [ ] ({ } [ ] { } ([ ] [ ] ){ }

{(

 Z M R K Z C K t Zn n n n n n n+
−

+ + + += − − +

−
1

1
1 1 1 1∆

11 1 21 1

1 1

+ + +
+ +

+ +

+ +

φ ψ

φ ψ

)[ ] ( / )[ ] }{ }
( [ ] [ ] ){

C K t Z t
C K t A

n n n

n n

∆ ∆
∆



}} .n t−1∆



2899.2 � Dynamic Responses of the Nonlinear Vehicle–Road Coupled System�

3.	 By repeating process (2), one can get the displacement, velocity, and accelera-
tion of the system step by step.

The convergence criterion of this method is

� (9.66)

where ∆t  is the integration time step, and ω  is the natural angular frequency of 
the system.

During the dynamic simulation, the vehicle parameters correspond to those of a 
heavy truck. Parameters for the vehicle system are as follows [12, 13]:

mb1 = 15280 kg, mb2 = 3 × 105 kg m2, mb3 = 0.6 × 105 kg m2, mt1 = mt3 = 190 kg, 
mt2 = mt4 = 380  kg, ksl1 = ksl3 = 370 × 103  N/m, ksl2 = ksl4 = 920 × 103  N/m, 
csl1 = csl3 = 12,000  N  s/m, csl2 = csl4 = 30,000  N  s/m, ktl1 = ktl3 = 0.73 × 106  N/m, 
ktl2 = ktl4 = 1.46 × 106 N/m, ct1 = ct3 = 600 N s/m, ct2 = ct4 = 900 N s/m, l1 = 3.29 m, 
l2 = 1.48 m, lf = 1.90 m, lr = 1.80 m, β1 = 0.01, β2 = 0.1, β3 = 0.6, β4 = 1/3.

Parameters of the pavement and foundation are given below [14, 15]:
L = 600  m, B = 24  m, h1 = 0.09  m, E1 = 2400  MPa, E3 = 2400  MPa, 

η2 = 3159.32 MPa s, η3 = 509.61 MPa s, μ1 = 0.35, ρ1 = 2.613 × 103 kg/m3, h2 = 0.2 m, 
E2 = 1100 MPa, μ2 = 0.35, ρ2 = 2.083 × 103 kg/m3, K = 48 × 106 N/m2, C = 0.3 × 104 N s/
m2, β5 = 0.1, β6 = 0.1, β7 = 0.01, L0 = 2.3 m, B0 = 0.002 m.

In order to confirm the validity of the integration results, two numerical tests 
were done to choose a suitable mode number for the pavement displacement and 
an integration time step. It is found that, when the time step is smaller than 1 ms 
and the mode number of the pavement is larger than 10, dynamic responses of the 
system vary slightly. Thus, a suitable value of NM is 10 and a suitable value of ∆t  
is 1 ms.

The natural frequencies of the derived system are calculated with the system 
parameters selected above. The vertical, pitching, and rolling natural frequencies of 
the vehicle body and the vertical natural frequencies of the four wheels are 1.6314, 
0.8076, 0.7562, 12.1137, 12.1357, 12.6053, and 12.6492 Hz, respectively. The nat-
ural frequencies of the road range from 34.1739 to 143.3673 Hz. By substituting 
the highest natural frequency of the coupled system 143.3673 Hz into Eq. (9.66), 
one obtains ∆t < × =2 143 3673 2 2/ 2 ms( . ) .π . Because the time step ∆t  is 1 ms, the 
convergence criterion is well satisfied.

In addition, the responses that occur during the first 5 s are removed so as to 
minimize the effect of the transitional course. When v = 10 m/s and B0 = 0.002 m, 
the time history of the vehicle body’s vertical acceleration, phase trajectories, and 
Poincaré maps of the vehicle body’s vertical motion, along with the power spectrum 
of the vehicle body’s vertical displacement can be obtained, as shown in Fig. 9.3. 
From Fig. 9.3, it can be seen that the time history is periodic, the phase trajectories 
are a closed curve, the Poincaré map is a point, and the power spectrum consists of 
discrete lines. Thus it can be concluded that the vertical motion of the vehicle body 
is periodic. It has also been found that the peak frequencies in the power spectrum 
include 4.38, 8.73, 13.1, and 1.6 Hz, which correspond to one time, two times, and 

∆t fa< = =2 1 2/ when /ω φ ψ�
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three times the road roughness excitation frequency, as well as the vertical natural 
frequency of the vehicle body respectively. The 4.38 and 1.6 Hz values may be 
easily explained using vibration theory: the frequency components of forced vibra-
tion include the excitation frequency and natural frequency of the system. The 8.73 
and 13.1 Hz values may be the result of the square and cubic nonlinearities of the 
system, which result in two and three times the excitation frequency, respectively.

Figure 9.4 shows the time history, phase trajectories, Poincaré maps, and power 
spectrum of the pavement vertical displacement when B0 = 0.002 m. It may be ob-
served from Fig. 9.4 that the time history is not periodic, the phase trajectories are 
complicate and irregular, the Poincaré map is an unclosed curve, and the power 
spectrum consists of discrete lines. According to nonlinear vibration theory, the 
largest Lyapunov exponent may be used as a criterion for motion type. If the largest 
Lyapunov exponent is larger than zero, the system motion is possibly chaotic. On 
the other hand, if the largest Lyapunov exponent is zero, the system will have a peri-
odic or quasiperiodic motion. When B0 = 0.002 m, the largest Lyapunov exponent of 
the pavement displacement is computed using the method of Wolf [16, 17], and the 
result is zero. Thus it may be concluded that the vertical motion of the pavement is 
quasiperiodic. It is also found that the spectral peak frequencies are 4.38, 8.73, and 
13.1 Hz, corresponding to one time, two times, and three times the road excitation 
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Fig. 9.3   Vehicle responses with B0 = 0.002 m. (Reprinted from [1], with kind permission from 
ASME)
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frequency, respectively. Similarly, the square and cubic nonlinearity of the system 
cause the existence of two and three times the excitation frequency.

The dynamic responses of the vehicle body and the pavement in a vertical direc-
tion when B0 = 0.02 and 0.1 m are also simulated. It is found that the vertical motion 
of the vehicle body is always periodic in all three cases, but the vertical motion of 
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Fig. 9.4   Pavement responses with B0 = 0.002 m. (Reprinted from [1], with kind permission from 
ASME)
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the pavement is different in the three cases. Figures 9.5 and 9.6 show the pavement 
responses in the three cases.

It can be seen from the above two figures that

1.	 When B0 = 0.02  m, the time history of the pavement vertical displacement is 
similar to that of when B0 = 0.002 m. An exception is the appearance of a high-
frequency wave. Then, the Poincaré map is a closed curve, and the power spec-
trum consists of more peaks than when B0 = 0.002 m.

2.	 When B0 = 0.1 m, the time history and phase trajectories of the pavement verti-
cal motion are complicated and irregular, the Poincaré map looks like a narrow 
band, and the power spectrum consists not only of many peaks, but also of con-
tinuous broadband stochastic curves.

The largest Lyapunov exponents corresponding to these two cases ( B0 = 0.02  m, 
0.1 m) are also computed and found to be 0 and 0.1912. Hence it may be concluded 
that the vertical motion of the pavement when B0 = 0.02 m is quasiperiodic and the 
vertical motion of the pavement when B0 = 0.1 m is chaotic.
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Fig. 9.5   Pavement responses with B0 = 0.02 m. (Reprinted from [1], with kind permission from 
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9.3 � The Effects of Nonlinearity and Viscoelasticity on 
Vehicle and Road Responses

To investigate the effect of nonlinearity on vehicle and pavement responses, the am-
plitude–frequency response curves of the vehicle body’s vertical acceleration and 
the pavement vertical displacement for a linear and nonlinear system are drawn, as 
shown in Fig. 9.7. In order to obtain a frequency range from 0.5 to 40 Hz, the wave 
length L0 varies from 0.5 to 40 m, and the vehicle velocity V is set to 20 m/s. From 
Fig. 9.7 it can be seen that the effect of nonlinearity on the vehicle body vertical ac-
celeration is greater than the effect on the pavement vertical displacement. At lower 
frequencies, the responses of the nonlinear system are larger than those of the linear 
system. However, in higher frequencies, the responses of the nonlinear system are 
smaller than that of the linear system.

In addition, Fig. 9.8 compares the amplitude–frequency response curves of the 
vehicle body vertical acceleration and the pavement vertical displacement for the 
linear elastic and viscoelastic asphalt topping. It may be observed from Fig. 9.8 that 
the effect of the viscoelastic pavement material on the vehicle response is much 
smaller than its effect on the pavement response. The response of the pavement 
with the viscoelastic material is greater than the response of the pavement with the 
linear elastic material.
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The effects of seven nonlinear parameters β1 , β2 , β3 , β4 , β5 , β6 , β7 , and 
four viscoelastic parameters E1 , E3 , η2, η3 on the vehicle body vertical accelera-
tion, and the pavement displacement are studied, as shown in Fig. 9.9, 9.10, 9.11, 
9.12, 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, and 9.19. The main conclusions are listed 
here,

1.	 In four of the nonlinear parameters of the vehicle system, the effect of the sus-
pension damper asymmetry coefficient β4  is the greatest, the effects of the 
square nonlinear tire stiffness β1  and the square nonlinear suspension stiffness 
β2  are the second, and the effect of the cubic nonlinear suspension stiffness β3  
is the least. A large β1  or small β4  both benefit vehicle riding comfort and road 
service life. Small β2  may improve vehicle riding comfort but hardly influences 
the pavement displacement.

2.	 The effects of the pavement nonlinear parameters β5 , β6 , and β7  on the 
responses of the vehicle and pavement is very small. Therefore, these three non-
linear parameters may be omitted in order to simplify the calculations.

3.	 In four of the viscoelastic parameters of the pavement asphalt topping, the effect 
of E1  on system response is greater than that of E3 , and the effect of η2 on sys-
tem response is greater than that of η3. A small E1, large E3, large η2, or large η3 
may not only improve vehicle riding comfort but also extend road service life.
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Fig. 9.10   The effect of square nonlinear suspension stiffness β2. (Reprinted from [2], with kind 
permission from Academy Publisher)
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9.4 � Chapter Summary

In this chapter, a 3D vehicle–road coupled system with nonlinearity and viscoelas-
ticity is built and the nonlinear responses of the vehicle and road are computed si-
multaneously. The effects of the nonlinear and viscous parameters on vehicle riding 
comfort and road damage are also analyzed. It can be found that

1.	 The effect of nonlinearity on the vehicle body vertical acceleration is greater 
than the effect on the pavement vertical displacement. At lower frequencies, 
the responses of the nonlinear system are greater than those of the linear sys-
tem. However, at higher frequencies, the responses of the nonlinear system are 
smaller than those of the linear system. Hence, it is necessary to take into account 
the nonlinearity of the vehicle suspension to research the nonlinear dynamic phe-
nomena of the vehicle and to improve computational accuracy. On the other 
hand, the nonlinearity of the pavement material may be neglected if one calcu-
lates only the amplitude of the pavement response.

2.	 The influence of the viscoelastic pavement material on the vehicle response is 
much smaller than that on the pavement response. The response of the pavement 
with viscoelastic asphalt topping is greater than the response with linear elastic 
material. Thus, the viscoelastic characteristic of asphalt topping should be con-
sidered in order to estimate the pavement response more accurately.
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The Construction of a Highway Fieldtest Section 
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The interaction between a heavy truck and a road system is theoretically studied 
in the previous chapters. However, field tests of both vibration performance of the 
vehicle and the road system response have been very few due to the limitation of 
technical conditions. In order to study further the interaction between a vehicle and 
the pavement, to master the failure pattern of the road structure under vehicle loads, 
to improve vehicle driving safety and to verify the theoretical analysis and numeri-
cal simulations, a field test section for vehicle–road interaction was built on the 
ShenZhou to DaMing segment of the DaGuang (Daqing to Guangzhou) highway. 
The field test of vehicle random dynamic load response and road dynamic response 
were conducted.

10.1 � The Experiment Scheme of the Vehicle–Road System

For the study of the interaction between vehicles and a road structure, various kinds 
of sensors in every layer of the test section are embedded and some sensors are 
installed in the tested vehicle. Under different axle load conditions (weight empty, 
half load, or full load) and various vehicle speeds (10, 20, 30, 40, 50, 60 km/h), 
the responses of the vehicle and the road system are recorded simultaneously. The 
speed of each point on the vehicle, the dynamic pressure, static pressure, the lon-
gitudinal and transverse dynamic strain data of the road’s different layers are all 
collected. These data are long-term remotely monitored and collected in long-term 
to study the dynamic response rules of each structural layer of the road during the 
highway operation.
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10.2 � The Highway Field Test System

10.2.1 � Introduction of the Highway Road Structure

The total length of the trial section chosen from ShenZhou to DaMing of the DaGuang 
highway is 220.429 km, 33.4 km of which is expanded as a two-way six-lane highway. 
The structure scheme of the road is summarized as below: the total width of the roadbed 
is 34.5 m, in which the width of a one-way lane is 3 × 3.75 m, the width of the middle 
strip is 4.5 m (including 3 m central dividing strip and two 0.75 m curbs), the paved 
shoulder is 3.0 m (including 0.5 m width curb), and the soil shoulder width is 0.75 m. 
The road structure and material design is shown in Fig. 10.1.

10.2.2 � The Testing System of the Road

Targeting the problem of fatigue cracking in asphalt pavement, the strain transducer 
is used for real-time dynamic monitoring of pavement strain. The transverse strain 
sensors and the longitudinal strain sensors are installed at the bottom of a modified 
asphalt AC layer, coated macadam, and cement stabilized macadam. Considering 
the need for comparative analysis, two rows of transverse strain sensors and lon-
gitudinal strain sensors are symmetrically laid along the center of the vehicle load 
track. In order to evaluate the stress of the road structure layers effectively, dynamic 
and static pressure sensors are embedded in each layer [1, 2].

Fig. 10.1   Road structure and material design
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1.	 The strain sensor

Along the center line of the tire, the transverse and the longitudinal strain sensors 
are buried at the bottom of a modified asphalt concrete and asphalt treated base, 
forming the transverse and longitudinal strain test matrix. These sensors are used 
for monitoring the longitudinal and transverse strain of the road.

2.	 The load sensor

The dynamic pressure sensors are embedded successively at the bottom of a modi-
fied asphalt concrete layer, asphalt treated base, cement bound granular and on the 
top of the soil base, which are used for testing the vertical dynamic stress of each 
layer. The static pressure sensors are set on the top of the soil base to test the verti-
cal static pressure.

The total length of the test road is 100 m and the sensors of each pavement layer 
and signal acquisition system are shown in Fig. 10.2.

Fig. 10.2   Pavement sensor and signal acquisition analyzer. a Transverse strain gauge. b Longitu-
dinal strain gauge. c Dynamic pressure sensor. d Strain acquisition instrument 
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The signal acquisition system for strain utilizes the Beijing Andy Iotech strain 
collection device which includes a high performance, multichannel parallel data 
collection and analysis system. The device includes 48 channels, which can carry 
out long, continuous data collection (sampling frequency at 1600 Hz). When a ve-
hicle is traveling on the road surface, the computer can record all sensors’ electric 
signals simultaneously. The signals are then transformed to a dynamic strain wave 
of the measuring point.

10.2.3 � The Laying Process of the Sensor

During the construction of each layer of the highway, some sensors are placed at the 
structure layers in accordance with the design drawing simultaneously, which can 
ensure the reliability of the data, and also reflect the road dynamic response of every 
layer [3]. Based on the coring specimens collected at the site, the road physical pa-
rameters of each layer are obtained through laboratory experiments. The calibration 
site and sampling process of the road parameter are shown in Fig. 10.3

On the basis of large-scale research and investigation [4–7] the specific process 
of laying out the sensors is listed as follows:

1.	 Calibration of the sensor installation position

In the process of sensor installation, the position of the vehicle wheel tracks is deter-
mined to identify each sensor’s position relative to the wheel track line. The sensors 
are embedded in sequence from the subbase to the surface layer of the road. The 
measuring instruments are used to assist positioning and make the benchmark strict.

2.	 Overall layout and circuit layout

Due to the large quantity, the various types of sensors, and the high standards of the 
sensors, the embedding scheme must be designed in advance before the compaction 

Fig. 10.3   a Calibration site. b Sample
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of the road structure. The embedding position and direction of the sensor should be 
checked to make sure the arrangement of the sensors’ circuit is reasonable. It can 
reduce unnecessary loss in the process of sensor installation.

3.	 Artificial digging and circuit slotting

After determining the sensor location, a Luoyang shovel is used to dig the holes, 
then the circuit is slotted along with the mark. The holes must be dug according to 
the sensor embedded scheme. It can ensure the precision of the data acquisition.

4.	 Sensor placement and debugging

The influence of coefficient of loose paving material should be taken into account. 
A layer of the same mixture dug is covered at the bottom of the hole. Due to the 
sensibility of the surrounding environment and the fragile structure of the sensors, 
direct use of mechanical compaction is prone to damage the sensors, destroy the 
circuits, or lead to other issues. So it is necessary to use the method of artificial ram-
ming preloading. The buried sensors are preliminarily debugged to observe whether 
the transmission of the signal is normal and to examine the survival rate of the sen-
sor simultaneously.

5.	 Mechanical paving and compaction

After the completion of artificial ramming preloading of the sensors, the mechani-
cal paving and compaction of the upper structure construction is carried out in ac-
cordance with the road construction schedule requirements. To ensure the effect of 
compaction, the original structure layer must be repeatedly compacted using the 
rolling machinery. A technician is assigned to protect the wire connector in order to 
avoid sensor damage by the paving compaction machinery.

6.	 Wire connector labeled

The initial arrangement of the sensors is finished after the mechanical paving roll-
ing. At this time, sensors are categorized, packaged, and waterproofed to adapt to 
the requirements of long-term acquisition work.

The installation, connection, and debugging process of the sensors on the scene 
is shown in Fig. 10.4:

In this experiment, there is an inspection chamber equipped with instruments 
near the road test section. It not only allows the researchers to connect the instru-
ment of each section to all the test sections on the shared data acquisition system, 
but also can guarantee the sensor connectors are dry, clean, and easy to identify. The 
inspection chamber is shown in Fig. 10.5.
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Fig. 10.4   Sensor layout process. a Location. b Digging. c Wiring. d Placement. e Preliminary 
debugging. f Mechanical paving
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10.3 � Vehicle Test System

10.3.1 � Introduction of the Vehicle System

On the investigation basis of the traffic in our country at present, a Dongfeng me-
dium-sized truck with three axles is selected as a typical domestic transportation 
vehicle. There are three types of working conditions: empty load, half load, and full 
load. In the experimental stage, the vehicle axle load is under strict control to ensure 
the reliability of the test results.

10.3.2 � Introduction of Vehicle Test System

The vehicle test signal acquisition system mainly includes a three-speed sensor, a 
charge amplifier, a signal acquisition instrument, and a computer [8]. The TSC-D3 
speed sensor produced by Chengdu Zhongke Measurement and Control Co., LTD 
is operated in the 1–500  Hz frequency range. The signal acquisition instrument 
converts the piezoelectric signals into digital signals. The INV360DF intelligent 
acquisition analyzer is produced by Beijing Orient Institute of Noise & Vibration. 
The testing site and collection device is shown in Fig. 10.6.

Figures 10.7–10.10 show each velocity measuring point sensor arrangement on 
the driver’s seat, front steering axle head, intermediate axle head, and rear axle 
head, respectively.

Fig. 10.5   Inspection chamber 
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Fig. 10.6   Testing site and collection device

 

Fig. 10.8   Front steering axle 
head
 

Fig. 10.7   Driver’s seat 
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10.4 � Analysis of the Road Test Results

10.4.1 � Analysis of Road Dynamic Strain Response

1.	 Road dynamic strain under different vehicle speeds

It is discovered from the large amount of measured data that the longitudinal and the 
transverse flexural strains at the bottom of asphalt concrete show alternation between 
tensile and compressive strain states under different vehicle axle loads and speeds.

Under the condition of a full load and a speed of 10 km/h, the test result of longi-
tudinal strain of the bottom surface is shown in Fig. 10.11. Under the condition of a 
full load and a speed of 60 km/h, the test result of the transverse strain at the bottom 
of the surface layer is shown in Fig. 10.13. The finite element model from chapter 
two is used to obtain the simulation results; the longitudinal and the transverse 
strains of the bottom are shown in Figs. 10.12 and 10.14, respectively.

Fig. 10.9   Intermediate axle 
head
 

Fig. 10.10   Rear axle head  
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Fig. 10.11   Longitudinal tensile strain at the bottom of asphalt concrete (experiment)

 

Fig. 10.12   Longitudinal tensile strain at the bottom of asphalt concrete (simulation)
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From Figs. 10.11–10.14, it can be observed that:

1.	 When the wheels arrive at and leave a point on the pavement, the longitudinal 
strain at the bottom of the asphalt concrete layer is negative. When the wheels 
just go past the point, the longitudinal strain becomes positive. This indicates 
that the asphalt concrete layer mainly bears the longitudinal tensile strain coming 
from the wheel loading. The conclusion is consistent with the results of previ-
ous researcher [9–11].The transverse strain at the bottom of the asphalt concrete 
includes both tensile strain and compressive strain and the behavior is more 
complex.

2.	 The maximum values of the test results of the longitudinal and the transverse ten-
sile strains at the bottom of the asphalt concrete are 26.3 με and13.8 με respec-
tively. The simulation results are 31.9 με, 17.1 με and the relative error is 21.3 %, 
23.2 %. The results between the experiment and the simulation are consistent.

Under the condition of a full load at different vehicle speeds, the maximum longitu-
dinal and the transverse tensile strains of the road surface are shown in Fig. 10.14. 
Figure  10.15 shows that, with an increase in speed, the longitudinal and the 

Fig. 10.13   Transverse tensile strain at the bottom of asphalt concrete (experiment)
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Fig. 10.15   Maximum longitudinal and transverse strain at different vehicle speeds (experiment)

 

Fig. 10.14   Transverse tensile strain at the bottom of asphalt concrete (simulation)
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Fig. 10.16   Longitudinal strain comparison between experiment and simulation

 

transverse strains at the bottom of the surface layer decrease continuously. When 
the vehicle speed increases from 10 to 30 km/h, the longitudinal tensile strain of the 
road surface decreases 23.2 % while the transverse compressive strain is reduced 
27.5 %. The reduced magnitude of the longitudinal strain is larger than the trans-
verse strain when the speed is over 30 km/h.

2.	 Road dynamic strain under different loads

At a speed of 30 km/h under different loading conditions, the tested longitudinal 
strain results at the bottom of the asphalt concrete are compared with the simulation 
results, shown in Fig. 10.16. It shows that the longitudinal tensile strain increases 
with an increase in load. The pattern of the experiment and simulation is the same, 
and the maximum relative error is 14.3 %.

10.4.2 � Analysis of Road Vertical Dynamic Stress

1.	 Vertical dynamic stress of the road at different speeds

Under the condition of a full load, at a speed of 10 km/h, the experimental and simu-
lation results of the vertical dynamic stress at the bottom of the asphalt concrete 
layer are shown in Figs. 10.17 and 10.18. The experimental and simulation results 
show the same pattern. The maximum tested compressive stress is − 139 kPa and 
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Fig. 10.17   Vertical dynamic stress at the bottom of the asphalt concrete (experiment)

 

the simulation result is − 163 kPa. The relative error is 14.7 %, which shows that the 
simulation result is consistent with the experiment result.

Under the condition of a full load with a respective speed of 10, 20, 40, 60 km/h, 
the curve is mapped on the basis of the maximum vertical dynamic stress, shown 
in Fig. 10.19.

Figures 10.17–10.19 show that, under a constant vehicle load, the bottom of the 
asphalt concrete layer bears vertical compression. Under the same axle load, the 
compressive stress at the bottom of the surface decreases with an increase in vehicle 
speed.

2.	 Vertical dynamic stress of the road under different loads

Under different loading conditions with a constant speed of 30 km/h, the curve of 
the maximum vertical dynamic stress at the bottom of the asphalt concrete layer is 
plotted in 10.20. It can be seen that the vertical compressive stress increases with an 
increase in load, and it presents an approximate linear relationship.

3.	 Road vertical compressive stress of different structural layers

Under the working condition of a full load and a speed of 60 km/h, the time history 
curves of the vertical dynamic stress of each road layer are shown in Fig. 10.21. The 
maximum vertical dynamic stress is shown in Fig. 10.22.
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Fig. 10.18   Vertical dynamic stress at the bottom of the asphalt concrete (simulation)

 

Fig. 10.19   Maximum vertical dynamic stress at different vehicle speeds (experiment)
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Some conclusions can be obtained from Figs. 10.21 and 10.22:

1.	 Under different vehicle loads, the vertical compressive stress of different road 
layers continuously decreases with an increase in depth, but its distribution range 
increases gradually. This conclusion is consistent with the results of previous 
researches [12, 13].

2.	 The vertical compressive stress decays quickly in the road structural layers. It 
reduced 46.7 % from the bottom of the asphalt concrete to the bottom of the 
asphalt treated base layer. The dynamic stress of the cement bound granular layer 
is very small. Thus, the vertical compressive stress is mainly borne by the asphalt 
concrete layer. The semi-rigid base can be used to greatly reduce the vertical 
dynamic stress, which can improve the bearing capacity of the road structure.

10.5 � Analysis of the Vehicle Test Results

Under the conditions of empty load, half load, and full load, the vehicle travels at a 
constant speed of 10, 20, 30, 40, 50, 60 km/h separately on the test section (Class-B 
road). The curves of vertical acceleration measured from the different points of the 

Fig. 10.20   Maximum vertical dynamic stress under different loading (experiment)
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vehicle are plotted in Figs. 10.23–10.26. It can be observed that the vehicle vertical 
acceleration of each measuring point shows an increasing trend. So the working 
condition of high speed and being overloaded will be unfavorable to the vehicle’s 
riding comfort.    

Under the condition of a full load with a speed of 60 km/h, the time domain 
results of the experiment and the simulation are compared, as shown in Figs. 10.27–
10.30. The vehicle simulation model adopts the virtual prototype model from chap-
ter one. The dynamic simulation analysis of the vehicle model is carried out on 
a random road surface. The default gear stiff integrator (GSTIFF) is adopted to 
solve the coupled nonlinear differential-algebraic equations (DAE). Through the 

Fig. 10.21   Vertical dynamic stress of different road structure layers. a Dynamic stress at the 
bottom of the asphalt treated base layer. b Dynamic stress at the bottom of the upper cement 
bound granular layer. c Dynamic stress at the bottom of the lower cement bound granular layer. d 
Dynamic stress of the upper soil base
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Fig. 10 23   Vertical accel-
eration of the driver cab at 
different speeds and vehicle 
loads

 

Fig. 10.22   Maximum dynamic stress of each road layer
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contrasting of Figs. 10.27–10.30, it can be seen that the results of the time trend and 
distribution of the experiment and simulation are the same.

In order to compare the experimental and simulation results in the time domain 
and the frequency domain, the acceleration signals are analyzed by utilizing fast 
Fourier transform (FFT) and a Hanning window is applied to all spectral analyses 
to inhibit frequency leakage.

Fig. 10.25   Vertical accelera-
tion of the middle axle head 
at different speeds and loads

 

Fig. 10.24   Vertical accelera-
tion of the front axle head at 
different speeds and loads
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The results of the simulation and the experiment are compared in Table 10.1.
As seen from Table 10.1, the main peak frequency and the amplitude of the simu-

lation results and test results are basically identical. But there are some differences: 
the maximum relative error of the peak frequency of the power spectral density is 
11 % and the maximum relative error of the RMS acceleration is 17 %. In short, the 
overall trend of simulation results and test results are consistent.

Fig. 10.27   Vertical acceleration of the driver cab in the time domain. a experiment. b simulation

 

Fig. 10.26   Vertical accelera-
tion of the rear axle head at 
different speeds and loads

 

Fig. 10.28   Vertical acceleration of the front axle head in the time domain. a experiment. b 
simulation
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Table 10.1   Comparison of the results (experiment and simulation)
Measuring point Peak frequency of power spectral 

density(Hz)
RMS of acceleration (m/s2)

Simulation Experiment Simulation Experiment
Driver cab   3.82   3.39 2.12 2.57
Front axle head 10.81   9.98 2.19 1.97
Middle axle head   9.60 10.00 3.51 3.14
Rear axle head 10.01 10.10 3.50 3.37

Fig. 10.30   Vertical acceleration of the rear axle head in the time domain. a experiment. b 
simulation

 

Fig. 10.29   Vertical acceleration of the middle axle head in the time domain. a experiment. b 
simulation

 

10.6 � Chapter Summary

In order to reveal comprehensively the failure characteristics and the asphalt pave-
ment structure, a section of an expressway is built as a test section. The specific 
methods of arrangement of different kinds of sensors are put forward for various 
layers of the road. Based on the test section of the vehicle–road system, the dynamic 
response data of the vehicle and the road are acquitted. The transverse stress, the 
longitudinal stress, the dynamic pressure, and the static pressure of each road layer 
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are collected in details. It provides significant data for the analysis of the dynamic 
interaction between a vehicle and a road.
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