
A Service-Oriented, Cyber-Physical Reference
Model for Smart Grid

Muhammad Umer Tariq, Santiago Grijalva, and Marilyn Wolf

Abstract. This chapter presents a cyber-physical reference model for smart grid.
Most of the early smart grid applications have been developed in an ad-hoc man-
ner, without any underlying framework. The proposed reference model addresses
this issue and enables the design of smart grid as a robust system that is extensi-
ble to the future. The proposed reference model is based on service-oriented com-
puting paradigm and is compatible with the existing service-oriented technologies,
used in enterprise computing, such as Web Services. However, it also extends these
technologies for handling the hard real-time aspects of smart grid by introduc-
ing resource-aware service deployment and quality-of-service (QoS)-aware service
monitoring phases. According to the proposed reference model, each smart grid
scenario is characterized by three elements: (1) an application model that describes
the smart grid applications to be supported by the system as a set of resource- and
QoS-aware service descriptions, (2) a platform model that describes the smart grid
platform as a set of computing nodes, communication links, sensors, actuators, and
power system entities, and (3) a set of algorithms that enable resource-aware ser-
vice deployment, QoS-aware service discovery, and QoS-aware service monitoring.
This chapter also presents typical development steps of a smart grid application ac-
cording to the proposed reference model. Moreover, this chapter identifies a number
of technological requirements that can enable the development of smart grid appli-
cations according to the proposed reference model. Although the development of
these required technologies is a topic of ongoing research, this chapter identifies
some potential solution approaches, based on state-of-the-art techniques from real-
time systems literature. The case study of a demand response application has been
employed to explain the various aspects of the proposed smart grid reference model.

Muhammad Umer Tariq · Santiago Grijalva · Marilyn Wolf
Georgia Institute of Technology, Atlanta
e-mail: {m.umer.tariq,sgrijalva,marilyn.wolf}@gatech.edu

c© Springer-Verlag Berlin Heidelberg 2015 25
S.K. Khaitan, J.D. McCalley, and C.-C. Liu (eds.), Cyber Physical Systems Approach
to Smart Electric Power Grid, Power Systems, DOI: 10.1007/978-3-662-45928-7_2

26 M.U. Tariq, S. Grijalva, and M. Wolf

1 Introduction

Traditional electric power grid is not capable of reliably handling the imminent de-
ployment of large amounts of renewable energy sources because of their intermittent
nature [10][18]. This deficiency has resulted in a worldwide effort towards realizing
the vision of a smarter electric power grid [16]. This vision of a smart grid proposes
to overlay the electric grid with a more extensive computation and communication
infrastructure. Unfortunately, most of the early smart grid applications have been
developed in an ad-hoc manner, without any underlying framework. This lack of an
underlying framework has resulted in a set of isolated smart grid technologies, stan-
dards, and applications that are difficult to integrate and extend for the future [13].

In the past, various other complex engineering domains have faced similar prob-
lems in their early days. Research communities for those engineering domains over-
came this problem by developing a reference model for the domain that could enable
clear communication among different stakeholders and inform the development of
an integrated set of technologies and standards for that domain [19] [14]. In this
chapter, we leverage this idea of a reference model and propose a cyber-physical
reference model for the domain of smart grid. The proposed reference model for
smart grid will enable the development of smart grid technologies, standards, and
applications in a robust, integrated, and flexible manner.

The proposed reference model for smart grid is based on service-oriented com-
puting (SOC) paradigm, as this paradigm is uniquely capable of handling the large
scale, open nature, and long lifecycle of smart grid scenarios. However, the tradi-
tional SOC paradigm, used in enterprise computing domain through popular tech-
nologies such as Web Services, cannot be directly applied to smart grid, because this
traditional paradigm is not capable of handling the hard real-time aspects of smart
grid [4]. Therefore, the proposed smart grid reference model extends the traditional
SOC paradigm by introducing resource-aware service deployment and QoS-aware
service monitoring phases. According to the proposed service-oriented reference
model for smart gird, each smart grid scenario is characterized by three elements:

1. An application model that describes the smart grid applications to be supported
by the system as a set of resource- and QoS-aware service descriptions.

2. A platform model that describes the smart grid platform as a set of computing
nodes, communication links, sensors, actuators, and power system entities.

3. A set of algorithms that achieve resource-aware service deployment, QoS-aware
service discovery, and QoS-aware service monitoring.

The proposed reference model is capable of describing relevant characteristics
of a wide set of smart grid scenarios as it has a sufficiently rich set of features.
Moreover, the proposed reference model is generic enough to be reconciled with
the existing smart grid standards and technologies, but still provides valuable guid-
ance for the evolution of these standards and technologies into an integrated and
consistent set of future smart grid standards and technologies.

In this chapter, we explain various elements of the proposed reference model
and present typical development steps of a smart grid application according to the

A Service-Oriented, Cyber-Physical Reference Model for Smart Grid 27

proposed reference model. We also identify some technologies that must be devel-
oped before the proposed smart grid reference model could be applied in practice.
Although the development of these technologies is a work-in-progress, we present
promising solution approaches, based on some state-of-the-art techniques from real-
time systems literature. In this chapter, we have used the case study of a demand re-
sponse scenario in order to explain various aspects of the proposed reference model.

The rest of the chapter is organized as follows. Section 2 explains what is a ref-
erence model and how it can be employed successfully for the domain of smart
grid. Section 3 presents the details of the proposed reference model for smart grid.
This section also presents a development methodology for smart grid applications
according to the proposed reference model. Section 4 identifies some technolog-
ical requirements of the proposed reference model and presents some promising
approaches for meeting those requirements. Section 5 presents the case study of a
demand response scenario. Section 6 presents the conclusion.

2 What Is a Reference Model?

A reference model for a domain is an abstract conceptual framework, consisting of
a small number of interlinked and unifying concepts for that domain. A reference
model is designed to enable clear communication about the domain among various
stakeholders. A reference model is not a standard or implementation technology in
itself. However, it does ”inform” the development of a set of compatible standards
and technologies for a certain domain [14] [2].

In the past, the concept of a reference model has been successfully employed
in various domains to enable the development of a coherent set of technologies
and standards for that domain. Following are some examples of reference models
developed for various domains:

• Open Systems Interconnection (OSI) Reference Model for communication sys-
tems [19].

• Agent Systems Reference Model (ASRM) for multi-agent systems [15].
• National Institute of Standards and Technology (NIST) Reference Model for

software engineering environments [2].
• National Institute of Standards and Technology (NIST) Reference Model for

project support environments [1].
• Task-based Reference Model for real-time computer systems [12].

Similarly, the development of an appropriate reference model for smart grid can
not only ensure clear communication among different stakeholders, but also help in
the process of developing a coherent and consistent set of standards and technolo-
gies for smart grid. However, any reference model for smart grid must be based on
concepts that are generic enough to be reconciled with existing standards (such as
various NIST and IEC standards related to smart grid [13]) and technologies (such
as real-time operating system and middleware [7] [11]), but still provide valuable
guidance for the evolution of existing standards and technologies into a consistent
and coherent set of future standards and technologies. In this chapter, we propose

28 M.U. Tariq, S. Grijalva, and M. Wolf

a reference model for smart grid that relies on the unification of concepts from the
domains of service-oriented computing [4] and cyber-physical systems [17] [9] [8].

3 Reference Model for Smart Grid

This section presents the details of the proposed reference model for smart grid.
The proposed reference model is based on service-oriented computing paradigm.
Although service-oriented computing paradigm is currently being used in enterprise
computing through Web Services technology, it cannot be directly applied to the do-
main of smart grid because of the hard real-time aspects of smart grid applications.
On the other hand, the task-based reference model used in typical distributed, real-
time systems, such as automotive and avionics, cannot be directly applied to the do-
main of smart grid as this reference model is not capable of handling the large scale,
open nature, and long lifecycle of smart grid scenarios [12]. Our proposed reference
model essentially extends the traditional service-oriented computing paradigm by
introducing resource-aware service deployment and QoS-aware service monitoring
phases.

According to the proposed reference model for smart gird, each smart grid sce-
nario is characterized by three elements:

1. An application model that describes the smart grid applications to be supported
by the system as a set of resource- and QoS-aware service descriptions.

2. A platform model that describes the smart grid platform as a set of computing
nodes, communication links, sensors, actuators, and power system entities.

3. A set of algorithms that achieve resource-aware service deployment, QoS-aware
service discovery, and QoS-aware service monitoring.

Figure 1 shows all the three elements of the proposed service-oriented reference
model for smart grid. Figure 2 shows the major steps involved in the development

Fig. 1 Reference model for
smart grid

A Service-Oriented, Cyber-Physical Reference Model for Smart Grid 29

of smart grid application according to the proposed reference model. In the plat-
form porting step, a generic, service-based computing platform is ported to all the
heterogeneous computing nodes involved in a smart grid scenario. In the service
modeling step, the smart grid application is modeled as a set of services that interact
with each other as well as with physical entities through sensing and actuation. In
the service implementation phase, the implementation code for the services is de-
veloped. Both service modeling and service implementation steps contribute to the
development of service descriptions. The service description of a service not only
defines the messages that a service exchanges with other services, but it also defines
sensing and control actions that the service takes on the co-located physical entities.
Moreover, a service description identifies the quality-of-service (QoS) constraints
on message exchanges with other services and platform resource requirements of a
service. A service description also identifies various modes of operation of a service
for various QoS fault scenarios.

In the service deployment phase, all the services are deployed on their associated
computing nodes. This leads to the service discovery step, where all the services
involved discover their peer services. This step could be performed online or offline
depending on the nature of the smart grid application. In the service interaction step,
services involved in a smart grid application interact by sending messages to each
other. During the service interaction step, services switch between different modes
of operation if QoS faults occur. Finally, through a service update phase, this smart
grid reference model supports system maintenance and system updates. In the ser-
vice update phase, services involved in the smart grid application are updated. These
services again pass through service implementation and service deployment steps.
Again, the service update step can be designed to work online or offline depending
on the nature of smart grid application.

Fig. 2 Development steps
of a smart grid application
according to the proposed
reference model for smart
grid

30 M.U. Tariq, S. Grijalva, and M. Wolf

4 Technological Implications of a Service-Oriented Reference
Model for Smart Grid

As noted earlier in Section 2, the reference model for a domain helps in the process
of developing a consistent set of standards and technologies for that domain. In
this section, we present some technological implications of the proposed reference
model for smart grid. In particular, we identify some technological requirements
for enabling the development of smart grid applications according to the reference
model, proposed in Section 3. We also present some potential solutions that can
meet these requirements and are based on some state-of-the-art techniques from the
domains of real-time systems and embedded control systems.

4.1 Technological Requirements

In order to enable the development of smart grid applications according to the pro-
posed reference model, three major technological requirements are the following:

• A service description language.
• A service-based computing platform for smart grid computing nodes with sup-

port for resource-aware service deployment and QoS-aware service interaction.
• A service compiler

Figure 3 shows the role played by these technologies to enable the smart grid appli-
cation development according to the proposed service-oriented reference model.

4.1.1 Service Description Language

According to the proposed reference model for smart grid, a service description
plays a central role. Any smart grid application is modeled as a set of interacting
services, each with its own service description. These service descriptions contain
the following information:

Fig. 3 Technological re-
quirements of proposed
smart grid reference model

A Service-Oriented, Cyber-Physical Reference Model for Smart Grid 31

Service Interface

The service interface section of a service description describes the messages that
the service exchanges with other services and sensing and control actions that a
service takes on the co-located physical entities. This section also identifies the QoS
constraints on these messages and sensing and control actions.

Service Resources

The service resources section of a service description describes platform resource
requirements of a service in order to satisfy the QoS constraints identified in the
service interface section.

Service Modes

Unlike automotive and avionics systems, smart grid is a wide-area system. As a re-
sult, QoS constraints on message exchange among computing nodes of smart grid
cannot be guaranteed by the communication subsystem. Therefore, service descrip-
tion for a service must contain a section which defines different modes of operation
of the service for different QoS-fault scenarios.

In order to develop service descriptions that contain the above mentioned in-
formation (service interface, service resources, and service modes), an appropriate
service description language (SDL) is required.

4.1.2 Service-Based Computing Platform for Smart Grid Computing Nodes

To enable the development of smart grid applications according to the proposed
service-oriented reference model, each smart grid computing node must have an
appropriate service-based computing platform that can support resource-aware ser-
vice deployment and QoS-aware service interaction. A typical smart grid scenario
involves a heterogeneous set of computing nodes with different processors, oper-
ating systems, and middleware technologies. Therefore, the required service-based
computing platform must be capable of being ported onto these heterogeneous com-
puting nodes.

4.1.3 Service Compiler

In order to properly deploy a service onto the service-based computing platform, an
appropriate service compiler is required. This service compiler must be able to read
the service description (specified using an appropriate service description language)
and decide whether a certain computing node has enough resources to successfully
deploy this service such that the service can meet its QoS constraints.

32 M.U. Tariq, S. Grijalva, and M. Wolf

4.2 Potential Solution Approaches

In Section 4.1, a number of technological requirements have been identified that
must be met before the proposed reference model can be utilized for the devel-
opment of smart grid applications. Although the development of technologies that
meet the identified requirements is a topic of ongoing research, in this section, we
identify some potential solutions for each of these technological requirements. The
proposed solutions are grounded in some state-of-the-art techniques, reported in the
literature of embedded control systems and real-time systems.

Our proposed solutions are influenced heavily by the research on Giotto [6], a
programming language for embedded control systems, and E Machine [5], a vir-
tual machine that serves as the target for compilation of Giotto programs. Figure 4
shows the Giotto and E Machine configuration for a typical distributed real-time
system. This configuration has been applied to local-area, distributed, real-time sys-
tems (such as automotive and avionics systems). We propose to extend this research
for wide-area, distributed, real-time systems (such as smart grid), where QoS con-
straints on the message exchange cannot be guaranteed by the communication sub-
system. In particular, we propose to extend Giotto programming language into the
required service description language, E Machine into the required service-based
computing platform, and Giotto compiler into the required service compiler. Fig-
ure 5 shows the technological requirements (originally shown in Figure 3) with the
proposed solution approaches.

4.2.1 Service Description Language

A Short Review of Giotto Programming Language

The typical development process for an embedded control system can be divided
into two steps: control design and software implementation. During the control
design phase, a control engineer models the plant behavior and disturbances, de-
rives the feedback control laws, and validates the performance of plant under the

Fig. 4 Typical configuration
of Giotto and E Machine for
embedded control systems

A Service-Oriented, Cyber-Physical Reference Model for Smart Grid 33

influence of feedback controller through mathematical analysis and simulations.
During the software implementation phase, a software engineer breaks down the
feedback controller’s computational activities into tasks and associated timing con-
straints on the completion of these tasks. Then, the software engineer develops code
for these tasks in a traditional programming language (such as C) and assigns prior-
ities to these tasks so that the tasks could meet their timing constraints while being
scheduled on a processor by the scheduler of a real-time operating system (RTOS).

Giotto programming language aims to bridge the communication gap between
control engineer and software engineer by providing an intermediate level of ab-
straction between control design and software implementation [6]. Giotto language
syntax can be used by a Giotto program to specify time-triggered sensor readings,
actuator updates, task invocations, and mode transitions. Then, a Giotto compiler
must be used to compile (an entirely platform independent) Giotto program onto a
specific computing platform. The compiler must preserve the functionality as well
as the timing behavior specified by the Giotto program.

Figure 6 shows the major elements of Giotto syntax: task, mode, driver, port,
and guard. Task is the basic functional unit of Giotto language and represents a
periodically executable piece of code. Giotto tasks communicate with each other
as well as with sensors and actuators. However, in Giotto, all data communication
occurs through ports. In a Giotto program, there are mutually disjoint sets of task
ports, sensor ports, and actuator ports. Task ports are further divided into task input
ports, task output ports, and task private ports. Each task also has an associated
function f (implemented in any sequential programming language) from its input
ports and private ports to its output ports and private ports. According to Giotto
semantics, sensor ports are updated by the environment while task ports and actuator
ports are updated by the Giotto program.

Driver represents a piece of code that transports values between two ports. A
driver can also have an associated guard, which is some boolean-valued function
on the current values of certain ports. The code associated with the driver only
executes if the guard of the driver evaluates to true. According to Giotto semantics,
a task is an application-level code that consumes non-negligible amount of CPU

Fig. 5 Technological re-
quirements with potential
solution approaches

34 M.U. Tariq, S. Grijalva, and M. Wolf

time, while driver is a system-level code that can be executed instantaneously before
the environment changes its state.

At the highest level of abstraction, a Giotto program is essentially a set of modes.
At a certain instant of time, Giotto program can only be in one of its modes. How-
ever, during its execution, a Giotto program transitions from one mode to another
based on the values of different ports. These possible mode transitions are speci-
fied in Giotto syntax through mode swithces. A mode switch specifies a target mode,
switch frequency, and a guarded driver. Formally, a Giotto mode is made up of sev-
eral concurrent tasks, a set of mode switches, a set of mode ports, a set of actuator
updates, and a period. Each task of a mode specifies its frequency of execution per
mode period. While Giotto program is in a certain mode, it repeats the same pattern
of task executions for each mode period.

Figure 6 shows a Giotto program with two modes, m1 and m2. Mode m1 has
two tasks, t1 and t2, while mode m2 has only one task, t3. Mode m1 has a period
of 10ms, while mode m2 has a period of 20ms. Task t1 has a frequency of 2, while
task t2 has a frequency of 1. This means that as long as Giotto program is in mode
m1, task t1 executes every 5ms while task t2 executes every 10ms. Moreover, in this
example, there is a mode switch from mode m1 to mode m2 with a switch frequency
of 2. This implies that the mode switch condition (provided by the guard of driver
d5) is tested every 5ms.

Extension of Giotto as a Service Description Language

Although Giotto was originally proposed as a programming language for embedded
control systems, it can also be used as the service description language, required
by the proposed smart grid reference model, with certain extensions. As outlined
in Section 4.1.1, a service description must specify service interface, service re-
sources, and service modes. The current Giotto syntax is capable of specifying all
these requirements, except for the input and output messages of a service and QoS

Fig. 6 Major programming
elements of Giotto language.
Proposed extensions are
shown in red with dotted
lines.

A Service-Oriented, Cyber-Physical Reference Model for Smart Grid 35

constraints associated with these messages. In order to overcome this deficiency, we
propose to extend Giotto syntax with two new types of ports: input message port and
output message port. We also propose to attach the following attributes with these
new ports: TimeSinceLastUpdate and DelayInLastUpdate. These attributes could be
used in the guard conditions, present in mode swithces. As a result, Giotto can be
used to specify mode switches based on the violation of QoS constraints associ-
ated with message exchanges among services. Figure 6 also shows these proposed
extensions to Giotto syntax.

4.2.2 Service-Based Computing Platform for Smart Grid Computing Nodes

A Short Review of E Machine

Earlier in this chapter, we have described Giotto, a platform-independent program-
ming language for embedded control systems. In real-time systems literature, devel-
opment of Giotto compilers for various computing platforms has been reported [6].
However, while developing these Giotto compilers, researchers have found it useful
to have an intermediate language, which does not support the high-level concepts
of Giotto but still provides a lower level platform-independent semantics for medi-
ating between physical environment and software tasks [5]. The concept of such an
intermediate language has evolved into E code. Moreover, in the literature, the term
Embedded Machine or E Machine has been used for a virtual machine that interprets
the E code [5].

The proposed E code essentially has the following three instructions:

1. Call driver
2. Release task
3. Future E code

In the E Code terminology, a task is a piece of application-level code, whose exe-
cution takes non-zero time. When invoked with its parameters, a task implements
a computational activity and writes the results to task ports. On the other hand, a
driver is a piece of system-level code that typically enables a communication activ-
ity. For example, a driver can provide sensor readings as arguments to a task or load
task results from its ports to an actuator. It is assumed that the execution of a driver
takes logically zero time.

Call driver instruction starts the execution of a driver. As the driver is supposed
to execute in logically zero time, the E Machine waits until the driver completes
execution before interpreting the next instruction of E code. Release task instruction
hands off a task to the operating system. Typically, the task is put into the ready
queue of the operating system. Scheduler of the operating system is not under the
control of the E Machine. The scheduler may or may not be able to satisfy the
real-time constraints of the E code. However, a compiler (which takes into account
the platform resources) checks the time safety of E code, generated from a higher
level language, such as Giotto. Such a compiler attempts to rule out any timing
violations by knowing the worst-case execution time (WCET) of all the tasks and
by applying the schedulability results available in the real-time systems literature.

36 M.U. Tariq, S. Grijalva, and M. Wolf

Future E code instruction marks a block of E code for execution at some future
time. This instruction has two parameters: a trigger and the address of the block of
E code. The trigger is evaluated with every input event (such as clock, sensor, or
task output) and the block of E code is executed as soon as the trigger evaluates to
true.

E Machine as the Foundation of Service-Based Computing Platform

The smart grid reference model, proposed in this chapter, requires each smart grid
computing node to support a computing platform that can support resource-aware
service deployment and QoS-aware service monitoring. Since E Machine, summa-
rized in the last section, supports resource-aware deployment and QoS-aware ex-
ecution of Giotto programs, and we have already proposed a Giotto-based service
description language in Section 4.2.1, it is natural to leverage E Machine as the
foundation of required service-based computing platform. However, as noted in the
last section, E code must be generated by an appropriate compiler to ensure time
safety. Therefore, the required service-based computing platform must combine the
E Machine with an appropriate service compiler that ensures resource-aware service
deployment on E Machine. However, the service compiler code itself is not hard
real-time in nature. Therefore, we propose a design of the service-based computing
platform that combines two virtual machines: a hard real-time Embedded Machine
(E Machine) and a soft real-time Compiler Machine (C Machine). E Machine ex-
ecutes the hard real-time service code and C Machine executes the soft real-time
code for service compiler. The resulting service-based computing platform is shown
in Figure 7.

4.2.3 Service Compiler

Giotto compilers, reported in the literature, typically work in two phases: plat-
form independent phase and platform dependent phase. Platform independent phase

Fig. 7 Potential solution
approach for the require-
ment of a service-based
computing platform

A Service-Oriented, Cyber-Physical Reference Model for Smart Grid 37

generates E code from Giotto program; while platform dependent phase checks the
time-safety of generated E code for a particular platform with known worst-case
execution times and scheduling schemes. In the last two sections, we have proposed
a service description language based on Giotto programming language and service-
based computing platform based on E Machine. Therefore, it is possible to leverage
the existing Giotto compilers and extend them into appropriate service compilers
that can ensure resource-aware service deployment of services onto heterogeneous
smart grid computing nodes.

5 Case Study: Demand Response

In this section, we present a case study of the application of the proposed reference
model to a canonical smart grid application, demand response [3]. Figure 8 shows
the demand response scenario under consideration. The power system topology for

Fig. 8 System topology
for the demand response
scenario

Fig. 9 Demand response
case study (with proposed
solution approach)

38 M.U. Tariq, S. Grijalva, and M. Wolf

the demand response scenario consists of a wind generator at Bus2, an elastic load
at Bus3 that tries to follow the intermittent wind generation at Bus2, and a gas
generator at Bus1 that provides the slack. The communication system topology for
this demand response scenario consists of three computing nodes: CommNodeA
(co-located with wind generator), Command Center, and CommNodeB (co-located
with elastic load).

According to the smart grid reference model, proposed in this chapter and shown
in Figure 1, this demand response scenario can be described by an application
model, a platform model, and a set of algorithms that facilitate application deploy-
ment on the platform. The application model for this demand response scenario
consists of three services: DemandResponseServiceA, DemandResponseServiceB,
and DemandResponseServiceCC. The platform model for this demand response
scenario consists of three computing nodes (CommNodeA, CommNodeB, Control-
Center), one sensor (co-located with CommNodeA), one actuator (co-located with
CommNodeB), three buses, three branches, two generators, and one load. More-
over, the application is installed on this platform by deploying DemandRespons-
eServiceA on CommNodeA, DemandResponseServiceB on CommNodeB, and De-
mandResponseServiceCC on CommandCenter.

Figure 2 had shown the development steps of a smart grid application accord-
ing to the proposed smart grid reference model. For the demand resposnse case
study, presented in this section, the platform porting step consists of installing an
appropriate service-based computing platform on the three computing nodes in-
volved: CommNodeA, CommNodeB, and CommandCenter. The service modeling
step consists of decomposing the demand response application into three services:
DemandResponseServiceA, DemandResponseServiceB, and DemandResponseSer-
viceCC. The service implementation step consists of developing service descrip-
tions for these three services in an appropriate service description language. The
service deployment step consists of deploying the three services, DemandRespons-
eServiceA, DemandResponseServiceB, and DemandResponseServiceCC on three
computing nodes, CommNodeA, CommNodeB, and CommandCenter, respectively.
The service discovery step consists of these three services establishing initial con-
tacts (for example, by setting up the lower level transport sockets). During the ser-
vice interaction phase, DemandResponseServiceA reads from the co-located sensor
and sends periodic messages to DemandResponseServiceCC, which in turn sends
periodic messages to DemandResponseServiceB. The service update step will be
required if we want to re-configure this demand response application (for example,
by adding a new elastic load).

The rest of this section presents the application of proposed technological solu-
tions to this case study. Figure 9 shows the cyber subsystem of demand response
case study, where a service-based computing platform (consisting of a combination
of E Machine and C Machine) has been ported onto each of the computing nodes
and the appropriate service has been deployed on that computing platform through
a service compiler. Table 1 shows the service description of DemandResponseSer-
viceB using the proposed Giotto-based service description language, while Fig-
ure 10 shows the same service description graphically. DemandResponseServiceB

A Service-Oriented, Cyber-Physical Reference Model for Smart Grid 39

Table 1 Service Description of DemandResponseServiceB using the Proposed Giotto-based
Service Description Language

Sensor Ports function f1() {
port customerOverride type binary o1 = i1;

Actuator Ports o2 = true;
port genPower type double }

Input Message Ports function f2() {
port reqPower type double o2 = false;

Output Message Ports }
port status type binary function h1() {

Task Input Ports i1 = reqPower;
port i1 type double i2 = customerOverride;
port i2 type binary }

Task Output Ports function h2() {
port o1 type double genPower = o1;
port o2 type binary }

Task Private Ports ...
...

Tasks
task t1 input i1 output o1 o2 function f1 binary guard g1() {
task t2 input i2 output o2 function f2 return true;

}
Drivers ...

driver d1 source reqPower customerOverride ...
guard g1 destination i1 i2 function h1 binary guard g4() {

driver d2 source o1 guard g2 destination genPower return customerOverride;
function h2 }

driver d3 source o2 guard g3 destination status binary guard g5() {
function h3 return true;

driver d4 source customerOverride guard g4 }
destination i2 o2 function h4 binary guard g6() {

driver d5 source customerOverride guard g5 return !customerOverride;
destination i2 function h5 }

driver d6 source customerOverride guard g6
destination i1 i2 o1 o2 function h6

Modes
// Normal operating mode
mode m1 period 10000ms ports i1 i2 o1 o2

frequency 1 invoke task t1 driver d1
frequency 1 update d2
frequency 1 update d3
frequency 1 switch m2 driver d4

// User override mode
mode m2 period 1000ms ports i2 o2

frequency 1 invoke task t2 driver d5
frequency 1 update d3
frequency 2 switch m1 driver d6

Start m1

a Some guard and driver functions have been omitted to avoid unnecessary details.

40 M.U. Tariq, S. Grijalva, and M. Wolf

Fig. 10 Graphical represen-
tation of service descriptions
for DemandResponseSer-
viceB

consists of two modes: m1 (representing the normal operating mode) and m2 (rep-
resenting the operating mode when the customer overrides the operation of demand
response application). Driver d4 and guard g4 combine to describe the mode switch
condition from m1 to m2, while driver d6 and guard g6 describe the mode switch
condition from m2 to m1. Mode transitions between m1 and m2 occur based on
the value of sensor port customerOverride, which represents the binary status of an
application override user interface mechanism available to the customer. According
to the service description, shown in Table 1, mode m1 has a period of 10000ms and
it has a mode switch with the target mode of m2 and a frequency of 1, indicating
that the mode switch condition is tested once every mode period. Therefore, mode
switch condition from m1 (normal mode) to m2 (user override mode) is tested every
10 seconds.

6 Conclusion

Early smart grid applications have been developed in an ad-hoc manner without
any underlying framework, resulting in a set of incompatible and inflexible smart
grid technologies and standards. However, in the past, various engineering domains
have successfully employed the concept of a reference model to enable clear com-
munication among stakeholders and to serve as the underlying framework for the
development of a consistent set of standards and technologies for that domain. In
this chapter, we have presented an underlying reference model for smart grid that
can enable the development of a set of compatible smart grid standards and tech-
nologies that are extensible to the future. The proposed reference model is based on
some suitable extensions to the traditional service-oriented computing paradigm as
this paradigm is uniquely suitable to handle the large scale, open nature, and long
lifecycle of smart grid applications.

A Service-Oriented, Cyber-Physical Reference Model for Smart Grid 41

In this chapter, we have also identified some technological requirements (such as
service description language, service-based computing platform, and service com-
piler) for enabling smart grid application development according to the proposed
reference model. Although development of suitable technologies, which can meet
these requirements, is a topic of ongoing research, we have presented potential
solution approaches based on state-of-the-art techniques from real-time systems
literature.

References

1. Brown, A., Carney, D., Feiler, P., et al.: A project support environment reference model.
In: Proceedings of the ACM Conference on TRI-Ada, pp. 82–89 (1993)

2. Brown, A.W., Earl, A.N., McDermid, J.: Software engineering environments: automated
support for software engineering. McGraw-Hill, New York (1992)

3. Conejo, A., Morales, J., Baringo, L.: Real-time demand response model. IEEE Transac-
tions on Smart Grid 1(3), 236–242 (2010)

4. Erl, T.: Service-oriented architecture: concepts, technology, and design. Prentice Hall,
New Jersey (2005)

5. Henzinger, T.A., Kirsch, C.M.: The embedded machine: predictable, portable real-time
code. ACM Transactions on Programming Languages and Systems (TOPLAS) 29(6), 33
(2007)

6. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for em-
bedded programming. Proceedings of the IEEE 91(1), 84–99 (2003)

7. Kopetz, H.: Real-time systems: design principles for distributed embedded applications.
Springer, New York (2011)

8. Khaitan, S.K., McCalley, J.D.: Cyber physical system approach for design of power
grids: a survey. In: Proceedings of the IEEE Power and Energy Society General Meeting,
pp. 21–25 (2013)

9. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyber physical
systems: a survey. IEEE Systems Journal PP(99), 1–16 (2014)

10. Kundur, P.: Power system stability and control. McGraw-Hill, New York (1994)
11. Laplante, P.A., Ovaska, S.J.: Real-time systems design and analysis: tools for the practi-

tioner. IEEE Press, New York (2012)
12. Liu, J.W.S.: Real-time systems. Prentice Hall, New Jersey (2000)
13. NIST Special Publication 1108R2, NIST Framework and Roadmap for Smart Grid In-

teroperability Standards, Release 2.0. (2012),
http://www.nist.gov/smartgrid/upload/
NIST Framework Release 2-0 corr.pdf (cited July 27, 2014)

14. OASIS Standard, OASIS Reference Model for Service Oriented Architecture (1999),
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf (cited May
21, 2014)

15. Regli, W.C., Mayk, I., Dugan, C.J., et al.: Development and specification of a reference
model for agent-based systems. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 39(5), 572–596 (2009)

16. World Economic Forum Report, Accelerating Successful Smart Grid Pilots (2010),
http://www.weforum.org/reports/
accelerating-successful-smart-grid-pilots (cited July 27, 2014)

http://www.nist.gov/smartgrid/upload/NIST_Framework_Release_2-0_corr.pdf
http://www.nist.gov/smartgrid/upload/NIST_Framework_Release_2-0_corr.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://www.weforum.org/reports/accelerating-successful-smart-grid-pilots
http://www.weforum.org/reports/accelerating-successful-smart-grid-pilots

42 M.U. Tariq, S. Grijalva, and M. Wolf

17. Wolf, W.: Cyber-physical system. Computer 42(3), 88–89 (2009)
18. Wan, Y.: A Primer on Wind Power for Utility Applications. Technical Report: National

Renewable Energy Laboratory (2005),
http://www.nrel.gov/docs/fy06osti/36230.pdf (cited July 27, 2014)

19. Zimmermann, H.: OSI reference model–The ISO model of architecture for open systems
interconnection. IEEE Transactions on Communications 28(4), 425–432 (1980)

http://www.nrel.gov/docs/fy06osti/36230.pdf

	A Service-Oriented, Cyber-Physical ReferenceModel for Smart Grid
	1Introduction
	2What Is a Reference Model?
	3Reference Model for Smart Grid
	4Technological Implications of a Service-Oriented Reference Model for Smart Grid
	4.1Technological Requirements
	4.2Potential Solution Approaches

	5Case Study: Demand Response
	6Conclusion
	References

