
Generating Channel Ids in Virtual World

Operating Systems
(Extended Abstract)

Michael Roe

Microsoft Research

Introduction

Two of the most popular software platforms for creating virtual worlds–Second
Life and Metaplace–both use a message-passing architecture. Objects communi-
cate by sending messages on channels. The channel’s name or identifier acts as
a capability: a program that knows the channel’s identifier can send and receive
from the channel.

1 Second Life

In Second Life, all users are placed in one very large virtual world where everyone
has the ability to create new objects and attach programs to them. (In reality,
Second Life’s security model is more complex than this. For example, users who
are below 18 years old are isolated from users who are 18+ by being put into
an entirely separate virtual world. There are also discretionary access control on
who may enter particular parts of the virtual space. But for the purpose of this
explanation, we can ignore these details). This means that the main protection
mechanism that stops an attacker sending control messages to your objects is
that the channel ids are secret.

Metaplace, which was in open beta test from May until December 2009, has
a rather different security model, which we describe later. The cryptographic
protocol described in this paper was designed for platforms that are similar to
Second Life, although they can also be applied to Metaplace.

The security of the system clearly relies on keeping channel ids secret. This
usually works because the scripts run on a central server cluster owned by a
single organization, not on the client, and the client never learns the channel
ids. (In both Metaplace and Second Life, the client is assumed to be untrusted).

Channel ids are often embedded in the source code. This is not immediately
a security problem, because the access permissions on scripts can be set so that
a user of the script cannot read it.

However, there are two problems with embedding capabilities in scripts.
Firstly, it makes the access permissions on scripts more security-critical than
they would be otherwise. A compromise of the secrecy of a script (the attacker
learns what algorithms it uses etc.) is perhaps not very serious. It is rather more

B. Christianson and J. Malcolm (Eds.): Security Protocols 2010, LNCS 7061, pp. 71–73, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



72 M. Roe

serious if the attacker uses the capabilities embedded in the script to attack the
authentication and integrity properties of the running system (e.g. by sending
spoofed control messages to objects).

Secondly, it makes it difficult to organizations to run their own servers (or,
more precisely, run other people’s scripts on their own servers).

If servers are run by multiple organizations that do not trust each other,
secret channel ids embedded in the source code are no longer a viable option.
The operators of one server cluster can use their physical access to find out the
channel ids used in their own cluster, and then use this knowledge to launch an
attack on a rival organization’s server. (This assumes that the same scripts are
in use on both servers, and each organization has user-level access to the other’s
system).

Proposed Solution

– Each software publisher has a private key, K−1
A , and corresponding public

key KA.
– Scripts are signed: Program, Sign(program, K−1

A )
– Clusters of servers each have a secret key, KSi .
– Within server cluster Si, each program computes its channel ids as follows:

channel=H(KA, name; KSi), where H is a keyed hash function and name is
a name for the channel used within the program.

– Each server cluster checks the signature on a script before running it. This
check need only be done once, the first time the script is uploaded to the
server.

With this approach, we can use the underlying message-passing layer without
modification, just changing how we generate the channel ids. It has the advantage
that one server cluster (and the organization controlling it) cannot compute the
channel ids that are used in a different server cluster. Authors of scripts retain
the ability to write scripts that communicate with each other, by using the same
KA to sign each program.

2 Metaplace

Metaplace, an alternative software platform for virtual worlds, was in open beta
test from May until December in 2009. For Metaplace has an additional layer
of protection. Each user gets their own miniature virtual world, that is isolated
from the others (in particular, an object in one world cannot send a message
to an object in another, at least not without using a different message-passing
mechanism that is specifically for talking to untrusted things in other security
contexts). Users can enter someone else’s virtual world, but unless they have
“superuser” privilege in that world, they cannot introduce new programs and
attach them to objects.



Generating Channel Ids in Virtual Worlds 73

Metaplace has an additional complication, that a single object in the visu-
alization of the virtual world can have multiple programs (known as scripts in
Metaplace) attached to it. Scripts attached to the same object can communicate
via shared memory; locks are not needed to guard against concurrent access be-
cause the scheduler guarantees that at most one thread of control is active in the
object at any one time; the object acts as a monitor. In Metaplace, the channel
id is actually the name of the function that is called when a message is received
on the channel). In Metaplace, read-only scripts are referred to as closed source.
This should not be confused with the more common use of the term, which refers
to a particular kind of software license.

Acknowledgements. I would like to thank George Danezis for discussions
while I was writing this paper, and for presenting the paper at SPW XVIII.


	Generating Channel Ids in Virtual World Operating Systems
	Introduction
	1 SecondLife
	2 Metaplace




