
On Storing Private Keys in the Cloud

(Transcript of Discussion)

Jonathan Anderson

University of Cambridge

Hello, I’m Jonathan Anderson, a PhD student here in the security group in
Cambridge, and these are some thoughts I’ve been having with my supervisor
Frank, who couldn’t be here today. Since it seems to be very much à la mode to
have disclaimers at the beginning of the Protocols Workshop talks this year, well
I disclaim you have no right to quiet enjoyment of the work I’m presenting. This
is a work in progress, ideas, there’s no implementation, and you may very well
find some points we haven’t thought of, so let’s have some hearty discussion.

I am interested in the distributed authentication problem. In the current set-
up with social networking, email, etc., Bob provides a user name and some proof
of knowledge of a password to a server, and then he can send messages to Alice.
You have integrity provided by this implicitly trusted centralised service: the
server tells Alice, “you ought to believe that Bob sent this because somebody
who knew Bob’s password was talking to me”. This provides us with some con-
venient properties, like the fact that Bob can login from a public library. What
is less convenient is the fact that, as far as social networks go, these guys in
the middle are often absolute scoundrels, they can’t be trusted, and the people
who write their applications are even worse scoundrels: they really, really can’t
be trusted. A little while ago I think MySpace decided they were actually going
to start selling user data: not to pretend anymore that they’re doing it through
advertising, they’re just going to say, “here’s a DVD, would you like to buy
it”. So we don’t like this, and so for lots of reasons, some of which I touched
on last year1, I want to move to a different model where we have some kind of
decentralised or distributed social networking set-up.

Now, this means that we’re no longer able to rely on the very convenient,
and yet rather inconvenient, centralised third party, so we have to do things like
public key crypto. It’s very obvious that Bob can sign messages, and he can
encrypt, and that’s fine. But the use case that I’m interested in, that motivates
the thinking behind the protocols I’ll talk about today, is Bob at the library using
a shared computer. People really like to be able to do social networking from
other people’s computers, from friends’ computers, from wherever they happen
to be. So how do we do this?

We could force Bob to carry around keys with him on a physical device like this
online banking token, but who wants to do digital signatures by manually typing
in codes on a calculator? Nobody. Well hang on, we can actually do something a
little bit more sophisticated than that: lots of people are carrying smartphones,
and so you could imagine a world in which in order to do your social networking

1 See LNCS 7028, pp 343–364.

B. Christianson and J. Malcolm (Eds.): Security Protocols 2010, LNCS 7061, pp. 107–114, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

108 J. Anderson

you have Bluetooth tethered to your smartphone, and whenever you want to
sign something it asks, “is this really what you want to say”?

Well, we’ve cheated here because we’re not actually enabling the use case
that I care about at all: if we’re saying you require a smartphone in order to do
your social networking from an untrusted computer, then why not just do your
social networking on a smartphone? Frankly this is also a little bit boring, it
doesn’t provide us with the opportunity to try and think up new protocols, and
do things in a new and interesting way. So why don’t we try doing something a
little bit different.

So here’s an illustration of a user Bob in this social networking world, sur-
rounded by a big cloud of people, some of whom are who they pretend to be, and
some of whom aren’t, and Bob has something that he knows for authentication
purposes: a username and password. We’re going to assume, of course, that the
user name is public, and the password is garbage, it’s useless, it’s a very, very
weak password, and this is probably a reasonable assumption to make in many
cases. We’re going to assume that no biometrics are required for Bob to log into
his social network using his friend’s laptop, so we really only have something
Bob knows. We don’t actually have a whole lot: Bob wants to somehow protect
private keys using really, really weak secrets. This seems insurmountable, but
maybe not... if it were insurmountable then I wouldn’t be talking about new
protocols today!

What Bob does have is other people. Now, I’m going to talk about authen-
tication agents Alice, Alicia, and Alanas, and these might be real people, Bob’s
friends running a bit of code for him, but they might be VMs running on various
cloud providers. And if Bob can convince these various authentication agents
that he is Bob, then he can get access to his key again. OK, so that still sounds
pretty straightforward, so let’s introduce a new complexity. The problem is that
these agents also can’t be trusted because perhaps your friend isn’t very good at
keeping malware off of his computer, or perhaps your friend wears a black hat.
Or they may not be malicious, but if there was a button that said, “would you
like to read all of Bob’s messages”, they would probably click on it: a little bit
curious, but not necessarily malicious.

So our goals are: we want Bob to be store this private key out there somewhere
in this cloud, and we want him to protect it using nothing but a weak secret,
and we want to use untrusted peers, so they can’t know what the secret is. We
are going to assume that there is some kind of public key directory, but not that
it provides integrity properties — the directory could return an imposter’s key.
If that’s not hard enough, then we’re also going to say, we want Bob to be able
to use a weak secret to assert his identity, to get a private key which gives him
a stronger identity without revealing his identity.

Next, problems I don’t care about. If you’re sitting in front of a computer
which has key loggers and all kinds of bad things installed, if it wants to mess
with your social networking session while you’re logged in, or wants to remember
your password and re-use it later, there’s nothing we can do to stop that. We
can mitigate risk by only exposing limited-validity keys through this protocol,

On Storing Private Keys in the Cloud 109

but there’s no getting around the fact that using a computer requires a certain
amount of trust in the computer. What we can do is deprecate all of the trust
that’s required in these backend systems written by scoundrels and untrustwor-
thy people in order to reduce the trust decision to, “do I trust this computer
sitting here in front of me”. While most people may not be able to answer that
question, at least they have some kind of a hope of being able to answer it. I’m
also not trying to solve the conspiracy problem. If Bob does this distributed
authentication thing with his friends and his friends all conspire against him,
then Bob needs new friends, there’s no technical solution for that.

So, to the protocols, hurrah. We’re going to run through kind of a series of
these, start with something that’s awfully trivial, and then introduce new little
bits of complexity, so if your criticism of the first protocol is that it’s trivially
broken, well yes, because it’s not actually the protocol, it’s a starting point. But
as we introduce new things, as you see little yellow circles appear that say, this
is new, if you think, “that’s a crap assumption”, then please speak up.

So the first thing you can do is kind of a webmail model that people use
today implicitly. This is where you take one authentication agent, and I’m going
to call her Alice, and she stores Bob’s identity, and that identity is used to look
up his password, and the private key, and this is not altogether different from
webmail-based route of trust kind of stuff, where if you get locked out of an online
service they send a password to your email account, at which point GMail is the
ultimate trusted authority for everything in the whole world. The protocol is
very simple: Bob sends Alice a temporary key to use to talk to him for the time
being — this could be a negotiated session key, just to say, there’s confidentiality
we assume here. Alice says, “let’s get some freshness out of you”, and Bob says,
“here is my password”, and Alice says, “here is your private key”. OK, so far so
good. Attacks are obviously trivial because Alice has access to Bob’s password
and private key, so she can do whatever she wants, so that’s kind of obvious.
However, other problems include impersonations: there’s no way for Bob to be
sure that he’s actually talking to Alice, and he’s sending his password out in
the clear to somebody, and he hopes it’s Alice, but maybe it isn’t. People like
VeriSign try to deal with this in the webmail trust model, but they don’t always
get it right either, especially if you’re living in Turkey (I think). And then of
course there is the dictionary attack, where an attacker goes to Alice and tries
various passwords.

Now, the nice thing is, because there’s no password file that this outside
attacker has access to, the dictionary attack, has to be online, which means the
password doesn’t have to be very strong. So what we want to do is to force the
attacker into an online dictionary attack, but in some kind of distributed way
that takes this massive amount of trust out of the one authentication agent. So
we can take a very small baby step and say, Bob’s no longer going to send his
password in the clear, he’s going to send a hash that was composed from things
including his password, and Alice no longer stores the private key directly, she
stores it encrypted under a key that’s derived from this weak password. This
sends a social signal in a sense: it says, I would prefer you not read my password,

110 J. Anderson

but there’s no technical enforcement, because it would be very, very easy to
brute-force these weak passwords that we’re making assumptions about, and
furthermore if there was an app that said, “would you like to read your friend’s
password”, then again, many people would just click “yes”.

So can we do a little bit better? Well, perhaps we can. Given that we’re talking
about multiple people, you might immediately think of a threshold encryption
scheme: instead of giving Alice access to Bob’s private key, she just has one chunk
of it, and Bob has to go and convince n of k people that he is Bob, and then he
can reassemble his private key. This is an obvious step, but it actually provides
zero additional security, because in order for Bob to prove his identity to Alice,
Alicia and Alanas, all of these agents still have to hold this hash, and the only
secret that can possibly be in this hash is the weak password. So doing this
thresholding scheme actually doesn’t give you any additional security properties
on its own because this can still be brute-forced, and once Alice has this, she
can go to Alicia, she can go to Alanas, whoever, and she can say, “here’s the
password, please give me your chunk of the key”, and reassemble Bob’s key.
Again, it’s a slightly higher social barrier, because it’s a little bit more of an
active attack, but again, there’s nothing to actually stop people from doing it.

So here is where we try to do something a little bit more creative, and a
little more interesting, and when I say creative, I mean taking inspiration from
the 15 year old paper that Bruce Christianson and Mark Lomas wrote2, in
which they were authenticating kernels moving around on a network. What if
we intentionally introduce collusions into the hashes? Instead of Alice holding
this hash, she holds this hash mod N , where N could be something like 256: she
doesn’t have a hash of Bob’s password, she has several bytes of the hash of Bob’s
password. Now you might say, “whoa, whoa, whoa, this makes the authentication
much weaker because it’s easier to brute force”. That’s true, it does weaken the
authentication with each individual agent, but also greatly weakens the attacks
that can be performed by a malicious agent. This comes from the fact that now
passwords become equivalent: “biscuit” and “cat”, SHA-1 mod 256, both hash
to the same value. An insider with several bytes of Bob’s password hash can
brute-force it, but the result isn’t a password, it’s a whole set of passwords; the
insider becomes an outsider running online dictionary attacks against the other
agents, just with a little extra information to start with.

If we do some sums, we expect that Alice will be able to guess Bob’s password
via a successful dictionary attack if this inequality is satisfied, where α is the
number of guesses that you get per agent, small n is the number of agents Bob
uses, x is the size of the dictionary — we’ll talk about the assumptions on the
dictionary in a second — and N is this value that you’re hashing modulo to.
And so for different parameters you can see α gives you different values of N .

Now let’s talk about some of the assumptions that go into this. This only works
if the the dictionary is composed of equally-likely passwords. Now you might say,
“whoa, people don’t choose equally likely passwords” and you’d be right, so we
can’t let people choose their own passwords. That’s a bit of a downside. However,

2 Reference [5] in the position paper.

On Storing Private Keys in the Cloud 111

look at the size of the dictionary: 10,000. Can we expect to remember a 4-digit
PIN? Maybe. A dictionary of 10,000 words includes words like cat and dog, a
dictionary of size 100,000 includes things like monkey7, so we’re talking about
pretty weak passwords, and the hope is that, even though they’re chosen for you
by the computer, if they’re really, really easy then you might be able to remember
them. And of course, if you start doing traditional stronger passwords then you
get much better protection, so this dictionary explodes. This slide shows, for
various assumptions of the number of authentication agents, and how many
guesses they let you have. If you’re allowing passwords like monkey7 or fish2,
then if N is greater than 5,000, then you’d expect Alice to be able to conduct
this attack successfully. So you set α = 1024 or something, and that means that
the probability of an outsider guessing correctly when they go to Alice is very,
very low.

So that’s the insider guessing attack. An outsider can come and do the dic-
tionary attack, but again, in order to do so, the first thing they do is they go to
one agent, or they go to all the agents, they try to find a password, or a bit of
hash that works, and that’s α times little n over big N probability of succeeding,
and once they have that then they become an insider, and then they have to
run this attack. So in fact we can still have some pretty strong properties, even
though the authentication with each agent is weak. So we say, OK, that’s pretty
cool, at this point let’s declare victory, hurrah, we’ve won, Bob was able to store
a private key out there somewhere, he is able to protect it with nothing but a
really, really weak password, he’s able to recover it, he’s able to prevent insider
and outsider attacks, this is great.

But we still have the problem of an impostor doing an identity disclosure
attack. In some cases Bob might not want anybody in the world to know that
he’s using this service, and he’s stored his password with Alice: maybe that means
Alice gets her door kicked down and that’s very inconvenient for everybody. So
if we apply a very similar kind of technique then we can in fact do identity
hashing as well. The N in this modular operation can be truly, truly small. We
could start with NI as 2, and then move to 4, and then move to 8, asking “now
can you uniquely identify me in the set of people that you are performing this
service for?”. If you’re only acting as an authentication agent for ten of your
friends, or if your computer is only running authentication agent code for tens of
friends, you actually should be able to uniquely identify people with an NI that’s
very small. The “try again” message is because you do in fact want to uniquely
identify which person you’re authenticating as, because once you start saying,
“this bit of hash is valid for somebody that Alice authenticates”, we might start
to get into trouble if she in fact authenticates many clients.

The “try again” message seems a little scary, like a chosen protocol attack,
but it’s not really: if Alice is in fact being a very bad person, and she’s just
sending lots of “try again” messages until she can get a really, really large chunk
of hash out of Bob’s identity, by the time she gets to the third or the fourth “try
again” message, Bob’s already successfully authenticated with everybody else.
And of course, there could be a general or user-specific limit on this N . Exactly

112 J. Anderson

how to deal with that is perhaps the weakest bit of what I’m talking about here,
but I do think this is a viable approach to let Bob to get his key out with a very
weak secret. I do mean really, really weak: cat, dog, these are not the kinds of
passwords that we encourage people to use, but they could be just fine in this
system as long as it’s assigned by the machine. Using peers who are hopefully
not conspiring against you but are otherwise untrustworthy, and we can even let
Bob assert his identity without revealing his identity, which I think is kind of
cool. So that’s all. Any questions?

Malte Schwarzkopf: So you’ve outlined all of this for authentication and
obviously that’s the viable use case, but if you’re saying, as you said at the
beginning, all the social network providers are scoundrels who want to sell all
your personal data, then you also need to protect all the message exchanges. So
are you suggesting that you use this for authentication, then devise some sort of
encryption scheme, and then use that to encrypt your messages, because your
data is still being stored somewhere, and they still have access, and my question
I guess is, do they actually care that much about your password if they don’t
actually need your password in order to get to your data?

Reply: So this all kind of comes out of work that I want to do for distributed
social networking, where in fact there is no centralised provider who stores all
of your data in the clear. And one of the barriers to that is the fear that people
will have to carry their private keys around, so I thought about how we can do
something a bit more interesting. So the assumption is that you might use a
centralised provider for availability reasons, but you don’t trust them with your
confidentiality or integrity, they’re a CDN that stores encrypted blobs of stuff,
and the clients have to interpret what those blobs mean.

Ross Anderson: The collision for hash function stuff that a number of us
played with 15 yeas ago, Mark Lomas, me, Bruce, etc., was kind of a response to
Steve Bellovin’s EKE paper. That was an attempt to set up a protocol providing
the user password to authenticate to a website by authenticating the set-up of
a different known key in such a way that if you didn’t know the password you
couldn’t extract it from the protocol. Now there were several dozen variants on
that theme produced using different mechanisms, and in the end none of them
got deployed because Lucent, the successor of Bell Labs, where Steve Bellovin
worked, took the dog in the manger attitude to patents: they just waited and
hoped that Microsoft would put this in browsers so that they could sue Microsoft
for $100m. And so Microsoft of course didn’t put it in the browser. But it hap-
pened in a few years, so it’s perhaps opportune to start thinking about this type
of protocol again.

Reply: So one of the results of Olivetti cryptic key exchange stuff was the SRP
protocol, which Joe pointed me at, which again does secure remote passwords,
but the problem with protocols like that is, you can’t extract the password by
observing a run of it, but the person that you’re authenticating to does have to
have some kind of information that they could use to get your password if your
password is as weak as we’re assuming it is. So they have to store something,
and they can brute your force your password out of the information that they

On Storing Private Keys in the Cloud 113

have. If they’re compromised or they’re wicked then they can get your password,
and then they can impersonate you, and so that’s the motivation for why I did
the collision-rich hash stuff, again because that sort of a model doesn’t really
give you the property that I want, it’s still basically requires you to fully trust
an authentication agent.

Malte Schwarzkopf: One comment about the last bit where you said, OK,
with the “try again” thing you’re kind of protected against a malicious authen-
tication if you are already authenticated with everyone else, so at some point
you just don’t care about that anymore. So that’s obviously true, however the
assumption there is that your connectivity to all of them is the same, and that
your adversary cannot engineer the connectivity, which might be a perfectly
reasonable assumption. But this only fails under the assumption that you don’t
have one malicious authentication agent who can send you messages very quickly,
much quicker than everyone else, and thereby get access to your key.

Reply: So that’s true, and that’s why it would be nice if Bob could know
my NI , I have a maximum value that I’m going to let that go to, and I’m never
going to reveal more than eight bytes of this identity hash, because nobody
ever needs that, for instance. This is one of those things where earlier I said we
assume that there is a directory where you can look up public keys, we make no
assumptions about integrity. It would be nice if there was some kind of visual
fingerprinting or something, Bob could at least say, yes, I think this is my public
key, so Bob could read a self-signed message saying “my maximum NI is this,
and I will never respond to messages greater than that”, so Bob can cache that
information for himself. But again, that could just be in a lot of cases a software
default sort of thing.

Malte Schwarzkopf: And the second question, so how would you go about
bootstrapping this model? You still have to start off with a small number of
authentication agents, you can’t just join this social network and immediately
have 20 friends that I can use as my authentication agents. Now they don’t
necessarily have to be a friend, there are other models as well, but if we assume
that they are your friends on the social network, you are at some point going to
start off with one, and you have full trust in them, you then distribute later, and
I was just wondering if you have at all thought about how you would actually do
this redistribution once you get more authentication agents, how it would scale,
how you bootstrap it?

Reply: So part of what I want to say to that is that this stuff only applies
when you are to the point where you want to be able to use other computers, so
when you’re first getting started, you have client software on your computer, you
generate a master signing key for yourself, which probably gets stored on your
computer, or if you’re really paranoid, only on your Android phone, or if you’re
super-paranoid only on your iPhone. And so you set up your key, you do mutual
identity verification, you do stuff like the MANA-III protocol, which allows you
in a very lightweight way to figure out that the person you’re talking to online is
in fact the person that you talk to in real life, you could do all these things. Once
you’re ready to set this up, and this could be after you’ve identified friends, after

114 J. Anderson

you’ve purchased virtual machine time ahead of time, then you set this stuff up,
and you just do some kind of secret sharing scheme, so if you add new people,
it’s kind of a matter of just recreating this stuff. And this thing doesn’t need to
change, if you want to change your password you can, but adding new people to
the scheme, they can all keep what they already have here, and just new people
have, instead of Alice here in the hash, it’s Alicia, it’s whoever, and this is the
thing that has to change.

Joseph Bonneau: Just an observation, the uneasiness about the second
message is simply the fact that there’s no authentication on it at all, so you
don’t know who is telling you try again.

Reply: Right, and it’s at this point kind of impossible to have the authenti-
cation because we’re assuming that Bob can’t tell Alice from Eve.

Joseph Bonneau: So going back to the SRP thing, I buy the reason you’re
doing a collision-rich hashing is that you don’t actually have to give any of these
Alices an actual password, you map it down so they have a set of passwords.
But it seems like you could layer that on top of some other protocol, SRP, or
whatever, where at the point in SRP when Bob is supposed compute things
based on an actual password they just compute it based on this collisionable
hash of the password. But since you’re running high-end software anyway you
could do that.

Reply: And that, yes, might be a very reasonable way to proceed. What
I’ve got here is an outline of what a protocol could look like, and I said things
like, “maybe this is actually TLS”, but I just don’t want to have a protocol
notation for TLS. The contribution here is doing the collision-rich hash and the
association with the n of k secret sharing. And if you want to base this on some
well-known standardised protocol that has a user base, that’s fine.

	On Storing Private Keys in the Cloud

